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Abstract
Light propagation in one-dimensional (1D) periodic structures (photonic crystals), including
absorption, is studied analytically. Oblique incidence on a slab with an arbitrary complex valued
refractive index is treated. The transfer matrix method and Bragg conditions are modified
accordingly. The propagation in a sinusoidal absorptive crystal is computed as an example.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Periodic optical structures (including periodic arrangements of
thin films) have been widely used in the design of bandpass
filters and omnidirectional mirrors. Their bandgaps for
incident light are due to Bragg reflection, and may cover
several frequency (wavelength) ranges in the spectrum of
incident light. The transmittance and reflectance are calculated
with the aid of the transfer matrix method which is particularly
suitable for a layered periodic slab [1–5].

We begin with a brief overview of known results for
layered, periodic, and layered periodic structures. We consider
a nonmagnetic (μ = 1) absorptive slab with a complex valued
refractive index, stratified in the z direction, i.e. ñ(z) ≡
n(z) + iκ(z) = ñ(z + d), where n(z) and κ(z) stand for the
real refractive index and extinction coefficient, respectively.
They are related to a complex valued dielectric permittivity
ε̃ of the slab as follows: n2 − κ2 = Re(ε̃) and 2nκ =
Im(ε̃). The slab is surrounded by semi-infinite incident and
exit media with constant real refractive indices ñi = ni and
ñf = nf. We take the plane of incidence to be the (z, x) plane.
Maxwell’s equations for linear polarized monochromatic fields
of frequency ω reduce to

Ψ(r, t) = �(z) ei(kx x−ωt) ŷ,

d2�

dz2
+

[
k̃2

z (z)

k̃2
z (z) + 1

ñ(z)
d2ñ
dz2 − 2

ñ2(z)

(
dñ
dz

)2

]
�(z) = 0,

(1)

for s and p polarized light, respectively. The function �(z)
stands for the electric field E(z) in the case of s polarized
light, and for the field h(z) ≡ H (z)/ñ(z), where H (z) is the

magnetic field, in the case of p polarized light. The equation
for H (z) itself involves a first-derivative term:

d2 H

dz2
+ k̃2

z (z)H (z) − 2

ñ(z)

dñ(z)

dz

dH

dz
= 0,

which is eliminated by the transformation to � . But that
assumes that ñ(z) is analytic, i.e. has no discontinuities, within
the range of integration. The x component of the complex
valued wavevector k̃(z) inside a slab is a real constant given
by

kx = k0ni sin θi ≡ k0β, (2)

where k0 = ω/c = 2π/λ is the wavenumber in vacuum, and
θi is the angle of incidence. The z component of the complex
valued wavevector k̃(z) inside the slab is

k̃z(z) = k0

√
[n(z) + iκ(z)]2 − β2 ≡ k0 Ñz(z), (3)

where the effective complex valued refractive index Ñz(z) is
introduced. For a nonabsorptive slab, Ñz(z) = √

n2(z) − β2 is
either real (conventional case) or pure imaginary (total internal
reflection case). In the conventional case,

√
n2(z) − β2 =

n(z) cos θ(z), where θ(z) is the angle between the real
wavevector k(z) with the absolute value k(z) = k0n(z), and
the normal.

The field �(z) can be expressed as

�(z) =

⎧⎪⎨
⎪⎩

Ai eikiz z + Bi e−ikiz z, z < 0,

AF(z) + BG(z), 0 < z < l,

A f eik f z(z−l) + B f e−ik f z(z−l), z > l,
(4)
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where kiz, f z = k0ni, f cos θi, f = k0

√
n2

i, f − β2, and F(z),

G(z) are two arbitrary linearly independent solutions of
equation (1) in the region 0 < z < l. The coefficients in
equation (4) on the two external edges of a slab are connected
by the overall transfer matrix T :

[
Ai

Bi

]
= T

[
A f

B f

]
, T = L−1

0− W0+l− Ll+ , (5)

where the matrix W0+l− links E(z) and its derivative E ′(z) on
the internal edges of the slab, in the case of s waves, as

[
E(0+)

E ′(0+)

]
= W s

0+l−

[
E(l−)

E ′(l−)

]
, (6)

or H (z) = ñ(z)h(z) and H ′/ñ2(z) = [h(z)ñ(z)]′/ñ2(z) in the
case of p waves as

[
h(0+)ñ(0+)
[h(0+)ñ(0+)]′

ñ2(0+)

]
= W p

0+l−

[
h(l−)ñ(l−)
[h(l−)ñ(l−)]′

ñ2(l−)

]
. (7)

The slab edge-matrices L−1
0− and Ll+ take the form

[L−1
0− ]s = 1/2

[
1 −i/kiz

1 i/kiz

]
,

[Ll+ ]s =
[

1 1
ik f z −ik f z

]
,

[L−1
0− ]p = 1/2

[
1/ni −ini/kiz

1/ni ini/kiz

]
,

[Ll+ ]p =
[

n f n f

ik f z/n f −ik f z/n f

]
.

(8)

In order to find the amplitude reflection r and transmission
t coefficients, one should put Ai = 1 and B f = 0 in
equation (5). Then, those coefficients are obtained by setting
r = Bi and t = A f . This leads to

r s = W s
11 − k f z

kiz
W s

22 + i[k f z W s
12 + 1

kiz
W s

21]
W s

11 + k f z

kiz
W s

22 + i[k f z W s
12 − 1

kiz
W s

21]
,

t s = 2

W s
11 + k f z

kiz
W s

22 + i[k f z W s
12 − 1

kiz
W21]

,

r p =
n f

ni
W p

11 − ni k f z

n f kiz
W p

22 + i
[

k f z

ni n f
W p

12 + ni n f

kiz
W p

21

]
n f

ni
W p

11 + ni k f z

n f kiz
W p

22 + i
[

k f z

ni n f
W p

12 − ni n f

kiz
W p

21

] ,

tp = 2
n f

ni
W p

11 + ni k f z

n f kiz
W p

22 + i
[

k f z

ni n f
W p

12 − ni n f

kiz
W p

21

] .

(9)

Finally, the absorptance A can be obtained from

A = 1 − |r |2 − k f z

kiz
|t|2. (10)

We emphasize here that equations (1)–(10) are valid for any
absorptive slab (layered or not, periodic or not).

In the case of a layered slab, each layer with complex
refractive index ñ j and width d j can be represented by a
transfer matrix

W s
j =

[
cos(k̃ j zd j) − sin(k̃ j zd j)/k̃ j z

k̃ j z sin(k̃ j zd j) cos(k̃ j zd j)

]
,

W p
j =

[
cos(k̃ j zd j) −ñ2

j sin(k̃ j zd j)/k̃ j z

k̃ j z sin(k̃ j zd j)/ñ2
j cos(k̃ j zd j)

]
,

(11)

where k̃ j z = k0

√
ñ2

j − β2 = k0

√
(n j − iκ j)2 − β2 = k0 Ñ j .

The total matrix W0+l− can be calculated as the product of these
layer matrices. Equations (5), (8) and (11) summarize how to
construct the transfer matrix for a layered absorptive slab.

The first goal of this paper is to construct the transfer
matrix, in particular, the matrix W0+l− for an arbitrary (not
necessarily layered) absorptive slab.

Insight into the reflection/transmission properties of a
layered slab obviously cannot be gained by simple numerical
multiplications of the corresponding matrices. For a layered
periodic slab a key tool is the well-known theorem for the M th
power of a unimodular 2 × 2 matrix which states that

W0+l− = 1

sin φ
[Wd sin Mφ − 1̂ sin(M − 1)φ], (12)

where Wd is the transfer matrix for one cell, M is the number
of cells, 1̂ is the unit matrix, and φ is the Bloch phase given by

2 cos φ = (Wd)11 + (Wd)22. (13)

Each layer matrix given by equation (11) is unimodular
(det W j = 1). Therefore Wd , which is the product of all
layer matrices constituting the system, is itself unimodular,
i.e. equation (12) applies to any absorptive layered periodic
slab.

The next goal of this paper is to validate equations (12)
and (13) for an arbitrary periodic (not necessarily layered)
absorptive slab.

The Bloch phase φ is the key parameter of the Floquet–
Bloch theory of periodic structures [6–9]. According to this
theory a fundamental system within a periodic slab can be
chosen in terms of two Bloch waves:

�(z) = C P(z) eiφz/d + DQ(z) e−iφz/d , (14)

where P(z) = P(z + d) and Q(z) = Q(z + d), i.e. they are
periodic functions, and C and D are arbitrary constants. For
nonabsorptive periodic structures the Bloch phase is complex
only in the bandgaps: φ = qπ + iφ′′, q = 1, 2, . . . (the
integer q numbers the bandgaps) and the forward Bloch wave
P(z) exp(iφz/d) is exponentially damped. This damping is
maximal at what are called Bragg resonances. The bandgaps
can be found from equation (13) by requiring

|cos φ(k0)| > 1, or |eiφ(k0) + e−iφ(k0)| > 2. (15)

The Bragg resonances (which are located close to the
centres of the bandgaps) can be approximated by the same
expressions for either s or p waves. Conventionally, one has

[kav]z
∼= q

π

d
, q = 1, 2, . . . ,

[kav]z = kav cos θav = k0nav cos θav,

(16)
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where

nav = 1

d

∫ d

0
n(z) dz, nav cos θav =

√
n2

av − β2, (17)

and to derive the last expression we took into account that
nav sin θav = ni sin θi ≡ β . One can see that if n2

av < β2,
the conventional approximation for Bragg resonances is not
defined.

In [10–12] we suggested using a somewhat better
approximation for estimating Bragg resonances in the sense
that the values obtained are often closer to the actual points
of maximal damping. For the case n2(z) > β2 for all z within
a periodic stack, we had

[kz]av
∼= q

π

d
, q = 1, 2, . . . ,

[kz]av = k0[n(z) cos θ(z)]av = k0[Nz]av,

(18)

where [Nz ]av = 1
d

∫ d
0

√
n2(z) − β2 dz. This can be easily

extended to cases at some (or even at all) points within a stack
n2(z) < β2 if we assign

[Nz]av = 1

d

∫ d

0
Re[

√
n2(z) − β2] dz. (19)

In the case of normal incidence θi = 0, and both equations (16)
and (17) and equations (18) and (19) lead to the same condition
which is k0nav = qπ/d .

Our final task is to modify equation (15) and equa-
tions (18) and (19) to include absorptive periodic slabs.

2. The transfer matrix for an arbitrary absorptive
potential

The basic idea is to separate the complex valued potential
determined by ñ(z) into segments, within which a fundamental
system of solutions F(z) and G(z) is known, and use
appropriate boundary conditions. Suppose that

�(z) = A1 F1(z) + B1G1(z), z < a−,

= A2 F2(z) + B2G2(z), z > a+. (20)

Then the coefficients are related by[
A1

B1

]
= Ia− Ia+

[
A2

B2

]
, (21)

where the so-called half-interface matrices Ia− , Ia+ are

I s
a− =

[ G ′
1(a

−)

w1

G1(a−)

−w1
F ′

1(a
−)

−w1

F1(a−)

w1

]
, I s

a+ =
[

F2(a+) G2(a+)

F ′
2(a

+) G ′
2(a

+)

]
,

I p
a− =

[ [G1(a−)ñ(a−)]′
ñ2(a−)w1

G1(a−)ñ(a−)

−w1

[F1(a−)ñ(a−)]′
−ñ2(a−)w1

F1(a−)ñ(a−)

w1

]
,

I p
a+ =

[
F2(a+)ñ(a+) G2(a+)ñ(a+)
[F2(a+)ñ(a+)]′

ñ2(a+)

[G2(a+)ñ(a+)]′
ñ2(a+)

]
,

(22)
for s and p waves, respectively. The quantity w1 ≡
F1(a−)G ′

1(a
−)−G1(a−)F ′

1(a
−) is the Wronskian of a second-

order linear differential equation with no first-derivative term

(see equation (1)); hence it is constant and can be calculated
at any point z � a−. Now we are in a position to express
all transfer matrices in terms of the half-interface matrices
introduced above.

Firstly, we choose a = 0 and assume a constant ñ(z) = ni

for z < 0. We obtain that L−1
0− = I0− , provided that we take the

fundamental system in the region z < 0 to be eikiz z and e−ikiz z .
Secondly, we choose a = l and assume a constant ñ(z) =

n f for z > 0. Then Ll+ = Il+ , provided we take the
fundamental system in the region z > 0 to be eik f z(z−l) and
e−ik f z(z−l).

Thirdly, the transfer matrix W0+l− can be written as the
product

W0+l− = I0+ Il− . (23)

The important property of this matrix is as follows. It does not
matter which particular fundamental system of equation (1) in
the region 0 < z < l is chosen; we always end up with the
same matrix. For example, if ñ(z) = ñ j for 0 < z < l (a

homogeneous layer), we can take F(z) = eik̃ j z z and G(z) =
e−ik̃ j z z (or F(z) = cos(k̃ j zz) and G(z) = sin(k̃ j zz)) to find
that W0+l− is given by equation (11). To prove this property
in general, one should recognize that equations (6) and (7)
express a one to one correspondence between single-valued
physical functions (EM fields and their derivatives). One can
now see that

det W0+l− = det I0+ Il− = 1, and det T = k f z

k0z
. (24)

To find the W0+l− matrix in a specific situation, we need
to specify a fundamental system within the slab, either in
analytical or in numerical form. The freedom to choose such
a system allows us to impose on F(z) and G(z) the boundary
conditions

F(0+) = 1, F ′(0+) = 0, G(0+) = 0, G ′(0+) = 1.

(25)
Integrating from 0 to l, we arrive at the corresponding values
F(l−), F ′(l−) and G(l−), G ′(l−). This integration can be
done numerically for almost any absorptive potential ñ(z).
Therefore, the above choice of the fundamental system (see
equation (25)) is especially useful when explicit solutions are
not available in analytical form. For that choice of F(z) and
G(z), the elements of the W s

0+l− matrix become

W s
0+l− =

[
G ′(l) −G(l)

−F ′(l) F(l)

]
, (26)

and the elements of the W p
0+l− matrix become

(W p
0+l− )11 = n(0+)G ′(l−)

n(l−)
+ n(0+)n′(l−)G(l−)

n2(l−)
,

(W p
0+l− )21 = n′(0+)G ′(l−)

n2(0+)n(l−)
+ n′(0+)n′(l−)G(l−)

n2(0+)n2(l−)

− F ′(l−)

n(0+)n(l−)
− n′(l−)F(l−)

n(0+)n2(l−)
,

(W p
0+l− )12 = −n(0+)n(l−)G(l−),

(W p
0+l− )22 = −n′(0+)n(l−)G(l−)

n2(0+)
+ n(l−)F(l−)

n(0+)
.

(27)

3



J. Opt. 13 (2011) 035102 G V Morozov et al

If the slab can be separated into, let us say, two regions
within which the fundamental systems are known, then

W0+l− = I0+ Ia− Ia+ Il− = W0+a− Wa+l− , (28)

and all three W -matrices are unimodular.
Finally, for an arbitrary absorptive periodic slab,

W(qd)+(qd+d)− = I(qd)+ I(qd+d)− = I0+ Id− = W0+d−

≡ Wd , q = 0, 1, . . . , M − 1. (29)

To prove this last result, one needs to choose the
fundamental system in terms of Bloch waves P(z) exp(iαz)
and Q(z) exp(−iαz). Since det Wd = det I(qd)+ I(qd+d)− = 1,
we can finally state that equations (12) and (13) are valid for
an arbitrary absorptive periodic slab.

3. The Bragg condition for an absorptive periodic
potential

As we have just mentioned, equation (13) remains valid
for absorptive periodic structures. However, a noticeable
difference is that the Bloch phase φ becomes complex (φ =
αd = φ′ + iφ′′) everywhere (not only in the bandgaps, as it
was for a real valued refractive index) and, as a result, cos φ

becomes complex valued itself.
In the light of the above, equation (15) and equations (18)

and (19) are modified as follows. The bandgaps can be found
by setting

| Re[cos φ(k0)]| > 1, (30)

and the Bragg resonances are approximated by

k0[Nz ]av
∼= q

π

d
,

[Nz ]av = 1

d

∫ d

0
Re[

√
[n(z) + iκ(z)]2 − β2] dz.

(31)

In [13] we showed that

Nz(z) ≡ Re[Ñz(z)] ≡ Re[
√

[n(z) + iκ(z)]2 − β2]
= [ 1

2 [n2(z) − κ2(z) − β2]
+ 1

2

√
[n2(z) − κ2(z) − β2]2 + 4n2(z)κ2(z)]1/2, (32)

which is in agreement with the results of [14, 15]. We should
emphasize again that the Bragg resonances are approximated
by the same expression, equations (31), for s and p waves. In
the case of normal propagation there is no difference between
those waves and Nz(z) = n(z) and also [Nz ]av = nav.

4. The sinusoidal absorptive periodic potential

To illustrate the formalism of the above two sections, we
calculate the Bloch phase, reflectance, transmittance, and
absorptance of a periodic structure with a sinusoidal absorptive
refractive index profile of the form

n(z) = nav + na sin
(

2π
z

d

)
,

κ(z) = κav + κa sin
(

2π
z

d

)
.

(33)

Figure 1. Bloch phase, transmittance, reflectance, and absorptance
versus wavenumber k = ω/c for a sinusoidal absorptive periodic
structure in the case of normal incidence (red curves), s polarized
light at 80◦ angle of incidence (green curves), and p polarized light at
80◦ angle of incidence (blue curves). Two pairs of vertical lines
indicate the positions of the first two Bragg resonances: the right
green line in each pair corresponds to the resonances for s and p
polarized light incident at 80◦; the left red line corresponds to the
resonances for normal incidence. The parameters of the structure are
as described in the text. In the case of normal incidence, there is no
difference between s and p waves.

The rugate filters are described by such a profile of the
refractive index. An overview of rugates in the case of zero
absorption, i.e. for κ(z) ≡ 0, was given in [16].

As a specific example, we take a rugate filter of M = 8
periods with overall thickness l = 1.2 μm (d = 150 nm)
suspended in air, i.e. ni = n f = 1. The refractive indices
and extinctions of the rugate are nav = 3.0, na = 1.5, and

4
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Figure 2. Bloch phase, transmittance, and reflectance versus
wavenumber k = ω/c for the structure as in figure 1 but with zero
absorption.

κav = 0.03, κa = 0.02. The corresponding plots are shown
in figure 1. For comparison, in figure 2 we show the plots for
the Bloch phase, transmittance and reflectance for the same
rugate in the case of zero absorption, i.e. when κav = κa = 0.
One can see that a relatively small absorption (as in figure 1)
leaves the formal positions and widths of the bandgaps almost
unchanged (see the plots for the Bloch phases). However, it
drastically changes the transmittance in allowed bands, and
the reflectance in both allowed bands and bandgaps. The
calculations were done according to equations (9) and (10).
The elements of the Wd matrix were found with the aid of
equations (25)–(27) where we replaced l with d; the elements
of the W0+l− matrix were then obtained from equation (12).
Since the central point of this paper is to clarify how general
methods available for nondissipative periodic structures can be
extended to dissipative ones, we have neglected the dispersion
of n and κ in the calculations reported here.

5. Conclusions

We have shown that the problem of oblique light propagation
through one-dimensional periodic dissipative photonic

crystals can be solved using well-established methods available
for nondissipative crystals.

Our main results are as follows. Once the refractive
indices and extinctions are defined, the W transfer matrix for
one period can be constructed either in analytical or numerical
form. The W transfer matrix for an M-period system is
then given by the well-known relation for nondissipative
crystals, equation (12). The validity of this relation for
dissipative systems relies on the fact that the determinant
of the W transfer matrix for one period remains 1. As in
the case of nondissipative crystals the Bloch phase is given
by equation (13). The bandgaps are defined, however, by
equation (30) rather than by equation (15) and the Bragg
resonances are approximated by equation (31) rather than
equations (18) and (19).

To use the above theory for most absorptive periodic
stacks one also needs to take into account the dispersion of
the complex valued refractive indices; see [17–19]. However,
the formalism remains valid without modification if the proper
frequency-dependent values of n and κ are used from the
beginning. The only exception is equation (31) where the
average refractive index must be defined appropriately.
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