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Preface

Many systems encountered in practice involve a coupling between contin-
nous dynamics and discrete events. Systems in which these two kinds of
dynamics coexist and interact are usually called hybrid. For example, the
following phenomena give rise to hybrid behavior: a valve or a power switch
opening and closing; a thermostat turning the heat on and off; biological
cells growing and dividing; a server switching between buffers in a queneing
network; aircraft entering, crossing, and leaving an air traffic control region;
dynamics of a car changing abruptly due to wheels locking and unlocking
on ice. Hybrid systems constitute a relatively new and very active area of
current research. They present interesting theoretical challenges and are
important in many real-world problems. Due to its inherently interdisci-
plinary nature, the ficld has attracted the attention of people with diverse
backgrounds, primarily computer scientists, applied mathematicians, and
engineers.

Researchers with a background and interest in continucus-time systems
and control theory are concerned primarily with properties of the contin-
uous dynamics, such as Lyapunov stability. A detailed investigation of the
discrete behavior, on the other hand, is usually not a goal in itself. In fact,
rather than dealing with specifics of the discrete dynamics, it is often use-
ful to describe and analyze a more general category of systems which is
known to contain a particular model of interest. This is accomplished by
considering continuous-time systems with discrete switching events from a
certain class. Such systems are called switched systems and can be viewed
as higher-level abstractions of hybrid systems, although they are of interest
in their own right.
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The present book is not really a book on hybrid systems, but rather a
book on switched systems written from a control-theoretic perspective. In
particular, the reader will not find a formal definition of a hybrid system
here. Such a definition is not necessary for the purposes of this book, the
emphasis of which is on formulating and solving stability analysis and con-
trol design problems and not on studying general models of hybrid systems.
The main goal of the book is to bridge the gap between classical math-
ematical control theory and the interdisciplinary field of hybrid systems,
the former being the point of departure. More specifically, system-theoretic
tools are used to analyze and synthesize systems that display quite nontriv-
ial switching behavior and thus fall cutside the scope of traditional control
theory.

This book is based on lecture notes for an advanced graduate course on
hybrid systems and control, which I taught at the University of Illinois at
Urbana-Champaign in 2001--2002. The level at which the book is written is
somewhere between a graduate textbook and a research monograph. All of
the material can be covered in a semester course, although the instructor
will probably need to skip some details in the treatment of more advanced
topics and assign them as supplementary reading. The book can also serve
as an introduction to the main research issues and results on switched
systems and switching control for researchers working in various areas of
control theory, as well as a reference soirce for experts in the field of hybrid
systems and control.

It is assumed that the reader is familiar with basic linear systems the-
ory. Some results on existence and uniqueness of solutions to differential
equations, Lyapunov stability of nonlinear systems, nonlinear stabilization,
and mathematical background are reviewed in suitable chapters and in the
appendices. This material is covered in a somewhat informal style, to allow
the reader to get to the main developments quickly. The level of rigor builds
up as the reader reaches more advanced topics. My goal was to make the
presentation accessible yet mathematically precise.

The main body of the book consists of three parts. The first part in-
troduces the reader to the class of systems studied in the book. The sec-
ond part is devoted to stability theory for switched systems; it deals with
single and multiple Lyapunov function analysis methods, Lie-algebraic sta-
bility criteris, stability under limited-rate switching, and switched systems
with various types of useful special structure. The third part is devoted
to switching control design; it describes several wide classes of continuous-
time control systems for which the logic-based switching paradigm emerges
naturally as a control design tool, and presents switching control algorithms
for several specific problems such as stabilization of nonholonomic systems,
control with limited information, and switching adaptive control of uncer-
tain systems. At the moment there is no general theory of switching control
or a standard set of topics to discuss, and the choice of material in this part
is based largely on my perscnal preggrences. It is hoped, however, that the
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book will contribute to creating a commonly accepted body of material to
be covered in courses on this subject.

Typically, results are first developed for linear systems and then ex-
tended to nonlinear systems. Complete proofs of most of the results are
provided, other proofs are given in sketched form. A few exercises are scat-
tered throughout the text. Since the book focuses on theoretical develop-
ments, students interested in applications will need to study other sources.
In the course that I taught at the University of Illinois, the students were
required to do final projects in which they could apply the theory devetoped
in class to practical problems.

I would like to call special attention to the Notes and References section
at the end of the book. It complements the main text by providing many
additional comments and pointers to a large body of literature, from re-
search articles on which this book is based to a variety of related topics not
covered here. The reader should remember to consult this section often, as
references in the main text are kept to a minimum. The literature on the
subject is growing so rapidly, however, that the bibliography supplied here
will quickly go out of date.

I am indebted to many people who influenced my thinking and offered

" valuable advice on the material of this book. I would especially like to thank

my former advisors: Andrei Agrachev, Roger Brockett, and Steve Morse.
This book would not have been possible without the research contributions
of Jodo Hespanha. It has also benefited greatly from my interactions with
Eduardo Sontag. I am grateful to my colleagues at the University of Illi-
nois for creating a very stimulating environment, and particularly to Tamer
Basar who encouraged me to teach a course on hybrid systems and to pub-
lish this book. I am thankful for the numerous corrections and comments
that I received from students while teaching the course. The support of the
National Science Foundation and the DARPA/AFOSR MURI Program is
gratefully acknowledged.

Daniel Liberzon Champaign, IL




1

Basic Concepts

1.1 Classes of hybrid and switched systems

Dynamical systems that are described by an interaction between continu-
ous and discrete dynamics are usually called hybrid systems. Continuous
dynamics may be represented by a continuous-time control system, such as
a linear system & = Az + Bu with state € R" and control input » € R™.
As an example of discrete dynamics, one can consider a finite-state au-
tomaton, with state ¢ taking values in some finite set Q, where transitions
between different discrete states are triggered by suitable values of an input
variable v. When the input « to the continuous dynamics is some function
of the discrete state ¢ and, similarly, the value of the input v to the discrete
dynamics is determined by the value of the continuous state x, a hybrid
system arises (see Figure 1).

” " M

(13

Continuous Interaction Discrete
trajectory transitions

FIGURE 1. A hybrid systet

 Traditionally, control theory has focused either on continuous or on dis-
crete behavior. However, many (if not most) of the dynamical systems
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the dashed lines symbolize the jumps. The instantaneous jumps of the con-

tinuous state are sometimes referred to as tmpulse effects. A special case

is when such impulse effects are absent, i.e., the reset map is the identity.
This means that the state trajectory is continuous everywhere, although
it in general loses differentiability when it passes through a switching sur-
face. In most of what follows, we restrict our attention to systems with no
impulse effects. However, many of the results and techniques that we will
discuss do generalize to systems with impulse effects. Another issue that we
are ignoring for the moment is the possibility that some trajectories may
“get stuck” on switching surfaces (cf. Section 1.2.3 below).

One may argue that the switched system model outlined above (state-
dependent switching with no state jumps) is not really hybrid, because even
though we can think of the set of operating regions as the discrete state
space of the system, this is simply a discontinuous system whose description
does not involve discrete dynamics. In other words, its evolution is uniquely
determined by the continucus state. The system becomes truly hybrid if
the discrete transitions explicitly depend on the value of the discrete state
(i.e., the direction from which a switching surface is approached). More
complicated state-dependent switching rules are also possible. For exam-
ple, the operating regions may overlap, and a switching surface may be
recognized by the system only in some discrete states. One paradigm that
leads to this type of behavior is hysteresis switching, discussed later (see
Section 1.2.4).

1.1.2 Time-dependent switching

Suppose that we are given a family f,, p € P of functions from R” to R",
where P is some index set (typically, P is a subset of a finite-dimensional
linear vector space). This gives rise to a family of systems

&= fp(z), peP (1.1)

evolving on R®. The functions f; are assumed to be sufficiently regular (at
least locally Lipschitz; see Section 1.2.1 below). The easiest case to think
about is when all these systems are linear:

Jo(z) = Apz, A, €R™", pe?P (1.2)

and the index set P is finite: P = {1,2,...,m}.

To define a switched system generated by the above family, we need
the notion of a switching signal. This is a piecewise constant function o :
[0,00) — P. Such a function o has a finite number of discontinuities—which
we call the suitching times—on every bounded time interval and takes a
constant value on every interval between two consecutive switching times.
The role of o is to specify, at each time instant ¢, the index o(t) € P of the
active subsystem, i.e., the system from the family (1.1) that is currently

o
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being followed. We assume for concreteness that o is continuous from the
right everywhere: o(t) = lim,_;+ o(7) for each 7 > 0. An example of such
a switching signal for the case P = {1, 2} is depicted in Figure 3.

4 o{t)

| B

FIGURE 3. A switching signal

Thus a switched system with time-dependent switching can be described
by the equation
&(t) = forny(2(2))-

A particular case is a switched linear system
£(t) = Ag(r)z(t)

which arises when all individual subsystems are linear, as in (1.2). To sim-
plify the notation, we will often omit the time arguments and write

i = f.(z) (1.3)

and .
= AT {1.4)

respectively.

Note that it is actually difficult to make a formal distinction between
state-dependent and time-dependent switching. If the elements of the index
set P from (1.1) are in 1-to-1 correspondence with the operating regions
discussed in Section 1.1.1, and if the systems in these regions are those
appearing in (1.1), then every possible trajectory of the system with state-
dependent switching is also a solution of the system with time-dependent
switching given by (1.3) for a suitably defined switching signal (but not
vice versa). In view of this observation, the latter system can be regarded
as & coarser model for the former, which can be used, for example, when
the locations of the switching surfaces are unknowl. This underscores the
importance of developing analysis tools for switched systems like (1.3),
which is the subject of Part II of the book.
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1.1.8 Autonomous and controlled switching

By autonomous switching, we mesan a situation where we have no direct
control over the switching mechanism that triggers the discrete events.
This category includes systems with state-dependent switching in which
locations of the switching surfaces are predetermined, as well as systems
with time-dependent switching in which the rule that defines the switching
signal is unknown (or was ignored at the modeling stage). For example,
abrupt changes in system dynamics may be caused by unpredictable envi-
ronmental factors or component failures.

In contrast with the above, in many situations the switching is actu-
ally imposed by the designer in order to achieve a desired behavior of the
system. In this case, we have direct control over the switching mechanism

(which can be state-dependent or time-dependent) and may adjust it as

the system evolves. For various reasons, it may be natural to apply discrete
control actions, which leads to systems with controlled switching. Part I1I
of this book is devoted entirely to problems of this kind. An important ex-
ample, which provides motivation and can serve as a unifying framework for
studying systems with controlled switching, is that of an embedded system,
in which computer software interacts with physical devices (see Figure 4).

measurements
- T
computer physical
software device
\...____________/
discrete actions

FIGURE 4. A computer-controlled system

It is not easy to draw a precise distinction between autonomous and con-
trolled switching, or between state-dependent or time-dependent switching.
In a given system, these different types of switching may coexist. For exam-
ple, if the given process is prone to unpredictable environmental influences
or component failures (autonomous switching), then it may be necessary

to consider logic-based mechanisms for detecting sich events and providing -

fault-correcting actions (controlled switching).

In the context of the automobile model discussed in Example 1.1, auto-
matic transmission corresponds to autonomous state-dependent switching,
whereas manual transmission corresponds to switching being controlled
by the driver. In the latter case, state-dependent switching (shifting gears
when reaching a certain value of the velocity or rpm) typically makes more
sense than time-dependent switching. An exception is parallel parking,
which may involve time-periodic switching patterns.

Switched systems with controlled time-dependent switching can be de-
scribed in a language that is more standard in control theory. Assume that

1.2 Solutions of switched systems 9

P is a finite set, say, P = {1,2,...,m}.-Then the switched system (1.3)
can be recast as :

£=Y file)u | (L.5)
i=1

where the admissible controls are of the form ur = 1, u; = 0 for all 4 # &
{this corresponds to o = k). In particular, the switched linear system (1.4)
gives rise to the bilinear system

m
&= E Aizu,.
i=1

1.2 Solutions of switched systems

This section touches upon a few delicate issues that arise in defining so-
lutions of switched systems. In the subsequent chapters, these issues will
mostly be avoided. We begin with some remarks on existence and unique-
ness of solutions for systems described by ordinary differential equations.

1.2.1 Ordinary differential equations
Consider the system
= f(t,z), z e R™ (1.6)

We are looking for a solution z(-) of this system for given initial time £
and initial state z(fg) = zo. It is common to assume that the function f
is continuous in { and locally Lipschitz in x uniformly over t. The second

- condition! means that for every pair (£g, zo) there exists a constant L > 0

such that the ineguality -

holds for all (¢, z) and (¢, y) in some neighborhood of (g, zo) in [to, 00) x R™.
(Here and below, we denote by | - | the standard Euclidean norm on R™.)
Under these assumptions, it is well known that the system (1.6) has a

_unique solution for every initial condition (fp, zg). This solution is defined

on some maximal time interval [to, Tmax).

Example 1.2 To understand why the local Lipschitz conditicn is neces-
sary, consider the scalar time-invariant system

T=+x, x0=0. (1.8)

1In the time-invariant case, this reduces to the standard Lipschitz condition for a
function f: R™ — R".
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The functions z(t) = 0 and x(t) = t2/4 both satisfy the differential equa-
tion (1.8) and the initial condition z(0) = 0. The uniqueness property fails
here because the function f(z) = /T is not locally Lipschitz at zero. This
fact can be interpreted as follows: due to the rapid growth of /7 at zero,
it is possible to “break away” from the zero equilibrium. Put differently,
there exists a nonzero solution of (1.8} which, propagated backward in
time, reaches the zero equilibrium in finite time. O

The maximal interval [to, Tmax) of existence of a solution may fail to be
the entire semi-axis [tg, o). The next example illustrates that a solution
may “escape to infinity in finite time.” (This will not happen, however, if f
is globally Lipschitz in z uniformly in t, i.e., if the Lipschitz condition (1.7)
holds with some Lipschitz constant L for all z,y € R" and all ¢ > ¢;.)

Example 1.3 Consider the scalar time-invariant system
T = :rz, zg > 0.

It is easy to verify that the (unique) solution satisfying =(0) = zp is given
by the formula

Zo
t) =
20 =1
and is only defined on the finite time interval [0, 1/2p). This is due to the
rapid nonlinear growth at infinity of the function f(z) = 22. O

Let us go back to the genersl situation described by the system (1.6).

Since our view is toward systems with switching, the assumption that the

function f is continuous in ¢ is too restrictive. It turns out that for the
existence and uniqueness result to hold, it is sufficient to demand that f
be piecewise continuous in ¢. In this case one needs to work with a weaker
concept of solution, namely, a continuous function z(-} that satisfies the
corresponding integral equation

2(8) = 70 + f " fr, a(r)dr.

A function with these properties is piecewise differentiable and satisfies the
differential equation (1.6) almost everywhere. Such functions are known
as absolutely continuous and provide solutions of (1.6) in the sense of
Carathéodory. Solutions of the switched system (1.3) will be interpreted
in this way.

1.2.2 Zeno behavior

We now illustrate, with the help of the bouncing ball example, a peculiar
type of behavior that can occur in switched systems.

1.2 Solutions of switched systems 1
Example 1.4 Consider a ball bouncing on the floor. Denocte by  its height
above the floor and by v its velocity (taking the positive velocity direction
to be upwards). Normalizing the gravitational constant, we obtain the fol-
lowing equations of motion, valid between the impact times:

h=v
1.9
v=-1. (19)
At the time of an impact, i.e., when the ball hits the floor, its velocity
changes according to the rule

v{t) = —ro(t™) (1.10)

where v(t ™) is the ball’s velocity right before the impact, v(t) is the velocity
right after the impact, and r € (0,1) is the restitution coefficient. This
model can be viewed as a state-dependent switched system with impulse
effects. Switching events (impacts) are triggered by the condition h = 0.
They cause instantaneous jumps in the value of the velocity v which is
one of the two continuous state variables. Since the continuous dynamics
are always the same, all trajectories belong to the same operating region
{(h,v): h>0,v R}
Integration of (1.9) gives

v(t) = —(t — to) + v(to)

to)

(t — to)?
hit) = —— —t v{to)(t — to) + h(to).

Let the initial conditions be 5 = 0, A(0) = 0, and v(D) = 1. By (1.11),
until the first switching time we have

(1.11)

v{t)=—-t+1
' £2
h(t) = -5 +t.

The first switch occurs at ¢ = 2 since 2(2) = 0. We have v(27) = —1, hence
v(2) = r in view of (1.10). Using (1.11} again with £, = 2, h(2) =0, and
v(2) = r, we obtain

v(t)=—t+2+r

t_2)2+
2

h(t) = — ( {t — 2)r.

.From this it is easy to deduce that the next switch occurs at t = 2 + 2r
~ and the velocity after this switch is v(2 + 2r) = r”.

Continuing this analysis, one sees that the switching times form the se-
quence 2, 24-2r, 24-2r+2r2, 242r+2r2+2r®, ... and that the corresponding
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velocities form the sequence r2, r3, r*, and so on. The interesting conclu-
sion is that the switching times have a finite accumulation point, which is
the sum of the geometric series

2
k..

At this time the switching events “pjle up,” i.e., the ball makes infinitely
many bounces prior to this time! This is an example of the so-called Zeno
behavior (see Figure 5).

accumnulation
point

I I e

"E“-

FIGURE 5. Zeno behavior

Since both &(t) and v(t) obtained by previous reasoning converge to zero
ast — 72, it is natural to extend the solution beyond this time by setting

D), o(t) =0, t> 11'

Thus the ball stops bouncing, which is a reasonable outcome; of course, in
reality this will happen after a finite number of jumps. O

In more complicated hybrid systems, the task of detecting possible Zeno
trajectories and extending them beyond their accumulation points is far
from trivial. This topic is beyond the scope of this book. In what follows,
we either explicitly rule out Zeno behavior or show that it cannot oceur.

1.2.3 Sliding modes

Consider a switched system with state-dependent switching, described by
a single switching surface & and two subsystems & = f;(z), i = 1,2, one
on each side of S. Suppose that there are no impulse effects, so that the
state does not jump at the switching events. In Section 1.1.1 we tacitly
assumed that when the continuous trajectory hits &, it crosses over to the
other side. This will indeed be true if at the corresponding point = € S,
both vectors fi(z) and fa(z) point in the same direction relative to S, as
in Figure 6(a); a solution in the sense of Carathéodory is then naturally
obtained. However, consider the situation shown in Figure 6(b), where in
the vicinity of § the vector fields f1 and fo both point toward S. In this
case, we cannot describe the behavior of the system in the same way as
before.

A way to resolve the above difficulty is provided by a different concept
of solution, introduced by Filippov to deal precisely with ptoblems of this

1.2 Solutions of switched systems 13

FIGURE 6. (a) Crossing a switching surface, (b) a sliding mode

»

kind. According to Filippov’s definition, one enriches the set of admissible
velocities for points * € 8§ by including all convex combinations of the
vectors fi(z) and fz(z). Thus an absolutely continuous funetion z(-) is a
solution of the switched system in the sense of Filippov if it satisfies the

differential inclusion
& € F(z) (1.12)

where F is a multi-valued function defined as follows. For r € &, we set
F(z) = co{ fi(z), fa(z)} := {afi(z) + 1 — &) fa(z): a € [0,1]}

while for 2 ¢ 8, we simply set F(z) = fi(z) or F(z) = fa(z) depending on
which side of S the point z lies on.

Tt is not hard to see what Filippov solutions look like in the situation
shown in Figure 6{b). Once the trajectory hits the switching surface 8, it
cannot leave it because the vector fields on both sides are pointing toward S.
Therefore, the only possible behavior for the solution is to slide on S. We
thus obtain what is known as a sliding mode. To describe the sliding motion
precisely, note that there is a unique convex combination of f1(z) and fa(x)
that is tangent to § at the point «. This convex combination determines the
instantaneous velocity of the trajectory starting at ; see Figure 6(b). For
every zg € S, the resulting solution z(-) is the only absolutely continuous
function that satisfies the differential inclusion (1.12).

From the switched system viewpoint, a sliding mode can be interpreted
as infinitely fast switching, or chattering. This phenomenon is often un-
desirable in mathematical models of real systems, because in practice it
corresponds to very fast switching which causes excessive equipment wear.
On the other hand, we see from the above discussion that a sliding mode
yields a behavior that is significantly different from the behavior of each
individual subsystem. For this reason, sliding modes are sometimes created
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on purpose to solve control problems that may be difficult or impossible to
solve otherwise.

Example 1.5 Consider the following state-dependent switched linear sys-
tem in the plane:
= Az if zo >3,
- Az if zo<m

where

{0 1 _f{-1 0 =z 2
Al'_(__l 0)1 A‘Z‘“‘(D ‘"A), -T-(IZ)G]R.

One can show that a sliding motion occurs in the first quadrant if A < 1.
For A > —1 the corresponding trajectory approaches the origin along the
switching line (a stable sliding mode) while for A < —1 it goes away from
the origin (an unstable sliding mode). a

Exercise 1.1 Prove this.

1.2.4 Hysteresis switching

‘We will often be interested in approximating a sliding mode behavior, while
avoiding chattering and maintaining the property that two consecutive
switching events are always separated by a time interval of positive length.
Consider again the system shown in Figure 6(b). Construct two overlap-
ping open regions ; and §25 by offsetting the switching surface S, as shown
in Figure 7(a). In this figure, the original switching surface is shown by a
dashed curve, the newly obtained switching surfaces 8, and &; are shown
by the two solid curves, the region {}; is on the left, the region €5 is on
the right, and their intersection is the stripe between the new switching
surfaces (excluding these surfaces themselves).

We want to follow the subsystem £ = fi(x) in the region £2; and the
subsystem # = fa{zx) in the region £3. Thus switching events occur when
the trajectory hits one of the switching surfaces §;, &. This is formalized
by introducing a discrete state ¢, whose evolution is described as follows.
Let o(0} = 1 if 2(0) € £; and o(0) = 2 otherwise. For each t > 0, if
ot} = i € {1,2} and z(t) € £, keep o{t) = i. On the other hand,
if o(t™) = 1 but z(¢} € 4, let o(t) = 2. Similarly, if o(t™) = 2 bus
z(t) € S22, let o(t) = 1. Repeating this procedure, we generate a piecewise
constant signal ¢ which is continuous from the right everywhere. Since ¢ can
change its value only after the continuous trajectory has passed through
the intersection of {1y and (3, chattering is avoided. A typical solution
trajectory is shown in Figure 7(b).

This standard idea, known as hysteresis switching, is very useful in con-
trol design (we will return to it in Chapter 6). The resulting closed-loop
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S & 52 S & &

FIGURE 7. Hysteresis: (a) switching regions, (b) a typical trajectory

system is a hybrid system, & being its discrete state. Unlike the system
with state-dependent switching discussed in Section 1.1.1, this system is
truly hybrid because its discrete part has “memory”: the value of & is not
determined by the current value of r alone, but depends also on the pre-
vious value of 0. The instantaneous change in z is, in turn, dependent not
only on the value of x but also on the value of g.
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Stability of Switched
Systems
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In this part we will be investigating stability issues for switched systems
of the form (1.3). For the moment, we concern ourselves with asymptotic
stability, although other forms of stability are also of interest. To under-
stand what the basic questions are, consider the situation where P = {1, 2}
and z € R2, so that we are switching between two systems in the plane.
First, suppose that the two individual subsystems are asymptotically sta-
‘ble, with trajectories as shown on the left in Figure 8 {the solid curve and
the dotted curve). For different choices of the switching signal, the switched
system might be asymptotically stable or unstable (these two possibilities
are shown in Figure 8 on the right).

( T

FIGURE 8. Switching between stable systems

A

-Similarly, Figure 9 illustrates the case when both individual subsystems
are unstable. Again, the switched system may be either asymptotically
stable or unstable, depending on a particular switching signal.

p .
A e <

o

FIGURE 9. Switching between unstable systems -

From these two examples, the following facts can be deduced:

e Unconstrained switching may destabilize a switched system even if
all individual subsystems are stable.?

¢ It may be possible to stabilize a switched system by means of suitably
constrained switching even if all individual subsystems are unstable.

2However, there are certain limitations to what types of instability are possible in this
case. For example, it is easy to see that trajectories of such a switched system cannot
. escape to infinity in finite time,
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Thus we will be studying the following two main problems:

1. Find conditions that guarantee asymptotic stability of a switched
system for arbitrary switching signals.

2. If a switched system is not asymptotically stable for arbitrary switch-
ing, identify those switching signals for which it is asymptotically
stable. :

The first probiem is relevant when the switching mechanism is either
unknown or too complicated to be useful in the stability analysis. When
studying the first problem, one is led to investigate possible sources of
instability, which in turn provides insight into the more practical second
problem.

In the context of the second problem, it is natural to distinguish between
two situations. If some or all of the individual subsystems are asymptot-
ically stable, then it is of interest to characterize, as completely as possi-
ble, the class of switching signals that preserve asymptotic stability (such
switching signals clearly exist; for example, just let o{t) = p, where p is the
index of some asymptotically stable subsystemn). On the other hand, if all
individual subsystems are unstable, then the task at hand is to construct at
least one stabilizing switching signal, which may actually be quite difficult
or even impossible.

The two problems described above are more rigorously formulated and
studied in Chapters 2 and 3. In what follows, basic familiarity with Lya-
punov’s stability theory (for general nonlinear systems) is assumed. The
reader is encouraged to consult Appendix A, which reviews necessary con-
cepts and results.

2
Stability under Arbitrary Switching

2.1 Uniform stability and common Lyapunov
functions

2.1.1 Uniform stability concepts

Given a family of systems (1.1), we want to study the following question:
when is the switched system (1.3) asymptotically stable for every switching
signal o7 We are assuming here that the individual subsystems have the
origin as a common equilibrium point: fp(0) = 0 for all p € P. Clearly, a
necessary condition for (asymptotic) stability under arbitrary switching is
that all of the individual subsystems are (asymptotically) stable. Indeed,
if the pth system is unstable for some p € P, then the switched system is
unstable for o(t) = p.

Therefore, throughout this chapter it will be assumed that all individual
subsystems are asymptotically stable. Our earlier discussion shows that this
condition is not sufficient for asymptotic stability under arbitrary switch-
ing. Thus one needs to determine what additional requirements on the
systems from (1.1) must be imposed.

Recalling the equivalence between the switched system (1.3) for P =
{1,2,...,m} and the control system (1.5), we sce that asymptotic stabil-
ity of {1.3) for arbitrary switching corresponds to a lack of controllability
of (1.5). Indeed, it means that for any admissible control input, the result-
ing solution trajectory must approach the origin.
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of (2.4) over p, which is well defined.) This holds trivially if P is a finite
set. For infinite P, such compactness assumptions are usuaily reasonable
and will be imposed in most of what follows.

Note that while we do not have asymptotic stability in the above exam-
ple, stability in the sense of Lyapunov is always preserved under switching
between one-dimensional stable systems. Interesting phenomena such as
the one demonstrated by Figure 8 are only possible in dimensions 2 and
higher.

Remark 2.2 If P is not a discrete set, it is also meaningful to consider the
time-varying system described by (1.3) with a piecewise continuous {but
not necessarily piecewise constant) signal o. The existence of a common
Lyapunov function implies global uniform asymptotic stability of this more
general system; in fact, the same proof remains valid in this case. Although
we will not mention it explicitly, many of the results presented below apply
to such time-varying systems. O

The continuous differentiability assumption on V can sometimes be re-
laxed by requiring merely that V be continuous and decrease uniformly
along solutions of each system in (1.1); this amounts to replacing the in-
equality (2.3) with its integral version. However, continuity of the gradient
of V is important in the case of state-dependent switching with possible
chattering, as demonstrated by the next example.

Example 2.2 Consider the system shown in Figure 10. Here, it is assumed
that both systems & = fi(z), i = 1,2 share a common Lyapunov function
V whose level set {z : V() = c} is given by the heart-shaped curve, so
that the gradient of V has a discontinuity on the switching surface S. This
results in a sliding motion along which V increases. O

In the context of the switched system (1.3), we explicitly rule out the
possibility of undesirable behavior such as chattering or accurnulation of
switching events, When analyzing stability of (1.3), we restrict our atten-
tion to piecewise constant switching signals which are well defined for all
t=0.

9.1.9 A converse Lyapunov theorem

In the following sections we will be concerned with identifying classes of
switched systems that are GUAS. The most common approach to this
problem consists of searching for a common Lyapunov function shared by
the individual subsystems. The question arises whether the existence of
a common Lyapunov function is a more severe requirement than GUAS.
A negative answer to this question—and & justification for the common
Lyapunov function approach—follows from the converse Lyapunov theorem
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& = fa(z)

FIGURE 10. [llustration of Example 2.2

for switched systems, which says that the GUAS property of a switched
system implies the existence of & common Lyapunov function. For such a
converse Lyapunov theorem to hold, we need the family of systems (1.1)
to satisfy suitable uniform (with respect to p) boundedness and regularity
conditions. Tt is easy to see-—and important to know—that these conditions
automatically hold when the index set P is finite (recall that the functions
Jfp are always assumed to be locally Lipschitz in z).

Theorem 2.2 Assume that the switched system (1.3) is GUAS, the set
{folz) : p € P} is bounded for each z, and the function (x,p} — fo(z) is
locally Lipschitz in & uniformly over p. Then all systems in the family (1.1)
share a radially unbounded smooth common Lyapunov function.

There is-a useful result which we find convenient to state here as a. corol-
lary of Theorem 2.2. It says that if the switched system (1.3) is GUAS,
then all “convex combinations” of the individual subsystems from the fam-
ily (1.1) must be globally asymptotically stable. These convex combinations
are defined by the vector fields

fo.q.a(x) = afplz} + (1 — a)fy(®)s p,g€P, acl1]

Corollary 2.3 Under the assumptions of Theorem 2.2, for every o € [0,1]
and all p,q € P the system
" &= fp.q.alT) (2.6)

is globally asymptotically stable.

"This can be proved by observing that a common Lyapunov function V
provided by Theorem 2.9 decreases along solutions of (2.6). Indeed, from
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the inequality (2.3) we easily obtain

Y fraal@)=adl (@) + (-3 fi@) < -W@) Vo (27)

A different justification of Corollary 2.3 comes from the fact that one can
mimic the behavior of the convex combination (2.6) by means of fast switch-
ing between the subsystems & = fp(x) and £ = f,(z), spending the correct
proportion of time (o versus 1 — a) on each one. This can be formalized
with the help of the so-called relazation theorem for differential inclusions,
which in our context implies that the set of solutions of the switched sys-
tem {1.3) is dense in the set of solutions of the “relaxed” switched system
generated by the family of systems

{= fpvq,f-!(z) pgeP,a€ [0! 1]} (2.8)

Therefore, if there exists a convex combination that is not asymptotically
stable, then the switched system cannot be GUAS.

Remark 2.3 The formula (2.7) actually says more, namely, that V' is a
common Lyapunov function for the enlarged family of systems (2.8). By
Theorem 2.1, the relaxed switched system generated by this family is also

GUAS. 0

A convex combination of two asymptotically stable vector fields is not
necessarily asymptotically stable. As a simple example, consider the two

matrices
0.1 -1 -01 2
A = ( 2 —0.1)’ Az 1= ( -1 —-0.1)'

These matrices are both Hurwitz, but their average (A; + A3)/2 is not.
Stability of all convex combinations often serves as an easily checkable
necessary condition for GUAS. To seé that this condition is not sufficient,
consider the two matrices

-01 -1 -01 -2
Ay = ( 2 —0.1) A= ( 1 —0.1) '
It is easy to check that all convex combinations of these matrices are Hur-
witz. Trajectories of the systems & = A;z and £ = Az look approximately
the same as the first two plots in Figure 8 on page 19, and by switching it

is possible to obtain unbounded trajectories such as the one shown on the
last plot in that figure.

2.1.4 Switched linear systems

We now discuss how the above notions and results specialize to the switched
linear system (1.4), in which all individual subsystems are linear. First,
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recall that for a linear time-invariant system & = Az, global exponential
stability is equivalent to the seemingly weaker property of local attractivity
{the latter means that all trajectories starting in some neighborhood of the
origin converge to the origin). In fact, the different versions of asymptotic
stability all amount to the property that A be a Hurwitz matrix i.e., the
eigenvalues of A lie in the open left half of the complex plane-—and are
characterized by the existence of a quadratic Lyapunov function

V(z) =z Pz (2.9)

where P is a positive definite symmetric matrix.

Now consider the switched linear systemi (1.4). Assume that {A, : p € P}
is a compact (with respect to the usual topology in R"*™) set of Hurwitz
matrices. Similarly to the case of a linear system with no switching, the
following is true.

Theorem 2.4 The switched linear system (1.4} is GUES if and only if it
is locally attrdctive for every switching signal.

The equivalence between local attractivity and global exponential sta-
bility is not very surprising. A more interesting finding is that uniformity
with respect to ¢ is antomatically guaranteed: it cannot happen that all
switching signals produce solutions decaying to zero but the rate of de-
cay can be made arbitrarily small by varying the switching signal. (This
is in fact true for switched nonlinear systems that are uniformly Lyapunov
stable.) Moreover, we saw earlier that stability properties of the switched
linear system do not change if we replace the set {A, : p € P} by its convex
hull (see Remark 2.3}.

For switched linear systems, it is natural to consider quadratic common
Lyapunov functions, i.e., functions of the form (2.9) such that for some
positive definite symmetric matrix ¢ we have

ATP+PA, < -Q ° VpeP. (2.10)

{The inequality M < N or M < N for two symmetric matrices M and N
means that the matrix M — N is nonpositive definite or negative definite,
respectively.) In view of the compactness assumption made earlier, the
inequality (2.10) is equivalent to the simpler ocne

ATP+PA, <0 VYpeP (2.11)

(although in general they are different; c¢f. Example 2.1 in Section 2.1.2).

‘One reason why quadratic common Lyapunov functions are attractive is

that (2.11) is a system of linear matriz inequalities (LMIs) in P, and there
are efficient methods for solving finite systems of such inequalities numer-
ically. It is also known how to determine the infeasibility of (2.11): for
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P = {1,2,...,m}, & quadratic common Lyapunov function does not exist
if and only if the equation
m
Ro=) (AiRi+ R.AT) (2.12)
=1 :

is satisfied by some nonnegative definite symmetric matrices Ry, Ry, ...,
R,, which are not all zero. )

A natural question to ask is whether it is sufficient to work with quadratic
common Lyapunov functions. In other words, ig it true that if the switched
linear system (1.4) is GUES and thus all systems in the family

&= Apz, peP (2.13)

share a common Lyapunov function (by virtue of Theorem 2.2), then one
can always find a common Lyapunov function that is quadratic? The ex-
ample given in the next section shows that the answer to this question is
negative. However, it is always possible to find a common Lyapunov func-
tion that is homogeneous of degree 2, and in particular, one that takes the
piecewise quadratic form
= T 22

V(z) = max (i z),
where [;, i = 1,..., k are constant vectors. Level sets of such a function are
given by surfaces of polyhedra, orthogonal to these vectors.

2.1.5 A counterezample

The following counterexample, taken from {78], demonstrates that even for
switched linear systems GUES does not imply the existence of a quadratic
common Lyapunov function. Take P = {1, 2}, and let the two matrices be

-1 -1 -1 -10
A“=(1 -1)’ A2’=(0.1 —1)'

These matrices are both Hurwitz.

FACT 1. The systems & = A;x and & = Azz do not share a quadratic
common Lyapunov function of the form (2.9).

Without loss of generality, we can look for a positive definite symmetric

matrix P in the form
p=(' 1
g T

which satisfies the inequality (2.11). We have

2 -2 2q+1-—1')

—_ATp _ =
AP —PA (2q+1——r 2q+2r

per s

LAY RFE S N T
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and this is positive definite only if
(r—3)
8

(Recall that a symmetric matrix is positive definite if and only if all its
leading principal minors are positive.) Similarly,

¢+ <1 (2.14)

q ry
22 29+ 10— —
5 g+ 10

_ATP — P4y = . 10
20+ 10—~ — 20q + 2r
10
is positive definite only if
— 300)?
@2+ T30 0, (2.15)

800

It is straightforward to check that the ellipses whose interiors are given by
the formulas (2.14) and (2.15) do not intersect (see Figure 11). Therefore,
a quadratic common Lyapunov function does not exist.

4T

“ 100(3—vB)=17
><— 3+B=5.83

FalinN

FIGURE 11. Ellipses in the counterexample

Fact 2. The switched linear system & = A,z is GUES.

This claim can be verified by analyzing the behavior of the system under
the “worst-case switching,” which is defined as follows. The vectors A; and
Asz are collinear on two lines going through the origin (the dashed lines in
Figure 12). At all other points in R?, one of the two vectors points outwards
relative to the other, i.e., it forms a smaller angle with the exiting radial
direction. The worst-case switching strategy consists of following the vector
field that points outwards, with switches occurring on the two lines. It turns
out that this produces a trajectogy converging to the origin, because the

“distance from the origin after one rotation decreases (see Figure 12). The
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FIGURE 12. Worst-case switching in the counterexample

trajectories produced by all other switching signals also converge to the
origin, and the worst-case trajectory described above provides a uniform
lower bound on the rate of convergence. Thus the system is GUES.

2.2 Commutation relations and stability -

The stability problem for switched systems can be studied from several
different angles. In this section we explore a particular direction, namely,
the role of commutation relations among the systems being switched.

2.2.1 Commuting systems
Linear systems

Consider the switched linear system (1.4), and assume for the moment that
P = {1,2} and that the matrices A; And A commute: 4 Ay = Az A;. We
will often write the latter condition as [A;, Ag] = 0, where the commutator,
or Lie bracket [-,-], is defined as

[Al,Az] = A1A2 - AzAl. (2. 16)

1t is well known that in this case we have e41e4? = e2¢41 | as can be seen

frg)m the definition of a matrix exponential via the series e = I + A +
3

42“ + -‘g—! + ..., and more generally,

ghiteAsT = ghaToMt gy r 5, (2.17)

This means that the flows of the two individual subsystems & = A,z and
& = Azx commute.
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f

yo=1 0=2, 06=1, o0=2 , o=1 ,0=2
I I I T T I gl
t1 T t2 T2 ts

FIGURE 13. Switching between two systems

Now consider an arbitrary switching signal o, and denote by #; and 7; the
lengths of the time intervals on which ¢ equals 1 and 2, respectively (see
Figure 13). The solution of the system produced by this switching signal is

x(t) = - . ef2m2ghitzgdam g At 2 ()
which in view of (2.17) equals
z(t) = - efrm2eften L pArhz gl (2.18)
Another fact that we need is
[A,B] =0 = e%ef =eAtE,

This is a consequence of the Baker-Campbell- Hausdorff formula
efeB — A+ B+EA B (A [A B+ B[A B

Scalar multipies of the same matrix clearly commute with each other, hence
we can rewrite {2.18) as

z(t) = eAg(T|+T"z+...)eAl{tl+ta+---)I(O)_ (2.19)

Since at least one of the series ¢ +to+... and 71 + 2 +... converges to co
as t — oo, the corresponding matrix exponential converges to zero in view
of stability of the matrices 4 and A (recsll that asymptotic stability of
individual subsystems is assumed throughout this chapter). We have thus
proved that z(t} — O for an arbitrary switching signal. Generalization to
the case when P has more than two elements is straightforward. In fact,
the following result holds. ’

Theorem 2.5 If {Ap : p € P} is a finite set of commuting Hurwitz matri-
ces, then the corresponding switched linear system (1.4} is GUES.

The above argument only shows global attractivity for every switching
signal. To prove Theorem 2.5, one can invoke Theorem 2.4. There is also
a more direct way to arrive at the result, which is based on constructing
a common Lyapunov function. The following iterative procedure, taken
from [222], can be used to obtain a quadratic common Lyapunov function
for a finite family of commuting asymptotically stable linear systems.

Let {A;,Az,...,An} be the given set of commuting Hurwitz matrices.
Let P; be the unique positive definite symmetric solution of the Lyapunov

equation
ATP + PA =1
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(any other negative definite symmetric matrix could be used instead of —J
on the right-hand side). For i = 1,...,m, let P, be the unique positive
definite symmetric solution of the Lyapunov equation

ATP.+ P A= -P.;.

Then the function
Viz) = 2T Pz (2.20)

is a desired quadratic common Lyapunov function for the given family of
linear systems.

To see why this is true, observe that the matrix P, is given by the
formula

o0 T o T
P = / ghmim (/ et “eAltldtI) ...efdmtmdy
0 0 :

(see Example A.1 in Section A.3). Fix an arbitrary i € {1,...,m}. Since
the matrix exponentials in the above expression commute, we can regroup
them to obtain

P =f ATt Q, et (2.21)
0

where Q; is given by an expression involving m — 1 integrals. This matrix
Qi can thus be obtained by applying m — 1 steps of the above algorithm
(all except the ith step), hence it is positive definite. Since (2.21) implies
that AT P,, + P,A; = —Q;, we conclude V' given by (2.20) is a Lyapunov
function for the #th subsystem. It is also not hard to prove this directly
by manipulating Lyapunov equations, as done in [222]. Incidentally, from
the above formulas we also see that changing the order of the matrices
{A1,Az,..., Ay} does not affect the resulting matrix P,,.

Nonlinear systems

To extend the above result to switched nonlinear systems, we first need the
notion of a Lie bracket, or commutator, of two C! vector fields. This is the
vector field defined as follows:

i 2l(e) = 228 g,y 2hEE)

For linear vector fields fi(z) = Az, fa(x) = Azz the right-hand side
becomes (AzA; — A1 Az2)z, which is consistent with the definition of the Lie
bracket of two matrices (2.16) except for the difference in sign.

If the Lie bracket of two vector fields is identically zero, we will say that
the two vector fields commute. The following result is a direct generalization
of Thecrem 2.5.

regt

T
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Theorem 2.6 If {f, : p € P} is a finite set of commutthg C' vector fields
and the origin is a globally asymptotically stable equilibrium for all systems
in the family (1.1), then the corresponding switched system (1.3) is GUAS.

The proof of this result given in [190] establishes the GUAS property
directly (in fact, commutativity of the flows is all that is needed, and the
continuous differentiability assumption can be relaxed). It does not provide
an explicit construction of a common Lyapunov function. Two alternative
methods, discussed next, enable one to construct such a function. Unfor-
tunately, they rely on the stronger assumption that the systems in the
family (1.1) are exponentially stable, and provide a function that serves as
a common Lyapunov function for this family only locally (in some neigh-
borhood of the origin).

The first option is to employ Lyapunov’s indirect method (described in
Section A.5). To this end, consider the linearization matrices

Ap = %{f((}), peP. {2.22)

If the nonlinear vector fields commute, then the linearization matrices also

~ commuie.

Exercise 2.2 Prove this (assuming that f, € C' and f,(0) = 0 for all

P € P, and nothing else).

The converse does not necessarily hold, so commutativity of the lin-
earization matrices is a weaker condition (which of course can he verified
directly). The matrices A, are Burwitz if (and only if) the vector fields
fp are exponentiaily stable. Thus a quadratic common Lyapunov function
for the linearized systems, constructed as explained earlier, serves as a lo-
cal common Lyapunov function for the original finite family of nonlinear
systems (1.1}. :

The second option is to use the iterative procedure described in [255].
This procedure, although not as constructive and practically nuseful as the

previous one, parallels the procedure given earlier for commuting linear -

systems while working with the nonlinear vector fields directly. Let P =
{1,2,...,m} and suppose that the systems (1.1) are exponentially stable.
For each p € P, denote by ,(t, z) the solution of the system & = fi(x)
with initial condition z(0) = z. Define the functions

T
Vil) o= fo o1 (7, )2

T
Vi(z) :=f Vici{pi(r, 2))dr, ie=2...,m
0

where T is a sufficiently large positive constant. Then V,, is a local common
Lyapunov function for the family (1.1). Moreover, if the functions f,,p € P
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are globally Lipschitz, then we obtain a global common Lyapunov function.
For the case of linear systems f,(z) = A,z, p € P we recover the algorithm
described earlier upon setting T = oo.

2.2.2 Nilpotent and solvable Lie algebras
Linear systems

Consider again the switched linear system (1.4). In view of the previous
discussion, it is reasonable to conjecture that if the matrices Ap, pEP
do not commute, then stability of the switched system may still depend
on the commutation relations between them. A useful object which reveals
the nature of these commutation relations is the Lie algebra g := {A,:pe
P}1 4 generated by the matrices A,, p € P, with respect to the standard
Lie bracket (2.16). This is a linear vector space of dimension at most n?,
spanned by the given matrices and all their iterated Lie brackets. For an
introduction to Lie algebras, see Appendix B. Note that the Lie bracket of
two Hurwitz matrices is no longer Hurwitz, as can be seen from the formula
tr[A, B] = tr(AB) — tr(BA) = 0.

Beyond the commuting case, the simplest relevant classes of Lie alge-
bras are nidpotent and solvable ones. A Lie algebra. is called nilpotent if
all Lie brackets of sufficiently high order are zero. Solvable Lie algebras
form a larger class of Lie algebras, in which all Lie brackets of sufficiently
high order having a certain structure are zero. For precise definitions, see
Section B.3. '

The first nontrivial case is when we have P = {1,2}, [A;, A2) # 0, and
[A1,[A1, Az]] = [Az,[A1, Ag]) = 0. This means that g is a nilpotent Lie
algebra with order of nilpotency 2 and dimension 3 (as a basis we can
choose {A,, Az, (A1, A2]}). Stability of the switched linear system corre-

sponding to this situation—but in discrete time—was studied in [109]. The

results obtained there for the discrete-time case can be easily adopted to
continucus-time switched asystems in which switching times are constrained
to be integer multiples of a fixed positive number. In the spirit of the for-
mula (2.19), in this case the solution of the switched system can be ex-
pressed as

z(t) = e-"lz"'xeAlheAzﬁeAﬂneA:fax(o)

where at least one of the quantities 7, %, T, ta, 73 converges to oo as t — 00.
This expression is a consequence of the Baker-Campbell-Hausdorff formula.
Similarly to the commuting case, it follows that the switched linear system
is GUES provided that the matrices A; and A are Hurwitz.

The following general result, whose proof is sketched below, includes the
above example and also Theorem 2.5 as special cages. (A further general-
ization will be obtained in Section 2.2.3.)
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- Theorem 2.7 If {A; : p € P} is a compact set of Hurwitz matrices and .
the Lie algebra g = {A, : p € P}ra is solvable, then the switched linear

system (1.4) is GUES.

A standard example of a solvable Lie algebra is that generated by (mon-
strictly) upper-triangular matrices, i.e., matrices with zero entries every-
where below the main diagonal. Such a Lie algebra is solvable because
when-one computes Lie brackets, additional zeros are generated on and
then above the main diagonal. We will exploit the fact that, up to a coor-
dinate transformation, all solvable Lie algebras can be characterized in this
way. This is a consequence of the classical Lie's theorem from the theory
of Lie algebras (cf. Section B.3).

Proposition 2.8 (Lie) If g is a solvable Lie algebrd, then there erists a
{possibly complex) linear change of coordinates under which all matrices in
g are simultaneously transformed to the upper-triangular form.

In view of this result we can assume, without loss of generality, that all
matrices A,, p € P are upper-triangular. The following fact can now be
used to finish the proof of Theorem 2.7. '

Proposition 2.9 If {A, : p € P} is a compact sel of upper-triangular
Hurwitz matrices, then the switched linear system (1.4) is GUES.

To see why this proposition is true, suppose that P = {1,2} and = € R?.
Let the two matrices be

-a; b (a2 b\
we (0 %) me(ER) em

Suppose for simplicity that their entries are real (the case of complex entries
requires some care but the extension is not difficult). Since the eigenvalues
of these matrices have negative real parts, we have ai,¢; > 0,1 = 1,2.
Now, consider the switched system & = A,z. The second component of =
satisfies the equation
' g = —Cgla.

Therefore, o decays to zero exponentially fast, at the rate corresponding
to min{eq, ez}. The first component of z satisfies the equation

T = —asT1 + b

This can be viewed as the exponentially stable system &; = —asx; per-
turbed by the exponentially decaying input bsz2. Thus x; also converges to
zero exponentially fast. It is not hard to extend this argument to systems
of arbitrary dimension (by induction, proceeding from the bottom compo-
nent of z upwards) and to inﬁgite index sets P (by using the compactness

assumption).

I A I

el
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An alternative method of proving Fact 2, and thus completing the proof
of Theorem 2.7, consists of constructing a common Lyapunov function for
the family of linear systems (2.13). This construction leads to a cleaner
proof and is of independent interest. It turns out that in the present case it
is possible to find a quadratic common Lyapunov function of the form (2.9),
with P a diagonal matrix. We illustrate this on the example of the two
matrices (2.23). Let us look for P taking the form

-t 3

where dy,dz > 0. A straightforward calculation gives

_ATp_ pa. _ (2dai —dib; .
ATP PA,_(_dlbi e )s =12

To ensure that this matrix is positive definite, we can first pick an arbitrary
d; > 0, and then choose d > 0 large enough to have

ddydraic ~ d302 >0, i=1,2.

Again, this construction can be extended to the general situation by using
the compactness assumption and induction on the dimension of the system.

Exercise 2.3 Verify whether or not the switched linear systems in the
plane generated by the following pairs of matrices are GUES: (a) A, =

-1 1 _{—-2 3y, (-4 2 _{-3 2
( 0 _1): A2—( 3 __4):(b) Al —‘(_3 1)’A2—(_2 1)
Noalinear systems

Using Lyapunov’s indirect method, we can obtain the following local version
of Theorem 2.7 for switched nonlinear systems. Cornsider the family of
nonlinear systems (1.1), assuming that each function f,, is C! and satisfies
f»(0) = 0. Consider also the corresponding family of linearization matrices
Ap, p € P defined by the formula (2.22).

Corollary 2.10 Suppose that the linearization matrices Ap, p € P are
Hurwitz, P is a compact set, and %—ff(m) depends continuously on p for each
T in some neighborhood of the origin. If the Lie algebrag = {A, : p € Plra
is solvable, then the switched system (1.3} is locally uniformly ezponentially
stable.

This is a relatively straightforward application of Lyapunov’s indirect
method (see Section A.5), although some additional technical assumptions
are needed here because, unlike in Section 2.2.1, the set P is allowed to be
infinite. The linearization matrices A,, p € P form a compact set because
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they are defined by the formula (2.22) and %f;:’—(:c) is assumed to depend
continuously on p. Moreover, since the matrices Ap, p € P are Hurwitz
and generate a solvable Lie algebra, the corresponding linear systems (2.13)
share a quadratic common Lyapunov function (as we saw earlier). Then it
is not hard to show that this function is also a common Lyapunov function
for the original family (1.1) on a sufficiently small neighborhood of the
origin. :

More research is needed to understand how the structure of the Lie al-
gebra generated by the original nonlinear vector fields f,, p € P is related
to stability properties of the switched system (1.3). Taljing higher-order
terms into account, one may hope to obtain conditions thht gnarantee sta-
bility of switched nonlinear systems when the above lincarization test. [ails,
It is also of interest to investigate whether the equivalence between the
switched system (1.3) for P = {1,2,...,m} and the control system (1.5)
can lead to new insights. Note that while in the context of stability of {1.3)
Lie-algebraic techniques seem to be a relatively new tool, they have been
used for decades to study controllability properties of the system (1.5); see
Section 4.2 for more on this topic.

2.2.3 More general Lie algebras

The material in this section! relies more heavily on the properties of Lie
algebras discussed in Appendix B. As before, we study the switched linear
system (1.4), where {A; : p € P} is a compact set of Hurwitz matrices,
Consider a decomposition of the Lie algebra g = {A,, : p € P}, into a
semidirect sum g = t @ s, where r is a solvable ideal and s is a subalgebra.
For our purposes, the best choice is to let ¢ be the radical, in which case s
is semisimple and we have a Levi decomposition. If g is not solvable, then
5 is not zero.

The following result is a direct extension of Theorem 2.7. It states that
the system (1.4) is still GUES if the subalgebra s is compact (which amounts
to saying that all matrices in s are diagonalizable and have purely imagi-
nary eigenvalues). ‘

Theorem 2.11 If {A, : p € P} is a compact set of Hurwitz matrices and
the Lie algebra g = {Ap : p € Plra is a semidirect sum of o solvable ideal
and a compuect subalgebra, then the switched linear system (1.4) is GUES.

SKETCH oF PROOF. For an arbitrary p € P we have A, = r, + s, where
rp € v and s, € 5. Writing el"»+%»)t = ¢! B, (1), one can check that B,(t)
satisfies Bp(t) = e~tr e ' By(t). We have ¢{™»*2»)* - Qast — oo because
the matrix A, is Hurwitz. Since s is compact, there exists a constant C > 0
such that |e*z| > Clz| for all s € s and all #, hence we cannot have

1This section can be skipped without loss of continuity.
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e’z — 0 for any x # 0. Thus Bp(t) — 0. This implies that r, is a Hurwitz
matrix.
The transition matrix of the switched linear system (1.4) takes the form

®(t, 0) = elrontsp e | olrp +op M1 e®Pute Bp,‘ (tx)---e*= t By, (h)

where ty, £, + 12, ..., t1 + L2 + -+ +tx—1 <t are the switching times,
t1 +--- +tx = t, and as before By, (t) = e~ *rilry, e®ni®B, (t),i = 1,...,k.
To simplify the notation, let £ = 2. We can then write

B(t,0) = era'3en?1 By () B, (t)

where -
By, (t) := e~ B, (t)e"nh
and so .
By (t)=e"%n “e""?‘rp,e"’ﬂte”l t By, (t).
Therefore,

®(t,0) = e*r2t2e*mtr . B(1) (2.24)

where B(t) is the transition matrix of a switched/time-varying system gen-
erated by matrices in the set ¥ := {e™*rpe* : s € 5,p € P} C t. The
first term in the product on the right-hand side of (2.24) is bounded by
compactness, while the second term converges to zero exponentially fast by
Theorem 2.7 and Remark 2.2, 0

Example 2.3 Suppose that the matrices 4,, p € P take the form A, =
—ApI + S, where Ap > 0 and ST = —8,, for all p € P. These are automati-
cally Hurwitz matrices. If g = {Ap : p € P} contains the identity matrix,
then the condition of Theorem 2.11 is satisfied with t := RJ (scalar mul-
tiples of the identity matrix) and s := {S; : p € P} 4, which is compact.
If g does not contain the identity matrix, then g is a proper subalgebra of
RI®{Sp : p € P}ra; it is not difficult to see that the result is still valid in
this case. O

If the condition of Theorem 2.11 is satisfied, then the linear systems (2.13)
share a quadratic common Lyspunov function. (The proof of this fact ex-
ploits the Haar measure on the Lie group corresponding to s and is not
as constructive as in the case when g is solvable.) Considering the family
of nonlinear systems (1.1) with f(0) = O for all p € P, together with
the corresponding linearization matrices (2.22), we immediately obtain the
following generalization of Corollary 2.10.

Corollary 2.12 Suppose that the linearization matrices A,, p € P are
Hurwitz, P is a compact set, and %';Z(:c) depends continuously on p for each
z in some neighborhood of the origin. If the Lie algebra g = {Ap, : p € P}pa
is a semidirect sum of a solvable ideal and a compact subalgebra, then the
switched system (1.3) is locally uniformly exponentially stable.

o
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The result expressed by Theorem 2.11 is in some sense the strongest one
that can be given on the Lie algebra level. To explain this more precisely,
we need to introduce a possibly larger Lie algebra g by adding to g the
scalar multiples of the identity matrix if necessary. In other words, define
g:={I,Ap: p € P}ra. The Levi decomposition of g is given by g =T 5
with ¥ O t (because the subspace RI belongs to the radical of §). Thus g
satisfies the hypothesis of Theorem 2.11 if and only if g does.

It turns out that if g cannot be decomposed as required by Theorem 2.11,
then it can be generated by a family of Hurwitz matrices (which might in
principle be different from A,, p € P) with the property that the corre-
sponding switched linear system is not GUES. On the other hand, there
exists another set of Hurwitz generators for g which does give rise to a
GUES switched linear system. {In fact, both generator sets can always be
chosen in such a way that they contain the same number of elements as the
original set that was used to generate g.) Thus if the Lie algebra does not
satisfy the hypothesis of Theorem 2.11, then this Lie algebra alone does
not provide enough information to determine whether or not the original
switched linear system is stable.

Theorem 2.13 Suppose that a given matriz Lie algebra § does not sat-
isfy the hypothesis of Theorem 2.11. Then there erxists a set of Huruntz
generators for g such that the corresponding switched linear system is not
GUES. There also erists another set of Hurwitz generators for g such that
the corresponding switched linear system is GUES.

SKETCH OF PROOF. To prove the first statement of the theorem, in view of
Corollary 2.3 it is sufficient to find two Hurwitz matrices B, B; € g that
have an unstable convex combination. To do this, one uses the fact that s
is not compact and hence, as shown in Section B.5, contains a subalgebra
isomorphic to s{(2,R). We know from Section B.2 that this subalgebra
contains three matrices of the form (B.2). It is not difficult to show that
the desired B; and B> can be obtained by subtracting a sufficiently small
positive multiple of the identity matrix from the last two matrices in that
formula. To prove the second statement of the theorem, cne subtracts a
sufficiently large multiple of the identity from an arbitrary set of generators
for g. (]

By virtue of this result, we have a complete characterization of all matrix
Lie algebras g that contain the identity matrix and have the property that
every set of Hurwitz generators for g gives rise to a GUES switched linear
system. Namely, these are precisely the Lie algebras that admit a decom-
position described in the statement of Theorem 2.11. The interesting—and
rather surprising—discovery is that the above property depends only on
the structure of § as a Lie algebra, and not on the choice of a particular
matrix representation of g.
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For switched linear systems whose associated Lie algebras do not sat-
isfy the condition of Theorem 2.11 but are low-dimensional, it is possible
to reduce the investigation of stability to that of a switched linear sys-
tem in R2. (This is useful in view of the available stability results for
two-dimensional switched systems, to be discussed in Section 2.3.3.) For
example, take P = {1,2}, and define Ay = Ay - —tr(A M,i=12 As
sume that all iterated Lie brackets of the matrices A, and Az are linear
combinations of Al, Az, and [AI,AQ] This means that if we consider the
Lie algebra g = {A1, A2} 4 and add to it the identity matrix (if it is not
already there), the resulting Lie algebra g has dimension at most 4. In
this case, the following algorithm can be used to verify that the switched
linear system generated by A, and A; is GUES or, if this is not possible,
to construct a two-dimensional switched linear system whose stability is
equivalent to that of the original one.

Step 1. If [A;, Ay] is a linear combination of A, and A4, stop: the system
is GUES. Otherwise, write down the matrix of the Killing form for
the Lie a.lg;ebra B := {A1, A2} 4 relative to the basis given by A,
A, and [Al,jzl. (This is a symmetric 3 x 3 matrix; see Section B.4
for the definition of the Killing form.)

Step 2. If this matrix is degenerate or negative definite, stop: the system -

is GUES. Otherwise, continue.

Step 3. Find three matrices h, ¢, and f in g with commutation relations
{h,€] = 2e, [h, f] = —2f, and [e, f] = h (this is an si(2)-triple which
always exists in the present case). We can then write A = Bie+vf+
&;h, where a;, 3;,y; are constants, i = 1,2,

Step 4. Compute the largest eigenvalue of k. It will be an integer; denote
it by k. Then the given system is GUES if and only if the switched
linear system generated by the 2'x 2 matrices

A, = (trﬁcl ; o ) A _(“M o trA_ﬁ? )

-n o HE+a - R+ 6
is GUES.

All steps in the above reduction procedure involve only standard matrix
operations (addition, multiplication, and computation of eigenvalues and
eigenvectors). The first two steps are justified by the fact that g contains
a noncompact semisimple subalgebra if and only if its dimension exactly
equals 4 and the Killing form is nondegenerate and sign-indefinite on g =
g mod RI (see Section B.4). The justification for the last two steps comes
from the classification of representations of sl(2, R) given in Section B.2. If
@ has dimension at most 4 but P has more than two elements, the above
algorithm can be appliéd after finding an appropriate basis for g.
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2.2.4 Discussion of Lie-algebraic stability criteria

Lie-algebraic stability criteria for switched systems are appealing because
nontrivial mathematical tools are brought to bear on the problem and
lead to interesting results. Another attractive feature of these conditions is
that they are formulated in terms of the original data. Take, for example,
Theorem 2.7. The proof of this theorem relies on the facts that the matrices
in a solvable Lie algebra can be simultaneously triangularized and that
switching between triangular matrices preserves stability. It is important
to recognize, however, that it is a nontrivial matter to find a basis in which
all matrices take the triangular form or even decide whether such a basis
exists. To apply Theorem 2.7, no such basis needs to be found. Instead, one
can check directly whether the Lie algebra generated by the given matrices
is solvable.

In fact, classical results from the theory of Lie algebras can be employed
to check the various stability conditions for switched linear systems pre-
sented above. Assume for simplicity that the set P is finite or a maximal
linearly independent subset has been extracted from {Ap : p € P} . Then
one can verify directly, using the definitions, whether or not the Lie algchra
g = {Ap : p € P}La4 is solvable (or nilpotent). To do this, one constructs
a decreasing sequence of ideals by discarding lower-order Lie brackets at
each step and checks whether the sequence of dimensions of these ideals
strictly decreases to zero (see Section B.3). In specific examples involving
a small number of matrices, it is usually not difficult to derive the relevant
commutation relations between them. To do this systematically in more
complicated situations, it is helpful to use a canonical basis known as a P.
Hall basis.

Alternatively, one can use the Killing form, which is a canonical symmet-
ric bilinear form defined on every Lie algebra (see Sectipn B.3). Cartan’s
first criterion, stated in Section B.3, provides a necessary and sufficient
condition for a Lie algebra to be solvable in terms of the Killing form. An
explicit procedure for checking the hypothesis of Theorem 2.11 using the
Killing form is described in Section B.4. In view of these remarks, Lie-
algebraic tools yield stability conditions for switched systems which are
both mathematically appealing and computationally efficient.

‘The main disadvantage of the Lie-algebraic stability criteria is their lim-
ited applicability. Clearly, they provide only sufficient and not necessary
conditions for stability. (This can be seen from the second statement of The-
orem 2.13 and also from the fact that they imply the existence of quadratic
common Lyapunov functions——this property is interesting but, as we saw
in Sections 2.1.4 and 2.1.5, does not hold for all GUES switched linear
systems.)

" Moreover, it turns out that even as sufficient conditions, the Lie-algebraic
conditions are extremely nongeneric. To see why this is so, first note that

the GUES property is robust with respect to sufficiently small perturba-
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tions of the matrices that define the individual subsystems. This follows via
standard arguments from the converse Lyapunov theorem (Theorem 2.2).
An especially transparent characterization of the indicated robustness prop-
erty can be obtained in the case of linear systems sharing a quadratic com-
mon Lyapunov function, i.e., when there exist positive definite symmetric
matrices P and ( satisfying the inequalities (2.10). Suppose that for every
p € P, a perturbed matrix

A=A+ 4,

is given. Let us derive an admissible bound on the perturbations A, , p€ P
such that the matrices A, p € P still share the same quadratic common
Lyapunov function z7 Pz. This is guaranteed if we have

|2xTA;‘:'Pa:[ <zTQz VpeP, Vz#0. {2.25)

We denote by Amin(-) and Amex(-) the smallest and the largest eigenvalue
of a symmetric matrix, respectively. The right-hand side of (2.25) is lower-
bounded by Amin(Q){z|?, while the left-hand side of (2.25) is upper-bounded

by

2|Apz{|Pz| = 24 /2T AT Apz - V2T Pz £ 2z omax(Ap) Amax (P)
where Omax(Ap) = 1/ Amax(ATAp) is the largest singular value of A,.
Therefore, a (conservative) admissible bound on A, , p € P is given by the

formula Measn(@)
oot < G

(The right-hand side is maximized when Q = I.)

On the other hand, the Lie-algebraic conditions of the type considered -

here do not possess the above robustness property. This follows from the
fact, proved in Section B.6, that in an arbitrarily small neighborhood of
any pair of n x n matrices there exists a pair of matrices that generate
the entire Lie algebra gi(n,R). In other words, the conditions given by
Theorems 2.5, 2.7, and 2.11 are destroyed by arbitrarily small perturbations
of the individual systems. To obtain more generic stability conditions, one
needs to complement these results by a perturbation analysis.

2.3 Systems with special structure

The results discussed so far in this chapter apply to general switched sys-
tems. The questions related to stability of such systems are very difficult,
and the findings discussed above certainly do not provide complete and

T PR ST
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satisfactory answers. On the other hand, specific structure of a given sys-
tem can sometimes be utilized to obtain interesting results, even in the
absence of a general theory. In this section we present a few results that
are available for some special classes of switched systems.

2.8.1 Triangular systems

We already know (Proposition 2.9) that if {4, : p € P} is a compact set
of Hurwitz matrices in the upper-triangular form, then the switched linear
system (1.4) is GUES. In fact, under these hypotheses the linear systems
in the family (2.13) share a quadratic common Lyapunov function. (The
case of lower-triangular systems is completely analogous.) It is natural to
ask to what extent this result is true for switched nonlinear systems.
Suppose that P is a compact set and that the family of systems (1.1)
is such that for each p € P, the vector field f, takes the upper-triangular
form
’ fpl(ml,x'ls-“ymn)

fp2(m21 . ixﬂ.)

Sz} = (2.26)

fmtzn)

If the linearization matrices (2.22) are Hurwitz and %fzﬂ(x) depends continu-
ously on p, then the linearized systems have a quadratic common Lyapunov
function by virtue of the result mentioned above. It follows from Lyapunov’s

indirect method that in this case the original switched nonlinear system

(1.3) is locally uniformly exponentially stable (cf. Corollary 2.10).

What about global stability results? One might be tempted to conjec-
ture that under appropriate compactness assumptions, the switched sys-
tem (1.3) is GUAS, provided that the individual subsystems (1.1) all share

~ the origin as a globally asymptotically stable equilibrium. We now provide

a counterexample showing that this is not true.
Example 2.4 Let P = {1,2}, and consider the vector fields

—zy + 2s5in®(z1)z3z2
—Z2

filz) = (

and y )

- 2

f2(-Tr) — ( T) + (i?:: (.’r]_)lr]_.‘l'g)

p)

FACT 1. The systems & = fi(z) and £ = fz(x) are globally asymptotically
stable.

To see that the system & = f,(x)wis globally asymptotically stable, fix

arbitrary initial values z,(0), z2(0). We have z,(t) = z2(0)e™t. As for xq,
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note that sin{z;) vanishes at the integer multiples of . This implies that
lz1(t)) < F for all t > 0, where E is the smallest integer multiple of
7 that is greater than or equal to |£1(0)]. Since z; is bounded and z
converges to zero, it is easy to see that the linear term —z; eventually
dominates and we have z;(t) — 0. We conclude that the system & = f)(z)
is globally attractive; its stability in the sense of Lyapunov can be shown
by similar arguments. Global asymptotic stability of the system & = fa(x)
is established in the same way.

FacT 2. The switched system & = f,(z) is not GUAS.

If the switched system were GUAS, then Corollary 2.3 would guarantee
global asymptotic stability of an arbitrary “convex combination™

& = —zy + 2(asin®(z;) + (1 — a) cos?(z1))zizs
Io = —Z3

of the two subsystems, where 0 < o < 1. In partxcular, for o = 1/2 we
arrive at the system
£ =11+ I?-’L‘z

. (2.27)
To = —I1q.

We will now show that this system is not globally asymptotically stable;
in fact, it even has solutions that are not defined globally in time. Recall
that solutions of the equation & = z? escape to infinity in finite time (see
Example 1.3). In view of this, it is not hard to see that for sufficiently large
initial conditions, the ;-component of the solution of the system (2.27)

escapes to infinity before z; becomes small enough to slow it down. The -

system (2.27) was actually discussed in [161, p. 8] in the context of adaptive
control. Its solutions are given by the formulas
22,(0)
t) =
Il( ) Il(o)xg(O)CTt + (2 - (0)3:2(0))6‘
z2(t) = 22(0)e™"

We see that solutions with z;(0)z2(0} > 2 are unbounded and, in particular,
solutions with z(0)z2{0) > 2 have a finite escape time. This proves that
the switched system & = f,(z) is not GUAS. O

Thus in the case of switching among globally asymptotically stable non-
linear systems, the triangular structure alone is not sufficient for GUAS.
One way to guarantee GUAS is to require that along solutions of the indi-
vidual subsystems (1.1), each component of the state vector stay small if
the subsequent components are small. The right notion in this regard turns
out to be input-to-state stability (ISS), reviewed in Section A.6.
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Theorem 2.14 Assume that P is a compact set, f, is continuous in p for
each z, and the systems (1.1) are globally asymptotically stable and take
the triangular form (2.26). If for each i=1,...,n~ 1 and each p € P the
system

& = fpi(®iy Tig1,- -1 Tn)

i3 1SS with respect to the input u = (Tiy1,...,2n)7, then the switched

system (1.3) is GUAS.

The first two hypotheses ave trivially satisfied if P is a finite set. The
theorem can be proved by starting with the bottom component of the state
vector z and proceeding upwards, using ISS-Lyapunov functions (this is in

the same spirit as the argument we used earlier to prove Proposition 2.9). -

For asymptotically stable linear systems, the ISS assumption is automat-
ically satisfied, which explains why we did not need it in Section 2.2.2.
Under certain additional conditions, it is possible to extend Theorem 2.14
to block-triangular systems.

If the triangular subsystems are asymptotically stable, P is a compact
set, and f, depends continuousty on p for each z, then the ISS hypotheses
of Theorem 2.14 are automatically satisfied in a sufficiently small neigh-
borhood of the origin. Indeed, asymptotic stability of & = f,(x) guarantees
that the system #; = fpi{z:,0) is asymptotically stable? for each 4, and
we know from Section A.6 that this implies local ISS of &; = fo:(xi, u).
Thus the triangular switched system in question is always locally uniformly
asymptotically stable, even if the linearization test mentioned earlier fails.

2.3.2 Feedback systems

Switched systems often arise from the feedback connection of different con-
trollers with the same process (switching control mechanisms of this nature
will be studied in Part III). Such feedback switched systems therefore as-
sume particular interest in control theory. The fact that the process is fixed
imposes some structure on the closed-loop systems, which sometimes facil-
itates the stability analysis. Additional flexibility is gained if input-output
properties of the process and the controllers are specified but one has some
freedom in choosing state-space realizations. We now briefly discuss several
stability results for switched systems of this kind.

2This is because all trajectories of the latter system are projections of trajectories of
the former, for x;,1(0) = - - - = z»(0), onto the z;-axis.

i
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Passivity, positive realness, and absolute stability

Consider the control system

&= f(z,u)
y = h(z}

with z € R™ and u,y € R™. By (strict) passivify we mean the property of
this system characterized by the existence of a C! positive definite function
V : R* = R (called a storage function) and a positive definite function
W : R™ — R such that we have

Z—Zf(z, u) € ~W(z) +uTh(z). (2.28)

(It is usually assumed that the storage function is merely nonnegative defi-
nite, but in the case of strict passivity its positive definiteness is automatic.)
Passive systems frequently arise in a variety of applications, for example,
in models of electrical circuits and mechanical devices.

Suppose that the inequality (2.28) holds. It is easy to see that for every
K >0, the closed-loop system obtained by setting u = — Ky is asymptot-
ically stable, with Lyapunov function V whose derivative along solutions
satisfies .

V(z) < -W(z) -y Ky.

In other words, V is & common Lyapunov function for the family of closed-
loop systems corresponding to all nonpositive definite feedback gain ma-
trices. It follows that the switched system generated by this family is uni-
formly asymptotically stable (GUAS if V is radially unbounded). Clearly,
the function V also serves as a common Lyapunov function for all non-
linear feedback systems obtained by setting u = —@(y), where  satisfies
yTp(y) > 0 for all y. In the single-input, single-output (SISO) case, this
reduces to the sector condition

0<yply) V. (2.29)

For linear systems, there is a very useful frequency-domain condition for
passivity in terms of the concept of positive realness which we now define.
We limit our discussion to SISO systems, although similar results hold for
general systems. A proper rational function g : C — Cis called positive real
if g(s) € R when s € R and Re g(s) > 0 when Re s > 0, and strictly positive
real if g(s — €) is positive real for some ¢ > 0. A positive real function has
all its poles in the closed left haif-plane; if all poles are in the open left
half-plane, then it is enough to check the inequality Re g{s) > 0 along the
imaginary axis.

Every linear time-invariant system

t=Ar+bu

y=c'z

)
h

bt

o3
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with a Hurwitz matrix A and a strictly positive real transfer function
g(s) =T (sT - )b

is strictly passive. This follows from the famous Kalman-Yakubovich-Popov
lemma, which guarantees the existence of a positive definite symmetric
matrix P satisfying

ATP+PA<S Q<0
Ph=c.

Letting V(z) := 337 Pz, we obtain

%%(Az + Bu) = %:ET(ATP + PAz +2TPhu< —z7Qz +u"y.

We conclude that if the open-loop transfer function is strictly positive real,
then the closed-loop systems for all nonpositive feedback gains (u = —ky,
k > 0) share a quadratic common Lyapunov function. {For systems of
dimension n < 2 the converse is also true: the existence of such a quadratic
common Lyapunov function implies that the open-loop transfer function is

-strictly positive real.) We conclude that the corresponding switched linear

system is GUES. Again, the above result immediately extends to nonlinear
feedback systerns
i = Az — bp(cT2) (2.30)

with ¢ satisfying the inequality (2.29).
If the open-loop transfer function g is not strictly positive real but the

function
1+ kog

1+ kg

is strictly positive real for some k2 > k; .2 0, where k; is a stabilizing

gain, then a quadratic common Lyapunov function exists for the family of
systems (2.30) under the following more restrictive sector condition on :

(2.31)

kit <yply) <k Yy (2.32)

This result is usually referred to as the circle eriterion, because the strict
positive real property of the function (2.31) implies that the Nyquist locus
of g lies outside the disk centered at the real axis which intersects the real
axis at the points (—1/k;,0) and (—1/k2,0). For k; = 0 this disk becomes
the half-planie {s: Res < —1/k»2}.

The problem of determining stability of the system (2.30) for all non-

- linearities ¢ lying in some given sector such as (2.@) or (2.32) is the

well-known ebselute stability problem. In the investigation of this prob-
lem, conditions that lead to the existence of a quadratic Lyapunov function
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are in general too restrictive. Less conservative frequency-domain condi- -

tions for absolute stability are provided by Popov’s criterion. One version
of this criterion can be stated as follows: if g has one pole at zero and the
rest in the open left half-plane and the function (1 +as)g(s) is positive real
for some a > 0, then the system (2.30) is globally asymptotically stable
for every function ¢ that satisfies the sector condition 0 < yi{y) for all
y # 0. Alternatively, if (1 -+ as)g(s) is strictly positive real for some o > 0,
then the weaker sector condition (2.29) is sufficient. When Popov's crite-
rion applies, there exists a Lyapunov function for the closed-loop system
in the form of a quadratic term plus an integral of the nonlinearity. Since
this Lyapunov function depends explicitly on ¢, a common Lyapunov func-
tion in genera! no longer exists; in other words, switching between different
negative feedback gains or sector nonlinearities may cause instability.

Small-gain theorem

Consider the output feedback switched linear system
i = (A+ BK,C)z. (2.33)

Assume that A is a Hurwitz matrix and that | Kp|} < 1for all p € P, where
|| || denotes the matrix norm induced by the Euclidean norm on R". Then
the classical small-gain theorem implies that (2.33) is GUES if

IC(sT — A)'Blloo < 1 (2.34)

where || - [l denotes the standard He, norm of a transfer matrix, defined
88 [|Glloo := MAXRe s=0 Tmax(G(8)). This norm characterizes the £ gain of

the open-loop system
&= Az + Bu (2.35)
y=Cz.

The condition (2.34) is satisfied if and only if there exists a solution P > 0
of the algebraic Riceati inequality

ATP+ PA+PBBTP+CTC <.

Under the present assumptions, this inequality actually provides a neces-
sary and sufficient condition for the linear systems :

i=(A+BK,C)x, peP . (2.36)

to share a quadratic common Lyapunov function V(z) = zT Pz. A simple
square completion argument demonstrates that the derivative of this Lya-
punov function along solutions of the system (2.35) satisfies V' < —lyl® +
ju|2 —¢|z|? for some & > 0. From this we see that V' also serves a5 & common
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Lyspunov function for the family of nonlinear feedback systems that result
from setting u = ¢(y) with

el <yl Yy (2.37)

Since V is quadratic and the bound on its decay rate is also quadratic, it
follows from Remark 2.1 that the switched system is still GUES.

Note that the inequality {2.37) is equivalent to the sector condition (2.32)
with k; = —1 and kz = 1. The circle criterion can be applied in such situa-
tions too, except that now the Nyquist locus must lie énside an appropriate
disk. This observation points to a unified framework for small-gain and pas-
sivity conditions.

Exercise 2.4 Investigate stability of the system # +% = u under nonlinear
feedbacks of the form u = —(x) by checking which of the above results
{passivity criterion, circle criterion, Popov’s criterion, small-gain theorem)
can be applied. Support your findings by Lyapunov analysis.

If a given switched linear system is not in the form (2.33), it may be
possible to construct an auxiliary switched linear system whose stability
can be checked with the help of the above result and implies stability of the
original system. As an example, consider the switched linear system (1.4)
with P = {1,2}. It can be recast, for instance, as

, 1 1
z= §(A1 + Ag)z +0—2-(A1 - Ax)z

where o takes values in the set {~1,1}. It follows that this system is GUES
if the inequality (2.34) is satisfied for A = 1(4; + A3), B = 11, and
C = A; - Aj. A similar trick can be used if one wants to apply the passivity
criterion. Rewriting the same switched linear system as} say,

T = Al.'l,‘ - O'(Al - Az)z

with & now taking values in the set {0,1}, we see that it is GUES if the
open-loop system (2.35) with A = A;, B=1I, and C = A; — A, is strictly
passive. Of course, the above choices of the auxiliary system parameters
are quite arbitrary.

Coordinate changes and realizations

When each of the individual subsystems to be switched is specified up to
a coordinate transformation (as is the case, for example, when one can
choose realizations for given transfer matrices}, a question that arises is
whether it is possible to pick coordinates for each subsystem to ensure that
the resulting switched system is stable. For linear systems, the answer is
positive, as we now show.
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Suppose that we are given a set {Ap : p € P} of Hurwitz matrices.
For each p € P, there exists a positive definite symmetric matrix F, that
satisfies ‘

AP+ Plp=-L (2.38)

g

Consider the similarity transformations
Ap> A= PMAAPYR, peP
(here PL/? is a square root of P, and Py /2 i its inverse). These trans-
formations correspond to linear coordinate changes applied to the linear
systems (2.13). Multiplying (2.38) on both sides by Py Y 2, we obtain
AT+ 4,=-P' <0
This means that the linear systems # = A,z, p € P share the quadratic
common Lyapunov function V(z) = 27 z, hence the switched linear system
# = Apx is GUES. The above result implies that given a family of stable
transfer matrices (with an upper bound on their McMillan degree), we can
always find suitable state-space realizations such that the linear systems
describing their internal dynamics have a quadratic common Lyapunov
function.

Now consider the situation where a given process P and a family of
stabilizing controllers {C, : ¢ € @} are specified by their transfer matrices.
(When we say that a controller is stabilizing, we mean that the poles of
the closed-loop transfer matrix that results from the feedback connection
of this controller with the process have negative real parts.} Assume for
simplicity that the index set Q is finite. Interestingly, it is always possible
to find realizations for the process and the controllers, the latter of fixed
dimension, with the property that the closed-loop systems share a quadratic
common Lyapunov function and consequently the feedback switched system
is GUES.

Theorem 2.15 Given a sirictly proper transfer matriz of the process and
a finite family of transfer matrices of stabilizing controllers, there erist
realizations of the process and the controllers such that the corresponding
closed-loop systems share a quadratic common Lyapunov function.

The proof of this result given in [131] relies on the previous observation
regarding coordinate transformations and on the well-known Youla param-
eterization of stabilizing controllers. An interpretation of the above result
is that stability properties of switched linear systems are not determined by
the input-output behavior of the individual subsystems and can be gained
(or lost) as a result of changing state-space realizations.
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2.8.8 Two-dimensional systems

For switched homogenecus systems—and in particular for switched linear
systems-—defined by (the convex hull of) a finite family of systems in two
dimensions, necessary and sufficient conditions for GUES have been known
gsince [93]. We do not include the precise conditions here. Although some-
what complicated to state, they are formulated in terms of the original data
and are relatively straightforward to check, at least for switched linear sys-
tems where they reduce to a set of algebraic and integral inequalities.

For two-dimensional switched linear systems with P = {1,2}, there are

* simple sufficient as well as necessary and sufficient conditions for the exis-

tence of a quadratic common Lyapunov function. (Recall that the existence
of such a function is a stronger property than GUES.) We know that if the
linear systems

& = Az, & = Asz, z € R? {2.39)

share a quadratic common Lyapunov function, then the convex combina-
tions ad; + (1 — a)4z, a € [0, 1] must be Hurwitz. On the other hand, if
all convex combinations of 4; and A; have negative real eigenvalues, then
& quadratic common Lyapunov function exists. Interestingly, taking into
account the convex combinations of the given matrices and their inverses,
one arrives at a necessary and sufficient condition for the existence of a
quadratic common Lyapunov function.

Proposition 2.16 The linear systems £ = A1z and & = Az share a
quadratic common Lyapunov function if and only if all peirwise conver
combinations of the matrices A1, Az, A7}, and A7 are Hurwitz.

This result is usually stated in a slightly different form, namely, in terms
of stability of the convex combinations of A; and A and the convex com-
binations of A; and A;'. The two statements are equivalent because all
convex combinations of a Hurwitz matrix and its inverse are Hurwitz. To

see why this is true, note that

ATP+PA=-Q

implies

(AP +PAT =-(A"1)TQA7!
for every Hurwitz matrix A, so that V(z) = 7 Pz is a quadratic common
Lyapunov function for the systems & = Az and & = A~z and hence for
all their convex combinations.

Being necessary and sufficient, all of the conditions mentioned above
are robust with respect to sufficiently small perturbations of the systems
being switched (this is not difficult to check directly). Thus they are quite
useful for analyzing stability of two-dimensional switched systems. Since
their proofs rely heavily on planar geometry, there is probably little hope
of extending these results to higher d¥fmensions. '
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Stability under Constrained Switching

3.1 Multiple Lyapunov functions

We begin this chapter by describing a useful tool for proving stability of
switched systems, which relies on multiple Lyapunov functions, usually one
or more for each of the individual subsystems being switched. To fix ideas,
consider the switched system (1.3) with P = {1,2}. Suppose that both
systems & = f1(x) and & = fa(z} are (globally) asymptotically stable, and
let V; and V5 be their respective (radially unbounded) Lyapunov functions.
‘We are interested in the situation where a common Lyapunov function for
the two systems is not known or does not exist. In this case, one can try
to investigate stability of the switched system using V] and 5.

In the absence of a common Lyapunov function, stability properties of

the switched system in general depend on the switching signal o. Let t;, -

i=1,2,... be the switching times. If it so happens that the values of V;
and V; coincide at each switching time, i.e., Vo, 3(t:i) = Ve, () for all
i, then V, is a continuous Lyapunov function for the switched system, and
asymptotic stability follows. This situation is depicted in Figure 14(a).

In general, however, the function V, will be discontinuous. While each
V, decreases when the pth subsystem is active, it may increase wheu the
pth subsystem is inactive. This behavior is illustrated in Figure 14(b). The
basic idea that allows one to show asymptotic stability in this case is the
following. Let us look at the values of V}, at the beginning of each interval
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va'(t) (t)
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=1 o=2 o=1 o=2 =1 0=2 c=1 o=2 =1 =2 o=1 o=2
FIGURE 14. Two Lyapunov functions {(solid graphs correspond to Vi, dashed
graphs correspond to Va): (a) continuous V., (b} discontinuous V;

on which o = p. For the switched system to be asymptotically stable, these
values! must form a decreasing sequence for each p.

Theorem 3.1 Let (1.1) be a finite family of globally asymptotically stable
systems, and let V,,, p € P be a family of corresponding radially unbounded
Lyapunov functions. Suppose that there erists a family of pusitive definite
continuous functions Wy, p € P with the property that for every pair of
switching times (t;,t;), § < j such that o(t;) = o(t;) =p € P ando(tr} # p
Jor t; <ty < tj, we have

Vy(o(ts)) - Vole(t)) < —Wpla(ts). (3.1)
Then the switched system (1.3) is globally asymptotically stable.

PROOF. We first show stability of the origin in the sense of Lyapunov. Let
m be the number of elements in P. Without loss of generality, we assume
that P = {1,2,..., m}. Consider the ball around the origin of an arbitrary
given radius £ > 0. Let Ry, be a set of the form {z : Vio(x) < cm}, em > 0,
which is contained in this ball. For i = m ~ 1,...,1, let R; be a set of
the form {z : V;(z) € e}, & > 0, which is contained in the set Riy;.
Denote by § the radius of some ball around the origin which lies in the
intersection of all nested sequences of sets constructed in this way for all
possible permutations of {1,2,...,m}. Suppose that the initial condition
satisfies [z(0)] < §. If the first & values of o are distinct, where k < m, then
by construction we have |z(t;)] < £. After that, the values of o will start
repeating, and the condition (3.1) guaranteeg that the state trajectory will
always belong to one of the above sets. Figure 15 illustrates this argument
for the case m = 2.

To show asymptotic stability, observe that due to the finiteness of P there
exists an index g € P that has associated with it an infinite sequence of

1 Alternatively, we could work with the values of ¥, at the end of each interval on
which ¢ = p.

[=3
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FIGURE 15. Proving Lyapunov stability in Theorem 3.1

gwitching times i, , t;,, ... such that o(;,) = g (we are ruling out the trivial
case when there are only finitely many switches). The sequence Vg(x(t;,)),
V,(x(ts,)), - .. is decreasing and positive and therefore has a limit ¢ > 0.
We have

0=c-c= Jllff}o Valz(ti;,,)) — Jl_l_fgo Vo(z(t;))
= jli.rgo[vé(m(tij+1)) - ‘fq(m(th))]

< lim [-Wy(a(t:,))] < 0.

Thus Wy(z(t;,)) — 0 as j — oo. We also know that W, is positive definite.
In view of radial unboundedness of V},, p € P, an argument similar to the
one used earlier to prove Lyapunov stability shows that z(t) stays bounded.
Therefore, z(t;;) must converge to zero as j — oo. It now follows from the
Lyapunov stability property that x{t) — 0 as ¢ — co. |

Remark 3.1 It is possible to obtain less conservative stability conditions
involving multiple Lyapunov functions. In particular, one can relax the
requirement that each V, must decrease on the intervals on which the pth
system is active, provided that the admissible growth of V}, on such intervals
is bounded in a suitable way. Impulse effects can also be incorporated within
the same framework. O

It is important to note that to apply Theorem 3.1, one must have some
information about the solutions of the system. Namely, one needs to know
the values of suitable Lyapunov functions at switching times, which in
general requires the knowledge of the state at these times. This is to be
contrasted with the classical Lyapunov stability results, which do not re-
quire the knowledge of solutions. (Of course, in both cases there remains the




56 3. Stability under Constrained Switching

problem of finding candidate Lyapunov functions.) As we will see shortly,
multiple Lyapunov function results such as Theorem 3.1 are useful when the
class of admissible switching signals is constrained in a way that makes it
possible to ensure the desired relationships between the values of Lyapunov
functions at switching times. :

3.2 Stability under slow switching

It is well known that a switched system is stable if all individual subsystems
are stable and the switching is sufficiently slow, so as to allow the transient
effects to dissipate after each switch. In this section we discuss how this
property can be precisely formulated and justified using multiple Lyapunov
function techniques.

3.2.1 Duwell time

The simplest way to specify slow awitching is to introduce a number 74 > 0
and restrict the class of admissible switching signals to signals with the
property that the switching times ¢;, t2, ... satisfy the inequality ti4q—t; =
74 for all i. This number 74 is usually called the dwell time (because o
“dwells” on each of its values for at least 74 units of time).

It is a well-known fact that when all linear systems in the family (2.13)
are asymptotically stable, the switched linear system (1.4} is asymptotically
stable if the dwell time 74 is sufficiently large. The required lower bound
on 74 can be explicitly calculated from the exponential decay bounds on
the transition matrices of the individual subsystems.

Exercise 3.1 Consider a set of matrices {Ap : p € P} with the property
that for some positive constants ¢ and )p the inequality [[e4t]| < ce=?0!
holds for all ¢ > 0 and all p € P. Let the switched linear system (1.4)
be defined by a switching signal o with a dwell time 74. For an arbitrary
number A € (0, Ap), derive a lower bound on 74 that guarantees global
exponential stability with stability margin A (see Section A.1).

Under suitable assumptions, a sufficiently large dweli time also guar-
antees asymptotic stability of the switched system in the nonlinear case.
Probably the best way to prove most general results of this kind is by using
multiple Lyapunov functions. We now sketch the relevant argument.

Assume for simplicity that all systems in the family (1.1) are globally
exponentially stable. Then for each p € P there exists a Lyapunov function
V, which for some positive constants ap, by, and ¢, satisfies

r1,,|z|2 < V,,(xl;s b;,,l:.l:|2 (3.2}
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and v,
—éff,,(x) < —cplzf®. (3.3)
Combining (3.2) and (3.3), we obtain

oV
—é;pfp(w) < —2Apr(:1:), peEP

where

Ap 1= pEP.

Lp
2by’
This implies that

Vo(z(to + Ta)) < e~ 2™V, (2(t0))
provided that o(t) = p for £ € [to, to + Ta)-

1 o=2 o=1

1 i i | 1
T ¥ T T T

to to+7a 4 h+7d g t2+74

|

FIGURE 16. A dwell-time switching signal
To simplify the next calculation, let us consider the case when P = {1,2}

and o takes the value 1 on [fg,%;) and 2 on [t;,#2), where t;4) — t; > 74,
i = 0,1 (see Figure 16). From the above inequalities we have

b
Valts) < 2Vi(t) < Zeimevy (o)
ay a)
and furthermore
b Y b1bo
Vilty) < 2Va(ty) € —e~ 2227 < 2152 -2 ha)Te
1(t2) < p 2(t2) < ot Va(t1) < o Vilta).  (3.4)
It is now straightforward to compute an explicit lower bound on 7y which
guarantees that the hypotheses of Theorem 3.1 are satisfied, implying that

the switched system (1.3) is globally asymptotically stable. In fact, it is
sufficient to ensure that

Vitz) — Vilte) S —vlx(to)?

for some ~ > 0. In view of (3.4), this will be true if we have

(2% catnesare 1) Vi) < el

aias
This will in turn hold, by virtue of (3.2), if .
(51"2 o= 2 HAa)a __ 1) 2 < .
aiaz

LI H P N
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Since v can be an arbitrary positive number, all we need to have is

bida _autraya ¢ g
az

which can be equivalenily rewritten as

20\ + Ag)7q < log %I—:f

or finally as
1 bibo

Td > 2()\1 + Az) log 0102-
This is a desired lower bound on the dwell time.
We do not discuss possible extensions and refinements here because a
more general result will be presented below. Note, however, that the above
reasoning would still be valid if the quadratic estimates in (3.2} and (3.3)
were replaced by, say, quartic ones. In essence, all we used was the fact that
there exists a positive constant g such that

Va(z) < uVy(z) YzeR*, ¥pgqeP. (3.6)

(3.3)

If this inequalii;y does not hold globally in the state space for any u > 0,
then only local asymptotic stability can be established.

3.2.2 Average dwell time

In the context of controlled switching, specifying a dwell time may be too
restrictive. If, after a switch occurs, there can be no more switches for the
next 74 units of time, then it is impossible to react to possible system fail-
ures during that time interval. When the purpose of switching is to choose
the subsystem whose behavior is the best according to some performance
criterion, as is often the case, there are no gnarantees that the performance
of the currently active subsystem will not deteriorate to an unacceptable
level before the next switch is permitted (cf. Chapter 6). Thus it is of inter-
est to relax the concept of dwell time, allowing the possibility of switching

fast when necessary and then compensating for it by switching sufficiently -

slowly later.

The concept of average dwell time from [129] serves this purpose. Let us
denote the number of discontinuities of a switching signal ¢ on an interval
(t,T) by N,(T,t). We say that o has average dwell time 7, if there exist
two positive numbers Ny and 7, such that .

T-1

N(T\t) < No + YT >t2>0. (3.7)

Ta

For example, if Np = 1, then (3.7) implies that ¢ cannot switch twice on
any interval of length smaller than 7,. Switching signals with this property
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are exactly the switching signals with dwell time 7,. Note also that Ny = 0
corresponds to the case of no switching, since o cannot switch at all on
any interval of length smaller than 7,. In general, if we discard the first Ny
switches (more precisely, the smallest integer greater than Np), then the
average time between consecutive switches is at least 7,.

Besides being a natural extension of dwell time, the notion of average
dwell time turns out to be very useful for analysis of the switching control
algorithms to be studied in Chapter 6. Qur present goal is to show that the
property discussed earlier—namely, that asymptotic stability is preserved
under switching with a sufficiently large dwell time—extends to switching
signals with average dwell time. Although we cannot apply Theorem 3.1
directly to establish this result, the idea behind the proof is similar.

Exercise 3.2 Redo Exercise 3.1, this time working with the number of
switches instead of assuming a fixed dwell time. Your answer should be of
the form (3.7).

Theorem 3.2 Consider the family of systems (1.1). Suppose that there
exist C! functions V, : R* - R, p € P, two class Koo functions oy and ag,
and a positive number Ay such that we have

ai(|zl) < Vp(z) < esflzl) Vz, Ype?P (3.8)

and oV
F2(m) S -2Vya) Vo, VpeP. (39)

Suppose also that (3.6) holds. Then the switched system (1.3) is globally
asymptotically stable for every switching signal o with average dwell time®

-

log _
Ta > Txg (3.10)

{and Ny arbitrery).

Let us examine the hypotheses of this theorem. If all systems in the
family (1.1) are globally asymptotically stable, then for each p € P there
exists a Lyapunov function V, which for all z satisfies

ep(|2l) < Volz) < azp(ja)

and

2 fo(a) < ~Wyla) (3.11)

?Note that logp > 0 because g > 1 in view of the interchangeahility of p and ¢ in
(3.6).
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where W, is positive definite. It is known {although nontrivial to prove)
that there is no loss of generality in taking Wy(z) = 2A,Vy(z) for some
Ap > 0, modifying V}, if necessary. Moreover, if P is a finite set or if it is
compact and appropriate continuity assumptions are made, then we may
choose functions a;, ag and & constant Ag, independent of p, such that the
inequalities (3.8) and (3.9) hold. Thus the only really restrictive assumption
is (3.6). It does not hold, for example, if V; is quadratic for one value of
p and quartic for another. If the systems (1.1} are globally exponentially
stable, then the functions V;, p € P can be taken to be quadratic with
quadratic decay rates, so that all hypotheses are verified.

PRrooF oF THEOREM 3.2. Pick an arbitrary T > 0, let {5 := 0, and denote
the switching times on the interval (0,T) by t1, ..., tn,(T,0)- Consider the
function

W(t) = 22V, (2(2)).

This function is piecewise differentiable along solutions of (1.3). On each
interval [t;, t;+1) we have

. v,
W= 20W + P 2 f o)

and this is nonpositive by virtue of (3.9}, i.e., W is nonincreasing between
the switching times. This together with (3.6) implies that

W(ti) = €25V (2(tis1)) < pe®o5 1 V00 (2(tig))
= pW(t5,) < uW(t).

Iterating this inequality from i = 0 to i = N,(T,0) — 1, we have
W(T™) < W(tn, o) < 6™ TOW(0).
It then follows from the definition of W that
2TV, 7 (2(T)) < u¥* TV, 0)(2(0)). (3.12)

Now suppose that o has the average dwell time property expressed by
the inequality (3.7). Then we can rewrite (3.12) as

Vor-)(@(T)) < e 2T HNA I8y, ) (2(0))

— oMo logpe(k—’.ﬁ‘*-”«o)i"%m) (z(0)).
We conclude that if 7, satisfies the bound (3.10), then V,(r-)(z(T)) con-
verges to zero exponentially as T — oo; namely, it is upper-bounded by

pNee=22TY, 0 (£(0)) for some A € (0, Ag). Using (3.8), we have |z(T)| <
a7 H{uMoe=?Tay(|z(0)]}), which proves global asymptotic stability. 0
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Remark 3.2 Similarly to the way uniform stability over all switching sig-
nals was defined in Section 2.1.1, we can define uniform stability propertics
over switching signals from a certain class. Since the above argument gives
the same conclusion for every switching signal with average dwell time
satisfying the inequality (3.10), we see that under the assumptions of The-
orem 3.2 the switched system (1.3} is GUAS in this sense over all such
switching signais. (The switched system is GUES if the functions o; and

g are monomials of the same degree, e.g., quadratic; cf. Remark 2.1.} O

Remark 3.3 It is clear from the proof of Theorem 3.2 that exponential
convergence of V, at the rate 2) for an arbitrary A € (0, Ay) can be achieved
by requiring that
log u
P r—
e = 3 — A

When the subsystems are linear, we can take the Lyapunov functions V), -

.p € P to be quadratic, and Ay corresponds to a common lower bound

on stability margins of the individual subsystems. Thus the exponential
decay rate A for the switched linear system can be made arbitrarily close
to the smallest one among the linear subsystems if the average dwell time
is restricted to be sufficiently large. It is instructive to compare this with
Exercise 3.2. 0O

The constant Ny affects the overshoot bound for Lyapunov stability but
otherwise does not change stability properties of the switched system. Also
note that in the above stability proof we only used the bound on the number
of switches on an interval starting at the initial time. The formula (3.7)
provides a hound on the number of switches—and consequently a uniform
decay bound for the state—on every interval, not necessarily of this form.
For linear systems, this property guarantees that various induced norms of
the switched system in the presence of inputs are finite (cf. Lemma 6.6 in

Section 6.6).

3.3 Stability under state-dependent switching

In the previous section we studied stability of switched systems under
time-dependent switching satisfying suitable constraints. Another example
of constrained switching is state-dependent switching, where a switching
event can occur only when the trajectory crosses a switching surface (see
Section 1.1.1). In this case, stability analysis is often facilitated by the fact
that properties of each individual subsystem are of concern only in the re-
gions where this system is active, and the behavior of this system in other

parts of the state space has no influence on the switched system.
' .
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Example 3.1 Consider the 2 x 2 matrices

Ay = ('27 '71) Ay = (’1* ‘;2) (3.13)

where 7 is & negative number sufficiently closé to zero, so that the trajec-

tories of the systems £ = Az and £ = A2z look, at least qualitatively,

as depicted on the first two plots in Figure 8 on page 19. Now, define a

state-dependent switched linear system in the plane by
Az if zyzo <0

E = - 3.14

* {Agm if 320 >0. ( )

It is easy to check that the function V(z) := =7z satisfies V < 0 along all
nonzero solutions of this switched system, hence we have global asymptotic
stability. The trajectories of (3.14) look approximately as shown on the
third plot in Figure 8. .

For the above argument to apply, the individual subsystems do not even
need to be asymptotically stable. Again, this is because the Lyapunov func-
tion only needs to decrease along solutions of each subsystem in an appro-
priate region, and not necessarily everywhere. If we set v = 0, then V
still decreases along all nonzero solutions of the switched system (3.14).
From a perturbation argument it is clear that if -y is a sufficiently small
positive number, then (3.14) is still globally asymptotically stable, even
though the individual subsystems are unstable. (For one idea about how
to prove asymptotic stability directly in the latter case, see Remark 3.1 in
Section 3.1).

It is important to note that V serves as a Lyapunov function only in
suitable regions for each subsystem. In fact, there is no global common Lya-
punov function for the two subsystems. Indeed, if one changes the switching
rule to

i = Az l.f xyx2 >0
B Aszx if 12 <0

then the resulting switched system is unstable (cf. the last plot in Fig-
nre 8). O

Observe that the state-dependent switching strategies considered in the
above example can be converted to time-dependent ones, because the time
needed for a linear time-invariant system to cross a quadrant can be explic-
itly calculated and is independent of the trajectory. This remark applies to
most of the switched systems considered in the remainder of this chapter.

If a stability analysis based on a single Lyapunov function breaks down,
one can use multiple Lyapunov functions. The following modification of the
previous example illustrates this method.
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Example 3.2 Let us use the same matrices (3.13), with v negative but
close to zero, to define a different state-dependent switched linear system,
namely,
: i={A1:r: if 7,20
Asr if £y <0,

We know that the linear systems & = Az and £ = Asx do not share a
quadratic common Lyapunov function. Moreover, it is also impossible to
find a single quadratic function that, as in Example 3.1, decreases along
solutions of each subsystem in the corresponding region. Indeed, since each
region is a half-plane, by symmetry this would give a quadratic common
Lyapunov function.

However, consider the two positive definite symmetric matrices

2 1
P1:=(0 ‘1)) P,,::(a ‘1’)

The functions Vi (z) := z7 Piz and V(z) := 27 P,z are Lyapunov functions
for the systems * = Az and & = Asz, respectively. Moreover, on the
switching surface {x : z; = 0} their values match. Thus the function Vj,
where ¢ is the switching signal taking the value 1 for x; > 0 and 2 for
zj < 0, is continuous along solutions of the switched system and behaves
as in Figure 14(a). This proves global asymptotic stability. The level sets of
the Lyapunov functions in the appropriate regions and a typical trajectory

of the switched system are plotted in Figure 17. |
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FIGURE 17. INustrating stability in Example 3.2

Recall that Theorem 3.1 provides a less conservative condition for asymp-
totic stability, in the sense that multiple Lyapunov functions are allowed to
behave like in Figure 14(b). If in Example 3.2 we multiplied the matrices Py
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and P, by two arbitrary positive numbers, the resulting Lyapunov functions
would still satisfy the hypotheses of Theorem 3.1. In general, however, it is
more difficult to use that theorem when the values of Lyapunov functions
do not coincide on the switching surfaces.

As before, there is in general no need to associate with each subsystem
a global Lyapunov function. It is enough to require that each function V),
decrease along solutions of the pth subsystem in the region £, where this
system is active (or may be active, if the ipdex of the active subsystem is
not uniquely determined by the value of z). This leads to relaxed stability
conditions. For the case of a switched linear system and quadratic Lyapunov
functions Vy(x) = zT Pz, p € P these conditions can be brought to a
computationally tractable form. This is achieved by means of the following
well-known result, which will also be useful later.

Lemma 3.3 (“S-procedure”) Let Ty and T be two symmetric matrices.
Consider the following two conditions: :

2T Tpz > 0 whenever ' Tiz > 0 and z # 0 (3.15)

and
33 > 0 such that Tp — 871 > 0. : (3.16)

Condition (3.16) always implies condition (3.15). If there is some o such
that x3 Tizo > 0, then (3.15) implies (3.16).

Suppose that there exist symmetric matrices Sp, p € P such that Q,C
{z : T Spz > 0} for all p € P. This means that each operating region {2,
is embedded in a conic region. Then the S-procedure allows us to replace
the condition

2T (ATPp + PpAp)z <0 Vz e\ {0}
by the linear matrix inequality
ATP, + P Ap + 5pSp <0,  Bp20.

We also need to restrict the search for Lyapunov functions to ensure their
continuity across the switching surfaces. If the boundary between Q, and
£, is of the form {z : f1.2 = 0}, fpg € R", then we must have P, — F; =
Fratiq + toafog for some ty €R™. o

One can further reduce conservatism by considering several Lyapunov
functions for each subsystem. In other words, one can introduce further
partitioning of the regions €, p € P and assign a function to each of the
resulting regions. Stability conditions will be of the same form as before;
we will simply have more regions, with groups of regions corresponding to
the same dynamics. This provides greater flexibility in treating multiple
subsystems and switching surfaces—especially in the presence of unstable
subsystems—although the complexity of the required computations also
Erows. .
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3.4 Stabilization by state-dependent switching

In the previous section we discussed the problem of \;erifying stability of
a given state-dependent switched linear system. In this section we study a
related problem: given a family of linear systems, specify a state-dependent
switching rule that makes the resulting switched linear system asymptoti-
cally stable. Of course, if at least one of the individual subsystems is asymp-
totically stable, this problem is trivial (just keep o(¢) = p, where p is the
index of this asymptotically stable subsystem). Therefore, for the rest of
this chapter it will be understood that none of the individual subsystems
is asymptotically stable. i

3.4.1 Stable convexr combinations

Suppose that P = {1,2} and that the individual subsystems are linear:
t = Az and.Z = Axr. As demonstrated in [303], one assumption that
leads to an elegant construction of a stabilizing switching signal in this
case is the following one:
AssuMPTION 1. There exists an o € (0, 1) such that the convex combina-
tion

A=ad; +(1-a)A2 (3.17)

is Hurwitz. (The endpoints @ = 0 and a = 1 are excluded because 4; and
Az are not Hurwitz.)

We know that in this case the switched system can be stabilized by
fast, switching designed so as to approximate the behavior of £ = Az (see
Section 2.1.3). The procedure presented below allows one to avoid fast
switching and is somewhat more systematic.

Under Assumption 1, there exist positive definite symmetric matrices P
and @@ which satisfy

ATP+PA=-Q. (3.18)

Using (3.17), we can rewrite (3.18) as
a(ATP + PA;) + (1 — a)(ATP + PAy) = —Q
which is equivalent to _
azT (AT P+ PANz+(1-a)z"(ATP+ PAs)z = —2"Qz <0 Yz #0.

This implies that for every nonzero x we have either z7 (AT P+ PA))x < 0

or zT(ATP + PAj)z < 0.

Let us define two regions
Q= {z:2sT(ATP+ PA)z <0}, i=1,2

These are open conic regions (z € §; = Az € (; VA € R) which overlap
and together cover R™\ {0}. It is now clear that we want to orchestrate the

T g R T
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switching in such a way that the system & = A;x is active in the region Q;,
because this will make the function V (z) := z7 Pz decrease along solutions.

In implementing the above idea, we will pay special attention to two
issues. First, we would like to have a positive lower bound on the rate of
decrease of V. This will be achieved by means of modifying the original re-
gions §2;, Q. Second, we want to avoid chattering on the boundaries of the
regions. This will be achieved with the help of hysteresis (cf. Section 1.2.4).
‘We now describe the details of this construction.

Pick two new open conic regions £}, i = 1,2 such that each Q0 is a strict
subset of §2; and we still have 2] U, = R™\ {0}. The understanding here
is that each (). is obtained from f2; by a small amount of shrinking. Then
the number

g;i=— max ' (ATP+PA)z
zeclY, |z|=1

is well defined and positive for each i € {1,2}, where “cl” denotes the
closure of a set. Choosing a positive number £ < min{e;, ez}, we obtain

T (ATP + PA)z < —€lz]?  Vzef), i=1,2.

A hysteresis-based stabilizing switching strategy can be described as fol-
lows. Let o(0) = 1 if z(0) € Q] and ¢(0) = 2 otherwise. For each ¢ > 0,
if o(t~) = i € {1,2} and z(t) € Q, keep o(t) = i. On the other hand, if
o(t~) = 1 but z(t) € O}, let o(t) = 2. Similarly, if o(t™) = 2 but =(t) ¢ 25,
let o(t) = 1. Thus o changes its value when the trajectory leaves one of the
regions, and the next switch can occur only when the trajectory leaves the
other region after having traversed the intersection ) N ;. This situation
is illustrated in Figure 18.

FIGURE 18. Conic regions and a possible trajectory (the boundary of {2} is
shown by solid lines and the boundary of Qadis shown by dashed lines)
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The above discussion implies that the derivative of V' along the solutions
of the resulting state-dependent switched linear system satisfies

d

axTPa: < —¢lz|? Yz#Q (3.19)
This property is known as quadratic stability and is in general stronger
than just global asymptotic stability, even for switched linear systems (see
Example 3.3 below). We arrive at the following result.

Theorem 3.4 If the matrices A, and Ay have o Hurwitz convezr combina-
tion, then there exists a state-dependent swilching strategy that makes the
switched linear system (1.4) with P = {1,2} guadratically steble.

Exercise 3.3 Construct an example of two unstable 2 x 2 matrices with
a Hurwitz convex combination and implement the above procedurc via
computer simulation.

When the number of individual subsystems is greater than 2, one can
try to single out from the corresponding set of matrices a pair that has a
Hurwitz convex combination. If that fails, it might be possible to find a
Hurwitz convex combination of three or more matrices from the given set,
and then the above method for constructing a stabilizing switching signal
can be applied with minor modifications.

A converse result

An interesting observation made in [91] is that Assumption 1 is not only suf-
ficient but also necessary for quadratic stabilizability via state-dependent
switching. This means that we cannot hope to achieve quadratic stability
unless a given pair of matrices has a Hurwitz convex combination.

Theorem 3.5 If there exists a stale-dependent switching strategy that
makes the switched linear system (1.4) with P = {1,2} quadratically stable,
then the matrices A; and A; have a Huruilz conver combination.

PROCF. Suppose that the switched linear system is quadratically stable,
i.e., there exists a Lyapunov function V(z) = xT Pz whose derivative along
solutions of the switched system satisfies V < —¢|z|? for some € > 0. Since
the switching is state-dependent, this implies that for every nonzero x we
must have cither 2T (AT P4+ PA )z < —¢lz|? or 2T (AT P+ PAy)x < —elr|.
We can restate this as follows:

aT(~ATP—PA, —¢el)z > 0 whenever z7 (A7 P+PA; ez 20 (3.20)
aﬁd'

2T (—ATP—PAz—¢I)z > 0 whenever z" (A] P+PA+elz > 0. (3.21)
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1f zT(ATP + PA; +el)z < 0 for all z # 0, then the matrix A, is Hurwitz
and there is nothing to prove. Similarly, if z7 (AT P+ P Az +€el)z < 0 for all
z # 0, then A, is Hurwitz. Discarding these trivial cases, we can apply the
S-procedure (Lemma 3.3) to one of the last two conditions, say, to (3.20),
and conclude that for some 3 > 0 we have

ATP 4+ PA; + B(ATP + PAy) < —(1+ el

or, equivalently,

(A, + BA)T (AL + BAz)

P < —¢l.
ixg T 148 ©
Therefore, the matrix (A; + 8A42)/(1 + 3), which is a convex combination
of A; and As, is Hurwitz, and so Assumption 1 is satisfied. O

We emphasize that the above result is limited to two linear subsystems,
state-dependent switching signals, and quadratic stability.

3.4.2 Unstable convex combinations

A given pair of matrices may not possess a Hurwitz convex combination,
in which case we know from Theorem 3.5 that quadratic stabilization is
impossible. Also note that even if Assumption 1 is satisfied, in order to
apply the procedure of Section 3.4.1 we need to identify a Hurwitz convex
combination explicitly, which is a nontrivial task (in fact, this problem
is known to be NP-hard). However, global asymptotic stabilization via
state-dependent switching may still be possible even if no Hurwitz convex
combination can be found.

Example 3.3 Consider the matrices

0 -1 {0 -2
A1.=(2 0), Az.—(l 0).
Define a two-dimensional state-dependent switched linear system by the
rule
. Az if 129 <0
B Agx if z120>0.

This is the system of Example 3.1 with 4 = 0. The trajectories of the
individual subsystems and the switched system are shown in Figure 19.

It is not hard to see that this switched system is globally asymptotically
stable. For example, the derivative of the function V(z) := z'z along
solutions is negative away from the coordinate axes, i.e., we have V < 0
when z,z # 0. Moreover, the smallest _Ewariant set contained in the union
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FIGURE 19. Switching between critically stable systems

of the coordinate axes is the origin, thus global asymptotic stability follows
from LaSalle’s invariance principle (Section A.4).

Since the derivative of V' vanishes for some nonzero z, we do not have
quadratic stability. More precisely, the inequality (3.19) cannot be satisfied
with any P = PT > 0 and £ > 0, and actually with any other choice of
a state-dependent switching signal either. This follows from Theorom 3.5
becanse all convex combinations of the matrices Ay and As have purely
imaginary eigenvalues.

- The switching law used to asymptotically stabilize the switched system
in this example is a special case of what is called a conic switching law. The
switching occurs on the lines where the two vector fields are collinear, and
the active subsystem is always the one whose vector field points inwards
relative to the other. The system is globally asymptotically stable because
the distance to the origin decreases after each rotation. No other switching
signal would lead to better convergence.

It is interesting to draw a comparison with the system considered in Sec-
tion 2.1.5. There, the opposite switching strategy was considered, whereby
the active subsystem is always the one whose vector field points outwards
relative to the other. If this does not destabilize the system, then no other
switching signal will.

In the above example, both subsystems rotate in the same direction. It
is possible to apply similar switching laws to planar subsystems rotating in
opposite directions. This may produce different types of trajectories, such
as the one shown in Figure 18. O

Multiple Lyapunov functions

Both in Section 3.4.1 and in Example 3.3, the stability analysis was carried
out with the help of a single Lyapunov function. When this does not seem
possible, in view of the results presented in Sections 3.1 and 3.3 one can try
to find a stabilizing switching signal and prove stability By using multiple
Lyapunov functions.

Suppose again that we are switching between two linear systems & = Az
and # = Aox. Associate with the first system a function Vi(z) = 27 Pz,
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with P, = PT > 0, which decreases along its solutions in a nonempty '

conic region §2;. It can be shown that this is always possible unless Ay
is a nonnegative multiple of the identity matrix. Similarly, associate with
the second system a function Va(z) = z7 Pz, with P, = P{ > 0, which
decreases along its solutions in a nonempty conic region {2z. If the union of
the regions §2; and Q; covers R™ \ {0}, then one can try to orchestrate the
switching in such a way that the conditions of Theorem 3.1 are satisfied.

Using the ideas discussed in Section 3.3, one can derive algebraic con-
ditions (in the form of bilinear matrix inequalities) under which such a
stabilizing switching signal exists and can be constructed explicitly. Sup-
pose that the following condition holds:

CoNDITION 1. We have

a:T(ATPl + PiA;)z <0 whenever TPz <zTPyx and z#0

and
2T (AT Py + Py Ap)z < 0 whenever 2Pz >zT Pz and z#0.

If this condition is satisfied, then a stabilizing switching signal can be

defined by
o(t) := argmin{Vi(z(t)) : i = 1,2}.

Indeed, let us first suppose that no sliding motion occurs on the switching
surface S 1= {£: 2T Pz = 2T Pyz}. Then the function V, is continuous and
decreases along solutions of the switched system, which guarantees global
asymptotic stability. The existence of a sliding mode, on the other hand, is
easily seen to be characterized by the inequalities

:ITT(A:{(Pl — Pg) + (P1 - PQ)A1):L' >0 -
and :
2T (AL (P = P2) + (PL— P2)Az)z <0 (3.22)

for z € &. If a sliding motion occurs on 8, then ¢ is not uniquely defined, so
we let o = 1 on § without loss of generality. Let us show that ¥} decreases
along the corresponding Filippov solution. For every a € (0,1), we have

IT((aA1 +{1- a)Ag)Tpl + P (OtA1 +(1- Q)Az))ﬂ: .
= oz (ATP + P Az + (1 - a)zT (AT Py + P A2)x
< azT(ATP + PLA) )z + (1 — a)zT (AL P + PaA2)z < 0

where the first inequality follows from (3.22) while the last one follows from
Condition 1. Therefore, the switched system is still globally asymptotically
- stable. (Contrast this situation with the one described in Example 2.2)
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Condition 1 holds if the following condition is satisfied (by virtue of the
S—proc_edure, the two conditions are equivalent, provided that there exist
Z1,%2 € R® such that I{(Pz - P1):E1 > 0 and Ig(P1 — Pg):l:g 7> 0):
CONDITION 2. There exist 3, 4 > 0 such that we have

—ATP - PLA - Bi(P - P1) > 0 (3.23)
and
~AlP, — PyAs ~ Bo(PL — P2) > 0. (3.24)

The problem of finding a stabilizing switching signal can thus be reduced
!:o finding two positive definite matrices P, and P such that the above
11}equa.ht1es are satisfied, Similarly, if 4, B2 < 0, then a stabilizing switching
signal can be defined by

o(t) = argmax{V;(z(t)) : i = 1,2}.
A somewhat surprising difference, however, is that this alternative approach

does not guarantee stability of a sliding mode, so sliding modes need to be
ruled out.




Part II1

Switching Control




1II: Switching Counttrol 75

This part of the book is devoted to switching control This material is
motivated primarily by problems of the following kind: given a process, typ-
ically described by a continuous-time control system, find a controller such
that the closed-loop system displays a desired behavior. In some cases, this
can be achieved by applying a continuous static or dynamic feedback con-
trol law. In other cases, a continuous feedback law that solves the problemn
may not exist. A possible alternative in such situations is to incorporate
logic-based decisions into the control law and implement switching among a
family of controllers. This yields a switched (or hybrid) closed-loop system,
shown schematically in Figure 20.

Decision
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Signal

Controller 1
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FIGURE 20. Switching control

We single out the following categories of control problems for which one
might want—or need—to consider switching control {of course, combina-
tions of two or more of these are also possible):

1. Due to the nature of the problem itself, continuous control is not
suitabie. .

2. Due to sensor and/or actuator limitations, continuous control cannot
be implemented.

3. The model of the system is highly uncertain, and a single continuous
contrel law cannot be found.

There are actually several different scenarios that fit into the first cate-
gory. If the given process is prone to unpredictable environmental influences
or component failures, then it may be necessary to consider logic-based
mechanisms for detecting such events and providing counteractions. If the
desired system trajectory is composed of several pieces of significantly dif-
ferent types (e.g., aircraft maneuvers), then one might need to employ dif-
ferent controllers at different stages. The need for logic-based decisions also
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arises when the state space of the process contains obstacles. Perhaps more
interestingly, there exist systems that are smooth and defined on spaces
with no obstacles (e.g., R") yet do not admit continuous feedback laws for
tasks as basic as asymptotic stabilization. In other words, an obstruction
to continuous stabilization may come from the mathematics of the system
itself. A well-known class of such systems is given by nonholonomic control
systems. Switching control techniques for some of these classes of systems
will be discussed in Chapter 4.

The second of the categories mentiotthd above also encompasses several
different classes of problems. The simplest example of an actuator limi-
tation is when the control input is bounded, e.g., due to saturation. It is
well known that optimal centrol of such systems involves switching (bang-
bang) control. Control using output feedback, when the number of outputs
is smaller than the number of states, can be viewed as control under sen-
sor limitations. Typically, stabilization by a static output feedback is not
possible, while implementing a dynamic output feedback may be undesir-
able. On the other hand, a simple switching control strategy can sometimes
provide an effective solution to the output feedback stabilization problem.
Perhaps more interestingly, a switched system naturally arises if the pro-
cess dynamics are continuous-time but information is communicated only
at discrete instants of time or over a finite-bandwidth channel, or if event-
driven actuators are used. Thus we view switching control as a natural set of
tools that can be applied to systems with sensor and actuator constraints.
Specific problemns in this area will be studied in Chapter 5.

The third category includes problems of controlling systems with large
modeling uncertainty. As an alternative to traditional adaptive control,
where controller selection is achieved by means of continuous tuning, it is
possible to carry out the controller selection procedure with the help of
logic-based switching among a family of control laws. This latter approach

turns out to have some advantages over more conventional adaptive control

algorithms, having to do with modularity of the design, simplicity of the
analysis, and wider applicability. Switching control of uncertain systems is
the subject of Chapter 6.

4

‘Systems Not Stabilizable by

Continuous Feedback

4.1 'Obstructions to continuous stabilization

Some systems cannot be globally asymptotically stabilized by smooth (or
even continuous) feedback. This is not simply a lack of controllability. It
might happen that, while every state can be steered to the origin by some
control law, these control laws cannot be patched together in a continuous
fashion to yield a globally defined stabilizing feedback. In this section we
discuss how this situation can occur. .

4.1.1 State-space obstacles

Consider a continuous-time system & = f(z) defined on some state space

"X ¢ R"™ Assume that it has an asymptoticaily stable equilibrium, which

we take to be the origin with no loss of generality. The region of attraction,
which we denote by D, must be a contractible set. This means that there
exists a contimtous mapping H : [0,1] x P — D such that H(0,z) = z and
H(1,z) = 0. The mapping H can be constructed in a natural way using

- the flow of the system.

One implication of the above result is that if the system is globally asymp-
totically stable, then its state space A must be contractible. Therefore,
while there exist globally asymptotically stable systems on R™, no system
on a circle can have a single globally asymptotically stable equilibrium.

Now, suppose that we are given a control system

z = f(z,u), reXCR® wuweldcCcR™ (4.1)
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If a feedback law u = k(z) is sufficiently regular (i.e., smooth or at least
continuous) and renders the closed-loop system

& = f(z, k(z)) (4.2)

asymptotically stable, then the previous considerations apply to (4.2). In
particular, global asymptotic stabilization is impossible if X' is not a con-

tractible space {for example, a circie}.
' R4
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FIGURE 21. A system on a circle: global contintous stabilization is impossible

An intuitive explanation of this fact can be given with the help of Fig-
ure 21, Solutions with initial conditions on the right side need to move
clockwise, whereas solutions on the left side need to move counterclock-

wise. Since there can be no equilibria other than the origin, there must be.

a point on the circle at which the feedback law is discontinuous. We can
say that at that point a logical decision {(whether to move left or right) is
necessary.

Instead of a system evolving on a circle, we may want to consider a sys-
tem evolving on the plane with a circular {or similar) cbstacle. The same
argument shows that such a system cannot be continuously globally asymp-
totically stabilized. Indeed, it is intuitively clear that there is no globally
defined continuous feedback strategy for approaching a point behind a ta-
ble.

When a continuous feedback law cannot solve the stabilization problem,
what are the alternative ways to stabilize the system? One option is to use
static discontinuous feedback control. In the dontext of the above example,
this means picking a feedback function k that is continuous everywhere ex-
cept at one point. At this discontinuity point, we simply make an arbitrary
decision, say, to move to the right.

One of the shortcomings of this solution is that it requires precise infor-
mation about the state and so the resulting closed-loop system is highly
sensitive to measurement errors. Namely, in the presence of small random
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measurement noise it may happen that, near the discontinuity point, we
misjudge which side of this point we are currently on and start moving
toward it instead of away from it. If this happens often enough, the solu-
tion will oscillate around the discontinuity point and may never reach the
origin.

Using a different logic to define the control law, it is possible to achieve
robustness with respect to measurement errors. For example, if we sample

‘and hold each value of the control for a long enough period of time, then we

are guaranteed to move sufficiently far away from the discontinuity point,
where small errors will no longer cause a motion in the wrongidirection.
After that we can go back to the usual feedback imp]ementatio‘n in order
to ensure convergence to the equilibrium. This initial discussion illustrates
potential advantages of using logic-based switching control algorithms.

4.1.2 Brockeft’s condition

The examples discussed above illustrate possible obstructions to global
asymptotic stabilization which arise due to certain topological properties
of the state space. We now present an important result which shows that
even local asymptotic stabilization by continucus feedback is impossible
for some systems. Since a sufficiently smalt neighborhood of an equilibrium
point has the same topological properties as R™, this means that such an
obstruction to continuous stabilization has nothing to do with the proper-
ties of the state space and is instead embedded into the system equations.

Theorem 4.1 (Brockett) Consider the control system (4.1) with X = R"

and U = R™, and suppose that there exists a continuous' feedback law u =
k(x) satisfying k(0) = O which makes the origin a (locally) asymptotically
stable equilibrium of the closed-loop system (4.2). Then the image of every
neighborhood of (0,0) in R™ x R™ under the map

(z,u) = f(z,u) ‘ (4.3)
contains some neighborhood of zero in R™.

SKETCH OF PROOF. If k is asymptotically stabilizing, then by a converse
Lyapunov theorem there exists 2 Lyapunov function V' which decreases
along nonzero solutions of (4.2), locally in some neighborhood of zero.
Consider the set R := {z : V(z) < ¢}, where ¢ is a sufficiently small positive
number. Then the vector field f(x, k{x)) points inside R everywhere on its
boundary. By compactness of R, it is easy to see that the vector field

1To ensure uniqueness of solutions, we in principle need to impose stronger regularity
assumptions, but we ignore this issue here because the result is valid without such
additional assumptions.
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f(z,k({z)) — £ also points inside on the boundary of R, where £ € R" is
chosen so that |£| is sufficiently small.

We can now apply a standard fixed point argument to show that we must
have f(z, k(z)) = £ for some z in R. Namely, suppose that the vector field
F{x, k(z)) — £ is nonzero on R. Then for every z € R we can draw a ray
in the direction provided by this vector field until it hits the boundary of
R {see Figure 22). This yields a continuous map from R to its boundary,
and it is well known that such a map cannot exist.

V(z)=c

FIGURE 22. Illustrating the proof of Theorem 4.1

We have thus shown that the equation f(z,k(x)) = £ can be solved for
z in a given sufficiently small neighborhood of zero in R”, provided that
[£] is sufficiently small. In other words, the image of every neighborhood of
zerp under the map

z — f(z,k(z)) (4.4)

contains a neighborhood of zero. Moreover, if  is small, then k{z) is small
in view of continuity of k and the fact that k(0) = 0. It follows that the
image under the map (4.3) of every neighborhood of (0, 0) contains a neigh-
borhood of zero. O

Theorem 4.1 provides a very useful necessary condition for asymptotic
stabilizability by continuous feedback. Intuitively, it means that, starting
near zero and applying small controls, we must be able to move in all
directions. (The statement that a set of admissible velocity vectors does
not contain a neighborhood of zero means that there are some directions in
which we cannot move, even by a small amount.} Note that this condition
is formulated in terms of the original open-loop system. If the map (4.3)
satisfies the hypothesis of the theorem, then it is said to be open at zero.

Clearly, a system cannot be feedback stabilizable unless it is asymptoti-
cally open-loop controllable to the origin. It is important to keep in mind
the difference between these two notions. The latter one says that, given an
initial condition, we can find a control law that drives the state to the ori-
gin; the former property is stronger ang means that there exists a feedback
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law that drives the state to the origin, regardless of the initial condition.
In the next section we study an important class, as well as some specific
examples, of controllable nonlinear systems which fail to satisfy Brockett’s
condition. Since Theorem 4.1 does not apply to switched systems, we will
see that switching control provides an effective approach to the feedback
stabilization problem for systems that are not stabilizable by continuous
feedback.

Note that when the system (4.1) has a controllable (or at least stabiliz-
able) linearization & = Az + Bu, it can be locally asymptotically stabilized
(by linear feedback). However, controllability of a nonlinear system in gen-
eral does not imply controllability of its linearization.

Exercise 4.1 Show directly that every controllable linear system satisfies
Brockett’s condition.

4.2 Nonholonomic systems

Consider the system

i= Zg,—(a:)ui = G(r)u, zeR®, uveR™, GeR™™ (45)

i=1

Systems of this form are known as (driftless, kinematic) nonholonomic con-
trol systems. Nonholonomy means that the system is subject to constraints
involving both the state z {position) and its derivative 2 (velocity). Namely,
since there are fewer control variables than state variables, the velocity vec-
tor & at each z is constrained to lie in the proper subspace of R* spanned by
the vectors g;(z), 7 = 1,..., m. Under the assumptions that rank G(0) = m
and m < n, the system (4.5) violates Brockett’s condition, and we have the
following corollary of Theorem 4.1.

Corollary 4.2 The systern (4.5) with rankG(0) = m < n cannot be
asymptoticelly stabilized by a continuous feedback law.

ProOF. Rearrange coordinates so that G takes the form
_ (Gil=)
ot = (Ga(o)

where G () is an m x m matrix which is nonsingular in sgme neighborhood
N of zero. Then the image of ¥ x R™ under the map

(@) = G = (i)




82 4. Systems Not Stabilizable by Continuous Feedback

does not contain vectors of the form (%), where a € R"™™ # 0. Indeed, if
Gy{z)u = 0, then we have u = 0 since G is nonsingular, and this implies
Gz(.’ﬂ)u =0. ]

In the singular case, i.e., when G(z) drops rank at 0, the above result
does not hold. Thus the full-rank assumption imposed on G is essential
for making the class of systems (4.5) interesting in the present context.
Nonholonomic systems satisfying this assumption are called nonsingular.

Even though infinitesimally the state of the system (4.5) can only move
along linear combinations of the m available control directions, it is possible
to generate motions in other directions by a suitable choice of controls. For
example, consider the following (switching) control strategy. First, starting
at some o, move along the vector field g; for € units of time (by setting
u; = 1 and u; = O for all i # 1). Then move along the vector field g2
for ¢ units of time. Next, move along —g; for £ units of time (u; = —1,
u; = 0 for i # 1), and finally along —g; for € units of time. It is straight-
forward (although quite tedious) to check that for small £ the resulting
motion is approximated, up to the second order in &, by £2[g1, ga](za) (see
Section 2.2.1 for the definition of the Lie bracket of two nonlinear vector
fields). This situation is depicted in Figure 23.

Uz & =0 (E)

1

u

FIGURE 23. (a) Switching between two control directions, (b) the resulting ap-
proximate motion along the Lie bracket

The above example illustrates the general principle that by switching
among the principal control directions, one can generate slower “secondary”
motions in the directions of the corresponding Lie brackets. More compli-
cated switching patterns give rise to motions in the directions of higher-
order iterated Lie brackets. This explains the importance of the control-
lability Lie algebra {g; : i = 1,...,m}r4 spanned by the control vector
fields g; (see Appendix B for background on Lie algebras). If this Lie alge-
bra has rank n for all z, the system is said to satisfy the Lie algebra rank
condition (LARC). In this case, it is well known that the system is com-
pletely controllable, in the sense that. gvery state can be steered to every
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other state (Chow’s theorem). The LARC guarantees that the motion of
the system is not confined to any proper submanifold of R® {Frobenius’s
theorem). In other words, the nonholonomic constraints are not integrable,
i.e., cannot be expressed as constraints involving z only. Control systems
of the form (4.5) satisfying the LARC are referred to as completely nom-
holonomic.

Nonsingular, completely nonholonomic control systems are of special in-
terest to us. Indeed, we have shown that such systems cannot be stabilized
by continuous feedback, even though they are controllable (and, in par-
ticular, asymptotically open-loop controllable to the origin). One way to
overcome this difficulty is to employ switching control techniques.

As we already mentioned in Section 1.1.3, the system (4.5) becomes
equivalent to the switched system (1.3) with P = {1,2,...,m} and f; = g;
for all i if we restrict the admissible controls to be of the form u, = 1,
u; = 0 for 1 # k (this gives ¢ = k). In particular, the bilincar system

m
i= E Aizu,-
i=1

corresponds to the switched linear system (1.4). It is intuitively clear that
asymptotic stability of the switched system (1.3) for arbitrary switching—
the property studied in Chapter 2 corresponds to a lack of controllabil-
ity for (4.5). Indeed, it implies that for every admissible control function,
the resulting solution trajectory of (4.5} must approach the origin. As we
have just seen, Lie algebras naturally arise in characterizing controllability
of (4.5); this perhaps makes their relevance for stability analysis of (1.3),
unveiled by the results discussed in Section 2.2, less surprising.

4.2.1 The unicycle and the nonholonomic integrator

As a simple example of a nonholonomic system, we consider the wheeled
mobile robot of unicycle type shown in Figure 24. We henceforth refer to
it informally as the unicycle.

The state variables are z1, z2, and 8, where 1;, x5 are the coordinates
of the point in the middle of the rear axle and # denotes the angle that the
vehicle makes with the x;-axis (for convenience, we can assume that # takes
values in R). The front wheel turns freely and balances the front end of the
robot above the ground. When the same angular velocity is applied to both
rear wheels, the robot moves straight forward. When the angular velocities
applied to the rear wheels are different, the robot turns. The kinematics of
the robot can be modeled by the equations

#1 = nycosd
£y == uy 8inf (4.6)

9=UQ

A i L
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b oz

FIGURE 24. The unicycle

where u; and ug are the control inputs (the forward and the angular ve-
locity, respectively). We assume that the no-slip condition is imposed on
the wheels, so the robot cannot move sideways (this is precisely the non-
holonomic constraint). Asymptotic stabilization of this system amounts to
parking the unicycle at the origin and aligning it with the z;-axis.

The system {4.6) is a nonsingular completely nonholonomic system. In-
deed, it takes the form (4.5) with n = 3, m = 2,

T cosd 0
z={z2|, @@=[sind], g)=][0
] 0 1

The vectors g; and go are linearly independent for all z,,z9,8. Moreover,
we have

/0 0 —gind 0 sin @
[g1,g2)(z)=—-]0 0 cos® 0| =1{-cos8
0 0 0 1 0

Thus the vector field [g1, g2] is orthogonal to both g1 and g2 everywhere,
hence the LARC is satisfied.

Incidentally, controllability of the system (4.6) justifies the common strat-
egy for parallel parking. After normalization, this strategy can be modeled
by switching between the control laws u#; = —1,us = —1 (moving back-
ward, the steering wheel turned all the way to the right), 43 = —1,uz =1
(moving backward, the wheel turned all the way to the left), u1 = 1,uzs =
—1 (moving forward, the wheel turned to the right), v = 1,u2 = 1 (mov-
ing forward, the wheel turned to the left). As we explained earlier (see
Figure 23), the resulting motion is approximately along the Lie bracket of
the corresponding vector fields, which is easily seen to be the dlrectlon per-
pendicular to the straight motion (i.e., sideways). The factor g2 explains
the frustration often associated with pa.ra.llel parking.
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We know from Corollary 4.2 that the parking problem for the unicycle
cannot be solved by means of continuous feedback. It is actually not hard
to show directly that the system (4.6) fails to satisfy Brockett’s necessary

- condition for continuous stabilizability (expressed by Theorem 4.1). The

map (4.3) in this case is given by

3]

zy Uy COS é
6 | — { uysind
U1 o
Uz

Pick a neighborhood in the x,u space where |8] < 7/2. The image of such
a neighborhood under the above map does not contain vectors of the form

0
al, a # 0.
0

Indeed, u; cosé = 0 implies u; = 0 because cos# # 0, hence we must also
have u, sin 8 = 0. Thus for small values of the angle § we cannot move in all
directions, which is an immediate consequence of the fact that the wheels
are not allowed to slip.

We can intuitively understand why there does not exist a continuous
stabilizing feedback. The argument is similar to the one we gave earlier
for systems on a circle (see Section 4.1.1). Since the unicycle cannot move
sideways, we need to decide which way to turn. If we start rotating clockwise
from some initial configurations and counterclockwisc from others, then the
need for a logical decision will arise for a certain set of initial configurations
(see Figure 25). Thus the nonholonomic constraint plays a role similar to
that of a state-space obstacle.

Our next objective is to demonstrate how the system (4.6) can be asymp-
totically stabilized by a switching feedback control law. To this end, it is
convenient to consider the following state and control coordinate transfor-
mation: :

T = I1c088 + 2o 5inf
y=2=0
z = 2(x;sinf — zacos8) — B(x; cos B + z2 sin ) (4.7
u = uy — sz sinf — x2 cosd)
v = usp.
This transformation is well defined and preserves the origin, and in the new
coordinates the system takes the form
I=u
y=v (4.8)

2 =zUu — yu.
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)
{1

FIGURE 25. Parking the unicycle

The system (4.8) is known as Brockett’s nonholonomic integrator. Given
a feedback law that stabilizes this system, by reversing the above change
of coordinates one obtains a stabilizing feedback law for the unicycle. It is
therefore clear that a continuous feedback law that stabilizes the nonholo-
nomic integrator does not exist. This can also be seen directly: the image
of the map

— v

v — yu

| w2k
®

@

does not contain vectors of the form

0
0], a#0.
a

Note that, unlike in the case of the unicycle, we did not even need to restrict
the above map to a sufficiently small neighborhood of the origin.

The nonholonomic integrator is also controllable, and in fact its control-
lability has an interesting geometric interpretation. Suppose that we steer
the system from the origin to some point (z(t}, ¥(t), z(t))”. Then from (4.8)
and Green’s theorem we have

z(t)=/0t(mﬂ—yd:)dt=/wzdy—ydx=-2./1;d:rdy

where D is the area defined by the projection of the solution-trajectory onto
the zy-plane, completed by the straight line from (z(t), y(t)) to (0,0), and
8D is its boundary {see Figure 26). Note that the integral along the line
is zero. Thus the net change in z equals twice the signed area of D. Since
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the subsystem of (4.8) that corresponds to the “base” coordinates x,y is
obviously controllable, it is not difficult to see how to drive the system
from the origin to a desired final state (x(t), y(t), z(t))7. For example, we
can first find a control law that generates a closed path in the zy-plane of
area z(t)/2, and then apply a control law that induces the motion from the
origin to the point (z(t), y(t))T along a straight line.

) Y

» (=(),y(t))

FIGURE 26. Illustrating controllability of the nonholonomic integrator

We now describe a simple example of a switching feedback control law
that asymptotically stabilizes the nonholonomic integrator (4.8). Let us
consider another state and control coordinate transformation, given by

T =rcosy
y=rsiny

(4)= (e ) (3).

Of course, the above transformation is only defined when z? + 3% = r2 £ 0.

- 'We obtain the following equations in the new cylindrical coordinates:

Fo=1
v =0/r
E=rd.
The feedback law
i=-r?, §=-z (4.9)
yields the closed-loop system
—r?
Z=—rz (410)
b2 -
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Its solutions satisfy the formulas
1
T(t) = 1 1
T,

2(t) = e~ Jo 77T 5(0)

from which it is not difficult to conclude that if »(0) # 0, then we have
r(t), z(t) — 0 as t — oo, and moreover r(t) # 0 for all ¢£. This implies that
z, y, and z converge to zero (the exact behavior of the angle variable 1 is
not important).

We now need to explain what to do if #(0) = 0. The simplest solution is
to apply some control law that moves the state of (4.8) away from the z-axis
(for example, u = v = 1) for a certain amount of time T', and then switch
to the control law defined hy (4.9), We formally describe this procedure
by introducing a logical variable s, which is initially set to 0 if r(0) = 0
and to 1 otherwise. If s{0) = 0, then at the switching time T it is reset
to 1. In fact, it is possible to achieve asymptotic stability in the Lyapunov
sense, e.g., if we move away from the singularity line r = 0 with the speed
proportional to z(0), as in

and

u = z{0), v = z{0). ) (4.11)

Figure 27 shows a computer-like diagram illustrating this switching logic,
as well as a typical trajectory of the resulting switched system. A reset
integrator is used to determine the switching time.

4z

6o Y

FIGURE 27. Stabilizing the nonholonomic integrator: (a) the switching logic, (b)
a typical trajectory of the closed-loop system

Exercise 4.2 Implement the above switching stabilizing control law for
the unicycle via computer simulation.
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Note that the closed-loop system is a truly hybrid system, in the sense
that its description necessarily involves discrete dynamics. Indeed, the value
of the control is not completely determined by the value of the state, but
also depends on the value of the discrete variable s. For example, at the
point a shown in Figure 27(b), the control takes different values for s = 0
and 8 = 1. Thus the control law that we have just described is a hybrid
control law, with two discrete states. To increase robustness with respect to
measurement errors, we could replace the condition r(0) = 0 with |r(0)] < ¢
for some ¢ > 0 (this condition would be checked only once, at £ = 0). We
will revisit the parking problem in a more general setting in Section 6.8.

4.3 Stabilizing an inverted pendulum

In this section we briefly discuss the popular benchmark problem of stabiliz-
ing an inverted pendulum on a cart in the upright position (see Figure 28).
Simplified equations of motion are

F=u (4.12)

Jbi = mglsin® — mlcosfu (4.13)

where z is the location of the cart, # is the angle between the pendulum
and the vertical axis, the control input u is the acceleration of the cart, {

is the length of the rod, m is the mass of the pendulum (concentrated at
its tip), and J is the moment of inertia with respect to the pivot point.

FIGURE 28. An inverted pendulum on a cart

If we are only concerned with the pendulum position and not the cart

" location, we can limit our attention to the subsystem (4.13). Once a feed-

back control law that stabilizes this subsystem is known, it is possible to
obtain a feedback law that stabilizes the entire system (4.12)-(4.13).

i
:
i
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The most natural state space for the system (4.13) is § x R, where S
denotes a circle. Since this space is not contractible, global continuous
feedback stabilization is impossible (see Section 4.1.1). There is also a more
direct way to see this. The point (4, #)7 is an equilibrium of the closed-loop

system . .
J8 = mglsind — mlcos6 k(0,06)

if and only if 6 = 0 and
‘,*” )
mglsing — mlcos8 k(6,0) = 0. (4.14)

The left-hand side of (4.14) takes the positive value mgl at § = /2
and the negative value —mgl at @ = 3r/2. Thus if the feedback law &
is continuous, then there will necessarily be an undesired equilibrium for
some 8 € (x/2,37/2). This means that the system (4.13) cannot be glob-
ally asymptotically stabilized by continuous feedback——in fact, even if it is
viewed as a system evolving on R2.

Let us see how we can stabilize the inverted pendulum using switching
control. A natural way to do this is to use “energy injection.” The mechan-
ical energy of the pendulum (kinetic plus potential) is given by

E:= %J@z +mgl(1 + cos@)

(we have E = 0 in the downward equilibrium). The derivative of E' along
solutions of the system (4.13) is

E = —mlfcosfu. (4.15)

When the pendulum is in the upright position, we have E = 2mgl. It
is not hard to see from the equation (4.15) how to control the energy to
this desired value. Assume that the pendulum starts at rest away from
the upright position, so that its energy is smaller than desired. Apply a
constant control value u of large magnitude (the largest possible if the
control saturates) whose sign is chosen so as to make E increase. Switch the
sign of u whenever é or cos # become equal to zero {at this stage the control
strategy is “bang-bang”; cf. Section 5.1). When E reaches the desired value,
switch the control off.

As a result of the above control strategy, the pendulum will go through
a series of swings, each one ending at a higher position than the previous
one. The values of cosé# at the times when the pendulum comes to rest
can be calculated from the values of E. After the control is turned off, E
will remain equal to 2mgl, and so & will converge asymptotically to zero as
§ approaches zero. If a sufficiently large control magnitude is admissible,
then this can be accomplished with just one swing. In the presence of a
saturation constraint, a larger number of swings is required in general.

The above switching control law is not very efficient near § = 0, because
even for very small values of @ it can cause the pendulum to make a full
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rotation before reaching the upright position. It is therefore reasonable to
combine this control law with another one, which stabilizes the system
locally in a neighborhood of zero. For example, one can switch to a linear
locally stabilizing feedback law « = k18 + k28 after the previously described
swing-up strategy causes the system to enter the region of attraction for this
linear feedback. Another example of a locally stabilizing smooth feedback
law is

J l
k(6,8) = Sg(mj sm9+tan9+arctan9) {4.16)

Its domain of attraction is {{8,8)T : —x/2 < 6 < 7/2}, so vﬁa can “catch”
the pendulum with this feedback law after we bring it above the horizontal
position by energy control. {The difficulty in obtaining a larger domain of
attraction with continuous feedback stems from the following consequence
of equation (4.15): when the pendulum starts at rest in the horizontal
position, the energy cannot be instantaneously increased by any choice of
control, so the only direction in which the pendulum can start moving is
downwards.)

Similar stabilizing swn.chmg control strategies can be developed for pen-
dulums with carts moving on a circle rather than on a straight line, multiple
link pendulums, and pendulums actuated by rotating disks.
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Systems with Sensor
or Actuator Constraints

5.1 The bang-bang principle of time-optimal
control

It is well known that switching control laws arise in time-optimal control
of systems with controls taking values in bounded sets. For such systems,
time-optimal control laws switch between boundary points of the admissible
control set (hence the name “bang-bang controls”).

We restrict our attention here to the linear time-invariant system

&= Az + Bu {5.1)

where x € R, u € if C R™, and A and B are matrices of appropriate
dimensions. Let us take the set of admissible controls to be the hypercube

U= {uG]R"‘:|ui|51vi=l,...,m}.

Suppose that the control problem of interest is to steer the state z of the
system (5.1) in the smallest possible time from an initial state xq to a given
target state x;.

To guarantee that a solution to this problem always exists, we assume
that the state z; can be reached at some time using admissible controls.
To ensure uniqueness of the solution, as we will see, we need to assume
that (A4,5;) is a controllable pair for each i, where b;, ¢ =%1,...,m are the
" columns of B. This means that the system (5.1) is controllable with respect
to every component of the input vector u. Systems with this property are
called rnormal.
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"The solution of (5.1) takes the form
t
z(t) = e?tzo + e / e~ A" Bu(r)dr.
o
Thus we have z(f) = z, if and only if
t
f e~ AT Bu(r)dr = e *'z; — z0.
0
For t > 0, let us introduce the set
i
R(L) := {/ e A" Bu(r)dr iu{r) eU,0< 1 < t}.
0

We see that the optimal time ¢* is the smallest ¢ such that e Mgy —z €
R(t). Denote the vector e““‘:cl — zg by y1. Then 3 must belong to the
boundary of R(t*). It can be shown that the set R(t) is compact and convex
for all t. By the supporting hyperplane theorem, there exists a hyperplane
(with a nonzero outward normal 7} that supports R(t*) at 3, meaning
that

"y zny  YyeR{E) (5.2)

This situation is illustrated in Figure 29.

FIGURE 29. A supporting hyperplane

We can rewrite the inequality (5.2) as

/t nTe A" B(u*(r) —u(r))dr 20 YuelU (5.3)
)

where u* is the optimal control. It is not hard to see that (5.3) is satisfied
if and only if

ul(t) = sgn(nTe~4b;), i=1,...,m (5.4)
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for almost all ¢ € {0,¢*]. The normality assumption guarantees that each
function 7 e~4'b; has a finite number of zeros on the interval [0,¢*]. Thus
the optimal control (5.4) is unique (up to a modification on a set of measure

‘zero), piecewise constant, takes values only in the vertices of I, and has a

finite number of switches.

The above conclusion is a special case of Pontryagin's maximum princi-
ple. The vector p := e~4" 5 satisfies the adjoint equation p = —ATp, and
the control law (5.4) maximizes the Hamiltonian H(p,z,u) := p7 (Az +
Bu).

Example 5.1 Consider the double integrator
F=u (5.5)

which can be used to model a cart under the action of a horizontal force
(such as the cart shown in Figure 28, without the pendulum). Suppose that
the control task is to bring = to rest at the origin in minimal time, using
controls that satisfy |u| < 1. This corresponds to the problem discussed
above for the system (5.1) with

{01 _ {0y
) o)
This system is normal. We have e~4'B = (—t,1}", so the optimal control

takes the form
u*(t) = sgn(—mt + )

for some numbers 71, 2. Thus u* will switch at most once between the
values 1 and —1. Physically, this corresponds to applying the maximal
acceleration to the cart, followed by the maximal braking.

We can explicitly compute the solutions of the system for » = 1 and
u= —1. H u =1, then from (5.5) we have = = %t2+at+bandi:t+a,
hence z = 112 + ¢, where ¢ = b — a” is & constant depending on initial
conditions. Similarly, for u = —1 we have z = —-é-x'r“’ +c. The corresponding
trajectories in the ri-plane look as shown in Figures 30(a) and 30(b),
respectively. The origin can be approached along two of these trajectories;
their union gives the switching curve—the thick curve in Figure 30(c). The
optimal control strategy consists of applying u = 1 or u = -1 depending
on whether the initial condition is below or above the switching curve,
and then switching the control value upon hitting the curve, subsequently
approaching the origin in finite time. O

Exercise 5.1 For the forced harmonic oscillator

F+zr=u (5.6)
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FIGURE 30. Bang-bang time-optimal control of the double integrator: (a) tra-
jectories for u = 1, (b) trajectories for u = -1, (¢) the switching curve

 consider the time-optimal control problem which consists of bringing x to
rest at the origin in minimal time, using controls that satisfy | € 1.
Describe the optimal control laws and the resulting solution trajectories.

5.2 Hybrid output feedback

Suppose that we are given a linear time-invariant control system

i= Az + Bu

y=Cz ‘ (5.'7)

where z € R", u € R™, y € RP, and A, B, and C are matrices of suitable
dimensions. Suppose that the system (5.7) is stabilizable and detectable
(i.e., there exist matrices F' and K guch that the eigenvalues of A 4+ BF
and the eigenvalues of A + KC have negative real parts). Then, as is well
known, there exists a linear dynamic output feedback law that asymptot-
ically stabilizes the system (e.g., the standard Luenberger observer-based
output feedback). The existence of a static stabilizing output feedback, on
the other hand, is an exception rather than a rule.

In practice, a continuous dynamic feedback law might not be imple-
mentable, and a suitable discrete version of the controller is often desired.
Stabilization by a hybrid output feedback controller that uses a countable
number of discrete states can be achieved by means of a suitable discretiza-
tion process. A logical question to ask next is whether it is possible to stabi-
lize the system by using a hybrid output feedback with only a finite number
of discrete states. Indeed, this is the only type of feedback that is feasible
for implementation on a digital computer. A finite-state stabilizing hybrid
feedback is unlikely to be obtained from a continuous one by discretization,
and no systematic techniques for synthesizing desired feedbacks seem to be
available for systems of dimension higher than 2. However, we will see in
this section that sometimes a simple solution can be found.
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One approach to the problem of stabilizing the linear system (5.7) via
finite-state hybrid output feedback is prompted by the following observa-

tion. Suppose that we are given a collection of gain matrices K1, ..., K
of suitable dimensions. Setting u = K,y for some i € {1,...,m}, we obtain
the system

& = (A + BK.C)z.

Thus the stabilization problem for the original system (5.7) will be solved
if we can orchestrate the switching between the systems in the above form
in such a way as to achieve asymptotic stability. Defining

A= A+BKC, ie{l,...,m} (5.8)

we are led to the following question: using the measurements of the output
y = Cz, can we find a switching signal o such that the switched system
# = A,z is asymptotically stable? The value of o at a given time ¢ might
just depend on ¢ and/or y(t), or a more general hybrid feedback may be
used. We are assuming, of course, that no static output feedback gain K
yields 8 Hurwitz matrix A+ BKC (otherwise the problem would be trivial),
so in particular none of the matrices A4; is Hurwitz.

Observe that the existence of a Hurwitz convex combination aA; + (1 —
@)A; for some i,j € {1,...,m} and & € (0,1) would imply that the sys-
tem (5.7) can be stabilized by the linear static output feedback u = Ky
with K := aK; + (1 — a)Kj, contrary to the assumption that we just
made. Therefore, the procedure described in Section 3.4.1 is not applicable
here, which makes the problem at hand more challenging. In fact, Theo-
rem 3.5 implies that a quadratically stabilizing switching signal does not
exist. However, it might still be possible to construct an asymptotically
stabilizing switching signal and even base a stability proof on a single Lya-

~ punov function. The following example from [27] illustrates this point.

Example 5.2 Consider the forced harmonic oscillator with position mea-
surements, given by the system (5.6) with y = x or, more explicitly, by

- (i;) = (—01 fl)) (:;) * (ll)) ¢ (5.9)
y = Zi.

Although this system is controtlable and observable, it cannot be stabilized
by (arbitrary nonlinear, even discontinuous) static output feedback. Indeed,

applying a feedback law u = k(z;), we obtain the closed-loop system

I = %2
5.10
Iy = ~z1 + k(z1). ( )

Consider the function

Viee) = 3a3 [ (€= kO
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The derivative of V along solutions of (5.10} evaluates to
V= —XaT1 + :sz(:rl) + Ta2T1 — Izk(:ﬁl) =0

which means that V remains constant. Since VA0, x3) = 7%/2, we see for ex-
ample that solutions with initial conditions on the xa-axis cannot converge
to the origin. : .

The obstruction to output feedback stabilization of the system (5.9) filSP
appears if one allows switching controls. We now describe one pOSS}ble
stabilizing switching control strategy, which actually switches between just
two linear static output gains. Letting u = —y, we obtain the system

":_t (.:;) N (—02 :}) (Z;) (5.11)

while u = 1y yields the system

d Ir 0 1 T

2= 9@) 512
Define V(z1,22) := %} + 3. This function decreases along solutions of
(5.11) when z1z7 > 0 and decreases along solutions of (5.12) when 7,22 <
0. Therefore, if the system (5.11) is active in the first and third quadrants,
while the system (5.12) is active in the second and fourth quadrants, we
have V < O whenever zyz2 # 0, and the switched system is asymptotically
stable by LaSalle’s invariance principle. The trajectories of the indi\.ridual
subsystems (5.11) and (5.12) and a possible trajectory of the switched
system are sketched in Figure 31. (This situation is quite similar to the one
studied in Example 3.3.)

1! ] 3

/\ _ T =

FIGURE 31. Stabilizing the harmonic oscillator

Let us examine more carefully what type of feedback law can induce this
behavior. Although we can express the above switching st'ra.tegy as u =
k(z)y, where k is a function from R? to {-1, % , this is not implementable
because zz is not available for measurement. Note, however, that both

systems being switched are linear time-invariant, and so the time between a
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crossing of the x;-axis and the next crossing of the x-axis can be explicitly
calculated and is independent of the trajectory. This means that the above
switching strategy can be implemented via hybrid feedback based just on
the output measurements. We let T be the time needed for a trajectory
of the system (5.11) to pass through the first or the third quadrant. The
feedback control will be of the form u = ky, where the gain &k will switch
between the values —1 and % When z; changes sign, we keep k = —1 for
the next T units of time, after which we let u = %, wait for the next change
in sign of z;, and so on.

Interestingly, this switching control strategy employs a combination of
time-dependent and state-dependent switching. Other possibilities of course
exist. For example, we could use the measurements of z) to detect changes
in sign of g = #;. Alternatively, we could compute the time it takes for tra-
jectories of the system (5.12) to traverse the second or the fourth quadrant
and make the switching rule entirely time-dependent after the first change
in sign of «; is detected (however, this strategy would be less robust with
respect to modeling uncertainty or measurement errors).

The above control strategy can be illustrated by the computer-like dia-
gram shown in Figure 32. An auxiliary variable r is introduced to detect a
change in sign of z; (the left branch), and a reset integrator is employed
to determine the transition time (the right branch). O

FIGURE 32. The switching logic used in Example 5.2

In the above example, the stability analysis was based on a single Lya-
punov function. In view of the results presented in Chapter 3, it may also
be possible to use multiple Lyapunov functions. Recall the sufficient condi-
tions expressed by the inequalities (3.23) and (3.24) for the existence of a
switching signal that asymptotically stabilizes the switched system defined

i
i
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'
!
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by two linear subsystems & = Az and & = Ajx. In the present context,
we use the formula (5.8) to rewrite these conditions as follows: there exist
two numbers 3, 5 > 0 such that

—ATP, -~ P,A—Bi(Ps - P\) - PLBK,C - CTKTBTP, >0 (5.13)
and
—ATP, — PLA—-By(P, — B) - BRBK;C - CTKTBTP, > 0. (5.14)

Here the given data consists of the matfices A, B, and C and the gains K
and K, whereas positive definite matrices F; and P, are to be found.

Using a standard technique for elimination of matrix variables, one can
show that the inequalities {5.13) and (5.14) are satisfied if and only if there
exist some numbers §; and 8; (which we can take to be the same with no
loss of generality} such that

- ATP1 —PA- ,31(P2 - Pl) + 61P13.BTP1T >0

5.15
*-ATP1—P1A—)81(P2 —P1)+610TC>0 ( )

and
—ATPy — PBA—Bo(P, — B) + 8 P.BBTPY >0
—ATP — P A—B(PL— P) +8CTC > 0.

If these inequalities can be solved for P;, 8;, and &;, i = 1,2, then we can
find feedback gains K and K that make (5.13) and (5.14) hold. As ex-
plained in Section 3.4.2, a stabilizing switching signal can then be explicitly
constructed, with switches occurring at those z for which we have

T Pz = zT Pyx. (6.17)

It is in general not possible to check the condition (5.17) using only
the output measurements. However, there are certain situations in which
this can be done; for example, in the case of two-dimensional systems, this
reduces to calculating the time it takes for the active subsystem to traverse
a conic region in R? (cf. Example 5.2). One can also envision using some
simple observer-like procedure to determine (at least approximately) the
times at which (5.17) holds.

To summarize, hybrid control can be a useful tool for stabilization by
output feedback. In general, the problem of stabilizing linear systems by
hybrid output feedback remains largely open.

(5.16)

)

5.3 Hybrid control of systems with quantization

5.3.1 Quantizers

In the classical feedback control setting, the output of the process is as-
sumed to be passed directly to the controller, which generates the control
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input and in turn passes it directly back to the process. In practice, how-
ever, this paradigm often needs to be re-examined becanse the interface be-
tween the controller and the process features some additional information-
processing devices.

One important aspect to take into account in such sitnations is signal
guantization. We think of a quantizer as a device that converts a real-valued
signal into a piecewise constant one taking a finite set of values (although in
other sources quantizers taking infinitely many values are also considered).
Quantization may affect the process output, as in Figure 33{a). This hap-
pens, for example, when the output measurernents to be usdd for feedback
are obtained by a digital camera, stored or processed in a computer, or
transmitted over a limited-communication channel. Quantization may also
affect the control input, as in Figure 33(b). Examples include the standard
PWM amplifier, the manual transmission in a car, a stepping motor, and
a variety of other event-driven actuators.

L]

u y qlu) ¥
Process Process
Quantizer Quantizer

a(y)
Controller - Controller

FIGURE 33. A quantizer in the feedback loop: {a) cutput quantization, (b) input
quantization

Let z € R? be the variable being quantized. In the presence of quantiza-

‘tion, the space R! is divided into a finite number of quantization regions,

each corresponding to a fixed value of the quantizer. More precisely, let the
quantizer be described by a function ¢ : R! — Q, where @ is a finite subset
of R. Then the quantization regions are the sets {z € R : g(z) = i}, i € Q.
To preserve the equilibrium at the origin, we will let ¢{0) = 0.

In the literature it is usually assumed that the quantization regions are
rectilinear and are either of equal size (“uniform quantizer”) or get smaller
close to the-origin and larger far away from the origin (“logarithmic quan-
tizer”). These two most common types of quantizers are illustrated in Fig-
ure 34(a) and (b), respectively. In most of what follows, we do not need to
make any explicit assumptions—such as rectilinear shape or convexity--
regarding the quantization regions. In Figure 34, the dots represent the
values that the quantizer takes in each region (although in principle they
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do not necessarily belong to the respective regions). The complement: of 1.;he
union of all quantization regions of finite size is the infinite qua.n?:xza:aon
region, in which the quantizer saturates (the corresponding value is given

by the extra dot).

= lg
A

FIGURE 34. Quantization regions: (a) uniform, (b) logarithmic, (¢) general

To describe more precisely what is meant by saturation, we assume that
there exist positive real numbers M and A such that the following two

conditions hold:

1. ¥
2 < M (5.18)
then
lg(z) — 2| € A. (5.19)
2. If
|z > M
then
lg(z){ > M — A.

Condition 1 gives a bound on the quantization error when the quantizer
does not saturate. Condition 2 provides a way to detect the possibility of
saturation. We will refer to M and A as the range of the quantizer t‘md
the quantization error, respectively. Practically every reasonable quantizer
satisfies the above requirement. For example, consider a uniform or a loga-
rithmic quantizer whose value in each quantization region belongs to that
region, as in Figures 34(a) and (b). Then suitable values of A :'md M can
be easily calculated from the maximal size of finite quantization regions
and the number of these regions.

Exercise 5.2 Do this calculation for the uniform quantizer defined Py Nt
equal cubical quantization regions.(N in each dimension) of an arbitrary
fixed size, with the quantizer values at the centers of the cubes.

Ed
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We assume that the system evolves in continuous time. At the time
of passage from one guantization region to another, the dynamics of the
closed-loop system change abruptly. Therefore, systems with quantization
can be naturally viewed as switched systems with state-dependent switch-
ing. Chattering on the boundaries between the quantization regions is pos-
sible, and solutions are to be interpreted in the sense of Filippov if necessary
{see Section 1.2.3). However, this issue will not play a significant role in
the subsequent stability analysis.!

5.8.2 Static state quantization

‘We concentrate on the case of state quantization for now, postponing the
discussion of input quantization until Section 5.3.4 and output quantization
until Section 5.3.5. In this section we assume (as is invariably done in the
literature on quantized control) that the quantizer function g is fixed. It
is well known and easy to see that a feedback law u = k(z) that globally
asymptotically stabilizes the given system & = f(z,u) in the absence of
quantization will in general fail to provide global asymptotic stability of
the closed-loop system # = f(z,k{g(z))) which arises in the presence of
state quantization.

There are two phenomena that account for changes in the system's be-
havior caused by quantization. The first one is saturation: if the quantized
signal is outside the range of the quantizer, then the quantization error is
large, and the control law designed for the ideal case of no quantization
leads to instability. The second one is deterioration of performance near
the equilibrium: as the difference between the current and the desired val-
ues of the state becomes small, higher precision is required, and so in the
presence of quantization errors asymptotic convergence is impossible.

These phenomena manifest themselves in the existence of two nested in-
variant regions such that all trajectories of the quantized system starting in
the bigger region approach the smaller one, while no further convergence
guarantces can be given, The goal of this section is to describe this be-
havior more precisely, starting with linear systems and then moving on to
nonlinear systems,

Linear systems

Consider the linear system
& = Az + Bu, zeR” ueR™. (5.20)

Suppose that this system is stabilizable, so that for some matrix K the
eigenvalues of A+ BK have negative real parts. By the standard Lyapunov

1This is because we will work with a single C! Lyapunov function; ¢f. Section 2.1.
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stability theory, there exist positive definite symmetric matrices P and Q)
such that .
(A+BK)TP+ P(A+ BK)=-Q. (5.21)

{(Although the subsequent calculations are done for the general case, a
convenient choice is Q = I.) We assume that B # 0 and K # 0; this is no
loss of generality because the case of interest is when A is not Hurwitz. We
let Amin(-) 80d Amax(-) denote the smallest and the largest eigenvalue of a
symmetric matrix, respectively. The inequality

Amin(P)|2)? € 27 Pz € Amax(P)la)?

will be used repeatedly below.

Since only quantized measurements of the state are available, the state
feedback law u = Kz is not implementable. Let us consider the “certainty
equivalence”? quantized feedback control law .

u = Kq(z).

(Everything that follows also applies with minor changes to dynamic feed-
back laws; cf. Section 5.3.5.) The closed-loop system is given by

i = Az + BKq(z) = (A+ BK)z + BK(g(z) — 7). (5.22)

The right-hand side of this system is the sum of an asymptotically stable
“nominal” system and a perturbation due to the quantization error.

Whenever the inequality (5.18), and consequently (5.19), hold with z =
z, the derivative of the quadratic function

V(z) :=zT Pz
along solutions of the system (5.22) satisfies
V = —27Qz + 22T PBK(g(z) — )

< ~Amin(Q)12]? + 2|21| PBK || A
= _'xlAmin(Q)(lxll - exA)

where o 2 PBK]|
5 ’\min(Q)
and || - || denotes the matrix norm induced by the Euclidean norm on R™.
Taking a sufficiently small & > 0, we have the following formula:
G, A(l+e)< |zl M = V< -|zhmin(Q)8:Ac. (5.23)

2This terminology is common in adaptive control (see Section 6.1); here it refers to
the fact that the controller treats quantized state measurements as if they were exact
state values.

" Lemma 5.1 Fiz an arbitrary € > 0 and assume that the ineguality (5.26)
" holds. Then the ellipsoids Ry and Ry defined by (5.24) and (5.25) arc
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Define the balls
By = {z:|z| < M}
and
Bz = {z: 2] S ©.A(1+¢)}
and the ellipsoids

« Ry := {z: &7 Pz € Anin(P)M?} (5.24)
and
_ Ry i={z: 27 Px < Amax(P)O2A%(1 +£)?}. (5.25)
Suppose that M is large enough compared to A so that
Vamin(PYM > /A (P)O.A(1 + €). {5.26)

Then we have
B: CRy CRy CB;.
This situation is illustrated in Figure 35, which will aiso be useful later.

B,

‘ N\\—_____/.
FIGURE 35. The regions used in the proofs

In view of the formula (5.23) and the fact that the ellipgoids R; and R,
are defined in terms of level sets of V', we conclude that both R, and Ro
are invariant with respect to the system (5.22). We arrive at the following
result. .

invariant regions for the system (5.22). Moreover, all solutions of (5.22)
that start in the ellipsoid R, enter the smaller ellipsoid Ry in finite time.

The fact that the trajectories starting in R, approach Rz in finite time
follows from the bound on V given by (5.23). Indeed, if & time tq is given

.,such that z(fo) belongs to Ry and if we let

Amin{ PYM? = A ax (P)O2A2(1 + €
G2A2(1 + £)Amin{Q)e
then z(ip + T') is guaranteed to belong to Ra.

T:=

(5.27)
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Nonlinear systems

Consider the system
& = flz,u), zeR", ueR™ (5.28)

with £(0,0) = 0. All vector fields and control laws are understood to be
sufficiently regular (e.g., C') so that existence and uniqueness of solutions
are ensured. It is natural to assume that there exists a state feedback law
u = k(x) that makes the closed-loop system globally agymptotically stable.
(Although we work with static feedback laws, the extension to dynamic
feedback laws is straightforward.) Actually, we need to impose the following

stronger condition on k.
AsSUMPTION 1. There exists a C* function V : R* — R such that for some

class Ko, functions® a1, az, as, p and for all z,e € R™ we have

anlz]) < V(@) < aallz]) (5.29)

and 5V
|zl > plel) = Z-f(= k(z + €)) < —os(lz])- (5.30)

We will examine this assumption in detail later. As we now show, it leads
to a direct analog of Lemma 5.1 for nonlinear systems. Since only quantized
measurements of the state are available, we again consider the “certainty
equivalence” quantized feedback control law, which is now given by

u = k(g(z))-

The corresponding closed-loop system is

& = f(z,k(g(z))). (5.31)
This can be rewritten as
i = f(z,k(z +¢e)) : (5.32)
where
e:=ql{z)— T (5.33)

represents the quantization error. In what follows, o denotes function com-
position.

Lemma 5.2 Assume that we have

a1(M) > azop(B). (5.34)

38ee Section A.2 for the relevant definitions.

5.3 Hybrid control of systems with quantization 107
Then the sels
Ry = {z:V(z) < a1(M)} (5.35)

and
Rz :={x: V{z) < agop(A)} {(5.36)

are invariant regions for the system (5.31). Moreover, all solutions of (5.31)
that start in the set Ry enter the smaller set Ry in finite time.

PROOF. Whenever the inequality (5.18), and consequently (5.19), hold with
z = z, the quantization error e given by (5.33) satisfies

le| = lg(z) — 2| < A.

Using (5.30), we obtain the following formula for the derivative of V' along
solutions of the system (5.31):

pA) <ol <M = V< —as(lzl). (5.37)

Define the balls
By :={z:|z| £ M}

and
Bai={z: la] < p(A)}.
As before, in view of (5.29) and (5.34) we have

By CRa CRy C B

Combined with (5.37), this implies that the ellipsoids R; and R are-both
invariant. The fact that the trajectories starting in R; approach R in finite
time follows from the bound on the derivative of V deduced from (5.37).
Indeed, if a time tp is given such that z(tp) belongs to Ry and if we let

T .= al(M) - Qg Op(A)
) aa o p{A)

then z(ty + T} is guaranteed to belong to Rs. O

(5.38)

Note that for Lemma 5.2 to hold, the quantization error A does not
need to be small. When A is sufficiently small, one can use a standard
perturbation argument without relying on Assumption 1. However, it is

the more general property expressed by Lemma 5.2 that will be needed

below.

The above requirement imposed on the feedback law k, expressed by As-
sumption 1, is equivalent to input-to-state stability (ISS) of the perturbed
closed-loop system {5.32) with respect to the measurement disturbance in-
put e (see Section A.6). For linear systems and linear stabilizing control

- laws such robustness with respect to meggsurement errors is automatic, but

for nonlinear systems this is far from being the case.




108 5. Systems with Sensor or Actuator Constraints

Example 5.3 Consider the equation
i=—z—-2zt+ 2%, reR.

The feedback law © = T cancels the nonlinearities and yields the globally
asymptotically stable closed-loop system & = —z. However, in Fhe presence
of a measurement error the control law becomes u = z +e, which gives the
closed-loop system & = —z + 2. It is ngt hard to see that this system is
not ISS, because bounded e produce unbounded solutions for sufficiently

large |2(0)]. O

In general, the requirement that the original system (5.28) be input-to-
state stabilizable with the respect to the measurement error is rather re-
strictive for nonlinear systems. In fact, there exist systems that are globally
asymptotically stabilizable but not input-to-state stabilizable with res?ect
to measurement errors. The problem of finding control laws that achieve
ISS with respect to measurement errors is a nontrivial one, even for systems
affine in controls, and continues to be a subject of research efforts. We have
thus revealed what appears to be an interesting connection between the
problem of quantized feedback stabilization, the theory of hybrid systems,
and topics of current interest in nonlinear control design.

5.8.3 Dynamic state quantization

In the preceding discussion, the parameters of the quantizer are fixed in
advance and cannot be changed by the control designer. We now consider
the situation where it is possible to vary some parameters of the quantizer
in real time, on the basis of collected data. For example, if a quantizer is
used $o represent a digital camera, this corresponds to zooming in and 03.11:,
i.e., varying the focal length, while the number of pixels of course remains
fixed. Other specific examples can be given. More generally, this approach
fits into the framework of control with limited information: the state of
the system is not completely known, but it is only known which one of
a fixed number of quantization regions contains the current state at each
instant of time. The quantizer can be thought of as a coder that generates
an encoded signal taking values in a given finite set. By changing the size
and relative position of the quantization regions—i.e., by modifying the
coding mechanism-—one can learn more about the behavior of the system,
without violating the restriction on the typg of information that can be
communicated to the controller. _
The quantization parameters will be updated at discrete instants of time;
these switching events will be triggered by the values of a suitable Lyapunov
function. This results in a hybrid quantized feedback control policy. There
are several reasons for adopting a hybrid control approach rather than vary-
ing the quantization parameters continuously. First, in specific situations
there may be some constraints on how many values these parameters are
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allowed to take and how frequently they can be adjusted. Thus a discrete
adjustment policy is more natural and easier to implément than a con-
tinuous one. Second, the analysis of hybrid systems obtained in this way
appears to be more tractable than that of systems resulting from contin-
uous parameter tuning. In fact, we will see that invariant regions defined
by level sets of a Lyapunov function provide a simple and effective tool
.for studying the behavior of the closed-loop system. This also implies that
precise computation of switching times is not essential, which makes our
hybrid control policies robust with respect to certain types of §ime delays
(such as those associated with periodic sampling). '

The control strategy will usually be composed of two stages. The first
“zooming-out” stage consists of increasing the range of the quantizer nn-
til the state of the system can be adequately measured; at this stage, the
system is open-loop. The second “zooming-in” stage involves applying feed-
back and at the same time decreasing the quantization error in such a way
as to drive the state to the origin. These two techniques enable us to over-
come the two limitations of quantized control mentioned earlier, namely,
saturation and loss of precision near the origin. We will show that if a
linear system can be stabilized by a linear feedback law, then it can also
be globally asymptotically stabilized by a hybrid quantized feedback con-
trol policy, and that under certain conditions this result can be generalized
to nonlinear systems. (With some abuse of terminology, we call a closed-
loop hybrid system globally asymptotically stable if the origin is a globally

asymptotically stable equilibrium of the continuous dynamics.)

We formalize the above idea by using quantized measurements of the
form

gu(z) = uq(ﬁ) (5.39)

where g > 0. The range of this quantizer is My and the quantization error
is Ag. We can think of u as the “zoom” variable: increasing u corresponds
to zooming out and essentially obtaining a new quantizer with larger range
and quantization error, whereas decreasing u corresponds to zooming in and
obtaining a quantizer with a smaller range but also a smaller quantization
error. The variable u will be the discrete state of the hybrid closed-loop
system. In the camera model example, i corresponds to the inverse of the
focal length* f. It is possible to introduce more general, nonlinear scaling
of the quantized variable, as in v o ¢ 0 v~ !{z) where v is some invertible
function from R™ to R"; however, this does not seem to yield any immediate
advantages. .

4We prefer to work with g = 1/f rather than with f to avoid system signals that
grow unbounded, although this is morely a formal distinction.
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Linear systems

Consider again the linear system (5.20), a stabilizing state feedback gain K,
and positive definite symmetric matrices P and @ satisfying the Lyapunov
equation (5.21). The “certainty equivalence” quantized feedback control

law is now
u = Kq,(z). (5.40)

Assume for the moment that 4 is a fixed positive number. The closed-loop
gystem is given by

4 = Az + BKgu(z) = (A+ BK)z + BKp (q(E) - E) . (5.41)

The behavior of trajectories of the system (5.41) for a fixed u i's clgarac-
terized by the following result, which is a straightforward generalization of

Lemma 5.1.

Lemma 5.3 Fiz an arbitrary £ > 0 and assume that we have

VAmin(PYM > /Amax(P)8:A(1 + ) (5.42)

h.
where 6. 21PBK| _ o
e /\min(Q)
Then the ellipsoids
Ra() = {z : &7 Pz < Amin(P) M7} (5.43)
and -
Ra() 1= {2 : 27 Pz € Amax(P)O2A%(1 + €)%} (5.44)

are invariant regions for the system (5.41). Moreover, all solutions of (5.4})
that start in the ellipsoid R1(u) enter the smaller ellipsoid Ra(p) in finite

time, given by the formula (5.27).

As we explained before, a hybrid quantized feedback control policy in-
volves updating the value of u at discrete instants of time. An open-loop
zooming-out stage is followed by a closed-loop zooming-in stage, so that
the resulting control law takes the form

_ 0 if 0<t<tn
ut = Kguu(z(t)  if t=to.

Using this idea and Lemma. 5.3, it 1s possible to achieve global asymptotic

o
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Theorem 5.4 Assume that we have

Amin (F) |PBK| }
Amax(P) Amin (@)

Then there exists a hybrid quantized feedback control policy that makes the
aystem (5.20) globally asymptotically stable.

M> 2Amax{1, (5.45)

PROOF. The zooming-out stage. Set u equal to zero. Let u(0) = 1. Then
increase p in a piecewise constant fashion, fast enough to dominate the rate
of growth of |le#|. For example, one can fix a positive number 7 and let
p(t) =1for t € [0,7), p(t) = re*AI7 for ¢ € [r,27), u(t) = 2re?lAH2T for
t € [27,37), and so on. Then there will be a time ¢ > 0 such that

z(t)

Amin(«P) N
ﬂ'(t) < v /\max(P)M 24

(by (5.45), the right-hand side of this inequality is positive). In view of
Condition 1 imposed in Section 5.3.1, this implies

which is equivalent to

Amin (P)

|gu(z())] < S (P)

Mup(t) — Ault). (5.46)
We can thus pick a time £y such that (5.46) holds with ¢ = ¢y. Therefore,
in view of Conditions 1 and 2 of Section 5.3.1, we have

I(tO) Amin(P)
Ju'(tﬂ) - )‘max(-P)

hence z(to) belongs to the ellipsoid R (u(to}} given by (5.43). Note that
this event can be detected using only the available quantized measurements.

The zooming-in stage. Choose an £ > 0 such that the inequality (5.42)
is satisfied; this is possible because of (5.45). We know that z(ty) belongs
to Ri(u(to)). We now apply the control law (5.40). Let p(t) = u(ty) for
t € [to,to + T), where T is given by the formula (5.27). Then x(ty + T)
belongs to the ellipsoid Ra(p(te)) given by (5.44). For t € [ty + T, to + 27°),
let

M

w(t) = Qu(to)

v/ Amax{P)8:A(l +€)
Q:= .
vV Amin(P)M

where
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We have Q < 1 by (5.42), hence u(to +T) < plto). It is easy to check -

Rofulto)) = Ri(u(to + T)). This means that we can contim?e tl}e
;,lrl;tlysi: (ff:f 1? 2 to+T Sas(before. Namely, z(to+ 2T} belongs to the ellipsoid
Ralplte + T)) defined by (5.44). For t € [tu‘"l- 27,1 + 37, let u(t)' =
Qu(to + T). Repeating this procedure, we obtain the desired 'co_ntro{ policy.
Indeed, we have u(t} — 0 ast — oo, and the above ana.lym_s-mfphes that
z(t) — 0 as ¢ — co. It is also not hard to show that the equilibrium z =0
of the continuous dynamics is stable in the sense of Lyapunov. O

Exercise 5.3 Prove Lyapunov stability.

We see from the proof of Theorem 5.4 that the state of t..he closed—ls;op
system belongs, at equally spaced instants of time, to ellipsoids whose sizes
decrease according to consecutive integer powers of Q. Therefore, z(t) con-

es to zero exponentially for £ 2 o.

ver'I‘ghe fact that It)ltl)e scaling of u is performed at t = 1o + T.to + 2T,_. .
is not crucial: since the ellipsoids considered in the proof are invariant
regions for the closed-loop system, we could instead t.ake another sequence
of switching times £, %2, ... satisfying t; —t;1 > T,1 2 1.. However, doing
this in an arbitrary fashion would sacrifice the exponential rate of decay.
The constant T plays the role of a dwell time (cf. Section 3.2.1).

At the zooming-in stage described in the proof of Theorem 5.4, the

switching strategy is time-dependent, since the values of the discrete state &

are changed at precomputed times at which the continuous state x is known
to belong to a certain region. An alternative approach wou]d.be to employ
state-dependent switching, by means of relying on the quantized measure-
ments to determine when z enters a desired region. A state-dependent
switching strategy relies more on feedback measul:ements and less on off-
line computations than a time-dependent one; it is therefore likely to be
more Tobust with respect to modeling errors. On the other hand, t¥1e ex-
pressions for switching times are somewhat more straightforward in the
case of time-dependent switching. o

In the preceding, p takes a countable set of values which is not assumed
to be fixed in advance. In some situations u may be restricted to take
values in a given countable set S. It is not difficult to see that the proposed
method, suitably modified, still works in this case, provided that the set S
has the following properties: ‘

1. S contains a sequence gy, fai, ... that increases to oo. -

2. Each py; from this sequence belongs to a sequence fi, fiz, - - in8
that decreases to zero and is such that we have €2 pigi+1)/ i for

each j.

Theorem 5.4 can be interpreted as saying that to achieve global asymp-
totic stabilization, the precise information about the state is not necessary:
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a digital sensor with sufficiently many bits is enough, provided that we
have at our disposal a “smart” algorithm for coding and processing the
available information. (In fact, it is not even necessary to require that the
sensor have many bits, as we will see in Section 5.3.6.)

Nonlinear systems

Consider again the nonlinear system (5.28). It can be shown via a lin-
earization argument that by using the above approach one can obtain local
asymptotic stability for this system, provided that the corresponding lin-
earized system is stabilizable. Here we are concerned with achieving global
stability results. (Working with a given nonlinear system directly, one gains
an advantage even if only local asymptotic stability is sought, because the
linearization of a stabilizable nonlinear system may fail to be stabilizable.)
To this end, suppose that there exists a state feedback law u = k(z),
with k(0) = 0, which satisfies the input-to-state stabilizability assumption
(Assumption 1 of Section 5.3.2). The “certainty equivalence” quantized
feedback control law in the present case is given by

u = K{gu(2) (5.47)
where g, is defined by (5.39). For a fixed p, the closed-loop system is
& = f(x, k(gu(x))) (5.48)
and this takes the form (5.32) with
e=g,(zr)—=z {5.49)

The behavior of trajectories of (5.48) for a fixed value of p is characterized
by the following counterpart of Lemma 5.2. *

Lemma 5.5 Assume that we have

a(Mp) > az o p(A:,u). (5.50)
Then the sets
Ri(u) = {z : V(z) £ n(Mu)} (5.51)
and
Ra(p) = {z: V(z) < az 0 p(Ap)} (5.52)

are invariant regions for the system (5.48). Moreover, all solutions of (5.48)

¥ that start in the set R1(1) enter the smaller set Ra(y) in finite time, given

by the formula

= a(Mp) —azo p(A,u)_

T,:
g a3 o p(Ap)

(5.53)

i
ki
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Clearly, the effect of p here is not as straightforward to characterize as
in the linear case, where everything scales linearly. In particular, the above
upper bound on the time it takes to enter Ra(u) depends on 4.

The unforced system

&= f(z,0) (5.54)
is called forward complete if for every initial state z(0) the solution of (5.54),
which we denote by £(2(0),), is defined for all ¢ > 0. Our goal now is to
show that this property, Assumption 1, and a certain additional technical
condition allow one to extend the result expressed by Theorem 5.4 to the
nonlinear system (5.28).

Theorem 5.6 Assume that the system (5.54) is forward complete and that
we have

o5 0 oy (Mp) > max{p(Ap), x(p) +2Ap}  Vp>0 (5.55)

for some class Koo function x. Then there ezists a hybrid guantized feedback
control policy that makes the system (5.28) globally asymptotically stable.

PROOF. As in the linear case, the control strategy is divided into two stages.

The zooming-out stage. Set the control equal to zero. Let p(0) = 1.
Increase p in a piecewise constant fashion, fast enough to dominate the rate
of growth of {2(t)|. For example, fix a positive number 7 and let u(t) =1
for t € [0,7), u(t) = x~{2maxjgo)<r, sef0.r [£(z(0), 8)]) for ¢ € [r,27),
alt) = x~1(2 maX|z(o) <2, scfo,2v] 1£(2(0), 8}]) for ¢ € [27,37), and so on.
Then there will be a time ¢ > 0 such that

|z(t)} < x(u(t)) < az* 0 an(Mp(t)) — 2Anu(t)
where the second inequality follows from (5.55). This implies

2O o Lozt o on (Mult) — 2.

ut)|  p)
By virtue of Condition 1 of Section 5.3.1 we have

o (@)I < ozt oo (Muft)) - A

u(t) /1~ ult)
which is equivalent to |
lgu(z(®) < oz ' 0 cn (Mu(t)) - Au(t). (5.56)

Picking a time to at which (5.56) holds and using Conditions 1 and 2 of
Section 5.3.1, we obtain

(to)

o) < —l—a«;l o ay(Mp(to))

~ ulto)
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hence z(to) belongs to the set Ry (u(to)) given by (5.51). This event can be
detected solely on the basis of quantized measurements.

The zooming-in stage. We have established that z(fy) belongs to the
set Ri(p(tp)). We will now use the control law (5.47). Let u(t) = uito)
for t € [to,to + Tso)), Where Tu,) is given by the formula (5.53). Then
z(to + Tpus,)) will belong to the set Ra(u(to)) given by (5.52). Calculate
To(u(to)) using {5.53) again, where the function w is defined as

w(r) = ‘;7“;1 o ag o p(Ar), r>0

For ¢ € [to + Tyt)» to + Tpuczo) + Tis(uiton)» let

#(t) = wlplto))-

We have w(r) < 7 for all r > 0 by (5.55), thus pu(to + Tye,)) < u(to). One
easily checks that Ra{u(to)) = Ri(u(to + Tyusy))). This means that we can
continue the analysis and conciude that x(to + Tj(zo) + Tiuso))) belongs
to Ra(u(to + Tyuzo)))- We then repeat the procedure, letting p = w(pu(to +
To(20))) for the next time interval whose length is calculated from (5.53).
Lyapunov stability of the equilibrium z = 0 of the continuous dynamics
foilows from the adjustment policy for i as in the linear case. Moreover,
we have p(t) — 0 as ¢ — oo, and the above analysis implies that z(t} — 0
as{ — oo0. O

As in the linear case, we could pick a different sequence of switching times
t1,t2,... as long as they satisfy ¢; — ;1 > Ty, .y, £ 2> 1. We could also
implement state-dependent switching instead of time-dependent switching,.

Example 5.4 Consider the system
& =z° + zu, r,u € R.

This is a simplified version of the system treated in [146], where it is shown
how to construct a feedback law k such that the closed-loop system

&=z +zk(z +€)

is. ISS with respect to e. It follows from the analysis given there that the

~ inequalities (5.29) and (5.30) hold with V(z) = 22/2, a1 (r) = aa(r) = r2/2,

aa{r) = r?, and p(r) = cr for an arbitrary ¢ > 1. We have (a3 ooy )(r) =,
so (5.55) is valid for every M > A max{c, 2}. O

As we explained in Section 5.3.2, Assumption 1 is quite restrictive for
nonlinear systems. The technical assumption (5.55) also appears to be
restrictive and hard to check. It depends on the relative growth of the
functions a;, ag, and p. For examplé’ if the function a7l o ag o v, where

e
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v(r) := max{p(Ar), x{r) + 24r}, is globally Lipschitz, then (5.55) is sat-
isfied for every M greater than the Lipschitz constant. However, there is a
weaker and more easily verifiable assumption which enables one to prove
asymptotic stability in the case when a bound on the magnitude of the
initial state is known (“semiglobal asymptotic stability”}. To see how this
works, take & positive number Ey such that |(0)] £ Eo. Suppose that

(o7 o az 0 p)'(0) < 0. (5.57)

Then it is an elementary exercise to verify that for M sufficiently large we

have
a7l oo (Mu) > p(Au)  Yu€(0,1]

and also
a;l oo (M) 2 Ep.

Thus z(0) belongs to the set Ry(1) defined by (5.51), the zooming-out
stage is not necessary, and zooming in can be carried out as in the proof
of Theorem 5.6, starting at to = 0 and 1(0) = 1. Forward completeness of
the unforced system (5.54) is not required here.

If (5.57) does not hold, it is still possible to ensure that all solutions start-
ing in a given compact set approach an arbitrary prespecified neighborhood
of the origin (“semiglobal practical stability”). This is not difficult to ghow
by choosing A to be sufficiently small, provided that M is sufficiently large
and the feedback law k is Tobust with respect to smaill measurement er-
rors. All continuous stabilizing feedback laws possess such robustness, and
discontinuous control laws for a large class of systems can also be shown to
have this robustness property. The value of p can then be kept fixed, and
Assumption 1 is not needed.

Every asymptotically stabilizing feedback law is automatically input-to-
state stabilizing with respect to the measurement error e locally, i.e., for
sufficiently small values of z and e (see Section A.6). This leads at once to
local versions of the present results.

5.8.4 Input quantization

We now present results analogous to those obtained in Section 5.3.3 for
systems whose input, rather than state, is quantized. These results yield a
basis for comparing the effects of input quantization and state quantization
on the performance of the system. The proofs are similar to the ones given
earlier, and some details will be omitted.

Linear systems

Consider the linear system (5.20). Suppose again that there exists a matrix
K such that the eigenvalues of A + BK have negative real parts, so that
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;florl cis:me positive definite symmetric matrices P and Q the equation (5.21)
olds.

. The state feedback law u = Kz is not implementable because only quan-
tized measurements g,,(u) of the input u are available, where g, is defined
by (5.39). We therefore consider the “certainty equivalence” quantized feed-
back control law

u = gq,(Kz). (5.58)

. This yields the closed-loop system

&= Az + Bugu(z) = (A+ BK)z + Bu (q(%) - E) . (5.59)
i
The behavior of trajectories of (5.59) for a fixed value of u is characterized
as follows.

Lemma 5.7 Fir an arbitrary £ > O and assume that we have

VAmin(P)M > /Anax(P)OL | K[A(L + €) (5.60)

where
21PB|
0, = ———.
) '\min(Q)
Then the ellipsoids
Ri(w) = {z : 27 Pz < Amin( PYM212/ || K |2} (5.61)
and
Ra(p) = {2 : 2T Pz < Amax(P)O2A%(1 + €)%?} (5.62)

are invariqnt regions for the system (5.59). Moreover, all solutions of (5.59)
that start in the ellipsoid R1(u) enter the smaller ellipsoid Ro(u) in finite
time, given by the formula

T = /\min(P)Mz - /\max(P)e?;“K“z’Az(l + 5)2
O2[|K[2A%(1 + €)Amin(Q)e )

(5.63)

_ We now present a hybrid quantized feedback control policy which com-
bines the control law (5.58) with a switching strategy for pu, similarly to
the state quantization case studied in Section 5.3.3.

Theorem 5.8 Assume that we have

Amin(P) 1 o n IPBIIKY

l\max(P) )\min(Q) )

Then there ezists a hybrid quantized feedback control policy that makes the

(5.64)

~ system (5.20) globally asymptoticolly ¥able.
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PROOF. The zooming-out stage. Set u equal to zero. Let u(0) = 1. Increase
u fast enough to dominate the rate of growth of |le4?|, as in the proof of
Theorem 5.4. Then there will be a time to > 0 such that

Amin(P) MF'(:O)
letto)l < 4/ 5 @) TTKI

which implies that z(tp) belongs to the ellipsoid R1(u(to)) given by {5.61).
The zooming-in stage. For t > to we use the control law (5.58). Pick
a positive & so that (5.60) holds; this is possible because of (5.64). Let
u(t) = plto) for t € [to,to + T), where T is given by the formula (5.63).
Then z(to + T) belongs to the ellipsoid Rz (u{to)) given by {5.62). For
t € [to+ T ta+2T), let
#(t) = Qul(to)

Q.= VAmax(P)OI KA1 +¢)
) Amin(P)M ’

We have u(to +T) < u(to) by (5.60), and Ra(u(to)} = Ra (u(to + T)). The
rest of the proof follows along the lines of the proof of Theorem 5.4. [}

where

It is interesting to observe that in view of the inequality
IPBK] < | PBIIK]

the condition (5.64) is in general more restrictive than the corresponding
condition for the case of state quantization (see Theorem 5.4). On the other
hand, the zooming-in stage for input quantization is more straightforward
and does not require any additional assumptions. The remarks made after
the proof of Theorem 5.4 concerning the exponential rate of convergence,
robustness to time delays, and the alternative method of state-dependent
switching carry over to the present case without any changes. The above
analysis can also be extended in a straightforward manner to the situation
where both the state and the input are quantized.

Exercise 5.4 Derive a combination of Lemmas 5.3 and 5.7 for linear sys-
tems with quantization affecting both the state and the input. For example,
consider the system (5.20) with the control law u = g (K gj;(z)), where ¢*
is a state quantizer with range M, and error A, and g% is an input quan-
tizer with range M, and error A,, taking g in both quantizers to be the
same for simplicity.

Nonlinear systems

Consider the nonlinear system (5.28). Assume that there exists a feedback
law u = k(z), with k{0) = 0, which makes the closed-loop system glob-
ally asymptotically stable and, moreover, ensures that for some class Koo
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.functions oy, 09, a3, p there exists a C! function V : R" — R satisfying tlhe
inequalities (5.29) and

o2 plel) = Fof@k@+e) < -axal) (569

for all z, e € R™. This is equivalent to saying that the perturbed closed-loop
system

& = f(xz, k(z) + €) (5.66)
is ISS with respect to the actuator disturbance input e. Take & to be some
class K, function with the property that

K(r) 2 mglk(a‘)# vr > 0.

Then we have
lk(@)| < n(la]) V.

The closed-loop system with the “certainty equivalence” quantized feed-
back control law

u = gu(k(z)) (5.67)
becomes

& = f(z,qu(k(x))) (5.68)
and this takes the form (5.66) with

e =g, (k(x)) — 2. {5.69)
The behavior of trajectories of (5.68) for & fixed u is characterized by the

following result.

Lemma 5.9 Assume that we have

ayon I (Mp) ; a0 p(Ap). (5.7
Then the sets
Ru(p) = {z: V(z) S mnor™(Mu)} (5.71)
and
Ra(p) = {z: V() < a2 0 o( A} (5.72)

are ‘inva'if"iqnt regions for the system (5.68). Moreover, all solutions of (5.68)
that start in the set R1(p) enter the smaller set Ro(p) in finite time, given
by the formula
-1
_agor T (Mp)—az0p(A
T, = (&4) (5.73)
o © p(Bg)

The next theorem is a counterpart of Theorem 5.6.

oo a2
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Theorem 5.10 Assume that the system (5.54) is forward complete and
that we have

agloar ok (Mp) > p(Ap) Vp>0. (5.74)

Then there exists a hybrid quantized feedback control policy that makes the
system (5.28) globally asymptotically stable.

ProoF. The zooming-out stage. Set the gontrol to zero, and let p(0) = 1.
Increase u fast enough to dominate the rate of growth of |z(t)|, as in the
proof of Theorem 5.6. Then there will be a time £y > 0 such that

|z(ta)] < p(Apte)) < a3’ 0 a1 0 87 (Mp(to))

hence z(tg) belongs to the set R1(u(to)) given by (5.71).

The zooming-in stage. For t > to apply the control law (5.67). Let u(t) =
p(to) for t € [to,to + Tu(sg)), Where Tyeo) is given by the formula (5.73).
Then z(to + Ty(t,)) belongs to the set Ra(u(to)) given by (5.72}). Use (5.73)
again to compute T,(t,)), Where w is the function defined by

wlr) == Kll—no a7l o ag 0 p(AT), r>0.

For t € [to + Tuqee)r to + Tpgey + Toatutto)) ) let
#t) = w(p(to))-
We have ulto + Tueo)) < klto) by (5.74), and Ra(u(te)} = Ralp(te +
Tu(to)))- The proof can now be completed exactly as the proof of Theo-
rem 5.6. O
In general, the requirement of ISS with respect to actuator errors imposed

here is not as severe as the requirement of ISS with respect to measurement
errors imposed in Section 5.3.3. In fact, if an affine system of the form

= f(z) + G(z)u : (5.75)

is asymptotically stabilizable by a feedback law u = ko(x), then one can
always find a feedback law u = k{z} that makes the system

& = f(z) + G(z}k(z) +€) (5.76)

ISS with respect to an actuator disturbance e, whereas there might not
exist a feedback law that makes the system

& = f(z) + Clz)k(z* €) (5.77)

ISS with respect to a measurement disturbance e. This means that for non-
linear systems, the stabilization problem in the presence of input quanti-
zation may be less challenging from the point of view of control design
than the corresponding problem for state quantization. When the con-
dition (5.74) is not satisfied, weaker results can be obtained as in Sec-
tion 5.3.3. b
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5.8.5 OQutput quantization

It is possible to extend the approach presented in Section 5.3.3 to linear
systems with output feedback. Consider the system

= Az + Bu

)= Cz (5.78)

where £ € R™, u € R™, and y € RP. Suppose that (A, B) is a stabilizable
pair-and (C, A) is an observable pair. This implies that therq exist a state
feedback matrix K and an output injection matrix L such that the matrices
A+ BK and A+ LC are Hurwitz. The matrix

5._ (A+BK -BK
=\ 0  A+LC

is then also Hurwitz, and so there exist positive definite symmetric 2n x 2n
matrices P and () such that

AP+PA=-0.

We are interested in the situation where only quantized measurements
g.{y) of the output y are available, where g, is defined by (5.39). We
therefore consider the following dynamic output feedback law, which is
based on the standard Luenberger observer but uses g, (y) instead of y:

F=(A+LC)T+Bu-1L
(A +LO)E + Bu - Lau(y) 519
u= Kz
where ¥ € R"™. The closed-loop systern takes the form

%= Az + BKT
z=(A+ LC)E + BK% — Lg,(y).

" In the coordinates given by

:1“::=( z,‘)E]Rg"'
r-—-Z

we can rewrite this system more compactly as

F=Az+1L (q# (y‘; _ y) . (5.80)

For a fixed value of p, the behavior of trajectories of the system (5.80)
is characterized by the following result. The proof is similar to that of
Lemma 5.1.
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Lemma 5.11 Fiz an arbitrary € > 0 and assume that we have

V Amin(PYM > / Anax(P)ByICI|A(L +€) (5.81)

uhere 2|PL|
9, = ——.
v ’\min(Q)
Then the ellipsoids
Ra(p) 1= {2 : 77 P2 < Mmin(PYM*1*/|C I} (5.82)
and _ _
Ra(p) := {7 : 2TPE < Anax(P)O2A(1 + £)?p?} (5.83)

are invariant regions for the system (5.80). Moreover, all solutions of (5.80)
that start in the ellipsoid R1(p) enter the smaller ellipsoid Ra{p) in finite
time, given by the formula

 min(PIM? = dnx(PYOFICIPAP(1 + ¢)?
82[|C12A%(1 + ) Amin(@)e '
A hybrid quantized feedback control policy described next combines the

above dynamic output feedback law with the idea of updating the value of
u at discrete instants of time as in Section 53.3.

(5.84)

Theorem 5.12 Assume that we have

{ Arain(P) IPLIlICH

Then there exists a hybrid quantized feedback control policy that makes the
. system (5.78) globally asymptotically stable.

PROOF. The zooming-out stage. Set u equal to zero. Increase p in a piece-
wise constant fashion as before, starting from p(0) = 1, fast enough to
dominate the rate of growth of [le#¢||. Then there will be a time ¢ > 0 such

that

¥(t) -
pit) < M-38

(by (5.85), the right-hand side of this inequality is positive). In view of
Condition 1 imposed in Section 5.3.1, this implies

y() )}
o<« M-2A
\" (n(t) :
which is equivalent to .

lau(y(t)] < Mp(t) - 28u(). (5.86)
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We can thus find a time tg such that (5.86) holds with £ = t;. Define

B(tg) := W1 tot7 AT (t—to) ~T y(t)
Z(to) := e CT ulto)q (m) dt (5.87)
0

where W denotes the {full-rank) observability Gramian fj e2"tC7 CeAtdt
and r is a positive number such that

lgu ()l € Mu(to) — Aulto) Vi€ [to,to + 7] (5.88)
Let
A= max |e?| > L.

. D<t<T

In view of (5.88) and the equality
to+T1 -
f e ) OTy(1)dt = Wa(to)
to

we have
|2(to) — Z(to)| < W~ HTAlIC|| Ap(to)

(recall that |CT|| = ||C||). Defining Z(fy + 7) := eA7Z(ty), we obtain
|z(to +7) — E(to + 7)| < W |7A?(|Cl| Ap(to)
and hence

[Z(to + 7)| < |z(to + 7)| + |x{to + 7) — E(to + 7)]
< |E(to + 1) + 2|zto + 7) — T{tp + 7)]
< E(to + ) + 2| W HITAY|Cl| Apto).

Now, choose u{tp + 7} large enough to satisfy

Amin(P) Mpto + 7)
Amex(P) ICI

2 [&(to + 7)| + 2 W ITA® | Cll Auto)-

Then Z(tp + ) belongs to the ellipsoid R (u(to + 7)) given by (5.82).

The zooming-in stage. Choose an £ > { such that the inequality (5.81) is
satisfied; this is possible because of (5.85). We know that x(ty + 1) belongs
to Ri(p(to+ 7)). We now apply the control law (5.79). Let u(t) = p{to+7)
fort € fto + 7,80 + 7 + T}, where T is given by the formula (5.84). Then
z(ta + 7 + T) belongs to the ellipsoid Ra(u(te + 7)) given®by (5.83). For
te [tg_-l—T+T,to+‘r+2T), let

p(t) = Qulto + 7)
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where
o Y POICIAG +e)
N ﬁmin(ﬁ)M

We have @ < 1 by (5.81), hence p(to + 7 + T) < p{to + 7). Moreover,
Ra(plto+7)) = Ralulto+7+ T)). Repeating this procedure as before, we
have the desired control policy. O

The zooming-out stage in the above proof is somewhat more complicated
than in the state quantization case. However, the integral in (5.87) is' easy
to compute {in closed form) because the function being integra.lted is the
product of a matrix exponential and a piecewise constant function.

5.9.6 Active probing for information

The conditions that we imposed on the state quantizer in Sections 5.3.2
and 5.3.3, namely, the inequalities (5.26), (5.34), (5.42), and (5.50), can all
be thought of as saying that the range M of the quantizer is sufficiently
large compared to the quantization error A. This basicaJ.Iy means that the
quantizer takes a large number of values, thereby providing reasonably ac-
curate information about the state within its range. However, it is often of

interest to consider very “coarse” quantizers, i.e., quantizers with a small -

number of values and consequently a small range-to-quantization-error ra-
tio. For example, the function q; : R — {-2,0,2} defined by

-2 if z<—1
qu{z) =140 if —1<z<1 (5.89)
2 if z>1

is a quantizer satisfying Conditions 1 and 2 of Section 5.3.1 with A =1and
an arbitrary M < 3. (We can also pick 2 A < 1, but then we have tc: let
M = A.) This quantizer can be used to model a sensor which determines
whether the temperature of a certain object is “normal,” “too high,” or
oo low.” Zooming in and out in the sense of Section 5.3.3 corresponds
to adjusting the threshold settings. We use the function (5.89) to define a
quantizer g, on R" componentwise by

T
(gu(z))i = (-'1) - {5.90)
¥

where i; > 0,4 = 1,...,n are the zoom variables. (Unlike in the for-
mula (5.39), we do not normalize by multiplying by the zoom lva_.nab]e,
because in this case only the sign of the quantized measurement 1s Impor-

tant and not its magnitude.) _ .
It turns out that we can compensate for the small amount of information
that this quantizer provides, by means of varying quantization parameters
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more frequently than in the hybrid quantized feedback control policies de-
scribed in Section 5.3.3 (and using a different control law). In other words,
there is a trade-off between how much static information is provided by the
quantizer and how actively we need to probe the system for information
by changing the quantization dynamically. The procedure is based on the
following idea: if the state of the system at a given instant of time is known

¢ to belong to a certain rectilinear box, and if we position the quantization
regions so as to divide this box into smaller boxes, then on the basis of
the corresponding quantized measurement we can immediately determine
which one of these.smaller boxes contains the state of the system, thereby
improving our state estimate. The control law will only use quantized mea-
surements at diserete sampling times. The sampling frequency will depend
on how unstable the open-loop system is.

Linear systems

" We now demonstrate how this works in the context of the linear sys-
tem (5.20). '

Proposition 5.13 For the quantizer q, given by (5.89) and (5.90), there
exists a hybrid quantized feedback control policy that mekes the system (5.20)
globally asymptotically stable.

PROOF. It is convenient to use the norm ||z]| = max{|z;| : 1 < i < n} on
R” and the induced matrix norm {|Allec = max{37_, |4i;| : 1 < i < n}
on R™*™,

The zooming-out stage. Set u equal to zero. Let p{0) =1,i=1,...,n
Increase each u; fast enough relative to the rate of growth of |le]o (cf.
the proof of Theorem 5.4). Then there will be a time ¢ > 0 such that

lz:(t)] < pa(t), i=1,...,n
which implies “
| gu{z(t)) = 0. (5.91)
Picking a time o such that (5.91) holds with ¢ = ty, we have

lz(to)loo < Eo := max ui(to)- (5.92)
1<i<n

The zooming-in stage. As a result of the zooming-out stage, Z(to) := 0

can be viewed as an estimate of z(tp) with estimation error of norm at

. most Ep. Our goal is to generate state estimates with estimation errors

approaching zero as ¢t — oo, while at the same time using these estimates
to compute the feedback law. Pick a 7 > 0 such that we have

. — At
A= max e oo < 2. (5.93)
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For t € [to, to + 7), let u{t) = 0. From {5.92) and (5.93) we know that
z(B)llco < Ale(to)leo < ABo, to<tSto+T.

At time fo+7, let pi(to+7) = AEy/3,i=1,...,n. The quantized measure-
ment g, (z(to + 7)) singles out a rectilinear box with edges at rfost 2AEy/3
which contains z(to + 7). Denoting the center of this box by E(to + 1), we

obtain
IE(to + 7) — z(to + )l < AEQ/3. - (5.94)
For t € [to + 7, to + 27), let

u(t) = KE() (5.95)

where 3(t) 1= elA+BR-0=N)F (1 4 1)

and K is chosen so that A + BK is a Hurwitz matrix. From the equations
% — A% + Bu and & = Az + Bu and the formulas (5.93) and (5.94) we
conclude that .

IEE) —z()loo < AllE(to+7)—2(to+T)]loo < A’Ep/3, to+T St <tp+2r.

We will use the notation E(tg + ™) :=lim,.;- Z(to + 8). At time tg + 27,

let
Z;i(to + 27) if Zi(to+277)#0

pi(to +27) = {A2E0/9 if Zi{to+27")=0

for i = 1,...,n. The quantized measurement gu(z(to + 27)) singles.out a
rectilinear box which contains z(tp + 2r). Denoting the center of this box
by Z(te + 27), we have

AEy /6 if Z;(to+277)#0
|Z:(te + 27) — zilto +27)| < {A2E0/9 if Fi(to+2r)=0.
For t € [tg + 27,10 + 37), define the control by the formula (5.95), where

5(t) 1= e(ATBRI—t-INF(4, 4 27).

We have
() - 2(0) oo < AIE(t0-+27)2to+2r) oo SA®Eo/6,  to+27 St<to+3r.

Continuing this process, we see that the upper bound on ||Z(t) — (t)|lo is
divided by at least 2 at the switching times to + 7, %0 + 21',. . fmd grows
by the factor of A < 2 on every interval between the switching times. This
clearly implies that [|Z(t) — z(t)|loc converges to zero as t — 00, thus the
closed-loop system can be written as ‘

t=(A+BK)x+e
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where e := BK(Z — ) — 0. Asymptotic stability follows by the same
reasoning as in the proofs of the previous results. O

If the quantizer does not have to be centered at the origin, i.e., if we
can use quantized measurements of the form g, (z — Z), then we can ensure
that the bound on ||#(¢) — 2(t)(|x is divided by 3 at cach switching time.
The quantizer (5.90) takes 3" different values. More generally, if a quantizer
with N™ values is available, where N > 3 is an integer, then the uncertainty
is decreased by the factor of N at each switching time. In this case, instead
of (5.93) we need to impose the following condition on the dwell time 7
between. the switches:

At [
Joax le]loc < N. | (5.96)
This inequality characterizes the trade-off between the amount of static
information provided by the quantizer and the required sampling frequency.
This relationship depends explicitly on a measure of instability of the open-

" loop system. We see, for instance, that if a lower bound on 7 is given, then

N needs to be sufficiently large for asymptotic stabilization to be possible.

The above technique can also be extended to thé output feedback setting
of Section 5.3.5. The number of values of the quantizer in this case is N?,
where N > 3 is the number of quantization regions for each component of
the quantizer. In place of {5.96), the dwell time 7 will have to satisfy the
inequality

3
W= loeliCN2r (e lle*le)” < N

<t<T

where W is the observability Gramian used in the proof of Theorem 5.12.

Nonlinear systems

There is a relatively straightforward way to extend the above control scheme
to the nonlinear system (5.28). Assume as before that there exists a feed-

- back law u = k(z) that satisfies k(0) = ¢ and provides IS5 with respect to

measurement errors. This time we write this condition in the time domain
and in terms of the infinity norm: there exist functions v € K, and 3 € XL
such that along every solution of the system (5.32) with e a piecewise con-
tinuous signal (this is no loss of generality for our purposes) we have the
inequality

le(®lloe < BUIEO)eost) +7{ up Jle(s}loc) Ve 2O.
sg[0,8]

Proposition 5.14 Assume that the system (5.54) is forward complete. For
the quantizer g, given by (5.89) and (5.90), there exists a hybrid quantized
feedback control policy that makesghe system (5.28) globally asymptotically
stable.

s e

e A e

R ey e 7
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PROGF. Combining the zooming-out techniques used in the proofs of Propo-
sition 5.13 and Theorem 5.6, we can find a time to at which the bound (5.92)
is valid. Next, let L be the Lipschitz constant for the function f correspond-

ing to the region

{2%) ¢ llzlloo < D, Nulleg < 5(D)} (5.97)

where
D := B(Ep,0) + v(2Eo) + 2Eo

and x is a class Ko function satisfying (cf. Section 5.3.4)
k(@)oo < Alllzlee) V2.
Pick a 7 > 0 such that we have
A=el" <2

Similarly to the linear case, we apply the control law
u(t) = k(E(t))

where E(t) := 0 and T between the switching times o + T, to +2r,... is
the solution of the “copy” of the system (5.28), given by

= f(& u).

At the switching times, 7 is updated discontinuously as follows. Af long
as ||z]lec and ||Zl|e do not exceed D, from the equation r—z=f (a:,_u) -
f(z,u) and the formula | f(Z,u) — f(z,u)lloc € L|E — Z[lc We obtain an
upper bound on [|Z(f) — z(t}||c which grows by the factor of A on every
interval between the switching times. This implies that at each switching
time tg+ kv, k=1,2,...,wehavea rectilinear box centered at F(tg+k77)
which contains (o + k7). As before, we use the guantized measurement
to divide this uncertainty box into smaller boxes and determine which one
of these smaller boxes contains the state. We let Z(to + k) be the center
of the new box, and the upper bound on ||Z — || is divided by at least 2.

Since [|Z(to) — (to)llo < Eo and A < 2, it is not difficult E) see that
(z,u) and (F,u) never leave the region (5.97), hence e(t) = Z(t) — z(t)
and consequently z(t) converge to zero as ¢t — oc (cf. Exercnafe A._2). Lya-
punov stability of the origin is also not hard to show, keeping in mind that
£(0,0) = 0 and k(0) = 0 (cf. Exercise 5.3). o

6

Systems with Large
Modeling Uncertainty

6.1 Introductory remarks

This chapter is devoted to control problems for uncertain systems. Model-
ing uncertainty is typically divided into structured uncertainty {(unknown
parameters ranging over a known set) and unstructured uncertainty (un-
modeled dynamics). When we say that the uncertainty is “large,” we usu-
ally refer to the structured uncertainty. Informally, this means that the
parametric uncertainty set is so large that robust control design tools are
inapplicable and thus an adaptive control approach is required. It is proba-
bly impossible to formally distinguish between an adaptive control law and
a nonadaptive dynamic control Iav;v. However, one can in principle draw
such-a distinction if one knows how the control law in question was de-
signed. To this end, the following circular “definition” is sometimes given:
a control law is adaptive if it involves adaptation.

By adaptation one usually means a combination of on-line estimation
and control, whereby a suitable controller is selected on the basis of the
current estimate for the uncertain process. More precisely, one designs a
parameterized family of candidate controllers, where the parameter varies
over a continuum which corresponds to the parametric uncertainty range
of the process in a suitable way (for example, the candidate controllers
may be in 1-to-1 correspondence with admissible process models). One
then runs an estimation procedure, which provides time-varying estimates
of the unknown parameters of the process model. According to the cer-
tainty equivalence principle, at each instant of time one applies a candidate
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controller designed for the process model that corresponds to the current
estimate.

This traditional approach to adaptive control has some inherent limi-
tations which have been well recognized in the literature. Most notably,
if unknown parameters enter the process model in complicated ways, it
may be very difficult to construct a continuously parameterized family of
candidate controllers. Parameter estimation over a continuum is also a chal-
lenging task. These issues become especially severe if robustness and high
performance are sought. An alternative approach to control of uncertain
systems, which we describe here and refer to as supervisory control, seeks
to overcome some of the above difficulties while retaining the fundamental
ideas on which adaptive control is based. The main featurc that distin-
guishes it from conventional adaptive control is that controller selection is
carried out by means of logic-based switching rather than continuous tun-
ing. Switching among candidate controllers is orchestrated by a high-level
decision maker called a supervisor. This situation is sketched in Figure 20
on page 75.

When the controller selection is performed in a discrete fashion, one
is no longer forced to construct a continuously parameterized family of
controllers (which may be a difficult task, especially when using advanced
controllers). It is also not necessary to use continuous methods, such as gra-
dient descent, to generate parameter estimates. This allows one to handle
process models that are nonlinearly parameterized over nonconvex sets and
to avoid loss of stabilizability of the estimated model, which are well-known
difficulties in adaptive control. The ability of supervisory control to over-
come obstructions that are present in continuously tuned adaptive control
algorithms is perhaps not surprising, especially if we recall for comparison
the ability of hybrid control laws to overcome obstructions to continuous
stabilization (see Chapter 4).

Another important aspect of supervisory control is modularity: as we
will see, the analysis of the overall system relies on certain basic properties
of its individual parts, but not on the particular ways in which these parts
are implemented. As a result, one gains the advantage of being able to use
“off-the-shelf” control laws and estimators, rather than tailoring the design
to the specifics of an adaptive algorithm. This provides greater flexibility in
applications (where there is often pressure to utilize existing control struc-
tures) and facilitates the use of advanced techniques for difficult problems.

Moreover, in many cases the stability analysis of the resulting switched
system appears to be more tractable than that of the time-varying systems
arising in conventional adaptive control. For example, if the process and
the controllers are linear time-invariant, then on every interval between
consecutive switching times the closed-loop system is linear time-invariant,
regardless of the complexity of the estimation procedure and the switching
mechanism. The analysis tools studied in Part II are directly applicable in
this context.
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Although we occasionally refer to concepts from adaptive control in order
to highlight analogies and differences, the reader does not need to have any

- familiarity with adaptive control to be able to follow this chapter.

6.2 First pass: basic architecture

In this section we describe, in general terms, the basic building blocks of a
supervisory control! system. Let PP be the uncertain process to be controlled,
with input « and output y, possibly perturbed by a bounded disturbance
input d and a bounded output noise n. We assume that the model of P is
a member of some family of admissible process models

F=J% (6.1)
peEP

where P is’a compact index set and each Fp denotes a family of systems
“centered” around some known nominal process model v,. We think of
the set P as representing the range of parametric uncertainty while for
each fixed p € P the subfamily F, accounts for unmodeled dynamics. A
standard problem of interest is to design a feedback controller that achicves
state or output regulation of P.

Example 6.1 As a simple example that helps illustrate the ideas, consider
the system
y=y*+p'v, yeR

where p* is an unknown element of the set P := [-10,-0.1] U [0.1, 10].
The origin is excluded from P to preserve controllability. We consider the
case of no unmodeled dynamics, so that for each p € P the subfamily F,
consists of just the nominal process model § = y? + pu. Since the sign of
p* is unknown, it is intuitively clear that no single control law is capable

of driving ¥ to the origin and logical decisions are necessary. O

We thus consider a parameterized family of candidate controllers {C, :
g € @}, where Q is some index set, and switch among them on the basis
of observed data. The understanding here is that the controller family is
sufficiently rich so that every admissible process model from F can be
stabilized by placing in the feedback loop the controller C, for some g € Q.
Figure 20 should only be regarded as a conceptual illustration. In practice it
is undesirable to run each candidate controller separately, because this leads
to the presence of out-of-the-loop signals which may blow up, and because
for the case of an infinite set Q this is not implementable. Instead, one
designs a suitable switched system {whose finite dimension is independent
of the size of Q) which is capable of generating all necessary control input
signals.
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It seems natural to identify the index sets P and @, although in some
situations it may be advantageous to take @ to be different from P. If P is
a discrete set, there is no need to embed it in a continuum (as one wquld
normally do in the context of adaptive control); instead, one can.swltch
among a discrete family of corresponding controllers. If 7 is a continuum,
then one has the choice of working with a continuum of controllers (e.g., by
taking Q@ = P) or a discrete—typically finite—family of contro]'le;s. Fo-r the
system in Example 6.1 we can let @ = P and consider the f;tatlc ca.ndu?ate
control laws up = —%(y2 +y), p € P. However, it is possible to ﬁnq :]ust
two control laws such that every process model is asymptoticallj-( stabﬂizf:d
(at least locally) by one of them. It is often easier to work with a ﬁm.te
controller family. In fact, one may even want to replace the set P by its
finite subset and absorb the remaining parameter values into umyodeled
dynamics. However, in this case one needs to ensure that t.ht? resultmg con-
trol algorithm is sufficiently robust to cover all of the original admlssz‘?le
process models, which in general might not be true. We are thus begin-
ning to see various design options and challenges associated with them. To
remain focused, we put these issues aside for the moment.

The switching is orchestrated by a high-level supervisor. We now begin
to describe how this task is performed. The supervisor consists of thre-e
subsystems, as shown in Figure 36. The first subsystem is called the mult:-
estimator. This is a dynamical system whose inputs are the input u and
the output y of the process P’ and whose outputs are denoted by Y, P €
P. The understanding is that for each p € P, the signal yp provides an
approximation of y (in a suitable asymptotic sense) if P belongs to Fp, no
matter what control input u is applied to the process. In particular, we can
require that yp would converge to y asymptotically if P were equal to th-e
nominal process model v, and there were no noise or disturbances. This
property can be restated in terms of asymptotic convergence to zero of one
of the estimation errors

ep i =1Yp— peP. (6.2)

Consider again the system from Example 6.1. We can let the estimator
equations be

Hp=—{p-v+ ¥* + pu, peP. (6.3)

Then the estimation error epe = yp» — ¥ satisfies &y = —€pe and hence

converges to zero exponentially fast, for an arbitrary f:ontrol u.

One concern (as with the candidate controllers) is that realizing the
multi-estimator simply as a parallel connection of individua.l'estirr‘xator
equations for p € P is not efficient and actually impossibie 1f_'P is an
infinite set. The estimator equations (6.3) can be implemented differently

as follows. Consider the system

2"’1 ="“211+'y+y2 (6-4)
p=—22tu
o
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FIGURE 36. The structure of the supervisor
together with the outputs

Yp =21 + pzz, peP. (6.5)

It is straightforward to check that these outputs satisfy the same cqua-
tions (6.3), with the dynamics of the multi-estimator now being described
by the two-dimensional system (6.4}. This idea is known as state sharing.
State sharing is always possible if the estimator equations are “affinely sep-
arable” in the unknown parameters, as in g = — Ay, + f1{p) f2(y,u). Note
that it is not directly relevant whether or not the unknown parameters en-
ter linearly. The family of signals (6.5) is of course still infinite, but at cach
particular time we can look any one of them up or perform mathematical
operations—such as computing the minimum—with the entire family.

If the multi-estimator is constructed properly, then the estimation error
€p> is small in some sense, whereas there is no a priori reason for the other
estimation errors to be small. Therefore, it seems intuitively reasonable
(although not justified formally in any way) to pick as a current estimate of
p* the index of the smallest estimation error. Rather than basing decisions
on the instantaneous values of the estimation errors, however, we would
like to take their past behavior into account. Thus we need to implement
an appropriate filter, which we call the monitoring signel generator. This
is a dynamical system whose inputs are the estimation errors and whose
outputs tip, p € P are suitably defined integral norms of the estimation
errors, called monitoring signals. For example, we can simply work with
the squared £3 norm

t
uo®):= [ ler)fdr, e, (6.6)
These monitoring signals can be generated by the differential equations

fp=legl’,  pp(0)=0, peP. (6.7)

(This definition of the monitoring signals is actually not satisfactory be-
cause it does not involve any “forgetting factor” and the signals p, may
grow unbounded; it will be refined later.) .

‘Again, we do not want to generate each monitoring signal individually.
‘The idea of state sharing can be applied here as well. To see how this works,
let us revisit the multi-estimator for Example 6.1, given by (6.4) and (6.5).
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Each estimation error can be equivalently expressed as e, = 21 +p22 — ¥
so that we have

e = (21— y) +2p0(n —y) +9°4,  pEP.

If we now define the monitoring signal generator via

= (21 — y)?
7z = 222(z1 — ¥)
s = 23

po="h +pm+p'm, PEP
then the equations (6.7) still hold.

Exercise 6.1 Suppose that we take the £; norm instead of the squared
L2 norm in (6.6). Can we still use state sharing?

The last component of the supervisor is the switching logic. This is a
dynamical system whose inputs are the monitoring signals pp, p € P and
whose output is a piecewise constant switching signal @, taking values in
Q. The switching signal determines the actual control law u = t. ap-

plied to the process, where ug, ¢ € Q are the control signals generated

by the candidate controllers. The underlying strategy basically consists of
selecting, from time to time, the candidate controller known to stabilize
the process model whose corresponding monitoring signal is currently the
smallest. Specific ways of doing this will be studied below. The resulting
closed-loop system is a hybrid system, with discrete state o

The supervision paradigm outlined above is estimator-based, as opposed,
for example, to approaches relying on a prespecified controller changing

sequence. Another alternative, not considered here, is to incorporate an

explicit performance-based criterion into the controller selection process.

6.3 An example: linear supervisory control

Consider the problem of driving to zero, by means of output feedback, the
state of a stabilizable and detectable linear system

&= Apz+ Bpu (©8)
y=Cpz
where 7 € R™, u € R™, y € R¥, {Ap, By, Cp : p € P} is a given finite family
of matrices, and p* € P is unknown.
If the value of p* were available, then we could apply, for example, the
standard observer-based linear dynamic output feedback law to stabilize the
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system. Since p* is not known, we adopt the supervisory control approach.
In this example we can use the Luenberger observer in designing both
the multi-estimator and the candidate controllers. To this end, consider a
family of observer-based estimators parameterized by P of the form

Ep = (Ap + KpCp)zp + Bpu — Kpy

o ¥p = Cpp (69)
and the corresponding candidate control laws
up = Fpxp, pEP. (6.10)

Here the matrices K, and F;, are such that the eigenvalues of A, + K,,C
anfi Ap + BpFy have negative real parts for each p € P (such matrri,ce:
exist because each system in the family (6.8) is stabilizable and detectable
by assumption}. We also consider the estimation errors defined by the for-
n:mlas (6.2) and the monitoring signals generated by the differential equa-
tions (6.7). Each up(t) is thus given by the equation (6.6). We will design
a hybrid feedback control law of the form u = u,, where o : [0, 00) — P iy
- a switching signal. In the present casc this means u(t) = Fy)ca-

Initialize o

FIGURE 37. The hysteresis switching logic

One way to generate the switching signal ¢ is by means of the so-

- called hysteresis switching logic, illustrated via the computer-like diagram

in Figure 37. Fix a positive number A called the hysteresis constant. Set
(D) = arg mingep i, (0). Now, suppose that at a certain time o has just
switched to some ¢ € P. The value of & is then held fixed until we have
mingep pip(t) + h < pg(t). If and when that happens, we set o equal to
arg mingep pp(t). When the indicated argmin is not unique, a particular
walue for ¢ among those that achieve the minimum can be chosen arbi-
trarily. Repeating this procedure, we obtain a piecewise constant switching
signal which is continuous from the right everywhere.

It follows from (6.2), (6.8}, and (6.9) that the estimation error e,. con-
verges to zero exponentially fast, regardless of the control u that is applied.
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The formula (6.6) then implies that - (t) is bounded from above by some
number K for all ¢ > 0. In addition, all monitoring signals j, are nonde-
creasing by construction. Using these two facts and the definition of the
hysteresis switching logic, it is not hard to prove that the switching must
stop in finite time. Indeed, each yy has a limit (possibly o) 88 £ — o0,
Since P is finite, there exists a time T such that for each p € P we either
have pp(T) > K or pp(te) — pip(ts) < h for all iz > ¢, 2 T. Then for
¢t > T at most one more switch can occur. We conclude that there exists a
time 7™ such that o(t) = ¢* € P for all t > T*. Moreover, ;- is bounded
because fipe is, hence ege € L2 by virtue of (6.6).

After the switching stops, the closed-loop system (excluding out-of-the-
loop signals} can be written as

(;‘:) :ZE{% 61)
e=7(2

where - . B, Fyr )
T "'Kq'op' Aq‘ +Kq'Cq' + Bq'Fq'
and
U = ("Cp' Cq') .
If we let
we fe R _ Kp.
B th

then it is straightforward to check that

= [Ap + KpCpr  BpFge — KpoCor
H’Kc‘( 0 Ap+BoFp )
The matrix on the right-hand side is Hurwitz, which shows that the sys-
tem (6.11) is detectable with respect to eg-. It now remains to apply the

standard output injection argument. Namely, write

(;:) _(A-K0) (;) +Reg

and observe that  and z,- converge to zero in view of stability of A— K'C
and the fact that e, € L. _ .
We emphasize that the particular choice of candidate control laws given
by (6.10) is by no means crucial. Assume, for example, that every system in
the family (6.8) is stabilizable by a static linear output feedback. In other
words, assume that for each p € P there exists a matrix G, such that the
eigenvalues of Ap + BpGpCy have negative real parts. A straightforward
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modification of the above argument. shows that if we keep the estimators
(6.9) but replace the control laws (6.10) by u, = Gy, we still achieve state
regulation.

The above problem is rather special, and the solution and the method of
proof have several drawbacks so they are only given here as an illustration
of the main ideas. Nonetheless, the essential features of this example are
present in the supervisory control strategies developed in the subsequent

- sections.

6.4 Second pass: design objectives

In this section we explain, informally, the basic requirements that need to be
placed on the different parts of the supervisory control system. More precise
descriptions of these requirements, and technigues for fulfilling them, will
be discussed in Section 6.5. For simplicity, we first consider the case when
the process parameter set P and the controller parameter set Q are equal,
and after that explain what modifications are needed to handle the gencral
situation.

As we already mentioned in Section 6.2, the multi-estimator should be
designed so that each particular y, provides a “good” approximation of
the process output y—and therefore e, is “small”—whenever the actual
process model is inside the corresponding subfamily ;. Since the process is
assumed to match one of the models in the family F, we should then expect
at least one of the estimation errors, say ez., to be small in some sense.
For example, we may require that in the absence of unmodeled dynamies,
noise, and disturbances, ep- converge to zero exponentially fast for every
control input 4 (cf. Section 6.3). It is also desirable to have an explicit
characterization of e,» in the presence of unmodeled dynamics, noise, and
disturbances.

The property that we impose on the candidate controllers is that for
every fixed ¢ € @, the closed-loop system consisting of the process, the
multi-estimator, and the controller C, (in other words, the system obtained
when the value of the switching signal is frozen at g) must be detectable with
respect to the estimation error e,. Detectability for systems with outputs
can be defined in several different ways which are not equivalent in the

‘nonlinear context, but it invariably means that the smallness of e, in a

suitable sense should imply the smallness of the state of the system. We
already saw the relevance of detectability in Section 6.3.

There are two more required properties which concern the switching
logic; they become especially significant when, unlike in Section 6.3, the
switching does not stop. First, we need to have a bound on e, in terms of
the smallest of the signals ep, p € P. Th¥ bound is usually stated in terms of
suitable “energy” expressions for the estimation errors, which are related to
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the monitoring signals. Second, the switching signal & should preserve the
detectability property of the closed-loop system, i.e., the overall switched
system should remain detectable (in the same sense as in the previous
paragraph) with respect to the output e,. These two properties are typically
at odds: on one hand, to keep e, small we shfbuld switch to the index of
the smallest estimation error: on the other hand, too much switching may

destroy detectability.

Exercise 6.2 Consider a finite (or infinite but compact) family of de-
tectable linear systems & = Apz, y = Cpz, p € P. Prove that for every
switching signal ¢ with a sufficiently large (average) dwell time, the state
of the switched linear system & = A,z converges to zero whenever the
output y = Cpa converges to zero. What if the detectability hypothesis is

strengthened to observability?

To summarize, the main requirements placed on the individual compo-
nents of the supervisory control system can be qualitatively expressed as

follows:
1. At least one of the estimation errors is small.

2. For each fixed controller, the closed-loop system is detectable through
the corresponding estimation error. :

3. The signal e, is bounded in terms of the smallest of the estimation
€errors.

4. The switched closed-loop system is detectable through e, provided
that detectability holds for every frozen value of .

It is not difficult to see now, at least conceptually, how the above prop-
erties of the various blocks of the supervisory control system can be put
together to analyze its behavior. Because of Property 1, there exists some
p* € P for which e, is small. Property, 3 implies that e, iz small. Proper-
ties 2 and 4 then guarantee that the state of the closed-loop system is small.
Proceeding in this fashion, it is possible to analyze stability and robust-
ness of supervisory control algorithms for quite general classes of uncertain
systems, as will be shown below.

When the sets P and Q are different, we need to have a controller assign-
ment map x : P — Q. Let us say that a piecewise constant signal ¢ taking
values in P is o-consistent (with respect to this map x) if x(((t)) = o(¢)
for all ¢ and the set of discontinuities of ¢ is a subset of the set of disconti-
nuities of o (on a time interval of interest). More generally, we can consider
a set-valued map x : P — 29, where 2 stands for the set of all subsets
of Q, and replace the first property in the definition of g-consistency by
x(¢(t}) D o{t) for all ¢ (this is natural when some process models are sta-
bilized by more than one candidate controller, which is actually very often
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the case). Properties 2 and 4 need to be strengthened to guarantee that
the closed-loop switched system is detectable with respect to the output
e¢, for every o-consistent signal {. Property 3, on the other hand, can be
relaxed as follows: there must exist a o-consistent signal { such that e; is
bounded in terms of the smallest of the signals ep, p € P. Then the analysis
sketched above goes through with suitable minor moditications, as we will
see in Section 6.6.2.

Not surprisingly, the four properties that were just introduced for super-
visory control have direct counterparts in conventional adaptive control.
Property 1 is usually implicit in the derivation of error model equations,
where one assumes that, for a specific value of the parameter, the output
estimate matches the true output. Property 2 is known as tunability. Prop-
erties 3 and 4 are pertinent to the tuning algorithms, being typically stated
in terms of the smallness (most often in the L7 sense} of the estimation
error and the derivative of the parameter estimate, respectively.

6.5 Third pass: achieving the design objectives

6.5.1 Multi-estimators
Linear systems

As we saw in Section 6.3, the observer-based approach to the estimator
design in the linear case yields exponential convergence of the estimation
error associated with the actual unknown parameter value. We would like to
have a bound on this estimation error in the presence of noise, disturbances,
and unmodeled dynamies. Let us restrict our attention to single-input,
single-output (SISO) controllable and observable linear processes. With
some abuse of notation, we identify the process models with their transfer
functions.

There are several ways to specify allowable unmodeled dynamics around
the nominal process model transfer functions v, p € P. For example, take
two arbitrary numbers é > 0 and A, > 0. Then we can define

Fyi= {014 8 485 16 oo <6, 168 lcon, S8} PEP (6.12)

where || - [|loo,. denotes the e*+*-weighted M., norm of a transfer function:
I¥]lc.re = SUP,cr [¥(jw — Au)]. Alternatively, one can define F, to be the
ball of radius & around i, with respect to an appropriate metric. Another
possible definition is

N, + 32
o = 1 |6 Hloo <4, |65 oo <é;, P .
P {Mp ¥ 6’;‘- Ilap “ Ay = (i} ||6p ” WAy } peE (6 13)

where v, = Np/M, is a (normalized) coprime factorization of v, for each
p € P; here N and M, are stable transfer functions. This setting is more
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general than (6.12) in that it allows for uncertainty about the pole locations
of the nominal process model transfer functions. With allowable unmodeled
dynamics specified in one of the aforementioned ways, we will refer to the
positive parameter & as the unmodeled dynamics bound.

Coprime factorizations are actually suggestive of how one can go about
designing the multi-estimator. Suppose that the admissible process models
are described according to the formula (6.13). If there is a common upper
bound k on the McMillan degrees of Vo P € P, then we can assume that
for each p € P the transfer functions N, and M, take the for.m Np =
ny/ B and M, = my/ 8, where n, and m, are polynomials fmd 3 is a fixed
(independent of p) poiynomial of degree & with all roots in the open left
half-plane. Here and elsewhere, we denote by p* an {unknown) element of
P such that the transfer function of P belongs to F(p*), i.e., the “true”
parameter value; due to possibly overlapping sets of unmodeled dyr!a.mics,
p* may not be unique. The input-output behavior of the process is then

defined b
) ’ —Np'+63'(u+d)+n
YT My + o '

We can rewrite this as
My + 67y = Np-u + 8. u+ Npod + 55.d + Mpm + 82n

which is equivalent to
y= 'B_—_ﬂm_iy_g;':y+ ;"_;:u+a;.u+ ’%‘d+ nd+ -"—gin+5;'ln.

We can now introduce the multi-estimator equations

—m, n
yp=ﬁ—’6——gy+-ﬁpu, pG'P.

The last two equations imply
" Mg
epe = 8Ty — Ohu — lg—d - Gd—"En-n.

We see, in particular, that if n = d = 0 and § = 0, then e;- decays
exponentially fast. This multi-estimator is readily amenable to a state-
shared realization of the form

»
2 = Agz; + beu
Zg = Agza + bey
Yp = c;"z, peP.

The above discussion is only given for the purpose of i]lustration,' and
we do not formalize it here. It turns out that, using standard techniques
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from realization theory, it is possible to design the multi-estimator in a
state-shared fashion and guarantee that the followjng condition holds: for
a sufficiently small A > 0 there exist positive constants &;,4; that only de-
pend on the unmodeled dynamics bound & and go to zero as & goes to zero,
positive constants By, By that only depend on the noise and disturbance
bounds and go to zero as these bounds go to zero, and positive constants
C1,C; that only depend on the system’s parameters and on initial condi-
tions, such that along all solutions of the closed-loop system we have

t t
/ e”"eﬁ. (r)dr < B1e*™ + ¢, + 61_/ e”’uz(r)}'r {6.14)
0 0
and
t
lep=(£)] < Bz + Coe™™ 4 fpe™™ / e2ATy2(1)dr. (6.15)
0

These two inequalities provide a precise quantitative description of Prop-
erty 1 from Section 6.4.

Nonlinear systems

A general methodology for designing multi-estimators for nonlinear sys-
tems, which would enable one to extend the results available for the linear
case, does not seem to exist. However, for certain classes of nonlinear sys-
tems it is not difficult to build multi-estimators that at least ensure expo-
nential convergence of ep. to zero when there are no noise, disturbances,
or unmodeled dynamics. We already discussed one such example in Sec-
tion 6.2 (Example 6.1). In that example, the entire state of the process was
available for measurement. The class of systems whose output and state
are equal is actually quite tractable from the viewpoint of multi-estimator
design. Indeed, if the process model takes the form

3.' = f(y: U:P*)

where p* € P, then we can use the estimator equations

Yp=Ap(¥p—¥) + fly,u,p}, peP

where {Ap : p € P} is a set of Hurwitz matrices. This implies é,. = A,. ¢,
which gives the desired behavior. Using the idea of state sharing explained
in Section 6.2, it is often possible to implement the above multi-estimator
via a finite-dimensional system even if P is an infinite set.

Another case in which achieving exponential convergence of ep- (in the
absence of noise, disturbances, and unmodeled dynamics) is straightforward
is when the process is “output injection away” from an exponentially stable
linear system. Namely, suppose that the process model belongs to a family
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of systems

i = Apz + f(Cpr,u,p)

y=0Cpz
where p € P and the matrices A, , p € P are Hurwitz. Then the estimator
equations can be defined, for each p € P, as

Ep = ApTp + fly,u,p)

¥p = Cp-

This multi-estimator design also applies in the case when each process
model is modified by a state coordinate transformation, possibly dependent

on p.

6.5.2 Candidate controllers

We now discuss Property 2 from Section 6.4 in more detail. This is a prop-
erty of the system shown in Figure 38, where g is an arbitrary fixed element

of Q.

Process ¥
Uqg Mlﬂti" Yq - Egq
Controller C, Estimator i
3
Y

FIGURE 38. The closed-loop system (6.17)

Let us write the (state-shared) multi-estimator as
j:l = F(Il! '.lh'“)
Yp = hy(ze), peEP
where hy(0) =0 for each p € P. Here and below, all functions are assumed
to be sufficiently regular (e.g., C!). .

The input to the controller C, in the figure is the output y of the process.
However, when writing state-space equations, we assume that C, takes the
more general form

Fe = gg(Te) Tes €q)
u = ro{Zc, T, €q)

o

6.5 Third pass: achieving the design objectives 143

with r4(0,0,0) = 0. Assuming the entire state z; of the multi-estimator to
be available for control is reasonable, because the multi-estimator is imple-
mented by the control designer. Since y = hg(z:s) — e, by virtue of (6.2),
this set-up includes the situation depicted in the figure as a special case. A
particular choice of inputs to the candidate controllers may vary.

A convenient way of thinking about the closed-loop system is facilitated
by Figure 39. This figure displays the same system as Figure 38, but the
block diagram is drawn differently in order to separate the process from the
rest of the system. The subsystem enclosed in the dashed box is the feed-
back interconnection of the controller C, and the multi-estimator, which we
view as a system with input e,. This system is called the injected system.
Its state-space description is

e = Qq(zm Ty, eq)

Te = F(ze, hg(ze) ~ €q,rq(Tc, Te, €g)). (6.16)

Process

Uq Multi-
Estimator

Controller C,

FIGURE 39. A different representation of the closed-loop system (6.17)
If the uncertain process P has dynamics of the form

£ = f(z,u)
y = h(z)

then the overall closed-loop system shown in the figures is given by

& = f(z,ry(2c, Te, hy(Te) — h(2)))
e = gq(-ff?c, L, hq(:rr.) - h(m)) (6.17)
Iy = F(ze, h(z), Tq (xc, T, hq(xﬂ.) — h(z))).

Let us denote the state (z; z; ze) of this system by x and assign the output
of this system to be the estimation error e, = hg(xg) — h(:c}. We would like
1o establish conditions under which the above system is detectable with
respect to eg. For linear systems, one set of such conditions is provided
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by the so-called certainty equivalence stabilization theorem from adaptive
control. Adopted to the present context, this theorem sa.ys.that the closed-
loop system is detectable through the estimation error if the controller
(internally) asymptotically stabilizes the multi-estimator and the process

is detectable. ' . _
The next result is a natural generalization of the certainty equivalence

stabilization theorem to nonlinear systems. Detectabi]ity_ now has to be
interpreted in a nonlinear sense, and the effect of the input e, on the
injected system needs to be explicitly taken into account. See Section A.6
for precise definitions of the properties used below.

Theorem 8.1 Assume that the process P is input/output-to-state stable
{I0SS).
1. If the injected system (6.16) is input-to-state stable (ISS) with re-
spect to eg, then the closed-loop system (6.17) is output-to-state stable
(OSS) with respect to eq.

2. If the injected system (6.16) is integml-input—to-state‘ stable (iISS)
with respect to e;, then the closed-loop system {6.17) is integral-input-
to-state stable (i0SS) with respect to e,.

SKETCH OF PROOF. The result can be proved by straightforward (although .

tedious) manipulations, using the definitions of the relevant input-to-state
and output-to-state properties. We do not give a complete proof h‘ere, but
provide an informal signal-chasing argument which should convince the
reader that the result is true. What we need to show is that if e, is small,
then x is small (here the smallness of e, is defined in the supremum norm
sense or in an integral sense, while the smallness of x is always understqod
in the supremum norm sense). So, assume that e, is small. The standing
assumption on the injected system implies that z; and z¢ are small, hence
so are u and y,. It follows that y = yy — e is also small. Finally, use the
detectability property of the process to deduce that z is small. .- O

Exercise 6.3 Write down the injected system for the process from Ex-
ample 6.1 and the candidate controllers and the multi-estir}'m.to; proposed
for that example. Show that it has the iISS property required in the sec-
ond statement of Theorem 6.1. (Hint: start by working with (6.3) rather
than (6.4), and use Lemma A.4 and the fact that the state of an exponen-
tially stable linear system with an £, input converges to zero.)

Conditions such as those provided by Theorem 6.1 are very useful be-
cause they decouple the properties that need to be sa,tisﬁed' by the parts
of the system constructed by the designer from the properties of the un-
known process. Note that the above result does not rely on any exp.lmlt
assumptions regarding the structure of the process modeling uncertainty.
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As a direct extension, one can treat the situation where the process has ex-
ternal disturbance inputs, as long as the I0SS assumption is still satisfied.

By virtue of Theorem 6.1, the design of candidate controllers is reduced to ‘

the (integral-)ISS disturbance attenuation problem, which has been studied
in the nonlinear control literature. One aspect that substantially simplifics
this problem in the current setting is that the values of the disturbance
{whose role is played by the estimation error e,) are known and can be
used by the controller.

Since (integral-)input-to-state stabilization of the multi-estimator is of-
ten a challenging task, it is of interest to obtain alternative conditions for
detectability, which demand less from the injected system at the expense
of more restrictive hypotheses on the process. A result along these lines,
known as the certainty equivalence output stabilization theorem, is used in
model reference adaptive control. Here it can be stated as follows: in the
linear case, the detectability property of the closed-loop system still holds
if the controller only asymptotically output-stabilizes the multi-estimator
(with respect to the output y,), the controller and the multi-estimator are
detectable, and the process is minimum-phase. To see the reason behind
this, assume that e is small (or just set e, = 0). Then y,, and consequently
¥ = Y — €q, are small in view of output stability of the injected system.
From the minimum-phase property of the process it follows that x and u
are also small. Detectability of the controller and the multi-estimator now
imply that z, and z. are small as well.

There is a nonlinear counterpart of the certainty equivalence output sta-
bilization theorem, which relies on a variant of the minimum-phase property
for nonlinear systems and involves several other concepts. Its discussion is
beyond the scope of this book.

6.5.8 Switching logics ' .
The sets- P and ¢ are the same

Let us first consider the case when P = Q. Ag we mentioned in Section 6.2,
the intuitive goal of the switching logic is to realize the relationship

o(t) = argmin (1) (6.18)

because the right-hand side can be viewed as an estimate of the actual
parameter value p*. However, there is no goarantee that the cstimates
converge anywhere, let alone to the correct value (note, in particular, thai
no persistently exciting probing signals are being used). Moreover, defining
o according to (6.18) may lead to chattering. A better understanding of how
the switching logic should be designed can be reached through examining
Properties 3 and 4 of Section 6.4.

Suppose for the moment that ¢ is defined by (6.18), so that we have
Ho(t) < pp(t) for all ¢ and all p € P. Using this inequality, it is often
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possible to arrive at a suitable representation of Property 3. For example,
take P to be a finite set with m elements and the monitoring signals to
be the squared Lz norms of the estimation errors as in {6.8). Ignoring the
chattering issue, suppose that o is a piecewise constant switching signal.
Then Property 3 is satisfied in the £; sense, namely,

¢ :
2 : 2
./o lea{T)j%dr < mt’pelgjo ie,,('r).l dr.

{A more general result along these lines for hysteresis-based switching will
be proved shortly.)

Ensuring Property 4, on the other hand, is more problematic. Just as sta-
bility may be lost due to switching, detectability for systems with outputs
may be destroyed by switching; for example, just think of asymptotically
stable linear systems with zero outputs which do not share a common Lya-
punov function. The simplest way around this problem is to guarantee
that the switching either stops in finite time (as in Section 6.3) or is slow
enough. In the linear case, detectability under sufficiently slow switching
among detectable systems can be shown with the help of the standard out-
put injection argument (see Exercise 6.2). Alternatively, one can ensure
that the switching does not destabilize the injected system (i.e., the inter-
connection of the switched controller and the multi-estimator), in which
case detectability of the closed-loop system can be established as in Sec-
tion 6.5.2. This Iatter line of reasoning will be implicitly used in the analysis
given in Section 6.6. (Instead of relying on slow switching conditions, one
may be able to utilize specific structure of the systems being switched, but
this approach is not pursued here.)

There are essentially two ways to slow the switching down. One is to
introduce a dwell time 74 and set o equal to the index of the smallest mon-
itoring signal only every 74 units of time. This results in the dwell-time
switching logic, which is illustrated by Figure 40. Under suitable assump-
tions, Property 4 is automatic if the dwell time 74 is chosen to be sufficiently
large. Characterizing Property 3 is more difficult, because if the switching is
only allowed at event times separated by 74, then p, is not always guaran-
teed to be small compared to the other monitoring signals. Although there
are ways to handle this problem, the above observation actually reveals a
significant disadvantage of dwell-time switching. With a prespecified dwell
time, the performance of the currently active controller might deteriorate
to an unacceptable level before the next switch is permitted. If the uncer-
tain process is nonlinear, the trajectories may even escape to infinity in
finite time! In view of these considerations, we drop the discussion of the
dwell-time switching logic altogether and explore an alternative direction.

A different way to slow the switching down is by means of hystere-
sis. We already explored this idea in Section 6.3. Hysteresis means that
we do not switch every time minpep pip(t) becomes smaller than . (1),
but switch only when it becomes “significantly” smaller. The threshold
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FIGURE 40. The dwell-time switching logic

| Initialize o l

FIGURE 41. The scale-independent hysteresis switching logic
L4
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of tolerance is determined by a hysteresis constant h > 0. Let o(0) =
arg mingep pp(0). Suppose that at a certain time t; the value of ¢ has just
switched to some g € P. We then keep o fixed until a time £;41 > & such
that (1 + h) mingep pp(tit1) < tg(ti+1), at which point we let o(tiv1) =
arg mingep pp(tit1). The accompanying diagrdm is shown in Figure 41.
When the indicated argmin is not unique, a particular candidate for the
value of o is selected arbitrarily. Repeating the above steps, we generate
a piecewise constant switching signal o which is continuous from the right
everywhere. If the signals i, p € P are uniformly bounded away from zero,
i.e., if for some g, > 0 we have uy(f) > €, forallpe€ Pandallt >0,
then chattering is avoided: there can only be & finite number of switches
on every bounded time interval.!

The only difference between this switching logic and the one used in
Section 6.3 is that multiplicative hysteresis is used here instead of additive
hysteresis. The advantage gained is that with multiplicative hysteresis, the
output o of the switching logic would not be affected if we replaced the
signals 5, p € P by their scaled versions

Ap(t) :=O()up(t), peP (6.19)

where © is some positive function of time. For this reason, the above switch-
ing logic is called the scale-independent hysteresis suitching logic. For anal-
ysis purposes, it is very useful to work with the scaled signals fip, p € P,
where © is chosen so that these signals have some additional properties
(such as monotonicity}. The actual monitoring signals being implemented
and used for the switching logic are still the original ones up, p € P (be-
cause the presence of monotonically increasing signals in a supervisory
control system is undesirable).

Unlike with the dwell-time switching logic, a slow switching property is
not explicitly ensured by the presence of hysteresis and needs to be proved.
Such a property will follow from the first statement of the next lemma. The
second statement of the lemma provides a basis for characterizing Prop-
erty 3 for the scale-independent hysteresis switching logic. (The precise
connection will become clear later; here the result is stated as a general
property of the switching logic, independent of a particular way in which
the monitoring signals are obtained from the estimation errors.) As in Sec-
tion 3.2.2, we denote by No(t,to) the number of discontinuities of & on an

interval (tg,?).

Lemma 6.2 Let P be o finite set consisting of m elements. Suppose that
the signals fip, p € P are continuous and menotonically nondecreasing, and

1Ty be precise, o is defined on some maximal interval {0, Tinax), where Tmax < 00.
However, in the supervisory control systems studied below we will always have Tmax =
00. We will not mention this fact explicitly, but it can be ensily established.
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that there exists @ number ¢, > 0 such that 5,(0) > ¢, for allp € P. Then

for every index | € P and arbitrary numbers t > t5 > 0 we have

No(tto) S1+m+ — 4 ( Fir(t)
e log(i + 7 \ minyep (i) (6.20)
and
N,(t,to)
B o) (be) — i jir(t) — min 7
> (Beton 1) = oy (4)) < m((1 4 R)n(t) — mip (10} (6:21)

where t] < ta < -+- <ty (1) are the discontinuities of ¢ on (tg,t) and
tNg(t,to)-l-l = {.

Remark 6.1_ T.he left-hand side of the inequality (6.21) can be thought
of as the variation of fi, over the interval [to,¢]. If the signals fp, p €
P are abs?ll-itely continuous, then the left-hand side of (6.21) equals the
mteg.ral Ji, Bo(r)(7)dr, which is to be interpreted as the sum of integrals
over intervals on which & is constant. (]

PROOF OF LEMMA 6.2. For each k € {0,1,..., N,(t,%)}, the value of

o rema?.i.ns constant and equal to o(ix) on [{tx,fx41). Taking continuity of
Ho(t,) into account, we have

Bo) () < (M+h)ia,(t) Vi€ [tr,thsa], Yhe{0,1,...,N,(t, )}, Ype P.
] ) 6.22
Since o switched to o{ty) at time tx, k € {1,2,..., N,(t,t3)}, we aJso( haw)e

Bo(e)(te) < Balte)  Vh€{1,2,...,No(t,t0)}, VpeP. (6.23)

Mo.reo‘.rer, o switched from o(tx) to o(tr41) at time iy, k < N, (8,29) — 1
which implies that r ,

Aoty k1) = (1+B)fg (e, 1) (t1) VE€{0,1,...  Ny(t, to)—1}. (6.24)
Since P has m elements, there must be a ¢ € P such that & = ¢ on at

least? N := [ —‘Y-‘—(tmﬂu.' of the intervals '

[t t2), [t2,28), --o) [ENa(to)—1ENL (2 .00))- (6.25)

N < '1, then we must have Ny(t,4) < 1+ m and therefore (6.20)
automatically holds. Suppose now that N > 2 and let

(trys trya1)s [Bharthas1)s =0 o [tig tor1)

2 I
Given a scalar a, we denote by [a] the smallest integer larger than or equal to a.
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be N intervals on which ¢ = g. Pick an arbitrary i € {1,2,...,N - 1}.
In view of (6.24), the assumed monotonicity of fa(s, .., and (6.23) we
conclude that

.aq(tki-i-l) = (1 +h)ﬁ0(if.‘.+1)(tki+1) 2 (1 + h)ﬂﬂ(tk‘+l)(tki) 2 (1 +h)ﬁ'¢z(ﬁt;|6)j

Since the intervals are nonoverlapping, we know that tx,,., 2 tx+1, hence
Ag(tripr) = Aq(te+1). From this and (6.26) we obtain

(14 R)Ag(th) < Baltheny)s  i€{L2....,N—1}.

Iterating the above inequality fromi=1toi= N — 1 yields
(1+B)¥ " ig(tsy) S (i)
and therefore
(1+ R " g(tn,) < Fultiy)  VIEP
because of (6.23). Using monotonicity of fiy, we conclude that
L+ ) ' hglte) < ult) VIEP

and therefore '

(1+hY¥ " minpy(to) S mlt)  VIEP

from which the inequality (6.20) follows by virtue of the fact that N>
No(t,to !—1 )

ItTemains to show that the inequality (6.21) holds. Grouping all terms in
the summation on the left-hand side of (6.21) for which o(ty) is the same,

we obtain

Na(t,to) - Nﬂ(t’tﬂ)
> (ﬁa(:,,)(fku) - ﬁa(:,,)(tk)) =Y 3 (ﬁQ(tk+1) - Nq(tk)()'
=0 ’ gqeEP k=0
a(te)=q

(6.27) -

Take some value g € P that o takes on the interval (fo, t). Since the intervals
(6.25) are nonoverlapping, it follows from monotonicity of fi; that

Na(tta) .
3 (ﬁq(tk+1) - ﬁq(tk)) < Bgltk,+1) — fiqlto)

k=0
o(te)=q

where k, denotes the largest index k € {0,1,...,No(t, to)} for which
a(tx) = g. By virtue of (6.22), we have

Bglti,+1) € (1 + R)aulte,+1)  VIEP.
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Using monotonicity again, we conclude that

" Ng (i,fu)

3 (ﬁq(t:c+1) - ﬁq(tk)) < (L+m)a(t) - ming,(ty) VieP.
k=0 peP
a(ly}=q

The inequality (6.21) now follows from (6.27} and the fact that P has m
elements. O

If at least one of the signals fip, p € P, say fiy-, is bounded, then the in-
equality (6.20) applied with I = p* implies that N, (¢, 1) is upper-bounded
by a fixed constant for all ¢ > £, > 0. This means that the switching stops
in finite time, i.e., there exist a time T* and an index g* € P such that
o(t) = ¢* for t > T*. Moreover, the signal fig- is bounded, as is apparent
from the definition of the switching logic and also from the formula, (6.21).
This special case of Lemma 6.2 will be used several times below, so we state
it formally as a corollary. (Its counterpart for the case of additive hysteresis
was already used in Section 6.3.)

Corollary 6.3 If the hypotheses of Lemma 6.2 are satisfied and there ex-
i5ts an index p* € P such that the signal fi,- is bounded, then the suritching
stops in finite time at some index ¢* € Q and the signal fig. is bounded.

Exercise 8.4 Prove Corollary 6.3 directly {(without using Lemma 6.2).

Since the scale-independent hystercsis switching logic is defined for an
arbitrary P, it seems natural to ask whether Lemma 6.2 is also valid when
P is an infinite compact set. The answer to this question is negative, as
demonstrated by the following counterexample. Let

-

Bp(t)=(p 1-p) ([1, 3:)( P ) pe[0,1].

1-p

These signals have all of the properties required by Lemma 6.2. (Signals of
this form arise in linear supervisory control; see Section 6.6.) Note that ji;

is bounded while fig, p < 1 are all unbounded. Moreover,
o et
arglgélgpp(t) = m <1 Yt > 0.

‘It is easy to deduce from these facts that the switching never stops. In view

of Corollary 6.3, this implies that Lemma 6.2 does not hold for infinite P.

The sets P and { are different

The hysteresis switching paradigm can also be applied in situations where
P # Q. For example, a switching signal can be generated by means of
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composing the scale-independent hysteresis switching logic des?ribed above
with a controller assignment map x : P — Q. In other words, we can !et 0=
x(¢), where ¢ is the output of the scale-independent hystert?sis mtchmg
“logic. However, the question arises as to whether or nf)t a sfxmtchmg z.ngna.l
generated in this way still has desired properties. The situation of p.ta.rtlculla.r
interest is when P is a continuum and Q is a finite set (see the discussion
in Section 6.2). Since Lemma 6.2 does not apply when the set P is infinite,
some modifications to the switching logic are in fact necessary. One way to

proceed is described next
Assume that we are given a family of closed subeets Dy, g € Q of P, whose

union is the entire P. Pick a hysteresis constant k > 0. First, we select
some go € Q such that Dy, contains argmingep tip(0), a.nd.set. o(0) = go.
Suppose that at a certain time ¢; the value of o has just switched to some
g € Q. We then keep o fixed until a time ¢;41 > £; such that the following

inequality is satisfied:
(1+h) ;’ggﬂp(tﬁ-l) < 2 pp(ti+1)-

At this point, we select some ¢;+1 € @ such that the set Dj;,; contains
arg minpep ptp(tit1), and set o(tiv1) = git1. See Figure 42.

FIGURE 42. The hierarchical hysteresis switching logic

The above procedure yields a piecewise constant switching signal o ?vhich
is continuous from the right everywhere. We call this switching logic the
hierarchical hysteresis switching logic. The name is motivated by the fact
that the minimization of the monitoring signals is carried out on two lew.als:
first, the smallest one is taken for each of the subsets that form the partition
of P, and then the smallest signal among these is chosen. This switching
logic is also scale-independent, i.e., its output would not be affected if we
replaced the signals up, p € P by their scaled versions (6.19), where © is
some positive function of time. In the supervisory control context, we will
arrange matters in such a way that a suitable function © makes the scaled
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signals B, p € P strictly positive and monotonically nondecreasing. For
analysis purposes we will always use the scaled signals fip, p € P with these
properties, while the actual inputs to the switching logic are the original
signals pp, p€ P.

For each p € P, let x(p) be the set of all g € Q such that p € D,. Recall
that in Section 6.4 we introduced the notion of a ¢-consistent signal, in
terms of a switching signal o and a (possibly set-valued) controller assign-
ment map x. In the present context, a piecewise constant signal ¢ taking
values in P is o-consistent on an interval [tg, t] if and only if

1. For all s € [to,t] we have ((3) € Dy(y)-

2. The set of discontinuities of ¢ on [tg, 1] is a subset of the set of dis-
continuities of o. :

We now note the following fact, which follows immediately from the defi-
nitions of the switching logics given in this section.

Remark 8.2 The signal o produced by the hierarchical hysteresis switch-
ing logic coincides with the signal that would be produced by the scale-
independent hysteresis switching logic with inputs mingep, #p(t), g € Q.0

The following counterpart of Lemma 6.2 is a consequence of this obser-
vation. As before, N, (i, ;) denotes the number of discontinuities of ¢ on
an interval (fg, ).

- Lemma 8.4 Let Q be a finite set consisting of m elements. Suppose that

the signals fi,, p € P are continuous and monotonically nondecredsing, and
that there ezists a number e, > 0 such that fip(0) > €, for allp € P. Then,
Jor every index I € P and arbitrary numbers t > ty > 0 we have

m lal(t)
Na(t,tg) < 1 e e B .
altito) S1+m+ log1+ ) & (minpeP ﬁp(tﬁ)) (629

In addition, there exists a signal { which is o-consistent on [to, t] and such
that

Ng(t.to)

> (ﬁcm)(tkﬂ) - ﬁctt;.)(tk)) < m((l + R)mu(t) - géigﬂp(io)) (6.29)
k=0

where t) < t2 < - <ty (11,) are the discontinuities of o on (ty,1) and
tNg(tto)+1 =1,

Proor. The inequality (6.28) follows at once from Lemma 6.2 and Re-

. mark 6.2. A signal ¢ that satisfies the second statement of the lemma can

be defined as follows: for each s € [to, 1], let ((s) := arg Milpep,,,, fp(te+1),
where k is the largest index in the s#& {0, 1, ..., N, (¢, 20)} for which o(2;) =




154 8. Systems with Large Modeling Uncertainty

o(s). In other words, {(s) = argmingen,, jip(T), where 7 is the right
endpoint of the last subinterval of [tg,t] on which o equa!s a(s). Then C is
o-consistent on [to, £] by construction. Grouping all terms in the summa.tfon
on the left-hand side of (6.29) for which o(tx) is the same, and reasoning
exactly as in the proof of Lemma 6.2, we a.r}:ive at {6.29). O

Remark 6.3 The signal ¢ depends on the .(::hoice of the time . As before,
if the signals fip, p € P are absolutely continuous, then the left-hand side
of the inequality (6.29) equals the integral f: ﬁc(,)(r)‘d'r, vifhich is to be
interpreted as the sum of integrals over intervals on which ¢ is constant. [}

We close this section by pointing out that the problem of computing
arg minpyep pp(t) requires attention. Carrying out the min‘imlzatlon over P
is a trivial task if P is a finite set. If P is a continuum, in many cases of
interest this problem reduces to solving a polynomial equation in. p (§ee,
e.g., Section 6.8 below). In the context of hierarchical hysteresis svn?chmg,
the understanding is that minimization over Dy, ¢ € Q is computationally
tractable if these sets are sufficiently small. '

6.6 Linear supervisory control revisited

Having discussed design objectives and ways to achieve them, we are now
in position to present in some more detail and generality the analysis of
supervisory control algorithms for uncertain linear systems. Suppose t!mt
the uncertain process P to be controlled admits the model of a SISO finite-
dimensional stabilizable and detectable linear system, and that the mod-
eling uncertainty is of the kind described in Section 6.2. The problerrlx of
interest is to design a feedback controller that performs state regulation,

namely:

1. Ensures boundedness of all signals in response to arbitrary bounded
noise and disturbance signals and sufficiently small unmodeled dy-

namics.
9. Drives the state z of P to zero whenever the noise and disturbance
signals equal (or converge to) zero.
As g ranges over @, let
Fe = AgTe + bay
%= kg‘xc + ey
be realizations of the transfer functions of the candidate controllers Cg,

g € Q, all sharing the same state zc. We assume that for each p € P ti}ere
exists an index g € @ such that the controller C, stabilizes the nominal
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process model v, with stability margin Ay, where Ay is a fixed positive
number; i.e., all closed-loop poles of the feedback interconnection of C,
with v, have real parts smaller than —Ag. For each p € P, the set of such
indices ¢ is given by x(p), where x is a controller assignment map (see
Section 6.4).

We assume that allowable unmodeled dynamics are described by the
formula (6.12) or by the formula (6.13). Fix a number A € {0, min{Ay, Ao}).
Then it is possible to design the multi-estimator in a state-shared fashion,
as given by

gy = Apxy + bey + dru
Yp=cizs, DPEP

with Ay a Hurwitz matrix, which has the properties expressed by the in-
equalities (6.14) and (6.15). We henceforth assume that these properties
hold.

Let Zcy = (%c;zs). Using the definition (6.2) of the estimation errors,
we can write the interconnection of the switched controller and the multi-
estimator (i.e., the injected system) in the form

Eey = AgiZer + doey {6.30)
y=(0 cg'.) Teg — €pe (6.31)
U= fg-":cz + Go€pe (6.32)

where for { we can substitute an arbitrary signal taking values in P. Here p*
denotes the (unknown) “true” parameter value as before, and the matrix
Agp is Hurwitz whenever g € x(p); in fact, all eigenvalues of such matrices
can be made to have real parts smailer than —Ag.

The constant A will play the role of a “weighting” design parameter in the
definition of the monitoring signals. Let £, be some nonnegative number
(its role will become clear later). We generate the monitoring signals s,
p € P by the equations

W= —20W + (?) (";‘)T W(0) > 0

ppi= (I -D)W(F -1)"+e,, peP.

(6.33)

Here W {t) is a nonnegative definite symmetric k x k matrix, k := dim(x)+
1. Since ¢}z — y = ¢, for all p € P in light of (6.2), we have

4
p(t) = e NEL(0) + fo e P Med(r)dr +¢,,  pEP

where fip(0) := (¢I' —1) W(0) (cf —I)T.
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We will distinguish between two cases: the one when the parametric un-
certainty set P is finite and the one when P is infinite. As we mentioned
in Section 6.2, the nature of P is determined not only by the original pro-
cess model parameterization but also by choices made at the control design
stage; in particular, one may wish to replace a given infinite set P by its
finite subset and incorporate the remaining parameter values into unmod-
eled dynamics. The main difference between the two cases will be in the
switching logic used. When P is finite, we will use the scale-independent
hysteresis switching logic. When P is infinite, we will employ the hierarchi-
cal hysteresis switching logic; the subsets in the partition needed to define
the logic will be taken to be sufficiently small so that there exists a robustly
stabilizing controller for each subset. Analysis steps in the two cases will

be very similar.

6.6.1 Finite parametric uncertainty

We first consider the case when P is a finite set (consisting of m elements).
We also let Q = P and x(p) = p for all p € P. In this case, we define the
switching signal ¢ using the scale-independent hysteresis switching logic

described in Section 6.5.3.
Setting O(t) := e*** in the formula (6.19), we see that the scaled signals

fip, p € P are monotonically nondecreasing, because they satisfy

4
fip(t) = Fip(0} + j e (r)dr +eue®,  peEP. (6.34)
]

Moreover, it is easy to ensure that jip, p € ‘P are uniformly bounded away
from zero, by setting ¢, > 0 and/or by requiring W(0) to be positive def-
inite. Therefore, we can apply Lemma 6.2 and conclude that the inequali-
ties (6.20) and (6.21) are valid. Since in this case the signals fip, p € P are
smooth, the left-hand side of the inequality (6.21) equals f:ﬂ fio(ry(7)dT (S€E
Remark 6.1). From (6.34) we have the following formula for the expression
under this integral for each fixed valie of o

fip(t) = e2Xed(t) + 2xe €2, peP. (6.35)

We now turn to stability analysis, which centers around the system (6.30).
Consider the system obtained from (6.30) by substituting o for I

i = Agaice + doeo- (6.36)

We know that for every fixed time s > 0, all eigenvalues of the matrix
Aq(s)o(s) have real parts smaller than —\g. Note that this is true even if the
controller C,(4) does not stabilize the process (this fact would be reflected,
however, in the estimation error e,(;) being large, which is a consequence
of detectability of the overall closed-loop system; cf. Section 6.5.2).
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No noise, disturbances, or unmodeled dynamics

We {irst consider the simple situation where there are no unmodeled dy-
namics (§ = 0}, i.e,, the process P exactly matches one of the m nom};-
nal process models, and where the noise and disturbance signals are zero
(n = d = 0). In this case, the constants By, Bs, 1,62 in (6.14) and (6 ‘1-5)
are all zero. Let us take ¢, in the definition of the monitoring sigx.mls
.to be zero as wetll; W(0) must then be positive definite. The incqual-
ity (6.14) gives [, e?)7e2.(t)dr < Cy, which together with (6.34) implies
Byp* S #p (0) + Cy. It follows from Cerollary 6.3 that the switching stops
in finite time, i.e., there exist a time 7" and an index ¢* € P such that
a(t) = q fo‘r t > T, and fi,- is a bounded signal. In view of (6.34), we
have in particular e;- € Ly. Since Ay 4 is a Hurwitz matrix, we see f;'om
(6.36) ti.la.t Zez — 0. Moreover, ep» — 0 by virtue of {6.15), and we con-
clude using (6.31) and (6.32) that u, y — 0. Detectability of P then implies
that z —+ 0, so the regulation problem is solved. In light of (6.33), we also
.ha.ve tp — 0 for all p € P. Since the evolution of z and z for, t> T
is described by a linear time-invariant system, the rate of convergpn_('e is
actually exponential. We summarize our conclusions as follows. o

Proposition 6.5 Suppose that the noise and disturbance signals are zero
c.md there are no unmodeled dynamics, and set ¢, = 0. Then all sign;zls
in th-e‘supemisary control system remain bounded for every set of initial
c?ndzt:ons such that W{0) > 0. Moreover, the swilching stops in finite
time, after which all continuous stetes converge to zero exponentially fast.

Noise and disturbances, no unmodeled dynamics

We now assume that bounded noise n and disturbance d are present but
there are no unmodeled dynamics. In this case the switching typically will
not stop in finite time. The inequalities (6.14) and {6.15) hold with some
unknown but finite constants By, Ba. The parameters &, and §; are still
zero, and ) and Ty are positive cdustants as before, Let s take ¢ l.(.) iw
positive. From (6.14) and {6.34) we have !

fip~ (t) < Jip» (0) + B1e® + Cy + £, (6.37)

Applying (6.20) with [ = p* and using the bound fi,(tg) > ¢,e2e i
by (6.34) yields Ap(to) 2 e,e™ provided

No(t,to) < No + 220
where *
No=1+m+ 1 ﬁp'(0)+Bl+Cl+€”
log(t + h) "g( P )
and
, _ log(1+h) .
a T oy (6.38)
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That is, under the present assumptions the switching signal ¢ produced by
the scale-independent hysteresis switching logic has average dwell time 7,
given by (6.38).

Since 0 < A < Ao, Theorem 3.2 from Section 3.2.2 implies that the
switched system
' T = ApoTee {6.39)

is exponentially stable with stability margin ), uniformly over all o with
sufficiently large average dwell time (see Remarks 3.2 and 3.3). The cor-
responding lower bound on the average dwell time, which we denote by
7*, can be calculated explicitly as shown in the proof of that theorem. A
corollary of this result—stated below as a lemma—is that the system (6.36)
has a finite e*t-weighted Lo-t0-Lo induced norm, uniform over all o with
average dwell time no smaller than 7*.

Lemma 6.6 There exist positive constants g and go such that for every
switching signal o with average dwell time 7, > T all solutions of the

system (6.36) satisfy
i
ez (t)f < g f e”"ei(,)('r)dr + gol|z{0)]. (6.40)
0

As seen from (6.38), we can guarantee that 7, > 7" by increasing the
hysteresis constant & and/or decreasing the weighting constant A if neces-
sary. In the sequel, we assume that h and A have been chosen in this way.
Using {6.21) with [ = p* and to = 0, (6.35), and (6.37), we obtain

i
/ 2 ) (r)dr < m(1 + h)(Hp- (0) + B1e® + C1 + €,e™)
0

which together with (6.40) gives
lze®) < (9m(1+h)(fpr (0)+C1) +golece(0)) e~ +gm(1+R)(By-+ep)-

This formula implies that z is bounded, and it is not hard to deduce
from (6.15), (6.31)-(6.33), and detectability of P that all other system sig-
nals remain bounded. Note that the choice of the design parameters A,
h, and €, did not depend on the noise or disturbance bounds; in other
words, explicit knowledge of these bounds is Aot necessary (we are merely
requiring that such bounds exist}). We arrive at the following result.

Proposition 6.7 Suppose that the noise and disturbance signals are boun-
ded and there are no unmodeled dynamics. Then for an arbitrary e, > 0
all signals in the supervisory control system remain bounded for every set
of initial conditions. .
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Remark 6.4 A close inspection of the above calculations reveals that if the

‘noise and disturbance signals converge to zero, then;the continuous states of

the supervisory control system eventually enter a neighborhood around zero

* whose size can be made as small as desired by choosing ¢, sufficiently small.

Thus by decreasing £, (e.g., in a piecewise constant fashion) it is possible
to recover asymptotic convergence. Note, however, that we cannot simply
let £, = 0, as this would invalidate the above analysis even if W(0) > 0. O

Noise, disturbances, and unmodeled dynamics )
If unmodeled dynamics are present, i.e., if the parameter § is positive, then
&, and &, in (6.14) and (6.15) are also positive. In this case, the analysis be-
comes more complicated, because we can no longer deduce from (6.14) that
the switching signal possesses an average dwell time. However, it is possi-
ble to prove that the above control algorithm, without any modification, is
robust with respect to unmodeled dynamics in the following “semi-global”
sensge: for arbitrary bounds on the noise and disturbance signals, for ev-
ery positive value of £,, and every number E > ( there exists a number
5 > 0 such that if the unmodeled dynamics bound & does not exceed 4,
then all signals remain bounded for every set of initial conditions such that
|(0)], |zce(0)| < E. Remark 6.4 applies in this case as well.

6.6.2 Infinite parametric uncertainty

Now suppose that the set P is infinite. We still work with a finite set Q.
We assume that a partition P = | J .o D, is given, such that the matrices
Agp, ¢ € @, p € P have the following property: for every ¢ € Q and
every p € D, the matrix Ay, + Aol is Hurwitz, where A is a fixed positive
number. It can be shown that such a partition exists, provided that the
sets Dy, g € Q are sufficiently small and each C, stabilizes the pth nominal
process model whenever p € D,;. (Without loss of generality, we assume
that all parameters of the system (6.30)-(6.32) depend continuously on p.)

. We take the sets Dy, g € Q to be closed. The switching signal o can then be

generated using these sets via the hierarchical hysteresis switching logic, as
explained in Section 6.5.3. Note that the overall supervisory control system
still has finite-dimensional dynamics. :

Instead of (6.36), we now consider the system obtained from (6.30) by
substituting ¢ for I, where ¢ is some o-consistent signal:

= Ag(;m + da-e(-

This system has a finite e*-weighted L2-t0-Loo induced norm, uniform
over all ¢ with sufficiently large average dwell time and all o-consistent
signals (; this is a straightforward generalization of Lemma 6.6. Applying
Lemma 6.4 in place of Lemma 6.2, we can carry out stability analysis of
the supervisory control system in much the same way as before and prove
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that all of the results stated for the case of a finite P remain valid. The
details are left to the reader.

6.7 Nonlinear supervisory control

The goal of this section is to address the problem of global state or output
regulation for uncertain nonlinear systems. Throughout this section we take
P to be a finite set. We also let @ = P. As before, we will write p* for the
actual parameter value, which exists but is not known. '

In Sectior 6.5.2 we described the nonlinear supervisory control architec-
ture and established conditions for detectability of the closed-loop system
(for a frozen controller index) in the OSS and iOSS sense. These condi-
tions provide a characterization of Property 2 from Section 6.4. In what
follows, we work with the weaker i0SS notion (which is alse somewhat
more natural in the present context). Assume that for each fixed ¢ € P,
the system (6.17) is i0SS with respect to the estimation error eg. This
means that along solutions of (6.17) we have the inequality

Gg(Ix()]) < BalIx(0)], £) + /0 Yo(leg(r))dr (6.41)

where &g, Y € Koo, g €KL, and x = (z; Tc; Ze )

The next assumption characterizes Property 1 from Section 6.4. It effec-

tively restricts us to considering the situation where there are no unmodeled
dynamics, noise, or disturbances, so that the unknown process P exactly
matches one of a finite number of nominal process models.
ASSUMPTION 1. There exists a positive number A with the property that
for arbitrary initial conditions (0), xc(0), ze(0) there exists a constant
C such that we have fg &> 5pe (leps (T)|)dr < C for all {. Here 7. is the
function from the formula (6.41) for g = p*.

It is not hard to see that in the case when 7, is locally Lipschitz, the
integral fnt €*" ¥y~ (|ep- (7)|)dr is bounded if epe and f; e |eps (7)|dr are
bounded. Then Assumption 1 is satisfied with A small enough if the multi-
estimator is designed so that e, converges to zero exponentially fast for
every control signal u. Some examples of such multi-estimator design for
nonlinear systems (in the absence of noise, disturbances, and unmodeled
dynamics) were mentioned in Section 6.5.1.

We generate the monitoring signals using the differential equations

!:";p = —’\Jup + %P(lepi)a Ju‘P(O) > 0’ P € P (642)

with the same A > 0 as in Assumption 1. Let us define the switching
signal o using the scale-independent hysteresis switching logic. The overall
supervisory control system is a hybrid system with continuous states x and
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T € P and discrete state o. We have the following result, whose proof
parallels that of Proposition 6.5.

Proposition 6.8 Let P be o finite set. Suppose that

1. For each q € P, the system (6.17) is 1088 with respect to e, us given
by (6.41).

2. Assumption 1 holds.
3. The monitoring signals are defined by (6.42).

Then the switching stops in finite time and all continuous states of the
supervisory control system converge to zero for arbitrary initial conditions.

PROOF. Let us define (for analysis purposes only) the scaled monitoring
signals
Bo(t) == Mup(t),  pEP. (6.43)

In view of (6.42) we have

B0 = B+ [ M Flepndr,  peP. (640

The scale independence property of the switching logic implies that replac-
ing pp by fip for all p € P would have no effect on o. From (6.44) we
see that each [, is nondecreasing. The finiteness of P and the fact that
Ap(0) > 0 for each p € P guarantee the existence of a positive number ¢,
such that fi,(0) 2> ¢, for all p € P. Observe also that jp. is bounded by
virtue of (6.44) and Assumption 1. It follows that the signals j,, p € P
satisfy the hypotheses of Corollary 6.3, which enables us to deduce that
the switching stops in finite time. More precisely, there exists a time T™
such that o(t) = ¢g* € P for ail t > T*. In addition, g is bounded, which
in view of (6.44) means that the integral fﬂ Vg~ (leg=-(7)|}dr is finite. Us-
ing (6.41) and applying Lemma A4, we conclude that x ~— 0. Finally, in
light of (6.42) we also have p, — 0 for all p € P. a

Theorem 6.1 from Section 6.5.2 guarantees that the first hypothesis of
Proposition 6.8 (the i08S property) holds when the process P is IOSS and
the injected system (6.16) is iISS with respect to e, for each fixed g € Q.
The latter condition means that solutions of (6.16) satisfy the inequality

t
acllzal)) < Bllzal® 0 + [ wlear)ar  (645)
-
where ag, 7, € Koo, A € KL, and Tep 1= (Tc¢; 2e). The function 5, appear-
ing in the formula (6.41) depends on the functions that express the IQSS
property of the uncertain process [P. Therefore, it is rather restrictive to
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assume the knowledge of ¥, or its upper bound for each ¢ € P. The al-
ternative construction presented below allows us to work directly with the
functions v, from (6.45), but requires a somewhat different convergence
proof. Let us replace Assumption 1 by the following.
AssuMPTION 1’. There exists a positive number ) with the property that
for arbitrary initial conditions z(0), zc(0), x(0) there exist constants Ci,
O, such that we have |ey-(t)| < Cy and _fot > g+ (|eps (T)|)dT < Co for all
t. Here 7p- is the function from the formuta (6.45) for ¢ = p*. o
Instead of using the equations {6.42), we now generate the monitoring

signals by

o = —Mip +pllepl)y  1p(0) >0, pEP (6.46)

with the same A > 0 as in Assumption 1’. We use the scale-independent
hysteresis switching logic as before. Then the following result holds.
Proposition 6.9 Let P be a finite set. Suppose that

1. The process P is JOSS.

2. For each q € P, the injected system (6.16) is iISS with respect lo eg,
as given by (6.45).

3. Assumption 1’ holds.
4. The monitoring signals are defined by {6.46).

Then the switching stops in finite time and all continuaus. states of the
supervisory control system converge to zero for arbitrary initial conditions.

ProOF. Exactly as in the proof of Proposition 6.8, using the scaled mon-
itoring signals (6.43), we prove that the swi’ccghing stops in ﬁn_ite ti.me at
some index ¢* € P and that the integral f;* g (leg-(7)[)d is finite. In
view of (6.45) and Lemma A.4 this implies that z; and x, converge to zero.
Thus z — 0 and y, — 0 for all p € P. Since ep- is bounded by Assump-
tion 1/, it follows that y = yp- — ep+ remains bounded as well. Therefore,

 is bounded because P is TOSS. The derivative é;- = > — 3 is then also -

bounded, Boundedness of g+, €, and of the integral 15° Yo {leg-(T))dr
is well known to imply that eg- — 0 (this is a version of the so-called Bar-
balat’s lemma). Thus we have y = yg+ — €g- — 0, hence z — 0 because P
is 0SS, and yp, — 0 foreach p € P as before. O

If one is only concerned with output regulation and not state regulation,
a close examination of the proof of Proposition 6.9 reveals that the assump-
tions can be weakened even further and the following result can be proved

by the same argument.

Proposition 6.10 Let P be a finite set. Suppose that
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1. The state x of P is bounded if the control input u and the output y
are bounded.

2. For each g € P the injected system (6.16) has the property that-if
I~ Yo(leg{m))dT < oo then zc and z, remain bounded and y, =
hq(ze) converges to zero.

3. Assumption 1’ holds.
4. The moniloring signals are defined by (6.46).

Then all signals in the supervisory control system remain bounded for ar-
bitrary initial conditions, the switching stops in finite timne, and the oulpul
y of the process. converges to zero.

A specific supervisory control system satisfying the hypotheses of Propo-
sition 6.10 is studied in the next section.

6.8 An example: a nonholonomic system with
uncertainty ‘

We now return to the unicycle example studied in Section 4.2.1 and consider
a more general process model, given by

&1 = pju cosd
&3 = pjuysinf
8 = pjua
where p} and p} are positive parameters determined by the radius of the
rear wheels and the distance between them. The case of interest to us here
is when the actual values of p} and pj arc unknown. We assume that p* =
(p}, p3) belongs to some compact subset P = Py x P2 of (0, 00} x (0, 00). The
control task, as in Section 4.2.1, is to park the vehicle at the origin—i.e.,
make 7, T2, and # tend to zero——by means of applying state feedback.
What makes this problem especially interesting is that for every set of
values for the unknown parameters, the corresponding system is nonholo-
nomic and so cannot be stabilized by any continuous state feedback law
{as explained in Chapter 4). Thus even the design of candidate controllers
is a challenging problem. One option is to use the simple switching control
laws of the kind described in Section 4.2.1, which make every trajectory

“approach the origin after at most one switch. In the presence of parametric
“modeling uncertainty, it is then natural to proceed with the supervisory

control design, using these switching candidate controllers and a supervi-
sor that orchestrates the switching among them. The switching will thus

ot e

S
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occur at two levels with distinct purposes: at the lower level, each candi-
date controller utilizes switching to overcome the obstruction to continuous
stabilizability of the nonholonomic process, and at the higher level, the su-
pervisor switches to deal with the parametric modeling uncertainty. This
solution, presented in some more detail below, illustrates the flexibility of
supervisory control in incorporating advanced control techniques developed
in the nonadaptive control literature (cf. the remarks made in Section 6.1).

The supervisory control design for this example is based on the develop-
ments of Sections 4.2.1 and 6.7. Consider the state coordinate transforma-

tion
T =xzyco80+ zosind
y=90
z = 2(x) sin# — z3 cos§) — 8(zx1 cosf + z2 5in F)

as well as the family of control transformations given, for each p € P, by
Up = pruy — Patia(Z) 8in & — z2 cos b)
Vp = PaUs-

In what follows, when we write up, vy, we always mean the functions of
the original state and control variables defined by the above formulas. For
p = p*, the transformed equations are those of Brockett’s nonholonomic

integrator

T = tgs
Y= vp- (6.47)
Z = Tupe — Ylp-.

If we can make z, y, and 2 approach zero, then the regulation problem
under consideration will be solved.

Since the state of the system (6.47) is accessible, the multi-estimator
design is straightforward (cf. Section 6.5.1}. For each p € P, we introduce

the estimator equations
Zp=—(Tp—2)+up
p=—W-v)+1%
i = —(2p — 2) + zvp — Yup
together with the estimation errors

Tp :=Tp — I, yp =YY zP :=Zp—2.

‘When P is an infinite set, the multi-estimator can be easily realized using
state sharing, due to the simple way in which the unknown parameters
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enter the process model. Let e, := (Z,, §ip, Z,)T. For all control laws we
have
epe(t) = e ey (0). (6.48)
For each p € P, when z2 + 42 # 0, the equations

Tp = Tp COS Yy, Yp = Tpsiniy

define the cylindrical coordinates r, and 1,. We now describe the candidate
controllers, using an auxiliary logical variable s taking values 0 and 1. Take
an arbitrary ¢ € P (here we take @ = P). If r, = 0, let s = 0 and apply
the control law uy = v, = 1 for a certain amount of time 7. Then let s = 1
and apply the control law

Ug = —Zyry + 2g8in Yy + I,
Vg = —YgTg ~ g COS Wy + Tq.

The idea behind this control law is to make the multi-estimator reproduce
the desired behavior given by (4.10) as closely as possible. Indeed, for the
corresponding injected system we have, in particular,

Tq=—T
2q = —z4(rq ~ Tgco89Py — Py sinthy) + (Tg¥ly — Zqyy)(1 — 7¢) — Z,.

These equations would precisely match the first two equations in (4.10}) if
eq were equal to zero.

We leave it to the reader to write the injected system in full detail and
verify that it satisfies Condition 2 of Proposition 6.10 with v,(r) = r4+72 +
8. In view of (6.48), Assumption 1’ of Section 6.7 holds: we can take an
arbitrary A € (0,1). We thus generate the monitoring signals by

fip = —Apip + 1p(lep]), Hp(0) >0, peP

where A is some number satisfying 0 < A < 1. This monitoring signal
generator can be efficiently realized using state sharing. Let us define the
switching signal via the scale-independent hysteresis switching logic. The
minimization procedure used in the switching logic reduces to finding roots
of polynomials in one variable of degree at most 5, so its computational
tractability is not an issue.

Exercise 6.5 As a continuation of Exercise 4.2, implement the supervisory

- control strategy described here via computer simulation.

Although the above supervisory control algorithm can be implemented
when the set P is infinite, the analysis tools from the previous section can
only be used when 7 is finite. So, let us restrict P to be a finite set. Note
that here the process is trivially 1088 since its output is the entire state.
We can now apply Proposition 6.10 agd conclude that all signals remain

bounded and the state of the system {6.47) converges to zero.
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Appendix A
Stability

In this appendix we briefly review basic facts from Lyapunov's stability
theory. We restrict our attention to the time-invariant system

é=f(z), zeR" (A.1)

where f : R® — R" is a locally Lipschitz function. Extensions t¢ time-
varying and particularly switched systems are mentioned in appropriate
places in the main chapters. We also assume that the origin is an (iso-
lated) equilibrium point of the system (A.1), i.e., f(0} = 0, and confine our
attention to stability properties of this equilibrium.

A.1 Stability definitions

Since the system (A.1) is time-invariant, we let the initial time be t; = 0
without loss of generality. The origin is said to be a stable equilibrium
of (A.1}, in the sense of Lyapunov, if for every £ > 0 there exists a § > 0
such that we have

lz0)<d = [x(t)<e VE>0.

In this case we will also simply say that the system (A.1} is stable. A similar
convention will apply to other stability concepts introduced below.

The system (A.1} is called asymptotically stable if it is stable and § can
be chosen so that

[z(0})) <& = z(t})—0 as t — oo.
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The set of all initial states from which the trajectories converge to the
origin is called the region of attraction. If the above condition holds for all
8, i.e., if the origin is a stable equilibrium and its region of attraction is the
entire state space, then the system (A.1) is called globally asymptotically

stable.
If the system is not necessarily stable but has the property that all so-

lutions with initial conditions in some neighborhood of the origin converge
to the origin, then it is called (locally) attractive. We say that the system
is globally attractive if its solutions converge to the origin from all initial
conditions.

The system (A.1) is called ezponentially stable if there exist positive
constants &, ¢, and A such that all solutions of (1.3) with |2(0)| < 4 satisfy
the inequality

=)} < clz(0)|e™™  Vi>0. (A.2)
If this exponential decay estimate holds for all 4, the system is said to be
globally exponentially stable. The constant A in (A.2) is occasionally referred
to as a stability margin.

A.2 Function classes K, Ky, and KL

A function a : [0,00) — [0,00) is said to be of class K if it is continuous,
strictly increasing, and a(0) = 0. If o is also unbounded, then it is said to
be of class Koo A function 8 : [0,00) x [0,00) — [0,00) is said to be of
class KL if B(-,t) is of class K for each fixed t > 0 and B{r,t) is decreasing
to zero as t — oo for each fixed r > 0. We will write a € Ko, 8 € KL
to indicate that o is a class Koo function and 3 is a class KL function,
respectively. ] )

As an immediate application of these function classes, we can rewrite the
stability definitions of the previous section in a more compact way. Indeed,
stability of the system (A.1) is equivalent to the property that there exist
ad > 0and a class K function o such that all solutions with |z(0)| < &
satisfy

lz(t)| < a(jz(0))) Vt20.
Asymptotic stability is equivalent to the existence of a § > 0 and a class
XL function 2 such that all solutions with |z(0)] < & satisfy

lz(t)] < B(|z(0),¢) VE20.
Global asymptotic stability amounts to the existence of a class XL function
8 such that the inequality

lz(t)] < B(|=(0),t)  ¥t=>0

holds for all initial conditions. Exponential stability means that the func-
tion 3 takes the form B(r,s) = cre™** for some c, A>0,
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A.3 Lyapunov’s direct (second) method

Consider a C! (i.e., continuously differentiable) function V : R® — R. It is
called positive definite if V{(0) = 0and V(z) > Qforallz £ 0. IfV(z) — oo
as jz| — oo, then V is said to be radially unbounded. If V is both positive
definite and radially unbounded, then there exist two class X, functions
a1, a2 such that V satisfies

aijz)) S V(@) S aollzl) Ve (A.3)

We write V for the derivative of V along solutions of the system (A.1), ie.,
. oV
Viz) = — .
() = 5 S (@)

The main result of Lyapunov’s stability theory is expressed by the following
statement.

Theorem A.1 {Lyapunov) Suppose that there exists a positive definite C'
Junction V : R* — R whose derivative along solutions of the system (A1)
satisfies . .
V<0 Y. {A.4)

Then the system (A.l) is stable. If the derivative of V satisfies
V<0 Vz#o0 (A.5)

then (A.1) is asymptotically stable. If in the latter case V is also radially
unbounded, then (A.1) is globally asymptotically stable.

We refer to a positive definite C! function V as a weak Lyapunov func-
tion if it satisfies the inequality (A.4) and a Lyepunov function if it satisfies
the inequality (A.5). The conclusions of the theorem remain valid when V
is merely continuous and not necessarily C!, provided that the inequali-
ties (A.4) and (A.5) are replaced by the conditions that V is nonincreasing
and strictly decreasing along nonzero solutions, respectively (this can be
seen from the proof outlined below).

SKETCH OF PROOF OF THEOREM A.l. First assume that (A.4) holds.
Consider the ball around the origin of a given radius £ > 0. Pick a positive
number b < minjz= V(z). Denote by 4 the radius of some ball around the
origin which is inside the set {z : V(z) < b} (see Figure 43). Since V is
nonincreasing along solutions, each solution starting in the smaller ball of
radius & satisfies V{z(t)) < b, hence it remains inside the bigger ball of
radius . This proves stability. .

To prove the second statement of the theorem, take an arbitrary initial
condition satisfying |x(0)| < &, where § is as defined above (for some ¢).
Since V is positive and decreasing along the corresponding solution, it has a
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FIGURE 43. Proving Lyapuncv stability

limit ¢ > 0 as t — oo. If we can prove that ¢ = 0, then we have asymptotic
stability (in view of positive definiteness of V and the fact th?t T stays
bounded in norm by €). Suppose that ¢ is positive. Then the sol'utlon cannot
enter the set {z : V{z) < c}. In this case the solution evolves in 2 compact
set that does not contain the origin. For example, we can take this set to be
§:={z : r < |z| < £} for a sufficiently small r > 0. Let d := maXzes Vi{z);
this number is well defined and negative in view of (A.5) and compactness
of §. We have V < d, hence V(t) < V(0) + dt. But then V' will eventually
become smaller than ¢, which is a contradiction.

The above argument is valid locally around the origin, because t.he level
sets of V may not all be bounded and so § may stay bounded as we increase
¢ to infinity. If V is radially unbounded, then all its level sets are bounded.

Thus we can have § — oo as € — 0o, and global asymptotic stability

follows. o

Exercise A.1 Assuming that V is radially unbounded and using the liu.nc~
tions ¢ and az from the formula (A.3}, write down a possible definition
of § as a function of £ which can be used in the above proof.

Various converse Lyapunov theorems show that the conditions of ‘The-
orem A.l are also necessary. For example, if the system is asymp_totxcally
stable, then there exists a positive definite C ! function V that satisfies the

inequality (A.5).
Example A.1 It is well known that for the linear time-invariant system

= Az (A.6)

asymptotic stability, exponential stability, and their glob.a,l versic.ms are all
equivalent and amount to the property that A is a Hurwitz matrix, i.e., all
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eigenvalues of A have negative real parts. Fixing an arbitrary positive defi-
nite symmetric matrix @ and finding the unique positive definite symmetric
matrix P that satisfies the Lyapunov equation

ATP+PA=—Q

one obtains a quadratic Lyapunov function V(z) = 27 Pz whose derivative
along solutions is V = —zTQz. The explicit formula for P is

o T
P= f eA tQBAtdt.
[

Indeed, we have
* d T
AT — — A"t Aty _
P+PA /D dt(e Qe ) Q

because A is Hurwitz. O

A.4 LaSalle’s invariance principle

With some additional knowledge about the behavior of solutions, it is pos-
sible to prove asymptotic stability using a weak Lyapunov function, which
satisfies the nonstrict inequality (A.4). This is facilitated by LaSalle’s in-
variance principle.

A set M is called (positively) inveriant with respect to the given system
if all solutions starting in M remain in M for all future times. We now
state a version of LaSalle's theorem which is the mast useful one for our
purposes.

Theorem A.2 (LaSalle) Suppose that there exists a positive definite C
function V : R® — R whose derivative along solutions of the system (A.1)
satisfies the inequality (A.4). Let M be the largest invariant set contained in
the set {z : V(z) = 0}. Then the systtm (A.1) is stable and every solution
that remains bounded for ¢ > 0 approaches M as t — oo. In particular,
if all solutions remain bounded and M = {0}, then the system (A.1) is
globally asymptotically stable.

To deduce global asymptotic stability with the help of this result, one
needs to check two conditions. First, all solutions of the system must be
bounded. This property follows automatically from the inequality (A.4)
if V is chosen to be radially unbounded; however, radial unboundednoess
of V is not necessary when boundedness of solutions can be established
by other means.! The second condition is that V is not identically zero

When just local asymptotic stability is of interest, it suffices to note that bounded-
ness of solutions starting sufficiently closc to the origin is guaranteed by the first part
of Theorem A.1.
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along any nonzero solution. We also remark that if one only wants to prove
asymptotic convergence of bounded solutions to zero and is not concierned
with Lyapunov stability of the origin, then positive definiteness of V' is not
needed (this is in contrast with Theorem A.1).

Example A.2 Consider the two-dimensional system
i+ez+ f(x)=0

where @ > 0 and the function f satisfies f(0) = 0 and zf(x) > O for
all z # 0. Systems of this form frequently arise in models of mechanical
systems with damping or electrical circuits with nonlinear capacitors or
inductors. The equivalent first-order state-space description is

&1=722 (A7)
iy = —axy — f(x1).
Consider the function
2
V{zy,2) = %2 + F(z1) (A.8)

where F(zi) = :1 f(z)dz. Assume that f is such that F' is positive
definite and radially unbounded (this is true, for example, under the sector
condition k172 < 71 f(21) < ko223, 0 < ky < kg < 00). The derivative of the
function (A.8) along solutions of (A.7} is given by

V = ~az} <0.

Moreover, zg = 0 implies that z; is constant, and the second equatio‘n
in (A.7) then implies that z; = 0 as well. Therefore, the system (AT} is
globally asymptotically stable by Theorem A.2. a

While Lyapunov's stability theorem readily generalizes to time-varying
systems, for LaSalle’s invariance principle this is not the case. Instead, one
usually works with the weaker property that all solutions approach the set
{z:V(z)=0}.

A.5 Lyapunov’s indirect (first) method
Lyapunov’s indirect method allows one to deduce stability properties of
the nonlinear system (A.1), where f is C!, from stability properties of its

linearization, which is the linear system (A.6) with

_of )
A= 2(0). | (A.9)
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By the mean value theorem, we can write
f(z) = Az + g(z)=

where g is given componentwise by g;(z) = %E‘-(z,:) - %&(0) for some point
z; on the line segment connecting x to the origin, ¢ = 1,...,n. Since %} is
continuous, we have g(z) — 0 as z — 0. From this it follows that if the
matrix A is Hurwitz (i.e., all its eigenvalues are in the open left half of the
complex plane), then a quadratic Lyapunov function for ¢he linearization
serves—locally—as a Lyapunov function for the original nonlinear system.
Moreover, its rate of decay in a neighborhood of the origin can be bounded
from below by a quadratic function, which implies that stabilily is in fact
exponential. This is summarized by the following result.

Theorem A.3 If f is C! and the matriz (A.9) is Hurwitz, then the sys-
tem (A.1) is locally exponentially stable.

It is also known that if the matrix A has at least one eigenvalue with
a positive real part, the nonlinear system (A.1) is not stable. If A has
eigenvalues on the imaginary axis but no eigenvalues in the open right
half-plane, the linearization test is inconclusive. However, in this critical
case the system (A.l) cannot be exponentially stable, since exponential
stability of the linearization is not only a sufficient but also a necessary
condition for (local) exponential stability of the nonlinear system.

A.6 Input-to-state stability

It is of interest to extend stability concepts to systems with disturbance
inputs. In the linear case represented by the system

= Ar+ Bd

it is well known that if the matrix A is Hurwitz, i.e., if the unforced system
& = Az is asymptotically stable, then bounded inputs d lead to hounded
states while inputs converging to zero produce states converging to zero.
Now, consider a nonlinear system of the form

= f(z.d) (A.10)

where d is a measurable locally essentially bounded? disturbance input. In
general, global asymptotic stability of the unforced system & = f(z,0) does

2The reader not familiar with this terminology may assume that d is piccewisc con-
tinucus.

p LB Lt SR
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not guarantee input-to-state properties of the kind mentioned above. For
example, the scalar system

#=-—z+zd (A.11)

has unbounded trajectories under the bounded input d = 2. This motivates
the following important concept, introduced by Sontag.

The system (A.10) is called input-to-state stable (ISS) with respect to d
if for some functions v € Ko and 8 € KL, for every initial state z(0), and
every input d the corresponding solution of (A.10) satisfies the inequality

lz(t)| < B(1z(0)], 1) + v(ldlo,g) V20 (A.12)

where \dll{0,¢ := esssup{|d(s)| : 3 € [0,%]} (supremum norm on [0, ] except
for a set of measure zero). Since the system (A.10) is time-invariant, the
same property results if we write

lz(t)] < B(lz(to)lt —to) + ¥(ldllo,)) VE22020.

The ISS property admits the following Lyapunov-like equivalent charac-
terization: the system (A.10) is ISS if and only if there exists a positive
definite radially unbounded C! function V : R* — R such that for some
class K functions a and x we have

Vv
Y fad) < —allah) +x(d) Vel
This is in turn equivalent to the following “gain margin” condition:
av -
e 2 plld) = o f(ed) < ~a(lz)
z
where &, p € Koo. Such functions V are called I55-Lyapunov functions.

Exercise A.2 Prove that if the system (A.10) is ISS, then d(t) — 0 implies
z(t) — 0.

The system (A.10) is said to be locally inpul-to-state stable {locally ISS)
if the bound (A.12) is valid for solutions with sufficiently small initial con-
ditions and inputs, i.e., if there exists a § > 0 such that (A.12) is satisfied
whenever |z(0)] < § and fjulljo,¢ < 8. It turns out (local) asymptotic sta-
bility of the unforced system & = f{x,0) implies local ISS. _

For systems with outputs, it is natural to consider the following notion

which is dual to ISS. A system

& = f(z) (A.13)
y = h{x)
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is called output-to-state stable (O88S) if for some functions v € K, and
B € KL and every initial state z(0) the corresponding solution of (A.13)
satisfies the inequality

() < B{=(0)}, &) + (llyllio.n}

as long as it is defined. While ISS is to be viewed as a generalization of
stahility, OSS can be thought of as a generalization of detectability; it does
indeed reduce to the standard detectability property in the linear case.
Given a system with both inputs and outputs

&= f(z,d)
y = h(x)
one calls it input/output-to-state stable (I0SS) if for some functions v, v, €

K and 8 € XL, for every initial state 2(0), and every input d the corre-
sponding solution of (A.14) satisfies the inequality

l=(t)] < B(1x(0)], ¢) + M (lldlio,g) + 12lylo.)

as long as it exists.

Replacing supremum norms by integral norms, one arrives at integral
versions of the above concepts. The system (A.10) is called integral-inpui-
to-state stable (iISS) if for some functions a,y € Ko, and # € KL, for every
initial state x(0), and every input d the inequality

(A.14)

af|z(t)]) Sﬂ(FI(O)i,tHj; Y(ld(r)hdr

holds on the domain of the corresponding solution of (A.10). It turns out
that iISS is a weaker property than ISS: every ISS system is iISS, but the
converse is not true. For example, the system (A.11)} can be shown to be
iISS, but it is not ISS as we saw earlier.

The following characterization of iI8S is useful.

Lemma A.4 The system (A.10) 4z iIS85 if and only if the system &+ =
f(z,0) is Lyapunov stable and there exists a function v € Ko, such that for
every tnitial state =(0) and every input d satisfying f0°° F(|d(r))dr < oo
we have x(t) — 0 a3 t — o0,

Necessity is easy to show using the same function + as in the definition of
iISS, while sufficiency is not at all obvious.

Similarly, the system (A.13) is integral-outpul-to-state stable (108S) if
for some functions o,y € Ko and 8 € KL and every initial state z(0) the
inequality

a(z(®)]) < F(z(0)), 1) + [ Y (ly(r) )

holds on the domain of the corresponding solution of (A.13). Again, this is
a weaker property than OSS.




Appendix B
Lie Algebras

This appendix provides an overview of basic properties of Lie algebras
which are of relevance in the developments of Section 2.2.

B.1 Lie algebras and their representations

A Lie glgebra g is a finite-dimensional vector space equipped with a Lie
bracket, i.e., a bilinear, skew-symmetric map [-,-] : g X g — g satisfying
the Jacobi identity [a, [b, c]] + [b, [¢,e]] + {c, [a,]] = 0. Any Lie algebra g
can be identified with a tangent space at the identity of a Lie group G (an
analytic manifold with a group structure). If g is a matrix Lie algebra, then
the elements of G are given by products of the exponentials of the matrices
from g. In particular, each element A € g generates the one-parameter
subgroup {e! : t € R} in G. For example, if g is the Lie algebra gl(n,R) of
ali real n x n matrices with the standard Lie bracket (A, B] = AB — BA,
then the corresponding Lie group is given by the invertible matrices.
Given an abstract Lie algebra g, one can consider its (matrix) representa-
tions. A representation of g on an n-dimensional vector space V is a homo-
morphism (i.e., a linear map that preserves the Lie bracket) ¢ : g —.gl(V).
It assigns to each element g € g a linear operator ¢(g) on V, which can
be described by an n x n matrix. A representation ¢ is called irreducible if
V contains no nontrivial subspaces invariant under the action of all ¢(g),
g € g. A particularly useful representation is the adjoint one, denoted by
“ad.” The vector space V in this case is g itself, and for g € g the opera-
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tor adg is defined by adg(a) := lg,a], @ € g. There is also Ado’s theorem
which says that every Lie algebra is isomorphic to a subalgebra of gi(V)
for some finite-dimensional vector space V' (compare this with the adjoint
representation which is in general not injective).

r

B.2 Example: sl(2,R) and gl(27, R)

The special linear Lie algebra sl(2,R) consists of all real 2 x 2 matrices of
trace 0. A canonical basis for this Lie algebra is given by the matrices

S AN VS (R LY

They satisfy the relations [h,e] = 2, [h, f] = —2f, [e, f] = h, and form
what is sometimes called an s{(2)-triple.

One can also consider other representations of s{(2,R). Although ali ir-
reducible representations of sl(2,R) can be classified by working with the
Lie algebra directly, it is sometimes useful to exploit the corresponding Lie
group SL(2,R) = {S§ € R™" : det S = 1}. Let P*|z,y] denote the space
of polynomials in two variables z and y that are homogeneous of degree k
{where k is a positive integer). A homomorphism ¢ that makes 5L(2,R)
act on P*[z,y] can be defined as follows:

wor((3) =2 ()

where § € SL(2,R) and p € P¥{z,y}. The corresponding representation
of the Lie algebra sl(2,R), which we denote also by ¢ with slight abuse
of notation, is obtained by considering the one-parameter subgroups of
SL(2,R) and differentiating the action defined above at ¢ = (. For example,
for € as in (B.1} we have

()= 2 (0 D) -2(E)

Similarly, ¢(f)p = —:r%p and ¢(h)p = (~z& + ya%)p. With respect to
the basis in P*{x,y] given by the monomials 3%, —ky*~'z, k(k — 1)y* 2%,
... {=1)*k!z* the corresponding differential operators are realized by the
matrices

U | 0 w - O T |
_ : 1 :
h = k-2 , € —+ , fe )
: T . : - ek . . -
0 - 0 —k 0 - ... 0 0 --- 1 0
- {B.
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where p; = i(k—i+1),i=1,...,k. It furns out that any irreducible repre-
sentation of si(2, R) of dimension k + 1 is equivalent (under a linear change
of coordinates) to the one just described. An arbitrary representation of
sl(2,R) is a direct sum of irreducible ones.

When working with gi(2, R) rather than si{2, R}, one also has the 2 x 2
identity matrix Ipx2. It corresponds to the operator x% + y?% on P¥[z,y),
whose associated matrix is kf(x41)x(k+1)- One can thus naturally extend
the above representation to g{(2,R). The complementary subalgebras RJ
and s{(2,R) are invariant under the resulting action.

B.3 Nilpotent and solvable Lie algebras

I g; and g are linear subspaces of a Lie algebra g, one writes (g1, g2
for the linear space spanned by the products [g),g2] with g1 € g, and
g2 € g2 Given a Lie algebra g, the sequence gt*) is defined inductively as
follows: g{1) := g, gtk+1) .= [g(k) g(*})  g(®) If g(¥) = g for k sufficiently
large, then g is called solveble. This happens if and only if dimg@ ! <«
dimg® for all ¢ > 1. Similarly, one defines the sequence g* by g* := g,
g**1 = [g,9*] C g*, and calls g nilpotent if g¥ = 0 for k sufficiently large.
For example, if g is a Lie algebra generated by two matrices A and B,
we ha've g(l) = gl =48= span{A,B, [A?B]a [A1 [Ai B]]1 e }} g(z) = 92 =
Span{[A! B]1 [A? [A1 BH! e }: 9{3) = span{[[A, B]1 IAv [A7 B]”! s } - 93 =
span{[A4, 4, B]|,{B,{A, B, ...}, and so on. Every nilpotent Lie algebra is
solvable, but the converse is not true. ’

The Killing form on a Lie algebra g is the symmetric bilinear form K
given by K(a,b) := tr(ada o adb) for a,b € g. Cartan’s first criterion says
that g is solvable if and only if its Killing form vanishes identically on [g, g].
Let g be a solvable Lie algebra over an algebraically clesed field, and let
¢ be a representation of g on a vector space V. Lie’s theorem states that
there exists a basis for V with respect to which the matrices ¢(g), ¢ € g
are all upper-triangular.

B.4 Semisimple and compact Lie algebras

A subalgebra g of a Lie algebra g is called an ideal if [g,5] € g for all
¢ € g and § € §. Any Lie algebra has a unique maximal solvable ideal r,
the radical. A Lie algebra g is called semisimple if its radical is 0. Cartan’s
secand criterion says that g is semisimple if and only if its Killing form is
nondegenerate (meaning that if for some g € g we have K(g,a) = 0 for all
a € g, then g must be 0).

A semisimple Lie algebra is called compact if its Killing form is negative
definite. A general compact Lie algebra is a direct sum of a semisimple
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compact Lie algebra and a commutative Lie algebra (with the Killing form
vanishing on the latter). This terminology is justified by the facts that th.e
tangent algebra of any compact Lie group is compact according to this
definition, and that for any compact Lie algebra g there exists a connected
compact Lie group G with tangent algebra g. Compactness of a semisimple
matrix Lie algebra g amounts to the property that all matrices in g are
diagonalizable and their eigenvalues lie on the imaginary axis. If G is a
compact Lie group, one can associate to any continuous function f: G = R
& real number [}, f(G)dG so as to have [;1dG = 1 and [; f(AGB)dG =
Jg S(G)dG for all A, B € G (left and right invariance). The measure dG is
called the Haar measure.

An arbitrary Lie algebra g can be decomposed into the semidirect sum
g = t® s, where t is the radical, s is a semisimple subalgebra, and [s,¢] C ¢
because t is an ideal. This is known as a Levi decomposition. To compute t
and s, switch to a basis in which the Killing form K is diagonalized. The
subspace on which K is not identically zero corresponds to s ® (t mod n),
where n is the maximal nilpotent subalgebra of t. Construct the Killing form
T for the factor algebra s @ (v mod n). This form will vanish identically on
(r mod n) and will be nondegenerate on s. The subalgebra s identified in
this way is compact if and only if K is negative definite on it.

B.5 Subalgebras isomorphic to sl(2, R}

Let g be a real, noncompact, semisimple Lie algebra. Our goal here is to
show that g has a subalgebra isomorphic to si(2,R). To this end, consider
a Cartan decomposition g = ¢ ® p, where £ is a maximal compact sub-
algebra of g and p is its orthogonal complement with respect to K. The
Killing form K is negative definite on ¢ and positive definite on p. Let a
be a maximal commuting subalgebra of p. Then it is easy to check using
the Jacobi identity that the operators ada, a € @ are commuting. These
operators are also symmetric with respect to a suitable inner product on
g (for a,b € g this inner product is given by —K (a,©b), where © is the
map sending k + p, with k € ® and p € p, to k — p), hence they are simul-
taneously diagonalizable. Thus g can be decomposed into a direct sum of
subspaces invariant under ade, a € a, on each of which every operator ade
has exactly one eigenvalue. The unique eigenvalue of ada on each of these
invariant subspaces is given by a linear function A on a, and accordingly
the corresponding subspace is denoted by ga. Since p # 0 {because g is not
compact) and since K is positive definite on p, the subspace go associated
with A being identically zero cannot be the entire g. Summarizing, we have

=80 (@Aez 9'\)
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where X is a finite set of nonzero linear functions on a (which are called the

roots) and g) = {g € g : ada(g) = Aa)g Ya € a}. Using the Jacobi identity,
one can show that [g,, g,.] is a subspace of ga 4, if A4 € ZU{0}, and equals
0 otherwise. This implies that the subspaces g, and g,, are orthogonal with
respect to K unless A + p = 0. Since K is nondegenerate on g, i follows
that if ) is a root, then so is —A. Moreover, the subspace [ga, g—»] of go has
dimension 1, and A is not identically zero on it. This means that there exist
some elements e € g and f € g_» such that h :=le, f] # 0. It is now easy
to see that, multiplying e, f, and h by constants if necessary, we obtain an
st(2)-triple. Alternatively, we could finish the argument b{ noting that if
g € gy for some A € X, then the operator adg is nilpotent (because it maps
each g, to gu+x 10 gui2x and eventually to zero since T is a finite set),

and the existence of a subalgebra isomorphic to s/{2,R) is guaranteed by

the Jacobson-Morozov theorem.

B.6 Generators for g9l(n,R)

This section is devoted to showing that in an arbitrarily small neighborhood
of any pair of n x n matrices, one can find another pair of matrices that
generate the entire Lie algebra gl(n,R). This fact demonstrates that the
Lie-algebraic stability criteria presented in Section 2.2 are not robust with
respect to small perturbations of the matrices that define the switched
linear system.

We begin by finding some matrices By, B; that generate gi(n,R). Lot
B, be a diagonal matrix B; = diag(k, bs,...,by) satisfying the following
two properties:

1. b — bj # b — by if (,7) # (k,1)
2-.2;;1 b‘. :/_.0'

Denote by od{n, R) the space of matrices wilh zero elements on the main
diagonal. Let B2 be any matrix in od(n,R) such that all its off-diagonal
elements are nonzero. It is easy to check that if £;; is a matrix whose ijth
element is 1 and all other elements are 0, where ¢ # j, then [By, E; ;| =
{bi — b;)E; ;. Thus it follows from Property 1 above that Bz does not
belong to any proper subspace of od(n, R} that is invariant with respect
to the operator adBy. Therefore, the linear space spanned by the iterated
brackets ad*B;(B;) is the entire od(n,R). Taking brackets of the form
[Es j, E;:], we generate all traceless diagonal matrices (cf. [e, f] = h in
Section B.2), Since B; has a nonzero trace by Property 2 above, we conclude
that {B], BQ}LA = gl(ﬂ,R)

Now, let A; and A5 be two arbitrary n x n matrices. Using the matrices
By and B» just constructed, we define Ai{a} ;= A; + aBy and Aa(a) :=
Az +aB,, where o > 0. We claim that these two matrices 4; (o} and Ax(e)
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generate gl(n, R) for every sufficiently small a. Indeed, consider a basis for
gl(n,R) formed by Bi, Bz, and their suitable Lie brackets. Replacing B;
and B; in these expressions by A,{a) and Aj(a), respectively, and writing
the coordinates of the resulting elements relative to the above basis, we
obtain a square matrix A(a). Its determinant is’a polynomial in & whose
value tends to oo as a — 0o, and therefore it is not identically zero. Thus
A(a) is nondegenerate for all but finitely many values of a. In particular,
Ai(a), Ax(a), and their suitable Lie brackets provide a desired basis for
gl(n,R) if a is sufficiently small.

Notes and References

Part 1

There exist very general formulations, such as the theory of hereditary sys-
tems described in [111], which can in particular be applied to hybrid dynam-
ical systems. However, it is clearly of interest to develop models specifically
designed to capture interactions between continuous and discrete dynam-
ics. An early model of a hybrid system, which closely corresponds to the
state-dependent switched system model deseribed in Section 1.1, appeared
in [305]. Since then, more general models have been developed, incorporat-
ing impuise effects, controlled dynamics, different continuous state spaces
for different discrete states, ete. [7, 224, 63, 50, 187, 200]. There has also
been interest in models for hybrid systems that allow more general types
of continuous dynamics, such as differential inclusions [82], stochastic dif-
ferential equations [138], and differential-algebraic equations [296]. The pa-
per [313] develops a model that uses general concepts of a time space and a
motion. A very general behavioral definition of a hybrid system is presented
in [296]. See also the work of [284] on abstract control systems.

When solving specific problems, the generic models mentioned above are
often difficult to work with, and there have been many attempts to develop
more concrete models of hybrid systems that are still general enough to
cover applications of interest. The paper [55] proposes several models where

- gymbolic strings trigger transitions between continuous dynamics; they are

developed with the view toward modeling motion control systems but have
a wider applicability. A similar model is considered in [24]. The model dis-
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cussed in [27] is designed for the situations where a continuous plant is con-
nected with a hybrid feedback controller. Complementarity systems studied
in [296], where two variables are subject to inequality constraints and at
all times at least one of these constraints is satisfied with equality, provide
another example of a framework that covers many examples of hybrid sys-
tems. Piecewise linear systems are readily suitable for implementation and
analysis and can be used as approximations of more general nonlinear and
hybrid systems [67, 265]. Mized logical dynamical systems defined in [37]
are linear differential equations with inequality constraints involving real
and integer variables, amenable to systematic control synthesis via tech-
niques from mixed-integer quadratic programming. (Equivalences among
the last three classes are discussed in [113].)

Hybrid dynamical systems are pervasive in today’s technology and gen-
erate tremendous research interest. In the report [167], they were iden-
tified as one of the major challenges in control theory. In the last few
years, every major control conference has had several sessions on hybrid
systems. Workshops and symposia devoted specifically to this topic are
regularly taking place [107, 20, 9, 21, 22, 213, 114, 294, 188, 40]. Almost
every major technical control journal has had a special issue on hybrid sys-
tems [240, 23, 216, 86, 19, 39, 119]. Textbooks and research monographs
on the subject are beginning to appear [296, 196, 282, 87].

Modeling tools frequently used for hybrid systems are those of discrete-
event system theory, such as finite-state machines and Petri nets. Purely
discrete abstractions of hybrid systems, which preserve temporal proper-
ties, are of interest in this context [8]. The references cited above contain
many papers illustrating these approaches, which are beyond the scope of
this book. These references also discuss various issues regarding solutions
of hybrid systems; another body of literature which is relevant—and closer
in spirit to systems theory—is the work on control of discrete-event sys-
tems [249]. In this book, we are concerned primarily with properties of
the continuous state, the main research issues being stability analysis of
switched systems and synthesis of switching control laws. For analysis pur-
poses, it often makes sense to assume that the switching signal belongs to
a certain class, ignoring the details of the discrete dynamics. The results
presented in Chapters 2 and 3 are of this flavor. ,

For background on existence and uniqueness theorems for solutions of
ordinary differential equations, the reader can consult standard textbooks
such as [25, 152, 298]. The bouncing ball example is taken from [296]; see,
e.g., [262] for more examples and further discussion of Zeno behavior. Fil-
ippov’s generalized solution concept described in {92, 94] provides a general
methodology for modeling {or approximating) fast switching by continu-
ous sliding modes; there is a vast literature on the use of sliding modes in
control theory, going back to the book [293] and the references discussed
there. Another approach is to approximate discrete transitions by very fast
continuous dynamics, arriving at a singulprly perturbed system (see [49]).
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When continuous dynamics for different discrete states of a hybrid sys-
tem evolve on different state spaces, the analysis can be simplified if it is
possible to paste these spaces together, obtaining a single switched system
evolving on a “hybrifold” (262, 166].

Switched systems have numerous applications in robotics, antomotive
industry, aircraft and air traffic control, power systems, and many other
fields. The book [213} contains reports on various developments in some of
these areas. Example 1.1 points to just one of the many places in which
switching occurs in modern automobiles. As automotive technology evolves,
new ways to explore switching will undoubtedly appear. One advantage of
switching is that it helps avoid the use of overly multi-functional devices
which sacrifice performance. For example, automobile tires are desipnod
to maintain the desired contact with the road surface when the car is in
metion. However, when it comes to braking, they may not provide the most
efficient solution. Arguably, humans have the ability to come to a complete
stop more abruptly than wheeled vehicles. On a science-fiction note, one
can imagine a two-legged (or multi-legged) device which extends from the
bottom of a car to the ground to facilitate the braking when necessary.
This would be an example of a switching control mechanism.

Part 11

Restricting our attention in Part IT to Problems 1 and 2, we are of course
ignoring other interesting problem formulations. For example, we are as-
suming that the switching signal is either arbitrary or belongs with cer-
tainty to some class of signals. An intermediate casc, not studied here, is
when the switching conforms to some probability law, so it is neither com-
pletely arbitrary nor precisely known (see [145, 109, 36, 291, 77], Chapter 9
of [261], and the references therein for some resuits on systems in which the
switching is governed by a Markovian jump process). An important 1opic
which is complementary to equilibrinm analysis is stability of limit cycles in
switched systems; see, e.g., [196, 104]. Other cancepts are of interest besides
stability, especially for systems with inputs and/or outputs; these include
input/output (or input/state) properties (129, 127, 173, 192, 309, 118], con-
trollability {184, 185, 88, 2, 278, 101], switched observer design [242, 183, 6],
passivity [241, 315], and output tracking [225, 148).

Chapter 2

In defining uniform stability concepts for switched system® in Section 2.1.1,
we used the notion of a class £ function; the same approach is taken
in [191]. Alternatively, these stability concepts can be defined using the
more familiar e-§ formalism (see, e.g., [78]). The equivalence between the
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two formulations is proved (in the context of systems with disturbances)
in [181).

}[&n garly converse Lyapunov theorem for switched systems was proved
in [198] (derived in the setting of differential inclusions, the results of that
paper can be easily adopted to switched systems). It is shown in {198]
that for linear systems, GUAS implies the existence of a commen Lya-
punov function satisfying quadratic bounds; this result is then extended
to nonlinear systems that are uniformly asymptotically stable in the first
approximation. (Incidentally, the second part of the same paper {198] de-
scribes the control design technique that we now know as integrator back-
stepping [161].) In [203] it is shown that for asymptotically stable linear
differential inclusions, one can always find a common Lyapunov function
that is homogeneous of degree 2 or piscewise quadratic; several algebraic
criteria for asymptotic stability are also derived in that paper. Detailed
proofs of these converse Lyapunov theorems in the context of switched sys-
tems are also given in [78]. In {181}, a smooth converse Lyapunov theorem is
proved for nonlinear systems with disturbances. Associating to a switched
system a system with disturbances and applying the result of [181], one
can arrive at the converse Lyapunov theorem for switched nonlinear sys-
tems which we stated as Theorem 2.2; this is done in [191}. The converse
Lyapunov theorem for differential inclusions proved in [288] also gives this
result as a corollary.

The relaxation theorem for locally Lipschitz differential inclusions, known
as the Filippov-Wazewski theorem, says that a solution of the “relaxed”
differential inclusion (i.e., the one obtained by passing to the closed con-
vex hull) defined on a finite interval can be approximated by a solution
of the original differential inclusion on that interval, with the same ini-
tial condition. For details see, e.g., [30, 94]. A more recent result proved
in [139] guarantees approximation on infinite intervals, but possibly with
different initial conditions for the two solutions. (The same paper also gives
a counterexample demonstrating that approximation on infinite intervals
with matching initial conditions may not be possible.) The latter result ig
more suitable for studying global asymptotic convergence, while the for-
mer is useful for investigating uniform Lyapunov stability. Computational
aspects of verifying stability of all convex combinations for linear systems
are addressed in [43] and the references therein.

It has been known for some time that for switched linear systems, uni-
form asymptotic stability is equivalent to GUES (under an appropriate
compactness assumption); see, e.g., [203] and the references therein. The
equivalence between these properties and attractivity, expressed by The-
orem 2.4, is proved in the recent paper [14] which deals with the larger
class of switched homogeneous systems. The proof relies on the fact that
local uniform stability plus global attractivity imply GUAS, established for
general nonlinear systems in [275].
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" A general reference on LMIs is [45]. The infeasibility condition (2.12),
which can be used to check that a quadratic common Lyapunov fimction
does not exist, is based on the duality principle of convex optimization; for -
a discussion and references, see [45, pp. 9 and 29]. The system discussed
in Section 2.1.5 is actually a specific member of a family of switched linear
systems described in [78]. A different example illustrating the same point,
namely, that the existence of a quadratic common Lyapunov function is
not necessary for GUES of a switched linear system, is given in [246]. A
sharp result on the existence of quadratic common Lyapunov functions in
the discrete-time case is obtained in [13].

Theorem 2.7 was proved in [178], and the details of the arguments given
in Section 2.2.2 (including the treatment of complex matrices) can be found
there. Lie’s theorem and the triangular structure that it provides were also
used in the derivation of the well-known Wei-Norman equations [300]; fur-
ther relations (if any) between the two results remain to be understood.
The fact that a family of linear systems with Hurwitz triangular matrices
has a quadratic common Lyapunov function, used in the proof of Theo-
rem 2.7, is relatively well known; see, e.g., [70, 205, 259]. The paper [259]
summarizes various conditions for simultaneous triangularizability of linear
systems (also see, e.g., 134, Chapter 2]). For an extension to the case of
pairwise triangularizable matrix families, see [257]. Some related results on
diagonal quadratic common Lyapunov functions are discussed in [230].

The results presented in Section 2.2.3 are taken from [3]. More material,
including complete proofs, can be found in that paper. For examples of
P. Hall bases for nilpotent Lie algebras (and their use in control theory),

. see [220]. The perturbation argument given in Section 2.2.4 is quite stan-

.

dard; it is presented in a more general setting in [152, Example 5.1] and
applied to switched linear systems in [205].

The material of Section 2.3.1 is taken from the paper [¢7], which can be
consulted for proofs and extensions. Nonlinear versions of Lie’s theorem,
which provide Lie-algebraic conditions under which a family of nonlinear
systems can be simultancously triangularized, are developed in (74, 151,
194]. However, in view of the need to satisfy coordinate-dependent 1SS
conditions such as those of Theorem 2.14, these results are not directly ap-
plicable to the stability problem for switched nonlinear systems. Moreover,
the methods described in these papers require that the Lie algebra spauned
by a given family of vector fields have full rank {(LARC), which is not true
in' the case of a common equilibrium.

Passivity is a special case of dissipativity, which is defined as the prop-
erty that a certain function of the input and the output (called the supply
rate) has a nonnegative integral along all trajectories. Characterizations
of dissipativity in terms of storage functions are discussed, e.g., in [132].
Many resuits and references on passivity and its use in nonlinear control
can be found in the book [254]. See [193] for an application of passivity to
switching control design for cascade nonlinear systems.
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The original references on the Kalman-Yakubovich-Popov lemma——and
its use in the context of the absclute stability problem posed by Lurie in the
1940s—are [244], [311], and [150]. The connection between positive realness
and Lyapunov functions containing integrals of the nonlinearities was also
investigated in [51). A proof of the circle criterion using loop transforma-
tions and the Kalman-Yakubovich-Popov lemma is given, e.g., in [105, 152];
an alternative treatment can be found in [52]. For a detailed discussion of
Popov’s criterion, see [152, 298] and the references therein. The converse re-
sult that for two-dimensional systems the existence of a quadratic common
Lyapunov function for all nonpositive feedback gains implies strict positive
realness of the open-loop transfer function is proved in [156]. A different
frequency-domain condition for the existence of a quadratic common Lya-
punov function is presented in [60}.

A proof of the necessary and sufficient small-gain condition for the ex-
istence of a quadratic common Lyapunov function for the family of feed-
back systems (2.36) can be found in [237, 153]; the result is originally
due to Popov. The application to stability of switched linear systems was
pointed out to us by Andy Teel. Further results on connections between
small-gain conditions, passivity, and the existence of quadratic common
Lyapunov functions, as well as numerical algorithms for finding the latter,
are presented in [46]. For additional references and historical remarks on
the developments surrounding passivity and small-gain theorems, see {157].
Methods for reducing passivity and smali-gain conditions to solving Riccati
equations and LMIs, as well as computational aspects, are discussed in [45,
pp. 25-27 and 34-35]. Many additional relevant references are provided in
that book (see, in particular, pp. 72-73).

The results on coordinate changes and realizations of stabilizing con-
trollers are taken from [116, 131]. Incidentally, the proof of Theorem 2.15
relies on the existence of a quadratic common Lyapunov function for a fam-
ily of triangular asymptotically stable linear systems. Further results that
utilize the feedback structure of subsystems being switched are discussed
in [212, Section VIII] and [117].

Before a complete solution to the problem of finding necessary and suffi-
cient conditions for GUES of two-dimensional switched homogeneous sys-
tems was obtained in [93], the case of two-dimensional switched linear
systems in feedback form was settled in [246]. These results were subse-
quently generalized in [247], yielding in particular necessary and sufficient
conditions for GUES of three-dimensional switched linear systems in feed-
back form as well as general two-dimensional switched linear systems. More
recently, alternative necessary and sufficient conditions for GUES in two
dimensions were derived for a pair of linear systems in {44] and for a fi-
nite family of homogeneous systems in [133]. The proofs given in the last
three references are based on the method of worst-case switching analysis,
instantiated also by the example considered in Section 2.1.5,
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Proposition 2.16 is taken from [69, Section IV]; see also [260]. The prelim-
inary result mentioned before the statement of Proposition 2.16, namely,
that a quadratic common Lyapunov function exists if all convex combina-
tions have negative real eigenvalues, was obtained in [258]. Necessary and
sufficient conditions for the existence of a quadratic common Lyapunov
function for a family of three linear systems are also available; the systems
must satisfy the hypothesis of Proposition 2.16 pairwise, and some addi-
tional conditions must hold [260]. The same paper notes that by Helly’s
theorem, a family of more than three linear systems in the plane has a
quadratic common Lyapunov function if and only if so does every triple of
systems from this family; in general, for a family of linear systems in R™ one
must check all subfamilies containing n{n + 1)/2 systems. Further results
for the planar case involving nonquadratic common Lyapunov functions -
are reported in [308].

The problem of characterizing the GUAS property of switched systems
continues to attract a lot of research interest. We have attempted to de-
scribe the main research avenues. Other relevant results include the ones
using the concepts of matrix measure [297, 88, 168], spectral radius [34,
76, 109, 13], connective stability [261], and miscellaneous algebraic con-
ditions [228, 229, 206]. The paper [12] deals with the related problem of
characterizing the sefs of linear systems with the property that they share a
quadratic common Lyapunov function which does not serve as a Lyapunov
function for any system outside the set. Most of the results discussed here
can be carried over to the case when the individual subsystems evolve in
discrete time, by associating the discrete-time subsystems with suitable
continuous-time ones, although there are some notable differences (as dis-
cussed, e.g., in [207, 5]). Discrete-time switched systems are closely related
to discrete multi-dimensional systems, whose study is motivated by dis-
cretization of PDEs; see [100] where results on asymptotic stability of such
systems in the case of commuting matrices—which parallel those discussed
in Section 2.2.1 are presented. The recent paper [144] deseribes how a
switched linear system can be used to model mobile autonomous agent
coordination, both in discrete and in continuous time, and discusses stabil-
ity results that utilize the special structure of the matrices arising in that
problem.

Chapter &

When discussing stability of switched systems, we assume that there are
no impulse effects, i.e,, that the state trajectory remajns continuous at
switching times. Results dealing specifically with stability of systems with
impulse effects can be found, e.g., in [235, 33, 312, 164, 251, 110, 31, 131,
169]. Although not studied here, such systems are important and arise, for
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example, in models of switched electrical circuits due to jumps in currents
and voltages.

The stability results for switched systems using multiple Lyapunov func-
tions, such as Theorem 3.1, are close in spirit to the aforementioned results
on impulsive systems. The idea first appeared in [236]. In that paper, a
result similar to Thecrem 3.1 was proved, but under the stronger condition
that at switching times, the values of Lyapunov functions corresponding
to the active subsystems form a decreasing sequence (this was called the
“sequence nonincreasing condition™ in [49]). As shown in [49] (see also the
earlier conference papers {47, 48]), this condition gives Lyapunov stability
in the case of a general compact index set P under & suitable continuity
assumption. The same paper also introduced a weaker condition of the kind
we used in Theorem 3.1, whereby one only needs to compare the values of
each Lyapunov function at the times when the corresponding subsystem
becomes active, separately for each subsystem index. (According to the ter-

minology of [49], functions satisfying such conditions are called “Lyapunov- .

like.”) For extensions allowing a Lyapunov function to grow during the
period on which the corresponding subsystem is active, provided that this
growth is bounded via a positive definite function, see (135, 239] (as well
as [313], where the results of {135] are presented in a more general setting).

The paper [112] develops a stability result based on multiple Lyapunov
functions for systems with switching generated by a finite automaton,
whose structure can be used to reduce the class of switching signals for
which the conditions need to be checked. In [117], multiple weak Lyapunov
functions are used to obtain an extension of LaSalle’s invariance principle to
switched linear systems; a nonlinear counterpart which relies on a suitable
observability notion for nonlinear systems is discussed in [125]. (Another
version of LaSalle’s theorem for hybrid systems, which uses a single Lya-
punov function, appeared in [318].) The idea of using multiple Lyapunov
functions is also exploited in [315], where a notion of passivity for hybrid
systems which involves multiple storage functions is studied.

Maultiple Lyapunov functions provide a useful tool for switching control
design. We mention the “min-switching” strategies with an application to
pendulum swing-up described in [189}, the stability criteria for systems with
different equilibria and the stabilization results for systems with changing
dynamics developed in [316], and the switching control scheme incorporat-
ing multiple Lyapunov functions in an optimal control framework proposed
in [159].

Slow switching assumptions greatly simplify stability an&lyeus and are,
in one form or another, ubiquitous in the literature on switched systems
and control. The results on stability under slow switching discussed in Sec-
tion 3.2 parallel the ones on stability of slowly time-varying systems (cf.
[264] and the references therein). The motivation comes in particular from
adaptive control: loosely speaking, the counterpart of a dwell-time switch-
ing signal is a tuning signal with bounded derivative, while the counterpart
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of an average dwell-time switching signal is a “nondestabilizing” tuning
signal in the sense of [208]. The term “dwell time” was apparently coined
in [210]. For a proof that a sufficiently large dwell time guarantees expo-

nential stability of a switched linear system generated by a compact family

of Hurwitz matrices, see, e.g., [212, Lemma 2]; an cxplicit bound very
similar to (3.5)—is obtained there using direct manipulations with matrix
exponentials. Theorem 3.2, which generalizes the above result, and its proof
using multiple Lyapunov functions are taken from [129]. The fact that tak-
ing Wp(z)} = AV (2} in (3.11) does not lead to a loss of generality is proved,
e.g., in [245]. An extension of the average dwell time analysis to the case
when some of the subsystems are unstable is described in [317], Tt is in-
teresting to note that the concept of average dwell time has a counterpart
in information theory, which has been used to characterize average rate
of traffic flow in communication networks [75] {this reference was kindly
provided by Bruce Hajek).

The material of Section 3.3 is based on {149 and [239]. More details on
LMI formulations of the search for multiple Lyapunov functions for state-
dependent switched linear systems are given in these papers and in the
survey article [79). See also the related work reported in [103] where global
asymptotic stability of state-dependent switched linear systems is studied
with the help of Lyapunov functions defined on the switching surface rather
than on the entire state space, and stability conditions are presented in the
form of LMIs. References and historical remarks on the S-procedure are
provided in [45, pp. 33-34).

Theorem 3.4 was proved in [303] (see also the earlier conference pa-
per [302]). Other stabilization techniques relying on Hurwitz convex com-
binations (namely, rapid time-dependent switching and sliding mode con-
trol), as well as an algorithm for finding such convex combinations, are
also discussed there. The latter topic is further addressed in [170]. The
NP-hardness of the problem of identifying stable convex combinations is

_proved in [42]. The term “quadratic stability” is quite standard in the ro-

bust control literature, where it means the existence ol a single quadratic
Lyapunov function for all admissible uncertainties.
Conic switching laws such as the one described in Example 3.3 are studied

. in [310]. The remainder of Section 3.4.2—devoted to multiple Lyapunov

functions—is based on [189], where the same “min-switching” scheme is
presented in the more general context of nonlinear systems, and [301], where
additional algebraic sufficient conditions for stabilizability are derived. An
example of asymptotic stabilization of a switched linear system via state-
dependent switching and multiple Lyapunov functions is given in [236)].
The same paper discusses the problem of choosing a quadratic function
that decreases along solutions of a given linear system in some nonempty
conic region. An earlier reference which presents an application of state-
dependent stabilizing switching stratggies is [143].




194 Notes and References

Part I

We remark that there is no general theory of switching control, nor is
there a standard set of topics to be covered in this context. Therefore, the
material in Part III is to be viewed merely as a collection of illustrative
examples. In particular, we only address stabilization and set-point control
problems, although there are many other control tasks of interest, such as
trajectory tracking and disturbance rejection.

Chapter 4

The exposition in Section 4:1.1 ig based largely on the survey article [271];
additional examples and discussion can be found there, as well as in [270,
Section 5.9]. Early references on topological obstructions to asymptotic
stabilization—and ways to overcome them—are [280, 272, 26] (these pa-
pers discuss discontinuous controls, continuous time-varying controls, and
relaxed controls, respectively). See also the paper [227]. The book [202)
provides a good quick introduction to some of the mathematical concepts
encountered in Section 4.1.

Brockett’s paper [54], which established the necessary condition for feed-
back stabilization (Theorem 4.1}, is certainly one of the most widely ref-
erenced works in the nonlinear control literature. (The well-known non-
holonomie integrator example studied in Section 4.2.1 was also introduced
there.) This paper has spurred a lot of research activity, which can be
loosely classified into three categories. First, there was the issue of filling
in some technical details in the proof. Brouwer’s fixed point theorem states
that a smooth (or at least continuous) function from a ball to itself has
a fixed point. Brockett’s original argument, paraphrased in Section 4.1.2,
cited the result from [304] that the level sets of Lyapunov functions are
homotopically equivalent to spheres. However, this fact is not enough to
justify an application of a fixed point theorem, because in R" with n = 4 or
5 it is not known whether these level sets are diffeomorphic to spheres (for
n = 4 this is closely related to the Poincaré conjecture; in fact, it is not even
known whether the level sets are homeomorphic to a sphere in this case).
For details and references on this issue, see [108]. As pointed out in {271,
a fixed point theorem can indeed be applied because the sublevel set R is
a retract of R™. An altogether different proof of Brockett’s condition can
be given using degree theory. This is mentioned briefly in Brockett’s origi-
nal proof; for details, see [314, 267] and {270, Section 5.9] (in [267], Sontag
attributes the argument to Roger Nussbaum). This proof actually yields a
stronger conclusion, namely, that the degree of the map (4.4) is (—1)" near
zero. As explained in {271), there are some systems, such as the one con-
sidered in [26, Counterexample 6.5], which satisfy Brockett’s condition but
violate the degree condition. Actually, Brockett’s condition was originally
stated in a slightly weaker form than even hﬁ:s proof automatically provides:
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it was not specified that the image of every neighborhood of zero—no mat-
ter how small-—under the map (4.3) contains a neighborhood of zero (i.e.,
that this map is open at zero). As demonstrated in Section 4.2.1, this more
precise condition is required for treating systems such as the unicycle (it
is eagy to restate the result to accommodate the case when k(0) # 0). An-
other necessary condition for feedback stabilizability which is close in spirit
to Brockett’s but stronger—stated in terms of homology groups—is estab-
lished using degree theory in [72]. See [62] for a generalization of Brockett's
condition to systems with parameters (whose proof is also based on degree
theory).

The second research direction that originated from Brockett’s result was
to understand if it also holds for more general, not necessarily smooth and
static, feedback laws. As shown in [314], Brockett’s condition still applies
if one allows continuous feedback laws, as long as they result in unique
trajectories. (The same paper proves that if Brockett’s condition fails to
hold, then the system cannot be rendered globally attractive by continuous
feedback, even without requiring asymptotic stability, and for systems of
dimension n < 2, Lyapunov stability is also impossible.) It is not difficult to
see that Brockett’s condition extends to systems with continucus dynamic
feedback, if the overall closed-loop system is required to be asymptotically
stable. A much deeper result is that the existence of a discontimous stabi-
lizing feedback also implies Brockett’s condition if solutions are interpreted
in Filippov's sense, at least for systems affine in controls; see {252, 73, 64].
Thus one is left with two possibilities for stabilizing systems that violate
Brockett’s condition. One is to use continuous time-varying feedback or,
more generally, dynamic feedback that stabilizes the original system states
only. The other is to use discontinuous feedback and interpret solutions in
the sense other than Filippov’s (for example, via the approach developed
in [68]) or, more generaily, use hybrid feedback.

Stabilization of systems that violate Brockett’s condition, and so can-
not be asymptotically stabilized by continuous static feedback, constitutes
the third major research direction. It was recognized that general classes of
nonholonomic systems fall into this category (cf. [243, 41]}, and various sta-
bilizing control laws of the aforementioned kinds have been developed for
these systems. The switching stabilizing control law for the nonholonomic
integrator described in Section 4.2 is similar to the one presented in [85].

- More advanced switching control strategies which are close in spirit to these

are developed in {234] and [130]. Since every kinematic completely nonholo-
nomic system with three states and two control inputs can be converted to
the nonholonomic integrator by means of a state and control transforma-
tion [220], a fairly general class of nonholonomic systems can be treated hy
similar methods. Many other relevant results are referencet and discussed
in the survey articles [158] and [197}; the first article is devoted specifically
to nonholonomic systems and reviews various control techniques for these
systems, while the second one concentrates on hybrid control design. An-
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other topic of interest for nonholonomic systems is motion planning, which
is not affected by Brockett’s condition but still is challenging.

For details on the Lie bracket computations and the controllability anal-
ysis of the nonholonomic integrator illustrated in Figures 23 and 26 in
Section 4.2, see, e.g., [68]. The relationship between Lie algebras and con-
trollability for general nonlinear systems is a classical topic in control the-
ory, addressed in many books such as [142, 226, 270]. References to early
works on the subject can be found in [53, 115, 281]. An overview of results
particularly relevant to nonholonomic systems is given in [219, Chapter 7).

Stabilization of an inverted pendulum is a popular benchmark problem in
nonlinear control, studied by many researchers. The material of Section 4.3
is drawn primarily from [29]. The argument proving that a continuous glob-
ally stabilizing feedback does not exist was shown to us by David Angeli;
the same proof also appears in [256]. The control law (4.16) is a special case

of the one proposed and analyzed in [286, Example 4.1]. The problem of

designing a continuous stabilizing feedback with a large domain of attrac-
tion is addressed in [15] and [250]. The above sources, in particular [29],
can be consulted for additional references on the subject. .

Chapter 5

A more detailed exposition of the time-optimal control problem and the
bang-bang principle for (time-varying} linear systems can be found, e.g.,
in [154] or [270, Chapter 10]. For an insightful discussion of applicability of
the bang-bang principle to nonlinear systems, see-[281].

The treatment of the dynamic output feedback stabilization problem for
stabilizable and detectable linear systems can be found in many textbooks;
see, e.g., [306, Section 6.4]. The static output feedback stabilization prob-
lem, and the difficulties associated with it, are thoroughly discussed in the
survey article [283]. It is shown in [182] that every controllable and observ-
able linear systern admits a stabilizing hybrid output feedback law that
uses a countable number of discrete states. The finite-state hybrid out-
put feedback stabilization problem, considered in Section 5.2, was posed
in [27]. Example 5.2 was also examined in that paper and later revisited
in [174). For two-dimensional systems, this problem is further studied in [38]
and {137]. Note that a special case is the problem of finite-state hybrid state
feedback stabilization for linear systems that are not stabilizable by static
state feedback {cf. [263]).

The matrix variable elimination procedure which we used in arriving at
the inequalities (5.15) and (5.16) is described in [45, pp. 22-23 and 32-33].
For $; = B2 = 0 these inequalities decouple into two pairs of inequalities
which are equivalent to the LMIs that characterize stabilizability of each
subsystem by static output feedback, given in {283, Theorem 3.8]. A condi-
tion involving a set of LMIs which guarantees the existence of a stabilizing
switching strategy based on output measurements and observer design (for
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a switched system with no control inputs) is derived in [91]; using this result
and the above elimination procedure, one can obtain conditions for stabi-
lizability of the system (5.7) via observer-based switched output feedback.
In contrast with the methods considered in Section 5.2, one could employ
time-dependent switching among a family of output gains, for example, pe-
riodic switching (cf. [1]). This is related to the problem of stabilization by
means of static time-varying output feedback, whose solution is not known
except in special cases [57, 204].

For some examples of problems where considerations mentioned at the
beginning of Section 5.3 arise, see the articles in [61] and the references
therein. Effects of quantization on the performance of control systems, and
control design techniques for systems with quantized signals, have been
major topics of study in control theory. Only a few relevant references are
listed below, and they can be consulted for further information. Stochastic
methods have played a role [81], but here we confine ourselves to deter-
ministic nonlinear analysis. A standard assumption made in the literature
is that the quantization regions (typically rectilinear) are fixed in advance
and cannot be changed by the control designer; see, among many sources,
[201, 81, 248, 90, 279]. Some work concerned with the question of how
the choice of quantization parameters affects the behavior of the system
is reported in [28, 307, 84, 141, 177, 155]. Quantization regions of general
shapes are considered in [186)].

The result of Lemma 5.1 is well known (see, e.g., [201, Theorem 3]
and (81, Proposition 2.3] for results along these lines). The generalization to
the nonlinear case using the ISS assumption was obtained in [175]. In [172]
these results were extended to more general types of quantizers, with quan-
tization regions having arbitrary shapes. This extension is useful in several
situations. For example, in the context of vision-based feedback control, the

- image plane of the camera is divided into rectilinear regions, but the shapes

of the quantization regions in the state space which result from comput-
ing inverse images of these rectangles can be rather complicated. So-called
Voronoi tessellations (see, e.g., [83]) suggest that, at least in two dimen-
sions, it may be beneficial to use hexagonal quantization regions rather
than more familiar rectangular ones.

The idea of using variable state quantization was introduced and ex-
plored in [59] in the context of linear systems and subsequently extended
to nonlinear systems in [175] and [172]. For details on how one can relax
the assumptions in the nonlinear case and obtain weaker versions of the re-
sults, see [175]. The material of Sections 5.3.4 and 5.3.5 is taken from [172].
The control law presented in Section 5.3.6 is a slightly modified version of
the one considered in [59] and is somewhat similar to the control scheme
described in [80, 81]; the results of [285, 238, 32, 221, 176], as well as the
earlier work [307] which deals with memoryless quantizers and time de-
lays, are also relevant. Several related ®evelopments not covered hére, such
as quantized control of discrete-time systems, state-dependent switching,
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time sampling, and sliding mode control, are discussed in [59]. See also [136]
where these methods are explored in the context of sampled-data control
and local asymptotic stabilization of nonlinear systems is treated using lin-
earization. The results presented here can be readily extended to the setting
of [155] where quantization is combined with hysteresis, since Conditions 1
and 2 of Section 5.3.1 are still satisfied. _

1t is shown in [266) that if the affine system (5.75) is asymptotically stabi-
lizable, then the system (5.76) is input-to-state stabilizable with respect to
an actuator disturbance e. The fact that a similar statement does not hold
for the system (5.77) with a measurement disturbance was demonstrated
by way of counterexamples in [95] and later in [89]. Thus the problem of
finding control laws that achieve ISS with respect to measurement distur-
bances is a nontrivial one, even for systems affine in controls. This problem
has recently attracted considerable attention in the literature [97, 89, 146].
In particular, it is shown in [97, Chapter 6] that the class of systems that
are input-to-state stabilizable with respect to measurement disturbances in-
cludes single-input plants in strict feedback form. As pointed out in [268],
the above problem also has a solution for systems that admit globally Lip-
schitz control laws achieving ISS with respect to actuator disturbances.
Of course, for linear systems with linear feedback laws all three concepts
(asymptotic stabilizability, input-to-state stabilizability with respect to ac-
tuator errors, and input-to-state stabilizability with respect to measure-
ment errors} are equivalent.

An important research direction is to develop performance-based theory
of control with limited information. Performance of hybrid quantized feed-
back control policies of the kind considered here can be evaluated with re-
spect to standard criteria, such as control effort, transient behavior, or time
optimality. Of particular significance, however, are performance measures
that arise specifically in the context of quantized control. An interesting
optimal control problem obtained in this way consists of minimizing the
number of crossings of the boundaries between the quantization regions—
and the consequent changes in the control value—per unit time, which can
be interpreted as the problem of minimizing the “attention” needed for im-
plementing a given control law [56, 177). Another relevant problem is that
of stabilizing the system using the coarsest possible quantizer (84], which
corresponds to reducing the data rate; this is related to the developments
of Section 5.3.6.

Chapter 6

For background on adaptive control, the reader can consult textbooks such
as [140]. The idea of using switching in the adaptive control context has
been around for some time, and various results have been obtained; see, e.g.,
[195, 98, 200, 223, 160] and the overview and additional references in {211].
In the form considered here, supervisory control originates in the work of

-
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Morse [212, 214]. For a comparison of supervisory control and traditional
adaptive control and examples illustrating the advantages of supervisory
control mentioned in Section 6.1, see {123]. Specific references on which the
presentation in this chapter is based are given below. Related work by other
researchers includes {163, [232], and the papers in the special issuc [119].
We also point out that the term “supervisory control” has other meanings
in the literature (cf. [249]).

The problem of constructing a finite controller family for an infinite fam-
ily of process models is studied in {231, 233, 10]. For more on state sharing
for nonlinear systems, see [126]. Some methods for defining monitoring sig-
nals by processing the estimation errors in a more sophisticated way than
done here are discussed in [163, 218, 11]. The example of Section 6.3 is bor-
rowed from the appendix of [120]. The additive hysteresis switching logic
used in that example is studied in [199, 217].

For details on the multi-estimator design for linear systems presented
in Section 6.5.1, see [212]. In particular, the inequalities (6.14) and {6.15)
are immediate consequences of the equation {28) in that paper. The for-
mula (6.12) describes the class of admissible process models treated in [214],
while the class defined by (6.13) was investigated in [124]. More information
on coprime factorizations can be found, e.g., in [319]. Multi-estimators for
nonlinear systems are further discussed in {116, 126]. The work on coprime
factorizations for neonlinear systems described in [295) is also relevant in
this regard.

The developments of Section 6.5.2 are adopted from [126] and [121].
The linear prototypes of these results—the certainty equivalence stabiliza-
tion and certainty equivalence output stabilization theorems from adap-
tive control—were established in [209]. The earlier paper [208] introduced
the concept of detectability (tunability) in the adaptive control context.
In [126], an extension of the certainty equivalence stabilization theorem
to nonlinear systems (Part 1 of Theorem 6.1) was obtained using the
Lyapunov-like characterization of ISS5."The iISS case was treated in [121]
using more direct time-domain techniques. The related problems of input-
to-state and integral-input-to-state disturbance attenuation are addressed
in [161, 273, 299, 96, 292, 162, 287, 173, 180]. For a nonlinear version of
the certainty equivalence output stabilization theorem, based on a novel
variant of the minimum-phase property for nonlinear systems, see [179].

The dwell-time switching logic is studied in the context of supervisory
control in [212]. That paper also explains how one can remove the slow
switching requirement with the help of additional analysis tools. The scale-
independent hysteresis switching logic was proposed in [116, 128]. These
references provide technical details on why the switching signal is well de-
fined and no chattering occurs, as well as a proof of Corollary 6.3; the more
general result expressed by Lemma 6.2 was derived later. The present treat-
ment, including the definition of the hierarchical hysteresis logic and the
proof of Lemma 6.4, is based on [122]. A different hysteresis-based switch-
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ing logic for dealing with a continuum, called the “local priority hysteresis
switching logic,” is described in {124].

For details on state-space realizations of the linear supervisory control
system described in Section 6.6, see {212]. The analysis of Section 6.6.1
for the case of scale-independent hysteresis, using the result on stability
of switched systems with average dwell time, is taken from [124]. In that
paper, robustness with respect to unmodeled dynamics is also established,
and an alternative approach which involves “normalized” estimation errors
is sketched. Results on induced norms of switched systems with average
dwell time (such as Lemma 6.6) are discussed in {129]. (In fact, it is exactly
with analysis of hysteresis-based switching control algorithms in mind that
the concept of average dwell time was developed in [129].) The extension to
infinite process model sets, outlined in Section 6.6.2, is presented in [122].
Robustness of supervisory control algorithms for linear systems which rely
on the dwell-time switching logic is thoroughly investigated in [214, 215].

The exposition of Section 6.7 follows [121]. For the version of Barbalat’s
lemma used in the proof of Proposition 6.9 see, e.g., [4, p. 58]. An extension
of these results to nonlinear systems with infinite parametric uncertainty,
using hierarchical hysteresis switching and a finite controller family along
the lines of Section 6.6.2, is also possible, provided that each controller
yields a suitable robust iISS property of the injected system. The example
treated in Section 6.8 is studied in greater detail in [120] (actually using
slightly different monitoring signals and switching logic). A parking movie
generated with MATLAB Simulink which illustrates the corresponding mo-
tion of the unicycle is available from the author’s webpage [171]. Some other
resuits on control of nonholonomic systems with uncertainty can be found
in [289, 147, 277, 71).

One advantage of supervisory control is its rapid adaptation ability,
which suggests that supervisory control algorithms may yield better per-
formance than more traditional adaptive control techniques. While the
quantitative results obtained so far (see especially [215]) and successful
use of supervisory control in applications [66, 99, 65, 123] are encouraging,
a performance-based comparative study of adaptive control methods based
on logic-based switching and on continuous tuning is yet to be carried out.
Another important direction for future research is to develop provably cor-
rect supervisory control algorithms for nonlinear systems which do not rely
on the termination of switching and are thus applicable in more general
settings than the one treated in Section 6.7.
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Part IV

Appendiz A

Basic textbooks on nonlinear systems, such as [152] or [298], can be con-
sulted for a more general treatment of Lyapunov stability and additional
information. The original paper on LaSalle’s invariance principle is [165};
the asymptotic stability part (for the case when M = {0}) was proved
earlier in [35]. :

The concept of ISS was proposed in [266]. Its Lyapunov characterization
was established in [274]. Further characterizations are given in [275], and
in particular it is shown there that asymptotic stability under the zero ju-
put implies local ISS (see also [152, Section 5.3]). Corresponding notions
for systems with outputs {OSS and I0SS) were defined in [276]. The in-
tegral variant (iISS) was introduced in [269]. It was subsequently studied
in [18], where the iOSS property is also considered. The necessity part of
Ler[nnia A4 was noted in [269], while sufficiency was proved more recently
in [16].

Appendiz B
This appendix on Lie algebras is borrowed from {3]. Most of the material
is adopted from [106, 253], and the reader is referred to these and other

standard references for further information. For more details and examples
on the construction of a Levi decomposition, see [102, pp. 256 258].
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largest (smallest) eigenvalue
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Lie bracket

Lie algebra generated by given matrices
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ith component of vector z
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number of discontinuities of signal & on interval (2g,1)
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absolute stability, 47, 190
actuator errors, 120, 198
adaptive control, 129
automobil_e, 4, 8, 187

Baker-Campbell-Hausdorff formuia,
31, 34

bang-bang control, 90, 93

Barbalat’s lemma, 162

bouncing ball, 11

Brockett’s condition, 79, 194

candidate controllers, 129, 131
Carathéodory solution, 10
certainty equivalence, 104, 129
output stabilization theorem,
145
stabilization theorem, 144
chattering, 13
coding, 108
common Lyapunov function, 22
quadratic, 27
commutator, see Lie bracket
conic switching law, 69
converse Lyapunov theorem, 25,
188

convex combinations, 25, 51, 63,
193
coprime factorization, 139

detectability, 137, 144, 160, 177

differential inclusion, 13, 26, 188

dissipativity, 189

disturbance, 131, 157, 175

dwell time, 56, 146, 193
average, 58, 158

cembedded system, 8
estimation errors, 132

Filippov solution, 13, 186

finite escape, 10, 44

function
absolutely continuous, 10
of class K, Koo, or KL, 170
positive definite, 171
radially unbounded, 171

guard, 5 .

harmonic oscillator, 95, 97
Hurwitz matrix, 172
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hybrid control, 83
by output feedback, 36
hybrid quantized feedback control
policy, 108
hybrid system, 3
models of, 185
hysteresis, 6, 14, 66, 135
hierarchical, 152
local priority, 200
scale-independent, 148

ideal, 37, 181
impulse effects, 6, 191
induced norm, 158, 159
injected system, 143
input-to-state stability (ISS), 44,
107, 119, 127, 144, 176
integral, 144, 161, 177
Lyapunov-like characterization
of, 176
invariant set, 173

Kalman-Yakubovich-Popov lemma,
47, 190
Killing form, 40, 41, 181

LaSalle’s invariance principle, 173
for switched systems, 192
Levi decomposition, 37, 182
Lie algebra, 34, 179
and controllability, 82, 196
compact, 37, 181
nilpotent, 34, 181
representation of, 179
semisimple, 37, 181
solvable, 34, 181
Lie algebra rank condition (LARC),
82
Lie bracket, 30, 32, 179
limit cycles, 187
limited information, 108, 124
linear matrix inequalities (LMIs),
27
linearization, 33, 36, 39, 174
Lipschitz condition, ¢

Lyapunov function, 171
weak, 171
Lyapunov stability, see stability

mean value theorem, 175

measurement errors, 78, 107, 198
small, 116 '

minimum-phase system, 145

modeling uncertainty, 129
parametric, 131

monitoring signals, 133

multi-estimator, 132

multiple Lyapunov functions, 53,

192

noise, 131, 157
nonholonomic integrator, 86, 164
stabilization of, 87
nonholonomic system, 81, 195
completely, 83
nonsingular, 82
with uncertainty, 163

observer, 121, 135
operating region, 5

parking problem, 84, 163

passivity, 46, 189

pendulum, 89, 196

positive real function, 46
strictly, 46

process model, 131
nominal, 131

quadratic stability, 67
quantization, 101
dynamic, 108
input, 101, 116
output, 101, 121
state, 103
static, 103
quantization error, 102
quantization regions, 101
shapes of, 101, 197
quantizer, 101
coarse, 124

logarithmic, 101
range of, 102
uniform, 101

radical, 37, 181

realizations, 50
relaxation theorem, 26, 188
reset map, 5

S-procedure, 64
saturation, 102, 103
Sensor eITors, see measurement er-
rors
sl(2)-triple, 40, 180
sliding mode, 13, 186
small-gain theorem, 48
stability
definitions of, 169
of switched systems, 21
uniform, 22
stability margin, 61, 158, 170
state sharing, 133
supervisor, 130
supervisory control, 130
linear, 134, 154
nonlinear, 160
switched system, 4
discrete-time, 191
linear, 7
switching
autonomous, 5, 8
combination of different types
of, 7, 99
controlled, 5, 8
slow, 56, 138, 146
state-dependent, 5, 61, 112
time-dependent, 5, 6, 112
worst-case, 29
switching control, 75
switching logic, 88, 134
switching signal, 6, 134
switching surface, 5

'switching times, 6

time-optimal control, 93
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topological obstructions to stabi-
lization, 77
triangular system, 43
linear, 35, 189

unicycle, 83
with uncertainty, 163
unmodeled dynamics, 129, 131, 139
159
bound, 140

Zeno behavior, 10
zooming, 109
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