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Introduction to the Series

This series consists of a number of hitherto unpublished studies, which are
introduced by the editors in the belief that they represent fresh contribu-
tions to economic science.

The term ‘economic analysis’ as used in the title of the series has been
adopted because it covers both the activities of the theoretical economist
and the research worker.

Although the analytical method used by the various contributors are not
the same, they are nevertheless conditioned by the common origin of their
studies, namely theoretical problems encountered in practical research.
Since for this reason, business cycle research and national accounting,
research work on behalf of economic policy, and problems of planning
are the main sources of the subjects dealt with, they necessarily determine
the manner of approach adopted by the authors. Their methods tend to
be ‘practical’ in the sense of not being too far remote from application to
actual economic conditions. In addition, they are quantitative.

It is the hope of the editors that the publication of these studies will
help to stimulate the exchange of scientific information and to reinforce
international cooperation in the field of economics.

The Editors
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Preface

Panel data econometrics has evolved rapidly over the last decade. Dynamic
panel data estimation, non-linear panel data methods and the phenomenal
growth in non-stationary panel data econometrics makes this an exciting
area of research in econometrics. The 11th international conference on
panel data held at Texas A&M University, College Station, Texas, June
2004, witnessed about 150 participants and 100 papers on panel data.

This volume includes some of the papers presented at that conference
and other solicited papers that made it through the refereeing process.
Theoretical econometrics contributions include: Bai and Kao who sug-
gest a factor model approach to model cross-section dependence in the
panel co-integrated regression setting; Lejeune who proposes new esti-
mation methods and some diagnostics tests for a general heteroskedastic
error component model with unbalanced panel data; Ullah and Huang who
study the finite sample properties of feasible GLS for the random effects
model with non-normal errors; Kazemi and Crouchley who suggest a prag-
matic approach to the problem of estimating a dynamic panel regression
with random effects under various assumptions about the nature of the
initial conditions; Krishnakumar who uses a generalized version of the
Frisch–Waugh theorem to extend Mundlak’s (1978) results for the error
component model.Empirical applications include: Sickles and Williams
who estimate a dynamic model of crime using panel data from the 1958
Philadelphia Birth Cohort study; Baltagi and Griffin who find that at least
4 structural breaks in a panel data on liquor consumption for 21 Swedish
counties over the period 1956–1999; Boumahdi, Chaaban and Thomas
who estimate a flexible AIDS demand model for agricultural imports into
Lebanon incorporating a three-way error component model that allows
for product, country and time effects as separate unobserved determinants
of import demand; Biørn, Skjerpen and Wangen who are concerned with
the analysis of heterogeneous log-linear relationships (and specifically
Cobb–Douglas production functions) at the firm-level and at the corre-
sponding aggregate industry level. They use unbalanced panel data on
firms from two Norwegian manufacturing industries over the period 1972–
1993; Cermeño and Grier who apply a model that accounts for conditional
heteroskedasticity and cross-sectional dependence to a panel of monthly
inflation rates of the G7 over the period 1978.2–2003.9; Yasar, Nelson
and Rejesus who use plant level panel data for Turkish manufacturing in-
dustries to analyze the relative importance of short-run versus long-run
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dynamics of the export-productivity relationship; Drine and Rault who
focus on developing countries and analyze the long-run relationship be-
tween real exchange rate and some macroeconomic variables, via panel
unit root and cointegration tests; Harris, Tang and Tseng who quantify
the impact of employee turnover on productivity using an Australian busi-
ness longitudinal survey over the period 1994/5 to 1997/8; Kaltchev who
uses proprietary and confidential panel data on 113 public U.S. compa-
nies over the period 1997–2003 to analyze the demand for Directors’ and
Officers’ liability insurance; Ortega-Díaz who assesses how income in-
equality influences economic growth across 32 Mexican States over the
period 1960–2002.

Theoretical econometrics contributions

Bai and Kao suggest a factor model approach to model cross-section de-
pendence in the panel co-integrated regression setting. Factor models are
used to study world business cycles as well as common macro shocks
like international financial crises or oil price shocks. Factor models offer
a significant reduction in the number of sources of cross-sectional depen-
dence in panel data and they allow for heterogeneous response to common
shocks through heterogeneous factor loadings. Bai and Kao suggest a
continuous-updated fully modified estimator for this model and show that
it has better finite sample performance than OLS and a two step fully mod-
ified estimator.

Lejeune proposes new estimation methods for a general heteroskedastic
error component model with unbalanced panel data, namely the Gaussian
pseudo maximum likelihood of order 2. In addition, Lejeune suggests
some diagnostics tests for heteroskedasticity, misspecification testing us-
ing m-tests, Hausman type and Information type tests. Lejeune applies
these methods to estimate and test a translog production function using
an unbalanced panel of 824 French firms observed over the period 1979–
1988.

Ullah and Huang study the finite sample properties of feasible GLS for
the random effects model with non-normal errors. They study the effects
of skewness and excess kurtosis on the bias and mean squared error of
the estimator using asymptotic expansions. This is done for largeN and
fixed T , under the assumption that the first four moments of the error are
finite.

Kazemi and Crouchley suggest a pragmatic approach to the problem of
estimating a dynamic panel regression with random effects under various
assumptions about the nature of the initial conditions. They find that the
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full maximum likelihood improves the consistency results if the relation-
ships between random effects, initial conditions and explanatory variables
are correctly specified. They illustrate this by testing a variety of different
hypothetical models in empirical contexts. They use information criteria
to select the best approximating model.

Krishnakumar uses a generalized version of the Frisch–Waugh theo-
rem to extend Mundlak’s (1978) results for the error component model
with individual effects that are correlated with the explanatory variables.
In particular, this extension is concerned with the presence of time invari-
ant variables and correlated specific effects.

Empirical contributions

The paper by Sickles and Williams estimates a dynamic model of crime
using panel data from the 1958 Philadelphia Birth Cohort study. Agents
are rational and anticipate the future consequence of their actions. The
authors investigate the role of social capital through the influence of social
norms on the decision to participate in crime. They find that the initial level
of social capital stock is important in determining the pattern of criminal
involvement in adulthood.

The paper by Baltagi and Griffin uses panel data on liquor consump-
tion for 21 Swedish counties over the period 1956–1999. It finds that at
least 4 structural breaks are necessary to account for the sharp decline in
per-capita liquor consumption over this period. The first structural break
coincides with the 1980 advertising ban, but subsequent breaks do not
appear linked to particular policy initiatives. Baltagi and Griffin inter-
pret these results as taste change accounting for increasing concerns with
health issues and changing drinking mores.

The paper by Boumahdi, Chaaban and Thomas estimate a flexible AIDS
demand model for agricultural imports into Lebanon incorporating a three-
way error component model that allows for product, country and time
effects as separate unobserved determinants of import demand. In their
application to trade in agricultural commodities the authors are primarily
concerned with the estimation of import demand elasticities. Convention-
ally, such estimates are frequently obtained from time series data that
ignore the substitution elasticities across commodities, and thus implicitly
ignore the cross-sectional dimension of the data. Exhaustive daily trans-
actions (both imports and exports) data are obtained from the Lebanese
customs administration for the years 1997–2002. Restricting their atten-
tion to major agricultural commodities (meat, dairy products, cereals, ani-
mals and vegetable fats and sugar), they estimate an import share equation
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for European products as a function of own-price and competitors prices.
Competition is taking place between European countries, Arab and re-
gional countries, North and South America and the rest of the world. The
import share equations are estimated by allowing for parameter hetero-
geneity across the 5 commodity groups, and tests for the validity of the
multi-way error components specification are performed using unbalanced
panel data. Estimation results show that this specification is generally sup-
ported by the data.

The paper by Biørn, Skjerpen and Wangen is concerned with the
analysis of heterogeneous log-linear relationships (and specifically Cobb–
Douglas production functions) at the firm-level and at the correspond-
ing aggregate industry level. While the presence of aggregation bias in
log-linear models is widely recognized, considerable empirical analysis
continues to be conducted ignoring the problem. This paper derives a de-
composition that highlights the source of biases that arise in aggregate
work. It defines some aggregate elasticity measures and illustrates these
in an empirical exercise based on firm-level data in two Norwegian manu-
facturing industries: The pulp and paper industry (2823 observations, 237
firms) and the basic metals industry (2078 observations, 166 firms) ob-
served over the period 1972–1993.

The paper by Cermeño and Grier specify a model that accounts for
conditional heteroskedasticity and cross-sectional dependence within a
typical panel data framework. The paper applies this model to a panel of
monthly inflation rates of the G7 over the period 1978.2–2003.9 and finds
significant and quite persistent patterns of volatility and cross-sectional
dependence. The authors use the model to test two hypotheses about the
inter-relationship between inflation and inflation uncertainty, finding no
support for the hypothesis that higher inflation uncertainty produces higher
average inflation rates and strong support for the hypothesis that higher in-
flation is less predictable.

The paper by Yasar, Nelson and Rejesus uses plant level panel data
for Turkish manufacturing industries to analyze the relative importance
of short-run versus long-run dynamics of the export-productivity relation-
ship. The adopted econometric approach is a panel data error correction
model that is estimated by means of system GMM. The data consists of
plants with more than 25 employees from two industries, the textile and
apparel industry and the motor vehicles and parts industry, observed over
the period 1987–1997. They find that “permanent productivity shocks gen-
erate larger long-run export level responses, as compared to long-run pro-
ductivity responses from permanent export shocks”. This result suggests
that industrial policy should be geared toward permanent improvements
in plant-productivity in order to have sustainable long-run export and eco-
nomic growth.
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The paper by Drine and Rault focuses on developing countries and
analyzes the long-run relationship between real exchange rate and some
macroeconomic variables, via panel unit root and cointegration tests. The
results show that the degrees of development and of openness of the econ-
omy strongly influence the real exchange rate. The panels considered are
relatively small: Asia (N = 7, T = 21), Africa (N = 21, T = 16) and
Latin America (N = 17,T = 23).

The paper by Harris, Tang and Tseng consider a balanced panel of
medium sized firms drawn from the Australian business longitudinal sur-
vey over the period 1994/5 to 1997/8. The paper sets out to quantify the
impact of employee turnover on productivity and finds that the optimal
turnover rate is 0.22. This is higher than the sample median of 0.14 which
raises the question about whether there are institutional rigidities hinder-
ing resource allocation in the labor market.

The paper by Kaltchev uses proprietary and confidential panel data on
113 public U.S. companies over the period 1997–2003 to analyze the de-
mand for Directors’ and Officers’ liability insurance. Applying system
GMM methods to a dynamic panel data model on this insurance data,
Kaltchev rejects that this theory is habit driven but still finds some role
for persistence. He also confirms the hypothesis that smaller companies
demand more insurance. Other empirical findings include the following:
Returns are significant in determining the amount of insurance and com-
panies in financial distress demand higher insurance limits. Indicators of
financial health such as leverage and volatility are significant, but not cor-
porate governance.

The paper by Ortega-Díaz assesses how income inequality influences
economic growth across 32 Mexican States over the period 1960–2002.
Using dynamic panel data analysis, with both, urban personal income for
grouped data and household income from national surveys, Ortega-Díaz
finds that inequality and growth are positively related. This relationship is
stable across variable definitions and data sets, but varies across regions
and trade periods. A negative influence of inequality on growth is found
in a period of restrictive trade policies. In contrast, a positive relationship
is found in a period of trade openness.

I hope the readers enjoy this set of 15 papers on panel data and share
my view on the wide spread use of panels in all fields of economics as
clear from the applications. I would like to thank the anonymous referees
that helped in reviewing these manuscripts. Also, Jennifer Broaddus for
her editorial assistance and handling of these manuscripts.

Badi H. Baltagi
College Station, Texas and Syracuse, New York
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CHAPTER 1

On the Estimation and Inference of a Panel
Cointegration Model with Cross-Sectional

Dependence

Jushan Baia and Chihwa Kaob

aDepartment of Economics, New York University, New York, NY 10003, USA and Department of Economics,
Tsinghua University, Beijing 10084, China

E-mail address:Jushan.Bai@nyu.edu
bCenter for Policy Research and Department of Economics, Syracuse University, Syracuse, NY 13244-1020, USA

E-mail address:cdkao@maxwell.syr.edu

Abstract

Most of the existing literature on panel data cointegration assumes cross-
sectional independence, an assumption that is difficult to satisfy. This pa-
per studies panel cointegration under cross-sectional dependence, which
is characterized by a factor structure. We derive the limiting distribution of
a fully modified estimator for the panel cointegrating coefficients. We also
propose a continuous-updated fully modified (CUP-FM) estimator. Monte
Carlo results show that the CUP-FM estimator has better small sample
properties than the two-step FM (2S-FM) and OLS estimators.

Keywords: panel data, cross-sectional dependence, factor analysis, CUP-
FM, 2S-FM

JEL classifications:C13, C33

1.1 Introduction

A convenient but difficult to justify assumption in panel cointegration
analysis is cross-sectional independence. Left untreated, cross-sectional
dependence causes bias and inconsistency estimation, as argued by
Andrews (2005). In this paper, we use a factor structure to characterize
cross-sectional dependence. Factors models are especially suited for this
purpose. One major source of cross-section correlation in macroeconomic
data is common shocks, e.g., oil price shocks and international financial

mailto:Jushan.Bai@nyu.edu
mailto:cdkao@maxwell.syr.edu


4 J. Bai and C. Kao

crises. Common shocks drive the underlying comovement of economic
variables. Factor models provide an effective way to extract the comove-
ment and have been used in various studies.1 Cross-sectional correlation
exists even in micro level data because of herd behavior (fashions, fads,
and imitation cascades) either at firm level or household level. The general
state of an economy (recessions or booms) also affects household decision
making. Factor models accommodate individual’s different responses to
common shocks through heterogeneous factor loadings.

Panel data models with correlated cross-sectional units are important
due to increasing availability of large panel data sets and increasing inter-
connectedness of the economies. Despite the immense interest in testing
for panel unit roots and cointegration,2 not much attention has been paid
to the issues of cross-sectional dependence. Studies using factor models
for nonstationary data includeBai and Ng (2004), Bai (2004), Phillips
and Sul (2003), andMoon and Perron (2004). Chang (2002)proposed to
use a nonlinear IV estimation to construct a new panel unit root test.Hall
et al. (1999)considered a problem of determining the number of common
trends.Baltagiet al. (2004)derived several Lagrange Multiplier tests for
the panel data regression model with spatial error correlation.Robertson
and Symon (2000), Coakleyet al. (2002)andPesaran (2004)proposed to
use common factors to capture the cross-sectional dependence in station-
ary panel models. All these studies focus on either stationary data or panel
unit root studies rather than panel cointegration.

This paper makes three contributions. First, it adds to the literature by
suggesting a factor model for panel cointegrations. Second, it proposes a
continuous-updated fully modified (CUP-FM) estimator. Third, it provides
a comparison for the finite sample properties of the OLS, two-step fully
modified (2S-FM), CUP-FM estimators.

The rest of the paper is organized as follows. Section1.2 introduces
the model. Section1.3presents assumptions. Sections1.4 and 1.5develop
the asymptotic theory for the OLS and fully modified (FM) estimators.
Section1.6 discusses a feasible FM estimator and suggests a CUP-FM
estimator. Section1.7 makes some remarks on hypothesis testing. Sec-
tion 1.8presents Monte Carlo results to illustrate the finite sample proper-
ties of the OLS and FM estimators. Section1.9 summarizes the findings.
Appendix A1contains the proofs of lemmas and theorems.

The following notations are used in the paper. We write the integral∫ 1
0 W(s)ds as

∫
W when there is no ambiguity over limits. We define

1 For example,Stock and Watson (2002), Gregory and Head (1999), Forni and Reichlin
(1998)andForniet al. (2000)to name a few.
2 SeeBaltagi and Kao (2000)for a recent survey.
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Ω1/2 to be any matrix such thatΩ = (Ω1/2)(Ω1/2)′. We use‖A‖ to de-
note{tr(A′A)}1/2, |A| to denote the determinant ofA, ⇒ to denote weak

convergence,
p→ to denote convergence in probability,[x] to denote the

largest integer� x, I (0) andI (1) to signify a time-series that is integrated
of order zero and one, respectively, andBM(Ω) to denote Brownian mo-
tion with the covariance matrixΩ. We letM < ∞ be a generic positive
number, not depending onT or n.

1.2 The model

Consider the following fixed effect panel regression:

(1.1)yit = αi + βxit + eit , i = 1, . . . , n, t = 1, . . . , T ,

whereyit is 1× 1, β is a 1× k vector of the slope parameters,αi is the
intercept, andeit is the stationary regression error. We assume thatxit is a
k × 1 integrated processes of order one for alli, where

xit = xit−1 + εit .

Under these specifications,(1.1) describes a system of cointegrated re-
gressions, i.e.,yit is cointegrated withxit . The initialization of this system
is yi0 = xi0 = Op(1) as T → ∞ for all i. The individual constant
term αi can be extended into general deterministic time trends such as
α0i + α1i t + · · · + αpi t or other deterministic component. To model the
cross-sectional dependence we assume the error term,eit , follows a factor
model (e.g.,Bai and Ng, 2002, 2004):

(1.2)eit = λ′
iFt + uit ,

whereFt is ar ×1 vector of common factors,λi is ar ×1 vector of factor
loadings anduit is the idiosyncratic component ofeit , which means

E(eitej t ) = λ′
iE(FtF

′
t )λj ,

i.e.,eit andej t are correlated due to the common factorsFt .

REMARK 1.1. We could also allowεit to have a factor structure such that

εit = γ ′
iFt + ηit .

Then we can useΔxit to estimateFt andγi . Or we can useeit together
with Δxit to estimateFt , λi andγi . In general,εit can be of the form

εit = γ ′
iFt + τ ′

iGt + ηit ,

whereFt andGt are zero mean processes, andηit are usually independent
overi andt .
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1.3 Assumptions

Our analysis is based on the following assumptions.

ASSUMPTION 1.1. Asn → ∞, 1
n

∑n
i=1 λiλ

′
i → Σλ, a r × r positive

definite matrix.

ASSUMPTION1.2. Letwit = (F ′
t , uit , ε

′
it )

′. For eachi, wit = Πi(L)vit
=
∑∞

j=0Πijvit−j ,
∑∞

j=0 j
a‖Πij‖ < ∞, |Πi(1)| �= 0, for somea > 1,

wherevit is i.i.d. overt . In addition,Evit = 0,E(vitv′
it ) = Σv > 0, and

E‖vit‖8 � M < ∞.

ASSUMPTION 1.3. Ft and uit are independent;uit are independent
acrossi.

UnderAssumption 1.2, a multivariate invariance principle forwit holds,
i.e., the partial sum process1√

T

∑[T r]
t=1 wit satisfies:

(1.3)
1√
T

[T r]∑

t=1

wit ⇒ B(Ωi) asT → ∞ for all i,

where

Bi =
[
BF

Bui

Bεi

]
.

The long-run covariance matrix of{wit } is given by

Ωi =
∞∑

j=−∞
E(wi0w

′
ij )

= Πi(1)ΣvΠi(1)
′

= Σi + Γi + Γ ′
i

=
[
ΩFi ΩFui ΩFεi

ΩuF i Ωui Ωuεi

ΩεF i Ωεui Ωεi

]
,

where

(1.4)Γi =
∞∑

j=1

E(wi0w
′
ij ) =

[
ΓFi ΓFui ΓFεi
ΓuF i Γui Γuεi
ΓεF i Γεui Γεi

]
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and

Σi = E(wi0w
′
i0) =

[
ΣFi ΣFui ΣFεi

ΣuF i Σui Σuεi

ΣεF i Σεui Σεi

]

are partitioned conformably withwit . We denote

Ω = lim
n→∞

1

n

n∑

i=1

Ωi,

Γ = lim
n→∞

1

n

n∑

i=1

Γi,

and

Σ = lim
n→∞

1

n

n∑

i=1

Σi .

ASSUMPTION1.4. Ωεi is nonsingular, i.e.,{xit }, are not cointegrated.

Define

Ωbi =
[
ΩFi ΩFui

ΩuF i Ωui

]
, Ωbεi =

[
ΩFεi

Ωuεi

]

and

Ωb.εi = Ωbi −ΩbεiΩ
−1
εi Ωεbi .

Then,Bi can be rewritten as

(1.5)Bi =
[
Bbi

Bεi

]
=
[
Ω

1/2
b.εi ΩbεiΩ

−1/2
εi

0 Ω
1/2
εi

] [
Vbi
Wi

]
,

where

Bbi =
[
BF

Bui

]
,

Vbi =
[
VF
Vui

]
,

and
[
Vbi
Wi

]
= BM(I )
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is a standardized Brownian motion. Define the one-sided long-run covari-
ance

Δi = Σi + Γi

=
∞∑

j=0

E(wi0w
′
ij )

with

Δi =
[
Δbi Δbεi

Δεbi Δεi

]
.

REMARK 1.2. (1) Assumption 1.1is a standard assumption in factor
models (e.g.,Bai and Ng, 2002, 2004) to ensure the factor structure is
identifiable. We only consider nonrandom factor loadings for simplicity.
Our results still hold when theλ′

is are random, provided they are indepen-
dent of the factors and idiosyncratic errors, andE‖λi‖4 � M.

(2) Assumption 1.2assumes that the random factors,Ft , and idiosyn-
cratic shocks(uit , ε′

it ) are stationary linear processes. Note thatFt andεit
are allowed to be correlated. In particular,εit may have a factor structure
as inRemark 1.1.

(3) Assumption of independence made inAssumption 1.3betweenFt
anduit can be relaxed followingBai and Ng (2002). Nevertheless, inde-
pendence is not a restricted assumption since cross-sectional correlations
in the regression errorseit are taken into account by the common factors.

1.4 OLS

Let us first study the limiting distribution of the OLS estimator for Equa-
tion (1.1). The OLS estimator ofβ is

(1.6)

β̂OLS =
[

n∑

i=1

T∑

t=1

yit (xit − x̄i)
′
][

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

.

THEOREM 1.1. UnderAssumptions1.1–1.4, we have
√
nT (β̂OLS − β)−

√
nδnT

⇒ N

(
0, 6Ω−1

ε

{
lim
n→∞

1

n

n∑

i=1

(λ′
iΩF.εiλiΩεi + Ωu.εiΩεi)

}
Ω−1
ε

)
,
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as(n, T → ∞) with n
T

→ 0 where

δnT = 1

n

[
n∑

i=1

λ′
i

(
ΩFεiΩ

1/2
εi

(
1

T

T∑

t=1

x′
it (xit − x̄i)

)
Ω

−1/2
εi +ΔFεi

)

+ΩuεiΩ
1/2
εi

(
1

T

T∑

t=1

x′
it (xit − x̄i)

)
Ω

−1/2
εi +Δuεi

]

×
[

1

n

n∑

i=1

1

T 2

T∑

t=1

(xit − xit )(xit − x̄i)
′
]−1

,

W̃i = Wi −
∫
Wi andΩε = limn→∞ 1

n

∑n
i=1Ωεi .

REMARK 1.3. It is also possible to construct the bias-corrected OLS by
using the averages of the long run covariances. Note

E[δnT ]

≃ 1

n

[
n∑

i=1

λ′
i

(
−1

2
ΩFεi +ΔFεi

)
− 1

2
Ωuεi +Δuεi

](
1

6
Ωε

)−1

= 1

n

[
n∑

i=1

(
−1

2

)
(λ′

iΩFεi +Ωuεi)+ λ′
iΔFεi +Δuεi

](
1

6
Ωε

)−1

=
(

1

n

n∑

i=1

(
−1

2

)
λ′
iΩFεi + 1

n

n∑

i=1

Ωuεi + 1

n

n∑

i=1

λ′
iΔFεi

+ 1

n

n∑

i=1

Δuεi

)(
1

6
Ωε

)−1

.

It can be shown by a central limit theorem that

√
n
(
δnT − E[δnT ]

)
⇒ N(0, B)

for someB. Therefore,

√
nT (β̂OLS − β)−

√
nE[δnT ]

=
√
nT (β̂OLS − β)−

√
nδnT +

√
n
(
δnT − E[δnT ]

)

⇒ N(0, A)

for someA.
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1.5 FM estimator

Next we examine the limiting distribution of the FM estimator,β̂FM. The
FM estimator was suggested byPhillips and Hansen (1990)in a different
context (nonpanel data). The FM estimator is constructed by making cor-
rections for endogeneity and serial correlation to the OLS estimatorβ̂OLS

in (1.6). The endogeneity correction is achieved by modifying the variable
yit , in (1.1)with the transformation

y+
it = yit − (λ′

iΩFεi +Ωuεi)Ω
−1
εi Δxit .

The serial correlation correction term has the form

Δ+
bεi = Δbεi −ΩbεiΩ

−1
εi Δεi

=
[
Δ+
Fεi

Δ+
uεi

]
.

Therefore, the infeasible FM estimator is

β̃FM =
[

n∑

i=1

(
T∑

t=1

y+
it (xit − x̄i)

′ − T
(
λ′
iΔ

+
Fεi +Δ+

uεi

)
)]

(1.7)×
[

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

.

Now, we state the limiting distribution of̃βFM.

THEOREM 1.2. LetAssumptions1.1–1.4hold. Then as(n, T → ∞) with
n
T

→ 0

√
nT (β̃FM − β)

⇒ N

(
0, 6Ω−1

ε

{
lim
n→∞

1

n

n∑

i=1

(λ′
iΩF.εiλiΩεi + Ωu.εiΩεi)

}
Ω−1
ε

)
.

REMARK 1.4. The asymptotic distribution inTheorem 1.2is reduced to

√
nT (β̃FM − β) ⇒ N

(
0, 6Ω−1

ε

((
lim
n→∞

1

n

n∑

i=1

λ2
i

)
ΩF.ε +Ωu.ε

))

if the long-run covariances are the same across the cross-sectional uniti

andr = 1.
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1.6 Feasible FM

In this section we investigate the limiting distribution of the feasible FM.
We will show that the limiting distribution of the feasible FM is not af-
fected whenλi ,Ωεi ,Ωεbi ,Ωεi , andΔεbi are estimated. To estimateλi , we
use the method of principal components used inStock and Watson (2002).
Let λ = (λ1, λ2, . . . , λn)

′ andF = (F1, F2, . . . , FT )
′. The method of

principal components ofλ andF minimizes

V (r) = 1

nT

n∑

i=1

T∑

t=1

(êit − λ′
iFt )

2,

where

êit = yit − α̂i − β̂xit

= (yit − ȳi)− β̂(xit − x̄i),

with a consistent estimator̂β. Concentrating outλ and using the nor-
malization thatF ′F/T = Ir , the optimization problem is identical to
maximizing tr(F ′(ZZ′)F ), whereZ = (ê1, ê2, . . . , ên) is T × n with
êi = (êi1, êi2, . . . , êiT )

′. The estimated factor matrix, denoted bŷF , a
T × r matrix, is

√
T times eigenvectors corresponding to ther largest

eigenvalues of theT × T matrixZZ′, and

λ̂′ = (F̂ ′F̂ )−1F̂ ′Z

= F̂ ′Z

T

is the corresponding matrix of the estimated factor loadings. It is known
that the solution to the above minimization problem is not unique, i.e.,λi
andFt are not directly identifiable but they are identifiable up to a trans-
formationH . For our setup, knowingHλi is as good as knowingλi . For
example in(1.7) usingλ′

iΔ
+
Fεi will give the same information as using

λ′
iH

′H ′−1Δ+
Fεi sinceΔ+

Fεi is also identifiable up to a transformation, i.e.,
λ′
iH

′H ′−1Δ+
Fεi = λ′

iΔ
+
Fεi . Therefore, when assessing the properties of the

estimates we only need to consider the differences in the space spanned by,
say, between̂λi andλi .

Define the feasible FM,̂βFM, with λ̂i , F̂t , Σ̂i , andΩ̂i in place ofλi , Ft ,
Σi , andΩi ,

β̂FM =
[

n∑

i=1

(
T∑

t=1

ŷ+
it (xit − x̄i)

′ − T
(
λ̂′
iΔ̂

+
Fεi + Δ̂+

uεi

)
)]

×
[

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

,
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where

ŷ+
it = yit − (λ̂′

iΩ̂Fεi + Ω̂uεi)Ω̂
−1
εi Δxit

andΔ̂+
Fεi andΔ̂+

uεi are defined similarly.
Assume thatΩi = Ω for all i. Let

e+
it = eit − (λ′

iΩFε +Ωuε)Ω
−1
ε Δxit ,

Δ̂+
bεn = 1

n

n∑

i=1

Δ̂+
bεi,

and

Δ+
bεn = 1

n

n∑

i=1

Δ+
bεi .

Then
√
nT (β̂FM − β̃FM)

= 1√
nT

n∑

i=1

{(
T∑

t=1

ê+
it (xit − x̄i)

′ − T Δ̂+
bεn

)

−
(

T∑

t=1

e+
it (xit − x̄i)

′ − TΔ+
bεn

)}

×
[

1

nT 2

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

=
[

1√
nT

n∑

i=1

(
T∑

t=1

(
ê+
it − e+

it

)
(xit − x̄i)

′ − T
(
Δ̂+
bεn −Δ+

bεn

)
)]

×
[

1

nT 2

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

.

Before we proveTheorem 1.3we need the following lemmas.

LEMMA 1.1. UnderAssumptions1.1–1.4
√
n(Δ̂+

bεn − Δ+
bεn) = op(1).

Lemma 1.1can be proved similarly by followingPhillips and Moon
(1999)andMoon and Perron (2004).

LEMMA 1.2. SupposeAssumptions1.1–1.4hold. There exists anH with
rank r such that as(n, T → ∞)
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(i)
1

n

n∑

i=1

‖λ̂i − Hλi‖2 = Op

(
1

δ2
nT

)
.

(ii) Let ci (i = 1, 2, . . . , n) be a sequence of random matrices such that
ci = Op(1) and 1

n

∑n
i=1 ‖ci‖2 = Op(1) then

1

n

n∑

i=1

(λ̂i −Hλi)
′ci = Op

(
1

δ2
nT

)
,

whereδnT = min{√n,
√
T }.

Bai and Ng (2002)showed that for a known̂eit that the average squared
deviations between̂λi andHλi vanish asn andT both tend to infinity and
the rate of convergence is the minimum ofn andT . Lemma 1.2can be
proved similarly by followingBai and Ng (2002)that parameter estimation
uncertainty forβ has no impact on the null limit distribution ofλ̂i .

LEMMA 1.3. UnderAssumptions1.1–1.4

1√
nT

n∑

i=1

T∑

t=1

(
ê+
it − e+

it

)
(xit − x̄i)

′ = op(1)

as(n, T → ∞) and
√
n
T

→ 0.

Then we have the following theorem:

THEOREM 1.3. Under Assumptions1.1–1.4 and (n, T → ∞) and√
n

T
→ 0

√
nT (β̂FM − β̃FM) = op(1).

In the literature, the FM-type estimators usually were computed with a
two-step procedure, by assuming an initial consistent estimate ofβ, say
β̂OLS. Then, one constructs estimates of the long-run covariance matrix,
Ω̂(1), and loading,̂λ(1)i . The 2S-FM, denoted̂β(1)2S is obtained usinĝΩ(1)

andλ̂(1)i :

β̂
(1)
2S =

[
n∑

i=1

(
T∑

t=1

ŷ
+(1)
it (xit − x̄i)

′ − T
(
λ̂

′(1)
i Δ̂

+(1)
Fεi + Δ̂

+(1)
uεi

)
)]

(1.8)×
[

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

.
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In this paper, we propose a CUP-FM estimator. The CUP-FM is con-
structed by estimating parameters and long-run covariance matrix and
loading recursively. ThuŝβFM, Ω̂ and λ̂i are estimated repeatedly, until
convergence is reached. In Section1.8, we find the CUP-FM has a supe-
rior small sample properties as compared with the 2S-FM, i.e., CUP-FM
has smaller bias than the common 2S-FM estimator. The CUP-FM is de-
fined as

β̂CUP =
[

n∑

i=1

(
T∑

t=1

ŷ+
it (β̂CUP)(xit − x̄i)

′

− T
(
λ̂′
i(β̂CUP)Δ̂

+
Fεi(β̂CUP)+ Δ̂+

uεi(β̂CUP)
)
)]

(1.9)×
[

n∑

i=1

T∑

t=1

(xit − x̄i)(xit − x̄i)
′
]−1

.

REMARK 1.5. (1) In this paper, we assume the number of factors,r, is
known.Bai and Ng (2002)showed that the number of factors can be found
by minimizing the following:

IC(k) = log
(
V (k)

)
+ k

(
n + T

nT

)
log

(
nT

n + T

)
.

(2) Once the estimates ofwit , ŵit = (F̂ ′
t , ûit ,Δx

′
it )

′, were estimated,
we used

(1.10)Σ̂ = 1

nT

n∑

i=1

T∑

t=1

ŵit ŵ
′
it

to estimateΣ , where

ûit = êit − λ̂′
iF̂t .

Ω was estimated by

Ω̂ = 1

n

N∑

i=1

{
1

T

T∑

t=1

ŵit ŵ
′
it

(1.11)+ 1

T

l∑

τ=1

̟τ l

T∑

t=τ+1

(ŵit ŵ
′
it−τ + ŵit−τ ŵ

′
it )

}
,

where̟τ l is a weight function or a kernel. UsingPhillips and Moon
(1999), Σ̂i andΩ̂i can be shown to be consistent forΣi andΩi .



On the Estimation and Inference of a Panel Cointegration Model 15

1.7 Hypothesis testing

We now consider a linear hypothesis that involves the elements of the co-
efficient vectorβ. We show that hypothesis tests constructed using the FM
estimator have asymptotic chi-squared distributions. The null hypothesis
has the form:

(1.12)H0: Rβ = r,

wherer is am×1 known vector andR is a knownm×k matrix describing
the restrictions. A natural test statistic of the Wald test usingβ̂FM is

W = 1

6
nT 2(Rβ̂FM − r)′

[
6Ω̂−1

ε

{
lim
n→∞

1

n

n∑

i=1

(λ̂′
iΩ̂F.εi λ̂iΩ̂εi

(1.13)+ Ω̂u.εiΩ̂εi)

}
Ω̂−1
ε

]−1

(Rβ̂FM − r).

It is clear thatW converges in distribution to a chi-squared random
variable withk degrees of freedom,χ2

k , as(n, T → ∞) under the null
hypothesis. Hence, we establish the following theorem:

THEOREM 1.4. If Assumptions1.1–1.4hold, then under the null hypoth-
esis(1.12), with (n, T → ∞), W ⇒ χ2

k ,

REMARK 1.6. (1) One common application ofTheorem 1.4is the single-
coefficient test: one of the coefficient is zero;βj = β0,

R = [ 0 0 · · · 1 0 · · · 0]

andr = 0. We can construct at-statistic

(1.14)tj =
√
nT (β̂jFM − β0)

sj
,

where

s2
j =

[
6Ω̂−1

ε

{
lim
n→∞

1

n

n∑

i=1

(λ̂′
iΩ̂F.εi λ̂iΩ̂εi + Ω̂u.εiΩ̂εi)

}
Ω̂−1
ε

]

jj

,

thej th diagonal element of
[

6Ω̂−1
ε

{
lim
n→∞

1

n

n∑

i=1

(λ̂′
iΩ̂F.εi λ̂iΩ̂εi + Ω̂u.εiΩ̂εi)

}
Ω̂−1
ε

]
.

It follows that

(1.15)tj ⇒ N(0, 1).
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(2) General nonlinear parameter restriction such asH0: h(β) = 0,
whereh(·), is k∗ × 1 vector of smooth functions such that∂h

∂β ′ has full
rankk∗ can be conducted in a similar fashion as inTheorem 1.4. Thus, the
Wald test has the following form

Wh = nT 2h(β̂FM)
′V̂ −1

h h(β̂FM),

where

V̂ −1
h =

(
∂h(β̂FM)

∂β ′

)
V̂ −1
β

(
∂h(β̂ ′

FM)

∂β

)

and

(1.16)V̂β = 6Ω̂−1
ε

{
lim
n→∞

1

n

n∑

i=1

(λ̂′
iΩ̂F.εi λ̂Ω̂εii + Ω̂u.εiΩ̂εi)

}
Ω̂−1
ε .

It follows that

Wh ⇒ χ2
k∗

as(n, T → ∞).

1.8 Monte Carlo simulations

In this section, we conduct Monte Carlo experiments to assess the finite
sample properties of OLS and FM estimators. The simulations were per-
formed by a Sun SparcServer 1000 and an Ultra Enterprise 3000. GAUSS
3.2.31 and COINT 2.0 were used to perform the simulations. Random
numbers for error terms,(F ∗

t , u
∗
it , ε

∗
it ) were generated by the GAUSS pro-

cedure RNDNS. At each replication, we generated ann(T + 1000) length
of random numbers and then split it inton series so that each series had the
same mean and variance. The first 1,000 observations were discarded for
each series.{F ∗

t }, {u∗
it } and{ε∗

it } were constructed withF ∗
t = 0, u∗

i0 = 0
andε∗

i0 = 0.
To compare the performance of the OLS and FM estimators we con-

ducted Monte Carlo experiments based on a design which is similar to
Kao and Chiang (2000)

yit = αi + βxit + eit ,

eit = λ′
iFt + uit ,

and

xit = xit−1 + εit
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for i = 1, . . . , n, t = 1, . . . , T , where

(1.17)

(
Ft
uit
εit

)
=
(
F ∗
t

u∗
it

ε∗
it

)
+
( 0 0 0

0 0.3 −0.4
θ31 θ32 0.6

)(
F ∗
t−1

u∗
it−1
ε∗
it−1

)

with
(
F ∗
t

u∗
it

ε∗
it

)
i.i.d.∼ N

([0
0
0

]
,

[ 1 σ12 σ13
σ21 1 σ23
σ31 σ32 1

])
.

For this experiment, we have a single factor(r = 1) andλi are gen-
erated from i.i.d.N(μλ, 1). We letμλ = 0.1. We generatedαi from a
uniform distribution,U [0, 10], and setβ = 2. FromTheorems 1.1–1.3we
know that the asymptotic results depend upon variances and covariances
of Ft , uit andεit . Here we setσ12 = 0. The design in(1.17)is a good one
since the endogeneity of the system is controlled by only four parameters,
θ31, θ32, σ31 andσ32. We chooseθ31 = 0.8, θ32 = 0.4, σ31 = −0.8 and
θ32 = 0.4.

The estimate of the long-run covariance matrix in(1.11)was obtained
by using the procedure KERNEL in COINT 2.0 with a Bartlett window.
The lag truncation number was set arbitrarily at five. Results with other
kernels, such as Parzen and quadratic spectral kernels, are not reported,
because no essential differences were found for most cases.

Next, we recorded the results from our Monte Carlo experiments that
examined the finite-sample properties of (a) the OLS estimator,β̂OLS in
(1.6), (b) the 2S-FM estimator,̂β2S, in (1.8), (c) the two-step naive FM es-
timator,β̂bFM, proposed byKao and Chiang (2000)andPhillips and Moon
(1999), (d) the CUP-FM estimator̂βCUP, in (1.9) and (e) the CUP naive
FM estimatorβ̂dFM which is similar to the two-step naive FM except the
iteration goes beyond two steps. The naive FM estimators are obtained
assuming the cross-sectional independence. The maximum number of the
iteration for CUP-FM estimators is set to 20. The results we report are
based on 1,000 replications and are summarized inTables 1.1–1.4. All the
FM estimators were obtained by using a Bartlett window of lag length five
as in(1.11).

Table 1.1reports the Monte Carlo means and standard deviations (in
parentheses) of(β̂OLS−β), (β̂2S−β), (β̂bFM−β), (β̂CUP−β), and(β̂dFM−β)

for sample sizesT = n = (20, 40, 60). The biases of the OLS estimator,
β̂OLS, decrease at a rate ofT . For example, withσλ = 1 andσF = 1, the
bias atT = 20 is−0.045, atT = 40 is−0.024, and atT = 60 is−0.015.
Also, the biases stay the same for different values ofσλ andσF .

While we expected the OLS estimator to be biased, we expected FM
estimators to produce better estimates. However, it is noticeable that the
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Table 1.1. Means biases and standard deviation of OLS and FM estimators

σλ = 1 σλ =
√

10 σλ =
√

0.5

OLS FMa FMb FMc FMd OLS FMa FMb FMc FMd OLS FMa FMb FMc FMd

σF = 1
T = 20 −0.045 −0.025 −0.029 −0.001 −0.006 −0.046 −0.025 −0.029 −0.001 −0.006 −0.045 −0.025 −0.029 −0.001 −0.006

(0.029) (0.028) (0.029) (0.034) (0.030) (0.059) (0.054) (0.059) (0.076) (0.060) (0.026) (0.026) (0.026) (0.030) (0.028)
T = 40 −0.024 −0.008 −0.011 −0.002 −0.005 −0.024 −0.009 −0.012 −0.003 −0.005 −0.024 −0.008 −0.011 −0.002 −0.005

(0.010) (0.010) (0.010) (0.010) (0.010) (0.020) (0.019) (0.019) (0.021) (0.018) (0.009) (0.009) (0.009) (0.009) (0.009)
T = 60 −0.015 −0.004 −0.005 −0.001 −0.003 −0.015 −0.003 −0.005 −0.001 −0.002 −0.015 −0.004 −0.005 −0.001 −0.003

(0.006) (0.005) (0.005) (0.005) (0.005) (0.011) (0.010) (0.010) (0.011) (0.010) (0.005) (0.005) (0.005) (0.005) (0.004)
σF =

√
10

T = 20 −0.054 −0.022 −0.036 0.011 −0.005 −0.057 −0.024 −0.038 0.013 −0.003 −0.054 −0.022 −0.036 0.011 −0.005
(0.061) (0.054) (0.061) (0.078) (0.062) (0.176) (0.156) (0.177) (0.228) (0.177) (0.046) (0.042) (0.047) (0.059) (0.047)

T = 40 −0.028 −0.007 −0.015 0.001 −0.007 −0.030 −0.009 −0.017 −0.001 −0.009 −0.028 −0.007 −0.014 0.001 −0.007
(0.021) (0.019) (0.019) (0.021) (0.019) (0.059) (0.054) (0.057) (0.061) (0.053) (0.016) (0.015) (0.015) (0.016) (0.015)

T = 60 −0.018 −0.002 −0.007 0.001 −0.004 −0.017 −0.001 −0.006 0.002 −0.003 −0.018 −0.002 −0.007 0.001 −0.004
(0.011) (0.011) (0.011) (0.011) (0.010) (0.032) (0.029) (0.030) (0.031) (0.029) (0.009) (0.008) (0.008) (0.009) (0.008)

σF =
√

0.5
T = 20 −0.044 −0.025 −0.028 −0.003 −0.006 −0.045 −0.026 −0.028 −0.002 −0.006 −0.044 −0.026 −0.028 −0.003 −0.006

(0.026) (0.026) (0.026) (0.030) (0.028) (0.045) (0.041) (0.045) (0.056) (0.046) (0.024) (0.025) (0.025) (0.028) (0.026)
T = 40 −0.023 −0.009 −0.010 −0.003 −0.004 −0.023 −0.009 −0.011 −0.003 −0.005 −0.023 −0.009 −0.010 −0.003 −0.004

(0.009) (0.009) (0.009) (0.009) (0.009) (0.016) (0.015) (0.015) (0.016) (0.014) (0.009) (0.009) (0.009) (0.009) (0.008)
T = 60 −0.015 −0.004 −0.005 −0.001 −0.003 −0.015 −0.004 −0.005 −0.001 −0.002 −0.015 −0.004 −0.005 −0.001 −0.003

(0.005) (0.005) (0.005) (0.005) (0.005) (0.009) (0.008) (0.008) (0.008) (0.008) (0.005) (0.005) (0.005) (0.005) (0.004)

Note: (a) FMa is the 2S-FM, FMb is the naive 2S-FM, FMc is the CUP-FM and FMd is the naive CUP-FM. (b)μλ = 0.1, σ31 = −0.8, σ21 = −0.4,
θ31 = 0.8, andθ21 = 0.4.
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Table 1.2. Means biases and standard deviation of OLS and FM
estimators for differentn andT

(n, T ) OLS FMa FMb FMc FMd

(20,20) −0.045 −0.019 −0.022 −0.001 −0.006
(0.029) (0.028) (0.029) (0.034) (0.030)

(20,40) −0.024 −0.006 −0.009 −0.001 −0.004
(0.014) (0.014) (0.013) (0.014) (0.013)

(20,60) −0.017 −0.004 −0.006 −0.001 −0.003
(0.010) (0.009) (0.009) (0.009) (0.009)

(20,120) −0.008 −0.001 −0.002 −0.000 −0.001
(0.005) (0.004) (0.005) (0.004) (0.004)

(40,20) −0.044 −0.018 −0.021 −0.002 −0.006
(0.021) (0.019) (0.019) (0.023) (0.021)

(40,40) −0.024 −0.007 −0.009 −0.002 −0.004
(0.010) (0.010) (0.010) (0.010) (0.010)

(40,60) −0.015 −0.003 −0.005 −0.001 −0.002
(0.007) (0.007) (0.007) (0.007) (0.007)

(40,120) −0.008 −0.001 −0.002 −0.001 −0.001
(0.003) (0.003) (0.003) (0.003) (0.003)

(60,20) −0.044 −0.018 −0.022 −0.002 −0.007
(0.017) (0.016) (0.016) (0.019) (0.017)

(60,40) −0.022 −0.006 −0.008 −0.002 −0.004
(0.009) (0.008) (0.008) (0.008) (0.008)

(60,60) −0.015 −0.003 −0.005 −0.001 −0.003
(0.006) (0.005) (0.005) (0.005) (0.005)

(60,120) −0.008 −0.001 −0.002 −0.001 −0.001
(0.003) (0.002) (0.002) (0.002) (0.002)

(120, 20) −0.044 −0.018 −0.022 −0.002 −0.007
(0.013) (0.011) (0.012) (0.013) (0.012)

(120, 40) −0.022 −0.006 −0.008 −0.002 −0.004
(0.006) (0.006) (0.006) (0.006) (0.006)

(120, 60) −0.015 −0.003 −0.005 −0.001 −0.003
(0.004) (0.004) (0.004) (0.004) (0.004)

(120, 120) −0.008 −0.001 −0.002 −0.001 −0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

Note:μλ = 0.1, σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, andθ21 = 0.4.

2S-FM estimator still has a downward bias for all values ofσλ andσF ,
though the biases are smaller. In general, the 2S-FM estimator presents
the same degree of difficulty with bias as does the OLS estimator. This is
probably due to the failure of the nonparametric correction procedure.

In contrast, the results inTable 1.1show that the CUP-FM, is distinctly
superior to the OLS and 2S-FM estimators for all cases in terms of the
mean biases. Clearly, the CUP-FM outperforms both the OLS and 2S-FM
estimators.
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Table 1.3. Means biases and standard deviation of t-statistics

σλ = 1 σλ =
√

10 σλ =
√

0.5

OLS FMa FMb FMc FMd OLS FMa FMb FMc FMd OLS FMa FMb FMc FMd

σF = 1
T = 20 −1.994 −1.155 −1.518 −0.056 −0.285 −0.929 −0.546 −0.813 −0.006 −0.122 −2.248 −1.299 −1.656 −0.071 −0.321

(1.205) (1.267) (1.484) (1.283) (1.341) (1.149) (1.059) (1.495) (1.205) (1.254) (1.219) (1.325) (1.490) (1.314) (1.366)
T = 40 −2.915 −0.941 −1.363 −0.227 −0.559 −1.355 −0.465 −0.766 −0.128 −0.326 −3.288 −1.056 −1.474 −0.250 −0.602

(1.202) (1.101) (1.248) (1.054) (1.141) (1.127) (0.913) (1.207) (0.912) (1.049) (1.221) (1.151) (1.253) (1.096) (1.159)
T = 60 −3.465 −0.709 −1.158 −0.195 −0.574 −1.552 −0.308 −0.568 −0.074 −0.261 −3.926 −0.814 −1.280 −0.229 −0.643

(1.227) (1.041) (1.177) (0.996) (1.100) (1.146) (0.868) (1.113) (0.851) (1.016) (1.244) (1.091) (1.189) (1.042) (1.118)
σF =

√
10

T = 20 −1.078 −0.484 −0.984 0.180 −0.096 −0.373 −0.154 −0.350 0.085 −0.006 −1.427 −0.639 1.257 0.229 −0.138
(1.147) (1.063) (1.501) (1.220) (1.271) (1.119) (0.987) (1.508) (1.194) (1.223) (1.163) (1.117) (1.498) (1.244) (1.301)

T = 40 −1.575 −0.355 −0.963 0.042 −0.407 −0.561 −0.152 −0.397 −0.014 −0.190 −2.082 −0.453 −1.211 0.073 −0.506
(1.131) (0.917) (1.214) (0.926) (1.063) (1.097) (0.844) (1.179) (0.871) (1.008) (1.154) (0.967) (1.232) (0.967) (1.096)

T = 60 −1.809 −0.155 −0.776 0.111 −0.390 −0.588 −0.041 −0.247 0.049 −0.111 −2.424 −0.212 −1.019 0.143 −0.523
(1.158) (0.879) (1.131) (0.867) (1.035) (1.108) (0.812) (1.078) (0.811) (0.983) (1.192) (0.929) (1.162) (0.909) (1.069)

σF =
√

0.5
T = 20 −2.196 −1.319 −1.606 −0.137 −0.327 −1.203 −0.734 −1.008 −0.054 −0.176 −2.367 −1.421 −1.692 −0.157 −0.351

(1.219) (1.325) (1.488) (1.307) (1.362) (1.164) (1.112) (1.488) (1.217) (1.273) (1.231) (1.363) (1.492) (1.324) (1.379)
T = 40 −3.214 −1.093 −1.415 −0.311 −0.576 −1.752 −0.619 −0.922 −0.188 −0.385 −3.462 −1.176 −1.481 −0.333 −0.599

(1.226) (1.057) (1.155) (1.104) (1.169) (1.148) (0.962) (1.222) (0.944) (1.087) (1.236) (1.185) (1.255) (1.121) (1.168)
T = 60 −3.839 −0.868 −1.217 −0.296 −0.602 −2.037 −0.446 −0.712 −0.139 −0.331 −4.149 −0.949 −1.295 −0.329 −0.646

(1.239) (1.088) (1.183) (1.037) (1.112) (1.169) (0.908) (1.131) (0.881) (1.038) (1.249) (1.123) (1.190) (1.069) (1.122)

Note: (a) FMa is the 2S-FM, FMb is the naive 2S-FM, FMc is the CUP-FM and FMd is the naive CUP-FM. (b)μλ = 0.1, σ31 = −0.8, σ21 = −0.4,
θ31 = 0.8, andθ21 = 0.4.
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Table 1.4. Means biases and standard deviation of t-statistics for
different n andT

(n, T ) OLS FMa FMb FMc FMd

(20,20) −1.994 −0.738 −1.032 −0.056 −0.286
(1.205) (1.098) (1.291) (1.283) (1.341)

(20,40) −2.051 −0.465 −0.725 −0.105 −0.332
(1.179) (0.999) (1.126) (1.046) (1.114)

(20,60) −2.129 −0.404 −0.684 −0.162 −0.421
(1.221) (0.963) (1.278) (0.983) (1.111)

(20,120) −2.001 −0.213 −0.456 −0.095 −0.327
(1.222) (0.923) (1.083) (0.931) (1.072)

(40,20) −2.759 −1.017 −1.404 −0.103 −0.402
(1.237) (1.116) (1.291) (1.235) (1.307)

(40,40) −2.915 −0.699 −1.075 −0.227 −0.559
(1.202) (1.004) (1.145) (1.054) (1.141)

(40,60) −2.859 −0.486 −0.835 −0.173 −0.493
(1.278) (0.998) (1.171) (1.014) (1.154)

(40,120) −2.829 −0.336 −0.642 −0.181 −0.472
(1.209) (0.892) (1.047) (0.899) (1.037)

(60,20) −3.403 −1.252 −1.740 −0.152 −0.534
(1.215) (1.145) (1.279) (1.289) (1.328)

(60,40) −3.496 −0.807 −1.238 −0.255 −0.635
(1.247) (1.016) (1.165) (1.053) (1.155)

(60,60) −3.465 −0.573 −0.987 −0.195 −0.574
(1.227) (0.974) (1.111) (0.996) (1.100)

(60,120) −3.515 −0.435 −0.819 −0.243 −0.609
(1.197) (0.908) (1.031) (0.913) (1.020)

(120, 20) −4.829 −1.758 −2.450 −0.221 −0.760
(1.345) (1.162) (1.327) (1.223) (1.308)

(120, 40) −4.862 −1.080 −1.679 −0.307 −0.831
(1.254) (1.022) (1.159) (1.059) (1.143)

(120, 60) −4.901 −0.852 −1.419 −0.329 −0.846
(1.239) (0.964) (1.097) (0.978) (1.077)

(120, 120) −5.016 −0.622 −1.203 −0.352 −0.908
(1.248) (0.922) (1.059) (0.927) (1.048)

Note:μλ = 0.1, σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, andθ21 = 0.4.

It is important to know the effects of the variations in panel dimen-
sions on the results, since the actual panel data have a wide variety of
cross-section and time-series dimensions.Table 1.2considers 16 different
combinations forn andT , each ranging from 20 to 120 withσ31 = −0.8,
σ21 = −0.4, θ31 = 0.8, andθ21 = 0.4. First, we notice that the cross-
section dimension has no significant effect on the biases of all estimators.
From this it seems that in practice theT dimension must exceed then
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dimension, especially for the OLS and 2S-FM estimators, in order to get
a good approximation of the limiting distributions of the estimators. For
example, for OLS estimator inTable 1.2, the reported bias,−0.008, is sub-
stantially less for(T = 120, n = 40) than it is for either(T = 40, n = 40)
(the bias is−0.024), or(T = 40, n = 120) (the bias is−0.022). The re-
sults inTable 1.2again confirm the superiority of the CUP-FM.

Monte Carlo means and standard deviations of thet-statistic,tβ=β0, are
given inTable 1.3. Here, the OLSt-statistic is the conventionalt-statistic
as printed by standard statistical packages. With all values ofσλ andσF
with the exceptionσλ =

√
10, the CUP-FMt-statistic is well approxi-

mated by a standardN(0, 1) suggested from the asymptotic results. The
CUP-FMt-statistic is much closer to the standard normal density than the
OLS t-statistic and the 2S-FMt-statistic. The 2S-FMt-statistic is not well
approximated by a standardN(0, 1).

Table 1.4shows that both the OLSt-statistic and the FMt-statistics
become more negatively biased as the dimension of cross-sectionn in-
creases. The heavily negative biases of the 2S-FMt-statistic inTables
1.3–1.4again indicate the poor performance of the 2S-FM estimator. For
the CUP-FM, the biases decrease rapidly and the standard errors converge
to 1.0 asT increases.

It is known that when the length of time series is short the estimateΩ̂

in (1.11) may be sensitive to the length of the bandwidth. InTables 1.2
and 1.4, we first investigate the sensitivity of the FM estimators with re-
spect to the choice of length of the bandwidth. We extend the experiments
by changing the lag length from 5 to other values for a Barlett window.
Overall, the results (not reported here) show that changing the lag length
from 5 to other values does not lead to substantial changes in biases for
the FM estimators and theirt-statistics.

1.9 Conclusion

A factor approach to panel models with cross-sectional dependence is use-
ful when both the time series and cross-sectional dimensions are large.
This approach also provides significant reduction in the number of vari-
ables that may cause the cross-sectional dependence in panel data. In
this paper, we study the estimation and inference of a panel cointe-
gration model with cross-sectional dependence. The paper contributes
to the growing literature on panel data with cross-sectional dependence
by (i) discussing limiting distributions for the OLS and FM estimators,
(ii) suggesting a CUP-FM estimator and (iii) investigating the finite sam-
ple proprieties of the OLS, CUP-FM and 2S-FM estimators. It is found that
the 2S-FM and OLS estimators have a nonnegligible bias in finite samples,
and that the CUP-FM estimator improves over the other two estimators.
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Appendix A1

Let

BnT =
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1
n

∑n
i=1 ζ2iT . Before going into the next theorem, we need to consider

some preliminary results.
DefineΩε = limn→∞ 1

n
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If Assumptions 1.1–1.4hold, then
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LEMMA A1.1. (a)As(n, T → ∞),

1

n
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T 2
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6
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PROOF. (a) and (b) can be shown easily by following Theorem 8 in
Phillips and Moon (1999). �

A1.1 Proof ofTheorem 1.1
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where
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εi +Δuεi

and

ξ∗
1nT = 1

n

n∑

i=1

ζ ∗
1iT .

First, we note fromLemma A1.1(b) that

√
nξ∗

1nT ⇒ N

(
0,

1

6
lim
n→∞

1

n

n∑

i=1

{λ′
iΩF.εiλiΩεi +Ωu.εiΩεi}

)

as (n, T → ∞) and n
T

→ 0. Using the Slutsky theorem and (a) from
Lemma A1.1, we obtain

√
nξ∗

1nT [ξ2nT ]−1

⇒ N

(
0, 6Ω−1

ε

{
lim
n→∞

1

n

n∑
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(λ′
iΩF.εiλiΩεi + Ωu.εiΩεi)

}
Ω−1
ε

)
.

Hence,
√
nT (β̂OLS − β)−

√
nδnT

(A1.1)

⇒ N

(
0, 6Ω−1

ε

{
lim
n→∞

1

n

n∑

i=1

(λ′
iΩF.εiλiΩεi + Ωu.εiΩεi)

}
Ω−1
ε

)
,

proving the theorem, where

δnT = 1

n

[
n∑

i=1

λ′
i

(
ΩFεiΩ

−1/2
εi

(
1

T

T∑
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x′
it (xit − x̄i)

)
Ω

1/2
εi +ΔFεi

)

+ΩuεiΩ
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εi

(
1

T
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x′
it (xit − x̄i)

)
Ω

1/2
εi + Δuεi

]

×
[

1

n

1

T 2
BnT

]−1

.

Therefore, we establishedTheorem 1.1. �
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A1.2 Proof ofTheorem 1.2

PROOF. Let

F+
it = Ft −ΩFεiΩ

−1
εi εit ,

and

u+
it = uit − ΩuεiΩ

−1
εi εit .

The FM estimator ofβ can be rewritten as follows
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[
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′

(A1.2)− T
(
λ′
iΔ

+
Fεi +Δ+
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)]
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First, we rescale(β̃FM − β) by
√
nT

√
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√
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√
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(A1.3)=
√
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whereζ ∗∗
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T
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+
it + û+
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′ − λ′

iΔ
+
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n
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∗∗
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Modifying Theorem 11 inPhillips and Moon (1999)andKao and Chi-
ang (2000)we can show that as(n, T → ∞) with n

T
→ 0
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and

√
n

(
1

n

1
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i=1

T∑
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(
û+
it (xit − x̄i)

′ −Δ+
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(
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1
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)

and combing this withAssumption 1.4thatFt anduit are independent and
Lemma A1.1(a) yields

√
nT (β̃FM − β)

⇒ N

(
0, 6Ω−1

ε
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1

n

n∑
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)

as required. �

A1.3 Proof ofLemma 1.3

PROOF. We note thatλi is estimatingHλi , and Ω̂Fε is estimating
H−1′

Ω̂Fε. Thus λ̂′
iΩ̂Fε is estimatingλ′

iΩFε, which is the object of in-
terest. For the purpose of notational simplicity, we shall assumeH being
a r × r identify matrix in our proof below. From
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Then,
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because
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−1
ε −ΩuεΩ

−1
ε = op(1)

and

1√
n

1

T

n∑

i=1

T∑

t=1

Δxit (xit − x̄i)
′ = Op(1).

Thus

1√
nT

n∑

i=1

T∑

t=1

(
ê+
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The remainder of the proof needs to show that
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ε respectively and then
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= 1√
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i(A− Â)Δxit (xit − x̄i)

′

+ 1√
n

1

T

n∑

i=1

T∑

t=1

(λ′
i − λ̂′
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Term I is a row vector. LetIj be thej th component ofI . Let ℓj be the
j th column of an identity matrix so thatℓj = (0, . . . ,0, 1, 0, . . . 0)′. Left
multiply I by ℓj to obtain thej th component, which is scalar and thus is
equal to its trace. That is
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and provesLemma 1.3. �



30 J. Bai and C. Kao

References

Andrews, D.W.K. (2005), “Cross-section regression with common shocks”,Econometrica,
Vol. 73, pp. 1551–1586.

Bai, J. (2004), “Estimating cross-section common stochastic trends in nonstationary panel
data”,Journal of Econometrics, Vol. 122, pp. 137–183.

Bai, J., Ng, S. (2002), “Determining the number of factors in approximate factor models”,
Econometrica, Vol. 70, pp. 191–221.

Bai, J., Ng, S. (2004), “A panic attack on unit roots and cointegration”,Econometrica, Vol.
72, pp. 1127–1177.

Baltagi, B., Kao, C. (2000), “Nonstationary panels, cointegration in panels and dynamic
panels: a survey”,Advances in Econometrics, Vol. 15, pp. 7–51.

Baltagi, B., Song, S.H., Koh, W. (2004), “Testing panel data regression models with spatial
error correlation”,Journal of Econometrics, Vol. 117, pp. 123–150.

Chang, Y. (2002), “Nonlinear IV unit root tests in panels with cross-sectional dependency”,
Journal of Econometrics, Vol. 116, pp. 261–292.

Coakley, J., Fuerts, A., Smith, R.P. (2002), “A principal components approach to cross-
section dependence in panels”, Manuscript, Birckbeck College, University of London.

Forni, M., Reichlin, L. (1998), “Let’s get real: a factor-analytic approach to disaggregated
business cycle dynamics”,Review of Economic Studies, Vol. 65, pp. 453–473.

Forni, M., Hallin, M., Lippi, M., Reichlin, L. (2000), “Reference cycles: the NBER
methodology revisited”, CEPR Discussion Paper 2400.

Gregory, A., Head, A. (1999), “Common and country-specific fluctuations in productiv-
ity, investment, and the current account”,Journal of Monetary Economics, Vol. 44,
pp. 423–452.

Hall, S.G., Lazarova, S., Urga, G. (1999), “A principle component analysis of common
stochastic trends in heterogeneous panel data: some Monte Carlo evidence”,Oxford
Bulletin of Economics and Statistics, Vol. 61, pp. 749–767.

Kao, C., Chiang, M.H. (2000), “On the estimation and inference of a cointegrated regres-
sion in panel data”,Advances in Econometrics, Vol. 15, pp. 179–222.

Moon, H.R., Perron, B. (2004), “Testing for a unit root in panels with dynamic factors”,
Journal of Econometrics, Vol. 122, pp. 81–126.

Pesaran, H. (2004), “Estimation and inference in large heterogenous panels with a multi-
factor error structure”, Manuscript, Trinity College, Cambridge.

Phillips, P.C.B., Hansen, B.E. (1990), “Statistical inference in instrumental variables re-
gression with I(1) processes”,Review of Economic Studies, Vol. 57, pp. 99–125.

Phillips, P.C.B., Moon, H. (1999), “Linear regression limit theory for nonstationary panel
data”,Econometrica, Vol. 67, pp. 1057–1111.

Phillips, P.C.B., Sul, D. (2003), “Dynamic panel estimation and homogeneity testing under
cross section dependence”,Econometric Journal, Vol. 6, pp. 217–259.

Robertson, D., Symon, J. (2000), “Factor residuals in SUR regressions: estimating panels
allowing for cross sectional correlation”, Manuscript, Faculty of Economics and Poli-
tics, University of Cambridge.

Stock, J.H., Watson, M.W. (2002), “Forecasting using principal components from a large
number of predictors”,Journal of the American Statistical Association, Vol. 97,
pp. 1167–1179.



Panel Data Econometrics
B.H. Baltagi (Editor)
© 2006 Elsevier B.V. All rights reserved
DOI: 10.1016/S0573-8555(06)74002-0

CHAPTER 2
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Abstract

This paper proposes an extension of the standard one-way error compo-
nents model allowing for heteroscedasticity in both the individual-specific
and the general error terms, as well as for unbalanced panel. On the
grounds of its computational convenience, its potential efficiency, its ro-
bustness to non-normality and its robustness to possible misspecification
of the assumed scedastic structure of the data, we argue for estimating this
model by Gaussian pseudo-maximum likelihood of order two. Further, we
review how, taking advantage of the powerful m-testing framework, the
correct specification of the prominent aspects of the model may be tested.
We survey potentially useful nested, non-nested, Hausman and information
matrix type diagnostic tests of both the mean and the variance specifica-
tion of the model. Finally, we illustrate the usefulness of our proposed
model and estimation and diagnostic testing procedures through an em-
pirical example.

Keywords: error components model, heteroscedasticity, unbalanced panel
data, pseudo-maximum likelihood estimation, m-testing

JEL classifications:C12, C22, C52

2.1 Introduction

As largely acknowledged, heteroscedasticity is endemic when working
with microeconomic cross-section data. One of its common sources is dif-
ferences in size (the level of the variables) across individuals. This kind of

mailto:B.Lejeune@ulg.ac.be
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heteroscedasticity is mechanical. It is simply a consequence of the addi-
tive disturbance structure of the classical regression model. It is generally
tackled by performing a logarithmic transformation of the dependent vari-
able. However, even after accounting in such a way for differences in
size, numerous cases remain where we cannot expect the error variance
to be constant. On one hand, there is a priori no reason to believe that the
logarithmic specification postulating similar percentage variations across
observations is relevant. In the production field for example, observations
for lower outputs firms seem likely to evoke larger variances (seeBaltagi
and Griffin, 1988). On the other hand, the error variance may also vary
across observations of similar size. For example, the variance of firms out-
puts might depend upon their capital intensity.

Obviously, there is no reason to expect the heteroscedasticity problems
associated with microeconomic panel data to be markedly different from
those encountered in work with cross-section data. Nonetheless, the issue
of heteroscedasticity has received somewhat limited attention in the liter-
ature related to panel data error components models.

Seemingly, the first authors who dealt with the problem wereMazodier
and Trognon (1978). Subsequent contributions includeVerbon (1980),
Rao et al. (1981), Magnus (1982), Baltagi (1988), Baltagi and Grif-
fin (1988), Randolph (1988), Wansbeek (1989), Li and Stengos (1994),
Holly and Gardiol (2000), Roy (2002), Phillips (2003), Baltagiet al.
(2004)andLejeune (2004).

Within the framework of the classical one-way error components re-
gression model, the issues considered by these papers can be summarized
as follows. BothMazodier and Trognon (1978)and Baltagi and Griffin
(1988)are concerned with estimating a model allowing for changing vari-
ances of the individual-specific error term across individuals, i.e. they
assume that we may write the composite error asεit = μi + νit , νit ∼
(0, σ 2

ν ) while μi ∼ (0, σ 2
μi
). Phillips (2003)considers a similar model

where heteroscedasticity occurs only through individual-specific variances
changing across strata of individuals.Raoet al. (1981), Magnus (1982),
Baltagi (1988)andWansbeek (1989)adopt a different specification, allow-
ing for changing variances of the general error term across individuals, i.e.
assume thatνit ∼ (0, σ 2

νi
) whileμi ∼ (0, σ 2

μ). Verbon (1980)is interested
in Lagrange Multiplier (LM) testing of the standard normally distributed
homoscedastic one-way error components model against the heteroscedas-
tic alternativeνit ∼ N(0, σ 2

νi
) andμi ∼ N(0, σ 2

μi
), whereσ 2

νi
andσ 2

μi
are, up to a multiplicative constant, identical parametric functions of a
vector of time-invariant explanatory variablesZi , i.e. σ 2

νi
= σ 2

ν φ(Ziγ )

andσ 2
μi

= σ 2
μφ(Ziγ ). Baltagi et al. (2004)consider a joint LM test of
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the same null hypothesis but against the more general heteroscedastic al-
ternativeνit ∼ N(0, σ 2

νit
) andμi ∼ N(0, σ 2

μi
), whereσ 2

νit
andσ 2

μi
are,

up to a multiplicative constant, possibly different parametric functions
of vectors of explanatory variablesZ1

it andZ2
i , i.e. σ 2

νit
= σ 2

ν φν(Z
1
itγ1)

andσ 2
μi

= σ 2
μφμ(Z

2
i γ2). They further consider “marginal” LM tests of

again the same null hypothesis but against the “marginal” heteroscedas-
tic alternatives, on one hand,νit ∼ N(0, σ 2

νit
) and μi ∼ N(0, σ 2

μ),
and on the other hand,νit ∼ N(0, σ 2

ν ) andμi ∼ N(0, σ 2
μi
). The lat-

ter test was previously obtained byHolly and Gardiol (2000). Lejeune
(2004) provides a distribution-free joint test and robust one-directional
tests of the null hypothesis of no individual effect and heteroscedas-
ticity. These tests allow one to detect, from preliminary (pooled) OLS
estimation of the model, the possible simultaneous presence of both in-
dividual effects and heteroscedasticity.Randolph (1988)concentrates on
supplying an observation-by-observation data transformation for a full
heteroscedastic error components model assuming thatνit ∼ (0, σ 2

νit
) and

μi ∼ (0, σ 2
μi
). Provided that the variancesσ 2

νit
andσ 2

μi
are known, this

transformation allows generalized least squares estimates to be obtained
from ordinary least squares.Li and Stengos (1994)deal with adaptive es-
timation of an error components model supposing heteroscedasticity of
unknown form for the general error term, i.e. assume thatμi ∼ (0, σ 2

μ)

while νit ∼ (0, σ 2
νit
), whereσ 2

νit
is a non-parametric functionφ(Zit ) of a

vector of explanatory variablesZit . Likewise,Roy (2002)considers adap-
tive estimation of a error components model also assuming heteroscedas-
ticity of unknown form, but for the individual-specific error term, i.e.
supposes thatμi ∼ (0, σ 2

μi
) while νit ∼ (0, σ 2

ν ). ExceptRaoet al.(1981),
Randolph (1988)andLejeune (2004), all these papers consider balanced
panels.

In this paper, we are concerned with estimation and specification test-
ing of a full heteroscedastic one-way error components linear regression
model specified in the spirit ofRandolph (1988)andBaltagiet al. (2004).
In short, we assume that the (conditional) variancesσ 2

νit
andσ 2

μi
are dis-

tinct parametric functions of, respectively, vectors of explanatory variables
Z1
it andZ2

i , i.e.σ 2
νit

= φν(Z
1
itγ1) andσ 2

μi
= φμ(Z

2
i γ2). Further, we treat

the model in the context of unbalanced panels. This specification differs
from the previously proposed formulations of estimable heteroscedastic
error components models as it simultaneously embodies three characteris-
tics. First, heteroscedasticity distinctly applies to both individual-specific
and general error components. Second, (non-linear) variance functions are
parametrically specified. Finally, the model allows for unbalanced panels.
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Explicitly allowing for unbalanced panels is obviously desirable. In-
deed, at least for micro-data, incompleteness is rather the rule than the ex-
ception. Specifying parametric variance functions is also attractive. First,
this strategy avoids incidental parameter (and thus consistency) prob-
lems arising from any attempt to model changing variances by grouped
heteroscedasticity when the number of individual units is large but the
number of observations per individual is small, i.e. in typical microeco-
nomic panel datasets. Second, provided that the functional forms of the
variance functions are judiciously chosen, it prevents problems due to
estimated variances being negative or zero. Finally, since the variance es-
timates may have intrinsic values of their own as indicators of the between
and within individual heterogeneity, parametric forms are convenient for
ease of interpretation.

The heuristic background for allowing heteroscedasticity to distinctly
apply to both individual-specific and general error components is the fol-
lowing. In essence, except for the fact that it may be broken down into an
individual-specific and a general component, the composite error term in
panel data is not different from a cross-section error term. Accordingly, all
we said about the possible sources of heteroscedasticity in cross-section
may be roughly applied to the panel data composite error term. The only
new issue is to assess the plausible origin – between and/or within, i.e.
the individual-specific error and/or the general error – of any given cross-
section like heteroscedasticity in the composite error term. Clearly, the
answer depends upon the situation at hand. When heteroscedasticity arises
from differences in size, both error terms may be expected to be het-
eroscedastic, presumably according to parallel patterns. As a matter of
fact, this is implicitly acknowledged whenever a transformation of the
dependent variable is used for solving heteroscedasticity problems (the
transformation alters the distribution of both error terms). Likewise, if
size-related heteroscedasticity still prevails after having transformed the
dependent variable, the same should hold. When heteroscedasticity is not
directly associated with size, it seems much more difficult to say anything
general: depending on the situation, either only one or both error terms
may be heteroscedastic, and when both are, their scedastic pattern may
further be different. Be that as it may, as a general setting, it thus appears
sensible to allow heteroscedasticity to distinctly apply to both individual-
specific and general error components.

For estimating our proposed full heteroscedastic one-way error com-
ponents model, we argue for resorting to a Gaussian pseudo-maximum
likelihood of order 2 estimator (Gourierouxet al., 1984; Gourieroux and
Monfort, 1993; Bollerslev and Wooldridge, 1992; Wooldridge, 1994). This
estimator has indeed numerous nice properties: it is computationally con-
venient, it allows one to straightforwardly handle unbalanced panels, it
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is efficient under normality but robust to non-normality, and last but not
least, in the present context, it is also robust to possible misspecification
of the assumed scedastic structure of the data.

Further, we outline how, taking advantage of the powerful m-testing
framework (Newey, 1985; Tauchen, 1985; White, 1987, 1994; Wooldridge,
1990, 1991a, 1991b), the correct specification of the prominent aspects of
our proposed model may be tested. We consider potentially useful nested,
non-nested, Hausman and information matrix type diagnostic tests of both
the mean and the variance specifications. Joined to the Gaussian pseudo-
maximum likelihood of order 2 (GPML2) estimator, this set of diagnostic
tests provides a complete statistical tool-box for estimating and evaluat-
ing the empirical relevance of our proposed model. For Gauss users, an
easy-to-use package implementing this complete statistical tool-box may
be obtained (free of charge) upon request from the author.

The rest of the paper proceeds as follows. Section2.2describes our pro-
posed full heteroscedastic one-way error components model. Section2.3
considers GPML2 estimation of the model and outlines its asymptotic
properties. Section2.4 deals with specification testing of the model. Sec-
tion 2.5 provides an empirical illustration of the practical usefulness of
our suggested model and estimation and specification testing procedures.
Finally, Section2.6concludes.

2.2 The model

We consider the following one-way error components linear regression
model

(2.1)
Yit = Xitβ + εit , εit = μi + νit , i = 1, 2, . . . , n; t = 1, 2, . . . , Ti,

whereYit , εit , μi and νit are scalars,Xit is a 1× k vector of strictly
exogenous explanatory variables (the first element being a constant) andβ

is ak×1 vector of parameters. The indexi refers to the individuals and the
indext to the (repeated) observations (over time) of each individuali. Each
individual i is assumed to be observed a fixed number of timesTi . The
unbalanced structure of the panel is supposed to be ignorable in the sense
of Wooldridge (1995). The total number of observations isN =

∑n
i=1 Ti .

The observations are assumed to be independently (but not necessarily
identically) distributed across individuals.

Stacking theTi observations of each individuali, (2.1) yields the mul-
tivariate linear regression model

(2.2)Yi = Xiβ + εi, εi = eTiμi + νi, i = 1, 2, . . . , n,
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whereeTi is aTi × 1 vector of ones,Yi , νi andεi areTi × 1 vectors, and
Xi is aTi × k matrix.

Let Z1
i denote aTi × l1 matrix of strictly exogenous explanatory vari-

ables (the first column being a constant),Z1
it stand for thet th row ofZ1

i ,
andZ2

i be a 1× l2 vector of strictly exogenous explanatory variables (the
first element being again a constant). For alli, t andt ′, the error termsνit
andμi are assumed to satisfy the assumptions

(2.3)E
(
νit |Xi, Z

1
i , Z

2
i

)
= 0, E

(
μi |Xi, Z

1
i , Z

2
i

)
= 0,

(2.4)
E
(
νitνit ′ |Xi, Z

1
i , Z

2
i

)
= 0 (t ′ �= t),

E
(
μiνit |Xi, Z

1
i , Z

2
i

)
= 0,

(2.5)
V
(
νit |Xi, Z

1
i , Z

2
i

)
= σ 2

νit
= φν

(
Z1
itγ1

)
and

V
(
μi |Xi, Z

1
i , Z

2
i

)
= σ 2

μi
= φμ

(
Z2
i γ2
)
,

whereφν(·) and φμ(·) are (strictly) positive twice continuously differ-
entiable functions whileγ1 and γ2 are, respectively,l1 × 1 and l2 × 1
vectors of parameters which vary independently of each other and inde-
pendently ofβ. Hereafter, we will denote byγ = (γ ′

1, γ
′
2)

′ the vector of
variance-specific parameters, andθ = (β ′, γ ′)′ will stand for the entire set
of parameters.

The regressors appearing in the conditional variances(2.5) may (and
usually will) be related to theXi variables. Different choices are possi-
ble for the variance functionsφν(·) andφμ(·), see for exampleBreusch
and Pagan (1979)and Harvey (1976). Among them, the multiplicative
heteroscedasticity formulation investigated inHarvey (1976)appears par-
ticularly attractive. It simply means takingφν(·) = φμ(·) = exp(·).

Under(2.3)–(2.5), εi is easily seen to satisfy

(2.6)
E
(
εi |Xi, Z

1
i , Z

2
i

)
= 0, i = 1, 2, . . . , n,

V
(
εi |Xi, Z

1
i , Z

2
i

)
= Ωi = diag

(
φν
(
Z1
i γ1
))

+ JTiφμ
(
Z2
i γ2
)
,

whereJTi = eTie
′
Ti

is a Ti × Ti matrix of ones, and, for aTi × 1 vec-
tor x, the functionsφν(x) andφμ(x) denoteTi × 1 vectors containing
the element-by-element transformationsφν(x) andφμ(x) of the elements
of x, diag(φν(x)) further standing for a diagonalTi ×Ti matrix containing
φν(x) as diagonal elements and zeros elsewhere.

The model may thus be written as

(2.7)
E
(
Yi |Xi, Z

1
i , Z

2
i

)
= Xiβ, i = 1, 2, . . . , n,

V
(
Yi |Xi, Z

1
i , Z

2
i

)
= Ωi = diag

(
φν
(
Z1
i γ1
))

+ JTiφμ
(
Z2
i γ2
)
.
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This model obviously contains the standard homoscedastic one-way
error components linear regression model as a special case: it is simply
obtained by letting theZ1

i andZ2
i variables only contain an intercept.

In practice, model(2.7) may or may not be correctly specified. It will
be correctly specified for the conditional mean if the observations are in-
deed such thatE(Yi |Xi, Z

1
i , Z

2
i ) = Xiβ

o, i = 1, 2, . . . , n, for some true
valueβo. Likewise, it will be correctly specified for the conditional vari-
ance if the observations are indeed such thatV (Yi |Xi, Z

1
i , Z

2
i ) = Ωo

i =
diag(φν(Z1

i γ
o
1 )) + JTiφμ(Z

2
i γ

o
2 ), i = 1, 2, . . . , n, for some true-value

γ o = (γ o′1 , γ o′2 )′.

2.3 Pseudo-maximum likelihood estimation

The most popular procedure for estimating the standard homoscedastic
one-way error components model consists in first estimating the mean pa-
rameters of the model by OLS, then in estimating the variance of the error
components based on the residuals obtained in the first step, and finally,
for efficiency, in re-estimating the mean parameters by feasible general-
ized least squares (FGLS).

Pursuing a similar multiple-step procedure for estimating our proposed
full heteroscedastic model does not appear very attractive. Indeed, if in
the standard homoscedastic model it is straightforward to consistently es-
timate the variance of the error components based on first step regression
residuals, it is no longer the case in our proposed full heteroscedastic
model: given the general functional forms adopted for the variance func-
tions,1 no simple – i.e. avoiding non-linear optimization – procedure for
consistently estimating the variance parameters appearing inΩi seems
conceivable.

As non-linear optimization appears unavoidable, we argue for estimat-
ing our proposed model by Gaussian pseudo-maximum likelihood of order
two (Gourierouxet al., 1984; Gourieroux and Monfort, 1993; Bollerslev
and Wooldridge, 1992; Wooldridge, 1994). This GPML2 estimator has nu-
merous attractive properties. First, if it requires non-linear optimization, it
is a one-step estimator, simultaneously providing mean and variance pa-
rameters estimates. Second, as developed below, while fully efficient if
normality holds, it is not only robust to non-normality (i.e. its consistency

1 The problem would be different if the variance functions were assumed linear. Spec-
ifying linear variance functions is however not a good idea as it may result in estimated
variances being negative or zero.
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does not rely on normality) but also to possible misspecification of the con-
ditional variance (i.e. it remains consistent for the mean parameters even
if the assumed scedastic structure of the data is misspecified). Finally, it
readily allows one to handle unbalanced panels.

2.3.1 The GPML2 estimator

The GPML2 estimator̂θn = (β̂ ′
n, γ̂

′
1n
, γ̂ ′

2n
)′ of model(2.7) is defined as a

solution of

(2.8)Max
θ∈Θ

Ln(β, γ1, γ2) = 1

n

n∑

i=1

Li

(
Yi |Xi, Z

1
i , Z

2
i ;β, γ1, γ2

)
,

whereΘ denotes the parameter space and the (conditional) pseudo log-
likelihood functionsLi(Yi |Xi, Z

1
i , Z

2
i ;β, γ1, γ2) are

Li

(
Yi |Xi, Z

1
i , Z

2
i ;β, γ1, γ2

)
= −Ti

2
ln 2π − 1

2
ln |Ωi | − 1

2
u′
iΩ

−1
i ui

with ui = Yi − Xiβ.
Closed-form expressions are available for|Ωi | andΩ−1

i . These are
given in Appendix A2, where we also provide expressions for the first
derivatives, Hessian matrix and expected Hessian matrix of the pseudo
log-likelihood functionLn(β, γ1, γ2).

If one checks the first-order conditions definingθ̂n, it is evident that
the GPML2 mean-specific estimatorβ̂n is nothing but a FGLS estima-
tor where the variance parameters appearing inΩi are jointly estimated.
Additionally, the GPML2 variance-specific estimatorγ̂n = (γ̂ ′

1n
, γ̂ ′

2n
)′

may be interpreted as a weighted non-linear least squares estimator in the
multivariate non-linear regression model vec(uiu

′
i) = vecΩi(γ1, γ2) +

residuals,i = 1, 2, . . . , n, where the errorsui and the weightsΓ −1
i =

(Ω−1
i ⊗Ω−1

i ) are likewise jointly estimated.
Practical guidelines for computing the GPML2 estimatorθ̂n, including

a numerical algorithm and starting values, are discussed inAppendix B2.

2.3.2 Asymptotic properties of the GPML2 estimator

Beyond its computational convenience and its ability to readily handle
unbalanced panel, the most attractive feature of the GPML2 estimator is
its statistical properties, namely its potential efficiency and its robustness.

Obviously, when the model is correctly specified for both the condi-
tional mean and the conditional variance and when in addition normality
also holds, the GPML2 estimator is just a standard maximum likelihood
estimator. According to standard maximum likelihood theory, we then
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have thatθ̂n is consistent and asymptotically normal,

θ̂n
p−→ θo and

√
n
(
θ̂n − θo

)
≈ N

(
0, Co

n

)
,

asn → ∞ (Ti bounded)

with an asymptotic covariance matrix given by

Co
n =

[−A−1
ββ 0

0 −A−1
γ γ

]
,

where

Aββ = 1

n

n∑

i=1

E
[
h
ββ
i

]
θ=θo, Aγ γ = 1

n

n∑

i=1

E
[
h
γ γ

i

]
θ=θo,

h
γ γ

i =
[
h
γ1γ1
i h

γ1γ2
i

h
γ2γ1
i h

γ2γ2
i

]

andhββi andhγ γi refer to the expected Hessian ofLi and are defined in
Appendix A2.

In this favorable situation, the GPML2 estimator is fully efficient, both
for the mean and the variance parameters. However, since in practice nor-
mality may at best be expected to only very approximately hold, this result
must essentially be viewed as a benchmark result.

As for all pseudo-maximum likelihood estimators, the distributional
normality assumption underlying the GPML2 estimator is purely nominal.
As a matter of fact, according to second order Gaussian pseudo-maximum
likelihood theory (Gourierouxet al., 1984; Gourieroux and Monfort, 1993;
Bollerslev and Wooldridge, 1992; Wooldridge, 1994), if the model is cor-
rectly specified for the conditional mean and the conditional variance but
normality does not hold, we still have thatθ̂n is consistent and asymptoti-
cally normal,

θ̂n
p−→ θo and

√
n
(
θ̂n − θo

)
≈ N

(
0, Co

n

)
,

asn → ∞ (Ti bounded)

but with a more complicated asymptotic covariance matrix given by

Co
n =

[ −A−1
ββ A−1

ββBβγA
−1
γ γ

A−1
γ γBγβA

−1
ββ A−1

γ γBγ γA
−1
γ γ

]
,

where

Bβγ = 1

n

n∑

i=1

E
[
s
β
i s

γ ′
i

]
θ=θo = B ′

γβ, Bγ γ = 1

n

n∑

i=1

E
[
s
γ

i s
γ ′
i

]
θ=θo,

s
γ

i =
(
s
γ1′
i , s

γ2′
i

)′
,
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andsβi andsγi refer to the first derivatives ofLi and are again defined in
Appendix A2.

Note that non-normality does not affect the asymptotic covariance ma-
trix of the GPML2 mean-specific estimatorβ̂n. It is still given by−A−1

ββ ,

which, sinceβ̂n is in fact nothing but a FGLS estimator, is actually equal
to the asymptotic covariance matrix of the usual FGLS estimator (imple-
mented using any consistent estimator of the variance parameters appear-
ing inΩi). Of course, in this situation, the GPML2 estimator is no longer
fully efficient. It is clearly not efficient regarding the variance parameters.
Regarding the mean parameters, as FGLS, it is however still efficient in a
semi-parametric sense.2

Besides being robust to non-normality, the GPML2 estimator has an
additional nice property in that it is also robust to conditional variance
misspecification, i.e. to misspecification of the assumed scedastic struc-
ture of the data. Since the GPML2 mean-specific estimatorβ̂n is a FGLS
estimator, this should not be surprising.3 According toLejeune (1998), if
the model is correctly specified for the conditional mean but misspecified
for the conditional variance, it indeed turns out thatβ̂n is still consistent
for its true valueβo while γ̂n is now consistent for some pseudo-true value
γ ∗
n = (γ ∗′

1n
, γ ∗′

2n
)′,

β̂n
p−→ βo and γ̂n − γ ∗

n

p−→ 0, asn → ∞ (Ti bounded)

and thatθ̂n remains jointly asymptotically normal
√
n
(
θ̂n − θo∗n

)
≈ N

(
0, Co∗

n

)
,

asn → ∞ (Ti bounded), whereθo∗n =
(
βo′, γ ∗′

n

)′

with an asymptotic covariance matrix given by

Co∗
n =

[
A−1
ββBββA

−1
ββ A−1

ββBβγA
−1
γ γ

A−1
γ γBγβA

−1
ββ A−1

γ γ B̈γ γA
−1
γ γ

]
,

where

Aββ = 1

n

n∑

i=1

E
[
h
ββ
i

]
θ=θo∗n

, Aγ γ = 1

n

n∑

i=1

E
[
h
γ γ

i

]
θ=θo∗n

,

2 The asymptotic covariance matrix ofβ̂n attains the well-known semi-parametric effi-
ciency bound (Chamberlain, 1987; Newey, 1990, 1993; Wooldridge, 1994) associated with
optimal GMM estimation based on the first-order conditional moments of the data.
3 It is well-known that conditional variance misspecification does not affect the consis-

tency of the FGLS estimator.
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h
γ γ

i =
[
h
γ1γ1
i h

γ1γ2
i

h
γ2γ1
i h

γ2γ2
i

]
,

Bββ = 1

n

n∑

i=1

E
[
s
β
i s

β′
i

]
θ=θo∗n

, Bβγ = 1

n

n∑

i=1

E
[
s
β
i s

γ ′
i

]
θ=θo∗n

= B ′
γβ,

B̈γ γ = 1

n

n∑

i=1

E
[
s
γ

i s
γ ′
i

]
θ=θo∗n

− Uγ γ ,

Uγ γ = 1

n

n∑

i=1

E
[
s
γ

i

]
θ=θo∗n

E
[
s
γ

i

]′
θ=θo∗n

andhββi andhγ γi refer to the Hessian ofLi and are again defined inAp-
pendix A2.

Of course, in this latter situation, the GPML2 mean-specific estimator
β̂n is no longer efficient. However, as its asymptotic covariance matrix
A−1
ββBββA

−1
ββ collapses to the semi-parametric efficiency bound−A−1

ββ
outlined above when the conditional variance is correctly specified, we
may intuitively expect that the more the specified conditional variance
is close to the actual scedastic structure of the data, the more the co-
variance matrix ofβ̂n will be close to this lower bound, i.e.̂βn will be
close to semi-parametric efficiency. From a empirical point of view, this
in particular implies that it makes sense to consider using our proposed
full heteroscedastic model, even if possibly misspecified, whenever the
homoscedasticity assumption of the standard one-way error components
model does not appear to hold: some efficiency benefits may indeed gen-
erally be expected from taking into account even approximately the actual
scedastic structure of the data.

In practical applications, the extent to which our assumed full het-
eroscedastic model is actually correctly specified is of coursea priori
unknown. This may nevertheless be checked through diagnostic tests, as
discussed in Section2.4 below. Once this is done, a consistent estimate
of the asymptotic covariance matrix of the estimated parameters may then
be straightforwardly computed by taking, as usual, the empirical coun-
terpart of the relevant theoretical asymptotic covariance matrix.4 There

4 For example, a consistent estimate of the asymptotic covariance matrixA−1
ββBββA

−1
ββ of

the GPML2 mean-specific estimatorβ̂n under correct conditional mean specification but
conditional variance misspecification may be computed asÂ−1

ββ B̂ββ Â
−1
ββ , whereÂββ =

1
n

∑n
i=1 ĥ

ββ
i

, B̂ββ = 1
n

∑n
i=1 ŝ

β
i
ŝ
β′
i

and the superscript ‘ˆ’ denotes quantities evaluated

at θ̂n.
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is one exception however: due to the termUγ γ , unless the observations
are IID and the panel dataset is balanced (in which caseUγ γ = 0),
a consistent estimate of the asymptotic covariance matrixA−1

γ γ B̈γ γA
−1
γ γ

of the GPML2 variance-specific estimatorγ̂n under correct conditional
mean specification but conditional variance misspecification may in gen-
eral not be obtained. A consistent estimate of an upper bound of this
asymptotic covariance matrix, upper bound given byA−1

γ γBγ γA
−1
γ γ where

Bγ γ = 1
n

∑n
i=1E[sγi s

γ ′
i ]θ=θo∗n , may nevertheless be computed in the usual

way. Interestingly, based on this estimated upper bound, a conservative –
i.e. with asymptotic true size necessarily inferior to its specified nominal
size – (joint) Wald test of the null hypothesis that the non-intercept pa-
rameters ofγ1 andγ2 are zero may then be validly performed. In other
words, a valid conservative test which checks that, as assumed, the obser-
vations indeed exhibit some heteroscedasticity-like pattern related to the
Z1
i andZ2

i explanatory variables may then readily be carried out, and this
is regardless of possible conditional variance misspecification.

2.4 Specification testing

The GPML2 estimator of model(2.7) always delivers a consistent esti-
mate of the mean parameters if the model is correctly specified for the
conditional mean, and consistent estimates of both the mean and vari-
ance parameters if the model is correctly specified for both the conditional
mean and the conditional variance. But nothinga priori guarantees that
the model is indeed correctly specified.

Hereafter, we outline how, taking advantage of the powerful m-
testing framework (Newey, 1985; Tauchen, 1985; White, 1987, 1994;
Wooldridge, 1990, 1991a, 1991b), the conditional mean and the condi-
tional variance specification of our proposed full heteroscedastic one-way
error components model may be checked. We first consider conditional
mean diagnostic tests, and then conditional variance diagnostic tests.

2.4.1 Conditional mean diagnostic tests

Having estimated our proposed model(2.7), the first thing to consider is to
check its conditional mean specification. Testing the null hypothesis that
the conditional mean is correctly specified means testing

Hm
0 : E

(
Yi |Xi, Z

1
i , Z

2
i

)
= Xiβ

o, for someβo, i = 1, 2, . . . , n.

Following White (1987, 1994), Wooldridge (1990, 1991a, 1991b)and
Lejeune (1998), based on the GPML2 estimatorθ̂n, Hm

0 may efficiently be
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tested by checking, for appropriate choices ofTi×q indicator matriceŝWm
i

(which may depend on the conditioning variables (Xi, Z
1
i , Z

2
i ) as well as

on additional estimated nuisance parameters), thatq × 1 misspecification
indicators of the form

(2.9)Φ̂m
n = 1

n

n∑

i=1

Ŵm′
i Ω̂−1

i ûi

are not significantly different from zero.
Given the assumed statistical setup, a relevant statistic for checking that

Φ̂m
n is not significantly different from zero is given by the asymptotic chi-

squared statistic5

M
m
n =

(
n∑

i=1

Ŵm′
i Ω̂−1

i ûi

)′

×
(

n∑

i=1

(
Ŵm

i −XiP̂
m
)′
Ω̂−1
i ûi û

′
iΩ̂

−1
i

(
Ŵm

i −XiP̂
m
)
)−1

×
(

n∑

i=1

Ŵm′
i Ω̂−1

i ûi

)
d−→ χ2(q),

where

P̂m =
(

n∑

i=1

X′
iΩ̂

−1
i Xi

)−1 n∑

i=1

X′
iΩ̂

−1
i Ŵm

i .

By suitably choosing theTi × q indicator matricesŴm
i in (2.9), as

detailed below, Hm0 may be tested against nested alternatives, non-nested
alternatives, or without resorting to explicit alternatives through Hausman
and information matrix type tests.

A prominent characteristic of all conditional mean diagnostic tests im-
plemented through theMm

n statistic is that they yield valid tests of Hm0
regardless of whether or not the assumed scedastic pattern of the data is
correct and whether or not normality holds. Consequently, since they do
not rely on assumptions other than Hm

0 itself, a rejection may always be
unambiguously attributed to a failure of Hm0 to hold. Interestingly, another
important characteristic of diagnostic tests implemented throughMm

n is

5 Note thatMm
n may in practice be computed asn minus the residual sum of squares

(= nR2
u, R2

u being the uncenteredR-squared) of the artificial OLS regression 1=
[û′
i
Ω̂−1
i

(Ŵm
i

−Xi P̂
m)]b + residuals,i = 1, 2, . . . , n.
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that they will have optimal properties if the conditional variance is actu-
ally correctly specified and normality holds.

Following Wooldridge (1990, 1991a, 1991b)andLejeune (1998), for
testing Hm0 against a nested alternative of the form

Hm
1 : E

(
Yi |Xi, Z

1
i , Z

2
i

)
= ma

i

(
Xi, Z

1
i , Z

2
i , β

o, αo
)
,

for some
(
βo′, αo′

)′
, i = 1, 2, . . . , n,

wherema
i (Xi, Z

1
i , Z

2
i , β, α) denotes some alternative conditional mean

specification such that for some valueα = c of theq × 1 vector of addi-
tional parametersα we have

ma
i

(
Xi, Z

1
i , Z

2
i , β, c

)
= Xiβ, i = 1, 2, . . . , n,

the appropriate choice of̂Wm
i is given by

Ŵm
i =

∂ma
i (Xi, Z

1
i , Z

2
i , β̂n, c)

∂α′ .

When the considered alternative conditional mean specification takes the
simple linear form

ma
i

(
Xi, Z

1
i , Z

2
i , β, α

)
= Xiβ +Giα, i = 1, 2, . . . , n,

whereGi is a Ti × q matrix of variables which are functions of the set
of conditioning variablesCVi ≡ (Xi, Z

1
i , Z

2
i ), Ŵ

m
i is simply equal toGi

and the test corresponds to a standard variable addition test. We may for
example check in this way the linearity of the assumed conditional mean
by settingGi equal to (some of) the squares and/or the cross-products of
(some of) theXi variables.

On the other hand, for testing Hm0 against a non-nested alternative such
as

Hm
1 : E

(
Yi |Xi, Z

1
i , Z

2
i

)
= gai

(
Xi, Z

1
i , Z

2
i , δ

o
)
,

for someδo, i = 1, 2, . . . , n,

wheregai (Xi, Z
1
i , Z

2
i , δ) denotes some alternative conditional mean spec-

ification which does not contain the null conditional mean specification
Xiβ as a special case andδ is a vector of parameters, an appropriate choice
of Ŵm

i is given by

Ŵm
i = gai

(
Xi, Z

1
i , Z

2
i , δ̂n

)
−Xi β̂n,

where δ̂n is any consistent estimator ofδo under Hm1 . This yields a
Davidson and MacKinnon (1981)type test of a non-nested alternative.
Because obvious choices ofgai (·) are in practice rarely available, this kind
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of test of Hm0 is unlikely to be routinely performed. It may however be
useful in some situations.

By construction, diagnostic tests against nested or non-nested alterna-
tives have power against the specific alternative they consider, but may
be expected to have limited power against other (if weakly related) alter-
natives. General purpose diagnostic tests with expected power against a
broader range of alternatives are provided by Hausman and information
matrix type tests.

One of the equivalent forms of the popular Hausman specification test
of the standard homoscedastic one-way error components model is based
on comparing the (non-intercept) FGLS and OLS estimators ofβo (see
for exampleBaltagi, 1995). This strongly suggests considering a general-
ized (i.e. allowing for any choice ofS and robust to conditional variance
misspecification) Hausman type test of Hm

0 based on checking, for some
chosen selection matrixS, the closeness to zero of the misspecification
indicator

Φ̂m
n = S

(
β̂n − β̂OLS

n

)
.

Following the lines ofWhite (1994)and Lejeune (1998), a test that is
asymptotically equivalent to checking the above misspecification indicator
is obtained by setting

Ŵm
i = Ω̂iXiQ̂

−1S′,

whereQ̂ =
∑n

i=1X
′
iXi . As is the case with the standard textbook Haus-

man test (to which it is asymptotically equivalent under standard textbook
homoscedasticity conditions), this test will have power against any alter-
native Hm1 for which β̂n andβ̂OLS

n converge to different pseudo-true values.
Note by the way that, contrary to the standard textbook case, heteroscedas-
ticity (and incompleteness) usually allows one to include allβ parameters
as part of this Hausman test without yielding a singular statistic.

On the other hand, following again the lines ofWhite (1994)and
Lejeune (1998), an information matrix type test of Hm0 may be based on
checking, for some chosen selection matrixS, the closeness to zero of the
misspecification indicator

Φ̂m
n = S

1

n

n∑

i=1

vecĥβγi , h
βγ

i =
[
h
βγ1
i h

βγ2
i

]
,

wherehβγi refers to cross-derivatives ofLi and is defined inAppendix
A2. Such a test essentially involves checking the block diagonality be-
tween mean and variance parameters of the expected Hessian matrix of
the GPML2 estimator, which must hold under correct conditional mean
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specification (regardless of the correctness of the conditional variance
specification). It is obtained by setting

Ŵm
i = F̂iS

′,

where

F̂i =
[
∂Ω̂i

∂γ 1
1

Ω̂−1
i Xi · · · ∂Ω̂i

∂γ
l1
1

Ω̂−1
i Xi

∂Ω̂i

∂γ 1
2

Ω̂−1
i Xi · · · ∂Ω̂i

∂γ
l2
2

Ω̂−1
i Xi

]

and ∂Ωi

∂γ rp
(p = 1, 2) is again defined inAppendix A2. This test, which will

have power against any alternative Hm
1 for which the block diagonality of

the expected Hessian matrix the GPML2 estimator fails, is a quite natural
complement to the above Hausman test for testing Hm

0 without resorting
to explicit alternatives. Note that if the multiplicative heteroscedasticity
formulation is adopted for bothφν(·) andφμ(·), one of the two matrix el-

ements∂Ω̂i

∂γ 1
1
Ω̂−1
i Xi and ∂Ω̂i

∂γ 1
2
Ω̂−1
i Xi of F̂i is redundant (yielding a singular

statistic forS being set to an identity matrix) and must thus be discarded.
When a test against a specific nested or non-nested alternative re-

jects the null hypothesis Hm0 , it is natural to then consider modifying the
originally assumed conditional mean specification in the direction of the
considered alternative. When a Hausman or information matrix type test
rejects Hm0 , the way that one should react is less obvious and depends
on the situation at hand. In all cases, considering further diagnostic tests
against various nested or non-nested alternatives should help one to iden-
tify the source(s) of rejection of Hm0 .

To conclude this brief review of conditional mean diagnostic m-tests,
we make one additional remark. In empirical practice, it is not unusual
for one to test the null model against an explicit alternative which in-
cludes variables which are not functions of the original set of conditioning
variablesCVi ≡ (Xi, Z

1
i , Z

2
i ). This does not modify the way in which

testing against explicit alternatives is implemented. It is however impor-
tant to be aware that, in such a case, we are no longer only testing the
null Hm

0 but instead the null Hm′
0 : Hm

0 holds andE(Yi |Xi, Z
1
i , Z

2
i ,Gi) =

E(Yi |Xi, Z
1
i , Z

2
i ), i = 1, 2, . . . , n, whereGi denotes the variables which

are not functions ofCVi . In other words, we are jointly testing that Hm0
holds and that the additionalGi variables are irrelevant as conditioning
variables for the expectation ofYi . We thus must be careful in interpreting
such a specification test given that Hm

0 might well hold while Hm′
0 does not.

2.4.2 Conditional variance diagnostic tests

Having tested – and if needed adjusted – the conditional mean specifica-
tion of the model, we may then check its conditional variance specifica-
tion. Testing the null hypothesis that the conditional variance is correctly
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specified entails testing the null

Hv
0:

⎧
⎨
⎩

Hm
0 holds and, for someγ o,

V
(
Yi |Xi, Z

1
i , Z

2
i

)
= diag

(
φν
(
Z1
i γ

o
1

))
+ JTiφμ

(
Z2
i γ

o
2

)
,

i = 1, 2, . . . , n.

Note that Hv0 embodies Hm0 : there is indeed no way to test the con-
ditional variance specification without simultaneously assuming that the
conditional mean is correctly specified. This is however not a real problem
since, using the above diagnostic tests, the conditional mean specification
may in a first step be checked without having to assume correct conditional
variance specification.

Following againWhite (1987, 1994), Wooldridge (1990, 1991a, 1991b)
andLejeune (1998), based on the GPML2 estimatorθ̂n, Hv

0 may efficiently
be tested by checking, for appropriate choices ofT 2

i ×q indicator matrices
Ŵ v

i (which may depend on the conditioning variables (Xi, Z
1
i , Z

2
i ) as well

as on additional estimated nuisance parameters), thatq × 1 misspecifica-
tion indicators which similarly are of the form

(2.10)Φ̂v
n = 1

n

n∑

i=1

Ŵ v′
i Γ̂

−1
i v̂i,

where

Γ̂ −1
i =

(
Ω̂−1
i ⊗ Ω̂−1

i

)
and v̂i = vec(ûi û

′
i − Ω̂i),

are not significantly different from zero.
Given the assumed statistical setup, a relevant statistic for checking

thatΦ̂v
n is not significantly different from zero is given by the asymptotic

chi-squared statistic6

M
v
n =

(
n∑

i=1

Ŵ v′
i Γ̂

−1
i v̂i

)′

×
(

n∑

i=1

(
Ŵ v

i − ∂ vecΩ̂i

∂γ ′ P̂ v

)′

× Γ̂ −1
i v̂i v̂

′
iΓ̂

−1
i

(
Ŵ v

i − ∂ vecΩ̂i

∂γ ′ P̂ v

))−1

6 Note thatMv
n may in practice be computed asn minus the residual sum of squares

(= nR2
u, R2

u being the uncenteredR-squared) of the artificial OLS regression 1=
[v̂′
i
Γ̂ −1
i

(Ŵ v
i

− ∂ vecΩ̂i

∂γ ′ P̂ v)]b + residuals,i = 1, 2, . . . , n.
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×
(

n∑

i=1

Ŵ v′
i Γ̂

−1
i v̂i

)
d−→ χ2(q),

where

∂ vecΩ̂i

∂γ ′ =
[
∂ vecΩ̂i

∂γ ′
1

∂ vecΩ̂i

∂γ ′
2

]
,

P̂ v =
(

n∑

i=1

(
∂ vecΩ̂i

∂γ ′

)′
Γ̂ −1
i

∂ vecΩ̂i

∂γ ′

)−1 n∑

i=1

(
∂ vecΩ̂i

∂γ ′

)′
Γ̂ −1
i Ŵ v

i

and ∂ vecΩi

∂γ ′ is defined inAppendix A2.
As was the case with the conditional mean diagnostic tests, by suitably

choosing theT 2
i × q indicator matriceŝW v

i in (2.10), as detailed below,
Hv

0 may be tested against nested alternatives, non-nested alternatives, or
without resorting to explicit alternatives through Hausman and informa-
tion matrix type tests.

A prominent characteristic of all conditional variance diagnostic tests
implemented through theMv

n statistic is that they yield valid tests of Hv0
whether or not normality holds. Consequently, since they do not rely on
assumptions other than Hv0 itself, a rejection may always be unambigu-
ously attributed to a failure of Hv0 to hold. Further, given the nested nature
of Hm

0 and Hv0 and the robustness to possible conditional variance mis-
specification of the diagnostic tests of Hm

0 , if no misspecification has been
detected by conditional mean diagnostic tests, a rejection of Hv

0 may then
sensibly be attributed to conditional variance misspecification: situations
where conditional variance diagnostic tests detect a misspecification in the
mean which has not been detected by conditional mean diagnostic tests are
indeed likely to be rare in practice. Interestingly, another important char-
acteristic of diagnostic tests implemented through theMv

n is that they will
have optimal properties if normality actually holds.

FollowingWhite (1994), Wooldridge (1990, 1991a, 1991b)andLejeune
(1998), for testing Hv0 against a nested alternative of the form

Hv
1:

{
Hm

0 holds and, for some
(
γ o′, αo′

)′
,

V
(
Yi |Xi, Z

1
i , Z

2
i

)
= Ωa

i

(
Xi, Z

1
i , Z

2
i , γ

o, αo
)
, i = 1, 2, . . . , n,

whereΩa
i (Xi, Z

1
i , Z

2
i , γ, α) denotes some alternative conditional vari-

ance specification such that for some valueα = c of the q × 1 vector
of additional parametersα we have

Ωa
i

(
Xi, Z

1
i , Z

2
i , γ, c

)
= diag

(
φν
(
Z1
i γ1
))

+ JTiφμ
(
Z2
i γ2
)
,

i = 1, 2, . . . , n,
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the appropriate choice of̂W v
i is given by

Ŵ v
i =

∂ vecΩa
i (Xi, Z

1
i , Z

2
i , γ̂n, c)

∂α′ .

If the considered nested alternative takes the simple semi-linear form

Ωa
i

(
Xi, Z

1
i , Z

2
i , γ, α

)
= diag

(
φν
(
Z1
i γ1 +G1

i α1
))

+ JTiφμ
(
Z2
i γ2 +G2

i α2
)
,

whereα = (α′
1, α

′
2)

′ andG1
i andG2

i are respectivelyTi × q1 matrices and
1 × q2 vectors(q1 + q2 = q) of variables which are functions of the set
of conditioning variablesCVi ≡ (Xi, Z

1
i , Z

2
i ), the test corresponds to a

variable addition test and̂W v
i is equal to

Ŵ v
i =

[
Ŵ v1

i Ŵ v2
i

]

with

Ŵ v1
i = diag

(
vec
(
diag

(
φ′
ν

(
Z1
i γ̂1n

))))(
G1
i ⊗ eTi

)

=
q1∑

r=1

vec
(
diag

(
φ′
ν

(
Z1
i γ̂1n

)
⊙G1r

i

))
er

′
q1
,

Ŵ v2
i = φ′

μ

(
Z2
i γ̂2n

)
vec(Jni )G

2
i =

q2∑

r=1

vec
(
φ′
μ

(
Z2
i γ̂2n

)
G2r
i JTi

)
er

′
q2
,

whereφ′
ν(·) andφ′

μ(·) stand for the first derivatives ofφν(·) andφμ(·),G1r
i

andG2r
i denote therth column of respectivelyG1

i andG2
i , e

r
q1

anderq2
are

respectivelyq1×1 andq2×1 vectors with a one in therth place and zeros
elsewhere, and⊙ stands for the Hadamard product, i.e. an element-by-
element multiplication. As for the conditional mean, we may for example
check in this way the semi-linearity of the assumed conditional variance by
settingG1

i andG2
i equal to (some of) the squares and/or the cross-products

of (some of) theZ1
i andZ2

i variables.
On the other hand, for testing Hv0 against a non-nested alternative such

as

Hv
1:

{
Hm

0 holds and, for someδo,
V
(
Yi |Xi, Z

1
i , Z

2
i

)
= Σa

i

(
Xi, Z

1
i , Z

2
i , δ

o
)
, i = 1,2, . . . , n,

whereΣa
i (Xi, Z

1
i , Z

2
i , δ) denotes some alternative conditional variance

specification which does not contain the null conditional variance speci-
ficationΩi as a special case andδ is a vector of parameters, appropriate
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choices ofŴ v
i are given by

(2.11)Ŵ v
i = vec

(
Σ̂a
i − Ω̂i

)

and

(2.12)Ŵ v
i = vec

(
Ω̂iΣ̂

a−1

i Ω̂i − Ω̂i

)
,

whereΣ̂a
i = Σa

i (Xi, Z
1
i , Z

2
i , δ̂n) andδ̂n is any consistent estimator ofδo

under Hv1. The first possible choice(2.11)of Ŵ v
i yields aDavidson and

MacKinnon (1981)type test of a non-nested alternative while the second
one(2.12) corresponds to aCox (1961, 1962)type test of a non-nested
alternative. It seems that the Cox-like form of the test is generally more
powerful than the Davidson-like form. Be that as it may, such tests may
for example be used for checking the chosen variance functionsφν(·) and
φμ(·) against some other possible functional forms, or more generally for
checking the assumed heteroscedastic model against any other non-nested
specification for the scedastic structure of the data.

As was the case in our discussion of conditional mean testing, when
a test against a specific nested or non-nested alternative rejects the null
hypothesis Hv0, it is natural for one to consider modifying the originally
assumed conditional variance specification in the direction of the consid-
ered alternative. Likewise, in both the nested and non-nested cases, the
way to perform the tests is unchanged if the alternative includes vari-
ables which are not functions of the original set of conditioning variables
CVi ≡ (Xi, Z

1
i , Z

2
i ). But similarly, the tested null hypothesis is modified.

It here takes the form Hv′0 : Hv
0 holds and, bothE(Yi |Xi, Z

1
i , Z

2
i ,Gi) =

E(Yi |Xi, Z
1
i , Z

2
i ) andV (Yi |Xi, Z

1
i , Z

2
i ,Gi) = V (Yi |Xi, Z

1
i , Z

2
i ), i =

1, 2, . . . , n, whereGi denotes the variables which are not functions of
CVi . In other words, besides Hv0, Hv′

0 further assumes that the additional
variablesGi are irrelevant as conditioning variables for the variance but
also for the expectation ofYi .

Beside tests against nested and non-nested alternatives, general purpose
diagnostic tests with expected power against a broader range of alterna-
tives may be performed through Hausman and information matrix type
tests.

Testing Hv0 through a Hausman type test requires one to choose a
consistent estimator ofγ o alternative toγ̂n. As already suggested, the
GPML2 estimator̂γn may be shown to be asymptotically equivalent to the
weighted non-linear least squares (NLS) estimator with weights{Γ̃ −1

i } of
the multivariate non-linear regression vec(ũi ũ

′
i) = vec(diag(φν(Z1

i γ1))+
JTiφμ(Z

2
i γ2)) + residuals,i = 1, 2, . . . , n, where the superscript ‘̃’ de-

notes quantities evaluated at any preliminary consistent estimator ofβo
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andγ o. A straightforward and natural alternative to it is hence to use the
standard (i.e. unweighted) NLS estimator, sayγ̂

n
, of the same non-linear

regression. Accordingly, a relevant Hausman type test of Hv
0 may be ob-

tained by checking, for some chosen selection matrixS, the closeness to
zero of the misspecification indicator

Φ̂v
n = S(γ̂n − γ̂

n
).

Following the lines ofWhite (1994)andLejeune (1998), a test asymp-
totically equivalent to checking the above misspecification indicator is
obtained by setting

Ŵ v
i = Γ̂i

∂ vecΩ̂i

∂γ ′ Q̂−1S′,

whereQ̂ =
∑n

i=1(
∂ vecΩ̂i

∂γ ′ )′ ∂ vecΩ̂i

∂γ ′ . As with all Hausman type tests, this
test will have power against any alternative Hv

1 for which γ̂n andγ̂
n

con-
verge to different pseudo-true values.

On the other hand, following again the lines ofWhite (1994)and
Lejeune (1998), an information matrix type test of Hv0 may be based on
checking, for some chosen selection matrixS which at least removes its
otherwise obvious redundant elements, the closeness to zero of the mis-
specification indicator

Φ̂v
n = S

1

n

n∑

i=1

vec
(
ŝ
β
i ŝ

β′
i + ĥ

ββ

i

)
.

Such a test basically means checking the information matrix equality
Bββ = −Aββ for the mean parameters, which must hold under correct
conditional mean and conditional variance specification. It is obtained by
setting

Ŵ v
t = (Xi ⊗Xi)S

′.

This latter way of testing Hv0 without resorting to explicit alternatives,
which seems generally more powerful than the above Hausman type test,
will clearly have power against any alternative Hv

1 for which the mean
parameters information matrix equality fails.

As in conditional mean testing, when a Hausman or information matrix
type test rejects Hv0, the way to react is not obvious and depends on the sit-
uation at hand. But in all cases, considering further diagnostic tests against
various nested or non-nested alternatives should likewise help to identify
the source(s) of rejection of Hv0.
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2.5 An empirical illustration

We hereafter illustrate the potential usefulness of our proposed full
heteroscedastic model and its accompanying robust inferential methods
through an empirical example which involves estimating and testing at an
inter-sectorial level the correctness of the specification of a transcenden-
tal logarithmic (translog) production model for a sample of 824 French
firms observed over the period 1979–1988. As we will see, the results
of this exercise suggest (a) that, as argued inBaltagi and Griffin (1988),
heteroscedasticity-related problems are likely to be present when estimat-
ing this kind of production model, (b) that our proposed full heteroscedas-
tic model and its accompanying robust inferential methods offer a sensible,
although imperfect, way to deal with it, and (c) that a judicious use of the
set of proposed specification tests allows one to obtain very informative in-
sights regarding the empirical correctness of this simple production model.

2.5.1 Data and model

The data originally came from a panel dataset constructed by the “Marchés
et Stratégie d’Entreprises” division of INSEE. It contains 5 201 obser-
vations and involves an unbalanced panel of 824 French firms from 9
sectors7 of the NAP 15 Classification observed over the period 1979–
1988.8 Available data include the value added (va) of the firms deflated by
an NAP 40 sector-specific price index (base: 1980), their stock of capital
(k) and their labor force (l). The stock of capital has been constructed by
INSEE and the labor force is the number of workers expressed in full-time
units.

As is usual in this kind of dataset, the variability of the observations
essentially lies in the between (across individuals) dimension and is very
important: the number of workers ranges from 19 to almost 32 000 and the
capital intensity(k/ l) varies from a factor of 1 to more than 320. Globally,
large firms are over-represented.

For this dataset, we considered estimating and testing the following full
heteroscedastic one-way error components translog production function
model:

Vit = β(sc×t) + βkKit + βlLit + βkkK
2
it + βllL

2
it + βklKitLit

(2.13)+ μi + νit

7 Agricultural and food industries, energy production and distribution, intermediate goods
industries, equipment goods industries, consumption goods industries, construction and
civil engineering, trade, transport and telecommunications, and market services.
8 I wish to thank Patrick Sevestre for giving me the opportunity to use this dataset.
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with

(2.14)σ 2
νit

= exp
(
γ c1 + γ k1Kit + γ l1Lit

)
,

(2.15)σ 2
μi

= exp
(
γ c2 + γ k2K i + γ l2Li

)
,

where

Vit = ln vait , Kit = (ln kit − ln k∗), Lit = (ln lit − ln l∗),

K i = 1

Ti

Ti∑

t=1

Kit and Li = 1

Ti

Ti∑

t=1

Lit .

The subscript ‘(sc × t)’ attached to the intercept parameterβ(sc×t)
means that we actually let the intercept be sectorial and time-period spe-
cific. The model thus contains 90 dummies (9 sectors× 10 periods). This
allows for sector-specific productivity growth patterns.

The explanatory variables are centered so that the estimated values of
βk andβl reported below may directly be interpreted as the elasticities of
the value added with respect to capital and labor atk = k∗ andl = l∗. We
setk∗ andl∗ at their entire sample means.

For both the individual-specific and general error variance functions,
we adoptedHarvey’s (1976)multiplicative heteroscedasticity formulation.
In the general error variance function, the explanatory variables are sim-
ply taken as the (log of the) capital and labor inputs. Taking the individual
mean values of the (log of the) capital and labor inputs as explanatory vari-
ables in the individual-specific variance function is mainly a pragmatic
choice. It appears sensible as far as the observations variability promi-
nently lies in the between dimension. Be that as it may, these choices allow
the variances to change according to both size and input ratios.

2.5.2 Estimation and specification testing

The results of GPML2 estimation of model(2.13)–(2.15)are reported in
Table 2.1.9 As it seems natural when first estimating the model, the co-
variance matrix of the parameters was first computed supposing correct
conditional mean specification but possibly misspecified conditional vari-
ance, i.e. as the empirical counterpart ofCo∗

n , or more precisely as the
empirical counterpart ofCo∗

n for the mean parameters and as the empirical
counterpart of the outlined upper bound (thus allowing Wald conservative
tests) ofCo∗

n for the variance parameters (see Section2.3.2). The standard
errors reported inTable 2.1are derived from this first estimated covariance
matrix.

9 For conciseness, the dummy parameter estimates are not reproduced.
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Table 2.1. GPML2 estimates and diagnostic tests

Variable Coefficient Std. error∗ t-ratio P -value

K 0.2487 0.0188 13.26 0.0000
L 0.7367 0.0244 30.21 0.0000
K2 0.0547 0.0072 7.58 0.0000
L2 0.0572 0.0132 4.35 0.0000
KL −0.1137 0.0176 −6.48 0.0000
σ2
νit

= exp(·)
const. −4.1997 0.0541 −77.65 0.0000
K 0.1870 0.0582 3.21 0.0013
L −0.2482 0.0849 −2.92 0.0035
σ2
μi

= exp(·)
const. −2.5213 0.0732 −34.43 0.0000
K 0.1676 0.0610 2.74 0.0060
L −0.1709 0.0799 −2.14 0.0325

Stat. D.f. P -value

Conditional mean tests
(1) Hausman 5.9 5 0.3180
(2) Information matrix 33.7 25 0.1141
(3) H1: non-neutral TP 8.4 2 0.0146
(4) H1: third power 2.8 4 0.5961
(5) H1: time heterogeneity 57.1 45 0.1064
(6) H1: sectorial heterogeneity 41.0 40 0.4249

Conditional variance tests
(7) Hausman 18.4 6 0.0052
(8) Information matrix 45.6 15 0.0001
(9) H1: second power 2.2 6 0.9015

(10) H1: sectorial heterogeneity 98.6 48 0.0000

∗Standard errors computed assuming correct conditional mean specification but possibly
misspecified conditional variance.

As is apparent fromTable 2.1and confirmed when formally perform-
ing a (conservative) Wald test of the null hypothesis that the non-intercept
parameters of both individual-specific and general variance functions are
zero (P -value of the test: 0.0008), it appears that heteroscedasticity-like
patterns are effectively present in both the individual-specific and general
errors of the model. In both cases, heteroscedasticity seems to be related
to input ratios: more capital intensive firms tend to achieve more hetero-
geneous outputs both in the between and within dimensions relative to
the more labor intensive firms. The captured heteroscedasticity does not
however seem to be notably related to size.Figure 2.1portrays this latter
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Figure 2.1. Estimated variances versus size

point. In this figure, estimated general error and individual-specific error
variances are graphed against the observations sorted in ascending order
according to individual means of the fitted dependent variable and, within
each individual, according to the values of the fitted dependent variable
itself.

Neither of these plots reveal notable links between variances and size.
They do however outline two other points. First, variations in the observed
inputs ratios imply variations in the estimated variances – identified by the
difference between the lower and upper levels of the estimated variances –
of more than a factor 2. Second, the estimated individual-specific variances
are roughly 5–6 times higher than the estimated general error variances.

Having estimated the model, we next checked the correctness of its
specification, considering first its conditional mean specification. To this
end, we performed both Hausman and information matrix type tests and
tests against nested alternatives. For the record, Hausman and information
matrix type tests may be viewed as general purpose diagnostic tests allow-
ing one to in particular detect unforeseen forms of misspecification, while
tests against nested alternatives constitute a standard device for detecting
a priori well-defined and plausible forms of misspecification.

In the present case, we considered a Hausman test based on compar-
ing the GPML2 and OLS estimators of all mean parameters (excepted the
dummies) and an information matrix test based on checking the close-
ness to zero of the sub-block of the Hessian corresponding to the cross-
derivatives between the non-intercept mean parameters and all variance
parameters (except for the intercept of the individual-specific variance
function, to avoid singularity (cf. Section2.4.1)). On the other hand, we
considered tests against nested alternatives checking for possible non-
neutral technical progress (the alternative model including as additional
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variables the interactions between a trend and the first-order terms of the
translog function10), for a possible more general functional form (the al-
ternative model including terms of third power11 as additional variables
to the null translog specification), for possible time heterogeneity (the
alternative model allowing for the non-intercept mean parameters to be
time-period specific), and finally for possible sectorial heterogeneity (the
alternative model allowing for the non-intercept mean parameters to be
sector-specific).

Table 2.1reports the results obtained from the computation of these
conditional mean diagnostic tests.12 As may be seen, it appears that the
conditional mean does not exhibit patent misspecification. The only sta-
tistic which indicates some possible deviation from correct specification
is the one of test (3). ItsP -value is however not really worrying: from
a formal point of view, according to a standard Bonferroni approach, for
rejecting at 5% the null hypothesis that the conditional mean is correctly
specified, we “need” that at least one of the 6 separate tests rejects the
null at 0.83% (0.05/6 ≃ 0.0083). Viewed in a less formal way, it is nor-
mal to find that some statistics (moderately) deviate when multiplying the
number of diagnostic tests. The model may thus sensibly be viewed as a
satisfactory statistical representation – on which for example productiv-
ity growth measurements could be based – of the available data for the
conditional mean.

Taking correct conditional mean specification of the model for granted,
we then examined its conditional variance. To this end, as for the con-
ditional mean, we performed general purpose Hausman and information
matrix type tests and tests against nested alternatives. Practically, we con-
sidered a Hausman test based on comparing the GPML2 and (unweighted)
NLS estimators of all variance parameters and an information matrix test
based on checking the closeness to zero of the non-redundant elements of
the sub-block of the information matrix equality associated with the non-
intercept mean parameters. On the other hand, we considered tests against
nested alternatives checking for a possible more general functional form

10 Non-neutral technical progress is typically modeled by considering a trend, a trend-
squared and interaction terms between the trend and the first-order terms of the translog
function as additional inputs. The trend and trend-squared terms being already captured by
the set of dummies, it thus remains to test for the interaction terms between a trend and the
first-order terms of the translog function.
11 I.e.K3, L3, KL2 andK2L.
12 Note that none of these diagnostic tests involves variables which are not a function of
the original set of conditioning variables (i.e.K, L, sector dummies and time dummies).
The null hypothesis of these tests is thus never more than Hm

0 itself (cf. Section2.4.1).
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(the alternative model specifying both the individual-specific and general
error variances as (the exponential of) translog functions instead of Cobb–
Douglas like functions) and for possible sectorial heterogeneity (the alter-
native model allowing for all variance parameters to be sector-specific).

Before examining the results of these tests,13 note that the fact of find-
ing no patent misspecification in the conditional mean supports the validity
of the (conservative) standard errors of the variance parameter estimates
reported inTable 2.1. These standard errors – and further the result of the
outlined formal (conservative) Wald test of the null hypothesis that the
non-intercept parameters of the individual-specific and general variance
functions are zero – undoubtedly indicate that a heteroscedasticity-like
pattern is effectively present in the errors of the model. However, ac-
cording to the conditional variance tests reported in the same table, the
assumed specification for this heteroscedasticity-like pattern turns out to
be seriously misspecified. Test (9) suggests that relaxing the functional
form would not really help. On the other hand, test (10) points out that a
problem of sectorial heterogeneity might be involved.

To shed light on the latter point as well as to gauge the sensibility of the
conditional mean estimates and diagnostic tests to the specification of the
conditional variance,Table 2.2reports GPML2 estimates and diagnostic
tests – the same tests as above – of an extension of model(2.13)–(2.15),
where both the individual-specific and the general error variance para-
meters are allowed to be sector-specific.

As may be seen fromTable 2.2, the obtained mean parameter esti-
mates are not very different from those obtained under the assumption
of identical variances across sectors (cf.Table 2.1). For conciseness, the
variance parameter estimates are not reported. But, as expected, they un-
ambiguously confirm both that a heteroscedasticity-like pattern related to
input ratios is present, and that this heteroscedasticity-like pattern is in-
deed sector-specific.

The diagnostic tests reported inTable 2.2corroborate our result that
the conditional mean of the model does not exhibit patent misspecifica-
tion. However, they also show that allowing for sector-specific variance
functions did not solve our misspecification problem in the conditional
variance. How to fix this misspecification does not appear to be a trivial
exercise.

Note nevertheless that, even if misspecified, these sector-specific vari-
ance functions are not useless. Comparing the standard errors of the mean

13 Note again that none of these diagnostic tests involves variables which are not a function
of the original set of conditioning variables. The null hypothesis of these tests is thus again
never more than Hv0 itself (cf. Section2.4.2).
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Table 2.2. GPML2 estimates and diagnostic tests with sector-specific
conditional variances

Variable Coefficient Std. error∗ t-ratio P -value

K 0.2455 0.0169 14.54 0.0000
L 0.7519 0.0210 35.77 0.0000
K2 0.0557 0.0062 9.03 0.0000
L2 0.0639 0.0101 6.29 0.0000
KL −0.1165 0.0148 −7.87 0.0000

Stat. D.f. P -value

Conditional mean tests
(1) Hausman 6.5 5 0.2579
(2) Information matrix 38.7 25 0.0396
(3) H1: non-neutral TP 3.9 2 0.1446
(4) H1: third power 3.3 4 0.5061
(5) H1: time heterogeneity 55.6 45 0.1341
(6) H1: sectorial heterogeneity 36.0 40 0.6505

Conditional variance tests
(7) Hausman 72.1 50 0.0221
(8) Information matrix 52.8 15 0.0000

∗Standard errors computed assuming correct conditional mean specification but possibly
misspecified conditional variance.

parameters reported inTables 2.1 and 2.2, it may indeed be seen that allow-
ing for this more flexible conditional variance specification has entailed
(moderate) efficiency gains: the reduction of the standard errors ranges
from −10.1% to−23.4%. This illustrates that, as argued in Section2.3.2,
a misspecified conditional variance may get efficiency benefits – for esti-
mation but also testing of the conditional mean – from taking into account
even approximately the actual scedastic structure of the data.

2.6 Conclusion

This paper proposed an extension of the standard one-way error compo-
nents model allowing for heteroscedasticity in both the individual-specific
and the general error terms, as well as for unbalanced panel. On the
grounds of its computational convenience, its ability to straightforwardly
handle unbalanced panels, its potential efficiency, its robustness to non-
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normality and its robustness to possible misspecification of the assumed
scedastic structure of the data, we argued for estimating this model by
Gaussian pseudo-maximum likelihood of order two. We further reviewed
how, taking advantage of the powerful m-testing framework, the correct
specification of the prominent aspects of the assumed full heteroscedastic
model may be tested. We finally illustrated the practical relevance of our
proposed model and estimation and diagnostic testing procedures through
an empirical example.

To conclude, note that, since our proposed model contains as a special
case the standard one-way error components model (just let theZ1

i and
Z2
i variables only contain an intercept), our proposed integrated statisti-

cal tool-box, for which an easy-to-use Gauss package is available upon
request from the author, may actually also be used for estimating and
checking the specification of this standard model. On the other hand,
remark that, following the lines of this paper, our proposed integrated sta-
tistical tool-box may readily be adapted to handle a more general model,
for example allowing for a nonlinear (instead of linear) specification in
the conditional mean and/or any fully nonlinear (instead of semi-linear)
specification in the conditional variance.
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Appendix A2

Closed-form expressions for|Ωi | andΩ−1
i are given by

|Ωi | = (bi)
Ti |Ci |

(
1 + trC−1

i

)
=
(

Ti∏

t=1

ait

)
(1 + e′

Ti
c̄i),

Ω−1
i = 1

bi

(
C−1
i − 1

1 + trC−1
i

(
C−1
i JTiC

−1
i

))

= diag(āi)− 1

bi(1 + e′
Ti
c̄i)

c̄i c̄
′
i,
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where

bi = φμ
(
Z2
i γ2
)
, ci = 1

bi
φν
(
Z1
i γ1
)
, ai = φν

(
Z1
i γ1
)
,

Ci = diag(ci), c̄i = eTi ÷ ci, āi = eTi ÷ ai,

ait being thet th element ofai and÷ indicating an element-by-element
division. Note that according to this notation,Ωi = bi(Ci + JTi ).

Following Magnus (1978, 1988), the first derivatives ofLn(β, γ1, γ2)

may be written

∂Ln

∂θ
= 1

n
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β
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tr
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i (uiu

′
i −Ωi)

)
erlp ,

whereerlp is alp×1 vector with a one in therth place and zeros elsewhere,
i.e. therth column of alp × lp identity matrix,γ rp is therth component of
γp, and the derivatives of vecΩi with respect toγ ′

p (p = 1, 2) are

(A2.3)
∂ vecΩi
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1
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(
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2
i = φ′

μ

(
Z2
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2
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while the derivatives ofΩi with respect toγ rp (p = 1, 2) are

(A2.5)

∂Ωi
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i γ1
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i
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and

∂Ωi

∂γ r2
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Z2r
i JTi ,

whereφ′
ν(·) andφ′

μ(·) denote the first derivatives ofφν(·) andφμ(·),Z1r
i is

therth column of the matrix of explanatory variablesZ1
i , ⊙ stands for the

Hadamard product, i.e. an element-by-element multiplication, andZ2r
i is

therth column of the row vector of explanatory variablesZ2
i . Note that if
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the multiplicative heteroscedasticity formulation is adopted for bothφν(·)
andφμ(·), then, in(A2.3)–(A2.5), φ′

ν(·) andφ′
μ(·) are simply equal to

exp(·).
Following again Magnus (1978, 1988), the Hessian matrix of

Ln(β, γ1, γ2) may be written
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i.e. aT 2
i lp × lq matrix,
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whereφ′′
ν (·) andφ′′

μ(·) denote the second derivatives ofφν(·) andφμ(·). If
the multiplicative heteroscedasticity formulation is adopted for bothφν(·)
andφμ(·), φ′′

ν (·) andφ′′
μ(·) are again simply equal to exp(·).

Under conditional mean and conditional variance correct specification,
we haveE(uoi |Xi, Z

1
i , Z

2
i ) = 0 andE((uoi u

o′
i − Ωo

i )|Xi, Z
1
i , Z

2
i ) = 0,

so that using the law of iterated expectation it is easily checked that the
expected Hessian matrix ofLn(β, γ1, γ2) may be written
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Note that contrary to the Hessian which depends on first and second
derivatives, the expected Hessian is block-diagonal (between mean and
variance parameters) and only depends on first derivatives.
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Appendix B2

For Gaussian maximum likelihood estimation of the standard (homosce-
dastic) one-way error components model,Breusch (1987)suggests an
iterated GLS procedure. Although applicable in very general situations
(seeMagnus, 1978), in the present case it is not very attractive since it im-
plies at each step the (numerical) resolution of a set of non-linear equations
defined by the first-order conditions∂Ln

∂γp
= 0 (p = 1, 2).

As alternatives, we can use either a Newton or quasi-Newton (secant
methods) algorithm. While the former requires the computation of the first
and second derivatives, the latter (for example, the so-called Davidson–
Fletcher–Powell and Broyden–Fletcher–Goldfard–Shanno methods) re-
quires only the computation of the first derivatives (seeQuandt, 1983).
In the present case, a variant of the Newton method appears particu-
larly appealing, namely the scoring method. This variant simply involves

substituting the Hessian∂
2Ln

∂θ∂θ ′ = 1
n

∑n
i=1 h

θθ
i used in the Newton algo-

rithm by the empirical counterpart of its expectation under conditional
mean and conditional variance correct specification, i.e. by1

n

∑n
i=1 h

θθ
i .

As noted above inAppendix A2, the latter is considerably simpler: it is
block-diagonal and only involves first derivatives. It will be a good ap-
proximation of the Hessian if the model is correctly specified andθ is
not too far fromθo. According to our experience, even under quite severe
misspecification, provided that all quantities are analytically computed,
the scoring method generally converges in less time (more computation
time per iteration but fewer iterations) than the secant methods. Further,
since the empirical expected Hessian is always negative semidefinite, it is
numerically stable.

A sensible set of starting values for the above algorithm may be com-
puted by proceeding as follows:

1. Obtain theβ̂ and α̂ = (α̂1, . . . , α̂i, . . . , α̂n) OLS estimates of the
dummy variables modelYi = αi + Xiβ+ residuals(i = 1, 2, . . . , n),
whereXi is the same asXi except its dropped first column. At this
stage,β̂ and the mean of thêαi , i.e. ᾱ = 1

n

∑n
i=1 α̂i , provide ini-

tial values forβ. Note that in practicêβ and α̂i may be computed as

β̂ = (
∑n

i=1X
′
iMTiXi)

−1∑n
i=1X

′
iMTiYi (within OLS estimator) and

α̂i = 1
Ti
e′
Ti
(Yi − Xi β̂), whereMTi = ITi − 1

Ti
JTi , i.e. the within trans-

formation matrix. SeeBalestra (1996)for details.
2. Run the OLS regressionφ−1

ν (û
2
it ) = Z1

itγ1+ residuals (i = 1, 2, . . . , n;
t = 1, 2, . . . , Ti), whereûit = Yit − α̂i − Xit β̂ andφ−1

ν (·) is the
(supposed well-defined) inverse function ofφν(·). The non-intercept
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parameters of̂γ1 and the intercept parameter ofγ̂1 minusγ1c , where
γ1c is an intercept correction term, give initial values forγ1. The desir-
ability of an intercept correction of̂γ1 arises from the fact that, even if
we suppose that̂uit is equal to the true disturbanceνit , the (conditional)
expectation of the error term in the above OLS regression is usually not
zero (and even not necessarily a constant). The “optimal” value of the
intercept correction termγ1c depends upon the functional formφ−1

ν (·)
and the actual distribution of theνit . In the case of the multiplicative
heteroscedasticity formulation whereφ−1

ν (·) is simply equal to ln(·),
a sensible choice isγ1c = −1.2704. This follows from the fact that
E[ln(ν2

it )− ln(σ 2
νit
)] = E[ln(ν2

it/σ
2
νit
)] = −1.2704 ifνit ∼ N(0, σ 2

νit
);

seeHarvey (1976).
3. Finally, run the OLS regressionφ−1

μ ((α̂i − ᾱ)2) = Z2
i γ2 + residuals

(i = 1, 2, . . . , n), whereφ−1
μ (·) is the (supposed well-defined) inverse

function ofφμ(·). According to the same reasoning as above, the non-
intercept parameters of̂γ2 and the intercept parameter ofγ̂2 minusγ2c ,
whereγ2c is an intercept correction term, give initial values forγ2.
In the case of the multiplicative heteroscedasticity formulation where
φ−1
μ (·) is again equal to ln(·), γ2c should also be set to−1.2704.

Note that a simpler alternative to the step 2 and 3 is workable. It
merely consists in computing the “mean variance components”σ̂ 2

ν =
1
N

∑n
i=1

∑Ti
t=1 û

2
it andσ̂ 2

μ = 1
n

∑n
i=1(α̂i−ᾱ)2. The inverse function values

φ−1
ν (σ̂ 2

ν ) andφ−1
μ (σ̂ 2

μ) may then be used for the first elements (intercepts)
of γ1 andγ2, their remaining elements being simply set equal to zero.
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Abstract

This paper considers the finite sample properties of the feasible gener-
alized least square (FGLS) estimator for the random-effects model with
non-normal errors. By using the asymptotic expansion, we study the ef-
fects of skewness and excess kurtosis on the bias and Mean Square Error
(MSE) of the estimator. The numerical evaluation of our results is also
presented.
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3.1 Introduction

In random-effects (error component) models when variances of the
individual-specific effect and error term are unknown, feasible generalized
least square (FGLS) is the standard way for estimation (Baltagi, 2001). For
large sample size, FGLS has the same asymptotic efficiency as the GLS
estimator when variances are known (Fuller and Battese, 1974). However,
we deal with data sets of small and moderately large sample size in many
situations and the disturbances are typically believed to be non-normally
distributed.

Maddala and Mount (1973)provided a simulation study on the effi-
ciency of slope estimators for a static one-way error component panel
data model. They considered both normal and non-normal errors in sim-
ulations, where their non-normal errors are from lognormal distribution.

∗ Corresponding author.

mailto:aman.ullah@ucr.edu
mailto:xiao.huang@email.ucr.edu


68 A. Ullah and X. Huang

It is found that maximum likelihood estimator performs as well as other
types of FGLS estimators under both normal and lognormal errors in small
samples and all estimators give equally well results.Baltagi (1981)inves-
tigated thoroughly various estimation and testing procedures in a static
two-way error component model and extended many estimation results in
one-way models to two-way models.Taylor (1980)examined the exact
analytical small sample efficiency of FGLS estimator compared to be-
tween groups estimator and within groups estimator under the assumption
of normality.

Despite of previous studies, there has been no analytical result on how
non-normality affects the statistical properties of FGLS estimator in sta-
tic panel data model when sample size is finite. Further, we note that the
exact analytical result for the non-normal case is difficult to obtain and it
needs the specification of the form of the non-normal distribution. This
paper gives the large-n (fixed T ) approximate analytical result of finite
sample behavior of FGLS with non-normal disturbances. We derive the
approximate bias, up to O(1/n), and the mean square error (MSE), up to
O(1/n2), of the FGLS estimator in a static regression model under the as-
sumption that the first four moments of the errors are finite. For the case
of dynamic panel, the finite sample properties has been studied in several
papers through simulation, for example,Nerlove (1967, 1971), Arellano
and Bond (1991), and Kiviet (1995), and they are not directly related to
the static case studied in this paper.

The paper is organized as follows. Section3.2 gives the main results.
In Section3.3 are detailed proofs. Some numerical results are given and
discussed in Section3.4. Section3.5provides the conclusion.

3.2 Main results

Let us consider the following random effect model,

(3.1)
yit = xitβ + wit ,

wit = αi + uit , i = 1, . . . , n, t = 1, . . . , T ,

whereyit is the dependent variable,xit is an 1× k vector of exogenous
variables,β is a k × 1 coefficient vector and the errorwit consists of a
time-invariant random component,αi , and a random componentuit . We
can also write the above model in a vector form as

(3.2)
y = Xβ + w,

w = Dα + u,

D = In ⊗ ιT ,
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wherey is nT × 1,X is nT × k, w is nT × 1,α is n× 1, In is an identity
matrix of dimensionn, andιT is T × 1 with all elements equal to one.

We assume bothαi anduit are i.i.d. and mutually independent and

Eαi = 0, Eα2
i = σ 2

α ,

Eα3
i = σ 3

αγ1α, Eα4
i = σ 4

α (γ2α + 3),

Eαiαj =
{
σ 2
α if i = j,

0 if i �= j,

(3.3)Euit = 0, Eu2
it = σ 2

u ,

Eu3
it = σ 3

uγ1u, Eu4
it = σ 4

u (γ2u + 3),

Euitujs =
{
σ 2
u if i = j, t = s,

0 otherwise,
Eαixit = Eujsxit = 0, i, j = 1, . . . , n ands, t = 1, . . . , T ,

whereγ1α, γ1u andγ2α, γ2u are Pearson’s measures of skewness and kur-
tosis of the distribution.

The variance–covariance matrix ofw can be written as

Eww′ = σ 2
u

(
Q+ λ−1Q

)

(3.4)= σ 2
uΩ

−1,

whereQ = InT − Q, Q = DD′/T , λ = σ 2
u/σ

2
η andσ 2

η = σ 2
u + T σ 2

α ,

0 < λ ≤ 1. Obviously, we have the following properties ofQ andQ:

(3.5)
Q2 = Q, Q2 = Q, QQ = 0, and

Ω = Q+ λQ = InT − (1 − λ)Q.

The generalized least square (GLS) estimator ofβ when the variances
of uit andαi are known is given by

(3.6)β̂GLS = (X′ΩX)−1X′Ωy.

When the variances ofuit andαi are unknown, then feasible GLS estima-
tor is used by replacingΩ with its estimator,̂Ω,

(3.7)β̂FGLS = (X′Ω̂X)−1X′Ω̂y,

where

(3.8)Ω̂ = Q+ λ̂Q,

(3.9)σ̂ 2
u = u′(Q−QX(X′QX)−1X′Q)u

n(T − 1)− k
,

(3.10)σ̂ 2
η = w′(Q−QX(X′QX)−1X′Q)w

n− k
,
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(3.11)λ̂ = σ̂ 2
u/σ̂

2
η .

By expanding the terms in(3.8)–(3.11)and plugging them into(3.7),
we obtain the analytical expression of the second-order bias and mean
square error forβ̂FGLS. The detailed proofs are given in Section3.3 and
we give the main result in the following theorem.

THEOREM 3.1. Under assumption(3.3) the large-sample asymptotic ap-
proximations for the bias vectorE(β̂FGLS − β) up to O(n−1) and mean
square error matrixE((β̂FGLS− β)(β̂FGLS− β)′) up toO(n−2) are given
by

Bias= λ(1 − λ)

n2

(
σuγ1u

T
− σαγ1α

)(
A−1 − λA−1BA−1)X′ιnT ,

MSE = σ 2
u (X

′ΩX)−1

+ λσ 2
u

n2

[
2T

T − 1
− γ2u

T
(1 − λ)2 − γ2α(1 − λ)2

]
Δ+ C

n
+ C′

n
,

whereιnT is an nT × 1 vector of ones,A = 1
n
X′ΩX, B = 1

n
X′QX,

Δ = A−1(B − λBA−1B)A−1, and

C = λσ 2
u

n
A−1X

′Ω√
n

[
λγ2u

(
I ⊙QX(X′QX)−1X′Q

)

− γ2u

T − 1

(
I ⊙QX(X′QX)−1X′Q

)

+ γ2α(1 − λ)2

λT 2
D
(
I ⊙DX(X′QX)−1X′D

)
D′
]
P ′

1A
−1,

in whichP1 = (X′Q− BA−1X′Ω)/
√
n.

The proof ofTheorem 3.1is given in Section3.3. When errors are nor-
mally distributed,γ1α = γ2α = γ1u = γ2u = 0 and we get

COROLLARY 3.1. Under assumption(3.3), when the errors are nor-
mally distributed, the large-sample asymptotic approximations for the
bias vectorE(β̂FGLS − β) up to O(n−1) and mean square error matrix
E((β̂FGLS − β)(β̂FGLS − β)′) up toO(n−2) are given by

Bias= 0,

MSE = σ 2
u (X

′ΩX)−1 + 2λσ 2
uT

n2(T − 1)
Δ.

If the non-normality comes fromαi , not fromuit , thenγ1u = γ2u = 0
and we have
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COROLLARY 3.2. Under assumption(3.3), when onlyαi is non-normally
distributed, the large-sample asymptotic approximations for the bias vec-
torE(β̂FGLS−β) up toO(n−1) and mean square error matrixE((β̂FGLS−
β)(β̂FGLS − β)′) up toO(n−2) are given by

Bias= −λ(1 − λ)σαγ1α

n2

(
A−1 − λA−1BA−1)X′ιnT ,

MSE = σ 2
u (X

′ΩX)−1 + λσ 2
u

n2

[
2T

T − 1
− γ2α(1 − λ)2

]
Δ+ F

n
+ F ′

n
,

where

F = λσ 2
u

n
A−1

× X′Ω√
n

[
γ2α(1 − λ)2

λT 2
D
(
I ⊙DX(X′QX)−1X′D

)
D′
]
P ′

1A
−1.

Similarly, if the non-normality comes only fromuit , thenγ1α = γ2α = 0
and we have

COROLLARY 3.3. Under assumption(3.3), when onlyuit is non-normally
distributed, the large-sample asymptotic approximations for the bias
vector E(β̂FGLS − β) up to O(n−1) and mean square error matrix
E((β̂FGLS − β)(β̂FGLS − β)′) up toO(n−2) are given by

Bias= λ(1 − λ)σuγ1u

n2T

(
A−1 − λA−1BA−1)X′ιnT ,

MSE = σ 2
u (X

′ΩX)−1 + λσ 2
u

n2

[
2T

T − 1
− γ2u

T
(1 − λ)2

]
Δ+ G

n
+ G′

n
,

where

G = λσ 2
u

n
A−1X

′Ω√
n

[
λγ2u

(
I ⊙QX(X′QX)−1X′Q

)

− γ2u

T − 1

(
I ⊙QX(X′QX)−1X′Q

)]
P ′

1A
−1.

We note that the asymptotic MSE ofβ̂FGLS is given byσ 2
u (X

′ΩX)−1.
The following remarks follow from the results inTheorem 3.1andCorol-
lary 3.1.

REMARK 3.1. The Bias depends only on skewness coefficient. Bias is
zero if λ = 1 or λ = 0, whereλ = 1 impliesσ 2

α = 0 andλ = 0 implies
σ 2
u = 0. Also note that for symmetric distributions,γ1α = γ1u = 0, or

for distributions satisfyingγ1u/γ1α = T σα/σu, Bias is zero. Consider the
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Table 3.1. n = 10, T = 5, α is non-normal andu is normal,σα = 1,
σu = 0.6

θ2 γ1α γ2α Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.013656 0 0.002601 0.002902
2.0 −1.70 5.64 0.008769 0 0.002848 0.002902
2.5 −1.23 2.93 0.006350 0 0.002921 0.002902
3.0 −0.94 1.74 0.004853 0 0.002954 0.002902

Table 3.2. n = 50, T = 5, α is non-normal andu is normal,σα = 1,
σu = 0.6

θ2 γ1α γ2α Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.002661 0 0.000580 0.000594
2.0 −1.70 5.64 0.001709 0 0.000591 0.000594
2.5 −1.23 2.93 0.001237 0 0.000594 0.000594
3.0 −0.94 1.74 0.000946 0 0.000596 0.000594

term

A−1 − λA−1BA−1 = A−1(InT − λB)A−1

=
(
X′ΩX

n

)−1

(X′QX)

(
X′ΩX

n

)−1

≥ 0.

ThusA−1 − λA−1BA−1 is a positive semidefinite matrix. Therefore, pro-
videdX′ιnT ≥ 0,

Bias≷ 0 if
γ1u

γ1α
≷

T σα

σu
,

∂Bias

∂γ1u
≥ 0,

∂Bias

∂γ1α
≤ 0, and

∂2Bias

∂γ1u∂γ1α
= 0.

For the nature of decreasing slope of bias with respect toγ1α, seeTa-
bles 3.1 to 3.3. This Bias direction does not hold, that is bias direction is
not determined, if each element ofX′ιnT is not positive or negative.

REMARK 3.2. Under certain restrictions, there are also some monotonic
relations between the Bias and the variances of the error components. Con-
sider the Bias expression inCorollary 3.2, where onlyα is non-normally
distributed. For simplicity, letk = 1 andH = (X′QX)(X′ΩX/n)−1. The
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derivative of the Bias w.r.t.σ 2
α gives

∂Bias

∂σ 2
α

= −γ1α

n2

[
H
∂λ(1 − λ)σα

∂σ 2
α

+ λ(1 − λ)σa
∂H

∂σ 2
α

]
X′ι,

where

∂λ(1 − λ)σα/∂σ
2
α = 2σ−1

α λ(1 − λ)(4λ− 1)
≥ 0 if λ ≥ 1/4,
< 0 if λ < 1/4,

∂H/∂σ 2
α = 2n−1T σ−2

u λ2(X′QX)(X′ΩX/n)−3(X′QX) ≥ 0.

For X′ι > 0, if γ1α < 0, Bias is an increasing function ofσ 2
α when

λ ≥ 1/4. Whenλ < 1/4, the monotonicity is not determined.
Similar result holds for∂Bias/∂σ 2

u . ForX′ι > 0, if γ1u < 0, it is found
that Bias is an increasing function ofσ 2

u whenλ > 3/4. Whenλ ≤ 3/4,
the monotonicity is again not determined.

REMARK 3.3. Under the non-normality of errors, the MSE depends only
on kurtosis. The approximate MSE for normal distribution is greater than
or equal to asymptotic MSE, i.e.

σ 2
u (X

′QX)−1 + 2λσ 2
uT

n2(T − 1)
≥ σ 2

u (X
′QX)−1.

The results for approximate MSE result under both normal and non-
normal errors inTables 3.1 to 3.7suggest that the asymptotic MSE results
are generally the same as the approximate MSE results for moderately
large samples, at least up to 4 digits.

3.3 Derivation

PROOF OFTHEOREM 3.1. The expansion of the bias vector follows di-
rectly from the expansion of̂βFGLS around its true value,β. From (3.7)
we know that the expansion of̂βFGLS requires the expansion ofλ̂, which
further involves the expansion ofσ̂ 2

u andσ̂ 2
η . Let us start with the Taylor

series expansion of̂σ 2
u andσ̂ 2

η . From(3.9), we have

σ̂ 2
u = u′Qu− u′QX(X′QX)−1X′Qu

n(T − 1)− k

= 1

n(T − 1)

[
1 − k

n(T − 1)

]−1[
σ 2
un(T − 1)

(
1 + vu√

n

)
− σ 2

uv
∗
u

]
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= 1

n(T − 1)

[
1 + k

n(T − 1)
+ k2

n2(T − 1)2
+ · · ·

]

×
[
σ 2
un(T − 1)

(
1 + vu√

n

)
− σ 2

uv
∗
u

]

(3.12)= σ 2
u

[
1 + vu√

n
+ k − v∗

u

n(T − 1)

]
+ Op

(
n−3/2),

where

(3.13)vu =
√
n

(
u′Qu

n(T − 1)σ 2
u

− 1

)
,

(3.14)v∗
u = u′QX(X′QX)−1XQu/σ 2

u .

Both vu andv∗
u are Op(1). Similarly, we define other Op(1) terms fre-

quently used in the proof,

(3.15)vα =
√
n
(
α′ασ−2

α n−1 − 1
)
,

(3.16)εu =
√
n
(
u′Quσ−2

u n−1 − 1
)
,

(3.17)v∗
α = α′D′X(X′QX)−1X′Dα/σ 2

η ,

(3.18)ε∗
u = u′QX(X′QX)−1X′Qu/σ 2

η ,

(3.19)vαu = u′Dα√
nσ 2

η

,

(3.20)v∗
αu = α′D′X(X′QX)−1X′Qu/σ 2

η .

For σ̂ 2
η , we have

(3.21)

w′Qw = α′D′QDα + u′Qu+ 2u′QDα

= nT σ 2
α

(
1 + vα/

√
n
)
+ nσ 2

u

(
1 + εu/

√
n
)
+ 2

√
nσ 2

η vαu

= σ 2
η

[
n+

√
n
(
(1 − λ)vα + λεu + 2vαu

)]
,

(3.22)w′QX(X′QX)−1X′Qw = σ 2
η

(
v∗
α + ε∗

u + 2v∗
αu

)
.

Now plug (3.21) and (3.22) into (3.10)along with 1/(n − k) = 1/n +
k/n2 + · · · , we get

σ̂ 2
η = σ 2

η

[
1 + (1 − λ)vα + λεu + 2vαu√

n
+ k − (v∗

α + ε∗
u + 2v∗

αu)

n

]

(3.23)+ Op

(
n−3/2).

Using(3.12) and (3.23), it can be verified that

(3.24)λ̂ = λ

[
1 + f√

n
+ f ∗ − f vu + f 2

n

]
+ Op

(
n−3/2),
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where

f = vu − (1 − λ)vα − λεu − 2vαu

(3.25)

= 1√
nσ 2

u

u′
(

Q

T − 1
− λQ

)
u− (1 − λ)

(
α′α√
nσ 2

α

)
− 2√

nσ 2
η

u′Dα,

(3.26)f ∗ = v∗
α + ε∗

u + 2v∗
αu − v∗

u/(T − 1)− k(T − 2)/(T − 1).

Multiplying both sides of(3.24) by
√
n and rearranging the equation

gives

(3.27)
√
n(λ̂− λ) = λf + λ

(
f ∗ − f vu + f 2)/

√
n+ Op

(
n−1).

Now define

(3.28)δ =
√
n(λ̂− λ)

so thatδ2 = λ2f 2 + Op(n
−1/2). Using the above definition, we have

(3.29)Ω̂ = Ω +Qδ/
√
n,

(3.30)X′Ω̂X/n = A+ Bδ/
√
n.

Now plug (3.29) and (3.30) into (3.7)and multiply both sides by
√
n

we have
√
n(β̂FGLS − β)

=
(
A+ Bδ/

√
n
)−1[

X′(Ω +Qδ/
√
n
)
w/

√
n
]

(3.31)= A−1(X′Ωw/
√
n
)
+ A−1P1wδ/

√
n+ A−1P2wδ

2/n,

whereP1 is as given inTheorem 3.1andP2 = −BA−1P1. It can be
easily verified thatQιnT = ιnT , P1X = P2X = 0, P1ιnT = (X′ −
λBA−1X′)ιnT /

√
n, P1QX/

√
n = B − λBA−1B, and P1QX/

√
n =

−P1QX/
√
n.

Then using(3.28)we get

(3.32)
√
n(β̂FGLS − β) = ξ0 + ξ−1/2 + ξ−1 + Op

(
n−3/2),

where

ξ0 = A−1(X′Ωw/
√
n
)
, ξ−1/2 = λA−1P1wf/

√
n,

ξ−1 = λ2A−1P2wf
2/n + λA−1P1w

(
f ∗ − f vu + f 2)/n.

Taking expectation of(3.32)to obtain the bias vector up to Op(n−1/2)

E
[√

n(β̂FGLS − β)
]

= Eξ0 + Eξ−1/2

(3.33)= λA−1P1E(wf )/
√
n.
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It is easy to verify thatEξ0 = 0. Now let us evaluateE(wf ) =
E(Dα + u)f = DE(αf )+ E(uf ). From(3.25)we get

DE(αf ) = DE
[
σ−2
u u′(Q/(T − 1)− λQ̂

)
uα/

√
n

−(1 − λ)σ−2
α α′αα/

√
n− 2σ−2

η u′Dαα/
√
n
]

= −(1 − λ)σ−2
α E(α′α · α)/

√
n

(3.34)= −(1 − λ)γ1ασαιnT /
√
n,

E(uf ) = E
[
u(vu − λεu)

]

= σ−2
u

[
E(u′u · u)/(T − 1)− λ(T − 1)+ 1

T − 1
E(u′Q̄u · u)

]
/
√
n

(3.35)= γ1uσu(1 − λ)T −1n−1/2ιnT .

Combine(3.34) and (3.35)we have

(3.36)E(wf ) = (1 − λ)(γ1uσu/T − γ1ασα)ιnT /
√
n.

Hence substituting(3.36) in (3.33)we get the bias result inTheorem 3.1.
The mean square error matrix up to order O(n−1) is

E
[
n(β̂FGιS − β)(β̂FGιS − β)′

]

= E(ξ0ξ
′
0)+ E(ξ0ξ

′
−1/2 + ξ−1/2ξ

′
0)+ E(ξ−1/2ξ

′
−1/2)

(3.37)+ E(ξ0ξ
′
−1 + ξ−1ξ

′
0),

where from(3.32)we have

E(ξ0ξ
′
0) = nσ 2

u (X
′ΩX)−1,

E(ξ0ξ
′
−1/2) = λA−1X′ΩE(ww′f )P ′

1A
−1/n,

E(ξ−1/2ξ
′
−1/2) = λ2A−1P1E

(
ww′f 2)P ′

1A
−1/n,

E(ξ0ξ
′
−1) = λ2A−1(X′Ω/

√
n
)
E
(
ww′f 2)P ′

2A
−1/n

+ λA−1(X′Ω/
√
n
)
E
[(
f ∗ − f vv + f 2)ww′]P ′

1A
−1/n.

Consider the expectation

(3.38)
E(ww′f ) = DE(f αα′)D′ +DE(f αu′)+ E(f uα′)D′ + E(f uu′),

where

E(f αα′) = E
(
u′(Q/(T − 1)− λQ

)
uσ−2

u /
√
n
)
E(αα′)

− (1 − λ)σ−2
α E(α′α · αα′)/

√
n

= − (1 − λ)(2 + γ2α)σ
2
αIn/

√
n,
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E(f αu′) = −2σ−2
η E(αα′)D′E(uu′)/

√
n

= −2λσ 2
ασ

−2
η D′/

√
n,

E(f uα′) = −2λσ 2
ασ

−2
η D/

√
n,

E(f uu′) = σ−2
u E

[
u′(Q/(T − 1)− λQ

)
u · uu′]/

√
n

− (1 − λ)σ−2
α E(αα′)E(uu′)/

√
n

= σ 2
u

[
(1 − λ)γ2uInT /T + 2(T − 1)Q− 2λQ

]
/
√
n.

Now substitute these four terms intoE(ww′f ), and we get

E(ww′f ) = σ 2
u

[
(1 − λ)

(
γ2uInT /T − (1 − λ)γ2αQ̄/λ

)
+ 2Q/(T − 1)

(3.39)− 2Q/λ
]
/
√
n.

Next let us defineZu = u/σu, Zα = α/σα, and the first four moments
of the elements ofZu andZα are given inAppendix A3. Then

E
(
ww′f 2) = DE

(
f 2αα′)D′ +DE

(
f 2αu′)

(3.40)+ E
(
f 2uα′)D′ + E

(
f 2uu′).

Consider the first term on the right-hand side of(3.40)we note that

E
(
αα′f 2)

= E
[
αα′(v2

u + (1 − λ)2v2
α + λ2ε2

u + 4v2
αu − 2(1 − λ)vuvα

)]

+ E
[
αα′(−2λvuεu − 4vuvαu + 2λ(1 − λ)vαεu

)]

+ E
[
αα′(4(1 − λ)vαvαu + 4λεuvαu

)]

= σ 2
u InE

(
v2
u + λ2ε2

u − 2λvuεu
)

+ E
[
αα′(−4vuvαu + 4λεuvαu)

]

+ E
[
αα′(4v2

αu − 2(1 − λ)vuvα + 2λ(1 − λ)vαεu
)]

+ E
[
αα′(1 − λ)2v2

α

]
+ 4(1 − λ)E[αα′vαvαu]

(3.41)= I + II + III + IV + V,

where

I = σ 2
αInE(vu − λεu)

2

= nσ 2
αInE

[
Z′
u

(
Q/(T − 1)− λQ

)
Zu/n − (1 − λ)

]2

= σ 2
αIn
[
γ2u(1 − λ)2/T + 2/(T − 1)+ 2λ2],

I I = −4E
[
αα′vαu(vu − λεu)

]

= −4
σu

σ 2
η

Eα

[
αα′ · α′D′EZu

(
Zu · Z′

u

(
Q/(T − 1)− λQ

)
Zu/n

)]
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= −4(1 − λ)γ1uγ1ασuσ
3
ασ

−2
η In/n = O

(
n−1),

I II = E
[
αα′(4v2

αu − 2(1 − λ)vα(vu − λεu)
)]

= E
[
αα′(4

(
u′Dασ−2

η /
√
n
)2 − 2(1 − λ)n

(
αα′σ−2

α /n− 1
)

×
(
u′(Q/T − 1(T − 1)− λQ

)
uσ−2

u /n − (1 − λ)
))]

= 4λ(1 − λ)σ 2
αIn + O

(
n−1),

IV = E
[
αα′(1 − λ)2n

(
α′ασ 2

α/n− 1
)2]

= (1 − λ)2σ 2
αE
[
ZαZ

′
α

(
(Z′

αZα)
2/n − 2ZαZ

′
α + n

)]

= (1 − λ)2σ 2
α (γ2α + 2)In,

V = 0.

Substitute the above five results in(3.41), we have

(3.42)
DE

(
αα′f 2)D′ = T σ 2

α

[
(1 − λ)2(γ2u/T + γ2α)+ 2T/(T − 1)

]
Q.

In the second term on the right-hand side of(3.40)

E
(
αu′f 2) = E

[
αu′(vu − λεu)

2]− 4E
[
αu′vαu(vu − λεu)

]

+ E
[
αu′(4v2

αu − 2(1 − λ)vα(vu − λεu)
)]

(3.43)+ E
[
αu′(1 − λ)2v2

α

]
+ 4(1 − λ)E(αu′vαvαu),

where

I = 0,

I I = −4E
[
αu′u′Dα

(
u′(Q/(T − 1)− λQ

)
uσ−2

u /n − (1 − λ)
)
/σ 2

η

]

= −4σ 2
uσ

2
αD

′E
[
ZuZ

′
u

(
Z′
u

(
Q/(T − 1)− λQ

)

× Zu/n − (1 − λ)
)]
/σ 2

η

= −4σ 2
uσ

2
αD

′[γ2u(1 − λ)InT n
−1T −1

+ 2
(
Q/(T − 1)− λQ

)
/n
]
/σ 2

η

= O
(
n−1),

I II = E
[
αu′(4u′Dαα′D′uσ 2

η /n − 2(1 − λ)n
(
αα′σ−2

α /n − 1
)

×
(
u′(Q/(T − 1)− λQ

)
uσ−2

u /n − (1 − λ)
))]

= O
(
n−1),

IV = 0,

V = 4(1 − λ)E
[
αu′(αα′σ−2

α /n− 1
)
u′Dασ−2

η

]

= 4(1 − λ)σ 2
uσ

−2
η E

[
αα′(αα′σ−2

α /n− 1
)]
D′
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= 4(1 − λ)σ 2
uσ

2
ασ

−2
η

(
γ2αn

−1T −1 + 1 − 2/n − 1
)
InD

′

= O
(
n−1).

Substitute above five results into(3.43)and we get

(3.44)E
(
αu′f 2) = O

(
n−1).

The fourth term on the right-hand side of(3.40)is

E
(
f 2uu′) = E

[
uu′(vu − λεu)

2]− 4E
[
uu′(vαu(vu − λεu)

)]

+ E
[
uu′(4v2

αu − 2(1 − λ)vα(vu − λεu)
)]

+ E
[
uu′((1 − λ)2v2

α

)]
+ 4E

[
uu′((1 − λ)vαvαu

)]

(3.45)= I + II + III + IV + V,

where

I = E
[
uu′n

(
u′(Q/(T − 1)− λQ

)
uσ−2

u /n− (1 − λ)
)2]

= σ 2
uE
[
n−1ZuZ

′
u ·
((
Z′
u

(
Q/(T − 1)− λQ

)
Zu

)2

− 2n(1 − λ)Z′
u

(
Q/(T − 1)− λQ

)
Zu + n2(1 − λ)2

)]

= σ 2
u

[
(1 − λ)2γ2u/T + 2

(
1/(T − 1)+ λ2)]InT ,

I I = 0,

I II = 4σ 2
ασ

−4
η E(uu′ · u′DD′u)/n

= 4σ 4
uσ

2
ασ

−4
η T InT

= 4(1 − λ)λσ 2
u InT + O

(
n−1),

IV = (1 − λ)2E
[
uu′n

(
αα′σ−2

α /n − 1
)2]

= σ 2
u (1 − λ)2nE

(
αα′σ−2

α /n − 1
)2
InT

= σ 2
u (1 − λ)2(γ2α + 2)InT ,

V = 4(1 − λ)E
[
uu′u′Dασ−2

η

(
αα′σ−2

α /n − 1
)]

= 4(1 − λ)σ−2
α σ−2

η E(uu′ · u′Dα · α′α)/n = O
(
n−1).

Hence

(3.46)E
(
uu′f 2) = σ 2

u

[
(1 − λ)2(γ2u/T + γ2α)+ 2T/(T − 1)

]
InT ,

and(3.40)can be written as

E
(
ww′f 2) = σ 2

u

[
(1 − λ)2(γ2u/T + γ2α)

(3.47)+ 2T/(T − 1)
](1 − λ

λ
Q+ InT

)
.
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Next, let us considerE(f ∗ww′) in (3.37)

E(f ∗ww′) = E(f ∗uu′)+ DE(f ∗αu′)+ E(f ∗uα′)D′

(3.48)+DE(f ∗αα′)D′ = I + II + III + IV,

where

I = E
[(
v∗
α + ε∗

u + 2v∗
αu − v∗

u/(T − 1)− k(T − 2)/(T − 1)
)
uu′]

= σ 2
u

[
σ 2
ασ

−2
η kT − k(T − 2)/(T − 1)

]

+ E
[(
ε∗
u − v∗

u/(T − 1)
)
uu′]

= σ 2
uγ2u

[(
λ
(
InT ⊙ Q̄X(X′QX)−1X′Q

)

−
(
InT ⊙QX(X′QX)−1X′Q

)
/(T − 1)

)]

+ σ 2
u

[
2
(
λQX(X′QX)−1X′Q−QX(X′QX)−1X′Q/(T − 1)

)]
,

I I = DE[2v∗
αu · αu′]

= 2DE
[
αα′D′X(X′QX)−1X′Quu′σ−2

η

]

= 2(1 − λ)σ 2
uQX(X′QX)−1X′Q = III,

IV = DE
[(
v∗
α + ε∗

u + 2v∗
αu − v∗

u(T − 1)− k(T − 2)/(T − 1)
)
αα′]D′

= DE[v∗
ααα

′]D′ + σ 2
αDD

′(kλ− k/(T − 1)− k(T − 2)/(T − 1)
)

= (1 − λ)2λ−1γ2αD
(
In ⊙D′X(X′QX)−1X′D

)
D′/T 2

+ 2(1 − λ)2λ−1σ 2
uQX(X′QX)−1X′Q.

Thus

E(f ∗ww′) = σ 2
u

[
γ2u
(
λ
(
InT ⊙QX(X′QX)−1X′Q

)

−
(
InT ⊙QX(X′QX)−1X′Q

)
/(T − 1)

)]

+ σ 2
u

[
(1 − λ)2λ−1T −2γ2α

×D
(
In ⊙D′X(X′Q̄X)−1X′D

)
D′

− 2QX(X′QX)−1X′Q/(T − 1)
]

(3.49)+ σ 2
u

[
2λ−1QX(X′QX)−1X′Q

]
.

ConsiderE(f vuww′) in (3.37)

E(f vuww
′) = E(f vuuu

′)+ E(f vuuα
′)D′ +DE(f vuαu

′)

(3.50)+DE(f vuαα
′)D′ = I + II + III + IV,

where

I = E
[
(vu − λεu)vu · uu′]

= nσ 2
uE
[(
Z′
u

(
Q/
(
n(T − 1)

)
− λQ/n

)
Zu − (1 − λ)

)
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×
(
Z′
uQZun

−1/(T − 1)− 1
)
Z′
uZu

]

= σ 2
u

[
2/(T − 1)+ γ2u(1 − λ)/T

]
InT ,

I I = E
[(
vu − (1 − λ)vα − λεu − 2vαu

)
vu · uα′]D′

= E
[
−(1 − λ)vαvu · uα′]D′ + E(−2vαuvu · uα′)D′

= −(1 − λ)E(vuu)E(vαα
′)D′ − 2σ 2

ασ
−2
η E(vuuu

′)DD′/
√
n

= O
(
n−1) = III,

IV = DE
[(
vu − (1 − λ)vα − λεu − 2vαu

)
vuαα

′]D′

= σ 2
αDE

[
(vu − λεu)vu

]
D′ − 2DE(vαuvuαα

′)D′

= σ 2
u (1 − λ)λ−1[γ2u(1 − λ)T −1 + 2/(T − 1)

]
Q+ O

(
n−1).

Therefore

(3.51)E(f vuww
′) = σ 2

uλ
−1[γ2u(1 − λ)/T + 2/(T − 1)

]
(Q+ λQ).

Plugging(3.39), (3.47), (3.49), and (3.51) into (3.37)we have

E(ξ0ξ
′
−1/2) = λ

n
A−1X′ΩE(ww′f )P ′

1A
−1

= −λσ 2
u

[
γ2u(1 − λ)2T −1 + γ2u(1 − λ)2T −1

+ 2T/(T − 1)
]
Δ/n = E(ξ−1/2ξ

′
0),

E(ξ−1/2ξ
′
−1/2) = λ2A−1P1E

(
ww′f 2)P ′

1A
−1/n

= λ2σ 2
u

[
(1 − λ)2

(
γ2uT

−1 + γ2α
)
+ 2T/(T − 1)

]
Δ/n,

E(ξ0ξ
′
−1) = C + 2λσ 2

uT

n(T − 1)
Δ,

E(ξ−1ξ
′
0) = C′ + 2λσ 2

uT

n(T − 1)
Δ.

Using these in(3.37)the MSE result inTheorem 3.1follows. �

3.4 Numerical results

In this section we provide a numerical study of the behavior of analyt-
ical Bias and MSE under non-normality. The data generating process is
specified as follows

yit = xitβ + αi + uit .

xit are generated via the method ofNerlove (1971)

xit = 0.1t + 0.5xit−1 + wit ,
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Table 3.3. n = 10, T = 50, α is non-normal andu is normal,σα = 1,
σu = 0.6

θ2 γ1α γ2α Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.001297 0 0.000098 0.000100
2.0 −1.70 5.64 0.000833 0 0.000099 0.000100
2.5 −1.23 2.93 0.000603 0 0.000100 0.000100
3.0 −0.94 1.74 0.000461 0 0.000100 0.000100

xi0 = 10+ 5wi0,

wit ∼ U

[
−1

2
,

1

2

]
.

We omit the constant term and consider the data generating process
described inCorollary 3.2and Corollary 3.3. For Corollary 3.2, we let
β = 0.5. uit ∼ IIN(0, 0.36), which impliesγ1u = γ2u = 0. αi are gen-
erated byJohnson’s (1949)Su system, introducing non-normality to our
data generating process. The non-normalαi is generated by transforming
a standard normal random variableεi

α∗
i = sinh

(
εi − θ1

θ2

)
,

and lettingαi be the standardized version ofα∗
i with zero mean and vari-

ance is one.
Different values of(θ1, θ2) givens different values of the skewness and

kurtosis of the random variableα∗
i . Defineω = exp(θ−2

2 ) andψ = θ1/θ2
and the four moments ofαi are given by

E(α∗
i ) = μα = −ω1/2 sinh(ψ),

E(α∗
i − μα)

2 = 1

2
(ω − 1)

[
ω cosh(2ψ)+ 1

]
,

E(α∗
i − μα)

3 = −1

4
ω1/2(ω − 1)2

[
ω(ω + 2) sinh(3ψ)+ 3 sinh(ψ)

]
,

E(α∗
i − μα)

4 = 1

8
(ω − 1)2

[
ω2(ω4 + 2ω3 + 3ω2 − 3

)
cosh(4ψ)

+ 4ω2(ω + 2) cosh(2ψ)+ 3(2ω + 1)
]
.

From this we get skewnessγ1α = E(α∗
i − μα)

3/(E(α∗
i − μα)

2)3/2 and
excess kurtosisγ2α = E(α∗

i − μα)
4/(E(α∗

i − μα)
2)2 − 3. In Tables 3.1

to 3.3, θ1 is set to be 4 andθ2 ∈ [1.5, 3]. This combination ofθ1 andθ2
gives a moderate interval for the variance ofα∗

i , from 0.5 to 45. ForCorol-
lary 3.3, we apply the same method to the generation of non-normaluit ,
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Table 3.4. n = 10, T = 5, a is normal andu is non-normal,σα = 2,
σu = 1

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 −0.001906 0 0.007143 0.007135
2.0 −1.70 5.64 −0.001224 0 0.007243 0.007135
2.5 −1.23 2.93 −0.000886 0 0.007273 0.007135
3.0 −0.94 1.74 −0.000677 0 0.007287 0.007135

and letαi ∽ IIN(0, 4). In order to investigate the finite sample behavior
of Bias and MSE, we letn = 10 andT = 5. We replicate the experiment
1000 times for each pair of(θ1, θ2).

When onlyα is non-normal, we note that fromTable 3.1that the MSE
changes withγ2α. Generally, for some largeγ2α, approximate MSE is
less than asymptotic MSE while for some smallγ2α, approximate MSE
is greater than asymptotic MSE. Thus the use of the asymptotic MSE,
when the sample is small or moderately large, will provide an under es-
timation or over estimation depending on the magnitude ofγ2α. Further
the t-ratios for hypothesis testing, based on asymptotic MSE, may provide
under or over rejection of the null hypothesis. When the sample is mod-
erately large (Table 3.2) we get similar results, but the asymptotic MSE is
the same as the approximate MSE up to 4 digits. However, for the cases
when onlyuit is non-normal we see fromTable 3.4that the approximate
MSE is greater than the asymptotic MSE for all values ofγ2u. Thus, in
this case, the use of asymptotic MSE in practice, will generally provide
underestimation of MSE and t-ratios may falsely reject the null hypothe-
sis. For moderately large samples inTable 3.5, the approximate MSE is
still greater than the asymptotic MSE, but they are the same up to 4 dig-
its. Thus, when either alpha oru is non-normally distributed, we observe
that while the use of the asymptotic MSE may provide under or over esti-
mation of the MSE, the asymptotic MSE estimates the approximate MSE
accurately since they are the same up to three or four digits, especially for
moderately large samples.

In Remark 3.1, Bias is found to be a decreasing function ofγ1α and
an increasing function ofγ1u, which is consistent with the results seen
in Tables 3.1–3.6. The monotonic relations between Bias and variances
of the error components inRemark 3.2are shown numerically inTa-
bles 3.8–3.11, where inTables 3.8–3.9we fix σu and increaseσα and in
Tables 3.10–3.11we fix σα and increaseσu.

We also simulate the differentns for the sameT and vice versa. The
results presented here are forT = 5 with n = 10,50 and forn = 10
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Table 3.5. n = 50, T = 5, α is normal andu is non-normal,σα = 2,
σu = 1

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 −0.000397 0 0.001553 0.001553
2.0 −1.70 5.64 −0.000255 0 0.001558 0.001553
2.5 −1.23 2.93 −0.000185 0 0.001559 0.001553
3.0 −0.94 1.74 −0.000141 0 0.001560 0.001553

Table 3.6. n = 10, T = 50, α is normal andu is non-normal,σα = 2,
σu = 1

θ2 γ1u γ1u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 −0.000018 0 0.000281 0.000281
2.0 −1.70 5.64 −0.000012 0 0.000282 0.000281
2.5 −1.23 2.93 −0.000009 0 0.000282 0.000281
3.0 −0.94 1.74 −0.000007 0 0.000282 0.000281

Table 3.7. n = 10, T = 5. Both α andu are normal,σu = 0.6

σα Approx Bias Asym Bias Approx MSE Asym MSE

1 0 0 0.002612 0.002535
5 0 0 0.002936 0.002931

10 0 0 0.002948 0.002947
15 0 0 0.002950 0.002950

Table 3.8. n = 10, T = 5, α is normal andu is non-normal,σα = 0.5,
σu = 2, λ = 0.76

θ2 γ1α γ2α Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.002723 0 0.012439 0.011967
2.0 −1.70 5.64 0.001748 0 0.012542 0.011967
2.5 −1.23 2.93 0.001266 0 0.012573 0.011967
3.0 −0.94 1.74 0.000968 0 0.012587 0.011967

with T = 5,50. The results for other values ofn andT are available from
the authors upon request, and they give the similar conclusions. Whenα

is non-normal, the maximum relative bias,E(β̂ − β)/β, decreases from
2.7% to 0.5% whenn changes from 10 to 50 withT = 5; and it decreases
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Table 3.9. n = 10, T = 5, α is non-normal andu is normal,σα = 1.5,
σu = 2, λ = 0.26

θ2 γ1α γ2α Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.029105 0 0.019418 0.021358
2.0 −1.70 5.64 0.018689 0 0.021402 0.021358
2.5 −1.23 2.93 0.013533 0 0.021998 0.021358
3.0 −0.94 1.74 0.010343 0 0.022260 0.021358

Table 3.10. n = 10, T = 5, α is normal andu is non-normal,σα = 2,
σu = 10, λ = 0.83

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 −0.007749 0 0.298761 0.282281
2.0 −1.70 5.64 −0.004976 0 0.297935 0.282281
2.5 −1.23 2.93 −0.003603 0 0.297687 0.282281
3.0 −0.94 1.74 −0.002754 0 0.297578 0.282281

Table 3.11. n = 10, T = 5, α is normal andu is non-normal,σα = 2,
σu = 20, λ = 0.95

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 −0.004111 0 0.994565 0.939214
2.0 −1.70 5.64 −0.002640 0 0.990324 0.939214
2.5 −1.23 2.93 −0.001912 0 0.989049 0.939214
3.0 −0.94 1.74 −0.001461 0 0.988490 0.939214

Table 3.12. n = 10, T = 5. Both α andu are non-normal,σα = 5,
σu = 10

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.043545 0 0.349311 0.365864
2.0 −1.70 5.64 0.027961 0 0.373554 0.365864
2.5 −1.23 2.93 0.020247 0 0.380839 0.365864
3.0 −0.94 1.74 0.015474 0 0.384039 0.365864

from 2.7% to 0.3% whenn = 10 andT changes from 5 to 50. Whenu
is non-normal, the maximum relative bias changes from 0.4% to 0.08%
for the change ofn from 10 to 50 withT = 5; and from 0.4% to 0.004%
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Table 3.13. n = 10, T = 5. Both α andu are non-normal,σα = 10,
σu = 5

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.081264 0 0.152518 0.168328
2.0 −1.70 5.64 0.052182 0 0.164591 0.168328
2.5 −1.23 2.93 0.037786 0 0.168220 0.168328
3.0 −0.94 1.74 0.028878 0 0.169814 0.168328

Table 3.14. n = 10, T = 5. Both α andu are non-normal,σα = 10,
σu = 10

θ2 γ1u γ2u Approx Bias Asym Bias Approx MSE Asym MSE

1.5 −2.65 14.65 0.141105 0 0.457876 0.537747
2.0 −1.70 5.64 0.090608 0 0.523752 0.537747
2.5 −1.23 2.93 0.065611 0 0.543550 0.537747
3.0 −0.94 1.74 0.050143 0 0.552245 0.537747

for n = 10 whenT changing from 5 to 50. Thus the order of bias is not
very significant, further, it is found that for a fixedT , e.g.,T = 5, whenn
is large enough, for example, 50, the approximate bias is practically zero.
These results are consistent with the results inMaddala and Mount (1973).
For the MSE, whenα is non-normal andT is fixed at 5, the approximate
MSE is equal to asymptotic MSE up to the third digit whenn = 10, but
up to the fourth digit whenn = 50. For the case whenn is fixed at 10 and
T changes from 5 to 50, the two MSEs are the same up to three digits.
Similar results hold for the case whenu is non-normally distributed.

Next we consider the DGPs with both error components are non-
normally distributed and have large variances in small sample. It is found
in such cases the relative bias can be large and asymptotic MSE may not
be very accurate.Tables 3.12–3.14give some examples. Most tables show
that the approximate bias is not negligible. The range of relative bias in
Table 3.12is [3%, 8.7%] and it increases to [10%, 28%] inTable 3.14.
The approximate and asymptotic MSEs can be different even at the first
digit, as shown in the first row ofTable 3.14.

In Table 3.7, bothα andu are normal, whereuit ∼ IIN(0, 0.36) and
αi has zero mean and changing variance.γ1α = γ2α = γ1u = γ2u = 0.
In this case, the approximate MSE is always larger than asymptotic MSE,
and this is consistent with the results inCorollary 3.1andRemark 3.3.
However, the difference in the approximate and asymptotic MSEs is the
same up to 5 digits.
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3.5 Conclusion

In this paper, we study the finite sample properties of the FGLS estimators
in random-effects model with non-normal errors. We derive the asymptotic
expansion of the Bias and MSE up to O(n−1) and O(n−2), respectively.

Firstly, the Bias depends only on skewness coefficient. Bias is zero for
symmetric distributions or for distributions satisfyingγ1u/γ1α = T σα/σu.
We find Bias is a non-decreasing function ofγ1u and a non-increasing
function ofγ1α providedX′ιnT ≥ 0. Under certain parameter restrictions,
Bias is also found to be monotonic functions of variances of the error
components.

Secondly, the MSE depends only on the kurtosis coefficient. The ap-
proximate MSE can be greater or smaller than asymptotic MSE. The
statistical inference based on using the asymptotic MSE can be quite accu-
rate when variances of the error components are small since it is the same
as the approximate MSE, under the normality as well as a non-normal
distribution considered, up to three or four digits, especially for moder-
ately large samples. However, when those variances are large, asymptotic
results can give inaccurate results.
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Appendix A3

The following results have been repeatedly used in the derivation in Sec-
tion 3.3:

LetG1 andG2 be twonT×nT idempotent matrices with non-stochastic
elements such that

tr(G1) = ng1,
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tr(G2) = ng2,

tr(G12) = ng12.

AssumingG1 andG2 to be symmetric matrices andZ to be annT × 1
random vector whose elements are i.i.d. with the first four moments given
as1

Ezj = 0, Ez2
j = 1, Ez3

j = γ1z,

Ez4
j = γ2z + 3, j = 1, . . . , nT .

Then we have

(A3.1)E(Z′G1Z · Z) = γ1z(InT ⊙G1)ιnT ,

(A3.2)E(Z′G1Z · ZZ′) = γ2z(InT ⊙G1)+ tr(G1)+ 2G1.

Further, if the diagonal elements ofG1 are equal and those ofG2 are
also equal, we have

(A3.3)E(Z′G1Z · Z) = γ1zg1

T
ιnT ,

(A3.4)E(Z′G1Z · ZZ′) = γ2zg1

T
InT + ng1InT + 2G1,

1

n
E(Z′G1Z · Z′G2Z · ZZ′)

= ng1g2InT + 2g12InT + 2g1G2

(A3.5)+ 2g2G1 + 3g1g2γ2z

T
InT + O

(
n−1).

Notice that results(A3.1) to (A3.4)are exact while the result(A3.5) is
given up to order O(n−1) only as it suffices for the present purpose.
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Abstract

This paper compares dynamic panel regression with random effects un-
der different assumptions about the nature of the initial conditions, and
suggests that a pragmatic approach is to be preferred. The proposed ap-
proach has a flexible reduced form for the initial response which effectively
imposes a random effect correlated with the subsequent model equation to
deal with the initial conditions and to handle the problem of negative es-
timates of variance components. These concepts are illustrated by testing
a variety of different hypothetical models in economic contexts. We use in-
formation criteria to select the best approximating model. We find that the
full maximum likelihood improves the consistency results if the relation-
ships between random effects, initial conditions and explanatory variables
are correctly specified.

Keywords: dynamic panel data, random effects, initial conditions, non-
negative estimates of variance components, MLEs

JEL classifications:C33, C59, O10

4.1. Introduction

Modelling dynamic regression for panel data has become increasingly
popular in a wide variety of research areas over the past few decades.
These models are specifically adapted for the statistical analysis of data
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that have a serial processes structure which allows for individual hetero-
geneity to control for time-invariant characteristics (Hausman and Tay-
lor, 1981; Heckman, 1991) and dynamic feedback to make it easier for
researchers to examine state dependence (Sevestre and Trognon, 1996;
Nerlove, 1999). These two important ideas are often addressed by in-
cluding individual-specific effects and a lagged endogenous variable in
the regression model. A great deal of attention has been devoted to the
problems created by these features with a particular focus on properties of
different modelling strategies for the analysis of panel data.

The classical approach in the panel data literature is the use of fixed ef-
fects that simply ignores the component nature of residual heterogeneity.
This will result in inconsistent estimates due to the problem of incidental
parameters (Heckman, 1981; Lancaster, 2000) associated with the individ-
ual effects. The random effects model has been implemented to overcome
the problem and consequently allows control of the unobserved effects by
partitioning residual heterogeneity according to the within- and between-
individual variations that exist in the data. A comprehensive review of the
literature on the analysis of panel data with random effects is given by
Nerlove (2002)andHsiao (2002).

The main difficulty in the estimation of random effects is accounting for
the initial conditions problem which arises if state dependence is suspected
(Crouchley and Davies, 2001). This leads to a non-standard likelihood
function which is not, in general, fully specified (Aitkin and Alfò, 2003)
and to inconsistent ML estimates in the dynamic model (Anderson and
Hsiao, 1982). For these reasons, a realistic solution is to treat the initial
condition explicitly as endogenous and then use the likelihood of all ob-
served outcomes including that in the initial time period. The likelihood
approach then takes into account any information on the initial conditions
in estimating the consistent regression parameters and likelihood equa-
tions for the components of covariance matrices. To do this, some special
assumptions are required regarding the joint distribution of the first state
on each individual and heterogeneity effects. A further factor in modelling
initial conditions concerns the pre-sample history of the process generat-
ing the explanatory variables, which is usually unobservable and requires
making additional assumptions about the data processes.

In the literature, the usual suggestion to overcome these problems is
to suppose stationarity of the data processes (e.g.,Bhargava and Sargan,
1983; Nerlove, 2000; Hsiaoet al., 2002) for both the response and ex-
planatory variables. Although this hypothesis for the initial conditions is
unlikely to lead always to the best models fitting the true processes, as we
show in this paper, it has been used rather extensively by previous investi-
gators without making any further effort to test the statistical hypothesis.
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We specifically test the hypothetical models by making different alterna-
tive assumptions about the initial conditions: treating initial conditions as
exogenous, in equilibrium, and adopting a set of flexible reduced forms.

Another important issue in the analysis of panel data using the classical
ML approach for random effects is the occurrence of negative estimates of
essentially non-negative parameters. Surprisingly, the variance estimate of
random effects can take a zero or negative value. The usual suggestion for
negative variance estimates (e.g.,Breusch, 1987) is to replace these values
by zero and refit the model. We show that the issue is completely differ-
ent in the case of models which include initial conditions. Specifically,
MLEs are obtained by finding the values of the parameters that maximise
the likelihood function subject to the constraints that these parameters are
within a known parameter space. We follow those algorithms with in-
equality constraints for solving the maximisation problem that involves
finding estimates that satisfy the Kuhn–Tucker conditions (e.g.,Driscoll
and William, 1996).

Although there are many popular opinions about the initial conditions
problem, little empirical analysis is available concerning its operation.
There is a large empirical literature, for example, on classical dynamic
growth studies (e.g.,Knight et al., 1993; Islam, 1995) that are typically
carried out on fixed effects models. An exceptional study isNerlove
(2000) who estimates the model with random effects and addresses the
problem by using conditional and unconditional likelihood. Following his
approach, we further highlight the drawbacks of the ML approach using,
as an illustration, economic growth models. Special attention is given to
the properties of various models considered for initial conditions.

The organisation of this paper is as follows. Section4.2 introduces the
model of interest with random effects. Section4.3discusses the likelihood
and the initial conditions problem. In Section4.4 we briefly review the
inconsistency of MLEs and the problem of estimating a negative value for
the variance. Section4.5explains the full likelihood approach. Section4.6
provides an overview of the historical development of knowledge about
properties of modelling initial conditions and also introduces a pragmatic
approach. Finally, the paper includes results from an empirical study, fol-
lowed by model selection and recommendations.

4.2. The model with random effects

Suppose thatYit is the response variable for individuali at time periodt ,
whileXit is aK×1 vector of explanatory variables. Consider the following
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regression model for panel data:

Yit = λ+ γ Yi,t−1 + X′
itβ + αi + εit ,

(4.1)i = 1, . . . , N; t = 1, . . . , T ,

whereYi,t−1 is a lagged endogenous response variable andλ, γ , andβ are
regression coefficients.

Specifying the model with the lagged response has a significant advan-
tage which derives from the fact thatYi,t−1 summarises all the past effects
of unmeasured variables onYit . This means, not only that the effects of
measured explanatory variablesXit1, . . . , XitK on Yit can be estimated
more accurately, but also that the coefficient onYi,t−1, γ , measures the ef-
fect of experience of the event one period ago on current values ofYit . A
positive value ofγ indicates positive state dependence.

Adopting a conventional random effects approach, the usual assump-
tions are that the individual random effectsαi ∼ i.i.d.(0, σ 2

α ); the un-
observed time-varying errorsεit ∼ i.i.d.(0, σ 2

ε ); the αi and theεit are
independent for alli andt , and the stochastic variablesXit are strictly ex-
ogenous with respect toαi andεit : cov(αi,Xit ) = 0, cov(εit ,Xj t ) = 0
for all i, j andt .

4.3. The likelihood and initial conditions

The likelihood contribution of individuali is calculated by integrating over
all possible valuesαi given by

(4.2)Li(φ) =
∫ ∞

−∞
f (Yi1, . . . , YiT |Yi0, αi;φ)f (Yi0|αi;φ)dF(αi),

whereφ denotes a set of unknown model parameters,F(αi) is the distri-
bution function ofαi andf (Yi0|αi;φ) refers to the marginal density of
Yi0, givenαi . The full likelihood functionL(φ) =

∏
i Li(φ) combines

the conditional likelihood for each observation with the likelihood from
the initial observations. We need only to integrate out the heterogeneity
effects,αi , by specifying the distribution of such effects and then max-
imising the likelihood function. The estimation of parametersφ based on
the full likelihoodL(φ) introduces the question of the appropriate treat-
ment of the initial conditions. More specifically, the difficulty is created
by f (Yi0|αi;φ) which cannot usually be determined without making ad-
ditional assumptions. The naïve approach of treating the initial stateYi0
as exogenous and simply ignoring the initial conditions (Heckman, 1981)
is refutable since the independence ofYi0 and unobserved heterogeneity
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effects,αi , is highly implausible where modelling serial processes. Specif-
ically, this restriction is appropriate only if the first period of observation
of the serial process is the true initial period, or, if the true residuals that
generate the stochastic process are serially independent. Treating theYi0
as exogenous, the conditional probability of the initial sample state is
f (Yi0|αi) = f (Yi0) and thus locates this term outside the integral(4.2).
The likelihood function then simplifies to

(4.3)Lc,i(φ) =
∫ ∞

−∞
f (Yi1, . . . , YiT |Yi0, αi;φ)dF(αi).

Conventional model fitting utilises this conditional likelihood which is
equivalent to treating the lagged endogenous variable as an additional
explanatory variable. The initial conditions problem occurs because the
individual effects,αi , that capture the unobserved heterogeneity are cor-
related with the initial stateYi0. This leads to a non-standard likelihood
function(4.3)which is not, in general, fully specified.

The problem can be handled by treating theYi0 as endogenous and
implementing the unconditional likelihood approach, which essentially
models the densityf (Yi0|αi). An important role of this treatment in devis-
ing consistent estimates in model(4.1) with no time-varying explanatory
variables is fully addressed inAnderson and Hsiao (1981). The estimation
of dynamic regression models withXit ’s is somewhat more complicated.
A change inX that affects the distribution ofY in the current period will
continue to affect this distribution in the forthcoming period. To see this,
taking backward substitution of the model(4.1)gives

(4.4)Yit = 1 − γ t

1 − γ
λ+ γ tYi0 +

t−1∑

j=0

γ jX′
i,t−jβ +

t−1∑

j=0

γ jui,t−j .

This equation expresses the result that the current mean level ofYit for
eacht depends directly on both past and present levels of the explanatory
variables and on the initial observationsYi0. Suppose now that the sto-
chastic process which generates theYit ’s has been in operation prior to the
starting date of the sample. The initial state for each individual may be de-
termined by the process generating the panel sample. Treating pre-sample
history and hence the initial conditions as exogenous is questionable be-
cause the assumption cov(Yi0, αi) = 0 implies that the individual effects,
αi , affectYit in all periods but are not brought into the model at time 0. To
estimate the ML parameters correctly, we need to account for this covari-
ance in the model.
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4.4. Maximum likelihood

If we condition on the initial state at time 0, the lagged response variable
can be considered as just another regressor and the standard ML approach
for fitting random effects models can be used to estimate model parame-
ters. The likelihood then consists of terms that involve the conditional
distributions ofYit givenYi,t−1 and explanatory variables with correlated
residuals following an error components structure. To operationalise the
likelihood approach, suppose thatYi is a T -element vector whose ele-
ments contain observations on all individuals at every time period after
the initial period, whileYi,−1 is the corresponding vector lagged by one
time period. Rewriting Equation(4.1) in vector form for each individual
gives

(4.5)Yi = X̃iθ + ui, i = 1, . . . , N,

whereX̃i = (Yi,−1 eT Xi),Xi = (Xi1 · · · XiT )
′, θ = (γ λ β ′)′ andeT

is a vector of ones with orderT . The covariance matrix of the combined
residual term is well defined (e.g.,Baltagi, 2001) and of the particular form

(4.6)VT×T = σ 2
cJT + σ 2

ε ET ,

whereσ 2
c = σ 2

ε + T σ 2
α , JT = (1/T )eT e′

T and E = IT − JT are the
between- and within-individual transformation matrices with orderT , re-
spectively, andIT is aT × T identity matrix. The conditional log-likeli-
hood is given by

logL
(
θ , σ 2

α , σ
2
ε

)
∝ −N(T − 1)

2
log
(
σ 2
ε

)
− 1

2
log
(
σ 2
c

)

(4.7)− T

2σ 2
c

∑

i

u−2
i − 1

2σ 2
ε

∑

i

(uit − ui)
2,

where theui ’s are residual means over time for eachi. Taking the first
partial derivatives gives

(4.8)θ̂ = (ψ̂Bx̃x̃ + Wx̃x̃)
−1(ψ̂bx̃y + wx̃y),

whereB andW refer to between- and within-individual variation, respec-
tively, andψ̂ = σ̂ 2

ε /σ̂
2
c . Variance components can be estimated as

(4.9a)σ̂ 2
ε = 1

N(T − 1)

∑∑
(rit − r i)

2,

(4.9b)σ̂ 2
α = 1

N

∑
r2
i − σ̂ 2

ε

T
,

where therit ’s are fitted residuals for Equation(4.1).
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A drawback of the ML approach is the fact that Equations(4.8) and
(4.9) are the solutions of likelihood equation(4.7), but they are not nec-
essarily the ML estimators because the solutions may lie outside the para-
meter space.1 In particular, the estimate of̂σ 2

α may take negative values.
Applying a constraint optimisation method and using the Kuhn–Tucker
conditions we can show that estimates(4.8) and (4.9)are MLEs only when
σ̂ 2
α produces positive values. Specifically, the likelihood has the boundary

solutionσ̂ 2
α = 0 when Equation(4.9b)takes a negative value. In this case,

the model fitting reduces to the estimation of model(4.1) with the usual
covariance matrixV = σ 2

ε IT .
Note thatσ 2

α , being a variance, cannot be negative. This implies that,
even if the estimate of this variance is zero, positive between-individual
variability is expected. If observed between-individual variation is very
small relative to the within-individual variation, then the estimated vari-
ance of the individual effects would take value zero. This may also occur
because of model misspecification as argued inBaltagi (1981)who esti-
mates a variance component model without state dependence.

The second problem in using the conditional likelihood approach is in-
consistency of parameter estimates whenN is large andT is small. The
inconsistency in the estimation of regression coefficients is readily derived
by taking the probability limit of both sides of Equation(4.8). It is straight-
forward to show that

(4.10)plim
N→∞

(θ̂ − θ) = (ψ∗Bx̃x̃ + Wx̃x̃)
−1(ψ∗bx̃u + wx̃u),

whereψ∗ = plim(ψ̂), and bar notation refers to the probability limit of the
corresponding variations. The second parenthesis on the right-hand side of
(4.10)reduces to the vector[p(ψ∗) 0′]′ wherep(ψ∗) is a positive constant
given by

(4.11)p(ψ∗) = ψ∗ϕT (γ )σ0α + 1 − ϕT (γ )

T (1 − γ )
σ 2
c (ψ

∗ − ψ).

This equation is generally non-zero, showing that parameter estimation is
inconsistent. This inconsistency arises through the non-zero expectation
σ0α due to the initial conditions and to the inconsistent estimate ofψ re-
flecting the inconsistency of the variance components estimates. In fact,
we can readily show that plim(σ̂ 2

ε ) > σ 2
ε and plim(σ̂ 2

α ) < σ 2
α . Details

are given inKazemi and Davies (2002)who derive an analytical expres-
sion for the asymptotic bias and show how the bias varies with sequence
lengths and with the degree of state dependence.

1 Useful illustrations in properties of the ML estimates for a simple variance components
model are presented inMcCulloch and Searle (2000).
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4.5. The full likelihood

For the full unconditional likelihood(4.2) to be useful, it is necessary to
take account of the information contained inYi0 for each individual. Treat-
ing the initial conditions as endogenous, it is common to suppose that the
Yi0 are characterised by their second-order moments and by their joint mo-
ments with the individual random effectsαi ; σ0α = E(Yi0αi), and that the
expected values of theYi0 differ for each individual uniti: μi0 = E(Yi0).
Although it is a plausible assumption for theμi0 to be different for eachi,
the incidental parameters problem, associated withμi0, arises and the ML
estimates are inconsistent (Anderson and Hsiao, 1982) for large values of
N and smallT . This will be discussed further in this paper. To derive a
general unconditional likelihood function for the model from the condi-
tional mean and variance formulation, we first readily show that

(4.12a)E(ui |yi0 − μi0) = σ0α

σ 2
0

(yi0 − μi0)eT ,

(4.12b)Var(ui |yi0 − μi0) = σ 2
uJT + σ 2

ε ET ,

whereσ 2
0 is the variance ofYi0 and

(4.13)σ 2
u = σ 2

ε + T

(
σ 2
α −

σ 2
0α

σ 2
0

)
.

Further, the covariance between the initial and subsequent error terms is
given by

(4.14)Cov(ui, Yi0 − μi0) = σ0αeT .

These show that the mean and covariance structure of various estimating
methods of the random effects model(4.1), including the ML approach,
conditional on theYi0 and explanatory variables, are fully specified by
(4.12a) and (4.12b). Supposing the start-up residuals areui0 = Yi0 − μi ,
then the covariance matrix of the vector(ui0 ui1 · · · uiT ) is given by

(4.15)Ω =
[

σ 2
0 σ0αe′

T

σ0αeT σ 2
uJT + σ 2

ε ET

]
.

Suppose the parametersθ andσ to be vectors of all coefficients involved in
mean and variance structures, respectively, for the initial and subsequent
state models. Substituting Equations(4.12a), (4.12b) and (4.13)into the
log-likelihood

(4.16)logL(θ , σ ) =
∑

i

log
[
f (ui |ui0)

]
+
∑

i

log
[
f (ui0)

]
,
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and simplifying corresponding expressions, the unconditional log-likeli-
hood can be expressed as

logL(θ , σ ) ∝ −N(T − 1)

2
log
(
σ 2
ε

)
− N

2
log
(
σ 2
u

)

− T

2σ 2
u

∑

i

(
ui − σ0α

σ 2
0

ui0

)2

− 1

2σ 2
ε

∑

i

∑

t

(uit − ui)
2

(4.17)− N

2
log
(
σ 2

0

)
− 1

2σ 2
0

∑

i

u2
i0.

This likelihood is not useful unless we carefully model the initial condi-
tions to find the joint distribution ofYi0 andαi .

4.6. Modelling the initial conditions as endogenous

In this section, an overview of the literature on modelling initial condi-
tions, together with some alternative solutions to the problem, is presented.
Then an extension of the full ML approach is introduced by using a non-
equality maximisation method to guarantee that the ML estimates are
within the parameter space.

4.6.1. The stationary case

By assuming that the data-generating process can be observed in stochas-
tic equilibrium, the history of the explanatory variables is important in the
analysis of a dynamic panel data model by noting thatμi0 is dependent
on Xi0,Xi,−1,Xi,−2, . . . . It may be seen from Equation(4.12a)that the
dependence is not easily removed by conditioning onYi0 − μi0 as in or-
dinary time-series models because the conditional likelihood still depends
onμi0. New assumptions then have to be made about the effects of the un-
observed past history of the explanatory variables in order to employ the
ML approach. This may not always yield realistic results, especially when
the observed series is short. But these assumptions are crucial for obtain-
ing correct parameter estimates. If the assumptions about the way that the
X’s are generated are incorrect, then consistent results are not guaranteed.

Consider a typical case that in which the stochastic process generating
Yit has been in operation for a sufficiently long time period in the past be-
fore the process is observed. Suppose the distribution of theYi0’s depends
upon the process and assume that the panel data follow an initial stationary
process. From Equation(4.4), the start-up observations can be modelled
as a function of individual random effects,αi , the present,Xi0, and the
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unobserved past of the explanatory variablesXi,−1, . . . , and a serially un-
correlated disturbanceεi0:

(4.18)Yi0 = λ

1 − γ
+ X∗ ′

i0β + αi

1 − γ
+ εi0,

whereX∗
i0 = Xi0/(1−γL), L is the lag operator, andεi0 =

∑∞
j=0 γ

jεi,−j .
Assuming the process is in equilibrium, the distribution ofYi0 depends on
the distribution ofαi, εit , andXit for all i and t . More specifically, the
expectationμi0 depends on the pre-sample mean values of theseXit ’s.
One suggestion is to treat the cumulative effect of pastX’s as an unknown
parameter (Anderson and Hsiao, 1982) and let the meansμi0 be the first
two terms of the right-hand side on Equation(4.18); that is

(4.19)Yi0 = μi0 + αi

1 − γ
+ εi0.

Then the ML estimates of the vector parameter(θ , μ10, . . . , μN0, σ
2
α , σ

2
ε )

can be obtained from the unconditional likelihood(4.17)with

(4.20)
σ 2

0 = σ 2
α

(1 − γ )2
+ σ 2

ε

(1 − γ 2)
,

σ0α = σ 2
α

1 − γ
.

This treatment of the means ofYi0, however, leads to inconsistency in the
parameter estimates because of the problem of incidental parameters. To
overcome this problem, making some assumptions about the generation of
theXit ’s in the pre-sample period is required. This is essentially the case
considered byBhargava and Sargan (1983), Maddala (1987), andRidder
and Wansbeek (1990).

Bhargava and Sargan (1983)assume that theYi0’s are generated by the
same data-generating process as that which generates the subsequent panel
data (see alsoHsiaoet al., 2002). By assuming that the panel data follow
an initial stationary process, the suggested model for the initial state is
given by

(4.21)Yi0 = λ0 +
T∑

t=0

X′
itηt + ui0,

where

(4.22)ui0 = υi0 + αi

1 − γ
+ εi0, i = 1, . . . , N,
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andυi0 ∼ i.i.d.(0, σ 2
v ). The variance ofui0 and its covariance withuit are

(4.23)
var(ui0) = σ 2

v + σ 2
α

(1 − γ )2
+ σ 2

ε

(1 − γ 2)
,

cov(ui0, uit ) = σ 2
α

1 − γ
, t = 1, . . . , T .

Then the unconditional likelihood function can be derived from the joint
distribution of the vector residuals(ui0, ui1, . . . , uiT ).

Equation(4.21), however, is an econometric construction to try to gen-
erate theYi0 using an optimal linear predictor, suggested byChamberlain
(1984), of Yi0 conditional on all explanatory variablesXi0, . . . ,XiT . This
treatment is applicable if the pre-sampleXit have linear conditional ex-
pectations. If we assume the random process starts in periodt = 0 and
theXit are weakly exogenous, then these lead us to have specific reduced
forms of

(4.24)Yi0 = λ0 + X′
i0β0 + υi0 + αi

1 − γ
+ εi0, for i = 1, . . . , N,

whereXi0 are explanatory variables of the start-up process containing in-
formation on the periodt = 0.

A modified likelihood function for the initial conditions equation of
the first state is suggested inMaddala (1987). To derive an expression for
X∗
i0, assuming a stationary normal process forXit , implies thatX∗

i0 can be

decomposed into independent components
∑T

t=1 X′
itπ t and an error term.

Inserting this in Equation(4.18)and substitutingYi0 in (4.1)for t = 1, the
process is now modified for the first state as the initial conditions equation

(4.25)Yi1 = λ

1 − γ
+ X′

i1β +
T∑

t=1

X′
itδt + u∗

i1,

whereu∗
i1 = αi

1−γ + εi1, andεi1 ∼ i.i.d.(0, σ 2
∗ ). The ML estimation now

proceeds with Equation(4.25)for Yi1 and(4.1) for t > 1 with identifiable
parametersλ, γ, β, δt , σ 2

α , σ
2
ε andσ 2

∗ , based upon the joint distribution of
(u∗

i1, ui2, . . . , uiT ). Maddala’s approach comes to much the same result as
that outlined byLee (1981)with a little change in Equation(4.25).

Nerlove and Balestra (1996)obtain the unconditional likelihood func-
tion for the vector(Yi0, Yi1, . . . , YiT ) by assuming that the dynamic rela-
tionship is stationary. They first take deviations from individual means to
eliminate the intercept term. Then, in the model(4.1) with only one ex-
planatory variable, they assume the process which generatesXit follows a
stationary time series model for all individualsi. Further, they assume that
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theYi0 are normally distributed with zero means and common variance

(4.26)σ 2
0 = β2σ 2

x

1 − γ 2
+ σ 2

α

(1 − γ )2
+ σ 2

ε

1 − γ 2
.

The probability density function of the initial observations then enters the
final term in the conditional likelihood(4.7)to give the unconditional log-
likelihood2

logL
(
γ, β, σ 2

α , σ
2
ε

)
∝ −N(T − 1)

2
log
(
σ 2
ε

)
− 1

2
log
(
σ 2
c

)

− T

2σ 2
c

∑

i

u2
i − 1

2σ 2
ε

∑

i

(uit − ui)
2

(4.27)− N

2
log
(
σ 2

0

)
− 1

2σ 2
0

∑

i

Y 2
i0.

The termσ0α does not appear in likelihood(4.27)which shows that the
initial observations are independent of the random effects. IfYi0 is depen-
dent onαi , estimation of the parameters of all subsequentY ’s involves
this dependency. This dependency term is not easily removed because the
conditional distributionf (Yi1 · · · YiT |Yi0) in full likelihood (4.2)depends
on the joint distribution ofYi0 andαi .

A potential problem when modelling theYi0 suggested in the litera-
ture is that the corresponding initial equations are derived by making the
assumption that theYi0 are drawn from a stationary distribution. This
assumption is not necessarily appropriate in many cases in practice and
may not always yield realistic results. A special case may arise when
at least one shock comes shortly before the sample starts, jolting the
data generating process out of stationarity. Furthermore, in many panel
data applications, the time series components have strongly evident non-
stationarity, a feature which has received little attention in the literature
of panel data analysis with initial conditions. In such a process, the as-
sumption of stationarity of the process is unattractive, in particular when
explanatory variables drive the stochastic process. For these reasons we
propose a pragmatic solution as follows.

2 Nerlove and Balestra (1996)use a special transformation on variables to derive the like-
lihood function. It can readily be shown that the likelihood with transformed data is the
same as the likelihood(4.27).
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4.6.2. A pragmatic solution

A realistic way of dealing with the problem of initial conditions is to
add flexible reduced form equations for the initial period similar to the
dynamic equations, but without the lagged response variables. The coef-
ficients are allowed to be different from the coefficients in the dynamic
equations, and the error terms are allowed to have a different covariance
structure. This is the straightforward generalisation of the solution sug-
gested byHeckman (1981)who argues that the approach performs with
greater flexibility than other random effects models.

More specifically, suppose that theYi0’s are the start-up values of the
stochastic process and that theXi0’s are corresponding explanatory vari-
ables consisting of information on the periodt = 0. Depending on dif-
ferent specifications of the joint distribution of random variablesYi0 and
αi , we treat the initial observations as endogenous and impose a reduced
equation form which describes the effects of the variablesXi0’s on these
observations. It becomes necessary, therefore, to set up a distinct start-up
regression model

(4.28)Yi0 = λ0 + X′
i0β0 + ui0, i = 1, . . . , N,

where theXi0’s are supposed to be uncorrelated withui0, the initial start-
up error termsui0 being distributed randomly having zero means and a
common variance, and theui0 andεit to be uncorrelated for allt > 0.
The distribution of the initial valuesYi0 are then correctly specified with
means

(4.29)μi0 = E(Yi0|Xi0) = λ0 + X′
i0β0,

and a common varianceσ 2
0 = var(Yi0|Xi0). We suppose the covariance

between the initial error and random effects to be a non-zero constant for
all i given byσ0α. With these assumptions, Equation(4.29) shows that,
as time goes on, the impact of start-up errorsui0 affects all forthcoming
values ofYit through the non-zero covarianceσ0α. In other words,αi af-
fectsYit in all subsequent periods, includingYi0. We note that there is no
restriction on the components of the covariance matrixΩ.

Supposing̃Xi0 = (1 X′
i0) and rewriting Equation(4.28)in vector form

gives

(4.30)Yi0 = X̃i0θ0 + ui0, i = 1, . . . , N,

whereθ0 = (λ0 β ′
0)

′. It follows from the unconditional log-likelihood
(4.17)and taking the first partial derivatives with respect to the vector pa-
rameter(θ , θ0, σ

2
0 , σ0α, σ

2
α , σ

2
ε ) that the solutions of the likelihood equa-

tions are given by

(4.31a)θ̂0 =
(

1

N

∑

i

X̃i0X′
i0

)−1 1

N

∑

i

X̃i0

(
Yi0 − T σ̂0α

σ̂ 2
ε + T σ̂ 2

α

r̄i

)
,



104 I. Kazemi and R. Crouchley

(4.31b)θ̂ = (ψ̂Bx̃x̃ + Wx̃x̃)
−1
(
ψ̂bx̃y + wx̃y − ψ̂

σ̂0α

σ̂ 2
0

1

N

∑

i

X̃iri0

)
,

where ψ̂ = σ̂ 2
ε /σ̂

2
u , the ri0’s are fitted residuals corresponding to the

start-up regression equation(4.30), therit ’s are fitted residuals for Equa-
tion (4.1) and r̄i ’s are their individual means over time. We can readily
show that the parameter estimates of the variances and the covariance be-
tweenYi0 andαi are

(4.32a)σ̂ 2
0 = 1

N

∑

i

r2
i0,

(4.32b)σ̂0α = 1

N

∑

i

ri0r̄i,

(4.32c)σ̂ 2
ε = 1

N(T − 1)

∑

i

(rit − r̄i)
2,

(4.32d)σ̂ 2
u = T

N

∑

i

(
r̄i − σ0α

σ 2
0

ri0

)2

.

The estimatêσ 2
α can then be derived from Equation(4.13). We note that

the conditional ML estimates are a special case of these equations where
σ0α is assumed to be zero. More specifically, these equations forθ̂ , σ̂ 2

ε , and
σ̂ 2
u reduce to(4.8), (4.9a) and (4.9b)if the initial conditions are generated

exogenously in the model. Besides, the parameters of the initial start-up
regression(4.30)can be estimated from the ML estimates using the initial
observations only.

It follows from Equation(4.4) that the stochastic variable
∑

i X̃iri0/N

tends to the non-zero vector(p 0′)′ in probability for largeN , wherep is
a positive constant given by

(4.33)plim
N→∞

1

N

∑

i

Y i,−1ui0 = ϕT (γ )σ
2
0 + 1 − ϕT (γ )

1 − γ
σ0α,

for fixedT . From Equations(4.11) and (4.33), we can readily demonstrate
the consistency of parameter estimates.

Further, by a similar argument to that in Section4.4, we can show that
the solutions of likelihood equations(4.31) and (4.32)are not the ML
estimates because these solutions may lie outside the parameter space.
Specifically, the issue arises with the restrictive bound 0< ψ ≤ 1 which
ensures that the estimates are within the parameter space. But the estimates
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are not MLEs when the estimatêψ is out of this range. Using an in-
equality constraint for solving maximisation problems and Kuhn–Tucker’s
conditions, it can be shown that Equations(4.31) and (4.32)are the ML
estimates, provided that the estimate ofψ̂ lies within the interval(0, 1).
In the caseψ ≥ 1, we can show that the only active constraint is the opti-
mal point(θ , θ0, σ

2
ε , σ

2
0 , σ0α) that lies on the boundaryψ = g(σ) = 1 of

the corresponding constraint. This means that the inequality maximisation
problem reduces to the method of Lagrangian multipliers in the familiar
setting of equality constraints. On the boundaryψ = 1, consistent ML es-
timates are reduced forms of Equations(4.31) and (4.32)whenψ̂ equals
one. Further, for the variance component estimates, we derive the same
equations forσ 2

0 andσ0α while theσ 2
ε can be consistently estimated by

(4.34a)σ 2
ε = 1

NT

∑

i

∑

t

(
uit − σ0α

σ 2
0

ui0

)2

.

The variance of the individual effects can then be estimated by

(4.34b)σ 2
α =

σ 2
0α

σ 2
0

.

Equation(4.34b)shows that the maximisation of the unconditional likeli-
hood(4.17)with respect to the parameters that are within the parameter
space results in non-negative estimates of variance, if there exists a posi-
tive correlation between the initial outcomes and the random effects.

4.7. Empirical analysis

This section considers an empirical analysis to examine the consequences
of ignoring initial conditions when fitting the dynamic regression(4.1),
followed by a variety of different models for theYi0 in the presence of ran-
dom effects. Specifically, we re-examine estimates fromNerlove’s (2002)
study where he presents the results of the unconditional ML approach and
the standard estimates conditional on initial outcomes on the finding of
economic growth rate convergence. The purpose of this example is to show
that the unconditional ML approach does not always give reliable results
and to illustrate a way of improving it.

Now, we follow the literature and fit Ordinary Least Squares (OLS) re-
gression, fixed effects, and the following models to the data using the ML
procedure to illustrate the important role of the initial conditions empiri-
cally:

• M1: The unconditional ML of Nerlove’s method ifσ0α �= 0.
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• M2: The initial conditions are exogenous in the unrestricted version of
Ω. That is, we use Equation(4.29)and assume the covarianceσ0α to be
zero.

The initial conditions are endogenous and theXit are weakly exoge-
nous:

• M3: the pragmatic approach.
• M4: the initial stationarity of the process; i.e. using Equation(4.24).

The initial conditions are endogenous and theXit are strictly exoge-
nous:

• M5: Bhargava and Sargan’s (1983)approach.
• M6: an alternative approach to M5 which is explained below.

The specification of most of these models is extensively explained in
the previous sections. An additional model is an alternative toBhargava
and Sargan’s (1983)approach, given by M6, which assumes the reduced
form approximation(4.21)for Yi0 and allows the residualsui0 to be unre-
strictedly identified with common varianceσ 2

0 and the covarianceσ0α.
After fitting the parameters of these candidate models, an important

empirical question is clearly how to select an appropriate model for the
analysis of each data set. In particular, we use Akaike’s Information Cri-
terion (AIC) and Bayesian Information Criterion (BIC) to select the best
fitted model.

4.7.1. Dynamic growth panel data models

This section considers recent empirical work on classical convergence
which refers to an empirical specification of the Solow–Swan neoclassical
growth model. Many empirical growth studies into cross-country conver-
gence followMankiw et al. (1992)in using a log-linear approximation to
the growth model to specify regression equations and to investigate the
question of convergence of countries to the steady state. Within a large
number of these studies, considerable attention has been paid to proper-
ties of the various parameter estimates in fixed effects specifications of
regression models. It is argued that the incorrect treatment of country-
specific effects, representing technological differences between countries,
gives rise to omitted variable bias. This implies that the various parameter
estimates of fixed effects models for dynamic panel data are inconsistent
(Nickell, 1981; Kiviet, 1995), since the omitted variable is correlated with
the initial level of income. In the estimation of empirical growth models
with random effects,Nerlove (2000)highlights the issue of small sample
bias by assuming that the stochastic process that generatesYit is stationary
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and that the initial per capitaGDPare generated by the process suggested
in Nerlove and Balestra (1996).

The application of dynamic panel data to the estimation of empirical
growth models was originally considered byKnightet al.(1993)andIslam
(1995). In these contributions, the growth convergence equation is derived
from assumptions about a production function and inclusion in the spec-
ification of the savings rate,s, the population growth rate,n, the rate of
technical progress,g, and the depreciation rate,δ.3 SupposeYit to be the
logarithm of per capitaGDP for country i at time t , then the dynamic
growth model for panel data is given by

(4.35)
Yit = λ+ γ Yi,t−1 + β1 log(sit )+ β2 log(nit + g + δ)+ αi + εit ,

whereαi is a country-specific effect andεit is the time-varying error term.
The coefficient of the lagged per capitaGDP is a function of the rate of
convergencer: namely,γ = exp(−rτ ), whereτ is the time interval. If
the parameterγ is estimated positively much less than one, then the re-
sults support the growth convergence hypothesis; i.e. countries with low
initial levels of real per capita income are growing faster than those with
high initial values. Whereas, if this coefficient is close to one or slightly
larger than one, then the initial values have little or no effect on subsequent
growth.

In empirical investigations of the rate of economic growth convergence,
a simple restricted form of dynamic model(4.35)may be considered. This
form comes from the constant returns to scale assumption in the Solow–
Swan model implying thatβ1 andβ2 are equal in magnitude and opposite
in sign.Equation (4.35)then reduces to

(4.36)Yit = λ+ γ Yi,t−1 + βXit + αi + εit ,

whereXit = log(sit )− log(nit + g + δ).
The basic data are annual observations for 94 countries over the pe-

riod 1960–85 taken from the Penn World Tables inSummers and Heston
(1991). In the empirical application of the growth regression model(4.35),
to avoid modelling cyclical dynamics, most growth applications consider
only a small number of time periods, based on annual averages. Work-
ing with regular non-overlapping intervals of five years, the cross-sections
correspond to the yearst = 1965, 1970, 1975, 1980, and 1985. For the
variableYit , the observations of each cross-section correspond exactly to
the yeart , while sit andnit correspond to averages over the periodt − 1

3 The derivation of the growth convergence equations is available in many recent papers
and hence is not reproduced here.
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Table 4.1. Parameter estimates with the OLS regression, fixed and
random effects

Parameter OLS Fixed effects Conditional ML Unconditional ML∗

γ 0.9487(0.0090) 0.7204(0.0237) 0.93390.0123 0.9385(0.0105)
β 0.1244(0.0108) 0.1656(0.0193) 0.13700.0132 0.1334(0.0124)

ρ − − 0.1133(0.0497) 0.1288(0.0456)
σ2 − − 0.0194(0.0013) 0.0197(0.0013)

Obs. 470 470 470 564

The intra-class correlationρ = σ2
α/σ

2 whereσ2 = σ2
α + σ2

ε .
Standard errors are in parentheses.
∗The estimates are reported byNerlove (2000).

to t . As in the empirical growth models, it is assumed thatg andδ, sum-
ming to 0.05, are constant across countries.4

Before proceeding to the random effects specification, we take a look
at the fixed effects that explicitly model a random process in the residuals
by applying the specific transformation of data from their averages over a
time period. We then estimate the empirical model(4.36)with OLSregres-
sion, and estimate the random effects using likelihood(4.7)which assumes
theYi0’s are exogenous. The results are shown inTable 4.1, together with
those obtained byNerlove (2000)using an unconditional version of the
likelihood which includes the 1960GDPper capita.

The estimates of the laggedGDP coefficientγ are statistically signifi-
cant resulting in strong evidence for state dependence. The estimatesγ̂ are
quite large in the random effects specification relative to the fixed effects.
The estimate of the intra-class correlationρ, representing the random ef-
fects specification, is relatively large with respect to its standard error,
suggesting that anOLSanalysis of these data would be likely to yield mis-
leading results. In fact, if the unconditional ML estimates of parameters
are near their true values, theOLSoverestimates the trueγ while the fixed
effects underestimate it. This implies that other estimates ofγ , presented
below for different methods, may fall between these two estimates.

Our main emphasis for the analysis of economic growth data is to se-
lect, from a set of candidate models, an appropriate approximating model

4 The standard assumption in the literature is thatg = 0.02 andδ = 0.03, but researchers
report that estimation results are not very sensitive to changes in these values (Caselliet al.,
1996). An alternative procedure is to estimate these coefficients inside the growth equation
(Lee and Pesaran, 1998).
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Table 4.2. Parameter estimates by using an
unconditional ML of Nerlove’s method in the case

of non-zero covarianceσ0α

Parameter M1

γ 0.8774(0.0302)
β 0.1464(0.0107)
λ 0.9119(0.2255)
σ2
ε 0.0200(0.0014)
σ2
α 0.0088(0.0048)

Obs. 564

Standard errors are in parentheses.

that best fits the empirical data set. Specifically, six candidate models, ex-
plained earlier in this section, can be fitted by ML methods and ranked
by the use of two popular criteria,AIC andBIC. The first model which
requires a reconsideration is the unconditional ML of Nerlove’s method.

An important issue in modelling initial conditions is that when the sta-
tistical relationship between the random effects and initial conditions is
not correctly specified, estimation results will be suspected. In fact, we
know from Sections4.4 and 4.6that the conditional ML estimate ofγ is
seriously upwardly biased for small sequence lengths, and that the uncon-
ditional ML γ̂ is an unbiased estimate ofγ . For these strong theoretical
reasons, the estimate ofγ for unconditional ML would be expected to be
smaller than the conditional estimate, which is not surprisingly true in this
analysis. This implies that we are confronted with a specification that is
not unbiased. This critical point has not been addressed byNerlove (2000,
2002). Particularly, the large value of̂γ , representing the expected positive
bias in the unconditional ML estimate, reveals that it is inappropriate both
to assume that the covarianceσ0a, which equalsσ 2

α/(1 − γ ), is zero and
to ignore it when deriving the unconditional likelihood. To improve the
poor performance of the estimation method, it would seem more realistic
to involve this covariance in the likelihood function.Table 4.2shows the
results from re-estimating convergence equation(4.36)with this modifi-
cation in the unconditional likelihood.

As can easily be seen, the parameter estimates are substantially
changed. As we expected, the estimateγ̂ is lower than the conditional
estimate, shown inTable 4.1, suggesting an improvement in results which
is clearly consistent with the theoretical analysis that the unconditional
ML estimate is upwardly biased. While the coefficient of the laggedGDP
seems to show the most severe bias, the estimate ofβ is also biased.
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One important point about this modified version refers to the depen-
dency termσ0α representing the association between the initial observa-
tions and the subsequent process. This coefficient is given byσ 2

α/(1 − γ )

and can now be estimated consistently from the results ofTable 4.2with
the value 0.0716 and its standard error 0.0233. This shows a significant
positive association and therefore suggests including the dependency term
σ0α in the unconditional likelihood to estimate model parameters.

Although the above approach is undoubtedly an improvement on the
estimation method that ignores the covarianceσ0α in the likelihood, it still
requires further consideration. A crucial issue in modelling initial condi-
tions, to ensure more accurate and consistent results, relates to the correct
specification of the mean values ofYi0, which represent the relationship
between the initial observations and the explanatory variableXit . It should
be noted at this point that the preceding analysis does not examine the
structure of the mean values ofYi0 and simply ignores the effects ofμi0 in
the data analysis. To examine the effects of this shortcoming, we specifi-
cally consider the two approaches proposed in Section4.6. The results of
the maximisation of the likelihood for the economic growth model(4.36),
with both initial stationarity of the process and unrestricted versions of the
covariance matrixΩ, are inTable 4.3. In fitting the models for the unre-
stricted case, the parameterψ takes a value in the eligible interval(0, 1]
which shows that we can estimate the parameters using estimating equa-
tions (4.31) and (4.32). In the initial stationarity case, the estimates for
parametersσ 2

a andγ are constrained to be, respectively, non-negative and
restricted to interval(0, 1) during the numerical maximisation process.5

Assuming theXit ’s are weakly exogenous and involve onlyXi0 in the
initial model, the results of a special case when the initial observations are
independent of the random effects are given in the first column ofTable 4.3
(model M2). Here, the parameters of the subsequent model(4.36)and the
initial start-up regression(4.28)can be estimated, respectively, condition-
ally onYi0 by likelihood(4.7)and from the ML estimates using the initial
observations only. WhenYi0 is assumed to be in stationary equilibrium
(model M4), the estimated state dependence parameterγ̂ is almost un-
changed in comparison with the pragmatic approach (model M3) whereas
the estimateβ̂, in contrast, falls by about 12%. This suggests that if the
expected values ofYi0 are assumed inappropriately in reduced forms, then

5 The likelihood function may not have a unique maximum within the parameter space.
To avoid maximisation routines converging to a local maximum, we run the program with
various starting values for the unknown parameters. If different starting values converge
to the same point, we confidently choose that point. Otherwise, the points with the higher
likelihood are the points of interest.
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Table 4.3. Estimation results for different models whenXit ’s are
weakly exogenous

Parameter M2 M3 M4

Parameter estimates for the initial conditions equation
β0 0.6987(0.0789) 0.6424(0.0757) 0.6034(0.0823)
λ0 7.0635(0.0757) 7.0872(0.0753) 7.2578(0.0798)∗

Parameter estimates for the subsequent panel data equation

γ 0.9339(0.0122) 0.8393(0.0207) 0.8397(0.0194)
β 0.1370(0.0131) 0.1957(0.0147) 0.2217(0.0141)
λ 0.5162(0.0874) 1.2002(0.1523) 1.1631(0.1438)

Variances and covariances estimates

σ2
0 0.4353(0.0635) 0.4377(0.0643) 0.5111(0.0732)∗

σ0α − 0.0576(0.0134) 0.0546(0.0128)∗

σ2
ε 0.0172(0.0013) 0.0153(0.0011) 0.0160(0.0012)
σ2
α 0.0022(0.0010) 0.0103(0.0034) 0.0087(0.0029)
σ2
υ − − 0.1163(0.0422)

Obs. 564 564 564

Standard errors are in parentheses.
∗The constant term isλ/(1 − γ ). Two parametersσ0α andσ2

0 are estimated by Equa-
tion (4.23). Standard errors are constructed via the delta method.

the ML approach can lead to inconsistent results, especially in the estima-
tion of the coefficient onXit .

Table 4.4summarises the results of estimating equation(4.36)when the
Xit ’s are assumed to be strictly exogenous. The estimation results using
the approach ofBhargava and Sargan (1983), presented in the first col-
umn, together with the alternative approach to M5 (the second column)
show that inclusion of the explanatory variables for each period in the ini-
tial model does not appreciably change the estimated model compared to
using onlyXi0 in the initial model. Indeed, the estimate ofβ actually de-
creased slightly. By adding more regressors in the reduced model forYi0,
as we would expect, the variance estimateσ 2

0 representing the variation in
Yi0 is rather decreased. But there is no improvement in the estimation of
covarianceσ0α.

In summary, the results from various assumptions onYi0 support the
growth convergence hypothesis, conditional on savings and population
growth rates, but illustrate the rather different estimates of the rates of
convergence. The estimatesγ̂ are less than one for fitted models, suggest-
ing that the countries with low initialGDP per capita values are growing
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Table 4.4. Estimation results for different models
whenXit ’s are strictly exogenous

Parameter M5 M6

Parameter estimates for the initial conditions equation
β0 0.8585(0.2137) 0.7071(0.1843)
β1 0.0670(0.3138) −0.1771(0.2737)
β2 −0.2802(0.2757) 0.0206(0.2413)
β3 −0.0887(0.1260) −0.0892(0.1077)
β4 −0.2074(0.2254) 0.2909(0.2074)
β5 0.1805(0.1909) −0.0730(0.1716)
λ0 7.3394(0.0851)∗ 7.0386(0.0908)

Parameter estimates for the subsequent panel data equation

γ 0.8384(0.0202) 0.8390(0.0206)
β 0.2082(0.0145) 0.1976(0.0155)
λ 1.1863(0.1504) 1.2017(0.1517)

Variances and covariances estimates

σ2
0 0.4776(0.0751)∗ 0.4280(0.0653)
σ0α 0.0579(0.0142)∗ 0.0572(0.0135)
σ2
ε 0.0156(0.0012) 0.0153(0.0012)
σ2
α 0.0094(0.0032) 0.0103(0.0034)
σ2
υ 0.1084(0.0392) −

Obs. 564 564

Standard errors are in parentheses.
∗The constant term isλ/(1−γ ). Two parametersσ0α andσ2

0 are
estimated by Equation(4.23). Standard errors are constructed
via the delta method.

faster than those with high values. As the speed of convergence is inversely
proportional to the relative size of̂γ , the conditional ML estimate leads to
a downwardly biased estimate of this rate. The unconditional estimates
also give rise to inconsistent results unless the statistical relationships be-
tween the random effects, initial conditions, and explanatory variables are
correctly specified. It specifically requires having bothσ0α andμi0 in the
likelihood functions, unlike most previous approaches.

4.7.2. Model selection

The model selection problem is to select, from a candidate set of models,
the one that best fits the data set based on certain criteria. The substantial
advantages in using the following criteria, are that they are valid for non-



Modelling the Initial Conditions in Dynamic Regression Models 113

Table 4.5. Comparison of models for dynamic growth panel data

Model M −2 log(L) AIC Δk BIC

M1 5 −235.7739 −225.7739 139.532 −204.0986
M2 8 −341.278 −325.278 40.0279 −290.5976
M3 9 −383.3059 −365.3059 0 −326.2904
M4 7 −345.8728 −331.8728 33.4331 −301.5274
M5 12 −353.6404 −329.6404 35.6655 −277.6197
M6 14 −358.3761 −330.3761 34.9298 −269.6853

nested models, and that the ranking of models using them also helps to
clarify the importance of model fitting.

The most common measure for choosing among different competing
models for a given data set isAIC defined for thekth model as

(4.37)AICk = −2 log
{
L(φ̂)

}
k
+ 2M, k = 1, . . . , K,

whereM is the number of model parameters andφ̂ is the ML estimate of
model parameters. When selecting amongK competing models, it seems
reasonable to say that the larger the maximum log-likelihood, the better
the model, or, the model that yields the smallest value ofAICk is the pre-
ferred model. If none of the models is good,AIC attempts to select the best
approximating model of those in the candidate set. Thus, it is extremely
important to ensure that the set of candidate models is well-substantiated.
Because theAIC value is on a relative scale, theAIC differences

(4.38)Δk = AICk − minAICk,

are often reported rather than the actual values. This simple rescaling to
a minimum relativeAIC value of zero makes comparisons between the
best fitting model and other candidate models easy. A largerΔk reflects
a greater distance between models. Another criterion likely to be isBIC
defined as

(4.39)BICk = −2 log
{
L(φ̂)

}
k
+ M log(n), k = 1, . . . , K,

wheren is the total number of observations. TheBIC automatically be-
comes more severe as sample size increases, but provides similar results
to theAIC for smalln.

The values ofAIC andBIC together with the number of estimable pa-
rameters(M) for different fitted models of the growth data, are presented
in Table 4.5.



114 I. Kazemi and R. Crouchley

The results ofTable 4.5show that two models, M3 and M4, are more
appropriate, given the data, while M1 and M2 are unlikely to be preferred.6

Specifically, theΔ values indicate that the model with the minimumAIC
value of the six models is the pragmatic model. Most importantly, com-
paring M2 and M3 suggests that it is questionable to assumeσ0α = 0. It
is easily seen that estimated models which take theXi0 into account are
reasonable models in comparison with Ml, which does not. In general, the
less restrictive reduced form model provides a significantly better empir-
ical fit to the data. It is interesting to note that the two criteriaAIC and
BIC produce slightly different results, although in both cases M3 has the
smallest value while M6 the largest.

Summarising the empirical results reveals that there is strong evi-
dence of positive state dependence with various assumptions on the data-
generating processes. Ignoring the endogeneity ofYi0 results in upward
bias of the state dependence and a downward bias in the coefficients of ex-
planatory variables. The interpretation of the empirical models, based only
on the exogeneity assumed for the initial conditions, may be misleading.
By fitting various models forYi0 and comparing the results, we conclude
that there is not only theoretical but also empirical evidence to suggest
that the initial conditions problem plays a crucial role in obtaining more
reliable results.

4.8. Recommendations

Although the impact of initial conditions on subsequent outcomes of a
dynamic process is widely discussed in the context of state-dependent
models, it is not fully understood in statistical modelling. A basic prob-
lem in fitting these models with random effects, as is well known, is that
the standard likelihood estimates can be substantially biased at least as-
ymptotically. To avoid this, the model can be extended by adding a set of
flexible equations for the initial outcome. The ML approach may then help
in devising consistent results for model parameters if the joint likelihood of
initial errors and residual heterogeneity in a subsequent sequence of panel
data is correctly specified. Specifically, there is a need for the correct spec-
ification of the relationship between the individual-specific effects, initial
conditions and explanatory variables.

6 When theAIC values are negative, as they are here, higher numbers in absolute values
are preferred. For more detail seeBurnham and Anderson (1998).
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These concepts were illustrated in this paper while taking them a stage
further in selecting the best approximating model in the search for a re-
alistic model of the dynamic process. Specifically, rather than attempt to
estimate the empirical models only by assuming a reduced equation form
for the initial outcome, which is sometimes a naïve form, we tested a
variety of different flexible model equations, followed by a selection of
the best model based on standard information criteria. In this paper, it is
suggested that the pragmatic approach is preferred, in comparison with a
variety of other approaches. It was shown that this approach dramatically
improves the consistency of parameter estimation and precisely controls
for the problem of negative estimates of variance components.
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Abstract

Mundlak (“On the pooling of time series and cross-section data”, Econo-
metrica, Vol. 46 (1978), pp. 69–85) showed that when individual effects
are correlated with the explanatory variables in an error component (EC)
model, the GLS estimator is given by the within. In this paper we bring
out some additional interesting properties of the within estimator in Mund-
lak’s model and go on to show that the within estimator remains valid in an
extended EC model with time invariant variables and correlated specific
effects. Adding an auxiliary regression to take account of possible correla-
tion between the explanatory variables and the individual effects, we find
that not only the elegant results obtained by Mundlak but also the above
mentioned special features carry over to the extended case with interesting
interpretations. We obtain these results using a generalised version of the
Frisch–Waugh theorem, stated and proved in the paper. Finally, for both
the EC models with and without time invariant variables we have shown
that the estimates of the coefficients of the auxiliary variables can also be
arrived at by following a two-step procedure.

Keywords: panel data, error components, correlated effects,within esti-
mator

JEL classification:C23

5.1 Introduction

This paper is concerned with the issue of time invariant variables in panel
data models. We try to look into an ‘old’ problem from a new angle or

mailto:jaya.krishnakumar@metri.unige.ch


120 J. Krishnakumar

rather in an extended framework. It is well-known that when time invari-
ant variables are present, thewithin transformation wipes them out and
hence does not yield estimates for their coefficients. However they can be
retrieved by regressing the means of thewithin residuals on these variables
(seeHsiao, 1986, e.g.).Hausman and Taylor (1981)provide an efficient in-
strumental variable estimation of the model when the individual effects are
correlated with some of the time invariant variables and some of theX’s.
Valid instruments are given by the other time invariant and time varying
variables in the equation.

Suppose we consider the case in which the individual effects are corre-
lated with all the explanatory variables. The earliest article dealing with
this issue in panel data literature is that ofMundlak (1978)where the
author looked at the error component model with individual effects and
possible correlation of these individual effects with the explanatory vari-
ables (or rather their means). He showed that upon taking this correlation
into account the resulting GLS estimator is thewithin. Thus the question
of choice between thewithin and the random effects estimators was both
“arbitrary and unnecessary” according to Mundlak.

Note that the question of correlation arises only in the random effects
framework as the fixed effects are by definition non-stochastic and hence
cannot be linked to the explanatory variables. We point this out because
Mundlak’s conclusion may often be interpreted wrongly that the fixed ef-
fectsmodelis the correct specification. What Mundlak’s study shows is
that the estimator is the same (thewithin) whether the effects are consid-
ered fixed or random.

Now what happens to Mundlak’s results when time invariant variables
are present in the model? Do they still carry over? Or do they have to
be modified? If so in what way? Are there any neat interpretations as in
Mundlak’s case? This paper is an attempt to answer these questions and
go beyond them interpreting the results in a way that they keep the same
elegance as in Mundlak’s model.

The answers to the above questions follow smoothly if we go through
a theorem extending the Frisch–Waugh result from the classical regres-
sion to the generalised regression. Thus we start in Section5.2by stating
a generalised version of Frisch–Waugh theorem and giving its proof. In
this section we also explain the important characteristic of this new the-
orem which makes it more than just a straightforward extension of the
classical Frisch–Waugh theorem and point out in what way it is different
from a similar theorem derived byFiebig et al. (1996). The next section
briefly recalls Mundlak’s case and puts the notation in place. Section5.4
brings out some interesting features of Mundlak’s model which enable the
known results. Section5.5presents the model with time invariant variables
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and discusses it from the point of view of correlated effects. Relationships
between the different estimators are established and compared with the
previous case. Finally we conclude with a summary of our main results.

5.2 The Generalised Frisch–Waugh theorem

THEOREM 5.1. In the generalised regression model:

(5.1)y = X1β1 +X2β2 + u

with E(u) = 0 and V (u) = V , positive definite, non-scalar, the GLS
estimator of a subvector of the coefficients, sayβ2, can be written as

(5.2)β̂2,gls =
(
R′

2V
−1R2

)−1
R′

2V
−1R1,

where

R1 = y −X1
(
X′

1V
−1X1

)−1
X′

1V
−1y,

R2 = X2 −X1
(
X′

1V
−1X1

)−1
X′

1V
−1X2.

The proof of this theorem is given inAppendix A5.
Let us note an important property in the above formula forβ̂2,gls in that

it represents a generalised regression of the residuals of GLS ofy onX1

on the GLS residuals ofX2 onX1 with thesame initialV as the variance
covariance matrix in all the three regressions. An additional feature is that
one can even replaceR1 by y in (5.2) and our result still holds (as in the
classical case).

Fiebig et al. (1996) arrive at the GLS estimator̂β2 through a differ-
ent route (applyingM1 to (5.1) and then (true) GLS on the transformed
model). They also show that using a (mistaken) originalV for their trans-
formed model leads to a different estimator (which they call the pseudo
GLS) and derive conditions under which pseudo GLS is equal to true
GLS. Baltagi (2000)refers toFiebiget al. (1996)while mentioning spe-
cial cases examined byBaltagi and Krämer (1995, 1997)in which pseudo
GLS equals true GLS.

Both our expression of̂β2 andFiebiget al.’s (1996)true GLS expres-
sion yield the same answer but are obtained through different transforma-
tions. Expression(5.2) above has an interesting interpretation in terms of
(GLS) residuals of auxiliary regressions as in the classical Frisch–Waugh
case.
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COROLLARY 5.1. If in model(5.1) above we further have orthogonality
betweenX1 andX2 in the metricV −1, i.e. if

X′
1V

−1X2 = 0

then

β̂1,gls =
(
X′

1V
−1X1

)−1
X′

1V
−1y,

β̂2,gls =
(
X′

2V
−1X2

)−1
X′

2V
−1y.

5.3 The known case: Mundlak’s model

Let us briefly recall Mundlak’s result for a panel data model with only
individual effects. The model is:

(5.3)y = Xβ + (IN ⊗ ιT )u+ w.

We have the usual assumptionsE(u) = 0, V (u) = σ 2
u IN , E(w) = 0,

V (w) = σ 2
wINT and independence betweenu andw. Thus denotingε =

(IN ⊗ ιT )u+w we haveV (ε) ≡ Σ = λ1P + λ2Q with λ1 = σ 2
w + T σ 2

u ,
λ2 = σ 2

w, P = 1
T
(IN ⊗ ιT ι

′
T ) andQ = INT − P . Q is the well-known

within transformation matrix.
When there is correlation between the individual effectsu and the ex-

planatory variablesX, it is postulated using:

(5.4)u = Xγ + v,

whereX = 1
T
(IN ⊗ ι′T )X andv ∼ (0, σ 2

v IN ). Here one should leave out
the previous assumptionE(u) = 0. Substituting(5.4) into (5.3)we get

(5.5)y = Xβ + (IN ⊗ ιT )Xγ + (IN ⊗ ιT )v + w.

Applying GLS to(5.5)Mundlak showed that

(5.6)
β̂gls = β̂w,

γ̂gls = β̂b − β̂w,

whereβ̂w andβ̂b are thewithin and thebetweenestimators respectively.
Hence Mundlak concluded that thewithin estimator should be the pre-

ferred option in all circumstances.

5.4 Some interesting features

In this section we highlight some additional results for the above model
which have interesting interpretations and lead us to the more general case
of a model with time invariant variables.
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Why within is GLS forβ: Let us first look at the GLS estimation of the
full model (5.5). Note that the additional term(IN ⊗ ιT )X can be written
asPX.

Thus the augmented model becomes

(5.7)y = Xβ + PXγ + ε̃

with ε̃ = (IN ⊗ ιT )v + w andV (ε̃) ≡ Σ̃ = λ̃1P + λ̃2Q with λ̃1 =
σ 2
w + T σ 2

v , λ̃2 = σ 2
w.

Splitting X into its two orthogonal componentsQX andPX let us
rewrite the above equation as

(5.8)y = QXβ + PX(β + γ )+ ε̃.

Noticing thatQX andPX are such thatX′QΣ̃−1PX = 0 we can apply
Corollary5.1to obtain

β̂gls =
(
X′QΣ̃−1QX

)−1
X′QΣ̃−1y

= (X′QX)−1X′Qy = β̂w

and

(β̂ + γ )gls =
(
X′PΣ̃−1PX

)−1
X′PΣ̃−1y

= (X′PX)−1X′Py = β̂b.

Thus we get back Mundlak’s result(5.6):

γ̂gls = β̂b − β̂w.

This result can be further explained intuitively. Looking at model(5.7)
we haveX andPX as explanatory variables. Thus the coefficient ofX,
i.e.β measures the effect ofX ony holding that ofPX constant. Holding
the effect ofPX constant means that we are only actually measuring the
effect ofQX on y with β. Hence it is not surprising that we getβ̂w as
the GLS estimator on the full model(5.7). However in the case ofγ , it is
the effect ofPX holdingX constant. SinceX containsPX andQX as its
components, we are only holding theQX component constant letting the
PX component vary along with thePX which is explicitly in the equation
whose combined effect isβ andγ . Now the effect ofPX ony is estimated
by none other than thebetweenestimator. So we have(β̂ + γ )gls = β̂b,
i.e. result(5.6)once again.

Within also equals an IV forβ: As theX’s are correlated with the error
term ε = (IN ⊗ ιT )u + w, the GLS estimator will be biased but one
could use instrumental variables. Various IV sets have been proposed in
the literature (cf.Hausman and Taylor, 1981; Amemiya and McCurdy,
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1986; Breuschet al., 1989) and relative efficiency discussed at length. We
will not go into that discussion here. Instead we point out that choosing
the simple valid instrumentQX also leads to thewithin estimator. Indeed,
premultiplying Equation(5.3)byX′Q we have

(5.9)X′Qy = X′QXβ +X′Qε

and applying GLS we get thewithin estimator

(5.10)β̂IV = (X′QX)−1X′Qy = β̂w.

GLS for γ is equivalent to a two-step procedure: As far asγ is con-
cerned, we observe that GLS on the full model is equivalent to the follow-
ing two-step procedure:

Step 1: Within regression on model(5.3)
Step 2: Regression ofwithin estimates of individual effects onX which

givesγ̂ .

The individual effects estimates can be written as

u∗ = 1

T
(IN ⊗ ι′T )

[
INT −X(X′QX)−1X′Q

]
y

= u+ 1

T
(IN ⊗ ι′T )

[
INT −X(X′QX)−1X′Q

]
ε

substituting(5.3) for y. Thus we have

u∗ = Xγ + v + 1

T
(IN ⊗ ι′T )

[
INT −X(X′QX)−1X′Q

]
ε

or

(5.11)u∗ = Xγ + w∗

denotingw∗ = v + 1
T
(IN ⊗ ι′T )[INT −X(X′QX)−1X′Q]ε.

It is interesting to verify that

V (w∗)X = XA

with A non-singular and hence we can apply OLS on(5.11). Thus we
obtain

(5.12)γ̂ = (X′X)−1X′u∗

= (X′X)−1X′(ȳ −Xβ̂w)

= β̂b − β̂w

which is the same result as(5.6).
The above simple results not only show that we are able to arrive at the

same estimator by various ways but also provide useful insight into the
interesting connections working within the same model due to the special
decomposition of the variance–covariance structure of EC models.
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5.5 Extension to the case with time invariant variables

Now let us see what happens when time invariant variables come in. The
new model is

(5.13)y = Xβ + (IN ⊗ ιT )Zδ + (IN ⊗ ιT )u+ w = Xβ + CZδ + ε,

whereZ is aN × p matrix of observations onp time-invariant variables
relating to theN individuals andC ≡ IN ⊗ ιT .

5.5.1 Without correlated effects

Applying Theorem 5.1on (5.13)and simplifying (seeAppendix B5) one
can obtain thatβ̂gls is a weighted combination of the ‘within’ and ‘be-
tween’ (in fact an ‘extended between’, see below) estimators, i.e.

(5.14)β̂gls = W1β̂eb +W2β̂w,

whereβ̂w is the same as before,

(5.15)β̂eb =
[
X′
(

1

T λ1
CMZC

′
)
X

]−1

X′
(

1

T λ1
CMZC

′
)
y

andW1, W2 are weight matrices defined inAppendix B5.
The estimator given in(5.15) is in fact thebetweenestimator ofβ for

an EC model with time invariant variables (as thebetweentransformation
changes theX’s into their means but keeps theZ’s as such; hence we have
the transformationMZ in between to eliminate theZ’s). We call it the
‘extended between’ estimator and abbreviate it as ‘eb’.

Turning toδ̂gls, Theorem 5.1implies

(5.16)δ̂gls =
(
F ′

2Σ
−1F2

)−1
F ′

2Σ
−1F1,

whereF2 are residuals ofCZ onX andF1 are residuals ofy onX. How-
ever for the former we should in fact be talking of residuals ofZ on X

asX is time varying andZ is time invariant. This means that in order to
obtainδ̂ we should be regressing the individualmeansof residuals ofy on
X on those ofZ onX. RedefiningF1 andF2 in this way and simplifying
the expressions, we get

δ̂gls = (Z′MXZ)
−1Z′MX

1

T
(IN ⊗ ι′T )

×
(
INT −X

(
X′Σ−1X

)−1
X′Σ−1)y

(5.17)= (Z′MXZ)
−1Z′MXȳ.
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5.5.2 With correlated effects

Now suppose that the individual effects are correlated with theX’s and
theZ’s. The above estimators become inconsistent. Writing the auxiliary
regression as

(5.18)u = Xγ + Zφ + v

and substitutingu in (5.13)we get

y = Xβ + CZδ + (IN ⊗ ιT )Xγ + (IN ⊗ ιT )Zφ + (IN ⊗ ιT )v + w

(5.19)= Xβ + CZ(δ + φ)+ PXγ + (IN ⊗ ιT )v + w.

Within is still GLS forβ: If we applyTheorem 5.1to our model(5.19)
above then we have the result thatβ̂gls on (5.19)is the same aŝβgls on the
following model:

R1 = R2β + ε,

where

R1 = y − Z̃
(
Z̃′Σ−1Z̃

)−1
Z̃′Σ−1y

and

R2 = X − Z̃
(
Z̃′Σ−1Z̃

)−1
Z̃′Σ−1X

with

Z̃ =
[
(IN ⊗ ιT )Z PX

]
= (IN ⊗ ιT ) [ Z X ] = CZ.

In other words,

(5.20)β̂gls =
(
R′

2Σ
−1R2

)−1
R′

2Σ
−1R1.

Once again making use of some special matrix results, one can show (see
Appendix C5) that β̂gls = β̂w for the augmented EC model with time
invariant variables and correlated effects.

How can we intuitively explain this? Again it is straightforward if we
write the model as

y = QXβ + PX(β + γ )+ CZ(δ + φ)+ ε

and notice thatQX is orthogonal to bothPX andCZ in the metricΣ−1.
Corollary 5.1above tells us that̂βgls is given by

β̂gls =
(
X′QΣ−1QX

)−1
X′QΣ−1Qy = (X′QX)−1X′Qy = β̂w.
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Within also equals an IV forβ: Now it is easy to see that instrumenting
X byQX in the new model(5.13)also leads to thewithin estimator forβ
coinciding with the GLS in the extended model. Of course transforming
the model by the instrument matrix eliminates the time invariant variables
just like thewithin transformation does. The coefficient estimates of the
latter can always be retrieved in a second step by regressing the residual
means on these same variables (see below).

GLS for γ is an ‘extended’ between–within: From the above intuitive
reasoning we can also deduce that the parametersγ , δ andφ should be
estimated together whereas we could leave outβ asQX is orthogonal to
bothPX andZ in the metricΣ−1.

Writing

θ =
[
(δ + φ)

(β + γ )

]

we have byTheorem 5.1

θ̂ =
[
(δ̂ + φ)

(β̂ + γ )

]
=
(
Z̃′Σ−1Z̃

)−1
Z̃′Σ−1y.

Separate solutions for the two components ofθ̂ can be obtained as yet
another application of the same theorem:

(δ̂ + φ) = (Z′MXZ)
−1Z′MXȳ,

(β̂ + γ ) = (X′MZX)
−1X′MZ ȳ,

where(β̂ + γ ) can be recognised as the ‘extended between’ estimator.1

Once again the estimator ofγ in the extended model is derived as the
difference between the ‘extended between’ and thewithin estimators:

(5.21)γ̂gls = (β̂ + γ )− β̂ = β̂eb − β̂w.

GLS forγ is again a two-step procedure: The above result on̂γgls leads
to another interpretation similar to that of result(5.12) obtained in the
model without time invariant variables. We have

γ̂gls = (X′MZX)
−1X′MZ ȳ − (X′QX)−1X′Qy

= (X′C′MZC
′X)−1X′CMZC

′y − (X′QX)−1X′Qy

= (X′C′MZC
′X)−1X′CMZC

′y

1 Here the ‘between’ model is ȳ = X(β + γ )+ Z(δ + φ)+ ε̄.
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− (X′C′MZC
′X)−1X′CMZC

′X(X′QX)−1X′Qy

= (X′C′MZC
′X)−1X′CMZC

′(INT −X(X′QX)−1X′Q
)
y

= (X′C′MZC
′X)−1X′CMZC

′û∗

which implies thatγ̂gls can be obtained by a two-step procedure as follows:

Step 1: Within regression of model(5.13).
Step 2: Regressing thewithin residual means on the residuals of the

means of theX’s onZ.

Now a few additional remarks. Note the formula for(δ̂ + φ) is exactly
the same as the one forδ̂ in the ‘old’ model (5.17) and this can be un-
derstood if we look into the effect captured by this coefficient. In model
(5.13) δ is the effect ofZ on y holding that ofX constant, i.e. holding
constant the effect of both the componentsQX andPX and the combined
coefficient(δ+φ) retains the same interpretation in the augmented model
(5.19)too. However a major difference here is that one can only estimate
the sum(δ + φ) and cannot identifyδ andφ separately. This is logical as
both the coefficients are in a way trying to measure the same effect. Thus
the inclusion ofZφ in the auxiliary regression(5.18) is redundant. The
expression for (δ+φ) can in fact be obtained by regressingû onX andZ.
Thus, practically speakingδ andγ can be retrieved by regressingwithin
residual means onX andZ.

Let us also mention that Hausman specification tests are carried out in
the same manner whether time invariant variables are present or not and
the absence of correlation can be tested using any one of the differences
β̂b − β̂w, β̂gls − β̂w, β̂gls − β̂b or β̂gls − β̂ols as shown inHausman and
Taylor (1981).

If we assume non-zero correlation between explanatory variables and
the combineddisturbance term (the individual effectsand the genuine
disturbance terms), for instance in the context of a simultaneity problem,
then the whole framework changes,within estimator is no longer consis-
tent and only instrumental variables procedures such as the generalised
2SLS (G2SLS) or the error component 2SLS (EC2SLS) are valid (see,
e.g.,Krishnakumar, 1988; Baltagi, 1981).

5.6 Concluding remarks

In this paper we have shown that Mundlak’s approach and thewithin es-
timator remain perfectly valid even in an extended EC model with time
invariant variables. Adding an auxiliary regression to take account of pos-
sible correlation between the explanatory variables and the individual ef-
fects one finds that the elegant results obtained byMundlak (1978)as well
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as some additional interesting ones can be derived in the extended case
too. These results are established by the application of a generalised ver-
sion of the Frisch–Waugh theorem also presented in the paper. Further, it
is shown that for both the models with and without time invariant vari-
ables, the estimates of the coefficients of the auxiliary variables can also
be obtained by a two-step estimation procedure.
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Appendix A5

PROOF OFTHEOREM 5.1. Let us transform the original model(5.1) by
V −1/2 to get

y∗ = X∗
1β1 +X∗

2β2 + u∗,

wherey∗ = V −1/2y, X∗
1 = V −1/2X1, X∗

2 = V −1/2X2 andu∗ = V −1/2u.
NowV (u∗) = INT and hence we can apply the classical Frisch–Waugh

theorem to obtain

β̂2 =
(
R∗′

2 R
∗
2

)−1
R∗′

2 R
∗
1,

where

R∗
1 = y∗ −X∗

1

(
X∗′

1 X
∗
1

)−1
X∗′

1 y
∗,

R∗
2 = X∗

2 −X∗
1

(
X∗′

1 X
∗
1

)−1
X∗′

1 X
∗
2.

Substituting the starred variables in terms of the non-starred ones and
rearranging we get

β̂2 =
[
X′

2

(
V −1 − V −1X1

(
X′

1V
−1X1

)−1
X′

1V
−1)X2

]−1

×X′
2

(
V −1 − V −1X1

(
X′

1V
−1X1

)−1
X′

1V
−1)y

=
[
X′

2V
−1(INT −X1

(
X′

1V
−1X1

)−1
X′

1V
−1)X2

]−1

×X′
2V

−1(INT −X1
(
X′

1V
−1X1

)−1
X′

1V
−1)y

=
[
X′

2

(
INT − V −1X1

(
X′

1V
−1X1

)−1
X′

1

)
V −1
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×
(
INT −X1

(
X′

1V
−1X1

)−1
X′

1V
−1)X2

]−1

×X′
2

(
INT − V −1X1

(
X′

1V
−1X1

)−1
X′

1

)
V −1

×
(
INT −X1

(
X′

1V
−1X1

)−1
X′

1V
−1)y

=
(
R′

2V
−1R2

)−1
R′

2V
−1R1.

�

Appendix B5

Applying Theorem 5.1on (5.13)yields:

(B5.1)β̂gls =
(
E′

2Σ
−1E2

)−1
E′

2Σ
−1E1,

where

E1 = y − CZ
(
Z′C′Σ−1CZ

)−1
Z′C′Σ−1y

=
(
INT − 1

T
CZ(Z′Z)−1Z′C′

)
y

and

E2 = X − CZ
(
Z′C′Σ−1CZ

)−1
Z′C′Σ−1X

=
(
INT − 1

T
CZ(Z′Z)−1Z′C′

)
X

usingC′Σ−1C = 1
λ1
T IN and writingX = 1

T
C′X.

SincePC = C,QC = 0,CC′ = T P andC′C = T IN one can see that

β̂gls =
(
E′

2Σ
−1E2

)−1
E′

2Σ
−1E1

=
[
X′
(

λ2

T λ1
CMZC

′ +Q

)
X

]−1

X′
(

λ2

T λ1
CMZC

′ +Q

)
y

= W1β̂eb + W2β̂w,

where

MZ = IN − Z(Z′Z)−1Z′,

W1 =
[
X′
(

λ2

T λ1
CMZC

′ + Q

)
X

]−1

X′
(

λ2

T λ1
CMZC

′
)
X,

W2 =
[
X′
(

λ2

T λ1
CMZC

′ + Q

)
X

]−1

X′QX

and

β̂eb =
[
X′
(

1

T λ1
CMZC

′
)
X

]−1

X′
(

1

T λ1
CMZC

′
)
y.
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Appendix C5

We have from(5.20)

(C5.1)β̂gls =
(
R′

2Σ
−1R2

)−1
R′

2Σ
−1R1.

Let us examineR1 andR2. We can write them asR1 = M̃y andR2 =
M̃X whereM̃ = IN − Z̃(Z̃′Σ−1Z̃)−1Z̃′Σ−1.

Noting once again thatPC = C, QC = 0,CC ′ = T P , C′C = T IN ,
C′Σ−1C = 1

λ1
T IN , Z̃

′Σ−1 = 1
λ1
T Z′C′ andZ̃′Σ−1Z̃ = T

λ1
Z′Z, one can

show thatM̃ = INT − 1
T
CZ(Z′Z)−1Z′C′ = INT − 1

T
CPZC

′.
Further due to the partitioned nature ofZ we also know that

PZ = PX +MXZ(Z
′MXZ)

−1Z′MX.

Hence

M̃ = INT − 1

T
C
(
PX +MXZ(Z

′MXZ)
−1Z′MX

)
C′

and

M̃X =
(
INT − 1

T
CX

)
= (INT − P)X = QX

asPXC
′X = T PXX = TX = C′X andMXC

′X = 0. Therefore

R′
2Σ

−1R2 = X′M̃Σ−1M̃X = 1

λ2
X′QX.

Similarly one can verify that

R′
2Σ

−1R1 = X′M̃Σ−1M̃y = 1

λ2
X′Qy.

Thus

β̂gls = (X′QX)−1X′Qy = β̂w.
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Abstract

We present a dynamic model of crime wherein agents anticipate future
consequences of their actions. While investigating the role of human cap-
ital, our focus is on a form of capital that has received somewhat less
attention in the literature, social capital, which accounts for the influence
of social norms on the decision to participate in crime. The model is es-
timated with panel data from the 1958 Philadelphia Birth Cohort Study.
Non-chosen states, which potentially depend on individual specific hetero-
geneity, are accounted for using simulation techniques. We find evidence
of state dependence in the decision to participate in crime and the impor-
tance of initial levels of social capital stock in predicting adult criminal
patterns.

Keywords: social capital, human capital, dynamic model, panel data, sim-
ulated method of moments

JEL classifications:C15, C33, C61, J22, Z13

6.1. Introduction

The basic premise of the economic model of crime is that criminals behave
rationally in the sense that they act so as to maximize their economic wel-
fare. This idea can be traced back toBentham (1970 [1789])andBeccaria
(1963 [1764]), and has been more recently formalized byBecker (1968)
andEhrlich (1973). In this framework, a person breaks the law if the ex-
pected marginal benefit of allocating time and other resources to crime
exceeds the marginal cost of doing so. To date, most empirical studies

mailto:rsickles@rice.edu
mailto:jenny.williams@unimelb.edu.au
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have focused on the labor market costs associated with criminal choice,
investigating the effect of arrest history on current or future employment
probabilities or wages.1 However, recent theoretical and empirical re-
search suggests that social interactions, working through peer influences,
stigma, social norms, and information networks, also contribute to the
cost and benefit calculations of many economic activities, including the
decision to commit crime.2 The role of social interactions is particularly
relevant to the criminal participation decision if the stigma associated with
arrest acts as a significant deterrent.

This research extends the traditional model of crime to explicitly ac-
count for the deterrent effect of social sanctions, or stigma, on the decision
to participate in crime. We use social capital stock to measure an indi-
vidual’s past investment in the law-abiding social group, and assume that
the cost of social sanctions faced depends upon the stock of social capi-
tal the individual has accumulated. In contrast to the literature on social
capital that has followed in the tradition of Putnam, this study takes the
level of social capital that a society possesses as given and, in the style
of Coleman (1990), is concerned with the process by which individuals
accumulate social capital stock and how this stock affects their behavior.3

Our treatment of social capital as an individual characteristic is similar to
Glaeseret al. (2002). However, this paper differentiates itself by its nar-
row focus on that part of social capital that embodies the norms associated
with law-abiding behavior and the role of social capital in the enforcement
of these norms. The intuition behind our approach is that attachment to
(law-abiding) society through, for example, productive employment and
marriage, creates a form of state dependence that reduces the likelihood
of criminal involvement. In our formulation, state dependence arises be-
cause the stigma associated with arrest is more costly for individuals who

1 See, for example,Imai and Krishna (2001), Lochner (1999), Grogger (1998, 1995),
Waldfogel (1994), Freeman (1992), Lott (1990).
2 See, for example,Akerlof (1997, 1998), Sampson and Laub (1992), Case and Katz

(1991). The importance of the interaction between individuals and their community in
forming tastes and determining criminal choices has been studied byWilliams and Sickles
(2002), Glaeseret al. (1996), Akerlof and Yellen (1994), andSah (1991). The interac-
tion between individuals decision to engage in crime and employers decision to stigmatize
criminals is explored byRasmusen (1996).
3 The Putnam based social capital literature is interested in correlations between the level

of social capital (proxied by measures of civic engagement, such as membership in organi-
zations, and trust) that communities (measured at the state, regional and county level) have
and outcomes such as good governance, economic growth or judicial efficiency (Putnam,
1993, 2000; Bowles and Gintis, 2002; Knack and Keefer, 1997; La Portaet al., 1997). As
pointed out byDurlauf (2002), even within this genre, there is considerable ambiguity in
what is meant by the term social capital.
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Figure 6.1. Age specific Arrest rate4

have good jobs or families compared to those individuals without these
attachments.

In addition to offering an explanation for differing criminal propensi-
ties across individuals, the model of social capital accumulation outlined
in this paper provides a possible explanation for the age–arrest relation-
ship.Figure 6.1shows the age–arrest relationship for property arrests for
the U.S. in 1999. The shape of this relationship, commonly called the age-
crime profile, shows that the arrest rate increases with age up until the
late teens, and then declines monotonically. This pattern has been found
in studies based on different countries, cities and time periods. In our
model, the relationship between age and arrest arises because it takes time
to develop institutional relationships and hence accumulate social capi-
tal stock.5 Therefore, crime becomes relatively more expensive and hence
less likely for an individual as he ages.

Data from the 1958 Philadelphia Birth Cohort Study (Figlio et al.,
1991) are used to estimate our dynamic model of criminal choice. These
data present a unique opportunity to study the dynamic decision to partic-
ipate in crime. Typically, data used to study crime at the individual level
are drawn from high-risk populations, such as prison releases, and conse-
quently suffer from problems arising from selection bias. The data used

4 The arrest rate is defined as the number of arrest per 100,000 in the population for each
age. The data inFigure 6.1are taken fromSnyder (2000).
5 Glaeseret al.’s (2002)model of investment in social capital predicts that social capital

stock first rises and then declines with age, with the peak occurring at mid-life (around 50
years of age).
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in this research are sampled from a universe of all individuals born in
1958 who lived in Philadelphia at least from their tenth until their eigh-
teenth birthday. The information available in the Cohort Study includes
direct measures of time spent working in the legal sector and both offi-
cial and self-reported measures of involvement in crime. Secondary data
sources are used to impute the time spent in crime based on the seri-
ousness of offenses. Different criminal propensities arising from family
background influences are accounted for by using these background vari-
ables in the construction of individual level initial values of social capital
stock. The social capital stock accumulation process is then endogenously
determined within the model, and the parameters governing this process
are estimated within the system of Euler equations derived from the theo-
retical model.

An issue arising in estimation is that the ex-ante conditions for the op-
timality derived from the theoretical model depend on choices in each of
two possible future states, arrest and escaping arrest. However, only one
of these states will be realized and observed in the data. The presence of
unobserved choices in the Euler equations pose an omitted regressor prob-
lem for estimation, and are potential source of unobserved heterogeneity.
We address this issue using simulation techniques and estimate the para-
meters of our model by Method of Simulated Moments (McFadden, 1989;
Pakes and Pollard, 1989; McFadden and Ruud, 1994).

The remainder of this paper is organized as follows. In the next section,
we present a dynamic model of crime, which merges the intertemporal
choice literature with Ehrlich’s atemporal time allocation model of crime.
Section6.3 provides a description of the 1958 Philadelphia Birth Cohort
Study and a discussion of the construction of our index of social capital
stock. In Section6.4 we discuss the method for estimating the structural
parameters of the model and present the results from estimation. In Sec-
tion 6.5, we offer some concluding remarks.

6.2. The model

In the spirit ofEhrlich (1973), we caste our model of criminal choice in
a time allocation framework, where time represents the resources devoted
to an activity. We extend this traditional static model to a dynamic setting
by assuming that an individual’s preferences and earnings depend upon
his stock of social capital, which is a measure of his investment in the
law-abiding group. In this model an individual’s stock of social capital
provides a flow of services associated with a good reputation and social
acceptance within the law-abiding peer group, as well as social networks



An Intertemporal Model of Rational Criminal Choice 139

within this group. Reputation has utility value to the individual, while the
networks can be used for occupational advancement and hence raise earn-
ings in the legitimate sector.6

Consider the representative individual who must allocate his time be-
tween leisureλt , and the two income producing activities of legitimate
work, Lt , and crime,Ct .7 He must also choose his level of consump-
tionXt . At time t , utility is given by:

(6.1)U(Xt , λt , St ),

whereSt is the individual’s stock of social capital. The utility function,
U(·) is assumed to be twice differentiable, concave, and increasing in its
arguments.

Denoting earnings within a period in terms of the composite good,Xt ,
the individual’s intertemporal budget constraint is given by:

(6.2)At+1 = (1 + r)
(
At + IL(Lt , St )+ IC(Ct )−Xt

)
,

where IL(Lt , St ) is income from legitimate activity,IC(Ct ) is income
from illegitimate activity, andAt represents the value of accumulated as-
sets. We assume that per period income from legitimate work depends on
the number of hours the individual spends working and the level of so-
cial capital he has accumulated. While a more general specification would
allow both human and social capital stocks to influence earnings directly,
including both in the structural model would increase the level of complex-
ity for estimation because we could no longer obtain closed form solutions
for the Euler equations.8 In order to make the model tractable empirically,
we focus on social capital in the theoretical model and control for standard
measures of human capital, such as years of schooling and experience,

6 Our model has several similarities with the model of social capital accumulation of
Glaeseret al. (2002)in which the flow of services from social capital includes both market
and non-market returns, where market returns may include higher wages or better employ-
ment prospects, and non-market returns may include improvements in the quality of the
individual’s relationships, improvements in health or direct happiness.
7 In earlier work, both pure income and pure utility generating crimes were included in

the model, where utility generating crime included rape and murder. However, the data did
not contain sufficient information to identify the effect of utility generating crimes, so we
have simplified the model by only considering income generating crimes.
8 An approach to deal with this is to utilize asymptotic expansions to approximate the

value function. In concert with the highly non-linear Euler equations system and the need
to simulate unobserved states of apprehension/escape from apprehension, the additional
computational burden of value function approximation is rather daunting. In this paper
we concentrate on the social capital accumulation process in developing our theoretical
structural dynamic model of crime while incorporating human capital indirectly into the
empirical model.
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in the empirical model.9 The pecuniary rewards from income producing
crime are assumed to depend only on the amount of resources devoted to
this activity. This assumption is investigated in the empirical modeling of
criminal earnings. Incomes from legitimate and illegitimate activities are
assumed to be increasing in their respective arguments.

Investment in social capital is assumed to be proportionate to the level
of resources spent in legitimate activity.10 Resources in this model are
represented by time. Social capital also depends on the state of the world.
We assume that at the time the individual must choose how to allocate his
time, he does not know if he will be arrested for participating in crime.
This information is revealed at the end of the period. Thus, in the event of
not being arrested (State 0) for crimes committed in timet , which occurs
with probability (1− p), social capital att + 1 is given by:

(6.3)S0
t+1 = (1 − δ)St + γLt ,

whereδ is the depreciation rate of social capital stock andγ transforms
resources spent in legitimate activity into social capital. With probability,
p, the individual will be arrested (State 1) at the beginning oft + 1 for
crimes committed in timet and a social sanction imposed. This sanction
is represented by a loss to the individual’s social capital stock. We assume
that this loss is an increasing function of the individuals stock of social
capital so that,ceteris paribus, crime is more costly and therefore less
likely for those with a greater stock in society. The loss is also assumed to
depend positively on the total amount of time devoted to crime. Thus, in
the event of apprehension, social capital at the beginning oft + 1 is given
by:

(6.4)S1
t+1 = (1 − δ)St − αCtSt ,

whereα represents the technology that transforms resources spent in crime
into a social sanction.

A representative individual’s dynamic programming problem is charac-
terized by his value function at periodt , V (At , St ), which is the solution
to the Bellman equation:

9 Formally, we are assuming that value function is a linear separable function of human
capital.
10 On the issue of investment in social capital, the approach taken in this paper differs from
that taken byGlaeseret al. (2002)who assume that investing in social capital and work are
mutually exclusive, and that the opportunity cost of investing in social capital is forgone
earnings.
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V (At , St ) = max
Xt ,Lt ,Ct

U(Xt , λt , St )

+ β
{
pV
(
At+1, S

1
t+1

)
+ (1 − p)V

(
At+1, S

0
t+1

)}
.

Subject to(6.2), (6.3), (6.4)and a time constraintT = λt + Lt + Ct .11

By substituting the time constraint in forλt , we eliminate it as a choice
variable. Taking first-order conditions and making use of the Envelope
Theorem, we obtain the following set of Euler equations:12

Xt : U1(t)− β(1 + r)
{
pU1

1 (t + 1)+ (1 − p)U0
1 (t + 1)

}
= 0,

Lt : U1(t)
∂IL(Lt , St )

∂Lt

− U2(t)

+ βγ (1 − p)

{(
(1 − δ)

γ
−
(

1 − δ − αC0
t+1

αS0
t+1

))
U0

2 (t + 1)

+
(
∂IL(L

0
t+1, S

0
t+1)

∂St+1
+
(

1 − δ − αC0
t+1

αS0
t+1

)
∂IC(C

0
t+1)

∂Ct+1

− (1 − δ)

γ

∂IL(L
0
t+1, S

0
t+1)

∂Lt+1

)
U0

1 (t + 1)+ U0
3 (t + 1)

}
= 0,

Ct : U1(t)
∂IC(Ct )

∂Ct

− U2(t)

− βαpSt

{(
(1 − δ)

γ
−
(

1 − δ − αC1
t+1

αS1
t+1

))
U1

2 (t + 1)

+
(
∂IL(L

1
t+1, S

1
t+1)

∂St+1
+
(

1 − δ − αC1
t+1

αS1
t+1

)
∂IC(C

1
t+1)

∂Ct+1

− (1 − δ)

γ

∂IL(L
1
t+1, S

1
t+1)

∂Lt+1

)
U1

1 (t + 1)+ U1
3 (t + 1)

}
= 0,

whereU j
i (t+1) is the marginal utility of argumenti (i = 1, 2, 3) in statej

(j = 0, 1) at timet+1 andCj

t+1,Lj

t+1 represent choices int+1 in statej .
The usual condition for optimality in consumption is given by the Euler

equation for the aggregate consumption good, with the ratio of the mar-
ginal utility of current period consumption to the expected marginal utility

11 An alternative formulation of the dynamic programming problem would include arrest
status as a state variable. Using Theorem 4.2 ofStokeyet al.(1989), Hartley (1996)shows
that the solution to this problem will also solve the problem as formulated in the text.
12 The derivation of the Euler equations can be obtained from the authors.
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of next period’s consumption equated to the gross real rate of interest.
The Euler equation for time spent in the labor market equates net cur-
rent period costs associated with time at work to the expected value of
the increase in social capital in terms of next period decision variables.
Similarly, the Euler equation for time spent in illegitimate income gener-
ating activities equates the net marginal benefit this period to the expected
future cost. Once functional forms are specified for the utility and earn-
ings functions, the system of three Euler equations and two earnings
equations give a closed form solution for the optimal allocation of re-
sources.

6.3. Data

We use individual level data drawn from the 1958 Philadelphia Birth Co-
hort Study to estimate the model developed in Section6.2. Since these
data have not had widespread use in economics literature, we begin with a
description of the 1958 Philadelphia Birth Cohort Study and then discuss
the sample used in the empirical part of the paper.

6.3.1. The 1958 Philadelphia Birth Cohort Study

The purpose of the 1958 Philadelphia Birth Cohort Study was to collect
data on a birth cohort with a special focus on their delinquent and criminal
activities. The cohort is composed of subjects who were born in 1958 and
who resided in the city of Philadelphia at least from their tenth until their
18th birthday. The 27,160 members of this universe were identified using
the Philadelphia school census, the U.S. Bureau of Census, and public and
parochial school records. Once the members of this cohort were identified,
data collection occurred in 2 phases.

The first phase of data collection involved assembling the complete offi-
cial criminal history of the cohort. This was accomplished during the years
1979 and 1984 and provides coverage of the criminal careers, as recorded
by the police, and juvenile and adult courts, for the entire 27,160 mem-
bers of the cohort. The information for juveniles was obtained from the
Philadelphia police, Juvenile Aid Division (JAD). Information about adult
arrests was obtained from the Philadelphia Police Department, the Com-
mon and Municipal Courts, and the FBI, ensuring offenses both within
and outside the boundaries of Philadelphia are included in the data set.

The second stage of the Study entailed a retrospective follow-up sur-
vey for a sample from the 27,160 members of the cohort. Figlio and his
co-investigators employed a stratified sampling scheme to ensure that they
captured the most relevant background and juvenile offense characteristics
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of the cohort and yield a sample size sufficient for analysis. The pop-
ulation was stratified five ways: by gender, race, socio-economic status,
offense history (0, 1, 2–4, 5 or more offenses), and juvenile “status” of-
fenses, which are offense categories only applicable to individuals less
than 18 years of age. The follow-up survey took place during 1988, with
576 men and 201 women interviewed. Most respondents resided within
the Philadelphia SMSA or within a 100-mile radius of the urban area.
However, to insure that out-migration of cohort members from Philadel-
phia would not have any significant effect, sample members were traced
and if possible contacted, throughout the United States.Figlio (1994)re-
ports that comparisons among strata indicate no apparent biases due to
non-response. Areas of inquiry covered by the survey include personal
history of delinquency and criminal acts; gang membership; work and edu-
cation histories; composition of current and childhood households; marital
history; parental employment and educational histories; parental contact
with the law; and personal, socioeconomic and demographic characteris-
tics.

6.3.2. The sample

By combining the information from official arrest records with the retro-
spective survey data from the 1958 Philadelphia Birth Cohort Study, we
have both self-reported information on criminal involvement and actual
arrests, complete work histories, educational attainment, and a range of
socio-economic and background characteristics for the sample captured in
the retrospective survey. This paper focuses on males from the follow-up
survey who were not full-time students so that leisure and work are the
only alternatives to crime. We limit the sample to observations for which
we can construct all key variables required to estimate the Euler equations
derived from the theoretical model. Our final data set contains observa-
tions on 423 men over the ages of 19–24 corresponding to the period 1977
to 1982. A definition of variables and summary statistics are presented in
Table 6.1.13

The choice variables from the structural model are (annual) hours spent
in the labor market, (annual) hours spent in income producing crime, and
(real) annual consumption. Income producing crimes are defined to be
robbery, burglary, theft, forgery and counterfeiting, fraud, and buying, re-
ceiving or possessing stolen property. The annual number of hours worked
in the legitimate labor market is constructed from the question, “How

13 Since our data are from a stratified random sample, the statistics inTable 6.1are calcu-
lated using weights to reflect the population from which the sample are drawn.
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Table 6.1. Summary statistics

Definition Mean Standard
deviation

Model variables
Hours worked (L) 1498.04 934.61
Hours in income generating crime (C) 65.55 180.40
Leisure hours (λ) 4260.42 916.79
Real consumption per year (X) 119.23 84.65
Social capital index (S) 102.81 20.84
Real annual labor income (WL) 100.69 91.83
Real annual crime income(WC ) 3.08 17.04

Determinants of social capital & earnings
Binary equal to 1 if socio-economic status of family during
childhood up is high

0.57 0.50

Binary equal to 1 if race is white 0.56 0.50
Binary equal to 1 if father present in childhood home 0.86 0.35
Binary equal to 1 if father not arrested during childhood 0.92 0.28
Binary equal to 1 if not a gang member during childhood 0.82 0.39
Number of siblings (divided by ten) 0.32 0.23
Proportion of best 3 friends not picked up by the police
during high school

0.63 0.44

Number of police contacts as a juvenile 0.72 0.45
Proportion of contacts as a juvenile that result in an arrest 0.16 0.32
Binary equal to 1 if begin a marriage that year 0.05 0.21
Binary equal to 1 if end and then begin a job that year 0.10 0.30
Binary equal to 1 if arrested that year 0.05 0.22
Binary equal to 1 if arrested for a property offense that year 0.03 0.17
Binary equal to 1 if married 0.13 0.33
Binary equal to 1 if in a common law marriage 0.08 0.28
Number of children 1.00 1.13
Years of schooling 12.59 1.98
Years of labor market experience 1.52 1.68
Indicator for juvenile arrests 0.14 0.31

many hours per week did you usually work on this job?”, which was
asked of each job recorded in the respondent’s work history. The Sellin–
Wolfgang seriousness scoring scale is used to aggregate self-reported and
official arrest information on crimes committed by the respondent each
year (Sellin and Wolfgang, 1964). The seriousness score is then used to
impute hours per year by matching the seriousness score to survey data
recording hours spent in crime reported byFreeman (1992).14

14 Details on the construction of these variables can be obtained from the authors. The
sample used in estimation consists of 423 individuals and covers the years 1977–1982 (in-
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In addition to the empirical counterparts to the variables in the structural
model,Table 6.1contains sample statistics for background characteristics
that are used to construct the index of the initial level of social capital
stock. These variables and the method used to construct this index are
discussed later in this section.

6.3.3. Measuring social capital

6.3.3.1. Current social capital stock

We assume that gross investment in social capital in the sample period
is generated by engaging in activities that develop institutional relation-
ships such as attachment to the workforce and marriage. While providing
detailed information on employment history, the 1958 Philadelphia Birth
Cohort Study does not provide information on the level of involvement
individuals have in their community. However, the Study does contain in-
formation about whatLaub and Sampson (1993)andSampson and Laub
(1992)would consider turning points, such as marriage and beginning a
new job. While much of the criminology literature has emphasized sta-
bility and continuity, Sampson and Laub argue that transitions are also
important in understanding an individual’s criminality, as these events
may modify long-term patterns of behavior. For example, getting mar-
ried forms social capital through a process of the reciprocal investment
between husbands and wives. This investment creates an interdependent
system of obligation and restraint and increases an individual’s bonds to
society. Also, young males tend to have high job turnover rates. If leav-
ing a job and starting a new one in the same period is attributable to
upward employment mobility, then a new job increases attachment to the
legitimate sector when the employer’s act of investing in the individual is
reciprocated. Additionally, a better job increases an individual’s system of
networks. Each of these life events tends to increase an individual’s ties to
the legitimate community and thus increase his social capital.

In our empirical specification we follow the approach of Sampson and
Laub, allowing getting married (GETMARRIED) and leaving and begin-
ning a new job in the same period (CHANGEJOB) to build social capital
stock. We account for stability of labor market attachment in our measure
of social capital through annual hours spent in the legitimate labor mar-
ket (L). Social capital also depends on the state of the world, which is

clusive) which corresponds to 2538 individual/year observations. Seriousness scores had
to be generated for crimes for which there was no arrest. This amounts to 556 individ-
ual/years, which is about 22% of observations. The methodology used to accomplish this
is available from the authors along with the aforementioned details on construction of vari-
ables.
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learnt at the end of each period. In the event of not being arrested (State 0)
for crimes committed in timet (Ct ), social capital att + 1 is given by:

(6.5)
S0
t+1 = (1 − δ)St + γ1Lt + γ2GETMARRIEDt + γ3CHANGEJOBt ,

whereδ is the depreciation rate of social capital and theγ ’s transform
resources spent in legitimate activity into social capital.

Unlike legitimate income earning activities, criminal activity is not
sanctioned by society. We model this by assuming that arrest results in
a loss to the individual’s social capital stock. As described in Section6.2
the loss is assumed to depend positively on the resources devoted to crime
and the level of social capital stock the individual has accumulated. Thus,
in the event of apprehension, (State 1) social capital att + 1 is given by:

(6.6)S1
t+1 = (1 − δ)St − αCtSt ,

whereα represents the technology that transforms resources spent in crime
into a social sanction. In order to estimate the weights(δ, α, γ1, γ2, γ3) in
the capital accumulation process, we substitute Equations(6.5) and (6.6)
in for S0

t+1 andS1
t+1 respectively in the Euler equations from Section6.2.

Once an initial level of social capital stock has been specified, these para-
meters can be estimated along with the other parameters of interest in the
model.

6.3.3.2. Initial value of social capital stock

Since cohort members are eighteen at the beginning of our analysis, we
assume that the initial period level of social capital stock possessed by
an individual is inherited from his family. The choice of variables de-
termining inherited social capital stock is based on empirical evidence
from the literature, and the availability of these measures in our data.
Becker (1991)notes that the fortunes of children are linked to their parents
through endowments, such as family reputation and connections, knowl-
edge, skills, and goals provided by the family environment. According to
Coleman (1988), and the empirical literature on delinquency surveyed by
Visher and Roth (1986), the institution of the family is central to the trans-
mission of social norms to children and children’s involvement in crime.
Coleman notes that the creation of family bonds as a means of parents’
instilling norms in their children depends not just upon the presence and
willingness of the parents, but also on the relationship the children may
have with competing norms and cultures, such as gang culture. Given our
data, we account for each of these influences with the following variables:
the socio-economic status of the individual’s family during his childhood,
race, whether the father was present in the childhood home, the number
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of siblings, whether the father was arrested during the individual’s child-
hood, whether high school friends were in trouble with the police, gang
membership during childhood, and the number of juvenile arrest relative
to police contacts.

Obtaining a set of weights for aggregating variables such as presence
of father, and gang affiliation during childhood raises the classic index
number problem.Maasoumi (1986, 1993)shows that the (normalized) first
principal component from the data on attributes can be used as weights to
summarize these attributes into a composite index. In our application, we
follow this approach.15 We note that the use of principal components to
initialize the stock of social capital is much like having a constant term in
a human capital accumulation equation. We are interested in how changes
in the stock of social capital impact changes in youth crime and these
changes are determined within our model.

The variables with which we construct the initial stock of social cap-
ital are: father present in the childhood home, father not arrested during
childhood, number of siblings, race, socioeconomic status, gang affilia-
tion, proportion of best three friends from high school not picked up by
the police, and the proportion of police contacts as a juvenile that result in
arrests. The signs of the normalized weights associated with the first prin-
cipal component indicate that coming from a white two-parent household
with a high socioeconomic status, having a father with no arrests (dur-
ing the individual’s childhood), not being involved in a gang, and having
friends who were not in trouble with the police contributes to the social
capital stock an individual accumulates during childhood. The negative
weight on the number of siblings indicates that the social capital stock a
child inherits from his family is decreased by the presence of siblings. This
is consistent withColeman’s (1988)finding that siblings dilute parental
attention, which negatively effects the transmission of social capital from
parents to child. Youths’ involvement in criminal activity as measured by
the ratio of juvenile arrests to police contacts also has a negative weight,
indicating that juvenile arrests reduce the social capital stock accumulated
during childhood. Inherited social capital is constructed as the weighted
sum of these variables.

15 These weights are sample specific. As an alternative,Maasoumi (1986, 1993)suggests
that the weights given to the attributes may be the researcher’s subjective weights. Fac-
tor analysis is an alternative means to obtain weights. However,Kim and Mueller (1978)
note that principal components has an advantage over factor analysis if the objective is a
simple summary of information contained in the raw data, since the method of principal
components does not require the strong assumptions underlying factor analysis.
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The index of inherited social capital stock should provide a measure of
the degree to which an individual is “at risk” of criminal involvement and
arrest in the sample period. Specifically, we would expect that individu-
als with a smaller stock spend more time in crime and are more likely to
be arrested than individuals who inherited a larger stock. We investigate
whether this is the case by dividing the sample into quartiles based on
the initial level of social capital stock and comparing the first and fourth
quartiles in terms of two measures of criminal involvement: arrests and
time in crime. Individuals from the first quartile of inherited social capital
stock account for a much larger proportion of annual arrests for the sample
than men from the fourth quartile, and this difference becomes more pro-
nounced over time. Moreover, those from the first quartile of social capital
stock inherited from the family do spend a much larger amount of time in
crime relative to those from the fourth quartile. A t-test for the equality of
means (allowing for unequal variances) between the first and fourth quar-
tiles indicates a significant difference for each year. This confirms that the
initial level of social capital stock is a good predicator of propensity for
criminal involvement in adulthood.

6.4. Empirical model

The Euler equations derived from the structural model of crime in Sec-
tion 6.2depend on state contingent choices in each of two possible future
states, apprehension and escaping apprehension. However, only one of
these future states will be realized and observed in the data. The unob-
served choices cause an omitted regressor problem in estimation and are
a potential source of unobserved heterogeneity. While it is possible to
estimate the three Euler equations and two income equations simultane-
ously, the absence of unobserved choices in the earnings equations makes
a sequential estimation process computationally convenient. However, be-
cause the parameters governing social capital accumulation are estimated
from the Euler equations, and are then used to construct the social capi-
tal stock that enter into the earnings equations, the estimation algorithm
iterates between earnings and Euler equation estimation.

In terms of describing our estimation strategy, we begin with describ-
ing estimation of the parameters in the earnings equations, which draws on
standard techniques in the labor econometrics literature. Section6.4.2de-
scribes the method for estimating the parameters of the utility function and
social capital accumulation function from the Euler equations, which is
based on the Method of Simulated Moments (McFadden and Ruud, 1994;
McFadden, 1989; Pakes and Pollard, 1989).
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6.4.1. The earnings equations

6.4.1.1. Estimation methodology for the earnings equations

The model presented in Section6.2 focuses on the role of social capi-
tal in decisions regarding participation in crime and work. This leads to
a specification for criminal earnings that depends on resources the indi-
vidual allocates to that activity, and legitimate labor market earnings that
depends on both hours spent working and social capital stock. However,
in addition to the large empirical literature on human capital, empirical
research byFreeman (1996)suggests that the return to legitimate oppor-
tunities relative to the returns to crime also depends on human capital.
Further, he finds that human capital affects relative income through rais-
ing the return to work. To reflect this in our empirical model, we adopt a
more general specification that includes human capital as a determinant of
legitimate earnings. We also explore whether criminal human capital (and
legitimate human capital) raises the returns to time in crime.

Income in each sector is defined as the product of the number of hours
spent in that sector and that sector’s hourly wage:

IL = wL(Ht , St , Zt ) · Lt ,

IC = wC(Kt , Zt ) · Ct ,

wherewL andwC are the hourly wage in the legitimate labor market
and criminal labor markets respectively.Lt andCt denote hours per year
in legitimate and criminal income generating activities respectively,St is
the social capital stock accumulated by the individual at the beginning of
period t , Ht is legitimate human capital, represented by years of school-
ing and labor market experience,Kt is criminal human capital, andZt

represents a vector of socioeconomic and demographic characteristics in-
cluding marital status, number of children and race. We measure criminal
human capital stock using the number of juvenile arrests (as a proxy for
experience) and a variable indicating whether the respondent’s father was
arrested in the respondent’s youth and a variable measuring the respon-
dent’s number of siblings (as a proxy for criminal networks).

The wage equations are intended to provide us with information about
the determinants of wages for the entire sample of men. However, the de-
cision to participate in each sector is endogenous, and only a sub-sample
of the population is engaged in either or both of the income producing
activities. If the decision to work in legitimate or illegitimate activities de-
pends on unobservable characteristics that also influence wages, then the
problem of sample selection exists. Since we are estimating the earnings
equations separately from the Euler equations, we make use of standard
econometric techniques to account for the possibility of sample selection
bias (Heckman, 1974, 1979).
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6.4.1.2. Earnings equation results

The estimates for the sample selection corrected wage equations for crimi-
nal and legitimate activities are presented inTable 6.2.16 Hourly wages in
the legitimate labor market are constructed by linear interpolation between
the reported pay the individual received when they started and left each job
in their employment history. If earnings were reported as weekly (yearly),
the hourly wage is calculated as the weekly (yearly) wage divided by the
usual hours worked per week (usual hours worked per week multiplies by
50 weeks). Annual criminal income is defined as the total value of stolen
goods from arrests and self-reported offenses. The hourly wage for prop-
erty crime is then calculated as the annual income divided by the number
of hours spent in crime that year.17

The parameter estimates for the legitimate labor market wages equa-
tion are consistent with the standard predictions of human capital theory.
Legitimate wages are increasing in years of schooling, and are a con-
cave function of labor market experience. In addition to the human capital
theory of earnings, we find evidence that institutional knowledge and net-
works, as captured by our measure of social capital stock, has a positive
and significant impact on earnings. These results suggest that both human
capital and social capital are significant determinants of wages.

In contrast to labor market wages, we are unable to explain criminal
wages with criminal human capital variables, nor are we able to explain
criminal wages with the legitimate human capital measures. The joint hy-
pothesis that criminal (legitimate) human capital and the socioeconomic
and demographic variables are insignificant in explaining criminal wages
cannot be rejected at conventional levels of significance, with ap-value for
the Wald test statistic of 0.59 (0.57). This may reflect problems with mea-
suring criminal income, hours, or criminal human capital. Alternatively,
the finding may reflect that criminal earnings are not related to either le-
gitimate or criminal human capital. We note that while not significant in

16 We used a pooled regression to estimate the hourly wage and participation equation.
We were unable to utilize a fixed effects estimator because of time invariant regressors.
The time invariant regressors identify the model and their inclusion is therefore necessary.
A random effects estimator is an alternative that could accommodate the time invariant re-
gressors. Both the random effects estimator and the estimator used provide consistent point
estimates under the assumption that the effects are uncorrelated with included regressors.
The key objective of estimating the wage equations is to obtain consistent estimates of the
equation parameters in order to estimate the Euler equations and the method used achieves
this end. The results are used to calibrate our simulated GMM model presented in Sec-
tion 6.4.2below.
17 A full description of the construction of this variable can be obtained from the authors.
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Table 6.2. Selection corrected equations for hourly wages in work and
crime

Work Crime Crime

Log hourly wage Parameter t-value Parameter t-value Parameter t-value

Years of schooling 0.026 3.008 −0.086 −1.228 −0.079 −1.069
Experience 0.069 2.574 0.240 1.288
Experience squared −0.009 −2.267 −0.051 −1.465
Father arrested during respondent’s childhood −0.157 −0.524
Number of juvenile arrests −0.153 −0.419
Number of siblings −0.072 −1.577
Social capital 0.001 2.138 0.001 0.100 0.002 0.218
Race is white 0.057 2.185 0.058 0.186 0.104 0.322
Indicator for married 0.025 0.865 0.288 0.887 0.219 0.668
Indicator for in a common law marriage 0.088 2.477 −0.281 −0.825 −0.268 −0.734
Year −0.045 −4.446 −0.042 −0.515 −0.042 −0.485
Constant 0.338 0.448 1.308 0.204 0.626 0.093
p-value of Wald test for joint significance of regressor 0.000 0.592 0.565

(continued on next page)
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Table 6.2. (Continued)

Work Crime Crime

Participation Parameter t-value Parameter t-value Parameter t-value

Years of schooling 0.153 4.530 −0.034 −1.265 −0.034 −1.271
Experience 1.020 12.614 −0.127 −2.007 −0.128 −2.073
Experience squared −0.116 −7.378 0.005 0.417 0.005 0.458
Social capital 0.008 2.631 −0.017 −7.319 −0.017 −7.299
Race is white 0.257 2.605 0.442 5.225 0.442 5.223
Indicator for married 0.543 3.148 −0.002 −0.021 −0.004 −0.034
Indicator for in a common law marriage 0.175 1.303 0.545 5.065 0.546 5.063
Number of children 0.032 0.997 −0.040 −1.417 −0.041 −1.420
Moved out of parents home −0.027 −0.161 0.031 0.223
Father was arrested −0.375 −2.944 0.248 2.235 0.247 2.218
Number of juvenile arrests −0.270 −1.975 0.373 3.655 0.373 3.631
Number of siblings −0.035 −1.676 −0.009 −0.544 −0.009 −0.553
Year −0.150 −4.200 −0.017 −0.566 −0.016 −0.535
Constant 9.418 3.335 2.533 1.079 2.473 1.045
p-value of Lagrange Multiplier test for independent equations 0.963 0.931 0.941
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determining wages, two out of three measures of criminal human capital
(number of juvenile arrests and father was arrested in respondent’s youth)
are significant in explaining participation in crime, as is martial status, and
social capital, with participation less likely at higher levels of social capi-
tal stock. While we cannot rule out measurement issues as the reason for
being unable to explain criminal wages, we note thatFreeman (1996)finds
that human capital affects relative income through raising returns to legit-
imate work rather than through criminal income.18 Also Gottfredson and
Hirschi (1990)concluded that for the vast majority of income generating
crimes such as theft and burglary, there is no evidence of criminal human
capital accumulation. From the combined evidence, it may be reasonable
to infer that criminal returns are not a function of criminal human capital.

As we are unable to explain criminal wages with human capital, crim-
inal capital, or socioeconomic and demographic variables, we adopt the
assumption used in the theoretical model that criminal income depends
on time spent in crime only. Accordingly, we estimate a criminal income
function as follows:

WC(Ct ) = μ0 + μ1Ct + μ2C
2
t + εCt .

Since time in crime is a choice variable potentially correlated with the
error term in the earnings equation, and is truncated below by zero, we
correct for the potential for sample selection bias by adopting the method-
ology suggested inVella (1998). This approach is similar to the parametric
two-step approach ofHeckman (1974, 1979). In the first step, we assume
normality of the error term in the latent variable reduced form equation for
hours worked, leading to a Tobit specification. However, distributional as-
sumptions about the error term in the earnings equation are relaxed in the
second step. This leads us to approximate the selection term in the earn-
ings equation by

∑K
k=1αk ν̂

k
k where theν̂k are the generalized residuals

from the first-step Tobit estimation andK is the number of terms in the ap-
proximating series. By including this polynomial in the earnings equation,
we take account of the selection term. Therefore, exploiting the variation
in hours worked (in illegitimate income producing activities) for the sub-
sample that participates provides consistent OLS estimates of parameters
in the criminal earnings equation. ProvidedK is treated as known, these
estimates are

√
n consistent, and the second step covariance matrix can be

computed.

18 Specifically, he regressed the share of income from illegal sources on human capital
measures and found that the coefficients on all human capital variables were negative and
significant.
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Table 6.3. Selection corrected criminal annual earnings equation

Parameter t-value

Criminal earnings
Hours in crime 9.01×10−3 0.560
Hours in crime squared 5.13×10−6 3.190
Constant 7.718 4.050

Hours in crime
Years of schooling −14.546 −1.303
Experience −48.416 −1.878
Experience squared 2.450 0.506
Social capital −7.648 −7.896
Race is white 128.467 3.685
Indicator for married 31.115 0.677
Indicator for in a common law marriage 174.480 4.076
Number of children −24.820 −2.109
Moved out of parents home 1.273 0.023
Father was arrested 169.382 3.852
Number of juvenile arrests 122.220 2.822
Number of siblings −0.566 −0.082
Year −13.947 −1.115
Constant 1648.632 1.679

The results from estimating the sample selection corrected criminal
earnings function are presented inTable 6.3. The results are from an OLS
regression whose standard errors are consistent under the null hypothesis
that the residual terms are jointly insignificant which we find is the case.19

We examined different treatments of pooling in the earnings equation but
were unable to identify the coefficients with a within type estimator. Re-
sults with an error components specification were quite similar to the OLS
results. These estimates are used to calibrate the Euler equations in the
simulated GMM estimation and are not the focus per se of our empiri-
cal model. Results are in line with findings in other studies of earnings.
Annual income from crime is an increasing function of time spent in that
activity. Increasing returns to time in crime may be evidence of some fixed
cost, or accumulation of crime specific networks and knowledge.

Given there appear to be increasing returns to time in crime we would
expect individuals who participate in crime to specialize. However, eighty
percent of men in our sample who engage in crime also work in the le-
gitimate sector. Among criminals who do work, an average of one and

19 Thep-value of F test for joint insignificance of correction terms is 0.740. We setK = 3.
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one-half hours per week is spent in crime compared to almost 36 hours
per week working at a legitimate job. This implies there are costs associ-
ated with crime, or benefits associated with not engaging in crime, which
are not captured by the earnings equations. According to our model, these
benefits are the utility value of social capital, such as social acceptance
and reputation, representing state dependence in non-deviant behavior in
the preference structure. We investigate this hypothesis in the next section
by estimating the Euler equations associated with the optimal allocation
of time to criminal and legitimate activities, and consumption.

6.4.2. The Euler equations

6.4.2.1. Estimation methodology for the Euler equations

LetSit denote the value of the state variable, social capital stock, for theith
individual in periodt , xit denote the vector of choice variables entering the
ith individual’s Euler equations in periodt , and letxit+1 be those variables
datedt + 1. Our sample is a panel ofT = 5 periods of observations on a
random sample ofN = 423 individuals. We assume that the earnings in
the legal and criminal sectors are parameterized as above and that utility
has the following transcendental logarithmic form:

U(Xit , λit , Sit ) = α1 lnXit + α2 ln λit + α3 ln Sit + 1

2

{
β11(lnXit )

2

+ β22(ln λit )
2 + β33(ln Sit )

2}+ β12 lnXit ln λit
+ β13 lnXit ln Sit + β23 ln λit ln Sit .

Each of these Euler equations can be written in the form offj (xit , Sit , θ0)−
gj (xit+1, Sit+1, θ0), j = 1, 2, 3, wheref (·) is the observed response func-
tion which depends on current period variables, andg(·) is the expected
response function, which depends on next period’s variables, andθ0 is the
p×1 vector of parameters to be estimated.20 A stochastic framework is in-
troduced by assuming that variables determined outside the model, whose
future values are unknown and random, cause agents to make errors in
choosing their utility maximizing bundles. The errorsuit are idiosyncratic
so that at any time, the expectation of this disturbance term over individu-
als is zero. Theith individual’s system of equations is represented as:

f (xit , Sit , θ0)− g(xit+1, Sit+1, θ0) = uit .

20 We assume a real rate of interest of 3%, and a time rate of preference of 0.95. The
representative individual’s per period optimal choice of time allocations (Lt , Ct ) and con-
sumption (Xt ) are parameterized byθ0 = (α1, α2, α3, β11, β22, β33, β12, β13, β23, α, δ,

γ1, γ2, γ3).
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Conditional moment restrictions take the form,E[uit |zit ] = 0, wherezit
are observed data.

In practice, implementing GMM as an estimator for the parameters
in our system of Euler equations is hampered by the fact that, while an
agent’s decision is based on ex-ante expectations of the future, ex-post
only one state is realized for each individual and subsequently observed
by the econometrician. Since the (unobserved) choice in the state not re-
alized enters the Euler equations throughg(xit+1, Sit+1, θ0), we are faced
with an omitted regressor problem in the expected response function. We
resolve this problem by replacingM(·) with a simulator,μ(·). McFadden
(1989)proposes this modification of the conventional Method of Moments
estimator as the basis for the Method of Simulated Moments.21

To illustrate our use of MSM, recall that individuali’s current choice
xit depends on the value of the state variable, social capital stock,Sit .
Our problem is thatxit+1 is not observed for individuali in the state not
realized in periodt + 1, so sample averages ofM(·) cannot be formed.
However, if the density,Π(x, S), is stationary then we can replace the un-
observedxit+1 with Monte Carlo draws from the conditional distribution,
Π(x|St+1). Recall thatSt+1 depends on last period’s choices, and whether
or not the individual is apprehended in periodt + 1, so we are able to con-
struct future social capital stock in periodt + 1 in the unobserved state for
a given set of parameters governing social capital accumulation. Since this
distribution is unknown, we draw from the empirical conditional distrib-
ution, which is estimated by kernel-based methods. Having replaced the
unobserved data with the Monte Carlo draws, we then form a simulator of
our moment conditions as follows:

1

T

T∑

t=1

[
1

S

S∑

s=1

(
f (xit , Sit , θ0)− g

(
xsit+1, Sit+1, θ0

))
⊗ zit

]

= μ(xi, Si, zi, θ0),

where

lim
N→∞

EN

[
1

N

N∑

i=1

[
μ(xi, Si, zi, θ0)

]
]

= EN

[
M(xi, Si, zi, θ0)

]
.

21 Sufficient conditions for the MSM estimator to be consistent and asymptotically normal
involve the same regularity assumptions and conditions on instruments as classical GMM,
in addition to the two following assumptions that concern the simulator,μ(·): (i) the sim-
ulation bias, conditional onW0 andxit , is zero, and (ii) the simulation residual process is
uniformly stochastically bounded and equicontinuous inθ .
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Table 6.4. Estimates of structural parameters
from Euler equation estimation

Parameter t-value

Translog utility function parameters
lnXt 0.2258 2.09
ln λt 0.2060 0.47
(lnXt )

2 0.0028 2.61
(ln λt )2 0.1069 2.09
(ln St )2 0.1908 2.85
lnXt ln λt −0.0179 −1.46
lnXt ln St −0.0160 −6.31
ln St ln λt −0.2141 −6.61

Social capital accumulation parameters
δ 0.0299 2.23
γ1 0.0003 0.64
γ2 4.0800 1.37
γ3 15.1400 1.76
α 0.0002 0.67

Note that although we motivate the estimation methodology as a way
of dealing with uncertainty about future states, the use of simulation tech-
niques conditioned on individual characteristics may also be viewed as a
partial control for unobserved individual heterogeneity in those states.

6.4.3. Euler equation results

The system of Euler equations derived in Section6.2 is estimated using
MSM on 423 individuals over the period 1977 to 1981. The coefficient on
the logarithm of social capital(α3) is normalized at unity, leaving eight
coefficients from the translog utility function and five parameters from
the social capital accumulation process to be estimated. With three equa-
tions and eleven instruments, the number of overidentifying restrictions is
twenty. The Hansen test statistic for overidentifying restrictions is 6.65,
compared to aχ2

0.95,20 = 10.85 so the null hypothesis that the system
is over-identified is not rejected. The MSM estimates of the preference
parameters are presented in the top half ofTable 6.4, and the parame-
ters governing the accumulation of social capital stock in the bottom half
of this table. It is noteworthy that all three terms in the translog utility
function involving social capital are significantly different from zero, sup-
porting the hypothesis that preferences exhibit state dependence.

Examining the estimates of the translog preference parameters inTa-
ble 6.4, we find the coefficients on the interaction terms between consump-
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tion and leisure (lnXt ln λt ), consumption and social capital (lnXt ln St ),
and leisure and social capital (lnλt ln St ) are all negative. Our estimates
imply that consumption and leisure are complements in utility. This is con-
sistent with the work ofHotz et al. (1988), Sickles and Taubman (1997),
andSickles and Yazbeck (1998).22 The relationships between consump-
tion and social capital, and leisure and social capital, are also complemen-
tary. Moreover, these interaction terms are statistically significant.

Turning to the parameters governing social capital accumulation, we
estimate a statistically significant depreciation rate on social capital stock
(δ) of 3%. The sign on the point estimates of time in the labor market (γ1),
getting married (γ2), and changing jobs (γ3) are all positive, indicating
that they each contribute to social capital stock accumulation, although
only γ2 andγ3 are statistically significant at the 10% level of significance
using a one-sided test. While not statistically significant, the coefficient
on the social penalty for arrest (α) implies a loss of 1% of social capital
stock evaluated at the sample average of time in crime. Evaluated at the
mean annual hours spent in crime amongst the criminally active, the social
sanction is about 5% of social capital stock.

Returning to the preference parameters, we note that the estimated mar-
ginal utilities of consumption, leisure, and social capital are positive for all
time periods.23 The value of an incremental increase in the consumption
good drops from ages 19 to 20, and rises from the age of 20 for our sample
of young men. The marginal utility of leisure declines steeply between the
ages of 19 and 20, continues to decline between the ages of 20 and 21,
and then increases over the ages of 21–23. Based on these estimates, the
average marginal rate of substitution of consumption for leisure is 0.056,
implying an hourly wage of $4.18 over the sample period.24 The marginal
rate of substitution of consumption for leisure is about an order of mag-
nitude smaller than the value of 0.8667 obtained bySickles and Yazbeck
(1998), who use data from the Retirement History Survey. This may be
evidence that older individuals place a higher value on leisure time.

The marginal utility of social capital also increases over time for our
sample of young men. In addition to growing state dependence, this result
indicates that agents are indeed forward looking in their decision-making.
Over the sample period, average leisure time decreases as individuals
spend a greater amount of time in employment. Current labor market

22 Other studies, however, find evidence that these goods are substitutes (Altonji, 1986;
Ghez and Becker, 1975; Thurow, 1969).
23 These are obtained by evaluating at sample averaged (across individuals) data.
24 This number is calculated by multiplying the marginal rate of substitution by the CPI,
where the CPI is averaged over 1977 to 1981.
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activity is expected to increase future welfare through social capital ac-
cumulation, and this in turn raises the marginal utility of social capital in
the current period. Thus, the marginal utility of past investment in social
capital is increasing in current investment. Alternately, the marginal util-
ity of current investment in social capital is increasing in past investment.
This is a necessary condition for adjacent complementarity.25 Since past
labor market participation raises social capital stock, which raises future
labor supply, we also find reinforcement in decision-making.

To gauge the relative importance of consumption, leisure, and social
capital in terms of utility value, we consider the elasticity of utility with
respect to each of these arguments. They indicate that utility is most sensi-
tive to changes in leisure and least responsive to changes in social capital.
It is also interesting to note the temporal pattern in these elasticities. As
the individuals age, their welfare becomes more responsive to changes in
their level of social capital and consumption. In contrast, they become less
responsive to changes in leisure. This finding is further support of growing
state dependence in preferences.

In our dynamic model, social capital stock accumulation increases the
expected cost of engaging in crime, making the occurrence of crime less
likely. This life-cycle model of behavior is consistent with the pattern
of criminal behavior observed in the age-crime profile. It is interesting
to compare the temporal pattern of the age-crime profile of the cohort
to which our sample belongs, with the profile of marginal utility of so-
cial capital for the sample.Figure 6.2shows a strong inverse relationship
between the two profiles. Our results provide evidence of growing state
dependence and reinforcement in non-deviant behavior, and hence increas-
ing costs of deviant behavior, during a period of decline in participation
in crime. This suggests that our model provides a possible explanation for
the empirical phenomenon of the age-crime profile.

Our model performs well at explaining the decline in participation in
crime for the average of our sample. However, the more important ques-
tion may be how well it explains the behavior of those most at risk of
criminality. Our index of social capital stock inherited from the family al-
lows us to investigate this issue. As in Section6.3, we partition the sample
into quartiles on the basis of initial period social capital stock and compare
the temporal pattern in the marginal utility of social capital for the first
and fourth quartiles, representing the individuals most and least at risk of
adult arrest respectively.Figure 6.3shows that the marginal utility of so-
cial capital for individuals in the fourth quartile (low risk group) increases

25 SeeRyder and Heal (1973)andBecker and Murphy (1988).
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Figure 6.2. The marginal utility of social capital versus the age crime
profile

Figure 6.3. The marginal utility of social capital for the fourth
quartile

over time, just as it does for the whole sample. The marginal utility of so-
cial capital for individuals from the first quartile (high risk group) displays
a markedly different temporal pattern, as shown inFigure 6.4. While the
value of an incremental increase in social capital increases over the ages
19 to 21, it falls thereafter. Also, the marginal utility of social capital is
always negative for this group. The latter finding may be an artifact of
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Figure 6.4. The marginal utility of social capital for the first quartile

the assumed functional form for utility. Alternatively, it may be revealing
something of a more behavioral nature.

Recall from our earlier discussion involving comparisons among the
first and fourth quartiles of arrests and time in crime that we find individu-
als from the first quartile to be far more likely to be arrested for an income
producing crime in any year than those in the fourth quartile. These men
appear to be embedded in a criminal peer group by the age of 18, when our
study begins, and may consider social capital to hinder their advancement
in the criminal peer group. This interpretation is consistent with a nega-
tive marginal utility associated with social capital. While state dependence
in crime appears to diminish over the ages of 19 to 21, as indicated by
the marginal utility of social capital becoming less negative, it strength-
ens thereafter. This could be evidence of the difficulty these individuals
have overcoming the state dependence in criminal culture and successfully
building stock in legitimate society. The implication of this is that differ-
ences in the level of social capital inherited from the family may explain
why some individuals become career criminals, while others experience
relatively short careers in crime.

6.5. Conclusion

In this paper we integrate the intertemporal choice and economics of crime
literature to develop a dynamic model of criminal choice that focuses on
the role of stigma as a deterrent to crime. Current period decisions affect
future outcomes by a process of social capital accumulation. Our model
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assumes that social capital provides a flow of services associated with a
good reputation and social acceptance, and that stigmatism associated with
arrest reduces an individual social capital stock. In this way we account for
the influence of social norms on the decision to participate in crime.

Using data from the 1958 Philadelphia Birth Cohort Study, we find sig-
nificant empirical support for the dynamic model of crime. The selectivity
corrected earnings equation estimates for labor market activities indicate
that legal wages are increasing in both human and social capital. Applica-
tion of a method of simulated moments estimator to the system of Euler
equations reveals significant state dependence in preferences, as measured
by the stock of social capital. We find that the marginal utility of past
investment in social capital is increasing in current investment, implying
adjacent complementarity. This leads to growing state dependence over
the life-course. Growing state dependence in non-deviant behavior raises
the potential cost of engaging in crime, making its occurrence less likely.
Therefore, the model provides an explanation of the empirical relationship
between aggregate arrests and age.

We also investigate the performance of the model in explaining the
behavior of individuals who differ in their degree of being at risk of be-
coming criminals. Our findings suggest that low levels of social capital
inherited from the family may explain why some individuals become ca-
reer criminals, while individuals who are more richly endowed experience
relatively short careers in crime. Also evident from our results is the dy-
namic nature of the process of criminal choice. The late teenage years to
early twenties is a crucial time for making the transition out of crime,
even for those most disadvantaged in terms of inherited social capital
stock.

This last finding is of particular interest as it raises the issue of pre-
ventative policy for youth. While the traditional economic model of crime
provides a basis for formulating deterrence policy, it is silent on preventa-
tive policy. The debate over whether prison pays indicates that justifying
the costs of incarceration at current levels is questionable and that crime
prevention policies for crime prone groups are likely to be more attractive
on a cost benefit basis (Freeman, 1996). In order to contribute to the pol-
icy discussion on preventative policy, however, economics must explore
dynamic models of crime that provide a mechanism for understanding the
way in which preventative policy impacts individuals’ potential criminal
behavior. Our results suggest that further development of social capital
models of crime to include human capital accumulation may prove to be a
fruitful means for exploring this issue.
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Abstract

Sweden, like other Nordic Countries, has experienced a dramatic reduc-
tion in per-capita liquor consumption that cannot be explained by in-
creased consumption of other alcoholic beverages. Using a panel of 21
Swedish counties and annual data for the period 1956–1999, we estimate
that at least 4 structural breaks, representing taste change are necessary
to account for this sharp decline in consumption. The first structural break
coincides with the 1980 advertising ban, but subsequent breaks do not ap-
pear to be linked to particular policy initiatives. Rather, our interpretation
of these results is that there is an increasing concern with health issues
and drinking mores have changed.

Keywords: liquor consumption, structural break, panel data, taste change

JEL classifications:C23, D12, I10

7.1. Introduction

Alcoholism has historically been viewed as a serious public policy prob-
lem in Sweden even though per capita Swedish alcohol consumption is
estimated to be the lowest in the E.U.1 Policy makers have experimented
with a variety of policy instruments to discourage consumption dating
back to 1865 with bans on personal production and municipal distribution
of alcohol. Over the period 1917 to 1955, Sweden even adopted a rationing

1 SeeLeifman (2000).
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system using non-transferable coupons.2 Then in 1955, the decision was
made to rely upon very high “sin taxes” to discourage consumption.3 To-
day, for example, the Swedish tax alone on a fifth of 80 proof whiskey is
about $25 compared to $6 per bottle tax in the U.S. Paradoxically, after all
these efforts, per capita liquor sales remained relatively high throughout
the 1960’s and 1970’s. Beginning in 1980, per capita sales has declined
by about 65% for no apparent policy explanation. A change of this mag-
nitude is huge, prompting a variety of hypotheses. Can such a decrease
be explained by traditional price and income effects? Could increases in
non-recorded consumption such as private production, cross-border shop-
ping and smuggling account for the decline in official measured sales data?
Alternatively, if reductions in measured sales imply real reductions in con-
sumption, could taste change explain such a precipitous decline?

While the path-breaking work ofBecker and Murphy (1988)on “ra-
tional addiction” has spawned great interest in whether consumers are
“rationally addicted” to alcohol (Bentzenet al., 1999), it is unlikely to
explain such a dramatic reduction in sales. We believe a more fundamen-
tal question is in order for Sweden and possibly other countries: “Are taste
changes responsible for such a large and apparently permanent reduction
in liquor sales?” To the extent that tastes have changed, can they be linked
to health concerns or to changing social mores, or possibly to social poli-
cies that discourage alcohol consumption? David Brook’s recent book,
BOBOS in Paradise, argues that the current generation of young, highly
successful people have very different attitudes about drinking and health
than previous generations. If Brook’s conjectures are true, consumers’ in-
difference curves are shifting.

While economic theory posits the importance of tastes, most econo-
metric specifications posit constant preferences or tastes, leaving price
and income effects as sole determinants of consumption. Our analysis
shows that traditional specifications using price and income effects cannot
explain this precipitous decline.4 Likewise, we show that increased non-
recorded consumption, while important, cannot account for such a large
decrease in the official sales data.

This study of the determinants of liquor sales in Sweden is distinctive
in that its objective is to test for and measure the extent of taste change.

2 Sweden had a complex rationing system where citizens committees determined how
much spirits each adult member of the community could purchase. These decisions
were based on such factors as age, family and social responsibilities, and reputation, see
Norström (1987).
3 For a summary of Swedish policy, seeFranberg (1987).
4 Sales data are reported on a 100% alcohol basis.
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Previous studies relying on aggregate time-series data have been unable
to capture taste change because it is inherently unobservable. We utilize a
panel data set spanning the period 1956–1999 for 21 counties in Sweden.5

This provides a much richer data set than previous aggregate time series
studies enabling the capture of taste change. While beer and wine sales are
not the focus of this paper, we test whether negative taste changes affect-
ing liquor are offset by positive taste substitution for wine and beer. We
also seek to determine whether taste changes are primarily autonomous in
nature or can they be linked to the changing age distribution of the popu-
lation? As Sweden’s drinking age population has aged, can the decline in
per capita sales be explained by demographics?

Section7.2describes past trends in alcohol sales in Sweden as well as
the results of past studies. Section7.3 presents the standard habits per-
sistence model we adopt here to model alcohol sales and discusses the
choice of panel data estimators. Section7.4 presents the econometric re-
sults and simulates the role of tastes and price effects to explain alcohol
sales in Sweden. Section7.5 considers the factors that may be producing
autonomous taste change. Section7.6summarizes the key conclusions.

7.2. Past trends and research findings

Previous research typically focuses on the effectiveness of liquor taxation
as a policy instrument and the price elasticity of demand. Of course, given
Sweden’s penchant for high alcohol taxes, this is a particularly important
question for Sweden. While published estimates vary widely across coun-
tries, there is general agreement that high prices deter consumption. In
their review chapter,Cook and Moore (1999)conclude that economists’
most important contribution to this literature is the repeated demonstra-
tion that “. . . consumers drink less ethanol (and have fewer alcohol-related
problems) when alcohol prices are increased.” Because of the public pol-
icy concern over alcoholism, there has been a number of studies examining
Swedish alcohol consumption, and in particular liquor consumption be-
cause of its primary contribution to total alcohol consumption. The earliest
study, byS. Malmquist (1953)examined the period 1923–1939 when non-
transferable ration coupon books placed quantitative restrictions on con-
sumption. Even with quantitative limits, Malmquist found a price elasticity
of −0.3 and an income elasticity of+0.3, suggesting that quantitative re-
strictions were not entirely binding on all consumers, as evidenced by the
statistically significant price and income effects. Subsequently,Sundström

5 This is annual sales data reported in The National Alcohol Board’s,Alcohol Statistics.
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and Ekström (1962)restricted their sample to the coupon era (1931–1954)
and found a similar price elasticity of−0.3 but a higher income elasticity
of +0.9. Not surprisingly, whenHuitfeldt and Jorner (1982)estimated a
demand equation for liquor in the post-coupon era using data for 1956–
1968, they found a surprisingly large price elasticity of−1.2 and a 0.4
income elasticity.

More recently, there have been other studies utilizing various de-
mand systems to model own price elasticities for liquor, beer, and
wine (Clements and Johnson, 1983; Clements and Selvanathan, 1987;
Selvanathan, 1991; Assarsson, 1991; Berggren, 1997). The own price elas-
ticities range from−0.22 to −1.03 while the income elasticities range
from +0.6 to+1.5. The patterns of substitution between liquor, beer, and
wine were not always plausible, owing probably to the limited relative
price variation over the period. While modeling liquor demand as part
of an alcohol composite with certain cross equation constraints is the-
oretically appealing, these systems are not well adapted for estimating
dynamic relationships. Neither are they suitable for modeling taste change
– the primary focus of our paper.

Another vein of research has focused on the application of rational ad-
diction models to alcohol, seeBaltagi and Griffin (2002). Bentzenet al.
(1999)apply theBeckeret al. (1994)model to liquor consumption in four
Nordic countries, including Sweden. They contrast the standard habits-
persistence model (which implies myopic expectations) to the rational
addiction model for liquor, wine, and beer. They find “strong” evidence
for rational addiction to liquor.

Internationally, the range of elasticity estimates is wide. For example,
Cook (1981)surveyed U.S. price elasticity estimates and after finding a
range of−2.03 byNiskanen (1962)to 0.08 byWales (1968)he concluded
that “there are no reliable estimates for the price elasticity of demand based
on U.S. data.” A survey byOrnstein and Levy (1983)reports a range
of −1.0 to −1.5 depending on the country studied. For the U.K.,Duffy
(1983)uses aggregate quarterly data for the period 1963–1978 and finds a
price elasticity of−0.77. Using annual data for the period 1955–1985,
Selvanathan (1988)finds a similar elasticity estimate. Using aggregate
data covering about 30 years,Clementset al. (1997)report results for their
estimates of systems of demand equations for Australia, Canada, Finland,
New Zealand, Norway, Sweden and the U.K. Their average own-price
elasticities are−0.35 for beer,−0.68 for wine, and−0.98 for spirits.

In contrast to aggregate time series studies, panel data studies that bear
some similarity to our study includeJohnson and Oksanen (1974, 1977)
who used Canadian provincial data for the period 1955–1971 and found a
price elasticity of−1.77. Baltagi and Griffin (1995)used a panel of U.S.



Swedish Liquor Consumption: New Evidence on Taste Change 171

states for the period 1960–1982, and found a long-run price elasticity of
−0.69. The advantage of panel data is the richness of the data set in which
consumption patterns vary in different panels over time due to increased
variation in price and income. Moreover, it is ideally suited to capture taste
changes that are common across the cross section of regions. Aggregate
time series are incapable of eliciting taste change because it is unobserv-
able. Cross-sectional data have a similar problem in that tastes are constant
at a point in time. Individual survey data such as inBerggren and Sutton
(1999)tend to be cross-sectional surveys and thus incapable of measuring
inter-temporal taste change.

Interestingly, none of these papers consider the possibility of taste
change as an important determinant of consumption. InCook and Moore’s
(1999) review chapter, they note that U.S. liquor consumption has also
declined significantly since 1980. Likewise, liquor sales has declined
sharply since 1980 in Sweden, Norway, and Denmark. Finland experi-
enced a significant decline beginning in the mid-1980’s. In sum, anecdotal
evidence suggests that the taste change hypothesis may have application
beyond Sweden.

Figure 7.1shows the pattern of sales per capita of liquor, beer, and
wine and total alcohol in Sweden for the period 1956 to 1999. Sales are
measured on a 100% alcohol basis to facilitate comparison between liquor,
beer, and wine. Note that the top line, shows aggregate sales of all forms
of alcohol, which has declined by 24% since 1976. Interestingly, virtually
all of this decrease can be explained by declining liquor sales. Note also
that per capita liquor sales was relatively stable until the late 1970’s at
approximately 3.8 liters per year. Then liquor sales declined precipitously
to 1.3 liters per capita by 1999 – a 65% reduction. In contrast, wine and
beer sales show a very different pattern. Per capita wine sales continued
to grow steadily over the entire period. Per capita beer sales rose sharply
over the period 1965–1975 when Class 2B beer (a 3.5% alcohol beer) was
sold in grocery stores. Following abandonment of Class 2B beer, sales per
capita declined from 1976 to 1980. Since then per capita beer sales has
returned to the levels reached in the 1970’s. Clearly, on a 100% alcohol
basis, liquor sales has declined to unprecedented levels, while beer and
wine have only partially offset this decrease.

One might conclude that the high tax rates on alcohol in Sweden would
offer the perfect data set to isolate the effect of price, especially if the
decline in liquor sales can be linked to rising liquor prices. But this is
not true. When Sweden dismantled its coupon rationing system in 1955,
high tax rates on alcohol were already in place. Since then, Swedish au-
thorities have adjusted tax rates upward so that the real prices of liquor,
beer, and wine have fluctuated within a modest range of±15%.Figure 7.2
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Figure 7.1. Swedish alcohol sales per capita measured by alcohol content (100%)
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shows the real prices of liquor, beer, and wine for the period 1956–1999.
Note that therelativeprice variation between liquor, beer, and wine is even
more limited because authorities adjust the tax rates of all three based on
the alcohol content of the beverage. Not only is the inter-temporal relative
price variation limited, the inter-county variation in the prices of liquor,
beer, and wine prices is non-existent. Unlike the U.S., where states impose
different taxes creating substantial inter-state price variation, Swedish al-
cohol prices are uniform across counties, being sold only in state-owned
stores. In effect, the inter-county Swedish price history does not allow us
to contribute to the issue of price substitutability between liquor, beer, and
wine.6 Instead our focus here is on the substitution between liquor and
non-alcohol sales, the relative price variation of which should be adequate
to identify this substitution response. This, of course, is critical to the issue
of whether sin taxes are an effective deterrent of alcohol sales.

Could the decline in liquor sales be the result of an aging Swedish popu-
lation? Data from the U.S. National Food Consumption Surveys show that
young drinkers, aged 18–24 consume a disproportionally large fraction of
beer consumption. It is plausible to expect a similar finding for liquor. Ap-
plying this result to alcohol in general, we posit that the age composition
of the population serves as a surrogate for taste change. Accordingly, an
18 year old drinker is not equivalent to a 50 year old consumer, both in the
amount and type of alcohol consumed. Swedish population data provide
detailed population counts by age and by county.7 There are significant
differences both over time and across counties to test the importance of
this factor.Figure 7.3shows the percentage of the population aged 18 to
24. Note that this percentage rose steadily in the post-war period reaching
a high of 16% in 1965. As the baby boomers of the post war period aged
above 24 and the birth rate continued to decline, the percentage of popula-
tion aged 18 to 24 has fallen to about 11% in 1999. The obvious question is
whether the age composition of the potential drinking-age population can
together with price and income explain the decline in liquor sales since
1980. Alternatively, taste change may be largely autonomous in nature,
occurring at random times and not directly attributable to some measur-
able characteristic like the age distribution of the drinking-age public.

6 Attempts to include the relative prices of liquor, beer, and wine lead to generally in-
significant and meaningless results. One should not interpret from this that they are not
substitutes, rather the correct inference is that relative price variation between liquor, beer,
and wine is insufficient to identify these substitution relationships.
7 Prior to 1968, censuses were conducted at five year intervals, necessitating interpolation

of this variable prior to 1968.
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Figure 7.3. Percentage of drinking-population age 18–24, 1956–1999
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7.3. The data, model, and choice of panel data estimator

Following previous work,8 it is reasonable to model liquor demand using a
habits persistence model proposed byHouthakker and Taylor (1970). The
simplest specification features a log-linear relationship relating per capita
liquor sales (C) to the real price of liquor (P ), real income per capita (Y )
and lagged per capita sales (C−1) as follows:

(7.1)lnC = α + β lnP + γ lnY + λ lnC−1 + u.

This specification treats tastes as given, but either in time series over an
extended period or a cross section across diverse population groups, it
becomes important to include time-varying or cross sectionally varying
taste variables (Zt orZi):

(7.2)lnC = α + β lnP + γ lnY + λ lnC−1 +ΦZt +Φ∗Zi + u.

Cross sectionally varying taste differences,Zi , which are unobservable,
cannot be captured in pure cross section studies, but can be modeled with
a panel data set using county specific dummy variables. Likewise, time
varying tastes,Zt , are unobservable, preventing its direct incorporation
into purely time series models. ButZt can usually be estimated as a time
dependent dummy variable in a pooled cross section/time series model.
Unfortunately, the real price of liquor,P , does not vary over thei counties
because prices are uniform at state-run liquor stores.9 Consequently, indi-
vidual dummy variables for each time period,Zt , would be collinear with
liquor price,Pt .

Our approach to modeling time-varying tastes are twofold. First, we
utilize an explicit age composition variable to reflect taste differences be-
tween older versus younger drinkers. Obviously, to the extent that taste
changes can be described by differences between the preferences of older
versus younger drinkers, it is straightforward to introduce an explicit vari-
able accounting for tastes. Specifically, to capture the effects of differences
between older and younger drinkers, we use the percentage of adults 18 to
24 relative to the whole drinking age population, 18 or older.

(7.3)
lnC = α + β lnP + γ lnY + λ lnC−1 + δ%AGE18–24+Φ∗Zi + u.

Presumably,δ > 0 since younger drinkers are likely to drink more in-
tensely.

8 For example, seeHouthakker and Taylor (1970), Johnson and Oksanen (1974, 1977)
andBaltagi and Griffin (1995).
9 Note also that income per capita data in Sweden are available only on a national level.
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Second, the other approach to modeling taste change involves test-
ing for structural breaks, particularly over the period 1980–1999, when
liquor sales trended downward so sharply.Bai and Perron (1998)develop
a methodology for testing for multiple structural breaks, which meets our
objective of considering time varying tastes. Our approach is first, using
the whole data set to test for a single structural break and then to pro-
ceed sequentially testing for subsequent structural breaks as outlined in
Bai and Perron. In particular, we consider a partial structural change model
where the parameters of price, income and lagged sales are not subject to
shifts, but we allow for structural breaks in the time intercepts occurring
at unknown dates. This approach is analogous to the time-dependent in-
tercepts,Zt , in Equation(7.2) except that the structural breaks are less
frequent than individual intercepts for each time period and indicate per-
manent changes for that and subsequent years. Specifically, structural
breaks, representing autonomous taste changes, are appended to Equa-
tion (7.1)as follows:

(7.4)lnC = α + β lnP + γ lnY + λ lnC−1 + θDt−T +Φ∗Zi + u,

where each structural break,Dt−T , spans the periodt when it first oc-
curs untilT , the end of the sample. In Equation(7.4), θ can be thought
of as a vector, reflecting multiple taste changes. Obviously, if there were
a statistically significant structural break for eacht , then Equation(7.4)
would become identical to Equation(7.2). The Bai–Perron procedure en-
ables identification of the most statistically significant changes.

Our preferred estimation approach is the commonly used fixed effects
(FE) model incorporating separate intercepts for each countyi. Particu-
larly in this case, there is reason to expect taste and other structural differ-
ences between counties to be persistent over time. For example, counties
in the south of Sweden are close to Denmark, where alcohol prices have
traditionally been much cheaper. Furthermore, the north of Sweden has
darker winters coupled with a more rural setting – both of which may
affect liquor consumption. Thus the fixed effects estimator explicitly en-
ters dummy county variables to reflect differences,Zi , between counties.
This allows for heterogeneity across counties and guards against omitted
county-specific variables that may be correlated with the error.

We also employ a fixed effects, two stage least squares estimator
(FE-2SLS) to deal with the potential endogeneity of lagged per-capita
sales,C−1. Particularly, if the disturbances are autocorrelated, the regres-
sion coefficients will be biased. While the FE-2SLS estimator is preferable
to the standard FE estimator on purely theoretical grounds, the success
of the 2SLS estimator hinges critically on the quality of the instruments,
which are typically the lagged values of the price and income variables and
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possibly the lagged value of the age composition variable. Since price and
income do not vary across counties, the estimates for the lagged sales may
be very poor. Interestingly, for a dynamic demand model for cigarettes in
the U.S.,Baltagiet al. (2000)show that the out-of-sample performance of
the FE-2SLS estimator was inferior to the standard FE estimator.

7.4. Empirical results

7.4.1. Basic habits persistence model with and without age composition

Table 7.1reports the key results for liquor sales using an explicit mea-
sure of taste change, contrasting it to the standard model with no taste
change. Rows 1 and 2 utilize a standard habits-persistence equation pos-
tulating that all drinking age consumers are homogeneous and that tastes
are unchanging over time. Row 1 utilizes the standard fixed effects (FE)
estimator, while row 2 utilizes a fixed effects, two stage least squares es-
timator (FE-2SLS). The results of the basic habits persistence model are
quite disappointing. The FE estimator in row 1 indicate a coefficient of
1.03 on lagged sales, indicating such strong habits persistence as to make
the implied long run elasticities explosive sinceλ > 1. Additionally, the
coefficient on price is implausible. The results using FE-2SLS in row 2
are not much better. While the coefficient on the lagged dependent vari-
able falls in the admissible range, price remains with an incorrect sign.
Furthermore, the coefficient on income suggests liquor is an inferior good.
Both sets of results (rows 1 and 2) suggest a serious specification error. Not
surprisingly, price and income are insufficient to describe the precipitous
decline in liquor sales since 1980.

Rows 3 and 4 ofTable 7.1introduce taste change due to changing de-
mographics. They include as an explanatory variable, the percentage of the
drinking-age population 18 to 24. Note that in both equations, this vari-
able is strongly significant with the correct sign, confirming that younger
drinkers consume more liquor than older drinkers. Furthermore, note that
the inclusion of % 18–24 causes the coefficients on price and income to
become theoretically plausible. The coefficient on the lagged dependent
variable,λ exceeds one in row 3, indicating explosive long run responses,
but in row 4 (using a FE-2SLS estimator) the coefficient on lagged sales is
0.82. The implied long run price elasticity is−1.34 and the implied long
run income elasticity is 0.23.

The long run price elasticity in row 4 indicates a price elastic demand
for liquor. To some, this might seem surprisingly large, but we believe it
is reasonable. First, it is not entirely outside the range observed in previ-
ous studies. As noted above, in Huitfeldt and Jorner’s study of Swedish



S
w

e
d

ish
L

iq
u

o
r

C
o

n
su

m
p

tio
n

:N
ew

E
vid

e
n

ce
o

n
Ta

ste
C

h
a

n
ge

179

Table 7.1. Results for basic habits persistence model with and without age composition

Long-run elasticity

No. Estimator Price Income % (18–24) C−1 R2 SE Price Income % (18–24)

Liquor sales
1 FE 0.131 −0.013 1.031 0.959 0.060 – – –

(0.053) (0.009) (0.008)
2 FE-2SLS 0.111 −0.058 0.934 0.953 0.065 1.68 −0.88 –

(0.058) (0.022) (0.042) (1.71) (0.39)
3 FE −0.146 0.115 0.331 1.025 0.963 0.057 – – –

(0.059) (0.016) (0.035) (0.007)
4 FE-2SLS −0.255 0.037 0.406 0.799 0.925 0.081 −1.26 0.18 2.02

(0.086) (0.028) (0.052) (0.046) (0.53) (0.24) (0.50)

Wine sales
5 FE −0.393 0.203 −0.229 0.856 0.992 0.053 −2.73 1.41 −1.59

(0.037) (0.035) (0.029) (0.015) (0.73) (0.25) (0.31)
6 FE-2SLS −0.452 −0.059 −0.161 0.983 0.991 0.055 −26.59 −3.47 −9.47

(0.049) (0.142) (0.047) (0.068) (78.09) (32.67) (22.62)

Beer sales
7 FE −0.222 0.651 0.148 0.752 0.920 0.059 −0.90 2.63 0.60

(0.062) (0.074) (0.077) (0.026) (0.26) (0.71) (0.23)
8 FE-2SLS −0.217 0.679 0.142 0.739 0.920 0.059 −0.83 2.60 0.54

(0.065) (0.133) (0.081) (0.056) (0.83) (1.13) (0.31)
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liquor consumption, they found long run price elasticities in the−1.2
range. Berggren’s recent estimate is−1.03. Second, we believe there is
a common sense explanation as well. Liquor is highly taxed in Sweden
versus say Denmark and versus the “Duty-Free” shops in the airports.
Furthermore, liquor is highly portable, suggesting that there may be con-
siderable leakage in the tax system. Another type of leakage between
official sales data and actual consumption is illegal home production of
liquor and cross-border purchases. Anecdotal evidence suggests that these
sources are substantial. Since smuggling, duty-free, and illegal home pro-
duction are all likely to be affected by changes in Swedish liquor prices,
these high elasticity estimates may reflect substantial leakages as well as
actual consumption responses.

Next, we consider the inclusion of taste change driven by demographic
factors. The effect of drinking age population appears particularly impres-
sive. The long run elasticity in row 4 of 2.17 coupled with a 20% decline
in population aged 18–24, implies that this variable plays a critical role in
explaining the secular decline in liquor sales.

Before embracing row 4 ofTable 7.1and the “story” that the decline
in liquor sales can be explained by a decline in the percentage of young
drinkers, we should look to wine and beer for corroborating evidence. Pre-
sumably, if we are observing a taste change induced by a changing age
distribution of the population, patterns for liquor would be expected to be
operative for wine and beer as well. A lower fraction of younger drinkers,
who are presumably heavier drinkers of all forms of alcoholic beverages,
should likewise imply negative effects on wine and beer sales. Rows 5
through 8 ofTable 7.1test whether the age composition variable is oper-
ative for wine and beer. Note that for wine in rows 5 and 6 ofTable 7.1,
a higher percentage of younger drinkers leads toreducedwine sales. For
beer in rows 6 and 7, the coefficient on the % 18–24 is only marginally
significant and roughly half the magnitude of the responses for liquor. In-
tuitively, it seems implausible that a greater fraction of younger drinkers
would choose to drink more liquor, less wine, and somewhat more beer.
Of course, it may be possible, but a more plausible response is that all
forms of alcohol sales would decline with a smaller proportion of young
drinkers. Our concern is that the statistical significance of % 18–24 in the
liquor demand equation could be spurious. The aging of the Swedish pop-
ulation due to the declining birth rate may simply be spuriously correlated
with declining liquor sales.

7.4.2. Tests for autonomous taste change

The competing hypothesis is that taste changes are of an autonomous na-
ture, driven either by changes in attitudes about health and/or policies
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to discourage drinking.Table 7.2reports our tests for autonomous taste
change by testing for structural breaks. Our procedure for testing for mul-
tiple structural breaks is that outlined byBai and Perron (1998). From
Figure 7.1, it is not surprising to note that the most significant struc-
tural break occurred for the period 1980–1999. The next most significant
break occurred for the period 1993–1999. Next follows statistically signif-
icant breaks for the period 1987–1999 and then for the period 1995–1999.
Row 1 ofTable 7.2takes the basic habits persistence model and appends
structural breaks. Note that with a logarithmic dependent variable, the co-
efficients for structural changes can be interpreted as short-run percentage
reductions in sales with lagged effects entering with time. In order to de-
scribe the cumulative effects of the structural breaks, the dynamic structure
of the breaks are shown inFigure 7.4, treating the original intercept at one.
The cumulative effect of the structural break in 1999 amounts to a 68%
reduction in sales for the fixed effects 2SLS estimate. This result con-
firms that standard price and income effects cannot explain the precipitous
decline in liquor sales.

Interestingly, the structural break model avoids the implausible adjust-
ment parameters in the previous model. Row 1 ofTable 7.2also suggests
very plausible long-run price and income elasticities –−1.22 for price and
1.25 for income.

Concerns that the FE estimator may be biased lead us to the FE-
2SLS estimator in row 2 ofTable 7.2. Note that the coefficient on the
lagged dependent variable declines markedly to 0.49, indicating much
weaker habits-persistence. While the corresponding short run price elas-
ticity (−0.61) is much larger, the long run elasticity of−1.20 is virtually
identical to the long run price elasticity with the FE estimator. Thus one
clear picture emerges from either approach to modeling taste changes – the
long run price elasticity is price elastic. This implies that price has been
a very effective tool in reducing within country alcohol purchases. This
does not necessarily translate into effective reductions in measured liquor
consumption due to leakages – an issue we return to shortly.

Another related question we seek to answer is whether the negative
structural breaks leading to reduced liquor sales have lead toincreased
sales of beer and wine. This is a type of taste substitution hypothesis.
Rows 4 through 8 address this question for beer and wine, using the struc-
tural breaks identified for liquor. Row 3 for wine sales indicates a short run
3.6% increase in wine sales in 1980, corresponding to the 12.5% reduc-
tion in liquor sales. On a pure alcohol basis in 1980, liquor sales accounted
for 50% of total alcohol sales with wine contributing 22% and beer 28%.
Consequently, a 3.6% increase in wine sales offers only a very small offset
compared to the 12.5% liquor sales. Since the time series for strong beer
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Table 7.2. Results for autonomous taste change model

Long-run elasticity

No. Estimator Price Income 80–99 87–99 93–99 95–99 C−1 R2 SE Price Income

Liquor sales
1 FE −0.206 0.212 −0.125 −0.058 −0.054 −0.056 0.831 0.980 0.042 −1.22 1.25

(0.042) (0.010) (0.005) (0.006) (0.008) (0.008) (0.010) (0.29) (0.08)
2 FE-2SLS −0.613 0.309 −0.163 −0.155 −0.134 −0.138 0.487 0.954 0.064 −1.20 0.60

(0.072) (0.017) (0.008) (0.012) (0.014) (0.014) (0.032) (1.14) (0.06)

Wine sales
3 FE −0.520 0.221 0.036 −0.024 −0.027 0.036 0.890 0.992 0.054 −4.73 2.01

(0.040) (0.039) (0.007) (0.007) (0.011) (0.011) (0.015) (1.96) (0.58)
4 FE-2SLS −0.721 −0.488 0.030 0.008 −0.093 0.093 1.196 0.988 0.065 – –

(0.086) (0.244) (0.009) (0.014) (0.026) (0.023) (0.105)

Beer sales
5 FE −1.099 0.893 0.058 −0.089 −0.128 0.767 0.934 0.054 −4.72 3.83

(0.111) (0.093) (0.014) (0.016) (0.015) (0.028) (2.28) (1.50)
6 FE-2SLS −0.761 1.469 0.108 −0.003 −0.130 0.299 0.889 0.070 −1.09 2.10

(0.167) (0.187) (0.022) (0.030) (0.020) (0.121) (0.38) (0.43)
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sales by counties only begins in 1979, it is not meaningful to calculate any
offset for increased beer sales. The next most prominent structural break
for 1993–1999 appears to offer no evidence of offsetting wine or beer sales
as both indicate negative effects that year. The 1987 structural break shows
an inconclusive pattern for wine and a positive 5.8% increase for beer sales
in the FE model in row 5. But for the period 1995–1999, beer sales suffers
an apparent negative structural break in sympathy with liquor, while the
coefficients for wine indicate an increase.

We conclude that the evidence favoring a taste substitution hypothesis
from liquor to wine and beer is not particularly convincing. We should ex-
pect to see a pattern of positive coefficients on the various structural breaks
for wine and beer. This pattern is not supported by the data. Indeed, the cu-
mulative effects on beer are like liquor – negative – while the cumulative
effects on wine are ambiguous.

7.4.3. Forecast comparison of two competing types of taste change

In comparing the two alternative hypotheses of taste change, age composi-
tion vs. autonomous taste change, it is instructive to compare the forecast
performance of the two.Figure 7.5contrasts the predictive performance
of the age-composition taste hypothesis shown inTable 7.1with the au-
tonomous taste change model described inTable 7.2featuring structural
breaks. Even though the data were estimated from county data, we test the
ability of the models to explain aggregate per capita sales for the whole
country. We use the parameter estimates in row 4 ofTable 7.1to describe
the age-composition hypothesis versus corresponding estimates in row 2
of Table 7.2to describe the autonomous taste change hypothesis. We per-
form an in-sample forecast exercise using adynamicsimulation beginning
in 1975 using forecasted values in periodt as actuals for lagged sales
per capita in periodt + 1. Consequently, auto-correlated forecast errors
can produce wildly different simulation performance than a series of one-
period-ahead forecasts.

As shown inFigure 7.5the dynamic simulation properties of the two
models are quite different. The autonomous taste change model with dis-
crete structural breaks closely tracks the precipitous decline in liquor sales.
In contrast, the age composition characterization of taste change fails to
explain the decline. We view this as convincing corroborating evidence
that while the age distribution variable probably plays some minor role,
autonomous taste change is the decisive explanation. Indeed, we found
that % 18–24 could be appended to the autonomous taste change model
with the former entering as expected and the structural breaks not being
materially impacted.
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Figure 7.5. Age composition vs. autonomous taste change: forcast performance 1975–1999
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7.4.4. Could autonomous technical change really be due to leakages?

Skeptics of the autonomous technical change hypothesis might argue that
actual liquor consumption as opposed to official sales data, may not have
in reality declined. They would argue that the apparent 72% reduction in
measured liquor sales implied byFigure 7.4could be offset by large in-
creases in non-recorded consumption. Over time, Swedes have become
much more mobile with increasing access to lower cost liquor in Den-
mark and duty-free shopping in airports. Domestic moonshine is another
source. Could these factors explain the precipitous decline in domestic
liquor sales, so that in reality the Swedes are drinking as much as before
1980?

Kühlhorn and Ramstedt (2000)utilize survey data on total alcohol con-
sumption to argue that non-recorded consumption of total alcohol is both
substantial and has increased markedly since 1980. They estimate that as
a percent of recorded sales data, non-recorded consumption has increased
from 13% in 1980 to 37% in 1997.Leifman’s (2000)estimates are sub-
stantially lower – 24% in 1995. Even if these estimates are correct and
even if non-recorded alcohol consumption is all liquor, no more than half
of the apparent autonomous taste change might be attributable to increased
percentages of non-recorded consumption.

To test these conjectures more formally, we obtained relative price data
for Danish liquor compared to domestic Swedish liquor. The data show
that the relative price of Danish to Swedish liquor has remained persis-
tently lower over a period of time dating back to at least 1960. Thus the
sharp decline in domestic liquor purchases after 1980 does not appear to
be explained by a sharply declining relative price of Danish to Swedish
liquor.10 Likewise, we obtained data on the number of air travel passen-
gers leaving and entering Sweden to measure increased access to duty-free
liquor. The data show a persistent growth in international air travel since
1960 – the first year of data. Visually, there is no evidence of a marked
acceleration of growth after 1980. While we cannot measure domestic
moonshine production, there is no reason to expect a marked increase af-
ter 1980. Over this period, the relative price of liquor in Sweden did not
appreciably change. One might expect illegal moonshine production to be
a function of Swedish liquor prices, but there is no reason to posit a struc-
tural increase of massive proportions after 1980.

To formally test the conjecture that increased mobility either to Den-
mark or international duty-free travel, we regressed the autonomous taste

10 SeeNorström (2000)for a post E.U. study of Danish imports into southern Sweden.
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change index shown inFigure 7.4on international passenger travel (leav-
ing and entering Sweden), the relative price of Danish to Swedish liquor,
and a time trend. This regression found no statistically significant relation
for either the Danish to Swedish liquor price or international air travel.
Thus, we conclude that the observed autonomous taste change is real
and cannot be simply explained by offsetting increases in non-recorded
consumption.11 At the same time, given the magnitude of the percentage
decline in liquor sales implied byFigure 7.4, and the findings ofKühlhorn
and Ramstedt (2000)andLeifman (2000), we cannot rule out the possibil-
ity that increased non-recorded consumption accounts for some non-trivial
portion of the reduction.

7.5. Possible explanations for autonomous taste change

Since autonomous factors, as opposed to leakages, appear to account for
the bulk of the precipitous decline in liquor sales since 1980, it is instruc-
tive to ask what factors lay behind this huge change shown inFigure 7.4.
Could any changes in policy over this period account for such a large
change? Alternatively, could such a reduction be due to changing attitudes
about liquor?

First, we look to Swedish alcohol policy changes as possible explana-
tions. Interestingly, all forms of alcohol advertising were banned in 1979.
These bans included all forms of media advertising and applied to all
forms of alcohol. Moreover, these bans have remained in effect since then.
Clearly, the major structural break in 1980, corresponds closely with the
advertising ban. Interestingly, in 1980, wine sales increased by 3.6% af-
ter accounting for price and income effects. One interpretation, is that the
advertising ban on alcohol may have induced some substitution to drinks
with lower alcohol content. Thus we tend to believe that the advertising
ban and the sharp reduction in liquor sales are causally linked even though
there was some offsetting increase in wine sales.12 The difficult question
is whether the advertising ban reflects an exogenous or endogenous pol-
icy change. On interpretation is that the advertising ban was driven by a
changing public’s perception of the acceptability of alcohol consumption.

11 To be clear, these results do not prove that leakages in the form of Danish liquor,
duty-free, and moonshine are unimportant. They simply do not explain the autonomous
structural break beginning in 1980. Rather, we view our rather price elastic demand re-
sponse as measuring these factors as well as real reductions in consumption.
12 Beer sales may also have been favorably affected, but the shortness of the time series
for beer prevented accounting for effects in the early years of its sample.
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But even if the advertising ban exogenously reduced sales after 1980, its
effects should have been realized by the late 1980’s, leaving subsequent
structural changes unexplained. The advertising ban cannot be the whole
story.

Subsequently, the Swedes instituted a number of large public cam-
paigns targeted at the reduction of alcohol consumption particularly by
young people. These campaigns have typically taken the form of moral
suasion and the links to structural breaks are not particularly strong. In
1986, a program called Bomangruppen was initiated aimed at reducing
alcohol consumption among young people. In 1989, yet another program,
called Athena, was instituted to reduce alcohol consumption among young
people, by imposing harsh penalties on those reselling alcohol to under-
age drinkers. The 1986 Bomangruppen campaign corresponds to the 1987
structural break. This program seems unlikely to account for the 5.8% re-
duction in liquor sales in 1987, especially since beer sales increased by a
similar percentage that year.

Yet, another potential explanation is the punishment of drunken drivers.
Sweden has historically been among the least tolerant European nations
for blood alcohol levels. In 1957, the blood alcohol level was reduced
from 0.08% to 0.05%. Then in 1990, the blood alcohol limit was further
reduced to 0.02% – the lowest in Europe. In contrast, in Italy, the threshold
on blood alcohol content is 0.08%. The penalties in Sweden are also quite
severe. For a blood alcohol level between 0.03 and 0.10, fines based in
part on income are coupled with license suspensions ranging from 2 to 12
month. For blood alcohol levels above 0.1%, drivers lose their license for
a minimum of 12 months and face 1 to 2 months in jail.13

While one can point to advertising bans and stricter blood alcohol limits
as exogenous factors reducing alcohol consumption, they signal a less tol-
erant public attitude towards drinking, particularly of beverages like liquor
with high alcohol content. In many ways, these legal changes may simply
reflect the changing attitudes of voters.

David Brooks’s (2000)BOBOS in Paradiseprovides an insightful com-
mentary on the current generation of young, highly successful people, who
tend to impart their values to the broader population. Brooks characterizes
this group as “bourgeois bohemians” (i.e., Bobos in Brooks’s vernacu-
lar) and proceeds to describe their cultural differences vis-a-vis the same
socio-economic group of the previous generation. One of the prominent
differences is the changing attitude about drinking. Brooks makes the fol-
lowing incisive comments about Bobos’ pleasures:

13 SeeOn DWI Laws in Other Countries, U.S. Department of Transportation, DOT HS 809
037, March 2000.
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The Bobos take a utilitarian view of pleasure. Any sensual pleasure that can be
edifying or life-enhancing is celebrated. On the other hand, any pleasure that is
counterproductive or dangerous is judged harshly. So exercise is celebrated, but
smoking is now considered a worse sin than at least 5 of the 10 commandments.
Coffee becomes the beverage of the age because it stimulates mental acuity, while
booze is out of favor because it dulls the judgement.Brooks (2000, p. 199)

Brooks goes on to describe how parties have changed:

Now parties tend to be work parties; a glass or two of white wine, a little network-
ing with editors and agents, and then it’s home to the kids. Almost nobody drinks at
lunch anymore. People don’t gather around kitchen tables staying up nights imbib-
ing and talking.Brooks (2000, p. 201)

While Brooks’ lively and entertaining book offers little in the way of
hard statistical evidence to support his descriptions, his generalizations
strike many accordant strings with our own perceptions of reality both
in the U.S. and Europe. Certainly, the empirical evidence here fits di-
rectly with Brooks’ conjecture. The time period, 1980–2000, matches the
time period for the ascendancy of the Bobo mentality. Brooks emphasis
on health effects explains why liquor, as opposed to wine and beer, ap-
pears to have been singled out as the culprit and became the object of
sharply reduced consumption. Likewise, the increased emphasis on driver
safety and reduced alcohol limits suggests two things. First, as indicated
by their stringency, Sweden, among all European countries, is on the fore-
front with this attitude. Second, the stricter drinking and driving laws in
Sweden are indicative of changing attitudes about safety and health. Fol-
lowing Brooks, these laws, like reduced liquor consumption, are the effect
of changing attitudes and not the cause of the reduction in liquor con-
sumption. The most interesting question is why the values of the Bobos
have evolved as they have. Brooks does offer some conjectures, but that
takes us well beyond the issue at hand. For our purposes here, we lay the
immediate cause to modern society’s attitudes about pleasures and the new
primacy about health.

7.6. Conclusions

Our study leads to a number of interesting conclusions. Like previous stud-
ies of liquor consumption in Sweden, we affirm that the price elasticity of
demand appears highly price elastic compared to the U.S. and other coun-
tries. Not all of this price response necessarily implies lower consumption
levels, however. Lower taxes in nearby Denmark, duty-free shops for in-
ternational travel, and illegal moonshine, reflect a partial substitution of
these sources for domestic liquor, thereby increasing the observed price
elasticity estimate.
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Even though price effects are substantial, they cannot explain the un-
precedented decline in per capita Swedish liquor sales since 1980. Our best
evidence suggests that autonomous taste changes are responsible for this
decline. We found evidence of at least 4 structural breaks starting in 1980.
Increased leakages, or non-recorded consumption, probably accounts for
a portion of this reduction, but there remains a large, apparently real re-
duction in sales. While the 1980 structural break coincides with the 1979
ban on all advertising of alcohol in Sweden, it cannot explain subsequent
structural breaks. Likewise, we found evidence of new, much stricter blood
alcohol limits for drivers. We interpret this, like the advertising ban, as an
effect of a new much more health-conscious generation with very different
drinking mores, rather than the proximate cause.

Finally, at least for liquor sales, we believe similar taste changes may
be at work in other industrialized nations. Demand specifications looking
only to price and income effects must consider the possibility of an inde-
pendent role for taste change or a much more elaborate model of consumer
choice.14 Panel data sets of the type employed here seem ideally suited for
such investigations.
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Abstract

This paper revisits the issue of estimating import demand elasticities, by
considering a variety of unobserved components in international com-
modity transactions. We use highly disaggregated import data for a single
importing country, Lebanon, to estimate a flexible AIDS demand model in-
corporating a multi-way error component structure for unbalanced panel
data. This framework is shown to accommodate for product, country, and
time effects as separate unobserved determinants of import demand. Re-
sults for major agricultural commodities show that the devised empirical
specification is mostly supported by the data, while no correlation exists
between import prices and unobserved product or country effects.

Keywords: unbalanced panel data, multi-way error components, trade,
AIDS demand models

JEL classifications:C23, D12, F17

8.1. Introduction

Empirical analysis of international trade patterns between regional blocks
has emerged over the recent years as a major tool for governments and
international organizations. In particular, the current trend toward trade
liberalization through dismantlement of tariffs and NTMs (Non Tariff
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Measures) implies a need for prediction capabilities from countries and
institutions, in order to assess the impact of import price changes in terms
of economic growth and welfare (seePanagariya, 2000for a survey on
new developments regarding trade liberalization). A parallel evolution to
the WTO rounds has been the design and implementation of bilateral or
multilateral trade agreements, generally denoted PTAs (Preferential Trade
Agreements). Under such agreements, relative import prices from differ-
ent regions of the world will be modified from the prospect of a single
country, and trade diversion is expected. In other words, reducing or elim-
inating trade barriers altogether is likely to result in shifts in the relative
demand for imports, these shifts being presumably related to the inten-
sity of customs tariffs reduction, but also to the nature of the commodities
under consideration. This is also likely to affect the growth potential of
developing countries (seeWinters, 2004).

International trade economists concerned with empirical evaluations
have generally proceeded by considering two approaches: General Equi-
librium (GE) models and “Gravity” equations. These approaches suffer
from many disadvantages. GE models contain calibrations that are often
highly debatable, and involve complex numerous equations that are quite
demanding from a data perspective. Gravity based models can only ex-
plain aggregate trade creation and diversion, and fail to explain how distant
countries have increasing trade among each others. All in all, these models
have largely ignored the fact that the sensitivity of demand to import price
may be highly dependent on the heterogeneity of the underlying trade sec-
tions.

Most applied studies dealing with trade patterns or PTAs integrate the
notion of trade or import elasticity, and acknowledge the importance of a
consistent and somehow accurate estimate for it. However, from an empir-
ical point of view, such elasticity has in most cases been estimated from
time series data only (seeMarquez, 1990, 1994). The lack of highly dis-
aggregated trade data is an obvious reason, but also the fact that General
Equilibrium or macro-economic models in general do not require sector
or commodity-wise import elasticity measures.

The issue of heterogeneous import price elasticities is also particu-
larly important when investigating another trend in trade relations between
regions, namely the reduction in export and production subsidies for agri-
cultural products. While the debate over the perverse effects of agricultural
subsidies in the US and Europe on the welfare of developing countries is
likely to be on the political agenda for many years, the restructuring of
European agriculture is also likely to involve some degree of export price
harmonization. To this respect, the provision of a consistent estimate for
import price elasticity in developing countries at a commodity-group level
is certainly helpful.
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Given this, there are important differences in the modeling of in-
ternational trade patterns, depending on whether time series or cross-
sectional/panel data are used. In a time series context, which is the most
widely used for this type of analysis, the demand for imports originates
from a single country, that is, is equivalent to a representative consumer
facing a system of relative prices from the rest of the world. Only a limited
number of commodities are considered, either at an aggregate level of all
imports (macro-economic models) or a series of imported goods (sectoral
or individual commodity analysis). In the first case, the breakdown of total
imports across sectors (agriculture, industry, services) is not known be-
cause of aggregation. In the second case, separability assumptions may be
required if no data are available on substitute goods. This means neverthe-
less that, with time-series data, import decisions are assumed to originate
from the country as a whole and vertical integration between importers
and final consumers (households, producers, etc.) can be assumed.

When cross-section or panel data are used instead, disaggregated infor-
mation becomes available at the commodity level. Individual transactions
in the form of import/exports data records from customs administration
may be used, and in this case, import decisions are then observed from im-
porters and not from the final consumers’ perspective. The important con-
sequence is that substitution possibilities between different commodities
are likely to be far less important than in the time-series framework, be-
cause most importers are specialized in particular products or commodity-
groups. On the other hand, substitution patterns for the same product but
between competing countries or regions become highly relevant.

The present paper uses, for the first time to our knowledge, individual
importer data on a highly disaggregated basis (daily transactions), made
available by the Lebanese Customs Administration. The amount of infor-
mation on import prices and values allows us to consider estimation of
a demand system for imports, treating importers as consumers benefit-
ing from competition among different supply sources. To be in line with
consumer theory while selecting a flexible form for demand, we adopt
the AIDS (Almost Ideal Demand System) specification on import shares,
which is consistent with aggregation of individual preferences. We con-
sider a single demand share equation for European agricultural products
that are exported to Lebanon, in order to keep the number of estimated pa-
rameters to a minimum. The approach used in this paper is to concentrate
on a limited number of product categories, namely agricultural products,
and to assume that expenditure decisions on these commodities can be
separated from other import decisions regarding non-agricultural goods.
We further assume separability between agricultural product groups.

While the AIDS model is a suitable choice for demand analysis and sta-
tistical inference regarding trade substitution elasticities, it only contains
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information on price and total expenditure in its basic specification. In or-
der to accommodate for non-price effects that may affect the demand share
of commodities exported from some (European) countries, we consider an
error components specification that explicitly captures unobserved hetero-
geneity, both across products and across countries. Since the usual random
error-components specification entails linear additive heterogeneity terms,
this implies that the latter are in fact interpreted as heterogeneous slopes
in the underlying import demand function.1

The literature on multi-way error components has developed recently
in the direction of multi-way structures, involving balanced or unbalanced
panel data models, seeAntweiler (2001), Baltagiet al. (2001), andDavis
(2002). Although random effects and fixed effects constitute commonly
used specifications in practice, there have not been many applications deal-
ing with specification choice in the case of multi-way panel data. The three
papers cited above propose empirical applications but do not deal with the
problem of choosing between a random or a fixed effects model. More-
over, the first two references propose nested error components structures
and do not compare with more general specifications of error components.
On the other hand,Davis (2002)suggests matrix size-reduction procedures
for implementing estimators of more general models with multi-way er-
ror components. In this paper, we consider a three-way error components
model and discuss several empirical issues: (a) The choice of a nested vs.
non-nested error-components specification; (b) The number of error com-
ponents; and (c) The exogeneity test for right-hand side variables, in the
sense of a possible correlation with multiple effects.

The general model we consider is a three-way error component re-
gression with unbalanced panel data, in which product, country and time
effects are introduced. This is an extension of a limited series of empir-
ical studies in the literature, that until now have considered only a small
number of products (possibly in the form of an aggregate commodity) and
country-specific import equations instead of country effects in addition to
unobserved heterogeneity related to products (Marquez, 1990, 1994). It
should be noted that recent papers have estimated panel data models for
import demand using importer and exporter effects (Baltagi et al., 2003;
Egger and Pfaffermayr, 2003). These papers however use aggregate data
of bilateral trade flows between countries, and do not discuss fixed vs. ran-
dom effects specifications. The fact that product and country effects may
exist and be correlated with import prices is an important empirical issue,

1 This is because the share of a good in total expenditure is equal to the derivative of the
log of expenditure with respect to the price of the good. Hence, the intercept term in any
given equation is the slope of the log price term in the (log) expenditure function.
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as this would detect the role of unobserved national brand image and/or
quality effects in import demand shares (Crozet and Erkel-Rousse, 2004).

This paper makes several contributions to the existing empirical litera-
ture. First, we provide a convenient framework for dealing with import
demand models with highly disaggregated international trade data, by
allowing for country and commodity effects. As mentioned above, the
model is particularly useful when unobserved product quality and/or na-
tional image are expected to influence the level of regional import demand
shares. Second, we show how specification checks can be conducted on the
structure of the error term (multi-way, unbalanced panel data) and on the
relevance of the random effects assumption. When comparing estimates
obtained under the fixed effects vs. the random effects specification, infer-
ence can be drawn on the correlation between price levels on the one hand,
and unobserved heterogeneity related to country and/or product.

The paper is organized as follows. In Section8.2, we briefly discuss the
properties of import price models, and introduce the notation of our AIDS
demand model. In Section8.3, the estimators for linear panel data mod-
els with (non-)nested unbalanced structures are presented. The Lebanese
customs data used in the empirical analysis are presented in Section8.4.
Estimation results are in Section8.5, where we perform a series of speci-
fication checks (choice between random-effects and fixed-effects) and test
for the presence of these effects. Parameter estimates are then used to
compute own- and cross-price elasticities of Lebanese imports between
different export regions, allowing one to predict the expected change in
import shares when the price of exporting countries is modified. Conclud-
ing remarks are in Section8.6.

8.2. The flexible import model

In the literature on import demand and import price elasticity, trade flows
of commodities between countries are often treated as consumer goods
whose demand is the result of a utility maximization problem. In this re-
spect, obtaining a consistent model for evaluating price and income effects
using trade data should not be much different from the standard applied
demand analysis with retail consumer goods. The diversity of products
available in export markets can even be made similar to the number of con-
sumers’ goods in home stores, by defining aggregate product categories in
an adequate way. The advantage with trade flows however, is the fact that
the number of supply sources for the same product may be restricted by
constructing country-wise or region-dependent export and import quan-
tities and price indexes. By doing so, the researcher implicitly considers
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some degree of homogeneity in goods exported from a particular coun-
try or part of the world. Intuitively, such specific component contained in
national or regional commodities, considered from the importing country
point of view, will be less difficult to identify if products are observed at a
highly disaggregate level. French red wine or Egyptian cotton for instance
would be part of the general “Drinks” or “Agricultural products” category,
and would thus loose their specific national image.

Although the importance of country-specific components of exported
goods in determining import shares may be a rather recent empirical is-
sue, it is nevertheless consistent with the Armington model assumption
that products are geographically differentiated (Alston et al., 1990). Fi-
nal consumers may actually perceive different characteristics of the goods
as resulting from national differences, yet the researcher often has to treat
such characteristics as unobserved heterogeneity components. In any case,
whether the latter is labeled “quality”, “innovation” or “national image” in
the literature, these components can often be assumed as originating from
a diversification strategy implemented by exporters.Crozet and Erkel-
Rousse (2004), for instance, propose an Armington model of trade, that
is, a multi-country model of imperfect competition with heterogeneous
products. They assume country-specific quality weights to enter products’
sub-utility functions of a representative consumer, to end up with a log-
linear representation of import shares as a function of relative prices and
relative quality scores. They claim that traditional trade models generally
ignore the dimension of product quality, leading to excessively low trade
price elasticities. Their model estimation, using survey data as proxies for
unobserved quality for European products, reveals that controlling for “ob-
served” quality results in higher own-price elasticities of imports.

In the literature, most models of import price elasticity do not account
for quality as such, and make strong assumptions of either block separabil-
ity or product aggregation to analyze trade on very specific commodities
or bilateral trade patterns. The problem with product aggregation is that
only country-specific quality components may be identified, as all prod-
ucts from a single export source are considered the same (seeHayeset
al., 1990). This implies that perfect substitutability exists among goods
within a single commodity group. As far as block separability is con-
cerned, this restriction allows for source differentiation across countries
and/or regions, for very specific products (seeSatyanarayanaet al., 1997).
However, it is not always consistent with the theory of consumer demand
regarding preference aggregation or expenditure homogeneity (Panagariya
et al., 1996). Moreover, substitution patterns are necessarily limited in
such a framework and may not be very realistic. As pointed out by
Andayani and Tilley (1997), block separability and product aggregation
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are rather strong assumptions to make, and a more robust way of pro-
ceeding with empirical analysis is to consider a more general model of
demand.

Modeling expenditures in international economics would therefore re-
quire the specification of a demand system that would satisfy basic eco-
nomic assumptions on consumer (importer) behavior. This demand system
should also be simple enough to estimate, and its nature should allow for
direct and straightforward inference on consumer reaction to prices. At
the same time, an important requisite that has gained much attention in the
past decade is that such a demand system should be consistent with ag-
gregation. In other words, the final demand for a given good on a market
should be obtained by direct aggregation of individual consumer demands.
We follow the approach ofAndayani and Tilley (1997)by adopting the
Almost Ideal Demand System (AIDS) developed byDeaton and Muell-
bauer (1980). The rest of the section is devoted to a brief exposition of this
model, in particular its features when adapted to trade issues.

Let the subscriptsi and j denote distinct imported goods, and the
subscriptsh and k denote sources (regions from which the goods are
imported). Letpih denote the unit producer (exporter) price of goodi ex-
ported from countryh. Denotingp the vector (set) of prices andu the
utility level of the consumer, the PIGLOG (Price-Independent General-
ized Logarithmic) cost function reads

(8.1)logC(u, p) = (1 − u) logA(p)+ u logB(p),

whereA(p) andB(p) are parametric expressions of prices:

logA(p) = α0 +
∑

i

∑

h

logpih

(8.2)+ 1/2
∑

i

∑

j

∑

h

∑

k

γ ∗
ihjk

logpih logpjk ,

(8.3)logB(p) = logA(p)+ β0

∏

i

∏

h

p
βih
ih
.

Differentiating the (logarithmic) cost function above with respect top and
u and rearranging, it can be shown that the share of demand for goodi

from sourceh, denotedwih , is

(8.4)wih = αih +
∑

j

∑

k

γihjk logpjk + βih log(E/P ∗),

where
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logP ∗ = α0 +
∑

i

∑

h

logpih

(8.5)+ 1/2
∑

i

∑

j

∑

h

∑

k

γ ∗
ihjk

logpih logpjk .

The price indexP ∗ is typically involving all prices from all possible
sources, and it can be replaced by a weighted price index using as weights
the shares in total demand of the goods, and denotedP T in the following.
The share equations defined above are valid under very general circum-
stances for a wide variety of goods. Parameterγihjk for instance captures
the sensitivity of the import share of goodi from sourceh with respect to
the price of any goodj from any sourcek. Of course, wheni = j and
h = k, we can measure the reaction of relative demand for a given good
to its own price.

If we were to use this equation directly, the number of parameters would
be tremendous, as it increases both with the number of goods and the num-
ber of import sources. A way around this problem is to impose parametric
restrictions to the model, by excluding the influence of the price of some
goods (or sources) on some other goods (or sources). A first restriction
concerns source differentiation.

RESTRICTION 8.1. Cross-price effects are not source differentiated be-
tween products, but are source differentiated within a product:

(8.6)γihjk = γihj ∀k ∈ j, j �= i.

For example, the country import demand for European dairy prod-
ucts may have a source-differentiated cross-price effect for dairy products
from other sources (North America, Rest of the World), but cross-price
responses to non-dairy products are not source-differentiated. This restric-
tion implies an absence of substitutability between products of different
nature and different origin.

With this restriction, the model is denoted RSDAIDS (Restricted
Source Differentiated AIDS) and reads:

(8.7)wih = αih +
∑

k

γihk logpik +
∑

j �=i
γihj logpj + βih log

(
E/P T

)
,

whereγihk denotes the price coefficients of goodi from different source
h, andpj is a price index for all goods other thani, defined as a Tornqvist
share-weighted price index.

With Restriction 8.1, the share of goodi imported from sourceh is
seen to depend on prices of the same good from all sources (coefficients
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γihk), but also on price indexes for all other goods. This may create es-
timation problems if the number of goods is prohibitive. Moreover, there
are reasons to believe the substitutability patterns between goods may be
limited in many cases (for instance, food and machinery, precious stones
and chemical products, etc.). For this reason, we further restrict the model
to be estimated for import shares.

RESTRICTION 8.2. Cross-price effects are source differentiated within a
product, but are not differentiated across different products. We have the
final specification for the share equations:

(8.8)wih = αih +
∑

k

γihk logpik + βih log
(
E/P T

)
.

A last set of restrictions does not actually depend on the ones imposed
above on differentiation patterns, but is typically imposed in order to be
consistent with the definition of the expenditure functionC defined above.
First, coefficients for cross-price effects should be symmetric across equa-
tions. For instance, the marginal impact of a change in the price of good
i from sourceh on the share of goodi imported from sourcek should be
the same as the marginal impact of a change in the price of goodi from
sourcek on the share of goodi imported from sourceh.

RESTRICTION8.3 (Symmetry).

(8.9)γihk = γikh ∀i, h, k.
Second, we impose homogeneity in price for the expenditure function

C, as follows:

RESTRICTION8.4 (Homogeneity in prices).

(8.10)
∑

h

αih = 1 ∀i,
∑

k

γihk = 0 ∀i, h.

Once the parametric share equations are estimated, it is possible to in-
fer many substitutability patterns and price effects (seeGreen and Alston,
1990for a survey on elasticities in the AIDS model). The Marshallian (un-
compensated) own-price elasticity, measuring the change in the quantity
demanded for goodi from sourceh resulting from a change in its own
price, is:

DEFINITION 8.1 (Own-price elasticity of demand).

(8.11)εihih = −1 + γihh/wih − βih .

The second one is the Marshallian (uncompensated) cross-price elastic-
ity, measuring the change in quantity demanded for goodi from sourceh
resulting from a change in the price of the same good but from a different
source,k:
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DEFINITION 8.2 (Cross-price elasticity of demand).

(8.12)εihik = γihk/wih − βih(wik/wih).

The third and last one concerns the expenditure elasticity, i.e., the per-
cent change in total demand for goodi when total expenditure on all goods
changes:

DEFINITION 8.3 (Expenditure elasticity).

(8.13)ηih = 1 + βih/wih .

The import own-price and cross-price elasticities are the central objects
of our empirical analysis. With the former we can predict the change in
the quantity demanded for any given commodity from any source when its
price increases or decreases. With the latter it is possible to assess the de-
gree of trade diversion patterns associated with each good. For instance, an
increase in the price of imported European goods relative to North Amer-
ican ones is likely to lead to an increase in imports from North America
and a decrease in imports from Europe, but it may also have an impact
on goods imported from countries or from the rest of the world. This is
because, among other things, additional disposable revenue is obtained
following this decrease in the price of imported goods from Europe, and
imports from the rest of the world of competing goods that were not con-
sidered for importing may also increase.

The use of the RSAIDS model for modeling import demand can in
principle be performed on a time series of observations for various com-
modities from different regions, or even using a cross section of products.
However, to limit the number of parameters even further, it is often nec-
essary to impose an additional separability restriction and consider a sub-
group of products only. The approach used in this paper is to concentrate
on a limited number of product categories, namely agricultural products,
and to assume that expenditure decisions on these commodities can be
separated from other import decisions regarding non-agricultural goods.
We further assume separability between agricultural product groups. In
other words, we consider that the expenditure variable defined above is
the sum of import values from all possible sources, for the agricultural
category under consideration. Therefore, when interpreting expenditure
or income effect within the AIDS context, this point should be remem-
bered, as expenditure in our sense may not vary in line with total expen-
diture. Two points can be advanced to justify such a restriction. First, we
are mostly interested in competition among export regions and countries
rather than substitution among productsandcompetition. Second, as will
be discussed below, our data are very disaggregate and are available at the
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individual importer level. Since importers in agricultural commodities are
expected to be rather specialized, this limiting aspect of the separability
assumption may be reduced.

8.3. The multi-way unbalanced error-component panel data model

Consider the following import share panel data equation:

wiht = Xihtβ + uiht ,

(8.14)i = 1, . . . , L;h = 1, . . . , H ; t = 1, . . . , T ,

whereX is the matrix of agricultural prices and expenditure (in log), and
β the slope parameter vector to be estimated.i, h andt are the commod-
ity, country and period index respectively.L is the number of goods ever
imported from any given country, andH is the total number of countries.
The total number of observations isN and the sample is unbalanced, i.e.,
the number of available observations (time periods) for goodi and a given
countryh is not necessarily constant. In fact, it can even be zero if a coun-
try does not export a given commodity at all.

However, the multi-way error components model defined above is not
nested in a strict sense, becauseH (resp.L) is not indexed byi (resp.h).
For the import share model, a nested structure would imply that exporters
are completely exclusive in the determination of their products, and that
countries are fully specialized in exports. This is of course not true in prac-
tice, as it would rule out competition on export markets for homogeneous
products.

We consider the following expression for the error term:

uiht = αi + γh + λt + εiht ,

(8.15)i = 1, . . . , L;h = 1, . . . , H ; t = 1, . . . , T ,

whereαi, γh andλt are i.i.d. error components. Random effectsαi andγh
are included for capturing unobserved heterogeneity in demand shares, not
explained by prices, and related to commodity and country respectively,
whereasλt is picking up time-effects. The error termε is i.i.d. across all
dimensions (product, country, period), with variance denotedσ 2

ε .
In this framework, the commodity effectαi is capturing unobserved at-

tributes of commodityi, irrespective of the country and constant across
time periods, and which are systematic in the demand share. Likewise,γh
is the country-specific heterogeneous intercept capturing the idiosyncratic
component of imports from countryh, independent from commodities and
time periods. It is tempting to interpret such unobserved terms as quality
measures that may be independent from prices, but it has to be remem-
bered that the AIDS demand system places a particular restriction on the
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intercept term in the share equation. Hence, in our case, unobserved qual-
ity would enter the model through heterogeneous own-price slopes in the
expenditure function, a specification which closely resembles the one pro-
posed byCrozet and Erkel-Rousse (2004).

In matrix form, the three-way ECM (Error Component Model) can be
written

(8.16)Y = Xβ + u, with u = Δ1α +Δ2γ + Δ3λ+ ε,

whereα = (α1, . . . , αL)
′, γ = (γ1, . . . , γH )

′ andλ = (λ1, . . . , λT )
′.

MatricesΔk, k = 1, 2, 3, contain dummy variables equal to 1 if obser-
vation(i, h, t) is relevant for the group.

As mentioned above, it is possible that no observation are present for a
given combination(i, h). Davis (2002)points out that the original model
does not need be additive multi-way or nested, but can consist in a more
complex combination of the two usual specifications. The only require-
ment is that matrices of dummy variables have full column-rank.

8.3.1. The fixed effects model

Consider the fixed effects estimator first. If we suspect random effects to
be correlated with components of matrixX, we can obtain a consistent
estimator by wiping out these effectsα, γ andλ (within-group transfor-
mation) or, equivalently, directly incorporating them in the right-hand side
of the equation (LSDV, Least-Squares Dummy Variables procedure). This
kind of conditional inference can be performed more easily with the within
approach if the dataset is very large, and the number of dummy variables
is important (when it is increasing withN for instance).

AssumeN goes to infinity and denoteΔ = (Δ1,Δ2,Δ3) the matrix of
dummy variables (indicator variable matrix) associated with the three-way
ECM. MatricesΔ1,Δ2 andΔ3 have dimensionsN×L,N×H andN × T

respectively. Constructing the within matrix operator with unbalanced
panel in this case can be done in several stages. LetPA = A(A′A)+A′

andQA = I − PA, where+ denotes a generalized inverse, andQA is the
projection onto the null space of matrixA. The matrixQA is idempotent
and symmetric. Using results inWansbeek and Kapteyn (1989)andDavis
(2002), it can be shown that the required transformation obtained as:

QΔ = QA − PB − PC,

(8.17)
PA = I −Δ3(Δ

′
3Δ3)

+Δ′
3, QA = I − PA,

PB = QAΔ2(Δ
′
2QAΔ2)

+Δ′
2QA, QB = I − PB,

PC = QAQBΔ1
[
Δ′

1(QAQB)Δ1
]+
Δ′

1QAQB, QC = I − PC .
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The within estimator is therefore defined as

(8.18)β̂ = (X′QΔX)
−1X′QΔY,

under the exogeneity assumptionE[X′QΔε] = 0.

8.3.2. The random effects model

Consider now the random effects model, with the same multi-way error-
components structure defined above. We assume thatαi , γh andλt have
zero mean and varianceσ 2

1 , σ 2
2 and σ 2

3 respectively. The fullN × N

variance–covariance matrix of the model is

(8.19)Ω = E(uu′) = σ 2
ε I + σ 2

1Δ1Δ
′
1 + σ 2

2Δ2Δ
′
2 + σ 2

3Δ3Δ
′
3.

Under the normality assumption, the log-likelihood function is

(8.20)logL = −N

2
log(2π)+ 1

2
log
∣∣Ω−1

∣∣− 1

2
u′Ω−1u,

which is maximized jointly with respect to slope parametersβ and error
component variancesσ 2

1 , σ 2
2 , σ 2

3 andσ 2
ε .

Although conforming with non-linear optimization gradient-based rou-
tines, maximizing the log-likelihood may reveal cumbersome with large
datasets, asΩ, an N × N matrix, needs to be inverted. In the bal-
anced panel data case, inverting this variance–covariance matrix is made
easy by the fact that the spectral decomposition ofΩ involves iden-
tical block-diagonal terms associated with scalar variance components.
A Fuller and Battese (1973)spectral transformation can in principle be
performed directly on the dependent and the RHS variables. In the unbal-
anced but nested model,Baltagi et al. (2001)show that such a transfor-
mation is straightforward. We present below the corresponding spectral
decomposition for the unbalanced, non-nested three-way error compo-
nents model.

In practice, because the information matrix is block-diagonal between
first- and second-moment model parameters, estimation of the random
effects model is often performed in two stages to avoid optimization rou-
tines. The Feasible GLS estimator, based on initial and consistent esti-
mates of variance components, is consistent and asymptotically equivalent
to the Maximum Likelihood Estimator (MLE).

There are several methods in the literature for estimating variance com-
ponents, but asymptotic properties of these estimators differ, depending on
the nature of the panel dataset (balanced or unbalanced). With a balanced
sample, ANOVA estimators are Best Quadratic Unbiased (BQU), and are
minimum variance unbiased when disturbances are normally distributed,
seeSearle (1987). In the unbalanced panel case however, these ANOVA



206 R. Boumahdi, J. Chaaban and A. Thomas

variance estimation procedures only yield unbiased estimates for error
components.Baltagiet al. (2001)presents several extensions of ANOVA
estimators originally designed for the balanced data case, to the unbal-
anced case with multi-way error components (Baltagi and Chang, 1994
consider an extension of this approach to the one-way unbalanced panel
data model only).

In this paper, we consider two different methods for estimating vari-
ance components. The first one is the Quadratic Unbiased Estimator
(QUE) analogue to the two-wayWansbeek and Kapteyn (1989)esti-
mator, based on Within residuals obtained using Equation(8.18). Let
SN = e′QΔe, Si = e′PΔi

e for i = 1, 2, 3, where e is the N -
vector of Within residuals.N1, N2 and N3 are the column dimen-
sions ofΔ1, Δ2 andΔ3 respectively. Quadratic unbiased estimators of
variance components obtain by solving the following system of equa-
tions:

E(SN ) = (N − t1 − t2 − t3 + kn)σ
2
ε ,

E(S1) = (N1 + k1)σ
2
ε + nσ 2

1 + k12σ
2
2 + k13σ

2
3 ,

E(S2) = (N2 + k2)σ
2
ε + k21σ

2
1 + nσ 2

2 + k23σ
2
3 ,

E(S3) = (N3 + k3)σ
2
ε + k31σ

2
1 + k32σ

2
2 + nσ 2

3 ,

wherekN = rank(X), ki = tr[(X′QΔX)
−1X′PΔi

X], kij = tr[Δ′
jPΔi

Δj ],
i, j = 1, 2, 3, t1 = rank(A), t2 = rank(B), t3 = rank(C), andA =
Δ3, B = QAΔ2, C = QAQBΔ1.

The second variance estimation procedure we consider is the Minimum
Norm Quadratic Unbiased Estimator (MINQUE) proposed byRao (1971)
for a very general error component model. Lettingθ = (σ 2

ε , σ
2
1 , σ

2
2 , σ

2
3 ),

the MINQUE estimator of variance components, conditional on parameter
estimatesβ̂ is defined byθ̂ = S−1u, where

S =
{
tr(ViRVjR)

}
i,j
, i, j = 0, 1, 2, 3,

u = {y′RViRy}i, i = 0, 1, 2, 3,

Vi = ΔiΔ
′
i, i = 0, 1, 2, 3, Δ0 = I,

R = Ω−1[I −X
(
X′Ω−1X

)−1
X′Ω−1].

QUE estimates presented above can be used as initial values for com-
puting R. As is well known in applied work involving random effects
specifications, variance estimates can in some instances be negative, even
in simpler cases than ours. There does not seem to be fully satisfactory
ways to overcome this problem in practice, apart from considering a re-
stricted error component specification (e.g., considering a two-way instead
of a three-way model).
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Once variance components are estimated, the inverse of the variance–
covarianceΩ can be constructed to compute the Feasible GLS estimator
β̂ = (X′Ω̂−1X)−1X′Ω̂−1Y . Davis (2002)presents a convenient way of
constructing this inverse matrix without inverting anyn × n term. This
is based on the fact that the inverse ofΩ can be written asΩ−1 =
σ−2
ε (IN + DD′)−1, where

(IN +DD′)−1 = Q̃Δ2,Δ3 − Q̃Δ2,Δ3Δ1W
−1
1 Δ′

1Q̃Δ2,Δ3,

Q̃Δ2,Δ3 = Q̃Δ3 − Q̃Δ3Δ2W
−1
2 Δ′

2Q̃Δ3,

Q̃Δ3 = IN −Δ3(I +Δ′
3Δ3)

−1Δ′
3,

W1 = I +Δ′
1Q̃Δ2,Δ3Δ1, W2 = I + Δ′

2Q̃Δ3Δ2.

Hence, only matrices with rank cols(Δ1) = N1, cols(Δ2) = N2 and
cols(Δ3) = N3 need to be inverted.

Interestingly, the inverse of the variance–covariance matrix can also be
obtained using a spectral decomposition (such a decomposition was ob-
tained byBaltagi et al., 2001in the unbalanced nested case). Compared
to their case however, because our model is not nested, the redefinition of
matricesZ2 andZ3 and a change in the notation of the effect dimensions
are needed, to be able to use the technique (and notation) developed in
Baltagiet al. (2001).

Consider again the three-way error components model(8.15), where
nowH andT are indexed byi:

uiht = αi + γh + λt + εiht ,

i = 1, . . . , L;h = 1, . . . , Hi; t = 1, . . . , Ti,

and define the following vectors:

α = (α1, α2, . . . , αL)
′,

γ = (γ1, γ2, . . . , γH1, . . . , γ1, γ2, . . . , γHL
)′,

λ = (λ1, λ2, . . . , λT1, . . . , λ1, λ2, . . . , λTL)
′,

ε = (ε111, ε112, . . . , ε11T1, . . . , εLHL1, εLHL2, . . . , εLHLTL)
′.

We haveN =
∑L

i=1HiTi .
Unbalancedness in the country and time dimensions is therefore taken

care of by duplicating effectsγ andλ according to their relevance for a
given commodity level (i).

The error term in matrix form reads:

(8.21)u = Z1α + Z2γ + Z3λ+ ε,

where

Z1 = diag(eHi
⊗ eTi ), Z2 = diag(IHi

⊗ eTi ),
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Z3 = diag(eHi
⊗ ITi ),

and eHi
(resp.eTi ) is aHi (resp.Ti) vector of ones.

By diag(eHi
⊗eTi ) we mean diag(eH1 ⊗eT1, eH2 ⊗eT2, . . . , eHL

⊗eTL),
a block-diagonal matrix, and accordingly for termsZ2 andZ3.

The variance–covariance matrix is now

Ω = σ 2
1Z1Z

′
1 + σ 2

2Z2Z
′
2 + σ 2

3Z3Z
′
3 + σ 2

ε diag(IHi
⊗ ITi )

= diag
[
σ 2

1 (MHi
⊗MTi )+ σ 2

2 (IHi
⊗MTi )+ σ 2

3 (MHi
⊗ ITi )

(8.22)+ σ 2
ε (IHi

⊗ ITi )
]

= diag(Λi),

where, followingBaltagiet al.(2001)notation,MHi
= eHi

e′
Hi

andMTi =
eTie

′
Ti

.
We have

Λi = σ 2
1HiTi(MHi

⊗MTi )+ σ 2
2Ti(IHi

⊗MTi )

(8.23)+ σ 2
3Hi(MHi

⊗ ITi )+ σ 2
ε (IHi

⊗ ITi ),

whereMHi
= MHi

/Hi andMTi = MTi/Ti .
LettingEHi

= IHi
−MHi

andETi = ITi −MTi , the spectral decompo-
sition ofΛi can be written as

(8.24)Λi = π1iQ1i + π2iQ2i + π3iQ3i + π4iQ4i,

where

π1i = σ 2
ε , π2i = Tiσ

2
2 + σ 2

ε , π3i = Hiσ
2
3 + σ 2

ε ,

π4i = HiTiσ
2
1 + Tiσ

2
2 +Hiσ

2
3 + σ 2

ε ,

Q1i = (EHi
⊗ ITi )(IHi

⊗ ETi ), Q2i = (EHi
⊗MTi ),

Q3i = (MHi
⊗ ETi ), Q4i = (MHi

⊗MTi ).

It is easy to show in particular thatQ1Z1 = Q1Z2 = Q1Z3 = 0,
whereQ1 = diag(Q1i), hence satisfying the orthogonality conditions for
the spectral decomposition to apply. Based on consistent (not necessarily
unbiased) estimates of the variance components, a Feasible GLS esti-
mation through data transformation using scalar expressions only can be
performed.

Note finally that in the presence of serial correlation in theε’s, using
QUE or MINQUE variance components estimators may be problematic.
In this case,σ 2

ε I would becomeσ 2
ε (I ⊗Σε), withΣε the serial correlation

matrix whose parameter(s) need to be estimated. Further research should
be devoted to extend the unbalanced three-way error component model to
allow for serial correlation in the disturbances.
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8.3.3. Specification tests2

With multi-way error components models, the issue of specification tests
is even more important for empirical purposes, as far as the presence of ef-
fects is concerned. Misspecification in the structure of the error term will
have two kinds of consequences for parametric estimation. First, under a
random effects model with exogeneity of explanatory variables assumed,
standard-error estimates will be biased, although point estimates will re-
main consistent. Second, in a fixed effects context, the consequence of
such a misspecification will be worse if omitted unobserved heterogeneity
terms are correlated with explanatory variables.

In our case, assuming for example a one-way model with commodity
effects only (αi in the notation above) whereas the true model entails a
country effect(γh) as well, will produce inconsistent slope estimates in
import demand share equations if there exists a systematic country-wise
component correlated with import prices. Not only GLS but also Within
estimates are expected to be biased in this case, and an Hausman-type
exogeneity test between the two sets of estimates under the misspecified
one-way model will not provide indication of such bias.

Two types of tests need to be performed on the model. First, it is nec-
essary to check for the validity of assumptions made on the structure of
the multi-way error components model. A natural option is to use the La-
grange Multiplier test statistic based on components of the log-likelihood
evaluated at parameter estimates. This option is motivated by the equiv-
alence between GLS and Maximum Likelihood estimation, under the
exogeneity assumption. Hence, it is obvious that the validity of the test
statistic will depend crucially on this assumption under the random effects
specification.

Formally, the Lagrange Multiplier is written as̃D′F̃−1D̃ whereD̃ and
F̃ respectively denote the restricted score vector and information matrix.
When testing for the significance of random effects, i.e., testing for the
nullity of their associated variances, we letθ = (σ 2

ε , σ
2
1 , σ

2
2 , σ

2
3 ) and con-

siderD̃ = D(θ̃), F̃ = F(θ̃) whereθ̃ is the constrained vector of variances
and

D(θ) =
{
∂ logL

∂θr

}

r

=
{
−1

2
tr

[
Ω−1

(
∂Ω

∂θr

)]
+ 1

2

[
u′Ω−1

(
∂Ω

∂θr

)]
Ω−1u

}

r

,

2 This section relies on the discussion (and notation) inDavis (2002)about variance
components significance tests.
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F(θ) = E

{
−∂2 logL

∂θr∂θ ′
s

}

(r,s)

=
{

1

2
tr

[
Ω−1

(
∂Ω

∂θr

)
Ω−1

(
∂Ω

∂θs

)]}

(r,s)

.

If one wishes for example to test for the absence of all effects, we setθ̃ =
(σ 2

ε ,0,0,0) and consider the restricted variance–covariance matrixΩ̃ =
σ̃ 2
ε I , whereσ̃ 2

ε = 1
N
ũ′ũ is the restricted variance from OLS residuals.

Letting t1 = tr(Δ1Δ
′
1), t2 = tr(Δ2Δ

′
2), t3 = tr(Δ3Δ

′
3), the LM statistic

underH0: θ = θ̃ is given by

(8.25)LM =
(

− N

2σ̃ 2
ε

)2(
2σ̃ 4

ε

) ˜̃D′ ˜̃F−1 ˜̃D = N2

2
˜̃D′ ˜̃F−1 ˜̃D,

where

˜̃D =

⎛
⎜⎜⎜⎝

0
t1
N

− ũ′(Δ1Δ
′
1)ũ

ũ′ũ
t2
N

− ũ′(Δ2Δ
′
2)ũ

ũ′ũ
t3
N

− ũ′(Δ3Δ
′
3)ũ

ũ′ũ

⎞
⎟⎟⎟⎠ ,

˜̃F =

⎡
⎢⎣
N tr(Δ1Δ

′
1) tr(Δ2Δ

′
2) tr(Δ3Δ

′
3)

tr(Δ1Δ
′
1Δ1Δ

′) tr(Δ1Δ
′
1Δ2Δ

′
2) tr(Δ1Δ

′
1Δ3Δ

′
3)

tr(Δ2Δ
′
2Δ2Δ

′
2) tr(Δ2Δ

′
2Δ3Δ

′
3)

tr(Δ3Δ
′
3Δ3Δ

′
3)

⎤
⎥⎦ .

Finally, to test for the validity of our error-component specification, we
can easily compute the LM test statistic under various nullity assumptions
on individual variances. In other terms, we may test for the joint signifi-
cance of a subset of variances only, or test for the variance of a particular
effect to be 0, or finally test that the 3 variance components are 0. This
is particularly important when deciding whether a one-way of a two-way
model should be preferred, that is, in our case, if country-specific effects
should be accounted for in addition to product-specific individual effects.

The second type of specification checks concerns Hausman-type ex-
ogeneity tests, where GLS are compared to fixed effects estimates. Un-
der the assumption that the first specification analysis above has prop-
erly identified the genuine error components structure, we test for the
lack of correlation between effectsαi, γh and λt on the one hand, and
explanatory variables on the other, by considering the null hypothesis
H0: E(X′Ω−1u) = 0. This condition can be tested by verifying whether
components in the original model disturbance that are orthogonal toQΔ,
are correlated withX or not, in exactly the same way as in the one-way
model, when additional orthogonality conditions are imposed on the Be-
tween component.
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Table 8.1. Weighted average import tariff rates

Chapter Average customs tariff rate
(percent)

2 Meat and edible meat offal 5.01
4 Dairy products; birds’ eggs; natural honey 13.68

10 Cereals, products of the milling industry 1.31
15 Animal or vegetable fats and oils 12.92
17 Sugars and sugar confectionery 9.45

Source: Lebanese Ministry of Finance – Customs Administration.

8.4. The data

Data were made available from the Lebanese Customs administration for
the years 1997–2002. Original data records consist of exhaustive daily
transactions (both exports and imports) and contain information on: day,
month and year of the transaction; country of origin (imports) or destina-
tion (exports); preferential or trade agreement tariffs; net quantity of com-
modity imported/exported (either net weight or number of units); amount
of the transaction (in Lebanese pounds and USD).

We only selected the main agricultural import categories from the data-
base, corresponding to chapters 2 (meat), 4 (milk & dairy products), 10
(cereals), 15 (animal & vegetable fats & oils) and 17 (sugar) in the In-
ternational Harmonized System (HS) classification. For each transaction,
we computed unit prices by dividing the import transaction amount by
the number of units when applicable, or by net weight. These unit prices
before application of customs tariffs (but including cost, insurance and
freight, CIF) were then converted to unit prices inclusive of customs du-
ties, using average weighted tariff rates.Table 8.1reports values for these
tariff rates, based on the 1999 import values. Except for cereals (chapter
10), imported agricultural goods are associated with rather high customs
duty rates, but these rates are more or less similar to other categories: the
average weighted rate for non-agricultural imports to Lebanon was 12.20
percent in 1999 and fell to 6.23 percent in 2001.

European imports for the products described above were selected from
the database, and the monthly average import price was computed by prod-
uct level (level HS8 in the harmonized system) for each European country.
The choice of the HS8 level as the base unit for the empirical analysis is
motivated by the need to preserve a reasonable level of homogeneity for
commodities.

Import price is then associated with the import share corresponding to
the European country and the commodity group, which is computed for
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the corresponding time period (month) by summing all imports for this
product from the same European country, and dividing by the sum of
total imports for this product category (chapter), from all regions of the
world (Et ):

(8.26)wiht = pihtQiht

/∑

i

∑

h

pihtQiht = pihtQiht/Et .

Hence, for every chapter of products (2, 4, 10, 15 or 17), the sum of shares
will be 1 for any given product and time period, where a single share can
be either from one of the 15 European countries, or from one of the 3
other regions we have defined. These regions are denoted AR (Arab and
Regional countries), AM (North and South America) and ROW (Rest of
the World).

Monthly price indexes are computed for all agricultural products under
consideration, for these three export regions. These regions are defined in
a narrow economic sense in the case of the European Union, and in a more
geographic sense for AR (Arab and Regional countries) and AM (North
and Latin America).

The country classification is the following:

• EU (European Union): Austria, Belgium, Germany, Denmark, Spain,
Finland, France (including Andorra, Guadeloupe, Martinique and Réu-
nion), Great-Britain (including Gibraltar), Greece, Ireland, Italy, Lux-
emburg, The Netherlands, Portugal, Sweden;

• AR (Arab and Regional countries): Algeria, Morocco, Tunisia, Libya,
Iraq, Jordan, Kuwait, Arab Emirates, Bahrain, Brunei, Egypt, Iran,
Oman, Qatar, Saudi Arabia, Sudan, Syria, Turkey;

• AM (North and Latin America): United States of America, Canada,
Argentina, Bolivia, Brazil, Bahamas, Chile, Colombia, Costa Rica,
Dominican, Ecuador, Guatemala, Honduras, Mexico, Panama, Peru,
Paraguay, Trinidad and Tobago, Uruguay, Venezuela;

• ROW (Rest of the World): all other countries excluding Lebanon.

For each goodi (defined at the HS8 level) and montht , we construct an
import-share-weighted Tornqvist price index as follows:

(8.27)logpit =
∑

k

(
wik t + w0

k

)
log
(
pik t/p

0
k

)
,

wherewik t denotes the share of goodi imported from sourcek (AR, AM
or ROW) at timet, pik t is the price of goodi imported from sourcek; w0

k

andp0
k are the average (over all time periods) import share and price for

sourcek, respectively. The Tornqvist price index is the approximation of
the Divisia index, and it is chosen because it is consistent with the AIDS
demand system.
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To control for strategic behavior from European competitors, we also
compute the average import price by product, for all European imports
excluding the country under consideration. The price index in this case is
also of the Tornqvist form presented above, and will be denotedPEU in
the following. Depending on the sign of the associated coefficient of this
cross-price effect, substitutability or complementarity patterns between
European countries can be identified. This aspect of the model is of course
related to the availability of highly disaggregated data, as Lebanese im-
ports from different countries and different products are observed on a
high frequency basis.

The need for competitor prices at each commodity level and for each
time period (month) implies that a significant amount of data is lost be-
cause of missing variables. This problem, however, is mainly due to the
lack of observations for some time periods on regions AR and AM ex-
ports to Lebanon. When this is the case, the time period is entirely lost.
However, when no import data are available for some European coun-
tries, the estimation procedure accommodates for this, because the model
is precisely unbalanced in this regard: European import shares depend
on countries and commodities, for which the number of available (time)
observations differ. In total, there are 3133 monthly observations, for 15
countries (in the European Union), 51 products (HS8 level) and 72 months.

The share equations corresponding to the Restricted Source Differenti-
ated AIDS demand system imply not only price indexes for various import
sources as explanatory variables, but also the logarithm of expenditure
over the overall price index, log(Et/P

T ). This expenditure is an endoge-
nous variable in the statistical and economic sense, as it depends on the
whole price system including region-specific import unit price indexes.
For this reason, it is common practice in applied demand analysis to re-
place discounted expenditure by a prediction computed from instruments
such as time dummies and a selection of prices (seeAndayani and Tilley,
1997), in order to resolve this endogeneity problem. We estimate an au-
toregressive process for this expenditurein the considered agricultural
product category(chapter) only (in log), incorporating yearly dummies
(from 1998 to 2002) as well, and retain its estimated value, denoted EXPit .
This linear prediction is then used in place of the original variable in the
share equations. With such a procedure, parameter estimates are expected
to be consistent. As mentioned above, we restrict the demand model in
such a way that no substitution patterns are allowed between agricultural
goods and non-agricultural commodities, as well as between different agri-
cultural categories, to keep the number of parameters to a minimum.

Average regional import shares over the period 1997–2002 are reported
in Table 8.2, for each of the 6 commodity chapters. One can see from
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Table 8.2. Average import shares, by region – 1997 to 2002 average

Chapter (HS2) Europe Arab &
Regional

America ROW

2 (Meat) 0.2484 0.0731 0.2630 0.4153
4 (Dairy products) 0.4062 0.1436 0.0783 0.3717

10 (Cereals) 0.2553 0.1827 0.1734 0.3885
15 (Animal & veg. fat) 0.2630 0.3329 0.1716 0.2323
17 (Sugar) 0.3914 0.2582 0.1170 0.2332

this table that European imports are the most important in relative terms
for chapter 4 (milk & dairy products) only. Imports from the rest of the
world remain more significant especially for meat (chapter 2) and cereals
(chapter 10). Interestingly, Arab and Regional countries have the high-
est average import share for fats and oils. Given the importance of these
commodities particularly for home cooking in Southern Europe and the
Mediterranean Sea, these countries are expected to compete more on these
products with the European Union. American imports do not appear to
possess a dominant situation in either commodity groups. For meat how-
ever, their import share is higher than the European ones on average.

To assess the degree of unbalancedness in the data, we compute the
following measure for each component:

(8.28)ri =
N2
i

tr[(Δ′
iΔi)−1]tr(Δ′

iΔi)
, i = 1,2,3,

whereni is the column dimension ofΔi . The expressionri takes the value
of 1 when the data are exactly balanced in all other dimensions (other than
i), while a value approaching 0 indicates a severe degree of unbalanced-
ness. In our case wherei = 1 corresponds to product,i = 2 to country
andi = 3 corresponds to time, we have

Chapter 2 – Meat r1 = 0.0718; r2 = 0.3899; r3 = 0.9826;
Chapter 4 – Milk and Dairy r1 = 0.0840; r2 = 0.2001; r3 = 0.9729;
Chapter 10 – Cereals r1 = 0.1746; r2 = 0.2881; r3 = 0.9873;
Chapter 15 – Fats r1 = 0.0337; r2 = 0.0983; r3 = 0.9925;
Chapter 17 – Sugar r1 = 0.0531; r2 = 0.3012; r3 = 0.9872.

The measure of unbalancedness associated with time (r3) indicates that
only a very small proportion of European countries and products are not
present every year in the sample over the period 1997–2002. However,r2
reveals that the degree of unbalancedness as far as countries are concerned
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is significant, with measures ranging from 0.09 to 0.39. Finally, as ex-
pected, the highest degree of unbalancedness is associated with products,
because of the relative degree of specialization in agricultural products ex-
ported from the European Union. Values ofr1 by chapter seem to indicate
that Cereals are exported by a more significant subset of countries (with
value 0.17), while Fats are more limited in the range of exporting countries
(with value 0.03).

8.5. Estimation results

The demand share equations for the 5 product categories have the follow-
ing form:

wihkt = β0k + β1k log(Pihkt/PROW,ikt)+ β2k log(PEU,ikt/PROW,ikt)

+ β3k log(PAR,ikt/PROW,ikt)+ β4k log(PAM ,ikt/PROW,ikt)

(8.29)+ β6k log EXPt + uihkt ,

where indexk denotes the commodity group,k = 2, 4, 10, 15, 17, i de-
notes product,h is the European country associated withi andt is the time
period.pihkt denotes the individual import price for goodi and from Euro-
pean countryj , whereas PEUikt denotes the price index for the same good
being exported from all other European competitors (i.e., from European
countriesk different from European countryh). Observations for different
commodity groups (chapters) are not pooled, so that there are 5 sets of
parameters to estimate. Linear homogeneity of expenditure in agricultural
goods is imposed by dividing all prices by the price index for the Rest of
the World (ROW) region. The total number of observations isN = 3133
for the 5 different commodity groups.

The first stage in the estimation procedure is to check for the valid-
ity of the error components model, regarding the number of components
in the multi-way structure (product, country, time). For this, we estimate
Equation(8.13)with the random effects specification, to obtain estimates
of variance componentsθ = (σ 2

ε , σ
2
1 , σ

2
2 , σ

2
3 ). Lagrange Multiplier test

statistics are then computed for different model specifications: (product,
year), (country, year), (product, country), (no effects), by using the ex-
pressionD̃′F̃−1D̃ under alternative variance restrictions.

As mentioned before, this approach has the advantage of avoiding max-
imizing the log-likelihood with respect to variance components and slope
parameters. The second step is to check for the validity of the random
effects specification, which is performed by computing a Hausman test
statistic for the comparison between GLS and Within (fixed effects) esti-
mates. As is well known, if the random effects specification were to be
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invalidated by this exogeneity test, then GLS would not be consistent,
and the LM test statistics would not be valid either. Results are pre-
sented inTables 8.3 to 8.7for the 5 chapters under consideration: Meat
(Table 8.3, chapter 2), Milk and Dairy products (Table 8.4, chapter 4),
Cereals (Table 8.5, chapter 10), Fats (Table 8.6, chapter 15) and Sugar
(Table 8.7, chapter 17). For each product category (chapter), we present
OLS, Within (fixed effects) and GLS parameter estimates under the full
three-way model specification. For the random effects specification, two
versions of GLS are computed: GLS with QUE variance components and
GLS with MINQUE variance components.3 In the case of the latter, ini-
tial values for computing variance components are the Wansbeek–Kapteyn
QUE estimates. As a measure of fit associated with each estimation pro-
cedure, we also report the Root Mean Square Error (RMSE).

It can be seen first that in all cases, when using MINQUE variance
estimates, the Hausman test statistic does not reject the random effects
specification (although for the case of Meat, inTable 8.3, thep-value as-
sociated with the Hausman test statistic is only slightly above the 5 percent
level). Hence, the test statistic is not in favor of rejecting the null hy-
pothesis thatE[X′Ω−1u] = 0, indicating that random effects could be
considered. The value of the test statistic leads however to a different con-
clusion for only 1 chapter out of 5 (Fats), where GLS-QUE is rejected in
favor of the Within, whereas the random effects specification is not re-
jected when using GLS-MINQUE.

Chapter 15 (Fats) however, is the only one for which the QUE estimator
could not achieve a positive estimate for the variance of the time effect,
contrary to the MINQUE procedure. For this reason, the corresponding
variance was set to 0, and the value of the Hausman and LM test statistics
using GLS-QUE are computed using this value forσ 2

3 . Consequently, re-
sults for chapter 15 are better interpreted in terms of the GLS-MINQUE
estimator alone, in particular when joint significance tests of variance com-
ponents are concerned.

When considering MINQUE variance component estimates only, this
has two important consequences: first, our variance components can be
considered consistent, as well as the associated LM test statistics. Second,
unobserved heterogeneity specific to products and countries do not ap-
pear to be correlated with prices and total expenditure (log EXPt ). Hence,
while we can have some confidence in the inference we conduct about the
structure of the multi-way error specification based on GLS estimates, we

3 The implementation of QUE and MINQUE estimators was performed using the proce-
dures provided by Peter Davis for the Gauss software, and described inDavis (2002).
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Table 8.3. European import share equation – Meat

Parameter OLS Within GLS-QUE GLS-MINQUE

Chapter 2. Meat

log price −0.0563∗∗∗ −0.0062 −0.0140 −0.0165
(0.0128) (0.0162) (0.0153) (0.0153)

log PEU 0.0032 −0.0163 −0.0135 −0.0120
(0.0150) (0.0165) (0.0153) (0.0154)

log PAR 0.0042 −0.0035 −0.0013 −0.0012
(0.0052) (0.0054) (0.0052) (0.0053)

log PAM 0.0128 0.0313∗∗ 0.0226∗ 0.0230∗

(0.0115) (0.0132) (0.0117) (0.0119)
log EXP −0.0002 −0.0003 −0.0010 −0.0008

(0.0247) (0.0252) (0.0240) (0.0243)
Intercept 0.1448 − 0.1385 0.1386

(0.3424) (0.3354) (0.3385)
RMSE 0.1372 0.1439 0.1415 0.1410
Hausman test 7.6888 11.0448

(0.1742) (0.0505)
σ1 (product) 0.0217 0.0227
σ2 (country) 0.0655 0.0541
σ3 (year) 0.0449 0.0439
σε 0.1232 0.1249
LM test (i) σ1 (product)= 0 4.2628 3.5301

(0.0389) (0.0602)
(ii) σ2 (country)= 0 4.5827 4.3316

(0.0323) (0.0374)
(iii) σ3 (year)= 0 5.3689 4.7569

(0.0204) (0.0291)
(i) + (ii) 6.3942 6.0168

(0.0408) (0.0493)
(i) + (iii) 3 .7269 2.4552

(0.1551) (0.2929)
(ii) + (iii) 8 .9170 8.4641

(0.0115) (0.0145)
(i) + (ii) + (iii) 9 .5569 9.1379

(0.0227) (0.0275)
Observations 212

Note. Standard errors andp-values are in parentheses for parameter estimates and test
statistics respectively.
∗10 percent level.
∗∗5 percent level.
∗∗∗1 percent level.
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Table 8.4. European import share equation – Dairy products

Parameter OLS Within GLS-QUE GLS-MINQUE

Chapter 4. Dairy products

log price 0.0073 −0.0287∗∗∗ −0.0268∗∗∗ −0.0268∗∗∗

(0.0067) (0.0071) (0.0069) (0.0070)
log PEU 0.0079 0.0392∗∗∗ 0.0347∗∗∗ 0.0351∗∗∗

(0.0067) (0.0080) (0.0075) (0.0077)
log PAR −0.0163∗∗∗ −0.0127∗∗∗ −0.0115∗∗∗ −0.0117∗∗∗

(0.0035) (0.0035) (0.0034) (0.0034)
log PAM 0.0092∗ 0.0109∗∗ 0.0123∗∗ 0.0119∗∗

(0.0056) (0.0051) (0.0050) (0.0050)
log EXP 0.0041 0.0034 0.0010 0.0014

(0.0087) (0.0084) (0.0080) (0.0082)
Intercept −0.0128 − −0.0170 −0.0243

(0.1311) (0.1221) (0.1238)
RMSE 0.1180 0.1200 0.1197 0.1198
Hausman test 6.8675 7.7951

(0.2306) (0.1679)
σ1 (product) 0.0368 0.0446
σ2 (country) 0.0498 0.0449
σ3 (year) 0.0136 0.0169
σε 0.1009 0.1015
LM test (i) σ1 (product)= 0 41.3105 31.5192

(0.0000) (0.0000)
(ii) σ2 (country)= 0 46.1936 48.9460

(0.0000) (0.0000)
(iii) σ3 (year)= 0 5.0716 4.1831

(0.0243) (0.0408)
(i) + (ii) 69.7937 69.8706

(0.0000) (0.0000)
(i) + (iii) 39.4286 36.0447

(0.0000) (0.0000)
(ii) + (iii) 37.4989 37.2523

(0.0000) (0.0000)
(i) + (ii) + (iii) 67.0836 65.8316

(0.0000) (0.0000)
Observations 902

Note. Standard errors andp-values are in parentheses for parameter estimates and test
statistics respectively.
∗10 percent level.
∗∗5 percent level.
∗∗∗1 percent level.



Import Demand Estimation with Country and Product Effects 219

Table 8.5. European import share equation – Cereals

Parameter OLS Within GLS-QUE GLS-MINQUE

Chapter 10. Cereals

log price −0.1688∗∗∗ −0.0573∗∗∗ −0.0608∗∗∗ −0.0676∗∗∗

(0.0174) (0.0179) (0.0171) (0.0170)
log PEU 0.0249 −0.0196 −0.0200 −0.0204

(0.0202) (0.0148) (0.0142) (0.0147)
log PAR 0.0419∗ 0.0571∗∗ 0.0508∗∗ 0.0561∗∗∗

(0.0236) (0.0215) (0.0197) (0.0200)
log PAM 0.1157∗∗∗ 0.0288 0.0380∗ 0.0390∗∗

(0.0245) (0.0206) (0.0194) (0.0198)
log EXP 0.0527 0.1386∗∗∗ 0.0956∗∗ 0.1219∗∗

(0.0604) (0.0497) (0.0422) (0.0473)
Intercept −0.4719 − −1.2191∗∗ −1.5765∗∗

(0.8518) (0.6096) (0.6741)
RMSE 0.3052 0.3359 0.3324 0.3307
Hausman test 7.0360 9.0991

(0.2179) (0.1051)
σ1 (product) 0.1697 0.1005
σ2 (country) 0.2864 0.1847
σ3 (year) 0.0208 0.0558
σε 0.1962 0.2002
LM test (i) σ1 (product)= 0 12.2747 3.8388

(0.0000) (0.0500)
(ii) σ2 (country)= 0 201.8000 59.0327

(0.000) (0.0000)
(iii) σ3 (year)= 0 7.1331 2.6079

(0.0075) (0.1063)
(i) + (ii) 84.5920 76.1020

(0.0000) (0.0000)
(i) + (iii) 14.9273 10.6499

(0.0005) (0.0048)
(ii) + (iii) 66.8251 59.6952

(0.0000) (0.0000)
(i) + (ii) + (iii) 86.3018 82.2103

(0.0000) (0.0000)
Observations 261

Note. Standard errors andp-values are in parentheses for parameter estimates and test
statistics respectively.
∗10 percent level.
∗∗5 percent level.
∗∗∗1 percent level.
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Table 8.6. European import share equation – Animal and vegetable
fats

Parameter OLS Within GLS-QUE GLS-MINQUE

Chapter 15. Animal and vegetable fats

log price −0.0620∗∗∗ −0.0377∗∗∗ −0.0364∗∗∗ −0.0387∗∗∗

(0.0072) (0.0065) (0.0064) (0.0064)
log PEU −0.0031 0.0050 0.0035 0.0032

(0.0060) (0.0051) (0.0050) (0.0050)
log PAR 0.0138∗∗ 0.0152∗∗∗ 0.0148∗∗∗ 0.0159∗∗∗

(0.0058) (0.0047) (0.0046) (0.0047)
log PAM 0.0212∗∗∗ 0.0009 −0.0030 0.0159

(0.0071) (0.0060) (0.0058) (0.0047)
log EXP 0.0171 0.0095 0.0070 0.0094

(0.0108) (0.0093) (0.0084) (0.0091)
Intercept −0.1726 − −0.0022 −0.0352

(0.1555) (0.1266) (0.1385)
RMSE 0.1379 0.1397 0.1399 0.1396
Hausman test 14.3542 5.0533

(0.0135) (0.4094)
σ1 (product) 0.0431 0.0277
σ2 (country) 0.0942 0.1293
σ3 (year) 0.0000 0.0141
σε 0.1068 0.1076
LM test (i) σ1 (product)= 0 8.1188 5.2606

(0.0043) (0.0218)
(ii) σ2 (country)= 0 86.3235 78.2605

(0.0000) (0.0000)
(iii) σ3 (year)= 0 1.9904 2.8631

(0.1583) (0.0906)
(i) + (ii) 111.9229 107.1756

(0.0000) (0.0000)
(i) + (iii) 8 .3276 6.7249

(0.0155) (0.0346)
(ii) + (iii) 85.5278 82.4316

(0.0000) (0.0000)
(i) + (ii) + (iii) 110.7229 106.9949

(0.0000) (0.0000)
Observations 912

Note. Standard errors andp-values are in parentheses for parameter estimates and test

statistics respectively. The variance of time effectsσ2
3 was set to 0 in the QUE case, as no

positive estimate was found.
∗∗5 percent level.
∗∗∗1 percent level.
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Table 8.7. European import share equation – Sugar

Parameter OLS Within GLS-QUE GLS-MINQUE

Chapter 17. Sugar

log price −0.0088∗∗∗ −0.0058∗∗ −0.0066∗∗ −0.0067∗∗

(0.0026) (0.0028) (0.0027) (0.0027)
log PEU 0.0078∗∗ 0.0057 0.0054 0.0054

(0.0032) (0.0036) (0.0035) (0.0035)
log PAR −0.0017 0.0013 0.0012 0.0013

(0.0033) (0.0034) (0.0033) (0.0034)
log PAM 0.0029 0.0006 0.0016 0.0016

(0.0034) (0.0035) (0.0034) (0.0034)
log EXP −0.0103∗∗ −0.0104∗ −0.0115∗∗ −0.0116∗∗

(0.0053) (0.0054) (0.0053) (0.0053)
Intercept 0.2332∗∗∗ − 0.1862∗∗ 0.1852∗∗

(0.0760) (0.0771) (0.0779)
RMSE 0.0745 0.0746 0.0746 0.0746
Hausman test 3.3943 5.4554

(0.6394) (0.3628)
σ1 (product) 0.0211 0.0251
σ2 (country) 0.0156 0.0209
σ3 (year) 0.0115 0.0115
σε 0.0692 0.0696
LM test (i) σ1 (product)= 0 10.8080 10.6233

(0.0010) (0.0011)
(ii) σ2 (country)= 0 12.2419 12.2729

(0.0004) (0.0004)
(iii) σ3 (year)= 0 3.8765 3.0372

(0.0489) (0.0813)
(i) + (ii) 89.2117 88.4433

(0.0000) (0.0000)
(i) + (iii) 31.2294 29.1991

(0.0000) (0.0000)
(ii) + (iii) 53.4133 52.3849

(0.0000) (0.0000)
(i) + (ii) + (iii) 25.8925 25.4420

(0.0000) (0.0000)
Observations 846

Note. Standard errors andp-values are in parentheses for parameter estimates and test
statistics respectively.
∗10 percent level.
∗∗5 percent level.
∗∗∗1 percent level.
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can also conclude that unobserved characteristics of the products are not
correlated with observed prices.

A possible interpretation of this result is that prices already convey all
the necessary information on product characteristics, so that unobserved
heterogeneity in import demand shares is orthogonal to the price level.
Hence, although demand share for an imported good from countryh can
be systematically larger than the one associated with the same good ex-
ported from countryk whatever the country-wise price level, the ranking
of these countries in terms of demand shares does not depend on price.
The same situation would also be true for two productsi andj exported
from the same country,h.

As far as variance components are concerned, it can be seen fromTa-
bles 8.3 to 8.7that product and country effects are always statistically
significant when GLS-QUE is used. With MINQUE variance components
however, the test for nullity of the variance of product effects has ap-
valueslightly above the 5 percent level for Meat (Table 8.3) and Cereals
(Table 8.5). Regarding time effects, as mentioned above, the QUE vari-
ance ofλ for chapter 15 (Fats) was set to 0, as no positive estimate was
found. The variance of time effects is not significantly different from 0 for
Cereals, Fats and Sugar with MINQUE, and Fats with QUE variance com-
ponents estimates. Chapter 2 (Meat) is the only case for which the joint
test of a zero variance for both product and year does not reject the null at
the 5 percent level, with either QUE or MINQUE estimates. In every other
case, joint significance tests strongly reject the fact that a pair of variances
(or the three variance components) is equal to 0.

Let us now turn to parameter estimates implied by the different meth-
ods. Estimation results for the Meat sub-sample (Table 8.3) are rather poor,
with only 4 significant parameter estimates: own-price with OLS, log PAM
with Within, GLS-QUE and GLS-MINQUE. In all 5 cases, OLS estimates
of own-price coefficient (logprice) are always larger in absolute value than
Within and GLS. The coefficient associated to expenditure(log EXPt ) is
larger in absolute value when estimated with OLS in the case of Milk and
Dairy products, and Fats, but is lower in the 3 other cases. When compar-
ing Within and GLS estimates of own-price and cross-price parameters,
there is no clear pattern either. For example, own-price coefficient Within
estimates are higher in absolute value than their GLS counterparts in the
case of Milk and Dairy products (Table 8.4, but are lower in absolute value
in the other cases (Meat, Cereals, Fats and Sugar). Within cross-price pa-
rameter estimates are higher in absolute value than GLS in the case of
Meat, Milk and Dairy (with the exception of log PAM) and Sugar (with
the exception of log PAM). Whether QUE or MINQUE variance compo-
nent estimates are used can lead to significant differences in the magnitude
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of slope parameter estimates, but only in a limited number of cases (at
least when parameters are significantly different from 0). This is particu-
larly true for the coefficient on log EXPt in the case of Cereals (Table 8.5),
log PAR in the case of Fats (Table 8.6).

InspectingTables 8.3 to 8.7, one can note that substitution effects as
identified by significant cross-price coefficients are not always present,
depending on the category of products and the exporting region. For Meat
(chapter 2,Table 8.3), a significant cross-price effect exists only with
American countries. Meat and Dairy products (chapter 4,Table 8.4) are
characterized by significant and positive cross-price terms with European
and American competitors, and negative cross-price effects with Arab
and Regional countries. As far as Cereals are concerned (chapter 10,Ta-
ble 8.5), the cross-price coefficients are positive and significant for Arab
and Regional, and American exporters. For Fats (chapter 15,Table 8.6),
positive and significant cross-effects with Arab and Regional countries
only indicate some degree of complementarity with European exporters.
Finally, the Sugar category (chapter 17,Table 8.7) is not associated to any
degree of neither substitutability nor complementarity with any exporting
region (or European competitors).

An interesting aspect of our demand model is the fact that cross-price
effects associated to European competitors can be identified. The only cat-
egory of products where significant parameters are found when estimated
with Within and GLS is Milk and Dairy (chapter 4,Table 8.4). Parameter
estimates associated to logPEU are all positive and close to each other in
magnitude, indicating a significant degree of substitution between Euro-
pean exporters to Lebanon. The reason for this may be that dairy products
in particular are highly specific in terms of national image, and it is also
a sector where products are expected to be more differentiated than, say,
cereals, sugar or fats.

On the whole, estimates associated with own- and cross-prices are infe-
rior to those found inAndayani and Tilley (1997), indicating a somewhat
smaller sensitivity of import shares. This may be due to the level of disag-
gregation in our data, compared to their study on similar products (fruits)
where time series were used. Moreover, that European, AM and AR com-
petitors’ prices should have positive coefficients as indicating substitution
possibilities is not always verified from our estimates. However, a more de-
tailed inspection of country-by-country export patterns would be needed
in this respect. For example, France and Italy may have different special-
ization strategies regarding corn, wheat and rice.

As far as expenditure in agricultural products is concerned, the associ-
ated coefficient is significant only for chapters 10 (Cereals) and 17 (Sugar).
Surprisingly, it does have neither the same sign nor a similar magnitude,



224 R. Boumahdi, J. Chaaban and A. Thomas

indicating that the “expenditure effect” associated with cereals exported
from Europe is positive, while it is negative for sugar products. Caution
must be paid however when interpreting these results from the consumer
point of view, as expenditure here concerns only the associated chapter,
not total expenditure. It is therefore not relevant to interpret this effect as a
pure income effect, but rather, as the impact of a change in the expenditure
devoted to this particular chapter on European country-wise import shares.
This point is also valid of course when interpreting elasticities, see below.

Concerning efficiency, the loss in efficiency of using Within instead
of GLS estimates is not very important, and this is also true of OLS.
Furthermore, GLS-QUE and GLS-MINQUE are rather close in terms of
the magnitude of parameter estimates, although the difference in variance
component estimates leads to different conclusions for the Hausman and
LM test in a limited number of cases.

We finally compute Marshallian (uncompensated) elasticities of substi-
tution between regions (EU, AR, AM and ROW), based on GLS-MINQUE
estimates. For the case of European competitors, this elasticity is to be
interpreted as a“within-Europe” substitution pattern. Since we only esti-
mate a single share equation instead of the full system of import shares, we
are only able to obtain a picture from one side of the market, the European
one. Hence, it is not possible to infer substitution patterns between, say,
Arab and Regional imports in the one hand, and American imports on the
other. Results are given inTable 8.8, where we report elasticity estimates
with their standard errors, from expressions given above in the section on
the AIDS demand model.

Own-price elasticities are between−1 and−2 for all 5 commodity
groups. In fact, a Student test for equality to−1.00 of this elasticity does
not reject the null only in the case of the Cereals category. These figures
are on average slightly lower than own-price elasticities found inAndayani
and Tilley (1997)on a dataset of similarly disaggregated imports. They
are not significantly different from the bilateral ones reported inMarquez
(1990, 1994), and obtained under a variety of estimation procedures. Ex-
penditure elasticities are all positive and significant, and close to 1 with
the exception of Cereals (close to 2.00) and Sugar (0.64). This result might
seem surprising at first, as it would indicate a much stronger reaction of
import demand for cereals than for sugar from Europe when expenditure
increases. As indicated above, expenditure is defined as discounted total
demand (in value) for all products within the considered category (chap-
ter). Hence, because of this separability restriction, the above effect should
not be understood as a pure income effect, but instead as merely indicat-
ing that European cereals benefit very strongly from an increase in total
demand for cereals, compared to other exporting regions.



Import Demand Estimation with Country and Product Effects 225

Table 8.8. Marshallian demand elasticities

Own-price EU AR AM ROW Expenditure

Meat −1.1609∗∗∗ −0.1139∗∗∗ −0.0116∗∗∗ 0.2248∗∗∗ 0.0795∗∗∗ 0.9919∗∗∗

(0.0354) (0.0245) (0.0025) (0.0492) (0.0177) (0.0017)
Milk, Dairy −1.6251∗∗∗ 0.7940∗∗ −0.2737∗∗ 0.2773∗∗ 0.0687∗∗ 1.0338∗∗∗

(0.2906) (0.3708) (0.1279) (0.1290) (0.0337) (0.0157)
Cereals −1.7520∗∗∗ −0.6213 0.3849 0.2254 0.8559 2.1365∗∗

(0.4638) (0.5012) (0.3752) (0.2931) (0.6907) (0.8365)
Fats −1.4385∗∗∗ −0.0715∗ 0.1428∗∗ −0.0362 0.0964∗∗ 1.1044∗∗∗

(0.1625) (0.0383) (0.0633) (0.0336) (0.0418) (0.0395)
Sugar −1.1902∗∗∗ 0.3281∗∗ 0.1236 0.1328∗ −0.0382 0.6477∗∗∗

(0.0358) (0.1229) (0.0811) (0.0814) (0.0732) (0.0624)

Note. Elasticities are based on GLS with MINQUE variance estimates. Own and Expen-
diture are own-price and expenditure elasticities respectively. EU, AR, AM and ROW
respectively indicate elasticities of substitution between single-country European import
price and European, Arab and Regional, American, and Rest of the World competitors.
∗10 percent level.
∗∗5 percent level.
∗∗∗1 percent level.

Considering now cross-price elasticities, it can be seen that a majority
of them are positive, with the exception of European competitors for Ce-
reals (not significant) and Fats, Arab and Regional for Milk and Dairy,
American exports for Fats (not significant), and Rest of the World for
Sugar (not significant). When they are positive and significant, cross-price
elasticities range between 8 and 79 percent, while only four are negative
and significant: EU and AR for Meat, AR for Milk and Dairy, and EU
for Fats. Hence, European imports appear substitutes for Milk and Dairy,
and Sugar, while they are complementary for Meat and Fats. Arab and
Regional country imports are significant substitutes to European imports
for Fats only, and complementary to Meat, and Milk and Dairy. Ameri-
can imports are significant substitutes to European imports in the case of
Meat, Milk and Dairy, and Sugar, while imports from the Rest of the World
countries are significant substitutes to Meat, Milk and Dairy, and Fats.

8.6. Conclusion

This paper revisits the issue of estimating import elasticities, in the per-
spective of bilateral or multilateral trade agreements between countries
and trade regions. While most empirical applications have used aggregate
data in the form of time series in order to predict diversion and substitution
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patterns in international trade, we use for the first time to our knowledge,
data directly obtained from a national customs administration for a single
country (Lebanon). We are thus able to perform an empirical analysis of
import shares at a very disaggregate level and with a much larger number
of observations.

Since bilateral relationships between trade regions (regional blocks)
are still essential in the current trend toward trade liberalization, it is in-
teresting to address the issue of unobserved components in international
commodity transactions, possibly not related to prices. As an example,
quality of imported products, packaging standards but also implicit con-
tracts between countries may explain a significant share of trade relations.

In order to model such unobserved trade factors, we first specify a
simple micro-economic model of import share determination, using the
AIDS (Almost Ideal Demand System) specification from the applied de-
mand analysis. Restricting our attention to major agricultural commodities
(meat, dairy products, cereals, animal and vegetable fats, sugar), we es-
timate an import share equation for European products as a function of
own-price and competitors prices. Competition is taking place between
European countries, Arab and Regional countries, North and South Amer-
ica, and the Rest of the World.

The econometric model incorporates a multi-way error components
structure for unbalanced panel data, to accommodate for a more general
heterogeneity pattern. Product, country, and time effects constitute sep-
arate unobserved effects whose influence is controlled for by panel data
techniques (either fixed effects for conditional inference, or random effects
for unconditional one). We estimate the import share equation by allowing
parameter heterogeneity across the 5 commodity groups, and test for the
validity of our multi-way error components specification with unbalanced
data. Estimation results show that our specification is generally supported
by the data, and that a more general error structure exists than what is gen-
erally considered in the literature, i.e., including country effects in addition
to unobserved product effects. We also test for the random effects speci-
fication and do not reject it in favor of the fixed effects model, indicating
that no significant correlation exists between product and country effects
on the one hand, and import prices on the other. This last finding might
be related to the fact that we only concentrate on agricultural commodities
which are mostly homogeneous in nature. An interesting extension of our
present approach would be to test our empirical specification on manufac-
turing goods that are highly differentiated (such as cars for instance).
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Abstract

Parametric aggregation of heterogeneous micro production technologies
is discussed. A four-factor Cobb–Douglas function with normally dis-
tributed firm specific coefficient vector and with log-normal input vector
(which agrees well with the available data) is specified. Since, if the num-
ber of micro units is large enough, aggregates expressed as arithmetic
means can be associated with expectations, we consider conditions en-
suring an approximate relation of Cobb–Douglas form to exist between
expected output and expected inputs. Similar relations in higher-order
moments also exist. It is shown how the aggregate input and scale elas-
ticities depend on the coefficient heterogeneity and the covariance matrix
of the log-input vector and hence vary over time. An implementation based
on firm-level panel data for two manufacturing industries gives estimates
of industry-level input elasticities and decomposition for expected output.
Finally, aggregation biases when the correct aggregate elasticities are re-
placed by the expected firm-level elasticities, are explored.
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9.1. Introduction

The production function is usually considered an essentially micro con-
struct, and the existence, interpretation, and stability of a corresponding
aggregate function are issues of considerable interest in macro-economic
modeling and research, cf. the following quotations: “The benefits of an
aggregate production model must be weighted against the costs of depar-
tures from the highly restrictive assumptions that underly the existence
of an aggregate production function” (Jorgenson, 1995, p. 76) and “An
aggregate production function is a function that maps aggregate inputs
into aggregate output. But what exactly does this mean? Such a concept
has been implicit in macroeconomic analyzes for a long time. However, it
has always been plagued by conceptual confusions, in particular as to the
link between the underlying micro production functions and the aggregate
macro production function,the latter thought to summarize the alleged
aggregate technology” (Felipe and Fisher, 2003, p. 209, our italics).1 Four
somewhat related questions are of interest: (Q1) Do the assumptions made
ensure theexistenceof an aggregate function of the same parametric form
as the assumed micro functions, and which additional assumptions will be
required? (Q2) If the answer to (Q1) is in the affirmative, can anaïve ag-
gregation, simply inserting mean values of micro parameters into a macro
function with the same functional form, give an adequate representation of
the ‘aggregate technology’? (Q3) If the answer to (Q2) is in the negative,
which are the most importantsources of aggregation biasand instability
of the parameters of the correctly aggregated macro function over time?
(Q4) Does the heterogeneity of the micro technologies and/or the disper-
sion of the inputs across firms affect the macro parameters, and if so, how?
Obviously, (Q4) is a following-up of (Q3).

Our focus in this paper will be on the four questions raised above,
and we use a rather restrictive parametric specification of theaverage
micro technology, based on a four-factor Cobb–Douglas function, with
random coefficientsto represent technological heterogeneity. Panel data is
a necessity to examine such issues empirically in some depth. Yet, the in-
tersection between the literature on aggregation and the literature on panel
data econometrics is still small. Our study is intended to contribute both
to methodological aspects and to give some new empirical evidence on
the interface between linear aggregation of non-linear relations with pa-
rameter heterogeneity and panel data analysis. Although Cobb–Douglas

1 A textbook exposition of theoretical properties of production functions aggregated from
neo-classical micro functions is given inMas-Colellet al. (1995, Section 5.E).
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restricts input substitution strongly and has to some extent been rejected
in statistical tests, the simplicity of this parametric form of the average
technology is, for some applications, a distinctive advantage over, e.g.,
Translog or CES. In the empirical part of the paper, our focus will be on
scale properties of the production technology, which can be well captured
by the Cobb–Douglas form. We assume that the random coefficients are
jointly normal (Gaussian) and that the inputs are generated by a multivari-
ate log-normal distribution, whose parameters may shift over time. To our
knowledge, this is the first study exploring aggregate production functions
by usingfirm-level(unbalanced) panel data in a random coefficient setting
by means of this form of the average micro technology.

A model framework which is similar to ours, although denoted as
‘cross-sectional aggregation of log-linear models’, is considered byvan
Garderenet al.(2000, Section 4.2)cf. alsoLewbel (1990, 1992). However,
on the one hand, we generalize some of their theoretical results to hold not
only for first-order, but also for higher-order moments, on the other hand
they illustrate the theoretical results, not on data from single firms, but on
time series data from selected industries (p. 309), which is less consistent
with the underlying micro theory. In our study the expectation vector and
covariance matrix of the coefficient vector are estimated from panel data
for two Norwegian manufacturing industries. Log-normality of the inputs
is tested and for the most part not rejected. This, in conjunction with a
Cobb–Douglas technology with normally distributed coefficients, allows
us to derive interpretable expressions for the distribution of aggregate pro-
duction.

From the general literature on aggregation it is known that properties
of relationships aggregated from relationships for micro units, and more
basically their existence, depend on the average functional form in the mi-
cro model, its heterogeneity, the distribution of the micro variables, and
the form of the aggregation functions. A main concern inStoker (1986b,
1993)is to warn against the use of representative agent models in macro-
econometrics. The representative agent interpretation is valid only under
rather restrictive assumptions, and in many realistic situations parameters
in macro relations, which are analogous to those in the micro relations,
cannot be given a structural interpretation since they represent a mixture
of structural micro parameters and parameters characterizing the distribu-
tion of variables or parameters across the micro units. Furthermore, if these
distributions vary over time, the correctly aggregated relation will be un-
stable, such that a constant parameter macro relation will be mis-specified
and its application in time series contexts dubious. In our specific set-
ting the micro parameters are not recoverable from macro data (cf.Stoker,
1993, p. 1843for a discussion of this concept), so likeStoker (1986a)we
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are concerned with the opposite problem: how macroeconomic effects can
be estimated by means of micro data. This goes some way in answering
(Q1)–(Q4). Stoker only considers cross-sectional data for this purpose, but
since random parameters, introduced to capture firm heterogeneity, are an
integral part of our model, panel data are required to quantify macroeco-
nomic parameters properly. Thus, in comparison withStoker (1986a)the
framework we consider is more data demanding.

Customarily, the aggregation functions are arithmetic means or sums.
If the number of micro units is large enough to appeal to a statistical
law of large numbers and certain additional statistical regularity condi-
tions are satisfied, we can associate arithmetic means with expectations
(cf. Fortin, 1991, Section 2;Stoker, 1993, Section 3;Hildenbrand, 1998,
Section 2;Biørn and Skjerpen, 2004, Section 2), which is what we shall
do here.

Given normality of both the coefficient vector and the log-input vec-
tor to which it belongs, output will not be log-normal marginally, and its
distribution has to be examined specifically. We employ a formula for the
expectation of output, which we generalize to also hold for higher-order
origo moments of output, provided that they exist. The existence is guar-
anteed by an eigenvalue condition which involves the covariance matrices
of the random coefficients and the log-inputs. Examining this condition
for each year in the data period, we find that, generally, only the first- and
second-order origo moments of output exist.

Besides the exact formulae, approximate expressions for the origo mo-
ments of output, which are easier to interpret, are considered. We find that
the approximate formula performs fairly well for the first-order moment,
whereas larger deviations occur for the second-order moment. Since ag-
gregate parameters are in general undefined unless the distribution of the
micro variables is restricted in some way, we provide results for the limit-
ing cases where the means of the log-inputs change and their dispersions
are preserved, and the opposite case. We denote these as the ‘mean pre-
serving’ and ‘dispersion preserving’ parameters, respectively.

The maximal biases in scale elasticities brought about by comparing
elasticities based on naïve analog formulae with those based on the dis-
persion preserving industry-level elasticities are about 9 and 7 per cent
for Pulp and paper and Basic metals, respectively. Under the mean pre-
serving definition the corresponding biases are about 26 and 15 per cent.
Even larger biases are found for some of the input elasticities. Further-
more, we find differences in the ranking of the elasticities according to size
when confronting correct industry-level elasticities and elasticities based
on naïve analog formulae.
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The rest of the paper is organized as follows. The model is presented
in Section9.2, properties of the theoretical distribution of output are dis-
cussed, and approximations to the moments of output are derived. From
this we obtain, in Section9.3, an approximate aggregate production func-
tion and expressions for the correct aggregate input elasticities, in the
dispersion preserving and mean preserving cases. In Section9.4, the data
are described and the estimation of the micro structure is discussed, and
then, in Section9.5estimates of aggregate input elasticities are presented
and other applications indicated. Section9.6concludes.

9.2. Model and output distribution

9.2.1. Basic assumptions

We consider ann factor Cobb–Douglas production function model for
panel data, written in log-linear form as

(9.1)yit = x′
itβi + uit = αi + z′itγi + uit ,

wherei is the firm index,t is the period index,xit = (1, z′it )
′ is ann + 1

vector (including a one for the intercept) andβi = (αi, γ
′
i )

′ is ann + 1
vector (including the intercept),γi denoting then vector of input elastic-
ities anduit is a disturbance. We interpretzit as ln(Zit ), whereZit is the
n-dimensional input vector, andyit as ln(Yit ), whereYit is output, and as-
sume that allβi anduit are stochastically independent and independent of
all xit and that

(9.2)xit ∼ N (μxt ,Σxxt ) = N

([
1
μzt

]
,

[
0 0
0 Σzzt

])
,

(9.3)βi ∼ N (μβ ,Σββ) = N

([
μα

μγ

]
,

[
σαα σ ′

γα

σγα Σγ γ

])
,

(9.4)uit ∼ N (0, σuu),

whereσαα = var(α), σγα is then vector of covariances betweenαi and
γi , andΣγ γ is the n-dimensional covariance matrix ofγi . The n + 1-
dimensional covariance matrixΣxxt is singular sincexit has a one ele-
ment, while itsn-dimensional submatrixΣzzt is non-singular in general.
In the econometric model version [see(9.29)below] the description of the
technology is a bit more general, sinceαi also includes a linear determin-
istic trend.
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9.2.2. The conditional distribution of output

We first characterize the distribution oflog-output. From(9.1)–(9.4)it fol-
lows that

(yit |βi) ∼ N (μ′
xtβi, β

′
iΣxxtβi + σuu),

(9.5)(yit |xit ) ∼ N (x′
itμβ, x

′
itΣββxit + σuu),

and, by using the law of iterated expectations, that

(9.6)μyt = E(yit ) = E
[
E(yit |βi)

]
= μ′

xtμβ,

(9.7)

σyyt = var(yit ) = E
[
var(yit |βi)

]
+ var

[
E(yit |βi)

]

= E
[
tr(βiβ

′
iΣxxt )+ σuu

]
+ var(μ′

xtβi)

= tr
[
E(βiβ

′
iΣxxt )

]
+ σuu + μ′

xtΣββμxt

= tr
[
(μβμ

′
β + Σββ)Σxxt

]
+ σuu + μ′

xtΣββμxt

= μ′
xtΣββμxt + μ′

βΣxxtμβ + tr(ΣββΣxxt )+ σuu.

The four components ofσyyt represent (i) the variation in the coefficients
(μ′

xtΣββμxt ), (ii) the variation in the log-inputs(μ′
βΣxxtμβ), (iii) the

interaction between the variation in the log-inputs and the coefficients
[tr(ΣββΣxxt )], and (iv) the disturbance variation(σuu).

We next characterize the distribution ofoutput. SinceYit = eyit =
ex

′
itβi+uit , we know from(9.5) that (Yit |xit ) and(Yit |βi) are log-normal.

From Evanset al. (1993, Ch. 25)it therefore follows, for any positive
integerr, that

(9.8)

E
(
Y r
it |βi

)
= Exit ,uit

(
eryit |βi

)

= exp

[
rμ′

xtβi + 1

2
r2(β ′

iΣxxtβi + σuu)

]
,

(9.9)

E
(
Y r
it |xit

)
= Eβi ,uit

(
eryit |xit

)

= exp

[
rx′

itμβ + 1

2
r2(x′

itΣββxit + σuu)

]
,

which show that anyconditional finite-ordermoment of output when con-
ditioning on the coefficient vector or on the input vector exists. These
equations are interesting as far as they go, but we will also need the mar-
ginal moments of output.

9.2.3. Exact marginal origo moments of output

Assuming that therth-order origo moment ofYit exists,(9.8)and the law
of iterated expectations yield

E
(
Y r
)

= exp

[
1

2
r2σuu

]
Eβ

[
exp

(
rμ′

xβ + 1

2
r2β ′

iΣxxβ

)]
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= exp

[
rμ′

xμβ + 1

2
r2(μ′

βΣxxμβ + σuu)

]

(9.10)× Eδ

{
exp

[(
rμ′

x + r2μ′
βΣxx

)
δ + 1

2
r2δ′Σxxδ

]}
,

whereδ = β − μβ ∼ N (0,Σββ) and subscripts(i, t) are from now on
omitted for simplicity. A closed form expression for the marginalrth-order
origo moments can be derived from(9.10). In Appendix A9.1it is shown
that:2

E
(
Y r
)

=
∣∣In+1 − r2ΣββΣxx

∣∣−1/2 exp

[
rμ′

xμβ + 1

2
r2(μ′

βΣxxμβ + σuu)

(9.11)

+ 1

2

(
rμ′

x + r2μ′
βΣxx

)(
Σ−1
ββ − r2Σxx

)−1(
rμx + r2Σxxμβ

)]
.

It is obvious from this expression that the existence ofE(Y r) requires that
the inverse of(Σ−1

ββ −r2Σxx) exists, but the derivations inAppendix A9.1,
imply a stronger requirement:

(9.12)E
(
Y r
)

exists ⇐⇒ Σ−1
ββ − r2Σxx is positive definite.

Observe that ifE(Y r) exists, all lower-order moments exist: letM(r) =
Σ−1
ββ − r2Σxx , then

(9.13)M(r − 1) = M(r)+ (2r − 1)Σxx, r = 2, 3, . . . .

If M(r) andΣxx are positive definite, thenM(r − 1) is also positive defi-
nite, since 2r > 1 and the sum of two positive definite matrices is positive
definite.

Paying attention to the existence of moments may seem less important
than it actually is. The primary reason is that we will need approxima-
tion formulae to derive interpretable decompositions of the moments and
expressions for the aggregate elasticities. Such approximations are only
meaningful when the moments exist. A secondary reason is that if(9.2)–
(9.4)had been replaced by other distributional assumptions, it would gen-
erally not be possible to express moments of output in closed form. In
such cases, one could be tempted to estimateE(Y r) by simulations. To
illustrate: if the closed form expression(9.11)were unavailable, we could

2 Following a similar argument, the same result can be derived from(9.9). In the case
r = 1, a related and somewhat longer derivation based on an equation for the conditional
expectation similar to(9.9) is provided byvan Garderenet al. (2000, pp. 306–307).
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have used simulations based on(9.10)and a large sample of syntheticβi ’s
drawn from a distribution given by(9.3). For each syntheticβi , the right-
hand side of(9.10)can be calculated, and moments estimated by averaging
over the whole sample ofβi ’s. When the true moment exists, the law of
large numbers ensures that estimates of such a procedure would converge
towards the true moments as the sample size increases. However, the con-
vergence may be extremely slow if certain higher-order moments required
by the familiar standard central limit theorems do not exist. In such cases,
a more general central limit theorem is appropriate, seeEmbrechtset al.
(1997, pp. 71–81).3 The importance of existence of higher-order moments
in simulation-based estimation can be illustrated by the empirical applica-
tion below where we find that the order of the highest existing moment is
usually two. This means that simulations would work well for first-order
moments, that very large simulation samples could be required to obtain
precise estimates of second-order moments, and that simulated estimates
of (non-existing) higher-order moments would be numerically unstable for
any sample size.

9.2.4. Approximations to the marginal origo moments of output

Equation(9.11), although in closed form, cannot be easily interpreted and
decomposed, mainly because of the determinant expression and the in-
verse covariance matrixΣ−1

ββ which it contains. We now present a way of
obtaining, from(9.10), an approximate formula forE(Y r), which is sim-
pler to interpret.

Provided that(9.12)holds, an approximation to therth-order origo mo-
ment of output can be obtained by replacingδ′Σxxδ = tr[δδ′Σxx] by its
expected value, tr[ΣββΣxx], in the exponent in the argument ofEδ{·} in
(9.10). Lettinga(r) = rμx + r2Σxxμβ we obtain

E
(
Y r
)

≈ Gr(Y ) = exp

[
rμ′

xμβ + 1

2
r2(μ′

βΣxxμβ

+ tr[ΣββΣxx] + σuu
)]

E
[
exp
(
a(r)′δ

)]

= exp

[
rμ′

xμβ + 1

2
r2(μ′

βΣxxμβ

+ tr[ΣββΣxx] + σuu
)]

exp

[
1

2
a(r)′Σββa(r)

]
,

3 If, for instance,x1, . . . , xm denote a sequence of random variables with meanμ and

varianceσ2, the sample average converges towardsμwith a rate 1/
√
m. But if the variance

does not exist, the rate of convergence cannot be established by standard central limit
theorems.
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sinceδ ∼ N (0,Σββ). Rearranging gives

E
(
Y r
)

≈ Gr(Y ) = exp

[
rμ′

xμβ + 1

2
r2(μ′

βΣxxμβ + μ′
xΣββμx

+ tr[ΣββΣxx] + σuu
)
+ r3μ′

βΣxxΣββμx

(9.14)+ 1

2
r4μ′

βΣxxΣββΣxxμβ

]
.

When(9.12)does not hold, this approximation, of course, makes no sense.
When applying the approximationGr(Y ) we eliminate both the square
root of the inverse of the determinant|In+1 − r2ΣββΣxx | and all terms
involving Σ−1

ββ from the function. This is an obvious simplification when
we use it to deriveand, more importantly, interpretexpressions for the
aggregate input and scale elasticities below.

Our intuition says thatGr(Y ) is likely to underestimateE(Y r), since
the main difference between them is that the former has a reduced spread
in the exponent of the convex exponential function, compared to the latter.
The argument is that when deriving(9.14), we neglect the dispersion of the
quadratic formδ′Σxxδ, whereδ has a symmetric distribution. This way of
reasoning will be supported by the results in Section9.5.1.

We can then, using(9.6) and (9.7), write the analytical approximation
to E(Y r) as

(9.15)Gr(Y ) = Φr(y)ΓrΛr ,

where

(9.16)Φr(y) = exp

[
rμy + 1

2
r2σyy

]

is the ‘first-order’ approximationwe would have obtained if we had pro-
ceeded as ify were normally andY were log-normally distributed mar-
ginally, and

(9.17)

Γr = exp
[
r3μ′

xΣββΣxxμβ

]
,

Λr = exp

[
1

2
r4μ′

βΣxxΣββΣxxμβ

]
,

whereΛr andΓr can be consideredcorrection factorswhich serve to im-
prove the approximation. Note that the exponent in the expression forΛr

is a positive definite quadratic form wheneverΣββ is positive definite,
while the exponent in the expression forΓr can have either sign.4 In the

4 The origin of the approximation leading to(9.14)is (9.8). Proceeding in a similar way
from (9.9)would have given a symmetric approximation, with a differentΛr component;
seeBiørn et al. (2003b, Sections 3.1 and 6.3).
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special case with no coefficient heterogeneity (i.e.,Σββ is a zero matrix),
(9.8) and (9.14)give identical results, and thenE(Y r) = Gr(Y ) = Φr(y)

andΓr = Λr = 1 for all r.

9.3. An approximate aggregate production function in origo moments

We next derive an approximate relationship betweenE(Y r) andE(Zr) to
be used in examining aggregation biases when the aggregate variables are
represented by their arithmetic means. In doing this, we recall that eE[ln(Y )]

and eE[ln(Z)] correspond to the geometric means, andE(Y ) andE(Z) to
the arithmetic means of the output and the input vector, respectively. We
first assumer arbitrarily large, still assuming that(9.12) is satisfied, and
afterwards discuss the caser = 1 in more detail.

9.3.1. A Cobb–Douglas production function in origo moments

Let

θyr = ln
[
Gr(Y )

]
− rμy = ln

[
Φr(y)

]
+ ln[Γr ] + ln[Λr ] − rμ′

xμβ

= 1

2
r2[μ′

xΣββμx + μ′
βΣxxμβ + tr(ΣββΣxx)+ σuu

]

(9.18)+ r3μ′
xΣββΣxxμβ + 1

2
r4μ′

βΣxxΣββΣxxμβ,

after inserting from(9.7), which can be interpreted as an approximation to
ln[E(Y r)]−E[ln(Y r)]. LetZj denote thej th element of the input vectorZ
andzj = ln(Zj ). Sincezj ∼ N (μzj , σzjzj ), whereμzj is thej th element
of μz andσzjzj is thej th diagonal element ofΣzz [cf. (9.2)], we have

E
(
Zr
j

)
= E

(
ezj r

)
= exp

(
μzj r + 1

2
σzjzj r

2
)
,

(9.19)r = 1, 2, . . . ; j = 1, . . . , n.

Letμγj be thej th element ofμγ , i.e., the expected elasticity of thej th in-
put. Since(9.19)implies exp(μzjμγj r) = exp(−1

2σzjzj r
2μγj )[E(Zr

j )]μγj ,
it follows from (9.18)that

(9.20)Gr(Y ) = eμαrAr

n∏

j=1

[
E
(
Zr
j

)]μγj ,

where

(9.21)Ar = exp

(
θyr − 1

2
r2

n∑

j=1

σzjzjμγj

)
= exp

(
θyr − 1

2
r2μ′

γ σzz

)
,
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and σzz = diagv(Σzz).5 Equation(9.20) can be interpreted (approxi-
mately) as aCobb–Douglas function in therth-order origo moments of
Y andZ1, . . . , Zn, with exponents equal to the expected firm-level elas-
ticitiesμγ1, . . . , μγ n and an intercept eμαr , adjusted by the factorAr . The
latter depends, viaθyr , on the first- and second-order moments of the log-
input vectorz and the coefficient vectorβ andσuu, cf. (9.18) and (9.21).

For r = 1, (9.20)gives

(9.22)G1(Y ) = eμαA1

n∏

j=1

[
E(Zj )

]μγj .

Seemingly, this equation could be interpreted as a Cobb–Douglas func-
tion in the arithmetic meansE(Y ) andE(Z1), . . . ,E(Zn), with elasticities
coinciding with the expected firm-level elasticitiesμγ1, . . . , μγ n and an
intercept eμα adjusted by the factorA1. In some sense one could then say
that the aggregation problem had been “solved”. However, we will show
that, due to the randomness of the micro coefficients in combination with
the non-linearityof the micro function the situation is not so simple. As
emphasized byStoker (1993, p. 1846)introducing random coefficients in
a linear equation will not bias the expectation of the endogenous variable;
cf. alsoZellner (1969).

9.3.2. Aggregation by analogy and aggregation biases in output and in
input elasticities

Assume that we, instead of(9.22), represent the aggregate production
function simply by

(9.23)Ê(Y ) = eμα
n∏

j=1

[
E(Zj )

]μγj .

This can be said to mimic theaggregation by analogy, or naïve aggrega-
tion, often used by macro-economists and macro model builders. The re-
sultingaggregation error in output, when we approximateE(Y ) byG1(Y ),
is

(9.24)ε(Y ) = G1(Y )− Ê(Y ) = (A1 − 1)eμα
n∏

j=1

[
E(Zj )

]μγj .

Representing the aggregate Cobb–Douglas production function by
(9.23)will bias not only its intercept, but also its derived input elasticities,

5 We let ‘diagv’ before a square matrix denote the column vector containing its diagonal
elements.
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becauseA1 in (9.22)is affected by changes inμz andΣzz. Equations(9.6),
(9.7) and (9.18)show that whenΣγ γ is non-zero, a change inμz affects
not only the expectation of log-output,μy , but also its varianceσyy . Equa-
tions(9.15)–(9.17)imply

(9.25)
ln
[
G1(Y )

]
= μy + 1

2
σyy + μ′

xΣββΣxxμβ + 1

2
μ′
βΣxxΣββΣxxμβ .

Using the fact that$ ln[E(Z)] = $(μz + 1
2σzz) [cf. (9.19)], we show in

Appendix A9.2that

∂ ln[G1(Y )]
∂ ln[E(Z)]

(9.26)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

μγ + σγα +Σγ γ (μz +Σzzμγ ), whenΣzz is constant,

diagv[μγμ
′
γ + Σγ γ + μγμ

′
γΣzzΣγ γ whenμz and the

+Σγ γΣzzμγμ
′
γ off-diagonal elements

+ 2μγ (σ
′
γα + μ′

zΣγ γ )], of Σzz are constant.

Hence we can not uniquely define and measure an exact aggregate
j th input elasticity,∂ ln[G1(Y )]/∂ ln[E(Zj )] unless we restrict the way
in which ln[E(Z)] changes. The two parts of(9.26) are limiting cases,
the first may be interpreted as a vector ofdispersion preservingaggregate
input elasticities, the second as a vector ofmean preservingaggregate elas-
ticities. Anyway, whenΣγ γ andσγα are non-zero,μγ provides a biased
measure of the aggregate elasticity vector. Dispersion preserving elastic-
ities may be of more practical interest than mean preserving ones, since
constancy of thevarianceof the log-inputj , σzjzj , implies constancy of
thecoefficient of variationof the untransformed inputj . This will be the
situation when thej th input of all micro units change proportionally. This
follows from the fact that the coefficient of variation ofZj is (cf. (9.19)
andEvanset al., 1993, Ch. 25)

(9.27)v(Zj ) = std(Zj )

E(Zj )
=
(
eσzjzj − 1

)1/2
,

and hence constancy ofσzjzj implies constancy ofv(Zj ). Mean preserving
elasticities relate to the more ‘artificial’ experiment withE[ln(Zj )] kept
fixed andv(Zj ) increased by increasing std(Zj ). Our term dispersion pre-
serving aggregation is related to the concept ‘mean scaling’ introduced by
Lewbel (1990, 1992)in the context of aggregating log-linear relations.

The bias vector implied by the dispersion preserving aggregate input
elasticities, obtained from the first part of(9.26), is

(9.28)ε(μγ ) = σγα + Σγ γ (μz +Σzzμγ ).
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The bias vector for the mean preserving elasticities can be obtained from
the second part in a similar way.

9.4. Data, microeconometric model and micro estimation

Unbalanced panel data sets for two manufacturing industries, Pulp and pa-
per (2823 observations, 237 firms) and Basic metals (2078 observations,
166 firms) for the years 1972–1993 are used in the empirical application.
These two export-oriented, energy-intensive industries are important for
the Norwegian economy and accounted for almost one fourth of the main-
land export-income in the sample period. Confronting our single-output
multiple-input framework with data for these two industries also has the
advantage that their outputs are rather homogeneous and hence can be
measured in physical units rather than, e.g., deflated sales, which may be
subject to measurement errors. A further description is given inAppen-
dix B9.2.

Four inputs(n = 4) are specified: capital (K), labor (L), energy (E) and
materials (M). A deterministic trend is intended to capture the level of the
technology. We parameterize(9.1)as

(9.29)yit = α∗
i + κt + z′itγi + uit ,

where zit = (zKit , zLit , zEit , zMit )
′ is the log-input vector of firmj

in period t . The parameterα∗
i and the parameter vectorγi are random

and specific to firmi, whereasκ is a firm invariant trend coefficient.
With this change of notation,(9.3) readsψi ∼ N (ψ,Ω), whereψ =
(μ∗

α, μK , μL, μE, μM)
′ andΩ are the expectation and the unrestricted

variance–covariance matrix of the random parameters, respectively.
The unknown parameters are estimated by Maximum Likelihood (ML)

using the PROC MIXED procedure in the SAS/STAT software (seeLittell
et al., 1996) and imposing positive definiteness ofΩ. In Appendix B9.1,
the log-likelihood underlying estimation for our unbalanced panel data is
formulated. This particular application relies on ML-estimation results in
Biørn et al. (2002, cf. Section 2 and Appendix A, part 2). The estimates
of ψ andκ and of the expected scale elasticityμ =

∑
j μj are given in

Table 9.1, whereas the estimate ofΩ is given inTable 9.2. The estimated
variances of the genuine error term are 0.0408 and 0.0986 for Pulp and
paper and Basic metals, respectively.

Compared with the random intercept specification and with a model
with no heterogeneity at all, our random coefficients model gives a sub-
stantially bettergoodness of fit. Going from the model with heterogeneity
only in the intercept to the random coefficients model, the log-likelihood
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Table 9.1. Firm-level Cobb–Douglas production functions. Parameter
estimates

Pulp and paper Basic metals

Estimate St.err. Estimate St.err.

μ∗
α −2.3021 0.2279 −3.1177 0.2702

κ 0.0065 0.0013 0.0214 0.0021
μK 0.2503 0.0344 0.1246 0.0472
μL 0.1717 0.0381 0.2749 0.0550
μE 0.0854 0.0169 0.2138 0.0374
μM 0.5666 0.0309 0.4928 0.0406
μ 1.0740 0.0287 1.1061 0.0324

Table 9.2. Firm-level Cobb–Douglas production functions.
Covariance matrix of firm specific coefficients. Variances on the

diagonal, correlation coefficients below

α∗ γK γL γE γM

Pulp and paper
α∗ 5.9336
γK −0.4512 0.1147
γL −0.7274 −0.0559 0.1515
γE 0.3968 −0.4197 −0.3009 0.0232
γM 0.3851 −0.6029 −0.4262 0.1437 0.1053

Basic metals
α∗ 3.5973
γK −0.0787 0.1604
γL −0.6846 −0.5503 0.1817
γE 0.3040 −0.6281 0.1366 0.1190
γM 0.1573 0.1092 −0.3720 −0.6122 0.1200

value increases by about 365 and 200 in Pulp and paper and Basic met-
als, respectively, while the increase in the number of parameters is only
14. The corresponding increases when comparing our random coefficients
model with a model without any firm-specific heterogeneity are 2045 and
1572, with an increase in the number of parameters of 15.

The implied expected scale elasticities are 1.07 in Pulp and paper and
1.11 in Basic metals (Table 9.1), indicating weak economies of scale; size
and ranking of the expected input elasticities differ somewhat more. The
estimates of the trend coefficients indicate that technical progress has been
stronger in Basic metals than in Pulp and paper, 2.1 per cent and 0.6 per
cent, respectively. As can be seen from the off-diagonal elements inTa-
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ble 9.2the pattern of correlation of the input elasticities across firms are
somewhat different in the two industries, also with respect to sign.

Whereas normality of the log-input vector is not needed when estimat-
ing the micro structure, since the log-likelihood is conditional on the factor
input matrix, it is essential in the present aggregation analysis. Using uni-
variate statistics which depend on skewness and excess kurtosis, we find
in most cases non-rejection of normality of log-inputs at the five per cent
level; seeBiørnet al. (2003b, Appendix D). However, for Pulp and paper,
there is some evidence of rejection, especially at the start of the sample
period. This is most pronounced for energy and materials, where normal-
ity is rejected at the 1 per cent level in the years 1972–1976. Despite these
irregularities, we proceed by imposing normality of all log-inputs as a sim-
plifying assumption in the application presented below.

9.5. Empirical results

9.5.1. Estimates of exact-formulae moments, approximations and their
components

Utilizing (9.11) we have estimated the logs of expected output and of
expected squared output for the 22 years in the sample period. The max-
imum, the mean and the minimum value of these annual time series are
reported in the bottom row ofTables 9.3 and 9.4.6 The formulae in-
volve the mean vector and covariance matrix of the random parameters
and the disturbance variance, estimated from the full panel data set, and
the mean vector and covariance matrix of the log-inputs, calculated for
each year. The rest of the two tables presents decompositions based on
the approximation formula(9.14) transformed into logs, i.e., ln[G1(Y )]
and ln[G2(Y )]. For each of them, a total of seven components and their
weights are specified. Again, due to space limitations, only the minimum,
mean and maximum values obtained from the annual time series are re-
ported.

Let us first considerexpected output. The row labeledμy in Table 9.3
can be interpreted as mimicking the naïve way of representing the ex-
pectation of a log-normal variable, sayW , as exp(E[ln(W)]), and hence
neglecting Jensen’s inequality. This yields for Pulp and paper and Basic
metals mean estimates of 4.124 and 3.629, which are considerably lower
than the values obtained from the exact formulae, 6.230 and 6.938, re-
spectively. The same is true for the other statistics. Including the ‘variance

6 Recall that the mean, unlike the minimum and maximum, is a linear operator.
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Table 9.3. First-order moment estimates. Different approximations
with components and exact-formula values. Summary statistics based

on annual results, 1972–1993

Pulp and paper Basic metals

Components Minimum Mean Maximum Minimum Mean Maximum

μy μ′
xμβ 3.620 4.124 4.695 3.037 3.629 4.606

1
2μ

′
xΣββμx 1.154 1.617 1.966 1.992 2.742 3.227

1
2μ

′
βΣxxμβ 0.187 0.201 0.218 0.238 0.271 0.395

1
2 tr(ΣββΣxx) 0.102 0.124 0.140 0.123 0.161 0.329
1
2σuu 0.020 0.020 0.020 0.049 0.049 0.049

ln[Φ1(y)]a 5.804 6.087 6.334 6.379 6.852 7.224

ln(Γ1) −0.162 −0.104−0.040 −0.330 −0.127−0.071
ln(Λ1) 0.111 0.217 0.309 0.094 0.186 0.280

ln[G1(Y )]b 5.899 6.201 6.469 6.426 6.911 7.304

ln[E(Y )] 5.927 6.230 6.500 6.440 6.938 7.333

aln[Φ1(y)] = μ′
xμβ + 1

2(μ
′
xΣββμx + μ′

βΣxxμβ + tr(ΣββΣxx) + σuu), cf. (9.7) and
(9.16).
bln[G1(Y )] = ln[Φ1(y)] + ln(Γ1)+ ln(Λ1), cf. (9.15).

Table 9.4. Second-order moment estimates. Different approximations
with components and exact-formula values. Summary statistics based

on annual results, 1972–1993

Pulp and paper Basic metals

Components Minimum Mean Maximum Minimum Mean Maximum

2μy 2μ′
xμβ 7.239 8.249 9.390 6.074 7.257 9.212

2μ′
xΣββμx 4.617 6.469 7.862 7.969 10.968 12.908

2μ′
βΣxxμβ 0.748 0.806 0.871 0.952 1.082 1.578

2 tr(ΣββΣxx) 0.409 0.496 0.560 0.494 0.644 1.314
2σuu 0.082 0.082 0.082 0.197 0.197 0.197

ln[Φ2(y)]a 15.293 16.101 16.753 19.067 20.149 20.927

ln(Γ2) −1.297 −0.828−0.318 −1.235 −0.937−0.569
ln(Λ2) 1.782 3.477 4.944 1.506 2.903 3.905

ln[G2(Y )]b 16.757 18.750 20.478 20.004 22.128 23.868

ln[E(Y2)] 17.780 22.236 27.306 20.496 23.417 25.839

aln[Φ2(y)] = 2(μ′
xμβ + μ′

xΣββμx + μ′
βΣxxμβ + tr(ΣββΣxx) + σuu), cf. (9.7) and

(9.16).
bln[G2(Y )] = ln[Φ2(y)] + ln(Γ2)+ ln(Λ2), cf. (9.15).
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adjustment’ which is part of the formula for the expectation of a log-
normal variable, by considering ln[Φ1(y)], the means of the estimated
expectations increase to 6.087 and 6.852, respectively, which are much
closer to the values obtained from the exact formula. The same is true for
the minimum and maximum values. A further decomposition of the con-
tribution from the ‘variance adjustment’, into four components, is given
in rows 2–5. They represent, respectively, coefficient heterogeneity, input
variation, covariation between the two latter, and the genuine error term.
It is worth noticing that for both industries the largest contribution (more
than 80 per cent) comes from the coefficient variation, followed by input
variation, interaction effects, whereas the smallest contribution (less than
2 per cent) comes from the variation in the error term.

Since output is not log-normally distributed marginally, there is a po-
tential for a further improvement of the approximation, by also including
the logs of the correction factors, ln[Γ1] and ln[Λ1]. Summary statistics
related to these factors are reported in rows 7 and 8 ofTable 9.3. Whereas
the mean of the estimates of the former is negative for both Pulp and pa-
per and Basic metals, the mean of the latter is positive, as is also the case
for their net effect. With one exception (the net effect for Basic metals in
1993) the above sign conclusions in fact hold for all years in both indus-
tries. The final results after including the contributions from these factors
as well are reported in the row labeled ln[G1(Y )].

An interesting question is how general these results are. Will, for in-
stance, the qualitative conclusions carry over to other data sets? Since
ln[Λ1] is a positive definite quadratic form as long asΣββ is a positive
definite matrix, the contribution from this term will always be positive. If
all the expected firm-level elasticities are positive andΣββ andΣxx have
only positive elements, also ln[Γ1] would have given a positive contribu-
tion. However, when the signs of the off-diagonal elements ofΣββ and
Σxx differ, negative estimates of ln[Γ1] may occur.

As can be seen by comparing the last two rows inTable 9.3, the de-
viation from the mean based on the correct formula is modest in both
industries, pointing to the fact that the approximation formula performs
rather well in this case. Corresponding results hold for the maximum and
minimum value. The approximate formula for log of expected output will
be the point of departure in Section9.5.2when we will estimate two dif-
ferent measures of industry-level elasticities and compare the results to
those relying on the representative agent construct.

We next turn to the corresponding approximation and decomposition
results forexpected squared output. This sheds light on the relative impor-
tance of different components with respect tooutput volatility. From the
last two rows ofTable 9.4it is evident that the results based on the exact
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and on the approximate formulae differ more strongly for the second-order
moments than for the first-order moments. Otherwise, the results are in
line with those found for the first-order moments. Making the approxi-
mation gradually more sophisticated, by including more terms, starting
with the naïve formula which disregards Jensen’s inequality, we again get
closer and closer to the exact-formula value of the moment. The row rep-
resenting ln[Φ2(y)] in Table 9.4mimics results obtained from the invalid
assumption that output is log-normally distributed marginally. Including
the logs of the correction factors, ln[Γ2] and ln[Λ2], brings us closer to
the results obtained from the exact formula. The approximation seems to
perform somewhat better for Basic metals than for Pulp and paper.

9.5.2. Aggregation biases in scale and input elasticities

Table 9.5reports summary statistics for the industry-level elasticities ob-
tained by the two hypothetic changes represented by(9.26). The underly-
ing year specific elasticities are given inTable 9.6. In both industries and
for all years, the estimated expected firm-levelscale elasticityis smaller
than the dispersion preserving scale elasticity, and larger than the mean
preserving scale elasticity, but the discrepancies, i.e., the aggregation bi-
ases when sticking to naïve aggregation, are not very large. In Pulp and
paper, the mean of the estimated dispersion preserving scale elasticity is
1.16, the estimated expected firm-level elasticity is 1.07 and the estimated
mean preserving elasticity is 0.90. The maximal relative aggregation bi-
ases are about 9 and 25 per cent, when measured against the dispersion
preserving and mean preserving elasticities, respectively. The correspond-
ing elasticity estimates for Basic metals are 1.15, 1.11 and 1.00, respec-
tively. The associated maximal relative biases are about 7 and 15 per cent.
The annual variation in the industry elasticities is rather small.

However, the components of the scale elasticities, i.e., theinput elas-
ticities, show larger variability of the industry-level elasticities over the
sample years. In some cases dramatic aggregation biases are found, rela-
tively speaking. Irrespective of the definition and for both industries, the
materials elasticityis the largest among the input elasticities. In all years,
we find that not only for the scale elasticity, but also for materials, the
estimate of the dispersion preserving elasticity exceeds the expected firm-
level elasticity, which again exceeds the mean preserving elasticity. The
maximal biases, relative to the dispersion preserving elasticity are about
21 and 7 per cent for Pulp and paper and Basic metals, respectively. When
comparing with the mean preserving elasticity the corresponding relative
biases are about 28 and 47 per cent. Overall, the two sets of estimated
industry-level input elasticities show substantial variation over the sample
period.
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Table 9.5. Expected firm-level elasticities and absolute values of
relative biases in per cent. Summary statistics based on annual results,

1972–1993

Expected
firm-level
elasticity

Dispersion preserving
ind.-level elasticity,
bias in per cent

Mean preserving
ind.-level elasticity,
bias in per cent

Minimum Mean Maximum Minimum Mean Maximum

Pulp and paper
Scale 1.074 4.703 7.383 9.367 15.733 19.824 24.594
Capital 0.250 26.414 41.263 65.761 28.359 33.908 39.832
Labor 0.172 1.322 19.131 49.304 7.189 10.210 12.843
Energy 0.085 28.235 30.820 33.798 144.000 148.260 158.788
Materials 0.567 15.306 19.251 21.306 9.382 17.263 27.613

Basic metals
Scale 1.106 0.353 4.073 6.816 8.229 10.525 14.860
Capital 0.125 1.111 129.207 1457.500 14.312 24.751 29.605
Labor 0.274 0.036 27.147 89.586 0.399 4.946 13.128
Energy 0.214 17.176 21.428 27.423 4.804 15.410 22.874
Materials 0.493 0.351 4.073 6.816 21.679 29.474 46.667

Turning to the relative magnitude of the specific input elasticity esti-
mates, we find that whereas the firm-levelcapital elasticityis somewhat
higher than the firm-levellabor elasticityin Pulp and paper, and the dis-
persion preserving and the mean preserving aggregation experiment give
approximately the same result. In contrast, in Basic metals the labor elas-
ticity is substantially larger than the capital elasticity and the estimates of
the industry-level elasticities show more variability. While in Pulp and pa-
per the maximal relative biases are about 49 and 13 per cent for labor and
about 66 and 40 per cent for capital, when related to the dispersion pre-
serving and the mean preserving elasticity, respectively, the corresponding
measures of the relative bias for Basic metals are 90 and 13 per cent for
labor and still higher for capital. The dispersion preserving capital elas-
ticity in the latter industry is very low at the start of the sample period,
increases to about 0.15 in 1992 and again decreases substantially in the ul-
timate year. The mean bias exceeds 125 per cent. For the mean preserving
elasticity we find a maximal bias of about 30 per cent.

Theenergy elasticityhas, for Pulp and paper, the lowest estimate among
the expected firm-level elasticities, 0.09. The dispersion preserving and
mean preserving elasticities are about 0.12 and 0.03, respectively, and
show almost no year-to-year variation. This corresponds to relative biases
of about 34 and 159 per cent, respectively. In Basic metals the two ag-
gregation experiments for the industry-level elasticities yield rather equal
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Table 9.6. Industry-level scale and input elasticities, by year.
Dispersion preserving and mean preserving values

Dispersion preserving elasticity Mean preserving elasticity

Year Scale Capital Labor Energy Materials Scale Capital Labor Energy Materials

Pulp and paper
1972 1.168 0.160 0.193 0.120 0.695 0.900 0.192 0.190 0.034 0.483
1973 1.166 0.156 0.186 0.125 0.699 0.896 0.192 0.188 0.035 0.481
1974 1.185 0.151 0.194 0.126 0.715 0.923 0.187 0.192 0.035 0.508
1975 1.181 0.163 0.191 0.125 0.703 0.925 0.183 0.191 0.035 0.515
1976 1.179 0.170 0.182 0.124 0.704 0.928 0.184 0.191 0.035 0.518
1977 1.172 0.192 0.192 0.119 0.669 0.901 0.192 0.195 0.034 0.480
1978 1.166 0.184 0.181 0.122 0.679 0.903 0.188 0.197 0.034 0.484
1979 1.165 0.173 0.177 0.125 0.690 0.899 0.187 0.195 0.035 0.482
1980 1.163 0.180 0.174 0.121 0.688 0.891 0.189 0.197 0.034 0.471
1981 1.162 0.183 0.160 0.122 0.696 0.895 0.189 0.194 0.034 0.477
1982 1.162 0.172 0.152 0.124 0.714 0.910 0.179 0.192 0.035 0.504
1983 1.155 0.186 0.148 0.120 0.701 0.889 0.188 0.191 0.034 0.477
1984 1.152 0.180 0.146 0.121 0.705 0.887 0.188 0.190 0.034 0.475
1985 1.154 0.178 0.141 0.123 0.713 0.887 0.189 0.191 0.034 0.474
1986 1.159 0.184 0.149 0.123 0.702 0.886 0.190 0.194 0.034 0.469
1987 1.159 0.183 0.144 0.123 0.709 0.896 0.185 0.192 0.034 0.486
1988 1.154 0.180 0.127 0.128 0.720 0.902 0.181 0.187 0.035 0.499
1989 1.151 0.181 0.127 0.127 0.716 0.893 0.183 0.188 0.035 0.486
1990 1.151 0.183 0.127 0.126 0.714 0.892 0.184 0.190 0.035 0.484
1991 1.150 0.185 0.120 0.129 0.716 0.895 0.183 0.189 0.035 0.487
1992 1.127 0.194 0.115 0.122 0.697 0.865 0.186 0.185 0.034 0.459
1993 1.134 0.198 0.117 0.122 0.697 0.862 0.195 0.189 0.033 0.444

(Continued on next page)

results. Estimation by the naïve approach produces maximal biases at
about 27 and 23 per cent, relative to the dispersion preserving and the
mean preserving elasticities, respectively.

Since neither the mean nor the covariance matrix of the log-input vec-
tor very rarely is time invariant, the assumptions underlying the dispersion
and mean preserving aggregation experiments may seem too simplistic.
It may be worthwhile to consider intermediate cases in which a weight-
ing of the two extremes is involved. Some experiments along these lines
suggest, contrary to what might be anticipated, that the expected firm-
level elasticity is not uniformly closer to this weighted average than to
either of the limiting cases. Still, the overall evidence from the above
results, confined to the two synthetic aggregation experiments, gives a
definite warning against using ‘raw’ firm-level elasticities to represent
industry-level elasticities. As a basis for comparing patterns of produc-
tivity growth across countries, both naïvely aggregated input elasticities
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Table 9.6. (Continued)

Dispersion preserving elasticity Mean preserving elasticity

Year Scale Capital Labor Energy Materials Scale Capital Labor Energy Materials

Basic metals
1972 1.180 0.008 0.360 0.206 0.606 1.002 0.167 0.270 0.186 0.379
1973 1.187 0.028 0.358 0.183 0.618 1.005 0.169 0.280 0.182 0.375
1974 1.177 0.056 0.325 0.169 0.627 0.994 0.177 0.260 0.174 0.383
1975 1.183 0.044 0.326 0.172 0.641 1.022 0.164 0.268 0.184 0.405
1976 1.174 0.049 0.326 0.189 0.610 1.004 0.161 0.278 0.195 0.371
1977 1.174 0.049 0.327 0.199 0.598 1.019 0.161 0.285 0.187 0.386
1978 1.152 0.096 0.266 0.187 0.604 1.002 0.173 0.254 0.178 0.396
1979 1.159 0.072 0.275 0.195 0.618 1.011 0.167 0.262 0.183 0.400
1980 1.162 0.073 0.290 0.196 0.603 0.998 0.165 0.276 0.191 0.366
1981 1.160 0.106 0.276 0.183 0.595 0.992 0.172 0.267 0.183 0.370
1982 1.151 0.140 0.240 0.165 0.606 0.991 0.175 0.258 0.180 0.379
1983 1.144 0.126 0.224 0.176 0.618 1.004 0.165 0.260 0.187 0.392
1984 1.148 0.116 0.237 0.183 0.613 0.995 0.165 0.268 0.191 0.371
1985 1.149 0.153 0.219 0.144 0.632 0.992 0.172 0.262 0.179 0.378
1986 1.144 0.143 0.213 0.161 0.627 0.988 0.169 0.259 0.186 0.374
1987 1.149 0.159 0.202 0.139 0.649 1.000 0.171 0.261 0.178 0.390
1988 1.145 0.150 0.190 0.139 0.667 1.004 0.170 0.253 0.179 0.403
1989 1.141 0.139 0.185 0.138 0.679 1.013 0.160 0.266 0.186 0.401
1990 1.138 0.144 0.175 0.147 0.672 1.006 0.163 0.257 0.187 0.398
1991 1.135 0.123 0.188 0.170 0.654 1.007 0.155 0.269 0.198 0.384
1992 1.113 0.154 0.145 0.174 0.640 0.963 0.163 0.243 0.204 0.353
1993 1.110 0.062 0.185 0.223 0.641 1.008 0.109 0.306 0.257 0.336

and time-invariant elasticities estimated solely from aggregate time series
of output and inputs are potentially misleading.

9.6. Conclusion and extensions

This paper has been concerned with the aggregation of micro Cobb–
Douglas production functions to the industry level when the firm specific
production function parameters and the log-inputs are assumed to be inde-
pendent and multinormally distributed. First, we have provided analytical
approximations for the expectation and the higher-order origo moments
of output, as well as conditions for the existence of such moments. These
existence conditions turn out to be rather strong in the present case: only
the first- and second-order moments exist. To some extent, this is due to
our simplifying normality assumption, so that products of two vectors,
both with support extending from minus to plus infinity, will enter the ex-
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ponent of the expression for the moments of output. This suggests that
investigating truncated distributions, in particular for the coefficients, may
be an interesting topic for further research. Relaxation of normality and/or
truncation is, however, likely to increase the analytical and numerical com-
plexity of the aggregation procedures.

Second, we have shown how an industry-level production function, ex-
pressed as a relationship between expected output and expected inputs,
can be derived and how discrepancies between correctly aggregated in-
put and scale elasticities and their expected counterparts obtained from
micro data can be quantified. It is quite obvious that the non-linearity of
the mean production function combined with random coefficient varia-
tion across firms implies that the correctly aggregated coefficients in the
‘aggregate Cobb–Douglas production function’ are not strict technology
parameters – not even to an acceptable degree of approximation – as they
also depend on the coefficient heterogeneity and the covariance matrix
of the log-input vector; cf. the quotation fromFelipe and Fisher (2003,
p. 209)in the introduction. The parameters characterizing our non-linear
micro structure are not recoverable from time series of linearly aggregated
output and input volumes. If agencies producing aggregate data could fur-
nish macro-economists not only with simple sums and arithmetic means,
but also with time series for other aggregates, say means, variances and
covariances of logged variables, coefficients of variation, etc., they would
have the opportunity to go further along the lines we have indicated. Our
empirical decompositions have given evidence of this. Anyway, our results
may provide guidance in situations where only aggregated data are avail-
able, and where applications such as forecasting of productivity changes
and policy analysis could benefit from undertaking sensitivity analysis.

To indicate the possible range of the appropriately aggregated Cobb–
Douglas parameters, we have provided results for the limiting dispersion
preserving and mean preserving cases. However, the experiment underly-
ing our definition of the mean preserving elasticities is one in which the
variances of the log-inputs, but none of their covariances, are allowed to
change. This simplifying assumption may have affected some of the above
conclusions. An interesting alternative may be to assume that the correla-
tion matrix of the log-input vector, rather than the covariances, is invariant
when the variances change.

The dispersion preserving scale elasticity is substantially higher than
the expected firm-level scale elasticity for both industries and in all the
years. For the mean preserving counterpart the differences are smaller: for
Pulp and paper the firm-level elasticity exceeds the aggregate elasticity in
all years. It is worth noting that the ranking of the industry-level and the
expected firm-level input elasticities do not coincide, and in addition, the
former changes over time.
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An assumption not put into question in this paper is zero correlation
between the production function parameters and the log-inputs. An inter-
esting extension would be to relax this assumption, for instance to model
the correlation. Simply treating all parameters as fixed and firm specific
would, however, imply wasting a substantial part of the sample, since a
minimal time series length is needed to estimate firm specific fixed para-
meters properly.

Whether an extension of our approach to more flexible micro technolo-
gies, like the CES, the Translog, or the Generalized Leontief production
functions, is practicable is an open question. First, exact-moment formulae
will often not exist in closed form, and it may be harder both to obtain use-
ful analytical approximations for expected output and to verify and ensure
the existence of relevant moments. Second, if the two normality assump-
tions are retained, the problems of non-existence of higher-order moments
are likely to increase since, for example, the Translog and the Generalized
Leontief functions contain second-order terms. On the other hand, relax-
ing normality, in favor of truncated or other less heavy-tailed parametric
distributions, will most likely increase the analytical complexity further.
Then abandoning the full parametric approach may be the only way out.
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Appendix A9. Proofs

A9.1. Proof of Equation(9.11)

Inserting for the density ofδ,

f (δ) = (2π)−(n+1)/2|Σββ |−1/2 exp

[
−1

2
δ′Σ−1

ββ δ

]
,

we find that the last expectation in(9.10)can be written as

Hr = Eδ

{
exp

[(
rμ′

x + r2μ′
βΣxx

)
δ + 1

2
r2δ′Σxxδ

]}
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=
∫

Rn+1
exp

[
a(r)′δ + 1

2
r2δ′Σxxδ

]
f (δ) dδ

(A9.1)= (2π)−(n+1)/2|Σββ |−1/2
∫

Rn+1
exp
[
λr(δ)

]
dδ,

wherea(r) = rμx + r2Σxxμβ , M(r) = Σ−1
ββ − r2Σxx , and

λr(δ) = a(r)′δ − 1

2
δ′M(r)δ = 1

2
a(r)′M(r)−1a(r)

(A9.2)− 1

2

[
δ′ − a(r)′M(r)−1]M(r)

[
δ −M(r)−1a(r)

]
.

Since integration goes overRn+1, we can substituteq = δ−M(r)−1a(r),
giving

Hr = |Σββ |−1/2 exp

[
1

2
a(r)′M(r)−1a(r)

]

×
∫

Rn+1
(2π)−(n+1)/2 exp

[
−1/2q ′M(r)q

]
dq.

The integrand resembles a normal density function, withM(r) occupying
the same place as theinverseof the covariance matrix ofq. Thus, the
latter integral after division by|M(r)−1|1/2 equals one for anyq and any
positive definiteM(r), which implies
∫

Rn+1
(2π)−(n+1)/2 exp

[
−1

2
q ′M(r)q

]
dq =

∣∣M(r)−1
∣∣1/2.

We can then expressHr in closed form as

Hr = |Σββ |−1/2 exp

[
1

2
a(r)′M(r)−1a(r)

]∣∣M(r)
∣∣−1/2

= exp

[
1

2
a(r)′M(r)−1a(r)

]∣∣ΣββM(r)
∣∣−1/2

,

which, inserted into(A9.1), yields

E
(
Y r
)

=
∣∣M(r)Σββ

∣∣−1/2

(A9.3)

× exp

[
rμ′

xμβ + 1

2
r2(μ′

βΣxxμβ + σuu)+ 1

2
a(r)′M(r)−1a(r)

]
.

Inserting fora(r) andM(r) completes the proof.
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A9.2. Proof of Equation(9.26)

The first three components of ln[G1(Y )], as given by(9.25), respond to
changes inμz and the last three elements respond to changes inΣzz. In-
serting in(9.7) from (9.2) and (9.3), we obtain

σyy = σαα + 2μzσγα + μ′
zΣγ γμz + μ′

γΣzzμγ + tr(Σγ γΣzz)+ σuu,

μ′
xΣββΣxxμβ = σ ′

γαΣzzμγ + μ′
zΣγ γΣzzμγ ,

μ′
βΣxxΣββΣxxμβ = μ′

γΣzzΣγ γΣzzμγ .

Differentiating the various terms in(9.25) with respect toμz andΣzz

(Lütkepohl, 1996, Section 10.3.2, Equations (2), (5) and (21)) we get

(A9.4)
∂μy

∂μz

= ∂(μ′
xμβ)

∂μz

=
∂(μ′

zμγ )

∂μz

= μγ ,

(A9.5)
∂σyy

∂μz

= 2
∂(μ′

zσαγ )

∂μz

+
∂(μ′

zΣγ γμz)

∂μz

= 2(σγα +Σγ γμz),

(A9.6)
∂(μ′

xΣββΣxxμβ)

∂μz

=
∂(μ′

zΣγ γΣzzμγ )

∂μz

= Σγ γΣzzμγ ,

(A9.7)
∂σyy

∂Σzz

=
∂(μ′

γΣzzμγ )

∂Σzz

+ ∂ tr(Σγ γΣzz)

∂Σzz

= μγμ
′
γ +Σγ γ ,

∂(μ′
xΣββΣxxμβ)

∂Σzz

=
∂(σ ′

γαΣzzμγ )

∂Σzz

+
∂(μ′

zΣγ γΣzzμγ )

∂Σzz

(A9.8)

=
∂ tr(σ ′

γαΣzzμγ )

∂Σzz

+
∂ tr(μ′

zΣγ γΣzzμγ )

∂Σzz

= μγ σ
′
γα + μγμ

′
zΣγ γ ,

∂(μ′
βΣxxΣββΣxxμβ)

∂Σzz

=
∂(μ′

γΣzzΣγ γΣzzμγ )

∂Σzz

(A9.9)

=
∂ tr(μ′

γΣzzΣγ γΣzzμγ )

∂Σzz

= μγμ
′
γΣzzΣγ γ +Σγ γΣzzμγμ

′
γ .

It follows from (9.25)and(A9.4)–(A9.9), that

(A9.10)
∂ ln[G1(Y )]

∂μz

= μγ + σγα + Σγ γ (μz +Σzzμγ ),

(A9.11)

∂ ln[G1(Y )]
∂Σzz

= 1

2
(μγμ

′
γ +Σγ γ + μγμ

′
γΣzzΣγ γ

+Σγ γΣzzμγμ
′
γ )+ μγ (σ

′
γα + μ′

zΣγ γ ).
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Since, from(9.19), $ ln[E(Z)] = $(μz + 1
2σzz), we have

∂ ln[G1(Y )]
∂ ln[E(Z)]

(A9.12)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

μγ + σγα +Σγ γ (μz +Σzzμγ ), whenΣzz is constant,

diagv[μγμ
′
γ + Σγ γ + μγμ

′
γΣzzΣγ γ whenμz and the

+Σγ γΣzzμγμ
′
γ off-diagonal elements

+ 2μγ (σ
′
γα + μ′

zΣγ γ )], of Σzz are constant,

which completes the proof.

Appendix B9. Details on estimation and data

B9.1. Details on the ML estimation

We consider, for convenience, our unbalanced panel data set (cf.Appen-
dix B9.2 below) as a data set where the firms are observed in at least 1
and at mostP years, and arrange the observations in groups according
to the time series lengths (a similar ordering is used inBiørn, 2004). Let
Np be the number of firms which are observed inp years (not necessarily
the same and consecutive), let(ip) index theith firm among those ob-
served inp years, and let from now ont index the observation number
(t = 1, . . . , p) rather than calendar time. The production function(9.1),
can then be written as

y(ip)t = x′
(ip)tβ(ip) + u(ip)t ,

(B9.1)p = 1, . . . , P ; i = 1, . . . , Np; t = 1, . . . , p,

whereβ(ip) is the coefficient vector of firm(ip). Insertingβ(ip) = μβ +
δ(ip) we get

(B9.2)y(ip)t = x′
(ip)tμβ + ψ(ip)t , ψ(ip)t = x′

(ip)tδ(ip) + u(ip)t .

Stacking thep realizations from firm(ip) in y(ip) = [y(ip)1, . . . , y(ip)p]′,
X(ip) = [x(ip)1, . . . , x(ip)p], u(ip) = [u(ip)1, . . . , u(ip)p]′, andψ(ip) =
[ψ(ip)1, . . . , ψ(ip)p]′, we can write(B9.2)as

(B9.3)y(ip) = X′
(ip)μβ + ψ(ip), ψ(ip) = X′

(ip)δ(ip) + u(ip),

where, from(9.2)–(9.4),

(B9.4)ψ(ip)|X(ip) ∼ N (0,Ω(ip)), Ω(ip) = X′
(ip)ΩX(ip) + σuuIp,
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andIp is thep-dimensional identity matrix. The log-likelihood function
is therefore

L = −m

2
ln(2π)− 1

2

P∑

p=1

Np∑

i=1

{
ln |Ω(ip)|

(B9.5)+ [y(ip) −X′
(ip)μβ]′Ω−1

(ip)[y(ip) −X′
(ip)μβ]

}
,

wherem =
∑P

p=1pNp. The ML estimators of(μβ, σuu,Ω) follow by
maximizingL. The solution may be simplified by concentratingL over
μβ and maximizing the resulting function with respect toσuu and the un-
known elements ofΩ.

B9.2. Data

The data are from the years 1972–1993 and represent two Norwegian
manufacturing industries, Pulp and paper and Basic metals.Table B9.1,
classifying the observations by the number of years, andTable B9.2, sort-
ing the firms by the calendar year in which they are observed, shows the
unbalanced structure of the data set. There is a negative trend in the num-
ber of firms for both industries.

The primary data source is the Manufacturing Statistics database of
Statistics Norway, classified under the Standard Industrial Classification
(SIC)-codes 341 Manufacture of paper and paper products (Pulp and pa-
per, for short) and 37 Manufacture of basic metals (Basic metals, for
short). Both firms with contiguous and non-contiguous time series are in-
cluded. Observations with missing values of output or inputs have been
removed. This reduced the effective sample size by 6–8 per cent in the
two industries.

In the description below, MS indicates firm-level data from the Man-
ufacturing Statistics, NNA indicates data from the Norwegian National
Accounts, which are identical for firms classified in the same National
Account industry.

Y : Output, 100 tonnes (MS)

K = KB +KM: Total capital stock (buildings/structures plus

machinery/transport equipment), 100 000 1991-NOK (MS, NNA)

L: Labor input, 100 man-hours (MS)

E: Energy input, 100 000 kWh, electricity plus fuels (MS)

M = CM/QM: Input of materials, 100 000 1991-NOK (MS, NNA)

CM: Total materials cost (MS)

QM: Price of materials, 1991= 1 (NNA)
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Table B9.1. Number of firms(Np) by
number of replications(p)

Pulp and paper Basic metals

p Np Npp Np Npp

22 60 1320 44 968
21 9 189 2 42
20 5 100 4 80
19 3 57 5 95
18 1 18 2 36
17 4 68 5 85
16 6 96 5 80
15 4 60 4 60
14 3 42 5 70
13 4 52 3 39
12 7 84 10 120
11 10 110 7 77
10 12 120 6 60
09 10 90 5 45
08 7 56 2 16
07 15 105 13 91
06 11 66 4 24
05 14 70 5 25
04 9 36 6 24
03 18 54 3 9
02 5 10 6 12
01 20 20 20 20

Sum 237 2823 166 2078

Output The firms in the Manufacturing Statistics are in general multi-
output firms and report output of a number of products measured in both
NOK and primarily tonnes or kg. For each firm, an aggregate output mea-
sure in tonnes is calculated. Hence, rather than representing output in the
two industries by deflated sales, which may contain measurement errors
(seeKlette and Griliches, 1996), and recalling that the products from the
two industries are relatively homogeneous, our output measures are actual
output in physical units, which are in several respects preferable.

Capital stock The calculations of capital stock data are based on the per-
petual inventory method, assuming constant depreciation rates. We com-
bine firm data on gross investment with fire insurance values for each of
the two categories Buildings and structures and Machinery and transport
equipment from the MS. The data on investment and fire insurance are
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Table B9.2. Number of firms by calendar year

Year Pulp and paper Basic metals

1972 171 102
1973 171 105
1974 179 105
1975 175 110
1976 172 109
1977 158 111
1978 155 109
1979 146 102
1980 144 100
1981 137 100
1982 129 99
1983 111 95
1984 108 87
1985 106 89
1986 104 84
1987 102 87
1988 100 85
1989 97 83
1990 99 81
1991 95 81
1992 83 71
1993 81 83

Sum 2823 2078

deflated using industry specific price indices of investment goods from the
NNA (1991 = 1). The depreciation rate is set to 0.02 for Buildings and
structures and 0.04 for Machinery and transport equipment. For further
documentation, seeBiørn et al. (2000, Section 4; 2003a).

Other inputs From the MS we get the number of man-hours used, total
electricity consumption in kWh, the consumption of a number of fuels
in various denominations, and total material costs in NOK for each firm.
The different fuels are transformed to the common denominator kWh by
using estimated average energy content of each fuel, which enables us to
calculate aggregate energy use in kWh for each firm.
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Abstract

Despite the significant growth of macroeconomic and financial empiri-
cal panel studies the modeling of time dependent variance–covariance
processes has not yet been addressed in the panel data literature. In this
paper we specify a model that accounts for conditional heteroskedasticity
and cross-sectional dependence within a typical panel data framework. We
apply the model to a panel of monthly inflation rates of the G7 countries
over the period 1978.2–2003.9 and find significant and quite persistent
patterns of volatility and cross-sectional dependence. We then use the
model to test two hypotheses about the interrelationship between infla-
tion and inflation uncertainty, finding no support for the hypothesis that
higher inflation uncertainty produces higher average inflation rates and
strong support for the hypothesis that higher inflation is less predictable.

Keywords: dynamic panel data models, conditional heteroskedasticity,
cross-sectional dependence, GARCH models, inflation uncertainty

JEL classifications:C33, C15

10.1. Introduction

The empirical panel data literature on financial and macroeconomic is-
sues has grown considerably in the few past years. A recent search of

mailto:rodolfo.cermeno@cide.edu
mailto:angus@ou.edu
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ECONLIT using the keyword phrases “financial panel data” and “macro-
economic panel data” produced 687 and 309 hits respectively.1 While it
is well known that most financial and macroeconomic time series data are
conditionally heteroskedastic, rendering traditional estimators consistent,
but inefficient, this rapidly growing literature has not yet addressed the is-
sue. On the other hand, sophisticated multivariate GARCH models already
are in wide use but they are confined to a time series context.2

In this paper we specify a panel model that accounts for conditional
heteroskedasticity and cross-sectional correlation. The model is used to
characterize the patterns of volatility and cross-sectional dependence of
inflation in the G7 countries and to evaluate the hypotheses that (i) higher
inflation uncertainty produces higher average inflation rates and (ii) higher
inflation rates become less predictable. The main contribution of the paper
is to account for a time dependent error covariance processes in panel
models with fixed effects (dynamic or static), thus opening an avenue for
empirical panel research of financial or macroeconomic volatility.

Although the volatility processes can be studied on an individual ba-
sis (i.e. country by country) using existing GARCH models (e.g.,Engle,
1982; Engleet al., 1987; Bollerslevet al., 1988; Bollerslev, 1990), panel
modeling is still worth pursuing since taking into account the cross-
sectional dependence will increase efficiency and provide potentially im-
portant information about patterns of cross-sectional dependence.

It is important to remark, though, that identification of time depen-
dent variance–covariance processes in panel data is feasible as long as
the cross-sectional dimensionN is relatively small since the number of
covariance parameters will increase rapidly otherwise, which limits the
applicability of the model to relatively smallN and largeT panels.3

The rest of the paper is organized as follows. In Section10.2we for-
mulate the basic panel model with conditional heteroskedastic and cross-
sectionally correlated disturbances and briefly discuss some special cases
and generalizations. Section10.3 discusses the strategy that will be fol-
lowed in order to determine the presence of time dependent variance–
covariance processes and to specify a preliminary panel model with such
effects. Section10.4provides the empirical results, characterizing volatil-
ity and cross-sectional dependence in the G7 countries, as well as testing
two hypotheses about the interrelationship between inflation and its pre-
dictability. Finally, Section10.5concludes.

1 Search conducted November 8, 2004.
2 SeeBollerslevet al. (1992)for a survey on ARCH models. For a comprehensive survey

on multivariate GARCH models seeBauwenset al. (2003).
3 Phillips and Sul (2003)point out this limitation in the context of heterogeneous panels

with (unconditional) cross-sectional dependence.
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10.2. The model

Consider the following dynamic panel data (DPD) model with fixed ef-
fects:4

(10.1)yit = μi + φyit−1 + xitβ + uit , i = 1, . . . , N, t = 1, . . . , T ,

whereN andT are the number of cross sections and time periods respec-
tively; yit is the dependent variable,μi is an individual specific effect,
which is assumed fixed,xit is a row vector of exogenous explanatory
variables of dimensionk, andβ is a k by 1 vector of coefficients. We
assume that the AR parameter satisfies the condition|φ| < 1 and thatT
is relatively large so that we can invoke consistency of the Least Squares
estimators.5 In the caseφ = 0, the process given by Equation(10.1)be-
comes static.6 The disturbance termuit is assumed to have a zero mean
normal distribution with the following conditional moments:

(10.2)

(i) E[uitujs/uit−1, ujs−1] = σ 2
it for i = j andt = s,

(ii) E[uitujs/uit−1, ujs−1] = σij t for i �= j andt = s,

(iii) E[uitujs/uit−1, ujs−1] = 0 for i = j andt �= s,

(iv) E[uitujs/uit−1, ujs−1] = 0 for i �= j andt �= s.

Assumption (iii) states that there is no autocorrelation while assump-
tion (iv) disallows non-contemporaneous cross-sectional correlation.7

Assumptions (i) and (ii) define a very general conditional variance–
covariance process; some structure needs to be imposed in order to make
this process tractable. We propose the following specification which is an
adaptation of the model inBollerslevet al. (1988).

(10.3)σ 2
it = αi + δσ 2

i,t−1 + γ u2
i,t−1, i = 1, . . . , N,

(10.4)σij t = ηij + λσij,t−1 + ρui,t−1uj,t−1, i �= j.

The model defined by Equations(10.1)(conditional mean),(10.3)(con-
ditional variance) and(10.4) (conditional covariance) is simply a DPD

4 This class of models is widely known in the panel data literature. SeeBaltagi (2001)
andHsiao (2003)for details.
5 For dynamic models with fixed effects and i.i.d. errors, it is well known that the LSDV

estimator is downward biased in smallT samples. See, for example,Kiviet (1995).
6 It is worth emphasizing that we are only considering the case of stationary panels. In

practice, we will have to assure that all variables are indeed stationary orI (0).
7 Ruling out autocorrelation might be a restrictive assumption but it is convenient because

of its simplicity. In practice, we will need to make sure that this assumption is not violated.
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model with conditional covariance. Thus, we can use the acronym DPD-
CCV.8 Modeling the conditional variance and covariance processes in this
way is quite convenient in a panel data context since by imposing a com-
mon dynamics to each of them, the number of parameters is considerably
reduced. In this case there are(1

2N(N + 1) + 4) parameters in the co-
variance matrix. It is important to emphasize that(10.3) and (10.4)imply
that the conditional variance and covariance processes follow, respectively,
a common dynamics but their actual values, however, are not identical for
each unit or pair of units (conditionally or unconditionally).

It can be shown that the conditionsαi > 0, (δ+γ ) < 1, and(λ+ρ) < 1
are sufficient for the conditional variance and covariance processes to con-
verge to some fixed (positive in the case of the variance) values. However,
in general there is no guarantee that the covariance matrix of disturbances
be positive definite (at each point in time) and that it converges to some
fixed positive definite matrix. Thus, assuming positive definiteness of the
covariance matrix, the error structure of the model will reduce, uncon-
ditionally, to the well-known case of groupwise heteroskedasticity and
cross-sectional correlation.

In matrix notation and assuming given initial valuesyi0, Equation(10.1)
becomes

(10.5)yt = µ + Ztθ + ut , t = 1, . . . , T ,

whereyt , ut , are vectors of dimensionN × 1. The matrixZt = [yt−1
...Xt ]

has dimensionN × (K + 1), µ is aN × 1 vector of individual specific
effects, andθ = [φ...β ′]′ is a conformable column vector of coefficients.
Given our previous assumptions theN -dimensional vector of disturbances
ut will follow a zero-mean multivariate normal distribution, denoted as
ut ∼ N(0,Ω t ). The covariance matrixΩ t is time dependent and its
diagonal and off-diagonal elements are given by Equations(10.3) and
(10.4) respectively. The vector of observationsyt is therefore condition-
ally normally distributed with mean (µ + Ztθ ) and variance–covariance
matrixΩ t . That is,yt ∼ N(µ + Ztθ,Ω t ) and its conditional density is

f (yt/Zt ,µ, θ , ϕ) = (2π)−N/2|Ω t |−1/2 exp

(
−1

2

)
(yt − µ − Ztθ)

′

(10.6)× Ω−1
t (yt − µ − Ztθ),

8 We should remark that Equations(10.3) and (10.4)could have a more general GARCH
(p, q) formulation.
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whereϕ includes the parameters in Equations(10.3) and (10.4). For the
complete panel we have the following log-likelihood function:9

l = −
(
NT

2

)
ln(2π)−

(
1

2

) T∑

t=1

ln |Ω t | −
(

1

2

) T∑

t=1

(yt − µ − Ztθ)
′

(10.7)× Ω−1
t (yt − µ − Ztθ).

This function is similar to those derived in the context of multivariate
GARCH models (e.g.,Bollerslevet al., 1988).10 It can be shown straight-
forwardly that if the disturbances are cross-sectionally independent the
N ×N matrixΩ t becomes diagonal and the log-likelihood function takes
the simpler form:

l = −NT

2
ln(2π)− 1

2

N∑

i=1

T∑

t=1

ln
(
σ 2
it (ϕ)

)

(10.8)− 1

2

N∑

i=1

T∑

t=1

(yit − μi − φyit−1 − xitβ)2

σ 2
it (ϕ)

.

Further, in the absence of conditional heteroskedasticity and cross-
sectional correlation the model simply reduces to a typical DPD model.

Even though the LSDV estimator in Equation(10.1) is still consistent
it will no longer be efficient in the presence of conditional heteroskedastic
and cross-sectionally correlated errors, either conditionally or uncondi-
tionally. In this case, the proposed non-linear MLE estimator based upon
(10.7)or (10.8) (depending on whether we have cross-sectionally corre-
lated disturbances or not) will be appropriate. Note that, by using the MLE
estimator we are able to obtain both the parameters of the conditional mean
and conditional variance–covariance equations while the LSDV estimator
will only be able to compute the coefficients in the mean equation.

It is well known that under regularity conditions the MLE estimator
is consistent, asymptotically efficient and asymptotically normally dis-
tributed. Also it is known that these properties carry through when the

9 It should be remarked that the normality assumption may not hold in practice leading
to Quasi-MLE estimation. SeeDavidson and McKinnon (1993)for a general discussion.
Although this issue needs further investigation it is worth pointing out thatBollerslev and
Wooldridge (1992)find that the finite sample biases in the QMLE appear to be relatively
small in time series GARCH models.
10 Also it is similar to the log likelihood function derived in the context of prediction error
decomposition models for multivariate time series. See for exampleBrockwell and Davis
(1991)andHarvey (1990).
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observations are time dependent as is the case of multivariate GARCH
processes. Therefore, the MLE estimator in(10.7)or (10.8) is asymptot-
ically normally distributed with mean equal to the true parameter vector
and a covariance matrix equal to the inverse of the corresponding informa-
tion matrix. It is important to note that these asymptotic properties would
hold forN fixed andT approaching to infinity since we are modeling the
N -dimensional vector of disturbances of the panel as a multivariate time
series process.

Estimation of the DPDCCV model will be made by direct maximization
of the log-likelihood function given by(10.7), using numerical methods.11

The asymptotic covariance matrix of the MLE estimator of this type will
be approximated by the negative inverse of the Hessian ofl evaluated at
MLE parameter estimates. It is important to remark that the total number
of coefficients to be estimated depends on the squared cross-sectional di-
mension of the panel,N2, which in practice suggests applying the model
to relatively smallN panels in order to make the estimation feasible and
to retain the asymptotic properties, namely consistency and efficiency, of
this estimator.12

In practice, the individual effects in the mean equation may not be sig-
nificantly different from each other giving rise to a mean equation with a
single intercept (often called “pooled regression model”). Also, it is possi-
ble that the conditional variance or covariance processes do not exhibit in-
dividual effects. A combination of these possibilities could occur as well.
A completely heterogeneous panel with individual specific coefficients for
all the parameters in the mean and variance–covariance equations can also
be considered, although in this last case we can run into estimation prob-
lems given the considerably large number of parameters that will arise
even if the number of cross sections is relatively small.

Finally, it is worth mentioning some alternative specifications for the
variance and covariance processes along the lines of those developed in
the multivariate GARCH literature. For example, a variation of Equa-
tion (10.4) that specifies the analogous of the constant correlation model
as inBollerslev (1990)or its generalized version, the dynamic conditional
correlation model, given inEngle (2002). Also, depending on the particu-
lar subject of study, exogenous regressors can be included in the variance
equations as well as the variance itself can be included as a regressor in
the conditional mean equation, as in multivariate M-GARCH-M models.

11 We use the GAUSS Optimization module.
12 In this paper we only consider small values ofN . Further work will focus on using ex-
isting multivariate GARCH two-step methods which allow consistent, although inefficient,
estimation of a considerably large number of parameters as would be the case of largerN

panels. SeeEngle (2002), andLedoitet al. (2003).
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10.3. Empirical strategy

Since the proposed DPDCCV models are non-linear and estimation by di-
rect maximization of the log-likelihood can be tedious work, it may be
helpful to make some preliminary identification of the most appropriate
model. In what follows we outline an empirical methodology for this pur-
pose although it should be remarked that it is only done in an informal
way.

Two issues are fundamental in our empirical strategy: (i) Specifying
the best model for the mean equation and (ii) Identifying conditional
variance–covariance processes in the panel. We consider that, provided
there are a large enough number of time series observations so that we can
rely on consistency of LS estimators, these issues can be addressed using
conventional panel data estimation results as we discuss next.

10.3.1. Specifying the mean equation

An important issue in empirical panel work is the poolability of the data.
In the context of Equation(10.1)we need to determine whether there are
individual specific effects or a single intercept.13 For this purpose we can
test for individual effects in the mean equation using the LSDV estimator
with a heteroskedasticity and autocorrelation consistent covariance matrix,
along the lines ofWhite (1980)andNewey and West (1987)estimators
applied to panel.14

Under the assumption of cross-sectional independence, and for models
where the variance process is identical across units, the LSDV and OLS
estimators respectively are still best linear estimators. However if the vari-
ances are not equal across units the unconditional variance process will
differ across units and the previous estimators will no longer be efficient.
Given that we do not know a priori the appropriate model and that we may
have autocorrelation problems in practice, it seems convenient to use a
covariance matrix robust to heteroskedasticity and autocorrelation. Specif-
ically, we can test the null hypothesisH0: μ1 = μ2 = · · · = μN by means
of a Wald-test, which will follow aχ2

(N−1) distribution asymptotically.

13 From a much broader perspective, however, we need to determine if full heterogeneity
or some form of pooling is more appropriate for the conditional mean equation.
14 Arellano (1987)has extended White’s heteroskedasticity consistent covariance estima-
tor to panel data but this estimator is not appropriate here since it has been formulated for
smallT and largeN panels which is not our case.
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10.3.2. Identifying conditional variance–covariance processes

Once we have determined a preliminary model for the mean equation,
we can explore the possibility of a time dependent pattern in the variance
process by examining whether the squared LSDV or LS residuals (de-
pending on whether individual specific effects are included or not in the
mean equation) exhibit a significant autocorrelation pattern.15 Depending
upon the number of significant partial autocorrelations obtained we can
choose a preliminary order for the variance process. As a practical rule,
we can consider an ARCH (1) process if only the first lag is significant, or
a GARCH (1, 1) if more lags are significant.

A related important issue is to determine if there are individual effects
in the variance process. This can be done by testing for individual ef-
fects in the AR regression of squared residuals. Complementarily, a test
for unconditional groupwise heteroskedasticity (which can be done in a
conventional way) can lead us to decide for individual effects in the vari-
ance process if the null hypothesis is rejected.

Next, we can carry out a conventional test for the null hypothesis of no
cross-sectional correlation (unconditionally) which if not rejected will al-
low us to consider the simpler model under cross-sectional independence
as a viable specification. Rejection of the previous hypothesis will indicate
that the (unconditional) covariance matrix of theN vector of disturbances
is not diagonal making it worth to explore a possible time dependent pat-
tern of the covariance among each pair of units. This can be done in a
similar way as outlined previously for the case of the variance. Specifi-
cally, we can examine if the cross products of LSDV or LS residuals show
a significant autocorrelation pattern. The inclusion of pair specific effects
in the covariance process can be decided after testing for individual effects
in the AR regression of cross products of residuals.

We need to remark that the previous guidelines can be quite helpful to
determine a preliminary specification of the model. However, in order to
determine the most appropriate model we need to estimate a few alterna-
tive specifications via maximum likelihood and compare the results. At
this point, it is important to make sure that all conditional heteroskedas-
ticity has been captured in the estimation. We can accomplish this in two
ways. First, we can add additional terms in the conditional variance equa-
tion and check for their significance. Second, we can test the squared
normalized residuals for any autocorrelation pattern. If significant patterns
remain, alternative specifications should be estimated and checked.

15 This argument is along the lines ofBollerslev (1986)who suggests examining the
squared least squares residuals in order to determine the presence of ARCH effects in a
time series context.
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10.4. Inflation uncertainty in the G7 Countries

Several studies have found using time series GARCH models that inflation
uncertainty, measured by the estimated conditional variance, is a signifi-
cant phenomenon in the G7 and other countries, and that it interacts in
various ways with nominal or real variables.16 In this paper we attempt
to characterize the conditional variance–covariance process of inflation in
the G7 countries taken as a panel. We also evaluate the hypotheses that
(i) higher inflation uncertainty increases average inflation and (ii) higher
inflation rates become less predictable. We use monthly observations on
inflation rates (π ) during the period 1978.2 to 2003.9.17

Before proceeding, we evaluate the stationarity of the inflation process.
In Table 10.1we present time series as well as panel unit root tests for
inflation. In all cases the regression model for the test includes an intercept.
For each individual country, we use the Augmented Dickey–Fuller (ADF)
and Phillips–Perron (PP) tests.18 The results reject the null hypothesis of
unit root except in the cases of France and Italy when using the ADF test.
At the panel level, bothLevin et al. (2002) t-star andIm et al.’s (2003)
t-bar and W (t-bar) tests reject the null of unit root, which enables us to
treat this panel as stationary.19

10.4.1. Conditional heteroskedasticity and cross-sectional dependence
in G7 inflation

In this section we present and briefly discuss the estimation results of
various DPDCCV models after performing some preliminary testing fol-
lowing the empirical strategy outlined in Section10.3. In all cases, we
consider an AR (12) specification for the mean equation since we are us-
ing seasonally unadjusted monthly data.

First, we test for individual effects in the mean equation. The Wald test
statistic (using White/Newey–West’s HAC covariance matrix) isχ2

(6) =

16 See, for example,Caporale and Caporale (2002), Apergis (1999)andGrier and Perry
(1996, 1998, 2000)among others. It is also worth mentioning the seminal paper byRobert
Engle (1982).
17 These data are compiled from the International Monetary Fund’s (IMF) International
Financial Statistics.
18 For the ADF and PP tests the number of lags was determined by the floor{4(T /100)5/9}
which gives a value of 5 lags in all cases.
19 It is important to remark that the alternative hypothesis is not the same. In Levin–Lin–
Chu test all cross sections are stationary with the same AR parameter while in the case
of Im, Pesaran and Shin the AR parameter is allowed to differ across units and not all
individual processes need to be stationary.
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Table 10.1. Time series and panel data unit root tests for inflation in
the G7 countries

Augmented Dickey–
Fuller

Phillips–PerronZ(ρ) Phillips–PerronZ(t)

Time series unit root tests
Canada −3.905 −260.545 −13.174
France −2.131 −71.268 −6.525
Germany −5.464 −222.100 −12.638
Italy −2.247 −68.437 −6.282
Japan −5.521 −219.774 −14.866
U.K. −3.525 −215.237 −12.291
U.S. −3.636 −96.258 −7.626

Panel data unit root tests
Pooledt-star test: −4.79577 (0.0000)
(Levin et al., 2002)
t-bar test: −6.227 (0.0000)
(Im et al., 2003)
W(t-bar) test: −14.258 (0.0000)
(Im et al., 2003)

The time series unit root tests correspond to the model with intercept only. For the Aug-
mented Dickey–Fuller (ADF) and the Phillips–Perron (PP) tests, the lag truncation was
determined by floor 4(T /100)2/9. For the ADF and PPZ(t) tests, the approximate 1, 5
and 10 percent critical values are−3.456,−2.878 and−2.570 respectively. For the PP
Z(ρ) test the approximate 1 percent critical value is−20.346. For the panel unit root tests,
the number of lags for each individual country was also set to floor 4(T /100)2/9. Numbers
in parenthesis arep-values.

2.82, which is not significant at any conventional level and lead us to con-
sider a common intercept in the mean equation.

Secondly, we perform likelihood ratio tests for (unconditional) group-
wise heteroskedasticity and cross-sectional correlation obtaining the val-
ues ofχ2

(6) = 255.08 andχ2
(21) = 214.28 respectively. These tests sta-

tistics are highly significant and indicate that the unconditional variance–
covariance matrix of disturbances is neither scalar identity nor diagonal.

More explicitly, these results show that there is significant uncon-
ditional groupwise heteroskedasticity and cross-sectional correlation.
Clearly, the second test suggests that the assumption of cross-sectional
independence does not hold in these data.

Next, in order to explore if a significant conditional variance–covariance
process exists, we estimate AR (12) regressions using the squared as well
as the cross products of the residuals taken from the pooled AR (12) mean
inflation regression. For the squared residuals, lag 1 is significant at the
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5% while lags 3, 9 and 12 are significant at the 1% level. In the case of the
cross products of residuals, lags 1, 3, 6, 7, 9 and 12 are significant at the
1% level.20

We also perform simple tests for individual effects in the previous AR
(12) regressions. We find that the null of no individual effects in the regres-
sion using squared residuals is rejected at the 5% significance level. This
result, together with the previous evidence on unconditional groupwise
heteroskedasticity, leads us to include individual effects in the conditional
variance equation. For the case of cross products of LS residuals, the joint
null of no pair specific effects is not rejected pointing to a covariance
process with a single intercept.21

To summarize, the preliminary testing suggests a dynamic panel model
without individual effects in the mean equation for inflation rates (π ).
For both the conditional variance and conditional covariance processes,
a GARCH (1, 1) specification seems to be appropriate given the persis-
tence exhibited by the squares and cross products of the LS residuals
respectively. The variance and covariance equations may include individ-
ual specific and a single intercept respectively. This DPDCCV model will
be estimated and referred to as Model 2. We will also consider a few rele-
vant alternative specifications based on the following benchmark model:

(10.9)πit = μ+
12∑

j=1

βjπit−j + uit , i = 1, . . . ,7; t = 1, . . . ,296,

(10.10)σ 2
it = αi + δσ 2

i,t−1 + γ u2
i,t−1,

(10.11)σij t = ηij + λσij,t−1 + ρui,t−1uj,t−1.

This model will be referred to as Model 3. Model 2 is a special case of
Model 3 in thatηij = η in Equation(10.11). We also consider a model
with cross-sectional independence, which is defined by Equations(10.9)
and (10.10)only. This will be referred to as Model 1. For comparison, two
versions of the simple dynamic panel data (DPD) model without GARCH
effects are also considered. The first one, which includes country spe-
cific effects, is estimated using the LSDV as well asArellano and Bond’s

20 The results are available upon request.
21 It is important to note, though, that 9 out of the 21 pair specific coefficients resulted
positive and significant at the 10% or less, indicating that a model with pair specific effects
in the covariance process may not be discarded.
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(1991)GMM estimators.22 The pooled regression model (common inter-
cept) is estimated by OLS.23

In Table 10.2we report some conventional DPD estimation results.
Two issues are worth noting. First, the estimated coefficients for the mean
equation are numerically quite close, although the GMM1 estimator is the
most efficient (as it would have been expected) and gives a higher number
of significant coefficients than the other estimators. Second, when com-
paring OLS and LSDV results we find that the (implied) values of the
log likelihood function are also quite close, which is congruent with the
non-rejection results from the Wald test for no individual specific effects
reported before.

Given the previous results, we consider that a specification without
country specific effects in the mean equation is justified and therefore we
use it for the DPDCCV models. The estimation results of these models
are shown inTable 10.3. All of them were obtained by MLE. It should be
remarked that we estimated 22, 25 and 45 parameters in Models 1, 2 and
3 respectively.

Clearly, the last DPDCCV model (Model 3) outperforms all the other
models based on the value of the log-likelihood function. Notice that our
specification strategy picked Model 2 rather than Model 3, so that actu-
ally estimating several reasonable models is probably important to do in
practice. In what follows we use the results of Model 3 to characterize the
G7’s mean inflation process as well as its associated conditional variance
and covariance processes.

According to Model 3, the G7’s inflation volatility can be characterized
as a significant and quite persistent although stationary GARCH (1, 1)
process. Similarly, the results for the covariance equation indicate that this
process is also a quite persistent GARCH (1, 1).

We find that all individual specific coefficients in the variance equation
are statistically significant at the 1% level. Also, all but two of the pair
specific coefficients in the covariance equation are positive and about half
of them are statistically significant at the 10% level or less.24

Some interesting patterns of individual volatility and cross-sectional de-
pendence among the G7’s inflation shocks are worth mentioning. First,

22 Given that we are dealing with a largeT and smallN panel we only use the GMM1
estimator after restricting the number of lagged values of the dependent variable to be
used as instruments to a maximum of 7. Specifically, we use lags 13th through 19th as
instruments. See alsoBaltagi (2001, pp. 131–136)for details on these estimators.
23 For both OLS and LSDV we computed standard errors using White/Newey–West’s HAC
covariance matrix.
24 These results as well as the ones we referred to in the rest of this section are available
upon request.
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Table 10.2. Conventional DPD estimation results

DPD Model (individual specific effects): LSDV estimator

Log likelihood= −5691.96
Mean: πit = μi + 0.176

(6.32)∗∗∗ πit−1 − 0.008
(−0.35)

πit−2 + 0.025
(0.79)

πit−3

+ 0.052
(2.05)∗∗ πit−4 + 0.033

(1.51)
πit−5 + 0.086

(3.28)∗∗∗ πit−6 + 0.046
(2.09)∗∗ πit−7

+ 0.009
(0.46)

πit−8 + 0.012
(0.30)

πit−9 − 0.013
(−0.58)

πit−10 + 0.046
(1.83)∗

πit−11

+ 0.446
(14.39)∗∗∗ πit−12 + ûit

Variance: σ2
it

= 14.38
Covariance: σij t = 0

DPD Model (individual specific effects): Arellano–Bond GMM1 estimator

Mean: πit = μi + 0.173
(33.32)∗∗∗ πit−1 − 0.004

(−0.77)
πit−2 + 0.019

(3.54)∗∗∗ πit−3

+ 0.054
(10.25)∗∗∗ πit−4 + 0.033

(6.32)∗∗∗ πit−5 + 0.086
(16.29)∗∗∗ πit−6

+ 0.046
(8.77)∗∗∗ πit−7 + 0.004

(0.69)
πit−8 + 0.015

(2.79)∗∗ πit−9 − 0.008
(1.54)

πit−10

+ 0.048
(9.15)∗∗∗ πit−11 + 0.446

(86.96)∗∗∗ πit−12 + ûit

Variance: σ2
it

= 13.72
Covariance: σij t = 0

DPD Model (common intercept): OLS estimator

Log likelihood= −5692.45
Mean: πit = 0.172

(1.30)
+ 0.177
(6.35)∗∗∗ πit−1 − 0.007

(−0.31)
πit−2 + 0.026

(0.83)
πit−3

+ 0.052
(2.07)∗∗ πit−4 + 0.034

(1.55)
πit−5 + 0.087

(3.34)∗∗∗ πit−6 + 0.047
(2.14)∗∗ πit−7

+ 0.010
(0.50)

πit−8 + 0.012
(0.32)

πit−9 − 0.012
(−0.54)

πit−10 + 0.047
(1.85)∗

πit−11

+ 0.447
(14.50)∗∗∗ πit−12 + ûit

Variance: σ2
it

= 14.25
Covariance: σij t = 0

For each model we show the estimated mean equation followed by the estimated (or im-
plied) equations for the conditional variance and covariance processes. Values in parenthe-
sis aret-ratios. Thet-ratios for the OLS and LSDV estimators are based on White/Newey–
West’s HAC standard errors. For the GMM1 estimator the number of lagged values of the
dependent variable to be used as instruments is restricted to a maximum of 7. Specifically,
we use lags 13th through 19th as instruments.
∗indicate significance level of 10%.
∗∗indicate significance level of 5%.
∗∗∗indicate significance level of 1%.
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Table 10.3. Estimation results for the DPDCCV model

DPDCCV Model 1 (conditional variance only): MLE estimator

Log likelihood= −5466.22
Mean: πit = 0.331

(3.13)∗∗∗ + 0.193
(8.69)∗∗∗ πit−1 − 0.036

(−1.62)
πit−2 + 0.025

(1.16)
πit−3

+ 0.036
(1.64)

πit−4 + 0.004
(0.19)

πit−5 + 0.071
(3.38)∗∗∗ πit−6 + 0.060

(2.84)∗∗∗ πit−7

+ 0.027
(1.35)

πit−8 − 0.027
(−1.33)

πit−9 + 0.024
(1.14)

πit−10 + 0.056
(2.72)∗∗∗ πit−11

+ 0.434
(21.94)∗∗∗ πit−12 + ûit

Variance: σ2
it

= αi + 0.769
(29.61)∗∗∗ σ

2
i,t−1 + 0.148

(6.90)∗∗∗ u
2
i,t−1

Covariance: σij t = 0

DPDCCV Model 2 (conditional variance and covariance): MLE estimator

Log likelihood= −5355.61
Mean: πit = 0.367

(2.93)∗∗∗ + 0.153
(6.71)∗∗∗ πit−1 − 0.039

(−1.71)∗
πit−2 + 0.012

(0.53)
πit−3

+ 0.021
(0.95)

πit−4 + 0.018
(0.81)

πit−5 + 0.078
(3.64)∗∗∗ πit−6 + 0.062

(2.91)∗∗∗ πit−7

+ 0.022
(1.06)

πit−8 − 0.026
(−1.21)

πit−9 + 0.034
(1.60)

πit−10 + 0.052
(2.49)∗∗ πit−11

+ 0.443
(21.27)∗∗∗ πit−12 + ûit

Variance: σ2
it

= αi + 0.884
(48.95)∗∗∗ σ

2
i,t−1 + 0.072

(5.68)∗∗∗ u
2
i,t−1

Covariance: σij t = 0.072
(2.66)∗∗∗ + 0.877

(26.08)∗∗∗ σij t−1 + 0.037
(3.86)∗∗∗ ui,t−1uj,t−1

(Continued on next page)

our results suggest that Italy, France and USA have the lowest levels of
unconditional volatility. Second, the USA has relatively high and sig-
nificant positive cross-sectional dependence with Canada and to a lesser
extent with France, Germany and Italy. Third, Japan’s inflation shocks
do not seem to be correlated with any of the other G7 countries. Fourth,
the three biggest European economies, namely France, Germany and UK
show a relatively significant pattern of positive cross-sectional depen-
dence.

We also find some interesting patterns for the conditional volatility
processes. For example while in most G7’s the volatility levels appear to
be lower at the end of the sample compared with those experienced in
the eighties, this does not appear to be the case for Canada and Germany.
Also, the volatility levels appear to have been rising in the last two years
of the sample in the cases of Canada, France, Germany, and the USA.
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Table 10.3. (Continued)

DPDCCV Model 3 (conditional variance and covariance): MLE estimator

Log likelihood= −5328.08
Mean: πit = 0.407

(3.23)∗∗∗ + 0.154
(6.69)∗∗∗ πit−1 − 0.033

(−1.46)
πit−2 + 0.020

(0.87)
πit−3

+ 0.020
(0.92)

πit−4 + 0.022
(1.00)

πit−5 + 0.075
(3.50)∗∗∗ πit−6 + 0.061

(2.88)∗∗∗ πit−7

+ 0.016
(0.77)

πit−8 − 0.029
(−1.33)

πit−9 + 0.033
(1.56)

πit−10 + 0.052
(2.50)∗∗ πit−11

+ 0.433
(20.71)∗∗∗ πit−12 + ûit

Variance: σ2
it

= αi + 0.882
(44.06)∗∗∗ σ

2
i,t−1 + 0.069

(5.26)∗∗∗ u
2
i,t−1

Covariance: σij t = ηij + 0.806
(11.96)∗∗∗ σij t−1 + 0.034

(2.98)∗∗∗ ui,t−1uj,t−1

For each model we show the estimated mean equation followed by the estimated (or
implied) equations for the conditional variance and covariance processes. Values in paren-
thesis aret-ratios. All DPDCCV models were estimated by direct maximization of the
log-likelihood function using numerical methods.
∗indicate significance level of 10%.
∗∗indicate significance level of 5%.
∗∗∗indicate significance level of 1%.

We have also calculated the implied conditional cross correlations be-
tween the USA and the other G7 countries and between France, Germany
and Italy. The dependence of USA with Canada, France and Italy seems to
have increased over time. On the other hand, the process does not seem to
exhibit a clear pattern over time in the case of the three biggest European
economies.

10.4.2. The interrelationship between average inflation and inflation
uncertainty

One advantage of our DPDCCV model over conventional DPD models
and their associated estimation methods, including GMM, is that it allows
us to directly test some interesting hypotheses about the interrelationship
between average inflation and inflation uncertainty. The most famous of
these, that higher average inflation is less predictable, is due toFriedman
(1977) and was formalized byBall (1992). We can test this hypothesis
for the G7 countries by including lagged inflation as a regressor in our
conditional variance equation.

It has also been argued that increased inflation uncertainty can affect
the average inflation rate. The theoretical justification for this hypothesis
is given inCukierman and Meltzer (1986)andCukierman (1992)where it



274 R. Cermeño and K.B. Grier

Table 10.4. Estimation results for the DPDCCV model with variance
effects in the conditional mean and lagged inflation in the conditional

variance

DPDCCV Model 4 (conditional variance and covariance): MLE estimator

Log likelihood= −5306.03
Mean: πit = 0.643

(3.22)∗
+ 0.156
(6.89)∗∗∗ πit−1 − 0.025

(−1.12)
πit−2 + 0.021

(0.97)
πit−3

+ 0.026
(1.17)

πit−4 + 0.031
(1.42)

πit−5 + 0.086
(4.02)∗∗∗ πit−6 + 0.061

(2.92)∗∗∗ πit−7

+ 0.018
(0.84)

πit−8 − 0.022
(−1.03)

πit−9 + 0.026
(1.23)

πit−10 + 0.057
(2.78)∗∗∗ πit−11

+ 0.438
(20.92)∗∗∗ πit−12 − 0.117

(−1.72)∗∗ σit + ûit

Variance: σ2
it

= αi + 0.867
(39.24)∗∗∗ σ

2
i,t−1 + 0.050

(4.53)∗∗∗ u
2
i,t−1 + 0.092

(4.71)∗∗∗ πi,t−1

Covariance: σij t = ηij + 0.855
(17.84)∗∗∗ σij t−1 + 0.031

(3.02)∗∗∗ ui,t−1uj,t−1

This model has been estimated by direct maximization of the log-likelihood function by
numerical methods. We show the estimated equations for the conditional mean, variance
and covariance processes. Values in parenthesis aret-ratios.
∗indicate significance level of 10%.
∗∗indicate significance level of 5%.
∗∗∗indicate significance level of 1%.

is shown that increases in inflation uncertainty increase the policy maker’s
incentive to create inflation surprises, thus producing a higher average in-
flation rate. In order to evaluate the previous hypothesis we simply include
the conditional variance as an additional regressor in the mean equation.
To conduct these tests, we alter Equations(10.9) and (10.10)as shown
below and call the resulting system Model 4 (we continue to use Equa-
tion (10.11)for the covariance process).

(10.9a)
πit = μ+

12∑

j=1

βjπit−j + κσit + uit , i = 1, . . . , 7; t = 1, . . . ,296,

(10.10a)σ 2
it = αi + δσ 2

i,t−1 + γ u2
i,t−1 + ψπi,t−1.

A positive and significant value for the parameterκ supports the Cukier-
man and Meltzer hypothesis that inflation volatility raises average infla-
tion, while a positive and significant value for the parameterψ supports
the Friedman–Ball hypothesis that higher inflation is more volatile.

The results are shown in theTable 10.4. As it can be seen, the parame-
terψ is positive and highly statistically significant, indicating that higher
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inflation rates do become less predictable as argued by Friedman. On the
other hand, we find that the parameterκ is significant at the 5% level al-
though its sign is negative, which clearly rejects the hypothesis that higher
inflation uncertainty produces higher average inflation rates. This negative
sign actually supports previous findings byHolland (1995)for the USA
and byGrier and Perry (1998)for the USA and Germany. These authors
argue that if inflation uncertainty has deleterious real effects that central
banks dislike and if higher average inflation raises uncertainty (as we have
found here) then the Central Bank has a stabilization motive to reduce
uncertainty by reducing average inflation. In our G7 panel we find the
stabilization motive dominates any potentially opportunistic Central Bank
behavior.

Overall, when comparing Model 3 inTable 10.3with Model 4 in Ta-
ble 10.4by means of a likelihood ratio test we find that the later outper-
forms to the former and lead us to conclude that (i) higher inflation rates
are less predictable and (ii) higher inflation uncertainty has been associ-
ated with lower average inflation rates.

10.5. Conclusion

In this paper we have specified a model, (DPDCCV), which accounts
for conditional heteroskedasticity and cross-sectional correlation within a
panel data framework, an issue that has not yet been addressed in the panel
data literature. We have also outlined a methodology to identify these phe-
nomena, which could be useful for empirical research.

The DPDCCV model has been applied to a panel of monthly infla-
tion rates for the G7, over the period 1978.2–2003.9, showing that there
exist highly persistent patterns of volatility as well as cross-sectional de-
pendence. Further, we have found that higher inflation rates become less
predictable. Also, we have found that the hypothesis that higher infla-
tion uncertainty produces higher average inflation rates is not supported
in these data. On the contrary, we find that this relationship is negative
indicating that Central Banks dislike inflation uncertainty.

Although the model formulated here is practical for smallN and largeT
panels, it is especially relevant due to the following 4 factors: (1) The rapid
growth of empirical panel research on macroeconomic and financial is-
sues, (2) The ubiquity of conditional heteroskedasticity in macroeconomic
and financial data, (3) The potential extreme inefficiency of estimators that
do not account for these phenomena, and (4) The rapid growth of multi-
variate GARCH models outside the panel data literature. Further work,
particularly theoretical, to account for these phenomena in a more general
panel setting is certainly necessary.
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Abstract

This article examines the short-run and long-run dynamics of the export-
productivity relationship for Turkish manufacturing industries. We use
an error correction model (ECM) estimated using a system Generalized
Method of Moments (GMM) estimator to achieve this objective. Our re-
sults suggest that permanent productivity shocks generate larger long-run
export level responses, as compared to long-run productivity responses
from permanent export shocks. This result suggests that industrial policy
should be geared toward permanent improvements in plant-productivity in
order to have sustainable long-run export and economic growth.

Keywords: Europe, exporting, long-run dynamics, productivity, short-run
dynamics, Turkey
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11.1. Introduction

There have been a multitude of recent studies that examine the relationship
between exports and productivity using panel data. For example, studies
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by Bernard and Jensen (1998, 1999)on the United States;Aw et al.(1998)
on Taiwan and Korea;Clerideset al. (1998)on Colombia, Mexico, and
Morocco;Kraay (1997)on China;Wagner (2002)on Germany; andGirma
et al. (2003)on the U.K., have all examined the exports-productivity link
using panel data sets. However, all of these studies have not explicitly
examined the issues related to the short-run and long-run dynamics of the
relationship between exports and productivity. This is an important issue
to investigate since both the international trade and the endogenous growth
literatures have developed theories that show the existence and importance
of discerning the long-run relationship between exports and productivity
(Dodaro, 1991).

In using panel data sets to empirically determine the dynamics of the
export and productivity relationship, there are two main issues that one
has to deal with. First, it is likely that exports and productivity are corre-
lated with the current realization of the unobserved firm- or plant-specific
effects (Marschak and Andrews, 1944). For example, unobserved factors
such as the managerial ability of the CEO or effectiveness of research
and development efforts could have an impact on the firm’s productiv-
ity and/or exporting status. Second, exporting and productivity tend to
be highly persistent over time and are typically jointly determined (i.e.
they are endogenous). In such a case, adjustments to unobserved shocks
may not be immediate but may occur with some delay and the strict ex-
ogeneity of the explanatory variable(s) conditional on unobserved plant
characteristics will not be satisfied. From standard econometric theory, if
these two issues are not addressed, then the long-run and short-run dy-
namics of the export and productivity relationship will not be consistently
estimated and standard inference procedures may be invalid.Kraay (1997)
addressed the two issues above by employing a first-differenced GMM
estimator. The difficulty of unobserved firm-specific effects was handled
by working with a first-differenced specification, while the presence of
lagged performance and an appropriate choice of instruments address the
issue of persistence and endogeneity. However, the short-run and long-run
dynamics of the export-productivity relationship has not been explicitly
examined by the previous studies. The exception isChao and Buongiorno
(2002)where they empirically explored the long run multipliers associated
with the export-productivity relationship.

The main objective of our paper, therefore, is to determine the short-
run adjustments and the long-run relationship of exports and productivity
for the case of two Turkish manufacturing industries – the textile and ap-
parel (T&A) industry and the motor vehicle and parts (MV&P) industry.
An error correction model (ECM) estimated using a system Generalized
Method of Moments (GMM) estimator is used to achieve this objective,
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while at the same time address the two main difficulties in dynamic panel
analysis explained above – unobserved firm specific effects and persis-
tence/endogeneity. Investigating the short-run and long-run dynamics of
the export-productivity link is important since this kind of analysis will
yield important insights that could guide industrial policy in a low-middle
income economy like Turkey. Turkey is a pertinent case for studying
the export-productivity link because after trade liberalization in the early
1980s, exports grew at a high rate but have steadily declined ever since.
Is this because external policies to promote export growth do not result in
sustainable long-run adjustments in productivity to maintain this growth?
Uncovering the answer to this type of question would help Turkey set poli-
cies that would spur economic growth in the future.

The remainder of the paper is organized as follows. The conceptual
foundations for the long-run relationship between exports and productiv-
ity, as well as the theoretical explanations for bi-directional causation, are
presented in Section11.2. Section11.3discusses the empirical approach
and the data used for the analysis. Section11.4reports the empirical re-
sults and Section11.5concludes.

11.2. Conceptual framework

In this section, we explain the conceptual issues that link exports and pro-
ductivity in the long-run, as well as the plausibility of a bi-directional
causality between the two variables. There are two strands of literature that
support opposing directional theories of causation. First, the endogenous
growth theory posits that the direction of causation flows from exports
to productivity and that the long-run relationship is based on this causa-
tion. In contrast, the international trade literature suggests that the long-run
relationship between exports and productivity is where the direction of
causation flows from productivity to exports. We discuss these two con-
trasting theoretical explanation for the long-run link between exports and
productivity in turn.

The causation from exports to productivity is more popularly known
in the literature as the learning-by-exporting explanation for the long-run
link between exports and productivity. Various studies in the endogenous
growth literature argue that exports enhance productivity through inno-
vation (Grossman and Helpman, 1991; Rivera-Batiz and Romer, 1991),
technology transfer and adoption from leading nations (Barro and Sala-
I-Martin, 1995; Parente and Prescott, 1994), and learning-by-doing gains
(Lucas, 1988; Clerideset al., 1998). The innovation argument is where
firms are forced to continually improve technology and product standards
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to compete in the international market. The technological and learning-
by-doing gains arise because of the exposure of exporting firms to cutting-
edge technology and managerial skills from their international counter-
parts. Economies of scale from operating in several international markets
are also often cited as one other explanation for the learning-by-exporting
hypothesis.

On the other hand, the causation from productivity to exports is another
theoretical explanation put forward to explain the long-run link between
exports and productivity. This line of reasoning is known in the literature
as the self-selection hypothesis. According to this hypothesis, firms that
have higher productivity are more likely to cope with sunk costs associ-
ated with entry to the export market and are more likely to survive the
more competitive international markets. This is in line with the findings
from international trade theory that firms self-select themselves into ex-
port markets (Roberts and Tybout, 1997; Clerideset al., 1998; Bernard and
Jensen, 2001). Furthermore, this type of explanation is more in line with
the traditional Hecksher–Ohlin notions that increased factor endowments
and improved production technologies influence the patterns of trade of
specific products (Pugel, 2004). Plants that increase their level of factor en-
dowments or improve production technologies enhance their comparative
advantage (relative to plants in other countries) and thus will eventually be
able to enter/survive the international market (Dodaro, 1991).

The explanations above provide the conceptual foundations for the link
between exports and productivity. Note that these two explanations are not
necessarily mutually exclusive and both these theoretical explanations can
shape the export-productivity relationship at the same time. Therefore, the
empirical question of interest is really to know which explanation is more
prominent or dominant for different industries and countries using micro-
level data. Furthermore, only an empirical analysis can provide insights
as to whether the conceptual explanations above are more prevalent in the
short-run or in the long-run. This paper contributes to the literature in this
regard.

11.3. Empirical approach and the data

We examine the short-run and long-run dynamics of the exporting and pro-
ductivity relationship using a generalized one-step ECM estimated using
a system GMM estimator. This approach to analyzing short-run and long-
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run dynamics using panel data is similar to the approach taken byBondet
al. (1997, 1999); andMairesseet al. (1999).1

11.3.1. The error correction model

We begin with the following autoregressive-distributed lag model:

ln yi,t = α1 ln yi,t−1 + α2 ln yi,t−2 + β0 ln xi,t + β1 ln xi,t−1

(11.1)+ β2 ln xi,t−2 + ψt + vit ,

wherevi,t = εi + ui,t and i = 1, . . . , N, t = 1, . . . , T . Furthermore,
i represents the cross-sectional units;t represents the time periods;yi,t
is our productivity measure (e.g., total factor productivity or labor pro-
ductivity); xi,t is the amount of exports;2 ψt is the time-specific effect;
and assuming fixed effects, the cross section error term,vi,t , contains the
following two effects: (1) the unobserved time-invariant, plant-specific ef-
fect,εi , and (2) a stochastic error term,ui,t , varying across time and cross
section. The time-specific effect is included to capture aggregate shocks,
which may appear in any year. The plant-specific effect,εi , is included
to capture plant-specific differences such as managerial ability, geograph-
ical location, and other unobserved factors. The unobserved plant-specific
effect, εi , is correlated with the explanatory variables, but not with the
changes in the explanatory variables.

The autoregressive-distributed lag model specification is appropriate if
the short-run relationship between exporting and productivity is the only
object of interest. However, it does not allow for a distinction between the
long and short-run effects. We incorporate this distinction into our model
by using an error correction specification of the dynamic panel model. This

1 For more details about the generalized one-step ECM in a time-series context, see
Davidsonet al. (1978)andBanerjeeet al. (1990, 1993, 1998). In the panel data context,
one may also examine related studies byLevin and Lin (1993), Im et al.(1997), andBinder
et al. (2005)where the issues of cointegration and unit roots in panel vector autoregres-
sions are discussed. For more information about the system GMM estimator, in general,
seeArellano and Bover (1995)andBlundell and Bond (1998, 2000). A more detailed dis-
cussion of the system GMM procedure in the context of this study (i.e. a panel-ECM) is
presented in Section11.3.2of this article.
2 In the results section, we refer to this variable as EXP. This is just the amount of ex-

ports valued in Turkish Liras. We also deflated this value by the appropriate index so as to
be comparable across time. Furthermore, without loss of generality, we only include the
amount of exports as the sole explanatory variable in our exposition here. But the model
is generalizable to multiple continuous explanatory variables. In addition, as we discuss in
the results section below, the ECM model could also be specified with exports as the depen-
dent variable and the productivity as the independent variable. The choice of specification
will depend on the assumption about the direction of causation.
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error correction specification is a linear transformation of the variables in
Equation(11.1), which provides an explicit link between the short-run
effects and long run effects (Banerjeeet al., 1993, 1998):

$ ln yi,t = (α1 − 1)$ ln yi,t−1 + β0$ ln xi,t + (β0 + β1)$ ln xi,t−1

+ η(ln yi,t−2 − ln xi,t−2)+ θ ln xi,t−2 + ψt + vit ,

(11.2)
where:θ = β0 + β1 + β2 + α2 + α1 − 1 andη = α2 + α1 − 1.

For non-zero values ofη this is an error correction model (ECM). The
coefficient on the error correction term,(ln yi,t−2 − ln xi,t−2) gives the
adjustment rate at which the gap between exporting and productivity is
closed. Ifη is negative and significant, then we conclude that the rela-
tionship between exporting and productivity exists in the long-run and the
error correction mechanism induces the productivity adjustments to close
the gap with respect to the long run relationship between productivity and
exporting. Productivity could deviate from the long-run equilibrium rela-
tionship due to certain shocks in the short-run, but it eventually converges
to the equilibrium in the absence of the shocks in subsequent periods. In
such a framework, the long-run productivity dynamics are driven by both
the changes in the amount of exports and by the stable nature of the long-
run equilibrium.

In this specification, if the coefficient on the error correction term is
significantly less than zero, one can conclude that the change in produc-
tivity in period t is equal to the change in the exports in periodt and
the correction for the change between productivity and its equilibrium
value in periodt − 1. If productivity is greater than its equilibrium level,
it must decrease for the model to approach equilibrium, and vice-versa.
If the model is in equilibrium in periodt − 1, the error correction term
does not influence the change in exports in periodt . In this case, the
change in the productivity in periodt is equal to the change in the in-
dependent variable in periodt . The error-correcting model allows us to
describe the adjustment of the deviation from the long-run relationship
between exporting and productivity. In this specification, the first three
terms (lagged growth rate of productivity, the contemporaneous and the
one-period lagged growth of exports) capture the short-run dynamics and
the last two terms (error correction and the lagged level of independent
variable) provide a framework to test the long-run relationship between
productivity and exports.

In general, a long-run multiplier(φ) is typically estimated separately
and used to form the error correction term(ln yi,t−2 − φ ln xi,t−2). With
the use of(ln yi,t−2− ln xi,t−2), the long-run relationship is restricted to be
homogeneous (Banerjeeet al., 1990, 1993). That is, the implied coefficient
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of φ = 1 indicates a proportional long-run relationship betweeny andx.
We also use the error correction term of the form(ln yi,t−2 − φ ln xi,t−2)

to avoid this restrictive homogeneity assumption. Thus, in our formulation
of the error correction model, we can interpret the coefficientη directly
as adjustments to disequilibrium although the true equilibrium is given by
(ln yi,t−2 − φ ln xi,t−2) instead of(ln yi,t−2 − ln xi,t−2). Using this form
of the error correction term also allows us to calculate the true long-run
relationship between exporting and productivity, which can be written as
1 − (θ̂/η̂). The error correction specification of the autoregressive dis-
tributed lag model that we used here then permits us to directly calculate
and analyze the short-run and long-run dynamics of the productivity and
exporting relationship.

11.3.2. The system GMM estimation procedure

For consistent and efficient parameter estimates of the panel data error
correction model specified in Equation(11.2), we apply the system GMM
approach proposed byArellano and Bover (1995)andBlundell and Bond
(1998, 2000). This estimation procedure is especially appropriate when:
(i) N is large, butT is small; (ii) the explanatory variables are endoge-
nous; and (iii) unobserved plant-specific effects are correlated with other
regressors. Under the assumptions thatuit are serially uncorrelated and
that the explanatory variables are endogenous,Arellano and Bond (1991)
showed that the following moment conditions hold for the equations in
first differences:3

E($ui,tyi,t−r) = 0; E($ui,txi,t−r) = 0;
(11.3)wherer = 2, . . . , t − 1 andt = 3, . . . , T .

Therefore, the lagged values of endogenous variables datedt − 2 and ear-
lier are valid instruments for the equations in first differences.

As a result,Arellano and Bond (1991)showed that the first-differenced
GMM estimator method results in a significant efficiency gain compared
to theAnderson and Hsiao (1981)estimator.4 However, in the context of
the model specification in(11.2), there are two possible problems with
the use of the first differenced GMM estimator. First, the plant-specific

3 We assume that the explanatory variable is endogenous, i.e.E(xiruit ) = 0 for r =
1, . . . , t − 1; t = 2, . . . , T ; andE(xiruit ) �= 0 for r = s, . . . , T ; s = 2, . . . , T . The
resulting moment conditions, and thus instruments, would be different if one assumes that
the explanatory variables are strictly exogenous or weakly exogenous (seeBlundell et al.,
2000).
4 SeeBaltagi (2001)for a more detailed discussion of this issue.
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effect is eliminated, so that one cannot examine the cross-plant relation-
ship between the variables of interest, in our case exports and productivity.
Second, when the lagged values of the series are weakly correlated with
the first-differences, it can yield parameter estimates that suffer from large
finite sample bias because of weak instruments. When the individual se-
ries for the dependent and independent variable are highly persistent, and
whenT is small, the problem is more severe.

Arellano and Bover (1995), however, noted that if the initial condition,
Xi1, satisfies the stationarity restrictionE($Xi2εi) = 0, then$Xit will
be correlated withεi if and only if$Xi2 is correlated withεi . The result-
ing assumption is that although there is a correlation between the level of
right-hand side variables,Xit , and the plant-specific effect,εi , no such
correlation exists between the differences of right-hand side variables,
$Xit , and the plant-specific effect,εi . This additional assumption gives
rise to the level equation estimator, which exploits more moment condi-
tions. Lagged differences of explanatory variables,$Xit−r , are used as
additional instruments for the equations in levels, whenXit is mean sta-
tionary.

Blundell and Bond (1998)showed that the lagged differences of the de-
pendent variable, in addition to the lagged differences of the explanatory
variables, are proper instruments for the regression in the level equation
as long as the initial conditions,yi1, satisfy the stationary restriction,
E($Yi2εi) = 0. Thus, when both$Xit and$Yit are uncorrelated with
εi , both lagged differences of explanatory variables,$Xit−r and lagged
differences of dependent variable,$Yit−r , are valid instruments for the
equations in levels. Furthermore,Blundell and Bond (1998)show that
the moment conditions defined for the first-differenced equation can be
combined with the moment conditions defined for the level equation to
estimate a system GMM. When the explanatory variable is treated as
endogenous, the GMM system estimator utilizes the following moment
conditions:

E($ui,tyi,t−r) = 0; E($ui,txi,t−r) = 0;
(11.4)wherer = 2, . . . , t − 1; andt = 3, . . . , T ,

E(vi,t$yi,t−r) = 0; E(vi,t$xi,t−r) = 0;
(11.5)wherer = 1; andt = 3, . . . , T .

This estimator combines theT −2 equations in differences with theT −2
equations in levels into a single system. It uses the lagged levels of depen-
dent and independent variables as instruments for the difference equation
and the lagged differences of dependent and independent variables as in-
struments for the level equation.Blundell and Bond (1998)showed that
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this new system GMM estimator results in consistent and efficient para-
meter estimates, and has better asymptotic and finite sample properties.

We examined the nature of our data to determine whether the series for
exporting and productivity are persistent. Our estimates of the AR (1) co-
efficients on exporting and productivity show that the series of exporting
and productivity are highly persistent, thus the lagged levels of exports
and productivity provide weak instruments for the differences in the first-
differenced GMM model. As a result, we believe the system GMM es-
timator to be more appropriate than the first-differenced estimator in the
context of this study.

Thus, we combine the first-differenced version of the ECM with the
level version of the model, for which the instruments used must be or-
thogonal to the plant-specific effects. Note that the level of the dependent
productivity variable must be correlated with the plant-specific effects, and
we want to allow for the levels of the independent export variable to be
potentially correlated with the plant specific effect. This rules out using
the levels of any variables as instruments for the level equation. However,
Blundell and Bond (1998)show that in autoregressive-distributed lag mod-
els, first differences of the series can be uncorrelated with the plant specific
effect provided that the series have stationary means. In summary, the sys-
tem GMM estimator uses lagged levels of the productivity and exports
variables as instruments for the first-difference equation and lagged differ-
ence of the productivity and exports variables as instruments for the level
form of the model.

This system GMM estimator results in consistent and efficient parame-
ter estimates, and has good asymptotic and finite sample properties (rela-
tive to just straightforward estimation of first differences). Moreover, this
estimation procedure allows us to examine the cross-sectional relationship
between the levels of exporting and productivity since the firm-specific
effect is not eliminated but rather controlled by the lagged differences of
the dependent and independent variables as instruments, assuming that the
differences are not correlated with a plant-specific effect, while levels are.

To determine whether our instruments are valid in the system GMM
approach, we use the specification tests proposed byArellano and Bond
(1991)andArellano and Bover (1995). First, we apply the Sargan test, a
test of overidentifying restrictions, to determine any correlation between
instruments and errors. For an instrument to be valid, there should be no
correlation between the instrument and the error terms. The null hypothe-
sis is that the instruments and the error terms are independent. Thus, failure
to reject the null hypothesis could provide evidence that valid instruments
are used. Second, we test whether there is a second-order serial correla-
tion with the first differenced errors. The GMM estimator is consistent if
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there is no second-order serial correlation in the error term of the first-
differenced equation. The null hypothesis in this case is that the errors
are serially uncorrelated. Thus, failure to reject the null hypothesis could
supply evidence that valid orthogonality conditions are used and the in-
struments are valid. One would expect the differenced error term to be
first-order serially correlated, although the original error term is not. Fi-
nally, we use the differenced Sargan test to determine whether the extra
instruments implemented in the level equations are valid. We compare the
Sargan test statistic for the first-differenced estimator and the Sargan test
statistic for the system estimator.

11.3.3. The data

This study uses unbalanced panel data on plants with more than 25 em-
ployees for the T&A industry (ISIC 3212 and 3222), and MV&P industry
(ISIC 3843) industries from 1987–1997. Our sample represents a large
fraction of the relevant population; textile (manufacture of textile goods
except wearing apparel, ISIC 3212) and apparel (manufacture of wear-
ing apparel except fur and leather, ISIC 3222) are subsectors of the textile,
wearing apparel and leather industry (ISIC 32), which accounts for 35 per-
cent of the total manufacturing employment, nearly 23 percent of wages,
20 percent of the output produced in the total manufacturing industry and
approximately 48 percent of Turkish manufactured exports. The motor ve-
hicles and parts industry (ISIC 3843) accounts for 5 percent of the total
manufacturing employment, nearly 6.6 percent of wages, 10 percent of the
output produced in the total manufacturing industry, and approximately
5.2 percent of Turkish manufactured exports. Thus, the data that is used
in the study accounts for 53.2 percent of the total Turkish merchandise
exports.

The data was collected by the State Institute of Statistics in Turkey from
the Annual Surveys of Manufacturing Industries, and classified based on
the International Standard Industrial Classification (ISIC Rev.2). These
plant-level data consist of output; capital, labor, energy, and material in-
puts; investments; depreciation funds; import; export; and several plant
characteristics.5 These plant-level variables were also used to estimate the
productivity indices (i.e. total factor productivity (TFP) and labor produc-
tivity (LP)) using the Multilateral Index approach ofGoodet al. (1996).6

5 In the interest of space, a detailed description of how these variables are constructed is
not presented here, but is available from the authors upon request.
6 We acknowledge that there may be conceptual difficulties in the use of this type of

productivity measure in our analysis (as raised byKatayamaet al., 2003). However, all



The Dynamics of Exports and Productivity at the Plant Level 289

An important issue to note here is that some of the export values in
our data set were missing for the years 1987, 1988, 1989 and 1997; even
though the data for the other variables is complete. Instead of dropping
these years, we chose to augment the export data by using interpolation
and extrapolation techniques. To describe these techniques, consider a
time series withn time periods:x1, x2, . . . , xn. Interpolation fills in miss-
ing values for all observations with missing data between non-missing
observations. That is, if we have non-missing observations forx2, . . . , x8
andx11, . . . , x15, then interpolation will produce estimates forx9 andx10,
but not forx1. Extrapolation, on the other hand, fills in missing values both
between and beyond non-missing observations. Thus, if the series ran from
x1 to x20, then extrapolation will produce estimates forx9 andx10, but for
x1 andx16, . . . , x20 as well. This approach for dealing with missing data is
not new and has been used in other studies (Efron, 1994; Little and Rubin,
1987; Moore and Shelman, 2004; Rubin, 1976, 1987, 1996; Schafer, 1997;
Schenkeret al., 2004). It is important to emphasize here that this augmen-
tation did not markedly change the relevant results (i.e. signs, magnitude,
and significance) of the estimated ECM model parameters using only the
non-missing data (1990–96).7

Our models are estimated using the plants that export continuously,
plants that begin as non-exporters during the first two years of the sam-
ple time period and become exporters thereafter and stayed in the market
continuously, and the plants that start as exporters and exit during the last
two years of the sample period. Plants that do not export at any point in the
time period and the plants that enter and exit the export market multiple
times are excluded.

In general, the nature of our panel data is such that the cross-section
component is large but the time-series component is small. Hence, the sys-
tem GMM estimation procedure above would be appropriate in this case.
Summary statistics of all the relevant variables are presented inTable 11.1.

11.4. Results

The estimated parameters of various ECMs are presented inTables 11.2
and 11.3, respectively. Specifically,Table 11.2shows the estimated rela-
tionships between TFP growth and export growth, whileTable 11.3shows

previous studies in the literature still use this type of productivity measure and a feasi-
ble/refined alternative estimation procedure for an appropriate productivity measure has
not been put forward. A more detailed discussion of the approach used for calculating the
plant-level TFPs can be seen inAppendix A11.
7 In the interest of space, the results for the non-augmented export data from 1990–96 are

not reported here but are available from the authors upon request.
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Table 11.1. Descriptive statistics from 1987–1997 (Y , K, E, andM

are in Constant Value Quantities at 1987 Prices, in ‘000 Turkish Liras;
L is in total hours worked in production per year)

Statistics

Mean Standard deviation Minimum Maximum

A. Apparel and textile industries
Output(Y ) 1,951.53 4,386.20 3.09 115,994.70
Material(M) 1,690.16 3,428.79 0.02 90,651.77
Labor(L) 172.39 321.15 0.01 7,960.79
Energy(E) 48.85 316.51 0.02 13,469.06
Capital(K) 1,327.99 12,395.41 0.136 500,876.40
Small 0.585
Medium 0.203
Large 0.212
TFP growth($ ln TFP) 0.011
LP growth($ ln LP) 0.032
Export growth($ ln EXP) 0.081
Number of observations 7453
Number of plants 1265

B. MV&P industry
Output(Y ) 12,303.93 59,821.87 23.93 1,212,264.13
Material(M) 8,269.86 41,860.24 0.41 793,683.63
Labor(L) 336.62 933.14 0.01 18,141.64
Energy(E) 237.28 1,023.14 0.13 22,178.53
Capital(K) 5,506.36 31,480.68 0.60 720,275.88
Small∗ 0.514
Medium 0.173
Large 0.313
TFP growth($ ln TFP) 0.060
LP growth($ ln LP) 0.056
Export growth($ ln EXP) 0.165

Number of observations 2211
Number of plants 328

∗We divide the plants into three size groups: small plants, with less than 50 employees;
medium plants, between 50 and 100 employees; and large plants, with 100 employees or
more.

the estimated relationships between LP growth and export growth. In these
estimated models, we used total factor productivity (TFP) and labor pro-
ductivity (LP) as our measures of productivity.

Note that in our discussion of Equation(11.2) in the previous section,
we assume that the productivity measure is the dependent variable and
amount of exports is one of the independent variables. This implies that
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the direction of causation is from exports to productivity. Although there
are empirical studies that support the causal direction from exports to pro-
ductivity (see, for example,Kraay, 1997; Bigstenet al., 2002; Castellani,
2001), a number of empirical studies have also shown that the direction
of causation may be in the other direction (seeBernard and Jensen, 1999;
Aw et al., 1998; Clerideset al., 1998). Hence, aside from estimating the
specification in Equation(11.2), where the productivity measure is the de-
pendent variable, we also estimated ECM’s where the amount of exports
is the dependent variable and the productivity measure is the independent
variable. InTables 11.2 and 11.3, the first column for each industry shows
the effect of the productivity measure (i.e. either TFP or LP) on exporting,
while the second column for each industry shows the effect of exporting
on the productivity measure.

As can be seen from these tables, the specification tests to check the va-
lidity of the instruments are satisfactory. The test results show no evidence
of second-order serial correlation in the first differenced residuals. More-
over, the validity of lagged levels datedt − 2 and earlier as instruments
in the first-differenced equations, combined with lagged first differences
datedt − 2 as instruments in the levels equations are not rejected by the
Sargan test of overidentifying restrictions.

The coefficients associated with the error correction terms in all the
regression equations are significant and negative as expected. Thus, the
results show that there is a strong long-run relationship between exporting
and productivity. Furthermore, statistical significance of the error cor-
rection terms also imply that, when there are deviations from long-run
equilibrium, short-run adjustments in the dependent variable will be made
to re-establish the long-run equilibrium.

Now let us discuss each table in turn. InTable 11.2, for the equations
where export growth is the dependent variable, the error correction co-
efficients have statistically significant, negative signs in both industries.
However, the magnitude of the coefficients is different in each industry.
This means that the speed of the short-run adjustment is different for the
two industries. For the apparel and textile industries, the model converges
quickly to equilibrium, with about 30 percent of discrepancy corrected in
each period (coefficient of−0.302). The speed of the adjustment from the
deviation in the long-run relationship between exports and productivity is
slower in the MV&P industry (−0.114) relative to the T&A industry. On
the other hand, for the equation where TFP growth is the dependent vari-
able, the magnitudes of the error correction coefficients for the MV&P
industry is greater than the T&A industry (0.428 > 0.218). This means
that the speed of adjustment of TFP to temporary export shocks is slower
in the T&A industry as compared to the MV&P industry.
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Table 11.2. Estimated error correction model: long-run and short-run
dynamics of TFP and exports (1987–1997)

Explanatory variables Dependent variables

Apparel and textile
industries

Motor vehicle and
parts industry

$ ln EXP $ ln TFP $ ln EXP $ ln TFP

$ ln TFP 1.099 0.567
(0.285)∗ (0.212)∗

$ ln TFPt−1 −0.494 0.358 −0.181 0.492
(0.152)∗ (0.046)∗ (0.107)∗∗∗ (0.025)∗

ln TFPt−2 −0.022 −0.070
(0.102) (0.077)

ln TFPt−2 − ln EXPt−2 −0.218 −0.428
(0.030)∗ (0.040)∗

$ ln EXP 0.160 0.035
(0.051)∗ (0.039)

$ ln EXPt−1 0.626 −0.080 0.287 −0.026
(0.124)∗ (0.035)∗∗ (0.047)∗ (0.021)

ln EXPt−2 −0.192 −0.410
(0.032)∗ (0.048)∗

ln EXPt−2 − ln TFPt−2 −0.302 −0.114
(0.066)∗ (0.028)∗

Summation of short-run coef. 0.605 0.080 0.386 0.009
Short-run wald test (P -value) 0.001 0.007 0.026 0.480
Long run coefficient 0.927 0.119 0.391 0.043
Long run coefficient (P -value) 0.000 0.000 0.013 0.000
Sargan difference test (P -value) 0.267 0.281 0.144 0.776
Sargan test (P -value) 0.333 0.311 0.277 0.363
AR1 (P -value) 0.306 0.000 0.020 0.037
AR2 (P -value) 0.107 0.675 0.698 0.110
Number of observations 3778 932
Number of plants 661 116

Notes: (1) Estimation by System-GMM using DPD for OX (Doorniket al., 2002). (2) As-
ymptotically robust standard errors are reported in parentheses. (3) The Sargan test is a
Sargan–Hansen test of overidentifying restrictions. The null hypothesis states that the in-
struments used are not correlated with the residuals. (4) AR1 and AR2 are tests for first-
and second-order serial correlation in the first-differenced residuals. The null hypothesis
for the second-order serial correlation test states that the errors in the first-differenced re-
gression do not show second-order serial correlation. (5) Lagged levels of productivity and
exports (datedt − 2 and earlier) in the first-differenced equations, combined with lagged
first differences of productivity and exports (datedt − 2) in the level equations are used as
instruments. (6) Year dummies are included in each model.
∗Significant at the 1% level.
∗∗Significant at the 5% level.
∗∗∗Significant at the 10% level.
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Table 11.3. Estimated error correction model: long-run and short-run
dynamics of lp and exports (1987–1997)

Explanatory variables Dependent variables

Apparel and textile
industries

Motor vehicle and
parts industry

$ ln EXP $ ln TFP $ ln EXP $ ln TFP

$ ln LP 0.857 0.429
(0.131)∗ (0.195)∗∗

$ ln LPt−1 −0.435 0.320 −0.148 0.345
(0.060)∗ (0.068)∗ (0.089) (0.037)∗

ln LPt−2 0.069 −0.026
(0.042)∗∗∗ (0.057)

ln LPt−2 − ln EXPt−2 −0.157 −0.240
(0.025)∗ (0.051)∗

$ ln EXP 0.231 0.182
(0.080)∗ (0.071)∗

$ ln EXPt−1 0.432 −0.108 0.316 −0.074
(0.045)∗ (0.067) (0.049)∗ (0.037)∗∗

ln EXPt−2 −0.107 −0.159
(0.017)∗ (0.045)∗

ln EXPt−2 − ln LPt−2 −0.377 −0.135
(0.037)∗ (0.024)∗

Summation of short-run coef. 0.422 0.123 0.281 0.108
Short-run wald test (P -value) 0.000 0.016 0.080 0.036
Long run coefficient 1.183 0.319 0.807 0.338
Long run coefficient (P -value) 0.000 0.000 0.000 0.000
Sargan difference test (P -value) 0.210 0.126 0.918 0.353
Sargan test (P -value) 0.208 0.296 0.707 0.677
AR1 (P -value) 0.046 0.023 0.032 0.004
AR2 (P -value) 0.905 0.790 0.548 0.329
Number of observations 3778 932
Number of plants 661 116

Notes: (1) Estimation by system-GMM using DPD for OX (Doornik et al., 2002). (2) As-
ymptotically robust standard errors are reported in parentheses. (3) The Sargan test is a
Sargan–Hansen test of overidentifying restrictions. The null hypothesis states that the in-
struments used are not correlated with the residuals. (4) AR1 and AR2 are tests for first-
and second-order serial correlation in the first-differenced residuals. The null hypothesis
for the second-order serial correlation test states that the errors in the first-differenced re-
gression do not show second-order serial correlation. (5) Lagged levels of productivity and
exports (datedt − 2 and earlier) in the first-differenced equations, combined with lagged
first differences of productivity and exports (datedt − 2) in the level equations are used as
instruments. (6) Year dummies are included in each model.
∗Significant at the 1% level.
∗∗Significant at the 5% level.
∗∗∗Significant at the 10% level.



294 M. Yasar, C.H. Nelson and R.M. Rejesus

Another thing to note inTable 11.2is the different short-run behaviors
in the T&A versus the MV&P industry. In the T&A industry, the speed
of short-run export adjustment as a response to temporary TFP shocks
(−0.302) tend to be faster than the short-run TFP adjustments to tempo-
rary export shocks (−0.218). In contrast, for the MV&P industry, the speed
of short-run export adjustment as a response to temporary TFP shocks
(−0.114) tend to be slower than the short-run TFP adjustments to tempo-
rary export shocks (−0.428). This suggests that short-run industrial policy
may need to be treated differently in both these industries due to the dis-
similar short-run dynamics.

The pattern of results inTable 11.3is the same as the ones inTable 11.2.
That is, the speed of short-run export adjustments to LP shocks tend to be
faster in the T&A industry (−0.377) as compared to the MV&P industry
(−0.135). In contrast, the speed of adjustment of LP to temporary export
shocks is slower in the T&A industry (−0.157) as compared to the MV&P
industry (−0.240). Also, the speed of short-run export adjustment as a
response to temporary LP shocks (−0.377) tend to be faster than the short-
run LP adjustments to temporary export shocks (−0.157). Conversely, for
the MV&P industry, the speed of short-run export adjustment as a response
to temporary LP shocks (−0.135) tend to be slower than the short-run
TFP adjustments to temporary export shocks (−0.24). These results again
suggest that the potential industry-specific short-run impacts should be
taken into account setting temporary industrial policy.

The coefficient of the error correction term gives us an indication of the
speed of adjustment, but it is also important to examine the magnitudes of
the short-run effects as measured by the short-run coefficient. From Equa-
tion (11.2), the short-run coefficient is computed by adding the coefficients
of the contemporaneous and lagged dependent variable. FromTables 11.2
and 11.3, it is evident that the magnitude of the short-run export response
to a temporary productivity shock is greater than the short-run productiv-
ity effect of a temporary export shock (in both industries). This suggests
that temporary shocks in productivity will result in bigger short-run export
adjustments relative to the converse.

Aside from short-run adjustments of the variables, it is also important
to examine the long-run relationships implied from the ECMs. For this we
use the long-run elasticities of the dependent variables to the independent
variables (seeTables 11.2 and 11.3). These long-run elasticities are calcu-
lated by subtracting the ratio of the coefficient of the scale effect (lag value
of independent variable) to the coefficient of the error correction term from
one. The statistical significance of these elasticities is tested with a Wald
test. The test results indicate that the estimated long-run elasticities for all
the estimated equations are statistically significant (at the 5% level) in both
industries.
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In Table 11.2, for the equations where export growth is the dependent
variable, the long-run elasticities indicate that long-run export response to
permanent shocks in TFP is large (for both industries). On the other hand,
for the case where TFP is the dependent variable, the long-run elasticities
suggest that long-run TFP adjustments to permanent changes in exports
are lower. The results are very similar for the case of LP (Table 11.3).
The long-run elasticities reveal that long-run export response to perma-
nent shocks in LP is tend to be greater than the LP response to permanent
changes in exports (for both industries).

Overall, the results from the long-run elasticities show that productivity
response to permanent shocks in exports is lower than the export response
to the permanent shocks in productivity for both the T&A and MV&P in-
dustries. Moreover, our analysis of short-run dynamics reveals that, for the
MV&P industry, short-run productivity adjustments to temporary shocks
in exports tend be faster than the short-run export adjustments to tem-
porary shocks in productivity. For the apparel industry, short-run export
adjustments due to temporary productivity shocks are faster relative to the
short-run productivity adjustments from temporary export shocks. How-
ever, the estimated short-run coefficient in both industries indicates that
short-run productivity response to temporary export shocks is larger than
the short-term export response to temporary productivity shocks. These re-
sults suggest similar behaviors in terms of the magnitudes of the short-run
and long-run effects of exports/productivity shocks. But speed of short-
run adjustments tends to be different depending on the type of industry.
Knowledge of these plant behaviors can help improve the design of indus-
trial policies that would allow further economic growth in Turkey.

11.5. Conclusions and policy implications

In this paper, we examine the short-run and the long-run dynamics of the
relationship between export levels and productivity for two Turkish manu-
facturing industries. An error correction model is estimated using a system
GMM estimator to overcome problems associated with unobserved plant-
specific effects, persistence, and endogeneity. This approach allows us to
obtain consistent and efficient estimates of the short-run and long-run re-
lationships of exports and productivity. From these estimates, we conclude
that permanent productivity shocks induce larger long-run export level re-
sponses, as compared to the effect of permanent export shocks on long-run
productivity. A similar behavior is evident with respect to the magnitude of
the effects of temporary shocks on short-run behavior. In addition, for the
T&A industry, our short-run analysis shows that temporary export shocks
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usually result in faster short-run productivity adjustments, as compared to
the effects of productivity shocks on short-run exports. The converse is
true for the MV&P industry.

From an industrial policy perspective, our analysis suggests that poli-
cies which induce permanent productivity enhancements would result in
large long-run export effects. Hence, policies aimed at permanently im-
proving productivity should be implemented by the policy makers to ob-
tain sustainable export performance and a bigger role in the global market.
This may then lead to more sustained economic growth. This insight may
help explain the apparent failure of the trade liberalization policies in the
1980s to sustain productivity and growth in the economy. Most develop-
ing countries enact policies to promote exports on the assumption that
it will be good for productivity and economic growth. From our results,
there would be a positive productivity response if this was a permanent
promotion policy, but this kind of policy would still only generate a small
long-term effect on productivity and/or economic growth.

In addition, if the export promotion policy is temporary, there would
probably be differential short-run speed of adjustments depending on the
type of industry where it is implemented. For the MV&P industry, our re-
sults suggest that a temporary export promotion policy would result in a
fast productivity response. But in the T&A industry, a temporary export
promotion policy may lead to a slower productivity response. The reason
is that the MV&P industry in Turkey tends to constitute large plants that
heavily invest in technology, while plants in the apparel industry tend to
be small to medium sized with less investments in technology. Hence, if
government policy makers want to implement short-run policies to show
fast performance effects, then they must consider the short-run dynamic
behavior of plants in different industries in their decision-making. On the
other hand, in both the T&A and MV&P industry, there would be larger
short-run export adjustments from temporary shocks in productivity rel-
ative to the short-run productivity enhancements from temporary export
shocks. This is consistent with our long-run insights that productivity en-
hancements tend to have larger export effects, which again point to the
appropriateness of enacting productivity-enhancing policies as the main
tool for driving export and economic growth.
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Appendix A11. Calculation of plant-level total factor productivity

The main measure of productivity used in this study is total factor produc-
tivity (TFP). In the plant-level analysis, we construct a multilateral index
to measure the plant-level TFP for the period 1987–1997. In this study,
we useGoodet al. (1996)approach for computing the multilateral TFP
index. In their approach, different hypothetical plant reference points are
constructed for each cross-section, and then the hypothetical plants are
linked together over time. This type of multilateral index has the advan-
tage of providing measures either from year to year or from a sequence of
years, through the process of chain-linking.

In this study, the multilateral TFP index measure for plantj , which
produces a single outputYj t using inputsXij t with cost sharesSij t , is
calculated as follows:

ln TFPj t = (lnYj t − ln Yt )+
t∑

k=2

(lnYk − ln Y k−1)

−
[

n∑

i=1

1

2
(Sij t + Sit )(lnXij t − lnXit )

(A11.1)+
t∑

k=2

n∑

i=1

1

2
(Sik + Sik−1)(lnXik − lnXik−1)

]

wherelnYt andlnXit are the natural log of the geometric mean of output
and the natural log of the geometric mean of the inputs (capital, energy,
labor, and material inputs) across all plants in timet , respectively. The
subscript j represents individual plants such thatj = 1, 2, . . . , N . The
subscripti is used to represent the different inputs wherei = 1, 2, . . . , n.
The subscriptk represents time period fromk = 2, 3, . . . , t (i.e. if we are
considering 10 years in the analysis,k = 2, 3, . . . ,10).

The first two terms in the first line measure the plant’s output rela-
tive to the hypothetical plant in the base year. The first term describes
the deviation between the output of plantj and the representative plant’s
output,lnYt , in yeart . This first sum allows us to make comparisons be-
tween cross-sections. The second term sums the change in the hypothetical
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plant’s output across all years, while chaining the hypothetical plant val-
ues back to the base year. This allows us to measure the change in output
of a typical plant over years. The following terms provide similar informa-
tion. However, it is for inputs using cost shares and arithmetic average cost
shares in each year as weights. Cost shares are just the proportion of the
cost of inputi relative to the total cost of all inputs. The resulting measure
is the total factor productivity of plantj in year t relative to the hypo-
thetical plant in the base year (1987, in this case). With this measure the
distribution of plant-level total factor productivity can then be analyzed.

Aside from the plant-level TFP, we also calculate the plant-level la-
bor productivity using the same multilateral index calculation described
above but only using labor on the input side of the calculation. Using the
labor productivity in our analysis ensures that our analysis is robust to any
changes in productivity measure used. However, it is important to note that
labor productivity is only a partial measure of TFP and has its own short-
comings. For example, if the production technology among plants within
the industry differs such that they do not have similar input–output ratios,
then labor productivity is not a good measure of efficiency and may be a
misleading measure of performance. The TFP may be more appropriate
in this case. Nevertheless, using the labor productivity would allow us to
somehow assess the robustness of our results.

We use kernel density estimates for the plant-level TFP and labor pro-
ductivity measure to summarize the distribution of plant productivity.
Figures A11.1–A11.4show kernel density estimates of TFP and labor pro-
ductivity for the industries, respectively. The kernel density was estimated
for two time periods, from 1987–1993 and 1994–1997. These two time
periods were chosen because the country suffered an economic crisis in
1994 and soon afterwards the government introduced institutional changes
in their economic and financial policies. For example, the Economic Sta-
bilization and Structural Adjustment Program was enacted, where export-
oriented policies such as subsidies and wage suppression were put in place.
The foreign exchange system was regulated and the capital inflow was
controlled during this period. Prior to 1994, the pre-dominant policies of
the government were the opposite of the post-1994 period (i.e. the gov-
ernment relinquished control of capital markets, eliminate subsidies, and
increase wages). Hence, the period 1987–93 can be called the pre-crisis
period and the period 1994–1997 is the post-crisis period.

Figures A11.3 and A11.4clearly show that there is a slight rightward
shift in TFP and labor productivity during the post-crisis period in Motor
vehicle and Parts industry. For the Apparel and Textile industry there is a
rightward shift in the labor productivity but not in the TFP.



The Dynamics of Exports and Productivity at the Plant Level 299

Figure A11.1. Kernel density estimate of the distribution of total
factor productivity in the apparel and textile industry

Figure A11.2. Kernel density estimate of the distribution of labor
productivity in the apparel and textile industry
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Figure A11.3. Kernel density estimate of the distribution of total
factor productivity in the motor vehicle and parts industry

Figure A11.4. Kernel density estimate of the distribution of labor
productivity in the motor vehicle and parts industry



The Dynamics of Exports and Productivity at the Plant Level 301

Appendix B11. Plant performance of exporters and non-exporters:
export premia

This section reports estimates of the proportional differences between the
characteristics of exporting and non-exporting plants in the Turkish ap-
parel and textile and motor vehicle and parts industries by forming the

Table B11.1. Plant performance of exporters and non-exporters:
export premia

Dependent variables Export premia in the
apparel and textile
industries

Export premia in the
motor vehicle and parts
industry

Total factor productivity 0.082 0.064
(0.016)∗ (0.031)∗

Labor productivity 0.806 0.368
(0.025)∗ (0.045)∗

Wage per employee 0.126 0.250
(0.011)∗ (0.031)∗

Output per employee 0.796 0.331
(0.023)∗ (0.042)∗

Capital per employee 0.589 0.458
(0.045)∗ (0.086)∗

Capital in machine per employee 0.464 0.599
(0.046)∗ (0.093)∗

Imported capital stock per employee 0.418 0.452
(0.112)∗ (0.146)∗

Total investment per employee 0.452 0.238
(0.058)∗ (0.107)∗∗

Administrative labor 1.070 1.678
(0.025)∗ (0.061)∗

Labor hours 0.777 1.269
(0.021)∗ (0.050)∗

Total employment 0.794 1.331
(0.020)∗ (0.051)∗

Output 1.655 1.969
(0.031)∗ (0.072)∗

Notes: (1) Robustt-statistics are in parentheses. (2) The independent variables for the dif-
ferent regressions include time, size, and region dummies (except for the regression where
total output, administrative labor, labor hours, and total employment were the dependent
variables – these regressions do not include the size dummies). Dependent variables are in
natural logs. The base group is non-exporters.
∗Significant at the 1% level.
∗∗Significant at the 5% level.
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following regression (seeBernard and Wagner, 1997):

Xit = α0 + α1Exporterit + α2Sizeit
(B11.1)+ α3Regionit + α4Yeart + eit ,

whereX stands for either the log or the share of plant characteristics that
reflect plant capabilities in productivity, technology, and employment.8

Exporter is a dummy variable for the export status, taking a value of 1 if
the plant exports in the current year. Year dummies are included to capture
macroeconomic shocks and the changes in the institutional environment.
The agglomeration effect might be important in explaining the differences
in plant characteristics (seeKrugman, 1991; Porter, 1998). There are large
development disparities across Turkey’s regions because of different re-
gional capabilities such as infrastructure, rule of law, quality of public
services, localized spillovers, the export and import density, foreign in-
vestment intensity (to take advantage of international spillovers, seeCoe
and Helpman, 1995). Therefore, we included regional dummies to cor-
rect for the exogenous disparities in the productivity differences across
the regions. Finally, the plant size is included to capture differences in
the production technology across plants of different sizes. One would ex-
pect the larger plants to be more productive for two reasons. They benefit
from scale economies and have access to more productive technology to
a greater extent. However, they tend to be less flexible in their operation
which affects productivity negatively. In order to capture the size effects,
we divide the plants into three size groups: small plants, with less than
50 employees; medium plants, with between 50 and 100 employees; and
large plants, with 100 employees or more. We select the small group as
the base group. The omitted variable is non-exporters. The coefficient on
the exporting dummy variable,α1, shows the average percentage differ-
ence between exporters and non-exporters, conditional on size, region, and
year.

The estimated parameters are presented inTable B11.1. All of the es-
timated premia are statistically significant and positive. Our results show
that the difference in total factor productivity between exporters and non-
exporters is large and statistically significant for both industries. The ex-
porting plants have significantly higher productivity for both industries.
After controlling for region, year, and size, the difference in total factor
productivity between exporting and non-exporting plants was highest in

8 We also included the export intensity (the ratio of exports to output of the plant) as
an explanatory variable in the regression; however, the results did not change. The export
premia was greater for the plants that export a higher proportion of their output.
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the apparel and textile industries at 8.2 percent, followed by the motor
vehicle and parts industry at 6.4 percent. The difference in labor productiv-
ity between exporting and non-exporting plants was even more dramatic.
The difference was positive and significant for each of the two industries,
with the apparel industry at 80.6 percent and the motor vehicle industry at
36.8 percent.

Our results also show that exporting plants have significantly higher
output. The exporters produce significantly more output per employee;
the apparel and textile industries is 79.6 percent higher and the motor
vehicle parts industry is 33.1 percent higher. Exporting plants are more
capital-intensive, and they invest more heavily in machinery and equip-
ment. Exporters also pay their workers, on average, significantly higher
wages than non-exporters. Exporters in the apparel and textile and motor
vehicle and parts industries pay 12.6 and 25 percent higher wages, respec-
tively. In short, our results show that exporting plants perform much better
than their domestically oriented counterparts.
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Abstract

The main goal of this paper is to tackle the empirical issues of the
real exchange rate literature by applying recently developed panel coin-
tegration techniques developed by Pedroni (“Critical values for coin-
tegrating tests in heterogeneous panels with multiple regressors”, Ox-
ford Bulletin of Economics and Statistics, Vol. 61 (Supplement) (1999),
pp. 653–670; “Panel cointegration; asymptotic and finite sample prop-
erties of pooled time series tests with an application to the purchasing
power parity hypothesis”, Econometric Theory, Vol. 20 (2004), pp. 597–
625) and generalized by Banerjee and Carrion-i-Silvestre (“Breaking
panel data cointegration”, Preliminary draft, October 2004, down-
loadable at http://www.cass.city.ac.uk/conferences/cfl/CFLPapersFinal/
Banerjee%20and%20Carrion-i-Silvestre%202004.pdf) to a structural long-
run real exchange rate equation. We consider here a sample of 45 de-
veloping countries, divided into three groups according to geographical
criteria: Africa, Latin America and Asia. Our investigations show that the
degrees of development and openness of the economy strongly influence
the real exchange rate.
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12.1. Introduction

The relationship between the real exchange rate and economic develop-
ment is certainly an important issue, both from the positive (descriptive)
and normative (policy prescription) perspectives. In recent years, policy
discussions have included increasing references to real exchange rate sta-
bility and correct exchange rate alignment as crucial elements to improve
economic performance in emergent countries. Real exchange rate mis-
alignment affects economic activity in developing countries mainly due to
the dependence on imported capital goods and specialization in commod-
ity exports. Accessibility to world financial markets which helps to smooth
out consumption by financing trade imbalance, also plays an important
role. Evidence from developing countries is often quoted to support the
view that the link between real exchange rate misalignment and economic
performance is strong.Cottaniet al. (1990)argued that in many emergent
countries, persistently misaligned exchange rate harmed the development
of agriculture, reducing domestic food supply. Besides, a number of re-
searchers have also pointed out the importance of understanding the main
determinants of real exchange rate.

Edwards (1989)for instance developed a theoretical model of real ex-
change rate and provided an estimation of its equilibrium value for a panel
of developing countries. According to these estimations, the most impor-
tant variables affecting the real exchange rate equilibrium level are the
terms of trade, the level and the composition of public spending, capital
movements, the control of exchange and the movements of goods, techni-
cal progress, and capital accumulation.

Following Edwards’s pioneering works applied studies estimating equi-
librium exchange rates have increased these last past years, both for de-
veloped and developing countries. Among the large number of papers
available in the literature, special attention should be drawn to the work
of Xiaopu (2002), andMac Donald and Ricci (2003)who investigated a
number of issues that are relevant to an appropriate assessment of the real
exchange rate equilibrium level and to the interesting review of literature
for developing countries by Edwards,NBER Working Papers, 1999. In
these studies the main long-run determinants of the real exchange rate are
the terms of trade, the openness degree of the economy, and capital flows.

The aim of this paper is to apply recent advances in the econometrics
of non-stationary panel methods to examine the main long-run determi-
nants of the real exchange rate. We consider a sample of 45 developing
countries, divided into three groups according to geographical criteria:
Africa (21 countries: Algeria, Benin, Burkina Faso, Burundi, Cameroon,
Congo, the democratic Republic of Congo, Ivory Coast, Egypt, Ethiopia,
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Gabon, Gambia, Ghana, Guinea Bissau, Kenya, Mali, Morocco, Mozam-
bique, Niger, Senegal, Tunisia),Latin America(17 countries: Argentina,
Bolivia, Brazil, Chile, Colombia, Costa Rica, the Dominican Repub-
lic, Ecuador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Peru,
Paraguay, Uruguay, Venezuela) andAsia (7 countries: Bangladesh, In-
donesia, South Korea, India, Malaysia, the Philippines, Thailand). This
grouping of countries according to a geographic criterion is justified by
the fact that the panel data econometric techniques require a certain degree
of homogeneity to get robust empirical results. This geographic criterion
seems to us the most adapted and the most straightforward here for our
sample of 45 countries especially since we wish to study the determinants
of the real exchange rate for various continents. A grouping of countries
according to an economic criterion would also have been possible but
more complex to implement given the multiplicity of potential economic
criteria.

The point here is to go beyond the teachings of the Balassa–Samuelson’s
theory (cf. in particularDrine and Rault, 2002; Drine et al., 2003 for
these countries as well asStrauss, 1999for OECD countries) and to deter-
mine if other factors, such as demand factors, economic policy or capital
movements, also have an influence on the equilibrium real exchange rate
level determination. Our econometric methodology rests upon the panel
data integration tests proposed byIm et al. (1997, 2003)that assumes
cross-sectional independence among panel units,Choi (2002)andMoon
and Perron’s (2003)(these two tests relaxing the assumption of cross-
sectional independence which is often at odds with economic theory and
empirical results), and on the panel data cointegration tests developed by
Pedroni (1999, 2004)and generalized byBanerjee and Carrion-i-Silvestre
(2004). The advantage of panel data integration and cointegration tech-
niques is threefold: firstly, they enable to by-pass the difficulty related to
short spanned time series, then they are more powerful than the conven-
tional tests for time series and finally inter-individual information reduces
the probability to make a spurious regressionBanerjee (1999). To our
best knowledge no comparable studies exist using these new econometric
techniques to investigate the main macroeconomic variables influencing
the real exchange rate in the long run in developing countries.

The remainder of the paper is organized as follows. In the second
section we present a simple theoretical model of real exchange rate de-
termination. In the third one we report and comment on our econometric
results for a panel of 45 developing countries. A final section reviews the
main findings. We find in particular, that besides the Balassa–Samuelson
effect, other macroeconomic variables, such as the terms of trade, public
spending, investment, commercial policy, have a significant influence on
the real exchange rate level in the long-run.
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12.2. Determinants of the real equilibrium exchange rate

FollowingEdwards (1993), we estimate the equilibrium real exchange rate
level using a theoretical model where the simultaneous equilibrium of the
current balance and the tradable good market is realized (seeEmre Alper
and Saglam, 2000).

Consider a small, open economy model with three goods – exportable
(X), importable (M) and non-tradable (N ). The economy involves con-
sumers. The country produces non-tradable and exportable goods and
consumes non-tradable and importable goods.

The country has a floating exchange rate system, withE denoting the
nominal exchange rate in all transactions. This assumption may be surpris-
ing at first sight especially since numerous countries of our sample seem to
have a fixed exchange rate. However we consider here a long-run horizon
and estimate in the econometric part a long-run relationship. Of course
the exchange rate can be fixed in short and mid terms but in the long-
run countries must have a sufficient amount of currencies at their disposal
to maintain the exchange rate which is not the case for most developing
countries of our sample. As the nominal exchange rate will finally adjust
here we directly suppose that it is flexible.

Let PX andPN be the prices of importable and non-tradable goods
respectively. The world price of exportable goods is normalized to unity
(P ∗

X = 1), so the domestic price of exportable goods isPX = EP ∗
X = E.

The world price of importable goods is denoted byP ∗
M .

We defineeM andeX as the domestic relative prices of importable and
exportable goods with respect to non-tradable ones, respectively:

(12.1)eM = PM

PN

and

(12.2)eX = E

PN
.

Then the relative price of importable goods with respect to non-tradable
ones is:

(12.3)e∗
M = EP ∗

M

PN
.

The country imposes tariffs on imports so that

(12.4)PM = EP ∗
M + τ,

whereτ is the tariff rate.
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The total output,Q, in the country is

(12.5)Q = QX(eX)+QN (eX),

whereQ′
X > 0 andQ′

N < 0.
Private consumption,C, is given by

(12.6)C = CM(eM)+ CN (eM),

whereCM andCN are consumption on importable and non-tradable goods
respectively, andC′

M < 0,C′
N > 0.

We define the real exchange rate as the relative price of tradable goods
to non-tradable ones and denote it bye:

(12.7)e = αeM + (1 − α)eX = E(αP ∗
M + (1 − α))+ ατ

PN

with α ∈ (0, 1).
Capital is perfectly mobile. The net foreign assets of the country are

denoted byA. The country invests its net foreign assets at the international
real interest rater∗. The current account of the country in a given year
is the sum of the net interest earnings on the net foreign assets and the
trade surplus in foreign currency as the difference between the output of
exportable goods and the total consumption of importable ones:

(12.8)CA = r∗A+QX(eX)− P ∗
MCM(eM).

Change in the foreign currency reserves,R, of the country is then given
by

(12.9).R = CA+ KI ,

whereKI is the net capital inflows.
In the short and medium run, there can be departures from.R = 0, so

that the country may gain or lose reserves. Current account is sustainable
if the current account deficit plus the net capital inflows in the long run
sum up to zero so that the official reserves of the country do not change.
We then say that the economy is in external equilibrium if the sum of the
current account balance and the capital account balance equal to zero, i.e.

(12.10)r∗A+QX(eX)− P ∗
MCM(eM)+ KI = 0,

(12.11)CN (eM)+GN = QN (eX),

whereGN denotes public spending in non-tradable goods.
A real exchange rate is then said to be in equilibrium if it leads to ex-

ternal and internal equilibria simultaneously. From(12.9) and (12.10)it is
possible to express the equilibrium exchange rate,e∗, as a function ofP ∗

M ,
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τ , r∗, A, KI andGN , i.e.

(12.12)e∗ = e∗(P ∗
M , τ, r

∗, A,KI ,GN ).

The real exchange rate equilibrium level is thus a function of the terms of
trade, commercial policy, the foreign interest rate, foreign capital flows,
and public spending. The variables of Equation(12.12)are the fundamen-
tal of the real exchange rate in the long-run. An increase of public spending
in non-tradable goods entails a real exchange rate appreciation, i.e. a dete-
rioration of the country competitive position. A trade liberalization leads
to a real depreciation of the domestic currency, i.e. an improvement of the
country competitive position. An improvement of the trade balance entails
a real exchange rate appreciation in the long-run. The effect of the terms of
trade is ambiguous. On the one side, the terms of trade increase leads to a
national income rise and hence to an expenditure rise and a real exchange
rate appreciation. On the other, this increase generates a substitution effect
and a real exchange rate depreciation.Elbadawi and Soto (1995)studied
7 developing countries and found that for three of them a terms of trade
improvement entails of a real exchange rate appreciation, while for the
four others, it led to a depreciation.Feyzioglu (1997)found that a terms
of trade improvement entailed a real exchange rate appreciation in Fin-
land.

12.3. Empirical investigation of the long term real exchange rate
determinants

12.3.1. The econometric relationship to be tested and the data set

The theoretical model developed in Section12.2 defines a long-run re-
lationship between the real exchange rate and macroeconomic variables.
The aim of this section is to test this relationship on panel data by tak-
ing explicitly the non-stationarity properties of the variables into account,
and to identify the long term real exchange rate determinants. Indeed, be-
fore the development of econometric techniques adapted to non-stationary
dynamic panels, previous studies on panel data implicitly supposed that
the variables were stationary. This constitutes a serious limitation to their
results given the considerable bias existing in this case on the parameter
estimates when the non-stationarity properties of data are not taken into
account. With the recent developments of econometrics it is henceforth
possible to test stationarity on panel data as well as the degree of integra-
tion of the set of variables.1

1 These tests are sufficiently well-known to exempt us from their formal presentation and
for detailed discussions the reader will find references at the end of the paper.
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Given the theoretical framework of Section12.2, the cointegrating rela-
tionship to be tested between the real exchange rate and its fundamentals
can be written as:

tcrit = α1i + β1i teit + β2iouvit + β3i fdiit + β4igit + β5i invit

(12.13)
+ β6igdpit + εit , i = 1, 2, . . . , N andt = 1, 2, . . . , T

with:

– e: the logarithm of the real exchange rate quoted to incertain,
– te: the logarithm of the terms of trade,
– ouv: the logarithm of trade policy,
– fdi: the logarithm of foreign direct investments flows (FDI, in percent-

age of GDP),
– g: the logarithm of the share of public spending in the GDP,
– inv: the logarithm of domestic investment (in percentage of GDP),
– gdp: the logarithm of GDP per capita.

We consider a sample of 45 developing countries, divided into three
groups according to geographical criteria:Africa (21 countries: Alge-
ria, Benin, Burkina Faso, Burundi, Cameroon, Congo, the democratic
Republic of Congo, Ivory Coast, Egypt, Ethiopia, Gabon, Gambia,
Ghana, Guinea Bissau, Kenya, Mali, Morocco, Mozambique, Niger,
Senegal, Tunisia),Latin America (17 countries: Argentina, Bolivia,
Brazil, Chile, Colombia, Costa Rica, Dominican Republic, Ecuador,
Guatemala, Honduras, Mexico, Nicaragua, Panama, Peru, Paraguay,
Uruguay, Venezuela) andAsia(7 countries: Bangladesh, Indonesia, South
Korea, India, Malaysia, the Philippines, Thailand).

The sample period is based on data availability and it covers 16 years
for Africa (from 1980 to 1996), 23 years for Latin America (from 1973 to
1996) and 21 years for Asia (from 1975 to 1996). All the data are annual
and are extracted from the World Bank data base for the fundamental2 and
from the French database of the CEPII (CHELEM) for the real exchange
rate.3 The real exchange rate is calculated as the ratio of the consumer

2 As pointed out by a referee, although we consider reliable official data sets, they do
not accurately represent developing economies where black markets and corruption are
major actors. Solving this issue seems however impossible as of now and we therefore
acknowledge this limitation in our conclusions.
3 The CHELEM database has been used here for the TCR because our work is an exten-

sion of another study published in 2004 in the n◦ 97-1 issue ofEconomie Internationale
on the investigation of the validity of purchasing power parity (PPP) theory for develop-
ing countries. In that study we used data extracted from on the TCR extracted from the
CHELEM French database and showed that the two versions of PPP (weak and strong)
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price index in the United States (CPI) to that of the considered country
multiplied by the nominal exchange rate with regard to the US Dollar and
an increase implies a depreciation. The terms of trade are calculated as the
ratio of export price index to import price index of the considered country.
Domestic investment is calculated as the ratio of gross investment at con-
stant prices to the sum of private consumption, government consumption,
and gross investment, all at constant prices.

Let us underline that the unavailability of data for some macroeconomic
variables led us to proceed to some approximations. The first one is related
to public spending in non-tradable goods: as we cannot decompose them
into tradable and non-tradable goods, we used the global public spending
share (in value) in GDP (in value) as a proxy. The second one concerns
trade policy. Generally, in literature, the openness degree of the economy
is approximated by the share of foreign trade in GDP (in value). This
approximation justifies itself by the fact thatceteris paribus, a greater trad-
able liberalization allows to intensify trade and the convergence of prices.
In our case we used the share of total imports (in value) in total domestic
spending (in value).

Long-run capital movements are approximated by foreign direct net
flows (FDI). This choice justifies itself by the fact that contrary to other
financial flows, the FDI are related to output motivations and are therefore
more stable.

Per capita income is used as a proxy to measure the Balassa–Samuelson
effect (cf.Balassa, 1964). We expect the coefficient of per capita income to
be negative since economic development comes along with an increasing
gap between the relative productivity in the tradable sector, which leads to
a real exchange rate appreciation.

Note that the cointegration coefficients are estimated by the fully mod-
ified least square method (Fmols), developed byPedroni (2000). The ad-
vantage of this method with regard to the standard MCO is that it corrects
distortions related to the correlation between regressors and residuals and
that it is less sensitive to possible bias in small size samples (cf.Pedroni,
2000).

12.3.2. Econometric results and their economic interpretation

The analysis first step is simply to look at the data univariate properties
and to determine their integratedness degree. In this section, we implement

were not relevant to describe the long-run behavior of the TCR in Africa, Asia and South
America. Our goal here is to refine this analysis and we examine therefore explicitly the
long-run determinants of the TCR for these three groups of countries using data from the
same source.
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Table 12.1. Equilibrium real exchange rate estimation

te ouv fdi g inv gdp ADF-stat. p val. Bootstrap distribution
1% 5% 10%
−3.02−2.19−1.72

Africa
Coeff.−0.56 0.16−0.06 0.05 0.17 −0.07
t-stat. −8.58 2.38−2.76 2.92 3.04 −3.62 −5.91 0.00

Latin America
Coeff. ns 0.09−0.02−0.10 0.17 −0.23
t-stat. ns 2.97−3.21−2.43 3.04 −3.35 −3.82 0.00

Asia
Coeff.−0.53 0.39−0.07 0.13 0.37 −0.39
t-stat. −2.94 11.01−4.58 3.53 2.11−10.08−12.16 0.00

Note. The bootstrap is based on 2000 replications.

three panel data unit root tests (Im et al., 1997, 2003; Choi, 2002; Moon
and Perron, 2003) in order to investigate the robustness of our results.

First, we used the test proposed byIm et al. (1997, 2003, hereafter
IPS) that has been widely implemented in the empirical research due to
its rather simple methodology and alternative hypothesis of heterogene-
ity. This test assumes cross-sectional independence among panel units,
but allow for heterogeneity of the form of individual deterministic effects
(constant and/or linear time trend) and heterogeneous serial correlation
structure of the error terms.Table A12.1in the appendix reports the re-
sults of the IPS’s test and indicates that the null hypothesis of unit-root
cannot be rejected at the 5% level for all series.

However, as shown by several authors (includingO’Connell, 1998;
Banerjeeet al., 2004a, 2004b), the assumption of cross-sectional inde-
pendence on which the asymptotic results of the IPS’s procedure relies
(as actually most panel data unit root tests of “the first generation” in-
cludingMaddala and Wu, 1999; Levin and Lin, 1993; Levin et al., 2002)
is often unrealistic and can be at odds with economic theory and em-
pirical results. Besides, as shown in two simulation studies byBanerjee
et al. (2004a, 2004b)if panel members are cross-correlated or even cross-
sectionally cointegrated, all these tests experience strong size distortions
and limited power. This is analytically confirmed byLyhagen (2000)and
Pedroni and Urbain (2001).

For this reason, panel unit root tests relaxing the assumption of cross-
sectional independence have recently been proposed in the literature in-
cluding Choi’s (2002), Bai and Ng’s (2003), Moon and Perron’s (2003),
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Pesaran’s (2003)andPhillips and Sul’s (2003)tests. We have decided to
investigate the presence of a unit-root using two tests of “the second gen-
eration”, the test proposed byChoi (2002), and that byMoon and Perron’s
(2003), to whom we refer the reader for further details. This last test in
particular, seems to show “good size and power for different values ofT

andN and model specifications”, according to the Monte Carlo experi-
ments byGutierrez (2003). The results reported inTables A12.2 and A12.3
in the appendix indicate that the null hypothesis of unit-root cannot be re-
jected by the two tests at the 5% level for our seven series, for Africa,
Latin America and Asia, hence supporting the first results given by the
IPS’s test. Furthermore, tests on the series in first differences confirm the
hypothesis of stationarity. We therefore conclude that the real exchange
rate and its potential determinants expressed in level are all integrated of
order 1, independently of the panel unit-root tests considered, which tend
to prove that the non-stationarity property of our macro-economic series
is a robust result.

Afterwards, having confirmed the non-stationarity of our series, it is
natural to test the existence of a long-run relationship between the real
exchange rate and its determinants.Table 12.1reports the results of the
panel data cointegration tests developed byPedroni (1999, 2004)both
using conventional (asymptotic) critical values given inPedroni (1999)
and bootstrap critical values.4 Indeed, the computation of the Pedroni
statistics assumes cross-section independence across individuali, an as-
sumption that is likely to be violated in many macroeconomic time series
(seeBanerjeeet al., 2004a, 2004b), including in our study. In order to
take into account the possible cross-section dependence when carrying
out the cointegration analysis, we have decided to compute the bootstrap
distribution of Pedroni’s test statistics and have generated in this way data
specific critical values. Note that as inBanerjee and Carrion-i-Silvestre
(2004), we have of course not used the seven statistics proposed byPe-
droni (1999, 2004)(to test the null hypothesis of no cointegration using
single equation methods based on the estimation of static regressions).
These statistics can also be grouped in either parametric or non-parametric
statistics, depending on the way that autocorrelation and endogeneity bias
is accounted for. In our study, we are only concerned with the parametric
version of the statistics, i.e. the normalized bias and the pseudot-ratio sta-
tistics and more precisely with the ADF test statistics. These test statistics

4 Let us underline that as we implement a one sided test a calculated statistic smaller than
the critical value leads to the rejection of the null hypothesis of absence of a cointegration
relationship between the variables. Note also thatβj represents the average of the estimated
βij for j varying from 1 to 6 (cf. Equation(12.13)).
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are defined by pooling the individual tests, so that they belong to the class
of between dimension test statistics (cf.Pedroni, 1999, 2004for further
details).

It is also important to notice that, as stressed byBanerjee and Carrion-i-
Silvestre (2004), some cautions about the method that is used to bootstrap
cointegration relationships are required, since not all available procedures
lead to consistent estimates. In this regard, we have followedPhillips
(2001), Park (2002), and Changet al. (2002), and we have decided to
use sieve bootstrap using the modified version of the sieve bootstrap5 de-
scribed inBanerjeeet al. (2004a, 2004b).6

Using both the conventional (asymptotic) critical values (−1.65 at 5%)
calculated under the assumption of cross-section independence (reported
in Pedroni, 1999, and extracted from the standard Normal distribution),
and our bootstrap critical value (−2.19 at 5%, valid if there is some
dependence amongst individuals), the null hypothesis of no cointegra-
tion is always rejected by test statistics. Therefore, we conclude that a
long-run relationship exists between the real exchange rate and its fun-
damentals for our three sets of countries (in Africa, Latin America and
Asia).

Empirical results (cf.β1) confirm that an improvement of the terms
of trade entails a real exchange rate appreciation in Africa and in Asia,
which means that the wealth effect dominates the substitution effect. Fur-
thermore, the elasticity of the real exchange rate with respect to the terms
of trade is compatible with previous studies. The difference between the
economic structures of the two groups of countries partially explains the
difference of response of real exchange rates to a shock on the terms of
trade (an improvement of 10% of the terms of trade entails an apprecia-
tion of 5.6% in Africa and 5.3% in Asia). The absence of the effect of the
terms of trade on the real exchange rate in Latin America confirms that the
wealth effect compensates for the substitution effect.

Negative coefficients (β2) for the three groups of countries suggest that
trade liberalization is accompanied with a real exchange rate deprecia-
tion. The elasticity is different for the three groups of countries: it is of
0.16 in Africa, 0.39 in Asia and 0.09 in Latin America. Nevertheless,
this elasticity remains relatively low for these countries in comparison to
the previous results of literature (Elbadawi and Soto, 1995; Baffeset al.,
1999). A possible explanation is that the estimated coefficients are aver-
ages of individual coefficients.

5 We are very grateful to Banerjee and Carrion-i-Silvestre for providing us their Gauss
codes.
6 For a detailed discussion the reader will find references at the end of the paper.
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For these three groups the cointegration coefficients of the FDI confirm
the theoretical predictions. The estimated coefficient (β3) is negative, im-
plying that a capital flow increase entails a domestic spending rise and a
reallocation of output factors towards the non-tradable goods sector; the
long-run demand increase of non-tradable goods entails a real exchange
rate appreciation. Furthermore, the coefficients are very close for the three
groups of countries. Indeed, an increase of 1% of foreign investments
flows leads to an average real exchange rate appreciation of 0.05%.

The effect of public spending on real exchange rates (β4) is different
for the three groups of countries. Indeed, estimations indicate that an in-
crease of public spending entails a real exchange rate appreciation in Latin
America and a depreciation in Asia and Africa. According to theoreti-
cal predictions the coefficient must be negative given that the increase
of the global demand of non-tradable goods entails an increase of their
price. The positive coefficient in Asia and Africa can reflect a strong evic-
tion effect which induces a fall in private non-tradable goods demand.
If public spending is extensive in tradable goods, an expansionist bud-
get policy entails a tax increase or/and an interest rate rise, which reduces
the private demand of non-tradable goods. The fall in demand then en-
tails a price decrease and hence a real exchange rate depreciation (cf.
Edwards, 1989). The effect of public spending on the real exchange rate
in Latin America and in Asia is comparable and relatively higher than in
Africa.

An increase of 10% on the share of domestic investments entails an av-
erage depreciation of 1.7% in Africa and in Latin America and of 3.7%
in Asia (coefficientβ5). This result is compatible with that ofEdwards
(1989)which also found a low elasticity (of 7%) for a group of 12 de-
veloping countries. Indeed, an increase of investments often leads to an
increase of non-tradable goods spending and hence to a decrease of the
relative price of non-tradable goods.

The per capita GDP also contributes to the long-run variations of the
real exchange rate for the three groups of countries. The coefficient (β6) is
negative, which implies that economic development is accompanied by a
real exchange rate appreciation (Balassa–Samuelson effect). The effect of
economic development on the long-run evolution of the real exchange rate
is relatively low in Africa. Indeed, an increase of 1% of per capita GDP
entails a real exchange rate appreciation of only 0.07%. On the other hand,
this effect is relatively high in Asia and Latin America since real exchange
rate appreciates respectively of 0.39% and 0.23% for these countries fol-
lowing an increase of 1% of the per capita GDP.

Finally, notice that in Africa and in Asia external factors (openness
degree and terms of trade) contribute most to the long-run dynamics of
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the real exchange rate; internal demand also plays an important role in
Asia. In Latin America on the other hand, external factors seem to have
a relatively limited effect on the equilibrium real exchange rate, the eco-
nomic development (GDP per capita) having on the contrary an important
role.

12.4. Conclusion

The aim of this paper was to identify the determinants of the equilibrium
real exchange rate for developing countries. On the basis of theoreti-
cal approaches used in literature, we have exposed a simple theoretical
model which describes the interaction between some macroeconomic vari-
ables and the equilibrium real exchange rate level. Then, this model has
been estimated by recent non-stationary panel data techniques. We have
in particular used the panel data integration tests proposed byIm et al.
(1997, 2003), Choi (2002)andMoon and Perron’s (2003)(the last two
tests relaxing the assumption of cross-section independence across indi-
vidual i which is rather unrealistic in applied research), as well as the
panel data co-integration framework developed byPedroni (1999, 2004)
and generalized byBanerjee and Carrion-i-Silvestre (2004). In particu-
lar, following Banerjeeet al. (2004a, 2004b), we have bootstrapped the
critical values of Pedroni’s cointegration tests under the assumption of
cross-section dependence. These recent advances in the econometrics of
non-stationary panel methods have enabled us to put in evidence the exis-
tence of several sources of impulsions influencing the real exchange rate
in the long-term in Africa, Latin America and Asia.

Our investigations show that an improvement of the terms of trade,
an increase of per capita GDP and of capital flows entail a long-run ap-
preciation of the real exchange rate. On the other hand, an increase of
domestic investment and of the openness degree of the economy entails
a real exchange rate depreciation; the effect of public spending increase
being ambiguous.

Our results confirm that the real exchange rate depends on the economic
specificities of each country. In other words, we don’t have a fixed and gen-
eral norm but, for each economy, the real exchange rate trajectory depends
on its development level, on the way economic policy is conducted, and on
its position on the international market. Besides, the variations of the real
exchange rate do not necessarily reflect a disequilibrium. Indeed, equilib-
rium adjustments related to fundamental variations can also generate real
exchange rate movements.
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Notice finally that the non-stationary panel data econometric approach
applied here to 45 countries does not directly allow us to determine the
over (under) evaluations for each country individually.
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Appendix A12. Panel unit-root test results for developing countries7

Table A12.1. Results ofIm et al. (1997, 2003) test∗

Level First difference

Constant Constant and trend Constant Constant and trend

Real exchange rate

Africa −1.34 −1.6 −2.30 −2.38
Latin America −0.23 −1.43 −3.32 −4.32
Asia −0.32 −1.65 −2.54 −2.12

GDP per capita

Africa −0.09 −1.60 −2.30 −2.38
Latin America −0.12 −1.43 −2.21 −2.54
Asia −0.19 −1.45 2.31 −3.45

Terms of trade

Africa −0.66 −0.17 −7.77 −5.72
Latin America −0.32 −0.43 −5.45 −5.21
Asia −0.36 −0.32 −5.47 −6.32

Openness degree

Africa −0.55 −0.63 −2.33 −7.77
Latin America −0.43 −0.98 −3.23 −6.47
Asia −0.12 −0.43 −2.54 −3.34

Public spending

Africa −0.79 −1.79 −3.45 −4.05
Latin America −1.32 −1.12 −2.31 −3.21
Asia −0.86 −1.68 −3.32 −4.65

Foreign direct investments

Africa −0.19 −1.62 −2.63 −4.35
Latin America −0.12 −1.43 −2.12 −5.22
Asia −0.21 −1.42 −2.55 −3.21

Domestic investments

Africa −0.23 −1.14 −3.89 −3.23
Latin America −0.41 −1.21 −3.32 −4.23
Asia −1.32 −1.35 −3.21 −4.67

∗As this is one-sided tests, the critical value is−1.65 (at the 5% level) and for unit-root to
exist the calculated statistics must be larger than−1.65.

7 All variables are expressed in logarithms.
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Table A12.2. Results ofChoi’s (2002) test∗

Pm statistic Z statistic L∗ statistic

Real exchange rate

Africa 0.177∗∗ 0.356 0.194
Latin America 0.103 0.172 0.224
Asia 0.07 0.08 0.06

GDP per capita

Africa 0.091 0.321 0.159
Latin America 0.061 0.311 0.05
Asia 0.798 0.987 0.975

Terms of trade

Africa 0.128 0.071 0.062
Latin America 0.054 0.081 0.056
Asia 0.321 0.421 0.452

Openness degree

Africa 0.254 0.321 0.341
Latin America 0.051 0.074 0.047
Asia 0.562 0.547 0.412

Foreign direct investments

Africa 0.112 0.125 0.185
Latin America 0.045 0.568 0.098
Asia 0.256 0.341 0.387

Domestic investments

Africa 0.098 0.093 0.150
Latin America 0.045 0.105 0.07
Asia 0.121 0.231 0.192

∗Note that thePm test is a modification ofFisher’s (1932)inverse chi-square tests and
rejects the null hypothesis of unit-root for positive large value of the statistics, and that
theL∗ is a logit test. The tests (Z andL∗) reject the null for large negative values of the
statistics. TheP , Z andL∗ tests converge under the null to a standard normal distribution
as (N, T → ∞), cf. Choi’s (2002)for further details.
∗∗All figures reported inTable A12.2areP -values.
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Table A12.3. Results ofMoon and Perron’s (2003)∗

t ∗ a t ∗ b

Real exchange rate

Africa 0.153∗∗ 0.124
Latin America 0.421 0.342
Asia 0.182 0.147

GDP per capita

Africa 0.921 0.752
Latin America 0.354 0.247
Asia 0.165 0.198

Terms of trade

Africa 0.051 0.061
Latin America 0.042 0.067
Asia 0.321 0.258

Openness degree

Africa 0.147 0.189
Latin America 0.159 0.325
Asia 0.487 0.362

Foreign direct investments

Africa 0.321 0.273
Latin America 0.092 0.121
Asia 0.043 0.051

Domestic investments

Africa 0.484 0.517
Latin America 0.397 0.377
Asia 0.071 0.0521

∗The null hypothesis of the two tests proposed byMoon and Perron (2003)is the unit-root
for all panel units. Under the nullH0, MP show that for (N, T → ∞) with N/T → 0 the
statisticst ∗ a andt ∗ b have a standard normal distribution.
∗∗All figures reported inTable A12.3areP -values.
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Abstract

Theoretical studies have suggested firm specific human capital and job
matching as the major, but opposite, mechanisms through which employee
turnover affects labour productivity. This study finds that the former dom-
inates when turnover is high, while the latter dominates when turnover is
low. The optimal turnover rate that maximises productivity is about 0.22
per annum. Bringing the observed turnover rates in the sample to the op-
timal level increases the average productivity by 1.1 per cent. The large
gap between the observed and the optimal rate could be explained by the
lack of decision coordination between agents in labour markets.
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13.1. Introduction

It is widely acknowledged in the business community that human re-
sources are an invaluable firm asset (see, for example,Business Asia,
1999; Business Times, 2000). Therefore, it is logical to assume that the
flow of this valuable asset – employee turnover – will play a crucial role
in firm performance. Indeed, firms (and employees) are burdened with
turnover problems in both good and adverse economic climates. Dur-
ing economic upturns, employee churning represents one of the greatest
difficulties in business management. For instance, during the “new econ-
omy” boom in the U.S., nearly a quarter of workers were reported to
have average tenure of less than a year (Economist, 2000).1 On the other
hand, during economic downturns, trimming operating costs through job
retrenchment in order to maintain a firm’s share value is a typical phenom-
enon. Nevertheless, downsizing is not a painless option for firms, as they
are likely to suffer adverse consequences, such as low levels of morality
and loyalty amongst the remaining staff. Moreover, firms also bear the risk
of not being able to quickly re-establish the workforce should the economy
rebound more swiftly than anticipated.

As a consequence, employee turnover has been extensively researched
across a number of disciplines, including: psychology; sociology; manage-
ment; and economics. Each discipline has its own focus and, accordingly,
employs different research methodologies. Psychologists and sociologists,
for example, are generally interested in the motivations behind quitting,
such as job satisfaction, organisational commitment and job involvement
(Carsten and Spector, 1987; Muchinsky and Tuttle, 1979). Empirical work
in these fields typically involves case studies using survey data of individ-
ual firms or organisations.

In the discipline of management study, high staff turnover has been of
great and continuous concern (as typified byMok and Luk, 1995, and the
symposium inHuman Resource Management Review, Vol. 9 (4), 1999).
Similar to the practice in psychology and sociology, researchers heavily
draw on event, or case, studies. While reducing employee turnover is a
managerial objective for some firms, the converse is true for others. For
example, legal restrictions and obligations in recruitment and dismissal
could prohibit firms from maintaining a flexible workforce size, a situa-
tion more common in unionised sectors (Lucifora, 1998). The industrial
reforms and privatisation in many developed nations were aimed, at least
in part, at increasing the flexibility of labour markets.

1 High-tech industries as well as the low-tech ones, such as retailing, food services and
call centres, experienced the problem.
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In contrast, economists focus mainly on the implications of turnover on
unemployment. A strand of matching theories has been developed exten-
sively to explain equilibrium unemployment, wages and vacancies (Lucas
and Prescott, 1974; Lilien, 1982). National aggregate time series data are
typically employed in this line of research. For recent surveys on match-
ing theories and their applications seePetrongolo and Pissarides (2001)
and the symposium inReview of Economic Studies, Vol. 61 (3), 1994.

Despite turnover being considered crucial to human resource manage-
ment and production, there is little quantitative research on the effect of
turnover on labour productivity (hereafter “productivity” unless specified
otherwise).2 This omission is possibly due to the lack of firm level data on
both production and turnover. Moreover, firm level data are typically re-
stricted to individual organisations, prohibiting researchers from drawing
general conclusions.3 Utilising a recently released firm-level panel data
set, based on the Australian Business Longitudinal Survey (BLS), this pa-
per is therefore able to provide a new dimension to the literature. The BLS
data provide an objective measure of value-added, which is comparable
across firms operating in a broad spectrum of industries. Conditional on
firm level factor inputs and other firm characteristics, the impacts of em-
ployee turnover on productivity are investigated. The results suggest that
employee turnover has a statistically significant and quantitatively large,
but more importantly, non-linear effect on productivity. From the results
it is possible to estimate the optimal turnover rate – the rate that max-
imises productivity, keeping other factors constant – which was found to
be around 0.22 per annum. As the employee turnover rate is defined here
as the average of total number of employees newly recruited and departed
within a period, relative to the average number of employees over the pe-
riod, the highest productivity is where about 22 per cent of total employees
changed over the one-year period. The estimated optimal rate is much
higher than that typically observed in the sample (the median turnover rate
is about 14 per cent). Using a theoretical model, it is shown that the lack
of coordination between agents in labour markets can lead them choosing

2 McLaughlin (1990)examines the relationship between turnover type (quit or layoff)
and economy-wide general productivity growth, but not productivity of individual firms.
Shepardet al. (1996)make use of survey data to estimate the total factor productivity of
the pharmaceutical industry; nevertheless, their study is only concerned with the effect of
flexible working hours and not turnover.
3 For instance,Borland (1997)studies the turnover of a medium-size city-based law firm,

Iverson (1999)examines voluntary turnover of an Australian public hospital, andGlenn
et al. (2001)focus on major league baseball in the U.S. However, all three studies do not
cover the production aspect of the examined organisation.
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a turnover rate far below the optimal level. The intuition is that the possi-
bility for an employer to find more productive staff (or for an employee to
find a more rewarding job) is related to the rate of job-worker separations
in other firms. Without sufficient information about the intended decisions
of others, agents will make changes at sub-optimal rates.

The empirical results also suggest that if firms bring their turnover rates
to the optimal level, average productivity will increase by just over 1 per
cent. These results have clear policy implications. For instance, if the ob-
served turnover rate is substantially below the estimated optimal rate andif
institutional rigidity in the labour market is the main cause of that, dereg-
ulation may be warranted.

The rest of the paper is structured as follows. Section13.2reviews two
main contending theories about the linkage between employee turnover
and productivity, and formulates the concept of the optimal turnover rate.
In Section13.3the econometric model and the data are briefly described.
Section13.4 presents the empirical results and Section13.5 concludes.
Appendix A13provides details of the data, including summary statistics.
Appendix B13presents a theoretical model to account for the empirical
findings.

13.2. Theories of employee turnover and productivity

There are two main theories on how employee turnover can affect pro-
ductivity. Firstly, there is the firm specific human capital (FSHC) theory,
pioneered byBecker (1975). This asserts that if firms need to bear the cost
of training, their incentives to provide staff training will be lowered by
high turnover rates. The incentive will be even weaker when firm specific
and general training are less separable, as employees have lower oppor-
tunity costs of quitting (Lynch, 1993). Consequently, productivity falls as
turnover increases. Even if FSHC is bred through learning-by-doing, its
accumulation remains positively related to employees’ tenure. As a result,
a higher turnover rate will still lead to lower productivity.

In addition to the direct loss of human capital embodied in the leavers,
there are other negative impacts of turnover on productivity. Besides the
output forgone during the vacant and training period, the administrative
resources used in separation, recruitment and training could have been
invested in other aspects of the production process.4 Moreover, high em-
ployee turnover could adversely affect the morale of the organisation.

4 It has been reported that the cost of losing an employee is between half to one and a half
times the employee’s annual salary (Economist, 2000).
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Using a controlled experiment,Sheehan (1993)records that the leavers
alter the perceptions of the stayers about the organisation and therefore
negatively affect its productivity. As a consequence, warranted (from an
employer’s perspective) but involuntary job separation could trigger un-
warranted voluntary employee departure – a snowball effect.5

On the opposite side of the debate, is the job matching theory estab-
lished byBurdett (1978)andJovanovic (1979a, 1979b). The key insight
of this theory is that firms will search for employees and job seekers
will search for firms until there is a good match for both parties. How-
ever, the conditions for an optimal matching may change over time, lead-
ing to continuous reallocation of labour. For instance, a firm that has
upgraded its production technology will substitute skilled for unskilled
labour (Ahn, 2001). Moreover, established firms also need ‘new blood’ to
provide fresh stimulus to thestatus quo. On the other hand, a worker who
has acquired higher qualifications via education, training, or learning-by-
doing may seek a better career opportunity.

Regular employee turnover helps both employers and employees avoid
being locked in sub-optimal matches permanently. For instance, the es-
timated cost of a poor hiring decision is 30 per cent of the first year’s
potential earning and even higher if the mistake is not corrected within six
months, according to a study by the U.S. Department of Labor (cited in
Abbasi and Hollman, 2000).

Another factor that compounds the effect of turnover on productivity is
knowledge spillover between firms (Cooper, 2001). Knowledge spillover
is more significant if human capital is portable across firms or even in-
dustries.Megna and Klock (1993)find that increasing research input by
one semi-conductor firm will increase the productivity of rival firms due
to labour migration. Finally,Borland (1997)suggests that involuntary
turnover can be used as a mechanism to maintain employees’ incentives.
In short, matching theory suggests that higher turnover aids productivity.

Although FSHC theory and job matching theory suggest opposite ef-
fects of turnover on productivity, one does not necessarily invalidate the
other. In fact, there is empirical evidence supporting the coexistence of
both effects, albeit the effect of FSHC appears to dominate (Glennet al.,

5 During the economic downturn in the U.S. in 2001, executives in Charles Schwab and
Cisco were reportedly cutting down their own salaries and setting up charitable funds for
laid off staff in order to maintain the morale of the remaining employees (Economist,
2001). Both companies’ efforts were apparently well received.Fortune (2002)ranked
Cisco and Charles Schwab as the 15th and 46th best companies to work for in 2001, re-
spectively, despite Cisco was reported laying off 5,500 staff while Charles Schwab 3,800
staff.
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2001). The two theories essentially answer the question of how to balance
the stability and flexibility of the labour force. It is the contention here, that
given FSHC and job matching have opposite effects on productivity, there
is a distinct possibility that a certain turnover rate will maximise produc-
tivity. A scenario, in which such an optimal turnover rate exists, is where
productivity is a non-linear – specifically quadratic concave function, of
turnover.

13.3. Data, empirical model and estimation method

13.3.1. Business longitudinal survey

The BLS is a random sample of business units selected from the Aus-
tralian Bureau of Statistics business register for inclusion in the first year
of the survey. The sample was stratified by industry and firm size. The
sample was selected with the aim of being representative of all businesses
(excluding government agents, public utilities and public services). The
focus is on a balanced panel of small and medium sized businesses. After
excluding businesses with deficient data records, 2,435 businesses are left
in our sample. Summary statistics and variable definitions are presented in
Appendix A13.

This data source is unique in that it provides firm-level data, including
an objective measure of value-added, and structural firm characteristics.
Moreover, individual firms are tracked over a four-year period from 1994/5
to 1997/8. The panel nature of the data allows us to investigate the correla-
tion between firm characteristics and productivity, whilst simultaneously
taking into account unobserved firm heterogeneity.

Due to data inconsistencies however, focus is on a sub-two-year panel.
Also, some firms reported employee turnover rates well in excess of 1 (the
maximum value of turnover rate in the data set is 41!). Since the figure
is supposed to measure the turnover of non-causal workers only, the accu-
racy of these high value responses is questionable. It is suspected that most
of those firms that reported a high turnover rate might have mistakenly in-
cluded the number of newly hired and ceased “casual” employees in their
counting. In that case, considerable measurement errors would be intro-
duced. There is no clear pattern on the characteristics of firms with very
high reported turnover rates. Thus, observations whose employee turnover
rates are greater than 0.8 (equivalent to 5% of total sample) are excluded
from the estimations. As the cut-off point of 0.8 is relatively arbitrary, dif-
ferent cut-off points are experimented with as robustness checks.
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13.3.2. The empirical model

The empirical model is a productivity function derived from a Cobb–
Douglas production function. Using the capital–labour ratio, employee
turnover and other firm characteristics to explain productivity, the regres-
sion model has the following form:6

ln(Vit/Lit ) = β0 + β1 ln(Kit/Lit )+ β2 lnLit + δ1Tit + δ2T
2
it

(13.1)+ W′
iϕ + Z′

itθ + ui + eit ,

whereVit is value-added of firmi in year t , andKit , Lit and Tit de-
note capital, labour (effective full time employees) and employee turnover
rate, respectively. Employee turnover rate is measured by the average of
new employees and ceased non-casual employees divided by average non-
casual employees at the end of yeart andt − 1. Unobserved firm hetero-
geneity and idiosyncratic disturbances, are respectively denotedui andeit .
Wi is a vector of time invariant firm characteristics, including dummies for
family business, incorporation, industry, and firm age and firm size at the
first observation year.Zit denotes a vector of time variant covariates in-
cluding employment arrangements (ratios of employment on individual
contract, unregistered and registered enterprise agreements), other em-
ployee related variables (managers to total employees ratio, part-time to
total employees ratio, union dummies) and other firm characteristics (in-
novation status in the previous year, borrowing rate at the end of previous
financial year, and export status).

Equation(13.1)can be viewed as a (conditional) productivity-turnover
curve (PT).7 The five scenarios regarding the signs ofδ1 andδ2 and, thus,
the shape of the PT curve and the optimal turnover rate are summarised in
Table 13.1.

A priori, one would expectδ1 > 0 and δ2 < 0, giving rise to an
n-shaped PT curve. This is because, when turnover is very low, job–worker
match is unlikely to be optimal as technology and worker characteristics
change continuously. Hence, the marginal benefit of increasing the labour
market flexibility overwhelms the marginal cost of forgoing some FSHC.

6 It has been verified that terms with orders higher than two are insignificant. Further-
more, if there are feedback effects of productivity on the turnover rate, one should include
lagged terms ofT in the equation and/or set up a system of equations. For instance, using
U.S. data,Azfar and Danninger (2001)find that employees participating in profit-sharing
schemes are less likely to separate from their jobs, facilitating the accumulation of FSHC.
However, the short time span of our panel data prohibits us from taking this into account
in the empirical analysis.
7 The effects of turnover on productivity are essentially the same as those on value-added

as factor inputs have been controlled for.
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Table 13.1. Various scenarios of the productivity–turnover curve

Scenario Shape of PT curve
(T � 0)

Interpretation Optimal
turnover rate

δ1 = δ2 = 0 Horizontal FSHC and job matching effects
cancel each other

Undefined

δ1 > 0, δ2 < 0 n-shaped Job matching effects dominate
whenT is small, while FSHC
effects dominate whenT is large

− δ1
2δ2

δ1 < 0, δ2 > 0 U -shaped FSHC effects dominate whenT

is small, while job matching
effects dominate whenT is large

Undefined

δ1 � 0, δ2 � 0,
δ1 + δ2 �= 0

Upward sloping Job matching effects dominate Undefined

δ1 � 0, δ2 � 0,
δ1 + δ2 �= 0

Downward sloping FSHC effects dominate 0

As a result, productivity rises with the turnover rate. Due to the law of di-
minishing marginal returns, the gain in productivity lessens as turnover
increases. Eventually the two effects will net out; further increases in
turnover will then lead to a fall in productivity.

In the case of ann-shaped PT curve, the optimal turnover rate is equal
to −0.5(δ1/δ2). The rate is not necessarily optimal from the perspective of
firms, as competent employees may leave for a better job opportunity. Nei-
ther is it necessarily optimal from the perspective of employees, as there
may be involuntary departure. In essence, turnover represents the fact that
firms are sorting workers and, reciprocally, workers are sorting firms. As
a result, the estimated optimal rate should be interpreted from the produc-
tion perspective of the economy as a whole. Moreover, the measurement
does not take into account the hidden social costs of turnover, such as pub-
lic expenses on re-training and unemployment benefits, and the searching
costs borne by job seekers, and for that matter, hidden social benefits such
as higher social mobility.

13.4. Empirical results

13.4.1. Results of production function estimation

Table 13.2reports the estimation results, on the assumption that the unob-
served effects of Equation(13.1)are treated as random, for the base case
(the sample with cut-off point of 0.8) as well as for the full sample. A ran-
dom effects specification is chosen as the estimation is based on a large
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random sample from the population. Moreover, a fixed effects approach
would lead to an enormous loss of degrees of freedom, especially as the
data contains only 3 years information (Baltagi, 2001). For the base case,
two models are estimated; with and without the restriction of constant re-
turns to scale (CRS). The results indicate that the CRS restriction cannot
be rejected, as the coefficient of log labour in the unrestricted model is not
significantly different from zero. Accordingly, focus is on the CRS results
for the base case in the following discussion (the middle two columns).

The coefficient of log capital is very small. This is not surprising due
to the use of non-current assets as a proxy of capital (seeAppendix A13
for details). This argument gains support from the negative coefficients of
firm age dummies in that the under-estimation of capital is larger for older
firms.8 Since both capital and firm age variables are included as control
variables, the mismeasurement of capital should not unduly bias the coef-
ficient of employee turnover.

The coefficient of the ratio of employees on individual contract is signif-
icantly positive. This is expected as individual contracts and agreements
tend to be more commonly used with more skilled employees, and also
because such agreements tend to be used in tandem with performance-
based pay incentives. Although it is widely believed that registered en-
terprise agreements are positively correlated with productivity (Tseng and
Wooden, 2001), the results here exhibit the expected sign but the effect is
not precisely estimated. Interestingly, productivity is higher for unionised
firms and it is particularly significant for those with more than 50 per cent
of employees being union members.

The coefficient of the lagged borrowing rate is, as expected, positive,
and significant. It is consistent with the theory that the pressure of paying
back debts motivates greater efforts in production (Nickell et al., 1992).
The manager to total employee ratio appears to have no effect on produc-
tivity, while the negative effects of part-time to full-time employee ratio
is marginally significant. The latter result is probably due to the fact that
part-time workers accumulate less human capital than their full-time coun-
terparts.

The coefficient of innovation in the previous year is insignificant, pos-
sibly due to the potentially longer lags involved. Export firms have higher
productivity; highly productive businesses are more likely to survive in
highly competitive international markets and trade may prompt faster ab-
sorption of new foreign technologies. Non-family businesses, on average,

8 If there is no underestimation of capital stock, other things equal, older firms are likely
to have higher productivity due to accumulation of experience.
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exhibit 16 per cent higher (labour) productivity than family businesses,
whereas incorporated firms are 13 per cent higher than non-incorporated
ones. The result signifies the importance of corporate governance, as non-
family businesses and incorporated firms are typically subject to tighter
scrutiny than their counterparts. Medium and medium large firms have 15
and 20 per cent higher productivity, respectively, than small firms.

13.4.2. Employee turnover and productivity

Focus now turns to the impact of turnover on productivity. The coefficients
of employee turnover rate and its square are jointly significant at a 5 per
cent significance level, although individually the coefficient of the turnover
rate has not been precisely estimated. The two coefficients are positively
and negatively signed, respectively, implying ann-shaped PT profile. It in-
dicates that job matching effects dominate when turnover is low, whereas
FSHC effects dominate as turnover increases. For the base case, the im-
puted optimal turnover rate is equal to 0.22.9 This figure changes very little
even if the restriction of constant returns to scale is imposed in estimations.

Although the coefficients of other explanatory variables for the full
and trimmed samples are not markedly different, the same is not true of
those of turnover rate and turnover rate squared. This indicates that the
extremely large turnover rates are likely to be genuine outliers, justifying
their exclusion. However, notwithstanding this result, the estimated op-
timal turnover rates are remarkably stable across samples with different
cut-off points (Table 13.3), lying between 0.214 and 0.231,even though
the coefficients are sensitive to the choice of estimation sample. Firms with
a turnover rate higher than 0.5 are likely to be “outliers” as our definition
of turnover excluded casual workers.10 Since the measurement errors are
likely to be larger at the top end of the distribution, the effect of employee
turnover rate weakens as the cut-off point increases. To balance between
minimising the measurement errors on the one hand and retaining suffi-
cient number of observations on the other, the 0.8 cut-off point was chosen
as the base case.

Note that despite the coefficient of the turnover rate is individually
not significantly different from zero (at 5 per cent) for the base case,

9 Using 1,000 Bootstrap replications, 93.1 per cent of the replications yieldedn-shaped
PT curves. The 95 per cent confidence interval for the base case optimal turnover rate is
(0.052, 0.334).
10 As a casual benchmark, policy advisers working for the Australian Government are
reported to have very high turnover rates, mainly due to long hours, high stress and lack of
a clear career path (Patrick, 2002). Their turnover rate was found to range from 29 per cent
to 47 per cent under the Keating government (1991–1996).
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Table 13.2. Estimation results from random effect models

Restrict CRS
Full sample

Restrict CRS
Turnover< 0.8

Not restrict CRS
Turnover< 0.8

Coef. Std. err. Coef. Std. err. Coef. Std. err.

Log capital–labour ratio 0.189∗ 0.009 0.188∗ 0.009 0.184∗ 0.009
Log labour 0.031 0.023
Turnover rate −0.016 0.027 0.182 0.113 0.169 0.112
Turnover rate squared −0.001 0.004 −0.418∗ 0.182 −0.399∗ 0.181
Ratio of employment on
individual contract

0.131∗ 0.025 0.133∗ 0.026 0.128∗ 0.026

Ratio of employment on
unregistered agreement

−0.006 0.031 0.004 0.032 0.001 0.032

Ratio of employment on
registered agreement

0.057 0.045 0.062 0.047 0.056 0.047

Ratio of manager to total
employment

0.095 0.076 0.098 0.078 0.144# 0.084

Ratio of part-time to total
employment

−0.044 0.040 −0.075# 0.041 −0.055 0.043

Union dummy (1–49%) 0.031 0.025 0.026 0.025 0.022 0.026
Union dummy (50%+) 0.086∗ 0.038 0.082∗ 0.038 0.077∗ 0.039
Family business −0.163∗ 0.024 −0.164∗ 0.024 −0.166∗ 0.025
Incorporated 0.135∗ 0.026 0.132∗ 0.027 0.130∗ 0.027
Export 0.106∗ 0.023 0.103∗ 0.024 0.097∗ 0.024
Innovation(t − 1) 0.005 0.015 0.000 0.016 0.000 0.016
Borrowing rate(t − 1) 0.011∗ 0.005 0.011∗ 0.005 0.011 0.005
Size: medium 0.154∗ 0.028 0.153∗ 0.029 0.116∗ 0.041
Size: medium–large 0.199∗ 0.052 0.191∗ 0.053 0.125# 0.075
Age (less than 2 years) −0.171∗ 0.050 −0.171∗ 0.051 −0.170∗ 0.052
Age (2 to less than 5 years) −0.060 0.038 −0.061 0.040 −0.057 0.040
Age (5 to less than 10 years)−0.017 0.032 −0.014 0.033 −0.013 0.033
Age (10 to less than 20 years)−0.018 0.030 −0.022 0.031 −0.020 0.032
Constant 3.282∗ 0.056 3.289∗ 0.058 3.229∗ 0.080
Industry dummies Yes Yes Yes
σu 0.472 0.481 0.482
σe 0.301 0.297 0.287
ρ = σ2

u /(σ
2
u + σ2

e ) 0.711 0.725 0.739
Number of observations 4472 4249 4249
Number of firms 2357 2311 2311
χ2

31 test for overall
significance

1295.2 1235.0 1194.8

∗Indicate significance at 5% level.
#Indicate significance at 10% level.
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Table 13.3. Results for robustness checks

Turnover rate Turnover rate squared Optimal

rate

Sample

proportionCoef. Std. err. Coef. Std. err.

1996/97–1997/98
Turnover< 0.5 0.435 0.175 −1.001 0.422 0.217 0.872
Turnover< 0.6 0.411 0.146 −0.962 0.298 0.214 0.914
Turnover< 0.7 0.178 0.124 −0.385 0.219 0.231 0.938
Turnover< 0.8
(base case)

0.182 0.113 −0.418 0.182 0.218 0.950

Full sample −0.016 0.027 −0.001 0.004 0 1.0
1995/6–1997/98
Turnover< 0.8 0.153 0.084 −0.244 0.136 0.313 0.951

which implies a downward sloping PT curve (scenario 5 ofTable 13.1),
the null hypothesis of ann-shaped PT curve is maintained for three rea-
sons. Firstly, this variable is essentially significant at the 10 per cent level
(p-value equals 0.106), or at the 5 per cent level for a one-sided test.11

Secondly, the optimal turnover rates are very similar across different cut-
off points and the coefficients of turnover rate are highly significant for the
samples with lower cut-off points than 0.8. This means that the low signifi-
cance of this variable in the base case is likely to be driven by measurement
errors of turnover rates.12 Finally, the two turnover terms arejointly sig-
nificant, and will necessarily be subject to some degree of collinearity.

The model is also estimated by industry and firm size (with the choices
of such being driven by effective sample sizes) and the results are pre-
sented inTable 13.4. The retail trade industry has the highest optimal
turnover rate of 0.33, compared to 0.24 and 0.22 of the manufacturing
and wholesale trade industries, respectively. The retail trade industry also
faces the greatest productivity loss from deviating from the optimal rate as
it has the steepest PT curve.Figure 13.1illustrates the PT curve for three
different samples (all, manufacturing and small firms). The diagram is a
plot of log productivity against turnover rate. The PT curve can be read

11 The results presented in this chapter were estimated using STATA 8. The turnover rate
variable becomes significant (p-value equals 0.0516) when LIMDEP 8 was used instead,
but the magnitude did not change much (coefficient equals 0.185), and the computed opti-
mal turnover rate remained equal to 0.22.
12 The reason of choosing 0.8 as the cut-off point instead of 0.5, is that this sample yields
a more conservative, and realistic, estimate of potential productivity gains, as the lower the
cut-off point, the larger are the magnitudes of coefficients. Given similar optimal turnover
rates, the productivity gain is the smallest among samples with lower cut-off points.
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Table 13.4. Estimation results by industry and firm size

Turnover rate Turnover rate squared Optimal

rate

Number of

observationsCoef. Std. err. Coef. Std. err.

Manufacturing 0.393 0.140 −0.821 0.226 0.239 1825
Wholesale trade 0.317 0.326 −0.711 0.550 0.223 792
Retail trade 0.834 0.301 −1.251 0.473 0.333 440
Small firms 0.398 0.144 −0.925 0.240 0.215 2082
Medium and
medium–large firms

−0.170 0.176 0.254 0.273 − 2167

Figure 13.1. Productivity–turnover curve

as that, in the base case, increasing employee turnover rate from 0 to the
optimal point (0.22), on average, raises productivity by 1.95 per cent.

The median turnover rate for the base case sample is 0.14, which is
well below the optimal rate.13 A possible explanation for the large gap
between the estimated optimal rate and the sample median is the lack
of coordination between agents (employers and employees) in the labour
market. For instance, when an employer is pondering whether to layoff an
unproductive employee, he/she needs to consider the chance of finding a
better replacement within a certain period of time. The chance depends on,
amongst other factors, the turnover rates in other firms. Without sufficient
information about the employment plan of each other, agents will make

13 The average turnover rate of the base case sample is 0.183. However, median is a more
useful concept here because the average figure is dominated by the high turnover rates of
a handful of firms.
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changes at a rate lower than what would have been if information were
fully revealed. InAppendix B13, a formal model is presented to elab-
orate this explanation. Another plausible explanation is that there is an
enormous amount of friction in the dismissal and hiring process, such as
legal restrictions. Yet another possible explanation is that employers may
be concerned about non-pecuniary compensation, such as a harmonious
working environment, which may or may not sufficiently compensate for
inferior job matching. This scenario is likely to be important for small and
medium sized firms, which characterise the BLS data.

While the finding cannot pin down exactly what factors attribute to the
gap, it indicates how much can be gained by bringing the turnover rate
towards the optimal level. The average productivity gain from closing the
gap is equal to 1.1 per cent, which is the average increment of productivity
for the firms in the base sample if their turnover rates shift from observed
to the optimal values, weighted by the firms’ value added.14

Note that as the analysis in this chapter is based on small and medium
firms, it is not possible to draw inferences to the population of all firms.
Very large firms typically consist of many sub-units, which could all be
considered smaller “firms”. Therefore, intra-firm mobility may substitute
inter-firm mobility.15 Also, it is not possible to test the potential long-
term effects of turnover on productivity here due to data restrictions. For
instance, unfavourable comments on a firm spread by its involuntarily sep-
arated employees may damage its corporate image, and thus weaken its
attraction to quality potential employees. Therefore, employee turnover
may have slightly stronger negative effect in the long run. However, this
reputation effect should not be significant for small and medium firms be-
cause of their relative size in the labour market. To examine this long run
effect (as well as any potential reverse causation effect discussed in foot-
note11) requires the use of a longer panel.

13.5. Conclusions

This paper sets out to quantify the impact of employee turnover on produc-
tivity. Of the two major theoretical arguments, FSHC theory asserts that

14 Note that there is the possibility that lower productivity might lead to payroll retrench-
ment. However, if so, this is likely to have an impact on staffing decisions with lags (for
example, due to uncertainty in distinguishing cyclical effects from long run declines in pro-
ductivity, and measurement error in identifying individual worker’s productivity in team
production). Since the estimations use contemporaneous turnover and productivity figures,
any potential endogeneity will be alleviated.
15 In a case study,Lazear (1992)finds that the pattern of within-firm turnover from job to
job resembles that of between-firm turnover.
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high turnover lowers firms’ incentives to provide staff training programs
and consequently, reduces productivity. On the other hand, job matching
theory postulates that turnover can help employers and employees avoid
being locked in sub-optimal matches permanently, and therefore increases
productivity. The conflict between retaining workforce stability on the one
hand, and flexibility on the other, gives rise to the potential existence of an
“optimal” turnover rate.

Using an Australian longitudinal data set, productivity was found to
be a quadratic function of turnover. Then-shaped PT curve is consistent
with the intuition that job matching effects dominate while turnover is
low, whereas FSHC effects dominate while turnover is high. The optimal
turnover rate is estimated to be about 0.22. This result was robust to both
estimation method and sample (with the possible exception of the retail
trade sector).

The fact that the estimated optimal rate is much higher than the sam-
ple median of 0.14 raises questions about whether there are institutional
rigidities hindering resource allocation in the labour market. Using a the-
oretical model, it is shown that the large turnover gap can be explained
by the lack of decision coordination between agents in the market. The
empirical results also indicate that higher productivity can be gained from
narrowing this gap – average productivity increase was estimated to be at
least 1.1 per cent if the turnover rates across the sampled firms are brought
to the optimal level.

Appendix A13. The working sample and variable definitions

The first wave of BLS was conducted in 1994/5, with a total effective sam-
ple size of 8,745 cases. The selection into the 1995/6 sample was not fully
random. Businesses that had been innovative in 1994/95, had exported
goods or services in 1994/95, or had increased employment by at least 10
per cent or sales by 25 per cent between 1993/94 and 1994/95, were in-
cluded in the sample. A random selection was then made on all remaining
businesses. These businesses were traced in the surveys of the subsequent
two years. In order to maintain the cross-sectional representativeness of
each wave, a sample of about 800 businesses were drawn from new busi-
nesses each year. The sample size in the second, third and fourth waves are
around 5,600. For detailed description of the BLS data set, seeTseng and
Wooden (2001). Due to confidentiality considerations, the complete BLS
is not released to the public, only the Confidentialised Unit Record File
(CURF) is available. In the CURF, businesses exceed 200 employees and
another 30 businesses that are regarded as large enterprises using criteria
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other than employment are excluded. This leaves around 4,200 businesses
in the balanced panel.

Deleting observations that had been heavily affected by imputation, as
their inclusion would impose artificial stability, further reduced the num-
ber of cases available for analysis. Moreover, businesses in the finance
and insurance industries were excluded because of substantial differences
in the measures of value-added and capital for these firms (and effective
sample sizes too small to undertake separate analyses on these groups).
In addition, observations with negative sales and negative liabilities were
dropped, as were a small number of cases where it was reported that there
were no employees. In total, this left just 2,435 businesses in our sample.
Summary statistics are presented inTable A13.1.

The dependent and explanatory variables are briefly described as fol-
lows:

• lnVit (log value-added): Value-added is defined assales− purchase+
closing stock− opening stock, in financial yeart .

• lnKit (log capital): Capital is measured as the total book value of
non-current assets plus imputed leasing capital. As reported inRogers
(1999), the importance of leasing capital relative to owned capital varies
significantly with firm size and industry, suggesting that leasing capital
should be included if we are to accurately approximate the total value of
capital employed in the production process. Leasing capital is imputed
from data on the estimated value of rent, leasing and hiring expenses.16

• lnLit (log labour): Labour input is measured as the number of full-time
equivalent employees.17 Since employment is a point in time measure,
measured at the end of the survey period (the last pay period in June of
each year), we use the average numbers of full-time equivalent employ-
ees in yeart and yeart − 1 for each business as their labour input in
yeart .18

16 Leasing capital is imputed using the following formula: leasing capital= leasing
expenses/(0.05+ r). The depreciation rate of leasing capital is assumed to be 0.05. Ten-
year Treasury bond rate is used as the discount rate(r). SeeRogers (1999)for more
detailed discussion.
17 The BLS only provides data on the number of full-time and part-time employees while
the number of work hours is not available. The full-time equivalent calculation is thus based
on estimated average work hours of part-time and full-time employees for the workforce
as a whole, as published by the ABS in its monthly Labour Force publication (cat. no.
6203.0).
18 Capital is also a point in time measure. However, capital is far less variable than labour
(especially when measured in terms of its book value), and hence the coefficient of capital
is not sensitive to switching between flow and point-in-time measures.
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Table A13.1. Summary statistics

Full sample Trimmed sample

Variable Mean Std. Dev. Mean Std. Dev.

Log labour productivity 4.281 0.695 4.289 0.694
Log capital–labour ratio 3.968 1.091 3.972 1.086
Log labour 2.823 1.119 2.845 1.114
Turnover rate 0.252 0.470 0.183 0.181
Ratio of employment on
individual contract

0.251 0.365 0.254 0.367

Ratio of employment on
unregistered agreement

0.085 0.249 0.084 0.248

Ratio of employment on
registered agreement

0.068 0.218 0.069 0.218

Manager to total employee
ratio

0.255 0.169 0.252 0.168

Ratio of part-time to total
employee

0.202 0.282 0.195 0.276

Union dummy (1–49%) 0.206 0.405 0.209 0.407
Union dummy (50%+) 0.079 0.270 0.082 0.274
Family business 0.514 0.500 0.512 0.500
Incorporated 0.715 0.451 0.717 0.450
Export 0.271 0.444 0.272 0.445
Innovation(t − 1) 0.292 0.455 0.293 0.455
Borrowing rate(t − 1) 0.746 1.395 0.746 1.397
Medium 0.443 0.497 0.445 0.497
Medium–large 0.066 0.248 0.065 0.247
Age (less than 2) 0.062 0.241 0.062 0.241
Age (2 to less than 5 years) 0.129 0.335 0.129 0.335
Age (5 to less than 10
years)

0.248 0.432 0.248 0.432

Age (10 to less than 20
years)

0.288 0.453 0.287 0.453

Age (20 years+) 0.274 0.446 0.275 0.446
Mining 0.008 0.088 0.008 0.088
Manufacturing 0.428 0.495 0.430 0.495
Construction 0.043 0.203 0.042 0.201
Wholesale trade 0.181 0.385 0.186 0.389
Retail trade 0.107 0.309 0.104 0.305
Accommodations, cafes &
restaurants

0.036 0.186 0.033 0.180

Transport & storage 0.029 0.169 0.029 0.168
Finance & insurance 0.013 0.113 0.012 0.111
Property & business
services

0.118 0.323 0.119 0.324

Cultural & recreational
services

0.018 0.133 0.017 0.128

Personal & other services 0.019 0.137 0.019 0.138
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• Tit (employee turnover rate): Employee turnover rate is measured by the
average of new employees and ceased non-casual employees divided by
average non-casual employees at the end of yeart andt − 1. The vari-
ables are only available from 1995/6 onwards. Moreover, the questions
for the calculation of labour turnover rate are slightly different in 1995/6
questionnaires.

• Wi (time invariant control variables):
– Firm age dummies: this variable is to control for any bias associated

with the mismeasurement of capital, as well as to control for industry
specific knowledge.19

– Industry dummies: industry dummies are included to control for in-
dustry specific factors that may not be captured by the above vari-
ables.

• Zit (time variant control variables):
– Employment arrangement: there are three variables included in the

regression – proportion of employees covered by individual con-
tracts, by registered enterprise agreements, and by unregistered en-
terprise agreements. The proportion of employees covered by award
only is omitted due to perfect multi-collinearity.

– Union dummies: these dummies indicate whether a majority or a mi-
nority of employees are union members, respectively. A majority is
defined as more than 50 per cent and a minority being more than zero
but less than 50 per cent. The reference category is businesses without
any union members at all.

– Part-time employee to total employee ratio and manager to total em-
ployee ratio: the effect of manager to total employee ratio is ambigu-
ous because a higher ratio implies employees being better monitored
on the one hand, while facing more red tape on the other. The effect
of part-time to total employee ratio is also ambiguous because part-
timers may be more efficient due to shorter work hours, but they may
be less productive due to less accumulation of human capital.

– A dummy variable that indicates whether a business was “innova-
tive” in the previous year: Innovation potentially has a long lag effect
on productivity. Since the panel is relatively short, in order to avoid
losing observations, we include only a one-year lag. Moreover, the
definition of innovation is very board in the BLS. The coefficient of
innovation dummy is expected to be less significant than it should be.

19 A source of measurement bias is the use of the book value of non-current assets. Using
the book value will, in general, lead to the underestimation of the true value of capital due
to the treatment of depreciation. As firms get older, the book value of capital is generally
depreciated at a rate greater than the diminution in the true value of the services provided
by the capital stock.
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– Dummy variables that indicate whether a business is a family busi-
ness, or an incorporated enterprise. The questions are asked at the
first wave of the survey, so both variables are time invariant.

– Borrowing rate: It is measured at the end of the previous financial
year. This variable is used to measure how highly geared a firm is.

Appendix B13. A simple model of optimal turnover rate and
coordination

This model is to provide a theoretical explanation for the empirical finding
in the main text. The model considers only the coordination problem be-
tween firms. We focus on the steady state optimal employee turnover rate
for a representative firm. A number of assumptions are in order:

(a) All separations are initiated and controlled by the firm. So there is no
employee churning.

(b) Production uses a Cobb–Douglas technology with a fixed capital to
labour ratio for both incumbents and newcomers.

(c) The real wages received by both types of worker are fixed.
(d) The degree of job matching is random. As a result, firms are not com-

peting with each other, and all firms benefit from having a larger pool
of job seekers.

(e) In every period the firm lays off a certain proportion of incumbents, in
the hope of replacing them with better-matched workers.

(f) All incumbents are identical and have the equal chance of being laid
off. Therefore, in terms of FSHC, there is a difference between incum-
bents and newcomers but not amongst incumbents themselves. As a
consequence, the output of incumbents depends only on their average
tenure but not on the distribution of tenures.

The total number of staff for a representative firm,N , is normalised to one:

(B13.1)N = 1 = NI +NH −NL,

whereNI is the number of incumbents;NH the number of newly hired
staff;NL the number of incumbents being laid off in each period. In steady
state, the total number of staff remains constant, implying thatNH = NL .
So the turnover rate isθ = NH+NL

2N = NH.
Given that the total number of staff is normalised to one and the capital

to labour ratio is constant, it implies that the capital stock is fixed. There-
fore, the profit of the firm can be written as a function of labour input:

(B13.2)π = A(NI −NL)
λ + B(NH)

λ − wI(NI −NL)
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− wHNH − c

2
(NH +NL),

whereA is the productivity factor of incumbents;B the productivity fac-
tor of newcomers;wI andwH are the real wage rates for incumbents and
newcomers, respectively;c/2 the real cost of hiring and laying off staff.
Output price is normalised to one.

The amount of FSHC an average incumbent can accumulate is nega-
tively related to the chance that she will be laid off in any given period
and, thus, to the turnover rate. Here we specify the productivity factor of
incumbents as

(B13.3)A = σ(1 − θ)α,

whereσ is a positive coefficient, and its value is positively related to the
stock of capital. A larger value ofα represents a greater FSHC effect.

The productivity factor of newcomers is not a constant. The firm will
try to select candidates with a better job-match than an average incumbent.
Otherwise, there would be no gain to lay off experienced staff and find an
inexperienced replacement. The average productivity of a newcomer de-
pends on the size of the pool of talent from which firms can pick their
candidates. If all firms are identical, then the size of the pool will be pos-
itively related to the turnover rate in a representative firm. We specify an
ad hoc relationship between them as

(B13.4)B = σθβ .

The specifications ofA andB have the same coefficientσ , because if
there are not FSHC and job matching effects, incumbents and freshmen
are identical. A larger value ofβ represents a greater job-matching effect.
It is assumed thatλ+ α < 1 andλ+ β < 1.

If there is no coordination between firms, each firm will treatB as a
constant rather than a function ofθ . In the following, we consider the two
cases that firms do not coordinate and coordinate, respectively.

Without coordination, the problem faced by the firm can be formulated
as:

(B13.5)max
θ

π = σ(1 − θ)λ+α + Bθλ − wI − c′θ,

wherec′ = c + wH − wI is the net cost of turnover.
The profit maximising turnover ratẽθ is given by

(B13.6)(λ+ α)(1 − θ̃ )λ+α−1 − λθ̃λ+β−1 + c′/σ = 0.

With coordination, the firm treatsB as an endogenous variable, and its
problem is reformulated as:

(B13.7)max
θ

π = σ(1 − θ)λ+α + σθλ+β − wI − c′θ.
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The profit-maximising turnover rateθ∗ is given by

(B13.8)(λ+ α)(1 − θ∗)λ+α−1 − (λ+ β)θ∗λ+β−1 + c′/σ = 0.

Using Taylor expansions, it can be shown that(1 − θ)λ+α−1 ≈ 1+
(1 − λ− α)θ, θλ+β−1 ≈ (2 − λ− β)− (1 − λ− β)θ . Also, using the
fact that all θ̃ , β and (1 − λ − β) are small, it can be stated that
β(1 − λ − β)θ̃ ≈ 0. Applying these to(B13.6) and (B13.8), we can
obtain

(B13.9)θ∗ − θ̃ ≈ β(2 − λ− β)

(λ+ α)(1 − λ− α)+ (λ+ β)(1 − λ− β)
.

In this equation,λ represents the effect of “pure” labour input,α the effect
of FSHC, andβ the effect of job matching.

In our empirical study, the sample median is 0.14. This figure corre-
sponds to the case that firms and workers cannot coordinate their deci-
sions, as each individual agent is atomic in the labour market. On the other
hand, the estimated optimal turnover rate is about 0.22. This is the figure
that a central planner will choose. Therefore, it corresponds to the case
that agents can coordinate their decisions. If all turnoverswere initiated
by firms and profit are highly correlated to labour productivity, the empir-
ical finding suggests thatθ∗ − θ̃ is in the order of 0.08(= 0.22− 0.14).
The value of Equation(B13.9)is much less sensitive to the values ofλ and
α than to that ofβ. Thus, we arbitrarily setλ = 0.7 andα = 0.02. The
figures indicate a very small FSHC effect relative to the pure labour effect.
Asβ increases from 0.01 to 0.02 to 0.03, the imputed value ofθ∗ − θ̃ from
Equation(B13.9)increases from 0.03 to 0.06 to 0.10. Hence we show that
the empirical findings in the main text can be readily explained by just the
lack of coordination between firms alone, without even resorting to those
between workers and between firms and workers.
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Abstract

This paper uses a unique US dataset to analyze the demand for Directors’
and Officers’ liability insurance utilizing dynamic panel models. Some
well-established theories propose that corporate insurance plays a role
in mitigating agency problems within the corporation such as those be-
tween shareholders and managers, and managers and creditors, mitigates
bankruptcy risk as well as provides real-services efficiencies. Applying
dynamic panel data models, this paper uses these theories to perform em-
pirical tests. The hypothesis that D&O insurance is entirely habit driven
is rejected, while some role for persistence is still confirmed. I confirm the
real-services efficiencies hypothesis and the role of insurance in mitigating
bankruptcy risk. Firms with higher returns appear to demand less insur-
ance. Although alternative monitoring mechanisms over management do
not appear to play a large role, I find some support that insurance and
governance are complements rather than substitutes. I fail to confirm the
role of insurance in mitigating under-investment problems in growth com-
panies.

Keywords: liability insurance, corporate insurance and risk management,
shareholder litigation, corporate governance, dynamic panel data models,
GMM

JEL classifications:G3, C23

14.1. Introduction

One aspect of corporate finance that has not received much empirical
attention is corporate insurance.Mayers and Smith (1982)report that cor-
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porations on the aggregate spend more money on purchasing insurance
than on paying dividends. Yet that area remains largely unexplored empir-
ically, at least with US data. There is a particular type of insurance that
is directly related to corporate governance and the relationship between
shareholders and managers. This is Directors’ and Officers’ (D&O) Li-
ability Insurance, regularly purchased in the US. This insurance plays a
significant role in the corporate structure and protects against the risk of
managers not fulfilling their contractual obligations towards shareholders
and other stakeholders in the company. The present paper uses a unique
data set from the US to analyze the demand for D&O Insurance and fac-
tors that explain the limits chosen by public companies, thus enriching the
relatively small applied literature on these important issues. It examines
coverage limits in light of past stock performance, corporate governance
and financial risk, using very recent data. The paper manages to confirm
some theories on the demand for corporate insurance and tests for the first
time corporate insurance theory with US panel data.

The hypotheses to be tested derive from the seminal papers ofMayers
and Smith (1982)andMacMinn and Garven (2000). The Main Hypothe-
sis, however, follows fromUrtiaga’s (2003)game theoretical model. Com-
panies with better returns demand less insurance. The higher the returns,
the less likely the shareholders to sue. Moreover, higher returns imply that
managers are working in the interest of the shareholders (and creditors)
and there are less agency costs. This implicitly supports the agency costs
theory; the lower the agency costs, the lower the litigation risk and less
insurance is demanded. Thus it is also connected to the theories ofMayers
and Smith (1982)andMacMinn and Garven (2000)on the role of insur-
ance in mitigating agency costs. As a result, this hypothesis blends several
theories; that is partly the reason it is chosen as main hypothesis. Returns
are measured by raw stock returns and returns on assets. It is expected to
find a positive correlation of those variables with the limit.

The following are the control hypotheses. Hypothesis 2 is that corporate
governance influences the D&O insurance limit. I test whether corporate
governance and insurance are substitutes or complements (cf.Holderness,
1990). If they are substitutes, the better the corporate governance of a
company, the less insurance is demanded, as the managers are better super-
vised and less likely to commit misconduct. If governance and insurance
are complements, when extending insurance, the insurer encourages or re-
quires the company to better their governance; thus insurance is associated
with better corporate governance. Governance is measured by the number
of members on the board, percent of insiders and outsiders, CEO/COB
(chair of the board) separation, percent blockholdings, number of block-
holders, and directors’ and officers’ ownership (variables are defined in the
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Appendix). If governance and insurance are complements, there will be a
positive relationship; if they are substitutes there will be a negative rela-
tionship. Thus it is not clear whether the expected signs on the governance
variables will be negative or positive.

Hypothesis 3 is that companies in financial distress demand more in-
surance (Mayers and Smith, 1982). The financial situation of companies
is measured by financial risk, leverage, volatility. Volatility is measured as
in Hull (2000). The financial risk variable is measured as inBoyer (2003).
Those variables are hypothesized to be positively correlated with the level
of insurance. This hypothesis also implies that smaller companies (in term
of asset size) demand more insurance, as they have higher bankruptcy risk.

Hypothesis 4A concerns size.Mayers and Smith (1982)suggest that
smaller companies demand more insurance due to real-service efficiencies
and proportionately higher bankruptcy costs. Size is this case is measured
by ln (assets). The predicted sign is negative. The existence of mergers and
acquisitions is expected to increase the insurance limit.

Hypothesis 4B deals with another measure of size: ln(Market Value of
Equity). The higher the Market Value of Equity (MVE), the higher the
limit, as the higher would be the potential loss. I perceive this as rationality
hypothesis: the higher the potential loss, the higher limit is chosen by the
managers.

Hypothesis 5 stipulates that corporate insurance alleviates the under-
investment problem (between creditors and managers), as shown by
MacMinn and Garven (2000). As growth companies are likely to experi-
ence more under-investment problems, they are expected to demand more
insurance. The variable to test this is growth (market-to-book ratio), de-
fined as

(14.1)Growth (market-to-book)= MVE + Book value of liabilities

Book value of total assets
.

This variable measures the growth opportunities of a corporation. The
predicted sign is positive.

Hypothesis 6. Consistent withBoyer’s (2003)findings, I expect to ob-
serve persistence in limits from year to year. The lagged dependent vari-
able is expected to be significant with a positive coefficient. The lagged
dependent variable necessitates the use of dynamic panel models.

To sum up, I will interpret Hypothesis 1 as confirmingUrtiaga’s (2003)
model based on returns and the role of insurance in mitigating agency
costs, as suggested byMayers and Smith (1982)andHolderness (1990).
Hypothesis 2 tests whether good governance and liability insurance are
complements or supplements, as there are competing theories. I will inter-
pret Hypothesis 3 as confirming the bankruptcy risk theory ofMayers and
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Smith (1982)andMacMinn and Garven (2000)and the role of insurance
in mitigating bankruptcy costs. I will interpret Hypothesis 4A as providing
support for the real-services and bankruptcy risk theory and 4B as provid-
ing support that managers rationally choose insurance limits based on the
potential size of loss. If confirmed, Hypothesis 5 provides support that
corporate insurance mitigates the under-investment problem, as stipulated
by MacMinn and Garven (2000). Lastly, Hypothesis 6 reveals persistence
in the limits.Boyer (2003)interprets this as evidence of habit. Others no
doubt will interpret it as evidence of unchanged risk exposure through time
and not necessarily of habit.

Table 14.1defines the variables.

Table 14.1. Variable definitions

Variable Definition

D&O limits The amount of insurance coverage the company carries over
a period of time (one year)

Limits/MVE Ratio of limits over market value of equity, limit per value
of equity

MVE Market value of equity
Total assets Total assets as reported in Compustat
Acquirer Equal to 1 if company had an acquisition in the past year; 0

otherwise
Divestor Equal to 1 if company was acquired in the past year; 0

otherwise
Financial risk −(Book value of assets)/(Book value of

liabilities)*(1/volatility)
Leverage Long term debt/(Long term debt+ MVE)
Volatility Annual volatility prior to insurance purchase based on

compounded daily returns
Growth (market-
to-book ratio)

(MVE +Book value of liabilities)/(Book value of total
assets)

ROA Return on assets in the year of insurance= Net income
(excluding extraordinary items)/Book value of total assets

Raw stock returns Buy-and-hold raw returns for one year prior to date of
insurance purchase

Members Number of members on the board of directors
Percent of outsiders Percent of independent directors on the board
Percent of insiders Percent of directors who are not independent, such as

executives, COB, employees or members of their families
CEO= COB Chief Executive Officer is same as Chair of the Board
D&O ownership Percent of firm’s shares owned by directors and officers
Number of blockholders Number of non-affiliated shareholders who hold at least 5%

of stock
Percent blockholdings Percent of company’s stock held by blockholders
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The model to be estimated is

(14.2)ln(Limit )i,t = α ln(Limit )i,t−1 + βXi,t + ηi + νi,t,

whereX includes the variables described above,η are unobserved in-
dividual effects, unchanged over time, theνi,t are assumed to satisfy
E(νi,t ) = E(νi,tνi,s) = 0 for t �= s. Other standard assumptions are
thatνi,t are uncorrelated with Limiti,0 and the individual effects. TheXi,t

are allowed to be correlated withηi . The dependent variable I am trying
to explain is the annual amount of insurance purchased (limit) and its de-
pendence on the variables mentioned above. The inclusion of a lagged
dependent variable makes this a dynamic panel model. It is estimated
using Arellano and Bond’s (1991)differenced GMM estimator and the
system GMM estimator ofBlundell and Bond (1998).

14.2. Data and variables

The data set consists of unbalanced panel data for US companies, span-
ning the years 1997–2003. I have obtained proprietary and confidential
data from two insurance brokerages, which consist of about 300 US com-
panies over the years 1997–2003, both private and public. One of them is a
leading insurance broker. Since this study focuses on the public companies
(and public data are not easily available for private companies), I removed
the private companies from the set, which reduces the set to about 180
companies. After removing companies unlisted on Compustat or CRSP,
the data set gets reduced to about 150 companies. To use certain panel data
techniques, such as fixed effects, I need at least 2 observations per com-
pany and for the Arellano–Bond estimation I need at least 3 observations
per company. After removing the companies with single observations, the
data set reduces to 113 companies. Thus I have 113 companies with in-
surance data for at least two years and 90 companies with insurance data
for at least three years. The sample is small, but such data are not usu-
ally publicly available. In addition, there are researchers who apply the
Arellano–Bond method on country models, and since the number of coun-
tries is finite, their samples are not large. For instance,Eshoet al. (2004)
apply GMM dynamic panel methods withN = 44 (and smallT ).

The data include D&O insurance amounts, quote dates, effective dates,
underwriters, SIC codes. The industries of the companies are: Technol-
ogy (36 companies), Biotechnology and pharmaceuticals (18), Petroleum,
mining and agricultural (12), Non-durable goods manufacturing (12),
Merchandising (9), Non-banking financial services (6), Durable goods
manufacturing (5), Transportation and communications (3), Personal and
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business services (2), Banking (2), Health services (2), Construction and
real estate (1), Newspaper: publishing and print (1), Radio, TV Broadcast
(1), Other (3).

This data set allows me to analyze the demand for D&O insurance
in the US. Having panel data allows me to study the dynamic decision-
making between years regarding corporate insurance, whileCore (1997)
andO’Sullivan (1997)use cross-section data only. To my knowledge, this
is the first study employing US panel data set of D&O insurance data. It
is also the first set on which theArellano–Bond (1991)techniques will be
used.

As in Core (1997), it is assumed that officers, directors, shareholders,
and insurers have symmetric beliefs about the probability and distribution
of D&O losses. The insurer requires seeing the financial statements of the
company before extending coverage. Misrepresentation on these financial
statements may cause denial of coverage, as the company has misrepre-
sented the risk they pose. This is becoming more common in the 2000’s,
as insurance companies are more likely to deny coverage after the cor-
porate scandals. The litigation risk is perceived to have increased in the
2000’s after the rise of lawsuits and corporate scandals.

14.3. Results

One-step estimation is preferred for coefficient inference (Bond, 2002).
The system estimator is more suitable when the number of time-series
observations is small, therefore the preferred results are from the one-step
system estimations.

The results from the Arellano–Bond estimations of the limit equation
are shown inTable 14.2. First of all, the lagged dependent variable is very
significant at the 99% level in all estimations in that table, which justifies
the use of a dynamic model. We can see the downward bias in the dif-
ference GMM estimation, as the coefficient there is much smaller than in
the system estimations. Thus it is safe to assume that the coefficient on
the lagged limit is .67 and is significant. Last years decision does influ-
ence strongly this year’s decision on insurance. I achieve a result similar
to Boyer’s (2003), who also finds a significance of persistence (using an
instrumental regression). The theory that persistence is one of the driving
forces behind risk management decisions is supported here. In contrast
to Boyer (2003), who finds no significance of any other variable, I find
some other variables that also influence the decision in the difference and
one-step system estimations.

Significant at the 99% level are growth and ln(MVE) in both the differ-
ence and one-step system GMM estimations. The positive coefficient on
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Table 14.2. Arellano–Bond and Blundell–Bond dynamic panel-data
estimations. Time variable (t): year; significant variable coefficients at

90% or better are in bold

Difference GMM (one-step) System GMM (one-step)

Ln(Limit) Coefficient (Robust Std. Error) Coefficient (Robust Std. Err.)

Ln(Limit) lagged 0.267(.085) 0.660(.065)
Growth −0.063(.021) −0.054(.020)
Leverage 0.653(.336) −0.161(.102)
Risk −0.000(.000) 0.000(.000)
Raw stock returns −0.010(.016) 0.003(.021)
Members −0.056(.03) −0.03 (.024)
Percent insiders 0.03 (.017) −0.003(.004)
Percent outsiders 0.039(.020) 0.005(.003)
CEO= COB 0.097(.085) 0.091(.079)
D&O ownership −0.001(.005) 0.001(.002)
Percent
blockholdings

−0.002(.003) 0.000(.004)

Number of
blockholders

0.02 (.030) 0.021(.035)

Ln(assets) −0.079(.09) −0.06 (.076)
Acquirer −0.017(.046) 0.01 (.048)
Divestor 0.002(.068) −0.032(.058)
Ln(MVE) 0.238(.069) 0.214(.062)
ROA −0.063(.039) −0.097(.046)
Volatility 0.106(.056) 0.115(.067)
Year 1999 0.010(.073) 0.042(.082)
Year 2000 0.068(.073) 0.078(.071)
Year 2001 −0.022(.072) 0.000(.073)
Constant 0.029(.025) 2.66 (1.181)
Sargan testp-value 0.97
Hansen J testp-value 0.91
M1 p-value 0.01 0.01
M2 p-value 0.76 0.78

Time dummies are included in all estimations. Robust standard errors are robust to het-
eroskedasticity. Predetermined variables: growth, leverage, risk, raw returns. M1 and M2
are tests for first- and second-order serial correlation. Sargan test (from two-step estima-
tion) and Hansen J tests are tests for over-identifying restrictions.

Market Value of Equity confirms the effect of size and the importance of
MVE as a major measure of the size of damages in a potential shareholder
lawsuit. Growth appears with a negative but small coefficient. The sign is
not as expected. That does not confirm the under-investment Hypothesis 5.
Leverage appears with the highest positive coefficient confirming the role
of financial distress in choosing limits, but is significant only in the dif-
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ference GMM estimation. The higher the financial distress, the higher the
protection desired. Volatility also shows with a positive coefficient. Mem-
bers too are only significant in the difference estimation. Members on the
board, surprisingly, show with a negative (but small) coefficient. The other
variable measuring alternative monitoring mechanisms over management
that appears to be significant is percent of outsiders on the board. It is sig-
nificant in the one-step system GMM estimation and the difference GMM
estimation with a small positive coefficient. The more independent the
board, the more insurance is demanded, which is more in line with the
hypothesis that governance and insurance are complements.

So far the hypotheses that have been confirmed are the Main hypothesis
(through ROA, as higher returns lead to less insurance), the hypothesis that
independence of the board and D&O insurance are complements, MVE is
positively related to insurance limits, and volatility is negatively related to
limits. I find no support at all for Hypothesis 5, under-investment, nor for
Hypothesis 4A that smaller companies demand less insurance. Persistence
is confirmed in this setup.

14.4. Conclusion

This paper provides much needed empirical tests of corporate insurance
theory, using recent D&O data from the US. It is the first study to use US
panel data and employ dynamic panel data methodology on such data. The
methodological contribution is the application of difference and system
GMM estimators to D&O insurance data. Given that persistence may be
present in different areas of insurance behavior, it may be beneficial to
apply these methods in other insurance settings as well.

The Main hypothesis is confirmed: Returns are consistently significant
in determining the desired insurance amount. Mostly Returns on Assets,
but also Raw Stock Returns, have the expected significant negative effect
on limits. Returns are indeed the best signal shareholders have for the per-
formance of managers and a good litigation predictor used by managers.
High returns usually indicate that managers are exerting high level of care
in the interest of the stakeholders of the company. The presumptions of
Urtiaga’s (2003)model receive empirical validation here. Companies in
financial distress are shown to demand higher insurance limits. That con-
firmsMayers and Smith’s (1982)theory as well as the theory ofMacMinn
and Garven (2000)about the role of insurance in mitigating bankruptcy
risk. Indicators of financial health such as leverage and volatility appear to
be significant.

Surprisingly, corporate governance does not play a prominent role in the
choice of limit. Companies probably do not perceive litigation as a failure
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of corporate governance but rather as a result of poor performance. Thus
the role of corporate insurance in mitigating the agency problems between
managers and shareholders, as far as governance provisions are concerned,
is dubious. However, I find more evidence that governance mechanisms
and insurance are complements rather than substitutes. The growth vari-
able does not show with the anticipated sign, thus I find no confirmation
for the theory that this type of insurance mitigates the agency problems
between creditors and shareholders. In fact, I consistently reject that the-
ory. While this theory has some theoretical appeal, it received no empirical
validation with this dataset.

I find some support forBoyer’s (2003)finding of persistence in corpo-
rate risk management decisions in this sample. Thus persistence is present
both in the US and Canadian data. It is not clear, however, that the signif-
icance of the lagged dependent variable can be interpreted as evidence of
habit or evidence of unchanged risk exposure. Habit persistence is not the
only significant factor, however, asBoyer (2003)has suggested. There is
dynamics in risk management decision-making by corporations and one-
time observations might be misleading, which underscores the importance
of panel data and dynamic models. Companies adjust to changing envi-
ronments and emphasize considerations that have come to their attention.
These mechanisms do not entirely comply with the existing theories for
the demand of corporate insurance, but they are not entirely random ei-
ther.

The results here do not entirely reject the role of persistence but point
out a more diverse picture. While persistence plays a role, companies
use also some mechanisms to control for risk rooted in insurance theory.
Thus corporate risk management serves some useful purposes. Most im-
portantly, the paper finds some confirmation for the theories ofMayers
and Smith (1982, 1987), which are considered the cornerstone of modern
corporate insurance theory. Also, it illustrates the usefulness of dynamic
panel models in this field.
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Abstract

This paper assesses how income inequality influences economic growth by
estimating a reduced form growth equation across the 32 Mexican States.
Using dynamic panel data analysis, with both urban personal income for
grouped data and household income from national surveys, it finds that
inequality and growth are positively related. This relationship is stable
across variable definitions and data sets, but varies across regions and
trade periods.

Keywords: GMM estimator, panel data models, inequality, growth
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15.1. Introduction

The relationship between economic growth and income distribution is
still a controversial topic. When making economic policy, governments
are interested in increasing economic growth in order to increase eco-
nomic welfare. However, economic growth can also lead to an increase in
economic inequality, which reduces economic welfare. However, if gov-
ernments target reductions in income inequality as a way of improving
welfare, economic growth may slow, leading again to welfare loss. This
dilemma has prompted many researchers to explore the determinants of
income inequality, and the channels through which inequality affects eco-
nomic growth.
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On one hand, economic theory suggests that the relation between in-
come inequality and growth differs according to the economic context
(market settings). On the other hand, empirical research suggests that di-
vergence in results come from different data quality, period length, omitted
variable bias, or even the econometric technique used.

Analysing the results of previous literature, we observe these studies
lack a conceptual framework, with which to clearly identify the charac-
teristics of the model we would be interested in analysing under a partic-
ular socio-economic scenario, such as the relationship among countries
or within a country, developed or underdeveloped countries, perfect or
imperfect capital markets, agents’ skill level, particular characteristics of
economic situation (trade openness, fiscal reforms and others).

Nevertheless, there are a number of important lessons to be learned
from the literature.Loury (1981) found that growth and inequality de-
pend on income distribution within and between periods. Thus, an analysis
of pure time series or pure cross section would miss mobility and dis-
persion effects. Moreover under restrictions on borrowing to invest in
human/physical capitalGalor and Zeira (1993)found that income distrib-
ution polarises (into rich and poor), whileBanerjee and Newman (1993)
found that agents divide into classes with no mobility out of poverty. In
both cases, the influence of inequality on growth will depend on initial
conditions. Therefore, we should set the country of analysis in a proper
economic context before starting drawing conclusions about the relation-
ship between inequality and growth.

The neoclassical standard model of economic growth with technolog-
ical progress in a closed economy will always predict GDP per capita
convergence (Barro and Sala-i-Martin, 1992), where, independently of in-
come distribution within the country, growth can take place. However,
Aghion and Williamson (1998)point out since the convergence model
assumes perfect capital markets, results may not hold for developing coun-
tries. Moreover,Quah (1997)found that assuming each country/state has
an egalitarian income distribution, their income dynamics across coun-
tries/states may show stratification, persistence or convergence. Such in-
come dynamics, as well as their economic growth may depend on their
spatial location, and the countries with which they trade, among other fac-
tors.Quah (1997)states that it is not that inequality influences growth or
vice versa, but that both have to be analysed simultaneously.1

The current work assesses how income inequality influences economic
growth across the 32 Federal Entities of Mexico (Mexican States) and

1 SeeForbes (2000), Benabou (1996), Perotti (1996)or Kuznets (1955). Many of the
works included inBenabou (1996), suffer from omitted variable bias.
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across time. This question is particularly interesting in the case of Mex-
ico, where a rich North contrasts with a backward South, as shown by
differences in human capital levels and income distribution, government
expenditure, and the level of capital markets imperfections across States.

The originality of our contribution is that it analyses the relation be-
tween income inequality and economic growth at the Federal Entity level
across time. To my knowledge, this kind of work is the first based in
Mexico and contributes to the country case studies on the relationship of
income inequality and growth as described byKanbur (1996), who argues
that country case studies rather than cross-country studies will rule income
distribution literature over the next two decades.2

This paper is organised as follows. In Section15.2we set out the model.
Section15.3explains the data. Sections15.3 to 15.7present the estimation
of the model as well as some sensitivity analysis. These sections account
for the relationship across time, states, and spatial location and reduce the
omitted variable bias. Section15.8presents our conclusion and possible
extensions of the study.

15.2. Model

We examine the influence of income inequality on growth, using a re-
duced equation like inForbes (2000)to make our model comparable
with those of other studies. We allow for the influence of human capital,
dummy variables are introduced for each Mexican State to control for the
time-invariant omitted variables bias effect, and time dummies are used to
control for aggregate shocks. We estimate Equation(15.1):

Growthit = β1GSPi,t−1 + β2Inequalityi,t−1

(15.1)+ β3Human–Capitali,t−1 + αi + ηt + uit ,

wherei indexes the states (panel variable) andt is the time variable,αi are
State dummies which can be interpreted as the unobservable State effect,
ηi are period dummies denoting unobserved time effects, anduit is the
stochastic disturbance term.

2 Kanbur (1996)points out that while the cross-country literature provides some interest-
ing theories and tests of the development process, its policy implications are not clear. The
literature of the process of development and income distribution according to Kanbur has
passed through four phases, of which the fourth phase, expected to be found in most of the
coming studies, is an intra-country analysis that incorporates the trade off between growth
and distribution emphasised in the 1950’s (second phase) as well as the short and long run
consequences of growth studied in the 1990’s (third phase).



364 A. Ortega-Díaz

15.3. Data sets and measurement

We consider two different data sets. Data set 1 (DS1) covers information
from 1960 to 2000, on a decade basis. It considers personal income from
grouped data to calculate inequality. Data set 2 (DS2), covers information
from 1984 to 2002, on a biannual basis, except for the first two surveys.
It considers households income from household surveys to calculate the
inequality measures. Sources for the data are listed inAppendix A15.

Schoolingis the average year of schooling of the population aged 12
and older.

Literacyis defined as the proportion of the population aged 12 and older
who can read and write considered for females and males separately.

Growth is the Gross State Product per capita (GSP) at constant prices.
Income variableis the total after tax cash income received per worker

for DS1, and per household for DS2. We did not include non-monetary
income because this measured is not specified in all the surveys.

Inequality measure.We use the Gini coefficient to measure inequality
because most of the studies choose this measure, and we want to make our
results comparable to the results of other surveys. We also use the 20/20
ratio as an alternative measure of inequality and the income share of the
third quintile Q3 as a measure of equality.3

15.4. Estimation

Following Forbes (2000)andBaltagi (1995), there are three factors con-
sidered to estimate Equation(15.1)most accurately: the relation between
the State-specific effect and the regressors, the presence of a lagged en-
dogenous variable, and the potential endogeneity of other regressors.

We use dynamic panel data methods to control for the previous prob-
lems. The estimation of the model is complex given the presence of a
lagged endogenous variable.4 Considering that GSPit is the logarithm of
the per capita Gross State Product for Statei at time t , then growthit =
GSPit − GSPi,t−1, and rewriting Equation(15.1), we get:

(15.2)

GSPit − GSPi,t−1 = β1GSPi,t−1 + β2Inequalityi,t−1

+ β3Schoolingi,t−1 + αi + ηt + uit ,

3 SeeForbes (2000)andPerotti (1996).
4 It is worth noticing thatBarro and Sala-i-Martin (1992)never controlled for this kind of

effect.
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(15.3)

GSPit = γ1GSPi,t−1 + β2Inequalityi,t−1 + β3Schoolingi,t−1

+ αi + ηt + uit ,

whereγ1 = 1 + β1.
In matrix notation, it is equivalent to writing:

(15.4)yit = γyi,t−1 +X′
i,t−1B + αi + ηt + uit ,

(15.5)

yit − yi,t−1 = γ (yi,t−1 − yi,t−2)+ (X′
i,t−1 −X′

i,t−2)B

+ (uit − uit−1).

Equation(15.5) can now be estimated using the Arellano–Bond (A&B)
method.Table 15.1shows the results of estimating Equation(15.1)with
Fixed Effects (FE), Random Effects (RE), and the A&B method using first
and second step estimators GMM1 and GMM2 respectively.5 In each case,
we report the results with and without time dummies, and using datasets
DS1 and DS2.6

The result of the Hausman test shows that the state-specific effects are
correlated with the regressors, so the RE estimator is rejected in favour of
FE estimator. However, FE is inconsistent (Baltagi, 1995). Thus, the only
consistent estimator is the GMM estimator. Therefore, we test for the hy-
pothesis that average autocorrelation in GMM residuals of order 1 and 2 is
equal to 0. In general it is not worrying that the 1st-order autocorrelation
is violated, it is more important that the 2nd-order autocorrelation is not
violated. In our case the GMM with dummies and both GMM2’s do not
violate that second-order autocorrelation is zero. Finally, from these esti-
mators the only statistically significant for inequality are GMM2 without
dummies for DS1 and GMM2 with dummies for DS2.7 And both coeffi-
cients are positive.

As the Arellano–Bond estimator controls for the unobservable time-
invariant characteristics of each Mexican state and focuses on changes
in these variables within each state across time, the coefficients measure
the relationship between changes in inequality and changes in growth

5 The two-step GMM estimation uses an optimised variance–covariance matrix that cor-
rects the second-order autocorrelation problem. According toArellano and Bond (1991),
“ . . . this apparent gain in precision may reflect downward finite sample bias in the estimates
of the two-step standard errors. . . ”.
6 Since the number of years between ENIGH surveys is not the same for the first two sur-

veys as it is for subsequent ones, we perform the analysis dropping 1984 (first survey), and
then dropping 1984 and 1989 (second survey). In both cases, the coefficient of inequality
is positive and significant.
7 The significance of dummies in DS2 can be explained by the fact the time between one

household survey and another is only two years.
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Table 15.1. Growth and inequality regressions using panel methods

Estimation
method

FE RE FE with
year
dummies

RE with
year
dummies

A&B
GMM1

A&B
GMM1
dummies

A&B
GMM2

A&B
GMM2
dummies

(1) (2) (3) (4) (5) (6) (7) (8)

Data set 1 (DS1)

GSPt−1 −0.096∗∗ −0.04∗∗ −0.088∗∗ −0.033∗∗ −0.332∗∗ 0.098 −0.488∗∗ 0.117∗∗

(0.011) (0.007) (0.010) (0.006) (0.131) (0.157) (0.075) (0.025)
Inequalityt−1 0.005 −0.019 −0.012 −0.016 0.395∗∗ −0.026 (0.497)∗∗ 0.004

(0.019) (0.017) (0.018) (0.015) (0.192) (0.210) (0.085) (0.107)
Schoolingt−1 0.056∗∗ 0.031∗∗ −0.015 0.031∗∗ −0.073 −0.073 −0.193 0.077

(0.009) (0.008) (0.0190) (0.010) (0.243) (0.215) (0.176) (0.110)
Dummy 70–80 – – 0.057∗∗ 0.036∗∗ – – – –

(0.007) (0.006)
Dummy 80–90 – – 0.051∗∗ −0.015∗ – −0.642∗∗ – 0.271∗∗

(0.013) (0.007) (0.102) (0.030)
Dummy 90–00 – – 0.080∗∗ 0.0004 – −0.905∗∗ − −0.051

(0.020) (0.009) (0.151) (0.032)
R-squared 0.472 0.248 0.720 0.568 – – – –
States 32 32 32 32 32 32 32 32
Observations 128 128 128 128 96 96 96 96
Period 1960–2000 1960–2000 1960–2000 1960–2000 1980–2000 1980–2000 1980–2000 1980–2000

(continued on next page)
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Table 15.1. (Continued)

Estimation
method

FE RE FE with
year
dummies

RE with
year
dummies

A&B
GMM1

A&B
GMM1
dummies

A&B
GMM2

A&B
GMM2
dummies

(1) (2) (3) (4) (5) (6) (7) (8)

Data set 1 (DS1)

Hausman test chi2(3) = 51.50 chi2(6) = 49.75 − − − −
Prob> chi2 = 0 Prob > chi2 = 0.00

Sargan test – – – – chi2(5) = 32.18 chi2(5) = 8.03 chi2(5) = 18.93 chi2(5) = 10.5
Prob> chi2 =
0.0

Prob> chi2 =
0.1

Prob> chi2 =
0.0

Prob> chi2 =
0.06

A&B acov res1st – – – – z = −2.85 z = −3.68 z = −0.84 z = −1.46
– – – – Pr > z = 0.004 Pr> z = 0.000 Pr> z = 0.400 Pr> z = 0.145

A&B acov res2nd – – – – z = −2.40 z = −0.34 z = −1.27 z = −0.53
– – – – Pr > z = 0.016 Pr> z = 0.731 Pr> z = 0.204 Pr> z = 0.596

DATA SET 2 (DS2)

GSPt−1 −0.160∗∗ −0.02∗∗ −0.144∗∗ −0.037∗∗ 0.255∗∗ 0.547∗∗∗ 0.248∗∗ 0.532∗∗

(0.015) (0.007) (0.010) (0.007) (0.055) (0.069) (0.023) (0.021)
Inequalityt−1 0.072∗∗ 0.096∗∗ 0.003 0.023 0.144∗∗ 0.053 0.142∗∗∗ 0.032∗∗

(0.015) (0.017) (0.011) (0.0144) (0.037) (0.040) (0.009) (0.014)
Schoolingt−1 0.036 0.095∗∗ 0.026 0.081∗∗ 0.046 0.030 0.076 0.066

(0.046) (0.038) (0.030) (0.032) (0.103) (0.101) (0.042) (0.036)
R-squared 0.470 0.126 0.800 0.4564 – – – –

(continued on next page)
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Table 15.1. (Continued)

Estimation
method

FE RE FE with
year
dummies

RE with
year
dummies

A&B
GMM1

A&B
GMM1
dummies

A&B
GMM2

A&B
GMM2
dummies

(1) (2) (3) (4) (5) (6) (7) (8)

Data set 1 (DS1)

States 32 32 32 32 32 32 32 32
Obs 224 224 224 224 192 192 192 192
Period 1984–2002 1984–2002 1984–2002 1984–2002 1989–2002 1989–2002 1989–2002 1989–2002
Hausman test chi2(4) = 109.99 chi2(11) = 203.50 – – – –

Prob> chi 2 = 0.000 Prob> chi = 0.000
Sargan test – – – – chi2(20) = 106 chi2(20) = 18 chi2(20) = 30 chi2(20) = 24

Pr> chi2 = 0.0 Pr > chi2 =
0.58

P > chi2 =
0.06

P > chi2 =
0.21

A&B acov res1st – – – – z = −4.99 z = −3.63 z = −4.20 z = −4.07
Pr> z = 0.00 Pr> z = 0.00 Pr> z = 0.00 Pr> z = 0.00

A&B acov res2nd – – – – z = −3.12 z = 0.60 z = −3.27 z = 0.82
Pr> z = 0.00 Pr> z = 0.54 Pr> z = 0.00 Pr> z = 0.41

Note: The dependent variable is average annual per capita growth. Standard errors are in parentheses. R-squared is the within R-squared for the fixed
effects (FE) model and the overall R-squared for random effects (RE). A&B acov res 1st and 2nd is the Arellano–Bond test that average autocovariance
in residuals of order 1 and 2, respectively is 0.
∗stands for significance at 5%.
∗∗stands for significance at 1%.
∗∗∗stands for significance at 10%.
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within a given state (seeForbes, 2000). This result implies that in the short
run (considering periods of ten years each for DS1 and two year periods
for DS2) positive changes in lagged inequality are associated with pos-
itive changes in natural log GSP (i.e. current GSP growth) within each
state across periods. This is in contradiction with both political economy
models (Alesina and Rodrik, 1994) and with the models that stress capi-
tal market imperfections (Galor and Zeira, 1993; Banerjee and Newman,
1993).

In the following sections we address the following questions: is it only
the method of estimation that makes the relation between growth and in-
equality differ from other results? How robust is this relationship?

15.5. Factors that might affect the coefficient of inequality

Factors such as data quality, outliers, period coverage, and method of es-
timation might affect the coefficient of inequality; as well as different
definitions of inequality and literacy. In this section we check if any of
these factors have an impact on the inequality coefficient using the valid
A&B estimator.

15.5.1. Data quality

We estimate Equation(15.5)using an alternative source for the per capita
Gross State Product that comes fromEsquivel (1999)for DS1. The re-
sults show the same sign for the coefficient of inequality as before, but the
coefficient is not significant. What is important is that for the benchmark
estimations inTable 15.1, changes in inequality are positively related to
changes in growth and that the data source does not affect the sign of the
coefficient.8

15.5.2. Outliers

There are three states with different behaviour compared to the 29 remain-
ing states; these are Campeche and Tabasco, which are oil producers, and
Chiapas, which is a very poor state. They have been treated differently in
the literature, as inEsquivel (1999). When we control for outliers, the sign
on inequality does not change, but significance slightly increases.

8 Due to space problems we do not report all the estimations, but they are available from
author on request.
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15.5.3. Periods coverage and method of estimation

A third factor that may affect the coefficient is the length of the periods
considered, so we performed several estimations of Equation(15.1)vary-
ing the period lengths. First, for each data set, we consider one long period
(1960 to 2000 for DS1, and 1984 to 2002 for DS2), as the long-term pe-
riod, then Equation(15.1)has to be rewritten as Equation(15.6), and be
estimated for one long period with OLS.

(15.6)
Growthi = α0 + β1Incomei + β2Inequaltiyi + β3Schoolingi + ui .

The problem with Equation(15.6)is that it suffers from bias caused by the
endogenous lagged variable, and due to the few observations available for
this type of specification, it is better to consider other type of specifica-
tion. Hence, we divide the 40-year period for DS1 into three short periods
according to the degree of trade openness. We consider the period before
Mexico joined the GATT (1960–1980) as the Non-Trade period (although
trade was taking place), then we consider the GATT period as the period
between joining GATT and before signing NAFTA (1980–1990). The last
period will be the NAFTA period (1990–2000).9

Then, still using these three short periods, we use A&B estimator with
trade period dummies for DS1, using Equation(15.4). The inequality
estimate is negative with GMM1 and positive with GMM2 but is not sig-
nificant (seeTable 15.2). In both cases the dummies have a negative sign
and are statistically significant.

Finally, we divide the 18-year period for DS2 into two short periods
according to the degree of trade openness, the GATT period (1984–1994)
and the NAFTA period (1994–2002). Again we estimate Equation(15.4)
using A&B estimator, separately for each trade period. The results are
given inTable 15.2. The two periods show a positive and significant coef-
ficient. Finally, we use all periods, but adding a dummy for GATT period,
and then for NAFTA period. The inequality estimate is positive and very
significant. These estimations have the same coefficients except for the
sign in the dummy variable: when we include the GATT dummy it is posi-
tive and significant, but the opposite is found when we include the NAFTA

9 According toBoltvinik (1999), in the period 1983–1988, the fight against poverty and
inequality was discontinued. New efforts and programs started in the 1988 presidential pe-
riod, including Solidaridad and Progresa (nowadays Oportunidades). On the other hand,
economic policies for the period before signing of the GATT were based on import sub-
stitution and expenditure-led growth, but after signing, an export-led growth policy was
implemented (e.g.,Székely, 1995). Putting together these facts may explain why before
1988 the relationship is negative and afterwards positive.
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Table 15.2. Effects of varying period length and estimation method

Data set DS1 Data set DS2

Method A&B GMM1
period of
trade

A&B GMM2
period of
trade

A&B GMM1
GATT

A&B GMM2
GATT

A&B GMM1
NAFTA

A&B GMM2
NAFTA

A&B GMM1
ALL

A&B GMM1
ALL

(1) (2) (3) (4) (5) (6) (7) (8)

GSPt−1 0.097 0.117∗∗ 0.381∗∗ 0.451∗∗ −0.185 −0.211∗∗ 0.235∗∗ 0.235∗∗

(0.157) (0.025) (0.096) (0.077) (0.139) (0.092) (0.052) (0.052)
Ineqt−1 −0.026 0.004 0.151∗∗ 0.121∗∗ 0.121∗∗ 0.121∗∗ 0.090∗∗ 0.090∗∗

(0.210) (0.107) (0.069) (0.051) (0.042) (0.024) (0.037) 0.037
Schot−1 −0.074 0.077 0.135 0.201∗ −0.091 −0.140 0.008 0.008

(0.215) (0.110) (0.144) (0.116) (0.148) (0.154) (0.097) 0.097
Dummy
GATT

−0.642∗∗ −0.593∗∗ – – – – 0.052∗∗

(0.102) (0.039) (0.013)
Dummy
NAFTA

−0.905∗∗ −0.813∗∗ − − – – – −0.052∗∗

(0.151) (0.092) 0.013
States 32 32 32 32 32 32 32 32
Periods 3 3 2 2 4 4 6 6
Years 1960–2000 1960–2000 1984–1994 1984–1994 1994–2002 1994–2002 1984–2002 1984–2002
Sargan test chi2(5) = 8.0 chi(5) = 10 chi(20) = 2 chi(20) = 3 chi(20) = 43 chi(20) = 23 chi(20) = 105 chi(20) = 105

Pr> chi = 0.1 Pr> chi2 = 0 Pr > chi2 = 1 Pr > chi2 = 1 Pr > chi2 = 0 Pr > chi2 = 0.25 Pr> chi2 = 0 Pr > chi2 = 0
A&B acov
res 1st

z = −3.68 z = −1.46 z = −2.55 z = −3.17 z = −1.64 z = −1.39 z = −5.09 z = −5.09
Pr> z = 0.000 Pr> z = 0.14 Pr> z = 0.01 Pr> z = 0.00 Pr> z = 0.10 Pr> z = 0.16 Pr> z = 0.0 Pr > z = 0.0

A&B acov
res 2nd

z = −0.34 z = −0.53 – – z = −2.76 z = −2.11 z = −1.27 z = −1.27
Pr> z = 0.73 Pr> z = 0.59 Pr> z = 0.005 Pr> z = 0.03 Pr> z = 0.20 Pr> z = 0.20

Notes: Dependent variable is average annual per capita growth.
∗stands for significance at 5%.
∗∗stands for significance at 1%.
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dummy. The change in sign across periods suggests that the relationship
between inequality and growth has been changing over time. One of the
reasons for this change might be trade openness.10

We conclude that time length and the period studied may affect the
relation between inequality and growth. The NAFTA period is difficult to
interpret as its initial stage coincides with the Mexican economic crisis in
December 1994.11

15.5.4. Different definitions of inequality and literacy

In this section we analyse whether changing the human capital variable
from schooling to literacy has any effects. We find that changing the hu-
man capital variable only affects the sign of the inequality coefficient for
the last trade period. The rest of the inequality coefficients remain the same
in sign and significance.

15.6. Grouping and regional analysis

In this section we examine the idea ofQuah (1997)about club formation:
that rich states are located near rich states and poor near poor ones. We are
interested in testing whether the clubs have different relationships between
inequality and growth. We group the States using different methods.

We first use the method ofEsquivel (1999)to group the States accord-
ing to location to see if there is any difference in the inequality regression
coefficient across regions, as we can find intrinsic characteristics that make
economies differ.12 The results inTable 15.3show that the inequality coef-
ficient is positive in 71% of the cases, but only significant in 43% of them,
probably due to the small number of observations within each group (NT
is too small).

10 Barro’s estimations, described inBanerjee and Duflo (1999), and which describe aU
shape relationship between growth and inequality during 1960–1995 for poor countries,
and positive for Latin-America, do not contradict the signs obtained by our three period
estimation (−, −, +).
11 Székely (1995)argues that it is still early to judge the new economic model that currently
rules economic decision-making in Mexico and which consists mainly of trade liberalisa-
tion. Perhaps when the government implements a policy to lessen inequality, financed by
an increase in taxes, inequality decreases but growth does also, because incentives for sav-
ings decrease seePerotti (1996). This may explain why we find a positive relationship in
the NAFTA period.
12 The North for instance, closest to USA, has six of the States with the highest product per
capita, and the highest share of foreign direct investment. In contrast, the 57% of the in-
digenous population is concentrated in the southern regions, its average years of schooling
is 5.7 and 6.7 years, compared with 9.6 in D.F., and has poor access to public services.
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Table 15.3. Effect of regional differences on the inequality coefficient

Geographical
regions

Coefficient
on INEQ

Standard
error

States Obs Coefficient
on INEQ

Standard
error

States Obs

Data set DS1 for 1980–2000 Data set DS2 for 1989–2002

Esquivel definition
North (0.322) −1.163∗∗ 0.276 6 24 0.097 0.079 6 36
Capital (0.329) 0.814∗∗ 0.175 2 8 0.213 0.221 2 12
C. North (0.337) 0.454∗∗ 0.204 6 24 0.088 0.068 6 36
Golf (0.337) −0.449 1.430 5 20 0.037 0.136 5 30
Pacific (0.344) 0.660 0.675 5 20 0.119∗ 0.057 5 30
South (0.378) 0.783 0.989 4 16 0.149∗ 0.075 4 24
Centre (0.398) 0.574∗∗ 0.192 4 16 0.111 0.084 4 24

Tree definition
R1 0.552 0.868 7 21 0.128 0.069 7 42
R2 0.572∗∗ 0.221 8 24 0.120∗ 0.057 8 48
R3 0.410 0.270 8 24 0.075 0.063 8 48
R5 −0.381 0.339 8 24 0.131 0.070∗∗ 8 48

INEGI’s definition
W1 0.909 1.168 3 9 0.154 0.094 3 18
W2 0.455 0.533 6 18 0.207∗∗ 0.074 6 36
W3 −0.873 0.685 3 9 0.041 0.074 3 18
W4 0.656∗∗ 0.234 9 27 0.027 0.063 9 54
W6 −0.353 0.241 9 27 0.092 0.061 9 54

Note: Initial Gini coefficient is in brackets, showing geographical regions are ranked by initial inequality (ascendant).
∗stands for significance at 5%.
∗∗stands for significance at 1%.
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Figure 15.1. Regional groups using a tree structure

Next, we re-estimate the model grouping states inspired on the tree
algorithm technique used inDurlauf and Johnson (1995), but without op-
timisation. The tree technique consists in splitting the 32 States into two
groups, according to their GSP. Afterwards each group is split into two
according to their level of inequality. Finally, each of the four groups is
split according to their schooling level. With this technique, we have five
groups, which we can use to define our own welfare regions, where region
1 has the lowest welfare and region 5 the highest welfare. The resulting
tree is shown inFigure 15.1.

The results inTable 15.3show that the richest region (the ones in the
right part of the tree that enjoy the highest GSP, highest schooling level
and lowest inequality) has a negative sign on inequality coefficient. The
rest of the regions have a positive coefficient. However, results are still not
significant, so we cannot derive a strong conclusion from these results.

The National Statistics Office in Mexico (INEGI) performs a welfare
analysis where it divides the Federal Entities according to their level of
well-being which takes into account 47 socio-economic variables like pop-
ulation characteristics and infrastructure. They use cluster analysis and
group the Federal Entities in seven groups, where the lowest level of wel-
fare is rated as level one, to the highest level of welfare that is rated as
seven. The estimation results using this information (inTable 15.3) show
the same pattern as before, the richest region has a negative coefficient but
results are significant only in 20% percent of the cases. Using DS2 instead
of DS1, all coefficients on inequality become positive, but significance is
still a problem.

Since economic performance and income are highly related, we divide
our data according to their income level. We do this by considering the
interval defined by the minimum and maximum GSP levels across the 32
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Table 15.4. Regression results according to initial GSP groups

Initial GSP
groups

Coefficient
on INEQ

Standard
error

States Obs Period of
growth

Data set DS1

Using INEGI data
Poor< 6037 0.506∗∗ 0.285 17 51 1980–2000
6037� Mid < 9932 −0.048 0.323 10 30
Rich � 9932 0.225 0.213 5 15

Using G. Esquivel data
Poor< 9000 0.185 0.265 17 51 1980–2000
9000� Mid < 16000 0.067 0.480 10 30
Rich � 16000 −0.111 0.467 5 15

Data set DS2

Initial GSP groups
Poor< 13330 0.088∗∗ 0.039 17 102 1989–2002
13330� Mid < 19800 0.124∗ 0.069 11 66
Rich � 19800 0.212 0.132 4 24

Note: States are categorised based on GSP per capita in 1990. Income is measured in 1993
pesos.
∗stands for significance at 5%.
∗∗stands for significance at 1%.

Federal Entities. We split this interval in three equal parts and define as
“poor” those States whose income fall into the lowest part of interval,
“mid” those whose income fall in the mid interval, and “rich” those with
income in the top interval.

In Table 15.4, we can observe that the group of the poorest States has
a positive coefficient on inequality, but the level of significance changes.
The coefficient of the middle and richest States varies as well as its signif-
icance. But results are in line with those observed in the grouped data by
regions in the previous sections.

We can conclude from Section15.6 that the relationship between in-
equality and growth shows a strong contrast between poor and rich re-
gions, northern and southern regions. For rich regions (northern) inequal-
ity seems to have a negative coefficient. However, for the poorest regions,
inequality’s coefficient is positive.
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Table 15.5. Different inequality measures

Data set Inequality definitions Coefficient
on INEQ

Standard
error

States Obs Period of
growth

DS1 20/20 Ratio 0.175∗∗ 0.070 32 96 1980–2000
20/20 Ratio no oil 0.223∗∗ 0.057 30 90 1980–2000
POVCAL 0.349 0.247 32 96 1980–2000
POVCAL No oil 0.578∗∗ 0.181 30 90 1980–2000
Q3 −0.143∗∗ 0.025 32 96 1980–2000

DS2 Inequality definitions
20/20 Ratio 0.056∗∗ 0.014 32 192 1989–2002
Q3 −0.094∗∗ 0.008 32 192 1989–2002

∗∗stands for significance at 1%.

15.7. Analysis with different inequality measures

Finally, recent literature argues that the relationship between income in-
equality and growth might depend on the definition of the GINI coefficient.
Thus, we swap the Gini coefficient calculated with the Yitzhaki–Lerman
formula (seeChotikapanich and Griffiths, 2001) with the Gini calculated
with the POVCAL formula developed by Chen, Datt and Ravallion. After-
wards, we use the 20/20 ratio as an alternative measure of inequality. The
20/20 ratio is the quotient between the income of the twenty percent of the
richest population and the 20 percent of the poorest. Finally, we use Q3,
which is the share of income held by the middle quintile.Perotti (1996)
uses Q3 as a measure of equality, and Forbes add a negative sign to Q3 to
use it as measure of inequality. We will followPerotti (1996).

Results are shown inTable 15.5. The estimated inequality coefficient is
still positive and very significant in all cases. When we use the equality
measure Q3, the estimated equality coefficient becomes negative. These
results confirm the robustness of the positive relationship between inequal-
ity and growth.

15.8. Conclusions and possible extensions

Results coming from this work have to be treated with reasonable cau-
tion due to the limited amount of data used. Using two different data sets
to account for the influence that the source may have on the results, and
using dynamic panel data methods to control for possible omitted vari-
able bias on the estimates, and the endogeneity of the lagged variable, we
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have found that the relationship between income inequality and economic
growth is positive. This result is robust to the use of different measures
of per capita Gross State Product, of human capital variable definitions,
and measures of inequality. This implies that the data source and variable
measures do not affect the sign in our estimation.

We also analyse the impact that varying the period length and the
method of estimation has on the sign of the income inequality coefficient.
We found that the inequality coefficient is positive and significant when we
use DS2, and negative but not significant using DS1. Including a dummy
for GATT and NAFTA periods, with DS2 suggest that NAFTA has a neg-
ative influence on inequality whereas GATT had a positive influence. This
finding could be interpreted meaning that as the Mexican economy be-
comes more open, the relation between growth and inequality is changing
over time. Our results show that time length and the period studied affects
the relationship between inequality and growth. Using different grouping
methods to test whether club formation affects the coefficient of inequal-
ity, we found that the coefficient of inequality is positive for the poorest
regions, and tend to be negative for the richest regions. Nevertheless, we
cannot draw a conclusion since we lack a sufficient number of observa-
tions in each group.

The results from the dynamic panel data estimations suggest that
changes in income inequality and changes in economic growth, from 1960
to 2000 and from 1984 to 2002 across the 32 Federal Entities of Mex-
ico, are positively related. This may suggest that high income-inequality is
beneficial for growth in that it can stimulate capital accumulation (Aghion
and Williamson, 1998).

Further research is needed using different measures adjusted for house-
hold needs, in order to explore the robustness of the relationship between
inequality and growth. However, we are not only interested in testing
the robustness of the sign, but in analysing the channels through which
inequality influences growth, using structural equations, as well as in
performing a complementary analysis with growth accounting factors,
sources of growth and determinants of income inequality.
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Appendix A15. Summary statistics

Table A15.1.

Variable Definition Source Year Mean Std. Dev. Min Max

DATA SET 1 (DS1)

Schooling Average years of schooling
of the population

SEP 1960 2.46 0.91 1.00 5.00
1970 3.19 0.89 1.80 5.80
1980 4.31 0.95 2.50 7.00
1990 6.29 1.00 4.20 8.80
2000 7.53 1.00 5.70 10.20

GSP Ln of Real GSP per capita
in 1993 pesos. Correcting
with national deflator
before 1990

INEGI 1960 8.60 0.47 7.60 9.46
1970 8.75 0.38 7.93 9.60
1980 9.29 0.39 8.56 10.40
1990 9.23 0.41 8.53 10.16
2000 9.49 0.43 8.71 10.56

Inequality Inequality measured by the
Gini Coefficient using
Leman and Yitzhaki
formula. Considering
monetary persons income

SE (1960), 1960 0.38 0.05 0.20 0.47
SIC (1970) 1970 0.43 0.06 0.32 0.57
SPP (1980) 1980 0.45 0.03 0.40 0.54
INEGI (2000) 1990 0.37 0.02 0.34 0.48

2000 0.41 0.03 0.34 0.51

Female
literacy

Share of the female
population aged over 15
(10) who can read and
write

INEGI 1960 63.99 15.83 34.93 85.58
1970 73.22 12.05 50.38 87.92
1980 79.61 10.91 54.94 92.28
1990 85.09 8.74 62.35 94.52
2000 88.70 6.90 69.95 96.08

Male
literacy

Share of the male
population aged over 15
(10) who can read and
write

INEGI 1960 70.84 12.26 44.87 92.17
1970 79.06 8.75 59.66 94.31
1980 85.52 7.21 68.94 96.89
1990 89.95 5.15 77.52 97.87
2000 92.11 4.02 82.86 98.26

(continued on next page)
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Table A15.1. (Continued)

Variable Definition Source Year Mean Std. Dev. Min Max

DATA SET 1 (DS1)

GSP2 Ln of Real GSP per capita
In 1995 pesos. Correcting
for 2000

G. Esquivel 1960 9.07 0.44 8.32 10.05
1970 9.46 0.46 8.56 10.38
1980 9.77 0.43 8.95 10.65
1990 9.77 0.44 9.04 10.84
2000 9.79 0.41 9.01 10.80

DATA SET 2 (DS2)

GSP Ln of Real Gross State
Product (GSP) per capita in
1993 pesos. Correcting
with national deflator
before 1990. Calculating
2002 using national GDP
2002 and State’s share in
2001

INEGI 1984 2.56 0.42 1.92 4.01
1989 2.43 0.42 1.72 3.37
1992 2.44 0.41 1.77 3.43
1994 2.50 0.42 1.82 3.53
1996 2.46 0.42 1.78 3.47
1998 2.49 0.42 1.77 3.55
2000 2.58 0.43 1.84 3.66
2002 2.54 0.43 1.83 3.64

Inequality Inequality measured by the
Gini Coefficient of
monetary household
income

ENIGH 1984 0.42 0.05 0.27 0.52
1989 0.47 0.06 0.34 0.63
1992 0.55 0.06 0.43 0.72
1994 0.47 0.05 0.37 0.60
1996 0.49 0.05 0.42 0.71
1998 0.51 0.04 0.41 0.61
2000 0.50 0.05 0.37 0.58
2002 0.47 0.04 0.37 0.56

Female
literacy

Share of the female
population aged over 15
(10) who can read and
write

ENIGH 1984 84.54 9.78 64.38 98.31
1989 85.65 8.53 62.73 97.03
1992 82.37 9.87 60.92 94.90
1994 83.12 9.37 60.05 94.77
1996 84.66 7.65 64.84 95.21
1998 85.56 7.93 69.55 97.90
2000 86.88 5.98 73.75 95.59
2002 87.18 7.63 70.26 97.10

Male
literacy

Share of the male
population aged over 15
(10) who can read and
write

ENIGH 1984 91.05 6.23 79.38 100.00
1989 88.71 5.84 78.72 97.05
1992 86.13 6.47 73.97 97.66
1994 86.93 6.05 70.83 97.67
1996 88.17 4.63 76.57 97.37
1998 87.46 5.65 73.09 97.53
2000 88.49 4.37 81.08 98.37
2002 89.14 5.77 75.00 97.67
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