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The capacitated network design problem is a multicommodity minimal cost network flow problem with fixed charges on the arcs and is
well known to be NP-hard. The problem type is very common in the context of transportation networks, teleccommunication networks, etc.
In this paper we propose an eflicient method for this problem, based on a Lagrangian heuristic within a branch-and-bound framework.
The Lagrangian heuristic uses a Lagrangian relaxation to obtain easily solved subproblems and solves the Lagrangian dual by subgradient
optimization. It also includes techniques for finding primal teasible solutions. The Lagrangian heuristic 1s then cmbedded into a branch-
and-bound scheme that yiclds further primal improvements. Special penaity tests and cutting criteria are developed. The branch-and-bound
scheme can either be an exact method that guarantecs the optimal solution of the problem or be a quicker heuristic. The method has been
tested on networks of various structures and sizes. Computational comparisons between this method and a state-of-the-art mixed-integer
code are presented. The method is found to be capable of gencrating good feasible solutions to large-scale probicms within reasonable

time and data storage himits.

T he fixed charge network design model can be used in
various real-life applications, such as construction of
new streets in traffic networks, construction of new links
in transportation networks, etc. A survey of network design
problems is given in Magnanti and Wong (1984). Because of
the rapid technological developments of telecommunication
networks and computer networks during the last decade, the
same model has applications in these networks as well.

Because of its uscfulness in these applications, much re-
search has been carried out in the area of network design.
In particular, we found that the uncapacitated version of this
type of problem has been quite well studied in scveral re-
search reports, some of them being Magnanti et al. (1986),
Balakrishnan et al. (1989), Hellstrand ct al. (1992), and
Lamar et al. (1990). In Holmberg and Hellstrand (1998)
an efficient solution method based on a Lagrangian heuris-
tic and branch-and-bound has been developed for it. Re-
scarch has also been carried out on the capacitated model
of the network design problem. In Gendron and Crainic
(1994), for example, different relaxation schemes are stud-
ied and discussed with heuristics for yielding feasible solu-
tions. However, compared to the uncapacitated case, very
few references can be found in the literature for capacitated
network design. While in some cases the network is, or can
be assumed to be, uncapacitated, a capacitated model is more
general and often much more suitable because capacity con-
straints often do arisc in real-life applications.

In this paper we study the capacitated network design
problem where it is assumed that only one origin and one
destination exist for each commodity. Depending on the
application, the commodities in the network model can be
either goods in a transportation nctwork or data signals
in a computer network. The application that we have

encountered is design and/or improvement of telecommuni-
cation networks where arcs are telephone links (copper ca-
bles or optical fiber links) and demand represents telephone
calls (and in the future computer or video data). Moreover,
in the application of telecommunication, networks tend to
be very large, which poses challenges when efficient algo-
rithms are to be developed.

In following scctions, we describe a solution method
based on a Lagrangian heuristic within a branch-and-bound
framework. The Lagrangian heuristic provides both upper
and lower bounds to the problem, and the branch-and-bound
scheme ensures that the optimal solution is found. How-
ever, because the problem 1s NP-hard, we should not expect
to be able to solve very large problems optimally in rea-
sonable time. Thus we are also interested in a fast method
that can generate near-optimal solutions for large problems.
Therefore, we introduce the possibility of modifying the
branch-and-bound method into a heuristic by including
schemes to fix variables in order to improve the solution.

Lagrangian heuristics and branch-and-bound are often
used for problems that are NP-hard. Because a method based
on the same principle has been successfully applied to the
uncapacitated model, it is interesting to investigatc how the
same principle behaves in the capacitated case. Basically, a
Lagrangian heuristic ts composed of a suitable Lagrangian
relaxation of the problem, an efficient subgradient optimiza-
tion procedure for solving the Lagrangian dual, and a primal
heuristic for yielding feasible solutions. The Lagrangian re-
laxation must be designed i such a way that it results in
an casily solved subproblem. but such that the solution of
it still be yicld lower bounds strong enough to be used effi-
ciently in a branch-and-bound scheme. Clearly, a large part
of this relies on the subgradient search procedure. If the
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subgradient search is inefficient, convergence of the method
will be slow. Moreover, it is obviously vital to obtain good
feasible solutions, yielding upper bounds, because the whole
method relies heavily on lower and upper bounds. Finally,
the branch-and-bound procedure should be based on the in-
formation generated by the Lagrangian heuristic. When a
branch-and-bound scheme is combined with a Lagrangian
heuristic, a large amount of subgradient iterations will prob-
ably reduce the gap between the lower and upper bounds
and thus the size of the tree, but it will require extra compu-
tational time. On the other hand, too few subgradient itera-
tions will most likely lead to a huge branch-and-bound tree.
Therefore, a good balance must be achieved between the
total number of iterations and the branch-and-bound tree
size.

The most critical point of the method is to make all these
parts work well together to obtain the best overall perfor-
mance. However, this is not a simple task because there are
various possibilities of constructing the Lagrangian relax-
ation, subgradient search procedure, or other approaches to
improve the lower bound, the primal heuristic, and those
design issues related to the branch-and-bound algorithm.

The rest of this paper is organized as follows. In §1 we
present the mathematical model and some preview of our
problem. The next section is dedicated to a detailed descrip-
tion of the Lagrangian heuristic used. In §3 we describe how
a branch-and-bound algorithm can be constructed based on
the Lagrangian heuristic and how such an algorithm can be
used to improve the feasible solutions obtained as well as to
obtain the optimum. Section 4 discusses the solution of the
network design problem by using the state-of-the-art MIP-
code CPLEX. In §5 computational results are given, and in
66 some conclusions are drawn.

1. PROBLEM FORMULATION AND PREVIEW

We consider a network that is represented by a set of nodes
A" and a set of directed arcs .«Z. Furthermore, a set of com-
modities, ¢, is given. Each commodity, k, has one origin
and one destination, denoted by o(k) and d(k). The quan-
tity of commodity £ that is to be sent from o(k) to d(k) (the
demand) is denoted by 7.

There are two kinds of costs involved in the network. The
routing costs increase linearly with the amount of flow, and
we let cf-‘/ denote the cost of shipping one unit of commodity
k on arc (i, j). Additionally, a fixed cost, f;;, will be added
when any amount of flow is sent on arc (i, j). Furthermore,
each arc (7,7) has a limited capacity, u;;, on the total flow
on the arc.

Two sets of variables are introduced, the flow variables
and the design variables, defined below:

xf, = the flow of commodity & on an arc (i, ),

~_ |1 ifarc (i, )) is used,
Yi= 10 otherwise.

Given these definitions with the objective to minimize the
total cost, the mathematical model can be formulated as

[CNDP] v =min 3 > o+ Y fiw

kEE (i,j)eA (i, j)EA

s.t. Z xff}-— Z xf,-:bf

Ji(i,j)eL Jg.ed
Vie N, VkeE, (D)
> xhi<wyyy VeNed,  (2)
ke®
xi<dfiyy Vi, j e, VkeE,
(3)
x>0 V(i,j)ed, VkeE, (4)
v €{0,1} V(,j)e o, (5)
where
r*ifi=o(k),
df = min(r*,u;) and Bbf=q —r* ifi=d(k),
0 otherwise.

Constraint set (1) contains the network flow conserva-
tion equations, constraint set (2) contains the arc capacity
constraints, and constraint set (3) contains linking (forcing)
constraints that ensure that no flow is allowed on arc (i, /)
unless the fixed charge f;; is paid. We assume that all co-
efficients are integral and nonnegative, and that « and r are
positive. Obviously, CNDP is a linear mixed-integer pro-
gramming problem with |.<7| binary design variables and
|-«Z||%| continuous flow variables.

The case of already existing arcs in the network can be
modeled by setting the corresponding fi; to 0, which im-
plies that arc (7, /) can be used free of charge. Without loss
of generality we can set y;; = | if f;; = 0. Thus the network
improvement problem, where the task is to improve the net-
work design on a given network rather than design the whole
network from scratch, can be treated as a special case of
CNDP.

We notice that if a commodity has multiple origins or
destinations (but not both), it can be treated as several com-
modities, each with a single origin and a single destination
in order to use our formulation.

We also note that the presented model is a disaggre-
gated version of the problem because the linking constraint
set (3) is redundant. It is well-known fact that a disaggre-
gated formulation often provides much better bounds in the
context of relaxations. On the other hand, a disaggregated
formulation requires a much larger number of constraints.
The aggregated version of CNDP would have |.A7||%| +
|| constraints, while the model above has |</||%| addi-
tional constraints. Furthermore, suppose that we perform
LP-relaxation on the aggregated formulation. Because there
is no integral restriction left on y;;, it will attain its mini-
mal feasible value, which is X;c¢ x,’-‘j /uj;. Therefore, we can
eliminate all the y-variables and obtain a multicommodity
network flow problem.
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Such a reformulation cannot be performed for the dis-
aggregated formulation because in the optimal LP-solution,
yij = max{(Tkey xf-",/u,,- ), (Maxy ey (xf-"l-/dff,-))}, which would
yield a nonlinear (and nondifferentiable) objective function.
Because the LP-relaxation of the disaggregated version is
more tightly constrained, the related lower bound is much
sharper. Consequently, it is preferable to solve the relaxation
of the disaggregated formulation despite its higher com-
plexity. For detailed comparisons, see Gendron and Crainic
(1994). Computational experience also shows that in the
disaggregated formulation, it is essential to keep y;; in con-
straint set (2) to make the model as strong as possible.

For fixed v-variables, CNDP becomes a multicommodity
network flow problem. It implies that even if all coefficients
are integral, the optimal x-solution need not to be integral.
This is unlike the uncapacitated case, where the problem
is decomposed into a number of shortest path problems for
fixed y-variables, which clearly yields integral x-solutions.

The fact that CNDP is NP-hard is quite obvious. The
uncapacitated network design problem (UNDP) is NP-hard
because it generalizes the Steiner Tree problem, and CNDP
is clearly a generalization of UNDP. Also, CNDP seems to
have a much higher practical difficulty than UNDP according
to our computational experiences.

2. A LAGRANGIAN HEURISTIC

In this section we develop a Lagrangian heuristic for CNDP.
Such a heuristic is composed by a Lagrangian relaxation, a
dual search procedure for solving the Lagrangian dual, and
techniques for yielding feasible solutions.

2.1. Lagrangian Relaxation

To perform a Lagrangian relaxation, a suitable constraint set
1s chosen to be relaxed. Considering the CNDP-formulation
in the previous section, the two main alternatives are to
relax either the linking constraints (2) and (3), or the flow
conservation constraints (1). To maintain the network struc-
ture in the relaxation, onc might prefer to choose the first
relaxation. The network structure in the subproblem is then
represented by a number of shortest path problems, or, if the
upper bounds df-",- on single variables are kept, a number of
minimal cost flow problems. Theoretically, the two ways of
relaxation provide the same best lower bound, on the condi-
tion that the Lagrangian dual is solved to optimality in both
cases. The LP-relaxation also yields the same bound because
the subproblems have the intcgrality property. For a proof
of this result, see Gendron and Crainic (1994 ), where also
the two relaxations are compared. In the computational tests
in Gendron and Crainic, subgradient optimization methods
are run a certain number of iterations for both relaxations.
The conclusion is that the second relaxation, relaxing the
flow conservation constraints, yields a quicker and weaker
procedure; i.e., the subproblems are solved much faster, but
the resulting bound is significantly weaker. Gendron and
Crainic therefore choose to procecd with the first relaxation.
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The subproblem in the first relaxation can be strength-
encd by adding capacity bounds, i.¢., constraint set (2) with-
out any v-variables. Instead of a shortest path problem, the
subproblem then becomes a multicommodity network flow
problem, which is clearly much harder to solve, especially
for large networks.

In this paper we usc the sccond type of Lagrangian re-
laxation, obtained by relaxing the flow conservation con-
straints. This is the same relaxation as used in Holmberg and
Hellstrand (1998) for UNDP. The main advantage of this re-
laxation is that it yields a very simple separable subproblem,
as shown below. This property enables a large number of
subgradient iterations in order to solve the Lagrangian dual.
As mentioned above, although the network structure is re-
moved in the subproblem, it does not imply weaker bounds
than the other relaxation if the corresponding Lagrangian
dual is solved optimally. Furthermore, in subsequent sec-
tions we show that the solution of the subproblem provides
valuable information for the branch-and-bound procedure,
and that the separability is quite useful. Actually, the sep-
arable unit appearing in the subproblem, a single arc, will
coincide with the unit directly affected by branching in our
branch-and-bound procedure.

By relaxing the constraint set (1) using multipliers w,
we obtain the following Lagrangian dual:

[LD] v, = max @(w).

For fixed multipliers, w = w, the Lagrangian relaxation takes
the following form:

[DS] ¢@(w)= min Z Z :}; f‘,

ke¥ (i,j)eod
-k1k
WSS I
(i,jyes/ k€€ ic N
st. Y xk<uyyy VGj)ed,
kEe€

,,\d vi VG, j)ed, Ve,

,}/O V(i,j)e A, VkEE,
}’,‘/E{O,l} V(i,j) e o,

where, c,’; = c" +w “—wk, V(i,j) € o, Vk € €. DS separates

into |.o/| problems one on each arc. For arc (7, j) we need
to solve the following subproblem:

[DS;] g;(%)=min Y _éhxk + fijvy

k€€

k
S.t. E Xij SUijYijs

ke
i <dhy; Vke®,

,//0 VkeE,

yij €{0,1}.
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To solve DS;;, we note that the value of y;; depends on the
solution of flow variables. Moreover, the part that involves
flow variables can be identified as a special case of the linear
knapsack problem in which all variables have coefficient 1.
This fact suggests that DS;; can easily be solved by using the
greedy principle. The following algorithm describes such a
solution procedure.

Step 1. Set §;; = fy, x5 =0, Vke 4.

Step 2. Select k' = argmin, ., (¢f).

Step 3. If cN,(}/ >0, go to 6.

Step 4. If u;>r*, set xZ, =ru=uy; — 5, gy =4y +
¢k xk and ¢} = +oo.

Otherwise, set x,{‘j/ =uy, w;=0, §; =4, + cﬂf/x{‘j/.

Step 5. If u;; >0, go to 2.

Step 6. 1If g,; <0, set y;; =1, otherwise set y;; =0 and
x,’»} =0, Vke%.

If ﬁi =0, y;; can be either 0 or 1. However, because our
primal heuristic is based on the solution of the Lagrangian
relaxation, it is preferable to set y;; =1 to enable feasible
solutions.

It is easy to show that the DS has the “integrality prop-
erty.” That is, the y-solution will obtain integral values
even if the integrality constraints are removed. This prop-
erty comes from the fact that if any flow is sent on an arc
in the optimal solution, constraint (2) and/or constraint (3)
will become active on that arc, which causes the design vari-
able to be one. Otherwise, the design variable will be set to
zero. This property implies that the optimal value of LD is
the same as of the LP-relaxation.

2.2. Strengthening the Lagrangian Relaxation

There are several valid constraints, redundant in CNDP, that
can be added to DS to strengthen it. Because all coeffi-
cients are assumed to be nonnegative in CNDP, the flow of
a commodity will never contain a cycle in the optimal so-
lution. Therefore, we can require that x,’-‘j =0if o(k)=j or
d(k)=1iV(i,j) € o Vk € €. It requires almost no extra com-
putational effort to take these constraints into consideration
while solving DS because they can be established once and
for all.

It is also clear that x{j- =0 if d(k) is unreachable from j
or i is unreachable from o(k) V(i,j) € o/ Vk € €. A large
amount of flow variables can probably be eliminated from
DS by this, if the network is very sparse. Furthermore, such
variables can be easily detected by using a modified shortest
path algorithm.

A common feature of these valid equalities is that they
in some sense recreate what has been relaxed, namely the
network structure, but without destroying the separability
of the subproblem. This is an important general principle,
that might be useful in many other methods of this type.
The difficult task clearly is to find constraints of this type,
recreating relaxed structures without losing the separability
(as separability was the goal of the relaxation).

Other valid constraints are the so-called Gale-Hoffman
inequalities. They are based on cuts that divide the set of

nodes into two sets, such that for some commodities the
origin is in one set and the destination is in the other. The
inequalities ensure that the total capacity of such a cut must
be greater or equal to the total demand of these commodi-
ties. In the special case when one set consists of a single
node and only the commodities that have this node as origin
are considered, the constraints (one for each node) contain
disjunctive sets of variables.

With these incqualities added to DS, it requires the
solution of a number of 0/1-knapsack problems. To reduce
the additional computational effort, we have tested to use
them in an LP-relaxed fashion. However, we found that the
improvement of the lower bound and convergence are
insignificant compared to the extra effort required to solve
the knapsack problems. Therefore, these constraints are not
added to DS in the final implementation.

2.3. Subgradient Search

To solve the Lagrangian dual, we use the well-known tech-
nique of subgradient optimization; see for example Poljak
(1967, 1969), Held et al. (1974), Goffin (1977), and Shor
(1985). A subgradient of the dual function ¢@(w) is used to
compose a search direction to update the multipliers (dual
variables). In our case, a subgradient to (W) is given as

gk =pk — Z i+ Z ik Vie ', Vke®,
JG, e Ji(j,i)eA
where X denotes the optimal solution of DS at w. Letting

w(”) denote the multiplier values in iteration /, we obtain the
multipliers in the next iteration by setting

wd+D — 5 4 t(l)d(l),

where 7V and d”) are the step size and the search direction
in iteration /. The search direction is usually set equal to the
subgradient (i.e., d) = &), but it is often more efficient
to use a modified formula, such as suggested in Crowder
(1976) or Gaivoronsky (1988). So our search direction d/)
is defined recursively as below, where d(!) = &(1):

dD =(ED 4+ 64-Y/(14+60) ViI>1.

The choice of ") has always been a critical part in sub-
gradient optimization because the practical convergence rate
relies heavily on it. Several ways of choosing the step size
have been suggested in Shor (1968), Poljak (1969), Held
and Karp (1971), and Held et al. (1974). Here, we adopt the
one suggested by Poljak, which is a very widely used one:

6= (i)
[0

Here, ¢ is supposed to be an upper bound of v; and 4; should
be assigned a value in the interval (¢;,2 — &), where ¢ >0,
to ensure convergence.

Given a set of problem instances, the subgradient search
procedure contains several parameters, which can be
adjusted to obtain as fast practical convergence as possi-
ble. The value of ) determines how much consideration is

t(l) =
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taken to the previous direction. Empirical results indicate
that 0.7 is an appropriate value. Another parameter used in
the step size formula is /;. It is easy to show that 7, =1 is
theoretically optimal if ¥ = v;,. In practice, the value of v; is
not known in advance and ¢ is often an upper bound of the
optimal primal value v*. Thus there are no simple rules to
determine and justify this parameter. In our implementa-
tion, we choose 4, = 1.1 as a start value. If no improvement
of the lower bound is obtained in K successive iterations,
we set 2;=0.5/,_; and reset /; back to 1.1 whenever we
get an improved upper bound.

The convergence depends also on the value of ¢ used.
As mentioned above, ¢ is usually an upper bound to v* and
is often obtained from a primal feasible solution. Initially,
however, such a bound may not be very good, and there
might also be a quite large gap between v, and v*. Rather
than relying on an approximate upper bound, we update 7
adaptively according to both our upper and lower bounds.
Discussions of such techniques can be found in Bazaraa and
Sherali (1981), Allen et al. (1987), and in a primal-dual
context in Sen and Sherali (1986). We use the simplified
formula:

5= + p(w)/2.

Here # is the best obtained upper bound so far. & converges
towards vy if =v; and n = 1. However, it is not desirable
that LD converges toward the global v;, while using it in a
branch-and-bound framework. In a node in the branch-and-
bound tree, we would like LD to converge toward the vy
that is associated with that specific node, which might be
larger than v* because a number of variables are fixed. On
the other hand, it is enough that @(w'") is larger than & to
cut off a node. Therefore, we choose 7 to be slightly greater
than one. Experiments shows that # = 1.05 is a good choice.
Another issue in subgradient optimization is the starting
solution. A straightforward way is to start with w!) =0,
which will yield p(3!)) = 0. To get a better initial value of
the search procedure, we find the shortest path tree in the
network for each commodity and use its node prices (the
dual solution of the shortest paths). These node prices are
multiplied with a weight © € [0, 1] to yield w"), which can
be seen as a convex combination of the origin and the ob-
tained nodeprices. Considering the choice of 7, we find that
1=0 yields a bad starting solution but with a good conver-
gence behavior, while =1 yields a good starting solution
but much worse convergence behavior. In the last case, the
objective function value immediately drops significantly,
and a large number of subgradient iterations is needed to
regain the starting value. We belive that this depends on the
dual function @(w); t=1 yields a point where ¢(w) is cer-
tainly not differentiable. In our implementation, 7 is set to
be 0.9. This leads to a much better initial lower bound than
zero in most of the cases, and a reasonable convergence be-
havior. If, however, such an initial solution yields a worse
value (i.e. (') <0), we reset w'" back to zero.
Irrespective of the convergence rate, we have to terminate
the subgradient search procedure sooner or later. Ideally,
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the procedure terminates when ¢() = 0, which indicates that
the dual optimum is found and that the solution is primal
feasible. Because the relaxed constraint set involves only
equalities, this also implies that the primal solution is opti-
mal. However, this is unlikely to occur in most of the cases
because the Lagrangian dual is solved approximately in
practice, and a duality gap may exist. In practice, we choose
to stop the search procedure when ||dV| <e, 1) <e¢, I>M
or i — (W) <e.

To show the theoretical convergence of the basic sub-
gradient search procedure, we refer to Poljak (1969) for a
convergence proof if there is no duality gap and v =v;. If
v, < U, we can use a result by Allen et al. (1987) to prove
the convergence toward vy.

In our implementation, we have used some nonstan-
dard modifications, discussed earlier, to improve the per-
formance. We can, however, still ensure the theoretical
convergence by removing these modifications and stop
reducing A after a certain number of iterations. In practice,
we most often do not have the time to let the subgradient
procedure converge with good accuracy. Instead we use
a fairly small value of M, i.e., stop after a quite limited
number of iterations.

2.4. Obtaining Feasible Solutions

The last part of a Lagrangian heuristic involves generation
of upper bounds, i.e., feasible solutions. Upper bounds are
used in the subgradient optimization to calculate the step
size, as well as in our branch-and-bound algorithm to cut
branches and to get the final solution when the algorithm
terminates.

To obtain a feasible solution of CNDP, we con-
sider a given subset of arcs, .o/ C .o/, where.s/ = {(i, ) €
sy, =1} Whenever.«Z (and 7) is fixed, CNDP becomes
the following primal subproblem:

[PS] v(«/)= min Z Z C:'(szl';‘*' Z fi

k€ (i,j)eod (,j)es
k k k
Sit Z Xij — Z Xji =4
jii e Jiesd
Vie N, VkeE,

fo—j—éu,-j V(l,]) E:Jj,
ke®

X520 V(,j)esd, VKES,

ko if i = o(k),
b= —rk if i =d(k),
0 otherwise.

There is no need to include constraints corresponding
to the linking constraints (3) in CNDP because these are
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redundant and will not affect the methods described below
to solve PS.

If the partial network that is represented by .o/ does not
contain “enough” arcs, no feasible solution will be found. On
the other hand, if ./ contains “too many” arcs, some of the
arcs will not be used to send any flow. In the latter case, such
arcs are eliminated by setting the corresponding y;; equal to
0 when calculating the upper bound, after PS is solved.

PS can be identified as a multicommodity network flow
problem, which is a highly structured linear programming
problem. In our method, we have combined two different
approaches for solving PS: a simple primal heuristic and a
commercially available linear programming code including
a network flow solver.

The heuristic works according to the greedy princi-
ple and is a multicommodity version of the well-known
Busacker-Gowen method for single commodity network
flow problems; Busacker and Gowen (1961), Jewell (1958),
Iri (1960). There have been similar heuristics developed for
multicommodity network flow problem; see, for example,
Barnhart (1993) and Holmberg (1995).

The heuristic selects one commodity at a time and
applies the Busacker-Gowen procedure. This involves es-
sentially solving of a number of shortest path problems.
After finding the shortest path between the origin and the
destination and sending as much flow as possible, capacities
and feasible directions are updated, creating a residual net-
work. (To allow decreasing a positive flow, an arc in the op-
posite direction is added. ) The procedure is repcated until all
flow of the commodity is sent. The same procedure is then
repeated for the next commodity. If, however, no path can
be found to send the remaining flow during the procedure,
the heuristic fails to find a feasible solution.

The solution of PS generated by the heuristic is depen-
dent on the order in which the commodities are considered.
We found that instead of sending commodities in a random
manncr, better results are obtained by utilizing the valucs of
the Lagrangian multiplicrs obtained in the last subgradient
iteration. Each commodity 4 is labeled with the difference of
the multiplicr values associated with o(k) and d(4 ), multi-
plied with its demand. The commodities are then considered
in a descending order.

The heuristic consists mainly of a number of shortest path
problems and is therefore very fast. To solve the shortest
path problems, we use the algorithm L-threshold described
in Gallo and Pallottino (1988).

The heuristic can quickly generate upper bounds for
CNDP for a given .o/. However, such a heuristic alone may
not be sufficient to obtain good feasible solutions since it
solves PS approximately. Moreover, if we wish to solve
CNDP exactly by branch-and-bound, we need the optimal
solution of PS, at least in the leaves of the branch-and-bound
tree.

To obtain the optimal solution to PS, we use the standard
code CPLEX with the “hybnetopt™ option for two reasons:

1. Because of its built-in network optimizer, CPLEX can
find and solve the network part of PS and treat the capacities

as side constraints, taken into account by dual simplex iter-
ations. This approach is much more efficient than a standard
linear programming code for PS. (In fact, it is even com-
petitive comparing to specialized multicommodity network
flow codes.)

2. In our branch-and-bound algorithm, PS needs to be
solved iteratively. Two successive PSs have almost the same
structure, except for small changes in the constraints. There-
fore, the whole algorithm is accelerated considerably by
reoptimization. This can be easily achieved in CPLEX by
starting from the previous optimal basis.

In some cases when PS is solved by CPLEX, we notice
that the efficiency can be increased dramatically by flow
aggregation, if the network has the property that the routing
cost cf-‘,- does not vary by commodity; i.e., for any arc (i, ;)
in the network, we have c{‘] =cjj, Vke%. Although this
need not be true in the general mathematical model, it is the
case in many telecommunication applications. In this case
flow aggregation can be done in PS whenever a number of
commodities share the same origin or the same destination.
Flow aggregation is, for example, described in Jones et al.
(1993) and is done by aggregating all commodities with
the same origin into one commodity. It requires addition
of a supersink and one additional arc for each aggregated
commodity. Analogous aggregation can be performed in PS
if a number of commodities share a common destination.

Onc may actually use such aggregations on the origi-
nal CNDP without changing the optimal value. However,
because relaxation is performed (LP- or Lagrangian relax-
ation), an aggregated version leads to weaker lower bounds
and will thus slow down the overall convergence.

Finally, we might mention that a recent implementation
of a column generation method for the multicommodity flow
problem, Holmberg and Yuan (1998), appears to be faster
than CPLEX and could be used to solve PS to improve
overall performance.

3. THE BRANCH-AND-BOUND ALGORITHM

In this section, we embed the Lagrangian heuristic in a
branch-and-bound framework. We describe two versions of
the method: one that finds the exact optimum and verifies it;
and one heuristic, which in a shorter time finds ncar-optimal
solutions. As mentioned before, one should not expect to be
able to solve very large network design problems exactly
within a reasonable time. In the heuristic, the algorithm is
mainly used to improve the feasible solutions. The way to
achieve this is to fix variables based on the information from
the Lagrangian heuristic. In the following subsections we
describe both cases (the exact and the heuristic) with their
relevant design issucs.

3.1. The Basic Scheme

In the branch-and-bound procedure, we use branching on
the design variables. Two branches are generated, one with
vi; = | (the arc is fixed open ) and the other with v;; = 0 (the
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arc 1s fixed closed). The effect of the branching is simply
that some design variables are fixed either to 1 or 0, while
solving the subproblems DS and PS.

At each node in the tree, the previously described
Lagrangian heuristic is applied to generate lower and upper
bounds. The Lagrangian heuristic starts with generating a
feasible solution that is associated with the node. This is
done by solving a PS with o/ including all arcs except
those that are fixed closed. The primal heuristic is applied
to obtain a feasible solution. If the heuristic fails in finding
a feasible solution, however, CPLEX is invoked to confirm
that no feasible solution exists at this node, or alternatively,
to find such a solution. This strategy implies that the same
PS may be solved twice at certain nodes. The motivation
here is that because PS becomes hard to solve for large
problems, to solve PS exactly at each node is not desirable.
Rather, the heuristic tries to obtain a feasible solution first,
and if the Lagrangian heuristic shows later that the node
can be cut off from the tree, there is no need to solve PS
exactly. However, if this is not the case and further branch-
ing is needed, we solve PS exactly by CPLEX before the
algorithm proceeds to the next node. To summarize, PS is
solved exactly either to confirm that no feasible solution
exists or before the algorithm enters new branches.

It should be mentioned that this approach does not mean
that we need to solve PS exactly at all nodes in the tree
where the algorithm has branched. In fact, PS needs to be
solved exactly only at half of these nodes. This is because
whenever there is a branching on a certain arc, there is no
need to solve the PS that is associated with the 1-branch
because the same PS has already been solved exactly at the
current node, i.e., the subset .o/ will be the same.

Normally, a feasible solution is obtained in this way and
a number of iterations of subgradient search is performed.
During this search procedure, the primal heuristic is used
periodically to obtain alternate feasible solutions based on
the information from the Lagrangian dual. To achieve this,
we use the y-solution of DS to compose the subset o/ in
PS. Let oZ(w")) denote the arcs that are open in the solution
of DS in iteration /. We then let o = /(W)U (WD),
i.e., the union of two successive solutions. Our tests show
that the y-solution of one iteration often does not contain
enough arcs to enable a feasible solution. On the other hand,
if one takes the union of the y-solutions of too many iter-
ations, the obtained primal solution is often not good and
tends to be identical during several iterations of the subgra-
dient search.

Because of the relaxation that is chosen, we can construct
penalty tests, used during the subgradient search to fix vari-
ables and thus reduce the branch-and-bound tree.

After a certain number of iterations, the Lagrangian
heuristic at a certain node will either detect that the node
can be cut off or decide to branch as a result of duality
gap or slow convergence. Before a branching is done, the
heuristic version of the algorithm tries to fix certain vari-
ables. (This is done in a heuristic manner, in contrast to
penalty tests.) This makes the algorithm concentrate only
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on the most promising parts of the tree and hence saves a
large portion of the computational effort required, which
is necessary if the algorithm is going to deal with large
problems in real-life applications.

More details of the branch-and-bound procedure are
described in §§3.2 to 3.6. Section 3.2 gives the cutting and
stopping criteria, and §3.3 describes the penalty tests. The
two heuristic versions of the solution method using variable
fixing are introduced in §3.4. Section 3.5 discusses branch-
ing and searching strategies. Finally, we give an algorithm
summary in §3.6.

3.2. Cutting and Stopping Criteria

In this section, we describe the criteria for cutting off nodes
in the branch-and-bound tree and the stopping criteria that
are used to terminate the Lagrangian heuristic and perform
a branching.

The standard cutting criteria are the following:

o Cut if the optimum of the node is found (which can be
verified only if the solution of DS is feasible, i.e., if &) = 0;
but this rarely occurs for large problems).

e Cut if no feasible solution exists. (Before starting the
Lagrangian heuristic at each node, the algorithm attempts to
obtain a feasible solution.)

o Cut if the lower bound from the Lagrangian dual exceeds
the best known upper bound, i.e., if (") >7, where 7 is
the best known upper bound.

Because of factors such as the existence of a duality gap,
the convergence rate, the quality of the generated primal
solutions, etc., it is possible that none of these criteria ever
becomes satisfied during the subgradient search procedure,

In a problem that involves both routing costs and fixed
charges, another criterion is available to check if a node in
the branch-and-bound tree is an interesting one or not by
utilizing information from primal solutions. The criterion is
based on the relation between the routing costs and the fixed
charges. Let us denote by c¢(.+7) the optimal routing cost
if all arcs in .o/ are allowed to be used for routing and by
PS(.e7) the corresponding primal subproblem. Hence given
a subset of arcs o € o, c(/)+ X e, Jij 18 equal to the

optimal value of PS(s/), where 7, = {(i,j) € o : y;;>0}.
Lemma 1. o(L)<c(A), VoA C .

Proor. Because ./ C .o/, the optimal solution to PS(./) is
also feasible in PS(.«7). [J

The lemma simply states that the optimal routing cost is
lowest when all arcs are allowed to be used. Assume that .«
is the set of all arcs used in the optimal primal solution.
Because .o/ C ./, it follows from this result that the routing
cost obtained at the top node (root) is a lower bound of the
routing cost in the optimal solution.

The result is also valid for any other node in the tree. For
an arbitrary node, let .o7; be the set of arcs that are fixed
open, <7, be the set of arcs that are fixed closed and .7,
be .o/\(.% U <7 ). The PS associated with the node is then
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PS(.o/ U o7, ). Assume that another node (.7, |, /]) is
obtained by further branching, i.e., (.27}, /|, &) is a node
in the subtree with (.4, /), ./, ) as the root.

LemMA 2. c(/) U ) <c( ] U ).

Proor. Because (./),.</],/]) is obtained by further
branching, we know that .o/ C o/j. This is equivalent
to (/] U.of])C (o4 U,). The conclusion follows by
Lemma 1. [

Lemma 2 states that the routing cost will not decrease if
the algorithm makes a branching because a branching can
only lead to fewer open (fixed open and not fixed) arcs
in PS.

Based on these observations, we have Lemma 3.

Lemma 3. If a node (oty, <1, .94y ) satisfies c(<) U o, ) +
S, jyes fij =T, then the node cannot lead to a feasible
solution with objective function value strictly less than 0.

Proor. It follows from Lemma 2 that the routing cost
obtained at the current node c(.o7; U.2/,) is a lower bound
of the routing costs in the subtree with (.2, .2/, ;) as
its root. The term X(; j)c. fi; is the sum of fixed charges
of arcs that are fixed open at the current node. Obviously,
this term is also nondecreasing while getting deeper in the
subtree. Hence the conclusion. [J

In other words, if the sum of the obtained routing cost and
the fixed charges of those arcs that are fixed open exceeds
the best known upper bound, then the current node is an
uninteresting one. ‘

The following cutting criterion is derived directly from
Lemma 3.

e A node (o4, .9/, .9/, ) can be cut off if c(o/) U .o/, ) +
S jean fij Z 0.

By utilizing the information of the primal solution at each
node, another cutting criterion can be obtained. The primal
subproblem PS(.oZ, U 7)) is solved exactly either when the
Lagrangian heuristic starts or before a branching is made.
Let .«/° € (@, U .o7)) denote the set of arcs that are included
but not used in this solution. We have the following result.

Lemma 4. If o/, C /%, the current node cannot lead to
better primal solutions by further branching.

Proor. As described in §3.1, the value of PS can be
improved only in a 0-branch. Therefore, it is sufficient to
consider optimal solutions to all PS in which one or several
arcs in .7, are fixed to 0. In PS(.Z/ U .o/ ), where o] C o/,
some arcs are fixed closed, which is equivalent to fixing
all flow variables on these arcs to zero. However, these
variables are zero in the optimal solution of PS(.2Z, U 27}).
Because PS is a linear programming problem, the optimal
solution to PS(.2Z, U.o7)) is still optimal to PS(Z] U o)),
hence the conclusion. [J

The lemma says that no further branching is needed if
none of the unfixed arcs is used in the optimal primal solu-
tion. Based on this result, the following cutting criterion is
deduced.

e A node (.4, 1,9, ) can be cut off if .o, C .o/°.

It is now quite obvious from Lemmas 1 to 4 that all the
cutting criteria used are valid.

If none of the above criteria is satisfied, we have to ter-
minate the Lagrangian heuristic at some point and branch.
The stopping criteria for the Lagrangian heuristic are used
to decide if a branching should be performed; see §2.3.

The choices of ¢ and M in the stopping criteria have a
significant impact on the overall efficiency. If ¢ is too small
or M too large, the algorithm will make too many iterations
without significant improvement of the lower bound before
a branching is made. On the other hand, a too large ¢ or a too
small M introduces the risk that the algorithm will perform
branching before good bounds are obtained.

3.3. Penalty Tests

We can use penalty tests to identify the correct values of
some variables and thus reduce the size of the branch-and-
bound tree. In a branch-and-bound algorithm based on a
Lagrangian heuristic, it is not trivial to construct penalty
tests because it depends both on the problem structure and
the constraint set that is relaxed. Generally, we notice that if
the relaxation is done in such a way that the dual subproblem
is decomposed into a number of separate components and
branching is made with respect to these components, then
it becomes easier to construct penalty tests. Here we find
a distinct advantage with our relaxation compared to the
relaxation chosen in Gendron and Crainic (1994).

In our case, the DS is separable into one problem for
each arc, while the branching also concerns single arcs. The
optimal value of DS at w is

p(w) = Z éij)_’ij T Z Z "_Vikb{‘(’

@i,))ed ket icH

where g,; is identified as the reduced cost on arc (i, ), cal-
culated when solving DS with the procedure described in
§2.1. We would like to know the effect of fixing a certain
design variable y;; to one or zero in the Lagrangian dual
without solving it, which is not simple. However, we do
know the effect of fixing a certain y;; in the Lagrangian ob-
jective function on condition that w remains unchanged, as
shown below.

e §;>0: o(W)y,=1= o(W) + gij, W)y, =0= o(w).

o éij<0: P(W)y, =1=@(W), ¢(W)y, 0= p(w) + Iélj|
Note that solving DS at w always yields a lower bound
in any branch, regardless of w. Thus we can evaluate the
Lagrangian dual at w in both of the two new branches y;; =1
and y;; = 0 without actually branching on the arc (i, j). The
value of |g,;| gives a lower bound of the increase in one
branch. Because such an evaluation can be performed by
one single addition, we can easily estimate the effect of
branching on a certain arc, without changing the multipliers.
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Therefore, the following penalty test is used each time DS
is solved, in an attempt to detect uninteresting branches.

For each arc (i, j):

1. If g;; >0 and (W) + §;; >0, fix y;; to 0.

2. If ;<0 and (W) + |g;;| >, fix y; to 1.

In the first case, we detect that the Lagrangian dual value
will exceed the best known upper bound if y;; is set to one.
According to our cutting criteria in §3.2, the 1-branch can
be cut off if we branch on this arc. The variable y;; can
consequently be fixed to zero. Similarly, y;; is fixed to one
in the second case.

At each node in the tree, we wish to determine values
for as many design variables as possible by penalty tests.
Because the maximal number of allowed subgradient itera-
tions is different at different nodes (see §3.5), we increase
the maximal number of iterations for the current node if a
variable is fixed by the penalty test. Because different limits
exist in the tree, we denote the maximal limit A/ 1 and set
M= min(M[,M + 1) in an iteration in which the penalty
tests succeeds in fixing variables.

We notice that it is possible to apply these dual-based
penalty tests by the following two facts:

|. The relaxation that is adopted enables the subproblem
to be decomposed on each arc, and the dual objective
function value is determined by these components.

2. The branching in the branch-and-bound algorithm is
done on design variables, which coincides with the
decomposition effect in the subproblem.

It should be pointed out that the penalty tests above are
not limited just to CNDP. As long as these two conditions
hold, the same tests can be carried out. This means that
we can apply the same penalty tests in the uncapacitated
case as an improvement to the algorithm in Holmberg and
Hellstrand (1998) or to similar problems—for example, for
networks with both partial capacities for commodities and a
mutual capacity on each arc—as long as the same relaxation
is adopted.

If the Lagrangian relaxation of constraint sets (2) and
(3) is used, the dual subproblem does not decompose on
arcs. The solution of the subproblem contains flows between
origins and destinations, which is not the components on
which branching is made. The solution to the dual subprob-
lem can be totally different when a certain arc is fixed, even

if the same multipliers are used, so the penalty tests would
be much more computationally expensive.

3.4. Heuristic Fixing of Variables

For very large network design problems, we cannot ex-
pect an exact branch-and-bound method to terminate within
a reasonable time limit. In this section, we describe two
heuristic approaches developed to speed up the branch-and-
bound procedure. The idea is to guide the branch-and-bound
scheme to investigate only those nodes that seem to be most
promising. This 1s achieved by fixing a certain number of
design variables before a branching is made, using the infor-
mation that is generated by the Lagrangian dual. Obviously
this turns the method into a heuristic.
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In the first approach, which is denoted by “a-fixing”, we
consider the y-solution of the relaxation. During the sub-
gradient search procedure, if a certain y;; is constantly set
to one in DS, it indicates that arc (i, j) is most likely to be
included in the optimal solution. Similarly, arc (i, ;) is prob-
ably not included if the relaxation repeatedly suggests that
the value of y;; is zero. Fixation rules can thus be designed
based on the frequency that a certain y;; is set to one or
zero. Ideally, y;; should be fixed only if it attains the same
value in all subgradient iterations. However, to make the ap-
proach more flexible, we introduce a parameter a € [0, 0.5]
to allow deviations. If o« =0, we have the situation above.
The value (1 — o) * M is used as a threshold to determine
whether a design variable is to be fixed after M subgradient
iterations. Below we summarize this fixation rule (the value
of y;; in the /th solution of DS is denoted by y,(-;)):

e y;; is fixed to one if £ | yf;)z(l —o)*x M.

o v is fixed to zero if B, yi <ax M.

By fixing variables in this way, only promising nodes are
generated in the branch-and-bound tree. In a real application,
it is almost always necessary to make a trade-off between
the quality of the final solution generated and the compu-
tational effort required. This can be done by starting with a
relatively large value of o to quickly obtain a solution and
a lower bound, which will give an indication of how good
the solution is. A good trade-off can be then reached by suc-
cessively reducing «.

It is worth noticing that even if « = 0, the method is still
a heuristic because y;; might be fixed to a value that is
not optimal, although the probability is small. To obtain an
exact solution method, this step has to be removed from the
algorithm. Moreover, it is obvious that there is no explicit
guarantee on the speed-up factor by fixing variables in this
way. Also, the algorithm is still exponential, independently
of «. This drawback can, however, be avoided by using the
alternative approach below to fix variables.

In the second approach, denoted by “f-fixing,” we con-
centrate on the reduced costs g;; obtained in DS. Notice the

gy; 1s highly related to the solution itself because the value of
vij is determined by the sign of g;;. Thus g;;>0 or g,; <0
indicates that y;; is zero and one, respectively, in the opti-
mal solution, which suggests how to fix variables based on
the value of |g;;|. To achieve this, we introduce another pa-
rameter f§ € [0, 1], which simply specifies the portion of the
design variables to be fixed at each node in the branch-and-
bound tree. Letting n denote the initial number of unfixed
arcs (which is often equal to |.o7|), the number of arcs that
will be fixed is exactly [fn], or | <] if || <[pn]. To
determine the design variables to be fixed, we select those
yij with largest values of |g,;[, in a descending order. In
our algorithm, we use the accumulated reduced cost from
several iterations rather than one iteration in the following
fashion. We let R;; = g, and during the subgradient pro-
cedure, if a better lower bound is obtained in iteration /,
we accumulate the corresponding reduced costs by setting
Ri;=7yx*Ry; + i) with y € [0, 1]. Because we consider the
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reduced cost associated with an improved lower bound to
be more reliable, the old value of R;; should have less
weight. In our implementation, we set y=0.5. When the
Lagrangian heuristic terminates, we fix a number of vari-
ables in the following manner:

Step 1. Set m=1.

Step 2. Select an arc (i', j') = argmax; ;¢ . |Ri|-

Step 3. If Rirj» <0, fix yyj» to 1, otherwise fix yyj» to 0.
Set o/, =\, j)and m=m + 1.

Step 4. If m =min(].«,|, [ fn]), stop. Otherwise go to 2.

The described two approaches are similar in the sense
that both utilize the information generated by the relaxation.
The difference is that using ff-fixing, the maximal size of the
branch-and-bound tree is known if f is fixed. For example,
p=0.1 means that 10 percent of all design variables are
fixed at each level in the tree. Consequently, the maximum
depth of the tree is 10, and at most 2!'-2 nodes (excluding
the root) will be generated by the algorithm. Therefore, it is
more convenient to control the time needed by the algorithm
by varying the value of f§ than «. Moreover, the algorithm
turns into an exact solution method for ff =0.

According to our computational tests, we can obtain a
significant speed-up of the algorithm and simultaneously
keep the final solution fairly close to optimum by using
either one of the heuristic techniques a-fixing or f-fixing.

3.5. Branch and Search Strategies

Even if we know when to branch, there are still several
questions left to be answered. First of all, we have to decide
on which variable the branching should be made. Recall
that in £3.2 we show that no further branching is needed if
all unfixed design variables are zero in the primal optimal
solution of the current node. While this might happen when
the algorithm gets deeper in the tree, it is rarely useful at the
top. Nevertheless, the result indicates that when we choose
the variable to branch on, we should avoid a variable Vij that
is zero in the obtained primal solution. If we branch on an
arc that is not used in the primal solution, none of the two
branches that are generated will lead to an improved primal
solution.

Still, there might be a large amount of candidate arcs. One
choice is to fix a y;; that seems to be uncertain in the solution
of our relaxation. Recall that the value of a design variable
yij is determined by its reduced cost g;; in DS. If |g,| is
large, the value of it is quite certain. Therefore, to branch on
an arc that seems to be uncertain, we should choose an arc
which has a small value of |g,;|, for example the arc with
minimal |g;;|. (This approach would not be possible using
the relaxation proposed in Gendron and Crainic 1994.)

Such a strategy is also very natural in the heuristic ver-
sion of the method because before a branching is done, the
algorithm attempts to fix some design variables. These vari-
ables will have the largest values of [g;;| in DS; see §3.4.
The remaining variables are considered as uncertain by the
algorithm, which suggests that we should choose the most
uncertain one (i.e., the arc with least [g;;|) to branch on.

However, this may not be suitable if the algorithm is
used as an exact solution method. Our experiments show
that better results are achieved by using another strategy,
namely to choose the arc that has the maximal |g;| in the
latest solution of DS and then start with the most promising
branch; see below. The reason for this is quite different from
the reasoning above and lies in the continued search for
better solutions, while getting deeper in the tree. We now
develop this argument.

After having chosen an arc, we still need to choose which
of the two branches to search first. Assume that branching
is made on arc (7, ) and let y, n denote its value in the latest
solution of DS. The following basic alternatives are possible:

° [SZ] Start with Yij 7é _)71:/-.

[53] Start with Yij—= 0.

[S4] Start with y;; =1.

While S1 and S2 are related to information of the relaxation,
no such consideration is taken in S3 or S4. We know that
the Lagrangian dual function ¢(w) is concave and piecewise
linear. Furthermore, different linear supports at and around
the point w can be identified by its solution in DS. In partic-
ular, there are two linear supports corresponding to y;; =0
and y;; = 1, respectively. The value of y;; simply indicates
which linear support is currently active. We can either keep
the active cut by adopting S1 or use S2 to remove it. In the
first case, we will continue the subgradient search on the
same linear segment while in the second case we obtain an
immediate improvement of the dual value at point w =w (if
gy #0).

Our computational results indicate that S1 performs more
efficiently than the other strategies listed above, so we begin
our search with the branch in which y;; is fixed to the same
value as y;;.

Note that in the subproblem solution, y;; =1 if §;; <0,
otherwise y;; =0. In case that the algorithm is used as an
exact method, we branch on an arc with the largest |g,,[; so if
g;; is negative, it is probably much less than zero, and y;; is
likely to be one even in the solution of PS. We have parallel
results in case g;;>0. Therefore, if the algorithm follows
this indication, the chance to obtain a good feasible solution
is increased. That means that if §;; <0 we start with the
1-branch, otherwise we start with the 0-branch. Obviously,
this is the same as strategy S1.

Another issue in the search strategy concerns in which
order the generated trec is to be searched. In our method,
a depth-first strategy is chosen. One motivation here is that
while getting deeper in the tree, it is very natural to start
with the latest obtained multipliers, enabling a continuous
improvement of the Lagrangian dual. This is especially suit-
able when coupled to the branching and searching strategies
of the exact method because the first branch very much coin-
cides with what would have been achieved without branch-
ing. Of course, if a backtracking is performed, the latest
multipliers become a heuristic starting solution. However,
this starting solution is found to perform better than starting
from the same dual solution after each backtracking.
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When a Lagrangian heuristic is combined with a branch-
and-bound algorithm, it is quite common to associate the
maximal number of subgradient iterations with the status of
the current node. At the root, one should try to make the
subgradient optimization method converge as much as pos-
%}by performing a relatively large number of iterations,
¢noted by M 1. Because the depth-first search strategy is
used, the subgradient search procedure will continue to deal
with almost the same nctwork after a branching, it is thus
preferable to perform M2 iterations where M2 <M 1. How-
ever, this might not be the case when backtracking occurs.
Therefore, an intermediate number M3 is then used.

3.6. Algorithm Summary

In this section, the proposed method is summarized in an
algorithmic fashion. Beside the notation used to describe
the method in previous sections, we let .7 be the set of
uninvestigated nodes in the branch-and-bound tree and & the
objective value each time PS is solved.

Step 1. Initialize B&B: Set ofy=.ot =0, o =,
T ={(, &1, #x)}, M =M1 and v =oo0.

Step 2. Initialize a node:

(a) Select a node from 7 according to the depth-first strat-
egy. Update <%y, /) and <. Get a starting dual solution
w1 for the current node.

(b) If all y;; are fixed, i.e., @ =0, solve PS(%/;) exactly.
If a feasible solution is obtained and v(.&;) <7, set
i=uv(o). Go to 9.

(c) If < #0, solve PS(./; U.<) by the heuristic. If no
feasible solution is obtained, solve PS(./; U .24 ) exactly.
If there is still no feasible solution, go to 9. Otherwise,
if v(of U ) <0, set 0 =0v(A U ).

(d) If PS(«/\U.) is solved exactly: If c(ofyU.24)
+ X, jyes fij =0, go to 9.

(e) Set Ay =4g, /=1 and v to be the best lower bound
obtained at the parent node.

Step 3. Dual subproblem: Solve DS with w'") and .o/, .«/;.

If (7)Y >0, set v= (W) and A;.; = 4. If 0=, go to

9. Otherwise, if v has not been improved after K successive

iterations, set A;,; = 4;/2. Compute a subgradient e,

Step 4. Penalty test:

(a) For any (i,j)€s4, if §;>0 and @(W),,=1=
(W) + g;; =0, fix yi; to zero and set M = min(M1,
M+1).

(b) For any (i,j) € 4, if §; <0 and @(W)y,—0=@(W)
+1g;/=0, fix y; to one and set M = min(Ml,
M+1).

(c) Update sets ./, .o/; and .« if any y;; is fixed. If all
y;; are fixed, solve PS(.2/)) exactly, set o= v(.oo )0 if
(A )0 <¥ and go to 9.

Step5. Primal subproblem: 1f (ImodLl)=0, let
o =(WDYU (WD), Solve PS(e/) with the heuristic.
If (o) <7, set §=v() and 4141 =Ao. If 0=, go t0 9.

Step 6. Optimality check: If ||E|| =0, go to 9.

Step 7. Subgradient search: Calculate the search direction
dD = (ED 4+ 8dU-V)/(1 + 0) and a step size V) = A(7 —
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oW D))/ ED|12, where & = (75 + p(W'?))/2. Calculate the

new multipliers w1 =W 4 (Dg",

Step 8. Termination check: If ||[d V|| <e, 1) <eor I =M,
go to 10. Otherwise, set / =/ + 1 and go to 3.

Step 9. Cut: Set T =T \{ A, 1, ) }. If T =0, stop.
Otherwise, perform a backtracking. Set M =M3 and go
to 2.

Step 10. Branching preparation:

(a) Solve PS(.e7; U .oZ ) exactly if it was not done in step 2.
If v() U 4,) <D, set v=v(2) U.).

(b) If .o/ =0 or no arc in . is used in the exact solution
of PS, go to 9.

(c) If (A Uh) + X jyeas, fij =0, g0 t0 9.

(d) Otherwise, select a variable yj;, (i,/) € ., for branch-
ing.

Step 11. Variable fixing:

(a) Among the remaining unfixed variables, use a-fixing or
p-fixing to fix variables. Update sets ./, .7}, .« and M
if any variable is fixed.

(b) If all y;; are fixed, solve PS(.27)) exactly. If v(.e/)) <®,
set =v(2/) and go to 9.

Step 12. Branching: Generate two new branches and put
them into .7 according to the branch and search strategy
chosen. Set M =M?2, go to 2.

The values of the parameters in our implementation are
M1 =100,M2=5 M3=10.K=4,L=2/y=1.1,0=07,
n=1.05, and ¢e=0.01.

Because M is finite, we have the following result for the
above method, denoted by LHBB (Lagrangian heuristic with
branch-and bound).

Tueorem 1. LHBB will generate at least one feasible
solution to CNDP (if there is any) and will terminate in
a finite number of steps.

Proor. The first PS that is solved in the algorithm contains
all arcs in the network. This primal subproblem is solved by
the heuristic and, if necessary, by the exact method. There-
fore, if there is a feasible solution to the problem, at least
one of them will be found. If not, the algorithm is termi-
nated. Secondly, in the worst case the algorithm will branch
on all y-variables. Therefore, the number of nodes gener-
ated is finite. Furthermore, at most M subgradient iterations
will be carried out at each node. Hence the whole algorithm
is finite. [

The above algorithm is designed to generate good solu-
tions to large scale problems with a computational time that
is acceptable for practical applications. It is not an exact so-
lution method because nonoptimal values may be assigned
to some design variables in step 11. However, if we wish, we
can make the algorithm an exact solution method by simply
dropping this step from the algorithm or setting f§ = 0, which
is stated by Theorem 2. We call the exact method LHBBO.

Tucorim 2. If step 11 is removed from the above algorithm,
it will correctly solve CNDP in a finite number of steps.
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ProoF. Asshown in §3.2, all cutting criteria are valid. There-
fore the algorithm will not terminate before it verifies that
the optimum has been found. To show that the optimal
solution will be found, assume that all y-variables are fixed
to their optimal values. Because all y-variables are fixed,
PS will be solved exactly, yielding the optimal x-solution
and ¢ = v*. That the exact algorithm is finite follows from
the same argument as in the proof of Theorem 1. [J

Thus the algorithm can be both a fast heuristic and an
exact method, without major modifications. Furthermore, if
B-fixing is used, and if PS is solved with a polynomial
method (which rules out the primal heuristic discussed in
§2.4, since it is only pseudo-polynomial), we have the fol-
lowing result.

TueOREM 3. The algorithm has a polynomial complexity if
B-fixing (with B>0) is used, and if PS is solved with a
polynomial method.

Proor. Obviously, all other parts in the Lagrangian
heuristic at each node have a polynomial complexity. These
include the method used to solve DS and to make a subgra-
dient step. Moreover, the penalty tests as well as the vari-
able fixing procedure also have a polynomial complexity.
Therefore, the algorithm complexity is polynomial at each
branch-and-bound node, if a polynomial method is used
whenever PS is to be solved (which is possible because PS
is a linear programming problem). All these operations will
not be performed more times than the maximal number of
subgradient iterations. Furthermore, because at each level,
B percent of all arcs are fixed (at least one design variable
will be fixed at each level since >0), there will be at
most [1/f] levels in the tree. Thus the Lagrangian heuristic
will be carried out at most 2[/f1*1 —1 nodes, which is
independent of the problem size. Hence the conclusion. [

In our implementation the algorithm is not theoretically
polynomial because PS is solved exactly by a simplex
method with a network optimizer. This is, however, not a
drawback in practice because the way PS is solved is found
to be very efficient. Indeed, because the size of the tree is
determined by f, f-fixing provides a convenient way to
adapt the practical difficulty to the size of the problem.

4. SOLVING CNDP WITH CPLEX

We have also, as a comparison, used CPLEX to solve
CNDP by using the LP-relaxation of the problem together
with branch-and-bound. Even if CPLEX with default set-
tings of all parameters is a quite efficient way of solving
mixed integer linear problems, there is still much that can
be done to improve the performance. The key ingredient is
to have a proper formulation of the problem. In CNDP, it
matters whether the disaggregated linking constraints (3)
are used or not and whether y;; is included in the capacity
constraints (2) or not. The formulation presented in §1 is

referred to as the strong formulation, and we obtain the
weak formulation if the constraint set (3) is removed. While
for small problems it seems quite obvious that one should
use the strong formulation, the LP-relaxation becomes hard
to solve when the problem size is getting large. For a prob-
lem that contains 100 arcs and 100 commodities, the strong
formulation will have 10,000 more linking constraints.
However, our experiments show that although it takes con-
siderably longer time to solve the LP-relaxation, the strong
formulation is still computationally preferred. The test re-
sults indicate that the size of the branch-and-bound tree can
be reduced by a factor of at least two by using the strong
formulation and that this factor increases fast with increas-
ing problem size. Even for rather small problems, we obtain
a speed-up factor of about 5 in the execution time. Note
that it is crucial to have df-‘j = min(r* ,uj;) because the same
improvements will not be obtained using a larger value of
a’f‘] We also notice that the lower bound can, in many cases,
be improved by including y;; in the capacity constraints.

A further consideration is the method used to solve the
LP-relaxation. Several approaches are available in CPLEX.
Because CNDP contains a network structure, we use the
built-in hybrid network optimizer in CPLEX, which first
solves the network part with a network optimizer and treats
the remaining parts as side constraints, taken into account
by a number of dual simplex iterations. Comparing this ap-
proach to the standard primal simplex method, we found
that the simplex method requires considerably more itera-
tions and time to solve the LP-relaxation. In some cases,
the initial LP-relaxation cannot be solved within the time
limit (one hour) by the standard simplex method, and hence
no solution is found at all. With the network optimizer, the
efficiency is increased dramatically. Because in the branch-
and-bound tree only minor changes of the LP-problem will
occur at successive nodes, the best performance is obtained
by using the network optimizer at the top node and the dual
simplex method at all other nodes.

Regarding the branch-and-bound scheme, we use the de-
fault settings in CPLEX. For instance, a best-first search
strategy is adopted which generally gives a better perfor-
mance than other search orders.

By utilizing all these features, our experiments show that
CPLEX is quite efficient in solving CNDP, especially for
small problems. However, when the problem size is getting
larger, it become unpractical to solve CNDP in this way, both
with respect to computational time and storage requirement.
Our tests show that if the problem size exceeds approxi-
mately 100,000 variables, it becomes too large even to ini-
tialize the solving process because of the total memory size
required to solve the LP-relaxation and to start the branch-
and-bound procedure. This suggests that methods with less
memory requirement are needed for large applications.

5. COMPUTATIONAL RESULTS

To test our algorithm, we have used a total of 65 test
problems in 7 groups of different structures. The ranges of
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Table 1.  The characteristics of the test problems.

Group A B C D E F G
#P 10 8 8 13 15 7 4

| A | max 17 103 100 148 84 150 61

| |max 272 814 980 686 1,000 415 1,000

|Blmax 272 20 50 235 282 16 50

the numbers of nodes, arcs and commodities are 7-150,
42-1,000, and 5-282, respectively. The smallest problem
contains 1,260 continuous variables and 30 design variables
(y-variables with f;; =0 are not counted), while for the
largest one these numbers are 191,196 and 1,000. Most of
these test problems are based on problems used in Holmberg
and Hellstrand (1998), but are significantly modified.
Capacities are added and adjusted to affect the solution sig-
nificantly but still avoid infeasibility. The relations between
the numbers of nodes, arcs, and commodities are kept
similar to some real-life problems we have encountered
(but which, unfortunately, are unavailable for these tests).
After solving a preliminary set of test problems, we have
removed or modified problems that turned out to be almost
uncapacitated, and also problems where the costs for the
continuous part (the flow costs) dominate, i.e., problems
that in effect were almost linear.

The first group, A, contains networks of complete graphs.
Arcs have very large, almost identical fixed charges, and
there is (almost) one commodity for each pair of nodes. All
commodities have a demand of one unit. Without capacity
constraints, these problems would be close to modeling the
traveling salesman problem.

Group B contains some randomly generated networks,
structured in levels. The commodities are sent from the first
level to the last level.

The problems in the next three groups, C, D, and E, have
randomly generated unstructured networks. The problems
in group C have relatively few commodities and some arcs
have fixed costs equal to zero, while the number of com-
modities are considerably larger in groups D and E, and
practically all arcs have nonzero fixed costs.

Group F contains problems with grid structured networks,
many nodes, and rather few commodities, sent across the
network.

The test problems in group G are basically obtained by
replacing the facility nodes in capacitated facility location
problems by capacitated arcs, and adding fixed costs on all
arcs. All commodities are sent from one single origin (the
super source) to the nodes corresponding to the demand
nodes of the location problem, i.e., all commodities use ex-
actly two arcs.

Table 1 gives an overview of these problem groups. For
each group, we give the number of problems it contains, #P,
and the maximal number of nodes, | A |max, arcs, |- |max,
and commodities, |% | max-

The implementation is done in Fortran and the tests are
carried out on a Sun UltraSparc workstation. Moreover, we
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limit the execution time to one hour both for CPLEX and for
LHBB. Our method contains a number of parameters, which
are possible to fine-tune to fit a certain problem structure,
(i.c., a certain problem group). However, this was avoided
in our tests, and the parameters were chosen to give a
reasonably good performance for all the groups. Further-
more, because the tests show that our heuristics often gen-
erate near-optimal solutions quite fast, we have utilized the
heuristic solutions in our exact solution method, LHBBO,
by using LHBB with «=0.05 as the first phase and the
exact method as the second phase. Both the best upper bound
obtained in the heuristic and the multipliers at the starting
node are used in the second phase. The value of /g is reset
to 0.5 in the second phase.

Comparing the test results of the 65 test problems, CPLEX
solves 8 problems exactly within 1 hour and finds feasible
solutions, without completing the branch-and-bound search,
for another 35 problems. For 13 of the remaining problems,
CPLEX does not manage to find a feasible integer solution
within the prescribed time, while 9 problems are too large
for CPLEX to initialize the solution process. LHBBO solves
9 problems exactly within 1 hour and provides feasible solu-
tions for all the remaining problems. None of the test prob-
lems is too large for LHBBO to start the solution process
and find a feasible integer solution.

The computational results are given in Tables 2 and 3,
which contain test results for CPLEX, the exact method
LHBBO, and the two heuristics with § = 0.1 and o =
0.05. For CPLEX and LHBBO, the tables contain the opti-
mal objective function value (indicated by *), or the best
upper bound found if optimality could not be verified within
one hour, the number of nodes in the branch-and-bound
tree and the solution time in seconds. For LHBBy-.o, and
LHBB,..g 05 the best upper bound found and the execution
time are given. We use ‘—’ to denote a case where CPLEX
does not find a feasible integer solution.

Considering the results for the different groups of prob-
lems, we find the following. Of the 10 problems in group
A, only one is solved exactly by CPLEX and LHBBO (with
LHBBO somewhat quicker than CPLEX ). CPLEX fails com-
pletely to solve five of the problems and manages to solve
four approximately, while LHBBO manages to solve all the
nine approximately and significantly better than CPLEX.
These problems are also quite difficult for the heuristics.
The difficulty of the problems comes mostly from the TSP-
structure because they are not very large.

On the level structured problems in group B, CPLEX per-
forms quite well. with results similar to those of LHBBO
(although none of the problems is solved exactly). However,
the heuristics perform very well and find comparable solu-
tions in much shorter time, in some cases in a few seconds
compared to one hour.

In group C, CPLEX and LHBBO solve three problems
exactly, with LHBBO quicker on two of them. For the
remaining problems, LHBBO yields better solutions than
CPLEX in all cases but one, while CPLEX fails in two
cases. Also here the heuristics are very quick.
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In group D, two problems are solved to optimality by
CPLEX and LHBBO (somewhat quicker), while CPLEX
fails in four cases. In most cases LHBBO yields bctter
solutions than CPLEX. In group E, CPLEX fails on 11
problem and solves 1 exactly. This problem, and two of the
problems that CPLEX fails on, are solved to optimality by
LHBBO0. Again, LHBBO in general yields better solutions
than CPLEX. The results of the heuristics on groups D and
E vary significantly, and on some of the problems they take
a quite long time.

Group F contains grid structured problems, which arc
surprisingly difficult. No problem is solved exactly by any
method, but all are solved approximately. LHBBO yields
better solutions than CPLEX for all problems. Herc we can
note that the heuristics actually often yield better solutions
in a couple of seconds than CPLEX in one hour.

In group G CPLEX solves one problem exactly, while
LHBBO does not solve any problem to optimality. CPLEX
yields better solutions than LHBBO also for the remaining
three problems. Here CPLEX performs better than on the
other groups. We should, however, keep in mind the very
special structure of these problems.

LHBBO uses as a first phase the heuristic (with 2= 0.05),
slightly modified by solving PS somewhat less frequently.
In 15 cases LHBBO does not find a better solution than the
heuristic. Of these, four solutions are optimal, but for some
others the heuristic uses all or much of the allowed hour,
leaving very little time for the second phase of LHBBO. The
slight difference between the heuristic and the first phase of
LHBBO has some effects, namely that the heuristic in some
cases actually yiclds better solutions than LHBBO. but in
another case, ES, takes much longer time.

To make more dctailed comparisons between the perfor-
mances of the different methods, we divide all the test prob-
lems into three categories, depending on the test results.
The test problems in the first category are solved exactly
by CPLEX and LHBBO within one hour, while the second
category contains thosc problems for which CPLEX and
LHBBO find feasible solutions but do not solve completely
in one hour. Finally, the last category is composed by those
problems for which CPLEX fails to find any feasible integer
solution. We can call the problems in these three categories
“casy.” “difficult,” and “large.” Table 4 contains the num-
bers of problems of each group that these categories contain.
(The second group also contains one problem solved to op-
timality by CPLEX, but not by LHBBO, and the third group
contains two problems solved to optimality by LHBBO.)

Table 4. Relationship between problem groups and
categories.
A B 6 D E E G Total
Category 1 1 0 73 2 1 7 0 0 v 7
(“easy”)

Category 2 B 8 8 7 3 7 B 36
(“difficult”)

Category 3 5 0 2 -+ 11 0 0 22
(“large”)

Comparing the exact methods, we find that the num-
ber of nodes in the branch-and-bound tree is much
higher in LHBBO than in CPLEX. (This comparison
is not relevant for problems not solved exactly, since
one of the methods might be much closer to finish-
ing than the other.) For the seven problems that are
solved exactly by both methods, LHBBO yields much
larger trees. One example is problem Al, where CPLEX
yields 606 nodes and 190 seconds, while LHBBO yields
9,552 nodes and 183 seconds. In this case CPLEX
spends in average 0.31 seconds on each node in the
tree, while LHBBO spends 0.019 seconds on each node.
The tree size makes it crucial that the subproblems are
solved very quickly. (Using the relaxation preferred in
Gendron and Crainic (1994), this would probably be dif-
ferent, because then the subproblem takes a longer time to
solve but probably yields better bounds.)

In average LHBBO yields more than 10 times as many
nodes as CPLEX on these 7 problems. In preliminary com-
putational tests, the limits on the number of subgradient
iterations in each node were increased very much, to check
if the reason for the large number of nodes is that LD is not
solved sufficiently well. However, even in that case, LHBBO
yields much larger trees.

The average computational results for the first category
are summarized in Figure 1, which displays the relative
error and the execution time. The two different versions
of LHBB are denoted LHBB, and LHBBj, depending on
which heuristic is used for fixation of variables. (Recall that
LHBBO is LHBB; with # = 0.)

The first problem category contains the seven “casy”
test problems that are solved exactly by both CPLEX and
LLHBBO. The solution times of LHBBO are shorter than
those obtained by CPLEX in five cases, practically equal in
one case, and longer in one case. In average, LHBBO uses
183 seconds, while CPLEX used 260 seconds.

Figure 1 confirms that the average solution time T for
our exact method is smaller than for CPLEX. If either of
the heuristics is used, we obtain a fairly small ¢ even for
quite large valucs of z or f. For example, ¢ is less than
4% for B<0.2. At this stage, T is about a few seconds,
which is approximately 1.5% of the effort required to solve
the problem exactly. Notice that the figure is not mainly
a comparison between CPLEX and our heuristics because
these problems are solved exactly by CPLEX. Rather, the
figure shows how ¢ and T are related to each other with
respect to different values of « and f8, and it suggests that
our heuristics are capable of generating good solutions with
small computational effort.

Based on Figure 1, we can compare LHBB, to LHBBy
by simply observing the corresponding values of ¢ given a
certain value of T, and vice versa. For small values of z,
LHBB,, is weaker and quicker, but otherwise LHBBy seems
preferable.

For the second category, both CPLEX and LHBBO yield
feasible solutions (CPLEX solves one of them to optimality )
within one hour. Of the 36 problems, LHBBO finds better
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Average computational results for the 7 problems in category 1 with LHBB, on the left and LHBBg to the

right. For each algorithm, ¢ is the relative difference between the best solutions found and the optimum,
log T is the 10-based logarithm of the execution time in seconds. The dashed lines show the average time

required for CPLEX.
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solutions in 25 cases, worse in 10 cases, and the same in
one case. The test results are summarized in Figure 2.

It is clear that LHBBy can find better solutions for the
problems in category 2 than CPLEX can, with a considerable
speed-up factor. Better solutions are obtained for S up to 0.1,
which yields a quite short solution time. For small values
of v, LHBB, yields solutions somewhat worse, but close to
what CPLEX yields, in a much shorter time. To generate
a solution at least as good as the one found by CPLEX
during one hour, it takes about 57 seconds for LHBBy, which
confirms that the proposed method is very fast in obtaining
good feasible solutions.

The last category contains 22 problems for which CPLEX
does not find a feasible solution. Among these problems,
two are solved exactly within one hour by LHBBO. The test
results are shown in Figure 3.

The only available values for the problems in this category
are the upper and lower bounds generated by our algorithm.
Because no extra attempts have been made to improve the
lower bound found at the top node of the branch-and-bound
tree, the lower bounds obtained are usually not very close
to optimum,.

To investigate the capability of our algorithm, we have
applied LHBB,, and LHBBy; to a large problem of the same

015

0:08 fawz 6 1 4 e ...... o SR
0.06
0.04

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 O.5B

structure as those in group E, containing 1,000 design vari-
ables and 600,000 flow variables. Both LHBB,, and LHBB
can start to solve this problem. The test results for some
parameter values are shown in Table 5.

Table 5 shows that good feasible solutions are obtained
by both LHBB; and LHBB, because for all the parameter
values, ¢ is less than 3%, and often less than 2%. Notice that
while 2 or f increases, ¢ does not increase monotonously.
This can be explained by the fact that for such a large prob-
lem, only few nodes can be searched for small values of
the parameters, while better solutions are obtained if more
nodes are searched. Another observation is that because the
problem is very large, it seems easier to adjust the compu-
tational efforts in LHBBy than LHBB, because an explicit
number of variables are fixed in LHBBgy.

Summarizing the computational results, we find that
LHBBO is better than CPLEX in 52 cases (better solutions
in the same time or shorter time for the same solution),
worse in 11 cases, and practically equivalent in 2 cases.
The heuristics in an absolute majority of cases yield fairly
good solutions in a much shorter time,

In Table 6 some statistics for the solutions obtained by
CPLEX are given (including solutions not shown to be op-
timal). We give the number of arcs, ||, the number of
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Figure 2.  Average test results for the 36 problems in category 2. The value p is the quotient between the objective function
values found by CPLEX and LHBB, i.e. the improvement of LHBB over CPLEX (CPLEX corresponds to

u=1.0). The lower images show the 10-based logarithm of the average execution time T in seconds. The dashed

lines are the execution time (&~ 1 hour) for CPLEX.
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opened arcs, |.2/p|, and the number of saturated arcs (where
the total flow is equal to the capacity), |.oZs|. We also give the
proportion between the total fixed costs and the total costs,
fp, the average utilization of the opened arcs (i.e., the total
flow divided by the total capacity of the opened arcs), Up,
and the average total utilization (i.e., the total flow divided
by the total capacity), Uror.

Finally, we give the gap between the optimal objective
function value of the LP-relaxation and the upper bound ob-
tained by “intelligent rounding,” i.e., by making this solu-
tion integer and feasible (by paying the correct fixed costs),
G, in %, the gap between the best feasible integer solution
found by CPLEX and the optimal objective function value
of the LP-relaxation, G3, in %, and the gap between the up-
per and lower bounds in the first node of LHBB, Gj, in %.

In some cases G, is less than (>, which indicates that
CPLEX may perform worse than “intelligent rounding.” The
gaps (3 are in general quite large, up to 930%, but in some
cases smaller than G;. The gaps G are also available for
the problems where CPLEX fails to find a feasible solution,
even though these problems are not included in Table 6.
Of these problems, A5,6,7,9 have initial gaps between 124%
and 183%, and C3 an initial gap of 248%. Apart from these

n
1.05

0.95

0.9 * ‘ i : B

cases, the problems not included in Table 6 do not have
significantly larger gaps than those included.

We have also made tests using LHBB with f=0.1
(instead of o = 0.05) as first phase of LHBBO. This modi-
fication enables verification of optimal solution of 11 prob-
lems (instead of 9) within | hour but does not otherwise
yield a general improvement.

A large part of the time used in LHBB is spent in solving
PS exactly, which is done with CPLEX. A recent imple-
mentation of a column-generation method (Holmberg and
Yuan 1998) seems to be able to solve problems similar to
PS faster than CPLEX, so it is possible that LHBB can be
made faster by inclusion of that method. It is also possible
to make the branching even smarter, which might decrease
the size of the trees. Finally, another idea to be pursued
in the future is to improve that lower bounds by including
valid inequalities for the convex hull of the feasible integer
solutions.

6. CONCLUSIONS

In this paper we propose a method based on a combina-
tion of a Lagrangian heuristic and branch-and-bound for the
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Figure 3.  Test results for the 22 problems in category 3. For each value of « and f, the figure displays the numbers of
problems for which the obtained relative differences between the upper and lower bounds are in the ranges
[0, 0.051, (0.05, 0.1 and (0.1, oo]. It also shows the 10-based logarithm of the average solution time T in seconds.
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Table S. Test results for a problem with 1,000 design variables and 600,000 continuous variables.
o 0 0.1 0.15 0.2 0.3
I, T ¢ T ¢ T & T & T &
3601.09 2.00 3604.52 1.02 3601.97 1.10 3601.87 0.98 1315:91 0.98
s o ol 0.2 03 04
LHBB, T e - T P e T & T &

3602.70 2.04 3605.01 1.93

562.98 2.54 335.15 2:19 271.85 2:73

Note: ¢ is the relative difference between the upper and lower bound generated in percent and T is the solution time in seconds.
The limit of execution time is approximately 1 hour=3,600 seconds.

capacitated network design problem. The basic scheme and
various enhancements are discussed. Especially, we can use
the fact that the separability of the Lagrangian relaxation
coincides with the effects of the branching to construct ef-
ficient penalty tests. We also develop new cutting criteria.
The method can either be an exact solution method, or with
the introduction of heuristic variable fixation techniques, a
faster heuristic, with a parameter controlling the quality of
the approximation (trading solution time for solution qual-
ity). The computational results suggest that the proposed
methods provides a quite efficient way in obtaining near-
optimal solutions with small computational effort, especially

for large-scale problems. This makes it interesting for prac-
tical applications. Furthermore, it provides means to adapt
the algorithm complexity to the problem size.

Tested on 65 problems, our method is better and/or
faster in 52 cases, compared to the state-of-the-art code
CPLEX.

It is also interesting to notice that although we are mostly
interested in obtaining good primal solutions, it is achieved
by effectively utilizing information generated by the dual
procedure. This confirms the advantages of combining
primal and (Lagrangian) dual procedures for structurcd
mixed integer problems.
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Table 6. Statistics for the solutions obtained by CPLEX.

Name || Aol [ s fp Uo Uror G (%) Gy (%) G3 (%)
Al 42 12 9 0.878 1.000 0.228 226.20 9.69 49.93
A2 56 16 5 0.874 0.916 0.209 273.50 16.99 102.92
A3 56 16 6 0.904 0.888 0.202 275.74 14.81 77.58
A4 90 24 9 0.888 0.813 0.176 327.74 29.13 117.08
A8 90 23 10 0.868 0.777 0.189 392.78 31.99 103.16
B1 357 54 19 0.062 0.691 0.099 1.93 1.16 207.92
B2 290 54 10 0.667 0.597 0.099 23.02 18.65 47.78
B3 814 80 27 0.109 0.762 0.071 275 2.58 346.28
B4 370 60 7 0.034 0.523 0.079 0.56 0.64 211.08
B5 365 48 7 0.277 0.655 0.070 0.98 1.03 226.98
B6 290 39 6 0.628 0.731 0.096 17.81 7.68 44.87
B7 814 108 55 0.136 0.782 0.104 6.07 5.62 929.88
B8 370 56 5 0.037 0.548 0.080 0.56 0.60 195.84
€l 300 54 4 0.444 0.455 0.110 38.97 112 11.93
C4 290 111 22 0.511 0.627 0.240 33.41 16.96 30.35
G5 430 15 5 0.293 0.632 0.062 6.31 121 1.49
€6 360 8 9 0.229 0.623 0.085 31.43 16.37 142.83
c7 340 29 4 0.491 0.555 0.048 22.15 4.49 5.72
C8 271 15 2 0.225 0.530 0.074 8.66 1.29 3.08
Dl 72 30 10 0.340 0.846 0.439 11.53 1.10 9.76
D2 68 42 17 0.394 0.885 0.542 13.74 312 16.80
D3 148 54 6 0.180 0.462 0:171 5.05 0.56 40.10
D4 146 68 7 0.212 0.393 0.176 4.04 0.62 24.71
D6 180 56 4 0.307 0.536 0.149 15.14 3.1 11.39
D10 324 62 -4 0.215 0.318 0.038 572 1.13 3.72
D11 174 52 14 0.321 0.863 0.288 9.07 0.95 141.79
D12 159 55 24 0.399 0.847 0.376 12.85 5.34 17.55
D13 399 93 8 0.277 0.692 0.127 7.91 2.58 53.22
El 90 55 17 0.480 0.801 0.480 14.51 5.83 41.82
E2 50 34 17 0.328 0.843 0.573 11.09 1.41 20.34
E10 358 118 4 0.310 0.332 0.060 13.28 4.09 35.01
El4 296 74 12 0.211 0.530 0.093 4.28 0.44 8.58
Fl 270 113 4 0.140 0.585 0.176 11.02 6.42 15.64
F2 270 101 9 0.113 0.581 0.172 6.04 4.92 11.08
F3 270 96 9 0.114 0.560 0.172 8.05 5.00 12.97
F4 255 140 22 0.334 0.574 0.279 17.50 15.26 33.79
ES 270 117 11 0.070 0.544 0.192 3.36 2.76 8.09
Fo6 410 204 20 0.143 0.613 0.227 6.89 7:33 16.77
F7 415 182 22 0.118 0.583 0.189 5.24 535 16.39
Gl 1000 62 5 0.195 0.259 0.021 1.99 0.79 7.36
G2 820 65 9 0.217 0.476 0.036 4.14 1.32 8.27
G3 840 50 10 0.322 0.508 0.031 12.42 213 35.32
G4 930 50 6 0.257 0.577 0.031 2.67 1:55 20.77
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