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Foreword

In his Preface, Wes Johnson presents Seymour’s biography and discusses his pro-

fessional accomplishments. I hope my words will convey a more personal side of

Seymour.

After Seymour’s death in March 2004, I received numerous letters, calls, and

visits from both current and past friends and colleagues of Seymour’s. Because he

was a very private person, Seymour hadn’t told many people of his illness, so

most were stunned and saddened to learn of his death. But they were eager to tell

me about Seymour’s role in their lives. I was comforted by their heartfelt words.

It was rewarding to discover how much Seymour meant to so many others.

Seymour’s students called him a great scholar and they wrote about the signifi-

cant impact he had on their lives. They viewed him as a mentor and emphasized

the strong encouragement he offered them, first as students at the University of Min-

nesota and then in their careers. They all mentioned the deep affection they felt for

Seymour.

Seymour’s colleagues, present and former, recognized and admired his intellec-

tual curiosity. They viewed him as the resident expert in such diverse fields as phil-

osophy, history, literature, art, chemistry, physics, politics and many more. His peers

described him as a splendid colleague, free of arrogance despite his superlative

achievements. They told me how much they would miss his company.

Seymour’s great sense of humor was well-known and he was upbeat, fun to be

with, and very kind. Everyone who contacted me had a wonderful Seymour story

to share and I shall never forget them. We all miss Seymour’s company, his wit,

his intellect, his honesty, and his cheerfulness.

I view Seymour as “Everyman” for he was comfortable interacting with every-

one. Our friends felt he could talk at any level on any subject, always challenging

them to think. I know he thoroughly enjoyed those conversations.

Seymour’s life away from the University and his profession was very full. He

found great pleasure in gardening, travel, the study of animals and visits to wildlife

refuges, theatre and film. He would quote Latin whenever he could, just for the fun

of it.
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The love Seymour had for his family was a very important part of his life. And

with statistics on his side, he had four children—two girls and two boys. He was

blessed with five grandchildren, including triplets. Just as Seymour’s professional

legacy will live on through his students and his work, his personal legacy will

live on through his children and grandchildren.

When Seymour died, I lost my dictionary, my thesaurus, my encyclopedia. And I

lost the man who made every moment of our 22 years together very special.

Seymour loved life—whether dancing-in his style—or exploring new ideas.

Seymour was, indeed, one of a kind.

When Seymour was diagnosed with his illness, he was writing this book. It

became clear to him that he would be unable to finish it, so I suggested he ask

Wes Johnson to help him. Wes is a former student of Seymour’s and they had written

a number of papers together. Wes is also a very dear friend. Seymour felt it would be

an imposition to ask, but finally, he did. Without hesitation, Wes told Seymour not to

worry, that he would finish the book and it would be published.

I knew how important that was to Seymour, for it was one of the goals he would

not be able to meet on his own.

For his sensitivity to Seymour’s wish, for the technical expertise he brought to the

task, and for the years of loving friendship, thank you Wes, from me and Seymour both.

ANNE FLAXMAN GEISSER

SEYMOUR GEISSER

x FOREWORD



Preface

This book provides a graduate level discussion of four basic modes of statistical

inference: (i) frequentist, (ii) likelihood, (iii) Bayesian and (iv) Fisher’s fiducial

method. Emphasis is given throughout on the foundational underpinnings of these

four modes of inference in addition to providing a moderate amount of technical

detail in developing and critically analyzing them. The modes are illustrated with

numerous examples and counter examples to highlight both positive and potentially

negative features. The work is heavily influenced by the work three individuals:

George Barnard, Jerome Cornfield and Sir Ronald Fisher, because of the author’s

appreciation of and admiration for their work in the field. The clear intent of the

book is to augment a previously acquired knowledge of mathematical statistics by

presenting an overarching overview of what has already been studied, perhaps

from a more technical viewpoint, in order to highlight features that might have

remained salient without taking a further, more critical, look. Moreover, the

author has presented several historical illustrations of the application of various

modes and has attempted to give corresponding historical and philosophical per-

spectives on their development.

The basic prerequisite for the course is a master’s level introduction to probability

and mathematical statistics. For example, it is assumed that students will have

already seen developments of maximum likelihood, unbiased estimation and

Neyman-Pearson testing, including proofs of related results. The mathematical

level of the course is entirely at the same level, and requires only basic calculus,

though developments are sometimes quite sophisticated. There book is suitable

for a one quarter, one semester, or two quarter course. The book is based on a

two quarter course in statistical inference that was taught by the author at the Uni-

versity of Minnesota for many years. Shorter versions would of course involve

selecting particular material to cover.

Chapter 1 presents an example of the application of statistical reasoning by the

12th century theologian, physician and philosopher, Maimonides, followed by a dis-

cussion of the basic principles guiding frequentism in Chapter 2. The law of likeli-

hood is then introduced in Chapter 3, followed by an illustration involving the

assessment of genetic susceptibility, and then by the various forms of the likelihood
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principle. Significance testing is introduced and comparisons made between likeli-

hood and frequentist based inferences where they are shown to disagree. Principles

of conditionality are introduced.

Chapter 4, entitled “Testing Hypotheses” covers the traditional gamut of material

on the Neyman-Pearson (NP) theory of hypothesis testing including most powerful

(MP) testing for simple versus simple and uniformly most powerful testing (UMP)

for one and two sided hypotheses. A careful proof of the NP fundamental lemma is

given. The relationship between likelihood based tests and NP tests is explored

through examples and decision theory is introduced and briefly discussed as it relates

to testing. An illustration is given to show that, for a particular scenario without the

monotone likelihood ratio property, a UMP test exists for a two sided alternative.

The chapter ends by showing that a necessary condition for a UMP test to exist in

the two sided testing problem is that the derivative of the log likelihood is a non-

zero constant.

Chapter 5 discusses unbiased and invariant tests. This proceeds with the usual

discussion of similarity and Neyman structure, illustrated with several examples.

The sojourn into invariant testing gives illustrations of the potential pitfalls of this

approach. Locally best tests are developed followed by the construction of likeli-

hood ratio tests (LRT). An example of a worse-than-useless LRT is given. It is

suggested that pre-trial test evaluation may be inappropriate for post-trial evalu-

ation. Criticisms of the NP theory of testing are given and illustrated and the chapter

ends with a discussion of the sequential probability ratio test.

Chapter 6 introduces Bayesianism and shows that Bayesian testing for a simple

versus simple hypotheses is consistent. Problems with point null and composite

alternatives are discussed through illustrations. Issues related to prior selection in

binomial problems are discussed followed by a presentation of de Finetti’s theorem

for binary variates. This is followed by de Finetti’s proof of coherence of the

Bayesian method in betting on horse races, which is presented as a metaphor for

making statistical inferences. The chapter concludes with a discussion of Bayesian

model selection.

Chapter 7 gives an in-depth discussion of various theories of estimation. Defi-

nitions of consistency, including Fisher’s, are introduced and illustrated by example.

Lower bounds on the variance of estimators, including those of Cramer-Rao and

Bhattacharya, are derived and discussed. The concepts of efficiency and Fisher

information are developed and thoroughly discussed followed by the presentation

of the Blackwell-Rao result and Bayesian sufficiency. Then a thorough development

of the theory of maximum likelihood estimation is presented, and the chapter

concludes with a discussion of the implications regarding relationships among the

various statistical principles.

The last chapter, Chapter 8, develops set and interval estimation. A quite general

method of obtaining a frequentist confidence set is presented and illustrated, fol-

lowed by discussion of criteria for developing intervals including the concept of

conditioning on relevant subsets, which was originally introduced by Fisher. The

use of conditioning is illustrated by Fisher’s famous “Problem of the Nile.” Bayesian

interval estimation is then developed and illustrated, followed by development of
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Fisher’s fiducial inference and a rather thorough comparison between it and

Bayesian inference. The chapter and the book conclude with two complex but rel-

evant illustrations, first the Fisher-Behrens problem, which considered inferences

for the difference in means for the two sample normal problem with unequal var-

iances, and the second, the Fieller-Creasy problem in the same setting but making

inferences about the ratio of two means.

Seymour Geisser received his bachelor’s degree in Mathematics from the City

College of New York in 1950, and his M.A. and Ph.D. degrees in Mathematical Stat-

istics at the University of North Carolina in 1952 and 1955, respectively. He then

held positions at the National Bureau of Standards and the National Institute of

Mental Health until 1961. From 1961 until 1965 he was Chief of the Biometry Sec-

tion at the National Institute of Arthritis and Metabolic Diseases, and also held the

position of Professorial Lecturer at the George Washington University from 1960 to

1965. From 1965 to 1970, he was the founding Chair of the Department of Statistics

at SUNY, Buffalo, and in 1971 he became the founding Director of the School of

Statistics at the University of Minnesota, remaining in that position until 2001.

He was a Fellow of the Institute of Mathematical Statistics and the American Stat-

istical Association.

Seymour authored or co-authored 176 scientific articles, discussions, book

reviews and books over his career. He pioneered several important areas of statisti-

cal endeavor. He and Mervyn Stone simultaneously and independently invented the

statistical method called “cross-validation,” which is used for validating statistical

models. He pioneered the areas of Bayesian Multivariate Analysis and Discrimi-

nation, Bayesian diagnostics for statistical prediction and estimation models, Baye-

sian interim analysis, testing for Hardy-Weinberg Equilibrium using forensic DNA

data, and the optimal administration of multiple diagnostic screening tests.

Professor Geisser was primarily noted for his sustained focus on prediction in

Statistics. This began with his work on Bayesian classification. Most of his work

in this area is summarized in his monograph Predictive Inference: An Introduction.

The essence of his argument was that Statistics should focus on observable quan-

tities rather than on unobservable parameters that often don’t exist and have been

incorporated largely for convenience. He argued that the success of a statistical

model should be measured by the quality of the predictions made from it.

Seymour was proud of his role in the development of the University of Minnesota

School of Statistics and it’s graduate program. He was substantially responsible for

creating an educational environment that valued the foundations of Statistics beyond

mere technical expertise.

Two special conferences were convened to honor the contributions of Seymour to

the field of Statistics. The first was held at the National Chiao Tung University of

Taiwan in December of 1995, and the second was held at the University of

Minnesota in May of 2002. In conjunction with the former conference, a special

volume entitled Modeling and Prediction: Honoring Seymour Geisser, was

published in 1996.

His life’s work exemplifies the presentation of thoughtful, principled, reasoned,

and coherent statistical methods to be used in the search for scientific truth.
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In January of 2004, Ron Christensen and I met with Seymour to tape a conversa-

tion with him that has subsequently been submitted to the journal “Statistical

Science” for publication. The following quotes are relevant to his approach to the

field of statistics in general and are particularly relevant to his writing of “Modes.”

. I was particularly influenced by George Barnard. I always read his papers. He

had a great way of writing. Excellent prose. And he was essentially trained in

Philosophy—in Logic—at Cambridge. Of all of the people who influenced me,

I would say that he was probably the most influential. He was the one that was

interested in foundations.

. It always seemed to me that prediction was critical to modern science. There are

really two parts, especially for Statistics. There is description; that is, you are

trying to describe and model some sort of process, which will never be true

and essentially you introduce lots of artifacts into that sort of thing. Prediction

is the one thing you can really talk about, in a sense, because what you predict

will either happen or not happen and you will know exactly where you stand,

whether you predicted the phenomenon or not. Of course, Statistics is the so

called science of uncertainty, essentially prediction, trying to know something

about what is going to happen and what has happened that you don’t know

about. This is true in science too. Science changes when predictions do not

come true.

. Fisher was the master genius in Statistics and his major contributions, in some

sense, were the methodologies that needed to be introduced, his thoughts about

what inference is, and what the foundations of Statistics were to be. With regard

to Neyman, he came out of Mathematics and his ideas were to make Statistics a

real mathematical science and attempt to develop precise methods that would

hold up under any mathematical set up, especially his confidence intervals

and estimation theory. I believe that is what he tried to do. He also originally

tried to show that Fisher’s fiducial intervals were essentially confidence inter-

vals and later decided that they were quite different. Fisher also said that they

were quite different. Essentially, the thing about Neyman is that he introduced,

much more widely, the idea of proving things mathematically. In developing

mathematical structures into the statistical enterprise.

. Jeffreys had a quite different view of probability and statistics. One of the inter-

esting things about Jeffreys is that he thought his most important contribution

was significance testing, which drove [Jerry Cornfield] crazy because, “That’s

going to be the least important end of statistics.” But Jeffreys really brought

back the Bayesian point of view. He had a view that you could have an objec-

tive type Bayesian situation where you could devise a prior that was more or

less reasonable for the problem and, certainly with a large number of obser-

vations, the prior would be washed out anyway. I think that was his most

important contribution — the rejuvenation of the Bayesian approach before

anyone else in statistics through his book, Probability Theory. Savage was

the one that brought Bayesianism to the States and that is where it spread from.
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. My two favorite books, that I look at quite frequently, are Fisher’s Statistical

Method in Scientific Inference and Cramér [Mathematical Methods of Stat-

istics]. Those are the two books that I’ve learned the most from. The one,

Cramér, for the mathematics of Statistics, and from Fisher, thinking about

the philosophical underpinnings of what Statistics was all about. I still read

those books. There always seems to be something in there I missed the first

time, the second time, the third time.

In conclusion, I would like to say that it was truly an honor to have been mentored by

Seymour. He was a large inspiration to me in no small part due to his focus on

foundations which has served me well in my career. He was one of the giants in

Statistics. He was also a great friend and I miss him, and his wit, very much. In keep-

ing with what I am quite certain would be his wishes, I would like to dedicate his

book for him to another great friend and certainly the one true love of his life, his

companion and his occasional foil, his wife Anne Geisser.

The Department of Statistics at the University of Minnesota has established the

Seymour Geisser Lectureship in Statistics. Each year, starting in the fall of

2005, an individual will be named the Seymour Geisser Lecturer for that year and

will be invited to give a special lecture. Individuals will be selected on the basis

of excellence in statistical endeavor and their corresponding contributions to

science, both Statistical and otherwise. For more information, visit the University

of Minnesota Department of Statistics web page, www.stat.umn.edu and click on

the SGLS icon.

Finally, Seymour would have wished to thank Dana Tinsley, who is responsible

for typing the manuscript, and Barb Bennie, Ron Neath and Laura Pontiggia, who

commented on various versions of the manuscript. I thank Adam Branseum for

converting Seymour’s hand drawn figure to a computer drawn version.

WESLEY O. JOHNSON
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C H A P T E R O N E

A Forerunner

1.1 PROBABILISTIC INFERENCE—AN EARLY EXAMPLE

An early use of inferred probabilistic reasoning is described by Rabinovitch

(1970).

In the Book of Numbers, Chapter 18, verse 5, there is a biblical injunction which

enjoins the father to redeem his wife’s first-born male child by payment of five

pieces of silver to a priest (Laws of First Fruits). In the 12th Century the theologian,

physician and philosopher, Maimonides addressed himself to the following pro-

blem with a solution. Suppose one or more women have given birth to a number

of children and the order of birth is unknown, nor is it known how many children

each mother bore, nor which child belongs to which mother. What is the

probability that a particular woman bore boys and girls in a specified sequence?

(All permutations are assumed equally likely and the chances of male or female

births is equal.)

Maimonides ruled as follows: Two wives of different husbands, one primiparous

(P) (a woman who has given birth to her first child) and one not ( �P). Let H be the

event that the husband of P pays the priest. If they gave birth to two males (and

they were mixed up), P(H) ¼ 1 – if they bore a male (M) and a female

(F) 2 P(H) ¼ 0 (since the probability is only 1/2 that the primipara gave birth to

the boy). Now if they bore 2 males and a female, P(H) ¼ 1.

Case 1 (P) ( �P) Case 2 (P) ( �P)

M, M M M M, F M F

F M

P(H) ¼ 1 P(H) ¼ 1
2

1
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PAYMENT

Case 3 (P) ( �P) Yes No

M, M, F M, M F
p

F, M M
p

M, F M
p

F M, M
p

M F, M
p

M M, F
p

P(H) ¼ 2
3

Maimonides ruled that the husband of P pays in Case 3. This indicates that a

probability of 2/3 is sufficient for the priest to receive his 5 pieces of silver but

1/2 is not. This leaves a gap in which the minimum probability is determined for

payment.

What has been illustrated here is that the conception of equally likely events,

independence of events, and the use of probability in making decisions were not

unknown during the 12th century, although it took many additional centuries to

understand the use of sampling in determining probabilities.

REFERENCES

Rabinovitch, N. L. (1970). Studies in the history of probability and statistics, XXIV

Combinations and probability in rabbinic literature. Biometrika, 57, 203–205.
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C H A P T E R T W O

Frequentist Analysis

This chapter discusses and illustrates the fundamental principles of frequentist-

based inferences. Frequentist analysisis and, in particular, significance testing, are

illustrated with historical examples.

2.1 TESTING USING RELATIVE FREQUENCY

One of the earliest uses of relative frequency to test a Hypothesis was made by

Arbuthnot (1710), who questioned whether the births were equally likely to be

male or female. He had available the births from London for 82 years. In every

year male births exceeded females. Then he tested the hypothesis that there is an

even chance whether a birth is male or female or the probability p ¼ 1
2
. Given this

hypothesis he calculated the chance of getting all 82 years of male exceedances

( 1
2
)82. Being that this is basically infinitesimal, the hypothesis was rejected. It is

not clear how he would have argued if some other result had occurred since any par-

ticular result is small—the largest for equal numbers of male and female excee-

dances is less than 1
10
.

2.2 PRINCIPLES GUIDING FREQUENTISM

Classical statistical inference is based on relative frequency considerations. A

particular formal expression is given by Cox and Hinkley (1974) as follows:

Repeated Sampling Principle. Statistical procedures are to be assessed by their

behavior in hypothetical repetition under the same conditions.

Two facets:

1. Measures of uncertainty are to be interpreted as hypothetical frequencies in

long run repetitions.

3

Modes of Parametric Statistical Inference, by Seymour Geisser
Copyright # 2006 John Wiley & Sons, Inc.



2. Criteria of optimality are to be formulated in terms of sensitive behavior in

hypothetical repetitions.

(Question: What is the appropriate space which generates these hypothetical

repetitions? Is it the sample space S or some other reference set?)

Restricted (Weak) Repeated Sampling Principle. Do not use a procedure which

for some possible parameter values gives, in hypothetical repetitions, misleading

conclusions most of the time (too vague and imprecise to be constructive). The

argument for repeated sampling ensures a physical meaning for the quantities

we calculate and that it ensures a close relation between the analysis we make

and the underlying model which is regarded as representing the “true” state of

affairs.

An early form of frequentist inferences were Tests of Significance. They were

long in use before their logical grounds were given by Fisher (1956b) and further

elaborated by Barnard (unpublished lectures).

Prior assumption: There is a null hypothesis with no discernible alternatives.

Features of a significance test (Fisher–Barnard)

1. A significance test procedure requires a reference set R (not necessarily the

entire sample space) of possible results comparable with the observed result

X ¼ x0 which also belongs to R.

2. A ranking of all possible results in R in order of their significance or meaning

or departure from a null hypothesis H0. More specifically we adopt a criterion

T(X) such that if x1 � x2 (where x1 departs further in rank than x2 both

elements of the reference set R) then T(x1) . T(x2) [if there is doubt about

the ranking then there will be corresponding doubt about how the results of

the significance test should be interpreted].

3. H0 specifies a probability distribution for T(X). We then evaluate the observed

result x0 and the null hypothesis.

P(T(X) � T(x0) j H0) ¼ level of significance or P-value and when this level is

small this leads “logically” to a simple disjunction that either:

a) H0 is true but an event whose probability is small has occurred, or

b) H0 is false.

Interpretation of the Test:

The test of significance indicates whether H0 is consistent with the data and the

fact that an hypothesis is not significant merely implies that the data do not supply

evidence againstH0 and that a rejected hypothesis is very provisional. New evidence

is always admissible. The test makes no statement about how the probability ofH0 is

made. “No single test of significance by itself can ever establish the existence of H0

or on the other hand prove that it is false because an event of small probability will

occur with no more and no less than its proper frequency, however much we may be

surprised it happened to us.”

4 FREQUENTIST ANALYSIS



2.3 FURTHER REMARKS ON TESTS OF SIGNIFICANCE

The claim for significance tests are for those cases where alternative hypotheses are

not sensible. Note that Goodness-of-Fit tests fall into this category, that is, Do the data

fit a normal distribution? Here H0 is merely a family of distributions rather than a

specification of parameter values. Note also that a test of significance considers not

only the event that occurred but essentially puts equal weight on more discrepent

events that did not occur as opposed to a test which only considers what did occur.

A poignant criticism of Fisherian significance testing is made by Jeffreys (1961).

He said

What the use of the P implies, therefore, is that a hypothesis that may be true may be

rejected because it has not predicted observable results that have not occurred.

Fisher (1956b) gave as an example of a pure test of significance the following by

commenting on the work of astronomer J. Michell. Michell supposed that there were

in all 1500 stars of the required magnitude and sought to calculate the probability, on

the hypothesis that they are individually distributed at random, that any one of them

should have five neighbors within a distance of aminutes of arc from it. Fisher found

the details of Michell’s calculation obscure, and suggested the following argument.

“The fraction of the celestial sphere within a circle of radius a minutes is, to a satisfactory

approximation,

p ¼
a

6875:5

� �2
,

in which the denominator of the fraction within brackets is the number of minutes in two

radians. So, if a is 49, the number of minutes fromMaia to its fifth nearest neighbor, Atlas,

we have

p ¼
1

(140:316)2
¼

1

19689
:

Out of 1499 stars other than Maia of the requisite magnitude the expected number

within this distance is therefore

m ¼
1499

19689
¼

1

13:1345
¼ :07613:

The frequency with which five stars should fall within the prescribed area is then given

approximately by the term of the Poisson series

e�m
m5

5!
,

or, about 1 in 50,000,000, the probabilities of having 6 or more close neighbors adding

very little to this frequency. Since 1500 stars each have this probability of being the

center of such a close cluster of 6, although these probabilities are not strictly independent,
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the probability that among them any one fulfills the condition cannot be far from 30 in a

million, or 1 in 33,000. Michell arrived at a chance of only 1 in 500,000, but the higher

probability obtained by the calculations indicated above is amply low enough to exclude

at a high level of significance any theory involving a random distribution.”

With regard to the usual significance test using the “student” t, H0 is that the

distribution is normally distributed with an hypothesized mean m ¼ m0, and

unknown variance s2. Rejection can imply that m = m0 or the distribution is not

normal or both.
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C H A P T E R T H R E E

Likelihood

In this chapter the law of likelihood and other likelihood principles are evoked and

issues related to significance testing under different sampling models are discussed.

It is illustrated how different models that generate the same likelihood function can

result in different frequentist statistical inferences. A simple versus simple likeli-

hood test is illustrated with genetic data. Other principles are also briefly raised

and their relationship to the likelihood principle described.

3.1 LAW OF LIKELIHOOD

Another form of parametric inference uses the likelihood—the probability of data D

given an hypothesis H or f (DjH) ¼ L(HjD) where H may be varied for given D. A

critical distinction of how one views the two sides of the above equation is that prob-

ability is a set function while likelihood is a point function.

Law of Likelihood (LL): cf. Hacking (1965) If f (DjH1) . f (DjH2) thenH1 is better

supported by the data D than is H2. Hence, when dealing with a probability function

indexed by u, f (Dju) ¼ L(u) is a measure of relative support for varying u given D.

Properties of L as a Measure of Support

1. Transitivity: Let H1 � H2 indicate that H1 is better supported than H2. Then

H1 � H2 and H2 � H3 ) H1 � H3.

2. Combinability: Relative support for H1 versus H2 from independent experi-

ments E1 and E2 can be combined, eg. let D1 [ E1,D2 [ E2,D ¼ (D1,D2).

Then

LE1, E2 (H1jD)

LE1, E2 (H2jD)
¼

LE1 (H1jD1)

LE1 (H2jD1)
�

LE2 (H1jD2)

LE2 (H2jD2)
:
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3. Invariance of relative support under 1–1 transformations g(D):

Let D0 ¼ g(D). For g(D) differentiable and f a continuous probability density

L(HjD0) ¼ fD0 (D
0jH) ¼ fD(DjH)

dg(D)

dD

����
����
�1

,

so

L(H1jD
0)

L(H2jD0)
¼

fD0 (D
0jH1)

fD0(D0jH2)
¼

fD(DjH1)

fD(DjH2)
:

For f discrete the result is obvious.

4. Invariance of relative support under 1–1 transformation of H:

Assume H refers to u [ Q and let h ¼ h(u) and h�1(h) ¼ u. Then

L(ujD) ¼ L(h�1(h)jD) ; �L(hjD):

Moreover, with hi ¼ h(ui), ui ¼ h�1(hi),

L(u1jD)

L(u2jD)
¼

L(h�1(h1)jD)

L(h�1(h2)jD)
¼

�L(h1jD)

�L(h2jD)
:

Suppose the likelihood is a function of more than one parameter, say u ¼ (b,g).

Consider H1 : b ¼ b1 vs. H2 : b ¼ b2 while g is unspecified. Then if the likelihood

factors, that is,

L(b, g) ¼ L(b)L(g),

then

L(b1, g)

L(b2, g)
¼

L(b1)

L(b2)

and there is no difficulty. Now suppose L(b,g) does not factor so that what you infer

about b1 versus b2 depends on g. Certain approximations however may hold if

L(b, g) ¼ f1(b) f2(g) f3(b, g)

and f3(b,g) is a slowly varying function of b for all g. Here

L(b1, g)

L(b2, g)
¼

f1(b1)

f1(b2)
�

f3(b1, g)

f3(b2, g)
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and the last ratio on the right-hand side above is fairly constant for b1 and b2 and all

plausible g: Then the law of Likelihood for H1 versus H2 holds almost irrespective of

g and serves as an approximate ratio. If the above does not hold and L(b, g) can be

transformed

b1 ¼ h1(e, d), g ¼ h2(e, d),

resulting in a factorization

L(h1, h2) ¼ L(e)L(d),

then likelihood inference can be made on either e or d separately if they are relevant.

Further if this does not hold but

L(b, g) ¼ L(h1, h2) ¼ f1(e) f2(d) f3(e, d),

where f3 is a slowly-varying function of e for all d then approximately

L(e1, d)

L(e2, d)
¼

f1(e1)

f2(e2)
:

A weighted likelihood may also be used as an approximation, namely,

�L(b) ¼

ð
L(b, g)g(g)dg,

where g(g) is some “appropriate” weight function and one uses as an approximate

likelihood ratio

�L(b1)

�L(b2)
:

Other proposals include the profile likelihood,

sup
g

L(b, g) ¼ L(b, ĝ(b, D)),

that is, the likelihood is maximized for g as a function of b and data D. We then

compare

L(b1, ĝ (b1, D)

L(b2, ĝ (b2, D)
:

3.1 LAW OF LIKELIHOOD 9



For further approximations that involve marginal and conditional likelihood see

Kalbfleisch and Sprott (1970).

Example 3.1

The following is an analysis of an experiment to test whether individuals with at least

one non-secretor allele made them susceptible to rheumatic fever, (Dublin et al.,

1964). At the time of this experiment discrimination between homozygous and hetero-

zygous secretors was not possible. They studied offspring of rheumatic secretors (RS)

and normal non-secretors (Ns). Table 3.1 presents data discussed in that study.

The simple null and alternative hypotheses considered were:

H0: Distribution of rheumatic secretors S whose genotypes are Ss or SS by

random mating given by the Hardy-Weinberg Law.

H1: Non-secreting s gene possessed in single or double dose, that is, Ss or ss,

makes one susceptible to rheumatic fever, that is, SS not susceptible.

Probabilities for all possible categories calculated under these hypotheses are

listed in Table 3.1.

To assess the evidence supplied by the data as to the weight of support of H0

versus H1 we calculate:

L(H0jD)

L(H1jD)
¼

Y9
k¼1

k=7, 8

prk

k0(1� pk0)
Nk�rk

prk

k1(1� pk1)
Nk�rk

. 109,

where

pk0 ¼ probability that, out of k offspring from an RS � Ns family, at least one off-

spring will be a non-secretor ss given a randommating (Hardy-Weinberg law).

Table 3.1: Secretor Status and Rheumatic Fever

RS � Ns Expected Proportion

# of

Offspring

per Family

# of Families

with k

Offspring

# of

Segregating

Families for s Obs Prob

Random

Mating

Susceptible

to Rheumatic

Fever

k Nk rk rk/Nk H0 : pk0 H1 : pk1

1 16 4 .250 .354 .500

2 32 15 .469 .530 .750

3 21 11 .524 .618 .875

4 11 9 .818 .663 .938

5 5 3 .600 .685 .969

6 3 2 .667 .696 .984

9 1 1 1.000 .706 .998
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pk1 ¼ probability that, out of k offspring from an RS � Ns family, at least one

offspring will be a non-secretor ss given that all S phenotypes were of the

Ss genotype.

From population data, it is known that, among rheumatics, the fraction of secre-

tors S is P(S) ¼ P(SS)þ P(Ss) ¼ 0.701 and the fraction of nonsecretors is P(ss) ¼

0.299. By applying the Hardy-Weinberg (H-W) law, probabilities for genotypes

under random mating are given as:

SS Ss ss

p2 2pq q2
,

and thus since q2 ¼ 0.299, we have q ¼ .54681 and p ¼ .45319, so that

P(S) ¼ 0.20539þ 0.49561 ¼ 0.701 and moreover, P(SsjS) ¼ P(Ss)
P(S)
¼ 0:49561

0:701 ¼

0:707, and similarly P(SSjS) ¼ 0:293.
Then under H0

Relative frequency RS � Ns Offspring

.707 Ss� ss 1
2

Ss 1
2

ss

.293 SS� ss Ss

that is, among those families with a secretor (S) and a nonsecretor (ss), there is a

0.707 chance that they will be paired with an Ss and 0.293 probability that they

will be paired with an ss. Then the offspring in the former case is equally likely

to inherit Ss or ss, and in the latter case, they must inherit Ss. The probability of

an ss offspring is thus 0:707� 1
2
¼ 0:354. The probability of one or more ss

offspring out of k is thus 0:707(1� ( 1
2
)k).

Under H1,

Under H1 RS� Ns
.

Ss� ss 1
2

Ss 1
2

ss

So the probability of an ss offspring is 1
2
and the prob

:

ability of one or more ss

offspring out of k is 1� ( 1
2
)k.

3.2 FORMS OF THE LIKELIHOOD PRINCIPLE (LP)

The model for experiment E consists of a sample space S and a parameter spaceQ, a

measure m, and a family of probability functions f : S�Q! Rþ such that for all

u [ Q

ð

S

fdm ¼ 1:

3.2 FORMS OF THE LIKELIHOOD PRINCIPLE (LP) 11



1. Unrestricted LP (ULP)

For two such experiments modeled as E ¼ (S,m,Q, f ) and E0 ¼ (S0,m0,Q, f 0),

and for realization D [ S and D0 [ S0, if

f (Dju) ¼ g(D, D0) f 0(D0ju) for g . 0

for all u and the choice of E or E0 is uniformative with regard to u, then the

evidence or inferential content or information concerning u, all denoted by

Inf is such that

Inf(E,D) ¼ Inf(E0, D0):

Note this implies that all of the statistical evidence provided by the data is con-

veyed by the likelihood function. There is an often useful extension, namely,

when u ¼ (u1, u2), d1 ¼ h(u1, u2), d2 ¼ k(u1, u2), and

f (Dju) ¼ g(D, D0, d1) f 0(D0jd2),

then Inf(E,D) ¼ Inf(E0,D0) concerning d2.

2. Weakly restricted LP (RLP)

LP is applicable whenever a) (S,m,Q, f ) ¼ (S0,m0,Q, f 0) and b) (S,m,Q, f ) =

(S0,m0,Q, f 0) when there are no structural features of (S,m,Q, f ) which have

inferential relevance and which are not present in (S0,m0,Q, f 0).

3. Strongly restricted LP (SLP)

Applicable only when (S,m,Q, f ) ¼ (S0,m0,Q, f 0).

4. Extended LP (ELP)

When u ¼ (p,g) and f (D,D0jp,g) ¼ g(D,D0jp)f 0(D0jg) it is plausible to

extend LP to

Inf(E, D) ¼ Inf(E0, D0),

concerning p assuming p and g are unrelated.

To quote Groucho Marx, “These are my principles and if you don’t like them I have

others,” see Sections 3.6 and 7.12.

In summary LP and law of likelihood (LL) assert that all the information or

evidence which data provide concerning the relative plausibility of H1 and H2 is

contained in the likelihood function and the ratio is to be defined as the degree to

which H1 is supported (or the plausibility) relative to H2 given D with the caution

concerning which form of LP is applicable.

The exposition here leans on the work of Barnard et al. (1962), Barnard and

Sprott (1971), Hacking (1965), and Birnbaum (1962).
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3.3 LIKELIHOOD AND SIGNIFICANCE TESTING

We now compare the use of likelihood analysis with a significance test. Suppose we

are only told that in a series of independent and identically distributed binary trials

there were r successes and n 2 r failures, and the sampling was conducted in one of

three ways:

1. The number of trials was fixed at n.

2. Sampling was stopped at the rth success.

3. Sampling was stopped when n 2 r failures were obtained.

Now while the three sampling probabilities differ they all have the same likelihood:

L ¼ pr(1� p)n�r:

The probabilities of r successes and n 2 r failures under these sampling

methods are:

fn ¼
n

r

� �
L r ¼ 0, 1, 2, . . . , n

fr ¼
n� 1

r � 1

� �
L n ¼ r, r þ 1, . . .

fn�r ¼
n� 1

n� r � 1

� �
L n ¼ r þ 1, r þ 2, . . .

where fa denotes the probability where subscript a is fixed for sampling.

Example 3.2

Suppose the data given are r ¼ 1, n ¼ 5. Then a simple test of significance for

H0 : p ¼ 1
2
vs. p , 1

2
depends critically on the sampling distribution, since

Pn ¼
5

0

� �
1

2

� �5

þ
5

1

� �
1

2

� �5

¼
6

32
¼

3

16
;

Pr ¼ P½N � 5jr ¼ 1� ¼ 1� P(N � 4jr ¼ 1) ¼ 1�
X4
n¼1

P(njr ¼ 1)

¼ 1� ½P½N ¼ 1� þ P½N ¼ 2� þ P½N ¼ 3� þ P(N ¼ 4)�

¼ 1�
1

2
þ

1

0

� �
1

2

� �2

þ
2

0

� �
1

2

� �3

þ
3

0

� �
1

2

� �4
" #

¼ 1�
1

2
�
1

4
�
1

8
�

1

16
¼

1

16
;
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Pn�r ¼
n� 1

n� r � 1

 !
L ¼

n� 1

r

 !
L, n � r þ 1

¼ P½N � 5� ¼ 1� P½N � 4� ¼ 1�
X4
n¼2

P(njr ¼ 1)

¼ 1�
1

0

 !
1

2

� �2

þ
2

1

 !
1

2

� �3

þ
3

2

 !
1

2

� �4
" #

¼ 1�
1

4
þ
2

8
þ

3

16

� �
¼ 1�

11

16
¼

5

16
:

Here significance testing provides three different P values but adherence to LP

would require making the same inference assuming no structural features having

inferential relevance.

3.4 THE 2 3 2 TABLE

If we are dealing with the classical 2� 2 table, then the random values within

Table 3.2 have the multinomial probability function

fn ¼ f (r1, r2, n1 � r1, n2 � r2)

¼
n

r1, r2, n1 � r1, n2 � r2

� �
pr1
11pn1�r1

12 pr2
21pn2�r2

22 ,
(3:4:1)

subject to the four arguments summing to n and
P

i, j pij ¼ 1, with prescribed sample

size n. Let

p1 ¼
p11

p11 þ p12

, p2 ¼
p21

p21 þ p22

:

Table 3.2: Classical 2 3 2 Table

A Ā

B p11 p12 p1.

r1 n12 r1 n1

B̄ p21 p22 p2.

r2 n22 r2 n2

r p�1 n 2 r p�2 n 1
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I. Independence: p11 ¼ p1:p:1, p12 ¼ p1:p:2, p21 ¼ p2:p:1, p22 ¼ p2:p:2

II. Equality: p1 ¼ p2

It is easy to show that I holds if and only if II holds.

Large Sample Test—Chi-Square test

X2 ¼ n½r1(n2 � r2)� r2(n1 � r1)�
2=rn1n2(n� r)

is x2 with one degree of freedom asymptotically whether the sampling distribution is

multinomial or independent binomials. Note that

fn ¼ f (r1, r2jn1, n2)f (n1jn)

¼
n1

r1

� �
pr1
1 (1� p1)

n1�r1
n2

r2

� �
pr2
2 (1� p2)

n2�r2
n

n1

� �
gn1 (1� g)n2 ,

(3:4:2)

where g ¼ p11 þ p12 ¼ p1.

Inference about a function, g(p1, p2), will be the same from fn as from the first

two factors of the right-hand side of (3.4.2) by invoking the extension of the

usual Likelihood Principle, ELP.

If we now condition one of the other marginal sums, say r ¼ r1þ r2, then n 2 r is

also fixed and we have a conditional on all of the marginals. This yields

f (r1jr, n1, n2) ¼
n1

r1

� �
n2

r � r1

� �
Cr1

Xb

j¼a

n1

j

� �
n2

r � j

� �
C j,

,
(3:4:3)

where b ¼ min(r, n1) and a ¼ max(r 2 n2, 0) and C ¼ p1(1� p2)=p2(1� p1): Note
that C ¼ 1 iff p1 ¼ p2.

This was originally proposed by Fisher who provided us with the exact test under

H0 : C ¼ 1 determined from the hypergeometric probability function,

f (r1) ¼
n1

r1

� �
n2

r � r1

� �
n

r

� �
:

�
(3:4:4)

Note that the likelihood for the independent binomials depends on two parameters

and cannot be factored, that is, for IB representing independent binomials,

fIB ¼
n1

r1

� �
n2

r2

� �
Cr1 (1� p2)

n�rpr
2 1þ

p2C

1� p2

� �n1
�

(3:4:5)

and therefore LP is violated when using (3.4.3). Hence Fisher’s exact test loses some

information if the sampling situation started out as a multinomial or two independent

binomials.
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Barnard (1945) provided the example shown in Table 3.3, where S ¼ survived,

D ¼ died, T ¼ treatment, C ¼ control, and where H0 : T ¼ C versus H1 : T . C.

For this table, assuming sampling was from two independent binomial distributions

where H0 : p1 ¼ p2 we obtain

f (r1, r2jp) ¼
3

r1

� �
3

r2

� �
pr(1� p)6�r:

The possible events are given in Table 3.4 for this type of sample: Events 4, 7, 10,

and 13 belong to the reference set associated with the hypergeometric probability

function, and

P(13) ¼
1

6

3

� � ¼ 1

20
: (3:4:6)

Now for independent binomials,

P(13) ¼ p3(1� p)3 �
1

2

� �6

¼
1

64
: (3:4:7)

So one might argue that the P-value was not more than 1
64
. Although Barnard

(1945) originally proposed this view he later recanted in favor of the hypergeometric

P-value of 1
20
, which was favored by Fisher.

Consider the following problem: A laboratory claims its diagnoses are better than

random. The laboratory is tested by presenting it with n test specimens and is told

that n1 of the n, are positive and n2 are negative. The laboratory will divide its results

such that n1 are positive and n2 are negative. Suppose their results say that r1 of the

n1 are positive and n12 r1 are negative, while among the negative n2 the laboratory

will divide its results as saying n12 r1 are positive which leaves n22 n1þ r1 as

negative. Table 3.5 illustrates the situation. The null and alternative hypotheses

are: H0: the results are random; H1: the results are better than random.

Under H0:

P(r1) ¼

n1

r1

� �
n2

n1 � r1

� �

n

n1

� � :

Table 3.3: A 2 3 2 Table

S D

T 3 0 3

C 0 3 3

3 3
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For n1 ¼ 5, n2 ¼ 3, r1 ¼ 4, r2 ¼ 1, we obtain

P(r1 ¼ 5) ¼

5

5

� �
3

0

� �

8

5

� � ¼
1

56
, P(r1 ¼ 4) ¼

5

4

� �
3

1

� �

8

5

� � ¼
15

56
,

P(r1 ¼ 3) ¼

5

3

� �
3

2

� �

8

5

� � ¼
30

56
; P(r1 ¼ 2) ¼

5

2

� �
3

3

� �

8

5

� � ¼
10

56
:

Table 3.4: 2 3 2 Tables

(1) (2) (3) (4)

S D S D S D S D

T 0 3 0 3 0 3 0 3 3

C 0 3 1 2 2 1 3 0 3

0 6 1 5 2 4 3 3 6

# of ways
Probability

1 3 3 1 8

(12 p)6 p(12 p)5 p2(12 p)4 p3(12 p)3

(5) (6) (7) (8)

T 1 2 1 2 1 2 1 2 3

C 0 3 1 2 2 1 3 0 3

1 5 2 4 3 3 4 2 6

# of ways
Probability

3 9 9 3 24

p(12 p)5 p2(12 p)4 p3(12 p)3 p4(12 p)2

(9) (10) (11) (12)

T 2 1 2 1 2 1 2 1 3

C 0 3 1 2 2 1 3 0 3

2 4 3 3 4 2 5 1 6

# of ways
Probability

3 9 9 3 24

p2(12 p)4 p3(12 p)3 p4(12 p)2 p5(12 p)

(13) (14) (15) (16)

T 3 0 3 0 3 0 3 0 3

C 0 3 1 2 2 1 3 0 3

3 3 4 2 5 1 6 0 6

# of ways 1 3 3 1 8

Probability p3(12 p)3 p4(12 p)2 p5(12 p) p6
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Observing r1 ¼ 5 yields P , 0.02 provides evidence for rejecting H0.

Fisher’s Tea–Taster (1935): A woman claimed she could tell whether the milk (M)

was poured into the tea (T) or the tea into the milk. Fisher’s proposed test was to

have 4 cups such that T �! M and 4 cups M �! T. The Tea Taster was told the

situation and she was to divide the cups. Table 3.6 illustrates this.

We calculate the various possibilities,

P(4) ¼

4

4

� �
4

0

� �

8

4

� � ¼
1

70
, P(3) ¼

4

3

� �
4

1

� �

70
¼

16

70
, P(2) ¼

4

2

� �
4

2

� �

70
¼

36

70
,

P(1) ¼

4

1

� �
4

3

� �

70
¼

16

70
, P(0) ¼

4

0

� �
4

4

� �

70
¼

1

70
:

If the Tea–Taster correctly identified all the cups, the chance of this happening

under a null hypothesis of random guessing is P ¼ 1
70
which presumably would pro-

vide evidence against the null hypothesis of random guessing.

3.5 SAMPLING ISSUES

There are many other ways of sampling that can lead to a 2 � 2 table. For example,

we can allow n to be random (negative multinomial sampling) and condition on any

Table 3.5: Laboratory Positives and Negatives

Laboratory reports

positive negative

positive r1 n12 r1 n1

True

negative n12 r1 n22 n1þ r1 n2

n1 n2 n

Table 3.6: The Lady Tasting Tea

Tea–Taster Assertion

T! M M! T

Actual T! M r1 42 r1 4

Occurrence M! T 42 r1 r1 4

4 4 8
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one of the marginals or tabular entries. Suppose then for n random we sample until a

fixed value of n1 is achieved. We then find

fn1 ¼ f (r1, r2, n jn1) ¼ f (r1, r2 jn1, n)f (n jn1)

¼
n1

r1

� �
pr1
1 (1� p1)

n1�r1
n2

r2

� �
pr2
2 (1� p2)

n2�r2
n� 1

n1 � 1

� �
gn1 (1� g)n2 :

(3:5:1)

However, the likelihood for p1 and p2 is still the same, although the overall

sampling distribution is obviously different than the usual multinomial. Hence infer-

ence about functions of p1 and p2, according to the ELP, is still the same as when we

assumed multinomial sampling.

Negative multinomial sampling can also occur if one sampled n until a fixed r is

achieved. In this case we get

fr ¼ f (r1, n1, n2 j r) ¼ f (n1, n2 j r1, r2)f (r1 j r)

¼
n1 � 1

r1 � 1

� �
pr1
1 (1� p1)

n1�r1
n2 � 1

r2 � 1

� �
pr2
2 (1� p2)

n2�r2
r

r1

� �
ar1 (1� a)r2 ;

(3:5:2)

where a ¼ p11/(p11þ p21).

Although the likelihood for p1 and p2 arises from two independent negative bino-

mials it is the same as in the positive multinomial and the independent binomials

case. However, a frequentist can condition on n1þ n2 yielding a sampling prob-

ability function

f (n1 j r1, r2, n) ¼
n1 � 1

r1 � 1

� �

�
n� n1 � 1

r2 � 1

� �
un1

Xb

j¼a

j� 1

r1 � 1

� �
n� j� 1

r2 � 1

� �
u j,

,
(3:5:3)

where a ¼ min(r1, n� r2), b ¼ n� r2 and u ¼ (1� p1=1� p2), that is, the ratio

of the failure probabilities. Here the parametrization differs from (3.4.3–3.4.5)

and the likelihood from (3.5.2) which is also the likelihood for independent nega-

tive binomials. Again the ELP is not sustained. Since u ¼ 1 is equivalent to

p1 ¼ p2, we have a frequentist significance test based on the negative hyper-

geometric distribution,

f (n1jr1, r2, n) ¼

n1 � 1

r1 � 1

� �
n� n1 � 1

r2 � 1

� �

n� 1

r1 þ r2 � 1

� � : (3:5:4)
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The “Mixed” Sampling Case

Another negative multinomial sampling approach stops when r1, say, attains a given

value. Here

fr1 ¼ f (r2, n1, n jr1) ¼ f (r2, n jn1, r1)f (n1 jr1)

¼ f (n1 jr1)f (r2 jn, n1, r1)f (n jn1, r1)

¼
n1 � 1

r1 � 1

� �
pr1
1 (1� p1)

n1�r1
n1

r2

� �

� pr2
2 (1� p2)

n2�r2
n� 1

n1 � 1

� �
gn1 (1� g)n�n1 : (3:5:5)

Again, the likelihood for p1 and p2 is preserved for inference that respects

ELP but here we now encounter a difficulty for conditional frequentist inference

regarding p1 and p2. What does one condition on to obtain an exact significance

test on p1 ¼ p2? Of course, this problem would also occur when we start with

one sample that is binomial, say, a control, and the other negative binomial,

for say a new treatment where one would like to stop the latter trial after a

given number of failures. Note that this problem would persist for fr2 , fn1�r1

and fn2�r2 . Hence in these four cases there is no exact conditional Fisher type

test for p1 ¼ p2.

Next we examine these issues for the 2 � 2 table. Here we list the various ways

one can sample in constructing a 2 � 2 table such that one of the nine values is fixed,

that is, when that value appears sampling ceases. For 7 out of the 9 cases the entire

likelihood is the same, where

L ¼ gn1 (1� g)n2
Y2
i�1

pri

i (1� pi)
ni�ri ¼ L(g)L(p1, p2) (3:5:6)

with sampling probabilities

fn ¼
n1

r1

� �
n2

r2

� �
n

n1

� �
L,

fn1 ¼
n1

r1

� �
n2

r2

� �
n� 1

n1 � 1

� �
L ¼ f (r1, r2, njn1)

¼ f (r1, r2jn, n1)f (njn1),

fn2 ¼
n1

r1

� �
n2

r2

� �
n� 1

n2 � 1

� �
L ¼ f (r1, r2jn2, n)f (njn2),
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fr1 ¼
n1 � 1

r1 � 1

� �
n2

r2

� �
n� 1

n1 � 1

� �
L ¼ f (r2, n1, njr1)

¼ f (r2, njn1, r1)f (n1jr1)

¼ f (r2jn1, r1, n2)f (njn1, r2) � f (n1jr1),

fr2 ¼
n1

r1

� �
n2 � 1

r2 � 1

� �
n� 1

n2 � 1

� �
L,

fn1�r1 ¼
n1 � 1

n1 � r1 � 1

� �
n2

r2

� �
n� 1

n1 � 1

� �
L,

fn2�r2 ¼
n1

r1

� �
n2 � 1

n2 � r2 � 1

� �
n� 1

n2 � 1

� �
L:

The other two, whose total likelihoods differ from the above, are still equivalent

to the above for inference on (p1, p2) by the virtue of the ELP.

fr ¼
n1 � 1

r1 � 1

� �
n2 � 1

r2 � 1

� �
r

r1

� �
L(p1, p2)a

r1 (1� a)r2 ¼ f (r1, n1, n2jr)

¼ f (n1, n2jr1, r2) f (r1jr),

fn�r ¼
n1 � 1

n1 � r1 � 1

� �
n2 � 1

n2 � r2 � 1

� �
n� r

n� r1

� �

� L(p1, p2)b
n1�r1 (1� b)n2�r2 :

3.6 OTHER PRINCIPLES

1. Restricted Conditionality Principle RCP: Same preliminaries as LP.

E ¼ (S,m, u, f ) is a mixture of experiments Ei ¼ (Si,mi, u, fi) with mixture

probabilities qi independent of u. First we randomly select E1 or E2 with prob-

abilities q1 and q2 ¼ 1� q1, and then perform the chosen experiment Ei. Then

we recognize the sample D ¼ (i,Di) and f (Dju) ¼ qifi(Diju), i ¼ 1, 2. Then

RCP asserts Inf(E,D) ¼ Inf(Ei,Di).

Definition of Ancillary Statistic: A statisticC ¼ C(D) is ancillarywith respect to

u if fC(cju) is independent of u, so that an ancillary is non-informative about u.

C(D) maps S! Sc where each c [ Sc defines Sc ¼ (DjC(D) ¼ c). Define the

conditional experiment EDjC ¼ (Sc,m, u, fDjC(Djc)); and the marginal exper-

iment EC ¼ (Sc,m, u, fC(c)); where EC ¼ sample from Sc or sample from S

and observe c and EDjC ¼ conditional on C ¼ c, sample from Sc.

2. Unrestricted Conditionality Principle (UCP): When C is an ancillary

Inf(E,D) ¼ Inf(EDjC,D) concerning u. It is as if we performed EC and then

performed EDjC.
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3. Mathematical Equivalence Principle (MEP): For a single E, if f for all u [ Q

is such that f (Dju) ¼ f (D0ju) then

Inf(E, D) ¼ Inf(E,D0):

Note this is just a special case of ULP.

We show that ULP , (RCP,MEP). First assume ULP, so that Inf(E,D) ¼

Inf(E0,D0). Now suppose f (Dju) ¼ f (D0ju), then apply ULP so Inf(E,D0) ¼

Inf(E,D0), which is MEP. Further suppose, where C is an ancillary, and hence that

f (Dju) ¼ f (Djc, u)h(c), f (D0ju) ¼ f (D0jc, u)h(c):

Hence ULP implies that

Inf(E,D) ¼ Inf(E, DjC)

or UCP, and UCP implies RCP.

Conversely, assume (RCP, MEP) and that (E1,D1) and (E2,D2) generate

equivalent likelihoods

f1(D1ju) ¼ h(D1,D2)f2(D2ju):

We will use (RCP, MEP) to show Inf(E1,D1) ¼ Inf(E2,D2). Now let E be the

mixture experiment with probabilities (1þ h)�1 and h(1þ h)�1. Hence the

sample points in E are (1,D1) and (2,D2) and

f (1, D1ju) ¼ (1þ h)�1f1(D1ju) ¼ h(1þ h)�1f2(D2ju),

f (2, D2ju) ¼ h(1þ h)�1f2(D2ju):

Therefore f (1,D1ju) ¼ f (2,D2ju) so from MEP

Inf(E, (1,D1)) ¼ Inf(E, (2, D2):

Now apply RCP to both sides above so that

Inf(E1,D1) ¼ Inf(E, u, (1,D1)) ¼ Inf(E, u, (2,D2)) ¼ Inf(E2,D2);

therefore (RCP,MEP) ¼) ULP
:
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C H A P T E R F O U R

Testing Hypotheses

This chapter discusses the foundational aspects of frequentist hypothesis testing.

The Neyman-Pearson theory of most powerful (MP) and uniformly most powerful

(UMP) tests is developed. Simple illustrations are given as examples of how the

theory applies and also to show potential problems associated with the frequentist

methodology. The concept of risk function is introduced and applied to the testing

scenario. An illustration of a UMP test for a point null with a two sided alternative in

a model without the monotone likelihood ratio (MLR) property is given. A necessary

condition for the existence of a UMP test for a two-sided alternative with a point null

is derived.

4.1 HYPOTHESIS TESTING VIA THE REPEATED

SAMPLING PRINCIPLE

Neyman-Pearson (N-P) (1933) Theory of Hypotheses Testing is based on the

repeated sampling principle and is basically a two decision procedure.

We will collect data D and assume we have two rival hypotheses about the popu-

lations from which the data were generated: H0 (the null hypothesis) and H1 (the

alternative hypothesis). We assume a sample space S of all possible outcomes of

the data D. A rule is then formulated for the rejection of H0 or H1 in the following

manner. Choose a subset s (critical region) of S and

if D [ s reject H0 and accept H1

if D [ S� s reject H1 and accept H0

according to

P(D [ sjH0) ¼ e (size) � a (level) associated with the test (Type 1 error)

P(D [ sjH1) ¼ 1� b (power of the test)

P(D [ S� sjH1) ¼ b (Type 2 error)
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The two basic concepts are size and power and N-P theory dictates that we choose

a test (critical region) which results in small size and large power. At this juncture

we assume size equals level and later show how size and level can be equated. Now

a ¼ P(accepting H1jH0) or 1� a ¼ P(accepting H0jH0)

and

1� b ¼ P(accepting H1jH1) or b ¼ P(accepting H0jH1):

Since there is no way of jointly minimizing size and maximizing power, N-P

suggest choosing small size a and then maximize power 12 b (or minimize b).

4.2 REMARKS ON SIZE

Before you have the data D it would be reasonable to require that you should have

small size (frequency of rejecting H0 when H0 is true). But this may mislead you

once you have the data, for example, suppose you want size ¼ .05 where the prob-

abilities for the data D ¼ (D1, D2, D3) are given in Table 4.1.

Presumably if you want size ¼ .05 you reject H0 if event D1 occurs and accept if

D2 or D3 occur. However if D1 occurs you are surely wrong to reject H0 since

P(D1jH1) ¼ 0. So you need more than size. Note that before making the test, all

tests of the same size provide us with the same chance of rejecting H0, but after the

data are in hand not all tests of the same size are equally good. In the N-P set up

we are forced to choose a test before we know what the sample value actually is,

even when our interest is in evaluating hypotheses with regard to the sample data

we have. Therefore if two tests T1 and T2 have the same size one might be led to

choose the test with greater power. That this is not necessarily the best course is

demonstrated in the following Example 4.1 and its variations, Hacking (1965).

Example 4.1

Let tests T1 and T2 have the same size for the setup of Table 4.2.

Let T1 reject H0 if D3 occurs: size ¼ 0:01 ¼ P(D3jH0), power ¼ 0:97 ¼
P(D3jH1).

Let T2 reject H0 if D1 or D2 occur: size ¼ 0:01 ¼ P(D1 or D2jH0), power ¼

0:02 ¼ P(D1 or D2jH1).

Table 4.1: Probabilities for Data under H0 and H1

P(D1jH0) ¼ :05 P(D1jH1) ¼ 0

P(D2jH0) ¼ :85 P(D2jH1) ¼ :85
P(D3jH0) ¼ :10 P(D3jH1) ¼ :15
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Is T1 really a better test than T2 after an event D1 has occurred? Surely not, because

after D1 occurred it is clear T2 is the better test although before any D is observed T1
is far superior.

The test that is better before the data are collected need not be better after the data

are in hand. N-P did not stop with size and power alone. N-P theory states that if a

most powerful test exists it is the best.

Suppose among all regions (sets) s� having size e, that is,

P(D [ s�jH0) ¼ e,

that s is such that

P(D [ s�jH1) � P(D [ sjH1):

Hence for a given e, s is that region that maximizes power. Consider all possible tests

of size ¼ 0.01 in Table 4.3. Therefore T4 is most powerful among tests of size 0.01

and is best before or after D is observed.

Suppose we have a composite alternative say K ¼ {H1,H2} where now the setup

is as shown in Table 4.4. Consider again all tests of size 0.01 in Table 4.5. Here T4 is

now the uniformly most powerful (UMP) test of size 0.01. However, note what

happens if D2 occurs. Using T4, you accept H0 and reject H2 even though the

support for H2 is 1.9 times greater than for H0. Should you then reject H2 if D2

has occurred?

4.3 UNIFORMLY MOST POWERFUL TESTS

Suppose H and K are both composite hypotheses. Then if for all s� satisfying

P(D [ s�jH) � a (level of the test) for all H,

Table 4.2: Probabilities under H0 and H1

D ¼ D1 D2 D3 D4

H0: 0 .01 .01 .98

H1: .01 .01 .97 .01

Table 4.3: Size and Power H0 versus H1

Test Critical Region Size Power under H1

T1 reject H0 if D3 0.01 0.97

T2 reject H0 if D1 or D2 0.01 0.02

T3 reject H0 if D2 0.01 0.01

T4 reject H0 if D3 or D1 0.01 0.98
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and if s is such that

P(D [ s�jK) � P(D [ sjK) for all K,

then the test based on s is UMP. Often H is a simple H0 and K ¼ H1 depends on a

parameter that is defined over an interval. Consider the following example, for

0 , p , 1:

P(R ¼ rjp) ¼
n

r

� �
pr(1� p)n�r:

Denote the likelihood as

L(pjr) ¼ pr(1� p)n�r for observed r:

Suppose H0 : p ¼
1
2
, H1 : p , 1

2
and the critical region is s ¼ {0, 1, 2, . . . , c},

where

size ¼ a ¼
Xc
j¼0

n

j

� �
1

2

� �n

;

power ¼ 1� b(p) ¼
Xc
j¼0

n

j

� �
p j(1� p)n�j:

Consider the following:

P½R [ sjp� ¼ 1� b(p) 0 , p �
1

2
:

Table 4.5: Size and Power H0 versus H2

Size Power

T1 .01 .970

T2 .01 .020

T3 .01 .019

T4 .01 .971

Table 4.4: Probabilities under H0, H1, and H2

D1 D2 D3 D4

H0 0 .01 .01 .98

H1 .01 .01 .97 .01

H2 .001 .019 .97 .01
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Now suppose the statisticians were given the following probabilities from a less

informative binary experiment, where only R [ s or R � s is observed:

P(R [ sjH1) ¼ 1� b(p), P(R � sjH1) ¼ b(p),

P(R [ sjH0) ¼ a ¼ 1� b(1=2), P(R � sjH0) ¼ 1� a ¼ b(1=2):

Hence

L(pjR [ s) ¼ 1� b(p), L(pjR � s) ¼ b(p):

Then Q ¼
L(H0)

L(H1)
¼

1� b( 1
2
)

1� b(p)
¼

a

1� b(p)
if R [ s,

Q ¼
L(H0)

L(H1)
¼

b( 1
2
)

b(p)
¼

1� a

b(p)
if R � s:

Note the likelihood for the less informative experiment is exactly the power func-

tion or 1 minus the power function from the initially more informative experimental

setup. A less pleasant way of saying this is that the N-P approach may not use all of

the information available since it changes the situation into a Bernoulli variate by

collapsing the sample space.

Example 4.2

Let {Xi, i ¼ 1, . . . , 5} be i.i.d. Bernoulli trials with probability p of success. Let R ¼P5
i¼1 Xi, P½Xi ¼ 1� ¼ p ¼ 1� P½Xi ¼ 0�:
Consider

H0 : p ¼
1

2
, H1 : p ¼ 0:1,

P(R ¼ rjp) ¼
5

r

� �
pr(1� p)5�r:

If we want a test of size exactly 1/16 the only one available is to reject if R ¼ 0

or 5 but to reject H0 in favor of H1 when R ¼ 5 is absurd. This calls for something

else, namely, a randomized test which rejects at R ¼ 0 and at R ¼ 1 with probability

1/5 since

e ¼ P R ¼ 0jp ¼
1

2

� �
þ
1

5
P R ¼ 1jp ¼

1

2

� �
¼

1

32
þ
1

5
�

5

32
¼

1

16
,

which is the required size. It has power 1� b ¼ P(R ¼ 0jp ¼ :1) þ
1
5
P(R ¼ 1jp ¼ :1) ¼ :59049þ 1

5
� :32805 ¼ :6561. This will be the MP test of

size � 1
16

that is, of level 1
16
. This is the kind of test advocated by N-P theory.

So for N-P theory we will use the following notation. Let T(D) be the probability

of rejecting H0 so that 0 � T(D) � 1 for each D. Now for a continuous f (D)

4.3 UNIFORMLY MOST POWERFUL TESTS 29



generally speaking T(D) ¼ 0 or 1. But for a discrete case

e ¼ EH0
½T(D)� ¼

X
D[S

T(D)P(DjH0)

1� b ¼ EH1
½T(D)� ¼

X
D[S

T(D)P(DjH1)

or if Lebesgue-Stieltjes integrals are used

H0 : F ¼ F0(D) vs. H1 : F ¼ F1(D);

e ¼

ð

S

T(D) dF0 and 1� b ¼

ð

S

T(D) dF1:

The use of Radon-Nykodym derivatives for the generalized densities depending

on a common measure leads to

H0 : f0 ¼ f0(D) vs. H1 : f1 ¼ f1(D)

P(D [ AjH0) ¼

ð

A

f0(D)dm

P(D [ AjH1) ¼

ð

A

f1(D)dm for a measurable set A:

The theory of hypothesis testing in its most elegant and general form requires

generalized densities (Lehmann, 1959).

4.4 NEYMAN-PEARSON FUNDAMENTAL LEMMA

Lemma 4.1 Let F0(D) and F1(D) be distribution functions possessing generalized

densities f0(D) and f1(D) with respect to m. Let H0 : f0(D) vs. H1 : f1(D) and

T(D) ¼ P½rejecting H0�. Then

1. Existence: For testing H0 vs. H1 there exists a test T(D) and a constant k such

that for any given a, 0 � a � 1

(a) EH0
(T(D)) ¼ a ¼

Ð
S
T(D)f0(D)dm

(b) T(D) ¼
1 if f0(D) , kf1(D)

0 if f0(D) . kf1(D)

�
.

2. Sufficiency: If a test satisfies (a) and (b) then it is the most powerful (MP) for

testing H0 vs. H1 at level a.

Table 4.6: Binomial Probabilities p¼ 1
2
and 0.1

R 5 4 3 2 1 0

P(Rjp ¼ 1
2
) 1

32
5
32

10
32

10
32

5
32

1
32

P(Rjp ¼ :1) 0.00001 0.00045 0.00810 0.07290 0.32805 0.59049
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3. Necessity: If T(D) is most powerful (MP) at level a for H0 vs. H1 then for

some k it satisfies (a) and (b) unless there exists a test of size less than a

and power 1.

Proof: For a ¼ 0 or a ¼ 1 let k ¼ 0 or 1 respectively, hence we restrict a

such that 0 , a , 1.

1. Existence: Let

a(k) ¼ P(f0 � kf1jH0) ¼ P(f0 , kf1jH0)þ P(f0 ¼ kf1jH0):

Now for k , 0, a(k) ¼ 0 and a(k) is a monotone non-decreasing function of k

continuous on the right and a(1) ¼ 1. Hence a(k) is a distribution function.

Therefore k is such that

a(k � 0) � a � a(k), P
f0

f1
, kjH0

� �
� a � P

f0

f1
� kjH0

� �
:

Hence

P
f0

f1
¼ kjH0

� �
¼ a(k)� a(k � 0):

Now let T(D) be such that

T(D) ¼

1 f0 , kf1
a� a(k � 0)

a(k)� a(k � 0)
f0 ¼ kf1

0 f0 . kf1:

8>><
>>:

If a(k) ¼ a(k2 0) there is no need for the middle term since

P( f0 ¼ kf1) ¼ 0:

Hence we can produce a test with properties (a) and (b).

2. Sufficiency: If a test satisfies (a) and (b) then it is most powerful for testing

H0 against H1 at level a. A

Proof: Let T�(D) be any other test such that

EH0
ðT�ðDÞÞ � a:

Now consider

EH1
ðT�ðDÞÞ ¼

ð

S

T�f1dm ¼ 1� b�:
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Then

ð1� bÞ � ð1� b�Þ ¼

ð

S

ðT � T�Þ f1dm:

Divide S into 3 regions such that

Sþis the set of pointsDwhere T . T�, T . 0;

S�is the set of pointsDwhere T , T�, T , 1;

S0is the set of pointsDwhere T ¼ T�:

For D [ Sþ, T . 0 and f0 � kf1 or
f0
k
� f1. For D [ S�, T , 1 and f0 � kf1

or f0
k
� f1.

Hence

ð1� bÞ � ð1� b�Þ

¼

ð

Sþ
ðT � T�Þ f1dmþ

ð

S�
ðT � T�Þ f1dm

�

ð

Sþ
ðT � T�Þ

f0

k
dm�

ð

S�
ðT� � TÞ f1dm

�
1

k

ð

Sþ
ðT � T�Þ f0dm�

1

k

ð

S�
ðT� � TÞ f0dm

¼
1

k

ð

Sþ<S�
ðT � T�Þ f0dm ¼

1

k
ðEH0
ðTÞ � EH0

ðT�ÞÞ

¼
1

k
ða� EH0

ðT�ÞÞ � 0,

since EH0
ðT�Þ � a. Hence T(D) as defined is most powerful (MP) at level a.

3. Necessity: If a test is most powerful at level a then it is defined as in (a)

and (b). A

Proof: Let T� be MP at level a and let T satisfy (a) and (b). Now Sþ <
S2 is the set of points D where T = T�. Let S= be the set of points where

f0 = kf1.

Now S= > ðSþ < S�Þ ¼ s is the set of all points D for which either

fT� , T and f0 , kf1, g

or

fT� . T and f0 . kf1:g
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This can be now represented as follows:

f0 , kf1 f0 . kf1

T . T� ¼ S þ s ;

T , T� ¼ S 2 ; s

Now T . T� ) f0 , kf1 and T , T� ) f0 . kf1. If the measure of s,m(s) . 0

then

(1� b)� (1� b�) ¼

ð

s

(T � T�) f1 �
1

k
f0

� �
dm . 0 (A)

since the integrand is greater than zero. However, (A) contradicts the assumption

that T� is MP. Therefore m(s) ¼ 0 a:e:

Now suppose EH0
(T�) , a and 1� b� , 1. Then it would be possible to

add a set of points, possibly by randomization, to the rejection region until

either the size is a or the power is one. Thus either EH0
(T�) ¼ a or

EH1
(T�) ¼ 1. Therefore we have shown that the MP test is uniquely deter-

mined by (a) and (b) except on the set of points S0 where f0 ¼ kf1 and T

will be constant on their boundary f0 ¼ kf1.

Lastly, if there exists a test of power 1, the constant k in (b) is k ¼ 1 and onewill

acceptH0 only for thosepointswhere f0 ¼ kf1 even though the sizemaybe less than

a. If P( f0 ¼ kf1) ¼ 0 then the unique test is nonrandomized and is most powerful

for testing a simpleH0 against a simpleH1.Note that if there exists a test of power 1

theMPtest at levelaneednotbeunique since theremightbea test satisfying (a) and

(b) with a0 , a. A

We now show that, in the simple versus simple case, the MP test is also unbiased.

Corollary 4.1 (Unbiasedness). Let 12 b denote the power of the MP level a test

for H0 : f0 vs. H1 : f1. Then a , 12 b unless F0 ¼ F1.

Proof: Let T(D) be the test that rejects H0 with probability a no matter what D is.

Therefore

EH0
(T) ¼ a ¼ EH1

(T), a � 1� b:

If a ¼ 12 b then T is most powerful and must satisfy (a) and (b) of the N-P lemma,

which it contradicts unless f0 ¼ f1, so F0 ¼ F1. A

Reversing the inequalities in the NP test results in the least powerful test as will

be seen in the next corollary.

Corollary 4.2 (Smallest Power). For H0 : f0 vs. H1 : f1, the test

T(D) ¼
1 if f0 . kf1
0 if f0 , kf1

�

has the smallest power among all tests with size � a.
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Proof: Let any other test T� be of size � a. Then it has power 12 b�. Now

(1� b�)� (1� b) ¼

ð

Sþ
(T� � T)f1dmþ

ð

S�
(T� � T)f1dm,

where

Sþ ¼ all pointsD such that T� , T so that T . 0 and f0 � kf1;

S� ¼ all pointsD such that T� . T so that T , 1 and f0 � kf1:

Then

(1� b�)� (1� b) �
1

k

ð
Sþ

(T� � T)f0dmþ
1

k

ð
S�

(T� � T)f0 dm

�
1

k

ð

S

(T� � T)f0dm ¼
1

k
(a� � a) � 0:

A

The following corollary establishes that rejection regions for NP tests with

smaller size are nested within rejection regions for NP tests with larger size.

Corollary 4.3 (Nesting Corollary) Suppose T(D) satisfies

T ¼
1 f0 , kaf1
0 f0 . kaf1

,

�

with rejection set sa and

T 0(D) ¼
1 f0 , ka0 f1
0 f0 . ka0 f1

,

�

with rejection set sa0 . Then a0 . a implies sa # sa0 .

Proof: Now assume ka0 , ka so that

a ¼ P
f0

f1
, kajH0

� �
þ pP

f0

f1
¼ kajH0

� �
; aþ pb

, P
f0

f1
, ka0 jH0

� �
þ p0P

f0

f1
¼ ka0 jH0

� �
; a0 þ p0b0 ¼ a0:

But this implies that

aþ pb , a0 þ p0b0 � a0 þ b0:
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Since a � a0, this implies that p0b0 � pb . a� a0 � 0. But

a� a0 ¼ b0 þ P ka0 ,
f0

f1
, ka

� �
,

so that

0 � b0(p0 � 1)� pb . P ka0 ,
f0

f1
, ka

� �
� 0,

which is a contradiction. Hence ka0 � ka and sa # sa0 . A

Therefore it has been shown that the MP level a tests for simple H0 vs. simple H1

are nested in that for a , a0, sa , sa0 . But this need not hold for a composite nullH.

If Hi [ H and Kj [ K, then if among all tests T� of level a, that is,

E(T�jH) � a for all Hi [ H,

there exists a test T such that

E(T�jKj) � E(T jKj) for all Kj [ K,

then the test based on T is uniformly most powerful (UMP). Often H : u [ QH vs.

K : u [ QK . When UMP tests exist they are the ones recommended by N-P theory.

In the case of a simple H0 versus composite H1 these UMP tests are also likelihood

tests under fairly general conditions, but UMP tests do not exist in many situations

and not all likelihood tests are UMP.

The next lemma asserts that UMP tests are unbiased.

Lemma 4.2 If a UMP test of level a exists and has power 12 bK, then a � 12 bK,

for all alternatives K.

Proof: Since an a level test T�(D) ¼ a exists

E(T�(D) jH) ; a,

and

E(T�(D) jK) ; a ¼ 1� b�K :

Assume T is of level a and UMP. Then the power of T is at least as great as 12 bK
�

so that a ¼ 12 bK
� � 12 bK. A

Consider the following counterexample (Stein, 1951) to the nesting corollary

when H is composite.
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Example 4.3

Table 4.7 presents a scenario forH : H0 orH1 vs. K : H2. Consider testingH vs. K of

level 5
13
. Consider the test which rejects H0 or H1 when D ¼ 1 or 3. This test has size

5
13
and power 6

13
. It is easy to show that this is UMP for rejecting H vs. K at level 5

13
.

Now consider the test which rejects H0 or H1 at level
6
13
. Note if D ¼ 1 or 2 we

reject at level 6
13

and this test has power 7
13
. One can also show that this is UMP at

level 6
13
. Hence if D ¼ 3 we reject at level 5

13
but not at 6

13
. One then cannot really

argue that in all cases the level of rejection measures how strongly we believe the

data contradict the hypotheses. We also note that these tests are not likelihood

tests. Recall the definition of a likelihood test for H vs. K:

Reject if for every Hi [ H and some Kj [ K,

Q(D) ¼
P(DjHi)

P(DjKj)
, a:

In our case reject if

Q(D) ¼
max P(DjHi)

P(DjK)
, a:

Using Table 4.8, possible rejection regions are:

a R

a . 3
2

{1, 2, 3, 4}
4
3
, a � 3

2
{1, 2}

1 , a � 4
3

{1}

a � 1 {;}

Notice that D ¼ {1, 3} can never be the rejection region of the Likelihood test.

So the UMP test is not a likelihood test.

Table 4.8: Likelihood Ratios

D 1 2 3 4

Q(D) 1 4
3

3
2

3
2

Table 4.7: Probabilities under H and K

D 1 2 3 4

H

H0

H1

(
2
13

4
13

3
13

4
13

4
13

2
13

1
13

6
13

K H2
4
13

3
13

2
13

4
13
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4.5 MONOTONE LIKELIHOOD RATIO PROPERTY

For scalar u we suppose f (ujD) ¼ L(ujD) ¼ L(ujt(D)) and for all u0 , u00,

Q(t(D)ju0, u00) ¼
L(u0jt(D))

L(u00jt(D))

is a non-decreasing function of t(D) or as t(D) " Q ", that is, the support for

u0 vs. u00 does not decrease as t increases and does not increase as t decreases. We

call this a monotone likelihood ratio (MLR) property of L(ujt(D)).

Theorem 4.1 Let f (Dju) have theMLR property. To testH : u � u0 vs.K : u . u0
the following test T(D) is UMP at level a.

T(D) ¼

1 if t(D) , k e.g., reject H at level a,

p if t(D) ¼ k e.g., reject H with probability p,

0 if t(D) . k e.g., accept H,

8<
:

where k and p are determined by

a ¼ Eu0 (T(D)) ¼ P(t(D) , kju0)þ pP(t(D) ¼ kju0)

with power

1� b(u) ¼ Eu(T(D)) ¼ P(t(D) , kju)þ pP(t(D) ¼ kju),

which is an increasing function of u for all values u such that 12 b(u) , 1 and for any

u , u0 the test minimizes 12 b(u) among all test satisfying

Eu0 (T(D)) � a:

Proof: To show the test exists and Eu0 (T) ¼ a, Eu(T) ¼ 1� b(u) apply the NP

lemma to H : u ¼ u0 vs. K : u ¼ u1 . u0 so there exists a k and a p such that the

test satisfies (a) and (b), that is,

Q ¼
f (Dju0)

f (Dju1)
, c implies t(D) , k since Q " for t(D) " :

This test is MP for testing

H : u ¼ u0 vs. K : u ¼ u00 . u0 at level a0 ¼ 1� b(u0):
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Since a0 , 1� b(u00) by the unbiasedness Corollary 4.1 then for all u0 , u00,

1� b(u0) , 1� b(u00) and 12 b(u) is an increasing function for all u such that

12 b(u) , 1. Since 12 b(u) is nondecreasing the test satisfies:

(i) 12 b(u) ¼ Eu(T(D)) � a ¼ 12 b (u0) for u � u0.

Further the class of tests satisfying (i) is contained in the class satisfying

(ii) Eu0
(T(D)) � a (less restrictions in (ii) than in (i)).

Since the given test maximizes 12 b (u1) within the wider class (ii) it also

maximizes 12 b (u1) subject to (i) and since it does not depend on the

particular alternative u1 . u0 it is UMP against alternative K : u . u0
when H : u � u0. A

To show that 12 b(u) is minimized for u , u0, we note that this test reverses the

inequalities of the UMP test of u ¼ u0 versus u ¼ u1, u0. Hence it has minimum

power by the smallest power corollary for any test of size � a. Note that if Q "

as t(D) #, the inequalities are reversed:

Q , c ¼) t(D) . k reject H

t(D) ¼ k reject H with probability p

t(D) , k accept H

and the definition of 12b(u) is

1� b(u) ¼ P(t(D) . kju)þ pP(t(D) ¼ k):

Further, we can turn the hypotheses around

H : u � u0 K : u , u0:

Then if Q " as t(D) " then Q , c) t(D) , k and

a ¼ P(t(D) , kju0)þ pP(t(D) ¼ k)

1� b(u) ¼ P(t(D) , kju)þ pP(t(D) ¼ k):

Corollary 4.4 Let u be a scalar parameter and

f (Dju) ¼ c(u)eq(u)t(D)h(D),

where the range of D does not depend on u and q(u) is strictly monotonic in u. Then

there exists a UMP test T(D) for H : u � u0 vs. K : u . u0.

Proof: Note that

Q ¼
f (Dju0)

f (Dju00)
¼

c(u0)

c(u00)
et(D)½q(u

0)�q(u00)�
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for u0 , u00. Now as t(D) increases Q either increases or decreases depending on

whether q(u) decreases or increases, that is,

if q(u) # then q(u0) . q(u00) and Q " as t "

if q(u) " then Q " as t # :

Therefore, the monotone likelihood ratio property holds and the corollary is

established.

4.6 DECISION THEORY

Suppose we now consider the testing problem from a decision theoretic point

of view, that is, testing H : u � u0 vs. K : u . u0 with d0 the decision to accept

H and d1 the decision to accept K. Assume a loss function l(u, di). Now it appears

to be sensible to assume

l(u, d0) ¼ 0 if u � u0 and " for u . u0,

l(u, d1) ¼ 0 if u . u0; and " for u � u0:

Hence

(1) l(u, d1)� l(u, d0)
. 0 for u � u0
, 0 for u . u0:

�

Now recall that the risk function of a test T for a given u is the average loss

l(u, T) ¼ T(D)l(u, d1)þ (1� T(D))l(u, d0),

R(u, T) ¼ EDl(u, T) ¼ ED½T(D)l(u, d1)þ (1� T)l(u, d0)�:

Further suppose for tests T(D) and T�(D) that

(2) R(u,T�) � R(u,T) for all u,

(3) R(u,T�) , R(u, T) for some u.

Then T� dominates T and we say T is inadmissible. On the other hand if no such

T� exists then T is admissible. A class C of test (decision) procedures is complete

if for any test T not in C there exists a test T� in C dominating it. (A complete

class is minimal if it does not contain a complete subclass). A class C is essentially

complete if at least (2) holds. (A complete class is also essentially complete, a class

is minimal essentially complete if it does not contain an essentially complete

subclass).

Theorem 4.2 Under the assumption of the monotone likelihood ratio theorem,

the family of tests given there with 0 � a � 1 is essentially complete for the loss
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function given by (1). Also the family is minimal essentially complete provided the

set of points D for which f (Dju) . 0 is independent of u.

Proof: The risk of any test T is

R(u, T) ¼

ð
f (Dju)½Tl(u, d1)þ (1� T)l(u, d0)�dm

¼

ð
f (Dju)½l(u, d0)þ T(l(u, d1)� l(u, d0)�dm:

Similarly for a UMP test T�,

R(u, T�)� R(u, T) ¼

ð
f (Dju)(T� � T)(l(u, d1)� l(u, d0))dm

¼ (l(u, d1)� l(u, d0))Eu(T
� � T) � 0,

since (i) l(u, d1)� l(u, d0) . 0, and Eu(T
� � T) � 0 for u , u0, which follows

because T� is UMP so it minimizes power over H, and since (ii) l(u, d1)� l(u, d0) ,

0 and Eu(T
� � T) � 0 for u . u0. Therefore R(u,T�) � R(u,T) for all u. Thus the

family T� is essentially complete since (2) holds.

To show that the class is minimal essentially complete choose two tests T�1 and T
�
2

that belong to class UMP and have sizes a1 and a2 for testing u ¼ u0 vs. u . u0.

Then for a1 , a2,

Eu(T
�
1 ) , Eu(T

�
2 ) 8 u . u0,

since T�2 is UMP at level a2, unless Eu(T
�
1) ¼ 1. Further,

Eu(T
�
1 ) , Eu(T

�
2 ) 8 u , u0

because at level a1 , a2, T
�
1 has minimum power unless Eu(T

�
2) ¼ 0 for u ¼ u0.

Now since

R(u, T�1 )� R(u, T�2 ) ¼ ½l(u, d1)� l(u, d0)�Eu(T
�
1 � T�2 ),

R(u, T�1 ) .R(u,T�2 ) if u . u0; and

R(u, T�1 ) ,R(u,T�2 ) if u , u0:

Since Eu(T
�
2 ) ¼ 0 and Eu(T

�
1 ) ¼ 1 are excluded by assumption each of the two risk

functions are better than the other for some values of u. Hence the family is minimal

essentially complete. A
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4.7 TWO-SIDED TESTS

For two-sided tests we have, in particular,

H : u ¼ u0 vs. K : u = u0:

Do UMP tests exist here? Yes, but only in unusual cases. Note for the MLR property

one-sided UMP tests exist so for these situations the answer is no!

Example 4.4

Consider the example X1, . . . ,Xn i.i.d. from

f (x) ¼
e�(x�u) for u � x

0 elsewhere:

�

To test H0 : u ¼ u0 vs. H1 : u = u0 we first look at H0 : u ¼ u0 vs.

H1 : u ¼ u1 . u0. Let x(1) be the smallest observation. Then

L(ujx1, . . . , xn) ¼
e�S(xi�u) ¼ e�n�xþnu x(1) � u

0 x(1) , u
,

�

and

Q ¼
L(u0)

L(u1)
¼

1 u0 � x(1) , u1
en(u0�u1) , 1 u0 , u1 � x(1):

�

For the one-sided alternative the MLR property holds based on x(1), that is, Q # as

x(1) " so the UMP leavel a test for H : u ¼ u0 versus K : u . u0 rejects for x(1) . ca:
Similarly, the UMP test for H : u ¼ u0 versus K : u , u0 rejects for x(1) , c�a.

The density of X(1) is

f (x(1)ju) ¼ nen(u�x(1)) for x(1) � u,

and thus

Pu(x(1) . c) ¼ en(u�c), c . u:

Then ca ¼ u0 � log (a)=n and c�a ¼ u0 � log (1� a)=n. The corresponding powers

are:

b(u) ¼
aen(u�u0) u � ca,

1 u . ca
u � u0;

�

b�(u) ¼ 1� (1� a)en(u�u0), u � u0:
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Now for H0 : u ¼ u0 vs. H1 : u = u0,

Q ¼
L(u0)

L(u1)
¼

1 if u0 � x(1) , u1
en(u0�u1) , 1 u0 , u1 � x(1)

�
Q " as x(1) #

en(u0�u1) . 1 u1 , u0 � x(1)
0 u1 � x(1) , u0

�
Q " as x(1) "

8>><
>>:

:

The MLR property does not hold, but consider the rejection region {x(1) , u0 or

x(1) . ca},P(x(1) , u0jH0) ¼ 0 and P(x(1) . cajH0) ¼ a. But it is easy to show

that this test has the same power as the above two tests in their respective alterna-

tives. So the test is UMP for u0 . u1 and also for u0 , u1.

We now show that for testing u ¼ u0 vs. u = u0 a necessary condition for a UMP

test to exist is d log L(ujD)=du ¼ const = 0: Assuming d log L(ujD)=du is continu-

ous with respect to u, for any u1 = u0 expand in a Taylor series L(u1jD) ¼

L(u0jD)þ (u1 � u0)L
0(u�jD) where u� [ (u0, u1). Now if a UMP test exists then

the rejection region for any particular u1 is

(a)

L(u1jD)

L(u0jD)
¼ 1þ

(u1 � u0)L
0(u�jD)

L(u0jD)
� ka(u1)

(and randomize on the boundary if necessary). For all D,

ka(u0) ¼ 1 ¼
L(u0jD)

L(u0jD)

so

(b) ka(u1) ¼ 1þ (u1 � u0)k
0
a(u
��) where u�� [ (u0, u1).

Substitute (b) in (a) and obtain

(c) (u1 � u0)
L0(u�jD)
L(u0jD)

� k0a(u
��)

n o
� 0.

For the points d on the boundary of the rejection region,

1þ
(u1 � u0)L

0(u�jd)

L(u0jd)
¼ 1þ (u1 � u0)k

0
a(u
��)

or

k0a(u
��) ¼

L0(u�jd)

L(u0jd)

and from (c),

(u1 � u0)
L0(u�jD)

L(u0jD)
�
L0(u�jd)

L(u0jd)

� �
� 0:
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This holds for all u1, and all D in the rejection region including d. Now since u12 u0
changes sign the quantity in the brackets must be equal to 0.

For the points D outside of the rejection region L(u1jD)
L(u0jD)

� ka(u1) so the same argu-

ment leads to

(u1 � u0)
L0(u�jD)

L(u0jD)
�
L0(u�jd)

L(u0jd)

� �
� 0

for all D not in the rejection region but including d. Hence again the quantity in the

brackets must be equal—this is true for all D inside or outside the rejection region.

Therefore,

L0(u�jD)

L(u0jD)
¼

L0(u�jd)

L(u0jd)
¼ constant:

Then the assumed continuity of L0 with respect to u implies that as u1! u0

L0(u�jD)

L(u0jD)
¼

L0(u0jD)

L(u0jD)
¼

d log L(ujD)

du

����
u¼u0

¼ constant (in DÞ:

Since the proof does not depend on a particular u0 it holds for all u: Note if

E
d log L(ujD)

du

� �
¼ 0,

then

d log L(ujD)

du
= constant:
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C H A P T E R F I V E

Unbiased and Invariant Tests

Since UMP tests don’t always exist, statisticians have proceeded to find optimal

tests in more restricted classes. One such restriction is unbiasedness. Another is

invariance. This chapter develops the theory of uniformly most powerful

unbiased (UMPU) and invariant (UMPI) tests. When it is not possible to

optimize in these ways, it is still possible to make progress, at least on the

mathematical front. Locally most powerful (LMP) tests are those that have

greatest power in a neighborhood of the null, and locally most powerful

unbiased (LMPU) tests are most powerful in a neighborhood of the null,

among unbiased tests. These concepts and main results related to them are pre-

sented here. The theory is illustrated with examples and moreover, examples are

given that illustrate potential flaws. The concept of a “worse than useless” test

is illustrated using a commonly accepted procedure. The sequential probability

ratio test is also presented.

5.1 UNBIASED TESTS

Whenever a UMP test exists at level a, we have shown that a � 1� bK , that is, the

power is at least as large as the size. If this were not so then there would be a test

T� ; a which did not use the data and had greater power. Further, such a test is

sometimes termed as “worse than useless” since it has smaller power than the use-

less test T� ; a.

Now UMP tests do not always exist except in fairly restricted situations.

Therefore N-P theory proposes that in the absence of a UMP test, a test should

at least be unbiased, that is, 1� bK � a. Further, if among all unbiased tests at

level a, there exists one that is UMP then this is to be favored and termed

UMPU. So for a class of problems for which UMP tests do not exist there may

exist UMPU tests.
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5.2 ADMISSIBILITY AND TESTS SIMILAR ON THE BOUNDARY

A test T at level a is called admissible if there exists no other test that has power

no less than T for all alternatives while actually exceeding it for some alternatives,

that is, no other test has power that dominates the power of test T. Hence if T is

UMPU then it is admissible, that is, if a test T� dominates T then it also must be

unbiased and hence T is not UMPU which contradicts the assumption of T being

UMPU. Hence T is admissible.

Recall a test T which satisfies

1� bT (u) � a for u [ QH

1� bT (u) � a for u [ QK

is an unbiased test. If T is unbiased and 1� bT (u) is a continuous function of u there

is a boundary of values u [ w for which 1� bT (u) ¼ a. Such a level a test with

boundary w is said to be similar on the boundary.

Theorem 5.1 If f (Dju) is such that for every test T at level a the power function

1� bT (u) is continuous and a test T 0 is UMP among all level a tests similar on the

boundary then T 0 is UMPU.

Proof: The class of tests similar on the boundary contains the class of unbiased

tests, that is, if 1� bT (u) is continuous then every unbiased test is similar on the

boundary. Further if T 0 is UMP among similar tests it is at least as powerful as

any unbiased test and hence as T� ; a so that it is unbiased and hence UMPU.

A

Finding a UMP similar test is often easier than finding a UMPU test directly so

that this may provide a way of finding UMPU tests.

Theorem 5.2 Consider the exponential class for a scalar u

f (Dju) ¼ C(u)eut(D)k(D)

with monotonic likelihood ratio property and tests of H0 : u ¼ u0 vs. H1 : u = u0

and H : u0 � u � u1 vs. K : u � ½u0, u1�. For tests whose power is �a we can find

one such that it is UMP among all unbiased tests. This test T(D) is such that

T(D) ¼

1 if t(D) . k1 or t(D) , k2 for k1 . k2

p1 if t(D) ¼ k1

p2 if t(D) ¼ k2

0 if k2 , t(D) , k1

8>><
>>:

where k1, k2, p1, and p2 are determined from:

(a) For i¼ 0, 1,Eui(T(D))¼ a¼ P½t. k1jui� þ p1P(t¼ k1jui)þ p2P(t ¼ k2jui)þ

P(t, k2jui) and constants k1,k2,p1,p2 are determined by the above equation.
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If u0 ¼ u1 so that H0 : u¼ u0 vs. H1 : u= u0, then k1, k2, p1, and p2 are

determined by

(b) Eu0
½t(D)T(D)� ¼ aEu0

(t(D)) assuming it exists that is,

ð

t.k1

tf (Dju0)dmþ k1p1P(t ¼ k1ju0)þ k2p2P(t ¼ k2ju0)

þ

ð

t,k2

tf (Dju0)dm ¼ a

ð

S

tf (Dju0)dm:

A proof is given by Lehmann (1959). In particular for H0 : u ¼ u0 and f (tju0)

symmetric about a point g so that P(t , g� xju0) ¼ P(t . gþ xju0) for all x

or P(t � g , xju0) ¼ P(t � g . xju0) we can show that p1 ¼ p2, k1 ¼ 2g�

k2,P½t � k2ju0� ¼ a=2 ¼ P(tj � k1ju0) and (b) becomes

Eu0
(tT) ¼ Eu0

½(t � g)T � þ gEu0
(T) ¼ Eu0

½(t � g)T� þ ga ¼ aEu0
(t) ¼ ag

or Eu0
½(t � g)T � ¼ 0.

It is easy to show that this leads to

k1 � g ¼ g� k2 and p1 ¼ p2:

Consider H : u [ QH vs. K : u [ QK

Recall that a test T is unbiased if

1� bT (u) � a for u [ QH , 1� bT (u) � a for u [ QK

and if 1� bT (u) is continuous there is a boundary of values w such that 1� bT (u) ¼

a for u [ w and such a level a test is said to be similar on the boundary. If T is a

non-randomized test with rejection region sa

P(D [ saju [ w) ¼ a independent of u

and, of course, with sample space S

P(D [ Sju [ Q) ¼ 1 independent of u

so sa is called a similar region, that is, similar to the sample space. Also t(D) will

turn out to be a sufficient statistic if f (Djt) is independent of u (see Section 7.7

for a more formal definition of sufficiency).
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5.3 NEYMAN STRUCTURE AND COMPLETENESS

Now if there is a sufficient statistic t(D) for u then any test T such that

EDjt(T(D)jt(D); u [ w) ¼ a

is called a test of Neyman structure (NS) with respect to t(D). This is a level a test

since

Eu(T(D)ju [ w) ¼ EtEDjt(T(D)jt(D); u [ w) ¼ Et(a) ¼ a:

Now it is often easy to obtain a MP test among tests having Neyman structure

termed UMPNS. If every similar test has Neyman structure, this test would be

MP among similar tests or UMPS. A sufficient condition for a similar test to

have Neyman structure is bounded completeness of the family f (tju) of sufficient

statistics.

A family F of probability functions is complete if for any g(x) satisfying

E(g(x)) ¼ 0 for all f [ F ,

then g(x) ¼ 0:
A slightly weaker condition is “boundedly complete” in which the above holds

for all bounded functions g.

Theorem 5.3 Suppose for f (Dju), t(D) is a sufficient statistic. Then a necessary

and sufficient condition for all similar tests to have NS with respect to t(D) is that

f(t) be boundedly complete.

Proof of bounded completeness implies NS given similar tests:

Assume f (t) is boundedly complete and let T(D) be similar. Now E(T(D)� a) ¼ 0

for f (Dju) and if E(T(D)� ajt(D) ¼ t, u [ w) ¼ g(t) such that

0 ¼ ED(T(D)� a) ¼ EtEDjt(T(D)� a)jt(D) ¼ t, u [ w) ¼ Etg(t) ¼ 0:

Since T(D)� a is bounded then so is g(t) and from the bounded completeness of

f (t), Et(g(t)) ¼ 0 implies g(t) ¼ 0 such that

E(T(D)� ajt(D) ¼ t, u [ w) ¼ 0 or E(T(D)jt(D) ¼ t, u [ w) ¼ a or NS:

Proof that lack of bounded completeness implies lack of NS:

If f (t) is not boundedly complete then although g(t) is bounded that is, jg(t)j � K,

then E(g(t)) ¼ 0 but g(t) = 0 with positive probability for f (t). Let similar

test T(t) ¼ ag(t)þ a where a ¼ min 1
K

(a, 1� a) then T (t) is a test function since
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0 � T(t) � 1 and it is a similar test since E(T(t)) ¼ aE(g(t))þ a ¼ a for f (t) but it

does not have NS since T(t) = a with positive probability for some f (t).

Similar tests are desirable when nuisance parameters exist that is, f (Dju, l) where

u [ Q and l [ L. Suppose H0 : u ¼ u0, l [ L vs. H1 : u = u0, l [ L and

f (Dju, l) admits a sufficient statistic tl for every fixed u in the sense

f (Dju, l) ¼ f (Djtl, u) f (tljl, u):

Now for u ¼ u0

a ¼ E½T(D)jtl, u0� ¼

ð
T(D) f (Djtl, u0)dm

independent of l. Thus

a ¼ Etl(a) ¼ EtlEDjtl ½T(D)jtl, u0� ¼ ED½T(D)jl, u0�

and we have a similar test independent of l. One can then attempt to find a most

powerful test among all similar tests by using the conditional densities.

Q ¼
fDjtl (Djtl,u0)

fDjtl (Djtl, u1)
� ca:

If the same region is obtained for all u1 = u0,l [ L then we have a level a

UMPS test. When this doesn’t exist we sometimes can find a UMPUS test, that

is, uniformly most powerful unbiased similar test and under certain circumstances

this will turn out to be UMPU.

Theorem 5.4 If f (Dju) ¼ C(u, l)euu(D)þlt(D)h(D) then the UMPU test for H0 : u ¼

u0,leL vs:H1 : u = u0,leL

T(u, t) ¼

1 if u , k1(t) or u . k2(t)

p1 if u ¼ k1(t)

p2 if u ¼ k2(t)

0 if k1(t) , u , k2(t)

8>><
>>:

where k1, k2, p1, and p2 are determined by

(a) Eujt½T(u, t)jt,u0� ¼ a,

(b) Eujt½uT(u, t)jt, u0� ¼ aEujt(ujt,u0),

and power 1� b(u, t) ¼ Eujt½T(u, t)jt, u�.

Note that Et(1� b(u, t)) ¼ EtEujt½T(u, t)jt, u� ¼ Et, u(T(u, t)ju, l) ¼ 1� b(u,l)

that is, 1� b(u, t) is an unbiased estimate of 1� b(u,l) but it cannot be used to deter-

mine sample size in advance since 1� b(u, t) depends on the sample value of t.
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For proof, see Lehmann (1959).

Example 5.1

Let

f ¼ f (r1, r2jp1, p2) ¼
n1

r1

� �
n2

r2

� �Y2

i¼1

prii (1� pi)
ni�ri :

For l ¼ p2 and u ¼ p1(1� p2)=p2(1� p1),

f ¼
n1

r1

� �
,

n2

r2

� �
ur1

1

1þ uðl=1� lÞ

� �n1 l

1� l

� �r1þr2

(1� l)n2

¼ (1� l)n2
1

1þ uðl=1� lÞ

� �n1

ur1
l

1� l

� �r1þr2 n1

r1

� �
n2

r2

� �

¼ c(u, l)eu log uþt log
l

1�l

� �
n1

u

� �
n2

t � u

� �
,

where u ¼ r1; t ¼ r1 þ r2 and

f (ujt, u) ¼

n1

u

� �
n2

t � u

� �
uu

P
j

n1

j

� �
n2

t � j

� �
u j

:

Using Theorem 5.2, the test for H0 : u ¼ 1 vs. H1 : u = 1 is a similar test and is

UMPU when randomization is used on the boundary.

Example 5.2

Consider X � f (x) ¼
e�u1ux1

x!
and Y � f (y) ¼

e�u2u
y

2

y!
.

TestH0 : u1 ¼ u2 vs.H1 : u1 = u2 or, equivalently,H0 : u1

u2
¼ p ¼ 1 vs.H1 : p = 1

f (x, y) ¼
e�(u1þu2)ux1u

y
2

x!y!
¼

e�(u1þu2)

x!y!
e
x log

u1
u2
þ(xþy) log u2 :

Let u1

u2
¼ p, x ¼ u, xþ y ¼ t, l ¼ u2. Then

f (x, y) ¼
e�(1þp)l

u!(t � u)!
eu log pþt log l,
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which is in the form of Theorem 5.4. Hence a UMPU test exists based on

f (ujt) ¼
e�(1þp)l

u!(t � u)!
eu log pþt log l=f (t)

f (t) ¼
e�(u1þu2)(u1 þ u2)t

t!
¼

e�(1þp)l(1þ p)tlt

t!

f (ujt) ¼
t

u

� �
pu

(1þ p)t
¼

t

u

� �
p

1þ p

� �u
1

1þ p

� �t�u

,

which is binomial. For r ¼ p
1þp

, r ¼ 1
2

if p ¼ 1. So the test is a UMPU level a test

randomized on the boundary.

Example 5.3

Let X1, . . . ,Xn be i.i.d. from

f (x) ¼
1

s
e�

(x�m)
s

for m . 0 and x � m. Test

H0
m ¼ m0

s ¼ s0

�
vs. H1

m ¼ m1 , m0

s ¼ s1 , s0

�

We find the sufficient statistic and the UMP test. The likelihood is

L(m, s) ¼ s�ne�
n(�x�m)

s x(1) � m

0 otherwise

(

Note the sufficient statistic is (x(1), �x) and

L0

L1

¼

s1

s0

� �n

e
�

n(�x�m0)

s0
�

n(�x�m1)
s1

h i
x(1) � m0

0 x(1) , m0

8><
>:

By the NP Lemma, reject H0 if L0=L1 � ka. Therefore the UMP test rejects H0 if

�x �
1

n
log ka

s0

s1

� �n� �
þ

m1

s1

�
m0

s0

� �� �
4

1

s1

�
1

s0

� �
; ca

or if x(1) , m0.
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Example 5.4

Consider (X, Y) a bivariate normal vector with mean (2m, 0) and covariance matrix

S ¼
m2 þ 1 �1

�1 1

� �
, S

�1
¼

1

m2

1 1

1 1þ m2

� �
, jSj ¼ m2:

Here

f (x, y) ¼
1

2pm
e
�

1
2m2

�
(x�2m, y)

1 1

1 1þm2

� �
x�2m

y

� ��

¼
1

2pm
e
�

1
2m2(xþy�2m)2�

1
2
y2

,

such that t ¼ XþY
2

is sufficient for m and

t � N m,
m2

4

� �
and Y � N(0, 1):

Consider a one-sided test of H0 :m ¼ m0 vs. H1 :m ¼ m1 . m0:

Now the MP test satisfies

L(m0)

L(m1)
¼

m1

m0

e
�

2(t�m0)2

m2
0

þ
2(t�m1)2

m2
1 � ka reject m0

() �
2(t � m0)2

m2
0

þ
2(t � m1)2

m2
1

� log ka
m0

m1

� �

() t2(m0 þ m1)� 2tm0m1 �
m2

1m
2
0

2(m1 � m0)
log ka

m1

m0

� �

() (t � aa(m1))(t � ba(m1) � 0, aa . ba

() t � aa(m1) or t � ba(m1):

But this depends on m1 so there is no one-sided UMP test.

Some remarks:

1. When a UMP test exists for scalar u and some other conditions are satisfied

then a scalar sufficient statistic exists.

2. UMP tests can exist even if a scalar sufficient statistic does not exist.

3. The existence of a scalar sufficient statistic does not even imply a one-sided

UMP test.
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Theorem 5.5 Suppose for H0 : u ¼ u0 vs. H1 : u = u0

f (Dju) ¼ C(u, l)euu(D)þlt(D)h(D)

and that y ¼ y (u, t) is independent of t for u ¼ u0. Then if y (u, t) ¼ a(t)uþ b(t) with

a(t) . 0 and increasing in u for each t, then

T(y) ¼

1 when y , c1 or y . c2

pi when y ¼ ci i ¼ 1, 2

0 when c1 , y , c2

8<
:

is UMPU, where for i ¼ 1, 2, ci and pi are determined by

(a) Eu0
½T(y, t)jt� ¼ a and

(b) Eu0
½T(y, t) (y�b(t))

a(t)
jt� ¼ aEu0

½
y�b(t)
a(t)
jt� or Eu0

½yT(y, t)jt� ¼ aEu0
½yjt� and since y

is independent of t for u ¼ u0 so are the ci’s and pi’s.

Example 5.5

For X1, . . . , Xn i.i.d. N(m,s2) and

H0 : m ¼ m0 vs. H1 : m = m0 irrespective of s2,

L(m, s2) ¼ (2ps2)�
n
2 e�

1
2s2½S(xi�m)2�

¼ (2ps2)�
n
2 e�

nm2

2s2e�
Sx2

i

2s2þ
mSxi
s2

¼ C(u, l) etlþuu,

where

t ¼ Sx2
i , l ¼ �

1

2s2
,

nm

s2
¼ u, u ¼ �x:

So if we let Yi ¼ Xi � m,E(Y) ¼ h then the original hypothesis H0 : m ¼ m0

becomes H00 : h ¼ 0 and H 01 : h = 0. Then we might as well start with H00 : m ¼ 0.

Let

V ¼
�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(Xi � �X
p

)2
¼

uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � nu2
p :

Now for the normal distribution N(m,s2), �X and s2 ¼ (n� 1)�1S(Xi � �X)2 are

independent and in this case
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
V ¼

ffiffi
n
p

�X
s

is a student t with n� 1
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degrees of freedom. The UMPU test for H0 : m ¼ m0 vs. H1 : m = m0 is given

as follows:

Let ta=2 be such that for t

a=2 ¼

ð�ta=2

�1

f (tn)dtn ¼

ð1
ta=2

f (tn)dtn

and

ta=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
ya=2:

Then reject H0 if

y .
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p ta=2 or y , �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ta=2:

Note also that the V or the student t is invariant under linear transformations.

Let aXi þ b ¼ Zi, so that �Z ¼ a �X þ b and

(N � 1)s2
z ¼ S(Zi � �Z)2 ¼ a2S(Xi � �X)2 ¼ a2(N � 1)s2

x ,

E �Z ¼ aE( �X)þ b ¼ amþ b ¼ h:

Therefore, H0 : m ¼ m0 for x is equivalent to H0 : h ¼ h0

ffiffiffi
n
p

( �Z � h0)

sz
¼

ffiffiffi
n
p

( �X � m0)

sx
:

Example 5.6

Suppose X1, . . . , Xn are i.i.d. N(m, s2) and Y1, . . . ,Ym are i.i.d. N(h, s2) and

H0 : m ¼ h vs. H1 : m = h with s 2 unspecified. Then the UMPU test is based on

student’s t with nþ m� 2 degrees of freedom where

tnþm�2 ¼
�X � �Y

s

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ

1

m

r for n �X ¼
Xn

1

Xi, m�y ¼
Xm

1

Yi and

s2 ¼

Pn
1 (Xi � �X)2 þ

Pm
1 (Yi � �Y)2

nþ m� 2
:

If Vi ¼ aXi þ b and Zi ¼ aYi þ b then for H0 vs. H1

E(V) ¼ amþ b, E(Z) ¼ ahþ b, a = 0, var(V) ¼ a2s2 ¼ var(Z):
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Hence

�V � �Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ

1

m

� �
(S(Vi � �V)2 þ S(Zi � �Z)2)=(nþ m� 2)

s

¼
a( �X � �Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s2

1

n
þ

1

m

� �s ¼ tnþm�2:

Since the UMPU test requires a ¼ a
2
þ a

2
from both tails of the t-test, the test

is also invariant as to whether we consider tnþm�2 or �tnþm�2 that is, jtj or

even t2. Note also it leaves the problem invariant in that

H0 : m ¼ h is equivalent to H00 : amþ b ¼ ahþ b

H1 : m = h is equivalent to H 01 : amþ b = ahþ b:

5.4 INVARIANT TESTS

More generally suppose we have k normal populations with assumed N(mi, s
2) i ¼

1, . . . , k and random samples of size ni from each of the populations. Recall for

testing H0 : m1 ¼ m2 ¼ � � � ¼ mk vs. H1 : not all the mi’s are equal and s2 unspeci-

fied, that the F-test used to test this was

Fk�1, n�k ¼
Sni( �Xi � �X)2=(k � 1)

s2
, ni �xi ¼

Xni
j¼1

Xij, n�x ¼
Xk

1

ni �Xi,

n ¼
Xk

1

ni

and

(n� k)s2 ¼
Xk
i¼1

Xni
j¼1

(Xij � �Xi)
2:

If Yij ¼ aXij þ b for a = 0, then

P
ni( �Yi � �Y)2=(k � 1)

s2
y

¼ Fk�1, n�k,

as previously defined. The statistic is invariant under linear transformations. Note

also that H0 : m1 ¼ � � � ¼ mk is equivalent to H 00 : ami þ b ¼ � � � ¼ amk þ b and H1 :
¼) to H 01. So it is an invariant test and it turns out to be UMP among invariant tests

so we say it is UMPI. However this test is not UMPU.
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In general, for the problem of

H : u [ QH vs: K : u [ QK

for any transformation g on D which leaves the problem invariant, it is natural to

restrict our attention to all tests T(D) such that T(gD) ¼ T(D) for all D [ S. A trans-

formation g is one which essentially changes the coordinates and a test is invariant if

it is independent of the particular coordinate system in which the data are expressed.

We define invariance more precisely:

Definition: If for each D [ S the function t(D) ¼ t(gD) for all g [ G, G a group

of transformations then t is invariant with respect to G.

Recall that a set of elements G is a group if under some operation it is

(a) closed: for all g1 and g2 [ G, g1g2 [ G;

(b) associative: (g1g2)g3 ¼ g1(g2g3) for all g1, g2, g3 [ G;

(c) has an identity element: gIg ¼ ggI ¼ g where gI [ G;

(d) has an inverse: that is, if g [ G then g�1 [ G where gg�1 ¼ g�1g ¼ gI .

Theorem 5.6 Let y ¼ gD and for each point D the set of values y as g runs through

all the elements of G is called the orbit traced out by D. Then it is necessary and

sufficient that t be constant on each of its orbits for t to be invariant.

Proof: First assume t is invariant that is, t(gD) ¼ t(D) for each D [ S and all g [ G.

Therefore, t is constant on all of its orbits. Conversely if t is constant on all of its orbits,

then t(gD) = constant for each D and all g. Since it is true for all g then it is also true

for g
I

where g
I
D ¼ D and constant ¼ t(gD) ¼ t(g

I
D) ¼ t(D) as required. A

Theorem 5.7 A function t(D) is defined as a maximal invariant if it is invariant

(constant on all its orbits t(D) ¼ t(gD)) and for each orbit takes on a different

value or if t(D) ¼ t(D0)) D0 ¼ gD for some g [ G. Further if t(D) is a maximal

invariant with respect to G then any test that is a function of t, T(D) ¼ f (t(D)) is

invariant for all D and conversely if T(D) is an invariant test then it depends on

the maximal invariant t(D).

Proof: Let T(D) ¼ f (t(D)), t(D) is the maximal invariant, then T(gD) ¼ f (t(gD)) ¼

f (t(D)) ¼ T(D) such that T is invariant. Conversely if T is invariant and t(D) is a

maximal invariant then

T(D) ¼ T(gD) and t(D) ¼ t(D0) implies D0 ¼ gD

for some g then T(D) ¼ T(D0) so that T depends on t.
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Hence for a class of invariant tests we need only consider the maximal invariant.

Let D � Fu for u [ Q and let g be a one-to-one transformation of the sample

space S onto itself. Let gD be the random variable that transforms D by g and

hence has distribution Fu0 and assume u0 [ Q and all u0 ¼ g0u is the induced trans-

formation. Now we say that the parameter set Q remains invariant (is preserved)

under g if g0u [ Q for all u [ Q and if in addition for any u0 [ Q there exists a

u [ Q such that g0u ¼ u0. We express this by

g0Q ¼ Q:

The transformation of Q onto itself then is one-to-one provided that Fu correspond-

ing to different values of u are distinct. Further we say that the problem of testing H :
u [ QH vs. K : u [ QK remains invariant under a transformation g if g0 preserves

both QH and QK that is,

g0QH ¼ QH and g0QK ¼ QK :

If G is a class of transformations that leave the problem invariant and G the

smallest class of transformations containing G that is a group, then G will also

leave the problem invariant. A

Example 5.7

Suppose Xi, . . . , Xn are i.i.d. N(m, s2) and Y1, . . . , Yn are i.i.d. N(m, t2). Consider

H0 : s2 ¼ t2 or
s2

t2
¼ 1 ¼

t2

s2
,

H1 : s2
= t2 s2

t2
= 1 =

t2

s2
:

The transformation

X0i ¼ aXi þ b and Y 0i ¼ aYi þ c, a = 0, X0i ¼ Yi, Y 0i ¼ Xi,

is such that varX0i ¼ a2varXi, varY 0i ¼ a2varYi so

H 00 :
a2s2

a2t2
¼ 1, H01 :

a2s2

a2t2
= 1:

Under the transformations X0i ¼ Yi and Y 0i ¼ Xi,

H 000 :
a2t2

a2s2
¼ 1 iff

t2

s2
¼ 1 H001 :

a2t2

a2s2
= 1 iff

t2

s2
= 1:
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So the problem is invariant under the transformations, that is, a linear transformation

and a permutation. Consider

T(D) ¼ 1 if t ¼ Max½Z, Z�1� . ka

¼ 0 otherwise

for Z ¼
S(Xi � �X)2

S(Yi � �Y)2
:

Note that

Z 0 ¼
a2S(Xi � �X)2

a2S(Yi � �Y)2
¼ Z,

S(Y 0i �
�Y
0
)2

S(X0i �
�X
0
)2
¼

S(Xi � �X)2

S(Yi � �Y)2
¼ Z,

and

S(X0i �
�X
0
)2

S(Y 0i �
�Y
0
)2
¼

S(Yi � �Y)2

S(Xi � �X)2
¼ Z�1:

Hence t is invariant under the transformations and T(D) is UMP among invariant

tests. It can be made UMPU. Usually we use equal tail probabilities which bias

the test. For unequal sample sizes and a one sided alternative the test is also

UMPU and UMPI.

Example 5.8

Consider

Xij � N(mi, s
2
i ) i ¼ 1, . . . , k, j ¼ 1, . . . , ni,

and let

H0 : s2
1 ¼ � � � ¼ s2

k vs. H1 : one or more of the s2
i are different:

For k . 2 no UMPU or UMPI test exists. A UMPI test may actually be inadmissible

as the following example by Stein shows.

Example 5.9

Let

X1 ¼
X11

X12

� �
, X2 ¼

X21

X22

� �
, X1 � N2

0

0

� �
, S

� �
, X2 � N2

0

0

� �
, DS

� �
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and

S ¼
s2

1 rs1s2

rs1s2 s2
2

� �

is non-singular. To test

H : D ¼ 1 s2
1,s2

2, r are unspecified, versus

K : D . 1 s2
1,s2

2, r are unspecified,

we note that for any non-singular transformation A

Y1 ¼ AX1, Y2 ¼ AX2 EY1 ¼ 0 ¼ EY2,

Cov(Y1) ¼ ASA0, Cov(Y2) ¼ DASA0 that H and K are invariant under all A. We now

inquire as to the totality of invariant tests T under a non-singular transformation.

Now the set of data points:

D ¼ (X1, X2) ¼
x11 x21

x12 x22

� �

is non-singular with probability 1 since P(X11X22 ¼ X21X22) ¼ 0. Therefore the

sample space is the set of all such real non-singular matrices D. Further for any 2

such matrices D and D0 there exists a non-singular transformation A such that

D0 ¼ AD. Since for any D [ S as we go through all non-singular transformations

A, the orbit traced out is the whole sample space S. Hence there is a single orbit

and the only invariant transformation t(D) has to be constant over the single orbit

or since T(D) ¼ f (t(D)) this implies T(D) ¼ constant for all D. Hence the only

invariant test of size a is T(D) ; a. It then follows vacuously that among all invar-

iant tests it is UMP or UMPI and consequently useless.

Now X11 and X21 are independently distributed as N(0, s2
1) and N(0, Ds2

1). Hence

X2
11

s2
1

� x2
1

X2
21

Ds2
1

� x2
1

are independent chi-square variables with one degree of freedom. Let U ¼ X2
21=X

2
11

and reject H if U � ka. Then

X2
21=s

2
1D

X2
11=s

2
1

� F(1, 1),

where F(1, 1) is the F variate with degrees of freedom (1, 1) and U � DF(1, 1)

under K. Now

a ¼ P(U � Fa(1, 1)jD ¼ 1)
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but

1� b(D) ¼ P½U � DFa(1, 1)jD . 1) . a

and 1� b(D) increases monotonically as D increases. Hence the UMPI test is

inadmissible in that it is dominated by this test.

Example 5.10

A UMPI level a ¼ 0:1 test can be obtained for H vs. K, Hacking (1965), where

probabilities for H and K obtain as in Table 5.1.

First note that at level 0.1

L(HjD ¼ 0)

L(KjjD ¼ 0)
¼

0:90

0:91
;

while

L(HjD ¼ j)

L(KjjD ¼ j)
¼

1

90
, j ¼ 1, . . . , 100,

L(HjD = j, 0)

L(KjjD = j, 0)
¼

0:001

0
¼ 1:

Table 5.1: Probabilities for H and K

D 0 1 2 3 � � � � j � � � 99 100

H .90 .001 .001 .001 � � � � .001 � � � .001 .001

K1 .91 .09 0 0 � � � � 0 � � � 0 0

K2 .91 0 .09 0 � � � � 0 � � � 0 0

K3 .91 0 0 .09 0 � � � 0 � � � 0 0

� � � � 0 � � � � � � � � � �

� � � � � � � � � � � � � � �

K � � � � � � � � � � � � � � �

� � � � � � � � � 0 � � � � �

Kj .91 0 0 0 � � � 0 .09 0 � � 0 0

� � � � � � � � � 0 � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

K100 .91 0 0 0 � � � � 0 � � � 0 .09
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A randomized MP test of H vs. Kj at level a ¼ 0:1 is

T j(D) ¼

1 if D ¼ j j ¼ 1, . . . ,100

0:11 if D ¼ 0

0 if D= 0, j

8<
:

since

a ¼ 0:001þ 0:11� 0:90 ¼ :1

1� b ¼ 0:09þ 0:11� 0:91 ¼ 0:1901:

However, no UMP test for H vs. K exists since it depends on Kj.

If we used the test for Kj on Kt

1� bt ¼ 0þ 0:91� 0:11 ¼ 0:1001,

which has less power than using it for Kj. Intuitively it would appear if D ¼ 0 is

observed there is very little to discriminate between H and K, but if D = 0 occurred,

say D ¼ 2, then while we can rule out all Kj for j = 2,K2 has 90 times the support

of H. Therefore, at first glance, it would appear reasonable to reject H if D . 0

occurred. Consider the test

T(D) ¼
1 if D ¼ j for j ¼ 1, . . . ,100

0 if D ¼ 0;

�

such that a ¼ 0:1 and 1� b ¼ 0:09 so this “reasonable” test is “worse than useless”

since for a ¼ 0:1 more power can be obtained for T(D) ; 0:1. This is the likelihood

test, but the N-P UMPI test is

T�(D) ¼

1

9
D ¼ 0

0 D ¼ j for j ¼ 1, . . . , 100,

8<
:

where a ¼ 1
9
� 0:9 ¼ 0:1,1� b ¼ 1

9
� 0:91 ¼ 0:101.

To show that this is the UMPI test we note, due to the symmetry of the problem,

that it is clear that any transformation of H and K must send 0! 0 and

(1, . . . ,100)! (i1, . . . ,i100) where (i1, . . . , i100) is a permutation of (1, . . . ,100).

Hence invariant tests must treat D ¼ 0 in one way and D ¼ 1, . . . ,100 in the same

way so that

a ¼ 0:1 � EH(T(D)) ¼ T(0)P(D ¼ 0jH)þ T(D = 0)P(D = 0jH)

¼ T(0)� 0:9þ T(D = 0)� 0:1 ¼ 0:9pþ 0:1q

1� b ¼ EK(T(D)) ¼ T(0)P(D ¼ 0jK)þ T(D = 0)P(D = 0jK)

¼ 0:91pþ 0:09q ¼ max :
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We can add to p and q until :9pþ 0:1q ¼ 0:1 and then solve for q from 9pþ q ¼ 1.

Hence

q ¼ 1� 9p, 0 � p �
1

9

0:91pþ 0:09(1� 9p) ¼ max

0:1pþ 0:09 ¼ max:

The left-hand side is an increasing function of p then we set p ¼ 1
9

and hence q ¼ 0

therefore 1� b ¼ 0:91� 1
9
¼ 0:1011 and

T(j) ¼

1

9
j ¼ 0

0 j = 0

8<
:

is the UMPI test.

Now notice that the likelihood test

T(D) ¼
0 if D ¼ 0

1 if D ¼ 1, . . . ,100

�

is also invariant and has minimum power among all level a ¼ :1 tests, since

for 9pþ q ¼ 1 and :1pþ :09 ¼ minimum for p ¼ 0 and has power .09 so the

likelihood test is a uniformly least powerful invariant test (ULPI). Note also that

the tests UMPI and ULPI never agree to reject H, so they are contradictory. Also if

we are using the UMPI test for evaluating H in the light of the result of a trial it

would be very strange since if say D ¼ 2 occurred we would know that only K2

among all the Kj’s was possible so that a MP test would reject H for K2 but the

UMPI test tells us to reject K. This is not a paradox since the N-P test theory is

based on a pre-trial assessment and before the trial the UMPI test is best.

Remark: If no UMPU or UMPI test exists the next step is to look for a UMP among

all tests that are both unbiased and invariant and this would be a UMPUI test.

5.5 LOCALLY BEST TESTS

When there are no UMP tests we may sometimes restrict the alternative parameter

values to cases of presumably critical interest and look for high power against these

alternatives. In particular if interest is focused on alternatives close to H0 : say u ¼ u0,

we could define d(u) as a measure of the discrepancy of a close alternative from H0.

Definition: A level a test T is defined as locally most powerful (LMP) if for every

other test T� there exists a D such that

1� bT (u) � 1� bT�(u) for all u such that 0 , d(u) , D:
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Theorem 5.8 If among all unbiased level a tests T�, T is LMP then we say T is

LMPU.

1. For real u for any T� such that 1� bT� (u) is continuously differentiable at

u ¼ u0 with H1 : u . u0 or H1 : u , u0 (i.e., one sided tests) a LMP test

exists and is defined such that for all level a tests T� there is a unique T

such that

arg max
T�

d(1� bT� (u))

du

� �

u¼u0

¼ T:

2. For u real valued and 1� bT�(u) twice continuously differentiable at u ¼ u0

for all T�, then a LMPU level a test T exists of H0 : u ¼ u0 vs. H1 : u = u0

and is given by

arg max
T�

d2(1� bT�(u))

du2

� �

u¼u0

¼ T ¼) 1� bT (u) � 1� bT�(u)

for 0 , d(u) , D. All locally unbiased tests result in

d½1� bT�(u)�

du






u¼u0

¼ 0

given the condition of being continuously differentiable.

Proof of (1): For a test T�

gT�(u) ; 1� bT� (u) ¼

ð
T�f (Dju)dm,

g 0T�(u) ¼

ð
T�

@fu
@u

dm:

Suppose g 0T (u0) � gT� (u0). Then note that

gT (u0) ¼ 1� bT (u0) ¼ 1� bT� (u0) ¼ gT�(u0)

g 0T (u0) ¼ lim
Du!0

gT (u0 þ Du)� gT (u0)

Du
� lim

Du!0

gT� (u0 þ Du)� gT�(u0)

Du
¼ g 0T�(u0)

g 0T (u0)� g 0T�(u0) ¼ lim
Du!0

gT (u0 þ Du)� gT�(u0 þ Du)

Du
� 0
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such that for some Du . 0

gT (u0 þ Du) � gT� (u0 þ Du)

or

1� bT (u) � 1� bT� (u) for u0 � u � u0 þ Du:

Then

a ¼ gT� (u0) ¼

ð
T�fu0

dm ¼

ð
Tfu0

dm ¼ gT (u0)

and

ð
(T � T�)fu0

dm ¼ 0:

For k . 0

0 � k½g 0T (u0)� g 0T�(u0)� ¼ k

ð
(T � T�)f 0u0

dm

�

ð
(T � T�)fu0

dm

¼

ð
(T � T�)½kf 0u0

� fu0
�dm:

Now if

T(D) ¼

1 for fu0
, kf 0u0

p for fu0
¼ kf 0u0

0 for fu0
. kf 0u0

8<
: ;

and defining s1 < s2 ¼ S in the table below

fu0
, kf 0u0

fu0
. kf 0u0

T . T� s1 ;

T , T� ; s2

then

0 �

ð

S

(T � T�)(kf 0u0
� fu0

)dm ¼ k(g 0T (u0)� g 0T�(u0))
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and the N-P lemma is satisfied. If the inequality holds then T is unique and has maxi-

mum power in an interval around u0 and is LMP.
For a Locally Most Powerful Unbiased (LMPU) test Neyman and Pearson

(1936–1938) show that

T(D) ¼

1 if k1f (Dju0)þ k2f
0(Dju0) , f 00(Dju0)

p if ¼

0 if .

8<
:

where k1 and k2 are determined to satisfy

E½T(D)ju0� ¼ a,

ð
f 0(Dju0)dm ¼ 0,

is LMPU.

5.6 TEST CONSTRUCTION

So far N-P theory has not really given a principle for constructing a test. It has indi-

cated how we should compare tests that is, for a given size the test with the larger

power is superior, or for sample space S, we want T(D) to be such that for all

tests T�(D)

E(T�jH) � a

choose T(D) such that

E(T�jK) � E(T jK)

and as this doesn’t always happen we go on to other criteria, unbiasedness,

invariance, and so forth.

There are several test construction methods that are not dependent on the N-P

approach but are often evaluated by the properties inherent in that approach. The

most popular one is the Likelihood Ratio Test (LRT) criterion.

Specifically the Likelihood Ratio Test (LRT) criterion statistic for a set of

parameters u to test Hu vs. Ku is defined as

supu[Hu
L(ujD)

supu[(Hu<Ku) L(ujD)
¼ l(D) � 1

with critical region defined as l , ka reject Hu. This yields

P{l(D) , ka} � a:
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A variation is

supu[Hu
L(u1jD)

supu[Ku
L(ujD)

¼ l�(D),

so that if l� , 1 then l ¼ l�, if l� � 1 then l ¼ 1.

So whenever the rejection region is l , ka � 1 they are identical. Now for a

simple null versus a simple alternative it is essentially a likelihood test and by

N-P it is MP or UMP. More generally if a UMP test exists it is expected that the

LRT will be UMP, but this remains to be shown. At any rate UMP tests are rare.

If a UMP does not exist and we look for a UMPU test the LRT will on occasion

produce a biased test but sometimes a simple bias adjustment that is, substitute

unbiased estimates for the maximum likelihood estimates, will correct this. Even

UMPU tests are rare and in the general linear hypothesis we often get a UMPI

test by virtue of the LRT criterion and the LRT would seem to be valuable where

UMP and UMPU tests do not exist. Although a LRT is often biased it has a property,

under rather general conditions for example, d2 log f (xju)=du2 exists and is

dominated by an integrable function, that it is consistent in the sense that for

Dn(x1, . . . , xn) and P(l(Dn) , la,njHu) � a then

lim
n!1

P(l(Dn) , la, njKu) ¼ lim
n!x

(1� bn, Ku
) ¼ 1

that is, for any member of the alternative Ku the power tends to 1 as n increases or the

probability of rejecting a false hypothesis increases with n and tends to certainty.

This also shows that the LRT is asymptotically unbiased although an unbiased

test need not be consistent.

An LRT also has the property that under “pleasant regularity conditions”

�2 log l(Dn) �! x2
r

a chi-square with r degrees of freedom under H0 where

u ¼ (u1, . . . ,ur, urþ1, . . . , us) ¼ (u(r), u(s�r))

u
(r)
0 ¼ (u10, . . . , ur0)

H0 : u(r) ¼ u
(r)
0 ; u(n�r) unspecified

H1 : u(r)
= ur0, u(n�r) unspecified:

Example 5.11

Let X1,X2, . . . ,Xn i.i.d. with

f (xju) ¼
1

p(1þ (x� u)2)
:
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Consider

H0 : u ¼ 0, versus H1 : u = 0:

It is easy to show that a test based on �X is unbiased but not consistent.

An example of a worse than useless LRT, reported by Lehmann (1950), is

demonstrated in the following:

Example 5.12

Consider the following table of probabilities under H0 and H1:

D 22 21 0 1 2

P(DjH0) a/2 1
2
� a a 1

2
� a a/2

P(DjH1) u1(1� u2) 1
2
� a

� �
1�u1

1�a

� �
a 1�u1

1�a

� �
1
2
� a

� �
1�u1

1�a

� �
u1u2

and the following null and alternative hypotheses

H0 : a ,
1

2
and known u1 ¼ a, u2 ¼

1

2

H1 : 0 � u1 , a ,
1

2
, 0 � u2 � 1, u2 =

1

2
:

The LRT of level a is based on

l(D) ¼
L(H0jD)

sup L(H1jD)

D 22 21 0 1 2

L(H0jD) a/2 1
2
� a a 1

2
� a a/2

supL(H1jD) a 1
2
� a

� �
= 1� að Þ a

1�a
1
2
� a

� �
= 1� að Þ a

LRT l(D) 1/2 1 2 a 1 2 a 1 2 a 1/2

First note the following level a test which is not the LRT. Define T such that

T(D) ¼
1 when D ¼ 0

0 D ¼+1 and + 2:

�

Since a , 1
2

then 1� a . 1
2

and T has size a and power a( 1�u1

1�a
) . a since

1� u1 . 1� a.

Now consider the LRT:

T(D) ¼
1 if l(D) , 1� a or D ¼ �2, 2

0 if l(D) � 1� a or D ¼ �1, 0, 1:

�
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This results in level ¼ P(D ¼ 2jH0)þ P(D ¼ �2jH0) ¼ a
2
þ a

2
¼ a and power ¼

P(D ¼ 2jH1)þ P(D ¼ �2jH1) ¼ u1(1� u2)þ u1u2 ¼ u1 , a such that the LRT

is “worse than useless.” Notice also that LRT is also a likelihood test.

Perhaps we are paying too much attention to size and power which are pre-test

evaluations and not necessarily appropriate for post-trial evaluations.

5.7 REMARKS ON N-P THEORY

A synopsis of criticisms of N-P theory due to Hacking (1965) follows. The N-P

hypothesis testing theory is then one of fixing a small size and searching for large

power. The rationale behind it is to search for rules for governing our behavior

with regard to hypotheses (without hoping to know whether any one of them is

true or false) which will ensure that in the long run we shall not be wrong

too often. To assert whether H be rejected or not, calculate D (the observables)

and if D [ s reject H, if D � s accept H. Such a rule tells us nothing as to

whether in a particular case H is true when D � s or false when D [ s. If we

behave in such a way we shall reject when it is true not more than 100 a% of the

time and in addition we may have evidence that we shall reject H sufficiently

often when it is false.

Presumably if we behave in such a way and keep a fixed we shall reject hypo-

theses tested through our lifetimes that are true not more than 100 a% of the time

(i.e., there is a very high likelihood that this will happen in the long run), and

really one is no more or less certain about any of these hypotheses. But if we had

to adopt a testing policy now and were bound to follow it for the rest of our lives

so that for every false hypothesis we rejected we would have bestowed upon us h

heavenly units and likewise for every true hypothesis we accept, while we lose

the same for each true one we reject and every false one we accept then this is

the best life long policy—but no one has ever been in this situation. This is of

course a pre-trial, not a post trial evaluation.

Now it may be that before a trial a decision must be made (because accuracy is

difficult or tedious or it may be economical to do so) only to note whether a trial

made is in s or not. This may be wholly rational and in this case N-P theory is an

economical post trial evaluation. Of course in some cases, say, a simple H0 vs. a

simple H1, where a MP test exists, the extra knowledge will not change our evalu-

ations of H0. In these cases where a rational decision to discard or ignore data the

N-P theory is a special case of likelihood.

In any event the N-P theory can be viewed from a likelihood perspective:

P(D [ sjH) ¼ L(HjD [ s) � a(H) say small relative to

P(D [ sjK) ¼ L(KjD [ s) ¼ 1� b(K) so

Q ¼
L(HjD [ s)

L(KjD [ s)
�

a(H)

1� b(K)
small:
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Another way of looking at N-P theory is that the N-P testing program (small size,

large power) is well supported before a trial is made and data observed. Consider the

following metahypotheses:

M1: For the kind of experiment to be made the test will misclassify H that is,

reject H when true or accept H when false.

M2: For the kind of experiment to be made the test will correctly classify H that

is, accept when true and reject when false.

In view of the low size and large power of the test M2 is much better supported than

M1 but only before a trial is made. Since we are dealing with the long run let p be the

fraction of the time H is true. Then for �H representing H false,

P(reject HjH) ¼ a, P(accept HjH) ¼ 1� a

P(reject Hj �H) ¼ 1� b, P(accept Hj �H) ¼ b

R ¼
P(M2jI)

P(M1jI)
¼

p(1� a)þ (1� p)(1� b)

paþ (1� p)b
:

If a , b then 1� a . 1� b and

R .
p(1� b)þ (1� p)(1� b)

pbþ (1� p)b
¼

1� b

b
:

If a . b then

R .
p(1� a)þ (1� p)(1� a)

paþ (1� p)a
¼

1� a

a
:

So M2 is well supported relative to M1, assuming low size and large power.

But if we actually observe D [ s so that H is less well supported than K we

should not necessarily reject H because the actual value of D may be an observation

which cannot occur if H is false.

5.8 FURTHER REMARKS ON N-P THEORY

We now reconsider an example presented earlier.

Example 3.2 (continued)

Suppose we make independent trials of Binary variables with probability p then if

we hold n ¼ number trials fixed and got r successes then

P(R ¼ rjn) ¼
n

r

� �
pr(1� p)n�r:
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For n ¼ 5H0 : p ¼ 1
2
H1 : p ¼ p1 , 1

2
and a ¼ 1

16
a UMP N-P test is

T(r) ¼

1 if r ¼ 0

1

5
if r ¼ 1

0 if r . 1,

8>>><
>>>:

so a ¼ 5
0

� �
1
2

� �5
þ 1

5
5
1

� �
1
2

� �5
¼ 1

16
.

Now suppose the trial was conducted until we got r heads which took n trials

(random). Then

P(njr) ¼
n� 1

r � 1

� �
pr(1� p)n�r n ¼ r, r þ 1, . . . :

Note LB(pjr) ¼ LNB(pjn) ¼ pr(1� p)n�r, that is, the binomial and negative binomial

likelihoods are the same.

Now suppose for a ¼ 1=16 and r ¼ 1, so

P N ¼ njr ¼ 1, p ¼
1

2

� �
¼

1

2

� �n

,

such that

P(N � 4) ¼
1

2
þ

1

4
þ

1

8
þ

1

10
¼

15

16

or P(N � 5) ¼ 1=16, hence

T(n) ¼
1 if n � 5

0 if n � 4

�
:

Now if the data in both experiments were r ¼ 1, n ¼ 5 then for the Binomial

trials we would reject with probability 1
5

and with the negative binomial trials we

would reject with probability 1. So as previously noted the likelihood principle

and likelihood tests are contradicted although in both cases

L ¼ p(1� p)4:

Clearly the difference is due to differing rejection regions and that has to do with

fixing the same a in both experiments and maximizing 1� b or minimizing b.

Suppose instead we sought in each experiment to minimize aþ kb where k

is the relative importance of b with respect to a recalling a ¼ P(reject H0jH0),

b ¼ P(reject H1jH1). For the simple dichotomy where f0(D)=f1(D) represents the
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ratio of likelihoods,

aþ kb ¼ aþ k½1� (1� b)�

¼

ð

s

T(D)f0(D)dmþ k � k

ð

s

T(D)f1(D)dm

¼ k þ

ð
T(D)½f0 � kf1�dm:

Minimization of the above occurs whenever

f0(D)� kf1(D) . 0, T(D) ¼ 0

f0(D)� kf1(D) , 0, T(D) ¼ 1

and T(D) is arbitrary when f0(D) ¼ kf1(D). Then the test T(D) that minimizes aþ kb

rejects H0 when

f0(D)

f1(D)
, k

and is a likelihood test. Note it doesn’t fix a in advance and for each n,aþ kb will

be minimized and a function of n.

Now in the case discussed the Likelihood test was the same for r and n whether it

was LB or LNB. In the particular case H0 : p ¼ 1
2

,H1 : p ¼ p1 , 1
2

we reject if

(1=2)r(1=2)n�r

pr1(1� p1)n�r
, k:

Solving for r yields rejection if

r ,
log k

log
1� p1

p1

� �þ
n log 1�

p1

1=2

� �

log
1� p1

1=2
�

1=2

p1

� � ¼ log k

log
1� p1

p1

� �þ na1(p1):

Now for p1 , 1
2

1� p1

1=2
,

1=2

p1

since (1� p1)p1 ,
1

4

then a1(p1) , 1
2

so that

r ,
log k

log
1� p1

p1

� �þ a1(p1)n is the likelihood test.
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But the rejection region for the LRT depends on fixing a for each n and calculating

r ,
log ka(n)

log
1� p1

p1

� �þ a1(p1)n,

such that

P r ,
log ka(n)

log
1� p1

p1

� �þ a1(p1)njH0

2
664

3
775 ¼ a:

Suppose for large samples we use the normal approximation to the binomial then

P
r � npffiffiffiffiffiffiffiffi
npq
p , �za

� �
¼ a where

ð�za
�1

1ffiffiffiffiffiffi
2p
p e�z

2=2dz ¼ a:

The value of log ka(n) under H0 : p ¼ 1
2

can be obtained. Since

P
r �

n

2
1
2

ffiffiffi
n
p ,

log ka(n)

1
2

ffiffiffi
n
p

log
1� p1

p1

� �� ( 1
2
� a1(p1))n

1
2

ffiffiffi
n
p

0
BB@

1
CCA ¼ a,

then

�za 8
log ka(n)

1
2

ffiffiffi
n
p

log
1� p1

p1

� �� ( 1
2
� a1(p1))n

1
2

ffiffiffi
n
p

and

�
1

2

ffiffiffi
n
p

za þ
1

2
� a1(p1)

� �
n8 log ka(n)

�
log

1� p1

p1

� �
:

Hence

P r ,
log ka(n)

log
1� p1

p1

þ

n log
1� p1

1=2

� �

log
1� p1

p1

� �

2
664

3
7758 P r , �

1

2

ffiffiffi
n
p

za þ
n

2

� �
¼ a:

What happens if one continues sampling? Is one certain to find that for some n

r ,
n

2
�

1

2
za

ffiffiffi
n
p

when H0 is true

that is, be sure to reject H0 when H0 is true? We can answer this by appealing to the

Law of the Iterated Logarithm.
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5.9 LAW OF THE ITERATED LOGARITHM (LIL)

Let X1,X2, . . . be i.i.d. random variables with E(Xi) ¼ mVar(Xi) ¼ s2 and

EjXj2þd , 1 for some d . 0. Then with probability 1 the inequality

Xn
i¼1

Xi , nm� (ns2l log log n)
1
2 or

SXi � nm

s
ffiffiffi
n
p , �(l log log n)

1
2

is satisfied for infinitely many n if l , 2 but for only finitely many if l . 2.

Similarly

SXi . nmþ (ns2l log log n)
1
2 or

SXi � nm

s
ffiffiffi
n
p . (l log log n)

1
2

is satisfied for infinitely many n if l , 2, but only for finitely many n if l . 2.

Further (almost surely)

lim sup
n!1

(SXi � nm)=s
ffiffiffi
n
p

(2 log log n)
1
2

¼ 1:

We apply the LIL to n i.i.d. binary variables where P(Xi ¼ 0) ¼ P(Xi ¼ 1) ¼ 1
2

where E(Xi) ¼
1
2

, var(Xi) ¼
1
4
: Then for l ¼ 1, consider the event

r ,
n

2
�

n

4
log log n

� 1
2

:

Sooner or later if we continue sampling then for sufficiently large n

( log log n)
1
2 . za

since za is a constant. Then

�
n

4
log log n

� 1
2

, �

ffiffiffi
n
p

2
za

and

n

2
�

n

4
log log n

� 1
2

,
n

2
�

ffiffiffi
n
p

2
za:

Therefore, with probability 1 the inequality

r ,
n

2
�

ffiffiffi
n
p

2
za
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is satisfied for infinitely many n and one is therefore certain to reject H0 when H0 is

true if one sets out to do this by continually sampling until one finds

r ,
n

2
�

ffiffiffi
n
p

2
za,

which is certain to happen sooner or later. In other words, we have sampled to a

foregone conclusion.

Now consider the likelihood test which is reject H0 if for fixed k

r ,
log k

log
1� p1

p1

� �þ na1(p1) ¼
n

2
þ

log k

log
1� p1

p1

� �� (1=2� a1(p1))n

0 , a1(p1) ,
1

2
:

Now for sufficiently large n and l ¼ 4,

�
log k

log
1� p1

p1

� �þ (1=2� a1(p1))n , (n log log n)
1
2

or

n

2
þ

log k

log
1� p1

p1

� �� (1=2� a1(p1))n .
n

2
� (n log log n)

1
2

is satisfied for only finitely many n. Moreover, r , n=2� (n log log n)
1
2 for only

finitely many n with probability one. Therefore it is not certain that using the like-

lihood test by one who unscrupulously sets out to reject the null hypothesis will do

so. One could very well sample forever and still not reject. But using the N-P

approach for each n will make rejection certain.

A bound on P(reject H0jH0) for all n can be obtained for the likelihood test

L(u0)

L(u1)
, k , 1:

Let f0m ¼ f (x1, . . . , xmju0) and f1m ¼ f1m(x1, . . . , xmju1) and

Qm ¼
f0m

f1m
, k reject H0 : u ¼ u0:

On the nth trial the probability of rejecting H0 when H0 is true is

P0n ¼ P½Qm � k for m ¼ 1, . . . , n� 1 and Qn , k�,
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such that

P(reject H0jH0) ¼
X1
n¼1

P0n ¼
X1
n¼1

ð
W1n

f0ndx
(n),

where x(n) ¼ (x1, . . . , xn) and

W1n ¼ ½(x1, . . . , xm); Qm � k for m ¼ 1, . . . , n� 1, Qn , k�:

For the test to terminate on the nth observation we need f0n , kf1n or

ð

W1n

f0ndx
(n) � k

ð

W1n

f1ndx
(n):

Now

P(reject H0jH0) ¼
X1
n¼1

ð

W1n

f0ndx
(n) � k

X1
n¼1

ð

W1n

f1ndx
(n):

Also
Ð
W1n

f1ndx
(n) ¼ P(reject H0 on nth observation jH1) such that

X1
n¼1

ð

W1n

f1ndx ¼ P½reject H0jH1�:

Hence P(rejecting H0jH0) � kP(reject H0jH1� � k such that probability that the test

never terminates is greater than 1� k which can be crude in many cases.

An application of LIL was given by Barnard (1969).

Example 5.13

In British Standards 3704, 1964 on Condoms the sampling clause reads as follows:

3.a. Sampling. “Specimens constituting the test sample shall be taken at random from each

quantum of production. The number of these specimens shall not be less than 1% of the

number of articles in each quantum. . . .”

The number of test specimens n and the number of rejected specimens r from a

sequence of production quanta shall be recorded. The cumulative total of test speci-

mens N and the cumulative total of rejects R shall be recorded and the products shall

be deemed to comply with the requirements of this British Standard or acceptance of

p , 0:01 if

R � 0:01N þ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
0:01N
p
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or introducing the standardized variable

ZN ¼
R� Npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np(1� p)
p �

(0:01� p)
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)
p þ

0:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)
p :

Consider H0 : p , 0:01 vs. H1 : p � 0:01.

Now for p � 0:01 and for a . 0

ZN �
�a

ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)
p þ

0:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)
p :

Since this right-hand side declines faster than �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log logN
p

then ZN , sooner or

later, will be greater than the right-hand side with probability 1. It is also true if p ¼

0:01 where the right-hand side is constant. So if H0 is false it will be rejected sooner

or later.

Now if p , 0:01

ZN ,
b
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)
p þ

0:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)
p b . 0:

Since the right-hand side grows faster than (2 log logN)
1
2 this is satisfied for all but

finitely many N so there is a non-zero probability that this will be satisfied for all N.

The procedure then is to continue sampling and accepting until

R . 0:01N þ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
0:01N
p

. Then reject and reset the manufacturing device. At any

rate this is a test whose power is virtually 1.

5.10 SEQUENTIAL ANALYSIS

Up to now we have studied cases where the sample size N was a fixed value deter-

mined prior to taking observations except in negative binomial and multinomial

sampling where the sample size N was a random variable. We now study the situ-

ation where we sample sequentially to test a null hypothesis versus a rival hypoth-

esis. Here the test may terminate at some value of N ¼ n as opposed to waiting until

a fixed number of observations are in hand.

5.11 SEQUENTIAL PROBABILITY RATIO TEST (SPRT)

For testing a simple H0 versus a simple alternative H1, where

H0 : f ¼ fu0
versus H1 : f ¼ fu1

;
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we define the ratio

Qn
i¼1 f (xiju0)Qn
i¼1 f (xiju1)

¼
f0n

f1n
¼ Qn, n ¼ 1,2, . . .

and two positive constants A and B.

The test as defined by Wald (1947) at each n accepts H0 if Qn � B, accepts H1 if

Qn � A and requires sampling another observation if

A , Qn , B:

A and B are to be determined such that the test is of size a and power 1� b. Set

P1N ¼ P½A , Qn , B, n ¼ 1, . . . , N � 1, and QN � BjH1�,

W0N ¼ ½(x1, . . . , xN) : A , Qn , B, n ¼ 1, . . . , N � 1, QN � B�,

then

P1N ¼

ð

W0N

f1Ndm:

Now the probability of accepting H0 when H1 is true is

b ¼
X1
N¼1

P1N :

Similarly,

P0N ¼ P½A , Qn , B : n ¼ 1, . . . , N � 1 and QN � AjH0�,

W1N ¼ ½(x1, . . . , xN) : A , Qn , B, ¼ 1, . . . , N � 1, QN � A�,

P0N ¼

ð

W1N

f0Ndm,

and the probability of accepting H1 where H0 is true is

a ¼
X1
N¼1

P0N :

Now Wald showed that the test terminates with probability one that is, sooner

or later the boundary points will be hit. Thus for any given sample size N that

terminates with acceptance of H0 we have

f0N � Bf1N :
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Integrating both sides over W0N and then summing with respect to N yields

1� a � Bb,

or

1

B
�

b

1� a
� b:

Similarly, for given sample size N that terminates with acceptance of H1,

a � A(1� b) � A,

resulting in reasonable upper bounds on a and b when

A , 1 , B:

Now suppose that the true errors incurred, by using

a

1� b
¼ A and

b

1� a
¼

1

B
,

are a0 and b0. By our previous work the true a0 and b0 are such that

a0

1� b0
�

a

1� b
¼ A;

b0

1� a0
�

b

1� a
¼

1

B

or

a0(1� b) � a(1� b0); b0(1� a) � b(1� a0):

This results in

a0 þ b0 � aþ b,

implying that either a0 � a or b0 � b or both. Hence the overall protection a0 þ b0 is

at least as good as the presumed protection aþ b derived from

a

1� b
¼ A and

b

1� a
¼

1

B
:

One of the features of this SPRT is that for fixed a and b the SPRT minimizes the

expected sample sizes so on average the SPRT will come to a conclusion more

quickly than the fixed sample size test.

78 UNBIASED AND INVARIANT TESTS



Notice also that this is basically a likelihood test that conforms to Neyman-

Pearson size and power modifications.

REFERENCES

Barnard, G. A. (1969). Practical application of tests of power one. Bulletin of the International

Statistical Institute, XLIII, 1, 389–393.

Hacking, I. (1965). Logic of Statistical Inference. Cambridge: Cambridge University Press.

Lehmann, E. L. (1950). Some principles of the theory of testing hypothesis. Annals of

Mathematical Statistics, 21, 1–26.

Lehmann, E.L. (1959). Testing Statistical Hypothesis. New York: Wiley.

Neyman, J. and Pearson, E. S. (1936–1938). Contributions to the theory of testing statistical

hypotheses, Statistical Research Memoirs, I, 1–37; II, 25–57.

Wald, A. (1947). Sequential Analysis. New York: Wiley.

REFERENCES 79



C H A P T E R S I X

Elements of Bayesianism

Bayesian inference involves placing a probability distribution on all unknown quan-

tities in a statistical problem. So in addition to a probability model for the data, prob-

ability is also specified for any unknown parameters associated with it. If future

observables are to be predicted, probability is posed for these as well. The Bayesian

inference is thus the conditional distribution of unknown parameters (and/or future
observables) given the data. This can be quite simple if everything being modeled is

discrete, or quite complex if the class of models considered for the data is broad.

This chapter presents the fundamental elements of Bayesian testing for simple

versus simple, composite versus composite and for point null versus composite

alternative, hypotheses. Several applications are given. The use of Jeffreys “nonin-

formative” priors for making general Bayesian inferences in binomial and negative

binomial sampling, and methods for hypergeometric and negative hypergeometric

sampling, are also discussed. This discussion leads to a presentation and proof of

de Finetti’s theorem for Bernoulli trials. The chapter then gives a presentation of

another de Finetti result that Bayesian assignment of probabilities is both necessary

and sufficient for “coherence,” in a particular setting. The chapter concludes with a

discussion and illustration of model selection.

6.1 BAYESIAN TESTING

Recall

P(AjB)P(B) ¼ P(A, B) ¼ P(BjA)P(A),

where A and B are events in S. If X, Y are jointly discrete

f (x, y) ¼ P(X ¼ x, Y ¼ y) ¼ P(X ¼ xjY ¼ y)P(Y ¼ y) ¼ P(Y ¼ yjX ¼ x)P(X ¼ x):
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If X and Y are jointly absolutely continuous so that

FX,Y (x, y) ¼

ðy
�1

ðx
�1

fX,Y (u, v)du dv

then

f (x, y) ¼ f (xjy) f (y) ¼ f ( yjx)f (x):

In general, whether X, Y are discrete, continuous or one is discrete and the other

continuous

f (yjx) ¼
f (xjy) f (y)

f (x)

f (x) ¼

X
y

f (xjy) f (y) if Y is discrete

ð
f (xjy) f (y)dy if Y is continuous

8>><
>>:

Note also that

f (yjx)/ f (xjy)f (y):

In a situation where we have D � f (Dju) and an assumed prior probability

function for u [ Q namely g(u) then

f (ujD)/ L(ujD)g(u):

Now suppose that H0 : u ¼ u0 vs. H1 : u ¼ u1. If we assume that P(u ¼ u0) ¼ p and

P(u ¼ u1) ¼ 12 p then

P(u ¼ u0jD)/ L(u0jD)p,

P(u ¼ u1jD)/ L(u1jD)(1� p),

and

P(u ¼ u0jD)

P(u ¼ u1jD)
¼

p

1� p

L(u0jD)

L(u1jD)
:

So we have that the Posterior Odds ¼ Prior odds � Likelihood Ratio or

Log Posterior odds� log Prior odds ¼ log Likelihood Ratio,
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where the right-hand side can be considered as the information in the experiment

relative to the two hypotheses or how you modify the prior odds by data D.

If (L(u0jD))=(L(u1jD)) ¼ 1 the data are uniformative as to discriminating between

hypotheses.

Example 6.1

Suppose L(ujr) ¼ ur(1� u)n�r then

P(u ¼ u0jr)

P(u ¼ u1jr)
¼

ur0(1� u0)
n�r

ur1(1� u1)
n�r �

p

1� p
:

If X1, . . . , Xn are i.i.d. then

L(ujD) ¼
Yn
i¼1

f (xiju),

and thus

P(u ¼ u0jx1, . . . , xn) ¼
p
Qn

i¼1 f (xiju0)

p
Qn

i¼1 f (xiju0)þ (1� p)
Qn

i¼1 f (xiju1)

¼
1

1þ
(1� p)

p

Yn
i¼1

f (xiju1)

f (xiju0)

;

P(u ¼ u1jx1, . . . , xn) ¼
1

1þ
p

1� p

Yn
i¼1

f (xiju0)

f (xiju1)

:

Now suppose u1 is actually the true value. We now will show that the limiting pos-

terior probability, lim
n!1

P(u ¼ u1jx1, . . . , xn) ¼ 1, if u1 is the true value.

Consider

Eu1 log
f (xiju0)

f (xiju1)

� �
¼ Eu1 log

f0

f1

� �
¼ m, say:

Jensen’s inequality states that E [g(Y)] � g(E(Y)) if g(Y) is a convex function with

equality only if Y is degenerate. Now2log Y is convex since2log Y is twice differ-

entiable and g00(y) � 0 implies convexity, that is, g(azþ by) � ag(z)þ bg(y) for all

z and y and aþ b ¼ 1 for a . 0 and b . 0.

Hence

�m ¼ Eu1 � log
f0

f1

� �
. � logEu1

f0

f1

� �
,
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or

m , logEu1

f0

f1

� �
¼ log

ð
f0

f1
f1dxi ¼ log 1 ¼ 0:

Since Yi ¼ log f (xiju0)
f (xiju1)

are i.i.d. and Eu1 (Yi) ¼ m,

lim
n!1

1

n

Xn
i¼1

log
f (xiju0)

f (xiju1)
¼ m

by the Strong Law of Large Numbers (SLLN).

SLLN: Let Y1,Y2, . . . be a sequence of random variables i.i.d. with mean m and

for every pair e . 0 and d . 0 there is an N such that

P½sup
n�N

j �Yn � mj , e� � 1� d i.e. with probability 1.

Now

1

n
log

Yn
i¼1

f (xiju0)

f (xiju1)
¼

1

n

Xn
i¼1

log
f (xiju0)

f (xiju1)
�! m , 0,

so that

lim
n!1

Yn
1

f (xiju0)

f (xiju1)
¼ lim

n!1
enm �! 0 since m , 0:

Hence with probability 1

lim
n!1

P(u ¼ u1jx1, . . . , xn) ¼ 1 if u1 is true:

6.2 TESTING A COMPOSITE VS. A COMPOSITE

Suppose we can assume that the parameter or set of parameters u [ Q is

assigned a prior distribution (subjective or objective) that is, we may be

sampling u from a hypothetical population specifying a probability function

g(u), or our beliefs about u can be summarized by a g(u) or we may assume

a g(u) that purports to reflect our prior ignorance. We are interested in deciding

whether

H0 : u [ Q0 or H1 : u [ Q1 for Q0 >Q1 ¼ ;:
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Now the posterior probability function is

p(ujD)/ L(ujD)g(u) or p(ujD) ¼
L(ujD)g(u)Ð

Q
L(ujD)dG(u)

,

using the Lebesgue-Stieltjes integral representation in the denominator above.

Usually Q0 <Q1 ¼ Q but this is not necessary. We calculate

P(u [ Q0jD) ¼

ð

Q0

dP(ujD)

P(u [ Q1jD) ¼

ð

Q1

dP(ujD)

and calculate the posterior odds

P(u [ Q0jD)

P(u [ Q1jD)

and if this is greater than some predetermined value k choose H0, and if less choose

H1, and if equal to k be indifferent.

Example 6.2

Suppose

L(ujD) ¼ ur(1� u)n�r, 0 , u , 1,

and we assume g(u) ¼ 1, 0 , u ,1 and

H0 : u ,
1

2
, H1 : u �

1

2
:

Then

p(ujr)/ u r(1� u)n�r

and

Q ¼
P(u , 1

2
jr)

P(u � 1
2
jr)
¼

Ð 1
2
0 u

r(1� u)n�rduÐ 1
1
2
u r(1� u)n�rdu

:

We show that

P(u , 1=2jr) ¼ P X ,
n� r þ 1

r þ 1

� �
,
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where X � F(2r þ 2, 2n� 2r þ 2), an F distribution with the arguments as the

degrees of freedom, so that

Q ¼ P X ,
n� r þ 1

r þ 1

� ��
P X �

n� r þ 1

r þ 1

� �
:

Let g ¼
u

1� u
, dg ¼

1

(1� u)2
, u ¼

g

1þ g
and 1� u ¼

1

1þ g
, so that

p(gjr)/
g r

(1þ g)r
�

1

(1þ g)n�r
�

1

(1þ g)2
¼

g r

(1þ g)nþ2
:

Then it is clear that

X ¼
(n� r þ 1)

(r þ 1)

u

1� u
� F(2r þ 2, 2n� 2r þ 2):

Hence

P(u , 1=2) ¼ P(2u , 1) ¼ P(u , 1� u) ¼ P
u

1� u
, 1

� �

¼ P
n� r þ 1

r þ 1
�

u

1� u
,

n� r þ 1

r þ 1

� �
¼ P X ,

n� r þ 1

r þ 1

� �

and

Q ¼

P X ,
n� r þ 1

r þ 1

� �

1� P X ,
n� r þ 1

r þ 1

� � :

To test,

H0 : u ¼ u0 vs. H1 : u = u0,

the previous setup for a composite will not do. Also picking a null H0 : u ¼ u0 would

imply that this may be an important value and that u ¼ u0 is quite likely.

Let P(u ¼ u0) ¼ p and assume that all other values are subject to a prior density

g(u) u [ Q except u ¼ u0. Observe that the prior CDF satisfies

G(u) ¼

Ð u
�1

dG(u0) u , u0Ð u0�
�1

dG(u0)þ p u ¼ u0Ð u0�
�1

dG(u0)þ pþ
Ð u
u0
dG(u0) u . u0:

8>><
>>:
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Then

P(u ¼ u0jD) ¼ pf (Dju0)

� ðu0�
�1

f (Dju)dGþ f (Dju0)pþ

ð1
u0

f (Dju0)dG

� �
:

Suppose G(u) has a continuous derivative (dG)=(du) ¼ g(u) everywhere except

at u ¼ u0. Then P(u ¼ u0jD)/ pf (Dju0) and

P(u = u0jD)/

ð

u

f (Dju)g(u)du, where

ð

Q

g(u)du ¼ 1� p for u = u0:

Example 6.3

Let X1, . . . , Xn be i.i.d. Bernoulli variates with E(Xi) ¼ u. Consider testing

H0 : u ¼ u0:

Let

G(u) ¼

u (1� p) 0 � u , u0
u0 (1� p)þ p u ¼ u0
pþ u (1� p) u0 , u � 1

8<
:

Note

dG(u)

du
¼ (1� p) 8 u = u0:

Then g(u) is uniform over all other values and

P(u ¼ u0jD)/ pu r
0 (1� u0)

n�r

P(u = u0jD)/

ð1
0

u r(1� u)n�r(1� p)du for u = u0

and

Q ¼
P(u ¼ u0jD)

P(u = u0jD)
¼

pu r
0 (1� u0)

n�r

(1� p)
Ð 1
0
ur(1� u)n�rdu

¼
pu r

0 (1� u0)
n�r

(1� p)
G(r þ 1)G(n� r þ 1)

G(nþ 2)

¼
p

(1� p)
(nþ 1)

n

r

� �
u r
0 (1� u0)

n�r ¼
p

(1� p)
(nþ 1)P½rjn, u0�:
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For large n using the normal approximation to the binomial

Q �
p

1� p
(nþ 1) �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnu0(1� u0)
p e

�
1
2

(r�nu0)
2

nu0(1�u0)

�
p

1� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2pu0(1� u0)

r
e
�

1
2

(r�nu0)
2

nu0(1�u0):

Suppose u0 ¼
1

2
and p ¼

1

2
and we are testing for bias in a coin. Then let

Qht ¼ (nþ 1)
n

r

� �
1

2

� �n

,

where h ¼ # heads and t ¼ # tails. When n ¼ 1, r ¼ 0 or 1 and

Q10 ¼ Q01 ¼ 1:

Is this sensible? Since it is no different than the prior odds 1
2
4 1

2
¼ 1, there is no

information in the first observation (it has to be heads or tails). Further suppose n is

even and n ¼ r ¼ n2 r ¼ t that is, equal number of successes and failures so

n ¼ 2r. Then

Qr, r ¼
(nþ 1)!

2nr!(n� r)!
¼

(2r þ 1)!

22rr!r!
:

Suppose another observation is taken and is heads, then

Qrþ1, r ¼
(2r þ 2)!

22rþ1(r þ 1)!r!

or if it is tails

Qr, rþ1 ¼
(2r þ 2)!

22rþ1r!(r þ 1)!

so Qrþ1,r ¼ Qr,rþ1. Further,

Qr, r ¼
(2r þ 2)

(2r þ 2)

(2r þ 1)!

22rr!r!
¼

(2r þ 2)!

22rþ1(r þ 1)!r!
¼ Qrþ1, r ¼ Qr, rþ1:

Therefore the odds don’t change after an observation is made when previously we

had an equal number of heads and tails. Again the interpretation is that the next toss

has to be a head or a tail and this does not provide any new information. This is emi-

nently reasonable according to Jeffreys (1961), who proposed this test.
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Example 6.4

Test of equality of two binomial parameters.

Consider the sampling situation

R1 � Bin(u1, n1) R2 � Bin(u2, n2)

p(rijui) ¼
ni

ri

� �
u ri
i (1� ui)

ni�ri , i ¼ 1, 2

H0 : u1 ¼ u2 vs H1 : u1 = u2

Assumptions a priori are

g(u1, u2) ¼ (1� p) for u1 = u2,

g(u) ¼ p for u1 ¼ u2 ¼ u:

Therefore,

P(u1 ¼ u2jr1, r2)/ p

ð1
0

u r1þr2 (1� u)n1þn2�r1�r2du

¼ p
(r1 þ r2)!(n1 þ n2 � r1 � r2)!

(n1 þ n2 þ 1)!
,

P(u1 = u2jr1, r2)/ (1� p)

ð1
0

ð1
0

Y2
i¼1

u ri
i (1� ui)

ni�ridu1du2

¼
(1� p)r1!(n1 � r1)!r2!(n2 � r2)!

(n1 þ 1)!(n2 þ 1)!
:

Then

Q ¼
P(u1 ¼ u2jr1, r2)

P(u1 = u2jr1, r2)
¼

p

1� p
�

r!(n� r)!(n1 þ 1)!(n2 þ 1)!

(nþ 1)!r1!(n1 � r1)!r2!(n2 � r2)!
:

For r1þ r2 ¼ r, n1þ n2 ¼ n

Q ¼
p

1� p
�

(n1 þ 1)(n2 þ 1)

(nþ 1)

n1
r1

� �
n2
r2

� �

n

r

� � :
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If p ¼ 1
2
, using the binomial approximation to the hypergeometric

Q �
(n1 þ 1)(n2 þ 1)

(nþ 1)

r

r1

� �
n1

n

� �r1 n2

n

� �r2
:

6.3 SOME REMARKS ON PRIORS FOR THE BINOMIAL

1. Personal Priors. If one can elicit a personal subjective prior for u then his

posterior for u is personal as well and depending on the reasoning that went

into it may or may not convince anyone else about the posterior on u. A con-

venient prior that is often used when subjective opinion can be molded into

this prior is the beta prior

g(uja, b)/ u a�1(1� u)b�1,

when this is combined with the likelihood to yield

g(uja, b, r)/ u aþr�1(1� u)bþn�r�1:

2. So-Called Ignorance or Informationless or Reference Priors. It appears that

in absence of information regarding u, it was interpreted by Laplace that

Bayes used a uniform prior in his “Scholium”. An objection raised by

Fisher to this is essentially on the grounds of a lack of invariance. He

argued that setting a parameter u to be uniform resulted in, say t ¼ u3 (or

t ¼ t(u)) and then why not set t to be uniform so that g(t) ¼ 1, 0 , t , 1

then implies that g(u) ¼ 3u2 instead g(u) ¼ 1. Hence one will get different

answers depending on what function of the parameter is assumed uniform.

Jeffreys countered this lack of invariance with the following:

The Fisher Information quantity of a probability function f (xju) is

I(u) ¼ E
d log f

du

� �2

,

assuming it exists. Then set

g(u) ¼ I
1
2 (u):

Now suppose t ¼ t(u). Then

I(t) ¼ E
d log f

dt

� �2

¼ E
d log f

du
�

du

dt

� �2

¼ E
d log f

du

� �2

�
du

dt

� �2

,

90 ELEMENTS OF BAYESIANISM



or

I(t)
dt

du

� �2

¼ I(u),

and thus

I
1
2(t)dt ¼ I

1
2(u)du:

So if you start with the prior for u to be g(u)/ I
1
2(u) this leads to g(t)/ I

1
2(t).

Note also if we set

t ¼

ðu
�1

I
1
2(u 0)du 0

then

dt ¼ I
1
2(u)du

and t is uniform. At any rate, Jeffreys solved the invariance problem for the binomial

by noting that

I(u) ¼ E
d log f

du

� �2

¼ �E
d2 log f

du2

� �

and consequently, for the Binomial

log f ¼ log
n

r

� �
þ r log uþ (n� r) log (1� u)

d log f

du
¼

r

u
�
(n� r)

1� u
,

d2 log f

du2
¼ �

r

u2
�

(n� r)

(1� u)2

�E
d2 log f

du2

� �
¼

nu

u2
þ
(n� nu)

(1� u)2
¼ n

1

u
þ

1

1� u

� �
¼

n

u(1� u)
,

and consequently

I
1
2
n (u)/

1

u
1
2(1� u)

1
2

: (6:3:1)

So

g(u)/
1

u
1
2(1� u)

1
2

,

p(ujr)/ u r�1
2(1� u)n�r�

1
2,

while use of the uniform prior yields p(ujr)/ u r(1� u)n�r .
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Example 6.5

Suppose

fr(njr) ¼
n� 1

r � 1

� �
u r(1� u)n�r, n ¼ r, r þ 1, . . .

or

fn�r(njn� r) ¼
n� 1

n� r � 1

� �
u r(1� u)n�r

¼
n� 1

r

� �
u r(1� u)n�r, n ¼ r þ 1, r þ 2, . . .

Now by calculating

I
1
2
r (u)/ u�1(1� u)�

1
2 (6:3:2)

I
1
2
n�r(u)/ u�

1
2(1� u)�1, (6:3:3)

we have demonstrated that three different Jeffreys’ priors result in three different

posteriors for u, thus, in a sense, contravening the likelihood principle.

Now consider the problem of predicting the number of successes T out of a total

M when we have seen r successes and n2 r failures. Note M includes the original n

trials and T includes the original r successes starting with the priors (6.3.1), (6.3.2)

and (6.3.3) and that these predictive probabilities for T differ for the three priors

although their likelihoods are the same.

Now suppose we have an urn with a known number M of balls marked s and f of

which an unknown number t are marked s. The object is to infer the unknown

number t after taking a sample from the urn that yields r successes and n2 r failures

in any one of the following three ways:

1. Sample n , M. Then we obtain the hypergeometric

p(rjn, M, t) ¼
t

r

� �
M � t

n� r

� �
M

n

� ��

r ¼ 0, 1, . . . , min (t, n).

2. Sampling until r successes yields

p(njr,M, t) ¼
n� 1

r � 1

� �
M � n

t � r

� �
M

t

� ��

for n ¼ r, . . . , min(M, r þM � t);
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3. Sampling until n2 r failures yields

p(njn� r, M, t) ¼
n� 1

n� r � 1

� �
M � n

(M � t)� (n� r)

� �
M

M � t

� ��
,

for n ¼ r, r þ 1, . . . ;min (M, r þM � t). Note the likelihood L(t) is the same

for each of the above.

L(t) ¼
t!(M � t)!

(t � r)!½M þ r � t � n�!
:

When little is known about a finite number of discrete possibilities for t it appears

sensible to assume equal probabilities for each possibility or

p(tjM) ¼
1

(M þ 1)
t ¼ 0, 1, . . . , M,

so

p(tjr, n, M) ¼

t

r

� �
M � t

n� r

� �

M þ 1

nþ 1

� � t ¼ r, r þ 1, . . . ;min (M � nþ r, n):

Now for large M

p(rjn, M, t)8
n

r

� �
t

M

� �r
1�

t

M

� �n�r
,

p(njr, M, t)8
n� 1

r � 1

� �
t

M

� �r
1�

t

M

� �n�r
,

p(njn� r, M, t)8
n� 1

n� r � 1

� �
t

M

� �r
1�

t

M

� �n�r
,

and

P
t

M
� zjM, n, r

h i
8

G(nþ 2)

G(r þ 1)G(n� r þ 1)

ðz
0

xr(1� x)n�rdx: (6:3:4)

Under appropriate conditions as M grows tM�1 ! u and the left sides of the above

tend to the right sides and the right side of (6.3.4) is the posterior distribution func-

tion of u for the uniform prior g(u) ¼ 1.
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Keeping the problem discrete and finite avoids the criticism that the uniformity of
t
M
, which approaches, u does not imply the uniformity of any monotonic function of

t
M
! uwhich Fisher leveled at Laplace. It also conforms to the Likelihood Principle.

In much scientific, technical, and medical experimentation in which individual

trials are binary, the parametric Bernoulli model is used as a basis for the analysis

of the data, assuming independent copies with its resulting likelihood function.

Although this is a useful and convenient paradigm for this type of trial, it is not

as appropriate in most instances as one stipulating that only a finite number of

trials can be made, no matter how large the number. The first model assumes that

there is some value u that is the probability of success on each individual trial,

and the second entertains the notion that from a finite number of binary events,

either having occurred or having the potential to occur, a certain number of suc-

cesses are observed that are in no way distinguishable from the rest before being

observed. The latter model can actually include the first even when the first has

some legitimate claim to describing the process, such as repeated tossing of the

same coin. We assume the tosses are generated so that there is a sequence of

heads and tails and that some fraction of the sequence is then observed. One of

the advantages of the second approach for a Bayesian is the greater simplicity

(difficult though it is) of thinking about prior distributions of the observable

quantities—say the number of heads out of the total–over trying to focus on a

distribution for a hypothetical parameter.

The finite model that focuses on the fraction of successes in the finite population

is basically a dependent Bernoulli model that leads to the hypergeometric likelihood,

common to the particular cases

L(t) ¼
t!(M � t)!

(t � r)!(M � t � nþ r)!
:

In many situations we are interested in the chance that the next observation is a

success. This can be calculated by lettingM ¼ nþ1 and is useful in determining the

chance that a therapy already given to n ailing people more or less similar to a

patient, and having cured t of them, will also cure that patient of the ailment. A phys-

ician who wishes to know the chance that a particular fraction of a given number of

patients, say M2 n, whom he is treating will be cured can calculate

P½(t � r)=(M � n) � zjM, n, r�:

A pharmaceutical company or a government health organization may assume that

the number of potential future cases is sufficiently large that an asymptotic approxi-

mation is accurate enough to provide adequate information regarding the cured frac-

tion of that finite, though not necessarily specified, number of cases. In cases in

which only some normative evaluation is required, the probability function for suc-

cess on the next observation and for the fraction of successes as M grows would be

informative. The connection between the finite model and the existence of the par-

ameter u is given by the representation theorem of de Finetti which entails an infinite

sequence of exchangeable random variables.
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Theorem 6.1 To every infinite sequence of exchangeable random binary variables

{Wk} corresponds a probability distribution concentrated on [0,1]. For every permu-

tation of the integers 1, . . . ,M, and for any given integer r [ ½0, M�, let Pr represent

probability defined on M-variate sequences of r ones and M2 r zeros. Then

(a) Pr½Wj1 ¼ 1, . . . ,Wjr ¼ 1,Wjrþ1 ¼ 0, . . . ,WjM ¼ 0�; PrM ¼

ð1
0

ur(1� u)M�rdF(u),

(b) Pr½S
M
k¼1Wk ¼ r� ¼

M

r

� � Ð 1
0
ur(1� u)M�rdF(u),

(c) limM!1 M�1S
M
k¼1Wk ¼ u,

(with probability one) with u having distribution function F(u).

Heath and Sudderth (1976) devised the following simple proof.

Lemma 6.1 Suppose W1, . . . ,Wm is a sequence of exchangeable binary random

variables and let

qt ¼ Pr

Xm
j¼1

Wj ¼ t

 !
:

Then for 0 � r � M � m

PrM ¼
Xrþm�M
t¼r

(t)r(m� t)M�r
(m)M

qt,

where (x)r ¼
Yr�1
j¼0

(x� j).

Proof: It follows from exchangeability that, given
Pm

j¼1 Wj ¼ t, all m! possible

permutations of the m distinct zeros and ones are equally likely so that the

probability that there are exactly r ones followed by exactly M2 r zeros followed

by any permutation of t2 r ones and m2M2 (t2 r) zeros is

(t)r(m� t)M�r(m�M)!

m!
¼

(t)r(m� t)M�r
ðmÞM

:

The result follows from recognizing that the event ffirst r components are one and

the next M2 r are zero} ¼
Srþm�M

t¼r ffirst r components are one, the next M2 r are

zero, t2 r out of the next m2M are oneg which justifies PrM. A

Now apply the lemma to W1, . . . ,Wm so that

PrM ¼

ð1
0

(um)r((1� u)m)M�r
(m)M

Fm(du),

where Fm is the distribution function concentrated on { t
m
: 0 � t � m} whose jump

at t
m
is qt. Then apply Helly’s theorem cf. Feller (1966) to get a subsequence that
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converges in distribution to a limit F. Since m tends to infinity the integrand above

tends uniformly to the integrand in (a) so (a) holds for this F.

The theorem can be extended to show that every infinite sequence of exchange-

able variables is a mixture of independent, identically distributed random variables,

cf. Loeve (1960).

The importance of the representation theorem is that it induces a parameter which

has been lurking in the background of the finite case as the limit of a function of

observables. Thus it enables consideration of a parametric model in cases well

beyond the simple error model

X ¼ uþ e,

where u was some physical entity or constant.

6.4 COHERENCE

Example 6.6

A situation termed Dutch Book, or a “Day at the Races,” can be described as follows:

Bettor A, who has S dollars to bet on a 3-horse race is offered the following odds by

Bookmaker B:

Winning

Horse

Horse 1

2/1
Horse 2

3/1
Horse 3

4/1

Some Potential Outcomes

1 2 3

A Bets S 0 0

B’s Gain 22S S S

A Bets 0 S 0

B’s Gain S 23S S

A Bets 0 0 S

B’s Gain S S 24S

A Bets S/3 S/3 S/3

B’s Gain 0 2S/3 22S/3 B cannot win

A Bets (4/9)S (3/9)S (2/9)S

B’s Gain 2S/3 2S/3 2S/9 B is a sure loser

A Bets
20

47
S

15

47
S

12

47
S

B’s Gain
�13

47
S

�13

47
S

�13

47
S B loses the same

amount no

matter which

horse wins.
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According to B, the implicit probability of horses 1, 2 and 3 winning are 1/3, 1/4,

and 1/5 respectively. In general with n horses suppose B offers odds
1�Pj

Pj
on Horse j

to win so if A’s total wager is
Pn

j¼1 SjPj then B’s gain if Horse t wins is

Gt ¼
Xn
j¼1

S jP j � StPt � (1� Pt)St ¼
Xn
j¼1

S jP j � St:

Now if
P

Pj , 1 and letting Sj ¼ S/n, then

X
S jP j ¼

S

n

X
Pj,

and

Gt ¼
S

n

X
j

P j � 1

 !

represents a loss to B no matter which horse wins. Thus under these circumstances, it

would seem that the bookmaker should give odds that cohere with the laws of

probability.

Suppose we have a discrete probability function

P(Diju j) ¼ pij . 0 i ¼ 1, . . . , n and j ¼ 1, . . . ,N:

A Master of Ceremonies chooses a uj, does the chance experiment, and announces

the realizedDi and pij. Denote every distinct subset of values of u1,. . .,uN by Ikwhere
k ¼ 1, 2, . . . , 2N. Now the problem of statistician B is to make probability assign-

ments Pik for all 2
N subsets knowing the value pij and the sampled value Di that

was realized. When uj is true, the subset is considered correct if it includes uj and

incorrect if it doesn’t. An antagonist A may bet for or against any combination of

the 2N subsets also knowing pij and the realized Di. Thus B assigns Pik and A assigns

a stake Sik for the subset Ik. A then gives amount PikSik to B and receives in turn Sik if

Ik is correct and 0 if it is incorrect. A is risking PikSik to win (12 Pik)Sik (i.e. by being

offered odds of 12 Pik to Pik on Ik if Sik.0 and Pik to 12 Pik if Sik , 0). When

u ¼ uj, B’s gain on this bet when Di is realized is

Gijk ¼ (Pik � d jk)Sik,

where

d jk ¼ 1 if u j [ Ik so Gijk ¼ (Pik � 1)Sik

d jk ¼ 0 if u j � Ik so Gijk ¼ PikSik:
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Now

Gij ¼
X

Gijk ¼
X
k

(Pik � d jk)Sik

and the expected gain when u ¼ uj is

G�j� ¼
X
i

pij
X
k

(Pik � d jk)Sik:

Now for any {Sik}, if G�j� � 0 for all j and G�j� , 0 for at least one value of j we

say B’s probability assignment is incoherent since on the average he will lose money

for at least one uj or more and at best holding his own for the others. Otherwise we

say that his probability assignments are coherent. Note if a set of finite positive qj’s

exist such that

XN
j¼1

q jG�j� ¼ 0,

then the probability assignment is coherent since eitherG�j� ¼ 0 for all j or ifG�j� , 0

for some values of j there must be at least one value of j such that G�j� . 0.

Theorem 6.2 A Bayesian assignment of probabilities by B is both necessary and

sufficient for coherence. (Given a Bayesian assignment we have coherence and

given coherence the assignment must be Bayesian.) The result is basically due to

de Finetti (1937).

The following proof is due to Cornfield (1969):

Proof: Sufficiency A Bayesian assignment for the prior probability for uj can be

proportional to values qj . 0. In other words the posterior probability is

P(u ¼ u jjD ¼ Di) ¼
q jpijPN
j¼1 q jpij

,

which implies that

P(u [ IkjDi) ¼
XN
j¼1

q jpijd jk

XN
j¼1

q jpij:

,
(6:4:1)

Then define Pik ¼ P(u [ IkjDi). In this setup the likelihood is given by pij and the

prior probabilities given by

q0j ¼ q j

XN
t¼1

qt

,
:
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The above definition of Pik (6.4.1) implies that

X
j

pijq j(Pik � d jk) ¼ 0:

Therefore, for all {Sik}

X
i

X
k

Sik
X
j

pijq j(Pik � d jk) ¼ 0

or, by interchanging summation signs,

0 ¼
X
j

q j

X
i

pij
X
k

(Pik � d jk)Sik ¼
X
j

q jG�j�

Therefore, the probability assignment is coherent and the sufficiency is established.

A

Necessity: To establish necessity, we need to show that Pij must satisfy the axioms

of probability:

1. 0 � Pij � 1 for all i and j.

2. If Ik ¼ Ik1 < Ik2 and Ik1 > Ik2 ¼ ; then Pik ¼ Pik1 þ Pik2 for all i, k1 and k2

3.
P

j Pij ¼ 1 for all i

To establish (1) let A select Sij. Then B’s gain is PijSij2 dij if uj is true and PijSij
when uj is not true. If Pij , 0, A sets Sij.0 and B loses no matter whether uj is

true or not. Similarly if Pij . 1, A sets Sij,0 and again B loses. Hence given coher-

ence (1) holds.

To establish (3), let A choose Si for each uj, j ¼ 1, . . ., N thus risking Si
P

j Pij.

Since one of the uj’s must obtain, A is paid Si, so B’s gain is Si
P

j Pij � 1
� �

, which

can be made negative by the sign of Si opposite the sign of
P

j Pij � 1, unless it is zero.

To prove (2), let A select Sij1 , Sij2 , and Sik. Then B’s gain for Di when uj1 obtains,

uj2 obtains and when neither obtains are

Gij1 ¼ (Pij1 � 1)Sij1 þ Pij2Sij2 þ (Pik � 1)Sik,

Gij2 ¼ Pij1Sij1 þ (Pij2 � 1)Sij2 þ (Pik � 1)Sik,

Gij3 ¼ Pij1Sij1 þ Pij2Sij2 þ PikSik:

(6:4:2)

Thus A must find solutions to the above equations equal to specified negative values.
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To prevent this B must choose Pij such that

Pij1 � 1 Pij2 Pik � 1

Pij1 Pij2 � 1 Pik � 1

Pij1 Pij2 Pik

						

						
¼ 0 (6:4:3)

or Pik ¼ Pij1 þ Pij2 .

Next we show that Pij / pij. It is sufficient to consider any two D1 and D2 say and

sets I1 and I1
C. Now B has probability assignment Pij to uj and

P
j1
Pij1dj11 to I1.

A selects the following:

I1 I1
C

D1 S11 ¼ kS S12 ¼ 0

D2 S21 ¼ 2k S22 ¼ 0

D3, . . .,DN Si1 ¼ 0 Si2 ¼ 0.

Now B’s expected gain is

G1 ¼ p1j1kS
X
j

P1jd j1 � 1

 !
� p2j1k

X
j

P2jd j1 � 1

 !
for all u j1 [ I1:

The expected gain is

G2 ¼ p1j2kS
X
j

P1jd j1 � p2j2k
X
j

P2jd j1 for all u j2 [ IC1 :

Now when

p2j1
p1j1
�

(1�
P

j P2jd j1)

(1�
P

j P1jd j1)
, S ,

p2j2
p1j2
�

P
j P2jd j1P
j P1jd j1

(6:4:4)

for all uj1 [ I1, uj2 [ I2 and k . 0 or

p2j1
p1j1
�

(1�
P

j P2jd j1)

(1�
P

j P1jd j1)
. S .

p2j2
p1j2
�

P
j P2jd j1P
j P j1d j1

for all uj1 [ I1, uj2 [ IC1 and k , 0, G1 and G2 will be negative.
By selection of k, A can induce losses whether or not uj [ I1 or I1

C unless B

chooses Pij so that for every partition of (u1, . . . , uN) into two sets,

P
j P2jd j2P
j P1jd j2

4

P
j P2jd j1P
j P1jd j1

¼
p2j2
p1j2

4
p2j1
p1j1
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for uj1 [ I1, uj2 [ IC1 ¼ I2. This requires that

P2j2

P1j2

4
P2j1

P1j1

¼
p2j2
p1j2

4
p2j1
p1j1

(6:4:5)

for all uj1 and uj2 , since if the above is not satisfied A can select a set I1 for which the

inequalities of (6.4.4) hold. Equation (6.4.5) implies that

Pij / pijq j for i ¼ 1, 2 and all j

because of (3). This applies for every pair of sample values so that the above obtain

for all i. Now the qi must all be of the same sign otherwise (1) will not hold. It is also

necessary that qi = 0 since if the j1th is, A sets Sij ¼ 0 for all uj except uj ¼ uj1 and

wins Sij1 when uj1 obtains by risking Pij1Sij1 that is, zero, making B’s assignment

incoherent. Necessity now has been established.

What the result implies is that if B’s betting odds are not consistent with prior

probabilities then A by appropriate choice of stakes can render B a sure loser. So

only the Bayes approach can claim a universal consistency or coherence in the

jargon of betting. Whether betting is always an appropriate metaphor for scientific

inference is still a debateable issue.

For a more general result see Freedman and Purves (1969).

6.5 MODEL SELECTION

A more general Bayesian approach that includes Hypothesis Testing goes under the

rubric of Model Selection. Suppose there are K possible models M1, . . . ,MK that

could explain the generation of a data set X (N) ¼ x (N). Let

P(Mk) ¼ qk, k ¼ 1, . . . , K,
X
k

qk ¼ 1

and associated with Mk we have probability function

f (x(N), ukjMk) ¼ f (x(N)juk, Mk)p(ukjMk),

where p(ukjMk) specifies a prior probability function for uk under model Mk. Now

f (x(N)jMk) ¼

ð
f (x(N), ukjMk)duk:

Further,

P(Mkjx
(N)) ¼

qkf (x
(N)jMk)X

j

qjf (x
(N)jMj)

¼ q0k:
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Selection of the model could depend on a loss function. If the loss function assigns

the same loss to each of the entertained models then one would choose that model

Mk
� associated with

q0k� ¼ max
k

q0k,

that is, the model with the largest posterior probability.

Almost all of Bayesian Hypothesis Testing problems can be subsumed under the

Model Selection paradigm. Note that Examples 6.1–6.4 all can be considered as

Model Selection problems.

Example 6.7

Suppose we have a set of data with two labels such that the realized values of

X(N) ¼ x(N) ¼ (x(N1), x(N2)),N1 þ N2 ¼ N

X(N1) ¼ x(N1) ¼ (x1, . . . , xN1
), X(N2) ¼ x(N2) ¼ (xN1þ1, . . . , xN1þN2

):

Assume the model specifications are

M1 : Xi i ¼ 1, . . . , N1 þ N2 are i.i.d. with density

f (xju) ¼ ue�ux

p(ujM1)/ ud�1e�gu,

with prior probability q1 and

M2 : Xi, i ¼ 1, . . . , N1 are i.i.d. with density

f (xju) ¼ u1e
�u1x

p(u1jd1, g1)/ ud1�11 e
�g1u1
1

independent of

Xi, i ¼ N1 þ 1, . . . ,N1 þ N2 that are i.i.d. with density

f (xju) ¼ u2e
�u2x

p(u2jg2, d2)/ ud2�12 e
�g2u2
2

with prior probability q2 ¼ 12 q1.

Assuming that d, g, d1, g1, d2, g2 and q1 are known and losses for selection are

equal, then choice of the best model depends on the larger of

q1 f (x
(N)jM1) ¼ q1G(N þ d)gd

.
G(d)½N �xþ g�Nþd / q01
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or

q2 f (x(N)jM2) ¼ q2f (x
(N1)jM2)f (x

(N2)jM2)/ q02,

where

f (x(Nj)jM2) ¼ G(Nj þ dj)g
dj
j

.
G(dj)½Nj �xj þ gj�

Njþdj :
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C H A P T E R S E V E N

Theories of Estimation

This chapter presents a thorough investigation of frequentist and likelihood based

point estimation. The concepts of unbiasedness, consistency and Fisher consistency

are introduced and illustrated. Error bounds on estimation are presented including

the classic Cramér-Rao lower bound and its generalizations. Fisher information is

interpreted from several points of view, and its relation to efficiency in estimation

is laid out. The Blackwell-Rao theorem is established. Then considerable attention

is paid to large sample theory for maximum likelihood estimation; asymptotic con-

sistency and normality are established. The chapter concludes with definitions and

some discussion of sufficiency principles.

7.1 ELEMENTS OF POINT ESTIMATION

Essentially there are three stages of sophistication with regard to estimation of a

parameter:

1. At the lowest level—a simple point estimate;

2. At a higher level—a point estimate along with some indication of the error of

that estimate;

3. At the highest level—one conceives of estimating in terms of a “distribution”

or probability of some sort of the potential values that can occur.

This entails the specification of some set of values presumably more restrictive than

the entire set of values that the parameter can take on or relative plausibilities of

those values or an interval or region.

Consider the I.Q. of University of Minnesota freshmen by taking a random

sample of them. We could be satisfied with the sample average as reflective of

that population. More insight, however, may be gained by considering the variability
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of scores by estimating a variance. Finally one might decide that a highly likely

interval for the entire average of freshmen would be more informative.

Sometimes a point estimate is about all you can do. Representing distances on a

map, for example. At present there is really no way of reliably illustrating a standard

error on a map—so a point estimate will suffice.

An “estimate” is a more or less reasonable guess at the true value of a magnitude

or parameter or even a potential observation, and we are not necessarily interested in

the consequences of estimation. We may only be concerned in what we should

believe a true value to be rather than what action or what the consequences are of

this belief. At this point we separate estimation theory from decision theory,

though in many instances this is not the case.

Example 7.1

Suppose I am building a fence and I estimate I need about 200 linear feet of lumber. I

may only order 180 feet so as not to incur wastage (in money) or I may order 220 feet

so as not to have to make two orders. While 220 feet and 180 feet may end up being

my decisions they are not my estimates, though they may modify the estimate to

conform with a loss criterion.

In other words decision making should not be confused with estimating or

guessing.

7.2 POINT ESTIMATION

1. An estimate might be considered “good” if it is in fact close to the true value

on average or in the long run (pre-trial).

2. An estimate might be considered “good” if the data give good reason to

believe the estimate will be close to the true value (post trial).

A system of estimation will be called an estimator

1. Choose estimators which on average or very often yield estimates which are

close to the true value.

2. Choose an estimator for which the data give good reason to believe it will be

close to the true value that is, a well-supported estimate (one that is suitable

after the trials are made.)

With regard to the first type of estimators we do not reject one (theoretically) if it

gives a poor result (differs greatly from the true value) in a particular case (though

you would be foolish not to). We would only reject an estimation procedure if it

gives bad results on average or in the long run. The merit of an estimator is

judged, in general, by the distribution of estimates it gives rise to—the properties

of its sampling distribution. One property sometimes stressed is unbiasedness. If
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T(D) is the estimator of u then unbiasedness requires

E½T(D)� ¼ u:

For example an unbiased estimator of a population variance s2 is

(n� 1)�1
X

(xi � �x)2 ¼ s2

since E(s2) ¼ s2.

Suppose Y1,Y2, . . . are i.i.d. Bernoulli random variables P(Yi ¼ 1) ¼ u and we

sample until the first “one” comes up so that probability that the first one appears

after X ¼ x zeroes is

P(X ¼ xju) ¼ u(1� u)x x ¼ 0, 1, . . . 0 , u , 1:

Seeking an unbiased estimator we have

u ¼ E(T(Y)) ¼
X1
x¼0

t(x)u(1� u)x ¼ t(0)uþ t(1)u(1� u)þ � � � :

Equating the terms yields the unique solution t(0) ¼ 1, t(x) ¼ 0 for x � 1. This is

flawed because this unique estimator always lies outside of the range of u. So

unbiasedness alone can be a very poor guide. Prior to unbiasedness we should

have consistency (which is an asymptotic type of unbiasedness, but considerably

more). Another desideratum that many prefer is invariance of the estimation

procedure. But if E(X) ¼ u, then for g(X) a smooth function of X, E(g(X)) = g(u)

unless g( � ) is linear in X. Definitions of classical and Fisher consistency follow:

Consistency: An estimator Tn computed from a sample of size n is said to be a

consistent estimator of u if for any arbitrary e . 0 and d . 0 there is some value,

N, such that

P½jTn � uj , e� . 1� d for all n . N,

so that Tn converges in probability to u. This is a limiting property and doesn’t say

how to produce an estimator. Note this permits, for fixed a and b, that

(n� a)=(n� b)Tn to be consistent if Tn is consistent. Similarly Tn þ kn will then

also be consistent for any kn! 0. Let T 0 stand for any arbitrary function of the

first n1 observations and T 00n�n1
be such that for all n . n1, T 00 ! u as n increases.

Then if n . n1 let Tn ¼
1
n
½n1T

0 þ (n� n1)T 00n�n1
� and if n � n1, Tn ¼ T 0, so that Tn

is defined for all values of n and is consistent and foolish for n � n1. Clearly it is

perfectly arbitrary and potentially perfectly useless as Fisher (1956) pointed out.
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Fisher’s Definition of Consistency for i.i.d. Random Variables

“A function of the observed frequencies which takes on the exact parametric value

when for those frequencies their expectations are substituted.”

For a discrete random variable with P(Xj ¼ xjju) ¼ pj(u) let Tn be a function of

the observed frequencies nj whose expectations are E(nj) ¼ npj(u). Then the linear

function of the frequencies Tn ¼
1
n

P
j cjnj will assume the value

t(u) ¼ Sc jp j(u);

when npj(u) is substituted for nj and thus n�1Tn is a consistent estimator of t(u):
Another way of looking at this is:

LetFn(x) ¼
1

n
� # of observations � x

¼
i

n
for x(i�1) , x � x(i),

where x(j) is the jth smallest observation. If Tn ¼ g(Fn(x)) and g(F(xju)) ¼ t(u) then

Tn is Fisher consistent for t(u). Note if

Tn ¼

ð
xdFn(x) ¼ �xn,

and if

g(F) ¼

ð
xdF(x) ¼ m,

then �xn is Fisher consistent for m.

On the other hand, if Tn ¼ �xn þ
1
n
, then this is not Fisher consistent but is consist-

ent in the ordinary sense. Fisher Consistency is only defined for i.i.d. X1, . . . , Xn.

However, as noted by Barnard (1974), “Fisher consistency can only with diffi-

culty be invoked to justify specific procedures with finite samples” and also “fails

because not all reasonable estimates are functions of relative frequencies.” He

also presents an estimating procedure that does meet his requirements that the esti-

mate lies within the parameter space and is invariant based on pivotal functions.

Example 7.2

For X1, . . . , Xn i.i.d. N(m, s2), let

t ¼

ffiffiffi
n
p

(�x� m)

s
,
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whose distribution does not depend on the parameters m and s. Barnard points out

that setting t equal to its mean (or median), for example,

ffiffiffi
n
p

(�x� m)

s
¼ 0

results in the estimate m̂ ¼ �x. If t ¼ g(m) is a smooth function of m such that

ffiffiffi
n
p

(�x� g�1(t))

s
¼ 0,

then

g(�x) ¼ t̂:

A well-supported estimator could be defined thus: If for all a . 0 and given data D,

Support ½jTn � uj , ajD� � Support ½jT�n � uj , ajD�,

then Tn is better supported than T�n . Support can be the likelihood or some other

measure of plausibility given D—a post data evaluation. We can also define an inter-

val for u such that L(û) � KL(u), where K . 1 for all u

or
L(u)

L(û)
�

1

K
:

In comparing estimators in frequentist terms, one criterion for Tn to be superior to

T�n could be

P{jTn � uj , aju} � P{jT�n � uj , aju},

for all a . 0, and all n. Then we would say that Tn is closer to u than T�n . If this is true

for all competitors T�n , then we could say that Tn is the uniformly best estimator.

Unfortunately such estimators seem impossible to find for every n, and all values

of u. If we restrict ourselves to the class of all estimators that are asymptotically

normal and unbiased then for a large enough n, what is required is that Tn have

the smallest variance since if

T � N(u, s2) and T� � N(u, t2) and s2 � t2,
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then it is easy to show that for all a . 0

P(jT � uj � a) ¼ F
a

s

� �
�F �

a

s

� �
,

P(jT� � uj � a) ¼ F
a

t

� �
�F �

a

t

� �
:

Since a
s
� a

t
implies that F a

s

� �
� F a

t

� �
and �a

s
� �a

t
implies that F �a

s

� �
� F �a

t

� �
, it

follows that

F
a

s

� �
�F �

a

s

� �
� F

a

t

� �
�F �

a

t

� �
:

So at least for estimators that are unbiased and asymptotically normal the var-

iance completely determines the optimal estimator. This leads to consideration,

for finite n, of the unbiased estimator of minimum variance even though it may

not fulfill the close in probability frequency specification.

7.3 ESTIMATION ERROR BOUNDS

We now present a key theorem for the error of estimation.

Theorem 7.1 Let X ¼ (X1, . . . ,Xn) and fX(xju) be the generalized density with

respect to s-finite measure m. Let T(X) be any unbiased estimator of t(u), then

for u and u0

var(T ju) � sup
u0

½t(u0)� t(u)�2

var
f (xju0)

f (xju)
ju

� � where Eu0 (T) ¼ t(u0):

Proof: We have

Eu T
f (xju0)� f (xju)

f (xju)

� �� 	
¼

ð
T
fu0

fu
fu � Tfu

� �
dm ¼ t(u0)� t(u):

Using Cov(Z,W) ¼ E(ZW)� E(Z)E(W),

Cov T ,
f (xju0)

f (xju)
� 1

� �
 �
¼ E (T � t)

f (xju0)

f (xju)
� 1

� �
ju


 �
¼ t(u0)� t(u),
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since

Eu

f (xju0)

f (xju)
� 1

� �
¼

ð
f (xju0)dm� 1 ¼ 1� 1 ¼ 0:

Now recall the Cauchy-Schwarz inequality,

E2(h(y)g(y)) � (Eh2)(Eg2)

with equality iff h ¼ cg. Let h ¼ T � t(u), g ¼ fu0=fu � 1. Then

0 � E2(T � t)
fu0

fu
� 1

� �
¼ t(u0)� t(u)ð Þ

2
� var(T ju)� var

f (xju0)

f (xju)
ju

� �
,

so that

var(Tju) � sup
u0

½t(u0)� t(u)�2

var
f (xju0)

f (xju)
ju

� �
:

A

Critical regularity conditions have not been assumed yet, but now let dt (u)=du
exist and assume

var
fu0

fu
ju

� �
(u0 � u)2 �!

u0!u
J(u)

�
,

exists. Then

var(Tju) � lim
u0!u

t(u0)� t(u)

u0 � u

� �2

4 var
fu0

fu
ju

� �
(u0 � u)2
 �
" #

¼ ½t0(u)�2=J(u):

Further, let df (xju)
du

exist, and for ju0 � uj , e (a fixed u independent of X) let

(i)
fu0 � fu

(u0 � u) fu

����
���� , G(x, u)

hold such that Eu(G2) exists which also implies Eu(G) exists. Now

J(u) ¼ lim
u0!u

var
fu0

fu

� ����u
�

(u0 � u)2
¼ lim

u0!u

ð
fu0 � fu

fu

� �2
fu

(u0 � u)2
dm:
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Using the Lebesgue dominated convergence theorem,

J(u) ¼

ð
lim
u0!u

fu0 � fu

u0 � u

� 	2
fu

f 2
u

dm ¼

ð
@fu
@u

� �2
1

f 2
u

fudm

¼

ð
@ log fu

@u

� �2

fudm ¼ E
@ log fu

@u

� �2

¼ I(u),

the Fisher Information quantity. Hence the right-hand side of

var(T) � (t0 (u))2=I(u)

is referred to as the Cramér-Rao lower bound, which in this “regular” case is the

minimum variance bound for all T unbiased for t(u). Note that condition (i) implies

that

0 ¼
@

@u

ð
fdm ¼

ð
@f

@u
dm ¼

ð
@ log f

@u
fdm ¼ E

@ log f

@u

� �
:

Suppose a second derivative can be passed through the integral sign. Then

0 ¼
@

@u

ð
@ log f

@u
fdm ¼

ð
f
@2 log f

@u2
þ

@ log f

@u

� �
@f

@u

� 	
dm

¼

ð
@2 log f

@u2
fdmþ

ð
@ log f

@u

� �2

fdm ¼ E
@2 log f

@u2
þ I(u),

or

I(u) ¼ �E
@2 log f

@u2

� �
:

Now in the regular case,

t (u) ¼

ð
Tfudm ¼ E(T),

t 0(u) ¼

ð
T
@fu
@u

dm ¼

ð
T
@ log fu

@u
fudm ¼ E T

@ log fu

@u

� �
:

By the Cauchy-Schwarz inequality,

½t0(u)�2 � var(T)E
@ log fu

@u

� �2
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with equality iff

@ log fu

@u
¼ A(u)(T � t(u)),

and the lower bound is achieved. Note also in this case

E
@ log fu

@u

� �2

¼ A2(u)var(T),

and from the previous work,

E
@ log fu

@u

� �2

¼
½t 0(u)�2

var(T)
:

Then

A2var(T) ¼ (t 0(u))2=var(T),

or

var(T) ¼
t 0(u)

A(u)
,

and if t(u) ¼ u then

var(T) ¼
1

A(u)
:

If

@ log f

@u
= A(u)(T � t),

the minimum bound will not be attained but there still may be an attainable mini-

mum variance though larger than the regular minimum bound. If the “regularity”

conditions do not hold the smallest attainable variance may be less than the “regular

minimum bound,”

½t 0(u)�2=I(u):

Finally, note that t 0(u) and A(u) must have the same sign, so there is no need for

absolute value in the above variance formula.
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Example 7.3

For a non-regular case consider X1, . . . , Xn i.i.d. with

fu ¼ f (xju) ¼
eu�x for x � u

0 for x , u:




Since @fu=@u does not exist,
Ð
fudx ¼ 1 cannot be differentiated. The estimate, u� ¼

min
i

(xi)�
1
n
, is unbiased and has variance less than the Cramér lower bound

for n . 1.

If t(u) ¼ u then under regularity conditions

var(T) �
1

I(u)
:

This is a special case of the Cramér-Rao lower bound. When the minimum bound is

not attained one can still find lower bounds, Bhattacharyya (1940).

Let

Ds ¼ T � t(u)�
Xs
j¼1

a j

1

fu

@ jfu

@u j
¼ T � t(u)� a0L,

a0 ¼ (a1, . . . , as), L
0
¼

1

fu

@fu
@u

,
@2fu

@u2
, . . . ,

@sfu
@us

� �
¼ (L1, . . . , Ls):

Assuming regularity conditions

0 ¼
@ j
Ð
fudm

@u j
¼

ð
@ jfu

@u j
dm ¼

ð
1

fu

@ jfu

@u j
fudm

¼ E
1

fu

@ jfu

@u j

� 	
¼ E(L j),

E(Ds) ¼ E(T � t(u))� a0E(L) ¼ 0,

var(Ds) ¼ E
�
D2

s

�
¼ E(T � t(u)� a0L)2

¼ E(T � t(u))2 � 2a0EL(T � t(u))þ a0(ELL0)a

¼ var(T)� 2a0½ELT � ELt(u)� þ a0Ba, B ¼ E(LL0)

¼ var(T)� 2a0ELT þ a0Ba:

Now

E(TL j) ¼ E T
1

fu

@ jfu

@u j

� �
¼

ð
T
@ jfu

@u j
dm ¼

@ j

@u j

ð
Tfudm ¼

@ j

@u j
t(u) ¼ g j:
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Hence

var(Ds) ¼ var(T)� 2a0gþ a0Ba,

where

g0 ¼ (g1, . . . ,gs);

var(Ds) ¼ var(T)þ (a� B�1g)0B(a� B�1g)� g0B�1g � 0,

min
a

var(Ds) ¼ var(T)� g 0B�1g � 0

that is, when a ¼ B�1g

var(T) � g 0B�1g:

Now var(Ds) ¼ 0 iff Ds ¼ 0 ¼ T � t(u)� a0L or T � t(u) ¼ a0L ¼ g 0B�1L.

Only in this case is the bound attained that is,

var(T) ¼ g 0B�1g:

One can show that

var(T) � g 0B�1g �
(t 0(u))2

I(u)
:

More generally, for

g 0 ¼
g(1)0 , g(2)0

r s� r

� �
and B�1 ¼

r s� r

B11 B12

B21 B22

0
@

1
A r

s� r

var(T) � g 0B�1g � g(1)0B�1
11 g

(1) þ (g(2) � B21B
�1
11 g

(1))0B22(g2 � B21B
�1
11 g

(1)).

If var(T) ¼ g(1)0B�1
11 g

(1) then there is no point going beyond r ¼ s. In particular,

if r ¼ 1,

var(T) � g2
1b
�1
11 þ g(2) �

B21

b11

g1

� �0
B22 g(2) �

B21

b11

g1

� �
,

and g2
1b
�1
11 ¼ (t0(u))2=I(u). Note also the covariance matrix of (T , L0) is

Cov(T , L0) ¼
var(T) g 0

g B

� �
:
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Therefore, the multiple correlation between T and L is R2
T ,L ;

g0B�1g
var(T)

.

We now ask whether an unbiased estimator of minimum variance (if it exists) is

unique irrespective of whether a minimum variance bound is attained. Let T and T�

both be unbiased and of minimum variance.

E(T) ¼ E(T�) ¼ t(u) var(T) ¼ var(T�) ¼ s2:

Let

T 0 ¼
1

2
(T þ T�), E(T 0) ¼ t(u),

var(T 0) ¼
1

4
(var(T)þ 2 Cov(T , T�)þ var(T�)):

Now

Cov(T , T�) ¼ E(T � t)(T� � t) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(T) var(T�)

p
¼ s2,

by the Cauchy-Schwarz inequality such that

var(T 0) �
1

4
(s2 þ 2s2 þ s2) ¼ s2:

Now the inequality sign contradicts the assumption that s2 is the minimum

variance. However equality of Cov(T , T�) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(T) var(T�)
p

¼ s2 implies that

(T � t) ¼ u(u)(T� � t) and Cov(T , T�) ¼ E(T � t)(T� � t) ¼ u(u)E(T� � t)2 ¼

u(u)s2 but Cov(T , T�) ¼ s2 such that u(u) ; 1 and T ¼ T� thus the minimum

variance unbiased estimator is unique if it exists.

7.4 EFFICIENCY AND FISHER INFORMATION

Suppose for a given sample size n, T 0n has minimum variance among all unbiased

estimators of u. Then the efficiency of any unbiased statistic Tn can be defined as

0 � e(Tn) ¼
var(T 0n)

var(Tn)
� 1,

and limn!1 e(Tn) is termed the asymptotic efficiency.
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In the regular case where the lower bound is var(Tn) �
1

In(u)
and X1, X2, . . . , are

i.i.d. from fX(xju), where

In(u) ¼ E
@ log

Qn
i¼1 f (xiju)

@u

� �2

¼ E
@
P

i log f (xiju)

@u

� �2

¼ E
X
i

@ log f (xiju)

@u

 !2

¼
X
i

E
@ log f (xiju)

@u

� �2

¼ nI(u),

where I(u) ¼ E @ log f (xju)
@u

� �2
that is, of a single observation because X1, . . . , Xn

are i.i.d.

Hence another definition for the i.i.d. regular case is

e(Tn) ¼
1

nI(u) var(Tn)
:

If

@ log
Qn

i¼1 f (xiju)

@u
¼
Xn
i¼1

@ log f (xiju)

@u
¼ A(u)(Tn � t),

then Tn is fully efficient. Another way of looking at efficiency is

0 � e f ¼
ITn (u)

In(u)
� 1 where ITn (u) ¼ E

@ log f (tnju)

@u

� �2

:

We show that ITn(u) � In(u).

For any measurable set C , S, the sample space of (X1, . . . , Xn) ¼ X, let

d

du
P X [ C½ � ¼

d

du

ð

C

f (xju)dm ¼

ð

C

@ log f (xju)

@u
f (xju)dm,

and let Tn be a statistic with probability function gTn (tnju), satisfying

d

du
P Tn [ C0½ � ¼

d

du

ð

C0
g(tnju)dn ¼

ð

C0

@ log g(tnju)

@u
g(tnju)dn

for all C0 , S0, the space of Tn(X). Let E @ log g(tnju)
@u

� �2
¼ ITn (u), then In(u) � ITn (u).

Proof: We have

0 � E
@ log f (xju)

@u
�
@ log g(tnju)

@u

� 	2

¼ In(u)þ ITn (u)� 2E
@ log f

@u
�
@ log g

@u

� 	
,
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and for C0 , S0, there is a corresponding C , S so that

P(Tn [ C0ju) ¼ P(X [ Cju)

and

ð

C0

@ log g

@u
gdn ¼

ð

C

@ log f

@u
fdg:

Since this holds for every C it satisfies the definition of conditional expectation

(see the Radon-Nykodym Theorem), that is,

@ log g

@u
¼ E

@ log f

@u
jTn ¼ t

� 	

and

ETnEXjTn

@ log f

@u

@ log g

@u

� 	
¼ ETn

@ log g

@u

� 	2

¼ ITn(u) and

0 � In(u)þ ITn(u)� 2ITn (u) ¼ In(u)� ITn(u) and In(u) � ITn (u),

as required. A

7.5 INTERPRETATIONS OF FISHER INFORMATION

We consider the likelihood L(ujD) or simply L(u). Recall that L(u) was useful for

discriminating between alternative values of u say u1 and u2 and if L(u1) ¼ L(u2)

we cannot discriminate between the support of u1 and u2 for the given data.

More generally if L(u) ¼ Constant for all u there is obviously no information in

the sample with regard to u. So information in the sample with regard to u should

be associated with changes in L(u) for varying u. Now @L
@u is the rate of change of

L with respect to u. Further, the greater L the less important is the same rate @L
@u.

So it seems reasonable to consider the relative rate of change that is,

1

L

@L

@u
¼

@ logL

@u
¼ S(u),

often called the Score function. Now when the regularity conditions (interchange of

partial derivatives and integrals) hold,

E(S) ¼ E
@ log L

@u

� �
¼ 0 mean rate of relative change:
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It is reasonable to assume that the more variation in S, the more information in the

sample relative to u. Therefore since a measure of variation is the variance we may

define

var(S) ¼ E
@ logL

@u

� �2

,

as the average amount of information in the data relative to u.

Another interpretation is curvature or how steep is the descent about the

maximum. The curvature of log L(u) is defined as

C ¼ lim
Du!0

Df

Ds
¼

@2 log L(u )

@u2

1þ
@ logL(u )

@u

� 	3=2
:

For u ¼û since L(û ) maximizes L(u) then log L(û ) maximizes log L(u) so
@ log L(u)

@u j
u¼û
¼ 0 and

C ¼
@2 log L(u )

@u2
j
u¼ :̂u

q̂ + ∆q

∆φ

∆s

θ

log(L(θ))θ

q̂ 

Figure 7.1
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is the curvature at the maximum. Since this is negative it measures how steep the

descent is around the Maximum Likelihood Estimate. Geometrically, the curvature

at û is defined to be the rate of change of the angle of the tangent at ûþ Du as Du

tends to zero (see Figure 7.1). As already noted under certain regularity conditions

E
@ log L(u)

@u

� 	2

¼ �E
@2 log L(u)

@u2

� 	
:

Further interpretations:

Suppose we let

D(u0, u) ¼ Eu0w
fu

fu0

� �
� 0

be a discrepancy measure of fu from fu0 , where w( � ) is a convex function and w(1) ¼

0 that is, D(u0,u) ¼ 0 for u ¼ u0. Assume we can differentiate under the integral sign

with respect to u0, then

@D

@u0
¼ D0(u0, u) ¼

@

@u0

ð
wfu0dm ¼

ð
f 0u0w� fu0

w0f 0
u0
fu

f 2
u0

 !
dm

¼

ð
f 0u0w�

w0fu f
0
u0

fu0

� 	
dm,

where @w=@z ¼ w0, @w=@u0 ¼ w0fu f
0
u0
=(�f 2

u0
).

Further,

@D0(u0, u)

@u0
¼ D00(u0, u) ¼

ð
f 00u0w�

f 0
u0
� w0f 0

u0
fu

f 2
u0

� �
w00f 2

u ( f 0
u0

)2

f 3
u0

þ w0fu
@2 log fu0

@u02

" #
dm:

Now
@2 log fu0

@u0 2
¼

f 00
u0

fu0
�

( f 0
u0

)2

f 2
u0

, so

D00(u0, u) ¼

ð
f 00u0wþ

w00f 2
u ( f 0

u0
)2

f 3
u0

�
w0f 00u fu

fu0

" #
dm:

Let

@2D(u0, u)

@u02
ju0¼u ¼ D00(u, u):
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Then

D00(u, u) ¼ 0þ w00(1)

ð
fu

@ log fu

@u

� �2

dm� w0(1)

ð
f 00u du:

Now D(u0,u) � 0 and D(u,u) ¼ 0 then D(u0,u) has a minimum when u0 ¼ u and

w(1) ¼ 0. Hence

D00(u, u) ¼ w00(1)

ð
@ log fu

@u

� �2

fudm ¼ w00(1)I(u):

Since w is convex, w00(1) � 0 (Burbea and Rao, 1982). In particular, if we let

w ¼ � log fu
fu0

then since the Kullback-Leibler divergence is

K(u0, u) ¼ Eu � log
fu

fu0

� �
¼

ð
fu0 log

fu0

fu
dm,

we note that

K 00(u, u) ¼ w00(1)I(u) ¼ I(u) since w0 ¼ �
1

fu

fu0

� � , w00 ¼
fu0

fu

� �2

,

so that w00(1) ¼ 1.

As another special case, consider the distance

D(u0, u) ¼

ð
f

1
2

u0
� f

1
2

u

� �2

dm ¼

ð
fu0 1�

fu

fu0

� �1
2

 !2

dm,

so

w
fu

fu0

� �
¼ 1�

fu

fu0

� �1
2

" #2

w00(1) ¼
1

2

D00(u, u) ¼
1

2
I(u):
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Since

ð
f

1
2

u0
� f

1
2

u

� �2

dm ¼ 2� 2

ð
( fu fu0)

1
2 dm;

then

0 � D(u0, u) � 2,

with lower bound achieved iff fu0 ¼ fu, and the upper bound when fu0 fu ¼ 0, Pitman

(1979). So I(u) or 1
2
I(u) is basically the curvature at the minimum discrepancy and

expresses how steep is the ascent for changes about u.

7.6 THE INFORMATION MATRIX

Let X have probability function fX(xju) where u ¼ (u1, . . . ,up) and

@ log f

@u
¼

@ log f

@u1

..

.

@f

@u p

0
BBBBB@

1
CCCCCA

,

then

I ( u
�

) ¼ E
@ log f

@u

� �
@ log f

@u

� �0� 	
:

Suppose X � N(m, s2) and u1 ¼ m, u2 ¼ s2, then

I (m, s2) ¼

1

s2
0

0
1

2s4

0
B@

1
CA:

Now Jeffreys’ criterion for the prior with minimal information is to use it as joint

prior for m and s2,

g(m, s2) / jI (m, s2)j
1
2 /

1

s3
:

However, this did not appeal to Jeffreys and he prefered to use g(m, s2) / 1
s2 that

is, m is uniform and logs2 is uniform—so there are problems with the square root of

the determinant of the information matrix, although this keeps the prior invariant, as

we now show.
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Suppose

t1 ¼ t1(u1, . . . , u p) ¼ t1(u), u1 ¼ u1(t1, . . . ,t p) ¼ u1(t)

..

. ..
.

t p ¼ t p(u1, . . . ,u p) ¼ t p(u), u p ¼ u p(t1, . . . ,t p) ¼ u p(t);

where t ¼ (t1, . . . , tp). Further,

@ log f

@t j

¼
@ log f

@u1

�
@u1

@t j

þ
@ log f

@u2

�
@u2

@t j

þ � � � þ
@ log f

@u p

�
@u p

@t j

j ¼ 1, . . . , p:

We can express this in matrix form as

@u

@t
¼

@u1

@t1

: : : :
@u p

@t1

: :
: :
: :
: :

@u1

@t p

: : : :
@u p

@t p

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and

@ log f

@t
¼

@ log f

@t1

..

.

@ log f

@t p

0
BBBBBBB@

1
CCCCCCCA

,

so that

@ log f

@t
¼

@u

@t

@ log f

@u
:

Hence I (t) ¼ E
@ log f

@t

� �
@ log f

@t

� �0
¼ E

@u

@t

@ log f

@u

� �
@u

@t

@ log f

@u

� �0

¼ E
@u

@t

� �
@ log f

@u

� �
@ log f

@u

� �0 @u
�
@t

 !0" #

¼
@u

@t

� �
I (u)

@u

@t

� �0
:
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We now note that

@t

@u
¼

@t1

@u1

: : : :
@t p

@u1

: :
: :
: :
: :

@t1

@u p

: : : :
@t p

@u p

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,
@u

@t
¼

@u1

@t1

: : : :
@u p

@t1

: :
: :
: :
: :

@u1

@t p

: : : :
@u p

@t p

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and

@t

@u
�
@u

@t
¼ A ¼ {aij},

where

aij ¼
Xn
k¼1

@tk
@ui

@u j

@tk
¼

@u j

@ui
¼

0 if i = j

1 if i ¼ j



,

so that A ¼ I and

@t

@u
¼

@u

@t

� ��1

:

Therefore,

@u

@t

� ��1

I (t)
@u

@t

� �0�1

¼ I (u)

or

@t

@u

� �
I (t)

@t

@u

� �0
¼ I (u):

Taking the determinant of both sides yields

@t

@u

����
����
2

I (t)j j ¼ jI (u)j,

@t

@u

����
���� I (t)j j

1
2 ¼ I (u)j j

1
2:
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Hence, whether you start with t or u, as long as you use the square root of the infor-

mation matrix, your posterior probability for t will be the same if you start with u

and transform to t or whether you started with t.

Suppose T is an unbiased estimator of u that is, E(T) ¼ u where expectation is

taken componentwise. Let

Z ¼

T

@ log f

@u

0
@

1
A, T ¼ (T1, . . . ,Tp), f (x1, . . . , xnju) ¼ f ,

then

E
@ log f

@u

� �
¼ 0

�
,

and

Cov(Z) ¼ E

T � u

@ log f

@u

0
@

1
A

T � u

@ log f

@u

0
@

1
A
0

¼
ST I

I I (u)

� �
¼ L,

is non-negative definite (nnd) since

E (Ti � ui)
@ log f

@u j

� 	
¼ E Ti

@ log f

@u j

� 	
¼

ð
ti

1

f

@f

@u j

fdm

¼

ð
ti
@f

@u j

dm ¼
@

@u j

ð
tifdm ¼

@ui
@u j

¼
0 if i = j

1 if i ¼ j
:




Since L is nnd so is ALA0 for any real matrix A. Let

A ¼
I �I�1(u)

0 I�1(u)

� �

or if I�1(u) does not exist use I�(u), the pseudo-inverse. Then

ALA0 ¼
ST � I

�1(u) 0
�

0
�

I�1(u)

0
@

1
A,

since every principle minor of a nnd matrix is nnd then ST � I
�1(u) is nnd for all T.

Since all of the diagonal elements of a nnd matrix are non-negative we have that

var(Tj) � i jj where i jj is the jth diagonal element of I�1(u), yielding a lower

bound for the variance of the unbiased estimator of uj, j ¼ 1, . . . , p:
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7.7 SUFFICIENCY

Definition of a Sufficient Statistic: T ¼ T(D) is sufficient for the family of probability

functions f (Dju) if the distribution of DjT is independent of u that is, f (DjT ¼ t,u)

is independent of u for all t.

Theorem 7.2 (without proof): T(D) is sufficient for u iff f (Dju) ¼ g(tju)h(D):
This shows that the information in a sufficient statistic is the same as in the sample D

since

@ log f (Dju)

@u
¼

@ log g(tju)

@u
;

so that ID(u) ¼ IT (u), assuming the existence of ID(u).

Note that this does not provide an estimate of u since any one-to-one transform-

ation of a sufficient statistic is also sufficient. If u and T a sufficient statistic for u are

both scalars then T is unique up to a one-to-one transformation. Suppose there are

two scalar sufficient statistics U and T for scalar u. Then we have

f (t, uju) ¼ f (uju) f (tju) ¼ f (tju) f (ujt):

Then

f (uju)

f (tju)
¼

f (ujt)

f (tju)
¼ g(u, t),

such that the left-hand side cannot be a function of u. The only way this can occur is

if u and t are related by 1� 1 transformation, independent of u.

7.8 THE BLACKWELL-RAO RESULT

Suppose U is any estimator of t(u) not necessarily unbiased, and T is a sufficient stat-

istic such that E(U) ¼ E(T). Then for h(T) ¼ EUjT (UjT), since T is sufficient, we

can show that

E½U � t(u)�2 � E(h(T)� t(u))2:
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Now

E(U) ¼ ETEUjT (U) ¼ ET ½h(T)�,

E(U � t)2 ¼ E½U � h(T)þ h(T)� t�2

¼ E½U � h(T)�2 þ E½h(T)� t�2 þ 2ETEUjT (U � h(T))(h(T)� t)

¼ E½U � h(T)�2 þ E(h(T)� t)2 þ 0;

so that E(U � t)2 � E(h(T)� t)2 with equality iff U ¼ h(T):

So if U is unbiased for t so is h(T) and we have shown how to do better than a

given U by an h(T). In the case of U unbiased we have not shown that h(T) is the

minimum variance unbiased estimate (mvue), but we do know if one exists it is

unique. Now we suppose that a complete sufficient statistic exists and we recall

the definition of completeness. T is complete if

E½g(T)� ¼ 0 iff g(T) ; 0:

Then every function of T is the unique mvue for its expectation because if T is com-

plete then for any two U and V such that E(U) ¼ E(V) ¼ t and E(UjT) ¼ h1(T) and

E(VjT) ¼ h2(T),

E(h1 � h2) ¼ 0 iff h1 ¼ h2:

For the exponential family

f (xju) ¼ ek(x)P(u)þQ(u)þC(x),

where the range of x is independent of u. Let X1, . . . , Xn be i.i.d. Then

L ¼
Yn
{¼1

f (x{ju) ¼ exp
Xn
{¼1

k(x{)P(u)þ nQ(u)þ
X
{

C(xi)

 !
:

It is clear that Tn ¼
Pn

{¼1 k(xi) is sufficient.

Given the regularity conditions the Cramér-Rao bound is attained for Tn
satisfying E(Tn) ¼ t(u) if

@
P

log f (xiju)

@u
¼ An(u)(Tn � t(u)),
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or

X
log f (xiju) ¼ Tn

ðu
An(u0)du0 �

ðu
t(u0)An(u

0)du0 þ R(Tn)

; Tn(x)P�n(u)� Q�n(u)þ C�n(Tn(x)),

or

f (xju) ¼ exp Tn(x)P�n(u)� Q�n(u)þ C�n(Tn(x))
� �

:

Conversely, if f is exponential,

log L ¼ S log f (xiju) ¼ P(u)
Xn
{¼1

k(xi)þ nQ(u)þ
X
{

c(xi),

and

@ log L

@u
¼ P0(u)Sk(xi)þ nQ0(u) ¼ P0(u)

Xn
{¼1

k(xi)�
�nQ0(u)

P0(u)

" #
,

which satisfies the condition. So the Cramér-Rao lower bound is satisfied for

Tn ¼
P

i k(xi), where E(Tn) ¼ �nQ
0(u)

P0(u)
¼ t(u), since E @ log L

@u

� �
¼ 0 under the regularity

conditions.

7.9 BAYESIAN SUFFICIENCY

Suppose for data D

L(ujD) ¼ f (Dju) ¼ fT (t(D)ju)h(D),

then T is sufficient for u. Now if g(u) is a prior probability function on u so that the

posterior probability function

p(ujD) / L(ujD)g(u) / f (tju)h(D)g(u)

or

p(ujD) ¼
f (tju)g(u)Ð
f (tju)g(u)du

¼ p(ujt):
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So the posterior depends on the data D only through T. In other words any inference

made with T is equivalent to one made with D. As before the factorization of

the likelihood is the necessary and sufficient condition for sufficiency. Bayesian

sufficiency depends on whatever the posterior probability function depends upon.

This, in turn, depends on the usual sufficient statistic T and whatever other elements

are introduced by the prior g(u). At any rate sufficiency then is not a critical concept

for Bayesian inference.

7.10 MAXIMUM LIKELIHOOD ESTIMATION

If the likelihood for a set of hypotheses specified by u [ Q is L(ujD), then the best

supported u is û for

L(ûjD) � L(ujD) for u [ Q:

It is the best supported value in the light of the Likelihood approach and it would

seem reasonable to say û is the best estimator of u (i.e., best supported value but

not necessarily that we have good reason to believe it will be close to the true

value in the long run).

Suppose L(ujD) is continuous and differentiable. Then if

@L(ujD)

@u
¼ 0

yields the stationary values we look for the global maximum. Often it is more

convenient to set

@ log L(ujD)

@u
¼ 0

to find the stationary values. Suppose T is a sufficient statistic and so that

L(ujD) ¼ g(tju)h(D),

then

@ log L

@u
¼

@ log g(tju)

@u
¼ 0,

so û will be a function of T but not necessarily a one-to-one function so it need not

be sufficient itself. If the conditions for a minimum variance bound hold so that

@ log L

@u
¼ A(u)(T � t(u)),
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T is sufficient for u. Then solutions and stationary points are found for

@ log L

@u
¼ 0 ¼ T � t (û)

by solving T ¼ t (û) and

@2 log L

@u 2
¼ A0(u)(T � t (u))� A(u)t 0(u):

We recall that in this situation

t 0(u) ¼ var(T)A(u):

Note if t(u) ¼ u then var(T) ¼ A�1(u) and

@2 log L

@u 2
¼ A0(u)(T � t(u))� A2(u)var(T);

such that

@ 2 log L

@u 2

����
u¼û

¼ A0(û )(T � t(û ))� A2(û )var(T) ¼ �A2(û )var(T) , 0

is sufficient forû to be a relative maximum. Therefore all solutions û of T � t (û ) ¼ 0

are maxima of L(ujD). But all well-behaved functions have a minimum between

successive relative maxima. Since all the stationary values are maxima—there is

no minimum between successive maxima and hence there is only one maximum.

So if a minimum variance bound estimator exists it is given by the Maximum Like-

lihood Estimator (MLE) since t̂ ¼ T . Further there is a one-to-one correspondence

between the existence of a single sufficient statistic for u and the existence of a

minimum variance unbiased estimate that attains the minimum bound for some

t(u) in the regular case, since in both cases the necessary and sufficient condition

for their existence is the exponential family of distributions.
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Example 7.4 (Regular Case)

Suppose

L(u) ¼
n

r

� �
ur(1� u)u�r log L ¼ r log uþ (n� r) log (1� u)þ log

n

r

� �
,

@ log L

@u
¼

r

u
�

n� r

1� u
¼ 0,

so û ¼ r
n

is sufficient and the MLE. Now

@ log L

@u
¼ r

1

u
þ

1

1� u

� �
�

n

1� u
¼

r

u(1� u)
�

n

1� u
¼

1

u(1� u)
(r � nu)

¼
n

u(1� u)

r

n
� u

� �
¼ A(u)(T � t(u)), so var(T) ¼

u(1� u)

n
:

Example 7.5 (Non-Regular Case)

Let

X1, . . . , Xn be i.i.d. fx(xju) ¼ e�(x�u) x � u

and arranging the observations in order of size

x(1) � x(2) � � � � � xn,

L(u) ¼
Y
{¼1

f (xiju) ¼ e�S(x(i)�u) / enu for u � x(1),

so that L(u) depends only on x(1), which is sufficient. Note also that

enx(1) � enu for all admissible u,

and that x(1) is also the MLE.

Example 7.6 (MLE not sufficient)

Consider (Xi, Yi) i ¼ 1, . . . , n from

fX,Y (x,y) ¼ e�ðxuþ
y
u
Þ, x . 0, y . 0,

L(u) ¼ e�(uSxiþ
1
u
Syi):
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Hence (Sxi,Syi) is the bivariate sufficient statistic for scalar u. Now

d log L

du
¼ �Sxi þ

1

u2
Syi,

and û 2 ¼
Syi
Sxi

so û ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Syi=Sxi

p
is the MLE. But the MLE is not a sufficient statistic.

We will come back to this problem later.

7.11 CONSISTENCY OF THE MLE

Let X1, . . . , Xn i.i.d. f (xju) and D ¼ (x1, . . . ,xn).

Let û be such that

log L(ûjD) � log L(ujD):

Let u0 be the true value of u and consider L(ujD)
L(u0jD)

and E0 be the expectation for true

u ¼ u0.

Now for u� = u0 and L(u�jD) = L(u0jD) and by Jensen’s Inequality,

E0 log
L(u�jD)

L(u0jD)

� �
� logE0

L(u�jD)

L(u0jD)

� �
¼ log 1 ¼ 0,

and

(i) E0

log L(u�jD)

n

� 	
� E0

log L(u0jD)

n

� 	
,

with strict inequality unless u� ¼ u0. Now

log L(ujD)

n
¼

1

n

Xn
i¼1

log f (xiju)

is the sample average of n i.i.d. random variables, where

Eu0
log f (xiju)
� �

¼

ð
log f (xju)dF(xju0):

Then, by the Strong Law of Large Numbers,

1

n
S log f (xiju)���!

P
E0

1

n
S log f (xiju):
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By virtue of (i) for large n with probability 1

1

n

X
i

log f (xiju
�) ,

1

n

X
i

log f (xiju0) for all u� = u0,

or

1

n

X
i

log f (xiju
�)�

1

n

X
i

log f (xiju0)

" #
¼ Eu0

log
f (xju�)

f (x)ju0)

� 	
� 0:

But L(û jD) � L(u0jD) or logL(û jD) � log L(u0jD), for all n. So we must have

P lim
n!1
½ûn ¼ u0� ¼ 1:

7.12 ASYMPTOTIC NORMALITY AND “EFFICIENCY”

OF THE MLE

Let L(u) ¼
Qn

1 f (xiju) where Xi, . . . , Xn are i.i.d. f (xju), and assume

E
d log L(u)

du

� �
¼ 0,

and that

E
d log L(u)

du

� �2

¼ �E
d2 log L(u)

du 2

� �

exists and is non-zero for all u in an interval about and including u ¼ u0 the true

value. Then the MLE

û �! N u0,
1

E
d log L

du

� �2
" #

0
BBBB@

1
CCCCA

,

in law.

We expand d log L
du

in a Tayor Series about u ¼ u0,

d log L(u)

du
¼

d log L(u)

du

� �

u¼u0

þ (u� u0)
d2 log L(u)

du

� �

u¼u�
,
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for u� [ (u,u0). Now

0 ¼
d logL(u)

du

����
u¼û

¼
d log L(u)

du

� �

u¼u0

þ (û� u0)
d2 log L(u)

du 2

� �

u¼u�
,

or

(û� u0) ¼ �
d log L(u)

du

� �

u¼u0

d2 log L(u)

du 2

� �

u¼u�
:

�

Since log L(u) ¼
P

log f (xiju), E½d log f (xiju)=du� ¼ 0 and

�E
d2S log f (xiju)

du 2

� 	
¼ �E

d2 log L(u)

du 2

� �
¼ nI(u),

then

I(u) ¼ �E
d2 log f (xju)

du 2

� �
,

and

(û� u0)
ffiffiffiffiffiffiffiffiffiffiffiffi
In(u0)

p
¼ �

d log L

du

� �

u¼u0

ffiffiffiffiffiffiffiffiffiffiffiffi
In(u0)

ph d2 log L

du 2

� �

u¼u�

�
nI(u0)

� 	
:

Since û! u0 (almost surely),

1

n

d2 log L(u)

du 2

� �

u¼u�
�! I(u0):

Since

d log L

du

����
u¼u0

¼
dS log f (xiju)

du

����
u¼u0

,

(û� u0)
ffiffiffiffiffiffiffiffiffiffiffiffi
In(u0)

p
�!

d log L

du

����
u¼u0

ffiffiffiffiffiffiffiffiffiffiffiffi
In(u0)

p
�! N(0, 1)

.
,

and thus

(û� u0)
ffiffiffi
n
p
�! N 0,

1

I(u0)

� �
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(in law) or

û � N u0,
1

nI(u0)

� �
,

(approximately) by the Central Limit Theorem. Henceû is asymptotically normal

and efficient.

7.13 SUFFICIENCY PRINCIPLES

We will now introduce a further duo of statistical principles. Recall that T(D) is

sufficient for u iff

f (Dju) ¼ g(D)h(T , u):

1. Restricted Sufficiency Principle (RSP): For E ¼ (S, m, Q, f ),

Inf(E, D) ¼ Inf(E, D0),

if T(D) ¼ T(D0) for T(D) sufficient for u.

2. Unrestricted Sufficiency Principle (USP): If T is sufficient for u then

Inf(E, D) ¼ Inf(ET , T),

where ET ¼ (ST , m, Q, fT ), ST represents the space of T, and fT its probability

function.

Now we show that RSP, RLP. Assuming T is sufficient implies

f (Dju) ¼ g(D)h(T , u):

If T(D) ¼ T(D0),

f (D0ju) ¼ g(D0)h(T , u),

or

f (Dju)g(D0) ¼ f (D0ju)g(D),
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so

f (Dju) ¼ g(D, D0)f (D0ju):

Apply RLP and obtain Inf(E,D) ¼ Inf(E,D0), so RLP) RSP.

Conversely, if

f (Dju) ¼ g(D, D0)f (D0ju),

then

g(DjT , u)h(T ju) ¼ g(D, D0)g(D0jT , u)h(T ju),

when T(D0) ¼ T(D). Then

g(DjT , u)

g(D0jT , u)
¼ g(D, D0),

which is constant in u. The only way this can happen is if g(DjT ,u) is free of u, so T

is sufficient for u and applying RSP yields RLP.

We now can state the various implications regarding relationships among the var-

ious statistical principles in the following diagram:

USP �! RSP

b " d l d

RCP & MEP  ! ULP �! RLP �! MEP

d #

UCP �! RCP:

Hence, whether you accept LP as such or not, you should if you basically accept

SP and CP. However, classical statistics bases its inferential procedures on the

Repeated Sampling Principle which can violate LP.
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C H A P T E R E I G H T

Set and Interval Estimation

This final chapter lays the foundations for developing confidence intervals, fiducial

intervals, and (Bayesian) probability intervals. Considerable attention is paid to

methods based on conditioning on ancillary statistics and to methods based on

Fisher’s “fiducial” distribution. Conditions are developed for the formal equivalence

of fiducial and Bayesian intervals. Methods for multiparameter problems are

discussed and illustrated by the Fisher-Behrens problem for obtaining interval infer-

ences for a difference in normal means with unequal variances, and the Fieller-

Creasy problem for obtaining interval inferences for the ratio of two normal

means based on bivariate normal data.

8.1 CONFIDENCE INTERVALS (SETS)

Suppose Xi, . . . , Xn are i.i.d. f (xju) and a(X1, . . . ,Xn) and b(X1, . . . , Xn) are two

functions of the observations such that, independent of u,

P½a � u � bj u� � 1� a:

Thus the probability is at least 12 a that the random interval [a, b] includes or

covers u. If a and b can so be chosen they are called the lower and upper confidence

limits and 12 a is the confidence coefficient. More generally if we have a random

set E(X1, . . . , Xn) such that, independent of u,

P ½u [ Ej u� � 1� a,

we have a 12 a confidence set for u.

Suppose, in addition, f (xju) is absolutely continuous and there is a function

p(X1, . . . ,Xn, u) defined at every point u in an interval about the true value u0,

and every point in the sample space. Also p is a continuous and monotonically
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increasing (or decreasing) function of u, and has a distribution that is independent of

u. Then let [p1, p2] be an interval for which

P( p1 � p � p2j u) ¼ 1� a (independent of u):

Then if u0 is the true value of u, the solutions a and b of the equation p(x1, . . . , xn,

u) ¼ pi, i ¼ 1, 2 exist and provide a 12 a confidence interval for u0. So that if u0 is

the true value and say p is monotonically increasing (or decreasing) function of u

P½a , u0 , bju0� ¼ 1� a,

where a and b are solutions to p(x1, . . . , xn, u0) ¼ pi i ¼ 1, 2.

Here a and b are random variables and the interval [a, b] has probability of 12 a

of including the true value u0 and [a, b] is the confidence interval.

Example 8.1

X1, . . . ,Xn i.i.d. N(m, 1). Let Z ¼ (X � m)
ffiffiffi
n
p � N(0, 1), independent of m. Then

P½�za=2 � Z � za=2jm� ¼ P½�za=2 � (X � m)
ffiffiffi
n
p
� za=2�

¼ P X �
za=2ffiffiffi

n
p � m � X þ

za=2ffiffiffi
n
p

� �

¼

ðza=2

�za=2

e�
1
2

x2

ffiffiffiffiffiffi
2p
p dx ¼ 1� a:

If F(xju) is absolutely continuous and monotonically increasing (or decreasing)

function of u, we can always find a confidence interval for u. Let

p(X1, . . . ,Xnju) ¼ �2
P

i logF(Xiju). Recall that Z ¼ F(Xju) has a uniform distri-

bution, 0 � Z � 1, so

F(x) ¼ P(X � x) ¼ P(F(X) � F(x)):

Letting Z ¼ F(X), and Y ¼ 22 log Z,

P(Y . y) ¼ P(�2 log Z . y) ¼ P(Z � e�
1
2

y) ¼ e�
1
2

y

or

fY (y) ¼
1

2
e�

1
2

y,
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thus Y � x22, a chi-square random variable with 2 degrees of freedom. Hence

Yi ¼ �2 logF(Xiju), and p ¼ SYi where Yi are i.i.d. x
2
2 variates so that p � x22n inde-

pendent of u, and

P½ p1 , p(X1, . . . , Xnju) , p2� ¼ 1� a,

or

P x22n(a=2) � �2
Xn

1

logF(Xiju) � x22n

1� a

2

� �" #
¼ 1� a:

Solving for u then provides a confidence interval. This demonstrates, for absol-

utely continuous F(xju) which is strictly monotonic in u, that we can always find

a confidence interval. But if F(xju) is not monotonic in u, we can find a confidence

set instead of an interval.

If we have scalar statistic T and its distribution F(tju) depends only on u where

t0 � t � t00 and u0 � u � u00, such that F(tju) is monotonically decreasing in u, we

can find a confidence interval.

Let

ðt1(u)

t0
f (tju) dt ¼ a=2 ¼ F(t1(u)ju),

ðt00

t2(u)

f (tju) dt ¼ a=2 ¼ 1� F(t2(u)ju),

so that

F(t2(u)ju)� F(t1(u)ju) ¼

ðt2(u)

t1(u)

f (tju)dt ¼ 1� a:

Hence

P(u1(t0) � u0 � u2(t0)ju0) ¼ 1� a:

8.2 CRITERIA FOR CONFIDENCE INTERVALS

Based on statistic T1 or T2 we denote intervals I(T1) and I(T2), where

P½u [ I(T1)ju� ¼ 1� a ¼ P½u [ I(T2)ju�:

If for every u, for given 12 a and L(T) being the length of the interval,

E½L(T1)ju� � E½L(T2)ju�,
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and less for at least one u then T1 is preferable to T2. Similarly if one desires the

shortest L(T) that is,

min
T

E{L(T)ju},

this may generally be rather difficult to execute.

Another criterion is a selective one that is, T1 is more selective than T2 iff for

every u and 12 a

P(u0 [ I(T1)ju) � P(u0 [ I(T2)ju),

and less for one u0, where u0 is any value of u other than the true value. The most

selective one is that T1 for which

P(u0 [ I(T1)ju) , P(u0 [ I(T)ju)

for any other T. In other words, I(T1) covers false values of u least frequently. How-

ever these don’t exist too often since they are constructed by inverting the accep-

tance interval of a UMP test—which, when available, is usually one sided.

Another criterion is a selective unbiased criterion. The probability that I(T) con-

tains u when it is true is at least as large as containing any false u0

P(u [ I(T)ju) � P(u0 [ I(T)ju):

8.3 CONDITIONING

Fisher stressed the importance of conditioning in the presence of a relevant subset.

A simple example is given that demonstrates its value and importance.

Example 8.2

Suppose X1 and X2 are independent and

P(X ¼ u� 1) ¼ P(X ¼ uþ 1) ¼
1

2
u [ R:

In other words, Xi is as likely to be 1 unit above or below u. Here a confidence set

is a point where

C(x1, x2) ¼
�x if x1 = x2
x� 1 if x1 ¼ x2 ¼ x

�

Now if x1 = x2, then u ; �x: But

P(X1 = X2ju)P(X ¼ ujX1 = X2) ¼
1

2
� 1 ¼ :5
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and

P(X1 ¼ X2 ¼ Xju)P(X � 1 ¼ ujX1 ¼ X2) ¼
1

2
�

1

2
¼ :25:

This C(x1, x2) then has .75 coverage probability of smallest size.

In other words, conditional on x1 = x2 we are certain that �x ¼ u so C(x1, x2) con-

tains u with 100% confidence but only with 50% confidence when x1 ¼ x2. So it

seems more sensible to state this after using the data rather than .75 before seeing

the data and living by that. This brings to the fore the possible use of conditional

confidence sets and the importance of principles of conditioning even when the

Repeated Sample Principle is used.

A somewhat more intriguing conditioning example, purporting to solve the so-

called ancient “Problem of the Nile,” was introduced by Fisher (1956b) as follows:

The agricultural land (x, y; geographical coordinates) of a pre-dynastic Egyptian village is

of unequal fertility (probability density). Given the height (u) which the Nile will rise, the

fertility (f (x, yju)) of every portion of it is known with exactitude, but the height of the flood

affects different parts of the territory unequally. It is required to divide the area among the

several households of the village so that the yields of the lots assigned to each shall be in

predetermined proportions, whatever may be the height to which the river rises.

In summary, we have:

geographic location ¼ (x, y),

height of the Nile ¼ u,

fertility ¼ probability density eg.

f (x, yju) ¼ e�ux�y=u,

proportionate yield of a lot ¼ probability of a region eg.

A ¼

ð

A

ð
e�ux�u�1ydxdy:

The boundary of a lot should not depend on u and regions should be in predeter-

mined proportions (i.e., find regions A that are independent of u).

Since

f (x, yju) ¼ e�ux�u�1y,

2uX and 2u21Y are independent and each x22, a chi-square variate with 2 degrees of

freedom, and

2u�1Y

2uX
� T2

u2
� F2, 2,
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where F2,2 represents an F variate with 2 and 2 degrees of freedom. Consider T ¼ffiffiffiffiffiffiffiffiffi
Y=X
p

and U ¼
ffiffiffiffiffiffi
XY
p

. Then x ¼ u=t, y ¼ tu, and

@(y, x)

@(t, u)

����
���� ¼

u t

�u

t2
1

t

������

������
¼

u

t
þ

u

t
¼ 2x:

So

f (u, tju) ¼
2u

t
e�u

u
t
� tu

u ¼
2u

t
e�u

u
t
þ t

u

� 	
,

f (tju) ¼ 2

ð1
0

u

t
e�u

u
t
þ t

u

� 	
du:

Let u(u/t + t/u) ¼ z. Then

f (tju) ¼
2

t

ð1
0

ze�z

u

t
þ

t

u

� �2
dz ¼

2

t

t

u
þ
u

t

� ��2
:

Further,

f (uju) ¼ 2u

ð
1

t
e�u u

t
þ t

u

� 	
dt:

Set log (t=u) ¼ v, dt=t ¼ dv, thus

f (uju) ¼ 2u

ð1
�1

e�u(e�vþev)dv ¼ 2u

ð1
�1

e�2u cosh vdv:

Now

Km(z) ¼

ð1
0

e�z cosh v cosh (mv) dv

is Bessel’s function of the second kind (or modified) and

K0(2u) ¼

ð1
0

e�2u cosh vdv,

where

1

2
(e�v þ ev) ¼ cosh v,
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so that

f (uju) ¼ 2u

ð1
�1

e�2u cosh vdv ¼ 4u

ð1
0

e�2u cosh vdv ¼ 4uK0(2u),

independent of u. Hence

f (tju, u) ¼
f ðt, uju)

f (u)
¼

2u

t
e�u

u
t
þ t

u

� 	

4uK0(2u)
:

Now

ð

A

ð
e�ux�u�1ydxdy ¼

ð

A�

ð
f (tju, u) f (u)dtdu:

If t is integrated between 0 and infinity (since any other limits for t would involve u)

and u between any two constants, say u1 and u2, then

ð

A�
f (u) du ¼

ðu2

u1

f (u)du

results in proportional yields independent of the height u which is Fisher’s solution

to the “problem of the Nile.”

Now this is really an introduction to the following problem. Consider again

f (x, yju) ¼ e�ux�y=u,

log f ¼ �ux� y=u,

d log f

du
¼ �xþ

y

u 2
¼ 0 or u 2 ¼

y

x
:

Hence the MLE û ¼
ffiffiffiffiffiffiffiffiffi
Y=X
p

¼ T but û is not sufficient since the sufficient statistic is

(X, Y). However, Fisher declares U ¼
ffiffiffiffiffiffi
YX
p

to be the ancillary statistic and suggests

that inferences be made not by using f (tju) but on f (tju, u).

More generally, suppose (X1, Y1), . . . , (Xn, Yn) is a random sample so that

L(u) ¼ e�(uSxiþu
�1Syi),

then the MLE û ¼ T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SYi=SXi

p
but the sufficient statistic is (SXi, SYi). The

information in the sample is easily calculated to be

In(u) ¼ �E
d2 log L

du 2

� �
¼

2n

u 2
:
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Further letting, U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(SXi)(SYi)

p
then

f (u, tju) ¼
2e�u t

u
þ u

t

� 	
u2n�1

G2(n)t
,

f (tju) ¼
2G(2n)

G2(n)

1

t

t

u
þ
u

t

� ��2n

,

IT (u) ¼ �E
d2 log fT

du 2

� �
¼

2n

u 2
�

2n

2nþ 1
:

So T is not fully informative.

Now

f (tju, u) ¼
f (t, uju)

f (uju)
,

and

f (uju) ¼ 4K0(2u)
u2n�1

G2(n)

is independent of u. Thus U is an ancillary statistic. And

ITjU(u) ¼
2

u 2

uK1(2u)

K0(2u)
, EUITjU(u) ¼

2n

u 2
,

so on averaging over U the information in the sample is recoverable. The following

results can be obtained for the expectation, mean squared error (mse) and variance:

E(Tju) ¼ u
G(nþ 1

2
)G(n� 1

2
)

G2(n)
, E(TjU, u) ¼ u

K1(2u)

K0(2u)
,

mse(T) ¼ EU ½mse(T jU)�, var(T) . EU var(T jU):

Now

fTjU(tju, u) ¼
e�u t

u
þ u

t

� 	

2tK0(2u)
,

and

fV jU(vju) ¼
e�2u cosh v

2K0(2u)
,

where V ¼ log T
u
so that the distribution of V is independent of u and is a pivot.

Inference about u is conditional on u and comes from either fTjU(tju, u) or fV jU(vju).
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However in certain problems there may be more than one obvious ancillary. Here

it was obvious. In non-obvious cases which ancillary should be used? Consider the

following problem posed by Basu (1964):

Example 8.3

Let

L ¼ f (n1, n2, n3, n4ju) ¼
n!

n1!n2!n3!n4!
pn1
1 pn2

2 pn3
3 pn4

4 , n ¼
X4
1

ni

p1 ¼
1

6
(1� u), p2 ¼

1

6
(1þ u), p3 ¼

1

6
(2� u), p4 ¼

1

6
(2þ u) juj � 1:

Hence

d log L

du
¼ �

n1

1� u
þ

n2

1þ u
�

n3

2� u
þ

n4

2þ u
:

The numerical sufficient statistic is (n1, n2, n3, n4) with one ni being redundant.

One can find the MLE û but û is not sufficient. Consider

U ¼ (n1 þ n2, n3 þ n4) ¼ (U1,U2) ¼ (U1, n� U1),

and

fU1
(u1) ¼

n

u1

� �
( p1 þ p2)

u1 (1� p1 � p2)
n�u1 ¼

n

u1

� �
1

3

� �u1 2

3

� �n�ui

:

Consider also

V ¼ (n1 þ n4, n2 þ n3) ¼ (V1,V2) ¼ (V1, n� V1)

and

fV1
(v1) ¼

n

v1

� �
1

2

� �n

:

Therefore, both U and V are ancillary—so which one should we use?

Note

f (n1, n3jU) ¼
u1

n1

� �
1� u

2

� �n1 1þ u

2

� �u1�n1 u2

n3

� �
2� u

4

� �n3 2þ u

4

� �u2�n3

,

f (n1, n3jV) ¼
v1

n1

� �
1� u

3

� �n1 2þ u

3

� �v1�n1 v2

n3

� �
2� u

3

� �n3 1þ u

3

� �v2�n3

:
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Now for either conditional probability function we get the same solution to d log

f/du ¼ 0 and hence the same MLE, û. In general then how do we discriminate

between ancillaries. It has been suggested that one should prefer the ancillary that

provides the most separation, that is, separating the relatively informative samples

from the relatively uninformative ones. Let T ¼ (n1, n3) and denote the conditional

information quantities as

ITjU(u) ¼ W(u) and ITjV (u) ¼ Z(u)

Note that

EU ½ITjU(u)� ¼ EV ½ITjV (u)�,

where

W(u) ¼

3u1

n
þ (1� u2)

n(1� u2)(4� u2)
, Z(u) ¼

2v2u

n
þ (1� u)(2þ u)

n(1� u2)(4� u2)
:

So we may choose the ancillary that is more dispersed, that is, by calculating the

variances of the conditional information, namely:

2

n3(1� u2)2(4� u2)2
¼ var(W(u)) . var(Z(u)) ¼

u2

n3(1� u2)2(4� u2)2
:

On this basis we would choose U as the ancillary to condition on (Cox, 1971).

8.4 BAYESIAN INTERVALS (SETS)

Recall from Section 6.1 that the posterior probability function is given as

p(ujD)/ L(ujD)g(u),

where g(u) is the prior probability function of u [ Q.

In cases where X1, . . . , XN are i.i.d., and f (xju) is absolutely continuous and u is

continuous over its range then

L(ujD) ¼
YN
i¼1

f (xiju):
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Further,

p(ujD) ¼

g(u)
YN
i¼1

f (xiju)

ð
g(u)

YN
i¼1

f (xiju)du

,

provided it is a bonafide probability function. The latter will be the case if g(u) is a

proper density and sometimes when g(u) is improper.

For example, when g(u) is uniform over an infinite segment of the real line, and

therefore improper, in certain cases p(ujD) still will be a proper probability function.

For example, if X1, . . . ,XN are i.i.d. N(m,s2) and s2 known, then a simple compu-

tation yields m � N(�x, s2

n
) for g(u) uniform over the real line. Any confidence inter-

val derived in Example 8.1 will be the same as the derived Bayesian interval with

12 a the probability that m is in the interval rather than 12 a being a confidence

coefficient representing the relative frequency of u being included in that random

interval in an infinite number of repetitions of drawing N independent observations

from the N(m,s2) population.

However, theoretically, the Bayesian approach is much more flexible in allowing

probability statements to be calculated either analytically or numerically to obtain

the shortest interval for a given probability or the maximum probability for an inter-

val of a prescribed length. More generally, any probability statement regarding u can

be calculated, for instance, the probability that u is between any values a and b or in

some disconnected set of intervals, and so on. This enormous advantage, in general,

requires a price, namely the assumption that one can either objectively or subjec-

tively meaningfully define g(u).

Subjectivists will attempt to elicit from an experimenter opinions concerning the

chances of u being in various intervals and thereby try to construct a plausible prob-

ability representation of a subjective g(u). In the view of others the purpose of g(u) is

to represent minimal knowledge concerning u so that its contribution to the posterior is

dwarfed by the L(ujD). This usually involves some reference prior generated by a

method that involves invariance considerations as previously described in Section 6.3.

8.5 HIGHEST PROBABILITY DENSITY (HPD) INTERVALS

Suppose we have derived a posterior probability function for parameter u as

p(ujx(N)). Using a particular loss function we can obtain the shortest size set of inter-

vals for any given probability q, 0 � q � 1.

Let the loss be defined for any set A of measurable intervals for u be

L(A, u) ¼

�
bL(A)� K if u [ A

bL(A) if u [ Ac
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for K . 0 where L(A) is Lebesque measure. Now

L(A) ¼ E½L(A, u)� ¼

ð

A

½bL(A)� K�p(ujx(N))duþ

ð

Ac

bL(A)p(ujx(N))du

¼

ð

A<Ac

bL(A)p(ujx(N))du� K

ð

A

p(ujx(N))du

¼ bL(A)� K

ð

A

p(ujx(N))du ¼ b

ð

A

du� K

ð

A

p(ujx(N))du

¼

ð

A

(b� Kp(ujx(N)))du:

Hence

Inf
A

L(A) ¼ L(A�),

where

A� ¼ u : p(ujx(N)) �
b

K

� 

,

the HPD region. While this is of comparative interest with regard to confidence

intervals a Bayesian can always report the entire probability function.

Example 8.4

Suppose X1, . . . ,Xn are i.i.d. f (xju) ¼ ue�ux, u . 0, x � 0. Then

L(ujD) ¼ une�ut,

where t ¼ Sxi. Let g(u) ¼ u21. Then this leads to

p(ujt) ¼
tnQn�1e�nQ

G(n)
,

or 2ut � x22n a chi-squared variate with 2n degrees of freedom but u is the random

variable and t is fixed. On the other hand, it is also clear that for u fixed, 2uT � x22n

where T is the random variable. Hence confidence intervals have a Bayesian

interpretation with the confidence coefficient being the posterior probability. We

note that for n ¼ 1, p(ujt) is a decreasing function of u. Therefore the HPD interval

begins at u ¼ 0 and stops at u ¼ u0, such that

e�tu0 ¼ 1� a:

For n . 1, p(ujt) ¼ 0 at u ¼ 0 and increases until the maximum u ¼ ððn� 1Þ=tÞ

and then decreases. Hence the HPD is a single interval calculated according to

A�. Again, it is to be emphasized the entire function p(ujt) can be presented.
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8.6 FIDUCIAL INFERENCE

R. A. Fisher proposed an eclectic inferential system that included at one level, like-

lihood inference, and at another dependence on repeated sampling, sufficiency, and

conditioning for estimation and testing. Included in this setup was a method for pro-

ducing a “posterior” distribution without the benefit of a prior distribution under the

rubric of a “fiducial argument.” We now define and discuss Fisher’s fiducial

argument.

Let T be sufficient for u [ (a, b), where both T and u are scalars over the same

range that is, T [ (a, b). Further let fT (tju) be a continuous density with distribution

function FT (tju). Let 1� F(tju) be continuous and monotonically increasing (or

decreasing) in u for each t [ (a, b) with

(i) limu!a (1� F(tju)) ¼ 0 and limu!b (1� F(tju)) ¼ 1 if 12 F is

increasing

(ii) limu!a F(tju) ¼ 0 and limu!b F(tju) ¼ 1 if 1� F is decreasing.

Then Fisher vests 1� F(tju) ¼ F(ujt) if (i) holds, or F(tju) ¼ F(ujt) if (ii) holds

(since F(ujt) behaves exactly like a distribution function) with the property of

being a posterior or “fiducial” distribution of u for fixed t, claiming that the sufficient

statistic T induces a distribution of values for u. Note that in this case it is also a

“confidence” distribution of values for u.

The fiducial density of u is then given by

w(ujt) ¼
dF(ujt)

du
¼

d(1� F(tju))

u
¼ �

dF(tju)

du
¼

dF

du

����
����,

or
w(ujt) ¼

dF(tju)

du
¼

dF

du
:

Therefore, fiducial probability statements about u can be made for u0 � u1,

P½u0 � u � u1� ¼ F(u1jt)�F(u0jt):

In other words, the pivot U ¼ F(tju) may be regarded as inducing a “fiducial” dis-

tribution for u for the observed value of t. The fiducial argument uses the obser-

vations only to change the logical status of the parameter from one in which

nothing is known of it, to the status of a random variable having a well-defined dis-

tribution, according to Fisher.

Example 8.5

Assume X1, . . . ,Xn are i.i.d. N(u,s2) where s2 is known. Now X is sufficient for u

where

f (�xju) ¼

ffiffiffiffiffiffiffiffiffiffiffi
n

2ps2

r
e�

n(�x�u)2

2s2 :
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Further,

F(�xju) ¼

ð �x
�1

ffiffiffiffiffiffiffiffiffiffiffiffi
n

2ps 2

r
e
�n(u�u)2

2 du ¼ N
(�x� u)

ffiffiffi
n
p

s

� �
¼

ð(�x�u) ffiffinp
s

�1

1ffiffiffiffiffiffi
2p
p e�

y2

2 dy,

where N(�) is the standard normal distribution function and

w(uj�x) ¼
�dF(�xju)

du

¼
�

ffiffiffi
n
p

s

� �
1ffiffiffiffiffiffi
2p
p e�

(�x�u)2n
2s2

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffi
n

2ps2

r
e�

n
2s2(u��x)

2

,

such that, according to the fiducial argument, u � N �x,s2=n
� 	

. Of course this is the

equivalent of making V ¼ �x�u
s=
ffiffi
n
p a pivot whose distribution is invariant if we consider

�x fixed and u random. Note this is the same as the Bayesian posterior for a uniform

prior on u.

Example 8.6

Assume X1, . . . ,Xn are i.i.d. f (xju) ¼ ue�ux, u . 0, x � 0. Then

L(ujD) ¼ une�u
Pn

i¼1
xi , T ¼

Xn

i¼1

Xi is sufficient for u:

Now 2ut ¼ x22n and

P(2ut , x22n(1� a)) ¼

ðx2
2n
(1�a)

0

fx2
2n
(u)du ¼ 1� a,

¼ P u ,
x22n(1� a)

2t

� �
¼ 1� a:

So u has fiducial density corresponding to
x22n

2t
,

w(ujt) ¼
te�tu(tu)n�1

G(n)
,

and we note this is the same probability function as the Bayesian posterior of

Example 8.4.
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8.7 RELATION BETWEEN FIDUCIAL AND

BAYESIAN DISTRIBUTIONS

Since Fisher said the fiducial argument induced a distribution for u and the only

other mode of inference which posits a distribution for u is the Bayesian mode,

we may inquire whether these two modes of inference are related.

Recall

w(ujt) ¼
�dF(tju)

du
,

and the Bayesian approach when there is a single sufficient statistic yields

p(ujt) ¼
g(u)f (tju)h(x)Ð
g(u)f (tju)h(x)du

¼
g(u)f (tju)

g(t)

for prior probability function g(u).

Now suppose we equate the fiducial and Bayesian posteriors,

�dF(tju)

du
¼

g(u)f (tju)

g(t)
¼

g(u)

g (t)

dF(tju)

dt

or

�dF=du

dF=dt
¼

g(u)

g (t)
: (8:7:1)

For a solution it is necessary that the left-hand side be equal to a product of a

function of u times a function of t. We rewrite (8.7.1)

1

g(t)

dF

dt
þ

1

g(u)

dF

du
¼ 0,

and set

G(t) ¼

ðt

�1

g(t0)dt0,

G(u) ¼

ðu
�1

g(u0)du0

so

1

g

dF

dG

dG

dt
þ
1

g

dF

dG

dG

du
¼ 0:
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For arbitrary H(G, G), let

dF

dG
þ

dF

dG
¼ 0 ¼

dH(G,G)

dG
þ

dH(G,G)

dG
:

Lindley (1958), who provided this argument, has shown from the theory of partial

differential equations that the only solutions are F ¼ Const. which is not possible

here or F(tju) ¼ H½G(t)� G(u)� and H is arbitrary.

Now suppose F ¼ H(G(t)� G(u)) and let G(t) ¼ u and G(u) ¼ t where u is a

new random variable and t a new parameter. Then for F ¼ H(u� t), t is a location

parameter for u, and F is decreasing in t, and

�dH(u� t)

dt
¼
�dH(u� t)

d(u� t)

d(u� t)

dt
¼

dH(u� t)

d(u� t)

d(u� t)

du
¼

dH(u� t)

du
,

or

�dH(u� t)

dt

� �

dH(u� t)

du

¼

�dF

du

du

dt

� �

dF

dt

dt

du

¼ 1,

or

�
dF

du

� �

dF

dt

¼

dt

du

� �

du

dt

¼

dt

du

� �

du

dt

¼
g(u)

g(t)
:

Hence,

�dF

du
¼

dF

dt

g(u)

g(t)
,

or

w(ujt) ¼ f (tju)
g(u)

g(t)
,

as required and prior density gt(t) ¼ constant since G(u) ¼ t.
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Hence, we showed that, a necessary and sufficient condition for a fiducial inversion

to be equivalent to a Bayesian inversion is that, for some H

F(tju) ¼ H(u� t),

u ¼ G(t), t ¼ G(u): (8:7:2)

We note that if u is a scale parameter for t then log u is a location parameter for

log t, that is, u� ¼ log t and t� ¼ log u with

F ¼ H�( log t � log u),

then

g(t�)dt� / dt� ¼) d log u/
1

u
du:

We now show that the use of the square root of I(u) as a prior density is necessary

for fiducial inversion. Since for equivalence F(tju) ¼ H(u� t), then

f (tju) ¼
dF

dt
¼

dH(u� t)

d(u� t)
�

d(G(t)� G(u))

dt
,

log f (tju) ¼ log
dH(u� t)

d(u� t)

� �
þ log

dG(t)

dt

� �
,

d log f (tju)

du
¼

d

du
log

dH(u� t)

d(u� t)

� �
;

d log h(u� t)

du

¼
d log h(u� t)

d(u� t)
�

d(u� t)

du

¼
d log h(u� t)

d(u� t)

�dt

du

� �
:

So

ET

d log f (tju)

du

� �2
¼

dt

du

� �2

EU

d log h(u� t)

d(u� t)

� �2

:

Since dt
du
¼

dG(u)
du

,

I(u) ¼ ½g(u)�2EV

d log h(v)

dv

� �2

:
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The second factor on the right-hand side above is independent of u since v ¼ u� t.

Therefore, I(u)/ (g(u))2 and

I
1
2(u)/ g(u):

Hence, the equivalence

F(tju) ¼ H(u� t) ¼ H(G(t)� G(u))

yields I(u) ¼ (dt=du)2, and I
1
2(u) yields the Bayesian correspondent to the fiducial

inversion. Thus the condition is necessary for fiducial and Bayesian procedures to

yield equivalent results.

Fisher also claimed that once a fiducial distribution had been obtained it could be

used as a prior distribution for a second sample just as in the Bayesian case. Recall

for t a single sufficient statistic for u

g(u)f (tju)/ p(ujt)

and for a second independent sample,

g(u)f (t1ju)f (t2ju)/ p(ujt1)f (t2ju)/ p(ujt1, t2),

where t1 and t2 represent independent samples.

Further,

p(ujt1, t2)/ g(u)L(ujt1)L(ujt2)/ g(u)f (t1ju)f (t2ju):

Now suppose from the fiducial inversion we get w(ujt1) and we have an independent

new sample f (t2ju). Then according to Fisher, the fiducial distribution based on the

combined sample can be obtained as

C(ujt1, t2) ¼
w(ujt1)f (t2ju)Ð

wfdu
;

which equals the posterior p(ujt1, t2) provided (8.7.1) is satisfied in t1.

If we had both samples at once and we inverted them so that

L(ujt1, t2) ¼ L(ujt1)L(ujt2)/ f (tju),

where t is the total sufficient statistic that includes both samples t ¼ t (t1, t2) then

Fisher asserts that

w(ujt) ¼
�dF(tju)

d(u)
¼ C(ujt1, t2) (8:7:3)

but without proof. Lindley (1957) gave the following argument.
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The most general family that admits a single sufficient statistic for scalar u is the

exponential,

f (xju) ¼ ek(x)P(u)þQ(u)þC(x)

¼ ek(x)P(u)q(u)c(x):

It is clear that for X1, . . . ,Xn a random sample from the exponential family,P
ik(Xi) ¼ T is sufficient. To simplify, without loss of generality, we consider T1 ¼

k(X1) and T2 ¼ k(X2) so

L(ujt1, t2)/ q2(u)eP(u)(t1þt2):

The fiducial inversion using t ¼ t1 þ t2 is w(ujt) that is, a function of t1 þ t2. Now

consider the step by step fiducial inversion

C(ujt1, t2) ¼
w(ujt1)f (t2ju)Ð

wfdu
:

If C is the same as w it must be a function of t1 þ t2. Now for u versus u0

C(ujt1, t2)

C(u0jt1, t2)
¼

w(ujt1)f (t2ju)

w(u0jt1)f (t2ju
0)

should be a function of t1 þ t2 when u
0
= u and independent of the interchange of t1

and t2 so that

w(ujt1)f (t2ju)

w(u0jt1)f (t2ju
0)
¼

w(ujt2)f (t1ju)

w(u0jt2)f (t1ju
0)
,

w(ujt1)w(u
0jt2)

w(u0jt1)w(ujt2)
¼

f (t2ju
0)f (t1ju)

f (t2ju)f (t1ju
0)
¼

et2P(u0)þt1P(u)

et2P(u)þt1P(u0)

¼ et1½P(u)�P(u0)��t2½P(u)�P(u0)�

¼ e(t1�t2)(P(u)�P(u0))

or

w(ujt1) ¼
w(u0jt1)e

�t1P(u0)w(ujt2)e
�t2P(u)

w(u0jt2)e�t2P(u0)
et1P(u):

Regard u0 and t2 as constants then

w(ujt1) ¼ A(t1)B(u)e
t1P(u):
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Hence,

�dF(t1ju)=du

dF(t1ju)=dt1
¼

w(ujt1)

f (t1ju)
¼

A(t1)B(u)e
t1P(u)

h(t1)q(u)et1P(u)

;
g�(u)

g�(t1)
,

which implies equivalence of the Bayesian and Fiducial inversions based on t1.

Hence (8.7.2) (F (t1ju) ¼ H(G(t1)� G(u))) is necessary in t1 for

w(ujt1, t2) ¼ C(ujt1, t2)

to be true.

Moreover since the distribution of t1þ t2 is of exponential form it follows that

(8.7.2) must also be satisfied in t1þ t2 since it is satisfied in t1, thus (8.7.3) must

be satisfied.

We now seek the relationship between the exponential family and F(tju) ¼

H(G(t)� G(u)) to show that it is not vacuous. First we give an example of a

distribution from the exponential class for which two observations x1 and x2 demon-

strate that

w(ujx1, x2) = C(ujx1, x2) ¼
w(ujx1)f (x2ju)Ð

wfdu
:

Example 8.6

Lindley further presents the following counter example. Let

f (xju) ¼
u 2

1þ u
(1þ x)e�xu, for x . 0, u . 0

F(xju) ¼ 1� e�xu �
xue�xu

1þ u
:

This belongs to the exponential class. Note X1þ X2 ¼ Z is sufficient for u. Lindley

shows that

w(ujz) = C(ujx1, x2) = C(ujx2, x1),

which shows a lack of consistency within the fiducial argument if it is used in the

same manner as the Bayesian argument.

In fact, as must be the case here, even for a single observation the fiducial inver-

sion is not equivalent to a Bayesian inversion. In order for this to be shown we

require a preliminary result known as Cauchy’s equation for the general solution
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to the functional equation

h(uþ t) ¼ g(u)þ k(t),

which is

g(u) ¼ auþ b1, k(t) ¼ atþ b2:

Proof: Set t ¼ 0 in h(u) ¼ g(u)þ k(0) ¼ g(u)þ c1 or g(u) ¼ h(u)� c1, and set u ¼

0 in h(t) ¼ g(0)þ k(t) ¼ c2 þ k(t) or k(t) ¼ h(t)� c2, such that h(uþ t) ¼ h(u)þ

h(t)� c1 � c2:

Now

h(uþ t)� c1 � c2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f (uþ t)

¼ h(u)� c1 � c2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
f (u)

þ h(t)� c1 � c2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
f (t)

,

known as Cauchy’s equation.

For an equation of this type

f (x1 þ x2) ¼ f (x1)þ f (x2), set x1 ¼ x2 ¼ x

or

f (2x) ¼ 2f (x):

By induction, it can be shown that

f (x1 þ � � � þ xn) ¼ f (x1)þ � � � þ f (xn):

Now let x1 ¼ � � � ¼ xn ¼ x then

f (nx) ¼ nf (x):

For m a positive integer let x ¼ m
n
t, then f (mt) ¼ nf ( m

n
t). Now f (mt) ¼ mf (t) so

nf ( m
n

t) ¼ f (mt) ¼ mf (t) or f ( m
n

t) ¼ m
n

f (t), so since r ¼ m
n
is a positive rational

number, f (rt) ¼ r f (t) holds for all positive rational r. For x ¼ 0, f (nþ 0) ¼

f (n)þ f (0), therefore, f (0) ¼ 0 and

f (n� 0) ¼ 0 f (0), then f (0) ¼ 0 is good for r ¼ 0:

Let f (xþ y) ¼ f (x)þ f (y) and let y ¼ 2x for x . 0 so that y , 0. Hence f (0)¼

f (x)þ f (2x) but f (0) ¼ 0, so 2f (x) ¼ f (2x). Therefore it is also true for negative

r as well. Now in f (rt) ¼ rf (t) set t ¼ 1 and f (r) ¼ rf (1) ¼ ra now if true for all
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rational r and f is continuous it is true for all real r so the solution is f (x) ¼ ax. Now

h(u) ¼ f (u)þ c1þ c2, therefore h(u) ¼ auþ c1þ c2 so that g(u) ¼ auþ c2 and

h(t) ¼ f (t)þ c1þ c2, therefore h(t) ¼ a tþ c1þ c2, so k(t) ¼ atþ c1, as required.

Recall the exponential family

f (xju) ¼ q(u)c(x)eh(x)P(u):

Without loss of generality we can consider

f (xju) ¼ q(u)c(x)eux,

so the class is as wide as the class of functions c(x) where

ð
c(x)euxdx ¼

1

q(u)

exists for all u in its range. Therefore we want to find under what conditions there

exists u ¼ u(x) and t ¼ t(u) such that f (ujt) is a function of u� t, or letting

t ¼ �t, a function of uþ t. We transform to

f (ujt) ¼ q(u(t))c(x(u))eu(t)x(u)
dx(u)

du
,

log f ¼ log q(u(t))þ log c(x(u))þ u(t)x(u)þ log
dx(u)

du
,

thus

d2 log f

dt du
¼ u0(t)x0(u):

Then consider f (ujt) as a function of uþ t since this is the condition that is

necessary and sufficient for the fiducial inversion to be Bayesian. Then

d2 log f (uþ t)

du dt
¼

d2 log f (uþ t)

d(uþ t)2
,

which must be either a constant or a function uþ t. This is because

d log f (uþ t)

du
¼

d log f

d(uþ t)
�

d(uþ t)

du
¼

d log f

d(uþ t)
,

d2 log f (uþ t)

dt du
¼

d
d log f

d(uþ t)

� �

d(uþ t)
�
d(uþ t)

dt
¼

d2 log f

d(uþ t)2
:
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Therefore, u0(t) x0(u) is a constant or a function of uþ t and log u0(t)x0(u) ¼

log u0(t)þ log x0(u) is also a function of uþ t. Therefore, by Cauchy’s equation

log u0(t) ¼ atþ b1, log x0(u) ¼ auþ b2,

where a, b1 and b2 are constants.

First suppose a = 0 so that

u0(t) ¼ eatþb1 , x0(u) ¼ eauþb2 ,

thus

u(t) ¼ d1eat þ c1, x(u) ¼ d2e
au þ c2:

It is no loss of generality to let c1 ¼ c2 ¼ 0 since the terms involving them in

f (ujt) ¼ q(u(t))c(x(u))eu(t)x(u)
dx

du

can be incorporated in the functions of u and t as constants such that

f (ujt) ¼ q1(t)c1(u)e
d1d2ea(uþt)

:

Therefore, q1(t)c1(u) must be a function of uþ t. Applying the same arguments as

before,

q1(t) ¼ b1e
at and c1(u) ¼ b2eau,

so

f (ujt) ¼ gea(uþt)ed1d2ea(uþt)

, g ¼ b1b2:

Transforming back to x, since ux ¼ d1d2ea(uþt) or u ¼ d1eat, then

udx ¼ d1d2aea(uþt)du, dx ¼ d2aeaudu ¼ axdu and du ¼
dx

ax
:

Hence, for g ¼ b1b2

ux

d1d2

� �a=a

¼ ea(uþt),
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and

f (xju) ¼
gx�1

a

ux

d1d2

� �a=a

eux:

Since we assumed the range of x is independent of u the range of u is independent

of t for u and t over the whole real line and x and u over the half lines ending

at 0. Let a
a
¼ l. Then for x . 0, u , 0, but by changing the sign of u we obtain

f (xju)/ xl�1e�xu,

the gamma density.

Now returning to

log u0(t) ¼ atþ b1,

log x0(u) ¼ auþ b2,

we consider the case a ¼ 0. Then with an obvious re-definition of the b’s, u0(t) ¼ b1

and x0(u) ¼ b2 such that

u(t) ¼ b1tþ d1, x(u) ¼ b2uþ d2,

so

f (ujt) ¼ q1(t)c1(u)e
2dut:

We can complete the square by multiplying by eu2d � et
2d and dividing by the same

quantity yields

f (ujt) ¼ q2(t)c2(u)e
d(uþt)2 ,

such that q2(t)c2(u) must be a function of uþ t or a constant. So

q2(t)c2(u) ¼ bea(uþt),

or a constant, that is, a ¼ 0. Then

f (ujt) ¼ gea(uþt)ed(uþt)
2

:
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Let z ¼ uþ t then

f (ujt) ¼ geazþdz2 ¼ gedðz
2þ

a
d

zÞ

¼ c1e
dðz2þ

a
d

zþ
a2

4d2
Þ

¼ c1ed(zþa)2 ¼ c1ed(uþtþa)2 ,

so that U is normally distributed.

Since X is a linear function of U then X is also normally distributed.

Hence the only continuous distributions of the exponential family that satisfy the

condition

F(tju) ¼ H(G(t)� G(u)),

which render a fiducial inversion equivalent to a Bayesian inversion are the gamma

and normal forms or transformed thereto. Hence it is clear that when

F(tju) ¼ H(G(t)� G(u)),

we can make fiducial, Bayesian and confidence procedures coincide though we are

restricted to the normal and gamma families.

8.8 SEVERAL PARAMETERS

Let

X11, . . . ,X1n1 i.i.d. N(m1,s
2), X21, . . . ,X2n2 i.i.d. N(m2,s

2):

For the confidence solution, where (n1 þ n2 � 2)s2 ¼
P2

i¼1

Pni

j¼1 (Xij � Xi)
2,

t ¼ (X1 � X2 � (m1 � m2))=s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ
1

n2

r
� tn1þn2�2,

a student t variate with n1 + n2 22 degrees of freedom, independently of the par-

ameters. Thus

P½�ta=2 � t � ta=2� ¼ 1� a yields for d ¼ m1 � m2,

P X1 � X2 � ta=2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ
1

n2

r
� d � X1 � X2 þ ta=2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ
1

n2

r" #
¼ 1� a:
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To apply the fiducial argument we first reparametrize the likelihood

L(m1, m2, s
2) ¼ L(d, mw,s

2),

where

mw ¼
n1m1 þ n2m2

n1 þ n2

and �xw ¼
n1 �x1 þ n2 �x2

n1 þ n2

:

Then

L(m1,m2,s
2)¼ L(d, mw, s

2)

¼
e
�

1
2s2½(n1þn2�2)s

2þ(n1þn2)(�xw�mw)
2þ

n1n2
n1þn2

(�x1��x2�d)
2�

sn1þn2
,

or

L(d, mw, s
2)¼ L(d,s2)L(s2, mw):

Now Fisher gives two arguments for a fiducial distribution on d. First let

t ¼
�x1� �x2� d

s
ffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q

be the pivot from which

w(t)/ 1þ
t2

n1þ n2� 2

� �� n1þn2�1
2

:

Then transform to the random variable d

w(d)/ 1þ
(d� (�x1� �x2))

2

s2(n1þ n2)(n1þ n2� 2)

n1n2

0
BB@

1
CCA

� n1þn2�1
2

:

Another argument he uses is a step-by-step approach. Let �x1� �x2 ¼ �d and

n¼ n1þ n2� 2. Then

f ( �d, �xw, s2)¼ n �djd,s2 1

n1

þ
1

n2

� �� �
n �xwjmw,

s2

n1þ n2

� �
� f (s2js2),
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where n( � ) is the normal density function. He first inverts f (s2js2) and obtains

w(s2js2)¼
1

2v=2G
n

2

�  ns2

s2

� �n
2 e�

ns2

2s2

s2
:

Fisher then inverts

1�F( �djd, s2)¼F(dj �d,s2)

to obtain

w(dj �d, s2)¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2 1
n1
þ 1

n2

� r e
�

(d� �d)2

2s2

�
1

n1
þ 1

n2

	
:

Similarly,

w(mwjs
2)¼ n �xw,

s2

n1þ n2

� �

and thus

w(mw, d, s
2)¼ w(mw,djs

2)w(s2)¼ w(s2)w(djs2)w(mwjs
2):

Then

ð1
�1

w(mwjs
2)dmw

ð1
0

w(d, s2)ds2 ¼

ð1
0

w(djs2)w(s2)ds2

¼ w(dj �d, s2)/ 1þ
(d� �d)2n1n2

s2(n1þ n2)(n1þ n2� 2)

� �� n1þn2�1
2

:

From the Bayesian standpoint we get the same result for prior density

g(m1, m2, s
2)/

1

s2
:

So again all three modes can be made to yield the same interval on d.
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8.9 THE FISHER-BEHRENS PROBLEM

Let

X11, . . . , X1n1 i.i.d. N(m1,s
2
1),

X21, . . . , X2n2 i.i.d. N(m2,s
2
2):

Now the joint set of sufficient statistics for (m1,m2,s
2
1,s

2
2) is (

�X1, �X2, s
2
1, s

2
2), where

(ni � 1)s2i ¼
Pni

1 (Xij � �Xi)
2 so that

f (�x1, �x2, s21, s
2
2jm1, m2,s

2
1, s

2
2) ¼

Y2
i¼1

n �xi,
s2

i

ni

� �
fx2

ni�1

(ni � 1)s2i
s2

i

� �
:

As before, transforming m1 and m2 to d and mw, and inverting the two x2ni�1

distributions, we obtain the fiducial density

w(d, mw, s
2
1, s

2
2) ¼ w(djs2

1, s
2
2)w(mwjs

2
1, s

2
2)w(s

2
1)w(s

2
2):

Integrating out mw and setting Z ¼ (d� �d)=
s2
1

n1
þ

s2
2

n2

� 1
2

results in

w(z, s2
1, s

2
2) ¼ n z

��0, s2
1

n1

þ
s2
2

n2

� �
s21
n1

þ
s22
n2

� �� �
w(s2

1)w(s
2
2),

�

and

w(z) ¼

ð1
0

ð1
0

e
�z2

2

s2
1

n1
þ

s2
2

n2

� .
s2
1

n1
þ

s2
2

n2

� h i
ds2

1ds2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
s2
1

n1

þ
s2
2

n2

� ��
s21
n1

þ
s22
n2

� �
w(s2

1)w(s
2
2)

s :

Note w(� z) ¼ w(z) so the marginal distribution of Z is symmetric about 0.

Fisher also shows

F(z) ¼

ð1
�1

f (t2)

ð z
sin u
þ t2

tan u

�1

f (t1)dt1

" #
dt2,

where ti ¼
�xi�mi

si=
ffiffiffi
ni
p , i ¼ 1, 2,

tan u ¼
s1=

ffiffiffiffiffi
n1
p

s2=
ffiffiffiffiffi
n2
p , sin u ¼

s1=
ffiffiffiffiffi
n1
p

s21
n1

þ
s22
n2

� �1
2
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and

f (ti) ¼
G

ni

2

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(ni � 1)
p

1þ
t2i

ni � 1

� �� ni

2

G
ni � 1

2

� � :

This has been tabled by Fisher and one can obtain

P �za
2
� Z � za

2

� 
¼ 1� a

or

P �d �
s21
n1

þ
s22
n2

� �1
2

za
2
� d � �d þ

s21
n1

þ
s22
n2

� �1
2

za
2

" #
¼ 1� a:

This solution is equivalent to a Bayes solution with prior density

g(m1, m2, s
2
1, s

2
2)/

1

s2
1s

2
2

:

We can find the explicit density for n1 ¼ n2 ¼ 2. Let

W ¼
(d� �d)

ffiffiffi
2
p

s1 þ s2
¼

Z s21 þ s22
� 	1

2

s1 þ s2
, Z ¼

d� �d

s21
2
þ

s22
2

� �1
2

:

Now

w(w, s2
1, s

2
2) ¼ n wj0,

s2
1 þ s2

2

(s1 þ s2)
2

� �
w(s2

1js
2
1)w(s

2
2js

2
2),

since

(d� �d)
ffiffiffi
2
p

s1 þ s2

has a normal fiducial density with mean 0 and variance

s2
1 þ s2

2

(s1 þ s2)
2

8.9 THE FISHER-BEHRENS PROBLEM 165



conditional on s2
1 and s2

2. Then

w(s2
1, s

2
2js

2
1, s22)/

e
�

s2
1

2s2
1

�
s2
2

2s2
2

s3
1s

3
2

:

Let
s2
2

s2
1

¼ r, s2
2 ¼ rs2

1, ds2
2 ¼ s2

1dr, then

w(w, s2
1, r)/ n wj0,

s2
1(1þ r)

(s1 þ s2)
2

� �
e
�

s2
1

2s2
1

s3
1

e
�

s2
2

2rs2
1

r
3
2s3

1

s2
1

/
1

s1

ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p e

�
w2

2
(s1þs2)

2

s2
1
(1þr) e

� 1

2s2
1

ðs2
1
þ

s2
2
r
Þ

s4
1r

3
2

:

Hence,

w(w, r)/
1

r
3
2
ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p

ð
e
�

1
2s2

1

( w2(s1þs2)
2

1þr
þ s21þ

s2
2

r
)

s5
1

ds2
1:

Let y ¼ 1
s2
1

, then

w(w, r)/
1

r
3
2

ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p w2(s1 þ s2)

2

1þ r
þ s21 þ

s22
r

� �3
2

and

ð1
0

w(w, r)dr/
1

(s1 þ s2)
2 þ w2(s1 þ s2)

2
/

1

1þ w2
,

or

w(w) ¼
1

p(1þ w2)
,

a Cauchy variable.
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Fisher also obtains for r ¼ s22=s21,

w(wjr, r) ¼
w(w, r)Ð
w(w, r)dw

/ 1þ
w2(1þ r

1
2)2

(1þ r) 1þ
r

r

� �

0
BB@

1
CCA

� 3
2

¼ f (wjr, r):

Now one can obtain the unconditional sampling distribution of w given r as

f (wjr) ¼
1

p(1þ w2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

1þ rþ w2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ rþ rw2

s" #

(Geisser, 1969). Note that f (wjr) ¼ f (� wjr), and

lim
r!0

f (wjr) ¼
1

p(1þ w2)
¼ lim

r!1
f (wjr):

The distribution function is

F(wjr) ¼
1

2
þ

1

p
sin�1

w
ffiffiffi
r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ r)(1þ w2)

p þ sin�1
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1þ r)(1þ w2)
p

( )

and

P½W � wajr� ¼ 1�
1

2
�

1

p
sin�1

wa
ffiffiffi
r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ r)(1þ w2

a)
p þ sin�1

waffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ r)(1þ w2

a)
p

( )

¼ a(r):

For wa . 0,

P½�wa � W � wa� ¼ 1� 2a(r),

P �d �
s1 þ s2ffiffiffi

2
p

� �
wa � d � �d þ

s1 þ s2ffiffiffi
2
p

� �
wa

� �
¼ 1� 2a(r):

We now seek the value of r that maximizes a(r) and hence minimizes 1� 2a(r).

It can easily be shown that for any fixed wa, or a fixed length of the interval, the

probability is minimized or, conversely, for a fixed probability the length of the

interval is maximized when r ¼ 0 or1. Note that this would be the fiducial interval
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for d. Hence the most conservative limits for d are given by the fiducial solutions

where r ¼ 0 or 1, values that are not very appealing for r ¼ s2
2=s

2
1. Here we

have a situation that the fiducial inversion which is equivalent to a Bayesian inver-

sion will not coincide with a confidence solution, and when using the usual improper

prior has an awkward feature.

8.10 CONFIDENCE SOLUTIONS

We now discuss two confidence solutions that have been proposed.

1. Random Pairing, Scheffé (1943):

It will be sufficient to indicate the case where n1 ¼ n2 ¼ n, say. It is

suggested the observations be randomly paired or assumed that the

numbering of the observations are independent of the values of the obser-

vations. Let

Yi ¼ X1i � X2i i ¼ 1, . . . , n:

Then Yi are i.i.d. and N(m1 � m2, t
2) such that

Y � N d,
t2

n

� �
, (n� 1)s2 ¼ S(Yi � Y)2, nY ¼

Xn

1

Yi:

Then

t ¼
Y � d

s=
ffiffiffi
n
p � tn�1,

a student variate with n� 1 degrees of freedom. Then

P Y �
sffiffiffi
n
p ta

2
� d � Y þ

sffiffiffi
n
p ta

2

� �
¼ 1� a:

Note that no matter what the random pairing is Y ¼ X1 � X2 but s2 depends

heavily on the random pairing. This is unlikely to be acceptable in statistical

practice. In the case n1 , n2 the following trick has been proposed to keep

Y ¼ X1 � X2. Let

Yi ¼ X1i �

ffiffiffiffiffi
n1

n2

r
X2i þ

1ffiffiffiffiffiffiffiffiffi
n1n2
p

Xn1
1

X2i � X2 i ¼ 1, . . . , n1,

which preserves Y ¼ X1 � X2. However, these solutions have never been

given serious consideration, even by frequentists.

168 SET AND INTERVAL ESTIMATION



2. Solution by Welch (1947):

Consider the Behrens-Fisher statistic

Z ¼
(X1 � X2)� (m1 � m2)

s21
n1

þ
s22
n2

� �1
2

,

and let

c ¼
s21=n1

s21=n1 þ s22=n2

, g ¼
s2
1=n1

s2
1=n1 þ s2

2=n2

:

Now Welch considers

ð1
0

P½jZj , V(c)jc, g� f (cjg)dc ¼ F(g)

¼ P½jZj , V(c)jg�,

and it appears from numerical calculations that F(g) seems to be almost independent

of g. V(c) is a rather complicated function of c and does not particularly concern us.

The rationale for Welch’s approach is the following: First consider the case where

s2
1 ¼ s2

2. Then for the “student” case suppose

P½d � d . h(s2, q)js2� ¼ q independent of s2:

We can find such h(s2, q), namely,

h(s2, q) ¼ tqs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ
1

n2

r

for tq defined as

q ¼

ð1
tq

s(t)dt,

where s(t) represents the density of tn1þn2�2. By analogy, Welch says, for s2
1 = s2

2,

P½d � d . h(s21, s22, q)� ¼ q

and if q is independent of all parameters for some function h( � ) then we have a

bonafide confidence interval.

Tables for this method appear in Biometrika Tables for Statisticians by Pearson

and Hartley (1966). We extract the relevant heading first line of Table 11.
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We now review the problem from Fisher’s point of view. The relevant entities for

the two populations P1, and P2 are:

data

P1 is N(m1,s
2
1)

n1; x1; s21

P2 is N(m2,s
2
2)

n2; x2; s22

pivotal

Z ¼
(�x1� �x2)� (m1�m2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21=n1þ s22=n2
p

weights

c ¼
s21=n1

s21=n1 þ s22=n2
g ¼

s2
1=n1

s2
1=n1 þ s2

2=n2

Note that when n1 ¼ n2, Z is equivalent to the t statistic and if in addition g ¼

0:5, s2
1 ¼ s2

2 then P½jtj , 1:782� ¼ 0:9. Here P½jZj , 1:74� ¼ 0:9: This is then

not an acceptable procedure according to Fisher (1956a).
Now

Ð1
0

P½jZj , V(c)jc,g� f (cjg)dc ¼ F(g) ¼ 0:90 no matter what g is, at least

to 3 decimal places.

Fisher notes that if c ¼ 0:5 and V(c) ¼ 1:74 no value in Table 12 reaches the

stated probability 0.9 no matter what g is. Welch (1956) retorts that for any fixed

value of g, the average over all values of c is 0.9 to 3 decimal places. In a sense

this tells us what is going on. Welch considers

ð1
0

P½jZj , V(c)jc, g� f (cjg)dc ¼ P½jZj , V(c)jg�,

Table 11: (From Pearson and Hartley, 1966). Test for Comparisons Involving Two

Variances Which Must be Separately Estimated. Upper 5% Critical Values of Z (i.e.

Upper 10% Critical Values of jZj)

c

l1s21
l1s21 þ l2s22 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

v2 v1

6 6 1.94 1.90 1.85 1.80 1.76 1.74 1.76 1.80 1.85 1.90 1.94

8 1.94 1.90 1.85 1.80 1.76 1.73 1.74 1.76 1.79 1.82 1.86

10 1.94 1.90 1.85 1.80 1.76 1.73 1.73 1.74 1.76 1.78 1.81

15 1.94 1.90 1.85 1.80 1.76 1.73 1.71 1.71 1.72 1.73 1.75

20 1.94 1.90 1.85 1.80 1.76 1.73 1.71 1.70 1.70 1.71 1.72

1 1.94 1.90 1.85 1.80 1.76 1.72 1.69 1.67 1.66 1.65 1.64

170 SET AND INTERVAL ESTIMATION



which appears to be approximately independent of g: Fisher considers

ð1
0

P½jZj , V(c)jc, g�w(gjc)dg ¼ P(jZj , V(c)jc�:

Actually, Fisher offers the following alternative way of deriving the fiducial

density of

Z ¼
�d � d

s21
n1

þ
s22
n2

� �1
2

:

He notes that for r ¼ s2
2=s

2
1 known f

s2
2

s2
1

jr
� 

does not depend on d and s22=s21 can be

considered a “relevant subset” to condition on. Hence he considers the conditional

inversion

f (zjs22=s21, r) ¼ w(zjs22=s21, r):

Table 12: (From Pearson and Hartley, 1966). Tabular Values of P½jZj , V(c)jc,g� for

Sample Size n1 ¼ n2 ¼ 7, Modified from Welch (1956). For n1¼ n2¼ 6, l1 ¼ l2¼
1
7
,

l1s
2
1

l1s
2
1
þl2s

2
2

¼
s2
1

s2
1
þs2

2

¼ c.

g

c V(c) .1 .2 .3 .4 .5 .6 .7 .8 .9

.0 1.94 .976 .970 .960 .944 .924 .892 .842 .756 .598

.1 1.90 .918 .944 .944 .934 .918 .890 .844 .764 .608

.2 1.85 .850 .910 .924 .922 .910 .888 .846 .772 .620

.3 1.80 .784 .876 .902 .908 .902 .884 .848 .780 .634

.4 1.76 .728 .840 .882 .896 .896 .884 .852 .792 .654

.5 1.74 .682 .810 .862 .886 .892 .886 .862 .810 .682

.6 1.76 .654 .792 .852 .884 .896 .896 .882 .840 .728

.7 1.80 .634 .780 .848 .884 .902 .908 .902 .876 784

.8 1.85 .620 .772 .846 .888 .910 .922 .924 .910 .850

.9 1.90 .608 .764 .844 .890 .918 .934 .944 .944 .918

1.0 1.94 .598 .756 .842 .892 .924 .944 .960 .970 .976
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Now

f (z, s22=s21jr) ¼ f (zjs22=s21, r)f (s
2
2=s21jr),

so that

w(z, r) ¼ w(zjs22=s21, r)w(rjs
2
2=s21),

and

ð
w(z, r)dr ¼ w(z):

Fisher defines a recognizable subset, “In a hypothetical infinite sequence of trials a

subset is called recognizable if a rule can be given for identifying each member of

that subset before the outcome of the trial. A subset is called relevant if the fre-

quency distribution of the quantity in question depends on the recognizable

subset.” In view of this Fisher claimed that the Welch solution was defective

because it does not recognize the relevant subset s22=s21.

To further complicate matters Buehler and Fedderson (1963) show that a relevant

subset exists for the t statistic,

tn�1 ¼
(�x� m)

ffiffiffi
n
p

s
,

which was used and approved by Fisher as not having a recognizable subset. Their

argument goes as follows: Consider the case n ¼ 2. Here

f (t) ¼
1

p(1þ t2)
,

the Cauchy density, so that

1� F(t) ¼

ð1
t

f (u)du ¼
1

2
�

1

p
tan�1 t:

Note that for t ¼ 1, 1� F(t) ¼ 1
4
, therefore,

0:5 ¼ P½�1 � t � 1� ¼ P �1 �

x1 þ x2

2
� m

s=
ffiffiffi
2
p � 1

2
64

3
75

¼ P �1 �
x1 þ x2 � 2m

jx1 � x2j
� 1

� �
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since

s2 ¼
1

2
(x1 � x2)

2 or s ¼
jx1 � x2jffiffiffi

2
p :

Then

0:5 ¼ P
x1 þ x2 � jx1 � x2j

2
� m �

x1 þ x2 þ jx1 � x2j

2

� �
¼ P½x(1) � m , x(2)�,

where x(1) ¼ min (x1, x2) and x(2) ¼ max (x1, x2). Now let

A ¼ {x1, x2 : x(1) � m � x(2)},

B ¼ x1, x2 : jx1 � x2j �
2

3
jx1 þ x2j

� 

:

Then it is shown that B is a relevant subset, that is,

P(AjB) � 0:5181 and 1� P(AjB) � 0:4819:

So whenever B is true the coverage is greater than 0.5 for all m and less than 0.5

otherwise.

Hence Fisher’s fiducial t can be criticized in the same way that Fisher criticized

the Welch solution. Fisher had claimed that �x and s2 were jointly sufficient for m and

s2 and since knowledge of m and s2 is apriori absent, there is no possibility of recog-

nizing any subset of cases within the general set for which any different value the

probability should hold.

Statisticians have not been able to adequately resolve these anomalies unto this day.

8.11 THE FIELLER-CREASY PROBLEM

Suppose that we have bivariate random variables (X, Y) with E(X, Y) ¼ (mx,my) and

cov(X,Y) ¼
s2

x sxy

sxy s2
y

 !
:

We seek a confidence interval for my=mx ¼ a. Further, we assume that Z ¼ Y � aX

is N(0,s2) since E(Z) ¼ E(Y � aX) ¼ my � (my=mx)mx and

var(Y � aX) ¼ s2
y � 2asxy þ a2s2

x ¼ s2:

Now assume (X1, Y1), . . . , (Xn,Yn) are i.i.d., then Z1, . . . ,Zn is i.i.d. N(0,s2).
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Fieller (1954) presented his solution at a Royal Statistical Society symposium.

He observed that

ffiffiffi
n
p

Z

s
¼

ffiffiffi
n
p

(Y � aX)

s2y � 2asxy þ a2s2x

� 1
2

¼ tn�1,

a student t with n� 1 degrees of freedom. Then

P
n(�y� a�x)2

s2y � 2asxy þ a2s2x
� t2p

" #
¼ 1� 2p, p ¼

ð1
tp

f (t)dt:

Let
s2y
n
¼ s2�y ,

s2x
n
¼ s2�x ,

sxy

n
¼ s�x�y, then

P a2
�
�x2 � t2ps2�x

	
� 2a

�
�x�y� s�x�yt2p

	
þ �y2 � t2ps2�y � 0

h i
¼ 1� 2p,

or

P (�x2 � t2ps2�x) a2 �
2a
�
�x�y� s�x�yt2p

	

�x2 � t2ps2�x
þ

�y2 � t2ps2�y

�x2 � t2ps2�x

 !
� 0

" #

¼ P
�
�x2 � t2ps2�x

	
ða� a1Þ(a� a2) � 0

h i
¼ 1� 2p,

where

a1, a2 ¼

2
�
�x�y� s�x�yt2p

	

�x2 � t2ps2�x
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
�
�x�y� s�x�yt2p

	2
�
�x2 � t2ps2�x

	2 � 4
�y2 � t2ps2�y

�x2 � t2ps2�x

vuut

2

¼

�
�x�y� s�x�yt2p

	
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�x�y� s�x�yt2p

	2
�
�
�y2 � t2ps2�y

	�
�x2 � t2ps2�x

	q

�x2 � t2ps2�x
:

Then

P
�
�x2 � t2ps2�x

	�
a� a1

	�
a� a2

	
� 0

h i
¼ 1� 2p:
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If the discriminant

D ¼
�
�x�y� s�x�yt2p

	2
�
�
�y2 � t2ps2�y

	�
�x2 � t2ps2�x

	

is

. 0 a1 and a2 real

¼ 0 one root a1 ¼ a2

, 0 a1 and a2 are complex roots

8><
>:

Algebra yields

D ¼
�
s2�xs2�y � s2�x�y

	
t2p

�x2

s2�x
þ

�
�ys2�x � �xs�x�y

	2
s2�x
�
s2�xs2�y � s2�x�y

	� t2p

 !
,

so for

t2p ¼ 0, a1 ¼ a2 ¼
�y

�x
:

If

t2p ¼
�x2

s2�x
þ

�
�ys2�x � �xs�x�y

	2
s2�x
�
s2�xs2�y � s2�x�y

	 ; ~t
2
p,

D ¼ 0 and there is also only one real root a1 ¼ a2 ¼ (�ys�x�y � �xs2�y)=(�ys2�y � �xs�x�y).

If 0 , t2p , ~t
2
p, there are two real roots since D . 0. Otherwise for D , 0, there

are no real roots. Now for

P
�
�x2 � t2ps2�x

	
(a� a1)(a� a2) � 0

h i
¼ 1� 2p,

with a1 . a2, for �x
2 � t2ps2�x . 0, or t2p , �x2

s2
�x

then

P½a2 , a , a1� ¼ 1� 2p

yields inclusive limits.

Now if �x2 � t2ps2�x , 0, or t2p . �x2

s2
�x

, and a2 . a1

P(� (a� a1)(a� a2) � 0� ¼ 1� 2p,

or

P½(a1 � a)(a� a2) � 0� ¼ 1� 2p ¼ P½a , a1 or a . a2� ¼ 1� 2p:

This yields exclusive limits.
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For �x2 ¼ t2ps2�x we obtain

P �2a
�
�x�y� s�x�yt2p

	
þ �y2 � t2ps2�y � 0

h i
¼ 1� 2p

¼ P a
�
s�x�y �x

2 � s2�x �x�y
	
�
�
�x2s2�y � �y2s2�x

	
=2

h i
,

by substituting t2p ¼ �x2=s2�x . If s�x�y �x
2 . s2�x �x�y, then

1� 2p ¼ P a �
�x2s2�y � �y2s2�x

2
�
s�x�y �x

2 � s2�x �x�y
	

" #
¼ P a �

�y

�x
þ

�x2s2�y þ �y2s2�x � 2�y�xs�x�y

2
�
s�x�y �x

2 � �x�ys2�x
	

" #

¼ P a �
�y

�x
þ

�
�xs�y � �ys�x

	2
þ 2�x�y

�
s�ys�x � s�x�y

	

2
�
s�x�y �x

2 � s2�x �x�y
	

" #
,

if �x�y . 0 or

P a �
�y

�x
þ
(�xs�y þ �ys�x)

2 � 2�x�y(s�ys�x � s�x�y)

2
�
s�x�y �x

2 � s2�x �x�y
	

" #
,

if �x�y , 0. In either case

P a �
�y

�x
þ D

� �
, D � 0:

Now if s�x�y , s2�x �x�y, then

P a �
�y

�x
þ
(�xs�y � �ys�x)

2 þ 2�x�y(s�ys�x � s�x�y)

2
�
s�x�y �x

2 � s2�x �x�y
	

" #
,

if �x�y . 0 or

P a �
�y

�x
þ
(�xs�y þ �ys�x)

2 � 2�x�y(s�ys�x � s�x�y)

2
�
s�x�y �x

2 � s2�x �x�y
	

" #
,

if �x�y , 0 so that

P a �
�y

�x
� D

� �
, D � 0:

Hence �y=�x is always included in the interval and one limit goes to infinity.

Fieller claimed his method was a fiducial inversion and Fisher, in commenting at

the symposium, agreed. However, it was also clearly a confidence procedure as

Neyman asserted at the symposium. Further we have the anomaly that whenever

D , 0 we have a confidence (fiducial) interval which is the whole real line with
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coefficient less than 1. Many explanations were proffered for this anomaly, none of

which were satisfactory.

Now consider the following simpler version of the problem:

(X, Y) are pairs of independent random variables with X � N(mx, 1) and

Y � N(my, 1) and let (Xj,Yj) j ¼ 1, . . . , n be a random sample with a ¼
my

mx
.

Method 1. Confidence interval: Let

a �X � �Y � N 0,
1þ a2

n

� �
,

since

E(a �X � �Y) ¼ amx � my ¼ 0, var(a �X � �Y) ¼
a2

n
þ
1

n
¼

a2 þ 1

n
:

Then

P
(a�x� �y)2n

1þ a2
� u2p

� �
¼ 1� 2p,

where

2p ¼

ð1
u2p

fU(u)du,

where U is x2 with one degree of freedom and

1� 2p ¼ P a2 �x2 � 2a�x�yþ �y2 �
(1þ a2)

n
u2p � 0

� �
:

Again, this can be rewritten as

1� 2p ¼ P a2 �x2 �
u2p

n

� 
� 2a�x�yþ �y2 �

u2p

n

� 
� 0

h i

¼ P �x2 �
u2p

n

� 
(a� a1)(a� a2) � 0

h i
,

where

a1, a2 ¼ �x�y +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 �y2 � �x2 �

u2p

n

� 
�y2 �

u2p

n

� r� ��
�x2 �

u2p

n

� 

¼ �x�y +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2p

n
�x2 þ �y2 �

u2p

n

� r� ��
�x2 �

u2p

n

� 
:
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Then

D ¼ 0 if u2p ¼ 0 or u2p ¼ n(�x2 þ �y2) one root, as before

D . 0, 0 , u2p , n(�x2 þ �y2) a1 and a2 real

D , 0, u2p . n(�x2 þ �y2) a1 and a2 complex

So we have the same situation as before with confidence limits (also presumably

fiducial limits) being inclusive or exclusive or when u2p . n(�x2 þ �y2) the whole

real line with confidence coefficient 1� 2p.

However, Creasy (1954), at the same symposium, offered what appears to be

another “fiducial” solution along the following lines:

Method 2. Fiducial interval: Consider the simple example as before, where

f
�
�xjmx, n�1

	
¼

ffiffiffiffiffiffi
n

2p

r
e�

n
2
(�x�mx)

2

, independent of

f
�
�yjmy, n�1

	
¼

ffiffiffiffiffiffiffi
n

2p

r
e

n
2
(�y�my)

2

,

from which we easily get the joint fiducial density,

w(mx, my) ¼
n

2p
e�

n
2
(mx��x)

2�
n
2
(my��y)

2

:

Let a ¼ my=mx or amx ¼ my, then

@my

@a

����
���� ¼ jmxj,

so that

w(mx,a) ¼ jmxj
n

2p
e�

n
2
(mx��x)

2�
n
2
(amx��y)

2

:

Integrate out mx and obtain

w(a) ¼

ð1
�1

w(mx, a)dmx ¼

ð1
0

nmx

2p
e�

n
2
½m2

x�2�xmxþ�x
2þa2m2

x�2amx �yþ�y
2�dmx

�

ð0
�1

nmx

2p
e�

n
2
½m2

x�2�xmxþ�x
2þa2m2

x�2amx �yþ�y
2�dmx:
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Add and subtract

ð0
�1

w(mx,a)dmx so that

w(a) ¼

ð1
�1

nmx

2p
e�

n
2
½m2

x�2�xmxþ�x
2þa2m2

x�2amx �yþ�y
2�dmx

� 2

ð0
�1

nmx

2p
e�

n
2
½m2

x�2�xmxþ�x
2þa2m2

x�2amx �yþ�y
2�dmx:

Now

e�
n
2
(m2

x (1þa
2)�2mx(�xþa�y)þ�x

2þ�y2) ¼ e�n
(�x2þ�y2)

2 e
�

n(1þa2)
2

(m2
x�2mx

(�xþa�y)
1þa2 )

¼ e
n
2
(�xþa�y)2

1þa2 e�
n
2
(�x2þ�y2)e

�
n(1þa2)

2
(mx�

�yaþ�x
1þa2 )

2

,

so

w(a) ¼
ne

n
2
(�xþa�y)2

1þa2 �
n
2
(�x2þ�y2)

2p

ð1
�1

mxe
�

n(1þa2)
2

�
mx �

�yaþ�x
1þa2

	2
dmx

�

� 2

ð0
�1

mxe
�

n(1þa2)
2

�
mx�

�yaþ�x
1þa2

	2� �
dmx

�
:

Let

t ¼ mx �
�yaþ �x

1þ a2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ a2)n

p
¼ mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ a2)n

p
�
(�yaþ �x)

ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ,

r ¼
(�yaþ �x)

ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p or mx ¼

(t þ r)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ a2)n

p :

Then

w(a) ¼
e
�

n(�y�a�x)2

2(1þa2)ffiffiffiffiffiffi
2p
p

(1þ a2)

1ffiffiffiffiffiffi
2p
p

ð1
�1

(t þ r)e�
t2

2dt � 2

ð�r

�1

(t þ r)e�
t2

2dt

� �
:

Now consider

1ffiffiffiffiffiffi
2p
p

ð1
�1

(t þ r)e�
t2

2 dt �
2ffiffiffiffiffiffi
2p
p

ð�r

�1

(t þ r)e�
t2

2 dt

¼ r �
2ffiffiffiffiffiffi
2p
p

ð�r

�1

te�
t2

2 dt � 2r

ð�r

�1

e�t2=2

ffiffiffiffiffiffi
2p
p dt

¼ r � 2rF(�r)�
2ffiffiffiffiffiffi
2p
p

ð�r

�1

te�
t2

2 dt

¼ r(1� 2F(�r))þ
2ffiffiffiffiffiffi
2p
p e�r2=2,
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so that

w(a) ¼
e
�

n(�y�a�x)2

2(1þa2)

(1þ a2)
ffiffiffiffiffiffi
2p
p

2e�r2=2

ffiffiffiffiffiffi
2p
p þ

rffiffiffiffiffiffi
2p
p

ðr

�r

e�t2=2dt

" #
:

Let

tan u ¼
�xa� �y

�xþ a�y
, u ¼ tan�1

�xa� �y

�xþ a�y
, �

p

2
� u �

p

2
, a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�x2 þ �y2)n

q
:

Then

cos u ¼
�xþ a�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(�x2 þ �y2)(1þ a2)
p , sin u ¼

�xa� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�x2 þ �y2)(1þ a2)

p ,

and

a cos u ¼
(�xþ a�y)

ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ¼ r, a sin u ¼

(�xa� �y)
ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p :

Recall the trigonometric identity

tan (c + b) ¼
tan c + tan b

1+ tan c tan b
, so u ¼ tan�1

�xa� �y

�xþ a�y
¼ tan�1 a� tan�1

�y

�x
:

Therefore,

du ¼
da

1þ a2

and

w(u) ¼
e�

a2

2
sin2 u

ffiffiffiffiffiffi
2p
p

2e�
a2 cos2 u

2ffiffiffiffiffiffi
2p
p þ

a cos uffiffiffiffiffiffi
2p
p

ða cos u

�a cos u

e�t2=2dt

2
4

3
5

¼
1

p
e�a2=2 þ

a cos u

p
e�

a2 sin2 u
2

ða cos u

0

e�t2=2dt:

Hence,

ða cos u

0

e�t2=2dt ¼ e�
a2 cos2 u

2
a cos u

1
þ
(a cos u)3

1 � 3
þ
(a cos u)5

1 � 3 � 5
þ � � �

� �
,
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so that

w(u) ¼
e�a2=2

p
1þ

(a cos u)2

1
þ
(a cos u)4

1 � 3
þ
(a cos u)6

1 � 3 � 5
þ � � �

� �
:

Note that w(u) ¼ w(�u) since cos u ¼ cos (�u). Let

ðp=2
u0

w(u)du ¼ p:

Then

P½�u0 � u � u0� ¼ 1� 2p

or

P �u0 � tan�1
�xa� �y

�xþ a�y
� u0

� �
¼ 1� 2p

¼ P �u0 � tan�1 a� tan�1
�y

�x
� u0

� �

¼ P �u0 þ tan�1
�y

�x
� tan�1 a � u0 þ tan�1

�y

�x

� �
:

Now

a1 ¼ tan tan�1
�y

�x
� u0

� �
¼

�y

�x
� tan u0

� ��
1þ

�y

�x
tan u0

� �

a2 ¼ tan tan�1
�y

�x
þ u0

� �
¼

�y

�x
þ tan u0

� ��
1�

�y

�x
tan u0

� �
,

because

tan (c + b) ¼
tan c + tan b

1+ tan c tan b
:

If a2 . a1 then we have inclusive limits

P½a1 � a � a2� ¼ 1� 2p:

If a1 . a2 then P½a � a1 or a � a2� ¼ 1� 2p and limits are exclusive, but for

0 , p , 1
2
we never have the whole real line.

Calculations made by Creasey for the comparison of the two latter cases show

that for the same 1� 2p, Creasey’s limits are included in Fieller’s limits.
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