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Preface

In the early 1980s while working on a book on statistical modelling
(Gilchrist (1984)), I came across a distribution called the generalized
lambda distribution. I duly mentioned it in passing, (p. 45), observ-
ing that it was defined in a different manner than the other distri-
butions dealt with in the book. Later on, while working with stu-
dents on placement with Glaxo-Chem and in other work with Glaxo
Wellcome, the opportunity arose to become familiar with the prac-
tical use of this highly flexible distribution. It slowly dawned on
me, from this work and beginning to read the scattered literature
of relevance, that the evident practical value of the methods used
was not just a matter of one distribution but of a particular way of
looking at statistical modelling. As a result, the ideas in this book
were slowly put together. The book is not intended as a research
monograph, but rather as a straightforward introductory text for
practitioners of statistical modelling. However, the approach
adopted is different than the standard approach, as was taken in
the previous book, and leads to different definitions of even basic
quantities like the mean. Thus, in many ways we are forced to go
back to basics and look at statistical modelling from the beginning.
We look, however, from a different perspective, which is not
intended as a replacement to the classical approaches to modelling
but as a useful supplement, and indeed it will be seen that there
are many overlaps.

I would like to thank the following individuals: staff from Shef-
field Hallam University, especially Dr Steve Salter, Richard Gibson,
and Penny Veitch; Professor Emanuel Parzen for his helpful com-
ments and particularly for the idea of starting with an overview
chapter; staff from the Glaxo Wellcome Group, particularly Dr Max
Porter and Miss Gillian Amphlett; Dr Alan Hutson and James Megin-
niss for their many helpful comments on the penultimate draft text
(although any errors in the final text are my responsibility); and my
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CHAPTER 1

An Overview

1.1  Introduction

In the balance of this book we will look systematically at the many
issues associated with the steps of the statistical modelling process,
using an approach based on what will be termed quantile methods.
However, there is the danger that, if we do just go through these
methods step by step, the reader will not see the wood for the trees.
The aim of this chapter is thus to provide an outline of the wood. This
will be done by bringing together the simplest of the ideas and
approaches of quantile modelling to form both an initial picture and
a basis for later development. 

Anyone who has studied statistics, even at the most basic level,
will have already met quantile methods, although may not be aware
of it. A quantile is simply the value that corresponds to a specified
proportion of a sample or population. Thus the median of a sample of
data is the quantile corresponding to a proportion 0.5 of the ordered
data. For a theoretical population it corresponds to the quantile with
probability of 0.5. If Q(p) is the function, called the quantile function,
that gives the quantile values for all probabilities p, 0 ≤ p ≤ 1, then
the median is Q(0.5). Similarly, we have the quartiles Q(1/4) and
Q(3/4). Most users of statistics will have utilized tables of the normal
distribution to look up, for example, values such as 1.96 as the value
that has a probability of 0.975 of not being exceeded. Thus if N(p) is
the quantile function for the standard normal distribution then 1.96
is N(0.975), so the normal tables used are just the tables of the quantile
function for the standard normal distribution.

What is the link then to modelling? The fact that in the last
discussion a standard normal quantile function was used implied that
there was some prior modelling to justify the use of the normal dis-
tributional model rather than any one of the multitudes of alternatives.
The fact that a standard normal distribution was used required some

© 2000 by Chapman & Hall/CRC



2 AN OVERVIEW

matching of the data being studied to the normal distribution model.
Almost all practical statistics imply some form of modelling. 

We will study these ideas again more carefully later. But we still
have not said why an entire book needs to be devoted to linking the
ideas of quantile functions to the process of statistical modelling. There
are two prime reasons:

1. Statistical modelling is a tool used essentially as part of
problem solving. The purpose of having a statistical model
is almost always to assist in some problem-solving activity.
The model assists in carrying out a prediction; it is used in
some selection process or it helps in answering some “what
if …?” question. Modelling is part of the problem solving
process. A well-recognised feature of problem solving is that
problems are often solved by seeking alternative ways of
looking at the problem. For example, where data is a series
of observations in time, the classical models use a time
origin, t = 0, that is a fixed point in time. If, however, t = 0
is a moving time, e.g., it is always t = now, then a new range
of models become available for studying the problems of
time series. It will be seen repeatedly through the pages of
this book that expressing statistical ideas in terms of quan-
tile functions gives both a new perspective and sometimes
a simpler and clearer perspective. Thus an approach based
on quantile functions provides an additional perspective for
the problem solver in the use of statistical models. 

2. Many statistical models consist of deterministic and sto-
chastic (chance, random) elements. The classical approach
to statistical modelling is such that the deterministic ele-
ment is often built up by adding together, or sometimes
multiplying, simple components, as with a construction kit
like Lego™. The stochastic element, however, is usually
chosen from a library of distributional models that has been
built up over the last few centuries and is described in such
books as Johnson, Kotz and Balakrishnan (1994 and 1995)
and Evans, Hastings and Peacock (1993). We will see that
if the stochastic element is modelled using quantile func-
tions, then both elements in the model can be developed
with a common construction kit approach. In the same way
that deterministic modelling is a construction process so,
too, using quantile functions is distributional modelling.
Together there is a unified approach to model construction.

© 2000 by Chapman & Hall/CRC



THE DATA AND THE MODEL 3

For the rest of this text we will amplify and explore these two ideas.
For now, however, let us start at the beginning.

1.2  The data and the model

Statistics has to start with data, a set of numbers collected in some
experiment, survey or observational study. Sometimes a simple study
of the data may seem to tell us what we want to know. We can draw
plots of the data and work out average values and get a feel for the
situation being studied. However, one feature that is almost univer-
sally present in data is its variability. In addition to the factors in
the situation of which we are aware, there will be many other chance
influences jostling data values away from the perfect information we
would like to have. We are forced to recognise that if we repeated
the exercise we would not get a repeat of the same set of data. We
thus have to speak of the data obtained as being a sample from a
population of possible values. The language reflects the early use
of a sample of people being measured as representative of the whole
population of a country. It is hoped, for example, that a large random
sample will clearly and accurately show the features of the population
of interest. We can describe the sample using graphs and summary
numbers, such as the average. To describe the population we need
the concept of the model, which is usually a mathematical descrip-
tion of the features of interest. Over the centuries, vast ranges of
mathematically based models have been developed to cover situations
in both sciences and social sciences. These models often consist of
two components. First, there is a deterministic element which
describes behaviour or relationship with no allowance for chance or
variability. Second, there is the random element that allows for the
influence of the uncertainty inherent in almost all situations. The
focus of this book is on the forms that the random element may take,
although in Chapter 12 we look at the construction of models that
involve the two elements.

1.3  Sample properties

Before we can sensibly model a set of data we need to have a clear
perception of it, otherwise we will find ourselves imposing our views of
how it ought to behave, rather than finding out how it does behave. The

© 2000 by Chapman & Hall/CRC



4 AN OVERVIEW

best way to develop this perception and feel for the data is graphically,
with the support of some numerical summaries of the properties seen
on the graphs. Failure to link the graphs and summaries can result in
the use of summaries that are meaningless or misleading for the data
being analyzed. Let us look at a set of data to illustrate a number of
different approaches.

Example 1.1: Table 1.1 gives the layout for a calculation based on the
maximum flow of flood water on a river for 20 periods of 4 years, in
million cu. ft. per sec. The data are given and studied in Dumonceaux
and Antle (1973). There are no strong features over time so the distri-
butional features of the whole set of data will be used for illustration,
although we will return to this issue later. The original data has been
sorted by magnitude and placed in the column headed x. This is a
fundamental step in the types of analysis that will be developed in this
text. It is the ‘shape’ of the ordered data that describes its structure.
With each ordered value, x, we will associate a probability p, indicating
that the x lies a proportion, p, of the way through the data. At first guess
we would associate the rth ordered observation, denoted by x(r), with pr

 p  x n = 20
0.025 0.265 Dx Dp Mid-x Mid-p Dx/Dp Dp/Dx
0.075 0.269 0.004 0.05 0.267 0.05 0.08 12.50
0.125 0.297 0.028 0.05 0.283 0.1 0.56 1.79
0.175 0.315 0.018 0.05 0.306 0.15 0.36 2.78
0.225 0.3225 0.008 0.05 0.319 0.2 0.15 6.67
0.275 0.338 0.016 0.05 0.330 0.25 0.31 3.23
0.325 0.379 0.041 0.05 0.359 0.3 0.82 1.22
0.375 0.380 0.001 0.05 0.380 0.35 0.02 50.00
0.425 0.392 0.012 0.05 0.386 0.4 0.24 4.17
0.05 0.402 0.010 0.05 0.397 0.45 0.20 5.00
0.525 0.412 0.010 0.05 0.407 0.5 0.20 5.00
0.575 0.416 0.004 0.05 0.414 0.55 0.08 12.5
0.625 0.418 0.002 0.05 0.417 0.6 0.04 25.00
0.675 0.423 0.005 0.05 0.421 0.65 0.10 10.00
0.725 0.449 0.026 0.05 0.436 0.7 0.52 1.92
0.775 0.484 0.035 0.05 0.467 0.75 0.70 1.43
0.825 0.494 0.010 0.05 0.489 0.8 0.20 5.00
0.875 0.613 0.119 0.05 0.554 0.85 2.38 0.42
0.925 0.654 0.041 0.05 0.634 0.9 0.82 1.22
0.975 0.74 0.086 0.05 0.697 0.95 1.72 0.58

Table 1.1.  Layout for flood data plots
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SAMPLE PROPERTIES 5

= r/n, n = 20, r = 1,…,20. However, the range of values we would expect
for p is (0, 1). The value of r/n, however, goes from 1/20 to 1, i.e., it is
not symmetrical. Hence, to get the p values symmetrically placed in the
interval (0, 1), we use the formula pr = (r – 0.5)/n. This formula corre-
sponds to breaking the interval (0, 1) into 20 equal sections and using
the midpoint of each. Thus we have pairs of values describing the data
as (x(r), pr). The value of x for any p is referred to as the sample p-
quantile. There are two natural plots of such data. First, of x(r) against
pr, and second, of pr against x(r), which are just the same plot with the

Figure 1.1. (a) Flood data — x against p; (b) Flood data — p against x
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6 AN OVERVIEW

axes interchanged. However, a look at these plots in Figure 1.1(a) and
(b) shows that different features stand out most clearly in different plots.
For x against p, there is a steady increase in x that becomes a steeper
increase towards the higher values of p. For the plot of p against x, the
change in the slope of p with x looks more dramatic, as does the break
in the data. The break is due to two of the ordered observations being
somewhat further apart than those around them. This is almost certainly
a chance feature and often occurs in such plots. The difference in slope
between high values and low values of x looks to be a much more natural
feature of the data. 

The discussion of slopes suggests that the slopes themselves be plotted.
Thus if Dx is the difference between two successive values of the ordered
x, called spacings, and Dp is the difference in their p values, then we
can derive a set of 19 pairs (Dx,Dp). The calculation is shown in
Table 1.1 and the consequent slopes Dx/Dp and Dp/Dx calculated. Figure
1.2(a) shows Dp/Dx plotted against the mid-values of the two xs used
for each Dx. Figure 1.2(b) shows the values of Dx/Dp plotted against
the mid-values of the two ps used for each Dp. In Figure 1.2(a), the
points are linked to form a polygon. Linking successive points is a
procedure that sometimes helps, and sometimes hinders, seeing the
data. The high peak is due to two x values being particularly close
together. The plot shows a great deal of random behaviour, but also
some structure, with the higher values being around 0.4 and a strag-
gling tail to the right. The plot of Dx/Dp against p shows low values
over the central third of the probability and higher values at the
extremes, particularly to the right. One final variant used in plotting
these quantities is to plot Dp/Dx, not against x, but against p. This plot
shows how the rate of change in the probability is modified according
to how far, proportionately, the observations are through the data, as
Figure 1.3 illustrates. 

The problem of the randomness exhibited by Dp/Dx is partially dealt
with here by a process of smoothing the data. We deal with the detail
of this later. It clearly helps the picturing of the situation, at the cost of
some distortion. This group of five plots illustrates the points that (a)
in any set of data, particularly when there are as few as 20 observations,
there will be many results of sheer randomness in the data; (b) different
plots will show most clearly different features of the data; (c) in spite of
the randomness, there are features, structures, in the data that the user
can seek to study and describe.

Before leaving the data presented in Table 1.1, it should be noted that
during the course of this book we will often show the layouts for calcu-
lations, sometimes just a section of a bigger table for illustration. The
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SAMPLE PROPERTIES 7

approach throughout is to present statistical calculations in column
form. This approach is regarded as essential for building a feel for both
the data and the models being used. It also facilitates the plotting of
graphs, another central emphasis in our studies.

In addition to graphical studies of data it is useful to have some summary
values that give a numerical indication of the shape of the data. The
simplest of these is the sample median, m, which is the mid-value in
the data. With the even number of observations in Table 1.1 the median

Figure 1.2. (a) Flood data — Dp/Dx against mid-x; (b) Flood data — Dx/Dp against
mid-p
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8 AN OVERVIEW

is taken to be midway between the tenth and eleventh observations, so
m = (0.402 + 0.412)/2 = 0.407. The values one quarter and three quarters
of the way through the data are called the sample lower quartile and
upper quartile, respectively, lq and uq. For Table 1.1 these will again
lie between data points. We use the halfway point for now, but discuss
the matter further later. Thus lq = (0.3225 + 0.338)/2, which is 0.330.
Similarly, uq = 0.4665. 

Two measures of the shape of the data can be derived from the quartiles.
The first is the interquartile range, iqr, which is simply the difference
between the two quartiles, iqr = uq – lq. For Table 1.1, this is 0.136.
The iqr gives a simple measure of the spread of the data. Parzen (1997)
suggests the quartile deviation, defined as 2iqr, as a more suitable
quantity for some purposes. The range, w, of the data is the total spread
from smallest to largest observation, which in our case is 0.475. For a
symmetrically shaped distribution, the deviations of the quartiles from
the median will be approximately the same. Thus the difference between
these deviations is a measure of the non-symmetry, the skewness, of
the data. The second quartile-based measure defines the quartile dif-
ference by 

qd =(uq – m) – (m – lq) = lq + uq – 2m

For the data of Table 1.1, this is –0.018. A standard measure of skewness
is given by Galton’s skewness coefficient, g, which divides the quar-
tile difference by the inter-quartile range to get a measure that does not

Figure 1.3. Flood data — smoothed Dp/Dx against mid-p
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MODELLING THE POPULATION 9

depend on the measurement scale of the data. Thus g = qd/iqr. For the
data here, this is –0.13, which is a small skewness to the left. A look at
Figure 1.2(a) reveals the care needed when handling single measures
such as g. The value of g depends on the values of the observations at
or next to three specific points. From the figure it is seen that to the
right of these there are three observations extending well to the right.
There is thus some right skewness that this measure misses for this
data. This fact emphasizes the need to visually study data as well as
develop summaries. It also points to the need for a wider range of
summaries, which will be addressed later. 

The above example introduces a number of ways of measuring and
plotting some of the features that are often important in understanding
a set of data. Just having such information alone may have practical
use. However, we are often seeking to achieve some model of the
situation, some theoretical model that has a structure similar to that
shown by the data. We want to link the sample features to correspond-
ing features in the population from which our sample comes. We
therefore need to turn to ways of describing a population.

1.4  Modelling the population 

In this section we will concentrate on the random component of sta-
tistical models and in particular on the models for the random vari-
ability involved. Figures 1.1(a) and (b) and 1.2(a) and (b) illustrated
four ways that can be used to show the structure of a sample from a
distribution. In population terms these represent four different ways
in which we may define the model for the random variation. The first
two of these will be found in almost all statistics texts, the second two
are rarely mentioned. We will describe all four and also introduce some
specific illustrative models for future use.

The cumulative distribution function

The Cumulative Distribution Function, CDF, denoted by F(x), is
defined as the probability of a variable X being less than or equal to
some given value, x, using the convention of capitals for a random
variable generally and lower case for specific values. Thus

F(x) = Probability (the random variable X ≤ x).
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Figure 1.4 shows a typical form for such a function. The function
must start at the value of zero probability at the left-hand end of the
axis and build up to the probability of one (certainty) to the right. It
must also clearly be a non-decreasing function. The plot corresponds
to the sample plot of p against x. We refer to the way the probabilities
associated with a variable spread over the possible values as the
distribution, however they are formally defined. The CDF thus gives
one way of defining a distribution. 

Example 1.2: Many pocket calculators and most, if not all, mathematical
or statistical software provide a function usually called RAND. This
function produces a number in the interval (0, 1). Each time it is used
it produces a different number, all numbers being equally likely. These
are random numbers. If U is such a number, it is said to have a
continuous uniform distribution. For such a distribution, the proba-
bility of a number being less than 0.5 will be 0.5, etc. Hence in formal
terms and using the convention of u for a uniform variable:

F(u) = u, 0 ≤ u ≤ 1.

To this we would technically need to add that

F(u) = 0, u < 0, F(u) = 1, u > 1,

but for practical purposes we keep to values in the range of the distri-
bution given by 0 ≤ u ≤ 1. 

Figure 1.4. A cumulative distribution function, F(x)
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Example 1.3: A distribution that frequently occurs where time is the
variable, such as the time interval between arrivals of customers at a
service point, is called the exponential distribution. The probability
of arrival before time x increases most rapidly at first and then gradually
flattens towards its ultimate value of one. The mathematical form that
describes this curve is:

F(x) = 1 – e–γx, 0 ≤ x ≤ ∞, γ ≥ 0.

The parameter γ represents in our illustration the rate of arrival of
customers.

The probability density function

The Probability Density Function, PDF, denoted by f(x), provides a
second means of defining a distribution. Formally it is defined by the
relation:

f(x)dx = Probability (x ≤ the random variable X ≤ x + dx),

where dx is an infinitesimally small range of x. The area under the
curve of f(x), which is the total probability of having any observed
value, must be one. To see the relation between the CDF and PDF
note that we can write, in simple calculus terminology, 

f(x)dx = Probability (observation in dx) = F(x + dx) – F(x) = dF(x).

Thus the PDF, f(x) = dF/dx, is the derivative of the CDF. Figure
1.5 illustrates the form of a PDF. Note that this population function
corresponds to the sample plot of Dp/Dx against x.

Example 1.4: For the uniform distribution F(x) = x, so f(x) = 1. More
formally we write

f(x) = 1. 0 ≤ x ≤ 1.
= 0, otherwise.

Example 1.5: For the exponential distribution, the derivative of the
CDF is γe–γx, hence the PDF is

f(x) = γe–γx, 0 ≤ x ≤ ∞ 
= 0, –∞ ≤ x < 0.
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As mathematics has developed it has ensured that all well-tabu-
lated and used functions have derivatives that are well tabulated and
used. Hence if a distribution has a CDF that can be explicitly expressed
in terms of common functions, it will also have a PDF that can be so
expressed. However, the converse is not the case:

Example 1.6: One of the most commonly occurring distributions is the
normal distribution, which is defined by

f(x) = [1/√(2π)σ] exp[–(x – µ)2/2σ2], ∞ ≤ x ≤ ∞.

the parameters µ and σ control the positioning and spread of the distri-
bution. Unfortunately, this PDF does not have a CDF that can be written
in simple explicit terms. For the case where µ = 0 and σ = 1, the
distribution is called the standard normal distribution. The CDF has
to be evaluated numerically, but is available in statistical tables, statis-
tical software, and spreadsheets. 

The quantile function

The Quantile Function, QF, denoted by Q(p), provides a third way of
defining a distribution. Formally, we have

xp = the value of x for which Probability (X ≤ xp) = p.

Figure 1.5. A probability density function, f(x)
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MODELLING THE POPULATION 13

The value xp is called the p-quantile of the population. The func-
tion xp = Q(p) expresses the p-quantile as a function of p and is called
the quantile function. The first paper to systematically develop
quantile functions was by Parzen (1979). The definitions of the QF
and the CDF can be written for any pair of values (x, p) as x = Q(p)
and p = F(x). These functions are thus simple inverses of each other,
provided that they are both continuous increasing functions. Thus we
can also write Q(p) = F–1(p) and F(x) = Q–1(x). For sample data the plot
of Q(p) is the plot of x against p. Figure 1.6 shows the quantile function
corresponding to the CDF of Figure 1.4.

Example 1.7: Putting F(x) = p in the uniform distribution, so p = x,
gives as the inverse

Q(p) = p, 0 ≤ p ≤ 1.

Notice that Q(p) is only defined for the interval 0 ≤ p ≤ 1, since proba-
bilities do not exist outside this range, even if the mathematical function
does. This condition will be implicit in all statements involving p for the
rest of this book.

Example 1.8: If we take the CDF of the exponential distribution, F(x) =
1 – e–γx , write F(x) = p and solve the equation for x in terms of p, we get

Figure 1.6. A quantile function, Q(p)
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14 AN OVERVIEW

Q(p) = –η ln(1 – p), where η = 1/γ .

It will be seen that the parameter η controls the spread of the distribu-
tion. It is a scale parameter. 

Example 1.9: Consider the distribution defined by its QF:

Q(p) = 0.2 ln(p) – 0.8 ln(1 – p).

This quantile function is an example of a distribution called the skew
logistic. The shape of the quantile function is shown in Figure 1.6. We
will discuss it later. For now it is sufficient to note that we cannot invert
this quantile function to get p in terms of x, so that no explicit CDF, or
consequently PDF, exists. The PDF can, however, be drawn and Figure
1.5 shows its shape.

Example 1.10: The commonly used normal distribution does not have
an explicit QF and numerical methods are required to evaluate it. None-
theless, it is widely used in statistical tests and forms the basis of many
statistical tables. Statistical software and spreadsheets will give the
values of the standard normal QF, N(p). To obtain the quantiles of a
normal distribution with parameters µ and σ, we use the quantile func-
tion Q(p) = µ + σN(p). The standard normal is symmetric about the value
zero, so Q(p) will be symmetric about the parameter µ, the mean, which
controls position, and σ, the standard deviation, which controls the scale.

The quantile density function

In the same way that the CDF can be differentiated to give the PDF,
we can use the derivative of the QF to obtain a function of considerable
value in describing distributions. This derivative is the Quantile Den-
sity Function, QDF, defined by

q(p) = dQ(p)/dp.

As Q(p) is a non-decreasing function it follows that its slope, q(p), is
non-negative, at least for 0 ≤ p ≤ 1. We have seen the corresponding
form of q(p) for sample data in the plot of Dx/Dp against p.

Example 1.11: For three of the distributions previously mentioned that
have explicit Q(p), we obtain

Uniform: q(p) = 1. 
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A MODELLING KIT FOR DISTRIBUTIONS 15

Exponential: q(p) = 1/(1 – p).

Skew Logistic: q(p) = 0.2/p + 0.8/(1 – p). 

We now have four different, but related, ways of defining a distri-
bution. Classical statistics is based on using the first two and almost
all distributions are defined in terms of their CDF or PDF. As we
have seen, there are some distributions like the exponential that have
explicit mathematical forms for each of the CDF, PDF, QF and QDF.
However, there are others that only have a simple mathematical form
in one or two of the four; for example, the skew logistic that we have
illustrated has only explicit QF and QDF. If we wanted values of the
CDF or PDF for these distributions, use would have to be made of
numerical techniques to obtain specific approximate values of p for a
given x. In this book we concentrate primarily on the use of the
quantile function for the formulation of distributions. As we have
noted, the quantile function is rarely mentioned explicitly in statisti-
cal textbooks. It is often used, however, since a little study will show
that most statistical tables are, in fact, tables of the quantile functions
for various distributions. As a shorthand terminology we refer to
distributions of any type that we approach from the quantile point of
view as quantile distributions. In the next section we will explore
the justification for approaching statistical modelling from a basis of
quantile distributions.

1.5  A modelling kit for distributions

When in the usual process of statistical modelling the deterministic
part of a model is considered, the model is developed using what can
best be described as a modelling kit approach. For example, suppose
one has a simple set of monthly profit figures, xt, over several years
of data. A plot of the data might suggest that although there is a
general mean level over the period, there are also an upward trend,
an annual seasonal variation, and some random, irregular variation.
To model these features we would introduce terms and components:
L for the average level, T for the trend (the slope), S for the seasonal
variation, and I for the random variation. Without going into the
definitions and details it is intuitively reasonable that these could then
be combined to form a reasonable model. This might be

x = L + T + S + I,
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or if the seasonal effect creates a percentage change in the underlying
mean and trend levels, possibly

x = (L + T )S + I.

Thus the model consists of a set of simple components that can be
added or multiplied to create an appropriate model for the data. The
components and the joining rules of addition and multiplication can
be regarded as a modelling kit analogous to Lego™ or Meccano™.
When we look specifically at the random component I, then the chances
are some common distribution, such as the Normal, will be used. 

The modelling of random variability almost always takes the form
of the selection of a distribution from a large library of distributional
models. This library has been built over the last two hundred years
or so. A transformation of the data may be used if the library model
does not work too well, but unfortunately this transforms the deter-
ministic part of the model as well, which may create its own difficul-
ties. The reason for the difference in approach to the deterministic
and the random aspects of the model is that, unlike the components
of the deterministic part of a model, we cannot add or multiply
components for the random part of a model and get a developed model,
at least not when they are defined in the common way by CDF or
PDF. Addition of CDF or PDF leads to mixtures of distributions
rather than new distributions. Thus there is no model building kit
available for the random component parallel to that for the deter-
ministic component. Modellers are therefore obliged to use ready-
made distributional models from the library. The basis for the
approach to statistical modelling based on quantile function models,
developed in this text, is that quantile functions can be added and,
in the right circumstances, multiplied to obtain new quantile func-
tions. Quantile density functions can also be added together to derive
new quantile density functions. 

These properties enable the modeller to seek an appropriate model
for a distribution by combining component models to create new mod-
els. We will also see later that, as with deterministic model compo-
nents, we can develop quantile functions by transformations of various
types. Thus there does exist a modelling kit for the distributional
element in models and it is based on quantile functions. The statistical
modeller is thus in the same situation in relation to both deterministic
and random components for the model. On the basis of the data, the
task is to choose appropriate deterministic and random components
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MODELLING WITH QUANTILE FUNCTIONS 17

and find appropriate ways of combining them so that the fitted model
will show the same basic properties as are observed in the data. The
modeller is thus not limited to the library of classical statistical models
but can tailor the models to the needs of the specific application. To
prepare the ground for this we first need to look more closely at the
quantile function and its elementary properties.

1.6  Modelling with quantile functions

As a means of introducing the basic modelling properties of the quan-
tile function and quantile density function we will work through a
sequence of examples.

Example 1.12: Let us start by returning to the exponential distribution.
The mathematical form of the PDF is almost always used as the basic
definition in texts, thus

f(x) = γe–γx, x ≥ 0.

As we have seen, the CDF and QF are F(x) = 1 – e–γx and Q(p) = –η ln(1
– p), where η = 1/γ. The range of values that x can take, the distribu-
tional range or limits, DR, is found by putting the probability range
of 0 to 1 in Q(p). Thus Q(0) = 0 and Q(1) = ∞. To get the middle value
of the distribution, the population median, M, put p = 0.5, which gives
M = –η ln(0.5) = η ln(2). The sample median, m, has already been
introduced. As a matter of convention, upper case letters will be used
for population measures and lower case letters for the corresponding
sample measures. 

Example 1.13: Consider the quantile function Q(p) = λ – η ln(1 – p). If
λ = 0 and η = 1, then we have S(p) = –ln(1 – p), which is the unit
exponential distribution and for which M = ln(2). It is evident that
multiplying by η stretches the scale of the distribution. Thus η is a scale
parameter. If the parameter λ is now added, the left-hand end of the
distributional range becomes Q(0) = λ and the median becomes M = λ +
η ln(2). Thus the whole distribution moves its position an amount λ to
the right. The parameter λ is hence called a position parameter. In
this particular example the position parameter is also a threshold
parameter since it defines the lower end of the distributional range. 

The last example illustrates the general ability of QF approaches
to change position and scale in a simple way. It is, therefore, convenient
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to first look at distributions, without reference to position or scale, by
using the simplest, most basic formula, such as –ln(1 – p) for the
exponential. We will call these simplest formulae the basic forms,
and denote their quantile functions by S(p). S(p) may contain param-
eters that control shape. The basic form can then be generalized to
include position and scale parameters by using the transformation

Q(p) = λ + η S(p).

In future discussions we will use S(p) where it is appropriate to high-
light that we are using a basic form.

Example 1.14: Suppose a set of data is obtained from the unit exponential
distribution and then has a minus sign put in front of each observation.
The consequent distribution will be called the reversed or reflected
exponential, shown in Figure 1.7. The quantile function for the ordinary
unit exponential is, as has been seen, S(p) = –ln(1 – p). Looking at the
figure it is clear that the p-quantile for the reflected exponential is minus
the (1 – p)-quantile for the ordinary exponential. Thus the quantile func-
tion for the reflected exponential is S(p) = ln(p). For p = 0, this is –∞ and
for p = 1, it is zero as required. Figure 1.8(a) shows the quantile functions
of the exponential and its reflected counterpart.

Example 1.15: Suppose the quantile functions of the exponential and
the reflected exponential are added together giving

S(p) = –ln(1 – p) + ln(p) = ln[p/(1 – p)].

Figure 1.7. PDF of the reflected exponential
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Figure 1.8 (b) shows a plot of this sum. It will be seen that the centre
line, obtained by the addition, is symmetrical about the value x = 0,
which occurs at p = 0.5 and therefore is the median. It is also evident
that in the tails the shape is that of the corresponding exponential or
reflected exponential distribution. This model is called the logistic dis-
tribution. Figure 1.9 shows the addition operation for the quantile
density functions of the exponential and reflected exponential. As the
derivative of a sum is the sum of the derivatives, the addition of quantile

Figure 1.8. (a) Quantile functions of the exponential and reflected exponential.
(b) Addition of exponential and reflected exponential quantile functions
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functions must lead to the addition of quantile density functions. Figure
1.10 shows the PDF of the logistic distribution. 

Example 1.16: Return briefly to the uniform distribution, for which the
quantile function is S(p) = p. Obviously the distributional range for this
distribution is (0,1) and the median is 0.5.

Example 1.17: Suppose a set of data has exponential-looking tails but
is much flatter at the peak than the logistic distribution. The uniform

Figure 1.9. Addition of quantile density functions

Figure 1.10. The logistic distribution
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is totally flat, so consider modelling the distribution by adding a multiple,
K, of the uniform to the logistic:

S(p) = ln[p/(1 – p)] + Kp.

Figure 1.11 shows the shape of the PDF for this model and it is seen
that it suitably combines the properties of the uniform and the logistic
distributions, havin g a flattened logistic shape. The median is K/2 (=
0.1) indicating the shift in position of the distribution due to the added
uniform distribution.

Example 1.18: In Example 1.15 the exponential and the reflected expo-
nential distributions were combined. This was done with equal weight-
ings for the two. Suppose now more weight is put on the right-hand tail
and less on the left, as has already been done in Example 1.9, used for
the previous illustration. Figure 1.5 illustrated the PDF for the model
defined by the quantile function

S(p) = 0.8 [–ln(1 – p)] + 0.2 [ln(p)].

It will be seen that the distribution is now skewed to the right, since
more weight is given to the exponential term than to the reflected
exponential. We will call it the skew logistic distribution. The general
basic form for this distribution can be written as 

S(p) = ω [–ln(1 – p)] +(1 – ω)[ln(p)], 0 ≤ ω ≤ 1.

weight on uniform = 0.3

Figure 1.11. The uniform and logistic distribution
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The parameter ω thus controls the relative weight given to the two tails
of the distribution. A more useful alternative slightly reparameterizes
this to give:

S(p) = {(1 + δ)/2}[–ln(1 – p)] +{(1 – δ)/2}[ln(p)], –1 ≤ δ ≤ 1.

In this form, positive values of the parameter δ, the skewness param-
eter, correspond to distributions skewed to the right, as in the example
above, where δ = 0.6. A zero value gives the symmetric distribution and
negative values give a distribution skewed to the left (negative skew-
ness). The change from the basic form to the general form is achieved
by multiplying by a scale parameter and then adding a position param-
eter, so in general this is a three-parameter model. Each parameter
corresponds to a visible feature of the distributional shape. Unlike the
exponential and the symmetric logistic, this quantile function cannot be
inverted to give x in terms of p. Thus there is no explicit CDF or PDF
for this distribution. 

Example 1.19: The previous examples have made use of the ability to
add quantile distributions to generate new ones. If a quantile function
is positive, it can be multiplied by another positive quantile function to
obtain a new distribution. Consider, for example, the two positive dis-
tributions: the uniform distribution and the Pareto distribution. The
Pareto is a distribution with a long tail to the right. It has a quantile
function in basic form:

S(p) = 1/(1 – p)β, β > 0.

The parameter β is a shape parameter and we denote the distribution
by Pa or Pa(β). The distributional range is, from S(0) and S(1), (1,∞). If
the uniform quantile function, S(p) = p, is multiplied by that of the
Pareto, the following quantile function is obtained:

S(p) = p/(1 – p)β.

We will denote this by U × Pa. The uniform distribution is a special case
of the power distribution, defined by S(p) = pα, α > 0. Thus U × Pa is a
special case of the Power × Pareto distribution Po × Pa: 

S(p) = pα/(1 – p)β.

Figure 1.12 shows its derivation and form. Notice that, like the skew
logistic, this quantile function cannot be inverted to give an explicit CDF.
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Example 1.20: As a final illustration of the quantile-based approach to
modelling, let us return to the idea that models may contain both deter-
ministic and random elements. In a report by Scarf (1991) the depths
of corrosion pits in metal were modelled. The depth of the deepest pit
on an experimental slab of metal was modelled by a distribution called
the generalized extreme value distribution. This model will be dis-
cussed in Chapter 7. It has a quantile function 

Q(p) = λ + η[1 – (–ln(p))α]/α.

Figure 1.12. (a) The Power, Pareto and Power × Pareto distribution quantile functions.
(b) The PDF for the Power–Pareto distribution
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The experimental data suggested that both the depth and its variability
increased with time, t, in the same way and a power increase, tγ, γ > 0,
seemed appropriate. The model that combines both the required distri-
butional and deterministic features is

 Q(p) = λ tγ + η tγ[1 – (–ln(p))α]/α.

Here both position, λ tγ , and scale, η tγ, increase with the power of time
from values of λ and η at t = 1. Models that express the distribution as
a quantile function and involve the effects of other variables, in this case
only one, time, are called regression quantile models. The value of
the quantile form of the model becomes apparent if we wish to answer
a question such as: How thick must the metal be to give a 99% chance
of no corrosion holes going through the metal (p = 0.99) at time t = 100?
Clearly, the metal must be thicker than the corresponding 99% quantile
as given by the quantile regression model with p = 0.99 and t = 100.

We have shown through a set of examples that the quantile
function can be used as the basis for a range of approaches to the
construction of models for populations. The problem faced by the
modeller is how to construct models that match the situation being
studied. We have now seen some of the forms that the models might
take and we have looked at ways of describing data. Before a match
can be made, we need to look at summary ways of describing the
features of the distributional models.

1.7  Simple properties of population quantile functions

We have seen so far pictures of several distributions defined as quan-
tile functions. We have not as yet shown how to graph the probability
density function of such distributions or how to describe their proper-
ties. So we need to look a little further at the quantile function and
its behaviour.

The natural starting point is to substitute some values for p in
Q(p). This leads to population measures corresponding to those already
used to describe samples. 

p = 0.5 Q(0.5) = M, the Median.

p = 0.25 Q(0.25) = LQ, the Lower Quartile.

p = 0.75 Q(0.75) = UQ, the Upper Quartile.
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These, together with the distributional limits, Q(0) and Q(1), give, in
five numbers, a basic feel for the spread of the distribution over the axis.

Example 1.21: For the uniform distribution with Q(p) = p, the five
values defined are (0, 0.25, 0.5, 0.75, 1). 

Example 1.22: For the unit exponential distribution, S(p) = –ln(1 – p):

S(0) = –ln(1) = 0, LQ = –ln(3/4),  M = –ln(1/2) = ln(2),

UQ = –ln(1/4) = –ln(1/22) = 2ln(2) = 2M,  S(1) = –ln(0) = ∞.

If a model has position and scale parameters, λ and η, then Q(p)
= λ + ηS(p). The above measures of the shape of S(p) are transformed
in the same way to give the values for Q(p). Thus, for example, for the
median, using capital subscripts to refer to distributions (a natural
notation that we will use in future), 

MQ = λ + ηMS.

It is often helpful to use measures of shape derived from LQ, M,
and UQ. Thus as a measure of the spread of a set of data, we use the
interquartile range,

IQR = UQ – LQ.

This range includes the central half of the probability. 
The quantities LQD = M – LQ and UQD = UQ – M are the lower

and upper quartile deviations, respectively. The difference between
them gives a measure of skewness called the population quartile
difference:

QD = UQD – LQD = LQ + UQ – 2M.

If we divide QD by the IQR, we obtain the population Galton
skewness coefficient:

G = QD/IQR.

Notice that, as before relating Q(p) to S(p), by substitution 

IQRQ =  ηIQRS and GQ = GS.
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Thus the IQR is independent of the position parameter and G is
independent of both position and scale.

Example 1.23: As a further example, consider again the basic form of
the skew logistic distribution:

Q(p) = {(1 + δ)/2}[–ln(1 – p)] +{(1 – δ)/2}[ln(p)], –1 ≤ δ ≤ 1.

The main shape measures are, on substitution,

p = 1/4. LQ = {(1 + δ)/2}[–ln(3/4)] +{(1 – δ)/2}[ln(1/4)]

= 0.0837δ – 0.5493.

p = 1/2. M = {(1 + δ)/2}[–ln(1/2)] +{(1 – δ)/2}[ln(1/2)] 

 = δ ln(2).

p = 3/4. UQ = {(1 + δ)/2}[–ln(1/4)] +{(1 – δ)/2}[ln(3/4)]

 = 0.0837δ + 0.5493.

Using these in the derived statistics gives, on simplifying,

IQR = ln(3), QD = –δln(3/4), and hence, evaluating the ln(.) numerically,
G = 0.26186 δ.

It is now more evident that δ is a skewness parameter.

The quantile properties of models derived by multiplying quantile
functions together also have simple interrelations. Suppose we obtain
Q(p) by multiplication of A(p) and B(p), where A(p) and B(p) are non-
negative quantile functions. Any quantile is obtained by multiplication
and hence the median, for example, is MQ = MA × MB.

The quantile density function was introduced in Section 1.4.
Another related quantity is obtained from the PDF, f(x), by substitut-
ing for x with the quantile function, thus

fp(p) = f(Q(p)).

This was called the density quantile function by Parzen (1979).
To emphasize that it is basically the PDF expressed in terms of p
and to avoid mixing up the quantile density and the density quantile,
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the author will term this as the p-PDF. The shape of the p-PDF for
the skew logistic, discussed previously, is illustrated in Figure 1.13. 

The quantile density function and the p-PDF are closely related.
As x = Q(p) and p = F(x) for any pair of values (x, p), it follows from
the definition of differentiation that 

(dx/dp)(dp/dx) = 1 so (dQ(p)/dp)(dF(x)/dx) =1,

hence q(p)f(x) = 1 and, therefore, expressing all in terms of p, q(p)fp(p)
= 1. The two functions q(p) and fp(p) are thus reciprocals of each other.
For example, 

fp(p) = 1 – p for the exponential distribution; 

fp(p) = p(1 – p) for the logistic distribution; 

and 

fp(p) = (1 – p)1 + β/β for the Pareto distribution.

The previous result provides a way of plotting the PDF correspond-
ing to quantile functions. If we let p take the values, say pi = 0.01,
0.02, …, 0.99 and plot the points (Q(p), 1/q(p)), then we get the plot
of points (x, f(x)), i.e., the plot of the PDF of x. Thus we can obtain
plots of the PDF of a distribution entirely from the quantile function

Figure 1.13. The p-PDF for the skew logistic distribution
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and its derivative, without having to be able to invert Q(p) to get F(x).
The plots of PDF in this book are normally obtained in this fashion.
The 99 points are best supplemented by additional tail probabilities.
For example, p = 0.0005, 0.001, 0.002, etc., are usually adequate to
get a good plot of the PDF into the tails. The p = 0 and p = 1 points
may only be used if the distribution has finite limits for both Q(p)
and fp(p).

1.8  Elementary model components

Children’s construction kits such as Lego and the classic Meccano
involve two elements: a set of basic components and a means of joining
them together. In Lego, these elements are both associated with the
basic bricks. In Meccano, these are the flat metal shapes and the nuts
and bolts for joining them. Section 1.6 considered the means of com-
bining elements and illustrated them using a number of components.
Section 1.7 defined some of the properties of importance in describing
distributions and illustrated how the properties of constructed models
can relate to those of their components. It is worthwhile now to list
some of the components that comprise the modelling kit and look at
their simplest properties. In doing this only the basic form will be
considered, ignoring the position and scale parameters. There are no
doubt many distributions that might form the kit for particular spe-
cialist areas. Here we just concentrate on a selection of the simplest
ones that match familiar shapes across a breadth of statistical appli-
cations. Some of the component distributions have no parameters,
others have a shape parameter. Table 1.2 gives the distributions and
Table 1.3 lists some of their quantile properties. 

Figure 1.14 illustrates the shapes of the p-PDF of some of these
models, with β = 0.5 for the one-parameter distributions. Some of these
models have been referred to previously. It is worth noting a few points
about the tabulated information:

a. As previously noted, the inverse uniform distribution is a
special case of the Pareto when β = 1. 

b. The power distribution has a decreasing PDF only if β > 1.
c. The shape parameter β has a complex influence on the

form of the one-parameter distributions. The median and
IQR will be modified by position and scale parameters.
There will be a relation between the Galton skewness and
the β parameter alone, but the relation will not be simple.
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It will sometimes be helpful and insightful to have a notation
to describe how the more common models are constructed from their
components. The following form gives such a distribution built from
two components: A and the reflected version of B, RB, using the
additive skewed construction we have discussed previously in
Example 1.18. 

Distribution = (λ, η, δ, A, +, RB).

Basic QF, 
S(p)

Distributional 
range

Parameter-free basic distributions
Uniform distribution, U p  (0, 1)
Inverse uniform, 1/U 1/(1 – p)  (1, ∞)
Unit exponential, Exp –ln(1 – p)  (0, ∞)
Standard normal, N N(p)  (–∞, ∞)

One-parameter distributions
β > 0

Power distribution, Po pβ  (0, 1)
Pareto distribution, Pa 1/(1 – p)β  (1, ∞)
Weibull, W [–ln(1 – p)]β  (0, ∞)

Table 1.2.  Basic component distributions

Median
Interquartile 

range
Quartile 
deviation

Parameter-free distributions
Uniform distribution, U 0.5 0.5 0
Inverse uniform, 1/U 2 2.66 4/3
Unit exponential, Exp ln(2) ln(3) ln(4/3)
Standard normal, N 0 1.35 0

One-parameter distributions
Power distribution, Po 1/2β (3β – 1)/4β

 (1/4β) 
(3β + 1 – 2*2β)

Pareto distribution, Pa 2β 4β(1 – 1/3β) 4β(1+1/3β – 2/2β)
Weibull, W [ln(2)]β [ln(4)]β – [ln(4/3)]β [ln(4/3)]β +[ln(4)]β 

– 2[ln(2)]β
 

Table 1.3.  Basic component distributions — properties
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For example, the skew logistic is (λ, η, δ, Exp, +, RExp). Another
example is the distribution (λ, η, δ, Pa(α), +, RPa(β)), which has five
meaningful parameters. Classical distributional models have tended
to keep to two or three parameters. It is, however, now clear that there
are at least five features of a distribution that are expressed in models
such as this, namely position, spread, skewness, right-tail shape and
left-tail shape. Thus the use of multi-parameter models should not be
regarded as ill advised. The issues are

a. How many distinct features are evident in the data and
need to be modelled? Five distinct aspects need a model
with five parameters.

b. Can we in practice match the different parameters in
potential models to these features?

c. Have we sufficient data to carry out the detailed match-
ing? If we have only small data sets we may be forced to
use simpler models.

d. One general principle is always to use the model with the
minimum number of parameters needed to adequately
model the data. Putting in too many parameters will lead
to a better fit to the actual data obtained but probably a
worse fit to future data, since the model is picking up
essentially random features of the current data.

Distributions based on addition but without a skewness parameter
can be described in basic form as, for example, S(p) = A + RB. For

Figure 1.14. p-PDFs for some basic models
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multiplicative models the distributions can be multiplied, providing
the variables are positive, which is true for nearly the entire previous
list of components. Thus for the basic form, S(p)=A × B. For example,
the Uniform × Pareto, previously introduced, is U × Pa(β). 

It is evident that with the few simple components now introduced
there are a large number of possibilities for different shapes of distri-
butions. One can now begin to see the development of distributional
models as a process of model construction, using a kit consisting of a
variety of components and a variety of ways of joining them together. 

1.9  Choosing a model

The technical term for choosing a suitable model is identification.
This topic is discussed later in the book, in Chapter 8, where the aim
is to build models to get the most appropriate shapes for the data. For
the purpose of introduction, this process is reduced to trying out several
potential models in order to choose the best. In practical situations
the modeller rarely starts with total ignorance. Even a little experience
in an application area will suggest that there are certain models that
commonly occur. The graphical studies of the sample data will give a
feel for the basic shape of the distribution. These can be matched with
the forms that are already familiar or may guide in the construction
of new models using some of the ideas introduced in Section 1.6. Thus
it is assumed, for now, that several candidate models can be compared
with the data in a visual fashion.

The easiest way to do this comparison is via what is commonly called
a Q-Q plot. Suppose Q(p) is a suitable model, x(1), x(2), x(3), …, x(n) are
the n-ordered observations and pr, r = 1, 2, 3, …, n, are the corresponding
probabilities; pr = (r – 0.5)/n. The Q-Q plot is a plot of the points (Q(pr),
x(r)), i.e., the n data quantiles, x(r), against the corresponding model
quantiles, Q(pr). This plot will give, for a “good” model, an approximately
straight line since the model gives the p-quantiles, xp, as a function of
p; xp = Q(p). The line should be at 45°. In practice, Q(p) is often a model
“fitted” to the set of data, denoted by (p). Hence the plot of ( (pr),
x(r)) is called the fit-observation diagram and the 45° line the line of
perfect fit. If we use just a basic model the plot will still be approxi-
mately linear but the intercept and slope of the line will depend on the
unknown position and scale parameters of the distribution. From the
point of view of choosing the basic model these parameters do not matter,
so interest simply focuses on the occurrence of an acceptably straight
line. An inappropriate model will show some systematic curvature. A

Q̂ Q̂
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feature of such plots is that even the best always show some “snakelike”
wandering, but this can usually be distinguished from the systematic,
model-generated features of an inappropriate model. 

Figure 1.15 shows the fit-observation diagram for a model used
with the flood data of Example 1.1. The plot indicates a good choice
of model. It is also possible to plot together the sample values of Dx/Dp
and the corresponding values of the model quantile density function,
q(p), which is the population dx/dp. To illustrate, consider two potential
models for the flood data. For the moment it does not matter partic-
ularly what these models are. In Figure 1.16 they are called EV and
Weib. The plot gives the shapes of q(p) for these two models; also
shown is the sample q(p), which is the data plot of Dx/Dp. It is evident
that both models show the same basic shape as the data. It is also
evident that the right-hand tail of the EV model shows a steeper slope
than the Weib model. 

Obviously, ways of choosing the best model need to be studied
further. However, it is always important to refer back to the data. It
is clear here that with such a small and variable set of data, both
models will provide a passable description. It may be that the practical
application will influence the choice of model. For example, if our
objective is to use the right tail of the model in the design of flood
defences, then the EV model will evidently give more conservative,
cautious values than the Weib model. The plot also raises issues about
whether or not we could get better data, e.g., say annual data, to help
discriminate more clearly between the two models. 

For models with unknown position and scale parameters, the
straightness of the line of the Q-Q plots can still be examined. For

Figure 1.15. Flood data — Fit-observation plot for a Weibull distribution
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unknown shape parameters, there will be a need to give numerical
values to the parameters  to enable the Q-Q plot to be drawn. For
the models used in the example it is necessary to settle tentatively
on a model and use the methods in the next section to allocate
numerical values. Thus the modelling process is seen not to be a
linear one, but often an iterative process of revising first thoughts
in the light of later information.

Figure 1.16. Flood data — (a) Observation-fit plots for two models; (b) Quantile density
plots for two models and the data
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1.10  Fitting a model

It is now assumed that there are a set of data and a suitable form of
model. The model will probably involve position and scale parameters
and may even have several more. In much of statistics there has been
a tendency to keep to models with two or three parameters. However,
when large data sets are considered, their properties can at least be
listed as position, scale, skewness, right-tail shape and left-tail shape,
i.e., five distinct features that may need five distinct parameters.
Numerical values for these parameters are required so that the Q-Q
plot is a good line at 45°. Thus it is required to fit the model to the
data. The process of giving numerical values to parameters is called
estimation. Almost all the literature on estimation is based on defin-
ing distributions by their probability density functions or, very occa-
sionally, by their cumulative distribution functions. If these do not
have explicit form but do have explicit quantile functions, we are forced
to consider how to estimate the parameters in the quantile function.
It is often the case that having fitted a distribution we then use the
quantile form of the model in the application, for example, to assess
some high quantile value like Q(0.95) or Q(0.999). In these situations
it is natural to ask whether or not the quantile function might here
be used as the form to be fitted.

There are a vast number of methods of estimation. In Chapter 9
we will look in detail at those most suitable for fitting quantile models.
For now we look at two methods that are both simple and appropriate.
The simplest is commonly called the method of percentiles, although
it has sometimes been called the method of quantiles (e.g., see Hald
(1998) and Bury (1975)). The pi-th percentile of the population
described by the distribution Q(p) is simply Q(pi), where 100pi-th is a
suitable percentage. The corresponding sample percentile, quantile,
can be obtained from the data we saw in Section 1.3. The method of
percentiles chooses a set of k-suitable percentile points, p1, …,pk, where
k is the number of model parameters. The parameters are then given
the numerical values that ensure that at these k specific points the
percentiles of the sample and fitted population are identical. Thus the
model fits perfectly at these points.

Example 1.24: For the exponential distribution, the position parameter
is zero, the left-hand end of the distributional range, and the scale
parameter is the unknown η. The population median, the 50% percentile,
is given by Q(0.5) = ηln2, the sample median is given by m. The method
of percentiles chooses η to equalize these two, so the estimated η, denoted

© 2000 by Chapman & Hall/CRC



FITTING A MODEL 35

by , is given by  = m/ln2. Thus a sample median of 4.3 leads to an
estimated η of 6.2. The fitted model, denoted by (p), is thus (p) =
–6.2 ln(1 – p). The method describes what to do but it does not specify
what percentiles to use for the equalisation. The median was used here
as a reasonable central value. If, however, the fitted model is to be used
to make predictions about relatively rare events, with high values of p,
it would make more sense to match population and sample for p values
out towards the right tail. However, there is a need for caution since the
sample percentile will usually have a higher natural variability out in
the tail, especially if the sample size is small. Only if the sample size
was large would one use, say, the 90th percentile. This illustrates the
points that at least some methods of estimation involve matters of
judgement and that in all fitting one needs to take into account the
purpose for which the fitted model is required.

Example 1.25: Consider the symmetric logistic distribution: 

Q(p) = λ + ηln[p/(1 – p)].

Three symmetrically placed percentiles are LQ, M 46qand UQ. As we
only have two parameters, we only need two values. However, consider
the nature of the parameters. The parameter λ is a position parameter
which suggests the use of the median. In fact, M = Q(0.5) = λ . Thus λ
is estimated by the sample median, so  = m. The parameter η is a
scale parameter and a measure of scale is provided by the interquartile
range. The population value of the IQR is 

IQR = UQ – LQ = η[ln(3) – ln(1/3)]

= 2 ηln(3).

If the sample interquartile range is iqr, then an estimate of  η, given by
matching population and sample values, is  = iqr/2ln(3). Thus rather
than matching at points we are matching quantile properties.

In the discussion of identification, the straightness of the fit-obser-
vation plot was used to choose a good model. This same criterion can
be used as a basis for choosing the parameter values. The parameters
can be chosen to give a straight line on the fit-observation plot that
closely fits the data points. Thus let  represent possible values of the
parameters of the quantile function and Q(p; ) the chosen form. The
deviations of the observations from a given quantile function, called
here the distributional residuals, are er = x(r) – Q(pr ; ), for r = 1,
2, …,n. These should be small for a good fit, i.e., a good choice of . 

η̂ η̂
Q̂ Q̂

λ̂

η̂

θ
θ

θ
θ
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The classic approach to fitting straight lines is the method of
least squares. This method is based on choosing the parameter esti-
mates to minimize the sum of the squares of the residuals, . The
sum of squares (SS) gives one measure of the discrepancy between
the ordered observations and their fitted values. An alternative mea-
sure, the first historically, is based on , where the  denotes the
absolute value, which in many computer languages is ABS(.). The sum
of absolute distributional residuals is one that is natural to use for
quantile distributions. The discrepancy is just based on the numerical
distances of the ordered observations from some measure of their
position as given by the fitted distribution. There is thus a method
of least absolutes similar to the method of least squares. For least
squares, the appropriate line of fit is based on the means of the
distributions of the ordered variables X(r). For the least absolutes it
should be based on the population medians of these distributions. For
the value pr = (r – 0.5)/n, the value of Q(pr) is an approximation to the
mean of the distribution of X(r). Thus the least squares criterion for
fitting distributions is (approximately):

Choose  to minimise Σ(x(r) – Q(pr; ))2 

We will show later that we can calculate a probability  such that
Q( , ) is exactly the population median of X(r) for all r and all
reasonably behaved continuous distributions. We will show later that
for minimising absolute values the natural basis for a discrepancy
measure is the median rather than the mean. Thus the criterion and
method in this case are exactly

Choose  to minimize Σ x(r) – Q( ; ).

This approach is not quite the traditional least absolutes (or least
squares) since x(r) are ordered data and the model is the distributional
model defined by its quantile function. To emphasize this difference
we call these approaches the methods of distributional least
squares/absolutes, DLS and DLA. We use er the distributional
residual appropriate to whichever method we are using. Table 1.4
shows the steps in carrying out these methods of estimation. Notice
that the steps are quite general and ultimately depend on choosing
the parameters to minimise a criterion calculated from the model,
the initial parameter values and the data. Many programmes, includ-
ing standard spreadsheets like Excel®, provide this general numerical

Σer
2

Σ er
.

θ θ

pr
*

pr
* θ

θ pr
* θ
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minimization facility (called Solver® in Excel®, which is a registered
trademark of the Microsoft Corporation). Although there are many
powerful statistical packages now available, it should be noted that
there are no significant calculations in this book that cannot be done
on a spreadsheet.

Table 1.4 is the first of a number of tables in this book that give
the steps, the algorithm, for a calculation. It is hoped that these,
together with “layout” tables, such as Table 1.1, will give the readers
sufficient guidance that they can readily develop examples using their
own data, which is ultimately the only way to learn. 

Least squares has been almost universally used for fitting lines
to data, as it is computationally simple and has good statistical
properties. There is a vast literature stretching back over 200 years
dealing with the fitting of deterministic models. The use of least
squares as distributional least squares dates back only a relatively
short time. We will see that the method of least absolutes provides
an exact, robust and universal approach to estimating distributional
parameters for models based on quantile functions. It will be used
and explored in future chapters. The literature on these topics is
very concerned with examining special cases, obtaining formulae
appropriate for each distribution. In an age of readily available com-
puting power, the criteria one uses should be based on the relevance
to the application and appropriateness to the statistical objectives
and not just traditional computational ease. Having determined the
criterion and the distribution, the model can be fitted by the steps
of Table 1.4.

Step Objective Calculation
1 Define distribution  Q(p; )
2 Set initial value(s) of  
3 Calculate p pr = (r – 0.5)/n for DLS, 

 (Section 4.2) for DLA
4 Calculate fitted QF Q(pr; ) DLS or Q( ) for DLA
5 Calculate criteria C Σ (x(r) – Q(pr ; ))2 for DLS 

Σ x(r) – Q(  ; ) for DLA
6 Choose θ0 =  

to minimize C
using standard software

7 Plot fit-observation 
diagram

(Q(pr or ), x(r))

Table 1.4.  Steps for fitting with distributional least squares/absolutes

θ
θ θ0
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θ0 pr
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Example 1.26: To illustrate the method of distributional least absolutes
Table 1.5 shows the layout of the calculation for fitting the flood data of
Table 1.1 using the method of distributional least absolutes. The Weibull
distribution is used as the distribution to illustrate the fitting, this being
one of our set of simple component models. For the flood data it is evident
that we need a position parameter, which is often set to zero, but the flood
data will be well above zero, and also a scale parameter. The model is thus

Q(p) = λ + η[–ln(1 – p)]β.

Following the steps of Table 1.4, the Weibull model was defined initially
with guestimated parameters, , as  = 0.2,  = 0.2 and  = 0.5, based
on a little exploration of values. The values of pr are, for simplicity of
illustration, those used in the previous study of this data. Hence Q(pr;

) can be calculated for each observation. Thus it is now possible to
calculate the distributional residuals and hence their sum of absolute
values, shown at the top of the table. The three parameters are then
adjusted to obtain the minimum value of the criterion. The table and
Figure 1.13 show the resulting values and fit-observation plot for the
fitted Weibull distribution. The fitted Weibull is thus

Weibull Q(p) = λ – η[ln(1 – p)]β estimates = 0.251

n = 20 = 0.193

distributional residual = e  = 0.711

For future plots Sum ABS(e) = 0.323

r x p (p) ABS(e)
1 0.265 0.025 0.265 0.000 (p)
2 0.269 0.075 0.282 0.013 0.341
3 0.297 0.125 0.297 0.000 0.292
4 0.315 0.175 0.311 0.004 0.273
5 0.323 0.225 0.324 0.001 0.265
6 0.338 0.275 0.337 0.001 0.263
7 0.379 0.325 0.350 0.029 0.264

etc. 38 38

Table 1.5.  Layout for fitting by distributional least absolutes

λ̂

η̂

β̂

Q̂
q̂

θ̂ λ̂ η̂ β̂

θ̂

Q̂ p( ) 0.251 0.193 1 p–( )ln–[ ]0.711+=
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The fit-observation plot of the data for this model shows a reasonable
linearity. One beauty of the method is its simplicity in choosing the
parameters to provide the best plot for the visual assessment of the fitted
model. The method is not without its weaknesses, as we shall see.
However, it is straightforward and effective and we will illustrate its
wide applicability. Table 1.4 shows the basic form of the calculations
behind Figure 1.14.

1.11  Validating a model

The daily practice of statistics is not a series of unique problems. In
many areas, such as quality control, the same form of data arises
repeatedly. We are faced with data for which a model is already
proposed. In such situations we will want to be assured that the model
is still appropriate for the new data. If it is not, we will need to know
whether the model is now totally inappropriate, or, for example, it is
just the position parameter that has shifted a little. The process of
model checking is called validation. We will systematically cover this
topic in a later chapter. For now it is sufficient to note that there are
two naturally linked approaches: one graphical, one mathematical. It
is evident, for example, that if further maximum flow data was avail-
able to add to that of Table 1.1, then the previous fitted model of
Example 1.26 could be used in a fit-observation diagram constructed
with the new data. If the situation has changed, the new data will not
show a good fit. The distributional residuals for the new data, using
the old (p), could be plotted with those of the old data. If they merged,
the validation will have given confidence in the continued use of the
fitted model. In more formal methods the objective might be to test
whether or not the position parameter changed for the new data. A
possible change in position could be studied at a very simple level by
comparing the median of the new data with the median of the fitted
model. This would require a study of the behaviour of the sample
median; however, the logic of the validation is clear.

1.12  Applications

Chapter 14 will discuss a number of areas of the application of statis-
tics where quantile-based distributions are of particular use. These
applications, on occasion, lead to specific developments of the quantile
modelling approach. For the purpose of this overview we consider just

Q̂
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one application area and that only in very general terms. Statistical
quality control is concerned with the study of the variability that occurs
in manufacturing and service processes. Specific concerns are

1. The detection of possible changes in the process from its
specified behaviour. The classic example of this is where
a quantity, v, calculated from a process sample, has a
known normal distribution, Q(p) = λ + σ N(p), where N(p)
is the quantile function of the standard (basic) normal
distribution when the process is under proper control.
The most common loss of control in a process is due to a
change in λ away from its target value of µ. A simple
device for monitoring for such a change is a graph, called
a control chart on which sample values of v are plotted
in sequence. On the same graph are plotted lines at L =
µ + σ N(0.00135) and U = µ + σ N(0.99865), called the
action limits. These correspond to Q(p)= µ ± 3σ.  Clearly
the chance of v lying outside these lines for any given
sample is 0.0027. This probability is sufficiently small
that the occurrence of points outside the action limits
casts doubt on the appropriateness of the model and,
specifically, on the value of λ. Thus this control chart
provides one way of continuously monitoring the process.
The use of the quantile function in the formulation imme-
diately shows how to construct action limits for any dis-
tributional model, simply replacing N(p) by the
appropriate S(p).

2. The procedure of (1) seeks to monitor short-term prob-
lems that may occur in a process. There is also concern
for improving the inherent quality of a process. If the
process has a target value for an output, the quality may
be measured by the variability, as indicated by η. For
some other process, the quality may be indicated by the
scale or shape parameter of the distribution of, say, the
% of an impurity or the concentration of the desired
chemical output. There are also situations where weak-
ness in the process operation shows itself by skewness
in the quality measure(s). The focus in all these situa-
tions is on investigating how to modify the process to
produce ‘quality improvements’, i.e., decreases or
increases in the appropriate parameters.
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3. As in all areas of application, the statistical methods used
have to recognize practical considerations as well as theo-
retical ones. Historically, in process control this has meant
the use of simple measures rather than complex ones and
the wide use of graphical techniques. Both of these benefit
from the use of quantiles and their properties. 

1.13  Conclusions

The purpose of this chapter has been to give the reader an overall
view of the ‘wood’ before embarking on a more detailed look at its
sections and some of the ‘trees’. We have of necessity had to select
illustrative ‘trees’, which later will have to be looked at again, as part
of the more detailed look at their particular section of the woods. The
prime consideration has been to show that the use of the quantile
functions provides the modeller with both a practical, useful way of
looking at distributional data and a kit of simple components that can
be used to construct models of the complexities of real data. We have
in the process of our discussion taken an overall look at the modelling
process. The process has five main stages, although, as we have seen,
we do not necessarily go through these in sequence but often repeat
steps after revising thoughts in the light of our modelling experience.
Our models are forever tentative and we will always be seeking to
improve them. The five stages are

The development of a construction kit — This involves the
modeller in:

Getting to know the most useful components and their
properties. 
Knowing different ways of joining the components together
to achieve desired ends. 
Developing model components relevant to the particular
application area.
Playing with the kit, which is a good way of starting. The
problems at the ends of later chapters are there to provide
this opportunity.

The identification of suitable models for the data —]In the past,
identification has revolved around finding suitable models
within the library of standard models. With the construction
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kit approach there is the additional possibility of identifying
the properties of different elements of the data, e.g., tail shapes
and skewness, and constructing new models from components
to reflect these properties.
The fitting of models — All the common methods of fitting,
estimation, can be used for models expressed in quantile form,
but as we have seen, some methods have particular suitability.
The validation of fitted models — Here there are a variety of
graphical methods, such as the fit-observation plot, and later
we will consider more analytical approaches.
Application — It is sufficient here to note that the quantile
view of models is often suitable to particular applications. Fur-
ther, the modelling of the deterministic part of models in many
applications is based on the use of appropriate construction
kits. Thus the total modelling exercise takes on a coherency
when both deterministic and random components can be used
to build the model.

We now have an overall process of background construction, iden-
tification, estimation, validation, application (and iteration). The rest
of this introductory text now looks in more detail at each of these
elements and at the statistical methods required for them. 
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CHAPTER 2

Describing a Sample

2.1  Introduction

Chapter 1 gave an overview of the subject of this book. We now
begin to look at the subject in a more comprehensive fashion. We
will of necessity look again at some of the material of that chapter
and we start with the same central topic of statistics, which is the
study of data. 

We are surrounded by data that shows an inherent variability.
The issue addressed in this chapter is how we may describe this
variability. Traditional statistics focuses on the proportions of obser-
vations lying in particular sections of the range of possible values.
Corresponding plots and measurements focus on this theme, for
example, the classical histogram. When we look at a single observed
value, 235.1 say, it tells us very little on its own. For it to be
meaningful, we need to know how it relates to the rest of the data.
If we are told that all the data lie between 230 and 240 and that the
observation is 12th out of 40 in increasing order, then we begin to
get more of a picture of the situation. In the approach of this book
we will be emphasising the ordered positions of data and the propor-
tions of the data lying on either side of individual observations. This
view draws to the fore a further set of plots and measures that add
to the understanding of the data. They do not replace the others;
they supplement them, giving a broader view of the data. Experience
has always taught that the more ways one looks at a set of data the
greater the understanding provided, and conversely the less likely
the erroneous deduction. 

Data in the form of counts, referred to as observations on a dis-
crete variable, play only a minor role in our discussions and are
briefly dealt with in their own section. For the rest of the book we
focus on data with a continuous measurement scale, such as weights
and lengths, which are observations on a continuous variable. 
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2.2  Quantiles and moments

In Chapter 1 we looked briefly at measures of the position of observa-
tions within the whole data set and introduced quartiles, quantiles,
and functions based on them. We now need to define these quantities
carefully. We start by looking at the sample or empirical cumula-
tive distribution function, (x). We define this by

(x) = Proportion of sample ≤ x.

For a sample of n observations this can only take the values 0, 1/n,
2/n, …, 1. It thus forms a step function as shown in Figure 2.1(a). The
dots on the lines show that, for example, x(2) gives the value 2/n. The
sample or empirical quantile function, denoted by (p), is the
inverse of this, i.e., it is the plot with the axes interchanged as in
Figure 2.1(b). Formally we have

(p) = x(r), (r – 1)/n < p ≤ r/n

Again we have a step function, which is correct for a finite set of
data and appropriate for a discrete variable that can only take on
specific values of x. Our interest, however, is in observations on a
continuous variable. Thus if we only had sufficient data the plot
would begin to look like a continuous curve. To model this more
appropriately with our finite sample, we join together the mid-points
of the steps, as in Figure 2.1(c), to create a continuous curve made
of line segments. Notice that we cannot draw the curve outside (1/n,
(n – 1)/n) and that the p value corresponding to x(r) is pr = (r – 0.5)/n,
r = 1, 2, …, n, as was used in Chapter 1. Thus for the integer values
of r we have 

(pr) = x(r).

For p in general, we let r = np + 0.5, so r may be fractional, and g
= r – [r], where [r] denotes the integer part of r. It will be seen in
Figure 2.1(d), where for simplicity we put [r] = s, that (p) lies between
x(s) and x(s + 1) in the proportion g and 1 – g. Thus we can write for most
p and corresponding r:

(p) = (1 – g)x(s) + gx(s + 1), for p in (1/n, (n – 1)/n).

F̃

F̃

Q̃

Q̃

Q̃

Q̃

Q̃
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This gives the form we will use for the sample quantile function for
continuous variables.

Example 2.1: Consider the seven observations 1,3,5,5,6,7,8. 

For the median p = 0.5, so r = 4 and g = 0, hence m = x(4) = 5.

Figure 2.1. (a) The empirical cumulative distribution function, ; (b) The empirical
quantile function, discrete form, 

F̃ x( )
Q̃o p( )

© 2000 by Chapman & Hall/CRC



46 DESCRIBING A SAMPLE

For the lower quartile p = 1/4, so r = 9/4, [r] = 2, and g = 1/4, hence lq
= 3 ∗ 1/4 + 5 ∗ 3/4 = 4.5. 

For the upper quartile p = 3/4, so r = 23/4, [r] = 5, and g = 3/4, hence
uq = 6 ∗ 3/4 + 7 ∗ 1/4 = 6.25.

Thus the interquartile range is 1.75.

Figure 2.1. (continued) (c) The empirical quantile function, a continuous form, ;
(d) Interpolation

Q̃ p( )
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It sometimes happens that the data are only available in summary
form in a frequency table, as Table 2.1 illustrates. The original data
are summarized in the table by giving the number, i.e., the frequency,
of observations lying in specified ranges called class intervals. Notice
that the interval given by, say, 11+ to 13, includes the exact value 13
but starts just beyond the value of 11, which would be classified in
the previous interval. The sum of the frequencies gives the total num-
ber of observations. To evaluate the medians and quartiles in these
circumstances requires some manipulation of the table. As the use of
frequency tables usually implies large data sets, we will not make the
type of distinction we made between (p) and (p), which becomes
negligible for large n.

Table 2.1 is created so that the cumulative proportion p represents
the proportion of coils with weights less than or equal to the value of
x. Figure 2.2(a) gives the quantile plot by plotting the interval end
points against the proportions. We have joined the known values by
line sections, a not unreasonable procedure (provided, that is, that our
measurements are on a continuous variable). The median is the value
with p = 0.5. This lies in the cell 19 to 21. If it is assumed that the
observations lie uniformly in the cell, then the proportion of the fre-
quencies needed to get to the median from x = 19 must correspond to
the proportion of the additional p to get from 0.37 to 0.50. Thus

Hence m = 19.62. A similar calculation for the lower quartile gives
lq = 17.59. The proportion of observations less than or equal to 15 is
0.07 hence the 0.07 quantile is 15. Suppose, however, that we need
the 0.9 quantile. By inspection of the table this will lie in the 21+ to
23 class interval which has boundary proportions 0.79 and 0.99. Thus
comparing corresponding proportions for (0.9) and p = 0.9 gives

Hence the 0.9 quantile, (p), for the data is 22.1. This may also
be referred to as the 90th percentile or the 9/10 fractile. Figure 2.2(b)
also shows the sample p-PDF obtained as in Table 2.1 by plotting
Dp/Dx (change in p across interval over class width) against the mid-
value of p in the interval.

Q̃o Q̃

m 19–
21 19–
------------------- 0.50 0.37–

0.79 0.37–
-----------------------------=

Q̃

Q̃ 0.9( ) 21–
23 21–

------------------------------ 0.90 0.79–
0.99 0.79–
-----------------------------=

Q̃
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Weight 
interval Frequency  

Cumulative 
frequency

Cumulative 
proportion p Dp

Dx = 2 
Dp/Dx Mid-p Mid-x

–11  0  11  0 0.0
11+–13  3  13  3 0.03 0.03 0.015 0.015 12
13+–15  4  15  7 0.07 0.04 0.02 0.05 14
15+–17  13  17  20 0.20 0.13 0.065 0.135 16
17+–19  17  19  37 0.37 0.17 0.085 0.285 18
19+–21  42  21  79 0.79 0.42 0.21 0.58 20
21+–23  20  23  99 0.99 0.20 0.1 0.89 22
23+–25  1  25  100 1.00 0.01 0.05 0.995 24

Table 2.1.  The frequencies of 100 metal coils with given weights as ordered

Q̃ p( )
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Notice the reversal that takes place in moving from raw data to a
frequency table. For the raw data, the observations exhibit random
behaviour and the proportions are set in the calculations. When a
frequency table is used, the values of the variable are defined by the
boundaries of the intervals and it is the proportions that exhibit the
random behaviour. Notice also that we have had to make assumptions
about how the data lie in the intervals. We do not know, so our
calculations are approximations. Creating a frequency table loses
information about the detail of the data. It may help in showing the

Figure 2.2. Sample (a) QF and (b) p-PDF for the data of Table 2.1
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big picture, but care needs to be taken with data in this form. In
general, we will seek to emphasize methods that make use of the raw
data rather than data in frequency tables. Historically, frequency
tables were usually used because of the difficulty in doing calculations
and handling graphics with large numbers of observations. In the days
of the computer this ceases to be a major problem.

The median, as the middle value, gives a numerical indication of
the position on the axis of a set of data. The other common measure
of the position is the sample mean or average. This is the sum of
the values divided by their number. For a set of data it is defined by 

 = Σ xi/n,

or for frequency table data by

 = Σ fi xi/n,

where xi, in this case, is the mid-value of the interval with frequency fi.

2.3  The five-number summary and measures of spread

The median and quartiles have been presented as means of indicating
some aspects of the values taken by a set of data. Two other values
that are helpful in summarizing a set of data are the smallest obser-
vation, s, and largest, l. We thus have a five-number summary of a
set of data provided by s, lq, m, uq, l. For a very large set of data it
is best to let a computer spreadsheet or a statistical programme find
the values. For data sets up to, say, 100 observations a simple presen-
tation called a stem-and-leaf plot is useful, as Table 2.2 illustrates.
The data are simplified into “tens,” which form the “stem,” and units,
which are ordered as the “leaves.”

The five-number summary for the n = 50 observations can be read
directly from the plot by counting. The median is the average of the
middle two observations and the quartiles are the 13th and 38th
observations. Hence

 s = 270, lq = 550, m = 670, uq = 840, l = 1960.

To construct a stem-and-leaf plot, it is best to construct it with
the data in its natural order in the leaves and as a second stage put

x

x
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the leaves in order. Figure 2.3 shows a diagram called a box plot
that gives a visual presentation of the five-number summary. The
five values provide the five horizontal lines against the scale. The
central box contains half the data values split at the median. The
“whiskers” go out to the largest and smallest observations, or if there
is a large data set, they may go to some points beyond which plotted
observations are counted as outliers; (lq – 3iqr/2, uq + 3iqr/2) provide
such whiskers.

An important attribute of any set of data is its spread or variability.
There are five useful measures of spread: the range, the interquartile
range, the mean absolute deviation, the median absolute deviation,
and the standard deviation. The first two come directly from the five-
number summary, the range, w, being the difference between the
largest and smallest values, and the interquartile range, iqr, being
the difference between the quartiles. Thus

w = l – s, iqr = uq – lq,

Stem hundreds Leaf tens
2 7
3 4 6 7
4 4 5 5
5 0 0 2 3 4 5 7 8
6 0 0 2 2 2 3 3 5 6 7:7 9 9
7 0 0 2 4 5 8
8 1 2 4 4 6 6 7 7
9 5
10 0
11 0 1 6 8
12
13
14 5
15
16
17
18
19 6

The data are a set of the weights of 50 babies,
rounded to the nearest ten, thus 677 is presented
as a 6 in the stem and an 8 in the leaf.  

Table 2.2.  A stem-and-leaf plot
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The mean absolute deviation and standard deviation both make
use of the deviations, di, between the observations and their average.
Thus

di = xi – .

The magnitudes of the deviations clearly indicate the variability of the
data. We cannot use their ordinary average as a measure of spread as
they sum to zero. We therefore either take their numerical, absolute
values, denoted bydi, or their squares to remove the cancelling
negative signs. We thus have

the mean absolute deviation, MAD = Σ di/n

the median absolute deviation, MedAD = sample median of di

and

 the sample variance, s2 = Σ /(n – 1).

The use of the devisor (n – 1) in place of n is a technical modification.
The measure of spread s is the sample standard deviation. Consider

Figure 2.3. A box plot for the data of Table 2.2
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as a simple example the values 5, 5, 7, 8, 10, which have an average
of 7. Thus the deviations are –2, –2, 0, 1, 3, which as we have noted
sum to zero. The absolute deviations are 2, 2, 0, 1, 3 so MAD = 8/5 =
1.6. MedAD is 2. The squared deviations are 4, 4, 0, 1, 9. Hence s2 =
18/4 = 4.5 and s = 1.12. Notice that if, for example, 10 was mistyped
as 100, s2 is most altered, MAD less so, and MedAD is unaltered. Thus
s2 is a sensitive measure, MAD is said to be more robust and MedAD
is highly robust. 

2.4  Measures of skewness

An important feature of any set of data is its symmetry or lack of it as
indicated by its skewness. As for measures of position and spread we
will look at measures of skewness based on both quantiles and moments.

As we have seen, a simple device for looking at skewness depends
on using the deviations from the median. We define the sample upper
quartile deviation, uqd, and the sample lower quartile deviation,
lqd, by

uqd = uq – m, lqd = m – lq.

The difference between these is the sample quartile difference, qd,
where

 qd = uqd – lqd.

For a perfectly symmetrical distribution of observations qd = 0, qd
large and positive indicates a long tail to the right, a positive skewness,
and vice versa. To make this measure independent of the scaling of
the numbers involved we divide by the interquartile range, as a meas-
ure of spread, giving

g = qd/iqr = (uqd – lqd) / (uqd + lqd).

This is Galton’s skewness index for the sample. Note that as all its
elements are positive it lies in the range (–1, 1). 

If we repeat the above logic replacing the quartile fraction 1/4 by
some general proportion p(0 ≤ p ≤ 0.5), we can define a lower p-
deviation by

ld(p) = m – (p)Q̃
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If we denote 1 – p = q, then we also have an upper p-deviation

ud(p) = (q) – m,

For practical purposes we use (pr) = x(r) and (qr) = x(n + 1 – r) with
pr = (r – 0.5)/n. A plot of ud(p) against ld(p) for the data points will
give a 45° straight line for a perfectly symmetrical distribution of data.
The ld(p) and ud(p) can be used to define the inter-p-range, some-
times called a quasi-range or spread function, and the p-difference by

ipr(p) = (q) – (p) = ld(p) + ud(p) 

pd(p) = ud(p) – ld(p) = (q) + (p) – 2m.

The p-difference will be approximately zero for a symmetrical distribu-
tion. To provide a measure of skewness, pd(p) can be standardized by
dividing by iqr or ipr(p) to remove the influence of scale. These thus give

The Galton p-skewness g(p) = pd(p)/iqr,

The p-skewness index g*(p) = pd(p)/ipr(p).

It will be seen that as with the ordinary Galton skewness, g*(p) lies
in (–1, 1). A further quantile-based measure that is sometimes used,
which replaces differences by ratios, is the skewness ratio:

sr(p) = ud(p)/ld(p).

For a set of data these measures can be evaluated for the pr

percentage points of the data. Thus for g*(p), for example, the function
of the data that can be plotted as a function of pr is

g*(pr) = (x(r) + x(n + 1 – r) – 2m)/(x(n + 1 – r) – x(r)).

The use of the maximum of the g(p) over 0 < p < 0.5 to give an overall
measure of asymmetry is suggested by MacGillivray (1992). 

A further measure of skewness follows the logic of the standard
deviation. It is based on the average of the cubes of the deviations from
the average, di. If there is a long tail to the right, the positive deviations
will tend to be larger than the negative deviations so a positive average
of the deviations cubed will be obtained. The definition is thus

Q̃

Q̃ Q̃

Q̃ Q̃

Q̃ Q̃
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.

The notation m3 relates to the terminology that such quantities
are moments about the mean, since the d refers to deviations from
the mean. (Notice, for example, that m2 = s2, but with a devisor of n
rather than (n – 1)). The skewness thus relates to the third moment
about the mean. As with Galton’s index it is useful to remove the effect
of the magnitude of the numbers, i.e., the scale. An index that achieves
this is the skewness index:

.

It will be seen that this is independent of the scale used. 

2.5  Other measures of shape

Thus far we have looked at measures of position, variability and
skewness. A further feature of a data set is often referred to as its
kurtosis. This refers to the peakiness or flatness of the centre of a
distribution, with its consequent link to the lengths of the tails. Peak-
iness is often associated with long tails and flatness in the centre of
the distribution with short tails since, for example, the flat middle of
the distribution draws in probability from the tails. These aspects of
the shape of a distribution can be measured in a number of ways.

One feature that we have mentioned is the inter p-range. If this
is standardized relative to the interquartile range then we have a
function, t(p), 0 ≤ p ≤ 0.5, that gives an indication of the extension
of the tails of the distribution of the data for small p, and of the
central concentration for p close to 0.5. Thus the shape index is
given by 

t(p) = ipr(p)/iqr. 

It is evident from the definition that t(0.25) = 1 and t(0.5) = 0. For
p close to 0.5, a peaky distribution will tend to have a smaller t(p)
than a less peaky one. Conversely, for small p out in the tails, a long-
tailed distribution will have large ipr(p) and relatively large t(p). This
measure is particularly suited to symmetric distributions. For non-
symmetric distributions it is useful to look at the tails separately using,
for example, 

m3 Σ di
3 n⁄=

b1
2 m3

2 m2
3⁄=
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ut(p) = ud(p)/uqd and lt(p) = ld(p)/lqd.

If one wishes to compare data with specific distributions it is always
possible to create relative measures out of the measures we have been
discussing. For example, suppose we wish to compare the data with
the commonly used normal distribution, whose quantile function N(p)
is readily available. We calculate TN(p) using normal population values
and form the ratio t(p)/TN(p). If, for example, this is appreciably greater
than one for small p, then the data is from a distribution with longer
tails than the normal distribution. 

A classic term for the flatness/peakiness, and consequent tail
shape, of a distribution is kurtosis. A simple quantile measure of this
makes use of the octiles, ej = (j/8). The Moors kurtosis measure is

k = [(e7 – e5) + (e3 – e1)]/iqr,

(see, for example, Moors (1988)). The four values (m, iqr, g, k) provide
a simple quantile-based summary of the shape of a distribution. 

Another way of looking at kurtosis and tail shape considers the
two tails separately. Consider the right tail on its own as a distribution.
The relative weight of the peak and tails will be measured by its
skewness. If we use the p-difference to measure this, remembering
that we actually have only the right-hand half of the data, centred in
fact at the upper quartile, we obtain an upper kurtosis measure:

uk(t) = [ (1 – t) + (0.5 + t) – 2 (0.75)]/[ (1 – t) – (t)], 0 < t < 0.25

with a corresponding lk(t) for the lower half of the data. (For data that
show symmetry, the data could be replaced by the absolute values
ABS(x – m) and the usual qd applied.)

The measurement of both skewness and kurtosis was first inves-
tigated by Sir Karl Pearson between 1890 and 1910. His commonly
used measure of kurtosis is based on sample moments and uses the
fourth moment about the mean:

.

A standardized index of kurtosis is given by

.

Q̃

Q̃ Q̃ Q̃ Q̃ Q̃

m4 Σ di
4 n⁄=

b2 m4 m2
2⁄=
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If the data are spread out in a fairly uniform fashion, i.e., the
distribution of the data is fairly flat, the value of b2 will be small. If
there is a high concentration in the centre with a few outlying obser-
vations, the distribution is regarded as peaky and b2 will be large. The
normal distribution has a population value of the index of three. The
index b1 is more sensitive than s to the effects of outlying observations
and b2 is even less robust. The skewness and kurtosis indices are
available as standard in most relevant software. It has been observed
that there are variations in the calculation of skewness and kurtosis
coefficients between different computer packages (see Joanes and Gill
(1998)). Sometimes b2 – 3 is used in place of b2 and sometimes “cor-
rections” are introduced to get “better” values for small samples. It
should also be noted that b2 depends on both central and tail data and
that very different shaped data can lead to the same b2. The average,
standard deviation, and b1 and b2 provide a moment-based summary
of a set of data. They have been used since the early days of this
century to both describe and identify distributions. They do not, how-
ever, provide a unique identification. As we have seen, there are many
quantile-based quantities that produce parallel but generally more
robust measures of the shape of data sets. We, therefore, concentrate
on using the raw data with supplementary quantile-shape measure-
ments as the basis for our study. 

2.6  Bibliographic notes

In a paper of 1875 Francis Galton presented a plot of the ordered
heights, x(r), of a large number of men against the proportion of the
sample up to each height p = r/n. He marked on the plot the values
for p = 1/4, 1/2 and 3/4 as being of special interest. In a book a few
years later (1883) he shows a different plot but with the same axes
and terms it the “ogive.” Both pictures are reproduced in The History
of Statistics by Stigler (1986). I was always taught that the ogive
was the CDF, F(x), but Galton’s plots are clearly of the quantile
function, both empirical and in relation to N(p) for the normal dis-
tribution. Indeed he uses it to define medians and quantiles which
were formally introduced in 1882. Galton clearly saw the importance
for data analysis of ordering the data. In the years following, the
mathematical foundations of statistics were in a state of rapid devel-
opment, particularly through the work of Karl Pearson (e.g., Pearson
(1895)). This involved great interest in the normal distribution and
its definition via the PDF, of necessity as this is its only explicit form,
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and distributions generally were studied via their PDF and CDF. It
would seem that Galton’s use of ordered data and the quantile func-
tion were almost forgotten and the term quantile only appears to
have been first introduced by M. G. Kendall in 1940. There was a
continued interest in the properties and specific applications of order
statistics, but they were studied via their CDF and PDF. The first
books on order statistics did not appear until the second half of the
20th century, e.g., a research book Sarhan and Greenberg (1962) and
the first textbook, David (1970). For a further general history, see
Hald (1998).

The use of quantiles in data analysis was re-emphasized a hundred
years after Galton, particularly by Tukey, e.g., Tukey (1970). Emanuel
Parzen, beginning with a classic paper in 1979, introduced a wide
range of quantile-based methods and, in particular, the use of the
quantile function as an important way of defining a distribution. He
has been the main exponent of the use of quantile-based methods,
often, but not exclusively, in non-parametric studies of data. Particular
papers of relevance are Parzen (1979), (1993) and (1997).

There has recently been much interest in issues of quantile-based
measures of shape and kurtosis, but no universally agreed outcomes.
Some illustrative papers are those of Balanda and MacGillivray (1988),
Groeneveld (1998), Ruppert (1987), and Brooker and Ticknor (1998).

The plotting of data via quantile plots goes back at least to Hazen
(1914). The use of p-frequency density plots is much more recent.
Parzen (1979) introduced the concept and Jones and Daly (1995) illus-
trate the use of the sample p-PDF as the basis for exploring data.

At the end of the 19th century Pearson developed a family of four-
parameter distributions, the Pearson distributions, that included sev-
eral now common distributions. He showed that these could be
uniquely characterized using the four measures of position, scale,
skewness, and kurtosis, estimated for a sample by ( , s2, b1, b2). These
four measures have been widely used ever since as a general means
of studying the distributions of samples. However, as they only meas-
ure four specific features, in a rather non-robust manner, they do not
give a universal practical or unique means of matching sample and
distribution. A parallel and more robust approach using quantile meas-
ures is discussed in Moors et al. (1996).

There is a large literature on the empirical formulae best used for
calculating quantiles for any p and in particular on formulae that lead
to smooth curves. We do not go into the details of these methods in the
context of this introductory text on parametric modelling. The literature
does, however, provide for far more sophisticated ways of carrying out
what we see here as the smoothing of plots. Relevant references are

x
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Sheather and Marron (1990), Dielman, Lowry and Pfaffenberger (1994),
Cheng and Parzen (1997), and Hutson (in press). It should be noted that
the main reason for not treating this subject is that when we have an
assumed model our concern is mainly to find only those p(r) correspond-
ing to the ordered observations x(r). It should also be noted that Parzen,
e.g., Parzen (1997), has shown how to unify many quantile-based ideas
to cover data for discrete variables as well as for continuous variables.

2.7  Problems

1. The following data gives the diameters of a set of 20 metal
rods produced by a casting process. The measurements are
all of the form 19.-- mm, the table giving the final two
figures. Derive the five-number summary: the median,
range and interquartile range, the skewness and kurtosis
index, the Galton skewness coefficient and t(0.9).
41, 50, 31, 44, 47, 56, 60, 66, 42, 38, 35, 27, 39, 42, 52, 51,
49, 51, 47, 45

2. A firm sells metal coils of varying weights (Tn) to order.
In a given week 91 coils are sold with weights as in the
following frequency table. Calculate the main quantile-
based measures and plot the quantile function as esti-
mated by plotting the upper class intervals against the p
calculated from the frequencies. Obtain the differences Dx
and Dp and hence a plot of the empirical p-PDF.

3. Explore further some data you are very familiar with using
the measures discussed in this chapter.

 class interval frequency
 10+–12  2
 12+–14  3
 14+–16  11
 16+–18  18
 18+–20  35
 20+–22  20
 22+–24  2
 Total  91
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CHAPTER 3 

Describing a Population 

3.1  Defining the population

The word statistics has its origin in the numerical study of states and
their populations. How big is the population? How many are there to
pay the taxes or join the army? As a consequence of this original usage
we use the term population to represent all the possible observations
that might have been made. For the case of a state where we do, say,
a one in ten sample as part of a full census, the sample comes from
the finite population, which is the population of the state. If we take
a sample of 50 items manufactured on a machine as part of a quality
inspection, the sample is envisaged as coming from the theoretically
infinite population of items that could have been produced on that
machine. The bigger the sample taken the more likely it is to reflect
the statistical characteristics of the population. We now need to define
more formally the population and these statistical characteristics.
That is the purpose of this chapter.

In Chapter 1 we described a population as a whole by the use of
five different but interrelated functions:

The Cumulative Distribution Function F(x) [= Pr(X ≤ x)]
The Probability Density Function f(x) [= dF(x)/dx]
The Quantile Function Q(p) [= F–1(p)]
The Quantile Density Function q(p) [= dQ(p)/dp]
The p-Probability Density Function fp(p) [= f(Q(p)) = 1/q(p)]

Our definitions kept to the case where the random variable is
continuous, and hence F(x) and Q(p) are continuous increasing func-
tions. We have seen that the inversions or integrations required to
move from one form to another may not always be analytically pos-
sible, so not all these distributional forms may have explicit formulae.
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Distributions may be defined in any of the forms, so it may be
necessary to use numerical approximations to find the values of the
non-explicit functions. 

Using the quantile function as the basis for describing a population
led us in Chapter 1 to describe particular features of the population
by substituting values for p, such as 0.5, to give the median. Thus we
can describe the overall functional shape of a population and also
highlight specific features. In this chapter, as in this book generally,
we will concentrate on the quantile approach. However, we must also
remember that this is a supplement to the classical approaches and
not a total alternative. We need, therefore, to keep an eye on the links
between, for example, the quantile-based measures and those related
to the CDF and PDF.

3.2  Rules for distributional model building

A theme of this book, introduced in Chapter 1, is the value of quantile
functions and quantile-based approaches in the building of empirical
models for sets of data. As with construction toys we build sophisti-
cated models out of simple components. We have illustrated this con-
struction with some examples. In this section we formalize the meth-
odology by stating a set of construction rules that quantile functions
obey. Although we are concentrating on continuous distributions, these
rules also apply to the distributions of discrete variables, for which
the condition that Q(p) is continuous increasing becomes the require-
ment that it is non-decreasing, i.e., it may contain step increases and
horizontal sections. These conditions are assumed throughout.

The reflection rule

The distribution –Q(1 – p) is the reflection of the distribution Q(p) in
the line x = 0.

To see this, just consider some illustrative values:

p Q(p) –Q(1 – p)
0 Q(0) –Q(1)

0.25 LQ –UQ
0.5 M –M

0.75 UQ –LQ
1 Q(1) –Q(0)
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If the distribution lies in (0, ∞), the reversed distribution will lie in
(–∞,0). In general then the distribution –Q(1 – p) is the distribution
of the random variable –X. 

Example 3.1: The quantile function [–ln(1 – p)}β is a Weibull distribution
with a distributional range (0, ∞).  The quantile function Q(p) = [ln(p)]β

is a distribution in the range (–∞,0) that looks like the reflection of the
Weibull in a mirror set at x = 0. This distribution is called the reflected
Weibull.

The addition rule

If Q1(p) and Q2(p) are quantile functions, then Q1(p) + Q2(p) is also a
quantile function.

This follows from the simple fact that all we require of a quantile
function is that it is a non-decreasing function of p in 0 ≤ p ≤ 1. Clearly
the sum of two such functions must itself be non-decreasing. We
illustrated this rule in Example 1.15 and Figure 1.8.

The multiplication rule for positive variables

For distributions where Q(p) can take on negative values, the product
of two quantile functions is not necessarily non-decreasing. However,
statisticians are often interested in areas of statistics, such as reliabil-
ity, where the variables are inherently positive. In such cases the
product of two quantile functions is inherently non-decreasing, so we
have the rule:

The product of two positive quantile functions, Q(p) = Q1(p) × Q2(p),
is also a quantile function.

This rule was illustrated in Example 1.19.

The intermediate rule

If Q1(p) and Q2(p) are two quantile functions, then the QF

Qi(p) = w.Q1(p) + (1 – w).Q2(p), 0 ≤ w ≤ 1,

lies between the two distributions. 
That is to say that if for a given p, Q1(p) < Q2(p) then
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Q1(p) ≤ Qi(p) ≤ Q2(p).

Example 3.2: Using the exponential and reflected exponential we can
define a distribution

Q(p) = 0.2 ln p – 0.8 ln (1 – p).

The quantile function of this distribution will lie between those of
the exponential and the reflected exponential, the values of the
weights determining that it will be closer to the exponential over
most of the distributional range. This as we have seen is the skew
logistic distribution. 

The standardization rule

If a quantile function S(p), has a standard distribution in the sense
that some measure of position, e.g., the median, is zero and some
linear measure of variability, scale, e.g., the IQR, is one, then the
quantile function 

Q(p) = λ + η S(p),

has a corresponding position parameter of λ and a scale parameter of η. 
Thus the two parameters λ and η control the position and spread

of the quantile function. Obviously if we know the parameters of a
quantile function, we can use this result in reverse to create a stan-
dard distribution:

S(p) = [Q(p) – λ ]/η,

Example 3.3: Consider the symmetric logistic distribution again. Sub-
stituting p = 0.25, 0.5, 0.75 gives

LQ = –ln(3)

M = 0

UQ = ln(3)

so 

IQR = 2 ln(3).
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It follows that the distribution

Q(p) = ln(p/(1 – p))/(2 ln(3))

has zero median and an IQR of one and thus acts as a standard
distribution. From this it follows that a general logistic distribution
with median λ and IQR η  is given by

xp =  λ + η ln(p/(1 – p))/(2 ln(3)).

Often it is convenient to use not the standard distribution but the
form of the model with the simplest mathematical form, here
ln(p/(1 – p)). These simple forms we have termed the basic distributions.

The reciprocal rule

The distribution of the reciprocal of a variable, 1/X, cannot simply be
obtained from 1/Q(p), since this is a decreasing function of p. However,
as with the reversal of x, the roles of p and 1 – p are interchanged in
the reciprocal, but the sign remains the same. Thus, 

the quantile function for the variable 1/X is 1/Q(1 – p).

To see this denote 1/x by y and let the p-quantile of y be yp with
corresponding value xp. By definition 

p = Prob(Y ≤ yp) = Prob(1/X ≤ 1/xp) = Prob(xp ≤ X) = 1 – Prob(X ≤ xp)

Hence xp = Q(1 – p) and therefore yp = 1/Q(1 – p).

Example 3.4: The power distribution has QF, pβ, where β > 0. The
distribution of y = 1/x for this distribution is, by the rule: Q1(p) = 1/(1 –
p)β, which is the Pareto distribution.

The Q-transformation rule

If z = T(x) is a non-decreasing function of x, then T(Q(p)) is a quantile
function. 

This rule holds since a non-decreasing function of a non-decreasing
function must itself be non-decreasing. Conversely, if T(x) is a non-
increasing function of x, then T(Q(1 – p)) is a QF. We will term such
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transformations of the quantile function Q-transformations. It will
be shown in Chapter 4 that these derived quantile functions are in
fact the quantile functions of the transformed variable Z.

Example 3.5: Consider Q(p) to be an exponential and the transformation
be T(x) = xβ, where β is a positive power. We then have a Q-transformation
as

Qt(p) = [–ln(1 – p)]β.

This is a quantile function and is in fact the quantile function for a
much used distribution that we have already met called the Weibull
distribution.

The uniform transformation rule

If U has a uniform distribution then the variable X, where x = Q(u),
has a distribution with quantile function Q(p). Thus data and distri-
butions can be visualized as generated from the uniform distribution
by the transformation Q(.), where Q(p) is the quantile function.

This rule follows directly from the Q-transformation rule when it
is observed that the quantile function of the uniform distribution is
just p.

The p-transformation rule

If H(p) is a non-decreasing function of p in the range 0 ≤ p ≤ 1,
standardized so that H(0) = 0 and H(1) = 1, then Q(H(p)) is also a
quantile function, with the same distributional range as Q(p).

We will refer to transformations of p within a quantile function
as p-transformations. We have seen numerous plots of quantile func-
tions, i.e., plots of Q(p) against p. A Q-transformation transforms the
vertical Q(p)-axis. The p-transformation transforms the p-axis. In
both cases the conditions ensure that the resulting plot is still of a
valid quantile function.

Example 3.6: Noting that the positive power transformation of p, pα,
satisfies the conditions, we can use the p-transformation on the Weibull
distribution, referred to above, to give

xp = [–ln(1 – pα)]β, where α , β > 0.
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This again is a named distribution, the Generalized Exponentiated Weibull.

3.3  Density functions 

Three density functions were introduced in Chapter 1: the probabil-
ity density, f(x); the quantile density, q(p); and the p-probability
density, fp(p). The terminology refers to the concentration, density,
of (a) the probability along the x-axis for f(x); (b) the quantiles along
the probability axis for q(p); and (c) the probability along the x-axis
expressed in terms of the total probability up to that point for fp(p).
If we refer back to the addition rule of the last section and differ-
entiate we obtain:

The addition rule for quantile density functions

The sum of two quantile density functions is itself a quantile density
function:

q(p) = q1(p) + q2(p).

To be precise if we obtain a quantile function by adding two quantile
functions together its quantile density function is obtained by the
addition of the quantile density functions of the component parts. Since
fp(p) = 1/q(p), then the corresponding relation for p-PDF is

fp(p) = 1/[1/f1p(p) + 1/f2p(p)].

If we start with a quantile density function, the quantile function
has to be obtained by integration. In this case the position parameter
λ appears as a constant of integration. 

Notice the information on the general shape of a distribution
given by substituting p = 0 and p = 1 in Q(p) and fp(p). The first gives
the range of the X variable, its distributional range, (Q(0),Q(1)); the
second gives the ordinates of the probability density at the two ends
of the distribution. 

Example 3.7: For the unit exponential distribution S(p) = –ln(1 – p),
with fp(p) = 1 – p, we get

DR = (0, ∞), fp(0) = 1, fp(1) = 0. 
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3.4  Population moments 

To develop the ideas of the population quantities analogous to the
sample moments discussed in Chapter 1, consider a positive variable
such as the weights of some metal castings. Suppose one third of the
castings weighed 3 kg and two thirds weighed 6 kg. The average
weight, the first sample moment, would be

3 × 1/3 + 6 × 2/3 = 3.

Notice that with the information in this form we do not need to
know the actual numbers of castings, only the values and the propor-
tions. Thus the sample mean can be expressed as

 = Σ (x. proportion).

Turning now to the corresponding population situation, Figure
3.1(a) shows the population broken into infinitesimal proportions, dp,
for each of which the value of x is given by x = Q(p). The summation
becomes an integral, so the population mean, µ, is defined in an
analogous fashion to the sample mean by

.

This is also referred to as the expectation, E(X), of the random
variable X. It is the value we expect on average to see. A slightly
different way of seeing this result is illustrated in Figure 3.1(b). The
area under the quantile function, Q(p), is the integral on the right of
the definition, which equals the area under the line at height, µ, since
the base has unit length. For the sake of clarity of exposition we have
used positive variables in the discussion. Exactly the same definitions
and argument apply when X can take negative values. However, in
this case areas under the p-axis count as negative; for example, with
a distribution that is symmetric about x = 0, the positive and negative
areas will cancel, giving a mean of zero. To see the relation of the
definition in terms of quantile functions to that in terms of probability
density functions, we remember that

dp = f(x) dx and x = Q(p),

x

µ Q p( ) pd
0

1

∫=
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so .

The limits of 0 and 1 for p become whatever is the distributional range
for x, usually (0 to ∞) or (–∞ to +∞). Consider some examples.

Example 3.8: For the Pareto distribution

 xp = 1/(1 – p)β, β > 0.

Figure 3.1. (a) Defining moments; (b) The mean

µ x f x( ) xd
DR∫=
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Thus

The fact that, although the distribution is defined for all positive β, the
mean only exists for 0 < β < 1 is due to the long positive tail that for β
greater than one leads to an infinite mean.

A simple and useful result flows directly from the definition of
the expectation. If η and λ are constants, then substituting in the
definition gives

E(λ + ηX) = λ + η E(X).

More generally for a non-decreasing transformation, Y = T(X), the
distribution of Y is T(Q(X)) by the Q-transformation rule. It follows that

.

Higher moments are defined to provide measures of spread, skew-
ness and kurtosis. Table 3.1 gives a summary. The higher moments
about the mean can be obtained by expansion from the central
moments, which are more directly calculated (Table 3.2 illustrates). 

Example 3.9: Returning to the Pareto distribution for illustration
we have

By analogy with the previous calculation, this is seen to be

µ2′ = 1/(1 – 2β), for 0 < β < 0.5.

Notice that we now have an even tighter constraint to give a finite
variance. On substituting in the expression for µ2 and simplifying, we
finally obtain

µ2 = β2/[(1 – 2β)(1 – β)2], for 0 < β < 0.5.

µ 1 p–( ) β– pd
0

1

∫=

1 p–( )– 1 β–( ) 1 β–( )⁄[ ]0
1

=

1 1 β–( )⁄      provided 0 β 1.< <,=

E T X( )[ ] T Q p( )[ ] pd
0

1

∫=

E x2( ) 1 1 p–( )2β⁄[ ] pd
0

1

∫=
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3.5  Quantile measures of distributional form

In Chapter 1 and primarily in Chapter 2, a range of measures of the
form of distributions were introduced based on the sample quantiles.
Chapter 1 introduced a few population analogues for the median, inter-
quartile range, etc. In this section the list of population quantile mea-
sures of shape is further extended. However, as the new ones introduced
are analogues of sample measures already discussed in Chapter 2, the
list of measures and their definitions is condensed to Table 3.3.

Moment / Quantity Symbols  Definition

Second central moment µ2′

Variance (second moment 
about the mean)

µ2 = V(x)

Standard deviation σ

Third moment about the 
mean

µ3 

Index of skewness 

Fourth moment about the 
mean

µ4

Index of kurtosis β2 

Linear transformation

General central moments µr′

General moments about 
the mean

µr

Table 3.1.  Definitions of population higher moments

Table 3.2.  Relations between moments about the 
mean and central moments

E X2( ) Q p( )[ ]2 pd
0

1

∫=

E X µ–( )2[ ] Q p( ) µ–[ ]2 pd
0

1

∫=

σ µ2=

E X µ–( )3[ ] Q p( ) µ–[ ]3 pd
0

1

∫=

β1
2 µ3

2 µ2
3⁄

E X µ–( )4[ ] Q p( ) µ–[ ]4 pd
0

1

∫=

µ4 µ2
2⁄

V aX b+( ) a2V X( )=

E Xr( ) Q p( )[ ]r pd
0

1

∫=

E X µ–( )r[ ] Q p( ) µ–[ ]r pd
0

1

∫=

µ1 µ1′=

µ2 µ2′ µ1
2–=

µ3 µ3′ 3µ2′µ1– 2µ1
3+=

µ4 µ4′ 4µ3′µ1– 6µ2′µ1
2 3µ1

4–+=
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Notice that all definitions that involve addition or subtraction are
independent of any position parameter and all those involving a ratio
are independent of both position and scale parameters. We now illus-
trate the definitions further by some examples.

Example 3.10: As the simplest possible example consider the uniform
distribution which has S(p) = p. Thus LQ = 0.25, UQ = 0.75 and M = 0.5,
hence IQR = 0.5. The p-quantiles are 1 – p and p. The distribution is
thus symmetrical about 0.5 and G and G(p) are both zero. For the shape
index we have T(p) = 2(1 – 2p), so, for example, T(0.05) = 1.8, the high
value indicating the flatness of the distribution. 

Example 3.11: To illustrate further consider a distribution that is
formed by the weighted sum of a basic distribution S(p), which may or

 Name  Symbol  Definition
Median M Q(0.5)
Lower quartile LQ Q(0.25)
Upper quartile UQ Q(0.75)
Interquartile range IQR UQ – LQ
Inter p-range IPR(p) Q(1 – p) – Q(p)
Shape index T(p) IPR(p)/IQR
Quartile difference QD LQ + UQ – 2M
p-Difference PD(p) Q(p) + Q(1 – p) – 2M
Galton’s skewness G QD/IQR
Galton’s p-skewness G(p) PD(p)/IQR
p-Skewness index G*(p) PD(p)/IPR(p)
Upper p-difference UD(p) Q(1 – p) – M
Lower p-difference LD(p) M – Q(p)
Upper shape index UT(p) UD(p)/(UQ – M)
Lower shape index LT(p) LD(p)/(M – LQ)
Skewness ratio SR(p) UD(p)/LD(p)
Moors’ kurtosis K [(Q(7/8) – Q(5/8))+ ((Q(3/8) – 

Q(1/8))]/IQR
Upper kurtosis UK(t) Q(1 – t) + Q(0.5 + t) – 2Q(0.75)
Upper kurtosis index UKI(t) UK(t)/[Q(1 – t) – Q(0.5 + t)]
Lower kurtosis LK(t) Q(t) + Q(0.5 – t) – 2Q(0.25)
Lower kurtosis index LKI(t) LK(t)/[Q(0.5 – t) – Q(t)]

Note: 0 ≤ p ≤ 0.5, 0 ≤ t ≤ 0.25.

Table 3.3.  Definitions of quantile measures of shape
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may not contain further shape parameters, and its reflection, –S(1 – p).
A reasonable practical requirement is that S(p) has distributional range
(0, a) where the positive a may be ∞. We illustrated this idea with the
skew logistic in Chapter 1. A convenient way to introduce the general
skewness parameter into the weighting is to define the distribution by

Q(p) = λ + (η/2) [(1 + δ) S(p) – (1 – δ) S(1 – p)], –1 ≤ δ ≤ 1.

The distribution lies in the range of (λ – a (η/2) (1 – δ), λ + a (η/2) (1 + δ)),
which for a = ∞ is (–∞, ∞). The quantile density, using s(p) for the quantile
density of S(p), is

q(p) = (η/2)[(1 + δ) s(p) + (1 – δ) s(1 – p)].

A study of the quantile statistics of this distribution will show why this
form has been adopted. Notice that using R to denote the reflected
distribution we have that MR = –MS, UQR = –LQS and LQR = –UQS.
Substituting p = 0.5 gives

M = λ + (η/2)  [(1 + δ) MS + (1 – δ) MR]

 = λ + ηδ MS.

From the quartiles we obtain

Similarly, we obtain IPR(p) = η IPRS(p) and hence for the shape index
we have T(p) = TS(p). Thus the shape index of Q(p) is the same as that
of S(p). Note that it does not depend on the position, scale, or skewness
parameters of the model, but only on any shape parameter(s) in S(p).
This result is the basis for the use of the term shape index for this
measure and is a consequence of the choice of weights that add to one
for all δ. Turning to the p-difference function, we obtain

PD(p) = (η/2) [(1 + δ)S(p) – (1 – δ)S(1 – p)] 
+ (η/2)[(1 + δ)S(1 – p) – (1 – δ)S(p)] – ηδ MS,

which simplifies to

PD(p) = ηδ PDS(p).

IQR λ η 2⁄( ) 1 δ+( )UQS 1 δ–( ) LQS–( )+[ ]+{ }=

λ η 2⁄( ) 1 δ+( )LQS 1 δ–( ) UQS–( )+[ ]+{ }–

ηIQRS=
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For the quartiles, this gives

QD = ηδ QDS.

It follows that the skewness measures are

.

Thus the parameter δ controls the skewness, with positive values giving
a positively skewed distribution. It has no effect on the spread as meas-
ured by the inter-p ranges but does influence the value of the median.
The η acts as a multiplier to the inter-p ranges and is thus a scale
parameter. The parameter λ does not influence the ranges or skewness
measures but does have the effect of shifting the median. It thus controls
the position of the distribution. As we saw with the skew logistic this
general form of distribution has three parameters that link directly and
independently to the three main features of the shape of the distribution.
Any shape parameters link with the p-spread function, T(p). 

As all the measures discussed above are based directly on Q(p), it
is of some value to note the converse relation of Q(p) to the various p-
measures. Consider, and check, the following identity:

Q(p) ≡ Q(0.5) + {Q(p) – Q(1 – p)}/2 + {Q(p) + Q(1 – p) – 2Q(0.5)}/2

so

 Q(p) ≡ M + IQR.T(p) (1 + G*(p))/2.

Thus for symmetric distributions Q(p) = M + IQR.T(p)/2. For skew
distributions, G*(p) contributes to the expression. Thus Q(p) is seen
as made up, using p values, of the contributions from position, scale,
p-skewness index and shape index. This suggests that in studying
distributional models these four quantities should play a significant
role, as they uniquely define the quantile function. 

3.6  Linear moments

L-moments

In the previous sections we introduced third and fourth moments to
describe the skewness and kurtosis of a distribution. The use of even

G δGS=   G p( ), δGS p( )=   and G∗ p( ), δG∗S p( )=
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higher order moments was also possible in the definitions. Unfortu-
nately, as soon as we raise observations to third, fourth and higher
powers we obtain statistics that have very large inherent variability.
If we handle models with more than two parameters, the statistics
based on ordinary moments often requires us to use such imprecise
measures. It would be much better if we could obtain moment-like
statistics describing the various aspects of the shape of a distribution
using just linear functions of the order statistics. The definitions of
the inter-p range and p-difference indicate ways in which this may be
done. Consider now a measure of spread based on the average of the

beta = 1.6

Figure 3.2. (a) T(p) for some basic models; (b) G(p) for some basic models
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ranges of all pairs of observations taken from a sample of n, i.e., the
average of vij, where vij = xj – xi, 1 ≤ i < j ≤ n. There are (n

2) such pairs,
sub-samples. The value x(r) will occur in some with a plus (+) sign, in
others with a minus (–) sign. If the value of vij is summed over all
combinations, the coefficient of the r-th order statistic, the sum of all
the + and – is Kr = (2r – n – 1). Thus a sample measure of spread
given by the average vij is

l2 = [∑r (2r – n – 1)x(r)]/(n
2).

Notice that unlike m2 this is a linear function of the observations.
Such moments are called L-moments, L for Linear (see, for example,
Hosking (1990)). The sample L-moment for skewness is based on the
average skewness coefficient based on samples of three, x(k) – 2x(j) +
x(i), 1 ≤ i < j < k ≤ n. A kurtosis measure using samples of four
observations is obtained by using the inner two observations to give
the iqr, the outer two to give the ipr, and setting t(p) = 3 as a reasonable
value for comparison. This leads to the simple form: x(l) – 3x(k) + 3x(j)

– x(i), where 1 ≤ i < j < k < l ≤ n, as a measure of kurtosis for four
observations. The L-moment is then obtained by averaging over all
possible quadruples formed from the n observations. The first order
sample L-moment is obviously the average over samples of one, so is
no different from the ordinary average. The essence of all these quan-
tities is that they provide measures that are linear in the observations.
They thus all have the form

lk = Kk ∑ kr x(r).

The actual sample calculation of these moments is best done indi-
rectly and will be returned to later. The population equivalent to this
form of calculation is based on using the expected values of the order
statistics in small samples. Suppose we denote the r-th order statistic
in a sample of n by Xr:n, then in samples of 1, 2, 3 and 4 we define the
first four L-moments by

λ1 E X1:1( );=

λ2 E X2:2( ) E X1:2( )–[ ] 2;⁄=

λ3 E X3:3( ) 2E X2:3( )– E X1:3( )+[ ] 3;⁄=

λ4 E X4:4( ) 3E X3:4( )– 3E X2:4( ) E X1:4( )–+[ ] 4.⁄=
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It will be evident that λ1 is just the ordinary mean measuring position,
λ2, λ3, and λ4 give the population analogies of the sample quantities
just discussed.

In the same way that ordinary moments are combined to give scale-
free coefficients we can combine the L-moments to give

The L-Coefficient of Variation τ2 = λ2/λ1;

The L-Coefficient of Skewness τ3 = λ3/λ2;

The L-Coefficient of Kurtosis τ4 = λ4/λ2.

One valuable feature of these coefficients is that they have natural
scales with

To evaluate the L-moments for a distribution requires some further
theory so we discuss this in Section 4.11.

Probability-weighted moments

A second group of moments are the probability-weighted moments,
PWM. The population PWM is defined by

,

where the expectation treats p as a uniform variable. The weights
associated with Q(p) thus depend on p and tend to zero at either end
of the distribution. Table 3.4 gives formulae for the PWM of some of

Q(p) ωr,o ωo,s

1 1/(r + 1) 1/(s + 1)
pα 1/(α + r + 1) B(α + 1, s + 1)
(1 – p)β B(r + 1, β + 1) 1/( β + s +1)
pα/(1 – p)β B(α + r + 1, 1 – β) B(1 + α, s +1 – β)
[–ln(1 – p)]β — Γ(1 + β)/(s + 1)1 + β

Table 3.4.  Probability weighted moments for some basic distributions

1– τ3 1< <    and   5τ3
2 1–( ) 4⁄ τ4 1< <

ωt r s, , E Qt p( )pr 1 p–( )s[ ]=

© 2000 by Chapman & Hall/CRC



78 DESCRIBING A POPULATION

the more common distributions. The general definition allows for the
variable to be raised to a power, which was avoided with the L-
moments. To continue this policy we will keep all the calculations to
the case where t = 1 and so this subscript will be dropped. Thus interest
will focus on the PWM defined by

and

.

Example 3.12: The simplest example is the power distribution with
known origin at x = 0, Q(p) = ηpβ. For such a distribution, the PWMs
for s = 0 are the easiest to derive. Thus

In carrying out calculations with PWM it should be noted that
the various moments are mathematically related. Consider the fol-
lowing illustrations:

In general, 

(r
s)(–1)s , s and (s

r)(–1)r .

A consequence of such relations is that if we define the order of a
PWM by k = r + s, then given the PWM of orders less than k, there is

ωr 0, E Q p( )pr[ ] Q p( )pr pd
0

1

∫= =

ω0 s, E Q p( ) 1 p–( )s[ ] Q p( ) 1 p–( )s pd
0

1

∫= =

ωr 0, E ηpβ r+[ ] ηpβ r+ pd
0

1

∫ η r β 1+ +( )⁄= = =

ω0 2, E Q p( ) 1 p–( )2[ ] E Q p( )[ ] 2E Q p( )p[ ]– E Q p( )p2[ ]+= =

ω0 0, 2ω1 0,– ω2 0,+=

ω0 0, E Q p( ) p 1 p–( )+{ }[ ] ω1 0, ω0 1,+= =

ω0 0, E Q p( ) p 1 p–( )+{ }2[ ] ω2 0, 2ω1 1, ω0 2,+ += =

ω2 0, E Q p( ) 1 q–( )2[ ] E Q p( )[ ] 2E Q p( )q[ ]– E Q p( )q2[ ]+= =

ω0 0, 2ω0 1,– ω0 2,+=

ωr 0, Σs = o
r= ω0 ω0 s, Σr = o

s= ωr 0,
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only, in effect, one new PWM of order k. Given any one PWM of k
order and the lower order PWMs, all the remaining order k PWMs can
be derived mathematically. Hence in developing moments the easiest
approach is to keep to the moments with either r or s set at zero. 

For the case of PWM the sample PWM can be straightforwardly
defined by replacing the population expectation by a sample average
of the equivalent expression:

where the ordered  are some suitably chosen probabilities. The
natural  to choose are i/(n + 1), pi or the median-pi, defined in Section
4.2. The values pi = (i – 0.35)/n have been suggested as leading to
statistics with good properties. The form of the sample values ensures
that the mathematical relations between the population PWM have
analogous formulae for the sample PWMs. We will see in Section 4.11
that L-moments and probability-weighted moments are closely related.

3.7  Problems

1. Consider the following distributions in their basic forms:
(A) The distribution S(p) = 1/(1 – p), 0 ≤ p ≤ 1. 

Distribution A (the reciprocal uniform).
(B) The distribution S(p) = 1 – (1 – p)β, β > 0.
(C) A distribution is formed by adding

to distribution A its reversed distribution Q(p) = –1/p.
Thus we have

S(p) = 1/(1 – p) – 1/p = (2p – 1)/[p(1 – p)]. Distribution C.

(D) A further distribution is formed by multiplying the
distribution 1/(1 – p) by the uniform quantile function,
which is just p. Thus we have

S(p) = p/(1 – p). Distribution D.

(E) Multiplying the exponential quantile function by p
gives the distribution

S(p) = –p ln(1 – p). Distribution E. 

wr s, 1 n⁄( )Σx i( )p i( )
*r 1 p i( )

*–( )s
=

p i( )
*

p i( )
*
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(a) Show that Distribution D is simply Distribution A
shifted to make the origin the left end of the distribu-
tional range.

Using Distributions B through E defined above, carry
out the following exercises:

(b) Find the distributional ranges [S(0), S(1)].
(c) Derive s(p), fp(p) and hence fp(0) and fp(1). Sketch the

distributions. Find f(x) and F(x), where possible.
(d) Find the population median, M, interquartile range,

IQR, IPR(p), T(p), D(p) and G(p).
(e) Find E(X).

2. Plot the functions T(p), G(p) and G*(p) for the following
distributions:
(a) The exponential distribution.
(b) The Weibull distribution.
(c) The Pareto distribution.
(d) The normal distribution.
(e) The logistic distribution.

3. Consider the Pareto distribution in the form S(p) =
1/(1 – p)1/k, k = 1, 2, …. Show that the moments µr′ only
exist if r < k and that for these cases they take the values
µr′ = k/(k – r).

4. (a) If R(p) is the reflected form of Q(p) show that the
probability-weighted moments have the following
relationships ωR: r,o = –ωQ: o,r and  ωQ: o,s = −ωQ: s,o.

(b) If a distribution has the form Q(p) = λ + ηT(p) + φ H(p),
where T(p) and H(p) are quantile functions, show that

ωQ : r,o = λ/(r + 1) + η ωT : r,o + φ ωH : r,o, 

and 

ωQ : o,s = λ/(s + 1) + η ωT : o,s + φ ωH : o,s,

(c) Using the results of (a) and (b), find the probability-
weighted moments, ωr,o and ωo,s for the distribution.

Q(p) = λ + (η/2) [(1 + δ)pα – (1 – δ)(1 – p)α]. –1 ≤ δ ≤ 1.
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5. Explore the shapes of the following three distributions:
(a) Q(p) = 4p2 – 3p + 1;
(b) Q(p) = 3p2 – 2p3;
(c) Q(p) = pα/(1 – pγ)β.
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CHAPTER 4

Statistical Foundations

4.1  The process of statistical modelling

In Chapter 1 the main elements of the process of statistical modelling
were introduced. These were summarized in Section 1.14. The iterative
nature of the process should be emphasized. There is no guaranteed
way of simply working through steps 1 to 5 to get a good fitted model.
Let us illustrate some of the situations where one might need to follow
one of the backward loops.

Example 4.1: At the identification stage a trial model shows all the
required features, except for one. We then need to go back to the con-
struction stage to see what changes in construction would add the
required feature.

Example 4.2: The validation process with a new set of data may indicate
a shift in position, but no change in the scale or shape features. Thus a
new estimate of the position parameter will be required. The issue is
also raised as to whether the combined data, new plus old, might be
used to obtain better estimates of the unchanged parameters.

Example 4.3: A model, fitted by, say, the method of percentiles using
the median and quartiles, is applied in a new situation. It is realized
that for this situation the quality of fit matters more for large values
of the variable than for small values. This suggests a need to re-
estimate the parameters with a more appropriate choice of quantiles
for the matching.

It is evident from these examples that modelling cannot be reduced
to a routine process. It is necessary to be constantly on the lookout for
features of the data and of the area of application that might lead to
a revision, an iteration, of part of the process.
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One other general point needs to be made at this stage. Whatever
models we finally obtain will be forever tentative. We must not treat
them as the truth about the situation. It may be suggested that the
classic idea of falsifiability should be used as a final stage in the
modelling. We should test our model with some formal test and only
use it if it is not rejected by the test. Unfortunately, in most practical
situations the real world is a very complex place and our model is
inevitably a simplification. Thus, given sufficient data, and in our
computer-based world we often have vast quantities, we will reject
almost any model we have obtained. The question thus becomes not,
is the model right or wrong, or even is it statistically acceptable or
not, but, is it good enough to achieve its practical objectives? This is
why it is important to make sure the criteria used in processes such
as estimation take into account the final practical uses of the model.

In the introduction to this book we emphasized the role of modelling
within problem solving and the importance of having new perspectives
within that process. In this chapter we introduce a number of common
statistical topics and look at them from the viewpoint of quantile
modelling. The various topics are introduced not only as the basis for
further chapters but also to give a quantile-based perspective on com-
mon statistical ideas. 

4.2  Order statistics

We previously denoted a set of ordered data by x(1), x(2), …, x(n – 1), x(n),
the corresponding random variables being denoted by X(1), X(2), …,
X(n – 1), X(n). Thus X(n), for example, is the random variable representing
the largest observation of a sample of n. The n random variables are
referred to as the n order statistics. As we have seen, sample-ordered
values play a major role in modelling with quantile-defined distribu-
tions, so this section will study some of their main properties. Recent
books on this topic are Reiss (1989), Arnold, Balakrishnan and Naga-
raja (1992), and the two volumes, 16 and 17, of the Handbook of
Statistics, edited by Balakrishnan and Rao (1998).

Consider first the distribution of the largest observation. Let Q(p)
be the quantile function of the x data and the distribution of X(n) be
denoted by Q(n)(p(n)). Let the corresponding two CDFs be F(x) (= p) and
F(n)(x)(= p(n)). The probability that X(n) is less than or equal to some
specified value x is given directly as p(n), but is also the probability
that all n independent observations on X are less than or equal to this
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value, x, which for each one is p. This probability is, by the multipli-
cation law of probability, pn. Hence

 p(n) = pn so p =  and F(x) = .

Finally, therefore, inverting the CDF, F(x), to get the quantile function,
we have the equivalent statements that the p(n) quantile of the largest
value is given by both Q(n)(p(n)) and .
Hence

Q(n)(p(n)) = .

The quantile function of the largest observation is thus found from the
original quantile function in the simplest of calculations. 

Example 4.4: If X has an exponential distribution, then the quantile
function of the largest observation, returning to the usual notation, is

Q(n)(p) = –ln (1 – p1/n).

This distribution will have a median value of –ln (1 – 1/21/n). 

The previous argument also works directly for the smallest obser-
vation, using the fact that the probability of n independent observa-
tions being greater than or equal to x is (1 – p)n. Thus

1 – p(1) = (1 – p)n and so p = 1 – (1 – p(1))1/n

This leads to a quantile function for X(1) of Q(1 – (1 – p(1))1/n). For the
exponential example we have on simplifying,

Q(1)(p) = –[ln (1 – p)]/n.

This is still an exponential distribution but with a reduced scale factor.
For the general r-th order statistic X(r) the calculation becomes

more difficult. The probability that the r-th largest observation is less
than some value z, X(r) ≤ z, is equal to p(r) = F(r)(z). In terms of the X
variables, this is also the probability that at least r of the n indepen-
dent observations are less than or equal to z. The probability of s
observations being less than or equal to z is ps, where p = F(z), and
there are n – s observations, with probability (1 – p)(n – s) of being greater

p n( )
1 n⁄ p n( )

1 n⁄

Q p n( )
1 n⁄( )

Q p n( )
1 n⁄( )
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than z. There is also the binomial term, (n
s), giving the number of ways

that the s can be chosen from the n. Thus, as Figure 4.1 illustrates,
the total probability for s observations less than or equal to z is given
by the binomial expression.

Prob(s observations ≤ z) = (n
s) ps (1 – p)(n – s).

It follows that the probability of at least r observations less than or
equal to z is

p(r) =  Prob(s observations ≤ z),

since if for any s, for s = r to n, the observation x(s) is less than or equal
to z, then x(r) must be less than or equal to z. Hence 

(n
s) ps (1 – p)(n – s).

This function is the incomplete beta function and is denoted by

p(r) = I(p, r, n – r + 1).

Clearly, we cannot solve this expression in a simple fashion to get
p on the left-hand side. Mathematically this inversion can be carried
out numerically and the result referred to as the inverse beta function.
We denote it by

 p = BETAINV(p(r), r, n – r + 1).

We thus have, as with the previous calculations, the relation
between the CDF for the order statistic and the CDF for the original
distribution of X. Again we can express the value z as either Q(r)(p(r))
or Q(p). Hence we have a further modelling rule.

The order statistics distribution rule

If a sample of n observations from a distribution with quantile function
Q(p) are ordered, then the quantile function of the distribution of the
r-th order statistic is given by 

Q(r)(p(r)) = Q(BETAINV(p(r), r, n – r + 1)).

Σs = r
n

p r( ) Σs = r
n=
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Although this looks unhelpful it in fact is a crucial result since BETAINV
is a standard function in most spreadsheets and statistical software.

The previous expression for p(r) can be re-expressed in terms of CDF as

p(r) = F(r)(z) =  (n
s) F(z)s [1 – F(z)](n – s).

To find the PDF of X(r) this is differentiated with respect to z and
after some algebra the expression simplifies to

f(r)(z) = {n!/[(r – 1)! (n – r)!]} [F(z)](r – 1) [1 – F(z)](n – r) f(z).

Rather than go through the detail of this it is worth noting, looking
at the diagram of Figure 4.1, that f(r)(z)dz naturally gives the proba-
bility of getting one value of z in the small interval dz with r – 1 below
it and n – r above it. The p-PDF is even clearer as 

f(r)p(p) = {n!/[(r – 1)! (n – r)!]} pr – 1(1 – p)n – r f(p).

If we wish to calculate the k-th central moment of the r-th observa-
tion of a sample of n, denoted E( ) to emphasize the dependence on
both r and n, we start with the definition in terms of the PDF f(r)(z), thus

Figure 4.1. Deriving the distribution of the r-th order statistic

Σr
n

Xr n;
k

E Xr n;
k( ) zkf r( ) z( ) zd

DR∫ n! r 1–( )! n r–( )![ ]⁄{ }= =

zk F z( )[ ] r 1–( ) 1 F z( )–[ ] n r–( )f z( ) zd
DR∫
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changing the variable to p = F(z) leads to 

Example 4.5: One important special case of the PDF of the r-th order
statistic is when the distribution for z is uniform. Then F(z) = z and f(z)
= 1 for 0 ≤ z ≤ 1 and zero otherwise. In this case the PDF of the r-th
order statistic, z(r), is 

.

This is a well-known distribution in statistics called a beta distribution.
The quantile function for this distribution is numerically obtained and
is denoted by BETAINV(p, r, n + 1 – r). It will be seen that the order
statistics distribution rule above is simply an application of the uniform
transformation rule applied to the uniform order statistics. The distri-
bution has mean and variance given by

E(Z(r)) = r/(n + 1), V(Z(r)) = [r(n – r + 1)]/[(n + 1)2 (n + 2)].

Notice in passing that the values x(r)′ = Q(r/(n + 1)) divide all continuous
distributions of X into n + 1 sections of equal probability 1/(n + 1)

Having obtained the distributions of the order statistics, the next
step is to find the main statistical properties of these distributions.
The mean of the r-th order statistic, E(X(r))= µ(r), is referred to as the
r-th rankit. Thus for the uniform distribution, µ(r) = r/(n + 1). It can
be shown that for the exponential distribution the rankits can be
generated by a set of recurrence relations as follows:

and in general

µ(r) =  µ(r – 1) + 1/(n + 1 – r).

We will use the uniform and exponential rankits in later studies.
Unfortunately, the rankits for most other distributions are not simple

E Xr n;
k( ) n! r 1–( )! n r–( )![ ]⁄{ } Qk p( )p r 1–( ) 1 p–[ ] n r–( ) pd

0

1

∫=

f r( ) z r( )( ) n! r 1–( )! n r–( )![ ]⁄{ }z r( )
r 1–( ) 1 z r( )–( ) n r–( )= 0 z r( ) 1≤ ≤,

µ 0( ) 0,=

µ 1( ) µ 0( ) 1 n⁄+=

µ 2( ) µ 1( ) 1 n 1–( ).⁄+=
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to calculate and for many distributions they exist as sets of tables
scattered through the statistical literature. For a survey of such
results, see Balakrishnan and Rao (1998). Using the uniform trans-
formation rule and noting that the ordered u(r) lead to the correspond-
ing ordered x(r) gives x(r) = Q(u(r)). We will show in Section 4.5 that, as
a first approximation only, E(function(Z)) = function(E(Z)). Hence an
approximate rankit is given by E(Q(U(r))) = Q(E(U(r)) = Q(r/(n + 1)).
Over the years various studies have suggested Q((r – 0.5)/n) gives an
approximation that is better over a range of distributional models,
which is why we have kept to this form for our previous uses. However,
both forms are approximations and the use of expectations to represent
the tail order statistics, which have highly skewed distributions, is not
very helpful in interpreting quantile plots. Although the expectations
of order statistics are difficult to handle, the percentile properties can
be directly derived from the distribution rule. In particular, the median
of the distribution of an order statistic, which we will call the median
rankit, Mr, is given by the median rankit rule.

The median rankit rule

Mr = Q(BETAINV(0.5, r, n – r + 1)).

The quantity

 = BETAINV(0.5, r, n – r + 1),

we will call the median-pr.
The actual distributions of the order statistics can be explored

using percentiles. Figure 4.2 shows the 1st, 50th and 99th percen-
tiles of the order statistics for a logistic distribution. It is clear from
this that the distributions are skewed for order statistics from the
tails of the logistic, skewed to the right in the right-hand tail and
vice versa. In the central part of the distribution of X, the distribu-
tions of the order statistics are fairly symmetrical and the median
values will be close to the means. The skewness of the distributions
of the tail order statistics makes it difficult to judge quantile plots
based on rankits. The mean of a skew distribution has no clear visual
feature. However, with lines based on median rankits we look for
the numbers of points above and below the line to be about half at
all parts of the line.

pr
*
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4.3  Transformation

In Section 3.2 we introduced the Q- and p-transformation rules. In
this section we discuss these rules and their use in a little more detail.
First, however, we need to prove the Q-transformation rule that the
distribution of Z = T(X) is T(Q(p)) when X has quantile function Q(p).
We restrict the function T(X) to being a non-decreasing function of X.
The distribution of Z can be expressed as the quantile function and
CDF in the notation

zp = Qz(p) and p = Fz(zp).

The CDF can be written

p = Prob(Z ≤ zp)

which can then be written as 

p = Prob(T(X) ≤ T(x′))

where zp = T(x′). But since T( ) is a non-decreasing function the
inequality can be re-expressed as

p = Prob(X ≤ x′).

Figure 4.2. Percentile rankits for the order statistics of the logistic distribution
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But this is exactly the expression that defines the p quantile, xp = Q(p),
for the distribution of X, so x′ = xp. The transformation can therefore
be expressed as zp = T(xp) and therefore, 

Qz(p) = T(Q(p)).

It is seen then that the quantile function of the transformed variable,
z, is found simply by transforming the quantile function of the original
variable, x.

Example 4.6: Let X have an exponential distribution and Z be defined
by Z = X2. Thus

Q(p) = –η ln(1 – p)

and therefore 

Qz(p) = [–η ln(1 – p)]2.

This distribution is a special case of the Weibull distribution.

In the above we have used an increasing transformation. Suppose
T(X) is a decreasing function, for example, –X or 1/X. The previous
argument for increasing functions now has to be modified. We still
have that

p = Prob(T(X) ≤ T(x′))

where Qz(p) = T(x′). But since T( ) is a decreasing function, the ine-
quality can be re-expressed as

p = Prob(X > x′) = 1 – Prob(X ≤ x′).

Hence

Prob(X ≤ x′) = 1 – p.

But this is exactly the expression that defines the 1 – p quantile,
Q(1 – p), for the distribution of X, so x′ = Q(1 – p). The transformation
can therefore be expressed as Qz(p) = T(Q(1 – p)). This thus gives
the extended version of the Q-transformation rule for decreasing
transformations.
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Example 4.7: Suppose X has an exponential distribution and Z = 1/X2.
Then

Qz(p) = 1/(–ln p)2.

This is a special case of a distribution called the Type 2 Extreme Value
Distribution.

We showed in the p-transformation rule of Section 3.2 that if Z =
H(p) is a non-decreasing function with H(0) = 0 and H(1) = 1, then
Qz(t) = Q(H(t)) is a quantile function.

Example 4.8: Let X have an exponential distribution and the p-trans-
formation be p = t2, then

zt = –η ln(1 – t2).

This is a special case of a distribution called the Burr Type X.

We now have two types of transformation. The Q-transformation
allows us to find the distributions of new random variables obtained
from, usually, increasing or decreasing functions of x. The p-transfor-
mation is a device for creating new and valid quantile distributions.
Although they seem rather different operations mathematically, their
function is to transform the two axes of the quantile plot.

Five specific cases of the use of transformations are of particular
value in modelling: 

(a) The uniform transformation rule that expresses any vari-
able as Q(U), where U is a uniform random variable, is a
widely used property. For example, we have investigated
the properties of the order statistics from basic definitions.
We can also develop the properties using the uniform
transformation rule. We imagine the order statistics gen-
erated from the order statistics of a uniform distribution,
so X(r) = Q(U(r)). The properties of X(r) can then be studied
using those of U(r).

(b) A special case of (a) is the transformation to the exponen-
tial distribution. This has a quantile function = –ln(1 – p).
Hence the link to the uniform is given by

y = –ln(1 – u), and in reverse u = 1 – exp(–y).
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(c) If it is possible to transform from two distributions to the
uniform, it is clear that it is possible to transform, via the
uniform, from one to the other. In particular, it is possible
to transform from a known distribution of x to the expo-
nential distribution. Thus if x = Q(u) and y = –ln(1 – u),
then the transformation is

x = Q(1 – exp(–y)) or y = –ln(1 – F(x)).

This result was originally shown by Renyi (1953).
(d) A set of transformations that have proved to be of consid-

erable value in statistics are the Box–Cox transforma-
tions, (Box and Cox, (1964)), defined by

As α changes from negative, through zero, to positive values,
the curves representing the transformation form a smoothly
changing pattern. The log transformation is the limiting
case as α approaches zero. Notice that the transformations
refer to the general shape. Matters of position and scale can
be dealt with as simple additional stages of transformation.

(e) In a wide range of situations the logs of the data have been
used as the basis for modelling. Although this leads to
simpler models it can cause problems when trying to work
back to the underlying model for the raw data. In quantile
function terms if λ + ηS(p) is the model for the log data,
then the model for the raw data is simply Q(p) =
exp[λ + ηS(p)]. In many situations λ will be a function of
other, regressor variables. We will show later that there
is no reason why this last model cannot be used directly
to fit and analyze the data, without having to resort to
using the log transformation on the data.

If we require the expectation of a Q-transformed distribution we
have to integrate T(Q(p)) which is not in general the same as

 so the expectation of a function is not the function of
the expectation, i.e., E[T(X)] ≠ T[E(X)]. However, if we substitute p =
0.25, 0.5, 0.75, or any other specific value, p0, we do have Qz(p0) =
T(Q(p0)), which gives a general quantile transformation rule, provided

y BC z( ) zα 1–( ) α⁄= = ,
z( ),ln=

α 0.≠
α 0.=

T Q p( ) pd
0

1∫( ),
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of course that T(.) is a non-decreasing function. For example, we have
the median transformation rule.

The median transformation rule

The median of a non-decreasing function is the function of the median,

Median[T(X)] = T[Median(X)].

We have already seen this general result for the specific case of the
median rankit rule.

4.4  Simulation

Probably all spreadsheet software, all statistical software, all general-
purpose languages and many pocket calculators provide the user with
a simple way of generating random numbers. Although there are
variations on the theme, the basic random number is a number in (0,1)
that represents an observation on a continuous uniform distribution.
In quantile language the quantile function is

S(p) = p, 0 ≤ p ≤ 1,

and the p-PDF is 

fp(p) = 1, 0 ≤ p ≤ 1.

The random numbers generated by the software are not in fact truly
random, they are pseudo-random, being generated by deterministic
numerical algorithms. Often these algorithms require a starting value,
a seed, from which they grow. In normal use a different seed is used
each time a sequence of values is required. However, it is possible and
sometimes useful to repeatedly generate the same stream of random
numbers. Although the terminology varies, a common notation that we
will use is to let a value given by such an algorithm be denoted by u, so
we could write u = RAND. A stream of such uniform observations is
denoted by u1, u2, …, un. The generating mechanism is designed to
produce a stream of approximately independent values. We refer to the
generation of random variables in such a fashion, and also to the use of
such values in the investigation of a model of any type, as simulation. 
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The uniform transformation rule of Section 3.2 showed that the
values of x, from a distribution with quantile function Q(p), can be
simulated from

xi = Q(ui), i = 1, 2, …, n.

The quantile function thus provides the natural way to simulate values
for those distributions for which it is an explicit function of p.

Where a distribution is discrete or does not possess an explicit
quantile function a wide variety of alternative approaches have been
adopted. The only one that is of specific relevance to our subject matter
is the simulation of the normal distribution. The most elegant way of
obtaining simulated observations from a normal distribution is given
by the Box–Muller formula, Box and Muller (1958). If u1 and u2 are
independent random numbers and we use the transformations

x1 = [–2 ln u1]1/2 cos(2πu2),

x2 = [–2 ln u1]1/2 sin(2πu2),

then x1 and x2 are independent standard normal variates. We build on
this idea in Chapter 13. 

In a number of the applications of quantile distributions interest
focuses particularly on the extreme observations in the tails of the
data. To simulate these requires the simulation of the ui, followed by
the ordering of the ui and thence the substitution into x = Q(u) to
obtain the ordered x(i). The non-decreasing nature of Q( ) ensures the
proper ordering of the x. The process of ordering a large data set is
very time consuming in relative terms even on a computer. Fortunately
it is possible to simulate the observations in one tail without simulat-
ing the central values. We will state here how to do this. Consider the
right-hand tail. The distribution of the largest observation has been
shown to be Q(p1/n). Thus the largest observation can be simulated by
x(n) = Q(u(n)), where u(n) =  and vn is a random number. If we now
generate a set of transformed variables by

etc.

vn
1 n⁄

u n( ) vn
1 n⁄=

u n 1–( ) vn 1–( )1 n 1–( )⁄ u n( )⋅=

u n 2–( ) vn 2–( )1 n 2–( )⁄ u n 1–( )⋅=
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where the vi, i = n, n – 1, n – 2, …, are simply a simulated set of
independent random uniform variables, not ordered in any way. It will
be seen from their definitions that the u(i) form a decreasing series of
values with u(i – 1) < u(i). In fact, the u(i) form an ordered sequence from
a uniform distribution. Notice that once u(n) is obtained, the relations
have the general form

u(m) = (vm)1/m ⋅ u(m + 1), m = n – 1, n – 2, ….

The order statistics for the largest observations on X are then simu-
lated by

etc.

This method was introduced by Schucany (1972) and a similar
result giving the order statistics in ascending order was given by
Laurie and Hartley (1972). Notice that the nature of the uniform
distribution means that each can be obtained from the other. Table
4.1 illustrates the simulation of the 4 largest values from a sample of
20 from a standard exponential distribution.

In general the statistical properties of functions calculated from
the sample quantiles, such as the p-skewness index, are difficult to
analyze theoretically. Simulation thus provides a practical procedure
for studying behaviour. The simulated data is provided by x(r) = Q(u(r)).
The quantile function used may take several forms:

(a) It may be a theoretical model, Q(p). The parameters would
be fixed within practical useful regions. 

m v v1/m u(m) –ln(1 – u(m))
20 0.129 0.9027 0.9027 2.330
19 0.465 0.9605 0.8670 2.017
18 0.316 0.9380 0.8133 1.678
17 0.619 0.9722 0.7907 1.564

Note: Simulation of the four largest observations for a sample of 20 from an exponential.

Table 4.1.  Simulation

x n( ) Q u n( )( )=

x n 1–( ) Q u n 1–( )( )=

x n 2–( ) Q u n 2–( )( )=
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(b) It may be that interest focuses on the statistics from the
data-based fitted model. In this case (p) would be used
in place of Q(p). 

(c) If there is doubt about the validity of the model, then a
model-free approach can be used by using the empirical
quantile function given by , defined in Section 2.2.
This will give a bootstrap sample, equivalent to sam-
pling, with replacement, from the original data. 

(d) If we wish to use an essentially model-free approach, but
with a more continuous form of Q(p), then the sample
quantile function (p), defined in Section 2.2, may be
used. Unfortunately this only defines values for p inside
(1/n, (n – 1)/n). For values in the small tail sections, a
fitted distributional model is needed (see Hutson (2000)).
If ηS(p) is the model, then the tail Q(p) are given by:

 = ηS(p) – ηS(1/n) + x(1),

or

 = ηS(p) – ηS((n – 1)/n) + x(n).

The parameter η can be estimated by the method of per-
centiles using, for exampl’e, a wide IPR(p). 

In most simulation studies m samples of n observations are gen-
erated and the sample analyzes repeated m times to give an overall
view of their behaviour. A technique that is sometimes used as an
alternative to such simulation is to use a single sample of ideal obser-
vations, sometimes called a profile (see, for example, Mudholkar,
Kollia, Lin and Patel (1991)). Such a set of ideal observations could
be provided by the rankits, E(X(r)), the approximation Q((r – 0.5)/n),
or the median rankits, Mr, for r = 1, …, n.

4.5  Approximation

Suppose h(x) is some function of x and h′(x), h′′(x), etc. are the first,
second, etc. derivatives with respect to x. The value of x close to some
specified value of x, say x = a, can be approximated by a Taylor series
of powers of (x – a)

Q̂

Q̃o p( )

Q̃

Q̃o p( )

Q̃o p( )
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h(x) = h(a) +h′(a) (x – a) + h′′(a) (x – a)2/2! + …

If h(x) is a slowly changing smooth curve near a or if x is close to a so
(x – a) is small and decreasing with the power, then the first terms in
this series will provide good approximations. We will be making use
of three particular applications of this approximation and derive the
basic results here.

(a) Approximate Expectations. Suppose we let x be a random
variable, X, with E(X) = a and take the expectation of h(X).
This gives

E[h(X)] = h(E(X))] +h′(E(X))E[(X – E(X))] 
+ h′′(E(X)) E[(X – E(X))2]/2! + …

so 

E[h(X)] = h[E(X)]

as a first approximation, using the fact that E(constant) =
constant, and 

E[h(x)] = h(E(X))] + h′′(E(X)) V(X)/2!

as a second approximation.
(b) Approximate rankits. Suppose we replace x by u(r), the r-

th order statistic from a uniform distribution which has
a beta distribution (see Section 4.2), with parameters r
and n + 1 – r, and also replace h( ) by a quantile function
Q( ). We can use a = r/(n + 1), which is the expectation of
U(r). Hence, 

Q(U(r)) = Q(r/(n + 1)) + Q′(r/(n + 1))(U(r) – r/(n + 1)) 
+ Q′′(r/(n + 1)) (U(r) – r/(n + 1))2/2 + …

From our look at order statistics and the nature of the
quantile function it is clear that Q(U(r)) is the distribution
of the r-th order statistic of the distribution Q( ). Taking
expectations of both sides gives the rankit for X(r) on the
left-hand side. The second term on the right-hand side
becomes zero, the third term has an expectation term
which is the variance of U(r). This leads to
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rankit = µ(r) = Q(r/(n + 1)) + Q′′(r/(n + 1)) 
[(r(n – r + 1)]/2[(n + 1)2(n + 2)] + ….

As a first approximation

µ(r) = Q(r/(n + 1)).

The approximation may obviously be improved by using
the second and higher terms.

(c) Solving Q(p) = x for p. Where distributions have an explicit
CDF, p = F(x), the value of p can be found from the
observed x in a fitted model by using F(x), with any param-
eters in it replaced by their estimated values. However, if
there is no explicit F(x) but an explicit and fitted quantile
function, (p), a numerical solution has to be found to
give the p for any x. Usually there is an ordered set of
data, x(r), and the corresponding set of ordered p(r) is
needed. These might be seen as the ordered set of uniform
observations that, used with the fitted (p), would sim-
ulate the data exactly, i.e., x(r) = (p(r)). Suppose p0 is the
current estimate of p for a given x. If we replace x by p in
the Taylor series, put h(p) = Q(p), the true quantile func-
tion for simplicity of notation, and use only the first two
terms of the Taylor series, we have

Q(p) = Q(p0) + Q′(p0)(p – p0).

Solving for p and using x = Q(p) and Q′(p) = q(p) gives as
a better estimate:

p = p0 + [x – Q(p0)]/q(p0).

If we are using the ordered data, the natural first estimate
of p(r) is r/(n + 1). The formula is used in an iterative
fashion, with fitted Q(p) and q(p), until the given value of
Q(p) differs from x by less than some chosen small amount,
depending on the accuracy required of the calculations. It
should be noted that for p close to 0 or 1 the initial approx-
imation may generate impossible values of p, less than 0
or greater than 1. This problem can be avoided by replac-
ing such p by a or 1 – a, respectively, where a is a very

Q̂

Q̂
Q̂
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small quantity, e.g., 0.00000001. The iteration then settles
to viable values. A problem that may be generated by this
is that in initial iterations the order of the p(r) may not be
correct. However, if q(p) is a smooth function and n is
large, the transformation preserves an initially correct
ordering, and the iterations converge on the true values.
As most Q(p) are smooth functions, four or five iterations
usually give accurate values for the p. 

4.6  Correlation

In developing statistical models we are often interested in the rela-
tionships between variables. We consider the modelling of relation-
ships in some detail in Chapters 12 and 13. It is useful, however, at
this stage just to introduce the idea behind a common measure of
relationship. Consider two variables, X and Y, that are unrelated; the
technical term is independent. It is intuitively reasonable that E(XY)
= E(X)E(Y) for this situation. Suppose, however, that Y relates in a
linear fashion to X, so that large Y tend to occur with large X. This
will cause E(XY) to increase above E(X)E(Y). Conversely, if small Y
tend to occur with large X, then E(XY) will reduce. The difference
produced by the relationship is thus defined by

C(X, Y) = E(XY) – E(X )E(Y ).

This is called the covariance. It will be seen that if X = Y, then
the covariance becomes the common variance of X and Y, since V(X )
= E(X2) – E(X )2. It will be obvious from the definition that C(X, Y )
depends on the scale parameters of X and Y. To remove this depen-
dence we standardize the covariance by dividing by the standard
deviations of X and Y. This leads to

ρ(X, Y ) = C(X, Y )/[V(X )V(Y )]1/2.

This is the correlation coefficient. It measures the strength of
the linear relation between X and Y. Listing its main properties:

(a) If Y = X, then ρ(X, Y ) = 1. If Y = –X, then ρ(X, Y ) = –1. 
(b) –1 ≤ ρ(X, Y ) ≤ 1.
(c) If X and Y are independent, the ρ(X, Y ) = 0. The converse

is, however, not true, since, for example, if there was a

© 2000 by Chapman & Hall/CRC



CORRELATION 101

perfect circular relation between X and Y we would still
have ρ(X, Y ) = 0.

(d) ρ(X, Y ) is independent of both position and scale. For
example, linear transformations have no effect on the
value of ρ(X, Y ). Thus

ρ(3 + 4X, 2 – 5Y) = ρ(X, Y ). 

(e) One special use of the correlation coefficient is between
observed values X and their values, Y = , as predicted
by a fitted model. Here we are looking for a large positive
value to indicate a good fit, with a small value indicating
a poor fit. The traditional measure of this is in fact the
square of the correlation and is termed the multiple cor-
relation coefficient, R2(X, ). Thus

R2 = C2(X, ) / [V(X)V( )].

(f) The sample values of correlation coefficients are derived by
replacing the E( ), in the definitions of both C(X, Y ) and
the V(x) and V(Y ), by the corresponding sample averages. 

As an illustration of the effects of correlation, Table 4.2 shows
the population correlations between values of the ordered observa-
tions for a sample of 50 from a uniform distribution. It will be seen

 k
r 1 2 3 4 5 10 20
1 0.700 0.566 0.485 0.429 0.387 0.270 0.169
5 0.903 0.827 0.764 0.712 0.668 0.511 0.336
10 0.942 0.890 0.844 0.803 0.765 0.615 0.413
15 0.955 0.913 0.874 0.838 0.804 0.658 0.436
20 0.960 0.922 0.886 0.852 0.819 0.672 0.421
25 0.962 0.925 0.889 0.854 0.820 0.663 0.358
30 0.960 0.921 0.883 0.845 0.808 0.627 0.169
35 0.955 0.910 0.865 0.820 0.776 0.540
40 0.942 0.883 0.823 0.761 0.696 0.270
49 0.700

Correlation (Ur , Ur + k), n = 50

Table 4.2.  Correlations between uniform order statistics

X̂

X̂

X̂ X̂
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that these correlations are high and only die away slowly between
observations that are further and further apart. The link between
all distributions and the uniform distribution means that this high
correlation is a universal feature of ordered data from any distribu-
tion. The visual consequence of this will be seen repeatedly in the
illustrations in this book, for when we plot the ordered data the
correlation causes it to show a snake-like shape. A particularly high
value of one ordered observation will force up the values above it
and vice versa. Such behaviour can easily cause us to look for further
features in a model, when what we are seeing is just a natural
consequence of this correlation.

In Section 1.3 a median-based measure of variability, MedAD, was
introduced. This is defined as Median(X – M). This is a more robust
estimator than the variance, in that the sample statistic is unaffected
by outlying observations in the tails of the data. A direct generalization
of this for measuring covariance is the comedian defined by

COM(X, Y) = Median[(X – MX)(Y – MY)].

This leads to a measure of correlation given by

δ = COM/[MedADX MedADY].

A detailed study of these measures is given in Falk (1997). 

4.7  Tailweight

Tailweight and tail length are terms used to indicate the degree of
probability in the tails of a distribution. This is reflected somewhat
in the kurtosis, but is a measure of the peakedness or flatness of a
distribution as well as the tail behaviour. Here we concentrate spe-
cifically on the behaviour of the extreme tails. In general, we refer
to a heavy-tailed or long-tailed distribution as one having significant
probabilities in the tail(s). If one uses, say, the normal distribution
when the data actually comes from such a heavy-tailed distribution,
then one will have a surplus of extreme observations. In applications
such as quality control this will lead to inappropriate decisions. It
is, therefore, useful to have some sample and population measures
of tailweight. There have been a number of such measures suggested
for application.
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Using tail quantiles

One result of heavy tails is that for p in the outer tails Q(p) will be
particularly large or small. To assess this one needs to remove position
and scale factors. Table 4.3 shows tail values of Q(p) for a number of
standardized distributions and parameter values. 

A simple way of summarizing the tail length is to standardize, as
suggested by Parzen (e.g., Parzen (1997)) and use the identification
quantile function:

IQ(p) = [Q(p) – M]/2IQR

The values of IQ(0.01) and IQ(0.99) are compared with ±1 and ±0.5 to
indicate tail lengths. For example, a distribution with QI(0.99) > 1 is
regarded as having a long right tail, if it is between zero and 0.5 it is
regarded as short tailed.

The TW(p) function

There have been a variety of proposals for ways of comparing and
ranking distributions in terms of tailweight. One simple one, suitable
for right-tailed or symmetric distributions, compares quantile func-
tions as p approaches one. (See, for example, Hettmansperger and
Keenan (1975).) As the value of Q(p) will depend, at any p, on the
effect of scale, the approach uses the relative rates of change of the
quantile function rather than relative values. We use subscripts G and
F to denote two distributions. The distribution G will have more prob-
ability in the tails than F, if the ratio QG(p)/QF(p) is an increasing
function of p for p ≥ 0.5. This requires the derivative of the ratio to be
greater than or equal to zero. Differentiating and sorting give 

slope =  ≥ 0.

This then leads to the rule:
G will have heavier tails if

TWG(p) ≥ TWF(p), where TW(p) = q(p)/Q(p).

Example 4.9: For the exponential distribution

Q(p) = –ln(1 – p), q(p) = 1/(1 – p), TWE(p) = –1/[(1 – p)ln(1 – p)].

qGQF qFQG–( ) QF
2⁄
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Distribution Parameter M UQ Q(0.9) Q(0.95) Q(0.99) Q(0.999)
Normal 0 0.5 0.95 1.22 1.72 2.29
Logistic 0 0.5 1.00 1.34 2.09 3.14
Symmetric Lambda 0.5 0 0.5 0.86 1.03 1.22 1.32

–0.5 0 0.5 1.25 2.04 5.32 18.11
Cauchy 0 0.5 1.54 3.16 15.91 159.15
Extreme value 1 0 0.5 1.07 1.48 2.41 3.72
exponential 1 2.0 3.32 4.32 6.64 9.97
Weibull 0.5 1 1.41 1.82 2.08 2.58 3.16

1.5 1 2.83 6.05 8.98 17.12 31.46
Power 0.5 1 1.22 1.34 1.38 1.41 1.41

1.5 1 1.84 2.41 2.62 2.79 2.82
Pareto 0.5 1 1.41 2.24 3.16 7.07 22.36

1 1 2.0 5.0 10.0 50.0 500
1.5 1 3 11 32 354 11180

Table 4.3.  Tail lengths of common distributions (standardized)
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For the Pareto distribution

Q(p) = (1 – p)−β, q(p) = β(1 – p)−β−1, TWP(p) = β/(1 – p).

Hence 

TWP(p)/TWE(p) = –ln(1 – p)/β.

This approaches infinity as p approaches one. Thus the Pareto has a
heavier tail than the exponential.

Limiting distributions

It can be shown that as p approaches 1 the forms of many quantile
functions can be approximated by Q(p) ≈ L(p)/(1 – p)β, where, for p
approaching 1, L(p) is slowly changing and approximately 1. For large
β this is a heavy-tailed Pareto in the right tail. If the data has such
a distribution, the quantile function for the log data will be

lnQ(p) = lnL(p) – β ln(1 – p).

For p close to one this becomes 

lnQ(p) = – β ln(1 – p),

which is an exponential distribution, for which the average of the
observations gives an estimate of β. Notice that differentiating this
relation gives:

q(p)/Q(p) = TW(p) = β/(1 – p), 

using the result of the TW(p) function. Thus the larger β the longer
the tail, as we already know. Note also that for positive β, TW(p) goes
to infinity as p approaches one. A feature of the exponential distribu-
tion is that if we take some observation, y(n – k), as, say, a time meas-
urement and use it as giving time zero; the distributions of the times
from y(n – k) to later observations are also exactly the same exponential
distribution. Thus the k-transformed observations yj = ln x(n + 1 – j) – ln
x(n – k), j = 1 to k, are all observations on the exponential, and their
average provides an estimate of β. This quantity is called the Hill
estimator of β, the tail index (Hill (1975)).

© 2000 by Chapman & Hall/CRC



106 STATISTICAL FOUNDATIONS

Another use of the above results is that a plot of ln x(r) against
–ln(1 – pr) will tend towards a line of slope β to the right-hand end of
the plot. See, as an example, Beirlant, Vynckier and Teugels (1996).

Short- or light-tailed distributions include the power and hence the
uniform. Medium-tailed distributions are of the exponential type such
as the Weibull and extreme distributions. Examples of long- or heavy-
tailed distributions are the Pareto and Cauchy distributions.

4.8  Quantile models and generating models

It was shown in Section 4.4 that data from a distribution defined by
its quantile function can be simulated by substituting a sequence of
random numbers, denoted by {ui}, from a uniform distribution into the
quantile function, Q(u). It follows from this that we can look at our
models in two ways: first, as a mathematical relation between a p-
quantile, Xp, and its quantile function, Q(p), which is the quantile
model; second, as a generating model which envisages the data
sequence {xi} as generated by operating with the Q(.) transformation
on the sequence of independent uniform values {ui}. The view of the
distribution presented by the generating model is sometimes quite
helpful in visualizing the situations described by quantile functions.
The generating model is, however, not always equivalent to a quantile
model, as is illustrated by the following example.

Example 4.10: If U has a uniform distribution so has 1 – U. Thus the
two generating models –ln(1 – u) and –ln(u) both generate variables
from the exponential distribution. However, only the first becomes a
quantile model by putting u = p as the second becomes a decreasing
function of p.

The idea of a generating model can sometimes be helpful and
its diagramatic form in a block diagram may also help in the
visualization of distributions. We illustrate these ideas with two
further examples:

Example 4.11: A situation occurs in quality control studies where the
output of a production process mixes products from two production lines
having different statistical properties. Suppose the CDF of some dimen-
sion of the product is Fi(x), where i = 1 or 2 depending on the production
line. The probability of any individual item in the final output coming
from line I = 1 is θ. Then using the rules of conditional probability, the
CDF of the combined process, a mixture distribution, will be
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F(x) = θ F1(x) + (1 – θ) F2(x).

Clearly there is no simple way of inverting this CDF to get the quantile
function of the mixture distribution. However, we can represent the
generating model of the process by representing the mixing process as
a switch, as shown in the block diagram of Figure 4.3(a). If we consider
the quantile model generated from the quantile functions for F1(x) and
F2(x), using the addition rule, we have the linear model

Q(p) = ωQ1(p) + (1 – ω)Q2(p).

The generating model for this is shown in Figure 4.3(b). The difference
between the two processes is clear. In the mixture situation each x is
generated by one of two distinct mechanisms, the proportion of each
being determined by the parameter θ. Mixture distributions should
only be used where there is an evident mixing process in the data
generation. In the linear model the whole process involves the influence
of both the Q1(.) and Q2(.) mechanisms, the relative influence of each
being determined by the parameter ω. The mixture model is sometimes
proposed where there is no evident switching mechanism. It is evident
that a quantile-based linear model is more likely to be appropriate in
such situations.

Figure 4.3. Examples of generating models. (a) Mixture distribution; 
(b) ωQ1(p) + (1 – ω)Q2(p)
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Example 4.12: In Section 1.3 we mentioned the median absolute
deviation:

MedAD = Median[X – Median(X)].

To obtain the sample value of this we subtract the sample median from
each observation, drop the negative signs, reorder and take the median
of this new data set. In population quantile terms we take our usual
model with position and scale parameters and investigate the variable
y = X – Median(X), the absolute deviation. We can rewrite this as the
generating model 

We restrict ourselves to symmetric distributions, but even so this is not
an increasing function of u over 0 ≤ u ≤ 1 and so does not give the quantile
model. Notice, however, that if we restrict u to 0.5 ≤ u ≤ 1, then we do
have an increasing function. Further, because of the symmetry of S(ui)
– S(0.5) and the nature of the uniform distribution, we have the same
relative spread of probability across the y values generated for the
0.5 ≤ u ≤ 1 as for 0 ≤ u ≤ 1. Thus the probability distribution given for y
is the same whether u covers the whole range or just half the range. To
get u to cover only half the range it may be generated from another
uniform variable, V, using the transformation U = (1 + V)/2. The final
generating model is thus

y = η[S{(1+vi)/2} – S(0.5)], 

which is now an increasing function of v over 0 ≤ v ≤ 1 and is thus
changeable to the quantile function:

QY(p) = η[S{(1 + p)/2} – S(0.5)].

The median of this distribution is MedAD = η[S(0.75) – S(0.5)]. 

4.9  Smoothing

On various occasions in our study we deal with quantities zr, r = 1, 2,
3, …, n, that vary randomly and whose variation can hide an under-
lying picture. The plots of the sample quantile and probability densities
in Chapter 1 illustrate the problem. The simplest way to get at the

yi Q ui( ) Q 0.5( )–=

η S ui( ) S 0.5( )–[ ].=
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underlying picture is by smoothing. There are a variety of approaches
to smoothing, three of which we illustrate here. The first is based on
the use of averages. Suppose we take a section of data containing, say
five observations, and average the five. This average gives a smoothed
estimate of the value of the series of z at the mid-point of the five.
Thus if we consider the first five, then the smoothed value represents
the smoothed series at z3. If we drop z1 and bring in z6, the new average
smoothes for z4. We thus have a “moving” section of data and the

Figure 4.4. Example of spacings and their smoothing
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consequent series of values are called the moving average, MA, of
the series of z. If it is necessary to use an even number of observations
in the section, the natural plotting point of the moving average is
between two observations, e.g., for a four-term MA the point for the
first four observations is at 2.5. For the next MA, it would be at 3.5.
The solution is to centre the MA by averaging these two to get a value
with plotting point 3. A problem with such an approach is that a choice
has to be made of the width of the moving section to be used. Trial
and error is a common solution.

Sometimes a single “badly behaved” observation has a considerable
distorting affect on the previous methods. One way of reducing the
distortion is to use the moving section but replace the mean by the
median of the data in the section. This is called median smoothing.

An alternative approach is related to a classical method called
exponential smoothing. Here we use a weighted average,  = Sr/Ur,
where

Sr = zr + azr – 1 + a2zr – 2 + … + an – 1z1,

and

Ur = 1 + a + a2 + … + an – 1. 0 ≤ a ≤ 1,

a being called the smoothing constant. This weighted average uses
all the data up to zr and puts the most weight on zr and the observations
close to it. Although it looks rather complex the numerator and denom-
inator can both be calculated by using recurrence relations, thus

Sr = zr + aSr – 1, S0 = 0, and Ur = 1 + aUr – 1, U0 = 0.

We will call  the left smoothed value. If we start at zn and work
down we can obtain an exponentially smoothed value at zr by parallel
formulae. This is the right smoothed value. Averaging left and right
smoothed values gives a combined smoothed value based on all the
data, but weighting most the data close to zr. Experience suggests
that the value of a should be set quite high, above 0.9, to get a
reasonable level of smoothing. The spreadsheet with its dynamic
graphics capability allows for the value of a to be “tuned” to give a
sufficiently smooth picture.

There is an important further approach called kernel smoothing.
The methods are beyond the scope of this elementary text and are

z̃r

z̃r
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aimed primarily at creating good non-parametric pictures of the dis-
tributional shape. A survey paper by Ma and Robinson is in Balakrish-
nan and Rao (1998, Vol. 16). The simple methods discussed here are
adequate to smooth the quantities of interest sufficiently for them to
be compared with the equivalent population quantities.

4.10  Evaluating linear moments

L-moments and probability-weighted moments were introduced in Sec-
tion 3.6. We concentrated there on definitions. Now we turn to issues
of calculation. To evaluate the L-moments for a distribution we need
expressions for the expectations in the definitions. We illustrate for λ2

and quote the further formulae. The L-moment λ2 was defined by

λ2 = [E(X2:2) – E(X1:2)]/2

From the results of Section 4.2 we have

.

Substituting z = p1/2 gives 

. 

A similar calculation with E(X1:2) gives

The expectation of a sum or difference is just the sum or difference
of the expectations, whether the variables are correlated or not, so on
subtracting, simplifying and returning to p notation:

.

E X2:2( ) Q2:2 p( ) pd
0

1

∫ Q p1 2⁄( ) pd
0

1

∫= =

E X2:2( ) Q z( ) 2z⋅ zd
0

1

∫=

E X1:2( ) Q1:2 p( ) pd
0

1

∫ Q 1 1 p–( )1 2⁄–( ) pd
0

1

∫= =

Q z′( )2 1 z′–( ) z′.d
0

1

∫=

λ2 Q p( ) 2p 1–( ) pd
0

1

∫=
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To find the formulae for the higher L-moments use is made of the
general formula derived in Section 4.2, namely, 

E(Xr:n) = (n
r) .

Substituting in the definitions for r and n and simplifying leads to

and

.

The right-hand side of all these expressions can be expanded as sums
of probability-weighted moments, ωr,0. Thus, for example,

.

The first four L-moments in terms of ωr,0 are

These relations between the population L-moments and the PWM
can be used to obtain sample values for the L-moments in a simple
direct fashion from the sample PWM, which, as seen in Section 3.6,
can be obtained straightforwardly from the ordered data.

The linear form of the moments suggests that they might have
particularly simple forms for linear models. This is in fact the case.
For the general linear reflection form

Q(p) = λ + (η/2)[(1 + δ) S(p) – (1 – δ)S(1 – p)], 

it can be shown that λr = 2ηλS:r for the even r and λr = 2ηδλS:r for odd
r. Thus the L-coefficients of skewness and kurtosis become τ3 = δτS:3

Q p( )pr 1– 1 p–( )n r– pd
0

1

∫

λ3 Q p( ) 6p2 6p– 1+( ) pd
0

1

∫=

λ4 Q p( ) 20p3 30p2– 12p 1–+( ) pd
0

1

∫=

λ2 Q p( ) 2p 1–( ) pd
0

1

∫ 2 Q p( )p pd
0

1

∫ Q p( ) pd
0

1

∫– 2ω1 0, ω0 0,–= = =

λ1 ω0 0,=

λ2 2ω1 0, ω0 0,–=

λ3 6ω2 0, 6ω1 0,– ω0 0,+=

λ4 20ω3 0, 30ω2 0,– 12ω1 0, ω0 0, .–+=
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and τ4 = τS:4, using an obvious notation. Thus it is seen once again that
linear properties provide for simplicity and also that the δ parameter
is a skewness parameter. Implicit also is that L-kurtosis arises from
any shape parameters in S(p).

4.11  Problems

1. Derive the probability-weighted moments, ω0,0 and ω0,1, for
the distributions:

2. The rankit, E(X(r)), is approximated by Q(r/(n + 1)). Show
that a rough identification for the first distribution of
Question 1 is obtained by plotting x(r) against (2r – n
– 1)/[r(n + 1 – r)] for r = 1, 2, …, n.

3. Suppose that X has the distribution

S(p) = (pα – 1)/α – [(1 – p)β – 1]/β 
(a Tukey lambda distribution)

Obtain the distribution of the smallest observation from
a sample of size n. Show that for large n this distribution
is approximately exponential with threshold 1/α.

4. For the distribution of the previous question, relate the
smallest observation from a sample of n to the correspond-
ing smallest uniform observation. By expanding with Tay-
lor’s series show that, approximately,

x(1) = [  – 1]/α + u(1).

5. The variable U has a uniform distribution with quantile
function p. By examining the quantile function of y =
n(1 – u(n)) and using the limit that as β→0 the quantity
(zβ – 1)/β approaches ln z, show that, for large n, y has
approximately an exponential distribution. 

S p( ) 1 1 p–( )⁄ 1 p⁄– 2p 1–( ) p 1 p–( )[ ].⁄= =

S p( ) 1 1 p–( )β– .=

S p( ) p 1 p–( )⁄ .=

u 1( )
α
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6. Plot pr = (r – 0.5)/n against  = BETAINV(0.5, r, n + 1 – r)
for n = 10 and n = 100, and consider the consequences for
the interpretation of Q–Q plots using these alternatives.

7. Consider a variable X with quantile function Q(p) =
p/(1 – p). Show that
(a) The distribution is of Pareto form with distributional

range (0, ∞).
(b) The median of Q(p), the lower quartile of the largest

observation of a sample of two, and the upper quartile
of the smallest observation of such a sample are all one.

(c) The mean of the distribution is infinite. (In fact, all
the ordinary moments are.)

(d) Galton’s skewness index is 1/2.
(e) The reflected distribution has the form (1 – p)/p and

the log transformation gives the logistic distribution.
(f) The distribution of 1/X is identical to the distribution

of X.
(g) The standard form of the skew distribution based on

this model can be written as

Q(p) = [(2p – 1) + δ(2p2 – 2p +1)]/{p(1 – p)}.

Hence show from first principles that the median is 2δ
and the Galton skewness index is δ/2.

(h) For p > 0.5 the distribution does not have as heavy a
tail as the distribution with quantile function 1/(1 – p)2.

(i) The first three appropriate probability-weighted
moments are

ω0,0 = ∞, ω0,1 = 1/2,  ω0,2 = 1/6.

(j) In general, the second L-moment relates to these
PWM by

λ2 = w00 – 2w01,

Hence show that although the PWMs, other than the
one of zero order, are finite, the L-moments are not.

8. For the distribution in the previous question, simulate sam-
ples of 10 and 50 observations and calculate the sample

pr
*
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values of the PWM of Q7(i). Carry out a further simulation
of the largest three values from 20 samples of 10.

9. The variable X has a standard exponential distribution.
Show that as a first approximation the rankit for the
largest observation of a sample of ten is 2.398. Show that
a better approximation is 2.537 and that the median ran-
kit from the actual distribution of the largest observation
is 2.704.

10. Show that the general probability-weighted moment can
be directly related to the expectations of order statistics by

ωt, r, s = constant* 

[See Landwehr and Matalas (1979) for some applications
of this result.]

11. (a) By either numerical evaluation or series approxima-
tion for T(p) show that S(p) = p/(1 – p) is a long-tailed
distribution but the logistic distribution, S(p) = ln[p/(1
– p)] is not long tailed.

(b) Compare the logistic and the normal distribution by
comparing values of T(p) for p close to one.

(c) For the distribution S(p) = [1 – (–ln p)β]/β show that
the distribution is of longer or shorter tail, relative to
the type I extreme value distribution, depending on β
> 1 or < 1, respectively.

12. An exceedence, y, is the time after some time u that an
item survives, given that it is operational at time u, where
u = Q(p0) and Q(p) is the QF for the time to failure, X. Thus 

F(y) = Pr(X – u ≤ y  X > u). 

Show that the quantile function of the variable Y is

Q[p0 + (1 – p0)p] – Q(p0).

13. (a) Consider the sequence of polynomials, Pr(p) defined by

E Xr 1+ r 1 s+ +,
t[ ]
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P1(p) = 1, P2(p) = 2p – 1, P3(p) = 6p2 – 6p + 1, 
P4(p) = 20p3 – 30p2 + 12p – 1.

Show that  and that Pr(1 – p) = –(–1)r

P(p), r > 1.
(b) Thus prove the result stated at the end of Section 4.10,

that τ3 = δτS:3 and τ4 = τS:4 for the linear reflection
model.

14. The Box–Cox transformation: 

is often used to transform data to be a normal distribution.
Show that if the distribution has quantile function Q(p)
then this implies that Q(p) = [1 +  αµ + ασN(p)]1/α. Hence
show that if from the data one derives Ur = ln[ (x(r))/φp(r/(n
+ 1))] and Vr = ln(x(r)), where φp(p) is the p-PDF for the
standard normal and (x) is an empirical PDF for the data,
e.g., based on Dp/Dx, then a plot of Ur against Vr corre-
sponds to the line

Ur = –ln(σ) + (α – 1)Vr.

This data-based line can be used to judge the effectiveness
of the transformation and also to estimate α. (See Parzen
(1979) and Velilla (1993).)

Pr p( ) pd
0

1∫ 0=

y BC z( ) zα 1–( ) α,⁄= =

z( ),ln=

α 0≠
α 0=

f̃

f̃
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CHAPTER 5

Foundation Distributions

5.1  Introduction

As with Meccano and Lego, our approach to modelling distributions is
based on the principle of starting with a small number of standard parts.
These are then added, or multiplied, together in different ways to create
models of more complex structures. The complex structures are based
on seeking to model sets of data. The building blocks that we will use
are a number of simple statistical distributions. To use them to build
more complex models we will develop various model building
approaches. However, to carry out this model building we will need to
express the building block models in quantile form. It should be noted
that, as with Meccano and Lego, in this empirical approach to modelling
our concern is that the final model behaves in ways that mimic the
actual situation/data. This does not imply that the components of the
model have any direct parallel within that situation/data. In this chapter
we will look at the simplest component models in quantile form. For
simplicity we will keep to models in basic form with λ = 0 and η = 1. In
each section a summary table of properties is given. The moments, µr′,
are relatively simple for the distributions we will be studying and these
moments are given in Tables 5.1 to 5.10. To calculate the moments about
the mean from these the formulae in Table 3.2 are used.

5.2  The uniform distribution

As previously noted many pocket calculators and probably all statis-
tical and spreadsheet software have an instruction RAND or RND. If
this instruction is used repeatedly, it generates a series of numbers
such as

0.669, 0.924, 0.740, 0.438, 0.631, 0.820, 0.144, 0.265, ….
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These are randomly distributed numbers lying in the interval (0,1). If
the random variable, conventionally denoted by U, has such a distribution
it is said to have a continuous uniform distribution in (0,1), sometimes
called a rectangular distribution. The probability density function is

f(u) = 1, 0 ≤ u ≤ 1
0 otherwise.

The cumulative distribution function is

F(u) = u.

Reversing this to get the quantile function simply gives

Q(p) = p.

We thus have the simplest of quantile distributions. The
RAND/RND instructions simply generate and simulate artificial,
pseudo-random data from this distribution.

The uniform transformation rule of Chapter 3 shows that any
distribution can be regarded as a transformed uniform distribution.
The uniform is thus the foundation distribution of the building kit.
The quantile and moment properties of the uniform are easily calcu-
lated and are presented in Table 5.1.

5.3  The reciprocal uniform distribution

Using the reciprocal rule it is evident that the quantile function for 1/U is 

S(p) = 1/(1 – p). 

 S(p)  p Dist. Range (0, 1)
 F(u)  u
 s(p)  1
 fp(p)  1
 f(u)  1  0 ≤ u ≤ 1

 M = 0.5  IQR = 0.5  QD = G = 0
 IPR(p) = 1 – 2p  T(p) = 2(1 – 2p)

 µ1 = 0.5  µ2 = 1/12   µ3 = 0
     µr′ = 1/(1 + r) ωr0 = 1/(2 + r)

Table 5.1.  Distributional properties — uniform distribution
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This distribution lies in the range (1, ∞), seen by putting p = 0 and
p = 1. The quantile density is 1/(1 – p)2, so the p-PDF is fp(p)=(1 – p)2.
The form of the distribution is that of a long-tailed decaying curve.
This is not a distribution that often occurs as the basis for real data
sets, but it is a basic building block of the modelling kit. Table 5.2
shows the main properties of the distribution.

5.4  The exponential distribution

The exponential distribution has been in use since the beginning of
the 20th century to model the distribution of times to events. The
events might be the arrival of telephone calls or the breakdown of
equipment. If the events occur independently at random at the rate
of η events per unit time, then the distribution of the time, x, from
any defined moment to the next event has an exponential distribution.
We used the exponential distribution several times in Chapter 1 to
provide simple illustrations. Table 5.3 summarizes the main distribu-
tional properties of the unit exponential.

 S(p)  1/(1 – p) Dist. Range = (1, ∞)
 F(z)  1 – 1/z
 s(p)  1/(1 – p)2

 fp(p)  (1 – p)2

 f(z)  1/z2  1 ≤ z ≤ ∞
 M = 2  IQR = 2.666 QD = 1.333 G = 0.5

IPR(p) = (1 – 2p)/{p(1 – p)} T(p)=3(1 – 2p)/{8p(1 – p)}
µr′ r = 1, 2, … do not exist  ωos = 1/s

Table 5.2.  Distributional properties — reciprocal uniform distribution

 S(p)  –ln(1 – p) Dist. Range (0, ∞)
 F(z)  1 – exp(–z)
 s(p)  1/(1 – p)
 fp(p)  (1 – p)
 f(z)  exp(–z)  0 ≤ z ≤ ∞

 M = ln2  IQR = ln3  QD = ln(4/3)
 G = 0.2619  T(p) = ln[(1 – p)/p]/ln3 G(p) = –[ln{p(1 – p)} + ln4]/ln3

 µ1 = 1      µ2 = 1  µ3 = 2
 µ4 = 9 ωos = 1/(s + 1)2

Table 5.3.  Distributional properties — the unit exponential distribution
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5.5  The power distribution

The power distribution is rarely referred to in statistical texts as it
rarely occurs in practice. However, it is one of the simplest forms of
model and, therefore, can act as one of the building blocks for more
complex models. In quantile form the standard power distribution is

S(p) = pβ. β > 0.

The main properties are obtained by simple calculations and are given
in Table 5.4.

The parameter β is referred to as the power shape parameter. The
moment properties are calculated from the QF in standard form as

The Expectation:

The Variance: best found by initially finding E(X2).

Hence

S(p) pβ Dist. Range (0, 1)
F(z) z1/β

s(p) βpβ – 1

fp(p) (p1 – β)/β 
f(z) (z(1 – β)/β)/β 0 ≤ z ≤ 1

M = 1/2β
 IQR = (3β – 1)/4β QD = (1 – 2.2β + 3β)/4β

µ1 = 1/(1 + β) µr′ = 1/(1 + r β) T(p) = 4β[(1 – p)β – pβ]/(3β – 1)
ωro = 1/(r + 1 + β)

Table 5.4.  Distributional properties — power distribution, β > 0

µ1 pβ pd
0

1

∫ p1 β+ 1 β+( )⁄[ ]0
1

= =

1 1 β+( )⁄=

E X2( ) pβ( )2
pd

0

1

∫=

1 1 2β+( )⁄=

V X( ) 1 1 2β+( )⁄ 1 1 β+( )⁄[ ]2–=

V X( ) β2 1 2β+( ) 1 β+( )2⁄=
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A variant on the power distribution is its reflected but positive
distribution. In its general form this is

Q(p) = λ +η[1 – (1 – p)β].

This has a distributional range of (λ, λ + η).

5.6  The Pareto distribution

The Pareto distribution was first used as a model for the distribution of
income in a population. The quantile form is based on the standard QF of

S(p) = 1/(1 – p)β, β > 0.

It is evident from the form of the model that from the reciprocal rule
of Section 3.2 it is the distribution of the reciprocal of the power
distribution. The reciprocal uniform is obviously a special case. The
range of the distribution, from p = 0 and p = 1, is (1, ∞). This can be
changed to (0, ∞) by setting λ = –η in the general form. To find the
PDF of the standard form, we differentiate, reciprocate and substitute
to obtain

f(x) = (γ – 1)x–γ,

where

γ = (1 + β)/β.

Table 5.5 gives a summary of properties.

S(p) 1/(1 – p)β  Dist. Range (0, ∞)
s(p) β/(1 – p)1 + β

fp(p) (1 – p)1 + β/β
f(z) 1/{βz(1 + β)/β} 0 < z < ∞

M = 2β IQR = 4β (1 – 1/3β) QD = 4β (1 – 2/2β
 +1/3β)

µ1 = 1/(1 – β), β < 1 µr′ = 1/(1 – r β), β < 1/r T(p)= [1/pβ – 1/
(1 –  p)β]/ 4β(1 – 1/3β)

ωos = 1/(s + 1 – β), s > β – 1

Table 5.5.  Distributional properties — Pareto distribution, β > 0
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5.7  The Weibull distribution

We have seen that the power and Pareto distributions are obtained as
the powers of the uniform and reciprocal uniform distribution. If we
take the positive power of the exponential distribution, we obtain the
Weibull distribution. Its quantile function in basic form is thus

S(p) = [–ln(1 – p)]β , β > 0.

This leads to a decaying PDF for β ≥ 1 and a distribution with a
mode at η(1 – β)β for β < 1. This distribution was introduced first by
a physicist, Waloddi Weibull (1939), to model the distribution of break-
ing strengths of material. Since then the distribution has been very
widely used. The main properties of the distribution are presented in
Table 5.6. 

5.8  The extreme type 1 distribution and the 
Cauchy distribution

We showed in Section 3.2 that the distribution of the largest of n
observations is Q(p1/n). Thus each distribution has its own extreme
distribution. For many applications, such as the study of extremes of
weather, flood levels, and the like, the data records, and hence n,
increase steadily with time. It can be shown that the distributions of
the extremes tend to one of three limiting possible distributions. The
most common of these, the type 1 or Gumbel distribution, has the
standard quantile function:

S(p) = –ln[–ln(p)].  

S(p) [–ln(1 – p)]β Dist. Range (0, ∞)
F(z) 1 – exp(–z1/β)
s(p) β[–ln(1 – p)]β – 1/(1 – p)
fp(p) (1 – p)[–ln(1 – p)]1 – β/β
f(z) z1/β – 1 exp(–z1/β)/β 0 ≤ z ≤ ∞

M = (ln2)β IQR = (ln4/3)β – (ln4)β QD = (ln4/3)β + (ln4)β 
– 2(ln 2)β

µ1 = Γ(β + 1) µr′ = Γ(βr + 1) ωr.0 = Γ(β + 1)/(r + 1)β + 1

Table 5.6.  Distributional properties — the Weibull distribution
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This has a distributional range of (–∞, ∞). The properties are summa-
rized in Table 5.7 and the PDF shown in Figure 5.1.

The extreme distributions are by their very definition relatively
long-tailed distributions. A very long-tailed distribution is the Cauchy
distribution. This has been under investigation as a mathematical
curve and a statistical distribution for some 300 years. It is a distri-
bution with such heavy tails that none of the moments exist, i.e., all
the integrals in their definitions become infinite. It has properties that
cause it to be the counterexample and exception for many standard
results and intuitions. For example,the average of a set of independent
observations on a Cauchy distribution also has a Cauchy distribution

S(p) – ln(–lnp) Dist. Range (–∞, ∞)
F(z) exp[–exp(–z)]
s(p) 1/[p lnp]
fp(p) p ln p
f(z) exp(–z)[exp(–exp(–z)] –∞ ≤ z ≤ ∞

M = –ln(ln2) IQR = ln(ln4) – ln(ln4/3) QD = 0.1862 
G = 0.1184 T(p) = 0.6359 ln[lnp/ln(1 – p)]

µ1 = 0.57722 µ2 = 1.6449 β1 = 1.2986
β2 = 5.4      

Table 5.7.  Distributional properties — type 1 extreme value distribution

Figure 5.1. PDF of the extreme value (type 1) distribution
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with the same parameters. What then is this strange model? The
general quantile function is given by

Q(p) = λ + η tan [π (p – 0.5)]

Thus the general form of the model includes position and scale param-
eters even although the moments do not exist. Remembering that a
distribution can be simulated by replacing p by random uniforms, one
interpretation of the distribution is that it is of the tangents of the
angles of points placed at random round the right half of a unit circle.
Table 5.8 shows the main properties of the distribution.

5.9  The sine distribution

It sometimes occurs that a plot of a set of data reveals several peaks,
called modes, rather than one. This can often be explained as being
due to a mixture of data from several different distributions. In this
case a mixture distribution, based on summing CDF and PDF, should
be used for modelling. However, if it is evident that the population
is a genuine many-moded distribution, i.e., it is a multimodal dis-
tribution, then a many-peaked distribution is required. The sine
distribution gives distributions with k peaks (see Figure 5.2). The
basic quantile function is

S(p) = 2kπp + βsin(2kπp); k = 1, 2, 3, …; 0 < β < 1. 

Although k is formally a parameter its integer value is simply set
from a look at the data. The first term in the formula is required to
ensure that the quantile function is a non-decreasing function. As it

S(p) tan [π(p – 0.5)] Dist. Range (–∞, ∞)
F(z) 0.5 + (1/π) tan–1z 
s(p) π[sec2{π(p – 0.5)}]
fp(p) 1/π [1 + tan2{π(p – 0.5)}]
f(z) 1/[π{1 + z2}] –∞ ≤ z ≤ ∞

M = 0 IQR = 2 QD = 0 
G = 0 T(p) = tan{π(0.5 – p)}

µr do not exist  

Table 5.8.  Distributional properties — Cauchy distribution
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is the uniform distribution its effect does not alter the basic symmetry
of the PDF. The median of the distribution is kπ. If we rewrite β =
(α + 1)/(α – 1), then α is the ratio maximum/minimum height of the
distribution. The distributional range is (0, 2kπ). Table 5.9 gives a
summary of properties of the distribution.

5.10  The normal and log-normal distributions

The normal distribution is the most commonly used distribution in
statistics. Although it has no explicit quantile function, tables of its
quantile function, usually called its probability integral and denoted
by Φ−1(p), have been in use for nearly 100 years (e.g., Sheppard
(1903)). The 0.975 quantile of 1.96 is probably the best known number
in statistics. Historically the distribution was first investigated in

k = 2, beta = 0.5

Figure 5.2. PDF of the sine distribution

S(p) 2kπp + βsin(2kπp)
s(p) 2kπ[1 + βcos(2kπp)]

DR(0, 2kπ) max-f/min-f = (1 + β)/(1 – β)
 max points are at p = (2i + 1)/2k, i = 0, 

…, k – 1
fp(0) = fp(1) = 1/2kπ(1 + β) min at p = i/k, i = 0, …, k

Table 5.9.  Distributional properties — sine distribution

f(
x)

x

-2 3

0

0.04

0.08

0.12

0.16

8 13

© 2000 by Chapman & Hall/CRC



126 FOUNDATION DISTRIBUTIONS

the 18th century. Tables of rankits were first published some 50
years ago (Teichroew (1956), Harter (1961)). We denote the standard
normal quantile function by N(p). This function is available via
statistical and spreadsheet software. The general form for the normal
has the form

Q(p) = µ + σN(p),

where µ is the mean and σ is the standard deviation. Paper for quantile
plots based on the normal distribution, called normal probability
paper or sometimes just probability paper, has been in regular use
for many years, but the use of computer-generated plots is largely
replacing the use of special graph papers. The main properties of the
normal distribution are given in Table 5.10.

A major reason for the importance of the normal distribution is the
fact that the distributions of many statistical quantities tend towards
normality as the sample size increases. For example, it can be shown
that the central order statistics tend to normality as the sample size
increases (e.g., see Arnold, Balakrishnan and Nagaraja (1992)). To use
this result we need the approximate means and variances of the order
statistics. These come from results in Chapter 4. In Section 4.5 it was
shown that if X(r) was the r-th order statistic, then the uniform trans-
formation rule could be approximated by the linear relation:

X(r) = Q(pr) + Q′(pr) (U(r) – pr)

where pr = r/(n + 1). The expectation of X(r) is, therefore, Q(pr), and the
variance is given by V(X(r)) = q2(pr)V(U(r)), which using the formula for
the variance of a order statistic of the uniform distribution from Sec-
tion 4.2 gives for large n: 

V(X(r)) = q2(pr)prqr/n.

S(p) N(p)
f(z) [1/√(2π)]exp(–z2/2)

Mean = 0 Variance = 1 Skewness = 0
µr = 0 

r is odd
µr = (r – 1)(r – 3) … 3.1 

r even
β2 = 3

Median = 0 IQR = 1.349

Table 5.10.  Distributional properties — normal distribution
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It can similarly be shown that the covariance of variables 

Y(r) = √n[X(r) – Q(pr)] and Y(s) = √n[X(s) – Q(ps)], r ≤ s, 

is given by

C(Y(r), Y(s)) = q(pr)q(ps)prqs.

By way of example if p = 0.5 and n is large and odd, X(n/2 + 1) is the
sample median, m. We thus have that the sample median has the
approximate distribution N(M, q2(0.5)/4n). Using the general values
to obtain a standard normal gives that 

Z(r) = √n ⋅ fp(pr)[X(r) – Q(p(r))]/√(prqr)

has a standard normal distribution for large n. This approximation
applies only for the central order statistics, for we know the tail order
statistics have skew distributions.

It is occasionally useful to use the right-hand tail of a symmetric
distribution as the basis for a right-tailed distribution, effectively fold-
ing the distribution in half and doubling the probability from the
middle to any xp. It will be seen that for the normal the quantile
function of this half normal distribution is simply given by
N((p + 1)/2). Thus for p = 0 and p = 0.5 we get the values N(0.5) and
N(0.75) as required. This distribution occurs in practice when we drop
the negative signs from standardized normal data.

It sometimes occurs that the logarithm of the data has a normal
distribution. In this case the data is said to have a log-normal dis-
tribution. In quantile terms this is expressed as

ln(Q(p)) = µ + σ N(p)

and hence

Q(p) = exp[µ + σ N(p)].

The distributional range is (0, ∞). It can, however, occur that the
minimum value is not zero but some value λ, giving rise to the more
general quantile function:

Q(p) =  λ + exp[µ + σ N(p)].
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5.11  Problems

1. Two forms of power distribution have been shown:

Q(p) = pβ and Q(p) = 1 – (1 – p)β.

By deriving and sketching the corresponding fp(p) show
that these give four distinct distributional shapes depend-
ing on whether β is greater or less than one. For the second
form above show that the probability-weighted moments
can be obtained from

ωos = β/(s + 1)(s +1 + β).

2. The form of the Gumbel extreme value distribution used
in this chapter has a positive mean. The reflected form is
sometimes used. Show that the reflected distribution is
just the log transformation of the exponential distribution. 

3. Show that if X is Cauchy, then so is 1/X.

4. Examine the symmetry of the sine distribution by showing
that Q(p) + Q(1 – p) = Q(1), for all p. Find a general
expression for the IQR of this distribution as a function of
k and β. 

5. Show that for a standard normal distribution the deriva-
tives of the quantile function satisfy the relations

N′(p) = 1/φp(p), N′′(p) = N(p)/φp(p), N′′′(p) = N(p)/φp(p)2, etc., 

where φp(p) is the p-PDF for the standard normal.

6. Examine the forms of the distributions of the largest and
smallest observations from the following distributions:
(a) The uniform distribution
(b) The type 1 extreme value distribution Q(p) = –ln[–ln p].
(c) The type 2 extreme value distribution Q(p) = [–ln p]−β.
(d) The type 3 extreme value distribution Q(p) = –[–ln p]β.
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7. Use the approach described in Section 1.7 to explore the
shapes of the PDF of the power, Pareto, Weibull and sine
distributions for varying β.
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CHAPTER 6

Distributional Model Building 

6.1  Introduction

In the previous chapter we studied a range of common distributions.
Many of these have been in existence for many years. Much of the
development of distributional models has been based on seeking
models with one or two parameters for fitting small samples of data.
In these days of automated data collection one is often faced with
very large data sets and the requirement for a small number of
parameters can be relaxed. If there are a thousand observations it
is probable that no two-parameter model will reasonably fit the data.
We need to consider a larger catalogue of models and be able to build
models that reflect the specific properties of the data being modelled.
The objective of this chapter is to examine methods of building new
models. In selecting approaches to be discussed, two considerations
have been paramount. First, the models generated have structures
that are likely to be useful to the practitioner. Thus we will be
concerned with the forms of “model carpentry” that give commonly
occurring tail shapes and meaningful parameters. Second, if the data
comes from the given type of model it should be readily identified
and validated. These two requirements put some realistic bounds on
the types of model that ought to be considered and on the methods
for constructing them. The models in the previous chapter provide a
set of basic building blocks. In this chapter we therefore concentrate
on how such simple components can be modified and combined to
construct practical useful models.

6.2  Position and scale change — generalizing

The simplest form of model considered in most of this book can be
written as λ + ηS(p). If S(0) is not zero or –∞, then it is sometimes
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132 DISTRIBUTIONAL MODEL BUILDING

convenient to shift the position by re-expressing the model as
λ – ηS(0)+ ηS(p). This enables λ to be interpreted as the left-hand limit
of the distributional range. Sometimes with a two-tailed distribution
we would put λ − ηR(0.5) + ηR(p), so that λ  becomes the population
median. This process is called shifting or centring. 

Example 6.1: The Pareto distribution, discussed in Section 5.6, has a
distributional range of (1,∞). The centred Pareto can therefore be
obtained as

Q(p) = [1 /(1 – p)β] – 1, β > 0.

An obvious and similar change can be obtained to adjust the scale
of a distribution. Thus if we have a right-tailed distribution ηS(p) we
may wish to have a fixed median of one. This is given by re-scaling
the model as S(p)/S(0.5). 

Both the power distribution and the Pareto are defined for positive
values of the shape parameter. It is useful to generalize these to cover
all possible values of these parameters. To cover the values of β = 0 we
make use of the mathematical limit that as β → 0 the function (pβ − 1)/β
approaches the limit of ln(p). Forms that use this result to combine into
one model a number of distributions we will call canonical forms.

Example 6.2: Let us illustrate all the above three adjustments by
considering the power distribution, pβ. This has a distribution over the
range (0, 1). If we change the position by first subtracting 1 and then
the scale by division by β we make the distributional range (–1/β, 0) and
the quantile function is (pβ – 1)/β. Using the reflection rule to obtain a
positive range we finally obtain

S(p) = –((1 – p)β – 1)/β,

which has distributional range (0,1/β). We thus have the power distri-
bution shifted, scaled and reflected. If β now goes to zero this becomes
the distribution S(p) = –ln(1 – p), the exponential distribution. To see
what the distribution is for negative β let us write  β = –α, where α is
positive. The distribution thus becomes ((1 – p)–α – 1)/α. It will be seen
that this is a Pareto distribution with a shift of origin to give distribu-
tional range (0, ∞) (Figure 6.1 illustrates). Approaching the model ini-
tially from a positive α gives a model often called the generalized Pareto
distribution. It will be apparent that the generalized Pareto is equivalent
to the generalized power. We keep to the generalized Pareto terminology
as this is now a commonly used distribution.
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Example 6.3: Consider the distribution

Q(p) = –((–ln p)β – 1)/β.

In the limit this is –ln[–ln(p)], the type 1 extreme value distribution.
For β positive it is the type 3 extreme value distribution and for negative
parameter it is the type 2 extreme value distribution.

6.3  Using addition — linear and semi-linear models

In previous chapters we have illustrated a number of models con-
structed by using the addition rule. These add basic parameter-free
components, creating a linear function of the parameters. Such models
are called linear distributional models. The most useful of these
have the forms:

beta = –0.9

beta = 0.6

Figure 6.1. PDF of the generalized power distribution
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The one-parameter model Q(p) = ηS(p)

The two-parameter model Q(p) = λ + ηS(p)

The three-parameter model Q(p) = λ + θS1(p)

+ φS2(p)

The three-parameter reflection model Q(p) = λ + θS(p)

– φS(1 – p)

In its more convenient form this is re-expressed as

Q(p) = λ + (η/2)[(1 + δ) S(p) − (1 − δ) S(1 – p)]

Models with one non-linear parameter in S(p), for example, a power
of β, take the above forms with S(p) replaced by S(p;β). Models which
are linear except for parameters in S(p) we will term semi-linear
models. The number of parameters becomes the total number of linear
and non-linear parameters. For example, if in the last formula we have
a single shape parameter in S(p), but use different parameters for the
original and reflected formulae, we will have a model with five param-
eters for position, scale, skewness, left-tail shape and right-tail shape,
i.e., five meaningful parameters.

The properties of linear and semi-linear models are straightfor-
wardly found, owing to the linearity associated with the operations of
finding simple moments and percentile properties. If we have a general
linear model

Q(p) = λ + ∑ ηi Si(p),

then the direct operations of calculating the expectation, E[ ], or find-
ing the population median, M[ ], follow the form:

E[Q(p)] = λ + ∑ ηi E[Si(p)].

The operations that involve the subtraction of quantiles, such as
IQR[ ], IPR[ ], D[ ], and PD[ ] follow the form:

IQR[Q(p)] = ∑ ηi IQR[Si(p)]

We also have 

V[Q(p)] = ∑ ∑ ηi ηj C[Si(p) Sj(p)],
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where

C[Si(p) Sj(p)] = E[Si(p) Sj(p)] – E[Si(p)] E[Sj(p)]

and

Appendix 1 gives some integrals of use here. For the sake of illus-
tration consider the first two moments 

Q(p) = λ + η1 S1(p) + η2 S2(p).

Using an obvious notation we have

µ = λ + η1 µ1 + η2 µ2.

To obtain the variance we use the definition

where

which simplifies to 

.

We will refer to τ and κ as the standardized and direct quantile
products. These results refer to any forms of S(p) irrespective of
whether the S( ) involve further parameters.

E Si p( ) Sj p( )[ ] Si p( ) Sj p( ) pd
0

1

∫=

σ2 λ η1 S1 p( ) η2 S2 p( )+ +( ) λ η1 µ1 η2 µ2+ +( )–[ ]2 pd
0

1

∫=

η1
2 S1 p( ) µ1–( )2 η2

2 S2 p( ) µ2–( )2+[
0

1

∫=

+ 2η1 η2 S1 p( ) µ1–( ) S2 p( ) µ2–( ) ]dp

η1
2σ1

2 η1
2σ1

2 2η1 η2 τ,+ +=

τ S1 p( ) µ1–( ) S2 p( ) µ2–( )
0

1

∫ dp=

τ S1 p( )S2 p( ) pd µ1µ2–
0

1

∫ κ µ1µ2–= =
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All the L-moments and probability-weighted moments being
inherently linear will clearly have the same simple additive property
as the expectation.

It is sometimes of value to add two one-sided distributions with
the same tail direction. We will consider two right-tailed distributions
for the sake of illustration. Most of the basic component distributions
in Table 1.2 are thus candidates. Consider a simple pairing, 

Q(p) = λ + η1 S1(p)+ η2 S2(p), η1 > 0,  η2  > 0.

For most problems involving one-tailed distributions the popula-
tion range is (0,∞) and so λ acts as the left-hand end of the distribu-
tional range of Q(p), which for the present we will set at zero. Again
it is convenient to alter the parameterization. We will use

 Q(p) =  η[(1 – ω) S1(p) + ω S2(p)], η > 0, 0 < ω < 1.

Looking at the intermediate rule in Section 3.2 it is evident that
Q(p) lies between the two S(p) distributions. The parameter ω controls
the relative weight given to the two distributions. A useful generali-
zation of this is obtained if ω is made an increasing function of p. Thus
if ω is close to zero for small p and close to one for p close to one, then
Q(p) will behave like S1(p) to the left of the distribution, close to the
origin, and like S2(p) in the right-hand tail. For example, if ω1(p) = p,
then there is a steady shift from one distribution to the other as p
increases. Sometimes it will be useful to obtain a fairly rapid shift
from one model to the other. One weight function that achieves this is

ω2(p) = p2(3 – 2p).

[an even faster shift is given by ω3(p) = p3(10 – 15p + 6p2)]. Note that
the weights have a value of 0.5 at p = 0.5 and have ω(1 – p) = 1 – ω(p).
Figure 6.2 shows two distributions and their combinations using ω2(p).
It will be seen that the quantile function follows Q1(p) for about the
lower third of the distribution and shifts towards Q2(p) for the final third. 

In constructing the reflection family, the two S(p) used naturally
had comparable properties. This is not the case here. It therefore
makes sense to force some comparability. The simplest method for
parameter-free S(p) is to use S that are standardized by

S*(p) = S(p)/S(0.5). 

© 2000 by Chapman & Hall/CRC



USING ADDITION — LINEAR AND SEMI-LINEAR MODELS 137

Thus the distributions used have unit median. A consequence of this
is that the constructed distribution, using any of the above weight
functions, will also have unit median. 

There are many ways in which the simple rules can be applied.
We illustrate with a few examples. 

Example 6.4: Two flexible right-tailed distributions are the two cases
of the generalized Pareto introduced in Section 6.2 which has positive
and negative parameters (but without scaling for unit median):

R(p) = [1 – (1 – p)α]/α, α > 0,

and

Combining with constant weight and a scale parameter gives

Q(p) = η[ω{1 – (1 – p)α}/α + (1 – ω){(1 – p)–β – 1}/β].

This distribution is used widely in the modelling of flood frequencies and
is called the Wakeby distribution (Houghton (1978)). Figure 6.3 illus-
trates some of the forms of the distribution.

Figure 6.2. Adding two right-tailed distributions
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Example 6.5: A study of some earthquake data suggested that for low
values on the Richter scale an exponential distribution described the
distribution of the magnitudes of the shocks, whereas for more intense
earthquakes the generalized Pareto gives a better description. A combi-
nation of the two using the second form of changing weights gave a good fit.

Example 6.6: In the discussion of the addition of quantile functions
we have kept to models and combinations that inherently lead to valid
increasing quantile functions. If we were to subtract distributions,
the possibility arises of invalid models. Thus models involving such

alpha = 0.5, beta = 0.8, omega = 0.5

alpha = 10, beta = 0.5, omega = 0.7

Figure 6.3. Forms of the Wakeby distribution

© 2000 by Chapman & Hall/CRC



USING ADDITION — LINEAR AND SEMI-LINEAR MODELS 139

constructions require careful design. An example of such a distribu-
tion is the Govindarajulu distribution, which involves subtracting
power distribution quantile functions:

Q(p) = (β + 1)pβ – βpβ + 1, β > 0.

The slope of Q(p), given by q(p), is

q(p) = β(β + 1)pβ[(1 – p)/p],

which is seen to consist of entirely non-negative terms. The distribution
is thus a valid distribution (see Govindarajulu (1977)).

Example 6.7: In the last chapter we briefly introduced the sine distri-
bution to model multimodal distributions. One weakness of the model
is that fp(p) is not zero at the ends of the distribution. This can be readily
adjusted for by adding a symmetrical distribution, such as the logistic,
that has this property. This also has the effect of raising up the central
minima. However, for a bimodal distribution it gives a good shape as a
first model to study.

Thus the model is

Q(p) = 4πkp + β sin(4πkp) + γ ln(p/(1 – p)).

Figure 6.4 illustrates the distribution.

Figure 6.4. PDF of the sine and logistic distribution
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6.4  Using multiplication

Using the simple component distributions the most natural pair to
multiply together are the power and Pareto distributions. This leads
to the four-parameter model with standard form:

Q(p) = pα/(1 – p)β, α, β > 0.

We will call this the power–Pareto distribution, Po(α) × Pa(β). The
distributional range is (0, ∞). An example is given in Figure 6.5. To
understand the shapes of the distribution, consider the quantile density
function obtained by differentiation. This, after some simplification, is

The term in [ ] is positive for all p and the end values of K(p) are given
for all values of β by

alpha = 0.5, beta = 0.5

Figure 6.5. PDF of the Power–Pareto distribution
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As fp(p) = 1/q(p), it is clear that, irrespective of β, fp(p), and hence f(x),
is zero at p = 1 and also at p = 0 for the case 0 < α < 1. For α = 1 f(0)
= 1 and for α > 1, f(0) = ∞. Thus α = 1 is the boundary between unimodal
and decaying distributions.

The main percentiles are given by

LQ = 4β – α/3β, M = 2β – α, UQ = 4β – α ⋅ 3α, 

6.5  Using Q-transformations

We now turn to the use of the Q-transformation rule of Section 2.2.
An almost traditional procedure in statistical modelling has been the
use of transformations of the data to obtain best fitting models. In
quantile notation this leads to models of the form T(x) = Q(p), where
T( ) is a suitable transformation. In terms of the fit-observation plot
we are transforming both x and p axes to seek a linear picture. An
obvious problem with this is that one loses the natural dimension of
the original data. Further, if the original data has a complex structure,
for example, it may consist of a measured variable with added meas-
urement error, x + e, or perhaps there may be other variables involved,
then transforming the data just makes the difficulties worse. The
natural approach with quantile functions is to develop a quantile
model by transforming not the data but the quantile function. Thus
we move from Q(p) to T–1[Q(p)] and keep to the original data. The aim
of this section is to illustrate how a simple set of transformations leads
through a very wide range of distributions whose practical value over
the years has been acknowledged by the giving of names. We focus on
positive distributions with QF denoted by R(p). It is convenient to
introduce a simple notation for the main transformations that can be
used as Q-transformations:

P(R(p)) = [R(p)]α The Power Transformation,

L(R(p)) =  ln(R(p)) The Log Transformation,

V(R(p)) = 1/R(1 – p) The Reciprocal Transformation.

With positive parameter α, these are increasing functions of p, for
0 ≤ p ≤ 1. The generalized models that were discussed earlier in this
chapter were designed to combine these in the form of
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G(R(p)) = (R(p)α – 1)/α The Generalizing Transformation.

Two further transformations will be symbolised:

Ref(R(p)) = –R(1 – p) The Reflecting Transformation,

C(R(p))  =  R(p) – 1, A Centring Transformation.

Having defined these functions we can systematically apply them
to some simple basic distributions, expressed in standard form, and
see what distributions emerge. Care needs to be taken to use the Q-
transformation rule correctly for non-decreasing and non-increasing
transformations. Some of the distributions obtained from transforma-
tions will be those already discussed. Others are distributions that
have been used and named in the past. A few are not named distri-
butions and we will refer to them by the symbols of the transformations
that led to them.

The natural starting point is the uniform distribution R(p) = p. The
first application of the transformations gives

Pp S(p) = pα The Power Distribution,

Lp S(p) =  ln p The Reflected Exponential 
Distribution,

Vp S(p) = 1/(1 – p) The Reciprocal Uniform.

Having operated once on p, we may repeat the process, although
with care and possible adjustment to ensure correctly increasing func-
tions of p. We also sometimes simply return to a previous distribution,
e.g., PPp is the same form as Pp. These cases we ignore. Thus we have

PVp S(p) = 1/(1 – p)α The Pareto Distribution,

CVp S(p) = p/(1 – p) A case of the Power–Pareto 
Distribution,

LVp S(p) = –ln(1 – p) The Exponential Distribution.

The centred Pareto based on the origin is

CPVp S(p) = (1 – (1 – p)α)/(1 – p)α The Centred Pareto.
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The log transformation of CVp gives

LCVp S(p) = ln[p/(1 – p)] The Logistic Distribution.

Raising the centred Pareto to a power gives the form:

PCPVp S(p) = [(1 – p)–α – 1]β The Burr XII Distribution.

Applying repeat transformations to LVp, and for these model build-
ing approaches keeping α for the first parameter and β for the second
parameter introduced, we have

PLVp S(p) = [–ln(1 – p)]α Weibull Distribution,

LLVp S(p) =  ln[–ln(1 – p)] The Reflected Type 1 Extreme 
Value Distribution,

RefLLVp S(p) = –ln(–lnp) Type 1 Extreme Value 
Distribution,

RefPLVp S(p) = –[–ln p]α Type 3 Extreme Value Distribution,

VPLVp S(p) =   [–ln p]–α Type 2 Extreme Value 
Distribution.

GRefPLVp S(p) = [1 – {–ln p}α]/α Generalized EV Distribution.

The essential feature to note here is that we have moved simply
from one distribution to another through a wide range of named and
useful distributions by a selection of very simple transformations.

Before leaving Q-transformations mention should be made of the
exponential transformation exp(Q(p)). This occurs if it is found that
the logarithm of the variable x has the distribution Q(p). The most
used distribution of this type is the log-normal distribution, but there
are also others, e.g., log-logistic.

6.6  Using p-transformations

The Q-transformation provides for transformation of the complete quan-
tile function. The p-transformation, denoted here by a prefix p-, provides
for transformation of the p term. For example, the transformation could
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be Q(p2). This provides a second means of transforming a quantile func-
tion. As 0 ≤ p ≤ 1 a necessary requirement for the p-transformations is
that they, too, are non-decreasing functions in the same range. This puts
a severe limitation on the transformations available. Nonetheless, the
available transformations open a wide range of distributional possibilities:

(a) The Power p-Transformation

The simplest p-transformation is pα  which we will de-
note by Pp-. Note that if we apply Pp- to a distribution
written in the previous notation it is not necessarily
identical to using P as the very first Q-transformation
applied. Thus Pp-Q(p) is not the same as Q(Pp). For ex-
ample, Pp-LVp is –ln(1 – pα), but LVPp is –αln(1 – p).
Consider some examples:

Pp-LVp S(p) = –ln(1 – pα). 

Pp-PVp S(p) = 1/(1 – pα)β. 

If this last distribution has β set at one we have the same
result as ignoring the initial P transformation giving

Pp-Vp S(p) = 1/(1 – pα) 

Pp-CVp S(p) = pα/(1 – pα). 

The Pp-CVp distribution relates to a family of distributions
developed by Burr (1942). Thus

Pp-LCVp = L(Pp-CVp) S(p) = ln[pα/(1 – pα)].

This is the Burr II distribution, but is also sometimes re-
ferred to as the generalized logistic, for it is the p-trans-
form of the logistic distribution.

Pp-PCVp = P(Pp-CVp) S(p) = [pα/(1 – pα)]β 

This is the Burr III distribution and in some literature is
also called the kappa distribution. 
A further member of the Burr Family is given by the recip-
rocal transformation:
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V(Pp-PCVp)  S(p) = [{1 – (1 – p)α}/(1 – p)α]β. 
The Burr XII distribution.

Looking back at these models there are still one or two that
can be further transformed. For example, the Weibull dis-
tribution, PLVp, has a p-transformation to Pp-PLVp. Thus

Pp-PLVp S(p) = [–ln(1 – pα)]β. 
The EW Distribution.

The EW is the Exponentiated Weibull Distribution which
is used in reliability studies and will be mentioned again.

It is noted that one valuable p-transformation is where α =
1/n, since as was seen in Section 3.2, Q(p1/n) is the distribu-
tion of the largest observation of a sample of n.

(b) The Reversed Power p-Transformation
A rather specialized p-transformation is given by using the
reversed Power for α > 0, thus

Rp-S(p) = S(1 – (1 – p)α).

This might be termed the Reversed Power p-transformation.
One way of looking at this transformation is that the Pp-
transformation has the effect of shifting probability to the
right in S(p) and Rp- shifts it to the left. For example, if α  is
0.5, say, the median will be at S(1/2α) = S(0.707) in Pp-S(p),
at S(1/2) in S(p), and at S(1 – 1/2α) = S(0.293) in Rp-S(p).
There is a practical use of Rp- in finding the distribution of
the smallest observation in a sample using α = 1/n.

(c) CDF p-Transformations
Suppose F(v) is the cumulative distribution function of a
continuous random variable, v, that lies in the distributional
range (0,1), then S(F(p)) gives a viable p-transformation.

6.7  Distributions of largest and smallest observations

We saw in Section 3.2 that for a random sample of n from a distribution
Q(p) the distributions of the largest and smallest observations are
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Q(n)(p) = Q(p1/n) and Q(1)(p) = Q(1 – (1 – p)1/n).

As we have now introduced a number of distributions, it is of value
to look briefly at the distributions of their extreme observations. One
of the uses of knowing these distributions lies in the process of detect-
ing outliers. An outlier is an observation that lies outside the natural
range of sample values of a distribution due to the influence of some
special cause, such as a copying or measurement error or perhaps due
to contamination of the sample by data from a different population. If
we take, say, the 99.5% quantile of x(n) and the 0.5% quantile of x(1),
then we would be unlikely to see observations outside these limits.
These limits are thus

Q(0.9951/n) and Q(1 – 0.9951/n), respectively.

This method provides only an approximation, since x(1) and x(n) are
correlated; however, for large n the correlation is small. As the basis
for a simple process of outlier detection the method is simple and
effective. Often one is interested in only outliers at one end of the
distribution. In this case the method is exact.

Let us now look at a number of cases where the distributions of
the extreme observations have particularly simple forms. For the stan-
dard Weibull and exponential (β = 1) we have, after simplifying,

Q(n)(p) = [–ln(1 – p1/n)]β and Q(1)(p) = (1/nβ)[–ln(1 – p)]β.

Thus the largest observation has a distribution which is a power
p-transformation of the Weibull and the smallest still has a Weibull
distribution, but with a scale factor. For the largest observation on the
power distribution and the smallest observation on the Pareto, we also
get a return to the same distribution. Thus for the power distribution
Q(n)(p) = pβ/n and for the Pareto:

Q(1)(p) = 1/[1 – {1 – (1 – p)1/n}]β = 1/(1 – p)β/n.

Thus the distributions are unaltered except that β becomes β/n.
Similar properties hold for the three extreme value distributions,

where EV1 returns to an EV1 for the smallest observation, but with a
change in the position parameter. The largest observations for the EV2
and EV3 return to their respective distributions with scale changes. 
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6.8  Conditionally modified models

Conditional probabilities

This short section is just a reminder that may be missed. Our use of
expectations in defining correlation implied that we were not normally
looking at deterministic relations between variables but rather at
probabilistic links. In this section we will explore and illustrate some
of the ways in which such probabilistic relationships may occur. We
start from the basic probabilities of events. Suppose two experiments
lead respectively to the outcomes A or not-A and B or not-B. If there
were no relation between the A events and the B events, i.e., they are
independent, intuition suggests that 

Prob(A and B) = Prob(A) × Prob(B) (called the multiplication rule).

If A and B are related, then Prob(A) will in fact depend on the outcome
B or not-B. Thus there is a need to replace Prob(A) and Prob(B) by the
conditional probabilities such as Prob(A given that B has occurred),
denoted by P(AB). The formal definition of P(AB) is given by

P(AB) = P(A and B)/P(B).

From this we can write

P(A and B) = P(AB) × P(B) or P(BA) × P(A)

This is the multiplication rule for non-independent events. Indepen-
dence requires that P(A B) = P(A), which also implies that P(B A) =
P(B). Thus the occurrence of one event does not influence the proba-
bilities of the occurrence of the other. If we have non-independent
events, then the unconditional probability of A is given by

P(A) = P(AB)P(B) + P(A not-B)P(not-B).

P(A) is thus the total of the probabilities that lead to A. If B has more
than two possible outcomes, denoted by Bi, I = 1, 2, …, k. Then this
relation generalizes to 

which is sometimes called the chain rule.

P A( ) Σi 1=
k P A Bi( )P Bi( )=
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The circumstances in which distributions arise sometimes involve
features that create the need to use conditional probability ideas to
modify the quantile function of the model.

Blipped distributions

There is no proper name for the models to be described here but the
title gives a rough indication of the situation. Consider the following
illustrative example. 

Example 6.8: The exponential distribution often models the time to
failure, t, of an item of equipment. The CDF is F(t) = 1 – e–λt. For some
items of equipment there is a distinct possibility, probability P, of failure
when the equipment is first switched on. Only if it survives this does
the exponential apply. Thus the probability, p, of failure up to time t is
given by the chain rule as

p = P + (1 – P)(1 – e–λt).

The quantile function has to be zero for p < P, since with this probability
the equipment fails at time zero. For p ≥ P we obtain Q(p) by solving
the last expression for t giving

The occurrence of a “blip” in the probability distribution at zero is
a relatively common feature. The argument of the example holds gen-
erally so that if the basic quantile function is Q(p) the modified model is

Truncated distributions

It sometimes happens that we are unable to observe data outside a
fixed range of values of the variable. For example, a measuring device
for earthquakes may record all shocks over 3 on the Richter scale. It
will provide no information on either the number or the magnitude of
shocks of less than three. This phenomenon is called truncating. It

Q p( ) 1 λ⁄( ) 1 p P–( ) 1 P–( )⁄{ }–[ ],ln–=

0,=

p P.>
p P.≤

Qm p( ) Q p P–( ) 1 P–( )⁄{ },=

0,=

p P.>
p P.≤
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is clearly a case of conditional distributions. Our example is of trun-
cating to the left. If we have no data above a certain value, c, then
this is called truncating to the right. This will occur, for example, when
a trial of the lifetimes of items under stress is stopped at some time
before all items have failed. In this latter situation, denote the CDF
of the truncated distribution by FT(x) and the non-truncated distribu-
tion by F(x) (= pu). The conditional CDF is FT(x) = Prob(X ≤ x  x ≤ c).
From the definition this is

Denoting F(c) = pc this gives pu = pTpc for the corresponding non-
truncated probability. Denoting the quantile function for the truncated
distribution by QT(pT) we see that the pT quantile, x, of the truncated
distribution can be expressed as QT(pT) or as Q(pu) = Q(pTpc). Thus
dropping the T subscript for p, we have the final form for the quantile
function of the truncated distribution:

QT(p) = Q(p pc).

It is seen that, as required, the distributional range is (Q(0), Q(pc)).
For a left truncated distribution the corresponding result is

QT(p) = Q[pc + p(1 – pc)].

This has distributional range (Q(pc), Q(1)).

Example 6.9: Suppose x represents the speed of particles with an expo-
nential distribution measured by a device that is unable to measure
speeds greater than c (not the speed of light!), then pc = 1 – e–λc and hence 

Q(p) = –(1/λ) ln[1 – p(1 – e–λc)], x ≤ c.

Example 6.10: If a distribution that is symmetrical about zero is trun-
cated at zero leaving only the positive values, its distribution will be
given by

ST(p) = S[(1 + p)/2].

Such distributions are called half-distributions. The most common
examples are the half-normal and the half-logistic. The applications of

FT x( ) F x and x c≤( ) F c( )⁄=

pT= F x( ) F c( ),⁄= x c.≤
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these are situations where the interpretation of the data does not depend
on sign, but only on magnitude. Thus signs are dropped and half-distri-
butions used.

Censored data

In truncation, we have no information at all outside the truncated
range. It sometimes happens that we do have some information. For
example, suppose in a test of fatigue for metal sheets, a set of 20
sheets is subject to the same conditions of high stress. After 3 months
the experiment is stopped with 14 plates having fractured. We thus
have 14 observations. However, we also know that six plates would
have fracture times greater than 3 months, even although we do not
know the values and never will. This type of data is called censored
data. There are two central variables in censoring: the value of x,
such as time, and the number of observations for which we have
values. A consequence of this is that there are two possible types of
censoring. In type I censoring, the right or left limit of x, x = c, is
fixed and the number of observations, R, explicitly obtained is a
random variable. The fatigue situation as described involved type I
censoring. In the example, it turned out that R = 14. It may happen
that we fix R = k as the basis for the censoring. For example, we
could have decided to stop the experiment as soon as 14 plates had
fractured, which might have happened after 7 weeks. This approach
is called type II censoring. In this situation the length of the exper-
iment is the random variable. The k observations correspond to the
quantile function Q(pr) r = 1, …, k, where pr still depends on n. The
expected duration of the experiment, E(X), will be the expected value
of X(k), given approximately by Q(k/(n + 1)), since it is the occurrence
of X(k) that terminates the experiment. 

6.9  Conceptual model building

It is sometimes possible to argue conceptually for a particular model,
at least as a first trial model. This is best shown by illustration.

Example 6.11: The sales of a consumer durable such as a new type of
TV or computer will depend on some general factor related to people’s
willingness to invest (measured by a constant, parameter, α) and also
on the peer pressure of others who already have the item. If at time t a
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proportion p(t) of the population has the item, then the peer pressure
could be represented by βp(t). Adding these together, the probability of
a purchase in a small interval δt at time t by those not yet having made
a purchase could be written as [α + β p(t)]δt. This is the probability of
buying in time δt, which has PDF f(t), but with the condition that they
have not yet bought (1 – p(t)). This conditional probability is thus
[f(t) δt]/(1 – p(t)). Equating the two expressions gives

f(t) = f(Q(p)) = [α + β p(t)][1 – p(t)]

Inverting to get the quantile density function, q(p), gives

Integrating to get the quantile function gives

Q(p) = [1/(α + β)][–ln(1 – p} + ln{α + βp}]. 

Thus the distribution is the sum of an exponential and a more general
distribution that lies in the range (ln(α), ln(α + β)). If we repeat the
calculation with β = 0, we obtain the exponential distribution with
η = 1/α. Thus we have a conceptual justification for the exponential
as the distribution that arises when there is a constant conditional
probability of an event immediately occurring, given that it has not
yet occurred.

Example 6.12: A set of data on summer humidity at a weather station
in Sheffield, UK, is to be modelled. Humidity is measured as a percentage
(0, 100). The nature of the local climate is that it is rarely very dry,
indeed rarely less than 50% humidity. Most of the time the humidity is
in the 70s and 80s with occasional 90s. The situation thus implies a
negative skewness with an upper threshold at 100. If we had a low
threshold at zero and a single peaked distribution with a longish tail to
the right, the Weibull would probably be a natural first model to try. By
using the reflection rule, a reflected Weibull distribution with an upper
threshold of 100 is given by

Q(p) = 100 – η[–ln(p)]β. 

The distributional range of this is in theory (–∞, 100); however, with the
choice of parameters needed to get a reasonable fit, the probability of
negative fitted humidity is negligible. 

q p( ) 1 α β p t( )+{ } 1 p t( )–{ }[ ]⁄=

1 α β+( )⁄[ ] 1 1 p–{ }⁄ β α βp+{ }⁄+[ ]=
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6.10  Problems

1. Express the Weibull distribution in canonical form. Show
that for β becoming zero the distribution becomes a
reflected extreme value type 1 distribution. For the case
where β = –γ, γ > 0, show that (a) the distributional range
is (–∞, 1/γ), and (b) Q(p0) = 0 for p0 = 1 – 1/e. Plot the form
of this distribution for γ = 0.5. Consider the relation
between this distribution and the generalized extreme
value distribution considered in Section 6.2. 

2. If X has the Power–Pareto distribution, denoted by
P × P(α, β), show that the distribution of 1/X will be
P × P(β, α).

3. Construct a reflection model with parameters (λ, η, δ) with
the distribution S(p) = . Calculate its main
quantile properties.

4. Investigate the construction and quantile properties of the
following distributions:
(a) S(p) = (2p – 1)/[p(1 – p)] + 2ln[p/(1 – p)].
(b) S(p) = p + (β/2k)(2p – 1)k.
(c) S(p) = –pln(1 – p).
(d) S(p) = p2(3 – 2p).
(e) S(p) = –ln(1 – pα), considering α = 0.5 and α = 2.

5. Using the results of Section 6.3, show that for the three-
parameter reflection model µ = λ + ηδ and σ2 =
(η2/2)[(1 + δ2)  +(1 – δ2)τ],  where τ is based on S(p) and
–S(1 – p). Show specifically that for the skew logistic dis-
tribution σ2 = (η/2)2[π2/3 + δ2(4 – π2/3)]. [Note that from the
table of integrals κ = π2/6 – 2.]

6. Treating the various Q-transformations as operators, con-
sider how many possible theoretical transformations there
are of the forms PV, LPV, PLPV. Show that if Q(p) is a
positive distribution, there are a number of equivalencies
among these, for example, PP = P; VV = I, the identity
operator; LP = L (in form ignoring scale); VPV = P PVP =
VP = PV; VCV = CV. A consequence of these is that many

1 1 p–( )⁄

σS
2
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of the different looking transformations lead to the same
distributions.

7. The PDF of a right-tailed distribution has a value of α at
x = 0 and tends to zero at infinity. One possible form would
have p-PDF of

fp(p) = (1 – p)(α + βp).

Find the quantile function and consider its properties.

8. A measure of the severity of an illness has a distribution
Q(p) = λ + ηS(p) over a population of those diagnosed as
having the illness. A new treatment is to be tried. What
modified models might be appropriate to the treated pop-
ulation if:
(a) All respond in the same way by a constant reduction

in severity?
(b) The treatment has an effect only on the most severely

ill half of the population?
(c) The treatment works for all but in general has an effect

which increases with the severity of the illness?
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CHAPTER 7

Further Distributions 

7.1  Introduction

In Chapter 5 a number of distributional models were introduced. These
were selected for their simplicity and common use and also for their
ability to act as components for the construction of more complex dis-
tributions. In this chapter we examine a number of distributional fam-
ilies that exemplify the building of complex models from simple ones.
These will include some distributions that have explicit quantile func-
tions but not explicit CDF or PDF. We also take the opportunity to
comment on discrete distributions and other statistically important dis-
tributions that do not have explicit quantile functions.

7.2  The logistic distributions

In previous chapters the logistic and skew logistic distributions have
been used repeatedly to illustrate a range of calculations. Here the
main features are summarized for completeness. The book by Bal-
akrishnan (1992) gives a comprehensive coverage of the symmetric
distribution. The standard symmetric logistic distribution is defined
in terms of its quantile function:

S(p) = ln(p/(1 – p)).

Table 7.1 summarizes the distributions properties.
The logistic model has been widely used both as a model for data and

as a simple model for illustrative purposes, e.g., Cox and Hinkley (1974).
If we use the parameterization of Section 4.6 we can weight the

reflected exponential and exponential distributions unequally to give
a skew logistic distribution. This is

Q(p) = λ + (η/2). [(1 + δ)(–ln(1 – p)) + (1 – δ) ln p]. –1 ≤ δ ≤ 1.
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This uses weights that sum to one. Rewriting the model gives 

Q(p) = λ + (η/2). [–δ lnp(1 – p)) + ln{p/(1 – p)}],

which shows the effect of the skewness coefficient, δ, on the distribution.
Note that this form leads to a scale parameter of η/2 for the symmetric
form, with δ = 0. The main properties of the skew logistic distribution
are shown in Table 7.2 and are derivable by simple algebra and calculus.

7.3  The lambda distributions

The lambda distributions were originally developed as formulae for
transforming uniform random numbers to simulate new distributions
with a rich variety of shapes; for example, see Hastings et al. (1947), and
Tukey (1962). Their use as models for data only came later. The family
has been used for a range of different applications, for example, air
pollution, Okur (1988); climate studies, Abouammoh and Ozturk (1987);
finance, McNichols (1987); and inventory modelling, Nahmris (1994).

We will study the family of distribution under four forms which,
including the position and scale parameters, have three, four or five

S(p) ln[p/(1 – p)]
F(z) 1/(1 + e–z)
s(p) 1/[p(1 – p)]
fp(p) p(1 – p)
f(z) e–z(1 – e–z)–2

M = 0 IQR = ln3 QD = G = 0
 T(p)=ln[(1 – p)/p]/ln3

µ1 = 0 µ2 = π2/3 µ3 = 0
µ4 = 7π4/15 ω10 = 0.5 ω20 = 0.5

Table 7.1.  Distributional properties — the standard logistic distribution

S(p) [(1 + δ)(–ln(1 – p)) 
+ (1 – δ) lnp]/2

s(p) (1 – δ + 2δp)/[2p(1 – p)]
fp(p) 2p(1 – p)/(1 – δ + 2δp)

M = δ ln2 IQR = ln3 QD = δ ln(4/3)
G = 0.2618 δ T(p) = ln[(1 – p)/p]/ln3 G(p) = –δ[ln{p(1 – p)} + ln2]/ln3

Table 7.2.  Distributional properties — the skew logistic distribution
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parameters. Although historically the two basic forms of the lambda
distribution have been developed on a purely empirical basis, we will
discuss their construction using the approaches of previous chapters.
This will enable further constructions to be considered.

The three-parameter, symmetric, Tukey-lambda distribution

Consider the member of the reflection family of distributions constructed
from a power distribution and its reflection. This gives in basic form

S(p) = pα – (1 – p)α. α ≥ 0.

If we do the same for the Pareto and its reflection we similarly obtain

S(p) = (1 – p)–α – p–α. α ≥ 0.

A natural modification is to merge these by dropping the require-
ment that α ≥ 0. However, if α is negative in the first formula, then z
is not an increasing function of p. This situation is remedied by the
adjustment of the scale parameter to give the three-parameter form as

Q(p) = λ + (η/α) [pα – (1 – p)α]. –∞ < α < ∞.

Now Q(p) is always an increasing function of p. Notice that there
are no explicit CDF or PDF for this distribution. Figure 7.1 illus-
trates the shapes the distribution can take, presenting it as a special
case of a version with two-shape parameters that are equal here.
Table 7.3 gives some detail. The distribution is called the symmet-
ric lambda distribution or the Tukey-lambda distribution.
The parameter α is the shape parameter. From the above, it is seen
that for positive α the model is based on the power distribution and
has a finite distributional range (λ – (η/α), λ + (η/α)). For negative
α it is based on the Pareto and has infinite range (–∞, ∞). The
limiting case as α approaches zero corresponds to the symmetric
logistic distribution. 

Table 7.3 clearly illustrates the versatility of the symmetric lambda
as a potential model for a range of data shapes. The name of the family
arises from the conventional use of the Greek lambda for the power
in the definition. We have, however, kept to the notation convention
of the rest of the book. The main properties of the distribution are
tabulated in Table 7.4.
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The four-parameter lambda

The simplest way to extend the symmetric lambda to cover skew
distributions is to use three linear parameters

xp = λ + (η/α)[θpα – (1 – p)α]. –∞ < α,θ < ∞.

alpha = 0.5, beta = 0.5

alpha = –0.5, beta = –0.5

Figure 7.1. PDF of the symmetric lambda distribution
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 Condition on α  Shape  Range of Distribution
 α < 0 Unimodal, heavy Pareto tails –∞ < x < ∞.
α ⇒ 0 Logistic distribution –∞ < x < ∞.

0 < α < 1 Unimodal –1/α ≤ x ≤ 1/α
a ≈ 0.135 Approximately normal  –7.4 ≤ x ≤ 7.4

α = 1 Uniform distribution –1 ≤ x ≤ 1
1 < α < 2 Slightly U-shaped. Power tails –1/α ≤ x ≤ 1/α

α = 2 Uniform distribution –1/2 ≤ x ≤ 1/2
α > 2 Peaked distributions, truncated decaying Power tails –1/α ≤ x ≤ 1/α

Table 7.3.  Shapes of the standard symmetric lambda distribution

S(p) (1/α)[pα – (1 – p)α].
s(p) [pα – 1 + (1 – p)α – 1].

M = 0 IQR = 2(3α – 1)/(α4α). QD = 0
µ1 = 0 µ2 = (2/α2)[{1/(2α + 1)} – {(Γ(1 + α))2/Γ(2 + 2α)}]

µ4 = (2/α4)[{1/(4α + 1)} – {4 ⋅ Γ(1+3α) ⋅ Γ(1 + α)/Γ
(2 + 4α)} + {(Γ(1 + 2α))2/Γ(2 + 4α)}].

Table 7.4.  Distribution properties — symmetric lambda distribution
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This was used by Shapiro and Wilk (1965) and investigated by
Ramberg (1975). Following our form for skew distributions we repa-
rameterize this as

Q(p) = λ + ηδ/(2αα) +(η/2α) [(1 – δ)pα – (1 + δ)(1 – p)α]

where –∞ < α < ∞. –1 < δ < 1. Here an adjustment of the position term
has been made so that λ is still the median. The properties of the basic
form distribution are given in Table 7.5.

The generalized lambda

The generalized lambda is a four-parameter generalisation of the
three-parameter model that uses two linear and two non-linear param-
eters. See Karian and Dudewicz (2000). The original form of the model
(Form 1, Ramberg and Schmeiser (1974)) is

Q(p) = λ + η[pα – (1 – p)β]. 

Using the model in this simple form requires some conditions on
α  and β to ensure an increasing function of p. An alternative form,
Form 2, the canonical form, based on generalizing and centring the
power and Pareto forms, ensures a valid quantile function for all
parameter values. This was proposed by Freimer et al. (1988) and is
written as

Q(p) = λ + η[(pα – 1)/α – {(1 – p)β  – 1}/β]. 

This form enables the limiting cases where α and β tend to zero to
give exponential tails. Table 7.6 indicates the behaviour of the distri-
bution for varying α and β. In part (b) of the table the shapes of the
left and right tail are shown for varying α and β. It is clear that the

S(p) (η/2α)[(1 – δ)pα – (1 + δ)(1 – p)α] λ ⇒ λ + ηδ/(2αα)
s(p) (η/2)[(1 – δ)pα – 1 – (1 + δ)(1 – p)α – 1]

M = 0 IQR = η(3α – 1)/(4α ⋅ α)
QD =  ηδ(2 ⋅ 2α – 1 – 3α)/(4αα) 
G = δ(2 ⋅ 2α – 3α – 1)/(3α – 1) α > 1 skewness has sign –δ
T(p)=4α[(1 – p)α – pα]/(3α – 1)

Table 7.5.  Distributional properties — four-parameter lambda distribution
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generalized lambda is built on the basis of the addition rule to give a
rich variety of distributional shapes. It is also evident that the param-
eters α and β determine not only the shape but also the relative weights
of the tails. One consequence of this is that skewness is modelled as
a result of tail shape and not as an independent feature. A further
consequence is that when both parameters tend to zero, the model
tends to the symmetric logistic and not the skew logistic. Figure 7.2
illustrates some shapes for Form 2.

A paper by Freimer, Mudholkar, Kollia and Lin (1988) analyzes
the shapes of the distribution and classifies five shapes as in Table 7.7.

Notice that Form 1 and Form 2 differ in position and scale param-
eters but not in terms of basic shape. Form 2 is needed when it is not
known what form the data may take and to ensure a meaningful set
of parameters on estimation. It is often the case in practice that past
knowledge of the situation implies knowledge of the sign and rough
range of α and β. In these cases there is no need for the additional

Special Cases
 α  β Form of distribution
 0  0 Logistic
 ∞  0 Exponential
 1  1 Uniform
 1  ∞ Uniform
 ∞  1 Uniform
 2  2 Uniform

General shapes of the two tails
 Term Condition Tail Range  Form

Left Tail α < 0 (–∞, 0) Reflected centred Pareto
(pα – 1)/α α = 0 (–∞, 0) Reflected exponential

0 < α < 1 (–1/α, 0) Shifted power, decreasing to left
α = 1 (–1, 0) Uniform
α > 1 (–1/α, 0) Shifted power, increasing to left

Right Tail β < 0 (0, ∞) Centred Pareto
–[(1 – p)β – 1]/β β = 0 (0, ∞) Exponential

0 < β < 1 (0, 1/β) Shifted reflected power, 
decreasing to right

β = 1 (0, 1) Uniform
β > 1 (0, 1/β) Shifted reflected power, 

increasing to right

Table 7.6.  Shapes and properties of the canonical generalized lambda
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alpha = 0.5, beta = 0.1

alpha = 0.5, beta = –0.5

Figure 7.2. PDF of the generalized lambda distribution

 Class α β  Distributional form
I <1 <1  Unimodal
II >1 <1  Monotone
III [1, 2] [1, 2]  U-shaped
IV >2 [1, 2]  S-shaped
V >2 >2  Unimodal

Table 7.7.  Classes of generalized lambda distributions
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complexity of Form 2. Using the standard version of Form 1 the main
quantile properties flow simply from the formula. (For Form 2 the
modifications are simple and fairly obvious.) The results are

M = 1/2α – 1/2β. LQ = 1/4α – 3β/4β. UQ = 3α/4α – 1/4β.

IQR = (3α – 1)/4α + (3β – 1)/4β.

QD = (3α + 1)/4α – (3β + 1)/4β – 1/2α – 1 + 1/2β – 1   

The moment properties are obtained by the use of the formulae
given in Section 4.6. The expectation and variance are

µ1 =  λ + η[1/(α + 1) – 1/(β + 1)]

µ2 = η2[{1/(2α + 1) – 2B(α + 1, β + 1) + 1/(2β + 1)} 
– {1/(α + 1) – 1/(β + 1)}2]

where B( , ) is the beta function (see Appendix 1).

The five-parameter lambda

One criticism of the generalized lambda referred to above is that the
shape parameters α and β also determine the skewness. It seems
reasonable that there should be three linear parameters determining
position, scale, and skewness and two parameters determining the
shapes of the two tails. This suggests a natural generalisation of the
four-parameter model to give a five-parameter lambda distribu-
tion. This is defined for Form 1 by

Q(p) = λ + (η/2)[(1 – δ)pα – (1 + δ)(1 – p)β]. –∞ < α < ∞. –1 ≤ δ ≤ 1.

For Form 2 we have 

Q(p) = λ + (η/2)[(1 – δ)(pα – 1)/α – (1 + δ){(1 – p)β – 1}/β].

When the shape parameters tend to zero this becomes the skew
logistic. If the Galton skewness coefficient is derived for this model it
becomes evident that the skewness is determined by both the shape
parameters and the skewness parameter. Thus there needs to be some

© 2000 by Chapman & Hall/CRC



164 FURTHER DISTRIBUTIONS

way of forcing the shape parameters to control shape without affecting
the relative weight of the two distributions. A similar point relates to
the position parameter, since the median depends on all the parame-
ters. A partial solution to these problems is to standardize the two tail
distributions so that they have medians at –1 and +1, respectively,
and to adjust the constant term so that the overall median lies at λ.
This generates Form 3:

Q(p) = λ – ηδ + (η/2)[(1 – δ)(pα – 1)/(1 – 0.5α)
+ (1 + δ){(1 – p)β – 1}/(0.5β – 1)].

Although the shape parameters still influence the skewness, the
constraint means that the skewness parameter does directly control
the weight given to two similar tails.

It may be noted that the five-parameter form was referred to by
Joiner and Rosenblatt (1971). Figure 7.3 illustrates the shape of
the distribution.

7.4  Extreme value distributions

In Section 3.2 it was proved that the distribution of the largest and
smallest observations of a sample of n, the extremes, have particularly
simple quantile functions, for example, that of the largest observation
was Q(p1/n). Clearly, each distribution will have its own extreme distri-
butions. There are many situations where extremes are of interest. For
example, distributions of maximum flood heights, wind velocities, tem-
peratures, wave heights, minimum rainfall, and lifetimes. An inherent
aspect of these situation is that data tends to be continually collected,
so that n is increasing. Also, our interest is often in maximum values
for increasing periods, e.g., the expected maximum flood heights to be
experienced in 10, 50, 100, 200, etc. years. As a consequence of this,
there is interest in the changes in the distribution of the extremes as
n increases. It can be proved, originally by Fisher and Tippett (1928)
(see, for example, Arnold, Balakrishnan and Nagaraja (1992)), that as
n tends to infinity the distributions of the extremes tend to one of three
limiting distributions; which one depends on the form of the distribution
Q(p). The most commonly occurring of these limiting distributions has
standard quantile function

S(p) = –ln [–ln(p)], with distributional range (–∞, ∞).
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This distribution is called the type 1 extreme value (EV) distri-
bution, or sometimes the Gumbel distribution, and its main properties
were given in Section 5.8. This distribution has been extensively used
in the study of the types of situations indicated above and we will
devote a brief section later to this area of application. It should be
noted that we have defined the distribution so as to have positive
skewness. The reflected version of this model, with negative skewness
but the same doubly infinite range, is also sometimes called the
extreme value distribution with its reflection called the reversed EV
distribution, so some care needs to be taken when referring to the

lambda = 0, neta = 1, delta = 0.8, alpha = –0.4, beta = –0.4

lambda = 0, neta = 1, delta = 0.5, alpha = 0.4, beta = 0.4

Figure 7.3. PDF of the five-parameter lambda distribution 
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literature. See Johnson, Kotz and Balakrishnan (1995, Volume 2) for
a survey of the literature.

Any distribution whose tails tend to die away exponentially has
the EV distribution as the limiting form for its extreme observations.
For other distributions, the limiting forms have quantile functions that
are identical save for the sign of one parameter. These are

S(p) = (–lnp)–β, DR (0, ∞), The type 2 Extreme Value Distribution;

S(p) = –(–lnp)β, DR (–∞, 0), The type 3 Extreme Value Distribution.

There are just three forms for the limiting distributions. The ter-
minology refers to the domain of attraction of a given type of EV
distribution as being those distributions whose extreme distributions
converge to the given distribution as n increases. A majority of stan-
dard distributions are within the domain of attraction of the type 1
EV distribution.

If we again use the generalizing technique of previous sections, we
can write all three models in canonical form as

zp = [1 – (–lnp)β]/β, –∞ < β < ∞.

This form covers all three distributions. The generalized model is
called the generalized extreme value distribution, GEV. All three
distributions are related to the Weibull distribution by Q-transforma-
tions (Figure 7.4 illustrates). 

The major quantile properties for the standard GEV are from
simple substitution:

M = [1 – (ln2)β]/β, IQR = [(ln4)β – {ln(4/3)}β]/β

QD = [2(ln2)β – (ln4)β – {ln(4/3)}β]/β.

 There have been many studies of the type 1 EV distribution, which
is by far the most common in theory and has been in use since the
1930s. Although it often provides a good approximation to many prac-
tical sets of data, there are often situations that would require many
millions of observations for the limiting distribution to closely
approach the type 1 limiting distribution. Interest has, therefore,
focused recently on a so-called penultimate approximation that gives
a reasonably close fit to the tail of interest for large but real sets of
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data. A distribution that provides a good approximation is in fact the
GEV, which conveniently includes the type 1 EV as a special case. A
consequence of this is that for practical analysis and application the
GEV is now commonly used.

7.5  The Burr family of distributions

In 1942 Irving Burr introduced a distribution with CDF:

p = F(x) = 1 – (1 + x1/β)–1/α,     α, β > 0.

Re-expressing this in quantile form gives the quantile function

S(p) = [–1 + 1/(1 – p)α]β.

This is the Pareto distribution centred to the distributional range (0, ∞)
and then transformed by the power Q-transformation. In present ter-
minology this is the Burr XII distribution. Burr extended this model
by observing that the reciprocal transformation extends the forms of
distributional shape covered. To achieve this with quantiles we use
the reciprocal rule. This gives the Burr III distribution (also sometimes
called the kappa distribution):

Figure 7.4. Transformational links for the extreme value distributions
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S(p) = [pα/(1 – pα)]β, with DR 0 < x < ∞.

This is the power transformation of the variable with quantile
function:

S(p) = pα/(1 – pα), with 0 ≤ x < ∞.

If we take a straight logarithmic transformation of this we obtain

S(p) = ln[pα/(1 – pα)] , with –∞ < x < ∞.

This the Burr II distribution. This is also sometimes called the
generalized logistic distribution and could also be called the exponen-
tiated logistic, following the language of the exponentiated Weibull.
(A series of papers by Burr are given in the references.) Notice that
the Burr II and Burr III can be merged to canonical form, using the
generalization approach of a suitable change of scale and position
giving a common expression

S(p) = [{pα/(1 – pα)}β – 1]/β. with –1/β ≤ x < ∞.

The limiting case of β = 0 then gives the Burr II from the Burr III form.
All the members of the Burr family are given by solutions of a

general form of differential equation. The majority do not have explicit
quantile form. There are, however, two more, less common forms that
do. They are

The Burr IV S(p) = β/[1 + {(1 – pα)/pα}β], with 0 ≤ x ≤ β.

The Burr X S(p) = [–ln(1 – pα)]0.5, with 0 ≤ x < ∞.

This last is a special case of the exponentiated Weibull distribution.
Figure 7.5 shows the transformational links between some of the
members of the Burr family.

7.6  Sampling distributions

Quantile functions do not readily lend themselves to the analysis of
statistics formed by calculations with sample data. For example, they
do not help in finding the distributions of sums or sums of squares of
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observations. The theory of these relies mainly on probability density
functions. Nonetheless when one wishes to use these distributions for
the analysis of data their quantile functions are needed. In the pre-
computer era most books of statistical tables included a number of
tables of quantile values for specified ranges of p values for the common
sampling distributions. Now it is expected that the computer software
will derive the values of Q(p) for any desired values of p. All statistical
software and probably most spreadsheets make at least some quantile
functions available. Table 7.8 gives a list of the most commonly used
quantile functions with their designations in SAS™ (the registered
trademark of the SAS Institute Inc.) and Excel™. The table also gives
the expressions for some other distributions of common use that lack
explicit quantile functions.

7.7  Discrete distributions

Introduction

Our studies to this point have focused on the distributions of contin-
uous variables. The aim of this section is just to draw attention to the

Figure 7.5. Transformational links for some of the Burr distributions
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fact that it is sometimes possible to develop straightforward quantile
functions for discrete variables. The forms of CDF and QF for discrete
distributions are step functions, as was illustrated in Figure 2.1. As
these are not continuous functions, neither has a simple inverse. In
general, discrete variables have CDF that involve elaborate summa-
tions that preclude any direct inversion. There are, however, some
exceptions. We illustrate with two examples.

The geometric distribution

Suppose a series of trials are made, continuing until a specific result
is obtained at trial r. For example, I keep repeating a complex task
until I succeed. If θ is the probability of succeeding and this remains
constant (there is no improvement with practice), then the probability,
assuming independent trials, of the random variable R being r is, by
the multiplication law of probability, the probability of r – 1 failures
times the success probability.

Pr(R = r) = (1 – θ)r – 1 θ. r = 1, 2, 3, ….

Hence the CDF is

.

Distribution  SAS™ Designation  Excel™ Designation
Normal

standard PROBIT(p) NORMSINV(p)
non-standard NORMINV(p, µ, σ)

Log-Normal LOGINV(p, µ, σ)
t-distribution TINV(p,df,nc>) TINV(p, df)
Chi-Squared CINV(p,df,nc)  CHIINV(1 – p, df)
Gamma GAMINV(p, α) GAMMAINV(p, α)
F-distribution FINV(p, df1, df2, nc)  FINV(p, df1, df2) 
Beta Distribution BETAINV(p, α, β) BETAINV(p, α, β)

Note: df = degrees of freedom, Greek symbols = parameters, nc = numeric noncentrality parameter ≥ 0.

Table 7.8.  Commonly available quantile functions

p F r( ) Σ1
r 1 θ–( )l 1– θ= =
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If we use the result that, if 0 < a < 1, the series 1, a, a2, a3, …, am

sums to (1 – am + 1)/(1 – a) then

Hence

ln(1 – p) = ln[(1 – θ)r]

and

 r = ln(1 – p)/ln(1 – θ).

Care needs to be taken with this expression since r cannot take all
the continuous values implied by this formula, for it is limited to the
integers 1, 2, 3, …. In fact, we need to round the value up to the nearest
integer. The simplest way to do this is to add one to the integer part of
the value given by the formula. Thus the appropriate quantile function is

S(p) = INT[ln(1 – p)/ln (1 – θ)] + 1.

where INT[ ] is the function, available in most relevant software, that
takes the integer part of a value.

The binomial distribution

There are some situations where the previous calculations cannot be
carried out but nonetheless a quantile function is obtainable. The
binomial distribution models the same situation as the geometric
model with independent trials of constant probability. However, in this
case r is the number of “successes” in a fixed number of trials, n. Here
there is no direct method for obtaining the quantile function. However,
as this is a much used distribution, statistical software and spread-
sheets usually give a suitable function. This is not usually expressed
as a quantile function but rather in terms of the value needed to carry
out a particular statistical test. However, this is in fact a quantile
function. In Excel™, for example, the function CRITBINOM(n, θ, p)
gives the required quantile function.

p θ 1 1 θ–( )r–[ ] 1 1 θ–( )–[ ]⁄=

1 1 θ–( )r–=
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7.8  Problems

1. For the four-parameter lambda distribution show that for
negative α the tails stretch out to infinity. For positive α,
show that the distributional range is obtained from

Q(0) = λ + ηδ/(2αα) – (η/2α)(1 + δ)

Q(1) =  λ + ηδ/(2αα) + (η/2α)(1 – δ).

There is thus a finite distributional range of width η/α.
Show also that there is a smooth approach to these finite
limits for 0 < α < 1. For α > 1 show that there is a visible
cutoff at the ends of the distribution.

2. For the generalized lambda distribution on page 160, derive
the values of fp(p) and dfp(p)/dp and hence the end shapes
of the distribution for varying α and β. 

3. Explore and plot the properties of the generalized Burr
II/III given by

S(p) = [{pα/(1 – pα)}β – 1]/β, with –1/β ≤ x < ∞.

4. The most common sampling distribution is the normal,
since the sum of normal observations is itself normal and
many distributions tend to normality. Show that if N(p) is
the normal quantile function, then N((1 + p)/2) gives the
half-normal distribution, which has the form of the
right-hand tail of the normal. Hence, examine the shapes
of the two variants of the skew normal distribution given by

N1(p) = λ + (η/2)[(1 + δ)N((1 + p)/2) – (1 – δ)N((2 – p)/2)].

N2(p) = λ + η[(1 + δ){p2 (3 – 2p)}N((1 + p)/2) – (1 – δ )
{1 – p2 (3 – 2p)}N((2 – p)/2)].
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CHAPTER 8

Identification 

8.1  Introduction

In the previous chapters we have looked at a range of methods of
building models of distributions. In this chapter we look at the
identification of suitable models for a given set of data. There are a
number of aspects of identification. There is an initial need to under-
stand the context in which the data arose, then the data needs to
be pictured in as many ways as possible. This is done mainly by
using graphical techniques, many of which we have already dis-
cussed. We may need some numerical information about the data.
On the basis of these studies we may have ruled out some possibil-
ities and highlighted others. The next stage is to do a range of
comparisons with a list of candidate models. This may involve sep-
arate studies of the tails of the data. From this stage we will hope-
fully home onto a few real candidates. These will need to be com-
pared with the data in detail. It is advisable at this last identification
stage to select more than one model. Having obtained “the chosen
few,” these are fitted to the data, using the methods in Chapter 9.
The methods of validation, discussed in Chapter 10, are then used
to finally decide on the model. 

8.2  Exploring the data 

The context

When starting the identification stage of modelling it is important to
use all that is known about the context and source of the data. Ques-
tions should be asked about the underlying mechanism generating the
data and any previous relevant studies. Some of the information so
obtained may lead directly towards a choice of model. Relevant ques-
tions are
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(a) Is anything known of the distributional range, e.g., are
the variables inherently positive? Is there a natural lower
threshold or perhaps an upper bound?

(b) Are the variables discrete or continuous? Our focus is on
continuous distributions; nonetheless, we can often use
such distributions for essentially discrete variables, e.g.,
financial data is inherently discrete but usually treated
as continuous. If this is the case, we may need to be aware
of this underlying discreteness.

(c) Is there anything known that will indicate shape features
of the distribution? For example, is there an inherent
symmetry or a natural skewness in a known direction?

(d) Is anything known from previous studies that might be
helpful? For example, if similar data has been collected
before, there will be some knowledge of the practical
limits to the data, which will help in the consideration of
possible outliers. There may also be knowledge of partic-
ular features or success of different approaches to anal-
ysis. It might even be known, for example, that the
Weibull distribution gave a good fit to previous similar
data. Most applied statistical situations are not unique.
There is a history that will probably throw light on the
new data and situation.

We have already discussed in Chapters 1 and 2 a variety of
numerical and graphical means of studying a set of raw data.
Although in this chapter some further approaches will be described,
it is convenient to summarize the set of graphical tools using tables
and illustrations.

Numerical summaries

An initial set of numerical summaries are given by the five-number
summary, iqr and g. The quartiles may not correspond to data
points. We therefore need to use the more formal calculation for a
quantile based on the formula given in Section 2.2. Thus for the
quartiles we have

lq = (1 – h)x[r] + hx[r] + 1, uq = (1 – h)x(n + 1 – [r]) + hx(n – [r]).

where r = n/4 + 0.5 and h = r – [r].
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General shape

Using the methods given in Chapters 1 and 2, the general shape of
the distribution can be explored with the plots given in Table 8.1.

Four important quantities that can usually be visually estimated
from these plots are the limiting values for the distributional range
( (0), (1)) and the density function (0), (1). The value of (0)
is particularly important. Knowing whether the distribution has the
distributional range (–∞, ∞) or (0,∞) is critical in guiding an initial
selection of potential models; however, the answer may not be clear
from the data, even if it is all positive. For example, many situations
with positive data still use the normal distribution. The justification
is that the probability of negative observations arising from the fitted
model is made infinitesimal by the choice of mean and standard
deviation. Thus there is a certain amount of trial and error in such
choices. A combination of empirical and conceptual arguments may
be needed to decide whether to use a model on the positive axis with
a position parameter of zero, i.e., a threshold at zero, or a two-tailed
distribution positioned well to the right of the origin. Where a thresh-
old is needed this can usually be simply shifted to give a threshold
at λ = 0. In such cases the scale parameter becomes the main con-
trolling parameter.

Skewness

Table 8.2 gives a number of plots that indicate skewness in a set of
data. Interest initially is in the simple fact of skewness or symmetry
in the data. At a later stage these plots may be referred to in relation
to the form of the skewness.

Sample Function  Of  Against  Comments
Quantile, (p) x(r) pr

CDF, (x) pr x(r)

Quantile density, 
(p)

Dx/Dp mid-pr Raw and smoothed plots, 
see Sections 1.3 and 4.9 

p-PDF, (p) Dp/Dx mid-pr Raw and smoothed plots
PDF, (x) Dp/Dx  mid-x(r) Raw and smoothed plots

Table 8.1.  General shape plots

Q̃
F̃

q̃
f̃p

f̃

Q̃ Q̃ f̃p f̃p Q̃
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Tail shape

Table 8.3 gives a number of plots that may be used to look at the tail
shapes. There are two groups of these. One uses all the data, the other
looks separately at each tail.

Interpretation

No attempt has been made to discuss the detailed interpretation of
these many plots as it would be too space consuming. The recom-
mended approach is to

(a) Construct a set of the plots for the data. 
(b) Develop a small number of potential distributions, for the

whole model or from each tail. 

Plot  Of Against  Comments
Deviations x(n + 1 – r) – m m – x(r) Include 45° line 

for symmetry
g(p) [x(n + 1 – r) + x(r) – 2m]/iqr  pr

g*(p) [x(n + 1 – r) + x(r) – 2m]
/[x(n + 1 – r) – x(r)]

 pr

Folded CDF
[Mountain plot]

(x(r))
1 – (x(r))

x(r) for p(r) ≤ 0.5
x(r) for p(r) > 0.5

See Monti 
(1995)

Spacing plot x(n + 1 – r) – x(n – r)  x(r + 1) – x(r) Include 45° line 
for symmetry

Table 8.2.  Plots for indicating skewness

Plot  Of  Against  Comments
Shape index, t(p) [x(n + 1 – r) – x(r)]/iqr  pr 0 < pr < 0.5
Spacing plot x(n + 1 – r) – x(n – r)  x(r + 1) – x(r)

Upper shape 
index, ut(p)

[x(n + 1 – r) – m]/[uq 
– m]

 1 – pr 0 < pr < 0.5

Lower shape 
index, lt(p)

[m –x(r)]/[m – lq]  pr 0 < pr < 0.5

q(p)/Q(p) 2(x(r + 1) – x(r))
(n + 1)/(x(r + 1) + x(r)).

 pr

Table 8.3.  Tail-shape plots

F̃
F̃
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(c) For the chosen or constructed models, create profiles
(see Section 4.4) of size n, where n is the size of the
sample being studied and some sensible parameter val-
ues are assumed. 

(d) Re-plot the set of exploratory graphics using the profile
data for each of the distributions. 

(e) Compare the results of (a) and (d) and modify the models
if required.

Where needed, the data might be standardized. Suitable parame-
ters can be chosen using the ability of most computer graphics to
dynamically adjust the plots as the parameters are altered. This
dynamic graphics facility enables the type of explorations needed for
identification to be carried out with relative ease.

8.3  Selecting the models

Starting points

Having obtained a good feel of the data, it is now necessary to select
the models to use. A classic approach at this stage has been to choose
just one model. Unfortunately this tends to hide the often very sub-
jective element in the choice. Once chosen, the model becomes a hidden
assumption in the use of statistical methods. Sophisticated statistics
can be used, estimates can be quoted to four significant figures, and
predictions made, all on the basis of an assumed model that was only
marginally better than some very different model. It seems much more
cautious to choose at least two models and carry through the estima-
tion on both, then choose which to finally use at the validation stage,
which will also take note of the specific application of the models. The
final choice may indeed depend on non-statistical considerations.

One consideration in identification relates to what is called the
principle of parsimony. This is essentially a principle of simplicity
that recommends using a simple model in preference to a more complex
model. In our context this simplicity may be taken as, for example,
preferring to use a three-parameter model instead of a four-parameter
model, or a linear model rather than a non-linear model. One element
of the logic underlying this principle is that as we build models we
tend to find ourselves involved in an iterative, improvement process.
We compare a better set of data with our originally identified model
and find that the model can be developed further. In general, it is
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clearer to compare new data using simple models than complex ones.
The systematic deviations stand out more clearly against a simple plot,
e.g., against a straight line, rather than a more complex one. The
overriding consideration in modelling has to be how well the model
performs in its application; the principle of parsimony provides a useful
general guide.

In our current context there are two different model types: those
modelled by some basic model and those that require a model to be
built up, for example, by addition of right and left quantile functions.
One outcome of the studies of Section 8.1 should be a feel for which
of these is appropriate. The study should have revealed the likely
values of Q(0), Q(1), fp(0) and fp(1). These put considerable constraints
on the possible distributions, as is shown in Table 8.4. We start our
study of model choice on the assumption that the data comes from a
single basic model.

Identification plots

The basic approach to model-based identification is the quantile plot
of x(r) against some model λ + ηS(pr). The position and shape param-
eters alter the intercept and slope but not the straightness of the line
for the correct model. Thus we can ignore these two parameters in
most of the identification considerations and concentrate on S(p).
Where it is helpful, the data may be standardized by subtracting the
median or threshold and/or dividing by the interquartile range.

 S(0)  S(1)  fp(0)  fp(1) Distributions
–∞ ∞ 0 0 Logistic, skew

Logistic, normal, t,
Extreme value (1)
Lambda familya

0 ∞ 0 0 Weibulla

Gamma, χ2

log Normal
0 ∞ 1 0 Exponential
0 ∞ ∞ 0 Centred Pareto, Weibulla

0 1 0 or ∞ c Powera

Note: Positive constant c. a = applies to specific ranges of the shape parameter.

Table 8.4.  Tail values for some common distributions
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Interpreting Q-Q plots

A good choice of S(p) will lead to a roughly linear Q-Q plot. If the plot
veers away at the ends, it is indicating that the distribution needs to
have either shorter or longer tails at that end. Figure 8.1 indicates
the situations and their interpretations for the distribution. It may be
that the overall shape of the plot corresponds to that of a simple
function T(.). In this case the transformation rule gives the suggested
distribution as T(Q(p)), which can then be used for the next Q-Q plot. 

Fowlkes (1987) gives Q-Q plots of a wide variety of distributions
against each other. The plots for the data against different models
may match up with those of a given model against the same set of
distributions, thus identifying the model. As there are hundreds of
plots that theoretically could be compared, this method in practice
requires an initial narrowing of the list of potential options, underlin-
ing again the need to use all available background information to
develop short lists of possible models.

Identification plots for common distributions

Section 6.3 presented a set of Q-transformations from the uniform
distribution as a means of generating a wide variety of distributions,
all in standard form, S(p). These provide a set of standard models with
which we can compare the data in situations where we believe that a
single model is appropriate. Let us start by considering only situations
where the data exploration has indicated a distribution with Q(0) = 0

Figure 8.1. Interpreting fit-observation diagrams
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or some constant that can be removed by adjusting the data. Hence
the underlying model is of the form x = ηR(p), where R(p) is a right-
tailed distribution on (0, –). Suppose, for example, we had a set of data
that came from an exponential distribution, which could be repre-
sented as LVp. If we denote 1 – pr = qr and observe that LVp = –Lq,
then a plot of x(r) against –ln(qr) will be a straight line of slope η, which
is unknown but nonetheless a constant. The Weibull distribution is
simply an exponential raised to a power, PLVp. If we take logs of the
observations, the power becomes a multiplier of the logarithm and a
plot of ln(zr) against ln(–lnqr) is again a straight line, with the slope
equal to the power in the Weibull formula and the intercept depending
on η. Table 8.5 gives the plotting values of x and of p and q that
generate straight lines in this way. It will be seen that the plots of x
and ln(x) against ln(p), –ln(q), etc. cover most of the standard distri-
butions on the positive axis of x. Figure 8.2 illustrates the plots for a
set of data and the relative linearity of some of the plots is clear. 

It will be seen that selecting on the basis of linearity in plots is a
highly convenient approach. Some care needs to be taken as the dif-
ferences in scales mean that specific deviations are not directly com-
parable. Notice that the intercepts and slopes of the lines give rough
estimates of the model parameters. However, interest here lies simply
in the linearity of the plots as a means of initial identification.

It may be noted that plotting the observations against simple
functions of p gives the Q-Q plots for some of the distributions with
distributional range (–∞,∞). These are shown in Table 8.6. 

Section 8.1 listed a wide range of plotting variables. If we now have
a proposed model these can be plotted against the corresponding quan-
tities for the population. The layout for deriving such plots is standard
and is illustrated for the shape index in Table 8.7. If the model is
reasonable, then the plot will be approximately linear.

R(p) Plot Against Intercept Slope
Power lnx lnp lnη β
Pareto lnx –lnq lnη β
Exponential x –lnq 0 η
Burr III lnx ln(p/q) lnη β
Weibull lnx ln(–lnq) lnη β
Extreme Value Type 2 lnx –ln(–lnp) lnη β

Note: Distributions of the form ηR(p) or ηR(p:β); q = 1 – p; X in the range (0, +).

Table 8.5.  Identification plots for positive distributions
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Figure 8.2. A set of standard data plots

S(p) Plot Against Intercept Slope
Logistic z ln(p/q) 0 η
Extreme Value Type 1 z –ln(–lnp) 0 η
Cauchy z tan[π(p – 0.5)] 0 η

Note: Distributions of the form λ + ηS(p); q = 1 – p; z = x – λ.

Table 8.6.  Identification plots for distributions on (–∞,∞)
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β =  iqr = IQR =
r p* Q(p*) x t(p*) T(p*)
1 p1

* Q(p1
*) x(1) (x(n) – x(1)))/iqr (Q(pn

*) – Q(p1
*))/IQR

2 p2
* Q(p2

*) x(2) (x(n – 1) – x(2)))/iqr (Q(p(n – 1)
*) – Q(p2

*))/IQR

m = (n + 1)/2 pm
* Q(pm

*) x(m) (x(m + 1) – x(m))/iqr (Q(p(m + 1)
*) – Q(pm

*))/IQR

 Note: p* = Median-p; Q(p*) = Q(p*;β); T(p*) = T(p*;β).

Table 8.7.  Layout for sample-population comparisons — example 
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Straightening plots

We have avoided thus far the issue of plots whose form is influenced
by shape parameters. For example, if the data is truly a Tukey lambda
and we construct a Q-Q plot based on a Tukey lambda, but with the
wrong shape parameter, then we will not get a linear plot. A simple
way of avoiding this is to choose any parameters to make the plot as
linear as possible. This can be done by using the standard measure of
linearity, which is the correlation coefficient defined in Section 4.7. For
example, with Q-Q plots the correlation between the ordered observa-
tions and their median rankits will give a measure of linearity. As the
aim is to find a model whose Q-Q plot is linear, this provides a useful
numerical measure of success. The simplest measure first requires the
ordered data and median rankits be standardized by subtracting their
respective averages, giving x′(r) and M′r. We then calculate

r = Σx′(r)M′r/√

The correlation coefficient r can be used to compare, in general
terms, alternative models used in Q-Q plots. The closer to one the
better the model. In this case the alternatives are specified by the
shape (and/or skewness) parameters. The correlation is independent
of any position or scale parameters. The procedure is thus to get the
“best” model by choosing the shape parameter(s) to maximize the
correlation, i.e., to straighten the points on the Q-Q plot. Table 8.8
shows the layout of a comparison of three models for a set of data. In
each case the parameters are chosen to maximize the correlation. It
will be seen that two models perform equally well, although one has
fewer parameters.

Using p-transformations

In Section 8.9.1 we considered plots for models based on Q-transfor-
mations. Those also involving p-transformations pose a more difficult
problem, since all the common ones involve a power transformation
with an unknown parameter, which for this section we denote by γ. If
we knew γ, we could simply plot on the bottom axis the transformations
of Table 8.5 with pγ and 1 – pγ replacing p and q. The correlation
provides a simple tool for looking for appropriate values of γ. Using an
optimizer, the best values of the parameter can be chosen to give the
maximum correlation. Thus a mechanized search can be undertaken
before the visual comparisons of the best lines.

Σx′ r( )
2 ΣM′r

2[ ]
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Plots for data in frequency tables

Data in frequency table form is only a summary of the raw data and
is therefore best avoided; however, if it is the only data available, then
the plotting techniques need modifying. The essential modification is
that the n pairs of values (x(r), pr) are replaced by m – 1 values (xi, pi),
where xi is the upper boundary of a class interval in the table, pi is
the total proportion of the observations less than xi, and m is the
number of non-zero classes. The last class is not normally used as
pm = 1, which may send Q(p) to infinity.

8.4  Identification involving component models 

If there are too many options when faced with single distributions, the
problem is compounded when one considers a constructed model pro-
duced, for example, by a weighted addition of two quantile functions;
however, we can make use of dynamic plotting. Figure 8.3 shows an
example. This makes use of several ideas:

(a) We can create models where the shape depends on differ-
ing parameters to dominate the two tail shapes.

(b) Weighting of two quantile functions can be used to create
skewness or dominance in the tails.

 α = 0.635
 β = 0.287 0.806

correlation 0.988 0.992 0.991
 Exponential  Po × Pa  Weibull

 r  p  x  –ln(1 – p)  pα/(1 – p)β  (–ln(1 – p))β

1 0.043 17.88 0.044 0.138 0.081
2 0.087 28.92 0.091 0.217 0.145
3 0.130 33.00 0.140 0.285 0.205
4 0.174 41.52 0.191 0.348 0.264
5 0.217 42.12 0.245 0.407 0.322
6 0.261 45.60 0.302 0.464 0.381

etc.

Table 8.8.  Model selection by correlation
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(c) Generalized forms can cover a complete range of shape
parameter values.

(d) Computer software creates graphics very rapidly. 

Putting these ideas together, Figure 8.3 shows a Q-Q plot of a set
of data against a basic five-parameter lambda, ignoring position and
scale. Generalized Pareto distributions form the two tails and a
weighting combines them. The parameters for the left and right tails

alpha (L) = 0.2, weight = 0.5, beta (R) = 0.2

alpha (L) = –0.2, weight = 0.7, beta (R) = –0.2

Figure 8.3. A dynamic fit-observation diagram
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and the relative weight are set immediately above the plot. By altering
the parameters, the shapes resulting can be explored in a dynamic
fashion. In Figure 8.3 positive shape parameters have led to a Q-Q
plot showing that the tails of the fitted Paretos are much longer than
those of the data. This dynamic approach can also be used in the
developing comparisons between profile statistics and sample statis-
tics, such as T(p) and t(p). The layout to obtain suitable graphics was
shown in Table 8.7.

8.5  Sequential model building

A frequently used approach to modelling with deterministic construc-
tion kits is called sequential model building. This involves a number
of stages:

1. A list of model components is prepared and put in some
order of potential appropriateness.

2. Some criterion of quality of fit is chosen, perhaps the
correlation between the fitted model and data.

3. A component is selected from the list and added to the
model (at the start this is the only one).

4. The criterion is evaluated and if reasonably improved the
new component is kept; otherwise it is dropped. 

5. Return to 3.

The above procedure is called forward selection. The procedure
is highly developed for deterministic models and available on spread-
sheets and statistical programmes. However, there is nothing in the
above steps that cannot be applied equally to building a distributional
model with quantile function components. The detailed procedure does,
however, need a little more consideration. Suppose the first model
tried takes the form Q1(p) = λ + ηS1(p). To simplify later calculations
the position and scale parameters are adjusted to correspond to, say,
the population median and interquartile range, so that they can be
regarded as unchanging during the calculations. In Table 8.9 we try
a normal on the data and fit it by least absolutes. We also keep an
eye on the correlation between fitted model and data. Provided the
correlation is sufficiently large to justify our choice of Q1(p), we now
have a suitable fitted . DefiningQ̂1 p( )
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Initial model Normal  e = distributional residuals

 = 6.330 correlation 0.965 trial weight
n = 99  = 1.280 Σ e = 17.689 w = 0.2

p x (p) e  e S2*(p)
0.007 3.364 3.183 0.181 0.181 –1.752
0.017 3.865 3.613 0.252 0.252 –1.140
0.027 3.932 3.862 0.070 0.070 –1.653
0.037 4.137 4.043 0.094 0.094 –1.419
0.047 4.171 4.187 0.015 –0.015 –1.734

etc.

Additional model Pareto
correlations 0.930  0.990 weight = 0.196

 λ = –3.0  5.853 = λ
 β = 0.5  1.362 = η

 0.503 = β Σe  = 13.303
S2*(p) (p)  (p)  e 
–1.752 –1.996  3.428 0.064
–1.140 –1.991  3.797 0.068
–1.653 –1.986  4.011 0.079
–1.419 –1.981  4.167 0.031
–1.734 –1.976  4.292 0.121

 etc.

Table 8.9.  Illustrative layout for forward selection

λ̂
η̂

N̂

P̂a Q̂
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gives the distributional residuals. It is evident that any model compo-
nents of importance that are not in the current model must make their
effect through the e(r). In the deterministic situation the residuals can
just be plotted and fitted against new components. There is, however,
a problem here for distributional modelling. The deterministic compo-
nents would lead to residuals, some positive, some negative that
reflected the shape of the missing components. However, a quantile is
inherently an increasing function, so the link between the residuals
and the new component is not a direct one. The way to address this
issue is to observe that we have in the past sought to add quantile
functions in proportions that add to one. Thus if S2(p) is a missing
component, the next stage of the model will look like

Q2(p) = λ + η[(1 − ω)S1(p) + ωS2(p)]

If a purely automated approach is taken, then this model is the
added form of stage 3 above and is used in stage 4 of the procedure
and the process is continued. It is likely that one is only looking for
models with a few distributional components. It is therefore useful to
take a more detailed graphical look at this situation. To do this, note
that Q2(p) can be re-expressed as 

Q2(p) = λ + ηS1(p) + ηω[S2(p) – S1(p)]

If our model is right, the data is generated by Q2(p), so approxi-
mately x(r) = Q2(pr), but we already have x(r) =  + e(r). The
distributional residual, e(r), is thus the sample equivalent of the pop-
ulation quantity ηω[S2(p) – S1(p)]. Hence, as a rough approximation
since we are not adjusting or estimating parameters but only using
guestimates, a sample quantile function for S2(p) is given by 

, 

which corresponds to the population component S2(p). This is calcu-
lated in Table 8.9 using a small weight, on the assumption that we
have correctly identified the main component. A look at the plot in
Figure 8.4(a) of the fitted normal quantile function and the data sug-
gests a long-tailed second component. The plot of S2*(pr) against p

e r( ) x r( ) Q̂1 pr( )–=

Q̂1 pr( )

S2* p( ) Ŝ1 pr( ) e r( ) ηω⁄+=
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supports this. A Pareto, Pa(p), is tried and a plot of a roughly fitted
 against S2*(p) shows a rough linear increase (see Figure 8.4(c)).

The corresponding correlation is 0.930, which supports the Pareto as
an additional component of the overall distribution. On this basis the
full model, Q(p), of weighted normal plus Pareto is fitted and
Figure 8.4(d) shows a good fit-observation plot. The least absolutes
value shown in Table 8.9 has reduced from 17.7 to 13.3 and the
correlation increased from 0.965 to 0.990. It will be seen from this
example that there is a forward selection procedure for the distribu-

Figure 8.4. Graphics for sequential modelling

Ŝ2 p( )
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tional element of a model that broadly follows the common modelling
approach for the deterministic element.

8.6  Problems

1. Using the population plots of G(p) and T(p) obtained in
Chapter 3 problems, suggest suitable models for the two

Figure 8.4. Graphics for sequential modelling
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sets of data for which samples g(p) and t(p) were derived
in Chapter 2 problems.

2. Apply the methods of this chapter to Table 2.2 data.

3. Show that the statistic k(p) = fp(p)/fp(0.5) is independent
of position and scale. Examine its form for some standard
distributions. How might a sample measure of this be
derived from data? Consider the use of this statistic in
identification.
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CHAPTER 9

Estimation

9.1  Introduction

As was described in the introduction to modelling in Section 1.10, a
major task in statistics is the matching of a model to a set of data.
The parameters of the model have to be estimated in such a way as
to give a good fit between data and fitted model. The question that
has to be asked is, “What do we mean here by good?” There are many
answers to this question and hence there are many different
approaches to the process of estimation. It is convenient to look at
the methods to be discussed in this chapter as two general types.
First, there are methods that seek to match specific population prop-
erties of the fitted model with the corresponding sample properties
of the data. The low order population moments of the fitted model
may, for example, be made equal to those of the sample. Second,
there are methods based on minimizing some measure of the discrep-
ancy between the fitted model and the data. In Chapter 1, this
approach was illustrated with the minimization of the discrepancy
measured by the sum of squares or absolute values of the distribu-
tional residuals. Most of the common methods of estimation have
been developed for use with distributions defined by their density
function or cumulative distribution function. We need to show how
to fit a model defined by its quantile function. In the process of doing
this, we will discover that some methods are particularly suited to
distributions defined in terms of Q(p).

9.2  Matching methods

The method of percentiles, illustrated in Chapter 1, equates population
and sample percentiles to obtain a number of equations that are solved
to provide estimates of the parameters of a distribution. Clearly, the
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number of equations has to match the number of parameters, k. To
generalize, consider a set of descriptors of a population’s properties,
Gi( ). These will depend on the model, Q(p; ), and its parameters,
denoted by . Corresponding to these population quantities there will
be sample quantities, gi, depending only on the data. The set of equa-
tions obtained by matching the population and sample measures will be

Gi( ) = gi, i = 1, 2, …, k.

These can be solved to give the estimates  =  and the fitted
model (p) given by Q(p; ). There are a variety of measures of the
shape of a distribution that may be used. The first few moments
provide the basis for the method of moments. The use of selected
percentiles gives the method of percentiles, sometimes referred to as
the method of quantiles, e.g., Bury (1975). In more recent times meth-
ods based on L-moments and probability-weighted moments have been
used, e.g., Landwehr and Matalas (1979), and Hosking (1990). Table
9.1 lays out the main formulae for these methods, which will now be
illustrated through examples. The method of percentiles was also illus-
trated in Examples 1.24 and 1.25.

Example 9.1: For the Cauchy distribution we have

Q(p) =  λ + η tan[π(p – 0.5)]

If the sample p and q quantiles, q = 1 – p, p < 0.5, are x(p) and x(q), then
the method of percentiles chooses the parameters to equate the popula-
tion values with the sample values. The two equations Q(p) = x(p) and
Q(1 – p) = x(q) are to be solved. Notice first that

Q(1 – p) = λ – η tan[π(p – 0.5)],

Method Gi(θ) gi 
Moments µ′i or µi     Σxi/n or s2, m3, etc.

Percentiles/quantiles Q(pi) or M, IQR, QD, etc. (pi) or m, iqr, qd, 
etc.

Probability-weighted 
moments

ωr,s

usually r = i, s = 0, 
or r = 0, s = i

wr,s

L-moments λi li

Table 9.1.  Matching methods of estimation

θ θ
θ

θ

θ θ̂
Q̂ θ̂

Q̃
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hence by adding it is evident that

 = (x(p) + x(q))/2.

Subtracting the two basic equations gives

x(q) – x(p) = –2  tan[π(p – 0.5)],

which gives the estimator of η. As a numerical example suppose that
from a set of data the two quartiles are 11.6 and 25.4. Putting p = 0.25
we have  = 18.5 and  = 6.9.

Example 9.2: Some of the simplest distributional models are of the form
λ + ηS(p), where S(p) contains no parameters. If S(p) is symmetric, then
S(0.5) = 0 and equating population and sample medians leads to the
method of percentiles estimator  = m. It often happens that results of
methods are developed in an ad hoc fashion to provide further estimators.
A weakness seen in this estimator is that, for n odd, m is just the central
observation. For symmetric distributions the average of any symmetri-
cally placed quantiles will also be λ. On this basis the following form of
estimator has been used:

.

For α = γ = 0.25,  is called the Trimean, for α = 1/3, γ = 0.3 it is the
Gastworth estimator (Gastworth and Cohen (1970).) Parallel to these,
percentile estimators of η are given by

.

If, for example, S(p) is normal, then the estimators of σ corresponding
to the Trimean and Gastworth values are

.

See, for example, Srivastava et al. (1992).

Example 9.3: Consider fitting members of the reflection family first
introduced in Section 3.6 and for which we have now seen many exam-
ples. The form of the distributions is

Q(p) = λ + (η/2)[(1 + δ)S(p) – (1 – δ)S(1 – p)].

λ̂

η̂

λ̂ η̂

λ̂

τ̂ γ Q̃ α( ) 1 2γ–( )m γ Q̃ 1 α–( )+ +=

τ̂

η̂ Q̃ 1 α–( ) Q̃ α( )–[ ] S 1 α–( ) S α( )–[ ]⁄=

σ̂ 0.7413IQR and σ̂ 1.1608 Q̃ 2 3⁄( ) Q̃ 1 3⁄( )–[ ]= =
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If we take some low value of p (p < 0.5), then we can define the population
median, M, IPR(p), and p-difference. The subscript S denotes these
quantities for the right-tail distribution, S(p), and lower case symbols
are the sample values. With this notation we have

Q(1 – p) = λ + (η/2)[(1 + δ)S(1 – p) – (1 – δ)S(p)].

We could at this stage put sample values on the left-hand sides of the
previous three equations and solve for the three unknown parameter
values. However, it is clearer if we derive the two common statistics,
IPRQ and PDQ, from the values of Q(p) and Q(1 – p). We showed in
Example 3.11 that 

MQ = λ + ηδ S(0.5), IPRQ = η IPRS and PDQ = ηδ PDS.

The values of IPRS and PDS are derived directly from the function S(p).
The method of percentiles now replaces the population values of MQ,
IPRQ, and PDQ by their sample values to obtain three equations for the
three parameters. Thus if we use p = 1/4, for the quartile measures we
would have

From these the following estimators are obtained:

By way of example, for the skew logistic S(p) is the standard exponential
distribution. For this distribution,

MS = ln 2, IQRS = ln 3 and QDS = ln(4/3).

If it is appropriate for the problem, the quartile-based measures can
be replaced by those based on some other percentage, perhaps chosen
to give a better fit in the tails and to match up with observation points.

Suppose now that we have an S(p) that contains a shape parameter,
β, as in, for example, the four-parameter lambda. For this reflected

m λ̂ η̂δ̂MS.+=

iqr η̂IQRS.=

qd η̂δ̂QDS.=

η̂ iqr( ) IQRS.⁄=

δ̂ qd iqr⁄( ) QDS IQRS⁄( )⁄ g GS.⁄= =

λ̂ m MS qd QDS⁄( ).–=
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model, the tail index is TQ(p) = TS(p:β) and this does not involve the
other three parameters. Thus some convenient pair x(r) and x(n + 1 – r)

are chosen and p set at pr. The shape parameter is then chosen so that
sample and population values of the corresponding tail indices are
equal, i.e., 

(x(n + 1 – r) – x(r))/iqr = TS(pr: ).

As this estimate of β is derived independently of the other parameters,
it can be then be used in the previous formulae for their calculation,
which now depend on β.

In general, the method of percentiles does not produce as good
estimates as some of the others to be considered, basically because the
estimates do not use all the data. There are, however, some methods
to improve the estimates obtained; see, for example, Castillo and Hadi
(1994). The method of percentiles is, however, more robust than many
others in its ability to cope with erroneous observations that lie outside
the rest of the data.

Example 9.4: Illustrating now the method of moments, for the expo-
nential distribution the population mean is in fact the scale parameter
η. If we have a sample with mean , then the method of moments
equates fitted and sample values to give the estimator  = .

Example 9.5: The book on statistical modelling by Shapiro and Gross
(1981) gives the formulae for the first four central moments of the
generalized lambda distribution, then use the method of moments to
estimate the parameters. As there are two non-linear parameters the
method is complex, and they provide sets of tables to facilitate the
process. The availability of general-purpose numerical procedures avoids
the use of such tables and the method becomes straightforward.

There are two basic problems with using the method of moments
on distributions like the generalized lambda with three or more param-
eters. First, the equations are complex and provide many opportunities
for error. Second, and more important, the sampling variability of
powers of x, like x3 and x4, particularly in long-tailed distributions, is
very large. Hence estimators based on such quantities are themselves
subject to large variability. The methods of L-moments and probability-
weighted moments provide alternatives that avoid the problems due
to powers of x. It was shown in Chapter 3 that these methods are
equivalent. The calculation of probability-weighted moments turns out

β̂

x
η̂ x
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to be relatively straightforward for the basic models considered in
previous chapters. As a consequence, the use of the method of proba-
bility-weighted moments is often preferred.

Example 9.6: In Section 4.9 we showed that for the power distribution
with known origin at x = 0, Q(p) = ηpβ, the (r, 0) PWM is

ϖr,0 = η/(r + β + 1).

Suppose we have a sample of observations on such a power distribu-
tion. As there are two parameters, η and β, we need only two sample
PWMs, the simplest being w0,0 and w1,0. Thus we create two equations
for the two parameters. This is done by equating sample and popula-
tion PWMs giving

w0,0 = fitted ω0,0 = ,

w1,0 = fitted ω1,0 = .

The sample PWMs are calculated as in Chapter 3. Solving these equa-
tions and simplifying gives

 = w0,0 w1,0/(w0,0 – w1,0),

 = (2w1,0 – w0,0)/(w0,0 – w1,0).

9.3  Methods based on lack of fit criteria

In Section 1.10 the methods of distributional least squares and distri-
butional least absolutes were briefly introduced. There are a range of
methods based on developing some measure of lack of fit. The model
parameters are then chosen to minimize this criterion. For fitting
distributions the natural criteria to use are based on the distributional
residuals. We can define these in general terms as the deviations
between the ordered observations and some measure of their position
derived from the fitted model. These positions we have previously
described by the rankit, µ(r), i.e., the population mean of the r-th
ordered observation and the median rankit, Mr, the corresponding
population median. Using these as the basis for measures of how well
the fitted model describes the data gives two simple criteria:

η̂ β̂ 1+( )⁄

η̂ β̂ 2+( )⁄

η̂

β̂
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CDLS = Σr (x(r) – )2, 
the distributional least squares criterion,

and 

CDLA = Σrx(r) – , 
the distributional least absolutes criterion.

Here  and  are the rankit and median rankit calculated using
the model with estimated parameters. In each case a perfect fit gives
zero values of C and a best fit can be obtained by minimizing the
criterion by choice of parameters. The minimum magnitudes of the
criterion can also be used to compare the best fit to a set of data from
one model with that obtained from another.

The method of distributional least squares requires the calculation
of the rankits for the given distribution. As we saw in Section 4.2 these
are usually not easily calculated, although there is a substantial body
of literature giving formulae and tables. The exact rankits are avail-
able for such distributions as the exponential, Pareto and power.
Approximate rankits are obtained from the formula:

E(X(r)) = µ(r) ≈ Q(r/(n + 1))

This is a good approximation except in the extreme tails of the distri-
bution r = 1, 2, 3, … and n, n – 1, n – 2, ….

As shown in Section 4.5 the use of the next term in the approxi-
mation gives the approximate rankit as

µ(r) = Q(pr) + prqrQ′′(pr)/[2(n + 2)],

where pr = r/(n + 1), qr = 1 – pr, and Q′′(p) is the second derivative of Q(p).

Example 9.7: For any distribution of the form Q(p) = ηS(p), where there
is only the one parameter and the rankits of S(p) are µ(r), then the
criterion is

Σr[ x(r) – ηµ(r)]2.

Differentiating with respect to η and equating to zero to get the estimator
 gives

µ̂ r( )

M̂r

µ̂ r( ) M̂r

η̂

Σr x r( ) η̂µ r( )–[ ]µ r( ) 0=
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solving gives

 = Σr[x(r)µ(r)]/Σr[µ(r)]2.

Example 9.8: Developing the ideas of this last example consider the
fitting of the general model of the form

Q(p) = λ + ηS(p;β).

We can also express the model in terms related to the criteria by express-
ing the order statistics by  

x(r) = λ + ηµ(r)+ e(r),

where e(r) represents the deviations from the expectation of X(r), λ + ηµ(r).
With the estimated parameters we obtain the distributional residuals,
er, which are the deviations of the ordered observations from their esti-
mated mean (or median).  The criterion now requires that the three
parameters are chosen to minimize Σ(er)2. Using calculus to find the
minimum for fixed β gives some results that are standard in the area
of regression (see Chapter 12).

where µ– here is the average of the rankits and x– is the average of the
data. The minimum value for the criterion is thus

Cmin = Σ(x(r) – )2 – Σr[x(r)(µ(r) – )]2/Σr[µ(r) – ]2.

We clearly want to choose β to minimize this. As the first term depends
only on the data, this is equivalent to maximizing

T = Σr[x(r)(µ(r) – )]/Σr[µ(r) – ]2.

The optimum β is then used in a re-evaluation of λ and η. The optimum
β can also be obtained by directly minimizing Σ(er)2. Table 9.2 shows a
formulation of the steps in the calculation.

Example 9.9: Almost all statistical software and spreadsheets enable
linear models with more than two linear parameters to be fitted by a
least squares procedure. To illustrate this consider a skew logistic dis-
tribution which can be written as

η̂

η̂ Σr x r( ) µ r( ) µ–( )[ ] Σr µ r( ) µ–[ ]2⁄=

λ̂ x η̂µ,–=

x µ µ

µ µ
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x(r) = λ + ηln{pr /(1 – pr)} – ηδln{pr(1 – pr)} + e(r)

The product ηδ can be treated as a new single parameter θ. The new
three linear parameters can be estimated using software to carry out a
“regression” of x(r) on c(r) and d(r) where c(r) = ln{pr /(1 – pr)} and d(r) =
–ln{pr (1 – pr)}; thus fitting by standard least squares the model

x(r) = λ + η c(r) + θd(r) + e(r).

Turning now to distributional least absolutes criterion, CDLA, we
should explain why we have used the median rankit in the absolute
value criterion. Part of the reason for this usage is a general result
that for any set of observations, xj, the quantity

 Σ  xj – a 

is minimized by setting a at the median value of the xj. Notice that
here the median may be the single central value or any number between
the pair of central values, so the median value is not necessarily unique.

Step
 Data in 
columns

Derived 
quantities  Notes

 1 set β at initial 
value

Arbitrary value, can be 
explored later

 2 ordered data 
x(r)

Σx(r) = Sx S = Sum, SS = Sum of Squares, 
SP = Sum of Products, 
D = Deviations

 3 deviations x′(r) = x(r) – Σx(r)/n
 4 rankits µ(r) Sµ = Σµ(r)

 5 deviations µ′(r) SSDµ = Σ(µ(r) – Sµ/n)2

 6 x′(r) µ′(r) SPDxµ

 7  = 
SPDxµ/SSDµ

 8 n  = Sx – Sµ

 9 fitted  =  + 
µ(r)

 10 dist res = er 
= x(r) – (r)

 11 Adjust β to 
minimize 

Software should automatically 
alter  and 

Table 9.2.  Layout of DLS calculation for Q(p) = λ + ηS(p;β)

η̂

λ̂ η̂
x̂ λ̂

η̂

x̂
SSe

SSe λ̂ η̂
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The median rankit is the natural measure of middleness in the least
absolutes criterion. 

Example 9.10: Suppose S(p) is a distribution with range (–∞, ∞) and
the model is

Q(p) = λ + S(p).

The DLA criterion is thus 

 Σ x(i) – λ – . 

By the above result we obtain

, i = 1, …, n).

Notice that the median rankits are given by  as an exact
universal result, unlike the corresponding problem of finding the exact
or approximate rankits required for the DLS criterion.

Example 9.11: Table 9.3 illustrates the fitting of a set of data using
distributional least absolutes. Initial values of the parameters are allo-
cated and the median rankits calculated. The distributional residuals,
er, are then found and the least absolutes criterion evaluated. The soft-

Generalized Lambda  = 60.84
n = 100  = 96.05

 = 0.21
 = 0.02

Σ er  = 114.43
r x er 
1  7.49 0.007 –0.64 8.13
2  8.11 0.017 6.27 1.84
3 13.43 0.027 10.45 2.98
4 13.55 0.037 13.55 0.01
5 14.54 0.047 16.04 1.50

 etc.
 

Table 9.3.  Fitting by the method of least absolutes

S pi
*( )

λ̂ Median x i( ) S pi
*( )–( )=

Q pr
*( )

λ̂
η̂
α̂
β̂

pr
* Mr Q̂ pr

*( )=
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ware then searches to find the set of four parameters to minimize the
criterion. Table 9.3 shows the set obtained at this final stage. The general
algorithm for both DLS and DLA is given in the next section.

Fitting by distributional least squares and distributional least
absolutes has been discussed in relation to raw data. If there is only
data in frequency table form with class intervals (xi – 1, xi) and cumu-
lative relative frequency pi at xi (i.e., the empirical CDF is (xi) = pi),
then the error of fit term will look like

ei = xi – Q(pi;θ)

The parameters, θ, can be chosen to minimize the least squares or
least absolutes criteria. The nature of a frequency table is that these
criteria give equal weight to each class interval (xi – 1, xi) irrespective
of the frequency, fi, in the intervals. For fitting with emphasis on a
good fit in the tails this is reasonable. If all observations should make
an equal contribution, then the criteria are weighted by the frequency,
e.g.,  becomes Σfi . For this criterion we cannot minimize using
explicit algebraic expressions, as for simple least squares. We have to
use numerical optimization.

Having introduced these methods of estimation we need to consider
their properties. Simple least squares is the classical method of esti-
mation. Its use does, however, depend on a number of assumptions:
If the criteria takes the form Σ(xi – µi)2 = Σ(ei)2, then it is assumed that
the residuals ei (a) are independent and (b) have constant variance. A
further assumption implied in much of the use of least squares is that
the residuals are (c) from a distribution that is symmetrical. It is clear
that when the x are the order statistics none of these assumptions are
true. The method of least squares can be generalized to deal with (a)
and (b). The theory was first developed for the order statistics by Lloyd
(1952) (see also Arnold, Balakrishnan and Nagaraja (1993)). In
essence, the approach involves constructing a matrix of all the vari-
ances and covariances for the order statistics, which is beyond the
scope of this text. Balakrishnan and Sultan (1998) give appropriate
formulae for such quantities for a wide range of distributions. For a
data set of any size the calculation of all the n2 variances and covari-
ances becomes difficult even if these quantities are explicitly known,
and this is only the case for some distributions. The task becomes even
more difficult where recurrence relations or numerical approximations
are required to obtain these quantities. If we ignore the correlation
structure and concentrate on the variability, we can make some

F̃

Σei
2 ei

2
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progress. The standard approach to this problem is based on weighting
the terms in the criteria, which becomes for the least squares criterion:

CDWLS = Σr ωr(x(r) – µ(r))2, 
distributional weighted least squares.

The usual form for the DWLS criteria uses the variances of the
order statistics to reduce the effect of their errors. Thus ωr = 1/V(X(r)).
For example, the formula for an approximate variance for the normal
distribution is given in the discussion in Section 5.6. For DWLA the
equivalent criterion is

CDWLA = Σr ωrx(r) – Mr, 
distributional weighted least absolutes,

where ωr is the reciprocal of some suitable quantile measure of
spread, such as a suitable interquantile range. The inter-decile range,
IDR, is a sufficiently wide but not too extreme range to use. Unlike
the variance, this can be obtained exactly from the quantile function.
Thus we have

The weighting used is then, for a given fitting, ωr = . Table 9.4
shows a column layout of part of such a calculation for fitting a
generalized lambda distribution. The modification to the standard
approach is a simple multiplication by weighting before summing to
get the criterion value. Clearly, the weighting depends on the param-
eters, but this is allowed for automatically when the parameters are
chosen to minimize the criterion. 

There is some evidence that for ordinary least squares ignoring the
issue of the variances and correlations does not dramatically worsen
the results (see, for example, Ali and Chan (1964)). It has to be noted
that the outcome of the least squares criterion does indeed minimize
the criterion. It is consideration of the theoretical properties of the
estimates obtained that leads to the use of weightings and adjustment
for covariance. The modeller has to balance the issues as to whether

Mr Q pr
* 0.5( )[ ]=

IDRr Q pr
* 0.9( )[ ] Q pr

* 0.1( )[ ]–=

Q BETAINV 0.9 r n 1 r–+, ,( )[ ]=

 Q BETAINV 0.1 r n 1 r–+, ,( )[ ].–

1 IDRˆ⁄
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Generalized Lambda

 = 58.70 er = xr – ( (0.5))

n = 100  = 329.06 1/wr = ( (0.9)) – ( (0.1))

 = 0.048

 = 0.009

Σwrer = 15.88

r xr (0.1) (0.5) (0.9) ( (0.1)) ( (0.5)) ( (0.9)) wrer 
1 7.49 0.001 0.007 0.023 –34.04 –11.56 3.83 0.50
2 8.11 0.005 0.017 0.038 –14.78 –0.24 10.87 0.33
3 13.43 0.011 0.027 0.052 –5.58 5.94 15.17 0.36
4 13.55 0.018 0.037 0.066 0.04 10.23 18.33 0.19
5 14.54 0.025 0.047 0.078 4.82 13.54 20.86 0.06

etc.

Table 9.4.  Fitting by the method of weighted least absolutes

λ̂ Q̂ pr
*

η̂ Q̂ pr
* Q̂ pr

*

α̂

β̂

pr
* pr

* pr
* Q̂ pr

* Q̂ pr
* Q̂ pr

*
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the objective is to obtain estimates of the parameters that have sta-
tistically good properties, assuming all is well with the choice of model
and with the data, or is it to minimize a practical meaningful criterion
of fit.

The lack of symmetry in the distributions of the outer order
statistics also raises issues. The skewness and high variability in
these tails mean that squaring the ei leads to estimates that are very
sensitive to this variability and to any outliers. This problem is
clearly reduced by using DLA rather than DLS and also by introduc-
ing a weighting, ωr. However, one could argue that the equal weight-
ing that ordinary DLS and DLA place on the data in the tails may
not always be unreasonable, since we often wish to obtain the best
fit in the tails.

In practical modelling studies it should be the application that
determines the criterion, guided by, but not determined by, statistical
theory. In many applications the distributional least absolutes crite-
rion turns out to be a natural measure of fit. This criterion and the
equivalent least absolutes criterion for fitting deterministic models
have been much discussed. A significant problem is that the criteria
do not lead to unique solutions. There will be a small range of values
of the parameters for which the criterion does not change. To see this,
consider applying the criteria when the model is Q(p) = λ + S(p), where
S(p) is symmetrical about zero. A natural estimate of λ is the median.
If, however, there are an even number of observations the criterion is
constant for values of λ lying between the two middle observations.
Although this is clearly a fact, under the appropriate circumstances
in practice with a reasonably sized sample and several parameters,
the range of variation in the estimates is practically insignificant. It
is also open to simple exploration, to see whether for any situation it
is an issue. 

In favour of the DLA criterion it may noted that when the distri-
butions are not symmetrical a criterion based on median rankits is
intuitively understandable. Further, as we have seen, DLA, compared
with DLS, is relatively insensitive to outliers and problems of high
variability. Teaching texts on statistics tend to put great emphasis on
least squares, often to the exclusion of all else. Just to emphasize that
there is a choice in this matter and that other criteria should be
considered, we will use distributional least absolutes as the criterion
for fitting in the remainder of this text. 

Although DLA is more robust than DLS it is still influenced by
outliers. One way of constructing a highly robust approach is to note
first that both criteria are equivalent to minimizing the mean of the
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squares or absolute values of the distributional residuals. If we replace
the sample mean by the sample median we have methods called the
distributional least median of squares and of absolutes. The least
median of squares method was introduced by Rousseeuw (1984) and
shown by him to be a highly robust method. From the point of view
of obtaining numerical optima against some criterion of fit, this crite-
rion is as easy to handle as the least means criteria. 

It is shown in many standard texts that the method of least squares
has the effect of maximizing the square of the correlation between the
actual and fitted observations, which is called the multiple correla-
tion coefficient. This coefficient will lie just below its possible max-
imum of one for any sensible model. The fact that it has a known range
makes it useful as a supplementary measure of the quality of fitted
models however they are derived.

The multiple correlation coefficient and the DLS and DLA criteria
give overall measures of the fit of a distribution. When we ask about
the quality of the estimates of the individual parameters we usually
have little simple information. If a linear model with variances and
covariances is used for distributional least squares, then formulae for
the standard errors of the estimates of the linear parameters are
available. For non-linear parameters and for the method of distribu-
tional least absolutes there are rarely simple formulae available. The
approach increasingly adopted to such issues is to repeatedly resample,
with replacement, from the original data set and study the variability
of the estimators obtained. 

9.4  The method of maximum likelihood

The basic idea of likelihood is that for an observation xi the proba-
bility of occurrence in a small interval dxi at xi is f(xi;θ) dxi, where
f(x;θ) is the PDF with parameter(s) θ. For a set n independent obser-
vations this probability becomes Π[f(xi;θ) dxi]. Hence a general measure
of the chances of seeing the particular observed set of data, seen as a
function of the parameter, is given by the likelihood defined as

Likelihood(θ) = Πf(xi;θ).

Intuition suggests that if a value of θ is used that is close to the true
value then this quantity will be relatively large; if we have a poor
choice, it will be small.
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In general, the likelihood of a parameter θ, given a set of data xi

from a distribution, f(x:θ), is defined by

L(θ) = f(x1:θ) f(x2:θ) … f(xn:θ).

We can define the equivalent likelihood quantile function

L(θ) = fp(p(1):θ) fp(p(2):θ) … fp(p(n):θ)

where p(r) is given by x(r) = Q(p(r):θ), i.e., it is the actual p value that
generates the observed x for the given θ. It is easier to work with the
log-likelihood which we will denote by l(θ).

l(θ) = ln[L(θ)] = Σln fp(p(r);θ).

Expressing this in terms of the quantile density gives

l(θ) = –Σlnq(p(r);θ).

The use of logarithms enables the terms to be separately studied
and also provides for l(θ), for a given θ,  to be evaluated as a column
total, for example, on a spreadsheet. The log-likelihood acts not as a
lack of fit measure, but as a goodness-of-fit criterion, CML = l(θ), that
has to be maximized. 

The method of maximum likelihood chooses the parameter(s) to
maximize the likelihood or, equivalently, the log-likelihood. This is prob-
ably the most commonly used method of estimation. The reason for its
popularity is that it leads to estimators that usually have particularly
good and useful general properties. In summary, the main properties are

(a) The maximum likelihood estimators, , for large samples
are approximately normally distributed, unbiased (i.e.,
E( ) = θ), and with a variance that is at the minimum
achievable value.

(b) If the unbiasedness and minimum variance are theoreti-
cally achievable in small samples, then they will be given
by maximum likelihood.

(c) The variance properties of the estimators can be directly
derived.

(d) The estimators become closer in a probabilistic sense to
the true values as the number of observations increases.

θ̂

θ̂
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The technical term is that they are consistent estimators.
These properties are usually valid for distributions that
are straightforward functions of the parameters.

The calculation of l(θ) requires the derivation of p(r) from x(r) =
Q(p(r):θ). This can be carried out directly from F(x(r)) if F(.) is explicit.
If not, the iterative method of Section 4.5(c) has to be used. It is seen
that in the quantile-based likelihood the parameter(s) are implicitly
contained in terms involving p(r). This adds a fresh level of complexity
to the situation. Thus the methods for quantile functions discussed
here are only needed for distributions that have quantile functions but
not explicit probability density functions.

We have discussed three criteria of fit: CDLS, CDLA, and CML. The
model parameters, , are chosen to either minimize or maximize the
criterion C( ). In most standard statistics texts these criteria, where
discussed, are optimized analytically, giving explicit answers. With
quantile-based models this is rarely possible and a universal algorith-
mic approach is needed. We will see later when we turn to validation
that this approach has benefits. The algorithm can be set up via
spreadsheets or as a procedure in a statistical package. Table 9.5 shows
the structure of the algorithm. The layout also calculates a number of
quantities that are of later use. 

The approach of this table emphasizes the need to decide in any
problem what model to use and what criteria of fit to use. These are
quite distinct issues. In the past the criterion has often been chosen on
the basis of obtaining simple formulae for solution, or obtaining good
statistical properties for the estimates. The second of these is clearly
sensible, but it should not override the purposes of the model. If we
make use of general-purpose minimization/maximization routines in
spreadsheets or mathematical and statistical software, then we have a
general tool without need for specific formulae to obtain solutions. As
with all such tools care needs to be taken to check the validity of the
solutions obtained. Section 9.6 looks at some methods that assist in this.

Before leaving our discussion of the main methods of estimation, it
is worth noting that the generalized lambda distribution is the only
distribution defined explicitly by a quantile function that has a literature
on its estimation. This covers the method of moments, Dudewicz et al.
(1974), Ramberg et al. (1979) and Karian et al. (1996); the method of
least squares, Ozturk and Dale (1985); the method of percentiles, Karian
and Dudewicz (1999a and b); and the method of probability-weighted
moments, Greenwood et al. (1979). The lack of use of maximum likeli-
hood is surprising as it is perfectly straightforward if one uses the

θ
θ
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general-purpose maximization software available rather than look for
specific formulae for estimators. Table 9.6 illustrates the layout for
maximum likelihood calculations in a column format. This gives a sec-
tion from a fit of the generalized lambda for a set of 100 observations.
Columns 2, 3 and 4 give the data, the median-p and the median rankits,
calculated using the initial parameter estimates. Columns (4, 5, 6), (7,
8, 9), …, (13, 14, 15) give the iterative derivation of the column p(r). It
will be noted that, as required, column 16, (p(r)), is identical to the
data of column 2. The p(r) are used to get the individual likelihood terms
–ln(q(p(r))) whose column is summed to give the final log-likelihood. The
parameters are then chosen to maximize this.

9.5  Discounted estimation

A common feature in fitting distributions for applications is that it is
only one end of the distribution that is of practical importance. For
example, we may fit a distribution to a population of individuals and
want to use the fitted model to select the top 1% of future samples.
Thus the value of (0.99) would be the prime statistic of interest. In
such situations it is reasonable to seek a better fit for the distribution

1. Define distribution  Q(p; )
2. Derive quantile density  q(p; )
3. Set initial or revised parameter 

values (Section 9.6)
 (=  on first iteration)

4. DLA/ML, set median-pr 
or initial p(r)

 = BETAINV(0.5, r, n + 1 – r), 
µ(r) from formulae or tables, 
p(r),0 = r/(n + 1)

5. ML, derive p(r) (where x(r) = 
Q(p(r); )); DLA/S, derive Mr 
or µ(r)

iterate for each r and current 
p(r)new = 
p(r) + (x(r) – Q(p(r); ))/q(p(r); )

Mr = Q( ; )
µ(r) from formulae or tables

6. Calculate criterion C(data x(r)p(r); )
7. Search for  to optimize 6 

(involving iterating steps 3 to 6)
 = , optimum C = C( ).

8. Fitted distribution  (p; )   
9. Fitted quantile density  (p; )

Table 9.5.  Algorithm for least/maximum methods

θ
θ

θ̂ θ0

pr
*

θ̂
θ̂

θ̂ θ̂
pr

* θ̂

θ̂
θ̂ θ θ̂ θ̂

Q̂ θ̂
q̂ θ̂

Q̂

Q̂
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at the end of interest rather than a good overall fit, which has been
the objective in previous methods. The natural approach to this prob-
lem is to weight the various criteria we have been using to emphasize
the end of interest. As an illustration, consider the use of exponential
discounting to emphasize the right-hand data when fitting with least
absolutes. The criterion becomes

Σ arx(n – r) – Mn – r

where the discounting factor, a, is in the range 0 ≤ a ≤ 1. The
smaller a the less emphasis is given to data away from the right-hand

Generalized lambda  = 50.00

n = 100  = 67.38

 = 0.31

column  = 0.04
1 2 3 4 5 6 7
r xr  ( ) ( ) ,1 ( ,1)

1 7.49 0.007 6.96 651.8 0.0077 7.47
2 8.11 0.017 11.54 354.6 0.0071 7.05
3 13.43 0.027 14.52 257.6 0.0224 13.36
4 13.55 0.037 16.81 207.4 0.0209 12.91
5 14.54 0.047 18.70 176.0 0.0229 13.50

etc.

log likelihood = –Σln (p(r)) = –416.1
7 15 16 17 18

( ,1) iteration p(r) (p(r)) (p(r)) –ln (p(r))
7.47 0.008 7.49 601.5 –6.40
7.05 0.009 8.11 550.0 –6.31
13.36 0.023 13.43 287.9 –5.66
12.91 0.023 13.55 284.2 –5.65
13.50 0.027 14.54 256.9 –5.55

etc.

Table 9.6.  Layout for fitting by maximum likelihood
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tail. However, a cannot be too small as smaller a effectively reduces
the amount of data used in the estimation. Values of a > 0.95 are
normally required.

Example 9.12: A five-parameter lambda distribution was fitted to a set
of nearly 500 observations using the method of distributional least abso-
lutes. The process was repeated using exponential discounting with unit
weight on the largest observation. Thus the emphasis was on the right-
hand tail, since the fitted model was to be used to put a cutoff point in
that tail for the selecting out of high values. With such a large data set,
a high value of a was used (a = 0.995). This gave a weight of about 0.1
on the smallest observations. Figure 9.1 shows the residual plots for the
two fitted models. It will be seen that although there is no dramatic
difference, the residuals on the right for the discounted fitting have been
reduced at the expense of those on the left. 

An obvious problem with this approach is in the choice of a. If the
method is to be used repeatedly, then a value can be chosen that would

Figure 9.1. Residual plots (a) without; (b) with discounted estimation
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have lead to the optimum value of some criteria of success in the past
applications. For a “one-off” application a subjective choice has to be
made to give reasonable weighting across the data. Such subjective
decisions are sometimes frowned upon; however, using the standard
method, in effect setting a = 1, and ignoring an important aspect of
the application, are no more objective than facing the fact of the
relative practical importance of the two tails. 

9.6  Intervals and regions

The methods discussed in this chapter have all been concerned with
obtaining estimated numerical values for parameters. In this section
we consider methods for obtaining intervals or regions which in some
sense may contain the true value. We start by considering a range of
examples to illustrate some basic methodologies.

Example 9.13: Consider the single parameter distribution of form
Q(p) = ηR(p). Let α be a small probability and x a single observation or
statistic which has distribution Q(p). By the definition of quantiles

Pr[Q(α) ≤ x ≤ Q(1 – α)] = 1 – 2α.

Rearranging within the probability statement we can write

Pr[x/R(1 – α) ≤ η ≤ x/R(α)] = 1 – 2α.

The interpretation of this probability statement is that the random
interval [x/R(1 – α), x/R(α)] will contain the true parameter value for
100(1 – 2α)% of observations x. Intervals of this nature are called
100(1 – 2α)% confidence intervals. By way of illustration let
R(p) = –η ln(1 – p) for the exponential distribution. Suppose the value
of α = 0.025 and the observed x is 2.2, then the form of the interval
comes from Pr[0.271 x ≤ η ≤ 39.50 x] = 0.95. The actual 95% confidence
interval is (0.6, 86.9). Note the inevitable width of an interval where we
ask for a high probability on the basis of only one observation.

Example 9.14: Suppose that some statistic, t, derived from n observa-
tions, has a normal distribution with mean µ and known standard devi-
ation σ. We can again write a probability statement with quantile form:

Pr[µ + σN(α) ≤ t ≤ µ + σN(1 – α)] = 1 – 2α.

© 2000 by Chapman & Hall/CRC



214 ESTIMATION

Using the symmetry of N(p) gives

Pr[µ – σN(1 – α) ≤ t ≤ µ + σN(1 – α)] = 1 – 2α,

which on reorganizing is

Pr[t − σN(1 – α) ≤ µ ≤ t  + σN(1 – α)] = 1 – 2α.

If, for example, we note that N(0.975) = 1.96, then the 95% confidence
interval is

(t – 1.96σ, t + 1.96σ).

Example 9.15: In Section 5.7 we noted that order statistics are approx-
imately normal for large n. In particular, if pr = r/(n + 1), then

X(r) is N[Q(pr), pr(1 – pr)q2(pr)/n].

If pr = 0.5, then X(r) is the sample median m. If the distribution is the
logistic with known η, Q(p) = λ + ηln[p/(1 – p)], then q(p) = η/[p(1 – p)]
and q(0.5) is 4η. The median M is λ and hence the sample median is
approximately distributed as N(λ, 4η2/n). Following the same line of
argument as in the previous example, we arrive at the 95% confidence
interval for λ as

[m – 1.96 ∗ 2η/√n, m + 1.96 ∗ 2η/√n].

As a specific example suppose n = 64, m = 24 and η = 2, then the 95%
interval is approximately (23, 25). 

Example 9.16: Given the log-likelihood l(θ), the following useful quan-
tities can be defined:

The Score Sc(θ) = ∂l/∂θ, noting that Sc( ) = 0.

The Information Function I(θ) = – ∂2l/∂θ2.

It can be shown that the variance of the maximum likelihood estimator
 is approximately 1/I(θ). It can also be shown that maximum likelihood

estimates are approximately normally distributed about the true value.
These facts can be used to obtain approximate confidence intervals for
parameters from their maximum likelihood estimates. For example, the
95% confidence interval will be approximately  ± 1.96/√I( ).

θ̂

θ̂

θ̂ θ̂
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The use of approximations, as in the previous examples, can be
avoided by taking a somewhat different approach. We define two
functions: The likelihood ratio R(θ) = L(θ)/L( ) and the log-likeli-
hood ratio r(θ) = ln(R(θ)). It is evident that 0 ≤ R(θ) ≤ 1, and that
R( )= 1. A 100p% likelihood interval or region is defined as the
region where R(θ) ≥ p, or equivalently r(θ) ≥ ln(p). Given the layout of
the ML calculations, such as that of Table 9.6, the estimates can be
varied from their maximum likelihood values and the effect on the log-
likelihood of so doing can be readily explored. 

If the log-likelihood is expanded by a Taylor series about a single
parameter  and we use the functions Sc(θ) and I(θ), we obtain

l(θ) = l( ) + (θ – ) Sc( ) + {(θ – )2/2} I( ) + ….

But Sc( ) = 0 for the maximum likelihood estimator and r(θ) = l(θ) –
l( ), so as an approximation

r(θ) = –{(θ – )2/2} I( ).

Thus the interval r(θ) ≥ ln(p) gives the 100p% interval for θ as

  ± √[–2ln(p)/I( )].

For p = 0.1, for example, we would regard the values of θ within
a 100p% interval as likely. For p = 0.147 the region is approximately
the 95% confidence interval. Notice, however, that the likelihood
regions in general will not be symmetrically placed about the estimate

. If initial estimates of the end points p1, p2 are obtained from the
last expression, the equation r(θ) – ln(p) = 0 can be solved using the
approximation methods of Section 4.5. The process of obtaining the
100p% likelihood interval is seen as an extension of the original max-
imum likelihood estimation and the algorithm for finding the end
points is given in Table 9.7.

The distributions considered in past chapters have almost always
had at least a position and a scale parameter. In practice therefore
we are looking at multiparameter situations. The numerical-based
approach that has been discussed for finding maximum likelihood
estimates lends itself to a further use. The setup of all the least A
and maximum B methods has been the same: first, define starting
values for the parameters, 0, and calculate the criterion, C( 0) from

θ̂

θ̂

θ̂

θ̂ θ̂ θ̂ θ̂ θ̂

θ̂
θ̂

θ̂ θ̂

θ̂ θ̂
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these; then search for the parameter values, , that lead to the
minimum or maximum, C( ). Once this is done we can define a lattice
of points in the parameter space around the optimum values and
evaluate the criterion function at each of these. A criterion ratio will
be given by R*( ) = C( )/C( ), for a maximum criterion or its recip-
rocal for a minimum criterion. As with the likelihood ratio, this gen-
eral ratio will satisfy 0 ≤ R*( ) ≤ 1, R*( ) = 1. The value of R*( ) can
be directly derived for each point on the lattice using the column
layout used for the optimization. The region where R*( ) ≥ p can then
be identified at whatever level of accuracy is desired. Table 9.8 shows
the values of the ratio, as a percentage, for the sum of absolutes
criterion for a lattice of values of two parameters, η and β, in a model.
The 100% value corresponds to the method of least absolutes esti-
mates of the two parameters. Figure 9.2 shows the three-dimensional
plot and a contour plot for the actual magnitudes of the DLA criterion.
Such exploratory tools give a good feel for the sensitivity of the
optimum estimators. 

Formulae for derivatives of l(θ) Sc(θ), I(θ)
Initial values for the end points (θ1, θ2)  ± √[–2ln(p)/I( )]
Iterative evaluation for the two 
end points

θnew = θ – [r(θ) – ln(p)]/Sc(θ)
θ = (θ1, θ2)

100p% likelihood interval (θ1, θ2)

Table 9.7.  Obtaining 100p% likelihood intervals 

β
 η 0.33 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.49

370 31 34 38 44 50 57 59 58 55
380 32 37 43 51 59 67 68 66 59
390 34 40 48 58 70 79 79 73 62
400 36 42 52 65 83 91 87 75 62
410 38 45 57 72 93 97 89 75 59
420 40 49 62 80 100 97 86 70 52
430 42 52 67 89 98 92 78 60 45
440 44 56 71 90 89 80 66 50 39
450 46 58 71 83 77 67 54 43 34
460 48 58 68 72 66 56 45 37 30
470 48 56 63 62 56 47 39 32 29

Table 9.8.  Example of % criterion ratio for sum of absolutes criterion

θ̂ θ̂

θ̂
θ̂

θ θ θ̂

θ θ̂ θ
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9.7  Initial estimates

Most of the methods of estimation involve the use of numerical opti-
misation routines. These require the setting up of tabular layouts
based on initial estimates. We therefore need to consider briefly the
derivation of these initial values. A number of methods can be used:

Figure 9.2. Regions of values of the absolute criterion
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(a) The method of percentiles often provides a simple and
direct method of getting estimates.

(b) The fitting of simpler but related distributions has proved
useful. Suppose, for example, the generalized lambda is
reparameterized to

Q(p) = λ + {η/(α + β)}[pα – (1 – p)β],

and we are confident the shape parameters have the same
sign. This distribution can be compared to the symmetric
lambda distribution, which, in classical form, is

Q(p) = λ + (η/2α)[pα – (1 – p)α].

The method of percentiles can give simple estimators of
λ, η, and α. We then make β = α and fit the four-parameter
model from these starting values.

(c) A further approach makes use of the fact that most of
the models we have considered have several linear
parameters and only one or two non-linear parameters.
The non-linear parameters are set at guessed values and
simple distributional least squares estimates of the lin-
ear parameters derived from the resultant linear model.
From this fitted model the criteria of interest can be
calculated. The non-linear parameters can then be
adjusted by trial and error to give a rough optimum for
the criterion. The structures of spreadsheets lend them-
selves to this type of preliminary exploration. 

9.8  Problems 

1. The data of Table 2.2 are negatively skewed but positive.
The distribution λ – η(lnp)β is suggested.
(a) Justify this form for the distribution.
(b) Fit the model to the data using the method of per-

centiles.
It is suggested that the values 1450 and 1960 are outliers.
Fit the normal and power-Pareto distributions using the
method of distributional least absolutes to the main 48
observations and consider the situation of the “outliers.” 
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Fit the whole 50 observations using (i) a four-parameter
lambda and (ii) a generalized lambda, again using the
method of distributional least absolutes.
Review the outcomes of this exercise.

2. Obtain explicit formulae for the estimates of the parame-
ters of the following models using the method of probability
weighted moments:
(a) The logistic, Q(p) = λ + ηln[p/(1 – p)] in terms of w0,s.
(b) The two-parameter Weibull, Q(p) = η[–ln(1 – p)]β.

3. A skew four-parameter lambda distribution is fitted to a
set of data for which

m = 20, iqr = 3, ipr(0.05) = 6, and qd = 1.

Estimate the parameters using the method of percentiles.

4. A distribution, Q(p) = λ + ηS(p), has S(p) symmetric about
zero. Show that the statistic 

provides an estimate of η with E(t) = η, approximately for
large n.

5. Show that for distributions of the form 

Q(p) = λ + (η/2)[(1 + δ)S(p;β) – (1 – δ)S(1 – p;β)],

the right-tail index τ = [Q(0.9) – Q(0.5)]/[Q(0.75) – Q(0.5)]
depends only on β and could thus provide an estimate of
β by equating sample and population values. Use this
result with the method of percentiles to fit a skew lambda
to the data of Table 2.2. 

6. Fit the various members of the lambda family to the data
of Table 2.2 using the method of maximum likelihood.
Compare the maximum likelihoods obtained. For the four-
parameter lambda, examine the likelihood region for δ and
α, assuming the estimates for λ and η are correct. 

t Σ1
nS r n 1+( )⁄( )x r( )=
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7. A distribution is modelled by

Q(p) = λ + η[(2p – 1)/{p(1 – p)}] 

Give formulae for estimating the position and scale param-
eters λ and η using the method of percentiles and the
method of probability-weighted moments.

8. A distribution is modelled by

Q(p) = λ + η[(1 + δ)/(1 – p) – (1 – δ)/p].

Calculate M, IQR, T(p), D(p) and G(p). Suggest a simple
way of estimating δ from a set of data.

9. Show that for the distribution

S(p) = pα – (1 – p)β

the probability-weighted moments are

ωr,s = B(r + α + 1, s + 1) – B(r + 1, s + β + 1),

where B(.,.) are beta functions. Use this result to re-do
Problem 6 using the method of probability-weighted
moments.

10. The calculation of p(r) in Problem 6 gives a set of values
that can be regarded as the set of ordered values from a
uniform distribution that would exactly simulate the sam-
ple using the fitted model. This fact could be used to pro-
vide alternative criteria of fit, using the p(r) as data.
Possibilities are Σ[p(r) – r/(n + 1)]2 or some statistic
designed to test uniformity. Re-examine Problem 6 on this
basis. [See the starship method of estimation, e.g., King
and MacGillivray (1999)]. 

11. Observations are obtained from an exponential distribu-
tion with unknown threshold λ.

Q(p) = λ – η ln(1 – p).

© 2000 by Chapman & Hall/CRC



PROBLEMS 221

A matching is carried out based on the median of the data,
m, and using x(1) as the natural estimate of the median of
the distribution of the smallest observation. Show that λ
is estimated by

 = (nx(1) – m)/(n – 1).

12. The following frequency table gives the results of some
industrial measurements. Fit, using the method of distri-
butional least absolutes, the following distributions to the
data: (a) skew logistic; (b) generalized lambda; (c) four-
parameter lambda; and (d) five-parameter lambda. Com-
pare the fits obtained.

13. The data below are a set of failure time data. Fit by the
method of distributional least absolutes using the follow-
ing distributions: (a) The Weibull; (b) the Weibull with
β = 1, i.e., the exponential; (c) the power × Pareto; and
(d) the uniform × Pareto (i.e., (c) with α = 1). Compare the
fits using the least absolutes criterion and also the corre-
lation between fit and observation.
Data: 35, 58, 66, 83, 84, 91, 97, 104, 104, 108, 111, 136,
137, 137, 138, 168, 186, 197, 211, 212, 256, 257, 346.

 250+ – 260  3
 260+ – 270  5
 270+ – 280  14
 280+ – 290  34
 290+ – 300  31
 300+ – 310  27
 310+ – 320  15
 320+ – 330  9
 330+ – 340  10
 340+ – 350  5
 350+ – 360  3
 360+ – 370  3
 370+ – 380  0
 380+ – 390  2
 Total 161

λ̂
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CHAPTER 10

Validation

10.1  Introduction

Validation is the process of deciding whether an identified and fitted
model is indeed valid for the data and situation under consideration.
There are several situations where validation becomes important:

(a) Where the identification process provides several possible
models that have then been fitted, a choice between them
needs to be made using more precise techniques than those
used at the identification stage.

(b) Where a model with prespecified parameters is recom-
mended for your data by an outside source.

(c) Where a well-used and trusted model is to be used in a
new situation.

In case (a), where one is using one’s own data and fitted models, care
needs to be taken with the data used for the validation process. The
general recommendation is that the validation should be carried out
using different data from that used for the fitting. The reason for this
is simply that the parameters will have been chosen to give the best
fit, against some criteria, for that specific set of data. Such a good fit
may not be achieved with further sets of data when the model is
refitted and will almost certainly not be achieved if the initial fitted
model is used unaltered. Having said this it is usual to have an initial
look at the validity of the model against the data used for fitting. If
the fit looks poor for this data, it will almost certainly be worse for
any other data. A simple process of validation with large data sets is
to use part of the data for identification and fitting and the remainder
for validation. We refer to the data used for validation as the valida-
tion data. One way of using all the data in the validation process is
to split the data in half. Use the first half for fitting and the second
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for validation and then repeat with the halves interchanged. This is
called cross validation. Given sufficiently powerful software all the
data save one observation could be used for fitting and the removed
observation compared with its predicted value, , within the full
sample. This is then repeated n times so that all the data is tested
against predictions from the rest.

There are many aspects of validation, but here we concentrate only
on those of direct relevance to modelling with quantiles.

10.2  Visual validation 

Q-Q plots

The first question to address after fitting a model is, “Does the fitted
model look right?” The natural plot to start with is the fit-observation
diagram or Q-Q plot of the validation data against the corresponding
fitted values. The fitted values may be based on the rankits, if these
are available, or the median rankits. One possibility that the approach
of median rankits provides is that the ordered observation can be
compared, not only with its median value Mr, but also with some other
quantiles. For example, the plot can give x(r) with the central 95% or
99% interval given by the fitted quantiles (p). These come directly
from, for example, 

(BETAINV(0.025, r, n + 1 – r)), (BETAINV(0.975, r, n + 1 – r)).

Figure 10.1 illustrates this approach.
Another means of clarifying the Q-Q plot is to modify it by the

addition of lines at p, 1 – p, (p) and (1 – p) for p = 1/4, 1/8 and
1/16. These form a set of boxes to which the fitted median line is
added. This is Parzen’s quantile box plot. With the right model the
proportions of the data lying in the three boxes are approximately
0.5, 0.75 and 0.875. 

Density probability plots

For the fitted model the shape of the distribution is shown by 
plotted against , using the median rankit probabilities, . If,
however, on the same plot we show (p(r)) against x(r) where x(r) =

(p(r)), then we have both observed shape and fitted shape shown on
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the same plot. For situations where, for example, there is skewness
in the data and a symmetric distribution is fitted, then this plot clearly
shows the nature of the deviation from the model. Figure 10.2 illus-
trates the surprises one sometimes gets in plotting. The three values
correspond to x and Q(p) with very low likelihood. A closer inspection
of the data revealed that one observation was an outlier, and the other

Figure 10.1. A fit-observation plot with 98% limits

Figure 10.2. A density probability plot
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two points were due to insufficient iterations of the algorithm for p(r).
A paper by Jones and Daly (1995) gives a discussion of these plots,
which they call density probability plots.

Residual plots

The Q-Q plot suffers from two disadvantages. First, the line of interest
is sloping. Second, the natural variability of the points about the line
is not constant, being greater at the ends of the data. The latter
problem is solved by the introduction of the additional lines in the Q-
Q plot. An alternative is to use the distributional residual of an obser-
vation, x(r), relative to its fitted value, fitx, which is simply

residual = x – fitx = x(r) – .

For years statisticians have been standardizing the residual, using
the normal distribution as a means of looking at the fit of linear models.
For this the values of ±2 correspond approximately to the 2.5 and 97.5
percentiles. A corresponding process for a general distribution is to
use the standard distributional residual, ser, given by

ser = er/[0.5{ (BETAINV(0.975, r, n + 1 – r)) 

– (BETAINV(0.025, r, n + 1 – r))}].

For this we would expect around 5% of observed standard residuals
with values numerically greater than one. For strongly skewed models
or those constructed with differing tails, it may be useful to separate
the residual analysis of the two tails. Suppose that (0.975) is the
fitted upper 2.5% difference. We can then standardize the residuals
to the right/left of the sample median using, for example, seu, r =
er/[ (0.975) – ] for r greater than the mid-value. Plots of these
standard residuals can then be made against p and x to give a general
feel for the quality of fit. Note that although standardization deals
with the changes in variability of the order statistics the high corre-
lation is still a problem. The distinction between similarly shaped
distributions may be hidden by this feature, unless adequate data are
available. This caution points again to the need to treat our models
not as the truth, but as representations that pick up the main features
of the population. 
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Further plots

A wide range of different population and sample plots were intro-
duced in previous chapters. A comparison of any of the sample plots
with the corresponding population plots for the fitted model will
provide useful comparisons for identification. Table 3.3 gives the
main population formulae and Tables 8.2 and 8.3 give the most useful
sample equivalents. 

Unit exponential spacing control chart

As we have already noted, a major problem in interpreting the fit-
observation plots is that they are based on the ordered observations,
any one of which is inherently highly correlated to those around it.
This correlation produces the snake-like shapes shown by these plots.
It is sometimes not clear whether what one is seeing is simply the
effect of the correlation or is the result of some systematic deviation
of the “true” model from the fitted one. It is therefore useful to create
a form of plot where the plotted values are independent of each other.
This can be achieved by bringing together two previous results. In
Section 3.3 it was shown that the transformation 

y = –ln(1 – F(x)) 

transforms any variable x to a unit exponential variable y. This trans-
formation gives a unique link. [It can be shown that for the exponential
distribution multiples of the differences between successive exponen-
tial order statistics give values which are independent variables from
a unit exponential distribution.] This again is a unique feature of the
exponential distribution. These results provide for the construction of
a plot of what may be termed unit exponential spacings. These are
values independent of the unit exponential whose creation depends on
having the correct fitted model. The various unique links in the argu-
ment imply that if the final data are not compatible with the unit
exponential distribution, then the choice of Q(p) must be wrong. The
formal calculations are

(a) Calculate from the ordered data

y(r) = – ln(1 – F(x(r))),

© 2000 by Chapman & Hall/CRC



228 VALIDATION

using the fitted F(x), if this is explicit, or using the numer-
ical method of Section 3.5 to obtain p(r)[= F(x(r)) ] from x(r). 

(b) Evaluate the corresponding independent unit exponen-
tials from

v(r) = (n + 1 – r)(y(r) – y(r – 1)), with y(0) = 0.

(c) Plot these against r on the unit exponential spacing plot.
(d) Plot on the same graph one or two “control limits,” W and

A, as a help in interpretation. These are lines plotted at
the 95% and 99% quantiles. They are obtained simply from

W = –ln (1 – 0.95),

A = –ln (1 – 0.99).

Figure 10.3 illustrates a plot based on 100 observations using a
generalized lambda distribution, fitted by maximum likelihood, and
showing just the 99% control limit. With 100 observations we might
expect one or possibly two over this limit; however, the data appear
well behaved except for one value. As this is not the end value it is
not the effect of an outlier, but due to the relative positions of two
near-end values. As often happens, the plot gives a generally positive
validation but raises questions in the process. The fit-observation plot
is used in parallel to supplement the information available.

10.3  Application validation

The process of identification is for the most part independent of the
application for which the fitted model is required. It is therefore impor-
tant at this stage to seek to validate the use of the fitted model against
the requirements of the application.

As an initial consideration it may be possible to define specific
criteria for the application, for example, cost functions that measure
the financial penalties arising from the difference between the true and
fitted models. These may sometimes be used as criteria of estimation,
but this is not often possible or convenient. Thus these applications
criteria can be used at this stage to get some feel for the value of the
fitted model. Most estimation methods involve just one criterion,
whereas in practice we may be interested in several. The values of
these criteria may be derived using the validation data and fitted model.
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In Section 4.4 we pointed out the ease with which quantile form
models can be simulated. We are now in a position to use the fitted
model to simulate data. This data can then be used in the way the
application would use future data and the properties of the method-
ology explored.

Example 10.1: A routine statistical procedure was developed to select
the significantly large individual values, from samples, e.g., those
exceeding (0.99). This required the model to be re-estimated for each
new, large data set. The generalized lambda distribution was used as

Figure 10.3. Unit exponential spacing control chart with associated fit-observation plot

Q̂
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a flexible model, well validated from past data. However, there will
be errors due to variability in the estimates. Individuals will be
selected when they are in fact below the population Q(0.99) and con-
versely individuals will be missed who are above this value. The
properties of such a technique can straightforwardly be explored using
simulated data sets derived from some initial fitted model (and pos-
sibly models with designed deviations from the initial model). The
proportion selected for the true model is 0.01. Samples can now be
simulated from the initial model and the proportions actually selected,
examined, and compared.

A further validation approach may emerge when particular fea-
tures of the application area are studied. In some applications the
tailweight of the distribution is important. In others, there are impor-
tant functions related to Q(p), for example, the hazard function of
reliability studies, which we will discuss in Section 11.2. In these
situations comparisons can be made between the validation data and
fitted model based on such specific functions and features.

10.4  Numerical supplements to visual validation

Sometimes the look of two plots is very similar and it is useful to have
some numerical measures to supplement the analysis. As the plotting
of the fit-observation diagram is central to the validation of models,
this is the natural place to look for convenient measures. Suitable
measures of the quality of the fit are

The correlation between fitted values and actual values.
The Mean Square Distributional Residual,  Σ(x(r) – E(Xr))2/n.
The Mean Absolute Distributional Residual, Σx(r) – Mr/n.

There are no rules about the interpretation of the magnitudes of the
second two; however, experience in any field of application will soon
indicate the order of the values that are achievable and reasonable.
They clearly provide a way of comparing alternative models. 

10.5  Testing the model

We now turn to the formal testing of proposed models against valida-
tion data. There are a variety of methods available.
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Goodness-of-fit tests

Suppose for simplicity we divide the p-axis into m equal sections using
pj = j/m, j = 1, 2, …, m – 1; p0 = 0, pm = 1. If wj = (pj) and fj is the
number of observations in the new data set lying in the interval (wj – 1,
wj), then the expected value of fj is n/m for all j. This fact is used to
construct the test statistic C where

C = Σ[{(fj – n/m)2}/(n/m)].

As a general rule, statistics of the form 

Σ[{(Observed – Expected)2}/(Expected)]

have approximately a χ2 distribution and in this case it has m – 1
degrees of freedom. If the new data is very different from the fitted
model, the value of C will be larger than indicated by a χ2 distribution.
The χ2 distribution is well tabulated and available in software as
CHIINV(probability, degrees of freedom) or some such function, Thus
we generate from the χ2 quantile function, the value of, say CHIINV(1
– 0.95, m – 1). If C exceeds this, then we must doubt the validity of
our old model. A look at the individual terms, fj – n/m, may indicate
where the model is fitting badly. It should be noted that the approxi-
mation is poor if the expected frequency, n/m, is less than about five.
This requires that m ≤ n/5. 

Testing using the uniform distribution

If we have a new set of data x(r) and the fitted (p), we can derive,
as in Section 4.5, the corresponding set of p(r). If the model is valid,
these will be a set of ordered variables from a uniform distribution.
We can therefore test the validity of the model by testing the unifor-
mity of the distribution of the p. There are a variety of such tests.
One simple one is based on the concept of entropy. This is defined
for a distribution f(x) by

 

Q̂

Q̂

H X( ) f x( ) f x( )ln xd
DR∫=

q p( )ln p.d
0

1

∫=
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For the uniform distribution, H(X) has its minimum value of zero (since
q(p) = 1) and it reaches its maximum value of ln[2eπσ2]/2 for the normal
distribution. A very simple sample estimate of H(X), using the sample
estimate of q(p) from Section 8.4, gives

, where p(0) = 0 and p(n + 1) = 1.

For large n and under the hypothesis of uniformity, it can be shown
that the statistic

t = (  – nE)/√n,

where E is Euler’s constant, (E = 0.5772) has approximately a normal
distribution N(0, π2/6 – 1). The value of t based on the data can thus
be used to test the model. 

Tests based on confidence intervals

The previous tests hypothesized knowledge of the complete model form
and all parameters. Sometimes we may assume the model form but
wish to test just one parameter. This would occur, for example, if we
felt that it was just the position or scale that had changed from the
original situation, but the form of the distribution and the other param-
eters had remained unchanged. In Section 9.7 the idea of an interval
estimate of a parameter θ was introduced. This gave an interval (l, u),
based on the data, that has, say, a 95% probability of enclosing the
true value, θ0. If the model specifies θ0 as the value to be tested and
the interval does not contain θ0, then the hypothesis that θ = θ0 is
rejected at the 5% level of significance. This provides a simple testing
procedure for any parameter for which an exact or approximate con-
fidence interval can be constructed.

Tests based on the criteria of fit

Suppose that we can accept the form of the distribution but wish to
test either the full set of k-specified parameters, , or just some subset
of them, say just λ = λ0, then the log-likelihood ratio r( ) introduced
in Section 9.7 provides the basis for testing. If for the validation data
the maximum log likelihood is l( ), then the quantity D, where

Ĥ Σ0
n– p r 1+( ) p r( )–( ) n 1+( )[ ]ln=

Ĥ

θ0

θ0

θ̂
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D = –2r( ) = 2[l( ) – l( )],

has approximately a χ2 distribution with k degrees of freedom. If the
validation data is consistent with the specified parameters, then D
will be small. If it is significantly large, then the specified parameters
are rejected en bloc. If some of the parameters are specified,  = ,
but there is doubt about one, say φ, for which the model specified  φ0,
then a similar test statistic is

,

where  is the maximum log-likelihood over φ fixing the other
parameters at . This has approximately a χ2 distribution with one
degree of freedom. 

It may be that we wish to test one (or a number of) parameter(s),
without assuming anything about the others. In this case we can still
use the χ2 approximation in the form

where  is the log-likelihood at the overall maximum and
 is the maximum of the log-likelihood with φ0 fixed. The

function of φ0, , is called a profile likelihood. Note that
all these quantities are obtained using the basic layout of Table 9.6
simply by setting appropriate initial values and choosing which param-
eters to use in the maximization. D has a χ2 distribution with degrees
of freedom equal to the number of φ0 parameters.

Note that the above χ2 criteria can be translated into values for
the likelihood ratio. For example, with the complete model the test
will be based on comparing the calculated R(θ) with

. 

Table 10.1 gives the values of Rmin(θ0) corresponding to some sig-
nificance levels of χ2. If the observed ratio is less than the given
values, doubt is expressed about the specified model or parameters
at the given level of significance. Conversely, we accept the model
as valid if R ≥ Rmin. All these various tests are approximations
needing large samples.

θ0 θ̂ θ0

θ θ0

D 2r φ0 θ0,( )– 2 l φ̂ θ0,( ) l φ0 θ0,( )–[ ]= =

l φ̂ θ0,( )
θ0

D 2r φ0 θ̂,( )– 2 l φ̂ θ̂,( ) l φ0 θ̂ φ0( ),( )–[ ]= =

l φ̂ θ̂,( )
l φ0 θ̂ φ0( ),( )

l φ0 θ̂ φ0( ),( )

Rmin θ0( ) L θ0( ) L θ̂( )⁄ χ2– 2⁄( )exp= =
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The ratio R can be regarded as the criterion for validating the
specified model using maximum likelihood as the method. We could
equally use the criterion originally regarded as appropriate for fit-
ting the model. For the methods of DLS and DLA we could define
ratios as

 Degrees of freedom  Level of significance
 10%  5%  1%

 1 0.03625  0.01945  0.00445
 2 0.0100  0.00500  0.00100
 3 0.00344  0.00163  0.00029
 4 0.00131  0.00059  0.00010
 5 0.00053  0.00023  0.00004

Table 10.1.  Significant values of the likelihood ratio, Rmin

1. Define distribution Q(p; )
2. Derive quantile density q(p; )
3. Set parameters from specified 

model
4. Set median-pr, µ(r), or initial p(r)  = BETAINV(0.5, r, n + 1 – r), 

µ(r) from formulae or tables, 
p(r),0 = r/(n + 1)

5. Derive p(r) 

(where y(r) = Q(p(r); ))
iterate for each r
p(r)new = p(r)+(y(r) – Q(p(r); ))/q(p(r); ), 
see Section 4.5(b)

6. Calculate criterion C(data y(r)p(r); ) = C(θ0)
7. Search for  to optimize 6 

(involving iterating steps 3 to 
6, possibly keeping some 
parameters at specified values)

 = , optimum C = C( )

8. Fitted distribution (p; )   
9. Fitted quantile density, 

if needed
(p; )

10. Calculate criterion ratio R = CDL ( )/ CDL ( ) or L( )/L( )
11. Validate valid if R greater than Rmin (Table 

10.1 for maximum likelihood or 
empirically chosen values for other 
criteria)

Table 10.2.  Validating algorithm for least/maximum methods (y = validation data)

θ
θ

θ0

pr
*

θ0 θ0 θ0

θ0

θ̂ θ θ̂ θ̂

Q̂ θ̂
q̂ θ̂

θ̂ θ0 θ0 θ̂
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 or 

where as before the estimates come from the validation data and doubt
is cast on the specified parameters if the ratio is too small. In this
case, however, we cannot easily associate levels of significance with
the values. The procedure for looking at only one or two of the param-
eters parallels that using the likelihood ratio, with parameters other
than those of interest kept at their specified values. It will be seen
that the methodology is an extension of the original method of fitting
the distribution by the least or maximum methods as shown in Table
9.5. We modify this table in Table 10.2 to show the overall approach. 

10.6  Problems

1. It is assumed that Q(p) = λ + ηS(p), where S(p) and η are
known. Show that an approximate 95% test of λ = λ0 can
be obtained by rejecting this hypothesis if the sample
median lies outside the interval

[M – 1.96 ∗ 2η/√n, M + 1.96 ∗ 2η/√n].

2. The Rayleigh distribution is a Weibull with shape param-
eter 1/2,

Q(p) = η√[–ln(1 – p)].

Show that, corresponding to the previous example, the
median-based test for the hypothesis η = η0 is based on
the interval

[η0√ln2 – 1.96η0/{2√(n ln2)}, η0√ln2 + 1.96 η0/{2√(n ln2)}].

3. Suggest how the generalized Pareto can provide a test
for the exponential distribution against clearly defined
alternatives.

4. A number of models were fitted to data in Problem 9.1.
Reconsider this data as a validation exercise against the
fitted models. Simulate data from one of the fitted models
and validate it against one of the other fitted models. 

R CDLS θ̂( ) CDLS θ0( )⁄= R CDLA θ̂( ) CDLA θ0( )⁄=
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5. Problem 9.5 fitted data using percentile-based methods
with the shape parameter depending on the right half of
the sample. Validate the fitted model against the left half
of the sample.

6. Problem 9.1 gave a generalized lambda fitted to some data.
Section 4.5(c) gave an iterative method of finding p(r),
where x(r) = (p(r)). For a valid model the p(r) are from a
uniform distribution. Derive the p(r) for the generalized
lambda fit and plot against the median rankits for the
uniform distribution (which are the median-p,  = BETA-
INV(0.5, r, n + 1 – r)). Comment on the plot obtained. This
form of visual validation is a variant of the “p-p plot,”
which plots p(r) against the mean rankits, r/(n + 1).

Q̂

pr
*
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CHAPTER 11

Applications

11.1  Introduction

The test of all methods lies in their practical use. Indeed, the opera-
tions of statistical modelling cannot be divorced from the specific
requirements of the application. To deal seriously with applications
would require a separate book. The purpose of this chapter is to give
some snippets that illustrate how quantile-based methods can be of
relevance to areas of application.

11.2  Reliability

Definitions

Reliability theory is the study of the probabilities of items or systems
of items working. Indeed, the formal definition is

Reliability = Prob(item or system works).

The item may be a component, a machine, a process, or even a person.
The area of specific relevance to the topics of this book concerns
situations where reliability is a function of time. The item works when
first installed or switched on but at some time, t, it fails and ceases
to work. There are three interrelated descriptions possible of such
situations. These are based on three statistical functions:

(a) The time to failure distribution. The quantity t can be
regarded as the observed value of the random variable,
T, having some distribution f(t). Many different distribu-
tions have found practical use as failure time distribu-
tions. Of particular importance are the exponential and
the Weibull.
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(b) The Survivor Function. The reliability at time t depends
on whether the item survives at least to time t. The prob-
ability of this is

Prob(T ≥ t) = S(t) = 1 – F(t) = 1 – p = q, 

which is called the survivor function. The quantile func-
tion for the time at which the reliability becomes q is thus
Q(1 – q).

(c) The Hazard Function. The hazard function is defined
as the probability of immediate failure at time t. Thus the
item fails in a small time, dt at t, conditionally on working
up to time t. The rule of conditional probability thus gives

p-Hazards

To convert h(t) from a function of t to one of p it can be noted that S(t)
is just 1 – p and f(x) becomes fp(p). Thus we have a p-hazard function
defined by

In emphasizing the role of quantiles in reliability the p-hazard provides
the natural tool. The following provides some examples:

(a) The Exponential Distribution. For the exponential distri-
bution with parameter η, the p-hazard function is

hp(p) = 1/η.

Thus the instantaneous failure probabilities are constant.
This is a consequence of the relation of the exponential to
the Poisson process. The Poisson process is, roughly, any
series of events where there is a constant probability of
events occurring and where the occurrence of one event
has no effect on the possibility of other events occurring

h t( )dt Prob(failure in dt survives to t)=

f t( )dt S t( )⁄ .=

hp p( ) fp p( ) 1 p–( )⁄=

1 1 p–( )q p( )[ ]⁄ .=
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after it. In such a process the exponential is the distribu-
tion of times between events. A feature of the indepen-
dence of events in such a process is that there is no
‘memory.’ The fact that a component has already lasted a
very long time has no effect on how long it is likely to last
in the future. Although this may not seem very appropri-
ate in general, it will be appropriate where failures are
due to some form of ‘accident’ that can be reasonably
modelled by a Poisson process. It will be seen in what
follows that the constant hazard acts as a special case for
several other p-hazard functions.

(b) The Weibull Distribution: 

hp(p) = (1/βη)[–ln(1 – p)](1 – β).

It is evident from the power of the term [....], which is an
increasing function from zero at p = 0, that the curve is
increasing for β < 1, constant for β = 1 and decreasing for
β > 1. An increasing function is called positive ageing, the
normal form, and a decreasing function is negative ageing.
Notice that hp(p) when converted back to h(x) gives the
function of x as x(1 – β)/β. For β = 1/2 this is just x, so the
hazard function h(x) is linear in x. This special case dis-
tribution is called the Rayleigh distribution. For β = 1/3
the hazard gives a multiple of x2. Thus powers in x are
hazards for the Weibull (see Figure 11.1(a)). 

(c) The generalized Pareto distribution: 

hp(p) = (1 – p)β.

Here we have positive, zero and negative ageing according
to the positive, zero or negative sign of β.

(d) The symmetric logistic distribution:

hp(p) = p/η. 

Here we have the simplest increasing ageing, linear in p.

All the above p-hazards are constant, decreasing or increasing
functions. Items get better with use or they burn out with use. Some-
times, as with human beings, both processes occur together. There is
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a ‘burn-in’ period of high initial failure rates, followed by a fairly steady
working life, followed by a final ‘burn-out’ with age. The shape of the
hazard function in these cases leads to their natural description as
‘bath-tub’ hazards. If we use quantile modelling to look for such curves,
a natural starting point would be p-hazards of the form 

hp(p) = 1/[ηpα(1 – p)β], α, β > 0,

beta = 2.2

Figure 11.1. The p-hazard functions for (a) Weibull and (b) Govindarajulu distributions 

© 2000 by Chapman & Hall/CRC



HYDROLOGY 241

which increases as p approaches zero or one. For this p-hazard, the
quantile density takes the form ηpα(1 – p)β – 1. A look back at Example
6.6 shows that the Govindarajulu distribution is a case of this general
form. Figure 11.1(b) shows the form of the p-hazard for a Govindara-
julu distribution.

As a final note, it should be observed that the p-hazard provides
a means of identifying distributions. The sample-based (pr) can be
obtained from the data, pr from the median probability,  and hence

( ) are obtained from a table. It is then plotted against  and the
plot compared with standard p-hazards, such as those discussed above. 

11.3  Hydrology

Hydrology is concerned with matters relating to rainfall, river flow,
etc. The provision of fresh water requires knowledge of the chances of
drought, the design of reservoirs, and the chances of high rainfalls for
the design of flood drains and runoffs. The modelling of tails of distri-
butions and the knowledge of extreme quantiles are thus central to
the statistics of hydrology. 

Suppose Q(p) is the quantile function for a hydrological variable,
such as annual minimum rainfall or annual maximum flood height,
then for some given high p0, say 0.99, there is a 100(1 – p0)% chance
of an exceedence beyond Q(p0). The probability of the first exceedence
to occur in year k is

Prob(K = k) = (1 – p0). 

This is the geometric distribution mentioned previously. The mean value
for k is 1/(1 – p0). This mean is called the return period, T, for a (1 – p0)%
exceedence event. Looking at the situation for a given T, for example, if
T is 100 years, then Q(0.99) will be the value of the 100-year flood. 

The importance of the extreme tails in hydrology and the occur-
rence of very long-tailed distributions in hydrological data have led to
an emphasis on distributions that model such data and provide simple
analysis of the quantiles. Thus the literature of hydrology frequently
presents distributions in terms of the quantile function, although
referred to just as the inverse of the CDF. There have in fact been
distributions defined and explored first by the quantile function rather
than the CDF or PDF; for example, the Wakeby distribution (see
Houghton (1978)) in canonical form is defined by

q̃
pr

*

h̃ pr
* pr

*

p0
k 1–
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Q(p) = λ + (η/α)[1 – (1 – p)α] – (ν/β)[1 – (1 – p)–β].

It will be seen that the form of the distribution is the sum of two
generalized Pareto distributions with parameters of different signs in
the natural form, although β may be made negative. Being a flexible
five-parameter model this has been shown to give an excellent model
of flood data. The distributional range is (λ , ∞) if all parameters are
positive or zero. If β alone is negative, then the range is [λ, λ + (η/α)
– (ν/β)].

When discussing the method of moments for estimation it was
observed that where there are several parameters needing higher
moments to be calculated, the method leads to highly variable estima-
tors. This applies to the highly parameterized models of hydrology.
The situation is made worse by the fact that the long-tailed situations
naturally have data sets containing extreme observations, which dom-
inate the estimates of skewness and kurtosis. Thus it is natural to
look for methods of estimation that are less sensitive and possibly are
linear in the data. It is not surprising that methods like the method
of probability-weighted moments were largely developed in the context
of hydrology. The context of estimation almost always raises issues
about the methods used. Methods suitable in one application may not
be suitable in another. Indeed the application often provides a criterion
of fit specific for the situation. This may not lead to a formal method
of estimation but it can be used to provide guidance as to which of the
standard methods is appropriate.

Example 11.1: A distribution, Q(p), is fitted to give estimated quantiles
as (p). If this is used in the design of, say, a flood defence, then the
estimation errors ep = Q(p) – (p) will lead to errors in the design of
the defences. If for the p of a given return period e is positive, we will
have underdesigned the defences so that, for example, the 100-year
flood defence will be breached more frequently than the average 100
years. The costs of the errors can thus be defined as some simple
function of ep. Different methods of estimating the distributional param-
eters can then be compared by simulation, using Q(p) in the simulation
and then fitting to get (p). Fitted models are often used as the bases
for elaborate simulations of designed water storage facilities, etc. In
this case we require the distributional fit to be good over all values of
p. A criterion in this situation could be dp or its experimental
value from the simulations.

Example 11.2: In areas where long tails and extreme values are com-
mon, the study of right tails is often carried out by introducing a high

Q̂
Q̂

Q̂

E ep
2( )∫
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threshold and using only data above the threshold value for fitting. This
is a rather extreme approach. Our previous studies have suggested
fitting with discounting (Section 9.5) and using more flexible models that
have different forms in the two tails (Section 6.3).

11.4  Statistical process control

Introduction

In these days of emphasis on quality the use of statistical methods to
control production processes (termed statistical process control or
SPC) has grown rapidly. An almost traditional assumption of the SPC
techniques used in many organizations has been that of the normality
of the data. For example, the author visited a factory where there is
an audible warning whenever a process gets ‘out of control.’ This warn-
ing seemed a regular part of the firm’s background noise. The SPC
methods used to monitor the process and generate the warnings were
based on assuming normality. Much of the data generated by measure-
ments on the processes used showed considerable non-normality. It was
therefore not always a loss of control that was the problem; the wrong
assumption also added to the noise. A particular problem in many
organizations is that their processes actually produce data with long-
tailed distributions. Where this is correctly identified significant quality
improvement can be made by working on the process to reduce the
tailweight. The assumption of normality is widespread in the methods
used in quality studies. The traditional approach to non-normality has
been to transform the data to normality (see, for example, Chou, Polan-
sky and Mason (1998)). A contribution to SPC by the use of quantile
methods can be found by adopting SPC to cover a much broader class
of distributions than has been traditional. We illustrate briefly.

Capability

When things are manufactured or services delivered, the customer
often specifies precisely what is required: some level of accuracy of
manufacture or some maximum delivery time. Sometimes the pro-
viders set themselves such targets or specifications. The question
then arises as to whether or not the provider is capable of meeting
the specification. Can the machines manufacture to that level of
precision? Can some guarantee be provided to the customer? In a
random world the provider will never be able to guarantee that the
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process will never produce a result out of specification. To be realistic,
the language of probability is needed. Many people, however, are still
uncomfortable with such language, so historically an approach was
developed that depended on comparisons and the use of simple
numerical indices. It also started with an assumed normality. Cus-
tomer specifications may be one-sided, such as a requirement for a
job to be done in less than a specified time, or two-sided, such as the
limits on some dimension of a part. Suppose in the latter case the
limits are (L, U), then U – L is the specification range. This range
may or may not be compatible with the inherent variability of the
underlying process. Suppose this variability is investigated on the
basis of a sample of, say, 100 observations. This is often referred to
as a capability study. An outcome of the study will be a model,

(p), based on the data and having fitted parameters. The capabil-
ity range, CR, for this model is the range of values that will contain
almost all likely data. Traditionally this has been based on
[ (0.00135), (0.99865)]. The definition is thus

CR = (0.99865) – (0.00135) 

These values are used since for the normal distribution, which has
been commonly assumed as well as frequently identified, they corre-
spond to [µ – 3σ, µ + 3σ], so CR = 6σ. For situations where the
distribution is centred around the target value, a capability index,
Cp, is defined by

This index should be greater than one for a process to be regarded
as capable. Owing to the potential misleading effect of the estima-
tion involved in obtaining (p), most organizations look for a value
above 1.3.

One problem arises if the mean, or in our version, the median, is
not the centre of the specification. In this case each tail of the distri-
bution is examined separately and the worst case used as the index.
Thus we have the Cpk index. 
If

CU = (U – Q(0.5))/[ (0.99865) – (0.5)],

Q̂

Q̂ Q̂

Q̂ Q̂

Cp Specification Range/Capability Range,=

Cp U L–[ ] Q̂ 0.99865( ) Q̂ 0.00135( )–{ }⁄ .=

Q̂

Q̂ Q̂

© 2000 by Chapman & Hall/CRC



STATISTICAL PROCESS CONTROL 245

and

CL = (Q(0.5) – L)/[ (0.5) – (0.00135)],

Cpk = minimum{CL, CU}.

A measure of the “off-centredness” of the process, when m is the mid-
value of the specification, is

K = Q(0.5) – m /(U – m). 

A little algebra will show that Cpk = Cp(1 – K). Thus Cpk merges the
effect of both the lack of precision and the off-centredness.

There are many variants of capability indices (see, for example,
Kotz and Johnson (1993) and Gilchrist (1993)). The point of this brief
discussion is just to underline, once again, that the quantile function
provides the natural language to discuss the problems involved. It
provides for a natural generalisation from the usually assumed nor-
mal distribution.

Control charts

In an ideal factory there would be, at least in some situations, perfect
uniformity. All items produced on the machine would be identical; all
items ordered by 4:00 P.M. would be delivered at 10:00 A.M. the next
day. In reality, that is not the case. The causes of this non-uniformity
can be roughly divided into special causes, which are those due to
some specific and assignable factor in the situation, an operator error
or a lorry accident, and common causes, which are the thousand-
and-one chance small variations that lead to a statistical distribution
for any variable in the processes. A major question is obviously how
one distinguishes between the two. 

This was first answered by Shewhart in 1929 through his use of
control charts. Observations are made on some variable in a process,
possibly a derived variable such as an average, which is assumed (on
the basis of a capability study) to have a distribution Q(p). The
observed values are plotted on the chart. Also on the chart two types
of lines are drawn. For a two-tailed distribution, action lines are drawn
at Q(pA) and Q(1 – pA) and warning lines at Q(pW) and Q(1 – pw). If
the underlying distribution is normal, the probabilities pA and pW are

Q̂ Q̂
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usually set at 0.00135 and 0.0228, which put the action and warning
lines at µ ± 3σ and  µ ± 2σ, respectively. If an observation falls outside
the action lines, then it represents an event of sufficiently low proba-
bility that it is taken to be due to a special cause. A search is made
to identify that cause and then to take action to put it right and to
prevent it happening again. A sequence of observations outside a
warning limit will also suggest a special cause. In many charts these
days the warning lines are not used. The variability that will be
observed in the data between the action lines is that due to the common
causes. The philosophy of modern quality improvement approaches is
that the processes generating the data are constantly worked upon to
steadily remove special causes and reduce the variability generated
by common causes. Thus over time the charts should be revised to
have narrower limits. Notice that even if all possible special causes
were removed there would still be calls to action with probability 2pA,
which is equivalent to one false alarm in every 1/2pA values.

The conventional assumption of normality is not a necessity and
any appropriate Q(p) could be used in the chart, with the parameters
fitted during the capability study.

Example 11.3: To illustrate the ease of use of the quantile model,
consider a situation where small is best. For example, we have to get to
the repair job as quickly as possible, or the amount of impurity has to
be as small as possible. Let x be the measured variable and suppose it
has an exponential distribution with specified scale parameter η. We
take not just one observation but a sample of n observations and plot
them on a control chart. The action line is at some value x = a and action
is taken if any observation lies above this line. If all the points are below
the action line, then the largest must be. Thus we can simply concentrate
on the largest value which, as was shown in Section 4.2, has distribution
Q(p1/n). If pa is the probability of the chart correctly indicating that the
process is in control, then we have  = a. For the exponential this
leads to 

.

Thus a can be found from the given (target) η and pa set at some suitable
high value such as 0.999 or 0.9973 to correspond to the standard normal
control chart probability. Keeping to the former, the probability of action
being taken when all is in control is 0.001. The average run length,
ARL, between such false alarms is 1/(1 – pa) = 1000. Suppose the scale
parameter suddenly increases to a value of kη, k > 1. The probability of
exceeding the control limit is now pk, where

Q pa
1 n⁄( )

a Q pa
1 n⁄ n( ) η 1 pa

1 n⁄–( )ln–= =

© 2000 by Chapman & Hall/CRC



PROBLEMS 247

, but also ,

hence

,

and 

 .

The ARL can thus be obtained from ARL = 1/(1 – pk) as a function of
k. The formula can also be used for the choice of n given a required
ARL for some specified k.

11.5  Problems

1. The life of an item of equipment is distributed with
quantile function Q(p). Suppose it is known that the
equipment was operational at time t0, where t0 = Q(p0).
Denote the remaining, residual life by s with quantile
function Qs(p). Show by using the methods of Section 6.8
that

Qs(p) = Q[p(1 – p0) + p0] – t0,

and derive the distributional range and median, by way
of a check. 

2. Calculate the shape of the p-hazard for the following dis-
tributions:
(a) Q(p) = p/(1 – p),
(b) Q(p) = p2(3 – 2p),
(c) Q(p) = –(1 – p)β(1 + βp).

3. An electrical item has a life that is usually modelled by a
Weibull distribution with shape parameter β. In a partic-
ular use there is a probability P that a fitting for the item
fails when the circuit is switched on. Show that the model
for the item and fitting has a distribution that corresponds

a kη 1 pk
1 n⁄–( )ln–= a η 1 pa

1 n⁄–( )ln–=

1 pk
1 n⁄–( )ln 1 pa

1 n⁄–( )1 k⁄[ ]ln=

pk 1 1 pa
1 n⁄–( )1 k⁄

–[ ]
n

=
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to a power Q-transformation of an exponential distribution
with non-zero threshold.

4. A sample of a new product is tested to distruction and
18 observed lifetimes are available. The model assumed
initially is the exponential distribution. Consider how to
estimate the parameter η: (i) using distributional least
absolutes; (ii) using maximum likelihood, for the situa-
tions where
(a) The 18 observations were the complete sample.
(b) The 18 observations were from a batch of 100, but

were known to be all those that had failed in under
20 months. 

(c) The sample consisted of 25 items but it was decided
at the beginning of the trial to stop the trial after the
18th item had failed. 

5. Show that for the Weibull distribution a plot of the ln(p-
hazard) against ln[Q(p)] is linear. Examine how this might
be used for identification of Weibull and exponential mod-
els. Apply your suggested method to the flood data of
Chapter 1.

6. A component has a time to failure, t, with an exponential
distribution, with QF –ηln(1 – p). The component is still
operating at time t0, with corresponding probability p0.
Show that the conditional remaining life of the component,
y = t – t0, is also –ηln(1 – p); i.e., there is no memory of
the fact that the component has already been operating
for time t. This no memory property is a unique feature of
the exponential distribution.

7. In a “parallel system” of components the system works as
long as one component works. Such a system has m com-
ponents, each of which has a Weibull failure time distri-
bution, η[–ln(1 – p)]β. Show that the system’s time to
failure is an exponentiated Weibull with quantile function
η[–ln (1 – p1/m)]β.

8. In a “weakest link system” of components, the system fails
on the earliest failure. Such a system has m components,
each of which has an exponential failure time distribution.
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Show that the system’s time to failure is also an exponen-
tial distribution, but with scale parameter η/m.

9. A distribution of some hydrological use is the three-param-
eter log-normal with quantile function

Q(p) = λ + exp[µ + σN(p)].

Show that this may be fitted explicitly using the method
of percentiles, with the median, largest and smallest
observations; for example,  = [x(1)x(n) – m2]/[x(1) + x(n) – 2m].

10. A capability study of a process assumed normality and
found the mean to be on specification at 1000 and the
standard deviation to be 1.4. The calculated capability was
1.17, which was judged acceptable. A further study showed
the process to have a logistic distribution. Show that the
capability should have been calculated at 0.97. 

11. A control chart based on three observations is constructed
for the scale parameter, η, of a logistic distribution. Upper
and lower limits, λ – u and λ + u, are constructed to give
a small probability, p0, of observations lying outside, i.e.,
u = η ln(p0/(1 – p0)). Action is taken if the three observa-
tions simultaneously fall in each of the three regions of
the chart. Show that the probability of this occurring is
approximately . The scale parameter increases to kη.
Find an expression for the average run length as a function
of k.

12. A control chart for the scale parameter, η, of a Weibull
distribution is to be devised for the situation where small
is beautiful. Action is taken if the largest observation of a
sample of n exceeds the single upper control limit. If the
average run length is set at 1000 for the normal situation,
derive an expression for the average run length for the
situation where the scale parameter increases to kη. 

λ̂

6p0
2
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CHAPTER 12

Regression Quantile Models

12.1  Approaches to regression modelling

The first columns of Table 12.4 show some data based on map meas-
urements of distances between randomly chosen pairs of points in
Sheffield (see Gilchrist (1984)). The straight line distance is measured
with a ruler (the crow flies distance, x) and the shortest distance by
road is also measured on the map (the car distance, y). The objective
is to find a simple relationship between the two so that y can be
predicted from x. The units were measured in cm on a 1:25000 map,
i.e., the unit was a quarter of 1 km. Several features follow from a
general conceptual modelling argument:

(a) When x = 0 then y = 0.
(b) The model must give y ≥ x.
(c) In general we will have y increasing with x.
(d) A linear relation is intuitively a sensible first model, as

we would expect to double y by doubling x.

The sample of 20 measured pairs (xi, yi) is plotted in Figure 12.1.
On the basis of this a straight line looks to be a natural, simple starting
model. Clearly there is a random error, e, around the deterministic
line. The complete model as a first identification on both conceptual
and empirical grounds is

y = θx + e; x ≥ 0, and the slope θ ≥ 1.

The above expression is a simple example of a regression model in
which y is ‘regressed’ on x. The variable y is termed the dependent
variable and x the regressor variable. 

In more complex models there may be several regressor variables
and they may appear in the equation in more complex ways, e.g., as
x2 or sin(2πx). Having decided on this initial model the next step is to
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seek to fit it to the data. When the question of how to fit a model to
a set of data was first raised by astronomers in the 18th century (who
were looking at much more complex models), the natural approach
adopted was to choose the values of the parameters to make the
magnitudes of the errors overall as small as possible. Thus in this
model they would have chosen the estimate  to make the sum of the
observed absolute errors a minimum. The fitted value of yi is  = ,
so their criteria would thus be

C1: Σyi – xi minimum.

This is the method of least absolutes, which was first introduced
in the 1750s by Boscovitch (1757) (see Harter (1985)). Unfortunately
it was found that this minimization was extremely difficult to carry
out with the mathematical and computational tools of the day. At
about this time calculus was developed and it was realized that if C1,
in our example was replaced by

C2: Σ(yi – xi)2 minimum,

then the minimization problems often had simple explicit solutions
using calculus. Thus the method of least squares was developed and
the solution for our problem is found by differentiating C2 with respect
to  and equating to zero to give

 = Σ(xi yi)/Σ .

Table 12.1 shows the layout illustrated from the first half of the data.
This gives an estimated slope of  = 1.29.

Figure 12.1. Crow–car data — scatter diagram
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n = 20; slope = 1.29; sigma = 2.38; average e = 0.06; Σe2 = 107.30
Car 

distance 
Crow 

distance
r y x xy fit residual e ordered e p* normal fit
1 10.7 9.5  101.65 12.25 –1.55 –2.99 0.034 –4.27
2 6.5 5.0 32.5 6.45 0.05 –2.96 0.083 –3.24
3 29.4 23.0  676.20 29.65 –0.25 –2.53 0.131 –2.60
4 17.2 15.2  261.44 19.59 –2.39 –2.39 0.181 –2.11
5 18.4 11.4  209.76 14.70 3.70 –2.27 0.230 –1.70
6 19.7 11.8  232.46 15.21 4.49 –1.55 0.279 –1.33
7 16.6 12.1  200.86 15.60 1.00 –1.40 0.328 –1.00
8 29.0 22.0  638.00 28.36 0.64 –1.20 0.377 –0.68
9 40.5 28.2 1142.10 36.35 4.15 –0.93 0.426 –0.38
10 14.2 12.1  171.82 25.60 –1.40 –0.25 0.475 –0.08

etc.
 

Table 12.1.  Least squares fitting — Crow–Car data
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From the fitted line the residuals, e, can be calculated. These are
the differences between the observed and the fitted values:

ei = yi – xi.

A measure of the variability in the data about the fitted line is
given by the sample variance of the residuals,

s2 = Σ(e)2/(n – 1).

If a normal distribution is assumed for e, then the residuals should be
normally distributed with a mean of zero and a standard deviation
estimated by s. From this a normal quantile plot of the residuals can
be obtained, as in Figure 12.2. Notice that (a) this is a fit-observation
plot for the stochastic element in the model and (b) the plot does not
suggest a very good fit.

If we wish to use the criterion C1 we need to apply numerical
methods to find the estimated slope. A starting estimated value of the
parameter, a sensible guess like  = 1.5, is used to produce fitted
values . Residuals can then be calculated and the criteria Σei
derived. The use of minimization procedures enables  to be chosen
to find the slope that minimizes the numerical value of the criteria.

We have shown in the example that for the same regression model
we can apply different criteria of goodness of fit. The method of least
squares often leads to explicit formulae for the estimates and gives
estimates that have good statistical properties. The method of least
absolutes rarely gives explicit algebraic answers. A consequence is that

Figure 12.2. Crow–car data —Inormal plot of residuals
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least squares has been so commonly used that it is often forgotten that
least squares is just one criterion out of a possible infinity. However,
one must consider not just the statistics, but also the application. In
our example the importance of an error of two miles is measured
naturally as 2 and not as 22. Thus the reasonable criterion for this
particular application is C1 and not C2. It should also be noted that
both C1 and C2 imply a symmetry in the importance of positive and
negative errors and consequently a usual assumption that they have
symmetric, although often unspecified, distributions.

It is seen from the above that the estimates have been obtained
with no specific reference to the distribution of e. The methods are
thus referred to as semiparametric methods; only some of the model
is parametrically defined. If a distribution is assumed, it is usually
the normal with zero mean and a standard deviation which would be
estimated by s above or a variant on it. Notice that the semiparametric
approach focuses on the deterministic part of the model. If information
is needed about the stochastic element the residuals are used to pro-
vide it in a totally separate exercise.

Another approach to regression is called quantile regression. As
an example for the crow–car data one might have yp = θpx + e as a
linear model for the p quantile of y given x. As a more practical
example, one might have the 99%, 95%, 75%, 50%, 25%, 5%, and 1%
regression curves for the weight of male babies regressed on age. This
set of regression curves would give a clear feel for potential weight
problems of individual children given their age. In the light of previous
discussions it is hardly surprising that θ0.5 can be found by the method
of least absolutes. The fitted line in this case is called the median
regression line. Median regression is illustrated in papers by Ying,
Jung, and Wei (1995) and Jung (1996). To obtain a fitted p-regression,
the criterion of C1 is replaced by

Σ[p(yi – θxi)+ + (1 – p)(θxi – yi)+]

where z+ = max(z, 0). Minimizing this criterion will give the fitted
regression p-quantile function (see, for example, Koenker and Bas-
sett (1978) and Bassett and Koenker (1982)). The papers by Koenker
(1987) and D’Orey (1993) give computing algorithms for these proce-
dures. Notice that these methods are also semiparametric and have
to be used independently for each required p.

Our interest is in the use of quantile functions to fully model
distributions, so it is natural to model the error term by ηS(p), where
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S(p) is a quantile function without any requirement of symmetry, and
where η is the scale parameter. Putting the regression and quantile
expressions together we get the p-quantile of y, given the specified x.
For example, for the general crow–car model this gives

Qy(px) = θx + ηS(p).

This we could call the regression quantile function of y on x,
sometimes called the conditional quantile function. The phraseology
“of y on x” emphasizes that we are using x to predict y. The natural
plot is of y against x. If it were vice versa, the model would need to be
different to allow for a different form of error influencing the x rather
than the y. Notice that our formulation shows both the deterministic
and stochastic components of the model together with their parame-
ters. This approach will enable us to estimate both regression and
distributional parameters in one operation. The model is thus a full
parametric regression model. 

For illustration consider the Crow–Car problem to have normally
distributed errors with zero mean and median and a standard devia-
tion σ. The regression quantile function is thus

Qy(px) = θx + σN(p).

To fit this model initial values of both  and  are needed, from
prior experience or from the plotted data. An initial fit is given by

y = .

Table 12.2 shows the layout of the calculation. Given the values of
the fitted y for this line, denoted by , one can derive a set of
residuals, , from

.

The residuals act as the sample of observations on the distribution
defined by the random component of the model, i.e., of σN(p). If we
order the residuals, we have to reorder all the data pairs (xi, yi) in
parallel, and this reordering has to be repeated each time the estimates
of the parameters are adjusted. To avoid this we make use of the idea
of the rank. The rank is the number giving the position of a value in
an ordered set of values, from 1 for the smallest to n for the largest.

θ̂ σ̂

θ̂x

ỹi θ̂xi=
ẽi

ei˜ yi θ̂xi– i, 1 to n= =
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It can be calculated directly in many statistical programmes and
spreadsheets. As a general notation we write that the rank, r, of a
value zi in a set of n values z1, z2, …, zn is given by a function

ri = RANK(zi;z1, z2, …, zn;n).

Thus ri = 2 if zi is the second smallest value. Some ranking functions
give the ranks in descending rather than ascending order and some
give either option. Using the rank function, the median-pi for each
residual can be obtained without having to keep reordering the data
set. This, as we saw in Section 4.2, is found using  = BETAINV(0.5,
ri, n + 1 – ri). We then have the fitted value for the median of each of
the yi, . This can be regarded as the predicted value given by this
methodology. It is given for our simple model by

.

It is seen that here the fitted model allows both for the linear
regression and for the ordered position of the residual in the distribu-
tional element of the model. Having obtained the  we can calculate
the distributional residuals as

n = 20,  = 1.28;  = 2.51; Σ|e*| = 8.33
Normal distribution

y x fit rank p* e*
10.7 9.5 12.18 –1.48 15 0.28 10.71 0.01
6.5 5.0 6.41 0.09 10 0.52 6.57 0.07
29.4 23.0 29.50 –0.10 11 0.48 29.34 0.06
17.2 15.2 19.49 –2.29 17 0.18 17.21 0.01
18.4 11.4 14.62 3.78 2 0.87 17.43 0.97
19.7 11.8 15.13 4.57 1 0.97 19.71 0.01
16.6 12.1 15.52 1.08 7 0.67 16.64 0.04
29.0 22.0 28.22 0.78 8 0.62 29.00 0.00
40.5 28.2 36.17 4.33 2 0.92 39.65 0.85
14.2 12.1 15.52 –1.32 14 0.33 14.40 0.20

etc.
 

Table 12.2.  Least absolutes fitting of a regression quantile function — 
crow–car data (normal model)

θ̂ σ̂

ẽ ŷ

pi
*

ŷM i,

yM i, θ̂xi σ̂N pi
*( )+=

ŷM

ˆ
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.

Notice that the distributional residuals are generally smaller
than the ordinary residuals since they now take into consideration
the shape of the distribution. We can now introduce a third criterion
of fit:

 minimum.

This is the distributional least absolutes criterion introduced in
Chapter 10.3. Table 12.2 shows the result of choosing both  and

 to minimize this. Thus the parameters of both the deterministic
and stochastic parts of the model are estimated as part of the same
minimization. 

The above example gives the simplest of linear regression models.
The methodology is the same for the general linear model which can
be expressed as

Qy(p ) = λ + θ1x1 + θ2x2 + … + θkxk + ηS(p).

Here there are k regressor variables. These should be independent of
each other but may be functions, such as x, x2, x3, … . Table 12.3 shows
the stages of the fitting process.

In Table 12.3 we have simply extended the method of least
absolutes to use with regression models. The method of distribu-
tional least squares could similarly have been used, with either
approximate rankits or the derivation of the exact rankits for the
specified distribution S(p). 

Three approaches to regression modelling have now been intro-
duced. The differences between them can be seen from how one would
go about predicting a quantile for a future value with given x. The
ordinary methods of least squares and least absolutes provide for a
prediction the future of value of the mean or median of y given a value
of x. To find a quantile, further distributional information is needed
and a separate analysis and distributional model fitting of the resid-
uals are required. From quantile regression a conditional predictor of,
say, the 95th percentile could be obtained, but a separate calculation
would be needed for the 90th percentile. For the methods of distribu-
tional least squares and absolutes a prediction, for a given x, of any
required percentiles can be obtained from the complete fitted model.

ei
* yi ŷM i,–=

C3:  Σ ei
*

θ̂
σ̂

x
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Thus we might predict the median or predict the interval between,
say, the 2.5th and 97.5th percentiles (corresponding to the quantiles
of – and +1.96 on the standard normal distribution). The interval is
called the 95% prediction interval. For the data of Table 12.1 con-
sider a “crow flies” line of 5 km. The slope estimate is scale free so we
have the predicted median = 1.28 × 5 = 6.4 km for the car journey.
For the scale parameter we must convert from the unit of a quarter
of a kilometre to a km unit. Thus the scale parameter in km is 2.51/4
= 0.627. Hence the 95% prediction interval for the car journey is (6.4
– 1.96 × 0.63, 6.4 + 1.96 × 0.63) = (5.2, 7.6) km. 

This section has sought to show the value of using quantile regres-
sion models in the analysis of regression data. The example discussed
referred to the criteria of least absolutes and least squares. This does
not imply that they are the only applicable ones; for example, the
method of maximum likelihood could equally well be used to estimate
the parameters of a model expressed as a regression quantile function. 

Before moving on, it is important to note that the regression
quantile formulation puts the deterministic and stochastic elements
of a model on the same footing. We may build a model with a con-
struction kit approach applied to both deterministic and stochastic
terms. Many statistics texts discuss the building of the deterministic
part of the model, e.g., Gilchrist (1984), Walpole and Myers (1989).

Create table y, x1, x2, …
Define model λ + θ1x1 + θ2x2 + … + θkxk + ηS(p)
Allocate initial estimates
Create fitted values of deterministic 
component, 

Obtain initial residuals
Obtain the ranks of these residuals
Obtain the median-pi  = BETAINV(0.5, ri, n + 1 – ri)
Obtain fitted error terms (median 
rankits)

Obtain fitted regression quantiles
Hence distributional residuals
Choose parameters to minimize Σ  Obtains estimates and a best 
Plot fit-observation diagram yi against 

Note: It can happen that the above minimization leads to confusion between deterministic and stochastic
structures. This is shown by the occurrence of a systematic structure in the ranks ri. In such cases,  and

 may be minimized separately or in combination.

Table 12.3.  Fitting a linear regression quantile model

λ̂ θ̂1 θ̂2 … θ̂k η̂, , , , ,

ỹi

ỹi λ̂ θ̂1x1i θ̂2x2i … θ̂kxki+ + + +=

ẽi yi ỹi–=
ri rank ẽi ẽ1 ẽ2 … ẽn n;, , ,;( )=
pi

*

êi η̂S pi
*( )=

ŷi ỹi êi+=
ei

* yi ŷi–=
ei
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Σ ẽi
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Previous chapters have discussed the building of the stochastic ele-
ment in its quantile function form. Clearly both aspects can now be
seen as parts of the same problem. The model is treated as a single
model for the total behaviour of the data, deterministic and stochastic.

12.2  Quantile autoregression models

A commonly occurring situation is where the distribution of an obser-
vation depends on the values taken by previous observations. For
example, the concentration of a batch of a chemical from a batch
production plant will relate most strongly to that of the last batch
produced. If we model these relationships using a linear regression
model, the model is referred to as an autoregression model. The
simplest model relating the p-quantile of a new observation to the
observed value of the previous observation is

Q(p;xt – 1) = θxt – 1 + ηS(p), t = 1, 2, …, t – 1, t, … –1 < θ < 1,  η > 0.

Such a model is a first-order autoregression quantile function.
The term “first order” refers to the fact that only the last observation
appears on the right-hand side of the expression. A second-order model
would involve θxt – 1 + φxt – 2 in the “regressor” term. If we wanted to
simulate data from this model we would repeatedly use the model on
a sequence of independent random numbers u1, u2, …, with 

xt = θxt – 1 + ηS(ut), t = 1, 2, …, t – 1, t, …, x0 = 0.

The form of this expression is identical to the regression example
of the last section, so it may be fitted and analyzed in exactly the
same manner.

If S(p) is a symmetric distribution about zero, then the xt sequence
will have zero mean and will show an autocorrelated wandering behav-
iour. It can be shown that the autocorrelation coefficient between
observations h apart, the autocorrelation for lag h, is ρ(h) = θh. An
interesting feature appears when one allows S(p) to be a heavy-tailed
distribution. When industrial process data is studied over long time
spans such heavy-tailed distributions are often found to occur. The
effect of the occasional large value of S(p) out in the tail is quite
dramatic. The sequence of x values generated by the model will show
a sudden jump. It would appear that there are discontinuities in the
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process; something has gone wrong and action had better be taken to
put it right. Yet this is natural data from a stable process. The dis-
continuities are just the effect of having a heavy-tailed distribution in
an autoregressive process. Thus, to improve the process, management
must work on the causes of the distributional form not on those of the
one apparently discrepant observation. 

12.3  Semi-linear and non-linear regression 
quantile functions

The example used to introduce regression quantile models is a linear
model; that is to say, it involves the parameters singly in additive
terms. Classical statistics uses linear in this context to refer just to
the parameters of what is effectively the position parameter of the
model. The deterministic part of the model simply controls the position.
In the example linear also refers to the scale parameter. We have
generalized the term linear model slightly to include models that
have both the position and the scale controlled by linear sets of param-
eters. Models must also allow for distributions that have non-linear
shape parameters in the regression quantile function. Following the
previous terminology these are called semi-linear models. Thus we
have extended the applicability of the terminology introduced in Sec-
tion 4.6 to include regression models. The simplest example of the
semi-linear model that illustrates the main features takes the form:

yp = λ + θx + ηS(p, α).

The variable x influences y via the straight line, linear relation λ + θx,
and the “error” distribution is given by a quantile function, ηS(p, α).
The parameters are λ, the intercept of the line; θ, the slope; η, the scale
of the distribution; and α, the shape parameter of the distribution S(p,
α). The merit of this formulation over the standard one is that all the
parameters are explicit in the one equation that defines the model.
The semi-linear model can be handled in the same way as a linear
model. For example, suppose the normal distribution in the crow–car
example is replaced by a symmetric lambda distribution, then there
will be one additional parameter for which an initial estimate is
required and which will be adjusted in the minimization process.
Otherwise the procedure is identical to that in Section 12.1.

At its most general a regression quantile function can be written as 
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, 

where the  and  represent the regressor variable(s) and param-
eter(s). This general model can be fitted using the methods previ-
ously discussed; however, each case needs to be considered carefully.
Each structure will raise different problems and procedures for
solution. For the rest of this section we will simply illustrate dif-
ferent non-linear models and their study through a number of
examples.

Example 12.1: Let us begin by reconsidering the example used to intro-
duce this chapter, which analyzed the Crow–Car data of Table 12.4. The
model with a normal error was fitted; Table 12.2 gave the analysis.
Unfortunately the model with normal errors is not strictly valid. Suppose
we simulated the situation using a variety of x and random numbers,
u, then the generating model would be

y = θx + σN(u).

This simulation would occasionally generate values where y < x, which
is not possible in practice. Here is a situation where it is useful to carry
out some conceptual modelling before applying standard methods to the
data. Consider therefore what is required of a reasonable model. If we
are to use distributional least absolutes as the method of fitting, which
we have argued is eminently reasonable, then it would be sensible to
have y = θx as the line of medians of y given x. Second, we want a
distribution that has a clear peak and has the lower threshold of y at
y = x to ensure that the condition y ≥ x holds. A suitable distributional
form for this is the Weibull distribution with shape parameter, β, less
than one. We thus have the following relationships:

The model

 yp = Q(px) = λ + η[–ln(1 – p)]β.

The threshold = λ = x, hence

yp = Q(px) = x + η[–ln(1 – p)]β.

The conditional median is θx, which must have a slope greater than one
and so we write θx as (1 + φ)x, φ > 0. Hence 

x + η[–ln(0.5)]β = (1 + φ)x,

QY p( ) Q p x θ,;( )=

x θ
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therefore

 η = φx/[ln(2)]β.

Thus a model that satisfies the conceptual modelling requirements is

yp = x + [φx/{ln(2)}β][–ln(1 – p)]β.

Observe that in this model the regressor variable, x, influences both
threshold and scale. Thus although the model is semi-linear in terms of
the parameters, the regressor variable appears in two different places.
The model will therefore be treated as non-linear and the fitting consid-
ered step by step. The model can be rewritten as

z = (y/x) – 1 = [φ/{ln(2)}β][–ln(1 – p)]β.

This form of the model gives z as an increasing function of p. Such
functions we call ordering functions. The values of z enable the (x, y)
pairs to be ordered, the order of z determining the order of the pair. We
can thus use the ranks of the z to obtain the ordered increasing median-

. Table 12.4 shows the calculations. If initial values are allocated, of
say  = 0.2 and  = 0.5, the above formulae enable a fitted  to be
found and hence the evaluation of the distributional least absolutes
criteria of Σ e* = Σ yi – . From their starting values the two param-
eters can be adjusted to give the minimum of this criterion. For the data
of the example this minimum is about 20% lower than that for the normal
model. Figure 12.3 shows the fit-observation plot of y against . Notice
that this plot shows the fitted y based on both components of the model,
deterministic and stochastic. 

Example 12.2: A study involved providing an advisory interview for
young men and recording how long they took to respond to the advice.
There were 324 men in the study. A provisional analysis was required
after the 13th week of the study. At that stage only 74 men had
responded. The time taken to respond, yi, was recorded for these 74.
Their ages, xi, were regarded as a relevant supplementary variable. Past
experience suggested that time to respond depended on age, with short
times initially with an increase to a fairly stable level for older men. A
form for such growth was modelled by the function 1 – exp{–γ(x – 17)},
which approaches one as x increases. The 17 is suggested by the fact
that 18 was the youngest age of the study group. The distributional
models suggested by previous studies of a similar nature were the expo-
nential and the Weibull. The regression quantile model was thus

Q(p;x) = η[1 – exp{–γ(x – 17)}][–ln(1 – p)]β; η, γ > 0.

pi
*

φ̂ β̂ ŷ

ŷi

ŷ
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It will be seen that the median is η[1 – exp{–γ(x – 17)}][ln(2)]β, which for
large x approaches η[ln(2)]β. The fitting by distributional least absolutes
is straightforward once the suitable values for  are allocated to each
pair (xi, yi). Given initial estimators of the parameters an ordering vari-
able zi is defined as

.

The zi are standardized observations that have a straightforward Weibull
distribution. The ranks of the zi can now be obtained as the basis for
calculating . Notice, however, that although the sample corresponds to

 Weibull model
n = 20  = 0.27

 = 0.53
Σ|e*| = 6.65
fit y |e*|

y x z =y/x – 1 rank(z) p* fit y e*
10.7 9.5 0.13 19 0.08 10.35 0.35
6.5 5.0 0.30 10 0.52 6.40 0.10
29.4 23.0 0.28 11 0.48 28.98 0.42
17.2 15.2 0.13 18 0.13 16.96 0.24
18.4 11.4 0.61 2 0.92 17.47 0.93
19.7 11.8 0.67 1 0.97 19.19 0.51
16.6 12.1 0.37 5 0.77 16.97 0.37
29.0 22.0 0.32 9 0.57 28.63 0.37
40.5 28.2 0.44 4 0.82 40.50 0.00
14.2 12.1 0.17 16 0.23 14.04 0.16
11.7 9.8 0.19 12 0.43 12.15 0.45
25.6 19.0 0.35 7 0.67 25.60 0.00
16.3 14.6 0.12 20 0.03 15.40 0.90
9.5 8.3 0.14 17 0.18 9.46 0.04
28.8 21.6 0.33 8 0.62 28.59 0.21
31.2 26.5 0.18 15 0.28 31.30 0.10
6.5 4.8 0.35 6 0.72 6.59 0.09
25.7 21.7 0.18 13 0.38 26.48 0.78
26.5 18.0 0.47 3 0.87 26.59 0.09
33.1 28.0 0.18 14 0.33 33.62 0.52

Table 12.4.  Least absolutes fitting of regression quantile function — crow–car data 
(Weibull model)

φ̂
β̂

pi
*

zi yi 1 γ̂ xi 17–( )–{ }exp–[ ]⁄=

pi
*
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ranks 1 to 74, the value of n is 324. Thus the p* values for the censored
sample available will all be relatively small. The fitting process proceeds
as in previous examples. As the exponential is the Weibull with β = 1, both
models can be simply fitted and compared. For the Weibull-based fit the
long-term median was 32 with a minimum sum of absolute errors of 15.6,
compared with 23.1 when the shape parameter was set at one for the
exponential-based model. The high median explains why only a fraction of
the times were under the 13-week limit at which the sample was censored. 

There is a little practical postscript to this example. The fact that the
median of the fitted model is above the value of 13 implies that the main
shape and shape changes with age were not clearly observed, as only
the very small ordered observations were available. Thus a complex
structure was being fitted with only a proportionately small censored
sample. This process was like trying to describe a complete picture on
the basis of seeing only the corner. Warned by this feature of the data,
the model was refitted ignoring the information on the age effect, i.e.,
with a constant scale parameter. A constant scale corresponds to letting
γ become infinite, which was not an option in the optimization previously
performed. The modification was thus treated as a fresh model to fit. It
was found that using this model as the distribution gave a marginally
better fit with one less parameter. Thus although this example has
provided a nice illustration of a regression quantile fit, it also illustrates
that modelling requires a sceptical and cautious approach to the models
that we use.

Example 12.3: In forecasting some variable y, use is often made of a
linear trend against time with a normally distributed random variation;
however, in some situations this variation may have longer or shorter

Figure 12.3. Crow–car data — fit observation plot for Weibull regression quantile model
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tails than a normal, although it will still be symmetrical. The symmetric
lambda distribution provides such a model. Thus using t for time we have

QY(p; t) = α + βt + (η/θ)[pθ – (1 – p)θ].

This model could sensibly be fitted using distributional least absolutes
with discounting. In this case, however, the discounting would be related
to the time in the past at which the observation was obtained (see, for
example, Gilchrist (1976)). 

Example 12.4: A paper by Castillo and Hadi (1995) considers the life-
time, y, of materials under a level of stress x, standardized so that 0 ≤ x
≤ 1. A model is justified of the form

QY(p; x) = (pα – D – Cx)/(Ax + B).

This model is a power distribution with scale and position depending on
stress as the regressor variable.

The above examples have sought to illustrate some of the forms
that non-linear models may take, and in Example 12.1 the approach
to fitting a model by the method of distributional least absolutes. It is
hoped that the illustrations are enough to show the clarity that is
evident when the regression quantile function shows the whole para-
metric form of a model. On the basis of the various illustrations it is
clear that the position, scale, skewness, and shape parameters could
all become functions of the regressor variables. The models that we
can fit are sensibly limited to models with reasonable behaviour, which
here manifests itself particularly as the requirement that an ordering
function may be found. The fact that the models are fully parametric
ensures that all the parameters can be estimated by a single minimi-
zation of an appropriate criteria.

12.4   Problems

1. Some data quoted by Mosteller et al. (1983) gives the
stopping distance, d, of vehicles as a function of their
speed, s. It is shown that a good fit is obtained by using
the square root of stopping distance as the independent
variable. Suggest a suitable form of model for the case
where one wishes to keep the stopping distance as the
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independent variable. Explore suitable models for the fol-
lowing set of distance–speed data, based on an automated
stopping device.

2. Example 1.20 discussed a model for the pitting of metal
due to corrosion; the depth, d, of corrosion is measured at
times t. Fit the model given to the following data:

3. The data below gives some daily humidity, h, and sun-
shine, s, for a weather station in Sheffield.
(a) Fit the model Q(p) = 100 – η[–ln(1 – p)]β to the humidity

data using distributional least absolutes.
(b) Add the regression term θs to the model and refit.

Compare the quality of fit of (a) with (b).
(c) Replace the term θs with the term , where  is the

previous day’s sunshine figure. Again compare the fit.
(d) Replace the term θs by an autoregression term ,

where  is the previous day’s humidity. Yet again
compare the fit. 

s 10 10 15 15 20 20 25 25 30 30 35 35 40 40 45 45
d 2 2 5 6 13 11 23 21 29 36 49 50 68 71 84 81
s 50 50 55 55 60 60 65 65 70 70 75 75 80 80
d 107 99 127 132 168 122 211 195 232 176 244 263 269 236

t 1 2 3 4 5 6 7
d 1.05 1.55 1.49 2.25 2.75 2.49 3.36
t 8 9 10 11 12 13 14
d 3.32 2.19 4.14 4.30 4.56 4.83 5.10
t 15 16 17 18 19 20 21
d 5.04 4.92 5.48 4.46 5.53 6.07 6.47
t 22 23 24 25 26 27 28
d 4.54 6.88 6.93 7.15 6.06 6.70 7.59

h% 64 100 99 78 70 99 75 80
s hrs 6.7 0.0 0.0 5.8 4.3 2.3 9.8 1.8
h % 72 72 93 65 91 96 95 80
s hrs 9.9 6.5 2.6 9.6 0.0 0.2 3.5 1.5
h% 70 86 71 77 60 63 79 78
s hrs 1.1 2.0 9.8 2.7 15.3 8.1 1.4 3.7
h% 67 88 74 62 71 75
s hrs 8.5 1.5 6.2 7.4 6.7 2.8

θs s

θh
h
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4. The time to breakdown of insulation can be modelled by
an exponential distribution with zero threshold and a scale
parameter η/vβ, where v is the voltage across the insula-
tion. On testing 99% of the test pieces lasted 2000 hours
at 1000 volts and 1100 hours at 2000 volts. What is the
maximum voltage allowable if it is required that 90% of
the items last at least 2500 hours? 
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CHAPTER 13

Bivariate Quantile Distributions

13.1   Introduction

For a single variable X we can draw the quantile function, Q(p), to
show how x relates to p. We have also seen that Q(p) can be viewed
as the transformation of a uniform variable to generate X. Suppose
we now move to problems with two variables, X and Y, the bivariate
situation. If we replace X by two variables (X, Y ), we need to replace
p by (p, r), a pair of values, each in the range (0, 1). We may then
define a bivariate distribution based on quantiles by

where Qx(p, r) and Qy(p, r) are bivariate quantile functions. We
thus transform points in the (p, r)-plane, the unit square, to points in
the (x, y)-plane, as Figure 13.1 illustrates. As with the univariate case
we may imagine the (x, y) data as simulated by pairs of independent
uniform values, (p, r), being substituted in the quantile functions.
Curves in (p, r) will transform to curves in (x, y). Of particular interest
will be the two quantile curves corresponding to p = po and r = ro,
where po and ro are constant values, such as 0.95 for outer quantiles.
The region to the left of p = po will transform to a region Ap in the
(x, y)-plane such that 

Prob[(x, y) is in Ap] = p0,

with a similar interpretation for r = ro. 
In terms of cumulative distribution functions the univariate func-

tion F(x) is replaced by a bivariate cumulative distribution func-
tion, F(x, y), defined by

x Qx p r,( )=

y Qy p r,( ),=
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F(x, y) = Prob(X ≤ x, Y ≤ y).

If we set y = ∞, this gives simply the cumulative distribution function
for x, F(x), called the marginal CDF of X. A further important cumu-
lative distribution function is the conditional CDF of X given y,
F(xy). This defines the conditional distribution of X for a fixed value
of Y = y. From the definition of conditional probability (Section 6.8.1),
this can be expressed as

F(xy) = [∂F(x, y)/∂y]/[∂F(y)/∂y].

The bivariate probability density function f(x, y) is obtained by
differentiating F(x, y) with respect to both x and y.

There are a variety of approaches to relating the (x, y) values to
the (p, r) to create bivariate quantile functions. We will illustrate two
forms of the model:

Figure 13.1. The bivariate model form (a) the general model; (b) the circular family
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The general form: x = Qx(p, r), y = Qy(p, r). 

The marginal/conditional form: x = Qx(p), y = Qy(p, r).

It will be seen that in the marginal/conditional form the first expres-
sion is a univariate quantile function for the marginal distribution of
x. As a consequence of this, if x is fixed, then p becomes fixed; so the
quantile function for y, as a function of r, is the quantile function for
the conditional distribution of y given x. This form has an alternative
formulation obtained by interchanging x and y and starting with the
marginal distribution of y. It may be noted that all the main features
of obtaining density functions by differentiation, of substitution to get
p-densities in terms of, here, p and r, etc., are analogous between the
bivariate and univariate situations. Thus substituting the above quan-
tile functions in a bivariate PDF, f(x, y) will give the (p, r)-PDF, fp, r(p,
r). Appendix 3 gives some further detail.

The aim of this chapter is to extend to bivariate distributions some
of the quantile function modelling of the previous chapters. We do this
by illustrating the structure and fitting of a number of quantile-based
bivariate distributions.

13.2  Polar co-ordinate models

The circular distributions

One of the simplest models in general form is based on the use of polar
co-ordinates. Here, thinking in simulation terms, p generates radial
distances from the origin to the point (x, y) and r generates the rotational
angle from the x axis. The basic form of the model can be written as

where [Q(p)]1/2 is a quantile function for a univariate distribution of
distributional range (0,∞) or (0, some positive constant). Figure 13.1(b)
shows the model as a transformation from the uniform square for (p, r)
to the plane of (x, y). The p-quantile curve is given by looking for the
curve in the (x, y)-plane that corresponds to p = constant, i.e., the curve
that does not contain the effect of r. Using the Pythagorean-based
result that sin2θ + cos2θ = 1 gives

x Q p( )[ ]1 2⁄ 2πr( ),cos= 0 p r 1≤,≤

y Q p( )[ ]1 2⁄= 2πr( ),sin
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x2 + y2 = Q(p) all r.

This is thus a circle with probability p of observations lying inside it.
The squared radius of the circle is given by the quantile function Q(p).
The r-quantile curve is given by removing the influence of p to give

y = x tan(2πr) all p

(see Figure 13.1(b)). Important cases of these quantile curves are the
median curves. The p-median curve is

x2 + y2 = Q(0.5) all r.

It is evident from the definition that half the joint probability lies
inside this circle. Similarly, the r-median curve is

y = 0, since tan(2π/2) = 0.

Thus half the probability lies above and half below the x-axis.
It is now evident that probabilities are calculated by looking at

regions of the (x, y)-plane and the corresponding regions of the (p, r)-
plane. For example, to find the probability of an observation, (x, y),
lying in the shaded region of the (X, Y ) plane of Figure 13.1(b) we
calculate the probability of (p, r) lying in the corresponding shaded
region of the (p, r)-plane, which for this jointly uniform distribution is
simply p0r0. In Appendix 3 the formulae for defining and transforming
joint PDF are given and illustrated for these models. It is shown there
that the circular model of the (p, r) form of the joint density of (x, y),
the p, r-joint PDF, is given by

fp, r(p, r) = 1/[πq(p)].

The fact that this does not involve r, but only p, underlines the circular
nature of the distributions defined in this way.

The fact that bivariate models can be regarded as generated from
independent pairs of uniforms can be used in several ways. We illus-
trate two:

(a) The models can be used to explore the form of distributions
by simulation. Figure 13.2(a) shows 100 pairs of random
numbers. In Figure 13.2(b) these have been substituted in
the model being considered to give simulated points in the
(X, Y) plane.
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(b) Treating p and r as uniforms enables the expectations to
be evaluated simply. For example, 

beta = 4, rho = 0

Figure 13.2. Simulation of a bivariate distribution
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We similarly have E(Y ) = 0. A consequence of these results is that

V(X ) = E(X2) = E[Q(p)] E[cos2(2πr)]

which leads to

V(X ) = (1/2)E[Q(p)], with the identical result for V(Y ).

A further expectation involving both (x, y)-plane variables is E(XY).
This can be evaluated in exactly the same way, thus

E(XY ) = E[Q(p)]E[cos(2πr)sin(2πr)].

As the term cos(2πr)sin(2πr) is symmetrical about zero for r going from
0 to 1, the last expectation is zero; hence E(XY) = 0, thus X and Y are
uncorrelated.

The Weibull circular distribution 

As the variances of X and Y are both (1/2) E[Q(p)] and a natural form
for Q(p) would be some form of decaying distribution, a first simple
model to use would be to make Q(p) an exponential distribution with
scale parameter 2. This would give Q(p) = 2[–ln(1 – p)], with therefore
V(X) = V(Y) = 1. The radial distribution is thus a Weibull distribution.
The p-quantile curve is found by squaring and summing the two
quantile functions to give

x2 + y2 = Q(p) = –2ln(1 – p)

and hence 

1 – p = exp[–(1/2)(x2 + y2)]. 

Substituting to get the (p, r) joint density, as derived in Appendix 3,
we get

fp,r( p, r) = 1/[πq( p)] = (1/2π)(1 − p)

E X( ) E Q p( ){ }1 2⁄ 2πr( )cos[ ]=

E Q p( ){ }1 2⁄[ ]E 2πr( )cos[ ],= since r and p are independent.
0, = since by symmetry the second term has zero mean.
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and hence

f(x, y) = [1/√(2π)] exp(–(1/2)x2); [1/√(2π)] exp(–(1/2)y2).

Thus the model is the product of two independent standard normal
distributions.

The form of distribution given is a standard form with zero means
and unit variances. It is evident from this discussion that the move to
a non-standard form of this family of distributions would be obtained
by writing

using position and scale parameters in an obvious notation. It follows
from the zero means and unit variances that for this particular Weibull
family the λ are the means and the η are the standard deviations.

We have obtained the bivariate normal from the general circular
distribution by using for Q(p) an exponential distribution. The expo-
nential is, as we have seen, a special case of the Weibull distributions.
If we take the general case of arbitrary β but put in the necessary
constant to keep the unit variances we have

Q(p) = [2/Γ(β + 1)][–ln(1 – p)]β. 

The term Γ(β + 1), which is a gamma function, is the mean of the
standard Weibull distribution. This model is a general circular bivari-
ate distribution with zero means and unit variances, but is only
bivariate normal for the case β = 1. We have termed our general
model the circular Weibull distribution. By way of illustration, if we
set a value for β of less than one, the Weibull Distribution has a
modal value at (1 – β)β. The consequence of this is that the (x, y)
points tend to cluster about the modal circle, as in Figure 13.3(a)
where β = 0.2. 

The generalized Pareto circular distribution

As a further example we make use of the generalized Pareto distribu-
tion for Q(p). Again we need a suitably chosen constant to give the
unit variances for X and Y. The form of the distribution is

x λx ηx Q p( )[ ]1 2⁄ 2πr( ),cos+= 0 p 1 0 r 1.≤ ≤,≤ ≤

y λy ηy Q p( )[ ]1 2⁄ 2πr( ),sin+=
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Q(p) = 2[1 – (1 – p)β]/β.

For negative β this distribution has long tails. Thus there is a
central concentration of points in the x-y scatter diagram with a small
scatter of points well out. For the distribution to have non-infinite
variances for X and Y we must have β > –0.5, although the distribution
still exists for all values of β. For the limiting case of a zero value of
β, the shape of Q(p) is the exponential distribution. A consequence of

beta = 0.2, rho = 0

beta = 1, rho = 0.8

Figure 13.3. The Weibull family: (a) and (b) circular
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this is that again the bivariate normal is a special case of the distri-
bution. For positive β the distribution has a maximum of 2/β so the
maximum radius is √(2/β). For β = 1 the distribution is shaped as a
disc of radius √2. For β > 1 the generalized Pareto distribution becomes
an increasing function up to its maximum radius. The effect of this
was, in fact, seen in Figure 13.2(b), which shows a member of this
family with β = 4.

The elliptical family of distributions

A natural generalization of the circular family is given by

where

τ2 + ρ2 = 1.

A little algebra and trigonometry lead to

x2 – 2ρxy + y2 = (1 – ρ2)Q(p),

beta = 2, rho = 0.5

Figure 13.3. The Weibull family: (c) elliptical forms

x Q p( )[ ]1 2⁄ 2πr( ),cos= 0 p r 1≤,≤

y Q p( )[ ]1 2⁄ τ 2πr( )sin ρ 2πr( )cos+[ ],=
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so the p-Quantile curve is an ellipse.
The moments follow much as for the circular family with

E(X) = E(Y) = 0 and V(X) = V(Y) = E(Q(p)]/2.

However, here we have

E(XY) = ρE(Q(p)]/2, 

so the correlation between X and Y is ρ.

Example 13.1: Returning to the exponential form for Q(p), – 2ln(1 – p),
of the earlier example we obtain the standard bivariate normal with
correlated X and Y. The p-quantile curves are given by the ellipses

x2 – 2ρxy +y2 = –2(1 – ρ2)ln(1 – p).

Using the simulation model of the previous section we get the x-y scatter
plot shown in Figure 13.3(b) for the elliptical Weibull with β = 1, i.e.,
the bivariate normal. In part (c), the β = 2 leads to a long-tailed form
with widely scattered observations.

If the original data distribution is not standard, then it must first be
standardized. The sample values of means variances and correlations
give reasonable estimates of the corresponding population statistics.
These can be used to roughly standardize the two variables to give x
and y. The value of

z = √[{x2 – 2ρxy + y2}/(1 – ρ2)]

can then be calculated and ordered. If the bivariate normal is the correct
distribution, then the Z will have the Weibull distribution given by

[Q(p)]1/2 = [–2ln(1 – p)]1/2.

The above analysis relates to the p-quantile curves. The r-quantiles can
also be found. Assuming standardized data and eliminating Q(p) from
the original equations of the elliptical model leads to

r = (1/2π)tan–1[{y/x – ρ}/{√(1 – ρ2)}] x ≥ 0.

The fact that tan–1(.) is not a single-valued function means that some
care is needed to choose the r-values that are the correct radii. The
ordered values of r can be plotted directly against the p-rankits, for a
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median-based plot, or against the expected values for the order statistics
of the uniform distribution, i/(n + 1).

The discussion thus far has used simply the exponential Q(p). If
we use the Weibull or the generalized Pareto forms, we obtain corre-
lated forms of the models already discussed in the previous section.

13.3  Additive models

We illustrate additive models and also some of the methods of studying
bivariate quantile distributions by considering the errors in measure-
ment model. Suppose we have a variable X with some distribution
Q(p). We can only observe X using equipment with an inherent error,
E, whose distribution is S(r), independent of X. The observations, Y,
are thus modelled by

y = x + e.

We can thus write

x = Q(p), e = S(r) and hence y = Q(p) + S(r),

where p and r are independently and uniformly distributed. Interest
here focuses on the transformation from the (p, r)-plane to the (x, e)-
and (x, y)-planes. For the first of these it is evident that the lines p =
p0 and r = r0 transform directly to lines x = Q(p0) and e = S(r0). The
conditional distributions of y given e0 and y given x0 are

ype0 = Q(p) + S(r0)

and

yrx0 = Q(p0) + S(r).

If we consider the (y, x)-plane, which is the one of prime practical
interest, then we need consider probabilities such as Prob(y ≤ y0). The
line y = y0 corresponds to a curve, C0, in the (p, r)-plane. In theoretical
terms we have

Q(p) = y0 – S(r)
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so

p = Q–1[y0 – S(r)].

This is the p, r relation that defines C0. The area enclosed by C0

gives the probability so

.

A numerical approach to this is to fill the (p, r)-plane with a uniform
lattice of points. For each point (pi, rj) the value y(i, j) is obtained and
the proportion of y(i, j) less than y0 used to approximate Prob(y ≤ y0).
By using this device for each ri the curve C0 can also be approximated.

We often need the reverse information, i.e., given knowledge of y,
what can be said about x. For example, we might be interested in
Prob(x ≤ ky ≤ k) where k is a constant. Again, this can be approximated
using the counting approach described above.

13.4  Marginal/conditional models

Two marginal distributions on their own do not uniquely define a
bivariate distribution; however, there are a number of models that use
a marginal and a conditional pair in quantile form to define a bivariate
distribution. 

Example 13.2: The bivariate logistic distribution is defined by the pair
of quantile functions

It will be seen that the marginal distribution of x is a logistic, but the
conditional distribution of y given x is a p-transform of the logistic (see
Castillo, Sarabia and Hadi (1997)). The link of the model to regression is
seen by noting that the median of the conditional distribution for given p is

M = λy – ηy ln(√2 – 1) + ηy ln p.

Notice that the quantiles of y given x, i.e., given p, yp, can be expressed
in the relation

Prob y y0≤( ) Q 1– y0 S r( )–[ ] rd
0

1

∫=

Qx p( ) λx ηx p 1 p–( )⁄[ ],ln+=

Qy x r p( ) λy ηy p√r 1 √r–( )⁄[ ].ln+=
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z = yp – λy – ηyln(p) = ηyln[√r/(1 – √r)].

The right-hand side here is an increasing function of r and so provides
the ordering function, z. This is used as the basis for deriving the rank
order needed for the median rankits for r. 

Clearly we could define the model in the reverse fashion in terms of the
marginal distribution of y and the conditional distribution of x given y.

Example 13.3: If a centred Pareto distribution is developed, using q =
1 – p and s = 1 – r for simplicity, it takes the form

Here both marginal and conditional distributions are centred Pareto,
but with differing scale and shape parameters.

13.5  Estimation

There are a variety of approaches to estimating the parameters of
bivariate distributions, paralleling the methods for univariate. We will
keep to the method of least absolutes as it is fairly robust, straight-
forward to implement and convenient in terms of models defined by
quantiles. Consider a set of data (xk, yk), k = 1 to n. The models with
initial parameter values can be used to fit values for both xk and yk,
giving the equivalents of the median rankits denoted by (Mx, k, My, k).
The least absolutes criterion now becomes

.

As with univariate estimation we evaluate this quantity for the
initial parameter values and then adjust them to minimize C. The
complication arises, as it did in the fitting of regression lines, that
the ranks of the xk and yk are different. There is therefore a need
for procedures to carry out the ranking. These vary with the form
of model. For the polar co-ordinate form of the model the x-y co-
ordinate data is transformed to polar co-ordinates and then can be
separately ranked. Table 13.1 shows the sequence of operation for
the circular distributions.

Qx q( ) ηx 1 qβ⁄ 1–( )=

Qy x s q( ) ηy qβ⁄( ) 1 sβ*⁄ 1–( ),= where β* β 1 β+( ).⁄=

C Σ xk Mx k,– yk My k,–+[ ]=
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For the elliptical form of model there is an additional correlation
parameter to initially set. Once the data is standardized the set cor-
relation is used to define the ordering function

z2 = x′2 – 2ρx′y′ +y′2

in place of the z2 in Table 13.1. This is then used to rank the z and
find the median-p. Similarly, the ordering function t, adjusting for the
many valued nature of tan–1(.), is

This is used to rank the data and find the median-r. The process of
Table 13.1 is otherwise unaltered.

For the marginal/conditional form of model, such as the bivariate
logistic of Example 13.2, the procedure of Table 13.1 has to be modified.
As there are two forms of models, one with x as given the marginal
distribution and the other with y, one has to be chosen initially. There

General Model Qx(p, r) = λx + ηx√Q(p;β)cos(2πr)
Qy(p, r) = λy + ηy√Q(p;β)sin(2πr)

Set initial parameter values λx, ηx, β, λy, ηy

Standardize data using these x′k = (xk – λx)/ηx, y′k = (yk – λy)/ηy 
Change to polar co-ordinates (z, t)

Find ranks of zk and tk

j = Rank(tk; t1, t2, …, tn;n)
Find median-p and median-r pk = BETAINV(0.5, i, n + 1 – i)

rk = BETAINV(0.5, j, n + 1 – j)
Calculate median rankits 
for xk and yk

Mx, k = λx + ηx√Q(pk;β)cos(2πrk)
My, k = λy + ηy√Q(pk;β)sin(2πrk)

Evaluate criterion, choose 
parameters to minimize C

C = Σ[xk – Mx, k + yk – My, k]

Plot fit-observation diagrams (Mx, k, xk), (My, k, yk)

Table 13.1.  Algorithm for fitting a circular model

zk
2 x′k

2 y′k
2+ k, 1 … n, ,= =

tk 1 2π⁄( ) y′k x′k⁄( ),1–tan= x′k 0>

0.5 1 2π⁄( ) y′k x′k⁄( ),1–tan+= x′k 0<
i Rank zk

2  z1
2 z2

2 … zn
2 n;, , ,;( )=

t 1 2π⁄( ) y′ x′ ρ–⁄{ } √ 1 ρ2–( ){ }⁄[ ]1–
tan= x 0≥

1 2π⁄( ) y′ x′ ρ–⁄{ } √ 1 ρ2–( ){ }⁄[ ]1–
tan 0.5,+= x 0.<
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is also the need to use the idea of the ordering function to find the
median rankit for the conditional distribution. Table 13.2 shows the
procedure for the fitting of the bivariate logistic. Table 13.3 shows part
of a tabular layout illustrating the practical sequencing of the proce-
dure. Initial values have to be set for the four parameters and the
procedure of Table 13.2 is worked through in the columns of the table.
Thus the fitted marginal x is obtained in column 5, the ordering
function is used in columns 6 to 8, leading to the fitted conditional
values of y in column 9. Now given the data and fitted values, the two
sets of distributional residuals, denoted ex and ey, are found and their
absolute values summed to give the final criterion value. The param-
eters are then altered to search for the minimum criterion value, which
is the quoted value. 

If there is no specific reason in the application to choose the x
marginal or y marginal at the start of the method, the two may be
combined (see Castillo, Sarabia and Hadi, 1997). Table 13.4 gives the
steps of the method, which carries out the steps of Table 13.2 twice to
obtain two sets of median rankits. These are then treated as predictors
of the observed values and a joint predictor is created as a weighted
sum. Figure 13.4 shows the fit-observation plots for some data fitted
by this method. 

Model for marginal x
Model for conditional yx

Qx(p) = λx + ηx ln(p/(1 – p))
Qyx(rp) = λy + ηy ln[p√r /(1 – √r)]

Set initial parameter values λx, ηx, λy, ηy

Find ranks for x data i = Rank(xk; x1, x2, …, xn;n), k = 1, …, n
Hence median-p and median 
rankit

pk = BETAINV(0.5, i, n + 1 – i), Mx, k = 
Qx(pk)

Create ordering function, 
zk for yx

zk = yk – λx – ηxln(pk)

Find ranks of zk j = Rank(zk; z1, z2, …, zn;n)
Find the median-r rk = BETAINV(0.5, j, n + 1 – j)
Hence median rankits for yk Myx, k = λy + ηyln[pk√rk/(1 – √rk)]
Evaluate criterion, C = Σ[xk – Mx, k + yk – Myx, k]
choose parameters to 
minimize C

Plot fit-observation diagrams (Mx, k, xk), (My, k, yk)

Table 13.2.  Algorithm for fitting a marginal-conditional model — bivariate 
logistic
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n = 16; λx = 3.07; λy = 0.80; crit = 0.953; ηx = 0.16; ηy = 0.03; Σ|e| = 0.821, 0.132.
x fit y x fit

1 2 3 4 5 6 7 8 9 10 11
k x y pk Mx, k zk rank z rk Myx, k ex, k  ey x, k 
1 2.64 0.70 0.042 2.57 0.29  6 0.35 0.71 0.075 0.082
2 2.72 0.81 0.103 2.72 0.84 14 0.84 0.81 0.000 0.000
3 2.78 0.75 0.164 2.81 0.29  5 0.29 0.75 0.032 0.032
4 2.84 0.76 0.225 2.87 0.30  7 0.41 0.77 0.029 0.042
5 2.85 0.74 0.286 2.92 0.14  2 0.10 0.74 0.072 0.080
6 2.97 0.80 0.347 2.97 0.54 10 0.59 0.81 0.000 0.007

 etc.

Table 13.3.  Layout for fitting a bivariate logistic

Work through method of Table 13.2 Obtain Mx, k and Myx, k

Interchange x and y and repeat [ensuring that the 
k refer to the same pair (xk, yk)]

Obtain My, k and Mxy, k

Combine with weighting γ Mcx, k = γ Mx, k + (1 – γ)Mxy, k 
Mcy, k = γ My, k + (1 – γ)Myx, k

Evaluate criterion, choose parameters and 
weighting to minimize C

C = Σ[xk – Mcx, k + yk – Mcy, k]

Table 13.4.  Additional algorithm for a combined method for marginal/conditional models
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13.6  Problems

1. Show that the generalized Pareto marginal-conditional
model of Example 13.3 has a marginal distribution for y
of the generalized Pareto form.

2. Simulate two sets of 100 uniforms and use them to explore
the shapes of the distribution given in Example 13.3. Esti-

Figure 13.4. Fit-observation plots from combined estimation
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mate the parameters of the model from a set of simulated
data of known parameter values. Explore the effect of
changing β on the criterion of fit.

3. Fit the marginal/conditional form of the bivariate logistic
distribution to the following data using least absolutes. Fit
with x as the marginal and then y. Fit by the combined
method.

4. A small bird migration survey, made from a hide, records
for each bird seen the distance, z, and the angle from the
north, r. An (x, y) plot of sightings is then constructed. A
circular model would be appropriate if it did not ignore
the direction of migration. To allow for this, a p-transfor-
mation is suggested for the r variable in the circular model.
It is proposed to replace 2πr in the sin( ) and cos( ) terms
by H(r) = θ + π[rα – (1 – r)α]. Explore this model and suggest
improvements. Simulate the model using the exponential
for the distribution of z.

x 30.5 24.4 13.6 20.0 31.8 15.3 29.0
y 11.1 8.6 11.3 7.7 10.8 9.0 10.1
x 18.8 10.6 27.5 23.5 24.4 26.4 30.6
y 8.4 12.1 12.4 10.3 9.9 10.3 9.7
x 20.9 17.9 21.6 15.8 18.4 22.0 27.7
y 11.0 8.9 9.4 12.4 9.1 8.9 11.5
x 3.5 35.3 24.8 26.4 5.6 17.7 24.5
y 7.0 10.3 10.4 9.7 9.3 12.0 11.4
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CHAPTER 14

A Postscript

The flow chart of Figure 14.1 shows a slightly extended version of the
structure of statistical modelling previously described. It shows the
main links but not all the possible means of iteration. To round off
our study it is worth just looking at each of the elements in the
modelling process to see what an approach using quantiles contributes
to the classical modelling stages.

The data environment. This term emphasizes that we never
have a set of data that does not have a background. It must
have been collected in some fashion for some purpose. Some-
thing must be known about the variables being measured. The
situation is probably not totally unique, someone will have
collected data of a roughly similar nature before. There may
even be papers or books on the type of problem being studied.
All this information can contribute to our understanding of how
to approach the details of the modelling exercise, although they
should not prevent us from noticing the truly new and unique
features of the data.
The data. We have limited ourselves almost entirely to contin-
uous variable data. Quantile function methodology can be
applied to discrete variables, but it requires more complex
definitions and leads to quantile functions of step form that are
not so simple to use. Note that, following Galton’s perception
of 100 years ago, the ordered data has proved to be central to
the methods of data analysis.
Data properties. Classical statistics emphasizes moments as
data summaries. These do not always exist. We have shown
that there is an extensive range of quantile-based measures
that describes well the shapes of samples and populations and
which always exists. In particular we have emphasized the
measurement of skewness and of shape, with sample functions
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such as t(p) and g(p), and also the measures that look at the
tails separately.
Construction kit. The prime contribution of quantile functions
is their ability to act as the basis for a construction kit for
distributions. We have looked at various ways in which the
construction kit can be used. We now have rules for construc-
tion involving addition, multiplication and transformation,
both Q- and p-transformation. Using addition we have shown
the value of the reflection family of distributions. These have
underlined the value of having five meaningful parameters in
a distribution and put the emphasis on skewness and the two
tail shapes rather than on skewness and kurtosis. Multiplica-
tion has produced a number of distributions of some flexibility.
Transformation, both Q and p, in relation to distributions and
regression quantile models, has shown the simplicity and power
of this way of developing models. It has also emphasized that
we do not need to transform data; we keep the natural data
and transform the quantile function. As with all construction
kits the best way to learn to use them effectively is to play with
them frequently.

Figure 14.1. The modelling process
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The library of models. Not all distributions can be expressed
explicitly as PDF or CDF. We have seen a number of distribu-
tions that add to the library of useful models and which are
defined simply by their quantile functions. Our playing, by
building simple structures and models and finding out how they
behave, has begun to teach us the properties of different mod-
els. We have illustrated this with examples in the text and the
chapter problems. It has, hopefully, been observed that some
aspects of statistics are more elegantly expressed in quantile
function form, e.g., distributions of largest and smallest obser-
vations, truncated distributions and median rankits. These fea-
tures also help build the library of structures and models. Two
important sections of the developing library discussed in pre-
vious pages are the regression quantile models, with their uni-
fication of deterministic and stochastic elements, and the basic
bivariate quantile models.
List of models. Using empirical evidence of data, the back-
ground knowledge of the data environment that may lead to
conceptual models, and suitable models from the library, a list
of possible models for the specific data begins to form. This now
includes quantile functions as well as CDF and PDF. It has
also become apparent that because there are so many models,
the modeller should be very cautious about moving too quickly
to any “one true model.” It is much better to hold a small
number of tentative models. 
Model criteria (technical/general). The data environment and
the nature of the data itself must provide the criteria to be
used in deciding what constitutes a good model. To these we
add statistical criteria and seek some general approach that
applies to the complete model and not just to the deterministic
or stochastic part of it. Quantile models lead naturally to this
comprehensive approach. In the practical examples we have
mainly used the method of distributional least absolutes,
because it is rather neglected in the textbook literature, is more
robust than many other methods, and illustrates well the use
of quantile functions.
Identification. Chapter 8 showed the very wide range of plotting
techniques based on the ordered data that are available to inves-
tigate the various features of distributional shape. These are
used to narrow the list of possible distributions or to suggest
component shapes that might be used to build a model. The
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process of identification may then be reduced to choosing which
in the list of possible models are the closest to the data in some
sense. Experience suggests that identification should lead to
models and not “The Model.” The statistics may give two models
that are almost equally good. The data environment may lead
to the final choice. The process of identification makes good use
of quantile functions via quantile and other plots. The plots used
often lend themselves to the study of models with non-linear
parameters using the graphics in a dynamic fashion. We have
also emphasized the use in plotting of exact median rankits,
rather than approximate, mean rankits. The median-based fit
leads to clear interpretations of plotted data. It can readily be
seen whether or not there is 50:50 scatter of the data about a
line of medians. The quantile approach has also led to the pos-
sibility of sequential model building. This has the potential to
cover both the deterministic and stochastic elements of models. 
Fitting. All methods of estimation can be applied with distri-
butions in quantile function form. However, we have seen that
the method of percentiles, probability-weighted moments, and
of distributional least absolutes or squares give straightforward
methods of particular appropriateness to models given by quan-
tile functions. Maximum likelihood can be applied to models
with only quantile function form, although with marginally
more difficulty. It does, however, lead to the opportunity to give
likelihood limits to the estimated parameters. It was noted that
the same form of logic can be used to set limits using the
alternative criteria of least squares and least absolutes. It has
been shown that all the least and maximum methods lend
themselves to practical implementation using now common
optimizing routines. 
Validation. Again, quantile-based plots and approaches provide
an important element of validation and are facilitated by
expressing the models in quantile function form. Fit-observa-
tion plots with limits, the density probability plot, and the
exponential spacing control chart all give simple tools for visual
validation. The likelihood approach provides for the more for-
mal testing of specified parameters. The tests also relate easily
to the approach adopted to laying out maximum likelihood
estimation problems and the use of numerical optimizers.
Application. It is observed that the growth of the study of
distributions expressed in quantile form has often taken place
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in the context and literature of specific application areas. This
has particularly been the case where more flexible models were
needed. We have shown several examples of situations, usually
dominated by the assumption of normality, that can be simply
generalized by quantile function notation.

Conclusion. There are vast areas of statistical modelling that
are well analyzed using PDF and CDF. Indeed there are many
areas where quantile function approaches are entirely inappro-
priate. It is hoped however that there is enough in this intro-
ductory text to suggest that seeing statistical modelling from
a quantile function perspective can contribute to problem solv-
ing with models. This contribution can be by the development
of models using the quantile function construction kit. Alter-
natively, it may just be that seeing problems from a different
perspective can generate new ideas.
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APPENDIX 1

Some Useful Mathematical Results

Definitions  

The Gamma Function 

 

and for integer n, 

Γ(n + 1) = n! = n(n – 1)(n – 2)…3.2.1. Γ(1) = 1.

The Beta Function 

 α, β >0.

Special cases: 
B(1, β) = 1/β. 
B(α, 1) = 1/α. 
B(2, β) = 1/[β(β + 1)], B(α + 1,β) = [α/(α + β)]B(α,β).

Incomplete Beta Function 

. 0 ≤ z ≤ 1.

Often for statistical purposes the ratio I is used where I(p, α,
β) = Bp(α, β)/B1(α, β). This is a CDF. Its inverse is BETA-
INV(p, α, β).

Γ z( ) e x– xz 1– x, Γ z 1+( )d
0

∞

∫ zΓ z( ), Γ 1 2⁄( ) √π= = =

B α β,( ) xα 1– 1 x–( )β 1– xd
0

1

∫ Γ α( )Γ β( ) Γ α β+( )⁄ B β α,( )= = =

Bz α β,( ) xα 1– 1 x–( )β 1– xd
0

z

∫=
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Binomial Coefficient (n
r) = n(n – 1)(n – 2) … (n – r + 1)/r! =

n!/r!(n – r)! integer n and r, r ≤ n. 

Series  

1/(1 – p) = 1 + p + p2 + ….
(1 – p)m = 1 – mp + m(m – 1)p2/2! + ….
ep = 1 + p + p2/2! + p3/3! + ….
ln(1 + p) = p – p2/2! + p3/3! – ….

Definite Integrals   

Indefinite Integrals  

H(p)

(ln p)m (–1)mm! integer m
(–ln p)m Γ(m + 1), m! for integer m
p ln p –1/4
pm(–ln p)n Γ(n + 1)/(m + 1)n + 1

pm(ln p)n (–1)n Γ(n + 1)/(m + 1)n + 1

(ln p)/(1 – p) –π2/6
(ln p)/(1 + p) –π2/12
(ln p)/(1 – p2) –π2/8
ln[(1 + p)/(1 – p)] –π2/4
p ln(1 – p) –3/4
ln(–ln p) –E = –0.57722 Euler’s constant
ln(1 + p)/p –π2/12
ln p ln(1 – p) 2 – π2/6

H(p)

ln p  p ln p – p
(ln p)2  p(ln p)2 – 2p ln p + 2p
p ln p  (p2/2)ln p – p2/4
p2 ln p  (p3/3)ln p – p3/9
(ln p)m/p  (ln p)m+1/(m + 1)
1/(p ln p)  ln(ln p)

H p( ) pd
0

1

∫

H p( ) pd∫
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APPENDIX 2

Further Studies in the Method 
of Maximum Likelihood

The theory of the method of maximum likelihood is based upon the
use of the probability density function. The likelihood explicitly
involves the data through the PDF and this is therefore the natural
form to use. However, for a distribution where a quantile function
exists, but a PDF does not, we are forced to use the quantile and
related functions to study the problem. The objective of this appendix
is to show in more detail how this may be done. In Section 9.4 the
emphasis was on numerical solutions. Here we will look at some
more theoretical considerations, although most practical situations
will lead ultimately to numerical and approximate outcomes. A
particular need is to obtain formulae for the variances of the max-
imum likelihood estimators, so that we can have some sense of the
precision in estimation.

For illustration we will concentrate on the linear model

Q(p) = λ + ηS(p), where S(p) is in (–∞, ∞). (A2.1)

Here λ is not a threshold parameter. From this we have 

q(p) = ηs(p) and fQ(p) = 1/(ηs(p)) = (1/η)fS(p), (A2.2)

where fS(p) is the p-PDF for S(p). We also have the “observed” p(r), i.e.,
the p values that would generate the ordered observations from the
model, given implicitly by

x(r) = λ +  ηS(p(r)). (A2.3)

The final basic equation is the log likelihood itself

l = –Σlnq(p(r)) = –n lnη + ΣlnfS(p(r)). (A2.4)
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Notice that

(a) If S(p) is an explicit function of p, then fS(p) is also an
explicit function even if f(x) does not explicitly exist.

(b) p(r) is itself a function of the parameters, as given in (A2.3).
Thus l contains parameters both explicitly and implicitly
through p(r). In differentiating l we therefore need the
derivatives of p(r) with respect to the parameters. These
are obtained by differentiating (A2.3) with respect to the
parameters, noting that x(r) is a constant, thus

∂(3)/∂λ  0 = 1 + ηs(p(r))(∂p(r)/∂λ)

hence

∂p(r)/∂λ = –1/{ηs(p(r))} = –(1/ η)fS(p(r)), (A2.5)

∂(3)/∂η 0 = 1.S(p(r)) + ηs(p(r))(∂p(r)/∂η)

hence

∂p(r)/∂η = – (1/η)S(p(r))/s(p(r)) = –(1/η)S(p(r))fS(p(r)). (A2.6)

We can now differentiate the log likelihood to obtain

(A2.7)

where f ′S(p(r)) is the derivative with respect to p(r) of fS(p(r)).

 (A2.8)

Equating these to zero for maximum log-likelihood values and
putting estimated values in equation (3) to give estimated  gives 

, (A2.9)

, (A2.10)

l∂ λ∂⁄ Σ 1 fS p r( )( )⁄{ }f′S p r( )( )= 1 η⁄( )– fS p r( )( ){ }
1 η⁄( )– Σf′S p r( )( ),=

l∂ η∂⁄ Σ 1 fS p r( )( )⁄{ }f′S p r( )( )= 1 η⁄( )– S p r( )( )fS p r( )( ){ } n η⁄–

1 η⁄( )– ΣS p r( )( )f′S p r( )( ) n+[ ].=

p̂ r( )

x r( ) λ̂ η̂S p̂ r( )( )+=

Σf′S p̂ r( )( ) 0=
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. (Α2.11)

Solving these equations numerically gives the maximum likelihood
estimators. In practical terms the solution seeking the maximum, as
described in Chapter 9, is a simpler approach. The value of working
through the above lies more in the next step. A result in the theory
of maximum likelihood estimation is that for large samples of well-
behaved distributions the estimators are approximately normally dis-
tributed with expectations equal to the true parameter values and
with variances given by the forms 1/I, where the information I is
defined for some parameter θ by

I(θ) = E[–∂2l/∂θ2] (A2.12)

The expectation is with respect to the random variables X. In our
form we have

I(θ) = E[∂2{Σln q(p(r))}/∂θ2]. (A2.13)

This expression can be simplified using three features of the situation:

(a) The linearity of the differentiation and expectation oper-
ators enables the order to be changed and terms to be
differentiated separately.

(b) Although the p(r) relates to the ordered data, the summa-
tion is over all values of r, so the xr can be treated as a
set of n independent observations on the distribution.

(c) The random variable X can be treated as generated by
Q(U) from the uniform variables U, corresponding to the
p in the quantile function.

Using these three features the expression simplifies to

I(θ) = nE[∂2{ln q(U)}/∂θ2], (A2.14)

where the expectation is now for the uniform distribution. For the
present case this gives, using a simplified notation

I(λ) = nE[∂2{–ln η + ln f }/∂λ2]

which from (5) 

ΣS p̂ r( )( )f′S p̂ r( )( ) n+ 0=
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and hence

(A2.15)

For the scale parameter we have

I(η) = nE[∂2(–ln η + ln f )/∂η2],

which using relation (6) and simplifying gives first

I(η) = –nE[∂{(1/ η){1 + Sf ′)/∂η]

and then

 I(η) = (n/η2)E[1 + Sf ′ + sSf ′f +S2f ′′f].

The expectations are now evaluated for any given S(p) using the
uniform distribution.

nE 1 f⁄( )f′ f η⁄–( ){ }∂ λ∂⁄[ ]=

nE f′ η⁄–{ } λ∂⁄∂[ ]–=

n η⁄( )E f″ f η⁄–( )[ ]–=

I λ( ) n η2⁄( )E f″s U( )fs U( )[ ].=
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APPENDIX 3

Bivariate Transformations

In introducing the idea that the quantile function, Q(p), transforms
a uniform variable to the defined distribution, we made use of the
transformation rule that f(x)dx = h(p)dp = 1.dp, using the fact that
Q(p) is an increasing function and denoting the PDFs as f(x) and
h(p). Thus f(x) = h(p)(dp/dx) = dp/dx is the general rule for single
variable distributions. A general analogous result for bivariate trans-
formations is that if (p, r) transforms to (x, y) then the joint PDF
satisfy the relation

f(x, y) = h(p, r)J(p, r | x, y)

where J(p, r | x, y) is the Jacobian defined by

J(p, r | x, y) = (∂p/∂x)(∂r/∂y) – (∂r/∂x)(∂p/∂y).

Use may also be made of the fact that

J(p, r | x, y) = 1/J(x, y/p, r).

For the approach taken to bivariate distributions h(p, r) = 1 for (p, r)
lying in the unit rectangle. We thus have the joint distribution of x
and y given by

f(x, y) = 1/(∂x/∂p)(∂y/∂r) – (∂x/∂r)(∂y/∂p).

Example

For the model

x √Q p( ) 2πr( )cos=

y √Q p( ) 2πr( )sin=
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As h(p, r) = 1 for the bivariate uniform distribution, it follows that the
bivariate (p, r)-probability density function can be written as

fp, r(p, r) = 1/ [πq(p)].

J p r, x y,( ) 1 q p( ) 2√Q p( )( )⁄{ }[ 2πr( )cos √Q p( ) 2πr( ).2πcos⁄=

 q p( ) 2√Q p( )( )⁄{ }+ 2πr( )√Q p( ) 2πr( ).2π ]sinsin
πq p( ).=
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