

Formal Languages & Automata

Ali Shakiba Vali-e-Asr University of Rafsanjan <ali.shakiba@vru.ac.ir>

Chapter 2: Finite Automata

Deterministic Acceptors

• A deterministic finite acceptor (DFA) is the quintuple $M = (Q, \Sigma, \delta, q_0, F)$

where:

- Q is the finite set of internal states
- Σ is the input alphabet, a finite set of symbols
- $\delta: Q \times \Sigma \to Q$ is a total transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of final states

Total function: A function that is defined for all inputs of the right type (*i.e.*, for all inputs from a given domain).

Transition Graph Example

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

where δ is given by

$$\begin{aligned} \delta(q_0, 0) &= q_0 & \delta(q_0, 1) = q_1 \\ \delta(q_1, 0) &= q_0 & \delta(q_1, 1) = q_2 \\ \delta(q_2, 0) &= q_2 & \delta(q_2, 1) = q_1 \end{aligned}$$

State Transition Matrix

A Practical Application

- You are given the text of the novel *War and Peace* as a plain text file.
- Write a program to search the text for these names:
 - Boris Drubetskoy
 - Joseph Bazdeev
 - Makar Alexeevich
- For each name found, print the line number and the position within the line.
 - Line and position numbers start with 1

Mehr, 18th, 1395

Languages and DFAs

- Recall that an acceptor is an automaton that either accepts or rejects input strings.
- The set of all strings that the DFA
 M = (Q, Σ, δ, q₀, F)
 accepts constitutes the language

 $L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$

• The DFA represents the language's rules.

DFA and Associated Transition Graph

• If we have a DFA

$$M = (Q, \Sigma, \delta, q_0, F)$$

and its associated transition graph G_M , can we treat them both equally?

- Theorem 2.1 of the textbook basically says yes.
 - For every q_i , q_j in Q, and w in Σ^+ :
 - $\delta^*(q_i, w) = q_j$ if and only if there is a path labeled w in G_M from q_i to q_j .
 - Proof by induction on the length of *w*.

DFA Example #1

- Create a DFA that accepts all strings on {0, 1} that begin and end with the same symbol.
- How can an automaton remember what was the beginning symbol of a string?
- Have a different set of states depending on the first symbol!

DFA Example #1, *cont'd*

DFA Example #1, *cont'd*

DFA Example #2

- Create a DFA that accepts all strings on {0, 1} that do <u>not</u> contain the substring 001.
- The basic idea is that if the automaton ever reads 001, it should be in a non-final state.
 - Actually, that state should be a trap.
- How can the automaton remember the previous two symbols whenever it reads a 1?

DFA Example #2, *cont'd*

- Again, we must accomplish this with states:
 - A state for having read a 0.
 - A state for having read 00.
 - A state for having read 001.
- We can label the states accordingly.

Regular Languages

- A language *L* is called regular if and only if there exists a DFA *M* such that L = L(M).
- Therefore, to show that a language is regular, all we have to do is find a DFA for it.

Regular Language Example #1 $L = \{awa : w \in \{a, b\}^*\}$

• Is the language $L = \{awa \mid w \in \{a, b\}^*\}$ regular?

• It is if we can find a DFA for it.

After having read the leading *a*, we don't know if a subsequent *a* is the last symbol of the string. So we can actually leave the final state and later return to it.

Regular Language Example #2

• What about $L^2 = \{aw_1 a a w_2 a \mid w_1, w_2 \in \{a, b\}^*\}$?

and so L^2 is also regular.