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Preface

The problems in the book, “Elements of Information Theory, Secomnd Edition™, were chusen
from the problems wsed during the course st Stanford. Most of the solutions here were
prepared by the graders and instructors of the course. We would particulacly like to thank
Prof. John Gill, Devid Esvans, Jim RBoche, Laurs Ekroot snd Young Han Kim for their help
in preparing these solutions.

Most of the problems in the book sre straightforward, and we have included hints in
the problem statement for the difficult problems. In some cases, the solutions include extra
material of interest (for example, the problem on coin weighing on Pg. 12].

We would sppreciste sny comments, sugpestions amd corrections to this Solutions han-
il

Tom Cover Joy Thomes
Dursnd 121, Information Systems Lab Stratify
Etanford University 1 M Shoreline Avenue
Stanford, CA 94305, Mountain View, CA D43,
Fh. 415-723-4505 Fh. 650-210-2722
FAX: 415-T23-8473 FAX: GH0-188-2150
Email: oomver @isl stanford. edu Email: jat@stratify.ommn
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Introduction
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Chapter 2

Entropy, Relative Entropy and
Mutual Information

1.

Coim flips. A fair coin is Hipped until the first hesd occurs. Let X denote the number
of fips required.

(a] Find the entropy AT X} in bits. The following expressions may be useful:

= | = r
Zi‘"'_l_r. err"'_m.

Tes=i] Tes=il

(b1 A random variable X s drswrn according to this distribution, Fid an Yefficient™
serquence of yves-no questions of the form, “Is X contained in the set 57" Compare
HIX} tothe expected number of questions required to determine X

Solution:

(8] The mumber X of tosses till the first head sppears hes the peometrie distribution
with parameter p= 1/2 where P(X =n) = "', rn £ {1,2,...}. Hence the
entropy of X is

2

H(X}) = -3 pg" 'log(pg"™')

Ta T
= - E g Lo g+ z g log g

il ey
—-plogp  pglogg

= | = i
—p loep — glog g

= z

= Hip)/p bits.

If p=1/2, then H(X) = 2 bhits.
4
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(b} Intuitively, it seems clear that the best questions are those that have equally likely

chaneces of receiving & ves or & no answer., Consequently, one pmsible puess is
that the most “efficient” series of questions is: Is X = 17 If not, 1s X = 27
If not, i5s X = 37 ... .with & resulting expected number of questions equal to
yoyn(1/2") = 2. This should reinforee the intuition that H(X) is & mea-
sure of the uncertainty of X . Indeed in this cese, the entropy 15 exactly the
samwe s the merage momber of questions needed to define X, snd in general
Erd of questions) > H(X). This problem hss sn interpretation ss s source ood-
ing problem. Let 0 =no, 1 =yes, X =50uree, and Y = Encoded Source. Then
the set of questions in the above procedure an be written as a collection of (X, Y)
pairs: (1,1}, (2,01}, (3001}, ete. . In fact, this intuitively derived code s the
optimal [ Hufinan ) code minimizing the expected number of questions.

2. Enkropy of funchione. Let X be a random variable taking on s fnite mumber of values,
What is the (general} inequality relatiomship of (X)) and A{Y) if

(a) ¥ =2X7

(b} ¥ =cam X7

Solution: Let y = giz). Then

plyl= 3 pla).

T =[x}

Consider any set of s that map onto & single 3. For this set

S pla)legpiz) = Y plz)logply) = ply) log ply),

T y=glx) T y=gla)

since log s & monobome increasing function snd plz) = E;:u_q[nfﬂ:l] = my). Ex-
tending this arpeent to the entive range of X (aod Y ), we obtain

H(X}) = =% plz}logplz)

= =Y 3 plz)logplz)
]

T y=gla)

> - Zu ply) log ply)

= H(Y).

with equality if g is one-to-one with probability one.

fal ¥ = 2Y is one-toone and hence the entropy, which is just a function of the

probabilities (and not the sahws of & random vearisble) does not chenpes, e,

H{X) = H{Y).

b} ¥V = owiX) 5 not necessarily one-to-one. Henee all that we can say is that

HIX = H(Y), with equality if ossine 15 one-to-one on the range of X .
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4. Minimum enfropy. What is the minimum value of Hipy,....p) = H(p)] 8 p ranges
et the set of m-dimensional probability vectors? Find all p's which adhieve this
LLLLTL ITELLLE

Solution: We wish to find all probability vectors p = (py. pa. ... . py )] which minimize
Hip)=-) pilogp:
i

Mow —pilogp = 0, with equality f p = 0or 1. Henee the only possible probability
vectors which minimize ff(p} are those with p = 1 for some ¢ and py = 0,7 £ 1.
There are n such vectors, ie, (1L0.....0), (0,1,0,....00, ..., (0,....0,1), and the
minimun value of Hip) is (0

4. Enfropy of funchions of a mndam vanable. Let X be s discrete random verisble,
Ehow that the entropy of & unction of X is less than or equal to the entropy of X by
qustifving the following steps:

H(X.g(X)) 2 H(X)+H(g(X)| X) (2.1)
® m5x), (2.9)
HiX.g(X)) < H(g(X)) +H(X | g(X)) (2.3)
id)
> H(g(X)). (2.4)

Thus HigiX)) = HiX).
Solution: fnfrapy of funcfioms of a mndom varable.

fa) H(X. gl X)) =H(X)+ HigiX}|X] bythe chain rule for entropies.

(b} H{g(X}|X)} =0 since for sny particular value of X, g(X) is fixed, and hence
H{g(X)|X) = £, plz}H{g(X)|X =2} = £,0 = 0.

(e} H(X. gl X)) =HigiX))+ H(X|gi X)) again by the dhain rule.

d) H(X|g( X)) =0, with equality iff X is a finction of g{ X}, ie, g(.) is one-to-one.
Hence H{X, g( X)) = H{g(X)).

Combining parts (b} and (d}, we obtain X} = Higl X))
5. Zero eondibional enfropy. Show that if H(Y|X) =0, then Y is a hmetion of X | ie.,
for all = with gz} = 0, there 15 only one possible walue of y with plz. gy} = 0.

Solution: ZFero Condifional Enkropy. Assume that there exists an x, sav g amwd teo
different smlues of ¥, say oy snd e such that plag, w) > 0 and pixg. ) = 0. Then

o) = plxo,y1) + plxo.yz) = 0. and piyi|zo) and plyz|za) are not equal to 0 or 1.
Thus

HY|X) = =3 plx}}_ plylr)log ply|z) (2.5)

g ) (—plyi| xo ) log ply|xg) — plya|za) log plyalza ) (2.6)
= = (2.7)
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gsince —tlogt = 0 for 0 < ¢ < 1, and 15 strictly positive for ¢ not equal to 0 or 1
Therefore the conditional entropy H(Y|X) is O if and only if Y is a function of X .

6. Condifiona mufual mfermafion ve. uncondifiona mufual infermafion. Give examples
of point random variables X, YV and 2 such that
(a) J(X:Y | 2) < T(X:Y),
(b} I(X;Y | £) > I(X Y).

Solution: Condifional mufual infeormafion ve. uncondifional mufual information,

(&} The lest corollary to Theorem 2.8.1 in the text states that if X — Y — 2 that
is, if p{x,y | z) = plx | z)ply | z) then, F(X;Y) = 7(X:Y | £). Equality holds if
and anly if J(X;Z) =0 o X mnd £ are independent.

A simple example of random variables satisfving the mequality conditions abowve
i5, X i5 & fair binsry random varisble and Y = X and Z =Y . In this case,

MX;Y)=HX)-HX|Y)=H(X})=1
and,

X, Y| Z)=H(X |Z)-H(X |Y.Z) =0
So that I{X;Y) = I{X,;Y | Z).

(b} This example is also given in the text. Let XY be independent fair hinary
radom variables and let & = X 4V . In this cese we have that,

X ¥)=0

s,
XY |2)=H(X|Z)=1/2

S0 NX:Y) =< J(X:Y | Z). Note that in this case X. ¥, £ are not markov.

7. Comm weighing., Suppose one has n coins, among which there may or may not be one
counterfeit coin. If there 15 & counterfeit coin, it mey be either hesvier ar lighter than
the other coins. The coins are to be weighed by s balanee,

(&) Find sn upper bound on the mumber of coins w so that & weighings will find the
counterfeit coin (if any) and correctly declare it to be hesvier or lighter,

(b} [Difficwlil What is the coin weighing strategy for & = 3 weighings and 12 coins?
Solution: Coin weighing.

(a) For n coins, there are 2r 4+ 1 possible situstions or “states™.
® Due of the n coins is heavier,

s One of the v coins s lighter.

¢ They are all of equal weight.
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(b)

Each weighing has three possible outecomes - equal, left pan hesvier or right pan
heavier. Henee with & weighings, there are 3% possible outcomes and henee we
can distinguish between at most 3% different “states”. Hence 2r 4+ 1 < 3% or
r< (3¥ —1)/2.

Looking at it from an information theoretic viewpoint, esch weighing gives at most
log 43 hits of information. There are 2r 4+ 1 possible Ystates™, with a meodmom
entropy af log,(2r + 1) hits. Henee in this situation, one would require at least
log o 2re + 1)/ log, 3 weighings to extract enough information for determination of
the odd coin, whidh gives the same result s sbove,

There are many solutions to this problem. We will pive ane which is based on the
ternary mumber system.

We may express the numbers {12, -11,... . =1,0,1,...,12} in a ternary number
system with alphabet {—1.0.1}. For example, the number 8 is (-10,1) where
~1x3"+0x3' 41 %35 =8, We form the matrix with the representation of the
positive numbers s its columns,

|t 2 3 4 5 6 7 8 9 10 11 12|
{1 101 -1 0 1 -1 0 1 -1 0|E=0
/o 111 -1 -1 -1 00 0 1 1(E=2
2l 000 1 1 1 11 1 1 1|%Z;=8

MNote that the row sums sre not all zero. We can negate some columns to malke
the row sums zero. For example, negating columns 7,911 and 12, we obtain

|t 2 3 4 5 6 7 & 9 10 11 12|

Al -1 01 -1 0 -1 -1 ¢ 1 1 0| =0
3l 111 -1 11 0 0 0 -1 A|%=0
2l ¢ 00 1 1 -1 1 -1 1 -1 4|E=0

Nowr place the coins on the balsanee secording to the follmwring rule: For weighing
¢, place coin
o On left pan, if = =1,
® Aside, 1f
o On right pan, if », = 1.

The outcoms of the three weighings will find the odd coin if aoy and tell whet her
it 15 hesry or light., The result of esch weighing s 0 if both pans are equal, -1 if
the left pan is hesvier, snd 1 if the right pan is hesvier. Then the three weighings
pive the ternary expansion of the index of the odd coin. If the expansion is the
samw &5 the expansion in the matrix, it indicates that the coin 15 hesner. If
the expansion is of the opposite sign, the coin is lighter, For example, (0.-1.-1)
indlicates (03" 4+(—1)3 +|L—1]32 = —12, henee coin #£12 is hesy, (1L0.-1) indicates
#8 15 light, (0,00} indicates no odd coin.

Why does this scheme work? It is s single error correcting Hamming code for the
ternary alphabet (discussed in Section 811 in the book). Here are some details.

First note a few properties of the matrix above that was used for the scheme.
All the columns are distinet and no teo columns sdd to (000}, Also if any coin



14

www.elm24.com

Entropy, Relative Entropy and Mutual Information

i5 hesier, it will produce the sequence of weighings that matches its column in
the matrixz. If it is lighter, it produces the negstive of its column as & sequence
of weighings, Combining all these facts, we can see that any single odd coin will
produce & unigque sequence of weighings, and that the coin can be deter mined from
the sequence.

Do of the questions that meny of you hed whether the bound derived in part (a)
wis actually schievable, For exsmple, can one distinguish 13 coins in 3 weighines?
Mo, not with a scheme like the one above., Yes, wnder the assumptions under
which the bound wes derived. The bound did not prohibit the division of coins
into halves, neither did it disallow the existence of another coin known to be
normal. Under both these conditions, it 5 possible to And the odd coin of 13 coins
in 3 weighings, You could try modifying the shove scheme to these cases.

8. Drawing with and withow! replacement. An um contains v red, w white, and & bladk
balls. Which hes higher entropy, drawing & > 2 balls from the urn with replacement
o without replacement? Set it up and show why, (There is both & hard way sad &
relatively simple way to do this.)

Solution: Dmwing with and withow! replacement.  Intuitively, it s clear that if the
balls are drawn with replacement, the number of possible choiees for the i-th ball is
larger, amd therefore the conditionsl entropy is larger. But computing the conditionsl
distributions is slightly involved. It is essier to compute the uneonditional entropy.

o With replacement. In this case the conditional distribution of each draw 15 the
samwe for every draw. Thus

el with prob. ——
X;=+¢ white with prob.—% r [2.8)
black with prob. -

snd therefore

HiX | Xi—1..... X)) = H(X;) (2.9)
: w

r— ————lorw — L Lo @2, 101

7
e e Ty
g(r +w +b) r+w+ b s r4+w4b r4w4+b

e Without replacement. The unconditional probability of the i-th ball being red is
still v/ v 4 w4+ &), ebe. Thus the weonditional entropy ATX; ) is still the same as
with replacement. The conditional entropy B (X X;_,..... X} is less than the

uncomnditional entropy, and therefore the entropy of drawing without replacement
i5 lower,

0., A mebric. A lunction plz, ) 15 & metric if for all z, 5.

o plx.y) =1
o plr.y) = ply. x
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o plr,yl =0 ifand only if 2 =
o plxyl+ply.z) = plz.z).
(a) Show that p(X.Y) = HX|Y )+ H(Y|X) satisfies the first, second and fourth

properties above, If we say that X = ¥ if there 15 s one-to-one function mapping
frome X to ¥V, then the third property is also satisfied, and (X, Y] is & metric.

(b} Verify that (X, Y} can also be expressed as

plX.Y) = H(X)+ HY)-2IX.TY) (2.11)
= H[X.¥)-I(X.¥) (2.12)
= 2H[X.Y)- H(X)-H(Y). [2.13)
Solution: 4 mefric
(a] Let
plX.Y) = H(X|Y)+ H(Y|X). (2.14)
Then

¢ Since conditional entropy is always =0, p(X. Y = (0.

& The symmetry of the definition implies that p(X.Y) = p(Y, X}.

o By problem 2.6, it follows that f(Y|X)] is 0 if ¥ is & fonection of X and
HiX[Y) is 0if X is a function of ¥'. Thus p(X.Y) is 0 if X sand ¥
are functions of each other - and therefore are equivalent up to & reversible
transfor ntion.

o Consider three random varisbles X, Y and 2. Then

H{X|Y)+ H(Y|Z) = H{X|Y.Z)+ H(Y|Z) (2.15)
= H{X.Y|Z) (2.16)
= H(X|Z)+ H(Y|X.Z) (2.17)
> H{X|Z) (2.18]

from which it follows that
pl XY+ p(V 2} > p( X, Z) (2.19)

Mote that the nequality is strict unless X — Y — & forms a Markoy Chain

amd Y is & function of X snd 2.
(b) Sinee H(X|Y) = HX)-1(X:Y). the first equation follows. The second relation
follws from the first equation snd the fact thet H(X.Y) = H(X) 4+ H(Y) -
HX: Y} The third follows on substituting F(X; Y} = X))+ H(Y)-HX.Y).

). Eniropy of a dizjoini muxbere. Let X and X be diserete random varisbles drsern
aocording to probability mass finctions gy} amd gl ) over the respective alphabets
X ={12,....m} and Ay ={{m+1,... ,n} Let

X = X, with probability o,
Na, with probability 1 — o
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11.

(a} Find (X} in terms of A(X ) and A{X;) and o
(b} Maximize over o toshow that 2910 < 2 XD ol (X and interpret using the
notion that 290 is the effective alphabet size.

Solution: Enfopy. We can do this problem by writing down the definition of entropy
s expanding the various terms. Instesd, we will use the alpebrs of entropies for &
simpler proof.

Einee X) snd X5 heawe disjoint support sets, we can write

X = X with probebility i
| X; with probability 1 —a

Define s function of X,

1 when X = X
= RXk= { 2 when X = X,

Then as in problem 1, we have
HiX) = H(X,f(X))=H(0)+ H(X|9)
= H(@)+p@=1HX|§=1)+pld=2)HX|0=2)
= o)+ afl (X)) 4+ (1 - a)fH[X:)

where Hia} = —alogo — (1 — o) log(l — ).

A measwre of correlabion. Let X1 and Xz be identically distributed, but not necessarily

independent. Let
H{Xa2 | X1)
= B it 'k i
4 (X))
IXy X
(a} Show g = ”[Lxl;:'.
(b} Show 0 < p =< 1.
(e} Whenis p=107

(d} Whenis p=17
Solution: A measure of comrelafion. X and X; are identically distributed snd

_ HiX3|Xy)

P

(a)
H(X)) - H(X3|X,)
H(X,)
H(X3) — H(X3|X1)
H(X,)
I(X1; Xa)
H(X,)

(since (X)) = H(Xa))
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(b} Since 0 < H{Xa|X,) < H(Xa) = H(X;), we have

H(XaXy)
U= Hixy =

0<p<l.
(e} p=0 1 MX;: Xol=01f Xy and X, sre independent.
d) p=1 iff H(Xz|Xy) =0 iff Xy is & function of X,. By symmetry, X, is a

function of Xz, te., X; and Xz have s one-to-one relationship.

12. Erample of jeinf enfrapy. Let plx,y) be siven by

,:l{ﬁ“ 0 1
1 1

0 |z 3

1

1 il 3

Find

(a} H(X}.H(Y).

(b) H(X |Y)H(Y | X)

(e} H(X.Y)

) H(Y)-H(Y | X).

(e} F(X;Y).

(£} Draw a Venn diagram for the quantities in (a) through (e).

Solution: Frample of joinf enfropy

a) H{X) =%h}gf—}+%h}g3=1].ﬂlﬁ bits = H(Y].

(b} H(X|Y)= ﬁ”[.’fﬂ’ =) + % HX|[Y =1)= 0667 bits = H(¥Y|X).
(e} H(X.Y)=3x slogd= 1585 hits.

d) H(Y)—-H(Y|X)=10.251 hits.

(e} I(X;Y)=H(Y)- H(Y|X) =0251 hits.

if} See Figure 1.

13, Imequalify. Show In = > 1 — i— for = =1

Solution: Inegualiy. Using the Bemsinder form of the Tavlor expsnsion of Iniz)
ahout x = 1, we have for some ¢ between 1 and x

[z — 1)+ (_t_?l}J_‘_ l:I_,}]].E o e |

.

In(x} = In(1} + (%)

I=1
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Figure 2.1 Venn dispram to illustrste the relstionships of entropy and relative entropy

HiY]

H (X1

HiY|X]

sinee the second term is always negative. Henee letting 3 = 1 /2, we obtain

1
—Iny=--1
)
ar
1
Ingr =1 ==
u
with equality ff y=1.
14, Endropy of a swm. Let X and ¥V be random variables that take on salues 2, 24,00 .. Ty

and ¥4, .. 4 respectively, Let £ =X 4+ Y

(a) Showthat A(£|X) = H(Y|X). Argnethat if X, Y ave independent, then #(Y) <
HiZ) snd HIX) < HiZ). Thus the addition of mdependeni random variables
adds unecertainty.

(b} Give an example of (necessarily dependent) random varishles in which #{X) =

HiZ) mmd H(Y) > Hi Z).
(e} Under what conditions does H{Z) = (X)) 4+ H(Y 7

Solution: Enfrapy of a sum.
(@) Z=X+Y. Hence p(Z=z|X =z} = p(¥ =z = 2|X = ).
H(ZIX) = Y pla)H(Z|X = 1)
= —EPEJ'JZME =:z|X = z)logp( Z = z|X =z
= gpiu'] Zupii’ =z-z|X =z)logp(¥ =z —z| X = x)

= Y pla}H(Y|X = z)
= H(Y|X).
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15.

LV

If X and Y are independent, then H(Y|X) = H(Y). Since I(X:Z) = 0,
we have H(Z) > H(Z|X) = H(Y|X) = H(Y) . Similarly we can show that
HiZ) > HX).

(b} Consider the following joint distribution for X and ¥ Let
X =V 1 with probabdity 1,2
7 T 1 0 with prohability 1,2
Then HIX) = HiY) =1, but & =10 with prob. 1 and henee H{Z} =1,
(el We have
HiZV< HIX. Y=< HX)+ HY)

because £ is a fomction of (X, Y) and H(X.Y) = H(X )+ HY|X) < H(X) +
H(Y ). We have equality iff (X.Y) is & function of £ and H(Y) = A(Y[X]). ie.,

X and YV are independent.

Data processing. Let Xy — Xg —= X5 — o = X, form & Markov chain in this arder;
L., let

Reduce FIX; Xa, . XL to its simplest form,

Solution: Dafa Proceseimyg. By the chadn rule for mutuasl informestion,

T{X1; Xa,. .., Xn) = T(X1; Xa)+ F(X1: Xa|Xa) 4+ +T(X1; X | X2, ..., Xn—g). (220)

By the Markov property, the past snd the future are conditionally independent siven
the present snd hence sll terms except the first are zera. Therefore

Xy Xg, ., X)) = T Ky Xq). (2.21)

Bottleneck. Suppose a (non-stationary] Markov chain starts in one of n states, nechks
down to k < n stabes, and then fans back to m > & states. Thus X — X; — X5,
Le., plz1,22,23) = plx))plealz:)plzalza)  for all 7, € {1,2,... ,m}, 23 € {L.2,....k},

(a] Show that the dependence of X and X5 is limdted by the bottleneds by proving
that J{X;X3) < log k.

(b} Evaluate F{X X3} for £ = 1, and conclude that no dependence can survise such
& bottleneds,
Solution:

Beffleneck.
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(8} From the data processing inequality, and the fact that entropy is mesimom for &
i form distribution, we et

I Xy X3} = J( X Xa)
= H(X2)-H(Xz2|X1)
= H(X3)
< loz k.

Thus, the dependence betasen Xy snd X5 is lmibed by the size of the bottlened:,
That is IiX; X5} < logk.

(b} For £ =1, f(X;; Xa) =< logl = 0 and sinee F{X1,X3) = 0, f(X1.X3) = 0.
Thus, for k=1, X; and X5 are independent.

17. Pure mndomness and benit come. Let X, X5, ... X, denote the outcomes of inde-
pendent flips of a benf eoin. Thus Pr {X; = 1} = p, Pr {X;, = 0} =1 — p,
where pois unknoen. We wish to obtain & sequence 2, 25, ... 25 of for coin Hips

from X, Xa,....X,;. Toward this end let f : X" — {(,1}*, (where {(L1}* =
[A,0,1,00,01,...} is the set of all finibe length binary sequences), be & mapping
FIX; . Xq . Xy =181, 85..... 2}, where Z; ~ Bernoulli I:-JE] Cand K omay depend

o (X1, ... Xe). In order that the sequence &1, 22, ... appear to be fair coin fips, the
map f from bent coin fips to fair fips must have the property that all 2% sequences
(&1, &5, ... 8;) of agiven length & have equal probability (possibly 0}, for k= 1,2,....

For example, for v = 2, the map f(1} =0, 10 =1, f() = fi(ll) = A (the null
string), has the property that Pr{Z; = 1|[K =1} = Pr{Z; = (|K =1} = 3.

Giive ressous for the following inequalities:

a)

el H(X;.....X,)
]
> H(Z1,5,... 2k K)
e HIK)+ H(Z,,... Zx|K)
2 m(K)+ B(K)
(=)
> EK.

Thus no mare than »f(p) fair coin tosses can be derived from (X, ... . X,], on the

averape. Exhibit & pood map [ oo sequences of leneth 4.

Solution: Pure mandomness and bend coms,

@

nH(p) HiXy.....Xq)

ib)
> H(Z1,2,..., Zx)
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(a]

(b)

(c)

(el
(2]

(£}
()

S H(Z,,Z,,....2x K)

2 H(K)+H(Z..... Zg|K)
= H(K)+E(K)
EK .

Sinece X, X5, ..., X, are Lid, with probability of X, = 1 being p. the entropy

HiX. Xa,... . Xy) is nH(p).
Ei.. 8y isafunctionof Xy, Xa. ..., X, . and since the entropy of & function of &

ratdom variable s less than the entropy of the random varisble, H{Z. ... 2=

H(X1,Xa,... . Xa). o
K oisa hunetion of 25, 2., ..., Are 50 ibs conditional enbropy given &y, Fa. . )

s 0. Hence H(Z:,%,....Zx.K) = H(Zy,...,Zx) + H(K|Z1,2a,....2x) =
H(Z Za,..., Bx).

Follows from the chain rule for entropy.

By sssumption, &, &2, . ... A oare pure random bits (given K}, with entropy 1

bit per symbaol, Henee

H(Zy,2a...., Zi|K) = Z;:-H{'=.l:]H|:E.",:E."-3:...:E.';;|I{=Jr] (2.22)
k

= 3 plk}k (2.23)
&

- EK. (2.24)

Follows from the non-negativity of discrete entropy.

Sinee we do not know @, the only way to generate pure rendom bits 15 to use
the fact that all sequences with the same number of ones sre equally likely, For
example, the sequences (0L, (010,01 and 1K are equally likely and can be used
bo menerabte 2 pure random bits. An example of & mapping to generate randomn
bits is

00 — A
01 =00 0010 — 01 OI) — 10 1) — 11
01l -0 010 — 01 1100 — 10 1001 — 11

(2.25)
W0 =0 01 =1
11 — 11 111 — 10 111 — 01 0111 — 0
1111 — A
The resulting expected munber of bits is
FK = dp? = 24 4p°¢ %24+ 2p'¢ =1+ dpfg = 2 [ 2.26)

= 8pg” + ]1];1-31}.3 + 8p'g.

1
e
-
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For example, for == -JE , the expected number of pure randomn bits is close to 1625
This is substantially less then the 4 pure random bits thet could be generated if
P owere exactly ']E :

We will i analyze the efficiency of this schemse of generating random bits for long
seqquences of bent coin flips. Let w be the number of bent coin flips. The algorithm
that we will use is the obwvious extension of the sbove method of penerating pure
bits using the fact that all sequences with the samwe munber of ones are equally
likely.

Consider all sequences with & ones. There are {}f] such sequences, which sre
all equally likely. If {}:] were a power of 2, then we could senerate log {r] e
radom bits from such & set. However, in the peneral case, {'E] i5 not & power of
2 and the best we can to is the divide the set of () elements into subset of sizes

which are powers of 2. The largest set would have & size glles (i} and could be
used to generate |log {}:]J random bits. We could divide the remsdninge elemnents
into the larpest set which is & power of 2, ete. The worst case would ocour when
{'E] = 2+ _ 1, in which case the subsets would be of simes 2!, 201 2072 1,
Instesd of analyzing the scheme exactly, we will just find & lower bound on number
of random bits generated from a set of size (7). Let 1 = [log{{]| . Then at least
half of the elements belong to a set of size 2! and would generate | random bits,
ab lesst it.l.l. belong to a set of size 27! and generate | — 1 random bits, ete. On
the averape, the mumber of bits penerated is

E[K |k 1's in sequence] 2 %r+%u_1]+---+$1 (2.28)
1 1 2 3 1-1
- . i a9
- 4(1+2+4+3+ + ) (2.20]
= (2.30)

sinee the infinite series sums to 1.
Henee the fact that I[IE] is not & power of 2 will ot at most 1 bit on the sverape
in the munber of random bits that are produced.

Henee, the expected munber of pure random bits produced by this algorithm is

it
EK = Y kz)pnq"'klhlp; (:) —1] (2.31)

k=0

L 1 S v
> E () (i) )
5 "rr! 3 3 T
= Y jl_)piq't'L log (1) -2 (2.33)
[T
'_‘_3

Z (:J g™ E log (:) - 2. (2.34)
1 = o kS peba )
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MNow for sufficiently large v, the probability that the number of 1's in the sequence

i5 clime to mp is nesr 1 (by the wesl loar of large numbers ). For such sequences,
{it i5 close to p oand henee there exists a & such that

(_:.i) = gulHIF)=8) 5 guiif(p)-28) (2.35)

wsing Stirling's appredmation for the binomial coefficients snd the continuity of
the entropy function. If we sssumwe theat w is laree enough so that the probability
that n(p — €} < k < nip+ €} is greater than 1 — ¢, then we see that FK >
(1= e}rel Hip)—24)— 2, which is very good since nff(p) is an upper bound on the
munber of pure random bits that can be produced from the bent coin sequence.

18. Werld Series. The World Series is & seven-pame series that terminates s soon ses either
beam wins four games. Let X be the random variable that represents the outeoms of
& Waorld Series between tesms A and B; possible walues of X e AAAA, BABABARL,
and BEBAAAA, Let ¥V be the mumber of paanes played, which ranges from 4 to 7.

Assuming that A amnd B are equally matched and that the games are independent,
calculate H(X), H(Y), H(Y|X), and H(X|Y).

Solution:
World Series. Two tesmns play until one of them hes won 4 gaoees .

There are 2 (AAAA, BEEE) World Series with 4 gaones. Each happens with probability
(129,

There are 8 = 2{':] Waorld Series with 5 games. Each happens with probability (1,/2)°.
There are 20 = ‘?{:] Warld Series with 6 games. Each happens with probability (1,/2)% .
There are 40 = ‘:'f;] Warld Series with 7 games. Each happens with probability (1 T,

The probability of a 4 pame series (Y = 4) is 2(1/2)* = 1/8.
The probability of & 5 game series (Y = 5} is 8(1/2)% = 1/4.
The probability of & 6 game series (Y = 6) is 20(1/2)% = 5/16.
The probability of & 7 game series (Y = 7} is #00(1/2)7 = 5/16.

: 1
HiX) = Zﬂil]fﬂ.ﬂlﬁ

= 2(1/16)}]log 16 4+ 8(1/32) log 32 + 20(1 /64) log 64 + 40(1,/128) log 128
= &HK125

HEY) = 3 ply)log—

1/8log 8 4+ 1/4log4d + 5/16 log(16/5) + 5/16 log( 16/5)
= 1924
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19.

A

Y i5 a deterministic inction of X, 50 if you know X there 5 no randomness in 'Y, Or,
H(Y|X) =0.

Since H(X) + HY|X) = H(X.Y) = H(Y) + H(X|Y). it is easy to determine
HX|Y)=H(X)+ HY|X) - H(Y)= 35880

Infinite enbopy. This problem shows that the entropy of & discrete random variable can
be infinite. Let A =% o aln l::r_n;? iy b (It 15 ensy to show that A 15 finite by bounding
the infinite sum by the interral of (= l::—p;g 2171} Show that the inteper-valued random
variable X defined by PriX = n) = (An lﬂ];l!‘,'.z nj~ fm =23 ... he HX)=4c0.
Solution: fnfinife enfropy. By definition, p, = PriX = n} = 1/dArlog®n for n > 2.
Therefore

H(X) = -3 pin)logpin)

=2

= - i [:1,-".-'-1ri l:}p;'z ri} Loz I: 1/An l::l!'.",'.':l ri}

It—:'

I.::r_n;l: Arn I.:}p; e}

- Z Ar log?

==

Z log A + logw 4+ 2log log
B Arn lv::u!;'E e

Tee=2

T2

Z 2 h}gluﬁ i

An l:}p;ri Anlog?n

The first term is finite. For bese 2 logarithms, sll the elements in the sum in the last
term are nonnegative, (For sny other base, the terms of the last sum eventually all
become positive.] 5o all we have to do is bound the middle sum, which we do by
conparing with an integral.

= l i
II:Z'E .-'-lra l:}gri -~ a ..'4._1' l':}H'IdJ — .F'i.'- I.LI. I.I.I.J. 2 = 400,

We conclude that X} = 400,

Bun bength coding. Let X, X5, . ... X, be (possibly dependent} binary random vari-
ables, Buppose one caleulsbes t.lu run lengths B = (R, B2, ...} of this sequence (in
arder as they ocour). For example, the sequence X = 0L INL yvields mn leneths
R=(32212). Conpare H[X; X, ..., LX), HIR) and HiX, R). Shiwr all
equalities and inequalities, snd bound all the differences.

Solution: Kun length coding. Since the run lengths are a function of X Xa. ... X,
AR) =< AiX). Any X, together with the un lengths determine the nlt.m B LT
Xi.Xz.....Xn. Henee

H(X1,Xa,..., Xn) = HXi R) (2.:36)
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= H(R}4+ H(X;R) (2.37)
=< H(R)+ H(X;) (2.38)
=< H{R)+L (2.:39)

21. Markov's inegqualify for probabilifics. Let plz) be a probability messs function. Prove,
for all d =0,

Pr{p(X) < d} h}g(%)i’”i.’f]. (2.44
Solution: Markov mequalily applied fo eniropy.
1 1
Pipl X) {d]h:r_p;ﬁ = Z f:nl::.r]li:ll_u;'l_—l|1 (2.41)
ap[xhcd
1
. 7} log — 242
< ”E{Jf:{:] o8 (242}
< Ypla) h}gﬁ (2.43)
= H(X) (2.44)

22, Logical order of ideas. Ideas have been developed in order of need, snd then pener sl imed
if necessary. Reorder the following idess, strongest first, implicstions following:

(&) Chainrule for 11X, . ... Xn; YY), chain rulefar Diplz1,... . ¢e)||lg(z1. 22, ... .20 )) .

and chain mle for (X X, ..., X.).

(b} D(f||gl = 0, Jensen's inequality, f(X;Y) > 0.
Solution: Lomeal ordering of ideas.

(a)} The following orderings are subjective. Since TX Y| = Di{pix, y}||piz)lp(y]) is a
special case of relstive entropy, it 15 possible to derive the dhain mle for T from
the chain rule for D,

Binee AIX) = HX; X)), it i5 posible to derive the chain rule for ' from the
chain rule for T.

It is also possible to derive the chain rule for T from the chain rule for 0 as was
done in the notes.

(b} In cless, Jensen's inequality was wsed to prove the non-neeativity of 0. The
inequality FIX: Y ) =0 followed as & special case of the novn-negativity of D,

25, Condifiona mubual informabion. Consider & sequence of w binary random varisbles
X1.X2.....Xe. Eadh sequence with an even number of 1's has probahility 2% 1)

=

and esch sequence with an odd number of 175 has probability . Find the matusl
infor mations

I(X1;X2), I Xa; Xa|lXa). ... F(Xn-1; Xn|X1.... . Xn-2).
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Solution: Coendifional mubeal information.
Consider a sequence of n binsry random wariables X, X5, ... . X, . Esch sequence of
length e with an even number of 1's is equally likely amd has probability 271
Any n — 1 or fewer of these sre independent. Thus, for £ < n — 1,

I(Xe-1; Xe[ X1, X2, ... Xp—2) =10
Howrewver, piven X3, Xao, ... . X0 we know that onee we koear either X, 3 or X, we
know the other.
I Xp-1; Xltlxl: Xa,...,Xp-3}) = Ifl:xltlxl: Xa, .oy Xpag) = Iflletlxj: Xa, ..., Xp-1)
= 1-{=1 hit.
M. Average enfropy. Let Hip) = —plog,p — (1 — p}log,(l — p) be the binary entropy

funetion.

(a) Evaluate A{1/4) wsing the fact that log, 3 = 1.584. Miné: You may wish to
consider an experiment with four equally likely outeomes, one of which 15 more
interesting than the others.

(b} Caleulate the sversge entropy Hipl when the probability g is dusen uniformly
in the range 0 < p < 1.

() [Opfionall Caleulste the aversge entropy B (pi, p2.pa) where (p,pa, pa) is & uni-

formly distributed probabiliby vector. Generalize to dimension .

Solution: Avernge Enfrapy.

(a] We can senerate two bits of information by picking one of four equally likely
albernatives. This selection can be made in two steps. First we decide whether the
first outecome occurs. Sinee this has probability 174, the information gener ated
is A(1/4). If not the first outeome, then we seled one of the three remaining
outecomes; with probability 374, this produces log, 3 bits of information. Thus

H(1/4) + (3/4) log,3 = 2

and so0 (1M} =2 =(3/4)log, 3 =2 = (.7} 1585} = (1.8§11 hits.

(b} If pis chisen uniformly in the range 0 < p < 1, then the sverspe entropy (in
nats) is

! ! - 2% 1
—[ plop+ (1 — p) lul:]—p]-r.fp:—?[ zlnz dr= -2 (? lu:+—1)!“=_§_
I ] 2 . *

Therefore the sverage entropy is JE logae = 1/(2In 2} = V21 hits.
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25.

(¢} Choosing a uniformly distributed probability vector (p), pa.pe) is equivalent to
chomsing a point (py, pa) uniformly from the trisngle 0 < py < 1, py <po =< 1.
The probability density function has the constant value 2 because the ares of the
trisngle is 1/2. So the average entropy Hipq. po.m) is

1 1
-2 f[ prlonp +palnpa+ (1 —py —palin(l — py — poldpodp,
ULy

After some enjovable caleulus, we obtain the final result 5/061In 2} = 1202 bits.

Venn diagrams. There isn't realy s notion of mutusl informastion common to three
ramdom variables, Here is one abtempt st s definition: Using Venn disgrams, we can
soi that the motual informaetion common to three tandom variables X, Y and 2 can
b defined by

XY, 2y=1XY)- 1X;Y\|Z).

This quantity is symmetric in X, Y and 2 despite the preceding ssynunetric defi-
nition., Unfortunately, HIX; Y, 2} 5 not necessarily nonnegative, Find X, Y and 2
such that f{X: Y, Z) < 0, and prowe the following tao identities:

fa) (XY, Z)=H(X.Y2)-HX)-H(Y)-H(Z)+I(X; Y1+ I(Y;Z)+ 1 £; X)
by X Y. 2 =HIX.Y.Z)-HXY)|-H(Y Z|-H(Z X+ HX )+ HY )+ H(Z)

The first identity can be understood using the Venn disgram snalogy for entropy and
it sl information. The secomd identity follows essily from the first.

Solution: Venn DMagrame. To show the Arst wdentity,

Nnx. y.z X Y)-1IX:Y|Z) by definition

= X YV}-(IX.Y.Z)-1X:Z)} by cain rule

= JX;Y)+1(X;Z)- IX;Y, Z)

= [[X;Y)4+IX;Z)- (H(X)+ HY,Z)- HX. T, Z))

= INX)Y)+1IlX;Z)—- HIX)+ HX.Y.Z)- HY.,Z)

= MX)Y)+MNXZ)- HX)+HXY.Z)- (HIY)+ H(EZ)-IY,;Z)
= XY+ IlX; Z)+ Y Z)+ HIX.Y.Z)- HX)-H(Y)-H(Z)

To show the secomd identity, simply substitute for f(X;Y), J(X; Z). and F(Y; £)
using equations like

NX:Yy=HX)+HY)-H(X.Y).

These two identities show that TTX Y Z) s s syvmmetrice (but not necessarily nonnes-
abtive] function of three random wariables.

. Another proof of non-negativity of relabve enfropy. In view of the hmdamental nature

af the result D(p|g) = 0, we will give another proof.

(a] Show that Inz <z -1 for (0 < x < o0,
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(b

(e

Justify the following steps:
_Dipllg) = Zm:r]lu‘“ z) (2.45)
< Z plx ](@—1} (2.46)
< 1'] (2.47)

What sre the conditions for equality?

Solution: Anafther proof of non-neyafiwfy of relzfive enfropy. In view of the fnda-
mental nature of the result Dip|lg) = 0, we will give another proof.

(a]

(b)

Ehow that Inzx <z -1 for ) < x < 2o,

There sre many ways to prove this. The easiest is using ealeulus. Let
flz) =z -1-Inx [2.48)

for 0 < x < co. Then fl{z})=1- i and fY(z) = .:_JI =), and therefore filx)
i strictly comvex. Therefore & local minimmmm of the hmetion is slso s plobael
minimum, The function has a local minimum at the point where f'iz) =0, i,
when x = 1. Therefore fiz) > f(1}, Le.

T—=1-Inz>1-1-Inl1 =1} (2.4

which gives us the desired inequality, Equality ocours anly if @ = 1.

We let A be the set of @ such that pix] = 0.

gqlx}
~D.plla) = ¥ plajin’ (250)

EA I:- ]
< Tt (45 -1) (251)

TEA

= 3 alz) -3 pa) (2.52)

TEA TEA
=< (2.53)

The first step follews from the definition of Y, the second step follows from the
imeruality Int < ¢ — 1, the third step from expanding the suwm, snd the st step
from the fact that the glAd} < 1 and pld} =1.

What are the conditions for equality?

We hawve equality in the inequality Int < ¢ =1 if sowd only if ¢ = 1. Therefore we
have equality in step 2 of the chain iff giz)/p(z) =1 for all x € A, This implies
that iz} = glx) for sl =z, and we havwe equality in the last step s well, Thus
the condition for equality is that plr) = g(z) for all x.
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27. Grouping rule for entropy: Let p = (pr.pa.. ... ) be s probability distribution on

elements, ie, p; >0, amd 0 = 1. Define a new distribution g on m —1 elements
B =P, 2= P Gm-2 = Pm-2: 80 §m-1 = Pm-1 + P, ie, the distribution
q is the same as p an {1,2,.. ., m — 2}, and the probability of the last element in g

i5 the sum of the last two probabilities of p. Show that

H(p) = H(@) + (p-s +p) H (P2t P}, (2.54)
Pra—1 + Pm Pa-1 + Pm
Solution:
irl
Hip) = -3 mlogp, (2.55)
1e= ]
w2
= o Z pilogp —pr-1logpmn-1 — pnlogpm (2.56)
1= ]
wi—2 B o
= = E i log py — P log et = Pm I-'”Pi'# (2.57)
T Pi—1 + P Pra—1 +.F"|:-|
=(Pm-1 + Pm}1og(Pm-1 + Pm) (2.58)
= H(q) - pmlog—"—— —plog —F" (2.50]
Mwm-1 + Pm Mm—-1+ Fm
Pra—1 Fra—1 Pin P 3
= H(q)- -1+ Pm) ( log - log "‘_".1-:1)]
l:' llpm : . Pr—-1 + Pm Pm-1 + Pm Pr—-1 + Pm Pin—1 +llf1'|:-|

(2.61)

= Hiq)+ (pm 1+P|:-|]”'3( fo o }:

Prn—1 + P ; Pra—1 + Pm
where Hala, b = —alora — blog b,

28, Mixing mereases enkfropy. Show that the entropy of the probability distribution,
(Pl sPis- o 2 Pys- - P}, 15 less than the entropy of the distribution

(pye. ... F—'Ili poteyt F—'Iéﬂ-'- v o). Bhow that in general any transfer of probability that
makes the distribution more uniform increases the entropy.

Solution:
Mizing mereases enfropy.

This problem depends oo the convexity of the log function, Let

a ; ; o ;

Then, by the log sum inequality,

Pi+p
}log(——2) + pilog p + pylog py

2
o+
2

™+
a

= —(p + p;}log(
0.

H{Fy) - H(F) =3(

P
L)+ pilog pm + py logp,

I
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Thus,
H(FP) > H(FPy).

A, Inequalifies. Let X | Y and Z be joint random varisbles. Prove the following inequal-
ities and find conditions for equality.

(a) HIX.Y|Z)= H(X|Z).

(b} FIX.Y:2) = (X, 2).

(c) HIX.Y.Z2)-HIX.Y)< HX.Z2)-H(X).
) IX; 2 Y202 YX)-HEY)+1I(X, Z).
Solution: fnegqualifics

(a] Using the chain rule for conditional entropy,

HX.Y|Z)=H(X|Z)+ H(Y|X.Z) = H{X|Z).

with equality iff fF(Y|X, Z) =0, that is, when ¥ is a function of X and £
(b} Using the chain rule for mmtual information,

XY Z)y=0X;Z)+ I[Y; Z|X) 2 I(X; £),
with equality iff f(Y;£[X) =0, that is, when ¥ and £ are conditionally inde-
pendent given X

(e} Using first the chain rale for entropy and then the definition of cond ibons]l moatael
infor mastion,

HIX.Y.Z2)- HIX.Y) = HZX.Y)=H(Z|X)-1Y;2X)
< HZ|X)=HX.2Z)-H(X),.
with equality iff f(Y;Z|X)} =0, that is, when ¥ and £ are conditionally inde-
pendent given X

(d} Using the chain rule for motual informetion,
X ZY )Y+ HEY)=0MXY . Z)=1Z,Y|X)+ [[X; £).
and therefore
X ZYVy=I1Z;Y|X)-IZ;Y)+ 1(X;2).
We see that this inequality s actuslly sn equality in all cases.

. Mazimum enfopy. Fid the probability mess function pir) that mesdmizes the en-

tropy AX) of & non-nesative integer-valued random varisble X subject to the con-
straint

EX = i npin)= 4

es=il
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for & fived walue 4 > 0. Evaluate this meocdmom A X).
Solution: Wanmum enfropy
Recall that,

o ==
~Y pilogp = -3 piloga

=il L=t

Let ¢ = (). Then we have that,

e e
=3 pilogp = =) pilogg
Le=i] (e
= x = v
= - (lm'.'ifr] ¥ pi+logid) Zin.)
| 1)

= =logax— Aloggd

Notice that the final right hand side expression is independent of {p;}, and that the
e ality,

=
- Z pilogp < —logo — Alogd
=)

holds for all o, F such that,

=
Zﬂ'_:'fl =l=u
1

L=l

The constraint on the expected walue also requires that,

Z i =A= -u-l: i

ears 1-89)2

Combining the two constraints we have,

it - (125) ()

5]
1-2
= A
which tmplies that,
A
§g = —
' A4 1
1
x = —
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S0 the entropy maximizing distribution is,
1 Ay
T A 1 (.d. ¥ 1) :
Plugeing these values into the expression for the meod i entropy,
=loga — AlogF = (A4 1}]logld 4+ 1) = Alog A
The general form of the distribuation,
pi = af’
can be obtained either by puessing ar by Laprange multipliers where,
Fipi, M Az = =3 pilogpi + M (D pi — 1} + Aa(D _ip — A
=i i=i] =il
i5 the funetion whose pradient we set to 0.
To complete the srpument with Lapgrange multipliers, it is necessary to show that the
local maximum 15 the global meximum,. One possible aropument 15 beased on the Eact
that —f(p) is convex, it has only one local minima, no local maxima snd therefore
Lagrange multiplier sctuslly gives the sglobal meecdmonn for B p) .

M. Condifional enfropy. Under what conditions does S(X | giY)) = H(X |Y) 7T
Solution: (Conditional Enfropy). If H{(X|g(Y )} = H(X|Y), then H{X)-H(X|g(Y )} =
HiX)- HX|Y), ie, I{X;g(Y)) = J(X;Y). This is the condition for equality in
the dats processing inequality. From the derivstion of the inequality, we hesooe equal-
ity iff X — g(¥) — Y forms a Markov chain., Henee H(X|g(Y)) = H(X|Y) iff
X — gV} =Y. This condition includes many special cases, such s g being one-
to-ome, mmd X and Y being independent.  However, these two special ceses do not
exhaust all the pasibilities,

42, Fans. We are given the following joint distribution on (X, ¥}

3."
X a b
1 1 1
113 11 &
ol i1 1 1
=1 E & T2
[ 1
3|lE 13 &

Let X(Y) be an estimator for X (based an YY) and let P, = F'r{}"i'l:!l’] # X}.

(a] Find the minimoum probability of error estimator .1:f|:!|’] amnd the sssociabed Pe.

(b} Evaluate Fano's inequality for this problem and compare.
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Solution:
(a] From inspection we see that
_ 1 =aq
Xiuwy=4{ 2 u=5
3 y=1«

(b)

3. Fano's memualify. Let Pr(X =i} =p, i = 1,2... . m and let py > pa = p3 =

Henee the associsted P ois the sum of P16}, Pil.c). Pi2.a). Pi(2.c). Pii.a)
and P(3.b). Theretore, Fe = 1/2.

From Fano's inequality we koo
HX[Y)-1
Ao
caten log | A
Here,
HIX|Y) = HIX|Y =a)Pr{y=a}+ HX|Y =b)Pr{y=b} + HIX|Y = c)Pr{y = ¢}
111 j S o | 111
111
111
= H|=.-.-
(333
= 1.5 hits.
Henes e
>~ = 41§
ez oz 1 16,

Henee our estimator .J;L'I:!l’] i5 not very clse to Fano's bound in this form. If
X e X, as it does here, we can use the stronger form of Fano's inequality to pet

] HIX|Y)- 1.
~ log()|X]-1)
and
, o 1E=1_1
= lox2 2

Therefore our estimator ..:'-S:'I:..I’] i5 actually quite pood.

coo zopes The minimal probability of ervor predictor of X 15 X = 1, with resulting
probability of error P = 1 — py. Maxionaze fip) subject to the constraint 1 —p; = P
to find & bound on P in terms of H. This is Fano's inequality in the sbhsence of

cotditioning,
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Solution: (Fane's Inequalify.} The minimal probability of error predictor when there
i5 o information is X = 1, the most probable value of X . The probability of error in
this csseis P = 1 —py. Henee if we fix P, we fix py . We maximize the entropy of X
for & given P, to obtain an upper bound oo the entropy for & given P, The entropy,

¥l
Hip) = -pilogp - plogp, (2.62)
=
IIi'l F‘ ]'J‘
i i 5
= —pm l:gpj—aﬂ-ﬁ h}gE—El:gﬂ (263
FLe I L P .
= H[E PH[—,—...., — 2.64
(r)+rH (BB, =) (264)
< H(P)+ EBlog(m - 1), (2.65)
sinee the i of 7 Efi-;'— ﬁ'— chiEy I'-}'J'L} i5 sttained by sn uniform distribution. Henee
sy X that can be predicted with s probability of error P, ost satisfy
H(X)< H(F:)+ Pelog(m — 1), (2.66)
which is the unconditional form of Fano's inequality. We can weaken this inequality to
obtain an explicit ower bound for P,
HiX)1-1
- L (2.67)
loglm — 1)
M. Enfropy of mitial condifions. Prove that B (Xg|X,) 5 non-decressing with n» for any
MhMarkov chain.
Solution: Enfrepy of imfiad comdifions. For s Marlov chain, by the data processing
theorem, we have
”_XI?IEXH J] - ”XI:IEXH]- I:?.i:iﬁ]
Therefore
HiXa) — H({Xo|Xn-1) = H(X0) — H(Xo|Xn) [ 2.64)
ar H(Xg| X, ) incresses with n .
35. Relafive enfropy ie nol symmeine: Let the random varisble X have three possible

outcomes {a. b, o} . Consider two distributions on this random variable

Evmbaol | plx)  glx)

A 1/2 173
b 1/4 1/3
« 1/4 173

Caleulate Hip), Hig). Dip|lg) and Dig||p). Verify that in this case Dip||lg) #
Dig||p).

Solution:

lox 2 4 ;l:}gal + % log 4 = 1.5 bits. (2.7

-

Hip) =
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1 1 1 "
Hig) = Elug."i + 3 log 3 + 3 log 3 = log 3 = 158496 bits. (2.71)
Dipllg) = 1/21log(3/2)}4+1,/4 log(3/4)4+1/4 log(3/4) = log(3)—1.5 = LH8406—1.5 = (108496
(2.72)
Digl|p) = 1,3 log(2/3)+1/3 log(4/3)+1/3 log{4/3) = 5/3—log(3) = 1.66666—1.58406 = 0.08170
(2.73)

36, Symmeiric relafive enfrapy: Though, ss the previous example shows, Dipllg) # Dig||p)
in peneral, there could be distributions for which equality holds. Give san example of
two distributions p amd g on & binary alphabet such that D(pf|g) = Dig||p} (other
than the trivial mse p = 9.

Solution:
A simple case for D((p,1 - p)||(g.1 —gq)) = D((g.1 —gq)|[(p.1 — p}}., ie., for

1-g
1-p

P L—p q
log= 4+ (1l —pllog —— =glog = 4+ (1 —glk 274
plog +(1—plogy o =qleg_+{1~g)log (2.74]

i5s when g =1 — p.

47, Relafive enfropy: Let X, Y. Z be three random variables with & joint probability mess
funetion pilx, ¥, z} . The relative entropy between the joint distribution and the produet
of the mearginals is

i ) plz,y. = ]
Diplz,y. 2 z)) = E |log -2 275
(plz. y, z)||pz)p{wipiz)) [u:p{I] o (2.75)

Expand this in terms of entropies. When is this qusntity zera?
Solution:
plx.y.z)
m’ —
plxfplglplz)
= Ellogplz.y.z)] - Ellogp(z)] - Ellogpiy)] — EllogR=
= —HXY.Z)+ HX)+H(Y)+H(Z) (2.78)

Diplx. y. z}||plx)p{y)p(z))

(2.76)

We have Diplx.y. z)||plzlpylp(z)) = 0 if and only p(z.y.z) = pix)p(ylp z) for all
(x,u,z),ie,if X and ¥ and £ are independent.

38. The value of o queshon Let X ~ plz), = = 1,2,....m. We arme given a set § C
{1,2....,m}. We ask whether X €5 and receive the answer

ro 1 EXES
1o ifxes

Suppme Pr{X £ §} = a. Find the decresse in uncertainty H{ X} - H{X|Y).

Apparently any set § with & given o is & pood as any obher.
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Solution: The value of a guesfion.

HIX)-H(X|Y) = IiX;Y)
= H(Y)-H(Y|X)
= Hia)-H(Y|X)
= Ha)

aince MY |X) = (.
3. Enkropy and pairwise independence.

Let X, Y, & be three binary Bernoulli I:-JE] ramdom varishles that sre pairwise indepen-
dent, that is, I(X;Y)=I(X:Z)=I(Y :Z) = (.

(6] Under this constrant, what is the minomom saloe for (XY, 27

(b} Give an example schisving this min i,

Solution:
(a)
HIX.Y.Z) = HX,Y)+H[(Z|X.Y) (2.79)
= H(X.Y) (2.80)
= 2. (2.81)

Eo the minimuum value for XY, Z) is ab least 2. To show that 15 15 actually
equal to 2, we show in part (b)) thet this bound s attainable.

(b} Let X and ¥ be tid Bernoulli| .-JE] andd et £ = X &Y | where & denotes sddition
el 2 [xor).
M. DHecrefe enfrapies

Let X snd Y be two independent inteper-valued random verisbles, Let X beuniformly
distributed over {1,2,...,8}, and let Pr{Y =k} =2 E k=1,23,...

(a] Find H(X)
ib} Find H({Y)
(c} Find H{X +Y, X -Y).

Solution:

(&} For & uniform distribution, X} =losm =log8 = 3.
(b} For a geometric distribution, A(Y) =%, &2 E— 9 (See solution to problem 2.1
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(e} Sinee (XY} = (X 4V, X -Y) is aone toone transformation, X +Y. X-Y) =
HXY)=HX)+H(Y)=34+2=14.
41. Random quesbons
Ooe wishes to identify a random object X ~ pix). A gquestion @ ~ rig) is asked
ab random sccording to vig). This results in & deterministic answer 4 = Alx. g) £
{ai,a2,...}. Suppose X and @ are independent. Then f{X; 6}, A} is the uncertainty
in X remwwed by the question-saswer (0, A).

(a) Show f(X:0Q, A) = H(A|Q). Interpret.

(b} Now suppose that two Lid. questions 0, (s, ~ rig) ame asked, eliciting snswers
Ay and A; . Show that two questions are less valuable than twice asingle question

in the sense that FUX; 0, Ay G, Az) = 200X, 04, 44).

Solution: Random guesbons.

(a)

IMX;Q.4) = H(QA)-H(Q A|X)
= H(Q)+ H(AQ) - H(Q|X) - H(AQ.X)
= H(Q)+ H(A|Q) - H(Q)
= H{A|Q]

The mterpretation is as folloas. The uneertainty remwwved in X given () A is
the same s the uneertsinty in the answer given the question.

(b} Using the result from pert s and the fact that questions ave independent . we can
ety obtain the desived relationship.

(X:Q1 A1 Qe 4) 2 I(X:Qu) + (X A1|Qu) + (X Qa| 41, Q1) + I(X; 42|41, Q1. Qa)
B R(XA4(Q) + H(Qa|AL, Q) — HQu| X, A1 Q) + (X Ax| A1, @y, Qo
S HX: A Q) + (X Ao A1, Q1. Qa)
= NX:A|ch) + H(Ax| Ay G Ga) — H({A2| X, Ay Gy, ()
[}

S XA Q) + H(A2| 41, Q1. Qa)
(=)

< (X AQ1) + H (A Q)

L or(x; 410

(a) Chain Rule.
(b} X and ¢ are independent.
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(e} G are independent of X, ., and A; .
(d} Az is completely determined piven o snd X
(o] Conditioning decresses entropy.
(f} Result from part s
42, Mmegqualifies. Which of the follewving inequalities sre penerally >, =, < 7 Label each with
2=, Or <.
(n) H(5X) va. H[X)
(b) Fig(X)Y) vs. JX YY)
(e} H{Xg|X g} vs. H{Xg|X 4. Xy)
)} X Xe o Xw) ves, HidX. X2, .. .. Xe)), where clxy,z2, ... 2x) isthe HufF
man codeword sssigmed to (i, 33, ..., Te].
(e} HIX.YIIHIX)+ HY)) va 1
Solution:
()] X —5X is s one to one mapping, and hence X)) = Hi5X].
(b} By dats processing inequality, figiX) Y=< X Y.
() Becanse conditioning reduces entropy, H(Xo|X-1) > HiXao|X -1, X1).
d) HIX.Y)< HX)+H(Y).s0 HIX.Y )/ (HX)+ HY)) < 1.
43, Mubval mformation of heads and fails.

(o] Consider a fair coin flip. What 15 the mutual informeation between the top sude
and the bottom side of the coin?

(b} A Gsided fair die is rolled. What is the mutual informstion between the top side

and the front face [ the side most facing you)?
Solution:
Muival mformabon of heads and fails.
To prove (a) observe that

I, By = H{B)-H(B|T)
= log2 =1

sinee B~ Ber(1/2), aod B = f(T). Here B, T stand for Botbom and Top respectively.

To prove (b} note that having observed s side of the cube facing us F', there are four
possibilities for the top T, which sre equally probable, Thus,
T, Fy = H(T)- H(T|F)
= log6 —log4
= logd-—1

since T has uniform distribution on {1,2,...,6}.
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4. Pure mndomne sz

We wish to use & 3-sided coin to penerate s fair con toss. Let the coin X hawe

.

(a] How would you use 2 independent fips X, Xz to generate (i possible} s Bernowllif iz ]
ramlom variable 27

probability mass nction

A
P
e

e

where pa.pr.pe are unkoean.

(b} What 15 the resulting msccimmom expected munber of fair bits pener ated ?

Solution:

(&} The trick here is to notice that for any teo letters YV oand 2 produced by two
il ependent tosses of our bent three-sided coin, Y2 hes the same probability as
2Y . Bo we can produce B ~DBernoullif %] coin flips by letting B =0 when we
et AR, BC o AC, and B =1 when we pet B4, CF or OA (if we pet A4,
BE or OO we don't sssign s value to B )

(b} The expected number of bits generated by the above scheme is s folloas, We get
e bit, execept when the two fips of the 3-sided coin produce the same symbal.
50 the expected number of fair bits penerated is

0+ [P{AA)+ P(BB) 4+ P(CC)|+ 1 +[1 - P(AA) - P(BB) - P(CC)). (2.82)
or, 1-p4 -p%-prd. (2.83)

45. Finile enfropy. Show that for a discrete random variable X € {1,2,...} ,if Flog X <
a0, them (X)) < oo,

Solution: Let the distribution on the integers be pi,p2..... Then H(pl = - % piogp,
and Flog X =% plogi = ¢ < 0o,

We will now fnd the maximoum entropy distribution subject to the constraint on the
expected logarithm, Using Lagrange multipliers or the results of Chapter 12, we have

the follmwring functional to optimze
Jiph= =3 _mlogpi— M3 _pi— A2y pilogi (2.84)

Differentiating with respect to py and setting to zero, we find that the p; that meaximizes
the entropy set @ = ai®, where a = /0% i} amd A chosed to meet the expected log

constraint, 1e
Z *ogi = f.-z i (2.85)

Using this value of g, we can see that the entropy is finite.
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4. Amomalbic definddion of eniropy. If we sssume certain sodoms for our messure of infor-
mnation, then we will be foreed touse s logarithmic messure Like entropy. Shannon used
this to justify his initial defintion of entropy. In this book, we will rely more on the
obher properties of entropy rather than its axiomatic derivation to justify its use. The
follow ing problem is considerably more dificult then the other problems in this section.

If & sequence of symmetric finctions H o, (py.pa. ..., P satisfies the following proper-

ties, -
& Mormalization: H-gl:.-JE: -JE} =1

o Continuity: Ha(p.1 — p) is a continnons funetion of p.

Hum(p1.pa.....pm) = = 3_ pilogpi, m=23.... (2.86)
=]

There are varous other sodomatic Formul stions which slso result in the same definition
of entropy. See, for example, the book by Csiszir and Korner[1].

Solution: Amemabic defimufion of enfropy. This is & lmg solution, so we will Arst
outline what we plan to do. First we will extend the grouping sxiom by induction and
prove that

1 Fi
+|:,m+pg+---+p,_.]m;( ):2.&?]
mApat 4P Motpat o+ P

Let fiwme) be the entropy of & uniform distribution oo owm symbals, e,

Flriy e (l.l:... l) (2.88)

T T

We will then show that for any teo intepers v amd =2, that firz] = firl 4+ fl=).
We use this to show thet fim) = logm. We then show for rational p = /2. that
Hyip.1—-p) = —plogp—(1—pllog(l —p). By continuity, we will extend it to irrational
p oand finslly by induction and pronping, we will extend the result to M, for m > 2.

To begin, we extend the grouping sxdom. For comvenience in notation, we will let
&
Se=3) M (2.89)
o]

and we will denote Hailg. 1 —g) as hig). Then we can write the grouping scdom &s

2
Holp1s - Pm) = Ho1 (S2.3,..pm) + 53 ( 22). (290)

a4
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Applying the grouping saxiom ageain, we have

L L. ey, T m(%} (201)
= Hp-208.m.....pm)+ "]'wu't(ﬂ} + "]'u't( j) (2.92)
34 Sa
(2.03)
"
= Mo [k ”I:';'J; Pl ls: - P +E 'i'jt( ') [2.94)

Mowr , we apply the same grouping axiom repeatedly to fp(p /S, ... pe/Se) . toobtain
Hy, ( m-) = H, (_SI‘ - E) + sz ih (F' /St ) (2.05)
elgog) = il 2 5.\ 575 20!

'-TIL :ZI_ES"“ (I;) : (2.06)

From (2.94) and (2.96), it follows that

p.
B e s B B e p.?.]+€;m( i) (2.07)
AL

which is the extended prouping sedom.

Merar e e to use snoaxiom that is oot explicitly stated in the text, namely that the
function My is symunetric with respect to its sarguments, Using this, we can oombine
sy set of arooments of H’,;., msing the extended sronping socom.

Let fim) denote H,Hi e =,

ok *
Consider

flmn) = H,;.,,tl: ..... ,=—]. (2.98)

L ra T friTe

By repestedly applying the extended srouping sciom, we have

1 1

fimn) = H,;.,,t[ ey ™| (2.0
T mn i
1 1 1 1 1 1
= Honeml—,—.....— 4+ —Hg(—,....=) (2. 1041
L mmn T T it Tt
1 1 1 1 2 1
= Hpypop(— — —.....— ]+ —H,tl:—.... .=l (2.101)
T T mn I !
(2. 102)
1 1 1 1
= W l—. . ... —}+H[— ...,=) (2. 103)
7 7 Tt e

= fim}+ fin) [2.104)
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We can immedistely use this to conclude that fim®) = kf ().
Mowr, we will argoe that fa(1.0) = k1) =0. We do this by expanding f5(p . pa. 0)
[+ = 1) in two different ways wsing the grouping axiom

Hy(py.pe.0) = Ha(py.pa) +pay(1.0) (2.105)
Ha(1.0) + (py + po)Halpy, pa) (2. 106)

Thus p HZ0 1,0} = H3(1,0) for all gy, and therefore F(10)} =0.

We will also need to show that fim 4+ 1) — fim) — 0 &8 m — 20, To prove this, we
use the extended grouping axiom and write

1 1
L= Heo b R 2.107
'”m+ ) “l:rn +1 rr.l+1] E ]
1 ] 1 1
= }tl:m_l_1]+m+1ff,;.,|:;:...:a] (2 108)
R AN VWL Ty (2.100)
h m+ 1 m+1 E
and therefore
m
o = 2,
fim 41} m+1_,f|:rr.'] .Iltl:_r”_'_l]. (2110}
Thus lim f(m 4+ 1) — I;_:‘:'H_,f'l:rn] = 1i.ltlftl:'ﬁ . But by the continuity of Ha. it follows
that the limit on the right 15 &0} = 0. Thus lhuh[ﬁr] = {}.
Let us define
antl = f(n+ 1) — fin) (2.111)
and
1
by = h{=). (2.1132)
t
Then
1
e B e 1.”“] + byt [2.113)
1 it
= S IEn. + by (2.114)
and therefore
i
(4 11 = (R4 Daps +Zr.|,. (2.115)

i}

Therefore summing over ., we have

N N

N
Z nh, = Z':"'ﬂu +ap14+...+a3)= .'".-’E-n,. (2.116)

=2 =2 1p=2



www.elm24.com

Entropy, Relative Entropy and Muotual Information 43

Dividing both sides by E.:I_J n=N(N+ 1)/2, we obtain

a N E""I 5 Ty
= Tha=2 ]
ry iy = R | |:‘3 11?]
N4+1 E ¥ o T
Mow by continuity of 5 and the definibion of b, | it follows that &, — ) as 7 — 2.
Since the right hand side is essentially sn sverage of the b, s, it also poes to 0 This
can be proved more precisely using € s and §'s). Thus the left hand side poes to 0. We

can then see that
1

riq = Bpr 4 = 2118
a1 = by .-v+1,tz_.3“" | |

also poes to 0 s V — oo, Thus
fin+1) = firn) =0 asn— oo (2,119

We will now prove the follmring lemma

Lemma 2.0.1 Lef the funchion fim) sabisfy the following asswmplions:

s fimn] = fim)] 4+ fir) for all miegers m. n.
o limy . (fir+1) = fir)) =10
+ fi2)=1,

then the funchon f(m) = log, m.

Proof of the lemma: Let P be s srbitrary prime oumber snd let

f(P)log, n

= - 2,120
o) = fim) = =0 (2.120)
Then gir) satisfies the first sssumption of the lemma. Also g(P) = 0.
Also if we let
flFP) !
— - = - ; 212
n = gl + 1) = gln) = S +1) = () + 5 loma (2121)
then the second sssumption in the lemms implies that lim o, = 0.
For an integer w, define
(- EJ 2199
f LD . (2.122)

Then it follews that n'Y < w/P, and

n=nt'P4l] (2.128)
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where (0 < [ <= P. From the fact that g(P)} = 0. it follows that g(Pr)) = girY),

and
it—1

gin) = gln™}+ gin} - g(Pr'V) = g(n™)+ 3~ a (2.124)

1= Pyl U]

Just as we have defined =™ from w . we can define »™® from =Y. Continuing this
provess, we can then write

k nlt— Ll
gin) = g(n™ 43 ( Y n,) : (2.125)
1=1

- 1= Pt

Sinee n™ < n/PY . after

Lo 72
= | —— 2126
k [lup;PJ-l_] (2.126)

terms, we have =5 = 0, and g{0) = 0 (this follows directly from the additive property
of g). Thus we can write
JII

g} = Zn, [2.127)
= ]
the sum of &, terms, where
Lo v
b, <P 1). 2128
B (lur;P i ) S

Binee oy, — 0, it follows that alnl, _, 0, since gin] has at most oflog,n) terms o .

long i
Thus it folleers that
s SN S (2.120)
o Lo, n log, P

Since P was arbitrary, it follows that f(P)/ log, P = ¢ for every prime muomber P
Applving the third sxiom in the lemmes, it follows that the consteant s 1, and fIFP)] =

For composibe numbers N = PP B, we can apply the Arst property of f and the
prime munber factorization of N to show that

FIN)=3 f(P) =2 logaPi=loga N. (2.130)

Thus the lemma is proved.

The lemma can be simplified omsiderably, if instead of the second assumption, we
replace it by the sssumption that fin) s monotone in v, We will now argue that the
anly function fim) such that fimn) = flm) 4+ fin) for all integers m, w15 of the form
fim) = log, m for some base a.

Let ¢ = fi2). Now fid) = fi2 = 2) = f(2)+ f(2) = 2c. Similarly, it is easy to see
that fi2%) = ke = clogs 2. We will extend this to integers that are not powers of 2.
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For any integer m . let v = {1, be another integer and let 2¥ < m"™ < 2540 Then by
the monotonicity assuwmption on f |, we have

ke<rfim)<(k+1 [2.131)
& k k+1
e < fm) < c 2 (2.132)
MNor by the monotonidty of log, we have
LSRR, b ol (2.133)
r r
Combining these too equations, we obtain
o P L) B (2.134)
| I S
Einee v was arbitrary, we must have
log, m
fim) = = [2.135)

s we can identify ¢ = 1 from the lsst sssumption of the lemama,

MNor we are almost done. We heve shown that for any uniform distribution oo m
outcomes, fim) = H (1/m, ..., 1/m) = log, m.

We will nerr show that

Hy(p.1 —p) = —plogp — (1 — p}log(l — p}. (2.1.36)
To begin, let g be a rational number, vz, say. Consider the extended grouping axiom
for M,
) =H(Cm) = HCon 204 2T paor) (2137
# = # 2 & #
'\—.‘_:,.—l'
= Bl 2 )+ 2f6)+2""fs—7) (2138)
8 8 r #

Substituting f(#) = log, =, ete, we obtain

&8

Byl 2"y = Ty, T - (1 S ")u}g.z (1 - ""'). (2.139)
] & & ® &

Thus (2.136) is true for rational p. By the continuity sssumption, (2.136) is also troe
ab irrabional p.

To complete the proof, we have to extend the definition from #; to 8, . Le., we have
to show that

-”li-ll:_f:'J:---:Pli-n] = _ZF\ I-"J-';'P| f_?.]f“]]
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for all . This is & straightforward induction. We have just showmn that this is true for
m = 2. Now assume that it is true for m = n — 1. By the grouping secdom,

”ul:m: Cee :.plt] == -”.u Jl:_f]'J + o, :F‘lt] I:_'E 1"11]
1
Ho+pa)t (2 B} (2.142)
i W T 5 ol
it
= —(pi +pa2)loglpi + p2) = 3_pilogp, (2.143)
(=3
B e - IR W b S N ¢ R T T\
o+ 2 1+ 2 P+ pe2 LT L]
it
= - Z i logpy. (2.145)
i=1
Thus the stabement 15 true for m = n, awd by induction, it is true for all wm . Thus we
heve finally proved that the only symmetric fanction thet satisfes the axioms is
31
-F-ru-:l:f:"]:---:p'lrl] = _Zﬂ'l I-"‘prl- I:_'E_]_-H:i]
1=1
The proof sbove is due to Rényi[4]
47. The enbopy of a missorfed file.

Adeck of n cards in order 1,2, .. .n is provided. One card is removed st random
then replaced at random. What is the entropy of the resulting deck?

Solution: The enfropy of a missorfed file.

The hesrt of this problem s stmply carefully counting the possible outoome states.
There sre v wayvs to chome which card pets mis-sorted, and, onee the card is dhusen,
there are again w wayvs to chome where the card 15 replaced in the deds. Each of these
shuffling actions has probability 1/%?. Unfortunately, not all of these n? actions results
in & unigque mis-sorbed fle. So we need to carehilly count the number of distingushable
oinboome stabtes. The resulting deck can only take on one of the following three cases.

# The selected card is at its original location after s replacement.
# The selected card is at most one location saway from its original location after &
replacement.

# The selected card is at least two locations sway from its ariginal location after s
replacement.

To compute the entropy of the resulting deds, we need to know the probability of esch
CHEE.
Case 1 (resulting dedc is the sane as the original}: There are n ways to advewe this

oubeome stabe, one for each of the n cards in the deck. Thus, the probability associated
with case 1is n/n? = 1/n.
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Case 2 (adjscent pair swapping): There are v — 1 adjppeent pairs, esch of which will
have a probability of 2 /%2, sinee for esch pair, there are two ways to schieve the swap,
either by selecting the left-hand card snd moving it one to the right, or by selecting the
right-hand card snd moving it one to the left.

Case 3 (typical situation): None of the remsining actions “collapses™. They all resalt
in unique outcome states, each with probability 1/m2 . Of the n® pesible shuffling
actions, m° —n — 2(r — 1} of them result in this third case (we've simply subtracted
the case 1 and case 2 situsations abowe].

The entropy of the resulting deck can be compubed as follows.

HIX} = —fnql: i)+ in— ]] .I'm,ll: ;] + (12 — 3n +‘:']—.fm,||:ri )

- earedyis ‘—f"uz 1)

48. Sequence lengbh.
How much information does the length of & sequence give about the content of & se-
quence? Suppose we consider & Bernoulli (1/2) process { X}
Stop the process when the first 1 sppesrs. Let N desigonate this stopping tioe.
Thus XV is an element of the set of all finite length binary sequences {(,1}* =
{0,1,00,00,10,11,000,. .. }.

(a} Find I{N;X¥).
(b} Find H{XN|N).

(c} Find H{XY).

Let's nwar comsider s different stopping time, For this pact, sgain assume X ~ Bernouldli (1,/2)
but stop at time & = 6, with probability 173 and stop at time &V = 12 with probability
2/3. Let this stopping time be independent of the sequence X1 X2, .. Xz,

(d} Find I{N; X¥).
(e} Find H{X¥|N).

(f} Find H{XN}.
Solution:

(a)

I(X%:N) = H(N)-H(NXY)
= H[(N}-0
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2 E
X" = 2

where (o) comes from the fact that the entropy of & geometric random weisble is

Just the mean.

(b Sinee given N we know that X, =0 for all ¢ < & snd Xy =1,

H(XY|N)y =0.

(e)
H(XY) = [XN, M)+ H(XY|N)
= XN N)+0
HX¥y = 2
(e}
XY N}) = H(N)-H(NXY
= H(N)-0
(XN, N) = Hg(1/3)
(e
H(X¥|N) = %H(.’{'“h‘h’-—ii]+%H|:XH|.-‘I-’-_1‘3]
s 1 i E 12
= FHX®)+ZH(X")
T s
H(XY|IN) = 10
(f})

H(XY) = (XY M+ H(XY N
= XN N)+10
H(XN}) = Hg(1/3)+ 10.
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Chapter 3

The Asymptotic Equipartition
Property

1. Markov's megualily and Chebyshev's inequalify.

(a} (Markov's inequality. )] For sny non-negative random variable X and any ¢ > 00,
show that

EX
—
Exhibit & random sarisble that schieves this inequality with equality.

Pr{X >t} < (3.1)

(b} (Chebyshev's inequality. ) Let Y be s random sarisble with mean g and srianes
a?. By letting X = (¥ — p)?, show that for any € = (0,

S

L
Pri{|}Y — p| > e} < —. (3.2]

2
()} (Thewesk Lo of Large numbers.) Let £y, Z4. ..., &, be asequence of 1.1.d. random

variables with mean g snd warisnee o . Let 2, = }E:'__, Z; be the sample mean.
Shover that

J

Pr {!J = ;;! - r} e ® (3.3

('L S

|= | B
Thus Pr {l.-f.. —p > r}- — ) a5 7 — 2o, This is knoen ss the wesk law of laree
munbers.

Solution: Markov's megualify and Chebyshev's inequalify.

(g} If X hes distribution Fiz},

B
EX = f zdF
4]

3 o
= f .a'-:lf'"+f od F
L] &

A
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= rIdF
J -
> | SdF
8
= §Pr{X > &)

Bearrsnging sides and dividing by § we get,

Pr{X =4} = % (3.4)

One student gave & proof based on conditional expectations. It poes like

EX E(X|X <8)Pr{X = 8} + BE(X|X < 8)Pr{X <}
E(X|X < §)Pr{X = &)

= GPr{X = ),

which leads to (3.4} ss well.

Given &, the distribution schieving

Pr{X > 4} = %

= 4 with probability .L;
~ | 0 with probability 1 - &,

where p = §.

(b) Letting X = (¥ — 1P in Markow's inequality,

Pr{(¥ — p)? > ¥} = Prf(¥ —pu)? = €%}
- 2
< ElY :;e]
o
-e'.l'.z
—i ?:

and noticing that Pr{(Y — J:e].3 = -l-'..z} =Pr{|¥ — p| = €}, we get,

o
a2
Pr{|¥ —p| =€} = o

(c} Letting ¥ in Chebyshev's inequality from part (b) equal Z, . and noticing that
EZy = p and Var(Z) = "T—: (ie. Zn is the sum of n iid rvs, L: ench with

; l_:rl it
variance Sy ), we have,

b

l:"1'{|3_',t —p| e} —
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2. AEFP and mubval informabion. Let (X, Y} e iid. ~ plz.y). We form the log
likelihood ratio of the hypothesis that X and Y osre independent vs. the hypothesis
that X and ¥V are dependent. What is the limit of

1 HX"p(rY),
- . plX® ¥Yn)

Solution:
1. p(X")p(¥™") pl Xl p(Yi)
iy o ok il ol
n* p(Xn Y H, p(X,.Y)
L& pXpN)
- EZ PIXLY)
Xi Jpi¥i)
~ (g PR
oy LS
S (601
Thus, %%H'J—i[j,,—::' — 27rIXYY  ahich will converge to 1 if X and Y oare indeed

ind ependent.

4. Pieee of oake
A cale 15 sliced roughly in half, the largest piece being chosen esch time, the other
pieces discarded. We will sssumwe that & random cut crestes plecss of proportions:

_ )15
p={ &

Tlma for example, the first cut (snd choice of largest piece} may Tl‘ﬁlll.‘t. i s piece of
sl r. Cutting snd chosing from this piece might reduce it to size (3 ]I: ] st time 2,
and s0 on.

_"II-\Iﬂ i
o Lol | b

b owp
¥l w.p

e | e | Ll

Hirar large, to first order in the exponent, is the piece of cale after n cuts?

Solution: Let ) be the fraction of the piece of cake thet is cut st the (th cut, aod let
T bethe fraction of cake left afber n euts. Then we have T, = CC; O = [T C
Henee, s in Question 2 of Homework Set #£3,

: 1 : i it
[ = log T, = lim = Ej low 7

= Ellog ]

R oty
= <k —log =
o+ lg s
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4. AEFP

Let X; beiid ~p(x), z € {1.2...., m}. Let p= EX, and H = — ¥ p{z)logp(z). Let

A = {z" e A" : | - #h}g;ﬂl:"] —H|<e}. Let B® = {z" ¢ A™: I_Jt t X —p| < e}
(a} Does Pr{X™ ¢ A"} — 17

(b) Does Pr{X" c A"nB"} — 17

(€} Show A" B®| < 2%H+<) for gl n,

(d} Show |A™n B% = I:.-JE]E“[”"{:': for o sufficiently large.
Solution:

(a) Yes, by the AEP for discrete random wariables the probability X" is typical goes

to L

(b} Yes, by the Strong Law of Large Numbers PriX" £ B%) — 1. S0 there exists
€ >0 and N such that PriX™ € A"} > 1 -5 for all » > N}, and there exists
N2 such that Pr(X" e B%) > 1- % for all = > N2. 5o for all v > max( N1, Na):

PF[K“ E ‘qlt IF| Blt] = Prl:.xlt E Alt] + Prl:.xlt E BIE] S Prl:.x it E Alt L-I Blt]
£ £
= 1-= E +1 - 'E -1
= 1—&

S0 for any € > () there exists NV = max( N, N3} such that PriX" € A"n 8%) >
1—¢ for all m > N, therefore Pr(X™ ¢ A"N 8"} = 1.

(€} By the law of total probability ¥ e gnqge plz”) < 1. Also, for 2" © A" | from
Theorem 3.1.2 in the text, p(z™) > 2 w4 Combining these two equations gives
12 Toneprpn pE") 2 Dong grage 209 = |47 (1 Br2 72149, Multiplying
through by 2™} mives the result |A" N B"| < an#+a

(d)} Sinee from (b} Pr{X" £ A" N B"} — 1, there exists N such that Pr{X" ¢

A"n B"} = {s for all m > N. From Theorem 3.1.2 in the text, for =" ¢ A",
") < g-nlli-«) gy combining these two gives % < rearnae P} =

neAnmgn & = i = 5L Maltplying through by 2 T 1ves
E: AR o= =g} |Alt ﬂ-ltl-g w[f =) il iplyving th weh by oy [H —g) oi
the result [A" N 8% > I:%]‘E"[” ~¢) for n sufficiently large.

5. Sefs defined by probabibifics.

Let X X5, ... be an iid. sequence of discrete random variables with entropy H{ X
Let

Cr(t) = {z" € X" :p(z") > 27™}
denote the subset of n-sequences with probabilities = 277

(a) Show |Chlt)] < 2.
(b) For what wvalues of ¢t does P{{X" & Cy(t)}) — 17

Solution:
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(a} Sincethe total probability of all sequences is less than 1, Oy () ming. oo 2"} =
1, and hence |C(t)] < 2.

(b} Since —=logp(z™) — H, if t < H the probahility that p(z™) = 27" goes to (),

and if ¢ > I, the probability goes to 1.

6. An AEP-Like imaf. Let X Xs.... be 1id. drawn sccording to probability msss
function plz}. Find

lim [p(X). Xz, ... X )= .

Solution: An AEP-hike imal X X5, ..., 1dd. ~ plz). Hence logl X)) are alsoiid.
ared

L
im{p(X1, X2,..., Xn))® = lim2SE X o)
rLs -glju:nﬁzlu:.;:;,u{x.] B
— ?E[kq['u{x:m e
a=HIX) b

by the strong law of large numbers (assuming of course that Hi X} exsts).

7. The AEP and sowrre coding. A discrete memorvless source emits a sequence of statisti-
cally independent binary digits with probabilities pil} = 0005 and @0} = 0995, The
digits are taken 100 at & tme and s binary codeword is provided for every sequence of
100 digits containing three or fewer ones.

(a] Assuming that all codewords sre the same lenpth, find the mindmuam length re-
quired to provide codewords for all sequences with three or fewer ones.

(b} Caleulate the probability of observing & source sequence for which no codeword
has been sssiomed.

(e} Use Chebyshey's inequality to bound the probability of observing s source sequence
for which no codeword has been assipned. Compare this bound with the actual
probability computed in part (B

Solution: THe AEFP and sowre coding.

(a] The number of bt binsary sequences with three or fewer ones is

11K} 1) 10 1K)
( 0 J +( 1 ) + ( a ) +( 3 ) = 1+ 100 + 4950 + 161700 = 166751 .

The required codeword length is [logg 166751 = 18, (Note that H{0.005) =
0, 50 18 15 quibe & bit larger than the 4.5 bits of entropy. )

(b} The probability that a 10-hit sequence has three or fewer ones is

3 100
Z ( T (0.005) (0995 % = 060577 4 0.30441 + 0.7572 4+ 0.01243 = (.99833
s

1a=il
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Thus the probability that the sequence that s sgenerated cannot be encoded is
1 — (833 = (L0167 .

(¢} In the csse of & random variable Sy that is the sum of v Lid. reodom verisbles
Xi. Xz .. Xe, Chebyshev's inequality stabes that

a
Pr(|S, —rp| 2 ¢) £ —.
e
where p and o2 are the mesn and varance of Xi. (Therefore np amnd na?
are the mean and varisnee of 5.} In this problem, v = 0, g = (L5, snd
a? = ((L005)(0.995). Note that Sy = 4 if and anly if [ — WHKO.005) = 3.5,
50 we should choose € = 3.5 . Then
L0005 0005 )

PriSj,m = 4) =

: =2 (LK1 .
= (B5F :

This bound 15 moch Larger than the sctusl probabality Q000167

8. Products. Let

1, 3
X=492 21
3 1
Let Xy Xo. ... bedrawniid, scoording to this distribation. Find the hmiting bebsoor

of the product
(X1 Xa o Kl

Solution: Prodecis. Let

P = (X1Xa... Xa)" . (3.5)

Then §
logP, = =~ log X; — Flog X, (3.6

Te fm]

with probahility 1, by the strong law of large numbers., Thus P, — 2819%8Y with prob.
1. We can easily caleculate Elog X = -JE log 1 4 il o 2 4 i log 3 = ii log 6, and therefore
P, — 23'8¢ = 1.565.

9. AEP Let X1, Xz, ... be independent identicall v distributed random variables drasn ac-

carding to the probability mass fhunetion plx). > € {1.2,.. .. ril.l} . This plx1,xa,... ,Tn) =

[Tis; plzil. We know that — :t logpl X, Xa..... X, — HiX) in probability. Let

iz, 73,....7) = [[ja; 9(x;), where g is another probability mass function an {1,2, ...,

(a] Evaluste lim— I{ logg (X, Xa..... Xa), where Xy, Xo, ... areiid ~ plx).

(b} Mow evaluste the limit of the log likeli hood ratio ﬁ Lo L[il_"-[—i::i when Xi. Xa.. ..

are 1id. ~ plx). Thus the odds voring g are exponentially small when pois
trume.
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Solution: (AEF).

(&) Sinecethe X, Xz, ... X, are Lid., so sre gl X ). gl X2), ... .gl X, ). and hence we
can spply the strong laar of Larpe uumhl:m to abtain

l'utl— . hm‘q[.’i’l X,y kn)l = lhtl—:Zl:}gql:X,] (3.7
—  —EllogglX} w.p. 1 (3.8)
= =) plz) lm: q'i 7 (5.9]
= Efﬂl]hlﬁ ZP[—I] log i) (3. 100)
- Diplla) +mp1. (3.11)

(b} Assin, by the strong lew of laese numbers,

, 1 o T . 1 qlX;)
limy — = It = lim-— E L 312
i111 a1y i1 = a1y ) ]

T S p(X.)
gl X
= —FEllog=——)wp. 1 (3.13)
p X)
- —Zpl:.l]l:}gql: ]] (3.14)
- Zp( ]l:g"Li (3.15)
= Dipllq). (3.16)
. Random box gize. An w-dimensional n*l.'t.uu_n;ulur box with sides Xy, Xa, Xa..... X, i5
to be constructed. The volume s V), = 1 X . The edge length [ of & n-cube with
the same volume as the randon box is .I' — 1'|: " Let Xi,Xa.... be iid. uniform

ramlom varisbles over the unit interval [(1,1]. Find limg—ec '|,e'|:,"u: amnd compare to
(E‘L*',t]ﬁ . Clearly the expected edpe lenpeth does not capture the ides of the ol oo
of the box., The peometric mesn, rather than the srithmetic mean, charscterizes the
behsvior of products.

Solution: Random ber size. The wlume ¥V, = [[; X; is a random variable, since
the X are random wvariables uniformly distributed on [(,1]. V), tendsto s n — .
Hivorever

L 1 b 1
log, V" = = logr, 17, = ;Z log, X; — Elog (X)) ae.

by the Strong Lawr of Lar ge Numbers, since X and log, (X} sreiid. and £(log (X)) <
oo, Now

1
E(log,(X,)) _}f log, (%) de = =1

Henee, sinee £ 15 & continuous function,

1 ) .
e _.It._. — ‘_Illu:u.._-_,._ % lag, Ve i
TE— o

B
IS et



5

www.elm24.com

The Asymptotic Equipartition Property

11.

Thus the “effective” edge length of this solid is ¢!, Note that since the X,'s are
independent, K15, ) =[] EiX;) = [.—JE]". Also i i5 the srithmetic mesn of the random
variable, and % is the peometric mesn.

Proof af Theoremn 3.7.1. This problem shears that the size of the smallest *probable”
set is about 27, Let X, Xa...., X, be idd. ~ p(z). Let B[ ¢ X" such that

Pr(B™) > 1-§. Fix e < §.

(a) Given any two sets A, B such that Pr(d) = 1 —¢; amd Pr(B) = 1 — 3, show
that Pr{AM B} >1—¢; — & . Henee Pr{A™ nB™ 2 1-¢-4
(b} Justify the steps in the chain of inequalities

1-e-§ < Pe(al”n B 1210
= 3 plz") (4.18)
e
< Z g=n[H =) (319
A ™
_ |A£|tfl . BA[:“:llgl [} =<} [3.20]
|B,E'”|? n(H=e) (3.21)

(¢} Complete the proof of the theorem.

Solution: Proof of Theorem 3.1,

(a) Let A% denote the complement of A. Then

AlAURT) < AA")+ PO (3.22)
Since P(A) > 1 — ey, P(A%) < €. Similarly, P{#°) < e3. Henree
P(ANB) = 1- PA U F) (3.23)
Z 1- P(A%) - P(B7) (3.24]
= 1—& —e€q. (3.25)

(b} To complete the proaof, we have the following chain of inequalities

1-e—§ = PrAl™nB"™) (3.26)
2 " (3.27)
A et
fe)
< Z a e[ Ff =) (3.28)
Al gt
D |4 n Bijg-nli-) (3.29)

(e}
< |Bi™g-n#=a, (5.30)
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where (a) follows from the previous part, (b follows by definition of probability of
aset, (o] follows from the fact that the probability of elements of the typical set are

bounded by 2-"H- (d} from the definition of |.-1£'t:' i ﬂg't” &5 the cardinality
of the set A.E'tjl"l B‘E“j: awd (e} om the fact that .-'-15“:' i ﬂ‘é'” - ﬂ‘g"].

12. Monslonic convergence of the emmrical digfribuiion. Let gy, denote the empiricsl probs-

ability mass function corresponding to X, Xz, .. Xe 1dd, ~ plz)l.z € X . Specifi-
cally,

pulz) = =3 I(Xi=2)
1=1

i5 the proportion of tinws that X, = x in the first 7 samples, where T s the indicstor
function.

(a} Show for X binsry that

EDpa, || p) = ED(py || p).

Thus the expected relative entropy “distance” om the empirical distribution to
the tre distribution decresses with sample size.
Hinf: Write fn,, = 3P, + 30, and use the convexity of D

(b} Show for an arbitrary discrete X' that

Eﬂ':_fll'lt || pl= E.E'I:__r']-“ 1 " Pl

Hini: Write p, s the sversge of n empirical msss functions with each of the
samples deleted in turn.

Solution: Monslonic convergence of the empinoal digiribubion.

(a] Mote that,

2n

T ,}luzj I(X, = z)

11 it 11 it
= ﬂgnx,=ﬂ+ﬂl_|§mnx,=z]

1, 1,
= Epltl:l] + EF‘L(I]-
Using convexity of D(p||g) we have that,

Dﬂﬁ'&lt”ﬂ']

D(pn + 3ullzp+ 39)
< 3 D(llp) + 3 D(EIp)
Taking expectations and using the fact the X, s are identically distributed we get,
ED(fay||p) = ED(fy||p).
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(b} The trick to this part is similar to part a) amnd involves rewriting @, in terms of

Pa—1. We see that,

O - I{Xn = )

P.t—agfia’f.—I]+T
af in general,

sl ; I X; = x)

Pu—aznxu—l']'FT:

is)

where 7 ranges from 1 to .

Summing over 7 we get,

"fi'lt T e ;] Zfﬂlt i + .i'i'lt:

a=1
o,
] it
fn = _Zﬁ"llt 1
[l juu1
where,

Yo = %an, s
j=1 Y

Again uwsing the convexdity of D(pl|g) and the fact that the Dl:fr:t ) are identi-
cally distributed for all 7 and hence have the sane expected walue, we obtain the
final result.

13. Calewlafion af fymeal sef To clarify the notion of a typical set .-'-L['t:' and the smallest

[}

set of high probability B | we will caleulate the set for a simple example. Consider a
sequendce of 1..d. binary random veriables, Xy Xq. .. .. X, . where the probabality that

X, =1 1506 (and therefore the probability that X, =0 is 0.4).

(a) Caleulate A(X).

(b} With n = 25 and € = (1.1, which sequences fall in the typical set .-'-1{[“:I T What

i5 the probability of the typical set? How maony elemsents are there in the typioal
setT (This involves computation of & table of probabilities for sequences with &
s, 0= k < 25, and finding those sequences that are in the typical set. )
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] (0 [ (P —pr* | —2logpl")
0 1 (L0000 1321928
1 25 (. 000000 1.2985.30
2 300 (L0000 1275131

3| 2300 0000001 | 1251733
4 12650 (000007 | 1.228334
b 43130 (0.00005: 12040936
6 | 177100 0.000227 1181537
7| 480700 0.001205 1158139
8 | 1081575 0003121 | L134740)
0 | 2042075 (0.0135169 | 1111342

10 | 3268760 0.02122 | LOST7043
11 | 4457404 0.0778M LOG4545
12 | 5200304 (0.07R06T LO41146
13 | 52008040 (1.267718 LO17748
14 | 44574040 0. 146507 (.994349
15 | 32687640 {1.57h383 (1.970051
16 | A42975 {1.151086 0.947552
17 | 1181575 (1546048 (1.9241.5
18 | 480704 (L0T0EG (.9007 55
19 | 177104 (.0706 38 (L.877357
20 [ 53130 (.0198M (1.553058
21 [ 12650 (0.0076.33 (1830560
22 2300 000937 (1.507161
23 A0 [RGEHE (L.783763
24 25 (0L000047 (1. 760364
25 1 LRILEI VTS | 0736066

(¢} How many elements are there in the amallest set that has probability (.97

(d} How many elements are there in the intersection of the sets in part (b} and ()7
What 15 the probability of this intersection”

Solution:

(a) H(X) = —0.6log0.6—0.4log0.4 = 097005 bits.

(b} By definition, AE'” for £ = (1.1 15 the set of sequences such that _I_Jt log plx™) lies

in the range (H(X)—e H(X)4+€),ie, in the range ((L870495, LOT005). Examining
the lest column of the table, it 5 easy to see that the typical set s the set of all
sequences with &, the number of ones lying between 11 and 19,
The probability of the typical set can be caleulsted from cummlative probability
column, The probability that the number of s lies between 11 amd 19 15 equal to
F(19) — F(10) = 0970638 — 003392 = 0.936246. Note that this is greater than
1—¢,ile., the n is large enough for the probability of the typical set to be srester
than 1 —e.
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(d)

The mumber of elemsents in the typical set can be found wsing the third colummn.

14 14 1
Al = 3 (:) =y (r) -y (:) = 33486026 — T110516 = 26366510,

k=11 k=0 Ko=)
(3.31)

Naote that the upper snd lower bounds for the size of the .-'-L[":' can be caleulated
s -EII:[”I-::I — -3'3-’:[I:I.'-_'ITI:r-.'I-’||I:I.J:| as -E'l'l!i.TT = 1.147365 » ]ﬂel: amd “ _'E]-EII:[” €l —
0.9 x 209TEE-01) _ ) 5 J2LBT5 _ 3942908, Both bounds are very loosel

To find the smallest set B"[.;“:' of probability (.9, we can imegine thet we are filling

a bag with pieces such that we want to reach s certain weight with the minmonn
number of pieces. To mindmize the number of pieces that we use, we should use
the larpest possible pieces. In this case, it corresponds to using the sequences with
the highest probability,

Thus we keep putting the high probability sequences into this set until we resch
& total probability of 0.9, Looking at the fourth column of the table, it 15 clear
that the probability of & sequence incresses monotonically with &, Thus the set

consists of seqeunees of & = 25,24, ..., until we have s total probability 0.9,

Using the cumulative probsbility column, it follws thet the set BIE'E:' cotsist

of sequences with & > 13 and some sequences with & = 12, The sequences with
k> 13 provide a total probebility of 1—=0.153768 = (. 846232 to the set ﬂ'r[slt:' . The
remaining probability of 0.9 — 0846232 = (L.053V68 should come rom sequences
with & = 12, The number of such sequences needed to Al this probability 15 at
lesst 0053768/ p(z™) = 0053768/ 1460813 <10~ = 3680600.1. which we round up
to 3680691, Thus the smallest set with probability 0.9 hes 33554432 — 167772164
SGR0601 = AWHTT sequences. Note that the set B‘d[;'t:' i5 not unigquely defined
- it could include any 3680691 sequences with & = 12, However, the size of the
smallest set 15 s well defined muomlber.

The intersection of the sets .-'-L[":' anwd B.-E“:l in parts (b} snd (¢} omsists of all

sorquences with & betwesn 13 and 19, snd 3680601 sequeneces with & = 12, The
probability of this intersection = (LOV0G38 — (LI53VES +(0L053VER = (LEVOGES, and
the sime of this intersection = 33486026 — 16777216 4 36806791 = A580501 .
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Chapter 4

Entropy Rates of a Stochastic
Process

1. Doubly sfochastic mafrices. An n x n matrix P = [P,J| i5 said to be dowbly sfochasbic
if Fy; = 0 and EJ Fy=1foraliand 3, F;=11foral j. An » x n matrix P
i5 sald to be a permwfabion matrix if it s doubly stochastic and there s precisely one
Fij = 1 in each row and each colmmn.

It can be shoan that every doubly stochastic matrix can be aritben ss the oonvex
combinstion of permutation metrices.

(a} Let &' = (ai,a2,..., an), @i 20, 3 ai = 1, be a probahbility vectar. Let b = aP,
where P ois doubly stochsstic. Show that bois & probability vector and that

T TR e ) = ay.83,. ... iy ). Thus stodhsstic mixing incresses ent ropy.

Hiby, by byl = Hiay. az o iEE bl st b vy

(b} Show that s stationsey distribution @ for & doubly stochsstic matrix P ois the
i form distribution.

(e} Conversely, prove that if the uniform distribution is s stationsey disteiboution for
a Markov transition matrix P, then P is doubly stochestic,

Solution: Doubly Siochasiic Mafrices.

(a)
Hib} - Hia] = - Efi'__l log b; + Eﬁ, log a, (4.1)
| i

= Zzﬂ,f’;_, l::,‘_',l:ZfaLﬂ_,] + Eﬂ,ln,u,ﬁ, 4.2)

1o & 1
i

— ay P Lo (4.3]
2. 2Bl o

= Z-{.! Pl log E""ﬂl (4.4)

ol — iy E.,_.Ii',.l L

til
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= 1log— (4.5)
= 0, (4.6)

where the inequality follvars from the log sum inequality.

(b} If the matrix s doubly stochsstic, the substituting p, = ﬁ ., we can easily check
that it satisfies p = pP.

(e} If the uniform is & stationary distribution, then
: > P : b i1 (4.7)
_——= gy = | = = ] 4.

ar 35 Fji = 1 ar that the matrix is doubly stochastie.

2. Time's arrow. Let X} be astationary stochastic process. Prove that

H(Xg|X -1, X -a,...,X-n) = H(X0|X1,X2,...,Xa).

In other words, the present hss s conditional entropy siven the past equal to the
coditional entropy mven the future.

This is true even though it s quite easy to concoct stationary random processes for
which the flow into the future looks quite different from the flow into the past. That is
bo say, one can determdne the divection of time by looking at s sample function of the
provess. Nonethdess, given the present state, the conditional unecertainty of the next
svimbol in the future 15 equal to the conditional uneertainty of the previous symbol in
the past.

Solution: Tome s armow. By the chain rule for entropy,

HiXglXig, oo, Xon) = Bl Aoy Koy =H{ X g0 X2} (48)

= H(Xg.X1.Xa,.... Xn)— HX1, Xa..... Xy} (4.9)

= H(Xg|lX1.Xa2..... Xl (4.100)

where (4.9) follvars from stationarity.

3. Shuffles mereage enfropy. Argue that for any distribution on shuffles T and sy dis-
tribution on card positions X that

H(TX) > H(TX|T) (4.11)
= H(T™'TX|T) (4.12)
= H{X|T) (4.13)
= H(X), (4.14)

if X and T are independent.
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Solution: Shuffles merease eniropy.

H(TX) = H(TX|T) (4.15)
= H{T™TX|T) (4.16)
= H(X|T) (4.17)
= H(X). (4.18)

The inequality follows from the fact thet conditioning reduces entropy snd the fArst
equality follows from the fact that given T, we can reverse the shuffle.

4. Becond low of thermodynamics, Let X, X5, X5 ... be s stationary Arst-orvder Barkov

chain, In Section 4.4, it was shown that H(Xy | X1) 2 H(Xe-1 [ X)) for m=2.3... .
Thus conditionsl uneertainty about the future grows with time, This s troe althoueh
the uneconditionsl uneertainty AT XL} remains constant, However, show by example
that H(X,|X| = x] does not necessarily grow with n for every = .

Solution: Second law of fhermodymamics.

HiX. X = WX, X, X)) (Conditioning reduces entropy) (<4.11)
= H{X,|X:) (by Markovity) (4.20)
= H(X,_1|X1) (by stationarity) (4.21)

Alternstively, by sn application of the dats processing inequality to the Markov chain
Xy — Xy — Xy, we have

T Konin) 20 (i X ). (4.22)
Expanding the mutual informations in terms of entropies, we have
H(X, 1) — H(X, 1| X1) = HX,) - H(X,|X1) [4.23)
By stationarity, H(X, ;) = H(X,) and henee we have

HiXp1|X1) < H(X,[X ) (4.24)

5. Enkropy of a mndom free. Consider the following method of generating & random tree

with w nodes. First expand the root node:

AN\
2N

Then expand one of the too terminal nodes st random:

N
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At time &, chomse one of the & — 1 terminal nodes according to s uniform distribution
s expand it Contioue until n terminal nodes here been generated . Thus s sequence
lesding to & five node tree might look like this:

AN 7 N
>\ : /X\ />\>\
AN

Eurprisingly, the following method of senerating random trees vields the same probatal -
ity distribution on trees with n terminal nodes. First choose an integer N uniformly

distributed on {1,2,...,7n —1}. We then have the picture.
My n — W
Then choose an integer N3 uniformly distributed over {1,2,..., N} —1}, and indepen-
dently choose another integer Ny uniformly over {1,2,... (n - N} —1}. The picture
15 [T
-
" -

N Ny — N Ny mn— N - Ny

Continue the process until no further subdivision can be made. [(The equivalence of
these two tree peneration schemes follows, for example, from Polva's urn model. )

Mow let T, denote s random w-node tree penersted as deseribed. The probability
distribution on such tress seems difficult to describe, but we can find the entropy of
this distribution in recursive form.

First some examples. For v = 2, we have only one tree. Thus Hi(T; ) = 0. For n = 3,
we have two equally probable trees:

N A
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Thus Hi(T;) = log2., For w = 4, we hawe five possible trees, with probabilities 173,
1/6, 1/6, 1/6, 1/6.

Mow for the recurrence relation. Let Ny(T, ) denote the munber of terminsl nodes of
T, in the right half of the tree. Justify each of the steps in the following:

H(T,) € HN,T,) (4.25)
D H(N) + H(Tu|N) (4.26)
S log(n — 1)+ H(T,|N,) (4.27)
TR |

D log(n— 1)+ — ¥ [H(Te) + H(T, ] (4.28)
k=1

ie) g n -1

£ log(n—1)+ —= 3 H(T}). (4.20)
k=]
1 —1

= log(n—1)+ 1 Y He. (4.30)
k=1

i(f} Use this to show that

(r—=1H,=nH,_ 1+ (r—-1}log(r—-1) - (n - 2}log(r — 2}, (4.31)
ot
i H,.
i S Y (4.32)
e n—1

for appropriastely defined o, . Since ¥ ¢, = ¢ < oo, you have proved that ﬁﬂ’l:T,t]
covverges to s constant. Thus the expected number of bits necessary to deseribe the
radom tree Ty prows linearly with .

Solution: Enfrapy of a mndom free.

() H(Tw, Vi) = H(Te)+ H(N[Tw) = H(Tw) + 0 by the chain rule for entropies snd
since N is & hmction of T, .

(b} H(Ty, Ny}l =H(N )+ HT,|N ) by the chain rule for entropies.

(e} H(N;)} =login — 1) since ¥, is uniform on {1,2,....n - 1}.
(d}
it —1
H(Tw|M) = Z PNy = k)H [Ty | N1 = k) [4.3.3)
=1
1 e— 1
= —— 3 H(Tu|N1 =k (4.34)
n—1 s

by the definition of conditional entropy. Since conditional on Ny | the left subtree
and the right subtree are chosen independently, f(Ta| N1 = k) = H(Tp, T, | V1 =
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k) = HITy) + H(T, 1), 50

it—1

T . 1 y
H(TNY) = = 3 (T + H(To)) (4.35)
(e} By asimple change of variables,
=1 =1
Z H(Th—r)= Z H{Ty). [ 4.:36)
frm] fem ]
(f) Henceif we let H, = H(T,).
it —1
r—1)H, = (rn-1}log(r- 1)+ EI i (4.37)
b= 1
(r=2}H,1 = [n—2)]log(r-2) +‘EZ-- iy (4.38)
Jpem ]

(4.30)

Eubtracting the second equation from the first, we get

(r=1)H; - (n-2)H, =(n-1)}login—-1)—(rn—2)login—2)+ 2H, _; (440)

ar
H, _ Hy,  login—1) i (e — 2} logir — 2) o
" n=1 T ! n(n—1) b
sy Hpy +i (4.42)
n—1
where
Oy = log(re — 1) B (rr — 2} log(r — 2) (4.43)
n rfn — 1)
o log(re — 1}  logire—2) 2log(n— 2) T
= n  (m=1) n(r —1) i)

Eubstituting the equation for i, in the equation for I, and proceeding recursively,
we abtain & telescoping smm

H, s FE
— = e — 4,45
! E §r 2 ( )

i 2logi; — 2)

e % log(n — 1). (4.46)

j=3
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Binee limg, - %h}gl:ra -1} =0

Hy 4= 2 5
Itl.ll!:;_ e = E .i'|:.i' 1) log 7 — (4.47)
= 7 logl(j — 1) (4.48)
E g = 1]
Sl
= E = log 7 (.41
j=21

For sufficiently large 7. logj < /7 and hence the sum in (4.49) is dominated by the
HLLIL EJ_;I % which comverges.  Henee the above sum converges. In fact, computer
evaluation shoews that

2

Hay 2
lim — = l: ] —2) = 1.736 hits. (4.5100)
n milU-

Thus the mumber of bits required to deseribe & random w-node tree grows linescly with

2.
6. Menofonicity of enfropy per elemeni. For a stationsry stochastic process X, Xa, ... X, .
shivar that
(a]
IIILXJ X:..._.. u]  HiX,. X:....:X,t..j]. (4.51)
! n—1
(b
HiX1, Xa, ..., X
(X1, "'  Xa) = H( Xy Xp-1,.... X)) (4.52)
Solution: Wonefonicify af enfropy per elemendt.
(a} By the chain rule for entropy.
H(X1, X, o Xa) _ Tl H(X|XY) 4s3)
Tt Tt
H(X,| X! n L H (G| X1
- (X Y+ 3 (X ) (4_54]
T
i H (X | X J]+ff|:_.:'{] X:-....:X“..j]- (4.55)
!

From stationsrity it folloas that for all 1 <@ < n,

HXa | X™ Y < HG|IXY,
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which further implies, by sveraging both sides, that,

Lo HXi|x)

HI:X“|X"'J] (.56
e —1
o j.':.l:":'!i:.]:":'!;:.'2:"':":'!i:.lt ]] |:.-_1=]?]
= n—1 ' &
Combining (4.55) and (4.57) yields
HiX|. X5 ..., X 1[H(X X ... X
|: 1ai, : It] £ = |: Loty LT J] +fffXj:X-g:...:X|t 1}].53]
e ] e — 1
. II':X]XE :Xlt 'J] |:..-1 E.I".'-J]
B n—1 ' h
(b} By stationsarity we have for all 1 <4 < n,
(X, | X"1) < H(X,|X1),
which implies that,
oy B X, | Xt
.FI':X&'XIE ]] — 1= ] l:riltl ] |:.-'11]‘]]
. Dl KXY -
!
i

T. Enkropy mafes of Markov chams.
(a] Find the entropy rate of the teo-state Markov chain with transition metrix

1 — mu il
o 1—p

P=

(b} What walues of g, pig meodmdze the rate of part ()7

i(r)} Find the entropy rate of the two-state Markov chain with transition matrix

1-p p
£5S [ 1 1]] '
(d} Find the maximum value of the entropy rate of the Markov chain of part (c]. We
expect that the meocmizing value of p should be less than 172, sinee the O state
permits more information to be generabed than the 1 state.

(e) Let Nt} be the number of allowable state sequences of length ¢ for the Markov
chain of part (). Find N(t} and caleulate

e | .
Hy = Jll};l; y log, V().

Hinf: Find a linear recurrence that expresses N(t] in terms of Nt — 1) and

Nit =2}, Why 15 Hy sn upper bound on the entropy rate of the Markov chain?
Compare Ay with the mecdmum entropy found in part (d).
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Solution: Enfropy mifes of Markov chams.

(a} The stationary distribution is easily caleulsted. (See EIT pp. 62-63.)

Fin i

— =
a1+

jra = =—
a1+ o

Therefore the entropy rate 15

P (1) + por H (pog)

HiX2| X1 = poH lpan ) + =
el by (e (p1o) Pal + P

(b} The entropy rate 15 at most 1 bit because the process has anly two states. This

rate can be schieved if (and only if )} pogg = pig = 12, in which csse the process is
actually iid. with Pr(X; =0} =Pr(X;=1)=1/2.

(] As aspecisl case of the general too-state Markov chain, the entropy rate is

(el

()

7
H(X3|X1) = poH (p) + 1 H(1) = 1‘1‘_':::"}: :

By straightforward caleulos, we find that the maxionom wlue of #(X) of part (c)
occurs for p= (3 — 5)/2 = 0.382. The maximum value is

¥
2

1

Hipl = H(1-p) = H( ) = (LG4 bits

Naote that [\.-"FJ —=1}/2 = 0,618 is (the reciprocal of) the Golden Ratio.

The Markow chain of part (¢} forbids consecutive ones. Consider sy allersble
soquence of symbaols of length ¢, If the frst symbaol s 1, then the next symbaol
mst be {); the remaining Nt — 2} symbols can form any allowable sequence. If
the first symbaol is O, then the remaining N (t — 1} symbols can be any allowrable
sequence. S0 the number of allowable sequences of length ¢ satisfies the recurrence

N =Nt-1)+N(t-2) N1=2 N@2)=3

(The initial conditions are obtained by observing that for ¢ = 2 only the sequence
11 is5 not allewed. We could also choose W0} = 1 s an initial condition, sinee
there is exactly one allmrable sequence of leneth 0, namely, the empty sequence., |
The sequence N(t) grows exponentially, that is, Nit} = cA', where A is the
i maenitude solution of the characteristic equation
1=z"14 272,

Solving the characteristic equation yields A = (14 1..-'"',"1],-"‘3: the Golden Ratio, (The
sequence | N(t)} is the sequence of Fibonacei numbers.) Therefore

1
Hy = lim = log N(t) = log(1 + VB2 = (.69 bits.

Sinee there are only N{t] possible outcomses for Xy, ... X, an upper bound on

H(X1...., Xy} i5 log N(t), and so the entropy rate of the Markov chain of part (c)

i5 ab must Ao, In fact, we saw in pact (d) that this upper bound can be schieved.
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8. Mammum enfropy process. A discrete memoryless source has alphabet {1,2} where

the symbol 1 has durstion 1 aod the symbaol 2 hes durstion 2. The probabilities of 1
and 2 are py oand po ., respectively. Find the walue of py that mecimizes the source
entropy per unit time (X} ELy - What is the meodmom value A7

Solution: Wanmum enfropy process. The entropy per symbaol of the source is
Hip) = —pilogpr — (1 —p1}log(l — m)
s the averspe symbol duration (or tinme per symbol) is
T'pl=1'p+2- m=m+2(l-pm)=2-p=14+p.
Therefore the source entropy per unit time is

Hip) M . logpy — (1 —pyllog(l —py)
Tipy) 2-py i

Sinee fi0) = fi1) = 0, the maximum salue of fip) must oceur for some point
such that 0 < py = 1 and 3F 3 =10,

@ Hip) T(@H/3p,) - H(IT/dpy)
ap Tip) T

fim) =

After some caleulus, we find that the numerator of the abowe expression | sssuming
natural logarithms) is

TiadH (dp1) - HAT (dm ) =In(l —p1}) — 2Inp .
which is mero when 1 —p) = p']) = pa, that is, p1 = -J_sl:x-"'r':— 1} = 1.61803, the reciprocal
of the golden ratio, Jz (vH+ 1} = L61803. The corresponding entropy per unit time is
Hipi) —pilogps — pilogp]  —(14pi)logp

T(p) 2 -p1 T 1+p
Mote that this result is the samwe ss the meacimum entropy rate for the Markov chain
in problem #240d ) of homework #84. This is because a source in which every 1 must be
followred by & 01 is eruivalent to s source in which the symbaol 1 has duration 2 snd the
svinbol () has durstion 1.

= —logp; = L69424 bits.

. Tfial comdifions. Showr, for s Mackov chain, that

H{Xq| Xy} 2 H{Xg| Xy ).

Thus initial conditions Xy become more difficult to recover as the future X, unfolds.

Solution: Mmifial condifions. For s Merkov chain, by the dats processing theorem, we
have
FiXg Xn-1) = 1 Xg; Xn) [ 4.63)

Therefore

HiXo) — H(Xa|Xn-1) = H(Xo) — H(Xo|Xn) (.64

ar f(Xo| Xn) incresses with n .
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). Painvise independence. Let X, Xo.. . . X o1 beilid random variables taking values

in {01}, with Pr{X; = 1} = 3 . Let X, = 1 if T X is odd and X, = 0

otherwise, Let nw > 3.

(b} Find H{X; X}, far i & 3.
(c) Find H(X1,X2...., Xu). Is this equal to nH(X)7

Solution: [ Paimvize Independence) X X5, ..., X, are Lid. Bernoullifl /2) reondomn
variables., We will first prove that for sy & < n — 1, the probability that EF_J X, is
odd 15 172, We will prove this by induction. Clesrly this is troe for & = 1. Assune

that it is true for £ —1. Let 5 = E{‘_J X,. Then

P8y odd) = P& odd)P( Xy =0) 4+ P8t even) P(Xp =1} (4.65)
11 11

==k (4.66)
1 ;
= (4.67)

Henee for all & < n» — 1, the probability that 5 is odd is equal to the probability that
it 15 even. Hence,

PlX,=1}=P(X, =0) = (4.68)

boli | bt

(a) It is clear that when ¢ and 7 are both less than v, X; and X; are independent.
The only possible problem is when 7 = n. Taking ¢ = 1 without loss of penerality,

i1

PX;=1,X,=1) = P{X; =17 X; even) {4.69)
it— 1

= PX;= ]]PI:Z X even) (4.70)
11 )

= 53 (4.71)

= P(X1=1)PXn=1) (4.72)

and similarly for obher possible values of the pair X X, . Henee X; amd X, are
il ependent.

(b} Since X; aml X; are independent and uniformly distributed o {0, 1}

H{X;, X;)=H(X;}+ H(X;) =141 =2 hits. i4.73)
(¢} By the chain rule and the independence of X, X3, ... X, . we have
H(X1,Xa,.... Xn) = H(X1.X2... .. Xn-1)+ H( Xn|Xn-1..... X1)(474)
= “ZJ H{X}+0 (4.75)
i=1

= n-1, (4.76)
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since X, 15 & function of the previous X, 's. The total entropy is not e, which is
what would be obtained if the X s were all independent. This example illustrates
that pairwise independence does not imply complete 1ndepend ence.

11. Siabonary processes. Let .., X _ . Xy, Xy, ... be astationary [ not necessarily Markov)
stochastic process. Which of the following statements are true? Prove or provide s
cornber excam ple.

(a) H(Xn|Xo) = H(X_x|Xa).

(b} H{Xy| X} = H(X; | Xa) .

(e} H(X X Xa, ... X1, Xig1) 18 nonincreasing in n.

(d) H(XuX..... X1 Xptle. .. o Ragl 18 non-ieressing in .

Solution: Sfafionay processes.

(a) HIX.[Xg) = H(X_.[Xq).

This stabement 15 true, sinee

H({X.|X) = H(Xy Xg) - H{Xg) (4.77)
H(X _|Xo) = H(X_n Xg)— H[Xg) (4.78)

and H{ Xy, Xal = H(X —x. Xa) by stationarity.
(b) H{Xu|Xa) = HiXy1|Xa).
This statement is not true in general, though it is true for first order Markow chains.
A simple counterexample is & periodic prooess with period w . Let X, X, Xa. . 0, X2

be Lid, uniformly distributed binary random varisbles and et X = X, for
k > n. In this case, H(X,|Xg) = 0 and H({X,_1|Xg) = 1. contradicting the
statemment H(Xe|Xa) = HiXn-1|Xa).

(e} H(Xa| X" Xuti1) is non-increasing in n.
This statement is true, since by stationarity F{X | X[ gt 1 r1) = H( Xp41|XT, Xnga) 2
HIX 1| X Xga) where the inequality follows from the fact that conditioning
reduces entropy.

12. The enbropy mie of a dog looking for a bone. A doz walks on the integers, possibly
reversing direction at each step with probability p = 1. Let Xg = 0. The first step is
equally likely to be positive or negative. A typical walk might look like this:

(R i s s e sl v o bk

(a) Find H(X,. Xa.....X,).

(b} Find the entropy rate of this browsing dog,
(] What is the expected munber of steps the dor takes before reversing direction?

Solution: The enfropy mfe of a dog looking for a hone.
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(a} By the chain rule,

H( Xy, Xy,.... Xa) = 3 HX XY
1Ll
H(Xo) + H (X | Xg) + 3 H(Xi| X1, Xi-a),

1]

sinee, for ¢ > 1, the next position depends only oo the previous two (Le., the
dop's walk is 2nd order Markow, if the dop’s position is the state). Sinee X = (0
determdmistically, HTX;] = 0 and sinee the Arst step 15 equally likely to be positive
ar negative, (X Xg) = 1. Furthermore for @ = 1,

H(X| X1, Xia) = H(L,.9)

Therefore.

H(Xqg. X1,.... Xpl=14(n-1}H(.1,.9).

(b} From a).

H(Xq. X1,...Xs) _ 14 (n—1)H(.1,.9)

T | e +1
= H[.1,.9)

(¢} The dog must take at least one step to establish the direction of travel from which
it ultimsately reverses. Letting 5 be the number of steps taken between reversals,
we have

=

E(S) = Y s(9)"'(1)

e ]

= M

Etarting at time {0, the expected number of steps to the first reversal 15 11

13. The past has ifile fo say ahoud the fuivre. For a stationary stochastic process X, Xz, .. ..
show that i
Itl-'-'-!:_:_ _.3””-':"{] Xa, ooy X Xt Xngas - . Xan ) = 0 (4.749)

Thus the dependence between sd peent w-blodes of & stationary process does not grow
linearly with .

Solution:

I(Xy, Xa,..., X X1, Xz, oo Xan)

— .F.rl:.n:'{sz ..... X|t]+ff|:X|t|j:X|t|'2 ..... X‘Eu]—ffiX].X'E ..... X|t:X|t|j:X|t|E

= 3AH(X;.Xa,.... Xe) - H(X1,Xa2...., KXo Xnp1, Xnpas .o Xag)

sinee X, Xz, ..., Xa)l= H( Xyt Xngz, .00 Nl by stationarity.

(.80}
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Thus
1
Lt ‘}_j-':XJ X_:' - Xu; Xu +1. X|t|'2: P X'_:'“:]
Tt A
1 1
= u“Etf!; E?ffia"fj: Xa.. ... Xn) - u!'i'EF::.-; E”i Xi.Xa. ... . Xn. Xnti, Xntz, ... LS
1 1
- Itli.l:!:':_ ;II(X] x-g: st Xlt] - Itli:l:-'s'.:_ EII(X] X-g: oy ..-.':u. X|t| 1, Xltl'ﬁ: oy XH:H?]
Moo Ly, %Hl: Xy Xa. .. Xy = limy, o .ﬁffl:,"‘f]: XKoo, Ko X1 Xnpas ... Xag)
sinee both converge to the entropy ate of the process, and therefore
o
|tlu~'!::.-; E“:xj Xa, ..., Xnp; Xltl 1, Xn Fdae e Xop) =100 (4.83)
14, Funclionz of a sfochashic process.
(a) Consider a stationary stochastic process X, Xa, ... X . aod let ¥, 75, ..., e
defined by
Yi={X;), .i=12 ... (4.84)
for some fnection ¢, Prowve that
HiY) =< H(X) (4.85)
(b} What is the relationship between the entropy rates H(Z) and (A if
i = Xi, Xiy1), i=112,... i4.86)
for smme function ¥,
Solution: The key point is that functions of & random variable have lower entropy.
Einee (Y1, ¥z, ... ¥s) 5 8 hmction of (X5, Xz, ... Xs) (each ¥ is & finction of the
correspoinding X | we have (from Problem 2 4]
H(¥Y, . F,... . Y £ H{X), Xa.... , Xs) (4.87)
Dividing by ., and taking the limit a5 v — 20, we have
H(¥;,15,. .., ¥, Hi{X) ., Xq,..., X
- |: 1, T3, 3 u:] < - |: 1521, 3 n:] I:*I.HH]
Tk =00 T2 fe—ak e
ot
HY) = HIX) (4.89)
15. Fniropy rafe. Let {Xi} be a discrete stationary stochsstic process with entropy rate

M), Show

1
—H(Xn,.... X1 | Xo,. X1, Xoi) = H(X), (4.90)

for k=1,2.... .
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LV

Figure 4.1: Entropy rate of constrained sequence

Solution: Enfropy mfe of a sfafionary process. By the Cesdaro mesn theorem, the
running sveraere of the terms tends to the same limit as the limit of the terms. Henee

i i i
;mx,.x.g....:x,t|xu:x ) T ;me,w, 1, Kaoa, . s X181
1= ]

— I.i.ltl!fixu_lxu j.xu; :-.:"i' Ll]“lﬂ?]

= i4.93)
the entropy rate of the process.

Enfropy mie of congfrmned sequences. In mammetic recording, the mechanism of recond -
ing snd resding the bits imposes constraints on the sequences of bits that can be
recorded. For example, to ensure proper sychronization, it is often necessary to limit
the length of runs of 0's between taro 1's. Also to reduce intersymbol interference, it
may be necessary to require st lesst one ) between any two s, We will consider s
simple example of such & constraint.

Euppose that we are required to heve at lesst one 0 and st most tao 1's between any

pair of 1's in & sequences. Thus, sequences like 0000 and (A0LH are valid sequences,
bt 0110010 snd OO00L01 sre not. We wish to ealeulate the number of valid sequences
of length .

(&)} Show that the set of constrained sequences is the sane a5 the set of alleved paths
ot the following state disgram:

(b} Let Xilw) bethe number of valid paths of length w ending at state ¢ Aregne that
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(el

(e)

(£}

Xin) = [Xi(r) Xa(n) Xy(n)]' satisfies the following recursion:

Xifm) N1 1 Xir - 1)
Xoim) | =1 0 0 Xam—1) |, [4.04)
Xalr) g 1 0 Xaln = 1)

with initial conditions X(1) = [11{]".

Let
01 1
A=|10 0. {4.05)
01 i
Then we have by induction
Xinj=AXn-1)= A2X(n- 2} =... = A™1xX(1). (4.96)

Using the eigenvalue decomposition of 4 for the csse of distinet eigenvalues, we
can write 4 = U7'AL7. where A is the diaponal matrix of eigenvalues. Then
A=l = =AY Show that we can write

Xn) = AT Y1+ A Yo + A7 Y, (4.97)

where ¥i. %2 ¥s do not depend on . For large w, this sum s dominsted by
the largest term. Therefore argue that for ¢ = 1,2, 3, we have

1
—log X, (n) — lox X, (4.98)
ft

where A& is the larpest (positive] eigenvalue. Thus the number of sequences of
length e prows as A" for laree w. Caleulate M for the matrix A above, (The
cise when the eigenvalues are not distinet can be handled in & similar manner. )

We will now take s different approsch. Consider s Markov chain whose state
diseram is the one given in pact (], but with arbitrary transition probabilities,
Therefore the probability transition matrix of this Mackoy chain is

0 1 il
P=|la 0 1-a|. (4.94)
1 0 il

Shovr that the stationsey distribution of this Markov chain is

1 1 1l —ax

3=a' 3=a J=al i 4. 104}

o=

Mlaximize the entropy rate of the Markov chain over choiees of o, What is the
maxinnun entropy rate of the chain?

Compare the maxitmun entropy rate in part (e} with log A in part (c). Why are
the two answers the same?
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Solution:
Entropy mfe of consfrained sequences.

(a] The sequences are constrained to heve st least one 0 and st most tao 1's between
two 1's. Let the state of the svstem be the number of (s that has been seen sinee
the last 1. Then s sequence that ends in a1 is in state 1, & sequence that ends in
I} in is state 2, and & sequence that ends in W is in state 3. From state 1, it is
ainly possible to go to state 2, sinee there has to be at least one () before the next
1. From state 2, we can po to either state 1 o stebe 3. From state 3, we hawe to
o to state 1, sinee there cannot be more than two 0's in & row. Thus we can the
state disgran in the problem.

(b} Any walid sequence of length n that ends in a 1 must be formed by taking a valid
serquence of leneth v — 1 that ends in & 0 and sdding & 1 st the end. The mumber
of valid sequences of length vw—1 that end in &0 is equal to Xain—1)4 Xg(re—1)
and therefore,

Xin)= Xalrn =1} 4+ Xa(n =1} [4.101)
By similar arpuments, we get the obher two equations, snd we have
Xiln) g 1 1 Xiln-—1)
Xan) =11 0 0 Xaln—=1) |. (4. 10:2)
[ Xalm) J |_ﬂ 1 ﬂJ |_ Xan - 1) J

The initial conditions are obwvious, sinee both sequences of length 1 are valid and
therefore X (1) = [1 lﬂ]T.

(] The induction step is obvious. Mow using the eigenvalue decomposition of 4 =
FF=1ALT, it follows that A2 = DA AL = 1A, ete. and therefore

Xin) = A"IX(1) = U-IAm-1UX(1) (4.103)
b v | i 1
= U™ 0 At 0 |1 (4. 104)
0 0 A3t 0
1 00 1 0 0 0 1
= Alptloo o |||+ o1 o|U|1
000 0 000 0
[n 0 n'| [1'|
+AZ-r-1i 0 0 0 |U |1 (4.105)
B
= AWy A Y 4 ATy, (4. 106)

where ¥ . Y2, Y5 do not depend on . Without lss of generality, we can assumse
that X = X > A3, Thus

Xi(r) = AT'¥y A MYy 4+ AT TYy (4.107)
Xa(r}) = M W+ A Yo+ Yy (4.108)
Xa(r) = A" Ym+Ap Vo 4+ AT Ym (4. 104)
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(d]

For large ., this sum is dominated by the largest term. Thus if %y, = 0, we have
2 log Xy(n} — log Ay. (4.110)
!

To be riporous, we must also show that Y >0 for ¢ = 1,2, 3. It is not diffiealt
to prove that if one of the Yy, is positive, then the obher two terms must also be
positive, sl therefore either

1
= log X in) — log Ay, (4.111)
m

for all ¢ = 1,2, 3 or they all tend to some other value.

The peneral srpument is difficult sinee it 15 possible that the initial conditions of
the recursion do not have s component slong the eigenvector that corresponds to
the maximmm egenvalue snd thus Y, = 0 and the sbove arpoment will fail. In
our example, we can simply compute the warious quantities, and thus

01 1
A=|1 ¢ 0 | =U"Al (4.112)
0 110
where
1.3247 ] 0l
A= 0 6624 4 0.5623 il : (4.113)
i 0 —662 — 0.562%
and
—{1.5664 —(.TE03 —1. 4276

U= 0.6508 — (LO8GTT —0.3823 + 04234 —0.6536 — 04087 |, (4.114)
[ 0.6508 + 0.0867¢ —0.3823:0.4234¢ —0.6536 4 0. 4087 J

smd therefore

[ {0.0566 '|

Y, = 07221 . [4.115)
|_ (1L.5451 J
which hes all positive components. Therefore,
i log Xiin) — logh; = logl 3247 = (L45Y bits. (4.116)
.
To verify the that
1 1 1-a]7

M= [4.117)

-’ 3-ax" 3-o

i5 the stationsry distribution, we have to verify that Pp = g, But this is straight-
forward .
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(e]

(£}

The entropy rate of the Markov chain (in nats) is

H=lee,¥F;‘,luF;‘, = ﬁi—ulun—il —a)In(1 — a}), (4.118)

and differentiating with respect to o to find the maximum, we find that

% = ﬁi—ﬂ'h‘lﬂ'—f] — ix} luil—n]]+ﬁi—l —lna+1+4+In(l —a)}=1,
[4.119)
T
(3—a)llna—-Inll —all=(—alne — (1 —a)In(l —a)) (4.120)
which reduces to
dlna =21ln(l — o, (4.121)
Le.,
at=a® — 2%+ 1, [4.122)

which can be solved (numerically) to give o = 05698 and the maximum entropy
rate as 0.2812 nats = 04057 bits,

The answers in parts (o} snd (f) sre the same. Why? A riporous arpument is
quite involved, but the essential idea 15 that both answers give the asvinptotics of
the mumber of sequences of length = for the state diagram in part (a). In part (c)
we used & direct srpument to caleulate the number of sequences of length n oand
found that asymptotically, X (r)== AY.

If we extend the idess of Chapter 3 (tyvpical sequences) to the case of Markov
chains, we can see that there are approximately 2%" typical sequences of length
it for a Markov chain of entropy rate W . If we omsider all Markov chains with
stabe disgram given in part (&), the number of typical sequences should be less
than the total number of sequences of length w that satisfy the state constraints.
Thus, we see that 279 < AV or H < logA;.

To complete the arpument, we need to show that there exists an Markov transition
mutrix that schieves the upper bound . This can be done by too different methods,
Due is to derive the Markov transition matrix from the eiggenvalues, ete. of parts
(a)-(c]. Instead, we will use an argument from the method of types. In Chapter 12,
wie shimr that there are st most a polynomisl mumber of types, and that therefore,
the largest tyvpe class has the same number of sequences (bo the fArst order in
the exponent) ss the entive set. The same aroaments can be applied to Mackow
types. There are ouly & polynomisl number of Markov types and therefore of all
the Markov type classes that satishy the state constraints of part (&), at least one
of them has the same exponent ss the total momber of sequences that satisfy the
state constraint, For this Markov type, the number of sequences in the typeclsss
i5 2" and therefore for this type class, H = log A;.

This result 15 & very curtous one that connects two apparently unrelsted obpects -
the maximum eigenvalue of & state transition matrix, and the maxinmm entropy
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rate for & probability transition matrix with the same state disgram. We don't
krwwr s reference for a formal proof of this result.

17. Wafing fimes are meengifive fo digbibufions. Let X, X, Xa.... bedrawn iid, ~

).z e X = {12, ..., m} and let N be the waiting time to the next occurrence of

Xg, where N = min, [ X, = Xg}.

(a] Show that EN =m.
(b} Show that Elog¥ < H({X).

(e} (Optimal ) Prove part (a) for {X|} stationary and ergodic.
Solution: Womimg fimes are meenafive fo disfrabufions. Sinee Xy, Xy, Xa. .. . X, am
dravmn Lid, ~ pix), the waiting time for the next ocourrence of Xo hes s peometric
distribution with probability of sueeess @ za) .

(a] Given Xy =+, the expected tinwe until we see it somin is 1/p). Therefore,

EN = E[B(N|Xg)] = }_ p(Xg = i) (:ﬁ) = m. (4.123)

(b} There is a typographical error in the problem. The problem should resd K log & <
HiX).
By the same srpument, sinece given Xg = ¢, N hes a geometric distribution with

meean i) and

E(N|Xg=1) = ﬁ (4. 124)

Then using Jensen's inequality, we heve

ElogN = 3 p(Xq=i)E{log N|Xq = i) (4.125)
< Y plXo = i}log E(N|Xq = i) (4.126)
, 1
= Zﬂtt] log ey (4.127)
= H(X) (4.128)

(r] The property that £V = m is essentially a combinatorial property rather than
a statement about expectations. We prove this for stationary ergodic sourees. In
essence, we will caleulate the empirical sversge of the waiting time, and show that
this converges to . Since the process is erpodic, the empirical sverape converzes
to the expected value, and thus the expected wlue must be m .

To simplify matters, we will consider Xy, Xo. .0 X, arsnged in s civcle, so that

Xy follows Xy, Then we can get rid of the edge effects (namely that the waiting
time 15 not defined for Xy, ete) and we can define the waiting time Np st timse
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k as min{r > k: X, = Xy}. With this definition, we can write the empirical
averape of N for & particular sanple sequence

] T
N = ;E_ﬂ., (4. 129
1" Tin | i1y =1, |
g ;Z 'Z 1]. (4. 1300
jm=1 J=it1

Nerr woe can rewrite the outer sum by grouping topether sll the terms which cor-
respodd to x; =1, Thus we obtain

Tl T T T ot g =
s :rlaz Z ( Z 1) [4.131)

Jm=] fer s J=1+l

But the inner two sums correspond to summing 1 over all the n terms, snd thus
e b3 (4.132)
N=- n=1m 4132

i

Thus the empirical sverage of N over any sample sequence 15 m and thus the
expected walue of N must also be me.

18. Stafonary buf nof ergodic pocese. A bin has two bissed coins, one with probability of
hewds poand the other with probability of hesds 1 — p. One of these coins 5 chosen
ab random (Le., with probability 1/2), and is then tossed w times. Let X denote the
identity of the coin that 15 picked, snd et Y, snd Yo denote the results of the first tano
tosses.

(a) Caleulate I(Y:¥3|X).

(b} Caleulate FIX; Y, ¥2).

(¢} Let HiY) be the entropy rate of the Y process (the sequence of coin tosses).
Caleulate H(Y). (Hint: Relste this to lmg s I—JEHI:X: ¥i.¥a.....Th) )

You can check the answer by considering the behavior s p— 172,
Solution:

(a) SInee the coin tosses are indpendent conditional on the coin chosen, 1Y Y| X ) =

.

(b} The key point is thet if we did not know the coin being used, then Y; and Y5
are not independent. The joint distribution of ¥y and Y2 con be easily caleulated
frome the following table
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X 11 ¥: | Probability

e e -

1 H H e
H T | pll-p)
T H| pll-p)
T T| (1-pf
(1—pf
H T ml—p)
T H| pll-p)
i I P

I R L
-
—_
-
—_

Thus the joint distribution of (Y5, Y5) is [{gl:p! +(1 —pPP), pl1—p). p(l—p). %I:p? +
(1-—pl 21}, and we can now caleulate

I(X:¥1,¥3) = H(Y,Ya)- H(¥;,¥3|X) (4.133)
= H(Y;,Ya) - H(Yj|X) - H(Y3|X) (4.134)
= H(Y),Y;)- 2H (p) (4.135)
l a q 1 a ]
= H (EIIP' + (1 - p)"Lp(l —p).p(l - p). Eip' +(1 —n]']) —2H(p)
= H(p(1-p}))+1 - 2H(p) (4.136)

where the last step follows from using the prouping rule for entropy.

H(Y;,Va,...,Y,)

H(Y) = lim ki) (4.137)
= lh“III:X:EJ:E'E:"':EIE]_Ifl:xljj:i'z:"':jlt] (-’1138]
[
HiXV+ H(Y;. T, . ... YelX) = HIX|Y. Y5, ..., |
o HXV ALY, ValX) - XYY, Ya)
e

Sinee 0 =< H(X|Y),.Y5..... ¥Yo) < H(X) =< 1, we have l'uuﬁﬂ’l'l}'{] = I and sim-

ilarly ﬁHI:XH’J:!r’g....: w) =0, Also, H(Yi. Y2, ..., w|X) = nH(p), since the

Yi'sare tid, given X . Combining these terms, we get

raui(p] _ Hip) (4.140]

H(Y) = lim

T

19. Random walk on graph. Consider & random walk on the sraph
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2
3
1
4
5

(o) Caleulate the stabionsry distribubion.

(b} What is the entropy tate?

() Find the mutual information (X X, ) assuming the process is stationary.

Solution:

(a] The stationary distribution for & connected graph of undirected edges with equal
welght 15 given as = _,EE.'- where F; denotes the mumber of edges emansting
from node ¢ snd E is the total number of edpes in the graph. Henee, the station-
ary distribution is [J_:. % % J_:. J_:'i L, the Arst four nodes exterior nodes have

(b)

(c]

stesdy state probability of % while node 5 hes steady state probability of JT

Thus, the entropy rate of the random salk on this graph is 4% l:}g-gl:."i]+% loga(d) =
2 loga(3) + § = log 16 — H(3/16,3/16,3/16.3/16, 1/4)

The wmtusl information

-”-J'irltllixlt] — -”f-"-'trltll] — Ifl:xltljlxlt]

= H(3/16.3/16,3/16,3/16,1/4) — (logl6 — H(3/16,3/16,3/16, 3/1641143)

= 2H(3/16.3/16.3/16,3/16,1/4) — loglh
A i 1
A
= J—=log3}
3 a4

A Random walk on che sshoarsd. Find the entropy rate of the Markov chan associated with
a random wallk of & king on the 5 % 3 chessboard

[is
00| Zm| S
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What shout the entropy rate of rooks, bishops and queens? There are two types of
s hopes.

Solution:

Randam walk on the chesshoard.

Motice that the king cannot remain where it s, It has to move from one state to the
next. The stationary distribution is given by gy = E S E. where £, = muonber of edoes
emanating from node ¢ and F = E:J_J E,. By inspection, Ey] = Fy = Fe = F, = §,
E=E=E=E=0 E=8 au E =4, s0 gy = g = v = pg = 340,
P = pg = pg = pg = H/0 and gy = 8§40, In a random wmlk the next state is
chasen with equal probability smong passible choices, s0 H(X2|X; = 1) = log3d bits
for ¢+ = 13,79, H(Xa|X; =i)=logd for i = 2,4,6,8 amd H(X:|X; = i} = logh
bits for ¢ = 5. Therefore, we can caloulste the entropy ate of the king as

a9
H o= 3 piH(Xa| Xy =) (4.146)
i=1
= 3log3 4+ 05logdh+0.2lox8s [4.147)
2.24 hits. (4.148]

. Wammal enfrepy graphs. Consider s random walk on s connected graph with 4 edpes.

(] Whidh graph has the highest entropy rete?
(b} Whidh graph has the lowest7?

Solution: Graph enfopy.
There sre five praphs with four edees.
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é

Where the entropy rates are 1/243/8log(3) = 1094, 1, 75, 1 and 1/44-3/8log(3) =
B,

(a) From the sbove we see that the frst praph mescimizes entropy rate with and
entropy ratbe of 10K

(b} From the above we see that the third epraph minimises entropy rate with and
entropy rate of (Th

22, +D Ma:ze.
A bhird is lost in s 3 =3 % 3 cubical maze. The bird fies from room to room goinge to
adjoining rooms with equal probability through esch of the walls. To be specific, the
corner roonns heve 3 exits.
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(a)] What is the stationary distribution?
(b} What is the entropy rate of this random walk?

Solution: 30 Waze.

The entropy rate of & random walk on & praph with equal weights s pven by equation
441 in the text:

EJ EIH
Y LR
HiX) = log 2E) H[i‘”:....: ‘EE')
There are 8 corners, 12 edpes, 6 faces and 1 center. Corners haove 3 edoes, edpes have
4 edpes, faces have § edges and centers havwe 6 edges. Therefore, the total number of

edpes F =M. 5o,
3 3 4 4 5 b 6 b
HiA) = logll0s)+8 (1113 log mﬁ) +12 (ﬁ log ﬁ) s (m.ﬁ log, mﬁ) (mﬁ log, mﬁ)

= 2.3 bits

. Enkropy rafe

Let {X;} be astationary stochastic process with entropy rate H(X).

ia} Argne that H{XY) < H{X,}.
(b} What sre the conditions for equality?

Solution: Entropy Hate
() From Theorem 4.2.1
HiX)=H(X;)|Xq.X_1....) £ HX,) L]

sinee conditioning reduces entropy

(b} We have equality only if X is independent of the past Xy, X ... .. Le, if and
only if X, 15 an Lid. process.

. Enkropy rafes

Let {X;} be a stationary process. Let ¥ = (X, Xi1). Let Z; = (X5, Xa41). Let
Vi = Xq . Consider the entropy rates (A, FiYVY., H(Z), and J(V) of the processes
[Xi (Y, {20}, and {V]}. What is the inequality relationship <, =, or > between
each of the pairs listed below:

(a) H{X)Z 5: H(Y).
(b} H{X) Z H(Z).
() H(X) 2 HV).
) H(Z) 2 H{X).
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Solution: Entropy rates

[Xi} is a stationary process, ¥7 = (Xi, Xiy1). Let Zi = (Xai, Xa2i41). Let 15 = Xoi.
Consider the entropy rates H(X), H(M), H(Z), and H(V) of the processes [ X},
[Zi}, and {V}}.

(a) H(X)=H(}¥) since H{X) Xo..... X, Xp1) = Hi¥,Y5,...,.7,), and dividing
by o and taking the limit, we set equality.

(bl HiX) < HIZ), since H(X..... Nogl = H(Z, . ... 5], and dividing by . sand

taking the Hmdt, we pet 20X} = H(Z).

() H(X)> H(V),since H(Vi|V,...) = H(Xa|Xo, X-2,...) € H(Xa|X1, X0, X1,...}.
(d) H(Z)=2H(X) since H(X,,...,Xa,) = H(Z

oo 2 b, amd dividing by w snd
taking the llmdit, we get 2H(X) = HI( Z).
25. Monofoniciky.

() Show that F{X; ¥, Ya, ..., Y. is non-decressing in n .

(b} Under what conditions is the mutual informaetion constant for all =7

Solution: Menofonicify

(a] Sinece conditioning reduces entropy,

H{X|Y.Ya,... . Ya) > HX|V1.Y5,... . ¥5. Yas) (4. 1541
snd henee
IX:Y.Ya,....Ye) = HX)-HX|¥.Y....Ts) (4.151)
< H(X)-HXV.Ya... . Fhmst) (4.152)
= J(X;¥1.Ys. ... ¥ Yh4) (4.153)

(b} We have equality if and only if H{X|Y. Y5, ... Y, = H(X|Y]) for all n, ie, if
X s conditionally independent of Y5, ... pwen ¥

2. Transifions i Markev chams Suppose { X} forms an irreducible Markov chain with
transition matrix P oand stetionsry distribution g, Form the sssociated Yedpe-process”
[¥} by keeping tradk only of the transitions. Thus the new process {¥)} takes walues
in AxX, and ¥; = (X1, X},

For example
X =328.5"7....
becomes

Y = (0.3).03.2).(2.8),(83).(5.7)....
Find the entropy rate of the edge process {¥]}.

Solution: Edge Procese HIX ) = HiV) . sinee AIX) Xz, Xe. KXoyl = HiY1. Y2

LI lrll] E
and dividing by w and taking the limit, we get equality.
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2. Enkropy rafe
Let {X;} be astationary {0,1} walued stochastic process obeying
Xet1 =X B Xp1 B Zpy,
where {2} is Bernoulli{p) and & denotes mod 2 addition. What is the entropy rate
Hix)y?
Solution: Enfrapy Rafe
HiX)= X | X X1, )= H( X e | X X ) = H(Zp ) = Hip)  (4.154)
28, Mixfure of processes

Euppmse we observe one of two stochastic processes but don't know which, What is the
entropy rate? Specifically, let Xy, X2, X5, ... be s Bernoulli process with parsaneter
m oand let X, Xoa, Xas, ... be Bernoulli (pa). Let

= =

1.  with probability
8=
2, with probability

and let ¥, = Xy, i=12...., be the observed stochastic process. Thus Y observes

the process {Xj.} o {X—g.}. Eventually ¥ will know which.

(a) Is {¥;} stationary?
(b} Is {¥i} aniid. process?
(] What is the entropy rate H of {¥7}7
(d} Does
—:—! logp(¥1.Y2,... Ya) — H?

(€] Is there s code that schieves san expected per-syimbol deseription length iEL,t —_

7
MNowr let 8; be Bern -15 }. Obhserwe
zlgxﬂll: iul:‘:l:"':

Thus @ 15 not Axed for all time, ss it wes o the fivst pact, but s dhsen 1d, each time.
Answer (a), (b, (e}, (d}, (e} for the process [Z;}, labeling the snswers (a' ), (b'), (e’ ],
(d’). (e’).

Solution: Mixhure of processes.

(a} YES, {¥}} is stationary, since the scheme that we use to generate the ¥ s doesn't
change with time.
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(b

(c]

(d)

()
(b}

(e')

(d')
()

N0, it is not 1D, sinee there's dependence now — all Y5 have been generabed
seeording to the same parameter §.

Alternatively, we can arrive at the result by examining £ ¥, Y™}, If the process
were to be D, then the expression F(Y,, 00 Y™) would have to be 0. However,
if we are given Y™, then we can estimate what # 15, which in turn allows us to
predict Y. Thus, F(Y,40:Y™") 15 nonzero.

The process {¥7} is the mixture of two Bernoulli processes with different param-
ebers, amd its entropy mate is the mixture of the two entropy rates of the two

Hip,} + Hipa)
; ;

]

processes 50 it's gven by

MhMore rigorously,

1
H = Ln -H(Y")

Te=—22C g
lim r]!(mﬂ] + H(Y"|d) — H{8[]Y"))

Hip) + H(pa)
3

*

Note that only H (Y "|@) grows with n. The rest of the term is finite and will go
to 0} a5 7 opoes to oo

The process {¥i} is NOT ergodic, so the AEP does not apply and the quantity
=([1/m)log PY.¥a. ..., .1 does NOT comveroe to the entropy rate. (But it does

converge to a random variable that equals Hip) wop. 1/2 and H(pa) wp. 1/2)

Einee the process is stationsry, we can do Hufinan coding on longer and longer
blocks of the process. These codes will have an expected per-symbol length

bounded above by ”[xl'xll't'"'x"“'j and this converges to H(X).

YES, {Y]} isstationary, since the scheme that we use to generate the ¥ 's doesn't
change with time.

YEE, it is 11D, sinee there’s no dependence now — each Y, 15 generated secording
to an independent parameter &, and ¥ ~ Bernoullil (py + pa)/2).

Sinee the provess 15 now D, its entropy tate is

P+ e
n(nim)

o

YESE, the limit exists by the AEP.
YE&, as in (e} above.

. Wasfing fimes.
Let X be the waiting time for the first heads to appear in successive flips of & Far coin.

Thus, for example, Pr{X = i} = i%]‘
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Let S, be the waiting time for the '™ hesd to appear.

Thus,
S5 = 0
Ser1 = Sp+Xnn
where Xy, Xa, X5, ... are iid sccording to the distribution abowve.

(a} Is the process {5} stationary?

(b} Caleulate H(S51,52,....58:).

(¢} Does the process {5, } have an entropy rate? If so, what is it? If not, why not?

(d} What 15 the expected mumber of far coin flips required to penerate s random
variable having the same distribution s 5,7

Solution: Whaiting time process,

For the process to be stationsry, the distribution must be time invariant, It tums out
that process {5} is not stationary. There are several ways to show this,

(a] S 15 always 0 while §;, ¢ £ 0 can take on several walues, Sinee the marsinals
for Sy and 8, for example, are not the same, the process can't be stationary.

(b} It's clear that the variance of 5, grows with n, which again implies that the
marginals are not time-invariant.

(€} Process {5,} is an independent increment process. An independent increment
provess is not stationary (not even wide sense stationsey), since varlS,, ) = wari X, 1+
var( Sy ) > var(5, ).

(d} We can use chain rule and Markov properties to obtain the following results.

H(S8,5....,8,) = HIIS',]+iH|:S,|5" )

= H(5)+)_ H(5|5i-)

= H(Xi)+ 3 H(X)

- Y H(X)
1=

= In

(e} It follows trivially from (e) that

HIS) = limw

TE— o0 T

. Mm
= lim —
=3 TR

.|:|
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(£}

MNote that the entropy rate can still exist even when the process is not stationary.
Furthermore, the entropy rate (for this problem) is the same as the entropy of X
The expected mumber of fips required can be levrer-bounded by H(5, ) and upper-
bounded by H(S,) 4 2 (Theorem 5125, pape 115}, 5, hss s nesative binomisl
k-1
n—1
sueeess abt the kth trial if snd only if we have exactly 7 — 1 sucoesses in £ — 1
trials snd & sucesss at the &th trial.)

distribution; ie. Pris, = k] = I:.-JE]I‘ for & = n. (We have the wth

Sinee computing the exact value of A5y} 15 difficult (and fotless in the examn
setting ), it would be sufficient to show that the expected munber of Hips required

i5 between A8, and A5, + 2, and set up the expression of H(S,) in terms
of the pmf of 5,.

MNote, however, that for large . however, the distribution of 5, will tend to
Ganssisn with mean 2 = 2n and varianee (1 —p],-"p? = 2n.

Let prp = PriS, =k 4+ ES,) = PriS, = k4 2r). Let &z} be the normal density
function with mean zero amd varisnce 2n, ie. Hz) = exp(—22/202 )/ V2na?,
where o = 2n.

Then for lerpe w ., sinee the entropy s variant under any constant shift of &
radom variable and & ) log ¢z} s Blemann intesrable,

H(S8,) = H(S, - E(3,))

= -3 pdogm
= = (k) log oK)
i f () log p{z)dx

= [(—loge) fdrl:.l']huirl:.r]dr
= (—loge) f"i":-'f]ll—;-g —lnv2mra?)

7
27
1 1 5

— 4 — —_ 2 i
I:h}gf]l:2+glu mere

a

log 2mea=

log reme 4 1.

[N I e

(Refer to Chapter 9 for & more general discussion of the entropy of & continuous
radom variable and its relation to discrete entropy. )

Here 15 a specific example for v = 1. Besed on earlier discussion, PriSig =

k) = ( 13—1]_—]1 ){{;]I‘ The Ganssisn approximation of f(5,) is 5869 while
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the exact walue of A(S,) 5 58636, The expected number of fips required is
sotnew here between DSG36 awd 78636,

M. Markov cham fmnsihons.

P*[FLI]=

B dais RO
i P
ol dl

Let X; be uniformly distributed over the states {0,1,2}. Let {X.}-T e s Blarkov
chain with transition matrix P, thus P(Xu1 = j|Xe = 1) = Fy.6.5 € {0,1,2}.

(a)} Is {Xn} stationary?
(b} Find lim, . ﬁHI:X,....:X,t].

Mow omsider the derived process &4, £, ... 8, where
z] — X]
Zi = Xi—-Xi-i1 [maod3). =23 ...,n.

This Z£" encodes the transitions, not the states.

(c} Find H(Z1, 22, ..., Zx).

(d} Find H(Z,) and A(X,). for = > 2.

(e} Find H(Z,|Z,-1) for n > 2.

(f} Are Zn-1 and 2y independent for w = 27

Solution:

(a)] Let g, denote the probability mess inction st time v, Sinee gy = Hl %l %‘] sl
pa =P =g, pin =p1 = H 3. 5) for all n and {X.} is stationary.

Alternatively, the observation P is doubly stochestic will lesd the same conclusion.

(b} Sinee {X:} is stationary Markov,

lim H(Xi,....Xs) = H(Xz2|X1)
TE— 030

= Y P(X1 = B\ H(X2| X1 = k)
k=i

1
— ."ixﬁxﬂrl:

|H
]

)

-8

£

o || b

i [ e
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(c)

(d)

(e)

(£}

Sinee (Xi..... Nol oand (2. ... . &) are oneto-one, by the chain rule of ent ropy

s the M arkovity,

H(Z,. ... Z,)

||
=
[
=

= H(X1)+ Y H(Xi|Xi-1)
k=2
= H(X1}+ (n - 1)H(X3]|X,)

= logd+ gl:ra - 1}.
Alternatively, we can use the results of parts (d). (e), and (f). Sinee £5.... . &

are independent and Zp.... . Z, are identically distributed with the probability
distribution |:-JE i: %]:

H(Z,...,Z) = H(Z\)+H(Z)}4 ...+ H(Zn)
H{Zy) 4+ (r—1)H(Za)

3
= logid+ El:ra —1}.

-

Since {Xn} is stationary with pn = I:% %‘: %‘]

111
H(X,)=H[(X)) = H’ig: 3 5] = log 3.
0
For n >2, 2, =14 1, _tl
2 +
Hence, H(Z.)= (. 1.4)=13

Due to the symmetry of P, P(£,|Z,_1) = P(£,) for n > 2. Henve, H (£,,|£,-1) =
H(Z,) = "E

Alternstively, using the result of part (f]. we can trivially reach the same conclu-
HIOHL

Let k > 2. First observe that by the symmetry of P, £ = Xpp — X i
independent of X, Now that

Pl | X, X1} = PlXpyr — X | X, X1}
= P(Xgy1 — K| X}
= P(Xpy1 — X}
= P(Zpu),

Ly is independent of (Xp, Xp_y) and henee independent of £ = Xp — Xg_ .
For & = 1, again by the symmetry of P, &2 15 independent of £ = X trivially.
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4.

Markao.

Let {X;} ~ Bernoulli{p). Consider the sssociated Markov chain {¥; 3, where
¥, = (the number of 1's in the cwrrent run of 15}, For example, if X" = WAL . ...
we have Y™ = 101230 . . ..

(a} Find the entropy rate of X™.
(b} Find the entropy rate of Y.

Solution: Markov solution.

(a) For an iid. source, H(X) = H(X )= H(p).
(b} Observe that X" snd Y™ have s one-to-one mapping, Thus, J(Y) = H(X) =

H(p).

Time symmefry.
Let {X,} be a stationary Marlew process. We condition an (X, X} and look into
the past and future, For what index £ is

H(X -n|Xo. X1) = H(Xp|Xo, X1)7

Give the arpument.

Solution: Time symomebry.
The trivial solution 15 & = —n. To find other possible walues of £ we expand

H(X -|[Xo.X1) = H(X-n Xo.X1)-H(Xo X1)
= H{X_ )+ H(Xg, Xy[X ) = H(Xg, Xy}
= H{X_ )+ H{Xg|X_p)+ HX | Xg X_pp) — H( Xy, Xy}

S H(X-n)+ H(Xo|X-n) + H(X1| Xo) — H (X0, X1)
= H(X_.)+H(Xo|X_s) — H{Xo)

2 H(Xo)+ H(Xo|X-n) — H(Xa)

B H(X.|Xo)

D H(X X, Xo1)

(el

H (Xn+1| X1, Xo)

where (a) and (d) come from Mackovity and (5, (¢} and () come from stabionarity.
Henee & = n 4+ 1 is also & solution. There are no other solution sinee for any ot her
k, w& can construct a periodic Markov process ss a counter example. Therefore &k £
[-n.n+ 1}.
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S35, Chan inegualidy: Let X) — Xo — X5 — X form s Markov chain, Show that

T(X1;: Xa) + I Xa; Xa) < F(X1; Xa) + 7( X2; Xa) (4.155)

Solution: Chain inequaliy X1 — X2 — XatoXy

T(X 11 Xy) +I(Xa: Xa) — TN Xa) — T(Xq; ) (4. 156
= H(X)- H(X | X)) + H(Xa) - HiXa|Xa) - (HX ) — H(X| Xa))

—(H(X2)— H({X2|X4)) (4.157)

= H{X|Xz) — H(X| Xg) + H(Xg|Xy) - H({Xa| X;) (4. 158}

= H(X1. Xa|Xa) — H(Xa| X1, X3) — H(Xy, Xa|Xa) + H(Xa| X1, X{3159)

+H(Xy X3 Xy) = H(X) | Xa, Xy) — HIX), X[ X5) + HX | X460

= —H(X2|X1.Xa)+ H(X2|1X1,X4) (4.161)
— H{X3|Xy,X3) - H(Xg| X1, X2, X4) (4. 162)
= J(Xa2: Xa| X1, Xy) [ 163)
= (4.164)

where H (X | X2, Xq) = H(X| X2, Xy) by the Markovity of the random variables.

M. Drogdead channel Let X —= Y — [(Z. W) form s Makov chain, Le., plz.y.z.w] =
M) y|lz)plz, wy) for all .9, z,w. Show that

HX.ZV 4+ NX: W) < I Y 4 (2 W) (4.165)

Solution: Proadeast Channel
X =Y = (Z. W), hence by the data processing inequality, J(X;Y ) > TIX 02 WY,

and henee

7iX:Y)

I

=

+I(Z; W) = T(X; 2) = T[X; W) (4.166)

I(X : Z,W)+ I Z W) = T(X; Z) = T[X; W) (4.167)

HZW)+ H(X) = HX.W.Z)+ HW) + H(Z) — HIW, Z)
—H(Z) - H(X) + H(X,Z)) - HW) - H(X) + H(W, X}4.168)

—H(X,W,Z} + H(X,Z) + H{X.W) - H(X) (4.160)
H{W|X) - H{WI|X., Z) (4.170)
IwW: Z|1X) (4.171)
0 (4.172)

35, Concavify of secomd lmw. Let X }™_ be a stationary Markov process. Show that
H(X .| Xa) is concave in n . Specifically show that

H(X,|Xg) — HIXy [ Xa) — (H( X1 Xg) — H(Xp_2|Xg))

—TX Xy | X 1Y)
Ll (4.174)



06

www.elm24.com

Entropy Rates of a Stochastic Process

Thus the second difference is negative, establishing that (X, | Xy} 15 a concave funec-

tion of n.

Solution: Concavify of second low of thermodymamics

EBinee Xy — X,z —= X1 — X, 15 a Markev chain

H{X | Xg)

=

—H (X 1| Xa) = (H( X1 [ Xa) — H( Xy -2 Xg) (4.173)
H(Xx|Xo) — H(Xn-1|Xo. X-1) - (H(Xn-1|Xo. X-1) — H(Xn-2|X44X76)
H( X[ Xg) — H(Xe| Xy Ko} — (H{ Xy Xa) — HX, 9| X KXo} (4177)

I Xy Xy | Xa) =TIy Xy [ Xg) (4.178)
(X | Xag) — H(X| X Xa) — HIX | Xg) + HX | Xn-1. Xa) (4.179)
H{X1|Xn-1.Xo) — H(X1|Xn. Xa) [4.180)
H(X1. Xn-1,Xn. Xo) — H(X1|Xn. Xa) (4.181)
—I{Xy; X 1| Xn. Xo) (4.182)
0 (4.183)

where (4.176) and (4.1581) follows from Mearkovity snd (4177} folleaes frome stationscity
of the Markov chain.

If v elefine

By = H( Xy [Xg) — H{ Xy 4| Xag) (4. 154}

then the above chain of inequalities implies that Ay — Ap—g < 0, which implies that
H(X | Xq) is a concave funetion of .
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Data Compression

2,

Uniguely decodable ad msdanfaneous codes. Let L =57 ml!™ be the expected value
of the WWth power of the word lengths associsted with sn encoding of the random
variable X, Let L) = min L ower all instantsneous codes; and et Lo = min L over sll

uniquely decodable codes. What inequality relstionship exists between Ly and L7
Solution: Undguely decodahle and insfanfanconws rodes.

1y

L= Z;}.ra,“” (5.1)
o ]
Iy = [t L 15.2)
Instantaneous codes
Ly = 1in IR (5.3)

Unigquely decodable codes
Sinee all instantaneous codes are uniquely decodable, we moust have Lo < Ly . Any set
of codeword lengths which sehieve the miniomom of Lo will satisfy the Keaft inequality
and hence we can construct an instantaneous code with the same codeword lengths,

and henee the same L. Henee we have Ly < Lz, From both these conditions, we moust
have Ly = Ly

How many fingers has a Marfian 7 Let

The 5;'s sre encoded into strings from & D symbol output salphabet in s unigquely de-
codable manner. If m = 6 and the codevord lengths see (17,04, .. .. gl =11,1,2,3,2.3).
find & good lewer bound on 2. You may wish to explain the title of the problem.

Solution: fHow many fingers has a Marbian?
Uniquely decodsble codes satisfy Keaft's imequality. Therefore

D=y p A i pi g, (5.4)

a7
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We have f(2) =5/4 > 1, hence D > 2. We have fi(3) = 26/27 < 1. So a posible
value of D is 3. Our counting system is base 10, probably because we huvve 10 finpers.
Perhaps the Martians were using a base 3 representation because they have 3 fingers.
(Maybe they are like Maine lobsters 7)

3. Slackness an the Krafl inequaliy. An instantaneous code has word lengths 1,5, 0,

which satisfy the strict inequality

iFl

ZD'*' < 1.
1=]

The code alphabet is T = {0,1,2,...,0 —1}. Show that there exist arbitrarily long
sequences of code symbaols in T which cannot be decoded into sequences of codewards.

Solution:

Slacknesy in the Krmaff inequaliy. Instsntaneous codes are prefic free codes, 1e. no
codeword is a prefic of any other codeword. Let ng., = max{n;.nq, ... ri,,l.}. There
are D geouenees of length e . OF these sequences, D% ="% gtart with the
i-th codeword., Because of the prefix condition no two sequences can start with the
same codeword., Henee the total number of sequences which start with some codeword
s 37 Dtmes i = Oftmaz 379 T o Qftmas | Henee there are sequences which do
not start with any codeword. These snd all longer sequences with these length g,
seruences &5 prefives cannot be decoded. (This situation can be visualized with the aid
of & tree. )

Alternatively, we can map codewords onto dyadic intervals on the real line corresponsd -
ing to real numbers whose decimal expansions start with that codeword. Sinee the
lengrth of the interval for & codeword of length my is D™ and 3 D7 < 1, there ex-
ists some inbervall s) not used by any codeword. The binary sequences in these intervals
do not begin with any codeword and hence cannot be decoded.

4. Huffman coding. Counsider the random varisble

X = Ty T T3 T4 T5 T s
Tl 049 0% 012 00 004 003 002

(a8} Find & binary Huffmsn code for X,

(b} Find the expected codelength for this encoding,

()} Find & ternary Huffman code for X,

Solution: Fraonples of Huffman codes.

(a] The Huffman tree for this distribution is
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Codeword
1 1 (049 049 049 049 049 051 1
() ra (.26 026 026 026 026 049
011 ry 012 012 012 013 025
(110N gy 04 005 008 012
01N g 004 004 005
01010 g 003 0MH
01011 e (.02

(b} The expected length of the codewords for the binsry Huffman code is 202 bits.
( H(X) =201 hits)

(] The ternary Huffmen tree is

Codewnrd

i i 049 049 049 1.4

1 5 26 026 0.26

20 xy (L1212 0.25

22 xy (4 008

210 s 004 (.04

2n xg  L03

212 s (.02
This code has an expected length 1.4 temary symbols. ( Ha( X} = L27 ternary
svinbals].

5. More Huffman codes. Find the binsry Huffinan code for the source with probabilities
(103,175, 1/5,2/15.2/15).  Arpue that this code 15 also optimal for the source with
probabilities (15,15 175 1/5,1/5).

Solution: More Huffman codes. The Huffman code for the source with probabilities
(1.1, & ) has codewords {00,10,11.010,011}.

To show that this code (%) is also optimal for (175, 1/5, 1/5, 1/5, 1/5) we have to
shomr that it has minioom expected length, that is, no shorter code can be constructed
without violating f(X) < EL.

HiX)=logh =232 hits. (5.5]
3 2 12
E(L(x)) =2x ¥ + 3= ET bits. (5.6)
Sinee
S Lk
Eil Liany code)) = ZEI =z bits (5.7]

for some integer &, the next lowest possible value of E(L) is 11/5 = 2.2 hits | 2.32
bits. Henee (%) is optimal.
Mote that one could also prove the optimality of (%) by showing that the Huffinan
code for the (175, 175, 175, 175, 1/5) source has sverage length 1275 hits, (Sinee esch
Huffinan code produced by the Huffman encoding slgorithm is optimal, they all have
the same sverage length. )
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fi. Bad codes. Which of these codes cannot be Huffman codes for any probability sssien-
ment 7

(a)} {0,10,11}.
(b} {040,01, 10, 110},
(e} {01, 10}.

Solution: Fad cedes

(a)} {0,10,11} is & Huffman code for the distribution (1/2,1/4.1/4).

(b) The code {({.01,10, 110} can be shortened to {(0,01,10, 11} without losing its
instantaneous property, awd therefore is not optimal, so it cannot be & Huffinan
code,  Alternatively, it 15 not & Huffinan code because there is & unique longest
coddeword.

(€} The code {01,10} can be shortened to {0,1} without losing its instantaneous prop-
erty, and therefore is not optimal and not & Hufhnan code.

7. Huffman 20 guesBons. Consider & set of v obpects. Let X, = 1 o (0 accordingly ss
the i-th object is ppod or defective. Let Xy, Xa, ... X be independent with Pr{ X, =

I=p ;and pr >p2 > ... > pn > 1/2 . We are sshed to determine the set of all
defective objects. Any ves-no question you can think of 15 sdmissible.

(a} Give a good lower bound on the minimum saverage number of questions required .

(b} If the longest sequence of questions is required by nature’s snswers to our questions,
what (in words) is the last question we should ask? And what two sets are we
distinguishing with this question? Assume & compact (minimum sverage length)
soquence of questions.

(e} Give sn upper bound (within 1 question] oo the minimom saversge oomber of
questions required.

Solution: Huffman 20 Questions.

()} We will be wing the questions to determine the sequence Xy, Xa. ... X, . where
X, is 1 or ) secording to whether the ¢ -th obpect is good or defective. Thus the
maost likely sequence is all 15, with a probability of ], pi. snd the least likely
sequence is the all s sequence with probability [T (1 — p). Sinee the optimal
set of questions corresponds to & Huffman code for the source, a good lower bound
o the sverage number of questions is the entropy of the sequenece X Xa. .. X,

But sinee the X 's are independent Bernoulli random varisbles, we have

EG > H(X).Xa.....Xy) =ZH|:X,] =EH|:;:-,]. (5.8)
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(b} The last hit in the Huffman code distingnishes between the least likely source
symbals, [ By the conditions of the problem, all the probabilities sre different,
and thus the two least likely sequences are uniquely defined. ) In this case, the
two lesst likely sequences ave (00, .. 00 and O . .01, which have probabilities
M=—pil=—pz)...[1=ps) snd (1 —pil—p2})... (1 —pu—ilpe respectively. Thus
the last question will ask “Is Xy =17, 1.e., “Is the last ibem defective™ .

(] By the same arguments as in Part (&), an upper bound on the minimoun sversge

munber of questions 15 an upper boud on the sveraee lenpth of & Huffmsn code,
namely X X, . ... Xpl+1l=3 H(p)+1.

8. Bimpl opbimum compression of a Markov source. Consider the 3state Markov process

Ui, Uz, ..., having transition mabrix
E-'-It- Jllllr-'-lt SJ S‘E 5'.'1
5, 172 1/4 1/4
5, /4 1/2 1/4
S 0 1/2 1/2

Thus the probability thet 5 folleas 55 is equaltozero. Desien 3 codes O O, Oy (one
for esch state 1,2 and 3, each code mapping elements of the set of 5, s into sequences
of ('s and 175, such that this Mackov process can be sent with maximal compression by
the following schemmse:

(] Note the present symbal Xy = .

(b} Select code O

(e} Note the next symbal X1 = 7 and send the codeword in O oorresponding to
7.

(d} Bepest for the next syvmbol.
What is the smerape messare length of the next symbaol conditioned on the previous
state Xp = ¢ using this coding scheme? What 5 the unconditional aversge number

of bits per source symbol? Relate this to the entropy tate {8 of the Markov
clusin.

Solution: Simple opfimum compression of @ Markov souwrce.

It is easy to design an optimal code for each state, A possible solution is
MNext state 57 S 5y
Code O 0 1 11 E(L|C)) = L5 hits/symbol

code M 0 11 F(L|C;) = L5 bits/symbol
conle Oy - 0 1 E(L|Cy) = 1 bit/symbol

The sversge messsge leneths of the next symbol conditioned on the previous state
being 8 are just the expected lengths of the codes ;. Note that this code assignment
achieves the conditional entropy lower bound.
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1.

To find the unconditional aversage, we have to find the stationary distribution on the
states, Let g be the stationsry distribution, Then

1/2 1/4 1/4
p=p| 174 1/2 1/4 (5.9)
|. 0 12 12 J

We can solve this to find thet p = (20,4, 1/3). Thus the unconditionsl aversge
munber of bits per source symbaol

A

Z;nEI:LH'?.] (5.10)
1=1

EL

4 1
x1.5+ﬁxl.5+§xl (5.11)

bits Ssvimbol. (5.12)

= I B

The entropy rate H of the Markor chain is

H = H(Xz|X) (5.13)

a

— Z;e,ffl:.’{-ﬂ.’{, = 5) (H.14)
pe 1

= 4/3 bits/svmbol. (5.15)

Thus the uneonditionsl sversge munber of bits per souree syvmbol and the entropy rate
H of the Markov dhain sre equal, because the expected length of each code O equals
the entropy of the state after state ¢, A(X2| X1 = 5}, and thus maximal compression
i5 obtained.

. Opkimal code lengihs Bhad require one bii above enfropy. The source coding theorem

shows that the optimal code for & random variable X has an expected length less than
HIXV 4+ 1. Give an example of a random wariable for which the expected length of
the optimal code is close to AIX) 41, Le., for sny € >0, construct s distribution for
which the optimal code has L > (X} + 1 —¢.

Solution: Ovfimal code lengbhe fhaf require ane bif abeve enfropy. There 15 & trivial
exanple that requires almost 1 bit above its entropy. Let X be s binary random
variable with probability of X = 1 close to 1. Then entropy of X 15 close to 0, but
the lenpgth of its optimal code s 1 bit, which is almost 1 bit above its entropy.

Ternary codes fhaf achieve fhe enfropy bound. A random variable X takes on m values
and hes entropy (X} . An instantaneous ternary code is found for this source, with
average length

o H(X)

= = H4(X). b6
oe,3 = HalX) (5.16)
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11.

(a} Show that each symbol of X has & probability of the form 37 for some €.

(b} Show that m is odd.

Solution: Termary codes fhaf achieve the enfropy bound

(a] We will argue that an optimal ternary code that meets the entropy bound corre-
spomds to complete ternary tree, with the probability of each lesf of the form 57°.
To dao this, we esmentially repeat the arpuments of Theorem 5.3.1. We achieve the
ternary entropy bound only if Dip||lr} =0 and ¢=1, in (5.25). Thus we achiewe
the entropy bound if and only if 5, = 377 for sll 2.

(b} We will show that any distribution that has p = 3 Y for all ¢ must have an
odd number of symbaols. We know from Theorem 5.2.1, that given the set of
lengths, I, we can construct & ternary tree with nodes at the depths 1. Now,
sinee 300 L = 1, the tree mmst be complete. A complete ternary tree has an
odd number of lesves (this can be proved by induction on the number of internal
noles ). Thus the number of source symbols is odd.

Another simple argument 5 to use basic number theory,  We know that for
this distribution, 537" = 1. We can write this as 37/mes ¥ flmas—li = ] or
E.’?'""-’ b = glmas | Each of the terms in the sum is odd, and since their sum is
odd, the number of terms in the sum hes to be odd (the s of an even number
of odd terms is even). Thoas there are an odd mumber of souree symbols for sny
code that meets the ternary entropy bownd.

Suffiz condifion. Consider codes that satisfy the suffic condition, which savs that no
codearord is asuffic of sy other codeword., Show that s suffioc condition code is undgquel y
decodable, and show that the minimomm sversge length over all codes satisfying the
suffix condition is the same a5 the aversge length of the Huffinan code for that random
variable.

Solution: Suffir condibion. The fact that the codes are uniquely demdasble can be
soen essily be reversing the order of the code. For any recetved sequence, we work
badowards from the end, and look for the reversed codewords. Sinee the codewords
satishy the suffix condition, the reversed codewords satisfy the prefix condition, and the
wie can unigquely decode the reversed oodse.

The fact that we achieve the same minimum expected lenpgth then follows divectly from
the results of Section 5.5 But we can use the sane reversal argument to argue that
cirrespauding to every suffic code, there is & prefix code of the same leneth snd vice
versa, and therefore we cannot schieve any lower codeword lengths with s suffix code
than we can with a prefix code.

. Shannon coder and Huffman codes. Consider & random varisble X which takes on four

1111
1L,

values with probabilities (5. 5.7 13

(a] Construct & Huffman code for this random varishle.



www.elm24.com

104 Data Compression

(b} Show that there exist two different sets of optimal lengths for the codewords,
namely, show that codeword lenpth sssipnments (1,2,53) and (2.2,2,2) are
both optinsal.

(¢} Conclude that there are optimal codes with codeword lengths for some symbaols
that excesd the Shannon code length [log Hjﬁ-l .

Solution: Shannon codes and Huffman codes.

(] Applving the Huffman slporithm gives us the follering table
Code  Svmbol  Probability

0 1 1/3 /5 2/3 1
11 2 1/3 /3 1/3
1 3 1/4 1/3

100 1 1/12

which gives codeword lengths of 1,2,3.3 for the different codewards,

(b) Both set of lengths 1,233 and 22,22 satisfy the Kraft inequality, sand they both
achieve the same expected length (2 bits) for the above distribution. Therefore
they are both optinal.

(e} The symbol with probability 174 has an Hoffmen code of leneth 3, which is srester
than [log .%-l . Thus the Huffiman code for a particular symbol mey be longer than
the Shannon code for that symbaol. But on the average, the Huffmean code cannot
be longer than the Shannon code.

13. Twendy guesfions. Plaver A chooses some object in the universe, snd plaver B attempts
to identify the object with & series of yves-no questions. Suppose thet plever B is clever
encugh to use the code schieving the minimasl expected lensth with respect to plaver
A's distribution. We observe that plaver B requires sn sverapge of 38.5 questions to
determine the object. Find s rousgh lewer bound to the number of objects in the
LELHL VT 56,

Solution: Twenfy quesdfions
WH=L"-1< H(X) < log|X| (5.17)
and hence number of ohjects in the universe = 2979 = 1.04 = 1041,

14. Huffman code. Find the (a} hnary and (b} femarny Hoffman codes for the random
variable X with probabilities

(e} Caleulate L =% pil; in each case.
Solution: Huffman code.
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(&} The Huffman tree for this distribution is

Codewnrd
00 1 6/ 6/21 6/21 9021 12/21 1
10 s 5/21 5/21 6/21 6/21 9/21
11 T3 4421 4/21 5/21 /21
010 Ty 3/ 32 4421
0110 Ty 2471 3/21
0111 g 1791
(b} The ternsry Huffman tree is
Codewnrd
1 T, 6/21 6/21 10/21 1
2 9 Hf21 5731 6721
{0 9 4021 4/21 571
)| oy 3021 32
20 s 2721 3721
021 z¢ 1/21
22 e /21
(¢} The expected length of the codewords for the binsry Huffinean code 15 5121 = 243
bits.

The ternary code hes sn expected length of 34721 = 162 ternary symbols.
15. Huffman codes.

(a] Construct a binsary Huffmean code for the following distribution on 5 symbaols p =
(0.3, 0.3,0.2,0.1,0.1). What is the sverape length of this code?

(b} Construct a probability distribution p* on 5 symbaols for which the code that you
constructed in part (a) has an average length (under p’) equal to its entropy

Hp'}).
Solution: Huffman codes

(a] The code constructed by the standard Huffian procedure
Codeword X Probahility

11 1 .3 0.3 .4 .G 1
11 2 0.4 03 03 04

o b -
m 5 0.2 02 03 The aversge lamgth = 2+
{114 4 .1 .2
01 5 01

08 43«2 = 2.2 hits/syvmbol.

(b} The code would havwe a rate equal to the entropy if esch of the codewords was of
length 1/pi X}, In this case, the code constructed sbove would be efficient for the
distrubution (0.250.250.250.1250.125].

16. Huffman codes: Consider arandom varisble X which takes 6 walues {4, B, D, E F}
with probabilities (005, 0025, 001 0005, 0005, 005 respectively.
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(a) Construct & binary Huffinen code for this random sariable. What is its aversage
length?

(b} Construct a quaternary Huffinan code for this random sarisble, e, s code over
an alphabet of four symbols (call them a, b, ¢ and d ). What is the sverage length
of this code?

(e} One way to construct & binary code for the random varisble is to start with s
quaternary code, and convert the symbols into binary wsing the mapping a — 00,
b=, ¢ —= 10 and d — 11. What is the sverage length of the binary code for
the above random varisble constrocted by this process?

(d} For sny random variable X | let Ly be the sverage leneth of the binary Huffinan
code for the random variable, and let Lgg be the average length code constructed
by first building s quaternary Hufbnsan code snd converting it to binary, Show
that

Ly = L,u-u o L+ 2 (5.18)

(e} The kerer bound in the previous exsmple is tight, Give s example where the
code constructed by converting an optimal quaternary code 15 also the optinesl
binary code.

(f} The upper bound, ie, Lgr < L+ 2 is not tight. In fact, & better bound is
Lgr = Ly 4+ 1. Prove this bound, amd provide an example where this bound is
tight.

Solution: Huffman codes: Consider a random variable X which takes 6 values {4, B, 0D, E F)
with probabilities (005, 0025, 001 0005, 00205, 005} respectively.

() Construct a binary Huffmen code for this random wariable. What is its sversge
length?
Solution:
Code  SBource symbol  Prob.

{ A .5 0.5 05 05 05 10
10 B 025 025 025 025 0.5
1101 L 0.1 0.1 015 025

111 D 005 01 Q1

1114) E 005 0.05

1111 F (1.105

The sversge length of this code is 1= 0542 =0.25 44 (0.140.05 40.0540.05) = 2
bits. The entropy (X} in this cese s 198 bits.

(b} Construct a quaternary Huffnan code for this random svarisble, i.e., a code over
sn alphabet of four symbols (call them a, b, 0 and d ). What is the sversee lenegth
of this code?

Solution:Since the number of symbols, i.e. 6 is not of the form 1 4+ &(D - 1),

we need to sdd s dumomy svimbol of probability 0 to bring it to this form. In this
cise, drawing up the Huffman tree is straightforsard.



www.elm24.com

Data Compression 107

(el

Code  Svmbol Prob.

A A 0.5 05 1.0
b B .25 (.25

d [ 0.1 (.15

Ch D .05 .1

rh E .05

o F .05

i | [ .0

The sverage length of this code 15 1 = 0,85 42 = .15 = 115 quaternary symbols,

One way to coustruct & binary code for the random varisble is to start with &
quaternary code, and comvert the symbols into binary wsing the mapping a — 00,
=01, ¢ = W amd  — 11. What is the sverage length of the binary code for
the above random varisble constructed by this process?
Solution:The code constructed by the above process 1s A —= 00, B =01, ' —
11, D — 10, F — WL, and F — 1010, snd the sverape lenpgth is 2 = 0.85 +
4 %115 = 2.3 hits.
For sny random variable X, let Ly be the sverage length of the binary Hufinan
code for the random variable, and let Lgg be the sverage length code constructed
by firsting building & quaternery Hoffomen code snd converting it to binary, Showr
that

Ly = L'Q'H o L+ 2 (5.11)

Solution:Sinee the binary code constructed from the quaternary code 15 also in-
stantaneous, its average length cannot be better than the sverage length of the
best instantaneous code, e, the Huffmean code. Thet gives the lower bound of
the inequality above.

To prove the upper bound ., the Lg be the length of the optimal quaternary code.
Then from the results proved in the book, we have

Hy(X) = Lo < Hy( X} +1 (5.20)

Also, it is essy to see that Lgg = 2Lg ., since each symbol in the quaternary code
i5 comverbed into two bits. Also, from the properties of entropy, it follows that
X)) = Ha( X122, Bubstituting these in the previous equation, we set

LX) = Lo < Ha(X) 4+ 2. (5.21)

Combining this with the bound that Ha(X) < Ly, we obtain Lgg < Ly 42,
The lmarer bound in the previous example is tight, Give sn example where the
code constructed by converting an optimal quaternary code 15 also the optinesl
binary code?

Solution:Consider & random varisble thet takes on four equiprobable values.
Then the quaternary Huffman code for this s 1 quaternary syinbol for esch source
symbol, with average length 1 quaternary symbal. The average length Lgg for
this code is then 2 bits. The Huffman code for this case 15 also easily seen to sssign
2 hit codewords to each symbal, and therefore for this case, Ly = Lop.
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(£} [Opfional, ne credif) The upper bound. ie., Lgg < Ly +2 is not tight. In fact, &

better bound is Lgg = Ly 4+ 1. Prove this boumd, and provide an example where
this bound is tight.
Solution:Consider a binsry Huffmen code for the random sariable X and consider
all codewords of odd length, Append & 0 to each of these codewords, and we will
obtain an instantsneos code where all the codewords have even length. Then we
can use the inverse of the mapping mentioned in part (¢} to construct & quaternary
code for the random wariable - it 15 easy to see that the quatnerary code 15 also
instantaneous. Let Lgg be the average length of this quaternary code. Since the
length of the quaternary codewords of B0} are half the length of the correspomding
binsry codewords, we have

Inld | et

Log =

Ly 41
(Ln+ B p.) < = (5.22)

id, 15 odd

and sinee the B¢ code 15 at best as pood as the quaternary Huffman code, we
huwre

Leg > Lg [5.23)
Therefore .[.q-;_r = ":'.[.Q = ?Luq- < L4 1.
An example where this upper bound is tight 15 the case when we have only tao
possible symbals, Then Ly =1, amd Lgr = 2.

17. Dafa compression. Find sn optimal set of binary codeword lengths §5,0, ... (mind-
mizing 3 pl; | for an instantaneous code for each of the following probability mass
funations:

1 “ T T
(a) p= l:.:[JI=.u=-?J= i1+ 1)

(b} p = (5. () (G ()
Solution: Dafa compression

Code  Source symbol  Prob.

10 A 10/41 14/41 17/41 24/41  41/41
(a) 0 B aM41 10441 14/41 1740

i & /41 9041  10/41

110 I 7/41 841

111 E T4

(b} This is case of an Huffmen code oo snoinfinite alphabet. I we consider an initial
subset of the symbols, we can see that the cumulstive probability of all symbaols
[z :z > i} is Ep.‘]-ﬂ « (0.1 = 09(01pP /(1 = 0.1)) = (1), Sinece
this is less than 0.9 « (0.1}, the cumulstive sum of all the remaining terms is
less than the last term used. Thus Huffinan coding will alwsys merge the last tao
terms. This in terms implies that the Huffman code in this case s of the form
101,001 0001, ete.
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18. Classes of cades. Consider the code {0, 01}

(a)
(b)
(c)

I it instsnt sneos?
Is it uniquely decodable?
I5 it nonsinglar?

Solution: Codes.

(a)

(b)

(<]

Na, the code is not instantaneous, sinee the fivst codewornd, (0, is & prefix of the
seeoul codeword, 01

Yes, the code 15 uniquely decodable. Given s sequence of codewords, first isolate
oocurrences of 01 (Le., fnd all the ones) and then parse the rest into Vs,

Yes, all uniquely decodable codes are non-singular,

19. The game of Hi-La.

(a]

(b)

A pomputer penerstes s number X secording to s known probability mess function
piz).z £ {1,2,...,100}. The player ssks a question, *Is X =1 7 and is told
Nes", You're too high,” or *You're too low.” He continues for s total of six
questions. If he is right (Le., he recetves the snswer Yes" ) during this sequence,
he receives & prize of value v X}, How should the plaver proceed to meximize his
expected winnines?

The abowe doesnt heve much to do with informetion theory, Consider the fol-
lwing wariation: X ~ pix), prize = wiz), plz} known, as before. But arbifrary
Yes-Mo questions are asked sequentially until X is determined. (Determined ™
doesn't mean that & *Yes" answer is received ) Questions cost one unit esch, How

should the plaver proceed? What is the expected payvoff?
Continuing (b}, what if wiz) is Axed, but plz} can be chosen by the computer

(and then announeed to the player |7 The computer wishes to mdnimise the player's
expected reburn, What should gl x) be7? What is the expected returmn to the player?

Solution: The game of Hi-Ta.

(a]

The first thing to recognize in this problem is that the plaver cannot cover more
than 63 walues of X with 6 questions. This can be essily seen by induction.
With one question, there 1s only one value of X that can be covered. With two
questions, there is one value of X that csn be covered with the fisst question,
and depending on the snswer to the Arst question, there are tawo possible values
of X that can be sshed in the next question. By extending this arpument, we see
that we can sk st more 63 different questions of the form “Is X = 77 with 6
questions. [The fact that we heave narrowed the range at the end is trelevant, if
we have not isolated the walue of X))

Thus if the player seeks to maximize his return, he should choose the 63 most
valuable outcomes for X, and play to isolate these values. The probabilities are
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(b}

(c)

irrelesvant to this procedure. He will choose the 63 most valuable outemnes, and
his frst question will be *Is X = 7" where ¢ is the median of these 63 numbers,
After isolating to either half, his next question will be “Is X = 37", where j is
the median of that half. Proceeding this way, he will win if X is one of the 63
most valusble outeomwes, and lose otherwise., This stratesy masimdzes his expected
Winnings.,

MNow if arbitrary questions are allowed, the game reduces to & game of 20 questions
to determine the object. The retum in this case to the player is 5 plx)(vixz) —
izx)}, where iz} is the number of questions required to determine the object.
MMaximizing the reburn s equivalent to minimizing the expected munber of ques-
tions, amd thus, as srponed in the text, the optimal stratepy is to construct s
Huffinan code for the source amnd use that to construct s question strategy. His
expected return is therefore between 3 plzlv(z) — H and 3 plzlviz) - H - 1.

A computer wishing to minimize the retum to plever will want to miniomise
yoplrlviz) — H(X) over choices of plx). We can write this as a standard mini-
mization problem with constraints, Let

Jip) =3 pui +3 _pilogp+ A p (5.24)
and differentiating and setting to 0, we obtan
vi+logm+14+A=0 (5.25)

or after normalizing to ensure that p's forms s probability distribution,
B = — [5.26)

To complete the proof, we let vy = = and rewrite the return as

E .2—|'_| E
]

Ep.u.+2p. logp = Zp. l:}p;p.—Zp. log 27 (5.27)
= 3 pilogm -3 pilogr —log(y_27") (5.28)
= Dipllr} — log(327*), (5.29)

and thus the return s minimdzed by choosing p; = ;. This is the distribution
that the computer must choose to minimize the return to the player.

A Huffman codes with cosfs. Words like Run! Help! and Fire! are short, not because they

are frequently used, but perhaps because tine s precious in the situstions in which
these words are required. Suppose that X = ¢ with probability p.i = 1L2,.... . Let

I; be the number of binary symbaols in the codeword sssociated with X = ¢, and let o
denote the cost per letter of the codeword when X = ¢ Thus the sverape cost & of

the description of X is O =50 piaili.
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(a) Minimize  owver all Iy.13,... .1, such that %2 L= 1. Ignore any implied in-
teger constraints on [, Exhibit the minimizing 17.85.... ., and the sssociated

i valoe OFF

(b} How would you use the Huffmean code procedure to minimize O over all uniquely
decodable codes? Let Cpyffman denote this minimuom.

(¢} Can vou show that
¥l

oy = lI:':\IIJ'.l'u_|"_|"|:-|.-:||t = o+ Z pici?

1=
Solution: Huffman codes with cosfs

(a}) We wish to minimize " = % piamg subject to 327" < 1. We will sssume
equality in the constraint and let r; = 27% and let @ = 3 ,me;. Let g =
(pyey )/ Q). Then q also forms a probability distribution snd we can write 7 as

O = Zp,f:, iy [ 5.0
1 ;

= Qz gi log . (H.31)

= {?(Zq. h]g?f: —Zq. ll}p;-qh) (5.32)

= Q(D(qllr}) + H(q)). (533}

Sinee the only freedom is in the choioe of v, we can minimize © by choming
r=q or

(5.34)

where we have ignored sy inbeger constrants on . The manimmm cost O for
this sssipnment of codewords is

= 2 H(q) (5.35]
(b} If we use g instesd of p for the Hufinan procedure, & obtain s code minimizing
expected cost.
(e} Mow we can secount for the integer constraints,
Lt
i = [— loggi] [ 5.50)
Then
—logg; = mny < =lozg; + 1 (5.37)

Multiplyving by poey and summing over ¢, we get the relationship

o = {'?I.Illl._rflhdlt <+ Q2. (5.38)
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2.

b

Condifions for wnigue decodabilify. Prove that s code O 15 uniquely decodable if (and
only if} the extension

i5 & ane-to-one mapping from X* to DF for every & = 1. (The only if part is obwvious. )

Solution: Condifions for unique decodabilify. If €% is not one-to-one for same k. then
' iz nat 1D, since there exist two distinet sequences, (zy, ..., z¢) and (z),..., 2} ) such
that

C¥(zy,... o) = Clz) Ol ) = Clzh) - Clz}) = Cl=,... .x}).

Comversely, if C is not UD then by definition there exist distinet sequences of source
symbols, (x..... z;} and (gy,... .9}, such that

Clay JClxa) - Clag) = Ol )Clya) - Clyy ).

Coneatenating the input sequences (x),... .2} and (3,....9;]), we obtain

Clz1) - Cla)Cl) - Clys) = Clan) -+ Clas) Clar) -+ Clas).

which shows that €% is not one-to-ane for k=i + 7.

. Average length of an optimal code. Prove that Lip,.....py). the svwrage codeword

length for an optimal D-sry prefix code for probabilities {p1.... . pm }, is & continuous
function of pi.....pw. This is true even though the optimasl code changes discontinu-
ously as the probabilities sary,

Solution: Avernge length of an opfimal code. The longest possible codeword in an
optimal code has -1 binary digits. This corresponds to s completely unbalaneed toee
in which each codeword has a different length, Using & D-ary alphabet for codewords
can only decrease its length, Sinee we know the maximum possible codeword length,
there are only a finite mumber of possible codes to consider. For each eandid ste code C,
the average codeword length is determined by the probability distribution py.pe. ... L g

it
=y
This is & linesr., and therefore continuous, fmetion of pi.pe.. .. pe. The optimal

code 15 the candidate code with the mintmum L, snd its length is the minimum of &
finite mumber of continwouws hnctions and s therefore itself a continnons netion of

. Unused code gegquences. Let O be s warisble lenpth code thet satisfes the Kraft in-

equaliby with equality but does nef satisfy the prefix condition.

(a] Prove that some finite sequence of code alphabet symbols is not the prefix of any
sequence of codewords.

(b} (Optional } Prove or disprove: F has infinite decoding delay.
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Solution: UVnused code sequences. Let F be a wvarisble length code that satisfies the
Kraft inequality with equality but does nof setisfy the prefix condition.

(a)

(b)

When s prefix code satisfies the Keaft inequality with equality, every (infinite)
sequence of code sl phabet symbols corresponds to a sequence of codewords, sinee
the probability that & random generated sequence begins with s codeword is

i

Yy oh=1.

=1

If the code does not satisfy the prefix condition, then at lesst one codeword, say
iz}, 15 & prefix of snother, sav Oz}, Then the probability that s randomn
penerated sequence begins with s codeword 15 st most

il
TR 2 G ™l

1=

which shows that not every sequence of code alphabet syvmbaols is the beginning of
& sequence of codewords,

(Optional | A reference to & paper proving that O has infinite decoding delay will
be supplied later. It is easy to see by example that the decoding delsy cannot be
finite. An simple example of & code that satisfies the Kraft inequality, but not the
prefix condition s & suffix code (see problem 11}, The simplest non-trivial suffix
code is one for three symbaols {0,01,11}. For such a code, consider decoding s
string 011111, .. 1110, If the munber of one'’s 15 even, then the string must be
parsed (0,11,11, ..., 11.0, whereas if the number of 1's is odd, the string mst he

parsed 01,11, ..., 11. Thus the string cannot be decoded until the string of 1's has

eded, and therefore the decoding delay could be infinite.

2. Oplimal code s for uniform disinbufions Consider s random varisble with m equiprob-
able onteomws. The entropy of this information source is obviously log,m hits.

(a]

(b)

(e

Deseribe the optimal instantaneous binary code for this souree and compute the
averame oodeward lenpeth L .

For whet walues of m does the sverape codeword lenpth L equal the entropy
H =log;m?7

We know that L < H 41 for any probability distribution. The redundancy of s
variable length code is defined to be p= L — H . Por what value(s) of m, where
P < o= 25 g the redundancy of the code maximized? What is the limiting
value of this worst case redundsney a5 m — 207

Solution: Ovfimal codes for uniform diginbubions.

(a)

For mmiformly probable codevwords, there exists an optimel binary warisble leneth
prefix code such that the longest and shortest codewords differ by st most one bit.
If two codes differ by 2 bits or morve, call me the messaze with the shorter codeword
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(b)

(c]

O amd my the messape with the longer codeword O . Change the codewords

for these two messages so that the new codeword O is the old O, with a zero

appended () = ) and {"'}' i5 the old £, with & one appended Il-t"'}' = 1), &
and {"'}' are lepitimate codewords sinee no obher codeword contained O, as & prefix
by definition of & prefix code), so obviously no other codeword conld contain 7
ar 7 as a prefix. The length of the codeword for ms incresses by 1 and the
lenpth of the codeword for my decreases by st lesst 10 Sinece these messages are
equally likely, L' < L. By this method we can transform any optimal code into s
codde in which the length of the shortest and longest codewords differ by at most
ane bit. (In fact, it is essy to see that every optimal code has this property. )

For a source with n mesages, £(mg) = |logy | and flmg) = [logyn] . Let d be
the difference between v and the next smaller poaer of 2:

d=mn—2lo8an|

Then the optimal code has 2d codewords of length [log, ] and n—2d codewords
af length [log, r| . This gives

L = r_:: (2d[loga ] + (12 — 2d}|loga ve|)
= r—:: (e [log, n| + 2d)
2d
= |logym| + i

MNote that d =0 is & special case in the above equation.

The sversge codeword length equals entropy if and only if = is & power of 2. To
see this, consider the following caleulation of L

L=3 pb=-3 pilog2™" = H+ Dipllg).
i i

where g = 275 . Therefore L = H anly if p; = g;. that is, when all codevwords
have equal length, or when d = (1.

For n = 2™ 4+ d, the redundaney v = L — H is given by

r L—log,m

2d
= |logyn| +— —log,mn
f

.|:|
= m+ % _ log, (2™ + d)
e

a2d (2™ + d}
am In2

= T+

Therefore

(@ 4diy-2ud 1 1

i (2m 4+ d)? n2 2" 4 d
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Setting, this equal to zero implies d* = 27 (2In2 — 1}. Since there is only one
msximm, and sinee the function is convex M, the maximizing d is one of the teo
integers nearest [38621(2™ ). The corresponding mesodmun redundancy is

: 2% In(2™ 4 d*)
e T
9(.3862)(2™)  In(2™ 4 (.3862)27)
= MY om i sme2m) 2
= {1861 .

This is schieved with arbitrary sccuracy as o — 20, (The quantity o = (L0861 is
one of the lesser findamental constants of the universe. See Robert Gallager[3].

25, Opfimal codeword lengfhe. Although the codeword lengths of an optimal sarisble length
code are complicated functions of the message probabilities {p.pa.. ... pm}, it can be

said that less probable symbols sre encoded into loneer codewords. Suppose that the
message probabilities are given in decreasing order py > pa 2 2 p

(a] Prove that for any binary Huffmen code, if the most probable nessaee symbol has
probability gy = 2/5 ., then that symbol must be assigned s codeword of length 1.

(b} Prove that for any binary Huffman code, if the most probable messaee symbal
has probability gy < 173, then that symbol must be sssipned s codeword of

length = 2.

Solution: Opiimal codeward lengths. Let oy, 00, ... 0} be codewords of respective
lengths {£1,f2, ..., fm} correspouding to probabilities {p1.p2.....pm}.

(6} We prove that if py > o and > 2/5 then £y = 1. Suppose, for the sake of
contradiction, thet £; > 2. Then there are no codewords of length 1 otherwise
oy would not be the shortest codeword., Without loss of generality, we con assumse
that ¢; begins with 0. For z.y & {01} let O, denote the set of codewords
berinning with xy. Then the sets gy . Cig. amd O heve total probability
1 =1 = 35, s0 some two of these sets (without loss of generality, T amd Oy )
hsove total probability less 275 We can now obtain a better code by interchanging
the subtree of the decoding tree beginning with 1 with the subtree beginning with
) that is, we replace codewords of the form 1z ... by Wz, .. and codewords of
the form Wy ... by ly.... This improvement contradicts the ssaomption that
£ > 2, amd s0 £ = 1. [(Note that py > po wes & hidden sassumption for this
problem; otherwise, for example, the probahbilities {49, .49, 02} have the optimal
code {00, 1,01} .)

(b} The argument is similar to that of part (a). Suppose, for the sale of contradiction,
that £; = 1. Without loss of generality, sssume that o = 0. The total probability
of Cyg smd Oy 15 1 — gy = 273, s0 6t lesst one of these two sets (without loss

of penerality, g | hes probability grester than 273 We can now obtain s better
code by interchanging the subtree of the demoding tree beginning with O with the
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26.

subtree beginning with 10; that is, we replace codewords of the form 10z, .. by
... amd we let oy = W, This improvemsent contradicts the ssumption thet

Fi=1, andso £ =2,

valuable companies are merged, thus forming & list of m — 1 companies. The value
af the merge is the sum of the values of the teoo merped companies. This continues
until one supercompany remains, Let Voequal the sum of the values of the merges.
Thus V' represents the total reported dollar solume of the merees. For example, if
W = (33.2.2), the merpes yield (3,3.2.2) — (4,53} — 6.4} — (10}, smd V =
4464 10 = 20.

Merges, Companies with values W, W, oL Wi are mersed as follows, The two lesst

(a} Arpue that Vs the minimonn volume schievable by sequences of pair-wise merzes
terminsting in one superconpany. [ HimE Compare to Huffman coding )

(b) Let W = % Wj, ﬁ-’, = W,/W, and show that the minimum merge volume
WHW) <1 < WHW) 4+ W (5..34)
Solution: Problem: Merges

(el We first normalize the values of the companies to sdd to one,. The total volume of
the merpes 15 equal to the sum of walue of esch ompany times the number of times
it takes part in & merge, This 5 identical to the sverage length of & Hufinan code,
with & tree which corresponds to the merpes.  Since Huffmen coding minimizes
average length, this scheme of merges minimizes tobal merge volume.

(b} Just ss in the case of Huffman coding, we have
H<EL<H41, (5.410)
we have in this case for the corresponding merge schvemne
WHWI<V <WHW)+ W (5.41)

The Sardinas-Patlerson fegd for unigue decodabidify. A code 5 not uniquely decodable
if snd anly if there exists a finite sequence of code symbols which can be resolved in
two different wavs into sequences of codewords, That is, & situation such as

| -""11 | -"4-'2 | -":]-."I I -'"'lli-n |
| ;| Ha | B4 . i |

must oeeur where each A4; and esch B 5 & codeword. Note that 2y must he s
prefix of A; with somwe resulting “dangling suffix,” Eadh dangling suffioc must in tam
be either s prefix of & odeword or heve snother codeword ss its prefix, resulting in
another dangling suffix. Finally, the last dangling suffix in the sequence must also be
a codeword. Thus one can set up a test for unique decodability (which 15 essentially
the Sardinss-Patterson test[5]) in the following way: Construct a set 5 of all possible
dangling suffices. The code is uniquely decodable if and only if § contains no codeword.
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(a] State the precise rulbes for building the set S

(b} Suppise the codeword lengths are §;, ¢ = 1.2,....m. Find & pgood upper bound

ot the number of elements in the set S,
(¢} Determine which of the following codes is uniquely decodable:

i {0, 1,11},

i, {0,01,11}.

i, {0,001, 10}

iv. {0,01}.

v, {00,01,10,11}.

vi. {110,11,10}.

vii. {110, 11, 104, 4, 10}

(d} For esch uniquely decodsble code in part (e}, construct, if possible, sn infinite
encoded sequence with s known starting point, such that it can be resolved into
codewords in two different ways, [ This illustrates that unigque decodsbility does
not imply finite decodability. ] Prove that such s sequence cannot arise in s prefix
cide.

Solution: Tesf for wnigue decodabilify.

The proof of the Sardinss-Patterson test has too parts. In the first part, we will showar
that if there 15 & code string that has teo different interpretations, then the code will fail
the test. The simplest case is when the concatenstion of two codewords vields snother
codeword. In this case, S will contain & codeword, snd henee the test will Fadl.

In peneral, the code 15 not uniquely decodesble, f there exists s string that admdts taro
different parsings into codewords, ez,

LT FTYTRTETFTE = T L, TRT 4Ty, Ty Ty = T LT3 Ty, TRIETTT5. (5.42)

In this case, 52 will contain the string xarg, S3 will conten x5, Si will contain
Tgrery , which is & codeword. It is easy to see that this procedure will work for any
string that has two different parsings into codevwords; s formal proof 15 slightly more
difficult and using induction.

In the secowd part, we will show that if there is & codeword in one of the sets 5,1 > 2,
then there exists m string with tao different possible interpretations, thus showing that
the code 15 not uniquely decodesble. To do this, we essentislly reverse the construction
of the sets. We will not go into the details - the reader is referred to the original paper.

(a) Let &) be the original set of codewords. We construct 5, from 5 as follows:
A string w isin 54 iff there is & codeword z in 8, such that zy is in 5; or if
there exists & z € 5; such that zy is in 5 (ie., i5 a codeword). Then the mde
i5 uniquely decodable ff none of the 55, ¢ > 2 contains & codeword. Thus the set
8 =1li=38].
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(b} A simple upper bound can be obtained from the fact that all strings in the sets
5; have lenpth less thean 1. . snd therefore the meodmum mumber of elements in
S is less than 2imes

(¢} 1 {0,1,11}. This code is instantaneous aud hence uniquely decodable.

i. {0,01,11}. This code is asuffix code (see problem 11). It is therefore uniquely
decodable. The sets in the Sardinas-Patterson test are §; = {001, 11},
S-g={1}=5.1=5_i=....

ii. {0,01,10}. This code is not imiquely decodable. The sets in the test are
S = {0,010, 10}, §; = {1}, 8 = {0}, .... Sinee 0 is codeword, this code
fails the test. It is essy to see otherwise that the code is not UD - the string
010 hes taro wvalid parsings.

iv. {0,01}. This code is & suffix code and is therefore UD. THe test produces
sebs Sy = (0,01}, 55 = {1}, § = ¢.

v. {00,01,10,11}. This code is instantaneous and therefore UD.

vi. {110,11,10}. This code is uniquely decodable, by the Sardinss-Patterson
test, since §1 = {110,11,10}, 52 = {0}, Sa = ¢.

vil. {110, 11, 100,00, 10} . This code is UD, because by the Sardinss Patberson

test, §; = {110,11, 100,00, 10}, 853 = {0}, S5 = {0}, etc.

(d) We can produce infinite strings which can be decoded in two ways only for eccamples
where the Sardinas Patterson test produces a repeating set. For example, in part
(i}, the string 011111 . . . could be parsed either as 0,11,11,. .. o es 01,1111, .. ..
Eimilarly for (wviii), the string LK . .. could be parsed s DO00L,. .. or as
WML, . ... For the instantaneous oodes, it 15 not possible to omstruct such s
string, since we can decode ss soon as we see s codeword string, snd there is no

way that we would need to wait to decode.

-

28. Shannon code. Consider the following method for genersting s code for & random

variable X which takes on m walues {1,2,...,m} with probabilities pi.pa.....pm.

Assume that the probabilities are ordered so that gy 2 po = 00 2 oy . Define

i~1
Fi=) m. (5.43)

k=l
the sum of the probabilities of sll symbols less than ¢ Then the codeword for ¢ is the

number F € [0, 1] rownded off to I; bits, where §; = [log pL.-l .
(a] Show that the code constructed by this process is prefix-free and the sverage length
satisfles

HX)<L<HX)+1. (5.44)

(b} Construct the code for the probability distribution (0.5, 0.25,0.125,0.125).

Solution: Shannen oede.
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(a) Sinee I = [log Fll]: we have
1 1
log— <l <log— +1 (5.45)
™ I
which implies that
H(X) < L=7} piki < HX)+1. (5.46)

The difficult part is to prove that the code 15 & prefix code. By the chowe of ;.
we have

2=h < p;, < 30 (5.47)
Thus Fy, j =i differs from F; by at least 2 LY and will therefore differ from F,
i5 &b least one place in the fArst I bits of the binary expansion of F;. Thus the

codeword for Fy, 7 =i, which has length [; = L, differs from the codeword for

Fi at lesst onee in the first 17 places. Thus no codeword is s prefix of any other
codeword.

(b} We build the follering table

Evmbol Probability  Fin decimal  Foin binsry ;i Codeword

1 .5 .1 (.10 1 i

2 .25 .5 (.14 2 10

3 0.125 .75 (1. 114 3 110

4 0.125 (L.B75 111 3 111
The Shannon code in this ase achieves the entropy bound (175 bits] and is
ot sl

A, Opkimal codes for dyadic dizbribufions. For s Huffman code tree, define the probability
aof & node a5 the sum of the probabilities of all the lesves under that node. Let the
random variable X be drawn from s dysdic distribution, e, pa) = 27, for somse 1,
for all x £ X . Now cousider & binary Huffmesn code for this distribution.

(a) Arpue that for any node in the tree, the probability of the left child 15 equal to the
probability of the right daild.

(b} Let Xy X5, ... X, bedravn i.id. ~ piz). Using the Huffman code for plx) . we
map Xy, Xz,... . X, toasequence of bits Y. %5,.... Yx, x, . x.. (The length
of this sequence will depend on the outoomse X, Xo. ... X, ) Use part (] to
arpue that the sequence ¥, Y5, ..., forms s sequence of fsir coin flips, Le., that
Pr{¥, =0} =P:c{}¥; =1} = JE independent of ¥, Y5, ... Y1

Thus the entropy rate of the coded sequence 15 1 bit per svmbaol.

(¢} Give a heuristic arpgnment why the encoded sequence of bits for sny code that
schieves the entropy bound esnnot be compressible and therefore should hswve an
entropy rate of 1 bit per svimmbaol.

Solution: Opfina codes for dyadic disbribuiions.



www.elm24.com

Data Compression

(&} For a dyadic distribution, the Huffman code acheives the entropy bound. The

(b)

codde tree constructed be the Huffman slgorithm is s complete tree with lesves at
depth I; with probability p, = 274,
For such s complete binary tree, we can prove the following properties

s The probability of any internal node at depth & is 2%,
We can prove this by induction. Clearly, it is true for & tree with 2 lesves.
Assume that it is true for all trees with w lesves. For any tree with =+ 1
lesves, st least tao of the lesves hawe to be siblings oo the tree (else the toee
wold not be complete). Let the level of these siblings be 7. The probability of
the parent of these two siblings (st level j—1) has probability 27 42 = 20-1,
We can now replace the two siblings with their parent. without changing the
probability of any other internal node. But now we have a tree with n lesves
which satisfies the required property. Thus, by indoction, the property is true
for sll complete binary trees,

® From the above property, it folleers manediately the the probability of the left
child is equal to the probability of the right child.

For a sequence X, X, we can construct & code tree by first constructing the
optimal tree for X, and then attaching the optimal tree for X5 to eadh leal of
the optimal tree for X, Proceeding this way, we can construct the code tree for
Xi. Xz ... Xy, When X, are drawn 1id. secording to s dysdic distribution, it
i5 ey bo see that the code tree constructed will be also be s complete binary tree
with the properties in part (&), Thus the probability of the first bit being 1 1s 172,
and st sny internal node, the probability of the next bit produced by the code
being 115 equal to the probability of the next bit being (0 Thus the bits produeed
by the code are 114, Bemoulliil /2), and the entropy ate of the oded sequenee
i5 1 bit per svimbaol.

Assume that we have s coded sequence of bits from s code that met the entropy
bound with equality. If the coded sequence were compressible, then we could used
the compressed version of the coded sequence s our code, and achieve an aver ape
length less than the entropy bound, which will contradict the bound. Thuas the
codded sequence cannot be compressible, and thus must heave an entropy rate of 1
bit fsyvmbol.

). Relabive enfropy 15 cosf of mupeoding: Let the random verisble X heve five possible
onteomes {1,2,3.4,5} . Consider two distributions p{z)} snd g{z} on this random
variable

Symbal | plx)  gix) | Cilz)  Calx)

(a]

1 1/2 1/2 il 0
1/4  1/8 | 10 104)
1/8 1/8 | 110 1

1/16 1/8 | 1110 110

1/16 1/8 | 1111 111

In&i

=

iy |

Caleulate Hipl, Hig), Di(p|q) and D(g||p).
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(b} The last two columns above represent codes for the random variable. Verify that
the sverape length of O under p ois equal to the entropy Hip). Thus O is
optimal for p. Veriby that 5 s optimal for g.

(¢} Mow assume that we use code O when the distribution is p. What is the sverage
length of the codewords. By how much does it exeeed the entropy p?

()} What is the loss if we use code 1 when the distribution is g7
Solution: Cosi of miscoding

(a) Hip)= i log 2 4 %ll]-p,‘-‘]- + ilﬂ}gﬂ + ﬁ Lo 16 4 -JJE low 16 = LETE hits.
Hig) = J_ log 2 4+ :T log 8 4 ;— logh + % log s + ;i— logh = 2 hits.
Dip|lg) = .-’Eh]p;%ﬁ + %hg%ﬁ + i ll:r_u;HE + ]J—ﬁ l::-g%.%ﬁ + ]JE Lo iﬁﬂ—ﬁ = (1L125 hits.
Dipllq) = -'ng"ﬁ-i-fg + ih:ﬁ}i—ﬁ + % hlg’-j—f,-lg + % lugj—iﬁ% + & h}giﬁ% = (1125 hits.
1 e average length of O bor plz) s LETH bats, whieh s the entropy of p. 1

(b} TI length of O & [z} is L87H bi hich is tl if Tl
7y is an efficient code for pix). Similacly, the aversee length of code O under
glx) is 2 bits, which is the entropy of g. Thus O is an efficient code for g.

(e} If we use code Ch for pix), then the average length is 3 14 334 3 o3+ - #
34 jj—ﬁ # 3 = 2 bits. It execeeds the entropy by L1255 bits, which is the same as
Dipl|q).

(d) Similary, using code € for g has an average length of 2,125 hits, which exceeds
the entropy of g by (L125 hits, which is Dig||p).

41, Neon-gingular codes: The discussion in the text focused on instantaneous codes, with
extensions to uniquely decodable codes. Both these are required in csses when the
codde 15 to be used repeatedly to encode & sequence of outecomes of & random variable,
But if we need to encode anly one oubtcome and we loow when we hove reached the
end of & codeword, we do not need unique decodability - only the fact that the code is
non-singular would suffice. For example, if & random sariable X takes on 3 values &,
b oand e, we could encode them by 0, 1, and 00, Such s code is non-singalar but not

uniquely decodable.

In the following, assume that we have s random variable X which takes on m values
with probabilities po.pa. .. .. P And thet the probabilities are ordered so that @y =

mZ... 2P

(a] By viewing the non-singular binary code s a ternary code with three symbols,
(.1 snd “STOP”, show that the expected length of & non-sinpular code Ly for &
radom variable X satisfies the followrine inequality:

5 X
g > —— 1 5.48
v (5.48)
where 50X} is the entropy of X in bits. Thus the sverage length of a non-
singular code is at lesst a constant frection of the sverage length of an instant s
e codde.
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(b

(<]

(d)

(f)

(a]

Let Lywsr be the expected length of the best instantaneous code and L7, be the
expected length of the best non-singular code for X . Argue that L7 < Liyer =
HiX})+1.

Give a simple example where the sverage length of the non-sinpular code 15 less
than the entropy.

The set of codewords svailable for an non-singular codeis {0, 1,00, 01, 10, 11,000, ...}
Sinee Ly = %27 pdi, show that this is minimized if we allot the shortest code-
witds to the most probable symbals.

Thus ) =l =1, Iy =i =l =15 =2, ete. Show that in peneral I; =
[log [:-E + ]}] . and therefare L}, =51, m[log [:-E + 1}] .

The previous part shows that it is essy to find the optimal non-singular code for

adistribution. However, it is a little more tridey to deal with the sverage length
of this code. We now bound this sverape leneth, It folloes from the previons part

that L1, = iz 5 oanq pilog I:é + 1}. Consider the difference

i irl

Fp)=H(X) - L=-) plagpi -y pilog (5+1). (549
o | o ] =

Prove by the method of Lagrange multipliers that the maxinnum of Fip) ocours
when p = of (i 42, where ¢ = 1/ (Hwq2 —Ha) and He s the sum of the hammonic
BETIES, 1.,

k
1
2y ) (5.50)
=]

(This can also be done using the non-negativity of relative entropy.

Complete the armoents for

H(X)-L (5.51)
log( 2( Hypa — Ha)) (5.52)

H(X)-L}, =
=
MNow it s well known (see, ex. Kouth, “Art of Conputer Programming™, Vol
1} that Ay = Ink (mwore precisely, H = Ink 4~ + ﬁ— - Tﬁ'r 4 Tﬁ‘r — ¢ where
0<e= 1/252n%, and v = Euler's constant = (.577...). Either using this or &
simple approximation that Ay < Ink 4+ 1. which can be proved by integration of

i . it can be shown that A{X) - L1, < loglogm + 2. Thus we have

H(X) - loglog |¥| -2 < L3, < H(X) +1. (5.53)

A non-singular code cannot do mch better than san instantaneous code!

Solution:

In the text, it is proved that the average length of sy prefix-free code in & D-ary
alphabet wes greater than Aol X}, the D-ary entropy. Now if we start with any
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(b

(d)

binary non-singular code and add the sdditional symbol “STOP™ st the end, the
new code 15 prefix-free in the alphabet of 0.1, and “STOP” (since *STOP” occurs
only at the end of codewords, and every codeword has & “STOP” symbol, so the
anly way & code word can be & prefix of another is if they were equal ). Thus esch
code word in the new alphabet 15 one symbol longer than the binsey codewords,
and the aversge length is 1 symbol longer.

Iy

Thus we have Li1+ 12 Ha(X), or Ly > FE 1 = 0.63H(X) - 1.

Einee an instantaneous code 15 also s non-singulsar code, the best non-singular code
i5 at least as pood as the best instantaneous code. Sinee the best instsnt sneous
code has sverage length < (X)) + 1, we have L, < Liyer < H(X)+ 1.

For a 2 symbol alphabet, the best nov-singular code and the best instant sneous
code are the same. So the simplest example where they differ is when Y| = 3.
In this case, the simplest (and it turns out, optimal | nov-singular code has three
codewords 0, L0, Assume that each of the symbols 15 equally likely. Then
HIX) = logd = 1.58 hits, whereas the svernge length of the non-singular code
is 3.1+ 314 3.2 =4/3 = 13333 < H(X). Thus a nonsingular code could do
better than entropy.

For s miven set of codeword lengths, the fact that allotting the shortest oodewonds
to the must probable symbols s proved in Lemans 5.8.1, part 1 of EIT.

This result is & peneral version of what 15 called the Hardy-Littlewood- Polya in-
equality, which says that if a < b, ¢ < d, then ad 4+ 5 < ac + &d. The general
sversion of the Hardy-Littlewood-Polyva inequality states that if we were given two
sets of numbers 4 = {ﬂJ} aml 7 = {bJ,} each of size m , and let ay) be the i-th
lar gest element of A and by be the i-th largest element of set &, Then

i irl irl

3 b < 3 aibi 3 ajby (5.54)
1= =] i=]

An intuitive explanstion of this inequality is that you can consider the a; s to the
position of hooks slong & rod, and & 's to be weights to be attached to the hooks.
To mesimize the moment about one end . you should attach the larpest weights to
the furthest hooks.

The set of available codewords is the set of all pomssible sequences. Sinee the only
restriction is that the code be non-singular, esch source symbol could be alloted
to any codeword in the set {0,1,00,...}.

Thus we should sllot the codewords 0 amd 1 to the tao meost probable source
svinbols, Le., to probablities py and py. Thus @) =1; = 1. Similarly, 15 =1; =
Iy = lg = 2 (corresponding to the codewords 0, 01, ) and 11}, The next 8
symbals will vse codewords of leneth 3, ete.

We will now find the general form for 1. We can prove it by induction, but we will
derive the result from first principles. Let o = Ej‘_f 2 | Then by the arouments of
the previous paragraph, all source symbols of index cp+1, 0042, ... e+ 2% = Clp 1
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(e)

e codewords of length k. Now by using the formuls for the sum of the geomsetric
series, it 15 easy to see that

: i ok :
=3 j=1""#=2%"j=0(" 324=2g—=zk_2 (5.55)

Thus all sources with index ¢, where 28 — 1 < 4 < 2F 9 4 oF = ok+l _ 9 5
codewords of length k. This corresponds to 28 < ¢4 2 < % o k< log(i +2) =
k+1or k=1 < log®2 < k. Thus the length of the codeward for the i-
th symbal is k& = [log '—El] Thus the best nov-singular code assipns codeword
length I = [log(i/2+1}] tosymbal ¢, and therefore L}, = 300 pi[logli/2+1)] .

Since [log(i/2 4+1)] = log(i/2 +1), it follows that L}, = Li S pilog I:-E + 1} :
Consider the difference
- i ifi i.:
F(p)=H(X) - L=~ plagpi - Y pilog (5+1). (556
j=1 j=1 -

We wnnt to meaximize this inctim over all probability distributions, aod therefore
we use the method of Lagrange multipliers with the constraint 3 m = 1.

Therefore let

17 ] ' |
i

Jp) = -Y pilogpi -3 plox (5+1) + XXn-1 657
jm=] ] = o 1

Then differentisting with respect to py snd setting to O, we get

g i
H=—1—luu;u;,r:-,—lul:ux(§+l)+1!'.=ﬂ (5.58)
. 4 2

log i = A— 1 —log — (5.59)

-I}
=gl —_ 5.60
n i+ 2 Loa
Now substituting this in the constraint that 5 p = 1, we get
]
1 ;
2 R 1 (H.61)

1=1

o 3t = | F D ﬁ_g Mow using the definition Hp = f,‘_, ,i|= it 15 obvious that

1y

= Hy42— Ha (5.62)

Thus 2* = o—2——  and

= Wmpz-Hg + AT

1 1
LT

- 5.63
Hopa — Hai 42 (6.08)
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(£}

Eubstituting this value of g in the expression for Fip). we obtain

irl iFl

i
Fip) = -3 pilogp-3> p l-::-g(,;+l) (5.64]
| 1= 1 =
i ' +_2
= —Zﬂ. l::-p;mE = (565
1= .
- —ip. log ! (5.66)
e 2(Hy 2 — Ha)
= log2(Hm2 — Ha) (5.67)

Thus the extremal value of Fip) is log 2002 — Hz). We have not showed that
it 15 & maximm - that can be shown be taking the second derivative. But as usual,

it is easier to see it using relstive entropy. Looking st the expressions above, wecan
see that if we define g, = m;—h then g 15 & probability distribution (Le..
g 20, Fg=1) Also, - 144 ~ . and substuting this in the expression
= Hmir- a2l m

for Fip). we obtain

i i

i :
F(p) = - pilosp— ) mlog(5+1) (5.68)
j=1 ju= ] o
] El+.2 .
= —Zp, l:}gp,T [ 5.6%]
ju=1 -
] ] l
= - I - 5T
EP. T — (5.70)
{1 p iFi 1
- —Ep. h}g;—%p. h}g?f”mu—”&] (5.71)
= log2(Hyia — Ha) — D(plg) (5.72)
< logd(Hpyya — i) (5.7
with equality iff p=g. Thus the madmmm value of Fp) is log 20H,, 2 — ;)
H(X)-L], = H(X)- L (5.74)
= log2(Hpyg — Hy) (5.75)

The first inequality follows fram the definition of L and the second from the result
of the previous part.

To complete the proof, we will use the simple inequality Ay < Ink 4+ 1, which can
be shown by integrating _% between 1 and &. Thus H,p2 < In(fm +2) + 1, and
AHppa —Ha) =2(Hppa —1—3) < Aln(m + 2} +1 -1 — 3) < 2In(m + 2}) =
ANogim + 2}/ loge < 2logim + 2} < 2logm? = 4logm where the last inequality
i5 true for m > 2. Therefore

HIX) =L = log2{Hmez — H2) < logldlogm) = loglopm 4+ 2 (5.76)
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We therefore have the following bounds on the aversge length of & non-singular
codle
H{X)=loglog |X| -2 < L], < H(X) +1 [5.77)

A nov-singular code cannot do much better than an instantaneous code!

42, Bad wine. One is given 6 bottles of wine. It is known that precisely one bottle has sone
bad (testes terrible}. From inspection of the bottles it is determined that the probability
p; that the it? bottle is bad is given by (Pi.po.. ... Pal = (25 = 7+ ﬁ 1% 37} . Tasting

will determine the had wine.

Buppose you teste the wines one at & time, Choose the order of tasting to minimize
the expected mumber of tastings required to determine the bad bottle,. Remember, if
the first 5 wines pass the test yvou don't heve to taste the last.

(a] What is the expected munber of testings required?
(b} Which bottle should be tested frst?

Mow you get smart. For the Arst sample, you mix some of the wines in & fresh glass and
sample the mixture. You proceed, mixing and tasting, stopping when the bad bottle
has been determined.

(¢} What s the miniman expected number of testings required to determine the bad
wine?
(] What mixture should be tasted frst?

Solution: Fad Wine

(a] If we taste ane bottle at & time, to minimize the expected muomber of testings the
arder of tasting should be from the most likely wine to be bad to the least. The
expected number of tastings required is

i iRl i R R et T
Rl el Tl TR i
L=

A5
— o3
= 2.50

(b} The first bottle to be tasted should be the one with probability % )

(¢} The ideais touse Huffmean coding. With Huffinsn coding, we pet codeword lengths
& (22,25, 4.4). The expected number of tastings required is

g g A o i 2 4 3 2 1 2 4 1
ijll = —xﬁ+—xﬁ+ xﬁ+ 3‘:_.:'—?+ K‘ﬁ-'- Kﬁ
|-

54
T
= 235
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(d} The mixture of the first snd second bottles should be tasted first,

S, Huffman ve. Shannen. A random verisble X tales on three smlues with probabilities
.G, 0.3, and (0.1.

(6] What sre the lengths of the binary Hufmen codewords for X7 What sre the
lengths of the binary Shannon codewords (I{z) = [log| Hj_:'l-]-l] for X7

(b What is the smallest integer D such that the expected Shannon codesord lensgth
with s D-gry slphabet equals the expected Huffmen codevword length with s D -
ary alphabet?

Solution: Muffman ve. Shannon

(s}l It 15 obvious thet an Huffmen code for the distribution (006.0.3.0.1) s (1,00 004},
with codeword lengths (1.2,2). The Shannon code would use lengths [log Jﬂ
which gives lengths (1,24} for the three symbols.

(b} Forany D > 2, the Huffman code for the three symbols are all one character. The
Shannan code length [logp, J'| would be equal to 1 for all symbols if logp, “-J_j =1
Le, if D =10, Henee for D > 10, the Shannon code 5 also optimal.

M. Huffmon algarithm for free consfrucfion. Consider the following problem: m binary
signals 8, 85;..... 58, are swmilable at times T} < 75 < ... < T, and we would
like to find their sum S & S;& & 8 using 2input gates, each gate with 1 time
unit delsy, so that the Anal result is smilable s quickly ss possible. A simple greedy
alporithm is to combine the earliest two results, forming the partial result st time
max(Ty, Tal 4+ 1. We now have s new problem with 8§ & 5:.55.. ... 5, . smilable at
times max( Ty, Tal 41,75, ... . T . We can e sort this list of T's, snd apply the same
merging step again, repeating this until we have the Anal result,

(a} Arpue that the shove procedure is optimal, in that it constructs & cirewit for which
the Anal result is smilable ss quiddy as possible.

(b} Show that this procedure finds the tree that minimizes
CiT) = max( T, + 1) [5.78)
i

where T 15 the time at which the result slloted to the @ -th leaf is svadlable, and
I 15 the length of the path from the i-th leaf to the root.

(¢} Show that
C(T) = log, (zzi"-) (5.79)

for any tree T .

(d} Show that there exists & tree such that

CIT) < log, (Z *3”'-) + 1 (5.80)
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Thus log, [:E, ‘ET'} i5 the analog of entropy for this problem.

Solution:

Tree congbrucfion:

(a]

(b)

The proof is identical to the proof of optimality of Huffiman coding. We first showr
that for the optimal tree it T; < T}, then I; > I;. The proof of this is, as in the
cie af Huffman coding, by contradiction. Assume otherwise, ie., that if T; < T}
and I < 1y, then by exchanging the inputs, we obtain a tree with a lower total
ciEt, sinee

max{T + L. Ty + I} = max{T +1;, T + L} (D.81)

Thus the lonpgest branches sre sssociabed with the earliest times.

The rest of the proof is identical to the Hufinan proof. We show thet the lonpest
branches correspond to the two earliest times, snd thet they could be taken as
siblings [ inputs to the same sate). Then we can reduce the problem to constructing
the optimal tree for & smaller problem. By induction, we extend the optinality to
the larger problem, proving the optimality of the shove alporithom.

Given any tree of gabes, the earliest that the oubtput corresponding to & particular
signal would be svailable 1s T, 41, sinee the signal underpoes 1 pate delsys. Thus
s, (1 4 1) 15 & bower bound on the time st which the final snswer is smilable.
The fact that the tree schieves this boumnd can be showrn by induction. For sny
internsl node of the tree, the output is smilable st time equal to the medomom of
the input times plus 1. Thus for the gates connected to the inputs T, and T, the
output is available at time max(T;. 7))} 4+ 1. For any node, the output is available
ab time equal to mescimoum of the times st the lesves plus the gate delays to get
frome the leaf to the node. This result extneds to the complete tree, and for the
roat, the timwe st which the final result is svailable s max (T + ). The shove
algorithm minimizes this cost.

Let o1 = 5,27 and o3 = 5,274 By the Kraft inequality, c2 < 1. Now let

m o= E—EJ;-]T amd let vy = EE—_;'_,.J— Clearly, gy and v are probability mass
functions. Also, we have T; = logipe; | and I = —logiriea). Then

oIy = mfu:-:l:T.+.f.] (5.82)

= max (logipier} — logirics) ) (5.83)

= logey —loges 4+ e h}g? (5.84)

MNow the maximum of any random varishle 15 grester than its average under sany
distribution, md therefore

C(T) z loge, —loges +3 pilog D (5.85)
i 4

I

log 1 — log ez + Dip||r) (5.86)
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45,

i

Sinee —logey > 0 and D(p{|r} = 0, we have
C(T) > log ey (5.87)

which 15 the desired resualt,

(¢} From the previous pact, we schieve the lower bound of po = v amd o2 = 1.
Herarewer, sinee the ;s are constrained to be integers, we cannot schieve equality

T
L= [[‘}g l] = [‘}g;.'i} : (5.88)
P

it is easy to verify that % 2 L < S.om =1, and that thus we can construct & tree

in all coases.
Instead, if we let

that achieves
T+ <log(} 2%} +1 (5.84)
4

for all ¢ . Thus this tree schieves within 1 unit of the lower bound.

Clearly., I.:}p;I:EJ 95} is the equivalent of entropy for this problem!

Genernfimg mndom vanables. One wishes to gener ate & random varisble X

| 1 with probability p
A { 0. with probability 1 —p (5.00)
You are given fair coin flips 2, 25, .. .. Let & be the (random) number of fips needed

to penerate X . Find & pood way to use &y, Z, ... togenerate X . Show that EN < 2.

Solution: We expand p = 0.pype ... 88 & binsry number, Let 07 = 002125 ..., the s
quence & treated ss s binary number. It is well knosn thet U7 s uniformly distribaoted

on [(1,1}). Thus, we generate X = 1 if I7 < p and 0 otherwise.

The procedure for generated X would therefore examine &y, &2, ... and compare with
PaPa. ..., and penerate s 1 at the first time one of the 2 s is less than the correspomd-
ing p amd penerate a0 the Arst e one of the 2,5 s greater than the correspouding
5. Thus the probability that X is genersted sfter seeing the first bt of 2 is the
probability thet 2 £ py. Le, with probability 172, Similarly, X is penerated sfter 2
bits of & if &) = py amd 25 £ po, which oeeurs with probability 1/4. Thus

EN = 1. +...4 (5.91)

(5.02)

+2= 43

|
o o

sl
bl | =

Opbimal word lengihs.

(a}] Can § = (1,2,2) be the word lengths of & binary Huffinsn code. What sbout
(2,2,3.3)7
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(b} What word lengths § = (I},13,...] can arise from binary Hoffman codes?
Solution: Opiona Word Lengihs
We Arst sanswer (b} and apply the result to (a).
(b} Word lengths of & binary Huffman code musf satishy the Kralt inequaliby with
equality, ie, 3,2 4= 1. An essy way to see this is the following: every node in
the tree has a sibling (property of optimal binery code), and if we assien each node s
weight”, namely 278 then 2 % 27 is the weight of the father (mother) node. Thus,
‘vol lapsing” the tree bade, we have that 3,2 h =1,
(a) Clearly, (1,2, 2} satisfies Kraft with equality, while (2,2, 3.3} does not. Thus,
(1,2,2) ecan arse from Huffman code, while (2,2, 3, 3) cannot.
37, Codes. Which of the following codes are
(o} uniquely decodable?
(b} instantaneous?
o= {00,010}
Ca o= {00,01,100, 101,11}
Oy = {0,10,110,1100,. ..}
Cy = {0,00,000, 0000}
Solution: Cades
fa)} = {(0.01,0} is uniquely decodable (suffix free} but not instantaneous.
(b} C3 = {00,001, 100,101, 11} is prefix free (instantaneous).
(€} €5 ={0,10,110,1110,.. .} is instantaneous
(d) €y = {0,00,000, 0000} is neither uniquely decodasble or instantaneous.
38, Huffman. Find the Huffman D-ary codefor (py, po.pa. py.ps. sl = - 2 )

3% 3+ 5%

e

and the expected word length

(a) for D=2,
(b} for D=4,

Solution: Huffman Codes.
(a) D=2

L i L 8 11 14 25

b i ki

L o (N T - N
Il el = =
—
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88X 2T L
Polaw |55 |38 | 2% [0 | 3% | 3%
|2 (2 |3 |3 |3 |4 |4

E(l) = 3 pi;
p= ]

1
= ﬁl:i:ix‘3+1i:n:‘3+f1x3+f1:n:3+2x3+‘3:n:f1+1 ¥ 4)

i
= — = 2.66
o :
(b) D=4
i g 25
(5 6
4 6
4 4
2
2
1
[ [ 4 4 2 e 1
Pilar I3g |33 | 3x | 3m | 3% | 3%
L1 (1|1 |2 (2 ]2 |2
El) = ) pili
=]

1
= El:i:i:-::1+1:i:n:1+a1x1+=1:=:2+2x‘3+‘3x‘3+1 ® 2]

M
s
o :

M. Entropy of encoded bifs.  Let @ X — {0,1}* be a nonsingular but nommiquely
decodable code. Let X have entropy H(X ).

(a) Compare H{C(X)) to H(X).
(b} Compare H{C(X™)) to H(X"™).

Solution: Enfrapy of encoded hifs
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(a} Sinece the code is non-singular, the function X — (X} is one to one, and henee
HiX) = H(C(X)). (Problem 2.4)

(b} Since the code is not uniquely decodable, the fimetion X* — C(X™) is many to
ane, and henee HTX™) = HCTX™)).

M. Code mie.
Let X be arandom variable with alphabet {1,2,3} and distribution

1.  with probability 1,2
XN =4 2 with probabdity 1/4
4. with probability 1 /4

The dats compression code for X sssigns codewords

0, ifz=1
Ciz)=1{ 10, ifzx=2
11, fz=23

Let Xp Xa. ... be independent identically distributed sccording to this distribution
and let Z125:25 ... = C(X1H(Xa). .. be the string of binary symbols resulting from
cocatenating the corresponding codewords. For example, 122 becomes QL1010

(a] Find the entropy rate H{A) and the entropy rate Hi{Z) in bits per svmbol. Note
that & 15 not compressible further.

(b} Mow let the code be

0, ifzx=1
Cizl=+¢ 10, ifxz=2
M, ifzx=3
and find the entropy rate Hi(Z).
(¢} Finally, let the code be
M, ifz=1
Clz)= ¢ 1, ifx =2
0, ifzx=23

and find the entropy rate H(Z}).

Solution: Code rate.
This is & slightly tricky question. There's no stradght forward rigorous way to caleulate
the entropy rates, so you need to do some ouessing,
(a} First, sineethe X, 's are independent, X} = (X)) = 1/ 2log242(1/4) lox(d) =
32

MNow we observe that this 5 sn optimal code for the given distribution on X,
and sinee the probabilities are dyadic there 15 no gain in coding in blocks. So the
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(b)

resulting process has fo be Liad. Bern(l/2), (for otherwise we could get further
conpression from it).

Therefore H{Z) = Hi{Bern(l,/2)) = 1.

Here it's essy.

HiZ}) = limn

= lim
Tk == T

. H(XG
= lim =
T =0T "

= 3.

(We're being a little sloppy and ignoring the fact that w above may not be & even,
but in the limit s w — oo this dossn 't make s difference].

This is the tridoy part.

Euppose we encode the first w symbols XX - X, into

E 8y By = C[X [ Xg) e C( K )

Here m = L{C( X1} 4 LICTX2) 4 4+ LIC(Xe ) ) is the total length of the encoded
soquence (in bits), aud L ois the (binary) length function. Sinee the concatenated
codewrord sequence is an invertible function of (X4, ..., X1, it follvars that

nH(X) = H(Xi1X2: Xn) = H(Z1Z2 By piop,y) (5.40:3)

The first equality abowe is trivial since the X, s are independent. Simdl acly, msy
mess that the right-hand-side above can be writben as

H(ZZy By oy = B[ LIC(X)]H(Z)

1=1

= nE[L{C(X))|H(Z) (5.94]

(This is not trivial to prove, but it 12 true.)
Combining the left-hand-side of (593} with the right-hand-side of (50} vields

HiX)
E[L{C(X1))]
3/2
T
i

?:

H(Z)

where E[L(C(X,))] = Zia, plz)L(C(z)) = T/,
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41.

=

43.

Opbimal codes. Let I k... 1 be the binary Huffiman codeword lengths for the
probabilities g 2 po 2 .00 2 prg. Suppose we et o new distribution by splitting the
lest probabiliby mess, What can vou say about the optimal binsry codeword lengths

f]:f?g: S ..I';, for the probabilities gy, ... e o, (1 — odprgg . where 0= o< 1.
Solution: Optimal codes.

To construct & Huffinan code, we first combine the two smallest probabilities. In this
case, we would combine ogyg and (1 — a)pg . The result of the sum of these two
probabilities is pig. Note that the resulting probability disto bution s now exectly the
sate a5 the original probability distribution. The key point 15 that an optimal code
for pi.pz.. ... pi0 vields an optimal code (when expanded) for g, .. oo, (1 —
alprin . In effect, the frst 9 codewords will e left unchanged, while the 2 new code-
words will be XX X0 and XX X1 where XXX represents the last codevword of the

original distribution.

In short, the lengths of the first 9 codewords reman unchesnpeed , while the lengths of
the last 2 codewords [ new codewords) are equal to 1y 4+ 1.

Ternary ecodes. Which of the following codeword lengths an be the word lenpths of &
Fary Huffman code and whidh cannot?

3,9 %)

(a) (
(b} I

1,2,
29,2,2,2,2,2,2,3,3,3)

5 g

Solution: Ternary codes.

(] The word lenpths (1,2,2,2,2) CANNOT be the word lengths for & 3ary Huffiosn
code, This can be seen by drawing the tree implied by these lengths, amd seeing
that one of the codewords of length 2 can be reduced to s codeword of length 1
which is shorter. Sinee the Huffiman tree produces the minimam expected lenegth
tree, these codeword lenpgths cannot be the word lengths for & Hufinen tree.

(b} The word lengths (2,2,2,2,2,2,2,2.3.3.3) ARE the word lengths for & Fary
Huffman code. Again drawing the tree will verify this. Also, %, 3 h=gx3"24
A% 39 = 1, so these word lenpths satisfy the Kraft inequality with equality.
Therefore the word lengths are optimal for some distribution, and are the word

lengths for & Fary Huffman codse.

Piecewize Huffman. Buppose the codeword that we use to deseribe s random varisble
X ~ plz) always starts with a symbol chosen from the set {4, B, O}, followed by
binary digits {0,1}. Thus we have a ternary code for the first symbol amd binary
thereafter. Give the optimal uniquely decodesble code (minimum expected munber of
svinbols) for the probability distribution

16 15 12 10 8 §
= (mmmmmm) [(5.05)
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.

45.

Solution: Piecewise Huffman.

Codesamord

A g 16 16 22 31 69
hl xa 15 16 16 22

cl 3 12 15 16 16
ol zq 10 12 15

b 5 & 10

(SHL1 g B

Mote that the sbhove code 15 not only uniquely decodable, but it s also instantaneously
decodable. Generally given & uniquely decodable code, we can construct an instan-
taneous code with the same codeword lenpgths, This is not the case with the piece
wise Huffinan construction. There exists & code with smaller expected lengths that is
uniquely decodable, but not instantaneons.

Codeanrd

A

b

&

all

L)

ol

Huffman. Find the word lengths of the optimal binsey encoding of p = [:ﬁ ﬁ: R ﬁj} )
Solution: Huffman.

Einee the distribution is uniform the Hufhnan tree will consist of saord lengths of
[log(100)] = 7 and [log{ W) = 6. There are 64 nodes of depth 6, of which (64
k) owill be leaf nodes; and there are & nodes of depth 6 wwhich will form 26 leaf nodes

of depth 7. Since the total mumber of leal nodes is W, we have
(64 — k) + 2k = 100 = k = 36,

S0 there are 64 - 36 = 28 codewords of word length 6, and 2 x 36 = 72 codewords of

word length 7.

Random “%7 quesiions. Let X be uniformly distributed over {1,2,... m}. Assunw

o= 2", We ask random questions: Is X € 57 Is X € 5 7. until only one integer
remains, All 2™ subsets of {1.2,...,m} are equally likely.

(6] How many deterministic questions are needed to determine X7

(b} Without loss of generality, suppose that X = 1 15 the random object. What is
the probability that object 2 yvields the sane answers for & questions ss object 17

(€} What is the expected number of objects in {2,3....,m} that have the same

answers to the questions as does the correct object 17

(d) Suppose we ask n + v'n  random questions. What is the expected number of
wrong objects agreeing with the answers?
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(e} Use Markov's inequality Pr{X = tp} < Ji: to show that the probability of eror
(one or more wrong objed remaning) goes to mero a5 m— o0,

Solution: Randem “207 quesfions.

(e} Obwviously, Hufhnsn codewords for X see sll of lenegth w. Hence, with w deter-
ministic questions, we can wdentify an obpect out of 2% candidates.

(b} Observe that the total mumber of subsets which include both object 1 snd object
2 ar neither of them is 21, Hence, the probability that object 2 yields the same
snswers for k questions as object 1 is (2™ 1am )k = o=k
More information theoretically, we can view this problem as & channel coding
problem throuerh s noiseless channel,  Since sll subsets are equally likely, the
prabability the object 1 is in & specific random subset 15 172, Henee, the question
whether object 1 belongs to the kth subset or not correspowds to the kth bit of
the random codeword for obpect 1, where codewords X% wre Bern( 12 ) random
k -Seuenoes,

Obpect  Codesnord
1 1) L |
2 0. . .0

Now we observe a noiseless output Y'Y of X* and fisure out which object was
sent. From the same line of ressoning as in the achievability proof of the channel
coding theorem, Le. joint typicality, it 15 obvious the probability that object 2 has
the same codeword as object 1is 2 ot

ic} Let
- 1 abject 7 vields the sanwe answers for b questions as obpect 1
Tl 0 ot herwise
far 7=2,..., 7
Then,

E(# of objects in {2,3,... ,m} with the same answers)

Il
=
™
-.\__

J=2
= % E(1;)
j=z
= 3 27F
j=z
= [m-1)2 =
= (2" 127"

(d} Plugging & = n 4 +'n into (c) we hawe the expected number of (2% — 1)2°% v
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(e} Let N by the mumber of wrong objects remaining. Then, by Markov's inequality
PINZ>1) = EN
|:.2Ii. - ]].2 it -\,‘."E

gV

1%

= 1}

where the Arst equality follows from part (d].
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Chapter 6

Gambling and Data Compression

1. Horze mee. Three horses run & rece. A pambler offers 3-for-1 odds on esch of the
horses. These sre far odds under the sssumption that sll horses are equally likely to
win the race. The true win probabilities are known to be

1 1 1
p_[m.pi.pi]_(S.I.IJ. G.1]

Let b= (B, ba. By}, b = 0, 3 & =1, be the amount invested on each of the horses.
The expected log wealth is thus

Wib) = Zf}, Lo Sk . 6.2)

(e} Maximize this over b to find b* snd W, Thus the wealth achieved in repested
horse races should grow to infinity like 2% with probability one.

(b} Show that if instesd we put all of our money on horse 1, the most likely winner,
we will eventually go broke with probability one.

Solution: Horse mee.

(&} The doubling rate

Wik} = Zp. Lo By (G.3)
= ¥ pilog3h, (6.4)
i
: i et
= Ep, Loz 3 +Zf}||.l:|,'_',j'.i, - Ep, l-:u,-,E (G6.5)
= logd — H(p) - Dip||b) (6.6
< logd — Hip). (6.7

L34
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with equality if p=b. Henee b* = p = I:-JE i: i] and W* = log3— HI:.-JE: %: %] —
7 log 2 = 0.085.
By the strong Law of laree numbers,

g, = HEHXJ ) (G.58]
1

- ?u[:'—l E.. bog WX 0 “]'!'_I]

— gnElog AW X (6.10]

— gul(b) (6.11)

(6.12)

When b =b*, Wib} = W* and 5,=2W = $08 _ (5

(b} If we put all the money on the first horse, then the probability that we do not
oo broke in m races is (5)". Since this probability goes to zero with n, the
probability of the set of outcomes where we do not ever oo brole s zero, aud we
will go broke with probability 1.

Alternstively, if b= (10,0}, then Wib) = —s0 amd

5, —=2"W =0 wp.l (6.13)
by the strong lew of large munbers.

2. Harse race with subfair odde. If the odds sre bad (due to s treck tale) the panbler
may wish to keep money in his pocket. Let 500} be the smount in his podeet and let

B1}, B2), ... 5m) be the smount bet on horses 1,2, ..., m, with odds o(1}, 0(2). ..., 0lm].
s win probabilities p(1] (2], ... .pim). Thus the resulting wenlth 15 Sz = B0 4
blx)olz), with probability plz),z=1.2,....m.

(a) Find b* maximizing Flog & if 3 1/0(i) < 1.

(b} Discuss b* if 3 1/0(i} > 1. (There isn't an essy closed form solution in this case,
but & “water-filling” solution results from the application of the Kuho-Tader
coditions, |

Solution: [ Horse mee with a cash opbion).

Einee in this csse, the gambler s allowed to keep some of the money ss cash, the
mathematics becomes more complicated. In cless, we used two different approaches to
prove the optimality of proportionsl betting when the gnmbler is not allowed keep sy
of the money s cash,. We will use both approsches for this problem. But in the case
af subfair odds, the relative entropy approsch bresks down, and we have to use the

caleulus approsc.

The setup of the problem is straight-forwsrd. We want to macdmize the expected log

return, Le.,
vl

Wib,pl= Elog S(X) = Z;:-, log (Bby + By (6.14)

(|
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over all choices b with b > 0 and 50,5 = 1.

Approach 1: Relative Entropy

We try to express Wib, pl as s sum of relative entropies.

Wib.p}] = Er:-. log by + bog) (6.15)
bn 4 b,
_ ZF' log (“- I ) (6.16)
Ez i
= 3 plg (— Y "’I) (6.17)
= E pi log po; + log K — Dip||r). (6.18)
where i { i
szin_,l-'-b'];buzn_,-'-zb'=b“izn_,_]]+l: (6.19]
and .
2 4+ b ;
ry = 7 (6.2

i5 & kind of normalized portfolio. Now both K and r depend on the choice of b, To

maximize Wb, pl, we must maximize log & and at the same time minimize O(p||r).
Let us consider the two coases:

(a)

(b)

b qi < 1. This is the case of superfair oo fair odds, In these cases, it seems intu-
i.‘t.i.‘n."l"ll._‘p' clear that we should put all of our money in the race. For example, in the
cise of & superfair gamble, one could invest any cash using & “Duteh book™ (in-
vesting inversely proportional to the odds ) snd do strictly better writh probability
L

Examining the expression for K, we see that & s medmised for &y = 0. In this
case, setting by = p would imply that r; = p; and hence D(p||r] = 0. We have
sueeeeded in simultaneously maximizing the two variable terms in the expression
for Wik, pl md this most be the optinal solat ion.

Henee, for fair or superfair games, the gambler should invest all his money in the
race using proportionsl spmbling, snd oot lessve anyvthing sside ss cosh.

:T = 1. In this csse, sub-fair odds, the srenment bresks down. Looking st the
1*::;1'.-1'11&1'&:-11 for K, we see that it 15 meximized for & = 1. However, we cannot
simultaneously minimize O0(p||r).

If pooy = 1 for all horses, then the first terme in the expansion of Wib, p). that
i5, 3 pylogpo; is negative. With by = 1, the best we can achieve is proportional
betting, which sets the last term to bel). Henee, with by = 1, we can only achievwe s
negabive expected log return, which is strictly worse than the 0 log return achieved
be setting by = 1. This would indicate, but not prove, that in this cese, one should
leswe all one's money as cash. A more rigorous approach using caleulus will prove
this.
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We can however give a simple arpument to show that in the cese of sub-fair odds,
the sambler should lesawe st lesst somw of his money s ecash and thet there is
at lesst one horse on which he does not bet any money. We will prove this by
cottradiction—starting with & portfolio that does not satisfy these eriteria, we will
penerate owe which does better with probability one.

Let the amount bet on each of the horses be (b b, ... &y ) with 5276 =1, 50
that there is no money left aside. Arrange the horses in order of decreasing bo;
50 that the m-th horse s the one with the minimum product.

Consider s newr partfolio with
b
=y — o (6.21)
iy

for all ¢, Sinee bogp = byoy for all i, B = 0. We keep the remaining money, ie.,

1 1)1

]—ZJ&-': = l_z;(a,_b%'“) (6.22)
- iﬁw:*_*- (6.23)

] ;
as cash.
The return on the new portfolio if horse ¢ wins is

iFl b
'&'I:"'-'l . (&I o 'blh'l'-'n-l )"'-'| i E P |:1:i."3-'1]
i =
1 ]
= by + bypog (E E - 1) (6.25)
= bpoy, (6.26)

gince ) 1/o0; = 1. Hence irrespective of which horse wins, the new portfolio does
better than the old one and henee the old portfolio could not be optinal.

Approach 2;: Calculus
We set up the functional using Lagrange multipliers as before:

irl irl
Jib) :Zp, log by + by ) +J«(Z&,) (6.27)
pe= | 1=l
Differentinting with respect to &, . we obtain
o Pl
_— = 4 A= G.28
Bl Ot IR

Differentianting with respect to by, we obtain

g i P
Dbiomm P Chii 6.20
3k~ 25+ o
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Differentiating w.r.t. A, we get the cmstraint

E b=1. (6,30

The solution to these three equations, if they exist, would give the optimal portfolio b,
But substituting the first equation in the secomd, we obtain the following equation

J«E& = A (6.31)

Clearly in the case when E?j. £ 1, the only solution to this equation is A = 01,
which indicates thet the solution is on the boundary of the region over which the
maximization 15 being carried out.  Actually, we have been quite cavalier with the
setup of the pr:]hlﬂtl in addition to the constraint 5 & = 1. we have the inequality
constraints & > 0. We should have allotbed s Lagrange multiplier to esch of these.
Rewriting the ﬁuu't.umul with Lagranee multipliers

J(b} = le}, log(by + by} + A (Z&) + 3 by (6.32)

Differentinting with respect to &, . we obtain

g THH

— ) = [}, G.33
M N e o)

Differentisting with respect to by, we obtain

‘_) _F irl

AN 6.34
by Z&n+m+ S o

Differentiating w.r.t. A, we get the constraint

Folp=1. (6.35)

Momar, carrying out the same substitution, we get

1
A4 g = Azﬂ-- +Z: (6.36)
i

which indicstes that if E Z£ 1, at least one of the +'s 15 non-zero, which indicates
that the corresponding n:»uatrmut. has beeomne sctive, which shows that the solution is
ot the boundsry of the rerion.

In the case of solutions on the boundary, we heove to use the Kuhn-Tucker conditions
to find the madmnm. These conditions are desceribed in Gallager[2], pg. 87, The
cotvditions deseribe the behwvior of the derivative at the maximom of & coneave function
over & covex region. For any coordinate which 15 in the interior of the region, the
derivative should be (1. For any coordinate on the boundary, the derivative should be
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negative in the direction towards the interior of the region. More formally, for s concave

function Flxy.3a,...,1,) over the region x; > 0,
aF <0 fa=10 :
Bo =0 ifay >0 (6.37)
Applving the Bubhn-Tudeer conditions to the present maxindzation, we obban
iy ':_\-ﬂ i.EI&‘l = {] v
R 3 6..38
botba =0 ifb >0 A
anqd
Pi <@ ifbg=0 _
------- — 4+ A — . .30
Z&II+&'|H|+ =} lfbu}ﬂ l:] ]

Theorem 4.4.1 in Gallager [2] proves that if we can find & solution to the Kuhn-Tuder
cotvditions, then the solution is the mecimum of the function in the region. Let us
cansider the ten cases:

(a) ¥ al. < 1. In this case, we try the solution we expect, &y = 0, and & = p;.
Setting & = —1, we find thet all the Kuhn-Tucker conditions are satisfied. Henee,
this is the optimal portfolio for superfar or fair odds.

(b} ai = 1. Inthis case, we try the expected solution, by =1, and & = 0. We find
that all the Kuhn-Tucker conditions are satisfied if all oy = 1. Henee under this
condition, the optimmm solution is to not inwst aoything in the reee but to eep
everyvthing ss cash.

In the case when some pooy > 1, the Kuho-Todoer conditions are no longer satisfied
by By = 1. We should then invest some money in the race; however, sinee the
denominator of the expressions in the Kuho-Tocker conditions also changes, more
than ane horse musy now violste the Kuho-Tocker conditions. Hence, the optimnmm
solution may involve investing in some horses with poo; < 1. There 15 no explicit
forme for the solution in this case.

The Kuhn Tucker conditions for this case do not give rise to an explicit solution.
Instead, we can formulate s procedure for finding the optimonn distribution of
capital:

Order the horses socording to pog . so that

P 2 patm 2 2 Pralm. i G.440)
Define X
1 MR -
—Z-l-;. fk>1
G={ Fpx '~ (6.41)
1 if k=1
Define
t = min{n|pyi10n41 = Cp ) (6.42)

Clearly ¢ > 1 sinee prog > 1 = 0%,
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(lam: The optimal stratesy for the horse race when the odds are subfair and
somwe: of the pyoy mre preater than 1 is: set

by = %, (643
and for i=1,2,...,¢, set
C
bo=pi— =, (6.44)
r"l
and for e =t41,...,m, set
b =0 (G.45)

The abovwe choice of b satisfies the Kuho-Todeer conditions with A = 1. For by,
the Kuho-Tadeer condition is

1 Wi i
P, 1 i 1 1= 3 ima P P
—— == e = = — e — e =], LV
Bt i B et e e (=40

For 1 < ¢ < ¢, the Kuhn Tucker conditions reduee to

il _ iy
&'I:I + 'bl'r'll P

=1 (6.47)

For t4 1 <3¢ =< wm, the Kubhn Tudser conditions reduce to
o S e R (6.48)

by the definition of ¢, Henee the Kubn Tucker conditions sre satisfed, snd this
i5 the optimal solution.

4. Care. An ordinary deck of cards containing 26 red cards and 26 black cards is shufled
s deslt out one card st at time without replecement. Let X be the color of the ith
card.

(8} Determine A{X )
(b} Determine F{X5).
(e} Does H (X | X1, X2.. ... Xi-1) inerease or decrease?

(d) Determine H(X;. Xa...., Xm).

Solution:

(a) Pifirst card red) = Pifirst card black)= 1/2. Henee AH(X;) = (1/2)]log2 +
(1/2})log2 = log2 = 1 bit.

(b} P{second card red] = Plsecond card blade) = 1/2 by symmetry. Hence f{Xq) =
(1/2)log24(1/2)log 2 = log2 = 1 hit. There is nochange in the probability from
Xy to Xz (orto Xy, 1 < ¢ <= 52} since all the permutations of red and black
cards are equally likely.
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(e} Sinee all permutations are equally likely, the joint distribution of Xp and Xy, .00, X
is the same as the joint distribution of Xgp and Xy, ... X . Therefore

H(Xg|Xa,.... Xe-1)= H{Xp1| X, ..., Xp—a) 2 HiXppq| X, X)) (6.49)

and so0 the conditional entropy decresses ss we procesd along the sequence.

Kuowledge of the past reduces uncertainty and thus mweans that the conditional
entropy of the k-th card’s color piven all the previous cards will decresse s &
LT 56 €5,

(] All {zi] possible sequences of 26 red cards and 26 black cards are equally likely.
Thus

52
H (X1, Xa,...., Xz) = log (*:-r) — 488 bits (3.2 bits less than 52} (6.50)
1

4. Gambling. Suppose one zambles sequentially on the card outoomes in Problem 3. Even
odds of 2-for-1 sre peid. Thus the wealth S, at time w5 5, = 2%z, 20, . ... 2.}

where bz . x25,.... g} is the proportion of wealth bet on zy.24... .. Ty Find maxy, , Elog Se.

Solution: Gambling on red and Wack cards.

Ellog 5, = Eflog[2®6(X), Xz, ... X ] (6.51)
= nlog? + EllogbiX]] (6.52)
= n+ ¥ plx)loghix) (6.53)
HEA™
= n+ Y plx)log bix) — log p{x]] (6.54)
wEXT plx)
= n+ D(pix)||Kx)} - H{X). (6.55)

Taking plx) = bix} makes Dip(x)||b(x]} =0 and maximizes £ log Sgq.

max Elog 5 = 52 - H(X) (G.56)
bx)
5 L% _
= 32 (6.58)

Alternatively, s in the horse race, proportional betting is log-optimal. Thus bix) =
) snd, regardless of the outeomse,

[ B

%]

Sng =

- ﬁ = 0.8, (6.59)
e 1

savd henee
log Sna = I;II:[I.H:;: Elow S50 = loe 9008 = 3.2 (6.6
el o



www.elm24.com

Gambling and Data Compression 147

5. Beabing the public odds. Consider & Fhorse race with win probabilities

= =
| =
S

1
|:PJ:F2:F.'1] = [3 F

and fair odds with respect to the (false} distribution

(rirara)= (37

_..
Bl | =

i

Thus the odds are
(01,09,03) = (4,4,2) .

(a] What is the entropy of the race?

(b} Find the set of bets (5. by, By} such that the compounded wealth in repested plays
will grow to infinity.

Solution: Feafing the public odds.

(&} The entropy of the race is given by

1 1
Hipl = lox 2 4 Il:}p;=1+xh}p;f1

S 1 - R

(b} Compounded wealth will grow to infinity for the set of bets (5. B, By such that
Wib.pl = 0 where

Wib.p) = Dipr) - Dip|b)
i '&'|
= Z pilog —.
] L
Caleulating D(p| r), this criterion becomes
’ 1
D(plb) < 7

fi. Horse muee: A § horse race has win probabilities p = (p1,p2.pa) . and odds o= (1.1,1).
The pambler places bets b = (b by b3}, & = 0.5 6 = 1, where b denotes the
proportion on wealth bet on horse . These odds sre very bad. The gambler pets his
ey back on the winning horse and loses the other bets, Thus the wealth 5, st timse
e resulbting rom independent ppmbles poes expnentially to zero.

(a} Find the exponent.

(b} Find the optimal gambling scheme b, ie., the bet b* that maximizes the expo-
ek,
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(] Assuming b is chosen s in (b}, what distribution p causes 5, to go to zero at
the [estest rate?

Solution: Wmwnizing losse s

(6] Despite the bad odds, the optimal strategy is still proportionsl ganbling. Thus
the optimal bets are b = p . and the exponent in this cese is

W = Z;:-, log g, = —H (p). (6.61)

(b} The optimal gambling strategy is still proportional betting.

(¢} The worst distribution (the one that causes the doubling rate to be as negative as
possible) is that distribution thet mesimiees the entropy, Thus the worst 1177 s
—log 3, and the pambler’s money poes to zero as 377,

7. Horge mace. Consider s horse race with 4 horses. Assume that esch of the horses payvs
Afor-1 if it wins, Let the probabilities of winning of the horses be {i— ll %: ;—}- If you
started with 5100 snd bet optimally to maximize your long term growth rete, what
are your optimal bets on each horse? Approximately how much money would you have

after A races with this stratesy 7

Solution: Hormse mee. The optimal betting strategy 15 proportionsl betting, Le., divid-
ing the investment in proportion to the probabilities of esch horse winning, Thus the
bets on esch horse should be (50%, 25%,12.5%.12.5% ). and the growth rate achieved
by this strategy is equal to logd— H(p) = logd— H(3. 1. 5.5) = 2-1.75 = (.25, After
A} races with this stratery. the wealth is approximately 2% = 2% = 52 and hence the
wealth would srow approximately 32 fold over 20 races.

8. Loifo. The following analysis is & crude approximation to the games of Lobto condueted
by warious stabes. Assume that the plaver of the grme s required pay 81 to play and is
sled to choose 1 number from s ranpee 1 to 8. At the end of every day, the state lottery
commission pides & mumber uniformly over the same range. The ckpot, Le., all the
money collected that day, 5 split sanong all the people who chose the same munber as
the one dusen by the state, E.po, if 100 people pleyed tod sy, sod 10 of them duse the
number 2, and the drawing st the end of the day picked 2, then the $100 collected is
split among the 10 people, Le., each of persons who pideed 2 will recetve 310, amnd the
obhers will receive nothing,

The peneral population does not choose mumbers uniformly - numbers like 3 and 7 oare
supposedly lucky snd are morve popular than 4 or 8. Assume that the Faction of people
chomsing the various numbers 1,2, ... 8 is (f1. fa... ., fs), and sssume that n people

play every day. Also assume that w is very large, so that any single person’s choice
choice does not change the proportion of people betting on sny number.

(6] What 15 the optimal stratery to divide your money smong the sarious possible
tickets so0 as to meximize your long term prowth rate? (Ignore the fact that you
cannot buy fractional tideets. )
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(b} What is the optimal growth rate that you can achieve in this game?
(e} IEify. fe o o MR =01/8,1/8,1/4,1/16, 1/16,1,/16,1 /4, 1/16) ., and you start with
81, how long will it be before you become s millionsine?

Solution:

(a] The probability of winning does not depend on the number you choose, sad there-
fore, irrespective of the proportions of the other plavers, the log optimal strategy
i5 to divide your money iniformly over all the tideoets.

(b} If there are n people playving. and fi of them choose mmmber @, then the mumber
of people sharing the pdkpot of w dollars 15 wf; . snd therefore esch person gets
i fi =1/ f dollars if ¢ is picked at the end of the day. Thus the odds for number
¢ ds 1/f;. amd does ot depend on the mumber of people playing.

Using the results of Section 6.1, the optimal prowth rate is given by

1.1__-'*|:.P] s Z i lop o, — Hip) = z ; h}g} —log 8 (G.62)

(¢} Substituing these fraction in the previous equation we et

We(p} = %Z g = DB (6.63)
1

= FBHI+2HA+ A4+ 244) -3 (6.64)

— 0 (6.65)

snd therefore after & days, the amount of money you would heve would be spprox-

imately @253 | The number of days before this crosses a million = logr o (1, 000, 004D} /10,25 =

LT, 1w, in 80 days, vou should heve s million dollars.

There sre many problems with the analysis, not the lesst of which is that the
stabe povernments take out about half the money collected, so that the packpot
i5 only half of the total collections,  Also there are shout 14 million different
possible tidkets, aud it is therefore possible to use s uniform distribution using §1
tickets only if we use capital of the order of 14 million dollars. And with such
Large investments, the proportions of money bet on the different possibilities will
change, which would further complicate the analysis,

Herarewer, the fact that people choices sre not uniform does leave s loophole that can
be exploited. Under cartain conditions, Le., if the sccumulated jackpot has reached
& certain size, the expected reburn can be greater than 1, snd it is worthwhile to
play, despite the 505 mt talken by the state. But under normal ciroummst snees,
the 5% cut of the state makes the odds in the lobtery very unfair, and it is not &
wirthwhile investowent.,

1. Harse race. Suppose ane 15 interested in maximizing the doubling rate for a horse tace,
Let pi.p2..... i denote the win probabilities of the m horses. When do the odds

(01,02, ....0m) yield a higher doubling rate than the odds (o), 0},...,0%)7
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Solution: Horse Raee

Let

W and W' denote the optimal doubling rates for the odds (0,00, ..., Oy ) Bl

Ly, ... 00} respectively. By Theorem 6.1.2 in the bodk,

W = Z pilogo; — Hp), and
W' = 3 pilogol — Hip)

where p is the probability vector (py,pa.....pm). Then W > W' exactly when
S logo; = 5 p logo); that is, when

Eloga, = E'lug-n:.

). Horze mace with probabilify esfinates

(a]

(b)

Three horses race. Their probabilities of winning sre I:-JE { {] The odds are
{4-for-1, &for-1 and 3-for-1). Let W™ be the optimal doubling rate.

Euppese vou believe the probabilities are I:JT {5 _Ji] If you try to mecimize the

doubling rate, what doubling rate W will you schieve? By how muach has your

doubling rate decreased due to your poor estimate of the probabilities, e, what
5 AW =W - W7

Now let the horse race be among m horses, with probabilities p = (p.pa.. .. P
and odds o = (oq,04,.... o). IE vou believe the true probabilities to be g =

(§1.92. ... .G ). and try to meaximize the doubling rate W, what 5 W = W7

Solution: fHorse mmee wifh probahilify esfimafes

(a]

(b)

The

If vou believe that the probabilities of winning are I:%: {5 %] . vou would bet pro-

portional to this, and would achieve a growth rate 3 p logbo, = .-’El:}gfii +
$log 3z + log3d; = %luﬁ%. If you bet according to the true probabilities, yon
wirttld et I:é i il] an the three horses, schieving a growth rate 5 loghioy =
% h]l_n;fi% +% l:}p;.'i% + i: ll}p;,"ii = { l:}gfl_: . The loss in growth rate due to incorrect es-
timation of the probabilities is the difference between the two growth rates, which
is §log2=0.25.

For m horses, the growth rate with the true distribution is 5w log poog, and
with the incorrect estimate is 3 piloggoi. The difference between the two is

L pilog B = Dipllq).

fwoe envelope preblem: One envelope contains & dollars, the obher 26 dollars. The

amount b ois unkmwoewn,  An envelope is selected at random. Let X be the amount
observed in this envelope, and let Y be the smount in the obher envelope.

Adopt the strategy of switching to the other envelope with probability pilz), where

)

':.\.—J'

= == Let 2 be the smount that the player receives. Thus

25}, i ilityw 1/2
(X.¥) = { (b, 26},  with probability 1, (6.66)

(25,5},  with probabdity 1,2
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(a]
(b)

(c)

(el

7=

{ X. with probability 1 — plx) (6.67)

Y, with probability pix)

Show that E(X)=E(Y)=%.

Ehow that EiY/X) = 5/M. Since the expected ratio of the amount in the other
emvelope to the one in hand 15 574, it seems thet one should slweys switch,
(This is the origin of the switching paradoc. ) However, observe that E(Y)} £
EX)EY/X). Thus, although E(Y/X) = 1, it does not follow that E(Y) =
EiX).

Let J be the index of the envelope comtaning the maxinoomm samount of money,
and let /' be the index of the envelope chosen by the alporithm. Show that for
any b, I(J;J") = (. Thus the amoumt in the first envelope always contains some
information about which envelope to choose.

Ehow that EiZ) > E(X}. Thus vou can do better than slways staving or slways
switching, In fact, this 5 true for any monotonic decressing switching function
). By rendomly switching sccording to gl x) . you are more likely to trade up
than trade down.

Solution: Twe envelope problem:

(a)

(b)

(c)

X =6 ar 26 with prob. 172, and therefore E(X) = 1.56. Y hss the same
unconditional distribution.

Given X = z, the other envelope contains 2 with probability 1/2 sod contains
z/2 with probability 1/2. Thus E(Y /X =5/4.

Without any conditioning, J = 1 or 2 with probability (1/2,1/2). By symoestry,
it is not difficult to see that the unconditional probahbility distribution of J' is also
the same. We will now show that the two random varisbles are not independent,
and therefore T(J: J') £ 0. Todao this, we will caleulate the conditional probability
P =1J=1).

Conditioned on J = 1, the probability that X =6 or 2b is still (1;2.1/2). Howr-
ever, conditioned on (J = 1, X = 25}, the probability that £ = X | and therefore
J =115 p{2). Similary, conditioned on (J = 1. X = &), the probability that
J =1 is 1 - p(b). Thus,

P =15 =1) PiX=bJ=0DP =1X=5bJ=1)

+P(X = 2b|J = )P(J = 1|X =2b,J = 1} (6.68)

1 1 o
= plkimpbl enl ) (6.69)

+ 5 (p(25} — p(b) (6.70

[N S

(6.71)
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Thus the conditional distribution s not equal to the umemditional distribotion
and J and J' oare not independent.

(d} We use the above calculation of the conditional distribution to caleulste &) .
Without loss of penerality, we sssume that J = 1, Le., the first envelope contains

3k . Then
E(Z|f=1) = P(X=bJ=1)EZ|X=5bJ=1)
+P(X =2 J = 1)E(Z|X =28,J = 1) (6.72)
= ~B(Z|X=b0=1)+ %qum — 3. J = 1] (6.73)

[E5= ) I i

(p(f' =1X =b,J=1)}E(Z|F =1,X =b . =1)
+p(f =2 X =b,J=1)E(Z|J' =2, X =bJ =1)
+p(J =1|X =26, =1)E(Z|J' =1, X =257 =1)
+plJ =2X =2bJ = 1)E(Z|J =2,X = 2b,J = F4)

= %I:[l—p{b]]‘35+p{&-]b+p{‘3&]‘3&+[l—pl:ﬂb]]&-] (6.75]
= 2 L(p() - plo) (6.76)
b (6.77)

g long as p(2b) — plb) = 0. Thus E(£) = E(X).
12, Gambling. Find the horse win probabilities piope. ... s

(8] maximizing the doubling rate W for given fived known odds oy, 00. ... L0y,

(b} minimizing the doubling rate for siven fived odds o). 00, .. L0, .

Solution: GCambling
(a) From Theorem 6.1.2, W* =% piloga; — H(p). We can also write this as
W = E i log pey (6.78]

i
= Yoplogh (6.79)
i ay

(6.81)

Y pilogZ - ¥ plog (Z ﬂl) (6.80)
i ! ]
Elpulug% = log (En—J)

where

e E_“r (6.82)
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Therefore the minimum valuwe of the growth rate oceurs when p; = . This
i5 the distribution that minimizes the prowth rete, snd the minimom walue is

—l:];l'.",’l:EJ f}

(b} The meximmm prowth rete occurs when the horse with the maximoom odds wins
in all the races, Le., p; = 1 for the horse that provides the mesdmun odds

13, Duich book. Consider a horse race with m = 2 horses,

X =1,2
p = 1/2 1,2
Odds (for one} = 10, 30

Bets = b, 1-h

The odds are super fair.

(8] Thereis a bet & which pusarantess the same payvol repardless of which horse wins.

Buch a bet 15 called & Duteh boalk, Find this & snd the sssociated sealth factor
SiX).

(b} What 15 the mescimmm growth tate of the weslth for this grnble? Compere it to
the growth rate for the Duteh book.

Solution: Solution: Dutech boolk.

(a)
Wen = M1 - bg)
MWep = 3
bp = ¥4
Therefore,
. 1 3 1 1
Wikn. P} = 5 Loz (]1]3) + Eh}g(ﬂﬂa)
= 241
and

Sp(X) = 2w P) - 75
(b} In general.

Wb, p) = ~ log(105) + ; log(30(1 — b }.

SR

Eetting the %H— to zero we met

1 ( 1} ) 1 ( =50 ) o
s\t ) T3 \m—ame) T
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wtrip-n — Y
Wo—dpol. 0
b — 1)
i i {
A (1 - b
X 1
Henes
- 1 1
W p = 3log(5)+ 5log(15) = 311
Wibp.p) = 2.91
airne
g = % =566
Sy = 2Wo =175

14. Herge mace. Suppose ane is interested in maximizing the doubling rate for & horse tace,

15.

Let pi.pa.. ... pm denote the win probabilities of the m horses. When do the odds

[y, 09,. ... o) yvield a higher doubling rate than the odds (o}, 0}, ...,0) )7

Solution: fHorse Hace (Repeat of problem )

Let W sand W' denote the optimal doubling rates for the odds (o0.00. ... .0y, ) and
(o). gy, ... 00 ) respectively. By Theorem 6.1.2 in the bodk,

W = z pilogo — H(p), and
W = Z pilogol — Hip)

where p is the probability vector (py,pa.....pm). Then W > W' exactly when
S logo; = 5 p logo); that is, when

Eloga, = E'lup;n’l.

Eniropy of a fair horse mee. Let X ~ pix), z = 1.2,....m. denote the winner of
a horse race. Suppose the odds oz} are fair with respect to plr), ie, olz) = HJTF
Let biz) be the amount bet on horse z, biz) > 0, T Kz} = 1. Then the resulting
wealth factor is Six) = Kxlol z), with probability @ x) .

(a] Find the expected wealth ESTX ).
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(b} Find W*, the optimal growth rate of wealth.

(] Buppose
. { 1, X=1ar 2

1, otherwise

If this side information is available before the bet, how moch does it ineresse the
srowth rate W7

(d} Find I{X;¥}.

Solution: Entropy of a fair horse race.

(8} The expected wealth ES(X] is

il

ES(X) = ZSI:I];:I{I] (6.83)
=

— ibl:l‘]ﬂl:]’]p{l‘] (6G.54)
]

— ibi:']: (since ol x) = 1/pix)) (6.85]
b

= 1 (6.86)

(b} The optimal groewth rate of wealth, W, is schieved when Blz) = plz) for all =,
in which case,

W* = ElogS(X)) (6.87)
= E Pl log (Bl xlalx)) (6.88)
= E plx) log(plz )/ plx]) (6.84)
x=]
= i plx) log(l) (6.0
r=]
=}, (6.91)

50 we maintain our current wealth.

(¢} The increase in our growth rabe due to the side information is given by X Y).

XYy = HY)- HY|X) (6.92)
= MY} (sinoe Y is adeterministic fonction of X1 (6.93)
= Higl (6.494)

(] Alresdy compubed above.
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6. Negative horse mce Consider & horse race with wm horses with win probabilities g, e, . i
Here the gambler hopes a given horse will lose. He places bets (5 b .. by L B

: j=] W =
1. on the horses, loses his bet & if horse ¢ wins, snd retains the rest of his bets.

(Mo odds.) Thus § = EHI&-‘,: with probability p;. snd one wishes to maximize
YomIn(1 — b)) subject to the constraint 3 b = 1.

()} Find the proarth rate optimal investment stratesy 5% Do nef constrain the bets
to be positive, but do constrain the bets to sum to 1. (This effectively allows short
selling snd margin,

(b} What is the optimal growth rate?
Solution: Megative horse race

(a) Let B, =1 & =0, and note that 3,0 =m—1. Let g, = -[1-':,-"E‘I &{I Then, {g}
is & probability distribution on {1,2,...,m}. Now,

W = Zpulﬂﬁil—bll
= Y piloggi(m — 1)

= logim - 1)+ Zﬁ'l lﬂﬁﬂ%
i i

= logim— 1) — Hip} — Dip|g) .

Thus, W™ is obtained upon setting D(pllg} = 0, which means making the bets
such that p = g1 = -&-J,,-"I:rr.' =1}, 0r bi=1-(m— 1) . Albternatively, one can use
Lagrange multipliers to solve the problem.

(b} From (a} we directly see that setting 2(p|g) = 0 implies W™ = logim — 1) —H (p).

17. The §i. Pefersburg pomdoxr. Many yvesrs spo in sncient 5t. Petersbure the folloering
sambling proposition caused prest consternation. For an entry fee of ¢ units, a ganbler
receives a payoff of 2% units with probability 275,k =1.2,... .

()} Show that the expected payoff for this paoee is infnite. For this resson, it was
arpued that ¢ = 20 wes s “air” price to pay to play this gaane, Mot people Aod
this answer absurd.

(b} Suppese that the gambler can buy & share of the game. For example, if he in-
vests of2 units in the pame, he receives 12 a share and & retorn X /2, where
PriX =2} =2"% k=1.2,... . Suppme X1.Xz.... are ii.d. according to this
distribution and the gambler reinvests all his wealth each time. Thus his wealth
5, at time n is given by

g, = f[ ol (6.05)
Sp = — Ri%
il
Show that this limit is oo or (I, with probability one, accordingly as ¢ < & or
o = o* Identify the “fair” entry fee o,
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More realistically, the sambler should be allowed to keep a propartion & = 1 — B of his
ey in his poclket amd invest the rest in the S5t Petersburg g, His wenlth st tioe

e 15 then
it b b..’{
Sa=]] (b+ T‘) (6.06)
1= i
Let
= s Bk
Wibe)=3_ 2 log (1 —b+—|. (6.07)
=] i
We have
S =W ik (6.08)
Let
W (e) = Wb, c). (6.99)

Here are somwe questions about WH(e).

(e} For what walue of the entry fee ¢ does the optimdsing valuwe 5* drop below 17
(d} How does 5 wary with o7

(e} How does W*e} fall off with 7

Mote that sinee Wie) = 0, for all ¢ | we can conclude that any entry fee ¢ is fair.

Solution: The 5f Pelersburg parador.

(8] The expected return,
EX = ‘Z plX = 2k ok = ‘Zz kok — Z 1= oo (6. 1041}
k=] fr=] b=

Thus the expected returm on the pame s infnite.

(b} By the strong lew of large munbers, we see that

it
2 log 5, = it E log X, —loge — Elog X —loge, wopd (6.101)
Tt i Yoo

and therefore 5, poes to infinity or ) according to whether Elog X is greater or
less than loge. Therefore

logc® = Elog X =3 k27" =2, (6.102)
k=1

Therefore & fair entry fee is 2 units if the gambler is foreed to invest all his money.
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Figure 6.1: 5t. Petersburg: Wik ¢} as a nction of & snd o

¢} If the ppmbler is not required to invest all his money, then the srowth rate is

"'-.: i ( b2k
Wik ¢} = 2% log |1 =54 ) ; (6. 103)
‘i-; \ e} |

P

For b=0 W=1 andfor 5=1, W= Flog X -loge=2—-loge. Differentiating

-

b fined the optimum value of &, we obtain

W (b, c) 2 1 ok
e, o SR Wl o N 1|—\J (6. 104)
e P oy M2k '| _ -y

, [1=0 5

Unfortunately, there is noexplicit solution for the & that maximizes W for & given

p-

value of o, and we have to solve this numerically on the computer,

We have illustrated the results with three plots. The first (Figure 6.1} shows
Wik, o) a5 a fomction of & and o, The second (Figure 6.2 lshows 5% a5 a function
aof ¢ and the third (Figure 6.3) shows W7 as a function of o,

From Fipure 2, it is clear that 5 is less than 1 for ¢ > 3. We can also see this

. : AW [be) -
analvtically by caleulsting the slope i{.f— it b=1.
Wb, ) = 1 ok * P
o = Yk [ -14 = (6. 105)
i = [l el ¥,
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Figure 6.3 5t. Petersburg: WHE, o) as a lunction of o,
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3 L (?E ) (6.106)

s i BB S 6. 106

L \d

= 3 a7 (6. 107)
b= |

. 1_% (6. 108)

which is pmsitive for ¢ < 3. Thus for ¢ < 3. the optimal salue of & lies on the
boundary of the region of 5's, snd for ¢ > 3, the optimal value of & lies in the
tvberior,

(d} The variation of 5 with ¢ is shoen in Figure 6.2, As ¢ — o0, B — 1. We have
a conjecture (besed on oumerical results) that 5 — :f?l'ﬂ ® a5 ¢ — o0, but we
do not heve s proof.

(€] The variation of W* with ¢ is shown in Figure 6.3,

18. "]'uprr ‘S'f Frfrnﬁu:rq Finally, we have the super St. Petersburg parsdox, where

PriX = ] % o =12, .. . Here the expected log wrealth is infimite for sll & = (),
for all . mul the gmuhlirr 5 W lt.ll erowvs bo infinity faster then exponentially for soy
b = 1), But that doesnt mean all investment ratios & are equally good. To see this,
wie wish to maximize the relative growth rate with respect to some other port folio, say,
b= I:-JE -’E] Sl that there exists & unique b maximizing

(B + BX /c)

Elllf
|:—2 - EX'“I]

and interpret the answer.

FlogkX =3 7% log 227 = o, (6.104)
k

arvd thus with any constant entry fee, the ppmbler's money prows to infinity faster than
exponentially, sinee for any & >0,

W (h.e) = Z" J‘l:}p;(] —-b+4 _)

k=1

(6.110)

But if w& wish to maximize the wealth relstive to the I:.-JE: .-JE] portfolio, we need to
TERB TN 2

2
1— b+ 2
J(b. ) ;E?'Rlﬂg% (6.111)

k 3tTIT

As in the case of the 5t. Petersburg problem, we cannot solve this problem explicitly.
In this case, & computer solution is feirly straghtforward, although there are somse
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Fipure G.4: Super 5t. Petersburg: Jib, ¢} a5 a function of b and o,

complications. For example, for & = 6, 2 15 outside the normal range of numbser

representable on & standard computer. However, for £ > 6, we can approximate the
' ' ' ! ' - T ' '

ratio within the log by % without any loss of accuracy. Using this, we can do s simple

munerical conputation as in the previous problem.

As before, we heve illustrated the results with three plots. The frst ( Figore 6.4} shoaes
Jib, ) as a function of & and ¢, The second (Figure 6.5)shows 5 s s function of o
and the third (Fipure 6.6) shows J* ss s function of o

These plots indicate that for large values of ¢, the optimum strategy s not to put all
the money into the gane, even though the money srows at sn infinite rate. There exists
aunigque 5 which mesimizes the expected ratio, which therefore causes the wealth to
priry to infinity at the fstest possible rate, Thus there exists an optimal 5 even when
the log optimal portfolio s wdefined.
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Figure 6.5 Super 5t. Petersburg, 5 s a function of c.

Fipure 6.6: Super 5t. Petersburg: J*(F. ¢} as & nction of ¢
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