
Hossein Khosravi
Department of Electrical and Robotic Engineering, Shahrood 

University of Technology

IN THE NAME OF ALLAH



Outline
2

 A short preface

 A brief history of SVM

 Linear SVM

 Linearly separable

 A simple example

 Linearly non-separable

 Nonlinear SVM ( Kernel Function & Kernel trick )

 A simple example

 SVM Applications



Preface
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 “I was shocked to see a student’s report on performance 

comparisons between support vector machines (SVMs) and fuzzy 

classifiers that we had developed with our best endeavors. 

Classification performance of our fuzzy classifiers was 

comparable, but in most cases inferior, to that of support vector 

machines.”

“Professor Shigeo Abe”, “Kobe University, Kobe, Japan”, 

“Support Vector Machines for Pattern Classification”, “Springer-

Verlag London Limited 2005”.



Introduction
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 Two general approaches for classification: 
 parametric approach:

a priori knowledge of data distributions is assumed.
 nonparametric approach:

no a priori knowledge is assumed.

 Neural networks, fuzzy systems, and support vector 

machines are nonparametric classifiers. 

 SVM is one of the supervised learning algorithms.



Linear SVM:
Linearly Separable Case
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Two-Class Classification Problem

 Consider a two-class, linearly separable classification 

problem.

 Let {x1, ..., xn} be our training data set.

 Define an indicator vector y:

 There is a hyperplane which separates all data: 

 Decision function: 
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 Many possible choices of w and b

 but there is only one that 

maximizes the margin. (the 

optimal separating hyper plane)
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 Because the training data are linearly 

separable, no training data satisfy

 Thus, to control separability, we consider the 

following inequalities:

 Here, 1 and −1 can be: constant a  and −a.

 Equation is equivalent to:
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 The generalization region for the 

decision function:

 Thus there are an infinite number of 

decision functions, which are 

separating hyperplanes.

 the hyperplane with the maximum 

margin is called the optimal separating 

hyperplane.
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Linear SVM Mathematically

What we know:

 w . x+ + b = +1 

 w . x- + b = -1 

 w . (x+-x-) = 2 
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See Distance between two straight lines.pdf



 Distance between and 

is 

 Maximizing the margin = minimizing

 Therefore, the optimal separating hyperplane can 

be obtained by the following quadratic problem:
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Because of the quadratic problem with the inequality constraints, the value of the

objective function is unique (there is one global extremum point).This is one of the

advantages over multilayer neural networks with numerous local minima.
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?

How can we solve this 

problem? 
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Lagrangian Function

 Suppose we want to: 

 minimize f(x)

 subject to constrained g(x) ≥0

 We define the unconstrained Primal

Lagrangian function:

 Where α≥0 is the Lagrange multiplier.

 Then we find the stationary (saddle)

point of L with respect to x and α

(a0).
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Saddle Point

 A saddle point on the 

graph of z=x2−y2 (in 

red)
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 Saddle Points: 

Lagrangian L has to be minimized with 

respect to w and b, and maximized with 

respect to αi (αi ≥ 0):

 It satisfies the following Karush-Kuhn-

Tucker (KKT) conditions: 
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Substituting these equations into a primal Lagrangian 

L(w, b, α) , we change to the dual Lagrangian L(α):

 
,b

max min ( ,b, )
a w

wL a



 We can find αi by training

 Data that are associated with positive 

αi are Support Vectors for Classes 1 

and 2.

 As before we had:

 αi≠0 only if Xi is a support vector.

 Where Xi is a support vector.

 It is better to take the average, among 

the support vectors :
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Formulation Summary
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Example

 Example: Consider a very simple linearly separable one-

dimensional case:

 X1=-1  ,  X2=0  ,  X3=1

 Because α1≥0 and α3≥0,  L(α)is maximized when α3=0 (X3 

is not a support vector):
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 Therefore X1 , X2 are Support Vectors.

 Decision boundary:
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Lagrangian Matrix Form

 Dual Lagrangian can be rewritten into matrix 

format as:
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MATLAB Function

 Function z=quadprog(H,f,[],[],a,K,Kl,Ku) in 

MATLAB solves the problem:

 z = α

 H = YRY

 f = −1

 a = yt

 K = 0

 Kl = 0 and Ku = C

21






 

t t

l u

1
min  z Hz f z

2

 az K
s.t    

K z K

0 5

0

0

t t

d

t

i

max  L ( ) . YRY f

 y  
s.t    

       i=1,...,n

a a a a

a

a

  

 






Linear SVM
Linearly Non-Separable Case
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Linearly Non-Separable

 What if the problem is not separable in 

feature space? 

 We allow “Error” in classification. (ξi ≥ 0)

 So the separating hyperplane must satisfy:

 The value of  C is a trade-off between 

maximization of the margin and 

minimization of the errors and is 

determined by user.
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 Introducing the nonnegative Lagrange 

multipliers αi and βi, Primal Lagrangian 

function is:

 As befor, the problem is solved by the 

saddle point of the Lagrange functional 

(Lagrangian): 

24

 
,b.

max min ( ,b, )


 
w

wL
a

a 



 For the optimal solution, the following KKT 

conditions are satisfied:

 Substituting these equations into a primal 

variables Lagrangian L(w, b, ξ,α,β) , we 

change to the dual variables Lagrangian 

L(α):
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 The solution to this maximization problem is 

identical to the separable case except for a 

modification of the bounds of the Lagrange 

multipliers.

 i approximates the number of misclassified 

samples.

 i are “slack variables” in optimization

 Note that i=0 if there is no error for xi

 i is an upper bound of the number of errors

 The penalty parameter C, which is now the 

upper bound on αi, is determined by the user.

26



MATLAB

Example

svm_iris.m
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SVM

Non-Linear Case
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Non-Linear SVM

 What if the training set is not linearly 
separable?

 The input space can be mapped to higher-
dimensional feature space (Φ), where the 
training set is separable.

 The solution for the linear case:

 For the nonlinear classifier (in the hilbert

space):
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Φ:  x → φ(x)

Input Space Feature Space (Hilbert space)



Non-Linear SVM

 Dual Lagrange function:

 Introducing the Kernel Function we’ll have:

 Change all inner products to kernel functions

 Dual  Lagrangian problem:
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Kernel Trick

φ(xi)?
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Kernel Trick
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Nonlinear Kernel (I)



Nonlinear Kernel (II)



Matrix Format

 Matrix format for nonlinear dual program:
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 Matrix format for linear dual program:
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Example

 Example: Consider a very simple 

nonlinearly separable one-dimensional 

case with:



 C=2
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Summary: Steps for Classification

 Prepare the pattern matrix.

 Select the kernel function to use.

 Select the parameter of the kernel function and the value 
of C.

 You can use the values suggested by the SVM software, or 
you can set apart a validation set to determine the values of 
the parameter.

 Execute the training algorithm and obtain the ai .

 Unseen data can be classified using the ai and the 
support vectors.
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Strengths and Weaknesses of SVM

 Strengths

 Training is relatively easy 

 No local optimal, unlike in neural networks

 It scales relatively well to high dimensional data

 Tradeoff between classifier complexity and error can 

be controlled explicitly

 Weaknesses

 Need to choose a “good” kernel function.
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SVM 

Applications

40



Handwriting Recognition
41

 60,000 training 

examples, and10,000 

test examples, 28x28.

 Linear SVM has around 

8.5% test error.

 Polynomial SVM has 

around 1% test error.
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Other applications

 Face Detection

 Face Recognition

 Text region Detection

 3D object recognition

 Antenna array processing

 ….
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