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Abstract: A technique is introduced which uses the conventional polynomial representation of the antenna
pattern produced by an equispaced linear array. Certain roots are displaced from the unit circle radially, to fill a
portion of the pattern, which before this displayed lobes interspersed by deep nulls. The angular and radial
positions of all the roots are simultaneously adjusted so that the amplitude of each ripple in the shaped region
and the height of each sidelobe in the nonshaped region are individually controlled. Applications to a
cosec2 0 x cos 9 pattern and to a flat-topped beam are presented. Experimental validation is also offered.

1 Introduction

Recently a pattern synthesis technique was described
which yields the excitation of an equispaced linear array
that will produce a shaped-beam pattern with arbitrary
sidelobe topography in the nonshaped region [1]. The
technique relied on an earlier procedure for generating a
suitable starting pattern, which used a polynomial rep-
resentation of the pattern, with all roots on the Schelku-
noff unit circle [2], the positions of these roots being
iteratively adjusted to yield a sum pattern with the height
of each sidelobe independently specified [3].

The sidelobe heights in the starting pattern were adjust-
ed so that, in the region to be shaped (Region I), they coin-
cided with the desired shaping contour C. Elsewhere
(Region II) they were adjusted to agree with the specified
sidelobe topography. This starting pattern was then per-
turbed by moving certain roots radially off the unit circle
to cause null filling in Region I. Trial and error adjustment
of the starting pattern and of the radial root displacements
resulted in a satisfactory approximation to the desired
shaped-beam pattern.

This recent pattern synthesis technique provided, for the
first time, a means of obtaining arbitrary sidelobe topog-
raphy in Region II. However, it suffers from several short-
comings. Foremost is the trial and error feature, which
requires the generation of a second starting pattern to get
the main beam height set properly with respect to the
family of sidelobes, and which requires adjustment of the
radial root displacements in order to balance the ripple
amplitudes in the shaped region. Additionally, the tech-
nique does not provide for independent control of the
amplitude of each ripple cycle.

The procedure to be described in this paper overcomes
these shortcomings by permitting, at the outset, angular as
well as radial displacements of the roots in Region I, and
angular displacements of the roots in Region II. An addi-
tional control parameter is introduced to prevent the main
beam height from floating with respect to the sidelobes.
Computational efficiency is improved by eliminating the
need for a starting pattern whose lobes have the desired
shaping contour as an envelope in Region I.

2 Analysis

The far-field array factor of an equispaced linear array can
be expressed in the form

F = Jnkd cos 6
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(1)
n = 0

in which /„ is the excitation coefficient of the nth radiating
element, d is the interelement spacing, and 0 is measured
from endfire. In eqn. 1, the element factor has been sup-
pressed. With the usual substitutions

\jj = kd cos 6 and w = e

the pattern function becomes

(2)

f-» x * i n I \ 1 / \ / ^ \

n = 0 n = 1

Writing wn = exp («„ + jbn), where an and bn are both real,
we get

N

I ^ I2 = UJV I2 F l Ĉ  ~ 2efln cos (i/̂  — bn) + e2a"'] (4)
n = l

With the TVth root anchored at wN = — 1, i.e. with aN = 0
and frjy = 7i, the power pattern expressed in decibels can be
written as

N-l

G = 10 log10 [1 - 2ea" cos (iff - bn) +

+ 10 log10 [2(1 + cos i/0] + (5)

The added constant Cx allows the value of G at the peak
of the main beam to be set to any convenient reference
value, normally 0 dB.

With no loss of generality we can arrange Region I (the
shaped-beam region) to lie immediately adjacent to i/f = n,
and so the behaviour of G as a function of ip is as shown in
Fig. 1. Let the number of roots to be positioned in Region
I be N1 and in Region II be N2, so that the total number
of wn, including the one fixed at w = — 1, is Nv + N2

G(v!. X)

Fig. 1 Identification of shaped region, sidelobe region, desired contour
and sidelobe topography, and approximating function
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+ I = N. The Nl roots in Region I are arranged to lie
outside the unit circle, so that an > 0, and both the an and
bn are adjustable, whereas the iV2 zeros in Region II are
constrained to lie on the unit circle, making an = 0 and
leaving only the bn adjustable. There is one more par-
ameter available for use in the design, namely the added
constant C\ in eqn. 5, giving a total of 2Nx + N2 + 1 =
N3. These JV3 parameters are assumed assembled, in any
convenient order, as the components of the column vector
x. G is thus a function of both \\J and the vector x, which
we shall indicate, when necessary, by writing it as G{I/J, x).
Note that in Fig. 1, N1 = 3, N2 = 5, and hence N3 = 12.

A shaping function S(if/), in decibels, which represents
the ideal behaviour of G over Region I, must also be pre-
scribed. This is indicated by the dotted line marked S in
Fig. 1. In a general-purpose design program it proves con-
venient to specify S(t//) by means of an approximating poly-
nomial rather than by the exact, and possibly rather
complicated, ideal function. Any function can then be
accommodated by supplying the program with the appro-
priate numerical values of the coefficients, and the
program can find easily, in a standard fashion, the values
of S(i//) and its various derivatives that are needed. This is
described in Appendix 9.1.

In practice, over Region I, G can only approximate S,
and will do so most efficiently if it oscillates around S the
maximum possible number of times, so that the deviation
behaves as in Fig. 2. The values at the maxima and

Fig. 2 Ripple peaks and troughs relative to the desired contour

minima of G — S can all be specified arbitrarily to obtain
the best practical compromise between ripple size and
complexity of aperture excitations. As a special case they
can all be made equal. To achieve this best oscillatory
approximation to S(^), and also to fix the peak of the main
beam at 0 dB, the absolute level of the shaping curve must
be allowed to float up or down slightly. In other words,
S(ij/) must also contain an added constant C2 which is
exactly analogous to the constant Cx in eqn. 5. There is
thus a total of N3 + 1 parameters altogether which must
be chosen in the design, although the choice of C2 can be
made separately from the other iV3 which are handled
through the vector x in the main optimisation loop.

Finally, the performance of G{\p, x) must be specified by
means of the desired values of G at the N2 maxima in
Region II, and at the Nt + 1 maxima and iVx minima of
the function G — 5 in Region I. These N3 values, denoted
by 9i (t = 1, 2, . . . , N3), are all assumed to occur when the
value of G at the peak of the main beam is adjusted to
0 dB. The g{ are assumed assembled, again in any conve-
nient order, as the components of a column vector g.

The design of G(ip, x) to meet this specification can be
handled by using a variant of the Remez algorithm [4]. An
initial requirement is some set of approximate values for
the components of the parameter vector x which cause G
in Region II and G — S in Region I to have the correct
number of maxima and minima; here this proves to be
quite simple. Then the \j/ values of these maxima and
minima are found. Let these values be denoted by if/,{i = 1,
2, . . . , JV3), arranged so that ,̂- is the \\i where g{ is the
desired value of G or G — S.

For each of these N3 values of the t/>,- compute the value
of G(i//,-, x) if i//,- is in Region II, or of G(t/^, x) — S(«̂ ,-) if i/f,-
is in Region I, and then assemble these values as the com-
ponents of a column vector g, with the same ordering as
for the components of g. g is thus the approximation at the
present stage in the design to the desired vector g. Next,
find the Jacobian matrix A whose components a, j are
defined by

a: , =
dxs

U = l , 2 , ...,7V3) (6)

As S(i/0 is independent of x, the jth column of A is effec-
tively dg/dxj.

Now seek a correction Ax to the approximate vector x
which will cause g to become a better approximation to g.
Using the linear part of the Taylor's series for g one
obtains the following linear equation for Ax:

g + A Ax = g (7)

The solution of eqn. 7 for Ax, x 4- Ax can be taken as a
better approximate vector. This completes the basic iter-
ation step which is then repeated until the error between g
and g is small enough for the purpose of the design.

This iteration will cause the values of G over the shaped
region to settle at a level which will allow it to approx-
imate S(i/0 in the required way. All N3 parameters, includ-
ing Cl5 are needed to achieve this. As a result, it is not also
possible to control the value of G at the peak of the main
beam, which will usually end up close to, but not exactly
at, 0 dB. The constant C2 associated with S((̂ ) is used to
correct for this small error.

At the beginning of each iteration locate the ^ value of
the peak of the main beam, say t/f0, and then compute
G(\jjQ, x). If this value is, e.g. — 1 dB, then the curve
described by S(\fj) needs to be raised by 1 dB in order to
bring up the height of the main beam by 1 dB. This is
achieved by decreasing C2 by G(\JJ0 , x).

If C2 is corrected in this way during each iteration, it
rapidly settles down to a value that will cause G((p0, x) to
go to zero without much effect on the rate of convergence
of the iteration. C2 could be included as one of the par-
ameters in the vector x and its value found, along with all
the others, in the main iteration; but this complicates the
program slightly and increases the time of each iteration.
For some designs, e.g. a pattern with a flat-topped beam,
C2 is not needed at all, and by using the proposed method
it is easier to arrange to ignore it.

The starting values for the parameters an and bn are not
especially critical as long as they lead to well defined
maxima for G in Region II and maxima and minima for
G — S in Region I. A simple choice, which proves quite
satisfactory, is to place the wn at equal angular intervals by
using

(n=l2,...,N-\) (8)

With this numbering, the first N2 roots will lie in Region
II, and hence on the unit circle, and so

an = 0 ( n = l , 2 , . . . , J V 2 ) (9)

The next Nl roots will be in Region I and must be located
slightly outsidef the unit circle; it appears to be sufficient
to set

t Choosing these roots to lie outside the unit circle, rather than inside, is done
merely for uniformity in the design and to make the an positive. Reversing the sign
of any an leaves the shape of the power pattern unchanged but moves the corre-
sponding zero to the reciprocal point on the same radius. There are thus 2Nl differ-
ent patterns of roots, and hence sets of excitations /„, for the designer to choose
from, all giving the same pattern. This can be advantageous when the ability for
physical realisation for an actual array is in question due to mutual coupling.
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= 0.01 JV2 + 2, (10)

For the example illustrated in Figs. 1 and 2 these starting
wn values would be as shown in Fig. 3. The initial value for
Ci is not important and can be made zero.

w8o ow7

o w 6

Fig. 3 The complex w-plane and identification of roots on and off the
Schelkunoff unit circle

The maxima of G in Region II are the zeros of the deriv-
ative of G; and the maxima and minima of G — S in
Region I are the zeros of the derivative of G — S, all with
respect to t//. The fastest way of finding the t/f,- is to use the
Newton method to find the zeros of the derivative of the
function concerned. The first and second derivatives of G
and S both need to be found, and the formulas for these,
and a brief discussion of the Newton method, are given in
Appendix 9.2.

During each iteration the existence of all these maxima
and minima, in the correct order, is relied upon for this
Newton process to converge, and hence for the remaining
steps to be possible. One potential danger is that the cor-
rection vector Ax found from eqn. 7 might change the an

parameter values enough to destroy the oscillatory behav-
iour of G — S in Region I, particularly if the desired ripple
size is small.

However, all the evidence obtained from several designs
is that Ax always gives corrections to the an that are
smaller than are needed, so that the an move monotoni-
cally towards their final values. Hence if an oscillatory
behaviour in Region I has bigger ripples than needed, then
this oscillatory behaviour will be preserved after each cor-
rection. A proof that this must necessarily happen would
be reassuring, and may well be possible, but has not yet
been formulated.

Generally, the iteration seems to be very stable and con-
verges rapidly from the starting point described. The con-
vergence can be checked by monitoring the component of
g — g with the largest absolute value. Typically about
ten iterations are needed to reduce this quantity below
0.01 dB.

3 Application to a cosec2 9 x cos 9 pattern

A filled-in pattern of wide applicability has a cosec2 9
x cos 6 shape in Region I, since this gives round-trip

signals that are 9 independent, a desirable feature for
ground-mapping radars and aircraft beacons. As an
example of this type of pattern, consider a sixteen element
equispaced linear array, with d = A/2, to be excited to
approximate cosec2 (9 — n/2) x cos (9 — n/2) in 90 ^ 9 ^
9X, with 90 = 100° the main beam position and 9X = 140°
the terminus of the filled-in region. The first four sidelobes
on the other side of the main beam are to be at — 30 dB;
all other sidelobes should be at —20 dB.t

t This reproduces the example used in Reference 1, but with improvements.
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When the synthesis procedure just described is applied
to this problem it is found that four roots must be dis-
placed from the unit circle in order to fill in the pattern in
Region I. When all ripple peaks and troughs are specified
to be ±1.5 dB from the desired contour, the pattern of Fig.
Aa results. A ± 1 dB specification yields Fig. 4b, a +0.5 dB
requirement gives Fig. 4c, and a goal of ±0.1 dB produces
Fig. Ad.

These four patterns demonstrate, by example, that it is
indeed possible to control the ripple amplitude in Region I
and also the sidelobe topography in Region II. A careful
study of enlargements of these patterns reveals a disadvan-
tage of diminishing the ripple amplitude. The extent of

22.5 A5.0 67.5 90.0 112.5 135.0 157.5 180.0
8, degrees a

22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0
0, degrees b

22.5 A5.0 67.5 90.0 112.5 135.0 157.5 180.0

0,degrees c

0 22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0
0. degrees d

Fig. 4 cosec2 6 x cos 9 patterns produced by a 16 element linear array,
d = k/2. Ripple requirement:
a±1.5dB c±0.5dB
b±1.0dB rf±0.1dB
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Region I monotonically decreases from 41° with a
± 1.5 dB ripple to 34° with a ±0.1 dB ripple.t

The disadvantage arises from the complexity of the
array excitation. Table 1 lists the most favourable set of
currents that will produce the pattern of Fig. 4d. The sense
in which 'most favourable' is being used can be described
as follows: Since each of the N{ roots which lie off the unit

Table 1: Current distribution for most favourable of 16 exci-
tations that will produce Figs. 4a, Ad and 6

/nfor Fig. 4a /„ for Fig. Ad /„ for Fig. 6

circle can be either inside or outside, there are 2Nl sets of
roots that correspond to the same pattern, and thus 2Nl

sets of currents. In this example there are thus sixteen inde-
pendent excitations which will, produce Fig. 4a, another
sixteen which will yield Fig. 4b, etc. When all sixteen exci-
tations corresponding to Fig. 4a are examined, it is found
that the phase distributions are not particularly dissimilar
in their variability, but some of the amplitude distributions
show considerably more variability than others. Amplitude
variability exacerbates the mutual coupling problem, so a
rough criterion for physical realisability could be that the
set of currents which shows the least amplitude variability
should be chosen from among the 16 possibilities.* This
has been done in composing Table 1.

From a study of this Table it can be seen that the exci-
tations required to produce the patterns of Figs. 4a and 4d
are both reasonable enough to be achieved in practice, but
that the maximum/minimum amplitude ratio is only 4.34
for the ±1.5 dB case, whereas it is 9.27 for the ±0.1 dB
case. Table 2, which shows current ratios for all four pat-

Table 2: Amplitude ratios for the 16 possible array excita-
tions corresponding to the patterns of Fig. 4

Ripple

±1.5 dB
±1.0 dB
±0.5 dB
±0.1 dB

Least

4.34
3.97
5.15
9.27

Greatest
LaJImin

7.36
9.76

51.16
55.87

Average
lmjlmin

5.87
6.62

13.39
20.60

terns of Fig. 4, strengthens the argument. A reduced ripple
amplitude requires an array excitation which is more diffi-
cult to achieve.

In some applications, suppression of the ripple is of

t Thus it would be necessary to move five roots off the unit circle if a ±0.1 dB
ripple were specified and 0, = 140° were held firm.

* We are presently making a case study of the actual mutual coupling values in a 16
by 16 slot array for each of these possible excitations to see if there is a correlation
to amplitude variability.

decreasing importance as the main beam is departed from.
Fig. 5 illustrates how the synthesis procedure can be
applied to such situations. In that Figure the ripple ampli-
tude has been allowed to expand linearly from 0.2 dB to
1.0 dB. Easing up on the ripple requirement in this manner
results in less demanding array excitations. lmaxllmin is only
4.44 for the most favourable of the sixteen distributions
that will produce Fig. 5.

-50L
22.5 45.0 67.5 90.0 112.5

9, degrees
135.0 157.5 180.0

Fig. 5 cosec2 9 x cos 6 pattern produced by a 16 element linear array,
d = A/2. Ripple requirement: 0.2 dB at main beam, expanding to 1.0 dB at
end of shaped beam

4 Application to a flat-topped beam

Some applications require a pattern that will provide
uniform coverage in a certain angular region and a con-
trolled sidelobe level elsewhere. An example of this is
shown in Fig. 6. The 16-element array has been adapted to
the specification that a flat-topped beam, with a ripple not
to exceed ±0.5 dB, should extend over the region
65° ^ 6 ^ 115°. The sidelobes on one side are all to be at
— 30 dB whereas on the other side they should all be at
- 2 0 dB.

The most favourable current distribution that will
produce this pattern is listed in the last column of Table 1
and is seen to be well within the state of the art.

5 Experimental validation

With ultimate application to a terrain avoidance radar in
mind, Rantec undertook to test this pattern synthesis tech-
nique by constructing a 2-dimensional slot array consisting
of 26 branch line waveguides, each containing six broad
wall longitudinal slots. The E-plane pattern was to be
within ± 2 dB of cosec2 (0 - 96°) x cos (0 -96° ) in
96° ^ 6 < 140°, with 0 measured from the zenith. Outside

Fig
side.

0 22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0
6, degrees

6 Flat-topped beam with ±0.5 dB ripple. —30 dB sidelobes, one
— 20 dB sidelobes other side
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this range, the side lobes were to fall off as they would in a
uniformly excited array. The H-plane excitation was to be
uniform and the sum of the normalised active admittances
in a branch line was to have the common value 4. The
excitations were first found, using the technique described
earlier in this paper, with all the radially displaced roots
(11 in number) outside the unit circle. Using a slot array
design procedure described elsewhere [7], we discovered
that some of the mutual coupling values were out of
bounds, i.e. the excitations were not physically realisable.
A computer search of the 211 possibilities was undertaken
and it was found that the 1010th case gave minimum
amplitude variability, and also resulted in mutual coupling
values that could be compensated. An array was con-
structed using this excitation and the E-plane pattern at
the design frequency (15 GHz) is shown in Fig. 7. It is

8 References

162 126 108 90
angle from the zenith,degrees

72

Fig. 7 Experimental E-plane pattern for 6 by 26 slot array. 15 GHz.
cosec2 (0 - 96°) x cos (9 - 96°) in 96° ^6 ^ 140°. Contours shown at
±2 dB. (Courtesy ofRantec)

gratifying to see that most of the shaped region is within
the ± 2 dB contours. Probing each branch line, we found
that all but two amplitudes were within 1% of design, and
all phases were within + 5° of design. It can be concluded
from this that the tolerances on excitation are reasonable
in an extreme practical test, since mutual coupling is severe
in the E-plane, which in this case was the plane in which
the pattern was to be shaped.

6 Conclusions

A synthesis procedure has been devised which is applicable
to the design of equispaced linear arrays that will produce
filled-in patterns. The procedure permits individual control
of every ripple peak and trough in the shaped region.
There are 2Nx possible array excitations, with A^ the
number of roots not lying on the Schelkunoff unit circle.
This is an important advantage when the ability for physi-
cal realisation in the face of mutual coupling is considered.

The price paid for a reduced ripple is a shrinkage of the
shaped region (Nx fixed) and an increase in complexity of
the array excitation.

Applications to cosec2 9 x cos 9 type pattern and to
flat-topped beams have been used to illustrate the pro-
cedure.

Extension to planar arrays proceeds directly via the col-
lapsed distribution principle.
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9 Appendix

9.1 Polynomial approximation of the shaping function
The shaping contour for the main beam is intrinsically
prescribed in terms of the variable 9 in eqn. 1; it will
usually be referenced to the specified value of 9 at the peak
of the main beam, say 90, which corresponds to iA0, and
be required to be approximated over some range 90 ^ 9 <
9Y. Let this shaping contour, expressed in decibels, be C(9)
with C(0O) = 0.

The pattern of zeros in the w-plane produced by the
present design has wN anchored arbitrarily at w = — 1, so
it is necessary to rotate the pattern by some angle \j/r until
\j/0 and 90 are related by eqn. 2. The {// variable used in the
design is thus related to 9 by

\\i — \\ir = kd cos 9 (11)

and

•Ao ~ <Ar =

and hence

cos 90

if/ — \j/0 = kd (cos 9 — cos 90) (12)

As the shaping function S(i//) and its derivatives have to be
evaluated many times in each iteration, less computing will
be needed if the polynomial approximation is arranged to
be one that is effectively in ij/ rather than 9. However, as I/J0

(and hence if/,) changes during the iteration, and as the
final value cannot be known before completing the design,
the polynomial can only be in a variable that is linearly
related to \jt. Use is made of this to choose the polynomial
variable, which is denoted by y, so that the range of
approximation is — 1 ^ y ^ 1 to give a polynomial having
the least ill conditioning with respect to its coefficients [5].

If \j/x is the value corresponding to 9X from eqn. 12, then
the linear relation between y and ip which effectively maps
9O^9 ^9l into - 1 ^ y ^ 1 is

y = +•Ai — •Ao *Ai — •Ao

= -, r (̂  - •Ao) - i
•Ai - < A o

= 'i(>A - <Ao) - i

where

2 2

(13)

»Ai - <Ao kd (cos 0t - cos 90)

The coefficient rt in eqn. 13 does not change during the
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design and can be computed before the iteration starts. ip0

is updated during each iteration, and the generation of the
y corresponding to any \p involves only one multiplication
and two subtractions.

If one substitutes kd (cos 6 — cos 60) for ip — ip0 in eqn.
13, 0 can be solved in terms of y to obtain

0 = cos i ( i / j ' + d0)

where

cos 0j — cos 0O

(15)

and

do =
cos 0t + cos 0O

With the change of variable in eqn. 15 C{9) becomes C{y),
and a polynomial P(y) is sought which approximates C(y)
over —1 ^ j ; ^ 1. This is easily found by first expressing
C(y) as a Chebyshev polynomial series as far as the nth
term [6].

C(y) = \cQ T0(y) + Cl T.iy) + --- + cn_1 T^^y) + K Tn(y)

(16)

(17)

where the coefficients ck are found from

2 - . / mrA /W\
cv = - > C cos — x cos

n ,n = o \ n J \ n J
in which £ " indicates that the first and last terms in the
summation are to be halved.

The value of n is chosen to be large enough so that | c,, |
is much smaller than the error which can be tolerated
between P(y) and C(y). If C{y) is a smooth, continuous
function, the coefficients ck will decay rapidly in magnitude
and the maximum error in the polynomial formed by trun-
cating the series in eqn. 16 after Cj will be roughly \cj+l \.
P{y) is then taken as a suitably truncated version of eqn. 16
and its polynomial coefficients found from the ck that are
retained.

To illustrate this, consider the shaping contour

C(0)=lOlog l o
sin (0O - n/2) tan (0O - n/2)

sin {6 - n/2) tan (0 - n/2)

With 0O = 100", 0, = 140' and n = 20, the coefficients ck

given in Table 3 to four decimal places are obtained; to
this accuracy they are zero after c1 0 . The coefficients pk of
the polynomial

+ P6 (18)

formed by truncating after c6 are also given in Table 3.

Table 3: Coefficients of ck and pk

0
1
2
3
4
5
6
7
8
9

10

-16.6128
-7.0497

0.8690
-0.2986

0.0593
-0.0219

0.0052
-0.0019

0.0005
-0.0002

0.0001

0.1663
-0.3498

0.2252
-0.7571

1.3569
-6.2633
-9.1213

9.2 Derivatives of G{% x) and S{ip)
The fastest way to find the maxima and minima of

G(\ft, x) — iS(t/f) in Region I and the maxima of G(\p, x) in
Region II is to use the Newton process to locate the zeros
of the derivatives of the functions concerned. This requires
the computation of the first and second derivatives of G(i/>,
x) and S(ij/) with respect to \p. For G(\j/, x) the formulas are

dG

# =

dip2

°" sin -K) M sin

n=i

N=\

e2a") cos

2(1 + cos \p)

for - bn) - 2

(19)

Dl

M

2(1 + cos \p)
(20)

where M = 20/ln 10 and Dn = 1 - 2ea" cos {\p - bn) + e2a".
For S(ip), the corresponding calculation must be carried

out on the approximating polynomial P(y). If the coeffi-
cients of P(y), as defined in eqn. 18, are assumed stored in a
computer in a subscripted variable with pk in P(k), and if
the degree of P(y) is L, then the following simple BASIC
program will generate, simultaneously, P(y), P'(y) and
P"(y)/2\ in PO, PI and P2, respectively:

PO = P(0)
PI = 0
P2 = 0
FOR I = 1 TO L
P2 = P2*Y + PI
PI = P1*Y + P0
P0 = P0*Y + P(I)
NEXT I

From eqn. 13 we find the final formulas for the derivatives
of S(i//) as

dS _dP dy__ rfP
dip dy dip l dy

dip2 ~ dy2 \dip dy2

(21)

(22)

The starting value for the Newton iteration for each
maximum in Regions I and II can be taken as the arith-
metic mean of the bn values of the two zeros between
which it lies, while for each minimum in Region I the start-
ing value can be taken as the bn value of the zero to which
it is immediately adjacent. These starting values are correct
to a few percent and the iteration usually converges to an
accuracy of six decimal places within two or three cycles.
There is no point in finding the maxima or minima more
accurately than this, and as the convergence is quadratic at
that stage a convenient criterion for stopping the iteration
is when the correction has an absolute value equal to or
less than 10~4.

The same technique can be used for finding ip0 at the
peak of the main beam, and a suitable starting value here
is any point just slightly less than n, e.g. 3.

In the formation of the Jacobian matrix A one needs the
partial derivatives of G(ip, x) with respect to the com-
ponents of x. These are

dG Mea"\jaa" — cos {ip — bn)

dan On

dG Me"" sin (ij/ - bn)

M sin {ip — bn)

(23)

if a,, = 0 (24)
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