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Preface
In the mid-1980s, a number of researchers began to see how to introduce systematic
approaches to the statistical modelling and analysis of hierarchically structured data.
The early work of Aitkin et al. (1981) on the teaching styles’ data and Aitkin’s
subsequent work with Longford (1987) initiated a series of developments that by
the early 1990s had resulted in a core set of established techniques, experience
and software packages that could be applied routinely. These methods and further
extensions of them are described in this book; they are now applied widely in areas
such as education, epidemiology, geography, child growth and household surveys.

In addition to the first, second and third editions of the present text (Goldstein,
1987b, Goldstein, 1995, Goldstein, 2003), several expository volumes have now ap-
peared (see Section 1.15). The present text aims to integrate existing methodological
developments within a consistent terminology and notation, provide examples and
explain a number of new developments, especially in the areas of latent normal
models, missing data, multiple membership structures, errors of measurement and
survival data. In almost all cases, these developments are the subject of continuing
research.

The main text seeks to avoid undue statistical complexity, with derivations
occurring in appendices. Examples and diagrams are used where possible to illustrate
the application of the techniques and references are given to other works. The book
is intended to be suitable for graduate level courses and as a general reference.

Harvey Goldstein
June 2010
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Notation
Examples use 2-level models
Definitio Symbol
Response variable vector Y
Explanatory variable design matrix X
Fixed part explanatory variable design matrix for a
single unit

Xij for a level 1 unit
X j for a level 2 unit

Total residuals at each level for a 2-level model u j =
q2∑

h=0
uhj z(2)

h j

eij =
q1∑

h=0
ehi j z(1)

hi j

Explanatory variable design matrix for level 2 and level
1 random coefficients

Z (2), Z (1)

Predicted value from fixed part of model ŷij = Xijβ = (Xβ)ij
Raw or total residual for level 1 unit ỹij = yij − ŷij

Mean raw residual for level 2 unit ỹ j = 1
n j

n j∑

i=1
ỹij

Observations (y) independently and identically
distributed with specified density function (g)

y
iid∼ g

Estimated residual or posterior residual estimate û j , êij
Covariance matrix of random coefficients at level i �i ,� = {�i }
Parentheses denoting vector or matrix of elements { }
Covariance matrix of response vector for k-level model Vk or just V
Contribution to covariance matrix of response vector
from level i for k-level model

Vk(i), or just Vi

Direct sum of matrices A1, . . . ., Ak
k⊕
i=1

Ai
Kronecker product of matrices A1, A2 A1 ⊗ A2

vec operator on matrix A vec(A)
Level 2 cross classification model; classifications
indexed by j1, j2

yi( j1 j2) = Xi( j1 j2)β+
u1 j1 + u2 j2 + ei( j1 j2)

Multiple membership model; particular case of a level
1 unit belonging to just two level 2 units. j1, j2 index
units in the same classification.

yi( j1 j2) = Xi( j1 j2)β

+ w1ij1u j1 + w2ij2u j2 + ei( j1 j2)

w1ij1 + w2ij2 = 1
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xx NOTATION

A general classificatio notation and diagram
For complex models a more general notation has been used. Response measurements
and random effects have a single subscript that identifies the unit. Random effects, and
optionally responses, also have a single superscript that identifies the ‘classification’.
Thus, a variance components two level model, using the example of students and
schools, can be written in standard notation as

yij = (Xβ)ij + u j + eij
u j ∼ N (0, σ 2

u ), eij ∼ N (0, σ 2
e )

and in the general classification notation as

y(1)
i = (Xβ)i + u(2)

school(i) + u(1)
student(i) school(i) ∈ (1, . . . ., J )

student(i) ∈ (1, . . . ., N )u(2)
school(i) ∼ N (0, σ 2

u(2))

u(1)
student(i) ∼ N (0, σ 2

u(1)) i = 1, . . . ., N

By default the lowest level classification is (1) and where no ambiguity arises this
superscript may be omitted. The term school(i) refers to the school that the i-th
student belongs to, school being the classification (set of units) with superscript (2).
The term student(i) refers to student i which is classification (1). Classifications can
be general, including nesting relationships, crossings and multiple memberships.

Accompanying this notation is a classification diagram which has the following
elements.

A hierarchical relationship among units 

School 

Student 

Notation diagram 1 Hierarchical relationship among units.
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NOTATION xxi

A cross classification of units 

Primary school Secondary school 

Student 

Notation diagram 2 A cross classificatio of units.

A multiple membership classification

Student 

School 

Notation diagram 3 A multiple membership classification
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Glossary
Cluster A grouping containing ‘lower level’ elements. For example

in a sample survey the set of households in a neighbourhood.
Cross classification A structure where lower level units are grouped within the

cells of a multiway classification of higher level units
Design matrix In the fixed part of the model, the matrix of values of the

explanatory variables X . In the random part the matrix of
explanatory variables Z .

Explanatory variable Also known as an ‘independent’ variable. In the fixed part of
the model usually denoted by x and in the random part by z.

Fixed part That part of a model represented by Xβ, that is the average
relationship. The parameters, β, are referred to as ‘fixed
parameters’.

Level A component of a data hierarchy. Level 1 is the lowest level,
for example students within schools or repeated
measurement occasions within individual subjects.

Level n variation The variation among level n unit measurements.
Multiple membership A structure where a level unit may be nested within one or

more higher level units.
Nesting The clustering of units into a hierarchy
Random part That part of a model represented by Zu, that is the

contribution of the random variables u, at each level. The
parameters associated with the random variables, i.e.
variances and covariances are referred to as ‘random
parameters’.

Response variable Also known as a ‘dependent’ variable. Denoted by y.
Unit An entity defined at a level of a data hierarchy. For example

an individual student will be a level 1 unit within a level
2 unit such as a school.



P1: TIX/OSW P2: TIX
FM JWST015-Goldstein August 18, 2010 19:8 Printer Name: Yet to Come



P1: TIX/XYZ P2: ABC
c01 JWST015-Goldstein August 16, 2010 8:29 Printer Name: Yet to Come

1

An introduction to multilevel
models

1.1 Hierarchically structured data
Many kinds of data, including observational data collected in the human and
biological sciences, have a hierarchical, nested, or clustered structure. For exam-
ple, animal and human studies of inheritance deal with a natural hierarchy where
offspring are grouped within families. Offspring from the same parents tend to be
more alike in their physical and mental characteristics than individuals chosen at
random from the population at large. For instance, children from the same family
may all tend to be small, perhaps because their parents are small or because of a
common impoverished environment. Many designed experiments, such as clinical
trials carried out in several randomly chosen centres or groups of individuals, also
create data hierarchies.

For now, we are concerned only with the fact of such hierarchies, not their
provenance. The principal applications are those from the social and medical
sciences, but the techniques are, of course, applicable more generally. In subsequent
chapters, as we develop the theory and techniques with examples, we see how a
proper recognition of these natural hierarchies allows us to obtain more satisfactory
answers to important questions.

We refer to a hierarchy as consisting of units grouped at different levels. Thus
offspring may be the level 1 units in a 2-level structure where the level 2 units are the
families: students may be the level 1 units clustered or nested within schools that are
the level 2 units.

The existence of such data hierarchies is neither accidental nor ignorable. Indi-
vidual people differ, as do individual animals, and this differentiation is mirrored in
all kinds of social activity where the latter is often a direct result of the former; for

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd

1
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2 MULTILEVEL STATISTICAL MODELS

example, when students with similar motivations or aptitudes are grouped in highly
selective schools or colleges. In other cases, the groupings may arise for reasons less
strongly associated with the characteristics of individuals, such as the allocation of
young children to elementary schools, or the allocation of patients to different clin-
ics. Once groupings are established, even if their establishment is effectively random,
often they will tend to become differentiated. This differentiation implies that the
group and its members both influence and are influenced by the group membership.
To ignore this risks overlooking the importance of group effects, and may also ren-
der invalid many of the traditional statistical analysis techniques used for studying
data relationships.

We look at this issue of statistical validity in the next chapter. For now, one
simple example will show its importance. A well-known and influential study of the
teaching styles used with primary (elementary) school children carried out in the
1970s (Bennett, 1976), claimed that children exposed to so-called ‘formal’ styles of
teaching reading exhibited more progress than those who were not. The data were
analysed using traditional multiple regression techniques which recognised only the
individual children as the units of analysis and ignored their groupings within teachers
and into classes. The results showed statistically significant differences. Subsequently,
Aitkin et al. (1981) demonstrated that when the analysis accounted properly for the
grouping of children into classes, the significant differences disappeared and the
‘formally’ taught children could not be shown to differ from the others.

This re-analysis is the first important example of a multilevel analysis of social
science data. In essence what was occurring here was that the children within any
one classroom, because they were taught together, tended to be similar in their per-
formance. As a result they provided rather less information than would have been the
case if the same number of students had been taught separately by different teachers.
In other words, the basic unit for purposes of comparison should have been the
teacher not the student. The function of the students can be seen as providing, for each
teacher, an estimate of that teacher’s effectiveness. Increasing the number of students
per teacher would increase the precision of those estimates but not change the number
of teachers being compared. Beyond a certain point, simply increasing the numbers
of students in this way hardly improves things at all. On the other hand, increasing
the number of teachers to be compared with the same or an even smaller number of
students per teacher considerably improves the precision of the comparisons.

Researchers have long recognised this issue. In education, there has been much
debate (see Burstein et al., 1980) about the so-called ‘unit of analysis’ problem just
outlined. Before multilevel modelling became well developed as a research tool, the
problems of ignoring hierarchical structures were reasonably well understood, but
they were difficult to solve because powerful general purpose tools were unavailable.
Special purpose software, for example, for the analysis of genetic data, has been
available longer but this was restricted to ‘variance components’ models (see Chapter
2) and was not suitable for handling general linear models. Sample survey workers
have recognised this issue in another form. When population surveys are carried out,
the sample design typically mirrors the hierarchical population structure, in terms of
geography and household membership. Elaborate procedures have been developed
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to take such structures into account when carrying out statistical analyses. We look
at this in more detail in Chapter 10.

The remainder of this chapter discusses some general issues and introduces the
major topics explored in this book.

1.2 School effectiveness
Schooling systems present an obvious example of a hierarchical structure, with
pupils clustered within schools, which themselves may be clustered within education
authorities or boards. It therefore provides a useful way to introduce some basic
ideas of multilevel modelling. Educational researchers have long been interested in
comparing schools and other educational institutions, most often in terms of the
achievements of their pupils. Such comparisons have several aims, including the aim
of public accountability (Goldstein, 1997) but, in research terms, interest is usually
focused upon studying the factors that explain school differences.

Consider the common example where test or examination results at the end of
a period of schooling are collected from a randomly chosen sample of schools. The
researcher wants to know whether a particular kind of subject streaming practice in
some schools is associated with improved examination performance. She also has
good measures of the pupils’ achievements when they started the period of schooling
so that she can control for this in the analysis. The traditional approach to the analysis
of these data would be to carry out a regression analysis, using performance score
as the response, to study the relationship with streaming practice, adjusting for the
initial achievements as covariates. This is very similar to the teaching styles analysis
described in the previous section, and suffers from the same lack of validity through
failing to take account of the school level clustering of students.

An analysis that explicitly models the manner in which students are grouped
within schools has several advantages. Firstly, it enables data analysts to obtain statis-
tically efficient estimates of regression coefficients. Secondly, by using the clustering
information it provides correct standard errors, confidence intervals and significance
tests, and these generally will be more ‘conservative’ than the traditional ones that are
obtained simply by ignoring the presence of clustering – just as Bennett’s previously
statistically significant results became non-significant on reanalysis. Thirdly, by al-
lowing the use of covariates measured at any of the levels of a hierarchy, it enables the
researcher to explore the extent to which differences in average examination results
between schools are accountable for by factors such as organisational practice or in
terms of other characteristics of the students. It also makes it possible to study the ex-
tent to which schools differ for different kinds of students, for example to see whether
the variation between schools is greater for initially high scoring students than for
initially low scoring students (Goldstein et al., 1993) and whether some factors are
better at accounting for or ‘explaining’ the variation for the former students than for
the latter. Finally, there may be interest in the relative ranking of schools, using the
performances of their students after adjusting for intake achievements. This can be
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Figure 1.1 A simple regression.

done straightforwardly using a multilevel modelling approach and we shall see an
example in Chapter 2.

To fix the basic notion of a level and a unit, consider Figures 1.1 and 1.2, which
are based on hypothetical relationships.

Figure 1.1 shows the exam score and intake achievement scores for five students
in a school, together with a simple regression line fitted to the data points. The
residual variation in the exam scores about this line is the level 1 residual variation,
since it relates to level 1 units (students) within a sample level 2 unit (school). In
Figure 1.2 the three lines are the simple regression lines for three schools, with the
individual student data points removed. These vary in both their slopes and their
intercepts (where they would cross the exam axis), and this variation is the level 2
variation. It is an example of complex level 2 variation since both the intercept and
slope parameters vary.

The other extreme to an analysis which ignores the hierarchical structure is one
which treats each school completely separately by fitting a different regression model
within each one. In some circumstances, for example where we have very few schools
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Figure 1.2 Complex level 2 variation.



P1: TIX/XYZ P2: ABC
c01 JWST015-Goldstein August 16, 2010 8:29 Printer Name: Yet to Come

AN INTRODUCTION TO MULTILEVEL MODELS 5

and moderately large numbers of students in each, this may be efficient. It may also
be appropriate if we are interested in making inferences about just those schools. If,
however, we regard these schools as a (random) sample from a population of schools
and we wish to make inferences about the variation between schools in general,
then a full multilevel approach is called for. Likewise, if some of our schools have
very few students, fitting a separate model for each of these will not yield reliable
estimates: we can obtain more precision by regarding the schools as a sample from
a population and using the information available from the whole sample data when
making estimates for any one school. This approach is especially important in the
case of repeated measures data where we typically have very few level 1 units per
level 2 unit (Chapter 5).

We introduce the basic procedures for fitting multilevel models to hierarchically
structured data in Chapter 2 and discuss the design problem of choosing the numbers
of units at each level in Chapter 3.

1.3 Sample survey methods
We have already mentioned sample survey data. The standard literature on surveys,
reflected in survey practice, recognises the importance of taking account of the clus-
tering in complex sample designs. Thus, in a household survey, the first stage sampling
unit will often be a well-defined geographical unit. From those which are randomly
chosen, further stages of random selection are carried out until the final households
are selected. Because of the geographical clustering exhibited by measures such as
political attitudes, special procedures have been developed to produce valid statistical
inferences, for example, when comparing mean values or fitting regression models
(Skinner et al., 1989).

While such procedures usually have been regarded as necessary they have not
generally merited serious substantive interest. In other words, the population structure,
insofar as it is mirrored in the sampling design, is seen as a ‘nuisance factor’. By
contrast, the multilevel modelling approach views the population structure as of
potential interest in itself, so that a sample designed to reflect that structure is not
merely a matter of saving costs as in traditional sample design, but can be used to
collect and analyse data about the higher level units in the population.

Although the direct modelling of clustered data is statistically efficient, it will gen-
erally be important to incorporate weightings in the analysis which reflect the sample
design or, for example, patterns of non-response, so that robust population estimates
can be obtained and so that there will be some protection against serious model
misspecification. A procedure for introducing external unit weights into a multilevel
analysis is discussed in Chapter 3 and survey data are discussed in Chapter 10.

1.4 Repeated measures data
A different example of hierarchically structured data occurs when the same individ-
uals or units are measured on more than one occasion, as occurs in studies of animal
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and human growth. Here the occasions are clustered within individuals that represent
the level 2 units with measurement occasions as the level 1 units. Such structures are
typically strong hierarchies because there is much more variation between individu-
als in general than between occasions within individuals. In the case of child height
growth, once we have adjusted for the overall trend with age, the variance between
successive measurements on the same individual is generally no more than about 5 %
of the variation in height between children.

The traditional literature on the analysis of such repeated measurement data (see,
for example, Goldstein, 1979), has more or less successfully confronted the statistical
problems. It has done so, however, by requiring that the data conform to a particular,
balanced, structure. Broadly speaking these procedures require that the measurement
occasions are the same for each individual. This may be possible to arrange, but often
in practice individuals will be measured irregularly, some of them a great number of
times and some perhaps only once. By considering such data as a 2-level structure,
however, we can apply the standard set of multilevel modelling techniques that allow
for any pattern of measurements while providing statistically efficient parameter
estimation. At the same time, modelling such data as a 2-level structure presents a
simpler conceptual understanding and leads to a number of interesting extensions
(see Chapter 5).

One particularly important extension occurs in the study of growth where the aim
is to fit growth curves to measurements over time. In a multilevel framework this
involves, in the simplest case, each individual having their own straight line growth
trajectory with the intercept and slope coefficients varying between individuals (level
2). When the level 1 measurements, considered as deviations from each individual’s
fitted growth curve, are not independent but have an autocorrelated or time series
structure, neither the traditional procedures nor the basic multilevel ones are adequate.
This situation may occur when measurements are made very close together in time so
that a ‘positive’ deviation from the curve at one time implies also a positive deviation
after the short interval before the next measurement. Chapter 5 considers methods
for handling such data.

1.5 Event history and survival models
Modelling the time spent in various states or situations is important in a number of
areas. In industry the ‘time to failure’ of components is a key factor in quality con-
trol. In medicine, the survival time is a fundamental measurement in studying certain
diseases. In economics, the duration of employment periods is of great interest. In ed-
ucation, researchers often study the time students spend on different tasks or activities.

In studying employment histories, any one individual will generally pass through
several periods of employment or unemployment, while at the same time changing
his characteristics, for example his level of qualifications. From a modelling point
of view we need to consider the length of time spent in each type of employment,
relating this both to constant factors such as an individual’s social origins or gender,
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and to changing or time dependent factors such as qualifications and age. In this case
the multilevel structure is analogous to that for repeated measures data, with periods
taking the place of occasions. Furthermore, generally we would have a further, higher
level of the hierarchy, since individuals, which are the level 2 units, are themselves
typically clustered into workplaces, which now constitute level 3 units.1 The structure
may be even more complicated if these workplaces change from period to period;
to include this level in our model, we need to consider cross-classifications of the
units (see below). There are particular problems that arise when studying event
duration data that are encountered when some information is ‘censored’ in the sense
that instead of being able to observe the actual duration we only know that it is
longer than some particular value, or in some cases less than a particular value
(see Chapter 11).

1.6 Discrete response data
Until now, we have assumed implicitly that our response or dependent variable is
continuously distributed; for example, an exam score or anthropometric measure such
as height. Many kinds of statistical models, however, deal with categorised responses,
in the simplest case with proportions. Thus, we might be interested in a mortality
rate, or an examination pass rate and how these vary from area to area or from school
to school.

In studying mortality rates in a population, it is often of great concern to try to un-
derstand the factors associated with variations from area to area or community to com-
munity. This produces a basic 2-level structure with individuals at level 1 and commu-
nities at level 2. A typical study might record deaths over a given time period together
with the characteristics of the individuals concerned, and level 2 characteristics of
the communities, such as their sizes or social compositions. One analysis of interest
would be to see whether any of these explanatory variables could explain between-
community variation. Another interest might be in studying whether mortality rate
differences, say between men and women, varied from community to community.

Such models, part of the class known as generalised linear models, have been
available for some time for single level data (McCullagh and Nelder, 1989), with
associated software. In Chapter 4 we show how to fit multilevel models with different
types of categorical response. Chapter 7 extends this to consider multivariate models
with mixtures of different response types.

1.7 Multivariate models
An interesting special case of a 2-level model is the multivariate linear (or generalised
linear) model. Suppose we have taken several measurements on an individual, for

1 Formally, we can regard unemployment for this purpose as a particular workplace.
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example their systolic and diastolic blood pressure and their heart rate. If we wish to
analyse these together as response variables we can do so by setting up a multivariate,
in this case 3-variate, model with explanatory variables such as age, gender, social
background, smoking exposure, etc. We can think of this as a 2-level model by
considering each individual as a level 2 unit, with the three measurements constituting
the level 1 units, rather as occasions did for the repeated measures model. Chapter 6
shows how this formal device for specifying a multivariate model yields considerable
benefits. By considering further higher levels, such as clinics, we have a simple way
of specifying a multivariate multilevel model and we can also have models where the
responses can be measured at different levels of a data hierarchy; see Chapter 5 for an
example. Also, if some individuals do not have all the measurements, for example if
they are randomly missing a blood pressure measurement, then this is automatically
taken account of in the analysis, without the need for special procedures for handling
missing data.

A particularly important application occurs where measurements are missing by
design rather than at random. In certain kinds of surveys, known as rotation designs,
and in certain kinds of educational assessments known as matrix sample designs, each
individual unit has only a subset of measurements made on it. For example, in large-
scale testing programmes, the full range of tests may be too extensive for any one
student, so that each student responds to only one, randomly assigned, combination.
Such designs can be viewed as having a multivariate response, with the full set of tests
constituting the complete multivariate response vector, and every student having some
tests missing. Such designs can become rather complex, especially since the students
themselves are clustered into schools. By viewing the data as a single hierarchy
in which the multivariate responses are level 1, we obtain an efficient and readily
interpretable analysis.

The multivariate multilevel model is also used as the basis for dealing with missing
data in multilevel models and this is developed in Chapter 16.

1.8 Nonlinear models
Some kinds of data are better represented in terms of nonlinear rather than linear
models. For example, the modelling of discrete response data is considered formally
as a case of modelling nonlinear data. Many kinds of growth data are conveniently
modelled in this way, especially during periods of rapid and complex growth such
as early infancy and at the approach to adulthood when growth approaches an up-
per asymptote (Goldstein, 1979). Other examples arise when the response variable
has inherent constraints. For example, biochemical activity patterns in patients may
exhibit asymptotic behaviour, or cyclical patterns, both of which may be difficult
to model using purely linear models. Chapter 9 introduces such models and shows
how to extend the linear multilevel model to this case. It also considers cases where
variances and covariances can be modelled as nonlinear functions of explanatory
variables (see also Chapter 17).
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1.9 Measurement errors
Many variables of interest in the human sciences contain ‘noise’ or random
measurement error. This may be due to observer error as when measuring the weight
of an animal, or an inherent result of being able to measure only a small sample of
behaviour as in educational testing. It is well known that when variables in statistical
models contain relatively large components of such error the resulting statistical in-
ferences can be very misleading unless careful adjustments are made (Fuller, 2006).
In the case of simple regression, when the explanatory or independent variable is
measured with error, the usual estimate of the regression line slope is an underesti-
mate compared to that which would result if the measurement were available without
error. This is particularly important in studies of school effectiveness where the fit-
ting of intake achievement scores is important but where such scores often have large
components of measurement error.

An important case is where we have a level 2 variable that is a ‘compositional’
variable. That is, it is a measurement aggregated from the characteristics of the level
1 units within the level 2 units. Thus, for example, the mean intake achievement
and the standard deviation of the intake achievements of all the pupils in a school
are compositional variables that may, and indeed sometimes do, affect the final
achievements of each individual student. Likewise, in a household survey, we may
consider that a measure of the average social status or the percentages of households
in each social group, using all the households in the immediate community, are
important explanatory variables to fit in a model. The problem arises when it is
possible to collect data only upon some of the level 1 units, this often being the case
with household sample surveys. What we then have is an estimate of a compositional
variable that is measured with error, in the case of household surveys typically with
a very large error. In many educational studies, this also occurs where only a small
proportion of students within a class or school are sampled. Chapter 14 discusses the
problems of dealing with measurement errors in multilevel models.

1.10 Cross classification and multiple
membership structures

We have already alluded to examples where units are cross-classified as well as clus-
tered. In area studies the definition of an individual’s geographical area is contingent
upon the context being considered. Thus, the relevant location unit for purposes of
leisure may not be the same as that surrounding the environment of work or schooling.
We can conceive, formally, of individuals belonging simultaneously to both types of
unit, each of which may have an influence on a person’s life.

In most schooling systems, students move from elementary to secondary or high
school. We might expect that both the elementary and secondary schools attended
will influence a student’s achievements or attitudes measured at the end of secondary
school. Thus the level 2 units are of two types, elementary school and secondary
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school, where each ‘cell’ of their cross classification contains some, or possibly no
students. In this example, a third classification could be the area or neighbourhood
where the student lives. Chapter 12 explores such cross-classified structures.

An interesting situation occurs where for a single level 2 classification, level 1
units may belong to more than one level 2 unit. A sociological example concerns chil-
drens’ and adults’ friendship patterns. An individual may belong to several ‘friendship
groups’ simultaneously. The characteristics of the members of each group will in-
fluence such an individual, in relation to the individual’s exposure to the group. In a
longitudinal study of schooling, many students will change schools during the course
of the study. The contribution to the response from schools will therefore reflect, for
these students, the ‘effect’ of every school they have attended. With a suitable set of
weights to reflect the time spent in each school this can be taken into account in the
analysis. Such ‘multiple membership models’ are discussed in Chapter 13.

To handle the complexity of multiple membership and cross-classified structures,
as well as mixtures of these, a special notation and set of diagrams will be introduced
that allows a complete specification of such models (see Notation).

1.11 Factor analysis and structural equation models
In many areas of the social sciences where measurements are difficult to define
precisely, an investigator might suppose that there is some underlying construct which
cannot be measured directly but nevertheless can be assessed indirectly by measuring
a number of relevant indicators. Structural equation modelling, and in particular the
special case of factor analysis, was developed for this purpose, typically dealing
with individuals’ behaviour, attitudes or mental performance. Where individuals are
grouped within hierarchies, for the reasons already discussed, it is important to carry
out such analyses in a multilevel framework. For example, we may be interested
in underlying individual attitudes based upon a number of indicators. Data on such
indicators may be available over time and we can postulate a model whereby the
underlying attitude varies from individual to individual (level 2) and also varies
randomly over time within individuals (level 1). The model can then be further
elaborated by studying whether there is any systematic change over time and whether
this varies across individuals. Chapter 8 discusses such models.

1.12 Levels of aggregation and ecological fallacies
When studying relationships among variables, there has often been controversy about
the appropriate ‘unit of analysis’. We have alluded to this already in the context of
ignoring hierarchical data clustering and, as we have seen, the issue is resolved by
explicit hierarchical modelling.

One of the best known early illustrations of what is often known as the ecological
or aggregation fallacy was the study by Robinson (1950) of the relationship between
literacy and ethnic background in the United States. When the mean literacy rates
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and mean proportions of Black Americans for each of nine census divisions are
correlated the resulting value is 0.95, whereas the individual-level correlation ignoring
the grouping is 0.20. Robinson was concerned to point out that aggregate-level
relationships could not be used as estimates for the corresponding individual-level
relationships and this point is now well understood. In Chapter 3, we discuss some
of the statistical consequences of modelling only at the aggregate level.

Sometimes the aggregate level is the principal level of interest, but nevertheless a
multilevel perspective is useful. Consider the example (Derbyshire, 1987) of predict-
ing the proportion of children socially ‘at risk’ in each local administrative area for
the purpose of allocating central government expenditure on social services. Survey
data are available for individual children with information on risk status so that a
prediction can be made using area based variables as well as child and household
based variables. The probability (π ) of a child being ‘at risk’ was estimated by the
following (single level) equation

logit(π ) = −6.3 + 5.9x1 + 2.2 x2 + 1.5x3

where x1 is the proportion of children in the area in households with a lone parent,
x2 is the proportion of households in each area which have a density of more than
1.5 persons per room and x3 is the proportion of households whose ‘head’ was born
in the British ‘New Commonwealth’ or Pakistan. All these explanatory variables are
measured at the aggregate area level and the response is the proportion of children at
risk in each area. Although we can regard this analysis as taking place entirely at the
area level (with suitable weighting for the number of children in each area), there are
advantages in thinking of it as a 2-level model with each child being a level 1 unit
and the response variable being the binary response of whether or not the child is
at risk.

Firstly, this allows us to incorporate possibly important variables that are measured
at the child level, for example whether or not each child’s household is overcrowded.
Including such level 1 variables may greatly improve the predictive power of the
model. With the results of such a model we can then form a prediction for each
area by aggregating over the known numbers of children living in overcrowded
households. Secondly, the possibility of modelling the characteristics of children or
their households allows the possibility of an allocation formula that can take account
of costs and benefits related to the actual composition of each area in terms of these
child characteristics.

1.13 Causality
In the natural sciences, experimentation has a dominant position when making causal
inferences. This is both because the units of interest can be manipulated experimen-
tally, typically using random allocation, and because there is a widespread acceptance
that the results of experiments are generalisable over space and time. The models
described in this book can be applied to experimental or non-experimental data, but
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the final causal inferences can differ. Nevertheless, most of the examples used are
from non-experimental studies in the human sciences and a few words on causal
inferences from such data may be useful.

If we wish to answer questions about a possible causal relationship between,
say, class size and educational achievement, an experimental study would need to
assign different numbers of level 1 units (students) randomly to level 2 units (classes
or teachers) and study the results over a time period of several years. This would
be time consuming and could create ethical problems. In addition to such practical
problems, any single study would be limited in time and place, and require extensive
replication before results could be generalised confidently. The specific context of any
study is important; for example, the state of the educational system and the resources
available at the time of the study. The difficulty from an experimental viewpoint is
that it is practically impossible to allocate randomly with respect to all such possible
confounding factors.

A further limitation of randomised controlled trails (RCTs) is that they cannot
necessarily deal with situations where the composition of a higher level unit interacts
with the treatment of interest, to affect the responses of lower level units. Thus, in
schooling studies the size of class may affect the progress of students only when the
proportion of ‘low achieving’ students is above a certain threshold. Randomisation
will tend to eliminate classes with extreme proportions so that such effects may not
be discovered. Goldstein (1998) looks at this case in more detail.

None of this is to say that randomised experiments should never be undertaken,
rather that on their own they may have limited potential for making general state-
ments about causality. Whether an experiment fails or succeeds in demonstrating a
relationship, there will almost always be further explanations for the findings which
require study. Even if an experiment appears to eliminate a possible relationship, for
example, demonstrating a negligible relationship between class size and attainment,
it may be legitimate to query whether a relationship nevertheless exists for specific
subgroups of the population.

In the pursuit of causal explanations, it is desirable to have some guiding un-
derlying principles or theories. It is these which will tell us what kinds of things to
measure and how to be critical of findings. For example, in studies of the relationship
between perinatal mortality and maternal smoking in pregnancy (Goldstein, 1976)
we can attempt to adjust for confounding factors, such as poverty, which may be re-
sponsible for influencing both smoking habits and mortality. We can also study how
the relationship varies across groups and seek measures which explain such variation.
We might also, in some circumstances, be able to carry out randomised experiments,
assigning, for example, intensive health education to a randomly selected ‘treatment’
group and comparing mortality rates with a ‘control’ group.

A multilevel approach could be useful here in two different ways. Firstly, pregnant
women will be grouped hierarchically, geographically and by medical institution,
and the between-area and between-institution variation may affect mortality and the
relationship between mortality and smoking. Secondly, we will be able often to
obtain serial measurements of smoking, so allowing the kind of repeated measures
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2-level modelling discussed earlier. This will allow us to study how changes in
smoking are related to mortality, and permit a more detailed exploration of possible
causal mechanisms.

Multilevel models can often be used to identify units with extreme values.
In school effectiveness studies, an exploration of school-level residual estimates
(see Chapter 2) may identify those which are highly atypical, having adjusted for
‘contextual’ variables such as the intake characteristics of their students. These
can then be selected for further scrutiny, for example by means of intensive case
studies, so forming a link between the quantitatively based multilevel analysis
and a more qualitatively based investigation which would seek to identify detailed
causal processes.

The notion of causation, especially in non-randomised studies, is controversial
and has a long philosophical history. Recent work has extended the range of tools
available for studying causality and a useful introduction is given by Sobel (2000);
Rosenbaum (1995) provides a detailed discussion of issues. A particular assumption
in deriving causal inferences that is important in multilevel modelling, is the ‘stable
unit treatment assumption’ (SUTVA). This states that the response to a ‘treatment’
assigned to an individual, for example being placed in a small rather than large class
for teaching purposes, does not depend on the assignments to other individuals –
that there is no interference between units. Where there are hierarchical structures,
such as schools, within which different treatments may occur, this ‘non-interference’
assumption may not hold. It may be possible to model such dependencies or to
redesign studies to avoid this problem. A discussion of this problem in the context of
class size studies is given by Blatchford et al. (1998).

Finally, many of the concerns addressed by multilevel models are to do with
straightforward prediction. Thus, for example, in Chapter 6 we use a 2-level model
of children’s growth for the purpose of predicting adult height. In studies of school
effectiveness we may be interested in understanding the causes of school differences,
but we may be concerned also with the less ambitious task of predicting which school
is likely to produce the best (on average) examination result for a student with given
initial characteristics and achievements.

1.14 The latent normal transformation and
missing data

In Chapter 7, we show how various discrete responses can be modelled simultaneously
by transforming them jointly to an underlying multivariate normal distribution. This
has an important application to ways of handling missing data, as discussed in
Chapter 16. In particular, Chapter 16 shows how a multiple imputation approach
can incorporate not only mixtures of different types of response but also responses
at different levels of a data hierarchy. This provides a very general procedure for
handling missingness in complex data structures.
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1.15 Other texts
While the present volume aims to provide a comprehensive coverage of the topic
of multilevel models, there are now many other texts which deal with specialised
areas. Many of these are referenced in the appropriate chapters, but there are also
several books which provide good introductions as well as detailed worked examples
and technical details. Among these are Snijders and Bosker (1999), Little et al.
(2000), Heck and Thomas (2000), McCulloch and Searle (2001), Hox (2002), Bryk
and Raudenbush (2002), Skrondal and Rabe-Hesketh (2004), Lee et al. (2006) and
Gelman and Hill (2007). There are also edited collections of articles on particular
application areas. Leyland and Goldstein (2001) bring together a collection of papers
on the multilevel modelling of health statistics and Courgeau (2007) brings together
a number of perspectives on the interpretation of multilevel data.

1.16 A caveat
The purpose of this book is to bring together techniques for the analysis of highly
structured multilevel data. The application of such techniques has already begun to
yield new and important insights in a number of areas as the following chapters
illustrate. Software is now widely available (Chapter 18), so that the application of
these techniques should become relatively straightforward, even routine.

All this is welcome, yet despite their usefulness, models for multilevel analy-
sis cannot be a universal panacea. In circumstances where there is little structural
complexity, they may be hardly necessary and traditional single level models may
suffice both for analysis and presentation. On the other hand multilevel analyses can
bring extra precision to attempts to understand causality, for example, by making ef-
ficient use of student achievement data in attempts to understand differences between
schools. They are not, however, substitutes for well grounded substantive theories,
nor do they replace the need for careful thought about the purpose of any statistical
modelling. Furthermore, by introducing more complexity they can extend but not
necessarily simplify interpretations.

Multilevel models are tools to be used with care and understanding.
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2

The 2-level model

2.1 Introduction
We now introduce the 2-level model together with the basic notation which we shall
use and develop throughout the book. We look at alternative ways of setting up and
motivating the model, introducing procedures for estimating parameters, forming
and testing functions of the parameters and constructing confidence intervals. We
introduce alternative methods of estimation which will be used and elaborated upon
in subsequent chapters.

To make matters concrete consider the following dataset, one we shall use several
times: it consists of 728 pupils in 48 primary (elementary) schools in inner London,
part of the ‘Junior School Project’ (JSP). We consider two measurement occasions:
the first when the pupils were in their fourth year of schooling, that is the year they
attained their eighth birthday, and three years later in their final year of primary school.
Our data are in fact a subsample from a more extensive dataset, described in detail
in Mortimore et al. (1988). We use the scores from mathematics tests administered
on these two occasions together with information collected on the social background
of the pupils and their gender. In this chapter the data are used primarily to illustrate
the development of basic 2-level modelling. In Chapter 3, we shall be studying more
elaborate models which will enable us to handle these data more efficiently.

Figure 2.1 is a scatterplot of the mathematics test score at age 11 by the test
score at age 8. In this plot no distinction is made between the schools to which the
pupils belong. Notice that there is a general trend, with increasing 8-year scores
associated with increasing 11-year scores. Notice also the narrowing of the between
pupil variation in the age 11 score with increasing age 8 score; an issue to which we
shall return.

In Figure 2.2, the scores within two particularly different schools have been
selected, represented by different symbols. Two things are apparent immediately. The

Multilevel Statistical Models: 4th Edition Harvey Goldstein
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Figure 2.1 Scatterplot of 11-year by 8-year mathematics test scores. Some points
represent more than one pupil.

school represented by the circles shows a steeper ‘slope’ than the school represented
by the filled triangles and for most age 8 scores, the age 11 scores for this school
tend to be lower than for the other school. Both these features are now addressed by
formally modelling these relationships.

Consider first a simple model for one school, relating age-11 score to age-8 score.
We write

yi = α + β xi + ei (2.1)

where i indexes the individual student and standard interpretations can be given to
the intercept (α), slope (β) and residual (ei ). We would also typically assume that the
residuals follow a normal distribution with a zero mean and common variance, that
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Figure 2.2 Scatterplot of 11-year by 8-year mathematics test scores for two schools.
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is, ei ∼ N (0, σ 2
e ), but for now we shall concentrate on the variance properties of the

residuals. We follow the normal convention of using Greek letters for the regression
coefficients and place a circumflex over any coefficient (parameter) which is a sample
estimate. This is the formal model for Figure 1.1 in the previous chapter and describes
a single-level relationship. To describe simultaneously the relationships for several
schools we write, for each school j,

yij = α j + β j xij + eij eij ∼ N (0, σ 2
e ) (2.2)

This is now a formal model describing Figure 1.2 where j refers to the level 2 unit
(school) and again i to the level 1 unit (pupil).

As it stands, (2.2) is still essentially a single level model, albeit describing a
separate relationship for each of the m schools. In some situations, for example,
where there are few schools and interest centres on just those schools in the sample,
we may analyse (2.2) by fitting all the 2m + 1 parameters, namely

(α j , β j ) j = 1, . . . ,m σ 2
e

assuming a common ‘within-school’ residual variance and separate lines for each
school.

If we wish to focus not just on these schools, but on a wider ‘population’ of
schools, then we have to regard the chosen schools as giving us information about the
characteristics of all the schools in the population. Just as we choose random samples
of individuals to provide estimates of population means etc., so a randomly chosen
sample of schools can provide information about the characteristics of the population
of schools. In particular, such a sample can provide estimates of the variation and
covariation between schools in the slope and intercept parameters and will allow us
to compare schools with different characteristics.

An important class of situations arises when we wish primarily to have information
about each individual school in a sample, but where we have a large number of
schools so that (2.2) would involve estimating a very large number of parameters.
Furthermore, some schools may have rather small numbers of students and application
of (2.2) would result in imprecise and possibly widely fluctuating estimates. In such
cases, if we regard the schools as members of a population and then use our population
estimates of the mean and between-school variation, we can utilise this information
to obtain more precise estimates for each individual school. This will be discussed
later when we deal with higher level residuals.

2.2 The 2-level model
We now develop a general notation which will be used throughout this and later chap-
ters, elaborated where necessary. We then discuss the estimation of model parameters
and residuals and this is followed by illustrative examples.
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To make (2.2) into a genuine 2-level model we let α j and β j become random
variables. For consistency of notation replace α j by β0j and β j by β1j and rewrite
these as

β0j = β0 + u0j, β1j = β1 + u1j

where u0j, u1j are now random variables with parameters

E(u0j) = E(u1j) = 0
var(u0j) = σ 2

u0, var(u1j) = σ 2
u1, cov(u0j, u1j) = σu01

(2.3)

We can now write (2.2) in the form

yij = β0 + β1xij + (u0j + u1jxij + e0ij)
var(e0ij) = σ 2

e0
(2.4)

We shall require the extra suffix in the level 1 residual term for the models to be
introduced in Chapter 3. We have expressed the response variable yij as the sum of
a fixed part and a random part within the brackets and we shall also generally write
the fixed part of (2.4) in the matrix form so that

E(Y ) = Xβ

with Y = {yij}
E(yij) = Xijβ = (Xβ)ij, X = {Xij}

where β is the vector of fixed part coefficients (parameters), {} denotes a matrix, X
is the design matrix for the explanatory variables and Xij is the ij-th row of X . For
Model (2.4) we have X = {1 xij}. Note the alternative representation for the i-th row
of the fixed part of the model.

The random variables in this model are referred to as ‘residuals’ and in the
case of a single level model the level 1 residual e0ij becomes the usual linear
model residual term. The random variables are also known as ‘random effects’.
To make the model equation symmetrical so that each coefficient has an associated
explanatory variable, we can define a further explanatory variable for the intercept
β0 and its associated residual, u0j, namely x0ij, a constant which takes the value 1.0.
For simplicity this variable sometimes may be omitted so that the associated terms
are written in the model just as β0 and u0j.

The feature of (2.4) which distinguishes it from standard linear models of the
regression or analysis of variance type is the presence of more than one residual term
and this implies that special procedures are required to obtain satisfactory parameter
estimates. Note that it is the structure of the random part of the model which is the
key factor. In the fixed part the variables can be measured at any level, for example,
in the JSP data we can measure characteristics of schools or teachers. We can also
include so called ‘compositional’ variables such as the average 8-year mathematics
test score for all pupils in each school. The presence of such variables does not alter
the estimation procedure, although results will require careful interpretation.



P1: TIX/XYZ P2: ABC
c02 JWST015-Goldstein August 16, 2010 12:43 Printer Name: Yet to Come

THE 2-LEVEL MODEL 19

2.3 Parameter estimation

2.3.1 The variance components model
Equation (2.4) requires the estimation of two fixed coefficients, β0, β1, and four
other parameters, σ 2

u0, σ
2
u1, σu01 and σ 2

e0. We refer to such variances and covariances
as random parameters. We start, however, by considering the simplest 2-level model
which includes only the random parameters σ 2

u0, σ
2
e0, namely

yij = β0 + u0j + e0ij

var(e0ij) = σ 2
e0 var(u0j) = σ 2

u0

It is termed a variance components model because the variance of the response, about
the fixed component, the fixe predictor, is

var(yij|β0, β1, xij) = var(u0 + e0ij) = σ 2
u0 + σ 2

e0

that is, the sum of a level 1 and a level 2 variance, where the level 1 and level
2 residuals are assumed to be mutually independent. For the JSP data this model
implies that the total variance for each student is constant and that the covariance
between two students (denoted by i1, i2) in the same school is given by

cov(u0j + e0i1 j , u0j + ei2 j ) = cov(u0j, u0j) = σ 2
u0 (2.5)

since the level 1 residuals are assumed to be independent. The correlation between
two such students is therefore

ρ = σ 2
u0

(σ 2
u0 + σ 2

e0)

which is referred to as the ‘intra-level-2-unit correlation’; in this case the intra-school
correlation.1 For the variance components model this also measures the proportion
of the total variance which is between-schools. In a model with three levels, say with
schools, classrooms and students, we will have two such correlations and variance
proportions; the intra-school correlation which is also the proportion of variance that
is between schools and the intra-classroom correlation which is also that between
classrooms. In more complex models with random coefficients the intra unit corre-
lation is not equivalent to the proportion of variance at the higher level (see Chapter
3). To avoid confusion we shall use the term variance partition coefficien (VPC) to
describe the proportion of variance at level 2 or at higher levels.

The existence of a nonzero intra-unit correlation, resulting from the presence
of more than one residual term in the model, means that traditional estimation

1 In the sample survey literature and elsewhere such as in genetics, the term ‘intra-class correlation’ is
used, but this clearly is confusing in the educational application.



P1: TIX/XYZ P2: ABC
c02 JWST015-Goldstein August 16, 2010 12:43 Printer Name: Yet to Come

20 MULTILEVEL STATISTICAL MODELS
⎛

⎜
⎝

σ 2
u0 + σ 2

e0 σ 2
u0 σ 2

u0

σ 2
u0 σ 2

u0 + σ 2
e0 σ 2

u0

σ 2
u0 σ 2

u0 σ 2
u0 + σ 2

e0

⎞

⎟
⎠

Figure 2.3 Covariance matrix of three students in a single school for a variance
components model.

procedures such as ‘ordinary least squares’ (OLS) which are used, for example, in
multiple regression, are inapplicable and a later section illustrates how the application
of OLS techniques can lead to incorrect inferences. We now look in more detail at
the structure of a 2-level dataset, focusing on the covariance structure typified by
Figure 2.3.

The matrix in Figure 2.3 is the (3 × 3) covariance matrix for the scores of three
students in a single school, derived from the above expressions. For two schools,
one with three students and one with two, the overall covariance matrix is shown
in Figure 2.4. This ‘block-diagonal’ structure reflects the fact that the covariance
between students in different schools is zero, and clearly extends to any number of
level 2 units.

A more compact way of presenting this matrix, which we shall use again, is given
in Figure 2.5, where I(n) is the (n × n) identity matrix and J(n) is the (n × n) matrix
of ones. The subscript 2 for V indicates a 2-level model. In single-level OLS models
σ 2
u0 is zero and this covariance matrix then reduces to the standard form σ 2 I where

σ 2 is the (single) residual variance.

(
A 0
0 B

)

where

A =

⎛

⎜
⎜
⎜
⎝

σ 2
u0 + σ 2

e0 σ 2
u0 σ 2

u0

σ 2
u0 σ 2

u0 + σ 2
e0 σ 2

u0

σ 2
u0 σ 2

u0 σ 2
u0 + σ 2

e0

⎞

⎟
⎟
⎟
⎠

B =
(

σ 2
u0 + σ 2

e0 σ 2
u0

σ 2
u0 σ 2

u0 + σ 2
e0

)

Figure 2.4 The block-diagonal covariance matrix for the response vector Y for a
2-level variance components model with two level 2 units.
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V2 =
[

σ 2
u0 J(3) + σ 2

e0 I(3) 0

0 σ 2
u0 J(2) + σ 2

e0 I(2)

]

Figure 2.5 Block-diagonal covariance matrix using general notation.

2.3.2 The general 2-level model with random coefficient
We can extend (2.4) in the standard way to include further fixed explanatory variables

yij = β0 + β1x1ij +
p∑

h=2

βhxhij + (u0j + u1jx1ij + e0ij)

and more compactly as

yij = Xijβ +
1∑

h=0

uhjzhij + e0ijz0ij (2.6)

where we use a new formulation for the explanatory variables in the random part of
the model and write these more generally as

Z = {Z0Z1}
Z0 = {1} i.e. a vector of 1’s
Z1 = {x1ij}

The explanatory variables for the random part of the model are often a subset of
those in the fixed part, as here, but this is not necessary and later we shall encounter
cases where this is not so. Also, any of the explanatory variables may be measured
at any of the levels; for example, we may have student characteristics at level 1 or
school characteristics at level 2. Examples of both are used in the data analysis in
Section 2.8.

This model, with the coefficient of X1 random at level 2, gives rise to the following
typical block structure, for a level 2 block with two level 1 units. The matrix �2 is the
covariance matrix of the random intercept and slope at level 2. Note that we need to
distinguish carefully between the covariance matrix of the responses given in Figure
2.6 and the covariance matrix of the random coefficients. We shall also refer to the
intercept term as a random coefficient. The matrix �1 is the covariance matrix for
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the set of level 1 random coefficients; in this case there is just a single variance term
at level 1. We will also write � = {�i } for the set of these covariance matrices.

(
A B
B C

)

A = (
σ 2
u0 + 2σu01x1j + σ 2

u1x
2
1j + σ 2

e0
)

B = (
σ 2
u0 + σu01(x1j + x2j) + σ 2

u1x1jx2j
)

C = (
σ 2
u0 + 2σu01x2j + σ 2

u1x
2
2j + σ 2

e0
)

giving

(
A B
B C

)

= X j�2XTj +
(

�1 0
0 �1

)

X j =
(

1 x1j
1 x2j

)

, �2 =
(

σ 2
u0 σu01

σu01 σ 2
u1

)

, �1 = σ 2
e0

Figure 2.6 Response covariance matrix for a level 2 unit containing two level 1
units for a 2-level model with a random intercept and random regression coefficien
at level 2.

We also see here the general pattern for constructing the response covariance
matrix which generalises both to higher order models and, as we shall see in Chapter
3, to complex variance structures, especially those at level 1.

We now present a basic maximum likelihood (ML) procedure for obtaining
estimates for our models before continuing to explore the dataset. Later in the chapter
we will look at other estimation procedures.

2.4 Maximum likelihood estimation using iterative
generalised least squares (IGLS)

The iterative generalised least squares (IGLS) algorithm forms the basis for many
of the developments in later chapters and we now summarise the main features.
Appendix 2.1 sets out the details.

Consider the simple 2-level variance components model

yij = β0 + β1xij + u0j + e0ij, var(e0ij) = σ 2
e0, var(u0j) = σ 2

u0 (2.7)

Suppose that we knew the values of the variances, and so could construct immediately
the block-diagonal matrix V2, which we will refer to simply as V . We can then
apply the usual Generalised Least Squares (GLS) estimation procedure to obtain the
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estimator for the fixed coefficients, namely

β̂ = (XT V−1X )−1XT V−1Y (2.8)

where in this case

X =

⎛

⎜
⎜
⎜
⎝

1
1
...
1

x11

x21
...

xnmm

⎞

⎟
⎟
⎟
⎠

Y =

⎛

⎜
⎜
⎜
⎝

y11

y12
...

ynmm

⎞

⎟
⎟
⎟
⎠

(2.9)

withm level 2 units and n j level 1 units in the j-th level 2 unit. Since we are assuming
that the residuals have normal distributions, (2.8) also yields maximum likelihood
estimates.

Our estimation procedure is iterative. We would usually start from ‘reasonable’
estimates of the fixed parameters. Typically, these will be those from an initial OLS
fit (that is assuming σ 2

u0 = 0), to give the OLS estimates of the fixed coefficients β̂OLS.
From these, we form the ‘raw’ residuals

ỹij = yij − β̂OLS0 − β̂OLS1 xij (2.10)

and the vector of these raw residuals is written as

Ỹ = {ỹij}

If we form the cross-product matrix Ỹ Ỹ T we see that, if our OLS estimates were to
be unbiased (they are in fact consistent), then the expected value of this is simply V .
We can rearrange this cross product matrix as a vector by stacking the columns one
on top of the other which is written as vec(Ỹ Ỹ T ) and similarly we can construct the
vector vec(V ). For the structure given in Figure 2.4 these both have 32 + 22 = 13
elements. The relationship between these vectors can be expressed as the following
linear model

⎛

⎜
⎜
⎜
⎜
⎝

ỹ2
11

ỹ21 ỹ11

...

ỹ2
22

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

σ 2
u0 + σ 2

e0

σ 2
u0

...

σ 2
u0 + σ 2

e0

⎞

⎟
⎟
⎟
⎟
⎠

+ R = σ 2
u0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

1
...

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ σ 2
e0

⎛

⎜
⎜
⎜
⎜
⎝

1

0
...

1

⎞

⎟
⎟
⎟
⎟
⎠

+ R (2.11)
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where R is a residual vector. The left hand side of (2.11) is the response vector in
the linear model and the right hand side contains two explanatory variables, with co-
efficients σ 2

u0, σ
2
e0 which are to be estimated. The estimation involves an application

of GLS using the estimated covariance matrix of vec(Ỹ Ỹ T ), assuming normality,
namely 2(V−1 ⊗ V−1) where ⊗ is the Kronecker product. The normality assumption
allows us to express this covariance matrix as a function of the random parameters.
Even if the normality assumption fails to hold, the resulting estimates are still consis-
tent, although not fully efficient, but standard errors, estimated using the normality
assumption and, for example, confidence intervals will generally not be consistent.
For certain variance component models alternative distributional assumptions have
been studied, especially for discrete response models of the kind to be discussed in
Chapter 4 (see, for example, Clayton and Kaldor, 1987) and maximum likelihood
estimates obtained. For more general models, however, with several random coef-
ficients, the assumption of multivariate normality is a flexible one which allows a
convenient parameterisation for complex covariance structures at several levels. It is
this assumption which forms the basis of the analyses in the remainder of this chapter,
although in Section 2.13.5 we will look at a slight relaxation of this assumption where
we fit the more general t-distribution for the level 1 residuals. The usefulness of the
normality assumption is further extended in Chapter 7 where we study latent normal
models that allow transformations of non-normally distributed variables to normality.

With the estimates obtained from applying GLS to (2.11) we return to (2.8) to
obtain new estimates of the fixed effects and so alternate between the random and
fixed parameter estimation until the procedure converges, that is the estimates for all
the parameters do not change appreciably from one cycle to the next. At convergence
we will have maximum liklelihood estimates. Essentially the same procedure is used
for the more complicated models in the following chapters and is incorporated in the
MLwiN program (Rasbash et al., 2009).

The maximum likelihood procedure in fact produces biased estimates of the
random parameters because it takes no account of the sampling variation of the fixed
parameters. This may be important in small samples, and we can produce unbiased
estimates by using a modification known as restricted maximum likelihood (REML).
The IGLS algorithm is readily modified to produce these restricted (RIGLS) estimates
(Appendix 2.1).

Longford (1987) developed a procedure based upon a ‘Fisher scoring’ algorithm
and Raudenbush (1994) shows that this is formally equivalent to IGLS. A variation
on IGLS is expected generalised least squares (EGLS). This focuses interest on the
fixed part parameters and uses the estimate of V obtained after the first iteration
merely to obtain a consistent estimator of the fixed part coefficients without further
iterations. A variant of this separates the level 1 variance from V as a parameter to
be estimated iteratively along with the fixed part coefficients.

Another algorithm for obtaining ML or REML estimates is the EM algorithm or
variants of it (Bryk and Raudenbush, 2002). This is outlined in Appendix 2.3 and has
been incorporated into several software packages, partly because of its computational
simplicity. In Chapter 4 we shall look at maximum likelihood and quasilikelihood
procedures for generalised linear models with discrete responses.
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2.5 Marginal models and generalised estimating
equations (GEE)

It is worth emphasising the distinction between multilevel models, sometimes referred
to in this context as ‘subject specific’ models, and so-called ‘marginal’ models such as
the GEE model (Zeger et al., 1988; Liang et al., 1992). When dealing with hierarchical
data these latter models typically start with a formulation for the covariance structure,
for example, but not necessarily, based upon a multilevel structure, and aim to provide
estimates with acceptable properties only for the fixed parameters in the model,
treating the existence of any random parameters as a necessary ‘nuisance’. More
specifically, the estimation procedures used in marginal models are known to have
useful asymptotic properties in the case where the exact form of the random structure
is unknown.

If interest lies only in the fixed parameters, marginal models can be useful since
they give directly unbiased estimates for these parameters. Even here, however, they
may be inefficient if they utilise a covariance structure that is substantially incorrect.
They are, however, generally more robust than multilevel models to serious mis-
specification of the covariance structure (Heagerty and Zeger, 2000). Fundamentally,
however, marginal models address different research questions. From a multilevel
perspective, the failure explicitly to model the covariance structure of complex data
is to ignore information about variability that, potentially, is as important as knowl-
edge of the average or fixed effects. Thus, in a repeated measures growth study,
knowledge of how individual growth rates vary, possibly differentially according to
say demographic factors, will be important information and in Chapter 5 we will
show how such information can be used to provide efficient predictions in the case
of human growth.

Also, when we discuss multilevel models for discrete response data in Chapter
4 we will show how to obtain estimates for population or subpopulation means
equivalent to those obtained from marginal models. In the case of normal response
linear multilevel models, GEE and multilevel models lead to the same fixed coefficient
estimates. For a further discussion of the limitations of marginal models, see the paper
by Lindsey and Lambert (1998).

2.6 Residuals
In a single level model such as (2.1), the usual estimate of the single residual term
ei is just ỹi the raw residual. In a multilevel model, however, we shall generally
have several residuals at different levels. We can consider estimates for the individual
residuals along the following lines.

Given the parameter estimates, consider predicting a specific residual, say u0j in
a 2-level variance components model. Specifically we require for each level 2 unit

û0j = E(u0j|Y, β̂, �̂) (2.12)
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We shall refer to these as estimated or predicted residuals or, using Bayesian
terminology, as conditional posterior residual estimates. If we ignore the sampling
variation attached to the parameter estimates in (2.12) we have

cov(ỹij, u0j) = var(u0j) = σ 2
u0

cov(ỹij, e0ij) = σ 2
e0

var(ỹij) = σ 2
u0 + σ 2

e0

(2.13)

We may regard (2.12) as a (linear) regression of u0j on the set of raw residuals {ỹij}
for the j-th level 2 unit and (2.13) defines the quantities required to estimate the
regression coefficients and hence û0j. Full details are given in Appendix 2.2. For the
variance components model we obtain

û0j = n jσ 2
u

(n jσ 2
u + σ 2

e0)
ỹ j

ẽ0ij = ỹij − û0j

ỹ j = (
∑

i
ỹij)/n j

(2.14)

where n j is the number of level 1 units in the j-th level 2 unit. Estimates are obtained by
substituting sample values in (2.14). The factor multiplying the mean ( ỹ j ) of the raw
residuals for the j-th unit is often referred to as a ‘shrinkage factor’ since it is always
less than or equal to one in absolute value. As n j increases this factor tends to one,
and as the number of level 1 units in a level 2 unit decreases the ‘shrinkage estimator’
of u0j becomes closer to zero. In many applications the higher level residuals are of
interest in their own right and the increased shrinkage for a small level 2 unit can
be regarded as expressing the relative lack of information in the unit so that the best
estimate places the predicted residual close to the overall population value as given
by the fixed part.

These residuals therefore can have two roles. Their basic interpretation is as
random variables with a distribution whose parameter values tell us about the variation
among the level 2 units, and provide efficient estimates for the fixed coefficients. A
second interpretation is as individual estimates for each level 2 unit where we use
the assumption that they belong to a population of units with a known (estimated)
distribution to predict their values. In particular, for units which have only a few
level 1 units, we can obtain more precise estimates than if we were to ignore the
population membership assumption and use only the information from those units.
This becomes especially important for estimates of residuals for random coefficients,
other than the intercept, where, in the extreme case of only one level 1 unit in a level
2 unit, we lack information to form an independent estimate. We illustrate this when
we consider predictions based upon repeated measures growth models.

As in single level models, we can use the estimated residuals to help check on the
assumptions of the model. The two particular assumptions that can be studied readily
are the assumption of normality and that the variances in the model are constant
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across values of the explanatory variables. It is common to standardise the residuals
by dividing by the appropriate standard errors, which are functions of the explanatory
variables for the random effects and the sizes of the units; the formulae for these are
given in Appendix 2.2, where we refer to them as ‘diagnostic’ standard errors.

When the residuals at higher levels are of interest in their own right, we need to be
able to provide interval estimates and significance tests as well as point estimates for
them or functions of them. For these purposes we require estimates of the standard
errors of the estimated residuals, where the sample estimate is viewed as a random
realisation from repeated sampling of the higher level units whose unknown true
values are of interest. The formulae for these ‘conditional’ or ‘comparative’ standard
errors are also given in Appendix 2.2. For the estimates given in 2.12 the comparative
variance is given by σ 2

e σ
2
u (σ 2

e + n jσ 2
u )−1 and the diagnostic variance by n jσ 4

u (σ 2
e +

n jσ 2
u )−1.
The level 1 residuals are generally not of interest in their own right but are

used rather for model checking, having first been standardised using the diagnostic
standard errors.

2.7 The adequacy of ordinary least squares estimates
When a variance partition coefficient is small, we can expect reasonably good agree-
ment between the multilevel estimates and the simpler OLS ones. While it is difficult
to give general guidelines about when OLS is an adequate alternative, we can readily
derive an explicit formula for the balanced 2-level variance component model using
a simple regression equation with an intercept and a single explanatory variable

yij = β0 + β1xij + u j + eij

Write ρy ρx for the intra-unit correlations for Y, X respectively and n for the
number of level 1 units in each level 2 unit. To obtain an estimate of the correct
standard error for the estimate of β1, we multiply the usual OLS estimate of the
standard error by the quantity

{1 + ρyρx (n − 1)}1/2

Thus, if there is exactly one level 1 unit per level 2 unit or either of the intra-
unit correlations are zero, this expression is equal to 1.0 and the usual expression
is correct. As n increases so the OLS estimator increasingly underestimates the true
standard error. Thus, with ρy = ρx = 0.20 and 76 level 1 units per level 2 unit, the
true standard error is, on average, twice the OLS estimate. Hence, confidence intervals
based on the OLS estimate will be too short and significance tests will too often reject
the null hypothesis. By designing a study where n is small, we may be able to rely on
OLS procedures to give adequate estimates for the fixed coefficients, but this would
then not allow us to study any multilevel structures with adequate precision. Hedges
(2009) derives correction factors for testing significance and constructing confidence
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Table 2.1 Variance components model applied to JSP data.

Parameter Estimate (s.e.) OLS Estimate (s.e.)

Fixed
Intercept 13.9 13.8
Age 8 score 0.65 (0.025) 0.65 (0.026)

Random
σ 2
u0 (between-schools) 3.19 (1.0)

σ 2
e0 (between-students) 19.8 (1.1) 23.3 (1.2)

Variance partition coefficient 0.14
Deviance 4294.2 4357.3

intervals in 3-level models, but these are of limited utility since they apply only for
variance component models.

2.8 A 2-level example using longitudinal educational
achievement data

We shall fit the simple 2-level variance components model (2.7) to the JSP data
with the maths score at age 11 as the response and a single explanatory variable, the
maths score at age 8, in addition to the constant term, equal to 1 and defining the
intercept. The parameter values are displayed in Table 2.1 with the ordinary least
squares estimates given for comparison.

Comparing the OLS with the multilevel estimates, we see that the fixed coeffi-
cients are similar, but that there is a variance partition coefficient value of 0.14. The
estimate of the standard error of the between school variance is less than a third of
the variance estimate, suggesting a value highly significantly different from zero2.
This comparison, however, should be treated cautiously, since the variance estimate
does not have a normal distribution and the standard error is only estimated, although
the size of the sample here will make the latter caveat less important. It is generally
preferable to carry out a likelihood ratio test by estimating the ‘deviance’ for the cur-
rent model and the model omitting the level 2 variance (see McCullagh and Nelder,
1989) and the next section will deal more generally with inference procedures. The
difference between the deviances is 63.1. This value would normally be referred
to tables of the chi-squared distribution with one degree of freedom, and is highly
significant. In the present case, however, the null hypothesis of a zero variance is
on the ‘boundary’ of the feasible parameter space; we do not envisage a negative
variance. In this case, the P-value to be used is half the one obtained from the tables

2 Since the intercept estimate depends upon the origins chosen for the other explanatory variables, its
value generally has no substantive interest and we omit its standard error.
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of the chi-squared distribution (Shapiro, 1985). Note that if we use the standard error
estimate given in Table 2.1 to judge significance we obtain the corresponding value of
(3.19/1.0)2 = 10.2 which, in this case, is very much smaller than the likelihood ratio
test statistic. Note also that if we use this test we would again use half the nominal
P-value since only positive departures are possible.

A similar issue arises when simultaneously testing several parameters where one
or more is constrained in this way, such as a variance plus covariances. In this case,
the appropriate test statistic is a weighted mixture of chi-squared distributions and
details are given by Shapiro (1985). In the common case where we are testing a set
of covariances and a single associated variance, this reduces to the following.

Suppose that we have r covariance parameters and adopt a 5 % significance level.
Then the critical value, c, for judging significance is given by the following formula
for a mixture of two chi-squared distributions

0.5 × [pr (χ2
r ≥ c) + pr (χ2

r+1 ≥ c)] = 0.05

Thus, if r = 2 we find that c = 7.0 which compares with the critical value using the
conventional test with 3 degrees of freedom, of 7.8, and in general we will more often
judge significance than using the conventional test. This modified chi-squared test is
also known as the chi-bar test statistic and when we use it we shall quote the degrees
of freedom as r + 1.

We now elaborate the model by adding two more explanatory variables, gender
and social class. The results are set out in the first column of Table 2.2.

Here the random parameter estimates are hardly changed, nor is the coefficient
of the maths score at age 8. The gender difference is very small and in favour of
the girls, but is far from the conventional 5 % significance level. The social class
difference favours the children of parents with non-manual occupations. When we
are judging the fixed effects, a simple comparison of the estimate with its standard

Table 2.2 Variance components model applied to JSP data with gender and social
class.

Parameter Estimate (s.e.) Estimate (s.e.)

Fixed
Intercept 14.9 32.9
Age 8 score 0.64 (0.025)
Gender (boys-girls) −0.36 (0.34) −0.39 (0.47)
Social Class (non-manual-manual) 0.72 (0.39) 2.93 (0.51)

Random
σ 2
u0 (between-schools) 3.21 (1.0) 4.52 (1.5)

σ 2
e0 (between-students) 19.6 (1.1) 37.2 (2.0)

Variance partition coefficient 0.14 0.11
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error is usually adequate. Because the model adjusts for the earlier maths score
we can interpret the social class and gender differences in terms of the relative
progress of girls versus boys or non-manual versus manual children. The second
column in Table 2.2 shows the effects when age 8 maths score is removed from
the model and the interpretation is now in terms of the actual differences found
at age 11. Note that the level 1 and level 2 variances are increased, reflecting the
importance of the earlier score as a predictor, and the variance partition coefficient
is slightly reduced. The social class difference is much larger, suggesting that most
of the difference is that existing at age 8 with a somewhat greater progress made
between ages 8 and 11 years by those in the non-manual group. The gender difference
remains small.

The age 8 score has been used as it stands, without centring it in any way. This
is acceptable in the present case, although the strict interpretation of the intercept is
the predicted score at age 11 of a child with an age 8 score of zero, which is outside
the range of the observed values. If we were to measure the 8-year-score about its
mean, the intercept would then be interpreted as the predicted value at the mean age
8 score in the sample. When we introduce random coefficients we shall see that this
becomes an important consideration.

2.8.1 Checking for outlying units
Figure 2.7 is a plot of the estimated residuals against equivalent normal scores (see
section 2.11) and shows one school, identified as number 38, with the largest residual
of 3.5. It is often useful to study the effect of omitting one or more units from an
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Figure 2.7 Standardised level 2 residuals by normal equivalent scores for fi st col-
umn model in Table 2.2
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Table 2.3 As Table 2.2, Model A omitting school 38; Model B fitting a constant for
school 38.

Estimate (s.e.) Estimate (s.e.)
Parameter Model A Model B

Fixed
Intercept 14.5 14.7
Age 8 score 0.65 (0.026) 0.64 (0.025)
Gender (boys-girls) −0.40 (0.34) −0.37 (0.34)
Social Class (non-manual-manual) 0.74 (0.39) 0.72 (0.38)
School 38 6.1 (1.5)

Random
σ 2
u0 (between-schools) 2.74 (0.9) 2.75 (0.9)

σ 2
e0 (between-students) 19.6 (1.1) 19.6 (1.1)

Variance partition coefficient 0.12 0.12

analysis to see what difference this makes to the parameter estimates and we shall say
more about this below. For now we illustrate the effect of omitting such units using
school 38. Table 2.3 shows the parameter estimates associated with two different
procedures.

In Model A, school 38 is simply omitted. The principal effect is to reduce the
level 2 variance by about 14 %, with little effect on the other parameters. In Model
B, we have retained all the data in the analysis, but removed school 38 from the
level 2 variation by fitting a separate Intercept term in the fixed part of the model.
For the explanatory variable defining the level 2 variance we fit Z∗

0 rather than Z0,
where

Z∗
0 =

{
0 if school 38
1 otherwise

}

The relatively small number of students, nine, in school 38 accounts for the fact
that its shrunken residual mean of 3.5 is considerably less than the directly fitted
mean of 6.1. Although it makes little difference to the parameter estimates in this
example, in general it seems preferable to fit separate parameters for influential units
and retain as much data as possible in the analysis.

2.8.2 Model checking using estimated residuals
We now check a particularly important assumption of the model by looking at the
residuals. Figure 2.8 is a plot of the standardised level 1 residuals against the fixed
part predicted value and Figure 2.9 is a plot of these residuals against their equivalent
normal scores. The latter plot is close enough to a straight line to give us some
confidence that the normality assumption is reasonable. Figure 2.8, however, shows
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Figure 2.8 Standardised level 1 residuals by predicted values for Table 2.2.
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Figure 2.9 Standardised level 1 residuals by normal equivalent scores for Table 2.2

the same pattern as Figure 2.1 of a decreasing variance with increasing 8-year score,
so that the assumption of a constant level 1 variance is clearly untenable.

In Chapter 3, we look at ways of directly modelling such nonconstant or complex
level 1 variation. In Section 2.9, we look at general diagnostic procedures and in
Section 2.10 at nonlinear transformations of the response variable to produce a more
constant variance.

2.9 General model diagnostics
Procedures for model exploration fall into two broad groups. The first of these is con-
cerned with choosing the distributional assumptions, the set of variables for inclusion
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and the scales upon which they are measured. The choice of variables for inclusion,
where external subject matter considerations are unavailable, is more complicated in
multilevel models than in single level models. In single level linear models, stepwise
procedures are available, which if used with care can produce usefully descriptive
models. In multilevel models we need to consider random parameters as well as fixed
coefficients and efficient procedures for the partial automation of stepwise techniques
do not seem to be available.

The second group of procedures is based upon analyses of the effects that indi-
vidual units can have on parameter estimates. We have already explored some uses
of the estimated residuals and how the omission or modification of units can change
inferences. A related approach uses measures of influence, and is described in detail
by Langford and Lewis (1998) and implemented in the MlwiN package (Rasbash et
al., 2009). A somewhat different approach to model diagnosis is taken by Hodges
(1998) who considers in particular the use of MCMC chains.

The notion of ‘influence’ is that of introducing small changes to a model and
assessing the effects of these on the resulting inferences. A central feature is ‘leverage’
which expresses the effect of deleting a particular unit on the parameter estimates. In
a 2-level model Langford and Lewis use the set of values for the level 1 units in level
2 unit j given by

Hj = diag(V−0.5
j X j (XTj V

−1
j X j )

−1XTj V
−0.5
j )

for the fixed parameters and an analogous formula for the random parameters.
The larger the values the more potential they have for affecting the model para-
meter estimates.

Langford and Lewis also consider ‘deletion’ residuals, formed by deleting a
particular unit, estimating from the reduced model and applying these parameter
estimates to the complete dataset to calculate the residual for the deleted unit. This is
approximately equivalent to fitting a dummy variable for the unit in question. They
also discuss leverage values associated with random coefficients which may help
the data analyst to assess the effect of a change in one or more of these. A detailed
example explaining the use of these procedures is given by Lewis and Langford
(2001) and Shi and Chen (2008) discuss unit deletion methods.

When using diagnostic procedures some care is needed. Choosing to omit a unit
or fit a dummy variable for it may perhaps best be regarded as part of a sensitivity
analysis to see how robust the model is to varying the model assumptions. The use
of formal significance tests when units have been detected on the basis that they
are extreme also needs to be done carefully. A simple ‘conservative’ procedure that
can be used when identifying outlying units is to multiply the significance levels (P
values) obtained for each test by the number of units at that level. Thus, from Table
2.3 the significance level associated with fitting a separate intercept for school 38 is
0.000023, and when multiplied by the number of schools (48) is 0.0011, which is
still highly significant.
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2.10 Higher level explanatory variables and
compositional effects

We have already mentioned that from the point of view of estimating parameters,
the explanatory variables can be defined or measured at any level. For substantive
interpretations, however, explanatory variables measured at levels 2 or above often
have particular interpretations. We illustrate some of these using the JSP dataset and
forming the explanatory variable which is the mean age 8 maths score. This is often
known as a ‘compositional’ variable since it measures an aspect of the composition
of the school to which the individual student belongs. We are interested in whether
the average age 8 score has an effect on the age 11 score, after having adjusted for the
student’s own age 8 score. For this analysis all the age 8 scores are measured about
the sample mean value of 25.98 (see Table 2.4). Model A adds the average school
age 8 score. Its coefficient is very small and not significant. Model B uses the school
centred age 8 score. This is often advocated on the grounds that it is the difference
between a student’s score and the average score for that student’s school which is
likely to be the most relevant predictor of later achievement.

Bryk and Raudenbush (2002) give a detailed discussion of this issue for models
where the compositional variable, as here, is a mean computed for all the students
in the school, or more generally all the level 1 units in the relevant level two unit.
Models A and B are, of course, formally equivalent and Model A indicates directly

Table 2.4 Variance components model for JSP data with mean age 8 score measured
about sample mean and centring about school mean.

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Model A Model B Model C
Fixed
Intercept 31.5 31.5 31.7
Age 8 score 0.64 (0.025) 1.25 (0.26)
Age 8 score centred on

school mean
0.64 (0.026)

Gender (boys-girls) −0.36 (0.34) −0.36 (0.34) −0.37 (0.34)
Social Class

(non-manual-manual)
0.72 (0.38) 0.72 (0.31) 0.79 (0.31)

School mean age 8 score −0.01 (0.13) 0.63 (0.12) −0.03 (0.12)
Age 8 score × school mean

age 8 score
−0.02 (0.01)

Random
σ 2
u0 (between-schools) 3.21 (1.0) 3.21 (1.0) 3.13 (1.0)

σ 2
e0 (between-students) 19.6 (1.1) 19.6 (1.0) 19.5 (1.1)

Variance partition coefficient 0.14 0.14 0.14
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that a simpler model omitting the school mean score is adequate. It is Model C, as
discussed below, which introduces a more complex model.

In fact, the mean score for students in a school is only one particular summary
statistic describing the composition of the students. Another summary would be the
spread of scores, measured, for example, by their standard deviation. We can also
consider measures such as the proportions of high or low scoring students and in
general any set of such measures. When using the average score we can also consider
using the median or modal score rather than the mean. With any of these other
measures we may wish to retain the deviation from the school mean as an explanatory
variable, and we could even consider introducing a more complex function of this,
for example, by adding higher order terms. This is a fruitful area for data analysis.

Model C looks at the possibility of an interaction between student score and
school mean and we do find a significant effect which we can interpret as follows.
The higher the school mean age 8 score the lower the coefficient of the student’s
age 8 score. One implication of this is that for two relatively low scoring students at
age 8 years, the one in the school with a higher average is predicted to do better at
age 11 years. To study this further we now need to introduce a model with random
coefficients where we explicitly allow each school’s coefficient to vary randomly at
level 2, as in (2.6); see Table 2.5.

The addition of the age 8 score coefficient as a random variable at level 2 somewhat
increases the social class difference and somewhat decreases the gender difference,
but within their standard errors.

The level 1 variance is reduced and we have significant ‘slope’ variation at level
2; the likelihood ratio test criterion is 52.4 which is well beyond the adjusted 5 %

Table 2.5 Random coefficient model for JSP data.

Parameter Estimate (s.e.)

Fixed
Intercept 31.7
Age 8 score 1.11 (0.35)
Gender (boys-girls) −0.25 (0.32)
Social Class (non-manual-manual) 0.96 (0.36)
School mean age 8 score −0.04 (0.13)
Age 8 score × school mean age 8 score −0.02 (0.01)

Random
Level 2
σ 2
u0 (Intercept) 3.67 (1.03)

σu01 (covariance) −0.34 (0.09)
σ 2
u1 (age 8 score) 0.03 (0.01)
Level 1
σ 2
e0 17.7 (1.0)
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Figure 2.10 Predicted 11-year score by 8-year score for JSP schools.

level of 7.0 as discussed in Section 2.8. If we calculate the correlation between the
intercept and slope at level 2 we obtain a value of –1.03! This can happen as a result
of sampling variation and implies that the population correlation is very high; the
basic IGLS algorithm does not impose an explicit constraint on this correlation. In
fact, we shall see in Chapter 3 that we can constrain this correlation to be exactly –1.0
and thus admissible. Alternatively, by suitably elaborating the model or by carrying
out certain transformations we can avoid this problem. Also, if we are using MCMC
estimation (see Section 2.13) this problem will not arise. For now, however, in order
to illustrate what such a high correlation means in the present data we can compute
residuals for each school, for the slope and intercept. With these estimates we can
then predict the age 11 score for any set of values of the explanatory variables. Figure
2.10 shows the predicted values for manual girls by age 8 score.

The predicted lines for the high scores at 8 years of age are very close together,
separating as the age 8 score decreases. The slope residual is almost uncorrelated
(–0.02) with the mean age 8 score and the compositional coefficient of mean age 8
score is little changed. We can add, therefore, to the previous compositional effect,
the statement that some schools are differentially ‘effective’ for pupils with low age 8
scores, with little difference for high age 8 scores. We continue to analyse this dataset
in Chapter 3, showing how further elaboration of the variance structure of the model
leads to certain simplifications of interpretation.

2.11 Transforming to normality
For single level data there is a considerable literature on ways of transforming
measurements to satisfy the standard model assumption of normality with con-
stant variance (see Box and Cox, 1964). Cole and Green (1992), for example,
describe a procedure for smoothly modelling the mean, variance and skewness of
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measurements repeated over time and using the estimated smoothed relationships to
make the appropriate transformation to normality. We shall use a general purpose pro-
cedure designed to produce approximately normally distributed residuals and study
its effect on our example analyses. We discuss a very general set of procedures for
transforming to normality in Chapter 7.

If we look back at Figure 2.9, we can imagine ‘stretching’ the Y axis to make the
plot follow a straight line. Of course, we cannot do this directly since the residuals
are estimates rather than observed measurements, but we can do this for the original
response measurements with the expectation that this will give us residuals which are
more nearly normally distributed, and also with a more constant variance. To do this,
we rank all the response measurements and assign to each one the equivalent value
from a standard normal distribution that cuts off the same proportion of the population
as does the ranked observation. Thus, for example, if we have 99 measurements, the
smallest value is a nonparametric estimate of the first percentile of the population
distribution; the value such that just 1 % lie below this value. We would then assign
this observation the equivalent normal score of –2.33 which is the lower 1 % point
of the N (0, 1) distribution. This procedure will often be justified, for example, with
educational test scores, where the measurement scales themselves are essentially
arbitrary, but in other cases, for example, with physical measurements, the original
scale is meaningful and in such cases, we may prefer to use the variance modelling
methods described in Chapter 3 or the procedures in Chapter 7.

We now repeat the analysis in Table 2.2 for our transformed data, where we have
also transformed the age 8 scores in similar fashion. Table 2.6 shows the results.

The inferences we would make from this table are similar to the earlier ones,
except that the social class coefficient is now more significant and the intra-school
correlation has increased slightly. Figure 2.11, however, shows that the variance of
the level 1 residuals is now more nearly constant, although not entirely so, and Figure
2.12 shows that the residuals follow a normal distribution more closely also.

Table 2.6 Variance components model applied to JSP data
with gender and social class and normalised 11-year and
8-year scores.

Parameter Estimate (s.e.)

Fixed
Intercept 0.129
Age 8 score 0.668 (0.026)
Gender (boys-girls) −0.048 (0.050)
Social Class (non-manual-manual) 0.138 (0.057)

Random
σ 2
u0 (between-schools) 0.080 (0.023)

σ 2
e0 (between-students) 0.422 (0.023)

Variance partition coefficient 0.16
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Figure 2.11 Standardised level 1 residuals by predicted value for Table 2.6.
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Figure 2.12 Standardised level 1 residuals by normal equivalent scores for Table
2.6.
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2.12 Hypothesis testing and confidenc intervals
In this section we deal with large sample procedures for constructing interval
estimates for parameters or linear functions of parameters and for hypothesis testing.
Hypothesis tests are used sparingly throughout this book, since the usual form of a
null hypothesis, that a parameter value or a function of parameter values is zero, is
usually intrinsically implausible and also relatively uninteresting. With large enough
samples a null hypothesis will almost certainly be rejected. The exception to this
is where we are interested in whether a difference is positive or negative, and this
is discussed in the section on residuals below. Confidence intervals emphasise the
uncertainty surrounding the parameter estimates and generally provide more useful
summaries for substantive interpretations.

2.12.1 Fixed parameters
In the analyses of Section 2.11 we presented parameter estimates for the fixed part
parameters together with their standard errors. These are adequate for hypothesis
testing or confidence interval construction separately for each parameter. In many
cases, however, we are interested in combinations of parameters. For hypothesis
testing, this most often arises for grouped or categorised explanatory variables where
n group effects are defined in terms of n − 1 dummy variable contrasts and we wish
simultaneously to test whether these contrasts are zero. In the case of the analysis
in Table 2.2 we may be interested in the hypothesis that the gender and social class
effects taken jointly, are zero. We may also be interested in providing a pair of
confidence intervals for the parameter estimates. We proceed as follows.

Define a (r x p) contrast matrix C. This is used to form linearly independent
functions of the p fixed parameters in the model of the form f = Cβ, so that each
row of C defines a particular linear function. Parameters which are not involved have
the corresponding elements set to zero. Suppose we wish to test the hypothesis in
Table 2.2 that the gender and social class coefficients are jointly zero. We define

C =
(

0 0 1 0

0 0 0 1

)

, f =
(

β2

β3

)

and the general null hypothesis is

H0 : f = k, k={0} here

We form

R = ( f̂ − k)T [C(XT V̂−1X )−1CT ]−1( f̂ − k)

where

f̂ = C β̂

(2.15)
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If the null hypothesis is true R is distributed as approximately χ2 with r degrees of
freedom. This is often known as a ‘Wald test’. Note that the term (XT V̂−1X )−1 is the
estimated covariance matrix of the fixed coefficients.

If we find a statistically significant result we may wish to explore which particular
linear combinations of the coefficients involved are significantly different from zero.
The common instance of this is where we find that n groups differ and we wish to
carry out all possible pairwise comparisons. A simultaneous comparisons procedure
which maintains the overall type I error at the specified level involves carrying out
the above procedure with either a subset of the rows of C or a set of (less than r)
linearly independent contrasts. The value of R obtained is then judged against the
critical values of the chi-squared distribution with r degrees of freedom.

We can also obtain a (100 − α)% confidence region for the parameters by setting
R̂ equal to the α% tail region of the χ2 distribution with r degrees of freedom in the
expression

R̂ = ( f − f̂ )T [C(XT V̂−1X )−1CT ]−1( f − f̂ )

This yields a quadratic function of the estimated coefficients, giving an r-
dimensional ellipsoidal region. For Table 2.2 we obtain the following results.

The null hypothesis test gives a value for chi-squared on 2 degrees of freedom of
4.51 with a corresponding P-value of 0.10. The 95 % confidence region is the ellipse

8.3(β1 + 0.36)2 + 0.22(β1 + 0.36)(β2 − 0.72) + 6.7(β2 − 0.72)2 = 5.99

where the subscripts (1,2) refer to gender and social class respectively and 5.99 is
the 5 % point of the χ2

2 distribution. Figure 2.13 displays this region, which contains
the point (0,0) so that the null hypothesis that β1 = β2 = 0 is not rejected at the 5 %
level.
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Figure 2.13 95% confidenc region for coefficient of Social Class and Gender.
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In some situations we may be interested in separate confidence intervals for all
possible linear functions involving a subset of q parameters or q linearly independent
functions of the parameters, while maintaining a fixed probability that all the intervals
include the population value of these functions of the parameters. As before, this may
arise when we have an explanatory variable with several categories and we are
interested in intervals for sets of contrasts. For a (100 − α)% interval write Ci for the
i-th row of C, then a simultaneous (100 − α)% interval for Ciβ, for all Ci is given by

(Ci β̂ − di ,Ci β̂ + di )

where

di = [Ci (XT V̂−1X )−1CT
i χ2

q,(α)]
0.5

where χ2
q,(α) is the α% point of the χ2

q distribution. For the model in the first column
of Table 2.2 we obtain the following 95 % intervals for the coefficients of gender and
social class, first the separate intervals then the simultaneous ones which are some
25 % wider.

(−0.36 ± 0.66
0.72 ± 0.76

)

,

(−0.36 ± 0.83
0.72 ± 0.94

)

We can also use the likelihood ratio test criterion for testing hypotheses about
the fixed parameters, although generally the results will be similar. The difference
arises because the random parameter estimates used in (2.15) are those obtained for
the full model rather than those under the null hypothesis assumption, although this
modification can easily be made. For example the likelihood ratio test for gender
and social class yields a value of 5.5 compared with the above value of 4.5. We shall
discuss the likelihood ratio test in the next section dealing with the random parameters.

2.12.2 Random parameters
In very large samples, it is possible to use the same procedures for hypothesis testing
and confidence intervals as for the fixed parameters. Generally, however, procedures
based upon the likelihood statistic are preferable. To test a null hypothesis H0 against
an alternative H1, involving the fitting of additional parameters, we form the log
likelihood ratio or deviance statistic

D01 = −2 loge(λ0/λ1) (2.16)

where λ0, λ1 are the likelihoods for the null and alternative hypotheses and this is
then referred to tables of the chi-squared (χ2) distribution with degrees of freedom
equal to the difference (q) in the number of parameters fitted under the two models.
We have already quoted this statistic for testing the level 2 variance in Table 2.1, with
the caveat needed when the null model involves a ‘boundary’ value for the parameters
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(Section 2.8) and the chi-bar test is used. A similar caveat applies to the calculation
of confidence regions.

We can also use (2.16) as the basis for constructing a (100 − α)% confidence
region for the additional parameters. If D01 is set to the value of the α% point of the
chi-squared distribution with q degrees of freedom, then a region is constructed to
satisfy (2.16), using a suitable search procedure. This is a computationally intensive
task, however, since all the parameter estimates are recomputed for each search point.

An alternative is to use the ‘profile likelihood’ (McCullagh and Nelder, 1989).
In this case the likelihood is computed for a suitable region containing values of the
random parameters of interest, for fixed values of the remaining random parameters.

Unlike ML estimates, we cannot use REML (RIGLS) estimates to compute a
likelihood that can then be used in a general way to compare models, although the
REML likelihood can be used if we are just making comparisons between models that
have the same set of fixed effects but different random parameters. Thus, for model
exploration and hypothesis testing it is recommended that ML (IGLS) estimation
should be used, with a final REML estimation if this is required. When we look
at MCMC estimation in Section 2.13, we see how exact interval estimates can be
constructed; and in Chapter 3, we see how this can be done using the bootstrap.

2.12.3 Hypothesis testing for non-nested models
So far we have considered whether we should accept a sub-model from a model with
extra parameters, for example, whether a variance term is significantly different from
zero. In some cases, however, we may wish to compare two models where one is
not a strict subset of the other; such models are referred to as ‘non-nested’. Consider
the simple variance components model for the JSP data from Table 2.1 where we
use transformations of the 11-year and 8-year scores so that these now have standard
normal distributions.

Table 2.7 gives the results of fitting two models, one (Model A) uses the nor-
malised 8-year score as single predictor and the other (Model B) uses a logarithmic
transformation together with its square. For Model A the addition of a squared term

Table 2.7 Variance components model applied to normalised JSP data.

Parameter Model A Model B

Fixed
Intercept 0.01 −1.75
Age 8 score (x) 0.68 (0.026)
loge(x + 3.5)
[loge(x + 3.5)]2

0.43 (0.21)
0.80 (0.10)

Random
σ 2
u0 (between-schools) 0.079 (0.023) 0.082 (0.024)

σ 2
e0 (between-students) 0.427 (0.023) 0.425 (0.023)

−2 loglikelihood 1505.7 1504.0
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changes the likelihood by a very small amount, but for Model B we obtain a significant
coefficient for the squared term so this remains in this model.

We see that the loglikelihood statistics differ, but we cannot in this case sim-
ply take the difference and use this to judge between models. Where the models
are not nested in this way, we can use the Akaike Information Criterion (AIC),
as a tool to search for the best fitting model. For each model the AIC is simply
l + 2p, (l = −2 loge(λ)), where p is the number of parameters fitted in the model and
the model with the smallest AIC is chosen as the one which fits best. Note that there
is no probabilistic interpretation here that would allow us to say whether one model is
significantl better than the other; the AIC is simply an index for model comparison.
We are fitting respectively four and five parameters so that in the present case the AIC
for the log-transformed model is 1504.0 + 2∗5 = 1514.0 and for the untransformed
model it is 1505.7 + 2∗4 = 1513.7. We see therefore that, despite the larger number
of parameters in model B, model A has the smaller AIC, although there is a negli-
gible difference between the values. Lindsey (1999) gives a discussion of the use of
this criterion.

An alternative to the AIC is the Bayesian Information Criterion (BIC) which is
computed as l + loge(N ∗)p, (l = −2 loge(λ)). The term N ∗ is the effective sample
size. In a multilevel model it is not clear what the effective sample size should be,
and the total number of higher level units is often used as an approximation. Raftery
(1995) provides a discussion. For both criteria we note that the comparisons must be
based on the same sample of units.

2.12.4 Inferences for residual estimates
In our JSP variance components analysis we estimated level 2 residuals, one for each
school. In studies of school effectiveness, one requirement is sometimes to try to
identify schools with residuals which are substantially different. From a significance
testing standpoint, we will often be interested in the null hypothesis that school A has
a smaller residual than school B against the alternative that the residual for school
A is larger than that for school B (ignoring the vanishingly small probability that
they are equal). In the case when a standard significance test accepts the alternative
hypothesis (at a chosen level, say α%) of some difference against the null hypothesis
of no difference, this is equivalent to accepting one of the alternatives (A > B, A <

B) at the same level of significance and we shall use this interpretation. Alternatively
we may construct a (100 − α)% confidence interval for the difference between two
schools means and see whether it contains zero, is less than or is greater than zero.

Where we can identify two particular schools then it is straightforward, using
the results of Appendix 2.1 to construct a confidence interval for their difference
or carry out a significance test. Often, however, the results are made available to a
number of individuals, each of whom is interested in comparing their own schools
of interest. This may occur, for example, where policy makers wish to select a few
schools within a small geographical area for comparison, out of a much larger study.
In the following discussion, we suppose that individuals wish to compare only pairs
of schools, although the procedure can be extended to multiple comparisons of three
or more residuals. Further details are given by Goldstein and Healy (1995).
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Consider the JSP data where we have 48 estimated residuals together with their
comparative standard errors. Since the sample size is fairly large, we shall also assume
that these estimates are uncorrelated.

First, we order the residuals from smallest to largest. We construct an interval
about each residual so that the criterion for judging statistical significance at the
α% level for any pair of residuals is whether their confidence intervals overlap. For
example, if we consider a pair of residuals with a common standard error (s.e.), and
assuming normality, the confidence interval width for judging a difference significant
at the 5 % level is given by ±1.39(se), where 1.39 = 1.96/

√
2.

The general procedure defines a set of confidence intervals for each residual as

ûi ± c(se)i (2.17)

For each possible pair of intervals, (2.17), there is a significance level associated
with the overlap criterion, and the value c is determined so that the average, over all
possible pairs is α%. A search procedure can be devised to determine c. When the
ratios of the standard errors do not vary appreciably, say by not more than 2:1, the
value 1.4 can be used for c. As this ratio increases so does the value of c. In the present
case only 2 of these ratios are greater than 2 and we have used the common value of 1.4.

The results are presented as the ‘caterpillar plot’ in Figure 2.14. As is clear, apart
from some of the extreme intervals, each interval overlaps with most of the other
intervals. If we wished the basic comparison to take place among triplets of schools,
then using the results of Section 2.12.1 we replace the normal upper 2.5 % value

of 1.96 by
√

χ2
2,(0.05) = 2.45, since we assume that the residuals are approximately

independently distributed. This will give a similar display but with intervals 25 %
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Figure 2.14 Pairwise overlap intervals for JSP school residuals.
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wider and will maintain the average significance level at 5 % for all comparisons
within sets of just three schools. In reality the complete set of schools typically will
be compared in overlapping subsets of different sizes, and a common value for c can
be determined by averaging over all such possibilities.

In other situations, we may be interested simply in judging each school against
the average for all schools. In this case conventional α% intervals for the residuals
can be constructed and inferences based upon whether they include zero (the mean
of the residuals).

We must emphasise that the above formulae should be used where a predetermined
single or pairwise comparison is to be made. Suppose we wish to make a judgement,
for example, about all the pairwise comparisons that are significantly different from
zero. Then we must adopt a multiple comparisons procedure that takes account of the
fact that under the null hypothesis all the true differences being tested are zero, so that
the repeated application of a hypothesis test at significance (probability) level α will
result in a probability that at least one test is significant will generally be greater than α.
If the tests are independent, this probability will be 1 − (1 − α)s , where s is the number
of tests. A standard method for handling this situation to ensure an overall level of α is
to use a ‘Bonferroni’ procedure that involves judging the significance of each test at the
level α/s. This procedure, however, tends to lack power. A more powerful procedure,
the sequential Bonferroni, (Holm, 1979) is first to compute the separate test p-values
and rank them p1 < p2 . . . < ps . Then for the j-th one the null hypothesis is rejected if
p j ≤ α/(s − j + 1), so that apart from the smallest p-value, we use a larger criterion
value than the standard Bonferroni procedure and will therefore tend to produce a
greater number of significant comparisons. Another popular procedure is the false
discovery rate (FDR) method (see Finner and Gontscharuk, 2009). This controls the
proportion of ‘false discoveries’, that is the expected proportion of wrongly rejected
comparisons to be less than or equal to a pre-assigned value α∗. In a standard version
of this procedure we find the largest value j, say k, such that p j ≤ α∗ j

s , and reject
all hypotheses for which j ≤ k. For more than two comparisons this will produce a
greater number of significant comparisons than the sequential Bonferroni if we choose
α = α∗. A useful discussion of methods is given by Afsharthus and Wolf (2007).

Presentations such as that in Figure 2.14 are useful for conveying the inherent
uncertainty associated with estimates for individual level 2 (or higher) units, where
the number of level 1 units per higher level unit is not large. This uncertainty in turn
places inherent limitations upon such comparisons. See Goldstein and Spiegelhalter
(1996) and Leckie and Goldstein (2009) for a detailed discussion of these issues in
health and education.

2.13 Bayesian estimation using Markov Chain Monte
Carlo (MCMC)

We now look at Bayesian models for multilevel data using MCMC methods. These
incorporate prior distribution assumptions and, based upon successively sampling
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from posterior distributions of the model parameters, yield a ‘chain’ which can
then be used for constructing point and interval estimates. The two most common
procedures in use are ‘Gibbs sampling’ and ‘Metropolis-Hastings sampling’. We shall
illustrate how these work for some basic models, with examples. For more details
about MCMC methodology see, for example, Gilks et al. (1996). In later chapters we
will describe the use of MCMC methods as the basis for fitting more complex models.

All MCMC algorithms are iterative and at each iteration they are designed to
produce a sample from the joint posterior (multivariate) distribution of the compo-
nents or parameters of the model. These parameters will be regression coefficients,
covariance matrices, residuals etc. After a suitable number of iterations, we obtain a
sample of values from the distribution of any parameter of set of parameters which
we can then use to derive any desired distribution characteristic such as the mode,
mean, covariance matrix, etc.

We outline the procedures for a general 2-level variance components model

yij = (Xβ)ij + u j + eij, var(eij) = σ 2
e , var(u j ) = σ 2

u (2.18)

In the Bayesian formulation of this model we combine prior information about the
fixed and random parameters, with the likelihood based on the data. These parame-
ters are regarded as random variables described by probability distributions, and the
prior information for a parameter is incorporated into the model via a prior distri-
bution. After fitting the model, the distribution produced is known as the posterior
distribution. Formally we write for the posterior distribution p(θ |y)

p(θ |y) ∝ L(y; θ )p(θ )

where θ represents the unknown parameters, y represents the observed responses
and L(y; θ ), pθ ) respectively are the likelihood and the prior distribution for θ . Here
we shall assume independent prior distributions for each parameter. Given a chain
from the posterior distribution we can construct useful summaries, for example in the
form of point estimates such as the mean or mode, or for quantiles such as the upper
and lower (α/2)% points of the distribution for a single parameter which results in
an interval estimate. The Bayesian interpretation therefore differs from the classical
frequentist interpretation where a confidenc interval is constructed so that the single
true population mean lies within such an interval with probability (100 − α)%. We
shall not make a rigid distinction between these interpretations when describing
results which typically can be viewed from either standpoint.

The topic of the choice of priors, and in particular whether and when to use
informative priors in a Bayesian fashion, is a vast one. A useful introduction is
Draper (2002), and from time to time we will refer to the use of informative priors,
for example, when discussing meta analysis (in Chapter 3) and missing values (in
Chapter 16). Our default assumption, however, is that diffuse priors are used, in an
attempt to base inference solely on the data and the results of doing this will typically
be similar to the results from IGLS and RIGLS estimation. At the end of this chapter
we shall see how MCMC methods can be adapted to obtain (approximate) maximum
likelihood estimates.
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2.13.1 Gibbs sampling
MCMC estimation is iterative and each iteration produces a set of ‘current’ parameter
values, and after convergence the sequence of these, under general conditions, can be
considered as a serially correlated random draw from the joint posterior distribution
of the parameters. MCMC algorithms proceed at each iteration, by considering each
component in turn and generating a random sample from the distribution of that com-
ponent assuming the current values of the remaining components. The detailed steps
are given in Appendix 2.5 where the choice of prior distributions is also considered.
Here we outline the steps briefly. It is assumed that we have some starting values,
possibly derived from a preliminary IGLS estimation.

In Gibbs sampling for the variance components model (2.18), the following steps
occur at iteration t. Sampling of each set of parameters is conditional on current
values of the others, the priors and the data.

Step 1
Sample a new set of fixed effects (β).

Step 2
Sample a new set of level 2 residuals {u j}.

Step 3
Sample a new level 2 variance.

Step 4
Sample a new level 1 variance.

Step 5
Compute the level 1 residuals by subtraction. Note that the order of these steps is

not important.

The first few values from the MCMC chain will usually be discarded, the ‘burn
in’ phase, and inference will be based upon the set obtained after the chain has
converged to the joint posterior distribution. The chain of parameters is treated as
a (serially correlated) random sample from the full joint posterior distribution of
the parameters. Typically, the mean of the chain for each parameter is chosen as
equivalent to the traditional point estimate and the standard deviation as an estimate of
spread, equivalent to the standard error. The modal values (constructed from a kernel
density plot of the chain values), which correspond more closely to the maximum
likelihood estimates when diffuse or uninformative priors are used, can also be
useful. Distribution quantiles can be computed to provide interval estimates, and
these can be obtained from the chain either by ranking the chain values and selecting
the values corresponding to the desired quantiles, or by estimating the probability
density distribution of the chain values by a suitable nonparametric smoothing method
such as kernel density estimation (Silverman, 1986; Abdous and Berlinet, 1998). We
can also form derived chains for functions of parameters. For example, the variance
partition coefficient may be of interest and we can form a chain for this simply by
calculating the appropriate ratio of the level 2 variance to the sum of the level 2 and
level 1 variances at each iteration and storing these. We shall discuss these procedures
in more detail in the examples below.
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2.13.2 Metropolis-Hastings (MH) sampling
Gibbs sampling can be used whenever we can write down analytically the conditional
posterior distributions for each parameter or group of parameters in turn. When
this cannot be done easily alternative approaches can be used. Here we describe
briefly Metropolis-Hastings sampling; for details of an alternative ‘adaptive rejection
sampling’ (see Gilks and Wild, 1992).

An important case when we need to use MH sampling is with discrete response,
or multilevel generalised linear, models (Chapter 4). The conditional distributions for
the fixed parameters and the residuals involve exponential functions and these are not
easy to sample from, so that another kind of sampling such as MH becomes necessary.

For one or more parameters at any given stage of the iterative cycle, MH proceeds
by forming a proposal distribution for the parameters and sampling a new set of
parameters from this distribution. A rule for accepting this new set or rejecting it is
applied and if the proposed set is rejected we remain with the current values. This is
repeated for each set of parameters in turn and, like Gibbs, chains for all the parameters
are produced. Ideally we would like to have a proposal distribution that minimises
the number of iterations for a given accuracy. One simple approach to creating a
proposal distribution is to sample from a multivariate normal distribution. When this
distribution is centred around the current parameter values it is known as a random
walk Metropolis sampler. Further details of MH sampling are given in Appendix 2.5.

In practice we will often be able to use an efficient hybrid algorithm (see Browne
and Draper, 2000) which is a mixture of MH and Gibbs sampling steps.

2.13.3 Convergence of MCMC chains
For the IGLS and RIGLS algorithms we can judge convergence by studying the
relative change in successive parameter values for each parameter so that we can be
assured that the estimate is accurate. When this change has reached a satisfactory small
value (for example, 0.01) convergence is achieved and we can be fairly certain that,
except in exceptional cases where a model is badly misspecified, further iterations
will not alter these values. With MCMC chains we likewise wish to judge when we
have sufficient accuracy for the mean or quantile estimate of each parameter. Here,
however, because of the stochastic nature of the chain we cannot be certain that we
have reached a final set of values that would not change with further iterations.

In fact there are two ways of judging convergence for chain means. We can use
the standard deviation of the chain parameter values (which is the estimated standard
error of the parameter) divided by the square root of the number of chain values
scaled by a suitable factor to take account of the non-independence of successive
chain values, to give an estimate of the (Monte Carlo) standard error of the parameter
mean (see below). If we divide this by the mean itself, we can make a judgement when
the value becomes suitably small, such as 0.01. For parameters which have values
close to zero, however, this has little utility and a diagnostic based upon the number of
significant digits accuracy is required. Such a diagnostic would provide an estimate
of the number of significant digits for a given chain with a specified accuracy for the
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result. To avoid specifying fractional significant digits this is better expressed in terms
of the chain length needed to obtain, say, k significant digits with a specified relative
accuracy. We shall look at one such diagnostic (Draper, 2002) in our example below.

One of the features of MCMC estimation is that the chain provides an estimate
of the probability distribution for the parameter or for a set of parameters, and
hence can be used to give interval estimates. As we have already mentioned, from
a frequentist viewpoint these can be interpreted as confidence intervals and from
a Bayesian perspective as credible intervals for the parameter value. The simplest
method for computing these involves ranking the chain values and reading off the
quantiles which cut the observed cumulative distribution at the required percentages,
for example, 2.5 % and 97.5 %. Alternatively a smoothed estimated kernel density
function can be used. As with the mean, we require to determine the accuracy of such
quantile estimates and a commonly used one (Raftery and Lewis, 1992) estimates the
chain length needed for a specified accuracy for a particular quantile.

One drawback with MCMC methods is the amount of real time that can be
taken for satisfactory convergence. As we have already noted, the successive values
generated in an MCMC chain are not independent since each one in turn is conditional
(partly) on the previous one. If the correlation between successive values is very
high then each additional value generates only a little extra information so that
the chain will have to run for a comparatively long time. We can calculate the
sample size based upon independent successive values that would give the same
estimate for the standard error of the parameter mean. Thus, for example, if partial
correlations of the second order and above are assumed to be negligible and the
first order serial correlation is small, say less than 0.2, the variance of the parameter

mean is var(x̄ p) ∼ σ 2
p
n [1 + ρ1(2−ρ1)

(1−ρ1) ] so that the equivalent sample size is n(1−ρ1)
1+ρ1(1−ρ1) .

For larger first order correlations further terms
σ 2
p
n [ ρ2

1
(1−ρ1) ],

σ 2
p
n [ ρ3

1
(1−ρ1) ], etc. should be

added to the approximate expression for var(x̄ p). It is therefore useful to monitor
this autocorrelation, as we shall see in Section 2.13.5. Likewise, especially with MH
sampling, the ‘trace’ of the chain of values should sweep across the full distribution
of the parameter without staying too long at any one set of values; such traces are said
to ‘mix well’ and we will be looking at these in an example in Section 2.13.5. It may
often be important to experiment with setting different values for the MH proposals
to achieve ‘good’ traces. It is also useful to run multiple chains, with different starting
values, to check on stability.

The topic of MCMC chain diagnostics is an ongoing area of research and partic-
ular choices are not guaranteed to perform adequately in all circumstances.

2.13.4 Making inferences
We have explained how the chain values can be used to provide interval estimates for
each parameter or a function of parameters. We can also study, for example, bivariate
regions using the joint distribution derived from the chains.

We have seen how to obtain an index, the AIC, for comparing models which
can be used when these were non-nested. For MCMC models we can use a similar
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criterion, a generalisation of the AIC, which likewise allows comparison of models
with different sets of parameters for a given set of responses and priors. This is
known as the deviance information criterion (DIC) (Spiegelhalter et al., 2002) and is
computed as follows.

At each iteration of the chain we compute the current value of –2 loglikelihood
for the model being fitted using the current chain values, say Di and write D̄ for
the mean value of this. Upon convergence we compute the deviance based upon
the mean parameter values from the chain, say D. We then form D̄ − D which
is an estimate of the ‘effective number of parameters’ (pD) in the model and the
DIC statistic is simply D + 2pD . In single level models with diffuse priors the DIC
value will be very close to the AIC value and the effective number of parameters
very close to the actual number of parameters in the model. For multilevel models,
however, this will no longer hold. Instead, the calculation of the effective number of
parameters includes the residuals which are treated as parameters to be estimated, but
because they are constrained by the distributional assumptions made about them, their
effective number is less than their actual number, as we shall see in Section 2.13.5.
For a further discussion of the DIC and other measures for model comparison see
Aitkin (2010).

2.13.5 An example
We shall illustrate MCMC estimation here with a simple example. In later chap-
ters when we deal with specific models we will often be applying MCMC as
well as (R)IGLS methods and where appropriate will describe any new types of
MCMC steps.

We use the JSP data and the variance components model of Table 2.4 and fit a
model using Gibbs sampling with a burn in of 500 iterations and a chain of 5000
iterations; we use diffuse priors, that is, uniform priors for the fixed coefficients
and both the uniform and inverse Gamma priors for the variance parameters (see
Appendix 2.4). The results, together with the IGLS (ML) estimates are given in
Tables 2.8–2.10.

Several features emerge from these comparisons. We see that the PD statistic is
about 38; the fixed coefficients and variances give six standard parameters; the 48
schools are described by 32 effective parameters. The main difference between the
ML and MCMC estimates is in the level 2 variances and here the Gamma priors
produce results closer to the ML estimates and this will often be found (see also
Browne, 1998). With just 48 schools we might expect that the choice of priors
would have some effect on any parameters which depend on this number. By contrast
the other parameters are based upon the total sample size so that the effect of a
particular diffuse prior is very small. The other thing to notice is that the use of the
standard error and a normality assumption in order to calculate an interval estimate
may be misleading. Thus, for example, for the level 2 variance this would give a
symmetric 95 % interval of (0.036, 0.136) as opposed to the one estimated from
the chain of (0.047, 0.147) for the gamma prior. We also note that the MCMC



P1: TIX/XYZ P2: ABC
c02 JWST015-Goldstein August 16, 2010 12:43 Printer Name: Yet to Come

THE 2-LEVEL MODEL 51

Table 2.8 IGLS and MCMC posterior mean estimates for JSP data with normalised
scores with alternative (diffuse) priors for variances. Standard errors in brackets.

Gibbs

IGLS Uniform priors Inverse Gamma priors

Fixed
Intercept 0.129 0.130 0.130
Age 8 score 0.668 (0.026) 0.669 (0.027) 0.669 (0.027)
Gender (boys-girls) −0.048 (0.050) − 0.047 (0.050) − 0.047 (0.050)
Social class

(non-manual-
manual)

0.138 (0.056) − 0.139 (0.057) − 0.138 (0.057)

Random
Level 2
σ 2
u0 0.080 (0.023) 0.093 (0.028) 0.086 (0.025)
Level 1
σ 2
e0 0.422 (0.023) 0.426 (0.024) 0.426 (0.023)

Effective number of
parameters (pD)

38.7 38.1

DIC 1481.3 1481.1
Estimation time∗ 0.8 secs 16 secs 16 secs

∗On a 600 MHz Pentium running Windows 2000 using MLwiN. MCMC burn in of 500 and
main chain of 5000.

Table 2.9 MCMC estimates (selected parameters) for the model in Table 2.8 with
alternative estimates for location and quantile estimates: uniform priors for variance
parameters.

Mean Median Mode
Standard
deviation

2.5 %, 97.5 %
quantiles

Age 8 score 0.669 (0.0004) 0.669 0.669 0.027 0.617, 0.721
Gender

(boys-
girls)

−0.047 (0.0007) −0.047 −0.047 0.050 −0.146, 0.050

Random
Level 2
σ 2
u0 0.093 (0.0006) 0.089 0.085 0.028 0.051, 0.159

Level 1
σ 2
e0 0.426 (0.0004) 0.426 0.415 0.024 0.382, 0.476
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Table 2.10 MCMC estimates (selected parameters) for model in Table 2.8 with
alternative estimates for location and quantile estimates: inverse Gamma (0.001,
0.001) priors for variance parameters.

Mean Median Mode
Standard
deviation

2.5 %, 97.5 %
quantiles

Age 8 score 0.669 (0.0004) 0.669 0.669 0.027 0.617, 0.721
Gender

(boys-
girls)

−0.047 (0.0007) −0.047 −0.047 0.050 −0.146, −0.050

Random
Level 2
σ 2
u0 0.086 (0.0006) 0.082 0.078 0.025 0.047, 0.147

Level 1
σ 2
eo 0.426 (0.0004) 0.425 0.424 0.023 0.381, 0.474

modal estimates are closer to the ML estimates, especially with the gamma prior
assumption.

We also see that the means are fairly accurately estimated to judge from the
MCSE values. Running the chain for longer will change the values slightly and we
now look at some formal diagnostics.

Figure 2.15, produced by the MLwiN software package (see Chapter 18), is for
the level 2 intercept variance. It suggests that a sample size of 5000 is about adequate
of the 2.5 % and 97.5 % quantiles, but that a much longer run seems to be required
for the mean to be accurate to two significant figures; however, running for 25 000
iterations does not change any values appreciably. For the quantiles this sample
size determines with 95 % probability (s = 0.95) that the (95 %) interval between
the quantiles should vary by no more than 100∗2∗0.005 = 1 percentage point (r =
0.005). These diagnostics, however, are not always reliable and it is often important
to continue running a chain to see how the estimates behave.

We also see, from the top left hand box, that the chain appears to have mixed
well, and the box below this shows a first order correlation of just over 0.4 with little
evidence of a second order partial correlation in the middle box in the right hand
column. The chain gives rise to an effective sample size of about 1800.

We now look at the variance partition coefficient. The value of this, derived
from the final estimates of the variances, is 0.159 for the ML estimates, 0.179
for the uniform priors and 0.168 for the Gamma priors. If we calculate this for
every iteration we find that, for the Gamma priors, the mean value is 0.167 with a
standard deviation of 0.042 and a 95 % interval of (0.097, 0.263). Any function of
the parameters can be ‘monitored’ in this way, including the residuals. Thus, for each
level 2 residual we will have a chain and this allows us to place interval estimates
about these. This will allow us, for example, to present a ‘caterpillar graph’ as in
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Figure 2.12. If we wish to provide simultaneous intervals for pairwise comparisons
of schools, then we can apply a scaling factor to the MCMC intervals, as discussed in
section 2.12.4.

We may be more interested in presenting the rankings of schools rather than their
means; for example, if the results are to be interpreted for the purpose of identifying
which order they come in. In this case, we would form a ranking of the residuals
at each iteration and evaluate the average ranking of each school, together with
any interval estimate, over the chain. These final average ranks will not necessarily
order the schools the same as the means, but the correlation between them will
normally be high. There is a useful discussion of whether to use rankings or means
in the discussion section of the paper by Goldstein and Spiegelhalter (1996). One
advantage of presenting interval estimates for rankings is that it allows us to say
immediately what percentage of the overall distribution for schools is covered. For
example, the school with the smallest residual rank has a set of rankings for the chain
of 5000 iterations extending from the lowest rank of 1 to its highest of 20 but the
symmetric 95 % interval is from rank 1 to 9 only. By contrast, for the school with
the highest average rank the interval is from 42 to 48. The correlation between the
residual ranks and the means is 0.99.

Finally, we look at allowing for non-normality of the level 1 residuals. We shall
allow them to have a general t-distribution since this is symmetrical and allows
any positive or negative value. The normal distribution is the limiting case where the
degrees of freedom parameter goes to infinity. Recall that we have forced the response
variable to have a normal distribution by use of normal equivalent scores so we can
regard the fitting of the t-distribution as a way of checking whether the normality
assumption carries through to the residuals. The estimation is done by first running
above Gibbs estimation with Gamma priors in MLwiN (Rasbash et al., 2010) and
then using that program’s facility for producing input to the general purpose MCMC
program WINBUGS (Lunn et al., 2000) to fit the t-distribution (see Browne, 2008 for
details). The degrees of freedom parameter for the t-distribution was also estimated,
with a flat prior distribution (uniform in the range (1,10 000)). In this analysis the
number of iterations was set to 5000, although often a longer chain may be needed.
The results are given in Table 2.11.

The degree of freedom parameter estimate has a mean of 16.2, suggesting a
fairly ‘heavy-tailed’ distribution, although with a wide interval estimate. Note that
the estimated density for this parameter, as shown in Figure 2.16, is very skew so
that the standard error should not be used to provide an interval estimate. The fixed
parameter estimates do change slightly when we fit the t-distribution and we see that
the DIC shows a modest improvement.

We shall be applying MCMC methods in subsequent chapters alongside IGLS
estimation and for certain models we shall see that MCMC has particular ad-
vantages. For purposes of data driven model selection, MCMC methods can be
very time consuming. Generally therefore, we can use likelihood based meth-
ods to choose one or two suitable models that fit the data and then carry out
the MCMC estimation. Likewise, the model diagnostic procedures discussed in
Section 2.9 will often be time-consuming and often not really feasible for use
with MCMC.
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Table 2.11 MCMC posterior mean estimates for the model in Table 2.8 with normal
and t-distributed level 1 residuals. Standard errors in brackets (and 95 % interval for
degrees of freedom). Gamma priors.

t-distribution normal distribution

Fixed
Intercept 0.116 0.130
Age 8 score 0.679 (0.026) 0.669 (0.027)
Gender (boys-girls) −0.044 (0.049) −0.047 (0.050)
Social class (non-manual-manual −0.134 (0.058) −0.138 (0.053)

Random
Level 2
σ 2
u0 0.086 (0.025) 0.086 (0.026)

Level 1
σ 2
eo 0.354 (0.036) 0.426 (0.023)

Effective number of parameters PD 38.9 38.1
Degrees of freedom 16.2 (12.5) (5.9, 45.5)
DIC 1472.6 1481.1

2.14 Data augmentation
Finally, we look briefly at a technique that can be viewed as a special kind of Gibbs
sampler (Appendix 2.5). Data augmentation (Tanner and Wong, 1987) aims to provide
an estimate of the full posterior distribution of the parameters in the same kind of way.
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Figure 2.16 Estimated kernel density for degrees of freedom parameter in Table
2.11
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The algorithm we shall consider essentially consists of two steps, the imputation (I)
step and the posterior (P) step and we shall use the term IP algorithm. It is motivated,
like the EM algorithm, by having ‘missing data’; in multilevel models these typically
are the unknown random effects but, for example, randomly missing responses can
be included also. Schafer (1997) gives examples.

The IP algorithm has two steps:

Step 1
Draw a sample of the random effects given the data and current values of the model

parameters. This is essentially Step 2 of the Gibbs algorithm (Appendix 2.5).

Step 2
Draw a sample from the conditional distribution of the parameters given the data

and current parameter values and the random effects.

In effect, this algorithm can be regarded as a form of Gibbs sampling where all the
parameters are sampled in a single step, although this step can also be broken down
into smaller steps fitting random and fixed parameters in sequence. It requires a prior
distribution specification, which can be diffuse, and is formally a Bayesian procedure.

An interesting application to the analysis of large cross-classified data (see Chap-
ter 12) is given by Clayton and Rasbash (1999). They consider a set of two parallel IP
algorithms or ‘wings’, one for each cross classification (A and B), with the following
steps:

Step 1 for classificatio A
Given the current set of estimated residuals from classification B fit an ordinary

multilevel model using, for example, IGLS.

Step 2 for classificatio A
Sample the parameters from their new conditional posterior distribution. This is

essentially the combined steps 1, 3, 4 of our Gibbs sampler.

Step 3 for classificatio A
Sample a set of residuals from their new conditional posterior distribution. This is

step 2 of our Gibbs sampler.

These three steps are repeated for classification B and the process run, with a
suitable burn in, to produce a chain of parameters as in the standard Gibbs sampler.
Clayton and Rasbash note that this method is especially suited to large datasets
where the full IGLS and RIGLS methods become computationally inefficient. They
also point out that in such cases, it may be unnecessary to sample the random
parameters, so speeding up the computations, which is particularly important in large
data problems.

Step 1 is required to set up the conditions for sampling the parameters from each
wing, but a standard Gibbs sampling algorithm can be implemented by sampling
residuals and parameters from all the higher level units simultaneously, although this
will generally be much slower.
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Appendix 2.1 The general structure and maximum
likelihood estimation for a
multilevel model

We illustrate the general structure using a 2-level model. We have

Y = Xβ + E
Y = {yij}, X = {Xij}, Xij = {x0ij, x1ij, . . . .xpij}
E = E1 + E2 = {eij}, eij = e(1)

ij + e(2)
j ,

e(1)
ij =

q1∑

h=0

z(1)
hij e

(1)
hij , e(2)

j =
q2∑

h=0

z(2)
hij e

(2)
hj

(2.1.1)

We will also write simply

e(1)
ij = eij, e(2)

j = u j
Y = Xβ+Z(2)u + Z (1)e
or
Y = Xβ+Zuu + Zee

The residual matrices E1, E2 have expectation zero with

E(E1ET1 ) = V2(1), E(E2ET2 ) = V2(2)

E(E1ET2 ) = 0, V2 = V2(1) + V2(2)
(2.1.2)

In the standard model the level 1 residuals are assumed independent across level 1
units, so that V2(1) is diagonal with ij-th element

var(eij) = σ 2
eij = z(1)T

ij �ez(1)
ij

and �e is the (q1 × q1) covariance matrix of the level 1 residuals.
The level 2 residuals are assumed independent across level 2 units and V2(2) is

block-diagonal with j-th block

V2(2) j = z(2)T

j �uz(2)
j

and �u is the q2 × q2 covariance matrix of the level 2 residuals.
The j-th block of V2 is therefore given by

V2j = ⊕iσ
2
eij + V2(2) j (2.1.3)

where ⊕ is the direct sum operator.
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For some of the models dealt with in later chapters, such as the time series models
of Chapter 5, the requirement of independence among the residuals for the level 1
units is relaxed. In this case the first term on the right-hand side of (2.1.3) is replaced
by the particular structure of V2(1).

For known V2 and omitting the subscript for convenience, the generalised least
squares estimate of the fixed coefficients is

β̂ = (XT V−1X )−1XT V−1Y (2.1.4)

with covariance matrix

(XT V−1X )−1

For known β we form

Y ∗ = Ỹ Ỹ T , Ỹ = Y − Xβ = E1 + E2 (2.1.5)

and we have E(Y ∗) = V. We now write

Y ∗∗ = vec(Y ∗)

where vec is the vector operator stacking the columns of Y ∗ underneath each other. We
can now write a linear model involving the random parameters, that is the elements
of �u,�e, as follows

E(Y ∗∗) = Z∗θ (2.1.6)

where Z∗ is the design matrix for the random parameters. An example of such a
design matrix for a simple variance components model is given in Chapter 2. We now
carry out a generalised least squares analysis to estimate θ , namely

θ̂ = (Z∗T V ∗−1
Z∗)−1Z∗T V ∗−1

Y ∗∗, V ∗ = V ⊗ V (2.1.7)

where ⊗ is the Kronecker product. The covariance matrix of θ̂ is given by

(Z∗T V ∗−1
Z∗)−1Z∗T V ∗−1

cov(Y ∗∗)V ∗−1
Z∗(Z∗T V ∗−1

Z∗)−1

Now we have

Y ∗∗ = vec(Ỹ Ỹ T ) = Ỹ ⊗ Ỹ

Using a standard result (see, for example, Searle et al., 1992, Section 12.3) we
have

cov(Ỹ ⊗ Ỹ ) = (V ⊗ V )(I + SN )
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where V ⊗ V = V ∗ and SN is the vec permutation matrix.
As Goldstein and Rasbash (1992) note, the matrix A where Z∗ = vec(A), is

symmetric and hence

V ∗−1
Z∗ = (V−1 ⊗ V−1)vec(A) = vec(V−1AV−1)

and V−1AV−1 is symmetric so that, using a standard result, we have

SNV ∗−1
Z∗ = V ∗−1

Z∗

and after substituting in the above expression for cov(θ̂ ) we obtain

cov(θ̂) = 2(Z∗T V ∗−1
Z∗)−1 (2.1.8)

The iterative generalised least squares (IGLS) procedure (Goldstein, 1986) iterates
between (2.1.4) and (2.1.7) using the current estimates of the fixed and random
parameters. Typical starting values for the fixed parameters are those from an ordinary
least squares analysis. At convergence, assuming multivariate normality, the estimates
are maximum likelihood.

The IGLS procedure produces biased estimates in general and this can be impor-
tant in small samples. Goldstein (1989a) shows how a simple modification leads to
restricted iterative generalised least squares (RIGLS) or restricted maximum likeli-
hood (REML) estimates which are unbiased. If we rewrite (2.1.5) using the estimates
of the fixed parameters β̂ we obtain

E(Y ∗) = V2 − Xcov(β̂)XT = V2 − X (XT V−1
2 X )−1XT (2.1.9)

By taking account of the sampling variation of the β̂, we can obtain an unbiased
estimate of V2 by adding the second term in (2.1.9), the ‘hat’ matrix, to Y ∗ at each
iteration until convergence. In the case where we are estimating a variance from a
simple random sample, this becomes the standard procedure for using the divisor n-1
rather than n to produce an unbiased estimate.

Full details of efficient computational procedures for carrying out all these cal-
culations are given by Goldstein and Rasbash (1992).

The above ‘plug-in’ estimators for the covariance matrices ignore the fact that
the parameter values θ themselves are estimates, so that they will generally be
downwardly biased. This may be important in small samples and Kenward and
Roger (1997) discuss corrections for the fixed effect covariance matrix estimator,
using a procedure similar to that described in Appendix 2.2 for the residuals.
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Appendix 2.2 Multilevel residuals estimation

2.2.1 Shrunken estimates
Denote the set of mh distinct residuals at level h (h>1) in a multilevel model by

u(h) = {u(h)
1 , . . . , u(h)

mh }, u(h)T

i = {u(h)
i1 , . . . , u(h)

inh } (2.2.1)

where nh is the number of level h units. Since the residuals at any level are independent
of those at any other level, for each residual vector we require the posterior or predicted
residual estimates given by

û(h)
i = E(u(h)

i |Ỹ , V )

where Ỹ = Y − Xβ. We consider the regression of the set of all residuals u(h) on Ỹ
which gives the estimator

û(h) = RTh V
−1Ỹ (2.2.2)

where Rh is block-diagonal, each block corresponding to a level h unit and for the
j-th block given by

Z (h)
j �h

where Z (h)
j is the matrix of explanatory variables for the random coefficients at level h.

We obtain consistent estimators by substituting sample estimates of the parameters in
(2.2.2). These estimates are linear functions of the responses and their unconditional
covariance matrix is given by

RTh V
−1(V − X (XT V−1X )−1XT )V−1Rh (2.2.3)

The second term in (2.2.3) derives from considering the sampling variation of the
estimates of the fixed coefficients and can be ignored in large samples and we obtain
a consistent estimator by substituting parameter estimates in

RTh V
−1Rh

Note that there are no covariances across units. Where we wish to study the dis-
tributional properties of standardised residuals for diagnostic purposes then the
unconditional covariance matrix (2.2.3) should be used to standardise the estimated
residuals. If, however, we wish to make inferences about the true u(h) for example to
construct confidence intervals or test differences then we require the ‘comparative’
covariance matrix of û(h)

j or E[(û(h) − u(h))(û(h) − u(h))T ]. The covariance matrix is
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given by substituting parameter estimates in

Sh − RTh V
−1(V − X (XT V−1X )−1XT )V−1Rh (2.2.4)

where Sh is the block-diagonal matrix in which each block corresponds to the level h
matrix �h . We note that no account is taken of the sampling variability associated with
the estimates of the random parameters in (2.2.3) or (2.2.4). Thus with small numbers
of units, a procedure such as bootstrapping should be used to estimate these covariance
matrices (Chapter 3) or a delta method approximation can be used as shown below.
Skrondal and Rabe-Hesketh (2009) provide a more detailed discussion.

If we write the l-level model as

y = Xβ + Zu + e
Z = {Z (l), Z (l−1), . . . ., Z (2)}, uT = {u(l), u(l−1), . . . ., u(2)}
u ∼ N (0,�)

(2.2.5)

then we can derive the following form for the composite residual estimator for levels
2 to l that is computationally convenient.

û = (�−1 + ZT V−1
1 Z )−1ZT V−1

1 ỹ (2.2.6)

with comparative covariance matrix as

(�−1 + ZT V−1
1 Z−1)−1

where V1 = σ 2
e In and n is the number of level 1 units at the level. Corresponding

to (2.2.3) we have the following additional correction factor, to be subtracted from
this covariance matrix, that takes into account the sampling variation of the fixed
coefficients

(�−1 + ZT V−1
1 Z )−1ZT V−1

1 X (XT V−1)−1XT V−1
1 Z (�−1 + ZT V−1

1 Z )−1 (2.2.7)

2.2.2 Delta method estimators for the covariance matrix of
residuals

Consider the case of a 2-level normal model

y = Xβ + Zuu + Zee

where the estimates are given by (2.2.2) and variance estimates by (2.2.4).
Using a well known equality we have

var(û|y, β, θ ) = E[var(û|y, β, θ )] + var[E(û|y, β, θ )] (2.2.8)
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where the terms on the right hand side of (2.2.8) are regarded as functions of the
model parameters and evaluated at the sample estimates. The comparative covariance
matrix given by (2.2.4) is the first term in (2.2.8).

For the second term we shall use the first order approximation derived from the
Taylor expansion about E(θ̂ ) = θ , for the covariance matrix of a function, namely

cov[g(θ̂)] ≈
(

∂g
∂θ

)T

cov(θ̂)

(
∂g
∂θ

)∣
∣
∣
∣
θ̂

(2.2.9)

In some circumstances we may wish to have a better approximation, in which case,
assuming multivariate normality, we obtain the additional contribution, evaluated at
the sample estimates

1

4

(
∂2g
∂θ2

)T

[2A1 + A2]

(
∂2g
∂θ2

)∣
∣
∣
∣
θ̂

A1 = {a2
ij} where cov(θ̂) = {aij}

A2 = aaT a= {aii}

For û as a function of the random parameters θ , we have

dTk = ∂g
∂θk

=
[

−�u ZT V−1 ∂V
∂θk

V−1 + ∂�u

∂θk
ZT V−1

]

ỹ

∂�u

∂θk
= 0 if θk not at level 2.

(2.2.10)

Note that the elements of ∂V
∂θk

are just the elements of the design vector for the
parameter θk and that

∂V−1

∂θk
= −V−1 ∂V

∂θk
V−1

The row vector dk has q elements, one for each residual at level 2 with d = {dk}
an t × ru matrix where t is the total number of random parameters. The second
adjustment term in (2.2.8) is therefore

dT cov(θ̂)d

This procedure for the variance of the estimated residuals is essentially equivalent to
that proposed by Kass and Steffey (1989) who give an alternative derivation using the
Laplace method. These authors also consider the extra adjustment term based upon
the next term in the Taylor expansion as above.
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Appendix 2.3 Estimation using profil and extended
likelihood

Consider the following 2-level model.

y = Xβ + Zu + e
u ∼ N (0,�u) e ∼ N (0, σ 2

e )
(2.3.1)

We write twice the loglikelihood, ignoring a function of the number of observations,
as

2L(θ, β) = − log |V | − tr (V−1S)

= − log |V | − (Y − Xβ)T V−1(Y − Xβ) (2.3.2)

S = (Y − Xβ)(Y − Xβ)T , V = E(S)

where θ is the vector of random parameters (variances and covariances) and V =
V (θ ) = E(eeT ). If we have a maximum likelihood (ML) estimate of β at a given
value of θ then

2L(θ, β̂) = − log |V | − tr (V−1S)

= − log |V | − (Y − X β̂)T V−1(Y − X β̂) (2.3.3)

is the profile likelihood (see Section 2.12.2) for the random parameters θ . The iterative
generalised least squares (IGLS) algorithm alternates between maximising (2.3.3) for
θ and then obtaining the conditional maximum likelihood (generalised least squares)
estimate of β.

We can write the extended likelihood, referred to in different contexts as a pe-
nalised likelihood or an h-likelihood (Lee, Nelder and Pawitan, 2006), that includes
the actual random effects (residuals) u treated as parameters

2L(θ, β, u) = − log |V1| − (Y − Xβ − Zu)T V−1
1 (Y − Xβ − Zu)

− log |�u | − uT�−1
u u (2.3.4)

where V1 = σ 2
e I .

If we maximise (2.3.4) for the random effects, given (β, θ ), we obtain the usual
estimator (given in Appendix 2.2) which can be written conveniently as

û = (ZT V̂−1
1 Z + �−1

u )−1ZT V̂−1
1 (Y − X β̂) (2.3.5)

Now, given estimates for θ, u, the profile likelihood for the fixed effects becomes

2L(θ̂ , β, û) = − log |V̂1| − (Y − Xβ − Zû)T V̂−1
1 (Y − Xβ − Zû)

− log |�̂u | − ûT �̂−1
u û (2.3.6)
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so that a modification of the IGLS procedure is to iterate between calculating the
fixed effects using (2.3.6), namely

β̂ = (XT V̂−1
1 X )−1XT V̂−1

1 (Y − Zû)

which, when V1 is diagonal, is just OLS, and then calculating the random parameters
from (2.3.3) as in the standard IGLS algorithm and then the random effects from
(2.3.5). Note that the OLS standard errors for the fixed coefficients based simply on
(2.3.6) are incorrect. The standard errors should be computed as in Appendix 2.1.
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Appendix 2.4 The EM algorithm
To illustrate the procedure, consider the 2-level variance components model

yij = (Xβ)ij + uj + eij, var(eij) = σ 2
e , var(u j ) = σ 2

u (2.4.1)

The vector of level 2 residuals is treated as missing data and the ‘complete’ data
therefore consists of the observed vector Y and the u j treated as responses. The joint
distribution of these, assuming Normality, and using our standard notation is

[
Y
u

]

= N

{[
Xβ

0

]

,

[
V JTσ 2

u

σ 2
u J σ 2

u I

]}

(2.4.2)

This generalises readily to the case where there are several random coefficients.
If we denote these by β j we note that some of them may have zero variances. We
can now derive the distribution of β j |Y as in Appendix 2.2, and we can also write
down the normal log likelihood function for (2.4.2) with a general set of random
coefficients, namely

log(L) ∝ −N log(σ 2
e ) − m log |�u| − σ−2

e
∑

ij
e2
ij −

∑

j
βTj �

−1
u β j

�u = cov(β j )
(2.4.3)

Maximising this for the random parameters we obtain

σ̂ 2
e = N−1

∑

ij

e2
ij

�̂u = m−1
∑

j

β jβ
T
j

(2.4.4)

where m is the number of level 2 units. We do not know the values of the individual
random variables. We require the expected values, conditional on the Y and the
current parameters, of the terms under the summation signs, these being the sufficient
statistics. We then substitute these expected values in (2.4.4) for the updated random
parameters. These conditional values are based upon the ‘shrunken’ predicted values
and their (conditional) covariance matrix, given in Appendix 2.2. With these updated
values of the random parameters we can form V and hence obtain the updated
estimates for the fixed parameters using generalised least squares. We note that the
expected values of the sufficient statistics can be obtained using the general result
for a random parameter vector θ

E(θθ T ) = cov(θ ) + [E(θ )][E(θ )]T (2.4.5)
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The prediction is known as the E (expectation) step of the algorithm and the
computations in (2.4.4) the M (maximisation) step. Given starting values, based upon
OLS, these computations are iterated until convergence is obtained. Convenient com-
putational formulae for computing these quantities at each iteration can be found in
Bryk and Raudenbush (2002). Meng and Dyke (1998) describe fast implementations
of the EM algorithm.
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Appendix 2.5 MCMC sampling
MCMC estimation proceeds, at each iteration, by considering each component in turn
and generating a random sample from the distribution of that component assuming
the current values of the remaining components (known as the conditional posterior
distribution). Under general conditions, after the ‘burn in’, the resulting chain of
parameter vectors can be considered as a (serially correlated) random sample from the
joint posterior distribution of the parameters. To illustrate the computations consider
the following variance components model.

yij = (Xβ)ij + u j + eij, var(eij) = σ 2
e , var(uj) = σ 2

u (2.5.1)

2.5.1 Gibbs sampling
The Gibbs sampling algorithm proceeds through a series of steps as follows:

Step 1 Sample a new set of fixe effects from the conditional posterior
distribution

p(β|y, σ 2
u , σ

2
e , u) ∝ L(y; β, u, σ 2

e )p(β)

a suitable diffuse prior is p(β) ∝ 1

p(β|y, σ 2
u , σ

2
e , u) ∝

(
1

σ 2
e

)N/2 ∏

i,j

exp

[

− 1

2σ 2
e

(yij − u j − (Xβ)ij)
2

]

so that we sample from

β ∼ MVN(β̂, D̂)

β̂ =
⎡

⎣
∑

i,j

XTij Xij

⎤

⎦

−1 ⎡

⎣
∑

i,j

XTij (yij − u j )

⎤

⎦

D̂ = σ 2
e

⎡

⎣
∑

i,j

XTij Xij

⎤

⎦

−1

Note that this is just OLS applied to the adjusted response is ỹ = (yij − (Zu)ij)
and in the present case (Zu)ij = u j . Other assumptions for the prior are pos-
sible. Suppose we assume multivariate normality, with p(β) ∼ MVN(0, V ).
This is a conjugate prior, since the posterior is also multivariate normal. We
sample from
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β ∼ MVN(β̂∗, D̂∗)

β̂∗ =
⎡

⎣
∑

i,j

XTij Xij + σ 2
e V

−1

⎤

⎦

−1 ⎡

⎣
∑

i,j

XTij ỹij

⎤

⎦

D̂∗ = σ 2
e

⎡

⎣
∑

i,j

XTij Xij + σ 2
e V

−1

⎤

⎦

−1

In the above and subsequent equations, the parameter terms on the right hand
sides represent the current values and those on the left-hand sides the new updated
ones; for simplicity we omit any indexing of the iterations where this leads to no
ambiguity. The uniform prior distribution, extending over the whole real line, is
‘improper’ in the sense that it is not a true probability distribution. Nevertheless,
for independent Normal priors the variance matrix, V , for the fixed parameters
is diagonal and if the elements are very large the posterior distribution for β is
equivalent to assuming uniform prior distributions. The important requirement is
that the posterior distribution exists, that is it is ‘proper’.

Note that we could sample each coefficient in turn but this would tend to
produce more highly correlated chains compared to sampling them as a block
where terms such as [

∑
i,j XTij Xij] do not change and can be stored for use in each

iteration.

Step 2 Sample a new set of residuals.
Each residual u j is assumed to have a prior distribution u j ∼ N (0, σ 2

u ) which
leads to the following posterior distribution, where n j is the number of level 1
units in the j-th level 2 unit

p(u j |y, σ 2
u , σ

2
e ) ∝

(
1

σ 2
e

)n j/2 n j∏

i=1

exp

[

− 1

2σ 2
e

(yij − (Xβ)ij − u j )2

]

×
(

1

σ 2
u

)1/2

exp

[

− 1

2σ 2
u
u2
j

]

so that we now sample from

u j ∼ N (û j , D̂)

û j = [n j + σ 2
e σ

−2
u ]−1

[ n j∑

i=1

(yij − (Xβ)ij)

]

D̂ = σ 2
e [n j + σ 2

e σ
−2
u ]−1

Where there are p (>1) random coefficients with explanatory variable matrix
Z, this step is modified by sampling the residuals from a p-variate normal
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distribution with

û j =
[ n j∑

i=1

ZTij Zij + σ 2
e �

−1
u

]−1 [ n j∑

i=1

ZTij (yij − (Xβ)ij)

]

D̂ = σ 2
e

[ n j∑

i=1

ZTij Zij + σ 2
e �

−1
u

]−1

These expressions correspond to those given in Appendix 2.2.

Step 3 Sample a new level 2 variance.
An issue arises over the choice of a suitable diffuse prior distribution. A detailed
discussion of this choice is given by Browne (1998); here we mention just two
possibilities, a uniform prior, as in the case of the fixed parameters, and an inverse
Gamma prior. The former choice will often tend to produce positively biased
estimates. The latter is commonly used. Rather than sampling the variance directly,
it is simpler to sample its inverse σ−2

u , referred to as the ‘precision’, which is
assumed to have the Gamma prior distribution p(σ−2

u ) ∼ gamma(ε, ε). We sample
from

σ−2
u ∼ gamma(au, bu)

au = (J + 2ε)/2 bu = (ε +
J∑

j=1

u2
j/2)

where J is number of level 2 units.

For a uniform prior for σ 2
u we sample from a Gamma distribution with

au = (J − 2)/2, bu =
J∑

j=1

u2
j/2

Where there are p (>1) random coefficients, we need to sample a new covariance
matrix �u ; corresponding to the two choices for a single variance are a uniform
prior over the space of covariance matrices or an inverse Wishart prior. We now
sample from

�−1
u ∼ Wishart(vu, Su)

vu = J + vp, Su =
⎛

⎝
J∑

j=1

uTj u j + Sp

⎞

⎠

−1

where u j is the row vector of residuals for the j-th level 2 unit and the prior
p(�−1

u ) ∼ Wishart(vp, Sp)
A ‘minimally informative’ or ‘maximally diffuse’ choice for the prior would

be to take vp equal to the order of �u and Sp equal to a value chosen to be close to
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the final estimate multiplied by vp; typically, we can use the maximum likelihood
or approximate maximum likelihood estimate for Sp that is also used for the
MCMC starting values. Choosing vp = −3, Sp = 0 is equivalent to choosing a
uniform prior for �u .

Step 4 Sample a new level 1 variance.
This is similar to the procedure for a single level 2 variance. We sample from

σ−2
e ∼ gamma(ae, be)

ae = (N + 2ε)/2 be = (ε +
∑

i,j

e2
ij/2)

For a uniform prior we can sample from a Gamma distribution with

ae = (N − 2)/2, be =
∑

i,j

e2
ij/2

Step 5 Compute the level 1 residuals.
We calculate the eij by subtraction using (2.5.1).

2.5.2 Metropolis-Hastings (MH) sampling
Consider Step 1 in 2.5.1 for the fixed coefficients. Given the current values of the
fixed coefficients we form a proposal distribution and sample a new set of coefficients
from this distribution. We then apply a rule for accepting this new set or rejecting
it and remaining with the current values. Ideally, we would wish to have a proposal
distribution that minimises the number of iterations for a given accuracy. We shall
consider how this may be achieved after describing the basic principle.

One simple approach is to sample from a multivariate normal distribution of the
following form

β(t) ∼ MVN(β(t−1), D) (2.5.2)

where D, for example, is an estimate of the covariance matrix of the coefficient
estimates, but see below for a modification. Having obtained a new set, say β∗, we
need an acceptance rule and this is based upon the following ratio

rt = p(β∗, σ 2
u , σ

2
e , u|y)/p(β(t−1), σ

2
u , σ

2
e , u|y) (2.5.3)

where these probability densities have the same form as the conditional probabilities
in step 1. This procedure, which conditions the proposal distribution on the current
parameter values is known as a random walk Metropolis sampler.

We note in passing that the multivariate normal proposal distribution is sym-
metric in β(t), β(t−1) that is, p(β(t) = a|β(t−1) = b) = p(β(t) = b|β(t−1) = a). Where
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asymmetric distributions are used the above ratio has to be further multiplied by the
so-called Hastings ratio p(β(t−1)|β∗)/p(β∗|β(t−1)).

We define the acceptance probability for the new set as αt = min(1, rt ) . If this is
1, then the new set is accepted. If it is less than 1 then it is accepted with probability
αt by, for example, generating a uniform random number in (0,1) and accepting if
this is less than αt . If the new set is not accepted then the current (t − 1) set is used.
Thus, unlike Gibbs sampling, it is possible for the chain to stay with the same set of
values for several iterations.

An efficient MH sampler attempts to avoid this as far as possible, even though
the MH sampler in principle will produce satisfactory estimates if allowed to run for
long enough; the key is to find a suitable proposal distribution. Gelman et al. (1996)
suggest using (5.66/d)∗D, where d is the dimension of the covariance matrix D. A
somewhat more satisfactory procedure (see Browne and Draper, 2000) is to specify
a desired acceptance rate (for example 50 %) and adjust the proposal distribution
scaling factors for each of the parameters. This can be done during a preliminary
adaptive stage of the MCMC chain estimation before or during the ‘burn in’.

For the variance matrix a possible proposal is to sample the inverse of the matrix
from a Wishart distribution and for a single variance to sample the inverse (precision)
from a Gamma distribution. We can again use an adaptive procedure to determine
a scaling ‘degrees of freedom’ parameter. Browne et al. (2001) discuss various
possibilities with examples, including the special case where the level 1 variance is
a linear function of covariates (see Chapter 3 for a discussion of complex level 1
variation).

Generally, the variance and covariance sampling can be carried out using Gibbs
and this gives an efficient hybrid algorithm (see Browne and Draper, 2000) which is
a mixture of MH and Gibbs sampling steps.

2.5.3 Hierarchical centring
Consider the 3-level model

yijk = (Xβ)ijk + vk + ujk + eijk
vk ∼ N (0, σ 2

v ), ujk ∼ N (0, σ 2
u ), eijk ∼ N (0, σ 2

e )
(2.5.4)

which we can write as

yijk = (x ′β ′)ijk + u∗
jk + eijk

u∗
jk ∼ N (v∗

k , σ
2
u ), v∗

k ∼ N (β0, σ
2
v ), eijk ∼ N (0, σ 2

e )
(2.5.5)

where X ′, β ′ are the explanatory variables and coefficients excluding the intercept
term.

Instead of sampling ujk, vk separately, we centre vk on β0 and sample the u∗
jk

conditionally on the vk . This procedure, with extensions to more complex models,
will often greatly improve convergence (Gelfand et al., 1995; Browne et al., 2009).
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2.5.4 Orthogonalisation of the explanatory variables and
parameter expansion

It is common practice in fitting models with explanatory variables that are
polynomials, to transform the successive polynomial powers to orthogonal variables.
This use of orthogonal polynomials can be extended to any set of explanatory vari-
ables by forming an equivalent set of orthogonal variables. This is readily done using
standard algorithms such as the Gram-Schmidt procedure. In the standard case where
we have diffuse uniform priors for the fixed parameters the analysis then proceeds
using the orthogonal variables which are finally back-transformed to the original vari-
ables together with the corresponding parameter estimates. In some applications this
procedure can result in considerably improved chain mixing for the fixed parameters.

Another procedure for speeding up MCMC estimation is known as parameter
expansion. This involves introducing extra parameters into the model so that it is in
fact over-parameterised and not every individual parameter can then be identified.
However, it is still possible to identify the functions of parameters that are required
for interpretation. Thus, for example in cases where we have a variance parameter
close to zero we might replace a random effect u j by λv j . Where λ and σ 2

v are
sampled by the chain, they cannot be separately identified, but we are able to identify
the parameters of interest, namely u j = λv j and also σ 2

u = λ2σ 2
v .

Browne et al. (2009) give examples of both these techniques with a discussion.
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3

3-level models and more
complex hierarchical
structures

3.1 Complex variance structures
In all the models of Chapter 2 we have assumed homoscedasticity, namely, that a
single variance describes the random variation at level 1. At level 2 we introduced a
more complex variance structure, by allowing regression coefficients to vary across
level 2 units. The modelling and interpretation of this complex variation was in terms
of randomly varying coefficients. An alternative way of looking at this structure,
however, is that the level 2 variance is a function of the explanatory variables that
have a random coefficient at level 2. Thus, for the model of Table 2.1, if we add a
random coefficient for the 8-year score to give the model

yij = β0 + β1x1ij + (u0 j + u1 j x1ij + e0ij)
var(e0ij) = σ 2

e0
(3.1)

the level 2 variance is given by

var(u0 + u1x1ij) = σ 2
u0 + 2σu01x1ij + σ 2

u1x
2
1ij (3.2)

This is a quadratic function of x1 and if we had further random coefficients the
variance would be a function of all of the associated explanatory variables. This
function is plotted in Figure 3.1. Although it does not occur here, the level 2 variance
function can sometimes become negative within the range of the data. This is due to

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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Figure 3.1 Level 2 variance function.

sampling variation since there is no restriction in the standard IGLS estimation that
forces the variance function to be non-negative. One way of avoiding this problem
is to have a nonlinear function such as e− f (x) where f (x)is a polynomial such as in
(3.2); we deal with this case in Chapters 9 and 17.

Now we look at how we can model the variation at level 1 as a function of
explanatory variables and how this can give substantively interesting interpretations.

In Figure 2.1, we saw that the level 1 residual variation appeared to decrease with
increasing values of the explanatory variable, 8-year maths score.

Since we shall now consider several random variables at each level, the notation
used in Chapter 2 needs to be extended. Extending the notation in (2.6) for the total
level 2 random effect, we write

u j =
l2∑

h=0

uhjzhij (3.3)

where there are l2 random effects each with an explanatory variable (zhij) where, by
convention, z0ij refers to the constant (= 1) defining a basic or intercept variance
term. We can also write a similar expression for the level 1 random effect as

eij =
l1∑

h=0

ehijzhij (3.4)
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Table 3.1 JSP mathematics data with level 1 variance a quadratic function of 8-year
score measured about the sample mean. Model A with original scale; Models B and
C with normal score transform of 11-year score and original 8-year score measured
about its mean.

Estimate(s.e.) Estimate (s.e.) Estimate (s.e.)
Parameter Model A Model B Model C

Fixed:
Intercept (x0) 31.2 0.13 0.14
8-year score (x1) 0.99 (0.29) 0.097 (0.004) 0.096 (0.004)
Gender (boys-girls) −0.35 (0.26) −0.04 (0.05) −0.03 (0.05)
Social class (non-

manual-manual)
0.74 (0.29) 0.16 (0.06) 0.16 (0.06)

School mean 8-year
score

0.02 (0.11) −0.008 (0.02)

8-year score x
school mean
8-year score

−0.02 (0.01) 0.0006 (0.02)

Random
Level 2
σ 2
u0 2.84 (0.88) 0.084 (0.024) 0.086 (0.024)

σu01 −0.17 (0.07) −0.0024 (0.0015) −0.0030 (0.0015)
σ 2
u1 0.012 (0.007) 0.00018

(0.00016)
0.00021

(0.00016)
Level 1
σ 2
e0 16.5 (1.02) 0.413 (0.029) 0.412 (0.022)

σe01 −0.90 (0.02) −0.0032 (0.0017)
σ 2
e1 0.06 (0.02) 0.0000093

(0.00041)

In both cases, the zhij may be either level 1 or level 2 defined explanatory variables.
In the standard case we considered in Chapter 2 there is a single variable z0ij = 1 and
an associated level 1 variance σ 2

e0 as in (3.1).
Suppose now that we introduce an extra random term, e1ijx1ij into (3.1) to give

yij = β0 + β1x1ij + (u0 j + u1 j x1ij + e0ij + e1ijx1ij)

var(eij) = var(e0ij + e1ijx1ij) = σ 2
e0 + 2σe01x1ij + σ 2

e1x2
1ij

(3.5)

so that we have made the level 1 variance a quadratic function of x1. Table 3.1 shows
the results of fitting this model and Figure 3.2 shows the level 1 variance function for
model A.
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Figure 3.2 Level 1 variance function.

This is just the form of relationship we would expect given the ‘ceiling’ effect
for the 11-year score. While this specification of the level 1 variance as a polynomial
function is analogous to the specification for the level 2 variance, we do not have
an alternative interpretation in terms of random slopes as we did at level 2. In other
words, the parameter σ 2

e1 cannot be interpreted as the variance of a coefficient; it is
simply the coefficient of the quadratic term describing the level 1 complex variance
function. Note that, although we have retained the same notation for the parameters
of the variance function, they no longer are to be regarded as variances or covariances
of measured or unmeasured variables. Of course, where a coefficient is made random
at a level higher than that at which the explanatory variable itself is defined, then
the resulting variance (and covariance) can be interpreted as the between-higher-
level unit variance of the within-unit relationship described by the coefficient. When
a coefficient is made random at the same or lower level than its corresponding
explanatory variable then the interpretation has to be in terms of a complex variance
function.

We can consider other functions, for example a linear function of x1. Thus, if
we write

yij = β0 + β1xij + (u0 j + u1 j x1ij + e0ij + e1ijx1ij),

var(e0ij) = σ 2
e0, var(e1ij) = 0, cov(e0ije1ij) = σe01

(3.6)

the level 1 variance is now the linear function σ 2
e0 + 2σe01x1ij.

This device of constraining a ‘variance’ parameter to be zero in the presence of a
nonzero ‘covariance’ is used to obtain the required variance structure. Thus it is only
the specified function of the random parameters in expressions such as (3.6) which has
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an interpretation in terms of the level 1 variances of the responses yij. Furthermore,
we can allow a parameter such as σ 2

e1 to be negative, so long as the total level 1
variance remains positive within the range of the data. For convenience, however, we
will continue to use the notation var(e1ij) = σ 2

e1 etc. As we have already seen, Model
A shows a clear quadratic relationship which is highly statistically significant (the
conventional chi squared with 2 degrees of freedom = 123). Furthermore, since we
now have a better specified model, the level 2 correlation between the intercept and
slope is now reduced to –0.91 from the value of –1.03 from Table 2.5, and with little
change among the fixed part coefficients.

This procedure can be used generally at any level to define complex variation,
where the random coefficients vary at the same or lower level at which the explanatory
variables are defined. Thus for example, in the analyses of the JSP data in Chapter
2, we could model the average school 8-year-score, which is a level 2 variable, as
having a random coefficient at level 2. If the resulting variance and covariance are
nonzero, the interpretation will be that the between-school variance is a quadratic
function of the 8-year score namely σ 2

u0 + 2σu01x1 j + σ 2
u1x2

1 j where x1 j is the average
8-year score.

The model (3.6) does not constrain the overall level 1 contribution to the variance
in any way. In fact, when we try to fit this model to the JSP data we run into
convergence problems since the linear function estimated at each iteration sometimes
becomes negative within the range of the data. We see in Chapter 9 how the alternative
nonlinear modelling of the variance overcomes this problem. If we use MCMC
estimation we can overcome this problem by constraining the level 1 variance to be
positive at each iteration, as follows.

Consider (3.5) where we have

var(eij) = var(e0ij + e1ijx1ij) = σ 2
e0 + 2σe01x1ij + σ 2

e1x
2
1ij (3.7)

At a given iteration t, suppose that we wish to update the parameter σe01 given current
values. Since the expression (3.7) is to remain positive for all observed values of x1ij
we require

σe01 + σ 2
e0 + σ 2

e1x2
1ij

2x1ij
> 0

We can exclude the case x1ij = 0, since then the variance is simply σ 2
e0. For the

negative values of x1ij we require

σe01 < min

(
σ 2
e0 + σ 2

e1x2
1ij

−2x1ij

)
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and for positive values we require

σe01 > max

(
σ 2
e0 + σ 2

e1x2
1ij

−2x1ij

)

These constraints define a range of admissible values. Thus a standard MH proposal
distribution can be used with these constraints defining truncation points for the
distribution at each iteration. Each of the level 1 variance parameters is updated
similarly, although for these cases only one truncation point is needed. The other
parameters can be updated using Gibbs steps. Browne et al. (2002) describe the
details for a normal proposal distribution.

One of the reasons for the high negative correlation between the intercept and
slope at the school level may be associated with the fact that the 11-year score
has a ‘ceiling’ with a third of the students having scores of 35 or more out of 40. A
standard procedure for dealing with such skewed distributions is to transform the data,
for example to normality, and this is most conveniently done by computing normal
scores; that is by assigning normal order statistics to the ranked scores as described in
Section 2.11; we adopt this procedure in future examples for this dataset, although, as
we shall see in Chapter 7, there are other more general procedures for such variables.

The results from this analysis are given under Model B in Table 3.1. Note that
the scale has changed since the response is now a standard normal variable with
zero mean and unit standard deviation. We now find that there is no longer any
appreciable complex variation at level 1; the chi-squared test for the joint hypothesis
σe01 = σ 2

e1 = 0 yields a value of 3.4 and the 5 % critical value based on the modified
chi-squared statistic (chi-bar, see Section 2.8) is 5.1. Nor is there any effect of the
compositional variable of mean school 8-year score; the chi-squared test for the two
fixed coefficients associated with this give a value of 0.2 on 2 degrees of freedom.
The reduced model is fitted in column C. The parameters associated with the random
slope at level 2 remain significant (chi-bar = 7.7, P ∼ 0.02) and the level 2 correlation
is further reduced to –0.71. Figure 3.3 shows the level 1 standardised residuals plotted
against the predicted values from which it is clear that now the variance is much more
nearly constant. This example demonstrates that interpretations may be sensitive to
the scale on which variables are measured. It is typical of many measurements in the
social and medical sciences that their scales are arbitrary and we can often justify
nonlinear, but monotone, order preserving, transformations if they help to simplify
the statistical model and the interpretation. In Section 2.12.3, we also showed how
models which used different sets of explanatory variables, not necessarily nested
ones, could be compared using the AIC criterion. Together with studying the effects
of transformations of the response this can be used to arrive at a final model that
provides a satisfactory, parsimonious, fit to the data.

We are not limited to making the variance a function of explanatory variables
that appear in the fixed part of the model. A traditional, single level, example is
‘regression through the origin’ in which the fixed intercept term is zero while a level
1 variance associated with the intercept is fitted.
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Figure 3.3 Level 1 standardised residuals by predicted values for Model C in
Table 3.1.

We can consider any particular function of explanatory variables as the basis for
modelling the variance. One possibility is to take the fixed part predicted value ŷij and
define the level 1 random term as e1ij

√
ŷij, assuming the predicted value is positive,

so that the level 1 variance becomes σ 2
e1 ŷij, that is, proportional to the predicted value;

often known as a ‘constant coefficient of variation’ model that we will discuss later.

3.1.1 Partitioning the variance and intra-unit correlation
In Chapter 2, we introduced the variance partition coefficient (VPC) for a 2-level
variance component model defined as

τ = σ 2
u

σ 2
u + σ 2

e

which is the proportion of the total variance occurring at level 2. For this model
this is also the correlation between two level 1 units in the same level 2 unit (the
intra-unit correlation ρ). In more complex models such as (3.5), however, the intra-
unit correlation is not equal to the variance partition coefficient. Thus, for (3.5) the
correlation between two students (i1, i2) in the same school with scores x1i1 j , x1i2 j is

(σ 2
u0 + σu01(x1i1 j + x1i2 j ) + σ 2

u1x1i1 j x1i2 j )√
(σ 2
u0 + 2σu01x1i1 j + σ 2

u1x
2
1i1 j + σ 2

e0 + 2σe01x1i1 j + σ 2
e1x

2
1i1 j )

×(σ 2
u0 + 2σu01x1i2 j + σ 2

u1x
2
1i2 j + σ 2

e0 + 2σe01x1i2 j + σ 2
e1x

2
1i2 j )
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Figure 3.4 Variance partition coefficien (VPC) for Model B in Table 3.1

whereas the VPC values are

(σ 2
u0 + 2σu01x1i1 j + σ 2

u1x2
1i1 j )

(σ 2
u0 + 2σu01x1i1 j + σ 2

u1x2
1i1 j + σ 2

e0 + 2σe01x1i1 j + σ 2
e1x2

1i1 j )
and

(σ 2
u0 + 2σu01x1i2 j + σ 2

u1x2
1i2 j )

(σ 2
u0 + 2σu01x1i2 j + σ 2

u1x2
1i2 j + σ 2

e0 + 2σe01x1i2 j + σ 2
e1x2

1i2 j )

Figure 3.4 shows the variance partition coefficient (VPC) as a function of the 8-year
score for Model B in Table 3.1. The relative variation at the school level decreases
steadily with increasing 8-year score. A tentative interpretation is that the school
attended is of more importance for those with below average prior achievement.

In Chapter 4, we shall consider the calculation of the VPC for models with dis-
crete responses.

3.1.2 Variances for subgroups define at level 1
A common example of complex variation at level 1 is where variances are specific to
subgroups. For example, for many measurements there may be gender or social class
differences in the level 1 variation. A straightforward way to model this situation in
the case of a single such grouping is by defining the following version of (3.5) for a
model with different variances for children with manual and with non-manual social
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Table 3.2 JSP data with normal score of 11-year maths as response. Subscript 1
refers to 8-year maths score, 2 to manual group, 3 to non-manual group, 4 to boys.

Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Parameter Model A Model B Model C

Fixed
Constant 0.13 0.13 0.13
8-year score 0.096 (0.004) 0.096 (0.004) 0.096 (0.004)
Gender (boys-girls) −0.03 (0.05) −0.03 (0.05) −0.03 (0.05)
Social Class (non-

manual-manual)
0.16 (0.05) 0.16 (0.05) 0.16 (0.05)

Random
level 2
σ 2
u0 0.086 (0.025) 0.086 (0.025) 0.086 (0.024)

σu01 −0.0029 (0.0015) −0.0029 (0.0015) −0.0028 (0.0015)
σ 2
u1 0.00018

(0.00015)
0.00018

(0.00015)
0.00018

(0.00015)

Level 1
σ 2
e0 0.37 (0.04) 0.36 (0.04)

σe02 0.03 (0.02) 0.03 (0.02)
σ 2
e2 0.43 (0.03)

σ 2
e3 0.37 (0.04)

σe04 0.004 (0.02)

−2 (loglikelihood) 1491.8 1491.8 1491.7

class backgrounds.

yij = β0 + β1xij + (u0 j + e2ijz2ij + e3ijz3ij)

z2ij = 1 for manual, 0 for non-manual

z3ij = 0 for manual, 1 for non-manual

var(e2ij) = σ 2
e2,var(e3ij) = σ 2

e3, cov(e2ij, e3ij) = 0

If we do this for Model C in Table 3.1, then we obtain the estimates in column A of
Table 3.2. The estimates of the fixed parameters have changed little and the level 2
parameters are also similar. At level 1 the variance for the manual students is higher
than that for the non-manual students, but not significantly so since the likelihood
ratio test statistic, formed by differencing the values of (–2 log likelihood) for the
model with a single level 1 variance (1493.7) and that given in Model A of Table 3.2,
gives a chi-squared test statistic of 1.9 which is not significant at the 5 % level. This
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Table 3.3 GCSE scores related to secondary school intake achievement.

Estimate (s.e.) Estimate (s.e.)
Parameter Model A Model B

Fixed
Constant 0.13 0.14
Reading score 0.50 (0.03) 0.49 (0.03)
Gender (boys-girls) −0.19 (0.06) −0.22 (0.06)
Social class (non-manual-manual) −0.07 (0.06) −0.06 (0.06)

Random
Level 2:
σ 2
u0 0.03 (0.02) 0.02 (0.01)
level 1:
σ 2
e0 0.66 (0.04) 0.63 (0.04)

σe01 0.16 (0.04)
σ 2
e1 0.11 (0.09)

−2 (loglikelihood) 1929.5 1905.0

has the conventional 1 degree of freedom associated with it since the difference is
allowed to be positive or negative, so that there is no boundary condition.

We now look at an alternative method for specifying this type of complex variation
at level 1 which has certain advantages. We write

yij = β0 + β1xij + (u0 j + e2ijz2ij)
z2ij = 1 for manual, 0 for non-manual

var(e0ij) = σ 2
e0, var(e2ij) = 0, cov(e0ij, e2ij) = σe02

and the level 1 variance is given by σ 2
e0 + 2σe02z2ij because we have constrained the

variance of the manual coefficient to be zero. Thus, for manual children (z2ij = 1)
the level 1 variance is σ 2

e0 + 2σeo2 and for non-manual children the level 1 variance is
σ 2
e0. The second column in Table 3.2 gives the results from this formulation and we

see that, as expected, the covariance estimate is equal to half the difference between
the separate variance estimates in the first column.

Suppose now that we wish to model the level 1 variance as a function both of
social class group and gender. One possibility is to fit a separate variance for each
of the four possible resulting groups, using either of the above procedures. Another
possibility is to consider a more parsimonious ‘additive’ model for the variances, as
follows.

eij = e0ij + e2ijz2ij + e4ijz4ij
z4ij = 1 if a boy, 0 if a girl

var(e0ij) = σ 2
e0, cov(e0ije2ij) = σe02,cov(e0ije4ij) = σe04

(3.8)



P1: TIX/XYZ P2: ABC
c03 JWST015-Goldstein August 18, 2010 19:0 Printer Name: Yet to Come

3-LEVEL MODELS AND MORE COMPLEX HIERARCHICAL STRUCTURES 83

with the remaining two variances and covariance equal to zero. Thus, (3.8) implies
that the level 1 variance for a manual boy is σ 2

e0 + 2σe02 + 2σe04 etc. The third column
of Table 3.2 gives the estimates for this model and we see that there is a negligible
difference in the level 1 variance for boys and girls.

We can extend such structuring to the case of multicategory variables and we
can also include continuous variables as in Table 3.1. Suppose we had a 3-category
variable: we define two dummy variables, say z5ij, z6ij corresponding to the second
and third categories, just as if we were fitting the factor in the fixed part of the
model. With z1ij representing the continuous variable, an additive model for the level
1 random variation can be written as

eij = e0ij + e1ijz1ij + e5ijz5ij + e6ijz6ij

var(e0ij) = σ 2
e0, var(e1ij) = σ 2

e1, cov(e0ije1ij) = σe01

cov(e0ije5ij) = σe05, cov(e0ije6ij) = σe06

with the remaining terms equal to zero.
This model can be elaborated by including one or both the covariances be-

tween the dummy variable coefficients and the continuous variable coefficient,
namely σe15, σe16. These covariances are analogous to interaction terms in the
fixed part of the model and we see that, starting with an additive model, we can
build up models of increasing complexity. The only restriction is that we cannot
fit covariances between the dummy variable categories for a single explanatory
variable. Thus, if social class had three categories, we could fit two covari-
ances corresponding to, say, categories 2 and 3 but not a covariance between
these categories.

Residuals can be estimated in a straightforward manner for these complex vari-
ation models. For example, from (3.8) the estimated residual for a manual boy is
ê0ij + ê2ij + ê4ij where the estimates of the individual residuals are computed using
the formulae in Appendix 2.2 with the appropriate zero variances.

3.1.3 Variance as a function of predicted value
The level 1 variance can be modelled as a function of any combination of explanatory
variables and in particular we can incorporate the fixed coefficients themselves in
such functions. A useful special case is where the function is the fixed part predicted
value, ŷij. Thus, (3.7) becomes

yij = β0 + β1xij + (u0 j + e0ij + e1ij ŷij)

with level 1 variance given by σ 2
e0 + 2σe01 ŷij + σ 2

e1 ŷ2
ij. A special case of this model

is the so-called ‘constant coefficient of variation model’ where the two variance
terms are constrained to zero, and ŷij remains positive. The estimation of the random
parameters is straightforward: at each iteration of the algorithm a new set of predicted
values are calculated and used as the level 1 explanatory variable.
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Figure 3.5 Standardised residuals for variance components analysis in Table 3.3.

Table 3.3 illustrates the use of this model where the level 1 variance shows a
strong dependence on the predicted value. The data are the General Certificate of
Secondary Examination (GCSE) scores at the age of 16 years of the Junior School
Project students. This score is derived by assigning values to the grades achieved in
each subject examination and summing these to produce a total score (see Nuttall
et al., 1989 for a detailed description). There are 785 students in this analysis in 116
secondary schools to which they transferred at the age of 11 years. The students have
a measure of reading achievement, the London Reading Test (LRT) taken at the end
of their junior school and this is used as a pretest baseline measure against which
relative progress is judged. Both the reading test score and the examination score
have been transformed to normal equivalent deviates.

Model A is a variance components analysis and Figure 3.5 shows a plot of the
standardised level 1 residuals against the predicted values. It is clear that the variation
is much smaller for low predicted values.

One possible extension of the model to deal with this is the use the LRT score as
an explanatory variable at level 1, so that the level 1 variance becomes a quadratic
function of LRT score. This does not, however, entirely eliminate the relationship and
instead we model the predicted value as a level 1 explanatory variable, and the results
are presented as Model B of Table 3.3. If we now plot the standardised residuals
associated with the intercept against the predicted values we obtain the pattern in
Figure 3.6 from which it is clear that much of the relationship between the variance
and the predicted value has been accounted for. We could go on to fit more complex
functions of the predicted value, for example involving nonlinear or higher order
polynomial terms.
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Figure 3.6 Standardised residuals with level 1 variance a function of predicted value
in Table 3.3.

3.1.4 Variances for subgroups define at higher levels
The random slopes model in Table 3.1 has already introduced complex variation at
level 2 when the coefficient of a level 1 explanatory variable is allowed to vary across
level 2 units. Just as with level 1 complex variation, we can also allow coefficients of
variables defined at level 2 to vary at level 2. Exactly the same considerations apply
for categorical level 2 variables as we had for such variables at level 1 and complex
additive or interactive structures can be defined.

The coefficient of a level 2 variable can vary randomly at either level 1 or level
2 or both. For example, suppose we have three types of school; all boys schools, all
girls schools and mixed schools. We can allow different variances, at level 2, between
boys’ schools, between girls’ schools and between mixed schools. We can also allow
different between-student variances for each type of school.

To further illustrate complex level 1 variation and also to introduce a 3-level
model, we look at another dataset, this time from a survey of social attitudes.

3.2 A 3-level complex variation model example
The longitudinal or panel data come from the British Social Attitudes Survey and
cover the years 1983–86 with a random sample of 264 adults, measured a year
apart on four occasions and living at the same address. This panel was a subsample
of a larger series of cross-sectional surveys. The final sample was intended to be
self-weighting, with each household as represented by a single person having the
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same inclusion probability. A full technical account of the sampling procedures is
given by McGrath and Waterton (1986). The sampling procedure was at the first
stage to sample parliamentary constituencies (the primary sampling units – PSUs)
with probability proportional to size of electorate, then to sample a single ‘polling
district’ within each constituency in a similar way and finally to sample an equal
number of addresses within each polling district.

Because only one polling district was sampled from each constituency, we cannot
separate the between-district from the between-constituency variation; the two are
‘confounded’. Likewise we cannot separate the between-individual from the between-
household variation. The basic variation is therefore at two levels, between-districts
(constituencies) and between-individuals (households). The longitudinal structure of
the data, with four occasions, introduces a further level below these two, namely a
between-occasion-within-individual level, so that occasion is level 1, individual is
level 2 and district is level 3. In Chapter 5, we study longitudinal data structures in
more depth, both at level 1 and higher levels.

The response variable we shall use is a scale, in the range 0–7, concerned with
attitudes to abortion. It is derived by summing the (0,1) responses to seven questions
and can be interpreted as indicating whether the respondent supported or opposed a
woman’s right to abortion with high scores indicating strong support. Explanatory
variables are political party allegiance (four categories), self-assessed social class
(three categories), gender, age (continuous), and religion (four categories) and year
(four categories). A number of preliminary analyses have been carried out and the
effects of party allegiance, social class, gender, and age, were found to be small and
not statistically significant. We therefore examine the basic 3-level model, which can
be written as follows

yijk = β0 + (β1x1ijk + β2x2ijk + β3x3ijk)

+(β4x4ijk + β5x5ijk + β6x6ijk) + (vk + ujk + eijk) (3.9)

with the explanatory variables with subscripts 1–3 being dummy variables for reli-
gious categories 2–4 and those with subscripts 4–6 being dummy variables for years
1984–86. We have three variances, one at each level in the random part of the model.
The response variable in the following analyses has only eight categories, with 32 %
of the sample having the highest value of 7.

The response has been transformed by assigning normal scores to the overall
distribution and we shall treat the response as if it was continuously distributed.
Other models which retain the categorisation of the response variable are considered
in Chapter 4.

Table 3.4 gives the results of fitting (3.9). The between-occasion and between-
individual variances are similar. The level 3 variance is small, and the likelihood ratio
chi-squared is 2.05 (compared with a value of 1.64 obtained from comparing the
estimate with its standard error), neither of which is significant at the 5 % level using
the chi-bar test.
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Table 3.4 Repeated measurements of attitudes to abortion. Response is normal score
transformation. Religion estimates are contrasted with none. Age is measured about
the mean of 37 years.

Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)
Parameter Model A Model B Model C

Fixed
Constant 0.32 0.33 0.33
Religion:
Roman Catholic −0.80(0.18) −0.80(0. 81) −0.69(0.18)
Protestant −0.27(0.10) −0.26(0.10) −0.25(0.10)
Other −0.63(0.13) −0.63(0.13) −0.54(0.14)
Year:
1984 −0.29(0.05) −0.29(0.48) −0.29(0.05)
1985 −0.06(0.05) −0.07(0.05) −0.07(0.05)
1986 0.06(0.05) 0.05(0.04) 0.05(0.04)
Age: 0.013(0.005)
Age x Roman Catholic −0.036(0.010)
Age x Protestant −0.014(0.007)
Age x Other −0.023(0.008)

Random
Level 3
σ 2

v 0.03(0.03) 0.03(0.02) 0.03(0.02)
Level 2
σ 2
u 0.37(0.04) 0.34(0.04)
Level 1
σ 2
e0 0.31(0.02) 0.21(0.08) 0.21(0.03)

σe01 0.11(0.05) 0.10(0.04)
σe02 0.03(0.16) 0.03(0.02)
σe03 0.04(0.02) 0.04(0.02)
σe04 0.05(0.02) 0.05(0.02)
σe05 0.05(0.02) 0.05(0.02)
σe06 0.00(0.02) 0.00(0.02)
−2 (loglikelihood) 2233.5 2214.2 2198.7

For the religious differences we have χ2
3 = 33.7 for the overall test with all those

having religious beliefs being less inclined to support abortion, the Roman Catholic
and other religions being least likely of all. The Roman Catholic and other religions
are significantly less likely than the Protestants to support abortion. The simultaneous
test (3 d.f.) chi-squared statistics respectively are 9.7 and 9.0 (P = 0.03).

For the year differences we have χ2
3 = 59.7 and simultaneous comparisons show

that in 1984 there was a substantially less-approving attitude towards abortion. It
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is likely that this is an artefact of the way questions were put to respondents.1 No
significant interaction exists between religion and year.

We now look at elaborating the random structure of the model. At level 1 we fit
an additive model, as in Section 3.1, for the categories of religion and for year. Year
is the variable defining level 1, but religion is a time invariant variable defined at level
2 and is an example of a higher level variable used to define complex variation at a
lower level.

The results are given as Model B in Table 3.4. For year we obtain
χ2

3 = 8.3 (P = 0.04) and for religion χ2
3 = 11.0 (P = 0.01). We note again that

conventional chi-squared tests are used since the differences being tested can be pos-
itive or negative. There is a greater heterogeneity within the Roman Catholics, from
year to year, and within the other religions than within Protestants and those with no
religion. The addition of these variances to the model does not change substantially
the values for the other parameters.

Fitting complex variation at level 2 (between individuals) and level 3 (between
districts) does not yield statistically significant effects, although there is some sug-
gestion that there may be more variation among Roman Catholics.

For the final analysis, we look again at the fixed part and explore interactions.
None of the interactions have important effects except for that of age with religion,
although age on its own had a negligible effect. We see from Model C that those with
no religion show an increasing approval of abortion with age, whereas the Roman
Catholics and to a smaller extent other religions show a decreasing approval with
age. The overall chi-squared for testing the interactions is 16.1 with three degrees of
freedom (P = 0.001). In Chapter 4, we give an example of modelling level 2 variation
to study segregation patterns across schools.

3.3 Parameter constraints
In the example of the previous section, some of the fixed and random parameters
for year and religious groups were similar. This suggests that we could fit a simpler
model by forcing or ‘constraining’ such parameters to take the same values resulting
in a decrease in the standard errors in the model. We illustrate the procedure using
the fixed part estimates for the abortion attitudes data.

We consider the general constraint for the fixed parameters in the form of n linear
constraint functions defined by CTβ = k, where C is a (p x n) constraint matrix and
k is a vector, and these can have quite general values for their elements.

Suppose that in Model C of Table 3.4 we wished to constrain the main effects
and interaction terms of the Roman Catholic and Other religions to be equal. This

1 In 1984, seven questions making up the attitude scale were put to respondents in the reverse order, that
is with the most ‘acceptable’ reasons for having an abortion (for example, as a results of rape) coming
first. This illustrates an important issue in surveys of all kinds which collect data for comparisons over
time, namely to maintain the same questioning procedure.
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implies n = 2 constraint functions, and we have

CT =
(

0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1

)

k =
(

0
0

)

which implies β̂1 = β̂3, β̂8 = β̂10.
The constrained estimator of β is

β̂c = β̂ − LC(CTLC)−1(CT β̂ − k)
L = (XT V̂−1X )−1 (3.10)

where β̂ is the unconstrained estimator. The covariance matrix of the constrained
estimator is MLMT where

M = I − LC(CTLC)−1CT .

There is an analogous formula for constrained random parameters.
Using the above constraints for Model C in Table 3.4, the random parameters are

little changed, the main effects for Roman Catholic and Other religion become –0.57
and the interaction terms become –0.026 and the remaining main effects are virtually
unaltered. The standard errors, as expected, are smaller: 0.121 for the main effect
estimate and 0.007 for the interaction.

In addition to linear constraints, we can also apply nonlinear constraints. To
illustrate the procedure we consider the analysis in Table 2.5, where the estimated
correlation between the slope and intercept was –1.03. To constrain this to be exactly
–1.0, after each iteration of the algorithm we compute the covariance as a function of
the variances to give this correlation. Thus, after iteration twe compute σ t+1

u01 = σ̂ tu0σ̂
t
u1

and then constrain the covariance to be equal to this value, a linear constraint,
for iteration t+1. This procedure is repeated until convergence is obtained for the
unconstrained values. For more general nonlinear constraints we may require several
such constraints to apply simultaneously.

If we constrain the model of Table 2.5 to give a correlation of –1.0 we find that the
fixed effects and the level 1 variance are altered only slightly, with a small reduction
in standard errors. The level 2 parameters, however, are reduced by about 50 % and
are closer to those in Model A of Table 3.1 where the estimated correlation is –0.91.

We can also temporarily constrain values during the iterative estimation procedure
if convergence is difficult or slow. Some parameters, or functions of them, can be
held at current values, other parameter values allowed to converge and the constrained
parameters subsequently unconstrained.
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Table 3.5 Robust (sandwich) standard errors for Model A in Table 3.4.

Parameter Estimate Model-based s.e. Robust s.e.

Fixed
Constant 0.32
Religion:
Roman Catholic −0.80 0.176 0.225
Protestant −0.27 0.098 0.102
Other −0.63 0.127 0.121
Year:
1984 −0.29 0.048 0.050
1985 −0.06 0.048 0.061
1986 0.06 0.048 0.047

Random
Level 3
σ 2

v 0.03 0.030 0.020
Level 2
σ 2
u 0.37 0.043 0.039
Level 1
σ 2
e0 0.31 0.016 0.022

3.4 Weighting units
It is common in sample surveys to select level 1 units, for example, household
members, so that each unit in the population has the same probability of selection.
Such self-weighting samples can then be modelled using any of the multilevel models
of this book. Likewise, if the model correctly specifies the population structure,
non-self weighting samples can be modelled similarly: the differential selection
probabilities contain no extra information for the model parameters.

In some cases, however, the sample inclusion probabilities are designed to be
equal but there is differential nonresponse. It is common in such cases to assign
weights to the level 1 units to compensate for the nonresponse. Another situation
where weighting should be used is when the modelling of the population structure
is inadequate, that is the model is misspecified. If we then wish to make inferences
about population values which are robust against poor model specification we will
need to weight the units. In some data analyses, we may come across values which
are possible errors. Rather than excluding the units containing these, we may wish to
keep them but assign them a lower weighting in the analysis in line with the extent to
which we believe they are in error. In Chapter 16, we investigate in further detail the
application of weighting for sample surveys where weights are used in conjunction
with imputation procedures, especially where there is attrition in longitudinal surveys.
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We now go on to describe the application of weights under the assumption that
the weights themselves are unrelated to the random effects. Pfefferman et al. (1998)
describe a weighted or pseudo maximum likelihood procedure where weights may be
informative; in Section 3.4.2, we extend this to MCMC estimation. Pfefferman et al.
(1998) show that the simple procedure in the Section 3.4.1 will produce acceptable
results in many cases but can give biased results in some circumstances and should
be used with caution.

3.4.1 Maximum likelihood estimation with weights
Consider the case of a 2-level model. Denote by w j the weight attached to the j-th
level 2 unit and by wi|j the weight attached to the i-th level 1 unit within the j-th level
2 unit. This allows for the possibility of having differential weights at both levels. We
scale the weights so that

∑

i

wi|j = n j ,
∑

j

w j = m (3.11)

where m is the total number of level 2 units and N = ∑
j n j the total number of level

1 units. Thus, the lower level weights within each immediate higher level unit are
scaled to have a mean of unity, and likewise for higher levels. For each level 1 unit
we now form the final, or composite, weight

wij = Nwi|jw j

/ ∑

i, j

wi | jw j = Nwi | jw j

/ ∑

j

n jw j (3.12)

Denote by Zu, Ze respectively the sets of explanatory variables defining the level 2
and level 1 random coefficients and form

Z∗
u = Wj Zu, Wj = diag{w−0.5

j }
Z∗
e = WijZe, Wij = diag{w−0.5

ij }
(3.13)

We now carry out a standard estimation but using Z∗
u ,Z∗

e as the random coefficient
explanatory variables rather than Zu, Ze.

For a 3-level model, with an obvious extension to notation, we have the following

∑

i
wi|jk = njk,

∑

j
w j |k = mk,

∑

k
wk = K , N = ∑

jk
njk, m = ∑

k
mk

wijk = Nwi|jkwj|kwk

/∑

ijk
wi|jkwj|kwk, wjk = mwj|kwk

/∑

jk
wj|kwk

(3.14)

where K is the number of level 3 units.
We have analogous results for the random parameter estimates. Standard errors

can be calculated using sandwich estimators, as described in Section 3.5.
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In survey work, analysts often have access only to the final level 1 weights
wij. In this case, and assuming that these final level weights have been com-
puted as above, then for a 2-level model we can obtain the w j by computing
w′
j = mWj/

∑
j W j , Wj = (

∑
i wij)/n j . For a 3-level model the procedure is car-

ried out for each level 3 unit and the resulting w′
jk are transformed analogously.

A similar procedure applies for multilevel generalised linear models (see Chapter
4). Here the weighted explanatory variables at levels 2 and higher are as above.
For the quasilikelihood estimators (PQL and MQL) at level 1 the vector Ze is that
which defines the binomial variation. Thus, for binomial data, at level 1 a method of
incorporating the weight vector is to use Ze but to work with wijnij instead of nij as
the denominator.

A number of features are worth noting. For a single level model this procedure
gives the usual weighted regression estimator. Secondly, suppose we set a particular
level 1 weight to zero. This is not equivalent to removing that unit from the analysis
in a 2-level model since the level 2 (weighted) contribution remains. Nevertheless,
this weighting may be appropriate if we wish to remove the effect of the unit only at
level 1, say if it were an extreme level 1 outlier. If, however, we set a level 2 weight
to zero then this is equivalent to removing the complete level 2 unit. If we wished to
obtain estimates equivalent to removing the level 1 unit we would need to set all the
level 2 (random coefficient) explanatory variables for that level 1 unit to zero also.
This is easily done by defining an indicator variable for the unit (or units) with a zero
corresponding to the unit in question and multiplying all the random explanatory
variables by it. We also note that when the level 2 weights are equal this procedure is
equivalent to that proposed by Pfeffermann et al. (1998).

3.4.2 Weighted MCMC estimation
Within the standard MCMC algorithm (Appendix 2.5) we incorporate weights by
forming the weighted likelihood, analogously to Pfeffermann et al. (1998). For the
fixed effects with uniform diffuse priors this gives the posterior distribution

⎡

⎣
∑

ij

wij(XTij Xij)

⎤

⎦

−1
∑

ij

wij XTij ỹij, ỹij = yij − ziju j

with covariance matrix

σ 2
e

⎡

⎣
∑

ij

wij(XTij Xij)

⎤

⎦

−1
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For the random effects at level 2 the posterior is

[
∑

i

wi|jzTij zij + �−1
2 σ 2

e

]−1 [
∑

i

wi|jzTij (yij − Xijβ)

]

with covariance matrix

[
∑

i

wi|jzTij zij + σ 2
e �

−1
2

]−1

For the level 2 covariance matrix the posterior is

�−2
2 ∼ Wishart(v, S), v = M − 3, S =

∑

j

w j uTj u j

and for the level 1 variance we have the posterior

σ−2
e ∼ gamma(ae, be)
ae = (N + 2ε)/2, be = (ε + ∑

i, j
wije2

ij/2)

We note that this is not equivalent to using, as before, transformed variables, Z∗
u ,Z∗

e
unless the level 2 weights are equal, and this is the counterpart of the result quoted
above from Pfeffermann et al. (1998). Further details with an example are given by
Goldstein et al. (2010).

3.5 Robust (sandwich) estimators and jacknifin
Until now we have assumed that the response variable has a normal distribution, and
where the departure from normality is substantial we have considered transformations,
for example using normal scores. As we saw in the abortion dataset, however, such
transformations may not provide good approximations to normality, especially where
the original score distribution is highly discrete or very skew. The estimates of the
fixed and random parameter estimates will still be consistent when the normality
assumption is untrue, but the standard error estimates cannot be used to obtain
confidence intervals or to test significance except in large samples. In other cases we
may have misspecified the random part of the model.

One way of attempting to deal with this problem is to develop estimators based
upon alternative distributional assumptions; in Chapter 7, we adopt this approach
when dealing with discrete response data. We have seen in Chapter 2 the use of
a t-distribution as an alternative to the normal for the level 1 residuals and Seltzer
(1993) gives another example using a t-distribution.

An alternative procedure is to modify the standard error and confidence interval
estimates so that they are less dependent on distributional assumptions, of whatever
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kind. One of the consequences of this is that the resulting significance tests and
confidence intervals will tend be wider, or more ‘conservative’, than those derived
under a particular distributional assumption.

Consider first the fixed part of the model and the usual IGLS estimate of the fixed
parameters based upon the random parameter estimates

β̂ = (XT V̂−1X )−1XT V̂−1Y (3.15)

The covariance matrix of these estimates is

cov(β̂) = (XT V̂−1X )−1XT V̂−1{cov(Y )}V̂−1X (XT V̂−1X )−1 (3.16)

where cov(Y ) = V and is unknown because we cannot rely upon the usual normality
assumption when estimating V (Appendix 2.1) or because the random part of the
model is misspecified. The usual procedure would be to substitute the estimated V̂ ,
but this will generally lead to standard errors which are too small. A robust estimator
is obtained by replacing cov(Y ) by Ỹ Ỹ T , namely the cross product matrix of the
raw residuals, which is a consistent estimator of V. This is done for each highest
level block of V in order to satisfy the block diagonality structure of the model. This
estimator is a generalisation of the estimator given by Royall (1986) for a single
level model which uses only the diagonal elements of Ỹ Ỹ T . It is often known as a
‘sandwich’ estimator from the form of the right hand side in (3.16).

For the random parameters an analogous result holds. It is also possible to derive
robust estimators for residuals, but these generally are not useful because the estimate
for each residual corresponding to a higher level unit uses the corresponding value
of Ỹ Ỹ T and this can give very unstable estimates.

We now apply (3.16) to the abortion data analyses and Table 3.5 shows the result
for Model A of Table 3.4 and an OLS analysis. The major change is in the estimate of
the standard error for the level 1 variance, with only moderate changes for the fixed
parameters.

Another approach to providing robust standard errors is to use jacknifing (Miller,
1974). Thus, if we wished to calculate the standard error for a level 2 variance in
a model with m level 2 units, the jacknife procedure would involve recomputing
the variance for m subsamples, each one formed by omitting one level 2 unit, and
using the set of these to form the standard error estimate. The procedure also gives a
revised estimate of the parameter itself. Longford (1993, Chapter 6) gives an example
in the analysis of a complex matrix sample design and suggests that there may be
often a considerable loss of efficiency using the jacknife method, and it is also
computationally intensive. A more flexible method is that of bootstrapping which we
now describe.
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3.6 The bootstrap
For a general introduction to bootstrapping see Efron and Gong (1983) and Laird and
Louis (1987; 1989). Davison and Hinkley (1997) give more extensive discussions, es-
pecially in the context of a multilevel model. Three general bootstrapping approaches
are available; a fully nonparametric bootstrap, a semiparametric or ‘residuals’ boot-
strap and a fully parametric bootstrap.

3.6.1 The fully nonparametric bootstrap
The nonparametric bootstrap procedure for a single level model involves simple ran-
dom resampling with replacement of the (level 1) units to generate a single bootstrap
sample. The model parameter estimates are then re-estimated for this sample. This
procedure is repeated a large number (N) of times yielding N sets of parameter esti-
mates which are then treated as a simple random sample and used to derive standard
errors or confidence intervals for parameters and also for bias correction. For a mul-
tilevel model, however, such a procedure is inadequate since it assumes identically
distributed responses. An alternative that does provide suitable estimates is to resam-
ple only the higher level units, but if the number of such units is small this will not
be very efficient. Nevertheless where the number of highest level units is large, for
example typically in a repeated measures model, this procedure is useful.

No other procedure, for example, for a 2-level model sampling at level 2 and
then at level 1 within level 2 units, seems able to preserve the original correlation
structure since the bootstrap resampling procedure assumes independent responses
for the level 1 units, and this is not the case for a multilevel structure. To preserve the
correlation structure we should sample the full set of (correlated) level 1 units within
each level 2 unit, that is, simply sample the higher level units.

3.6.2 The fully parametric bootstrap
The fully parametric bootstrap utilises the distributional assumptions of the model
in order to generate simulated values which are used to estimate bootstrap sets of
parameters. Consider the simple 2-level model assuming normality

yij = (Xβ)ij + u j + eij, u j ∼ N (0, σ 2
u ), eij ∼ N (0, σ 2

e )

To generate a bootstrap sample we select at random from N (0, σ 2
u ) a set of level 2

values u∗
j and for each level 2 unit a set of e∗

ij from N (0, σ 2
e ). These are added to (Xβ)ij

to generate a set of pseudo values y∗
ij which are then treated as a set of responses from

which a new set of bootstrap parameter values, β̂∗, σ̂ ∗2

u , σ̂ ∗2

e is obtained.
Once the set of bootstrap parameter values is available we can use these to esti-

mate the parameter covariance matrices or standard errors using the usual procedures.
Confidence intervals for the original parameter estimates or functions of them can
then be constructed from these. Alternatively we can construct intervals nonpara-
metrically from the percentiles of the set of empirical bootstrap values and where



P1: TIX/XYZ P2: ABC
c03 JWST015-Goldstein August 18, 2010 19:0 Printer Name: Yet to Come

96 MULTILEVEL STATISTICAL MODELS

the median value for a parameter or function of parameters deviates substantially
from the original parameter estimate a bias correction procedure should be used.
This involves smoothing the bootstrap distribution using, say, a standard normal dis-
tribution. We first estimate z0 which is the standard normal score corresponding to
the percentile position of the original parameter estimate. Writing z(1−α), z(α) for the
standard normal deviates corresponding to the required (symmetric) percentiles (for
example, 5 % and 95 %) we transform back to the bootstrap distribution from the
standard normal distribution values

2z0 + z(1−α), 2z0 + z(α)

Efron (1988) discusses this and a further correction based on skewness to improve
accuracy.

If we wish to obtain bootstrap estimates for estimated level 2 residuals then
for each bootstrap sample we also estimate the residuals, û∗

j . To estimate the
‘comparative’ variance of the residuals for each level 2 unit we can deviate these
from their mean to obtain their variance, or covariance matrix where there are several
random coefficients. They can also be used to construct nonparametric confidence
intervals as above.

Table 3.6 gives parametric bootstrap estimates of standard errors and a central
90 % confidence interval based upon a normality assumption and also a nonparametric
estimation from 1000 bootstrap samples for the model of Table 3.5.

The bootstrap standard errors agree quite well with the model-based ones, ex-
cept for the level 3 variance. This parameter is based upon only 54 level 3 units as
opposed to 264 level 2 and 1056 level 1 units. This is reflected also in the boot-
strap confidence intervals where the nonparametric intervals are fairly close to the
normal theory ones except for the level 3 variance. In general, despite the computa-
tional overhead, bootstrap intervals will be desirable where effective sample sizes are
small, especially for the random parameters. Where distributions are markedly non-
normal the nonparametric intervals are to be preferred, and 1000 is often regarded as
a minimum.

3.6.3 The iterated parametric bootstrap and bias correction
We remarked in Section 2.4 that, in small samples, RIGLS (REML) estimation may be
preferred since it produces unbiased estimates for the random parameters. Table 3.7
shows the comparison of the two estimates with a simple variance components model
for the data of Table 3.1.

Since the number of level 2 units is moderately large the bias in the IGLS
variance estimates is small, about 3 %. We can avoid this bias by carrying out a
RIGLS estimation but we can also use the bootstrap as a bias correction tool, and we
do this here for illustration only.

Assume we have carried out an IGLS estimation and obtained the results in
column 1 of Table 3.6.
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Table 3.6 Bootstrap standard errors and 90 % confidence intervals for Model A in
Table 3.4. Bootstrap uses 1000 simulated datasets.

Parameter
Model-based
s.e.

Bootstrap
s.e. normal C.I.

Nonparametric
Adjusted C.I.

Fixed
Religion:
Roman Catholic 0.176 0.173 (−1.084, −0.516)) (−1.128, −0.532)
Protestant 0.098 0.100 (−0.429, −0.101) (−0.420, −0.106)
Other 0.127 0.132 (−0.846, −0.414) (−0.805, −0.377)
Year:
1984 0.048 0.048 (−0.365, −0.209) (−0.374, −0.216)
1985 0.048 0.047 (−0.140, 0.014) (−0.141, 0.012)
1986 0.048 0.048 (−0.015, 0.141) (−0.019, 0.141)

Random
Level 3
σ 2

v 0.030 0.022 ([0], 0.066) (0, 0.080)
Level 2
σ 2
u 0.043 0.041 (0.302, 0.436) (0.308, 0.438)
Level 1
σ 2
e0 0.016 0.015 (0.284, 0.334) (0.288, 0.336)

Table 3.7 JSP mathematics data. Normal score transform of 11-year score; original
8-year score centred about mean.

IGLS RIGLS Bootstrap (1000)
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Fixed
Constant 0.137 0.137 0.136
8-year score 0.095 (0.004) 0.095 (0.004) 0.095 (0.004)
Gender (boys-girls) −0.044 (0.050) −0.044 (0.050) −0.044 (0.049)
Social class (non-

manual-manual)
−0.153 (0.057) 0.154 (0.057) −0.152 (0.057)

Random
Level 2
σ 2
u0 0.0808 (0.0234) 0.0833 (0.0239) 0.0780 (0.0230)

Level 1
σ 2
e0 0.4234 (0.0229) 0.4253 (0.0230) 0.4213 (0.0224)
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We have

yij = (Xβ)ij + u j + eij
u ∼ N (0, σ 2

u ), e ∼ N (0, σ 2
e )

(3.17)

with estimates for the parameters θ̂ T = (β̂, σ̂ 2
u , σ̂

2
e ).

We now carry out a bootstrap and obtain the mean of the bootstrap parameter
estimates θ̄ , say. If, after a large number of bootstraps, θ̄ is different from θ̂ then the
difference is an estimate of the bias of the estimation procedure we have used. In other
words, assuming that the original estimates are in fact the ‘true’ model parameters,
simulating from these and estimating parameters on average gives different parameter
estimates from the original implying that our estimation procedure is biased. The
estimate of the bias is simply θ̄ − θ̂ . A bias-corrected estimate is 2θ̂ − θ̄ . We see
from the third column of Table 3.7 that, using a bootstrap sample of 1000 we estimate
a downward bias for the level 2 variance of 0.0808 – 0.0780 = 0.0028 and similarly
for the level 1 variance a downward bias of 0.0021. The bias corrected estimates are
therefore 0.0836 and 0.4255 respectively, which are, as expected, close to the RIGLS
estimates. If we wish to calculate quantiles etc. from the set of bootstrap replicates
then we should apply the bias correction to these estimates also.

In many cases, the bias associated with an estimation procedure is a function of
the true parameters. Since we are simulating from the estimated parameters our bias
estimate will itself generally be biased, and we can adopt an ‘iterative bias correction’.
This works as follows.

Carry out a bootstrap replicate set and obtain a bias-corrected vector of parameters,
say θ̂1. This will still, generally, be biased but less so than the original. Carry out a
second bootstrap replicate set using the parameters θ̂1instead of the original estimates
and calculate a new bias corrected estimate θ̂2. While, generally, still biased, the bias
will tend to be less than the previous bias. Repeat this using the new bias-corrected
estimates until the sequence of estimates converges. In some cases convergence
may not occur, but if it does we will obtain unbiased estimates (Kuk, 1995). This
procedure is most useful when applied with discrete response models based upon
quasilikelihood estimation, where in certain circumstances large biases are produced.
A detailed description of the procedure for such models is given by Goldstein and
Rasbash (1996) and we will use this in an example in Chapter 4.

3.6.4 The residuals bootstrap
One potential drawback to the fully parametric bootstrap is that it relies upon the
(normal) distribution assumption for the residuals. In single level linear models
a residuals (semi-parametric) bootstrap can be implemented by fitting the model,
calculating the empirical residuals by subtracting the predicted response from the
observed and then for each bootstrap iteration sampling from these residuals with
replacement. In a multilevel model, however, the situation is more complicated.
Consider first a ‘crude’ residuals bootstrap, as follows, for Model (3.17):
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1. Estimate residuals (û j , êij).

2. Sample with replacementm level 2 residuals and N level 1 residuals, add these
to the fixed part estimate to generate a new set of Y values.

3. Fit the model to these new data and obtain the parameter estimates.

4. Repeat steps 2 and 3, say 1000 times.

Such a procedure leads to biases because the residuals are shrunken and the estimates
across levels are correlated, negatively in the present case, so independent resam-
pling is inappropriate. We require, therefore, both to ‘reflate’ residuals and create
independence before resampling.

Consider first just reflating the residuals separately at each level. We illustrate
with the 2-level model

yij = (Xβ)ij + (ZU ) j + eij
UT = {U0,U1 . . . .} (3.18)

Having fitted the model, we estimate the residuals for each level 2 unit j

{û0 j , û1 j . . . .}, ê

For convenience, we shall illustrate the procedure using the level 2 residuals, but
analogous operations can be carried out at all levels. Write the empirical covariance
matrix of the estimated residuals at level 2 in (3.18) as

S = Û Û T

m
(3.19)

and denote the corresponding model estimated covariance matrix of the random
coefficients at level 2 as R. The empirical covariance matrix is estimated using the
number of level 2 units, m, as divisor rather than m-1. We assume that the estimated
residuals have been centred, although centring will only affect the overall intercept
value. We also note that no account is taken of the relative sizes of the level 2 units
and we could consider a weighted form of (3.19)

S = Û W Û T

N
(3.20)

where W is the (m x m) diagonal matrix with unit sizes on the diagonal. This is
equivalent to defining new residual variables

U ′
hj = Uhj

√
mn j/N (3.21)

and using these with (3.19).
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For (3.19) we now seek a transformation of the residuals of the form

Û ∗ = Û A

where A is an upper triangular matrix of order equal to the number of random
coefficients at level 2, and such that

Û ∗T Û ∗/m = AÛT Û A = AT SA = R (3.22)

so that these new residuals have the required model covariance matrix, and we now
can sample sets of residuals with replacement from Û ∗. This will be done at every
level of the model, with sampling being independent across levels, thus retaining the
independence assumption of the model. Having sampled a set of these residuals we
add them to the fixed part of the model, along with correspondingly sampled level 1
residuals to obtain the new set of responses.

We can form A as follows: write the Cholesky decomposition of S, in terms of a
lower triangular matrix as
S = LSLTS and the Cholesky decomposition of R as R = LRLTR . We have

LRL−1
S Û

T Û (LRL−1
S )T = LRL−1

S S(L−1
S )T (LR)T = LR(LR)T = R

and the required matrix is thereforeA = (LRL−1
S )T .

Carpenter et al. (1999) use this procedure, unweighted, to demonstrate the
improved (confidence interval based) coverage probabilities compared to the para-
metric bootstrap when the level 1 residuals have a chi-squared distribution rather
than a normal. Further work confirms this but also suggests that the procedure may
underestimate coverage for certain departures from an assumed normal distribution.
(Carpenter et al., 2003). If we apply this procedure to the data in Table 3.6 we obtain
estimates very similar to those using the fully parametric bootstrap. This procedure
can also be iterated in the same way as the parametric bootstrap.

The above reflating procedure takes no account of dependencies across levels. If
we now write

QT = {U0,U1 . . . ., e},QT is (N × [p + 1]) (3.23)

where p is the number of level 2 random effects and QT is the length of the data
matrix, then analogously to (3.19) we form

S = Q̂ Q̂T

N
(3.24)
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and proceed as before with computing transformed residual sets for the resampling
bootstrap. The R matrix has the form

(
�u 0
0 σ 2

e

)

so that the Cholesky decomposition is formed in the same way as the separate ones
above. The S matrix, however, does not have this form since there are cross product
terms for the level 2 and level 1 residuals of the form

1

N

∑

j

ûhj
∑

i

êij (3.25)

We note that the Q vectors are still uncorrelated across levels so that we can sample
them separately at each level and maintain the model independence assumption as
before. We also note that if we ignore the terms (3.25) we obtain the weighted
procedure given by (3.20).

3.7 Aggregate level analyses
As discussed in Chapter 1, there are sometimes occasions when the only data available
for analysis have already been aggregated to a higher level. For example, we may
have information on student achievement in terms only of the mean achievement for
each school, or information on utilisation of health services in terms only of the total
number of episodes for each administrative area. We now examine the possibilities
for carrying out analyses with aggregate level data and explore how far these can
provide information about the parameters of a more disaggregated model.

Consider the simple model for the Junior School Project data, with the 11-year
mathematics test score as response and the earlier mathematics score as a covariate

yij = β0 + β1xij + u j + eij (3.26)

Suppose that we now aggregate to the school level by averaging over all pupils in
each school to obtain

y.j = β0 + β1x.j + u j + e.j (3.27)

Fitting this as a single level model, the level 1 variance is σ 2
u + n−1

j σ 2
e and we can fit

the model by specifying two explanatory variables for the random part, namely

z0 = 1, z1 j = n−0.5
j

with random coefficients e0 j , e1 j each having a variance with zero covariance. In
many surveys the same number of level 1 units will be sampled from each level 2
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Table 3.8 School level analysis of JSP data.

Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Parameter Model A Model B Model C

Fixed
Constant 0.18 0.16 0.16
8-year score 0.091 (0.019) 0.092 (0.020) 0.094 (0.021)
Gender (proportion boys) −0.34 (0.30) −0.31 (0.30) −0.29 (0.29)
S. Class (proportion N.M.) 0.00 (0.20) 0.00 (0.28) −0.01 (0.27)

Random
σ 2
u0 0.11 (0.021) 0.11 (0.040) 0.08 (0.024)

σ 2
e0 0.08 (0.37)

σu01 0.00 (0.01)
σ 2
u1 0.004 (0.004)

−2 (loglikelihood) 31.33 31.28 29.44

unit, in which case a single explanatory variable z0 will suffice, but this does not then
allow us to estimate the level 1 and level 2 variances separately. The other problem
with such an analysis is that the estimates will be inefficient compared with those
from a 2-level model based on individual student data.

Model A in Table 3.8 gives the results of an analysis using just the single explana-
tory variable z0 and Model B additionally uses z1 j and so is equivalent to a single
level weighted regression model. In both analyses we have included the proportion
of non-manual students and the proportion of girls as explanatory variables, that is
the average values of the corresponding (0.1) dummy variables.

In comparison with the analyses in Table 3.7, while the coefficient of the 8-year
maths score changes only slightly, those for gender and social class change markedly.
We also see how the standard errors are substantially greater. In fact, although the
number of students per school varies between 3 and 49, the inclusion of z1 j has little
effect.

For these data we know that the slope of the 8-year score is random across schools.
In this case Model (3.27) becomes

y.j = β0 + β1x.j + u0 j + u1 j x. j + e. j (3.28)

and we obtain the additional contributions to the variance of the aggregated level 2
units

σ 2
u1x

2
. j , 2σu01x. j
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Model C in Table 3.8 shows the results of fitting this model, giving a poor estimate
of the random coefficient variance, and unlike Model B it is not possible to estimate
a separate level 1 variance because of the small number of units in the analysis.

If there is complex variation at level 1, such as we fitted in Table 3.2, then for
such an explanatory variable, say z2ij, we would obtain the further contributions to
the variance for the aggregated model for unit j

2σe02z2. j/n j , σ 2
e2

∑

i

z2
2ij/n

2
j

The first of these terms can be fitted as a covariance and the second as a variance,
by defining appropriate explanatory variables. In the present case the data are not
extensive enough to allow us to fit these additional variables. We also note that the
values of the squared explanatory variables in the second of these expressions will
often not be available for aggregated data.

If we have an initial 3-level model, and data are aggregated to level 2, we need to
specify properly the level 2 random variation resulting from the aggregation process.
Failure to do this, may allow us to fit random variation at level 3, but any interpre-
tation of this may be problematic because it may have arisen solely as a result of
misspecifying the variation at level 2. For example, if we have an explanatory variable
which is strongly correlated with the size of the level 2 units, and we fail to include a
random coefficient for z1 j at level 2, we may well be able to fit a random coefficient
for it at level 3, but the usual interpretation of such a coefficient would be incorrect.

We now look at what happens to the fixed part coefficients when aggregation
takes place and we have already seen that the values of the coefficients for gender
and social class change. Consider the 2-level model

yij = β0 + β1xij + β2x. j + u j + eij (3.29)

where the coefficient for x. j in the aggregated model is now β1 + β2. We saw in
Table 3.1 that the coefficient for the school mean 8-year score was very small, so that
we would expect the coefficient for this in the aggregated model to be similar, which
Table 3.8 confirms. For gender and social class the coefficients of the corresponding
aggregated variables from a 2-level analysis are respectively –0.06 and –0.09, which
when added to the (non-aggregated) coefficients for gender and social class give val-
ues of –0.09 and –0.06 respectively. These are rather different from those in Table 3.1,
but the standard errors are very large. Where there is a contextual or compositional
effect, whether through the mean aggregated value, or some other statistic derived
from the student level distribution, then an aggregated analysis will not allow us to
obtain separate estimates for the individual and compositional coefficients.

3.7.1 Inferences about residuals from aggregate level analyses
The use of aggregate level analysis can be particularly misleading for residual esti-
mates. Woodhouse and Goldstein (1989) show how this can occur for educational
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Figure 3.7 Aggregate versus individual level model inferences; hypothetical
illustration for three schools.

data aggregated to the level of Education Authority and Figure 3.7 illustrates a
situation where the use of aggregate data at face value provides incorrect inferences.
For the aggregate analysis the school ordering for given 8-year score is: A<C<B.
For the pupil level analysis the school ordering is: A>B>C, which gives a quite
different conclusion. In general, the only circumstance where we can be certain that
aggregate and individual level inferences are the same is where the explanatory vari-
able distribution (that of the 8-year score here) is the same for each higher level
unit (school).

In summary, we have seen that it is sometimes possible to model aggregated data,
but this has to be carried out with care, and any interpretations will be constrained by
the nature of the true, underlying, nonaggregated model. In addition, the precisions
of the estimates obtained from an aggregated analysis will generally be much lower
than those obtained from a full multilevel analysis. A discussion of the aggregation
issue can also be found in Aitkin and Longford (1986).

3.8 Meta analysis
The term ‘meta analysis’ (Hedges and Olkin, 1985) refers to the pooling of results of
separate studies, all of which are concerned with the same research hypothesis. The
aim is to achieve greater accuracy than that obtainable from a single study and also
to allow the investigation of factors responsible for between-study variation. Each
study typically provides an estimate for an ‘effect’, for example, a group difference,
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for a ‘common’ response and the original data are often unavailable for analysis.
In general, the response measures used will vary, and care is needed in interpreting
them as meaning the same thing. Furthermore, the scales of measurement may differ,
so that the effect is usually standardised using a suitable within-study estimate of
between-unit standard deviation. If the study result derives from a multilevel model,
then this estimate will be based on the level 1 variance, or where this is complex
on an estimate pooled over the effect groups being compared. It is important that
comparable estimates are used from each study. This implies that the specification
of the level 1 units is comparable and that the sources of higher level variation are
properly identified. For example, for a set of studies comparing teaching methods
using a number of schools, the within-school between-student variation would be
appropriate for standardisation, which implies ideally that the studies concerned
should provide estimates of this using suitable multilevel techniques. We consider the
case where only a single effect is of interest, but the generalisation to the multivariate
case is straightforward (see Chapter 6).

In the standard case, for the j-th study we define the standardised effect d j where
this is a dimensionless quantity. It may, for example, be a correlation coefficient, a
standardised regression coefficient, a group difference, or a weighted group differ-
ence. We require an estimate of the variance of d j , say σ 2

j , and more generally we
require the variance of a dimensionless function having the general form

∑

h

whjβ̂hj/σ̂ej (3.30)

where the β̂hj are parameter estimates from the j-th study. A pooled estimate can
now be derived using these standardised effects and their variance estimates. For
moderately large numbers of level 1 units, we can ignore the variation in the estimate
of the level 1 standard deviation (σ̂ej) and calculate the variance of the numerator of
(3.30) using the estimated covariance matrix of the β̂hj.

We may have several studies each of which may provide information on treatment
effects at different levels of aggregation. We can formulate a general class of meta
analysis models by considering a simple 2-level structure. Assume that we have a
collection of studies, each concerned with the comparison of several ‘treatments’.
These treatments may be distinct categories (represented by dummy variables) or
may be effects represented by regression coefficients or a mixture of the two kinds.
The basic models we shall develop are ‘variance component’ models but we will
also illustrate the use of a random coefficient model, and the variance heterogeneity
(complex variation) case can also be incorporated.

For the i-th subject in the j-th study who received the h-th treatment, we can write
a basic underlying model for outcome yhij as

yhij = (Xβ)ij + αhthij + uhj + ehij
h = 1, . . . , H ; j = 1, . . . , J ; i = 1, . . . , nhj
uhj ∼ N (0, σ 2

hu); ehij ∼ N (0, σ 2
he)

(3.31)
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where (Xβ)ij is a linear function of covariates for the i-th subject in the j-th study,
uhjis the random effect of the h-th treatment for the j-th study and ehij is the random
residual of the h-th treatment for subject i in study j. The term thij is a dummy treatment
variable (contrasted against a suitable base category) and αh is the treatment contrast
of interest. If the treatment dummy variables are replaced by a continuous variable tij
then (3.31) becomes

yij = (Xβ)ij + αtij + u j + eij
j = 1, . . . , J ; i = 1, . . . , n j
u j ∼ N (0, σ 2

u ); eij ∼ N (0, σ 2
e )

It is also clearly possible to allow the variances within and between studies to be
different for each treatment or to vary with the value of a continuous treatment
variable, leading to complex variance structures. We can also introduce covariates
where data are available and appropriate, and interactions between treatments and
covariates. For example, a particular treatment contrast may differ according to
covariate values. We may also relax the normality assumption of the level 1 residuals,
for example if fitting a generalised linear multilevel model (see Turner et al., 2000
for an example). We can also model the case where different sets of treatments
occur in different studies. For example, a placebo may be compared with a different
treatment in each study. Such models are sometimes known as network meta analyses
(Lumley, 2002).

We can extend (3.31) to the multivariate case, using the techniques of Chapter 6,
where several responses are being investigated simultaneously and interest centres
on their interrelationships.

3.8.1 Aggregate and mixed level analysis
Consider now the case where (3.31) is the underlying model but we only have data
by treatment group at the study level. Aggregating to this level, as in Section 3.7, we
write the mean response as

yh.j = (Xβ). j + αhth.j + uhj + eh.j (3.32)

where the ‘.’ notation denotes the mean for study j. A difficulty may arise with the
first term in (3.32) since this implies that the mean of the covariate function (Xβ)ij
for each study is available.

The corresponding model for the case of a continuous treatment variable is

y. j = (Xβ). j + αt. j + u j + e. j
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Consider the special case of two treatments, h = 1,2. We collapse (3.32) and, using
an obvious notation, rewrite it to give

y′
. j = y1. j − y2. j = α + u′

j + e′
. j

α = α1 − α2
(3.33)

This impliesvar(u′
j ) = var(u1 j ) + var(u2 j ) − 2cov(u1 j , u2 j ). We can also combine

(3.31) and (3.32) into a single model for the case where some aggregated responses
are in terms of separate treatment groups and some are in terms of contrasts of groups.

3.8.2 Definin origin and scale
When combining data from aggregate level studies it is necessary to ensure that the
response variable scales are the same and that there is a common origin. In traditional
two-treatment meta analyses the treatment difference is divided by a suitable (pooled)
within-treatment standard deviation. In our general model, likewise, the response
variable in each study can be scaled by dividing it by an estimate of the level 1
standard deviation. Where individual data are available we may use an estimate of
the level 1 standard deviation from a preliminary analysis and for aggregate data we
may derive this from reported summary information, if this is available.

In situations where the same response variable is used in each study, and scaling
has been carried out, we can apply (3.32) and (3.33) directly. In many cases, however,
different response variables are used. For example, in class size studies different
reading tests may be used. In this case we would not generally expect the means for
corresponding treatments to be identical. One procedure for dealing with this is to
choose one treatment as a reference treatment (or control) and in each study subtract
its mean from the values of the other treatments and work with these differences. This
is the standard approach in two-treatment studies and such differences can either be
fixed effects or vary randomly across studies.

3.8.3 An example: meta analysis of class size data
Goldstein et al. (2000b) consider the meta analysis of nine studies of the effects of
class size on the learning of young children. Eight of these studies report only aggre-
gate level data and one (STAR) provides individual student data. The studies were
selected, from thousands of reported studies, as being those that satisfied stringent
quality criteria for design and reporting of data. Applying the above models, after
suitable scaling, a joint analysis gives the following results.

In the analysis using only the STAR individual level data, we can distinguish
three levels: individual, class and school. The response has been normalised so that
the level 1 variance is fixed at 1.0 and we see that there is an overall negative
relationship with class size whereby there is a gain of about a quarter of a standard
deviation for a reduction in class size of 10 children. There is also reasonably large
variation between-classes, within-schools, and between-schools in the magnitude
of this effect. The STAR study was a randomised controlled trial and its design
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Table 3.9 Combined analysis of class size study data. Reading score response at
end of year 1 (post kindergarten).

STAR data only Combined data

Fixed
α0 0.078 0.184
α1 (class size, linear) −0.024 (0.006) −0.022 (0.007)
α2 (pre-test) 0.907 (0.018) 0.907 (0.018)

Random
Level 4 (between-study)
σ 2

w0 0.038 (0.020)
σw01 −0.004 (0.002)
σ 2

w1 0.0004 (0.0002)
Level 3 (between-school)
σ 2

v0 0.305 (0.064) 0.305 (0.064)
σv01 0.00014 (0.004) 0.00012 (0.004)
σ 2

v1 0.0006 (0.0006) 0.0006 (0.0006)
Level 2 (between-class)
σ 2
u0 0.139 (0.023) 0.138 (0.023)

Level 1 (between-student)
σ 2
e 1.000 (0.023) 1.000 (0.023)

-2 log likelihood 11996.5 11948.3

raises some particular issues of interpretation which are discussed by Goldstein and
Blatchford (1998).

In the combined analysis the eight non-randomised, but longitudinal studies
reporting at aggregate level are combined with the STAR study. This allows us
to estimate between-study variation at level 4 and there is some evidence for the
relationship varying across studies, although the combined mean estimate differs
little from that for the STAR study alone.

We show in Chapter 6 how to extend single response models to multivariate
response models and this can be applied to the meta analyses discussed above. A
discussion of such models can be found in Riley (2009).

3.8.4 Practical issues in meta analysis
There are a number of practical problems with meta analysis studies. One of these
is where the sample of studies used is subject to systematic bias. This can occur,
for example if some studies do not provide sufficient data to estimate a standardised
difference and they are a special group. Another common problem arises where the
analysis is based upon published studies and those studies which found ‘nonstatisti-
cally significant’ results tend to remain unpublished. This implies that the distribution
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of results is censored with the smaller ones tending to be missing, a situation known as
the publication bias effect. In this connection, Higgins et al. (2009) discuss Bayesian
models for meta analysis and emphasise the need to study the variability of effects
across studies. Turner et al. (2009) discuss practical ways of correcting for bias in
meta analyses and suggest models for doing this. Welton et al. (2009) also discuss
this issue and present a model where the bias is assumed to have a distribution
across studies.

3.9 Design issues
When designing a study where the multilevel nested structure of a population is to
be modelled, the allocation of level 1 units among level 2 units and the allocation
of these among level 3 units etc. will clearly affect the precision of the resulting
estimates of both the fixed and random parameters. The situation becomes more
complex, for example when there are cross classifications and where there are several
random coefficients. There are generally differential costs associated with sampling
more level 1 units within an existing level 2 unit as opposed to selecting further level
1 units in a new level 2 unit.

Some approximations for studying the standard errors of the fixed coefficients
have been derived by Snijders and Bosker (1993) in the case of a simple 2-level vari-
ance components model. They are concerned with students sampled within schools
and assume that the cost of selecting a student in a new school is a fixed constant
times the cost of selecting a student in an already selected school. They also assume
that there is a minimum of 11 students per school. They tend to find that, where this
constant is greater than 1 and the total number of students to be sampled is fixed, the
sample of schools should be as large as possible, although this will not necessarily
be true for all the coefficients of interest.

Moerbeek et al. (2000) consider a 3-level model where interest focuses on the
estimation of a treatment effect so that the aim is to minimise the variance of the
relevant fixed coefficient. They consider the balanced case and show analytically
how differential allocations across units can minimize overall cost. In particular they
consider the allocation of different treatments to level 1 units within level 2 or level
3 units versus allocation at the higher unit level. Moerbeek et al. (2001) extend their
analysis to the 2-level binary response model (see Chapter 4) and show how similar
results can be obtained using MQL estimation. They show, in the case of a particular
simulation study that design decisions based upon MQL are similar to those when
either PQL or maximum likelihood estimation is used. They also discuss practical and
ethical issues associated with allocation within higher level units, especially where
these are for example schools, where ‘contamination’ and lack of independence can
arise (see also Goldstein and Blatchford, 1998, for a discussion in the context of
educational interventions).

In practice, balanced designs are a special case and interest focuses on both fixed
and random parameters. Analytical results are generally not available for unbalanced
designs, but a guide to design efficiency can be obtained by simulating the effect of
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different design strategies and studying the resulting characteristics of the parameter
estimates, such as their mean squared errors. This will be time consuming however,
since for each design a number of simulated samples will be required. Mok (1995)
carries out such an analysis for a 2-level random coefficient model and makes tentative
recommendations based upon the intra unit correlation and numbers of level 1 and
level 2 units.

Cohen (1998) considers the optimality (efficiency) with respect to various fixed
and random effects in a 2-level balanced model as a function of the intra-school
correlation and shows that optimality criteria can vary considerably with the choice
of parameter. Moerbeek and Wong (2002) extend these results by considering the
robustness to misspecification of the intra unit correlation and also consider ways of
combining optimal choices across parameters. They consider the case where weights
are chosen to minimise a linear function of parameter variances. It is also possible
to consider an optimality criterion based, for example, upon the determinant of the
covariance matrix of the fixed or random parameters.

More recently, Browne et al. (2009) have produced a general package that will
carry out power calculations for a variety of multilevel models with balanced or
unbalanced designs, including cross-classified models. This is available as a free-
standing package, or as a set of macros that can be used within MLwiN or R.
Raudenbush (2009) has also developed a free-standing package.
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4

Multilevel models for discrete
response data

4.1 Generalised linear models
All the models of previous chapters have assumed that the response variable is
continuously, and in particular normally, distributed. We now look at data where the
response is essentially a count of events. This count may be the number of times an
event occurs out of a fixed number of ‘trials’, in which case we usually deal with the
resulting proportion as response: an example would be the proportion of deaths in a
population, classified by age. We may also have a vector of counts representing the
numbers of events of different kinds which occur out of a total number of events: an
example is given in Chapter 3, where we studied the number of responses to each
ordered category of a question on abortion attitudes.

Statistical models for such data belong to the class of ‘generalised linear models’
(McCullagh and Nelder, 1989). A 2-level model can be written in the general form

πij = f (Xβ)ij (4.1)

where πij is the expected value of the response for the ij-th level 1 unit and f is a
nonlinear function of the ‘linear predictor’ (Xβ)ij. Note that we can allow random
coefficients at level 2. The model is completed by specifying a distribution for the
observed response yij|πij. Where the response is a proportion, this is typically taken
to be binomial and where the response is a count taken to be Poisson. It remains for us
to specify the nonlinear ‘link’ function f . Table 4.1 lists some of the standard choices,
with logarithms chosen to base e. We see later how functions of these applied, for
example, to ordered categories, can be specified.

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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Table 4.1 Some basic nonlinear link functions.

Response Name

Proportion f −1 = log{(π )/(1 − π )} logit
Proportion f −1 = log{− log(1 − π )} complementary

log-log

Proportion π =
(Xβ)∫

−∞
φ(t)dt Probit

Vector of proportions f −1 = log(πs/πt )(s = 1, . . . , t − 1) multivariate logit
Vector of proportions f −1 =

log

{

log

(
1

t − 1
+ π (s)

π (t)

)}

= (Xβ),

(s = 1, . . . , t − 1)

π (s) =
(

ee(Xβ)(s) − 1

t − 1

)( t−1∑

h=1
ee(Xβ)(h)

)−1

Multivariate
complementary
log-log

Count f −1 = log(π ) Log

We can also have the ‘identity’ function f −1(π ) = π , but this can create dif-
ficulties since it allows, in principle, predicted counts or proportions which are,
respectively, less than zero or outside the range (0,1). Nevertheless, in many cases,
using the identity function produces acceptable results which may differ little from
those obtained with the nonlinear functions. In the following sections we consider
each common type of model in turn with examples. We shall also be introducing new
estimation procedures based upon maximum likelihood, MCMC, and quasilikelihood
approximations.

4.2 Proportions as responses
Consider the 2-level variance components model with a single explanatory variable
where the expected proportion is modelled using a logit link function

πij = {1 + exp(−[β0 + β1x1ij + u0 j ])}−1 (4.2)

The observed responses yij are proportions with the standard assumption that they
are binomially distributed

yij ∼ Bin(nij, πij) (4.3)

where nij is the denominator for the proportion. We also have

var(yij|πij) = πij(1 − πij)/nij



P1: TIX/XYZ P2: ABC
c04 JWST015-Goldstein August 16, 2010 9:0 Printer Name: Yet to Come

MULTILEVEL MODELS FOR DISCRETE RESPONSE DATA 113

To emphasise the link with continuous responses and to introduce quasilikelihood
estimation we now write the level 1 component as

yij = πij + eijzij, zij =
√

πij
(
1 − πij

)
/nij, σ 2

e = 1 (4.4)

Using this explanatory variable Z and constraining the level 1 variance associated
with its random coefficient (eij) to be one, we obtain the required binomial variance
in (4.4). When fitting a model we can also allow the level 1 variance to be estimated
and by comparing the estimated variance with the value 1.0 obtain a test for ‘extra
binomial’ variation. Such variation may arise in a number of ways.

For example, if we have omitted a level in the model, say ignored household
clustering in a survey with one or more individuals sampled from a household, we
would expect a greater than binomial variation at the individual level. Likewise,
suppose the individuals and households were nested within areas and we chose to
classify individuals, say by gender and three social class groups giving six cells in
each area. If we treat these as the level 1 units so that the response is a proportion,
then we no longer have a binomial variance, since these proportions are based upon
the sum of separate binomial variables with differing probabilities. Here the variance
for cell j within an area would have the form

[π j (1 − π j ) − σ 2
1 ]/n j

where n j is the cell size. To fit such a model, we would specify an extra level 1
explanatory variable equal to 1

/√n j for the j-th cell, with ‘variance’ parameter at
level 1 which is allowed to be negative (see Section 3.1). More generally, we can fit
a model with an extra binomial parameter together with a further term such as above
to give the following level 1 variance structure (omitting subscripts)

[σ 2
0 π (1 − π ) + σ 2

1 ]/n

We do not, of course, know the true value πij or π j so that at each iteration we
use estimates based upon the current values of the parameters. Because we are using
only the mean and variance of the binomial distribution to carry out the estimation,
the estimation is known as ‘quasilikelihood’ (see Appendix 4.1 for details).

Another way of modelling such extra binomial variation, which has certain advan-
tages, is to insert a ‘pseudo level’ above level 1. Thus, for individuals sampled within
households, level 1 would be that of the individual and we would specify level 2 as
that of the individuals also to give exactly 1 level 1 unit per level 2 unit. We specify
binomial variation at level 1 and at level 2 we can now fit further random coefficients.
For example, if we fit a random coefficient for the explanatory variable (with a ‘vari-
ance’ parameter which can be allowed to be negative) this is equivalent to specifying
an extra level 1 variable 1

/√n j as above. In the above example where individuals
are classified by gender and social class we can create a level 2 unit coinciding with
each level 1 unit, fit binomial variation at level 1 and add level 2 variation which is
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a function of gender and social class, for example an additive function with four
parameters (see Chapter 3). We may wish to model the between-area variation of the
cell proportions in terms of a simple variance term, rather as inversely proportional
to n j , in which case we would choose a simple dummy variable structure rather than
explanatory variables proportional to 1

/√n j . This ‘pseudo level’ procedure is rather
similar to the way in which a meta analysis with known level 1 variation is modelled
(Chapter 3).

In Appendix 4.1, we describe a linearisation procedure that allows us to use
existing IGLS and RIGLS estimation for generalised linear models. Thus, for the
model given by (4.2) and (4.4) a second order Taylor series expansion about the
current values of the estimated residuals gives

πij = fij(Ht ) − X2i jβ2,t f ′
ij(Ht ) + (Z2i j û2 j ) f ′

ij(Ht )

+ X2ijβ2,t+1 f ′
ij(Ht ) + (Z2iju2 j ) f ′

ij(Ht ) + Z2ij(u2 j − û2 j )
2 f ′′
ij (Ht )/2 (4.5)

Ht = X2ijβ2,t + Z2ijû2 j

where the terms on the right-hand side of the first line of (4.5) form an offset subtracted
from the response at each iteration. We refer to estimates based upon (4.5) as PQL2
estimates; that is, predictive quasilikelihood with a second order approximation. If
a first order approximation is used these are PQL1 estimates and if the expansion is
about zero rather than the current residual estimates (û2 j ) these are known as marginal
quasilikelihood estimates, MQL2 and MQL1 respectively.

In many applications, the MQL procedure will tend to underestimate the values of
both the fixed and random parameters, especially where nij is small. Greater accuracy
is obtainable if the second order approximation is used rather than the first order
based upon the first term in the Taylor expansion. Also, when the sample size is small
the unbiased (RIGLS, REML) procedure should be used. To illustrate the difference,
Table 4.2 presents the results of simulating the following model, where the response is

Table 4.2 Mean values of 400 simulations. Empirical standard error in first bracket;
mean of estimated standard errors in second bracket (IGLS).

True σ 2
u0 = 0.5 True σ 2

u0 = 1.0

Parameter
MQL first
order

PQL second
order

MQL first
order

PQL second
order

σ 2
u0 0.386(0.115)

(0.130)
0.480(0.157)

(0.152)
0.672(0.157)

(0.188)
0.964(0.278)

(0.255)
β0 0.448(0.126)

(0.129)
0.499(0.139)

(0.138)
0.420(0.145)

(0.149)
0.500(0.171)

(0.172)
β1 0.934(0.154)

(0.147)
1.018(0.168)

(0.154)
0.875(0.147)

(0.145)
1.017(0.171)

(0.158)
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binary (0,1). The example assumes one moderate and one fairly large level 2 variance.

logit(πij) = β0 + β1xij + u0 j
yij ∼ Bin(1, πij)
var(u0 j ) = 0.5, 1.0
β0 = 0.5, β1 = 1.0

There are 50 level 2 units with 20 level 1 units in each level 2 unit. The following
results are based upon 400 simulations of the above model for each variance value.

It is clear that the MQL first order model underestimates all the parameter values,
whereas the second order PQL model produces estimates closer to the true values.
The estimates given are based upon IGLS. In every case, convergence was achieved
in less than 10 iterations. Very similar estimates for the fixed coefficients are obtained
using RIGLS, and for the level 2 variances the PQL estimates become 0.498 and
0.996 respectively, which are closer to the true values. In addition, the averages of
the standard errors given by both models are reasonably close to those calculated
empirically from the replications. If we calculate 95 % confidence intervals for the
parameters in the second order PQL model using the estimated standard errors and
assuming normality then for the variance, we find that about 91 % of the intervals
include the true value and for β0 and for β1 about 95 % do so. Hence, inferences about
the true values would not be too misleading. The results of Table 4.2 are based upon
a balanced dataset with equal numbers of level 1 units within each level 2 unit. In
other cases, none of these procedures works satisfactorily. Thus, for example, when
the average observed probability is very small (or very large), if many of the level 2
units have few level 1 units and there are very few level 2 units with large numbers of
level 1 units, we will often find: that where the response is binary, there will be many
level 2 units where the responses are all zero; that convergence with PQL2 or PQL1
often may not be possible; and that even where estimates are obtained, they may be
substantially biased.

Rodriguez and Goldman (2001) discuss this issue and make recommendations.
Where these quasilikelihood methods cannot be used, we may carry out a full maxi-
mum likelihood estimation (Appendix 4.2), use MCMC (Appendix 4.3) or carry out
an iterated bootstrap (Appendix 4.4); these procedures are illustrated in the follow-
ing example.

4.3 Examples

4.3.1 A study of contraceptive use
This dataset comes from the 1988 Bangladesh Fertility Survey (Huq and Cleland,
1990). It consists of 1934 women who are grouped in 60 districts; the response of
interest is whether these women were using contraceptives at the time of the survey.
Explanatory variables include age, the number of existing children and whether the
district is urban or rural.
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Table 4.3 Contraceptive use in Bangladesh. Standard errors in brackets.

Fixed parameter A (MQL1) B (PQL2)

Intercept −1.59 −1.72
Age∗ −0.025 (0.008) −0.026 (0.008)
Urban 0.754 (0.162) 0.816 (0.170)
1 child 1.06 (0.16) 1.14 (0.16)
2 children 1.27 (0.17) 1.36 (0.18)
3+ children 1.26 (0.18) 1.36 (0.18)

Random parameter
σ 2
u0 (intercept) 0.334 (0.103) 0.396 (0.118)

σu01 −0.353 (0.142) −0.414 (0.160)
σ 2
u1 (urban) 0.596 (0.258) 0.685 (0.284)

∗Age is centred at the mean age of 29.56. The base categories for other variables are ‘rural’
and 0 children. RIGLS estimation.

The MQL1 estimates are fairly close to the PQL2 estimates and in fact there are
only 2 level 2 units (districts) with less than 10 women. There is a clear relationship
with age, younger women being more likely to use contraceptives. Urban women
are far more likely to use contraceptives, the odds ratio being e0.82 = 2.3. In terms
of number of children, the greatest difference is in moving from no children to one
child, an odds ratio of 3.1, with little change after 2 children. There is a relatively large
variation in the between-district urban-rural difference. If we allow extra-binomial
variation for the PQL2 model, the estimate of the multiplicative term is 0.96 with a
standard error of 0.03; and if we fit an additive term we obtain a value of –0.09 with a
standard error of 0.15. Neither of these estimates provides evidence for extra binomial
variation. A large sample ‘Wald’ test (Chapter 2) gives χ2 = 6.96, P < 0.05.

Figure 4.1 shows the standardised residual plots for the intercept and coefficient
of urban locality.

These plots produce approximately straight lines. Some care is needed with such
plots when the number of level 1 units per higher level unit is small. The residual
estimate is a linear function of binary responses and even where the underlying higher
level distribution is normal, we will need a reasonably large number of these responses
to approximate it adequately, especially with very small or very large probabilities.

Table 4.4 shows the parameter estimates for the model of Table 4.3, using MCMC,
maximum likelihood and the iterated bootstrap (Appendix 4.4). The maximum likeli-
hood estimates are obtained using simulated maximum likelihood with 400 simulated
replicates. The MCMC estimation uses 5000 iterations and assumes flat diffuse pri-
ors for the fixed effects and minimally informative inverse Wishart priors (using
MQL1 random parameter estimates) for the random parameters at level 2 and inverse
Gamma priors at level 1 (Appendix 2.5). The iterated bootstrap uses 500 replicates
per bootstrap set and 10 sets.



P1: TIX/XYZ P2: ABC
c04 JWST015-Goldstein August 16, 2010 9:0 Printer Name: Yet to Come

MULTILEVEL MODELS FOR DISCRETE RESPONSE DATA 117

3.0

In
te

rc
ep

t

Normal score

Standardised residuals by Normal scores

2.3

1.5

0.8

0.0
−0.8

−1.5

−2.3

−3.0
−3.0 −2.3 −1.5 −0.8 0.0 0.8 1.5 2.3 3.0

3.0

U
rb

an

Normal score

2.3

1.5

0.8

0.0

−0.8

−1.5

−2.3

−3.0
−3.0 −2.3 −1.5 −0.8 0.0 0.8 1.5 2.3 3.0

Figure 4.1 Residual plots for analysis B in Table 4.3.

The maximum likelihood deviance criterion for the urban random effects is judged
using a chi-bar test and is highly significant and is rather larger than the Wald test for
PQL2 estimates. For MCMC the DIC change (Chapter 2) is also substantial, indicating
an improvement from adding urban random effects. The parameter estimates for all
three methods are similar, and in particular, the variance estimates are somewhat
larger than those for PQL2 and substantially larger than for MQL1.

4.3.2 Modelling school segregation
In Chapter 3, we discussed the modelling of the variance structure at different levels.
We now give an example where the principal interest of the analysis lies in relating
the variation of the response to explanatory variables.

A concern of educators is the extent to which certain minority groups, defined
by such factors as ethnicity or social background, may become over-concentrated
in some schools. There is a long history of attempts to measure what has come to
be termed ‘segregation’. A useful summary is given by Allen and Vignoles (2007)
who discuss different ways of characterising the variability across institutions. In
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Table 4.4 Estimates for model of Table 4.3 using alternative estimation procedures.
Standard errors in brackets (see text).

Fixed parameter
Maximum likelihood
(simulated) MCMC Iterated bootstrap

Intercept −1.72 −1.72 −1.71
Age∗ −0.026 (0.008) −0.027 (0.008) −0.027 (0.009)
Urban 0.820 (0.170) 0.805 (0.189) 0.813 (0.182)
1 child 1.138 (0.160) 1.157 (0.157) 1.122 (0.153)
2 children 1.360 (0.177) 1.376 (0.174) 1.356 (0.169)
3+ children 1.358 (0.183) 1.384 (0.180) 1.354 (0.178)

Random parameter
σ 2
u0 (intercept) 0.390 (0.120) 0.418 (0.137) 0.403 (0.113)

σu01 −0.402 (0.182) −0.432 (0.176) −0.426 (0.164)
σ 2
u1 (urban) 0.654 (0.362) 0.738 (0.303) 0.714 (0.300)

Deviance criterion
for addition of
urban random
effect. (DIC for
MCMC)

15.8 22.6

∗Age is centred at the mean age of 29.56. The base categories for other variables are ‘rural’
and 0 children. RIGLS estimation.

fact, all of these different ‘indices’ can be derived from the parameters of a particular
multilevel model, fitted to the data. We shall consider the case of social disadvantage
as measured (rather crudely) by the proportion of students in a school who are eligible
to receive free school meals (FSM) at lunchtime. For reasons to do with catchment
area or selection policies, in general schools will differ in the actual proportions
eligible for FSM. Interest lies in whether this differs across different regions of a
country or changes across time, etc.

We note, to begin with, that even where there is no mechanism responsible for
schools differing in these proportions, random fluctuations will lead to an observed
difference in proportions. Thus, our aim is to set up a statistical model that allows us
to study underlying differences and a simple such model is given by

logit(πij) = (Xβ)ij + v j + uij
pij ∼ bin(nij, πij), v j ∼ N (0, σ 2

v ), uij ∼ N (0, σ 2
u )

(4.6)

where j indexes Local Education Authority (LEA) (School Board), i indexes schools
and pij is the observed proportion in the ij-th school. Our interest centres on the
between-school and between LEA variation, as summarised in the variance parame-
ters σ 2

u , σ
2
v .
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Table 4.5 Variance estimates (standard errors) for each of five years for English
Secondary schools.

Year Between-school Between LEA Total

1994 0.625 (0.016) 0.491 (0.066) 1.116
1995 0.636 (0.016) 0.522 (0.072) 1.158
1996 0.650 (0.016) 0.503 (0.064) 1.153
1997 0.660 (0.017) 0.498 (0.069) 1.158
1998 0.685 (0.017) 0.506 (0.068) 1.191
1999 0.691 (0.017) 0.506 (0.068) 1.197

A full discussion of this model and the results of the following data analysis is
given by Goldstein and Noden (2003), who show that (4.6) is indeed a good fit to the
observed data and hence a suitable basis for studying segregation. Their main results
are summarised in Table 4.5.

We can see that there is an 11 % increase in the variability between-schools (within
LEA) over the five-year period with no discernible trend for LEAs. Goldstein and
Noden also find that the increase in segregation is greater for those LEAs that ran a
selective secondary school system where students’ secondary school was determined,
at least partly, on the basis of their prior educational achievement; the authors offer
various interpretations of these findings. Leckie et al. (2010) show how the traditional
segregation indices can be derived more efficiently as functions of estimated model
parameters.

4.4 Models for multiple response categories
In this section, we extend the model for a single proportion as outcome to the case of
a set of proportions; for example, the proportions voting for three different political
parties. The response is now multivariate and we can define a generalisation of the
ordinary logit model to define a multivariate logit as follows for a simple 2-level
variance components model

log

(
π

(s)
ij

π
(t)
ij

)

= β
(s)
0 + β

(s)
1 xij + u(s)

j , s = 1, . . . ., t − 1 (4.7)

where there are t response categories. Choosing one category (say t) as the base
category avoids redundancy and a singular covariance matrix and hence the need to
introduce generalised inverses into the estimation. There are cases, however, where
this procedure is inappropriate and we discuss these below. Thus, (4.7) specifies the

model for each of the remaining t − 1 categories with
t∑

h=1
π

(h)
ij = 1. When t = 2 this
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reduces to the ordinary logit model. We can also define a multivariate complementary
log-log link as shown in Table 4.1, which again reduces to the ordinary log-log model
when t = 2 (see Chapter 7 for more detail on the corresponding probit link).

We treat the t − 1 response categories as a multivariate response vector (see Chap-
ter 6 for details about how multivariate response models are specified). In this case
we use dummy variables with no variation at level 1 and the true level 1 covariance
matrix specified at level 2. Consider, for example, a single level model where individ-
uals have three response categories, t = 3. We specify a bivariate model where level
2 describes the between-individual variation. If we make the standard assumption that
the observed response proportions follow a multinomial distribution then the level
2 covariance matrix has the form

n−1
ij

⎛

⎜
⎜
⎜
⎜
⎜
⎝

π
(1)
ij (1 − π

(1)
ij )

−π
(1)
ij π

(2)
ij .

. .

. .

−π
(1)
ij π

(t−1)
ij . . . π

(t−1)
ij (1 − π

(t−1)
ij )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.8)

where nij is the total number of responses over all categories.
We can create the covariance structure (4.8) as follows. Define the explanatory

variables

z1ij = √
πij/nij, z2ij = πij/

√
2nij

z3ij = −πij/
√

2nij, πij = {π (s)
ij } (4.9)

and specify Z1 to have a random coefficient at level 1 with variance constrained to
1.0 and Z2,Z3 to have random coefficients at level 2 constraining their variances to
zero and their covariance to 1.0. This produces the structure (4.8); extra multinomial
variation can be achieved by allowing the variance and covariance to be different
from 1.0 but constraining them to be equal. Level 3 will define variation between
higher level units, for example, schools.

The response vector itself is not restricted to a single classification. Thus, suppose
we are studying individual grades in examinations. If we had two responses each with
three categories, this produces nine response categories of which just one contains the
value 1 for each individual. A ‘main effects’ model extension to (4.7) would express
the probability of any particular combination of first and second preferences as an
additive function of a term for the first and for the second exam grade as follows

log

(
π

(s=s1,s2)
ij

π
(t)
ij

)

= β
(s1)
0 + β

(s2)
0 + β

(s1)
1 x1ij + β

(s2)
1 x2ij + u(s1)

j + u(s2)
j ,

s = 1, . . . ., t − 1
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For the random parameters it might be reasonable to attempt to fit a model where
the covariances between the u(s1)

j , u(s2)
j were zero in order to reduce the number of

random parameters in the model.
To see how we can interpret the parameters of these models, we write,

from (4.7)

log
(
π

(r )
ij /π

(s)
ij

) = (
β

(r )
0 − β

(s)
0

) + (
β

(r )
1 − β

(s)
1

)
xij +

(
u(r )
j − u(s)

j
)

(4.10)

so that a unit change in xij multiplies the ratio of the r-th and s-th response probabilities
by exp(β(r )

r − β
(s)
1 ). Likewise a difference of d in the residuals or in the intercept terms

multiplies this ratio by ed .
This formulation of the multicategory response model is adequate for models

such as (4.7) where coefficients are fitted for each response category (except the
base). There are other models, however, where we may wish to fit a function defined
across the categories. This will often be the case when there are a large number
of ordered categories where we wish to study linear, quadratic, etc., trends across
the categories, although, as we point out in Section 4.2, there will often be more
satisfactory procedures for such cases based upon consideration of the cumulative
probabilities π

(1)
ij , π

(1)
ij + π

(2)
ij , . . ..

Where we do wish to treat the categories symmetrically and define a function
across the response categories, we replace the intercept term β

(s)
0 in (4.7) by such a

function. If we assume a linear function then (4.7) can be written as

log

(
π

(s)
ij

π
(t)
ij

)

= γ0 + γ1w
(s) + (β0 + β1w

(s))xij + u(s)
j , s = 1, . . . . , t − 1 (4.11)

where w(s) is the score assigned to category s. We might also wish to structure the
level 2 variation, for example, writing u(s)

j = u0 j + u1 jw
(s). Such a model will be

especially useful when the number of categories becomes large.
In (4.11), the choice of base category is no longer irrelevant since the score

assigned to this category does not appear in the model. We can avoid this difficulty
by defining the multivariate logistic over all the response categories (s = 1,. . .,t); in
(4.11), the level 2 resulting covariance matrix will not be singular so long as the set
of response category probabilities is predicted using fewer responses than there are
categories. An alternative formulation, using the Poisson with a log-link function as
described below, will often be more convenient.

As with the case of a single proportion as outcome, we have a choice of quasi-
likelihood, maximum likelihood or MCMC estimation procedures. With multiple
responses, however, the biases associated with MQL can be very large for (0,1)
responses and can also be affected by choice of base category.
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4.5 Models for counts
Instead of using a set of proportions as the response we can consider the underlying
event counts as the set of responses. Thus, for example, in the single exam grade
case, suppose we classify individuals by three initial achievement categories and by
gender. In each of the six cells within each level 2 unit, which is now, say, a school,
we have counts of the numbers in each of the three grades, which yields 18 counts.
The expected number of individuals in each grade can be written

msij = Mjπ
(s)
ij

where s indexes the grades, i indexes the six cells within each level 2 unit and Mj is
the number of individuals in the j-th school. Our inferences are therefore conditional
on these totals. We write, corresponding to (4.7)

log(msij) = log(Mj ) + β
(s)
0 + β

(s)
1 xij + u(s)

j , s = 1, . . . t (4.12)

The term log(Mj ) is a fixed part offset and when using such offsets it may be better to
centre them about their mean, in order to avoid numerical instabilities. Corresponding
to the multinomial assumption, we now make the assumption of a Poisson distribution
for the observed counts nsi j , which are assumed conditionally independent with

E(nsij) = msij, var(nsij|msij) = msij

We now have a 2-level model where at level 2 we have the school and the level
1 units are the set of counts for the classification of grade by initial achievement
category and gender. A basic additive model will have explanatory variables, consist-
ing of an intercept, two dummy variables for grade, two dummy variables for initial
achievement and one for gender. We might also wish to include interactions between
grade and initial achievement and grade and gender.

The level 1 variation is specified using the predicted number for each level 1 unit
and the estimation follows the same pattern as for the binomial model, using the
corresponding expressions given in Appendix 4.1. The level 1 random part will be
defined by a dummy variable equal to the square root of the predicted count and with
variance constrained to one where a Poisson distribution is assumed.

There are some applications where the response is a count and we do not require
an offset, or where the offset is effectively constant. For example, if we were interested
in the number of times individuals visited their general practitioner or physician in a
year, we could collect data over a one-year period for all individuals and study the
variation in counts across practitioners (level 2) according to individual, practitioner
and area characteristics.

There are variations on the Poisson distribution assumption which we may wish
to use. For example, the negative binomial distribution can be obtained from a process
whereby the response is generated by counting the number of incidents for each level
1 unit; and where, conditional on the fitted explanatory variables and higher level
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terms, the mean count for each level 1 unit has a Gamma distribution with index v.
This leads us to consider level 1 variance functions of the general form k1m + k2m2,
where k1 = 1 gives the negative binomial distribution with k2 = 1/v. We could add
further terms or consider even a nonlinear function.

As with binomial distribution models we can use maximum likelihood (Appendix
4.2) or MCMC estimation (Appendix 4.3).

4.6 Ordered responses
In the exam grade example of the previous section, we ignored the fact that the
scale was ordered. Such response scales are common and are sometimes analysed
by assigning scores, then treating them as if they were continuous. While this may
often be satisfactory, there are situations – for example, where the distribution is very
skew – where such a procedure is questionable. One possible alternative, mentioned in
Section 4.5, is to assign scores to the categories of the response variable and then carry
out an analysis based upon the multinomial or Poisson model, using all the response
categories in the analysis. Such a procedure, like the continuous response model,
typically relies on choosing a suitable scoring system. Another option is to assign
scores by minimising a measure of between-unit disagreement, as in correspondence
analysis or dual scaling (Greenacre, 1984; Goldstein, 1987 c). We will now look at
procedures which avoid the arbitrariness of assumptions involved when assigning
numerical scores.

To exploit the ordering, we can base our models upon the cumulative response
probabilities rather than the response probabilities for each category. We define
these as

E(y(s)
ij ) = γ

(s)
ij =

s∑

h=1

π
(h)
ij , s = 1, . . . , t − 1 (4.13)

where y(s)
ij are the observed proportions out of a total nij and s now indexes the ordered

cumulative categories. If we assume an underlying multinomial distribution for the
category probabilities the cumulative proportions have a covariance matrix given by

cov
(
y(s)
ij , y(r )

ij
) = γ

(s)
ij

(
1 − γ

(r )
ij

)
/nij, s ≤ r (4.14)

We can therefore fit models to these cumulative proportions (or counts, conditional
on a fixed total) in the same way as with the multinomial response vector, substituting
the covariance matrix (4.14) for (4.8). A discussion of these and related models is
given in McCullagh and Nelder (1989). A common model choice is the proportional
odds model, which uses a logit link, namely

γ
(s)
ij = {1 + exp −[α(s) + (Xβ)ij]}−1 (4.15)
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which implies that increasing values of the linear component are associated with
increasing probabilities with increasing s. We also require α(1) ≤ α(2) . . . . ≤ α(t−1).

Another choice is the proportional hazards model, which uses a log-log link
to give

γ
(s)
ij = {1 − exp[− exp(α(s) + (Xβ)ij)]} (4.16)

An important special case of these models is where the categories are ordered in
time so that α(s) can be modelled as a function of time, and satisfying the above order
relationship among these parameters. Some choices would be

α(s) = δ log(ts), α(s) = δts (4.17)

Such a model might be used in developmental studies where individuals pass
through a set of time-ordered stages. In studies of children, for example, it is possible
to identify ‘milestones’ of development, starting with none; all have been passed
when developmental ‘maturity’ is reached. A repeated measures study would count
the number passed at each time point, so yielding a cumulative proportion in relation
to time and other covariates. We would then be able to fit a 2-level model with
variation between individuals involving any of the parameters in (4.15), (4.16) or
(4.17). We return to such models when we consider survival or event history models
in Chapter 11.

Another example of longitudinal discrete response data is where, at each measure-
ment occasion, we have a vector of ordered categorical responses and each individual
in the study responds to one category. The cumulative response vector for each indi-
vidual at each occasion then contains zero for each response category less than the
category to which the individual responds and a one for that category and each higher
one. We can model the time dependence within the set of explanatory variables X,
and would normally wish to include the possibility of interactions between the α(s)

and time. In such a model, the basic covariance structure given by (4.14) represents
the between-occasion covariation. Thus, although the data structure is represented
by level 1 as the categories, level 2 as occasion and level 3 as individual, the higher
level variation is only estimated at level 3. This can be compared to the simple binary
response model where the binomial response variance is that between occasions,
and the structure defines occasion as level 1 and individual as level 2 since there is a
single response for each occasion. We also note that similar considerations apply to
all the multicategory response models, with higher level variation estimated at level 3
and above.

4.7 Mixed discrete-continuous response models
An extension of the multivariate models to be considered in Chapter 6 is where some
of the responses are continuous and some are discrete. In a repeated measures study,
we may have a response which is the (discrete) maturity stage that an individual
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has reached, as well as continuous measurements such as height and weight; we
may wish to treat, say, the maturity stage as the response, conditional on height
and weight and further covariates, including age. In other situations, for example,
if we are interested in prediction systems, then we would wish to consider all the
measurements as responses, conditional on covariates. In another example, suppose
we have measurements on smoking habit, including whether someone smoked and
if so at what rate. We can consider this as a bivariate response model where each
individual has a binary response for whether or not they smoke and if they do a further
response for the number smoked per day.

We develop the model for the case of individual smoking habits with one binary
and one continuous response, and then look at the more general case of several binary
responses. The extension to several responses of each type is straightforward, as is
the extension to multicategory responses and count data.

As in the standard multivariate multilevel model, we have no variation at level 1;
at level 2, that of the individual, indexed by i,we have a binomial variance associated
with the smoking/no smoking response and a between-individual variance for the
number smoked. The variance for the binary response is the usual binomial variance
and that for the continuous response is a parameter to be estimated. At the higher
level, indexed by j, the variances and covariances will be defined in the standard
fashion. For a 2-level model with individuals nested within, say, households we write
the model in two parts. For the binary response probability

logit(πij) = (X1β1)ij + u1 j
yij ∼ binomial(1, πij)

and for the continuous response

yij = (X2β2)ij + u2 j + eij

with

eij ∼ N (0, σ 2
e ),

(
u1 j
u2 j

)

∼ N (0,	u) , 	u =
(

σ 2
u1

σu12 σ 2
u2

)

(4.18)

In the general case, an individual can have any combination of responses – as in
the maturity example – and the individual level covariance will have the form of
an (adjusted) biserial covariance (1 − π̂ jk)π̂ jk(ŷ1 jk − ŷ2 jk), where π̂ jk is the esti-
mated probability of a positive response and ŷ1 jk, ŷ2 jk are respectively the predicted
values of the continuous response for a positive and negative binary response. We
can fit this using an extra covariance term in the model at the individual level, con-
strained to have the above value. If we assume that ŷ1 jk − ŷ2 jk is constant, then
we can fit this term by defining a further explanatory variable equal to the existing
variable, defining the binomial variation at the individual level, and fitting just a
covariance term between this further explanatory variable and the existing binomial
explanatory variable. This gives the required estimate of ŷ1 jk − ŷ2 jk . In the smoking
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example, since non-smokers do not have any number smoked, this covariance term
does not exist.

In the next section, we look at a more flexible alternative formulation that allows
us to model categorical variables in terms of underlying continuous ones.

4.8 A latent normal model for binary responses
In many cases, a binary response can be thought of as being derived by choosing
a threshold from an underlying continuous distribution so that the response is 1 if
above the threshold and 0 if below. This might arise in assigning pass/fail grades for
an examination based on a mark cut-off. Likewise, a series of ordered grades may be
derived from an underlying mark scale. Another example is in the categorisation of
illness severity, where there is no actual underlying continuous scale but interest may
lie in constructing one from observed categories. A similar situation might arise with
attitude measurement.

Suppose that we have a variance components 2-level model for the underlying
continuous variable written as

yij = (Xβ)ij + u j + eij (4.19)

and suppose a positive value occurs when yij > 0. We then have

Pr(yij > 0) = pr (eij > −[(Xβ)ij + u j ]) (4.20)

Now if we assume eij ∼ N (0, 1), (equivalent to fixing the lowest level variance to be
binomial) the probability in (4.20) is

∞∫

−[(Xβ)ij+u j ]
φ(t)dt =

[(Xβ)ij+u j ]∫

−∞
φ(t)dt

where φ(t) is the probability density function (pdf) of N (0,1), which is in fact just
the probit link function. In Appendix 4.3, we show how we can estimate the parameters
of this model, where the ‘latent’ random variable has a normal distribution, using
MCMC, sampling from the underlying level 1 N(0,1) distribution.

We have an analogous model for the logit link function. The logistic distribution
has the following density function

f (x) = exp(x)

[1 + exp(x)]2
(4.21)
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which has zero mean and variance 3.290 and where the required cumulative function
is obtained as

∞∫

−Y
f (x)dx = [1 + exp(−Y )]−1 (4.22)

which is just the usual logit link function.
We can also model an underlying continuous distribution for the log-log link. We

have a Gumbel distribution with density function

f (x) = exp(−x)(exp −[exp(−x)]) (4.23)

which has mean −0.577 and variance 1.645. We have

∞∫

−Y
f (x)dx = 1 − exp(− exp(Y )) (4.24)

which is just the complementary log-log link function.
We can carry out analogous estimation for ordered data, unordered data and

count data, as detailed in Chapter 7, where we also discuss multivariate models with
mixtures of normal and discrete responses; these models use the probit link function
that leads to underlying multivariate normal distributions.

4.9 Partitioning variation in discrete response models
In Chapter 3, we pointed out that in random coefficient models the variance partition
coefficient (VPC) was a function of the predictor variables with random coefficients.
In discrete response models, the computation and interpretation of the VPC is more
complex. We now discuss a model with a binary response, but our remarks apply
more generally to models for proportions, for different non-identity link functions
and also where the response is a count, in fact, to any nonlinear model. For a (0,1)
response, Model (4.1) can be written

E(yij) = πij = f (β0x0 + β1x1i j + u0 j )
yij ∼ Bernoulli(πij)
u0 j ∼ N (0, σ 2

u0)
(4.25)

Unlike in the normal case, the level 1 variance depends on the expected value,
var(yij) = πij(1 − πij) and the fixed predictor in the model depends on the value of x1.
Therefore, as we are considering a function of the predictor variable x1, a simple VPC
is not available, even though there is only a single level 2 variance. Furthermore, the
level 2 variance, σ 2

u0, is measured on the logistic scale so is not directly comparable
to this level 1 variance.
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If we do wish to produce a measure that is the counterpart of that for continuous
responses, then the following procedures can be considered.

4.9.1 Model linearisation (Method A)
Using a first order Taylor expansion, as described in Appendix 4.1, we can write
(4.25) in the form

yij = (β0 + β1x1ij) f ′
ij + u j f ′

ij + eij
√

πij(1 − πij)
var(e0ij) = 1

where we evaluate πij at the mean of the distribution of the level 2 random effect, that
is, for the logistic model

πij = exp(β0 + β1x1ij)[1 + exp(β0 + β1x1ij)]
−1

f ′
ij = πij[1 + exp(β0 + β1x1ij)]

−1 (4.26)

so that, for a given value of x1 we have

var(yij|x1ij) = σ 2
u0π

2
ij [1 + exp(β0 + β1x1ij)]

−2 + πij(1 − πij)

and

τ = σ 2
u0π

2
ij [1 + exp(β0 + β1x1ij)]

−2

×{σ 2
u0π

2
ij [1 + exp(β0 + β1x1ij)]

−2 + πij(1 − πij)}−1

where sample estimates are substituted.

4.9.2 Simulation (Method B)
This method is general and can be applied to any non-linear model without the need to
evaluate an approximating formula. It is computationally reasonably fast and can be
made to yield as accurate a result as desired by increasing the number of simulations.
It consists of the following steps:

1. From the fitted model, say (4.25), simulate a large number m (say 5000)
values for the level 2 residual from the distribution N (0, σ 2

u0), using the sample
estimate of the variance.

2. For a particular chosen value(s) of x1 compute the m corresponding values of
πij (π∗

ij ) using (4.25). For each of these values compute the level 1 variance
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v1i j = π∗
ij (1 − π∗

ij ). In the case, say, of a Poisson response with a log link we
would compute the level 1 variance as π∗

ij .

3. The coefficient is now estimated as

τ = v2(v2 + v1)−1

v2 = var(π∗
ij ), v1 = E(v1ij)

4.9.3 A binary linear model (Method C)
As a very approximate indication for the VPC we can consider treating the (0,1)
response as if it were a normally distributed variable and estimate the VPC as in
that case. This will generally be acceptable when the probabilities involved are not
extreme, but if any of the underlying probabilities are close to 0 or 1, this model would
not be expected to fit well, and may predict probabilities outside the (0,1) range.

4.9.4 A latent variable approach (Method D)
As in Section 4.8, we may consider the observed (0,1) responses as arising from
an underlying continuous variable so that a 1 is observed when a certain threshold
is exceeded, otherwise a 0 is observed. For the logit model we have the underlying
logistic distribution given by (4.21) and (4.22)

Since the variance for the standard logistic distribution is π2/3 = 3.29 we take
this to be the level 1 variance and both the level 1 and level 2 variances are on a
continuous scale. We now simply calculate the ratio of the level 2 variance to the
sum of the level 1 and level 2 variances to obtain the VPC. A similar computation can
be used for the probit and log-log link functions. In Chapter 7, we describe a latent
normal model for the Poisson distribution so that a similar procedure can be used
where the level one variance is fixed at 1.0.

This approach may be reasonable where, say, a (0,1) response is derived from
a division of an underlying continuum such as a pass/fail response based upon a
continuous mark scale, but would seem to have less justification when the response
is truly discrete, such as mortality or voting. (See Snijders and Bosker, 1999, Chapter
14, for a further discussion.)

If we have fitted multiplicative extra-binomial variation (Section 4.1), then in
the above approaches the level 1 variance is multiplied by the estimated scaling
parameter. For additive extra-binomial variation this variance is added to the level
1 variance.

For the case of an ordered response with p categories, corresponding to methods
A–C, we can treat each cumulative proportion in the same way as binary data, yielding
p − 1VPC estimates. For D we can use the latent normal approach, as described in
Chapter 7, which corresponds to that for a binary response.
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4.9.5 An example of VPC calculations
We illustrate the procedures using some data on voting patterns (Heath et al., 1996).
The model response is whether or not, in a sample of 800 respondents, they expressed
a preference for voting conservative (yij = 1) in the 1983 British general election.
Several covariates were originally fitted but for simplicity we fit only an intercept
model, namely

E(yij) = πij = exp(β0 + u0 j )[1 + exp(β0 + u0 j )]−1

yij ∼ Bernoulli(πij)
u0 j ∼ N (0, σ 2

u0)

The fitted model parameters are as follows (using PQL2 with IGLS):

β̂0 = −0.256, σ̂ 2
u0 = 0.142

The VPC estimates are given in Table 4.6.
There is, as expected, good agreement for methods A, B and C with that for D

somewhat larger. Now, however, we choose a more extreme case. In Chapter 9 of
Rasbash et al. (2008), these data are fitted with four predictor variables measuring
political attitudes. The scales of these predictor variables are constructed such that
lower values correspond to left wing attitudes. If we take the set of values corre-
sponding to the fifth percentile point of each of the four predictors, then the predicted
value on the logit scale is approximately –2.5, corresponding to a low probability of
voting Conservative of 0.076. At this value of the predictor, the respective VPCs for
methods A and B are 0.0096 and 0.0111, which are again in reasonable agreement.
For method C, fitting the four predictor variables we obtain a value of 0.0257, which
is very different. For method D, the residual level 2 variance does not change very
much from the previous model, and we obtain a VPC of 0.047, which is also different
to the others. We note that the VPC for methods C and D do not depend on the value
of the linear predictor.

If one wishes to make inferences on an underlying continuous scale, then Method
D is appropriate. The choice of whether to report on the probability scale or an

Table 4.6 Level 2 and level 1 estimated variances with variance partition coefficient
(VPC).

Method

A B C D

Level 2 variance 0.0086 0.0083 0.0088 0.142
Level 1 variance 0.246 0.238 0.237 3.290
VPC 0.034 0.034 0.036 0.043
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underlying continuous scale will depend on the application; in the present example,
it may seem more natural to report directly on the probability scale rather than on an
assumed underlying continuous scale of ‘propensity’ to vote Conservative. We can
obtain an interval estimate for any of our estimates via the bootstrap or using the
results from an MCMC estimation run. Goldstein et al. (2002) give more details of
these procedures, including MLwiN macros for computing them.
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Appendix 4.1 Multilevel generalised linear
model estimation

4.1.1 Approximate quasilikelihood estimates
We consider a single nonlinear model of the form

yij = f (X2ijβ2 + Z2iju2 j ) + Z1ijC2ij (4.1.1)

At the (t +1)-th iteration we expand the nonlinear function f in (4.1.1) for both fixed
and random parts as follows using a Taylor series

fij(Ht ) + X2ij(β2,t+1 − β2,t ) f ′
ij(Ht ) + (Z2iju2 j ) f ′

ij(Ht ) + (Z2iju2 j )
2 f ′′
ij (Ht )/2

(4.1.2)

in terms of parameter values estimated at the t-th iteration. The first two terms of
(4.1.2) update the fixed part of the model and in the special case of a single level
model provides the usual updating function in maximum likelihood estimation. The
quantity fij(Ht ) − X2ijβ2,t f ′

ij(Ht ) is treated as an offset to be subtracted from the
response variable. The third term defines a linear random component based on the
explanatory variables transformed by multiplying by the first differential. We need to
specify Ht and then consider the distribution of this term. The level 1 term in (4.1.1)
is fitted in the usual way; the choice of Z1ij depending on the nature of the response,
as discussed in Section 4.1.

If we choose Ht = X2ijβ2,t , this is equivalent to carrying out the Taylor expansion
around the fixed part predicted value. If we choose Ht = X2ijβ2,t + Z2ijû2 j , this
expands around the current predicted value for the ij-th unit and we replace the last
two terms of (4.1.2) by

Z2ij(u2 j − û2 j ) f ′
ij(Ht ) + Z2ij(u2 j − û2 j )

2 f ′′
ij (Ht )/2

We thus have the further offset from the linear term to be added to the response

(Z2ijû2 j ) f ′
ij(Ht )

A discussion of these approaches in the context of multilevel generalised linear
models is given by Breslow and Clayton (1993). Wolfinger (1993) synthesises some
of the literature based upon this ‘predictive’ approach. All these methods use only
the first order terms in (4.1.2).

From the second line of (4.1.2), where the Taylor expansion is about zero,
we have

E(Z2iju2 j ) = 0, E(Z2iju2 j )
2 = σ 2

zu, σ 2
zu = Z2ij	u ZT2ij (4.1.3)
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To incorporate the second order terms we treat σ 2
zu f ′′(Ht )/2 as an additional offset

in the fixed part and in the random part of the model and we need to consider the
variation of the last term of (4.1.2). If we assume normality then all third moments,
formed from the product of the last two terms of (4.1.2), are zero and we have

var(Z2iju2 j )
2 = 2σ 4

zu (4.1.4)

so that we need to define the additional random variable Z∗
u = σ 2

zu f ′′(Ht )/
√

2 with
variance constrained to be equal to 1.0. Equivalently we can form Z∗

u Z∗T
u as an offset

for the response vector vec(Ỹ Ỹ T ) in the estimation of the random parameters.
Having modified the response variable by removing the necessary offsets we are

left in the fixed part with a modified response, say Y ′ with a modified explanatory
variable matrix, say X ′. We do likewise for the random part of the model and then
carry out a standard iterative procedure, updating the differential functions at each
iteration.

Where the Taylor expansion is taken about the current values of the residuals,
we require E(Z2ij(u2 j − û2 j ))2 which leads to the ‘conditional’ or ‘comparative’
variances of the residuals as described in Appendix 2.2, so that we substitute these in
the above expressions for the fixed and random offsets.

To estimate residuals we note that, having adjusted the response using the offsets,
we have on the right hand side of the model, for the Taylor expansion about zero, the
fixed part together with the random terms

(Z2iju2 j ) f ′
ij(Ht ) + ((Z2iju2 j )

2 − σ 2
zu) f ′′

ij (Ht )/2

Each residual and its square appear in this expression, and since third order
moments are zero, we can apply the usual linear estimation for the residuals as
described in Appendix 2.2. The weight matrix V is based upon both the linear and
quadratic terms of the above expression. We carry out an analogous procedure for
the case where the Taylor expansion is based upon the current residual estimates.

The above can be extended in a straightforward way to more than two levels and
to multivariate models. For the first order approximation the procedure outlined here
is closely related to that given by Lindstrom and Bates (1990) for 2-level repeated
measures data who consider a first order expansion about the unit-specific predicted
values. Gumpertz and Pantula (1992) consider a variance components model where
the fixed part predictor is nonlinear.

For generalised linear models Waclawiw and Liang (1993) consider a generalised
estimating equations (GEE) approach (see Chapter 2), using a unit-specific predictor.
A full likelihood based method for a repeated measures model with binary responses
is described by Garret et al. (1993) and issues arising from applications to repeated
measures data are discussed in Chapter 5.

For small samples, as discussed in Appendix 2.1, we should use the (RIGLS,
REML) procedure. As discussed in Chapter 4, for certain data configurations this
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procedure can produce biased estimates of the fixed and random parameters. In
Appendix 4.2, we discuss maximum likelihood estimation and bootstrapping.

4.1.2 Differentials for some discrete response models

The Logit – Binomial model

f = [1 + exp(−Xβ)]−1

f ′ = f [1 + exp(Xβ)]−1

f ′′ = f ′[1 − exp(Xβ)][1 + exp(Xβ)]−1

The Logit – Multinomial (Multivariate Logit) model

f (s) = exp(Xβ (s))

[

1 +
t−1∑

h=1

exp(Xβ(h))

]−1

, s = 1, . . . ., t − 1

f /(s) = f (s)

[

1 +
t−1∑

h=1

exp(Xβ(h))

]−1
⎡

⎣1 +
∑

h �=s
exp(Xβ(h))

⎤

⎦

f //(s) = f /(s)(1 − 2 f (s))

The Log – Poisson model

f = exp(Xβ)

f ′ = exp(Xβ)

f ′′ = exp(Xβ)

The complementary log log – Binomial model

f = 1 − exp[− exp(Xβ)]

f ′ = (1 − f ) exp(Xβ)

f ′′ = f ′[1 − exp(Xβ)]
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Appendix 4.2 Maximum likelihood estimation for
multilevel generalised linear models

4.2.1 Simulated maximum likelihood estimation
We have seen that for normally distributed data maximum likelihood (ML) or re-
stricted maximum likelihood (REML) estimates can be obtained readily using the
IGLS and RIGLS algorithms. For discrete response or generalised linear models the
estimation becomes more complicated. We discuss in Section 4.2.2 how numerical
quadrature can be used but that this becomes infeasible for models with large num-
bers of random coefficients and/or levels. Several simulation based alternatives have
been suggested (see, for example, McCulloch, 1997 who gives an example for a logit
model). One of these methods uses a stochastic version of the EM algorithm where,
instead of obtaining the relevant expectations in the E step, the expectations are es-
timated by generating draws from the estimated distribution of the random effects
using an MH algorithm with a suitable proposal distribution and averaging over the
draws. Another method is to use an iterative (scoring) algorithm for a generalised
linear model where, for the weights in the estimation of updated parameters, we use
expectations calculated again as averages over MH sampled values.

A useful general procedure, that is relatively straightforward to implement, is sim-
ulated maximum likelihood where the likelihood is evaluated directly by simulation.
We can write the full likelihood and corresponding loglikelihood as

L(β,	,U ) =
∏

f (Y |U ; β) f (U ; 	)

log[L(β,	,U )] =
∑

{log[ f (Y |U ; β)] + log[ f (U ; 	)]} (4.2.1)

This is an example of an extended likelihood (Appendix 2.3) and leads, for
example, to the estimation methods of Appendix 4.1 based upon approximating the
nonlinear function f (Y |U ; β).

An exact likelihood approach is to estimate the fixed and random parameters of
our model by treating the actual random effects U in (4.2.1) as nuisance parameters,
and to integrate them out and work with the marginal likelihood given by

L(β,	) =
∫

f (Y |U ; β) f (U ; 	)dU (4.2.2)

where the first term on the right-hand side is the distribution function for the responses
conditional on the random effects, or residuals, U. The second term is the distribu-
tion function for the random effects. The first term, given U, depends only on the
unknown parameters β and the second only on the unknown parameters 	. Thus, for
example, for a 2-level logistic binomial response model where the random effects are
assumed to be multivariate normal we have, since the random effects are independent
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across units,

L(β,	) =
∏

j

∫ ∏

i

{(πij)sij(1 − πij)
nij−sij}�(u j ; 	)du j

πij = {1 + exp(−Xijβ j )}−1, β j = β + u j
(4.2.3)

where � is the multivariate normal density function for the u j and nij, sij are the
numbers of trials and successes.

Now (4.2.2) is simply the expected value of f (Y |U ; β)over the distribution of
the random effects U. For any given choice of β,	 we could therefore, in princi-
ple, approximate the likelihood by repeatedly sampling sets of random effects from
f (U ; 	) computing f (Y |U ; β) and forming

N∑

h=1

f (Y |Uh ; β)/N (4.2.4)

where N is a suitably large number to achieve an acceptable accuracy. The problem is
that we do not know the maximum likelihood values of the random parameters to use
in the sampling. Suppose, however, that we have a good approximation to 	, say 	̃,
and we write (4.2.2) as

L(β,	) =
∫ f (Y |U ; β) f (U ; 	) f (U ; 	̃)

f (U ; 	̃)
dU (4.2.5)

We can approximate (4.2.5) for the j-th unit by

N∑

h=1

f (Y |Uj ; β) fh(Uj ; 	)

fh(Uj ; 	̃)

/

N (4.2.6)

where sampling is now with respect to the distribution of the random effects, the
importance distribution, given the value 	̃. The term

f (U ; 	̃)

f (U ; 	)

adjusts for the different probability density of the importance distribution.
This is known as importance sampling and (4.2.6) will provide the required

likelihood to any degree of accuracy for β,	, for any choice of 	̃, although a poor
choice will not be efficient. We can improve efficiency by choosing f (U ; 	̃) so
that Uj ∼ N (Û j , 	̂u j ), where Û j is the set of estimated residuals for unit j with
covariance matrix 	u j . These can be estimated from a preliminary sampling run
based upon the initial MQL or PQL starting values (see below).
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In practice, it is more convenient to work with the loglikelihood so that, for
example, for the binomial logit-normal model the loglikelihood is

L =
∑

j

(ln{
N∑

h=1

[
∏

i

{(π (h)
ij )sij (1 − π

(h)
ij )nij−sij}�(u(h)

j ; 	)

�(u(h)
j ; 	̃)

]/N })

=
∑

j

(ln{
N∑

h=1

exp[
∑

i

[sij ln(π (h)
ij ) + (nij − sij) ln(1 − π

(h)
ij )]

+ ln(
�(u(h)

j ; 	)

�(u(h)
j ; 	̃)

)]/N }) (4.2.7)

=
∑

j

(ln{
N∑

h=1

exp[
∑

i

[sij ln(π (h)
ij ) + (nij − sij) ln(1 − π

(h)
ij )]

+1

2
u(h)T

j (	̃−1 − 	−1)u(h)
j + 1

2
ln

( |	̃|
|	|

)

]} − ln(N ))

where h indexes the sets of random draws and u is a p × 1 vector for each level 2
unit, where p is the number of random coefficients. Note that if 	 = 0, the terms in
	 are omitted. To find the maximum likelihood solution near to 	̃, we need to carry
out a numerical search over the parameter set β,	. Standard routines for maximising
general functions can be used and are available in various mathematical and statistical
software packages. Some care is required to ensure that the calculations are carried
out and stored with sufficient accuracy and double precision arithmetic will usually
be necessary. When generating the U the random number seed should be reset to the
same value at the start of each set of random draws. This avoids instability due to
the stochastic nature of the likelihood estimates. Also, this stochastic element gives a
small bias in the estimates of the parameters which decreases as N increases, and is
an area for further research. For 	̃ we can use second order PQL (PQL2) estimates,
or where these may be unobtainable due to convergence problems we can use PQL1
or MQL estimates, possibly together with an iterated bootstrap (Appendix 4.4), to
obtain 	̃. An approximation to the covariance matrix of the estimated parameters can
be obtained from the inverse of the (Hessian) matrix of second derivatives of (minus)
the loglikelihood with respect to the parameters at the solution point. This will be
available as output from the optimisation routine.

Note that the extension to models with more levels is relatively straightforward.
Thus, for a 3-level model, since there is independence across levels, we have for the
j-th level 2 unit within the k-th level 3 unit

�(u(h)
k j , u

(h)
k ; 	) = �(u(h)

k ; 	3)�(u(h)
jk ; 	2)

	 =
(

	3

	2

)
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and for the k-th level 3 unit the third line of (4.2.6) becomes

∑

j

(ln{
N∑

h=1

(exp[
∑

i

[sijk ln(π (h)
ijk ) + (nijk − sijk) ln(1 − π

(h)
ijk )]

+1

2
u(h)T

jk (	̃−1
2 − 	−1

2 )u(h)
jk + 1

2
u(h)T

k (	̃−1
3 − 	−1

3 )u(h)
k

+1

2
ln

( |	̃2|
|	2|

|	̃3|
|	3|

)

]} − ln(N ))

and these are summed over level 3 units. At the maximum likelihood estimates we
also have an estimate of the likelihood itself and this can be used for inference, for
example, for comparing two nested models. Likewise, a numerical search procedure
can be extended to provide full or profile likelihood confidence intervals (Chapter 2).
This approach can be generalised to other distributions, link functions and structures.
Thus, for example, for continuous responses we can fit a t-distribution at level 1 or, say,
a beta distribution. Likewise various types of link function can be used, including
the complementary log-log or probit for binomial data. Multinomial, ordered or
unordered data can be fitted using a suitable parameterisation. We can also fit more
complex structures such as mixture distributions.

4.2.2 Residuals
The residuals at higher levels are defined as the expected values of the random effects
given the data and parameter values. Thus, we have

E(U ) =
∫

U f (Y |U ; β) f (U ; 	)dU

and we obtain the expected value of u as

exp[
∑

j

(ln{
N∑

h=1

[
∏

i

{(π (h)
ij )sij(1 − π

(h)
ij )nij−sij}u(h)

j,k
�(u(h)

j ; 	)

�(u(h)
j ; 	̃)

]/N }) − L]

and the expected value of the product of two random effects uk1uk2 as

exp[
∑

j

(ln{
N∑

h=1

[
∏

i

{(π (h)
ij )sij (1 − π

(h)
ij )nij−sij}u(h)

j,k1
u(h)
j,k2

�(u(h)
j ; 	)

�(u(h)
j ; 	̃)

]/N }) − L]

from which we can obtain the estimated covariance matrix of the residuals. Note that
we need to scale the expected values using the likelihood L.



P1: TIX/XYZ P2: ABC
c04 JWST015-Goldstein August 16, 2010 9:0 Printer Name: Yet to Come

MULTILEVEL MODELS FOR DISCRETE RESPONSE DATA 139

4.2.3 Cross classification and multiple membership models
For a 2-way cross classification we have the log likelihood

ln{
N∑

h=1

(exp[
∑

j

∑

i

[sij ln(π (h)
ij ) + (nij − sij) ln(1 − π

(h)
ij )] + 1

2
u(h)T

i (	̃−1
A − 	−1

A )u(h)
i

+1

2
u(h)T

j (	̃−1
B − 	−1

B )u(h)
j + 1

2
ln

( |	̃A|
|	A|

|	̃B |
|	B |

)

]} − ln(N )

where i is associated with classification A and j with classification B. Note that we
have to sum over all level 2 cells of the cross classification for each value of h.

For a multiple membership model at level 2 we simulate from a multivariate
normal (or t) distribution as above but now for a level 1 unit the level 2 covariance
matrix is given by

⎛

⎝
∑

j

w2
ij

⎞

⎠ 	2

where the weights w are specific to the level 1 unit. Thus, we form the multiple
membership weighted sum

∑
j wiju j = uiw say, and use these random effects applied

to the above covariance matrix. Again we sum over all level 2 units for each h.

4.2.4 Computing issues
Several computing issues arise. The number of simulation setsN is a matter for further
study, although values between 1000 and 2000 have proved adequate on the limited
range of examples so far studied. The optimisation procedure is also important and
efficient nonlinear search algorithms are necessary. Inequality constraints are needed
to ensure positive definite covariance matrices and upper and lower bounds for the
fixed parameters may be important to ensure efficiency, as well as good starting
values, for example, from a PQL estimation. General search procedures are able to
compute search directions numerically but supplying analytical first derivatives will
improve speed and reliability. The first derivatives of Lwith respect to the parameters
can be computed using the formulae in Appendix 4.1. Thus, for the logit model, we
have the first derivative

∂L
∂θ

= 1
N∑

h=1
exp(g(h)

j )

∑

j

∂

∂θ

N∑

h=1

exp(g(h)
j )

= 1
N∑

h=1
exp(g(h)

j )

∑

j

∑

h

(exp(g(h)
j )

∑

i

{ ∂

∂θ
[sij ln(π (h)

ij ) + (nij − sij) ln(1 − π
(h)
ij )]}

+ ∂

∂θ
[
1

2
u(h)T

j (	̃−1 − 	−1)u(h)
j + 1

2
ln

( |	̃|
|	|

)

])
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where g(h)
j = ∑

i
[sij ln(π (h)

ij ) + (nij − sij) ln(1 − π
(h)
ij )] + 1

2u
(h)T

j (	̃−1 − 	−1)u(h)
j +

1
2 ln

(
|	̃|
|	|

)
]

For a fixed coefficient βk this becomes

1
N∑

h=1
exp(g(h)

j )

∑

j

∑

h

(exp(g(h)
j )

∑

i

xij,k
1 + exp(Xβ)(h)

ij

×{[sij(1 + exp(Xβ)(h)
ij ) − nij exp(Xβ)(h)

ij ]}

and for variance and covariance terms we obtain corresponding expressions using

∂

∂θ
[
1

2
u(h)T

j (	̃−1 − 	−1)u(h)
j + 1

2
ln

( |	̃|
|	|
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∂θ
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1

2
u(h)T

j 	−1u(h)
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2
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= 1

2
u(h)T

j 	−1 ∂	

∂σkl
	−1u(h)

j − 1

2
tr (	−1 ∂	

∂σkl
)

where, for example for a bivariate distribution,
∂	

∂σ 2
1

=
(

1 0
0 0

)

,
∂	

∂σ12
=

(
0 1
1 0

)

.

4.2.5 Maximum likelihood estimation via quadrature
We saw above that the likelihood for a 2-level logistic model can be written as the
product of terms such as the following for level 2 unit j

∞∫

−∞

∏

i

{(πij)sij (1 − πij)
nij−sij} f (u j ; 	)du j

πij = {1 + exp(−Xijβ j )}−1, β j = β + u j

(4.2.8)

where f (u j ; 	) is typically assumed to be the multivariate normal density and can

be written in the form
∞∫

−∞
P(u j ) f (u j )du j .

Gauss-Hermite quadrature approximates an integral such as the above as

∞∫

−∞
P(v)e−v2

dv ≈
Q∑

q=1

P(xq )wq (4.2.9)

where the right-hand side is a Gauss-Hermite polynomial evaluated at a series
of quadrature points indexed by q. Hedeker and Gibbons (1994) give a detailed
discussion and also consider the multicategory (multinomial) response case. This
function is then maximised using a suitable search procedure over the parameter
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space. Estimates produced from, for example, a PQL analysis will help to locate the
search region.

If we consider the model with a single random intercept at level 2 we have

P(u j ) =
∏

i

exp(Xijβ + u j )
{1 + exp(Xijβ + u j )}2

, f (u j ) = σ 2
u φ (4.2.10)

where φ is the standard normal density. The standard quadrature method selects
points centred around zero, but the u j are not centred at zero and we may therefore
need a very large number of quadrature points to cover the range. A solution is
to use adaptive quadrature. One possibility (Liu and Pierce, 1994) is to centre the
quadrature points on the modal (or mean) values of the function P(u j ) and to scale
them suitably, for example, according to the estimated standard deviation of u j (see
Hartzel et al., 2001 for a discussion). These central values need to be estimated and
a convenient choice is to use preliminary PQL estimates together with estimated
standard errors.

Quadrature methods have been applied successfully to Poisson, binomial and
multinomial and ordered category models and have been implemented in software
packages (SAS, MIXOR, AML, STATA (GLLAMM)). Nevertheless, successful
quadrature, even with the adaptive method, will often require a large number of
quadrature points and even in simple cases convergence can be difficult to achieve
(Lesaffre and Spiessens, 2001). This becomes especially important when there are
several random coefficients since the quadrature points will now be in several di-
mensions so that the number of points increases geometrically with the number of
random coefficients. This places a practical limit on the complexity of models that
can be handled in this way and applications have been mainly restricted to 2- or
3- level models with small numbers of random terms. Guass-Hermite quadrature is
effectively limited to the normal distribution because of the exponential term in (4.2.9)
and alternative quadrature methods are required for other higher level distributions.
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Appendix 4.3 MCMC estimation for generalised
linear models

4.3.1 Metropolis-Hastings (MH) sampling
In Appendix 2.5, the basic Gibbs sampling algorithm for models with normal random
effects was described. In the case of generalised linear models, we cannot easily write
down the conditional distribution for every step of the algorithm, for example for the
fixed effects and the residuals. Thus, for the fixed effects step with a single level 2
variance for a binary response we have

p(β|y, σ 2
u , σ

2
e , u) ∝ L(y; β, u, σ 2

e )p(β)

where

L(y; β, u, σ 2
e ) = (1 + e−(Xβ+u))−y(1 + e−(Xβ+u))y−1

and a suitable diffuse prior is p(β) ∝ 1
We can therefore use MH sampling (Section 2.4.2) and in general can mix Gibbs

sampling with MH sampling steps. In other respects the estimation is as for normal
models with the corresponding likelihood functions for binomial, Poisson, multino-
mial etc. data replacing the normal likelihood (see Browne and Draper, 2000, for
more details).

4.3.2 Latent variable models for binary data
In the case of the probit link function for binomial data we can avoid the use of MH
sampling and obtain an additional interpretation as follows. We consider a binary
response where a positive response (=1) occurs when the value of an underlying
continuous variable exceeds a threshold. For example, an examination may yield
pass/fail grades which can be supposed to have such an underlying continuous scale.
To illustrate write a variance components 2-level model for the underlying continuous
variable as

yij = (Xβ)ij + u j + eij (4.3.1)

and suppose a positive value occurs when yij > 0. We then have

Pr(yij > 0) = Pr(eij > −[(Xβ)ij + u j ]) (4.3.2)
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Now if we assume eij ∼ N (0, 1), the probability in (4.3.2) is

∞∫

−[(Xβ)ij+u j ]
φ(t)dt (4.3.3)

where φ(t) is the pdf of N(0,1).
In the standard Gibbs algorithm, we insert an extra step which generates a random

value yij from the truncated normal distribution defined by (4.3.3) given current
parameter values for each level 1 unit. When the response value is a 1 we select from
[−X∗,∞], X∗ = (Xβ)ij + u j and where the response is 0 from [−∞, X∗]. These
are then used with (4.3.1) as in the standard Normal case. An advantage of this
approach is that it is generally faster than using MH. Additionally, however, because
it generates a set of ‘imputed’ continuous responses we can readily combine it with
observed Normal responses so allowing estimates of underlying correlations at level
1 between binary and continuous variables or between several binary variables (see
Chapter 7 for details).

A similar approach can be used for the logit and log-log link functions, although
these do not lead to multivariate Normal distributions where more than one response
is involved and so are less useful.

For logit link models we need to take a random draw from the logistic distribution
with the following density function

f (x) = exp(x)

[1 + exp(x)]2
(4.3.4)

which has zero mean and variance 3.290 and where the required cumulative function
is obtained as

∞∫

−Y
f (x)dx = [1 + exp(−Y )]−1 (4.3.5)

which is the logit link function, so that we take a random draw as above, but this
time from the truncated logistic distribution with truncation point corresponding to
X∗ = (Xβ)ij + u j as before. To select a random draw from this logistic distribution
we first take a random draw, u, from the uniform (0,1) distribution and then make the
transformation y = log(u/(1 − u)). The corresponding 2-level model now has the
level 1 variance constrained to 3.29.

For the log-log link, we take a random draw from the Gumbel distribution with
density function

f (x) = exp(−x)(exp −[exp(−x)]) (4.3.6)
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which has mean –0.577 and variance 1.645. We have

∞∫

−Y
f (x)dx = 1 − exp(− exp(Y )) (4.3.7)

which is the complementary log-log link function and the transformation from the
uniform is now y = log(− log(1 − u)) and we draw from the truncated distribution
with truncation point given by X∗ = (Xβ)ij + u j and the level 1 variance constrained
to 1.645.

Ordered responses can be fitted using an extension that involves sampling the cut
point or threshold parameters and details are given in Chapter 7.

4.3.3 Proportions as responses
We can extend the (0,1) response model to the case where the response is a proportion.
For the simple binomial probit model suppose there are r ‘successes’ out of n ‘trials’.
Assuming independent sampling, we generate a set of r values yij where the response
is 1, i.e. from [−X∗,∞], X∗ = (Xβ)ij + u j , and n − r values from [−∞, X∗]. We
can think of this set of values as defining a lowest level cluster, essentially a replication
level, below the original level 1 of the model and proceed to fit this modified model
with an extra level where there is a single variance term constrained to be equal to 1.
This leads to a simple modification to the Gibbs algorithm (Appendix 2.5). Similar
modifications can be made for the other models described above.



P1: TIX/XYZ P2: ABC
c04 JWST015-Goldstein August 16, 2010 9:0 Printer Name: Yet to Come

MULTILEVEL MODELS FOR DISCRETE RESPONSE DATA 145

Appendix 4.4 Bootstrap estimation for multilevel
generalised linear models

4.4.1 The iterated bootstrap
As pointed out in Section 3.6, we can use the bootstrap to provide a bias correction for
parameter estimates. This only works, however, if the bias resulting from a particular
estimation procedure is independent of the true value of the underlying parameter. In
generalised linear models this is not the case and we need to introduce a modification.

We illustrate the procedure with a simple 2-level variance components model,
as follows

logit(πij) = β0 + β1xij + u j
u j ∼ N (0, σ 2

u )
yij ∼ Binomial(1, πij)

Given a set of initial estimates, obtained using for example the first order MQL
approximation,

σ̂ 2(0)
u , β̂

(0)
0 , β̂

(0)
1 (4.4.1)

we generate a set of bootstrap samples, parametrically or using the residuals bootstrap
(Section 3.6) from the model using the estimates (4.4.1). Averaging over these we
obtain the set of bootstrap estimates

σ̃ 2(0)
u , β̃

(0)
0 , β̃

(0)
1 (4.4.2)

We now obtain the bootstrap estimate of the bias by subtracting (4.4.2) from
(4.4.1). These bias estimates are added to the initial parameter estimates (4.4.1) as a
first adjustment to give new bias-corrected estimates

σ̂ 2(1)
u , β̂

(1)
0 , β̂

(1)
1 (4.4.3)

We generate a new set of bootstrap samples from the model based upon the
estimates given by (4.4.3), subtract the new mean bootstrap parameter estimates from
(4.4.3) to obtain updated bias estimates and add these to the initial estimates (4.4.1)
to obtain a new set of bias corrected estimates. When this process converges, Kuk
(1995) demonstrates that it gives asymptotically consistent and unbiased parameter
estimates.

Care needs to be taken with small variance estimates. To estimate the bias we need
to allow negative estimates of variances. If an initial estimate is zero, then clearly,
resetting negative bootstrap sample means to zero implies that the bias estimate will
never be negative, so the new updated estimate will remain at zero. Moreover, as
confirmed by simulations, all the estimates will exhibit a downward bias if negative
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bootstrap means are reset to zero. We also note that where an unbiased variance
estimate is close to zero, the value of the bias is anyway small, so that full bias
correction is less important and, for example, a second order PQL estimate may be
adequate.

The bootstrap replicates from the final bootstrap set generally will have too small
a variance and so cannot directly be used for inference. If we knew the functional
relationship between the bias-corrected value and the biased value, this could be used
to transform each of the bootstrap replicate estimates and the transformed values
then used for inference. Alternatively, for each parameter in turn, using the final bias-
corrected estimate and the final bootstrap replicate mean, we take the ratio of these
and multiply all the final replicate parameter values by this ratio. These scaled values
can used to construct approximately correct standard errors and quantile estimates.
Care is needed, however, when the initial parameter estimates are close to zero.
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5

Models for repeated measures
data

5.1 Repeated measures data
When measurements are repeated on the same subjects, for example students or
animals, a 2-level hierarchy is established with measurement repetitions or occasions
as level 1 units and subjects as level 2 units. Such data are often referred to as
‘longitudinal’ – as opposed to ‘cross-sectional’, where each subject is measured only
once. Thus, we may have repeated measures of body weight on growing animals
or children, repeated test scores on students or repeated interviews with survey
respondents. It is important to distinguish two classes of models which use repeated
measurements on the same subjects. In one, earlier measurements are treated as
covariates rather than responses. This was done for the educational data analysed in
Chapters 2 and 3, and usually will be appropriate when there are a small number of
discrete occasions and where different measures are used at each one. (See Chapter
8 for a discussion of the extension of such models in structural equation modelling.)
In the other class of model, usually referred to as ‘repeated measures’ models, the
measurements are treated only as a set of observed responses, and it is this class of
models we discuss in this chapter. A detailed description of the distinction between
the former ‘conditional’ models and the latter ‘unconditional’ models can be found in
Goldstein (1979) and Plewis (1985). Singer and Willett (2002) give detailed examples
of applications both of repeated measures and conditional models.

We may also have repetition at higher levels of a data hierarchy. For example,
we may have annual examination data on successive cohorts of 16-year-old students
in a sample of schools. In this case, the school is the level 3 unit, year is the level
2 unit and student the level 1 unit. We will also look at an example where there are
responses at both level 1 and level 2. It is worth pointing out that in repeated measures
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models typically most of the variation is at level 2, so that the proper specification of
a multilevel model for the data is of particular importance.

The link with the multivariate data models described in Chapter 6 is apparent
when the occasions are fixed. Suppose we have measurements on the height of
a sample of children at ages 11.0, 12.0, 13.0 and 14.0 years. We can regard this
as consisting of a multivariate response vector of four responses for each child,
and perform an equivalent analysis, for example relating the measurements to a
polynomial function of age. This multivariate approach has traditionally been used
with repeated measures data (see Grizzle and Allen, 1969). It cannot, however, deal
properly with commonly found data that have arbitrary spacings or numbers of
occasions and we do not consider it further, but see Bollen and Curran (2006) for
elaborations of the multivariate model based on structural equation modelling.

In all the models considered so far, we have assumed that the level 1 residuals are
uncorrelated. For some kinds of repeated measures data, however, this assumption will
not be reasonable; we therefore investigate models which allow a serial correlation
structure for these residuals.

We deal first with continuous response variables and we shall discuss repeated
measures models for discrete response data later.

5.2 A 2-level repeated measures model
Consider a data set consisting of repeated measurements of the heights of a random
sample of children. We can write a simple model as

yij = β0 j + β1 j xij + eij (5.1)

This model assumes that height (Y ) is linearly related to age (X ) with each subject
having their own intercept and slope so that

E(β0j) = β0, E(β1 j ) = β1

var(β0 j ) = σ 2
u0, var(β1 j ) = σ 2

u1, cov(β0 j , β1 j ) = σu01, var(eij) = σ 2
e

There is no restriction on the number or spacing of ages, so that we can fit a single
model to subjects who may have one or several measurements. We can clearly extend
(5.1) to include further explanatory variables, measured either at the occasion level,
such as time of year or state of health, or at the subject level, such as birthweight or
gender. We can also extend the basic linear function in (5.1) to include higher order
terms and can further model the level 1 residual so that, for example, the level 1
variance is a function of age.

We explore briefly a nonlinear model for growth measurements in Chapter 9. Such
models have an important role in certain kinds of growth modelling, especially where
growth approaches an asymptote, as in the approach to adult status in animals. In
the following sections, we discuss the use of polynomial models which have a more
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general applicability and for many applications are more flexible (see Goldstein,
1979, for further discussion), introducing examples of increasing complexity.

5.3 A polynomial model example for adolescent
growth and the prediction of adult height

Our first example combines the basic 2-level repeated measures model with a mul-
tivariate model to show how a general growth prediction model can be constructed.
The data consist of 436 measurements of the heights of 110 boys between the ages of
11 and 16 years together with measurements of their height as adults and estimates
of their bone ages at each height measurement, based upon wrist radiographs. Age
is measured around 13.0 years. (A detailed description can be found in Goldstein,
1989b.) We first write down the three basic components of the model, starting with a
simple repeated measures model for height using a fifth degree polynomial.

y(1)
ij =

5∑

h=0

β
(1)
h x

h
ij +

2∑

h=0

u(1)
h j x

h
ij + e(1)

ij (5.2)

where the level 1 term eij may have a complex structure, for example a decreasing
variance with increasing age.

The measure of bone age is already standardised, since the average bone age for
boys of a given chronological age is equal to this age for the population. Thus, we
model bone age using an overall constant to detect any average departure for this
group, together with between-individual and within-individual variation.

y(2)
ij = β

(2)
0 +

1∑

h=0

u(2)
h j x

h
ij + e(2)

ij (5.3)

For adult height, we have a simple model with an overall mean and level 2 variation. If
we had more than one adult measurement on individuals, we would be able to estimate
also the level 1 variation among adult height measurements; in effect, allowing for
measurement errors.

y(3)
j = β

(3)
0 + u(3)

0 j (5.4)

We now combine these into a single model, using the following indicator variables:

δ
(1)
ij = 1, if growth period measurement, 0 otherwise

δ
(2)
ij = 1, if bone age measurement, 0 otherwise

δ
(3)
j = 1, if adult height measurement, 0 otherwise
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yij = δ
(1)
ij

(
5∑

h=0

β
(1)
h x

h
ij +

2∑

h=0

u(1)
h j x

h
ij + e(1)

ij

)

+ δ
(2)
ij

(

β
(2)
0 +

1∑

h=0

u(2)
h j x

h
ij + e(2)

ij

)

+δ
(3)
j

(
β

(3)
0 + u(3)

0 j

)

At level 1 the simplest model which we shall assume is that the residuals for bone age
and height are independent, although dependencies could be created, for example,
if the model was incorrectly specified at level 2. Thus, level 1 variation is specified
in terms of two variance terms. Although the model is strictly a multivariate model,
because the level 1 random variables are independent it is unnecessary to specify
a ‘dummy’ level 1 with no random variation as with standard multivariate models
(see Chapter 6). If, however, we allow correlation between height and bone age,
then we will need to specify the model with no variation at level 1, the variances
and covariance between bone age and height at level 2 and the between-individual
variation at level 3.

Table 5.1 shows the fixed and random parameters for this model, omitting the
estimates for the between-individual variation in the quadratic coefficient of the
polynomial growth curve. We see that there is a large nonzero correlation between
adult height and height at age 13.0 years, and small correlations between adult height
and the height growth rate and the bone age coefficients. This implies that the height
and bone age measurements can be used to make predictions of adult height. For a
new individual, with information available at one or more ages on height or bone age,
we now show how such predictions can be obtained.

Consider the case where we have height measures at two ages, x1, x2. Under
normality, our prediction formula will be linear and can be written as

ŷ(3)
j = β

(3)
0 + α1 ỹ(1)

1 j + α1 ỹ(1)
2 j (5.5)

where the raw residual is

ỹ(1)
ij = y(1)

ij −
5∑

h=0

β
(1)
h x

h
ij , i = 1, 2

The multivariate normal covariance matrix for the three variables in (5.5) is given by

⎛

⎜
⎜
⎝

ŷ(3)
j

ỹ(1)
1 j

ỹ(1)
2 j

⎞

⎟
⎟
⎠ = MVN(0,�)

� =

⎛

⎜
⎜
⎜
⎜
⎝

σ
(3)2

u0

σ
(3,1)
u00 + σ

(3,1)
u01 x1 j σ

(1)2

u0 + σ
(1)2

u1 x2
1 j + 2σ

(1)
u01x1 j + σ 2

e

σ
(3,1)
u00 + σ

(3,1)
u01 x2 j σ

(1)2

u0 + σ
(1)
u01(x1 j + x2 j ) + σ

(1)2

u1 x1 j x2 j σ
(1)2

u0 + σ
(1)2

u1 x2
2 j + 2σ

(1)
u01x2 j + σ 2

e

⎞

⎟
⎟
⎟
⎟
⎠
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Table 5.1 Height (cm) for adolescent growth, bone age, and adult height for a sample
of boys. Age measured about 13.0 years. Level 2 variances and covariances shown;
correlations in brackets.

Parameter Estimate (s.e.)

Fixed
Adult Height
Intercept 174.4
Group (A–B) 0.25 (0.50)
Height
Intercept 153.0
Age 6.91 (0.20)
Age2 0.43 (0.09)
Age3 −0.14 (0.03)
Age4 −0.03 (0.01)
Age5 0.03 (0.03)
Bone Age
Intercept 0.21 (0.09)

Random
Level 2

Adult Height Height intercept Age
Bone Age

Intercept
Adult Height 62.5
Height intercept 49.5 (0.85) 54.5
Age 1.11 (0.09) 1.14 (0.09) 2.5
Bone Age Intercept 0.85
Level 1 variances
Height 0.89
Bone age 0.18

so that

(
α̂1

α̂2

)

=
⎛

⎝
σ

(1)2

u0 + σ
(1)2

u1 x2
1 j + 2σ

(1)
u01x1 j + σ 2

e

σ
(1)2

u0 + σ
(1)
u01(x1 j + x2 j ) + σ

(1)2

u1 x1 j x2 j σ
(1)2

u0 + σ
(1)2

u1 x2
2 j + 2σ

(1)
u01x2 j + σ 2

e

⎞

⎠

−1 ⎛

⎝
σ

(3,1)
u00 + σ

(3,1)
u01 x1 j

σ
(3,1)
u00 + σ

(3,1)
u01 x2 j

⎞

⎠

and we substitute these estimates into (5.5).
Table 5.2 shows the estimated standard errors associated with predictions made on

the basis of varying amounts of information. It is clear that the main gain in efficiency
comes with the use of height, with a smaller gain from the addition of bone age.

The method can be used for any measurements, either to be predicted or as
predictors. In particular, covariates such as family size or social background can be
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Table 5.2 Standard errors for adult height predictions for specified combinations of
height and bone age measurements.

Height measures (age)

None 11.0 11.0
12.0

Bone age measures

None 4.3 4..2
11.0 7.9 3.9 3.8
11.0 12.0 7.9 3.7 3.7

included to improve the prediction. We can also predict other events of interest, such
as the estimated age at maximum growth velocity.

Pan and Goldstein (1997) derive a procedure based on such a model for estimating
norms for complex growth functions of height and weight, such as acceleration coef-
ficients at particular ages, from whatever combination of measurements happens to be
available. After initial normalisation of the data, they use a longitudinal standardising
sample to establish population estimates of the growth curve polynomial coeffi-
cients covariance matrix. This is then used to derive the distribution of the required
growth functions.

Pan and Goldstein (1998) extend the basic polynomial model by considering
spline functions that are smoothly joining polynomials with fixed join points or
‘knots’. Thus, for a set of measurements on head circumference of children from
birth to 16 years, after some exploration they consider the model

yij = β0 j + β1 j tij + β2 j t2ij + β3 j log(12tij + 1) + β4 j (ξ − tij)3
+ + β5 j (tij − ξ )3

+ + eij

θ+ =
{

θ if θ > 0

0 if θ ≤ 0

with knots at 2.0 and 10.0 years. The advantage of such models is that, while there is
an underlying polynomial across the whole age range, the local end relationships are
further modelled by the ‘+’ function components. This, at least in part, overcomes
a disadvantage of ordinary polynomials that typically fail to provide good fits at the
extremes of the time period. Note that the first + function is present up to the age of
2.0 years and the second from 10.0 years onwards. Another example of the use of such
splines is given by Blatchford et al. (2002) in modelling educational achievement as
a function of class size. (We extend this model in Chapter 16 to allow mixtures of
normal and non-normal, especially discrete, responses.)
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5.4 Modelling an autocorrelation structure at level 1
So far, we have assumed that the level 1 residuals are mutually uncorrelated. In many
situations, however, such an assumption would be false. For growth measurements,
the specification of level 2 variation serves to model a separate curve for each individ-
ual, but the between-individual variation will typically involve only a few parameters,
as in the previous example. Thus, if measurements on an individual are obtained very
close together in time, they will tend to have similar departures from that individual’s
underlying growth curve. That is, there will be ‘autocorrelation’ between the level 1
residuals. Examples arise from other areas such as economics where measurements
on each unit, for example, an enterprise or economic system, exhibit an autocorre-
lation structure and where the parameters of the separate time series vary across the
level 2 units.

A detailed discussion of multilevel time series models is given by Goldstein et al.
(1994). They discuss both the discrete time case, where the measurements are made
at the same set of equal intervals for all level 2 units, and the continuous time case
where the time intervals can vary. We develop the continuous time model here since
it is more general and flexible.

To simplify the presentation, we drop the level 1 and 2 subscripts and write a
general model for the level 1 residuals:

cov(etet−s) = σ 2
e f (s). (5.6)

Thus, the covariance between two measurements depends on the variance and the time
difference between the measurements. The function f (s) is conveniently described
by a negative exponential reflecting the common assumption that with increasing
time difference the covariance tends to a fixed value, ασ 2

e , and this is often assumed
to be zero

f (s) = α + exp(−g(β, z, s)) (5.7)

where β is a vector of parameters for explanatory variables z. Some choices for g are
given in Table 5.3.

We can apply the methods described in Appendix 9.1 to obtain maximum likeli-
hood estimates for these models, by writing the expansion

f (s, β, z) =
{

1 +
∑

k

βk,t zkg(Ht )

}

f (Ht ) −
∑

k

βk,t+1zkg(Ht ) f (Ht ) (5.8)

so that the model for the random parameters is linear. Full details are given by Gold-
stein et al. (1994). Pourahmadi (1999, 2000) considers similar models but restricted
to a fixed set of discrete occasions and using a different algorithm to obtain max-
imum likelihood estimates. (We extend this model in Chapter 17 to consider more
general correlated residual structures at different levels and describe an MCMC fitting
algorithm.)



P1: TIX/XYZ P2: ABC
c05 JWST015-Goldstein August 16, 2010 9:7 Printer Name: Yet to Come

154 MULTILEVEL STATISTICAL MODELS

Table 5.3 Some choices for the covariance function g for level 1 residuals.

g = β0s For equal intervals this is a first order
autoregressive series.

g = β0s + β1(t1 + t2) + β2(t21 + t22 ) For time points t1, t2 this implies that the
variance is a quadratic function of time.

g =
{

β0s if no replicate
β1 if replicate

For replicated measurements this gives an
estimate of measurement reliability
exp(−β1).

g = (β0 + β1z1 j + β2z2i j )s The covariance is allowed to depend on an
individual level characteristic (e.g.
gender) and a time-varying
characteristic (e.g. season of the year or
age).

g =
{

β0s + β1s−1, s > 0
0, s = 0

Allows a flexible functional form, where
the time intervals are not close to zero.

5.5 A growth model with autocorrelated residuals
The data for this example consist of a sample of 26 boys each measured on nine
occasions between the ages of 11 and 14 years in Oxford (Harrison and Brush,
(1990). The measurements were taken approximately three months apart. Table 5.4
shows the estimates from a model which assumes independent level 1 residuals with
a constant variance. The model also includes a cosine term to model the seasonal
variation in growth with time measured from the beginning of the year. If the seasonal
component has amplitude α and phase γ we can write

α cos(t + γ ) = α1 cos(t) − α2 sin(t)

In the present case the second coefficient is estimated to be very close to zero and
is set to zero in the following model. This component results in an average growth
difference between summer and winter estimated to be about 0.5 cm.

We now fit in Table 5.5 the model with g = β0s which is the continuous time
version of the first order autoregressive model.

The fixed part and level 2 estimates are little changed. The autocorrelation pa-
rameter implies that the correlation between residuals three months (0.25 years) apart
is 0.19.

Finally, on this topic, there will typically need to be a trade-off between mod-
elling more random coefficients at level 2 in order to simplify or eliminate a level
1 serial correlation structure, and modelling level 2 in a parsimonious fashion so
that a relatively small number of random coefficients can be used to summarise each
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Table 5.4 Height as a fourth degree polynomial on age, measured about 12.25 years.
Standard errors in brackets; correlations in brackets for covariance terms.

Parameter Estimate (s.e.)

Fixed
Intercept 148.9
age 6.19 (0.35)
age2 2.17 (0.46)
age3 0.39 (0.16)
age4 −1.55 (0.44)
cos (time) −0.24 (0.07)

Random
level 2 covariance matrix

Intercept age age2

Intercept 61.6 (17.1)
age 8.0 (0.61) 2.8 (0.7)
age2 1.4 (0.22) 0.9 (0.67) 0.7 (0.2)
level 1 variance
σ 2
e 0.20 (0.02)

Table 5.5 Height as a fourth degree polynomial on age, measured about 12.25
years. Standard errors in brackets; correlations in brackets for covariance terms.
Autocorrelation structure fitted for level 1 residuals.

Parameter Estimate (s.e.)

Fixed
Intercept 148.9
age 6.19 (0.35)
age2 2.16 (0.45)
age3 0.39 (0.17)
age4 −1.55 (0.43)
cos (time) −0.24 (0.07)

Random
Level 2 covariance matrix

Intercept age age2

Intercept 61.5 (17.1)
age 7.9 (0.61) 2.7 (0.7)
age2 1.5 (0.25) 0.9 (0.68) 0.6 (0.2)
Level 1 parameters
σ 2
e 0.23 (0.04)

β 6.90 (2.07)
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individual. An extreme example of the latter is given by Diggle (1988), who fits just
a random intercept at level 2 and serial correlation at level 1.

5.6 Multivariate repeated measures models
We have already discussed the bivariate repeated measures model where the level 1
residuals for the two responses are independent. In the general multivariate case where
correlations at level 1 are allowed, we can fit a full multivariate model by adding a
further lowest level, as described in Chapter 6. For the autocorrelation model this
will involve extending the models to include cross correlations. For example, for two
response variables with the model of Table 5.5 we would write

g = σe1σe2 exp(−β12s)

The special case of a repeated measures model where some or all occasions are fixed
is of interest. We have already dealt with one example of this where adult height is
treated separately from the other growth measurements. The same approach could be
used with, for example, birth weight or length at birth. In some studies, all individuals
may be measured at the same initial occasion and we can choose to treat this as a
covariate rather than as a response. This might be appropriate where individuals were
divided into groups for different treatments following initial measurements.

Having fitted a multivariate model, we can derive the correlation matrix between
measurements for given time differences. Thus, for example, if we have a bivariate
model with height and weight as responses we can compare the cross-lagged correla-
tions, that is the correlation as a function of time interval between earlier weight and
later height with the correlation between earlier height and later weight. If the latter
correlation for a given time interval is substantially greater than the former, we might
tentatively infer that earlier height has a greater influence on subsequent weight, in a
causal sense, rather than the other way around.

5.7 Scaling across time
For some kinds of data, such as educational achievement scores, different measure-
ments may be taken over time on the same individuals, meaning some form of
standardisation may be needed before they can be modelled using the methods of this
chapter. It is common to standardise such measurements so that at each measuring
occasion they have the same population distribution. If this is done, we should not
expect any trend in either the mean or variance over time, although generally there
will be between-individual variation. An alternative standardisation procedure, when
dealing with developmental measures, is to convert scores to age equivalents; that is,
to assign to each score the age for which that score is the population mean or median.
Where scores change smoothly with age this has the attraction of providing a readily
interpretable scale. Plewis (1993) uses a variant of this in which the coefficient of
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variation at each age is also fixed to a constant value. Different standardisations may
be expected to lead to different inferences. The choice of standardisation is in effect
a choice about the appropriate scale along which measurements can be equated so
that any interpretation needs to recognise this. A further discussion of this issue is
given by Plewis (1996).

We could also fit unstandardised means at each time point, or as a smoothly
varying function ot time. Similarly, rather than standardise the variance prior to
modelling we can choose to model it also as a function of time (see Chapter 3), and
this will be important when the measurements are not made at a small number of
discrete occasions.

5.8 Cross-over designs
A common procedure for comparing the effects of two different treatments A, B, is
to divide the sample of subjects randomly into two groups and then to assign A to one
group followed by B, and B to the other group followed by A. The potential advantage
of such a design is that the between-individual variation can be removed from the
treatment comparison. A basic model for such a design with two treatments, repeated
measurements on individuals and a single group effect can be written as follows

yij = β0 + β1x1ij + β2x2ij + u0 j + u2 j x2ij + eij (5.9)

where X1 is a dummy variable for time period and X2 is a dummy variable for
treatment. In this case, we have not modelled the responses as a function of time within
treatment, but this can be added in the standard fashion described in previous sections.
In the random part at level 2, we allow between-individual variation for the treatment
difference; we can also structure the level 1 variance to include autocorrelation or
different variances for each treatment or time period.

One of the problems with such designs is so called ‘carry over’ effects whereby
exposure to an initial treatment leaves some individuals more or less likely to respond
positively to the second treatment. In other words, the u2 j may depend on the order
in which the treatments are applied. To model this we can add an additional term to
the random part of the model, say, u3 jδ3ij, where δ3ij is a dummy variable which is 1
when A precedes B and the second treatment is being applied, and zero otherwise.
This will also have the effect of allowing level 2 variances to depend on the ordering
of treatments. Jones and Kenward (2003) give a detailed account of such designs.

5.9 Missing data
In repeated measures studies that are designed to follow up samples of individuals,
it is often the case that measurements are not made at one or more target times
or occasions. We have already shown that ‘balanced’ data are not a requirement
for efficient estimates; some studies ‘rotate’ individuals or higher level units in or
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out of the study by design. Where missing measurements on individuals or units
are unscheduled, certain important issues arise. Laird (1988) provides a detailed
discussion of the three situations which can be distinguished.

The first case is where missingness is completely at random (MCAR); that is,
the probability of being missing, the ‘non-response’ probability, is independent of
any of the other responses for that individual or higher level unit. This is effectively
equivalent to the ‘missing by design’ case and all the procedures we have discussed
can be applied.

The second case is where missingness is at random (MAR); that is, the non-
response probability depends only on observed responses. For example, in a health
interview study, previous ill health may increase the probability of non-attendance at
a subsequent interview. We may also include here the possibility that we can achieve
MAR by introducing covariates into the model. For example, social background may
affect the probability of non-response over time. Broadly speaking, so long as the
model specifying the covariance structure of the responses is correct, we can apply
our previous procedures. The joint probability of the observed responses given the
model parameters, is independent of the joint probability of the unobserved responses
given the parameters, so that any estimation method, such as maximum likelihood or
MCMC, which is based upon the joint probability function of the observations will
provide valid inferences.

The third case is more troublesome, and it is where the probability of response
is not independent of the unobserved, missing, values. In general, our previous
procedures will lead to biases unless they are suitably modified. One approach to
the problem, the ‘pattern mixture’ model, essentially groups individuals according
to different patterns of missing responses. The patterns can have different models
for the non-response, so that the response values are considered as dependent on the
response probabilities. Another approach is to suppose that the response probabilities
are dependent on the data, both observed and unobserved, and also are a function
of time. These models are known as selection models. Diggle and Kenward (1994)
develop such a model for ‘monotone drop out’ where individuals do not return to a
study once they fail to respond at a target occasion. Kenward (1998) further develops
this and introduces a sensitivity analysis to study how robust inferences are to choice
of model structure. In these cases, a model for the response missingness mechanism
is modelled jointly with the target model, for example, a polynomial growth curve.
Such multiprocess models are discussed further in Chapter 16, where we go into
more detail about the treatment of missing data.

Touloumi et al. (1999) give an example of a multiprocess model, using EM
estimation, where changing cell counts, in a growth component, is modelled jointly
with (log) patient survival time and where dropout is not independent of the survival
time. In their model they do not have an explicit model for the probability of dropout,
but essentially impute the unknown survival time at each iteration of the algorithm.
Crouchley and Ganjali (2002) provide a general treatment of these models.

A useful specification for these models is to employ the probit link function in
the response model, as described in Appendix 4.3, assuming multivariate normality
for the growth component. This then allows us to estimate the covariance at the
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occasion level between the ‘propensity to respond’ and the growth measurement.
This covariance can be a function of time or time-related covariates and such models
can, in principle, be fitted within an MCMC framework and are not restricted to
monotone dropout structures. At the level of the individual, we allow the response
to incorporate random effects which will covary with the individual random effects
for the growth model, although in the monotone dropout case we will generally not
be able to fit separate random effects at the occasion and individual level. The model
generalises straightforwardly, using the procedures we have outlined, to multivariate
growth processes. (We return to such models in Chapter 16.)

5.10 Longitudinal discrete response data
If we have repeated measures for discrete responses then a natural approach is to use
the models of Chapter 4 in a 2-level model with occasions as level 1. Thus we could
write for a binary response

f (πij) = β0 j + β1 j xij
E(β0 j ) = β0, E(β1 j ) = β1

var(β0 j ) = σ 2
u0, var(β1 j ) = σ 2

u1, cov(β0 j , β1 j ) = σu01, var(eij) = σ 2
e

yij
iid∼Bin(1, πij)

(5.10)

with straightforward extensions to ordered and unordered responses. In some cases
such a formulation may be reasonable but often the assumption that the binomial
responses are independent and identically distributed (iid) conditional on the πij,
is unrealistic. Thus, for example, in a study of voting patterns on three occasions
Yang et al. (2000) used a three level model for repeated binary responses of voting
behaviour. They found that there was considerable under-dispersion in the data, with
an extra-binomial parameter as low as 0.4, and attributed this to the fact that for many
people the probability of voting for a particular party (Conservative) was effectively
0 or 1, which implies in (5.10) large numbers of individuals with infinite random
effect values on the linear scale.

One method for handling such data is the so-called mover-stayer model which
extends (5.10) by writing the probability of being a ‘stayer’, that is, not changing, as

π1 j = f [(X1α1) j + u1 j ]

the probability of voting Conservative given that the individual is a stayer as

π2ij = f [(X2α2)ij + u2 j ]

and the probability of voting Conservative if the individual is a mover as

π3ij = f [(X3α3)ij + u3 j ]
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For those individuals who have nonconstant responses, the probability of being a
stayer is 0. We can combine these probabilities with (5.10) so that the probability of
voting Conservative is

π1 jπ2ij + (1 − π1 j )π3ij

and the relevant parameters can be estimated, e.g. by maximum likelihood or MCMC.
One problem with this formulation is the assumption that some people really are

true stayers and that this can describe the response pattern. In the voting example
with only three occasions, this seems questionable when nearly three-quarters of
the sample did not change their vote. In other cases, for example in modelling the
presence of a disease over time, such an assumption may also be questionable.

To avoid relying on such a model we can directly model the responses as multi-
variate and estimate the covariance structure, where occasions are treated as variates.
Thus, in the voting case, we would have a 3-variate model which we can fit as
an eight-category multinomial response (see Chapter 4) with three dummy variable
terms for occasions where these terms are associated with the average response at
each occasion. We can also include covariates, possibly interacting with these dummy
variables. At each occasion the coefficient of each dummy variable is assumed to vary
binomially across individuals and the covariances between these are parameters to
be estimated. A simple intercept model can be written

logit(πtij) =
3∑

t=1

βt ztij, ytij ∼ bin(1, πtij) (5.11)

where t indexes occasion and the ztij are the dummy variables for occasions. If we
use a probit link function we can directly estimate and interpret these covariances as
correlations.

This multivariate formulation, however, as in the case of continuous responses, is
relatively inflexible. Barbosa and Goldstein (2000) extend this model to the general
case with arbitrary numbers and spacing of occasions. Essentially, they use the serial
correlation models in Section 5.5, adapted for binary responses where the correlation
between occasions becomes a function of the time difference. They find that the final
choice of covariance function in Table 5.3 involving an inverse polynomial fits the
data well, and show that this is an efficient method for handling such longitudinal
data and accounting for the under-dispersion that results from a large proportion of
unchanging responses. The method is readily generalised to the ordered or unordered
category case, although the latter will usually lead to a large number of potential
parameters. A particular advantage of this method is that it models the correlation
between occasions as a smooth function of time, and possibly covariates, so allowing
flexible predictions of future probabilities based on current observations to be made
for individuals or groups of individuals. An MCMC algorithm for such models is
described in Chapter 17.
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6

Multivariate multilevel data

6.1 Introduction
In previous chapters, we basically considered only a single response variable,
although we looked at special cases of multiple responses, such as in describing
repeated measures data. We now look more systematically at models where we wish
simultaneously to model several responses as functions of explanatory variables. We
begin with the case where these are all defined at level 1, confining ourselves to the
case of normal responses. (In a later section, we consider models where responses
can be defined at several levels; in the next chapter, we look at multivariate models
where the responses are mixtures of continuous and discrete data; and in Chapter 16,
at models where we have multivariate responses of different types at several levels.)

The formulation of multivariate models given here provides us with basic tools
for tackling a very wide range of problems. These problems include missing response
data and rotation or matrix designs for surveys and (see Chapter 16), methods for
handling very general missing data structures.

We will develop the model using a dataset of examination results consisting of
scores on two components of a science examination taken in 1989 by 1905 students
in 73 schools and colleges. The examination is the General Certificate of Secondary
Education (GCSE) taken at the end of compulsory schooling in England, normally
when students are 16 years of age. The first component is a traditional written question
paper (marked out of a total score of 160) and the second consists of coursework
(marked out of a total score of 108), including projects undertaken during the course
and marked by each student’s own teacher. The overall teachers’ marks are subject to
external ‘moderation’ using a sample of coursework. Interest in these data centres on
the relationship between the component marks at both the school and student level,
whether there are gender differences in this relationship and whether the variability
differs for the two components. Creswell (1991) gives a full description of the dataset.

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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6.2 The basic 2-level multivariate model
To define a multivariate, in the case of the following example a 2-variate, model we
treat the individual student as a level 2 unit and the ‘within-student’ measurements
as level 1 units. Each level 1 measurement ‘record’ has a response, which is either
the written paper score or the coursework score. The basic explanatory variables are
a set of dummy variables that indicate which response variable is present. Further
explanatory variables are defined by multiplying these dummy variables by individual
level explanatory variables such as gender.

The data matrix for three individuals, two of whom have both measurements and
the third with only the written paper score, is displayed in Table 6.1. The first and
third students are female (1) and the second is male (0).

The model is written as

yij = β01z1ij + β02z2ij + β11z1ijx j + β12z2ijx j + u1 j z1ij + u2 j z2ij

z1ij =
{

1 if written
0 if coursework

}

,z2ij = 1 − z1ij,x j =
{

1 if female
0 if male

}

var(u1 j ) = σ 2
u1, var(u2 j ) = σ 2

u2, cov(u1 j u2 j ) = σu12

(6.1)

There are several features of this model. There is no level 1 variation specified
because level 1 exists solely to define the multivariate structure. The level 2 variances
and covariance are the (residual) between-student variances. In the case where only
the intercept dummy variables are fitted, and every student has both scores, the
model estimates of these parameters become the usual between-student estimates of
the variances and covariance. The multilevel estimates are statistically efficient even
where some responses, as for student 3, are missing, and where the measurements have
a multivariate normal distribution they are also the maximum likelihood estimates.
This formulation as a 2-level model thus allows for the efficient estimation of a
covariance matrix with missing responses. Note that, while it is convenient for basic
algorithmic and expository purposes to use the first subscript to denote the multivariate
structure, when we come to generalise this model we will drop this notation.

Table 6.1 Data matrix for examination example (part).

Intercepts Gender

Student Response Written Coursework Written Coursework

1 (female) y11 1 0 1 0
1 y21 0 1 0 1
2 (male) y12 1 0 0 0
2 y22 0 1 0 0
3 (female) y13 1 0 1 0
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Table 6.2 Bivariate models for written paper and coursework responses.

Fixed Estimate (s.e.) Estimate (s.e.)

Constant: Written 49.5 49.5
Coursework 69.5 69.1

Female: Written –2.5 (0.5) –2.5 (0.5)
Coursework 6.9 (0.7) 7.3 (1.1)

Random
Level 3:
σ 2

v1 48.9 (9.5) 49.6 (9.5)
σv12 25.2 (9.1) 35.5 (11.3)
σ 2

v2 77.1 (14.8) 106.6 (21.7)
σv13 –15.9 (7.8)
σv23 –37.4 (13.2)
σ 2

v3 41.5 (11.7)

Level 2:
σ 2
u1 124.3 (4.1) 124.2 (4.1)

σu12 74.6 (3.9) 73.6 (3.9)
σ 2
u2 183.2 (6.1) 189.1 (8.6)

σu23 –12.5 (4.7)
–2 log(likelihood) 29718.8 29664.7

For the random parameters the subscripts refer to the following explanatory variables: 1 =
writing intercept, 2 = coursework intercept, 3 = coursework female.

In our example, the students are grouped within examination centres, so that the
centre is the level 3 unit. Table 6.2 presents the results of two models fitted to these
data. The first analysis is simply (6.1) with variances and a covariance for the two
components added at level 3. In the second analysis, additional variance terms for
gender, statistically significant at the 5 % level, have been added at levels 2 and 3.

In both analyses, the females do worse on the written paper and better on the
coursework assessment. There is a greater variability of marks on the coursework
element, even though this is marked out of a smaller total, and the centre variance
partition coefficients are approximately the same in the first analysis (48.9/(48.9 +
124.3) = 0.28 and 77.1/(77.1 + 183.2) = 0.30). This suggests that the ‘moderation’
process has been successful in maintaining a similar relative between-centre variation
for the coursework marks. The correlation between the two components is 0.50 at the
student level and 0.41 at the centre level.

In the second analysis, we see that the between-student variance for coursework
is smaller for the females (189.1 − 2 × 12.5 =164.1) compared to that for the males
(189.1); for the centres, the coursework variance for females is also smaller (106.6 −
2 × 33.4 + 41.5 =73.3) than for males (106.6). There appears to be no difference in
the variances for the written paper and the corresponding parameter is omitted.
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Note how the standard error of the coursework gender coefficient increases with
the more precise specification of the coursework variation at both levels. This is
another aspect of the effect we saw when fitting a multilevel model, as opposed to a
single level model.

6.3 Rotation designs
We have already pointed out that fully balanced multivariate designs are unnecessary
when we formulate the model as in Table 6.1. As this shows, the basic 2-level
formulation does not recognise that a response is missing, since we only record those
present.1 We now look at designs where responses are deliberately missing (as part
of the design) and we see how this can be useful in a number of circumstances.

In many kinds of surveys, the amount of information required from respondents
is so large that it is unrealistic to expect each one to respond to all the questions
or items: in education surveys, we may require achievement information covering a
large number of areas; in surveys of businesses, we may wish to have a large amount
of detailed information from each business; and in household questionnaires, we may
wish to obtain information on a wide range of topics. In this chapter we consider only
measurements that are to be used as responses in a model (see Chapter 16 for how
this can be extended to deal with explanatory variables having missing values).

If we denote the total set of responses as {N }, then we choose p subsets {Ni , i =
1, . . . p} each of which is suitable for administering to a level 1 unit such as a
student or household. When choosing these subsets we can only estimate subject-
level covariances between those responses that appear together in the same subset. It
is therefore common in such designs to ensure that every possible pair of responses
is present. If we wish to estimate covariances for higher level units such as schools,
it is necessary only to ensure that the relevant pair of responses are assigned to some
schools – a large enough number to provide efficient estimates. The subjects are
assigned at random to subsets and higher level units are also assigned randomly,
possibly with stratification.

Each subset is viewed formally as a multivariate response vector with randomly
missing values; that is, those that are excluded from the subset. As we saw in Section
6.2, we can fit a multivariate response model for such data and obtain efficient
estimates for the fixed part coefficients and covariance structures at any level. In this
formulation, the variables to be used as explanatory variables should be measured for
each level 1 unit. There follows an example using educational achievement data.

6.4 A rotation design example using Science
Survey test scores

The data come from the Second International Science Survey carried out by the
International Association for the Evaluation of Educational Achievement (Rosier,

1 In MCMC estimation, each missing data value is treated as a parameter to be sampled, so that
subsequent steps can condition on a complete dataset (as detailed in Chapter 16).
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Table 6.3 Numbers of items in topic areas: Grade 8.

Form Earth Science Biology Physics

1 (Core) 6 10 10
2 (R2) – – 7
3 (R3) – 4 –
4 (R4) – 4 –

1987). Table 6.3 shows how items from three science topic areas are distributed over
test papers or forms with the numbers of items in each topic area. The tests consisted
of a core form, or subtest, taken by all students plus a randomly selected pair out of
the four additional forms or subtests. The study was carried out in 1984 in some 24
countries. We discuss here the results for Hungary.

Because the number of items in some of the additional forms for some subjects is
very small, only the additional forms 2–4 are used, labelled Biology R3, Biology R4
and Physics R2 (Table 6.3). We also divide each subtest score by the total number of
items in the subtest so as to reduce each score to the same scale. There are 99 schools
with 2439 students and a total of 10 971 responses.

The full model for Table 6.4 can be written as a 3-level model as follows:

yijk = β01z1ijk + β02z2ijk + . . . ., β06z6ijk + β11z1ijkxjk + β12z2ijkxjk
+ . . . ., β16z6i jk xjk + u1jkz1ijk + u2jkz2ijk + . . . ., u6jkz6ijk + v1k z1ijk

+v2k z2ijk + . . . ., v6k z6ijk
⎛

⎜
⎜
⎜
⎝

u1jk
u2jk

...
u6 jk

⎞

⎟
⎟
⎟
⎠

∼ N (0,�u),

⎛

⎜
⎜
⎜
⎝

v1k
v2k
...

v6k

⎞

⎟
⎟
⎟
⎠

∼ N (0,�v)

where subscripts 1, . . . .6 correspond to the six subsets in Table 6.4 We see that the
intercorrelations at the student level are low and are higher at the school level. One
reason for this is the fact that there are few items in each subtest so that the reliability
of the tests is rather low which will decrease the correlations at student level but less
so at school level. Because of these low correlations among the subtests the joint
analysis does not result in a marked improvement in efficiency when we compare
this analysis with an analysis for a single subtest. For example, if we fit a univariate
model for the Physics R2 subtest using the 1226 students responding to that subtest,
we obtain fixed part estimates of 0.665 (0.0132) and –0.073 (0.0124), which are close
to those above and with standard errors only slightly higher.

In order to provide the most precise estimates we treated the subtests separately,
although we would generally wish to make inferences for each subject area, com-
bining over the tests. The natural way to do this is to form a weighted average of
the subtest estimates, in this case weighting by the number of items in each subtest.
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Table 6.4 Science attainment estimates for Hungary IEA study.

Fixed Estimate (s.e.)

Earth Science Core 0.838 (0.0076)
Biology Core 0.711 (0.0100)
Biology R3 0.684 (0.0109)
Biology R4 0.591 (0.0167)
Physics Core 0.752 (0.0128)
Physics R2 0.664 (0.0128)

Earth Science Core (girls-boys) −0.0030 (0.0059)
Biology Core (girls-boys) −0.0151 (0.0066)
Biology R3 (girls-boys) 0.0040 (0.0125)
Biology R4 (girls-boys) −0.0492 (0.0137)
Physics Core (girls-boys) −0.0696 (0.0073)
Physics R2 (girls-boys) −0.0696 (0.0116)

Random Variances on diagonal; correlations off-diagonal

School level
E.Sc.
core

Biol.
core

Biol
R3

Biol
R4

Phys.
core

Phys.
R2

E.Sc. core 0.0041
Biol. core 0.68 0.0076
Biol R3 0.51 0.68 0.0037
Biol R4 0.46 0.68 0.45 0.0183
Phys. core 0.57 0.90 0.76 0.63 0.0104
Phys. R2 0.54 0.78 0.57 0.65 0.78 0.0095

Student level
E.Sc.
core

Biol.
core

Biol
R3

Biol
R4

Phys.
core

Phys.
R2

E.Sc. core 0.0206
Biol. core 0.27 0.0261
Biol R3 0.12 0.13 0.0478
Biol R4 0.14 0.27 0.20 0.0585
Phys. core 0.26 0.42 0.11 0.27 0.0314
Phys. R2 0.22 0.33 0.14 0.37 0.41 0.0449



P1: TIX/XYZ P2: ABC
c06 JWST015-Goldstein August 16, 2010 9:11 Printer Name: Yet to Come

MULTIVARIATE MULTILEVEL DATA 167

Thus, for the biology core and subtests we would form the weighted sum with weights
0.556, 0.222 and 0.222 respectively. This gives biology estimates for the boys and
(girls-boys) of 0.68 (0.009) and –0.02 (0.007).

We can compare this with simply using the original scores and forming the
weighted combination of the core and two subtests, eliminating any students with
missing data. This results in only 399 students with complete data and the corre-
sponding estimates are 0.68 (0.013) and –0.008 (0.015). In this case, even though the
individual level 1 correlations are relatively small, the gain in efficiency from carrying
out the full multivariate analysis is substantial, especially for inferences about the
gender difference which in the second analysis is less than its standard error.

Another way to combine the subtests would be to form, for each student, a score
based upon the items which the student responded to. Thus, for Biology the 399
students taking the core and both rotated forms would have a score out of 18 items;
and there would be 823 and 807 students respectively with scores out of 14 items,
with 410 students having only a score out of the core test. Since the scores are out of
different totals, we would expect the between student and between-school variances
to differ and this is the case; the between-student variance for the 10 core test score
is 0.00013 compared to that for the 18-item core and two rotated forms score of
0.00021. In general, we would thus need to fit separate variance and covariance terms
for each combination, and in effect treat the four combinations as separate responses
in order to obtain efficient estimates. We would also tend to obtain high correlations
between these combination scores that could lead to numerical estimation problems,
so in general such a procedure is not recommended.

6.5 Informative response selection: subject choice in
examinations

In the previous example, the choice of response was independent of the value of the
response measurement, since allocation of students was made at random. In some
cases, however, this will not be true. We now look at one such case where students
taking an examination can make a choice of papers, and this choice is related to their
underlying achievement.

Yang et al. (2001) studied a large group of students taking mathematics exami-
nations at Advanced level in England in 1997, aged 18. There were 52 587 students
in 2592 educational institutions. The data were analysed using a scoring system for
achieved grades whereby the highest grade (A) is given a score of 10 and a failure
given a score of 0, with a mean overall of 6.4. Students take up to four papers chosen
from 10 different types with just under 87 % choosing just one paper and just under
13 % choosing two. It is clear from the data that students taking particular combi-
nations of subjects tend to perform better than those taking other combinations. For
example, the average score on the main, basic mathematics paper is 5.54 for those
who take this paper alone compared to 9.45 for those who take it in combination with
a further mathematics paper. The analysis adjusts for prior achievement measured by
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the performance on GCSE examination taken two years earlier and interest focuses
on differences between institution types and on variability and correlations among
papers at the school and student level.

In order to take account of informative choice, the authors fit a term (dummy vari-
able) for each combination of subjects taken, allow the coefficients of these to vary
randomly at the school level and for the student level variance to depend on the com-
bination chosen (see Chapter 3). They also allow interactions with other explanatory
variables, such as gender. They are able to conclude that the institutional level correla-
tions among subjects, when different choice combinations are modelled, are typically
only moderate, and that institutions are more homogeneous with respect to results
from some combinations as opposed to others. Models of this kind may be useful in
other situations, for example, where question choice within examinations is permitted.

6.6 Multivariate structures at higher levels
and future predictions

To illustrate the use of models for higher level multivariate data, we use data on
school examination results for the same set of schools over two years, where there is
a different set of students at each time point. Note that the responses are still at level
1; it is the multivariate structure that is at level 2.

The data are normalised examination scores taken from the national pupil database
(NPD), a census of all pupils in the English state education system. Full details can
be found in Leckie and Goldstein (2009). The examination results, taken in 2002
and 2007, are a subset of those available; a total of 91 453 students took their GCSE
in school year 11 in a sample of 266 matched schools. There is also data on prior
achievement, as measured by Key Stage 2 (KS2) test scores taken in year 6, just
before entry to Secondary school. The NPD holds data on pupils’ test score histories
and a limited number of pupil level characteristics.

We have a bivariate model that we write in a form essentially equivalent to (6.1),
where now each response defines a line of the model as follows:

y1ij = β10 + β11x1ij + u1 j + e1ij
y2ij = β20 + β21x2ij + u2 j + e2ij

(6.2)

(
u1 j
u2 j

)

∼ N (0,�u), �u =
(

σ 2
u1

σu12 σ 2
u2

)

(
e1ij
e2ij

)

∼ N (0,�e), �e =
(

σ 2
e1
0 σ 2

e2

)

where the subscript 1 refers to 2002 and 2 to 2007 respectively, and x1ij, x2ijare the
KS2 test scores relevant to 2002 and 2007. Since the students are not the same in
the two years, there is no covariance at level 1 – but there is at level 2, since we
have the same schools. In Table 6.5, we present an extract of results from the more
extensive analysis in Leckie and Goldstein (2009).
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Table 6.5 Selected parameter estimates for the bivariate 2-level random intercepts
model of the normalised GCSE score for the 2002 and 2007 cohorts of pupils.
Standard errors in brackets.

2002 2007

Fixed part
Constant −0.055 (0.014) −0.071 (0.014)
Average KS2 score 0.667 (0.006) 0.680 (0.005)
Average KS2 (squared) 0.028 (0.003) 0.042 (0.003)
Average KS2 (cubed) −0.026 (0.002) −0.026 (0.001)
Female 0.189 (0.006) 0.184 (0.006)

Random Part: School
Between-school variance (2002) 0.047 (0.004)
Between-school covariance

(2002, 2007)
0.030 (0.004)

Between-school variance (2007) 0.047 (0.004)

Random Part: Pupil
Within-school between-pupil

variance (2002)
0.368 (0.003)

Within-school between-pupil
variance (2007)

0.397 (0.003)

Deviance (−2∗log likelihood) 173243
Number of schools 266
Number of pupils 91453

The fixed part parameter estimates for 2002 have the same signs and similar
magnitudes to those for 2007. In the random part of the model, the between-school
variances for the 2002 and 2007 cohorts are constrained to equal one another. A
likelihood ratio test shows that this constraint, which simplifies the formula for
predicting future school effects, does not significantly reduce the fit of the model
(χ2

(1) = 0.156, P = 0.69). The model gives a VPC of 0.113 and 0.106 for 2002 and
2007 respectively; schools are no more or less important a source of variation in
unexplained progress in 2007 than they are in 2002. The correlation between the
2002 and 2007 school effects is 0.64 (= 0.030/0.047).

We can also use these results as a basis to predict the school ‘effects’ (estimated
residuals) five years into the future, given current data. In other words, assuming that
these results can be extrapolated, given estimates for the relationship between school
results five years apart, these can be used in a prediction formula. Such an analysis
may haves implications, for example, for parents choosing schools, where interest is
on future examination results. Thus we require

û2 j = E(u2 j |y1ij; θ ), where θ is the set of parameters estimated from the model
(6.2). If we assume σ 2

u1 = σ 2
u2 = σ 2

u , Leckie and Goldstein (2009) show that the
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estimates of u2 j , and their comparative variances, are given by

û2 j = ρu12n1 jσ
2
u

(n1 jσ 2
u + σ 2

e1)
ỹ1 j , var(û2 j − u2 j ) = n1 jσ

4
u (1 − ρ2

u12) + σ 2
u σ

2
e1

(n1 jσ 2
u + σ 2

e1)
(6.3)

where ρu12 = σu12/σ
2
u and ỹ1 j is the mean of the raw residuals for the j-th school

(see Section 2.6).
The expressions in (6.3) can be used to construct estimates and confidence in-

tervals for each school. We see from (6.3) that predicting the time 2 estimates from
those at time 1 we have a further shrinkage factor ρu12 and there is a wider confidence
interval than that for the time 1 residuals based solely on the time 1 data. In the
present case, the confidence intervals are about 3.5 times as wide and almost all of
them include zero. On the basis of these results the use of such data for school choice
would be very limited and Leckie and Goldstein (2010) show that little extra precision
is obtained when the prediction is based upon more than one past year’s results.

6.7 Multivariate responses at several levels
We have already seen an example (Chapter 5) of a model where we simultaneously
modelled level 1 and level 2 responses. We now set out a generalisation of this
for multivariate normal responses. We restrict the development to a 2-level model.
We go on to show in Chapter 12 how cross classifications can be introduced into
multivariate models and use the results derived in Chapter 7 to extend this model to
include responses other than normally distributed ones (see Chapter 16).

Let j = 1,. . .m index level 2 units and i = 1,. . .nj index the level 1 units within
the level 2 units. The underlying multivariate normal model structure we consider is
as follows:

y(1)
ij = X1ijβ

(1) + Z1iju(1)
j + e(1)

ij

y(2)
j = X2 jβ

(2) + Z2 j u(2)
j

e(1)
ij ∼ MVN(0,�1), u j = (u(1)

j , u(2)
j )T , u j ∼ MVN(0,�2)

(6.4)

The superscripts now denote the level at which a variable is measured. We no longer
use the notation introduced earlier, where the first subscript denotes a lowest level
that has no variation and simply describes the multivariate structure. Thus y(1)

ij is now

a row vector that contains p1 responses that are defined at level 1 and y(2)
j contains

p2 responses that are defined at level 2. Without loss of generality, we assume the
same set of explanatory variables for each response at level 1 and likewise at level
2: we can constrain some of these for particular responses to be zero, as described
in Appendix 6.1. The row vectorX1ij contains f1 level 1 explanatory variables and
β(1) is the ( f1 × p1) matrix containing the fixed coefficients for these. Similarly, we
have X2 j , β

(2) for the level 2 responses. For each level 1 response we have q1 random
coefficients, and Z1ij is the matrix that contains the explanatory variables for these,
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denoted by u(1)
j ; for each level 2 unit there are (q1 × p1) of these. The level 1 residuals

are denoted by e(1)
ij . The explanatory variable vector Z2 j for the level 2 residuals u(2)

j
associated with the level 2 responses, has p2 elements. Note that for the level 1 and
level 2 responses we assume simple residual variation, but in principle we can extend
our model to include complex variance structures.

Our estimation strategy uses MCMC via Gibbs sampling, drawing from the ap-
propriate known posterior conditional distributions, and assumes appropriate diffuse
prior distributions. We now summarise the steps involved (these are set out in detail
in Appendix 6.1).

Step 1 Sample the level 1 fixed coefficients from the first line of (6.4) given the
current parameter estimates.

Step 2 Sample the level 2 fixed coefficients in similar manner from the second
line of (6.4).

Step 3 Sample the level 2 random effects u(1)
j for the level 1 responses ignoring

level 2 residuals for level 2 responses.

Step 4 Calculate the level 1 residuals e(1)
ij by subtraction.

Step 5 Calculate the level 2 residuals u(2)
j for the level 2 responses by subtraction.

Step 6 Sample the level 1 covariance matrix.

Step 7 Sample the full level 2 covariance matrix.

The level 2 covariance matrix sampled in Step 7 links together the level 1 and
level 2 random effects in the model. Where any response is missing, we fill in a value
by sampling conditional on the non-missing residuals associated with that level.

For further levels and classifications we have a similar series of steps where the
covariance matrices at levels 2, 3, . . . include all the random effects defined at those
levels.

6.7.1 Fitting responses at several levels using random
data augmentation

Many software packages are not able to implement the procedure we have just
outlined. The following alternative method can be implemented in standard multilevel
software.

Consider (6.4), where we now augment the level 2 responses by adding indepen-
dently distributed ‘noise’

y(1)
ij = X1ijβ

(1) + Z1iju(1)
j + e(1)

ij

y(2)
ij = X2 jβ

(2) + Z2 j u(2)
j + e(2)

ij

e(1)
ij ∼ MVN(0,�1), e(2)

ij
iid∼ N (0, σ 2

e2)

uj = (u(1)
j , u(2)

j ), u j ∼ MVN(0.�2)

(6.5)
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The term e(2)
ij represents random independent level 1 noise with a predetermined small

variance, σ 2
e2, added. This transforms the model into one where all responses are at

level 1 and can be fitted in the standard way. When fitting the model, if we constrain
var(e(2)

ij ) to equal σ 2
e2, then we will obtain unbiased estimators for (6.4). This then

allows us to carry out, for example, imputations as described in Chapter 16. We can
also use this device with more complex structures such as cross classifications.

6.8 Principal components analysis
We have already seen in Section 6.1 that the covariance matrix for a multivariate
response vector where there are missing data can be efficiently estimated by arranging
for the multivariate structure to constitute a ‘dummy’ level 1. When the variables have
a multivariate normal distribution, the resulting estimates are maximum likelihood
or restricted maximum likelihood.

The aim of principal components analysis is to find a linear function of a set
of variates which has the maximum variance, subject to a suitable constraint. In the
single level case we require to maximise the variance of wT y, known as the first
principal component, where w is the vector of weights defining the linear function of
the variates y, and � is the covariance matrix of y, namely

� = wT�w, wTw = 1.

The solution is given by the eigenvector associated with the largest eigenvalue of �,
that is the solution of

|� − λI | = 0

We define a second linear function by the set of weights that maximises the variance
subject to the function being uncorrelated with the first function. The solution is given
by the eigenvector associated with the second largest eigenvalue, and defines the
second principal component. Subsequent functions can be defined similarly (Lawley
and Maxwell, 1971). The variates are usually standardised to have equal variances.

We note that the covariance (or correlation) matrix � can be a residual matrix, after
regressing on explanatory variables. Thus, if we wish to form a principal component
for the four science subjects of the previous section, we might use the residual
covariance matrix, after adjusting for gender differences. We now, however, have a
choice of two covariance matrices: between-student and between-school. If we choose
the between-student matrix, then we would interpret the principal component as that
which had been adjusted for school differences. In forming the derived summary
variable(s), we would not use the actual observed variates but the level 1 estimates of
them; that is, the level 1 residuals of (6.1).

We could also choose to summarise the level 3 covariance matrix, and in this case
we would use the school level residuals as the variates in the linear function. If the
principal component analysis has been carried out on the residuals from a multivariate
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Table 6.6 Principal Component weights for science test scores and percentage vari-
ation accounted for.

Subject Between-student Between-school

Earth Science Core 0.17 0.21
Biology Core 0.29 0.40
Biology R3 0.31 0.21
Biology R4 0.63 0.59
Physics Core 0.35 0.46
Physics R2 0.52 0.43
% variation 41 % 72 %

multilevel analysis, then we may wish to regard the school level principal component
as a convenient summary measure of school differences.

Table 6.6 shows the student level and school level principal component weights
for the Science data. Since the measures are designed to be on the same scale we
work directly with the covariance matrices.

As might be expected, the components both have positive weights. At the school
level, the percentage variation accounted for by the first component is high suggesting
that school Science performance may usefully be summarised by this weighted
function of the individual school level subject residuals. Also, the two sets of weights
are fairly similar. This suggests that if we wished to summarise the individual subject
scores into a single index, we could do this using the student level weights, or even the
weights obtained using the total covariance matrix. In Chapter 8, we further explore
the structure of these data using a factor analysis model.

6.9 Multiple discriminant analysis
Given a set of variates, we can seek a linear function of them that best discriminates
among groups. This leads to the following definition. If ȳ is the vector of group means
then we require a set of weights w such that wT ȳ has maximum variance, subject to
the within-group variance of wT y being constrained, for example equal to 1.0. The
solution is the vector associated with the largest root of

|�B − λ�W | = 0

for the between-group (�B) and within-group (�W ) covariance matrices. For just
two groups this gives the usual ‘Fisher’ discriminant function. As in principal com-
ponents analysis, we can find further vectors that discriminate best, subject to being
uncorrelated with all the previous vectors. The function of the variates wT y can then
be used, for example, to classify a new unit into the ‘nearest’ group.
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In the 2-level case our groups are the level 2 units so that we require the covariance
matrices from both levels. Using the Science data example the first vector is given by
the weights 0.41 –0.07 1.00 0.26 0.31 0.13 and explains about 48 % of the variation.
The next two vectors account for 19 % and 13 %. It is difficult to interpret these
weights and in this case the function would seem to have limited usefulness for
discriminating between schools.
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Appendix 6.1 MCMC algorithm for a multivariate
normal response model with constraints

Consider the two level multivariate response model with p1 level 1 responses

yij = X1ijβ + z1iju j + eij
eij ∼ MVN(0,�1), u j ∼ MVN(0,�2)

(6.1.1)

where, for simplicity, we omit the superscript (1) defined in Section 6.7. To sample
β we assume a uniform prior and sample from the posterior distribution which is
multivariate normal with mean

⎡

⎣
∑

ij

(I(p1×p1) ⊗ Xij)T�−1
1 (I(p1×p1) ⊗ Xij)

⎤

⎦

−1
∑

ij

(I(p1×p1) ⊗ Xij)T�−1
1 ỹTij ,

ỹij = yij − ziju j

and covariance matrix [
∑

ij
(I(p1×p1) ⊗ Xij)T�−1

1 (I(p1×p1) ⊗ Xij)]−1 .

We sample u j from the multivariate normal distribution

MVN

⎛

⎝

[
∑

i

z
T

ij�
−1
1 zij + �−1

2

]−1 [
∑

i

zTij�
−1
1 (yij − Xijβ)

]

,

[
∑

i

zTij�
−1
1 zij + �−1

2

]−1
⎞

⎠

We sample a new level 2 covariance matrix from its posterior distribution

�−1
2 ∼ Wishart(vu, Su), vu = m + vp, Su =

⎛

⎝
m∑

j=1

u juTj + Sp

⎞

⎠

−1

Where m is the number of level 2 units, u j is the row vector of residuals for the
j-th level 2 unit and the priorp(�−1

2 ) ∼ Wishart(vp, Sp), where vu are the degrees of
freedom – the sum of the number of level 2 units and degrees of freedom associated
with the prior. One choice is vp = −3, Sp = 0 which is equivalent to choosing a
uniform prior for �2.

The level 1 covariance matrix is sampled in the same way. For our present model
this is assumed to have only one random effect (residual) for each response. The level
1 residuals are obtained by subtraction.

Where any responses are missing we fill these in by sampling new responses,
omitting detailed subscripts, by drawing from MVN(X∗

2β
∗
2 + e∗

1β
∗
1 + z∗2u∗

2, 	2 −
	21	

−1
1 	12) where 	2 is the current covariance matrix of residuals for the missing
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responses, 	1 is the covariance matrix of residuals for the observed (non-missing)
responses and 	12 is the matrix of covariances between the observed and missing
residuals. The X∗

2β
∗
2 and z∗2u∗

2 are the fixed predictor and level 2 residual contribu-
tion for the missing responses, β∗

1 = 	−1
1 	12 and e∗

1 are the level 1 residuals for the
observed responses.

Where we have responses at additional levels the sampling follows the same
pattern. Thus, suppose that we have responses at level 2. We sample the fixed effects
using the level 2 covariance matrix associated with the level 2 responses. The level
2 residuals for the level 2 responses are obtained by subtraction and the full level 2
covariance matrix, for responses at both levels, is sampled in a single step using the
level 2 residuals for both the level 1 and level 2 responses. Where there are missing
values for level 2 responses we condition on the full level 2 covariance matrix and
associated residuals that are non-missing.

6.1.1 Constraints among parameters
In some cases we may wish to impose a constraint on a subset of the parameters. For
example, if we wish to have a different set of predictors for each response, we can fit
a maximal model and constrain appropriate subsets to zero.

Consider first, linear constraints for the fixed coefficients. Suppose we wish to
impose a set of q independent linear constraints on some or all of the elements of β.
These constraints will involve q∗ ≥ q distinct elements of β, and we re-order β so
that q of these q∗ elements appear first.

We can write the set of constraints as

Cβ = k, C is (q × p), k is (q × 1) (6.1.2)

Write the QR decomposition of C as C = QR,R = (TW ), where Q is orthogonal
(q × q) andT is upper triangular (q × q) andW is (q × (p − q)). Write βT = (βT1 βT2 )
where β1 contains the first q elements of (the re-ordered) βand β2 contains the last
p-q elements.

We now have QT k = QT QRβ = (TW )β and we construct

(
T W
0 I

)

β =
(

(TW )β
β2

)

=
(
QT k
β2

)

which gives

(
β1

β2

)

= β =
(
T W
0 I

)−1 (
QT k
β2

)

=
(
T−1 −T−1W

0 I

)(
QT k
β2

)

=
(
T−1QT k − T−1Wβ2

β2

)

so that we can sample the p-q elements of β2 freely and compute the q elements of
β1 as the function of β2 given by the expression T−1QT k − T−1Wβ2.

We can impose a set of linear constraints in similar fashion on any subset of the
random parameters.
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Where we have nonlinear constraints or inequality constraints, it becomes more
difficult to find a routine procedure that will separate parameters into a group that
can be freely estimated and the remainder that are non-stochastically dependent on
these. Nevertheless, if we do have q such constraints, and they can be separated into
two such groups then we can proceed analogously to the case of linear constraints by
estimating the free parameters and then each of the related parameters in turn.

Where there is an inequality constraint for a parameter of the form k1 ≤ θ ≤ k2

we can use a MH proposal distribution for the parameter, where the admissible
interval defines truncation points, and a suitable prior distribution for the parameter
is required. See Section 3.1 for a simple example.
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7

Latent normal models for
multivariate data

7.1 The normal multilevel multivariate model
In the last chapter, we introduced the multilevel multivariate normal model with
responses at several levels. In this chapter, we shall consider only responses at level
1 and generalise it to the case where responses can be mixtures of different types. We
bring these together in Chapter 16 by considering models where there are different
types of responses at different levels.

We showed in Chapter 6 how to set up a multivariate model as a 2-level model
where the lowest level described the multivariate structure and the variances and
covariances of the responses were defined at level 2. This provided a convenient way
to obtain maximum likelihood estimates using the algorithms described in Chapter
2, but is less convenient for more complex models where we shall be using MCMC
estimation. Instead, we write the basic multivariate normal model, as described in
Appendix 6.1

yij = Xijβ + ziju j + eij
eij ∼ MVN(0,�1), u j ∼ MVN(0,�2)

(7.1)

Now yij is a row vector that contains the p responses.
We also described in Chapter 6 the steps needed to obtain estimates for the more

general model with responses at several levels. For (7.1), the MCMC estimation steps
(see Appendix 6.1 for details) are:

Step 1 Sample the level 1 fixed coefficients from the first line of (7.1) given the
current parameter estimates.

Step 2 Sample the level 2 random effects u j .

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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Step 3 Calculate the level 1 residuals eij by subtraction.

Step 4 Sample the level 1 covariance matrix.

Step 5 Sample the level 2 covariance matrix.

Where any response is missing we fill in a value by sampling conditional on the
non-missing responses.

The following sections in this chapter show how responses of various different
types can be incorporated within a multivariate normal framework. We refer to this as
a ‘latent normal model’, where the observed non-normal responses plus the observed
normal responses are mapped onto an underlying multivariate normal distribution,
and describe the sampling steps to do this. In all cases, when we sample the underlying
normal variables, given observed non-normal variables, we will condition on all the
remaining (correlated) latent and observed normal responses. We start by considering
binary responses.

7.2 Sampling binary responses
Although we can consider a binary response as a special case of a multicategory
response, we consider it first in order to link with the univariate latent normal model
introduced in Section 4.8, where we defined the binary response in terms of a normal
threshold model.

For a given binary response, consider the corresponding latent normal variable
yij,1, which without loss of generality we can label variable 1, and denote the remaining
responses by y∗

ij where these are assumed to have a multivariate normal distribution
either because they are observed as such or because they result from sampling the
non-normal responses. We wish to sample a latent normal value for yij,1. Given the
current parameter values, we have the conditional distribution

yij,1|y∗
ij ∼ N (Xijβ1 + y∗

ijβ2 + ziju j , 1 − �21�
−1
1 �12)

β2 = �21�
−1
1 , cov

(
y∗
ij

yij,1

)

= � =
(

�1

�12 �2

)

, �2 = 1
(7.2)

Thus, assuming that a 1 occurs when yij,1 > 0, then for an observed value of 1 we
sample from the normal distribution N (0, 1 − �21�

−1
1 �12) in the interval (−(Xijβ1 +

y∗
ijβ2 + ziju j ),∞), otherwise sample from (−∞,−(Xijβ1 + y∗

ijβ2 + ziju j )). This is
similar to the procedure described in Appendix 4.3, but with the additional condi-
tioning on the remaining correlated variable values.

7.3 Sampling ordered categorical responses
Suppose we have an ordered p-category response, with ordered categories numbered
1,. . ..p. We adopt the same conditional model as above but also introduce additional



P1: TIX/XYZ P2: ABC
c07 JWST015-Goldstein August 16, 2010 9:12 Printer Name: Yet to Come

LATENT NORMAL MODELS FOR MULTIVARIATE DATA 181

category thresholds or cut points, {αk, k = 1, . . . , p}. We have

yij,1|y∗
ij ∼ N (Xijβ1 + y∗

ijβ2 + ziju j , 1 − �21�
−1
1 �12)

where β2 = �21�
−1
1 . If we observe category k(1 < k < p) then we sample from the

normal interval (αk−1 − (Xijβ1 + y∗
ijβ2 + ziju j ), αk − (Xijβ1 + y∗

ijβ2 + ziju j )) with
associated probability πα,k .

If k = 0 we sample from (−∞,−(Xijβ1 + y∗
ijβ2 + ziju j )) and if k = pwe sample

from (αp−1 − (Xijβ1 + y∗
ijβ2 + ziju j ),∞).

The α threshold parameters define the cumulative probability distribution for the
ordered response. Typically, we set α1 = 0 so that the lowest threshold is absorbed
into the intercept. They are most efficiently estimated using MH sampling, as follows.

Given the current parameters, the component of the likelihood associated with a
particular ordered category response is given by

Pα =
J∏

j=1

n j∏

i=1

p∏

k=1

π
wij,k
α,k

for given α where wij,k = 1 iff response for unit ij is in category k. The probabilities
πα,k are those corresponding to the normal intervals defined above.

We select a new set of values α∗ (one at a time) using a suitable (for example
normal) proposal distribution and set new threshold parameters = α∗ with proba-
bility min(1, Pα∗/Pα). The choice of proposal distribution variance may be derived
adaptively but in practice the value 5.8/N may be suitable (Raftery and Lewis, 1992),
where N is the number of units at level 1. We also require that these threshold param-
eters are strictly ordered and if a proposed value violates this requirement it is not
accepted. In Chapter 11, we discuss a model where this requirement is automatically
satisfied via a nonlinear formulation for the thresholds.

We saw in Chapter 3 how to model the level 1 variance in terms of further variables
and we can carry out an analogous procedure by modelling the threshold parameters
as functions of further variables or by introducing a variance scaling factor for the
level 1 variance that is a function of further variables. We discuss this in detail in
Chapter 11.

We note that we cannot always sample values to achieve exact multivariate
normality when the number of categories is greater than 2, since in general we have
insufficient parameters to characterise the full multivariate normal distribution. Thus,
for example, if we have two ordered variables each with three categories there are
eight probabilities to be modelled in the (3 × 3) table formed by these, but we have
only five parameters, namely two thresholds, two intercepts and a correlation. The
linear conditional sampling procedure, however, can be expected to provide a good
approximation in the sense that if an underlying latent multivariate normal distribution
does exist, this sampling procedure will estimate it. We consider below a procedure
for handling cases that involve partial ordering.
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7.4 Sampling unordered categorical responses
We use a ‘maximum indicant’ model (Aitchison and Bennett, 1970), as follows. Sup-
pose that we have just a multinomial (unordered) response vector with p categories,
where the observed category has a value 1 and the remainder are zero. For each
category h, h = 1, . . . , p we assume that an underlying latent normal variable yhi j
exists and that we have the following multivariate model for these:

yhi j = Xijβh + zhi j uhj + ehi j
ehi j ∼ MVN(0,�1), uhj ∼ MVN(0,�2)

(7.3)

The maximum indicant model states that we observe category h for individual ij if
yhi j > yh∗i j ∀h∗ �= h. Since an observation must be in one category, one of these
latent variables is redundant, say the final one, ypi j . This leads to the following
conditional sampling scheme (Goldstein et al., 2009).

Using the same notation as before, we select a sample of p − 1 values from
N (Xijβ1 + y∗

ijβ2 + ziju j , Ip−1 − �21�
−1
1 �12) and accept this draw to replace the

current set of p − 1 values if and only if the maximum of these p − 1 values actually
occurs in the category where a response variable value of 1 is observed and if this
maximum is greater than zero, or if the maximum is less than or equal to zero
and a value of 1 is observed in the final category. If not, we select another sample.
Note that the sub-matrix corresponding to these p − 1 latent variables is the identity
matrix Ip−1.

7.5 Sampling count data
Consider the Poisson distribution with mean θ

f (h; θ ) = e−θ θh/h! h = 0, . . . p − 1 (7.4)

for the first p categories that are observed with the cumulative distribution

F(h; θ ) =
h∑

g=0

f (g; θ )

We choose the reference value h = 0 and our sampling parallels that for an ordered
categorical variable.

For an observed count in the first category we sample a value from the following
interval of the normal distribution with variance (1 − �21�

−1
1 �12)

(−∞, −(Xijβ1 + y∗
ijβ2 + ziju j ))
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and for the remaining categories if we observe a value in category h∗ we sample from

(a, b), a = �−1[F(h∗; θi )], b = �−1[F(h∗ − 1; θi )]

where � is the cumulative distribution function of N (0, 1 − �21�
−1
1 �12).

Latent normal samplers for other discrete distributions that depend on one or
more parameters can be derived in a similar fashion.

7.6 Sampling continuous non-normal data
For a wide class of distributions, we can apply a normalising transformation that is a
function of one or more parameters, and then incorporate this in a similar way to that
described for discrete responses. For example, the Box-Cox transformation (Box and
Cox, 1964) for y ≥ 0 is

y(λ) =
{

(yλ − 1)λ−1, λ �= 0
log(y), λ = 0

and requires a step for sampling the parameter λ and using this to transform the
responses. This step can be carried out using MH with a suitable proposal. The
following is an outline of the procedure.

The relevant component of the likelihood for the untransformed y is

−
∑

i

(y(λ)
i − µi )2

2σ 2
+ (λ − 1)

∑

i

log(yi )

where µi comprises the fixed predictor, including level 2 random effects for level
1 responses, plus conditioning on the remaining random effects at the same level
and σ 2 is the conditional variance on the transformed scale. The second term in this
expression is derived from the Jacobian of the transformation. Starting values for the
parameter and a Gaussian proposal distribution variance can be obtained from an
initial maximum likelihood estimation for the relevant variable.

Where it is not possible to find a suitable transformation of this kind a practical
procedure is to divide the measurement scale for the variable into groups of approx-
imately equal size and treat the grouping as an ordered categorical response. While
this loses some information due to grouping, if there is a large enough number of
groups and a smoothing function can be used, then this may be practically feasible.

7.7 Sampling the level 1 and level 2 covariance
matrices

Where all the responses are normal, we can sample the level 1 and level 2 covariance
matrices using an inverse Wishart distribution as described in Appendix 6.1. Where
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we have categorical responses at level 1 the covariance matrix contains some
elements fixed at 0 or 1 and we cannot use an inverse Wishart sampler. For all
the categorical responses, the level 1 variances are fixed to be equal to 1.0, with
zero correlations among the categories of each unordered categorical variable, but
nonzero correlations between these categories and other categorical and continuous
variables. Thus, for this set of correlations and for the unconstrained variances, we
use an MH sampling procedure.

We assume uniform priors.
Let �1,lmdenote the l,m-th element of the covariance matrix. We update these

covariance parameters using a Metropolis step and a Gaussian random walk proposal,
as follows.

At iteration t generate �∗
1,lm ∼ N(�(t−1)

1,lm , σ 2
plm) where σ 2

plm is a proposal distri-
bution variance that has to be set for each covariance and variance. Then form a
proposed new matrix �∗

1 by replacing the l,m th element of �
(t−1)
1 by this proposed

value unless �∗
1 is not positive definite in which case set �

(t)
1,lm = �

(t−1)
1,lm . That is set

�
(t)
1,lm = �∗

1,lm with probability min[1, p(�∗
1|eij)/p(�(t−1)

1 |eij)] and �
(t)
1,lm =

�
(t−1)
1,lm else. The components of the acceptance ratio are

p(�∗
1|eij) =

∏

ij

|�∗
1|−1/2 exp( − (eij)

T (�∗
1)−1eij/2)

and

p(�(t−1)
1 |eij) =

∏

ij

|�(t−1)
1 |−1/2 exp(−(eij)

T (�(t−1)
1 )−1eij/2)

We can use an adaptive procedure (Browne et al., 2002) to select the proposal
distribution parameters.

7.8 Model fi
We may use of the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)
discussed in Chapter 2 to assess model fit. This requires the calculation of the
likelihood at each cycle of the MCMC algorithm. To do this we can write the full set
of responses as

Y =
⎧
⎨

⎩

Y1

Y2

Y3

⎫
⎬

⎭

where Y1, Y2, Y3 refer respectively to the normal, ordered and unordered categorical
sets of variables. We write the likelihood as

P(Y ) = P(Y1|Y2, Y3)P(Y2|Y3)P(Y3)

The first term on the right-hand side is the multivariate normal likelihood adjusted
for the remaining responses. Where we have a non-normal continuous response we
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can include this, using the expression given in Section 7.6. The computations for
the second term can be carried out by writing P(Y2|Y3) as a product of individual
conditional variables so that we only require the evaluation of univariate density
intervals. Evaluation of the third term involves evaluating the joint distribution of
relevant order statistics, and this again can be expressed as a set of conditional
distributions, one for each categorical variable.

A practical procedure for carrying out these computations is simulating from
the model defined by the current parameter estimates at each iteration to approximate
the likelihood.

7.9 Partially ordered data
In the ordered response case where, as described above, we cannot assume underlying
multivariate normality, we could treat all categories as unordered but this will lose
the information about the ordering. Instead, we can seek to retain as much of this as
possible by fitting a partial ordering as follows.

Suppose we have a p-category ordered response. Preserving the ordering, we
can split this into two super-categories in p − 1 ways. We can, in general, split into
more than two such categories, but we restrict ourselves here to the simpler case.
Suppose we split at category boundary h so that supercategory 1 (S1) contains the
first h categories. We now fit this first set as h unordered categories and the last p − h
categories (S2) as a single further unordered category within which the categories are
ordered. Thus in S2 we fit p − h − 1 threshold parameters to describe the ordering

within this set. Denote these by αS2 =
{
α
S2
1 , . . . α

S2
p−h−1

}
, α

S2
1 = 0. In practice, we

may wish to try several choices for h. We note that we can exchange the two sets of
categories if we wish and corresponding procedures apply for splits into more than
two sets. While we have introduced this as a device for improving the fit to a latent
multivariate normal distribution, there are data types that naturally conform to such a
structure. One such example is where we have a set of disease categories where one
(or more) can also be further graded by severity.

A further step is introduced into the estimation algorithm. The h+1 categories
consisting of the first h unordered categories and S2 are treated as in the completely
unordered case with, for convenience, S2 chosen as the final category. If the observed
category belongs to S1, we sample from the corresponding normal distribution if
the values sampled from the h+1 variate normal distribution values include at least
one positive value and the maximum corresponds to the category observed. If all the
values sampled are negative, we sample according to the observed S2 category using
the current values of αS2 as in the ordered category case. The αS2 are then sampled
in a further step.

7.10 Hybrid normal/ordered variables
In some cases, a variable has observed values that can be expressed either as continu-
ous (normal) or on an ordered scale where there is an underlying normal distribution



P1: TIX/XYZ P2: ABC
c07 JWST015-Goldstein August 16, 2010 9:12 Printer Name: Yet to Come

186 MULTILEVEL STATISTICAL MODELS

that has the same parameters as the observed normal variables. Such data may arise
where there are different instruments carrying out essentially the same measurements,
or, for example, where different observers choose to measure on either a continuous
or on an ordered scale. We here assume that the ‘choice’ of which values are con-
tinuous and which ordered is random, at least conditionally. We assume also that we
have some values measured on the continuous scale. We distinguish two situations.

7.10.1 Ordered data with known thresholds
In this situation, the normal scale is grouped and the ordered data are reported by
group. The cut points (αi ) therefore are known (or at least to a good approximation).
Suppose we have p groups numbered 0,1,. . .p − 1. Where we have an observation
in group k, we sample the latent normal variable y from the posterior distribution
defined by sampling from N (µ, σ 2

y ) in the range [αk−1, αk], where the mean µ is
given by the current fixed part + random effects in the model and the variance is the
current variance of y. Note that information about the latter is obtained from both
the observed normal values and the sampled values y. If we have several responses,
the sampling of y is conditional as described above.

A convenient way to implement the sampling of y is as follows:

� Assume that we have an observation in interval k. Treat the observation as
missing (at random) and sample from the posterior distribution, as described
in Appendix 6.1.

� If the sampled value lies in interval k, accept it; if not, draw another sample and
repeat until we obtain one in interval k. This can also be formulated as placing
a value 1 in interval k and zero elsewhere, and then accepting each proposed
sampled value with probability equal to these values. A generalisation of this
procedure for ‘partially known values’ is set out in Chapter 16.

� The formulation is quite adaptable. Thus, for example, we may have an ob-
servation that can only be classified into a set of adjacent intervals – this may
arise, for instance, when different degrees of digit preference occur or different
instruments are used. Then we simply give each such sub-interval an equal
probability with the probabilities summing to 1.

A problem with this approach is that there are cases where we do not know the
cut points, or where the cut points may vary from record to record, for example,
according to covariate values, in which case we will need to estimate the cut points
in the following way: we retain the above MCMC steps but introduce a further step
to estimate the (αi ) using the same MH step as described for ordered data.

We note that for such hybrid data, compared to the standard ordered case, the
latent normal distribution is no longer N(0,1) but N (µ, σ 2

y ) where the parameters are
updated at each cycle.
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7.11 Discussion
We have set out a general procedure for joint modelling of mixed response types by
formulating transformations to an underlying multivariate normal distribution. The
procedure has similarities with the Gaussian copula model (see, for example, Pitt
et al., 2006). In this model, a set of p latent variables following a (p × p) multivariate
normal distribution have a one-to-one mapping onto p marginal discrete or contin-
uous distributions which are modelled as functions of covariates. The latent normal
procedure can be viewed as a multilevel generalisation of this copula model, and it
also extends the standard copula model to allow the incorporation of multinomial
marginal distributions.

We show in Chapter 16 how the model can be extended to deal with responses that
occur at more than one level or classification and we also show how the procedure
can be used to carry out very general multiple imputations.
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8

Multilevel factor analysis,
structural equation and
mixture models

8.1 A 2-stage 2-level factor model
The theory and application of single level structural equation models (SEMs),
including the special cases of observed variable path models and factor analysis
models, is well known (Joreskog and Sorbom, 1979, McDonald, 1985). In con-
sidering multilevel generalisations of these models, we start with a factor analysis
model, which is then elaborated. Early work on estimation procedures based upon
maximum likelihood are set out in Goldstein and McDonald (1987), McDonald and
Goldstein (1988) with elaborations by Muthen (1989) and Longford and Muthen
(1992). Raudenbush (1995) applied the EM algorithm to estimation for a 2-level
structural equation model and Rowe and Hill (1997) show how standard multilevel
software can be used to provide approximations to maximum likelihood estimates in
general multilevel structural equation models. A detailed, likelihood based, treatment
of multilevel SEMs is given by Skrondal and Rabe-Hesketh (2004).

We shall now describe general approaches based both upon maximum likelihood
and MCMC methods.

Consider first a basic 2-level factor model where we have, say, a set of measure-
ments on each student within a sample of schools together with a set of measurements
at the school level which may include aggregated student level measurements. The
response measurements of interest whose structure we wish to explore are assumed to
be (multivariate) normally distributed random variables. A further set of covariates,
for example, gender or social class, are explanatory variables which we may wish

Multilevel Statistical Models: 4th Edition Harvey Goldstein
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to condition on. For the p level 1 responses we first write a multivariate model with
p responses, where in general some may be missing at random:

yrij = (Xβ)rij + zrijerij + zrjurj (8.1)

where r indexes the response. This can fitted as a 3-level model with the different
responses defining level 1, as described in Chapter 6, with dummy variables zrij, zrj
for each response and with random coefficients erij, urj at levels 2 and 3. Note that
at level 3 (between-schools), some of the responses may not vary. Note also that in
general some of the coefficients of the covariates may vary at level 3 and would be
incorporated as further level 3 random variables along with those above. In terms of
the original 2-level model, we now have a set of level 1 random variables erij and a
set of level 2 random variables urj. A general factor structure for the level 1 variables
may involve factors defined at both level 1 and level 2, where we can write

erij =
∑

g λ(1)
rg f

(1)
gij + w

(1)
rij

urj =
∑

g λ(2)
rg f

(2)
gj + w

(2)
rj

(8.2)

where, for simplicity, we have assumed g factors at each level, although in general we
can have different numbers of factors at each level. The λ, f, w respectively refer
to the loadings, factors and residuals or ‘uniquenesses’, and the superscripts indicate
the factor levels. In some cases, we may wish to identify some of these factors as
the ‘same’ factors at each level, for example, by constraining certain loadings to be
equal. Thus, we may have an attitude score with no between-school variation and any
aggregate level variables, by definition, will not vary between pupils within schools.
The latter, nevertheless, may enter the model with the level 1 random variables
as responses, by being part of the level 2 factor structure and contributing to the
prediction of the urj in the above equation. We can in principle consider any level
2 random variables including random coefficients of covariates when modelling the
factor structure at this level.

A straightforward and consistent procedure for estimating the parameters of this
factor model is to do it in two stages. The first stage involves the estimation of the
separate level 1 and level 2 residual covariance matrices for the responses, using the
procedures given in Chapter 6, including cases where there are randomly missing
values for some of the responses. The second stage involves the factor analysis of
these separate matrices using any standard procedure, as described for example in
Joreskog and Sorbom (1979) or McDonald (1985). McDonald (1993) gives details
for maximum likelihood estimators in this case.

The 2-stage procedure should be reasonably efficient except where the data are
unbalanced, with highly variable numbers of level 1 units within level 2 units. It
has the advantage that it can be used for quite general structures. Thus it extends
straightforwardly to any number of hierarchical levels. Furthermore, we can also
fit models where there are random cross classifications using the procedures de-
scribed in Chapter 12. Thus, if students are classified by the primary and secondary
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school they attended, we can estimate the covariance matrices for level 1 and for
both classifications at level 2 and then carry out three separate factor analyses
of these matrices. Rowe and Hill (1997) describe this procedure applied to some
educational data.

This procedure also allows us to fit general unconditional path models, with or
without latent variables, since the covariance matrices at each level are sufficient for
these models. A simple example of such a model for a bivariate response without
latent variables is as follows

y1ij = α1 + β1x1ij + u1 j + e1ij

y2ij = α2 + β2y1ij + u2 j + e2ij
(8.3)

where the y1ij appears in both equations. The traditional path model treats y1ij in the
second of these equations conditionally, so that it can be treated straightforwardly
as a bivariate 2-level model. A choice between such a model and the unconditional
model will depend on substantive considerations, especially where there is a temporal
ordering of variables, when the conditional model would seem to be more appropriate
in general. McDonald (1985) gives an account of estimation for unconditional path
models. We provide a more general specification for such models below.

8.2 A general multilevel factor model
We now look at general models and efficient estimation methods. We can write a
general factor model with normal responses as follows:

yrij = βr + ∑

k
αrkxkij +

H∑

h=1
λ

(2)
rh f

(2)
hj +

G∑

g=1
λ(1)
rg f

(1)
gij + urj + erij

urj ∼ N (0, σ 2
ur), erij ∼ N (0, σ 2

er), f (2)
j ∼ MVNH (0,�2),

f (1)
ij ∼ MVNG(0,�1)

r = 1, . . . ., R, i = 1, . . . ., n j , j = 1, . . . ., J,
J∑

j=1
n j = N

(8.4)

Here we have R responses for N individuals split between J level 2 units. We have H
sets of factors, f (2)

hj defined at level 2 and G sets of factors, f (1)
gij defined at level 1. In

the fixed part of the model, we fit separate intercept terms βr for each response and
allow covariates xkij. The loadings, λ(1), λ(2) are specific to each level. It is possible
to further elaborate this model by considering a factor structure for any random
coefficients αrk j but we will not pursue this. The residuals, or ‘uniquenesses’ at levels
1 and 2, erij and urj are assumed to be mutually independent, that is, having diagonal
covariance matrices.

Skrondal and Hesketh (2004) discuss this model and extensions to structural
equation models (see below) as well as models where the responses are discrete
or mixtures of discrete and continuous responses with various link functions. They
provide maximum likelihood procedures using quadrature estimation, which have
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been implemented in the GLLAMM software (Rabe-Hesketh and Skrondal, 2005).
(See also Chapter 18.)

Although (8.4) allows a very flexible set of factor models, it should be noted that
in order for such models to be identifiable suitable constraints must be placed on the
parameters. These will generally consist of fixing the values of some of the elements
of the factor variance matrices, �1 and �2 and/or some of the factor loadings, λ

(2)
f r

and λ(1)
gr . See Everitt (1984) for an introductory discussion of identifiability.

If we knew the values of the loadings λ then we could fit (8.4) directly as a 3-level
model with the loading vectors as the explanatory variables for level 2 and level 3
random coefficients. Conversely, if we knew the values of the random effects f we
could estimate the loadings as fixed coefficients in a multivariate response model.
These considerations suggest that an EM algorithm can be used in the estimation
where the random effects are regarded as missing data (see Rubin and Thayer, 1982).
It also suggests an MCMC approach, which also has the advantage of providing exact
inferences for parameters, is readily extensible and can incorporate prior information
about parameters.

8.3 MCMC estimation for the factor model
To illustrate MCMC estimation for the factor model, consider the following very
simple 1-level factor model first.

yri = βr0 + λr fi + eri
fi ∼ N (0, 1), eri ∼ N (0, σ 2

er)
(8.5)

We will assume that the factor loadings have Normal prior distributions, p(λr ) ∼
N (λ∗

r , σ
2
λr ) and that the level 1 variance parameters have independent inverse Gamma

priors, p(σ 2
er) ∼ �−1(a∗

er, b∗
er) and that the intercepts have uniform priors. We have

constrained the variance to 1, which identifies the model and fixes the factor scale. The
∗ superscript is used to denote the appropriate parameters of the prior distributions.
This model can be updated using a very simple 4-step Gibbs sampling algorithm, as
follows (see also Appendix 2.5).

Step 1 Update λr (r = 1, . . . , R) from the following distribution: p(λr ) ∼
N (λ̂r , Dr ) where

Dr =
(∑

i v
2
i

σ 2
er

+ 1

σ 2
λr

)−1

and

λ̂r = Dr

(∑
i vi yri
σ 2
er

+ λ*
r

σ 2
λr

)
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Step 2 Update νi (i = 1, . . . , N ) from the following distribution: p(νi ) ∼
N (ν̂i , Di ) where

Di =
(∑

r λ2
r

σ 2
er

+ 1

)−1

and

ν̂i = Di

(∑
r λ2

r yri
σ 2
er

)

Step 3 Update σ 2
er from the following distribution: p(σ 2

er) ∼ �−1(âer, b̂er) where
âer = N/2 + a∗

er and b̂er = 1
2

∑

i
e2
ri + b∗

er.

Step 4 Update βr0 from the following distribution: p(βr0) ∼ N (β̂r0, Drβ ) where

Drβ = σ 2
er/N

β̂r0 = ∑

i
(yri − λr fi )/N .

Goldstein and Browne (2005) show how the MCMC algorithm can be extended
for general multilevel models, which allow both orthogonal and correlated factor
structures using Gibbs and MH sampling. They also propose a goodness of fit statistic
for model comparison. Ansari and Jedidi (2002) also give a general exposition of this
model and provide a model comparison procedure.

8.3.1 A 2-level factor example
We use the Science attainment test score data described in Chapter 6 to illustrate the
application of two 2-level factor models. The results for two models are given in Table
8.1. We omit the fixed effects estimates since they are very close to those in Table 6.4.
Model A has two factors at level 1 and a single factor at level 2. For identification, we
have constrained all the variances to be 1.0 and allowed the covariance (correlation)
between the level 1 factors to be estimated. Inspection of the correlation structure
suggests a model where the first factor at level 1 has nonzero loadings for Earth
Science and Biology, constraining those for Physics to be zero (the physics responses
have the highest correlation), and for the second factor at level 1 to allow only the
loadings for Physics to be unconstrained. The high correlation of 0.90 between the
factors suggests that perhaps a single factor will be an adequate summary. Although
we do not present results, we have also studied a similar structure for two factors at
the school level where the correlation is estimated to be 0.97, strongly suggesting a
single factor at that level.

For model B we have separated the three topics of Earth Science, Biology and
Physics to separately have nonzero loadings on three corresponding factors at the
student level. This time the high inter-correlation is that between the Biology and
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Table 8.1 Science attainment 2-level factor model: MCMC estimates.

Parameter Estimate (s.e.) Estimate (s.e.)

Model A Model B
Level 1: factor 1 loadings
Earth Science core 0.06 (0.004) 0.11 (0.02)
Biology core 0.11 (0.004) 0∗

Biology R3 0.05 (0.008) 0∗

Biology R4 0.11 (0.009) 0∗

Physics core 0∗ 0∗

Physics R2 0∗ 0∗

Level 1; factor 2 loadings
Earth Science core 0∗ 0∗

Biology core 0∗ 0.10 (0.005)
Biology R3 0∗ 0.05 (0.008)
Biology R4 0∗ 0.10 (0.009)
Physics core 0.12 (0.005) 0∗

Physics R2 0.12 (0.007) 0∗

Level 1; factor 3 loadings
Earth Science core – 0∗

Biology core – 0∗

Biology R3 – 0∗

Biology R4 – 0∗

Physics core – 0.12 (0.005)
Physics R2 – 0.12 (0.007)

Level 2; factor 1 loadings
Earth Science core 0.04 (0.007) 0.04 (0.007)
Biology core 0.09 (0.008) 0.09 (0.008)
Biology R3 0.05 (0.009) 0.05 (0.010)
Biology R4 0.10 (0.016) 0.10 (0.016)
Physics core 0.10 (0.010) 0.10 (0.010)
Physics R2 0.09 (0.011) 0.09 (0.011)

Level 1 residual variances
Earth Science core 0.017 (0.001) 0.008 (0.004)
Biology core 0.015 (0.001) 0.015 (0.001)
Biology R3 0.046 (0.002) 0.046 (0.002)
Biology R4 0.048 (0.002) 0.048 (0.002)
Physics core 0.016 (0.001) 0.016 (0.001)
Physics R2 0.029 (0.002) 0.030 (0.002)
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Table 8.1 (Continued)

Parameter Estimate (s.e.) Estimate (s.e.)

Level 2 residual variances
Earth Science core 0.002 (0.0005) 0.002 (0.0005)
Biology core 0.0008 (0.0003) 0.0008 (0.0003)
Biology R3 0.002 (0.0008) 0.002 (0.0008)
Biology R4 0.010 (0.002) 0.010 (0.002)
Physics core 0.002 (0.0005) 0.002 (0.0005)
Physics R2 0.003 (0.0009) 0.003 (0.0009)
Level 1 correlation factors 1 &2 0.90 (0.03) 0.55 (0.10)
Level 1 correlation factors 1 &3 – 0.49 (0.09)
Level 1 correlation factors 2 &3 – 0.92 (0.04)

∗indicates constrained parameter. A chain of length 20 000 with a burn in of 2000 was used.
Level 1 is student, level 2 is school.

Physics booklets with only moderate (0.49, 0.55) correlations between the factors for
Earth Science and each of Biology and Physics. In fact this model is not properly
identified because of the single loading for Earth Sciences Core at level 1. The
correlation estimates are strongly dependent on the chosen prior, in this case for
the correlations the prior is uniform over (–1,1) and a different choice of prior, for
example uniform over (0,1) will lead to different estimates. In the extreme case a
point prior is equivalent to fixing the value of the correlation to a given value. In
general we can use informative, other than point, priors for any of the parameters in
the model and this provides an alternative method of handling identifiability to that
of fixing parameters at particular values.

The results suggest that we need at least two factors to describe the student level
data and that the preliminary analysis using just one factor can be improved upon.

8.4 Structural equation models
In the basic factor model, the factors themselves are not modelled any further. In
many applications, however, we may wish to do this and these models are generally
referred to as structural equation models. We first look at one simple extension to the
2-level factor model with responses at a single level and a factor structure fitted at
level 1 where the factor is a linear function of explanatory variables.

yrij = βr + λ(1)
r f (1)

ij + erij, f (1)
ij = α1xij + u j + wij

wij ∼ N (0, σ 2
w), erij ∼ N (0, σ 2

e ), u j ∼ N (0, σ 2
u )

(8.6)

where, for identifiability, we set σ 2
w = 1.
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On substitution, this gives

yrij = β0r + λ(1)
r α1xij + λ(1)

r u j + λ(1)
r wij + erij.

The MCMC algorithm now involves an extra step to sample α1 which is similar to
the step for sampling the λ(1)

r . Details are given in Goldstein et al. (2007a). We can
fit a level 2 structure and further explanatory variables in either the fixed or structural
part of the model, as well as further factors, and this is elaborated below.

We now look at a more general structural equation model that allows relationships
among factors. We illustrate using a single level model that can be written in the
following matrix form (see McDonald, 1985, for some alternative representations):

A1 f1 = A2 f2 +W
Y1 = �1 f1 +U1

Y2 = �2 f2 +U2

(8.7)

Where Y1, Y2 are observed multivariate vectors of responses, A1 is a known trans-
formation matrix, often set to the identity matrix, A2 is a coefficient matrix which
specifies a multivariate linear model between the set of transformed factors, f1, f2.
�1,�2 are loadings, U1,U2 are uniquenesses, W is a random residual vector and
W,U1,U2 are mutually independent, with zero means. The extension of this model
to the multilevel case follows that of the factor model; we shall restrict ourselves to
sketching how an MCMC algorithm can be applied to (8.7). Note that we can write
A2 as the vector A∗

2 by stacking the rows of A2. For example, if

A2 =
(
a0 a1

a2 a3

)

, then A∗
2 =

⎛

⎜
⎜
⎝

a0

a1

a2

a3

⎞

⎟
⎟
⎠

The distributional form of the model can be written as

A1 f1 ∼ MVN(A2 f2, 	3)
f1 ∼ MVN(0, 	 f1 ), f2 ∼ MVN(0, 	 f2 )
Y1 ∼ MVN(�1 f1, 	1), Y2 ∼ MVN(�2 f2, 	2)

with priors

A∗
2 ∼ MVN( Â∗

2, 	A∗
2
), �1 ∼ MVN(�̂1, 	�1 ), �2 ∼ MVN(�̂2, 	�2 )

and 	1, 	2, 	3 having inverse Wishart priors.
The coefficient and loading matrices have conditional normal distributions, as do

the factor values. The covariance matrices and uniqueness variance matrices involve
steps similar to those given in the earlier algorithm. The extension to two and more
levels follows readily.
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The model can be generalised further by consideringm sets of response variables,
Y1, Y2, . . . Ym in (8.7) and several, linked, multiple group structural relationships with
the k-th relationship having the general form

∑

h

V (k)
h A(k)

h =
∑

g
V (k)
g A(k)

g +W (k)

and the above procedure can be extended for this case. Note that the model for
simultaneous factor analysis (or, more generally, structural equation modelling) in
several populations is a special case of this model, with the addition of any required
constraints on parameter values across populations.

As suggested above, we can elaborate our models to include fixed effects, re-
sponses at level 2 as well as level 1, and covariates Z1, Z2 for the factors, which may
be a subset of the fixed effects covariates X, for example,

Y (1) = Xβ + �
(1)
2 f2Z (1)

2 + u(1) + �
(1)
1 f1Z (1)

1 + e(1)

Y (2) = �
(2)
2 f2Z (2)

2 + u(2)

Y (1) = {yrij}, Y (2) = {yrj}
r = 1, . . . ., R, j = 1, . . . ., J

(8.8)

The superscript refers to the level at which the measurement exists, so that, for
example, y1ij, y2 j refer respectively to the first measurement in the i-th level 1 unit
in the j-th level 2 unit (say, students and schools) and the second measurement taken
at school level for the j-th school.

8.5 Discrete response multilevel structural
equation models

Suppose we have a set of binary responses for a set of variables measured on indi-
viduals. We can write a model analogous to (8.5) as

f (πri ) = λrνi + eri , r = 1, . . . , R, i = 1, . . . , N
νi ∼ N (0, 1), eri ∼ N (0, σ 2

er)

yri
iid∼ bin(1, πri )

(8.9)

where πri = Pr(yri = 1), and for convenience we choose a probit link function so that
the unique variances, σ 2

er, are fixed at 1. As before, we can use a Gibbs sampler (see
Appendix 4.3) where the lowest level variables are also thought of as latent, and gen-
eralisations to several levels and to structural equations follow similar lines to those
described above. Software (for example, REALCOM, WINBUGS and GLLAMM)
is available to fit such models, including those with mixtures of normal and ordered
responses.
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Model (8.9) is often referred to as an item response model (IRM) (see Goldstein
and Wood, 1989) and (8.9) and its extensions allow a very flexible class of models
to be fitted. Thus, for an ordered response model, for example, sometimes termed a
‘partial credit’ model, we can also use the probit link and can therefore fit mixtures
of binary, ordered and continuous responses in the same model. Likewise, Poisson
count responses can be incorporated using the latent normal formulation for this
given in Chapter 7. Goldstein et al. (2007a) fit a 2-level binary response factor model
with a probit link to a set of 15 Mathematics items from a test given to French and
British school students. They show how country differences can be modelled and
how multiple factors, for each country, at both levels can be fitted. They provide
estimation details and a DIC goodness of fit test.

8.6 More complex hierarchical latent variable models
In Chapter 6, we saw how we could simultaneously model responses at several levels.
We can extend the factor model and the structural equation model in similar ways.
Consider, for example, the structural equation model defined by (8.6), where we have
an additional set of level 2 responses,

yrij = β(1)
r + λ(1)

r v
(1)
ij + erij, v

(1)
ij = α1xij + u(1)

j + wij

yrj = β(2)
r + λ(2)

r v
(2)
j + u(2)

rj

wij ∼ N (0, σ 2
w), erij ∼ N (0, σ 2

e )
(
u(1)
j

u(2)
rj

)

∼ N (0,�u)

(8.10)

We can introduce further classifications, either hierarchical or crossed, each with their
own structure.

In these latent variable models, as we introduce explanatory variables, so the
interpretation of the factors will change since we are adjusting for these variables.
We can consider fitting a ‘standardising model’, for example, with no explanatory
variables and subsequently treating the estimates of the loadings from this model as
fixed in further analyses. The advantage of this approach is that we are dealing with
essentially the same factors, as defined by the loadings, in each analysis. The details
for imposing constraints are given in Goldstein et al. (2007a).

8.7 Multilevel mixture models
In some applications it may be reasonable to consider that units at a particular level
of the data hierarchy actually come from more than one population and that the
model parameters vary across populations. We saw one such example, the mover-
stayer model in Section 5.10, in which an individual was in one of three population
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groups and interest centres on estimating the parameters associated with each group
and the proportions in each group. A more general case is where the number of
groups is unknown and where we may also have a model for the probability of
group membership that is dependent on explanatory variables. In the 2-level case, we
assume that each level 1 unit may belong to a class (c = {ck}) defined at level 2 and
for each class we have a different relationship, as follows:

yckij = (Xβ)ckij + uckj + eckij
uckj ∼ N (0, σ 2

u,ck ), e
ck
ij ∼ N (0, σ 2

e,ck )
(8.11)

The class allocation model can be written as a function of level 2 variables, for
example,

pr (i j ∈ ck) = f(αk0 + αk1z j + vk j )

vk j ∼ N (0, σ 2
v )

(8.12)

Within each class we thus have different random and fixed parameters; the probability
of class membership is also a function of fixed and random effects. The model can be
extended by introducing random coefficients and further explanatory variables, and
also by allowing classes defined at level 1 (see Vermunt, 2008). Such models have
often been applied to repeated measures data, where each level 2 unit is considered
to belong to a group with its own growth trajectory (see for example Nagin, 1999,
Leiby et al., 2009). Muthen and Asparouhov (2009) discuss 2-level mixture models
with various examples. If maximum likelihood estimation is used, then the number
of groups may be chosen by fitting models with different numbers of groups and
using the AIC or BIC criterion for choosing between them (Section 2.12.3). We
note, however, as with generalised linear models, maximum likelihood estimation
can be very slow if there are large numbers of random parameters and the occurrence
of multiple local maxima may also be a problem. We may also allow uckj , v j to be
correlated and this can be useful if the class allocation model is not fully specified.

It is often possible to fit a given dataset equally well using a model such as (8.11),
(8.12) and a standard 2-level model with random coefficients or a model with complex
level 1 variance. These models will have different interpretations so that some care
needs to be exercised in interpreting these models.

MCMC estimation can be carried out for such models and the steps, in outline for
(8.11) and (8.12), are as follows for a fixed number of groups. Default diffuse priors
can be used, but we will often have information about the proportions in each group
that can be used as informative priors.

At each cycle each level 1 unit is allocated to a class and for each such class the
parameters are sampled in the usual way for a 2-level model. If there are fixed or
random parameters in common across classes, then for these parameters the relevant
classes are combined. This may lead to either the fixed or random parameters needing
to be updated one at a time.
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The parameters of (8.12) are updated with a MH step where the likelihood is
given by

∏

ij

L(yckij )pr (i j ∈ ck) (8.13)

and in a final step, each level 1 unit in turn is assigned to the group for which (8.13)
is maximised. One of the problems that can be encountered is that of label switching
where the parameters associated with one particular group become switched with
another group during the course of the cycles. This may avoided if it is possible for
a few level 1 units to be fixed as members of each group. Lenk and DeSarbo (2000)
discuss a general procedure using a particular prior distribution specification, to avoid
this problem. If the model is run with different numbers of groups we may use the
DIC to decide on the most suitable model.
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9

Nonlinear multilevel models

9.1 Introduction
The models of Chapters 2 and 3 are linear in the sense that the response is a linear
function of the parameters in the fixed part and the elements of the full covariance
matrix V are linear functions of the parameters in the random part. In many applica-
tions, however, it is appropriate to consider models where the fixed or random parts of
the model, or both, contain nonlinear functions. For example, in the study of growth,
Jenss and Bayley (1937) proposed the following function to describe the growth in
height of young children

yij = α0 + α1tij + uα0 j + uα1 j tij + eαij (9.1)

− exp(β0 + β1tij + uβ0 j + uβ1 j tij + eβij)

where tij is the age of the j-th child at the i-th measurement occasion. Models for
discrete data, such as counts or proportions are a special case of nonlinear models
often termed ‘generalised linear models’ (discussed these in Chapter 4). For example,
a 2-level log linear model can be written

E(mij) = πij, πij = exp(Xijβ j ) (9.2)

wheremij is assumed typically to have a Poisson distribution, in this case across level
1 units. In this chapter we consider nonlinear models more generally.

9.2 Nonlinear functions of linear components
The following results are an extension of those presented by Goldstein (1991)
(Appendix 9.1 gives details). We will give procedures for deriving likelihood based
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estimates and note that where the random effects are not part of the nonlinear
function, the procedure gives maximum likelihood estimates; otherwise these are
quasilikelihood estimates similar to those considered in Chapter 4.

MCMC methods can also be used to fit these models. As with generalised linear
models (see Appendix 4.3), MH sampling can be used, since not all the distributions
can be specified analytically. Otherwise, the steps are as in Appendix 2.5. For some
examples, see Gilks et al. (1996). The likelihood based estimates can be used to
provide starting values for an MCMC estimation.

Restricting attention to a 2-level structure we can write a fairly general model, as
follows,

yij = X1ijβ1 + Z (2)
1ij u1 j + Z (1)

1ij e1ij + f(X2ijβ2 + Z (2)
2ij u2 j + Z (1)

2ij e2ij) + . . . (9.3)

where the function f is nonlinear and where the + . . . indicates that additional
nonlinear functions can be included, involving further fixed part explanatory variables
X or random part explanatory variables at levels 1 and 2, respectively Z (1),Z (2). The
model is first linearised by a suitable Taylor series expansion and this leads to
consideration of a linear model where the explanatory variables in f are transformed
using first and second derivatives of the nonlinear function. Note that the linear
component of (9.3) is treated in the standard way, and that the random variables at a
given level in the linear and nonlinear components may be correlated.

Consider the nonlinear function f . Appendix 9.1 gives details to show that we
can write this as the sum of a fixed part component and a random part using a Taylor
series approximation. Concentrating on the fixed part, this gives

fij(Ht+1) = fij(Ht ) + X2ij(β2,t+1 − β2,t ) f ′
ij(Ht ) (9.4)

where β1,t+1, β1,t are the current and previous iteration values of the fixed part
coefficients and Ht represents the fixed part predictor in the nonlinear component
of (9.3). We can choose Ht to be either the current value of the fixed part predictor,
that is, X2ijβ2; or we can add the current estimated residuals to obtain an improved
approximation to the nonlinear component for each unit. As with generalised linear
models, the former is referred to as a ‘marginal’ (quasilikelihood) model and the latter
as a ‘penalised’ or ‘predictive’ (quasilikelihood) model. We note that this procedure
reduces to the standard Newton-Raphson scoring algorithm for a single level model
(McCullagh and Nelder, 1989).

In practice, general models such as (9.1) may pose considerable estimation prob-
lems. We notice that the same explanatory variables can occur in the linear and
nonlinear components and this can lead to instability and failure to converge.

9.3 Estimating population means
Consider the expected value of the response for a given set of covariate values.
Because of the nonlinearity this is not in general equal to the predicted value when
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the random variables in the nonlinear function are zero. For example, if we write the
variance components version of (9.2)

πij = exp(β0 + β1xij + u j )

and assuming u j ∼ N (0, σ 2
u ) we obtain the marginal expectation

E(πij|xij) = exp(β0 + β1xij)
∞∫

−∞
eu jφ(u j )du j = exp(β0 + β1xij + σ 2

u /2) (9.5)

where φ is the density function of the normal distribution. The population predicted
values, conditional on covariates, can be obtained if required, as above, by taking
expectations over the population. An approximation to this can be obtained from the
second order terms in (9.1.4) in Appendix 9.1 with higher order terms introduced if
necessary to obtain a better approximation. Alternatively we may generate a large
number of simulated sets of values for the random variables and for each set evaluate
the response function to obtain an estimate of the full population distribution. See
Section 4.9 for more details of such a procedure.

9.4 Nonlinear functions for variances and covariances
We saw in Chapter 3 how we could model complex functions of the level 1 variance.
As with the linear component of the model, there are cases where we may wish to
model variances or covariances as nonlinear functions. In principle, we can do this
at any level but here we restrict our attention to level 1 and to the variance only. In
Chapter 5, we gave an example where the covariances are modelled in this way.

Suppose that the level 1 variance decreases with increasing values of an explana-
tory variable such that it approaches a fixed value asymptotically. We could then
model this for a 2-level model, say, as follows:

var(eij) = exp(β ∗
0 + β ∗

1 xij)

where β ∗
0 , β ∗

1 are parameters to be estimated. Such a model also guarantees that the
level 1 variance is positive, which is not the case with linear models, such as those
based on polynomials. The estimation procedure is analogous to that described above
and provides maximum likelihood estimates, and (details are given in Appendix
9.1). In Chapter 17, we extend this to consider models where the variance, and
more generally the covariance structure, can be modelled as a function of further
variables at any level of a data hierarchy using MCMC estimation; we also consider
the case where we treat the level 1 variance as a random effect, varying across level
2 units.
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9.5 Examples of nonlinear growth and nonlinear level
1 variance

We give an example of a model with a nonlinear transformation of the linear predictor
and then consider the case of a nonlinear level 1 variance function. The example
consists of 577 repeated measurements of height on 197 French Canadian boys
aged from 5 to 10 years (Demirjian et al., 1982), with between three and seven
measurements each; this is a 2-level structure with measurement occasions nested
within children.

We fit the following version of the Jenss-Bayley curve to illustrate the procedure

yij = α0 + exp(β0 + β1tij + β2t2ij + β3t
3
ij + uβ0 j + uβ1 j tij) + eαi j (9.6)

so that the fixed part is an intercept plus a nonlinear component and the random
part variance at level 2 is part of the nonlinear component. The results are given in
Table 9.1, using the first order approximation with prediction based upon the fixed
part only.

The level 1 variance is small and of the order of the measurement error of height
measurements. The starting values for this model need to be chosen with care, and
in the present case the model was run to convergence without the linear intercept α0

which was then added with a starting value of 100. Bock (1992) uses an EM algorithm
to fit a nonlinear 2-level model to growth data from age 2 years to adulthood using a
mixture of three logistic curves.

Our second example is the JSP dataset used in Chapter 3 to study the level 1
variance. We will fit Model B of Table 3.1 with a nonlinear function of the level 1
variance instead of the level 1 variance as a quadratic function of the 8-year-score.
This level 1 variance for the ij-th level 1 unit is exp (β ∗

0 + β ∗
1 x1ij) and Table 9.2 shows

Table 9.1 Nonlinear model estimates with first order fixed part prediction. Age is
measured about 8.0 years.

Fixed coefficient Estimate (s.e.)

Intercept (linear) 90.3
Intercept (nonlinear) 3.58
Age 0.15 (0.10)
Age squared −0.016 (0.02)
Age cubed 0.002 (0.004)

Nonlinear model level 2 covariance matrix (s.e.)
Intercept Age

Intercept 0.025 (0.003)
Age −0.0027 (0.0003) 0.00036 (0.00005)
Level 1 variance = 0.25
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Table 9.2 Nonlinear level 1 variance for JSP data.

Parameter Estimate (s.e.)

Fixed
Constant 31.7
8-year score 0.58 (0.03)
Gender (boys-girls) −0.34 (0.27)
Social class (non-manual-manual) 0.76 (0.30)
School mean 8-year score 0.01 (0.11)
8-year score x school mean 8-year score 0.02 (0.01)

Random
Level 2
β ∗

0 2.87 (0.88)
β ∗

0 −0.17 (0.07)
σ 2
u1 0.012 (0.007)

Level 1
β∗

0 2.74 (0.06)
β∗

1 −0.10 (0.01)

Figure 9.1 Predicted level 1 variance as a function of 8-year Maths score.
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the model estimates, which are almost identical to those of Model B of Table 3.1, as
is the likelihood value.

Figure 9.1 shows the predicted level 1 variance for this model and Model B of
Table 3.1.

In these data, the nonlinear function gives very similar results to the quadratic
polynomial one. It is clear, however, that where the variance asymptotically ap-
proaches a constant value, for extreme values of an explanatory variable, a linear or
even quadratic approximation may be expected to fail. In the present case, a linear
function does predict a negative level 1 variance within the range of the data. An ex-
ample where a nonlinear function is necessary is in growth data, described in Chapter
5, where the level 1 (within-individual) variation will decrease towards a constant
value at the approach to adulthood.
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Appendix 9.1 Nonlinear model estimation
The following exposition is similar to that in Appendix 4.1 for discrete response
(nonlinear) models, but is more general since the level 1 random effects are also part
of the nonlinear link function. We consider a single nonlinear term of the form

yij = f (Xijβ + Z2iju2 j + Z1ije1ij) (9.1.1)

The addition of linear terms to this model is discussed in Chapter 9.
At the (t+ 1)-th iteration in the estimation we expand (9.1.1) for both fixed and

random parts as follows

fij(Ht ) + Xij(βt+1 − βt ) f ′
ij(Ht )

+(Z2iju2 j + Z1ije1ij) f ′
ij(Ht ) + (Z2iju2 j + Z1ije1ij)2 f ′′

ij (Ht )/2
(9.1.2)

in terms of parameter values estimated at the t-th iteration. The first line of (9.1.2)
updates the fixed part of the model and in the special case of a single level quasi-
likelihood model provides the updating function. The quantity fij(Ht ) − Xijβt f ′

ij(Ht )
is treated as an offset to be subtracted from the response variable. The first term in
the second line defines a linear random component based on the explanatory vari-
ables transformed by multiplying by the first differential. We need to specify Ht and
consider the distribution of the second term in the second line of (9.1.2).

If we choose Ht = Xijβt , this is equivalent to carrying out the Taylor expansion
around the fixed part predicted value. If we choose Ht = Xijβt + Z2ijû2 j + Z1ijê1ij,
this expands around the current predicted value for the ij-th unit and we replace the
second line of (9.1.2) by

(Z2ij(u2 j − û2 j ) + Z1ij(e1ij − ê1ij)) f ′
ij(Ht )+

(Z2ij(u2 j − û2 j ) + Z1ij(e1ij − ê1ij))2 f ′′
ij (Ht )/2

We thus have the further offset from the linear term to be added to the response

(Z2ijû2 j + Z1ijê1ij) f ′
ij(Ht )

From the second line of (9.1.2) we have

E(Z2iju2 j + Z1ije1ij) = 0, E(Z2iju2 j + Z1ije1ij)2 = σ 2
zu + σ 2

ze
σ 2
zu = Z2ij�u ZT2ij, σ 2

ze = Z1ij�e ZT1ij
(9.1.3)

To incorporate the second order terms we treat (σ 2
zu + σ 2

ze) f ′′(Ht )/2 as an additional
offset in the fixed part and in the random part of the model we need to consider the
variation of the second term in the second line of (9.1.2). If we assume normality
then all third moments, formed from the product of the two terms in the second line
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of (9.1.2), are zero and we have

var(Z2iju2ij + Z1ije1ij)
2 = 2(σ 4

zu + σ 4
ze) (9.1.4)

If we define the additional variables

Z∗
u = σ 2

zu f
′′(Ht )/

√
2, Z∗

e = σ 2
ze f

′′(Ht )/
√

2

we form Z∗
u Z∗T

u , Z∗
e Z∗T

e as offsets for the response vector vec(Ỹ Ỹ T ) in the estimation
of the random parameters. Having modified the response variable by removing the
necessary offsets we are left in the fixed part with a modified response, say Y ′ with a
modified explanatory variable matrix, say X ′. We do likewise for the random part of
the model and then carry out a standard iterative procedure, updating the differential
functions at each iteration.

Where the Taylor expansion is taken about the current values of the fixed part
plus residuals we require

E(Z2ij(u2 j − û2 j ))
2 + E(Z1ij(e1ij − ê1ij))

2

which leads to the ‘conditional’ or ‘comparative’ variances described in Appendix
2.2, so that we substitute these variances, �û and �ê, for �u and �e in the above
expressions for the fixed and random offsets.

To estimate residuals we note that, having adjusted the response using the offsets,
we have on the right-hand side of (9.1.2) the fixed part together with the random
terms

(Z2iju2 j + Z1ije1ij) f ′
ij(Ht ) + ((Z2iju2j + Z1ije1ij)

2 − (σ 2
zu + σ 2

ze)) f
′′
ij (Ht )/2

Each residual and its square appear in this expression, and since third order moments
are zero, we can apply the usual linear estimation for the residuals as described in
Appendix 2.2. The weight matrix V is based upon both the linear and quadratic terms
of the above expression. We carry out an analogous procedure for the case where the
Taylor expansion is based upon the current fixed part plus residual estimates.

The above can be extended in a straightforward way to more than two levels and
to multivariate models.

9.1.1 Modelling variances and covariances as
nonlinear functions

In Chapter 2, we saw that the random parameters were estimated by regressing the
observed cross-product matrix of residuals on a set of explanatory variables which
defined the appropriate variances and covariances at each level. Using the notation in
Appendix 2.1 we have the following linear model for the random parameters β∗

Y ∗ = vec(Ỹ Ỹ T ) = X∗β∗, E(Y ∗) = vec(V ) (9.1.5)
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We can now apply the same procedure for the specification and estimation of a
nonlinear model as above. We illustrate this for the case where the level 1 variance is
an exponential function of a covariate x∗

1 , defined in terms of the Kronecker product
as in Appendix 2.1, namely for the t-th element of X∗β ∗ (which is on the diagonal
of V) we assume a level 1 variance contribution of the form

σ 2
et = exp(β∗

0 + β∗
1 x

∗
1t ), β

∗ =
(

β∗
0

β∗
1

)

(9.1.6)

As in the linear function case, we form the first differential f ′ = f , multiply x∗
0t, x∗

1t
by this and estimate the parameters of the resulting transformed linear model. This
will involve introducing an offset for Y ∗ and constructing the following level 1
explanatory variables for the estimation of β ∗, setting their covariance to zero

{x∗
0t exp(β ∗

0 x
∗
0t + β ∗

1 x
∗
1t )}0.5, {x∗

1t exp(β ∗
0 x

∗
0t + β ∗

1 x
∗
1t )}0.5

Because we are estimating only nonlinear functions of linear components here and
not adding approximations to a further random component, the estimates obtained
are exact maximum likelihood or restricted maximum likelihood estimates.

In Chapter 5, we developed a special case of a nonlinear model for covariances
and in Chapter 9, we gave an example of model (9.1.6). We note that the parameters
β ∗

0 , β ∗
1 are not necessarily positive when modelling (9.1.6) and although we would

normally regard such level 1 parameters as variances, in this case, as in Section
3.1, they are simply parameters to be estimated. As with nonlinear modelling, in
general, it is important to have reasonable starting values. These might be obtained
by trial and error or by making preliminary estimates of variances for various values
of the relevant explanatory variable and regressing their logarithms on the level 1
explanatory variables.

In Chapter 17, we present a more general model using MCMC estimation.
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Multilevel modelling in
sample surveys

10.1 Sample survey structures
Many practical sample surveys have a multistage sample design structure whereby,
at the first stage, Primary Sampling Units (PSUs) are chosen randomly from a
population of such units. Thus, in a household survey these might be administrative
areas. At the next stage, either all the units or a sample of units is drawn from the
chosen PSUs and this can lead to a third stage, etc., until the final stage units, the
households or persons in this case, are selected. This procedure is often referred
to as ‘cluster sampling’, although strictly this term refers to samples where all the
final stage units from each penultimate cluster are chosen. Typically, the selection
probabilities at each stage are chosen so that the final sample is self-weighting, that
is, each final stage unit in the population has the same overall probability of being
chosen. For unequal weights, we can use the procedures described in Chapter 3. In
Section 10.2.1 we look at how the selection probabilities at each stage can be used
in model estimation. In this chapter we shall assume that there are no missing data
(see Chapter 16 for procedures to handle such cases).

Sample surveys also often involve stratification, for example, the population
might be divided into rural and urban areas and sampling carried out separately for
these ‘strata’, again often so that a self weighting sample is produced. In some cases,
stratification may be used to ensure sufficient numbers in a particular category, such
as an ethnic minority group. When we come to model a stratified sample we may
wish to include in the model some dummy variable terms for the strata categories,
and possibly for the categories formed by combinations of strata. Alternatively we
may wish to incorporate stratum weights into the overall survey weights for each
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unit. We might wish to do this if we specify a ‘marginal’ model that describes the
population as a whole rather than describing relationships within strata.

An important reason for stratification and clustering is to increase precision for
a given cost for a given total sample size. Clustering, for example by area, generally
reduces survey costs while increasing standard errors of estimates, while stratification
tends to reduce standard errors (see, for example, Kish, 1965), and surveys are
typically concerned to achieve a judicious balancing of these two procedures. From
a modelling perspective, however, this is of secondary importance since we wish to
uncover relationships that exist and estimate covariance structures. Where multistage
surveys choose units for administrative and cost-effectiveness reasons, there will
usually be little intrinsic interest in the between- and within-unit variation, but it will
still usually be efficient to fit a multilevel model. The traditional approach in survey
analysis to making inferences about the population, which ignores the existence of
any multilevel structure, is to fit models appropriate for single level structures and
then to adjust the standard errors to take account of the sample structure (see Kish and
Frankel, 1974). Thus, for example, we saw in Section 2.7 that using an OLS estimator
when there were cluster differences tended to underestimate the fixed effect standard
errors. It is also worth pointing out that, even where a survey involves no clustering
or stratification, we may still wish to fit a multilevel model to explore the population
data structure.

10.2 Population structures

10.2.1 Superpopulations
A major distinction is between inferences made for finite populations, and those for
infinite populations where we make inferences on the basis of standard statistical
model assumptions. Much of traditional sample survey theory is concerned with
sampling from real, finite populations where we wish to estimate characteristics of
the population, such as means or proportions. In a household survey of a large city,
we may wish to estimate the actual proportion of one-parent households in that city
or in each area of the city, for administrative reasons. On the other hand, for scientific
purposes we will typically wish to consider the actual population sampled as if it was
a realisation of a conceptually infinite population extending through time, and also
perhaps through space. By taking this latter view, we are able to make generalisations
and predictions beyond the units that comprise the real population that has actually
been sampled according to a specified sampling scheme.

If we adopt this conceptualisation, often termed a ‘superpopulation’ or ‘model-
based’ approach, then multilevel modelling becomes a natural way to proceed.
Nevertheless, we do need to consider whether the sampling selection process is
relevant to the modelling. Generally speaking, if the sampling process (clustering
and stratification) is properly incorporated within the model, as described above,
we need pay no further attention to the sample selection process, for instance the
sampling design weights associated with each unit. Even where we do incorporate
terms for stratification and clustering, there may still be an issue as to whether this
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has been done adequately, for example, whether all possible interactions and random
coefficients are included: we may still wish therefore to incorporate elements of the
design into the analysis. Furthermore, we may sometimes wish to make ‘marginal’
estimates rather than condition, say, on the random effects that reflect the population
structure. In this case, we might revert to a weighted analysis that does not include
the random effects of a multilevel model.

We shall assume for the present that any sample clustering, where there is variation
between clusters, is of interest and thus modelled, although all aspects of the sample
design may not be incorporated fully into the model and we may wish to incorporate
weights (Chapter 3) for those aspects that are not. We look first at the case where the
design is independent of the response variable values. We assume that the sampling
scheme generates a set of sample selection probabilities for each unit at each level
of the modelled hierarchy. For a 2-level model this will be the set {π j , πi | j} and this
then provides corresponding sampling weights {π−1

j , π−1
i | j }. We now carry out an

analysis using these weights, as described in Section 3.4. Thus, the model estimates
take account of the sample design and such a weighted analysis ensures consistent
estimates, even where the model does not fully incorporate the sample design, whether
by mistake or deliberately.

The second case is where the sample design depends on the values of the re-
sponse, for example, by stratifying on the basis of the mean value of the response
variable for a geographical area, obtained for example from Census data. This is a
case of ‘informative sampling’. If the stratification is modelled, for example using
dummy variables, we will have a model where one or more explanatory variables is
correlated with one or more random effects. Another example is where the response
is associated with the size of a sampling unit and hence with the selection probability.
In their detailed investigation of different weighting procedures, Pfeffermann et al.
(1998) show that simple procedures involving a scaling of the weights, such as in
Section 3.4.1, may not work well and propose a ‘psuedolikelihood’ estimator instead.
Alternatively, the MCMC method described in Section 3.4.2 can be used.

10.2.2 Finite population inference
In the case of finite populations, the traditional approach of ‘design-based infer-
ence’ aims to make inferences about the finite population quantities, for example
means or proportions. These may be computed as simple (weighted) functions of
the observations with standard errors constructed to reflect the sample design, and
we may wish to provide these for the total population or for subpopulations or ‘do-
mains’; these domains may also sometimes coincide with clusters or strata. So-called
‘model-assisted’ inference extends this by using measured ‘auxiliary’ variables (X)
in a regression model. Suppose that these auxiliary variables are available for every
population unit and we have a 2-level model where the higher level units are clusters.
For the sample we first define the ‘multilevel synthetic estimate’ using, for example,
a simple variance components model such as

y(s)
ij = (X (s)β)ij + u0 j + eij (10.1)



P1: TIX/XYZ P2: ABC
c10 JWST015-Goldstein August 16, 2010 9:20 Printer Name: Yet to Come

214 MULTILEVEL STATISTICAL MODELS

where the superscript (s) indicates that the observation is a member of the sample.
Using the estimated regression coefficients β, we can now form a prediction for every
member of the population

ŷij = (X β̂)ij + û0 j (10.2)

A synthetic estimate is then simply a suitable combination of these, for example the
total for domain j is given by ŷ j = ∑

i
ŷij. This estimator, however, is ‘design-biased’,

that is it provides biased estimates with respect to repeated sampling from the same
finite population. To attempt to correct for this bias a generalised regression (GREG)
estimator has been suggested (Sarndal et al., 1992). In the present case we can apply
the GREG estimator to a multilevel model, hence known as the MGREG estimator
(Lehtonen and Veijanen, 1999), to give

ŷ j =
∑

i∈Dj

ŷij +
∑

i∈Dj

wij

(
y(s)
ij − ŷ(s)

ij

)
(10.3)

where Dj refers to domain j and the wij are the sample weights, being the inverse of
the selection probabilities within the domain, possibly adjusted for nonresponse. The
second term on the right-hand side of (10.3) involves the set of level 1 residuals and
adjusts the bias in (10.2), at least approximately.

Clearly, (10.1) and (10.3) can be extended to incorporate random coefficients and
more complex multilevel structures. Such models can be expected to be more efficient
than non-model-assisted estimators. This approach can incorporate nonlinear models,
for example, a logistic model for binary responses; in this case the synthetic estimator
consists of predicted probabilities. A further extension is to multivariate responses
with appropriate modifications.

10.3 Small area estimation
A feature of many surveys is that they incorporate a large overall sample, but for
many domains or areas of interest the numbers are small, so that using just the
sample members within such a domain will result in estimates with large standard
errors. Thus, a large household survey may select households in a large number of
administrative districts, where the sample size within each district is then too small
on its own to provide accurate estimates for each district. We shall consider such
‘small area estimation’ problems for a superpopulation model; for finite populations
we can modify the procedures as described above.

The simplest approach to this problem is to fit a multilevel model such as (10.1)
and simply estimate the predicted ‘synthetic’ domain values derived from (10.2). In
practice we will often have several surveys sharing some common domains and we
look at how these can be used in combination to provide domain estimates that are
as efficient as possible.
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Suppose we have several data sets T1, . . . Tp sharing a common response and
also sharing some of the same domains, the higher level area units, for example
administrative regions. We shall consider the case of a single response to begin with
and consider the extension to multiple responses later. Interest will typically lie in
predicting domain means or totals. A special case is where one of the datasets has
a special status, for example, a population census or a set of administrative records.
We may be able to treat the population estimates from such datasets as covariates in
the model for the responses from the other surveys.

We shall use a variance components formulation, but the extension to random
coefficients is straightforward, as is the extension to more complex models with
further levels and cross classifications.

For dataset Th we have a 2-level linear variance components model

y(h)
ij = (X (h)β(h))ij + u(h)

j + e(h)
ij (10.4)

We can allow the fixed and random part explanatory variables to be different in each
dataset. Denote the set of domains for the overall model as S1.

At the domain or area level (2) we have the set of (intercept) random effects

u(1)
1 , u(1)

2 . . . .. u(2)
1 , . . . . . , :

cov
(
u(h)
j , u(h′)

j ′

)
= 0, j �= j ′, cov

(
u(h)
j , u(h′)

j

)
= σu(hh′)

(10.5)

By allowing the effects for higher level units to be correlated across surveys, we
are able to use all the available information efficiently to provide estimates for each
domain. A number of special cases and extensions are of interest.

10.3.1 Information at domain level only
Suppose we have a number of domains (higher level units) where only domain level
information is available. Such information might consist of administrative records.
A variance components model for this set of domains can be written as

y. j = (Xβ) j + u j + e. j (10.6)

Denote the set of domains for this model by S2. We have seen how such models
can be fitted in Section 3.7. If we now form the union of this set of domains and
the previous set, S1, say S3 = ⋃

(S1, S2), this enhanced set can be analysed as a
single model incorporating responses at different levels (Section 3.8.1). A particular
case of interest where the inclusion of such data can improve the estimates is for
aggregate census data; we note again that the predictors in the component models
can be different.
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10.3.2 Longitudinal data
Repeated measurements over time can provide information which both increases
efficiency and also allows the possibility of estimating trends so that estimates can
be updated. Consider a single repeated survey where the same domains are measured
across time with different level 1 units, say households, sampled at each occasion. A
simple model would consist of a model, for a set of domains S4, given by

yijt = (Xβ)ijt + α0 + α1t + u0 j + u1 j t + eijt

eijt iid∼ N (0, σ 2
e ),

(
u0 j
u1 j

)

∼ N (0,�u)
(10.7)

which incorporates a time trend term in the fixed part and also allows the trend to
vary across domains. In some cases, for example, where population census data are
available, it may be efficient to condition on the values of the response variable at
a prior occasion. In (10.7), both the intercept and slope terms may covary with the
domain level random effects for S3, giving the combined model set S5 = ⋃

(S3, S4),
which can be fitted as a single model.

A particular problem with longitudinal data is mobility where individual people, or
households, change domains during the course of a study. In principle, such cases can
be handled using multiple membership models (Chapter 13). Where time is modelled
in such studies, taking account of such mobility also implicitly allows migration
patterns to influence the estimates. Where migration is high and ‘informative’, in
the sense that those who move are a nonrandom subsample, taking account of such
migration will be important in order to provide unbiased estimates.

10.3.3 Multivariate responses
Models with more than one response variable can be fitted as straightforward ex-
tensions to the above models. A particular advantage of such multivariate models is
that we can obtain efficient estimates when one of the responses is missing, either
completely at random or by design as in the rotation designs considered in Chapter
6. Thus, if information on one response is not included in some datasets by design
we can still provide efficient estimates via the correlations with other responses. This
will often be a more convenient and flexible method for exploiting these correlations
than including the latter responses as covariates. Longford (1999) also addresses this
issue and demonstrates the improved efficiency which can result.
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11

Multilevel event history and
survival models

11.1 Introduction
This class of models has as the response variable the length of time between ‘events’.
An example is the beginning and end of a period of employment, with the corre-
sponding time being the duration of employment. The term ‘survival model’ is often
used when the end event is terminal, such as a death, in which case repeated episodes
are not possible. There is a considerable theoretical and applied literature, espe-
cially in the field of biostatistics; a useful summary is given by Clayton (1988) and
Singer and Willett (2002) provide illustrative applications. We consider first two basic
approaches to the modelling of such duration data. These are based upon ‘propor-
tional hazard’ models and upon direct modelling of the log duration, often known as
‘accelerated life models’. In both cases, we can include explanatory variables. We
then discuss discrete (grouped) time models, which are particularly suitable for fitting
multilevel data structures.

A multilevel structure in such models can arise in two general ways. The first
is where we have repeated durations, or events, within individuals, analogous to
our repeated measures models of Chapter 5. Thus, individuals may have repeated
employment episodes where they move from one job to another. In this case, we have
a 2-level model with individuals at level 2, often referred to as a renewal process. We
may also consider more than one state, for example, employment and unemployment,
with duration models for each state. The second kind of model is where we have a
single duration for each individual, but the individuals are grouped into level 2 units.
In the case of employment duration, the level 2 units could be firms or employers.
If we had repeated events on individuals within firms, then this would give rise

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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to a 3-level structure. We can further extend these models where there are cross
classifications (Chapter 12) and multiple membership structures (Chapter 13).

11.2 Censoring
A characteristic of duration data is that for some observations we may not know the
exact duration but only that it occurred within a certain interval, which is known as
interval censored data. Where the start of an interval occurred prior to the observation
period, it is known as left censored data, and where it occurred after a known period
of observation, for example by an individual leaving a study, it is known as right
censored data. For example, if we know at the time of a study only that someone
entered her present employment before a certain date, then the information available
is left censored and the duration is longer than a known value. We may know that
someone entered and then left employment between two measurement occasions, in
which case we know only that the duration lies in a known interval. We shall describe
procedures for dealing with all kinds of censored data.

In parametric models, where there are relatively large proportions of censored
data, the assumed form of the distribution of duration lengths is important, whereas
in the semiparametric models the distributional form is ignored. It is assumed that the
censoring mechanism is noninformative, namely that the probability of censoring is
independent of the actual duration length. We may have data which are censored, but
where we have no duration information at all: if we are studying the duration of first
marriage for an age cohort of individuals and we end the study when individuals reach
the age of 30, all those marrying for the first time after this age will be excluded. To
avoid bias, we must therefore ensure that age of marriage is an explanatory variable
in the model and report results conditional on age of marriage.

11.3 Hazard and survival functions
The underlying notions are those of survivor and hazard functions. Consider the
(single level) case where we have measures of length of employment on workers in
a firm. We define the proportion of the workforce employed for periods greater than
t as the survivor function and denote it by

S(t) = 1 − F(t) = 1 −
∫ t

0
f (u)du

where f (u) is the density function of length of employment. The hazard function is
defined as

h(t) = f (t)/S(t)
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and represents the instantaneous risk, in effect the (conditional) probability of
someone who is employed at time t, ending employment in the next (small) unit
interval of time.

It is useful to carry out preliminary analyses of event history data by plotting the
observed hazard and survivor functions. This can be done by dividing the time scale
into short intervals and computing the empirical hazard for each interval by dividing
the number who experience the event during the interval by the number of individuals
present at the start of interval i , the ‘risk set’. Such hazard estimates are often known
as Kaplan-Meier estimates. If there is censoring and we assume that the censoring
is equally likely to have occurred at any time during the interval, then we subtract
half the number of censored observations in that interval from the denominator. The
survival function is simply the proportion who have not experienced the event by the
start of interval i, plotted against time. Singer and Willett (2002) provide detailed
examples.

The simplest model is one which specifies an exponential distribution for the
duration, f (t) = λe−λt (t ≥ 0) which gives h(t) = λ, so that the hazard rate is constant
and S(t) = e−λt . In general, however, the hazard rate will change over time and a
number of alternative forms have been studied (see, for example, Cox and Oakes,
1984). A common one is based on the assumption of a Weibull distribution, namely

f (t) = (α/t)eα ln(t)+δe−eα ln(t)+δ

or the associated extreme value distribution formed by replacing t by u = loge t .
Another approach to incorporating time varying hazards is to divide the time

scale into a number of intervals within which the hazard rate is assumed constant
and dummy variables are used for the time intervals. This may be particularly useful
where there are ‘natural’ units of time, for example, based on menstrual cycles in
the analysis of fertility, and this can be extended by classifying units by other factors
where time varies over categories (see Blossfeld et al., 2007).

The most widely used models are those known as proportional hazards models,
and the most common definition is h(t ; η) = λ(t)eη. The term η denotes a linear
function of explanatory variables that we model explicitly in Section 11.5. It is
assumed that λ(t), the baseline hazard function, depends only on time and that all
other variation between units is incorporated into the linear predictor η. The variables
in η may depend upon time, and in the multilevel case some of the coefficients will
also be random variables.

11.4 Parametric proportional hazard models
Where we have known duration times and right censored data, define the cumulative
baseline hazard function �(t) = ∫ t

0 λ(u)du and a variable w with mean µ =�(t)eη,
taking the value one for uncensored and zero for censored data. It can be shown
(McCullagh and Nelder, 1989) that the maximum likelihood estimates required are
those obtained from a maximum likelihood analysis for this model where w is treated
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as a Poisson variable. This computational device leads to the loglinear Poisson model
for the q-th observed event

ln(µq ) = ln(�(tq )) + ηq (11.1)

where the term �(tq ) is treated as an offset, that is, a known function of the linear
predictor.

The simplest case is the exponential distribution, for which we have �(t) = λt .
Equation (11.1) therefore has an offset ln(tq ) and the term ln(λ) is incorporated into
η. We can model the response as a Poisson count using the procedures of Chapter
4, with coefficients in the linear predictor chosen to be random at levels 2 or above.
This approach can be used with other distributions. For the Weibull distribution, of
which the exponential is a special case, the proportional hazards model is equivalent
to the log duration model with an extreme value distribution and we shall discuss its
estimation in Section 11.9.

11.5 The semiparametric Cox model
The most commonly used proportional hazard models are known as semiparametric
proportional hazard models. We now look at the multilevel version of the most
common of these in more detail.

Consider the 2-level proportional hazard model for the jk-th level 1 unit

hjk(t ; Xjk) = λk(t) exp(Xjkβk) (11.2)

where Xjk is the row vector of explanatory variables for the level 1 unit and some or
all of the βk are random at level 2. We adopt the subscripts j,k for levels one and two
for reasons which will be apparent below.

We suppose that the times at which a level 1 unit comes to the end of its duration
period or ‘fails’ are ordered and at each of these we consider the total ‘risk set’. At
failure time tjk, the risk set consists of all the remaining level 1 units. Then the ratio
of the hazard for the unit which experiences a failure and the sum of the hazards of
the remaining risk set units is

exp(X j ′k ′βk ′)
∑

j,k
exp(Xjkβk)

,

which is simply the probability that the failed unit is the one denoted by j ′, k ′ (Cox,
1972). It is assumed that, conditional on the Xjk, these probabilities are independent.

Several procedures are available for estimating the parameters of this model (see,
for example, Clayton, 1991, 1992). For our purposes it is convenient to adopt the
following, which involves fitting a Poisson or equivalent multinomial model of the
kind discussed in Chapter 4.
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At each failure time lwe define a response variate for each member of the risk set

yijk(l) =
{

1 if i is the observed failure
0 if not

where i indexes the members of the risk set, and j,k level 1 and level 2 units. If we
think of the basic 2-level model as one of employees within firms, then we now have
a 3-level model where each level 2 unit is a particular employee and containing njk
level 1 units where njkis the number of risk sets to which the employee belongs.
Level 3 is the firm. The explanatory variables can be defined at any level. They may
also vary over time, allowing so-called time varying covariates. A simple variance
components model for the expected Poisson count can be written as

µ jk(l) = exp(αl + Xjkβ + uk) (11.3)

where there is a ‘blocking factor’ αl for each failure time. In fact we do not need
generally to fit all these nuisance parameters: instead we can obtain efficient estimates
of the model parameters by modelling αl as a smooth function of the time points,
using, say, a low order polynomial or a spline function (Efron, 1988). Alternatively,
as suggested in Section 11.3, we can form a piecewise constant hazard model by
grouping the blocking factors into relatively homogeneous groups over longer time
intervals, possibly based upon a preliminary inspection of the survivor function.

An estimator of the baseline surviving fraction for an individual in the k-th firm
at time h, where Xjk = 0, is

Ŝhk = exp

(

−
∑

l≤h
eα̂l+ûk

)

and the estimate for an individual with specific covariate values Xjk is

Ŝ{exp(Xjkβ)}
hk (11.4)

Where we fit polynomials to the blocking factors, the α̂l are estimated from the
polynomial coefficients, and the surviving fraction can be plotted against the time
associated with each interval.

11.6 Tied observations
We have assumed so far that each failure time is associated with a single failure.
In practice, many failures will often occur at the same time, within the accuracy of
measurement. These are known as ‘ties’. Sometimes, data may also be deliberately
grouped in time. In this case all the failures at time l have a response yijk(l) = 1. This
procedure for handling ties is equivalent to that described by Peto (1972) (see also
McCullagh and Nelder, 1989).
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11.7 Repeated events proportional hazard models
As with ordinary repeated measures models described in Chapter 5, we can consider
the case of multiple episodes, or durations within individuals, with between- and
within-individual variation, and possibly further levels where individuals may be
nested within firms, etc. The models of previous sections can be applied to such data,
but there are further considerations which arise. Where each individual has the same
fixed number n of episodes, we can treat these, as in Chapter 6, as constituting n
variates so that we have an n-variate model with an (n x n) covariance matrix between
individuals. The variates may be either really distinct measurements or simply the
different episodes in a fixed ordering. This is the model considered by Wei et al.
(1989). We can also model a multivariate structure where, within-individuals, there
are repeated episodes for a number of different types of event. For each type we may
have coefficients random at the individual level and these coefficients will generally
also covary at that level.

Often with repeated events models the first episode is different in nature from
subsequent ones. An example might be the first episode of a disease which may tend
to be longer or shorter, and with different determinants, than subsequent episodes. If
the first episode is treated as if it were a separate variate, subsequent episodes can be
regarded as having the same distribution, as in the previous section. Another example
is the length of the interval to a first birth from the start of a marriage or partnership.
We give an example of such a model later.

Another possible complication in repeated event data, as in Chapter 5, is that we
may not be able to assume independence between durations within-individuals. This
will then lead to serial correlation models which can be estimated using the procedures
discussed in Chapter 17, for the parametric log duration models discussed below. We
shall return to a further exploration of repeated events models when we look at
discrete time models.

11.8 Example using birth interval data
The data are a series of repeated birth intervals for 379 Hutterite women living in
North America (Larsen and Vaupel, 1993; Egger, 1992). The response is the length
of time in months from birth to conception of next child, ranging from 1 to 160, with
the first birth interval ignored and no censored information. This gives 2235 births
in all.

There is information available on the mother’s birth year, her age in years at the
start of the birth interval, whether the previous child died within one year of birth,
and the duration of marriage at the start of the birth interval. Table 11.1 gives the
results from fitting a proportional hazards model using the formulation in (11.5) with
random coefficients for the intercept and whether the previous child died. A fourth
order polynomial was adequate to smooth the blocking factors.

The only coefficient estimated with a nonzero variance at level 2 was whether or
not the previous birth died, but a large sample chi-bar test (Section 2.8), on 2 degrees
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Table 11.1 Proportional hazards model for Hutterite birth intervals. In the random
part, subscript 0 refers to intercept, 1 to previous death. PQL2 estimates.

Parameter Estimate (s.e.) Estimate (s.e.)

Fixed Model A Model B

Intercept −3.65 −3.64
Mother’s birth year – 1900 0.026 (0.003) 0.026 (0.003)
Mother’s age (year – 20) −0.008 (0.014) −0.004 (0.014)
Previous child died 0.520 (0.118) 0.645 (0.144)
Marriage duration (months) −0.003 (0.001) −0.004 (0.001)

Random
σ 2
u0 0.188 (0.028) 0.188 (0.028)

σu01 0.005 (0.088)
σ 2
u1 0.381 (0.236)

of freedom, for the two random parameters for this coefficient gives a P-value of
0.005. An increase in the linear predictor is associated with a shorter interval. Thus
the birth interval is shorter for the later born mothers and also if the previous child
died. The interval is somewhat longer the longer the marriage duration, with little
additional effect of maternal age. This apparent lack of a substantial age effect seems
to be a consequence of the high correlation (0.93) between duration of marriage
and age. Higher order terms for duration and age were fitted, but the estimated
coefficients were small and not significant at the 10 % level. The between-individual
standard deviation in Model B is about 0.4, which is comparable in size to the effect
of a previous death. The between-individual standard deviation for a model with
just an intercept is 0.45 so that the covariates explain only a small proportion of
the between-individual variation. Figure 11.1 shows two average estimated surviving
fraction curves for a woman aged 20, born in 1900 with marriage duration 12 months.
These curves represent the median, rather than mean, surviving fractions (at a random
effect value of zero) since we are here dealing with a nonlinear model. The higher
one is for those where there was a previous live birth and the lower where there was
a previous death.

11.9 Log duration models
For the accelerated life model the distribution function for duration is commonly
assumed to take the form

f (t ; X, β) = f0(teXβ)eXβ

where f0 is a baseline function (Cox and Oakes, 1984).
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Figure 11.1 Probability of birth after month t last born alive upper, last born died
within one year lower.

For a 2-level model we can write the log duration

ljk = loge(tjk) = Xjkβk + ejk (11.5)

which is in the standard form for a 2-level model. We shall assume normality for
the random coefficients at level 2 (and higher levels) but at level 1 we shall study
other distributional forms for the eij. The level 1 distributional form is important
where there are censored observations. We first consider the common choice of an
extreme value distribution for the log duration distribution, L, conditional on Xjkβk ,
which implies an equivalence with the proportional hazards model. Omitting level
subscripts we write

f (l; α, δ) = αe−αl+δ exp(−e−al+δ) − ∞ < l < ∞ (11.6)

E(L) = α−1(δ + γ ), var(L) = π2

6α2
, γ = 0.5772
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For (11.5) this gives

πjk = Pr(L > ljk) = 1 − exp(−e−αljk+δjk )

π ′
jk = α. exp{−e−αljk+δjk}e−αljk+δjk (11.7)

where the differential is for use in the estimation of censored data and is with respect
to β in the expression below.

The mean of L is incorporated into the fixed predictor. If we have no censored
data, we estimate the parameters for the model given by (11.5) by treating it as a
standard multilevel model. We note that the estimation is strictly quasilikelihood,
since we are using only the mean and variance properties of the level 1 distribution.
If we assume a simple level 1 variance, then we can iteratively estimate α from the
above relationship and we also obtain for the 2-level model (11.5)

δjk = γ + α(Xjkβk)

where there is complex variation at level 1 then α will vary with the level 1 units.
To estimate the survival function for a given level 2 unit, we first condition on the
covariates and random coefficients, that is Xjkβk , and then use (11.7).

We can choose other distributional forms for the log duration distribution. These
include the log Gamma distribution, the normal and the logistic. Thus, for example,
for the normal distribution we have

πjk = 1 − 
(zjk)
π ′
jk = φ(zjk)/σe
zjk = [ljk − (Xβ)jk]/σe

where 
,φ are the cumulative and density functions of the standard normal distribu-
tion. Quasilikelihood estimates can be obtained for any suitable distribution with two
parameters. The possibility of fitting complex variation at level 1 can be expected to
provide sufficient flexibility using these distributions for most purposes.

11.9.1 Censored data
Where data are censored in log duration models we require the corresponding
censoring probabilities. Thus, for right censored data we would use (11.7) with
corresponding formulae for interval or left censored data. For each censored obser-
vation we therefore have an associated probability, say πij with the response variable
value of one.

This leads to a bivariate model in which for each level 1 unit the first response
is the continuous log duration time if not censored; the second takes the value 1
if censored and zero if not, with corresponding explanatory variables in each case.
There are basically two sets of explanatory variables for the level 1 variation, one for
the continuous log duration response and one for the binary response. In the former
case, we can extend this for complex level 1 variation, as in the example analysis
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below. For the latter, we can use the standard logit model, as described in Chapter 4,
possibly allowing for extrabinomial variation. The random parameters at level 1 for
the two components are uncorrelated. When carrying out the computations, we may
obtain starting values for the parameters using just the uncensored observations.

Since the same linear function of the explanatory variables enters into both the
linear and nonlinear parts of this model, we require only a single set of fixed part
explanatory variables, although these will require the appropriate transformation for
the logit response, as described in Chapter 4. We also note that any kinds of censored
data can be modelled, so long as the corresponding probabilities can be modelled.

We can readily extend this model to the multivariate case where several kinds
of durations are measured. This will require one extra lowest level to be inserted to
describe the multivariate structure, with level 2 becoming the between-observation
level and level 3 the original level 2. For the binary part of the model we will allow
correlations at level 2 where these can be interpreted as point-biserial correlations. If
we fit a probit model, as discussed in Appendix 4.3, we can interpret such correlations
on a continuous scale and this will often be more satisfactory.

For repeated events models where there are different types of duration, we can
choose to fit a multivariate model. Alternatively, we may be able to specify a simpler
model where the types differ only in terms of a fixed part contribution, or perhaps
where there are different variances for each type with a common covariance. As
pointed out earlier, we may sometimes wish to treat the first duration length separately
and this is readily done by specifying it as a separate response.

11.9.2 Infinit durations
It is sometimes found that for a proportion of individuals, their duration lengths are
extremely long or effectively infinite. Thus, some employees remain in the same job
for life and some patients may acquire a disease and retain it for the rest of their lives.
In studies of social mobility, some individuals will remain in a particular social group
for a finite length of time while others may never leave it: such individuals we can
refer to as ‘long term survivors’. We will treat such durations as if they were infinite.
Since any given study will last only for a finite time, it is impossible precisely to
distinguish long term survivors from those that are right censored. Nevertheless, if we
make suitable distributional assumptions we can obtain an estimate of the proportion
of such survivors, θ .

For a constant θ , given an incompletely observed duration time, the observation
is either right censored with finite duration or has infinite duration so that we replace
the probability πij by λij = (1 − θ )πij + θ . In general, θ will depend on explanatory
variables and an obvious choice for a model is

logit(θij) = X (θ )
ij β(θ ). (11.8)

Some of the coefficients in (11.8) may also vary across level 2 units.
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Where the observation is not censored we know that it has a finite duration, so
that for an unobserved duration time we have a response variable taking the value
zero with predictor given by {1 + exp −(1 − θij)}−1. The full model can therefore be
specified as a bivariate model where for observed durations we have two responses,
one for the uncensored component lij and the one for the parameters β(θ ). For the
incompletely observed observations there is a single response which takes the value
one with predictor function

{1 + exp −[(1 − θij)πij + θij]}−1.

We can extend the procedures of Chapter 4 to the joint estimation of β, β(θ ), noting
that for the censored observations when estimating β, we have

λ′
ij(β) = (1 − θij)π

′
ij

and for estimating β(θ ) we have

λ′
ij(β

(θ )) = (1 − πij)θ
′

11.10 Examples with birth interval data and
children’s activity episodes

We first look again at the Hutterite birth interval data. Since all the durations are
uncensored, we apply a standard model to the log(birth interval) values. Results are
given in Table 11.2.

We see that we can now fit the year of birth and age as random coefficients at
level 2. We have significant heterogeneity at level 1 where there is a greater within
woman variation in duration of intervals following a child death, with a chi-bar on 1
d.f. of 4.7, P = 0.02. As before, mother’s birth year and previous death are associated
with a decrease and duration of marriage with an increase in birth interval. Note that
the estimated surviving fraction will in general depend on the level 1 distributional
assumption.

In the present case, as shown in Figure 11.2, the level 1 standardised residuals
show little departure from normality; Figure 11.3 shows the estimated surviving
fraction, based on normality, for women born in 1900, with marriage duration 12
months, aged 20 and with a previous survived birth.

Figure 11.3 is similar to Figure 11.1, based on the proportional hazards model. In
fact, the two lines actually cross at about 30 months, as a result of the different level
1 variances for those with a previous survived birth as opposed to a death.

We now look at some data which exhibit more extensive variance heterogeneity
at level 1. They measure the number of days spent by pre-school children either at
home or in one of six different kinds of pre-school facility. For each of 249 children
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Table 11.2 Log duration of birth interval for Hutterite women. For the random
parameters subscript 0 refers to the intercept, 1 refers to birth year, 2 to age and 3 to
previous death.

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Fixed A B C

Intercept 1.97 1.96 1.97
Mother’s birth year – 1900 −0.021 (0.002) −0.021 (0.002) −0.021 (0.002)
Mother’s age – 20 −0.005 (0.010) −0.005 (0.010) −0.005 (0.010)
Previous death −0.435 (0.079) 0.436 (0.079) −0.438 (0.089)
Marriage duration (months) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001)

Random
Level 2
σ 2
u0 0.127 (0.017) 0.114 (0.052) 0.121 (0.054)

σu01 −0.001 (0.002) −0.001 (0.002)
σ 2
u1 0.0001 (0.0001) 0.0001 (0.0001)

σu02 −0.004 (0.003) −0.005 (0.003)
σu12 0.0001 (0.0001) 0.0001 (0.0001)
σ 2
u2 0.0005 (0.0003) 0.0006 (0.0003)
Level 1
σ 2
e0 0.549 (0.018) 0.533(0.018) 0.522 (0.018)

σ 2
e3 0.200 (0.108)

−2 loglikelihood 5305.9 5295.5 5290.8

there were up to 12 periods of activity. Further details can be found in Plewis (1985,
Chapter 7).

The response is the logarithm of the number of days and covariates are the type
of episode, with home chosen as the base category and the education of the mother
measured on a 7-point scale ranging from no education beyond minimum school
leaving age (0) to university degree (6). Nineteen of the episodes were right censored
and 25 were left censored, being less than one day.

The multilevel structure is that of episodes within children. The model is also
multivariate with the type of activity as six response variables, covarying at the level of
the child. Table 11.3 shows the results of an analysis where there is a single between-
child variance and where it is allowed to differ for each type of episode. The between-
episode-within-child variance is also allowed to vary for different episodes. The level
1 residuals for the continuous response part of the model show some evidence of
non normality and we therefore show the results for the extreme value distribution.
Because of the relatively small amount of censoring there is little difference for the
parameter estimates between analyses making different distributional assumptions.

We see that there is quite substantial variation at both levels. At level 2 there was
between-children variation only for facility types 1,2 and 4. A proportional hazards
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Figure 11.2 Level 1 residuals by Normal scores for Analysis B in Table 11.2

model fitted to these data did not show any between-child variation. In general, the
semiparametric proportional hazards model will not detect some of the relationships
apparent from fitting parametric models although it has the advantage that it does not
make strong distributional assumptions. Figure 11.4 shows the predicted probabilities
of home and facility type 1 episodes lasting beyond various times expressed in log
(days). The crossing of the lines is now much clearer as a consequence of the different
level 1 variances.

11.11 The grouped discrete time hazards model
Where time is grouped into preassigned categories, we write the survivor function at
start of time interval t, the probability that failure occurs after the start of this interval,
as st . This gives

ft = st−1 − st , ht = ft/st−1, s0 = 1
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Figure 11.3 Estimated survival functions for women with previous live births (up-
per) and a previous death; born in 1900, age 20, 12 months marriage.

and

st =
t∏

l=1

(1 − hl )

which can be used to estimate the survivor function from a set of estimated hazards.
Thus, the basic record is one record for each time interval within each higher level
unit, with the response being a binary indicator of failure for each interval. The
estimation follows that for the binary response model (Chapter 4) and we can use
the common choice of a logit link function, although other links such as the probit
are possible. (For example, Aitkin et al., 1989, discuss a log-log link leading to a
proportional hazards model.) Censored observations are simply excluded from the
relevant set.

As in the semiparametric Cox model, we can fit a polynomial function to the
successive time intervals, rather than the full set of blocking factors. The data will
be ordered within level 2 units so that a risk set in general will extend over several
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Table 11.3 Log duration analysis of children’s activity episodes: extreme value
distribution.

Parameter

Fixed A (s.e.) B (s.e.)

Intercept 2.19 2.18
Facility 1 −0.12 (0.11) −0.13 (0.11)
Facility 2 0.20 (0.08) 0.18 (0.08)
Facility 3 0.00 (0.13) 0.00 (0.13)
Facility 4 0.87 (0.12) 0.95 (0.11)
Facility 5 0.28 (0.09) 0.28 (0.09)
Facility 6 0.15 (0.09) 0.14 (0.08)
Mother’s education −0.05 (0.02) −0.05 (0.02)

Random
Level 1 variance
Overall 0.75
Home 0.76
Facility 1 1.23
Facility 2 0.83
Facility 3 0.79
Facility 4 0.40
Facility 5 0.65
Facility 6 0.57

Level 2 covariance matrix. Analysis A (Analysis B in brackets)
Facility 1 Facility 2 Facility 4

Facility 1 0.34 (0.0)
Facility 2 0.11 (0.0) 0.20 (0.17)
Facility 4 −0.28 (0.0) 0.13 (0.09) 0.07 (0.23)

such units. A general procedure is to specify the response for each level 1 unit as
binary, that is zero if the unit survives the interval and one if not. Thus, a 2-level
model will become specified as a 3-level model with the binomial variation at level 1
and the actual level 1 units at level 2. This will be necessary if there are time varying
covariates.

We now consider various extensions to this model to incorporate multivariate
sequences, competing risks and multiple starting states. It is convenient to discuss
these models for a 2-level repeated events structure where each individual has a
sequence of event episodes. Finally, we consider a discrete time model where the set
of intervals is treated as an ordered response and show how this can accommodate
models with mixed multivariate responses and missing data.
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Figure 11.4 Estimated surviving probability of activity episodes.

11.11.1 A 2-level discrete time event history model
for repeated events

We shall discuss this model using an example from the National Child Develop-
ment Study of co-residential partnership durations (Bynner et al., 2002). In this
model we have repeated events for each of two states – not being in a partnership
(whether married or not) and belonging to a partnership. We assume that the total
time interval is divided into short time intervals, for example, three months, within
which at most one transition is assumed to have taken place per individual. These
actual time intervals are recoded into modelled time intervals (z) grouped within
an episode (k), determined by the event state. Data for individual 1 may look as in
Table 11.4.

Thus, starting in state ‘no partnership’ (episode 1), individual 1 moves in time
interval 3 to state ‘partnership’ (episode 2) and in time interval 7 to state ‘no part-
nership’ (episode 3). The response variable, y, takes the value zero if no move takes
place and one if a change in partnership status occurs during the interval. Thus the
hazard at modelled time t is

hijk(t) = P(yijk(t) = 1|yijk(t−1) = 0)

where k indexes individual, j indexes episode and i indexes the state. The states
(partnership, non-partnership) are modelled by dummy variables and this leads to
a binary response model where, as we have assumed, the (conditional) responses
within episodes within individuals are independent. Level 3 is the individual, level 2
represents variation between repeated episodes within individuals and level 1 refers
to the time interval within repeated episodes. More generally, we can consider models
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Table 11.4 Discrete time interval data for partnership duration.

Individual
Actual time
interval

Modelled time
interval Response

Event state at
start of interval

1 1 1 0 no partnership
1 2 2 0 no partnership
1 3 3 1 no partnership
1 4 1 0 partnership
1 5 2 0 partnership
1 6 3 0 partnership
1 7 4 1 partnership
1 8 1 0 no partnership
1 9 2 0 no partnership
1 10 3 0 no partnership

with several possible states through which individuals move, with individual level
correlated random effects.

Using a logit link function, this model can be written in the form

logit(hijk(t)) = β0 +
p∑

h=1

αh(zi(t))h +
m∑

j=1

βl xlijk(t) + uijk + vik

yijk(t) ∼ bin(1.hijk(t)) (11.9)

where zi(t) indexes the modelled interval at discrete time t using a p-order poly-
nomial (typically p≤ 5) to describe the baseline hazard (Section 11.5), and xki j(t)
are covariates, including the dummy variable for partnership state and its interac-
tions with the other covariates to allow for different prediction functions for the two
states. The term vik is the random effect for individual k for state i and uijk is a
random effect associated with the j-th episode for the k-th individual. In fact the term
uijk represents extra-binomial variation within individuals across repeated episodes.
In a 2-level model with just one episode per individual this is often known as a
‘frailty’ term.

We retain the subscript j in the covariate expression to allow for episode or
time varying covariates. Where there are many discrete time intervals this avoids the
estimation of a large number of nuisance terms; one for each ordered time interval.
At the individual level (2) we may have several random effects, in particular for each
state, and all of these will covary.

The population probability of survival to the end of modelled time interval t for
state i is

t∏

m=1

(1 − hijk(m)) (11.10)
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where these can be averaged over individual random effects to provide population
estimates.

11.11.2 Partnership data example
The National Child Development Study (NCDS) is a longitudinal study which takes
as its subjects all those living in Great Britain who were born between 3 and 9
March 1958. The fifth follow-up took place when they were 33. A self-completion
questionnaire asked for retrospective information on relationships, children, jobs and
housing from the age of 16. Altogether, 11178 persons responded and all but 39 of
the cohort members had no more than four partnerships.

We confine ourselves to male cohort members and episodes that start with a
partnership because the first non-partnership episode starting at age 16 is untypical
(but see Goldstein et al., 2004). At level 2 we have two random effects, one for
partnership and one for non-partnership durations. The total number of three-month
periods is 140 420 with 3737 male cohort members who had at least one partnership.

The MCMC estimation for (11.9) was run for 10 000 iterations with a burn in
of 1000. It gives somewhat different estimates from PQL1, as noted in Chapter
4. From Table 11.5 we see that there is some evidence that those with manual
occupations have longer partnership durations (the negative coefficient is associated
with a lower probability of terminating an episode at any given time), but a small
and non-significant difference (–0.116 + 0.152 = 0.036) for the non-partnership
durations. The later the starting age the longer the duration for partnerships but
there is only a small (–0.063 + 0.049 = –0.014) and non-significant relationship for
non-partnerships. We note also that there is a negative correlation of –0.52 between
partnership and non-partnership episodes indicating that long partnerships tend to
be associated with short non-partnerships and vice versa. Individuals can tentatively
be classified on this basis as either long partnership/ short non-partnership or long
non-partnership/ short partnership individuals.

11.11.3 General discrete time event history models
We now look at some extensions to the model. We write (11.9) in the general form
for a 2-level model

logit(hij(t)) = (Zα)it + (Xβ)ij(t) + uij
yij(t) ∼ Bin(1, hij(t)), uij ∼ MVN(0,
u)

(11.11)

We note that (11.11) allows time varying covariates. In general, we can model a
cohort of individuals moving through time where the response indicates whether an
event occurs during interval t. For simplicity, we assume in the following discussion
that the observations are for intervals within individuals, as in the example of the
previous section.

A competing risks model is one where there are several ways for an interval to
end, in addition to several ways for states to start, indexed by i. Suppose that there
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Table 11.5 Random coefficient model for partnership
and outside partnership. MCMC estimates: starting from
first partnership.

Parameter Estimate (s.e.)

Fixed
intercept −3.709
z −0.244(0.067)∗10−1

z2 0.076(0.053)∗10−2

z3 −0.140(0.240)∗10−4

z4 −0.089(0.114)∗10−5

z5 0.093(0.264)∗10−7

start age −0.063(0.010)
manual −0.116(0.075)

np(non-partnership) 1.753(0.469)
np∗z 0.499(0.208)∗10−1

np∗z2 −0.181(0.134)∗10−2

np∗ z3 −0.112(0.114)∗10−3

np∗ z4 0.024(0.332)∗10−5

np∗ z5 0.055(0.158)∗10−6

np∗start age 0.049(0.017)
np∗manual 0.152(0.118)

Random
σ 2

v0(non partnership) 0.400(0.211)
σv01 −0.119(0.118)
σ 2

v1(partnership) 1.145(0.171

are R –1 end events. Denote the multinomial response by yij(t) where yij(t) = r if an
event of type r has occurred in time interval t, r = 2, . . . , R, and yij(t) = 1 if no event
has occurred. The hazard of an event of type r in interval t, denoted by h(r )

ij(t), is the
probability that an event of type r occurs in interval t, for state i given that no event of
any type has occurred before interval t. The log-odds of an event of type r versus no
event is modelled using a multinomial logit model as defined in Chapter 4 as follows
(see Steele et al., 1996, who introduce this model).

log

[
h(r )
ij(t)

h(1)
ij(t)

]

= (Zα)(r )
(t) + (Xβ)(r )

ij(t) + u(r )
ij r = 2, . . . , R. (11.12)

We may also have different sets of end events for each state in which case (11.12)
is modified so that there are Ri end events for state i. In a competing risks model,
the effects of duration and covariates may differ for each event type, as indicated
by the r superscript. It is also possible that the form of the baseline hazard and the
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set of covariates may vary across event types. The random effects are assumed to
follow a multivariate normal distribution, with covariance matrix 
u , and we will in
general have an effect for each combination of state and end event. A simplification
will occur if we are prepared to assume that, for each end event, there is a random
effect irrespective of initial state so that (11.12) becomes

log

[
h(r )
ij(t)

h(1)
ij(t)

]

= (Zα)(r )
(t) + (Xβ)(r )

ij(t) + u(r )
i + u(r )

j (11.13)

which has the form of a cross-classified model (Chapter 12).
We can fit all of these models using various link functions such as thelogit. In the

case of the probit link, we can interpret the hazard as the cumulative probability for
an underlying standard normal distribution. Thus, for a given time period, covariates
(and random effects) corresponding to an observed response, we can estimate the
value on the underlying normal density, interpreted as a propensity to end an episode
at time t (see Chapter 4). The values of these at any time and set of covariate values
therefore provides an alternative interpretation for the model.

Where the transition states form an ordered categorisation, we can use
corresponding ordered category models for this, for example, by modelling
cumulative log-odds (Chapter 4). This could arise in the modelling of illness du-
ration, where patients make transitions between clinical states which are ordered by
severity. For such models we might also assume an underlying propensity with a
probit link.

These models can be extended to the multivariate case where, for each individual,
we wish to study more than one type of episode at a time; for example, duration
of partnership episodes and duration of employment episodes. For each episode
type we form the same set of discrete elementary time intervals and the response
is a p-way table where p is the number of episode types. This table is treated as
a multinomial response with corresponding, dummy, explanatory variables for the
margins of the table that we wish to fit. If covariates are present, these will be
modelled by interacting them with the explanatory variable dummies. For ordered
models and for binary response models with a probit link function, we can directly
incorporate correlations between the underlying normal distributions at level 1. This
then provides covariance matrix estimates for the different episode types at all levels
of the data hierarchy and allows us to study the relationship between the different
types. Such a model is also referred to as a multiprocess model.

Discrete time models provide a very flexible means of modelling multilevel
event history data since they just involve the use of existing procedures for discrete
responses. One disadvantage of the formulation that we have been considering is that
it requires data in a form that uses large amounts of memory, and in the next section
we show how this can be avoided with an alternative formulation. Steele et al. (2004)
discuss these models in more detail, with examples, and show how they can be fitted
with existing software.
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11.12 Discrete time latent normal event history models
We now consider treating event duration as an ordered categorical variable and
applying the range of procedures developed in Chapter 7. This has certain
advantages.

Suppose f (t > 0) is a survival or event time distribution. We can transform to a
standard normal distribution by defining the cumulative distribution as

F(x) = pr (0 < t ≤ x) =
x∫

−∞
φ(z)dz.

One way to operationalise this model is to categorise the time scale by defining cut
points (t0(= 0), t1, . . . .tp) and to consider the cumulative distribution Pr(t ≤ th). We
allow tp = ∞. This thus defines the ordered probit model of Chapter 7, which can
be written, ignoring subscripts, as

γ (h) =
αh−Xβ∫

−∞
φ(z)dz, γ (h) =

h∑

g=1

πg

πg = pr (tg−1 < t ≤ tg), α1 = 0

(11.14)

where Xβ represents the effect of any covariates, and πg is the probability that an event
occurs in time interval g. The threshold parameters αh correspond to the cut points
and we require that they satisfy the order constraint α1 < α2 . . . . . < αp. We can set
α1 = 0 if we assume that the intercept is incorporated in Xβ. We generalise to the
2-level case by adding random effects replacing Xβ by Xβ + Zu, u ∼ N (0,
u) with
further levels or classifications similarly specified. The hazard for time interval g is
πg/(1 − γ (g−1)) and the hazard rate at the start of time interval g is φ′(α(g−1) − Xβ)/
(1 − γ (g−1)).

An important advantage of this formulation is that the level 1 unit is a single
duration episode that records the category where a failure occurs, so that we do not
need to expand the dataset. The MCMC algorithm (Chapter 7) samples values from
the latent normal distribution, so that we can have multivariate models with different
kinds of (correlated) survival times, such as length of time in employment and length
of partnership as well as further responses of various types at the individual level
such as health status. We can also extend to the case where there are responses at
several levels (see Chapter 16).

One drawback of this formulation is that it does not lend itself directly to the incor-
poration of time varying covariates, but we shall describe how this can be done below
where we also reformulate it in a nonlinear form. Before we do this, we describe how
the model can deal with right, left and interval censored data, how we can model
missing data and how we can incorporate the timing of events within an interval. We
note that there is no requirement to have equal intervals on the time scale, and there
is no assumption that the hazard is constant within a time interval, although some
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information will typically be lost if the hazard does change within an interval. A fully
detailed description of this model is given in Goldstein (2010a).

11.12.1 Censored data
If we have right censored data, this implies that t > tk for some threshold k. Now
Pr(t > tk) = ∫ ∞

αk−Xβ
φ(z)dz so that in an MCMC step we sample from the corre-

sponding tail of the standard normal distribution. If right censoring is known to occur
during the first interval then we sample from the full normal distribution. In the case
of left censored data, we observe when failure occurs but we do not know when the
individual became exposed to the risk of failure, so that this gives us information
that the duration is longer than the time between when observations began and when
the event is observed. We therefore sample as for right censoring. Interval censored
data are those that occur in two or more contiguous intervals. In that case, we sample
from the union of this set of intervals. When sampling the threshold parameters in
an MH step, we include interval censored data using the probability of falling in the
corresponding set of intervals.

11.12.2 Missing data
Censored data are an example of missing data where we sample from the corre-
sponding interval or tail of the underlying normal, as described above. We condition
on the predictors included in the model and make the standard assumption that data
are missing (conditionally) at random (MAR), that is, that the probability of being
censored is independent of the actual survival time. There are situations, however,
where these assumptions may be violated. In that case there may be further, auxil-
iary, variables so that if we were to condition on them, we would satisfy the MAR
assumption; for example, if we have information on a subject’s social environment.
In instances where covariates in the model have missing values, a standard procedure
is that of multiple imputation (MI); the methods for this, as discussed in Chapter
16, can be applied directly to the ordered survival data to ‘impute’ the latent normal
variables for our model, using multiply imputed data sets for inference.

11.12.3 Information about the timing of events in an interval
As already noted, we may lose useful information through a coarse grouping using
a particular set of cut points. Within any interval, however, for those who do not
survive to the next time interval, we may have more detailed information on when
during the interval an individual has the event. Suppose we divide the grouped
intervals into narrower sub-intervals. Denote the start and end times of a particular
sub-interval by t1(h), t2(h) for the h-th interval (h = 1, . . . p − 1). Then instead of
sampling a normal variable in the interval (αh−1 − Xβ, αh−1 − Xβ), we sample in
the sub-interval αh−1 + w1(h) − Xβ, αh−1 + w2(h) − Xβ where w1(h), w2(h) are
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defined by

αh−1+w1(h)−Xβ∫

αh−1−Xβ

φ(z)dz

αh−1−Xβ∫

αh−1−Xβ

φ(z)dz
= t1(h) − th−1

th − th−1
,

αh−1+w2(h)−Xβ∫

αh−1−Xβ

φ(z)dz

αh−1−Xβ∫

αh−1−Xβ

φ(z)dz
= t2(h) − th−1

th − th−1

(11.15)
where for h = 1 we set α0 = −∞.

This sub-interval information is ignored when using MH sampling for the thresh-
old parameters. We note that the sub-intervals may differ across individuals; for
example, for some individuals or groups of individuals we may have more precise
timing information than for others. The assumption in (11.15) is that the probability
of a failure occurring between the start of the interval and w1(h), divided by the
probability of an event occurring in any part of the interval, is equal to the time from
the start of the interval to w1(h) divided by the length of the interval; likewise for
w2(h). Clearly, other assumptions are possible but we shall not pursue them.

11.12.4 Modelling the threshold parameters and time
varying covariates

We now look at models where we allow the threshold parameters to be modelled as
functions of explanatory variables. If these are defined at the individual level, we can
incorporate them in Xβ so that we shall consider here models where these explanatory
variables are defined at the threshold level, and thus become time varying covariates.

One possibility is to model the threshold parameters as a linear function of
explanatory variables. A problem with such a formulation is that at each step the
composite threshold parameters must satisfy the relevant monotonicity order restric-
tions and with time varying covariates this requires testing the condition for each
threshold for each individual, and may give rise to poorly mixing MCMC chains.
Furthermore, even where such monotonicity restrictions are obeyed for the data set
being analysed, this does not guarantee that for some values of the covariates in future
data sets these constraints will not be violated. We therefore consider an alternative
nonlinear formulation that will satisfy strict monotonicity in general. We reformulate
model (11.14) as follows:

γ (h) =
αh−Xβ∫

−∞
φ(z)dz, γ (h) =

h∑

g=1

πg

(11.16)

πg = pr (tg−1 < t ≤ tg), αh =
h∑

k=1

exp(α∗
k +

q∑

s=1

δs zks), α∗
1 = 0
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for q time varying explanatory variables zhs . Since the exponential cumulative
contributions are positive, full monotonicity is guaranteed. Again, random effects
for further levels or classifications can be added to the fixed part predictor Xβ.

The second line of (11.16) allows time varying covariates to contribute cumula-
tively to the threshold parameter according to their current values. An alternative is
to allow each of the covariates to contribute to the threshold parameter according to
its current mean value, so that we have

αh =
h∑

k=2

exp

(

α∗
k +

q∑

s=1

δs z∗ks

)

, z∗ks = 1

k

k∑

l=1

zls, (h > 1) (11.17)

and for h = 1 we use (11.16). Model (11.16) may be appropriate where covariates
exert their effects rapidly, whereas (11.17) may be more appropriate where covariates
are slower to affect the timing of the event.

The terms α∗
k in these expressions, together with the intercept β0, define the base-

line hazard function and can be replaced by a smooth function as already mentioned.
For ease of interpretation we may wish to centre at least the continuous explanatory
variables and we note that an additional intercept among the explanatory variables
z, z∗, is not generally required. We have also assumed that for a given explanatory
variable the coefficient is invariant over time. If we wish to have dfferent coefficients
for different time intervals or groups of intervals this can be accomplished by interact-
ing the dummy variables for the baseline categories with the cexplanatory variables.
We can also consider incorporating the first category covariate values in the fixed
part of the model and modelling the subsequent covariates as dfferences or changes
from these values, so that α1 = 0. This may be preferable in terms of interpreting
the parameters. We note that our formulation using a positive monotonic function
for the discrete time survival model with time varying covariates corresponds to the
traditional modelling of the hazard function using, say, a logistic link function, that
has the same monotonicity property. In fact any strictly positive monotonic function
can be used instead of the simple exponential. In some situations a bounded function,
such as the logistic, may be preferable.

11.12.5 An example using partnership durations
As in Section 11.11.2, the data are based upon partnership histories of female re-
spondents in the National Child Development Study collected retrospectively at ages
33, and also at 42 years. A full description is given in Steele et al. (2005). The
present analysis uses a subset of the data and explanatory variables, namely the
presence of a preschool child, and the age of the respondent. The response event is
separation from either cohabitation or marriage and the event time is the partnership
duration. The original data are grouped into six month intervals with the maximum
number of intervals for a woman being 54. All women with more than 45 intervals
are grouped into a final interval to avoid small numbers. Approximately 64 % of the
women are still partnered at age 42 and therefore have censored partnership durations.
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52

39

28

13

0
−49.0 −36.8 −24.5 −12.3 0.0 12.3 24.5 36.8 49.0

Figure 11.5 Durations of partnerships. negative values are right censored observa-
tions.

There are 1000 women with 1331 partnerships. Figure 11.5 shows the distribution of
partnership lengths and we see that there are some intervals that only have censored
observations. The threshold estimates α∗

k for these then become large and negative
and have a negligible contribution to the estimates for αh . Table 11.6 shows the esti-
mates for fitting both models (11.16) as Model A and (11.17) as Model B. We have
omitted the 45 estimates for the thresholds (for details, see Goldstein, 2010a).

In Model B, the overall effect of having a young child at the start of a partnership
is to increase the value on the latent normal scale (since it is a covariate belonging
to X) and hence to increase the probability that the partnership will end for each
given interval, that is decrease the overall probability of remaining in a partnership
for all time periods, presumably reflecting the characteristics of a partnership that
starts with an existing younger child. It could also reflect unobserved characteristics
of women who have children from a previous relationship. The variable, in either
case may well be endogenous so that it might be more appropriate to model a fertility
process jointly with the partnership dissolution process as in Steele et al. (2005),

Table 11.6 MCMC estimates: 500 burn in, 5000 sample. Estimates (SE).

Parameter Model A Model B

Intercept 2.39 (0.14) 2.48 (0.16)
Age group 20–24 0.43 (0.11) 0.36 (0.11)
Age group 25–29 0.62 (0.13) 0.53 (0.13)
Age group 30+ 0.51 (0.15) 0.40 (0.15)
Young child present (fixed covariate) −0.71 (0.14) −0.49 (0.13)
Young child present (time varying ) −0.32 (0.07) −1.20 (0.27)
Level 2 variance 0.293 (0.093) 0.326 (0.110)
Age group < 20 is the base category
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using a multivariate formulation. Given the presence (or absence) of a young child
at the start of the partnership, the effect at separation of the current average of the
younger child variable, in effect the proportion of times over the period that there is a
younger child present, is to multiply that threshold parameter (additive) contribution
(compared to no younger children during the time period) by the mean multiplied by
e−1.2 = 0.30, so that 0.30 is the multiplier when a younger child is always present.
This therefore leads to a decrease on the latent normal scale and hence to increase the
probability of remaining in a partnership. This suggests that the arrival of a young
child during a partnership tends to prolong the partnership as opposed to the effect
of starting the partnership with a young child. We also see that the higher the age of
starting a partnership the longer the partnership survives. In model A we see that the
fixed part contribution for a younger child is greater and the time-dependent effect is
larger with a multiplying factor of e−0.32 = 0.73. The effect is thus to multiply the
cumulative base threshold by 0.73 which provides perhaps a more straightforward
interpretation than Model B.

The contribution to the threshold value from the time dependent covariate can be
written as αh = ∑h

k=1 δheα∗
k , δh = eθ if younger child δh = 1 if not, where θ is the

coffcient for the explanatory variable. The contribution is therefore a weighted sum
of the eα∗

k . In the present case, approximately four consecutive intervals (with similar
values for eα∗

k ) with a young child is equivalent to three consecutive intervals without
a young child in terms of the contribution to the threshold value.

A further advantage of the nonlinear formulation for the thresholds (11.16)
and (11.17) is that where there are high correlations between the x, zvariables the
separation into different components can reduce numerical instabilities.
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12

Cross-classifie data structures

12.1 Random cross classification
In previous chapters, we have considered only data where the units have a purely
hierarchical or nested structure. In many cases, however, a unit may be classified
along more than one dimension. An example is students classified both by the school
they attend and by the neighbourhood where they live. Figure 12.1 represents this
diagrammatically for three schools and four neighbourhoods with between one and
six students per school/neighbourhood cell. The cross classification is at level 2 with
students at level 1.

Another example is in a repeated measures study where children are measured by
different raters at different occasions so that children are essentially cross-classified
by raters. If each child has its own set of raters not shared with other children then the
cross classification is of occasions and raters within children. This can be represented
diagramatically in Figure 12.2 for three children with up to seven measurement
occasions and two raters per child. If we adopt the convention that the lowest level at
which a response occurs is level 1, then the cross classification here is at level 2 with
level three that of the child and this is a level 2 cross classification with only one unit
per cell (see also Section 12.5).

If now the same set of raters is involved with all the children the crossing is at
the child level, 2, as can be seen in the following diagram with three raters and three
children and up to five occasions.

Figure 12.3 is formally the same structure as Figure 12.1 with the level 1 variance
being that between occasions.

These basic cross classifications may occur when a simple hierarchical structure
breaks down. Consider, for example, a repeated measures design which follows a
sample of students over time, and measured once a year, within a set of classes for
a single school. We assume first that each class group is taken by the same teacher.

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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School 1 School 2 School 3

Neighbourhood 1 x x x x x x x
Neighbourhood 2 x x x x x x x x x x
Neighbourhood 3 x x x x x x x
Neighbourhood 4 x x x x x x x

Figure 12.1 A random cross classificatio at level 2.

The hierarchical structure is then a three level one with occasions grouped within
students who are grouped within classes. If we had several schools then schools would
constitute the level 4 units. Suppose, however, that students change classes from one
year to the next. For three students, three classes and up to three years (occasions)
we might have the pattern in Figure 12.4.

Formally this is the same structure as Figure 12.3, that is a cross classification
at level 2 for classes by students. We distinguish such a design from the multiple
membership designs described in Chapter 13, where mobility can occur at any time
and a move is not associated with a new measurement, as here.

Suppose now that, instead of the same teachers taking the classes throughout
the study, the classes are taken by a completely new set of teachers every year and
where new groupings of students are formed each year too. Such a structure with four
different teachers over two years for three students is given in Figure 12.5.

This is now a cross classification of teachers by students at level 2 with occasion
as the level 1 unit. We note that most of the cells are empty and that there is at
most one level 1 unit per cell so that no independent between occasion variance can

Child 1 Child 2 Child 3
Occasion: 1 2 3 4 5 6 7 1 2 3 4 5 6 1 4 7
Rater 1

x x xxx
x x xxx

x

x xxx x
x x x x x

Rater 2
3retaR
4retaR

xxx5retaR
x6retaR

7

Figure 12.2 A random cross classificatio at level 2 with one unit per cell.

Child 1 Child 2 Child 3
Occasion: 1 2 3 4 1 2 1 2 3 4 5

xxx x x
x

Rater 1
xx2retaR

xxx3retaR

Figure 12.3 A random cross classificatio at level 2.
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Student 1 Student 2 Student 3
Occasion: 1 2 3 1 2 1 2 3

xxx xClass/teacher 1
xClass/teacher 2

x xxClass/teacher 3

Figure 12.4 Students changing classes/teachers.

be estimated. Raudenbush (1993) gives an example of such a design, and provides
details of an EM estimation procedure for 2-level 2-way cross classifications with
worked examples.

We can have a design which is a mixture of those given by Figure 12.4 and Figure
12.5 where some teachers are retained and some are new at each occasion. In this case
we would have a cross classification of teachers by students at level 2 where some of
the teachers only had observations at one occasion. More generally, we can have an
unbalanced design where each teacher is present at a variable number of occasions.

With two occasions where we have the same teachers or intact groups we can
formulate an alternative cross-classification design which may be more appropriate
in some cases. Instead of cross classifying students by teachers, we consider cross
classifying the set of all teachers at the first occasion by the same set at the second
occasion. Consider Figure 12.6, where we have 22 students who are nested within the
cross classification of teachers at each occasion. The difference between this design
and that in Figure 12.4 is analogous to the difference between a two-occasion longi-
tudinal design where a second occasion measurement is regressed on a first occasion
measurement and the two-occasion repeated measures design where a measurement

Student 1 Student 2 Student 3
Year: 1 2 1 2 1 2

xx1Teacher 1
x2rehcaeT

xx23rehcaeT
x4rehcaeT

Figure 12.5 Students changing teachers and groups.

Occasion 2
Teacher 1 Teacher 2 Teacher 3

Teacher 1 x x x x x x x x
Occasion 1 Teacher 2 x x x x x x

Teacher 3 x x x x x x x x

Figure 12.6 Teachers cross classifie by themselves at two occasions with responses
from 22 students.
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is related to age or time. In Figure 12.6, we are concerned with the contribution from
each occasion to the variation in, say, a test score measured at occasion 2, and we
might consider any first occasion meaurement as an explanatory variable. In Figure
12.4, on the other hand, although we could fit a separate between-teacher variance
for each occasion, the response variable is essentially the same one measured at
each occasion.

12.2 A basic cross-classifie model
Goldstein (1987a) sets out the general structure of a model with both hierarchical and
cross classified structures. We consider first the simple model of Figure 12.1 with
variance components at level 2 and a single variance term at level 1.

We shall refer to the two classifications at level 2 using the subscripts j1, j2 and, in
general, parentheses will group classifications at the same level. We write the model as

yi( j1 j2) = Xi( j1 j2)β + u1 j1 + u2 j2 + ei( j1 j2) (12.1)

The covariance structure at level 2 can be written in the following form

cov(yi( j1 j2)yi ′( j1 j ′2)) = σ 2
u1

cov(yi( j1 j2)yi ′( j ′1 j2)) = σ 2
u2

var(yi( j1 j2)) = cov(yi( j1 j2)yi ′( j1 j2)) = σ 2
u1

+ σ 2
u2

(12.2)

We note that if there is no more than one level 1 unit per cell model (12.1) is
still valid.

The level 2 variance is the sum of the separate classification variances, the co-
variance for two level 1 units in the same classification is equal to the variance for
that classification and the covariance for two level 1 units which do not share either
classification is zero. If we have a model where random coefficients are included for
either or both classifications, then analogous structures are obtained. We can also add
further ways of classification with obvious extensions to the covariance structure.
The essence of (12.2) is that the variances from each classification are additive. We
may, however, have more complex models where the total level 2 variance is more
complex and cannot be described by the sum of separate variances. Such interactive
models can be fitted within the framework set out in Appendix 12.1, but some of
the simplicity of interpretation achieved by assuming (12.2) will then be lost. For
example, we can fit separate random effects, with an associated variance, for a subset
of cells, and in the extreme case we may fit a separate (undifferentiated) random
effect for each cell with a single variance term. We return to this below.

Appendix 12.1 shows how cross-classified models can be specified and estimated
efficiently, based upon a hierarchical formulation using the IGLS algorithm. For large
problems, however, where two or more cross classifications contain large numbers of
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units, this procedure becomes unwieldy and in a later section we show how MCMC
estimation can handle such situations and introduce a more general notation.

12.3 Examination results for a cross classificatio
of schools

The data consist of scores on school leaving examinations obtained by 3435 students
who attended 19 secondary schools cross-classified by 148 primary schools in Fife,
Scotland (Paterson, 1991). Before their transfer to secondary school at the age of
12 each student obtained a score on a verbal reasoning test, measured about the
population mean of 100 and with a population standard deviation of 15.

The model is as follows:

yi( j1 j2) = β0 + β1x1i( j1 j2) + u1 j1 + u2 j2 + ei( j1 j2)

u1 j1 ∼ N (0, σ 2
u1

), u2 j2 ∼ N (0, σ 2
u2

), ei( j1 j2) ∼ N (0, σ 2
e )

(12.3)

and the results are given in Table 12.1. Random coefficients for verbal reasoning were
also fitted but the associated variances are estimated as zero.

Ignoring the verbal reasoning score (Model A), we see that the between-primary
school variance is estimated to be more than three times that between secondary
schools. One reason for this may be that the secondary schools are on average
larger and more homogeneous socially than primary schools, so that the variance is
smaller. To study further the issue of school size and composition we could make
the between-school variance a function of such variables, but these are not available
in the present dataset.

When the verbal reasoning score (Model B) is added to the fixed part of the model
the between secondary school variance becomes very small, the between primary
school variance is also considerably reduced and the level 1 variance also. The third
analysis (Model C) shows the effect of removing the cross classification by primary

Table 12.1 Analysis of Examination Scores by Secondary and Primary school at-
tended. The subscript 1 refers to primary and 2 to secondary school.

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Fixed Model A Model B Model C
Intercept 5.50 5.98 5.99
Verbal Reasoning – 0.16 (0.003) 0.16 (0.003)

Random
σ 2
u1

1.12 (0.20) 0.27 (0.06) –

σ 2
u2

0.35 (0.16) 0.011 (0.021) 0.28 (0.06)

σ 2
e 8.1 (0.2) 4.25 (0.10) 4.26 (0.10)
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school. The between secondary school variance is now only a little smaller than in
analysis A without verbal reasoning score. Using analysis C alone, which is typically
the case with school effectiveness studies which control for initial achievement, we
would conclude that there were important differences between the progress made in
secondary schools. From analysis B, however, we see that most of this is explained
by the primary schools attended. Of course, the verbal reasoning score is only one
measure of initial achievement, but these results illustrate that in such educational
data, adjusting for achievement at a single previous time may not be adequate.

12.4 Interactions in cross classification
Consider the following extension of (12.1):

yi( j1 j2) = Xi( j1 j2)β + u1 j1 + u2 j2 + u3( j1 j2) + ei( j1 j2). (12.4)

We have now added a general ‘interaction’ term to the model which was previously
an additive one for the two random effects. The usual specification for such a random
interaction term is that it has a simple variance σ 2

u(12)
across all the level 2 cells (Searle

et al, 1992). The adequacy of such a model can be tested against an additive model
using a likelihood ratio test criterion. For the example, in Table 12.1 this interaction
term is estimated as zero. While this indicates that the cross classification is adequate,
because the between-secondary-school variance is so small, we would not expect to
be able to detect such an interaction.

Extensions to this model are possible by adding random coefficients for the
interaction component, just as random coefficients can be added to the additive
components. For example, the gender difference between students may vary across
both primary and secondary schools in the example given in Section 12.3 and we
can fit an extra variance and covariance term for this to both the additive effects and
the interaction.

12.5 Cross classification with one unit per cell
Some interesting models occur when there is only one level 1 unit per cell of a level
2 cross classification. This should be distinguished from the case where a level 2
cross classification happens to produce no more than 1 level 1 unit in a cell as a result
of sampling. Thus, (12.4), where there are some cells with more than one level 1
unit, allows us to obtain separate estimates for the level 1 variance and the level 2
interaction. If there is only one level 1 unit per cell then this interaction is confounded
with the level 1 variance.

So called ‘generalisability theory’ models (Cronbach and Webb, 1975) can be
formulated as a cross classification with one level 1 unit per cell. The basic model is
one where a test or other instrument consisting of a set of items, for example ratings
or questions, is administered to a sample of individuals. The individuals are therefore
cross-classified by the items and may be further nested within schools etc. at higher
levels. In educational test settings the item responses are often binary, so that we
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would apply the methods of Chapter 4 to the present procedures in a straightforward
way. Since each individual can only respond once to each item, this is an example
where we cannot directly detect a level 2 interaction.

12.6 Multivariate cross-classifie models
For multivariate models the responses may have different structures. Thus, in a
bivariate model one response may have a 2-level hierarchical structure and the other
may have a cross classification at level 2. Suppose we measure the height and the
mathematics attainment of a sample of students, at several occasions, from a sample
of schools. The mathematics attainment is assessed by a different set of teachers
in each school and the heights are measured by a single anthropometrist. For the
mathematics scores there is a cross classification of students by teachers within each
school, whereas for height there is a 2-level hierarchy with students nested within
schools. Height and mathematics attainment will be correlated at both the student
and the school level. We can write a model for this structure as follows:

yh(i1i2) j = δ1h(X1(i1i2) jβ1 + u1 j + e1i1 j + e1i2 j ) + δ2h(X2i1 jβ2 + u2 j + e2i1 j )

cov(u1 j u2 j ) = σu12 cov(e1i1 j e2i1 j ) = σe12

δ1h = 1 if mathematics, 0 if height, δ2h = 1 − δ1h

(12.5)

where all other covariances are zero.
We have already mentioned that cross-classified models can have a discrete

response. We can also fit, for example, time series models, as discussed in Chapter
5, and in general cross-classified structures can incorporate all the types of models
which can be fitted for purely hierarchical structures.

12.7 A general notation for cross classificatio
In Figure 12.7, we set out a simple ‘classification diagram’ as introduced by Browne
et al. (2001). It allows us to classify data structures as hierarchical or crossed or
combinations of these at different levels. Boxes represent unit classifiers and those at
the same horizontal level in a cross classification are at the same level conceptually.
In terms of the model, we also have a simplified notation; for a basic variance
components model we write

y(1)
i = (Xβ)i + u(2)

school(i) + u(1)
student(i) school(i) ∈ (1, . . . ., J )

student(i) ∈ (1, . . . ., N )
u(2)
school(i) ∼ N (0, σ 2

u(2))) u(1)
student(i) ∼ N (0, σ 2

u(1)) i = 1, . . . ., N
(12.6)

In (12.6) we now have two classification , with students as classification 1 and schools
as classification 2. The subscript i is attached to the lowest level units and uniquely
identifies every measurement and random effect. Thus school(i) is the school that
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A: 2-level hierarchical model:           B: 2-level cross classification:

School

Student

Primary school Secondary school

Student

Figure 12.7 Classificatio diagrams for hierarchical and cross classifie structures.

student i belongs to and we refer to school(i) as a classification function that maps
the lowest level units, students, onto schools. Student(i) is the identity function that
maps students onto themselves. The superscript denotes the classification, where the
lowest is numbered 1 etc. Together with Diagram A in Figure 12.7, Equation (12.6)
completely specifies the model structure.

We can now rewrite (12.1) as

y(1)
i = (Xβ)i + u(3)

neighbourhood(i) + u(2)
school(i) + u(1)

student(i)

neighbourhood(i) ∈ (1, . . . ., J3) school(i) ∈ (1, . . . ., J2)

student(i) ∈ (1, . . . ., N )) u(3)
neighbourhood(i) ∼ N (0, σ 2

u(3))

u(2)
school(i) ∼ N (0, σ 2

u(2)) u(1)
student(i) ∼ N (0, σ 2

u(1)) i = 1, . . . ., N

(12.7)

which together with diagram B in Figure 12.7 completely specifies the cross classified
model. Since the only subscript is that for the lowest level units the notation can be
extended indefinitely for any number of crossed or hierarchical classifications.The
earlier notation as in (12.1) becomes very cumbersome when many classifications
exist. Browne et al. (2001) give a comprehensive treatment of this general notation
which, as we shall see in Chapter 13, extends readily to handle multiple membership
data structures. These authors also adopt the convention of dropping the (1) super-
script for level 1 responses and effects. This provides somewhat greater clarity for
models such as (12.7) but there are models, for example with multivariate responses
at several levels, where it is useful to retain the level 1 superscript.

12.8 MCMC estimation in cross-classifie models
The extension of MCMC methods to cross classifications is straightforward since we
simply introduce further steps for each extra classification that samples residuals and
covariance matrices from the relevant posterior distribution. Thus, for example, for
(12.9), the Gibbs algorithm in Section 2.13 becomes
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Step 1 Sample a new set of fixed effects (β).

Step 2 Sample a new set of neighbourhood residuals {u(3)}.

Step 3 Sample a new set of school residuals {u(2)}.

Step 4 Sample a new neighbourhood classification variance.

Step 5 Sample a new school classification variance

Step 6 Sample a new level 1 variance.

Step 7 Compute the level 1 residuals by subtraction.

Similar modifications to MCMC algorithms allow cross classified models with
discrete responses etc. For starting values typically it will be possible to use esti-
mates obtained from fitting a purely hierarchical model for each single higher level
classification in turn. If we use MCMC with default Gamma priors to fit the Fife
examination data we obtain results very similar to those in Table 12.1.
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Appendix 12.1 IGLS estimation for cross-classifie
data

12.1.1 An efficien IGLS algorithm
We illustrate the procedure using a 2-level model with crossing at level 2.

The 2-level cross-classified model, using the notation in Appendix 2.1, can be
written as

yi( j1 j2) = Xi( j1 j2)β +
q1∑

h=1

z1hij1u1hj1 +
q2∑

h=1

z2hij2u2hj2 + ei( j1 j2) (12.1.1)

Parentheses group the ways of classification at each level. We have two sets of
explanatory variables, type 1 and type 2, for the random components defined by the
columns of Z1(n × p1q1), Z2(n × p2q2) where p1, p2 are respectively the number of
categories of each classification.

Z1 = {z1hij1}, Z2 = {z2hi j2}
z1hij1 = z1him if j1 = m, for m − th type 1 level 2 unit, 0 otherwise
z2hij2 = z2him if j2 = m, for m − th type 2 level 2 unit, 0 otherwise

These variables are dummy variables where for each level 2 unit of type 1 we have q1

random coefficients with covariance matrix �(1)2 and likewise for the type 2 units. To
simplify the exposition we restrict ourselves to the variance component case where
we have

�(1)2 = σ 2
(1)2, �(2)2 = σ 2

(2)2

E(Ỹ Ỹ T ) = V1 + Z1(σ 2
(1)2 I(p1))ZT1 + Z2(σ 2

(2)2 I(p2))ZT2
(12.1.2)

Consider Figure 12.1, where we sort the data by school which is classification
1. The explanatory variables will have the structure in Figure 12.1.1 for the first
eight students.

It is clear that the second term in (12.1.2) can be written as

Z1(σ 2
(1)2 I(p1))ZT1 = Jσ 2

(1)2 J
T

where J is a (n × 1) vector of ones. The third term is of the general form Z3�3ZT3 ,
namely a level 3 contribution where in this case there is only a single level 3 unit and
with no covariances between the random coefficients of the Z2h and with the variance
terms constrained to be equal to a single value, σ 2

(2)2.
More generally, we can specify a level 2 cross classified variance components

model by modelling one of the classifications as a standard hierarchical component
and the second as a set of dummy explanatory variables, one for each category, with
the random coefficients uncorrelated and with variances constrained to be equal.
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i,j1 i,j2 Z11 Z12 Z13 Z14 Z21 Z22 Z23

1,1 1,1 1 0 0 0 1 0 0
2,1 2,1 1 0 0 0 1 0 0
3,1 3,1 1 0 0 0 1 0 0
4,1 4,1 1 0 0 0 1 0 0
5,1 1,2 1 0 0 0 0 1 0
6,1 2,2 1 0 0 0 0 1 0
7,1 1,3 1 0 0 0 0 0 1
1,2 2,1 0 1 0 0 1 0 0

Figure 12.1.1 Explanatory variables for level 2 cross-classificatio of Figure 12.1.

If this second (type 2) classification has further explanatory variables with random
coefficients as in (12.1.1) then we form extended dummy variable ‘interactions’ as
the product of the basic dummy variables and the further explanatory variables with
random coefficients, so that these coefficients have variances and covariances within
the same type 2 level 2 unit but not across units. In addition the corresponding
variances and covariances are constrained to be equal.

To extend this to further ways of classification we add levels. Thus, for a three-
way cross classification at level 2 we choose one classification, typically that with
the largest number of categories, to model in standard hierarchical fashion at level
2, the second to model with coefficients random at level 3 as above and the third to
model in a similar fashion with coefficients random at level 4. The same principle
applies to cross classifications at level 1 nested within level 2 units. The level 1
cross classification is modelled as a 2-level hierarchy with the original level 2 units
becoming level 3 units. We can also allow simultaneous crossing at more than one
level. Thus for example, if there is a 2-way cross classification at level 1 and a 3-way
cross classification at level 2, we will require five levels, the first two describing the
level 1 cross classification and the next three describing the level 2 cross classification.
Further details are given by Rasbash and Goldstein (1994).

12.1.2 Computational considerations
Analysis A in Table 12.1 took about ten times longer than analysis C. This relative
slowness is due to the size of the single level 3 unit which contains all the 3435 level
1 units. For very much larger problems the computing considerations will become
of greater concern, so that some procedure for speeding up the computations is
needed.

In the present analysis there are 120 cells of the cross classification which con-
tain only one student. If we eliminate these data from the analysis, we obtain two
disjoint subsets containing 14 and five secondary schools. There are a further 24 cells
containing two students and if these are removed we obtain six disjoint subsets the
largest of which contains eight secondary schools. Table 12.1.1 shows the estimates
from the resulting analyses.
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Table 12.1.1 Examination scores for Secondary by Primary school
classification omitting small cells.

Parameter Estimate (s.e.) Estimate (s.e.)

Fixed ≤ 1 student ≤ 2 students
Intercept 6.00 6.00
Verbal reasoning 0.16 (0.003) 0.16 (0.003)

Random
σ 2
u(1)0 0.27 (0.06) 0.25 (0.06)

σ 2
u(2)0 0.004 (0.021) 0.028 (0.030)

σ 2
e 4.28 (0.11) 4.29 (0.11)

The only substantial difference is in the between secondary school variance which
is anyway poorly estimated. In many cases such separations may not be possible and
MCMC estimation (Section 12.8) becomes relatively fast and is the preferred method.
It also has the advantage that it is uneccessary to eliminate any data as has been
done here.
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13

Multiple membership models

13.1 Multiple membership structures
In some circumstances, units can be members of more than one higher level unit.
An example is friendship patterns where at any time individuals can be members
of more than one friendship group. In an educational system, students may attend
more than one institution. In all such cases we shall assume that for each higher level
unit to which a lower level unit belongs there is a known weight (summing to 1.0
for each lower level unit), which represents, for example, the amount of time spent
in that unit. The choice of weights may be important, and so we might carry out a
sensitivity analysis to determine how alternative choices of weights affect inferences,
and using MCMC estimation we can use the DIC to compare models with different
sets of weights. Appendix 13.1 sets out the MCMC sampling steps.

We may also have data where there is some uncertainty about which higher
level unit some lower level units belong to; for example, in a survey of students,
information about their neighbourhood of residence may only be available for a few
students for larger geographical units. For these cases, it may be possible to assign a
weight for each of the constituent neighbourhoods which is in effect a probability of
belonging to each based upon available information. We will refer to such a structure
as a missing identification structure for which the multiple membership estimation
techniques are readily adapted (see Section 13.7).

Consider first the 2-level variance components model with each level 1 unit
belonging to at most two level 2 units, where the j1, j2 subscripts now refer to the
same type of unit, so that we do not require separate subscripts (1,2,3. . .) for the
u j terms.

yi( j1 j2) = Xi( j1 j2)β + w1ij1u j1 + w2ij2u j2 + ei( j1 j2)

w1ij1 + w2ij2 = 1
(13.1)

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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The overall contribution at level 2 is the weighted sum over the level 2 units to which
each level 1 unit belongs. This leads to the following covariance structure

var(yi( j1 j2)) = (w2
1ij1 + w2

2ij2 )σ 2
u + σ 2

e

cov(yi( j1 j2)yi ′( j1 j2)) = (w1ij1w1i ′ j1 + w2ij2w2i ′ j2 )σ 2
u

cov(yi( j1 j2)yi ′( j ′1 j2)) = w2ij2w2i ′ j2σ
2
u

For individuals belonging to more than one unit, the contribution to the total variation
of the higher level units is less. For example, suppose there are just two higher
level units.

If wi1 = wi2 = 0.5, var

(
∑

h

wihuh

)

= σ 2
u /2 (13.2)

In other words, what we see is an average over several schools that will naturally have
less variation than that associated with attendance at a single school. This has impor-
tant implications for models which ignore large numbers of multiple memberships.
Suppose in a study of school examination results, a substantial number of students
have spent time in several schools but they are assigned only to the final school
where they took the examination. (This is discussed with examples by Goldstein
et al., 2007b.) The observed level 2 variation will be less than the true level 2 varia-
tion for these students, as demonstrated in (13.2). The effect will be to underestimate
the true level 2 variation and thus to produce biased estimates for school level resid-
uals. It would seem that almost all so-called ‘school effectiveness’ studies, including
those used for illustration in earlier chapters are subject to such biases, although it is
not always clear how important these are.

Where we have level 2 variables in the fixed part of the model, we would also
usually wish to apply the weights to these so that the predictor reflects the weights
attached to the level 2 unit. For example, as students move between schools and we
have a predictor such as the size of school that the student is in, then we may wish to
construct a weighted average of these.

13.2 Notation and classification for multiple
membership structures

Using the general notation introduced for cross classifications given in Chapter 12,
we can write (13.1) as

yi = (Xβ)i + ∑

j∈school(i)
w

(2)
i, j u

(2)
j + ei

u(2)
j ∼ N (0, σ 2

u(2)), ei ∼ N (0, σ 2
e )

school(i) ∈ {1, . . . J }, i = 1, . . . N

(13.3)
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School

Pupil

Figure 13.1 Classificatio diagram for 2-level multiple membership structure.

where we have omitted the superscript (1) for the level 1 classification for
convenience. We note that now school(i) refers to all the schools that unit i belongs
to. The classification diagram for (13.3) is given in Figure 13.1.

The double arrow indicates a multiple membership relationship. For likelihood-
based estimation we set up a set of J variables where the value is w

(2)
i, j for the j-th

unit with a nonzero weight for level 1 unit i, and zero otherwise. As in the cross-
classified case, these then have random coefficients with variances constrained to be
equal (Appendix 12.1). For MCMC estimation, the weights are incorporated into the
sampling of residuals at each iteration. Details are given in Browne et al. (2001a).

We now illustrate the analysis of a multiple membership model with an example
of veterinary data.

13.3 An example of salmonella infection
The data concern outbreaks of salmonella infection in Danish chicken flocks between
1995 and 1997. The response is whether or not salmonella is present in a (slaughtered)
‘child’ flock. Each flock is kept in a house within a farm, the hierarchical component,
and is created from a mixture of up to six parent flocks, the multiple membership
component. There is also the cross classification of the parent flocks by house within
farms. In addition, there are four chicken hatcheries for which we fit three dummy
variables, together with two dummy variables for year. There are 200 parent flocks,
304 farms, 725 houses and 10,127 child flocks of chickens. The classification diagram
is given in Figure 13.2 and the model is

yi ∼ bin(1, πi )

logit(πi ) = (Xβ)i = u(2)
house(i) + u(3)

farm(i) + ∑

j∈flo k(i)
w

(4)
i, j u

(4)
j

u(2)
house(i) ∼ N (0, σ 2

u(2)), u
(3)
farm(i) ∼ N (0, σ 2

u(3)), u
(4)
j ∼ N (0, σ 2

u(4))

(13.4)

The results of fitting (13.4) using MCMC are given in Table 13.1. The year 1995
and hatchery 1 are taken as base categories. Default inverse Gamma priors are used
for variances and MH estimation is based upon 50,000 iterations with a burn in
of 20,000.



P1: TIX/XYZ P2: ABC
c13 JWST015-Goldstein August 16, 2010 9:33 Printer Name: Yet to Come

258 MULTILEVEL STATISTICAL MODELS

Farm

House

Child flock

Parent flock

Figure 13.2 Classificatio diagram for salmonella data.

Table 13.1 MCMC estimates for salmonella data.

Fixed Estimate (s.e.)

Intercept −2.33 (0.22)
1996–1995 −1.24 (0.17)
1997–1995 −1.16 (0.19)
Hatchery 2 – Hatchery 1 −1.73 (0.26)
Hatchery 3 – Hatchery 1 −0.20 (0.25)
Hatchery 4 – Hatchery 1 −1.06 (0.38)
Variances
Parent flock 0.88 (0.18)
Farm 0.92 (0.20)
House 0.20 (0.11)

It is clear that most of the variation is between farms and between parent flocks,
with some large hatchery differences. Residuals can be estimated for all effects so
that extreme farms and parent flocks can be identified. Further details can be found
in Browne et al. (2001a).

13.4 A repeated measures multiple membership model
Goldstein et al. (2000a) consider repeated measures household data where individ-
uals move from household to household over a period of five years divided into
six-monthly occasions. The response is the average length of time each individual
has spent in all households since the start of the study, up to the current occa-
sion. Thus, for example after three years, an individual who has spent a year in the
first household and two years in the next will have a response value of 1.5 years.
A household is not a constant unit but becomes a new one when any individual



P1: TIX/XYZ P2: ABC
c13 JWST015-Goldstein August 16, 2010 9:33 Printer Name: Yet to Come

MULTIPLE MEMBERSHIP MODELS 259

Individual Household

Occasion

Figure 13.3 A repeated measures multiple membership model.

leaves or enters. The classification diagram is given in Figure 13.3 and the model in
(13.5). The lowest level unit is the measurement occasion indexed by i, and these
are nested within individuals. At each occasion the measurement has a contribu-
tion from a set of households so that occasions are formally multiple members of
households.

yi = (Xβ)i + u(2)
individual(i) + ∑

j∈household(i)
w

(3)
i, j u3

j + ei

u(2)
individual(i) ∼ N (0, σ 2

u(2)), u
3
j ∼ N (0, σ 2

u(3)), ei ∼ N (0, σ 2
e )

(13.5)

The analysis given in Goldstein et al. (2000a) shows a very large between household
variance compared to the between-individual variance, together with effects for age
and nationality.

13.5 Individuals as higher level units
In all our examples of cross classifications and multiple membership structures so
far considered, individuals, or occasions in repeated measures models, are the lowest
level units. In some structures, however, they can become higher level units with tra-
ditional higher level units becoming level 1 units. Consider the following educational
structure.

Suppose we have students who are assessed individually and also in groups,
where the measurement is made at the group level, and we wish to know what
individuals contribute to the group response – in particular, the correlation between
the individual assessment and this contribution. Suppose also that we have data where
each individual in a sample is assessed, over time, in several groups with differing
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Student(1) Student(2) 

Group

     Group task score                                   Individual test score 

Figure 13.4 Classificatio diagram with two responses.

compositions. We have two responses and can write the following model:

y(1)
1i = (X1β1)i +

∑

j∈individual(i)
w

(2)
i, j u

(2)
1 j + e(1)

i (group level response)

y(2)
2 j = (X2β2) j + u(2)

2 j (individual level response)

(13.6)

(
u(2)

1 j

u(2)
2 j

)

∼ N (0,�u),�u =
(

σ 2
u1(2)

σu12(2) σ 2
u2(2)

)

, e(1)
i ∼ N (0, σ 2

e(1))

Level 1 is now the group level so that groups are considered as multiple members
of individuals and it follows for identification purposes that we require more groups
than individuals. We shall take up this issue again later. The classification diagram
for (13.6) is given in Figure 13.4.

The dotted line linking the two responses is used to indicate a multivariate model,
with the vertical line separating the two parts of the model.

This model allows us to estimate the individual level residuals u(2)
1 j , contributing

to the group level response, and also the correlation between these and the indi-
vidual level residuals associated with the individual level response u(2)

2 j . The model
can be extended straightforwardly to incorporate random coefficients and discrete
responses. Other possible applications of such models are in applications where
teams with varying compositions of individuals are formed in sporting activities
or for work tasks. We now look at an application of this model to assessing the
contribution that individuals and departments in universities make to research grant
award grades.
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13.5.1 Example of research grant awards
The following analyses are based upon research grant applications submitted to the
UK Economic and Social Research Council in the period 2001–07. Each application
is awarded a grade whether or not it is finally funded and this grade has been converted
to a numerical score. (Full details can be found in Goldstein, 2010b.) The response
is the awarded grade score so that the application is the level 1 unit. The overall
contribution of the applicants is the weighted sum of the applicant effects u j with
the weights summing to 1.0 for each application. Thus the applicant, formally, is
the level 2 unit. Fitting this model allows properly for the grouping of applications
within applicant and we can compute the applicant effects, together with confidence
intervals, as required.

In fact, we cannot directly fit this model to our data because we have more
applicants (level 2 units) than applications (level 1 units) so that we are not able
to identify individual applicant effects. Instead, therefore, we choose the university
department as level 2 and for each department, for each application we treat it as a
level 2 unit with a weight attached that is the sum of the weights of the applicants
belonging to that department. Such a formulation is not entirely satisfactory since, in
this model, there are applicants who will appear in more than one application, whereas
the model assumes effectively that the applicants are independently ‘sampled’ from
each department. To take account of this applicant effect, however, would involve
fitting a term for applicant in the model leading to a cross classification of applicant
and application, but as we have seen the data do not allow us to fit a random effect
classification for applicant. Furthermore, since applicants move between departments
this would constitute a cross classification of applicant by department also. In general
a failure to account for such non-independence will produce standard error estimates
that are downwardly biased and we need to be aware of this in our interpretations.

We can write our model as follows:

yi = β0 + ∑

k
βkδk + ∑

j∈department(i)
wi, j u(2)

j + ei

u(2)
j ∼ N (0, σ 2

u(2)), ei ∼ N (0, σ 2
e )

(13.7)

where j indexes department and {δk} are six dummy variables for the set of seven
disciplines to which departments have been allocated. The final total number of
separate department codes is 1698 with a total of 2698 applications. Table 13.2
presents results based on only those disciplines with at least 100 applications.

Figure 13.5 shows the 100 smallest and 100 largest department residual estimates
with conventional 95 % confidence intervals and it is clear that little separation
is possible.

13.6 Spatial models
In spatial modelling, measurements on individuals within an area are assumed to
depend both on that area’s effect and the effects of surrounding areas. Thus, suppose
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Table 13.2 2-level multiple membership model including major disciplines with
numerical final grade as response. MCMC estimates. Burn in = 500, chain length =
5000.

Parameter Estimate Standard error

Intercept (Base category Economics) 7.17 0.11
Management −0.69 0.17
Social Policy −0.54 0.20
Education −0.24 0.11
Sociology 0.06 0.15
Human Geography 0.10 0.18
Psychology 0.16 0.13

Level 2 variance (Department) 0.45 0.11
Level 1 variance (Application) 2.37 0.09

we are studying health status, we might start by assuming a 2-level model with
an individual random effect and a random effect from the area in which a person
lives. It may, however, be unrealistic to ignore the effects of surrounding areas
(neighbours) on health status and to include these we might have a model such as the
following

yi = (Xβ)i +
∑

j∈neighbourhs(i)
(w(2)

i, j u
(2)
j ) + u(3)

area(i) + ei

u(2)
j ∼ N (0, σ 2

u(2)), u
(3)
j ∼ N (0, σ 2

u(3)), ei ∼ N (0, σ 2
e )

(13.8)

We are here modelling separate random effects for the area of residence (classifi-
cation 3) and the neighbouring areas (classification 2). In some cases all the areas

2.7

2.0

0 70 140 210 280

1.4

0.7

0.0

−0.7

−1.4

−2.0

−2.7

Figure 13.5 One hundred lowest and highest ranked residuals for multiple member-
ship model using all departments, with 95% confidenc intervals.
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in a sample are neighbours to all other areas so that for each area there are two
random effects in a variance components model and we can fit a covariance be-
tween them. Langford et al. (1999) do this for some mortality data in Scotland
and show a high correlation suggesting that areas have similar relative effects when
they are contributing as neighbours and as the area of residence. In this particular
case one might replace the two classifications by a single one with one random ef-
fect for each area. Leyland (2001) gives further examples and extends the model
to consider a multivariate response where covariances between different responses
are modelled for both area of residence and for neighbours. Browne et al. (2001a)
compare the multiple membership spatial model with the traditional conditional
autoregressive (CAR) model for an example with Poisson responses for disease
prevalence data.

We can extend (13.8) for different response types and with further random coeffi-
cients. There are implicit weights in (13.8); equal weights attached to the neighbours,
and also an equal weight for the total neighbourhood contribution and the residence
area contribution. While the weights attached to neighbours are often chosen to be
equal, other choices based upon distance are also possible. It is also possible to give
more, or less, weight to the area of residence compared to the neighbouring areas and
such choices can be compared using, for example the DIC statistic.

A further extension of these models is to consider as a further classification, say,
the area where an individual works: if an individual works in more than one area then
this will be another multiple membership classification.

These spatial models can be used to model interacting institutions. Thus, for
example, the effects of schooling may come not only from the school that a student
belongs to but also from neighbouring schools that may be competing for resources
etc. This would lead to a model such as (13.8) where each school will affect stu-
dent outcomes for its own students and also for those in neighbouring schools. One
of the aims of such a model might be to try to discover if there were characteris-
tics of schools that could explain ‘neighbouring’ effects. In addition, of course, we
can jointly model the effects of other classifications such as area of residence. (In
Chapter 17, we look at other ways in which relationships across level 2 units can
be modelled.)

13.7 Missing identificatio models
A common problem in multilevel data is where the identification of a unit, usually
at a higher level, is uncertain. Thus, for example we may have information from
a household survey where, for some households, the area is unknown because the
information has been lost or withheld, perhaps for confidentiality reasons. In a lon-
gitudinal study of schooling we may know that a student has changed school but not
which school she came from. In such cases, if we can attach a probability of unit
membership for each available higher level unit, then we can use these probabilities
in our model. If we denote these probabilities by πi, j , then for a variance components
model with normally distributed residuals we can write



P1: TIX/XYZ P2: ABC
c13 JWST015-Goldstein August 16, 2010 9:33 Printer Name: Yet to Come

264 MULTILEVEL STATISTICAL MODELS

yi = (Xβ)i +
∑

j∈unit(i)
u(2)
j

√
π

(2)
i, j + ei

var

(
∑

j∈unit(i)
u(2)
j

√
π

(2)
i, j

)

= σ 2
u(2)

∑

j∈unit(i)

(√
π

(2)
i, j

)2

= σ 2
u(2)

cov

(
∑

j∈unit(i1)
u(2)
j

√
π

(2)
i1, j ,

∑

j∈unit(i2)
u(2)
j

√
π

(2)
i2, j

)

= σ 2
u(2)

× ∑

j∈unit(i1)=
j∈unit(i2)

√
π

(2)
i1, jπ

(2)
i2, j

∑

j∈unit(i)
π

(2)
i, j = 1

(13.9)

Unlike the multiple membership model the level 2 variation is still σ 2
u(2) since we are

here assuming that students actually belong to just one school, so that the true level 2
variation is unchanged. Hill and Goldstein (1998) give further details and an example.
In the extreme situation where there is complete ignorance about membership we
would set π

(2)
i, j = 1/J , where J is the number of level 2 units. In this case the

covariance between two such students becomes
∑J

j=1 σ 2
u(2)(1/

√
J )2 = σ 2

u(2) just as
in the standard variance components model, and, for this variance components case,
is equivalent to an arbitrary assignment of each student to a single school. Estimation
for models such as (13.9) is similar to that for multiple membership models.

An alternative estimation procedure is to treat the unit membership probabilities
as prior probabilities in a Bayesian analysis. This will then involve an extra MCMC
step where, each level 1 unit is randomly allocated to a level 2 unit according to that
level 1 unit’s set of prior probabilities. The remaining MCMC steps remain the same.

We can have models which are mixtures of multiple membership structures and
missing identifications. For example, in a study of examination results we may know
that a student has moved school at a particular time but not know the identity of the
previous school. In this case, we would specify a set of identification probabilities
for the previous school which would then be multiplied by the multiple membership
weight for that period of schooling.

Another application of these models is where the identification information is
missing, at least partly, by design. Thus, for example, the release of survey or census
data is typically subject to confidentiality safeguards and in particular this often
implies the removal of locality identifications. In such cases, data could be provided
where, for each actual locality, units would be assigned to it from the complete set
of all localities with known probabilities. Thus, attached to each lowest level unit in
a locality would be a set of probabilities of belonging to each member of the full
set of localities. In practice, only a small number of such probabilities would be
nonzero for each lowest level unit. If the probabilities are suitably chosen, this could
satisfy confidentiality requirements since the actual locality would only be known
probabilistically. The data could then be analysed using missing identification models
since the probabilities are fully known for each unit.
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Appendix 13.1 MCMC estimation for multiple
membership models

The sampling steps for a multiple membership classification are the same as for a
simple hierarchical model or a cross classification except for sampling the residuals
(see Appendix 2.5).

Consider the model given in Section 13.2:

yi = (Xβ)i + ∑

j∈school(i)
w

(2)
i, j u

(2)
j + ei

u(2)
j ∼ N (0, σ 2

u(2)), ei ∼ N (0, σ 2
e )

j = 1, . . . J, i = 1, . . . N

(13.1.1)

The posterior distribution, the likelihood times the prior, is given by

p(u(2)
j |y, σ 2

u , σ
2
e ) ∝

(
1

σ 2
e

)n∗
j /2 n∗

j∏

i=1

exp

[

− 1

2σ 2
e

(yi − ((Xβ)i + u(2)
i,− j ) − w

(2)
i. j u

(2)
j )2

]

×
(

1

σ 2
u

)1/2

exp

[

− 1

2σ 2
u

(u(2)
j )2

]

u(2)
i,− j =

∑

k∈school(i)
k �= j

w
(2)
i,k u

(2)
k

(13.1.2)

where n∗
j is the number of level 1 units that have nonzero weights for the j-th school and the

product in (13.1.2) is with respect to this set of level 1 units. Thus, we need to adjust for the
remaining school residuals when sampling that for school j. For a model with several random
effects step 2 in Appendix 2.5 is modified to give for the means and covariance matrix of the
multivariate normal posterior distribution

û j =
[
n∗
j∑

i=1
(w(2)

i. j )
2Z (2)T

i Z (2)
i + σ 2

e �
−1
u

]−1 [
n∗
j∑

i=1
w

(2)
i. j Z

(2)T

i (yi − ((Xβ)i + u(2)
i,− j ))

]

D̂ = σ 2
e

[
n∗
j∑

i=1
(w(2)

i. j )
2Z (2)T

i Z (2)
i + σ 2

e �
−1
u

]−1
(13.1.3)

For models with several classifications we include the current random effect estimates
for these classifications with the term (Xβ)i + u(2)

i,− j . Note that in the remaining steps

(Xβ)i + u(2)
school(i)

in the standard model is replaced by (Xβ)i + ∑

j∈school(i)
w

(2)
i, j u

(2)
j .
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14

Measurement errors in
multilevel models

14.1 A basic measurement error model
Many measurements are made with substantial error components, especially in the
social and biological sciences. Thus, if the measurement were to be repeated we would
not expect always to get an identical result. In some cases, such as the measurement
of individual height or weight, the errors may be so small that they can safely be
ignored in practice. In other cases, for example for educational tests and attitude
measures, this usually will not be true and a failure to ignore errors may lead to
incorrect inferences. Fuller (2006) provides a comprehensive account of methods for
dealing with measurement errors and this chapter extends some of those procedures
to the multilevel model. We shall first discuss moment-based estimators and then set
out a general framework based upon MCMC methods.

A basic model for measurement errors in a 2-level continuous response model
for the h-th explanatory variable and for the response is as follows.

yoij = yij + qij
xohij = xhij + mhij

(14.1)

The superscript o indicates the observed measurement. We allow measurement errors
in explanatory and response variables, but will start by considering only those for the
latter. We also allow the measurement errors to be correlated. We can think of the
‘true’ measurements as being the expected values of repeated measurements of the
same unit where the measurement errors are independent and are also independent
of the true values. We define the reliability of the h-th explanatory variable

Rh = σ 2
hx/σ

2
hxo = (σ 2

hxo − σ 2
hm)/σ 2

hxo (14.2)

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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that is the variance of the true values divided by the variance of the observed
values.

This immediately raises two problems. When we are measuring such things as
attitudes or educational achievement, we cannot carry out repeat measurements to
obtain estimates of the σ 2

hm because the measurement errors cannot be assumed to be
independent. Another way of viewing this is to say that the process of measurement
itself has changed the individual being measured, so that the underlying true value
has also changed.

The second problem is that we have to define a suitable population. The definition
of reliability is population dependent, so that for example, if the measurement error
variance σ 2

hm remains constant but the population heterogeneity of the true values
increases then the reliability will increase. Thus, the reliability may be lower within
more homogeneous population subgroups, defined by social status say, than in the
population as a whole. In particular, the reliability of a test score may be smaller
within level 2 units, say schools, than across all students.

In this chapter, we shall assume that the variances and covariances of the mea-
surement errors are known; or rather, perhaps, that suitable estimates exist, and where
possible, with estimates of their precision. At the very least, sensitivity analyses can
be carried out, trying different values. The topic of measurement error estimation
is a complex one and there are in general no simple solutions, except where the
assumption of independence of errors on repeated measuring can be made. The com-
mon procedure, especially in education, of using ‘internal’ measures based upon
correlational patterns of test or scale items, is unsatisfactory for a number of reasons
and may often result in reliability estimates that are too high. Ecob and Goldstein
(1983) discuss these and propose some alternative estimation procedures. McDonald
(1985) and other authors discuss the exploration and estimation of measurement error
variances within a structural equation model, and these have much in common with
the suggestions of Ecob and Goldstein (1983).

14.2 Moment-based estimators
All the models in this section assume that the measurements that contain measurement
errors do not have random coefficients. (Details are given in Appendix 14.1.) The
random coefficient case will be dealt with when we discuss MCMC estimation.

14.2.1 Measurement errors in level 1 variables
We use a two level model to show how measurement errors can be incorporated into
an analysis. We write

yij = (Xβ)ij + (zuu) j + (zee)ij (14.3)

and assume that it is this true model for which we wish to make estimates. In
some situations, for example where we wish simply to make a prediction for a
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response variable based upon observed values, then it is appropriate to treat these
without correcting for measurement errors. If we wish to understand the nature of
any underlying relationships, however, we would normally require estimates for the
parameters of the true model.

For the observed variables (14.3) gives

yoij = qij − (mβ)ij + (Xoβ)ij + (zuu) j + (zee)ij (14.4)

In Appendix 14.1 we show that the fixed effects can be estimated by

β̂ = M̂−1
xx M̂xy

M̂xx = XoT V̂−1Xo − C�1

C�1 =
{
∑

i
σ i iσ i(h1,h2)m

} (14.5)

where σ i(h1,h2)m is the covariance between the measurement errors for explanatory
variables h1, h2 for the i-th level 1 unit. The last expression in (14.5) is a correction
matrix for the measurement errors and has elements which are weighted averages of
the covariances of the measurement errors for each level over all the level 1 units in the
sample with the weights being the diagonal elements of V−1. In variance component
models this is a simple average over the level 1 units, and in the common case where
the covariance matrix of the measurement errors is assumed to be constant over level
1 units, we have

C�1 = tr (V−1)�1m, �1m = {σ(h1,h2)m} (14.6)

An approximation to the covariance matrix of the estimates is given in Appendix
14.1 as is an expression for the estimation of the random parameters. For the constant
measurement error covariance case with no measurement errors in the response
variable, this covariance matrix is given by

M̂−1
xx (XoT V̂−1Xo + XoT V̂−2T1m Xo)M̂−1

xx

T1m = (β̂T�1m β̂)I(n)

(14.7)

and in the estimation of the random parameters the term T1m is subtracted from Ỹ Ỹ T
at each iteration. In some applications we may wish to allow the measurement error
variances to vary as a function of explanatory variables and these will then become
incorporated in C�1 .

14.2.2 Measurement errors in higher level variables
Where variables are defined at level 2 or above and have measurement errors, we
obtain analogous results (detailed in Appendix 14.1). Thus the correction term to be
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used in addition to C�1 with a constant measurement error covariance matrix in a
2-level model is

C�2 =
⎛

⎝
∑

j

J Tn j V
−1
j Jn j

⎞

⎠ �2m (14.8)

where Jn is a vector of ones of length n and Vj is the j-th block of V .
A case of particular interest is where the level 2 variable is an aggregation of a

level 1 variable. Woodhouse et al. (1996) consider this case in detail and give detailed
derivations. Consider the case where we have a level 2 variable which is the mean of
a level 1 variable

xo1, j = 1

n j

∑

i

xo1ij

The variance over the whole sample is therefore given by

var(xo1, j ) = n j
var(xo1ij)
n2
j

+ n j (n j − 1)
cov(xo1ijx

o
1i ′ j )

n2
j

= 1

n j
σ 2

(1)(x
o
1 ) + n j − 1

n j
σ 2

(2)(x
o
1 )

(14.9)

where we assume constant variances and covariances within level 2 units for the xo1ij.
The number of level 1 units actually measured in the j-th level 2 unit is n j out of a
total number of units N j . Straightforward estimates of the parameters can be obtained
by carrying out a variance components analysis with the variables xo1ij as responses,
fitting only the overall mean in the fixed part, so that the covariance is the level 2
variance estimate.

For the true values we have an analogous result where now we consider the
variance of the mean of the true values for all the level 1 units in each level 2 unit.
There are, in effect, two sources of error in xo1,j. There is the error inherent in the level
1 measurement xo1 which is averaged across the level 1 units in each level 2 unit and
there is the sampling error which occurs when n j < N j , that is not all the units in the
level 2 unit are measured. Thus, the true value is the average for all the level 1 units
in each level 2 unit of the true level 1 measurements. Since the measurement errors
are assumed independent we have

var(x1. j ) = 1

N j
σ 2

(1)(x1) + N j − 1

N j
σ 2

(2)(x1). (14.10)

This gives us the following expression for the required measurement error variance
for the aggregated variable

σ 2
1.m =

(
1

n j
− R1

N j

)

σ 2
(1)(x

o
1 ) −

(
1

n j
− 1

N j

)

σ 2
(2)(x

o
1 ) (14.11)

where the reliability R1 is estimated from the level 1 variation.
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If both the level 1 observed variable and its aggregate are included as explanatory
variables then clearly their measurement errors are correlated and the correlation is
given by

1 − R1

n j
σ 2

(1)(x1).

In the expressions for the correction matrices, we have considered the separate con-
tributions from levels 1 and 2. Where there is a ‘cross-level’ correlation between
measurement errors as above then we add the level 1 variable to �2m using (14.11)
for the covariance together with a zero variance. The measurement error variance for
the level 1 explanatory variable becomes a component of �1m . A detailed derivation
of these results is given by Woodhouse et al. (1996).

14.3 A 2-level example with measurement error at
both levels

We use the Junior School Project data reading score at the age of 11 years as our
response with the 8-year mathematics score as predictor, fitting also social class
(Non-manual and Manual) and gender. There are 728 students in 48 schools in
this analysis. The scores at ages 11 and 8 have been transformed to have a standard
normal distribution, as in Table 2.7. We shall allow for measurement errors in both the
test scores.

In the original analyses of these data (Mortimore et al., 1988), reliabilities are not
given, and anyway, for the reasons given above, are unlikely to be well estimated.
For the purpose of our analyses, we investigate a range of reliabilities from 0.8 to 1.0
to study the effect of introducing increasing amounts of measurement error.

It can be seen in Table 14.1 that the inferences about the fixed parameters and
the level 1 variance and variance partition coefficient change markedly in moving
from an assumption of zero measurement error to a reliability of 0.8. The increase in
the variance partition coefficient reflects the fact that it is only the level 1 variance
which decreases as the reliability decreases. The difference between the children
from non-manual and manual backgrounds is reduced considerably as the reliability
decreases.

We now look at the effect of adjusting additionally for measurement error in the
response variable. To illustrate this we look at the effects on the individual parameters
for a range of values for the reliabilities of both response and explanatory variables.

As shown in Table 14.2, as the response variable reliability decreases, so does the
level 1 variance estimate. Likewise, as the reliability of the 8-year score decreases
the level 1 variance decreases. The combined effect of both reliabilities being 0.8
produces a variance that is a quarter of the estimate that assumes no unreliability.
When both the reliabilities reach the value of 0.7 the level 1 variance decreases
to zero! By contrast, the level 2 variance is hardly altered. For the coefficient of
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Table 14.1 11-year normalised mathematics score related to normalised 8-year
score, gender and social class for different 8-year score level 1 reliabilities; adjusting
for measurement errors in the 8-year score.

A (R1 = 1.0) B (R1 = 0.9) C (R1 = 0.8)
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Fixed
Intercept 0.13 0.10 0.07
8-year score 0.67 (0.026) 0.75 (0.030) 0.86 (0.035)
Gender −0.048 (0.050) −0.048 (0.050) −0.047 (0.052)
Non-manual 0.14 (0.06) 0.10 (0.06) 0.06 (0.06)

Random
σ 2
u 0.080 (0.023) 0.081 (0.024) 0.081 (0.024)

σ 2
e 0.422 (0.023) 0.373 (0.023) 0.310 (0.025)

Variance partition coefficient 0.16 0.18 0.21

the 8-year score and social class the greatest change is with the reliability of the
8-year score.

As the reliability decreases so the strength of the relationship with 8-year score
increases, while the social class difference decreases substantially. The gender dif-
ference is changed very little.

Clearly, the requirement of a positive level 1 variance implies particular lower
bounds on the reliabilities and measurement error variances, and underlines the im-
portance of obtaining good estimates of these parameters or at least a range of
reasonable estimates. We also have restrictions on the correlations between measure-
ment errors. Consider the case of two explanatory variables with measurement error,
and suppose for simplicity that they have the same observed variance equal to 1 and
the same reliability, R. Let us also suppose that their measurement errors have a
correlation of ρm and that the correlation between the observed variables is ρo. Now,
we require that the correlation between the true values lies between –1 and 1 and this
implies

ρo + R
1 − R

> ρm >
ρo − R
1 − R

.

Thus, say, if R = 0.7 and ρo = 0.8 then we require ρm > 0.33.
In our example, the range of variance partition coefficient values, from 16 % to

21 %, also indicates that we need to take care in interpreting small values of such
coefficients without adjusting for measurement error. This has important implications
for ‘school effectiveness’ studies (Goldstein, 1997) where ignoring measurement
errors can be expected to lead to underestimation of school effects.
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Table 14.2 Parameter estimates for values of explanatory and response variables.

8-year score Response reliability
1.0 0.9 0.8

8-year score reliability 1.0 0.67 0.67 0.67
0.9 0.75 0.75 0.75
0.8 0.86 0.86 0.87

Gender Response reliability
1.0 0.9 0.8

8-year score reliability 1.0 −0.048 −0.048 −0.047
0.9 −0.048 −0.048 −0.047
0.8 −0.047 −0.046 −0.046

Non-manual Response reliability
1.0 0.9 0.8

8-year score reliability 1.0 0.14 0.14 0.15
0.9 0.10 0.10 0.11
0.8 0.06 0.06 0.06

Level 2 variance Response reliability
1.0 0.9 0.8

8-year score reliability 1.0 0.080 0.079 0.078
0.9 0.081 0.080 0.079
0.8 0.081 0.080 0.079

Level 1 variance Response reliability
1.0 0.9 0.8

8-year score reliability 1.0 0.422 0.324 0.225
0.9 0.373 0.274 0.176
0.8 0.310 0.211 0.112

14.4 Multivariate responses
To model multivariate data, we specify a dummy (0,1) variable for each response
and corresponding interactions with other explanatory variables. Then C�1 ,C�2 in
(14.5) and (14.8) are modified so that for each level 1 or level 2 unit, the covariance
between measurement errors is set to zero when either of the corresponding dummy
variables is zero and likewise for the variances. This is equivalent to specifying the
same covariance matrix of measurement errors for each set of explanatory variables
corresponding to a response variable, with no covariances across these sets. For the
response variables we likewise specify the separate measurement error variances for
each one using the general procedures in Appendix 14.1.
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14.5 Nonlinear models
Consider the 2-level model (9.3) in Chapter 9 where there are measurement errors in
the explanatory variables for the fixed part of the model. In this case we can obtain
an approximate analysis by using the observed values in the updating formulae and
replacing the measurement error covariances in (14.5) by

( f ′
(i))

2σ i(h1,h2)m (14.12)

where f ′
(i) is the first differential of the nonlinear function for the i-th level 1 unit with

a corresponding expression for level 2 measurement errors. The derivation of (14.12)
is given in Appendix 14.1.

14.6 Measurement errors for discrete explanatory
variables

Assume that we have a categorical explanatory variable with r categories. We shall
consider only a single such variable, since multiple variables can in principle be
handled by considering the p-way table based upon them as a single vector. In
practice, it will often be reasonable to assume that their measurement errors are
uncorrelated so that they can be considered separately. Likewise, for now, we shall
assume that measurement errors in discrete explanatory variables are uncorrelated
with those in continuous variables. The following derivations parallel those given by
Fuller (2006, Section 3.4). We consider only level 1 explanatory variables, but the
extension to higher levels follows straightforwardly. We shall consider more general
models for discrete variables when we look at MCMC estimation.

Let A(i) be a row vector for the i-th level 1 unit containing a one for the category
which is observed and zeros elsewhere. Let kmn be the probability that a level 1 unit
with true category n is observed in category m. We write

K = {kmn}, where Km is the m − th column of K

and define

xo
T

(i) = K−1AT(i) (14.13)

If x(i) is the true value we write

A(i) = x(i) + ε(i), E(A(i)|x(i)) = x(i)KT

We also write

xo(i) − x(i) = m(i)
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so that

E(m(i)|x(i)) = 0

which gives the familiar form for the errors in variables model where the unknown
true value x(i) is uncorrelated with the measurement error. The xo(i) become the new
set of observed values and interest is in the regression on the true category values x(i).
The vector x(i) consists of a single value of one and the remainder zero. We have

cov(AT(i)|x(i) = lm) = �(i)(m) = diag(Km) − KmK T
m

where lm is an r-dimensional vector with 1 in the m-th position and zeros elsewhere.
For the i-th level 1 unit define

�(i)m = cov(mT
(i)|x(i) = lm) = K−1�(i)(m)K−1T (14.14)

and we use as our estimate of the covariance matrix of measurement errors the matrix
in (14.14) conditional on the observed A(i).

�̂(i)m = �(i)m

[
P(x(i) = lm)

P(A(i) = lm)

]

(14.15)

The term in square brackets can be estimated as follows. If µA,µx are the observed
and true vectors of probabilities for the categories, then

µx = K−1µA

and given the sample estimate of µA we can estimate µx . The estimate given by
(14.15) is then used as in the case of continuous explanatory variables measured with
error. In the general model the number of explanatory variables will generally be
one less than the number of categories, with one of the categories chosen as the base
and omitted.

In practice, the matrix of probabilities K , is normally assumed constant but can
itself depend on further explanatory variables. Often we will not have a good estimate
of it, and we may need to make some simplifying assumptions. In the case of a binary
variable, it may be possible to assume equal misclassification probabilities, in which
case only a single value needs to be determined, and in practice a range of values can
be explored. (We discuss this further in Appendix 14.1.)

14.7 MCMC estimation for measurement
error models

Appendix 14.1 sets out the steps involved in modelling measurement error data
using MCMC. It involves adding extra steps to the existing Gibbs or MH algorithms
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Table 14.3 11-year normalised mathematics score related to normalised 8-year
score, gender and social class for different 8-year score level 1 reliabilities; adjusting
for measurement errors in the 8-year score. MCMC estimates.

A (R1 = 1.0) B (R1 = 0.9) C (R1 = 0.8)
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Fixed
Intercept 0.14 0.13 0.13
8-year score 0.67 (0.027) 0.76 (0.04) 0.90 (0.04)
Gender −0.039 (0.050) −0.039 (0.050) −0.041 (0.051)
Non-manual 0.15 (0.06) 0.15 (0.06) 0.15 (0.06)

Random
σ 2
u0 0.093 (0.023) 0.091 (0.026) 0.091 (0.026)

σu01 −0.020 (0.010) −0.018 (0.010) −0.016 (0.011)
σ 2
u1 0.014 (0.008) 0.012 (0.007) 0.013 (0.007)

σ 2
e 0.413 (0.023) 0.362 (0.023) 0.270 (0.026)

and assuming prior distributions for the true scores and measurement errors. The
REALCOM software package (REALCOM, 2008) will fit these models and some
can also be fitted in MLwiN version 2.10 onwards.

The principal extension to the standard MCMC algorithm is to insert an extra
step that involves sampling the true values given the observed values and the current
parameter estimates. The algorithm can allow for correlated measurement errors that
can vary across level 1 units and will also handle measurement errors in the response.
Its principal advantage is that it will allow measurement errors in explanatory variables
for any random effects and it will also allow informative priors for the measurement
errors that can reflect uncertainty in their estimated values. Both continuous and
discrete variables can be treated. Goldstein et al. (2008) give details with examples.

We now apply this to the data in Table 14.1, including also a random coefficient.
As Table 14.3 shows, the results are similar to those obtained for the variance

components model when increasing amounts of measurement error are introduced,
with a somewhat greater effect on the level 1 variance estimate and now no effect on
the social class coefficient.

As outlined in Appendix 14.1, we can also extend the MCMC algorithm to
include correlations among measurement errors, to include misclassifications for
discrete variables, and also a latent normal model for categorical variables.
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Appendix 14.1 Measurement error estimation

14.1.1 Moment based estimators for a basic 2-level model
Consider a 2-level model and write for the response and explanatory variables

yoij = yij + qij
xohij = xhij + mhij

cov(qijqi′j) = cov(mhijmhi′j) = 0

E(qij) = E(mhij) = 0

cov(mh1ijmh2ij) = σ i(h1h2)jm

(14.1.1)

for the h-th explanatory variable with measurement error vector mh and with q as the
measurement error vector for the response. We use the superscript o for the observed
values. Each level 1 unit may have its own set of measurement error variances. Where
we have a level 2 explanatory variable, then the measurement error is constant within
a level 2 unit.

We write the ‘true’ model in the general form

yij = (xβ)ij + (zuu) j + (zee)ij (14.1.2)

which gives the model for the observed variables as

yoi j = qij − (mβ)ij + (xoβ)ij + (zuu) j + (zee)ij
m = {mh} (14.1.3)

For the true values write

Mxx = xT V−1x, Mxy = xT V−1y
β̂ = M−1

xx Myy
(14.1.4)

Now

xoT V−1xo = (x + m)T V−1(x + m)

= xT V−1x + mT V−1x + xT V−1m + mT V−1m
(14.1.5)

so that

E(xo
T
V−1xo) = xT V−1x + E(mT V−1m) (14.1.6)

If we further assume that q and m are uncorrelated then we have

E(xo
T
V−1y) = xT V−1y (14.1.7)
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Thus, to estimate the fixed parameters we require E(mT V−1m) and we now consider
how to obtain this for measurement errors at both level 1 and level 2 using essentially
moment based estimators.

14.1.2 Parameter estimation
For errors of measurement in level 1 units the (h1, h2) element of E(mT V−1m) is

N∑

i=1
σ i iσ i(h1h2) jm

with C�1 =
{
∑

i
σ i iσ i(h1h2) jm

} (14.1.8)

where N is the total number of level 1 units. In the case where each level 1 unit has
the same covariance matrix of measurement errors we have

C�1 = tr (V−1)�1m, �1m = {σ(h1h2)m} (14.1.9)

For errors of measurement in level 2 explanatory variables, we have

C�2 =
∑

j

(J(1,n j )V
−1
j J(n j ,1))�2jm (14.1.10)

where �2jm is the covariance matrix of measurement errors for the j-th level 2 block,
and J(r,s) is a (r x s) matrix of ones. In Chapter 14 we discuss how to obtain the
�2jmfor level 2 variables which are aggregates of level 1 variables.

For the measurement error corrected estimate of the fixed coefficients, we have

M̂xx = MXX − C�1 − C�2 (14.1.11)

For the random component based upon the model with observed variables, write the
residual vij = (zuu) j + (zee)ij + qij − (mβ)ij, v = {vij}which gives

E(vvT ) = V + ⊕
ij

σ 2
ijq + T1 + T2

T1 = ⊕
ij

(β̂T�1i jm β̂), T2 = ⊕
j
(β̂T�2jmβ̂)J(nj,nj)

(14.1.12)

where σ 2
ijq is the measurement error variance for the ij-th response measurement.

Thus the quantity ⊕
ij

σ 2
ijq + T1 + T2 should be subtracted from the sum of products

matrix Ỹ Ỹ T at each iteration, when estimating the random parameters.
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The covariance matrix of the estimated fixed coefficients is given by

M̂−1
xx (xoT V−1xo + xoT V−1QV−1xo + xoT V−2[T1 + T2]xo)M̂−1

xx

Q = ⊕
ij

σ 2
ijq

(14.1.13)

This expression ignores any variation in the estimation of the measurement error
variance itself, although Goldstein (1986) includes terms for this.

14.1.3 Random coefficient for explanatory variables measured
with error

The above expressions assume that the coefficients of variables with measurement
error are not random. Where such coefficients are random the above formulae do
not apply, and in particular mT V−1m has measurement errors in all its components.
Woodhouse (1998) discusses this problem in detail and suggests that moment-based
estimators are not really feasible. This problem does not arise when we use MCMC
estimation as described below.

14.1.4 Nonlinear models
Consider first the case where just the fixed part explanatory variables have measure-
ment errors at level 1 in the single component 2-level nonlinear model for the i-th
level 1 unit

y(i) = f(i)(xoβ + random)

which yields the linearisation

y(i) − { f(i)(xoβ) −
∑

k

βk,tx∗
(i)k} =

∑

k

βk,t+1x∗
(i)k + random (14.1.14)

where the explanatory variables are the observed measurements and the coefficients
are the required ones corrected for measurement error and x∗

(i)k = f ′
(i)x

o
(i)k . Consider

the expansion of f(i) for the measurement error terms, to a first order approximation,

f(i) = f(i),mk=0 +
∑

k

f ′
(i),uk=0m(i)kβk,t (14.1.15)

Thus, we can use the observed explanatory variables with measurement error as an ap-
proximation to the use of the true values in the updating formulae, with ( f ′

(i))
2σ i(h1,h2)m

replacing σ i(h1,h2)m in (14.5).
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14.1.5 MCMC estimation for measurement error models:
continuous variables

Suppose we have p explanatory variables containing measurement error and q that
do not. We write the model as:

yij = [X1ij(β1 + Z1ij ·U1 j )] + [X2ij(β2 + Z2ij ·U2 j )] + eij
βT = {βT1 , βT2 }, ZT = {ZT1 , ZT2 },U = {U1,U2}

(14.1.16)

where the explanatory variable matrix of true values for those with measurement
error is X1(N x p) and that for those without error is X2(N x q). For the random part,
explanatory variables Z1, Z2 are indicator vectors of dimensions (p x 1) and (q x
1), with ones or zeros, so that the dot (Hadamard) product with the level 2 residuals
selects the explanatory variables for the random part of the model – assuming that
these are a subset of the fixed part explanatory variables. Using the notation of
Goldstein et al. (2008) we have

XO1 ∼ MVN(X1,�m), X1 ∼ MVN(θ,�φ) (14.1.17)

where XO1 is the matrix of observed values and �m is the covariance matrix of
measurement errors, initially assumed to be common to all level 1 units, θ is the
mean vector and �φ is the covariance matrix of the true values of X1. MCMC
estimation is used to obtain the following posterior distributions.

p(θ |X1,�φ) ∼ MVN(θ̂ , V̂θ ), θ̂ = X̄0
1, V̂θ = �φ/N

p(�−1
φ |X1, θ ) ∼ Wishart(N − 3, [(X1 − θ̂ )T (X1 − θ̂ )]−1)

(14.1.18)

where N is the number of level 1 units. Since θ is a row vector of means we as-
sume a uniform prior for θ . We can also choose, and then sample from, a prior
distribution for the measurement error covariance matrix. An obvious choice is
p(�−1

m ) ∼ Wishart(δp, δpSm) and we might wish to assume a minimally informative
choice where the degrees of freedom δp is equal to the order of the matrix and Sm is a
covariance matrix chosen on the basis of existing evidence or on theoretical grounds.

In practice, there will often be so much uncertainty about �m that it may be
illuminating to select a range of values for Sm and examine the effects conditional
on these choices, in the spirit of sensitivity analysis. For each choice we may also
choose a prior distribution for �m .

For �φ we could also assume a general inverse Wishart prior, but it is not clear
what parameters we should use, so we have assumed a uniform prior here by setting
the ‘degrees of freedom’ parameter of the Wishart distribution in (14.1.18) to N-3.

The sampling for the fixed parameters, β, the residuals, measurement error co-
variance matrix (conditional on measurement error estimates), level 2 covariance
matrix and level 1 variance, conditional on the X1, X2 and given priors, is as in the
standard case.
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For sampling the X1 we write

p(X1|y, XO1 ; β,U, σ 2
e ,�φ,�m) = p(y|X1; β,U, σ 2

e )
×p(XO1 |X1,�m)p(X1|�φ)

(14.1.19)

which leads to the following sampling for each row of X1.

X1ij ∼ MVN(X̂1ij, V̂ij) where

V̂ij =
[

(β1 + Z1 ·U1 j )(β1 + Z1 ·U1 j )T

σ 2
e

+ �−1
m + �−1

φ

]−1

X̂1ij = V̂ij
[

(β1 + Z1 ·U1 j )(yij − X2ij(β2 + Z2 ·U2 j ))

σ 2
e

+XO1ij�−1
m + θ�−1

φ

]

(14.1.20)

where Z ·Udenotes the Hadamard vector product. The level 1 residuals are obtained
by subtraction. Note that in the so-called ‘functional’ model �φ is zero, and this term
is omitted from the expressions in (14.1.20).

In some applications the measurement error covariance matrix may vary across
level 1 (or level 2) units, for example as a known function of predictor variables. In
this case we simply replace �−1

m by �−1
mij in (14.1.20).

If we have measurement error in the response

yO = y + ey, ey ∼ N (0, σ 2
ey ) (14.1.21)

where, in order to ensure identification, we must have known variance σ 2
ey . We apply

this to the residuals using the adjusted value σ ∗2

ey = σ 2
e σ

2
ey/σ

2
y and we insert the extra

step to sample yi j from

N
[(

σ 2
e − σ ∗2

ey

)
σ−2
e ỹij + ŷij,

(
σ 2
e − σ ∗2

ey

)
σ−2
e σ ∗2

ey

]
(14.1.22)

where ŷijis the predicted value and ỹij = yOij − ŷij.
We require that the covariance matrix of the true explanatory variables is positive

definite so that having sampled the X1, if this is not the case, then we retain the
existing values.

14.1.6 MCMC estimation for measurement error models:
discrete variables

We set out details or the binary case and then discuss multiple categories. We assume
that the errors (misclassifications) are independent across variables.

Write the probability of observing a zero given that the true value is zero
as Pobs(0|0) and the probability of observing a one given that the true value is
a zero as Pobs(1|0), etc. Then the probability of observing a zero is Pobs(0) =
Ptrue(0)Pobs(0|0) + Ptrue(1)(Pobs(0|1)) and the probability of observing a one
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is Pobs(1) = Ptrue(1)(1 − Pobs(0|1)) + Ptrue(0)(1 − Pobs(0|0)) where Ptrue(0), Ptrue(1)
are the true probabilities of a zero and one.

This gives the following values for the true (prior) probabilities

Ptrue(0) = Pobs(1|1) − Pobs(1)

Pobs(1|1) + Pobs(0|0) − 1
, Ptrue(1) = 1 − Ptrue(0) (14.1.23)

Consider a normal response model. The probability for an observation that has true
value zero where we observe a zero for the binary variable x1 with coefficient β1

which is assumed to have a uniform prior, is proportional to

L00 = exp

(

− (ỹ)2

2σ 2
e

)

Pobs(0|0)

and for an observed zero where the true value is one we have the probability propor-
tional to

L01 = exp

(

− (ỹ − β1)2

2σ 2
e

)

Pobs(1|0)

where ỹ is the observed response minus predicted value of the response given the
remaining parameters.

When a zero is observed, combining these probabilities with the priors, we select
a new true value to be zero with probability

L00Ptrue(0)

L00Ptrue(0) + L01Ptrue(1)
.

We have corresponding results when a one is observed, namely

L10 = exp

(

− (ỹ)2

2σ 2
e

)

Pobs(1|0)

L11 = exp

(

− (ỹ − β1)2

2σ 2
e

)

Pobs(1|1)

(14.1.24)

and we select a new true value of one with probability

L11Ptrue(1)

L11Ptrue(1) + L10Ptrue(0)
.

Having sampled a new set of true values we then apply the standard steps in the
MCMC algorithm for the remaining parameters. For generalised linear models the
only change is in the expressions for the likelihoods and if we use, for example, a
probit link with binary data then there is no change except for the extra step generating
a normally distributed response from the binary response.
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For variables with multiple categories we can extend the above using estimates
for all possible misclassification probabilities. Suppose we have a variable x with p
categories. In principle, each category can be misclassified into one of the remaining
p-1 categories. This implies values for (p − 1)2 parameters. Even if some of these
can be set to zero, for example, in the case of ordered classifications, this in general
sets practical limits to the data structures that can be fitted and is likely to lead to
computational problems. Instead, therefore, we propose the following scheme.

For each category we use, as in the binary case, just the misclassification probabil-
ities P (k)

obs(1|0), P (k)
obs(1|1) for each category, where ‘1’ indicate that we have category

k and ‘0’ that we have any other category. From this we can derive the true prior
probabilities, as before. We have the true probability for category k

P (k)
true(1) = P (k)

obs(0|0) + P (k)
obs(1) − 1

P (k)
obs(1|1) + P (k)

obs(0|0) − 1

We need to ensure that these lie in (0,1) and also that they sum to 1, that is

∑

k

P (k)
obs(0|0) + P (k)

obs(1) − 1

P (k)
obs(1|1) + P (k)

obs(0|0) − 1
= 1

This latter condition is always satisfied when there are just two categories.
In the expression for the posterior acceptance probabilities, if we actually observe

a value in category k we have, corresponding to (14.1.24)

L (k)
11 = exp

(
(ỹ − βk)2

2σ 2
e

)

P (k)
obs(1|1), L (k)

10 = exp

(
(ỹ)2

2σ 2
e

)

P (k)
obs(1|0) (14.1.25)

where the superscript k refers to the k-th category and βk is the coefficient of the
dummy variable for this category – note that for the reference category this will be 0.

Thus we accept a new true value for category k with probability

L (k)
11
P (k)
true

(1)

L (k)
11
P (k)
true

(1) + L (k)
10
P (k)
true

(0)

If the value is not accepted then it has to be allocated to one of the remaining
categories. In the binary case this is unproblematic and for the multicategory case we
assign with probability proportional to the true probabilities as calculated above.

In the case where the categories are ordered, we may be able to specify the
observed probabilities in terms of true probabilities for the nearest categories only,
in which case it may be practical to work with all of these deriving corresponding
expressions to those above.
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14.1.7 A latent normal model for discrete and continuous
variables with measurement errors

We shall illustrate this using the case of binary variables, but the extension to general
categorical variables as set out in Chapter 7 is readily implemented.

Suppose z is our true binary (0,1) variable and y the corresponding latent normal
variable y ∼ N (0, 1). Our corresponding observed variables are z∗, y∗. We now write
y∗ = y + m as our measurement error basic model. We have shown how to sample
y|y∗, . . . . and we obtain y∗ from z∗ using a standard Gibbs step based upon the model

P(z = 1) =
∫ ∞

α

φ(y)dy, P(z∗ = 1) =
∫ ∞

α

φ(y∗)dy∗ (14.1.26)

Thus, we first sample y∗ given z∗ and the current parameter values, and then sample
y|y∗ as in the case of continuous variables. To do this we require an estimate of σ 2

m
and if there are several variables the joint distribution of measurement error variances.

Assume without loss of generality that the observed latent variable has a standard
normal distribution and we know Pobs(0|0), Pobs(0|1), and hence Ptrue(1) and Ptrue(0).
The joint distribution of observed and true latent normal variables is

(
y∗

y

)

∼ N (0,�), � =
(

1
1 − σ 2

m 1 − σ 2
m

)

(14.1.27)

For this bivariate normal distribution, φm say, the orthant probabilities given by

P(obs = 1, true = 1) =
∫ ∞

0
φm(y∗; y > 0)dy∗,

P(obs = 1, true = 0) =
∫ ∞

0
φm(y∗; y < 0)dy∗

are simply functions of σ 2
m . This then allows us to estimate σ 2

m using a suitable algo-
rithm (see, for example, Craig, 2007) for computing these probabilities given values
of σ 2

m . This becomes more difficult if we have a joint distribution of measurement
errors. One possibility is to form a combined multicategory variable by combining
all the categorical variables with error, using the above procedure for selecting a true
(joint) category and then sampling the latent normal variables as in Chapter 7. This
still assumes that the categorical and continuous errors are uncorrelated, but we can
allow the continuous measurement error variances to depend on the true categories
(Goldstein et al., 2008).

To allow fully for correlation across categorical and continuous variables, we
would first need to sample y∗ given z∗ and the continuous observed variables with
measurement errors, and then sample from the joint distribution of true values. Having
sampled y, we then choose z(=1) according to whether y > α.
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15

Smoothing models for
multilevel data

15.1 Introduction
For many kinds of data we may wish to fit a smooth, nonparametric, function of a
continuous predictor (x). For example, fitting growth curves using polynomials may
perform poorly at end points where data are sparse and polynomial coefficients are
determined by those parts of the continuum where data are concentrated and so may
be poorly conditioned at the ends. The advantage of smooth functions (smoothers) in
such situations is that they are locally influenced, as explained in Section15.3.

There is a large literature on ways of fitting such functions which for the single
level case have the form

yi = f (xi ) + ei , ei ∼ N (0, σ 2
e ) (15.1)

and these are sometimes referred to as generalised additive models (for general
introductions, see Hastie and Tibshirani, 1990; Green and Silverman, 1994). The
model (15.1) can be extended by adding covariates and also random effects to handle
multilevel data as will be shown.

The next section reviews the main types of smoothing estimators for single level
models and this followed by various multilevel extensions with an example.

15.2 Smoothing estimators

15.2.1 Regression splines
We first look at ways of fitting Model (15.1). One idea is that a function, typically a
low order polynomial, is fitted within each of a set of intervals along the line defined

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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by t, with joins at ‘knots’ and the function constrained to be smooth at these joins in
terms of the equality of their derivatives. These are known as regression splines, with
cubic splines the most common, having first and second derivatives that are zero. To
represent these splines we require a ‘basis’ function on which they are defined. B
splines, a standard choice (Silverman, 1986), have computational advantages but do
not have a natural generalisation to handle random effects. Instead, we can use the
truncated power series (also known as grafted polynomials or + functions) basis and
we write a 2-level model as

yij =
3∑

l=0

βl xlij +
q∑

k=1

θk(xij − ξk)
3
+ + u j + eij

(15.2)

(t)+ =
{
t, t ≥ 0
0, t < 0

where the βl , θk are regression coefficients and q is the number of knots or join
points and it is automatically smooth at the knots. The order of the polynomials can
be changed and we can have different order polynomials at each knot, as used by
Blatchford et al. (2002) for modelling class size and by Pan and Goldstein (1998) for
growth curve models. The main problem is deciding on the number and spacing of
the knots. When there are too few knots, the estimates can be very sensitive to their
placing, and evaluating all possible knot positions can be very time consuming (see
however Friedman and Silverman, 1989). Other approaches related to this such as
that using ‘penalty functions’ are discussed by Verbyla et al. (1999).

15.3 Smoothing splines
The other major approach is to estimate a smooth function which is defined at each
data point Xi ; known as smoothing splines. Consider first a simple running mean ‘bin
smoother’ where we have a moving box width h placed symmetrically about each
data point and at each of a chosen set of values {x} we estimate the function as the
mean of the y values in the box. This is equivalent to the following:

f (x) = A/B

A = 1
h

n∑

i=1
yiw

( 2(x−Xi )
h

)

B = 1
h

n∑

i=1
w

( 2(x−Xi )
h

)

w(t) = 1 if |t | < 1, otherwise 0

(15.3)

For computational purposes we may first wish to centre the y values. This function,
however, generally is not very smooth. Instead of a fixed width it is generally better
to choose the p observations nearest to x (in terms of absolute value or symmetrically
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placed) and this has the advantage of allowing the bandwidth to be a function of the
local point density. Also, instead of computing the mean in each interval, we can fit
a least squares (LS) line to the data in each interval and use the predicted value at
x. This is the method used by Healy et al. (1988). A development of this is to use a
weighted LS fit where the weights decrease with distance from x. It is in this sense
that generally we consider a smoother to be ‘locally influenced’. The weight function
is typically referred to as a ‘kernel’. The LOWESS smoother (Cleveland and Devlin,
1988) is a particularly useful implementation of this and procedures for choosing the
span, p/n, are available.

General kernel smoothers use a weight function that is defined, at each point, for
the whole range of the data. Thus we have

w(x) = c
h
g

( |x − Xi |
h

)

(15.4)

such that, for each point, the weights sum to 1 over the whole set of points.
Note that the box width, h, or bandwidth, could vary over the range, although

commonly it is assumed constant. As we shall illustrate in our example, the choice
of kernel function g, which decreases as |x − Xi | increases, may be important.
A common choice is based on the standard normal distribution function, that is,
g(u) = exp(−u2/2). We shall also look at a quartic kernel of the form

g(u) =
{

(1 − u2)2, u ≤ 1
0 u > 1

The choice of bandwidth is important. If it is too narrow the function will follow the
data too closely and not be very smooth, and if too wide it will be smooth but may
obscure important local variation.

For all these methods we can write the predicted smoothed curve as ŷ = Sy where
S is the n × n smoother matrix whose i-th row is the set of normalised weights for
the i-th point. Thus, for example, for a bin smoother this will contain values of zero
for points outside the bin. The covariance matrix of the predicted curve is given by

cov(ŷ) = SSTσ 2
e (15.5)

15.4 Semiparametric smoothing models
In general, we will want to incorporate other predictors or covariates into a model
such as (15.1). We may also wish to model more than one smooth function, a case
which will also occur if we have an interaction between a smooth function and
a predictor variable. In the case of two smooth additive functions we can write,
omitting subscripts

y = f1(x1) + f2(x2) + e
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A simple ‘back fitting’ algorithm alternately fits both components, so that starting
with, say, an initial estimate f (1)

1 (x1) we then estimate the second function using
the adjusted response y − f (1)

1 (x1) and then re-estimate the first function using y −
f (1)
2 (x2), and so on until convergence. Note that it is the function values and not

the smoother matrices that are updated. The back-fitting algorithm solves the set
of equations

(
I S1

S2 I

) (
f2
f2

)

=
(
S1y
S2y

)

with straightforward extension to the case of more than two functions; this solution
can be expressed using standard results for inverting partitioned matrices. We obtain

ŷ = {I − (I − S2)(I − S1S2)−1(I − S1)}y = S12y (15.6)

where we require the matrix norm ||S1S2|| < 1.
We now consider a general model with a parametric component and a nonpara-

metric component which we can write as

y = (Xβ) + f (t) + e (15.7)

A penalised least squares approach leads to the following procedure, which is asso-
ciated with a minimum bias.

We first obtain the smoothing matrix S. We then form

X̃ = (I − S)X = X − SX
ỹ = (I − S)y = y − Sy
β̂ = (X̃ T X̃ )−1 X̃ T ỹ
f̂ = S(y − X β̂)

(15.8)

with large sample covariance estimates

cov(β̂) = σ̂ 2
e (X̃ T X̃ )−1 X̃ T (I − S)(I − S)T X̃ (X̃ T X̃ )−1, cov( f̂ ) = σ̂ 2

e SS
T (15.9)

where σ̂ 2
e is computed from the residuals, and any general smoothing procedure can

be used. For the generalised least squares case these expressions become

cov(β̂) = (X̃ T V−1 X̃ )−1 X̃ T V−1(I − S)V (I − S)T V−1 X̃ (X̃ T V−1 X̃ )−1

cov( f̂ ) = SVST .

Note that the intercept term is not included in X. Model (15.8) can be readily
extended to handle more than one smooth function by incorporating the back-
fitting algorithm described above. (See Speckman, 1988, for a discussion of ‘partial
smoothing splines’.)
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For large samples the matrix S (n × n) may be too large to store. To avoid this
problem, we define the following matrices. We assume that the number of distinct data
points (r) is not too large (in large samples we typically will have several observations
at many of the data points), so that storage is feasible. If not it may be possible to
group data points or to interpolate. We define a matrix Z (N × r ) where the k-th row
has an element 1 in the position corresponding to the data point for the observation
associated with the k-th row, and 0 elsewhere. The (r × r) matrix W has as the i-th
row the set of weights associated with each data point for an observation located at
the i-th data point. We can now write

S = ZWZT
SX = (ZW)(ZT X )

which is the product of a (N × r) and a (r × p) matrix, where X is (N × p). We obtain
a similar expression for Sy, so that (15.8) is readily evaluated. To ensure that the
weights sum to 1, we form A = diag(SJ) = diag((ZW)(ZT J )) where the diagonal
contains the row sums of S, where J is a vector of ones. We then normalise S by
writing S∗ = A−1S = (A−1Z )(WZT ).

We note that this procedure has the advantage of requiring the storage of matrices
of order (N × r) and (r × r) rather than (N × N). If there are data points that do
not coincide with design points, then we need to compute the corresponding rows
of SX and SY directly. An alternative is to interpolate using the nearest two design
points, which involves two nonzero entries in the relevant rows of the matrix Z. This
may often be an adequate approximation and is particularly useful in the case of a
multilevel model where Su is recomputed at each iteration (see below).

Having estimated the parameters of the model, we may wish to compute the
smoothed function over a new set of values of Z, including values not covered by the
data points. In this case we, can calculate each row of SX and SY for each of these
values, together with a corresponding value of the bandwidth, if this is variable, again
obviating the need to store S.

The standard procedure for determining the smoothing parameter, typically the
bandwidth, is based on cross validation. Several procedures are available (see, for
example, Hastie and Tibshirani, 1990) which are based upon mean square error
minimisation. A straightforward ‘jacknife’ procedure is as follows. For each point
the data are smoothed leaving out that point, equivalent to setting the smoothing
weight for the point to zero and rescaling the remainder to sum to 1. The cross
validation sum of squares is then computed as

∑

i

(yi − f̂ −i
λ (xi ))

2
(15.10)

where f̂ −i
i (xi ) is the fit at xi computed by leaving out that point. The value of the

smoothing parameter is chosen that minimises (15.10).
This procedure, however, assumes a constant bandwidth, which may be too

restrictive, and we return to this later in Section 15.8.
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15.5 Multilevel smoothing models
We first review some fully nonparametric models developed principally for
longitudinal repeated measures data and then look at semiparametric models that
allow full extensions to the general multilevel case.

Wu and Zhang (2002) propose a fully nonparametric procedure for longitudinal
data, which in summary is as follows. For the j-th individual at time point i write

y(tij) = f (tij) + v j (tij) + eij
i = 1, . . . .n j

where the fixed part of the model f (tij) and the random component for individual
j, v j (tij), are both smooth functions. We choose a set of design points at which
we shall evaluate the fixed and random functions. In some designs this set may
coincide with the data points, especially where there are a few of these in com-
mon, but in general we will want to select a set spanning the whole data range for
reporting purposes. At any design point, t, the fixed and random parts can be approx-
imated using a Taylor expansion by local polynomials, for example, straight lines of
the form

f (tij) ≈ f (t) + f ′(t)(tij − t)
v j (tij) ≈ v j (t) + v′

j (tij)(tij − t) (15.11)

Note that if the design points coincide with the data points we would use f (tij) =
f (t), v j (tij) = v j (t), the ‘local constant’ estimator. Equation (15.11) can be written in
the form

f (tij) = Xijβ
v j (tij) = Xiju j

(15.12)

At time point t we now minimise the ‘local likelihood’ based function

∑

j
[y j − X j (β + u j )]TW [y j − X j (β + u j )] + uTj �−1

u u j

+ log |�u | + log |R j |
W = K 0.5

jh R
−1
j K 0.5

jh f

(15.13)

where the kernel weighting function for the j-th individual is

Kjh = diag{Kh(t j1 − t), . . . .Kh(tjn j − t)}

for bandwidth h where n j is the number of observations for individual j. We can use
any suitable smoother, such as the normal kernel. This is equivalent to the extended
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maximum likelihood estimator, defined at t, given in Appendix 2.3. Note that the
estimates are made separately at each design point and the smoothness is introduced
by the kernel function, which is defined across the total set of design points for each
individual. Estimation is straightforward and simply involves a weighted fit. To do
this we define the level 1 explanatory variable for the random part as

K−0.5
jh J, J = (1, . . . .1)T

and then fit the 2-level model in the usual way with the fixed and random explanatory
variables defined as above. This provides estimates for the β, u j , from which we can
obtain the smoothed mean and individual curves using (15.12). Likewise, in the usual
way, we can also obtain variance estimates for the fixed and random parameters,
random effects and predictions at each design point, and we may wish to study how
these change with time. To determine the optimum bandwidth, we can use a series
of trials with visual inspection or a cross-validation procedure (see Wu and Zhang,
2002 for a discussion). We note that both the fixed and random parts are estimated
nonparametrically.

A variant of this procedure is given by Wang (1998), who uses a non parametric
kernel density smoother for the fixed part but for the random part considers parametric
polynomial terms, as in the standard repeated measures model. The Verbyla et al.
(1999) model is similar but using a penalised likelihood smoother and Carpenter et al.
(2003) adapt this for discrete responses.

This model can be extended in several directions. If we have additional fixed
effects and random effects, for example, at a higher level, we can write the likelihood
in (15.13) as

∑

j
[y j − X j (β + u j ) − X (1)β (1) − X (2)v

(2)
j ]T W [y j − X j (β + u j ) − X (1)β (1)

−X (2)v
(2)
j ] + uTj �−1

u u j + log |�u | + vTj �
−1
v v j + log |�v| + log |R j |

(15.14)

where X (1)β(1) is the additional fixed part component and X (2)v
(2)
j the additional

random effects associated with individual j. These additional components are also es-
timated nonparametrically, with the random effects and fixed and random parameters
varying across design points.

One interesting application of this model is to the fitting of nonlinear growth
curves to a sample of individuals (see Chapter 9) where the curves have lower
or upper asymptotes or both and where the timing of the asymptotes varies across
individuals. While the procedure does not provide actual asymptotes, a careful choice
of bandwidth and polynomial order can be used provide a good approximation.
Likewise, if we require monotonicity for the smooth curves, this can generally be
achieved through a suitable choice of bandwith and polynomial order.

We now describe a general procedure to fit a semiparametric model that
incorporates many of the previous models.
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15.6 General multilevel semiparametric
smoothing models

A general semiparametric random effects model can be written as

Y = Xβ + f (t) + Zu + e (15.15)

As in Appendix 2.3, we have the extended likelihood function for model (15.15) in
the form

2L(θ, β, u) = − log |R| − (Y − f (t) − Xβ − Zu)T R−1

×(Y − f (t) − Xβ − Zu) − log |�u | − uT�−1
u u

(15.16)

We now use the procedure suggested in Appendix 2.3, iterating between (15.16),
which describes a single level model and is used to calculate the fixed effects includ-
ing the smoother, then calculating the random parameters as in the standard IGLS
algorithm and then the random effects using the formulae in Appendix 2.2. Note that
we can use any reasonable smoothing procedure.

Having calculated the fixed effects from (15.16), we form the fixed predictor and
adjusted response

Xβ(1) + f (1)(t)
Ỹ = Y − (Xβ(1) + f (1)(t)) (15.17)

and then compute updated estimates of all the random parameters and hence the
random effects using

Ỹ = Zu + e.

With these estimates we compute new estimates of the fixed part of the model and
iterate until convergence. In this formulation all the random effects are assumed to be
parametric. Inference can be based upon the large sample covariance matrix estimates.
Large sample covariance estimates are given by the generalised least squares version
of (15.9), withV derived from the random parameter estimates. The marginal estimate
of f is given by

f̂ = S(y − X β̂).

When computing S, we an use the same procedure for forming S, as above. Now, how-
ever, Su is required and is recomputed at each iteration, unlike SX and SY which need
only be computed once. This suggests that there may be a considerable computational
advantage in ensuring that the design points correspond with the data points.

Hu et al. (2004) discuss an approach with similarities to the present one, but it
is based upon generalised estimating equations (GEE) and so is not a true multilevel
model, and does not provide estimates for the random parameters.
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When choosing the bandwidth based upon a cross-validation (CV) criterion, we
will track the fixed part of the model. Corresponding to the least squares criterion,
we have a generalised least squares criterion

(Y − Xβ − f̂ −
λ )T V−1(Y − Xβ − f̂ −

λ ) (15.18)

where f̂ −
λ is the vector formed by the jacknife procedure described above, omitting

each design point in turn. Because of the iterative estimation procedure, the calculation
of (15.18) will be time-consuming; a modification would be to use a common estimate
of V derived from an initial fit which ignores the random effects, or one which uses
an approximate parametric model.

For the fixed part of the model, we can compute the prediction variance using
(15.5); for the random parameters and random effects we can use the usual procedures
for that part of the model. We recall that the procedures for nonparametric repeated
measures models can be defined in terms of a standard random coefficient model, with
explanatory variables defined by the kernel weighting functions. It follows, therefore,
that the procedure of the present section is readily adapted to include nonparamet-
ric (repeated measures) components and we can fit any mixture of parametric and
nonparametric components in the fixed and random parts of the model.

15.7 Generalised linear models
We can adapt our procedures to the case of multilevel generalised linear models
with discrete responses. Without going into details, essentially the nonlinear model
is linearised using MQL or PQL procedures and then the above iterative procedure
can be used. In the linearisation, we compute first and second differentials for the
link function and apply these to the additive combination of the parametric predictors
and the smoothed predictor(s), leading to quasilikelihood estimators. Thus, at the t-th
iteration we replace Xijβ̂t by Xijβ̂t + f̂t , etc. We can also obtain marginal likelihood
estimators using, for example, quadrature or simulated maximum likelihood (Ng
et al., 2006).

15.8 An example
For comparison with a simple polynomial smoother, we fit a 2-level variance com-
ponents model in MlwiN (Rasbash et al., 2008) where we obtain the estimates in
Table 15.1 for a quadratic model where class is level 2 and student is level 1.

The data are a subset of those used by Blatchford et al., (2002) using class
sizes between 18 and 33, centred on 30 with a normalised mathematics test score
as outcome. There are 4829 pupils in the present analysis and two covariate pre-test
scores for maths and literacy are included.
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Table 15.1 Post reception mathematics score by class size. Variance components
model.

Estimate Standard error

Fixed
Intercept −0.95
Class size −0.044 0.014
Class size2 0.003 0.002
Pre-test Mathematics score 0.407 0.015
Pre-test literacy score 0.019 0.001

Random
Between-class variance 0.233 0.023
Between-pupil variance 0.393 0.008

Class size is the regular class size averaged over all three terms that a child was in the school.

The class size function plot, estimated at the mean values of the covariates, is
given in Figure 15.1

Figure 15.2 shows the 95 % confidence intervals for each data point.
We fit the semiparametric (multilevel partial spline) model described in Section

15.3 using a normal kernel density estimator, and the procedure for handling large
smoothing matrices. To illustrate the effect of choosing different bandwidths we
show, in Figure 15.3, the plots and parameter estimates for a narrow bandwidth of
0.45 (quartic kernel), for one of 2 (Normal kernel) and one of 4 (quartic kernel) with
increasing degrees of smoothness from a curve that closely follows each data point
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Figure 15.1 Two level model quadratic class size plot.
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Figure 15.2 Confidenc intervals for predicted response.
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Figure 15.3 Smoothed class size relationships for different bandwidths and kernels.
1. Bandwidth = 0.45; quartic kernel. Horizontal axis class size measured about 30.
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Figure 15.3 (Continued)



P1: TIX/XYZ P2: ABC
c15 JWST015-Goldstein August 16, 2010 9:42 Printer Name: Yet to Come

SMOOTHING MODELS FOR MULTILEVEL DATA 297

−0.9

−1
−12 −10 −8 −6 −4 −2 0 2 4

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Figure 15.4 95% confidenc intervals for fitte smoothed line. Bandwidth = 4;
quartic kernel.

to one where there is a fairly smooth curve. The numbers of iterations required were
respectively 17, 35 and 12.

Figure 15.4 shows the 95 % normal confidence interval for the fitted line with
bandwidth = 4; quartic kernel.

The fixed part estimates for pre-test mathematics and literacy scores were similar
for all bandwidths (0.405 (0.015) and 0.019 (0.001) for the bandwidth of 4 with a
quartic kernel) as were the variance estimates (0.211 (0.021) and 0.397 (0.008) for a
bandwidth of 4 with a quartic kernel). The fixed part estimates are very close to those
for the parametric model, although the level 2 variance is a little different.

The first plot in Figure 15.2 has a small bandwidth so that the plot follows
the actual data closely and shows a rather discontinuous relationship, albeit with an
overall trend. Comparing this with Figure 15.1, we see a similar range for the adjusted
response with the quadratic estimating a value at the smallest class size somewhat
beyond the range of the data. For the bandwidth of 2 using a normal kernel we have
a relatively smooth relationship with asymptotes at either end of the class size scale,
with a difference in adjusted score between the smallest and largest classes of 0.16,
compared to a difference of 0.7 for the quadratic fit. For the quartic kernel with a
bandwidth of 4 the corresponding difference is 0.40. With increasing bandwidth the
difference decreases, and somewhat more markedly for the normal kernel.
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Figure 15.5 Fitted smooth line with variable bandwidth.
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So far we have considered a constant bandwidth. This restriction is unnecessary,
however, and the bandwidth can vary across design points as pointed out earlier,
and the computations are easily adapted. We have adjusted the bandwidth across
the design points in order to eliminate, for the bandwidth of 4, the flattening of the
curve for class sizes of 24–26 and the upturn for class sizes of 31 and above. The
resulting smooth curve is plotted in Figure 15.5, which also displays the values of
bandwidth used.

15.9 Conclusions
We have shown how a general multilevel semiparametric smoothing model can be
specified and fitted using a straightforward iterative procedure. One problem with
parametric regression spline models is that the choice of join points can be difficult,
whereas in the former case the only important choice is that of bandwidth.

The example illustrates the importance of choosing an appropriate bandwidth; in
the present case a value of about 2 for the normal and 4 for the quartic appear appro-
priate, since they produce a relatively smooth curve that is (almost) monotonically
related to class size, which seems to be a reasonable requirement for these data. It
also illustrates the complexity of bandwidth choice when we allow the bandwidth to
vary across the range of the design points. This suggests that the use of automatic
cross-validation techniques to choose bandwidth may be infeasible when bandwidth
is allowed to be variable. Rather, choice should be guided by what may be assumed
to be reasonable in the light of the actual pattern in data being fitted and assumptions
about what might be considered legitimate. The presentation of confidence intervals
is also important. The example also illustrates a particular problem with the sim-
ple, quadratic, parametric model where end-point extrapolation seems to produce
inflated estimates.

Because the proposed algorithm for the semiparametric model requires the esti-
mation of the random parameters and effects conditionally on the fixed part of the
model at each iteration, we can incorporate complex random and hierarchical struc-
tures. These will include, for example, cross classifications and complex variation
at level 1.

Finally, we can fit any combination of parametric and nonparametric components
in both the fixed and random parts of the model. The one limitation is that if we
fit a nonparametric random effect and a parametric random effect at the same level
we assume independence within the present framework. This may not always be
realistic, however, and further work is needed into ways of allowing for patterned
dependencies across the nonparametric design points.
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16

Missing data, partially
observed data and
multiple imputation

16.1 Introduction
A characteristic of many studies is that some of the intended measurements are
unavailable. In surveys, for example, this may occur through chance or because
certain questions are unanswered by particular groups of respondents. An important
distinction is made between situations where the existence of a missing data item
can be considered a random event and those where it is informative, and the result
of a nonrandom mechanism. Randomly missing data may be missing ‘completely
at random’ (MCAR) or ‘at random’ (MAR) conditionally on the values of other
measurements. Otherwise it will be ‘missing not at random’ (MNAR). Where data
are MNAR we have a choice of methods, all of which rely on making particular
assumptions about the mechanisms creating missingness. Some of these rely upon
strong distributional assumptions (see, for example, Heckman, 1979), others focus
on making use of ‘auxiliary’ data that are associated with the probability that a data
item or record is missing and are also associated with the variables that contain the
missing values. In practice, deciding how and why values are missing is not always
straightforward and we discuss below the kinds of assumptions that need to be made.

Where missingness applies to whole records in a dataset, one approach is to use
auxiliary data, along with variables in the model of interest (MOI), to set out a model
that predicts the probability that a record is missing. We discuss such a model in
Section 16.3. One drawback of this procedure is that it does not handle cases where
individual items or variables in a record are missing, and we shall not consider it in

Multilevel Statistical Models: 4th Edition Harvey Goldstein
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any detail. Instead, we focus on multiple imputation procedures that can handle quite
general patterns and types of missingness.

The statistical tools that we introduce can handle not only cases where intended
measurements are unavailable, but also a wide range of problems from attrition in
longitudinal studies, through situations where data values are known only approx-
imately, to ways of efficiently handling record linkage data. We also examine the
‘default’ procedure that simply omits any record with missing data – the ‘listwise
deletion’ or ‘complete case analysis’ method.

We consider the problem in two parts. First, we look at how to fill in or ‘impute’
the missing values. Once we have a ‘completed’ dataset we can then fit our model of
interest in the usual way; we discuss below has this is handled. Detailed discussions
of missing data procedures are given by Rubin (1987) and Little (1992). A useful
introduction to ways of handling missing data, software and with examples can be
found at http://missingdata.org.uk/. We begin by considering a single level model
for simplicity.

In the process of describing how to deal with multilevel missing data, we shall
draw upon the discussion of responses at several levels in Section 6.7 and also the
latent normal model that was developed in Chapter 7.

16.2 Creating a completed dataset
Consider the standard single level linear model

yi = β0 + β1x1i + β2x2i + ei (16.1)

for the i-th unit in a single level model. Suppose that some of the x1i are MCAR or
MAR conditional on x2. Label these unknown values x∗

1i . We consider the estimation
of these by predicting them from the remaining observations and the parameter set θ

for the prediction model, namely

x̂∗
1i = E(x∗

1i |x2i , yi , θ ) (16.2)

Where we have multivariate normal data, the prediction model is simply the linear
regression of X1 on X2, Y . We shall consider the case of non-normal data later.

We can define the following multivariate model with three response variables,
Y, X1, X2 each related to an intercept

⎛

⎝
Y
X1

X2

⎞

⎠ ∼ N (µ,�), µT = (µY , µX1 , µX2 ), � =
⎛

⎝
σ 2
Y

σY X1 σ 2
X1

σY X2 σX1X2 σ 2
X2

⎞

⎠ (16.3)

The parameters of this model, where responses are MCAR can be estimated us-
ing the procedures described in Appendix 6.1. We can then form the conditional
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distribution

X1|X2, Y ∼ N (µ, σ 2), µ = µX1 + βY (Y − µY ) + βX2 (X2 − µX2 ),
(

βY
βX2

)

=
(

σ 2
Y

σY X2 σ 2
X2

)−1 (
σY X1

σX1X2

)

, σ 2 = σ 2
X1

− σ−2
X1

(
σY X1

σX1X2

)T (
σY X1

σX1X2

)

(16.4)

The multiple imputation procedure then samples sets of missing values from this
distribution, including the uncertainty involved in estimating the parameters in (16.4).
Before discussing this in detail, we now look at some alternative possible ways of
imputing missing values. Perhaps the simplest procedure for dealing with missing
data is simply to remove any records containing missing values from the dataset.
As long as the missingness mechanism is independent of the response variable, Y,
we will obtain unbiased estimates. This ‘listwise deletion’ procedure, however, is
inefficient since it results in records being lost. It also cannot deal with cases where
the missingness is informative. Other methods are ‘single’ imputation methods that
seek to replace each missing value by a single value and then fit the MOI.

A simple single imputation scheme is to compute the mean value for each variable
using the nonmissing values and then to use this to fill in the missing values. This
procedure will tend to underestimate the variance for such a variable and thus lead
to biased parameter estimates. Likewise, using (16.4) to obtain a single value of X1

predicted using the first line of (16.4) will also tend to underestimate the variance
of X1. So-called ‘hot deck’ methods are often used in large scale surveys. These are
nonparametric methods where a data record containing missing values is ‘matched’,
using a subset of fully observed matching variables, with a set of similar records
elsewhere in the data file that are complete, and then one of these is randomly
selected. While this method can sometimes be treated in similar ways to the MI
methods under discussion here, a common problem is that it may not be possible to
find a good match without a great deal of ‘coarsening’ the data categories or groups
(Rubin, 1987), depending on which matching variables are chosen; this is especially
so in multilevel data where matching should be within the same higher level unit,
or where higher level units should also be involved in the matching criteria. In all
the single imputation methods, because only a single completed dataset is used, the
full uncertainty associated with the missing data values is not carried through to the
analysis and thus will lead to biased standard error estimates.

Another method uses weights that are derived from a model relating the probabil-
ity of a record being missing to auxiliary variables and any fully observed variables
in the MOI. The inverses of the predicted probabilities from such an analysis are then
used as weights in an analysis using the fully observed cases. The problem with this
approach is that it will generally lose efficiency, although methods to recover some
of this have been developed. Thus, Carpenter et al. (2006) discuss ‘doubly robust’
methods that yield unbiased estimates if either the imputation method is correct or
if the weights are correct. These methods do not deal very well with the case when
there is a general pattern of missing data, as opposed to the simpler case when only
a small number of missing data patterns exist. They also rely upon good estimates of
the weights, but since these are estimated from the data they may not be very reliable.
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16.3 Joint modelling for missing data
Where missingness is informative, that is we have MNAR, it may be useful to adopt
a fully model based procedure. For the case where we have missing records, we need
to write down an explicit model for the probability of being missing and link this to
the model of interest that we wish to fit. Consider a simple situation where the MOI
is given by (16.5) and the response probability model is given by (16.6).

y1i = β0 + β1xi + e1i (16.5)

Pr(response observed) =
α0+α1zi∫

−∞
φ(t)dt (16.6)

where the Z is an auxiliary variable (or more generally a set of variables) that
predicts the probability of a response (Y1) being observed and for which there is the
underlying standard latent normal variable y2i = α0 + α1zi + e2i . We assume that Z
is uncorrelated with the assumed bivariate normal random effects e1i ,e2i . The two
models are linked by assuming

E(e1i e2i ) = σe12 �= 0 (16.7)

The existence of σe12 �= 0 is a statement that the propensity for a record to be missing
is related to the response in the MOI, that is MNAR, after adjusting for covariates. In
such a case a joint analysis will yield unbiased estimates. This is conveniently carried
out in a Bayesian framework where the missing values are treated as parameters to
be estimated and samples from the appropriate posterior distributions are chosen at
each iteration of an MCMC algorithm. Alternatively, Heckman (1979) suggested a
two-step procedure that involves a separate estimation of the covariance matrix, but
this will generally not be as efficient as a full joint estimation. We note that if we have
different categories of missingness, the above model can be extended using a latent
normal formulation for a multicategory response as set out in Chapter 7, yielding an
underlying multivariate normal distribution rather than just a bivariate normal.

While such a full model based procedure is often attractive, it does not deal
with the case where individual items in a record additionally may be missing. In
order to extend this model to the case where there is item missing data, we can use
MCMC, assuming MAR for the missing items, and treating all the missing values
as additional parameters, but this becomes computationally very time consuming.
Further references are those of Nathan (1983), Nathan and Holt (1980) and Pfeffer-
mann (2001). The multiple imputation procedure described below will handle the
case where whole records are missing as well as missing items. Before we describe
this, we bring together Appendix 6.1 and Chapter 7 to show how to impute missing
responses in a multilevel model where the responses can be at any level and of mixed
type. We illustrate with a 2-level model.
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16.4 A 2-level model with responses of different types
at both levels

In Chapter 6, we set out a 2-level multivariate model with responses at both levels as
follows

y(1)
ij = X1i jβ

(1) + Z1i j u(1)
j + e(1)

ij

y(2)
j = X2 jβ

(2) + Z2 j u(2)
j

e(1)
ij ∼ MVN(0,�1), u j =

(
u(1)
j , u(2)

j

)T
, u j ∼ MVN(0,�2)

(16.8)

where the superscripts indicate the level. We can add further classifications such as a
cross classification as described in Section 12.6.

In Chapter 7, we showed how to sample a multivariate latent normal given
categorical responses and we now set out the steps needed to combine these several
types where we have several levels or classifications. We shall assume that there are
two levels but the steps are readily extended to more than two classifications.

16.4.1 Sampling level 1 non-normal responses
When sampling a non-normal response at level 1 we condition on the fixed part of
the model associated with the response, together with any latent normal or observed
normal variables at the same level that are correlated with the response. Thus, for
example, in the binary case we can write the conditional distribution as in (7.2) as

yij,1|y∗
ij ∼ N (Xijβ1 + y∗

ijβ2 + zij1u j1 + zij2u j2 + . . . zijq u jq , 1 − �21�
−1
1 �12)

β2 = �12�
−1
1 , �1 = cov(y∗

ij), �21 = cov(yij.1, y∗
ij), j = { j1, j2, .. jq}

(16.9)

The subscript 1 refers to the variable being sampled and 2 refers to the correlated
level 1 variables. The subscripts j1, j2, .. jq refer to the classifications, which might
be further hierarchical levels, cross classifications or multiple membership structures.
The ∗ denotes the variables being conditioned on. Using the steps given in Chapter
7, we can also then sample the level 1 fixed coefficients, and the level 1 residuals by
subtraction. The level 1 covariance matrix will have variance elements constrained
to 1 corresponding to categorical responses and covariance elements set to zero for
unordered multicategorical responses, and the steps set out in Chapter 7 can be
used. In the case of the level 2 residuals, we sample for each classification in turn,
conditioning on the remaining residual estimates. For binary, ordered or continuous
non-normal responses, we sample a single latent normal variable and for a p-category
unordered variable we sample p-1 latent normal variables.
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16.4.2 Sampling level 2 non-normal responses
We proceed to sample these in a similar fashion to those at level 1 where the level 2
model is given by the second line of (16.8). For simplicity, we assume a simple residual
at level 2 but we can extend the sampling to include the complex variance case.

The level 2 residuals for level 2 responses are obtained by subtraction, but the level
2 covariance matrix now includes the level 2 responses as well as the level 2 residuals
for the level 1 responses. This is therefore sampled in a single step, noting that some
elements will be constrained to 1 or 0 if we have categorical responses at level 2.

Each classification will be sampled in turn, conditioning on the remaining classi-
fication residual estimates. If a level 1 or level 2 response is missing then we sample
a value from the latent multivariate normal distribution as described in Appendix 6.1.
For such missing values we can transform these back to the original non-normal scale
using the current parameter values. For example if the original response was binary
then we choose the value to be 1 if it exceeds the current threshold parameter value, etc.

16.5 Multiple imputation
The usual multiple imputation procedure (Rubin, 1987) works as follows. The pre-
dicted values are adjusted to have their correct, on average, distributional properties
by sampling from the posterior (predicted) distribution of all the variables with miss-
ing values. Using MCMC preserves the full uncertainty associated with the estimation
and is a convenient way to implement the MI procedure. It also allows the use of
informative priors.

Having generated a ‘completed’ dataset with all missing values imputed, we then
fit our multilevel model in the usual way and obtain parameter estimates. This process
is repeated m times and the final estimates are suitably chosen averages of these sets
of estimates.

For a parameter θ with point estimates θi and variance estimates var(θi ), we form

θ̂ =
m∑

i=1

θi/m, var(θ̂ ) = V̄ + (1 + m−1)B

V̄ =
m∑

i=1

var(θi )/m, B =
m∑

i=1

(θi − θ̂ )2/(m − 1)

(16.10)

with corresponding expressions for a set of parameters and their covariance matrix.
The value of m has to be chosen and for multilevel data a minimum value of 10 is
generally advisable. Assuming that these point estimators are asymptotically normal,
these final estimates are efficient with consistent standard errors.

To implement this procedure, we choose all those variables in the MOI with
missing values to be responses in a multivariate model. This may include variables
at any level and normal as well as categorical variables. We then fit this model as
described in the previous section and where values are missing these are imputed
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as described, on their original scales. The variables with no missing values can be
used as explanatory variables in this imputation model or incorporated as further
responses. In carrying out MI, it is important that all the variables in the MOI are
used for imputation and also where the MOI contains a multilevel structure, that this
is incorporated also (Goldstein et al., 2009, give examples).

Where we have auxiliary variables we can use these as covariates in the imputa-
tion model and if these are associated with the missingness mechanism, conditioning
on them can reduce any biases by increasing the plausibility of the MAR assumption.
Thus, we see that MI readily incorporates procedures for dealing with informatively
missing data. We can also incorporate the case where whole records are missing since
in that case we will impute all the missing variables, again conditioning on the aux-
iliary variables. In a later section we shall return to this when discussing longitudinal
data. Software (REALCOM, 2008) has been developed to carry out this procedure.

16.6 A simulation example of multiple imputation for
missing data

We use a simulation described in Goldstein et al. (2009). The data set is the ‘tutorial’
dataset, distributed as an example with the MLwiN software package (Rasbash et
al., 2008). This consists of a normalised measure of educational achievement at 16
years (the response) and a number of covariates at both level 1 (student) and level 2
(school), as detailed in Table 16.1.

The following MOI is first fitted to the complete dataset:

yij = Xijβ + u j + eij
eij ∼ N (0, σ 2

e ), u j ∼ N (0, σ 2
u )

This gave the parameter estimates in the second column of Table 16.1. Of the 65
schools, 10 were randomly sampled for each simulated data set where each school
had the same probability of inclusion. For these the school gender was set to be
missing. In addition, 10 % of the response values were randomly set to be missing
and 5 % of the verbal reasoning band categories were set to be missing. This yielded
between 25 % and 30 % of records with any missing data. One hundred datasets
were simulated.

With the exception of the school gender category 3, all the full data values
lie within 95 % normal confidence intervals derived from combining the imputed
datasets. The results show negligible biases for all the level 1 parameters and the
variance estimates. For the level 2 categorical variable, school gender, there appears
to be a small downward bias. There are two possible reasons for this. First, it may be
due to the rather small number of schools in the study combined with the assumption
of a uniform prior for the level 2 covariance matrix in the imputation model. Second,
and more subtly, the MOI is not exactly compatible (congenial) with the joint distri-
bution implied by the imputation model, although it is likely to be close because the
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Table 16.1 Simulation study model. Parameter estimates and standard errors in
brackets. One hundred simulated datasets. MCMC estimation used a burn in of 2000
with five imputed data sets at iterations 1, 500, 1000, 1500, 2000. Estimates are
computed using restricted maximum likelihood.

Parameter
Complete
dataset Imputation

Relative
bias ( %)

Imputation
standard
error

∗∗∗

Intercept 0.260 (0.056) 0.263 1.2 0.0021
Reading test score 0.391 (0.017) 0.391 0.0 0.0007
Verbal reasoning band 2

∗ −0.417 (0.032) −0.414 −0.7 0.0014
Verbal reasoning band 3

∗ −0.765 (0.054) −0.768 0.4 0.0024
School gender category 2

∗∗
0.099 (0.108) 0.091 −8.1 0.0040

School gender category 3
∗∗

0.241 (0.084) 0.230 −4.6 0.0038
Level 2 variance 0.079 (0.016) 0.080 1.3 0.0005
Level 1 variance 0.536 (0.012) 0.536 0.0 0.0004

∗
Verbal reasoning band has three categories: category 1 (the reference category) is the top

25 % of original verbal reasoning scores, category 2 is the middle 50 % of verbal reasoning
scores and category 3 is the bottom 25 % of verbal reasoning scores.

∗∗
School gender has three

categories: mixed schools (the reference category); category 2 is boys’ school; and category 3
is girls’ school.

∗∗∗
The imputation standard error is the standard error for each parameter over

the 100 simulations.

imputation model relies on an underlying joint multivariate normal distribution with
unstructured covariance matrices at level 1 and level 2 (see Goldstein et al., 2009).

16.7 Longitudinal data with attrition
A special case of missing data occurs in longitudinal studies where, at any given
follow-up occasion or ‘sweep’ of the participants, some whole or partial records may
be unavailable; for example, because of refusals or other reasons that may be related
to the variables in the MOI. We may regard such missing records as an example of
missing data where there are other variables, measured, for example, at the time of
first contact or as auxiliary data collected by interviewers about the participant. Thus,
in principle, we can apply the methods we have described that will also deal with
individual items or questions with missing values.

This procedure has several advantages over traditional ones that depend on
weighting to adjust for attrition. The methodology for computing weights specifi-
cally in order to compensate for ‘informative’ attrition that leads to biases, involves
procedures for estimating the probability of a survey sample member responding,
for each sample member at each occasion, as a function of sample member charac-
teristics. Hawkes and Plewis (2006) provide a useful description of a model based
approach to this. The resulting (inverse) probabilities are then used in standard ways
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in subsequent analyses. One of the problems with such procedures is that response
may be partial. Thus, for example, all individuals may respond to a set of educa-
tional variables but not to health variables at a particular occasion. In this case, we
would not use weights to adjust for attrition when analysing the educational data, but
we would wish to do so if health variables were additionally being analysed. This
may complicate matters, because successive analyses would be based upon different
numbers of individual cases. A further problem is that for a particular individual the
weights will generally change from occasion to occasion, depending on the possibly
changing response patterns across the sample, which may alter the joint distribu-
tion of respondent characteristics, and this will create difficulties when conducting
analyses across several occasions.

Another issue when using weights is that a traditional weighting approach will
generally lose data information. Suppose we wish to regress a time 2 variable on a
set of time 1 variables with attrition occurring. Weights can be obtained in various
ways but the weighted analysis will then be carried out using only the cases with
measurements at both occasions. This ignores the information, available at one occa-
sion but not at another, that is not incorporated in weights but may be available, for
example, from related auxiliary variables or further covariates in a model. A similar
problem arises in the case mentioned above where there is a differential response to,
say, health and educational variables.

In some cases, we may have a basic set of weights derived from a complex
sampling design, or computed to adjust for initial nonresponse, that we would wish to
incorporate in a general MI analysis. Here, we would use weighted MCMC estimation
as described in Section 3.4.2 for both the imputation model and the MOI, or in a
weighted likelihood analysis if this is used for the MOI (see Goldstein, 2009, for
further discussion).

16.8 Partially known data values
We may have a response where some values from a continuous distribution are known
accurately but others are only known to lie within a given range. One example is
retrospective data, where the time since an event is measured and where some indi-
viduals can only provide an interval estimate. An illustration is in the measurement of
pregnancy gestation length where only some individuals can supply accurate values
of the timing of their last menstrual period. Since, typically, we do not know which
are the accurate values, an additional step is required to provide a probability distri-
bution which will assign a probability for the observed value close to 1 where this
value is in fact accurate, and a more variable distribution of values where it is not.
Mixture modelling (see Chapter 8) provides one approach to this. Another, extreme,
example is that of truncation where all measurements below a given value are known
but for the remainder we only have the information that they lie above the given
value. An extension of this is where we have several possible intervals and associated
information about which interval an observation lies in. In other cases, we may have
probabilistic information associated with different possible ranges of values for a
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variable. For categorical responses, we may be able to specify a set of probabilities
across a set of categories.

All of these are examples of data coarsening (Heitjan and Rubin, 1991), where
what is observed is intermediate between fully missing and fully known. If we have
probabilities associated with the possible data values, then we need a procedure for
combining this probability distribution with the conditional distribution from the
standard imputation step. We assume that the specified probability distribution is
independent of the variables involved in deriving the conditional distribution for the
missing value. We propose the following procedure.

Where we have a categorical variable, the standard imputation step yields an
imputed (back-transformed) value, x, for a particular variable, X, for a particular data
record. We select a value at random from the specified probability distribution for X,
and if this is equal to x then this value is accepted. Otherwise, the imputation and the
selection are repeated and this continues until a value is accepted.

For continuous variables, we propose that we can discretise the probability distri-
bution into a set of ordered categories. The standard imputation step, as before, yields
a normal value or a back-transformed value for a non-normal continuous variable, x
for a particular individual; we select a category at random from the discretised dis-
tribution and if x belongs to this category it is accepted. Otherwise, a new imputation
and selection are carried out until acceptance occurs. When using this procedure, we
need to have sufficient categories to provide a good approximation.

This procedure is computationally equivalent to treating the posterior distribution
associated with the standard imputation step as a likelihood for the unknown value
of X and the specified probability distribution as a prior for it. For convenience,
we shall therefore refer to the procedure as ‘prior informed imputation’ and in this
context we refer, somewhat loosely, to the specified probabilities as constituting a
‘prior’ distribution.

Note that if more than one response for a unit has a partially known value, all
responses have to be selected at one (multivariate) draw. As an example, for ordered
categories, when computing the loglikelihood contribution in MH sampling, we
form a weighted loglikelihood over the valid categories with the weights being the
‘prior’ probabilities.

An example for categorical variables is where individuals are asked to choose a
response category but some cannot make as fine a distinction as other individuals, so
that for these we can assign a prior over several categories. Another case is where data
are to be coded, for example, into social groupings, but where for some individuals
we only have an assignment to a group of several categories. We assume that the
occurrence of such assignments is independent of the model parameter values.

We now look at an application of this procedure to probabilistic record linkage
(see, for example, Scheuren and Winkler, 1993).

16.8.1 An application to record linkage
The linking of records from disparate sources is becoming increasingly important
with the advent of large, typically administrative, databases and the facility to link
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individual records across these and with surveys. Because of the inherent uncertainties
associated with the matching of individuals, probabilistic matching is often used and
the following description captures the essence of the procedure.

Consider a primary file – call it the file of interest (FOI) – that contains most of the
data we wish to analyse, often derived from a survey. There is also a secondary file
referred to as the linking file (LF) that contains additional variables on the individuals
in the FOI. We have identification information on the individuals in both files and
we use this to ‘link’ each individual in the FOI to the same individual in the LF. In
some cases, hopefully the majority, the link is unequivocal and we can carry across the
required variable values from the LF to the FOI. In other cases, however, there is some
uncertainty about the link, due possibly to coding errors, naming ambiguities etc. It is
in these cases that ‘probabilistic data linkage models’ are used and they estimate a set
of weights wij for each individual, i, with an equivocal link. The subscript j indexes
the records in the LF, where typically many of the wij will be zero indicating that
these records are ruled out of consideration. For each i a lower cut-off is chosen for
these weights to satisfy criteria related to specificity and specificity. If there remain
wij above the cut-off the maximum of these is typically chosen and the corresponding
records are regarded as linked.

One of the problems with such record linkage procedures is that when a prob-
abilistic match is chosen there will remain some uncertainty about the correctness
of the link and hence the values of the variables carried into the FOI. This ‘iden-
tification error’ should then be introduced into subsequent analyses, but this rarely
occurs. Likewise, if no record in the LF has a weight in excess of the cut-off, some
information about possible values of the variables will be lost. For both these reasons,
traditional probabilistic methods can introduce bias into subsequent data modelling
by underestimating the uncertainty associated with parameter estimates; this will be
particularly important if many records are linked probabilistically.

We can use the idea of prior informed imputation to capture all the information
produced by probabilistic record linkage.

16.8.2 Estimating a probability distribution using record
linkage weights

For each record in the file of interest (FOI), each variable of interest (VOI) that has
a missing value is considered in turn. For each such VOI we require a probability
distribution (PD) for each possible value it can take, and this is derived from the
linking file (LF). This distribution will then be used as a ‘prior’ distribution for
the variable data value in the imputation, where we have been unable to establish
the correct value through an unequivocal link.

In practice, we will generally only have the data available from the LF to estimate
these prior distributions. We propose the following procedure. We assume that the
weights are independent of the VOI. If not, our procedure will generally induce a
(weak) dependency between the prior distributions and the distribution of the variable.
At the imputation stage, this means that the distribution of the variable enters both
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the prior and the standard imputation, which will generally lead to biased posterior
selection probabilities.

From the probabilistic record linkage, for each record, i, in the FOI where we
have not been able to find an unequivocal match, we have the set of weights wij(j =
1, . . . ,m) over the m records indexed by j in the LF. In general many of these will be
zero, for example, where a ‘correct’ match has already occurred.

Suppose first, that the variable of interest (VOI) z is discrete. For each possible
value, k, of z we compute

pik(z) = c
∑

j

wijδik/
∑

j

wij

δik = 1 if zi = k, 0 otherwise

The scaling term c is chosen so that
∑

k pik(z) = 1 and this therefore provides a prior
distribution for the discrete variable z.

For a continuous variable z we proceed as follows. For each record in the FOI
we require the (weighted) distribution of z in the LF, and this distribution can vary
from record to record. We therefore summarise each distribution by choosing a fixed
set of intervals (s) with corresponding proportions for each FOI record. The number
of intervals should be large enough to ensure a satisfactory number of intervals with
nonzero probabilities, for each FOI record. Thus, for each record in the FOI we need
to estimate a weighted frequency distribution for z in the LF and then determine
s−1 cut points to produce the required set of intervals. A suitable weighted kernel
density estimator could be used for this, or it could be approximated by defining a
large number of intervals based upon the distribution of z in the LF and forming a
weighted frequency count using the wij. This then provides a prior distribution for
the continuous variable z.

Note that with multilevel data, where the variable is measured on a higher level
unit, there is just one weight associated with each such higher level unit in the LF.

16.9 Conclusions
A very general method for dealing with fully or partially missing multilevel data has
been described. The requirement to impute multiple complete datasets, often 20 or
so are needed in practice, leads to significant amounts of computational time. While
this is a drawback, it does mean that the datasets are available for repeated analyses
with different models of interest that involve the variables used in the imputation.

We have discussed how MI can be used for data values that are ‘partially known’
and given a detailed discussion of an application in record linkage.

An alternative approach to multiple imputation using a joint model is the multiple
imputation chained equation (MICE) approach, in which a set of conditional univari-
ate models are used for imputation without specifying a joint model (Van Buuren,
2007). By contrast to the joint model approach it does not have a well established
theoretical grounding, neither does it naturally extend to multilevel structures.
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Finally, we could consider a full Bayesian approach to handling missing data
where the imputation model is run in parallel with the MOI, so that at each MCMC
cycle missing values are imputed and these imputed values are then used in the steps
for the MOI. This method can be computationally very slow. Multiple imputation,
an approximation to a full Bayesian model, uses frequentist properties for inference
and has been implemented in software that can handle moderately large datasets.
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17

Multilevel models with
correlated random effects

17.1 Introduction
We have considered models where we assume that the residuals or random effects
associated with an explanatory variable and belonging to the same classification, are
independent. We now look at the effect of removing the independence assumption
between these in the context of a 2-level model. We first consider removing the
independence between the level 2 residuals and instead assume that the vector of all
residuals at the cluster level follows a general multivariate normal distribution. We
then show how to remove the assumption of independence between level 1 residuals
within particular clusters.

17.2 Non-independence of level 2 residuals
Removing the assumption of independence between the level 2 random effects may
be driven by the belief that some pairs of clusters are more similar to each other than
to other clusters. Such a belief is what often drives spatial modelling, discussed in
Chapter 13, where the relative locations of clusters of data are expected to influence
the correlation between them. The relationship between cluster effects is expressed
in terms of conditional rather than joint distributions as we do here but we note the
similarities.

Another way in which non-independence occurs is when clusters themselves can
be clustered into further higher level clusters; for example, in education pupils may
be clustered into schools which themselves are clustered into education authorities.
The education authority will often be fitted as an additional level of random effects

Multilevel Statistical Models: 4th Edition Harvey Goldstein
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but alternatively can be accounted for in a 2-level modelling framework by removing
some of the independence assumptions at level 2.

We begin by describing how an independence assumption at level 2 is removed.
If we consider the standard variance components model

yij = (Xβ)ij + u j + eij
E(u j ) = 0, var(u j ) = σ 2

u , E(eij) = 0, var(eij) = σ 2
e

i = 1, . . . , n j , j = 1, . . . , J

(17.1)

and then let u = (uT1 , uT2 , . . . ., uTJ )T , that is, all the residuals at level 2 stacked as a
vector of length J. A more general model will then have u ∼ MVN(0,�u)with the
earlier independence assumption a special case with �u diagonal, and with σ 2

u on
the diagonal. We now have flexibility in how we parameterise the covariance matrix
�u . We could consider an unconstrained representation and estimate all parameters
in the covariance matrix but this will result in J × (J−1)/2 parameters, although we
shall see that this may be a model of interest in the case of level 1 residuals.

There may also be identifiability issues as, for example, if we assume that there
is just a random intercept for each cluster and a different variance for each cluster,
then in general there is insufficient data to identify these different variances without
making some further assumptions about the variances for example by expressing an
informative prior for them. We may also wish to model the variance as a function of
further explanatory variables and we shall discuss this later.

For now, we will assume equal variances and write �u = σ 2
u Du where Du is the

correlation matrix of the u’s and σ 2
u is the common variance term. We also write ρ j1 j2

to represent the correlation between the effects for clusters j1 and j2. We now model
the corresponding correlations using a functional form f −1( j1, j2,α), which involves
a set of distance measures for the level 2 units j1 and j2 and a set of parameters α. We
shall assume here a generalised linear function of the form

f (ρ j1 j2 ) = α1g1( j1, j2) + α2g2( j1, j2) + . . . . (17.2)

One choice of functional form is the inverse hyperbolic function

f j1 j2 = f (ρ j1 j2 ) = 2 tanh−1(ρ j1 j2 ) = log

(
1 + ρ j1 j2
1 − ρ j1 j2

)

ρ j1 j2 = (e f j1 j2 − 1)/(e f j1 j2 + 1)

which is effectively the Fisher z-transformation for a correlation coefficient and where
the gh, h = 1 . . . p, are known. This function ensures that each correlation lies in the
interval (–1, 1) (although of itself this does not guarantee that the final covariance
matrix is positive definite):

Where we have independence between two random effects, these functions can
be given values of zero. This can be achieved by introducing an indicator vector, δ j,k
to produce a final correlation structure defined by δ j,kρjk.
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Figure 17.1 Link function f(s). From left to right: hyperbolic; logit; log.

An alternative link function, if we wish to restrict the correlations to be positive
is the logit given by

ρjk = e fjk/(e fjk + 1)

or the log link function given by

ρjk = e fjk

In this last case, the correlations are positive and f is restricted to be negative to
ensure the correlations are less than one. This constraint is achieved in the MCMC
algorithm to be described, by only accepting negative values. We used the log link in
Section 5.4 to describe an exponential decay function for repeated measures level 1
residuals, and discussed maximum likelihood estimates. The different functions are
sketched in Figure 17.1.

17.3 MCMC estimation for non-independent
level 2 residuals

We now consider how to sample the residuals and the level 2 covariance matrix. The
steps for the fixed coefficients and level 1 variance are as in the standard case.
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17.3.1 Sampling the level 2 covariance matrix
A uniform prior is assumed for the variance and for the {α}.

We use �u[l,m] to denote the l,m-th element of the level 2 covariance matrix with
�u[l,l] = σ 2

u . We update the parameters {α}, one at a time, using a Metropolis step
and a normal random walk proposal as follows. We consider first the variances and
then the {α}.

At iteration t generate �∗
u[l,l] ∼ N(�(t−1)

u[l,l] , σ
2
pl ) where σ 2

pl is a proposal distribution
variance that has to be set. Then form a proposed new matrix �∗

u by replacing the
variance by this proposed value unless �∗

u is not positive definite in which case set
�

(t)
u[l,l] = �

(t−1)
u[l,l] . We also update the covariances using the proposed value, using the

current correlations determined by{α}, with the new proposed variance. That is set
�t
u[l,l] = �∗

u[l,l] with probability min[1, p(�∗
u |u)/p(�(t−1)

u |u)] and �
(t)
u[l,m] = �

(t−1)
u[l,m]

otherwise.
The components of the likelihood ratio are

p(�∗
u |u) = |�∗

u |−1/2 exp −(uT (�∗
u)−1u/2)

(17.3)
p(�(t−1)

u |u) = |�(t−1)
u |−1/2 exp −(uT (�(t−1)

u )−1u/2)

with current estimates substituted.
For each element of {α} at iteration t generate α∗

l ∼ N(α(t−1)
l , σ 2

α,l ) where σ 2
α,l is

a proposal distribution variance that has to be set for each parameter. Then form a
proposed new matrix �∗

u by replacing each element of �(t−1)
u by the value computed

from the updated set {α} using (2), unless �∗
u is not positive definite in which case

set �(t) = �(t−1)
u . That is set �(t)

u = �∗
u with probability min[1, p(�∗

u |u)/p(�(t−1)
u |u)]

and �(t)
u = �(t−1)

u otherwise.
The components of the likelihood ratio are, as in (17.3),

p(�∗
u |u) = |�∗

u |−1/2 exp −(uT (�∗
u)−1u/2)

p(�(t−1)
u |u) = |�(t−1)

u |−1/2 exp −(uT (�(t−1)
u )−1u/2)

The proposal distribution parameters can be chosen by an adaptive sampling
procedure (see below).

To model additionally the variance as a function of explanatory variables, we
write

σ 2
uj = exp

( q∑

h=0

γhzhj

)

(17.4)

where the zh are level 2 (or higher level) predictors and typically z0 = 1 and the
exponential form is chosen to ensure positive variances.
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We therefore replace the step for updating the variance (17.3) with a series of MH
steps, using suitable proposal distributions, for updating the γh . For each proposal we
need, as before, to check that the resulting covariance matrix �∗

u is positive definite.

17.3.2 Sampling the level 2 residuals
The posterior distribution for the level 2 residuals is as follows

p(u |y, �u, σ
2
e ) ∝

(
1
σ 2
e

)N/2
exp

[

− 1

2σ 2
e

(y − (Xβ) − (Zu))T (y − (Xβ) − (Zu)) + σ 2
e u

T�−1
u u

]

so that we now sample from
u ∼ N (û , D̂)

(17.5)

where for the variance components case we have

D̂ = σ 2
e

⎡

⎣
∑

i, j

Z Tij Zij + σ 2
e �

−1
u

⎤

⎦

−1

= σ 2
e

[
diag(n j ) + σ 2

e �
−1
u

]−1

û =
⎡

⎣
∑

i, j

Z Tij Zij + σ 2
e �

−1
u

⎤

⎦

−1 ⎡

⎣
∑

i, j

Z Tij (yij − (Xβ)ij)

⎤

⎦ = D̂σ−2
e ỹ

ỹ = {ỹ j }, ỹ j =
n j∑

i

(yij − (Xβ)ij)

(17.6)

17.4 Adaptive proposal distributions in
MCMC estimation

The proposal distributions are determined adaptively (Browne and Draper, 2006).
We choose a desirable acceptance rate r , say, 0.5, and we choose a batch size B,

for example, 100, as used by Browne and Draper (2006). For each batch of iterations
during the burn in period we compute the acceptance rate r∗.We update the proposal
distribution, for each parameter, according to the following rule, from suitable starting
values supplied by the user.

If r∗ ≥ r, θt = θt−1[2 −
(

1 − r∗

1 − r

)

], otherwise θt = θt−1(2 − r∗

r
)−1 (17.7)

where r is the desired acceptance rate and θt is the normal proposal distribution
standard deviation for the parameter under consideration at iteration t. The proposal
distribution adapting can be run for the duration of the burn in period.
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17.5 MCMC estimation for non-independent
level 1 residuals

Our general 2-level model now becomes

yij = (Xβ)ij + (Zu) j + eij, e j ∼ MVN(0,�ej ), u ∼ MVN(0,�u),

(17.8)e j = {eij}

where we assume that there is just a single residual term at level 1.
We assume the following form for the correlations, similar to those at level 2

f (ρ(1)
jk ) = α

(1)
1 g(1)

1 (t j , tk) + α
(1)
2 g(1)

2 (t j , tk) . . . . . . and

f (s) = 2 tanh−1(s) = log

(
1 + s
1 − s

) (17.9)

where the superscript (1) denotes level 1 and we can also have logit or log link
functions.

The sampling for the level 1 covariance matrix involves essentially the same steps
as for the level 2 matrix described above. For sampling the variance and correlation
parameters the components of the likelihood ratio become

p(�∗
e |e) =

∏

j

|�∗
ej |−1/2 exp −(eTj (�∗

ej )
−1e j/2) and

p(�(t−1)
e |e) =

∏

j

|�(t−1)
ej |−1/2 exp −(eTj (�(t−1)

ej )−1e j/2)

The explanatory variables for the correlations g(1)
k (k = 1 . . .) must be specified for

each level 2 unit.
When sampling the fixed effects, since the level 1 residuals are no longer inde-

pendent, the standard MCMC step is modified as follows.
We assume a ‘diffuse’ prior p(β) ∝ 1 so that

p(β|y,�e, u) ∝
∏

j

|�ej |−1/2 exp[−ỹTj �−1
ej ỹ j/2]

where ỹ j = {ỹij}, ỹij = yij − (Xβ)ij − (Zu)ij

so that we sample from

β ∼ MVN(β̂, D̂β)

D̂β =
⎡

⎣
∑

j

XTj �
−1
ej X j

⎤

⎦

−1

β̂ = D̂β

[
XTj �

−1
ej (y j − (Zu) j )

]

(17.10)
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Likewise, when sampling the level 2 random effects (17.7) becomes

D̂u =
[
diag(ZTj �

−1
ej Z j ) + �−1

u

]−1

û = D̂u
[
{ZTj �−1

ej (y j − (Xβ) j )}
] (17.11)

17.5.1 A 2-level model formulated as a single level model with
non-independent residuals

We now show how we may choose a particular non-independence pattern to specify
a 2-level model using a single level formulation. Consider a 2-level variance compo-
nents model. For a level 2 unit with four level 1 units, the covariance among these is
given by

⎛

⎜
⎜
⎜
⎝

σ 2
e + σ 2

u
σ 2
u σ 2

e + σ 2
u

σ 2
u σ 2

u σ 2
e + σ 2

u
σ 2
u σ 2

u σ 2
u σ 2

e + σ 2
u

⎞

⎟
⎟
⎟
⎠

(17.12)

For a single level model with an equal correlation structure we can write the covariance
among the four level 1 units as

⎛

⎜
⎜
⎜
⎝

σ 2
e∗

ρσ 2
e∗ σ 2

e∗
ρσ 2

e∗ ρσ 2
e∗ σ 2

e∗
ρσ 2

e∗ ρσ 2
e∗ ρσ 2

e∗ σ 2
e∗

⎞

⎟
⎟
⎟
⎠

(17.13)

which has an equivalent structure with ρσ 2
e∗ = σ 2

u , σ
2
e∗ = σ 2

u + σ 2
e , and ρ can be

interpreted in the usual way as the intra-unit correlation. Note that if we compute the
DIC statistics for these two different representations we will obtain different values
since we are actually fitting different models. Model (17.12) includes random effect
parameters whereas (17.13) does not (Browne and Goldstein (2010) give a numerical
example).

17.6 Modelling the level 1 variance as a function of
explanatory variables with random effects

To model the variance as a function of explanatory variables, we write

σ 2
eij = exp(

q∑

h=0

γhzhij) (17.14)
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where the zh may be level 1 or higher level predictors and typically z0 = 1. We
replace the step for updating the variance with a series of MH steps, using suitable
proposal distributions, for updating the γh . For each proposal we need to check that
each of the covariance matrices �∗

ej remains positive definite.
If we add a simple independent level 2 random effect to (17.14) we obtain

σ 2
eij = exp(

q∑

h=0

γhzhij + u1 j ) (17.15)

and we shall assume

u1 j ∼ N (0, σ 2
u1)

with density function at iteration t , φt (u1 j ).
For each level 2 unit at iteration t we propose a new value u∗

1 j with proposal

distribution N (u(t−1)
1 j , σ ∗2

u1 ), where σ ∗2

u1 can be chosen as the mean over the burn-in
period. We accept the proposed value according to the Metropolis ratio

p(�∗
ej |e)

p(�(t−1)
ej |e) × φ(u∗

1 j )

φ(u(t−1)
1 j )

To sample σ 2
u1 we can use a Gibbs step, as described in Appendix 2.5.

We can elaborate (17.15) by adding further random coefficients: this leads to the
updating of each one using an appropriate set of proposals. We can also allow the u1 j
to be correlated with the other level 2 random effects. In this case, we can update the
u1 j conditionally given the current values of the remaining level 2 random effects,
in a similar fashion to the conditional steps described in Chapter 7. Hedeker et al.
(2008) consider this model and show how to obtain maximum likelihood estimates.

A further possible elaboration is to allow the correlations to include random
effects. Thus, we could rewrite (17.2) as

f (ρ(1)
j1 j2 ) = α1g1( j1, j2) + α2g2( j1, j2) + . . . . + u2 j

(17.16)
u2 j ∼ N (0, σ 2

u2)

where the u1 j and u2 j may be correlated and also correlated with other level 2 random
effects. Sampling is similar to that for the variance with a random effect.

17.7 Discrete responses with correlated random effects
These procedures can be extended to handle discrete responses. Consider the level 1
binary response case in detail, using a probit link function as described in Section 4.7.

For the case of non-independence at level 1, we modify the step to sample the
latent normal variable as follows.
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For level 2 unit j, suppose that the values at the start of the current iteration of the
latent normal level 1 random effects (residuals), are given by e j = {eij}. We sample
each random effect conditioning on the remaining level 1 random effects in the level
2 unit. That is, for the conditional sampling, for level 1 unit k in level 2 unit j, the
distribution N [(Xβ)k j + (ZU )k j , 1] is replaced by

N [(Xβ)k j + (ZU )k j + eTk, j

T
12


−1
1 , σ 2

k ], σ 2
k = 1 − 
T

12

−1
1 
12, ek, j = e j( j �=k)

where we write �ej =
(


1


12 1

)

. This sequence will produce a multivariate normal

distribution for the latent variables within each level 2 unit.
When sampling conditionally on correlated random effects, it is possible for the

conditional mean to become relatively large and the corresponding residual variance
to become relatively small so that for some data points we may be sampling from the
extreme tail of the normal distribution. Given machine accuracy, this may lead to the
associated tail probability being returned as 1.0 leading to a latent variable value that
is coded as infinite. To avoid this problem, a cut-off should be chosen; for example,
a value equivalent to 5 on the standard normal scale. Further details are given by
Browne and Goldstein (2010).

17.7.1 The probit ordered response model where the variance is
a function of explanatory variables with random effects

In Section 11.12.4, we described an ordered response probit model with threshold
parameters (αh) that were further modelled as functions of explanatory variables,
namely

γ (h) =
αh−Xβ∫

−∞
φ(z)dz, γ (h) =

h∑

g=1

πg

πg = pr (tg−1 < t ≤ tg), αh =
h∑

k=1

exp(α∗
k +

q∑

s=1

δs zks), α∗
1 = 0

(17.17)

where the exponential formulation for the threshold parameters guarantees mono-
tonicity. Where the ordered response is at level 1 we can add one or more level 2 (or
higher) random effects {u j } that are correlated with other level 2 random effects in
the model. These may be sampled in the same way as with continuous responses.

Allowing the threshold parameters to depend on further variables implies that
the latent normal scale itself will depend on such variables. This happens additively,
with an increment added to each threshold value. As we have seen, it also allows
for threshold specific explanatory variables as in the case of survival models. An
alternative, multiplicative, scaling procedure is to specify the latent normal variance
to be a function of explanatory variables, rather than being constrained to be 1. We
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can write the variance in the form as in (17.15) as

σ 2
eij = exp(

q∑

h=0

γhzhij + u1 j )

where we also allow one or more level 2 random effects, u1 j . Such a model has been
used in the context of ROC analysis that studies the relationship between the false
positive and true positive rates for a diagnostic test. See, for example, Ishwaran and
Gatsonis (2000) who describe such a model but without random effects. Hedeker
et al. (2009) describe a model that includes random effects, but with a logistic
link function.

We may also consider models where we model both the thresholds and the
variance, using different explanatory variables.

17.8 Calculating the DIC statistic
For a normal response, the likelihood for the j-th level 2 unit is given by

L j = (2π )−n j/2|�ej |−1/2 exp[−ỹTj �−1
ej ỹ j/2]

where ỹ j = {ỹij}, ỹij = yij − (Xβ)ij − (Zu)ij

so that the total deviance is

−2Log(L) = N log(2π ) +
∑

j

(log |�ej | + ỹTj �
−1
ej ỹ j )

In the case where the level 1 residuals are independent this becomes

−2Log(L) = N log(2π ) + N log(σ 2
e ) +

∑

ij

ỹ2
ij/σ

2
e

The DIC statistic and the equivalent degrees of freedom are then computed in the
usual way for each sample set of parameter values and for the mean parameter values
as outlined in Section 2.13.4.

For a binary response the calculation is more complicated. Using the probit
formulation, in the case of independent level 1 residuals we have, for the response y,
given the parameter values

−2 log(L) = −2
∑

ij

log(pij)

pij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ (Xβ+Zu)ij

−∞
φ(t)dt, yij = 1

∫ −(Xβ+Zu)ij

−∞
φ(t)dt, yij = 0
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where the level 1 residuals are dependent, using the joint likelihood for a level 2 unit
involves the computation of a multidimensional integral, which could be carried out
using simulation from the currently estimated multivariate normal distribution.

17.9 A growth dataset
We reanalyse the repeated measures data of Chapter 5. There, a 2-level polynomial
growth model was fitted with terms up to the fourth order and with level 2 random
coefficients for the intercept, linear and quadratic coefficients, and we fit the same
model here. At level 1, the following link function is used to describe the correlation
structure.

ft1t2 = α|t1 − t2|, ρt1t2 = exp(− ft1t2 )

Table 17.1 shows the results from fitting the model using the inverse tanh link.
The estimate of alpha is close to zero, and for the log and logit links it is a large

positive value. This contrasts with the maximum likelihood estimate of 6.9 with SE
of 2.0. Figure 17.2 shows the chain for alpha.

Table 17.1 Height as a fourth degree polynomial on age, measured about 13.0 years.
Standard errors in brackets. MCMC estimates. Burn-in = 5000, Sample = 50 000.
After adapting, proposal distribution SD = 0.08.

Fixed
Intercept 148.9 (1.3)
age 6.16 (0.35)
age2 2.16 (0.47)
age3 0.39 (0.16)
age4 −1.55 (0.46)
cos (time) −0.24 (0.07)

Random
level 2 covariance matrix

Intercept Age Age squared
Intercept 65.9 (19.7)
age 8.5 (3.5) 3.0 (0.9)
Age squared 1.5 (1.6) 0.9 (0.4) 0.64 (0.25)

level 1 variance
σ 2
e 0.21 (0.03)

α (mean) 0.020 (0.20)
α (median + 95 % interval) 0.064 (–0.42, 0.28)
DIC (PD) 344.0 (58.1)
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Figure 17.2 Chain for alpha in Table 17.1.

17.10 Conclusions
There are several extensions to these models, including higher levels of the data
hierarchy and cross classifications where independence across classifications is as-
sumed and also to multiple membership models. The above estimation steps would
be applied to each relevant classification conditional on current estimates. In addition,
we can consider a fully multivariate version with a set joint responses. The choice
of prior distribution for the elements of the covariance matrix could be changed so
that we could choose an inverse Gamma prior for the variance parameters, or a more
informative prior.

A number of models can be viewed as special cases. Time series models such
as autoregressive structures (Goldstein et al., 1994) are one example and within-
family sibling relationship models are another. In the latter case, the correlation
between sibling characteristics will typically depend on whether they are twins
or singletons, or on whether they are half or full siblings. In the former case,
an important feature of our model is that we can model complex time-series
structures where the repeated measures do not occur at the same set of regular
time intervals for each individual. This distinguishes it from standard SEM ap-
proaches that treat the set of common occasions as a special kind of multivariate
structure.
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Another important application of these models is in the modelling of educational
and other data where institutions do not behave independently. Thus, for example, in
the case of schooling effects, actions taken by one school when competing for limited
resources can be expected to impact on the actions of nearby schools, and partnerships
and collaborations will also invalidate assumptions about the independence of school
effects on pupil progress or performance.
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18

Software for multilevel
modelling

18.1 Software packages
There are now many software packages that will carry out multilevel modelling. Most
of the major statistical packages have features for the basic models, and many can fit
more complex or specialised models. We shall not give a detailed review here, but
merely list the main packages together with web addresses for further information (all
were accessed in June 2010). In addition, there is much software written in general
purpose programming languages such as C++, MATLAB, R etc. Published reviews
of some of the packages are those of De Leeuw and Kreft (2001), Zhou et al. (1999)
and Fein and Lissitz (2000).

The Centre for Multilevel Modelling (http://www.cmm.bristol.ac.uk/index.shtml)
has a series of reviews, links and details of training sessions and workshops. It is also
developing a set of web based training materials in multilevel modelling. Another
good general site for resources is http://statcomp.ats.ucla.edu/mlm/.

There is a very active email discussion group that can be accessed and joined at
www.jiscmail.ac.uk/lists/multilevel.html. The group serves as a means of exchanging
information and suggestions about data analysis. Table 18.1 lists packages, together
with the internet address and a brief note.

Multilevel Statistical Models: 4th Edition Harvey Goldstein
© 2011 John Wiley & Sons, Ltd
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