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Preface

Almost as soon as we had completed our previous book Functional Data
Analysis in 1997, it became clear that potential interest in the field was
far wider than the audience for the thematic presentation we had given
there. At the same time, both of us rapidly became involved in relevant
new research involving many colleagues in fields outside statistics.

This book treats the field in a different way, by considering case stud-
ies arising from our own collaborative research to illustrate how functional
data analysis ideas work out in practice in a diverse range of subject areas.
These include criminology, economics, archaeology, rheumatology, psychol-
ogy, neurophysiology, auxology (the study of human growth), meteorology,
biomechanics, and education—and also a study of a juggling statistician.

Obviously such an approach will not cover the field exhaustively, and
in any case functional data analysis is not a hard-edged closed system of
thought. Nevertheless we have tried to give a flavor of the range of method-
ology we ourselves have considered. We hope that our personal experience,
including the fun we had working on these projects, will inspire others to
extend “functional” thinking to many other statistical contexts. Of course,
many of our case studies required development of existing methodology, and
readers should gain the ability to adapt methods to their own problems too.

No previous knowledge of functional data analysis is needed to read this
book, and although it complements our previous book in some ways, neither
is a prerequisite for the other. We hope it will be of interest, and accessi-
ble, both to statisticians and to those working in other fields. Similarly, it
should appeal both to established researchers and to students coming to
the subject for the first time.
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Functional data analysis is very much involved with computational
statistics, but we have deliberately not written a computer manual
or cookbook. Instead, there is an associated Web site accessible from
www.springer-ny.com giving annotated analyses of many of the data sets,
as well as some of the data themselves. The languages of these analyses are
MATLAB, R, or S-PLUS, but the aim of the analyses is to explain the
computational thinking rather than to provide a package, so they should
be useful for those who use other languages too. We have, however, freely
used a library of functions that we developed in these languages, and these
may be downloaded from the Web site.

In both our books, we have deliberately set out to present a personal
account of this rapidly developing field. Some specialists will, no doubt,
notice omissions of the kind that are inevitable in this kind of presenta-
tion, or may disagree with us about the aspects to which we have given
most emphasis. Nevertheless, we hope that they will find our treatment in-
teresting and stimulating. One of our reasons for making the data, and the
analyses, available on the Web site is our wish that others may do better.
Indeed, may others write better books!

There are many people to whom we are deeply indebted. Particular ac-
knowledgment is due to the distinguished paleopathologist Juliet Rogers,
who died just before the completion of this book. Among much other re-
search, Juliet’s long-term collaboration with BWS gave rise to the studies
in Chapters 4 and 8 on the shapes of the bones of arthritis sufferers of many
centuries ago. Michael Newton not only helped intellectually, but also gave
us some real data by allowing his juggling to be recorded for analysis in
Chapter 12. Others whom we particularly wish to thank include Darrell
Bock, Virginia Douglas, Zmira Elbaz-King, Theo Gasser, Vince Gracco,
Paul Gribble, Michael Hermanussen, John Kimmel, Craig Leth-Steenson,
Xiaochun Li, Nicole Malfait, David Ostry, Tim Ramsay, James Ramsey,
Natasha Rossi, Lee Shepstone, Matthew Silverman, and Xiaohui Wang.
Each of them made a contribution essential to some aspect of the work
we report, and we apologize to others we have neglected to mention by
name. We are very grateful to the Stanford Center for Advanced Study
in the Behavioral Sciences, the American College Testing Program, and to
the McGill students in the Psychology 747A seminar on functional data
analysis. We also thank all those who provided comments on our software
and pointed out problems.

Montreal, Quebec, Canada Jim Ramsay
Bristol, United Kingdom Bernard Silverman
January 2002



Contents

Preface v

1 Introduction 1
1.1 Why consider functional data at all? . . . . . . . . . . . 1
1.2 The Web site . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The case studies . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 How is functional data analysis distinctive? . . . . . . . . 14
1.5 Conclusion and bibliography . . . . . . . . . . . . . . . . 15

2 Life Course Data in Criminology 17
2.1 Criminology life course studies . . . . . . . . . . . . . . . 17

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 The life course data . . . . . . . . . . . . . . . . . 18

2.2 First steps in a functional approach . . . . . . . . . . . . 19
2.2.1 Turning discrete values into a functional datum . 19
2.2.2 Estimating the mean . . . . . . . . . . . . . . . . 21

2.3 Functional principal component analyses . . . . . . . . . 23
2.3.1 The basic methodology . . . . . . . . . . . . . . . 23
2.3.2 Smoothing the PCA . . . . . . . . . . . . . . . . 26
2.3.3 Smoothed PCA of the criminology data . . . . . 26
2.3.4 Detailed examination of the scores . . . . . . . . 28

2.4 What have we seen? . . . . . . . . . . . . . . . . . . . . . 31



viii Contents

2.5 How are functions stored and processed? . . . . . . . . . 33
2.5.1 Basis expansions . . . . . . . . . . . . . . . . . . 33
2.5.2 Fitting basis coefficients to the observed data . . 35
2.5.3 Smoothing the sample mean function . . . . . . . 36
2.5.4 Calculations for smoothed functional PCA . . . . 37

2.6 Cross-validation for estimating the mean . . . . . . . . . 38
2.7 Notes and bibliography . . . . . . . . . . . . . . . . . . . 40

3 The Nondurable Goods Index 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Transformation and smoothing . . . . . . . . . . . . . . . 43
3.3 Phase-plane plots . . . . . . . . . . . . . . . . . . . . . . 44
3.4 The nondurable goods cycles . . . . . . . . . . . . . . . . 47
3.5 What have we seen? . . . . . . . . . . . . . . . . . . . . . 54
3.6 Smoothing data for phase-plane plots . . . . . . . . . . . 55

3.6.1 Fourth derivative roughness penalties . . . . . . . 55
3.6.2 Choosing the smoothing parameter . . . . . . . . 55

4 Bone Shapes from a Paleopathology Study 57
4.1 Archaeology and arthritis . . . . . . . . . . . . . . . . . . 57
4.2 Data capture . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 How are the shapes parameterized? . . . . . . . . . . . . 59
4.4 A functional principal components analysis . . . . . . . . 61

4.4.1 Procrustes rotation and PCA calculation . . . . . 61
4.4.2 Visualizing the components of shape variability . 61

4.5 Varimax rotation of the principal components . . . . . . 63
4.6 Bone shapes and arthritis: Clinical relationship? . . . . . 65
4.7 What have we seen? . . . . . . . . . . . . . . . . . . . . . 66
4.8 Notes and bibliography . . . . . . . . . . . . . . . . . . . 66

5 Modeling Reaction-Time Distributions 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Nonparametric modeling of density functions . . . . . . . 71
5.3 Estimating density and individual differences . . . . . . . 73
5.4 Exploring variation across subjects with PCA . . . . . . 76
5.5 What have we seen? . . . . . . . . . . . . . . . . . . . . . 79
5.6 Technical details . . . . . . . . . . . . . . . . . . . . . . . 80

6 Zooming in on Human Growth 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Height measurements at three scales . . . . . . . . . . . 84
6.3 Velocity and acceleration . . . . . . . . . . . . . . . . . . 86
6.4 An equation for growth . . . . . . . . . . . . . . . . . . . 89
6.5 Timing or phase variation in growth . . . . . . . . . . . . 91
6.6 Amplitude and phase variation in growth . . . . . . . . . 93



Contents ix

6.7 What we have seen? . . . . . . . . . . . . . . . . . . . . . 96
6.8 Notes and further issues . . . . . . . . . . . . . . . . . . 97

6.8.1 Bibliography . . . . . . . . . . . . . . . . . . . . . 97
6.8.2 The growth data . . . . . . . . . . . . . . . . . . 98
6.8.3 Estimating a smooth monotone curve to fit data . 98

7 Time Warping Handwriting and Weather Records 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Formulating the registration problem . . . . . . . . . . . 102
7.3 Registering the printing data . . . . . . . . . . . . . . . . 104
7.4 Registering the weather data . . . . . . . . . . . . . . . . 105
7.5 What have we seen? . . . . . . . . . . . . . . . . . . . . . 110
7.6 Notes and references . . . . . . . . . . . . . . . . . . . . 110

7.6.1 Continuous registration . . . . . . . . . . . . . . . 110
7.6.2 Estimation of the warping function . . . . . . . . 113

8 How Do Bone Shapes Indicate Arthritis? 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Analyzing shapes without landmarks . . . . . . . . . . . 116
8.3 Investigating shape variation . . . . . . . . . . . . . . . . 120

8.3.1 Looking at means alone . . . . . . . . . . . . . . 120
8.3.2 Principal components analysis . . . . . . . . . . . 120

8.4 The shape of arthritic bones . . . . . . . . . . . . . . . . 123
8.4.1 Linear discriminant analysis . . . . . . . . . . . . 123
8.4.2 Regularizing the discriminant analysis . . . . . . 125
8.4.3 Why not just look at the group means? . . . . . . 127

8.5 What have we seen? . . . . . . . . . . . . . . . . . . . . . 128
8.6 Notes and further issues . . . . . . . . . . . . . . . . . . 128

8.6.1 Bibliography . . . . . . . . . . . . . . . . . . . . . 128
8.6.2 Why is regularization necessary? . . . . . . . . . 129
8.6.3 Cross-validation in classification problems . . . . 130

9 Functional Models for Test Items 131
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 The ability space curve . . . . . . . . . . . . . . . . . . . 132
9.3 Estimating item response functions . . . . . . . . . . . . 135
9.4 PCA of log odds-ratio functions . . . . . . . . . . . . . . 136
9.5 Do women and men perform differently on this test? . . 138
9.6 A nonlatent trait: Arc length . . . . . . . . . . . . . . . . 140
9.7 What have we seen? . . . . . . . . . . . . . . . . . . . . . 143
9.8 Notes and bibliography . . . . . . . . . . . . . . . . . . . 143

10 Predicting Lip Acceleration from Electromyography 145
10.1 The neural control of speech . . . . . . . . . . . . . . . . 145
10.2 The lip and EMG curves . . . . . . . . . . . . . . . . . . 147



x Contents

10.3 The linear model for the data . . . . . . . . . . . . . . . 148
10.4 The estimated regression function . . . . . . . . . . . . . 150
10.5 How far back should the historical model go? . . . . . . 152
10.6 What have we seen? . . . . . . . . . . . . . . . . . . . . . 155
10.7 Notes and bibliography . . . . . . . . . . . . . . . . . . . 155

11 The Dynamics of Handwriting Printed Characters 157
11.1 Recording handwriting in real time . . . . . . . . . . . . 157
11.2 An introduction to dynamic models . . . . . . . . . . . . 158
11.3 One subject’s printing data . . . . . . . . . . . . . . . . . 160
11.4 A differential equation for handwriting . . . . . . . . . . 162
11.5 Assessing the fit of the equation . . . . . . . . . . . . . . 165
11.6 Classifying writers by using their dynamic equations . . 166
11.7 What have we seen? . . . . . . . . . . . . . . . . . . . . . 170

12 A Differential Equation for Juggling 171
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.2 The data and preliminary analyses . . . . . . . . . . . . 172
12.3 Features in the average cycle . . . . . . . . . . . . . . . . 173
12.4 The linear differential equation . . . . . . . . . . . . . . 176
12.5 What have we seen? . . . . . . . . . . . . . . . . . . . . . 180
12.6 Notes and references . . . . . . . . . . . . . . . . . . . . 181

References 183

Index 187



1
Introduction

1.1 Why consider functional data at all?

Functional data come in many forms, but their defining quality is that
they consist of functions—often, but not always, smooth curves. In this
book, we consider functional data arising in many different fields, ranging
from the shapes of bones excavated by archaeologists, to economic data
collected over many years, to the path traced out by a juggler’s finger. The
fundamental aims of the analysis of functional data are the same as those
of more conventional statistics: to formulate the problem at hand in a way
amenable to statistical thinking and analysis; to develop ways of presenting
the data that highlight interesting and important features; to investigate
variability as well as mean characteristics; to build models for the data
observed, including those that allow for dependence of one observation or
variable on another, and so on.

We have chosen case studies to cover a wide range of fields of application,
and one of our aims is to demonstrate how large is the potential scope
of functional data analysis. If you work through all the case studies you
will have covered a broad sweep of existing methods in functional data
analysis and, in some cases, you will study new methodology developed for
the particular problem in hand. But more importantly, we hope that the
readers will gain an insight into functional ways of thinking.

What sort of data come under the general umbrella of functional data?
In some cases, the original observations are interpolated from longitudi-
nal data, quantities observed as they evolve through time. However, there
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are many other ways that functional data can arise. For instance, in our
study of children with attention deficit hyperactivity disorder, we take a
large number of independent numerical observations for each child, and
the functional datum for that child is the estimated probability density of
these observations. Sometimes our data are curves traced out on a surface
or in space. The juggler’s finger directly traces out the data we analyze in
that case, but in another example, on the characteristics of examination
questions, the functional data arise as part of the modeling process. In the
archaeological example, the shape of a two-dimensional image of each bone
is the functional datum in question. And of course images as well as curves
can appear as functional data or as functional parameters in models, as we
show in our study of electromyography recordings and speech articulation.

The field of functional data analysis is still in its infancy, and the bound-
aries between functional data analysis and other aspects of statistics are
definitely fuzzy. Part of our aim in writing this book is to encourage read-
ers to develop further the insights—both statistically and in the various
subject areas from which the data come—that can be gained by thinking
about appropriate data from a functional point of view. Our own view
about what is distinctive about functional data analysis should be gained
primarily from the case studies we discuss, as summarized in Section 1.3,
but some specific remarks are made in Section 1.4 below.

1.2 The Web site

Working through examples for oneself leads to deeper insight, and is an
excellent way into applying and adapting methods to one’s own data. To
help this process, there is a Web site associated with the text. The Web
site contains many of the data sets and analyses discussed in the book.
These analyses are not intended as a package or as a “cookbook”, but our
hope is that they will help readers follow the steps that we went through
in carrying out the analyses presented in the case studies. Some of the
analyses were carried out in MATLAB and some in S-PLUS.

At the time of printing the Web site is linked to the Springer Web site
at www.springer-ny.com.

1.3 The case studies

In this section, the case studies are briefly reviewed. Further details of
the context of the data sets, and appropriate bibliographic references, are
given in the individual chapters where the case studies are considered in
full. In most of them, in addition to the topics explicitly mentioned below,
there is some discussion of computational issues and other fine points of
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Figure 1.1. The functional datum corresponding to a particular individual in the
criminology sample; it shows the way that the annual square root number of
crimes varies over the life course.

methodology. In some chapters, we develop or explain some material that
will be mainly of interest to statistical experts. These topics are set out in
sections towards the end of the relevant chapter, and can be safely skipped
by the more general reader.

Chapter 2: Life course data in criminology
We study data on the criminal careers of over 400 individuals followed
over several decades of their lifespan. For each individual a function is
constructed over the interval [11, 35], representing that person’s level of
criminal activity between ages 11 and 35. For reasons that are explained, it
is appropriate to track the square root of the number of crimes committed
each year, and a typical record is given in Figure 1.1. Altogether we consider
413 records like this one, and the records are all plotted in Figure 1.2.
This figure demonstrates little more than the need for careful methods of
summarizing and analyzing collections of functional data.

Data of this kind are the simplest kind of functional data: we have a
number of independent individuals, for each of whom we observe a sin-
gle function. In standard statistics, we are accustomed to the notion of
a sequence of independent numerical observations. This is the functional
equivalent: a sequence of independent functional observations.
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Figure 1.2. The functional data for all 413 subjects in the criminology study.

The questions we address in Chapter 2 include the following.

• What are the steps involved in making raw data on an individual’s
criminal record into a continuous functional observation?

• How should we estimate the mean of a population such as that in
Figure 1.2, and how can we investigate its variability?

• Are there distinct groups of offenders, or do criminals reside on more
of a continuum?

• How does our analysis point to salient features of particular data? Of
particular interest to criminologists are those individuals who are ju-
venile offenders who subsequently mature into reasonably law-abiding
citizens.

The answers to the third and fourth questions address controversial issues
in criminology; it is of obvious importance if there is a “criminal frater-
nity” with a distinct pattern of offending, and it is also important to know
whether reform of young offenders is possible. Quantifying reform is a key
step towards this goal.

Chapter 3: The nondurable goods index
In Chapter 3 we turn to a single economic series observed over a long
period of time, the U.S. index of nondurable goods production, as plotted
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6 1. Introduction

in Figure 1.3. Although the index is only produced at monthly intervals,
we can think of it as a continuously observed functional time series, with
a numerical value at every point over a period of nearly a century. The
record for each year may be thought of as an individual functional datum,
although of course the point at which each such datum joins to the next is
arbitrary; in our analysis, we take it to be the turn of the calendar year.

Our main concern is not the overall level of production, but an investi-
gation of the dynamics of the index within individual years. It is obvious
to everyone that goods production nowadays is higher than it was in the
1920s, but more interesting are structural changes in the economy that
have affected the detailed behavior, as well as the overall level of activity,
over the last century. We pay particular attention to a construct called the
phase-plane plot, which plots the acceleration of the index against its rate
of growth. Figure 1.4 shows phase-plane plots for 1923 and 1996, years near
each end of the range of our data.

Our ability to construct phase-plane plots at all depends on the possi-
bility of differentiating functional data. In Chapter 3, we use derivatives
to construct useful presentations, but in later chapters we take the use of
derivatives further, to build and estimate models for the observed functional
phenomena.

Chapter 4: Bone shapes from a paleopathology study
Paleopathology is the study of disease in human history, especially taking
account of information that can be gathered from human skeletal remains.
The study described in Chapter 4 investigates the shapes of a large sample
of bones from hundreds of years ago. The intention is to gain knowledge
about osteoarthritis of the knee—not just in the past, but nowadays too,
because features can be seen that are not easily accessible in living patients.
There is evidence of a causal link between the shape of the joint and the
incidence of arthritis, and there are plausible biomechanical mechanisms
for this link.

We concentrate on images of the knee end of the femur (the upper leg
bone); a typical observed shape is shown in Figure 1.5. The functional data
considered in Chapter 4 are the outline shapes of bones like this one, and are
cyclic curves, not just simple functions of one variable. It is appropriate to
characterize these by the positions of landmarks. These are specific points
picked out on the shapes, and may or may not be of direct interest in
themselves.

Specifying landmarks allows a sensible definition of an average bone
shape. It also facilitates the investigation of variability in the population,
via methods drawn from conventional statistics but with some original
twists. Our functional motivation leads to appropriate ways of displaying
this variability, and we are able to draw out differences between the bones
that show symptoms of arthritis and those that do not.
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Figure 1.5. A typical raw digital image of a femur from the paleopathology study.

Chapter 5: Modeling reaction time distributions
Attention deficit hyperactive disorder (ADHD) is a troubling condition,
especially in children, but is in reality not easily characterized or diagnosed.
One important factor may be the reaction time after a visual stimulus.
Children that have difficulty in holding attention have slower reaction times
than those that can concentrate more easily on a task in hand.

Reaction times are not fixed, but can be thought of as following a dis-
tribution specific to each individual. For each child in a study, a sample
of about 70 reaction times was collected, and hence an estimate obtained
of that child’s density function of reaction time. Figure 1.6 shows typical
estimated densities, one for an ADHD child and one for a control.

By estimating these densities we have constructed a set of functional
data, one curve for each child in the sample. To avoid the difficulties caused
by the constraints that probability densities have to obey, and to highlight
features of particular relevance, we actually work with the functions ob-
tained by taking logarithms of the densities and differentiating; one aspect
of this transformation is that it makes a normal density into a straight line.

Investigating these functional data demonstrates that the difference be-
tween the ADHD and control children is not simply an increase in the mean
reaction time, but is a more subtle change in the shape of the reaction time
distribution.
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Figure 1.6. Estimated densities of reaction times for two children in the sample.
The solid curve corresponds to a child with ADHD, and the dashed curve is one
of the controls.

Chapter 6: Zooming in on human growth
Human growth is not at all the simple process that one might imagine
at first sight—or even from one’s own personal experience of growing up!
Studies observing carefully the pattern of growth through childhood and
adolescence have been carried out for many decades. A typical data record
is shown in Figure 1.7. Collecting records like these is time-consuming and
expensive, because children have to be measured accurately and tracked
for a long period of their lives.

We consider how to make this sort of record into a useful functional
datum to incorporate into further analyses. A smooth curve drawn through
the points in Figure 1.7 is commonly called a growth curve, but growth is
actually the rate of increase of the height of the child. In children this is
necessarily positive because it is only much later in life that people begin
to lose stature. We develop a monotone smoothing method that takes this
sort of consideration into account and yields a functional datum that picks
out important stages in a child’s growth.

Not all children go through events such as puberty at the same age. Once
the functional data have been obtained, an important issue is time-warping
or registration. Here the aim is to refer all the children to a common biolog-
ical clock. Only then is it really meaningful to talk about a mean growth
pattern or to investigate variability in the sample. Also, the relationship of
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Figure 1.7. The raw data for a particular individual in a classical growth study.

biological to chronological age is itself important, and can also be seen as
an interesting functional datum for each child.

The monotone smoothing method also allows the consideration of data
observed on much shorter time scales than those in Figure 1.7. The results
are fascinating, demonstrating that growth does not occur smoothly, but
consists of short bursts of rapid growth interspersed by periods of relative
stability. The length and spacing of these saltations can be very short,
especially in babies, where our results suggest growth cycles of length just
a few days.

Chapter 7: Time warping handwriting and weather records
In much biomechanical research nowadays, electronic tracking equipment is
used to track body movements in real time as certain tasks are performed.
One of us wrote the characters “fda” 20 times, and the resulting pen traces
are shown in Figure 1.8. But the data we are actually able to work with
are the full trace in time of all three coordinates of the pen position.

To study the important features of these curves, time registration is es-
sential. We use this case study to develop more fully the ideas of registration
introduced in Chapter 6, and we discover that there are dynamic patterns
that become much more apparent once we refer to an appropriate time
scale.
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Figure 1.8. The characters “fda” written by hand 20 times.

Weather records are a rich source of functional data, as variables such as
temperature and pressure are recorded through time. We know from our
own experience that the seasons do not always fall at exactly the same
calendar date, and one of the effects of global climate change may be dis-
ruption in the annual cycle as much as in the actual temperatures achieved.
Both phase variation, the variability in the time warping function, and am-
plitude variation, the variability in the actual curve values, are important.
This study provides an opportunity to explain how these aspects of vari-
ability can be separated, and to explore some consequences for the analysis
of weather data.

Chapter 8: How do bone shapes indicate arthritis?
Here we return to the bones considered in Chapter 4, and focus attention
on the intercondylar notch, the inverted U-shape between the two ends of
the bone as displayed in Figure 1.5. There are anatomical reasons why
the shape of the intercondylar notch may be especially relevant to the
incidence of arthritis. In addition, some of the bones are damaged in ways
that exclude them from the analysis described in Chapter 4, but do not
affect the intercondylar notch.

The landmark methods used when considering the entire cyclical shape
are not easily applicable. Therefore we develop landmark-free approaches to
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the functional data analysis of curves, such as the notch outlines, traced out
in two (or more) dimensions. Once these curves are represented in an ap-
propriate way, it becomes possible to analyze different modes of variability
in the data.

Of particular interest is a functional analogue of linear discriminant
analysis. If we wanted to find out a way of distinguishing arthritic and
nonarthritic intercondylar notch shapes, simply finding the mean shape
within each group is not a very good way to go. On the other hand, blindly
applying discriminant methods borrowed from standard multivariate anal-
ysis gives nonsensical results. By incorporating regularization in the right
way, however, we can find a mode of variability that is good at separating
the two kinds of bones. What seems to matter is the twist in the shape of
the notch, which may well affect the way that an important ligament lies
in the joint.

Chapter 9: Functional models for test items
Now we move from the way our ancestors walked to the way our children
are tested in school. Perhaps surprisingly, functional data analysis ideas can
bring important insights to the way that different test questions work in
practice. Assume for the moment that we have a one-dimensional abstract
measure θ of ability. For question i we can then define the item response
function Pi(θ) to be the probability that a candidate of ability θ answers
this question correctly.

The particular case study concentrates on the performance of 5000 candi-
dates on 60 questions in a test constructed by the American College Testing
Program. Some of the steps in our analysis are the following.

• There is no explicit definition of ability θ, but we construct a suitable
θ from the data, and estimate the individual item response functions
Pi(θ).

• By considering the estimated item response functions as functional
data in their own right, we identify important aspects of the test
questions, both as a sample and individually. Both graphical and
more analytical methods are used.

• We investigate important questions raised by splitting the sample
into female and male candidates. Can ability be assessed in a gender-
neutral way? Are there questions on which men and women perform
differently? There are only a few such test items in our data, but
results for two of them are plotted in Figure 1.9. Which of these
questions you would find easier would depend both on your gender
and on your position on the overall ability range as quantified by the
estimated score θ.
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Figure 1.9. Probabilities of success on two test questions are displayed for both
females and males, against a fair score that is a reasonable gender-neutral measure
of ability.

Chapter 10: Predicting lip acceleration from electromyography
Over 100 muscles are involved in speech, and our ability to control and
coordinate them is remarkable. The limitation on the rate of production
of phonemes—perhaps 14 per second—is cognitive rather than physical.
If we were designing a system for controlling speech movements, we would
plan sequences of movements as a group, rather than simply executing each
movement as it came along. Does the brain do this?

This big question can be approached by studying the movement of the
lower lip during speech and taking electromyography (EMG) recordings
to detect associated neural activity. The lower lip is an obvious subset
of muscles to concentrate on because it is easily observed and the EMG
recordings can be taken from skin surface electrodes. The larynx would
offer neither advantage!

A subject is observed repeatedly saying a particular phrase. After
preprocessing, smoothing, and registration, this yields paired functional
observations (Yi(t), Zi(t)), where Yi is the lip acceleration and Zi is the
EMG level. If the brain just does things on the fly, then these data could
be modeled by the pointwise model

Yi(t) = α(t) + Zi(t)β(t) + εi(t). (1.1)

On the other hand, if there is feedforward information for a period of length
δ in the neural control mechanism, then a model of the form

Yi(t) = α(t) +
∫ t

t−δ

Zi(s)β(s, t) ds + εi(t) (1.2)

may be more appropriate.
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The study investigates aspects of these formulations of functional linear
regression. The EMG functions play the role of the independent variable
and the lip accelerations that of the dependent variable. Because of the
functional nature of both, there is a choice of the structure of the model
to fit. For the particular data studied, the indication is that there is in-
deed feedforward information, especially in certain parts of the articulated
phrase.

Chapter 11: The dynamics of handwriting printed characters
The subject of this study is handwriting data as exemplified in Figure
1.8. Generally, we are used to identifying people we know well by their
handwriting. Since in this case we have dynamic data about the way the
pen actually moved during the writing, even including the periods it is off
the paper, we might expect to be able to do better still.

It turns out that the X-, Y-, and Z-coordinates of data of this kind can
all be modeled remarkably closely by a linear differential equation model
of the form

u′′′(t) = α(t) + β1(t)u′(t) + β2(t)u′′(t). (1.3)

The coefficient functions α(t), β1(t), and β2(t) depend on which coordinate
of the writing one is considering, and are specific to the writer. In this
study, we investigate the ways that models of this kind can be fitted to
data using a method called principal differential analysis.

The principal differential analysis of a particular person’s handwriting
gives some insight into the biomechanical processes underlying handwrit-
ing. In addition, we show that the fitted model is good at the classification
problem of deciding who wrote what. You may well be able to forge the
shape of someone else’s signature, but you will have difficulty in producing
a pen trace in real time that satisfies that person’s differential equation
model.

Chapter 12: A differential equation for juggling
Nearly all readers will be good at handwriting, but not many will be equally
expert jugglers. An exception is statistician Michael Newton at Wisconsin,
and data observed from Michael’s juggling are the subject of our final case
study. Certainly to less talented mortals, there is an obvious difference
between handwriting and juggling: when we write, the paper remains still
and we are always trying to do the same thing; a juggler seems to be
catching and throwing balls that all follow different paths.

Various markers on Michael’s body were tracked, but we concentrate on
the tip of his forefinger. The juggling cycles are not of constant length,
because if the ball is thrown higher it takes longer to come back down, and
so there is some preprocessing to be done. After this has been achieved, the
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Figure 1.10. The average juggling cycle as seen from the juggler’s perspective
facing forward. The points on the curve indicate times in seconds, and the total
cycle takes 0.711 seconds. The time when the ball leaves the hand and the time
of the catch are shown as circles.

average juggling cycle is shown from one view in Figure 1.10. More details
are given in Chapter 12.

Although individual cycles vary, they can all be modeled closely by a
differential equation approach building on that of Chapter 11. There is
a key difference, however; for the handwriting data the model (1.3) was
used to model each coordinate separately. In juggling, there is crosstalk
between the coordinates, with the derivatives and second derivatives of
some affecting the third derivatives of others. However, there is no need for
the terms corresponding to α(t) in the model.

Various aspects of the coordinate functions β(t) are discussed. Most in-
terestingly, the resulting system of differential equations controls all the
individual juggling cycles almost perfectly, despite the outward differences
among the cycles. Learning to juggle almost corresponds to wiring the
system of differential equations into one’s brain and motor system.

1.4 How is functional data analysis distinctive?

The actual term functional data analysis was coined by Ramsay and Dalzell
(1991), although many of the ideas have of course been around for much
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longer in some form. What has been more distinctive about recent research
is the notion of functional data analysis as a unified way of thinking, rather
than a disparate set of methods and techniques.

We have quite deliberately refrained from attempting an exhaustive def-
inition of functional data analysis, because we do not wish to set hard
boundaries around the field. Nevertheless, it may be worth noting some
common aspects of functional data that arise frequently in this book and
elsewhere.

• Conceptually, functional data are continuously defined. Of course, in
practice they are usually observed at discrete points and also have to
be stored in some finite-dimensional way within the computer, but
this does not alter our underlying way of thinking.

• The individual datum is the whole function, rather than its value
at any particular point. The various functional data will often be
independent of one another, but there are no particular assumptions
about the independence of different values within the same functional
datum.

• In some cases the data are functions of time, but there is nothing
special about time as a variable. In the case studies we have been
involved in, the data are functions of a one-dimensional variable,
but most of the insights carry over straightforwardly to functions
of higher-dimensional variables.

• There is no general requirement that the data be smooth, but often
smoothness or other regularity will be a key aspect of the analysis.
In some cases, derivatives of the observed functions will be impor-
tant. On other occasions, even though the data themselves need not
be smooth, smoothness assumptions will be appropriate for mean
functions or other functions involved in modeling the observed data.

1.5 Conclusion and bibliography

Those wishing to read further are referred initially to the book by Ramsay
and Silverman (1997), which gives a thematic treatment of many of the
topics introduced by case studies in the present volume. That book also
contains many additional bibliographic references and technical details. Of
particular relevance to this introduction are Chapters 1 and 16 of Ram-
say and Silverman (1997). These both stand aside somewhat from specific
methods but discuss the general philosophy of functional data analysis.
Chapter 16, in particular, considers the historical context of the subject
as well as raising some issues for further investigation. Many of the case
studies presented in this book are the fruits of our own continuing research
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in response to this challenge. Although our present book approaches func-
tional data analysis from a different direction, the remark (Ramsay and
Silverman, 1997, page 21) made in our previous book remains equally true:

In broad terms, we have a grander aim: to encourage readers to
think about and understand functional data in a new way. The
methods we set out are hardly the last word in approaching
the particular problems, and we believe that readers will gain
more benefit by using the principles we have laid down than by
following our suggestions to the letter.

Even more than a thematic treatment, case studies will always lead the
alert reader to suggest and investigate approaches that are different, and
perhaps better, than those originally presented. If a reader is prompted by
one of our chapters to find a better way of dealing with a functional data
set, then our aim of encouraging further functional data analysis research
and development will certainly have been fulfilled.



2
Life Course Data in Criminology

2.1 Criminology life course studies

2.1.1 Background
An important question in criminology is the study of the way that people’s
level of criminal activity varies through their lives. Can it be said that there
are “career criminals” of different kinds? Are there particular patterns of
persistence in the levels of crimes committed by individuals? These issues
have been studied by criminologists for many years. Of continuing impor-
tance is the question of whether there are distinct subgroups or clusters
within the population, or whether observed criminal behaviors are part of
a continuum. Naturally, one pattern of particular interest is “desistance’,
the discontinuation of regular offending.

The classic study Glueck and Glueck (1950) considered the criminal his-
tories of 500 delinquent boys. The Gluecks and subsequent researchers
(especially Sampson and Laub, 1993) carried out a prospective longitu-
dinal study of the formation and development of criminal “careers” of the
individuals in their sample. The subjects were initially interviewed at age
around 14, and were followed up subsequently, both by personal interview
and through FBI and police records. The main part of the data was col-
lected by the Gluecks themselves over the period 1940 to 1965, but there
are subsequent data right up to the present day, giving individual life course
information up to age 70. These data are very unusual in providing long-
term longitudinal information; most criminological data are cross-sectional
or at best longitudinal only over restricted age ranges.
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Figure 2.1. Histogram of the average annual number of arrests for each of 413
men over a 25-year time period.

The objective is to understand the pattern or trajectory through life of
offending for the members of the sample. For each individual, the number
of official arrests in each year of their life is recorded, starting in some cases
as early as age 7. Obviously these are only a surrogate for the number of
crimes committed, but they give a good indication of the general level of
criminal activity. There is information on the type of crime and also on
various concomitant information, but we do not consider this in detail.

2.1.2 The life course data
We concentrate on a single set of data giving the numbers of arrests of
413 men over a 25-year period in each of their lives, from age 11 to age
35. These are the individuals for whom we have full information over this
period. An immediate indication of the diversity within the group is given
by considering the overall annual average number of arrests for each indi-
vidual. Figure 2.1 shows that some of the men had only a low overall arrest
rate, while others were clearly habitual offenders with 50 or more arrests
registered in total. It is also clear that the distribution is highly skewed.

Another aspect is the high variability for each individual over time. Fig-
ure 2.2 shows the raw data for a typical individual. It can be seen that
this person was arrested in connection with three offenses at age 11, one
at age 14, and so on. The small numbers of crimes each year mean that
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Figure 2.2. The record of a particular individual, showing the numbers of arrests
at various ages. This individual was arrested for three offenses at age 11, one at
age 14, and so on, but was not arrested at all in years 12, 13, 15, etc.

every individual is likely to show a sporadic pattern of some sort. Despite
the very noisy nature of the data, one of our aims is to find ways of quanti-
fying meaningful patterns in individuals that reflect variation in the wider
population.

Our analysis raises a number of questions of broader importance in func-
tional data analysis. The approach is to represent the criminal record of
each subject by a single function of time, and then to use these functions
for detailed analysis. But how should discrete observations be made into
functional data in the first place? Does the functional nature of the data
have any implications when producing smoothed estimates of quantities
such as the overall mean curve? How can meaningful aspects of variation
of the entire population be estimated and quantified in the presence of such
large variability in individuals?

2.2 First steps in a functional approach

2.2.1 Turning discrete values into a functional datum
We construct for each individual a function of time that represents his level
of criminal activity. A simple approach would be to interpolate the raw
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Figure 2.3. Histogram of the averages for each of 413 individuals of the square
roots of annual tallies of arrests.

Age

R
oo

t a
nn

ua
l n

um
be

r 
of

 o
ffe

ns
es

10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5
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Figure 2.2.
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numbers of arrests in each year, but because of the skewness of the annual
counts this would give inordinate weight to high values in the original
data. In order to stabilize the variability somewhat, we start by taking
the square root of the number of arrests each year. The rationale for this
is partly pragmatic: if we plot a histogram of the averages across time of
these square roots we see from Figure 2.3 that the skewness is somewhat
reduced. In addition, if the numbers of arrests are Poisson counts, then the
square root is the standard variance-stabilizing transformation.

One could conceivably smooth the square roots of annual counts to pro-
duce a functional observation for the individual considered in Figure 2.2.
However, in order not to suppress any information at this stage, we interpo-
late linearly to produce the functional observation shown in Figure 2.4. We
now throw away the original points and regard this function as a whole as
being the datum for this individual. In the remainder of this chapter, we de-
note by Y1(t), Y2(t), . . . , Y413(t) the 413 functional observations constructed
from the square roots of the annual arrest count for the 413 individuals in
the study.

2.2.2 Estimating the mean
The next step in the analysis of the data is to estimate the mean function
of the functional data. The natural estimator to begin with is simply the
sample average defined in this case by

Ȳ (t) =
1

413

413∑
i=1

Yi(t).

The function Ȳ (t) is plotted in Figure 2.5. It can be seen that, despite the
large number of functions on which the mean is based, there is still some
fluctuation in the result of a kind that is clearly not relevant to the problem
at hand; there is no reason why 29-year olds commit fewer offenses than
both 28- and 30-year olds for instance! Before embarking on a discussion of
smoothing the mean function, it should be pointed out that this particular
set of data has high local variability. In many other practical examples no
smoothing will be necessary.

There are many possible approaches to the smoothing of the curve in
Figure 2.5, and the one we use is a roughness penalty method. We measure
the roughness, or variability, of a curve g by the integrated squared second
derivative of g. Our estimate of the overall mean is then the curve mλ(t)
that minimizes the penalized squared error

Sλ(g) =
∫

{g(t) − Ȳ (t)}2dt + λ

∫
{g′′(t)}2dt. (2.1)

Here the smoothing parameter λ ≥ 0 controls the trade-off between close-
ness of fit to the average of the data, as measured by the first integral in
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Figure 2.5. The sample mean function of the criminology functional data.
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Figure 2.6. Estimate of the overall mean of the square root of the number of
arrests per year. Points: raw means of the data. Dashed curve: roughness penalty
smooth, λ = 2 × 10−7, cross-validation choice. Solid curve: roughness penalty
smooth, λ = 10−6, subjective adjustment.
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(2.1) and the variability of the curve, as measured by the second integral.
Both integrals are taken over the range of the parameter t, in this case from
11 to 35. If λ = 0 then the curve mλ(t) is equal to the sample mean curve
Ȳ (t). As λ increases, the curve mλ(t) gets closer to the standard linear
regression fit to the values of Ȳ (t).

In practice, the smoothing parameter λ has to be chosen to obtain a
curve mλ(t) that is reasonably faithful to the original sample average but
eliminates obviously extraneous variability. In practice, it is often easiest to
choose the smoothing parameter subjectively, but in some circumstances
an automatic choice of smoothing parameter may be useful, if only as a
starting point for further subjective adjustment. An approach to this auto-
matic choice using a method called cross-validation is discussed in Section
2.6. In Figure 2.6 we give the smoothed mean curve obtained by an auto-
matic choice of smoothing, and also the effect of a subjective adjustment to
this automatic choice. For the remainder of our analysis, this subjectively
smoothed curve is used as an estimate of the overall mean function. We use
the subjectively smoothed curve rather than the initial automatic choice
because of the need to have a firm stable reference curve against which to
judge individuals later in the analysis. In constructing this reference, we
want to be sure that spurious variability is kept to a minimum.

2.3 Functional principal component analyses

2.3.1 The basic methodology
What are the types of variability between the boys in the sample? There is
controversy among criminologists as to whether there are distinct criminal
groups or types. Some maintain that there are, for instance, specific groups
of high offenders, or persistent offenders. Others reject this notion and
consider that there is a continuum of levels and types of offending.

Principal components analysis (PCA) is a standard approach to the
exploration of variability in multivariate data. PCA uses an eigenvalue
decomposition of the variance matrix of the data to find directions in the
observation space along which the data have the highest variability. For
each principal component, the analysis yields a loading vector or weight
vector which gives the direction of variability corresponding to that com-
ponent. For details, see any standard multivariate analysis textbook, such
as Johnson and Wichern (2002).

In the functional context, each principal component is specified by a
principal component weight function ξ(t) defined over the same range of t
as the functional data. The principal component scores of the individuals
in the sample are the values zi given by

zi =
∫

ξ(t)Yi(t)dt. (2.2)
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The aim of simple PCA is to find the weight function ξ1(t) that maximizes
the variance of the principal component scores zi subject to the constraint

∫
ξ(t)2dt = 1. (2.3)

Without a constraint of this kind, we could make the variance as large as
we liked simply by multiplying ξ by a large quantity.

The second-, third-, and higher-order principal components are defined in
the same way, but with additional constraints. The second component func-
tion ξ2(t) is defined to maximize the variance of the principal component
scores subject to the constraint (2.3) and the additional constraint

∫
ξ2(t)ξ1(t)dt = 0. (2.4)

In general, for the jth component we require the additional constraints
∫

ξj(t)ξ1(t)dt =
∫

ξj(t)ξ2(t)dt = . . . =
∫

ξj(t)ξj−1(t) = 0, (2.5)

which will ensure that all the estimated principal components are mutually
orthogonal.

In the case of the criminology data, the approach just described corre-
sponds approximately to the following; the approximation is due to the
approximation of the integrals by sums in (2.2) through (2.5).

1. Regard each of the functional data as a vector in 25-dimensional
space, by reading off the values at each year of the individual’s age.

2. Carry out a standard PCA on the resulting data set of 413
observations in 25-dimensional space.

3. Interpolate each principal component weight vector to give a weight
function.

In Figure 2.7 the results of this approach are illustrated. For each of the
first three principal components, three curves are plotted. The dashed curve
is the overall smoothed mean, which is the same in all cases. The other two
curves show the effect of adding and subtracting a suitable multiple of the
principal component weight function.

It can be seen that the first principal component corresponds to the over-
all level of offending from about age 15 to age 35. All the components have a
considerable amount of local variability, and in the case of the second com-
ponent, particularly, this almost overwhelms any systematic effect. Clearly
some smoothing is appropriate, not surprisingly given the high variability
of the data.



2.3. Functional principal component analyses 25

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

+
+

+
+

+

-

-
-

- -

First PC

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

+

+

+ +
+

-

- -

-
-

Second PC

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

+

+ +
+

+

- -

-
-

-

Third PC

Figure 2.7. The effect of the first three unsmoothed principal components of
the criminology data. In each graph, the dashed curve is the overall mean, and
the solid curves are the mean ± a suitable multiple of the relevant principal
component weight function. The + and − signs show which curve is which.
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2.3.2 Smoothing the PCA
Smoothing a functional principal component analysis is not just a matter of
smoothing the components produced by a standard PCA. Rather, we return
to the original definition of principal components analysis and incorporate
smoothing into that. Let us consider the leading principal component first
of all.

To obtain a smoothed functional PCA, we take account of the need not
only to control the size of ξ, but also to control its roughness. With this in
mind, we replace the constraint (2.3) by a constraint that takes roughness
into account as well. Thus, the first smoothed principal component weight
function is the function ξ1(t) that maximizes the variance of the principal
component scores subject to the constraint∫

{ξ(t)}2dt + α

∫
{ξ′′(t)}2dt = 1. (2.6)

As usual, the parameter α ≥ 0 controls the amount of smoothing inherent
in the procedure.

A roughness penalty is also incorporated into the additional constraints
on the second-, third-, and higher-order smoothed principal components.
The second component function ξ2(t) is now defined to maximize the vari-
ance of the principal component scores subject to (2.6) and the additional
constraint ∫

ξ2(t)ξ1(t)dt + α

∫
ξ′′
2 (t)ξ′′

1 (t)dt = 0. (2.7)

For the jth component we require constraints analogous to (2.5), but with
corresponding extra terms taking the roughness penalty into account. This
will ensure that the estimated components satisfy the condition∫

ξi(t)ξj(t)dt + α

∫
ξ′′
i (t)ξ′′

j (t)dt = 0

for all i and j with i � = j.
There are some attractive features to this approach to defining a

smoothed principal components analysis. First, when α = 0, we recover
the standard unsmoothed PCA of the data. Second, despite the recursive
nature of their definition, the principal components can be found in a single
linear algebra calculation; details are given in Section 2.5.3.

2.3.3 Smoothed PCA of the criminology data
The first three principal component weight functions arising from a
smoothed PCA are given in Figure 2.8. The smoothing parameter was
chosen by subjective adjustment to the value α = 10−5. It can be seen that
each of these components now has a clear interpretation.
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Figure 2.8. The effect on the mean curve of adding and subtracting a multiple of
each of the first three smoothed functional principal components. The smoothing
parameter was set to α = 10−5.
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The first quantifies the general level of criminal activity throughout later
adolescence and adulthood. A high scorer on this component would show
especially above-average activity in the years from age 18 to age 30. It is
interesting that this increased difference is not in the teenage years when
the general level is very high anyway. High scorers on this component are
above average during late adolescence but not markedly so; it is in their
late teens and twenties that they depart most strongly from the mean. For
this reason we call this component “Adult crime level.”

The second component indicates a mode of variability corresponding to
high activity up to the early twenties, then reforming to better than average
in later years. High scorers are juvenile delinquents who then see the error
of their ways and reform permanently. On the other hand those with large
negative scores are well-behaved teenagers who then later take up a life of
crime. We call this component “Long-term desistance.”

The third component measures activity earlier in life. High scorers on this
component are high offenders right from childhood through their teenage
years. The component then shows a bounceback in the early twenties, later
reverting to overall average behavior. This component is most affected by
juvenile criminal activity and we call it “Juvenile crime level.”

Sampson and Laub (1993, Chapter 1) place particular emphasis on early
onset of delinquency and on adult desistance as important aspects of the
life course often neglected by criminologists. Our analysis supports their
claim, because the smoothed principal components analysis has picked out
components corresponding to these features.

2.3.4 Detailed examination of the scores
We now find the score of each of the 413 individuals in the sample on these
three principal components, by integrating the weight function against the
functional datum in each case. This gives each individual a score on each of
the attributes “adult,” “desistance,” and “juvenile.” These are plotted in
pairs in Figure 2.9. There is essentially no correlation among these scores, so
the three aspects can be considered as uncorrelated within the population.

However, the distribution of the first component, labeled “Adult” in the
plots, is very skewed, with a long tail to the right; note that the mean of
these scores is only 1.8. Even after taking the square root transformation,
there are some individuals with very high overall rates of offending. If the
overall score is low, then the values of “Desistance” are tightly clustered,
but this is not the case for higher levels. This is for the simple reason
that individuals with low overall crime rates have no real scope either to
desist strongly, or to increase strongly. Because the overall rate cannot
be negative, there are, essentially, constraints on the size of the second
component in terms of that of the first, and these are visible in the plot.
What the plot shows is that individuals with high overall rates can equally
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Figure 2.9. Plots of the first three principal components scores of the criminology
life course data. The mean of the Adult scores is about 1.8.

well be strong desisters or strong “late developers,” The same variability
of behavior is not possible among low offenders.

The second and third components have symmetric unimodal distribu-
tions, and the third plot gives the kind of scatter one would expect from
an uncorrelated bivariate normal distribution. The second plot of course
shows the skewness of the “Adult” variable, but otherwise shows no very
distinctive features.
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Figure 2.10. High desistance/low adult score plotted against Adult score.

Let us return to the plot of Adult against Desistance scores. An impor-
tant issue in criminology is the existence of distinct groups of individuals in
the population. There is no suggestion in this plot of a cluster of high-crime
individuals even though there is a long tail in the distribution. However,
there does appear to be a preponderance of cases near the upper boundary
of the plotted points toward the left of the picture. These are all individ-
uals with low adult crime rates and with nearly the maximum possible
desistance for their adult crime scores. In order to identify these cases, we
introduce a high desistance/low adult (HDLA) score, defined by

HDLA = 0.7 × (Desistance score) − (Adult score) + 8.

A plot of the HDLA score against the Adult score is given in Figure
2.10. The multiple of 0.7 in the definition of HDLA was chosen to make
the boundary at the top of this plot horizontal. The arbitrary constant 8
was added to make all the scores positive. We can see that there is a range
of values of Adult scores for which HDLA is near its maximum value.
A histogram of the HDLA values is given in Figure 2.11. Although the
individuals with HDLA values near the maximum do not form a separate
group, there is certainly a strong tendency for a cluster to form near this
value. What do the trajectories of such individuals look like?

Ignoring all other variability, we examine the raw data of the 36 indi-
viduals with HDLA scores above 7.87. These are plotted in Figure 2.12.
The individual trajectories cannot be easily distinguished, but the message
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Figure 2.11. Histogram of the HDLA scores.

is clear: these are individuals who give up crime altogether by their late
teens, even though earlier on they may have been quite high offenders. This
is confirmed by Figure 2.13, which compares the HDLA score to the last
age at which any offense is committed. A small number of individuals have
very high HDLA scores but still offend very sporadically later in life. Thus
the HDLA score is a more robust measure of almost total desistance than
is the simple statistic of the last age at which any offense is committed.

2.4 What have we seen?

Constructing functional observations from discrete data is not always
straightforward, and it is often preferable to transform the original data
in some way. In the case of the criminology life course data, a square root
of the original annual counts gave good results.

A key feature of the life course data is the high variability of the
individual functional data. Even though there are over 400 curves, the
sample mean curve still contains noticeable spurious fluctuation. A rough-
ness penalty smoothing approach gives a natural way of incorporating
smoothing into the estimation of the mean. In the functional context, some
guidance as to the appropriate value of the smoothing parameter can be
obtained by a cross-validation method discussed in more detail below.
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Figure 2.12. Raw data for the individuals with HDLA scores above 0.27. The
data have been slightly jittered in order to separate the lines.
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Figure 2.13. Age of last recorded offense plotted against HDLA scores. The indi-
viduals with highest HDLA scores correspond closely to those who give up crime
altogether by age 20.



2.5. How are functions stored and processed? 33

Without some smoothing, a functional principal components analysis of
these data does not give very meaningful results. However, good results can
be obtained by incorporating a roughness penalty into the size constraint
of the principal component weight functions. The various principal compo-
nents have immediate interpretations in terms of the original criminological
issues, and can be used to build a composite score, the high desistance/low
adult score, which brings out particular features of importance. There is
no real evidence of strong grouping within the original data.

At this point, we have finished the specific task of analyzing the crimi-
nology data, but our discussion has raised two particular matters that are
worth exploring in more detail. A general matter is the way that functional
observations are stored and processed. A more specific issue is the cross-
validation approach to the choice of smoothing parameter when estimating
the mean. Some readers may wish to skip these sections, especially Section
2.5.2 onwards.

2.5 How are functions stored and processed?

2.5.1 Basis expansions
In the example we have considered, we could simply store all the original
values at the 25 evaluation points, since these points are the same for each
individual in the sample. However, there are several reasons for considering
other approaches. First, it is in the spirit of functional data analysis that we
wish to specify the whole function, not just its value at a finite number of
points. Second, it is important to have a method that can generalize to the
case where the evaluation points are not the same for every individual in
the sample. Third, we will often wish to be able to evaluate the derivatives
of a functional datum or other function we are considering.

A good way of storing functional observations is in terms of a suitable
basis. A basis is a standard set of functions, denoted β1(t), β2(t), . . . , βm(t),
for example, such that any function of interest can be expanded in terms
of the functions βj(t). If a functional datum x(t) is written

x(t) =
m∑

j=1

ξjβj(t) (2.8)

then the vector of m coefficients ξ = (ξ1, . . . , ξm) specifies the function.
Storing functional data in terms of an appropriate basis is a key step in

most functional data analyses. Very often, the basis is defined implicitly
within the procedure and there is no need for the user to be aware of it.
For example, our treatment of the criminology life course data used a very
simple basis, the polygonal basis made up of triangular functions like the
ones shown in Figure 2.14. In mathematical terms, the basis functions δi(t)
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Figure 2.14. Three triangular basis functions. The functions are zero outside the
range plotted.

are defined for i = 1, 2, . . . , 25 and 11 ≤ t ≤ 35 by setting ti = i + 10 and

δi(t) =
{

1 − |t − ti| if |t − ti| < 1
0 otherwise. (2.9)

The coefficients ξj of a particular function are, in this case, exactly the
values x(j + 10) of the function at the evaluation points. In between these
points the function is interpolated linearly.

Because the basis functions δj(t) are not themselves everywhere smooth,
they will not give rise to smooth basis expansions either. A good basis for
the representation of smooth functions is a basis of B-splines, as plotted
in Figure 2.15. B-splines are a flexible and numerically stable basis that
is very commonly used. Except near the boundaries, the B-splines we use
are all identical bell-shaped curves. The nonzero part of each B-spline is a
piecewise cubic polynomial, with four cubic pieces fitting together smoothly
to give a curve that has jumps only in its third derivative.

In the following sections, we give more details of the calculations involv-
ing basis expansions. These are intended for readers who are interested in
the way that the basis expansions are used in practice and might wish to re-
construct the calculations for themselves. The algorithms are not explained
in detail, but the more mathematically sophisticated reader not willing to
take the results on trust should have no difficulty in reconstructing the
arguments underlying them.
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Figure 2.15. A B-spline basis that can be used to represent smooth functions

The first step is to use discrete observations of a function to obtain a basis
representation. Then we move to the ways in which the smoothed mean
estimation and the smoothed principal components analysis are carried
out for a set of functional data held in basis representation form. The life
course data are used as a concrete example, but the general principles can
be extended widely. Some of this material is discussed in more detail in
Ramsay and Silverman (1997) but it is convenient to draw it all together
here. Some additional material, including S-PLUS software, is given in the
Web page corresponding to this chapter.

2.5.2 Fitting basis coefficients to the observed data
Consider the criminology data for a single individual in the sample. In our
case the function corresponding to that individual is specified at the 25
points corresponding to ages from 11 to 35, and a triangular basis is used.
More generally we will have values x1, x2, . . . , xn at n evaluation points
t1, t2, . . . , tn, and we will have a more general set of basis functions βj(t).
Define the n × m matrix B to have elements

Bij = βj(ti),

so that if the coefficient vector is ξ then the vector of values at the evaluation
points is Bξ.
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There are now two cases to consider.1 If there are no more basis functions
than evaluation points, so that m ≤ n, then we can fit the basis functions
by least squares, to minimize the sum of squares of deviations between xk

and
∑

j ξjβj(tk). By standard statistical least squares theory, setting

ξ = (B′B)−1B′x

will then specify the coefficients completely. If m = n the resulting expan-
sion x(t) =

∑
j ξjβj(t) will interpolate the values xi exactly, whereas if

m < n the expansion will be a smoothed version of the original data. In
the criminology data example, the matrix B is the identity matrix and so
we simply set ξ = x.

On the other hand, if there are more basis functions than evaluation
points, there will be many choices of ξ that will interpolate the given values
exactly, so that

xk =
m∑

j=1

ξjβj(tk) for each k = 1, 2, . . . , n, (2.10)

which can be written in vector form as Bξ = x. In order to choose between
these, we choose the parameters that minimize the roughness of the curve,
suitably quantified. For instance, if a B-spline basis is used, we can use the
roughness penalty

∫ {x′′(t)}2dt. Define the matrix K by

Kij =
∫

β′′
i (t)β′′

j (t)dt. (2.11)

Then the roughness is equal to ξ′Kξ, so we choose the coefficient vector ξ
to minimize ξ′Kξ subject to the constraint Bξ = x. If a triangular basis is
used, we could use a roughness penalty based on first derivatives, but the
principle is the same.

One specific feature of the general approach we have described is that
it does not matter if the various functional data in the sample are not
observed at the same evaluation points—the procedure will refer all the
different functional data to the same basis, regardless of the evaluation
points at which each has been observed.

2.5.3 Smoothing the sample mean function
Now we move on to the calculation of the smoothed overall mean and to
smoothed principal components analysis. In all cases, it is assumed that
we have a set of functional data Y1(t), Y2(t), . . . , Yn(t) expanded in terms

1This discussion is subject to the technical condition that B is of full rank. If, excep-
tionally, this is not so, then a roughness penalty approach can still be used to distinguish
between different basis representations that fit the data equally well.
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of a basis δ1(t), . . . , δm(t). Thus there is an n × m matrix A = (aij) of
coefficients such that

Yi(t) =
m∑

j=1

aijδj(t).

If we let āj = n−1 ∑
i aij , then we have

Ȳ (t) =
m∑

j=1

ājδj(t).

Because the basis functions δj(t) may not be sufficiently smooth to allow
the appropriate roughness penalty to be defined, we may wish to use a
different basis βk(t) of size M when expanding the estimated mean curve.
Given an M -vector γ of coefficients, consider the function g with these basis
function coefficients in the new basis:

g(t) =
m∑

j=1

γjβj(t).

Define the matrices J and L by

Jij =
∫

βi(t)βj(t)dt and Lij =
∫

βi(t)δj(t)dt

and the matrix K by (2.11) above.
From these definitions it follows that∫
{g(t) − Ȳ (t)}2dt + λ

∫
g′′(t)2dt =

∫
Ȳ (t)2dt + γ′Jγ + λγ′Kγ − 2γ′Lā.

By standard linear algebra, this expression is minimized when γ is the
vector of coefficients γ(λ) given by

(J + λK)γ(λ) = Lā. (2.12)

Solving equation (2.12) to find γ(λ), we can conclude that

mλ(t) =
m∑

j=1

γ
(λ)
j βj(t).

2.5.4 Calculations for smoothed functional PCA
Now consider the smoothed functional principal components analysis as
discussed in Section 2.3. Suppose that ξ(t) is a possible principal component
weight function, and that the vector f gives the coefficients of the basis
expansion of ξ(t) in terms of the βj(t), so that

ξ(t) =
m∑

j=1

fjβj(t).



38 2. Life Course Data in Criminology

The vector of principal component scores of the data is then(∫
ξ(t)Yi(t)dt

)
= AL′f. (2.13)

Let V be the sample variance matrix of the basis coefficients of the
functional data, so that

Vjk = (n − 1)−1
n∑

i=1

(aij − āj)(aik − āk).

The variance of the principal component scores is then f ′LV L′f. On the
other hand, the constraint (2.6) on the size and roughness of ξ(t) is given
by ∫

ξ(t)2dt + α

∫
ξ′′(t)2dt = f ′(J + αK)f = 1. (2.14)

To find the leading smoothed principal component, we need to maximize
the quadratic form f ′LV L′f subject to the constraint (2.14). There are
several ways of doing this, but the following approach works well.

Step 1 Use the Choleski decomposition to find a matrix U such that J +
αK = U ′U.

Step 2 Write g = Uf so that f ′(J + αK)f = g′g. Define g(1) to be the
leading eigenvector of the matrix (U−1)′LV L′U−1. Normalize g(1)

to have length 1, so that g(1) maximizes (U−1g)′LV L′U−1g subject
to the constraint g′g = 1. Set f (1) = U−1g(1). Then f (1) is the basis
coefficient vector of the leading smoothed principal component weight
function.

Step 3 More generally, let g(j) be the jth normalized eigenvector of
(U−1)′LV L′U−1. Then U−1g(j) is the basis coefficient vector of the
jth smoothed principal component weight function.

2.6 Cross-validation for estimating the mean

In classical univariate statistics, the mean of a distribution is the least
squares predictor of observations from the distribution, in the sense that
if µ is the population mean, and X is a random observation from the
distribution, then E{(X − µ)2} < E{(X − a)2} for any other number a.
So one way of evaluating an estimate of µ is to take a number of new
observations from the distribution, and see how well they are predicted by
the value yielded by our estimate. In the one-dimensional case this may
not be a very important issue, but in the functional case, we can use this
insight to guide our choice of smoothing parameter.
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In an ideal world, we would measure the efficacy of prediction by com-
paring the estimated mean curve to new functional observations. However,
it would take 25 years or more to collect new data! (And, even if we were
prepared to wait, the social context would have changed in such a way as
to make it impossible to assume the new data came from the same distri-
bution as the original data.) Therefore we have to manufacture the “new
observation” situation from our existing data.

The way we do this is to leave each function out in turn from the es-
timation of the mean. The function left out plays the role of “new data.”
To be precise, let m−i

λ (t) be the smoothed sample mean calculated with
smoothing parameter λ from all the data except Yi(t). To see how well
m−i

λ predicts Yi, we calculate
∫

{m−i
λ (t) − Yi(t)}2dt.

To avoid edge effects, the integral is taken over a slightly smaller range
than that of the data; we integrate over 12 ≤ t ≤ 34, but in this case the
results are not much affected by this restriction. We now cycle through the
whole functional data set and add these integrals together to produce a
single measure of the efficacy of the smoothing parameter λ. This quantity
is called the cross-validation score CV(λ); in our case

CV(λ) =
413∑
i=1

∫ 34

12
{m−i

λ (t) − Yi(t)}2dt.

The smaller the value of CV(λ), the better the performance of λ as
measured by the cross-validation method.

A plot of the cross-validation score for the criminology data is shown in
Figure 2.16. The smoothing parameter value selected by minimizing this
score is λ = 2 × 10−7. As noted in Figure 2.6, the use of this smoothing
parameter yields an estimated mean with some remaining fluctuations that
are presumably spurious, and in our context it is appropriate to adjust the
smoothing parameter upward a little. In general, it is advisable to use
automatic methods such as cross-validation as a guide rather than as a
rigid rule.

Before leaving the subject of cross-validation, it is worth pointing out the
relation between the cross-validation method we have described here and
the standard cross-validation method used in nonparametric regression. In
nonparametric regression, we are interested in estimating a curve from a
sample (ti, Xi) of numerical observations Xi taken at time points ti, and
a cross-validation score for a particular smoothing procedure can be found
by omitting the Xi one at a time. In the functional case, however, we omit
the functional data one at a time, and so the various terms in the cross-
validation score relate to the way that a whole function Yi(t) is predicted
from the other functions in the data set.
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Figure 2.16. Cross-validation score for the estimation of the mean of the crimi-
nology data. The smoothing parameter is plotted on a logarithmic scale, and the
minimum value is attained at λ = 2 × 10−7.

2.7 Notes and bibliography

Glueck and Glueck (1950) describe in detail the way in which the orig-
inal sample of 500 delinquent boys was constructed and the initial part
of the data collection, a process which they continued throughout their
careers. A fascinating account of the original collection and processing of
the life course data, and the way they were rediscovered, reconstructed,
and reinforced is given by Sampson and Laub (1993). Sampson and Laub
also describe the methodological controversies within the criminological re-
search community which underlie the interest in the longitudinal analysis
of these data.

A general discussion of roughness penalty methods is given in Ramsay
and Silverman (1997, Chapter 4), and for a fuller treatment including bib-
liography the reader is referred to Green and Silverman (1994). The idea
of smoothing using roughness penalties has a very long history, going back
in some form to the nineteenth century, and certainly to Whittaker (1923).
An important early reference to the use of cross-validation to guide the
choice of smoothing parameter is Craven and Wahba (1979). In the func-
tional context, the idea of leaving out whole data curves is discussed by
Rice and Silverman (1991). The smoothing method for functional principal
components analysis described in Section 2.3 is due to Silverman (1996).
See also Ramsay and Silverman (1997, Chapter 7).
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The Nondurable Goods Index

3.1 Introduction

Governments and other institutions use a host of statistical summaries
to track aspects of society across time and space. These range from simple
counts of events such as deaths from lung cancer to sophisticated summaries
of complex processes. For instance, inflation is monitored by the cost of
completing a shopping list carefully designed to reflect the purchases that
most citizens would find essential. To give another example, indices such
as the Dow Jones summarize stock market performance.

The index of nondurable goods manufacturing for the United States,
plotted in Figure 3.1, is a monthly indicator reflecting the producton of
goods that wear out within two years, such as food, tobacco, clothing,
paper products, fuels, and utilities. Because such items are, in normal times,
repeatedly purchased, the index reflects the economy of everyday life. When
times are good, people exhibit strong and stable spending patterns, but
shocks such as the collapse of the stock market in 1929 and the onset of
World War II (1939 in Europe and 1941 in the United States) produce both
short-lived transitory effects, and longer-lasting readjustments of lifestyles.
Technical innovations such as the development of the personal computer
in the early 1980s affect both consumer habits and the production process
itself. You can access these data from the Web site for this chapter.

In this and most economic indicators, there is a multilayered structure.
There are overall trends that span a century or more, and we see in Figure
3.1 that there is a broad tendency for exponential or geometric increase.
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Figure 3.1. Monthly nondurable goods manufacturing for the United States.

Long-term changes last decades, medium-term effects such as recessions
last a number of years, and short-term shocks such as the beginning and
end of wars are over in a year or two.

We see by the ripples in Figure 3.1 that there is an important seasonal
variation in the index. The index includes items often given as gifts, so
there is a surge in the index in the last part of each year, followed by a low
period in January and February. The beginning of the school year requires
new clothes, and we expect to see another surge in the preceding months.
On the supply side, though, we need people in the manufacturing process,
and vacation periods such as the summer holidays will necessarily have an
impact on factory activities.

This seasonal variation is also affected by changes in the economy at
various time scales, and so we also want to study how the within-year
variation evolves. Perhaps the evolution of seasonal variation can tell us
something interesting about how the economy evolves in normal times,
and how it reacts to times of crisis and structural change. How did the
outbreak of World War II change the seasonal pattern? What about the
moving off-shore of a great deal of manufacturing in recent decades? But
Figure 3.1 covers too long a time span to reveal much, and we will need to
consider some new ways of plotting the seasonal trend.
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Figure 3.2. The monthly nondurable goods production shown in Figure 3.1 plot-
ted on a logarithmic scale. The dotted straight line is estimated by least squares
regression, and has a slope of 0.016, corresponding to a 1.6% increase in the index
per year.

3.2 Transformation and smoothing

Like most economic indicators, the nondurable goods index tends to exhibit
exponential increase, corresponding to percentage increases over fixed time
periods. Moreover, the index tends to increase in size and volatility at the
same time, so that the large relative effects surrounding the Second World
War seem to be small relative to the large changes in the 1970s and 1980s,
and seasonal variation in recent years dwarfs that in early years.

We prefer, therefore, to study the logarithm of this index, displayed in
Figure 3.2. The log index has a linear trend with a slope of 0.016, corre-
sponding to an annual rate of increase of 1.6%, and the sizes of the seasonal
cycles are also more comparable across time. We now see that the changes
in the Great Depression and the war periods are now much more substan-
tial and abrupt than those in recent times. The growth rate is especially
high from 1960 to 1975, when the baby boom was in the years of peak
consumption; but in subsequent years seems to be substantially lower, per-
haps because middle-aged “boomers” consume less, or possibly because the
nature of the index itself has changed.



44 3. The Nondurable Goods Index

o

o

oo

o
o

o

o

o
o

o

o

o

o

o
o o

o

o

o

o

o
o

o

o

o

o

oo
o

o

o

o

oo

o

o

Year

Lo
g1

0 
no

nd
ur

ab
le

 g
oo

ds
 in

de
x

1964.0 1965.0 1966.0 1967.0

1.
60

1.
62

1.
64

1.
66

1.
68

1.
70

1.
72

Figure 3.3. The log nondurable goods index for 1964 to 1967, a period of com-
parative stability. The solid line is a fit to the data using a polynomial smoothing
spline. The circles indicate the value of the log index at the first of the month.

A closer look at a comparatively stable period, 1964 to 1967 shown in
Figure 3.3, suggests that the index varies fairly smoothly and regularly
within each year. The solid line is a smooth of these data using a method
described in Section 3.6. We now see that the variation within this year
is more complex than Figure 3.2 can possibly reveal. This curve oscillates
three times during the year, with the size of the oscillation being smallest
in spring, larger in the summer, and largest in the autumn. In fact each
year shows smooth variation with a similar amount of detail, and we now
consider how we can explore these within-year patterns.

3.3 Phase-plane plots

The rate of change of the index at any point is rather more interesting than
its actual size. For example, the increase of 1.6% per year over the twentieth
century gives us a reference value or benchmark for the average change of
2.0% from 1963 to 1972 or the smaller 0.8% increase following 1990. The
crash of 1929, after all, mattered, not because the index was around 15 at
that point, but because it was a change so abrupt that everybody noticed
that something had happened.
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If, then, it is change that matters, it follows that we need to study what-
ever alters velocity or the first derivative of the curve. The second derivative
of the curve is its acceleration, and is instantaneous curvature in the in-
dex. When the index is curving upward, the velocity is increasing. Note
the strong positive curvature in the index at the beginning of August, for
example.

The smoothing method used to compute the curve in Figure 3.3 was
designed to give a good impression of the velocity and acceleration of the log
nondurable goods index. The capacity to generate high quality estimates
of derivatives as well as curve values is a comparatively recent technical
development in statistics and applied mathematics, and more details are
provided in Section 3.6.

Now that we have derivatives at our disposal, we can learn new things
by studying how derivatives relate to each other. Our tool is the phase-
plane plot, a plot of acceleration against velocity. To see how this might
be useful, consider the phase-plane plot of the function sin(2πt), shown in
Figure 3.4. This simple function describes a basic harmonic process, such
as the vertical position of the end of a suspended spring bouncing with a
period of one time unit and starting at position zero at time t = 0.

The spring oscillates because energy is exchanged between two states:
potential and kinetic. At times 1, 3, . . . the spring is at one or the other end
of its trajectory, and the restorative force due to its stretching has brought
it to a standstill. At that point, its potential energy is maximized, and so
is the force, which is acting either upward (positively) or downward. Since
force is proportional to acceleration, the second derivative of the spring
position, −(2π)2 sin(2πt), is also at its highest absolute value, in this case
about ±40. On the other hand, when the spring is passing through the
position 0, its velocity, 2π cos(2πt), is at its greatest, about ±8, but its
acceleration is zero. Since kinetic energy is proportional to the square of
velocity, this is the point of highest kinetic energy. The phase-plane plot
shows this energy exchange nicely, with potential energy being maximized
at the extremes of Y and kinetic energy at the extremes of X.

Now harmonic processes and energy exchange are found in many situ-
ations besides mechanics. In economics, potential energy corresponds to
available capital, human resources, raw material, and other resources that
are at hand to bring about some economic activity, in this case the manufac-
ture of nondurable goods. Kinetic energy corresponds to the manufacturing
process in full swing, when these resources are moving along the assembly
line, and the goods are being shipped out the factory door.

The process moves from strong kinetic to strong potential energy when
the rate of change in production goes to zero. We see this, for example, after
a period of rapid increase in production when labor supply and raw mate-
rial stocks become depleted, and consequently potential energy is actually
in a negative state. Or it happens when management winds down produc-
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Figure 3.4. A phase-plane plot of the simple harmonic function sin(2πt). Kinetic
energy is maximized when acceleration is 0, and potential energy is maximized
when velocity is 0.

tion because targets have been achieved, so that personnel and material
resources are piling up and waiting to be used anew.

After a period of intense production, or at certain periods of crisis that
we examine shortly, we may see that both potential and kinetic energy are
low. This corresponds to a period when the phase-plane curve is closer to
zero than is otherwise the case.

To summarize, here’s what we are looking for:

• a substantial cycle;

• the size of the radius: the larger it is, the more energy transfer there
is in the event;

• the horizontal location of the center: if it is to the right, there is net
positive velocity, and if to the left, there is net negative velocity;

• the vertical location of the center: if it is above zero, there is net
velocity increase; if below zero, there is velocity decrease; and

• changes in the shapes of the cycles from year to year.
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derivative or acceleration of the smoothed log nondurable goods index for 1964.
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3.4 The nondurable goods cycles

We use the phase-plane plot, therefore, to study the energy transfer within
the economic system. We can examine the cycle within individual years,
and also see more clearly how the structure of the transfer has changed
throughout the twentieth century. Figure 3.5 phase-plane plots the year
1964, a year in a relatively stable period for the index. To read the plot,
find the lower-case “j” in the middle right of the plot, and move around the
diagram clockwise, noting the letters indicating the months as you go. You
will see that there are two large cycles surrounding zero, plus some small
cycles that are much closer to the origin.

The largest cycle begins in mid-May (M), with positive velocity but near
zero acceleration. Production is increasing linearly or steadily at this point.
The cycle moves clockwise through June (first J) and passes the horizontal
zero acceleration line at the end of the month, when production is now
decreasing linearly. By mid-July (second J) kinetic energy or velocity is
near zero because vacation season is in full swing. But potential energy
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or acceleration is high, and production returns to the positive kinetic/zero
potential phase in early August (A), and finally concludes with a cusp at
summer’s end (S). At this point the process looks like it has run out of
both potential and kinetic energy.

The cusp, near where both derivatives are zero, corresponds to the start
of school in September, and to the beginning of the next big production
cycle passing through the autumn months of October through November.
Again this large cycle terminates in a small cycle with little potential and
kinetic energy. This takes up the months of February and March (F and
m). The tiny subcycle during April and May seems to be due to the spring
holidays, since the summer and fall cycles, as well as the cusp, don’t change
much over the next two years, but the spring cycle cusp moves around,
reflecting the variability in the timings of Easter and Passover.

To summarize, the production year in the 1960s has two large cycles
swinging widely around zero, each terminating in a small cusplike cycle.
This suggests that each large cycle is like a balloon that runs out of air,
the first at the beginning of school, and the second at the end of winter.
At the end of each cycle, it may be that new resources must be marshaled
before the next production cycle can begin.

With this basic pattern characterizing the phase-plane plot for a stable
year, it can be revealing to examine years in which important events took
place. Figure 3.6 shows what happened in 1929 to 1931. Year 1929 has the
same features as we saw above for 1964, but we see a bulge to the left in the
late autumn, when the stock market crashed. By November of that year
production was in a state of freefall. We pick up the story in the middle
cycle for 1930, and see that, after a small spring and larger summer cycle,
the autumn cycle loses much of its potential energy, and this is even more
evident in 1931. Probably this is attributable to the collapse of consumer
demand in the holiday period as people restrict spending to the essentials.

Figure 3.7 pictures the events leading to World War II. The first part
of 1937 shows only small amounts of energy as the Depression continues.
But the cycle is dramatically altered in the fall by the sudden decrease in
the money supply imposed by the Treasury Board when it feared that the
economy might be overheated and headed for another crash. You can see
in Figure 3.2 that this precipitous event is comparable in size to the stock
market crash of 1929, but even more sudden. The spring and fall cycles
were all but wiped out in 1938.

The bottom plot in Figure 3.7 shows the reduced seasonal variability
during the war years, and this is also clearly visible in Figure 3.2. In times
of war people don’t take holidays, make do with what they have, and spend
less at Christmas. Moreover, war production did not exhibit much seasonal
variation since the demand for nondurable goods, like the war itself, was
steady through the year.

Another three years in which important changes occur are 1974 to 1976,
plotted in Figure 3.8. The Vietnam War was concluded in this period, and
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Figure 3.6. Phase-plane plots for the years 1929 to 1931, during the onset of the
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50 3. The Nondurable Goods Index

j

FmAMJ

J

A

S

O

N

D

j
1937

j

F
m

A M
J J

A

S

O
N

D j1938

j

F

mAMJ
J
AS

O

N

D

j1943

Figure 3.7. Phase-plane plots for two years preceding the Second World War and
a typical war year.



3.4. The nondurable goods cycles 51

j

Fm

A M

J

J

ASO
N

D

j

1974

j

F

m

A

M

J

J

AS
O

N

D

j

1975

j

F

m
A M

J

J

A
S

ON

D

j1976

Figure 3.8. Phase-plane plots for 1974 to 1976, when the production cycles are
changing rapidly.



52 3. The Nondurable Goods Index

j
FmA

M

J

J

AS
O
N

D
j1996

jF
m

A

M

J

J

AS
O

N
D

j1997

j
F m
A

M

J

J

A
S

O

N
D

j1998

Figure 3.9. Phase-plane plots for 1996 to 1998, showing the greatly reduced
variability of current production cycles.



3.4. The nondurable goods cycles 53

Velocity

A
cc

el
er

at
io

n

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-4
-2

0
2

4

j

F

m

A

M

J

J

A
S

O

N

D

j

Figure 3.10. The phase-plane plot for 1997 on a larger scale, showing the
structural changes in current production cycles.

the OPEC oil crisis also contributed to a change in economic patterns.
One consequence was the decrease in the size of the fall loop. What we
cannot see in this small time window, though, is that fundamental changes
initiated in the mid-1970s persist to the present day.

What is happening now? Figure 3.9 shows that the production cycles are
now much smaller than they once were. We still see fairly large seasonal
oscillations, but they are now much smoother, and hence show less variation
in velocity and acceleration. Also, if we look at Figure 3.10 showing the 1997
cycles on a larger scale, we see that there are now four cycles rather than
three, and that the final winter cycle has a strongly negative net velocity.
Are this loss of dynamism and these structural changes due to the fact that
production is no longer so dependent on manpower? Or, perhaps, that it
is more tightly controlled by information technology? On the other hand,
it may be simply that far more nondurable goods are now manufactured
outside the United States.

A further clue to recent changes is that in the early 1990s, personal com-
puters and other electronic goods were classified as durable. Consequently,
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one sees in the comparable index for durable goods a strong increase in
its typical slope at that point. Although it is true that electronic goods
usually last more than two years, the pace of technological development in
this sector has meant that, effectively, consumers have tended to discard
these items because they are obsolete. This loss of electronic goods in the
nondurable goods index has surely diminished its energy.

3.5 What have we seen?

Phase-plane plotting is revealing because it focuses our attention on the
dynamics of the seasonal component of variation in the goods index. We
plot velocity on the horizontal axis, representing the rate of change of the
process; and plot acceleration on the vertical axis, indicating the input or
withdrawal of whatever resources or forces produce this change. Because
seasonal components tend to exhibit oscillatory or harmonic behavior, we
can interpret what we see as a transition between two types of energy:
kinetic associated with velocity, and potential associated with acceleration.
Harmonic behavior, in which the system moves between these two states,
shows up as a loop surrounding the origin. The bigger the radius of the
loop, the more energy the system has, and the smaller or closer it is to
zero, the less the energy.

We saw that the typical year shows three such loops, associated with
the spring, summer, and fall. The summer loop typically has the largest
associated energy. But the fall loop seems to be most affected by shocks
such as the stock market crash of 1929, the shutting down of the money
supply in 1937, and the end of the Vietnam War in 1974. This is probably
due to the fact that the fall production loop is associated with buying for
the Christmas holidays, and therefore is something consumers can turn on
and off according to whether times are good or tough, respectively.

We also saw the seasonal dynamics reflecting longer-term changes. There
is much less energy in the system now than in the 1960s, as reflected in the
smallness of loops in recent times.

The dynamics of a process typically show more variation than the statics
or position of the process, and we could see things happening in the phase-
plane plots that would be hard to spot in the plot of the process itself, such
as in Figure 3.2.

This focus on dynamics leads to the question of whether we can model
these dynamic features directly, rather than putting all of our statistical
energy into reproducing the curve itself. This leads us naturally to the idea
of using a differential equation to describe the process, a type of modeling
that will allow us to model the dynamic behavior seen in the phase-plane
plot as well as the curve itself. We use differential equations in models in
Chapters 11 and 12.
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3.6 Smoothing data for phase-plane plots

3.6.1 Fourth derivative roughness penalties
We can imagine that the economic forces generating the log index values are
reasonably smooth. In practice, this means that a curve giving a satisfactory
picture of these processes has a certain number of derivatives. For phase-
plane plotting, in particular, we need to use two derivatives in addition to
the curve values themselves. We estimate these derivatives by smoothing
the data, using a method that will give useful estimates of velocity and
acceleration as well as of the underlying curve itself.

Therefore we choose to fit a smooth curve h(t) to log index values yi, i =
1, . . . , 973, by using the following criterion

PENSSEλ(h) =
973∑
i=1

[yi − h(ti)]2 + λ

∫ 2000

1919
[h(iv)(t)]2 dt. (3.1)

The criterion has two terms. The first assesses the fidelity of the curve to
the observed data in the sense of the sum of squared errors.

But fitting the data is not our only concern, and the second term, the
penalty term, measures the extent to which the fitting function h(t) is
smooth. The notation h(iv)(t) in (3.1) means the fourth derivative of h
evaluated at time t. The penalty term captures the overall size of this
fourth derivative by integrating its square over the interval of interest.
Why the fourth derivative? Because it is sensitive to the curvature of the
second derivative, or acceleration. Recall that curvature is indicated by the
second derivative, so the curvature of the acceleration function is its second
derivative, or the fourth derivative of the actual curve h(t).

We cannot have smoothness and a nearly perfect fit to the data at the
same time, especially when we have this many observations. The smoothing
parameter λ controls the relative emphasis on fitting the data and smooth-
ness. As λ increases, smoothness is accentuated more and more, until finally
the integrated square of h(iv)(t) will be driven to zero. Only polynomials
of degree three or fewer have zero fourth derivatives, and clearly a function
this simple would not fit these data at all well. On the other hand, as λ goes
to zero, smoothness matters less and less, and hence fitting the data more
and more. Finally we will arrive at a function that fits the data exactly.
Unfortunately, it will not be at all smooth, and its second derivative will
be too wildly varying to be at all useful. The challenge, then, is to find a
value for λ that works for us.

3.6.2 Choosing the smoothing parameter
We discussed this problem in Chapter 2. There a data-driven technique,
cross-validation, was described that could be used to guide this choice. How-
ever, we were not shy to say that our final choice depended on inspection of
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the results, and that we used a value rather different than that suggested
by this purely data-driven method. We now continue to discuss concerns
that might govern the amount of smoothness in a curve that smooths data.

Our goal in this chapter was to use phase-plane plots to reveal something
about seasonal trend, and how it evolves over time. Of course the technique
is not going to be helpful if the curve misses obviously important features
in the data. Our first move, therefore, was to carefully study how well the
curve tracks the data by using close-up plots such as Figure 3.3. We ac-
tually plotted the data and the fit separately for each of the 51 years of
interest, and noted where the curve seemed to miss the data repeatedly. We
observed, for example, that the curve was too smooth if it underestimated
peak values such as that of June year after year, or if it consistently over-
estimated low values such as July. We also learned a lot by looking at the
residuals from the fit, computed by subtracting the fitted from the actual
value. If there was some trend running over several months, this was a sign
that we had oversmoothed the data. At this stage, one may say, it is rather
easier to detect oversmoothing than undersmoothing. These investigations
gave us a fairly firm idea of an upper limit on λ, but less intuition about a
lower limit.

Next we looked at what we wanted to work with, namely the phase-plane
plot. Here smoothness matters a great deal. We wanted to see important
and consistent patterns, and too much wiggliness in the plot makes this
difficult. In general, high derivatives are rather more unstable than lower
ones, so at this point it was primarily smoothness in acceleration that
mattered; if acceleration was smooth, so was velocity. So we started with a
smallish value of λ, and moved it upward bit by bit until the phase-plane
plot seemed stable from year to year over periods when it should be, such
as the 1960s, and, of course, to the point where we could make sense out
of the structure of the plot. This process gave us a desirable lower limit on
λ.

We have to admit that this lower limit is often larger than the upper limit
identified by looking at the data fit. However, at this point some fit just has
to be sacrificed in order to see what we are looking for in the data—hence
the systematic misfitting of the July log index in Figure 3.3. Perhaps we
will return to the data someday to have a look at what we missed this time,
but for the moment we are satisfied with what we learned. Our final choice
for λ was 10−9.5.

In summary, our philosophy, and, we believe, the perspective of most
practitioners of smoothing, is that choosing a level of smoothing is a matter
of balancing off fitting the data against getting a stable and interpretable
estimate of what interests us. We see the choice of λ as very much driven
by the needs of the investigator, and are content to see other analyses of
the same data employ a different value.



4
Bone Shapes from a Paleopathology
Study

4.1 Archaeology and arthritis

Archaeologists have conducted a major excavation at St. Peter’s Church,
Barton-upon-Humber, in the north of England. They have exhumed the
skeletons of about 2000 adults dating mainly from between 1000 and
1500 C.E. A particular way in which the bones have been studied is for
paleopathology—the use of old remains to give us information about dis-
eases that people suffered from in the past. Many diseases leave traces on
the bones, and special attention was given to osteoarthritis of the knee,
both because it is and was a common and painful disease, and because the
skeletal remains give us easy access to parts of the knee joint not easily
seen on X-rays.

The paleopathologists attempted to identify every person in the sam-
ple with definite signs of osteoarthritis of the knee, as evidenced by
eburnation—polished bone surface caused by complete cartilage loss. Ini-
tially, 23 people were found with eburnation on at least one femur. For
each such person, controls matched approximately by age, sex, and period
of burial were found from among those with no evidence of osteoarthritis at
any joint. Once the joints with postmortem damage had been eliminated,
this left 16 eburnated femora and 52 controls for analysis.

Several aspects of the biomechanics of the knee have been studied in
relation to osteoarthritis. These include obesity, injury, and lower limb
malalignment, but the shape of the joint itself has not been very much
considered. It has been hypothesized that osteoarthritis can affect bone
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Figure 4.1. Setup showing how the image is captured. A camera captured a digital
image of each bone. From Shepstone et al. (1999).

shape, or conversely that certain joint shapes may affect the biomechanics
of the joint and hence increase the risk of osteoarthritis. It is against this
background that a study of the shapes of the bones was carried out.

4.2 Data capture

As is typical, the investigation had to be carried out rapidly and with a low
budget, and so it was not possible to study the three-dimensional structure
directly. However, very interesting conclusions can be drawn from simpler
two-dimensional images of the joint shape. The first step was to capture
the data themselves. Each bone was photographed end-on, as in Figure 4.1,
to yield an image as shown in Figure 1.5.

The easiest way of identifying the shape of the joint was to “mark up”
each image on the screen by direct reference to the actual bone. The result
was a pixel image, with certain pixels specified as being within the outline
of the joint. All left femora were reflected to produce “right” images, in
order to give every bone a consistent orientation. A typical image is shown
in Figure 4.2. The knee end forms an inverted U-shape. The two arms of
the inverted U-shape formed by the knee are called condyles, and the space
between them is the intercondylar notch. The smaller indentation at the
top of the image is called the patellar groove.

For our analysis, we have 68 outlines, of which some are known to cor-
respond to arthritic joints. We regard each outline as a single data object,
and consider ways of studying the variability in shape between the bones,
and of relating this variability to the presence or absence of arthritis. The
first step in studying the shapes is to parameterize the images in an ap-
propriate way. One way of doing this is by defining landmarks; these give
a natural way of representing a shape by a fairly low-dimensional array of
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Figure 4.2. Bitmap image after drawing round the outline in Figure 1.5 on the
screen and reversing to yield standard orientation.

numbers. In Chapter 8 we return to these data and consider a different
approach concentrating on the intercondylar notch alone.

4.3 How are the shapes parameterized?

The principle of using landmarks is to locate a fairly small collection of
points from which the shape itself can be reasonably reconstructed. The
process used for the bone shapes is best described by reference to Figure
4.3. Initially, the landmarks numbered 1, 2, 5, 7, 9, and 12 were located
‘by hand’ (in fact by mouse) on the image. These correspond to lowest
and highest points on the relevant part of the outline, but because of the
strange shapes of some of the specimens, are easier located manually than
algorithmically. Then landmarks 3, 6, 8, and 11 were defined as the extreme
points within the image of the perpendicular bisector of the lines 2–5, 5–7,
7–9 and 9–12 respectively. This process was repeated on the lines 3–5 and
9–11 to give landmarks 4 and 10. For the remainder of the analysis, we
discarded the bone pixel images and worked with the landmarks.

Any bone’s shape can be reasonably well approximated by putting a
smooth curve through the coordinates of the 12 landmarks. Although the
calculations we carry out are in terms of the 24 coordinates of the land-
marks, conceptually we are considering the shapes as the data of interest,
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Figure 4.3. Demonstration of the process of identifying and constructing land-
marks. Landmarks 1, 2, 5, 7, 9, and 12 are located manually, and the others
are then found automatically, as the extreme points within the image of the
perpendicular bisector of the lines shown. From Shepstone et al. (1999).

and the results in terms of the curves themselves. To each set of landmark
positions there corresponds a periodic curve, and the coordinates of the
landmarks are the way that the curves are represented internally to our
calculations.

To be precise, the interpolation is carried out by fitting periodic cubic
spline interpolants to the landmark x and y values separately, to give func-
tions x(t) and y(t) for t in [0, 1]. A cubic spline is a curve made of pieces
of cubic polynomials, joined together smoothly at the data points, and the
fitting was done using the S-PLUS routine spline. The landmark posi-
tions gave the values of x and y at the points i/12 for i = 1, 2, . . . , 12. As t
varies, the point (x(t), y(t)) then traces out the curve. The same technique
is used whenever we wish to recover a curve from its landmark positions.
In mathematical terms, continuing the ideas discussed in Section 2.5, we
have implicitly constructed a basis for the representation of these shapes.
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4.4 A functional principal components analysis

4.4.1 Procrustes rotation and PCA calculation
Because the size and orientation of the bones is of no particular interest, we
eliminate size and orientation variability by a process known as Procrustes
transformation. In Greek mythology, Procrustes was a robber who captured
passing travelers and made them fit his bed, either by stretching their
limbs or by chopping them off. Fortunately the analysis of data is less
traumatic, but the idea is still to adjust the data so they fit together as
closely as possible. First each configuration is centered at its mean, in order
to eliminate any translation effects. Then the configurations are all rotated
and scaled to minimize the sum of squares between the configurations. For
software details, see the Web page associated with this chapter.

Let µ1,µ2, . . . ,µ12 be the mean positions of the 12 landmarks, after
transformation. Let µ be the interpolating curve between these positions,
constructed in the way described in Section 4.3. Then µ is considered as
the mean bone shape.

Each individual shape yields a vector of 24 coordinates, the x and y
coordinates of the 12 landmarks. (Because of the Procrustes fitting, there
are some dependences between these coordinates, but that does not affect
the subsequent work.) We perform a functional principal components anal-
ysis of the 68 curves by using standard principal components analysis on
the 68 24-vectors of landmark coordinates. Before examining the results, it
is worth reviewing the way in which this functional principal components
analysis can be interpreted.

4.4.2 Visualizing the components of shape variability
Concentrate first on the leading component. For this component, standard
PCA provides a 24-vector of principal component loadings, which can be
expressed as twelve 2-vectors z1, z2, . . . , z12. As we saw in Section 2.3, a
good way of visualizing the relevant variation is to plot curves correspond-
ing to the mean plus and minus a multiple of the effect of variation in this
component direction. Indeed, in the shape context it is hardly meaning-
ful to consider the principal component weights aside from their effect on
a particular shape such as the mean. In the present example, three stan-
dard deviations of the principal component give a suitable multiple; more
generally the choice may have to be adjusted subjectively.

Let s be the sample standard deviation of the principal component. We
then find two curves, plotted in Figure 4.4. The solid curve is the interpolant
to the landmarks µ1 + 3sz1,µ2 + 3sz2, . . . ,µ12 + 3sz12. The first principal
component of this curve will be 3s, and it will exemplify the kind of curve
that has a positive value of the first principal component. The dashed curve
is the interpolant to µ1 − 3sz1,µ2 − 3sz2, . . . ,µ12 − 3sz12, and will have
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1

Figure 4.4. The effect of the first principal component of variation. The curves
correspond to the mean ± three standard deviations of the component. The solid
curve is the effect of adding the component and the dashed curve of subtracting
it. This component explains 21% of the variability in the original data.

a negative value of the first principal component. Furthermore, the two
curves indicate the variability of the first principal component within the
data, because of the choice of a multiple depending on s. In the present
case we do not plot the mean shape itself, because the mean can be inferred
by eye from the given curves.

It can be seen from Figure 4.4 that if an outline has a positive score
on the first principal component, then we can expect it to have a deeper
intercondylar notch, and also a more pronounced bulge in the top right
part of the image. The converse characteristics would be associated with a
negative value of this component.

Similar plots for each of the principal components 2 to 5 are shown
in Figure 4.5. The second component will be of particular importance; a
positive score is associated with a narrowing of the right-hand condyle
(in our diagram) and with a deepening and widening of the intercondylar
notch.

How do arthritic bones differ from controls? For each component, a t-
test was carried out to compare the eburnated and noneburnated bones.
There was no significant difference on components 1, 3, 4, and 5, but the
difference on component 2 was highly significant (t = −3.01, p = 0.0037).
On this component, the mean for the eburnated bones was −10.9 and for
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Figure 4.5. The effects of the second to fifth principal components of variation.
These explain 18%, 12%, 9%, and 8% of the original variability, respectively. Only
on the second component is there a significant difference (p = 0.0037) between
the eburnated and noneburnated bones. On this component the mean score for
the eburnated bones was significantly higher than for the controls.

the controls it was 3.4. This indicates that, on the average, the eburnated
bones will tend to have the properties associated with a positive score on
component 2.

4.5 Varimax rotation of the principal components

It is well known in classical multivariate analysis that an appropriate ro-
tation of the principal components can, on occasion, give components of
variability more informative than the original components themselves. A
rotation method constructs new components based on the first k principal
components, for some relatively small k. The idea is that k is chosen to
include all the components that convey meaningful information, but not
those that are just “noise”. In the present example, we concentrate on the
first five components and set k = 5.

The varimax method is often a useful approach. The method chooses
components to maximize the variability of the squared principal compo-
nent weights. The resulting modes of variability tend to be concentrated
on part of the range of the function in question, so in the present context
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Figure 4.6. The effects of the first five varimax-rotated components for the bone
shape data. The percentages of variability explained are, respectively, 14%, 15%,
15%, 11%, and 13%. The arthritic bones had significantly higher scores than the
controls on component 2 and significantly lower on component 3.

they express departures from the mean curve over part of the outline shape
rather than the whole of it. They are still orthogonal, but the values of the
components for the data will no longer necessarily be uncorrelated. Further-
more, the variances of the varimax components will be less spread out than
those of ordinary components, and need no longer decrease monotonically.
The varimax algorithm is discussed further in Section 4.8.

The modes of variation corresponding to the varimax-rotated com-
ponents are shown in Figure 4.6. Compared to the original principal
components in Figures 4.4 and 4.5, some of the varimax components are
more definitely interpretable in terms of the bone shape. Varimax compo-
nent 2 completely corresponds to a thinner right condyle, in the orientation
shown in the figure. Component 5 is concentrated almost entirely on a
much narrower join between the condyles. Component 3 is associated with
a broader intercondylar notch, but more particularly with a much more
symmetric patellar groove than the mean.

The percentages of variances explained by the components are roughly
the same for each of the components displayed. As with the raw princi-
pal components, the component scores for the two classes of bones were
compared. On components 2 and 3 the difference is significant, but not
as strongly as previously (p < 0.025 in both cases). On component 2
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the eburnated bones tend to have negative scores, whereas their scores
on component 3 tend to be larger than average. This suggests that the
eburnated bones tend to have a thicker right condyle, and a flatter and
more symmetric patellar groove.

Is varimax rotation worthwhile? It yields components that have much
more direct meaning for the bone shapes themselves. In terms of finding
ways in which the two groups of bones differ, it highlights two components
rather than concentrating attention on a single component. However, the
individual interpretation of each of these two components, especially vari-
max component 2, is much more physically intuitive than the composite
effect represented by original component 2 in Figure 4.4.

4.6 Bone shapes and arthritis: Clinical
relationship?

The relationship between the shape of the femur and the incidence of os-
teoarthritis of the knee has not been studied widely, and so any clinical
conclusions have to be tentative. It is possible to analyze the data further,
for example, by breaking down the eburnated group according to the po-
sition of the eburnation. There is then some suggestion that the location
of the eburnation is associated with the third varimax-rotated component
score, corresponding to the variation in shape of the patellar groove. On
the other hand, the change in shape of the condyles associated with the
second varimax component seems only to be associated with presence or
absence of eburnation. However, the numbers of bones in each subgroup
are not sufficient to draw firm conclusions.

What is the possible link between arthritis and the shape of the bones?
On the basis of these data alone, it is not possible to discover to what ex-
tent shape variation in the condyle is a cause or an effect of osteoarthritis.
Differences in intercondylar notch shape could conceivably affect the func-
tioning of the ligaments in the joint, or increase the likelihood of damage,
and lead to an increased risk of knee osteoarthritis. Conversely, arthritis
causes a change in biomechanics, which could possibly lead to bone remod-
eling. An increase in the width of the condyle would help to stabilize an
unstable joint or dissipate increased pressure. The data support the con-
cept of a feedback mechanism within which this kind of reshaping of joints
is an attempt to slow, or counter, the effects of osteoarthritis.

The association of eburnation with the shape of the patellar groove is
more of a puzzle. Postmortem studies have shown a naturally occurring
wide variation in patellar groove shape. This could be a potential risk
factor, with a wide and shallow groove leading to biomechanical differences
that can cause osteoarthritis. However, the potential mechanisms are not
yet well understood.
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4.7 What have we seen?

Functional data do not have to be a simple function of one variable, but
can take many other forms. For the analysis of the bone shape data, the
functions of interest were shapes as described by cyclic curves in two dimen-
sions. An interesting topic for future research would be the consideration
of the full three-dimensional joint shape; leaving aside statistical consid-
erations, in the present context this would have been impossible because
appropriate data-collection equipment was not available.

Landmarks can provide a very good way of representing functional data.
We think about our data as functions, but we have to represent them in
a finite-dimensional way in order to carry out calculations, and landmarks
are one way of getting a finite-dimensional representation. The landmarks
may or may not be of direct interest in themselves—in this chapter they
were only the means to the end of considering the function as a whole.

Principal components analysis gave us the way of identifying impor-
tant modes of variability in the data. In some data sets we would study
the values of the principal components on individuals, but in this case it
was of particular interest to compare two groups, the eburnated and the
noneburnated bones. Once the principal component scores had been found,
standard statistical techniques could be used to compare the groups.

The varimax procedure improved the interpretability of the components
to some extent, and also was useful in subsequent analysis taking into
account the position of eburnation. Varimax and other rotation methods
are not a panacea, but will often provide a helpful contribution to the
analysis of the data.

4.8 Notes and bibliography

Much of the material of this chapter is based on Shepstone, Rogers, Kir-
wan, and Silverman (1999), although the method of varimax rotation is
somewhat different. They give details of data collection and of the arthritis
background, with many references to the relevant literature. They also give
further discussion of the conclusions drawn in Section 4.6 above. The data
collection from the original bones was carried out as part of Lee Shepstone’s
Ph.D. research (Shepstone, 1998), under the supervision of the other three
authors of the paper.

The use of landmarks to characterize curves is discussed in Ramsay and
Silverman (1997, Chapter 5). Dryden and Mardia (1998) give a full discus-
sion of landmark-based methods of the analysis of shape data, together with
many references to the literature on statistics of shape. For more material
and references on functional PCA, see Ramsay and Silverman (1997, Chap-
ter 6). Their Section 6.3.3 gives some discussion of the varimax-rotation
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procedure. Fuller details of varimax rotation, and also of Procrustes fitting,
are given in standard multivariate text books. See, for example, Harman
(1976), or Mardia, Kent, and Bibby (1979).

There is a subtle point to be taken into account in the case we have
discussed. Each landmark is a 2-vector, and so the principal component
weights are themselves 2-vectors. We therefore base the varimax criterion
on the variability of the squared lengths of the 2-vectors of principal compo-
nent weights, rather than directly on the individual weights. Suppose that
the loadings of the first five principal component weights are given by two
12 × 5 matrices AX and AY , respectively containing the loadings on the
x- and y-coordinates of the 12 landmarks. We aim to find a 5 × 5 rotation
matrix T, yielding rotated loadings matrices BX = AXT and BY = AY T,
to maximize the variance of the quantity

12∑
i=1

5∑
k=1

||bik||2,

where bik is the 2-vector (BX
ik,BY

ik). See the Web page for this chapter for
further details.
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5
Modeling Reaction-Time Distributions

5.1 Introduction

Hyperactivity in children has been a hot topic in recent years among ed-
ucational and psychological researchers, not to mention doctors, nurses,
and other health professionals. The technical term, attention deficit (hy-
peractive) disorder, or ADHD, captures the central issue, the difficulty
these children have in focusing their attention on tasks for more than brief
periods. This affliction is especially troublesome in school.

In spite of the popularity of the term, hyperactivity is actually difficult
to diagnose, and may even be rather rare. Because of the frequency with
which certain drugs are prescribed to calm down supposedly hyperactive
children, as well as the need to test more carefully the efficacy of these
drugs, it is imperative to find clearcut techniques to identify the ADHD
syndrome.

One behavioral marker is the time taken to react to a visual stimulus
appearing after a warning signal, but with a substantial delay. In a typical
experiment, children see a warning on a computer screen that a light is
about to appear, and are required to push a key as rapidly as possible
when a light actually appears. When there is a delay of 10 seconds or so,
ADHD individuals not only take longer to react on the average, presumably
because their attention has wandered, but they also show a higher frequency
of extremely long reaction times.

Figure 5.1 displays two reaction-time distributions, one for the first child
in a sample of 17 ADHD children, and another for the first child in a sam-
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Figure 5.1. Histograms for about 70 reaction times to the onset of a signal after an
eight-second delay. The left histogram is for the first of a sample of 17 attention
deficit (hyperactive) disorder children, and the right for an age-matched control
child.

ple of 16 age-matched control children. Each histogram is computed from
about 70 reaction times. The experiment is described in Leth-Steenson,
King Elbaz, and Douglas (2000). We see that the ADHD child has many
reaction times beyond one second, while the control child never takes that
long to respond.

A histogram, such as those in Figure 5.1, gives us only a crude impression
of a distribution, and we would prefer to work with the probability density
function p(t), describing the reaction-time distributions. This would permit
us to calculate the probability of a reaction time between two limits, t0 and
t1, as

Prob{t0 ≤ t ≤ t1} =
∫ t1

t0

p(t) dt .

But researchers who work with reaction times know that none of
the standard textbook distributions capture the features of reaction-time
distributions. These characteristics include

• an initial period of at least 120 milliseconds in which no reaction is
possible,

• a rapid increase in the number of reaction times after this dead time,
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• a strong positive skewness, and

• a very long tail with a severe tendency to outliers.

In these data, for example, we considered reaction times longer than
three seconds to be outliers and did not use them, since the large majority
of reaction times even for the ADHD children occurred in less time. The
shortest reaction time observed was 239 milliseconds.

These distributional features reflect the sequence of neural activities that
must precede a reaction, including passage of peripheral excitation to the
brain, processing of this information to yield a decision, assembly of the
excitation patterns required to generate a response, transmission of these
to the neural/muscle interfaces, and delays within muscle tissues before
an observable response is possible. All this is compounded by intrusions
of attentional lapses, other higher priority events such as a sneeze, and so
forth.

We therefore want to explore the implications of ADHD for reaction times
without relying on parametric models for the reaction-time distributions.
At the same time, we also want to explore the variation in reaction-time
distributions from child to child within each group. Our perspective here is
that we have two samples of reaction-time distributions, each distribution
being identified by around 70 observations. After eliminating reaction times
that exceeded three seconds, there were 1111 reaction times for the nor-
mal control group, and 1138 for the ADHD group. Our objective is to use
functional principal components analysis within each sample to get some
picture of the typical modes of variation. But this raises a technical issue:
Density functions are by definition positive and integrate to one, but func-
tional principal components analysis is more naturally applied to families
of unconstrained functions. It is with this issue in mind that we consider
methods of density estimation and modeling that avoid the constraints
implicit in the definition of a density function.

5.2 Nonparametric modeling of density functions

A probability density p(t) must satisfy the constraints

• p(t) > 0 over some interval [tL, tU ] of interest, and

• the area under this curve is one; that is,∫ tU

tL

p(t) dt = 1 .

Given any function W (t), we can construct a probability density function
p(t) by

p(t) = C exp W (t), (5.1)
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Figure 5.2. The solid curve is the density function for 1143 reaction times observed
for the 17 ADHD children, and the dashed curve the density function for 1113
times for the 16 control children. The vertical dotted lines indicate the knot
placement in the B-spline basis described in Section 5.6. The smoothing method
requires the choice of a smoothing parameter λ, which was set to 106. The density
values have been multiplied by 1000.

where

C =
[ ∫ tU

tL

exp W (x) dx
]−1

.

Without any constraints on the function W (t), the conditions for p(t) to be
a probability density function will be satisfied automatically. The function
W (t) and hence the density p(t) can be estimated by a penalized maximum
likelihood method, as described in Section 5.6.

Figure 5.2 displays the density functions estimated for the combined data
for the two groups. We see that even the fast ADHD times are slower by
around 200 milliseconds than fast times for the controls. For example, for
the ADHD group, only 8% of the times are faster than 600 msec, compared
with the control group which has 40% of the times. We also see that the
distributions show some bimodality, and even a hint of trimodality. A dis-
tinctive feature of the ADHD times is the large shoulder and long tail on
the positive side of the distribution. For example, fewer than 1% of control
group times exceed 1600 msec, as compared to 12% of the ADHD times.

The two densities in Figure 5.2, however, ignore individual differences
in response times, and in particular, are likely to have more spread than
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Figure 5.3. Individual reaction-time densities for four of the ADHD children (solid
curve) along with the reaction-time density estimated for the entire group (dashed
curve). The density values are multiplied by 1000, and the smoothing parameter
was set to 107.

individual distributions since, within each sample, there are children who
are systematically fast and others who are systematically slow.

Figure 5.3 displays estimated ADHD density functions for selected in-
dividuals. We see that there is indeed considerable interchild variation in
their shapes. The upper-left panel indicates more fast reactions than av-
erage, but a nearly uniform distribution of times beyond one second. The
lower-left panel has a density more typical of control children, with no ap-
preciably long tail. Both the right panels show a pronounced secondary
mode to the right of one second, and the bottom panel even has a slight
tertiary mode.

5.3 Estimating density and individual differences

The individual densities plotted in Figure 5.3 give us a visual impression
that the ADHD children vary considerably among themselves in terms of
their reaction-time distributions. This would be consistent, for example,
with the presence of a disability that varied in severity. How can we repre-
sent the unusual shape of these reaction time distributions, and still give
some indication of how these children vary?
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A few critical remarks are in order about the usual way in which
reaction-time data are analyzed. The nearly universal practice of using
mean reaction time to represent a subject’s typical performance has se-
rious drawbacks. The first is that the mean is a much less appropriate
measure of centrality when the distribution is strongly skewed than it is
for nearly symmetric distributions like the normal. The long positive tail
tends to pull the mean toward it and at the same time increase the vari-
ability of its estimate. The mode, by contrast, would be a better indication
of a typical reaction time.

The other defect of the mean has to do with how it is modeled. Standard
statistical tools such as analysis of variance and regression analysis postu-
late that whatever changes the typical reaction changes it additively. This
amounts to saying that a little bit is added or subtracted to all reaction
times by causal factors such as the presence of ADHD. But the results in
Figure 5.2 suggest something more like a multiplicative impact of ADHD
in which short reaction times are affected less than long reaction times,
and leading, consequently, to the long positive tail being exaggerated. Ac-
cording to a multiplicative impact model, reaction times are affected by a
percentage increase rather than a simple shift.

Let us explore, therefore, the variation from child to child and from group
to group by using the following transformation for reaction time t measured
in milliseconds,

z = log10(t − 120) . (5.2)

The constant 120 is first subtracted because this is more like the true “zero”
of reaction times, being about the fastest reaction time that is achievable.
The log transformation of the shifted reaction times acknowledges that the
impact of ADHD is more multiplicative than additive, and therefore that
the impact on a logarithmic time scale will be more additive than it will
be in the original time scale.

We may now propose the following additive model to describe the log
transformed reaction time zijk of child i on trial j in group k:

zijk = µk + αi|k + Uijk . (5.3)

The parameter µk quantifies the typical performance of children in group
k and the parameter αi|k, read “child i within group k,” quantifies the
individual typical performance of this child. As is usual in ANOVA models,
we fix the relative sizes of these effects by imposing the restriction

Nk∑
i=1

αi|k = 0,

where Nk is the number of children in group k.
The residual term Uijk expresses the lack of fit of the model for a specific

reaction time, and it is the variation of the values of Uijk that we see in
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Figure 5.4. The densities of log-shifted reaction-time residuals Uijk for 17 ADHD
or hyperactive children (solid line) and 16 normal children (dashed line). Mean
effects for individual control children have been removed, so that this group’s
density is centered on 0. The ADHD density is centered on 0.33 (corresponding to
122 msec) in order to emphasize the coherence of the modes. The vertical dotted
lines indicate the knot placement in the B-spline basis described in Section 5.6.

the distribution of transformed reaction times for a specific child. We are
assuming that this variable has a mean of zero. If we want to express
what model (5.3) means for reaction time itself, then we can reverse the
transformation (5.2) to get

τi = 120 + 10µk+αi|k+Uijk .

But can we be so sure that the distribution of the residuals Uijk is
normal? Not at all. We will want to preserve the idea of nonparametric
estimation of the density function pk(u), where the subscript k indicates
that we allow the distribution to be different for the two groups. Our tech-
nique for estimating these densities starts from that used to estimate the
densities in Figures 5.2 and 5.3, but adds the capacity to estimate the
model components µk and αi|k in addition.

The estimated densities for the residuals for the two groups in this ex-
periment are displayed in Figure 5.4. We see that the hyperactive children
show greater variability in residuals Uijk, even after the shifted log trans-
formation, and we also see that the transformed times remain somewhat
positively skewed. The mean µ1 of the ADHD group was 2.92, correspond-
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ing to 952 msec, and the control mean µ2 was 2.72, or 645 msec. As
expected, this difference was highly significant (t = 4.8).

The pattern of modes in the two densities is striking. We can see this
level of detail in the group densities because individual effects have been
removed by estimating the individual shift parameters αi|k. In the plot, the
center of the ADHD density has been shifted by what is equivalent to about
120 msec to show how well lined up the modes are. Initially, there was a
suggestion that this multimodal behavior pointed to a substantive feature
of brain function. On reflection, however, the experimenters realized that
it was an artifact of the instrumentation, which gave some preference to
times on particular cycles. Although this conclusion is not as exciting as the
neurophysiological one, it illustrates the way in which statistical analyses
can be important in drawing experimenters’ attention to aspects they had
previously overlooked.

5.4 Exploring variation across subjects with PCA

For each child, the work described in Section 5.3 yields an estimated density
function for the log-shifted reaction times z for that child. This density
function can be regarded as a functional datum for that child. In this
section, we explore the use of functional principal components analysis to
get a sense of how the density functions vary from child to child, and how
many substantial components of variation there are. In Section 5.2, we only
looked at an elementary aspect of this variation, namely a variation only
in the center of the distributions. As we have seen in previous chapters,
PCA offers the possibility of uncovering modes of variation that are more
complex. As in Section 5.2, we work with the density functions pi(z) for
log-shifted reaction times z defined in (5.3). We look only at the ADHD
group.

Principal components analysis is not well adapted to describing variation
in constrained functions. This is because principal components analysis
provides an expansion of the data in terms of empirically defined basis
functions, namely the principal components weight functions or harmon-
ics. Thus there is no convenient way to ensure that the approximation of
a density based on these harmonics will remain nonnegative. Instead of
analyzing the densities directly, therefore, we study the variation in the
derivatives of the functions Wi(z) defined in (5.1), that is, the log-density
derivative functions

wi(z) =
d

dz
Wi(z) =

d

dz
log pi(z) .

One feature that makes these functions interesting is that, for the normal
distribution, wi(z) is a straight line with negative slope. We can, therefore,
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Figure 5.5. Log-density derivatives wi(z) = (d/dz) log pi(z) for individual
log-shifted reaction-time densities for the 17 ADHD children.

investigate departures from normality such as multimodality by seeing how
different these functions are from linear.

Figure 5.5 shows what these functions look like for the ADHD children.
We confess that at first glance they do not look promising. But note that
between about z = 2.75 and z = 3.25, there is something of a linear trend.
Outside this central region, however, there is little if any structure visible.
However, all the densities themselves are near zero outside the region [2.75,
3.25], and we are not particularly interested in what the functions wi(z) are
up to over values of z that are extremely unlikely to occur. Therefore we
use a weighted version of PCA, with weight the average density p̄(z) for the
sample. This choice of weight diminishes the role of variation in wi(z) in
defining the harmonics when the density itself is small. The weighted PCA
proceeds by applying a standard PCA to the functions p̄(z)1/2wi(t). Once
the harmonics ηm(z) are identified for this analysis, we then back-transform
to compute the weighted-PCA harmonics ξm(z) = p̄(z)−1/2ηm(z) for the
original log density derivative functions wi(z).

The first three harmonics account for 63% of the variation in this
weighted PCA. This seems reasonable, considering the amount of variabil-
ity that we see in Figure 5.5. Figure 5.6 indicates that the first three log
eigenvalues are noticeably larger than the linear trend in the remainder.



78 5. Modeling Reaction-Time Distributions

1 2 3 4 5 6 7 8 9 10 11
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

 Eigenvalue number

 L
og

10
 e

ig
en

va
lu

e

 ADHD

Figure 5.6. The logarithms of the eigenvalues for the weighted principal com-
ponents analysis of the log-density derivative functions wi(z) for the ADHD
children. The dotted line shows the linear trend for the log eigenvalues from
4 to 11.

Because of the density estimation context, we display the principal com-
ponents or harmonics as effects on the mean density for the group by adding
a multiple of the harmonic to the mean log density, and then converting
this perturbed function to a density. The results for the first three principal
components for the ADHD sample after varimax rotation are given in Fig-
ure 5.7. In each panel the density corresponding to the mean log-density
derivative function w̄(z) is plotted as a dashed line for reference purposes.

The first harmonic mainly affects the height of the central peak of the
distribution at the expense of moderate deviations from the peak. The sec-
ond harmonic adds weight in the part of the distribution corresponding to
very fast reaction times. The third harmonic corresponds to a density very
much like the mean, but with the isolation of the three modes more sharply
defined. This harmonic quantifies the strength of the quasiperiodic effect
induced by the instrumentation in the experiment. These three harmonics
all account for nearly equal amounts of variation.
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Figure 5.7. The effects of the first three varimax-rotated harmonics for the
weighted principal components analysis of the log-density derivative functions
wi(z) for the ADHD children. The solid line in each panel is the density resulting
from adding a multiple of a harmonic to the mean function w̄(z) for the entire
sample, and the dashed line is the density corresponding to the mean function
w̄(z) itself.

5.5 What have we seen?

The effects of a disorder such as ADHD on a marker variable such as
reaction time can be complex. These may go beyond a simple change of
their central tendency to change the shape of the distribution itself. If we
only use distributions that can change in simple ways, such as the normal
which can change in location and scale only, we may miss some of these
important distributional shape changes, and may at the same time get a
distorted picture of simple shifts in distribution. In this case, we see that
ADHD seems to create a long positive tail in addition to shifting the mode.
Indeed, the strength of this tail seems to be an important component of
variation, suggesting that perhaps the upper tail is the true marker for the
severity of the ADHD condition.

An additional feature of our analysis was its ability to highlight the
quasiperiodic behavior caused by the instrumentation; not only was this
visible in the mean curves for the two populations, but one of the principal
components was able to quantify the strength of the effect.

The statistical technology that makes our analyses possible is the non-
parametric estimation of a density function, whether p(t) for the reaction
times, p(z) for the log-shifted reaction times, or p(u) for the residuals in
model (5.3). Our method is not the only one available, and kernel den-
sity estimation is an alternative approach that is better known. However,
our method of estimating the log density leads naturally into using the
derivatives of the log densities as functional data for further analysis.
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5.6 Technical details

When studying a density function like p(t), we expand the function W (t) =
constant + log p(t) in a B-spline basis, as described in Section 2.5, to give
the expansion

W (x) =
K∑

k=1

ckBk(x). (5.4)

There is no restriction on the values of the coefficients ck. In the work
described in this chapter, we used 34 B-spline basis functions of order 5,
with equally spaced knots. Splines of order 5 were used so we would be able
to define roughness penalties based on high derivatives, and to ensure that
the derivative of W (x) was itself smooth.

Given a sample t1, . . . , tN modeled by the density function p(t), the den-
sity is estimated using a penalized maximum likelihood method proposed
by Silverman (1982). The method applies a penalty on the roughness of
W (t) by maximizing the penalized log likelihood criterion

PENMLE =
∑

i

ln p(ti) + λ

∫ tU

tL

W ′′′(u)2 du . (5.5)

There are two reasons for penalizing the integrated squared third derivative
of the function W (t). We use the derivative w(t) = W ′(t) for further analy-
sis, and the penalty expressed in terms of w is the more familiar integrated
squared second derivative. In addition, the penalty will be zero if and only
if W (t) is a quadratic function, which corresponds to p(t) being a normal
density (truncated over the interval of interest). Thus, if the smoothing λ
increased without limit, it would force W (t) to be quadratic and conse-
quently p(t) to be the normal density, which is the standard “parametric”
density estimate.

To carry out the procedure numerically, the function W (t) is expanded
in terms of coefficients ck as in (5.4), and the log likelihood,

lnL =
∑

i

ln p(ti)

and its first two derivatives are expressed in terms of the function W (t) as

lnL =
N∑

i=1

W (ti) − N ln
∫

exp[W (u)]du

Dc lnL =
N∑

i=1

DcW (ti) − NE[DcW ]

D2
c lnL =

N∑
i=1

D2
cW (ti) − NE[D2

cW ] − N Var[DcW ] ,
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where the notations Dc and D2
c mean taking the first and second partial

derivatives with respect to c, respectively. Also, E[W ] =
∫

W (u)g(u) du,
and similarly for E[DcW ] and E[D2

cW ]. The values of the integrals in
these expressions were approximated using numerical methods rather than
analytically.

We use the method of scoring, which is defined by replacing the second
derivative matrix in the Newton–Raphson method by −N Var[DcW (t)].
Convergence is rapid and stable in our experience. The computation is
made simpler if W (tL) is zero, a condition that is easily assured if we fix
the coefficient c1 to zero for the first B-spline basis function, which is the
only basis function that is nonzero at tL.

When applying the method, the smoothing parameter values were chosen
subjectively. Where the data are pooled across children, as in Figure 5.2,
we used the value λ = 106. Where individual children are considered, and
the sample size is smaller, the variability is larger and so a larger value of
the smoothing parameter is appropriate. For example, in Figure 5.3, the
value was λ = 107.

Software and further details are available from the Web page correspond-
ing to this chapter.
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6
Zooming in on Human Growth

6.1 Introduction

The careful documentation of human growth is essential in order to define
what we call normal growth, so that we can detect as early as possible
when something is going wrong with the growth process. Auxologists, the
scientists that specialize in the study of growth, also need high quality data
to advance our understanding of how the body regulates its own growth.
It may come as a surprise to learn that human growth at the macro level
that we see in our children is not that well understood.

Growth data are exceedingly expensive to collect since children must be
brought into the laboratory at preassigned ages over about a 20-year span.
Meeting this observational regime requires great dedication and persistence
by the parents, and the dropout rate is understandably high, even taking
for granted the long-term commitment of maintaining a growth labora-
tory. The Fels Institute in Ohio, for example, has been collecting growth
data since 1929, and is now measuring the third generation for some of its
original cases.

The accurate measurement of height is also difficult, and requires con-
siderable training. Height diminishes throughout the day as the spine
compresses, but it also depends on other factors. Infants must be measured
lying down, and when the transition is made to measuring their standing
height, measurements shrink by around one centimeter. The most careful
procedures still exhibit standard deviations over repeated measurements of
about three millimeters.
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Records of a child’s height over 20 years display features, described below,
that are difficult for a data analyst to model. The classic approach has been
to use mathematical functions depending on a limited number of unknown
constants, and auxologists have shown much ingenuity in developing these
parametric models to capture these features. The best models have eight
or more parameters, and are still viewed as possibly missing some aspects
of actual growth.

Nonparametric modeling techniques developed over the last three
decades, such as kernel and spline smoothing methods, have been applied
to growth data. These methods have been successful at detecting new fea-
tures missed by parametric models, but they are not guaranteed to produce
smoothing curves that are monotonic, or strictly increasing. Even a small
failure of monotonicity in a height curve can have serious consequences
for the corresponding growth velocity, and even more so for acceleration
curves, which are especially important in identifying processes regulating
growth.

In this chapter we look at some new developments in growth data anal-
ysis. A recently developed method for monotonic smoothing is applied to
some old and new data. This method is used for all the curves estimated
below, and is described in Section 6.8.3. Another aspect of the analysis is
the introduction of curve registration methods, which allow the separation
of amplitude and phase variation.

6.2 Height measurements at three scales

Figure 6.1 shows, for each of 10 girls, the height function H(t) as esti-
mated from 31 observations taken between 1 and 18 years. These data
were collected as part of the Berkeley Growth Study; for more details of
these data, and the other data analyzed in detail in this chapter, see Sec-
tion 6.8.2. Growth is the most rapid in the earliest years, but we note the
increase in slope during the pubertal growth spurt (PGS) that occurs at
ages ranging from about 9 to 15 years. One girl is tall for all ages, but some
girls can be tall during childhood, but end up with a comparatively small
adult stature. The intervals between height measurements are six months
or more, and the picture from this long-term perspective is of a relatively
smooth growth process.

Figure 6.2 zooms in on growth by using measurements of a boy’s height
at 83 days over one school year, with gaps corresponding to the school
vacations. The measurement noise in the data, of standard deviation about
3 mm, is apparent. The trend is also noticeably more bumpy, with height
increasing more rapidly over some weeks than others.

To zoom in further, more accurate measurements are essential. The
length of the tibia of a baby measured to within about 0.1 mm is graphed
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Figure 6.1. The heights of the first 10 females in the Berkeley Growth Study.
Circles indicate the ages at which measurements were taken.
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Figure 6.2. The circles are 83 measurements of height of a 10-year-old boy, and
the solid curve is a smooth monotone fit to the data, as described in Section 6.8.3.
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Figure 6.3. The dots indicate lengths of the tibia in the lower leg of a newborn
infant, and the solid curve is a smooth monotone estimate of height.

in Figure 6.3. The jumps, or saltations, that we saw in the boy’s growth are
now much more visible. These data demand that we find a way to estimate
just how much bone length changes over, say, a 24-hour period. Since bone
length can only increase, it is essential that any smooth line, such as that
in the figure, also be everywhere increasing, and this is one of the features
of the smoothing method we use.

6.3 Velocity and acceleration

Although we commonly refer to data and curves such as shown in these
figures as “growth curves,” the term growth really means change. Hence, it
is the velocity function V (t), the instantaneous rate of change in height at
time t, that is the real growth curve, and we should use the term “growth”
to mean V (t). Because height does not decrease (at least during the grow-
ing years), velocity or growth is necessarily positive. The height data only
indirectly reflect growth, because they are measures of the consequences of
growth.

If height observations are taken at time points ti, we might consider
estimating velocity by the difference ratio,

V (ti) = [H(ti+1) − H(ti)]/(ti+1 − ti),
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Figure 6.4. The estimated growth velocity, or rate of growth, of the first girl
whose data are in Figure 6.1.

but this a bad idea from a statistical perspective, since even a small amount
of noise in the height measurements will have a huge effect on the ratio,
and this problem only gets worse as the time points get closer together.
It is much better to fit the height data with an appropriate smooth curve,
and then estimate velocity by finding the slope of this smooth curve.

Figures 6.4 through 6.6 display estimated velocity curves for the long-,
medium-, and short-term growth examples considered above. Now we can
see much more clearly what is happening. The pubertal spurt in Figure 6.4
is certainly more obvious, but even more impressive are the velocity surges
for the 10-year-old boy. The peaks in velocity for the baby, exceeding two
millimeters per day, are simply astonishing. We now know that we need
to work hard to get good methods for estimating velocity, which at least
during infancy is revealed to be a very intricate process.

We can get more understanding of the growth process by studying the
rate of change in velocity; this is the acceleration in height, denoted by
A(t). Estimated acceleration curves for the 10 girls in the Berkeley data
are given in Figure 6.7. Now we can see even more clearly what happens
in the pubertal growth spurt. Naturally there is a big positive surge in
velocity at the beginning of the PGS, followed by a return to zero when
the velocity is no longer increasing, and finally a negative change in velocity
in the final phase. It can be seen that the timing of the pubertal growth
spurt varies a great deal from one girl to another, a feature we return to in
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Figure 6.5. The estimated growth velocity of the boy whose data are in Figure 6.2.
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Figure 6.6. The estimated growth velocity of the baby whose data are in
Figure 6.3.
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Figure 6.7. The estimated growth acceleration curves for the 10 girls whose data
are shown in Figure 6.1. The heavy solid line is the average of these 10 curves.

Section 6.5. But what can also be seen, for several girls, are one or more
smaller oscillations in acceleration before the pubertal growth spurt. The
capacity to detect these so-called midspurts was one of the important early
achievements of nonparametric curve estimation technology in this area.

6.4 An equation for growth

What causes the velocity V (ti) at age ti to change to V (ti+1) for the next
observation time ti+1? The question can be formulated by the following
equation,

V (ti+1) − V (ti) = wiV (ti)(ti+1 − ti). (6.1)

This equation is not a model for growth, but merely a way of looking at it.
It relates the velocity change over the interval ti+1 − ti to three factors.

• ti+1 − ti itself. The smaller this time interval, the less change there
will be, and in the limit ∆t → 0, velocity will not change. This
says that over very small time scales growth is essentially a smooth
process, an assertion that seems beyond question since a jump in
the rate of growth over an arbitrarily small time interval would seem
inconceivable in terms of the body’s physiology.
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• V (ti), a term that measures growth changes on a percentage or rel-
ative basis. This is particularly useful in allowing for variations in
height over the population, and, for instance, allows for comparison
of growth patterns independently of people’s ultimate adult height.

• wi, a factor that determines the change in velocity. We make this
factor depend on ti because we imagine that this factor itself will
change with time. This is the factor that really specifies how growth
varies.

Asking a question in the right way is everything in science, and the
formulation in (6.1) focuses our attention on the size of the factor wi,
which will be positive if velocity is increasing at age ti, zero if there is no
change, and negative if velocity is decreasing.

Here is a rearrangement of equation (6.1):

V (ti+1) − V (ti)
ti+1 − ti

= wiV (ti). (6.2)

The left side of this equation is just an estimate of the instantaneous rate
of change of V (t), and becomes the acceleration A(t) when ti+1 − ti → 0.
Therefore, rather than defining wi to satisfy (6.1) and (6.2) exactly, we
replace it by a function w(t) defined by

A(t) = w(t)V (t) or w(t) =
A(t)
V (t)

. (6.3)

The continuously defined function w(t) is now the ratio of acceleration to
velocity, or what we can call relative acceleration, meaning acceleration
of height measured as a fraction of velocity. We can rewrite (6.3) as the
differential equation

d2H

dt2
= w(t)

dH

dt
. (6.4)

The general solution to this equation is

H(t) = C0 + C1

∫ t

0
[exp

∫ u

0
w(v) dv] du. (6.5)

In this expression, C0 and C1 are arbitrary constants that will need to be
estimated from data.

Equation (6.4) may be described as the fundamental equation of growth,
in the sense that any intrinsically smooth growth process may be expressed
in this way. The relative acceleration w(t) is the functional parameter of
growth. Our approach to thinking about growth is to model this function,
rather than the height function itself. Once we have a way of estimating
w(t), we can check it against the data by using equation (6.5). To see how
we estimate w(t), go to Section 6.8.3.
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Figure 6.8. The left panel shows the relative acceleration function w(t), and the
right panel its integral W (t).

For the 10 girls we have been studying, Figure 6.8 displays the functions
w(t), as well as their integrals

W (t) =
∫ t

0
w(u)du . (6.6)

It can be shown from (6.5) that W (t) is proportional to log H ′(t), the loga-
rithm of the instantaneous growth rate. We see that w(t) looks rather like
the acceleration curves in Figure 6.7 except at the end in late adolescence.
This is a consequence of w(t) being relative acceleration, as expressed in
equation (6.3).

6.5 Timing or phase variation in growth

As in any data analysis, important aims for the long-term growth data are
to estimate the average features of growth, and to get an impression of their
variability across individuals. However, Figure 6.7 shows that these tasks,
which are straightforward for univariate and multivariate data, present a
new challenge. The heavy line, which is the mean of the 10 acceleration
curves, does not have the characteristics of any of the observed curves. The
PGS peak and valley for the average are much too small, but on the other
hand the duration of the PGS for the average curve is longer than that of
any single observed curve.

The problem is that the growth curves exhibit two types of variability.
Amplitude variability pertains to the sizes of particular features such as the
velocity peak in the pubertal growth spurt, ignoring their timings. Phase
variability is variation in the timings of the features without considering
their sizes. Before we can get a useful measure of a typical growth curve,
we must separate these two types of variation, so that features such as the
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Figure 6.9. The left panel shows three height acceleration curves varying only in
amplitude. The right panel shows three curves varying only in phase.

pubertal spurt occur at roughly the same “times” for all girls. The problem
is expressed in schematic terms in Figure 6.9, where we see in the left panel
two acceleration curves that differ only in amplitude, and in the right panel
two curves with the same amplitude, but differing in phase.

By “time” here we now mean something like physiological time, which
need not unfold at the same rate as physical or clock time. We mean that
two girls in the middle of the pubertal spurt are, effectively, at the same
physiological age, whatever their respective chronological ages. What we
need is some way of mapping clock time t into its physiological counterpart.
That is, we want a function hi(t) for girl i such that at physiological time t
this girl has a chronological age of hi(t). For example, if h(t) > t, we have
someone who is growing late, and if t is the physiological age at which the
growth spurt takes place, then this person is having the PGS at a clock
age that is later. The curve h(t) is often called a time warping function.
Figure 6.10 displays these functions h(t) for our 10 girls. Remember that
curves above the diagonal correspond to late growth, and curves below the
diagonal to early growth.

But isn’t time, too, a positive growth process? It always increases because
days and years accumulate, and its velocity is defined by the time units
that we use. Or at least, that is so for clock time, which increases linearly,
corresponding to relative acceleration w(t) = 0. But physiological time,
which is driven by factors such as hormonal secretions that are not constant
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Figure 6.10. The time warping functions h(t) for the 10 Berkeley girls. Curves
above the diagonals indicate girls with a physiological age consistently earlier
than chronological age, and therefore growing late.

across individuals, need not unfold in this elementary way. Even in Figure
6.1 we can see clearly that some girls are outstripping clock time, and
maturing early, while other girls are lagging behind the clock, being late
maturers.

Therefore, the warping function h(t), which must be always increasing,
reflects simply another type of growth curve, and may be characterized
by the same mathematical representation that we have in equation (6.4),
and therefore corresponds to its own relative acceleration wh(t). We defer
further details on how we estimate h(t) to Chapter 7, where registration is
the main topic, and pass to what we see when the growth curves have been
registered.

6.6 Amplitude and phase variation in growth

What do we do with warping functions hi(t) once we have estimated them?
Recalling that for a late grower, h(t) > t, we see that we can think of h(t)
in such a case as “speeding up” clock time to make it match physiological
time. This means that if we calculate the function

V ∗(t) = V [h(t)] (6.7)
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Figure 6.11. The solid curve is the average acceleration for the registered data
from the boys, and the dashed curve is the registered acceleration average for the
girls.

we now have a new velocity function V ∗(t) that shows the pubertal
growth spurt, for example, as occurring at the “right time.” Similarly, for
h(t) < t, we can use the warping function to slow down clock time for an
early grower. We also define the registered height and acceleration curves
H∗(t) = H[h(t)] and A∗(t) = A[h(t)], respectively.

With these registered curves in hand, we can now carry out averaging
and other analyses more meaningfully, since registered curves no longer
have the phase variation that affected the average in Figure 6.7. Figure
6.11 superimposes the mean registered acceleration curves of girls and boys.
Some new features now emerge. We see that the pubertal spurt is not the
only spurt visible in long-term growth data, and we already know that
there are even more spurts within medium- and short-term data.

We see in Figure 6.11 that girls and boys seem to go through the same
pubertal growth cycles, but differ in two ways: the PGS is earlier in girls,
but more intense in boys. The time shift prompts us to warp time for
one gender in order to render its growth equivalent to the other. The left
panel of Figure 6.12 displays the warping function h(t) that registers the
boys’ data to the girls’, and the right panel shows the registered average
acceleration curves. We can see two major gender differences. The left panel
demonstrates that male growth essentially lags behind female growth, with
a gap that increases steadily until growth is finally finished. The right panel
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Figure 6.12. The left panel displays the warping function for registering the boys’
average velocity to that of the girls. Because boys mature more slowly, the warping
function is above the diagonal, shown as a dashed line. The right panel shows the
registered average acceleration curves. The solid curve corresponds to the boys
and the dashed curve to the girls.

shows that the intensity of the acceleration function during the pubertal
spurt is greater for boys than for girls. These are the two main contributors
to the gender difference in mean adult heights: boys grow over a longer
period, and grow more intensely during the pubertal growth spurt.

The right panel of Figure 6.12 also shows some gender difference in ear-
lier childhood. Closer examination of these data, and also of other larger
data sets on growth such as the Fels Institute data, reveals that many chil-
dren have more than one midspurt. Furthermore, both the number and
the registered position of these midspurts is more variable in boys than in
girls. This is partly because boys have a longer prepubertal period. It is
the averaging out of this greater intergender variability that causes boys to
have a flatter average registered acceleration curve.

What of the amplitude variation among the girls? A functional principal
components analysis of the registered acceleration reveals that three prin-
cipal components or harmonics account for 72% of their variation about
the mean acceleration curve. After varimax rotation of these components,
we get the three components displayed in Figure 6.13, and they account
for nearly equal proportions of variance. Varimax harmonic 1 has to do
only with variation during the pubertal spurt, and therefore captures the
intensity of this event. The second and third harmonics, on the other
hand, reflect variation only in the prepubertal years, but rather differ-
ently. The second harmonic shows an intensification of the two prepubertal
spurts relative to the mean curve, but the third is more complex, capturing
phase variation in these two earlier spurts that was not taken out by the
registration process.
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Figure 6.13. The varimax-rotated harmonics of registered acceleration for the
girls. The amount of variation accounted for is indicated at the top of each har-
monic. The solid curve is the mean acceleration, and the plus and minus symbols
show the effects of adding and subtracting a multiple of the harmonic to the
mean.
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Figure 6.14. Results of a PCA of the warping functions, regarded as functional
data in their own right. The dashed curves show the mean acceleration curve
without time transformation, and the solid curves show what the mean accelera-
tion curve would look like under the influence of each harmonic. The underlying
data are the growth data for the 10 females in the Berkeley growth study.

We can also study phase variation by carrying out a PCA of the warp-
ing functions in Figure 6.10. The harmonics are displayed in Figure 6.14
by showing what the mean acceleration would look like if a multiple of
the harmonic were added to clock time. In this case, the first three com-
ponents explain 99% variation. The first harmonic corresponds to growth
that is consistently late. The second shows early growth up to the deceler-
ation phase of the PGS, and then slow recovery. The third indicates late
prepubertal growth and early onset of puberty.

6.7 What we have seen?

Growth is not at all smooth over a short time scale. Our results hint that
growth takes place by turning on and off the velocity function periodically.
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In an infant the period is three or four days, but later the period seems
to lengthen, until by 10 years it is of the order of a number of weeks. The
discovery of these jumps or saltations is new, and we need much more data
of the quality that we have for the baby before we can understand this
process better. But perhaps what counts for growth is what turns it off;
growth at the rate displayed in Figure 6.6 could actually be dangerous if
sustained for much longer than a day or so.

On the methodological side, a formulation of the growth process in terms
of the difference equation (6.1) or the differential equation (6.4) leads to a
smoothing technology for growth data that respects the monotonicity of the
height function H(t) and the positivity of velocity V (t), and also yields in
the form of relative acceleration w(t) a curve with a natural interpretation.
An added bonus was the appreciation that the time warping function h(t)
that takes clock time into physiological time is also a growth process, and
this story is taken up further in Chapter 7. The time warping functions for
each individual can themselves be considered as functional data.

Finally, once we have teased apart, at least to some extent, amplitude
and phase variation, we see that boys and girls do not differ strikingly in
the shapes of their acceleration amplitudes, but that they do show a large
amount of phase variation. Among the girls (and boys as well), amplitude
variation seems to be primarily three-dimensional, and separable into com-
ponents that reflect variation in the pubertal growth spurt, and others that
show variation in prepubertal growth.

6.8 Notes and further issues

6.8.1 Bibliography
The work of this chapter is discussed in more detail in Ramsay and Bock
(2002). They provide extensions and more details of the analyses presented
here, apply the methods to the larger Fels Institute data set, and give fur-
ther discussion and bibliographic references. The formulation of the growth
process as a second-order linear differential equation, and the analysis of
the growth data for the 10-year-old boy, are given in Ramsay (1998). The
companion paper, Ramsay and Li (1998), applies this formulation to the
registration problem, which is examined in more detail in Chapter 7.

There is already a large literature containing functional data analyses of
growth data. Indeed, this field has provided one of the most important test
beds for the development of curve estimation and analysis. The many con-
tributions of T. Gasser and his collaborators, of which Gasser et al. (1990)
is only one example, are especially important. A good deal of the research
in this fascinating field appears in Annals of Human Biology.

Growth curve analysis has also inspired many contributions to the curve
registration problem, and statistical issues in the use of features or land-
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marks to register growth curves has been studied by Kneip and Gasser
(1992) and Gasser and Kneip (1995).

6.8.2 The growth data
The Berkeley Growth Study (Tuddenham and Snyder, 1954) recorded the
heights of 54 girls and 39 boys between the ages of 1 and 18 years. Although
larger studies of growth have since been completed, notably the Fels (Roche,
1992) and Zurich (Falkner, 1960) data, the Berkeley data have been pub-
lished and are therefore freely available. Heights were measured at 31 ages
for each child, and the standard error of these measurements was about 3
mm, tending to be larger in early childhood and lower in later years.

The data on the growth of the 10-year-old boy were collected as part of a
study reported in Thalange et al. (1996), and generously made available to
us by P. J. Foster at the University of Manchester. The short-term data on
the growth of the tibia in a newborn infant are described in Hermanussen
et al. (1998), and we thank Prof. Hermanussen for supplying them. This
paper is one in a series of papers that provide details on the experimental
procedure, and which report similar results in the growth of rats.

6.8.3 Estimating a smooth monotone curve to fit data
In this section, the monotone smoothing method is described briefly; for
more details, see Ramsay (1998). Relevant software is available from the
Web site corresponding to this chapter. We use the differential equation for
growth A(t) = w(t)V (t) to transform the problem of estimating the height
function H(t) that actually fits the height observations yj observed at ages
tj , j = 1, . . . , n to one of estimating the relative acceleration function w(t).
Our task is made simpler by the fact that w(t) is unconstrained in any way,
unlike V (t) which must be positive, or H(t) which must always increase.

Our approach to estimating w(t) is to express it as a linear combination
of basis functions φk(t), as we already have done in previous chapters, so
that

w(t) =
K∑

k=1

ckφk(t). (6.8)

We can then fit the data by numerically minimizing the error sum of squares

SSE =
n∑

j=1

[yj − H(tj)]2 (6.9)

with respect to the coefficients ck defining the basis function expansion
(6.8).

Our choice of basis is the B-spline basis φk(t) = Bk(t) described briefly
in Section 2.5 and in detail in Ramsay and Silverman (1997, Chapters 3
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and 4). We tend to choose this basis for any function that is not periodic
and that has no other restrictions on its shape. A B-spline basis is defined
by a set of knots, and our strategy is to place a knot at each age tj at which
height is observed.

Putting knots at every data point allows considerable flexibility, but
results in more basis functions than there are observations. We compensate
for this overly rich basis by adding a roughness penalty to the error sum
of squares criterion (6.9) and then minimizing the following penalized least
squares criterion

PENSSE =
n∑

j=1

[yj − H(tj)]2 + λ

∫ T

0
[w′′(t)]2dt. (6.10)

In this expression, T is the largest age at which we wish to estimate
H(t), V (t), and A(t). Roughness in this expression is defined as the in-
tegral of the square of the second derivative w′′(t) of w(t). Because of the
nonlinear dependence of H(t) on w(t), the minimization of PENSSE will
involve a numerical optimization over the vector of B-spline coefficients ck.

The effect of varying the smoothing parameter λ in (6.10) is as follows.
The closer λ is to zero, the less the roughness of w(t) is penalized, and in
the limit H(t) will become a monotone curve that comes as close as any
monotone curve can come to fitting the data, which, of course, may not
be themselves strictly increasing. Such a curve is bound to have plateaus
and points of very rapid increase, and would be unacceptable even for
data as rough as those in Figure 6.3. At the other extreme, if λ were
to increase without limit, w(t) would approach a straight line, and H(t)
would become much too smooth to fit the data acceptably. In particular,
A(t) would become linear, and would not offer a plausible account of events
such as the PGS. In the present context, we have found it satisfactory to
choose subjectively the smallest value of λ that still provided a smooth and
interpretable estimate of A(t).
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7
Time Warping Handwriting and
Weather Records

7.1 Introduction

In Chapter 6 we encountered what is almost always a fact of life in func-
tional data. Curves vary in two ways: vertically, so that certain oscillations
and levels are larger in some curves than others; and horizontally, so that
the timings or locations of prominent features in curves vary from curve
to curve. We call these two types of variation amplitude and phase, respec-
tively. You might want to glance back at Figure 6.9 to see a schematic
diagram illustrating this concept.

We now look more closely at amplitude and phase variation in the context
of two rather different sets of data. The first is a sample of the printing
(by hand) of the characters “fda.” Each observation is a series of strokes
separated by gaps where the pen is lifted off the paper, along with the
clock times associated with these events. The timing of strokes and cusps
varies from sample to sample, and we consider how to register these curves
by transforming time so that, as nearly as possible, each stroke occurs at
the same time for all curves. The aim of registration is to yield a sample
of curves that vary only in terms of amplitude. The phase variation does
not disappear, though; it is captured in the time transformations that we
estimate for each curve.

Our second example is a single long time series, daily temperature mea-
surements for the 34 years spanning 1961 through 1994. Naturally these
data have a strong annual pattern, but one has only to appeal to personal
experience to know that winter, for example, arrives late in some years
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and early in others. Therefore, we want to speed up and slow down time
within each year so that the seasons will change at the same time across all
years. We do this for many reasons, among them to get a better estimate
of the average annual temperature curve, and to get tighter estimates of
long-term trends such as might be associated with global warming.

We reserve the discussion of the more technical aspects of just how reg-
istration is achieved to Section 7.6, but it will first be helpful to spell out
more formally a model for how curves vary.

7.2 Formulating the registration problem

Curve registration can be expressed formally as follows. We have a sample
of N functions xi. Each curve is defined over an interval, and the length of
the interval may vary from curve to curve. For simplicity, let us assume a
common origin but a variable end point, and make the intervals [0, Ti].

A basic form of registration is to preprocess each curve by rescaling its
argument range to a common standard interval [0, T0]. This standard time
interval [0, T0] may, for example, be the average interval [0, T̄ ]. Although
we assume the existence of a standard interval, we do not require that the
data have necessarily been scaled to fit this interval.

Now let hi(t) be a transformation of time t for curve i, which we call
a time warping function. The argument t varies over [0, T0]. The values
of hi(t), however, range over the curve i’s interval [0, Ti], and satisfy the
constraint hi(0) = 0 and hi(T0) = Ti. Thus the time warping function maps
the standard interval [0, T0] to the interval on which the function xi lives.

The fact that the timings of events retain the same order regardless of
the time scale implies that the time warping function hi should be strictly
increasing, so that hi(t1) > hi(t2) if and only if t1 > t2. In fact, hi(t) is just
a growth curve of the kind that we studied in Chapter 6. We can think of
clock time t as growing linearly with a constant velocity of one second per
second. We can think of curve i’s “system time” as evolving at a rate that
can change slightly from one clock unit to another. We show that printing
is running ahead of itself at some times, and late at others; winter comes
early some years, and late at others.

This strict monotonicity condition ensures that the function hi is invert-
ible, so that for each y in the interval [0, Ti] there is a unique t for which
h(t) = y. We use the notation h−1

i to denote the inverse function,1 for
which h−1

i (y) = h−1
i [hi(t)] = t. The invertibility of hi means that it defines

a one-to-one correspondence between the time points on the two different
time scales.

1Not to be confused with the reciprocal of h, a concept which we do not use in this
discussion.



7.2. Formulating the registration problem 103

Let x0(t) be a fixed function defined over [0, T0] that provides a template
for the individual curves xi in the sense that after registration, the features
of xi will be aligned in some sense to those of x0. The following is a model for
two functions x0(t) and xi(t) differing primarily in terms of phase variation,

xi[hi(t)] = x0(t) + εi(t) , (7.1)

where the residual or disturbance function ε is small relative to xi and
roughly centered about 0. Because we assume that ε is small relative to
xi, this model postulates that major differences in shape between target
function x0 and specific function xi are due only to phase variation. Having
identified the N warping functions hi(t), we can then calculate the registered
functions xi[hi(t)]. Methods for fitting the model (7.1) are developed later
in this chapter.

What does h(t) mean? Let’s assume that the ice breaks up on the St.
Lawrence River at Montreal on the average on April 7th, day 97 for nonleap
years. But in 1975 spring is late and the ice goes out on April 14th, or day
104. We want, therefore, that h1975(97) = 104, so that x1975[h1975(97)] =
x1975(104), and therefore that, from a clock perspective, the ice is breaking
up simultaneously in both the standard year and in 1975 when time is
running a week late. In effect, in this case, the warping function speeds up
time to compensate for its being tardy in 1975.

On the other hand, imagine that in the same year the leaves on Mont
Royal in the city change color on September 15th (day 258) instead of
September 30 (day 303) as is normal. Then h1975(303) = 258, and the
warping function is slowing down system time at a point when it is running
ahead to conform to clock time. Thus, h(t) > t corresponds to a process
running slow, and h(t) < t to one running fast.

In most of the examples we consider, the target function x0 is not given.
Instead we have to construct it from the data. Typically, we begin by
mapping each interval linearly to the standard interval [0, T0], and set x0
initially to be the sample mean x of the functions xi after this scaling. We
then register the individual functions to x, and update the estimate of x0
to be the mean of the registered functions. We now update the warping
functions by registering the individual functions to this new estimate of
x0. In principle, it is possible to iterate the process of updating x0 then
reestimating the warping functions, but this is rarely necessary in practice.

The functions xi(t) that we are discussing here may be derivatives as,
for example, the velocity curves in Chapter 6. It can be better to register
derivatives instead of the original functions because derivatives tend to
oscillate more, and therefore have more distinctive features to align. In
addition, in phenomena such as human growth, features in the derivative
are the true aspects of interest in the problem.
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Figure 7.1. The tangential acceleration (7.2) on the X–Y plane for 20 samples of
the printing of the characters “fda” by a single individual.

7.3 Registering the printing data

These data are recordings of the X-, Y -, and Z-coordinates 200 times per
second of the tip of the pen during the printing by hand of the charac-
ters “fda.” In the experiment, there were a number of subjects, and each
repeated the printing 20 times. Because this is printing instead of cursive
writing, the vertical Z-coordinate is important.

The registration problem is illustrated by plotting the magnitude of the
tangential acceleration vector,

TA(t) = [X ′′(t) + Y ′′(t)]1/2 (7.2)

on the X–Y plane for each curve for one of our subjects. Tangential accel-
eration is an important property in the study of the dynamics of printing.
To simplify the plot, the time taken to draw each record in Figure 7.1 was
first normalized to the average time, 2.3 seconds. We see that the timings
of the acceleration peaks vary noticeably from replication to replication.
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Figure 7.2. The tangential acceleration curves for the registered printing samples.

The registered results are shown in Figure 7.2, and we see that the accel-
eration peaks are now much more cleanly aligned. Moreover, when we look
at the mean tangential acceleration calculated before and after registration,
as shown in Figure 7.3, we see that the registration has also improved the
amount of detail in the mean function. The peaks are higher, more sharply
defined, the valleys are closer to zero, and some small peaks emerge that
were washed out in the unregistered mean function.

We return to these data in Chapter 11, where we consider whether we
can identify someone by using a differential equation that describes that
person’s printing.

7.4 Registering the weather data

Functional data often come to us as a single long time series spanning many
days, months, years, or other time units. The variation in data such as these
is usually multilevel in nature. There is usually a clear annual, diurnal, or
other cycle over the basic time unit called the season of the data, combined
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Figure 7.3. The mean tangential acceleration curve for the registered printing
samples is plotted as a solid line, and the mean for the unregistered data as a
dashed line.

with longer-term trends that span many time units. Moreover, the seasonal
cycle may also show some evolution over the time spanned by the series.

The data in this example are 12,410 daily temperatures at Montreal over
the 34 years from 1961 to 1994 (in leap years temperatures for February
28 and 29 were averaged). Because these are 24-hour averages, the actual
daily lows and highs were more extreme. The minimum and maximum
temperatures recorded in this period were −30◦C and 30◦C, respectively.
All our analyses are conducted on the entire series, but we do not plot
the results for the entire time interval, since this is too much detail to put
in a graph. Figure 7.4 focuses on 1989, when a severe cold snap came at
Christmas, and was followed by a strong thaw.

We now smooth the temperatures in two ways. We smooth merely to
remove the day-to-day variation, which from our perspective is too short-
range to be interesting, although we are reluctant to call it error or noise.
When we are done, we are left with an estimate of the smooth part of tem-
perature variation. We achieved this by using 500 B-spline basis functions
of order 6. The knots were equally spaced, and occurred at about every 25
days. This smooth, which we denote x(t), is shown in Figure 7.4 as a solid
line.

The second smooth x0(t) is designed to estimate the strictly periodic
component of the sequence. This was achieved by expanding the series in
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Figure 7.4. Temperature data for Montreal from mid-1988 to mid-1990. Daily
mean temperatures are plotted as points, a smooth of the data as a solid line,
and a strictly periodic trend as a dashed line. The horizontal dashed line indicates
the mean temperature over the 34 years of data.

terms of nine Fourier basis functions with base period 365.25 days. In signal
analysis jargon, we applied a high-pass filter. Now the standard deviation
of the residuals from this trend was 4.74◦C, which is necessarily higher than
the unconstrained B-spline smooth, but we were surprised at how small the
increase actually was. This periodic trend is shown as the dashed line in
Figure 7.4.

We now subtract the strictly periodic curve x0(t) from the smooth curve
x(t) to highlight trends and events unexplained by seasonal variation. The
result is shown in Figure 7.5, and the standard deviation of these differences
is 2.15◦C. We see the cold snap of 1989 as the strongest negative spike, and
we also see a number of episodes where the smooth trend is either above
or below zero for comparatively long periods. The temperature was higher
than average for a long period after 1990, for example.

Some of this longer-term trend can be viewed as phase variation, due
to the early or late arrival of some seasons. For example, the cold snap
of 1989 would not have been so dramatic if it had come around January
15, 1990, when temperatures approaching −30◦C happen more often, and
indeed were seen a year earlier. We need to remove our estimate of the
phase variation to get a better sense of just how extreme this event was.
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Figure 7.5. The difference between the smooth trend and the strictly periodic
trend for the Montreal temperature data.

Figure 7.6 shows what happens around 1989 when we register the smooth
trend x(t) to the strictly periodic target x0(t). We used 140 B-spline basis
functions of order 5 to define the relative acceleration function w(t) defining
time warping function h(t) as described in Section 7.6, yielding a spacing
between knots of three months. This seemed to give enough flexibility to
capture some of the within-year phase variation, but not enough to distort
fine features in the curves. Now we see that the cold snap at Christmas 1989
is positioned after registration in January 1990. The standard deviation of
the differences between the registered temperature curve and the strictly
periodic has now dropped to 1.73◦C. We can now estimate the proportion
of the variation of the unconstrained smooth around the strictly periodic
smooth due to phase variation by the squared multiple correlation R2 =
(2.152 − 1.732)/2.152 = 0.35. Thus, about a third of the smooth variation
in temperature is due to phase.

To get some idea of how much shift in time is required to achieve the
results in Figure 7.6, we can plot the difference between the warped and
actual time functions h(t) − t, called the time deformation function. This
is shown in Figure 7.7, and we see that midwinter in 1989/1990 arrived
about 25 days early.

What about global warming? The smaller residuals for the registered
data fit by strictly linear trend should help us to detect any long-term
linear trend in the data. The slope for the regression of these residuals
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Figure 7.6. Temperature data for Montreal from mid-1988 to mid-1990 registered
to the strictly periodic trend. The registered smooth of the data is the solid line,
the unregistered smooth is the dashed line, and the strictly periodic trend is the
dashed-dotted line. The horizontal dashed line indicates the mean temperature
over the 34 years of data.
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Figure 7.7. The time deformation function h(t) − t for the registration results in
Figure 7.6.
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on time is 0.0024◦C per year, a total of 0.08◦C for the 34-year period of
observation. The standard error of the regression coefficient, however, is
0.0016◦C, and we cannot conclude that this amount of trend is significant.

7.5 What have we seen?

Although we have already seen the registration problem in Chapter 6, the
two examples here introduce some new aspects. For the printing data we
had to register the three coordinates simultaneously, that is, with a com-
mon time warping function h(t). The amount of registration involved was
substantially less than for the growth data, but we saw some rather dra-
matic improvements in the coherence of the tangential amplitude curves in
Figure 7.2, and this turns out to be important when we analyze these data
later.

Not all functional data involve multiple samples of curves. Rather, a
long time series such as the temperature data also contains in a certain
sense replicated data. There are 34 repetitions of the annual variation in
temperature, and our strictly periodic smooth using the Fourier basis was,
in fact, a type of averaging over these repetitions. When we registered
the entire series to this periodic template, we discovered that the amount
of phase variation was rather substantial, and required in certain years
nearly a month of adjustment. Removing phase variation also led to a
rather substantial reduction in the total variation of the smooth trend. This
discovery seriously challenges most of the methods now used to analyze time
series such as this, because they do not provide for phase variation.

7.6 Notes and references

In this section, we generally achieve some simplification of notation by
dropping the subscript on the function xi(t) to be registered as well as the
warping function hi(t).

7.6.1 Continuous registration
We may also register two curves by optimizing some measure of similarity
of their shapes, and thus use the entire curves in the process. Put another
way, the timings of a fixed set of landmarks provide one way of describing
how similar the shapes of two curves are, but we can also choose measures
that use the whole curves.

Silverman (1995) optimized a global fitting criterion with respect to a
restricted parametric family of transformations of time shifts, and applied
this approach to estimating a shift in time for each of the temperature
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Figure 7.8. In the left panel the values of the unconstrained smooth from mid-1988
to mid-1990 are plotted against the corresponding values of the periodic smooth.
In the right panel the registered smooth values are plotted against the periodic
smooth values. We see that the values are now closer to the diagonal dashed line.

functions in 35 Canadian weather stations. He also incorporated this shift
into a principal components analysis of the variation among curves, thus
explicitly partitioning variation into range and domain components. His
measure of shape similarity was the total squared error, cast into functional
terms as

FSSE(h) =
∫ T0

0
{x[h(t)] − x0(t)}2 dt . (7.3)

This measure works well enough provided that the amount of amplitude
variation is small, so that the pure phase variation model (7.1) is about
right. However, the measure can run into trouble when x(t) and x0(t) have
the same shape but differ in amplitude. Ramsay and Li (1998) offer an
example in which it is shown that this criterion has a tendency to “pinch
in” the sides of the larger of the two curves in order to make it look more
like the smaller.

To evolve an alternative fitting criterion, we could allow a scale factor
A, which may depend on i, to yield

FSSE(h, A) =
∫ T0

0
{x[h(t)] − Ax0(t)}2 dt . (7.4)

This would be zero if x0(t) and x[h(t)] differ only by a scale factor, so
that x(t) = Ax0(t) for some positive constant A. This means that the two
functions have essentially the same shape, and that the values of x(t) are
proportional to those of x0(t). If the curves are exactly proportional, then
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the matrix
[ ∫ {x0(t)}2 dt

∫
x0(t)x[h(t)] dt∫

x0(t)x[h(t)] dt
∫ {x[h(t)]}2 dt

]
(7.5)

is singular, so only one of its eigenvalues is nonzero. This is also the case if
we replace the integrals in the matrix by sums over a mesh of values tj .

Consider, for example, the relation of the smooth variation in the tem-
perature data to their periodic trend over 1989, shown in the left panel of
Figure (7.8). Note the large loop in the lower left of this plot, due to the
early arrival of winter in this year. The eigenvalues of the matrix (7.5) are
2.380 and 0.032. The smaller eigenvalue is positive because these two sets
of curve values are not proportional to each other.

This line of reasoning suggests that we might choose the warping function
h(t) to minimize the logarithm of the smallest eigenvalue of the cross-
product matrix (7.5). Denote this quantity by MINEIG(h). In cases like
the printing data, where the functions are multivariate, we can form a
composite criterion by adding the criterion across functions. The criterion
often works even better if we use the first derivative values, or even a higher
derivative if it can be estimated stably. This is because derivatives tend to
oscillate more rapidly than functions, and also to vary about zero, so that
the smallest eigenvalue measure is even more sensitive to whether functions
differ only by amplitude variation.

We can see how these two techniques work on an artificial example. Let
the target function be x0(t) = sin 2πt, and let the function to be registered
be x(t) =

√
2(sin 2πt+cos 2πt). These two functions have a phase difference

of 1/8, and x(t) has a maximum of 2 as compared to the maximum of x0(t)
of 1. Otherwise, the two functions have the same shape. The results are
shown in the upper two panels of Figure 7.9, where we see that the regis-
tered function is a lateral shift by 0.125 of the unregistered function. In the
upper-right panel, we see as expected that h(t) ≈ t. The problem with the
least squares criterion (7.3) can be seen in the bottom two panels. We see
that this criterion is minimized in the presence of considerable amplitude
differences by pinching in the larger curve over amplitudes where both the
smaller and larger curve have values. The resulting warping function is far
from diagonal, and even the lateral shift is poorly estimated, with a value
of 0.117.

Returning to the registration of the temperature data, the right panel
of Figure 7.8 shows that the registered smooth trend is more tightly re-
lated to a proportional relationship. The two eigenvalues are now 2.388 and
0.018, and, although the first eigenvalues hardly change at all, the second
eigenvalue is now 57% of the corresponding value before registration.

A generalization, investigated by Kneip, Li, MacGibbon, and Ram-
say (2000), is to replace the constant A by a smooth positive function
Ai(t) which does not vary too quickly. This allows local features of xi to be
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Figure 7.9. The upper two panels show results for an artificial registration problem
using the minimum eigenvalue criterion. The dotted curve in the upper-left panel
is the curve to be registered to the curve indicated by the dashed line. The solid
line is the registered curve. The upper-right panel contains the warping function
for this case, h(t) = t. The lower panels show the same results using the least
squares criterion.

registered to those of x0 even if the overall scale of variation is not constant
across the whole range.

7.6.2 Estimation of the warping function
The software on the Web site associated with this chapter offers a choice
between the two fitting criteria defined above: least squared error and min-
imum smallest eigenvalue of the cross-product matrix. Since the warping
function h(t) is strictly increasing, it can be represented using the method-
ology of Chapter 6 in terms of its relative acceleration w(t) = h′′(t)/h′(t).
We can then permit a roughness penalty based on the mth derivative of
w(t), by minimizing

MINEIGλ(h) = MINEIG(h) + λ

∫
{w(m)(t)}2 dt, (7.6)
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or the corresponding criterion based on FSSE. In the analyses we have
presented, the MINEIG criterion was used. For either criterion, if m = 0,
larger values of the smoothing parameter λ shrink the relative acceleration
w to zero, and therefore shrink h(t) to t. In practice, it is satisfactory to
choose the smoothing parameter λ subjectively.

If we need to estimate derivatives of h(t), it may be better to work
with higher values of m. This can happen, for example, if we want to use
derivatives of the registered functions with respect to t, in which case the
chain rule will require the corresponding derivatives of h(t).

Our software represents the function w in terms of a B-spline expansion.
Ramsay and Li (1998) use order 1 (piecewise linear) B-splines for w since
this permits the expression of h in a closed form and leads to relatively
fast computation. Higher-order splines can be used at the expense of some
numerical integration.



8
How Do Bone Shapes Indicate
Arthritis?

8.1 Introduction

In this chapter we return to the analysis of the bone shape data discussed
in Chapter 4. The intercondylar notch, the inside of the inverted U-shape
shown in Figure 1.5, is considered important by medical specialists. The
anterior cruciate ligament runs through the intercondylar notch, and dam-
age to this ligament is known to be a risk factor for osteoarthritis of the
knee. Although other studies have examined large-scale features of the in-
tercondylar notch, there has not been very much examination of its detailed
shape, nor of its direct relationship to the incidence of osteoarthritis.

In Chapter 4 we studied the shape of the bone outline by considering a
number of landmarks and interpolating between them. In this chapter we
look much more closely at the shape of the intercondylar notch, by taking
a more subtle approach to the detailed representation of the shapes.

We consider a set of 96 notch outlines, on each of which we have some
concomitant information, such as the age of the individual and whether
there is evidence of arthritic bone change. Our concentration on the notch
alone allows us to include a number of partly damaged bones that could
not be considered in Chapter 4; as long as any damage does not affect the
notch it is no longer a problem. In the sample we consider there are 21
femora from arthritic individuals and 75 from individuals showing no signs
of arthritic bone change. We use the data to demonstrate three aspects of
functional data analysis.
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Table 8.1. The coordinates of the lateral and medial edges of the intercondylar
notch for one particular femur. The values Y give the pixel rows, numbered from
top to bottom of the image. The values XL and XM give the lateral and medial
positions within row Y of the edges of the intercondylar notch.

Y XL XM Y XL XM Y XL XM Y XL XM

80 59 61 92 49 83 104 45 87 116 41 85
81 54 61 93 48 84 105 45 87 117 40 85
82 52 63 94 48 85 106 45 87 118 40 85
83 52 64 95 48 86 107 45 86 119 39 86
84 52 66 96 47 87 108 44 86 120 37 87
85 52 68 97 47 87 109 44 86 121 36 87
86 52 73 98 47 87 110 43 86 122 35 88
87 51 77 99 46 87 111 43 86 123 35 89
88 51 78 100 46 87 112 44 86 124 33 90
89 51 79 101 46 87 113 43 86 125 30 91
90 50 80 102 46 87 114 42 86 — — —
91 49 82 103 46 87 115 41 86 — — —

1. How do we handle curves and shapes without making use of
landmarks?

2. What does principal components analysis tell us about the variability
of these data?

3. What are the issues involved in developing a functional analogue of
discriminant analysis?

Part of the object of the study is to understand the way in which arthritic
and nonarthritic bones differ. We have information on this aspect in that
some bones display eburnation, which is a consequence of arthritis. In this
chapter we take eburnation to be synonymous with arthritis, but it could
well be that some of the noneburnated bones are from individuals with
arthritis that is mild or in its early stages. This means that any conclusions
we reach about the differences between arthritic and nonarthritic bones are
conservative.

8.2 Analyzing shapes without landmarks

The bone shapes are stored as 128 × 128 pixel images, obtained by pro-
cessing pictures such as that in Figure 1.5. The pixels are numbered from
the top to the bottom of the picture in the vertical direction, and from the
lateral to the medial (the outside to the inside) in the horizontal direction.
To record the shape of the notch, we move row by row up the pixel image,
starting with the first row of pixels that touches the notch, and for each
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Figure 8.1. The raw data for the intercondylar notch for a particular individual.
The lateral side is on the left and the medial on the right.

row find the pixel positions at either side of the notch. A specific example
is given in Table 8.1 and plotted in Figure 8.1.

It can be seen from the figure that Y cannot be written as a simple
function of X. For instance, as we move down the notch on the medial
side, we first move out to pixel 87, then back to 85, and finally out to 91
again. Furthermore, a large part of this edge is vertical or nearly so. Merely
considering Y as a function of X will not work; instead we will have to find
a better way of parameterizing the shape of the notch.

A fruitful approach is parameterization by arc length. We define functions
x(t) and y(t) such that as t increases from 0 to 1 the point {x(t), y(t)} moves
at a constant speed along the curve. We then regard the two-dimensional
function z(t) = {x(t), y(t)} as being our functional datum. Landmarks are
not required; instead the distance along the curve is used to yield the points
whose coordinates are used for the subsequent analysis. Distance measured
along a curve is called arc length.

To apply this approach to the data given in Table 8.1, first we connect the
dots to obtain a continuous outline, as shown in Figure 8.2. In this figure,
there is some rapid variation in the part of the curve on the lateral side,
partly due to the pixelation of the image. We are not interested in variation
on this scale. However, we wish to calculate distances along the curve in
order to define the functions x(t) and y(t), and small scale variations will
increase such arc lengths in a spurious way. Therefore we perform some
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Figure 8.2. Joining the centers of the boundary pixels: the first step in producing
a curve parameterized by arc length.
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Figure 8.3. Smoothing by joining the midpoints of the line segments in Figure
8.2: the next step in producing a curve parameterized by arc length.
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Figure 8.4. Fifty points equally spaced along the curve shown in Figure 8.3 with
the curve rescaled to start and finish at standard positions. Interpolating these
positions linearly is the final step in producing a curve parameterized by arc
length.

very light smoothing, joining the midpoints between the dots, instead of
the dots themselves. The effect, shown in Figure 8.3, is to reduce the local
variability noticeably without changing the structure in any substantial
way.

Only the shape of the notch is of interest, so we rescale the curve equally
in both coordinate directions, and also shift it, to make it run from (0,0) to
(1,0) in the X–Y plane. By calculating the distance along all the small line
segments that make up Figure 8.3 we find 50 points (xk, yk) at equal arc
length along the curve, as plotted in Figure 8.4. This process has yielded
a fine grid of 50 points evenly spaced along the notch outline, capturing
all the essential features of the shape of the intercondylar notch. Let t1 =
0, t2 = 1/49, t3 = 2/49, . . . , t50 = 1. To complete the specification of the
shape as a curve parameterized by arc length, define the functions x(t) and
y(t) by setting x(tk) = xk and y(tk) = yk for each k, and interpolating
linearly between these points.

This process is applied to each of the N = 96 outlines in the sample. For
each j = 1, 2, . . . , N we obtain a pair of functions {Xj(t), Yj(t)}, written
as the vector function Zj(t). Each Xj and Yj is held in discretized form, so
the actual data are held in an N × 50 × 2 array, recording the coordinates
of the 50 points picked out along each curve. The (j, k, 1) element of this
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array is the X-coordinate of the kth point on the jth curve, and the (j, k, 2)
element the corresponding Y -coordinate. The choice of the number 50 is
somewhat arbitrary, and our analyses are not particularly sensitive to this
choice; because of the original pixelation of the data there is no point in
trying to recover information on any smaller scale.

8.3 Investigating shape variation

8.3.1 Looking at means alone
We can define the notion of a mean shape, by finding the functions

X̄(t) = N−1
∑

i

Xi(t) and Ȳ (t) = N−1
∑

i

Yi(t),

and letting the mean shape be the curve traced out by the two-dimensional
function Z(t) = {X̄(t), Ȳ (t)}. In practice, we average over the first dimen-
sion of the data array to yield a 50 × 2 matrix giving the coordinates of
50 points along the mean curve; joining these points gives the mean curve
Z(t) plotted in Figure 8.5. The halfway point along this curve, for instance,
is the average of all the halfway points on the individual curves.1

The means of the eburnated and noneburnated groups are plotted in
Figure 8.6. It might appear that the distinguishing feature of the arthritic
bones is that they have a shallower notch, because this is the way that
the mean shapes differ. However, we show that a more careful statistical
analysis does not yield the same conclusion, and that the mode of variability
that best distinguishes the two groups is quite different.

8.3.2 Principal components analysis
Before considering further the subdivision into arthritic and nonarthritic
bones, we investigate the ways in which the data set as a whole varies.
Regarding the two-dimensional functions Zi(t) as our functional data,
functional PCA yields an expansion in terms of two-dimensional functions
ξj(t) = {ξX

j (t), ξY
j (t)}. There are coefficients zij such that the observations

can be expanded as

Zi(t) =
∑
j≥1

zijξj(t). (8.1)

1There is an interesting wrinkle here that is not relevant to our particular application:
the points along the mean curve need not actually be themselves equally spaced, and in
some cases it may be a good idea to go back and reparameterize the individual curves
by reference to the way that the mean curve turns out. In our case this is not a problem.
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Figure 8.5. The mean notch shape curve.
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Figure 8.6. Solid: the mean curve for arthritic bones; dashed: the mean curve for
nonarthritic bones.
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PC 1 PC 2

PC 3 PC 4

Figure 8.7. The first four principal components of variability of the notch shapes.
The solid curves are the outlines corresponding to adding a multiple of the rel-
evant weight function to the mean, and the dashed curves those obtained by
subtracting the same multiple. The percentages of variability explained by these
components are, respectively, 72.5, 13.9, 5.9, and 3.9%.

The actual PCA is performed by carrying out a standard PCA of the 100-
vectors giving the coordinates of the points along the curves. It turns out
that no smoothing is necessary.

To understand the principal component weight functions ξj(t), we can,
as usual, plot Z(t) ± cξj(t) for some suitable multiple c. In this case the
perturbed functions Z(t) ± cξj(t) are two-dimensional functions, and we
plot their path in X–Y space as t varies. In Figure 8.7 the effects of the first
four principal components of variability are displayed. These components
together explain 96% of the variability in the data, with no other component
explaining more than about 1% of the variability.

The displayed components all have simple interpretations. The first com-
ponent corresponds to the depth of the notch, and the second to the shift of
the notch relative to the bottom points of the condyles. The third compo-
nent gives information about the width of the notch, and the fourth shows
how convex the medial part of the notch tends to be.

The depth of the notch accounts for a great deal of the variability in the
sample, and so in plotting Figure 8.7 the size of the perturbation shown in
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each part of the plot is not chosen by reference to the amount of variability
in the original sample. Instead, the same multiple c of the principal com-
ponent curve is used in each case, the multiple being chosen to make the
mode of variability clear without grossly exaggerating it. Further details
are given in the Web page associated with this chapter.

Thus far, the use of functional PCA for functions parameterized by arc
length has no particular relation to the concomitant information that some
of the bones are arthritic and some are not. In order to explore this aspect,
we consider a different functional data analysis method, an extension of
discriminant analysis. Apart from the way in which it identifies particu-
lar modes of variability within the population, the principal components
analysis provides a convenient basis for the expression of the shapes in the
sample and of other notch shapes.

8.4 The shape of arthritic bones

8.4.1 Linear discriminant analysis
Suppose that δi is a sequence of numbers such that δi = 1 if the ith bone is
arthritic and −1 if it is not. In the present context, the object of functional
discriminant analysis is to find a vector function α(t) = (αX(t), αY (t)) such
that we can predict δ for any given bone (drawn either from the sample or
from a new set of data) by calculating the discriminant values

δ̂i =
∫ 1

0
{Xi(t)αX(t)dt + Yi(t)αY (t)}dt, (8.2)

and checking whether it lies above or below some critical value C.
The function α(t) characterizes the mode of variability that best dis-

criminates between the two populations. Moving away from the mean in
the direction of α(t) is the way of increasing the integral in (8.2) as fast as
possible. But how is α to be found?

Suppose the data were vectors Zi rather than functions Zi(t). The corre-
sponding problem would be to find a vector a and a constant C such that
we could predict the population from which a vector Z was drawn by cal-
culating whether a′Z > C. The classical method called linear discriminant
analysis finds the vector a that minimizes the ratio of the within-group
sum of squares to the between-group sum of squares. Let Z̄(1) and Z̄(2) be
the means of the two populations and let Ŝ be the pooled estimate of the
variance matrix. Then the linear discriminant method yields

a = Ŝ−1(Z̄(2) − Z̄(1))

and

C = 1
2a′(Z̄(2) + Z̄(1)).
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Figure 8.8. The mode of variability corresponding to a linear discriminant analysis
carried out directly on the matrix of coordinates defining the notch shapes. The
arrows show how the 50 defining points on the mean curve are perturbed in the
direction defined by the discriminant vector. The way to increase the discriminant
score most quickly is to move away from the mean shape in the direction of the
arrows.

In the functional case, we have observations on 100 variables, the X-
and Y -coordinates of the points around the notch, for each of the N in-
dividuals in the sample. Naively, we could apply the linear discriminant
method to these high-dimensional vectors. The resulting 100-vector a can
be translated back into a 50×2 matrix of weights corresponding to a mode
of variability in the space of possible notch shapes.

Unfortunately this approach does not give a meaningful result. See Fig-
ure 8.8 for the mode of variability that it yields. This mode of variability
clearly cannot be associated with any genuine feature of the problem in
hand. Furthermore, this discriminant has the property that it classifies ev-
ery bone in the sample perfectly; every arthritic bone has a′Z > C and
every nonarthritic bone has a′Z < C. However superficially attractive such
performance may be, it is scarcely credible as a result of the study.

This phenomenon—gross overfitting combined with an apparently mean-
ingless discriminant function—is an intrinsic feature of the naive approach,
and has nothing to do with the arthritis data in particular. It has a mathe-
matical explanation touched upon in Chapter 12 of Ramsay and Silverman
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(1997) and discussed in more detail in references given there. In the present
context a more informal explanation is given in Section 8.6.2 below.

8.4.2 Regularizing the discriminant analysis
We have to apply some regularization in order to give meaningful answers.
A simple method is to expand the data in terms of some suitable basis, and
only to consider a finite number of terms in this basis, both in the expansion
of the data themselves and in the specification of the discriminant weight
function (αX(t), αY (t)).

In the present case, the principal components analysis gives a low-
dimensional representation of the data that preserves as much as possible
of the sample variability. For this reason we use as our basis expansion
the harmonics provided by the functional PCA of the data themselves. Fix
some fairly small integer J and consider only the first J terms in the princi-
pal components expansion (8.1) of each of the functions. For concreteness
we choose J = 6. For each bone, we then have six principal component
scores on which to base our linear discriminant, and we apply standard
discriminant analysis to the N × 6 matrix (zij , i = 1, . . . , N ; j = 1, . . . , 6).
This yields a vector a of length 6, giving a linear discriminant in terms of
the principal component scores,

δ̂i =
6∑

j=1

ajzij . (8.3)

We can express the discriminant value in terms of the notch curves
themselves. By standard properties of principal component expansions,

zij =
∫ 1

0
{Xi(t)ξX

j (t) + Yi(t)ξY
j (t)}dt

for each i and j. Substituting into (8.3), the linear discriminant value δ̂i

satisfies

δ̂i =
6∑

j=1

aj

∫ 1

0
{Xi(t)ξX

j (t) + Yi(t)ξY
j (t)}dt

=
∫ 1

0
{αX(t)Xi(t) + αY (t)Yi(t)}dt,

where [
αX(t)
αY (t)

]
=

6∑
j=1

aj

[
ξX
j (t)

ξY
j (t)

]
. (8.4)

Comparing with equation (8.2), we can consider the two-dimensional func-
tion α(t) = {αX(t), αY (t)} as defining the functional linear discriminant
between the two groups of bones.
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Figure 8.9. The mode of variability corresponding to a functional linear discrim-
inant α(t) based on the first six principal components of the notch shape data.
The solid curve is the mean shape, and the arrows show the direction in which
the discriminant score increases most rapidly.

The mode of variability corresponding to the resulting α(t) is displayed in
Figure 8.9. Bones with a higher discriminant score will have an intercondyle
notch twisted to the left in the way that the figure is plotted. Because the
mean is somewhat twisted to the right, this will tend to make the notch
more symmetrical and to have a right edge that is less concave. The arthritic
bones will tend to be in this category, and the average difference between
the two groups of bones is approximately that corresponding to the lengths
of the arrows in Figure 8.9.

The number J may be thought of as a regularization parameter, which
determines how far we regularize the problem in order to produce our esti-
mate. If we set J very small, equal to 1, for example, then the discrimination
can only be based on a single principal component and important informa-
tion may be lost. On the other hand, if J is chosen too large, then we will
get the kind of spurious results discussed in Section 8.4.1 above. As in many
smoothing and regularization contexts it is often sufficient to experiment
with different values of the regularization parameter and choose between
them by inspection, and in this case such inspection will immediately rule
out values of J greater than about 12. However, it is also helpful to have cri-
teria to help make this choice, and one of these is a cross-validation method
described further in Section 8.6.3. This method confirms our choice J = 6.
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Figure 8.10. Box plots of discriminant scores. The two plots on the left give
linear discriminant scores based on the first six principal components. Those on
the right give scores based on the difference between the group means. The scores
are scaled so that the arthritic bones have mean 1 and the nonarthritic mean −1.
Note that the boxes in the first two plots do not overlap at all, whereas there is
considerable overlap between the boxes in the last two plots. In every case the
box covers the middle 50% of the relevant sample.

8.4.3 Why not just look at the group means?
The mode of variability that best discriminates between the arthritic and
nonarthritic bones picks out features that are not at all apparent in the
simple comparison of the means in Figure 8.6. Is this a contradiction?

The two curves in Figure 8.6 differ almost entirely along the lines of the
first principal component of variability of the population as a whole, shown
in Figure 8.7 to correspond to the depth of the notch. There is considerable
population variation in this component, and hence in the notch depth, and
this general variation is reflected in the differences in the mean notch depths
for the two subpopulations. If we project all the data on the direction of
the difference between the mean curves, the t-statistic for the difference
between the two subpopulations is about 3.1.

On the other hand, if we consider the linear discriminant scores based on
the first six principal components, the t-statistic for the difference between
the two groups is 4.8. The regularized linear discriminant is much better
at separating the two groups than is the direction of variability defined by
the group means. Figure 8.10 gives a graphic presentation of this: the two
scores are each rescaled so that the mean of the arthritic bones is +1 and
the mean of the controls is −1. The box plots show that the “six principal
component linear discriminant” approach separates the subpopulations far
better than the “mean difference projection direction.”
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8.5 What have we seen?

The right way to express shapes in functional form may not always be obvi-
ous. If our object is a curve in two dimensions then parameterization by arc
length can be a convenient way of representing the functional observations
as vector-valued functions {x(t), y(t)} of a scalar parameter t. Standard
methods such as functional PCA can then be used to analyze the data.
Without such a parameterization even the notion of a mean curve has no
obvious definition.

Linear discriminant analysis can be extended to the functional context,
but regularization is necessary to give meaningful results. Intuitively, if an
entire function is used to predict a single quantity, such as the class to
which the function belongs, then a totally spurious feature of the function
may give perfect prediction for the particular data set observed. One pos-
sible regularization approach is to concentrate on the first few principal
components, or some other finite-dimensional representation of the data.
Whatever method of regularization is used, the regularization parameter
can be chosen by inspection or by an approach like cross-validation.

Functional discriminant analysis can distinguish groups better than con-
sideration of the group mean curves alone. The group means may differ in
ways that reflect modes of variability in the population generally, rather
than those that specifically separate the groups within the population. The
means of the two subpopulations might suggest that it is the depth of
the notch that is associated with the symptoms of arthritis. However, the
functional discriminant analysis indicates that the best discriminating char-
acteristic is the differing amout of “twist” in the notch shape. This aspect
of the shape could affect the way that the anterior cruciate ligament lies
in the intercondylar notch, with a possible link to arthritis as discussed in
Section 8.1. Within the present study, we cannot disentangle the influence
of bone shape on arthritis from the possibility that arthritis causes a change
in bone shape. However, our results give clues and pointers for future work
in the fields of rheumatology and biomechanics.

8.6 Notes and further issues

8.6.1 Bibliography
The notch shape study discussed is a reworking of Shepstone, Rogers, Kir-
wan, and Silverman (2001), which deals with the same data and the same
clinical issues, but uses a somewhat different approach to the parameter-
ization of the notch shapes and to the subsequent analysis. That paper
contains full details of the medical background, including key references to
work in the rheumatological, biomechanical, and veterinary literature.
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Functional discriminant analysis is a particular example of the use of
functions as predictors, as discussed broadly by Ramsay and Silverman
(1997, Chapter 10). They treat in detail the general necessity for regular-
ization in such problems, and consider various approaches to regularization,
including roughness penalty methods. An early paper in the FDA literature
dealing with these issues is Leurgans, Moyeed, and Silverman (1993), who
demonstrate and investigate the need for regularization in another func-
tional context, canonical correlation analysis. Hastie, Buja and Tibshirani
(1995) set out the general idea of functional discriminant analysis making
use of a roughness penalty approach to regularization. They apply their
methods to a problem in speech recognition and to the classification of
digits in handwritten postal addresses. Both functional canonical correla-
tion analysis and functional discriminant analysis are treated in detail in
Ramsay and Silverman (1997, Chapter 12).

8.6.2 Why is regularization necessary?
We can give an intuitive argument for the necessity of regularization for
the bone shape discriminant problem. The discretized coordinates of the
data provide N points in 100-dimensional space. Four of the coordinates
are fixed, because the notches are all scaled to start at (0, 1) and end at
(1, 1), so the points are essentially in 96-dimensional space. We set the
elements of a corresponding to these four fixed coordinates to zero. Now
consider any division of the points into two groups, red and blue, say, and
suppose that we want to find a vector a such that a′Zi = 1 if Zi is a
red point, and a′Zi = −1 if Zi is a blue point. These are N equations in
the 96 unknowns in a, and so, because N = 96, there is a solution that
gives perfect discrimination between the populations. If we had used a finer
discretization of the notches then there would have been N equations in
even more unknowns, and hence an infinite set of such solutions. To put it
less precisely, there is so much freedom in the choice of the vector a that it
is not surprising that some completely uninteresting direction happens to
give a discriminant function that works excellently on the given data but
is in fact spurious—of course it will not have any value for classifying any
new data collected.

This intuitive argument points to the qualitative difference between the
regularization of functional discriminant analysis and roughness penalty
smoothing as applied to PCA (as discussed in Chapter 2). For discriminant
analysis, regularization is a mathematical necessity, however well behaved
the original data—indeed, for mathematical reasons we do not go into here,
the smoother the data the more acute the need for regularization. On the
other hand, for functional PCA, smoothing is only important when we have
data of high intrinsic variability, as we did in Chapter 2; an unsmoothed
analysis will often suffice.
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8.6.3 Cross-validation in classification problems
The best approach to assessing the quality of a discriminant is to go out
and collect completely new data and to see how well the discriminant rule
based on the original data works on these new data. Unfortunately, in many
contexts there are no new data available, and so we have to make use of the
data we have. The simplest assessment of the discriminant is the resubsti-
tution approach: feed the original data back through the discriminant, and
see how well classified they are. This approach will usually be optimistic.
The leave-one-out cross-validation method attempts to avoid the use of
the same data both to train and to test the discriminant as follows: classify
each data point using a discriminant constructed from all the data except
that particular point. This requires a separate discriminant function for
each data point in the sample and so may be computationally intensive,
although there are some computational shortcuts that can be used. The
approach is reminiscent of the cross-validation method when estimating
the mean in the way described in Section 2.6.

Table 8.2. The cross-validation counts of false positives and false negatives for
various values of the number J of principal components used in the discriminant
algorithm. To get misclassification rates, divide the first row by 75 and the second
row by 21.

J 1 2 3 4 5 6 7 8 9 10 11 12
False pos 26 27 22 22 23 19 23 21 21 22 22 22
False neg 10 8 8 8 8 7 7 7 7 7 8 9

Because the cross-validation approach gives a classification for each point
individually, we can count both the number of false positives (nonarthritic
bones that are classified as arthritic) and the number of false negatives
(arthritic bones that fail to be so classified). The results are tabulated for
various values of J in Table 8.2. In some circumstances we might need to
combine false positive and false negative rates into a single score, but the
choice J = 6 is the unique value that minimizes both scores, and so would
be the minimum whatever linear combination of the two scores we were to
choose.

A final comparison relevant to the discussion of Section 8.4.3 can be
obtained by calculating the leave-one-out cross-validation scores for the
approach of projecting on the difference between the two group means. This
yields false positive and negative rates of 25 and 9, respectively, noticeably
worse than the values of 19 and 7 yielded by the discriminant based on the
first six principal components.



9
Functional Models for Test Items

9.1 Introduction

After our bank accounts and our taxes, it is hard to imagine data playing
a more central role in our lives than the examinations, opinion surveys,
attitude questionnaires, and psychological scales administered to ourselves,
our children, and our students. These data may not on first impression
appear to be functional, but we show that functional data analysis can
reveal how both test takers and test items perform in test situations. To
provide a concrete frame of reference, we look at the responses of 5000
examinees to 60 items in a test of mathematics achievement developed
by the American College Testing Program. We apply functional principal
components analysis to explore variation across test items, and we check
the fairness of certain items by comparing male and female performance.
Finally, we use a functional property of these data to develop a useful new
way of describing the performance of individual examinees.

Let us assume that each of n items is given to each of N examinees, and
that each item is answered either correctly or incorrectly. We record each
response with a value of 1 if examinee j answers item i correctly, and 0
otherwise. We want to use these data, crude as they may seem, to provide
a reasonable answer to the question, “What is the probability Pij that
examinee j gets item i right?”

Since we have only a single 0/1 datum to estimate Pij , we obviously need
to make some simplifying assumptions. We can take advantage of the fact
that exam performances are not really all that unique; given this many
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examinees, an arbitrary examinee j is likely to have lots of “neighbors”
in the sense of other examinees who get about the same number of right
and wrong answers. Moreover, we will likely see that they even distribute
these answers in a roughly similar manner. To a first approximation, poorly
performing examinees will tend to get only the same easy items right, and
strong examinees will fail only the same small subset of extremely hard
items. Thus, we can pool information across similar examinees if we can
propose a reasonable way of defining “similar.”

9.2 The ability space curve

Figure 9.1 captures an idea that underlies almost all models for test data.
We have plotted estimates of these right answer probabilities Pij for three
test items on the ACT exam. Using a techique outlined below, these prob-
abilities were estimated for 21 prototypical examinees, selected across the
whole range of ability. Note that these are not actual candidates; rather, the
observed data are used to obtain estimates of the probabilities of success
for various items as the ability of the candidate varies in some way. Items
1, 9, and 59 were selected for Figure 9.1 because they are, respectively, low,
medium, and high in difficulty. We can see that most of the 21 examinee
points are high along the Item 1 axis, indicating that Item 1 is easy. Item
59’s difficulty is demonstrated by the fact that most points are low along
the corresponding axis, and because many points are in the middle of the
range on the Item 9 axis, that item is somewhere between these two in
difficulty.

The points corresponding to examinees fall along a curve. At the near
end in Figure 9.1 are the poor students who pass all three items with prob-
abilities near 0, and at the far end are those who rejoice in near certainty
of passing all three. We use the term space curve to refer to a curve like
this in a space of three or more dimensions. Of course, Figure 9.1 is only
an incomplete picture; what we really have in mind is the space curve
within 60-dimensional space, the coordinates of which are the probabilities
of success on each of the 60 items. The smoothness of this space curve, or
its continuum character, reflects a belief that probabilities of success will
change smoothly as we change ability. Now of course there is such a thing
as sudden insight, but the data collected by large testing agencies adminis-
tering examinations to millions of people a year supports this assumption
of a steady change in probability, at least for answers to multiple choice
exam questions and for most examinees.

Our usual practice of summarizing test performance by a single score,
such as number correct, also reflects these notions of unidimensionality and
smoothness. We consider examinees as tending to vary in essentially one
way that we refer to as low-to-high ability. When we group together ex-
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Figure 9.1. Each circle plots the three probabilities of success on items 1, 9, and
56 in the ACT math test for an examinee. The nearest 3 points are for examinees
likely to fail all three items, and the far 3 points are examinees likely to succeed
on all three. These 21 points fall along a smooth space curve within the unit
cube.

aminees with the same test score, we expect to find that their patterns of
right and wrong answers are not all that different. We also find that, as we
move between nearby scores, the changes in these patterns are compara-
tively small. Indeed, tests are designed this way, by selecting items we know
in advance will be easy, average, or hard. In short, if you are an average
student taking a well-designed test, you and most other average students
will fail the hard items, get the easy ones right, and differ from each other
mostly in terms of the items that match your ability.

Thus, a plausible way to define “similar” for pairs of examinees is in
terms of small differences in test scores. Two examinees have performances
in the same “neighborhood” if their test scores are close together. We refine
this notion later, but this seems like a reasonable place to start.

Any space curve can be defined by letting the coordinates of points on
the curve be functions of a single variable. Consider, for example, a set of
points in 3-D with coordinate values Xi, Yi, and Zi, and let these coordinate
values be defined in terms of variable z by the equations

Xi = sin(πzi)
Yi = cos(πzi)
Zi = zi. (9.1)
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Figure 9.2. The locations of the points on the spiral in the left panel are de-
termined by equations (9.1) for 101 equally-spaced values of z between -2 and
2. In the right panel the points are determined by values of z having a normal
distribution.

Then the left panel of Figure 9.2 shows what happens if we let the variable
zi take on 101 equally spaced values between −2 and 2. The variable z is
called the charting variable.

What if we made the values of z have values at equal percentage points of
a normal distribution within these limits? The result is in the right panel
of Figure 9.2. Although the spacings between points have changed, the
shape of the spiral has not. From this example, we can infer that the shape
of a space curve will not change if we make any smooth order-preserving
transformation of the variable z. This principle explains why we can have
many different mapping systems for charting out the surface of the earth;
the earth is the same whichever we use, but particular choices are more
convenient for some purposes than others.

Let us therefore define examinee j’s position on the test performance
curve in Figure 9.1 by the value θj of some charting variable θ. Then what
Figure 9.1 displays, and what is redisplayed in Figure 9.3, are the functions
Pi(θ) indicating how probability of success on item i varies over values of
variable θ. It seems reasonable to call θ a measure in some sense of “ability”
or “proficiency,” and it is referred to by psychologists as the latent trait
underlying performance on the exam. The functions Pi(θ) are called item
response functions or item characteristic curves.

However, our spiral example shows us that there is no unique way to de-
fine the variable θ that maps out the space curve. Psychometricians usually
resolve this ambiguity by fiat by imposing the restriction that the values
of θ in the population of examinees have a standard normal distribution,
along the lines of the right panel of Figure 9.2. This choice is arbitrary,
but it does reflect the long-standing assumption, or perhaps tradition, that
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Figure 9.3. The three items displayed in Figure 9.1 are plotted in the left panel
as functions Pi(θ) of the latent variable θ. The right panel contains the plots of
the corresponding log odds-ratio functions Wi(θ)

ability has a roughly normal distribution. The classic example is IQ as a
measure of intellectual ability. We will return to this issue later and propose
an alternative variable that has some useful properties.

9.3 Estimating item response functions

Probability functions such as Pi(θ) present special computational chal-
lenges because they are constrained to take values only between 0 and
1. We can deal with this constraint by applying a suitable transformation,
and a convenient reformulation of Pi(θ) is

Pi(θ) =
exp[Wi(θ)]

1 + exp[Wi(θ)]
, Wi(θ) = log

Pi(θ)
1 − Pi(θ)

. (9.2)

Values of Wi(θ) near 0 correspond to success probabilities in the vicinity
of 0.5, large negative W s to very low P s, and large positive W s to near
certainty of success. The function Wi(θ) is called the log odds-ratio function,
and there are no constraints on its value.

The simple linear model

Wi(θ) = ai(θ − bi) (9.3)

is one of the standard parametric models in psychometric theory, the
two-parameter logistic model, or 2PL model among those in the trade.
Parameter bi of this model is called the difficulty of the item and captures
the location of the log odds-ratio function, by specifying the value for which
Pi(θ) = 1

2 . The slope parameter ai is called the discriminability of the item,
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and is an index of how well the test item distinguishes between test takers
as θ varies. Although the curves Wi(θ) that we estimate for this test will
usually be more complex in shape than this, these two qualities of location
and slope are fundamental descriptors of item performance.

In practice, the 2PL model is too simple because for most multiple
choice tests even the weakest examinees can achieve a positive success rate
merely by guessing. Consequently, the industry standard model is the three-
parameter logistic model or 3PL model, which uses an additional parameter
ci indicating this low-ability success probability, and has the structure,

Pi(θ) = ci + (1 − ci)
exp[ai(θ − bi)]

1 + exp[ai(θ − bi)]
. (9.4)

See Lord (1980) for a review of modern test theory and a wide range of
applications of this model.

How do we estimate these log-odds functions Wi(θ) for each item, not
knowing in advance what the independent variable values θj are for each
examinee? The EM algorithm (Dempster, Laird, and Rubin, 1977) is used,
in which θj is treated as if it were a missing datum. The EM algorithm
proceeds by alternating between a phase called the E-step in which the
item response functions are assumed known and likelihood is averaged over
possible values of θ, and the M-step in which the θjs are assumed available
for a small number of prototypical examinees and the functions Wi(θ) are
estimated.

We achieved much more flexibility than in (9.3) or in (9.4) by expanding
Wi(θ) in terms of 11 B-spline basis functions using equally spaced knots.
We used a penalized EM algorithm, which maximizes the likelihood but
also imposes a certain amount of smoothness on these estimated functions
by using a roughness penalty based on the log odds-ratio. Details are found
in Rossi, Wang, and Ramsay (2002).

9.4 PCA of log odds-ratio functions

Let us assume that the item response functions Pi(θ) and their log-odds
equivalents Wi(θ) have been estimated to our satisfaction. We now want
to explore how these functions vary from item to item.

Functional principal components analysis can reveal interesting aspects
of the variation among these items. Because they are unconstrained, we
apply PCA to the log odds-ratio functions instead of the probability func-
tions. In this section we focus attention on functions estimated from the
2115 male candidates. The first four principal components of the 60 log
odds-ratio functions then account for 96% of the variation; although there
are quite a large number of test items, their characteristics are captured
essentially completely by variability in four dimensions. Figure 9.4 shows
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Figure 9.4. Each panel displays a varimax-rotated principal component of the
variation among the log odds-ratio functions Wi(θ) estimated for the male candi-
dates. A small multiple of each component is added (+) and subtracted (-) from
the mean function, and the results transformed to probability functions, along
the mean function. The percentages indicate percentages of variance accounted
for, the total of which is 96%.

these four principal components after a varimax rotation to aid interpre-
tation. These rotated components are displayed by adding and subtracting
a small multiple of each component to the mean function W̄ (θ), and then
back-transforming these perturbed means to their probability counterparts
using (9.2).

These components can now be interpreted. Components I and III ac-
count for variation in characteristics of test items in the high and low
ability ranges, respectively; components II and IV concentrate on varia-
tion over larger parts of the ability range, higher for component II and
lower for component IV. An item with a high score on component I will be
particularly good at sorting out very high ability students from others of
moderately high ability, whereas if its score is low it will discriminate well
among most of the population but will be found approximately of equal
difficulty by all the very good students. Even the best students will not be
certain of getting the item correct, a type of variation that the industry-
standard 3PL model is unable to capture. However, we would be wise to
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Figure 9.5. The space curves for items 14, 17, and 19 for men (M) and women
(F).

remind ourselves that, even though the original data set is large, variation
in the log-odds functions for extreme θ values is necessarily estimated by
relatively small numbers of examinees, so conclusions for the extremes of
the ability range should be treated with some caution.

An item with a high score on Component II would have a higher slope
near the middle of the ability range and a lower slope for candidates with θ
values approaching 2. Such an item gains local discriminability for average
candidates at the expense of discriminability for the more able students.
Similarly, Component IV quantifies a discriminability trade-off between
average candidates and those with rather low abilities.

9.5 Do women and men perform differently on this
test?

The ACT math test was taken by 2885 women and 2115 men. Figure 9.5
shows the space curves plotted in Figure 9.1 for both men and women for
three different items. We see that performance on these three items evolves
differently, and we may wish to investigate if there is something unusual
about these three items.

We need a gold-standard summary of performance on the test such that
for men and women having the same level on this summary, we can consider
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that they are roughly equivalent in ability. We cannot use θ for this purpose,
since we have forced this parameter to have a standard normal distribution
within each group. In particular, the mean θ value is zero for each group,
regardless of any way that the groups might differ in overall performance.
The reason that the comparison is difficult is that there may be differences
in the pattern of performance, not merely its level. What we need is a way
of comparing the separately estimated θ values for women with θ values
for men.

The performance measure that comes to mind immediately is the number
of right answers as a function of θ, and the expected value of this is

τ(θ) =
n∑
i

Pi(θ) .

This expected score τ(θ) measure of performance is often used by
psychometricians to compare people in different groups.

However, we can propose some modifications of this idea. First, we might
use the expected log odds-ratio, since in general it is wiser to take averages
of unconstrained functions for the same reasons that we preferred to use
PCA on the log odds-ratios. Once computed, we can back-transform this
mean to the probability scale, and multiply it by the number of items to get
what we might call a fair score. Second, we compute the expected value
only using those items that do not appear to have gender differences in
performance, so as to not contaminate our measure. In fact, only the three
items plotted in Figure 9.5 appear to show much gender separation, so we
use

W (θ) = (n − 3)−1
n∑

i�=14,17,19

Wi(θ) ,

which we then back-transform to get our fair score

τ(θ) =
exp[W (θ)]

1 + exp[W (θ)]
,

which we estimate separately for men and for women.
Figure 9.6 plots probabilities of success against fair score for men and

women on items 17 and 19. Item 17 seems to favor men over most of the
fair score range, and item 19 favors women. Item 14 is not plotted, but also
favors men. These items exhibit what psychometricians call differential item
functioning, abbreviated DIF. In the present context, it would probably
make most sense in future tests to discard these three items altogether.
An interesting question of a nonstatistical nature is to ask what is it that
makes these mathematical items easier for one gender than another, when
most are gender-neutral. It is especially interesting that the difference is
not all in one direction.
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Figure 9.6. Probabilities of success for items 17 and 19 are plotted against a fair
score that is a reasonable basis for equating ability of men and women.

9.6 A nonlatent trait: Arc length

In principle, there is nothing wrong with choosing the charting variable θ
the way psychometricians do; the choice is arbitrary, and if one likes to think
of ability as normally distributed, their choice is appealing. Unfortunately,
users of test theory models, and some psychometricians as well, have tended
to lose sight of the arbitrariness of the choice, and fall into thinking that
the values θj measure ability in the same metric sense that the marks on
a ruler measure length. It has been claimed, in fact, that this is one of the
big arguments for using latent trait theory to model test performance.

Actually, there is a charting variable that really does have the metric
properties that users and theorists would like to see, and is moreover not
at all latent. This is arc length, s, the distance along the space curve de-
termined by the simultaneous changes in probability as we move along the
curve. We have already used arc length to advantage in Chapter 8 as a way
of describing curves in two dimensions.

Arc length resists misinterpretation because small changes ∆s in dis-
tance along the curve really do have a meaning that does depend on
our present position. Distances along the curve are directly related to the
changes in probabilities of success for the test items. Like units of phys-
ical measurement, arc length differences can meaningfully be added and
subtracted.

The values of arc length s are computed by beginning with some arbitrary
charting variable such as θ, estimating the corresponding item response
functions Pi(θ) and their derivatives P ′

i (θ), and then computing arc length
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Figure 9.7. Arc length from a reference point, or the distance along the ability
space curve, as a function of standard normal latent variable θ.

s(θ) by the equation

s(θ) =
∫ θ

θ0

{∑
i

[P ′
i (u)]2

}1/2

du. (9.5)

In this equation θ0 is the lowest value of θ on the curve.
Arc length is called the intrinsic metric of the space curve, because its

values do not depend on what kind of charting variable we use in (9.5). For
the spiral in Figure 9.2, the 101 equally spaced values between 0 and 4

√
2

are of equal arc distance along the curve.
For the male candidates in the math test, with the usual charting vari-

able θ having a standard normal distribution, arc length s(θ) is displayed
as a function of θ in Figure 9.7. We see that, in fact, the relationship is
close to linear for all except the highest values of θ. Therefore, in this
context arc length does not represent any dramatic departure from the tra-
ditional θ measure. The reference point from which arc length is measured
corresponds to the performance of the weakest examinee.

For purposes of communicating with a user community, we would not
mislead anyone much by linearly rescaling arc length to have an upper limit
of 100 while retaining the lower limit of 0. The metric properties of this
rescaled measure would still hold. Alternatively, as the Educational Testing
Service and other large testing agencies do, we can pick lower and upper



142 9. Functional Models for Test Items

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 Arc length s

 Probability of success

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

 Arc length s

 Squared slope

Figure 9.8. The left panel contains the item response function for item 56 as
a function of arc length s, and the right panel contains its squared slope, a
normalized measure of item quality. Only items 57 and 60 are this discriminating
for high performance examinees.

fixed limits and rescale arc length to be within these limits. This would
still be a metric measure of performance in the sense that differences can
be added.

The elements P ′
i (s) of the tangent vector are the slopes of the item re-

sponse functions at arc length s, and therefore measure the discriminability
of the item. Arc length as a charting value has a useful property for assessing
the quality of an item. Because we move at a steady speed along the curve as
arc distance increases, the length of the tangent vector {P ′

1(s), . . . , P
′
n(s)}

is exactly 1 when the curve is parameterized by arc length. Thus,
n∑

i=1

(
dPi

ds

)2

= 1.

Since the squares of the discriminability estimates must sum to one, we can
compare them across items by plotting [P ′

i (s)]
2. The test items particularly

contributing to discriminability will be different at different parts of the
ability range.

For example, test developers find it hard to construct an item that dis-
criminates well for examinees at the upper end of the ability continuum.
Item 56 turns out to be such an item, and Figure 9.8 displays its item
response function and its squared slope or discriminability as functions of
arc length. The fact that the latter exceeds 0.15 and that the sum across
all items of squared discriminability is 1 means that few items are this dis-
criminating. In fact, only this and items 57 and 60 achieve any quality for
high-end examinees.

We have highlighted items 56, 57, and 60 by considering the components
of the tangent vector as functions of arc length. These results can be related
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to the principal components analysis carried out above. The four lowest
principal scores for Component II are for items 56, 57, 59, and 60. The
items also have large negative scores on Component IV. Figure 9.4 and
the discussion of the components in Section 9.4 indicate that items with
negative scores on both these components will be best at sorting out able
students from one another.

9.7 What have we seen?

Functional data analysis is not only a method for analyzing observed curves;
it can also be applied to curves implied by and estimated from data that
are not at all curvaceous at first sight. Any single test datum does not by
itself provide a lot of information about the item success probability Pij ,
but by making the strong simplifying assumption that these probabilities
vary in a smooth one-dimensional way across examinees, we can estimate
the ability space curve that this assumption implies.

Once we have chosen a charting variable θ to measure out positions along
this space curve, we can also study the n item response functions Pi(θ) as if
they were a sample of observed functions. Actually, though, we are perhaps
better off applying functional data analysis to the log odds-ratio functions
Wi(θ), since these transformations of the item response functions have the
unconstrained variation that we are used to seeing in directly observed
curves. Principal components analysis seems like the ideal tool to study
variations among these curves, and we found that the dimensionality of
this variation was perhaps surprisingly small, and quite interpretable.

In the test item context, arc length is an attractive method of param-
eterizing ability. Arc length is not latent, may be less confusing to the
practitioners of psychometrics, and offers an interesting new way of as-
sessing item quality by plotting the square of the test discriminability
function.

9.8 Notes and bibliography

To read more about modern test theory and its applications using paramet-
ric models, see Lord (1980) and the more classic Lord and Novick (1968).
The EM algorithm was first applied to the estimation of parametric models
in test theory by Bock and Aitkin (1981). Our use of the EM algorithm
to estimate the functions Pi(θ) and Wi(θ) nonparametrically is based on
theses by Wang (1993) and Rossi (2001), and are described in Rossi, Wang,
and Ramsay (2002). The use of ideas from differential geometry to present
nonparametric modern test theory comes from Ramsay (1995) and (1996a).
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10
Predicting Lip Acceleration from
Electromyography

10.1 The neural control of speech

Physiologists and psychologists who study motor control aim to understand
how the brain controls movement. We know that waves of neural activation
cascade down complex neural pathways to the motoneurons that activate
muscle tissue, and that the contraction of these muscles applies forces to
limbs. We know, too, from elementary physics that force is proportional to
acceleration, and that if we study the acceleration of some body part, we
are getting close to seeing how this remarkable control mechanism produces
the movement that we see and feel.

Our capacity for speech is remarkable. In conversation, we can easily
pronounce 14 phonemes per second, and this rate appears to be limited
by the cognitive aspects of language rather than by the physical ability
to perform the articulatory movements. Considering the muscles of the
thoracic and abdominal walls, the neck and face, the larynx and pharynx,
and the oral cavity, there are over 100 muscles that must be controlled
centrally.

Does the brain plan sequences of speech movements as a group, or does it
just control each movement in turn without regard to preceding or following
phonemes? In speech production, the concept of coarticulation implies that
the characteristics of each phoneme are adjusted to accommodate aspects
of what is coming up ahead.

We can gain some insight into coarticulation by studying the lower lip.
The lower lip plays a modest role in speech articulation, but is easily acces-
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Figure 10.1. The top panel displays the position of the center of the lower lip
of a speaker pronouncing the syllable “bob” for 32 replications. The middle
panel displays the corresponding accelerations. The bottom panel contains elec-
tromyogram (EMG) recordings from a facial muscle that depresses the lower lip,
the depressor labii inferior. The dotted lines indicate distinct phases in the ar-
ticulation of the syllable. The EMG recordings are shifted to the right by 50
milliseconds, the time lag of the direct effect of a neural excitation as a muscle
contraction.

sible, and is controlled by only three muscles. We can investigate how these
muscles work together to control the lip, and how their contractions are
determined by neural activation. We focus on the most important of the
three, the depressor labii inferior (DLI) muscle that depresses the lower lip.
To produce each /b/, the lip moves up to close the mouth, and then down.
During these movements the DLI muscle plays specific roles: one, referred
to as agonist, when it accelerates the lip during the descending phases,
and the other, called antagonist, when it brakes the movement during the
ascending phases.

Implanting electrodes to observe neural activity directly would involve
more heroism than most subjects would consider worthwhile, but we can
measure a byproduct of this activity through electromyographical (EMG)
recording. Recordings are taken from the surface of the skin, and do not
seriously perturb normal movement.
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However, there are some issues with EMG recordings as indicators of
neural activity. A muscle that is stretched in the absence of neural activa-
tion will also generate an EMG signal. Where muscles are overlapping or
even just close together, the recording may not cleanly separate activity in
different muscles. Finally, there is a period of about 50 msec following the
onset of neural excitation, and the associated EMG signal, before muscle
contraction begins.

Even if there is some imprecision in whatever EMG reflects, it cannot
exert an influence backward in time on lip acceleration, since neural ac-
tivity shows up in EMG signals with essentially no delay. Consequently
we are interested in a feedforward model for the influence of EMG on lip
acceleration. However, because of the 50 msec lag between neural activa-
tion onset and muscle contraction, only associations at delays substantially
larger than 50 msec are evidence for coarticulation effects.

10.2 The lip and EMG curves

A subject was repeatedly required to say the syllable “bob,” embedded in
the phrase, “Say bob again.” Because of the delay in muscle contraction
indicated above, the records have been shifted in time, dropping the first
50 msec from the observed lip acceleration curves, and the last 50 msec
from the raw EMG records. The duration of “bob” in each original record
was time-normalized to 690 msec, but because of this time shift, only 640
msec is displayed in Figure 10.1.

The top panel of Figure 10.1 shows a sample of N = 32 trajectories of the
lower lip. In the middle panel, the acceleration functions Yi(t) estimated
from these original observations are shown. The bottom panel of Figure
10.1 shows the EMG records. The value Zi(s) plotted at any particular
time s is the recording actually made at time s msec, but the values of lip
position and lip acceleration plotted for the same time are those actually
observed at time s + 50 msec, when any muscle contraction associated
with activation at s msec is beginning to take place. Thus, for example,
the last EMG observation plotted is for 640 msec, but the actual time for
the corresponding lip observations is really 690 msec. For simplicity, we
specify lip times from here on as the actual time less 50 msec. However, it
is sometimes important to consider the real time of the observations, as we
see below.

The lower lip trajectory can be segmented roughly into these epochs,
separated by dotted lines in Figure 10.1:

1. close mouth for the first /b/;

2. lower the lip after utterance of first /b/;

3. central part of /o/, lip relatively stationary;
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4. raise the lip for second /b/; and

5. lower the lip after the second /b/.

As we noted above, we can expect substantial EMG activity whenever the
DLI muscle is active, whether the lip is descending or ascending. The point
of least EMG activity is at about 330 milliseconds, at the end of the period
when the lip is at its lowest point during the utterance of /o/.

How is the variability across observations of the EMG recording Z(s)
reflected in the behavior of the lip acceleration Y (t)? It is implausible to
suppose that Z(s) acts backward in time to influence Y (t). Examination
of Figure 10.1 may suggest that there is some forward influence of EMG
activity on lip acceleration, but there is clearly statistical work to be done
in investigating this possibility.

As a first step in studying the possible forward influence of EMG activity,
we look at the correlation over the 32 replications of the electromyogram
at times s and the acceleration at times t ≥ s. The results are plotted in
Figure 10.2. The light and dark patches on or very close to the diagonal
of the image indicate a substantial amount of simultaneous relationship of
both positive and negative polarity.

We can check for feedforward influence by scanning horizontally, to the
left of the diagonal, for a fixed time t. For example, the dashed lines in
the figure correspond to about 425 msec, when the lip is closed for the
second /b/. We see a patch of positive correlation at about 350 msec; EMG
activity 50 msec before this time, during the full opening of the mouth,
is correlated with later acceleration. Further back, however, we see some
negative correlation at about 175 msec, corresponding to EMG activity
during the closure for the first /b/. As we scan parallel to the diagonal,
we see a slightly curved band of positive correlation at a lag somewhere
around 150 msec, and another band, but of negative correlation, further
back at around 200 msec.

10.3 The linear model for the data

Let T = 640 indicate the final time of the complete utterance, and let δ be
the time lag beyond which we conjecture that there is no influence of EMG
activity Z(s) on the lip acceleration Y (t). With this in mind, we model
Z(s) as influencing Y (t) according to the model:

Yi(t) = α(t) +
∫ t

t−δ

Zi(s)β(s, t) ds + εi(t) . (10.1)

Here α(t) is a fixed intercept function that allows for the relationship
between the mean lip and EMG curves, but cannot accommodate their
covariation effects. The model presumes that EMG affects lip acceleration
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Figure 10.2. The correlations between the accelerations, functions of t, and the
electromyogram recordings, functions of s, for all pairs of time values s ≤ t.
White regions correspond to positive correlations and dark regions to negative
correlations. The gray level below the diagonal corresponds to a value of zero.

in a linear fashion, and the residual function εi(t) reflects the inability of
the linear prediction model to fit the data completely. We might call this
the historical linear model in the sense that the influence of Z(s) feeds
forward in time for a time lag of up to δ, and therefore is a relevant part of
the history of Y (t) for s ≤ t ≤ s + δ. Since s ≤ t, the regression coefficient
function β(s, t) is defined on a subset of the triangular domain used in
Figure 10.2.

By contrast, the pointwise model

Yi(t) = α(t) + Zi(t)β(t) + εi(t) , (10.2)

could be called contemporary, because the influence of EMG on lip accel-
eration is only instantaneous. In the contemporary model the regression
function β(t) depends only on t. The model can be viewed as a limiting
version of the historical model as δ → 0.

The central question is, then, whether the contemporary model provides
an adequate fit, or whether we should use a model in which β depends on
both s and t. If we do fit a historical linear model, then we would also hope
to gain some insight into the appropriate value of the lag δ.
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Figure 10.3. The domain of definition of the regression function β(s, t) discretized
into 16 triangular elements. Element boundaries are indicated by dotted lines and
nodes by circled numbers. As an illustration, the horizontal dashed line at t = 430
represents the line of integration for Yr(430).

10.4 The estimated regression function

A practical approach to the estimation of the regression function β(s, t)
is to seek an expansion in terms of a fixed number of known basis func-
tions. We use the finite element method, often used in engineering to solve
partial differential equation systems. This approach involves subdividing
the domain (s, t), s ≤ t, into triangular regions in the manner shown in
Figure 10.3. The triangles are called the elements and the vertices of the
triangles are called the nodes of the system. Sixteen triangles are shown
in the figure, corresponding to four intervals along each axis; but our final
triangulation involved 169 elements and 105 nodes, resulting from using 13
intervals along each axis, each interval being of length 640/13 = 49.2 msec.

The next step is to define basis functions over each of these regions. Each
basis function φk(s, t) is a linear bivariate function having the value one at
a specific node and falling off to zero at the remote edges of each triangle
that has that node as a vertex. A typical basis function for a node inside
the triangular domain is shown in Figure 10.4.

The triangular basis has an important advantage in considering how large
the lag δ should be in modeling the feedforward influence of Z(s). Triangles
falling more than δ units from the diagonal are simply eliminated, so that
the manipulation of δ corresponds to selecting subsets of the basis functions.
Of course, we can only set δ at discrete values, but this is not a problem if
we make the triangular mesh reasonably fine. Letting ∆ indicate the width
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Figure 10.4. A typical piecewise linear basis function used to construct a finite
element approximation of the regression function β(s, t).

of a single triangle, we are permitted to use lag values δ = m∆ for integers
m ≥ 1.

The contemporary model (10.2) can be thought of as the case m = 0.
In this case, the elements are intervals along the diagonal line. The basis
functions are functions of only one variable t, and are piecewise linear
functions, in other words, B-splines of order 2, as shown in Figure 2.14.

Once we have estimated the coefficients bk, we have a piecewise linear
approximation to the regression function β(s, t). The process of estimating
the coefficients of the expansion can be set up as a matrix computation;
for further details, see Malfait, Ramsay, and Froda (2001).

Figure 10.5 shows the full bivariate regression function β(s, t), effectively
setting δ = T , as a grayscale image. For what values of t is lip acceleration
most influenced by current and previous EMG activity? We see that the
patterns of relationship that we already observed in Figure 10.2 are also
found here, but the regression function surface is much better at picking out
specific intervals where the influence is important. The peaks and dips in
β(s, t) indicate that the lip activity is most influenced by measured EMG
in the time interval from about t = 350 to about t = 480, the time of
the second lip closure. By scanning along the line corresponding to 425
msec, we note that there is also some indication that EMG activity at time
t = 250, at the beginning of /o/, influences the second /b/ closure.
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Figure 10.5. The regression function β(s, t) estimated using 105 nodes. Dark
regions correspond to negative values and white regions to positive values. The
gray level plotted below the diagonal corresponds to the value zero.

10.5 How far back should the historical model go?

What lag δ seems to be supported by the data? To answer this, we need
to compare a fit for a specific lag to that offered by a simpler, and more
restricted, model. Two simpler models are the mean computed across the
32 replications,

Ȳ (t) = N−1
32∑

i=1

Yi(t) ,

and the contemporary model (10.2).
For a specific δ = m∆, we can define the error sum of squares function

at any time t by

SSEm(t) =
N∑

i=1

{Yi(t) − Ŷi(t)}2, (10.3)

where Ŷi(t) is the fit of the current model to the observed curve Yi(t). For
any given value of m, the squared multiple correlation measure of fit R2

m
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Figure 10.6. The squared correlation R2
m as a function of lag δ = m∆ for a

triangulation into 169 elements and 105 nodes. The points plotted correspond to
the discrete values of δ given by integers m.
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Figure 10.7. The estimated regression function β(s, t) for lag δ = 5∆.
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Figure 10.8. The error function RMSE(t) for the models with lag δ = 5∆ ≈ 250
(solid line) and δ = 0 (dashed line). The vertical dotted lines indicate the positions
on the axis of the nodes of the finite element basis.

is defined by

R2
m = 1 −

∫ T

0 SSEm(t) dt∫ T

0 SSY(t) dt
, (10.4)

where SSY(t) refers to the fit using the mean curve.
We consider R2

m as a function of δ = m∆, that is, as a function of the
width of the domain of integration in the model (10.1). From Figure 10.6,
we see that the fit improves as we enlarge the domain of integration up to
δ = 5∆, but does not increase substantially with larger values of δ. Thus,
it seems to be worth modeling lip acceleration at time t to be influenced by
EMG values up to about 250 msec before t. The estimate of β(s, t) using
this lag is shown in Figure 10.7.

The shape of the estimate of β(s, t) indicates, as expected from the re-
gression function already considered, that the muscle activation is the most
influential in the period leading up to the second lip closure times. Also,
there is a ridge of influence along the diagonal continuing for a short pe-
riod after the closure; in this short interval it is only contemporary EMG
signals that matter. This suggests that the system plans the closure, but
the recovery after the closure is not planned for in advance.

Figure 10.8 compares the standard deviation function RMSE(t) =√
SSEm(t)/N for the historical model with m = 5 with that for the contem-

porary model m = 0. We see that the main improvement for the historical
model is in the articulation of the second /b/ between 400 and 500 msec,
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and also more briefly at about 200 msec, in the transition from the first
/b/ to the /o/ phoneme.

Is the fit of the historical model with m = 5 significantly better than that
of the contemporary model? Because different finite element bases are used
to approximate the two models, the finite element contemporary model is
not exactly nested within the finite element historical model, even though
the exact models can be regarded as nested. In order to compare nested
models, therefore, we approximate the contemporary model by the histor-
ical model with m = 1, and construct an F -test of significance. Results
reported in full in Malfait, Ramsay, and Froda (2001) then demonstrate
that the fit of the model with m = 5 is indeed significantly better than the
approximate contemporary model m = 1.

10.6 What have we seen?

It now seems fairly clear from these results that the timing and intensity of
phonemes do have a covariation with EMG activity that is reflected both
in the simple correlation plot in Figure 10.2, and in the feedforward linear
model (10.1). The time lag over which this feedforward influence is evident
is not unlimited, and in this case corresponds to two phonemes. Of this 250
msec lag, we are able to account for 45% of the variation in Y (t) by its
covariation with Z(s). This is a substantial effect, considering how volatile
EMG data tend to be, as well as their tentative connection with neural
activity. The pointwise or contemporary linear model only explains about
27% of the variability, and Figure 10.8 indicates that its deficiency as a
model seems mainly concentrated on the second “b,” where the feedforward
influence is especially strong.

Ramsay and Silverman (1997, Chapters 9 to 11) give a general introduc-
tion to functional linear models, and discuss various aspects in more detail.
However, their treatment does not go as far as the restriction of the influ-
ence to a finite lag, and the present case study exemplifies the way that
functional data analysis methods often have to be tailored to the particu-
lar problem under consideration. The finite element method adopted was
particularly appropriate to the restriction to finite lag on the triangular
domain over which β(s, t) is defined. This approach also allowed a simple
control of the size of the lag δ so that we could explore the role of this
parameter.

10.7 Notes and bibliography

The data were collected at the Haskins Speech Laboratories at Yale Uni-
versity by V. Gracco. The analyses of the data were carried out by N.
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Nicole during a Masters of Science program at the Université du Québec
at Montréal, and reported in more detail in Malfait, Ramsay, and Froda
(2001).

The raw lip position data consisted of two-dimensional positions in
the sagittal plane sampled 625 times per second. Jaw position was also
recorded, and subtracted from lip position. Although two-dimensional po-
sition measurements were taken, in fact the trajectory of the lower lip was
nearly linear, and consequently the data were reduced to one-dimensional
coordinates by principal components analysis.

A considerable amount of preliminary processing was required before
satisfactory acceleration curves could be produced. The data were first
smoothed by a robust method, the LOWESS smoother (Cleveland, 1979) in
the S-PLUS package to eliminate the occasional outlying recording. These
smoothed data were in turn approximated using 100 B-spline basis func-
tions. The spline basis was of order 6 in order to assure that the second
derivative of the expansion would be reasonably smooth. A light roughness
penalty on the fourth derivative was applied in order to smooth the second
derivative further.

The EMG data were sampled at 1250 hertz, and were much noisier than
position records, showing very high frequency oscillations about zero as
well as the slower trends that interest us. As is usual for EMG measures,
the raw data were replaced by values of a linear envelope of the absolute
values. These values were then further smoothed.

The contemporary model (10.2) can be viewed as a functional extension
of the varying coefficient model of Hastie and Tibshirani (1993).



11
The Dynamics of Handwriting Printed
Characters

11.1 Recording handwriting in real time

The way we handwrite characters is a deeply individual matter, as bank
tellers who ask for your signature and graphologists who claim to be able to
study your personality from your handwriting know well. The handwriting
samples that they work with are static, in the sense that they consider
the trace left behind well after the signature is formed, and thus are at one
remove from the person who actually did the original writing. In this sense,
any attempts to identify an individual, let alone to claim to reconstruct
aspects of their personalities, have the flavor of archaeological digs.

What if we could use the online time course of the formation of a signa-
ture? Would we not see things as the signature unfolds in time that could
not be observed in the static image? Could we see, for example, when a
person was nervous, in a hurry, suffering from the onset of Parkinsonism,
or rejoicing in a state of profound tranquillity and peace? Surely we could
discover new ways by which a handwriting sample characterizes a specific
individual, and perhaps use this to make forgery harder than it is now.

In this chapter we use what we call a dynamic model for handwriting.
We demonstrate how the model can be fitted to the writing of a particular
individual using repeated samples of their printing. We also investigate how
well the model separates one person from another.

Our first task, however, is a brief and nontechnical account of some simple
dynamic models. Those familiar with differential equations may well be
happy to skip ahead, but many readers will find this next section important.
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11.2 An introduction to dynamic models

The term dynamic implies change. When we speak of the dynamics of a
function of time, we are discussing some aspect of the change in curve
values over small changes in time, and we therefore focus on one or more of
the derivatives of the curve. Chapter 6 described the dynamics of growth,
and indeed we defined growth there as the rate of change of height.

A dynamic model therefore involves one or more derivatives with respect
to time. Because a number of orders of derivatives may be involved, we
use the notation Dmx(t) to denote the mth derivative of the function x(t).
This is more convenient than using a separate symbol for each derivative,
as we did in Chapter 6, or the classic notation

dmx

dtm
,

which is too typographically bulky to perpetuate here.
The most common form of dynamic model is an equation linking two

or more orders of derivatives. In our present notation, the fundamental
equation of growth that we developed in Chapter 6 is

D2x(t) = β(t)Dx(t), (11.1)

and this equation links the first derivative to the second by the functional
factor β(t). It is an example of a linear differential equation and has the
structure of a standard regression model, albeit one expressed in functional
terms:

• the acceleration D2x(t) is the dependent variable,

• the velocity Dx(t) is the independent variable,

• β(t) is the regression coefficient, and

• the residual or error, not shown in the model (11.1), is zero.

The regression model is functional in that the variables and the coefficient
β(t) all depend on t. But if we fix time t, and we have in hand N replications
xi(t) of the curve, you can well imagine that ordinary regression analysis
would be one practical way to estimate the value of β(t) at a fixed time
tj . As the dependent variable in a standard regression, you would use the
N values yi = D2xi(tj) for i = 1, . . . , N. The corresponding independent
variable values would be zi = Dxi(tj), and so you would estimate the
constant β(tj) as the coefficient b =

∑
yizi/

∑
z2
i resulting from regressing

y on z without an intercept. And you would be quite right!
We briefly review how a differential equation determines the behavior

of a function, by considering a second-order linear differential equation,
restricted to having constant coefficients:

D2x(t) = β0x(t) + β1Dx(t). (11.2)
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Table 11.1. Some processes defined by a second-order linear differential equation
with constant coefficients

Process Equation Coefficients
β0 β1

Linear motion x(t) = a + bt 0 0
Exponential growth/decay x(t) = a + beγt 0 γ
Harmonic motion x(t) = a sin ωt + b cos ωt −ω2 0
Damped harmonic motion x(t) = eγt(a sin ωt + b cos ωt) −ω2 γ

Table 11.1 relates some special cases of the equation to some familiar
functional models and physical processes.

The constants a and b in the table are arbitrary. We see that equation
(11.2) covers three basic dynamic processes of science. If both coefficients
are zero, we have the linear motion exhibited by bodies that are free of any
external force. But if −β0 is a positive number, we see the other type of sta-
tionary motion, that of perpetual oscillation.1 Introducing a nonzero value
for β1, however, results in exponential growth or decay, without oscillation
if β0 = 0, and superimposed on harmonic motion otherwise.

Note, too, the models in Table 11.1 also define the simultaneous behav-
ior of a certain number of derivatives. In fact, the characteristics of both
the first and second derivatives are essentially specialized versions of the
behaviors of the functions themselves. In this sense, then, these models are
really about the dynamics of the processes.

In (11.2) we considered the special case of constant coefficients. What
difference does it make if the coefficients β0(t) and β1(t) also change with
time? If the change is not rapid, we can consider the corresponding differen-
tial equation as describing a system that has an evolving dynamics, in the
sense that its frequency of oscillation and its rate of exponential growth
or decay are themselves changing through time. The larger the value of
−β0(t) the more rapidly the system will oscillate near time t.

In this chapter and subsequently, we use linear differential equation
models of order m in the general form

Dmx(t) = α(t) +
m−1∑
j=0

βj(t)Djx(t). (11.3)

There are m coefficient functions βj(t) that define the equations, but in
specific applications we may want to fix the values of some of these. In
particular we may set one or more to zero.

1Coefficient −β0 can also be negative, of course, and in this case the sines and cosines
in the last two rows of Table 11.1 must be replaced by their hyperbolic counterparts.
But the positive case is seen much more often in applications.
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Figure 11.1. Twenty registered printings of the characters “fda.”

In addition to the coefficients βj(t), the form (11.3) contains the func-
tion α(t), called the forcing function in many fields that use differential
equations. The function α(t) often reflects external or exogenous influences
on the system not captured by the main part of the equation, or that part
of the derivative Dmx(t) not captured by the simultaneous variation in
the lower-order derivatives. From a regression analysis perspective, we may
regard α(t) as the constant or intercept term. If α(t) = 0, the differential
equation is said to be homogeneous, and otherwise is nonhomogeneous.

11.3 One subject’s printing data

The data are the X-, Y - and Z-coordinates of the tip of the pen captured
200 times a second while one subject, designated “JR,” prints the characters
“fda” N = 20 times. The X-coordinate is the left-to-right position on the
writing surface. Coordinate Y is the up-and-down position on the writing
surface, and Z is the position upward from the writing surface. Of course,
static records give very little information about Z at all—we can only see
the X and Y values corresponding to times when Z is zero, and at times
when Z is nonzero we have no data at all. The additional richness of a
dynamic record is considerable.

Extensive preprocessing is required before we are ready to fit a differen-
tial equation. The times of the beginning of “f” and the end of “a” for each



11.3. One subject’s printing data 161

Meters

M
et

er
s

-0.05 0.0 0.05 0.10

-0
.0

5
0.

0
0.

05
0.

10

Figure 11.2. The average of 20 registered printings of “fda.” The average position
of the pen was on or very near the writing surface for the solid lines, and lifted
off for the dotted lines.

record must be identified, and the coordinate system in which measure-
ments were taken must be rotated and translated to the (X, Y, Z) system
that we described above. In addition we register, or time-warp, the records
[xi(t), yi(t), zi(t)], i = 1, . . . , N to a common template [x0(t), y0(t), z0(t)].
The details of the registration step are described in Chapter 7, and we
assume that we can take off from where we left the handwriting problem
there. Figure 11.1 shows the trace in the X–Y plane of the 20 functional
records, after registration.

Figure 11.2 displays the mean characters for this subject. Most of the
registration process does not affect the individual static records plotted
in Figure 11.1, but, as we saw in Chapter 6, registration is crucial in the
estimation of the mean. The regions where the average position of the pen
is clearly above the writing surface are shown in Figure 11.2 as dotted lines,
and we see that there are four such intervals. The characters are formed
from five strokes on the writing surface (two for “f,” two for “d,” and one
for “a”) along with the four off the surface. The average time taken to
print these characters was 2.345 seconds, and corresponds to an average of
0.26 seconds per stroke. Note the two sudden changes of direction or cusps
between the main part of the “f” and its cross-stroke, and at the beginning
and end of the downstroke for “d.” There is a lot of energy in such sudden
events, and they may be hard for a dynamic model to capture.
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11.4 A differential equation for handwriting

We now want to estimate a linear differential equation for each of the three
coordinate functions. We use a third-order equation, m = 3. The third
derivative is sometimes called “jerk.”

To make our task a bit easier, we simplify our equation by fixing β0(t) =
0. Without this constraint, the equation would have to be recalibrated for
any translation of the coordinate values. The resulting equation is, in the
case of the X-coordinate for record i,

D3xi(t) = αx(t) + βx1(t)Dxi(t) + βx2(t)D2xi(t) + εxi(t). (11.4)

There are two coefficient functions βx1(t) and βx2(t), as well as the forcing
or intercept function αx(t). In effect, this is a second-order nonhomogeneous
linear differential equation in pen velocity, so we can think of velocity as our
basic observed variable. The residual function εxi(t) varies from replicate
to replicate, and represents variation in the third derivative in each curve
that is not accounted for by the model. There are, of course, corresponding
coefficient, forcing, and residual functions associated with coordinates Y
and Z. In particular, the forcing function for coordinate Z is the aspect
that allows the pen to lift off the paper, because when the pen is in contact
with the paper zi and all its derivatives are zero.

We carry out one additional preprocessing step, by removing the linear
trend in the X-coordinate as the hand moves from left to right. In effect,
this positions the origin for X in a moving coordinate frame that can be
thought of as at the center of the wrist. If the slope of the linear trend is v,
the adjusted X-coordinate will satisfy the same model as the original, with
a multiple of vβx1 added to the forcing function. So this linear correction
will only have an important effect on the model if there is substantial
variability in the rate of moving from left to right, which in practice there
is not.

How do we estimate an equation such as (11.4)? Our first task is to
find a good nonparametric estimate of the derivative functions using the
20 replications. These function estimates are then used to estimate the
two coefficient functions βx1(t) and βx2(t) and the forcing function αx(t).
Returning to the regression perspective, a successful equation will mean
that the residual function εxi(t) is relatively small for all records and all t.
The natural approach will be ordinary least squares in the sense that we
choose to minimize, in the X-coordinate case,

SSEX =
N∑

i=1

∫ T

0
ε2xi(t) dt.

The adequacy of the fit can be assessed by comparing the residuals to the
third derivative, which acts as the dependent variable in the regression anal-
ysis. The technique for minimizing SSEX with respect to αx(t), βx1(t), and
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Figure 11.3. The top panel shows the function −βx1(t) for the differential equa-
tion describing the motion of the pen in the horizontal or X direction. The
dashed-dotted line indicates the average value, and corresponds to a horizontal
oscillation every 0.58 seconds. The bottom panel shows the corresponding func-
tion βx2(t), and this tends to oscillate about zero. It controls the instantaneous
exponential growth or decay in the instantaneous oscillation. The shaded areas
correspond to periods when the pen is lifted off the paper.

βx2(t) was developed by Ramsay (1996b), who called the method principal
differential analysis because of its close conceptual relationship to principal
component analysis.

Figure 11.3 displays the two estimated coefficient functions for the X-
coordinate. Although it is hard to see much to interpret in these functions,
one can compare them to the equation for harmonic motion in Table 11.1.
We notice immediately that there is considerable variability in both func-
tions about the average value, also displayed in the plot. This variability
is due to the control of the hand by the contracting and relaxing muscles,
and these in turn are controlled by neural activation arriving from the mo-
tor cortex of the brain. The rapid local variations in the plots are easily
ignored “by eye,” but perhaps suggest that a regularization term could be
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Figure 11.4. The forcing function αx(t) for the differential equation describing
the motion of the pen in the horizontal or X direction. The dashed-dotted line
indicates the average value of the third derivative, to give an idea of the relative
size of αx(t). Episodes of forcing occur when αx(t) deviates strongly from zero.
The shaded areas correspond to periods when the pen is lifted off the paper.

added to the criterion SSEX . The formal inclusion of regularization is an
interesting topic for future investigation.

Function −βx1(t) plays the role of ω2 in the harmonic equation and, since
the period of oscillation in a harmonic system is 2π/ω, the larger the value
of βx1(t) at some time point t, the faster the velocity is oscillating at that
time. The average value of −βx1(t) is 259, corresponding to an oscillation
every 2π/

√
259 = 0.39 seconds. This means that the hand is producing

a horizontal stroke once each 0.20 seconds, on the average, which agrees
closely with what we observed in Figure 11.2.

On the other hand, coefficient function β2(t) varies about a value rel-
atively close to zero. It determines the instantaneous exponential growth
(βx2(t) > 0) or decay (βx2(t) < 0) in the oscillations.

Corresponding analyses were performed for the other two coordinates.
The dynamics of the Y -coordinate resemble those of the X-coordinate, in
that the average value of −βy2(t) is 277, and this also corresponds to a
period of about 0.38 seconds. The Z-coordinate, however, has an average
period of 0.29 seconds.

Figure 11.4 shows the estimated forcing function αx(t) for the X-
coordinate. We focus our attention on times when αx(t) deviates strongly
from zero, indicating times when the homogeneous version of the equation
will not capture the intensity of the dynamics. The first peak is in the
curved part of the “f” downstroke, when the pen is changing direction and
probably accelerating. The next substantial deviation coincides with the
pen leaving the paper to cross over to begin the “d” downstroke. There is
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Figure 11.5. The residual functions εxi(t) for the X-coordinate. Shaded areas
indicate periods when the pen is off the writing surface.

another forced point at the cusp at the end of the “d” downstroke, again
just as the pen leaves the writing surface to begin the loop part of “d.”
We see the largest deviation as the pen leaves the writing surface to cross
over to begin “a.” In summary, forcing events coincide either with points
of sharp curvature or cusps, or with the pen leaving the writing surface.
The change in the frictional forces as the pen leaves the surface seems to
be an important part of the dynamics.

11.5 Assessing the fit of the equation

Now we want to see how well this equation fits the data. One way to do this
is to work with the regression concept, and calculate the squared multiple
correlation measure, or proportion of variability explained,

R2
X = 1 −

∑N
i=1

∫ T

0 ε2xi(t) dt∑N
i=1

∫ T

0 D3x2
i (t) dt

. (11.5)

The values we obtain are 0.991, 0.994, and 0.994 for the X-, Y -, and Z-
coordinates, respectively, indicating a very good fit in all three cases.

As the value of R2
X indicates, the residual functions are much smaller

overall than the original third derivatives D3xi. However, integrating across
time in (11.5) risks missing something interesting that might occur at some
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specific points in time. Figure 11.5 plots the 20 residual functions for the
X-coordinate, and we see that these are small relative to the size of the
third derivative, and that they are concentrated around zero. They seem
to behave as random “noise” functions that do not contain any system-
atic variability that we have failed to fit. This investigation shows that the
dynamic model generally fits the data extremely well, and invites the sug-
gestion that the coefficient functions characterize the particular subject in
some way, and hence can be used as the basis of a classification method
in preference to direct consideration of the handwriting itself. This is the
theme of our next section.

However, we do notice that there are some sharp excursions in the forcing
functions, with a couple of the largest being associated with the beginnings
of intervals when the pen is off the paper. It may be that the change in
frictional forces plus the effect of raising the pen can have a noticeable effect
on printing dynamics in the X–Y plane. Maybe things would be simpler if
we only used cursive handwriting, and you can consult Ramsay (2000) to
compare these results with that situation.

11.6 Classifying writers by using their dynamic
equations

We can now estimate a linear differential equation to describe the data of
different people printing the same characters. How well does one person’s
equation model another person’s data? We now introduce a second subject,
called “CC,” and consider a set of 20 replications of CC’s printing of the
characters “fda.” In order to ensure that both dynamic models are defined
on compatible time scales, CC’s data are preprocessed by being registered
to the mean curve of the registered JR data. Thus all the data are registered
to the same template. After this preprocessing step, a dynamic model for
CC’s printing is estimated in the way set out above. We now apply the
equation for subjects JR and CC to the data for themselves2 and for each
other.

Figure 11.6 shows the X-coordinate residual functions εxi(t) resulting
from applying the equation for subjects JR and CC to both sets of data.
Corresponding results for the Y -coordinate are shown in Figure 11.7. What
we see in the figures is that the residual functions are much larger, and

2In the case where the equation is applied to the subject’s own data, we reestimated
the equation 20 times by dropping each record out in turn, estimating the equation for
the remainder of the data, and then applying the equation to the excluded record. This
standard leaving-one-out procedure gives a more honest estimate of how the equation will
work in practice than the approach where the test record is included in the estimating
set.
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Figure 11.6. The residual functions for the X-coordinate resulting from applying
both JR’s and CC’s differential operators to both sets of data.

also have strong systematic patterns, when they result from applying the
equation estimated for one person to the data of the other. The self-applied
residual functions for JR are rather smaller than those for CC, and two
of the CC curves yield self-applied residual functions that are considerably
larger in places. Subject CC seems to have altered his printing style in some
important respect in these two anomalous cases. Thus, this technology also
may be useful for detecting when people alter in some fundamental way
how they print or write a sequence of characters.
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Figure 11.7. The residual functions for the Y -coordinate resulting from applying
both JR’s and CC’s differential operators to both sets of data.

Figure 11.8 investigates a simple numerical summary based on these re-
sults. We assessed the magnitude of the residual functions by computing
the square root of their average squared values. As well as averaging across
time, we average across all three coordinates in order to obtain a single
number quantifying the residuals in Figures 11.6 and 11.7 and the corre-
sponding residuals for the Z-coordinate. The figure uses box plots to show
the distribution of these magnitudes for the four situations. We see that
the JR operators decisively separate the magnitudes for the two subjects’
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Figure 11.8. Box plots of the root mean square magnitudes of the residual func-
tions resulting from applying both JR’s and CC’s differential operators to both
sets of data. For each replication, the root mean square is calculated taking the
average over time and all three coordinates.

printing. The largest value for JR’s own data is about 12, and the smallest
value for CC’s data is about 45.

When the CC operators are used, the subtlety of the data becomes
clearer. Using a cutoff value of 20, say, the 18 nonanomalous CC print-
ings are clearly separated from the JR printings. On the other hand, the
two anomalous printings are very badly modeled by the CC operators (es-
timated each time leaving out the individual datum in question). If we
were using this simple numerical summary to classify the data, we would
presumably categorize these two data as being written by neither CC or
JR. If we look back to Figure 11.7, however, we can see that even the two
anomalous curves yield residual curves that are near zero over the part of
the range [0.3, 1.2]. We do not pursue this further in the present study, but
it demonstrates that attempts to fool the dynamic model may not always
be totally successful on closer examination.
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11.7 What have we seen?

The methods of functional data analysis are especially well suited to study-
ing the dynamics of processes that interest us. We saw this previously in our
phase-plane plotting of the nondurable goods index, and now we see that
a differential equation is a useful means of modeling this time-varying be-
havior. Of course, this is already well known in the natural sciences, where
differential equations, such as Maxwell’s equations for electromagnetic phe-
nomena, emerge as the most elegant and natural means of expressing the
laws of physics and chemistry.

But in the natural sciences differential equations emerged painstakingly
after much experimentation and observation, and finally some deep think-
ing about the way the interplay of forces along with the law of conservation
of energy might determine the results of these experiments. Now, however,
we are evolving methods for estimating these equations directly from often
noisy data, and in situations such as economics and biomechanics where
fundamental laws will not be straightforward and may not even be possible.
In this chapter we have put our empirically estimated differential equations
to work to investigate an interesting practical problem, the identification
of an individual by the dynamic characteristics of a sample of his or her
behavior. The next chapter applies this idea to some rather more complex
biomechanical data.



12
A Differential Equation for Juggling

12.1 Introduction

Chapter 11 introduced the notion of modeling functional data using a differ-
ential equation. We introduced this type of model by relating it to ordinary
least squares regression analysis. In this chapter we tackle a similar prob-
lem, but in a more challenging context that requires some extensions of the
approach.

We saw that a sample of handwriting could be described by a linear
differential equation of the form

x′′′(t) = β1(t)x′(t) + β2(t)x′′(t) + f(t) , (12.1)

where x′(t) is velocity, x′′(t) is acceleration, x′′′(t) is the third derivative
or jerk taken along a specific coordinate direction, and f(t) is a forcing or
residual term that we hope is small. In the handwriting data, we had a
separate equation of this sort for each of three coordinates, with the X-
axis along the line of writing, the Y -axis vertically on the paper, and the
Z-coordinate measuring a lift off the paper.

What makes a differential equation model particularly interesting is its
capacity to link the observed position function x(t) in a particular coor-
dinate direction with the behavior of the velocity, acceleration and jerk
functions, which we must derive from the observed data. It is at the level
of acceleration especially that we can expect to see the influence of the
body’s motor control system, as contracting muscles apply forces to the
body’s framework, which in turn change acceleration directly as a con-
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sequence of Newton’s Second Law. However, while the visual system can
feed position information back to the brain to modify the control process,
in rapid and highly automated tasks such as handwriting and juggling, the
time delays involved in neural transmission and central processing imply
that visual feedback is playing only a limited role. Instead, the brain prob-
ably uses information from the strains applied to the body as it moves
and interacts with its environment, and these messages are translated into
control over acceleration through muscle contractions. In short, it is at the
acceleration level that most of the action is to be found, and a model that
accurately couples acceleration with the observable data is vital.

The X-, Y -, and Z-axes defined above constitute the coordinate system
used to describe handwriting. Is this coordinate system natural? It is ob-
vious that the X–Y plane should be the plane of the paper, and writing
has a preferred direction on the paper, so defining the X-axis to be parallel
to the lines on the paper is a natural coordinate system for handwriting.
The presence of a natural coordinate system and the lack of external forces
(other than the constraint that writing has to be on the paper itself!) must
surely simplify the modeling process.

The process of juggling a ball seems more challenging than handwriting,
and certainly far fewer people master it. The motion of the hand is in all
three dimensions in space, however these dimensions are defined. Moreover,
once the ball leaves the hand, the laws of physics take over, and the brain
must anticipate where these laws are going to deliver the ball back into
the juggler’s hand. Since no two throws can be exactly the same, there is
inevitably an interaction between brain processes and the external world
that may complicate the situation. Finally, it is much less obvious how we
should arrange the coordinate axes—or even whether we should use rigid
Euclidean coordinates at all. This means that the model must be sufficiently
invariant with respect to choice of coordinate frame that the fit will still
work even when the statistical analysis has used the “wrong” coordinates.

12.2 The data and preliminary analyses

The data were collected from Professor Michael Newton of the Department
of Biostatistics at the University of Wisconsin who, in addition to being a
fine statistician, is an expert juggler. He juggled three balls for 10 sequences
of 10 seconds each. Within a sequence, there were 12 to 13 cycles of throwing
a ball and catching another, with a total of 123 cycles.

Small infrared emitting diodes (IREDs) were placed on the tip of
Michael’s forefinger, his wrist, and three locations on his chest. The posi-
tions of these IREDs were tracked 200 times a second by an OPTOTRAK
camera system. Our main concentration is on the data for the tip of the
forefinger. The chest IREDs provided a point of reference for slow move-
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ments of his entire body, and by subtracting their positions from the other
two, these drifts were removed from the data. We used a coordinate system
with the X-axis sideways to Michael’s right, the Y -axis outward from his
body, and the Z-axis vertically upward. In most of our discussion we refer
to the X-, Y -, and Z-coordinates as coordinates 1, 2, and 3 respectively.

The data were centered so that the average position was zero for each
coordinate. Because we knew that we would need a smooth estimate of the
third derivative, the jerk function x′′′(t), the data were smoothed using a
roughness penalty method penalizing for the integral of the squared fifth
derivative of each coordinate function. Software details, together with the
data themselves, are given on the Web site corresponding to this chapter.
The OPTOTRAK measurements are accurate to within 0.5 mm, and it was
appropriate to choose a rather small penalty parameter value of λ = 10−12.

Here is our notation. The function xj(t), j = 1, 2, 3 indicates the position
of the forefinger in the X, Y, and Z directions, respectively. Corresponding
velocities are denoted by x′

j(t), accelerations by x′′
j (t), and jerks by x′′′

j (t).
We also need the tangential velocity and the tangential acceleration

‖x′(t)‖ =
√

x′
1(t)2 + x′

2(t)2 + x′
3(t)2

‖x′′(t)‖ =
√

x′′
1(t)2 + x′′

2(t)2 + x′′
3(t)2 . (12.2)

Partial cycles at the beginning and end of each record were trimmed off
to obtain records that were comparable across trials, and we had to find a
suitable landmark or curve feature to separate one cycle from another. The
tangential velocity for the finger IRED showed a deep and stable minimum
within each cycle, corresponding to the lowest point in the forefinger’s
trajectory, and the beginning of the launch of the ball. The beginning of a
cycle was therefore defined by the location of this minimal value of ‖x′(t)‖.
The average duration of the cycles was 719 msec, and half the durations
fell in the interval from 696 to 736 msec. The cycles did show some phase
variation, so we applied the continuous registration method described in
Section 7.6.1 to the tangential velocity functions ‖x′(t)‖. The registration
process means that averages of the curves and their derivatives will give
good summaries of what is happening.

12.3 Features in the average cycle

Figure 12.1 shows the average position of the index finger in terms of co-
ordinates 1 and 3, as could be observed by someone seeing through the
juggler from behind. Figure 12.2 displays the view of the cycle from the
right of the juggler. It is clear that there is a substantial twist in the cycle,
and so all three coordinates are essential.
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Figure 12.3. The tangential velocity ‖x′(t)‖ of the tip of the forefinger is shown
in the top left panel, and the tangential acceleration ‖x′′(t)‖ is shown in the top
right panel. The vertical velocity x′

3(t) and acceleration x′′
3 (t) of the tip of the

forefinger are shown in the bottom left and right panels, respectively. Important
features in these curves are indicated by circles, and their times are indicated in
seconds.

The cycle begins at the bottom of the trajectory, where the forefinger is
poised to begin the launch of the ball. The ball leaves the hand at the point
where the motion is nearly vertical, at 0.28 seconds. The catch occurs at
0.42 seconds, after the hand has moved through the top of the arc, and a
little before the motion becomes vertical. The ball is lowered to a position a
little to the left of the beginning of the cycle, and then transferred laterally
to the point where the cycle begins again.

The top two panels in Figure 12.3 display the average tangential velocity
and acceleration. We need to also look at the vertical component of accel-
eration separately since it is the upward movement of the ball that is the
key to a successful juggling cycle, and these are found in the bottom two
panels. The throw accelerates the ball from near rest to a velocity sufficient
to carry it into the air for enough time that it can be caught on the third
cycle. Consequently, we see that both the tangential and vertical velocity
increase steadily to a maximum at 0.28 seconds. The vertical velocity and
acceleration show a transitional phase within this throw portion at 0.11
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seconds, probably due to the upward motion being transferred from the
forefinger and wrist to the more slowly accelerating arm. After the throw,
the forefinger then slows down slightly to permit the ball to clear the hand,
and while it is moving across the top of the arc.

The catch shows up as a sharp negative minimum in vertical acceleration
at 0.38 seconds as the downward force of the moving ball is transferred to
the hand and finger. Moreover, since the hand is also moving laterally at
this point, and must transfer this motion to the ball, we see a strong peak
in the tangential acceleration at 0.42 seconds. The hand then accelerates
downward, reaching its maximum velocity at 0.48 seconds, when the ball
is falling nearly vertically.

At this point we enter the setup phase where the ball is positioned for its
launch. A sharp positive peak in vertical acceleration is caused by the arm
muscles contracting to slow the ball prior to transferring it back across the
body to the launch position. We see in Figure 12.1 that this transfer takes
around 0.11 seconds, and is comparatively slow compared to the speed that
we see in the postcatch phase between 0.42 and 0.52 seconds.

In summary, we see something of note happening at intervals as small
as 0.06 seconds in a cycle of length 0.7 seconds. As in many biomechanical
processes, such as speaking, writing, and playing the piano, the brain is
able to control muscular systems on very short time scales.

12.4 The linear differential equation

As with handwriting, we model juggling via a second-order linear differ-
ential equation in velocity rather than in position. In other words, the
velocity function x′(t) is the basic function to be modeled. The model then
remains unchanged if we change the origin of the measurements. Since our
decision to make the average spatial coordinates equal to zero was rather
arbitrary, and certainly not related to any intrinsic structure of the motor
control system that we are aware of, having a model that is invariant under
translations seems essential.

Unfortunately, the coordinate system that we are using is not likely to
be “natural” from a motor control point of view, unlike the handwriting
situation where lateral, vertical, and lifting movements have a good chance
of being controlled independently. Indeed, why should we even assume that
the brain uses rigid Cartesian coordinates at right angles that do not change
with time? Certainly, there may be cross-talk between coordinates, so that
what is happening for the lateral X-coordinate may depend on what is also
going on for the vertical Z-coordinate, for example. We need, therefore,
a more general form that will not change if we alter coordinate systems
at a later point in our research when we have some better ideas about
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Figure 12.4. The top panels display the weight functions βjk1(t) on the three
coordinate velocities for each coordinate. The bottom three panels show the ac-
celeration weight functions βjk2(t). Within each panel, the X-coordinate weight
function is the solid line, the Y -coordinate weight is the dashed line, and the
Z-coordinate weight is the dashed-dotted line.

coordinates intrinsic to motor control, and that will allow for properties of
one coordinate of velocity to be influential on another.

Consequently, we move to a coupled differential equation, while retaining
linearity. This means that the change in each coordinate and its derivatives
is considered to involve counterpart changes in each other coordinate. Here
is the more general equation that we used:

x′′′
ij (t) =

3∑
k=1

[βjk1(t)x′
ik(t) + βjk2(t)x′′

ik(t)] + fij(t) for j = 1, 2, 3. (12.3)

Note that i indexes replications and both j and k index coordinates. For
coordinate j, regression coefficient weight functions βjj1(t) and βjj2(t)
correspond to those given in the model (12.1) above. But for this jth coor-
dinate we also have the four cross-coordinate regression coefficient weight
functions βjk1(t) and βjk2(t), k �= j. There are, therefore, a grand total
of 18 weight functions to be estimated. This might seem like a lot, but
remember that we have 123 juggling cycles at our disposal.

Figure 12.4 shows the weight functions βjk1(t) and βjk2(t) that we es-
timated. The estimation method is outlined in Section 12.6 below. The
resulting estimated forcing functions correspond to residuals in standard
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Figure 12.5. The panels display the mean forcing function f̄j(t), 95% pointwise
confidence limits for this function, and, for reference purposes, the mean jerk
function J̄j for each coordinate. The solid line close to zero is the mean forcing
function, the dashed lines on either side are 95% pointwise confidence limits, and
the dashed-dotted line is the mean third derivative, displayed to indicate the
relative size of the forcing function.

statistical modeling, and Figure 12.5 gives one assessment of the fit of the
model, showing that the mean forcing function is much closer to zero than
the mean jerk function for each of the coordinates. Another measure of fit
is obtained by noting that, for each coordinate and for all t, over 99% of
the variability in the jerk function is explained by the model.

What features do the estimated weight functions display? These func-
tions were estimated using a Fourier basis with seven basis functions, which
permits precisely three cycles, and in most cases the variation at this scale
is clear. Allowing more cycles produces almost no improvement in fit, but
on the other hand the fit deteriorates if fewer basis functions are allowed.
This suggests that there is genuine detail in the brain’s control mechanism
at cycle lengths of order a quarter of a second.

Were we right in allowing cross-talk between coordinates? Looking at
the effect of velocity (the top three panels in Figure 12.4) we see that
the jerk in each coordinate is clearly influenced by that coordinate’s own
velocity. However, the Z-velocity has a clear influence on the jerks in the
X- and Y -coordinates, and all three velocities seem to affect the jerk in
the vertical direction. The acceleration effects are less clearcut, but there is
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Figure 12.6. The fits to two sets of the coordinate acceleration functions based
on the homogeneous linear differential equation. The fit and the actual data for
the first record are plotted as a solid line and dots, respectively; and the results
for a record from the middle of the juggling sequence as a dashed line and open
circle, respectively.

no sense in which the effects of the different coordinates are disentangled.
Confirmatory evidence of the need to allow influence between coordinates
was provided by attempting to fit separate differential equation models to
each coordinate; the quality of fit was much lower.

The fit of the equation to the data can be explored further by solving
the homogeneous version of differential equation (12.3) for each coordinate,
using the estimated weight functions βjk1 and βjk2. There are six linearly
independent solutions for the velocity functions, and every solution can
be expressed as a linear combination of these. The solutions can each be
thought of as a basis function, or mode of variation, in juggling cycle space,
in rather the same way as the harmonics in principal components analy-
sis. We may then approximate each of the 123 actual cycle curves or their
derivatives by expanding them in terms of these functions. In approximat-
ing the curves themselves, we use the condition that the mean position is
zero to recover the absolute position from the velocity. If a cycle is well
modeled by the equation we would expect it to be well approximated by
these basis functions.

Figure 12.6 shows how well the acceleration curves x′′
ik(t) are fit for the

first cycle and for a cycle drawn from the middle of the sequence. The fits
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shown are fairly typical for all cycles. Similar quality of approximation is
also achieved for both position and velocity. Thus, the equation does a fine
job of capturing both the curve shape for an individual record and its first
two derivatives. Moreover, the six basis functions seem to do a good job of
following the variation in the shape of the observed functional data from
replication to replication.

12.5 What have we seen?

We saw in Section 12.3, and especially in Figure 12.3, that there are three
main phases in the juggling cycle: throwing, catching, and setting up the
next throw. Each phase lasts around 0.24 seconds. The tangential acceler-
ation curves seem to display some cyclical features with approximate cycle
lengths multiples of 0.12 seconds. This quasiperiodic character of acceler-
ation has been observed in a wide variety of situations in neurophysiology,
for example by Ramsay (2000) in the study of handwriting. It leads us to
suspect that the motor control system uses a basic clock cycle to synchro-
nize the contractions of the large numbers of muscles involved in complex
tasks.

Our main modeling tool was the linear differential equation discussed
in Section 12.4. We used this type of model because we already saw how
important the acceleration curves were in describing the juggling process,
and we wanted an approach that provided a good model of velocity and
acceleration as well as the observed position data. Also, linear differen-
tial equation systems are the backbone of models in mechanics and other
branches of engineering and science, and they should prove useful for de-
scribing biomechanical systems such as this. All the Fourier cycles used in
the fitting of the weight functions shown in Figure 12.4 have cycle lengths
that are multiples of 0.12, but this would not have been the case if a richer
Fourier basis were used. The good fit of the model with this property is
certainly consonant with the motor control clock cycle hypothesis.

The data were fitted extremely well by a second-order linear homo-
geneous differential equation, without any forcing function or nonlinear
effects. The six modes of variability corresponding to the solutions of this
equation fit individual juggling cycles extremely well and also allowed for
the variation from one juggling cycle to another. In a certain sense, there
is no variation between cycles; they are all controlled by the same differ-
ential equation, suggesting that the process of learning to juggle is one
of “programming” a suitable differential equation into the person’s motor
system.

It is beyond the scope of this chapter to attempt to discern what coordi-
nate system the brain is using to plan movement. Preliminary investigations
involving eigenvalue analyses of the matrices of coefficients β suggest that
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the coordinate system remains relatively stable during parts of the cycle,
and then changes as different muscle groups come into play. This, and sev-
eral other aspects of our model fitting, are fascinating topics for future
research.

12.6 Notes and references

The juggling study was carried out in collaboration with Dr. Paul Gribble
of the University of Western Ontario in the motor control laboratory of
Prof. David Ostry at McGill University.

Chapter 14 of Ramsay and Silverman (1997) gives more detail of the
underlying methodology of this chapter, but only for the case of a one-
dimensional variable rather than a space curve. We fit the model (12.3) by
an integrated least squares procedure, the natural extension of the method
set out in their Section 14.2. The criterion of fit of the functions β is to
minimize the integrated residual sum of squares

IRSE =
∫ ∑

i,j

[fij(t)]2dt

=
∫ ∑

i,j

{
x′′′

ij (t) −
3∑

k=1

[βjk1(t)x′
ik(t) + βjk2(t)x′′

ik(t)]

}2

dt (12.4)

The fit is regularized by constraining each β to have an expression in terms
of a fairly small set of basis functions. In the juggling context, a seven-term
Fourier expansion was used because of the periodicity of the problem; an
alternative would be a B-spline basis on a fairly coarse knot sequence. The
number of basis functions controls the degree of regularization, and other
regularization approaches are possible.

In the present context, there are 18 β functions to be estimated, and
hence 7 × 18 = 126 basis coefficients altogether. Substituting the basis
expansions into (12.4) gives an expression for IRSE as a quadratic form in
these 126 coefficients. The matrix and vector defining this quadratic form
are found by numerical integration, and standard numerical techniques then
yield the estimated coefficients.
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Lama, M., Pérez Romero, A., Ariznaverreta Ruiz, C., Burmeister,
J., and Tresguerres, J. A. F. (1998). Micro and macro perspectives in
auxology: Findings and considerations upon the variability of short
term and individual growth and the stability of population derived
parameters. Annals of Human Biology, 25, 359–395.

Johnson, R. A. and Wichern, D. W. (2002). Applied Multivariate
Statistical Analysis. Fifth edition. New Jersey: Prentice Hall.

Kneip, A. and Gasser, T. (1992). Statistical tools to analyze data
representing a sample of curves. Annals of Statistics, 20, 1266–1305.

Kneip, A., Li, X., MacGibbon, B., and Ramsay, J. O. (2000). Curve
registration by local regression. Canadian Journal of Statistics, 28,
19–30.

Leth-Steenson, C., King Elbaz, Z., and Douglas, V. I. (2000). Mean
response times, variability, and skew in the responding of ADHD
children: A response time distributional approach. Acta Psychologica,
104, 167–190.

Leurgans, S. E., Moyeed, R. A., and Silverman, B. W. (1993). Canonical
correlation analysis when the data are curves. Journal of the Royal
Statistical Society, Series B, 55, 725–740.

Lord, F. M. (1980) Application of Item Response Theory to Practical
Testing Problems. Hillsdale, N.J.: Erlbaum.

Lord, F. M. and Novick, M. R. (1968). Statistical Theories of Mental Test
Scores. Reading, Mass.: Addison-Wesley.

Malfait, N., Ramsay, J. O., and Froda, S. (2001). The historical functional
linear model. McGill University: Unpublished manuscript.



References 185

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis.
New York: Academic Press.

Ramsay, J. O. (1995). A similarity-based smoothing approach to nondi-
mensional item analysis. Psychometrika, 60, 323–339.

Ramsay, J. O. (1996a). A geometrical approach to item response theory.
Behaviormetrika, 23, 3–17.

Ramsay, J. O. (1996b). Principal differential analysis: Data reduction by
differential operators. Journal of the Royal Statistical Society, Series
B, 58, 495–508.

Ramsay, J. O. (1998). Estimating smooth monotone functions. Journal of
the Royal Statistical Society, Series B, 60, 365–375.

Ramsay, J. O. (2000). Functional components of variation in handwriting.
Journal of the American Statistical Association, 95, 9–15.

Ramsay, J. O. and Bock, R. D. (2002). Functional data analyses for human
growth. McGill University: Unpublished manuscript.

Ramsay, J. O. and Dalzell, C. (1991). Some tools for functional data anal-
ysis (with discussion). Journal of the Royal Statistical Society, Series
B, 53, 539–572.

Ramsay, J. O. and Li, X. (1998). Curve registration. Journal of the Royal
Statistical Society, Series B, 60, 351–363.

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis.
New York: Springer-Verlag.

Ramsay, J. O., Bock, R. D., and Gasser, T. (1995). Comparison of height
acceleration curves in the Fels, Zurich, and Berkeley growth data.
Annals of Human Biology, 22, 413–426.

Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covari-
ance structure nonparametrically when the data are curves. Journal
of the Royal Statistical Society, Series B, 53, 233–244.

Roche, A. F. (1992). Growth, Maturation and Body Composition: The Fels
Longitudinal Study 1929–1991. Cambridge: Cambridge University
Press.

Rossi, N. (2001). Nonparametric Estimation of Item Response Functions
Using the EM Algorithm. M.A. thesis, Department of Psychology,
McGill University.

Rossi, N., Wang, X., and Ramsay, J. O. (2002). Nonparametric item re-
sponse function estimates with the EM algorithm. McGill University:
Unpublished manuscript.



186 References

Sampson, R. J. and Laub, J. H. (1993). Crime in the Making: Path-
ways and Turning Points Through Life. Cambridge, Mass.: Harvard
University Press.

Shepstone, L. (1998). Patterns of Osteoarthritic Bone Change. Ph.D.
thesis, University of Bristol.

Shepstone, L., Rogers, J., Kirwan, J., and Silverman, B. W. (1999). The
shape of the distal femur: A palaeopathological comparison of ebur-
nated and non-eburnated femora. Annals of the Rheumatic Diseases,
58, 72–78.

Shepstone, L., Rogers, J., Kirwan, J., and Silverman, B. W. (2001). The
shape of the intercondylar notch of the human femur: A comparison
of osteoarthritic and non-osteoarthritic bones from a skeletal sample.
Annals of the Rheumatic Diseases, 60, 968–973.

Silverman, B. W. (1982). On the estimation of a probability density
function by the maximum penalized likelihood method. Annals of
Statistics, 10, 795–810.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach
to non-parametric regression curve fitting (with discussion). Journal
of the Royal Statistical Society, Series B, 47, 1–52.

Silverman, B. W. (1995). Incorporating parametric effects into func-
tional principal components analysis. Journal of the Royal Statistical
Society, Series B, 57, 673–689.

Silverman, B. W. (1996). Smoothed functional principal components
analysis by choice of norm. Annals of Statistics, 24, 1–24.

Simonoff, J. S. (1996). Smoothing Methods in Statistics. New York:
Springer-Verlag.

Thalange, N. K., Foster, P. J., Gill, M. S., Price, D. A., and Clayton, P.
E. (1996). Model of normal prepubertal growth. Archives of Disease
in Childhood, 75, 427–431.

Tuddenham, R. D. and Snyder, M. M. (1954). Physical growth of Cal-
ifornia boys and girls from birth to eighteen years. University of
California Publications in Child Development 1, 183–364.

Wang, X. (1993). Combining the Generalized Linear Model and Spline
Smoothing to Analyze Examination Data. M.Sc. thesis, Department
of Statistics, McGill University.

Whittaker, E. (1923). On a new method of graduation. Proceedings of the
Edinburgh Mathematical Society, 41, 63–75.



Index

2PL model, 135
3PL model, 136

ability space curve, 132–135
acceleration of stature, 86–89
ADHD, 7–8, 69–79
adult crime level

as principal component, 28–31
agonist, 146
American College Testing Program,

131
amplitude variation, 10, 91–96,

101–114
analysis of variance (ANOVA), 74–76
antagonist, 146
arc length

as nonlatent trait, 140–143
parameterization by, 117–120

arthritis, 6, 10–11, 57, 62–63, 120–130
attention deficit hyperactive disorder,

see ADHD
average shape, see mean shape

basis expansions
definition, 33–35

fitting to observed data, 35–36, 60,
106

for bivariate regression function,
150

for log density, 80
for periodic trend, 107
for periodic weight function, 178
for relative acceleration, 98
for univariate regression function,

151
principal components as, 125

Berkeley Growth Study, 84, 98
bimodality of reaction time

distributions, 72
biomechanics, 57, 65, 128, 170
bone shapes, 6–7, 10–11, 57–66,

115–130
B-splines, definition, 34–35

canonical correlation analysis, 129
charting variable, 134
Choleski decomposition, 38
climate data, see weather data
coarticulation, 145
condyle, 58
contemporary linear model, 149
coupled differential equations, 177
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crime data, 3–4, 17–18
criminology, key issues, 4
cyclical spline interpolation, 60

density estimation, 80–81
Depression, the Great, 43, 48–49
depressor labii inferior muscle (DLI),

146
desistance

as principal component, 28
definition, 17

differential equation model, 54,
162–165, 176–180

differential item functioning (DIF),
139

difficulty of a test item, 135
discrete values

turning into functional data, 19–21
discriminability of a test item, 135
discriminant analysis, 123–130
dynamic linear model

for classification, 166–169
for handwriting, 162–165
for juggling, 176–180
general introduction, 158–160

eburnation, 57
economic data, see nondurable goods

index
electromyography, see EMG
EM algorithm, 136
EMG, 146
evaluation point, 35

fair score, 139
false negative, 130
false positive, 130
feedforward model, 147
Fels Institute, 83
finite element method, 150
forcing function, 160, 162, 164, 178
F-test

of functional linear models, 155
functional canonical correlation

analysis, 129
functional data analysis

definition, 15
functional discriminant analysis, see

discriminant analysis

functional linear model, 148
functional linear regression, 148
functional mean, 21
functional observations

independence assumptions, 3, 15
functional parameter of growth, 90
functional principal components

analysis, see principal
components analysis

gender differences
in growth, 94
in test performance, 138–140

goods index, see nondurable goods
index

growth
functional parameter of, 90

growth spurt, 84

handwriting, 9–10, 101, 104–105,
157–170

harmonic motion, 159
harmonic process, 45
harmonics, see principal components

analysis
high desistance/low adult score

(HDLA), 30–31
historical linear model, 149
homogeneous differential equation,

160

infrared emitting diode (IRED), 172
intercept function, 148, 160
intercondylar notch, 58
intrinsic metric, 141
irregular data, 36
item characteristic curves, 134
item response function, 134

jerk function, 162, 171
juvenile crime level

as principal component, 28

kinetic energy, 45–46

landmark-free methods, 116–120
landmarks, 59–60, 115
latent trait, 134
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least squares, penalized, see roughness
penalty smoothing

leaving-one-out error rate (for
classification), 130, 166

life course data, 17–19
linear discriminant analysis, see

discriminant analysis
linear regression, functional, see

functional linear regression
lip acceleration, 146–147
loading vector, 23
log densities, 74
log odds-ratio function, 135–138
logistic model, 135–136
long-term desistance

as principal component, 28
longitudinal data, 17
LOWESS smoother, 156

mean shape, 61, 120
mean, functional, 21
midspurt, 89
monotone curve

differential equation for, 89–91
estimation by penalized likelihood,

98–99
Mont Royal, 103
motoneuron, 145
motor control, 157, 171–172
multimodality, 76–77

neural control of speech, 145
nondurable goods index, 4–6, 41–56
nonhomogeneous differential

equation, 160
nonlatent trait, see arc length
nonparametric density estimation, see

density estimation

odds ratio, 135
OPTOTRAK system, 172
osteoarthritis, see arthritis
outlines, see shapes

paleopathology, 57
patellar groove, definition, 58
PCA, see principal components

analysis
penalized EM algorithm, 136

penalized maximum likelihood
density estimation, 72, 80–81
see also roughness penalty

smoothing
periodic cubic spline, 60
phase variation, 10, 91–96, 101–114
phase-plane plot, 5, 44–47
physiological time, 92
polygonal basis, 34
potential energy, 45–46
prepubertal growth spurt, 87, 89,

94–96
principal component scores, 23
principal components analysis

algorithm for functional, 37–38
of densities, 76–79
of growth curves, 95–96
of log odds-ratio, 136–138
of shape variation, 61–65, 120–123
of warping function, 95–97
regularized, 26
scatter plots of components, 28–29
unsmoothed, 23–25, 61
varimax rotation, 63–65
visualizing components, 25, 27

principal differential analysis, 13, 163
probability density estimation, see

density estimation
Procrustes transformation, 61
pubertal growth spurt (PGS), 84

registration, 91–96, 101–114
regularization

by restricting the basis, 181
of discriminant analysis, 125–127
see also roughness penalty

smoothing
relative acceleration, 90
resubstitution error rate (in

classification) 130
roughness penalty smoothing

based on fourth derivative, 55
for log density functions, 80
for mean function, 21
for monotone functions, 98–99
for warping functions, 113–114
in PCA context, 26
in terms of basis functions, 36
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saltation, 86
scores, see principal component scores
Second World War, 41, 42, 48, 50
shape variation

principal components of, 61–65,
120–123

shapes
definition of mean, 61, 120
parameterization of, 59–60, 117

simple harmonic motion, 45, 159
smoothed sample mean, 21–23

algorithm for, 36–37
smoothing parameter choice

cross-validation, 38–40
informed subjective choice, 23, 26,

55–56, 81, 91, 99, 113–114
space curve, 132
speech, 145
spline interpolation, 60
St. Lawrence River, 103
St. Peter’s Church, Barton-upon-

Humber, 57
stature

acceleration of, 86–89
measurement of, 83–84

stock market crash, 41
system time, 102

tangential acceleration, 104–105, 173
tangential velocity, 173
temperature patterns, 105–110
three-parameter logistic model, 136
time deformation function, 108–109
time series, functional, 6
time warping, see registration
triangular basis, 34, 150–151
two-parameter logistic model, 135

variance-stabilizing transformation,
21

varimax rotation
definition, 63–64
vector form, 67

varying coefficient model, 156
Vietnam War, 48

warping, see registration
weather data, 105–110
Web site, 2

weight vector, 23
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