Chapter 8. Classification: Basic Concepts

Classification: Basic Concepts

Decision Tree Induction

- Bayes Classification Methods
- Model Evaluation and Selection
- □ Techniques to Improve Classification Accuracy: Ensemble Methods

Summary

Decision Tree Induction: An Example

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a **top-down recursive divide-and-conquer manner**
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning—majority voting is employed for classifying the leaf
 - There are no samples left

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, y_2, ..., y_m\}$

$$H(Y) = -\sum_{i=1}^{N} p_i \log(p_i) \quad where \ p_i = P(Y = y_i)$$

- Interpretation
 - \Box Higher entropy \rightarrow higher uncertainty
 - □ Lower entropy \rightarrow lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X=x)$$

11

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- □ Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- **Expected information (entropy) needed to classify a tuple in D:**

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

□ Information needed (after using A to split D into v partitions) to classify D:

$$Info_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

Class P: buys_computer = "yes"									
	Class N: buys computer = "no"								
Info ((D) = I	$= I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$							
		age		p _i		n _i	l(p _i ,	n _i)	
		<=30		2		3	0.97	1	-
		3140)	4		0	0		
		>40		3		2	0.97	1	
	age	income	stu	udent		credit_	rating	buys_	computer
	<=30	high		no	fa	ıir			no
	<=30	high		no	e	xcellen	t		no
	3140	high		no	fa	ir			yes
	>40	medium		no	fa	ir			yes
	>40	low	L J	/es	fa	ir			yes
	>40	low	د	/es	e	kcellen	t		no
	3140	low		/es	e	kcellen	t		yes
	<=30	medium		no	fa	ir			no
	<=30	low	د	/es	fa	ir			yes
	>40	medium	د	/es	fa	ir			yes
	<=30	medium	د	/es	e	xcellen	t		yes
	3140	medium r		no	excellent			yes	
	3140	high		/es	fa	ir			yes
	>40	medium		no	e	xcellen	t		no

Info _{age} (D) =
$$\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

+ $\frac{5}{14}I(3,2) = 0.694$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14

samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

Gain(income) = 0.029 Gain(student) = 0.151Gain(credit rating) = 0.048

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the *best split point* for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*
 - □ $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the minimum expected information requirement for A is selected as the split-point for A
- **Split:**
 - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

GainRatio(A) = Gain(A)/SplitInfo(A)

• Ex. SplitInfo_{income}(D) =
$$-\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557$$

gain_ratio(income) = 0.029/1.557 = 0.019

□ The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

□ If a data set *D* contains examples from *n* classes, gini index, gini(*D*) is defined as gini $(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$

where p_i is the relative frequency of class *j* in *D*

□ If a data set *D* is split on A into two subsets D_1 and D_2 , the *gini* index *gini*(*D*) is defined as

gini_A(D) =
$$\frac{|D_1|}{|D|}$$
gini(D₁) + $\frac{|D_2|}{|D|}$ gini(D₂)

□ Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

■ Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no" $gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$

\Box Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2) = \frac{10}{14}\left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14}\left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) = 0.443$$
$$= 0.443$$
$$= Gini_{income \in \{high\}}(D).$$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

□ The three measures, in general, return good results but

Information gain:

- biased towards multivalued attributes
- **Gain ratio**:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
- **Gini index**:
 - biased to multivalued attributes
 - □ has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Other Attribute Selection Measures

- <u>CHAID</u>: a popular decision tree algorithm, measure based on χ² test for independence
- <u>C-SEP</u>: performs better than info. gain and gini index in certain cases
- **G**-statistic: has a close approximation to χ^2 distribution
- □ MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - **CART**: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- □ Why is decision tree induction popular?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - □ can use SQL queries for accessing databases
 - comparable classification accuracy with other methods
- **RainForest** (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)

RainForest: A Scalable Classification Framework

- **The criteria that determine the quality of the tree can be computed separately**
 - Builds an AVC-list: AVC (Attribute, Value, Class_label)
- AVC-set (of an attribute X)
 - Projection of training dataset onto the attribute X and class label where counts of individual class label are aggregated
 AVC-set on Age
 AVC-set on Income

C-group	(ot a
de <i>n</i>)	
Set of AV	C-
sets of all	
predictor	
attributes	s at
	ode <i>n</i>) Set of AV sets of all predictor attributes

the node *n*

age	income	student	redit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

AVC-set on Age				
Age	Buy_Computer			
	yes	no		
<=30	2	3		
3140	4	0		
>40	3	2		

10	U	-

Buy Computer

no

1

4

|--|

yes

6

3

student

yes

no

	high	2	2			
	medium	4	2			
	low	3	1			
A	AVC-set on Credit Rating					

yes

income

Buy_Computer

no

Credit	Buy_Computer		
rating	yes	no	
fair	6	2	
excellent	3	3	

The Training Data

Its AVC Sets

