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Preface

My motivation for writing this book stems from my experience of teaching social
science graduates undertaking a Master’s Programme in Research Methods and from a
long association of working with social researchers in higher education, in government,
in the voluntary and commercial sectors. While many excellent introductory statistics
texts are available and written with social scientists in mind, there is a dearth of access-
ible texts on statistical modelling for this audience. There is, of course, a vast array of
excellent texts on statistical modelling but they adopt a mathematical and theoretical
approach to the subject (for example, Dobson, 2002). Obviously I do not wish to deride
mathematics and theory nor minimise their importance, but for many social scientists
without a background in mathematics, an undue emphasis on notation and formulae
too early in their exposure to statistical modelling can be off-putting, if not fatal.

A second limitation of existing texts on statistical modelling, even the few that are
not overly mathematical (such as the exemplary text by Allison, 1999), is that they
invariably concentrate on one or two aspects of the subject, which they treat in some
depth. As a result, they do not provide an overview, which enables the new recruit to
understand how the various elements of statistical modelling relate to each other. A
minor issue, but often a disconcerting one, is the myriad of alternative terms used by
different writers, which leads to unnecessary confusion amongst students when they
switch between different texts, computer software and manuals.

The purpose of this book is thus to provide students who have completed a basic
statistics course with a first and readily accessible entry point into statistical modelling.
As such the book is intended to be a guide or a map of the entire terrain. It aims to
explain the issues in everyday language rather than in mathematical notation, which is
kept to the barest minimum. It is not a cookbook and will not provide the recipe for a
particular research problem. Instead it is hoped that readers will gain a ‘feel’ for the
subject and will be encouraged to acquire further insight by reading more advanced
accounts.

Before embarking on the material covered in this book, students should be familiar
with some basic statistical concepts, including descriptive statistics (measures of central
tendency and dispersion), frequencies and tables. It is also necessary to have prior
knowledge of the principles of significance testing, the z, t and chi-square tests in
particular, as well as measures of association and correlation (although some of these
concepts are reviewed in Chapter 3). It is not essential, however, to have studied regres-
sion beforehand as it is covered in this book.

Having received instruction in basic statistical methods it is assumed that readers will
also have gained some proficiency in statistical computing. The audience I have in mind



is unlikely to be developing new statistical methods (but perhaps they will do so at a
future stage in their career). Instead they will be wishing to use software with statistical
modelling techniques pre-programmed and operated through drop down menus and
dialogue boxes or by issuing straightforward commands. In my experience, the software
most readily accessible to social scientists is SPSS, but Stata has superior modelling
capabilities and is rapidly gaining in popularity amongst this group. Both are employed
to fit models in this book. MLwiN is also chosen in order to fit multilevel models and,
although not discussed, I find Excel useful to structure data in a form suitable for
inputting into more specialist statistical software. Furthermore, much administrative
data is stored and supplied as Excel files.

It is beyond the remit of this book to be a manual for any software. However, as the
models presented in this book have been fitted by SPSS, Stata or MLwiN, I comment on
what I regard as the strengths and weaknesses of each product at appropriate points in
the text. Insights into using SPSS, Stata and MLwiN can be thought of as a feature of
the book but not its main focus. Throughout the text I have reproduced output from the
software but I would not endorse this practice when presenting results of analyses in
journals articles, reports and official documents. It is only followed here in order that
readers can relate models to the software. For the same reason I have often reported
numbers to more decimal places than would be good practice in published accounts.

Many of the datasets analysed in this book can be found at the accompanying
website together with suggestions for further analysis. The website address is:

www.routledge.com/textbooks/9780415448406

I am indebted to the help and assistance of many people and organisations in preparing
this text. First and foremost I would like to thank Clive Payne who has given me invalu-
able advice and support on statistical modelling and computing over a period of more
than thirty years. More specifically here, Clive made available his data on Training for
Work, which is used to illustrate event history models in Chapter 13. Clive also assisted in
preparing the SPSS and Stata code to convert data files from one format to another. In
addition, Clive provided invaluable comments on an earlier draft of this book.

Ian Brunton Smith, my colleague at the University of Surrey, greatly helped me with
multilevel modelling, which is featured in Chapter 9. Ian also read and commented on
earlier drafts of many other chapters.

I am particularly grateful to two former Master’s students who generously allowed
me to draw on some of the data that they had assembled for their dissertations. Veron-
ica Hollis made available the data on sentencing offenders convicted of shop theft and
Elizabeth Whiting the multilevel data combining the Labour Force Survey with area
level data on social deprivation.

I am also extremely grateful to the Home Office, the Office for National Statistics and
the UK Data Archive for supplying me with the data sets analysed in this book. Further
details are given in the text, at the point where the data are analysed. Citations appear in
the Bibliography. These organisations have asked me to record that although all efforts
are made to ensure the quality of the materials, neither the original data creators,
depositors or copyright holders, the funders of the Data Collections, nor the UK Data
Archive bear any responsibility for the accuracy or comprehensiveness of these
materials nor for their further analysis or interpretation.

Roger Tarling
July 2008
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1 Statistical modelling: An overview

1.1 Introduction

In defining a model, the dictionary talks of making a representation, an imitation, an
image, a copy or a paradigm.

We talk of models and use them in many different contexts. Perhaps the term is used
too readily or too loosely, devaluing its meaning and power. Nevertheless, in the built
environment it is common to physically build a mock-up (models) of how the con-
struction will look. Engineers will build prototypes (models) of a new machine, for
example a car. Planners build simulation models to represent traffic flows as a way of
assessing new road layouts.

In their objective, models in the social sciences are no different. What the theoretician
or researcher is attempting to produce is a representation of how phenomena or con-
cepts (as measured by their variables) relate to each other. In other words, the social
scientist is attempting to understand the complex social world and represent the essential
inter-relationships in a simplified but meaningful way.

What distinguishes a statistical model is that it is constructed from empirical quanti-
tative data and uses statistical theory to guide its development. The details of this will
be given later but at this stage it is important to note that the theory or the research
question guides the construction of the model. Statistical modelling is a technique to aid
understanding, it is not an end in itself.

1.2 Why model?

Statistical modelling is an important analytical tool as it enables social researchers to
consider in a coherent and unified procedure complex inter-relationships between social
phenomena and to isolate and make judgements about the separate effects of each.
More specifically, in social science statistical modelling is undertaken for one of four
main reasons: (1) to improve understanding of causality and the development of
theory, (2) to make predictions, (3) to assess the effect of different characteristics,
(4) to reduce the dimensionality of data.

To aid the development of theory

Constructing models can help develop theoretical perspectives or test the claims of
competing perspectives. Relatively recently attention has been given to the part lifestyle
plays in crime victimisation and routine activity theories have been promulgated.



These theoretical perspectives can be informed by developing models examining how
aspects of people’s lives, such as where they work, what recreational activities they take
part in, how they travel, what time they travel and who with, relate to their experience
of being a victim of crime.

To make predictions

Many models, particularly in the economic sphere, are constructed with the purpose of
making forecasts or predictions about the future. The ability to anticipate any changes
in unemployment or interest rates or the cost of living offers decision makers the
opportunity to take any necessary remedial action. Similarly, statistical models can be
used to estimate the relative risks of certain outcomes, for example, the risk that an
offender will reoffend within a particular time period. Knowledge of the risk can be an
aid to decision making; in this example it may inform decisions about when the
offender is to be released from prison or whether or not the offender should be placed
on a particular programme.

To assess the effect of different characteristics

Often the aim of a social research project is to evaluate the effect of a particular
characteristic on an outcome, for example are women offenders treated differently from
male offenders in terms of the sentence they are awarded at court? Are women dis-
criminated against in the workplace and paid less than men? In answer to the first
question, women are generally awarded lesser sentences than men but can it be inferred
that women are treated differently? Other attributes contribute to the sentence imposed
– the seriousness of the offence, the age of the offender and the previous criminal
history of the offender. Compared with men, women offenders generally commit
less serious offences and have less extensive criminal careers so it is not surprising
that on average they receive lesser sentences. To answer the important question of
whether women are treated differently from men, account has to be taken of the
offence committed, age and criminal record, in order that we may treat ‘like with
like’. A statistical model enables us to assess the effect of gender on sentencing
after adjusting for the other important characteristics known to influence sentencing
decisions.

To reduce the dimensionality of data and to uncover latent variables

A situation may exist where many variables are highly inter-correlated, for example a
child’s marks on various school tests, or a person’s answers to a large number of similar
attitudinal questions. Leaving until later the technical problems encountered by includ-
ing all these similar variables in a model, one might, in any case, prefer a summary
measure of them. An average (which is itself a linear model) could be calculated and
used to represent the set of variables or a more sophisticated model, which weighted
each of the variables differently, could be constructed.

In other applications the purpose may be to uncover latent variables, which are
underlying social constructs (such as social deprivation, quality of life or fear of crime)
but for which no direct measurement scale exists. In order to undertake research and
perform analysis on these concepts, a measurement scale has to be constructed from
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manifest variables, that is, from variables that can be measured. Latent variables are
discussed further in Chapter 10.

Before concluding this section it should be emphasised that the four purposes out-
lined above are not themselves mutually exclusive. Models that are firmly grounded in
theory are likely to achieve better predictions and will be better placed to isolate the
relative effects of different characteristics. That is, the better the model represents true
relationships between the underlying phenomena the better able it is to achieve any of
the objectives set out above.

1.3 The general linear statistical model

A statistical model takes the form of a mathematical equation in which the concepts
of interest (as measured by their variables) are hypothesised to be related to each
other in some way. The statistical model of interest in this book is known as the general
linear statistical model and is defined in Equation (1.1).

yi = b0 + b1 x1i + b2 x2i + . . . + bp xpi + ei (1.1)

where:

y is the dependent variable, yi is the value of the dependent variable for the ith
subject

x1i, x2i . . . xpi are any number (from 1 to p) of explanatory/independent variables.
The value of xp will vary between the i subjects.

b1, b2 . . . bp are the coefficients, or parameters, of the corresponding explanatory
variables, x1, x2 . . . xp.

e is the error term or residual, ei is the residual for the ith subject.

Each variable is explained in turn.

Dependent variable, also known as response variable or outcome variable

The dependent variable is the variable of prime interest in our research, that is, the
variable which we wish to explain or predict. The dependent variable is regarded as a
random variable, which is free to vary in response (hence response variable or outcome
variable) to the explanatory variables. Note that in Equation (1.1) there is only one
dependent variable although we may have alternative definitions and measures of it.
(For example, if the focus of the study was the remuneration people received, the
dependent variable could be annual salary or hourly rate of pay. Remuneration could
also include pensions and/or interest on savings and investments, etc.) Although there
is only one dependent variable per equation, we will also consider in Chapter 11 the
situation where there is more than one equation (each with its own y) which are related
or need to be analysed simultaneously.

SPSS and Stata consistently use the term dependent variable in all their models and it
is the convention in texts and computer program manuals to denote the dependent
variable by the letter y.

Statistical modelling: An overview 3



Explanatory variables, also known as predictor variables, covariates,
factors or independent variables

In most real-life applications there is more than one, and potentially many, explanatory
variables. As the name implies, these variables are associated with the dependent variable
and explain or predict values of the dependent variable.

Although in common usage, the term independent variable is not favoured by statist-
icians as it does not accurately convey the nature of the relationship between such
a variable and the dependent variable. As will be seen later, these variables are far from
independent in statistical models but are often highly correlated with the dependent
variable and each other. I prefer the term explanatory variable as it better describes
the nature of the relationship between it and the dependent variable. However, I con-
cede that the use of independent variable is pervasive and I will continue to use it
interchangeably with explanatory variable.

Explanatory (independent) variables can obviously be continuous or categorical
(these terms are defined in section 2.4). Continuous explanatory (independent) variables
are often called covariates – to signify that they vary in some relationship with the
dependent variable. Categorical explanatory (independent) variables are also called fac-
tors or indicators and the individual categories of the factor are sometimes called levels.

Stata consistently uses the term independent variable throughout. However, SPSS
is not so consistent. Rather confusingly it uses independent variable in the regression
component, but covariate in the logistic regression component, regardless of whether
the variable is continuous or categorical. The terminology changes again for the
multinomial where covariates and factors are separately identified.

In most texts and computer program manuals it is the convention to denote explana-
tory variables by the letter x, and if there is more than one to number them sequentially
with a subscript: x1, x2, x3 and so on.

Whether a variable is considered to be a dependent variable or an independent variable
depends wholly on the context, that is, the nature of the research being undertaken. In
one study a variable may be considered as the dependent variable but in another as an
explanatory variable. For example in a study of school pupils’ achievements, some meas-
ure of educational attainment might be taken as the dependent variable. However, in a
study of adults’ occupations or salary, school attainment might well be considered as an
explanatory variable. Furthermore, in any one study, a variable may be considered as
both a dependent variable and an explanatory variable at different stages of the analysis,
especially when developing causal models (which are the subject of Chapter 11).

Coefficients or parameters

Associated with each explanatory (independent) variable xp is a coefficient or parameter
bp. bp indicates the magnitude by which y changes as xp changes after taking into account
(or adjusting for) the other explanatory variables included in the model. To be more
precise, for a one-unit change in xp, y will change by an amount bp after adjusting for the
contribution of the other explanatory variables. Thus bp is the partial effect of xp given
the other xs in the model. It is important to understand that the value of bp may well
change from model to model depending on which other variables are included. In
addition, bp will also depend on the units of measurement chosen. For example, if
y represented a person’s weight and x his or her height, b would take a different value if
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weight was measured in pounds or kilograms and height was measured in feet or
centimetres. However, whatever units of measurement were chosen, b would represent
the same change in the quantum of weight due to a one-unit change in the quantum
of height.

b0 is a constant term and represents the value of y when all the explanatory variables
equal zero, that is, when no explanatory variables are included in the model. It will be
seen that the constant value, b0, is itself often meaningless; its only importance is to help
determine the values of bp. (The exception is where the explanatory variables are cat-
egorical when b0 represents the effect on y of being in the reference category; discussed
in section 3.5) It is also possible to fit the models to eliminate the constant term
altogether (in effect to set it to zero).

The element of the model containing the explanatory variables and the coefficients,
that is:

b0 + b1 x1i + b2 x2i + . . . + bp xpi

is known as the fixed component (or systematic component) of the model.

Error term

The final term in the model is e, which represents the random component of the model,
and is the error term or the residual (sometimes called the disturbance term). The
fixed component of the model does not predict y exactly as in reality there are always
other influences not represented by the explanatory variables, however exhaustive they
may appear to be, which help determine the value of y. In addition, some of the
variation in y may just be unexplainable random variation (which is often referred to as
noise). The term e is called the error term or residual as it represents what is not
explained by the fixed component of the model and thus represents unmeasured effects
and noise. In numerical terms it is the difference between the observed or actual value
of y and the value of y predicted by the explanatory variables in the model. Assump-
tions about the nature of the error term are important in defining the particular model
and examining residuals can provide insights into whether the assumptions are correct.

Linearity

The model above was labelled the general linear model and this review is limited to
linear models. What then does linear mean in this context? The model is defined to be
linear in the coefficients. This means that the coefficients, the bs, are added together. Of
course each b is multiplied by its corresponding x before being added to another term,
but it does not matter what that x is. It is the fact that the terms are added together that
makes the model linear.

Because the only requirement is that the terms are added together, the framework of
the general linear model is very flexible. The xs need not be linear to conform, a point
we shall develop in section 3.8.

Many of the models discussed in this book have been found to be related under the
unifying concept of the generalised linear model. But to avoid introducing too
many concepts at the outset, a description of the generalised linear model is given in
Appendix 1.
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1.4 Model development

There are essentially six stages in developing a statistical model. A brief overview is
given here and further details will be provided in later chapters.

Clarifying the research question /designing the study

The first stage involves being clear about the purpose and nature of the research and in
defining the specific research questions or hypotheses to be explored and evaluated. The
need for the study will have emerged as a result of theoretical development and/or in
response to a policy issue. Either way, there will be a context and often previous
research which will shape the design of the study to generate appropriate data.

Data collection

New data could be gathered from primary sources (for example, by conducting a survey)
or data from secondary sources could be used (either data generated from a previous
survey or from existing, often administrative, records). Regardless of the source, the
data will need to be coded (or recoded) and new variables derived. Finally the data will
need to be assembled in an appropriate form in readiness for analysis. This stage will
also entail a good deal of initial preliminary statistical analysis to clean up the data
and identify potentially important relationships which need to be examined further.

Specifying the model

In statistical modelling, statisticians talk of specifying a model, that is, making an
initial assumption about how variables might be related and hence included in the
model. Theory, previous research and the hypotheses to be tested will identify which
explanatory variables need to be considered. Of course, if important variables are
not included in the model the model will be mis-specified. The problems arising from
mis-specified models are discussed in section 3.10.

A further aspect of specifying the model involves choosing the form of the model to
be adopted (multiple regression, logistic regression and so on) which is governed by the
type of response variable.

Fitting and estimating the model

Having specified a model, the next stage is to map it onto the data. Statisticians call this
process model fitting or estimation. This stage estimates the values of the coefficients or
parameters of the model.

There are two main procedures for estimating models, known as least squares
and maximum likelihood. Ordinary least squares (often referred to as OLS) will be
described in Chapter 4 as it is the procedure used for estimating regression models. As
will be seen, it is a procedure for minimising the distance of the regression equation
from the data points, and in that sense provides the best possible fit to the data. In
addition to ordinary least squares, there are variants including weighted least squares,
generalised least squares, two-stage and three-stage least squares.

Maximum likelihood is mathematically more technical and no attempt will be made
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here to provide a detailed explanation. In essence a maximum likelihood estimate of
our parameters, bp, is the one that makes the observed data most likely. The estimates
forthcoming from maximum likelihood procedures can be shown to have very desirable
properties and thus maximum likelihood is considered a good method of estimating the
parameters of a model.

Interestingly, ordinary least squares is, in fact, a maximum likelihood method under
certain conditions (technically that the error term is normally distributed). This may
explain why OLS is still used to estimate regression models but maximum likelihood is
used to estimate other models.

Statisticians developing new types of models, or wishing to modify existing standard
models, will ‘go back to basics’ and formulate the appropriate likelihood function to
estimate the parameters of their models. However, in reality, most social scientists will
not be developing new models but simply applying those already available within exist-
ing statistical software. We mortals will have to take on trust the estimation procedures
incorporated within the software, satisfying ourselves that the creators of reputable
computer software such as SPSS and Stata have adopted the best possible procedures.
The reason why OLS is described in any detail (in the Chapter 4) is that some appreci-
ation of how models are fitted helps clarify the essential features of a statistical model
and illustrates why certain procedures are followed in developing models.

Assessing the adequacy of the fitted model

How good is the model? Intuitively this question can be answered in three ways. First,
how good is the model as a whole in explaining the variation in the dependent variable, y?
And how much of the variation in the response variable does the model explain? How
does one model compare with other, alternative models? For this we require global
measures of the model (often referred to as goodness of fit statistics) and significance
tests in order to indicate whether the model in its entirety shows evidence of an under-
lying relationship or whether it falls within the boundaries of a chance occurrence.
Tests are also needed to assess whether one model is better than another model.

Second, how do the elements (variables) in the model compare? Which ones are
important and which ones are not? We need a significance test for each component of
the model, the explanatory variables xp, to see whether each individually is making an
important contribution to the model in explaining y over and above other variables
included in the model. In practice, it is not the xp that is tested but the coefficient, bp, to
see if its value is significant. If not, this is tantamount to inferring that the corresponding
xp makes no significant contribution to the model.

Third, if the purpose is to construct a model which best represents the data then
intuitively a model that ‘comes close’ to all the data points is preferred. Does the model
adequately represent (or fit) all the data points? This question can be answered by
following certain diagnostic procedures. A well-respected method here is to examine
residuals. The model can be used to predict the value of each data point and the
predicted value can be compared with the actual data point. As previously stated, the
difference between the two is the residual. Residuals thus provide important informa-
tion on how well the model fits the dataset generally and each data point individually.
We may well find that the model fits the data well within a range of values of y but not
all values of y. Furthermore, exceptional values of y or combinations of x values (often
referred to as outliers) may have undue or disproportionate influence when estimating
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the model and on the values of the coefficients, bp. An example here might be income
where a relatively small proportion of people have exceptionally high incomes, way
above the income of the majority. Residuals are discussed further in section 3.9.

Drawing conclusions

The final stage is to draw out the conclusions from the model and to assess how much
light it sheds in answer to the original research question. A model might have passed
statistical tests which indicate that it is good or best, but how does it help shape our
understanding of the real-world problem? Is it good or useful in a substantive sense?

Determining the final or ‘best’ model

The previous section sets out the distinct stages, however, it is extremely unlikely that
the final or best model will be developed in the first instance. The modelling process
invariably involves repeating or iterating through certain stages of the cycle. Stage 1
may not be revisited but it may be necessary to re-examine the data at Stage 2, perhaps
to derive new variables. Stages 3, 4 and 5 will be repeated, often many times. Information
obtained from testing one model will feed back to re-specifying the model (dropping
some variables, including others, considering interactions, etc.), trying alternative
models and comparing them with previous models.

Perhaps because of the complexity of many of the relationships within social science
or because of the imperfections in measuring some of the information, it is invariably
the case that models developed provide some, but only limited, explanation of the
phenomenon under consideration. It is also a common experience in social research to
have explanatory variables which are highly related to each other because they reflect
the same underlying condition. For example, poor housing, low pay, high unemploy-
ment may all be manifestations of social deprivation. The problem caused by highly
inter-related variables is known as multicollinearity (discussed in section 3.6).

Throughout this process the social researcher will be balancing the explanatory
power of the model with simplicity or parsimony. As result of either the complexity of
the relationships and/or multicollinearity, many different models may be found to be
nearly as good as each other. Leaving to one side theoretical or substantive consider-
ations, when choosing between equally good competing models the simpler or less
complicated model is to be preferred. However, it may take several iterations to arrive at
the best model (or a small set of alternative models) and to clarify what messages are
forthcoming from the entire modelling exercise.

1.5 Model selection by the computer

In the above description of the process the social researcher has been taking the
decisions regarding which variables to enter into each of the alternative models. The
researcher could, however, take the ‘easy way out’ and delegate this task to the computer
package and let it find the best fitting model which is an option in SPSS.

The default procedure in SPSS is Enter – under which the researcher specifies all the
variables to be included in the model. However, SPSS offers the researcher alternative
procedures, including Stepwise and Backward. Choosing either method will lead
SPSS to find what it considers to be the best model according to the criteria it has been
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set to follow. All the researcher has to do is to ensure that the explanatory variables that
he or she would like to be considered are included in the appropriate box. In Stepwise
SPSS will, at Step 1, find the best model with one variable (that is, the variable that is
most significantly related to the dependent variable). At Step 2, SPSS will search for the
best fitting model with two variables, at Step 3, three variables, and so on. The pro-
cedure terminates at the point where any further variables would not make a significant
additional contribution to those already included. A point to bear in mind is that a
particular variable might be included in an earlier step but excluded at a later step
because a different set of variables might make a greater contribution. Backward
undertakes the process in reverse. All the variables are included at the outset and SPSS
eliminates them one by one, starting with the least significant, until it arrives at the
subset where all remaining variables are significantly related to y.

Automated procedures used sparingly can be helpful in model development but they
should not be used slavishly and they are certainly not a panacea. Theory, prior
research and substantive knowledge should always play a major part in guiding model
development. Insights and understanding are gained from thoughtfully specifying and
testing alternative models. Simply throwing the data at SPSS and leaving it to arrive at a
solution can also lead to misleading results and unintelligible models. The computer
software can only apply statistical algorithms, it cannot make thoughtful decisions. In
some software further restrictions can be placed on how the computer implements
selection criteria, but imposing restrictions is tantamount to specifying the model.
Furthermore, in a study where a large number of variables have been collected, it is
impractical to offer them all for selection.

Some commentators take a purest line and will not allow the computer to select the
model, whereas I am more pragmatic. It may be helpful during a session of model
development just to see what the ‘computer would have made of the problem’ and
whether the computer-generated solution suggests developments that might otherwise
have been overlooked. However, I am not keen on backward procedures, especially in
situations where there are a large number of explanatory variables and even more so if
the sample size is relatively small in relation to the number of explanatory variables.

1.6 Statistical software

Many statistical packages are available to fit statistical models. Statisticians would
probably favour S-Plus, a freeware version R, or perhaps SAS. However, in reality
(and it is certainly my experience) most social researchers will choose to use, or more
likely will simply have available to them, SPSS or increasingly now Stata. Furthermore,
datasets obtainable from the UK Data Archive (www.data-archive.ac.uk) are available
as SPSS files or, alternatively in the case of more recent data files, Stata files. It is for
these reasons that SPSS and Stata are used to fit the models discussed in this book.

Although SPSS is easy to use and has many strengths, it is somewhat frustrating for
statistical modelling. It will be seen that each component is different in the terminology
it adopts, its facilities for handling categorical data, creating interaction terms and in
other ways. It seems that different components have been produced at different times
by different teams without reference to previous components. Furthermore, earlier
modules have not been updated to conform to later developments. There appears to be
no one unifying architecture, structure or language, leaving users to learn each module
as a separate entity. I find students can be confused when moving between the modules
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simply because they do not appreciate that a different terminology has been adopted.
(It is for this reason that alternative terminology is presented in this book.)

Stata may be a little more difficult to learn initially but does have a unifying frame-
work with commands following a consistent pattern. Stata fits a wider range of models
and also benefits from having a large user base, members of which create additional
routines that are available and can be incorporated within Stata. It is possible to access
the web-based user group while in Stata, via the Help facility.

Both software have a Windows interface with drop-down menus and dialogue boxes
and models can be specified by point and click. But both software can be command
driven. Whichever approach is taken it is good practice to keep a record of commands
issued, especially records of any changes to variables, such as recoding existing vari-
ables or deriving new variables. This can be accomplished in SPSS by opening a syntax
file and in Stata by opening a log file. Apart from keeping a record for future reference,
the commands contained in the files can be adapted to run subsequent analysis. In
addition to preserving a permanent record, Stata also has the facility of storing a list of
commands initiated during the current session in a Review window. This is valuable as
the researcher can click on a previous command specifying a model and simply add or
delete further variables.

From Version 14 onwards, SPSS has the facility to save SPSS files as Stata files and
also to read Stata files. This is a welcome development as it enables the researcher to
undertake initial analysis in SPSS and to convert to Stata to take advantage of its
additional capabilities or to switch files between packages for any other reason. Stata
have also produced a separate program called Stat Transfer which can be used to
convert data files from any one of many computer software formats into any other.

To fit multilevel models, a separate package, MLwiN, is preferred even though Stata
does have an ‘add on routine’ gllamm which will fit a broad range of multilevel models.
(SPSS can only fit a limited range of multilevel models.) (MLwiN can, of course, also fit
the more common single level linear models but we shall not adopt it in those situ-
ations as a principal purpose is to demonstrate SPSS and Stata.) Further details of
MLwiN are left until Chapter 9 which describes multilevel models.

Although they are not discussed in any detail in this book, I sometimes find
myself using Microsoft Excel and Access to prepare data files for statistical modelling.
In addition, much administrative data is made available from organisations in either
format so some knowledge of Excel and Access is useful.

Further reading

References to texts on statistical modelling will be given at the end of the chapters describing
particular models.

A large number of introductory texts on SPSS are available and a growing number on Stata.
(For details of books on Stata, see the Stata website www.stata.com: click Purchase → Bookstore
→ Books on Stata.)

Free guides to SPSS and Stata are available at the Economic and Social Data Service (ESDS)
website (www.esds.ac.uk). They are: Norman, P. and Wathan, J. (2006) and Rafferty, A. (2006).

Both guides contain appendices detailing further resources and references.
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2 Research designs and data

As noted in the previous chapter, stage one of any study is to clarify the research
question and the focus of the research. This in turn will identify the type of data
required to answer the question and the method by which the data is collected. Both
will have a bearing on the approach to statistical modelling and the type of model
fitted. Thus before discussing statistical modelling, it is necessary to review research
designs, how variables are defined and measured and the problems posed by missing
data. These topics are the subject of this chapter.

2.1 Units of analysis

At an early stage a decision must be taken on the units of analysis, that is, the subjects
on which we are going to collect information. (Once assembled in a data file, subjects
are often referred to as cases.) In many studies the unit of analysis or subjects will be
people (voters, employees, children, offenders, for example). Data on people is often
referred to as data at the individual level. Alternatively, the unit of analysis could be an
organisation, institution or region such as schools, hospitals, police forces or counties
and countries. For these units of analysis, data might be collected on the characteristics
of the organisation or institution, such as the type of school or hospital, whether the
police force covers a rural or urban area and so on. In addition, aggregate data might be
assembled for the organisation based on the individual data for that institution, such as
the number or proportion of pupils passing examinations (in the case of schools) or the
number of crimes per number of people living in the police force area (in the case of
police forces). Such measures are thus in the form of proportions (or percentages) or
rates – the latter being common when comparing countries where measures often
include population density, Gross Domestic Product per capita, literacy rate and so on.

Of course, in any study, and depending on the topic of interest, data may be collected
both at the individual and at the organisation or institutional level. If the research
interest were to identify the factors contributing to educational attainment, we would
collect information on the pupils and on the schools. Such research would result in
hierarchical data, now more commonly called multilevel data where data is collected on
units at two levels, pupils and schools. Multilevel data arises in many research applica-
tions and need not be confined to two levels, but conceptually can extend to any number
of levels. For example, a study may be interested in examining individuals within
households which are situated within neighbourhoods which in turn are located within
geographic regions. (Models for multilevel data are presented in Chapter 9.)



2.2 Research designs

Research can be classified into two broad categories, cross-sectional studies and longi-
tudinal studies.

Cross-sectional designs

In many research studies data is collected with reference to one point or period in time,
usually on a representative sample or ‘cross-section’ of subjects (individuals, organisa-
tions, whatever) from the relevant population. The National Travel Survey asks those
interviewed (interviewees, respondents) what journeys they made in a previous fixed
time period, why they undertook those journeys and what mode of transport they used.
Individuals need not be interviewed as data about them may be gathered from official,
administrative records; for example from registers of unemployed people, or from
prison records. If the subjects are institutions or organisations, such as schools, data
may be gathered from administrative records or by interviewing a representative of the
institution or by requesting that representative to complete a questionnaire on behalf
of the institution.

Most of the models described in this book can be readily applied to cross-sectional
data.

Longitudinal designs

Longitudinal studies essentially collect data over a period of time on the same subjects
(individuals, organisations etc.) and by so doing monitor and record social change
or changes in life events. By recording events over time, longitudinal studies are
better placed to disentangle the temporal and sequential occurrence of different social
processes and thus, potentially at least, facilitate greater understanding of causal mech-
anisms and relationships.

However, the broad category of longitudinal research design can be further sub-
divided into several sub-types: time series, repeated cross-sections and panel studies.
Each sub-type poses particular issues for statistical modelling. Further details of longi-
tudinal designs and models are left until Chapters 11, 12 and 13.

2.3 Sampling, surveys and weighting

Much of statistical theory, including the theory underpinning statistical modelling, is
based on the assumption of a simple random sample, that is, a situation where every
member of the given population of interest has the same probability of being selected
for inclusion in the sample. However, in reality many research studies and surveys that
are conducted do not yield simple random samples but complex sample surveys. They
are probability samples, where the method of selection enables every member of the
population the opportunity to be selected, but the probability of selection is different
for different subjects.

Consider the British Election Survey, which is typical of many large-scale surveys
undertaken by government or other public bodies. At the time of each general election,
a survey is carried out to ascertain whether people voted, which party they voted for
and their reasons for choosing one party over another. Individual characteristics are
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also obtained. The survey is not a simple random sample as this would entail selecting
for interview individuals from all parts of the country and the costs and effort of
contacting and visiting them (possibly more than once) would be considerable as well as
impractical. The British Election Survey (BES) that followed the 1997 general election
is typical. To keep costs to an acceptable level, a multistage or clustered random prob-
ability design was adopted. The first stage entailed selecting 218 postal sectors (small
areas of the country), thus postal sector is the primary sampling unit (or psu). The
second stage entailed sampling 30 ‘delivery points’ within each sector (a delivery point
is an address where mail is delivered which may have more than one household at the
address). The third stage then randomly selected households at the address and the
fourth randomly selected an individual over the age of 18 (that is of voting age) living in
the household for interview.

The multistage procedure reduces costs because fieldwork is concentrated or clus-
tered in fewer areas of the country. The selected households are not evenly scattered
across the country as they would be if a simple random sample had been drawn.
Unfortunately there is no such thing as a free lunch. The price to be paid is that
clustering can, and generally does result in larger standard errors (if correctly esti-
mated). This is because households and individuals in a small area (postal sector) are
likely to be more similar in their composition, background and voting behaviour than
the same number of households or individuals evenly spread around the country (that
would be selected in a simple random sample). Choosing many different postal sectors
throughout the country will minimise the ‘clustering effect’, but it is unlikely to elimin-
ate it entirely. The upshot will be that standard errors of estimates from a multistage
clustered sample will be greater than the standard errors resulting from a simple
random sample of the same size. Intuitively this can be conceived in one of two ways.
First, a multistage clustered sample does not capture all the variation that would be
captured by a simple random sample. Or, second, because many households are more
similar within clusters than would be the case in a simple random sample it is as if the
sample size of the multistage clustered sample is not as large as a simple random sample.

The clustering effect is known in other statistical contexts as the intra-class correl-
ation, ρ (the Greek letter rho) and is a measure of within group or cluster homogeneity.
For example, a ρ of .15 indicates that individuals within the same cluster or group are
15% more likely to have the same value on a variable of interest than individuals in the
population as a whole. (The intra-class correlation is also important in the context of
multilevel models and is discussed again in Chapter 9.)

Greater precision in surveys can be achieved by stratification. This can be explained
by way of an example. Suppose we wish to obtain a sample of different ethnic groups.
For simplicity we will assume that there are only two groups, white and non-white, and
it is known from the Census that x% of the population are white, y% non-white. An
approach could be to stratify our sample into the two groups (or strata) and select a
subsample from within each strata. If the total sample was to be of size 1000 we would
select x% of 1000 from the white subsample and y% of 1000 from the subsample of
non-whites. The stratified sample of 1000 would provide more precise estimates of the
population, as it would be more representative of ethnic groups, than a simple random
sample of 1000, which runs the risk of selecting, by chance, slightly more of one ethnic
group and slightly less of the other group. By better reflecting the population, stratifica-
tion will improve precision of the estimates but only if the strata have been constructed
on variables that are related to the research question of interest.
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In the example above, ethnic groups were chosen for the sample in proportion to their
occurrence in the population. However, if it is intended to undertake detailed analysis
within each group separately we may wish to select a greater proportion, or over sam-
ple, a particular group in order to have a larger number from that group. It is common
practice in many UK surveys to include such ‘booster’ samples for Wales, Scotland and
Northern Ireland.

Stratification was adopted for the 1997 BES. The postal sectors were stratified on the
basis of sub-region of the country, population density and SEG profile (percentage of
household heads who are employer/managers). These three stratification variables are
related to voting patterns and thus the strata created helped achieve a more representa-
tive sample of voting patterns.

A further bias arises in the BES and similar surveys due to differential selection
probabilities in that only one household at an address is selected and only one person
within the household is selected for interview. Thus, for example, individuals living in
single-person households are more likely to be selected than individuals living in large
households. Non-response can also cause bias as some individuals may be less easily
contactable than others. To correct for these biases, and produce a sample representative
of the population, the sample needs to be weighted to give less weight to those over-
represented in the sample and more weight to those under-represented in the sample.

Calculating weights is a complicated subject outside the scope of this book. However,
it need not concern us unduly because the calculation is undertaken by specialist survey
methodologists employed by the survey company carrying out the survey and the
weights are included as variables in the data file. There may be (and often are) more
than one weight variable and of concern to the researcher is to know which weight
to use in what circumstances. Guidance should be available in the documentation
accompanying the data file.

So far the discussion has centred on complex sample surveys, but many research
studies are multistage designs and thus give rise to the issues presented in this section.
In studies of school pupils it is common to first randomly select schools and then select
pupils within schools. Similarly, when sampling prisoners for interview, it is common
to first randomly select prisons and then select prisoners within those prisons. Fur-
thermore, it should be noted that random selection is often compromised in such stud-
ies when one (or more) randomly selected schools or prisons request not to participate
for logistical reasons and another school or prison is substituted.

When analysing data arising from complex samples it is important to be aware of the
design factors and to take account of them in the analysis as far as possible. While weight
variables are invariably provided, unfortunately many major surveys do not include
variables indicating clustering (the psus) and stratification. The BES is one exception to
the general rule and does include all the relevant information needed. For that reason,
analysis of the survey, incorporating complex design factors, is presented in Chapter 6.

As to choice of software, Stata is better suited to model data from complex surveys as
it can incorporate the full range of design features. SPSS cannot. How Stata handles
design features is also explained in Chapter 6.

2.4 Variables and their measurement

In the previous section consideration was given to how the data might be generated.
Here we outline what form that data might take.
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A variable is simply a trait of a subject (our chosen unit of analysis) which can take
different values for different subjects. Familiar variables would include age, height and
weight, or in the case of an organisation, type of school or prison. Each person or
organisation in the population will have a value for each variable but different subjects
may have different values. A distinction can be made between time-varying variables
and time-invariant variables. Some variables remain fixed throughout a subject’s life,
such as their sex or ethnicity. These variables are invariant over time. However, many
variables can change over time, such as marital status – where a person will start out as
single but then may marry, and later may get divorced or become widowed.

It is important to understand the different levels or scales on which variables can
be measured as different statistical models are applicable for the different types of
response variable.

Continuous data

Variables measured on a continuous scale can, in theory, take any value on that con-
tinuum. Age, height and weight are examples of continuous variables. In theory age
could be measured to the gradation of minutes, hours, days, weeks, months or years. In
practice however, how age is defined in any study will be determined by two consider-
ations. First it is dependent on what is recorded in the original source data – in many
cases the source may record date of birth, which permits a level of measurement to the
nearest day. Second, the researcher needs to reflect on what degree of detail is required
and in many cases a person’s age in years is sufficient (although if the research study
was of newly born children age might need to be measured in finer detail such as days
or weeks).

Continuous data is measured on an interval or ratio scale. In both cases the distance
between successive measures are the same. For example, a 21-year-old is one year older
than a 20-year-old and a 41-year-old is one year older than a 40-year-old. An important
feature of continuous data is that one can perform arithmetic operations so that it can
be said that a 40-year-old is twice the age of a 20-year-old and their combined age is 60.

Because of the ability to carry out arithmetic, continuous data is considered to be
measured at the highest level.

A distinction can be made between an interval and a ratio scale. A ratio scale (such as
income or age) has a natural zero value whereas many constructed scales (such as
intelligence, deprivation or attitudinal scores) do not.

Categorical data

Categorical data is a term which includes data measured on a nominal scale or on
an ordinal scale. To confuse matters further, in some of its models SPSS calls cat-
egorical variables factors and Stata calls them indicators. Qualitative data has also
been used as a term for categorical data (e.g. Agresti and Finlay, 1997) as opposed
to quantitative data, which refers to continuous data. I shall avoid both terms,
qualitative and quantitative, as qualitative data can take on a different meaning in
social science.

The nominal scale is the lowest level of measurement. A variable measured on a
nominal scale consists merely of separate categories (called levels in some statistical
software). An example is the variable religion, which could have the categories, Christian,
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Hindu, Jew, and Muslim. Here the categories are simply logically different and distinct
from one another. The categories must be mutually exclusive and each person can fit
only one category. Categories must be exhaustive so that any subject can be placed in
one of the categories. To accommodate this it is usual to include a category ‘other’ for
the small number of cases that fall outside the schema (as well as a category ‘not known’
for cases where information is missing or has not been recorded).

It is not possible to perform arithmetic on categorical data in the way one can on
continuous data. For example, it makes no sense to say a Christian is twice a Hindu or
that Christian plus Hindu equals a Jew. All that we have for categorical variables is
count or frequency data, that is, the number of people who are in each of the categories
Christians, Hindus etc. in the sample or population.

In many cases there may be only two categories, for example gender, male or female.
Similarly many outcome measures may have two categories, passed or failed (a test),
survived or died, reoffended or not reoffended, and so on. In situations where there are
only two categories (or levels) the variables are most commonly known as binary vari-
ables but also as dichotomous variables. If the categorical variable has more than two
categories (such as religion above) it is called polychotomous or (as is becoming increas-
ingly common) multinomial – the term favoured here. Categorical variables can be
converted readily into proportions. For example we can present, or analyse, the data
in terms of the proportion that passed, survived, reoffended or were of a particular
religious faith, etc.

Categorical variables may also be measured on an ordinal scale, that is, the categories
may fall into a natural order. An example of an ordered variable is educational attain-
ment which could be defined to have the four ordered categories (starting with the
lowest), ‘no qualifications’, ‘GCSE’, ‘A-levels’, ‘university degree’. Compared with
religion above we have additional information on educational attainment in that we can
rank the various categories. However, unlike a continuous variable, such as age, we do
not know the intervals between the categories (what is the difference between GCSE
and A-level in terms of educational attainment?) so it is not possible to perform arith-
metic operations.

Ordered variables are especially common in studies of attitudes, beliefs or preferences
where people are asked whether they:

Strongly agree / Agree / Neither agree nor disagree / Disagree / Strongly disagree

on a particular issue. Variables measured in this way are said to be measured on a Likert
scale.

Relationship between continuous and categorical variables

Continuous variables can always be collapsed into ordinal and nominal categorical
variables. Age measured in years as a continuous variable can be recoded into ordered
categories such as children, juveniles, young adults, middle-aged, older persons. The
ordering can be ignored and the categories can be treated as if they were measured on a
nominal scale, that is, as separate entities. Any ordinal variables can be regarded as
nominal. However, it is not possible to reverse this process. Variables such as religion
cannot be considered as ordinal or continuous.

It will be seen later that the level of measurement of the response variable determines
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the form of the statistical model to be adopted. Furthermore, the level of measurement
of the explanatory variables determines how they are to be included in the model.

2.5 Missing data

It is rare (but fortunate when it happens) not to be confronted with problems posed by
missing data. If data is missing statistical models and the inferences that can be drawn
are weakened. The extent to which missing data is a problem and how its impact might
be minimised depends on the circumstances which gave rise to its being missing.

In the first instance subjects may be missing. This can arise in survey research where
individuals or organisations cannot be contacted or where they refuse to participate. In
longitudinal studies members may have died or moved during the course of the study
and not be contactable at later dates. Omission of subjects can also arise in studies
based on administrative data. Records of hospital patients, school children, prisoners,
etc. can be unavailable, mislaid or lost at the time of data collection – as anyone who
has extracted such data can testify.

In survey research the number interviewed is called the achieved sample and the
achieved sample expressed as a percentage of the intended sample (those initially
selected for interview) is the response rate for the survey. Most government-sponsored
surveys aim for a response rate of around 80%, which is considered to be a high and
acceptable level. Unfortunately response rates tend to be falling as individuals become
less inclined to be interviewed – perhaps through over-exposure to this form of data
collection (not to mention a proliferation of more dubious and off-putting attempts to
dress up product selling under the disguise of a research survey).

Nevertheless, even with a response rate of 80% one in five individuals (organisations
or institutions depending on the subject of the survey) who were intended to be in the
sample are not. If the one in five are no different from the 80% who did respond (the
reason or process causing them to be missing was just random – known as missing
completely at random or MCAR) then all is well and good. The achieved sample can be
assumed to be an unbiased sample – the only disadvantage being that it is smaller than
intended. (Often even this is not a problem as sponsors or survey contractors invariably
work towards achieving a particular size sample and then select more for interview on
the expectation of a certain level of non-response.)

Unfortunately however, in most cases it is unlikely that non-respondents are merely a
random subset of the initial sample. Non-respondents are likely to be a biased group in
some way. How biased and the extent to which one needs to be concerned is not always
known. (Missing data is, by definition, missing.) From cumulative experience of con-
ducting surveys and from undertaking detailed analysis of those who were contacted
but after a good deal of effort, it is possible to gain some insights. Young people living
alone, for example, may be most difficult to reach for face-to-face interview. This knowl-
edge can be used to reweight the sample to minimise bias (as described in section 2.3).
However, while it might be possible to compensate for obvious deficiencies in the basic
composition of the survey, if the purpose of the survey is to enquire into very personal
experiences or illegal or deviant behaviour some subjects may not participate because
they do not wish to divulge their sensitive information.

So far we have considered non-response, where no information is available for a
selected subject. In addition, it is often the situation that even if the subject is
included only certain items of information are available. A person may participate but
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refuse to answer certain questions or partial information may only be available from
administrative records. Whatever the reason, the case will be present but data is
missing on particular variables. Three types of missing data can be distinguished.
First, respondents refuse to answer the question or may have simply overlooked it.
Second, respondents may genuinely not know the answer to the question or do not
have a view or opinion to express. Thirdly, a question may not be applicable to that
respondent, such as asking a person who did not go to university about their experi-
ence of university.

SPSS has three missing-value codes allowing the researcher to take account of the
three different kinds of missing data: non-response, not known and not applicable.
Stata, on the other hand, does not make this allowance, permitting only one missing-
value code. It is important to be aware that Stata assigns a very large number as the
missing value which can lead to problems for the unsuspecting. For example, if one
recodes a continuous variable, like income, in such a way that a new recoded value is
given to all values greater than a certain value, it will assign the new value to cases with
the missing value as well. To avoid this error it is necessary to define the recode as
‘greater than x, except missing value’ or to adopt an increasingly common convention
of coding missing data as a negative number for those variables where true values can
only be positive.

Faced with missing data for a fraction of cases on a particular variable, the researcher
should consider the mechanism for generating the missing values. Is the mechanism
MCAR, in which case the missing data is not related to the observed data or to the
unobserved data – it is simply random? A weaker assumption is that the data are
missing at random (MAR). Under MAR, data missing on a variable may be explained
by other variables collected in the study. Allison (2002) gives the example of the prob-
ability of missing data on income being related to a person’s marital status, but within
each marital status category, the probability of missing data on income was unrelated
to a person’s income. The final situation is missing not at random (MNAR). Here the
reason for the missing data is not related to the other data collected but to unobserved
data or some external reason.

Considering the missing mechanisms and exploring the data helps the researcher to
identify solutions. Basically the researcher is faced with four options. First the variable
with a high amount of missing data can be omitted from the analysis. This is a satisfac-
tory course of action if the variable was not particularly crucial to the analysis or a
substitute is available.

If the option of using an alternative is not available and the variable is pertinent to
the analysis, the researcher has to choose between one of the three remaining options:
casewise (or listwise) deletion, pairwise deletion and imputation.

Casewise (or listwise) deletion simply removes from the dataset all cases that have
data missing on any of the variables to be included in the model. The modelling is then
undertaken on the subset of cases for which data is complete on all variables. This is a
simple and straightforward method but is only strictly valid if the missing mechanism is
MCAR. However, if many variables are to be included in the model and each has only a
small proportion of cases without data, but the missing data on all variables is spread
evenly and thinly across the dataset, the result can be a large number of cases being
discarded resulting in a considerably reduced sample. Losing many cases may also
weaken the underpinning MCAR assumption.

Pairwise deletion (sometimes known as available case analysis) is more complex.
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Some statistical models, for example multiple regression, can be developed from sum-
mary statistics (means, standard deviations, correlations etc.). The summary statistics
can be calculated for a variable or pair of variables from the cases that have complete
information on that variable or variables. The advantage is that more of the data is used
compared with casewise deletion as fewer cases are deleted (or more are retained) at
each stage of the analysis. The disadvantages are that the sample size differs for differ-
ent parts of the analysis, making the calculation of the standard errors difficult. Per-
haps more importantly from a practical point of view, the model still has to be derived
from the summary statistics – a task that is not possible within SPSS. It can be done
within Stata but it is not straightforward as it requires knowledge of a model’s under-
lying mathematical structure and knowledge of matrix algebra.

The final option is to impute (infer then substitute) a value for the missing value. One
could simply replace the missing value by the mean or mode estimated from the cases
that have the information. Under MAR the missing data is related to the other
observed data, thus the observed data can be used to impute the missing values. Various
methods have been suggested and there are ever more sophisticated methods that fit
models to provide the best estimate of the missing value, ranging from regression (to
provide the predicted value for the missing data) to multiple imputation.

Allison (2002) has recently surveyed the three options outlined above and concludes
that casewise deletion is attractive, satisfactory and robust, even if the underlying pro-
cess leading to the data being missing is not entirely random. He dismisses pairwise
deletion for the disadvantages and impracticalities stated above. Of the many imput-
ation methods he advocates two recently developed procedures: (1) maximum likelihood
and (2) multiple imputation.

As part of a recent methodology initiative, the Economic and Social Research
Council (ESRC) has supported further work on missing data by a team at the Medical
Statistics Unit at the London School of Hygiene and Tropical Medicine. The work of
the Unit can be found at www.missingdata.org.uk. Members of the Unit are less san-
guine than Allison regarding casewise deletion, feeling it can lead to substantial bias in
models. However, in their Guidelines for Handling Missing Data in Social Research, they
emphasise the need at the outset, when designing the research, to think through issues
that may lead to missing data and to take all possible steps to reduce the potential
problem. Furthermore, they suggest that if certain information is thought to be difficult
to collect, researchers should carefully consider what other information could be col-
lected that might shed light on the missing data. Once the data has been collected they
suggest ways that initial data analysis might explore the reasons for the missing data. Of
the imputation methods they discount simple methods and opt for multiple imputation,
the procedure now favoured by many statisticians. Multiple imputation, as the name
implies, produces several estimates, typically five, of the missing data which leads to five
completed datasets. Each dataset is then analysed and the results combined.

Missing data is thus receiving a good deal of attention and in the near future it is
likely that more advanced methods for handling missing data will be more readily
accessible. Social researchers can track developments at the missing data website. In the
meantime it makes good sense to think carefully about missing data (and avoid its
occurrence as best one can). However, the reality is that only limited options are readily
available at present within SPSS or Stata. Stata has an impute command which esti-
mates missing values using a regression model. SPSS has the command Transform →
Replace Missing Values, which gives a range of options. However, MLwiN, the only
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other statistical software package considered in this book, has available other, more
advanced, options.

2.6 Data structures

Most data collected for a research study or made available for secondary analysis will be
set out in a standard form with information for each subject or case recorded on a
separate row of the data file. As already emphasised, the subject or case may be an
individual, a household, a school, a police force, a country (or whatever the unit of
analysis is for the study). The statistical software assigns a line number to each row of
the data file. There may be any number of columns but they will fall into one of three
categories:

1 Each subject or case needs to be given at least one (but usually more) unique
identifier to distinguish it from all other subjects. It is not essential to have the
identifier(s) in the first column(s) but it is common practice (because it is most
convenient) to do so.

2 Most columns will be assigned to the variables.
3 The third item of information (which may or may not be included) is a weight or

some other item which defines the sample design, such as the primary sampling
unit (psu).

The standard data file described above is also referred to as a flat file or a rectangular file.
There are many variations and adaptations of the standard file, especially when

recording multilevel (hierarchical) or longitudinal data. However, details of additional
data structures are not given here but are presented alongside the relevant statistical
models. Thus more is said about multilevel data files in section 9.1 and longitudinal
data files in sections 12.6, 12.7 and 13.6.

On occasion data is not available for each individual subject and set out in the
standard format, but aggregated and set out in the form of a multiway table. However,
tabular data can be entered into an SPSS or Stata file and analysed as if it were a
standard file of individual cases. The procedure is to weight the data by the number in
the cell of the table. Instructions on how to handle tabular data are given in Appendix 2.

Further reading

For more information on research designs a good starting point is De Vaus (2001). Another book
by the same author, De Vaus (2002), is a basic introduction to data preparation.

Theoretical and practical advice on surveys can be found in Groves et al. (2004).

A more detail account of weighting data is available at the Economic and Social Data Service
(ESDS) website (www.esds.ac.uk): Crockett (2006).

For more information and practical advice and guidance on handling missing data, see Allison
(2002). Also visit the website www.missingdata.org.uk.

20 Statistical modelling for social researchers



3 Statistical preliminaries

In preparing this book it has been assumed that the reader has some understanding
of basic statistics. Nevertheless, some concepts which are essential when fitting and
interpreting statistical models are reviewed here.

3.1 Odds and odds ratios

Odds and odds ratios are a very informative way of expressing the relationship between
categorical variables, and, as we shall see later, form the basis of models for binary,
multinomial and ordinal response variables.

Odds is defined as the probability of an event occurring divided by the probability
of the event not occurring.

If p is the probability of the event occurring then 1 − p is the probability of the event
not occurring.

Thus:

odds =
p

(1 − p)

An odds ratio is simply the ratio of two odds.
We illustrate odds and odds ratios by considering the relationship between the sen-

tence awarded by the court and sex of the offender. The data has been extracted from
the Offenders Index which is a database of all persons convicted at a court in England
and Wales between 1963 to the present date. The sample here is of all offenders con-
victed of shop theft in the six-week period prior to July 2001.

The relationship between sentencing and sex is displayed as a two-way table
(Table 3.1).

Most of the sentences displayed in Table 3.1 are self-explanatory. Custody is obvi-
ously imprisonment or some other form of incarceration. A community penalty is
most often probation or a community service order – where the offender is required to
undertake work in the community for a prescribed number of hours. Fine is a monetary
penalty but could also include a payment of compensation to the victim. Discharge
should not be confused with a finding of not guilty. The offender has been found guilty
(or has admitted guilt) but the court chooses not to impose a punishment. Discharges
are usually conditional for one or two years, meaning that if the person reoffends
within that period an additional sentence might be imposed to take account of the



breach of the conditional discharge. The implication of a discharge is that the offence is
added to the offender’s criminal record.

From Table 3.1 it can be seen that there is an association between the sentence
awarded and the sex of the offender. Females are much less likely to be given a custodial
sentence and much more likely to be discharged; only 13.9% are sentenced to custody
but 35.0% are discharged. They are also slightly more likely to be given a community
penalty (27.9%) than fined (23.3%). In contrast, males are more likely to be sentenced
to custody (29.4%) and less likely to be discharged (19.4%). A similar proportion (about
one quarter) is given each of the other two sentences.

As an alternative to percentages, we can express the relationship between sentence
and sex as odds and odds ratios.

Consider the odds of males being sentenced to custody.
The probability, p, of a male being given a custodial sentence is

650

2211
= .294

The probability of a male not being given a custodial sentence is (1 − p) =
1 − .294 = .706

Thus the odds of a male being sentenced to custody is

p

(1 − p)
=

.294

.706
= .416

We have chosen to express the odds of a male being sentenced to custody (.416), but we
could equally have expressed the odds of a male not being sentenced to custody. This is
simply the inverse of the odds of being sentenced to custody, or

1

.416
= 2.403

Table 3.1 Type of sentence awarded by sex: adults aged 21 and over convicted of shop theft

Sentence Males Females Total

Number % Number % Number %

Custody 650 29.4 90 13.9 740 25.9
Community penalty 537 24.3 181 27.9 718 25.1
Fine 595 26.9 151 23.3 746 26.1
Discharge 429 19.4 227 35.0 656 22.9

Total 2211 100 649 100 2860 100

Pearson chi-squared: 104.975; df, 3; p < .001
Likelihood ratio: 106.887; df, 3; p < .001

Note: It is not necessary to quote these statistics to three decimal places. They are only reported here in order
to make comparisons with subsequent computer output.
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Thus males are nearly two and a half times as likely to be given a sentence other than
custody as they are to be sentenced to custody.

The same steps can be applied to calculate the odds of a female being given a
custodial sentence.

The probability, p, of a female being given a custodial sentence is

90

649
= .139

The probability of a female not being given a custodial sentence is (1 − p) =
1 − .139 = .861

Thus the odds of a female being sentenced to custody is

p

(1 − p)
=

.139

.861
= .161

As in the case of males, we could equally have chosen to express the odds of females not
being sentenced to custody. For females it is

1

.161
= 6.211

The odds ratio compares the odds for males with those of females (or the odds for
females with those of males – it does not matter which).

The odds ratio of males to females of being sentenced to custody is

.416

.161
= 2.58

thus males are about two and a half times more likely to be sentenced to custody than
females.

Alternatively, the odds ratio of females to males is

.161

.416
= .387

thus females are only 40% as likely to be sentenced to custody as males.
So far we have considered the odds of males and females receiving a custodial sen-

tence, but we could easily extend our analysis to consider the odds of males and females
receiving alternative sentences. Consider the odds of males and females receiving a
discharge as opposed to a custodial sentence.

From Table 3.1 it can be seen that 650 males were sentenced to custody and 429 males
were awarded a discharge. Thus 1079 males were sentenced to either custody or dis-
charge. Similarly from Table 3.1 it can be seen that 90 females were sentenced to custody
and 227 received a discharge.

The odds of custody rather than discharge for males is
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p

(1 − p)
=

� 650

1079�

�1 −
650

1079�
= 1.51

The odds of custody rather than discharge for females is

p

(1 − p)
=

� 90

227�

�1 −
90

227�
= .396

Thus the odds ratio is

1.51

.396
= 3.813

which can be interpreted that males are nearly four times as likely to be given a cus-
todial sentence rather than receive a discharge than are females.

Following identical steps we can calculate that the odds ratio of community penalties
to discharge, males to females, is 1.570 and the odds ratio of fine to discharge, males to
females, is 2.085.

In a research study our particular interest may be in the imposition of custody and
community penalties for males and females. We could calculate the odds ratio custody
to community penalties in the same way as we did above. But we have already calculated
the odds ratio custody to discharge and community penalties to discharge (both males
to females). As both custody and community penalties are referenced to discharge the
odds ratio custody to community penalties can be derived directly from them.

Odds ratio custody/community penalties males to females =

3.813

1.570
= 2.428

Thus males are two and a half times as likely to receive a custodial sentence rather than
a community penalty than are females.

While proportions range from 0 to 1, and percentages from 0 to 100, odds range from
0 to ∞ (infinity).

3.2 Logarithms

Mathematicians invent different numbering scales but whether they are adopted, and in
what circumstances, depends on whether they or others find a use or application for
them. One example is the binary numbering system in which any number can be
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expressed as a combination of 0s and 1s. This system has found an application in
computing as it can be represented as the absence or presence of an electrical current.
Computers utilise this representation to store and manipulate numbers.

Logarithms are yet another numbering system. The natural logarithm of a number is
the power that raises the natural number, e (= 2.718), to equal the number in question.
That is, if y = ex, x = loge y (or alternatively expressed as x = ln y). Hence x is said to be
the natural logarithm of y.

Thus the natural logarithm of 100 (ln 100) = 4.605 (because 100 = 2.7184.605).
The process can be reversed and the natural log can be transformed back to the

number (known as the antilog) by 2.7184.605 = 100.
So what, why bother with logarithms? Well it just so happens that logarithms

have certain advantages and benefits in statistical modelling. There are three that
concern us.

First, taking the natural logarithms of the odds (also known as the logit) changes the
scale from 0 to ∞ (for odds), to − ∞ to + ∞ for log odds, centred on 0. Odds less than 1
have negative values of log odds whereas odds greater than 1 have positive log odds.

The logit is defined as:

loge � p

1 − p�
Second, logarithms have another useful property in that any two numbers multiplied
together is equivalent to adding their logs. Thus multiplicative models can be converted
to additive models, thereby conforming to Equation (1.1). We will come back to this
when we consider loglinear models in Chapter 7.

Third, a statistic that we will come across later, −2loglikelihood (pronounced minus
two log likelihood), which measures the fit of our model has a chi-squared distribu-
tion. This, and other properties of chi-squared (presented in section 3.3) provide a
means of testing the fit of our models and a means of comparing one model with
another.

We need not be unduly concerned with the details of logarithms as the statistical
software constructs log odds, performs the analysis on the log odds and converts log
odds back to odds for us. (Having said that, frustratingly SPSS does not undertake this
conversion – or provide the option to convert – in some of its models.) Similarly, we
do not need to be concerned with −2loglikelihood, but with the difference between
the −2loglikelihoods for different models (also known as deviance) which results in
chi-squared goodness-of-fit test statistics for our model(s).

3.3 z, t and chi-squared (χ2)

z, t and chi-squared statistics are calculated by SPSS and Stata and given as tests of
various elements of a statistical model. They are thus crucial in drawing inferences
about a model.

Recall from basic statistics that z is:

(the statistic of interest − the expected value of the statistic under the null hypothesis) 

the standard error of the statistic (s.e.)
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In most introductory texts the statistic of interest is usually the mean and students often
think z applies only to the mean (or the difference between two means). But z can be
applied to all statistics of interest so long as we can estimate the standard error.
Mathematical statisticians work out the formula for the standard error and the software
incorporates and applies those formulae.

In statistical modelling, a statistic of primary interest is the coefficient b. It was
pointed out in section 1.4 that the second of our three tests was to examine whether a
particular variable, xp, made a significant contribution to the model. To test the contri-
bution of an explanatory variable we test whether its coefficient, b, is equal to 0. Under
the null hypothesis b = 0. If b = 0 then bx = 0, thus testing for b = 0 is tantamount to
testing that x is not related to y or has no effect on y.

Thus

z =
b − 0

s.e. b

which simplifies to

b

s.e. b

Having calculated z how do we interpret it? If we can invoke the Central Limit The-
orem, z conforms to a normal distribution with mean 0 and variance 1. Furthermore,
95% of the distribution lies within a z of ±1.96 or 5% lies outside the range ±1.96. This
offers us a test statistic because if the absolute value of z (that is, ignoring whether it
is positive or negative) is greater than 1.96 the probability that the value of b is equal to
0 is less than 5%. If our criterion for rejecting the null hypothesis is 5%, a value greater
than 1.96 provides grounds for rejecting the null hypothesis and accepting the alterna-
tive hypothesis that b is not equal to 0. (We will make the point later that the criterion of
a 5% significance test should not be slavishly applied.)

Student’s t

The theory for z outlined above holds if the sample size is relatively large, usually taken
to be 100 or more. However, Gossett, publishing under the pseudonym Student, identi-
fied the t distribution which is applicable for small samples. When the sample size is 120
or more, the normal distribution and the t distribution are indistinguishable and z = t.
Because t is suitable for both large and small samples (and is z for large samples) t is the
statistic produced by SPSS and Stata and appears in the output.

Robust standard errors

From the above it can be seen that the denominator of z and t is the standard error of
the coefficient. One condition of estimating the correct value of z or t (and hence a
correct estimate of the p-value) is thus to have an accurate estimate of the standard
error. Like all statistics, the estimate of the standard error rests on certain assumptions
and statistical theory. Violations of those assumptions and theory can lead to biased
estimates but statisticians have developed what are known as robust statistics which are
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less prone to bias if the assumptions are not fully met. Stata has an advantage in that it
can calculate robust standard errors if requested and this option is chosen when mul-
tiple regression models are fitted in section 4.9 and section 11.2. (As pointed out in
section 2.3, Stata can also take into account complex designs when calculating standard
errors, which is demonstrated in section 6.6.)

Confidence intervals

From the data the model estimates the coefficients bp. But the estimates are based upon
one sample of data that was obtained for the study. Had another sample been drawn, a
slightly different estimate would have been obtained. So what confidence can be placed
on the estimates we have from the study? The theory of the normal distribution outlined
above can help. If the sampling distribution of b is normal then we can be 95% confident
that the true value of b lies within the range ±1.96(standard error of b). This range is
called the 95% confidence interval. Obviously, if we wish to be more confident of our
estimate, say 99%, then z changes from 1.96 to 2.58 and the range increases accordingly.

Confidence intervals are related to significant tests. The purpose of the significance
test was to find evidence to reject the null hypothesis, b = 0. If the z or t value emanating
from the test was greater than 1.96 (or less than −1.96) we would reject the null hypoth-
esis and conclude that b was not equal to 0. We can then estimate a 95% confidence
interval around b. In this situation the 95% confidence interval would not contain the
value 0; because if the probability is less than 5% that b is 0 then we can be 95% sure
that whatever range b lies within, 0 will not be in that range. Conversely, if our test had
resulted in a z or t value less than 1.96 we would conclude that there was more than a
5% probability that b is 0. If we then calculated a 95% confidence interval for b it would
contain the value 0.

Chi-squared

The chi-squared distribution is extremely important in statistical modelling as it is the
basis of many tests which enable the researcher to compare models and to judge the
importance of individual variables.

From first course statistics, it will be remembered that chi-squared tests the associ-
ation between two categorical variables set out as a two-way table by comparing the
observed numbers in each cell with the number that would be expected under the null
hypothesis of no association (or independence). Consider Table 3.1 in which the two
categorical variables are sentence and sex. Are they independent or is there an associ-
ation between them? If sentence is independent of sex then both males and females
would receive broadly the same sentences. ‘Broadly’ because there will always be some
small difference between the observed and expected values due to sampling variability.

Consider the first cell: males sentenced to custody. Under the assumption of no
association we would expect the probability of males sentenced to custody to be the
same as the probability for females. Both would be equal to the probability of the entire
sample being sentenced to custody, that is:

Total number sentenced to custody

Total sample
=

740

2860
= .26
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This is known as the marginal probability of custody: prob(custody)
However, to be in the first cell the offender also has to be a male. The probability of

being a male in this sample is:

Total number of males

Total sample
=

2211

2860
= .77

This is known as the marginal probability of being a male: prob(male)
The joint probability of being both a male and of being sentenced to custody (that is

the probability of being in the first cell) is the product of the two marginal probabilities.
Thus the expected number in the first cell is simply the probability of being in the first
cell multiplied by the sample size. That is:

N × Row marginal prob (custody) × Column marginal prob (male) (3.1a)

Or, alternatively:

Total sample ×
Total number sentenced to custody

Total sample
×

Total number of males

Total sample
(3.1b)

Note that by cancelling Total sample from the top and bottom, Equation (3.1b)
reduces to:

Row total × Column total

Total sample

which is the formula given in introductory statistics texts for calculating the expected
values when calculating the chi-squared test of association for two-way tables. However,
the conceptualisation of Equation (3.1a) has advantages which we will come to
appreciate when loglinear models are described in Chapter 7.

Substituting values in Equation (3.1a) gives:

2860 × .26 × .77 = 573

This formula can be applied to each cell of the table by suitably adapting the row and
column marginal probabilities depending on which row and column the cell falls.

Having calculated the expected value for each cell of the table, the chi-squared
statistic is calculated as:

χ2 = Σ
(O − E )2

E
(3.2)

where Σ means the sum of
(O − E )2

E

Equation (3.2) results in the Pearson chi-squared statistic. This was calculated by SPSS
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and found to be 105.0. However, to interpret chi-squared we need to know its associated
degrees of freedom (df ). A given value of chi-squared will lead to a different probability
value (hence a different interpretation) depending on its degrees of freedom.

Degrees of freedom indicate the extent to which the data is ‘free’ to vary across the
table. Given the sample size, which in Table 3.1 is 2860, three of the row marginal totals
can vary, but not the fourth – its value must equal 2860 minus the sum of the other three
row totals. (It does not matter which three rows vary.) Similarly, considering the col-
umns, the number of males in our sample could vary but the number of females is fixed
as (2860 – number of males) (or the number of females could vary and then the number
of males would be fixed). Thus the data can vary across three rows and one column or
3 × 1 = 3. (In introductory texts the formula for the degrees of freedom is given as (r − 1)
(c − 1) where r is the number of rows and c the number of columns.)

In practice the computer software will calculate chi-squared, the number of degrees of
freedom and record the probability of obtaining that chi-squared value with its associ-
ated degrees of freedom. In Table 3.1 the chi-squared of 105 with 3 degrees of freedom
results in a p-value of less than .001. By any account the probability of obtaining that
result by chance is very small and we would conclude that sentencing outcomes are
associated with sex of the offender.

Likelihood-ratio chi-squared statistic

At the foot of Table 3.1 another statistic is reported, named ‘likelihood ratio’. (In fact
SPSS produces three statistics but the third ‘linear-by-linear’ is of no interest to this
book.) The likelihood-ratio chi-squared statistic (to give it its full name; often referred
to as G2) is complicated and details are not given. However, for two-way tables it
simplifies to:

G2 = 2 Σ O log �O

E� (3.3)

The likelihood-ratio statistic also has a chi-squared distribution and in most cases is
similar in value to the Pearson chi-squared and will lead to the same inference. From
Table 3.1 it can be seen that the likelihood-ratio statistic is 106.9, little different from
the value of the Pearson chi-squared. However, as we shall see, it is the likelihood-
ratio statistic that is reported in statistical modelling output (although it is often
simply referred to as ‘chi-squared’) rather than the Pearson chi-squared. The reason
for preferring the likelihood-ratio statistic is that it can be exactly partitioned
whereas the Pearson chi-squared cannot. We explain what is meant by partitioning
below.

Properties of chi-squared

One of the most important properties of chi-squared is that it is additive, by which we
mean that the sum of two chi-squareds is also a chi-squared (with degrees of freedom
the sum of the two degrees of freedom). This additive property extends to any number
of chi-squared statistics. Of course, if chi-squareds can be added together they can also
be disaggregated (or partitioned, to use the statistical parlance). This property is very
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useful because it means that we can compare chi-squareds (or more precisely the likeli-
hood ratios) emanating from different models. In practice we can fit a model and obtain
a chi-squared which will indicate the contribution of the model. We can then add more
explanatory variables and obtain another chi-squared statistic which will indicate the
importance of the second fitted model. However, the difference between the two chi-
squareds will also be a chi-squared and will indicate the contribution of the added
explanatory variables.

Another interesting property of chi-squared is that it is related to the normal distri-
bution and the z score referred to above. In fact z2 has a chi-squared distribution with
1 df. (This can be verified in statistical tables as the 5% value for z is 1.96 and 1.962 =
3.84, the 5% value of chi-squared with df = 1.) In statistical models z (or t) is simply
(b/s.e.b), and squaring this is known as the Wald statistic. As the coefficients of the
statistical model have one degree of freedom we will see that the Wald statistic is often
given instead of the t statistic. By giving the Wald statistic all tests are then based on
chi-squared.

3.4 Tests of significance

I have found that many students (often psychologists) have been led to believe that a
p value of less than 5% is taken as significant whereas a p value greater than 5% is
interpreted to be not significant and that this rule is immutable and never to be trans-
gressed regardless of any other considerations. Thus a p value of .049 indicates signifi-
cance whereas a p value of .051 is not significant even though there is little difference
between them. Also immutable, it seems, is adherence to a two-tailed test. But if the
direction of the effect is part of the research hypothesis, for example that women are
paid less than men, it is appropriate to use a one-tailed test. (I was once told by a
criminologist that using a one-tailed test was cheating as it doubled my chances of
obtaining a significant result.)

The 5% level is an appropriate yardstick or starting point but should not be taken as
immutable. The fact that it has become enshrined in folklore is perhaps a throwback to
the days before computers. Then one had to calculate z, t or χ2 by hand (or with the aid
of an elementary calculator) and to estimate the corresponding p value entailed further
time-consuming calculations. To make life easier, lookup tables were produced giving z,
t and χ2 values at key p values, usually 5%, 1% and .1%. (Such tables can still be found
as appendices to most introductory texts.) By consulting these tables one could see
whether the z, t or χ2 obtained reached one of the three p threshold values. However,
this way of proceeding is a thing of the past. It is trivial for a computer to calculate the
exact p value associated with any z, t or χ2 value and all the computer software used in
this book reports exact p values.

Nowadays (if it wasn’t before) it is more important to form a judgement about how
much weight should be placed on the p value, and in reaching a judgement there are
various points to consider. All statistical theory is based on the notion of a random
sample but it has already been mentioned that we rarely have the luxury of a pure
random sample as compromises may have been necessary when selecting a sample.
Even if a random sample was drawn initially, non-participation, non-response or data
missing for other reasons will affect the extent to which it can still be considered to be a
random sample.

Significance tests will also be affected by the size of the sample. Results will assume
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greater significance (smaller p values) in large samples than in small samples. Intuitively
this is what one would expect as one would place greater reliance on an estimate from a
large sample than a small sample – other things being equal such as the quality or
randomness of the data. (In statistical terms the sample size, N, is the denominator in
calculating the standard error, so the larger the N the smaller the standard error and the
larger the z or t, which in turn leads to a smaller p value.) The implication of this is that
two studies might get the same value for a coefficient, b, but one might be significant
and the other not, purely on the basis of the sample size. In practice, if I analyse data
from the Labour Force Survey (LFS) I find most of my results are significant simply
because the sample size is so large (individuals living in approximately 60,000 house-
holds). Consider the scenario where due to my modest means I am only able to carry
out a small study of people’s employment status. As a result I obtain the same value of
b as that obtained from the LFS. However, my b is not significant at the 5% level,
whereas the LFS analysis indicates significance. How should I interpret my result? I
would conclude that I have obtained confirmatory evidence to that obtained in the LFS.
(I appreciate that statisticians will tell me that my null hypothesis should have been that
my b is no different from that obtained from the LFS and that I should have con-
structed my test accordingly – but I hope you take my point.)

Not only will sample size affect the p value but significance may also be influenced
by the number of tests carried out. If 100 tests are carried out, 5 can be expected to be
significant at the 5% level by chance regardless of any underlying relationship.

All the above qualifications have led some to denigrate the notion of significance but
this seems to be equally as absurd, if not more so, than rigidly adhering to the 5% rule.
The level of significance is one piece of useful information and guides the interpretation
of statistical models. However, what it tells us has to be set in the context of the research
question and the hypotheses generated, the size and quality of the data on which the
tests are conducted and the findings from other research. Even if we obtain statistical
significance, is the result of substantive significance in aiding our understanding? What
is just as important is the size or magnitude of the effect we obtain. We might for
example find the odds ratio between men and women is 1.1 on some outcome and this
to be statistically significant. But is it telling us anything other than men and women are
very similar?

3.5 Categorical explanatory variables; dummy variables; reference
or base category

When discussing data in section 2.4, a distinction was drawn between continuous and
categorical variables. Many variables in social research are categorical, including ethni-
city, religion and occupation, to mention but a few. It is almost always the case that
categorical variables will need to be incorporated within the model in Equation (1.1)
alongside continuous variables such as age or income. A problem arises in that having
no natural measurement scale or metric, it makes no sense to think of the effect of a
unit increase in religion or ethnicity as it would for age (being a year older) or income
(earning £1000 more). However, we can constructively think of the effects of being in a
particular ethnic or religious group as opposed to being in another ethnic or religious
group. Following this approach we can transform a categorical variable into a set of
dummy variables which indicate whether or not a person has a particular characteristic.
Dummy variables are also referred to as indicator variables, a term favoured by Stata.
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Consider the variable religion, which for the purposes of this illustration we will
consider to have four categories. They have been coded as follows:

Christian 1
Jew 2
Hindu 3
Muslim 4

The numbering is arbitrary, the four religions could have been put in a different order
and different numbers could have been assigned to them.

This variable can be transformed into four dummy variables: Christian, Jew, Hindu,
Muslim. A Christian would be coded 1 on the variable Christian and 0 on Jew, Hindu
and Muslim. A Jew would be coded 0 on the variable Christian, 1 on Jew and 0 on
Hindu and Muslim. Similarly a Hindu would be coded 1 on Hindu and 0 on the other
three and a Muslim 1 on Muslim and 0 on the other three variables.

Having constructed these four variables, they can be entered as explanatory variables
in the model. However, for the technical reason of multicollinearity (discussed in section
3.6) not all the four variables can be entered into the model together. One at least must
be omitted. The dummy variable omitted is known as the reference category (which
Stata calls the base category). Supposing we are interested in examining the effects of
religion on some dependent variable y and there are no other independent variables of
interest that need to be taken into account. Furthermore, if we choose Christian to be
our omitted dummy variable, that is, our reference category, the model is:

y = b0 + b1(Jew) + b2(Hindu) + b3(Muslim)

The effect on y of being a Christian is b0, because the value of all the other variables is
0 (and b × 0 = 0).

The effect on y of being a Jew is (b0 + b1), because Jew = 1 and the rest of the
variables are 0.

Thus the effect of being a Jew as opposed to a Christian is b1. Similarly the effect of
being a Hindu as opposed to a Christian is b2 and a Muslim b3. Thus being a Jew, Hindu
or Muslim can be considered by way of reference to being a Christian, that is, the
additional affect, bp, to being a Christian b0. Note that it does not matters which of the
four is chosen to be the reference category. Had we chosen say Muslim to be the refer-
ence category, b0 would change, as it is now the affect of being a Muslim, and the three
bps would change as they are now determined in relation to being a Muslim. But,
the estimated differences between any of the religions would be exactly the same.

Handling categorical data in SPSS

Unfortunately SPSS is not consistent in its treatment of categorical variables (or even in
the terms used to describe them). We shall see that the multiple regression module does
not have a facility to enter categorical explanatory variables. No distinction is made
between continuous and categorical variables; all are put together under the generic term
independent variables. The researcher has to construct dummy variables for categorical
variables prior to undertaking regression. In the logistic regression module (for binary
response variables), independent variables have been relabelled covariates but there is
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an option to separately identify any of the covariates as categorical. With the multi-
nomial logistic regression module (for multinomial response variables) and the ordinal
logistic regression (for ordered response variables) continuous variables are entered in
the box labelled Covariates and categorical variables are entered into the box labelled
Factors. The advantage of the logistic, multinomial and ordinal modules, which permit
categorical variables to be specifically identified, is that SPSS will convert the variables
into dummy variables and automatically drop one which it calls the reference category.
The default is to select the last (that is the level with the highest code – in the above
example Muslim) as the reference category.

When needed, dummy variables are easily constructed in SPSS. Taking the example
of the variable religion above choose:

Transform → Compute

and in the box create a new variable name under Target Variable. For the dummy
variable for whether or not a person is a Muslim, we could create the variable name
muslim. Under the box Numeric Expression we would type religion = 4. A new variable
muslim will then be added to the data file and everyone coded 4 on religion will be
coded 1 on muslim and all others (Christians, Jews and Hindus) will be coded 0. This
procedure would have to be repeated for the other three religious groups with the
variable names and codes changed accordingly.

Handling categorical data in Stata

Stata is more consistent in its approach, the same procedure being followed for every
type of model being fitted.

Stata offers two options. First, indicator variables (adopting Stata terminology) can
be created as permanent variables and added to the database.

Tab religion, generate (religion)

This command would produce a frequency (one-way table) of religion, showing the
number in the sample belonging to each religious group, and at the same time, produce
four indicator variables, one for each religion. The researcher then chooses which to
enter into a model.

Indicator variables can also be produced ‘on the fly’, that is temporarily for the
purpose of fitting the model. When specifying a model, the researcher informs Stata
that some variables are to be treated as indicator variables and also which variables are
to be treated in this way. For example, if the focus of the research was the way in which
religious affiliation was related to income, a regression analysis could be specified as
follows:

xi: reg income i.religion

xi forewarns Stata that some variables are to be converted to indicator variables, and
i.religion states that religion is to be treated in this way. Stata will automatically convert
religion into four indicator variables and include the first three, making the fourth
(Muslim) as the reference (or in Stata terminology, the base category).
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It is always advisable to consider which level of a categorical variable will be chosen
by the computer software to be the reference category. Often in a dataset the highest
code is given to a numerically small and largely uninteresting group called ‘other’. For
example, in a study of voting behaviour we may have four levels: 1 Conservative, 2
Labour, 3 Liberal Democrat, 4 Other. The computer, unless indicated otherwise, would
choose Other as the reference category and the three main parties would be compared
with it. However, we are probably more interested in a comparison between Conserva-
tive and Labour. We shall find later that it is still possible to compare Conservative and
Labour even if Other is the reference category, but nevertheless, it would still be more
appropriate to choose either Conservative or Labour as the reference category so that
the model fitted gives a direct comparison between the two.

3.6 Multicollinearity

Problems arise with the model if the explanatory variables are themselves highly inter-
correlated. Recall that the coefficients of the model represent the partial effect of their
corresponding variables after taking into account the other variables in the model. In
the extreme case, where two variables are perfectly correlated (r = +1 or −1) it is
impossible to attribute the partial effect of each variable.

The same problem arises if variables are perfectly related. For example, if the vari-
able total income is formed from adding the variable income from employment to
all other income, the three variables are related in that total income is the sum of
the other two. Or income from employment is total income minus all other
income, and so on. It is for this reason that not all dummy variables can be included
in a model as taken together they are perfectly related. In the example of religion
cited previously, if a person is not a Christian, Jew or Hindu then they must be a
Muslim (assuming our population consists of only people with those four religious
backgrounds).

Unless we are dealing with dummy variables or derived variables and their constitu-
ents, it is unlikely that we will confront the problem of perfect collinearity. But at what
point do problems arise? Allison (1999) says he ‘worries’ if correlations reach a level of
±.8. I would put the threshold lower, at .6.

What is the nature of the problem? If variables are highly collinear the coefficients
are unaffected but their standard errors will be large. If the standard error increases t
will be smaller (because t = b/(s.e. b)) and the smaller the value of t the greater the
probability and the lesser chance of obtaining a statistical significant result. Hence the
effect of multicollinearity is to reduce the chance of getting a significant result and
some relationships which exist will be missed.

How can multicollinearity be detected? Inspection of the correlation matrix can
identify high intercorrelations between continuous variables which help diagnose
potential problems. Similarly cross-tabulations between categorical variables will estab-
lish associations.

However, there are two statistics, which can be calculated and will be produced by
SPSS and Stata if requested.

Tolerance (which is 1 − R2):

One should be concerned if tolerance is below .40.
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Variance inflation factor (VIF):

One should be concerned if VIF is above 2.5. (A VIF of 2.5 is equivalent to a
tolerance of .4.)

The interpretation of VIF is such that the square root of VIF tells you how much larger
the standard error is compared with what it would be if the variable was uncorrelated
with other variables.

What can be done about multicollinearity? As it is invariably the case that the col-
linear variables are alternative measures of the same concept (often a latent concept like
deprivation or intelligence etc.) there are three main options:

1 delete all but one of the collinear variables from the model, leaving one to repre-
sent, or be a proxy for, the underlying concept;

2 combine the variables into an index by adding them up or multiplying them or by
some other means;

3 estimate a latent variable by principal component analysis or factor analysis
(described in Chapter 10).

3.7 Interaction terms

So far we have considered the partial effects of each explanatory variable, that is, each
variable’s effect on the dependent variable after controlling for other variables in the
model. However, on occasion, it is the case that the effect of one explanatory variable
may change according to the values of another explanatory variable.

Consider the following examples. In arriving at the sentence to be awarded, a court
will give consideration to the offender’s age and his or her previous criminal history
(along with other characteristics of the offender and the offence). However, the com-
bination of being young and having a very extensive criminal career may lead the court
to impose a sentence greater than it would have done based on age and previous
criminal history separately. If this is the case we would say that there is an interaction
effect; the combination of age and previous criminal history affect sentence (the
dependent variable) over and above age and previous criminal history on their own.

To give a further example, there has been much recent discussion concerning the
problems faced by Afro-Caribbean boys in schools. Evidence suggests that they greatly
underachieve compared with other groups of school pupils. This suggests a possible
interaction effect: the combination of being both Afro-Caribbean and a boy affects edu-
cational attainment over and above what might be expected from being Afro-Caribbean
and from being a boy.

If we hypothesise or suspect evidence of an interaction effect we will wish to
incorporate the effect in our model. This is possible but first we need to create an
interaction term by simply multiplying the two variables together.

In the first example, age is multiplied by the number of previous offences to produce
a new variable, which might be called ‘interaction of age and previous criminal history’.

In our model to explain sentencing outcomes we would specify the model:

y (sentence) = b0 + b1 (age) + b2 (previous history) + b3 (interaction of age and
previous criminal history) + (any other variables)
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We can then fit the model as before and assess the output produced in the same way as
we have done up to now.

In situations where an interaction term is included it is common to describe the
variables age and previous criminal history as the main effects of age and previous
criminal history and the interaction term as the interaction effect of age and previous
criminal history. (This terminology stems historically from analysis of variance.)

In the same way that the bs change when new variables are included (because they
represent the partial effects of the variables taking account of other variables) so in the
model above b1 and b2 will change from the main effects model (the model without the
interaction term) once the interaction term has been added.

Interaction terms can be found to be very important in increasing the explanatory
power of the model. However, they complicate the interpretation of the model. What
now is the impact of previous criminal history on sentences awarded? It has an effect b2

but also (with age) an effect b3.
The example above created an interaction variable from two continuous variables.

But interactions can be created in just the same way from a continuous variable and a
categorical variable. Suppose one of the explanatory variables affecting sentencing is
the type of offence committed, which has three categories, ‘violence offence’, ‘prop-
erty offence’ and ‘motoring offence’. To incorporate these in the regression model we
would need to create three dummy variables (and omit one – to be regarded as the
reference category). Now suppose we wish to include an interaction effect between
age and type of offence. We would simply multiple age by each of the dummy vari-
ables, giving us three interaction terms, any two of which we could include in our
model.

Interaction effects can be created from two categorical variables. First, each has to be
converted into dummy variables then the dummy variables are multiplied together.

It is not thought to be good practice to add an interaction term if the main effects are
not themselves significant. With interactions we are looking for additional contribu-
tions from the variables over and above what they are contributing individually. On the
other hand, the main effects should be retained in the model even if one or other is no
longer significant once the interaction term is added. In fact, it is not uncommon to find
that including an interaction term leads the main effects of one or other of the variables
to no longer be significant. One need not be unduly concerned, but the main effects are
needed (like the constant term) to estimate predicted values.

Creating interaction variables in SPSS and Stata

SPSS is inconsistent. With multiple regression the researcher has to create interaction
terms prior to the analysis, which can be a little time consuming and tedious. However,
with logistic, ordinal and multinomial logistic regression SPSS has the facility to auto-
matically create interaction terms specified by the researcher.

In Stata, interaction variables need to be created prior to the analysis using the
generate command.
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3.8 Incorporating nonlinear relationships

It was pointed out when introducing the general linear model (section 1.3) that the
model is only linear in the bs, that is in the coefficients of the model. It is the fact that
the bs are added together (albeit after being multiplied by a variable x) that is the
requirement for linearity. The xs themselves need not be linear, they can take any form,
including a nonlinear form. The response variable y can also be transformed. Thus in
practice the general linear model can be a very flexible tool for analysing a range of
nonlinear as well as linear relationships. Here we outline some of the common methods
adopted to incorporate nonlinear relationships.

A common transformation of the response variable y, favoured by economists when
analysing monetary values such as income and prices, is log(y). The theoretical justifica-
tion for this transformation is that a variable such as income does not increase by a
fixed amount with, for example, age, but increases by a fixed or constant percentage
with age. Substituting log(y) for y in the model better captures this percentage increase
effect. We shall return to this in section 4.4.

Another common transformation when y is a categorical response variable is to
transform the response to logit(y), that is, the log of the odds. This transformation was
discussed in section 3.1 and, as we shall see, underpins the logistic family of models
(logistic, multinomial logistic, and ordinal logistic regression).

Continuous explanatory variables, x, can take any form such as �x, x2, x3, log x and
so on. Of the options, x2 has certain attractions. As Allison (1999) points out, it can
reflect a wide range of nonlinear relations and can be used where the explanatory
variable is measured on an interval scale as well as for those measured on a ratio scale.
Most other transformations are only appropriate where the variable is measured on
a ratio scale. Allison’s practical advice is to include x2 (together with x) in the model. If
the coefficient of x2 is significant this provides evidence of a nonlinear relationship
which might require further exploration.

An alternative and useful approach to transforming a continuous explanatory vari-
able when the relationship is not linear is to convert the continuous variable into a
categorical variable and enter it in the model as a set of dummy variables. For example,
if income is different at different ages during a working life, then age could be categor-
ised into separate age groups, young to old. Entering these groupings as dummy vari-
ables will result in a different coefficient, b, for each group, reflecting the different effects
at different ages.

Finally, it should be noted that interaction terms (discussed in section 3.7) are also
nonlinear explanatory variables and are yet another means of incorporating nonlinear
relationships within the framework of the general linear model.

3.9 Residuals

Residuals were introduced in section 1.4 where they were defined as the difference
between the actual value of y and the value of y, ŷ, estimated or predicted by the model.
Examination of residuals is important as it provides information on the adequacy of
the model: how well the model fits the data and whether the assumptions of the model,
including linearity, are met. Exceptional residuals also indicate whether, and if so
which, data points are outliers, which may be exerting an undue influence on the model.
But what is considered to be exceptional? The size of a residual will depend in part on
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the units of measurement such that if the response variable is income we might get a
residual of £1000. On the other hand if our response variable is binary, taking a value
of 0 or 1, the predicted value of y is a probability between 0 and 1 and hence a residual
can be no greater than 1. Rather than consider absolute residuals, it is the convention to
analyse standardised residuals, that is, the residual divided by its standard error. Evok-
ing statistical theory, the standardised (or studentised) residuals will have a normal or
t distribution with mean 0 and variance 1 and we can interpret them in the same way as
z and t statistics, discussed in section 3.3. Thus we would expect 95% of the residuals to
lie within ±1.96, 1% within ±2.58 and so on.

A more important consideration than whether a subject is an outlier, is whether it
exerts an undue influence on the model, in particular on the estimates of the coefficients
or parameters, b. Various statistics have been proposed to measure influential observa-
tions and they are discussed and applied in sections 4.8 and 5.6.

When the response variable is categorical, a different approach is required. In such
situations we can conceive the model as a multiway contingency table and for each com-
bination of explanatory variables compare the actual number falling within that combin-
ation with the number predicted or expected by the model within that combination. This is
analogous to the calculation of chi-squared in section 3.3. If we divide the difference
between the observed and expected number by its standard error we obtain what is known
as the Pearson residual or the chi-squared residual. The Pearson residual is approximately
normally distributed and can be interpreted in the same way as standardised residuals.

An alternative when the response variable is binary is to divide the sample into
groups according to their predicted probabilities and compare the number predicted
with the actual number. This is the basis of the Hosmer–Lemeshow test which is
described in section 5.6.

Having calculated the standardised or Pearson residuals, they should be inspected to
see if any exceed a value of ±2.0 or ±2.5. Obviously under the normal distribution we
can expect 5% to be greater than 2 (or less than −2) but we should become concerned if
a higher percentage exceed the percentage expected or if we encounter standardised
residuals greater than 3.

What would one do if the results of the residual analysis indicted problems? Possible
errors in the data would be my first thought and I would examine each of the offending
cases. Examination may suggest other reasons why some are different, but the exact
reason will be specific to the subject matter and context of the research. Having cor-
rected any errors, if outliers remained I would next request and examine leverage stat-
istics in order to see what influence the subjects were having on the model, in the hope
that while some may be outliers, not all were having an undue influence on the model.
In addition, I would fit the model with and without the outliers and influential observa-
tions and compare the models obtained. With large datasets and a small number of
outliers I invariably find the models to be similar.

If a large proportion of the sample have standardised residuals greater than 2.0 then
a different approach is required. My initial thought should this situation occur is that
the dataset comprises samples from more than one underlying population. I would thus
explore the different characteristics between the two groups (those with standardised
residuals less than 2.0 and than those with standardised residuals greater than 2.0) in the
hope of identifying the nature of the underlying problem. The investigation may lead
me to analyse the groups separately or to include other variables which reflect the
differences between the groups.
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SPSS and Stata will, if requested, calculate predicted values, residuals and standard-
ised residuals and add these as variables to the original data file. It is then possible to
plot these new variables in any way the researcher wishes in order to gain further
insights into the adequacy of the model and to assess whether the assumptions are
being met. One option is to produce a histogram or stem-and-leaf plot to see if the
residuals are normally distributed, as they should be. Other options include a normal
probability plot which plots the cumulative distribution of the standardised residuals
against the expected normal distribution. The points should lie along a straight line and
any deviation reveals how the standardised residuals differ from normality. A further
useful diagnostic is to plot the standardised residuals against the standardised predicted
values; there should be no evident pattern – the standardised residuals should fluctuate
around zero for all values of the standardised predicted values.

Examples of residual analysis, including examples of graphical presentations dis-
cussed above, will be given in subsequent chapters of this book when models are
developed and fitted.

3.10 Unobserved variables and unobserved heterogeneity

It was stated in section 1.4 that an initial stage in developing a model is to specify
which explanatory variables to include and the selection of variables will be guided by
theory or previous research. As we shall see, however, statistical models never fit the
data perfectly; there always remains some unexplained variation. This may arise
through random variation as variables are never measured with total accuracy. Models
can be improved by including additional explanatory variables (perhaps not initially
considered) and/or by increasing the contribution of those already included; by trans-
forming them or by considering interaction terms (discussed in sections 3.8 and 3.7
respectively). However, it may not be possible to include some important variables
because they are not themselves measured. This is known as the problem of unobserved
variables or unobserved heterogeneity. The following example illustrates the problem.

In section 9.5 data is analysed to examine the factors associated with being employed
or not employed and in Chapter 13 we present data from an evaluation of an initiative
aimed at helping people who have been unemployed for a long period of time return to
employment. In both examples, important variables that lead people to being in work
or returning to work include age, educational qualifications, previous employment and
so on. However, there is still some heterogeneity even amongst people who share the
same explanatory characteristics. People of the same age and the same educational
qualifications are not all employed or unemployed. Some heterogeneity may be due
to other observed characteristics, such as a person’s health, information on which,
having been recorded, can be included in the model. But some of the heterogeneity may
be due to unobserved characteristics, such as a person’s motivation to seek work or
their confidence in seeking employment. Having been unemployed for a long time, a
person may be de-motivated, thinking there is little prospect of employment, or may
lack the confidence to apply for work or to present themselves to best effect at interview.
In behavioural terms, long-term unemployment may lead to ‘inertia’ or in statistical
terms the phenomenon may be described as ‘state dependency’; being in the state
unemployed may lead to a greater prospect of remaining unemployed regardless of
other characteristics.

Unobserved variables, or unobserved heterogeneity, can lead to erroneous inferences,
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if the unobserved variables are related to both other included explanatory variables and
the response variable. Technically, one or more of the included explanatory variables
x are correlated with the error term, e, violating one of the assumptions of the model.
In such cases, the included explanatory variables may appear more or less important
than they are because they are reflecting, in part, the contribution of the unobserved
(and omitted) variables. Whether they appear more or less important depends on the
nature of the relationship between the three sets of variables (the response variable, the
explanatory variables and the unobserved variables).

Unfortunately it is not always possible to overcome the problems caused by
unobserved heterogeneity, but the researcher should always have the problem in mind
when specifying or interpreting a model. At the data collection stage it may be possible
to anticipate the problem and perhaps collect proxy variables which could substitute
for the unobservable variables.

Another approach, often favoured by economists, is to identify and include an
instrumental variable. Essentially, if we can find a variable which can be measured and
which is both correlated with the error term but uncorrelated with the explanatory
variables, x, we could include this in the model. The instrumental variable then acts to
remove the bias in the estimation of the effects of the xs. However, it is not always
straightforward to identify a variable that can serve as an instrumental variable. We
adopt this approach in section 11.3 but any reader interested in pursuing the theory
and application of the method of instrumental variables should consult a standard
econometric text, such as Wooldridge (2003).

It is also common practice for economists to include a lagged dependent variable as
an explanatory variable. So, if the dependent variable is yt (that is, y measured at some
point in time), yt−1 or yt−2 etc. (y measured at an earlier point in time) would be included
as an explanatory variable. On the assumption that many conditions remain relatively
stable over time, the lagged variable will encapsulate past history, including conditions
that cannot be measured.

Longitudinal research designs are considered superior as they are better able to take
account of the sequence of events, previous states and duration (the time a person has
been in a state). We shall also see in Chapter 12 that certain models which can be fitted
to panel data can remove the effects of some unobserved variables, namely those
unobserved variables that do not change over time. 

However, longitudinal data, including panel data, may not always be available, and it
may not be possible to include a proxy variable or to identify an instrumental variable.
In order to ameliorate the problem caused by unobserved variables, it is often good
practice to include explanatory variables which take into account previous experience
or duration in states, such as the length of time previously unemployed. Or, to provide
another example, when modelling offending it is important to include the number of
previous offences an offender has committed, as previous offending is highly related to
future offending and represents the extent to which a person is confirmed in their
criminal career.

The reader may be interested to note the availability of SABRE (specialist statistical
software) which was developed at the University of Lancaster as part of an Economic
and Social Research Council (ESRC) methods programme. SABRE incorporates tech-
niques for handling unobserved heterogeneity and is freely available, together with
instructions on how to use it, at the Teaching Resources and Materials for Social
Scientists (TRAMSS) website, http://tramss.data-archive.ac.uk.

40 Statistical modelling for social researchers



4 Multiple regression for continuous
response variables

4.1 Introduction

Multiple regression is the oldest and most well established of the modelling techniques
and is appropriate when the dependent variable is continuous. Explanatory (independ-
ent) variables can be continuous and/or categorical. Multiple regression is closely
related to analysis of variance (ANOVA) and analysis of covariance (ANCOVA). In
fact ANOVA and ANCOVA are alternative but complementary ways of presenting the
same information and, carried out on the same data, will give exactly the same infer-
ences as multiple regression. ANOVA is appropriate when all the independent variables
are categorical and ANCOVA is appropriate when the independent variables are both
categorical and continuous. As they are alternative ways of presenting the same results,
most statistical computer packages, including SPSS and Stata, present analysis of vari-
ance results as part of the output from multiple regression. As multiple regression more
readily conforms to the formulation of the general linear model (see Equation (1.1))
I feel that for most applications multiple regression is preferable. However, one or
two statistics presented as part of the ANOVA results are helpful in interpreting the
regression model.

4.2 Example: Determinants of pay

In order to explain multiple regression, let us begin by considering an example where
the focus of interest is the amount of pay received by persons in employment. In
particular we shall investigate what factors contribute to the amount received and,
specifically, whether women are paid less than men. To investigate this issue, a small
subset of data was drawn from the 2002 Labour Force Survey (LFS; a large survey
conducted quarterly in Great Britain and the main source of information on employ-
ment and unemployment). The advantage of a small dataset is that all the observations
can be shown graphically. To be precise, the first 150 individuals were selected from the
LFS Teaching Dataset at the UK Data Archive but those individuals who were not in
work or for whom data was missing on any of the variables were excluded. This resulted
in 77 persons (38 males and 39 females) available for analysis. In addition to hourly pay
(measured in pounds sterling) and gender, four other variables were chosen; age, age the
person completed continuous education, the number of years the person had been in
his or her current job and his or her occupation.

In the first instance it may be hypothesised that the rate of hourly pay is related
to the employee’s age and our objective is to explore the form and strength of that



relationship. A starting point is to produce a scatterplot of the two variables and this is
easily done in SPSS and Stata. As pay is the focus of interest it is the dependent
variable, y, which is represented on the y (vertical) axis of the scatterplot. Age is the
explanatory variable and is represented on the x (horizontal) axis. The plot from SPSS
is shown in Figure 4.1 (click Graphs → Scatter/Dot and specify the variables).

A visual inspection of the scatterplot suggests evidence of a positive relationship
between the two variables: older employees seem to receive a higher hourly rate of pay.
However, this relationship does not appear to be strong as there is considerable vari-
ation in the pay people receive at all ages. Further evidence of a weak relationship
comes from the correlation coefficient between the two, which is found to be r = .26.
However, it is statistically significant at the 5% level.

Regression enables us to express the form of the relationship between age and hourly
pay. In graphical terms a linear relationship is equivalent to a straight line representa-
tion of the data. Intuitively, the best straight line to represent the relationship between
the two variables is one that in some sense comes closest to all the individual data
points. Ordinary Least Squares (OLS) is a fitting procedure for deriving the equation
that defines such a line.

The scatterplot shown in Figure 4.2 is the same as Figure 4.1 but with the fitted
regression line included. The ordinary least squares regression line is the one that
minimises the sum of the squared differences between the line and each of the observed
data points. The differences between some of the points and the regression line are
shown as vertical lines in the plot. Why squared differences? Because if the differences
were not squared, some differences would be positive (the distance from the line to
those points above it) and some would be negative (the distance from the line to those
points below it). The positive differences and the negative differences would cancel each
other out resulting in a sum of zero – not a very useful measure of the distance of the
points from the line. However, the squared differences are all positive and so when
summed, result in a positive measure. The OLS line minimises the squared differences
in that any other line drawn between the observed points would result in a larger sum

Figure 4.1 SPSS output, scatterplot of gross hourly pay and age last birthday.
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when the squared differences are added together. Thus the OLS regression meets the
objective of coming closest to all the observed points and summarises, or provides an
average of, the relationship between age and the hourly rate of pay. In this context, the
correlation coefficient measures the spread of the data points around the straight line.

In mathematical notation, the straight line depicted in Figure 4.2 is of the form:

y + b0 + b1x1 (4.1)

which is the general linear model introduced in section 1.3. b0 is a constant and its value is
the value of y where the regression line meets the y axis. It is thus the value of y when
x = 0. It is also known as the intercept as it is the point where the line intercepts the y axis.

4.3 Fitting a multiple regression model in SPSS

Running the linear regression module in SPSS (click Analyze → Regression → Linear)
brings up the screen below at Figure 4.3.

Hourpay (gross hourly pay) has been specified as the dependent variable and age (age
last birthday) as the independent variable. SPSS produced the output shown in Figure
4.4. (That element of the output that simply lists the variables considered has been
omitted.)

In terms of our regression equation (Equation (4.1)), the coefficients are listed in the
last box labelled Coefficients in the column headed Unstandardized coefficients B. (The
standardized coefficients are explained later.) b0 is designated (Constant), the bps are
given in the column adjacent to their variables.

The regression equation can be written as:

y = 4.964 + .082 (age last birthday)

Figure 4.2 SPSS output, scatterplot with the fitted regression line.
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Figure 4.3 SPSS dialogue box for multiple regression.

Figure 4.4 SPSS output, regression model.



Thus for every additional year in age, after taking into account other variables in the
model (in this case there aren’t any – but that will change), the hourly rate of pay
increases by £0.082 (or 8.2 pence).

Given a person’s age, their hourly rate of pay can be predicted. Thus for a person
who was 50 last birthday, their predicted hourly rate of pay is:

y = 4.964 + .082(50)

= 4.964 + 4.1

= £9.64

Variables in a regression analysis are usually measured in different units, age in years,
price in pounds sterling, distance in miles and so on, and the bs represent the change in
y given a unit change in the variable. Because of the different units it is difficult to
compare bs, and hence the relative importance of the different variables. Standardized
coefficients, Beta, go some way to overcoming this problem as they reformulate the
coefficients in terms of standard deviations in order to put them on a comparable scale.
A standardized coefficient is thus the number of standard deviations y changes as
a result of one standard deviation change in x, controlling for the other variables in
the model. Formulating coefficients in terms of standardized coefficients removes the
requirement for a constant and it can be seen that there is no value in the (Constant)
row in the Beta column.

Standardized coefficients are occasionally cited in research reports and scientific
papers and it is the convention to present them in path analysis diagrams (see section
11.2) so it is important to be aware of them. They can also be useful in providing a rank
order of the relative importance of the independent variables in a model. However,
conceptually it is difficult to think in terms of standard deviations of age, a change of
one year is more meaningful. Furthermore, standardised coefficients are inappropriate
for a binary variable – how should a standardised coefficient of gender be interpreted?
In any case a rank order of the importance of variables in a model is often provided by
comparing t values.

4.4 How good is the regression model?

Having fitted the model and estimated the parameters (the coefficients), how good a
model is it and what inferences can we draw?

Recall from section 1.4 that there are three ways that we can assess a model. The first
is to consider the model in its entirety and against other models. One such other model
is to have no model at all, that is, to assess how our understanding is improved by
having the model compared with our understanding in the absence of any model.
Consider the absence of a model and the only information available for the 77 indi-
viduals in the sample is their hourly rate of pay. If required to predict a person’s pay,
the best guess would be the average or mean pay for the sample, that is, ȳ (pronounced
‘y bar’) which is calculated to be £8.14. The prediction would be wrong in each case
depending on how that person’s pay differed from the mean for the group – and we saw
from the scatterplot (Figure 4.1) that there is significant variation in pay. In the same
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way that we can calculate the squared differences from the regression line, we can
calculate the squared differences from the mean of y. Graphically the mean would be a
horizontal line as indicated in Figure 4.5, and the differences would be the vertical
distances from each point to the line.

Squaring these differences and adding them together we call the total sum of squares
(TSS) total to signify all the variation that exists, in this case in hourly pay, around
the mean.

Fitting a regression line improves our understanding. Now if asked to predict a
person’s pay we can take into account their age by inserting it into our regression model
and arrive at a more accurate estimate. Although we have improved our prediction we
will still incur some error. There is variation between our regression estimates and the
observed values (as pointed out in Figure 4.2). The sum of squared differences between
the observed points and the regression line, the vertical lines depicted in Figure 4.2, is
known as the unexplained sum of squares or the residual sum of squares and represents
what variation is left over once the regression has been fitted. The difference between
the total sum of squares and the residual sum of squares can be regarded as the amount
of the variation that has been explained by the regression model. This component is
known as the explained sum of squares or the regression sum of squares (SPSS) or the
model sum of squares (Stata). Furthermore:

Regression / model sum of squares

Total sum of squares
=

the proportion of the variance

explained by the regression model

The values of the various sums of squares are contained in the analysis of variance
component (ANOVA) of the regression output. In the output at Figure 4.4, the total sum

Figure 4.5 SPSS output, scatterplot with line depicting mean of y.
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of squares is 1063.552 and the regression model explains 73.690 sums of squares.
Expressed as a proportion, the fitted regression model explains:

73.690

1063.552
= .069 or 6.9% of the variance

Note that the proportion explained, .069, is exactly the same as the value of R Square
given in the Model Summary component of the SPSS output at Figure 4.4. R2 is defined
to be the proportion of variance explained by the model and it is also known as the
coefficient of determination. R (the square root of R2), often known as Multiple R (to
emphasise that it is a statistic from multiple regression), is .263, which is exactly the
value of the correlation coefficient, r, between hourly pay and age. Where there is only
one explanatory variable in the regression model R is equivalent to r. However, when
there is more than one explanatory variable in the model this equivalent relationship
does not hold.

SPSS (and Stata) calculate and present an Adjusted R Square value. The adjusted
R2 attempts to correct for the fact that R2 can be affected by the number of variables
included in the model. It can be helpful when assessing the worth of similar but
competing models, but I have always found R2 to be an informative and satisfactory
measure.

Tests of significance

Does the fitted regression model truly add to our understanding? In this example,
are we in a better position to explain hourly rates of pay knowing the age of
employees, or could the relationship simply be a chance occurrence? In order to
answer this question a test of the null hypothesis is needed. The F-test is a global
test, which tests the significance of the model in its entirety. The details of the F-test
need not concern us but it stems from the analysis of variance formulation of the
model and the relevant values can be found in the ANOVA component of the
computer output at Figure 4.4. In the last column, headed Sig, a value of .021
appears. This figure is the probability of obtaining that regression model by chance,
that is, if age last birthday had no effect on, or had no relation with, y, hourly pay. In
this model, .021 is less than .05 so the regression can be said to be significant at the 5%
level, the threshold commonly adopted as indicative of identifying evidence of a true
relationship.

In addition to testing the model in its entirety, we also wish to test each explanatory
variable individually to see if it contributes to the model by having an independent
effect on the dependent variable (over and above the other variables included in the
model). The t-test provides a procedure for testing each variable. To be precise the
t statistic tests whether the coefficient b is significantly different from zero. Following
the conventions of statistical tests discussed in section 3.3: b/(s.e.b) = t.

The relationship between t and z scores was also reviewed in section 3.3. A value of t
of 2.0 (or 1.96 to be more precise) is significant at the 5% level. In the example above
SPSS provides the values of b (B), the standard error of b (Std. Error), t (t) and the
probability of obtaining that t value (Sig.). For the regression fitted, which included age,
b is .082 and the standard error .035 and t = (.082/.035) = 2.363 which has a probability
of occurrence of .021 (i.e. less than 5%).
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Note that the significance of t in this example is exactly the same as the significance
of F (both .021). In the situation where only one variable is included in the model, F and
t are essentially testing the same effect. The t statistic is testing the contribution of age
whereas F is testing the entire model. However, as the entire model only includes age, F
and t should give the same inference, which, reassuringly, they do.

4.5 Expanding the model

The analysis so far indicates that age is significantly related to hourly pay but explains
very little of the variance in hourly pay, merely 6.9%. Much remains to be explained
and the next step seeks to identify other models that might explain some of the residual
variance. Models can be expanded by including new variables which we turn to later but
first we develop the model with age as the only explanatory variable. The model above
assumes a linear relationship between age and income such that for every additional
year the hourly rate increases by a constant 8.2 pence regardless of the age of the
employee. Thus a 19-year-old can expect 8.2 pence more per hour than an 18-year-old;
similarly a 36-year-old can expect 8.2 pence more than a 35-year-old, a 56-year-old
more than a 55-year-old and so on. However, those who study wage rates would
hypothesise that wages do not increase by a fixed absolute amount but are more likely
to increase by a constant percentage. A model that (approximately) captures this effect
is to transform the dependent variable y (hourly pay) to log( y) and most economists
analysing pay/income/salary/wages data would adopt log(y) as the response variable
(see section 3.8). The coefficient for age with log( y) as the response variable was .009,
suggesting that for each additional year of age, income increases by approximately
0.9%. However, the model with log(hourly rate) as response did not fit as well as the
model presented above with hourly rate as response. The R2 for the log(hourly rate)
model was 5.8%, less than the 6.9% obtained previously.

So far the assumption has been that pay increases with age, either by a fixed amount
or by a fixed percentage. But the relationship between income and age may not be
linear. It is often found that income increases with age at younger ages, is then relatively
constant thereafter and subsequently declines in older life. If faced with this or any
other nonlinear pattern, economists capture it by including both age and age2 as
explanatory variables. Furthermore, as pointed out in section 3.8, Allison’s (1999)
advice is to test the significance of x2 as evidence of a nonlinear relationship. Inspection
of the scatterplot did not suggest a markedly nonlinear relationship so it was not
altogether surprising that including both age and age2 in the model did not increase R2

dramatically; only by 1% to nearly 8% (and it did not matter whether the response
variable was hourly pay or log(hourly pay)).

Neither adopting log( y) as the response variable nor including age2 had much effect
in this example, perhaps because of the small sample and the fact that the response
variable was hourly pay rather than annual pay. Nevertheless, over and above their
substantive importance in many applications, log( y) and age2 are also examples of how
non-linear relationships can be incorporated within the framework of the linear model.
Recall from sections 1.3 and 3.8 that linearity stems from the addition of the effects of
the variables not from the linearity of the variables themselves.

In one sense the approach to modelling as presented so far, in which one variable, age,
was selected, is somewhat artificial. It was adopted principally to explain least squares
estimation procedures and hence how certain statistics are derived and interpreted. In
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reality one would hypothesise at the outset several explanatory variables that might all
be related to the dependent variable. In the dataset drawn from the LFS two other
continuous variables, the age at which a person completed continuous full-time educa-
tion and the number of years an employee had been in the current job, might also be
thought to affect the rate of hourly pay. The longer a person stayed in continuous
education, the more highly qualified they are likely to be and hence the more likely they
are to be engaged in a higher paid job. Similarly, the longer in a job the more likely a
person is to be promoted, receive annual increments on a pay scale and so on.

With several variables it is not possible to produce scatterplots in multidimensional
space. (Although one should separately produce, in turn, a scatterplot for each of the
explanatory variables under consideration with the dependent variable. But they are
not shown here.) Other empirical evidence would be sought from considering the
correlation between these variables and the dependent variable. The correlation matrix
at Figure 4.6, produced by SPSS (click Analyze → Correlate → Bivariate), does indicate
a positive and significant relationship between hourly pay and age, age completed
education and length of time in the current job. All the relationships are positive, which
is in the hypothesised direction: namely the older the employee, the longer time spent in
education and the greater the time in the present job, the higher the hourly pay.

In addition to the two further continuous variables, two categorical variables are
available: occupation and sex. Occupation has been recoded into three categories: pro-
fessional or managerial (prof); technical/administrative/skilled (tech), and unskilled or
manual (unskill). Sex has two categories: male and female. Both categorical variables
need to be converted into sets of dummy variables as described in section 3.5. Prof and
unskill were included in the model together with female. (Recall from section 3.5 that
one dummy variable at least has to be omitted from the model and the omitted dummy
variable is the reference category.)

Given that several explanatory variables are now to be included in the model, and
in view of the significant correlations between them (as indicated in Figure 4.6), col-
linearity diagnostics were requested (by checking the Collinearity diagnostics box in
Statistics). The results of the regression analysis are shown in Figure 4.7.

This model performs much better than the previous model in that the R2 for the
model was found to be .506 or the model explained 51% of the variance in hourly pay
(compared with only 6.9% in the previous model, which only included age as an
explanatory variable).

Note several matters when comparing this model with the previous one. First the
coefficient of age has changed (from .082 in the previous model to .036 in this model).
The reason for the change is because the coefficients, b, are the amount of change in y
following a unit change in x (in this case age) after taking into account the other variables
in the model. There are different variables in this model so the partial effect of age will
be different. The same is true of the constant term, which also changes from model to
model depending on what variables are included. In this example the constant has
even changed to a negative value in this model, from a positive value in the previous
model. The value of the constant term is the value of y when all the variables are equal
to 0. The constant is often meaningless; in this case no individual is observed to be
naught years of age, left continuous education at naught and has spent naught years in
their current job. The constant only has meaning when taken together with the other
coefficients.

The F-test (not shown) indicates that the model as a whole is significant (p < .001),
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but what is the contribution of each of the variables included? It can be seen that the
two new continuous variables are both highly significant. The age the employee left full-
time education has a t value of 3.512 and a corresponding p value < .001 (i.e. less than
.1%). Similarly, the number of years in the current job is also highly significant
(t = 4.312, p value < .001).

Interestingly, however, in this model age is not found to be making a significant
contribution. The value of t is only 1.091 with a p value of 0.279. It is not unusual
when fitting models to find that a variable significant in one model is not found to be

Figure 4.6 SPSS output, correlation matrix.

Figure 4.7 SPSS output, multiple regression model.
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significant in other models. There are two reasons for this. One may simply reflect the
problem of multicollinearity, which was discussed in section 3.6. However, from the
output above, multicollinearity does not appear to be of extreme concern here, for
none of the explanatory variables are the values of tolerance below .4 nor are any
values of VIF above 2.5 (the threshold values given in section 3.6). The second reason
stems from the fact that the model is only including the partial effect of age, having
taken into account the other variables in the model. The new variables are more
important in determining hourly pay and once their effects have been taken into
account, age adds little in explaining pay. Looking back at the correlation matrix it can
be seen that age and the number of years in a job (while not leading to problems of
multicollinearity) are highly correlated, r = .556. Not surprisingly, older people tend to
have been in their current job longer than younger people. Hence knowing how long a
person has been in their current job also tells us something about their age. The coeffici-
ent for time in current job thus contains indicative information on age, thereby limiting
any additional information that might come from also knowing an employee’s age.

Consider now the effects of occupation as represented in the model by the two
dummy variables: prof (professional or managerial) and unskill (unskilled or manual).
Whether a person’s occupation is professional or managerial does not appear signifi-
cant in determining hourly pay (once other characteristics of the person are taken into
account) but an occupation that is unskilled or manual is highly significant. However,
care needs to be exercised when interpreting dummy variables. Recall that tech (tech-
nical/administrative/skilled) has been omitted from this model and is thus the reference
category. The model is not saying that being a professional (or a manager) does not
significantly influence one’s hourly pay, only that being a professional compared with
being a technician/administrator/skilled worker does not significantly affect pay. But
being unskilled or manual compared with being a technician/administrator/skilled
worker does significantly reduce one’s pay (by £1.827 per hour). Including tech and
unskill in the model (instead of prof and unskill) would lead to the same inference, in
that unskill would be significant (and the coefficient negative) compared to prof – which
is now the reference category – but tech would not be significant, compared with prof.
Finally, if prof and tech are included – with unskill becoming the reference category –
both are found to have a positive effect (compared to unskill) on pay and both are
statistically significant.

Consider the final explanatory variable in the model, female. The coefficient for
female is −1.130, suggesting that after controlling for other variables, women are paid
on average £1.13 per hour less than men. Is the result significant and is there thus
evidence that women indeed get paid less than men? How do we interpret this result?
The p value is given as .082 or 8.2%, above the conventional 5% level. However, recall
the discussion of significance tests in section 3.4. If the hypothesis had been (as it might
well have been, given previous research and debate) that women are paid less than men,
the significance test would be directional and hence one-tailed. On this basis a p value
of .082 is statistically significant leading to the conclusion that women are indeed paid
less than men even after controlling for other factors that influence pay. (The purpose
here is not to resolve the issue of differential pay between men and women, merely
to highlight issues in statistical modelling and significance testing. If resolving this issue
was the objective of the research, all the LFS data would have been analysed and other
variables would have been considered when developing the model – something we
pursue further in section 11.2.)
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In the model, the dummy variable female was included making male the reference
category (coded 0). Had male been included rather than female the p value (.082) would
have been exactly the same and the coefficient would have the same numerical value
(1.13) but would be positive not negative, indicating that men are paid £1.13 per hour
more than women.

4.6 Adding interaction terms

Interaction terms were introduced and described in section 3.7 and here we consider
introducing an interaction term to the model. A common way of modelling interaction
is to derive an interaction term by simply multiplying together two variables. In this
example there are three continuous explanatory variables; age, age completed education
and number of years in the current job. Interaction terms could be formed by multiply-
ing any two (or all three) together if prior knowledge or theory dictated that an inter-
action term should be included in the model along with the original variables. Allison
(1999) found from his data a significant interaction between age and number of years
spent in education, such that the differential in income between those who had been in
school longer (and were thus better qualified) and those people who had left education
earlier (and were thus less well qualified) increased with age. This finding reflects the
fact that salaries of better educated, professional people tend to rise and continue rising
more sharply than salaries of less well educated and unskilled people which tend to be
relatively flat. In this dataset there was no evidence of a significant interaction effect
between age and length of time in education but there was some evidence of this
underlying relationship in an interaction between age and the dummy variable unskill
(whether the person was unskilled or not).

In order to illustrate the nature of the interaction effect we first remove all other
explanatory variables from the model and include only the main effects of age and
unskill. The model is given below (see Figure 4.8).

It can be seen from the above model that both age and unskill are highly significant.
Recall that if the person is unskilled they are coded 1 on unskill and if they are not
unskilled (for convenience we call them skilled) they are coded 0. Thus if we consider
the hypothetical situation where a person’s age is 0, a skilled person’s hourly income
will be (5.8 + (−3.3 * 0)) = £5.8 and the unskilled person’s hourly income will be
(5.8 + (−3.3 * 1)) = £2.5. For each additional year of age, hourly income is expected to
rise by £0.9 and this rise is the same whether a person is skilled or unskilled. This
relationship can be represented graphically as shown in Figure 4.9.

From Figure 4.9 it can be seen that the difference between the skilled and unskilled is

Figure 4.8 SPSS output, regression model with age and unskill.
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the constant or intercept. The effect of age is the same, hence the parallel lines. The
slope of both lines is the same (.09), the coefficient of age. (The slope of the lines has
been exaggerated here to emphasise the increase in hourly rate with age – if drawn to
scale both lines would appear almost horizontal.)

The interaction term unskage was constructed by multiplying the dummy variable
unskill with age and added to the above model. The model with the interaction term is
given below in Figure 4.10.

Comparing the two models, it can be seen that adding the interaction term has had a
marked effect. While the interaction term is close to the 5% significance level, the effect
of unskill is now no longer significant and its coefficient has changed from negative to
positive. One need not be alarmed by this; it is not uncommon for the main effects not
to be significant once the interaction term is added. However, the main effects (in this
case unskill ) should be retained in the model as all the variables are required for
explanatory purposes and in order to make accurate predictions. The change in sign has
also to be considered in context, the effect of being unskilled is, in this model,
mediated through the main effect unskill and also through the interaction term unskage.
So how do we interpret the model?

Considering the effects of age on hourly pay, for skilled people (that is for those
where unskill = 0 and unskage = 0) hourly pay increases by £0.132 for each additional
year of age. For unskilled people unskage = 1, thus the effect of age is £0.132 + (−£0.128)
= £0.004. For the unskilled the interaction term is the additional effect of age. The pay
of the skilled is increasing by £.132 each year as they get older, whereas the pay of the
unskilled is remaining relatively constant and is only increasing at £0.004 for each
additional year of age. The unskilled notionally start with a higher rate of hourly pay.
The model indicates that at age = 0 the unskilled receive £1.716 more per hour than the
skilled (£5.9 compared with £4.2). But of course no person is aged 0 and in employ-
ment. The differential effect of age on the two groups indicated by the model is shown
graphically in Figure 4.11.

In Figure 4.11 the gradients of the line for skilled people has been exaggerated to

Figure 4.9 Graphical representation of the main effects model.
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emphasise that hourly pay is increasing with age, and considerably faster than for the
unskilled.

4.7 Automated model selection procedures

It was stated in section 1.5 that SPSS can be tasked to identify the ‘best’ model. (So far
I have specified the model and the explanatory variables to be included.) In the multiple
regression dialogue box exhibited in Figure 4.3 it can be seen that next to Method,
Enter is indicated. This is the default option and simply means that all the variables
I include as Independent(s) are entered into the model. However, there are alternatives
to Enter which request SPSS to follow a procedure to select the ‘best’ fitting model. A
forward procedure, Stepwise, was chosen (see the discussion in section 1.5). Details of
the fitted model are not shown here but the best model found by SPSS included the
three variables, age completed full-time education, number of years in current job and
whether the employee was unskilled or not. The inclusion of these three variables is not
surprising as they were found to be highly significantly related to hourly pay. Nor is it
surprising that age and whether the employee was in a professional or managerial

Figure 4.10 SPSS output, regression model including interaction term.

Figure 4.11 Graphical representation of the interaction model.
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position were excluded from the model as under any criteria they were not found to be
significant to hourly pay. However, consider the plight of gender. The variable female
was not selected by SPSS because its significance did not reach 5%, but in the model
I fitted female attained a significance level of 8.2% which is significant on a one-tailed
test. This finding highlights another potential limitation of allowing the computer to fit
the model, in that by applying rigid criteria some possible inferences may be missed. (To
be fair to SPSS, the criteria for including variables can be changed and information is
provided on the variables excluded as well as those included.)

4.8 Diagnostics: Analysis of residuals

So far the model has been judged in its entirety and the contribution of each explana-
tory variable has been considered. However, a third criterion for assessing a model, as
highlighted in section 1.4, is to examine how the model fits each of the individual data
points. A good way of doing this is to examine residuals, which were the subject of
section 3.9. In this example a residual is the difference between the actual value of
hourly pay and the value of hourly pay predicted by the model. If the model fits well
then the residuals should be small. The pattern of the residuals will also help assess
potential problems, in particular whether the underlying relationship is in fact linear,
whether the assumptions of multiple regression hold and whether extreme cases, or
outliers, are present which could have an undue influence or distort the estimates. Each
is considered in turn.

Although SPSS will provide the actual value of the residuals, understanding is aided
by considering standardised residuals (see section 3.9). Standardised residuals can be
calculated for each case and stored as a variable on the data file. (This is accomplished
by clicking Save and checking Residuals, Standardized.) Once saved (as a variable
labelled ZRE) further analysis can be undertaken.

Linearity

If the relationship between y and the explanatory variables is linear then there should
be no relationship between the predicted values of y and their corresponding residuals.
Thus, a useful diagnostic is to plot the standardised residuals against the standardised
predicted values. This is shown at Figure 4.12.

If the assumption holds there should be no evident pattern between standardised
residuals and standardised predicted values; the standardised residuals should fluctuate
around zero for all values of the standardised predicted values. Reassuringly this
plot suggests that the assumption of linearity is not violated. If the plot had pro-
vided evidence of a nonlinear relationship we would need to consider the options for
incorporating nonlinear relationships set out in section 3.9.

Regression assumptions

Allison (1999) discusses the various assumptions underlying multiple regression, the
most important of which is that the error term, e, is unrelated to the explanatory
variables x. If they are related the estimates of the coefficients are likely to be biased.
Unobserved variables or unobserved heterogeneity is a likely cause of this assumption
being violated. Unfortunately, there is no simple diagnostic test to gauge whether this
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assumption holds or not and the researcher is left to draw on his or her substantive
knowledge of the subject under investigation. Unobserved variables or unobserved
heterogeneity is discussed in more detail in section 3.10.

Another assumption of regression (although, as Allison points out, often the least
important) is that the residuals are normally distributed and a stem-and-leaf plot (or a
histogram) can be plotted to see if the assumption holds. The stem-and-leaf plot is
shown at Figure 4.13.

Reassuringly, the residuals do appear to be normally distributed, but the stem-and-
leaf plot also identifies two outliers (discussed below).

One widely recommended option is to produce a normal probability plot which
plots the cumulative distribution of the standardised residuals against the expected
normal distribution. The points should lie along a straight line and any deviation
reveals how the standardised residuals differ from normality. A normal probability plot
was requested by checking the appropriate box within Plots. The resulting plot is given
at Figure 4.14.

It can be seen that the points are close to the line throughout its length.
A further assumption of multiple regression is that the variance of e should be

the same for all values of x; this is known as homoscedasticity. If we look back at
the original scatterplot, Figure 4.1, we see evidence of heteroscedasticity (unequal
variance) as the data on incomes is more spread out for older people than for the
younger people. This is a common phenomenon with income data as younger people
tend to have more similar incomes than older people or, to put it another way, the
variation in income increases with age. Our assumption of homoscedasticity seems to
be violated. Heteroscedasticity does not lead to bias in the estimates of the coefficients,
b, but does lead to bias in the estimates of the standard errors (leading to incorrect

Figure 4.12 SPSS output, residual plot.
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t and probability values – and hence possibly erroneous inferences). However, Allison
states that heteroscedasticity has to be severe to cause serious bias in the estimates
of the standard errors. One way of overcoming the problem is to calculate robust
standard errors (first mentioned in section 3.3), which is an option in Stata and pursued
in section 4.9.

With the exception of the concerns regarding homoscedasticity, the residual analysis
conducted so far provides reassurance of the adequacy of our model. Although not
shown, similar plots and graphs were produced for the model with log(hourly pay) as

Figure 4.13 SPSS output, stem-and-leaf plot.

Figure 4.14 SPSS output, normal probability plot.
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the response variable. Interestingly they gave clear evidence that the latter model was
markedly inferior to the model with hourly pay as the response variable. The standard-
ised residuals deviated from normality, as indicated by a histogram and a normal
probability plot.

Outliers and influential observations

Outliers are observations (cases or subjects) that have large residuals and standardised
residuals; although what is large is a matter of degree. Nevertheless, it is good practice
to examine standardised residuals above 2.0 or 2.5 and especially above 3.0. Casewise
diagnostics can be requested (by checking the Casewise diagnostics box within Statistics
in the SPSS dialogue box at Figure 4.3) which proceeds to identify all cases that might be
considered as outliers. Casewise diagnostics were requested and the threshold for defin-
ing outliers was set at 2.5 standard deviations in order to highlight cases that were
in the 1% tail of the normal distribution. The following output was obtained (see
Figure 4.15).

From Figure 4.15 it can be seen that two cases, located at rows 17 and 67 in the data
file, had standardised residuals greater than 2.5. (These are the same two cases as
identified in the stem-and-leaf plot.) However, in both cases, the standardised residual
is not much greater than 2.5 and may not be considered extreme. (And it should be
remembered that for every 100 cases, one with such a value can be expected.) Standard-
ised residuals greater than 3 would have caused much greater concern as they are rare
and very unlikely to occur by chance.

However, while a case may be regarded as an outlier, a more important issue is
whether it has a disproportionate influence (or as it is often referred to, leverage)
on the model, in particular on the estimates of the coefficients, or parameters, b. An
observation (subject) can be an outlier but have little effect on the model, or it may
affect one or some of the bs but not others. Also, but not often in my experience,
extreme observations can exert an undue influence on a model while not being regarded
as outliers.

Various measures of influence have been proposed, including leverage, Cook’s dis-
tance, dfit, dfbeta and standardised dfbeta. Cook’s distance (which is obtained by
checking Cook’s under Distances within Save) is a good starting point as it provides a
summary measure for each subject. The Cook’s distance for each subject is stored on
the data file as a variable. For this dataset, obtaining descriptive statistics revealed that
Cook’s distance had a mean of .015 and a standard deviation of .04. A plot of Cook’s
distance against the identifier (id ) for each subject is shown at Figure 4.16.

From the graph it can be seen that eight subjects had a high value of Cook’s distance

Figure 4.15 SPSS output, casewise diagnostics.

58 Statistical modelling for social researchers



and are exerting a disproportionate influence on the model. I identified the eight cases
and then interrogated the effect they were having on the coefficients of the model. For
this I requested standardised dfbetas (by checking Standardized DfBeta(s) in Save in
the dialogue box at Figure 4.3) which estimates the effect an observation is having on
each of the coefficients bp of the model. The standardised dfbetas are added to the data
file, one for each coefficient (variable) included in the model and one for the constant
(or intercept). In this example seven dfbetas were added to the data file, one for the
intercept and one for each of the six variables in the model.

The rule of thumb adopted is to judge a dfbeta as large is if its absolute value exceeds

2

�N
or

3

�N

For this data N = 77, thus �N = 8.77 and

2

�N
= .23 and

3

�N
= .34

Similar plots to the one above for Cook’s distance can be produced for each dfbeta, but
with a small dataset it was possible to inspect the dfbetas by eye, and in particular to
inspect the eight subjects identified by Cook’s distance. From inspection it did not
appear that the eight cases were unduly influencing just one coefficient; rather that their
effect(s) were dissipated across several coefficients. Not all cases were affecting all coef-
ficients. Furthermore, some cases were only having a small effect on several coefficients
but not a major effect on any one. From this analysis, and by setting a cut-off of Cook’s

Figure 4.16 SPSS outputs, plot of Cook’s distance.
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distance at .065 (the mean plus two standard deviations), I concluded that four of the
cases were having an undue influence.

In order to gauge the effects of the four influential observations, I filtered them out
and re-fitted the regression model. This model fitted slightly better than the previous
one, R2 increased to 57% (from 51%). The variable age was more significant than
previously (7.4%) and its coefficient increased markedly from .036 to .055. The coef-
ficients of the variables, age completed full-time education, number of years in current
job, whether a person was a professional or was unskilled did not change as much and
their significance was unaltered. However, interestingly given the initial research ques-
tion, while the coefficient of female increased only by a small amount, to −1.2, it was
now significant at the 5% level (p = .048).

4.9 Fitting the regression model in Stata

On entry, Stata opens four windows, a Stata Results window, in which results are
displayed (not shown here), a Variables window, a Review window and a Stata Command
window. These three are shown below at Figure 4.17.

Any of the windows can be enlarged or moved around the screen or closed to suit
the researcher’s preferences. Others can be opened, such as the data editor for input-
ting or editing the data file. The Review window above shows that two regression
analyses have been fitted this session, the first with just age as an explanatory variable
and the second with six variables (that is, the same two regressions as fitted in SPSS
previously).

The output from the second regression is presented at Figure 4.18.
The first line (beginning with a full stop) gives the command issued to perform

the regression analysis. This can be entered as a command or by point and click and
drop-down menus (in this example, Statistics, Linear regression and related, and then

Figure 4.17 Stata window, specifying regression model.
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entering the variable names and selecting any options wanted). Note that r has been
added (after the comma) at the end of the command to request robust standard errors.

The next segment is the ANOVA output (although it is not headed that). However,
note that Stata calls the sums of squares attributable to the regression Model (sums of
squares). The values of the coefficients are exactly the same as estimated by SPSS but
the estimates of the standard errors are different. That is because robust standard errors
were requested. As the standard errors are different, the values of t are different
(because t = b/s.e. b) and hence the probabilities, p, are also different. In this instance
the inferences are the same; in no case would we change our view of the significance of
the variables.

The output from Stata is more compact and provides 95% confidence intervals
for the coefficients as part of its standard output, but not standardised coefficients.
Standardised coefficients (Beta) can be requested and they will be given in the output
instead of the 95% confidence intervals.

Further regression models are fitted using Stata in Chapter 11 which considers simul-
taneous equation models.

4.10 Tobit model

Before leaving multiple regression, readers may wish to be aware of the tobit model
which is often thought to be more appropriate when a large proportion of the sample
has a value of y at one end of the range of possible values of y. For example, the annual
Smoking, Drinking and Drug Use Among Young People survey asks a sample of
school pupils how many cigarettes they smoked and how many units of alcohol they
drank in a previous period. A large proportion of the sample state that they did not
smoke or drink during the period, resulting for them in a value of y = 0 while the
remainder reported a value of 1, 2, 3, etc. Thus in the case of drinking and smoking, the

Figure 4.18 Stata output, multiple regression.
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response variable y is continuous and positive but zero for a significant proportion. At
the other extreme we may, for example in another study, ask people their income.
However, for those with exceptionally high incomes we may not know the exact income,
only that it is at or above a certain value. The response variable y is thus truncated at a
certain upper value.

In each of the above examples we could proceed and fit a multiple regression model
and in many cases the regression may be adequate. However, the problem arises if
we wish to predict as the regression model may produce unreliable estimates at the
extremes, even resulting in negative values of the number of cigarettes smoked and
units of alcohol drunk in the first example. The tobit model overcomes these problems,
which explains why it is preferred in these situations. The tobit model is, however, more
complex and more difficult to interpret. It is not discussed further here but details can
be found in Wooldridge (2003).

Further reading

P. A. Allison has written an exemplary, accessible and readable text on multiple regression which
is highly recommended (Allison 1999).

The Tobit model is also fully explained in Long (1997).

62 Statistical modelling for social researchers



5 Logistic regression for binary
response variables

5.1 Introduction

Binary response variables (where the outcome can take one of only two values) are
surprisingly common, occurring naturally in many research projects. Examples include
being employed or not, reoffending or not, passing or failing an examination and so on.
When the response variable is binary, multiple regression should not be used, but logistic
regression should be used instead.

If the dependent variable, y, is binary, coded 0 if the event does not occur and coded
1 if the event does occur, and substituted in (Equation (1.1)) we would effectively be
modelling the probability, p, of the event occurring. However, including such a binary
dependent variable in multiple regression causes problems as the assumptions under-
pinning multiple regression are violated. First, the least squares estimation procedure
does not produce the most efficient estimates of the coefficients b, and, second, the
model can produce predicted probabilities less than 0 (negative in value) or greater than
1 – both of which are outside the range of a probability, 0 to 1.

With regard to the second problem, matters are improved by replacing p, the
probability of the event occurring, by the odds of the event occurring. Odds were
explained in section 3.1 where their properties were outlined. To recap, one advan-
tage of odds is that whereas the probability p ranges from 0 to 1, odds range from 0 to ∞
(infinity). Furthermore, taking the natural logarithms of the odds changes the odds
scale from 0 to ∞, to − ∞ to + ∞ centred on zero. Odds less than 1 have negative values
of log odds whereas odds greater than 1 have positive log odds.

Adopting the log of the odds, or log odds, or logit, of p as the dependent variable
gives rise to the name logistic regression.

The logit is defined as:

log e

(p)

(1 − p)

We will see that although the model is fitted in log odds, the output is also converted back
to odds (the anti-log, see section 3.2) for our convenience and ease of interpretation.

So far we have overcome the problem of a binary variable by transforming p to the
logit. However, the inefficiency of least squares needs to be addressed.

To overcome the problems caused by least squares, logistic regression models are
fitted by the estimation procedure known as maximum likelihood, briefly described



in section 1.4. We do not need to be concerned with the mathematical details of maximum
likelihood estimation procedures, but should be comforted by knowing that this is the
best option available and is the method used by SPSS and Stata.

5.2 Example: Victim of car crime

To illustrate the application of logistic regression and the interpretation of the results,
we consider data from the British Crime Survey (BCS) for the year 2000. The focus of
interest is whether or not a household has been the victim of vehicle crime. Experience
of any incidence of a stolen vehicle, theft from a vehicle or criminal damage to a vehicle
is recoded 1 on the variable victcar and 0 if the household has not experienced any
of these crimes. Obviously, to be at risk of vehicle crime, a household must possess a
vehicle – so all households who did not have a vehicle were omitted from the sample
available for analysis. The effective sample size was 15,081 of whom 3396 or 22.5% were
the victim of a vehicle crime.

The BCS is a complex survey (for an explanation of a complex survey design, see
section 2.3). However, as the design features are not recorded as variables in the data
file, the data has been analysed as if the BCS was a simple random sample.

A subset of five independent variables was selected from the many variables within
the BCS data file. Three variables recorded individual characteristics, namely the
respondent’s sex, age and ethnicity. There are limitations in using individual variables
to explain household crimes as only one member of the household aged 16 or over,
selected at random, answers on behalf of the household. Characteristics of the inter-
viewee may not reflect vehicle ownership. An older person may have sons and daughters
in the household who each own a vehicle. A 16-year-old respondent cannot (legally)
drive. Unlike other individual variables, the ethnicity of the respondent may be a more
reliable indicator of the ethnicity of the household. Notwithstanding these concerns,
the main purpose here is to explain logistic regression and not to address the substantive
issue of vehicle crime.

Two household variables were chosen, the number of vehicles in the household and
tenure of the accommodation. Other things being equal, the more vehicles the house-
hold owns, the greater the chance that at least one will be stolen, vandalised or have
something taken from it. The number of cars has been recoded such that a household
with more than four vehicles has been collapsed into the category ‘4 or more cars’.
Tenure of the household has been dichotomised into ‘rented accommodation’ and
‘all other’ – which comprises mainly owner-occupied accommodation but not exclu-
sively so. Owner-occupied households are more likely to have a garage than households
living in rented accommodation and reflects a higher level of security, at least while
the vehicle is not in use. But tenure also acts as a proxy for the type of area in which
the household lives.

The five independent variables together with the dependent variable are summarised
in Table 5.1. Prior to analysis many were recoded from the originals. (An ‘r’ at the end
of the variable name is my convention of distinguishing recoded variables from their
originals.)

It can be seen from Table 5.1 that victcar is a 0,1 response variable. Of the independ-
ent variables, sex, agegpr, ethnicr and tenurer are categorical variables and three have
two levels whereas agegpr has three levels. Numcarr is a continuous variable but has
been truncated at 4.
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5.3 Undertaking logistic regression in SPSS

Click: Analyze → Regression → Binary Logistic

This brings up the following dialogue box.

Victcar has been declared as the dependent variable and the first logistic regression
included sex and ethnicr as independent variables. Note that unlike multiple regression,
SPSS has called the independent variables covariates. Furthermore, this module of
SPSS allows the researcher to distinguish categorical variables from continuous variables.
This is accomplished by clicking the Categorical . . . button; SPSS lists the covariates
and invites the researcher to nominate categorical variables. Both sex and ethnicr have
been declared as categorical variables and are indicated as such by (Cat) after them. The
purpose of identifying a variable as categorical is that SPSS automatically converts it to
dummy variables and includes all but one of the dummy variables in the model. The
default in SPSS is to drop the last (highest coded) category which in effect becomes the

Figure 5.1 SPSS dialogue box for logistic regression.

Table 5.1 Variables available for analysis

Dependent variable
victcar 1 if victim of vehicle crime; 0 if not

Independent variables
sex 1 male; 2 female
agegpr 1 16–44; 2 45–54; 3 55 and over
ethnicr 1 white; 2 all other
numcarr Number of vehicles in household, 1, 2, 3, 4 or more
tenurer 1 not rented; 2 rented
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reference category. (Recall that at least one dummy variable has to be omitted when
fitting a model – see section 3.5.) However, it is possible to change the reference cat-
egory from the last to the first by highlighting the categorical variable, which lights up
Change Contrast, then check First then Change. (Always remember to click on Change
as countless times I have thought I had changed the reference category to the first and
then been bemused by the output – only to realise some time later I had not authorised
the change by clicking Change.) Why SPSS does not distinguish categorical variables in
multiple regression and makes the researcher construct dummy variables but performs
these operations for the researcher in logistic regression is a mystery.

The fitted model is shown in Figure 5.2.

Following the convention of the general linear model, Equation (1.1), the Bs are the
parameters or coefficients indicating the partial effects of the explanatory variables.
However, the response variable is the logit so the Bs are the partial effects of the xs on
the log odds of being a victim of car crime, which is not intuitively meaningful. But
SPSS also calculates and presents the anti-logs, Exp(B), that is, it converts the coef-
ficients to be interpretable in terms of the odds. The Bs are therefore important when it
comes to fitting (and testing) the model but the Exp(B)s are more important when
interpreting the model, that is, when describing the relationships between the explana-
tory variables and the dependent variable. (This will be illustrated shortly below.) Also
note that negative log odds (B) correspond to odds, Exp(B), less than 1, whereas positive
log odds (B) correspond to odds, Exp(B), greater than 1.

As stated, both sex and ethnicr were defined as categorical variables and SPSS
converted them into dummy variables. As each had only two levels (coded 1 and 2) level
1 was included and level 2 (the highest coded level) was omitted and became the refer-
ence category. An important part of the output is a table titled Categorical Variables
Codings which defines how SPSS has labelled the variables and which it has taken as
the reference category. An example is given later but here sex(1) is male and ethnicr(1) is
white.

Interpreting the model thus becomes:

After taking account of other variables in the model (in this case ethnicity), being a
male rather than a female increases the odds of being a victim of vehicle crime by
1.072. Thus, the odds of being a victim of car crime are 7.2% greater for men than
women.

After taking account of other variables in the model (in this case gender), being

Figure 5.2 SPSS output, logistic regression model.
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in ethnic category white compared with any other ethnic group reduces the odds of
being a victim of vehicle crime by .793.

Of course, if it aids explanation one can always express the odds the other way. For
example, one might wish to say that after taking account of gender, being from an
ethnic minority background increases the odds of being a victim of vehicle crime by
1.26 (that is, 1/.793).

Two tips regarding presentation. First if one anticipates expressing the odds in terms
of ethnic minorities as opposed to white, it is preferable to code them or change the
reference category such that the odds in the text relate to the presentation of the model.
It is confusing to be given one set of odds in the text and another set in the model.
Second, when presenting odds in a report at most two decimal places would suffice.
Here, in order that the reader can relate the text to the output, the odds in the text have
been given to the same three decimal places as the output.

Tests of significance

Having fitted a model, we wish to assess whether it improves our understanding in any
significant way or whether the results are within the bounds of a chance occurrence. As
in the case of multiple regression, we wish to test whether the model in its entirety is
significant and whether any (and if so which) of the explanatory variables are signifi-
cantly related to the dependent variable. There are analogous tests for logistic regression
and they are described in turn.

To judge an entire model, one option is to test the model which includes explanatory
variables against the baseline model, that is, a model with no variables included, only
the constant. This is exactly the procedure followed for multiple regression, which
resulted in the F-test. In logistic regression the analogous procedure is to compare
−2Loglikelihood statistics (the statistic that results from estimating models by the
method of maximum likelihood) for the two models, the model with and without the
explanatory variables. Recall from section 3.3 that −2Loglikelihood has a chi-squared
distribution and that the difference between two chi-squareds is also a chi-squared. The
difference between the −2Loglikelihoods provides a straightforward and convenient test
of the collective contribution of the explanatory variables. SPSS automatically makes
this comparison and the resulting chi-squared test is given in the box Omnibus Tests of
Model Coefficients – see Figure 5.3.

SPSS proceeds by fitting what it calls a Block 0: Beginning Block at Step 0 which is
the model without the variables specified but just the constant term with 1 degree of
freedom. (Block 0 is not shown here.) It then proceeds to Block 1 (at Step 1) which fits

Figure 5.3 SPSS output, omnibus test of model.
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the model including the variables specified (in this case sex and ethnicr). The first results
are the omnibus tests. Here the step, the block and the model are all the same (with the
two variables included). The table says that entering the two variables sex and ethnicr
reduces the −2Loglikelihood by 10.405 which is distributed as chi-squared with 2 degrees
of freedom (df ). This is significant at the .006 level, which implies that including the two
variables sex and ethnicr adds to our understanding or explanation of the odds of being
a victim of vehicle crime.

SPSS always provides the relevant degrees of freedom so the researcher need not be
concerned about how they are determined. However, one degree of freedom is lost for
every coefficient in the model. In the two-variable model shown in the Variables in the
Equation output above there are 3 degrees of freedom, one for each coefficient of the
two variables and one for the constant. The Omnibus Tests of Model Coefficients
above shows 2 degrees of freedom not 3. This is because it is comparing the fitted
model with the base model in Block 0 which had 1 degree of freedom for the constant
term. Recall what was said earlier that chi-squareds and their degrees of freedom can
be subtracted. The Omnibus Tests is the difference in chi-squared so its correspond-
ing degrees of freedom are the difference between the degrees of freedom of the two
chi-squareds, that is 3 − 1 = 2.

A model summary follows next as shown below.

The value of the −2Log-likehood need not be of concern. More important are the
chi-squared tests resulting from the difference between −2Loglikelihoods, as described
above.

In an attempt to produce a statistic analogous to R Square for multiple regression,
two statistics have been produced, Cox and Snell and Nagelkerke statistics, and are
presented in the model summary box. These should be interpreted with caution as
neither has quite the same intuitive appeal as the R Square in multiple regression
(which can be interpreted as the proportion of variance explained). They are invariably
low in value but this does not mean that the models themselves are of little value.

So far the tests have considered the model in its entirety. We also need to assess
whether the individual variables, sex and ethnicr, make a significant contribution. What
is needed is an equivalent to the t-test in multiple regression and this is provided by the
Wald test, which is given in the ‘Variables in the Equation’ box above – the first element
of the output that we considered.

The Wald test was described in section 3.3 (where it was pointed that it is equal to z2

or t2) and is distributed as chi-squared with 1 degree of freedom. The value of the Wald
test, its degrees of freedom, and the significance level are all given as part of the model.

In the model fitted above it can be seen that ethnicr(1) has a p-value (Sig.) of .007

Figure 5.4 SPSS output, model summary.
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(or 0.7%) whereas sex(1) on the other hand has a p-value of .073 (or 7.3%). We
conclude that ethnicity is highly significant but sex much less so, not quite reaching the
5% threshold level.

A good model will accurately predict whether a person, given their characteristics on
the explanatory variables, is likely to be a victim of car crime or not. Thus comparing
predicted and actual outcomes will provide an indication of the adequacy of a model
and Hosmer and Lemeshow have formulated a test (available within Options) based on
this comparison. Further details are given later when this test is applied to the expanded
model.

5.4 Expanding the model

By any standards the model with sex and ethnicity does not perform well (and in all
honesty had I been analysing this data for real I would probably not have started here).
The next model fitted included all five explanatory variables in Table 5.1. Fitting this
model illustrates how to compare models and how to interpret the model, in terms of
odds and predicted probabilities, when continuous variables and categorical variables
with more than two levels are included. Blocking is also explained.

Four of the five explanatory variables were declared to be categorical and SPSS
reports how it has constructed dummy variables and how it has included them in the
model. This is shown in the Categorical Variables Codings shown in Figure 5.5.

From this box it can be seen that agegrpr(1) is the dummy variable for the 16 to 44 age
group, that is, those aged 16 to 44 have been coded 1 and those outside that age group
have been coded 0 on the variable agegpr(1). Agegpr(2) is the dummy variable for the 45-
to 54-year-olds as those in that age group have been coded 1 and those not in that age
group have been coded 0. The 55 and over age group has been taken as the reference
category and no dummy variable has been created for that group. For the other categori-
cal variables it can readily be seen that dummy variables have been created for not
rented, white and male. Thus rented, BME and female are reference categories. It
is important to clarify from the Categorical Variables Codings box how the dummy

Figure 5.5 SPSS output, categorical variable coding.
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variables have been constructed by SPSS and which have been included in the model.
Confusion can arise, especially if the reference category is changed from last to first.
(Why SPSS cannot label the dummy male instead of sex(1) is another mystery.)

With all five explanatory variables included, the model fitted is:

Interpreting the model: Odds and odds ratios

The first point to note is that a coefficient represents the partial effects of the variable,
dependent on what other variables are included in the model. Thus having added three
new variables the coefficients of sex and ethnicr have changed. The additional variables
have also changed the relative importance of sex and ethnicr; sex is now significant at
the 5% level and ethnicr no longer is. However, although sex is significant, the difference
between men and women in their odds of being the victim of vehicle crime is not
marked (being close to 1 – a mere 1.089). This is an example of a point raised in section
3.4, namely that in large samples variables can be significant but of little substantive
importance. Sex would not be a strong candidate for retention in the final model.
However, the three new variables are all highly significant.

The number of vehicles the household has (numcarr) is a continuous variable, the
unit being a vehicle. Thus the model is indicating that for each additional vehicle the
household possesses, the odds of the household being the victim of vehicle crime
(that at least one of the vehicles is stolen, vandalised or had something stolen from
it) increases by 1.413. Owning three cars increases the odds of victimisation by a factor
of 2.8 (= e.345 × 3).

Tenure of the accommodation also has a dramatic effect on vehicle crime. For
those not living in rented accommodation (mainly owner occupiers – many with a
garage) the odds are only .590 in comparison with households that do live in rented
accommodation.

Age has been grouped into three levels, so SPSS has created three dummy variables
and dropped the highest coded level from the model, making this the reference category.
As there are more than two levels a Wald test is provided for the entire effect of agegpr

Figure 5.6 SPSS output, logistic regression model with all explanatory variables included.
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(which indicates that agegpr is highly significant). However, although agegpr is signifi-
cant some of the individual age groups (levels) may not be, but in this case they are.
The omitted category is the older age group (age 55 and over).

The interpretation of the model is that after taking account of other variables in the
model, the odds of being a victim of vehicle crime is 2.205 greater for those aged 16 to
44 than for those aged 55 and over. Similarly, the odds of being the victim of vehicle
crime is 1.620 greater for those aged between 45 and 54 than for those aged 55 and
over. So how do the risks for 16- to 44-year-olds compare with the risks faced by 45- to
54-year-olds? This can be calculated from the model as they are both referenced to the
older age group. Thus the odds for the two groups are simply (2.205 /1.620) = 1.36; the
odds of being a victim of crime are 1.4 greater for 16- to 44-year-olds compared with
45- to 54-year-olds. In general we can compare any two categories by the ratio of their
odds (as the odds for the reference category is set to 1).

What conclusions can be drawn about ethnicity, which was significant in the first
model but is not found to be significant in the five-variable model? I suspect multi-
collinearity. Cross-tabulating ethnicity with tenure and ethnicity with age indicates
that ethnic minority respondents were more likely to live in rented accommodation
and, even more striking, ethnic minority respondents were disproportionately repre-
sented in the youngest age group. My theory (common sense?) tells me that it is
not ethnicity that is important as the offender does not know the ethnicity of the
owner of an unoccupied car unless he (and it is invariably a male) has a personal
vendetta against the owner. Young car owners own different kinds of cars (perhaps less
secure) and use their cars in different ways to older car owners; they use them late at
night where they are parked in public places and their cars may be more likely to
contain more desirable items attractive to young offenders. I tested my assumptions
by re-running the model excluding tenure and found ethnicity still to be significant but
less so. However, when I omitted age (but included tenure) ethnicity was no longer
significant. I conclude that ethnicity per se is not related to being a victim of car crime
but that other characteristics of ethnic minority communities predispose them to car
crime.

Interpreting the model: Predicted probabilities

So far the model has been interpreted in terms of odds and odds ratios. Odds are often
the most straightforward and intelligible way to convey the relationships between the
variables. On other occasions, however, one may want to interpret the model in terms of
predicted probabilities. One reason for developing statistical models expressed in sec-
tion 1.2 is in order that we might predict events or identify groups that are at high risk.
In this example we might use the model to identify people who are at greatest risk of car
crime and the insights gained could guide a crime prevention or intervention strategy.
From the logistic regression model the predicted probability of an event can be estimated
from:

Predicted probability, p =
exp (b0 + b1 x1 + b2 x2 + . . .)

(1 + exp (b0 + b1 x1 + b2 x2 + . . .) )
(5.1)

Predicted probabilities can be calculated following the same procedure as for multiple
regression, by substituting a subject’s characteristics into Equation (5.1).
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So for a white male, aged 60, living in his own house (that is, not rented) and having
two cars, his risk of car crime from the model above is:

(−1.837) constant + .085 (male) − .055 (white) + 0 (age)

− .528 (not rented) + .345*2 (cars)

Note that this subject is in the reference category on the variables age and tenure and
hence his value on these variables is zero. He has two cars and the coefficient was
.345 for each car.

The score for this subject is: − 1.645, and exp (−1.645) = .193

Thus the predicted probability =
.193

1.193
= .16

As a second illustration we estimate the risk of car crime for a young black female aged
25, living in rented accommodation, owning one car. Her score from the model is:

(−1.837) constant + 0 (female) + 0 (bme) + .791 (age) + 0 (rented ) + .345*1 (car)

The score for this subject is: −.701, and exp (−.701) = .496

Thus the predicted probability =
.496

1.496
= .33

Of course, an alternative way of obtaining predicted probabilities for the two subjects
cited above (and for any other subject) is to request SPSS to estimate predicted prob-
abilities (by checking Probabilities in Save . . .) which are then added as a variable PRE
to the data file. The subjects of interest can then be selected from the data file and their
value of PRE extracted.

When presenting predicted probabilities it is helpful to present a range of prob-
abilities for typical combinations of explanatory variables which illustrate how risks
vary for key groups within the population.

Assessing the overall model

The statistics for the overall model are given  in Figure 5.7.
The Model Summary states the −2Loglikelihood for the model and reveals it has

only a modest explanatory power as indicated by either R Square statistic. However,
the omnibus tests show that the model is very highly significant, the chi-squared
statistic being 599.923 with 6 dfs. What do the Step and Block chi-squared statistics
convey? It was stated earlier that subtracting the −2Loglikelihoods of different models
provides a chi-squared test for the additional variables in one model but not in
the other. To circumvent having to undertake this by hand, SPSS offers the researcher
the opportunity to specify alternative models as what it calls Blocks. This procedure
was followed here. Block 1 included sex and ethnicr (as before), Block 2 included
sex and ethnicr plus agegpr, tenurer and numcarr. What the omnibus test reveals is
that the Block adding the three new variables increased chi-squared by 588.942. With
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4 dfs this is a very significant improvement. If the three new variables contributed
588.942 to take the chi-squared for the model to 599.923 then the two previous vari-
ables, sex and ethnicr, together must have contributed 599.923–588.942 which equals
10.98. This figure is virtually the same as the chi-squared value we obtained when
considering the two-variable model – the only difference stems from the fact that a
few cases with missing data have been dropped prior to fitting the five-variable model.

Blocking can be useful as it saves keeping note of which −2Log-liklihood relates to
which model and so on. However, it is not a requirement to follow this procedure
and I find that blocking itself can cause confusion when sorting through output or
comparing models.

Before leaving this section, the model could have been expanded further by including
interaction terms (see sections 3.7 and 4.6). Unlike multiple regression, in logistic
regression SPSS can create interaction terms and this is achieved by clicking on one of
the variables to be part of the interaction term (which is highlighted) and while holding
down the control key highlighting the second variable. Highlighting both variables
illuminates the button to the left of the Covariates box, >a*b> (see initial dialogue box,
Figure 5.1). Click on this button and the interaction term is created and entered in the
list of covariates. All possible interactions were created amongst the four significant
variables (that is, excluding ethnicity) and entered into the model one at a time. How-
ever, none were found to be even close to significance at the 5% level and did not add to
the main effects model shown above.

5.5 Automated model selection procedures

Just as SPSS could be set to select the best fitting model in multiple regression, so it can
be tasked to select the best fitting logistic regression model. Three forward and three
backward selection procedures are available; referring back to the initial dialogue box
(Figure 5.1), the researcher clicks Method and substitutes one of the alternatives for
Enter. The results at each step are reported in the output.

Figure 5.7 SPSS output, logistic regression omnibus test and summary statistics.
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When the Forward: Wald model selection procedure was chosen it resulted in four of
the five explanatory variables being included in the final model. The variable omitted
was ethnicr – not surprisingly given the analysis so far conducted.

5.6 Diagnostics: Analysis of residuals

In order to test how well the model fitted the individual data points, diagnostic tests
were requested and residuals examined.

The predicted probability of being a victim of car crime can also be compared
with the actual outcome of respondents who were or were not the victim of car crime.
A good model would produce a close correspondence between the two, such that only a
small proportion of those respondents with a low predicted probability of becoming a
victim actually were a victim and, conversely, a higher proportion of respondents
with a high predicted probability were victims. The Hosmer–Lemeshow goodness-of-fit
test (within Options – see initial dialogue box at Figure 5.1) is based on this com-
parison. The sample is divided into groups (usually ten groups) according to the pre-
dicted probability of (in this example) being a victim of car crime. Within each group
the actual number of victims is compared with the expected number for that group. The
table showing the observed and expected numbers within each of the ten groups is
shown in Figure 5.8.

The expected number is simply the sum of the predicted probabilities for the mem-
bers of the group. It can be seen from the table that the numbers observed and expected
in each group are similar.

A composite statistic is produced for all the groups which approximates to a chi-
squared distribution with (the number of groups – 2) degrees of freedom. For
this model the Hosmer–Lemeshow test was found to be 11.5 with 8 df. The p-value

Figure 5.8 SPSS output, Hosmer and Lemeshow test.
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was .175 which is not significant and indicates that the model provides an adequate fit
to the data.

Within Options the Casewise listing of residuals box was checked which led SPSS to
list all cases with standardised residuals greater than 2 (the default – which was
accepted). In addition, within Save Standardized residual can be requested and added
as a variable to the data file. In total 330 cases were listed as being above the threshold
value. Under a normal distribution 5% can be expected to have standardised values
greater than 2 so to find 330 out of a sample of just under 15,000, or 2.2%, is not
surprising. Furthermore, on inspection, none of the 330 cases had standardised resid-
uals exceeding 3.0, which would have been the cause of some concern. In fact the
highest standardised residual was found to be 2.82.

As a further check on the data, Cook’s statistic was requested (by checking Cook’s
under Influence within Save). Strictly Cook’s is not the same as Cook’s distance in
multiple regression (see section 4.8) but an analogue has been developed for binary
outcomes available for logistic regression and serves the same function: identifying the
extent to which individual cases influence the model. Details are not given here but
Cook’s estimates were plotted and from this a threshold value was set and subjects
with values above that threshold were filtered out, some 360 in total. The model was
then refitted on the reduced data file, which turned out to be very little different to the
model presented above in all respects (the overall fit, the values and significance of the
parameters).

The diagnostic tests did not, therefore, seem to indicate any extreme problems in this
example.

5.7 Fitting the logistic regression model in Stata

The following Stata command (which could be issued directly or generated through
accessing dialogue boxes) would fit the above logistic regression model:

xi: logit victcar i.sex i.ethnicr i.agegrpr i.tenurer numcarr, or

Recall that Stata calls categorical variables indicator variables. xi: alerts Stata to the fact
that some variables are to be treated as indicator (categorical) variables. logit specifies
that a logistic regression is to be fitted, and victcar is the dependent variable. The
categorical variables are prefixed with i. and Stata automatically converts them to
sets of dummy variables. The absence of any prefix to numcarr means it is treated as a
continuous variable by Stata – which it indeed is. By adding the option or, odds are
given in the output, not log odds.

Output from the model is not given here but an example of Stata output from the
closely related multinomial logistic regression is given in the next chapter.

5.8 Probit model

An alternative to the logistic transformation of y is the probit transformation leading to
the probit model. The probit model was developed before logistic regression and still
finds favour in some disciplines and applications. The probit model was developed
initially to model binary outcomes resulting from dosage levels of a particular drug.
However, as Agresti (1996) points out, the two models are virtually indistinguishable

Logistic regression 75



and invariably result in the same inferences. The parameters (coefficients) of the probit
model are more difficult to interpret than those of the logistic model, which can be
readily interpreted as odds and odds ratios – as we have seen. As a result the logistic
model is now much more popular and more widely used. Personally I have never
applied the probit model in any analysis I have undertaken and cannot envisage a
reason for doing so.

Further reading

A more theoretical discussion of logistic regression (and the probit model) can be found in
Agresti (1996) and Long (1997). Long and Freese (2006) cover much of the material in Long
(1997) but also explain how to fit models in Stata.
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6 Multinomial logistic regression for
multinomial response variables

6.1 Background

In many applications the categorical response variable has more than two categories.
An example here is the type of sentence awarded by the court, and in the data presented
in Table 3.1 there were four sentences: custody, community penalty, fine and discharge.
Another example from political science is the vote for a political party and later we
examine the preference expressed at the 1997 general election between the three parties,
Conservative, Labour and Liberal Democrat.

When faced with a categorical response variable with more than two categories the
researcher has several options. First, the researcher could simply dichotomise the
response variable into two categories and fit a logistic regression. This may be satisfac-
tory in certain circumstances but is not generally recommended especially if there is no
clear rationale for merging categories. In the above example, if the prime interest is to
understand the circumstances in which custody is imposed, a logistic regression model
could be fitted to the response variable custody versus all other sentences. But imposing
an artificial dichotomy can distort the model as well as ignoring other important infer-
ences about the imposition of the full range of sentences. In the past, when there were
limited options, one may have needed to dichotomise the response variable but recent
developments have removed that necessity.

The 1970s and 1980s witnessed the advent of loglinear models which became very
popular during that period. Loglinear models grew out of a very different tradition
which was concerned with understanding the associations amongst categorical vari-
ables arranged as multi-way contingency tables. Their separate development has led to
different notation and presentation which makes loglinear models more difficult to
specify, understand and interpret. I personally would not advocate the use of loglinear
models, especially where there is a clear response variable – which is the case in the
overwhelming majority of research applications (and certainly all the applications I
have ever been involved in). Better options are now available, but, for completeness (and
because one may still come across them in the research literature), loglinear models are
described in Chapter 7.

In situations where there is a clear response variable (with more than two categories)
the loglinear model has been superseded by multinomial logistic regression, which
became available in SPSS and Stata in the 1990s. In fact, where there is a response
variable, the loglinear model and the multinomial arrive at equivalent results. As the
name implies, multinomial logistic regression is an extension of binary logistic regres-
sion, described in Chapter 5, and thus requires little additional investment in time and



knowledge to become familiar with it. The multinomial is simpler to apply than the
loglinear model, more straightforward to interpret and can easily accommodate con-
tinuous explanatory variables. In addition, being more recently incorporated within
SPSS, it has many desirable features which will become apparent when multinomial
logistic regression models are explained later. Furthermore, if the data is in the form of
a multi-way table, the tabular data can easily be weighted and analysed as if it were
an individual, subject, level dataset. The procedures for handling tabular data are
explained in Appendix 2. Thus, other than in exceptional circumstances, which are
explained in Chapter 7, I would always favour the multinomial over the loglinear
model.

If the categories of the response variable form a natural order, as is often the case
with attitudinal or preference data, the researcher can fit ordinal logistic regression
models. These are the subject of Chapter 8.

6.2 Fitting the multinomial in SPSS to data on sentences awarded
by the court

Multinomial logistic regression is an extension of logistic regression, having the same
conceptual framework of fitting the logit and comparing the odds of one event occur-
ring, rather another event occurring (in the case of logistic regression the other event
being not occurring).

Consider the response variable sentence imposed by the court. In this example an
offender can be sentenced in one of four ways: to custody, to a community penalty, by
being fined or by receiving a discharge. Multinomial logistic regression proceeds by
fitting all the alternative logistic regressions simultaneously, that is, by comparing:

• custody against community penalty
• custody against fine
• custody against discharge
• community penalty against fine
• community penalty against discharge
• fine against discharge.

As we shall see, not all the six logistic regressions above need be fitted, one can be taken
as the reference category and logistic regressions fitted for the other three sentences
against the reference sentence. The other three logistic regressions not fitted can be
derived from those that are fitted.

The multinomial logistic regression routine in SPSS is superior to logistic regression;
categorical variables do not have to be separately identified (something I continually
forget to do in logistic regression and then spend a considerable amount of time won-
dering why the results don’t make sense).

In sections 3.1 and 3.3 we considered how the sex of the offender was related to the
sentence awarded and found significant differences between men and women in the
types of sentence imposed. But when deciding upon a sentence, judges and magistrates
will also be influenced by the offender’s previous criminal record, as indicated by the
number of previous times he or she has appeared in court. The number of previous
court appearances is a continuous variable but here it has been recoded to be a categori-
cal variable (pappfact), coded 1 no previous court appearances, 2 one to four previous
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court appearances, 3 five or more previous court appearances. Sex is coded 1 male and
2 female. The response variable (sentgpr) is sentence with the four possible options
defined above, coded 1 custody, 2 community penalty, 3 fine, 4 discharge. The sample
comprises 2860 adults aged 21 and over, found guilty of a shop theft offence. This data
is set out as a multi-way table in Appendix 2 where it appears to illustrate procedures for
weighting tabular data.

Analyze → Regression → Multinomial Logistic . . . brings up the following dia-
logue box.

Sentgpr is entered as the dependent variable and the last level (the one with the
highest numerical code) discharge becomes the reference category by default. However,
by clicking Reference Category it is possible to change the reference category to the
first or any other category (by clicking Custom and entering the code of the chosen
category).

There are two boxes to designate explanatory variables. Categorical variables are
entered in Factor(s) and continuous variables in Covariate(s).

The first element of the output (not shown here) is Case Processing Summary which,
helpfully, gives the frequency distribution for each categorical variable and records the
number of missing cases. The second element (reproduced at Figure 6.2) is Model
Fitting Information which shows the contribution of the two explanatory variables
taken together.

Figure 6.1 SPSS dialogue box for multinomial logistic regression.
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It can be seen that the model including the two variables and the constants (inter-
cepts) reduces the −2Loglikelihood by 291.955 compared with the model that just
includes the intercepts. This difference, which is the contribution of the two explanatory
variables taken together, is a chi-squared distribution with 9 degrees of freedom and is
very highly significant. (The fitted model shown below has 12 dfs but three are for the
three intercepts, thus the explanatory variables have between them 9 dfs.)

Output from the multinomial records three pseudo R-Squares – McFadden has been
added to the two produced by the logistic regression routine in SPSS.

The next element of the output, Likelihood Ratio Tests, reproduced at Figure 6.4, is
very helpful as it indicates the individual contribution of each of the explanatory
variables. As the footnote says, the contribution of a variable is calculated by compar-
ing the full model (with all explanatory variables – two in this case) with the model
omitting that variable but including the other explanatory variables (in this case the
other one). The chi-squared thus indicates the additional contribution of the variable
once account has been taken of the others (see Figure 6.4 opposite).

It can be seen that both explanatory variables make a significant contribution to the
model.

The final element of the output is the model itself. Note that there are three models.
The output helpfully reminds the researcher that discharge is the reference category
so the first section of the output compares custody with discharge, the second compares
community penalty with discharge and the third fine with discharge.

The layout of the model is shown in Figure 6.5 and is very similar to the layout for
logistic regression.

Considering the results for custody, the model indicates that after adjusting for the
other variables in the model (in this case sex) first offenders and offenders with one to four
previous court appearances (pappfact = 1 and pappfact = 2) are much less likely to
receive a custodial sentence than a discharge than offenders with five or more previous

Figure 6.2  SPSS output, model fitting information.

Figure 6.3 SPSS output, R-squares
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court appearances (odds of .24 and .26 respectively). Sex = 1 is male, so the odds for
males compared with females are 2.7 greater of receiving a custodial sentence than a
discharge.

Similar inferences can be made about an offender’s chance of receiving a community

Figure 6.4 SPSS output, likelihood ratio tests.

Figure 6.5 SPSS output, model estimates.
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penalty as opposed to a discharge, except that the odds are generally reduced. Men are
twice as likely to receive a fine rather than a discharge compared with women. However,
being a first offender (pappfact = 1) as opposed to having five or more previous court
appearances reduces the odds of being fined (and increases the odds of being discharged)
but having one to four previous appearances as opposed to having five previous court
appearances makes little difference. Sex though is still important.

Often in sentencing studies the interest is not in comparing custody with discharge
but in understanding what determines a custodial sentence rather than a community
penalty. The two can be compared from the model. For example, if the particular
interest is in understanding the sentencing of men and women, the model indicates that
the odds ratio of men to women custody to discharge is 2.696 and the odds ratio of men
to women community penalty to discharge is 1.313. Thus the odds ratio of men to
women custody to community penalty is (2.696/1.313) = 2.05. However, if comparing
custody with community penalty is of prime importance it would be advisable to make
either the reference category and rerun the model. Then one would not only obtain
the odds between the two sentences but also the Wald statistics and the significance
levels.

6.3 Diagnostics: Analysis of residuals

How good is the model in fitting the data? We can assess this in two ways. One of
the Statistics . . . options available in SPSS is Classification table which compares the
actual sentence received by an offender with the sentence predicted by the model. The
classification table was requested for this model and is shown below.

It will be recalled from Table 3.1 that approximately one-quarter of the sample
received each of the four sentences, yet from the above classification table the model
predicts over one-half to be sentenced to custody. It predicts about one-quarter to be
fined but only 14% and 9% to be discharged and to be given a community penalty
respectively. The model is also more accurate at predicting custodial sentences.

From this table we can estimate how much the model improves prediction. As a
baseline we can consider the number of correct and incorrect predictions that would be
obtained without fitting a model (that is, without knowing how the explanatory vari-
ables affected the outcome). Without a model, the best prediction of sentence would be
to predict all offenders received the sentence that was most frequently imposed. From

Figure 6.6 SPSS output, classification table.
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Table 3.1 it can be seen that fine was the sentence most often awarded, to 746 offenders.
If fine was predicted for all offenders, 746 (or 26%) would be correct and 74% in error.
It can be seen from the table above that the model improves on the baseline by correctly
predicting the sentence for 35.8% of offenders. An alternative, often-adopted measure
is to estimate the percentage reduction in errors. At baseline, without the model, predic-
tions would be in error for 2114 offenders (2860 − 746). However, using the model to
predict sentence, 1023 (543 + 88 + 230 + 162) sentences would be correctly predicted
and there would be 1837 (2860 − 1023) prediction errors. Thus the model has reduced
prediction errors by

(2114 − 1837)

2114
= .13 or 13%

A further, more detailed, breakdown can be requested by checking Cell probabilities
(also within Statistics) and SPSS outputs the observed and predicted values together
with Pearson residuals for all combinations of the explanatory variables. The output is
shown in Figure 6.7.

Inspection of the table suggests that the model fits well in that the predicted number
in each cell is similar to the observed number. As pointed out in section 3.9, Pearson

Figure 6.7 SPSS output, cell counts and residuals.
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residuals greater than 2 (or less than −2) warrant further inspection but the values here
seem well within acceptable bounds.

Unfortunately, unlike multiple regression and logistic regression, methods for detect-
ing outliers and influential observations are not as well developed nor are they readily
available for multinomial logistic regression (or for ordinal logistic regression – the
topic of Chapter 8).

6.4 Expanding the model

In addition to the sex of the offender and the number of previous occasions the
offender has committed crime and appeared in court, sentencers will also take into
account the offender’s age and the number of shop offences the offender is found guilty
of at that court hearing. Both these variables are continuous but thought was given
to how they should appear in the model. To include them as continuous variables
assumes a linear relationship in that every additional year of age has the same incre-
mental effect on sentence regardless of the age of the offender. A cross-tabulation of
age and sentence indicated this not to be the case. Inspection of the table revealed
that the chances of receiving a custodial sentence were approximately constant until
middle age and then fell markedly. In view of this, age was dichotomised into those aged
21 to 44 and those aged 45 and above and this variable (agefact2) entered into the model
as a factor.

The number of offences at the court appearance was similarly considered but it did
appear to exhibit a linear relationship with sentence. The variable offappt was included
as a continuous variable (or Covariate(s) in the SPSS dialogue box).

The expanded model improved the fit of the previous model. The likelihood ratio
chi-squared statistic was very highly significant, being 977.2 with 15 dfs, p < .001. Both
new variables were highly significant and the Cox and Snell pseudo R2 increased to .29.
The model is shown as Figure 6.8, opposite.

It can be seen from the model that younger offenders are more likely to receive
a custodial sentence or a community penalty than a discharge. Each additional offence
at the court appearance also increased the odds of a more severe sentence. However,
these characteristics are not important in determining the decision to impose a fine or a
discharge.

Having conducted a good deal of research on sentencing, these results are in line with
my expectations. Women, older offenders and those committing fewer offences (either
at the same court appearance or previously) are more likely to receive a discharge.
Young male persistent offenders are more likely to receive more severe sentences. There
is often not much to choose between a fine and a discharge (as indicated by the model)
except that men are more likely to be fined. A fine is often felt to be inappropriate for
women as they may not have the means to pay or they may have dependent children
who would be adversely affected by the imposition of a fine.

The classification table for this model is shown at Figure 6.9. Compared with the
previous model (at Figure 6.6) the expanded model improves prediction. The overall
percentage correct predictions has risen to 43.8% (compared with 35.8%). This model is
much better at predicting fines, slightly better at predicting community penalties and
discharge but not so good at predicting custody.

Following the methodology in section 6.3 in respect of the previous model, the
percentage reduction in error obtained with the four-variable model was 24%.
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Figure 6.8 SPSS output, model estimates.

Figure 6.9 SPSS output, classification table.
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Pearson residuals were requested and examined. However, when fitting a model with
many explanatory variables, especially if any are continuous, the numbers in many of
the cells (representing the combinations of the explanatory variables) become very
small. Many cells are likely to have expected values less than 5, which is invariably
regarded as the minimum for reliable estimates, and that was found to be the situa-
tion here. Nevertheless, the Pearson residuals for the vast majority of cells were
within acceptable limits; those that were not were for rare combinations of explanatory
variables. As there seemed to be no discernable pattern to the high Pearson residuals
(other than small numbers in the cell), I concluded that the diagnostic tests had not
identified any serious inadequacies with the model.

The expanded model can be seen to have many parameters and it is not uncom-
mon for multinomial models to be extensive and complex. If the real world that the
model is attempting to represent is complex then a complex model is inevitable.
Nevertheless, a more parsimonious model is desirable and more straightforward to
interpret so it is worth considering whether the multinomial can be simplified. There
are two possibilities. First, if the response variable is ordered, an ordinal logistic
regression can be fitted. Ordinal regression is the subject of Chapter 8. Second,
if none of the explanatory variables affect the odds of one outcome rather than
another, the two outcomes can be combined. However, I have never come across such
a situation where combining categories was a viable option. While the explanatory
variables might not alter the odds between some outcomes, I find that there is always
one explanatory variable that does. In the above example, many of the explanatory
variables do not affect the odds of fine rather than discharge, but sex of the offender
and having never appeared in court before do affect the odds of a fine rather than
discharge. If one did face the option of combining two outcomes, it is best to test
beforehand that all the coefficients of the explanatory variables are 0 by fitting a
binary logistic regression on the reduced sample comprising only those subjects that
received the two outcomes.

Adding interaction terms

The multinomial routine will create interaction terms and follow an automated
stepwise procedure if requested. To perform either, click on the ‘Model . . .’ bar in the
dialogue box that appeared in Figure 6.1. This brings up the box shown at Figure 6.10,
opposite.

Custom/Stepwise must first be checked and this ‘lights up’ the box. In order to follow
a stepwise procedure the variables to be considered need to be entered in the Stepwise
Terms: box and a stepwise method selected – Forward entry being the default option.
Here we are not interested in allowing SPSS to select the model (a practice which I
would generally discourage), rather we wish to demonstrate how to create an inter-
action term, in this example, between age and sex. All the four variables to be included
in the model are copied into the Forced Entry Terms: box. The interaction term is
created by clicking on sex, holding the down the control key and clicking on agefact2
then clicking on the Build Terms arrow – the interaction term appears as agefact2*sex.
This interaction term was not found to be significant. In fact all possible interaction
terms between the four explanatory variables were created but none were found to be
significant.
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6.5 Relationship between SPSS logistic and SPSS multinomial

If the multinomial is an extension of the logistic (in situations where there are more
than two possible outcomes on the response variable) the multinomial should fit the
same model as the logistic when there are only two outcomes – and this is the case, but
with one proviso. Consider the analysis in the previous chapter which examined the
probability of being a victim of car crime. Non-victims were coded 0 and victims 1. The
logistic, ‘knowing’ there are only two outcomes, fits the model to show the odds of
being a 1 (victim) as opposed to a 0 (non-victim). The multinomial does not operate
that way. Expecting any number of outcomes it looks for the highest coded and drops
that – to become the reference category. In the case of a 0,1 variable it will make the ‘1’
the reference category and estimate the odds of being a 0 compared with a 1. Thus the
multinomial will estimate the odds of not being a victim compared with being a victim.
Hence all the chi-squared, likelihood and Wald statistics, together with their signifi-
cance levels will be exactly the same in the logistic and the multinomial but the odds
(the Exp(B)s) will be the inverse of each other. Obviously either odds can be obtained
by inverting the odds produced by the model or by rerunning the model and changing
the reference category.

6.6 Fitting the multinomial in Stata to voting data, incorporating
complex design factors

Section 2.3 discussed complex samples and emphasised the importance of taking into
account sampling design factors when developing statistical models. Essentially the
point was made there that ignoring complex design features, and treating the data as if
it was from a simple random sample, would produce the wrong standard errors for the

Figure 6.10 SPSS dialogue box to create interaction terms.
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coefficients (b) in the model. While it depends on the design features pertaining in each
study, it is invariably the case that standard errors will be underestimated if the com-
plexity of the sample design is ignored, t values will thereby be overestimated and
p values smaller, resulting in possible erroneous inferences. So long as the various
aspects of the design features are recorded as variables on the data file, Stata has the
facility to estimate correct standard errors. The British Election Survey (BES) 1997
contains the relevant information and is used to illustrate the procedures.

The BES 1997, like all other surveys in the series conducted at the time of a general
election, asked a range of questions on whether respondents voted, for which party if
they voted and their reasons for choosing that party. We are not interested here in any
substantive issues, but merely to demonstrate some methodological points. For these
purposes the dataset has been reduced to those who voted for the three political parties,
Conservative, Labour and Liberal Democrat. The response variable is vote (indicating
which of the three parties the respondent voted for). Only four explanatory variables
are considered, sex, hedqualb, leftrigh and libauth. The variable sex was transformed
into two dummy variables, male and female, following the procedures explained
in section 3.5. The variable hedqualb reflects the highest educational qualification
obtained and has been reduced to a binary variable with code 1 indicating that the voter
has a degree or other higher educational qualification, 0 represents all other qualifica-
tions or that the voter has no educational qualifications. leftrigh is measured on a
continuous scale (from 1 to 5) indicating whether a respondent leans to the left or the
right of the political spectrum and a similarly constructed variable libauth (on a scale
from 1 to 6) indicates whether a person has libertarian or authoritarian values. Both
variables are latent variables and are described in more detail in section 10.2.

Assuming that the data is from a simple random sample, the command for the
multinomial logistic regression in Stata is:

mlogit vote female hedqualb leftrigh libauth, rrr

This command has the same structure as the commands for other models presented
earlier. Prefixing the command xi: is not needed in this case because female is a dummy
variable so Stata is not required to create one. rrr stands for relative risk ratios and
requests Stata to report odds rather than the coefficients on the log scale. The output is
given in Figure 6.11 overleaf.

Note that Stata does not present −2Loglikelihood but the Loglikelihood. Neverthe-
less, the LR chi2(8) = 984.21 shown in the output is the difference between the
−2Loglikelihoods for the model above and the base model, and is thus the chi-squared
attributable to the model. It can be seen that the chi-squared value (with 8 degrees of
freedom) is very highly significant.

The default in Stata is to select the numerically largest category of the response
variable as the reference category (base category). This is a sensible strategy as it avoids
routinely designating the last category, which is often small in number and of little
interest (for example, ‘other’), as the reference category. Any category can be designated
as the reference category but as Labour is the largest category and either it or Conserva-
tive would have been selected in any case, the default was accepted.

The effect of the leftrigh scale and the libauth scale are in the expected direction. For
every unit increase on the leftrigh scale, that is towards the right end of the scale, a voter
is nearly 20 times more likely to vote Conservative rather than Labour. Similarly,
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for every unit increase towards being more authoritarian than libertarian a voter is
2.8 times more likely to vote Conservative rather than Labour. Females and respond-
ents with a higher educational qualification are also about one and a half times more
likely to vote Conservative than Labour. All variables are highly significant. Note
that Stata presents z statistics (or as will be seen in the next output, t statistics) rather
than Wald statistics which are favoured by SPSS. Nevertheless, whichever are given the
inference will be the same (recall that z, t and Wald are related – see section 3.3).

Contrasting Liberal Democrat voters and Labour voters, Liberal Democrat voters
tend to be to the right in their political outlook as measured by the left–right scale, but
far less pronounced than Conservative voters (odds being 2.5 rather than 20). The odds
of those with higher educational qualifications voting Liberal Democrat rather than
Labour are more pronounced than in the case of Conservative voters. However, there is
no significant difference between Liberal Democrat voters and Labour voters on gender
or on a libertarian or authoritarian values – the odds being close to 1.

Had our interest been in more substantive issues we would have also compared
Conservative and Liberal Democrat voters. However, here the interest is in taking
account in the analysis of survey design factors. Referring back to section 2.3, the first
stage of the survey was to select a sample of postal sectors which are thus the primary
sampling units ( psu). In the data file the variable isspc records the postal sector. The
sample was stratified and the strata from which the psu was selected is noted in the
variable stratno. The weight calculated to adjust for the differential probability of being
selected is the variable wtallgb.

The design factors can be added to Stata commands every time an analysis is per-
formed. However, a better way of proceeding is to declare and set these factors at the
outset by the set survey command, svyset. For the BES the command is:

Figure 6.11 Stata output, multinomial logistic regression.
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svyset [pw = wtallgb], psu (isspc) strata (stratno)

Having defined the design features of the survey (which can be set at any time and are
stored permanently – unless reset), they are automatically incorporated by prefixing
the mlogit command by svy. This is shown below together with the results of the
multinomial logistic regression.

It can be seen that Stata helpfully reminds the researcher of the design variables as
these might have been set some time previously. Stata also states the number of strata
and psus. These are slightly different from the original survey due to missing data and
the fact that only a subset of the data are being analysed here.

The more important point to note, however, is the effect of the design features on the
coefficients of the model and in particular the standard errors which together affect the
p values. Of the eight p values, four remain unaltered, one has reduced (although only at
the level of the third decimal place). On the other hand, three have increased substan-
tially: Conservative female from .004 to .023, Liberal Democrat female from .398 to
.556 and Liberal Democrat libauth from .261 to .726. In this example, the inferences
that might be drawn have not changed materially. No variable has changed from being
thought significant to non-significant or vice versa. Nevertheless, the comparison does
serve to underlie the need to adjust estimates to take into account the complexities of
study design.

Note that t statistics are given in svymlogit while z statistics are given in mlogit!
Note also that multistage clustered samples can be viewed as hierarchical or multi-

level data, and can be analysed within a multilevel modelling framework (discussed in
Chapter 9).

Figure 6.12 Stata output, multinomial logistic regression incorporating complex design factors.
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SPost and the odds-ratio plot

As we have seen, multinomial regression models can generate a large number of
parameters and time and care is needed in understanding the complex set of results.
Long (1997) proposed various ways, including graphical methods, for presenting results
as an aid to interpretation. Long and Freese (2006) have since compiled a suite of Stata
commands, called SPost, to produce output and graphs originally proposed by Long
(op. cit.). SPost can be downloaded and installed within Stata (and can be found by
typing net search SPost). Details of how to implement these commands, together
with examples of the outputs and their interpretation, can be found in Long and Freese
(op. cit.).

One useful graphical presentation is the odds-ratio plot and an illustration is given
below. Unfortunately the SPost command does not appear to work with svymlogit so
the plot shown has been derived from the model based on the simple random sample,
which is the first model presented at Figure 6.11.

From Figure 6.13, it can be seen that each of the four independent variables in the
model, the two binary variables female and hedqualb and the two continuous variables,
leftrigh and libauth are represented as a separate row in the plot. The lower horizontal
axis is the log odds scale (B) and the upper horizontal axis is the corresponding odds
scale (ExpB). The letters correspond to the outcomes. However, to avoid the confusion
of both Labour and Liberal Democrats being denoted by the letter L, the category label
for Liberal Democrats was reversed to Democrat Liberal, which resulted in that party
being indicated by the letter D in the plot.

Labour has been chosen as the reference (base) category as in the model, but either of
the other parties could have been selected instead. Significance can be requested and a
line connecting any two letters indicates that the log odds (or the odds) between the two
outcomes is not significant. If a letter is to the right of another letter it indicates that a
change or increase in the independent variable makes the outcome denoted by the letter
to the right more likely. The distance between the letters indicates the magnitude of the
effect.

The odds-ratio plot dramatically and visually portrays the results of the model. For
example, the plot shows that there is no significant difference between Labour and

Figure 6.13 Odds-ratio plot.
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Liberal Democrats on gender and the extent to which voters are libertarian or authori-
tarian. Voters to the right on the left–right scale are much more likely to vote Conserva-
tive. Furthermore, while voters who have a higher education qualification are more
likely to vote Conservative than Labour, they are even more likely to vote Liberal
Democrat. All the results depicted in the odds-ratio plot can be obtained from the
model (and the coefficients in the model can be seen to accord with the position of
the letters on the two scales), but the plot makes the relationships in the model more
distinctive and easier to assimilate.

SPost has many other options, in particular commands to calculate predicted prob-
abilities for individuals with specified characteristics of the independent variables. It
was stated in section 5.4 that calculating predicted probabilities is an important way of
interpreting any form of a logistic model and assessing the effects of the independent
variables. SPost makes the task of calculating predicted values much easier.

SPost can also undertake and present, for each explanatory variable, odds and log
odds for comparisons among all pairs of outcomes, that is, without having to refit the
model with an alternative base category.

Further reading

Agresti (1996) and Long (1997) provide a more theoretical and comprehensive review of multi-
nomial logistic regression. Long and Freese (2006) covers much of the material in Long (1997)
but also explains how to fit models in Stata.
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7 Loglinear models

7.1 Introduction

In section 6.1, I said that I would always choose to fit a multinomial logistic regression
in preference to a loglinear model in analyses where there is a clear response variable.
However, for completeness, loglinear models are described in this chapter.

Loglinear models developed from the analysis of categorical data set out as multi-way
contingency tables, and we approach loglinear models from that viewpoint. Essentially,
loglinear modelling partitions chi-squared into its constituent parts to test for associ-
ations between the different categorical variables included in the analysis. At this point
none of the variables are considered to be a response variable. All variables are treated
equally, the purpose being to identify any associations between them.

We begin by considering the cross-tabulation between sentence and sex, which
was set out in Table 3.1, and recap what was said about chi-squared in section 3.3.
Chi-squared compares the number observed in a cell with the number that might be
expected under the null hypothesis of no association between (in this case) sentence and
sex. Expected cell counts can be obtained by Equation (3.1a), which is repeated here for
ease of reference:

N × row marginal prob (custody) × column marginal prob (male) Equation (3.1a)

We see that Equation (3.1a) has three terms multiplied together. This can be converted
to an additive model by taking logarithms (see section 3.2). Because logs have been
taken to produce an additive model, this model is called a loglinear model.

To avoid confusion that arises by using S for sentence and S for sex, in the models
that follow G (gender) will used to denote sex. If we denote µ (the Greek letter mu)
as the number in the cell, the formula for the expected number in each cell can be
written as:

log µ = λ + λS + λG (7.1)

The model states that the log of the expected number in a cell is made up of three
components added together:

λ (the Greek letter lambda) – a constant – common to all cells
λS – the row effect of sentence (in the case of the first cell, custody)
λG – the column effect of gender (in the case of the first cell, male)



The model presented in Equation (7.1) is similar in form to the other linear models
presented in earlier sections. The difference is that the dependent variable in the loglin-
ear model is the cell count – the number in the cell. Because Equation (7.1) predicts the
expected cell count under the null hypothesis of no association, it is known as the
loglinear model of independence for two-way contingency tables.

The loglinear model for the observed cell count is:

log µ = λ + λS + λG + λSG (7.2)

Equation (7.2) is the same as Equation (7.1) (the model for the expected cell count under
the null hypothesis) with the addition of λSG, which is the effect of the association or
interaction of sentence and gender. Alternatively, subtracting the model in Equation
(7.1) from the model in Equation (7.2) is equivalent to measuring the effect of λSG – the
association between sentence and gender. The chi-squared test for two-way tables,
which compares observed cell counts with expected cell counts, is in effect testing
whether the association term, λSG, is zero.

Equation (7.2) contains all possible terms (constant, all one-way main effects and
all two-way interactions) that contribute to the observed cell count. As Equation (7.2)
perfectly defines the cell count, if this model was applied to the data it would merely
reproduce the observed cell counts. Because all possible terms are included, Equation
(7.2) is called the saturated model.

At this point it could be asked why have we gone to the trouble of reformulating
the simple chi-squared of two-way tables into what appears to be a more complicated
loglinear model? The reason is that it simplifies the analysis when we include additional
factors in the model. Let us now consider doing that by returning to the analyses in the
previous chapter which introduced multinomial logistic regression.

7.2 Three-factor model

We now add a third variable previous criminal history (P) to the analysis together with
sentence (S) and sex (G). These three variables were the subject of the model fitted in
section 6.2. As before, the continuous variable number of previous convictions has been
recoded to form a categorical variable (factor) with three levels, ‘no previous convic-
tions’ (that is a first offender), ‘one to four previous convictions’ and ‘five or more
previous convictions’.

Previous convictions is very highly related to both gender and the sentence awarded.
Males are much more likely to have an extensive criminal record; 70% of males had five
or more convictions compared with 41% of females. The association between the two
variables was found to be highly significant; chi-squared 189.4, df 2; likelihood ratio
183.1, df 2.

As expected, an extensive criminal career was more likely to lead to a custodial
sentence. Of offenders with five or more previous convictions, 34% were sentenced to
custody but only 14% of first offenders received a prison sentence. On the other hand,
first offenders were more likely to be given a discharge, 38%, and only 18% were sen-
tenced to custody. The association between previous convictions and sentence was
highly significant; chi-squared 220.2, df 6; likelihood ratio 229.4, df 6.

The three variables can be displayed as a three-way table. It is not given here but
appears in Appendix 2, Table A.2.
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The observed cell count for each cell of the three-way table sentence (S) by gender
(G) by previous convictions (P) is determined by the saturated model:

log µ = λ + λS + λG + λP + λSG + λSP + λGP + λSGP (7.3)

It can be seen that Equation (7.3) includes every conceivable term, constant, all main
effects of sentence, gender and previous convictions, all two-way interactions between
each pair of factors and an interaction between all three.

7.3 Expanding the model

The loglinear model can be expanded to include any number of other categorical
variables. In section 6.4, age (A) was also found to be important and can be added to
the model. (Age was dichotomised into a categorical variable: 1 age 21 to 45, 2 age 45
and over.) We now have four categorical variables, S, G, P and A and the saturated
model for the observed cell counts is given by the model:

log µ = λ + λS + λG + λP + λA + λSG + λSP + λSA + λGP + λGA + λPA + λSGP

+ λSPA + λSGA + λGPA + λSGPA (7.4)

It can be seen that Equation (7.4) contains all possible one-, two-, three- and four-way
terms. As models including many variables contain many terms a short-hand conven-
tion is adopted. Equation (7.4) can be written as SGPA, which specifies a model which
includes the four-way term and all possible lower order terms.

In section 6.4 the number of offences at the court appearance (O) was also import-
ant, resulting in five variables S, G, P, A and O. The saturated model could be written
out extending Equation (7.4), but this would result in many terms – hence the advan-
tage of the shorthand notation. The saturated model for five variables is:

SGPAO (7.5)

Because the saturated model (Equation (7.2) in the case of two-way tables, Equation
(7.3) for three-way tables, Equation (7.4) for four-way and Equation (7.5) for five-way)
includes all possible terms, the cell count it predicts is, in fact, the observed value.
Thus under the saturated model the observed cell count equals the expected cell count.
Thus the difference between observed and expected is zero and the chi-squared for the
saturated model is zero, that is non-significant. The saturated model perfectly fits
the data.

Thus we know that we can always fit a saturated model including all possible terms
that will fit the data perfectly (and result in a non-significant chi-squared value of zero).
The approach in loglinear modelling is, in effect, to identify reduced models with fewer
terms that fit the data equally as well as the saturated model. If the terms that are
dropped make an insignificant contribution to the cell count, the reduced model will be
as almost as good as the saturated model (its chi-squared will not be zero but it will not
be significant). However, it is not the convention to add or drop terms at random. If the
starting point is the saturated model (the approach followed by SPSS) the highest order
interactions are assessed first. If these are not significant and can be omitted, the
interactions at the ‘next level down’ can be tested. In the case of Equation (7.4), for
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example, the four-way interaction λSGPA is considered first, and if this is found not to be
significant and can be omitted the four three-way interactions are considered, and so on
until one arrives at the most parsimonious model that is not significant. An ordered
approach to assessing terms, starting with the highest, has led some to refer to this
procedure as hierarchical loglinear modelling. 

One other point to note, that sometimes leads to confusion, is that in loglinear
modelling the researcher is looking for non-significant simplified models. This is differ-
ent from the other modelling approaches that have been discussed where the researcher
is seeking the most significant model. There is no contradiction, just a different way of
proceeding. In most cases one starts, as it were, at the beginning with the constant and
no other terms, and then proceeds to make the model more complex by adding signifi-
cant terms. In loglinear modelling, one starts, conceptually at least, at the other extreme
with all the terms notionally included and then proceeds by deleting terms that are not
significant. In both cases one is trying to find the most parsimonious model between the
two extremes (of no variables and all variables) that adequately explains the data.

7.4 Loglinear models specifying a response variable

In the loglinear models presented so far, all variables were treated equally, that is, no
distinction was made between them in terms of being a dependent (or response) vari-
able or an explanatory variable. Loglinear modelling, as applied so far, considers them
all to be response or all to be explanatory variables (it does not matter which). Because
all variables are treated equally, this approach is sometimes described as symmetrical.

But in the sentencing example there is a clear response variable, sentence (S) and
loglinear models can be specified in such a way that designates one of the variables to be
a response variable. Consider the five-factor model with sentence (S), sex (G), number
of previous convictions (P), age (A) and number of offences (O). Here the interest is in
how G, P, A and O affect the response S. We are not interested in the association
between G, P, A and O, nor in the main effect of S which need to be eliminated or
controlled for before the relationship between S and the other variables are considered.
The base (or minimal model) is, using the shorthand notation:

S + GPAO (7.6)

And these terms must always be included in any subsequent model. Starting with the
model in Equation (7.6), terms are added such as SG, SP and SA to assess whether G
(sex) or P (previous convictions) or A (age) is associated with sentence. If these terms do
not result in an adequate (non-significant) model, higher order terms, such as SGP or
SGA are added. Loglinear models specified in this way are equivalent to multinomial
logistic regression models. In section 6.4, the multinomial model found all the explana-
tory variables to be significant but did not find any interactions to be significant. Thus,
the equivalent loglinear model is:

S + SG + SP + SA + SO + GPAO (7.7)

Strictly the multinomial of section 6.4 and Equation (7.7) are not equivalent as O in the
multinomial was included as a continuous variable (covariate) whereas in the loglinear
model in Equation (7.7), O is included as a categorical variable.
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Thus when one variable is to be treated as a response variable, the loglinear model is
specified in such a way as to be equivalent to the multinomial. This prompts the ques-
tion, why specify a loglinear model as above when the equivalent model can be fitted
more easily as a multinomial (especially when the loglinear procedure in SPSS is so
unwelcoming)? Why indeed? I would always opt for the multinomial.

Having said that, one possible advantage of loglinear models over the logistic and the
multinomial, which should be noted, is in situations where the researcher has more than
one response variable. Loglinear models can be specified with several response variables
included in the same model. Consider the hypothetical example where there are four
variables A, B, C and D, in which A and B are considered as response variables and C
and D as explanatory variables. The base, or minimal, model is:

AB + CD (7.8)

We would then add terms such as ABC and ABD to assess the effects of C and D on A
and B.

Agresti (1996) fitted a model with three response variables to data from a survey of
students who were asked whether they had ever smoked cigarettes, drank alcohol or
taken marijuana. These three variables were simultaneously considered as response
variables, gender and race were included as explanatory variables. However, such models
are complex to interpret and an alternative approach would have been to consider each
of the three response variables separately.

Further reading

Agresti (1996) explains the theoretical underpinnings of loglinear models in more detail.

Fielding and Gilbert (2006) provide a further example of fitting hierarchical loglinear models to
four categorical variables related to social mobility.
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8 Ordinal logistic regression for
ordered categorical
response variables

8.1 Introduction

If the categories of the response variable form a natural order, the researcher has the
option of fitting an ordinal logistic regression model. Ordinal variables, as they are
known, arise in different contexts. Some may simply be less fine gradations of an
underlying continuous variable, such as ten-year age bands. A very common way of
generating ordered variables is to elicit people’s attitudes, beliefs or levels of satisfaction
about a particular issue or product where views may be ranked from strongly negative
to strongly positive. In such situations, as with many latent variables, there may be an
underlying continuous variable but we do not know the metric, that is, the distance
between adjacent levels. Other variables have a natural order but no clear metric.
Examples here included educational attainment, which can range from no educational
qualifications to obtaining a higher degree. Sentence awarded (and the subject of
analysis in sections 3.1 and 6.2) might be considered to reflect a scale of severity
of punishment, with discharge as the least severe and custody as the most severe
penalty. Although subsequent analysis (not reported here) indicated that sentence
should not be regarded as an ordered but a multinomial variable.

Compared with nominal variables, ordered variables contain additional information,
namely how one category stands in relation to another, it being ‘more’ or ‘less’ than the
other. How can we capitalise on this additional information? Essentially we adopt the
framework of the familiar logit models (logistic and multinomial logistic regression)
and compare the odds of being in one category with being in others but taking the
order of the levels into account. We shall see that ordinal logistic regression is simpler
(having fewer coefficients) and potentially more powerful (in the sense of being more
likely to detect significant relationships) than multinomial logistic regression.

Several different approaches can be followed, the most common is what is known
as the proportional odds model, and this is the model that SPSS fits in its module
Regression → Ordinal and the model Stata fits with its command ologit. (Other pos-
sible approaches are described in Agresti, 1996 and Long, 1997.) The proportional odds
model is introduced by way of the following example.

8.2 Example: Ability to influence local political decisions

In the Citizenship Survey, conducted on behalf of the Home Office in 2001, approxi-
mately 10,000 people were interviewed about what it means to be a good citizen, the
extent to which they were active in their local communities and neighbourhoods and



the extent to which they volunteered, and so on. One question asked respondents
to state the extent to which they agreed with the proposition that it was possible to
influence political decisions in their local area. Their responses are given in Table 8.1.

Four possible responses were available, from definitely disagree to definitely agree,
which are shown in Table 8.1. Each could be treated as a separate level of a categorical
variable and a multinomial logistic regression fitted as before (one level being the refer-
ence category). However, as the responses clearly form an ordinal scale we can introduce
the concept of ‘less than’ or ‘more than’ a particular point on the scale (an option not
available when the levels are nominal). In effect we can consider cumulative logits, the
log odds of being above or below a particular ‘cut point’ of the scale. In this example we
can compare the probability of ‘definitely disagree or less’ (there isn’t a lesser position
one could take), .25, with taking a more positive view (‘tend to disagree’, ‘tend to agree’
and ‘definitely agree’ or .32 + .33 + .10), .75 or (1 − .25). The odds is thus .25/.75 = .33.

Similarly, the proportion of those who at least ‘tend to agree’ is .9 and the proportion
holding stronger views is .1. The cumulative odds are thus 9.0.

Suppose we have k ordered levels of our categorical variable (in the example above
k = 4). Then the proportional odds model is:

log
p1 + p2 + . . . + pi

pi+1 + . . . + pk

= b0k + b1 x1 + b2 x2 + . . . + bp xp (8.1)

The response variable is the log of the probability of being in a category up to and
including the ith category divided by the probability of being in the categories above the
ith, that is, categories i + 1 to the final category k.

On the right-hand side of Equation (8.1) there is only one coefficient for each
explanatory variable (e.g. b1 for x1). What this means (and it is the basic underlying
assumption of the model) is that the effect of each explanatory variable is the same for
all k categories of the response variable. So, for example, if x1 is a continuous variable
such as age (in years), the model would say that for each additional year the log odds of
being above a point on the scale compared with being below that point on the scale
would change by b1 regardless of the point on the scale.

However, note b0k. This says that there is a different constant for each level of the
ordered variable. The constant ‘fixes’ the model in the sense that it is needed to predict
the probability of being above a particular level.

At this point the reader may wish to compare ordinal regression with multiple
regression, logistic regression and multinomial logistic regression. In multiple regression

Table 8.1 Agreement with ability to influence local political decisions

Number of
respondents

Proportion of
respondents

Cumulative proportion
of respondents

Cumulative
odds

Definitely disagree 2407 .25 .25 .33

Tend to disagree 3086 .32 .57 1.33

Tend to agree 3119 .33 .90 9.0

Definitely agree 962 .10 1.0

Total 9574 1.0
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and logistic regression there was one constant, one coefficient (b) for each continuous
variable, and a coefficient for each level (bar the reference category) of each categorical
variable. At the other extreme, with the exception of the reference category, for each
level of the response variable, multinomial logistic regression had a separate constant and
a different coefficient for each explanatory variable. In the case of multinomial logistic
regression this level of complexity is necessary because each level is a different entity.
Ordinal regression is in between these two extremes. The fact that the response variable
can be considered on some underlying continuum means that the explanatory variables
can reflect how one progresses along that continuum. However, as the continuum is not
measured on an interval scale (with equal units along the scale) but on a cruder, ranked
scale, a different constant is needed to reflect where the subject is on the scale.

An alternative way of conceptualising ordinal regression is as parallel regression
lines. Consider the case with just one continuous explanatory variable, x1. The ordinal
model is thus:

log
p1 + p2 + . . . + pi

pi+1 + . . . + pk

= b0k + b1 x1

For multiple regression the model could be represented as a straight line. Ordinal
regression can also be represented as a straight line but a separate straight line is needed
for each level of the response variable. However, the lines are parallel because they have
the same slope (b1). This is depicted diagrammatically in Figure 8.1, below.

If an underlying assumption is that the lines are parallel, it is important to test
that this assumption is not violated when fitting a proportional odds ordinal logistic
regression model.

One point to note is that it does not matter which way round the levels are numbered.
If the order is reversed the coefficients will have the same absolute values but the
signs will change (from positive to negative or vice versa). An additional important
attribute of the proportional odds model is that any collapsing of the ordinal variable
(by merging adjacent levels) will result in virtually the same coefficients bi and the same
inference and conclusions.

Figure 8.1 Graphical representation of the proportional odds ordinal logistic regression
model.
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8.3 Fitting the ordinal logistic regression model in SPSS

To illustrate the method, a model was fitted to data from the Citizenship Survey
described above. The response variable was the variable presented in Table 8.1; the extent
to which respondents felt they could influence local political decisions, inflpol. With all
ordered variables it is important to know how the scale has been coded. Here definitely
agree was coded 1 and definitely disagree was coded 4. The explanatory variables were
the number of years a person had lived in the neighbourhood (timeneig), education
(educat) (those with higher degrees coded 1 and those with no qualifications coded 4),
whether respondents read the local newspaper (locnews) (coded 1 if they did) and
whether respondents had participated in civic activities (partciv) (coded 1 if they had).

To fit an ordinal regression model in SPSS the steps are, Analyze → Regression →
Ordinal. The dialog box is shown below.

It can be seen that this module readily distinguishes between factors and covariates
and the researcher is not asked to give the minimum and maximum level of each factor.
Under Location (a curious title) one can click on Custom and specify interaction terms.
Under Options it is possible to request Test of parallel lines, which is important in
assessing the underlying assumptions of the model.

Not all the output is presented. As with other modules, SPSS feeds back information
on the variables and the number of valid cases used in the analysis. The chi-squared
attributable to the model was 699.7 and with 6 degrees of freedom, is very highly
significant (p < .001). The main output giving the parameter (coefficient) estimates is
reproduced in Figure 8.3 overleaf.

It can be seen that all four explanatory variables are highly significant. However,
when it comes to describing the model we note a disappointing omission. Only the
coefficients on the log scale (B) are given, not the odds (Exp(B)). This means that the

Figure 8.2 SPSS dialogue box for ordinal regression.
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odds have to be calculated independently by a calculator that can estimate eB. For
example, B for whether a person has participated in civic activities, partciv, is − .429.
Thus the odds are e−.429 which equals .65. Holding all other variables constant, this can
be interpreted as the odds of a person who has participated in civic activities definitely
disagreeing as opposed to the combined outcomes of tend to disagree, tend to agree and
definitely agree with the question that it is possible to influence local political decisions
are .65 compared with a person who has not participated in civic activities. Similarly,
for someone who has participated in civic activities, the odds of their combined
responses definitely disagreeing or tending to disagree as opposed to agreeing or
definitely agreeing with the question are .65 compared with a person who has not
participated in civic activities. Furthermore it is the same odds when comparing
the combined outcomes definitely disagree, tend to disagree and tend to agree with
definitely agree. Remember the order in which the scale is constructed in which code 1
was ‘definitely agree’ and code 4 was ‘definitely disagree’. So to be higher on the scale
means more towards the disagree end of the scale. Thus respondents who participate in
civic activities are less likely to disagree, and, therefore, more likely to agree that it is
possible to influence local political decisions.

The test for parallel lines was requested and the results are given below:

Figure 8.3 SPSS output, model estimates.

Figure 8.4 SPSS output, test of parallel lines.
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The null hypothesis is that it is safe to assume a common bi across all levels. The
significant chi-square value rejects this assumption and says that different bis are needed
for each level. This implies that the explanatory variables have differential effects on the
odds of moving from one level to another depending on the levels one is moving
between. What does one do in such situations? The evidence can be ignored if it is felt
that the model still provides a useful representation of the relationships between the
variables, but this is not recommended, especially if the test proves highly significant.
Another option is to treat the response variable as nominal, not ordinal, and fit a
multinomial logistic regression. However, a further option is to collapse some adjacent
levels and repeat the test to gauge whether the reduced variable satisfies the basic
assumption. (Recall that collapsing the scale by amalgamating adjacent levels does not
affect the inferences to be drawn.) The last option was adopted: the first level ‘definitely
agree’, which contained relatively few cases, was merged with the level ‘tend to agree’
and coded 1, ‘tend to disagree’ became level 2 and ‘definitely disagree’ became code 3.
The collapsed response variable was renamed inflpolr. The results are given below.

First note that the test of parallel lines is not significant. This collapsed model does
not violate the underlying assumptions of the proportional odds model.

The parameter estimates are:

Figure 8.5 SPSS output, test of parallel lines.

Figure 8.6 SPSS output, model estimates.
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The second model above was also highly significant, χ2 = 673.4, 6 df, p < .001.
Comparing the two models it can be seen that the second model has two constants
whereas the original model had three. However, the coefficients (the bis) are very similar
in each model. This model is fitted again by Stata in section 8.4. As Stata provides odds
ratios, interpretation of the model is left until section 8.4.

Diagnostics

The fit of the ordinal logistic regression can be assessed in the same way as the multi-
nomial logistic regression; by comparing predicted and actual outcomes and by consi-
dering Pearson residuals. Unfortunately, ordinal logistic regression, unlike multinomial,
does not output the classification table but this can be constructed by checking Pre-
dicted category in Outcome. Predicted category is then saved as a variable on the data
file which can then be cross-tabulated with the observed or actual category as given by
the response variable. This procedure was followed and the results are given in Table 8.2.

Comparing Table 8.2 with Table 8.1, it can be seen that the model predicts more to
agree (71%) than actually agree (43%). The model is also much more successful in
predicting those who agree. Following the methodology set out in section 6.3, this model
reduced prediction errors by 5%.

Pearson residuals can be obtained by checking Cell information in Output (just as in
the multinomial). When a continuous explanatory variable, which can take many
values, is included in the model the number of cells can be extremely large. This was the
case here and so full details are not presented. Nevertheless, the Pearson residuals were
examined in detail and they did not give rise to undue concern.

8.4 Fitting the ordinal logistic regression model in Stata

There are two advantages in fitting the ordinal logistic model in Stata; first, odds ratio
can be requested and second, any complex design features of the study can be taken
into account when estimating the coefficients of the model and their standard errors.
However, on the debit side, Stata does not have readily available the test for parallel
lines, although a user-written command, omodel, can be obtained by searching Stata’s
web resources.

SPSS and Stata differ in the way they handle categorical explanatory variables.
While SPSS makes the last level of a categorical variable the reference category, Stata
makes the first level of a categorical variable (which Stata calls indicator variables) the

Table 8.2 Observed and predicted response category

Observed response category Predicted response category

Definitely
disagree

Tend to
disagree

Agree Percentage
correct

Definitely disagree 650 397 1360 16.5

Tend to disagree 561 391 2134 12.7

Agree 422 363 3296 80.8

Overall percentage 17.1 12.0 70.9
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reference category (which Stata calls the base category). In order to fit the same model
in Stata as in SPSS, dummy variables were created (through the generate command –
see section 3.5) for each of the categorical variables. The dummy variables included in
the Stata model were the same as those included in the previous SPSS model. (This also
meant that the prefix xi: was not required as dummy variables were entered directly and
the model command did not need to be instructed to create them.)

The model fitted was exactly the same as the one fitted above by SPSS. The output is
shown below:

The first line of the output is the Stata command. Reassuringly, the results from Stata
are the same as the results from SPSS. The chi-squared attributable to the model is the
same, 673.45, the coefficients are also the same, but Stata calls the thresholds of SPSS,
cut points. As mentioned before, Stata gives z (or t) tests rather than the Wald tests
favoured by SPSS. But as also mentioned, when there is one degree of freedom (as is the
case with each coefficient of the model), z2 is equal to the Wald statistic. This can be
easily verified by comparing the two sets of coefficients. For example the z value for the
variable time in the neighbourhood (timeneig) given by Stata is 6.83 and 6.832 = 46.6,
which apart from rounding is the value of the Wald statistic given in SPSS.

To obtain odds ratios, or was added to the command which was then executed. All
other information remained the same, so only the model is shown below.

Figure 8.7 Stata output, ordinal regression.

Figure 8.8 Stata output, ordinal regression with odds ratios.
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Note that the cut points are not given. This is because the cut points are only needed
for predictions, which are undertaken on the log scale.

The odds can be readily interpreted. The results indicate that for every additional year
living in the neighbourhood, the odds of tending to disagree with the statement ‘it was
possible to influence political decisions in their local area’ increased by 1.008. Those
with educational qualifications, a degree (educat1), A levels (educat2) and GCSEs
(educat3) compared with those with no educational qualifications (educat4 – the
response category) were less likely to disagree that it is possible to influence local
political decisions. Thus it appears that more highly educated respondents are more
likely to agree with the proposition.

Reading the local newspaper and participating in civic activities also led respondents
to feel that they could influence local political decisions. In the case of reading
the local newspaper, the odds reduced by .76 of disagreeing. Alternatively this can be
expressed as reading the local newspaper increased the odds by 1.3 (1/.765) of agreeing
that it was possible to influence local political decisions.

Further reading

A detailed and more theoretical discussion of ordinal logistic regression can be found in Agresti
(1996) and Long (1997). Long (op. cit.) in particular provides further guidance on presenting and
interpreting results emanating from the models. Long and Freese (2006) covers much of the
material in Long (op. cit.) but also explains how to fit models in Stata.

106 Statistical modelling for social researchers



9 Multilevel modelling

9.1 Introduction

Up to now all the models we have been looking at have had one unit or level of analysis,
usually the individual. However, it is often the case in the real world that our research
interest involves relating data from more than one unit of analysis or across different
levels. The best known example of this is from education (and it is no coincidence that
educational researchers have been at the forefront of multilevel modelling).

Suppose we are interested in educational attainment, for instance a pupil’s score on a
particular test at age 16, and we wish to identify the factors that may influence that out-
come. We will want to see how a pupil’s performance is related to individual character-
istics such as IQ (or some other measure of ability prior to age 16 – such as performance
at age 11 when they first entered the school), gender and socio-economic status.

But we will also be interested in school effects. Are there features of a school that also
affect educational attainment at age 16? Do pupils in state schools do better than pupils
in private schools? Is performance higher in girls’ schools, boys’ schools or mixed
schools? Is performance affected by class size (as measured by the pupil/teacher ratio)?
Are there other features of the school such as ethos, teaching styles (however measured)
that contribute to performance?

Here we have two units of analysis or data at two levels: at level one (the lowest level)
pupils and at level two (the higher level) schools. This example has only two levels, but
in theory there could be any number of levels. (For example, to extend our example, at a
higher level to schools are Local Education Authorities.) Hence, we can have multilevel
data. (The data can also be said to be hierarchical, but I prefer the modern terminology,
describing the data structure as multilevel data.)

Another feature of our example is that the data can be said to be nested. By this is
meant that pupils only attend one school (or they are only at one school at age 16 when
the study is conducted). And at the next level, schools only fall within one geographical
region. Part of this data structure can be graphically displayed as in Figure 9.1. (In the
real world there will be more than one Local Education Authority, more than two
schools and more than two pupils.)

There are many examples of nested multilevel data structures in social research. So
far we have considered just one, pupils within schools, but other examples include
persons within households, workers within industries. A multilevel data structure also
arises in many social surveys. In section 2.3 it was stated that many (if not most) large-
scale surveys are multistage clustered designs. The British Election Survey, described in
section 2.3 and analysed in section 6.6, has a four-level structure; at the highest level



(level 4) is postal sector, next delivery points (level 3), then households (level 2) and
finally, the lowest (level 1) individuals. Multilevel models can also be applied to syn-
thesising results from a collection of independent studies – a statistical technique known
as meta analysis (Lipsey and Wilson, 2001). A further example of nested hierarchical
data occurs in longitudinal research when a cohort of subjects is followed up and
interviewed or tested or measured at different time points. If the questions, tests or
measurements are the same on each occasion the resulting data structure is known as
repeated measures data. This last example also illustrates that individuals need not be at
the lowest level, level 1. In this example individuals are at level 2, the level 1 data is the
repeated measures.

So far we have only presented nested multilevel data, but in many research settings
the situation may be more complex. Extending the pupil/school example, if we are also
interested in assessing the contribution of the neighbourhood or community that pupils
live in we do not have a nested structure as a school’s catchment area extends over more
than one neighbourhood and pupils from any one neighbourhood can attend different
schools. Data structures that are not nested are said to be cross-classified. Another
example of cross-classified data is patients, doctors and hospitals. Patients are regis-
tered with one General Practitioner but GPs can refer their patients on to a number of
different hospitals. Thus patients are nested within GPs but the data is cross-classified
between GPs and hospitals. This latter example could also lead to yet another data
structure where individuals fall within more than one higher level unit. A GP could
refer a patient to one hospital to be treated for one illness but to another hospital for
a different illness. Such a situation gives rise to a multiple membership data structure.
Analysing cross-classified and multiple membership data is a little more complex
and not considered further here, although they can be accommodated readily by
MLwiN – the computer package introduced later in this chapter.

9.2 Methods of analysis and their deficiencies

Let us return to the nested two-level model and consider the situation where the
response variable is continuous. In this case we would naturally think of proceeding by
fitting a multiple regression model. But what is the sample and what is the unit of
analysis? In the pupil/school example the response variable, y, is educational attainment
(measured on a continuous scale) which relates to all pupils and is hence a level 1

Figure 9.1 Three-level nested data structure.
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variable. However, in exploring factors that affect educational attainment of individual
pupils, we want to assess the importance of individual factors (gender, socio-economic
status etc.) but also characteristics of schools (type, size etc.). In fact the research
interest may be to assess the contribution of schools after controlling for individual
characteristics. Furthermore, we may also be interested in assessing the importance of
particular individual characteristics (level 1) in particular types of schools (level 2), that
is, in analysing cross-level interactions.

In the past, researchers have proceeded in various ways but none of them is entirely
satisfactory. Kreft and de Leeuw (1998) illustrate the dilemma with an example which
considered the relationship between income and educational attainment. The focus of
the research was to assess whether, and to what extent, educational attainment deter-
mined income. For their study a sample of workers were selected from 12 different
industries generating a two-level multilevel dataset with workers at level 1 and industries
at level 2. Multiple regression models were fitted with income as the response variable,
y, and educational attainment as the explanatory variable, x.

For the first regression the data was pooled across all industries and the sample
comprised all the individual workers. That is the regression was fitted to the level 1 data.
(Kreft and de Leeuw do not state how many workers were included in the study – but
this is of no consequence for the purpose here.) A positive relationship was found in
this regression – namely that the higher the educational level achieved, the higher the
personal income.

The second regression analysed the data at the industry level (level 2). In this analysis
there were 12 units, one for each industry. In order to undertake this analysis an income
and educational attainment variable had to be created for each industry. This was
achieved by calculating the average income and the average educational attainment
for employees within each industry. Fitting a regression to the industry level data
resulted in a negative relationship: the higher the average educational attainment of
an industry, the lower the average income of employees in that industry. Academia
illustrates the issue. At the industry level academics have generally attained a high level
of education but on average are not so highly paid (a finding I can verify from personal
experience!).

This example shows that data analysed at different levels can produce different,
even contradictory, results. ‘The logical conclusion is that the variable “education”
measures different things, depending on the unit of analysis’ (Kreft and de Leeuw,
op. cit., p. 3).

Using aggregate measures (as in the industry level analysis) can lead to what is known
as the ecological fallacy; namely that inferences at the aggregate level do not necessarily
hold at the individual level. To give another example, areas that experience high crime
may have a high proportion of ethnic minorities but this does not mean that people
from ethnic minority backgrounds commit more crime.

When analysing multilevel nested data, problems can arise because (as in this
example), workers (at level 1) within an industry (level 2) might be more similar to each
other than they are to workers in other industries. (Workers in academia again illustrate
this phenomenon.) This is a common finding. Returning to schools and pupils, suppose
two schools are selected, an independent school in an affluent part of the country and a
comprehensive school in a deprived inner city area, and a random sample of pupils are
selected from within each school. The pupils in the school in the affluent area will be
very similar to each other in terms of individual characteristics and the pupils in the
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comprehensive school in the deprived inner city area will also be very similar to each
other. The two groups, however, will be very different from each other. The same issue
arises in survey research when a multistage, clustered design is adopted; respondents
sampled from the same cluster (usually a small geographic area) will be similar to each
other on various characteristics.

The extent to which individuals within groups are similar is known as intra-class
correlation (denoted by ρ – the Greek letter rho). The intra-class correlation is a measure
of group homogeneity and indicates the extent to which individuals share common
experiences due to closeness in space or time.

The two regressions undertaken by Kreft and de Leeuw, one with level 1 data (workers)
and the other with level 2 data (industries) are, as they point out, inadequate as each
ignores the other and the presence of intra-class correlation leads to erroneous infer-
ences. Of course, if the intra-class correlation is zero, nesting (or clustering) has no
bearing and the data can be analysed at level 1 without leading to erroneous inferences.

Essentially, to overcome the problems with multilevel data we need to analyse the
data at all levels simultaneously taking account of the variation between units at level 1,
taking account of the variation between units at level 2 and so on. Multilevel modelling
provides a method for analysing data from, and across, different levels. If the purpose is
to take into consideration the variation at both levels it implies that we need to have a
sufficiently large number of units of analysis at each level in order to obtain accurate
measures of the variation at each level. Meeting this requirement has implications for
research designs and datasets. Traditionally in social research relatively few level 2 units
(schools, hospitals, prisons etc.) have been examined but a large number of subjects
within those institutions (pupils, patients, prisoners). Multilevel modelling demands
that imbalance be redressed. Experience shows that in most applications it is the
lack of a sufficiently large number of level 2 units that inhibits the analysis not the
number of level 1 subjects. What is a sufficient sample size for level 2 units is not easily
answered and depends on the research problem. However, many would suggest that at
least 50 level 2 units are needed.

Throughout this book we will always adopt the more modern and common termin-
ology, multilevel models. However, this form of analysis is also known as hierarchical
modelling (in recognition of the fact that the data structure is hierarchical) and some-
times as context modelling. The latter terminology stems from the fact that we often
want to analyse relationships between individuals within the context of their wider
social settings (pupils within schools, for example).

Before describing multilevel models, note that we could analyse our two-level data at
the individual level and enter the higher level units as dummy variables. For example,
in the case of workers within industries, we could undertake a regression analysis at
level 1 (workers) but enter the 12 industries as up to 11 dummy variables. Similarly, in
the schools example we could enter all but one of the schools in our study as dummy
variables. However, there are two limitations to this approach. First, a large number of
level 2 units (for example, 100 schools) leads to the inclusion of many dummy variables.
This is very inefficient. A second limitation of this approach is that while it might
indicate the existence of a level 2 (school) effect, it does not say what that effect is
attributable to. In reality, identifying the nature of the level 2 effect may be of most
interest to us. In the case of schools, we do not simply want to know whether there is
a school effect on pupils’ performance, but whether the school effect is due to the type
of school, the size of the school etc. The advantage of multilevel modelling is that it
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enables researchers to explore what individual characteristics affect educational per-
formance, what features of schools contribute to performance and to identify whether
and if so which interactions between individual characteristics and features of schools
contribute to a pupil’s performance. Multilevel models also enable us to generalise
beyond the schools in our sample.

9.3 Multilevel models

In order to undertake analysis across both levels simultaneously the general linear
model needs to be extended accordingly and this requires introducing some additional
notation. It is the convention in multilevel modelling to denote the units at level 1 by the
suffix i and the units at level 2 by j (and level 3, k, and so on). Thus in the pupil/schools
example we have i pupils within j schools.

Hox (2002) recommends developing multilevel models in five progressive steps,
starting with the simplest model and systematically moving towards a more complex
model if the simpler model is not found to be adequate. Hox’s prudent strategy is
followed here as it also affords a convenient procedure for explaining multilevel models.
However, we do not adopt the notation favoured by Hox (and many other texts) but
instead broadly follow the notation of MLwiN as this is the computer software used to
fit multilevel models here – and output from MLwiN is presented later.

Step 1: No explanatory variables: the variance components model

The simplest linear model is one that does not include any explanatory variables:

yi = b0 + ei (9.1)

Here there is just a constant, b0, and an error term, ei. This model would not normally
be fitted when analysing data at one level but it makes sense when analysing multilevel
data for reasons that will become apparent shortly. Equation (9.1) is simply Equation
(1.1), the general linear model, with all x variables deleted.

This model, however, does not recognise that the data are drawn from two levels,
schools and pupils. To include schools at level 2 we add the suffix j.

yij = b0j + eij (9.2)

The model in Equation (9.2) indicates that the data being analysed relates to the ith
pupil within the jth school. Note that the response variable is at level 1. Note also that
the suffix j has been added to the constant b 0 which means that each school has a
different constant. (Recall from Chapter 4 that the constant in regression is also
referred to as the intercept and as the term intercept is used in multilevel modelling
it will be adopted from this point onwards.) We could fit schools to this model as a
set of dummy variables but the essence of multilevel models is to consider the schools
in the dataset as a random sample of all schools. Thus we can postulate that there
is a mean school intercept with individual school intercepts varying around that
mean. Thus:

b0j = b0 + u0j (9.3)
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where b0 is the mean intercept and u0j is the variation of actual school intercepts around
that mean intercept. The subscript 0 is included to indicate that this variation is associ-
ated with b0. If we substitute Equation (9.3) in Equation (9.2), the equation becomes:

yij = b0 + u0j + eij (9.4)

This equation now includes a fixed constant (mean) intercept for schools, b0 and has
decomposed the variation into two sources, the variation at level 2 (between schools) u 0j

and the variation at level 1 (between pupils) eij. Separating the variation in this way has
led this model to be known as the variance components model.

The importance of the variance components model is twofold. First, it reveals how
much of the variation is at level 2 and how much at level 1. In fact, in the multilevel
context, the intra-class correlation, ρ, is:

ρ =
u0j

(u0j + eij)
(9.5)

If u 0j is zero, or very small and not statistically significant, it can be inferred that there
is no level 2 effect and we could simply fit models to the level 1 data disregarding
level 2. Thus initially fitting the model without explanatory variables provides important
information on whether or not we need continue with a multilevel model.

Note that decomposing the variance in this way is only possible when the
response variable is continuous and a multilevel multiple regression model is being
fitted.

Second, this model also provides key information by which subsequent models can
be judged. Assuming that u0j is not zero and that we need to fit multilevel models, this
initial model gives us values of u0j, eij and –2loglikelihood. Thus from this initial starting
point we can assess how far more complex models provide a better fit to the data by
gauging how much alternative models reduce u0j, eij and –2loglikelihood.

Step 2: Adding level 1 explanatory variables: random intercepts model

The next logical and simplistic step is to add explanatory level 1 variables. Including just
one explanatory variable, the model becomes:

yij = b0 + b1x1ij + u0j + eij (9.6)

In our example of schools and pupils, the level 1 variables might be gender, prior
educational attainment, IQ, family income. (As in previous models categorical variables
would be entered as dummy variables.) Note that the convention adopted throughout
has been followed here, of numbering the explanatory variables in sequence starting
with 1. The explanatory variable, x1, has been given the subscripts ij to indicate that it is
a level 1 variable that varies across individuals and schools. More importantly note
that the coefficient of x1ij is b1 which is a constant and does not change from school to
school. What this implies is that the relationship between x (say IQ) and the outcome y
(educational attainment at age 16) is the same regardless of which school the pupil
attends. This model can be represented diagrammatically.
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It can be seen from Figure 9.2 that the intercepts for individual schools vary around
the mean intercept (represented by the thick line). However, the b1s are constant. The
slopes are the same (hence the lines are parallel) indicating that the relationship between
x and y is fixed and the same within each school. Put another way, how an individual’s
characteristic x affects an individual’s outcome y is not related or affected by the school
they attend. The effect a school has on outcome is the same for each of its pupils but
that effect (the intercept) differs between schools. Because only the intercepts vary this
model is known as the random intercepts model. Strictly the first model (with no
explanatory variables) is also a random intercepts model but the term is usually
reserved for this model. (More confusingly, perhaps, this model is sometimes referred to
as the variance components model.)

The random intercepts model can be extended by adding other individual explana-
tory variables (xs). Alternative models can be assessed (as before) by comparing the
differences in –2loglikelihood between models (which is a chi-squared test) and by
testing whether a coefficient of an explanatory variable is significantly different from
zero (indicating whether the corresponding x variable is contributing to an explanation
of y). However, in the multilevel context we can also examine whether the variances
eij and u0j have changed and are significant, indicating whether there is still unexplained
variance to be accounted for at either level. By fitting individual explanatory variables
we would expect a reduction in eij – the variation between individuals. However, we
might also find some reduction in u0j (the school level variation) because the difference
in schools (as represented by their intercepts) might also be attributable to the indi-
vidual level variables in the schools such as the type of pupils in the schools, that is,
school intake.

At this step interaction terms between individual level variables might also be added
to the model and tested.

Of course, the choice of level 1 variables should be guided by theory or prior know-
ledge. As in all statistical modelling the development of the model should not be a solely
mechanical process.

Figure 9.2 Random intercepts model.
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Step 3: Adding level 2 explanatory variables to the random
intercepts model

Having explored the level 1 explanatory variables, and finding that the model is not
adequate as there is still variance at level 2 to be explained (u 0j is still high and
significant) the next natural step is to identify what characteristics of schools (level 2
explanatory variables, such as type, class size, etc.) explains the variation between
schools. Most texts (including Hox, op. cit.) denote level 2 explanatory variables by z
rather than x, a convention followed here. This is the only departure from the MLwiN
manual which continues to represent level 2 variables by x – the distinction is drawn
by the suffixes, ij for level 1 variables and j for level 2 variables. (When it comes to output
from the MLwiN package, variable names are used and not x or z.) The model
now becomes:

yij = b0 + b1x1ij + b2z2j + u0j + eij (9.7)

The practice of numbering the explanatory variables sequentially is continued, regard-
less of whether they are level 1 or level 2 variables. Of course, before getting to this step
we may have included more xs and possibly interactions between some of the xs, but
here just one x is included to indicate that the xs have been considered and at least one
has been found to be important.

Note that the zs only have suffix j because they are level 2 variables that only vary
between schools and not between individuals within each school. At this step we can
include different zs to explore whether it is the type of school or the size of the school,
or both, that is important. Interaction terms between any of the zs can be added if that
is thought to be appropriate.

As before, the contribution of the level 2 variables z can be assessed by testing the
change in –2loglikelihood and by testing the significance of their coefficients b. If
any of the level 2 variables are important in explaining y, their inclusion will reduce
the variation between schools, that is, u0j. However, the zs will not affect the level 1
variation, eij.

Step 4: Random slopes model or random coefficients model

In the random intercepts model considered so far it has been assumed that the coef-
ficients of the xs are constant across schools. However, it may be the case that the
coefficients vary from school to school because the schools may also influence the effect
of x on y. For example, if x is IQ we may find that more academically able pupils do
even better in some schools than equally able pupils in other schools. Let us return to
the model at the beginning of step 3 and add the suffix j to b1.

yij = b0 + b1jx1ij + b2z2j + u0j + eij (9.8)

This signifies that the coefficient, or slope, of x1ij is different for each school. Again if we
assume a random sample we can postulate that there is a mean slope b1 and that the
slopes for each school vary around the mean slope. We can represent this model
diagrammatically.  The average slope in Figure 9.3 is indicated by the thick line and the
school slopes vary around this mean slope.
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In terms of our model (as in the case for the intercepts) we can represent b1j as a
constant b1 and a variation around it, or:

b1j = b1 + u1j (9.9)

The suffix 1 has been included to indicate that u1j is the variation associated with b1.
Adding this to the model we get:

yij = b0 + b1x1ij + u0j + u1j + eij (9.10)

The fixed part of the model is b0 + b1x1ij and we now have three random terms, u0j

(for the variation in the intercepts), u1j (for the variation in the slopes) and eij (the
variation between pupils at level 1).

Because the slopes (or coefficients) are considered to vary this model is known as the
random slopes model or the random coefficients model.

With random slopes models it is also informative to consider the covariance (or
correlation) between the intercepts and the slopes, that is, cov(u0j, u1j). A positive
covariance indicates that schools that have higher intercepts tend to have steeper
slopes and a negative covariance indicates that schools with higher intercepts tend to
have less steep slopes.

Note that in this model the intercepts, as before, have also been postulated to vary
as well as the slopes. It is possible to consider a random slopes model in which only
the slopes vary but not the intercepts. However, given our approach to incrementally
increasing the complexity of our model, it is more common to add random slopes to
random intercepts than to consider random slopes in isolation.

We can compare this model with other models by comparing the change in –2loglike-
lihood. But we can also assess whether including random slopes is necessary by
considering the significance of u1j.

Figure 9.3 Random slopes or random coefficients model.
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Note that only the slopes of the level 1 variables, x, are considered to vary, not the
slopes of the level 2 variables, z.

Step 5: Including cross-level interactions

The final step is to include interactions between level 1 and level 2 explanatory variables,
that is, interactions between an x and a z variable – known as cross-level interactions.
This model can become very complex and is often difficult to interpret. It also has
implications for the way variables are measured, and interpretation is often aided by
standardising the variables.

9.4 Statistical software

SPSS can fit a limited range of multilevel models, but only those where the response
variable is continuous, that is, a multilevel multiple regression model. Stata has a user-
written routine, called gllamm, which can be downloaded from the Stata website. How-
ever, my preference is to use MLwiN, software specifically developed to fit multilevel
models.

MLwiN was developed in part through sponsorship from the ESRC and is freely
available to UK-based academics. There is a charge for other users. The software is well
supported by the Centre for Multilevel Modelling, www.cmm.bristol.ac.uk. The website
contains details about obtaining the software, training courses and even has video/
PowerPoint presentations that can be viewed online. From the website a link takes the
user to the TRAMSS (Teaching Resources and Materials for Social Scientists) website
where one can download MLwiN and the manual. (Alternatively the researcher could
go straight to the TRAMMS website, http://tramss.data-archive.ac.uk.) From the
TRAMMS website it is possible for anyone (not just UK-based academics) to down-
load a version of the software, a tutorial dataset and the manual. But the version
obtainable from TRAMMS can only be used with the tutorial dataset, it is not possible
to analyse one’s own data with this version. Nevertheless, it is a very good starting point
for learning the software.

As with all new software a little initial investment of time is required to become
familiar with it. But the investment is worthwhile. MLwiN fits a wide range of multi-
level models, including those where the response variable is continuous or categorical
(binary, multinomial, or ordinal). It fits models to nested, repeated measures, cross-
classified and multiple membership data structures.

There are a variety of ways of getting data into MLwiN. As with other software, data
can be keyed directly and saved but this is not practical with very large files. Data can be
‘cut and pasted’ into the data editor, although I have found that it is often best to do this
in stages, cutting and pasting a subset of the columns (variables) at a time. MLwiN can
also read ASCII files. The latest version of MLwiN (version 2.10) can read SPSS files
directly. A Stata user-written routine, Stata2mlwin (available from the Stata website),
will output a Stata file as an MLwiN file which can then be read by MLwiN.

Once the data is in, it is possible within MLwiN to edit data and obtain basic
descriptive statistics. The tutorial at the TRAMMS website describes many of these
features so they are not presented in any detail here.
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9.5 Fitting models in MLwiN to employment data

Fitting models is straightforward and elegant in MLwiN. The researcher is given a basic
model which is then developed by defining the variables and their levels. Variables can
be added or deleted in order to specify alternative models. This will be demonstrated
in the example that follows but two issues need to be addressed beforehand.

MLwiN requires the data to be sorted in accordance with its nested multilevel
structure, that is, first by the highest level, then its next highest level and so on.
(The requirements for non-nested, cross-classified data are not considered here.) So
with data at two levels, the data needs to be sorted by the level 2 identifier – the level 1
data does not need to be sorted. Anticipating the necessity to structure data, MLwiN
has facilities to sort data in the appropriate order.

Second, to fit a multilevel model, MLwiN needs to consider all the terms on the right-
hand side of the equations (Equation (9.6), Equation (9.7) and Equation (9.10)) as
variables. The trick here is to create a variable x0 which takes the value 1 for all level
1 subjects (pupils). Although conceived as a variable it is in effect a constant (and is
called cons in the MLwiN tutorial). Because it takes the value of 1 for every subject,
the variable x0 can be multiplied to any component of the model without changing
the value of that component. Full details showing how x0 is utilised by MLwiN
are given in the manual but the point to note here is that an MLwiN data file will
need to include a variable with a value of 1 for all subjects that can be declared as
x0. (In anticipation of the requirement, MLwiN has a facility to easily create such
a ‘variable’.)

The example chosen for the MLwiN tutorial at the TRAMSS website has a continu-
ous response variable and the tutee fits multilevel multiple regression models. However,
equally common in social research are situations where the response variable is categor-
ical, often binary, necessitating a multilevel logistic regression. In order to illustrate
MLwiN (and to complement the regression model in the tutorial), a multilevel logistic
regression model is fitted in the example that follows.

The question to be investigated in this example is to what extent the area in
which a person lives affects his or her prospects of employment, after taking account of
individual characteristics that affect a person’s employability. The dataset combined
individual data from the 2003/04 Labour Force Survey and area level data from the
2004 English Indices of Multiple Deprivation. (A more detailed description of the
various Indices of Deprivation can be found in section 10.2.) Individuals aged 60
or over had been omitted as many are retired and not seeking employment. The
original file included about 160,000 individuals between the ages of 16 and 59 residing
in approximately 8000 English local area wards. A ward is the spatial unit used to elect
local government councillors. They vary in size but the average number of people in a
ward is 5500. Due to the LFS sampling design, the number of individuals in a ward
varied between wards; some wards had only one individual sampled whereas others
had several hundred.

The original data file is extremely large and a subset was selected for the example
here. A sampling strategy was adopted to reduce the number of individuals but to
include a large number of wards while avoiding wards with very few individuals. Ini-
tially all wards were selected that had between 40 and 45 (inclusive) individuals. This
resulted in a subset of 262 wards which met this criterion. Subsequently, individuals
aged 16 but less than 25 were omitted in order to exclude the majority who were in
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education or training. This procedure resulted in a sample of 9,106 individuals, which,
together with the 262 wards, was felt to be a good representative sample and adequate
for demonstrating multilevel modelling.

The variable of interest, the response variable y, was whether or not a person was
employed. Being employed was coded 0 and not employed was coded 1. (Any mature
student aged 25 or over in the dataset was coded 0 as they were considered to be
economically active.)

For each individual, information was available on their age, gender, and ethnicity,
together with other characteristics which might affect their employability such as edu-
cational qualifications, socio-economic status, their household composition (in particu-
lar whether they were lone parents) and whether they experienced any disability. At the
area level, the index of multiple deprivation and its component domains of deprivation
were available for each ward together with the proportion of the ward who were aged
over 50 and the proportion of the ward who were non-white.

Thus the data is at two levels, level 1 being individuals and level 2 wards.

Step 1: Variance components model

To begin fitting a model in MLwiN the user clicks on the toolbar, Model → Equations
which brings up the following screen.

The first line is somewhat different to what we have seen so far and may seem off-
putting at first sight, but it defines the model to be fitted by using the components and
terminology of the generalised linear model. At this point the reader may wish to
consult Appendix 1 for a brief explanation of the generalised linear model in order to
understand the representation of the models in MLwiN. The first line specifies the
distributional assumptions and the default is N designating a normal distribution which
leads to fitting a multiple regression model (suitable when y is a continuous variable).
XB is matrix algebra notation stating that there are to be one or more explanatory vari-
ables included in the model, each with an associated coefficient, b (the fixed component
of the model – see section 1.3 and Appendix 1). Ω (omega) denotes a number of random
components to the model.

Figure 9.4 Initial MLwiN model screen.
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However, in this example our response variable is binary and we wish to fit a logistic
regression. By clicking on N, options for alternative models are presented and Binomial
was checked (binomial being the distribution for our binary data). The logit link
function was selected to specify fitting a logistic regression (see Appendix 1).

The second line presents the basic variance components model; the only variables
included are y and x 0, both of which are shown in red to indicate that they have to be
defined. By clicking on y the researcher is invited to specify the response variable, the
number of levels and the variables indicating each level. Here y was defined to be the
variable employb, 2 levels were specified, level 2 being the variable stwardco, (standard
ward code) and level 1 being the variable level1 (a unique identifier for each individual).
Following these actions the Equations screen changed to:

Binomial is now shown in Figure 9.5 indicating a logistic regression model, but nij has
still to be specified. nij is the denominator and, in this case, is 1 for each individual – for
each ‘1’ individual he/she is either employed (0) or not employed (1). A column of 1s is
required and is easily created by clicking Data Manipulation on the toolbar then Gen-
erate vector. This ‘variable’ (which is similar in conception to x0 – also a column of 1s,
but created for a different purpose) has been named denom. We also need to specify x0

and this is done by clicking on it and selecting cons (a column of 1s created previously),
and checking the ‘j’ box to indicate level 2.

Having specified the variables, the researcher clicks Estimates on the bottom toolbar.
The parameters to be estimated are shown in blue. By clicking Start on the top toolbar
the parameters turn green. Click Estimates again and the estimated values are shown in
green as in the Figure 9.6 overleaf.

It can be seen that the variance at level 2, [u0j] is .312, and its standard error (s.e. –
given in the brackets) is .042. For models with categorical response variables a value
of –2loglikelihood is not given (unlike models with continuous response variables).
However, an alternative Wald test can be requested – see manual for details. The Wald
test applied here gave a value of 55.2, which, as a chi-squared test with one degree of
freedom, is very highly significant (p < .001); the conclusion being that there are
significant differences between wards. (Note that a variance cannot be less than 0, i.e.
negative, so the test of significance is a one-tailed test assessing whether the variance is
greater than 0. See section 3.4 for a discussion of significance tests and a distinction
between one and two-tailed tests.)

Figure 9.5 MLwiN screen of logistic model.
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Note, however, that there is no estimate for the level 1 variance, eij. This is because
a logistic regression model is being fitted and the variance depends on the mean
which changes according to the values of the explanatory variables. Because no esti-
mate of eij is available, the proportion of variance at each level cannot be definitively
estimated. Various alternatives have been proposed to provide some indication of the
proportion of variance at each level and hence an approximation to the intra-class
correlation. The simplest is to assume a threshold (or maximum) value for eij of 3.29.
(See the MLwiN manual for the rationale for this threshold value and for alternative
approaches.)

Adopting the threshold value, the intra-class correlation is:

ρ =
.312

(3.29 + .312)
= .087

Thus, 8.7% of the variance is at level 2 and 91.3% of the variance is at the individual
level, level 1. This is not an uncommon finding as it is often the case that most of the
variance is at the individual level. Of importance is that the level 2 variance is significant,
vindicating the need for multilevel modelling.

Step 2: Adding level 1 explanatory variables

By clicking on the Add Term button, explanatory variables can be readily included in
the model (and deleted by clicking on the variable and clicking delete term). All the
level 1 variables were considered and six were found to be related to whether a person
was not employed. The six variables were: being a female, of low education, being non-
white, disabled, a lone parent and age over 50. An interaction between low education
(lowed ) and non-white was also found to be important. The model is displayed in
Figure 9.7 below:

Figure 9.6 MLwiN output, logistic model without explanatory variables.
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Because a logistic regression is fitted, the coefficients (the bs) are on the log scale.
The odds need to be calculated separately as MLwiN does not do this for you. The
odds are given for the final model but until then, log odds are presented. (However,
recall from section 3.2 that positive coefficients on the log scale are equivalent to odds
greater than 1 and negative coefficients are equivalent to odds less than 1.) All the
coefficients in the model are positive and all the variables are coded 0 and 1, 1 being
female, low education, non-white, disabled, lone parent and over 50. As not being
employed is coded 1, having any of the characteristics of the explanatory variables
increases the odds of not being employed. The interaction term is also positive,
indicating that being both of low education and non-white further increases the odds
of not being employed.

(On a technical note, which need not overly concern us here, and following the
recommendation of the manual, estimates of the coefficients were derived using the
2nd order PQL estimation procedure.)

It can be seen that including explanatory variables in this model has considerably
reduced the level 2 variance, u0j, which has gone down from .312 to .119. Given that
only level 1 (individual level) variables have been fitted, this reduction indicates that
much of the difference between wards is attributable to the employability of their resi-
dents. However, notwithstanding the reduction, the level 2 variance is still significant,
suggesting that level 2 explanatory variables need to be considered.

Step 3: Adding level 2 explanatory variables

The separate indices of deprivation (or domains – see section 10.2) are highly inter-
correlated and only the index of multiple deprivation (zimdscors) was included in the
model. It can be seen from Figure 9.8 below that it was positively and significantly
related to not being employed. This variable was standardised so the interpretation of the
coefficient is such that a change of one standard deviation in zimdscors increases
the log odds of not being employed by .224.

Figure 9.7 MLwiN output, logistic model with level 1 explanatory variables.
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Of the other two level 2 variables available, the ethnic composition of the ward
(the proportion who were non-white), was significantly related to not being employed,
but the proportion over 50 was not. The model thus indicates that over and above
individual characteristics, those living in socially deprived areas and areas in which a
higher proportion of the residents are non-white are more likely not to be employed.

Importantly, the level 2 variance, u0j, has reduced further, from .119 to .062 but is
still significant.

Step 4: Random slopes or coefficients

The next step was to allow the coefficients of the explanatory variables to vary. How-
ever, none of the random slopes were found to be significant and the model was not
improved by this step.

Step 5: Adding cross-level interactions

The final step was to consider any cross-level interactions, that is, interactions between
level 1 and level 2 variables. One such interaction was found to be significant, an inter-
action between an individual being of low education and living in a social deprived
area. The final model is shown in Figure 9.10.

The Wald test for this model was 5.4, which as chi-square with 1 df is still significant,
but now only at the 5% level not the 1% level. The above model was accepted as the final
model and is set out in Table 9.1 where the odds, as well as the log odds are presented.

From the last column of the table it can be seen that all odds are greater than one,
which means that having any of the characteristics increases the odds of not being
employed. Having a disability has the greatest effect on not being employed, increasing
the odds by nearly 10 compared with those with no disability. Being female or having
low education or being a lone parent more than double the odds of not being

Figure 9.8 MLwiN output, logistic model with level 1 and level 2 explanatory variables.
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Figure 9.10 MLwiN output, logistic model adding cross-level interaction terms.

Table 9.1 Final model with the odds of being non-employed

Explanatory variable b Exp(b) odds

Level 1 explanatory variables
Female 1.015 2.76
Low education (lowed ) .898 2.45
Non-white (nonwhite) .262 1.30
Disabled (disabled ) 2.285 9.83
Lone parent (lonepare) 1.086 2.96
Over 50 (plus50) .242 1.27
Level 1 interactions
Lowed*nonwhite .642 1.90
Level 2 explanatory variables
Standardised index of multiple
deprivation (zimdscors)

.122 1.13

Proportion non-white in ward
(nonwhitew)

.379 1.46

Cross-level interactions
Lowed*zimdscors .210 1.23

Multilevel modelling 123



employed. Having low education and being non-white further increases the odds of
not being employed. Living in deprived areas or in areas with a high proportion of
non-whites adversely affects employment, and more so if a person in a deprived area is
also of low education.

Further reading

An accessible introduction to multilevel modelling is provided by Plewis (1998).

A good clear, and more detailed, text on multilevel modelling is Hox (2002). Hox explains the
methodology and covers a wide range of applications but does not demonstrate how to fit
multilevel models using any particular computer software. This is intentional as his aim is to
explain general principles and not be tied to one specific computer software.

Further instruction on using MLwiN can be found at the Centre for Multilevel Modelling website
www.cmm.bristol.ac.uk and the TRAMSS website http://tramss.data-archive.ac.uk. Only version
1 of MLwiN (and the manual pertaining to this earlier version) is at the TRAMSS website, but
version 1 is sufficient to explain the methodology and most of the features of the software.
Downloading the software and working through the tutorial, or attending an MLwiN course, are
the best ways of becoming familiar with the software.
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10 Latent variables and
factor analysis

10.1 Introduction

Many concepts or constructs exist in social science, which cannot be measured directly.
Consider, for example, alienation, anomie, social deprivation, intelligence, quality of
life, fear of crime, business confidence, cost of living: in every case we understand what
the term conveys but no natural measurement scale exists. Such variables are called
latent variables. The list of latent variables in social science seems limitless, so much so
that social science could be defined as the study of latent variables. In order to under-
take research and analysis on these concepts a measurement scale has to be constructed
from manifest variables, that is, from variables that provide some indication of the
underlying latent variable but which can themselves be measured. In the case of intelli-
gence, individuals can be given tests to gauge their ability at certain tasks or knowledge
of particular subjects. In the case of social deprivation, data on the manifestations or
indicators of social deprivation (poor housing, high unemployment, etc.) can be pooled
to form an index.

In each case we theorise that there is a single individual concept, or a small number
of concepts, or latent variables, which lead to many different manifestations. An
intelligent person is likely to do well on a battery of different tests. Social deprivation
manifests itself in many different but related ways. What the social scientist is attempt-
ing to do is distil the underlying social concept(s) from its manifestations. How
many dimensions a particular concept has, and how they should be represented, is often
at issue. Intelligence, for example, is thought not to be a simple homogeneous concept
but multidimensional – proposed dimensions include verbal, numerical and spatial
intelligence.

Priority for creating latent variables

On occasions the prime interest may be to produce an agreed measure which will enable
changes to be tracked over time. The retail price index is an example here and provides a
guide to how the cost of living or inflation is changing from one period to another. In
some situations the purpose may be to provide a measure of discrimination between
areas. Such a measure is the multiple index of deprivation which ranks local areas of
the country from the least to the most deprived. The index thereby informs government
decisions on the allocation of resources between areas or identifies areas to be the target
of specific interventions.

On other occasions our interest may be more theoretical in exploring the dimensions



of a particular concept. The exploration of the theoretical underpinnings of intelligence
and fear of crime are examples here.

At other times our interest may be more pragmatic. In a research project involving
a survey, a great many questions might be asked tapping respondents’ beliefs or
attitudes on a particular subject. What is desired is a summary measure which can
be incorporated in subsequent analyses. Examples here include the two variables
‘left–right scale’ and ‘libertarian–authoritarian scale’. Both have been derived from
responses to a number of specific questions in the British Social Attitudes Survey,
although the scales have been used in other surveys, notably the British Election
Survey (which was the subject of analysis in section 6.6). Including the responses
to all the questions (the manifest variables) would over-complicate a model, result-
ing in a large number of explanatory variables, and would lead to multicollinearity
as the manifest variables are usually highly inter-correlated with each other (see section
3.6).

Of course, the various priorities described above are not mutually exclusive. Often we
wish to construct latent variables for several reasons.

10.2 How are latent variables constructed?

Many believe that latent variables are only constructed by factor analysis, and for
them latent variables and factor analysis become synonymous. That is not so; while
factor analysis has no other purpose than to construct latent variables, there are other
and often more appropriate methods for constructing latent variables than factor
analysis.

Proxy variables

One could simply choose one of the manifest variables, which is felt to be most repre-
sentative, to act as a surrogate or proxy for the underlying latent concept. An example
here is the number of previous offences committed by an offender, which has been
found to be an adequate indicator of previous criminal history in much criminological
research.

Obviously ‘putting all one’s eggs in one basket’ has potential problems, especially if
the concept has more than one dimension.

Indices

Rather than use one variable we could construct an index from several variables. The
simplest method would be to select a range of what were thought to be appropriate
manifest variables, add them up and produce a score or an average value. The left–
right scale and the libertarian–authoritarian scale are constructed in this way. In the
case of the left–right scale, respondents are asked five questions about whether the
government should redistribute wealth and whether ordinary people get their fair
share of the nation’s wealth, whether big business or management benefit at the
expense of workers and whether there is one law for the rich and one for the poor.
Each question has a five-point scale ranging from ‘agree strongly’ to ‘disagree
strongly’ and each respondent’s answers to the five questions are added and divided by
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five. Similarly the libertarian–authoritarian scale is constructed from six questions
framed to elicit respondents’ views on the law, sentencing, discipline, respect and
censorship. The same five-point scale forms the responses to the questions which are
added together and divided by six.

With the left–right scale and the libertarian–authoritarian scale all individual ques-
tions are treated equally. However, each component of an index could be weighted
differently, but then a supplementary issue arises: what weight should be given to each
variable?

The Retail Price Index (RPI) is calculated by taking a sample of goods and services,
which the typical household buys, and items are weighted according to the amount
spent on them. Items that are the most important in the spending patterns of the typical
household are given a higher weight in the RPI. So, for example food is given a weight
of 13% in the overall index, whereas clothes contribute 5.6% of the RPI, motoring
12.8%, alcohol 8.0% and so on.

The three examples given so far can be summed (with or without weights) and
averaged because the elements, or variables, are measured on the same metric scale – a
five-point attitudinal scale in the case of the left–right and libertarian–authoritarian
scales and pounds and pence in the case of the RPI. But another issue arises if manifest
variables are themselves measured on different metric scales. Here the way forward is
often to standardise the variables in some way, often by transforming them to normal
(z) scores.

Factor analysis

Notwithstanding the remarks made earlier, factor analysis is a popular method for
identifying and constructing latent variables and is considered in detail below.

As stated above, the Index of Multiple Deprivation is a very important measure as
it influences many government decisions, but it is also interesting from a methodo-
logical perspective as its construction draws on all the issues raised above. The Index
of Multiple Deprivation is a composite of seven latent variable indices, called domains
(1 Income, 2 Employment, 3 Health and Disability, 4 Barriers to Housing, 5 Education,
Skills and Training, 6 Crime and 7 Living Environment). Each domain is constructed
from a selection of manifest variables (for example, the proportion of people claim-
ing benefits, burglary rates etc.). Some domains are simply a summation of their
constituent variables (such as Income and Employment) whereas others are constructed
using factor analysis (such as Health and Disability and Education, Skills and Train-
ing). Each domain is standardised and then weighted prior to being amalgamated
to form the Index of Multiple Deprivation. Income and Employment both contri-
bute 22.5% towards the Index of Multiple Deprivation. Health and Education each
contribute 13.5% whereas Housing, Crime and the Living Environment each have
a weight of 9.3%. (Further details can be found at the government website,
www.communities.gov.uk)

10.3 Factor analysis

Factor analysis assumes a linear relation exists between the factors and the manifest
variables and postulates a linear model of the form:
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F1 = b11x1 + b12x2 + b13x3 + . . . + b1nxn (10.1)

F2 = b21x1 + b22x2 + b23x3 + . . . + b2nxn (10.2)

.

.

Fn = bn1x1 + bn2x2 + bn3x3 + . . . + bnnxn (10.n)

Potentially we can have as many factors as there are manifest variables, although our
assumption is that only a small number of factors are in any way meaningful or
important.

The equations are in the same form as the linear models that we have met in previous
chapters. The only difference is that y (the dependent or response variable) is the
unmeasured factor F.

Note that there is no constant b0. This is because the xs have been standardised to
avoid the problems that would arise if the xs were measured on different scales. (It is
possible to undertake factor analysis on unstandardised variables – and SPSS makes
provision for this – but it is the convention to work with standardised variables, which
are created automatically by SPSS.)

In factor analysis terminology, the coefficients, b, in the above equations are called
factor loadings (although SPSS does not use this term). Because the manifest variables
are standardised, the factor loadings can be interpreted as the correlation between the
factor and the manifest variable. Like all correlation coefficients their value ranges from
−1 to +1, with 0 indicating no correlation (or no relationship) between the two. There is
no definition of what constitutes a high or low factor loading, but a convention often
adopted is that loadings greater than +0.3 (or less than −0.3) are considered high
whereas loadings in the range −0.3 to +0.3 are viewed as low.

For every subject or case in our survey or database we have actual values on each
manifest variable (the xs) but we do not have measures of the Fs (the dependent vari-
ables) so we cannot fit a regression or similar model, as we would have done previously.
However, by applying a few rules that impose certain restrictions, we can transform the
relationships between the variables to provide an initial solution. The initial solution is
often referred to as the method of extraction, as it is the means of getting a set of factors
from the data. The transformation (and hence the method of extraction) that is invari-
ably applied is known as Principal Components Analysis (PCA).

Principal components analysis (PCA)

PCA is simply a transformation of the data and thus estimates as many components  as
there are manifest variables. However, to obtain a PCA solution certain restrictions
must be imposed.

First, the sum of squared factor loadings is constrained to be 1. That is, for the first
equation

(b2
11 + b2

12 + b2
13 + . . . + b2

1n ) = 1

Second, unlike the manifest variables, which are invariably highly correlated, the
components (factors) are set to be uncorrelated (the correlation coefficient between
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the components is 0). Uncorrelated components (factors) are also referred to in fac-
tor analysis terminology as being orthogonal (this is because they can be presented
graphically as being at right angles to each other).

Third, the first component is set to account for the maximum amount of the variance
possible. The second component accounts for the largest amount of the variance pos-
sible remaining after the first component has been fitted, the third component accounts
for the largest amount of variance left after the first and second component has been
fitted, and so on.

The attraction of PCA is thus apparent. Having started with a large number of
highly inter-correlated variables, PCA transforms the data to a set of uncorrelated
components that are arranged in descending order of importance. This means that if
the first few components between them explain a large amount of the variation, we can,
without much loss of information, replace our more extensive set of manifest variables
with a few components. But what is meant by a ‘large amount of the variation’ and
‘a few components’? Before we consider these issues, a further word on the distinction
between PCA and factor analysis is required.

PCA is simply a transformation of the data just in the same way that miles can be trans-
formed into kilometres or Fahrenheit into Centigrade. Given a set of data and a set of
variables, there can only be one unique PCA solution. PCA is not based on any assump-
tions about the causative relationship between components and manifest variables or on
the interpretation of the components. It is not proposing that the components are them-
selves latent variables. PCA is neutral on all these issues, it merely rearranges the data
subject to the three constraints listed above. However, as PCA is now a standard
procedure for undertaking the first step in factor analysis it is common to see the terms
used interchangeably or to see the expression ‘principal component factor analysis’.

Eigenvalue

The variance of a factor (or component) is known as its eigenvalue, and thus can be
used to assess the importance of any factor (or component). If (as is invariably the case)
the manifest variables are standardised, the variance of each equals 1 (because that is
what standardisation does, it transforms a variable such that its mean = 0 and variance =
1). If we have n manifest variables in our analysis, in standardised form the sum of their
variances will be n (as each contributes 1). PCA transforms the data such that the
total variance of the components, n, will be redistributed unevenly between the com-
ponents. The first will have the greatest eigenvalue, the second the next highest, continu-
ing to the nth which will have the lowest eigenvalue. If a factor has an eigenvalue greater
than 1 it can be said to have accounted for more of the variance than an individual
variable and can thus be thought of as providing a better summary of the data than an
individual variable. One rule of thumb is thus to retain in the final factor solution all
factors with eigenvalues greater than 1.

If the eigenvalue is divided by n, the total variance (but also the number of manifest
variables), the result is the proportion of variance explained by that factor.

Communalities

It was stated above that the factor loading (the b) is the correlation between the mani-
fest variable and the factor. The square of the correlation is the proportion of variance
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in the manifest variable that can be explained by the factor. If we square and sum all the
factor loadings for a manifest variable across the factor equations we have a total
known as the communality as it indicates how much of the variance in the manifest
variable is accounted for by the combination of the factors. In our initial PCA solution,
where we have as many components as manifest variables and all manifest variables
appear in every factor equation, the sum of the squares of the factor loadings for any
variable will be 1. However, if we drop components from our solution, and retain
only those with eigenvalues greater than 1, our communalities will be less than 1 and
provide an indication of how much each manifest variable contributes to our reduced
solution.

10.4 Example: Fear of crime

Before describing other aspects of factor analysis it is best to consolidate what has been
described already by way of an example.

The concept of fear of crime has received much attention in criminology and a range
of questions addressing this underlying latent variable are routinely included in the
British Crime Survey. That data is analysed here in order to illustrate factor analysis
and to demonstrate how to undertake and interpret factor analysis in SPSS.

Respondents to the British Crime Survey 2000 were asked the following nine
questions:

Qu1 How safe do you feel in your home alone at night?
Qu2 How safe do you feel while walking alone after dark?
Qu3 How worried are you about having your home broken into and having some-

thing stolen?
Qu4 How worried are you about being mugged and robbed?
Qu5 How worried are you about having your car stolen?
Qu6 How worried are you about having things stolen from your car?
Qu7 How worried are you about being raped?
Qu8 How worried are you about being physically attacked by strangers?
Qu9 How worried are you about being physically attacked because of your skin

colour, ethnic origin or religion?

Respondents were asked to rate their feelings on a four-point scale. For the first two
questions, the options were:

very safe, fairly safe, a bit unsafe, very unsafe

For questions 3 to 9, the options were:

very worried, fairly worried, not very worried, not at all worried

Note that if respondents were fearful of crime their responses would be to the right-
hand end of the scale on the first two questions, but towards the left-hand end of the
scale on the remaining seven questions. Before embarking on factor analysis we could
recode the first two manifest variables so that the scales of all nine ‘run’ in the same
direction. We have chosen not to do that here as the original scales serve as a reminder
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that when interpreting results (of any analysis) we must have in mind the underlying
metric.

Note that responses to all the questions are not continuous variables but ordered
variables measured on a Likert scale. In the past (and in many cases in the present)
researchers have analysed this kind of attitudinal data as if it were a representation of
an underlying interval scale and thus an approximation of a continuous variable.
Previously, researchers had little option but to proceed as if the data were continuous,
but now other latent variable models are available for categorical data. These models
are briefly reviewed at the end of this chapter, but as the purpose here is to illustrate
factor analysis as available in SPSS and Stata, we will assume that the variables are
continuous variables.

Responses to all the questions are highly correlated as revealed in the correlation
matrix presented in Table 10.1.

All the correlation coefficients in Table 10.1 are significant and in the same direction
(once we recall that the scale for the first two questions runs in the opposite direction
from the other seven). Thus respondents who felt worried or unsafe expressed their
anxieties similarly when answering all nine questions.

Let us consider two related issues. First, what are the dimensions of fear of crime? Is
there a single underlying construct or is fear of crime more complex and multi-
dimensional? We may be interested in this issue in order to reflect on the theory of fear
of crime. Second, can we reduce this set of nine highly inter-related manifest variables
to a smaller number of uncorrelated summary indices? Our interest here may be more
pragmatic. A simple measure of fear may be required as an explanatory variable to be
incorporated into models examining other aspects of crime.

It should be noted that one option in answering the nine questions was ‘not applic-
able’ and nearly 5000 respondents who did not own a car did not answer questions 5
and 6 ascertaining their concerns about car crime. In addition, some other respondents
were coded not applicable on question 7 (worry about rape) and question 9 (worry
about being attacked because of their skin colour, ethnic origin or religion). Not
applicable was declared a missing value and along with a small number who refused
to answer any one of the nine questions were omitted from the analysis. This reduced

Table 10.1 Correlation coefficients between the responses to the nine fear-of-crime questions

Qu1 Qu2 Qu3 Qu4 Qu5 Qu6 Qu7 Qu8 Qu9

Qu1 1
Qu2 .44 1
Qu3 −.26 −.33 1
Qu4 −.42 −.32 .56 1
Qu5 −.23 −.20 .48 .44 1
Qu6 −.17 −.17 .42 .37 .72 1
Qu7 −.35 −.28 .42 .61 .31 .25 1
Qu8 −.39 −.32 .50 .71 .40 .35 .72 1
Qu9 −.20 −.19 .35 .46 .29 .26 .50 .54 1

Note: All correlation coefficients are significant at the 1% level.
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the sample from 19,411 to 12,159. The principal purpose here is to explain factor
analysis and the analysis was carried out on the reduced sample. However, had our
purpose been to explore more thoroughly the substantive issue of fear and worry,
consideration would need to be given to the implications of dropping nearly 40% of the
sample. People who do not own a car may well be a distinctive group with other
characteristics (possibly age, or income) that might or might not predispose them to
fear or worry. One approach would be to run alternative analyses including and exclud-
ing responses to car crime, rape and personal discriminatory attack and compare the
results obtained.

To begin in SPSS we follow: Analyze → Data reduction → Factor, which brings up
the dialogue box at Figure 10.1.

The nine variables have been entered. Considering in turn each of the buttons at the
bottom of the screen:

Descriptives: offers options to produce descriptive statistics and correlations
between the manifest variables. Here we opt only to output the default ‘initial
solution’.

Extraction: offers alternative methods, ‘Principal components’ is the default (and is
most commonly used – although the principal factor method is the default in
Stata). A choice is offered between correlation matrix (the default) or covariance
matrix. In effect, choosing the correlation matrix means that the solution will be
based on standardised manifest variables whereas the covariance matrix means
the solution will be based on unstandardised manifest variables. The correlation
matrix is chosen here. In this box a choice is offered between extracting a speci-
fied number of factors or all factors with an eigenvalue above a certain value.
The default is to extract factors with an eigenvalue above 1. Two graphic outputs
are offered: ‘unrotated factor solution’ and ‘scree plot’. A scree plot has been
chosen and it will be discussed later.

Figure 10.1 SPSS dialogue box for factor analysis.
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Rotation: varimax has been chosen. Rotation will be discussed later.
Scores: enables factor scores to be calculated and stored on the dataset. We have

chosen to save scores.
Options: provides alternative ways of handling missing data. Here we have accepted

the default, ‘listwise’, of omitting cases where data is missing on any of the nine
variables.

It can also be seen in the dialogue box that it is possible to undertake the analysis on
a subset of the data (for example. men only or children etc.) by entering a Selection
Variable. The analysis here is on the entire sample (except those cases where data is
missing).

The output from this analysis is presented below. It is actually easier to explain the
output in a different order to that produced by SPSS.

Because nine manifest variables were entered, nine principal components have been
produced. However, only the first three have eigenvalues greater than 1, and as this was
the criteria specified, only the first three components are developed further. Dividing
the eigenvalue by the number of manifest variables gives the proportion of variance
explained by the component (for example, for the first component, 4.204/9 = .46711). It
can be seen that the first three components account for 46.7%, 14.1%, 11.2%, or
together 72.0% of the variance. Put another way, we can say that 72% of the informa-
tion contained in the nine original inter-related manifest variables can be summarised
in the three uncorrelated components.

The scree plot, shown in Figure 10.3, graphically presents the eigenvalues for the
components. (It takes its name from the image of loose scree falling down the side of a
mountain.) The scree plot helps decide how many components (factors) should be
selected. One criterion is to stop selecting factors at a break point or ‘elbow’. The scree
plot in this analysis suggests elbows occur after one and, to a lesser extent, three
components (factors).

Figure 10.2 SPSS output, PCA eigenvalues.
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Having extracted three components the loadings for each are presented in the Com-
ponent Matrix box below.

Figure 10.3 SPSS output, scree plot.

Figure 10.4 SPSS output, component matrix.
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The loadings are the bs of the equations (Equation (10.1), Equation (10.2) etc.) so for
the first component (factor) the equation is:

F1 = − .491(feel safe in home) − .558(feel safe walking) + .707(worried home
broken into) + .828(worried mugged) + .659(worried car stolen) + .589
(worried items stolen from car) + .759(worried being raped) + .841(worried
about  attack) + .634(worried racial attack)

Similarly, the equation for the second component (factor) F2 is:

F2 = .293(feel safe in home) + .372(feel safe walking) + .179(worried home broken
into) etc.

Note that because the manifest variables have been standardised, the bs are correlation
coefficients and have values between −1 and +1.

Note also that a respondent’s score on Factor 1 can be calculated by substituting in
the above equation their responses on each of the manifest variables – just as predicted
scores can be calculated in regression models. When specifying the model in SPSS
we opted to have factor scores calculated. Three factor scores were computed and these
were added to the database as new variables fac1_1, fac2_1, and fac3_1 (which of
course can be renamed). All of the three variables can be considered as continu-
ous variables and included as response or explanatory variables in subsequent analyses
if required.

The next box presents communalities.

Figure 10.5 SPSS output, communalities.
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A communality is the sum of the squares of the loadings for a particular variable
across each component. It can be seen that for the initial solution the communality is
always 1.0. That is because the initial solution includes all nine components and the
sum of squared loadings for any variable across nine components is constrained to be
1.0 (one of the three constraints of PCA mentioned at the outset). Informing us that the
initial communalities are 1.0 is not very helpful, but perhaps serves as a reminder of the
condition imposed and a check that the program worked successfully. The next column,
headed Extraction is more important. It shows the contribution of the extracted com-
ponents (in this case the first three) in explaining the variation in the manifest variable.
The communality for a manifest variable is the sum of squared loadings on the three
extracted components. Referring back to Figure 10.4 above, the communality for the
first variable is:

Communality (feel safe in home alone at night) = −.4912 + .2932 + .6462

= .241 + .086 + .417

= .744

which is the value given in Figure 10.5.
It can be seen from Figure 10.5 that all nine manifest variables are related to the

combined components, the lowest value being .535 (Qu3: worried about having one’s
home broken into), the highest being .827 (Qu6: worried about having something stolen
from one’s car). Had any of the communalities been small this would have suggested
dropping that variable(s) from the factor analysis.

10.5 Interpreting the factors and rotation

So far we have merely transformed the responses to the nine questions on fear of
crime into a set of components. No attempt has been made to interpret them as
latent variables. However, while PCA is invariably adopted to provide an initial
solution for factor analysis, in many cases it is also taken to be the final solution
and the components are interpreted as factors. For illustration, we attempt to do that
here.

We might conclude from the analysis that fear of crime has three dimensions,
as represented by the three important components. Looking at the factor loadings
in the component matrix it appears that all the questions asking whether respondents
are worried about crime are highly positively correlated with factor 1. The first two
manifest variables (asking respondents whether they feel safe) are highly negatively
correlated with factor 1, although, as pointed out above, the negative sign merely
reflects the question wording. Of more importance is the fact that all correlations are
quite high. We might conclude, therefore, that there is a general latent variable reflecting
people’s general level of fear of crime. This finding of a first general factor is not
surprising (and not uncommon with attitudinal data) given the significant correlation
between all the questions as indicated in Table 10.1.

Looking at the second factor (component), the high loadings are on the questions
examining worry about car crime. Respondents are not worried about personal crimes
(rape, mugging and physical attacks), all of which are negatively correlated. To a lesser
extent respondents are worried about burglary and feel unsafe in their homes. More
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interestingly (and perhaps an anomaly given their lack of fear of personal crimes)
respondents feel unsafe while walking alone after dark.

Loadings on the third factor (component) appear to be the mirror image of compon-
ent 2. This component seems to indicate a fear of personal crimes but not of property
crime.

Thus we might conclude that people have a general fear of crime. However, in add-
ition, some may be more fearful of property, mainly car crime. These might be men and
women in particular households or neighbourhoods, who use their cars extensively in
the course of their work or in the course of their leisure activities. For others, women
perhaps who live in particular neighbourhoods and do not have the same access to a car
but rely more on public transport or walking, have additional fears of being physically
attacked or sexually assaulted. Further exploration of the data or additional research
might test these assumptions and hypotheses.

Alternatively, it could plausibly be argued that because the eigenvalues of the third
factor in particular, but also the second, are not much greater than 1, fear of crime is
a one-dimensional concept, best represented by the first factor.

Rotation

Having produced an initial solution from PCA and having extracted the components
that meet the criteria (in our case those with eigenvalues greater than 1), factor analysis
can go on to explore the data to see if further clarification and simplification can be
obtained. It is common to find that most variables load highly on the first component,
and that was indeed the case here. But factors would be more clearly interpretable if
each variable tended to load highly on one factor but low on all other factors. In factor
analysis, this further exploration is known as rotation. (The term stems from the graph-
ical representation of factor analysis where the axes of the factors are rotated to form a
new relationship to the manifest variables.)

The mathematics need not concern us but the principles do need to be understood.
Recall that in order to obtain our initial solution from PCA three constraints were
imposed. We shall retain the first, namely that the sum of squared factor loadings is 1.
But if we relax one or both of the other two we can obtain other factor solutions.

Orthogonal rotation

Orthogonal rotation is obtained when the third constraint is relaxed, namely that
the first component accounts for the maximum amount of the variance but that the
second constraint remains intact, namely that the factors are uncorrelated. Of the three
orthogonal rotation options in SPSS (varimax, quartimax and equamax) varimax is
the most favoured and commonly used method and was selected for this analysis (it is
the only orthogonal rotation option within Stata). The output produced is presented
in Figure 10.6 overleaf.

Having extracted three components it is these that are rotated. Note that the three
rotated factors account for the same proportion as before, 72.0%. However, it can
be seen that the first rotated factor explains only 31.1% compared with the first
component in the initial solution, which accounted for 46.7%. In the rotated solution
the three factors are less divergent in the proportion of variance each explains, or
looked at another way, their eigenvalues are closer in value.
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The component matrix showing the loadings from the varimax (orthogonal rotation)
is shown in Figure 10.7.

The rotation has tended to load the manifest variables more clearly on one factor
rather than another but I am not convinced it has simplified the interpretation. It now
appears that we have lost the general factor, fear of crime. The loadings suggest that
the first factor emphasises fear of violence, the second property crime, in particular car

Figure 10.6 SPSS output, verimax rotation eigenvalues.

Figure 10.7 SPSS output, rotated component matrix.
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crime. To this extent they are now similar to the original second and third components.
However, the third factor now seems to draw a distinction between feelings and worries,
being heavily loaded on the first two variables but not the others.

Oblique rotation

Oblique rotation goes one step further by relaxing the second constraint – namely that
the factors should remain uncorrelated. The advice generally given is that one should
not pursue oblique rotation unless there is good evidence to suggest that the factors are
(cor)related. Two options are available in SPSS, direct oblimin and promax. Direct
oblimin is generally recommended as this places a constraint on the extent to which
factors can be correlated (determined by the value of delta). Direct oblimin is the only
oblique rotation method available in Stata. An oblique factor solution was not pursued
here.

10.6 Exploratory and confirmatory factor analysis

Factor analysis has come in for a good deal of adverse criticism, perhaps more than any
other statistical technique. Its critics claim that it is atheoretical and enables the
researcher to try any number of solutions and select the one he or she finds most
appealing. All factor analysis solutions are based on the correlation matrix, which may
capitalise on chance variation in the data. Arbitrary rules are applied to determine the
number of factors to be extracted and there are no formal significance tests to apply.
The approach is thus heuristic and inductive, it is claimed.

These criticisms are well founded but similar criticism could be levelled against the
application of other techniques. All analyses should be guided by theory or informed
knowledge. No technique should be slavishly followed.

Nevertheless, these criticisms have had an effect. Nowadays a distinction is drawn
between exploratory factor analysis and confirmatory factor analysis. What has been
described so far is exploratory factor analysis. Confirmatory factor analysis places great
emphasis on theoretically informed deductive analysis where the researcher specifies his
or her hypothesis and tests that the analysis confirms or refutes that hypothesis. So,
for example, the researcher would specify a priori the number of factors. Maximum
likelihood estimation procedures have been developed, which permit tests of alter-
native models. Furthermore, standard errors of factors loadings can be estimated,
which under standard assumptions can be used to test for significance. Unfortunately
SPSS and Stata do not include the option to undertake confirmatory factor analysis
or conduct formal tests. Specialist software is required, such as EQS, Lisrel or
MPlus. This software also fits structural equation models, which are described in
section 11.4.

10.7 Other latent variable models

Factor analysis is the oldest and best known method for creating latent variables. But
the assumptions underlying factor analysis are that the latent variables and the manifest
variables are continuous and normally distributed. However, analogous methods have
been developed for situations where the latent variables and/or the manifest variables
are categorical. They are set out in Table 10.2.
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It can be seen that latent trait analysis is appropriate where the latent variable is
continuous but the manifest variables are categorical. (Latent trait analysis is also
known as item response theory, IRT.) Conversely, latent profile analysis is appropriate
when the latent variable is categorical but the manifest variables are continuous. Finally,
latent class analysis is appropriate when both latent and manifest variables are
categorical.

Neither SPSS nor Stata fit latent variable models other than factor analysis. If the
researcher wishes to fit any of the other three models, the specialist software mentioned
above (EQS, Lisrel or MPlus) is required.

Further reading

An accessible and easy to read book on latent variable models, including all those identified in
Table 10.2, is Bartholomew et al. (2002).

Table 10.2 Classification of latent variable methods

Latent variables Manifest variables
Continuous Categorical

Continuous Factor analysis Latent trait analysis
Categorical Latent profile analysis Latent class analysis
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11 Causal modelling: Simultaneous
equation models

11.1 Introduction

This chapter describes models that are often referred to as ‘causal models’, although
this term is somewhat misleading as many of the models already presented can be
considered as providing evidence of ‘causality’ if theory dictates that the variables are
not merely associated but are causally connected. Furthermore, models for longitudinal
data analysis described in the next two chapters are also regarded as providing greater
insights and understanding of underlying causal mechanisms and processes. Perhaps
the models described in this chapter have attracted the term causal models because the
researcher often sets out the relationships and causal connections diagrammatically.
Another distinguishing feature of models described in this chapter is that the causal
mechanisms considered often lead to a model entailing more than one equation which
need to be considered jointly; hence the other term used to describe such models,
simultaneous equation models.

Before describing the models, let us define causality. Causality evokes a notion of a
sequence, or chain, of events occurring in some temporal order. Moser and Kalton
(1993) state that for causality to exist three conditions must be satisfied:

1 There must be an association between the contributory variables.
2 The connection must show that the cause occurs before the effect.
3 The connection between the variables must not disappear when the influences of

other variables are taken into account.

The first does not require any further comment. With regard to the second, the connec-
tion may be so closely related in time such that changes in cause and effect appear to
occur instantaneously or simultaneously. Or, alternatively, limitations in the measuring
instruments may lead to the appearance of cause and effect to change at the same time.
The relationship between the variables must not be spurious and must persist once
control variables are taken into account, by being included in the model for example.
This is the essence of the third condition.

Simultaneous equation models can be divided into two groups: recursive and
non-recursive. Each will be considered in turn.

11.2 Recursive models: Path analysis, determinants of pay

Path analysis is the oldest causal modelling approach and became popular in sociology
in the 1960s. A salient feature, and some would say its strength, lies in the formulation



of diagrams to represent underlying complex relationships. Representation in the form
of a path diagram is very effective in helping to clarify theoretical assumptions and the
sequence of causal events.

To illustrate path analysis we return to the topic analysed in Chapter 4, the determin-
ants of pay. In Chapter 4 a small sample was selected in order to illustrate multiple
regression but here we analyse the full dataset and reflect on the temporal sequencing of
the determinants of pay.

Theory would lead us to postulate that pay is determined by a variety of factors, such
as occupation, the length of time in the current job, whether the job is part-time or full-
time, age, sex and ethnicity. However, a person’s occupation will in part be determined
by the type and level of education received prior to employment. But educational
attainment might itself be determined by a person’s sex, ethnicity and the historical
time period the person was in education (the proportion of people entering higher
education has consistently increased over time, for example). Other determinants
include a person’s intellectual ability (as measured by IQ) and his or her parents’ socio-
economic status (or class). Unfortunately, information was not available on IQ and
class which had to be excluded from this illustrative example.

The set of relationships is represented in Figure 11.1 with the arrows indicating the
direction of the causality. The model depicted in Figure 11.1 is known technically as a
recursive model, which means that the causation is in one direction only, in this case
from left to right, reflecting the temporal order of events (for example, education occurs
in time before occupation). Although we have chosen to present the model graphically
in order to highlight the complexity of the inter-relationships, it could equally have
been presented as three separate equations, with three dependent (response) variables:
educational qualifications, occupation and hourly pay. Thus path analysis can also be
described as a recursive simultaneous equation model.

Having formulated the theoretical model, the next stage is to test the model (and
thereby the theoretical assumptions underlying it) on empirical data.

The data

The data used in this analysis is drawn from the 2002 Labour Force Survey (LFS) – a
subset of which was analysed in Chapter 4. Persons aged 16 and over are included in the
LFS but only those aged 30 to 54 have been selected for the analysis here. Restricting
the analysis to those over 30 ensures that they have completed full-time education and
are becoming established in their employment careers. (The few over 30 in full-time
education were omitted.) A cut-off of under 55 was chosen to exclude many who might
be ‘running down’ their careers or retiring early. Also omitted were those not in work
because they were unemployed, in government-sponsored training schemes or not
working because of health problems. Hourly pay was chosen and not gross pay to avoid
further complications over the number of hours worked. However, to be included, a
person’s hourly pay needed to be £2 or more. After imposing these criteria for selection,
the sample available for analysis comprised 17,242 people.

A total of nine variables are identified in Figure 11.1. Sex has been coded 0 male
1 female. Five birth cohorts, each spanning five years, have been created with
cohort 1 being the oldest (50 < 55 age group) and cohort 5 being the youngest group
(30 < 35). Ethnic group was dichotomised and coded 0 white 1 all other ethnic
groups. Educational qualifications is an ordered six-point scale ranging from ‘degree or
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equivalent’ (code 1) to ‘no qualifications’ (code 6). Similarly, occupation is a nine-point
scale ranging from ‘managers and senior officials’ (code 1) to ‘elementary occupations’
(code 9). Both have been treated as continuous variables in this analysis. Age is simply
the person’s age in years. (Obviously age is defined by birth cohort but they have been
kept separate to emphasise the different theoretical concepts in the model.) Time in
current job is the number of years the person has been in the same job. Part-time is a
binary variable, 0 no (full-time) and 1 yes (part-time). Hourly pay is measured to the
nearest pence.

Estimating the model

As already stated, the path model depicted in Figure 11.1 is a recursive model and the
implication of a recursive model for statistical estimation is that each equation can be
estimated separately and independently. When the response variable is continuous, as in
this case, ordinary least squares regression procedures, discussed in Chapter 4, can be
adopted. Recall, however, that evidence of heteroscedasticity was found in the previous
analysis of the LFS data (see section 4.8) and the advice in such circumstances is to
calculate robust standard errors. As robust standard errors are readily available in Stata,
Stata was preferred to SPSS for this analysis.

There are three equations represented in Figure 11.1.
The first (Eq 1) regresses educational qualifications (the response variable) on

sex, birth cohort and ethnic group. (It can be seen in Figure 11.1 that three arrows
from the three boxes representing these explanatory variables lead to the box for
educational qualifications.) Results of the multiple regression analysis are given in
Figure 11.2. The b in the regression command requests beta coefficients, and r robust
standard errors.

Figure 11.1 Path diagram indicating the determinants of hourly pay.
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The results show that sex and birth cohort were significantly related to educational
qualifications but that ethnicity was not. The positive coefficient of sex indicates that
males, on average, had higher qualifications than females (females were coded 1 and
a high score on highest qualification means lower qualifications). As expected given
the growth in education over time, the older generation had, on average, lower quali-
fications than the youngest birth cohort. Although both variables were highly sig-
nificant (as much due to the large sample size) together they did not explain much
of the variance in educational qualifications, R2 was only .016 (1.6%). Obviously
there is much still to explain in terms of the qualifications people obtain. IQ and the
socio-economic status of parents would have contributed but are not recorded in
the LFS.

The second (Eq 2) regresses occupation on three variables: educational qualifications,
sex, and ethnic group. The results are given in Figure 11.3.

Figure 11.2 Stata output for the first equation, educational qualifications.

Figure 11.3 Stata output for the second equation, occupation.
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It can be seen that sex was significantly related to occupation, in that females had, on
average, lower status occupations than males. Ethnicity was not significantly related to
occupation, but as expected, qualifications were highly relevant in determining occupa-
tion. Sex and, more importantly, highest qualification together explained nearly 30% of
the variance in occupation (R2 = .293).

The third (Eq 3) regresses hourly pay on six variables: sex, ethnic group, occupation,
part-time job, age, time in current job, sex and ethnic group. The results are shown
in Figure 11.4.

As in the previous two equations, no support was found for a difference between
ethnic groups. All the other five variables were significant. Hourly pay increased with
the length of time the respondent had spent in his or her current job. Part-time workers
and females received lower hourly pay. Higher status jobs received greater remuneration
(the negative coefficient reflects the coding of occupation – lower status jobs having
the higher code). The variables together explained 28% of the variance in hourly pay
(R2 = .279).

Reflecting on the theoretical model as set out in Figure 11.1, support was found for
all the causal connections apart from the influence of ethnicity in any component of the
model. At this point we could redraw the diagram omitting the box ethnic group and all
the paths leading from it. We could also re-estimate the three equations omitting eth-
nicity and obtain coefficients for the other variables when ethnicity was not included.
However, on doing this, the coefficients for the other variables were found to be little
different from those presented above.

It is common practice to write the coefficients on the paths, and these are referred
to as path coefficients (although they are simply the regression coefficients). Invariably,
the path coefficients reported are the standardised regression coefficients, beta (see
Chapter 4) rather than the unstandardised coefficients. The logic here is that the stand-
ardised coefficients, by being on a common scale, are directly comparable, showing the
relative strength of the causal relationship. For this reason, and following custom,
the standardised coefficients are shown in Figure 11.1. Some researchers might reflect
the relative strength of a causal path by varying the width of the arrows.

Figure 11.4 Stata output for the third equation, hourly pay.
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Another practice often followed is to give each path a label. First the variables are
numbered and the paths between them are given the corresponding suffixes. For
example, if sex was variable 1, birth cohort 2, ethnic group 3 and educational qualifica-
tions 4, the path from sex to educational qualifications would be p41, indicating the path
to educational qualifications from sex. Yet one more convention, but less often fol-
lowed, is to write above each dependent variable (connected by a line) an indication of
the unexplained variance. This then provides a measure of what is not explained by the
causal variables. De Vaus (1996) contains an example of a path diagram incorporating
all these conventions. However, like all diagrammatic representations there is a trade-
off between the visual impact of simplicity and recording all the details of the analysis.
I prefer the diagram to readily clarify the conceptual connections underlying the theory.
The details can be presented elsewhere.

Total, direct and indirect effects

A considerable advantage of path models is that they clearly show the total effect
of one variable on another, even when the effect is mediated through other variables.
The total effect of any variable is made up of a direct effect and any indirect effects.
Consider the effect of sex on hourly pay. The model as shown in Figure 11.1 reveals that
sex influences hourly pay directly but sex also has two indirect effects, one through its
effect on occupation (which in turn affects hourly pay) and a second through its effect
on educational qualifications (which in turn affects occupation which in turn affects
hourly pay). We can calculate the indirect effects by simply multiplying the path coef-
ficients connecting the causal variable to the outcome.

So for the total effect of sex on hourly pay we have:

Direct effect

Sex → hourly pay = −.189

Indirect effects

Sex → occupation → hourly pay (.033 × −.458) = −.015

Sex → educational qualifications → occupation → hourly pay
(.094 × .537 × −.458) = −.023

Total indirect effects = −.015 + −.023 = −.038

Total effect

Direct effect + total indirect effects (−.189 + −.038) = −.227

Of course some variables may only have a direct effect. According to the theory
as exemplified by the model, part-time job only has a direct effect on hourly pay.
Furthermore, while sex may have indirect effects on hourly pay, sex only has a direct
effect on educational qualifications (in our model).
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11.3 Non-recursive models: Deterrent effect of solving crime

The previous section considered the situation where causality flowed in one direction
only. Unidirectional causality, it was pointed out, greatly simplifies the analysis as it
leads to a recursive model where each equation can be estimated separately by ordinary
least squares. However, the situation is complicated if theory leads us to postulate
that causality is not just in one direction but is in more than one direction simul-
taneously. It is not uncommon for educationalists to postulate that higher educational
attainment enhances self-esteem but that in turn self-esteem results in greater edu-
cational attainment. This example implies a contemporaneous feedback in causality
which for some theoreticians raises irreconcilable philosophical issues. For them causal-
ity cannot ‘travel’ in two directions simultaneously. In their second condition, quoted
at the beginning of this paper, Moser and Kalton (op. cit.) state that the cause must
occur before the effect. In practice, however, there may well be a temporal order with
causality proceeding in one direction. For example, in the education example:

Self-esteem in year 1 → educational attainment in year 2 → self-
esteem in year 3 → educational attainment in year 4 (and so on)

A longitudinal research design, which measures variables at different points in time, is
better placed to disentangle the nature of the causality but this is not always possible in
much cross-sectional research. In a pure cross-sectional study (where all variables are
measured at the same point in time and no historical or retrospective data are collected)
we are effectively observing the outcome of the interplay of the various underlying
mechanisms at that point in time. A parallel situation occurs in economics when what
we observe is what economists call an ‘equilibrium mechanism’. Classic examples in
economics include the price of a good or commodity or wage rates in a particular
industry. When we come to model the determinants of the price of a good, two mechan-
isms are operating simultaneously, demand for that good and supply of that good. The
same two mechanisms, demand and supply, also jointly determine wage rates in a
particular industry. In each case, what we observe is the price or wage rates when
demand and supply are in equilibrium.

It is not the purpose here to resolve the philosophical debate surrounding causality
(if indeed it can be resolved) but it is important to be aware of the debate and to be
clear about the rationale when specifying models. The purpose here is to explain the
statistical complexities that arise when estimating non-recursive models.

We are now entering the world of econometrics as economists have been at the
forefront in developing and applying these methods. In order to illustrate the approach,
a simple model is considered which has been developed and applied by economists to
estimate the deterrent effects of the criminal justice system. The specific issue to be
addressed is whether success in apprehending offenders deters them and potential
offenders from committing further crime. If this hypothesis is true, the detection rate (in
the UK, the clear-up rate) would be expected to be inversely correlated with the crime
rate, such that lower crime rates would be found in areas where a higher proportion of
crimes were solved.

To test this hypothesis, data was assembled for 42 police forces in England and Wales.
The City of London Police force was omitted as it is found to be an outlier on crime
rates – or indeed any ‘per capita’ measure. (The City of London is primarily a business
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district with relatively few residents, thus any rate variable, such as the crime rate, where
resident population is the denominator, produces an exceptionally high value which is
out of line with all other forces.) Crime data for each force relates to the financial year
2003–04.

The crime rate is the number of crimes recorded by the police per 100,000 of
the population. The clear-up rate is the percentage of recorded crime that is ‘detected’
and/or ‘solved’ by the police. The correlation between the two variables was found to be
−.52, which is highly significant, p < .01. This result thus provides prima facie evidence
confirming the deterrence hypothesis.

Although encouraging, the analysis is deficient as it has not controlled for other
factors which affect the crime rate or the clear-up rate. Furthermore, it has not taken
into consideration the possible reciprocal relationship between the crime rate and the
clear-up rate. Our interest was deterrence – whether offenders are likely to be deterred if
they are more likely to be caught. But the level of crime may well affect the clear-up
rate. For example, if faced with a large volume of crime, the police may not be able to
give each investigation sufficient attention and the clear-up rate may be adversely
affected as a consequence. This hypothesis would also suggest a negative correlation
between the crime rate and the clear-up rate – which we have observed. Looked at
another way, given the empirical result we may ask how much of the inverse correlation
is in support of one relationship and how much in support of the other.

Thus we have a simultaneous equation model with two equations:

Crime rate = clear-up rate + (other variables that influence the crime rate)

Clear-up rate = crime rate + (other variables that influence the clear-up rate)

These equations are sometimes referred to as structural equations as they define the
structure of the model. However, this should not be confused with structural equation
modelling, which is discussed later in this chapter.

In this model, the crime rate and the clear-up rate variables are said to be endogenous
variables, that is, their values are determined within the model. There will always be
one equation for each endogenous variable. The ‘other’ variables within the brackets,
which are yet to be specified, are said to be exogenous variables as their values are
predetermined outside the model.

We could extend this model further. In what still remains as the most thorough
exposition of this method in this area of application, Carr-Hill and Stern (1979) also
considered police resources, which may affect both the crime rate and the clear-up rate,
and in turn, be affected by them if police resources are adjusted to take account of
levels of crime and police performance in solving crime. This led Carr-Hill and Stern to
a third equation. They also considered other deterrent effects, in particular the likeli-
hood of an offender being sent to prison. But to illustrate the methodological issues
associated with developing and estimating non-recursive models it is sufficient to
restrict the model to two equations.

Specification and identification

So far the ‘other’ variables in each of the equations above have not been specified.
Obviously theory and previous research will dictate what other variables should be
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included, but if the same set of variables is included in each equation there will be no
way of distinguishing one equation from the other. This is known as the identification
problem. Thus, in order to uniquely identify an equation it must include at least one
variable which is significantly related to the dependent variable of that equation, but
which is not included in any of the other equations. (The variable needs to be signifi-
cantly related, because if not it is equivalent to that variable not being in the
equation.)

From criminological research it is known that levels of crime are related to the
proportion of young males in the population (much crime is committed by young males
so areas with a high proportion of young males are likely to experience more crime),
social deprivation (deprived areas experience more crime) and density of population
(crime is higher in urban areas).

The proportion of young males was simply taken to be the percentage of males
between the ages of 15 and 24 of the resident population in each police force area.

Alternative measures of social deprivation were available for each police force area,
including the percentage of households headed by a single parent and the proportion of
working age people claiming benefits, and the proportion of overcrowded households.
All were found to be related to the crime rate, but as expected they were found to be
highly correlated with each other. As is customary with variables where the rates are
small, the variables were transformed by taking the natural logarithm of the rate. From
an initial regression analysis with the crime rate regressed against all the possible social
deprivation measures, the log of the percentage of households headed by a single
parent was the most significant and once included other variables were found not to be
significant. Thus log single parents was chosen as a summary, or proxy, measure to
encapsulate social deprivation.

Sparsity of the population was taken as a measure of urbanisation. As the measure
varies considerably between forces a log transformation was used in place of the abso-
lute value. Thus the first equation was specified as:

Crime rate = b10 + b11 (clear-up rate) [cluprate]

+ b12 (proportion males 15–24) [yongmale]

+ b13 ( log single parents) [ lnsigpar]

+ b14 ( log sparsity) [ log_spar]

(variable names are in square brackets).
An extra subscript has been added to denote the equation. The first subscript denotes

the equation, the second denotes the variable to which the coefficient relates.
Having specified the first equation, we turn to the second. Some crimes are more

easily detected than others, often because the offence only comes to light once the
offender is apprehended. Offences of possession (of knives, drugs etc.) and ‘going
equipped to steal’ would be offences of this kind, which are often termed ‘self-detecting
crimes’. Many shoplifting offences would also fall into this category. Violence offences
have high clear-up rates, especially where the perpetrator is intimately related to, or is
an acquaintance of, the victim who can give his or her identity to the police. Thus one
large determinant of a police force’s clear-up rate is the proportion of crime that is self
or readily detected. The degree of urbanisation may also be a factor as it is easier for an
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offender to preserve anonymity in urban areas than in rural areas. Carr-Hill and
Stern (op. cit.) also felt the size of the area would affect the police ‘production’ of
clear-ups through economies or diseconomies of scale. The size of the resident popu-
lation was taken by them as a proxy for the size of the area and that approach is
continued here. Population is measured in units of 100,000. Thus the second equation
was specified as:

Clear-up rate = b20 + b21 (crime rate) [crimrate]

+ b22 (percentage of crime readily detected) [crimmix]

+ b23 ( log sparsity) [log_spar]

+ b24 (population) [populat]

(variable names are in square brackets).
Comparing the two equations, it can be seen that the model is identified, in fact it is

over-identified in that there is more than one variable unique to each equation: single
parents and the proportion of males in the first equation and the proportion of crime
that is readily detected and population in the second equation.

The two-equation model can be represented diagrammatically as shown in
Figure 11.2.

It can be seen from the diagram that crime rate and clear-up rate are interrelated as
indicated by the arrows going back and forth between them. The diagram also reveals
that log sparsity of population is an explanatory variable for both the crime rate and the
clear-up rate. The other variables are unique to one equation and the model is therefore
identified.

Figure 11.5 Causal model of deterrent effects of solving crime.
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Estimating the model

Having specified the model, the next step is to estimate the parameters (the coefficients
b) of the two-equation model. Here we confront another problem. Because of the
contemporaneous feedback or the reciprocal causation between the crime rate and the
clear-up rate, acknowledged within the model, the method of ordinary least squares
will produce biased estimates of the coefficients (the technical reason being that the
explanatory endogenous variable is correlated with the error term – violating one of the
assumptions of OLS).

Fortunately estimation procedures have been developed which overcome this prob-
lem. One set of techniques estimates all the coefficients simultaneously; they include
three-stage least squares (3SLS) and full information maximum likelihood (FIML).
The advantage of these methods is that by estimating all the equations simultaneously
they are able to take account of which variables are in which equation. However, a
disadvantage of these methods is that the estimates of the coefficients are adversely
affected if the wrong variables are in the wrong equations. Three-stage least squares
procedures are readily available in Stata but not SPSS. A second method estimates each
equation separately but in so doing takes account of the variables in the other equation
or equations (but not which equation they are in). The method is known as two-stage
least squares (2SLS) and is available in both SPSS and Stata. Two-stage least squares is
often found to be as good as the simultaneous estimation procedures, especially with
small models and not surprisingly those with two equations (because if the exogenous
variable is not in one equation it must be in the other). Two-stage least squares estimation
procedures are adopted here to estimate the coefficients of our two-equation model.

As the name implies, there are two stages to the estimation procedure. Take the first
equation which has the crime rate as the dependent variable and the clear-up rate as an
endogenous variable on the right-hand side as an explanatory variable. The first stage
regresses in turn all the endogenous variables appearing on the right-hand side of the
equation (in this case there is only one – the clear-up rate) on all the exogenous variables
in the entire model (that is, in both equations: proportion males 15–24, log single
parents, log sparsity, percentage of crime readily detected and population). From this
regression, a predicted value of the clear-up rate is estimated from the exogenous
variables. The second stage then regresses the crime rate (the dependent variable) on the
predicted value of the clear-up rate (derived at stage 1) and the other exogenous vari-
ables in the first equation (proportion males 15–24, log single parents, log sparsity). The
strength of 2SLS is that having been estimated by the exogenous variables, the predicted
value of the clear-up rate (unlike its actual value) can be expected to be uncorrelated
with the error term in the first equation, thus overcoming the problem with OLS. It can
be shown that the two-stage approach results in more consistent and less biased
estimates.

The above two-stage method is repeated in a similar way to obtain estimates of the
coefficients in the second equation.

Fitting the model

Simultaneous equation models can be fitted in SPSS by two-stage least squares. The
steps are Analyze → Regression → 2-Stage Least Squares. This brings up a dialogue
box which asks for Dependent, Explanatory and Instrumental.
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For the first equation, Dependent is the crime rate, Explanatory are the variables on
the right-hand side: clear-up rate, proportion males 15–24, log single parents, log spars-
ity. Instrumental are all the exogenous variables in the entire model, which are required
at the first stage (proportion males 15–24, log single parents, log sparsity, percentage of
crime readily detected and population). SPSS knows that it has to treat clear-up rate as
an endogenous variable because it is included as an explanatory variable but it is not
included in the list of instrumental variables. Having deduced this fact, SPSS uses
the instrumental variables to produce a predicted value of the clear-up rate, before
embarking on the second stage.

Fitting the first equation by two-stage least squares in Stata requires the ivreg com-
mand (iv standing for instrumental variables). The first variable is the dependent variable
and the exogenous variables follow (young males, log single parents, log sparsity). Any
endogenous variables in the equation are then placed in brackets followed by = and the
other exogenous variables that appear in the other equations – but it is not necessary to
repeat the exogenous variables that appear in the equation being estimated. The com-
mand for the equation appears as the first line in the output below. The Stata command is
a little more complex and errors can be more easily avoided by using the drop-down
menus: Statistics → Linear regression and related? Multiple equation models → Instru-
mental variables & two-stage least squares. This brings up a dialogue box which requests
Dependent variable, Independent variables, Endogenous variables and Instrument
variables (the last being all other exogenous variables in the entire model).

Reassuringly, SPSS and Stata produced the same results. The output from Stata
showing the two-stage least squares estimates of the coefficients of the first equation is
shown below.

The model was highly significant, the proportion of variance explained, R2, was found
to be 72%. From the output, it can be seen that the coefficients of the three exogenous
explanatory variables are in the hypothesised, positive, direction, namely that more
young people, more deprived areas (as indicated by more single parents) and greater
urbanisation are associated with more crime. However, the percentage of the population

Figure 11.6 Stata output, crime rate regression model.
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that are young males and the degree of urbanisation were not significantly related to the
level of crime in a police force area once the log percentage of single parent households
was taken into account. More important, in view of the initial research hypothesis, the
clear-up rate remained a significant determinant of the crime rate after controlling for
socio-demographic conditions. The beta coefficients are shown in Figure 11.5.

Two-stage least squares estimates of the coefficients of the second equation were
found to be:

The most important factor in determining the clear-up rate is the percentage of
crimes that can be described as readily detectable. In addition, there appears to be some
evidence (p = .073) of diseconomies of scale in that the larger the population in the
police force area the lower the clear-up rate but sparsity (or density) of the population
was not significant. When the three variables were taken into account, the crime rate
was not found to be a determinant of the clear-up rate. The proportion of variance
explained, R2, for the second equation was found to be 54%. The beta coefficients are
shown in Figure 11.5.

To sum up, we started with an inverse correlation between the crime rate and the
clear-up rate, which could be interpreted in one of two ways. Having disentangled the
two through the specification of the model, it appears that the clear-up rate is a
determinant of the crime rate but that the crime rate is not a determinant of the clear-
up rate. The analysis provides support for the deterrence hypothesis in that success in
solving crime does reduce levels of crime.

Diagnostics: Analysis of residuals

All the models considered in this chapter are multiple regression models. Thus the
diagnostic and residual analyses outlined in section 4.8 are appropriate here and should
be carried out to assess the adequacy of the models. Having been explained in section
4.8, further discussion is not necessary at this stage.

Figure 11.7 Stata output, clear-up rate regression model.
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11.4 Structural equation modelling (SEM)

A technique becoming increasingly popular within social research is structural equa-
tion modelling (SEM), or covariance structure modelling as it was previously called.
Essentially, SEM extends the recursive and non-recursive models above to include
latent variables, which has led SEM to be referred to as ‘path analysis with latent
variables’. A more accurate description is that SEM combines confirmatory factor
analysis with econometric models.

In section 10.6 a distinction was drawn between exploratory factor analysis and
confirmatory factor analysis. In exploratory factor analysis the researcher explores how
many factors there are and how they relate to the manifest variables. By contrast, in
confirmatory factor analysis, the social researcher sets out a priori his or her theory and
assumptions as to which manifest variables relate to which latent variables. However,
the researcher may not merely theorise as to how the manifest variables relate to the
latent variables but may postulate relationships between the latent variables themselves,
or postulate how they are ‘structurally related’. The first step in structural equation
modelling is thus confirmatory factor analysis and the second step is to specify the
structural relationship between the latent variables. This general theory which includes
association and causation between and amongst manifest and latent variables is usually
set out in the form of a diagram similar to Figures 11.1 and 11.5, and explains why
SEM is often given the short-hand description confirmatory factor analysis and path
models. In SEM the diagrams are adapted somewhat in order to incorporate manifest
and latent variables. The convention is to represent manifest variables by square boxes
(as in Figures 11.1 and 11.5) but to represent latent variables by ovals or circles. Straight
lines indicate causal connections but curved lines indicate associations between latent
variables. Fitting the structural equation model to the data tests the underlying theory
and assumptions. Maximum likelihood statistics are estimated, leading to significance
tests which enable the researcher to assess the adequacy of the model and its constituent
parts.

Structural equation modelling is not described in any further detail here as many
good introductory texts are readily available and because specialist software is required
to perform the analysis. Suggested texts are referenced at the end of this chapter. The
main SEM programs are Amos, Lisrel, EQS and MPlus. Amos has the advantage of
being simple to use (models can be specified by clicking and dragging icons) and it is
also available from SPSS. Lisrel and EQS are more sophisticated and well known,
especially Lisrel, while the more recent MPlus is gaining rapidly in popularity.

Although details of SEM are not given here, some general observations are in order
especially as some of the criticisms (or health warnings) of SEM are not always
recorded in texts describing the method.

Advocates point out that SEM represents a considerable advance by enabling
researchers to incorporate latent variables in the model, and they stress (as mentioned
in the previous chapter) that many variables in social research are latent variables.
Confirmatory factor analysis brings factor analysis into the statistical tradition of
hypothesis testing. SEM thus enables social scientists to explore and test ever more
complex theories about the nature of social phenomena.

Critics warn that in order to estimate structural equation models, many assumptions
need to be made and many restrictions imposed. Essentially the same data is being
used to estimate factor loadings and regression coefficients. It was pointed out in the
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previous chapter that restrictions have to be imposed in order to perform factor
analysis and further assumptions are required to undertake regression. Without the
imposition of restrictions, models are not identifiable. In reality, alternative SEM
models may fit the data equally well. But in answer to these criticisms, in all forms of
statistical modelling (as we have seen), it is possible to find equally competing models
and the choice between them rests on substantive theory, replication in other research
on different datasets or some pragmatic rule such as parsimony. Nevertheless, there is a
concern that much application of SEM does not explicitly consider the possibility of
alternative, but equally plausible models. A further criticism of structural equation
modelling is that as there are so many sources of variation in such complex models, the
solution may be highly susceptible to chance variation in one element of the model.
This suggests that considerable care is required when applying SEM and has led some
to suggest a better approach may be to separate the two stages of confirmatory
factor analysis and model fitting.

Another limitation is that the statistical theory underpinning SEM is much better
formulated for continuous variables where covariances and correlations can be esti-
mated. The theory (and hence the causal models) is not as well developed for categor-
ical variables. However, this general comment can be made about a lot of modelling
techniques, including models for longitudinal data discussed in Chapter 12.

Further reading

Simultaneous equation models are well covered in econometrics texts. A suitable starting point is
Wooldridge (2003).

A good introduction to Structural Equation Models is Schumacker and Lomax (2004). In add-
ition to explaining SEM, the text serves as a good introduction to fitting models in Amos, EQS
and Lisrel.
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12 Longitudinal data analysis

12.1 Introduction

Menard (1991) defined longitudinal research as that in which:

• data are collected for each item or variable from two or more distinct periods;
• the subjects or cases are the same, or at least comparable, from one period to the

next;
• the analysis involves some comparison of data between or among periods.

Adopting this broad definition encompasses several different research designs and,
accordingly, several different approaches to statistical modelling. Each design and the
issues it poses for statistical modelling are considered in turn. However, note that the
definition of longitudinal research signifies a time frame over which data is collected
and referenced. We can conceptualise events in time in two ways. First we can observe
the states subjects are in at particular points in the time period, for example, each
year we might record whether a person is married or not, employed or not and so on.
Following on from this we can monitor transitions between states, that is, moving
from being employed to non-employed, for example. Alternatively, or in addition, we
can record durations, that is, how long a person is married, employed and so on.
Statistical models for durations are considered in Chapter 13.

Longitudinal research is gaining in popularity because it is acknowledged to be
superior to cross-sectional research in understanding social change and the processes
and causal mechanisms underlying that change. This popularity is reflected in the
recent considerable growth in investment by both the ESRC and government depart-
ments in longitudinal research studies, especially panel and cohort studies (defined in
section 12.4). Longitudinal data is now more readily available but modelling such data
raises certain statistical complexities, principally because observations are correlated
thus violating the key assumption of independence.

Before discussing statistical models we briefly review the advantages of longitudinal
data (although these often more readily reflect the inadequacies of cross-sectional
data). One major advantage is that longitudinal research is better placed than cross-
sectional research to establish temporal order of events and causality. Statistical models
for longitudinal data can also more adequately address the problems posed by
unobserved variables (first described in section 3.10). How they overcome the problem
of unobserved variables will be explained when statistical models are presented later in
this chapter.



For causality to exist, as pointed out in section 11.1, cause must precede effect in
time. Take the simplest of examples of a cross-sectional study which collects informa-
tion on variables x and y measured at the same point in time. If an association is found
between x and y, without additional substantive knowledge, it is not possible to say that
x causes y or that y causes x. Being measured at the same point in time, it is not possible
to establish which variable preceded the other; often the variables are only observed
when they are at some equilibrium (see section 11.3). Furthermore, it is possible that
both x and y could be caused by an observed value of a third variable z in a previous
time period.

However, when commentators make these claims they invariably have in mind a
comparison of a ‘pure’ cross-sectional study where all variables are measured at a
single point in time. But in most cross-sectional studies it is common to collect retro-
spective data of past events, such as ‘age left school’, ‘highest educational qualification
attained’, ‘age of first conviction’ and so on. Furthermore, with many variables the
temporal sequence is indisputable: schooling precedes employment, and marriage pre-
cedes divorce, for example. And, of course, while some variables may change over time
(time-varying covariates) such as employment status or marital status, where informa-
tion on temporal ordering is required, some variables, such as sex and ethnicity, do
not. No information on temporal sequencing is required for the latter, time-invariant,
covariates.

Nevertheless, while more might be obtained from cross-sectional data than advocates
of longitudinal research concede, it is the case that prospective longitudinal research is
vastly superior, especially where the research interest is in analysing people’s intentions,
motivations, opinions, attitudes or feelings, which may change frequently but which are
more difficult to recall and temporally locate retrospectively.

Even when time ordering can be established, there are other severe problems with
cross-sectional designs, notably in separating age and cohort effects. An interesting
finding from the British Crime Survey (BCS; an annual cross-sectional survey) is that a
smaller proportion of older women report having been the victim of domestic violence
in the previous year than younger women. For example, in the 1996 BCS, 12.0% of
women aged 20 to 24 responded that they had been the victim of an assault or threat by
a partner or ex-partner, compared with only 0.9% of women aged 55 to 59 (Mirrlees-
Black, 1999). This finding could be interpreted as evidence of an age effect, namely that
younger women are more likely to be the victim of domestic violence. This is plausible
because younger women are likely to be in a relationship with a younger man than are
older women and younger men are more likely to be violent than older men.

But could these findings provide evidence of a cohort effect? If society is becoming
more violent then more recent generations, that is, younger women (and their younger
partners) are experiencing more violence (and committing more violent offences) than
experienced by older generations. Of course, the results do not have to be interpreted as
either an age or a cohort effect. It is most likely that both age and cohort effects are
generating the results. But they are confounded and it is not possible to separate the age
effect from the cohort effect. There is evidence of a cohort effect, because in addition to
being asked whether they were the victim of domestic violence last year, respondents
were also asked if they had ever in their life been the victim of an assault or threat by a
partner or ex-partner. Paradoxically, given that older women had longer to experience
an incident of domestic violence, life-time prevalence for 20- to 24-year-old women was
higher (at 33.7%) than for 55- to 59-year-old women whose life-time prevalence was
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only 15.9%. (Male respondents were asked the same questions and although the figures
are different the patterns between the age groups on both measures is exactly the same.)
One cohort explanation has been offered, namely that recent generations are experi-
encing more violence. But there are other possible cohort explanations. Younger women
now tend to enter a greater number of domestic relationships than women of previous
generations, thus younger women are more likely to encounter a domestic relationship
that is violent. Domestic violence has received greater public attention in recent years,
which may have led younger women to perceive it differently from older women and
to discuss it more openly and be more willing to report their experiences of it. Older
women may be more reticent to tell others about their experiences or to define their
experiences as relevant to the survey. Or if incidents are more likely to occur when
women are young (age effect), older women’s experiences will have been longer ago
so may have faded from memory, or may have been favourably revised over time
(Mirrlees-Black, op. cit.).

Longitudinal research designs are better placed to separate age and cohort effects
and to clarify temporal order and, furthermore, to establish causality. But longitudinal
research is no panacea. While longitudinal research is better placed to address the issue
of unobserved variables one can never be sure in non-experimental research that some
unknown variable is exerting a causal influence. Furthermore, the timeframe in any
longitudinal research is finite, which leaves open the possibility that the cause of the
results found in the study might be attributable to a variable exerting its influence before
the period of reference of the study.

12.2 Time series analysis

In the social sciences, the term time series data usually refers to a long sequence of
aggregate data and most commonly macro-economic data. In macro-economics the
researcher is studying long-term trends in the economy and the inter-relationships
between economic variables as measured over time. The data may be annual, quarterly
or monthly aggregate measures (such as GDP, consumption) or rates (unemployment
rates, interest rates) or indices (retail price index, share price index).

How long a series needs to be before it qualifies as a time series dataset and amenable
to time series analysis has not been precisely defined. But a sequence of about 50 data
points is considered a minimum (that is, 50 years of annual data or 12–13 years of
quarterly data).

Time series data is not confined to macro-economics, such data exists in other areas.
For example, the annual recorded crime rate is available for England and Wales since
1857 and time series data exists on road accident fatalities and on the popularity of
political parties. These series can be used to assess the effects of major legislative changes
or major political events. For example, the effect of the introduction of seat belts or crash
helmets can be gauged by comparing the numbers of road accident fatalities before and
after the legislation was implemented. Similarly, Sanders and Ward (1994) analysed times
series data to assess the effect of the Falklands War on the government’s popularity.

Often the purpose of time series analysis is to discern trends and uncover any sea-
sonal patterns in the data, with a view to forecasting future values of the series. Forecasts
can be obtained by extrapolating the series (once its underlying properties are under-
stood) or by fitting a statistical model, the explanatory variables themselves being time
series data. We could thus proceed by fitting the general linear model:
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yt = b0 + b1 x1t + b2 x2t + b3 x3t + b4 x4t + . . . + et (12.1)

This is the same model as defined at the outset, that is, Equation (1.1), the difference
being that i in Equation (1.1) (which denoted each individual in the sample) has been
replaced by t, which denotes that the variables are measured at different time points. A t
has been added to each explanatory variable x to denote that they are also times series
variables (which is often the case but need not be).

If y is a continuous variable we would think of fitting an ordinary least squares
multiple regression model to the data. There is, however, one serious problem with this
approach and that is with time series data the et tend not to be independent (an import-
ant assumption of regression) but are in fact correlated (this correlation is known as
serial correlation). Serial correlation arises because values of a variable (e.g. GDP,
crime rates) in one year t are closely related to values of the variables in the previous
year, t – 1, and the year before, t – 2, and so on, especially if there is a distinct trend in
the series. Serial correlation leads the standard errors of the coefficients, b, to be under-
estimated, and the t values and R2 to be overestimated, which can lead to false inferences
that variables and models are significant when they are not.

Time series analysis is a technical and specialist branch of statistics and detailed
development of the topic is outside the scope of this book. The point being made here
is to warn the reader that analysing time series data raises specific issues which need
to be addressed appropriately. One cannot simply fit the models discussed in this
book. However, SPSS and Stata do have special routines for fitting time series models.
Economists, who amongst social scientists make most use of time series analysis, will
have been introduced to the topic when studying econometrics. Further reading is
given at the end of this chapter for others who may find themselves encountering
time series data for the first time and in need of instruction. But I would also advise
researchers to seek the help and assistance of an expert if confronted with analysing
time series data.

Leaving aside the technical statistical issues, one practical problem often encountered
is the comparability of the data over time. During the course of time, definitions,
methods of counting and procedures for collecting the data change, which raises con-
cerns as to whether data at one period can be regarded in the same light as data
collected at other points. The recorded crime data for England and Wales illustrates the
problem. Over time new offences have been created and the rules governing how inci-
dents should be counted as crimes have changed, not to mention the periodic issuing of
policy directives to the police regarding their discretion in recording incidents as crimes.
Analysing time series data can lead to pitfalls for the unsuspecting.

12.3 Repeated cross-sectional surveys

Many cross-sectional surveys are repeated at regular interviews, often annually, and
on each occasion a fresh sample of subjects is drawn from the relevant population. If
randomly selected, the samples, though different, will be comparable. To cite one of a
large number of possible examples, the Department of Health commissions each
year the Smoking, Drinking and Drug Use Among Young People survey. The first survey
was carried out in 1982 to provide estimates of the proportion of secondary school
pupils aged 11 to 15 who smoked. The survey was repeated every two years until 1998
when it became an annual survey. Questions on alcohol consumption were first
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included in the 1988 survey and questions on the prevalence of drug use were first
introduced in 1998.

Repeated cross-sectional surveys provide information on trends at the aggregate
level. So, from the survey described above it is possible to establish that the proportion
of secondary school pupils who reported that they had ever smoked fell from 53%
in 1982 to 39% in 2006. Similarly, the survey has reported that of the young people
who said they had drunk alcohol in the last seven days, the mean consumption has
nearly doubled, from 5.3 units in 1990 to 10.4 units in 2006. The data from these
surveys could be disaggregated to reveal trends for sub-groups (by gender, ethnicity, age
and so on).

Being independent random samples, repeated cross-sectional surveys can be pooled
to provide a larger sample, which produces more precise estimates of the coefficients in
a statistical model and more powerful significance tests of them. However, as some
of the underlying relationships may change over time it is customary to include the time
periods as a set of dummy variables (with the first time period as the reference cat-
egory). In some applications the value and significance of the coefficients on the time
period dummy variables may be of prime interest, for example, in order to assess
whether a change occurred over time, and at what point in time.

However, because the subjects are different from survey to survey, repeated cross-
sectional designs cannot assess change at the individual level; for that we need panel
studies.

How does times series data differ from repeated cross-sectional surveys? Conceptu-
ally they do not differ much. Aggregate time series data can emanate from repeated
cross-sectional surveys. However, it is generally the case that cross-sectional surveys
have not been repeated often enough to generate a sufficiently long series of data for
time series analysis.

12.4 Panel and cohort studies

The essential characteristic of a panel or cohort research design is that the same sub-
jects are followed up over time. Subjects need not be individuals, they could be institu-
tions or organisations (firms, schools, hospitals, police forces, etc.). The distinction
between a panel study and a cohort study is not important with regard to statistical
modelling but a panel study will typically select a random sample of the population at
one point in time (which is then followed up). An example of a panel study is the British
Household Panel Study (BHPS) which selected a nationally representative sample of
5000 households in Great Britain in 1999 and interviewed all (approximately 10,000)
adults within those households. (Further details of the BHPS can be found at its
website www.iser.essex.ac.uk.) A cohort, on the other hand, selects a homogeneous
group defined by experiencing the same life event (e.g. starting school) which is then
followed up. Often (but not necessarily) the group is defined as those being born
within a particular period, giving rise to the term birth cohort for this type of cohort.
An example here is the National Child Development Study (NCDS) which at its incep-
tion selected all children born in a one-week period of 1958. (Details of the British
birth cohorts can be found at the website of the Centre for Longitudinal Studies,
www.cls.ioe.ac.uk.)

In a panel or cohort study, data on each subject is collected periodically, either after
a certain length of time has elapsed, or at key points in the subjects’ lives (starting
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school etc.) or simply when funding becomes available to finance the work involved.
Each time the subjects are contacted is known as a panel wave or sweep. Adult members
of the households selected in the BHPS have been contacted each year since 1991 and
to date there have been seven sweeps of the NCDS.

At each wave, new variables might be added (or some variables may be dropped
from previous waves) but many variables will be the same on each occasion, giving rise
to repeated measures of those variables, taken at successive waves. (This explains why
analysis of such data is often referred to in the statistical literature as the analysis of
repeated measure.) By obtaining repeated measures to variables it is possible to examine
change over time.

A panel component can be built into repeated cross-sectional surveys. The Labour
Force Survey gathers information on employment status for a representative sample of
working-age people in this country. The survey is conducted each quarter but the
design is such that each individual is interviewed for five successive quarters. Thus at
any one quarter, a fifth will be newly selected and receiving their first interview, a fifth
their second, a fifth their third, and a fifth their fourth, while a fifth will be interviewed
for the fifth and last time. The US National Crime Survey has a similar design with
some subjects being retained for a period and then being dropped and replaced by other
selected subjects. Because of the continuing and evolving nature of the sample, such
studies are often called revolving panel designs.

Although having distinct advantages in illuminating causality from the sequencing
of events over the life course, longitudinal studies, particularly prospective panel
and cohort studies, encounter difficulties. Leaving aside cost, attrition is the biggest
problem. Over time panel members drop out; they may have died, moved away and not
be traceable or refuse to continue to participate. Not only does the panel/cohort reduce
in size but those who remain may be a biased subset of the original panel/cohort. This
bias may be especially pronounced when examining certain issues (such as homeless-
ness or crime) which may have been the cause of the participants leaving the study in
the first place.

One other particular problem is what has become known as panel conditioning
Participation in a panel, knowledge of the purpose of the research and the kinds of
questions that are asked, may lead to responses at one wave being influenced by
responses at a previous wave. The revolving panel design facilitates some longitudinal
perspective while minimising attrition and panel conditioning.

12.5 Statistical models for panel data

In situations where there are only two panel waves and the response variable is continu-
ous it is straightforward to analyse the data by fitting a statistical model. One such
model is the regressor variable model of the form:

yi2 = b0 + b1 x1i + b2 x2i + b3 x3 i + . . . + bp yi1 + ei (12.2)

Here the response variable is the value of y at the second time period and the value of y
at the first time period is included as an explanatory variable.

An alternative model is the change score model of the form:

yi2 − yi1 = b0 + b1 x1i + b2 x2i + b3 x3 i + . . . + ei (12.3)
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The response variable is simply the change in y between the first and second period, or
between the two waves.

In both models the xs are explanatory variables that might be postulated to affect
the change in the response. They have not been given a time suffix as they could relate to
any time period as theory dictates. An explanatory variable could also be the change in x
between the two time periods, that is (xpi2 − xpi1).

Both models can be readily estimated by fitting ordinary least squares (that is, as
multiple regression models – described in Chapter 4).

Which of the two models should one choose? For a long time the conventional
wisdom was to favour the first model, the regressor variable model. However, that
changed following an influential paper by Allison (1990). Allison demonstrated that
many of the theoretical arguments against the change score model (which had led
the regressor variable model to be preferred) were false and that in many situations
statistical theory favoured the change score model.

There is, however, one principal circumstance where the regressor variable model is
more appropriate and that is where the initial value of the response y (y i1) affects the
subsequent value of y (y i2). This can occur when an initial state the subject is in is likely
to influence the extent of change. Allison gives the example of an employee in a high-
prestige job looking for another job. The individual is likely to get another high-prestige
job irrespective of his/her characteristics, because of the evaluation that potential
employers have formed of him/her from his current job. However, even though the
regressor variable model would be more appropriate in such circumstances, Allison’s
view is that the effect of the initial state is so small relative to the other explanatory
variables that the change score model may not be seriously affected. His practical
advice is that if the choice of model is not clear cut ‘there may be no recourse but to do
the analysis both ways and to trust only those conclusions that are consistent across
methods’ (Allison, op cit.).

Models with t (more than two) panel waves

We next consider the case where there are more than two measurement periods, or more
than two panel waves. Of course in such a situation it is still possible to consider the
change between two periods (perhaps the first and the last) and fit a change score or
regressor variable model. But this would ignore much of the information, namely the
scores at the other, intervening periods.

Let us consider the situation where we have t measures (t waves where a measure is
taken) for each of the sample of n subjects. Several different models could be fitted to
this data but before presenting each in turn, consider the different types of explanatory
variables.

The first type of explanatory variable are those that can vary over time, that is, those
that can change from panel wave to panel wave. Many variables fall within this category,
for example, income, employment status (not in work, in work etc.) or marital status
(single, married, separated etc.). We continue to denote these variables by x. A second
type are explanatory variables that do not vary over time. Obvious examples when our
subjects are individuals are sex and ethnicity. But if our subjects are hospitals, schools
or police forces, their geographical location would not change over time. In order
to distinguish time-constant (or invariant) explanatory variables from time-varying
explanatory variables we will denote the time-constant variables by z. A third type of
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explanatory variable are those that are unobserved or not measured. We denote these by
xu. Remember from section 3.10 that estimates are biased if the unobserved variables are
correlated with any of the observed explanatory variables. We assume that the effect of
the unobserved variables is the same (constant or fixed) over time. Of course, all three
types of variable exist, if only implicitly, in all the other models we have discussed in
previous chapters of this book. The reason for distinguishing them now is to show
how different longitudinal models handle the different types of explanatory variables
and how longitudinal models can nullify the effects of time-invariant unobserved
variables.

A model could have any number of xs, zs and xus (although as we cannot observe the
xus we do not know how many there are, so it is common practice to amalgamate all the
effects together as one variable). For simplicity we assume one of each type (so there is
no need to number them). The model then becomes:

yit = b0 + b1 xit + b2 z i + xu
i + eit (12.4)

Because z does not vary over time (is constant) we do not need a subscript t to denote its
value at a particular point in time. Similarly, as we assume xu does not change over time,
it too does not require a subscript t. Furthermore, as we cannot observe xu we cannot
estimate its effect (that is, its coefficient b) so it is not given a coefficient, b, but just
included as an overall, unobserved, effect.

Total model or a model for any wave

The longitudinal nature of the data could simply be ignored and the model Equation
(1.1) fitted to all the data as if it were a sample of n × t individuals. Obviously this is
incorrect as it assumes a much larger sample of individuals than actually exists (t times
as many) and it ignores the fact that there is likely to be intra-correlation, as scores for
an individual across waves are likely to be correlated. However, this model is sometimes
fitted to ‘get a feel for the data’ and a sense of the underlying relationships between
variables. A more respectable variant on this is to fit a model to cross-sectional data
emanating from one particular wave (and the analysis could be repeated for any or all
of the waves separately). At least when analysing one wave the sample size used to
estimate the parameters and standard errors is correct.

Between model

A more appropriate approach to understanding the underlying relationships between
the variables of interest is to average each variable across the t waves and to fit the model
to the average values. By taking averages, information from all the t waves are included
and given equal weight. Thus the model becomes:

ȳi = b0 + b1 x̄i + b2 zi + xu
i + ēi (12.5)

Because z and xu are constant over time, their values are the same each year and thus
the same as their average value.

The model in Equation (12.5) is referred to as the between model. The terminology
stems from the fact that it ignores (or averages out) variation within subjects across
waves but solely examines the differences between subjects.
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Note that this model also helps overcome the problem of measurement error. If any
of the variables are measured with error at any wave, averaging the variables across
waves reduces the bias resulting from measurement error.

Calculating the arithmetic mean of continuous variables is straightforward. If cat-
egorical variables are rearranged as dummy variables, coded 0 and 1, then their averages
can also be readily calculated. For example, if not employed is coded 0 and employed
1, a person who was not employed at four waves but employed in the other six waves
(in a panel study of 10 waves) would have an average score of .6.

When the response variable is continuous, the between model can be estimated by
ordinary least squares, as described in section 4.1.

Within (or fixed effects) model

So far we have not taken into account how subjects change over time or the longi-
tudinal nature of the data. To do this we require a model which examines how the
change in one variable affects the change in another. A popular approach is to fit the
within model. For the within model we subtract from each value of a variable its
average value over the time period or panel waves (which is equivalent to subtracting
the variable’s between value in Equation (12.5)).

The within model is simply the variables in Equation (12.4) minus the variables in
Equation (12.5) and is:

(yit − ȳi) = b0 + b1 (xit − x̄i) + (eit − ēi) (12.6)

As we are fitting a different model, the coefficient b1 will change between Equation (12.4),
Equation (12.5) and Equation (12.6), but for consistency we have kept the same notation.

It can be seen that the data fitted by the within model is the difference between each
observation and the mean value. (In some texts, data transformed in this way is called
time-demeaned data). Note that the variable z does not appear in the within model.
That is because the value of z was constant over time and thus each measure at each
panel wave was the same, and the same as its mean. Thus the difference between any
value and its mean value is always zero. The implication of this result is that the within
model only estimates how the change in the response variable over time is affected by
changes in explanatory variables that can themselves change. It does not assess how the
response variable changes in respect of time-constant variables such as sex or ethnicity.
In practice this is not often a severe limitation as the interest in the longitudinal analysis
is invariably to understand change.

Note also that xu, the unobserved variable which was assumed to be constant (or
fixed) over time does not appear in the within model. The within model has thus
eliminated the effect of time-invariant unobserved variables. It is for this reason that
longitudinal models are regarded as being more resilient to the problems caused by
unobserved variables.

The constant term (or intercept), b0, has also been eliminated by demeaning the data.
The within model is also commonly known as the fixed effects model, because of the

way it transforms (demeans) the data to remove the fixed effect of the unobserved
variables. My preference is to refer to the model as the within model.

The within model can be estimated by ordinary least squares (see section 4.1).
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Random effects model

Let us return to our original model in Equation (12.4), repeated here for ease of
reference:

yit = b0 + b1 xit + b2 zi + xu
i + eit (12.4)

When introducing Equation (12.4) it was pointed out that correlation between the
unobserved variables and the explanatory variables results in biased estimates of the
parameters. The advantage of the within model is that it removes the unobserved effect,
x u, but at the cost of also eliminating the time-constant explanatory variables, z.

Assume, however, that x u is uncorrelated with each of the other explanatory vari-
ables (xs and zs) and in all time periods. This is a strong assumption, but there may
be grounds for believing it in some situations. If so, then it is unnecessary and
inefficient to eliminate x u by fitting the within model. Under the assumption that x u

is uncorrelated with the other explanatory variables, Equation (12.4) becomes the
random effects model. Because x u is not correlated with any explanatory variables, x u

has a random effect (hence the name random effects model) and can be viewed as
another source of random error. However, as the composite error term (x u + e) can
be shown to be correlated across the t periods, generalised least squares is required to
estimate the model. But, for reasons not given here, generalised least squares does
not demean the data and thus does not result in the time-constant explanatory
variables, z, being eliminated from the model. Thus, one of the advantages of the
random effects model over the fixed effects model is that it retains time-constant
explanatory variables.

So which model should be fitted, fixed effects or random effects? Obviously if there is
good evidence to suggest that the unobserved variables are correlated with any of the
explanatory variables, a fixed effects model is appropriate. If there is evidence to suggest
that they are uncorrelated, a random effects model is appropriate. One could simply fit
both and compare results and Hausman has developed a formal test of this comparison.
The Hausman test is described in the example below.

12.6 Fitting panel data models in Stata

Of the two, Stata is far superior to SPSS when it comes to fitting statistical models to
panel data. Stata has a suite of commands prefixed by xt to analyse ‘cross-sectional
(the x) times-series’ (the t) data. The most useful commands to social researchers are
possibly xtreg (appropriate when fitting models to continuous response variables) and
xtlogit (appropriate for binary response variables). In each case the type of model is
specified by adding be (for the between-effects model), fe (for the fixed-effects model), re
(for the random-effects model – fitted by generalised least squares) and mle (which fits
the random-effects model by the method of maximum likelihood). An example using
xtreg is given in the next section but in order to run xtreg (or other xt commands) Stata
requires the data to be in a certain format, which has implications for the names given
to variables. Essentially, the data must be sorted by panel wave within subject, but if
certain conventions are followed when naming variables, other Stata commands can
easily convert the data to the required format. The conventions and procedures are best
illustrated by a simple example, comprising two subjects and two panel waves. At each
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wave the subjects’ sex, income and hours worked are recorded. The data file will, most
likely, be set out as follows:

Alternatively, the variables could have been coded in the following order:

id sex income1 hours1 income2 hours2

It does not matter which of the two orders is adopted. Either way, this data layout is
referred to as a state-based data structure in Chapter 13 but Stata simply calls it wide.
However, xt commands require this data to be in what Stata calls long format – which
is called a person-time (diary) data structure in section 13.6.

The long data structure is set out as follows:

In this long data structure, panel waves are sorted within subject.
Stata can easily convert the wide data format to the long data format by the reshape

command. In this example the command would be:

. reshape long income hours, i(id) j(panel)

There are two points to note here. First the command only includes the variables that
can change at each panel wave (income and hours). Stata will recognise that sex is
constant across panel waves and simply repeats the record for each panel wave. Second,
the variables that can change must have the same name but a sequential number at the
end. Here we added the panel wave number but we could have recorded the year instead.

If required, Stata can just as easily convert a long file to a wide file. In this example
the command is:

. reshape wide income hours, i(id) j(panel)

12.7 Example from the British Household Panel Study, time spent
on housework

Having spent many years illustrating bivariate regression with an example taken
from Healey (1996) which examined the relationship between the amount of time
husbands spent doing housework and the size of the household, I was attracted to
exploring this issue further in the British Household Panel Study (BHPS). The
response variable throughout was the number of hours spent on housework per week
(howlng).

The BHPS began in 1999 and the panel of 5000 households and 10,000 individuals

id sex income1 income2 hours1 hours2
1 male 20000 25000 38 42
2 female 25000 15000 37 25

id panel sex income hours
1 1 male 20000 38
1 2 male 25000 42
2 1 female 25000 37
2 2 female 15000 25
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has been contacted each year since then. The data file available from the UK Data
Archive contained information for the first eleven panel waves. However, respondents
did not appear to be asked about the time they spent on housework in the first wave.
Two further waves (the third and ninth) did not contain information on two important
explanatory variables and were also omitted. The data was further refined to include
only those respondents who answered all the questions of interest at each of the eight
panel waves. This resulted in a sample of 4361 individuals.

Without theorising too much, the number of hours spent on housework might
depend on:

• the amount of housework there is to do: the primary measure here was the number
of rooms in the accommodation (hsroom)

• how much time is available for housework: information was recorded on the num-
ber of hours normally worked per week ( jbhrs) and the number of hours spent
travelling to and from work ( jbttwt)

• the composition of the household: as measured by the number of persons in the
household (hhsize); whether living with spouse or partner (spinhh) and whether
there were children in the household under 12 years of age (hhch12) – both vari-
ables were coded no = 0, yes = 1. Monthly household income was also recorded
which was transformed by taking natural logarithms (lnhhinc)

• the individual characteristics of the respondent: age; sex (male = 0, female = 1);
highest educational qualification obtained (qfedhi – below A-level = 0, A-level and
above = 1), and the health of the respondent recorded on a six-point scale ranging
from 1 = excellent to 6 = very poor (hlstat).

It can be seen that all the variables were continuous variables or binary/dummy (0, 1)
variables. The exception is health which was measured on a six-point ordinal scale, but
was treated as continuous in this analysis.

The data from the Data Archive was in the form of an SPSS file and the convention
in the BHPS is to prefix the variable name with a letter to denote the panel wave,
starting with ‘a’ for the first wave. Housework was not recorded at the first wave but at
the second and onwards: bhowlng . . . khowlng. The first task was to rename these to
conform to the convention required by Stata; that variables are numbered sequentially,
the number coming at the end of the variable name. This is easily achieved in SPSS by
the following command:

do repeat
a = bhowlng to khowlng / b = howlng1 to howlng8.
compute b = a.
end repeat.

It did not matter that the variables for waves c and i were omitted.
The next step was to save the SPSS file as a Stata file which is possible from SPSS

version 14 onwards. The BHPS file structure is, in Stata terminology, wide, so once the
data was read into Stata the next task was to convert the file to a long structure in
readiness for analysis.

The between model was fitted first; the command and the output are presented in
Figure 12.1.
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The output is very similar to the output of multiple regression, presented in Chapter
4. The model in its entirety is very highly significant, as indicated by the F statistic.
Three R2 values are given, one each for within, between and overall. It will be seen that
these three R2 are given for all the models. As the between model is being fitted here the
between R2 is the most relevant and indicates that close to 49% of the variance is
explained by the model. (The other two R2 can be interpreted such that if the estimates
of this model are used to predict the within model the R2 is .0286 and this model fitted
to the overall data would result in an R2 of .3466. But to me these are not particularly
meaningful, the R2 pertaining to the between model is the most important.)

The focus here is not to address the substantive issue of the time spent on housework
but to demonstrate fitting models for panel data. However, some findings are high-
lighted in order to clarify interpretation of the model (although interpretation is no
different to that of multiple regression). The size of the accommodation (hsroom),
the time spent travelling to work (jbttwt) and the respondent’s health (hlstat) are not
significantly related to the amount of time spent on housework. The most important
explanatory variable is sex; the model finds that controlling for other variables in
the model, women spend about 10.5 hours more than men undertaking housework.
Every additional hour at work ( jbhrs) results in less time (.137 hours) spent on
housework.

The second model fitted is the within (or fixed effects) model. The command and
output is shown at Figure 12.2.

The F test indicates that the within model is significant but the R2 value is low, at .04

Figure 12.1 Stata output, between model.
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or 4%. Recall that the within model considers how a change in an explanatory variable
affects the change in the response variable, which in this case is the change in the
number of hours spent on housework. From the model we see that controlling for
changes in other variables an increase in the number of hours worked reduces the
average time spent on housework (by .097 hours). A change in the number of persons in
the household (hhsize) increases the time spent on housework (by .3 hours). Because
sex does not change over time it has been dropped from the model.

Three variables were not significant, size of the accommodation (hsroom), log of
monthly income (lnhhinc) and educational qualifications (qfedhi). This implies that a
change in any of these variables did not affect changes in the amount of time spent on
housework. But is this conclusion justified? It may be that change in an explanatory
variable does have an effect on time spent on housework but this effect is masked
because in reality the explanatory variable does not change much over time. In other
words, some explanatory variables can in theory vary over time but in practice they do
not vary much over time and are virtually time-constant variables (like sex and eth-
nicity). A good example here is educational qualifications, which may change over time
for younger people, but for older people they remain constant. Closer inspection of the
data on educational qualifications revealed little difference across the eight panel waves,
and, as a result, educational qualifications were found to be highly correlated from
one wave to another. Thus a change in educational qualifications may change the time
spent on housework (and the between model showed educational qualifications to be

Figure 12.2 Stata output, within (or fixed effects) model.
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important) but as there is little change across panel waves in this dataset, a relationship
is not revealed.

It can be seen from this model that nearly 70% of the total variation (rho = .689) is
attributable to differences between panel members and a little over 30% attributable to
changes over time within individuals.

The third model fitted was the random effects model and the command and results
are shown in Figure 12.3.

Because of the theory behind the random effects model and the procedures for
estimating it, the F test is not appropriate and a Wald chi-squared statistic is given
instead. The Wald test shows that the model is highly significant. Note that unlike the
fixed effects model, sex, a time invariant covariate, is included in the random effects
model. Broadly, the coefficients are not too dissimilar to those of the within (fixed
effects) model but many of the significance levels have changed. This model suggests
that about half of the variance is attributable to variation at the individual level and
half attributable to within individuals over time.

However, which model is to be preferred, the within model or the random effects
model? To answer this we can use the Hausman test, which compares the coefficients of
the two models. The null hypothesis is that they are not different and we can adopt the
random effects model because we can conclude that the unobserved variables are not
correlated with the explanatory variables. To undertake the Hausman test in Stata the
random effects model is run as above (but is not shown again here). The estimates are
saved so that they can be compared with the within (fixed effects) estimates. The within
model is then fitted. These commands are shown below.

Figure 12.3 Stata, output, random effects model.
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. estimates store random_effects

. xtreg howlng hsroom jbhrs jbttwt hhsize spinhh hhch12 lnhhinc age sex qfedhi
>  hlstat, fe i (pid)

The output from the within model is not shown; it is the same as given earlier. Then
the Hausman command is entered as below.

The test only compares coefficients that appear in both models so sex is omitted
in the comparison table above. The Hausman chi-squared test is highly significant,
indicating a difference between the models and that it is not safe to accept the stricter
assumptions underlying the random effects model. The test gives support to the within
(fixed effects) model.

12.8 Relationship between panel models and multilevel models

At this point readers may have noticed a correspondence between the within and ran-
dom effects models presented above and the multilevel models discussed in Chapter 9,
and rightly so as there are similarities. Indeed the random effects model above is a
multilevel model. Repeated measurement arising from panel studies is a two-level data
structure, but with the individuals at level 2 and the repeated measures, collected at each
wave, at level 1.

Longitudinal data can thus be analysed by adopting the methodology of multilevel
models. Further details are not given here but the texts referred to in Chapter 9 all
contain sections on fitting multilevel models to longitudinal data.

Figure 12.4 Stata output, Hausman test of models.
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Further reading

Readers wishing to understand more fully the limitations of cross-sectional data for drawing
causal inferences and how many of these limitations can be overcome with longitudinal research
designs are referred to Davies (1994) and to the Introduction in either Blossfeld and Rohwer
(1995) or Blossfeld et al. (2007) – the Introduction to both books is virtually identical – or to
Blossfeld and Rohwer (1997).

The econometrics literature is a good source of instruction on analysing time series data.
Wooldridge (2003) explains fitting regression models to time series data and to panel data.

An informative introduction to modelling time series analysis, including an example comparing
results from different models, is Sanders and Ward (1994).

The further reading listed at the end of Chapter 9 explains fitting multilevel models to longi-
tudinal data.
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13 Event history models

Life course events occur at specific points in time and in relation to other life events.
People experience a period of time (or spell) in one situation (or state) before moving to
another state, which they will occupy for a further spell; for example being single and
then getting married. The first part of this chapter presents models that have been
developed to analyse data on the duration of spells and the interrelationship between
spells and other characteristics or influences. Survival models, which are applicable
when a spell ends in a single event, are discussed. Discrete time models are appropriate
in a much wider range of applications (and subsume survival models) and are presented
in the second part of this chapter.

13.1 Time to an event: Survival models

Often in social research we know whether an event occurred and we also know when it
occurred. From this information the time interval to an event from some other fixed
event can be calculated. Many examples exist, such as the time to getting a job after
leaving education or after becoming unemployed, the period of time to committing an
offence following release from prison or the length of a marriage before it ends in
separation or death. Knowing the time to an event is additional information, providing
greater insights than simply knowing whether an event occurred or not.

Time is a continuous variable which suggests that the researcher could simply pro-
ceed by fitting multiple regression models (see Chapter 4), length of time to the event,
or duration, being the dependent or response variable. However, multiple regression
results in biased estimates if the data are censored – as is usually the case. Censoring is
discussed in detail below but is, essentially, the inability to observe events before or after
a defined cut-off point. To overcome this limitation, special statistical models have been
developed, which are generically known as survival models. These models were initially
developed for, and have been applied extensively in, medical research and engineering
where the dependent variable might typically be the length of survival following some
form of medical treatment or the time to failure of a particular piece of equipment.
A key concept in survival models is the hazard rate. Furthermore, over time some of
the explanatory variables may themselves change in value – these variables are known
as time-varying covariates. All of these three concepts are best explained by way of
examples, which are now described.



Example 1: Reoffending by parolees

In Tarling (1993), I explored the application of survival models to identify factors
associated with reoffending by prisoners released from prison on parole licence. The
sample comprised 738 men serving prison sentences of over 18 months and who were
released from prison during the 1980s. All 738 offenders were followed up for 30 months
following release and, if they were subsequently reconvicted of a further offence, the
date of the commission of the offence was recorded. In the 30-month follow-up period,
510 (69%) men were known to have committed a further offence, leaving 228 not having
committed an offence within the follow-up period. Length of time to the event (the first
offence committed following release; an offender may have committed more than one
offence in the follow-up period) was measured in days.

Socio-demographic information was available on each offender, together with details
of his criminal career. The principal covariates available for analysis were:

• type of offence committed which led to the index prison sentence
• age at conviction
• age at first conviction
• type of occupation
• employment status at time of original conviction
• marital status
• living arrangements following release form prison
• employment arrangements following release from prison
• reconviction prediction score.

Most of the above variables are self-explanatory except, perhaps, the last. The reconvic-
tion prediction score (RPS) is a simple points score, expressed as a percentage, indicat-
ing the probability of reconviction within two years following release from prison. It is a
weighted sum of many criminal history and background variables (including those
above) shown to be related to reconviction.

Example 2: Training for Work

The second example is from an evaluation of Training for Work (TfW) conducted
by Payne et al. (1999). Training for Work was a government-sponsored programme
which aimed to assist long-term unemployed people find jobs through skills training
and work experience. A nationally representative sample of 822 people who had been
unemployed for more than six months and had participated in TfW, were selected.
Each participant was individually matched with a person of the same gender, from the
same geographical area, of a similar age and with a similar employment history but
who had not participated in TfW. This matched comparison sample comprised 815
people.

Members of the first sample had completed TfW in the autumn of 1995 and both
samples were interviewed in spring 1996 and re-interviewed in summer 1997. The time
period started when a person became unemployed. The date they obtained a job was
recorded (they could have obtained a job while on the training programme or some time
afterwards). A total of 696 had not obtained a job by the summer of 1997. The time
difference, measured in months, between becoming unemployed and obtaining a job (or
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the summer of 1997 for those that did not obtain a job before then) was calculated and
became the variable duration.

The objective of the study was to assess whether or not the Training for Work
programme was effective in helping unemployed people get jobs as well as identifying
factors that were associated with a return to work.

Although the models are traditionally called survival models – stemming from their
first fields of application (where patients survive until they die or components work
until they stop functioning), the above two examples illustrate that this nomenclature
can be misleading. In the first, prisoners could perhaps be considered to be surviving
crime free and failed when they reoffended. However, in the second, unemployed
people were without a job and succeeded (not failed) in obtaining one. Perhaps more
neutral terms, such as duration models or event occurrence would be more helpful.
Nevertheless, when applying and interpreting these models (as with other models) the
researcher has to be clear which way the variables are coded and what the outcome is
defined to be.

Censoring

In many research studies, subjects can only be followed up for a certain period of
time and information is not available beyond that ‘cut-off point’, which is known
in survival models as the censoring point. Consider the first example above. Prisoners
were followed up for 30 months, but not beyond that point. It was stated that after
30 months 510 had reoffended, but what of the other 228? All we know is that they did
not commit offences within the 30 months when we stopped observing them. Some
may have committed offences at a later date, but we have no information on that
(although we know from other studies which have followed up prisoners for a longer
period that many more will reoffend later). In this study, 30 months is the censoring
point.

In the TfW example above, subjects were only followed up until the summer of 1997.
Their employment history beyond that censoring point is not known. Some of the 696
still unemployed at summer 1997 will have successfully obtained a job later, but we do
not know that.

In a follow-up study, such as the two described above, the data are said to be cen-
sored to the right, that is we have information at the beginning of the time period but
no information beyond a cut-off point at the end of the study. This is depicted graphic-
ally as case A in Figure 13.1. Censoring to the right can also arise within the study
period if a different event occurs which prematurely terminates the follow-up period.
Such a situation (depicted as case B) would result if a subject died or emigrated during
the study period or left or opted out of the study for some other reason.

Right censoring is the most common but data can also be censored to the left, that
is, at the beginning of the time period. This often occurs in retrospective studies
which rely on administrative records. Those records may only contain information
back to a certain point in time (for example, when the subjects started school).
Left-censored data is depicted as case C in Figure 13.1. To complete the picture it is
possible to have data censored to both the left and the right (case D) or not censored at
all (case E).
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Hazard rate

The hazard rate h(t) (also known as the risk) is defined to be the number that fail at time
t expressed as a proportion of those in the sample that have survived up to time t. Note
the second half of the definition; it is not the proportion of the whole sample but the
proportion of those that have survived up to time t, that is, the whole sample excluding
those that have already failed before time t.

The hazard rate for the parole sample is presented in Table 13.1. Although the
duration was measured in days, the data have been grouped into six-month periods for
illustrative purposes.

The last column of Table 13.1 shows the proportion of the entire sample that reof-
fended for the first time in each of the five six-month periods. Typically it shows a sharp
decline as those who reoffended in one period are not counted if they fail again in a
later period. However, discounting those that have failed in previous periods shows
those that remain at risk at the start of the subsequent period (column 3). Expressing
those reoffending in the period as a proportion of those still at risk produces the hazard
rate (column 4). It can be seen that the hazard rate also declines but not at the same rate.
In fact it is virtually constant during the first 12 months. A declining hazard is not
uncommon, as it is often the case that if a person survives for a period then his or her

Figure 13.1 Censored data.

Table 13.1 Number and proportion of parolees reoffending and the hazard rate

Time period
(months)

Number
reoffending

Number at risk Hazard rate Proportion of
sample reoffending

0 < 6 209 738 .28 .28
6 < 12 137 529 .26 .19
12 < 18 81 392 .21 .11
18 < 24 59 311 .19 .08
24 < 30 24 252 .10 .03
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chances of ultimately surviving improve. Or put another way, if a person is to fail they
are more likely to do so fairly quickly.

However, depending on the situation, hazard rates can decrease, increase or remain
constant throughout the period (or even change direction throughout the period). The
direction, or shape, of the hazard rate can influence the choice of survival model
adopted. However, Cox proposed a model, Cox’s proportional hazards model (or Cox’s
regression model), which makes no assumptions about the distribution of the hazard.
For this reason, and its ability to incorporate covariates, it has been widely adopted,
almost to the point of being the standard initial procedure. It is presented in section
13.2 and an example of its application is in section 13.4. (For a discussion of other
models, see Tarling, 1993.)

Time-varying covariates

The concept of time-varying covariates was introduced in section 12.5 but is restated and
extended here. When researching social processes over time, events can occur or statuses
change within the time period under investigation. Of course some variables do not
change and are fixed and immutable. Sex and ethnicity are examples of fixed variables.

Some variables become fixed once the study period has been defined. Consider
Example 1 – as soon as the prisoners had been selected for the study their number of
previous offences became fixed. Had the study been undertaken later, or had they been
selected for a subsequent study, their number of previous convictions may well have
been different.

Other variables, however, change during the course of the study period, and these are
known as time-varying (or time-dependent) covariates. One set of such variables may
be thought of as ‘clocks’, the most obvious here being age – in Example 1 all the
prisoners were 30 months older at the end of the follow-up period than they were when
released from prison. But other variables are also of this type, for example the length
of time a person is unemployed increases up to the point that they get a job. These
variables can be important in a study as risk is often related to time. An older person
may find it more difficult to get a job, or the longer a person has been unemployed the
more difficult it may be to get a job.

During the study period, events may occur which change the status of the research
subject. These events and changes of state can affect the outcome under investigation. In
the first example, a prisoner might get married or divorced during the follow-up period,
changing their status from single to married in the first instance or married to divorced
in the second. Either change of status may affect the offender’s risk of reoffending. In
the second example, a significant event may be the birth of a child. Such an event may
influence when either or both parents get a job and the type of employment they seek.

13.2 Cox’s proportional hazards model

In the early 1970s, Cox proposed the proportional hazards model which is a simple
and elegant model for analysing survival data. The advantage of this model is that it
alleviates the problem of knowing the underlying distribution of the hazard rate and is
therefore extremely flexible and suitable in a wide range of applications. It takes into
account censored data and can accommodate some covariates which vary over time.
Furthermore, it is readily available in SPSS and Stata and has been applied universally.
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In Cox’s model the failure rate or hazard rate, h(t), at time t is related to the
covariates as:

h(t) = h0(t) eb1x1 + b2x2 + b3x3 + . . .

where:
h0(t) is the baseline hazard function when the xp are set equal to 0, that is, the expected

risk without the influence of the explanatory variables, xp

xp are the explanatory variables
bp are the coefficients of the xs.
The one assumption underlying the model is that h(t) and h0(t) are proportional and

a method for checking that assumption is given later.
An alternative way of expressing Cox’s model is to divide both sides of the equation

by h0(t), resulting in:

h(t)

h0(t)
= eb1x1 + b2x2 + b3x3 + . . .

The left-hand side, the response variable, is the relative hazard or the hazard ratio and
is the change in risk (hazard) associated with the xs.

The component ebpxp is the risk associated with the value of xp relative to a value of
xp = 0. Here the bs are on the log scale as in the logistic, multinomial and ordered
regression models presented earlier. As with those models, the bps can be readily inter-
preted. For example, if bp is positive this indicates that an increase in xp will increase the
hazard rate or risk. In the first example, an increase in risk would decrease the length of
time to reoffend.

The model can be developed further by taking the natural logarithm of all the
components, resulting in:

log �h(t)

h0(t)
� = b1x1 + b2x2 + b3x3 + . . .

The bs are now the odds or Exp(B) as discussed in previous models.
The proportional hazards model is for continuous time and, in theory, ties (events

occurring at the same time) should not exist. In practice, they often do, as failure times
might be grouped as in the second example where time to obtaining a job was measured
to the nearest month. Methods for handling tied data are available and should be
followed if this is a serious problem. However, the occurrence of ties was not such a
problem in the first example as time to reoffend was measured in days.

Cox’s regression model was applied to the data in Example 1. The best fitting model
is presented in Table 13.2.

It can be seen that all three variables were significant, their t-values well in excess of
1.96 (the 5% level).

Interpreting the coefficients in Table 13.2 is similar to interpreting the coefficients in
the other models discussed so far. The Bs indicate the effect of the xs on the log of the
hazard. The Exp(B)s indicate the effects of the xs on the hazard. Considering the first
explanatory variable, for each additional year of age at conviction the hazard is multi-
plied by .950 after taking into account other variables in the model. Thus the older an
offender is at the time of conviction the less likely that he will reoffend. The effect of the
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other two explanatory variables is in the opposite direction, in that the greater the
number of previous convictions or the larger the value of the reconviction prediction
score, the greater the hazard and the more likely it is that the offender will reoffend. For
each additional previous conviction, the hazard increases by 4.2% and for each unit
increase in the reconviction prediction score, the hazard increases by 2.2%.

13.3 Comparing survival times between two or more groups

When the focus of interest is to examine the impact of a particular treatment or inter-
vention, a suitable starting point is to compare the survival rates for the different
groups. The objective of the Training for Work study, it will be recalled, was to assess
the effect of this programme in getting people into jobs by comparing the time those
participating in TfW (the trainee sample) took to obtain a job with those in the com-
parison group who did not participate in TfW. The Kaplan–Meier method is invariably
adopted when survival rates need to be compared as it estimates the survival rates,
displays them graphically and provides significance tests in order that inferences may be
drawn about the difference between them. The procedure in SPSS is:

Analyze → Survival → Kaplan–Meier

Which brings up the following dialogue box:

Figure 13.2 SPSS dialogue box for Kaplan–Meier.

Table 13.2 Cox’s proportional hazards model: time to reoffend by
prisoners released on parole licence

Covariates B Exp(B) t value

Age at conviction −0.051 .950 5.7
Number of previous convictions 0.041 1.042 3.5
Reconviction prediction score 0.022 1.022 6.1
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The researcher has then to specify the variable containing the Time to the event – in
this case the variable duration. Status requires the variable that records whether the
event occurred. In this study it is job and once stated lights up the Define Event bar
immediately below. Define Event must be completed by giving the code (or range of
codes) that indicates that the event has occurred. Code 1 of job indicates in the data file
that the person obtained a job. Factor requests the variable that distinguishes between
the group(s) that are to be compared. Here sample is a binary variable, code 1 for the
comparison group and code 2 for the trainee group.

The output is voluminous, giving a detailed table of survival times for the groups
(although this can be omitted by ‘unchecking’ the box Survival table(s) in options). The
summary information provided is shown in Table 13.3.

The mean survival time is given for both groups, but note it is not the arithmetic
mean but the area under the survival curve (shown below) for the uncensored cases. The
detailed calculation of the mean given need not concern us unduly except that we
cannot replicate the estimates by calculating the mean in the original dataset. Of more
importance is that the means for both groups are calculated in the same way and are
comparable. The confidence intervals for the two groups do not overlap, which indicates
that the survival rates for the two groups are significantly different – although signifi-
cance will be tested formally later.

The median for the two groups is also given. The median survival time is the time of
the first event at which the cumulative survival reaches 0.5 or 50%. Like the mean, the
confidence intervals indicate that the medians for the two groups are significantly
different.

(limited to 142) simply states the longest survival time in the data – in this case the
censoring point at 142 months.

By choosing Survival plot from Options, a graphical representation is produced,
which is shown in Figure 13.3 opposite.

The comparison group is the higher of the two curves and indicates that those in
the comparison group survive longer than those in the trainee group. However, it will
be recalled that duration was time to obtaining a job. Thus surviving longer means
taking longer to obtain a job. The trainee group (the lower curve) survived less well,
which meant that they obtained a job sooner than their counterparts in the comparison
group.

Table 13.3 Mean and median survival times for comparison group and participation group in
Training for Work

Survival time Standard error 95% confidence interval 

Comparison group
Mean (limited to 142) 68.3 2.7 63.1 73.6
Median 49.0 3.5 42.1 55.8

Participation group
Mean (limited to 142) 49.8 2.0 45.8 53.7
Median 30.0 1.3 27.5 32.5
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Are these survival curves significantly different? Did those participating in TfW
obtain jobs more quickly? That question has already been answered by examining the
confidence intervals. However, further confirmation can be obtained by requesting sig-
nificance tests (click on Compare Factor and check the appropriate boxes). Three tests
are available (Log Rank, Breslow and Tarone–Ware) and all were requested here (by
checking the appropriate boxes). There is little difference between the tests and only in
exceptional circumstances would they result in a different inference or conclusion to be
drawn.

The results show that all three are highly significant and indicate that trainees
obtained a job more quickly than members of the comparison group.

Figure 13.3 SPSS output, Kaplan–Meier survival functions.

Figure 13.4 SPSS output, tests of equality of survival curves.
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13.4 Fitting Cox’s proportional hazards regression model to
Training for Work data

The previous Kaplan–Meier analysis revealed a difference between the two groups, but
is the difference attributable to the TfW intervention or is it simply that despite being
matched on certain characteristics, those selected to participate possessed other charac-
teristics that made them more employable at the outset? To answer this question and to
identify those characteristics that affect a person’s chances of obtaining a job, Cox
regression models were fitted. However, before fitting any models it was necessary to
check that the proportionality assumption was not violated.

A simple but useful method for assessing whether the proportionality assumption
holds is to examine the log minus log (LML) plot. If the proportionality assump-
tion holds, the two curves should be parallel. The commands in SPSS are Analyze →
Survival → Cox Regression which brings up a dialogue box similar to the Kaplan–Meier
dialogue box. Time and Status are defined in the same way and the variable sample
should be entered in Strata. This produces the following plot.

It can be seen in the plot above that the curves are broadly parallel in the TfW study
so we can have confidence in fitting Cox’s proportional hazards models.

To fit models in SPSS, follow the instructions given above but covariates need to be
specified and any that are categorical need to be identified as such. In the model
fitted here three variables were included, all categorical: sample (whether in the com-
parison group or the trainee group) (note: if continuing from the previous analysis,
sample will need to be deleted from the Strata box), health (with three categories:
no problems, has problems, registered disabled) and driving (doesn’t have a driving
licence and does have a driving licence). The variables, the way they were coded and
which were entered in the model, are given in Figure 13.6. Following previous con-
ventions, the highest code was taken as the reference category. The model is set out in
Figure 13.7.

Figure 13.5 SPSS output, LML plot.

182 Statistical modelling for social researchers



The model was very highly significant, the reduction in the −2Loglikelihood was
143.7, with 4 degrees of freedom, which compared with the chi-squared distribution is
highly significant, p < .001.

Considering each variable separately, not participating in TfW meant the ‘risk’ of
getting a job was reduced to .682 compared with those who participated. Or, looked at
the other way, participants’ chances of getting a job were one and a half times better
(1/.682) than non-participants.

Compared with the reference category, registered disabled, those with no health
problems are very nearly twice as likely to get a job. However, the chances of those with
health problems are little different (and not statistically significantly so) from those who
are registered disabled (although the relatively small numbers in these two categories
should be noted).

Similarly, not having a driving licence reduced the risk of obtaining a job, or having a
licence increased the chances by 1.6 (1/.619) compared with those without a driving
licence. This finding reflects the fact that being able to drive opens more opportunities
for employment: either in being able to travel to a wider range of jobs or to take up the
kind of work that involves driving a vehicle.

Undertaking survival analysis in Stata is straightforward as Stata has a suite of built-
in dedicated commands (all prefixed st – for survival-time). A particular advantage of
Stata is its flexibility in being able to perform survival analysis working from a variety
of data structures. The main data structures are described in section 13.6 and the Stata

Figure 13.6 SPSS output, categorical variable codings.

Figure 13.7 SPSS output, proportional hazards model.
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command stset can declare any of these to be survival-time data, informing Stata of the
key variables for subsequent analysis: duration, event, whether censored, as well as
noting which are fixed and time-varying covariates.

The Cox regression model is appropriate in situations where the focus of interest is time
to a single event; and especially where there are no (or very few) ties, the proportionality
assumption is not violated and preferably where there are no time-varying covariates.

13.5 Discrete time models

A relatively recent innovation has been the development of discrete time models which
are the subject of the second part of this chapter. Discrete time models provide an
alternative to survival models and the Cox regression model can be fitted as a discrete
time model. But discrete time models offer additional flexibility for analysing longi-
tudinal data where events occur at different points in time or at different stages of a life
course. Discrete time modelling is particularly suited to social data as people are often
in a number of discrete states (a job, a particular residence) or events occur at certain
points (vote at elections, birth of a child) which do not change frequently. This contrasts
with medical or engineering applications where variables change frequently and con-
tinuously over time (blood pressure, performance of a component). Before discussing
the models it is necessary to clarify what is meant by discrete time and the implications
it has for different data structures.

13.6 Data structures

To illustrate data structures, let us consider the following hypothetical example in which
four people are studied over a four-year period (years 1 to 4). The first three were
unemployed at the start of the study whereas the fourth was employed from the outset.
Information was collected on any change in employment status during the four years,
together with the length of time each person had been unemployed before the start of
the study, each subject’s sex, marital status (and any changes in marital status through-
out the four years) and if and when any children were born in the study period.

The first subject was a man who had been unemployed for two years before the start
of the study, but got a full-time job in year 2. He was married at the start of the study
but divorced in year 4. He had no children.

The second subject was a female who was unemployed for one year before the start
of the study. She was married throughout the four-year study period and had a child in
year 2. She returned to work part-time in year 3.

The third subject was a male who had also been unemployed for one year before the
study. He was single at the start of the study but married in year 2. His wife gave birth to
a child in year 4. He remained unemployed throughout the four-year study period.

The fourth subject, a male, was in part-time employment at the start of the study but
became unemployed in year 3. He had been in continuous employment before the start
of the study. He was divorced and did not have any children.

Until recently, and certainly in most historical studies, the structure of the database
would be either of two types, state-based or event-based.

State-based data structure records the status of each person in each year. For this
hypothetical study the data might be coded as in Table 13.4:
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This data structure is of a similar form to that often constructed in longitudinal
research. The British Household Panel Study data file analysed in the previous chapter
is of this type, where the years here would be the panel waves in the BHPS. Stata calls
this a wide file.

Event-based data structure records the dates at which events occur. For this hypothetical
study the data might be coded as shown in Table 13.5.

Comparing state-based and event-based data structures, it can be that the state-based
structure is often larger than its event-based counterpart, especially if data is recorded
over a large number of time periods. It is usually the case in event-based structures that
no more than three variables are needed to describe the event: its start time, end time
and the type of event.

If the data was coded in either of the formats illustrated above, and the purpose of
the study was to fit a survival model (as in section 13.4) in order to analyse time to
getting a job, two additional variables would need to be derived: (1) time or duration to
getting a job from the start of the study, and (2) whether the person got a job or whether
their record was censored. In our example, the first two subjects did get a job but the
third had not got a job by the end of the study – the censoring point. The fourth person
already had a job at the start so would be excluded from any study that examined time
to getting a job.

Spell-based (or episode-based) data structure Recent advances in statistical software
have increased the popularity of spell-based/episode-based data structures, which
record each spell experienced by each subject. For this hypothetical study the data
would be as shown in Table 13.6.

Spell data structures require a little more by way of explanation. Another way that
we can conceptualise the data is that for each individual we have a sequence of spells (or
episodes) of time spent in discrete states, such as being single, married, divorced or
unemployed, employed etc. An event occurs causing a person to transfer from one state
to another; for example, a person gets a job and transfers from state unemployed to
state employed. In constructing the data we have to create a new spell whenever any of
the non-time variables change value. Take subject 1; he enters the study in a set of
states – his first spell. He remains in this set for one year, when the set changes because
he gets a job. He thus enters a new, second, spell which lasts unchanged for two years.

Table 13.5 Event-based data structure

Person
ID

Sex Time
married

Time
divorced

Child
born

Time
previously
unemployed

Time
start job

Time end
job

Type job

Id sex marryr divorcyr childyr prunemp job1st job1end job1type

1 M Yr 1 Yr 4 – 2 Yr 2 Yr 4 FT
2 F Yr 1 – Yr 2 1 Yr 3 Yr 4 PT
3 M Yr 2 – Yr 4 1 – – –
4 M – Yr 1 – 0 Yr 1 Yr 2 PT

Note: The second row of the heading lists the variable names used in the SPSS syntax.
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This spell ends when he gets divorced whereupon he starts a different, third, spell which
continues to the end of the study period.

Person-time (diary) data structure The essential prerequisite of discrete time models is
to rearrange the data into discrete time periods, such as months or years, and then to
record for each subject their value on each variable of interest in each of the time
periods. In other words, the data is set out like a diary. For the hypothetical study the
data structure would be as shown in Table 13.7. Stata calls this data structure a long
file.

It can be seen that each person contributes four rows of data to the database, one for
each time period, years in this case. Some covariates remain constant throughout the
period, in this case sex and time previously unemployed. Others, time-varying covari-
ates, can change during any one of the time periods. A subject can marry or get
divorced at any time and their employment status can also change.

Note the variable year started job (startjob) which records the year in which each
subject first obtained a job. The first person started a job in year 2, the second person in
year 3, the third person did not get a job during the study and was given the code 0,
whereas the fourth person was employed at the start of the study and was coded 1. The
variable, startjob, is not essential as a record (the information is embedded in the
employment status (job) variable). However, it is needed when writing SPSS syntax
code to reconfigure the data to fit different models.

One of the great advantages of arranging the data in the person-time format is that it
is easy to accommodate time-varying covariates. (Something that is not so easy in
survival models.) Another advantage is that models fitted to person-time data do not
experience problems with ties, that is, where more than one individual experiences the
same event at the same time. The other major advantage is that we can, with this data
structure, fit standard models, such as logistic regression.

Table 13.6 Spell-based (or episode-based) data structure

Person
ID

Start
year

End
year

Sex Marital
status

Children Time
previously
unemployed

Employment
status

Spell
number

Spell
length

1 1 1 M married 0 2 unemp 1 1
1 2 3 M married 0 2 FT 2 2
1 4 4 M divorced 0 2 FT 3 1

2 1 1 F married 0 1 unemp 1 1
2 2 2 F married 1 1 unemp 2 1
2 3 4 F married 1 1 PT 3 2

3 1 1 M single 0 1 unemp 1 1
3 2 3 M married 0 1 unemp 2 2
3 4 4 M married 1 1 unemp 3 1

4 1 2 M divorced 0 0 PT 1 2
4 3 4 M divorced 0 0 unemp 2 2

Note: Blank rows have been included to indicate more clearly data for the three subjects.
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A drawback when undertaking discrete time modelling is that invariably the data has
to be rearranged in person-time (diary) format and the person-diary file has to be
rearranged further to meet the particular requirement of the type of model to be fitted.
Thus to undertake such analyses usually entails some data manipulation and data
handling skills on the part of the researcher. Section 13.11 offers guidance on arranging
data into the appropriate format.

Fortunately, one former impediment to fitting discrete time models has largely been
eradicated. Setting out data in the person-time format greatly expands the size of the
database, and it can be seen in our example that four lines of data (one for each subject)
in the event-based or state-based file expanded by a factor of four (one for each year) in
our person-time file. And had our time period been months and not years (which might
have been more appropriate) the size of our database would have expanded by a factor
of 12. In the early days of applying discrete time models researchers suffered from a
lack of computer power to handle the large databases generated. However, more recent
technological advances in computing make these concerns a thing of the past.

We next consider different discrete time models but before doing so, note that by
viewing history in the person-time (diary) format we can model the probability of
moving from one state to another. The probability of moving to one state from another
is the hazard rate (or risk rate) – which was defined in section 13.1. In this context it is
also called the transition rate, reflecting the rate at which subjects transfer from one
state to another.

Table 13.7 Person-time (diary) data structure

Person
ID

Year Sex Marital
status

Employment
status (job)

Year
started job

Child
born

Time previously
unemployed

1 1 M married unemployed 2 no 2
1 2 M married job (FT) 2 no 2
1 3 M married job (FT) 2 no 2
1 4 M divorced job (FT) 2 no 2

2 1 F married unemployed 3 no 1
2 2 F married unemployed 3 yes 1
2 3 F married job (PT) 3 no 1
2 4 F married job (PT) 3 no 1

3 1 M single unemployed 0 no 1
3 2 M married unemployed 0 no 1
3 3 M married unemployed 0 no 1
3 4 M married unemployed 0 yes 1

4 1 M divorced job (PT) 1 no 0
4 2 M divorced job (PT) 1 no 0
4 3 M divorced unemployed 1 no 0
4 4 M divorced unemployed 1 no 0

Note: Blank rows have been included to indicate more clearly data for the four subjects.
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13.7 Time to a single event

Modelling time to a single event is the analysis we were carrying out when fitting
survival models. Discrete time models provide an equivalent but alternative method to
survival analysis. However, before we can fit the discrete time model the data needs to be
restructured. Let us assume that our focus of interest is the event of getting a job after a
spell of unemployment. If the subject gets a job the event has occurred but if they do
not get a job within the study period we regard the data as being censored. Data for all
time periods up to and including the event (getting a job) are retained in the
restructured dataset. If the person does not get a job all time periods are retained, that
is up to the censoring point.

The dataset for the subjects in our hypothetical example would be as shown in
Table 13.8.

In this analysis our interest was in the single event getting a job; both a full-time and
a part-time job were regarded equally, no distinction was made between them. The first
subject contributed two rows (representing the first two years) to the database, that is,
up to and including the year he got a job. The second subject contributed three rows, as
she got a job in the third year and the third subject four rows as he got a job in year 4.
The final subject had a job at the beginning of the study period and was excluded.
Looked at another way, for subjects who get a job, time periods are retained when the
event is coded 0 and the first row when it is coded 1. If a person does not get a job, all
the time periods are retained. In this case, no row contains 1 (because the event has not
occurred), and the data for this subject is regarded as censored.

Having constructed the binary (0, 1) variable getting a job it can be designated as the
response variable in a logistic regression analysis. Any or all of the variables sex, marital
status, birth of a child and time previously unemployed can be entered as independent
variables (time previously unemployed as a covariate, the others as categorical, factors
or indicator variables). Marital status and birth of a child can vary over time. Inter-
actions between variables can also be created.

Before fitting logistic regression, note the similarity between this analysis and the
survival analysis discussed earlier. In the survival analysis we also had a binary variable

Table 13.8 Dataset for the subjects in the hypothetical example

Person ID Year Sex Marital
status

Child born Time previously
unemployed

Event (job)
0 No, 1 Yes

1 1 M married no 2 0
1 2 M married no 2 1

2 1 F married no 1 0
2 2 F married yes 1 0
2 3 F married no 1 1

3 1 M single no 1 0
3 2 M married no 1 0
3 3 M married no 1 0
3 4 M married yes 1 0

Note: Subject 4 is not included because he had a job at the start of the study.
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which recorded whether or not the event had occurred. However, in the survival analy-
sis the variable duration recorded the time to the event (getting a job). In the discrete
time approach we also measure duration but it is represented as separate rows (years)
leading up to the event. The Cox regression can be shown to be equivalent to the logistic
discrete time model when the time intervals in the latter are very small. In practice,
however, model estimates often do not change greatly if the size of the discrete time
periods is altered, say from one month to three months.

As we are in effect analysing the same problem but in two different ways we would
expect to obtain the same results and hence draw the same inference. Reassuringly, we do
indeed get the same result. A logistic regression model was fitted to the TfW discrete time
dataset and the same three variables were included as in the Cox regression survival
model presented in section 13.4: participation on the programme, the subject’s health and
whether or not the subject held a driving licence. The results of the logistic regression are
given below:

Comparing the two models, we see that the variables display the same relationship
with the response variable, the coefficients are virtually the same as are the signifi-
cance levels. What small differences there are, are attributable to the slightly different
numerical methods adopted to fit each model and the problems caused by ties in
the data.

13.8 Competing risk models

In the previous section, our focus of interest was in a single event, getting a job.
However, a spell of unemployment may well end in various (competing) ways: a person
may obtain a full-time job or a part-time job, or he/she may leave the labour market (to
become a student, housewife, retire and so on). Analysing time to different outcomes is
known as competing risk modelling.

Fitting discrete time models to competing risks is a straightforward extension of
discrete time models to a single event. We simply model each outcome separately as if it
was a single event but regard exits to all other outcomes as censored. (Other approaches
could be pursued leading to multinomial models, but here we stay with the simpler and
more straightforward approach proposed by Allison, 1984.)

In our example, suppose we were interested in whether people obtained a full-time or

Figure 13.8 SPSS output, proportional hazards model fittted as logistic regression.
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a part-time job. It will be recalled that in our example the first subject got a full-time job
whereas the second person got a part-time job.

Modelling time to full-time job our database would be as shown in Table 13.9.
It can be seen that this dataset has the same number of rows as the dataset for the

single event model. The difference being that the code for a part-time job is 0, indicating
that it is to be treated as censored.

We would then fit a logistic regression to this data, the event full-time job being our
response variable.

Modelling time to part-time job our database would be similar, except that obtaining
a part-time job would be coded 1 while obtaining a full-time job would be coded 0,
indicating that it is to be treated as censored.

A logistic regression model can now be fitted to this data, the event part-time job
being the response variable.

It may well be, indeed it is very likely, that the best model for full-time job turns out to
be different from the model for part-time job. But this simply reflects the different
characteristics of people taking up full-time or part-time employment. The age and sex
of the respondent and the number and age of their children may have a significant
influence on whether a person seeks full-time or part-time employment.

13.9 Repeated events or multiple spells

So far we have only considered time to an event (although that event could lead to
different outcomes and competing risk models). In reality, however, people may experi-
ence more than one occasion (or spell) in a particular state, for example, a person may
be unemployed on more than one occasion during their life or a person may reoffend on
more than one occasion during a fixed period following release from prison. Thus
events may be repeated or people may experience multiple spells in a state. To incorpor-
ate this additional information we can treat each spell as a separate observation. To
keep the discussion simple, here we will only consider the case where we have one
outcome, getting a job.

Suppose in our hypothetical study we followed up each of the four subjects for ten

Table 13.9 Dataset for competing risk model, modelling time to full-time job

Person
ID

Year Sex Marital
status

Child born Time previously
unemployed

Event (full-time
job) 0 No, 1 Yes

1 1 M married no 2 0
1 2 M married no 2 1

2 1 F married no 1 0
2 2 F married yes 1 0
2 3 F married no 1 0

3 1 M single no 1 0
3 2 M married no 1 0
3 3 M married no 1 0
3 4 M married yes 1 0
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years, not four. Consider the first subject: he was unemployed in the first year but
obtained a job in year 2 and was still employed in year 4, the end of the study. Further
suppose that he lost his job in year 5 but was re-employed in year 7. He then become
unemployed in year 9 and was still unemployed in year 10. This subject has experienced
three spells of unemployment and would thus contribute three separate observations.
His entry in the database would be as shown in Table 13.10.

Having constructed the database, we would proceed as before by fitting a logistic
regression model with the event job as the response variable.

It should be noted that pooling repeated events or multiple spells in the way
described above is only theoretically justified if each spell is statistically independent of
the other spells. However, we would expect that people who are prone to be unemployed
will be frequently unemployed. This finding of itself does not violate the assumption of
independence so long as the periods of unemployment are entirely accounted for by the
explanatory variables, such as sex, age, number of children etc., but there is always the
potential problem of unobserved variables or unobserved heterogeneity (which was
discussed in section 3.10). One way to minimise this potential problem is to include as
an explanatory variable a subject’s relevant previous history, such as, in this example,
the number of previous spells of unemployment (or, in the case of reoffending, the
number of offences prior to the study period).

13.10 Multiple states

The final class of models considers the situation in which we have multiple spells and
multiple outcomes. So, for example, in an employment career a person may obtain a
job, leave the labour market, obtain a job and then become unemployed etc. and he/she
may experience any number of different states throughout his/her career. If we have
three possible states, employed, unemployed, not in the labour market, a person can
transfer from the state they are currently in (the origin state) to either of the other two
(the destination state). In this example there are six possible transitions:

1 job to unemployment
2 unemployment to job

Table 13.10 Repeated events or multiple spells, database entry for subject with three spells of
unemployment

Person ID Year Sex Marital
status

Child born Time previously
unemployed

Event (job)
0 No, 1 Yes

1 1 M married no 2 0
1 2 M married no 2 1

1 5 M divorced no 2 0
1 6 M divorced no 2 0
1 7 M divorced no 2 1

1 9 M divorced no 2 0
1 10 M divorced no 2 0
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3 job to not in the labour market
4 not in the labour market to job
5 unemployment to not in the labour market
6 not in the labour market to unemployment

One approach to analysing these transitions is to fit six separate logistic regression
models, one for each transition. For the first (job to unemployment) the database would
comprise all spells that start in the state job. The end of the spell is defined by a
transition to state unemployment, with all other transitions (in this case the other can
only be to not in the labour market) treated as censored.

13.11 Guidance on restructuring data to fit survival and discrete
time models

Comparing the two, Stata has a much wider range of data manipulation commands
than SPSS and is, in general, better suited to handling different datasets especially those
which contain more than one record per case.

In determining how to proceed, two issues need to be considered. First, what
models are to be fitted and, second, how is the data structured? To take the second
point first, in reality, when undertaking statistical modelling, the social researcher will
have available existing data for secondary analysis and the data structure will already
be determined. It could be in state-, event- or spell-based format. SPSS cannot read
spell-based data directly so if the data was in this format the researcher would need
to use Stata. Alternatively the researcher could be assembling a new data file and has
a choice of which data structure to adopt. In this situation, especially if the aim is
to fit more complex models (such as multiple state models), it may be more efficient
and advantageous to adopt a spell-based (Stata prefers the term episodes) structure
and proceed using the wider range of facilities available in Stata. But adopting a spell-
based structure rules out analysis in SPSS. If analysis in SPSS is a possibility, a state-
based structure is perhaps the best compromise and this is the structure adopted
by many panel studies, including the British Household Panel Study analysed in
section 12.7.

Returning to the first consideration, if the intention is to carry out survival analy-
sis, Stata has a suite of built-in ‘st’ commands and the command stset can read a
variety of data structures directly. As stated, it is not possible in SPSS to read
spell-based datasets directly and state- and event-based data would usually require
certain variables to be derived (for example duration) – although this is relatively
straightforward.

If the purpose is to fit discrete time models, data manipulation is required in SPSS
and Stata. Unfortunately, Stata does not have a suite of built-in commands for discrete
time modelling similar to the ‘st’ commands for survival analysis. However, Stata does
have a command, reshape (explained in section 12.6) which converts state-based data
structures (which Stata calls wide) to person-time (diary) data (which Stata calls
long) and a command stsplit to convert spell-based (episodes) data structures to person-
time (diary) data.

To convert the event-based data structures to person-time (diary) data requires rather
more Stata commands and code, which is given below for the four-person hypothetical
dataset. The variables in this dataset have been coded as follows:
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Sex: 1 male, 2 female
Marital status: 1 single, 2 married, 3 divorced
Children 0 no, 1 yes
Employment status 0 unemployed, 1 part-time job, 2 full-time job.

The Stata code is:

expand=4;
sort id;
by id: gen year=_n;

by id: list;

gen ms=1;
replace ms=2 if marryr <= year;
replace ms=3 if (divorcyr <= year & divorcyr <.);

gen job = job1type
replace job=0 if  year < job1st;
replace job=0 if  year >job1end;

gen childb=0;
replace childb=1 if childyr==year;

by id: list id year sex ms job job1st childb prunemp;

The expand=4 command writes out the line for each person four times as that was the
maximum number of years in the data. All fixed explanatory variables are repeated for
each year (line). The code shown generates the time-varying covariate states which can
change from year to year.

SPSS syntax

State- or event-based data can be converted to person-time (diary) structure in SPSS.
The diary data then has to be further adapted in order to fit time to a single event
or competing risk models. SPSS syntax to perform these data manipulations for the
hypothetical dataset is given below.

Converting the state-based data structure to the person-time
(diary) structure

get file=‘path and filename’.

*create a vector with as many elements as number of years (here 4)

vector job=jobyr1 to jobyr4.
compute startjob=0.
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loop #i = 1 to 4.
. do if (job(#i)>0).
. compute startjob=#i.
. break.
. end if.
end loop.
execute.

*change variables to cases to make one row for each of the years (here 4)

VARSTOCASES /MAKE job FROM jobyr1 to jobyr4
/MAKE ms FROM msyr1 to msyr4
/MAKE child FROM childyr1 to childyr4
/INDEX = year(4)
/KEEP = id sex startjob prunemp
/NULL = KEEP.

save outfile= ‘path and file name’

execute.

Transforming event-based data structures to person-time diary structure is a little
more difficult and is accomplished most easily by first converting event-based data to
state-based data then converting state-based to person-time, following the instructions
above.

get file=‘path and file name’.

compute jobyr1=0.
compute jobyr2=0.
compute jobyr3=0.
compute jobyr4=0.

* create as many jobyr variables as the maximum time period in the dataset (here 4).

* this should be the largest value found in the ‘jobstart’ and ‘jobend’ variables

* the vector and loops below range over these variables.

vector job=jobyr1 to jobyr4.

loop #i = 1 to 4.
* First job.
. if (#i ge job1st and #i le job1end) job(#i)=job1type.
. if (#i gt job1end) job(#i)=0.

end loop.
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save outfile= ‘path and file name’.

execute.

Note that the above code only converted the job data. Similar code would need to be
included to generate the child born and marital status state for each time period.

Having converted the job data into state-based form (with job1type in the state) we
can use the SPSS syntax for the state-based data to convert to the person-time diary
data structure.

Time to a single event data file

In the model in section 13.7, we were interested in the time to getting a job of any kind,
regardless of whether it was a full-time or part-time job. We thus need to recode the
data: unemployed = 0 (which it is in any case) and part-time and full-time = 1 (that is
recode full-time to equal 1).

Referring back to the database in section 13.7 and the commentary following it, the
dataset required retains rows when the event is coded 0 and the first row when it is
coded 1. The appropriate rows can be selected from the person-time diary file by the
following command:

select if (year < startjob or (year = startjob and year > 1) or startjob = 0)

Competing risk models

Structuring the data for competing risk models is a simple and straightforward exten-
sion to single event data structures. All that is required is to recode job. In our example,
if we were interested in the event part-time job, unemployed and full-time job are coded
0 and part-time job coded 1. Similarly if the interest was full-time job, unemployed and
part-time are coded 0 and full-time job coded 1.

Further reading

Elliott (2002) provides a good introduction to event history modelling as well as an interesting
application, including fitting models with SABRE. Allison (1984) is a classic text and discusses
the models presented here as well as alternative models, together with details of the statistical
theory underpinning the models. The early chapters of Blossfeld and Rohwer (1995) provide an
excellent discussion of causality and statistical modelling and the impact of different research
designs (an alternative source is Blossfeld and Rohwer, 1997). The chapters also discuss data
structures and the various types of censoring.
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Appendix 1: The generalised
linear model

A significant development in statistical modelling occurred in the 1970s with the
realisation that many of the models discussed in this book were related and could be
viewed as different members of the same family: the generalised linear model
(GLM). It is not necessary to understand the generalised linear model in order to
apply the individual models in research settings or to undertake the analyses outlined
in this book in SPSS and Stata. However, the terminology and concepts of the
generalised linear model are found in more advanced texts on statistical modelling
(for example, Dobson 2002). Furthermore, some computer software, and importantly
for us MLwiN (used in Chapter 9 to fit multilevel models), is adopting the termin-
ology and notation of GLM. In anticipation that sooner or later readers will come
across the GLM, but more immediately to understand MLwiN, a brief description is
given here.

In section 1.3 we set out the general linear model and noted its constituents.
The systematic component comprises the explanatory variables:

b0 + b1 x1i + b2 x2i + . . . + bp xpi

The random component, e, is assumed to have a particular distribution associated with a
particular response variable. For example, if the response variable, y, is continuous we
assume that the random component is normally distributed, whereas if the response vari-
able is binary we may assume that the distribution of the random component is binomial.

Generalised linear models have a third component:
The link function specifies the relationship between the systematic and random com-

ponents of the model. More precisely, the link function specifies how the mean of the
random component relates to the explanatory variables.

Many models can be defined by the distributions assumed for the random component
and their link function. The most common models, which are described in this book,
are listed in Table A.1.

Table A.1 Types of model expressed as GLM

Model Random component Link

Multiple regression Normal Identity
Logistic regression Binomial Logit
Multinomial logistic regression Multinomial Generalised logit
Loglinear models Poisson Log



In multiple regression we assume the random component (error term) is normally
distributed and model the mean directly, so the link is ‘identical’ to the mean. In logistic
regression the logit of the mean is modelled, in the multinomial the generalised logit
and in loglinear models the log of the mean is modelled.
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Appendix 2: Handling tabular data

On occasions, the researcher will receive data in tabular form – much official data is
presented in this way, for example, in National Statistics publications. Similarly, tabular
data is presented in research papers, reports and textbooks.

To illustrate the procedures for inputting and analysing tabular data, we draw on the
data on the sentences awarded to adults convicted of shop theft. A two-way table of
sentence by sex was presented in Table 3.1. The data was further analysed in Chapters 6
and 7 where other variables were included in various multinomial logistic regression
and loglinear models. The actual data file available for analysis contained data for each
offender in the standard format, that is, one row for each offender. However, suppose
the data had not been available in that format but had appeared as a table in a published
report. In order to make the example meaningful but at the same time manageable we
consider a three-way table in which sentence has been cross-classified by sex and the
extent to which the offenders had committed previous offences. The data is presented in
Table A.2. In any published presentation of this data, totals, subtotals and percentages
would be given to highlight the relationships between the three variables, but that is not
the purpose here. These three variables were included in the multinomial model fitted in
section 6.2.

Table A.2 Number of offenders awarded different sentences, by sex and previous criminal history

Male Female

No previous convictions
Custody 44 12
Community penalty 46 24
Fine 82 39
Discharge 70 83

1 to 4 previous convictions
Custody 63 11
Community penalty 108 69
Fine 148 68
Discharge 101 79

5 or more previous convictions
Custody 543 67
Community penalty 383 88
Fine 365 44
Discharge 258 65



Cell notation

First we need a systematic way of referring to the cells of the table, and the convention
adopted is to define each cell as:

Cijk. . .

where: C is the cell
i refers to the row
j refers to the column
k refers to the layer
. . . and so on, depending on the dimensions of the table.

To some extent it is arbitrary which variable is the row, the column and so on as tables
can always be presented and rearranged in a different order.

In Table A.2, the rows are taken to be the types of sentence, such that:

row 1 is custody
row 2 is community penalty
row 3 is fine
row 4 is discharge.

The columns are the sex of the offender, such that:

column 1 is male
column 2 is female.

The layers record the extent of the offender’s previous criminal history, such that:

layer 1 is no previous convictions
layer 2 is between 1 and 4 previous convictions
layer 3 is 5 or more previous convictions.

Thus for example:

C111 (custody, male, no previous convictions) contains 44 such offenders
C122 (custody, female, 1–4 previous convictions) contains 11 offenders
C313 (fine, male, 5 or more previous convictions) contains 365 offenders
C423 (discharge, female, 5 or more previous convictions) contains 65 offenders.

Inputting tabular data

The data in Table A.2 can be entered into SPSS or Stata by creating a data file with
24 rows, one corresponding to each cell of the table. The file has four variables, sen-
tence, sex, precons, and a fourth variable whose value is the number in the cell, which we
will name count.

The data file showing just the four exemplary cells given above would be:
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The data file as inputted has 24 rows but the original sample comprised 2860
offenders. To convert the table to the original sample we need to weight the combin-
ations of the characteristics by the number in the cell; for example, we need to effect-
ively produce 44 offenders who were classified sentence 1 (custody), sex 1 (male) and
precons 1 (no previous convictions).

This is accomplished in SPSS by Data → Weight Cases
Which brings up the following box:

Weight cases by has been checked and count entered into Frequency Variable.
In Stata a similar procedure is adopted:

.input sentence sex precons count
1 1 1 44
:
1 2 2 11
:
3 1 3 365
:
4 2 3 65
.end

Figure A.1 SPSS dialogue box for weighting cases.

Table A.3 Data file for sentencing data in Table A.2

sentence sex precons count

1 1 1 44
– – – –
1 2 2 11
– – – –
3 1 3 365
– – – –
4 2 3 65
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The data is then weighted in any commands to analyse the data. For example to pro-
duce a two-way table between sentence and sex:

tab sentence sex [fw=count]

where fw is an abbreviation for frequency weight.
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