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ON THE ASSIGNMENT POLYTOPE*
M. L. BALINSKI" AND ANDREW RUSSAKOFF:

Abstract. An expository, completely elementary and self-contained account is given describing
several properties of the constraint polytope of the assignment problem. In particular, it is shown that
the "Hirsch conjecture" holds, and that to go from any one extreme point to any other, at most 2 extreme
edges need to be traversed.

Introduction. The n n assignment polytope P, is

Pn--tx (xij)" xij--1, xij-- 1, xij = 0}.
i=1 j=l

The interest in this polytope comes from the fact that the well-known and much
studied assignment problem AP, is to maxx{cx ,i,jcijxij’xsP,}, where c

(cij) are arbitrary real numbers. In fact, the assignment problem--and here
we find its baptismal antecedent--stems itself from the following purely combina-
torial problem" given n men, i= 1,..., n, and n jobs, j 1,..., n, and the
"efficiency rating" cij of man performing job j, find an assignment of the n men
to the n jobs which maximizes the total efficiency rating. In this raw form the
problem is to find an assignment from among the n! possibilities which is best.

The formation of the combinatorial problem as the (special) linear pro-
gram AP, requires a demonstration that solutions x of AP, exist in which each
xj has values 0 or 1. This is easily done by showing that the extreme points of
P, have precisely this property, that is, that the extreme points x P,, thought of
as n n matrices, are precisely the permutation matrices of "assignments".
(The matrices x s P, have columns and rows summing to 1. If some xj is not 0
or 1, hence fractional, that row has some other fractional entry and so does
column j. Continue to make this observation and thereby construct a pair of
matrices x 1, x 11 s P, each perturbations of x, with x )x + 1/2x 11).

Masses of methods for solving the combinatorial assignment problem have
been published. Most, if not all, explicitly or implicitly stem from considering the
problem as the (special) linear program AP, and using duality notions. What does
this achieve? At best it replaces the search for some optimal permutation from

among n! by a relatively simple sequential search requiring at most ) iterations

(see, for example, [1], [9]). But, as in using the celebrated simplex method for
solving general linear programs, all ("primal") methods for AP, proceed, in this
sequential search, from one extreme point (or 0-dimensional face) along an extreme
edge (or 1-dimensional face) to another "neighboring" extreme point of P,. A
considerable study of general polytopes (convex polyhedral sets which are bound-
ed) is now, and has recently been, in process (see [4], [5]). In particular, Klee
and Witzgall [7] discuss various aspects of the transportation polytope, of which
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ON THE ASSIGNMENT POLYTOPE 517

P, is a specialization. Nevertheless, several rather striking results obtain for P,
which are either untrue for the more general transportation polytopes or not
known to be true.

The intent, then, of this paper is to give a very elementary self-contained
account of these new results and, hopefully in the process, induce readers to
subsequently immerse themselves in true polytopal depths.

1. Preliminaries. We will need some definitions and ideas which naturally
arise, and are standard fodder, for linear programming, but which are introduced
only in the present context. (All definitions are illustrated in Example 1.)

To do this, let A (ak,ij) be the 2n n2 incidence matrix of "men-jobs",
k= 1, n (or men i= 1,...,n),n + 1,...,2n(orjobsj= 1,...,n) versus
"individual assignments" (i, j)= (1, 1), (1, n), (2, 1), (2, n), (n, 1),
(n, n), with ak,ij if k or k n + j, and 0 otherwise.

Every column Aj of A has exactly two l’s, and the remaining entries are 0’s.
Using A, we can write P, {x; Ax e, x > 0}, where e is a 2n-vector of l’s.

A basis of P, is a maximal linearly independent set of columns of A. Given a
basis, the variables x corresponding to its columns are called basic variables, the
remaining are nonbasic variables. Given any basis, a unique solution x to Ax e
with xi. 0 for xij nonbasic clearly exists. A basis isfeasible, and its corresponding
solution is feasible, if x P,, i.e., if x solves Ax e, x >= 0 with xij 0 for xj
nonbasic. Such an x is a basic feasible solution.

Every basic feasible solution x of P, is an extreme point of P,. (Argument"
11 But since x,suppose not, then there exist x x11p, with x x +-x

x x > O, xij 0 implies x/j x11= 0, whence x x x 1). Thus we cani,j

assert that if xi > 0 for x a basic feasible solution of P, then xi 1.
In fact, as will be seen, every extreme point x of Pn has slews of"corresponding"

feasible bases. For this reason, among others, it is convenient to work with the basic
notion of basis and feasible basis. Any basis of P has cardinality precisely equal
to 2n 1. (The 2n rows of A are linearly dependent since the sum of the first n is
the same as the sum of the last n, while any 2n rows are linearly independent).

Two bases are neighbors if the cardinality of the intersection of their respective
column sets is 2n 2, or, if their column sets are identical in all but one column.
This definition comes from the following "geometry". A feasible basis corresponds
to an extreme point. In the "agreeable case" where feasible bases are in one-to-one
correspondence to extreme points (and some slight perturbations in the definition
of P where e is taken close to the vector of l’s but "different" can achieve this), we
also have a one-to-one correspondence between nonbasic sets of feasible solutions
and extreme points. What is x 0? It is a hyperplane. Note that P M . H,
where M {x;Ax e} is a linear manifold of dimension /72- (2n- 1)

(n 1)2, and Hj {x;xj >= 0}, a half-space in R"2. Thus if setting (n 1)2

xj to zero admits x P,, this x is an extreme point. If in the agreeable case, only
(n 1)2 of the xij are set to zero and this admits x Pn, then a line of solutions
x P, is admitted which must connect two extreme points of P, and is thus an
extreme line (or 1-dimensional face) of P. In our (somewhat disagreeable) case,
two different neighboring feasible bases can correspond to one and the same
extreme point.
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518 M. L. BALINSKI AND ANDREW RUSSAKOFF

Two extreme points x - y of P, are neighbors if x and y are basic feasible
solutions having bases S(x) and S(y) which are neighbors.

The structure of bases, feasible bases, neighboring bases, etc., is particularly
simple for P,. The natural model through which to display this structure is a
finite graph. To this purpose, let C(n, n) be the complete bipartite graph having
disjoint node sets I and J, with [II [JI n, and all edges (i,j), I, j J. With
any x P, associate the bipartite subgraph B(x) of C(n, n) having edges (i, j) if
xu > 0. With any basis S of P, associate the bipartite subgraph B(S) of C(n, n)
having edges (i,j) if Au e S. An assignment subgraph of C(n, n) is a subgraph having
n edges and all nodes of valency 1. A path is a connected graph which has two nodes
of valency and whose other nodes all have valency 2. A circuit is a connected
graph all of whose nodes have valency 2.

THEOREM 1. (a) The extreme points of P, are in 1-1 correspondence with the
assignment subgraphs of C(n, n).

(b) The bases (the feasible bases) S of P, are in 1-1 correspondence with the
spanning trees of C(n, n) (the spanning trees which contain an assignment subgraph).

(c) Two feasible bases S, T of P are neighbors if and only if B(S) U B(T)
contains exactly one circuit.

Proof Part (a) is obvious. To show the "feasible bases" part of (b), suppose x is
the basic feasible solution corresponding to S. Then x is extreme and hence
contains an assignment subgraph. Suppose B(S) contains a circuit. Then the circuit
may be decomposed into two distinct subassignment subgraphs, say B and B2,
on the nodes of the circuit in question, and R,Aij R2Au, contradicting linear
independence. On the other hand, suppose B is a spanning tree and S the set of
columns corresponding to edges (i,j) B. Consider Au,u 0. Since B is a tree
it has a node, say i, with valency 1, say with incident edge (i, j). Then 2u 0.
The argument repeats. Thus, S is a basis. If B contains an assignment subgraph H,
let xu for (i,j)e H and xu 0 otherwise. This shows S must be feasible.
Part (c)is now obvious.

THEOREM 2. Two extreme points x :/= y of P, are neighbors if and only if B(x)
U B(y) contains exactly one circuit.

Proof B(x), B(y) are assignment subgraphs. So, every node it I, j e J, has
valency or 2 on B(x)U B(y). Consider the maximal connected subgraphs of
B(x) U B(y): each must be either a single edge or an (even) circuit.

Suppose there are p single edges E and one circuit C, [El p, IC[ 2(n p).
Let F be any subset of edges of C(n, n), F f’l (B(x) U B(y)) 5, IF] p, which
connect the p + maximal connected subgraphs of B(x) U B(y); and let (r, s),
(r, t) be two edges of C with x Yrt (hence s -Y: e J). Define

S(x) E U F U {(i, j) C :(i, j) - (r, t)}
and

S(y) E U F U {(i, j)e C’(i, j) :/: (r, s)}.

S(x) and S(y) are feasible bases corresponding to x and y, respectively, and
B(S)x)) U B(S(y)) contains exactly one circuit, so x and y are neighbors.

If B(x)U B(y)contains more than one maximal connected subgroup which
is a cycle, then clearly for any feasible bases S(x), S(y) containing, respectively,
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ON THE ASSIGNMENT POLYTOPE 519

the assignment subgraphs B(x), B(y), B(S(x)) U B(S(y)) must contain more than
one circuit.

Example 1. n 3.

A11 Alz A13 Az Az2 Az3 A3 A3 A33

A---

(man 1)

(man 2)

(man 3)
2n

(job 1)

(job 2)

(,job 3)

/7

Feasible basis S: (All,A13,A21,A22,A31).
Basic feasible solution x corresponding to S: X13 1, X22--- 1, X31-- 1,

remaining xij O.
Feasible basis S’: (A11,A13,A22,A23,A3x). Again x is the corresponding

basic feasible solution.
Feasible basis T: (A1x,A21,A22,A31,A33). Its basic feasible solution is

Y:Y11 Y22 Y33 1, remaining Yij 0.
S and T are neighbors. Therefore x and y are neighbors. Let z be: zl z12

Z22 Z23 Z33 Z31 -, remaining zij O. z P3"
I

C(3, 3):

J

B(x)"

B(T):

2. The graph G(P.). The graph of P,, G(P,), is the (finite undirected) graph
which has as its nodes the extreme points or 0-dimensional faces of P, and as its
edges the extreme edges or 1-dimensional faces of P,. Two nodes x, y of a graph
are similar if for some automorphism 4 of the graph (b is a permutation of the
node set which preserves adjacency), b(x)= y. graph is node-symmetric if
every pair of points are similar.

THEOREM 3. G(P,) is node-symmetric.
Proof Let x, y be nodes of G(P,), i.e., x,y are extreme points of P, or permuta-

tion matrices. Let p be the permutation on the columns of x (considered as a
matrix) which takes x into y. Equivalently, is the permutation of nodes J takingD
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520 M. L. BALINSKI AND ANDREW RUSSAKOFF

B(x) into B(y). Define p for any z (zi2) G(P.) by (p(zi2) zio(j). (D is clearly an
adjacency preserving automorphism with o(x) y.

THEOREM 4. (a) G(P,)hash, nodes.

()(b) The valency of each node of G(P,) is N(n) "o-2 (n k 1)!
(c) lim,_ N(n)/(n 1)! e.

Proof Part (a) is obvious. By Theorem 3, all nodes of G(P,) have the same
valency, and it is sufficient to count the number of neighbors of x (xij), xii 1
and i, xij 0 for - j.

The number of neighbors y with B(y) containing no edges in common with
B(x) {(i, i)} is (n 1)!; with exactly edge in common with B(x), the number

!;... with exactly k edges in common with B(x), the number is

() (n k 1)! for k 0, 1, ..., n 2. This establishes (b).

To see (c), consider

(n 1)I (n 1)’ (n k)k’ .. + (n k) (k 1)I0 0

Since

"- + + <
(n-k)(k-1) n n-k n k (k-l)! n (k-1)’

and the right side goes to zero as n becomes large, the result obtains.
The distance between a pair of nodes in a connected graph is the number of

edges in a shortest path connecting the nodes. The diameter of a connected graph
is the greatest distance between any pair of nodes of the graph.

THEOREM 5. G(P,) has diameter 2.
Proof Let x, y be nodes of G(P,) and B(x), B(y) the corresponding assignment

subgraphs. Consider the subgraph B(x)U B(y) of C(n,n). It contains between
n + 2 and 2n edges.

If B(x) U B(y) contains exactly one circuit, x and y are neighbors in G(P,),
i.e., their distance is 1.

Otherwise B(x) U B(y) contains at least two circuits. If B(x) and B(y) have an
edge in common, then by applying induction on n, the result obtains. Thus, assume
B(x) U B(y) has 2n edges and exactly p disjoint circuits Ci, 2 =< p __< In/2], each
circuit’s edges alternating between an edge of B(x) and an edge of B(y) (see Fig.
for example of the constructive proof which follows).

From each circuit C choose an edge e of B(y) and drop it from Ci to obtain
p disjoint components Ci with B (x) U ’i, each C’ containing one 1-valent
/-node, one 1-valent J-node, and all remaining nodes 2-valent. Let E be any p
edges of C(n, n) which connect the p components C’z into a single circuit. Note the
p edges E and the p edges ei also form a single circuit. Let , E. Then S(x) U
U (E 0)is a basis for x.
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ON THE ASSIGNMENT POLYTOPE 521

B(x)

C1 C C

B(x) U B(y)

C1 2 C3
e (2, 1), e2 (4, 5), e (7, 6)
E {(7, 1), (2, 5), (4, 6)}

S(x)

B(z)

S(z), f (2,2)

B(y) U B(z)

FIG. 1. I-nodes top, J-nodes bottom

Let f be any edge of B(x), i.e., f (i,j), with xij ---1. Consider S(z)
(U C-" U E2) f It is a spanning tree of C(n, n) with all nodes of valency 2 save

exactly two which are of valency 1. Thus it is the feasible basis for an extreme point
z or node z of G(P,) which is a neighbor of x. B(z), the assignment subgraph of
S(z), has n- p edges in common with B(y) (on edges of Ci) and contains the p
edges E. B(z) has no edges in common with B(x).

But z and y are neighbors as well, since the edges of B(z)O B(y) (B(z)
f’l B(y)) form a single circuit consisting of the p edges e and the p edges E. This
completes the proof.

In fact, Theorem 5 is equivalent to the following very simple statement
concerning permutations, as two Davids--Gale and Walkupwere kind enough
to point out.

(S 1) Every permutation is the product of two cycles. Every permutation p on n
letters can be uniquely expressed as a product of disjoint cycles, i.e., in the form

p (j(1), ..., j(nl))(j(n + 1), ..., j(nz))’.. ((jnk + 1), j(n)).

Extended search through available textbooks has failed to reveal (S1)! Its proof"
p (j(1), ..., j(n))(j(n), j(nk),..., j(nl)).

David Walkup suggests a different manner of expressing and developing our
results. Let the permutation qg(x)= (jl,..-, j,) represent x eG(P,), where xis

1, i.e., B(x) {(1, Jl), "’", (n, j,)}. Clearly there is a one-to-one correspondence
between x’s and p(x)’s. Let P(n) be the set of all permutations p on n letters, and letD
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522 M. L. BALINSKI AND ANDREW RUSSAKOFF

P’(n) be the subset of those permutations which consist of exactly one cycle (of
length as least 2). Then we have the following.

($2) x, y are neighbors of P, if and only if p(x)= p(y)p(z), p(z)e P’(n).
In our terms, ($2) is immediate. Suppose p(y) is the identity, p(y)= (1,..., n),
or y (Yij), Y, for all i, yj 0 otherwise. Then ($2) is the same as Theorem 2.
Otherwise, use Theorem 3, and the same reasoning applies to (p(y))-lp(x),
(p(y))- p(y). Thus the valency of each node of G(P,) is IP’(n)l Finally, we have ($3).

($3) The diameter of G(P,) is at most 2.
Consider two arbitrary permutations p(x), p(y). By (S1), (p(x))-lp(y)= p(u)p(v),
with p(u), p(v) P’(n), thus y and the vertex, say w, corresponding to p(x)p(u) are
neighbors. Also, p(x) p(x) p(u) (p(u))- and p(u))- P’(n), so x and w are
neighbors (unless p(u) is the identity).

This construction--if poured from the bottom up--may be more elegant,
but it would still leave us with the necessity of introducing the bipartite graph
model for the purposes of 3.

A graph is said to be Hamiltonian if it contains a circuit which includes all
nodes of the grapn.

THEOREM 6. G(P,) is Hamiltonian.
Proof Note that Dirac’s theorem shows G(P,) to be Hamiltonian only for

n ?. The proof is constructive.
Each successive pair x, y of the Hamiltonian circuit on G(P,) to be displayed

!:as the property that p(y) is obtained from p(x) by one interchange of adjacent
indices. Thus, B(x) B(y) contains exactly one circuit of 4 edges which, in the
"natural" ordering on nodes I and J, are always on nodes k, k + I, and k,
k+16J.

For n 2, a circuit is (1, 2), (2, 1), (1, 2).
For n 3, a circuit is (1, 2, 3), (1, 3,2), (3, 1, 2), (3,2, 1), (2, 3, 1), (2, 1, 3),

(1,2,3).
Assume, inductively, that we have a Hamiltonian circuit for G(P,_I), say

n(np(1 1), p(2 1),..., p((:_ 1)!, t’l indices 1, 2,..., n- 1, and each pJ_-i 1) is
obtained from p}"-1,, as well as p]"-1)being obtained from P((--1,t,l’ by making one
interchange of adjacent indices. We obtain a Hamiltonian circuit for G(P,) as
follows.

Step 1. Begin with p")= (pl"- l), n), and make successive interchanges
between n and the index to the left of n, obtaining PZ’(n) -nD(n) (n, p(- 1)).

Step 2. Go to ,,,+-(") (n, p"-1)) and make successive interchanges between
n and the index to the right of n, obtaining-(") ’") (P2"- 1), n)rn + 2 F2n- (p3-,n) etc.Step 3. Go to P:+I

Step in 1) Go to ,t,) (n, ("-
t’,!-n+l Pn 1))!) and make successive interchanges

-11between n and the indextothe right of n, obtaining ,n) n(n) (Plnt-’n!-n+ 2 Fn!

then go to pl" (p]"-, n).
The adjacent interchange property holds for {p")}, so each successive pair are

neighboring nodes of G(P,). All nodes of G(P,) are visited since the circuit includes
n! nodes and no two are the same. (Note that the circuit for n 3 above is derived
from the circuit for n 2 by the construction given.) There are many methods for
generating all permutations P(n) by successive interchanges. This particular
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ON THE ASSIGNMENT POLYTOPE 523

construction, which preserve adjacency on G(P,), is due, it turns out, to Selmer
Johnson (see [8] for a discussion of several methods).

The girth of a graph is the number of edges in a shortest circuit of the graph.
The circumference of a graph is the number ofedges in a longest circuit of the graph.
From the foregoing, it is obvious that the girth of G(P,) is 3, its circumference n !.
A graph is n-connected provided there exist n mutually disjoint paths between
every pair of nodes of the graph. We conjecture that G(P,) is N(n)-connected. The
conjecture is easily verified for n _< 4.

3. Feasible bases of P..
THEOREM 7. To each extreme point of P, there correspond 2"-in"-2 feasible

bases. Thus P, has 2"-an"-2n!feasible bases, and n2(n- 1) bases in all.
Proof. Given x an extreme for P,, consider B(x). The number of feasible bases

corresponding to x is the number of spanning trees of C(n, n) containing B(x).
Let C(n) be the complete graph on n nodes. Think of the n edges B(x) as n nodes

of C(n) which must be spanned by a tree. There are ("Cayley’s Theorem") n"-
such trees, and each such gives rise to 2"-1 spanning trees of C(n, n) since every
pair of edges of B(x) may be connected by two different edges, n2(n- 1) is the
number of spanning trees of C(n, n), hence the number of bases, feasible or not.

The Hirsch conjecture (see [2, pp. 160 and I68], [6]) is a long-standing con-
jecture originally prompted by consideration of the simplex method for linear
programming. In linear programming or simplex method terminology, it asks:
given r independent equations in nonnegative variables--meaning a basis has r
basic variables--is it possible to go from any one feasible basis to any other feasible
basis in r pivot steps with each intermediate basis being feasible ? A pivot step is the
process of introducing one new column into the current basis at the price of elim-
inating one column from the basis: this is the work of going from one basis to any
one of its neighbors. Note that it is obvious that at most r pivots are necessary if
intermediate bases are not required to be feasible. For P,, r 2n 1. Geomet-
rically, it asks: given a simple convex polyhedron P in p-space defined by q half.
spaces, is q p an upper bound on the minimum number of extreme edges which
must be traversed in going along extreme edges from any one to any other extreme
point of P? For P,, p (n 1)2, q n2 and q p 2n 1. (Note that P, is not
simple since N(n) > n.) The following theorem establishes the truth of the con-
jecture for P,.

TrlEORM 8. A path of neighboring feasible bases of length at most 2n
connects any pair offeasible bases of

Proof. Note that if S(x), S’(x) are two feasible bases for an extreme point x
of P,, then a path of neighboring feasible bases of x of length at most n 1 link
S(x) and S’(x). For suppose S(x) S’(x), and consider the spanning trees B(S(x))
=/= B(S’(x)) which both contain B(x). Let e B(S’(x)), e B(S(x)). Then B(S(x)) U {e}
contains one circuit C which must contain an edgef e B(S(x)), f q B(S’(x)), since
otherwise C would be contained in B(S’(x)). Therefore B(S(x))U {f} {e} is a
spanning tree and, as such, corresponds to a basis of x having one more column in
common with S’(x) than does S(x). Since S(x) and S’(x) have at least n columns in
common, at most n 1 repetitions of this operation traces out a path linking S(x)
and S’(x).D
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Let x, y be extreme points of P, with bases S(x), S(y) respectively. B(x) (_J B(y)
I,,J Ci, where each C is a connected component which is either a circuit or an

edge. Let 2k be the number of nodes of Ci, k n. By the preceding reasoning,
a path of neighboring feasible bases of length at most (k 1) n p connects
S(x) to a feasible basis S’(x) with S’(x) containing k edges from C f) B(y) for
each i. Thus S’(x) contains all edges of Ci fq B(y) save one, say ei, for each with

ki>=2.
Adjoin, successively, the one edge e for each having k >_ 2 while dropping

one edge from C f-] B(x). This traces a path of neighboring feasible bases of length
at most p (actually of length the number of C with k => 2) linking S’(x) and S’(y),
where S’(y) is some f6asible basis for y. Since the length of any desired path linking
S’(y) and S(y) is at most n 1, we obtain the result since a path of length at most
n-p+p+n- =2n- llinksS(x) andS(y).

The above argument actually establishes a corollary.
COROLLARY. If S(x), S(y) are feasible bases for extreme points x, y of P,,

and B(x) (_J B(y) forms p connected components of which q (<= p) are circuits,
then a path of neighboring feasible bases of length at most 2n- 2(p- q)- 1
connects S(x) and S(y).

The Hirsch conjecture has been proved for an allied special case, namely, for
the polytope associated with the shortest route problem [10]. It has also been
established for polyhedra arising from Leontief substitution systems [3], a class of
polyhedra which includes the shortest route polytope.

Klee and Walkup [6] elucidate the situation for general polyhedra of dimen-
sion less than 6. In particular, they show the Hirsch conjecture for unbounded
polyhedra is false for dimensions greater than or equal to 4.

Some statistics for P
neighbor bases per

dimension facets extreme pts. extreme pts. extreme pt.

0 0
2 4 2 2
3 4 9 6 5 12
4 9 16 24 20 144
5 16 25 120 84 2000
6 25 36 720 409 41,472
7 36 49 5040 2540 1,075,648
8 49 64 40,320 16,064 33,554,432
n (n 1) n n! N(n) 2"-an"-2
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