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Chapter 1

Basic Electromagnetic
Concepts

”Everything should be made as simple as possible, but not sim-
pler.”

Albert Einstein

1.1 Introduction

Computation is the basic tools for getting results and analysis of our ordinary
problems. Computation techniques allow engineers to model complicated
objects which cannot be done analytically. In electrical engineering we will
face with many problems:
• Voltage breakdown of insulators,
• Radar cross section of missiles and aircraft vehicle,
• Resonance frequency of cavities and modes of waveguide ,
• Radiation pattern and input impedance of wire antenna,
• Mutual interaction of human body and electromagnetic radiators,
• Eddy current loss in electrical machinery,
• Electromagnetic interference in modern telecommunication,
• Target recognition,
• Design and evaluation of VLSI circuits in which electromagnetic fields can
corrupt signal transmission, etc.
Without using computer and mathematical tools we can not get reasonable
results for these problems. In this book we will attempt to introduce some

13
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basic techniques in electromagnetic; such as scattering of wave from metallic
and dielectric objects and confirm the results by classical method for known
shapes such as cylinder, sphere, disk, strip, and so on.

1.2 Review of Electromagnetic Fields

Many useful technologies such as radio, television, microwave oven are a con-
sequence of the pioneer work performed on electromagnetic fields during the
19th century. In 1867 Maxwell postulation unified, the comprehensive theory
of electromagnetics(EM). There are eight equations that completely describe
all electromagnetic phenomena. Four Maxwell’s equations in differential form
are :
1) Faraday’s Law and Maxwell’s first equation:

∇× E(r, t) = −∂B(r, t)

∂t
(1.1)

where E(r, t) and B(r, t) are the electric field intensity and magnetic flux
density are as a function of time and space in volts per meter and Webers
per square meter, respectively.
2) Ampere-Maxwell’s Law and Maxwell’s second equation:

∇×H(r, t) = Jg(r, t) + Jc(r, t) +
∂D(r, t)

∂t
(1.2)

where H(r, t) and D(r, t) are the magnetic field intensity and the electric flux
density as a function of time in Ampere per meter and Coulombs per square
meter respectively. Jg(r, t) and Jc(r, t) are the electric current density due to
source generator and electric current density due to conductivity of medium
are as a function of time and space in Ampere per square meter for both.
3) Gauss’s Law (electric):

∇·D(r, t) = ρ(r, t) (1.3)

where ρ(r, t) is the electric charge density as a function of time and space in
Coulombs per cubic meter.
4) Gauss’s Law (magnetic):

∇·B(r, t) = 0 (1.4)
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and four Maxwell’s equations in integral form are:
1)Faraday’s law: ∮

c

E(r, t) · dL = − ∂

∂t

∫
s

B(r, t)·dS (1.5)

2)Ampere-Maxwell’s Law:∮
c

H(r, t)·dL =

∫
s

Jv(r, t)·dS+
∂

∂t

∫
s

D(r, t)·dS (1.6)

where Jv(r, t) is the total electric current density.
3) Gauss’s Law (electric):∮

s

D(r, t) · dS =

∫
v

ρ(r, t)dV (1.7)

4) Gauss’s Law (magnetic): ∮
s

B(r, t) · dS = 0 (1.8)

The Jv(r, t) and ρv(r, t) are related to each other by continuity equation:

∇ · Jv(r, t) = −∂ρv(r, t)
∂t

(1.9)

where ρv(r, t) is the electric charge density in Coulombs per cubic meter.
This means that the net outflow of current from any volume is a measure of
the time rate of decrease of electric charge inside the volume. Eq.(1.9) is also
called Conservation of electric charge. Eq.(1.9) has an equivalent integral
form: ∮

s

Jv(r, t) · dS = −
∫
v

∂ρv(r, t)

∂t
dV (1.10)

The last one is Lorentz force equation:

F(r, t) = qv(r, t)E(r, t) + qv(r, t)U×B(r, t) (1.11)

qv(r, t) : total electric charge in Coulombs.
F(r, t) : Force on charge qv(r, t) due to electric and magnetic field in Newtons.
U: velocity of charge qv(r, t) in meter per second.
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1.2.1 Magnetic charge

A magnetic monopole is the smallest element of magnetic charge. Although,
this has not been discovered yet. The concept of magnetic charge is very
useful in electromagnetic theory.
Defining the macroscopic magnetic charge density ρm(r, t) and the magnetic
current density Jm(r, t) exactly as we defined with electric charge, we define
the conservation of magnetic charge to provide a continuity equation.

∇ · Jm(r, t) = −∂ρm(r, t)
∂t

(1.12)

1.2.2 Charge Conservation

The law of conservation of charge is that
The net charge in any closed system remains constant with time.

1.3 Time Harmonic Electromagnetic Fields

In the previous sections Maxwell’s equations in differential or integral form
were presented in time domain. Now let us assume that the sources J and
ρ and the resultant electromagnetic field vary sinusoidally with time. If the
angular frequency being ω then any sinusoidal time varying quantities can
be represented by:

A(t) = Re[A(ω)ejωt] (1.13)

where A(ω) is a complex quantity independent of time, and Re[..] denotes
the real part of quantity inside the bracket. In more mathematical language,
one can say that A(ω) is the Fourier Transform of A(t). The time deriva-
tive of a time domain function can be replaced by jω in frequency domain.
In electromagnetics one can write all the time domain fields in frequency
domain.

E(r, t) = Re[E(r, ω)ejωt] (1.14)

H(r, t) = Re[H(r, ω)ejωt] (1.15)

D(r, t) = Re[D(r, ω)ejωt] (1.16)



1.4. CONSTITUTIVE RELATIONS 17

B(r, t) = Re[B(r, ω)ejωt] (1.17)

J(r, t) = Re[J(r, ω)ejωt] (1.18)

ρ(r, t) = Re[ρ(r, ω)ejωt] (1.19)

If we substitute the Eq.(1.14)-Eq.(1.19) in the Maxwell’s time domain equa-
tions, we will have Maxwell’s equations in frequency domain. Thus

∇×H = Jg + Jc + jωD (1.20)

∇×E = −jωB (1.21)

1.4 Constitutive Relations

Those relations that describe the properties of medium, is called Constitutive
relation. The constitutive relations in Electromagnetics can be written as:

D = F1(E,H) (1.22)

B = F2(E,H)

where F1 and F2 are two different functions that depend on the medium and
can be classified as:

• Linearity: if we apply E1,H1 in a medium and get D1,B1 and apply
E2,H2 and get D2,B2. Now if we apply E = α1E1 + α2E2,H =
β1H1 + β2H2 and get D = α1D1 + α2D2,B = β1B1 + β2B2, then the
medium is called linear. Otherwise it is called nonlinear medium.

• Homogeneity: if the functional F1 and F2 depend on the space coor-
dinates then the medium is called inhomogeneous, otherwise it is called
homogeneous.

• Metamaterials: Metamaterials are artificial materials engineered to
provide properties which ”may not be readily available in nature”.
These materials usually gain their properties from structure rather than
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composition, using the inclusion of small inhomogeneities to enact ef-
fective macroscopic behavior.[68], [69]
The primary research in metamaterials investigates materials with neg-
ative refractive index. Negative refractive index materials appear to
permit the creation of ’superlenses’ which can have a spatial resolu-
tion below that of the wavelength, and a form of ’invisibility’ has been
demonstrated at least over a narrow wave band.

• Stationary: if the functional F1 and F2 depend on time then the
medium is called time dependent otherwise is called time invariant or
stationary. Time Dispersion is common for most time dependent me-
dia. As an example, the permittivity of water drops from 80ε0 to ap-
proximately 1.8ε0 as frequency increase from static to optical ranges.

• Dispersion
From discovery of the phenomenon of electricity, man recognized two
types of material: Conductors and Insulator. The metals were iden-
tified as good conductors and many like wood, insulators. Soon they
found that by inserting insulator into a capacitor, the capacity will in-
crease. They put different insulators and got different results. As we
know today, they defined Polarization, the electric moment of a system
of charges P, and it may or may not be proportional to applied E. In
linear dielectric it is obvious that it is proportional, χε0, and χ depends
on electronic, ionic and orientational dipole moment of dielectric ma-
terial. Then they defined εr = 1 + χ as dielectric constant or relative
permittivity. Does this new born εr depend on the frequency of applied
field? the answer is yes. Different persons found different formulas for
different range of frequencies. We will discuss about this matter in the
following chapter.

• Isotropic Media: suppose we have a medium with simple constitutive
relations

D(r, t) = εE(r, t) (1.23)

where ε is the permittivity of the medium in Farads per meter.

B(r, t) = μH(r, t) (1.24)
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where μ is the permeability of the medium in Henrys per meter.
In this case E is parallel to D and H is parallel to B then the medium
is called isotropic. In some media the constitutive relation are in tensor
form:

D = ε · E
B = μ ·H

where ε and μ is permittivity and permeability tensors, respectively.
This medium is called electrically or magnetically anisotropic. A medium
can be both electrically and magnetically anisotropic. In particular
case, such as crystals, which may be described by choosing suitable
coordinate system, permittivity tensor looks like:

ε =

⎡⎢⎢⎢⎢⎣
εx 0 0

0 εy 0

0 0 εz

⎤⎥⎥⎥⎥⎦ (1.25)

If the medium is dispersive, the relation between D(r, t) , E(r, t) and
ε(t) will be:

D(r, t) =

∫ t

−∞
ε(t− τ) · E(r, τ)dτ (1.26)

similarly:

B(r, t) =

∫ t

−∞
μ(t− τ) ·H(r, τ)dτ (1.27)

for cubic crystals, εx = εy = εz,which are isotropic. In tetragonal,
hexagonal, and rhombohedral crystals, two of the parameters are equal.
Such crystals are uniaxial. In orthorhombic, monoclinic, and triclinic
crystals εx �= εy �= εz and the medium is biaxial [24].

• Bi-anisotropic Media: For isotropic or anisotropic media, the consti-
tutive relations relate the two electric and two magnetic field vectors by
either a scalar or a tensor. Such media become polarized when placed
in an electric field and become magnetized when placed in magnetic
field. A bi-anisotropic medium provides cross coupling between elec-
tric and magnetic fields and becomes both polarized and magnetized.
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In general bi-anisotropic media can be described as:

D = ε · E+ ξ ·H
B = ζ · E+ μ ·H

If the four tensors ε, ξ, ζ and μ become scalars, the medium is called
bi-isotropic or chiral.

• Chiral Media: The word chiral comes from the Greek word chiro
meaning hand and chirality refers to handedness, in other words, the
asymmetry property of an object. It is a purely geometric notion, which
refers to the lack of bilateral symmetry between an object and its mirror
image. A chiral object is, by definition, a body that cannot be mapped
on its mirror image by translation or rotation. One of the aspects
characterizing chiral media is the phenomenon of optical activity. A
material, which rotates the plane of polarization of incident linearly
polarized light is said to be optically active. Some substances rotate the
polarization of electric field clockwise, some rotate it counterclockwise.
An object that is not chiral is said to be achiral. Chiral medium is a
subclass of materials known as bi-isotropic materials.

We assume that the medium is: linear, isotropic, time invariant and homoge-
neous. Otherwise we mention the condition of the medium. When the above
conditions hold, the Eq.(1.1) through Eq.(1.4) become

∇× E(r, t) = −μ∂H(r, t)

∂t
(1.28)

∇×H(r, t) = Jg(r, t) + σE(r, t) + ε
∂E(r, t)

∂t
(1.29)

∇·E(r, t) = ρ(r, t)

ε
(1.30)

∇·H(r, t) = 0 (1.31)

Jc(r, t) = σE(r, t) (1.32)

where σ is the conductivity of the medium in Siemens per meter.
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1.5 Scalar and Vector Potentials

For boundary value problem in EM, as aids in obtaining electric (E) and
magnetic (H) fields, we usually define vector electric potential F, magnetic
vector potentialA, electric scalar potential φ or V and finally magnetic scalar
potential φm. Since ∇ · ∇ ×C = 0 and ∇ ·B = 0 we can define:

B = ∇×A

but there are many vectors like A that has curls equal to vector B. Which
one should we select? We will find special value for it !

The first Maxwell’s equation become:

∇×E(r, t) +
∂

∂t
∇×A(r, t) = 0 (1.33)

since ∇×∇φ(r, t) = 0 therefore:

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
(1.34)

H(r, t) =
1

μ
∇×A(r, t) (1.35)

we know that

∇×∇×A = ∇(∇ ·A)−∇2A = ∇×B = μ∇×H

and

∇(∇ ·A)−∇2A = μJ+ με
∂E

∂t

by using Eq.(1.34) in above equation

∇×∇×A = ∇(∇ ·A)−∇2A = μJ− με∇∂φ

∂t
− με

∂2A

∂t2
(1.36)

If we choose

∇ ·A(r, t) + με
∂φ(r, t)

∂t
= 0 (1.37)

so that it satisfies the above condition and it is called Lorentz Condition, we
will have

∇2A(r, t)− με
∂2A(r, t)

∂t2
= −μJ(r, t) (1.38)
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and also we can reach

∇2φ(r, t)− με
∂2φ(r, t)

∂t2
= −ρ(r, t)

ε
(1.39)

It is possible to combine the above scalar and vector potentials and the
Lorentz condition and form a single vector called Hertz Vector, from which
electric and magnetic field can be calculated:

A(r, t) = με
∂Π(r, t)

∂t
, and φ(r, t) = −∇ ·Π(r, t) (1.40)

We combine J and ρ consistent with the continuity equation by using elec-
trical polarization vector P(r, t), and it is equal to the dipole moment per
unit volume of exciting source.

J(r, t) =
∂P(r, t)

∂t
, and ρ(r, t) = −∇ ·P(r, t) (1.41)

therefore

∇2Π(r, t)− με
∂2Π(r, t)

∂t2
= −P(r, t)

ε
(1.42)

from which we will have

E = ∇(∇ ·Π(r, t))− με
∂2Π(r, t)

∂t2
= ∇×∇×Π(r, t)− P(r, t)

ε
(1.43)

and

H = ε∇× ∂Π(r, t)

∂t
(1.44)

by the same procedure we can find formula for F and φm.

1.5.1 Time Harmonic Scalar and Vector Potentials

In the theory of electromagnetic radiation, it is not convenient to work with
the electric and magnetic fields directly, except for simple plane waves. It is
more convenient to use the ”scalar

potentials” and ”vector potentials.” In homogeneous region the two curl
equation

∇× E = −M− jωμH (1.45)

∇×H = J+ jωεE (1.46)
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provide six scalar equations to be solved in order to find electric and magnetic
fields. The divergence equations for the fields ∇·E = ρ

ε
and ∇·H = ρm

μ
must

be simultaneously satisfied while also the constitutive relations D = εE and
B = μH hold. For the purpose of avoiding the solution of such a large set
of equations, it is generally useful to introduce some potential functions in
terms of which the electromagnetic fields can be expressed. In EM theory,
we have two vector potential A and F which are related to scalar potential
φe and φm by Lorentz condition or”gauge”:

∇ ·A = −jωμεφe (1.47)

∇ · F = −jωμεφm (1.48)

where
A=magnetic vector potential in Webers per meter
F=electric vector potential in Coloumbs per meter
φm=magnetic scalar potential in Amperes
φe=electric scalar potential in Volts
M=ficticious magnetic current density in [V/m2]
ρm=ficticious magnetic charge density in [weber/m3]
and we define electric and magnetic vector as

HA =
1

μ
∇×A (1.49)

EF = −1

ε
∇× F (1.50)

and correspond electric and magnetic fields

EA = −∇φe − jωA = −jωA− j
1

ωμε
∇(∇ ·A) (1.51)

HF = −∇φm − jωF = −jωF− j
1

ωμε
∇(∇ · F) (1.52)

1.6 Scalar and Vector Wave Equations

For some classes of electromagnetic problems related to the scattering, Maxwell’s
equations assume a symmetric form. Consider a linear, time invariant, ho-
mogenous and isotropic medium without any external sources, Maxwell’s
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equations in frequency domain are:

∇× E = −jωμH
∇×H = jωεE
∇ · E = 0
∇ ·H = 0

(1.53)

where μ or / and ε may be complex. From these equations, we can reach two
vector wave equations:

∇×∇× E− ω2μεE = 0
∇×∇×H− ω2μεH = 0

(1.54)

These equations are totally symmetrical and decoupled in the field variables.
It is the solution to vector wave equations for specified boundary and ra-
diation conditions that describes the scattering of electromagnetic waves.
However, these equations are sufficiently difficult to solve in general.
In most classical problem, we have the solution of scalar the Helmholtz equa-
tion:

∇2ψ + k2ψ = 0 (1.55)

where k2 = ω2με. In certain curvilinear coordinate systems, such as Carte-
sian, spherical, cylindrical coordinate system, ψ can be obtained by the tech-
nique of separation of variables. The separation procedure reduces the partial
differential equation to several ordinary differential equations. The separated
equations can often be cast in the form of the well known Sturm-Liouville
equations, so that the solution space is guaranteed to be complete for scalar
Helmholtz equation:
Let us introduce general form of vector wave equation

∇(∇ ·C)−∇×∇×C+ k2C = 0 (1.56)

The differential equation is satisfied by the electric and magnetic fields that
satisfies the vector wave equations since the term ∇·C will be zero for fields
that have zero divergence. We define a vector function that is obtained by
taking the gradient of the scalar function ψ, [67],

L = ∇ψ (1.57)
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L satisfies the vector wave equation Eq.(1.56) if ψ is a solution to scalar wave
equation Eq.(1.55):

I = ∇(∇ · L)−∇×∇× L+ k2L (1.58)

= ∇(∇ · ∇ψ)−∇×∇×∇ψ + k2∇ψ
= ∇(∇2ψ + k2ψ) (since∇×∇ψ = 0)

= 0 (since∇2ψ + k2ψ = 0).

Now we define a vector M = ∇ × aψ, where ψ is the given scalar solution
and a is an arbitrary constant vector. The divergence condition is satisfied,
since divergence of curl is identically zero: ∇ ·M = ∇ · (∇× aψ) = 0. There
are six orthogonal curvilinear coordinate systems that have been verified this
identity ∇(∇ ·M)−∇×∇×M = ∇2M, [11]. The reader can prove it for
Cartesian, cylindrical and spherical coordinate systems.
We can write:

I = ∇(∇ ·M)−∇×∇×M+ k2M (1.59)

= ∇2M+ k2M

= ∇2(∇× aψ) + k2(∇× aψ)

= ∇2[∇ψ × a+ ψ(∇× a)] + k2[∇ψ × a+ ψ(∇× a)]

= ∇2(∇ψ × a) + k2(∇ψ × a) (since∇× a = 0)

= (∇2(∇ψ) + k2∇ψ)× a (since∇2does not act on a)

= [∇(∇2ψ) + k2ψ]× a = 0 (since ψ satisfies Eq.(1.55)).

Also, M = ∇× aψ = ∇ψ × a = L× a. So, M · L = 0, i.e. L and M are
orthogonal.
Now let us define another vector as N = 1

k
∇×M. which has zero divergence,

∇·M = 0, that is a solution to the vector wave equation,Eq.(1.56). Assuming
k is a constant (homogenous medium), we obtain:

I = ∇(∇ ·N)−∇×∇×N+ k2N (1.60)

=
1

k
[∇(∇ · ∇ ×M)−∇×∇×∇×M+ k2∇×M]

= ∇× [−∇× (∇×M) + k2M] [since∇ · (∇×M) = 0]

= ∇× [∇(∇ ·M)−∇× (∇×M) + k2M] (since∇ ·M = 0)

= 0 (since M satisfies Eq.(1.56)).
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Thus, we show that N also satisfies the vector wave equation. Also ∇·N = 0,
since divergence of curl is zero.
Since N = 1

k
∇×M,

∇×N =
1

k
∇×∇×M

Therefore

∇×N =
1

k
k2M

Thus M = 1
k
∇×N. Clearly, M and N are distinct from L, since the latter

has nonzero divergence in general. So L must be linearly independent of
{M,N}.
We have proved that L and M are orthogonal. Thus given a countably
infinite set of particular solutions to Eq.(1.55), {ψn}, that are finite, con-
tinuous, single valued, and with continuous partial derivatives; associated
with each ψn one can obtain a triple of mutually noncoplanar vector solution
{Ln,Mn,Nn}, satisfying Eq.(1.56). Presumably, any arbitrary solution of
vector wave equation can be express as a linear combination of these vector
functions, [67].
Consider a solution F whose divergence is zero. let us find an expansion of
F in terms of the basis {Ln,Mn,Nn}, so that

F =
∑
n

{anMn + bnNn + cnLn} (1.61)

Taking the divergence of both sides of the above equation, we find

∇ · F =
∑
n

{an∇ ·Mn + bn∇ ·Nn + cn∇ · Ln} (1.62)

or
0 =

∑
n

{cn∇ · Ln}. (1.63)

Since this must hold true at all points, we conclude that all the cn’s must
be zero. In other words, a zero divergence solution, {like E and H}, can be
expressed only in terms of M and N functions.
Now let us find the vector wave equation in inhomogeneous media, μ = μ0

and ε(x, y, z). Therefore

∇×∇× E = −μ0
∂

∂t
(∇×H) = ∇(∇ · E)−∇2E (1.64)
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or

∇×∇× E− μ0ε
∂2E

∂t2
= 0 (1.65)

or in another form

∇2E− μ0ε
∂2E

∂t2
= ∇(∇ ·E) (1.66)

Let us now investigate the right hand side of Eq.(1.66) and find the term
∇ · E. From Gauss’s law

∇ ·D = ∇ · (εE) = 0
∇ ·D = ε∇ ·E+ E · ∇ε = 0

(1.67)

From Eq.(1.67) we can find the∇·E = −E·∇ε
ε
, and substituting in Eq.(1.66),

we have

∇2E− μ0ε
∂2E

∂t2
= −E · ∇ε

ε
(1.68)

and the vector wave equation for H will be

∇×∇×H+ μ0ε
∂2H

∂t2
=

∇ε
ε

×∇×H (1.69)

since ∇ ·H = 0,

∇2H− μ0ε
∂2H

∂t2
= −∇ε

ε
×∇×H (1.70)

For step-index waveguide we assume that the refractive index of the core is
slightly higher than refractive index of clad, so we use ∇ε = 0

1.7 Electromagnetic Boundary Conditions

In an electromagnetic problem, we usually faced with interaction of fields
and matter. For example, in order to find fields inside a dielectric objects
like human head or scattering of field by an metallic sphere, we should know
the condition governing the electric or magnetic fields at the boundary of
two different media.

1.7.1 Finite Conductivity Media

In the media with finite conductivities, we assume that there is no electric
charges or sources along the boundary and σ1 �= 0, σ2 �= 0. Figure [1.1] shows
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Figure 1.1: Tangential boundary conditions

the interface of two different media with electrical parameters μ1, ε1, σ1 and
μ2, ε2, σ2.

n12 × (E2 −E1) = 0 ⇒ E2t = E1t (1.71)

n12 : unit vector normal to boundary directed from medium 1 to medium 2.

n12 × (H2 −H1) = 0 ⇒ H2t = H1t (1.72)

Both Eq.(1.71) and Eq.(1.72) state that: the tangential components of electric
and magnetic field intensity across an interface of two media are continuous.

n12 · (D2 −D1) = 0 ⇒ D2n = D1n (1.73)

n12 · (B2 −B1) = 0 ⇒ B2n = B1n (1.74)

Both Eq.(1.73) and Eq.(1.74) state that: the normal components of electric
and magnetic flux density across an interface of two media are continuous,
Fig.(1.2).

1.7.2 Infinite Conductivity Media

If one of the media has infinite conductivity, σ1 = ∞ or σ2 = ∞, there must
be electric surface charge density ρs (source or induced) or electric surface
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Figure 1.2: Normal boundary conditions

current density Js (source or induced) across the boundary. Let us assume
that σ1 = ∞ therefore, E1 = 0 and

n12 ×E2 = 0 ⇒ E2t = 0 (1.75)

Eq.(1.75) states that: the tangential component of the electric field on perfect
conductors vanishes. According to above assumption and Maxwell’s first
equation, H1 = 0, [why ...?], therefore the surface electric current density Js
and ρs will be induced on the surface of the conductor.

where Js is electric surface current density in Ampers per meter and ρs
is electric surface charge density in Coulombs per square meter.
The boundary condition for tangential component on the magnetic field is

n12 ×H2 = Js ⇒ H2t = Js (1.76)

This states that the tangential component of magnetic field intensity across
the boundary of a perfect conductor is equal to the surface electric current
density on that conductor, The boundary condition for normal component of
the electric flux density is:

n12 ·D2 = ρs ⇒ D2n = ρs (1.77)

This states that the normal component of electric flux density across the
boundary of a perfect conductor is equal to the surface charge density. At
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last, the boundary condition for normal component of magnetic flux density
is:

n12 ·B2 = 0 ⇒ B2n = 0 (1.78)

This states that the normal component of magnetic flux density across a
perfect electric conductor vanishes.
The above boundary conditions are appropriate for stationary boundary.
When the boundary surface are moving, the partial derivative with respect
to time can be written as:

d

dt

∫
dVA =

∫
dV

∂A

∂t
+

∮
(dS ·U)A (1.79)

where U is the velocity of the boundary [24]. Therefore the new boundary
will be:

n12 × (E2 − E1)− (n12 ·U)(B2 −B1) = 0 (1.80)

n12 × (H2 −H1) + (n12 ·U)(D2 −D1) = Js (1.81)

n12 · (B2 −B1) = 0 (1.82)

n12 · (D2 −D1) = ρs (1.83)

We can also write the boundary conditions in a new form:

n1 ×H1 + n2 ×H2 = Js (1.84)

n1 × E1 + n2 × E2 = Ms

n1 ·D1 + n2 ·D2 = ρs

n1 ·B1 + n2 ·B2 = ρms

1.7.3 Boundary conditions for scalar and vector po-

tentials

In case of scalar electric potential we can write

ε2
∂V2
∂n

− ε1
∂V1
∂n

= ρs n = n12 (1.85)
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Figure 1.3: Boundary conditions

The continuity of the scalar potential across the material interface as:

V2 = V1 (1.86)

where ∂V
∂n

= ∇V · n. If at some boundaries V = 0 it is called Dirichlet’s
Condition and if ∂V

∂n
= 0 it is called Neumann’s Condition.

For vector magnetic potential we will have:

μ2
∂A2

∂n
− μ1

∂A1

∂n
= Js (1.87)

n12 × (A2 −A1) = 0 (1.88)

1.7.4 Leontovich Impedance Boundary Conditions

It worth to give some remarks about boundary conditions in time harmonic
case. For good conductors σ

ωε
>> 1, therefore the wave can penetrate into

the conductor at maximum depth of 5δ, where δ is the skin depth of good
conductors. If the radius of curvature of the surface is much greater than the
skin depth δ, the approximate boundary condition holds and is called Leon-
tovich Impedance boundary condition. If medium 1 is a very good conductor
with surface impedance Zs(Ohms) given approximately by:

Zs = Rs + jXs = (1 + j)

√
ωμ

2σ
(1.89)
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then we will have

Js = n12 ×H2

Et2 = ZsJs = Zsn12 ×H2 (1.90)

1.7.5 PEMC Boundary Conditions

Perfect electric conductor (PEC) and perfect magnetic conductor (PMC) are
basic concepts in electromagnetics. Lindell has recently introduced perfect
electromagnetic conductor (PEMC) as generalization of the perfect electric
conductor (PEC) and perfect magnetic conductor (PMC) [56]-[59]. It is well
known that PEC boundary may be defined by the conditions:

n× E = 0

n ·B = 0 (1.91)

While PMC boundary may be defined by the boundary conditions

n×H = 0

n ·D = 0 (1.92)

The PEMC boundary conditions are of the more general form

n× (H+ME) = 0

n · (D−MB) = 0 (1.93)

where M denotes the admittance of the PEMC boundary. It is obvious that
PMC corresponds to M = 0, while PEC corresponds to M = ∞. It may be
noted that PEMC boundary is non-reciprocal. Non-reciprocity of the PEMC
boundary can be demonstrated by showing that the polarization of the plane
wave reflected from PEMC surface is rotated. Possibilities for the realization
of a PEMC boundary have also been studied [56].

1.8 Power and Energy

The concept of electromagnetic energy has important physical interpreta-
tions and applications. Many problems can often be simplified if an energy
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viewpoint is adopted. The energy conservation of the Electromagnetic fields
can be formulated as:∮

s

Ẽ× H̃ · dS+

∫
v

[H̃ · ∂B̃
∂t

+ Ẽ · ∂D̃
∂t

+ σẼ · Ẽ+ Ẽ · J̃g]dV = 0 (1.94)

or simply∮
s

Ẽ× H̃ · dS+

∫
v

[μH̃ · ∂H̃
∂t

+ εẼ · ∂Ẽ
∂t

+ σẼ · Ẽ+ Ẽ · J̃g]dV = 0 (1.95)

where the sign˜denotes the functionality of r and t, i.e. C̃ = C(r, t). The
average complex power exiting from a surface;

Pe =
1

2

∫
(E×H∗) · ds (1.96)

where (E and H represent peak values), The dissipated power inside the
closed surface is given by

Pd =
1

2

∫
σ|E|2dv (1.97)

The time average magnetic field stored energy inside the closed surface is
given by

Wm =
1

4

∫
μ|H|2dv (1.98)

The time average electric field stored energy inside the closed surface is given
by

We =
1

4

∫
ε|E|2dv (1.99)

1.9 Classification of EM Problems

To determine the best solution method for a given EM problem it is useful
to classify a it according to certain criteria. Typically we classify problems
according to
1) the solution region of interest
2) the nature of the equation of the problem, and
3) the associated boundary conditions
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1.9.1 Solution Region

The solution region for EM problems is either an interior problem, an exte-
rior problem or a combination of them. Interior Problems consist of regions
that are confined by walls with distinct boundary conditions, i.e., a perfect
conductor which imposes a boundary condition that the tangential electric
field must be zero. Mathematically these problems have discrete set of eigen-
values and a discrete spectrum of wavelengths. Examples of interior problems
are waveguides, transmission line problems, and the microwave oven. Open
problems consist of the regions where the fields can extend to infinity. Mathe-
matically these problems have continuous set of eigenvalues and a continuous
spectrum of wavelengths. Examples of open problems are radiation and scat-
tering problems.
Hybrid problems are those that have both an interior region and an open
region. Mathematically these problems have both a discrete set of eigenval-
ues and a continuous spectrum. Examples of hybrid problems are dielectric
waveguide problems and aperture radiation problems.

1.9.2 Classification of Differential Equations

Electromagnetic problems are classified in terms of the equations describing
them. The equations can be differential, integral or integro-differential. Here
we will look at the differential form.
All deterministic partial differential equations (PDE) can be described by
the operator equation

L(f) = g (1.100)

where,L is a differential operator, g is a known excitation or source and f is
the unknown function to be determined. The type of problem is determined
by the differential operator L. In general L can have the following form:

L = a
∂2

∂x2
+ b

∂2

∂x∂y
+ c

∂2

∂y2
+ d

∂

∂x
+ e

∂

∂y
+ f (1.101)

The linear second-order PDE can be classified as elliptic, hyperbolic, or
parabolic depending on the coefficients a, b, and c :

elliptic if: b2 − 4ac < 0

hyperbolic if: b2 − 4ac > 0

parabolic if: b2 − 4ac = 0 (1.102)
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These terms elliptic, hyperbolic, and parabolic are derived from the fact that
the quadratic equation:

ax2 + bxy + cy2 + dx+ ey + f = 0 (1.103)

represents an ellipse, hyperbola, or parabola if the coefficients take on the
form of Eq.(1.103). In each of these categories the PDE can be used to
model certain physical phenomena, which are not necessarily limited to elec-
tromagnetics. In fact they can include phenomena such as heat transfer,
boundary-layer flow, fluid dynamics, vibrations, elasticity, acoustics, and fi-
nancial analysis. Examples of the different types of PDEs are:
Elliptic PDE’s

Laplace’s Equation ∇2V = 0

Poisson’s Equation ∇2V = −ρ
ε

Magnetic Laplace’s Equation ∇2A = 0

Magnetic Poisson’s Equation ∇2A = −μJ
Parabolic PDE’s
Diffusion equation ∇2J = μσ ∂J

∂t
like skin effect on a metallic cylinder; If

σ
ωε
>> 1

Hyperbolic PDE’s

Wave Equation ∇2A− με
∂2A

∂t2
= −μJ

1.9.3 Eigenvalue Problems

Problems that take the form of

L(f) = λf (1.104)

are referred to eigenvalue problems. For these types of problems only par-
ticular values of λ, called eigenvalues, are permissible. For each permissible
eigenvalue there is an associated solution called an eigenfunction f . Eigen-
value problems are usually encountered in interior problems such as waveg-
uide and cavity problems.
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1.9.4 Classification of Boundary Conditions

In order to obtain a unique solution to an EM problem we must apply certain
conditions to the boundary of the problem. The boundary condition on
surface s can be classified to the following forms:
1) Dirichlet boundary conditions: ψ(r) = p(r) for r on s
2) Neumann boundary conditions: ∂ψ

∂n
= q(r) for r on s

3) Mixed Boundary Conditions: ψ(r) + ∂ψ
∂n

= w(r) for r on s
If p(r), q(r), or w(r) are equal to zero, the boundary conditions are said to be
homogeneous otherwise it is called nonhomogeneous boundary conditions.

1.10 Electromagnetic Theorem

In electromagnetics there are some useful and important theorems. Some-
times a complicated electromagnetic problem can be recast into a more simple
problem, or a sequence of more simple problems by using various principles or
theorems. Some of the more common theorems are: superposition, unique-
ness, and equivalence.

1.10.1 Superposition Principle

The principle of superposition is derived from the linearity of Maxwell’s equa-
tions. That is to say if given an operator equations as shown in Eq.(1.100)
is linear, then there is an alternate solution for it.

L(a1f1 + a2f2 + · · · ) = g

a1L(f1) + a2L(f2) + · · · = g

f =

N∑
n=1

anfn

1.10.2 Uniqueness Theorem

A solution is unique when it is the only one possible solution among a given
class of solutions. Importance of the uniqueness theorem:

• Tells us what information is needed to obtain the solution.
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• Establish conditions for one to one correspondence of a field to its
sources which allows us to calculate field from sources or sources from
fields.

• Comforting to know that a solution is the only solution.

Suppose sources Ji, Mi radiating in a lossy material medium with complex
electrical parameters:

ε = ε′ − jε′′

μ = μ′ − jμ′′

The electric and magnetic fields radiated by Ji, Mi satisfy:

−∇× E = jωμH+Mi; ∇×H = jωεE+ Ji (1.105)

Assume two solutions {Ea,Ha}; {Eb,Hb} exists that both satisfies Maxwell’s
equations Eq.(1.105) and boundary conditions.

−∇×Ea = jωμHa +Mi; ∇×Ha = jωεEa + Ji (1.106)

−∇× Eb = jωμHb +Mi; ∇×Hb = jωεEb + Ji (1.107)

Subtracting Eq.(1.107) from Eq.(1.106):

−∇× δE = jωμδH; ∇× δH = jωεδE (1.108)

where δE = Ea −Eb, δH = Ha −Hb. If the solution is unique, then δE = 0
and δH = 0. From Eq.(1.108) we can derive the Poynting Theorem based
on the difference fields:∮

S

(δE× δH∗ + δE∗ × δH) · dS = −2ω

∫
V

[
ε′′|δE|2 + μ′′|δH|2] dv (1.109)

If the tangential field of E or H at the boundary be known, Using the prop-
erties of the triple scalar product, A ·B×C = B ·C×A = C ·A×B and
dS = ndS we can write:

δH∗ · [n× δE] = 0, δE∗ · [n× δH] = 0 (1.110)

therefore, the left side of Eq.(1.109) should be equal zero. Now, since ε′′ > 0
and μ′′ > 0, then we must have that |δE|2 = |δH|2 = 0 ⇒ δE = δH = 0.

It is noted that Eq.(1.110) is satisfied when:
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• a) n×E is uniquely specified over the entire surface S. Then,n×δE = 0
over S, and E and H are unique.

• b) n×H is uniquely specified over the entire surface S. then n×δH = 0
over S, and E and H are unique.

• c) When n × E is known over a part of S, and n × H is known over
the remaining part of S, then E and H are unique.

• d) Both n×E and n×H are uniquely specified over the entire surface
S, then E and H are unique.

Suppose sources of finite extent Ji, Mi are in V . We can uniquely specify E
and H in V knowing Ji, Mi and n× E over S, and n×H over S.

Figure 1.4: Implications of Uniqueness

1.10.3 Equivalence Theorem

For certain problems, i.e., combinations of interior or exterior problems, it
is often convenient to replace the one or the other with an equivalent source
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condition via the equivalence theorem. To see this, consider the homoge-
neous penetrable object with its permittivity and permeability ε2 and μ2

embedded in unbounded homogeneous space with its permittivity and per-
meability ε1 and μ1 as shown in Figure[??]. In this case, we have used the
superposition, or linearity, principle to decompose the total electric field,E;
into an incident component, Einc and Hinc, and a scattered component, Esca

and Hsca, which are both exterior to the penetrable object. In this figure, E
and H represent the total fields interior to the penetrable object. By using
the surface equivalence principle the original problem may be replaced by
a linear superposition of the exterior problem and the interior problem as
shown in Fig[??] and Fig[??] respectively, with J1 and M1, J2 and M2 as
the equivalent surface currents for each case.
In the case of exterior problem, the permittivity and permeability ε1 and μ1

are assumed both interior and exterior to the object. Similarly, in the case
of interior problem, the permittivity and permeability ε1 and μ1 are assumed
throughout the whole space. Thus one may apply the respect EM equations,
solve the problem and obtain the total solution from superposition .

1.10.4 Duality Theorem

Let us look once more to our frequently used formula given in Table(1.1). We
can obtain right hand side column formulas from the other side and vise versa,
by interchanging. The duality theorem help us to solve one typical problem
from solution of another one. This reduces formulation and computational
efforts.

1.10.5 Lorentz Reciprocity Theorem

Suppose E1 and H1 be the fields that is generated by distributed sources J1

and M1 inside a volume V surrounded by closed surface S. Also suppose
that E2 and H2 be the fields that is generated by distributed sources J2 and
M2 at that volume. It is better to assume that the media is isotropic with
μ and ε, (can be lossy, lossless, inhomogeneous). Therefore;

−∇× E1 = jωμH1 +M1 (1.111)

∇×H1 = jωεE1 + J1 (1.112)
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Table 1.1: Duality Equations for J and M Sources
Electric Sources (J �= 0,M = 0 ) Magnetic Sources (J = 0,M �= 0)

∇× EA = −jωμHA ∇×HF = jωεEF

∇×HA = J+ jωεEA −∇×EF = M+ jωμHF

∇2A+ k2A = −μJ ∇2F+ k2F = −εM

A = μ
4π

∫
V
J e

−jkR

R
dv′ F = ε

4π

∫
V
Me−jkR

R
dv′

HA = 1
μ
∇×A EF = −1

ε
∇× F

EA = −jωA− j 1
ωμε

∇(∇ ·A) HF = −jωF− j 1
ωμε

∇(∇ · F)

and
−∇× E2 = jωμH2 +M2 (1.113)

∇×H2 = jωεE2 + J2 (1.114)

From Eq.(1.112) and Eq.(1.113):

E2 · ∇ ×H1 = E2 · jωεE1 + E2 · J1 (1.115)

−H1 · ∇ ×E2 = H1 · jωμH2 +H1 ·M2 (1.116)

Next, add Eq.(1.115) and Eq.(1.116) and apply the vector identity:

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B (1.117)

leading to:

∇ · (E1 ×H2 −E2 ×H1) = E2 · J1 −E1 · J2 +H1 ·M2 −H2 ·M1 (1.118)

which is Lorentz Reciprocity Theorem in differential form. Introduce a volume
V bound by S that encloses the sources. We can integrate Eq.(1.118) over
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Table 1.2: Duality of the J and M Sources
(J �= 0,M = 0 ) (J = 0,M �= 0)

EA ⇔ HF

HA ⇔ −EF

J ⇔ M

A ⇔ F

ε ⇔ μ

μ ⇔ ε

V. Applying the divergence theorem, leads to:∮
S

(E1 ×H2 −E2 ×H1)·dS =

∫
(E2 · J1 − E1 · J2 +H1 ·M2 −H2 ·M1)dV

(1.119)
At this point we may deduce that

• at any point without source

∇ · (E1 ×H2 −E2 ×H1) = 0

or source free volume V∮
S

(E1 ×H2 − E2 ×H1) · dS = 0 (1.120)

This form of the reciprocity theorem states that given any closed surface
S that bounds no sources, than any fields radiated by independent sources
must satisfy Eq.(1.120).
Now let us look once more to Eq.(1.119). If the sources are of finite extent,
then as S → ∞, the waves radiated by the sources can be assumed to be
plane waves. Namely:

lim
r→∞

E ≈ Eθaθ + Eφaφ



42 CHAPTER 1. BASIC ELECTROMAGNETIC CONCEPTS

Figure 1.5: Lorentz Reciprocity Theorem

lim
r→∞

H ≈ k×E

η
= −Eφ

η
aθ +

Eθ
η
aφ

therefore,

E1 ×H2 − E2 ×H1 =
1

η

(
E1
θE

2
θ + E1

φE
2
φ − E2

θE
1
θ − E2

φE
1
φ

)
= 0

As a consequence of Eq.(1.120), Eq.(1.119) simply becomes:∫ ∫ ∫
[E2 · J1 − E1 · J2 +H1 ·M2 −H2 ·M1]dv = 0 (1.121)

where V now can represent all space. This is a useful form of the reciprocity
theorem that will be related to the reaction principal.

1.10.6 Reaction Theorem

It is emphasized that the reciprocity theorem does not represent power.
Rather, it represents the reaction between sources. We can define the re-
action of source 1 with source 2 as:

〈1, 2〉 =
∫
V

[E1 · J2 −H1 ·M2] dv (1.122)
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The reaction of source 2 with source 1 is:

〈2, 1〉 =
∫
V

[E2 · J1 −H2 ·M1] dv (1.123)

If the surrounding medium is reciprocal, then

〈1, 2〉 = 〈2, 1〉 (1.124)

1.11 Babinet’s Principle

Babinet’s principle states that the fields scattered by complementary surfaces
are also complementary. In particular, if the electric and magnetic fields scat-
tered by the conducting plate of figure (1.6-a), illuminated by Einc and Hinc,
are Edif and Hdif , respectively, then the fields diffracted by the complemen-

tary aperture of figure (1.6-b), illuminated by −√
μ
ε
Hc
inc and

√
ε
μ
Ec
inc, will

relate to their complementary as −√
μ
ε
Hc
dif = −Edifand

√
ε
μ
Ec
dif = −Hdif .

Figure 1.6: Babinet’s Principle
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1.12 Radiation and Scattering

Radiation and scattering belong to exterior problems. In this section we will
review some important points in radiation and scattering problems.

1.12.1 Radiation Condition

For an unbounded region it is necessary to specify the fields on a surface
at infinity. By assuming that all sources are contain in a finite region, only
out going waves must be present at large distance from the sources. In
other words, the field behavior at large distance from the sources must meet
the physical requirement that energy travel away from the sources region.
This requirement is the Sommerfeld Radiation Condition and constitutes a
boundary condition on the surface at infinity.
For 3D region the condition is:

lim
r→∞

r

(
∂A

∂r
+ jkA

)
= 0 (1.125)

and for 2D region

lim
ρ→∞

√
ρ

(
∂A

∂ρ
+ jkA

)
= 0 (1.126)

The above equations apply to non-dissipative media. When the media are
slightly lossy, one may use the simpler requirement that all fields exited by
sources in a finite region should vanish at infinity.

1.12.2 Edge Condition

In many cases, boundary and radiation conditions alone are not sufficient to
determine the unique solution. What we need is some additional informa-
tion concerning the behavior of the fields in the vicinity of edge. The Edge
Condition requires that the energy density must be integrable over any finite
domain even if this domain contains singularities of the electromagnetic field
or in another word, the electromagnetic energy in any finite domain must be
finite. [4],[5].
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1.12.3 Radiation of Distributed Sources

a) Near Field
Let us assume that a distributed source J(x′, y′, z′) = Jx(x

′, y′, z′)ax+Jy(x′, y′, z′)ay+
Jz(x

′, y′, z′)az exists. The magnetic filed at point x, y, z will be found:

Hx =
1

4π

∫ ∫ ∫
V

[(z − z′)Jy − (y − y′)Jz]
1 + jβR

R3
e−jβRdx′dy′dz′ (1.127)

Hy =
1

4π

∫ ∫ ∫
V

[(x− x′)Jz − (z − z′)Jx]
1 + jβR

R3
e−jβRdx′dy′dz′ (1.128)

Hz =
1

4π

∫ ∫ ∫
V

[(y − y′)Jx − (x− x′)Jy]
1 + jβR

R3
e−jβRdx′dy′dz′ (1.129)

and the electric field at point x, y, x will be:

Ex = − jη

4πβ

∫ ∫ ∫
{G1Jx + (x− x′)G2 ×

[(x− x′)Jx + (y − y′)Jy + (z − z′)Jz]}e−jβRdx′dy′dz′ (1.130)

Ey = − jη

4πβ

∫ ∫ ∫
{G1Jy + (y − y′)G2 ×

[(x− x′)Jx + (y − y′)Jy + (z − z′)Jz]}e−jβRdx′dy′dz′ (1.131)

Ez = − jη

4πβ

∫ ∫ ∫
{G1Jz + (z − z′)G2 ×

[(x− x′)Jx + (y − y′)Jy + (z − z′)Jz]}e−jβRdx′dy′dz′ (1.132)

where R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 and

G1 =
−1− jβR + β2R2

R3

G2 =
3 + j3βR− β2R2

R5
(1.133)
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In case of magnetic current M we can use duality theorem in order to find
E and H.
In 2D case, which we have J(x, y), the E and H will be:

H =
jk

4

∫ ∫
(ρ̂× J)H

(2)
1 (kρ)dx′dy′ (1.134)

where H
(2)
1 (kρ) is the first order Hankel function of second kind and the ρ̂ is

a unit vector directed along the line joining any point of the source and the
observation point. If we have Jz(x, y), the fields will be:

Hx =
jk

4

∫ ∫
(y − y′)Jz(x′, y′)

H
(2)
1 (kρ)

ρ
dx′dy′ (1.135)

Hy =
jk

4

∫ ∫
(x− x′)Jz(x′, y′)

H
(2)
1 (kρ)

ρ
dx′dy′ (1.136)

and the ρ =
√

(x− x′)2 + (y − y′)2. We know that E = 1
jωε

∇×H therefore:

Ez =
k

4ωε

∫ ∫ [
2
H

(2)
1 (kρ)

ρ
+ kρH ′(2)

1 (kρ)−H
(2)
1 (kρ)

]
Jz(x

′, y′)dx′dy′

(1.137)

We can write the same for magnetic current.

E =
−jk
4

∫ ∫
(ρ̂×M)H

(2)
1 (kρ)dx′dy′ (1.138)

Let assume that we have only Mx(x, y),My(x, y) component, therefore

Ez =
−jk
4

∫ ∫
[x− x′)My − (y − y′)Mx]H

(2)
1 (kρ)dx′dy′ (1.139)

and the corresponding magnetic field will be

Hx =
k

4ωμ

∫ ∫ [(
k(x− x′)(y − y′)H ′(2)

1 (kρ)

ρ2
− (x− x′)(y − y′)H(2)

1 (kρ)

ρ3

)
My

+

(
−k(y − y′)2H ′(2)

1 (kρ)

ρ2
+

(y − y′)2H(2)
1 (kρ)

ρ3
− H

(2)
1 (kρ)

ρ

)
Mx

]
dx′dy′

(1.140)
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Hy =
k

4ωμ

∫ ∫ [(
k(x− x′)(y − y′)H ′(2)

1 (kρ)

ρ2
− (x− x′)(y − y′)H(2)

1 (kρ)

ρ3

)
Mx

+

(
−k(x− x′)2H ′(2)

1 (kρ)

ρ2
+

(x− x′)2H(2)
1 (kρ)

ρ3
− H

(2)
1 (kρ)

ρ

)
My

]
dx′dy′

(1.141)

b)Far Field
Let us assume surface currents Js and Ms on a given surface. If the obser-
vation point is far from source βR >> 1 and r ≥ 2D2

λ
where D is the largest

dimension of the radiator or scatterer, then:

A =
μ

4π

∫ ∫
S

Js
e−jβR

R
ds′ ≈ μe−jβr

4πr
N

F =
μ

4π

∫ ∫
S

Ms
e−jβR

R
ds′ ≈ εe−jβr

4πr
L (1.142)

where R = [r2 + r′2 − 2rr′ cosψ]1/2 and can be approximated as

R ≈
{
r − r′ cosψ for phase variations
r for amplitude variations

(1.143)

and ψ is the angle between r and r′.

N =

∫ ∫
S

Jse
jβr′ cosψds′

L =

∫ ∫
S

Mse
jβr′ cosψds′ (1.144)

In spherical coordinate we have:

Er ≈ 0

Eθ ≈ −jβe
−jβr

4πr
(Lφ + ηNθ)

Eφ ≈ +
jβe−jβr

4πr
(Lθ − ηNφ)

Hr ≈ 0

Hθ ≈ +
jβe−jβr

4πr

(
Nφ − Lθ

η

)
Hφ ≈ −jβe

−jβr

4πr

(
Nθ +

Lφ
η

)
(1.145)



48 CHAPTER 1. BASIC ELECTROMAGNETIC CONCEPTS

In rectangular coordinate system Nθ, Nφ, Lθ and Lφ can be found from the
following formula

Nθ =

∫ ∫
S

(Jx cos θ cos φ+ Jy cos θ sin φ− Jz sin θ) e
+jβr′ cosψds′

Nφ =

∫ ∫
S

(−Jx sinφ+ Jy cosφ) e
+jβr′ cosψds′

Lθ =

∫ ∫
S

(Mx cos θ cosφ+My cos θ sin φ−Mz sin θ) e
+jβr′ cosψds′

Lφ =

∫ ∫
S

(−Mx sin φ+My cosφ) e
+jβr′ cosψds′ (1.146)

1.12.4 Radar Cross Section (RCS)

• Two-dimensional problems:
The geometry is independent of one coordinate. An infinitely long cylinder
with constant cross section is an example. The echo width σ2d is used for
two dimensional scattering:

σ2d = lim
ρ→∞

2πρ
|Es|2
|Ei|2 (1.147)

• Three-dimensional problems:
Conventional RCS σ3d is used for three dimensional scattering:

σ3d = lim
r→∞

4πr2
|Es|2
|Ei|2 (1.148)

The approximate conversion from echo width to radar cross section will be:

σ3d = σ2d
2D2

λ
(1.149)



Chapter 2

Reflection, Refraction and
Transmission

”Anyone who has never made a mistake has never tried anything
new.”

Albert Einstein

2.1 Classification of Reflection and Refrac-

tion

Reflection of plane wave =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Normal incident

⎧⎨⎩
Dielectric
Conductor
PEMC

Oblique incident

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
TE

⎧⎨⎩
Dielectric
Conductor
PEMC

TM

⎧⎨⎩
Dielectric
Conductor
PEMC

2.1.1 Normal Incident: Two Media

As shown in the Fig.(2.1), there are two media with electrical parameters
μ1, ε1, σ1 and μ2, ε2, σ2 with impedance and propagation constant of ηi =√

jωμi
σi+jωεi

and γi =
√
jωμi(σi + jωεi), i = 1, 2, respectively. The incident,

49



50 CHAPTER 2. REFLECTION, REFRACTION AND TRANSMISSION

reflected and transmitted waves propagated in the z-direction, are given by

Figure 2.1: Normal incident, transmission and reflection from the boundary
of two media

Ei = A1e
−γ1zax

Hi =
A1

η1
e−γ1zay (2.1)

Er = B1e
γ1zax

Hr =
−B1

η1
eγ1zay (2.2)

Et = A2e
−γ2zax

Ht =
A2

η2
e−γ2zay (2.3)

By enforcing continuity of tangential electric and magnetic fields at z = 0;
and introducing reflection coefficient Γ = B1

A1
and transmission coefficient

τ = A2

A1
, we have:

Γ =
η2 − η1
η2 + η1

(2.4)

τ =
2η2

η2 + η1
(2.5)

If σ2 → ∞ therefore, Γ = −1 and τ = 0.
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2.1.2 Normal Incident: Multilayered Media

Suppose we have N media with electrical parameters μkεk and σk and N − 1
interfaces which located at z1, z2, · · · zN−1. Let us take N = 3. According to
Fig.(2.2), we can find electric and magnetic fields of each media:

Figure 2.2: Normal incident, transmission and reflection from multilayered
media

E1 =
(
A1e

−γ1z +B1e
+γ1z

)
ax (2.6)

H1 =

(
A1

η1
e−γ1z − B1

η1
e+γ1z

)
ay (2.7)

E2 =
(
A2e

−γ2z +B2e
+γ2z

)
ax (2.8)

H2 =

(
A2

η2
e−γ2z − B2

η2
e+γ2z

)
ay (2.9)

E3 = A3e
−γ3zax (2.10)

H3 =
A3

η3
e−γ3zay (2.11)
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By applying boundary conditions and writing them in matrix form, we have:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−eγ1z1 e−γ2z1 eγ2z1 0

1
η1
eγ1z1 1

η1
eγ2z1 1

η2
eγ2z1 0

0 −e−γ2z2 −eγ2z2 eγ2z2

0 1
η2
e−γ2z2 1

η2
eγ2z2 1

η3
eγ3z2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

A2

B2

A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1e
−γ1z1

1
η1
A1e

−γ1z1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.12)

2.2 Inhomogeneous Media

Exact one dimensional solution of wave equation for linear index of refraction
n(z) = n0 +

ns−n0

D
z will be consider now. The wave equation for this case

will be:
d2Ex
dz2

+ [k0n(z)]
2Ex = 0 ⇒ d2Ex

dξ2
+

[
ξ

α

]2
Ex = 0 (2.13)

where α = k0
ns−n0

D
and ξ = k0n(z) therefore the solution of wave equation

will be

Ex =
√
ξ

[
AJ1/4

(
ξ2

2α

)
+BY1/4

(
ξ2

2α

)]
(2.14)

where Jν(x) and Yν(x) are Bessel and Neumann functions. If n(z)2 = n2
0 +

n2
s−n2

0

D
z, α = k20

n2
s−n2

0

D
and ξ = [k0n(z)]

2 the solution will be determined as

Ex =
√
ξ

[
AJ1/3

(
2

3α
ξ3/2

)
+BY1/3

(
2

3α
ξ3/2

)]
(2.15)

If n(z) = n0 exp
[
z
D
ln

(
ns

n0

)]
The solution will be

Ex = AJ0

(
ξ

α

)
+BY0

(
ξ

α

)
(2.16)

where ξ = k0n0e
−αz and α = 1

D
ln ns

n0

2.2.1 Inhomogeneous Layers

In previous section, we have considered the multilayer media which also can
be used for computation of reflection and transmission in inhomogeneous
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media. In this section we shall develop a new method for exact solution of
1D inhomogeneous layer by matrix similarity transformation.
We first consider a dielectric layer whose εr(z) profile is a function of z. By
1D Maxwell’s equations we have:

dEx
dz

= −jωμ0μr(z)Hy

dHy

dz
= −jωε0εr(z)Ex (2.17)

or in matrix form:

d

dz

[
Ex
Hy

]
=

[
0 − jωμ0μr(z)
−jωε0εr(z) 0

] [
Ex
Hy

]
(2.18)

In general form it can be shown as

dq

dz
= A(z)q(z) (2.19)

and its solution will be

q(z2) = e
∫ z2
z1

A(z)dz
q(z1) (2.20)

The e
∫ z2
z1

A(z)dz
can be calculated numerically. The result is a matrix. If we

show this result by matrix B, e
∫ z2
z1

A(z)dz
= B, then we will have:[

B11 B12

B21 B22

] [
Ei
x(z1) + Er

x(z1)
H i
y(z1) +Hr

y(z1)

]
=

[
Et
x(z2)

H t
y(z2)

]
(2.21)

By introducing Er
x(z1)

Ei
x(z1)

= Γ and Et
x(z2)

Ei
x(z1)

= τ :[
B11 B12

B21 B22

] [
1 + Γ

(1− Γ)/η1

]
=

[
τ

τ/η3

]
(2.22)

Now we can find the transmission and reflection coefficients from homoge-
neous and inhomogeneous multilayer dielectric slab. Therefore:[

B12/η1 − B11 1
B22/η1 − B21 1/η3

] [
Γ
τ

]
=

[
B11 +B12/η1
B21 +B22/η1

]
(2.23)
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The matrix B can be calculated by numerical method. We divide the domain
of integral by N segments. Let integral be from Z0 to ZN so Zk = kZN−Z0

N
,

and Δz = ZN−Z0

N
, therefore the matrix B = e

∫ zN
z0

A(z)dz
will be:

B =

N∏
k=1

eA(
Zk+Zk−1

2
)Δz (2.24)

For more numerical calculation we need:

eA(z)Δz =

[
cos (β̄Δz) − jη̄ sin (β̄Δz)
−j sin (β̄Δz)/η̄ cos (β̄Δz)

]
(2.25)

where β̄ = ω
√
μ̄ε̄, η̄ =

√
μ̄
ε̄
and ε̄ = ε0εr(z), μ̄ = μ0μr(z)

2.2.2 Normal reflection of a plane wave from PEMC

Suppose a plane wave incident normally to a PEMC. We want to find the
reflected wave. Let us take:

Ei = Ei
0e

−jk0z =
(
Ei
xax + Ei

yay

)
e−jk0z (2.26)

Hi =
az × Ei

0

η0
e−jk0z

and the reflected wave:

Er = Er
0e

+jk0z =
(
Er
xax + Er

yay

)
e+jk0z (2.27)

Hr =
−az × Er

0

η0
e+jk0z

at z = 0, we apply PEMC boundary conditions, n×(H+ME) = 0, therefore
it will give us two linear equations

Ei
y − Er

y − η0M(Ei
x + Er

x) = 0 (2.28)

Ei
x − Er

x + η0M(Ei
y + Er

y) = 0

By solving the above equations we will find.

Er
x =

(1− η20M
2)Ei

x + 2η0MEi
y

1 + η20M
2

(2.29)

Er
y =

(1− η20M
2)Ei

y − 2η0MEi
x

1 + η20M
2
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As these relations show, for linearly polarized incident wave, the wave re-
flected from PEMC boundary has both co-polarized multiple of Ei ) and
cross-polarized components (multiple of az × Ei ) in general case. For the
PMC and PEC special cases (M = 0 and M = ∞, respectively), the cross-
polarized component vanishes. For the special PEMC case M = 1/η0, we
have Er = −az × Ei which means that the reflected wave appears totally
cross-polarized. Thus the boundary acts as a twist polarizer which is a non-
reciprocal device [lindell, sihvola].

2.2.3 Transmission and Reflection from Chiral Media

Figure 2.3: Chiral slab

A homogeneous isotropic chiral medium is characterized by three (com-
plex) parameters. These are the electric permittivity ε, the magnetic perme-
ability μ, and the chirality measure β. The constitutive relations for a chiral
media can be written as

D = ε(E+ β∇× E) (2.30)

B = μ(H+ β∇×H) (2.31)

where β is the chirality parameter. In optical frequency β is very small
quantity around 10−10m, but at microwave frequency is big as 10−3m.
There is an alternate but equivalent notation as

D = ε′E− jκ
√
μ0ε0H (2.32)
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B = μ′H+ jκ
√
μ0ε0E (2.33)

where κ is the chirality parameter and is dimensionless. The relations be-
tween notations (2.30), (2.31) and (2.32), (2.33) are:

ε′ =
ε

1− ω2μεβ2

μ′ =
μ

1− ω2μεβ2

κ
√
μ0ε0 =

ωμεβ

1− ω2μεβ2
(2.34)

and

ε = ε′(1− κ2

n2
)

μ = μ′(1− κ2

n2
)

k0β =
κ

n2 − κ2
(2.35)

where n =
√
μ′ε′/

√
μ0ε0 and k0 = ω

√
μ0ε0.

In a source free region we have

∇× E = −jωB
∇×H = jωD

∇ ·D = ∇ · E = 0

∇ ·B = ∇ ·H = 0 (2.36)

Therefore we can rewrite the above equations

∇×
[

E
H

]
= [K]

[
E
H

]
(2.37)

∇2

[
E
H

]
= [K]2

[
E
H

]
(2.38)

where the matrix K is given by:

[K] =
1

1− k2β2

[
k2β −jωμ
jωε k2β

]
(2.39)
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where k = ω
√
με in [1/meter]. The matrix in Eq.(2.39)can be diagonalized.

A linear transformation of the electromagnetic field:[
E
H

]
= [A]

[
QR

QL

]
(2.40)

diagonalizes K
[Λ] = [A]−1[Λ][A] (2.41)

where

[Λ] =

[ −kR 0
0 kL

]
(2.42)

[A] =

[
1 jη
j/η 1

]
(2.43)

therefore this guide us to decompose the E and H fields into two QR and
QL fields:

E = QR + jηQL

H = QL +
j

η
QR (2.44)

where η =
√
μ/ε. We can also show that

∇×QR = kRQR

∇×QL = −kLQL

∇ ·QR = 0

∇ ·QL = 0

∇2QR + k2RQR = 0

∇2QL + k2RQL = 0 (2.45)

where

kR =
k

1− kβ

kL =
k

1 + kβ
(2.46)

are the wave numbers of QR and QL, respectively. In the above relations,
QL represents a left hand circularly polarized (LCP) and QR a right hand
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circularly polarized (RCP) wave. Hence the left and right handed CP waves
travel with different phase velocities and this gives rise to the rotation in
the plane of polarization when linearly polarized light passes through the
medium. The LCP waves travel faster than RCP waves inside the left handed
medium and vice versa. If, in addition, the medium is lossy, that is k is
complex, the two eigenwaves will experience different attenuation resulting
in an elliptically polarized wave with a rotation of the major axis of the
ellipse (dichroism). Bohren [60] introduced the decomposition of E and H
fields into left circular polarization QLand right circular polarization QR as
defined above.

Figure 2.4: Electromagnetic Properties of Chiral Medium

Suppose we have two back to back media. The first one is free space and
the second one is a chiral media. A uniform plane wave incident normally
on the chiral media from the free space. We want to find the reflection and
transmission of wave. We assume uniform plane wave as an incident wave:

Ei = e−jk0zax Hi =
1

η0
e−jk0zay (2.47)

The reflected wave could be:

Er = (Γxax + Γyay) e
jk0z Hr =

(Γyax − Γxay)

η0
ejk0z (2.48)
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and the transmitted wave will be:

Et = QR + jηQL Ht = QL +
j

η
QR (2.49)

where

QR = τR(ax − jay)e
−jkRz QL = τL(ax + jay)e

−jkLz (2.50)

Determining the four unknowns, we use boundary conditions at z = 0,

ax · (Ei + Er − Et) = 0 ay · (Ei + Er −Ec) = 0
ax · (Hi +Hr −Ht) = 0 ay · (Hi +Hr −Ht) = 0

(2.51)

and the unknowns can be found as:

Γx =
η−η0
η+η0

Γy = 0
τR = η

η+η0

τL = −j
η+η0

(2.52)

2.2.4 The Reflection and Transmission of EM Waves
by a Chiral Slab

Following the previous analysis, in the case of normal incidence, we can calcu-
late the reflection and transmission coefficients for a chiral slab occupying the
region 0 < z < d in free space. For a normal incident plane wave the reflected
wave will be linearly polarized in the same direction, while the transmitted is
elliptically polarized. Thus it has a co-polarized and a cross-polarized compo-
nents with respect to the incident wave. With the co-polarized components
along the x-direction, we have:

Ei = e−jk0zax

Hi =
1

η0
e−jk0zay

Er = (Γxax + Γyay)e
jk0z

Hr =
1

η0
(Γyax − Γxay)e

jk0z (2.53)

and the transmitted wave will be
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Figure 2.5: Chiral slab in free space

Et = (τxax + τyay)e
−jk0z

Ht =
1

η0
(−τyax + τxay)e

−jk0z (2.54)

and the fields inside the chiral slab can be written as:

Ec = QR + jηQL

Hc = QL +
j

η
QR

QR = AR(ax − jay)e
−jkRz +BR(ax + jay)e

jkRz

QL = AL(ax + jay)e
−jkLz +BL(ax − jay)e

jkLz (2.55)

and boundary conditions at z = 0 and z = d will be:

ax · (Ei + Er − Ec) = 0 ay · (Ei + Er − Ec) = 0

ax · (Hi +Hr −Hc) = 0 ay · (Hi +Hr −Hc) = 0

and for z = d:

ax · (Ec − Et) = 0 ay · (Ec − Et) = 0

ax · (Hc −Ht) = 0 ay · (Hc −Ht) = 0

then we can find eight unknowns Γx,Γy, τx, τy, AR, BR, AL and BL.
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2.2.5 Metal Backed Chiral Slab

A uniform linearly polarized plane wave incident normally on a metal backed
chiral slab as shown on Fig.(2.5). we suppose that the incident and reflected
wave will be:

Ei = e−jk0zax

Hi =
1

η0
e−jk0zay

Er = (Γxax + Γyay)e
jk0z

Hr =
1

η0
(Γyax − Γxay)e

jk0z (2.56)

where Γx is the co-polarization reflection coefficient and Γy is the cross po-
larization reflection coefficient. The fields inside the chiral slab will be:

Figure 2.6: Metal Backed Chiral Slab

Ec = QR + jηQL

Hc = QL +
j

η
QR

QR = AR(ax − jay)e
−jkRz +BR(ax + jay)e

jkRz

QL = AL(ax + jay)e
−jkLz +BL(ax − jay)e

jkLz (2.57)
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by applying boundary conditions at z = 0:

ax · (Ei + Er − Ec) = 0 ay · (Ei + Er − Ec) = 0

ax · (Hi +Hr −Hc) = 0 ay · (Hi +Hr −Hc) = 0

and z = d

ax · Ec = 0 ay · Ec = 0

we can find six unknowns Γx,Γy, AR, BR, AL and BL.

2.3 Transmission and Reflection of Obliquely

Incident Plane Wave from Lossless Media

A uniform plane wave obliquely incident on a large flat surface of a media
gives rise to both a reflected and a transmitted waves. The direction of
transmitted wave is different from incident wave and this phenomenon is
called refraction. Any plane wave can be divided into two polarization types
, TM and TE as shown in Fig.(2.7) and Fig.(2.8). The transmission and
reflection coefficients for each case can be derived as follows.
♣ (TM case)
We can derive the incident wave as:

Figure 2.7: TM polarization
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Hi =
ay
η1
e−jk1(x sin θ

i+z cos θi) (2.58)

where η1 =
√
μ1/ε1. And corresponding electric field:

Ei = (ax cos θ
i − az sin θ

i)e−jk1(x sin θ
i+z cos θi) (2.59)

According to Fig.(2.7), we can write the reflected and refracted waves as:

Hr = −ayΓTM

η1
e−jk1(x sin θ

r−z cos θr)

Ht = ayτTM

η2
e−jk2(x sin θ

t+z cos θt) (2.60)

and the corresponding electric fields

Er = ΓTM(ax cos θ
r + az sin θ

r))e−jk1(x sin θ
r−z cos θr)

Et = τTM(ax cos θ
t − az sin θ

t)e−jk2(x sin θ
t+z cos θt) (2.61)

By applying boundary condition, we can determine the relation between
incident, reflected and transmitted angles and also both ΓTM and τTM as:

θi = θr

k1 sin θ
i = k2 sin θ

t (2.62)

ΓTM =
η2 cos θ

t − η1 cos θ
i

η2 cos θt + η1 cos θi
(2.63)

τTM =
2η2 cos θ

i

η2 cos θt + η1 cos θi
(2.64)

♣ (TE case)
Like previous case, we assume that the incident wave is given as

Ei = aye
−jk1(x sin θi+z cos θi) (2.65)

And corresponding magnetic field:

Hi =
1

η1
(−ax cos θ

i + az sin θ
i)e−jk1(x sin θ

i+z cos θi) (2.66)

According to Fig.(2.8), we can write the reflected and refracted waves as:

Er = ayΓTEe
−jk1(x sin θr−z cos θr)

Et = ayτTEe
−jk2(x sin θt+z cos θt) (2.67)
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Figure 2.8: TE polarization

and the corresponding magnetic fields:

Hr = ΓTE

η1
(ax cos θ

r + az sin θ
r))e−jk1(x sin θ

r−z cos θr)

Ht = τTE

η2
(ax cos θ

t − az sin θ
t)e−jk2(x sin θ

t+z cos θt) (2.68)

by applying boundary conditions, we can determine the relation between
incident, reflected and transmitted angles and also both ΓTE and τTE as:

θi = θr

k1 sin θ
i = k2 sin θ

t (2.69)

ΓTE =
η2 cos θ

i − η1 cos θ
t

η2 cos θi + η1 cos θt
(2.70)

τTE =
2η2 cos θ

t

η2 cos θi + η1 cos θt
(2.71)

If the second medium be a perfect electric conductor (PEC), η2 = 0, ΓTE =
ΓTM = −1 and τTE = τTM = 0 then the surface current on PEC will be:

Js =
2
η1
e−jk1(x sin θ

i)ax TM

Js =
2 cos θi

η1
e−jk1(x sin θ

i)ay TE
(2.72)
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2.3.1 Reflection of Obliquely Incident Plane Wave from

PEMC

Let us assume that the incident wave in oblique case in general form will be:

Ei = (AiH cos θiax + AiEay − AiH sin θiaz) e
−jk0(x sin θi+z cos θi)

Hi = 1
η0
(−AiE cos θiax + AiHay + AiE sin θiaz) e

−jk0(x sin θi+z cos θi) (2.73)

And the reflected wave

Er = (ArH cos θrax + ArEay + ArH sin θraz) e
−jk0(x sin θr−z cos θr)

Hr = 1
η0
(ArE cos θrax − ArHay + ArE sin θraz) e

−jk0(x sin θr−z cos θr) (2.74)

at z = 0, we apply PEMC boundary conditions, n× (H+ME) = 0, therefor
it will give us: θi = θr and

ArE =
(1− η20M

2)AE − 2η0MAH
1 + η20M

2
(2.75)

ArH =
(1− η20M

2)AH + 2η0MAE
1 + η20M

2

Electric and magnetic surface current on the PEMC at z = 0 can be calcu-
lated, Js = n×H and Ms = −n× E:

Js =
1

η0

[
ax

2M2η20AH − 2Mη0AE
1 +M2η20

+ ay
2M2η20AE + 2Mη0AH

1 +M2η20
cos θi

]
e−jk0x sin θ

i

(2.76)
and

Ms =

[
ax

2Mη0AH − 2AE
1 +M2η20

+ ay
2Mη0AE + 2AH

1 +M2η20
cos θi

]
e−jk0x sin θ

i

(2.77)

and for special case when M → ∞ or M → 0 we have

Js =
1

η0

[
2AHax + 2AE cos θiay

]
e−jk0x sin θ

i

(2.78)

Ms =
1

η0

[−2AEax + 2AH cos θiay
]
e−jk0x sin θ

i

(2.79)
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2.3.2 Transmission and Reflection of Obliquely Inci-

dent Plane Wave by Chiral Media

We consider the general case oblique incident on flat chiral media:

Ei = (AHax cos θ
i + AEay −AHaz sin θ

i)e−jk0(x sin θ
i+z cos θi)

Hi = − 1
jωε0

∇× Ei (2.80)

where AE �= 0 and AH = 0 is refereed to TE polarization while AH �= 0 and
AE = 0 is refereed to TM polarization.
The reflected wave obey’s Snell’s law of reflection but it is circular polariza-
tion wave.

Er = (−ΓTMAH cos θrax + ΓTEAEay + ΓTMAH sin θraz)e
−jk0(x sin θr−z cos θr)

Hr = − 1
jωε0

∇× Er

(2.81)
The wave that propagates in chiral media has two different angle of inclina-
tion θR and θL:

Ec = QR + jηQL

Hc = QL + j
η
QR

(2.82)

where η =
√
μ/ε and

QR = τR(ax cos θR − jay − az sin θR)e
−jkR(x sin θR+z cos θR)

QL = τL(ax cos θL + jay − az sin θL)e
−jkL(x sin θL+z cos θL) (2.83)

By applying boundary conditions at z = 0:

ax · [Ei + Er − Ec] = 0

ay · [Ei + Er −Ec] = 0

ax · [Hi +Hr −Hc] = 0

ay · [Hi +Hr −Hc] = 0

θr = θi

k0 sin θ
i = kR sin θR

k0 sin θ
i = kL sin θL

(2.84)
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where kR = k
1−βk , kL = k

1+βk
, k = ω

√
με.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −AH cos θi cos θR jη cos θL

AE 0 j η

AE

η0
cos θi 0 j

η
cos θR cos θL

0 AH

η0
1
η

j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΓTE

ΓTM

τR

τL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

AH cos θi

−AE
AE

η0
cos θi

AH

η0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.85)

Now, we can find seven unknowns ΓTE ,ΓTM , τR, τL, θR, θL, θ
r.

2.4 Rectangular Waveguide

In this section we will study electromagnetic field behavior inside a rectangu-
lar waveguide Fig.(2.9) The solution of scaler wave equation in rectangular

Figure 2.9: Rectangular Waveguide

coordinate which wave is propagating in z direction will be:

ψ = (A1 cos kxx+B1 sin kxx)(A2 cos kyy +B2 sin kyy)e
−kzz (2.86)

where k2x + k2y + k2z = k2 = ω2με
♣ TEz and TMz Modes



68 CHAPTER 2. REFLECTION, REFRACTION AND TRANSMISSION

Let us take M = ∇× (ψaz) and N = 1
k
∇×M, therefore E = M represents

the TEz modes and E = N give us TMz modes. For TEz i.e. Ez = 0 modes

E =
∂ψ

∂y
ax − ∂ψ

∂x
ay H = − 1

jωμ
∇×E (2.87)

By imposing boundary conditions we find that kx = mπ
a
, ky = nπ

b
and kz =√

ω2με− (mπ
a
)2 − (nπ

b
)2 where m = 0, 1, 2, · · · , n = 0, 1, 2, · · · and m �= n =

0.
ψ = A cos(mπ

a
x) cos(nπ

b
y)e−kzz

E = ∂ψ
∂y
ax − ∂ψ

∂x
ay

H = − 1
jωμ

∂2ψ
∂z∂x

ax − 1
jωμ

∂2ψ
∂z∂y

ay − k2−k2z
jωμ

ψaz

(2.88)

For TMz i.e. Hz = 0 modes

ψ = B sin(mπ
a
x) sin(nπ

b
y)e−kzz m = 1, 2, 3, · · · n = 1, 2, · · ·

H = ∂ψ
∂y
ax − ∂ψ

∂x
ay

E = 1
jωε

∂2ψ
∂z∂x

ax +
1
jωε

∂2ψ
∂z∂y

ay +
k2−k2z
jωε

ψaz

kz =
√
ω2με− (mπ

a
)2 − (nπ

b
)2

(2.89)

2.5 Dielectric Slab Waveguide

Suppose we have three-layer slab waveguide with a one dimensional (1D)
structure as shown in Fig.(2.10). In this analysis we consider the configura-
tion and coordinate system depicted in Fig.(2.10). The scalar wave equation
will be solved first. This is an eigenvalue problem. We assume some limita-
tion to our problem. The waves propagate along z axis will be assumed, i.e.
e−jkzz. We have no variation along y axis and dielectric slab waveguide has
no limit along y axis, therefore ∂

∂y
= 0.

∂2ψ

∂x2
+
∂2ψ

∂z2
= −k2ψ (2.90)

or
∂2ψ

∂x2
= (k2z − k2)ψ (2.91)

The solution of this wave inside and outside slab will be

ψ1 = [A1 cos(h1x) +B1 sin(h1x)]e
−jkzz (2.92)
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Figure 2.10: Dielectric Slab Waveguide

where h21 = k20n
2
1 − k2z , k

2
0 − ω2μ0ε0. And

ψ2 = A2e
(α|x|−d)e−jkzz (2.93)

where h22 = k20n
2
2 − k2z , α

2 = −h22, why?
Now we are going to find the solution of vector wave equation inside and
outside of slabe. Like previous method, we use M and N vectors. If E =
M = ∇× (ψaz) we will have TEz modes, otherwise if H = M = ∇× (ψaz)
we will have TMz modes

2.5.1 TE Mode

According to our assumption, for the TEz mode we have

Ez = 0, Ex = 0, Hy = 0
Hz �= 0, Hx �= 0, Ey �= 0

(2.94)

For the TEz mode, we can write the E and H in terms of ψ component.

E = −∂ψ
∂x
ay

H = − 1
jωμ0

∂2ψ
∂z∂x

ax − k2−k2z
jωμ0

ψaz
(2.95)

Ey component inside dielectric slab:

Ey1 = [A1h1 sin(h1x) +B1h1 cos(h1x)] e
−jkzz (2.96)
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where |x| ≤ d, h21 = n2
1k0 − k2z and k20 = ωμ0ε0. The cos(h1x) represents

the even TEz modes and sin(h1x) represents the odd TEz modes. Since the
fields outside the slab (cladding) will be vanish as x approaches infinity, we
assume that the field will be evanescent as

Ey2 = A2αe
−α(|x|−d)e−jkzz for |x| ≥ d (2.97)

where α is the attenuation constant of evanescent field. If we substitute
Eq.(2.93) in wave equation for cladding, i.e.

∂2ψ

∂x2
+ h22ψ = 0 h22 = n2k

2
0 − k2z (2.98)

Then we will have a relation for α

α2 = k2z − n2k
2
0 (2.99)

Therefore the electromagnetic field components inside the slab for TEz even
modes will be:

Ey1 = A cos(h1x)e
−jkzz

Hx1 = −A kz
ωμ0

cos(h1x)e
−jkzz

Hz1 = −A h1
ωμ0

sin(h1x)e
−jkzz

(2.100)

and the electromagnetic field components in cladding will be:

Ey2 = Ce−α(|x|−d)e−jkzz

Hx2 = C −kz
ωμ0

e−α(|x|−d)e−jkzz

Hz2 = C jα
ωμ0

(−x|x| )e
−α(|x|−d)e−jkzz

(2.101)

by using boundary conditions for electric and magnetic components we will
reach the following characteristic equation for even TEz modes

tan(h1d) =
α

h1
for even TEz modes (2.102)

we do the same method for TEz odd modes, we will have

tan(h1d) = −h1
α

for odd TEz modes (2.103)
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where
h21 = n2

1k0 − k2z (2.104)

by multiplying Eq.(2.99) and Eq.(2.104)by d2 and adding

(αd)2 + (h1d)
2 = (n2

1 − n2
2)(k0d)

2 (2.105)

If we take x = h1d, y = αd and R2 = (n2
1 − n2

2)(k0d)
2 then we will have to

solve two nonlinear equations

x2 + y2 = R2

y = x tanx for even TEz modes
y = −x cot x for odd TEz modes

(2.106)

In this problem, we have two unknowns; α or y = αd and kz or x = h1d where
h1 =

√
n2
1k

2
0 − k2z . If kz = 0 we can find the cutoff frequency of dielectric

slab waveguide for even or odd modes.

2.5.2 TM Mode

For TMz type of modes the magnetic field component of Hz = 0. According
to previous assumption, we get

Hz = 0, Hx = 0, Ey = 0

Ez �= 0, Ex �= 0, Hy �= 0
(2.107)

For the TMz mode, we can write the E and H in terms of ψ component.

H = −∂ψ
∂x
ay

E = 1
jωε

∂2ψ
∂z∂x

ax +
k2−k2z
jωε

ψaz
(2.108)

Hy component inside dielectric slab:

Hy1 = [A1h1 sin(h1x) +B1h1 cos(h1x)] e
−jkzz (2.109)

For the TMz mode, we can write the Ey and Ex in terms of Hy component.

Ex =
kz
ωε
Hy

Ez =
−j
ωε

∂Hy

∂x

(2.110)
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Therefore for inside the dielectric slab, |x| ≤ d, electromagnetic field for even
modes will be

Hy1 = A cos(h1x)e
−jkzz

Ex1 = A kz
ωε1

cos(h1x)e
−jkzz

Ez1 = A jh1
ωε1

sin(h1x)e
−jkzz

h21 = n2
1k

2
0 − k2z , ε1 = n2

1ε0

(2.111)

and for odd modes will be

Hy1 = B sin(h1x)e
−jkzz

Ex1 = B kz
ωε1

sin(h1x)e
−jkzz

Ez1 = B−jh1
ωε1

cos(h1x)e
−jkzz

h21 = n2
1k

2
0 − k2z , ε1 = n2

1ε0

(2.112)

and the electromagnetic field components in cladding, |x| ≥ d, can be found:

Hy2 = Ce−α(|x|−d)e−jkzz

Ex2 = C kz
ωε2
e−α(|x|−d)e−jkzz

Ez2 = C jα
ωε2

( x|x|)e
−α(|x|−d)e−jkzz

α2 = k2z − n2
2k

2
0

(2.113)

by using boundary conditions for electric and magnetic components we will
reach the following characteristic equation for TMz modes

tan(h1d) = −(
n2

n1
)2(
h1
α
) (2.114)

If we take x = h1d, y = αd and R2 = (n2
1 − n2

2)(k0d)
2 then we will have to

solve two nonlinear equations

x2 + y2 = R2

y = −(n2

n1
)2x cot x

(2.115)



2.6. PROBLEMS 73

In this problem, we have two unknowns; α or y = αd and kz or x = h1d where
h1 =

√
n2
1k

2
0 − k2z . If kz = 0 we can find the cutoff frequency of dielectric

slab waveguide for even or odd modes.

2.6 Problems

• 1 Write a program that computes the reflection and transmission coef-
ficient of a dielectric slab with εr = 4. Both sides of dielectric slab are
air.

• 2 Use inhomogeneous formula in previous problem and certify your
previous results (Problem 1).

• 3 One layer of inhomogeneous dielectric slab with linear index of re-
fraction n(z) = n0 +

ns−n0

L
z is given. Find transmission and reflection

coefficient. First media is free space n0 = 1 and substrate has ns = 2
and the thickness of inhomogeneous slab is L = 2cm. Plot normalized
transmitted and reflected power with respect to frequency (0.01GHz to
15GHz).

• 4 Two layers of chiral slab with electrical parameters μc, εc, β1 with
thickness of d1 and μc, εc, β2 with thickness of d2 in air are given. Find
a relation between two electrical parameters and thickness of both chiral
slabs that there will be no reflection if an normal incident plane wave
on this two layer slab.

• 5 Show that Eq.(2.52) can be reduced to regular formulas of reflection
and transmission case.

• 6 Find TEx, TEy, TMx and TMy modes of a rectangular waveguide.
These modes are called Hybrid Modes.

• 7 We have a dielectric slab waveguide with d = 5 millimeter and n1 = 2
and n2 = 1. Find the cutoff frequency for dominant mode.

• 8 Find the TEz and TMz modes of 2D dielectric slab waveguide of
Fig.(2.11).
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Figure 2.11: Dielectric Slab Waveguide



Chapter 3

Circular Cylinder

”The whole of science is nothing more than a refinement of ev-
eryday thinking.”

Albert Einstein

3.1 Introduction

Circular waveguide, sectorial waveguide, scattering by circular conducting or
dielectric cylinders, radiation of line source near or inside a cylinder are the
problems considered in this chapter.

3.2 Solution of Helmholtz Equation in Cylin-

drical Coordinates

The scalar wave equation in general form in cylindrical coordinates, is

∇2Ψ+ k2Ψ = 0 (3.1)

where k = ω
√
με and

∇2Ψ =
1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2
∂2Ψ

∂φ2
+
∂2Ψ

∂z2
(3.2)

To solve the above equation, we use the separation of variables method:

Ψ = R(ρ)F (φ)Z(z) (3.3)

75
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therefore we get three separate equations

∂2F

∂φ2
+ ν2F = 0 (3.4)

which has the solution:

F = c1e
−jνφ + c2e

+jνφ (3.5)

and
∂2Z

∂z2
+ k2zZ = 0 (3.6)

which has the solution:

Z(z) = c3 cos(kzz) + c4 sin(kzz) (3.7)

or

Z(z) = c3e
−jkzz + c4e

+jkzz (3.8)

and by substitution k2ρ = k2 − k2z we have

ρ2
∂2R

∂ρ2
+ ρ

∂R

∂ρ
+ (k2ρρ

2 − ν2)R = 0 (3.9)

which has the solutions:

R = c5Jν(kρρ) + c6Yν(kρρ) (3.10)

or linear combination of general form of:

R = C7Z
(g)
ν (kρρ) (3.11)

where C7 is a constant and g = 1, 2, 3, 4 represents types of the cylindrical
Bessel’s function:

Z(1)
ν (kρρ) = Jν(kρρ) Bessel function of first kind (3.12)

Z(2)
ν (kρρ) = Yν(kρρ) Neumann function (3.13)

Z(3)
ν (kρρ) = H(1)

ν (kρρ) Hankel function of first kind (3.14)

Z(4)
ν (kρρ) = H(2)

ν (kρρ) Hankel function of second kind (3.15)
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Each of these functions has special properties: g = 1 and g = 2 indicate
standing wave while g = 3 represents an inward traveling wave and g = 4 an
outward traveling wave. We should notice that

Z(1)
ν (kρρ) = Jν(kρρ) =

H
(1)
ν (kρρ) +H

(2)
ν (kρρ)

2
(3.16)

Z(2)
ν (kρρ) = Yν(kρρ) =

H
(1)
ν (kρρ)−H

(2)
ν (kρρ)

2j
(3.17)

3.2.1 Vector Wave Equation in Cylindrical Coordinate

System

The solution of scaler wave function in cylindrical coordinate ∇2ψ + k2ψ =
0, with assumption that ∂/∂z = 0 will be ψ = Zg

n(kρ)e
jnφ By selecting

M =∇× (ψaz) and therefore N = 1
k
∇×M, M = 1

k
∇×N, we will have

Mg
n(kρ) = Mg

nρ(kρ)aρ +Mg
nφ(kρ)aφ (3.18)

Ng
n(kρ) = Ng

nz(kρ)az

Mρ =
1

ρ

∂ψ

∂φ
(3.19)

Mφ = −∂ψ
∂ρ

Nz = kψ

The vector wave solution in cylindrical coordinate system will be

E = E0

∞∑
n=−∞

[anM
g
n(kρ) + bnN

g
n(kρ)] (3.20)

H =
jE0

η

∞∑
n=−∞

[anN
g
n(kρ) + bnM

g
n(kρ)] (3.21)

which have TEz and TMz modes.
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Figure 3.1: Circular waveguide

3.3 Circular Waveguides

The solution of scaler wave function in cylindrical coordinate ∇2ψ+k2ψ = 0
for this type of waveguide will be

ψ = Jm(kρρ)(A cosmφ+B sinmφ)e−jkzz (3.22)

where eigenvalues of them are related k2z + k2ρ = k2 = ω2με. Let us first find
TMz modes, H = M = ∇× (ψaz), therefore

H =
1

ρ

∂ψ

∂φ
aρ − ∂ψ

∂ρ
aφ (3.23)

and we can find E = 1
jωε

∇×H

N = 1
k
∇×M = Nρaρ +Nφaφ +Nzaz

Nρ =
1
k
∂2ψ
∂z∂ρ

, Nφ = 1
kρ

∂2ψ
∂z∂φ

, Nz =
k2−k2z
k

ψ
(3.24)

Now we can apply boundary conditions, Ez = 0 at ρ = a, then Jm(kρa) = 0
and the roots of Bessel function can be found in appendix (E), and here we
call them αmn, which the propagation constant of waveguide can be calcu-
lated from: kz =

√
ω2με− (αmn

a
)2.
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For TEz modes we can take E = M = ∇ × (ψaz), and then find H =
−1
jωμ

∇× E. By applying boundary condition; i.e. Eφ = 0 at ρ = a, we have

J ′
m(kρa) = 0. If we name the roots of derivative of Bessel function as α′

mn,

then the propagation constant can be determined by kz =
√
ω2με− (α

′
mn

a
)2.

3.3.1 Circular Sectoral Waveguides

We have two types of circular sectoral waveguide. First let us find TEz

and TMz modes for Fig.(3.2). The solution of scalar wave equation for this

Figure 3.2: Circular sectoral waveguide

waveguide can be:

ψ = Jν(kρρ)(A cos νφ+B sin νφ)e−jkzz (3.25)

The kz and ν can be determined from boundary conditions. Now we want
to find the electric and magnetic components for TMz type of modes. Like
previous case, H = M = ∇× (ψaz), therefore:

H =
1

ρ

∂ψ

∂φ
aρ − ∂ψ

∂ρ
aφ (3.26)
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and electric field can be found as E = 1
jωε

∇×H

N = 1
k
∇×M = Nρaρ +Nφaφ +Nzaz

Nρ =
1
k
∂2ψ
∂z∂ρ

, Nφ = 1
kρ

∂2ψ
∂z∂φ

, Nz =
k2−k2z
k

ψ
(3.27)

By applying boundary conditions, Ez = 0 at ρ = a, φ = 0 and φ = φ0, it will
give us ν = mπ

φ0
, where m = 1, 2, 3, . . . and also Jν(kρa) = 0. If we name the

roots of this type of Bessel function αmn, then kz =
√
ω2με− (αmn

a
)2.

For TEz type modes, let E = M = ∇ × (ψaz), and then we can find
H = −1

jωμ
∇ × E. By imposing boundary conditions; i.e. Eφ = 0 at ρ = a,

Eρ = 0 at φ = 0 and φ = φ0, it will give us ν = mπ
φ0

where m = 0, 1, 2, . . . and

also J ′
ν(kρa) = 0. If we name the roots of derivative of Bessel function as α′

mn,

then the propagation constant can be determined by kz =
√
ω2με− (α

′
mn

a
)2.

Another circular sectoral waveguide can be considered as depicted in Fig.(3.3).
For this type we can write the solution of scalar wave equation as:

Figure 3.3: Circular sectoral waveguide

ψ = [AH(1)
ν (kρρ) +BH(2)

ν (kρρ)](C cos νφ+D sin νφ)e−jkzz (3.28)

With similar treatment as that of Fig.(3.2), for TMz modes, H = M =
∇× (ψaz), therefore:

H =
1

ρ

∂ψ

∂φ
aρ − ∂ψ

∂ρ
aφ (3.29)
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and electric field can be found as E = 1
jωε

∇×H

N = 1
k
∇×M = Nρaρ +Nφaφ +Nzaz

Nρ =
1
k
∂2ψ
∂z∂ρ

, Nφ = 1
kρ

∂2ψ
∂z∂φ

, Nz =
k2−k2z
k

ψ
(3.30)

By applying boundary conditions, Ez = 0 at ρ = a, ρ = b φ = 0 and φ = φ0,
we have ν = mπ

φ0
, where m = 1, 2, 3, . . . and

Jν(kρa)Yν(kρb)− Jν(kρb)Yν(kρa) = 0 (3.31)

which is characteristic equation of this type of waveguide for TMz modes.
By finding kρ from equation Eq.(3.31) the propagation constant of waveguide
can be calculated, kz =

√
ω2με− k2ρ.

For TEz modes we have ν = mπ
φ0

, where m = 0, 1, 2, . . . and characteristic
equation will be

J ′
ν(kρa)Y

′
ν(kρb)− J ′

ν(kρb)Y
′
ν(kρa) = 0 (3.32)

which give us kρ and then kz =
√
ω2με− k2ρ.

3.4 Optical Fiber

An optical fiber consists of a core and a cladding Fig.(3.4). The refractive in-
dex of the core is taken slightly higher than that of the cladding in order that
most of the energy of electromagnetic wave propagate inside the fiber optic.
For analyzing the fields of fiber optic we start by Maxwell’s equations and
therefore vector wave equations. We first analyze the electromagnetic fields
present in optical fibers to derive several important propagation characteris-
tics. We assume that the fiber is lossless and the propagation is along the z
axis. Therefore E = E0(ρ, φ)e

−jkzz, H = H0(ρ, φ)e
−jkzz. We also assume the

following fields for this type of dielectric circular cylindrical waveguide:

E0 = Eρaρ + Eφaφ + Ezaz
H0 = Hρaρ +Hφaφ +Hzaz

(3.33)
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Figure 3.4: Step-index optical fiber

Using Maxwell’s equation in cylindrical coordinate, we get

1

ρ

∂Ez
∂φ

+ jkzEφ = −jωμ0Hρ (3.34)

−jkzEρ − ∂Ez
∂ρ

= −jωμ0Hφ

1

ρ

∂

∂ρ
(ρEφ)− 1

ρ

∂Eρ
∂φ

= −jωμ0Hz

1

ρ

∂Hz

∂φ
+ jkzHφ = jωεEρ

−jkzHρ − ∂Hz

∂ρ
= −jωεEφ

1

ρ

∂

∂ρ
(ρHφ)− 1

ρ

∂Hρ

∂φ
= −jωεEz
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from these six Eq.(3.34) we can find Eρ, Eφ, Hρ and Hφ in terms of Ez, Hz.
Therefore:

Eρ =
−j
h2

[
kz
∂Ez
∂ρ

+ ωμ0
1

ρ

∂Hz

∂φ

]
(3.35)

Eφ =
−j
h2

[
kz

1

ρ

∂Ez
∂φ

− ωμ0
∂Hz

∂ρ

]
(3.36)

Hρ =
−j
h2

[
kz
∂Hz

∂ρ
− ωε

1

ρ

∂Ez
∂φ

]
(3.37)

Hφ =
−j
h2

[
kz

1

ρ

∂Hz

∂φ
+ ωε

∂Ez
∂ρ

]
(3.38)

where h2 = ω2με − k2z . Wave equation in terms of longitudinal components
of Ez or Hz field will be:

∂2Ez
∂ρ2

+
1

ρ

∂Ez
∂ρ

+
1

ρ2
∂2Ez
∂φ2

+ h2Ez = 0 (3.39)

∂2Hz

∂ρ2
+

1

ρ

∂Hz

∂ρ
+

1

ρ2
∂2Hz

∂φ2
+ h2Hz = 0

The method of modal analysis seeks to represent the fields as the superpo-
sition of several special types of fields. There are several types of modes.
First, we must reject TEMz (transverse electric and magnetic) modes, in
which both Ez = 0 and Hz = 0, since no (nonzero) TEMz modes can lead
to real power flow in this situation. TEz (transverse electric) modes have
Ez = 0 , while TMz (transverse magnetic) modes have Hz = 0. Although
TEz or TMz modes lead to a somewhat simplified analysis, there are sev-
eral important fields which cannot be expressed as the superposition of such
modes. Therefore, we must also consider more general hybrid modes; HE
modes have |Hz| � |Ez| > 0 and EH modes have |Ez| � |Hz| > 0.
The geometry of the situation leads us to seek functions periodic in φ. There-
fore, we assume the angle-dependence has the form ejnφ where n is an integer
(possibly positive, negative or 0). Thus:

Ez = AFn(ρ)e
jnφejkzz (3.40)

and hence
∂2Fn
∂ρ2

+
1

ρ

∂Fn
∂ρ

+

(
h2 − n2

ρ2

)
Fn = 0 (3.41)
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Now let us distinguish between the core ρ ≤ a, characterized by ε1, μ0, and
the cladding ρ ≥ a characterized by ε2, μ0. Define:

k1 = ω
√
μ0ε1 =

2π

λ
n1 (3.42)

k2 = ω
√
μ0ε2 =

2π

λ
n2 (3.43)

u =
√
k21 − k2z (3.44)

w =
√
k2z − k22 (3.45)

where n1 and n2 are index of refractions. Imposing that the core function
stays finite at ρ = 0, the cladding function decay to zero at ρ → ∞, and
that kz > 0 for real power flow, we have that u > 0 and w > 0. Thus, in
particular,k1 > kz > k2. In paractice ε1 > ε2, which is the case of real fibers.
The longitudinal components of the electric and magnetic fields in the core
and cladding are given by:

Ez =

{
AJn(uρ)e

jnφe−jkzz for ρ ≤ a
BKn(wρ)e

jnφe−jkzz for ρ ≥ a
(3.46)

Hz =

{
CJn(uρ)e

jnφe−jkzz for ρ ≤ a
DKn(wρ)e

jnφe−jkzz for ρ ≥ a
(3.47)

where Jn(uρ) and Kn(wρ) are Bessel’s functions and modified Bessel’s func-
tion. In particular, we impose the same value n characterize the fields in the
core and cladding. This is necessary to achieve phase match conditions at
ρ = a; for example, Ez must be continuous at ρ = a. Also, Kn is the nth or-
der Bessel function of the second kind. It can be shown that Kn(wρ) ∼ e−wρ

(asymptotically) as ρ→ ∞. In fact,|Jn(jx)| = Kn(x) for real x.
Now we can summarize the fields in core and cladding.
1) In the core (ρ ≤ a):

Ez = AJn(uρ)e
jnφe−jkzz

Eρ =
[
−A jkz

u
J ′
n(uρ) + C jωμ0

u2
n
ρ
Jn(uρ)

]
ejnφe−jkzz

Eφ =
[
−A jkz

u2
n
ρ
Jn(uρ) + C jωμ0

u
J ′
n(uρ)

]
ejnφe−jkzz

(3.48)
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Hz = CJn(uρ)e
jnφe−jkzz

Hρ =
[
A jωε1

u2
n
ρ
Jn(uρ)− C jkz

u
J ′
n(uρ)

]
ejnφe−jkzz

Hφ =
[
−A jωε1

u
J ′
n(uρ) + C jkz

u2
n
ρ
Jn(uρ)

]
ejnφe−jkzz

(3.49)

2) In the cladding (ρ ≥ a):

Ez = BKn(wρ)e
jnφe−jkzz

Eρ =
[
B jkz

w
K ′
n(wρ)−D jωμ0

w2
n
ρ
Kn(wρ)

]
ejnφe−jkzz

Eφ =
[
B jkz

w2
n
ρ
Kn(wρ)−D jωμ0

w
K ′
n(wρ)

]
ejnφe−jkzz

(3.50)

Hz = DKn(uρ)e
jnφe−jkzz

Hρ =
[
−B jωε2

w2
n
ρ
Kn(wρ) +D jkz

w
K ′
n(wρ)

]
ejnφe−jkzz

Hφ =
[
B jωε2

w
K ′
n(wρ)−D jkz

w2
n
ρ
Kn(wρ)

]
ejnφe−jkzz

(3.51)

We must impose the appropriate boundary conditions atρ = a.

Ez1 = Ez2, Eφ1 = Eφ2 (3.52)

The first boundary condition leads to:

AJn(ua)− BKn(wa) = 0 (3.53)

and the second to:

−Ajkz
u2

n

a
Jn(ua)+C

jωμ0

u
J ′
n(ua) = B

jkz
w2

n

a
Kn(wa)−D

jωμ0

w
K ′
n(wa) (3.54)

We must also impose:

Hz1 = Hz2, Hφ1 = Hφ2 (3.55)
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We have a total of four homogeneous equations in A,B,C and D.

[M]

⎡⎢⎢⎣
A
B
C
D

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ (3.56)

Since we seek nonzero fields, we cannot have all four constants A,B,C and
D equal to zero; hence:

det[M] = 0 (3.57)

This condition must be met for the field to be exist. Define:[
J ′
n(ua)

uJn(ua)
+

K ′
n(wa)

wKn(wa)

] [
k21

J ′
n(ua)

uJn(ua)
+ k22

K ′
n(wa)

wKn(wa)

]
=

(
kzn

a

)2 (
1

u2
+

1

w2

)2

(3.58)

Given k, that is ω or λ, the parameter u, w are known functions ofKz. Hence,
Eq.(3.58) is specified as the function of frequency ω and parameter n. This
equation has only discrete solutions, and in general for each n there will be
several roots, denoted as: k

(n)
z1 , k

(n)
z2 , k

(n)
z3 , · · · , k(n)zM . The corresponding modes

are denoted as TEnm, TMnm, EHnmorHEnm as appropriate.
Let us examine the TE and TM cases in particular. We obtain TE by setting
A = C = 0, and we seek nonzero B and D; and similarly TM is obtained by
setting B = D = 0 and we seek nonzero A and B. In each case, this requires
a 2× 2 sub-matrix of M to have nonzero determinant, and in particular can
be shown that require n = 0. Thus, there can be no φ variation (there is
radial symmetry) for TE and TM modes. The equation determining kz for
TE0m is:

J1(ua)

uJ0(ua)
+

K1(wa)

wK0(wa)
= 0 (3.59)

Similarly, the equation determining kz for TM0m is:

k21
J1(ua)

uJ0(ua)
+ k22

K1(wa)

wK0(wa)
= 0 (3.60)

If n �= 0, we do not have TE or TM modes, and the analysis becomes very
complex. However, if n1 ≈ n2 or (n1 − n2 � 1), we can apply an important
class of approximations which lead to weakly guided waves.
The cutoff conditions (w2 → 0) for lower order modes are summarized in
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Table 3.1: Cutoff Conditions for Lower Order Modes of Optical Fiber
n Mode Cutoff Condition
0 TE0m, TM0m J0(ua) = 0
1 HE0m, EH0m J1(ua) = 0

≥ 2 EHnm Jn(ua) = 0
≥ 2 HEnm ( ε1

ε2
+ 1)Jn−1(ua) =

ua
n−1

Jn(ua)

Table(3.1). We now discuss the V -number, also called the V-parameter or
the normalized frequency. The value V is defined as:

V 2 = (u2 + w2)a2 =

(
2πa

λ0

)2 (
n2
1 − n2

2

)
(3.61)

V is dimensionless. Note that the value
(

2πa
λ0

)
is proportional to frequency

(up to a factor equal to the speed of light), and hence V is called the nor-
malized frequency.
The value V is related to the number of modes that a fiber can support. Also
the normalized propagation constant, b can be defined as:

b =
a2w2

V 2
=

(kz/k)
2 − n2

2

n2
1 − n2

2

=
n2
eff − n2

2

n2
1 − n2

2

(3.62)

Note that 0 < b < 1 corresponds to wave propagation.
A graph of b or kz/k versus V shows that for fixed V , only several modes
are possible. In particular, the HE11 mode exists (corresponds to a value b
in the range 0 to 1) for all V , down to V = 0. No other mode exists until
V = 2.405 (this is the smallest root of J0(x) ). Hence, below this value of V ,
all modes other than HE11 are in cutoff. For this reason, HE11 is called the
dominant mode.
Two modes with the same value for kz are said to be degenerate. We associate
degenerate modes together since they have identical propagation character-
istics, although different field distributions. In other words, we consider all
linear combinations of a class of degenerate modes to be a mode uncoupled
to itself. We list the primary lower order modes of optical fiber according to
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their degeneracies:

HE11

TE01, TM01, HE21

HE31, EH11

HE12

HE41, EH21

TE02, TM02, HE22

These pairs of degenerate modes are called LP (linearly polarized) modes of
optical fiber, since they can be combined to yield fixed orientation. That is,
in a complete set of modes, only one E and one H component are significant,
say the E polarized along one axis and H perpendicular to it.

3.5 Infinite Electric Line Source

Let the electric line source Fig.(3.5) with I0 be located at (ρ0, φ0), therefore
the electric field at point (ρ, φ) will be:

Figure 3.5: Line source

Ez = −I0ωμ
4
H

(2)
0 (k|ρ− ρ0|) (3.63)
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where R = |ρ− ρ0| =
√
ρ2 + ρ20 − 2ρρ0 cos(φ− φ0). The Hankel function of

Eq.(3.63) can be written as:

H
(2)
0 (k|ρ− ρ0|) =

+∞∑
n=−∞

Jn(kρ)H
(2)
n (kρ0)e

jn(φ−φ0) ρ ≤ ρ0 (3.64)

H
(2)
0 (k|ρ− ρ0|) =

+∞∑
n=−∞

Jn(kρ0)H
(2)
n (kρ)ejn(φ−φ0) ρ ≥ ρ0 (3.65)

We can write E and H fields of line source in terms of M andN in cylindrical
coordinates, ∂

∂z
= 0.

ψ = Z
(g)
n (kρ)ejnφ

M = ∇× (ψaz) =
1
ρ
∂ψ
∂φ
aρ − ∂ψ

∂ρ
aφ

N = 1
k
∇×M = kψaz

(3.66)

E =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=−∞

a(4)n N(1)
n (kρ) ρ ≤ ρ0

∞∑
n=−∞

a(1)n N(4)
n (kρ) ρ ≥ ρ0

(3.67)

H =
j

η

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=−∞

a(4)n M(1)
n (kρ) ρ ≤ ρ0

∞∑
n=−∞

a(1)n M(4)
n (kρ) ρ ≥ ρ0

(3.68)

where a
(4)
n = −I0 ωμ4kH(2)

n (kρ0)e
−jnφ0 for ρ ≤ ρ0 and a

(1)
n = −I0 ωμ4k Jn(kρ0)e−jnφ0

for ρ ≥ ρ0.

3.5.1 Line Source Near a Dielectric Circular Cylinder

Consider a circular dielectric cylinder, parallel to a line source (an inci-
dent plane wave is a particular case of such a source). The problem is
two-dimensional. Let the line source be at ρ0, φ0 and the dielectric circu-
lar cylinder have radius a. Now we want to find electromagnetic field inside
and outside the cylinder. Outside the cylinder is medium 1 and inside the
cylinder is assumed media 2. According to Fig.(3.6), it can be written:
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Figure 3.6: Line source near a dielectric cylinder

Ei =

∞∑
n=−∞

a(4)n N(1)
n (k1ρ) ρ ≤ ρ0

Hi = j
η1

∞∑
n=−∞

a(4)n M(1)
n (k1ρ)

(3.69)

where a
(4)
n = −I0 ωμ14k1

H
(2)
n (k1ρ0)e

−jnφ0 for ρ ≤ ρ0. The scattered fields will be

Es =
∞∑

n=−∞
asnN

(4)
n (k1ρ)

Hs = j
η1

∞∑
n=−∞

asnM
(4)
n (k1ρ)

(3.70)

and the fields inside the dielectric will be:

Et =

∞∑
n=−∞

atnN
(1)
n (k2ρ)

Ht = j
η2

∞∑
n=−∞

atnM
(1)
n (k2ρ)

(3.71)

Now we can apply boundary conditions for tangential electric and magnetic
fields at ρ = a.

az · (Ei + Es −Et) = 0



3.5. INFINITE ELECTRIC LINE SOURCE 91

aφ · (Hi +Hs −Ht) = 0

∞∑
n=−∞

a(4)n k1Jn(k1a)e
jnφ +

∞∑
n=−∞

asnk1H
(2)
n (k1a)e

jnφ =
∞∑

n=−∞
atnk2Jn(k2a)e

jnφ

(3.72)
we multiply both side of Eq.(3.72) by e−jmφ and integrating from 0 to 2π, it
yields:

a(4)n k1Jn(k1a) + asnk1H
(2)
n (k1a) = atnk2Jn(k2a) (3.73)

by the same procedure for tangential magnetic field:

k1
η1
a(4)n J ′

n(k1a) +
k1
η1
asnH

′(2)
n (k1a) =

k2
η2
atnJ

′
n(k2a) (3.74)

From Eq.(3.73) and Eq.(3.74) we can determine two unknowns asn and atn:⎡⎣ −k1H(2)
n (k1a) k2Jn(k2a)

−ε1H ′(2)
n (k1a) ε2J

′
n(k2a)

⎤⎦⎡⎣ asn

atn

⎤⎦ =

⎡⎣ a
(4)
n k1Jn(k1a)

ε1a
(4)
n J ′

n(k1a)

⎤⎦ (3.75)

3.5.2 Line Source Inside a Dielectric Circular Cylinder

Fig.(3.7) shows the location of a electric line source inside a dielectric cylin-
der. Incident or excitation field will be:

Ei =

∞∑
n=−∞

a(1)n N(4)
n (k2ρ) ρ ≥ ρ0

Hi = j
η2

∞∑
n=−∞

a(1)n M(4)
n (k2ρ)

(3.76)

where a
(1)
n = −I0 ωμ24k2

Jn(k2ρ0)e
−jnφ0 for ρ ≥ ρ0. The reflected or scattered

field from the boundary:

Es =
∞∑

n=−∞
asnN

(1)
n (k2ρ)

Hs = j
η2

∞∑
n=−∞

asnM
(1)
n (k2ρ)

(3.77)
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Figure 3.7: Line source inside a dielectric cylinder

and the transmitted fields outward the cylinder will be

Et =

∞∑
n=−∞

atnN
(4)
n (k1ρ)

Ht = j
η1

∞∑
n=−∞

atnM
(4)
n (k1ρ)

(3.78)

By applying boundary conditions at ρ = a,

az · (Ei + Es −Et) = 0

aφ · (Hi +Hs −Ht) = 0

therefore:

a
(1)
n k2H

(2)
n (k2a) + asnk2Jn(k2a) = atnk1H

(2)
n (k1a)

k2
η2
a
(1)
n H ′(2)

n (k2a) +
k2
η2
asnJ

′
n(k2a) =

k1
η1
atnH

′(2)
n (k1a)

(3.79)

The unknowns can be determined from the above two equations:⎡⎣ −k2J (2)
n (k2a) k1H

(2)
n (k1a)

−ε2J ′
n(k2a) ε1H

′(2)
n (k1a)

⎤⎦⎡⎣ asn

atn

⎤⎦ =

⎡⎣ a
(1)
n k2H

(2)
n (k2a)

ε2a
(1)
n H

′(2)
n (k2a)

⎤⎦ (3.80)
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3.5.3 Line Source at the Center of a Dielectric Circular

Cylinder

This problem is a special case of the configuration Fig.(3.7). We do not need
summation [why ?]. The excitation field will be:

Ei
z = aiH

(2)
0 (k2ρ), ai = −I0 ωμ24 , ρ ≤ a

H i
φ = 1

jη2
aiH

′(2)
0 (k2ρ)

(3.81)

The transmitted field cab be written:

Et
z = atH

(2)
0 (k1ρ), ρ ≥ a

H t
φ = 1

jη1
atH

′(2)
0 (k1ρ)

(3.82)

and finally the scattered field:

Es
z = asJ0(k2ρ), , ρ ≤ a

Hs
φ = 1

jη2
asJ ′

0(k2ρ)
(3.83)

Now we can apply boundary conditions, at ρ = a:

aiH
(2)
0 (k2a) + atJn(k2a) = asH

(2)
0 (k1a)

1
η2
aiH ′(2)

0 (k2a) +
1
η2
atJ ′

0(k2a) =
1
η1
asH ′(2)

0 (k1a)
(3.84)

or in matrix form:⎡⎢⎣ −J (2)
0 (k2a) H

(2)
0 (k1a)

−1
η2
J ′
0(k2a)

1
η1
H ′(2)

0 (k1a)

⎤⎥⎦
⎡⎣ at

asn

⎤⎦ =

⎡⎢⎣ aiH
(2)
0 (k2a)

1
η2
aiH

′(2)
0 (k2a)

⎤⎥⎦ (3.85)

and the unknown will be found.

3.6 Scattering by a Circular Cylinder

In this section we will consider some simple objects like metallic or dielectric
cylinder, and in each case we will find the Radar Cross Section of them. In
cylinder, the wave may hit the cylinder normally or in oblique. In this book
we only consider normal case. The electric or magnetic field may be parallel
to the axis of cylinder. The TE and TM polarizations will be treated in the
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following section.

Scattering by cylinder

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

normal incident

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

TE Polarization

⎧⎨⎩
Dielectric
Conductor
PEMC

TM Polarization

⎧⎨⎩
Dielectric
Conductor
PEMC

oblique incident

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

TE Polarization

⎧⎨⎩
Dielectric
Conductor
PEMC

TM Polarization

⎧⎨⎩
Dielectric
Conductor
PEMC

3.6.1 Plane Wave Expansion in Cylindrical Coordinate

Suppose we have a line source that is located at ρ0, φ0. The wave that comes
toward the origin will be

Ei
z =

∞∑
n=−∞

ainJn(kρ)e
jnφ ρ ≤ ρ0 (3.86)

where ain = −I0 ωμ4 H(2)
n (kρ0)e

−jnφ0 for ρ ≤ ρ0. If line source goes farther and
farther from the origin, the wave looks like the TMz plane wave. Now let us
have a plane wave which comes towards the origin with incident angle φ0. It
does not matter whether is TEz or TMz

ejk(x cosφ0+y sinφ0) (3.87)

This equation can be transformed into cylindrical coordinate

ejk(ρ cosφ cosφ0+ρ sinφ sinφ0) = ejkρ cos(φ−φ0) (3.88)

The incident field is expanded in a Fourier series of φ, whose ρ-dependent
coefficients are found by insertion into Helmholtz equation, to satisfy Bessel’s
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equation. The result will be

ejkρ cos(φ−φ0) =
∞∑

n=−∞
ainJn(kρ)e

jnφ (3.89)

where an = jne−jnφ0.

3.7 Scattering by a Circular Dielectric Cylin-

der

One of the geometries widely used in two dimensional electromagnetic wave
scattering is circular cylinder, because it can be formulated with well known
functions. Consider an infinitely long dielectric circular cylinder with radius
a and electrical parameters μ2, ε2, σ2 located in medium μ1, ε1, σ1 as shown
in Fig.(3.8). In such condition, propagation constant is complex.

Figure 3.8: Scattering by a circular dielectric cylinder, TEz polarization

εrc = εr − j
σ

ωε0
, ε = εrcε0, k = ω

√
με

The plane wave may incident at normal or oblique to cylinder. In the case of
normal incident two new case can be considered: TE and TM polarizations.
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3.7.1 Normal Incidence, TM Polarization

A plane wave incident on a dielectric circular cylinder with radius a, as shown
in Fig.(3.9). We suppose plane wave as:

Figure 3.9: Scattering by a circular dielectric cylinder, TM polarization

Ei = E0e
jk(x cos φ0+y sinφ0)az =

∞∑
n=−∞

E0j
ne−jnφ0Jn(kρ)ejnφaz (3.90)

This can be rewritten as:

Ei =

∞∑
n=−∞

ainN
(1)
n (k1ρ)

Hi = j
η1

∞∑
n=−∞

ainM
(1)
n (k1ρ)

(3.91)

where ain = E0jn

k1
e−jnφ0. The scattered and transmitted fields can be expressed

by:

Es =
∞∑

n=−∞
bsnN

(4)
n (k1ρ)

Hs = j
η1

∞∑
n=−∞

bsnM
(4)
n (k1ρ)

(3.92)
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Et =
∞∑

n=−∞
atnN

(1)
n (k2ρ)

Ht = j
η2

∞∑
n=−∞

atnM
(1)
n (k2ρ)

(3.93)

where bsn and atn can be found by applying boundary conditions. At ρ = a
the tangential electric and magnetic fields are continuous.

az · (Ei + Es − Et) = 0

aφ · (Hi +Hs −Ht) = 0

therefore

aink1Jn(k1a) + bsnk1H
(2)
n (k1a) = atnk2Jn(k2a) (3.94)

k1
η1
ainJ

′
n(k1a) +

k1
η1
bsnH

′(2)
n (k1a) =

k2
η2
atnJ

′
n(k2a) (3.95)

from which bsn and atn will be determined.⎡⎣ −k1H(2)
n (k1a) k2Jn(k2a)

−ε1H ′(2)
n (k1a) ε2J

′
n(k2a)

⎤⎦⎡⎣ bsn

atn

⎤⎦ =

⎡⎣ aink1Jn(k1a)

ε1a
i
nJ

′
n(k1a)

⎤⎦ (3.96)

where ε1 = ε0εrc1, εrc1 = εr1 − j σ1
ωε0

and k1 = ω
√
μ1ε1. For dielectric cylinder:

ε2 = ε0εrc2 and εrc2 = εr2 − j σ2
ωε0

, therefore k2 = ω
√
μ2ε2 and in general

η =
√

μ
ε
.

3.7.2 Scattering by Conducting Circular Cylinder, TM

Polarization

If σ2 = ∞, we will have perfect circular cylinder. In this case the Ei
z+E

s
z = 0

at the surface of cylinder, therefore atn = 0 and bsn will be:

bsn = − Jn(k1a)

H
(2)
n (k1a)

ain (3.97)
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3.7.3 Scattering byMultilayer Dielectric Cylinder TM

Polarization

Like previous section, we consider a TMz plane wave that incident on a
multilayer dielectric circular cylinder under incident angle φ0 as shown in
Fig.(3.10). The electric field in region one with parameters μ1, ε1 and σ1 is:

Figure 3.10: Scattering by Multilayer Dielectric Cylinder TM Polarization

Ei = E0e
jk1(x cosφ0+y sinφ0)az (3.98)

The corresponding magnetic field will be found from Hi = −1
jωμ1

∇×Ei. Now
we can expand the plane waves as:

Ei =
∞∑

n=−∞
a(1)n N(1)

n (k1ρ)

Hi = j
η1

∞∑
n=−∞

a(1)n M(1)
n (k1ρ)

(3.99)
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where a
(1)
n = E0jn

k1
e−jnφ0 and the scattered field in region 1 will be:

Es =

∞∑
n=−∞

b(1)n N(4)
n (k1ρ)

Hs = j
η1

∞∑
n=−∞

b(1)n M(4)
n (k1ρ)

(3.100)

The transmitted and scattered fields in region 2 with electrical parameters
μ2, ε2 and σ2, are:

E(2) =

∞∑
n=−∞

a(2)n N(1)
n (k2ρ) + b(2)n N(4)

n (k2ρ)

H(2) = j
η2

∞∑
n=−∞

a(2)n M(1)
n (k2ρ) + b(2)n M(4)

n (k2ρ)

(3.101)

Finally, the transmitted fields in region 3 with parameters μ3, ε3 and σ3 are:

E(3) =

∞∑
n=−∞

a(3)n N(1)
n (k3ρ)

H(3) = j
η3

∞∑
n=−∞

a(3)n M(1)
n (k3ρ)

(3.102)

By applying boundary conditions at ρ = R1 and ρ = R2 we have:

a(1)n k1Jn(k1R1) + b(1)n k1H
(2)
n (k1R1) = a(2)n k2Jn(k2R1) + b(2)n k2H

(2)
n (k2R1)

k1
η1
a(1)n J ′

n(k1R1) +
k1
η1
b(1)n H ′(2)

n (k1R1) =
k2
η2
a(2)n J ′

n(k2R1) +
k2
η2
b(2)n H ′(2)

n (k2R1)

a(2)n k2Jn(k2R2) + b(2)n k2H
(2)
n (k2R2) = a(3)n k3Jn(k3R2)

k2
η2
a(2)n J ′

n(k2R2) +
k2
η2
b(2)n H ′(2)

n (k2R2) =
k3
η3
a(3)n J ′

n(k3R2) (3.103)

From these equations we can form a 4×4 matrix to determine the unknowns,
b
(1)
n , a

(2)
n , b

(2)
n and a

(3)
n .

3.7.4 Normal Incidence, TE Polarization

By considering Fig.(3.11), we have:

Hi = H0e
jk(x cos φ0+y sinφ0)az =

∞∑
n=−∞

H0j
ne−jnφ0Jn(kρ)ejnφaz (3.104)
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The corresponding electric field will be find from Ei = 1
jωε1

∇×Hi. Now we

Figure 3.11: Scattering by a circular dielectric cylinder for TE polarization

can expand the plane waves as

Hi =
∞∑

n=−∞
ainN

(1)
n (k1ρ)

Ei = −jη1
∞∑

n=−∞
ainM

(1)
n (k1ρ)

(3.105)

where ain = H0jn

k1
e−jnφ0. The scattered and transmitted fields can be expressed

as:

Hs =
∞∑

n=−∞
bsnN

(4)
n (k1ρ)

Es = −jη1
∞∑

n=−∞
bsnM

(4)
n (k1ρ)

(3.106)

Ht =
∞∑

n=−∞
atnN

(1)
n (k2ρ)

Et = −jη2
∞∑

n=−∞
atnM

(1)
n (k2ρ)

(3.107)
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where bsn and atn can be found by applying boundary conditions at ρ = a:

H t
z = H i

z +Hs
z 0 ≤ φ ≤ 2π

Et
φ = Ei

φ + Es
φ ρ = a (3.108)

aink1Jn(k1a) + bsnk1H
(2)
n (k1a) = atnk2Jn(k2a) (3.109)

η1k1a
i
nJ

′
n(k1a) + η1k1b

s
nH

′(2)
n (k1a) = η2k2a

t
nJ

′
n(k2a) (3.110)

The prime sign indicates the derivative with respect to the argument of the
Bessel’s functions.⎡⎣ −k1H(2)

n (k1a) k2Jn(k2a)

−μ1H
′(2)
n (k1a) μ2J

′
n(k2a)

⎤⎦⎡⎣ bsn

atn

⎤⎦ =

⎡⎣ aink1Jn(k1a)

μ1a
i
nJ

′
n(k1a)

⎤⎦ (3.111)

3.7.5 Scattering by Conducting Circular Cylinder for

TE Polarization

If in Fig.(3.11) σ2 → ∞, we will have perfect circular cylinder. In this case
Ei
φ + Es

φ = 0, therefore atn = 0 and bsn will be [2]:

bsn = − J ′
n(k1a)

H ′(2)
n (k1a)

ain (3.112)

3.7.6 Scattering by Multilayer Dielectric Cylinder for

TE Polarization

Referring with Fig.(3.13), the magnetic field in region one with parameters
μ1, ε1 and σ1 is:

Hi = H0e
jk1(x cosφ0+y sinφ0)az (3.113)

The corresponding electric field will be found from Ei = 1
jωε1

∇×Hi.
Now we can expand the plane waves as:

Hi =
∞∑

n=−∞
a(1)n N(1)

n (k1ρ)

Ei = jη1

∞∑
n=−∞

a(1)n M(1)
n (k1ρ)

(3.114)
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Figure 3.12: Scattering of a TE and TM plane wave by a circular conducting
cylinder

where a
(1)
n = H0jn

k1
e−jnφ0 and the scattered field in region 1 will be:

Hs =

∞∑
n=−∞

b(1)n N(4)
n (k1ρ)

Es = jη1

∞∑
n=−∞

b(1)n M(4)
n (k1ρ)

(3.115)

The transmitted and scattered fields in region 2 with electrical parameters
μ2, ε2 and σ2, are:

H(2) =

∞∑
n=−∞

a(2)n N(1)
n (k2ρ) + b(2)n N(4)

n (k2ρ)

E(2) = jη2

∞∑
n=−∞

a(2)n M(1)
n (k2ρ) + b(2)n M(4)

n (k2ρ)

(3.116)

Finally the transmitted fields in region 3 with parameters μ3, ε3 and σ3 are:

H(3) =
∞∑

n=−∞
a(3)n N(1)

n (k3ρ)

E(3) = jη3

∞∑
n=−∞

a(3)n M(1)
n (k3ρ)

(3.117)
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Figure 3.13: Scattering by multilayer dielectric cylinder for TE polarization

By applying boundary conditions at ρ = R1 and ρ = R2 we have:

a(1)n k1Jn(k1R1) + b(1)n k1H
(2)
n (k1R1) = a(2)n k2Jn(k2R1) + b(2)n k2H

(2)
n (k2R1)

k1η1a
(1)
n J ′

n(k1R1) + k1η1b
(1)
n H ′(2)

n (k1R1) = k2η2a
(2)
n J ′

n(k2R1) + k2η2b
(2)
n H ′(2)

n (k2R1)

a(2)n k2Jn(k2R2) + b(2)n k2H
(2)
n (k2R2) = a(3)n k3Jn(k3R2)

k2η2a
(2)
n J ′

n(k2R2) + k2η2b
(2)
n H ′(2)

n (k2R2) = k3η3a
(3)
n J ′

n(k3R2) (3.118)

From these equations we can form 4 × 4 matrix to determine the unknowns
a
(1)
n , b

(1)
n , a

(2)
n , b

(2)
n and a

(3)
n :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1H(2)
n (k1R1) k2Jn(k2b) k2H

(2)
n (k2R1) 0

−μ1H
′(2)
n (k1R1) μ2J

′
n(k2R1) μ2H

′(2)
n (k2R1) 0

0 −k2Jn(k2R2) −k2H(2)
n (k2R2) k3Jn(k3R2)

0 μ2J
′
n(k2R2) μ2H

′(2)
n (k2a) ε3J

′
n(k3R2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(1)
n

a
(2)
n

b
(2)
n

a
(3)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1nk1Jn(k1R1)

μ1a
1
nJ

′
n(k1R1)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.119)
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Figure 3.14: Scattering of a TMz plane wave by a circular dielectric cylinder

3.8 Scattering by a PEMC Cylinder

As we mentioned in previous section, at the surface of a Perfect Electromag-
netic Conductor(PEMC), the boundary conditions are:

n× (H+ME) = 0

n · (D−MB) = 0 (3.120)

We know that in cylindrical coordinate system, the solution of two dimen-
sional scalar wave equation will be:

∇2ψ + k2ψ = 0 ==> ψ = ejnφ (3.121)

where Zg
n(kρ) is cylindrical Bessel’s functions. Let us introduce two auxiliary

vectors M and N:

M = ∇× (ψaz)

N =
1

k
∇×M (3.122)
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Figure 3.15: Distribution of Ez field in circular dielectric cylinder

After some manipulations

M =
1

ρ

∂ψ

∂φ
aρ − ∂ψ

∂ρ
aφ

N = kψaz (3.123)

We assume a normal incident plane wave, and expand it in terms of M and
N, therefore for TMz polarization, the incident fields are:

Ei = E0e
jk(x cosφ0+y sinφ0)az = E0e

jkρ cos(φ−φ0)az = E0

∞∑
n=−∞

anJn(kρ)e
jnφaz

(3.124)

where an = jne−jnφ0 therefore:

Ei =
E0

k

∞∑
n=−∞

anN
(1)
n (kρ)

Hi =
jE0

ωμ

∞∑
n=−∞

anM
(1)
n (kρ) (3.125)
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Figure 3.16: Distribution of Ez field in circular dielectric cylinder

The scattered fields are expanded in the form of:

Es =
E0

k

∞∑
n=−∞

[bnN
(4)
n (kρ) + cnM

(4)
n (kρ)]

Hs =
jE0

ωμ

∞∑
n=−∞

[bnM
(4)
n (kρ) + cnN

(4)
n (kρ)] (3.126)

Since we have PEMC, there should be one more term for cross-polarized TE
components. Now we can apply boundary conditions for PEMC. The tan-
gential and normal field components have to satisfy the boundary conditions
at the cylinder surface:

H i
t +Hs

t +M(Ei
t + Es

t ) = 0 (3.127)

ε(Ei
ρ + Es

ρ)−Mμ(H i
ρ +Hs

ρ) = 0 (3.128)

By applying these boundary conditions, we obtain the following system of
linear equations are obtained:

H(2)
n (ka)bn +

j

Mη
H(2)
n (ka)cn = −anJn(ka) (3.129)

H ′(2)
n (ka)bn − jMηH ′(2)

n (ka)cn = −anJ ′
n(ka) (3.130)
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where a is the radius of the PEMC cylinder. By solving these equations we
will have:

bn = −H
(2)
n (ka)J ′

n(ka) +M2η2H ′(2)
n (ka)Jn(ka)

(1 +M2η2)H
(2)
n (ka)H ′(2)

n (ka)
an (3.131)

cn =
2Mη

πka(1 +M2η2)H
(2)
n (ka)H ′(2)

n (ka)
an (3.132)

For TEz case we have:

Ei = E0e
jk(x cosφ0+y sinφ0) =

jE0

k

∞∑
n=−∞

anM
(1)
n (kρ)

Hi =
E0

ωμ

∞∑
n=−∞

anN
(1)
n (kρ) (3.133)

where an = jne−jnφ0. The scattered fields are expanded in the form of:

Es =
jE0

k

∞∑
n=−∞

[bnM
(4)
n (kρ) + cnN

(4)
n (kρ)]

Hs =
E0

ωμ

∞∑
n=−∞

[bnN
(4)
n (kρ) + cnM

(4)
n (kρ)] (3.134)

Similar to the previous case, we have the cross-polarized term.
By applying boundary conditions for PEMC cylinder at ρ = a, we will have:

bn = −H
′(2)
n (ka)Jn(ka) +M2η2H

(2)
n (ka)J ′

n(ka)

(1 +M2η2)H
(2)
n (ka)H ′(2)

n (ka)
an (3.135)

cn =
2Mη

πka(1 +M2η2)H
(2)
n (ka)H ′(2)

n (ka)
an (3.136)

3.9 Scattering by Circular Anisotropic Cylin-

der

In a single crystal, the physical and mechanical properties often differ with
orientation. It can be seen from looking at our models of crystalline structure
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that atoms should be able to slip over one another or distort in relation to
one another easier in some directions than others. When the properties of
a material vary with different crystallographic orientations, the material is
said to be anisotropic. Alternately, when the properties of a material are the
same in all directions, the material is called to be isotropic. For modeling
human anatomy, composition of fluids, composite materials, the substrates
of integrated circuits and so on are anisotropic materials.
In this section we study the scattering of a plane wave by anisotropic circular
cylinder with the following permittivity and permeability tensors:

ε =

⎡⎣ εxx εxy 0
εyx εyy 0
0 0 εzz

⎤⎦ μ =

⎡⎣ μxx μxy 0
μyx μyy 0
0 0 μzz

⎤⎦ (3.137)

where all the elements of the matrices of ε and μ are may be real or complex
constants.
In this section we will study only the TEz polarization (i.e. H = Hzaz); The
reader may do the same derivation for TMz polarization as an exercise.
The partial differential equation for TMz polarization is found to be [66]

εxx
∂2Hz

∂x2
+ εyy

∂2Hz

∂y2
+ (εyx + εxy)

∂2Hz

∂x∂y
+ ω2μzzγHz = 0 (3.138)

where γ = εxxεyy − εxyεyx. It can be shown by the angular spectrum repre-
sentation of plane waves given in [66] that the field inside a cylinder can be
expressed by a finite summation of eigne plane waves as:

Hz(ρ, φ) =
N∑

s=−N
ase

jksρ cos(φ−φs) (3.139)

where

ks =

(
m2
z

ε+ + ε− cos 2φs + σ+ sin 2φs

)1/2

(3.140)

mz = ω
√
μzzγ

ε± =
1

2
(εxx ± εyy)

σ± =
1

2
(εxy ± εyx)

φs =
2πs

2N + 1
s = −N, . . . , N
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Each eigen plane wave in Eq.(3.139)is a wave function of the first kind in
an anisotropic medium. Expanding the plane wave factor in Eq.(3.139),
we obtain the series form of wavefunctions of the first kind for anisotropic
medium as follows:

Hz(ρ, φ) =

N∑
s=−N

asH
(1)
zs (ρ, φ) (3.141)

H(1)
zs (ρ, φ) =

∞∑
m=−∞

j−mJm(ksρ)ejmφse−jmφ (3.142)

Note that because Bessel function of other kinds satisfy the same differential
equations and the same recursive relations as that of the first kind, we can
give the definition of cylindrical wave functions of gth kind H

(g)
z (ρ, φ) for the

anisotropic medium as:

H(g)
z (ρ, φ) =

N∑
s=−N

a(g)s H(g)
zs (ρ, φ) (3.143)

H(g)
zs (ρ, φ) =

∞∑
m=−∞

j−mejmφsZ(g)
m (ksρ)e

−jmφ g = 1, 2, 3, 4 (3.144)

Using the four wave functions given in Eq.(3.143) we can obtain solution to
the problems in cylindrically layered structures. Now let us look at simple
case, scattering by an anisotropic cylinder, Fig.(3.17). In free space the
incident and scattered fields will be:

H i
z(ρ, φ) =

∞∑
n=−∞

j−nejnφ0Jn(k0ρ)e−jnφ (3.145)

and the corresponding tangential electric field will be:

Ei
φ(ρ, φ) = −jη0

∞∑
n=−∞

j−nejnφ0J ′
n(k0ρ)e

−jnφ (3.146)

Hs
z (ρ, φ) =

∞∑
n=−∞

j−nasnH
(2)
n (k0ρ)e

jnφ (3.147)
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Figure 3.17: anisotropic cylinder

and the corresponding tangential electric field will be:

Es
φ(ρ, φ) = −jη0

∞∑
n=−∞

j−nasnH
′(2)
n (k0ρ)e

jnφ (3.148)

The fields inside the anisotropic cylinder will be considered as:

H t
z(ρ, φ) =

∞∑
n=−∞

j−nejnφ
N∑

s=−N
atsH

(1)
ns (3.149)

where
H(1)
ns = J(ksρ)e

−jnφs (3.150)

and the corresponding tangential electric field will be

Et
φ(ρ, φ) =

∞∑
n=−∞

j−nejnφ
N∑

s=−N
atsE

(1)
ns (3.151)

where
E

(1)
ns = −ks(φs)

ωγ
{−jερρJ ′

n[ks(φs)ρ]

+ n
ks(φs)ρ

Jn[ks(φs)ρ]εφρ(φs +
π
2

}
e−jnφs

(3.152)
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and

ερρ(φs) = ε+ + ε− cos 2φs + ε+ sin 2φs (3.153)

εφρ(φs) = −σ− + σ+ cos 2φs − ε− sin 2φs

The boundary conditions at the surface of the cylinder ρ = a leads to the
following equations:

∞∑
n=−∞

j−nejnφ
N∑

s=−N
atsJ(ksa)e

−jnφs =

∞∑
n=−∞

j−nejnφJn(k0a)e−jnφ0 +
∞∑

n=−∞
j−nejnφasnH

(2)
n (k0a)

(3.154)

∞∑
n=−∞

j−nejnφ
N∑

s=−N
atsE

(1)
ns =

−jη0
∞∑

n=−∞
j−nejnφJ ′

n(k0a)e
−jnφ0−jη0

∞∑
n=−∞

j−nejnφasnH
′(2)
n (k0a)

(3.155)

By using the orthogonality of sinusoidal functions in both Eq.(3.154) and
Eq.(3.155), we will have:

N∑
s=−N

atsJ(ksa)e
−jnφs + asnH

(2)
n (k0a) = Jn(k0a)e

−jnφ0 (3.156)

N∑
s=−N

atsE
(1)
ns − jη0a

s
nH

′(2)
n (k0a) = −jη0J ′

n(k0a)e
−jnφ0 (3.157)

Two equation Eq.(3.156) and Eq.(3.157) are the matrix form and we can find
the unknowns parameters ats and a

s
n.

3.10 Scattering by Circular Chiral Cylinder

We consider an infinitely long circular chiral cylinder. As is customary in two-
dimensional problems, two mutually exclusive situations will be analyzed:
the TMz-case in which the incident electric field is parallel to the cylinder
axis (i.e., the z axis); and the TEz- case in which the incident magnetic field
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is parallel to the z axis. The two situations are illustrated in Fig.(3.18).
The cylinder is considered to be embedded in a space with μ1, ε1, and k1 =
ω
√
μ1ε1, the media wave number. Bohren [60] was the first person to examine

the scattering of plane waves by a chiral cylinder.

Figure 3.18: Scattering by a circular chiral cylinder

3.10.1 TM z polarization

We first consider the TMz case. The incident electric field is given by:

Ei = E0e
jk1(x cos φ0+y sinφ0)az =

∞∑
n=−∞

E0j
ne−jnφ0Jn(k1ρ)ejnφaz (3.158)

The incident wave can be written as

Ei =

∞∑
n=−∞

ainN
(1)
n (k1ρ) (3.159)

Hi =
j

η1

∞∑
n=−∞

ainM
(1)
n (k1ρ) (3.160)

where ain = jnE0

k1
e−jnφ0. The scattered field will be

Es =

∞∑
n=−∞

asnM
(4)
n (k1ρ) + bsnN

(4)
n (k1ρ) (3.161)
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Hs =
j

η1

∞∑
n=−∞

asnN
(4)
n (k1ρ) + bsnM

(4)
n (k1ρ) (3.162)

and the fields inside the chiral cylinder will be Et = QR + jη2QL, H
t =

QL + j
η2
QR

QR =
∞∑

n=−∞
atn[M

(1)
n (kRρ)−N(1)

n (kRρ)] (3.163)

QL =
∞∑

n=−∞
btn[M

(1)
n (kLρ) +N(1)

n (kLρ)] (3.164)

where

kR =
ω
√
μ2ε2

1 + βω
√
μ2ε2

and

kL =
ω
√
μ2ε2

1− βω
√
μ2ε2

Now we can apply boundary conditions in order to find four unknown
asn, b

s
n, a

t
n and btn. At ρ = a;

az · [Ei + Es −Et] = 0

aφ · [Ei + Es −Et] = 0

az · [Hi +Hs −Ht] = 0

aφ · [Hi +Hs −Ht] = 0 (3.165)

aink1Jn(k1a) + bsnk1H
(2)
n (k1a)− atnkRJn(kRa) + jη2kLb

t
nJn(kLa) = 0

+asnH
′(2)
n (k1a)− atnkRJ

′
n(kRa)− jη2kLb

t
nJ

′
n(kLa) = 0

j

η1
ainJ

′
n(k1a) +

j

η1
bsnH

′(2)
n (k1a)− j

η2
kRa

t
nJ

′
n(kRa)− btnkLJ

′
n(kLa) = 0

j

η1
k1a

s
nH

(2)
n (k1a)− 1

η2
kRa

t
nJn(kRa) + btnkLJn(kLa) = 0

(3.166)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1H(2)
n (k0a) kRJn(kRa) −jη2kLJn(kLa) 0

−jk1
η1
H ′(2)

n (k1a)
jkR
η2
J ′
n(kRa) kLJ

′
n(kLa) 0

0 jkR
η2
Jn(kRa) −kLJn(kLa) −j

η1
H

(2)
n (k1a)

0 kRJ
′
n(kRa) jη2kLJ

′
n(kLa) −k1H ′(2)

n (k1a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

bsn

atn

btn

asn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

aink1Jn(k1a)

jk1
η1
ainJ

′
n(k1a)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and from these four equations we can determine the unknowns.

3.10.2 TEz polarization

The incident magnetic field is given by:

Hi = H0e
jk1(x cos φ0+y sinφ0)az =

∞∑
n=−∞

H0j
ne−jnφ0Jn(k1ρ)ejnφaz (3.167)

The incident wave can be written as:

Hi =

∞∑
n=−∞

ainN
(1)
n (k1ρ) (3.168)

Ei = −jη1
∞∑

n=−∞
ainM

(1)
n (k1ρ) (3.169)

where ain = jnH0

k1
e−jnφ0. The scattered field will be

Hs =
∞∑

n=−∞
asnM

(4)
n (k1ρ) + bsnN

(4)
n (k1ρ) (3.170)

Es = −jη1
∞∑

n=−∞
asnN

(4)
n (k1ρ) + bsnM

(4)
n (k1ρ) (3.171)

and the fields inside the cylinder will be Et = QR+ jη2QR, H
t = QL+

j
η2
QR

QR =

∞∑
n=−∞

atn[M
(1)
n (kRρ)−N(1)

n (kRρ)] (3.172)
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QL =

∞∑
n=−∞

btn[M
(1)
n (kLρ) +N(1)

n (kLρ)] (3.173)

where

kR =
ω
√
μ2ε2

1 + βω
√
μ2ε2

and

kL =
ω
√
μ2ε2

1− βω
√
μ2ε2

Now we can apply the boundary conditions at ρ = a to find the four
unknown parameters asn, b

s
n, a

t
n and btn:

az · [Ei + Es −Et] = 0

aφ · [Ei + Es −Et] = 0

az · [Hi +Hs −Ht] = 0

aφ · [Hi +Hs −Ht] = 0 (3.174)

aink1Jn(k1a) + bsnk1H
(2)
n (k1a)− j

η2
atnkRJn(kRa) + kLb

t
nJn(kLa) = 0

+asnk1H
′(2)
n (k1a)− j

η2
atnkRJ

′
n(kRa)− kLb

t
nJ

′
n(kLa) = 0

−jη1k1ainJ ′
n(k1a)− jη1k1b

s
nH

′(2)
n (k1a)− kRa

t
nJ

′
n(kRa)− jη2kLb

t
nJ

′
n(kLa) = 0

−jη1k1asnH(2)
n (k1a)− kRa

t
nJn(kRa) + jη2b

t
nkLJn(kLa) = 0

(3.175)

In matrix form;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1H(2)
n (k1a)

jkR
η2
Jn(kRa) −kLJn(kLa) 0

−jk1η1H ′(2)
n (k1a) −kRJ ′

n(kRa) −jη2kLJ ′
n(kLa) 0

0 kRJn(kRa) −jη2kLJn(kLa) jη1k1H
(2)
n (k1a)

0 jkR
η2
J ′
n(kRa) jkLJ

′
n(kLa) k1H

′(2)
n (k1a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

(3.176)
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bsn

atn

btn

asn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

aink1Jn(k1a)

jainη1k1J
′
n(k1a)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.10.3 Scattering of EM waves from chirally coated cir-
cular cylinders

In this section we will consider a long circular chirally coated cylinder as
shown in Fig.(3.19) We first consider the TMz case. The incident electric

Figure 3.19: Chirally coated infinite circular cylinder

field is given by:

Ei = E0e
jk3(x cos φ0+y sinφ0)az =

∞∑
n=−∞

E0j
ne−jnφ0Jn(k3ρ)ejnφaz (3.177)
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The incident wave can be written as:

Ei =

∞∑
n=−∞

ainN
(1)
n (k3ρ) (3.178)

Hi =
j

η3

∞∑
n=−∞

ainM
(1)
n (k3ρ) (3.179)

where ain = jnE0

k3
e−jnφ0. The scattered field will be:

Es =
∞∑

n=−∞
a(3)n M(4)

n (k3ρ) + b(3)n N(4)
n (k3ρ) (3.180)

Hs =
j

η3

∞∑
n=−∞

a(3)n N(4)
n (k3ρ) + b(3)n M(4)

n (k3ρ) (3.181)

and the fields inside the chiral layer will be E2 = QR + jη2QL, H
2 = QL +

j
η2
QR

QR =
∞∑

n=−∞
{a(2)n [M(1)

n (kRρ)−N(1)
n (kRρ)] + b(2)n [M(4)

n (kRρ)−N(4)
n (kRρ)]}

(3.182)

QL =

∞∑
n=−∞

{c(2)n [M(1)
n (kLρ) +N(1)

n (kLρ)] + d(2)n [M(4)
n (kLρ) +N(4)

n (kLρ)]}
(3.183)

where

kR =
ω
√
μ2ε2

1 + βω
√
μ2ε2

and

kL =
ω
√
μ2ε2

1− βω
√
μ2ε2

The fields in the innermost layer are given as follows

E(1) =

∞∑
n=−∞

a(1)n M(1)
n (k1ρ) + b(1)n N(1)

n (k1ρ) (3.184)
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H(1) =
j

η1

∞∑
n=−∞

a(1)n N(1)
n (k1ρ) + b(1)n M(1)

n (k1ρ) (3.185)

Now the boundary conditions are applied to find the eight unknown coeffi-
cients of a

(3)
n , b

(3)
n , a

(2)
n , b

(2)
n , c

(2)
n , d

(2)
n , a

(1)
n and b

(1)
n .

az · [Ei + Es − E(2)] = 0 aφ · [Hi +Hs −H(2)] = 0 ρ = b

az · [E(2) − E(1)] = 0 aφ · [H(2) −H(1)] = 0 ρ = a

For the TEz case. The incident magnetic field is given by:

Hi = H0e
jk3(x cos φ0+y sinφ0)az =

∞∑
n=−∞

H0j
ne−jnφ0Jn(k3ρ)ejnφaz (3.186)

The incident wave can be written as:

Hi =

∞∑
n=−∞

ainN
(1)
n (k3ρ) (3.187)

Ei = −jη3
∞∑

n=−∞
ainM

(1)
n (k3ρ) (3.188)

where ain = jnH0

k3
e−jnφ0. The scattered field will be:

Hs =

∞∑
n=−∞

a(3)n M(4)
n (k3ρ) + b(3)n N(4)

n (k3ρ) (3.189)

Es = −jη3
∞∑

n=−∞
a(3)n N(4)

n (k3ρ) + b(3)n M(4)
n (k3ρ) (3.190)

and the fields inside the chiral layer is the same as those for TMz ; E(2) =
QR + jη2QL, H

(2) = QL+
j
η2
QR. The fields in the innermost layer are given

as follows

H(1) =

∞∑
n=−∞

a(1)n M(1)
n (k1ρ) + b(1)n N(1)

n (k1ρ) (3.191)
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E(1) = −jη1
∞∑

n=−∞
a(1)n N(1)

n (k1ρ) + b(1)n M(1)
n (k1ρ) (3.192)

Now the boundary conditions are applied to find the eight unknown coeffi-
cients of a

(3)
n , b

(3)
n , a

(2)
n , b

(2)
n , c

(2)
n , d

(2)
n , a

(1)
n and b

(1)
n :

az · [Hi +Hs −H(2)] = 0 aφ · [Ei + Es −E(2)] = 0 ρ = b

az · [H(2) −H(1)] = 0 aφ · [E(2) − E(1)] = 0 ρ = a

3.11 The addition theorem for circularly cylin-

drical waves

Before attempting to solve any scattering of waves by two or more eccentric
circular cylinder, we need to review one theorem. In Fig.(3.20) O1 and O2

denote the origins of two rectangular coordinate systems. The figure is on
the xy−plane of both systems and the axes x2, y2 and z through O2 are
respectively parallel to x1, y1 and z. We wish to express the cylindrical wave
in system O1 in terms of a sum of cylindrical wave functions to parallel z−axis
through O2.:

Figure 3.20: Scattering from two eccentric cylinder



120 CHAPTER 3. CIRCULAR CYLINDER

Jn(βρ2)e
jnφ2 =

∞∑
m=−∞

Jm(βd)e
−jmφdJn+m(βρ1)ej(n+m)φ1 (3.193)

or

Jn(βρ1)e
jnφ1 =

∞∑
m=−∞

Jm(βd)e
−jm(φd+π)Jn+m(βρ2)e

j(n+m)φ2 (3.194)

If d = 0, the two centers coincide; Jm(0) = 0 for all values of m except zero
and J0(0) = 1. For Hankel functions we have
If ρ1 ≥ d then

H(2)
n (βρ2)e

jnφ2 =

∞∑
m=−∞

Jm(βd)e
−jmφdH(2)

n+m(βρ1)e
j(n+m)φ1 (3.195)

and if ρ1 ≤ d the above equation fails to converge and replaced by:

H(2)
n (βρ2)e

jnφ2 =

∞∑
m=−∞

H(2)
m (βd)e−jmφdJn+m(βρ1)ej(n+m)φ1 (3.196)

which is finite at ρ1 = 0. For H
(2)
n (βρ1)e

jnφ1 we have
If ρ2 ≥ d then

H(2)
n (βρ1)e

jnφ1 =
∞∑

m=−∞
Jm(βd)e

−jm(φd+π)H
(2)
n+m(βρ2)e

j(n+m)φ2 (3.197)

and if ρ2 ≤ d the above equation fails to converge and replaced by

H(2)
n (βρ1)e

jnφ1 =

∞∑
m=−∞

H(2)
m (βd)e−jm(φd+π)Jn+m(βρ2)e

j(n+m)φ2 (3.198)

3.12 Scattering of a Plane Wave by two Ec-

centric Circular Cylinder

Now let us use this theorem in order to find scattering of a plane wave by
two eccentric circular cylinder as shown in Fig.(3.21).
We consider TMz polarization and the incident plane wave can be expanded
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Figure 3.21: Scattering from two eccentric cylinder

as:

Ei
z = ek0(x1 cos φ0+y1 sinφ0) = ejk0ρ1 cos(φ1−φ0) =

∞∑
n=−∞

a0nJn(k0ρ1)e
jnφ1 (3.199)

where a0n = jne−jnφ0 and the scattered field in medium 0 will be :

Es
z =

∞∑
n=−∞

b0nH
(2)
n (k0ρ1)e

jnφ1 (3.200)

and

Hs
φ1 =

1

jη0

∞∑
n=−∞

b0nH
′(2)
n (k0ρ1)e

jnφ1 (3.201)

Therefore in free space we have

E0
z =

∞∑
n=−∞

[
a0nJn(k0ρ1) + b0nH

(2)
n (k0ρ1)

]
ejnφ1 (3.202)

H0
φ1 =

1

jη0

∞∑
n=−∞

[
a0nJ

′
n(k0ρ1) + b0nH

′(2)
n (k0ρ1)

]
ejnφ1 (3.203)
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where b0n is unknown. In medium one we may face with two cases.
Case I

if d < R2:

E1
z =

∞∑
n=−∞

[a1nJn(k1ρ1) + b1nH
(2)
n (k1ρ1)]e

jnφ1 (3.204)

and

H1
φ1 =

1

jη1

∞∑
n=−∞

[a1nJ
′
n(k1ρ1) + b1nH

′(2)
n (k1ρ1)]e

jnφ1 (3.205)

Case II
if d ≥ R2:

E1
z =

∞∑
n=−∞

a1nJn(k1ρ1)e
jnφ1 (3.206)

and

H1
φ1

=
1

jη1

∞∑
n=−∞

a1nJ
′
n(k1ρ1)e

jnφ1 (3.207)

where a1n and b1n are unknown.
In medium two, only one unknown will be found, therefore

E2
z =

∞∑
n=−∞

a2nJn(k2ρ2)e
jnφ2 (3.208)

and

H2
φ2 =

1

jη2

∞∑
n=−∞

a2nJ
′
n(k2ρ2)e

jnφ2 (3.209)

In order to impose boundary conditions, it is better to expand Jn(k1ρ1)e
jnφ1

and H
(2)
n (k1ρ1)e

jnφ1 as:

Jn(k1ρ1)e
jnφ1 =

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)Jn+m(k1ρ2)e

j(n+m)φ2 (3.210)

and if ρ2 ≥ d:

H(2)
n (k1ρ1)e

jnφ1 =

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)H

(2)
n+m(k1ρ2)e

j(n+m)φ2 (3.211)
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where φd is the angle that vector −−→o2o1 makes with vector −−→o2x2. If ρ2 ≤ d:

H(2)
n (k1ρ1)e

jnφ1 =

∞∑
m=−∞

H(2)
m (k1d)e

−jm(φd+π)Jn+m(k1ρ2)e
j(n+m)φ2 (3.212)

Therefore for case I

E1
z =

∞∑
n=−∞

a1n

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)Jn+m(k1ρ2)e

j(n+m)φ2 (3.213)

+
∞∑

n=−∞
b1n

∞∑
m=−∞

H(2)
m (k1d)e

−jm(φd+π)Jn+m(k1ρ2)e
j(n+m)φ2

then

H1
φ2 =

1

jη1

{ ∞∑
n=−∞

a1n

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)J ′

n+m(k1ρ2)e
j(n+m)φ2 (3.214)

+

∞∑
n=−∞

b1n

∞∑
m=−∞

H(2)
m (k1d)e

−jm(φd+π)J ′
n+m(k1ρ2)e

j(n+m)φ2

}

If ρ2 ≥ d and

E1
z =

∞∑
n=−∞

a1n

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)Jn+m(k1ρ2)e

j(n+m)φ2 (3.215)

+
∞∑

n=−∞
b1n

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)H

(2)
n+m(k1ρ2)e

j(n+m)φ2

then

H1
φ2 =

1

jη1

[ ∞∑
n=−∞

a1n

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)J ′

n+m(k1ρ2)e
j(n+m)φ2 (3.216)

+

∞∑
n=−∞

b1n

∞∑
m=−∞

Jm(k1d)e
−jm(φd+π)H

′(2)
n+m(k1ρ2)e

j(n+m)φ2

]

it is clear that for case II, the b1n will be vanished, b1n = 0 .
By applying boundary conditions to the continuity of the Ez and Hφ fields
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at the surface of outer cylinder ρ1 = r1 for any φ1. For case I we have:

∞∑
n=−∞

a0nJn(k0r1)e
jnφ1 +

∞∑
n=−∞

b0nH
(2)
n (k0r1)e

jnφ1 (3.217)

=
∞∑

n=−∞
a1nJn(k1r1)e

jnφ1 +
∞∑

n=−∞
b1nH

(2)
n (k1r1)e

jnφ1

By using orthogonality

a0nJn(k0r1) + b0nH
(2)
n (k0r1) = a1nJn(k1r1) + b1nH

(2)
n (k1r1) (3.218)

1

η0

[
a0nJ

′
n(k0r1) + b0nH

′(2)
n (k0r1)

]
=

1

η1

[
a1nJ

′
n(k1r1) + b1nH

′(2)
n (k1r1)

]
(3.219)

We denote Um = Jm(k1d)e
jm(φ2−φd−π) and Vm = H

(2)
m (k1d)e

jm(φ2−φd−π) there-
fore at ρ2 = r2 for any φ2, If r2 ≥ d, we have:

a1n

∞∑
m=−∞

UmJn+m(k1r2) + b1n

∞∑
m=−∞

UmH
(2)
n+m(k1r2) = a2nJn(k2r2) (3.220)

1

η1

[
a1n

∞∑
m=−∞

UmJ
′
n+m(k1r2) + b1n

∞∑
m=−∞

UmH
′(2)
n+m(k1r2)

]
(3.221)

=
1

η2
a2nJ

′
n(k2r2)

and if r2 ≤ d, we have

a1n

∞∑
m=−∞

UmJn+m(k1r2) + b1n

∞∑
m=−∞

VmJn+m(k1r2) = a2nJn(k2r2) (3.222)

1

η1

[
a1n

∞∑
m=−∞

UmJ
′
n+m(k1r2) + b1n

∞∑
m=−∞

VmJ
′
n+m(k1r2)

]
(3.223)

=
1

η2
a2nJ

′
n(k2r2)
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Therefore if r2 ≥ d we can find unknowns coefficients:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11
n A12

n A13
n 0

A21
n A22

n A23
n 0

0 A32
n A33

n A34
n

0 A42
n A43

n A44
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0n

a1n

b1n

a2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0nJn(k0r1)

1
η0
a0nJ

′
n(k0r1)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.224)

where:
A11
n = −H(2)

n (k0r1), A
12
n = Jn(k1r1), A

13
n = H

(2)
n (k1r1),

A21
n = −1

η0
H

′(2)
n (k0r1), A

22
n = 1

η1
J ′
n(k1r1), A

23
n = 1

η1
H

′(2)
n (k1r1)

A32
n = −∑̃

UmJn+m(k1r2), A
33
n = −∑̃

UmH
(2)
n+m(k1r2), A

34
n = Jn(k2r2),

A42
n = −1

η1

∑̃
UmJ

′
n+m(k1r2), A

43
n = −1

η1

∑̃
UmH

′(2)
n+m(k1r2), A

44
n = 1

η2
J ′
n(k2r2)

If r2 ≤ d

A11
n = −H(2)

n (k0r1), A
12
n = Jn(k1r1), A

13
n = H

(2)
n (k1r1),

A21
n = −1

η0
H

′(2)
n (k0r1), A

22
n = 1

η1
J ′
n(k1r1), A

23
n = 1

η1
H

′(2)
n (k1r1)

A32
n = −∑̃

UmJn+m(k1r2), A
33
n = −∑̃

VmJn+m(k1r2), A
34
n = Jn(k2r2),

A42
n = −1

η1

∑̃
UmJ

′
n+m(k1r2), A

43
n = −1

η1

∑̃
VmJ

′
n+m(k1r2), A

44
n = 1

η2
J ′
n(k2r2)

where in the above matrix we denoted
∑̃

=
∞∑

m=−∞
.

For case II, since b1n = 0, the matrix dimension will be reduced.

3.13 Scattering from a Semicircular Channel

in a Ground Plane

Scattering from geometries with channels, grooves and cracks have received
considerable attention due to fact that these local guiding structures may ex-
cite internal resonances which may have dramatic effects on the nearby elec-
tromagnetic structures. The investigations show that when these structures
are loaded with dielectric materials, the overall scattering patterns change
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significantly, and thus, it is important to obtain an analytical solution to
predict exactly the new scattering behavior. Before attempting to solve this
problem, let us solve a general problem. As shown in Fig.(3.22), a normally
incident plane wave makes an angle φinc with the positive x axis, the circular
lossy dielectric cylinder along the z axis is of radius ρ = a with electrical
parameters μ2, ε2, σ2, and the direction of scattering is given by the angle φ
with the x axis. The surrounding area have μ1, ε1 and σ1. For the incident
TM plane wave, the z-component of the electric field can be expanded in
cylindrical waves as:

Figure 3.22: Scattering from the semicircular channel

Einc
z = ejk1ρ cos(φ−φ

inc) =

∞∑
n=−∞

jnJn(k1ρ)e
jn(φ−φinc) (3.225)

The scattered field for ρ ≥ a may be expressed as the sum of two parts, the
reflected TM plane wave given by

Eref
z = −ejk1ρ cos(φ+φinc) = −

∞∑
n=−∞

jnJn(k1ρ)e
jn(φ+φinc) (3.226)
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where k1 = ω
√
μ1ε0εrc1, εrc1 = εr1 − j σ1

ωε0
and the diffracted field expanded

with Hankel functions as:

Edif
z =

∞∑
n=1

AnH
(2)
n (k1ρ) sin(nφ) (ρ ≥ a) (3.227)

where the An are the unknown modal coefficients. The diffracted field van-
ishes on the ground plane so that total field for ρ ≥ a also vanishes there.
In the interior region (ρ ≤ a) the electric field can be expanded with Bessel
function as:

Einc
z =

∞∑
n=0

Jn(k2ρ)[Bn cos(nφ)− Cn sin(nφ)] (C0 = 0) (ρ ≤ a) (3.228)

where k2 = ω
√
μ2ε0εrc2, εrc2 = εr2 − j σ2

ωε0
and the Bn and Cn are two more

sets of modal coefficients which along with An, will be determined from
the boundary conditions at ρ = a. From Maxwell’s equations we write the
φ-component of the magnetic field as Hφ = 1

jωμ
∂Ez

∂ρ
, so that the boundary

conditions at ρ = a of zero tangential electric field on the region (π < φ < 2π)
and continuous field on upper part of the circular cylinder (0 < φ < π)
become:

∞∑
n=0

BnJn(k2a) cos(nφ) +
∞∑
n=1

CnJn(k2a) sin(nφ) = 0 (π < φ < 2π)

(3.229)

∞∑
n=0

BnJn(k2a) cos(nφ) +

∞∑
n=1

CnJn(k2a) sin(nφ) = (3.230)

∞∑
n=1

[4jnJn(k1a)sin(nφ
inc) + AnH

(2)
n (k1a)] sin(nφ)

(0 < φ < π)

∞∑
n=0

BnJ
′
n(k2a) cos(nφ)/η2 +

∞∑
n=1

CnJ
′
n(k2a) sin(nφ)/η2 = (3.231)

∞∑
n=1

[4jnJ ′
n(k1a)sin(nφ

inc)/η1 + AnH
(2)′
n (k1a)] sin(nφ)/η1

(0 < φ < π)
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where η =
√

μ
ε0εrc

, εrc = εr − j σ
ωε0

. In order to find An, Bn and Cn it is better

to define partially orthogonal integrals:

Icsnm =

∫ π

0

cos(nφ) sin(mφ)dφ =

⎧⎨⎩
m

m2−n2 (1− cosmπ cosnπ) m �= n

0 m = n
(3.232)

Issnm =

∫ π

0

sin(nφ) sin(mφ)dφ =

⎧⎨⎩
0 m �= n

π
2

m = n
(3.233)

Kcs
nm =

∫ 2π

π

cos(nφ) sin(mφ)dφ =

⎧⎨⎩
m

m2−n2 (cosmπ cosnπ − 1) m �= n

0 m = n
(3.234)

Kss
nm =

∫ 2π

π

sin(nφ) sin(mφ)dφ =

⎧⎨⎩
0 m �= n

π
2

m = n
(3.235)

By using these integrals we can now solve the problem. If we multiply both
sides of Eq.(3.229), Eq.(3.230) and Eq.(3.232) by sin(mφ) and integrate over
proper boundary, ie 0 to π or π to 2π, we will have a set of linear equations:

− A1H
(2)
1 (k1a)I

ss
1m − A2H

(2)
2 (k1a)I

ss
2m − · · · − AMH

(2)
M (k1a)I

ss
Mm +

B0J0(k2a)I
cs
0m +B1J1(k2a)I

cs
1m + · · ·+BM−1JM−1(k2a)I

cs
M−1m +

C1J1(k2a)I
ss
1m + C2J2(k2a)I

ss
2m + · · ·+ CMJM(k2a)I

ss
Mm =

D1J1(k1a)I
ss
1m +D2J2(k1a)I

ss
2m + · · ·+DMJM(k1a)I

ss
Mm

(3.236)

where Dn = 4jn sinnφinc

− A1H
′(2)
1 (k1a)I

ss
1m/η1 −A2H

′(2)
2 (k1a)I

ss
2m/η1 − · · · − AMH

′(2)
M (k1a)I

ss
Mm/η1 +

B0J
′
0(k2a)I

cs
0m/η2 +B1J

′
1(k2a)I

cs
1m/η2 + · · ·+BM−1J

′
M−1(k2a)I

cs
M−1m/η2 +

C1J
′
1(k2a)I

ss
1m/η2 + C2J

′
2(k2a)I

ss
2m/η2 + · · ·+ CMJ

′
M(k2a)I

ss
Mm/η2 =

D1J
′
1(k1a)I

ss
1m/η1 +D2J

′
2(k1a)I

ss
2m/η1 + · · ·+DMJ

′
M(k1a)I

ss
Mm/η1

(3.237)
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B0J0(k2a)K
cs
0m +B1J1(k2a)K

cs
1m + · · ·+BM−1JM−1(k2a)K

cs
M−1m +

C1J1(k2a)K
ss
1m + C2J2(k2a)K

ss
2m + · · ·+ CMJM(k2a)K

ss
Mm = 0

(3.238)

If we substitute m = 1, · · · ,M in the above equations, we will have a square
block matrix of 3M × 3M which the 3M unknowns can be calculated.⎡⎣ A11

mn A12
mn A13

mn

A21
mn A22

mn A23
mn

A31
mn A32

mn A33
mn

⎤⎦⎡⎣ X1
n

X2
n

X3
n

⎤⎦ =

⎡⎣ B1
m

B2
m

B3
m

⎤⎦ (3.239)

A11
mn = −H(2)

m (k1a)I
ss
mn, A12

mn = Jm(k2a)I
cs
mn, A13

mn = Jm(k2a)I
ss
mn

A21
mn = −H ′(2)

m (k1a)I
ss
mn/η1, A22

mn = J ′
m(k2a)I

cs
mn/η2, A23

mn = J ′
m(k2a)I

ss
mn/η2

A31
mn = 0, A32

mn = Jm(k2a)K
cs
mn, A33

mn = Jm(k2a)K
ss
mn

and right hand side of the matrix will be:

B1
m =

M∑
n=1

DnJn(k1a)I
ss
nm, B2

m =

M∑
n=1

DnJ
′
n(k1a)I

ss
nm/η1, B3

m = 0, m = 1, 2, · · ·M

and the unknowns are:

X1
n = An, n = 1, 2, · · · ,M

X2
n = Bn, n = 0, 1, · · · ,M − 1

X3
n = Cn, n = 1, 2, · · · ,M

3.14 Problems

• 1 Find the characteristic equation, TEz and TMz, of a sectoral waveg-
uide that is shown in Fig.(3.23)

• 2 Find the characteristic equation of a coaxial waveguide with inner
radius of a and outer radius of b for TEz and TMz modes.

• 3 Find the RCS of a lossless dielectric shell with μ = μ0, dielectric
constant εr = 4, inner radius r1 = 0.25λ and outer radius r2 = 0.3λ,
Fig.(3.24).
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Figure 3.23: Sectoral Waveguide

• 4 Prove the relation:

∞∑
n=−∞

jnZg
n(x)e

jnφ =
∞∑
n=0

jnεnZ
g
n(x) cos(nφ)

where Zg
n(x) g = 1, 2, 3, 4 is cylindrical Bessel’s function and

εn =

{
1 n = 0
2 n �= 0

• 5 Consider a lossy dielectric cylinder shell with inner radius of λ/4 and
outer radius of λ/2. A plane wave with frequency 1GHz and amplitude
100 Volts per meter incident on it at angle 300. Calculate and draw
the electric field inside dielectric along X and Y axis. σ = .1[S/m] ,
εr = 50.

• 6 We have a conducting cylinder with radius a = λ/2. It is coated with
lossy dielectric σ = .1[S/m], εr = 50. and thickness of λ/20. Calculate
and draw its 2D bistatic radar cross section at frequency of 1GHz.

• 7 A uniform plane wave with incident angle of φ0 = π/6 hits a lossy
dielectric cylinder which has a hollow cylindrical shape parallel to his
longitudinal axis. Find RCS and electric field distribution inside lossy
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Figure 3.24: Scattering by a dielectric shell

dielectric cylinder. Confirm your results with Method of MomentMoM.
R1 = λ/2, R2 = λ/8 and located at x1 = R1/2, y1 = −R1/2 with
electrical parameters of ε1 = 5ε0, σ = 0.1S/m and μ1 = μ0.

• 8 A line source is located on axial of smaller cylinder in previous prob-
lem, find the electromagnetic fields anywhere.

• 9 Find the scattering fields from the semicircular channel in a ground
plane for TE polarization.
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Figure 3.25: Scattering from two eccentric cylinders



Chapter 4

Elliptic Cylinder

”Imagination is more important than knowledge.”
Albert Einstein

4.1 Helmholtz Equation in Elliptic Cylindri-

cal Coordinates

Let us first define Elliptic Cylindrical Coordinates System. The v coordinates
are the asymptotic angle of confocal Parabola segments symmetrical about
the x axis. The u coordinates are confocal Ellipses centered on the origin,
Fig.(4.1).

x = f cosh u cos v

y = f sinh u sin v

z = z (4.1)

where u ∈ [0,∞), v ∈ [0, 2π), and z ∈ (−∞,+∞) and on the surface of
elliptic cylinder (e.g. u = u0)

a = f cosh(u0)

b = f sinh(u0)

f =
√
a2 − b2 (4.2)

133
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Figure 4.1: Elliptic Coordinate System

They are related to Cartesian Coordinates by

x2

f 2 cosh2 u
+

y2

f 2 sinh2 u
= 1 (4.3)

x2

f 2 cos2 v
− y2

f 2 sin2 v
= 1 (4.4)

ρ = f
√
cosh2 u− sin2 v

φ = tan−1(tanh u tan v) (4.5)
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ρ1 =
√

(x− f)2 + y2 = f(cosh u+ cos v)

ρ2 =
√

(x+ f)2 + y2 = f(cosh u− cos v)

cosh u =
ρ1 + ρ2
2f

cos v =
ρ1 − ρ2
2f

(4.6)

The Scale Factors are

h1 = f
√
cosh2 u− cos2 v (4.7)

h2 = h1 (4.8)

h3 = 1 (4.9)

and unit vector will be

au =
1√

cosh2 u− cos2 v
[ax sinh u cos v + ay cosh u sin v]

av =
1√

cosh2 u− cos2 v
[ay sinh u cos v − ax cosh u sin v] (4.10)

therefore ∇ · E, ∇×E and ∇ψ will be

∇ · E =
1

h21
[
∂

∂u
(h1Eu) +

∂

∂v
(h1Ev)] +

∂Ez
∂z

∇× E = [
1

h1

∂Ez
∂v

− ∂Ev
∂z

]au + [
∂Eu
∂z

− 1

h1

∂Ez
∂u

]av

+
1

h1
[
∂

∂u
(h1Ev)− ∂

∂v
(h1Eu)]az

∇ψ =
1

h1
(
∂ψ

∂u
au +

∂ψ

∂v
av) +

∂ψ

∂z
az (4.11)

The Helmholtz differential equation is

1

f 2(cosh2 u− cos2 v)

(
∂2ψ

∂u2
+
∂2ψ

∂v2

)
+
∂2ψ

∂z2
+ k2ψ = 0 (4.12)

Attempt separation of variables by writing ψ(u, v, z) = U(u)V (v)Z(z) then
the Helmholtz differential equation becomes

∂2Z

∂z2
+ k2zZ = 0 (4.13)
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which has the solution

Z(z) = A cos(kzz) +B sin(kzz) (4.14)

∂2V

∂v2
+ [λ− 2q cos(2v)]V = 0. (4.15)

∂2U

∂u2
− [λ− 2q cosh(2u)]U = 0 (4.16)

where λ and kz are separation constants and

q =
f 2(k2 − k2z)

4
(4.17)

4.1.1 Mathieu Functions

The equation Eq.(4.15) is called the Mathieu differential equation. Mathieu’s
equation has solution for all values of λ but in applications we need solutions
which are periodic in v. The periodic solution of Eq.(4.15) occur only for
certain characteristic values of λ which depend on q. These solutions are
either even or odd functions. The cem(v, q) are even functions [like cos(x)],
and sem(v, q) are odd functions [like sin(x)]. These solutions are known as
Mathieu functions or in applicational usage angular functions. For compu-
tation of Mathieu functions, it is advantageous and efficient to expand them
in Fourier series.

ce2r(v, q) =

∞∑
k=0

A2r
2k (q) cos 2kv

ce2r+1(v, q) =
∞∑
k=0

A2r+1
2k+1 (q) cos(2k + 1)v

se2r+1(v, q) =
∞∑
k=0

B2r+1
2k+1 (q) sin(2k + 1)v

se2r+2(v, q) =

∞∑
k=0

B2r+2
2k+2 (q) sin(2k + 2)v (4.18)

where r = 0, 1, 2, · · · and Ark and Br
k are the expansion coefficients to be deter-

mined. The Mathieu functions of even order are periodic with π and functions
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of odd order are periodic with 2π. The Fourier coefficients are computed with
recurrence relations, obtained by inserting Eq.(4.18) into Eq.(4.15). This also
yields infinite continued fraction transcendental equations for the determi-
nation of λ for a given parameter q. The calculation of λ and of the Fourier
coefficients has been derived in many papers and books [McLachlan, 1951]
and [Rengarajan and Lewis,1980]. The solutions of Mathieu’s equation are
chosen so that ∫ 2π

0

ce2m(v, q)dv = π∫ 2π

0

se2m(v, q)dv = π (4.19)

The corresponding values of λ are frequently written λ = an(q), (n =
0, 1, 2, · · · ) for even functions and λ = bn(q), (n = 1, 2, · · · ) for odd func-
tions. The Mathieu’s functions are orthogonal.∫ 2π

0

cem(v, q)cen(v, q)dv = πδmn∫ 2π

0

sem(v, q)sen(v, q)dv = πδmn∫ 2π

0

cem(v, q)sen(v, q)dv = 0 (4.20)

The recurrence and normalization relations leads us to four different matrix
[Zhang and Jin, 1996]
• For ce2r(v, q) the recurrence relation:

aA2r
0 − qA2r

2 = 0

(a− 4)A2r
2 − q(2A2r

0 + A2r
4 ) = 0[

a− (2k)2
]
A2r

2k − q(A2r
2k−2 + A2r

2k+2) = 0 (4.21)

for k ≥ 2 and the normalization relation:

2(A2r
0 )2 +

∞∑
k=1

(A2r
2k)

2 = 1 (4.22)

• For ce2r+1(v, q) the recurrence relation:

(a− 1− q)A2r+1
1 − qA2r+1

3 = 0[
a− (2k + 1)2

]
A2r+1

2k+1 − q(A2r+1
2k+1 + A2r+1

2k+3) = 0

(4.23)
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for k ≥ 1 and the normalization relation:

∞∑
k=0

(A2r+1
2k+1)

2 = 1 (4.24)

• For se2r+1(v, q) the recurrence relation:

(b− 1 + q)B2r+1
1 − qB2r+1

3 = 0[
b− (2k + 1)2

]
B2r+1

2k+1 − q(B2r+1
2k+1 +B2r+1

2k+3) = 0

(4.25)

for k ≥ 1 and the normalization relation:

∞∑
k=0

(B2r+1
2k+1)

2 = 1 (4.26)

• For se2r+2(v, q) the recurrence relation:

(b− 4)B2r+2
2 − qB2r+2

4 = 0[
b− (2k + 2)2

]
B2r+2

2k+2 − q(B2r+2
2k +B2r+2

2k+4) = 0

(4.27)

for k ≥ 1. The normalization relation:

∞∑
k=0

(B2r+2
2k+2)

2 = 1 (4.28)

The characteristic values a(q) and b(q) can be determined either by solving
an eigenvalue problem or a transcendental equation. The first recurrence
relation can be written into matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

a −q 0 · · ·
−2q a− 4 −q 0 · · ·
0 −q a− 16 0 · · ·

. . .

0 · · · −q a− (2k)2 −q · · ·
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A2r
0

A2r
2

A2r
4
...
A2r

2k
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (4.29)

or in another form as [C][X] = λ[X]. The above matrix like Eq.(4.29) has
eigenvectors and eigenvalues which gives us characteristic value for Mathieu
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function. For a given value of q, the values of the coefficients decreases as k
increase. We can truncate the number of linear equations. The truncation
number gives the accuracy of eigenvalues and depend on the value of q. In
practice, we only need a finite number of eigenvalues therefore truncation
number is finite. In our problem we have four matrix which each one gives
the proper eigenvalues.
• For ce2r

[C1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q
2q 4 q

q 16 0
. . .

q (2k)2 q
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.30)

• For ce2r+1

[C2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + q q
q 9 q

q 25
. . .

q (2k + 1)2 q
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.31)

• For se2r+1

[C3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1− q q
q 9 q

q 25
. . .

q (2k + 1)2 q
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.32)

• For se2r+2

[C4] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 q
q 16 q

q 36
. . .

q (2k + 2)2 q
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.33)
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An alternative method for calculating the characteristic values is to solve
transcendental equation.

(2r + p)2 + T1 + T2− λ = 0 (4.34)

where r = 0, 1, 2, · · · ; p = 0 for even order and p = 1 for odd order of Mathieu
function.

T1 = − q2

(2r + 2 + p)2 − λ
− q2

(2r + 4 + p)2 − λ− .
q2

(2r + 6 + p)2 − λ− · · ·
(4.35)

T2 = − q2

(2r − 2 + p)2 − λ
− q2

(2r − 4 + p)2 − λ− · · · . q2

(4 + p)2 − λ− q2/T0i
(4.36)

where i = 1, 2, 3, 4 correspond to ce2r(v, q), ce2r+1(v, q), se2r+1(v, q), se2r+2(v, q),
respectively, and

T01 = 4− λ+ 2q2

λ
= a

T02 = 1 + q − λ = a
T03 = 1− q − λ = b
T04 = 4− λ = b

(4.37)

The characteristic values can be determined by solving Eq.(4.34) using a
numerical method such as secant method with proper estimates which in
case of complex characteristic values we find it by solving one of the proper
matrix.

4.1.2 Modified Mathieu Functions

The Eq.(4.16) is called the modified Mathieu differential equation. Solutions

to Modified Mathieu’s equation Eq.(4.16) has the form Mc
(g)
n (u, q), (n =

0, 1, 2, · · · ) and Ms
(g)
n (u, q), (n = 1, 2, · · · ) where g = 1, 2, 3 or 4 are related

to Bessel’s functions Z
(g)
n = Jn, Yn, H

(1)
n or H

(2)
n . These solutions are known

as modified Mathieu functions or in applicational usage radial functions.

Mc
(g)
2r (u, q) = [ce2r (0, q)]

−1
∞∑
k=0

(−1)(k+r)A2r
2k (q) ·

Z
(g)
2k (2

√
q cosh u)

(4.38)
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Mc
(g)
2r+1 (u, q) = [ce2r+1 (0, q)]

−1
∞∑
k=0

(−1)(k+r) · A2r+1
2k+1 (q) ·

Z
(g)
2k+1 (2

√
q cosh u)

(4.39)

Ms
(g)
2r+1 (u, q) =

[
se′2r+1 (0, q)

]−1
tanh u ·

∞∑
k=0

(−1)(k+r) (2k + 1)

B2r+1
2k+1 (q)Z

(g)
2k+1 (2

√
q cosh u)

(4.40)

Ms
(g)
2r+2 (u, q) =

[
se′2r+2 (0, q)

]−1
tanhu ·

∞∑
k=0

(−1)(k+r) (2k + 2)

B2r+2
2k+2 (q)Z

(g)
2k+2 (2

√
q cosh u)

(4.41)

4.2 Elliptic Waveguide

For a waveguide whose cross section is of the form of an ellipse is depicted in
Fig.(4.2). For a cylindrical waveguide (i.e., of constant cross section), the z
dependence of the electric and magnetic fields is simply given by e−jkzz. The
solution of scalar wave equation in elliptical coordinate system will be

∇2ψ + k2ψ = 0 ==> ψ = ψe + ψo (4.42)

where

ψe = Mc(1)m (u, q)cem(v, q)e
−jkzz m = 0, 1, 2, · · · (4.43)

ψo = Ms(1)m (u, q)sem(v, q)e
−jkzz m = 1, 2, 3, · · ·

and q = f 2(k2 − k2z)/4. We define two axillary vector M and N as

M = ∇× (ψaz)

N =
1

k
∇×M (4.44)
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Figure 4.2: Elliptic Waveguide

If we assume H = M = ∇ × (ψaz), it means that we are going to find
electromagnetic components of TMz modes;

M =
1

h1
[
∂ψ

∂v
au − ∂ψ

∂u
av] (4.45)

and from which we can determine E = 1
jωε

∇×H.

kN = (k2 − k2z)ψaz +
1

h1

∂2ψ

∂z∂u
au +

1

h1

∂2ψ

∂z∂v
av (4.46)

by applying boundary condition Ez = 0 at u = u0, we have two equations,
Mc

(1)
m (u0, q) = 0 for even modes and Ms

(1)
m (u0, q) = 0 for odd modes.

For TEz we assume E = M = ∇ × (ψaz), therefore M = 1
h1
[∂ψ
∂v
au − ∂ψ

∂u
av]

and magnetic field can be calculated by H = −1
jωμ

∇× E. Applying boundary

condition, Ev = 0 at u = u0, we have two equations, Mc
′(1)
m (u0, q) = 0 for

even modes and Ms
′(1)
m (u0, q) = 0 for odd modes.
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Table 4.1: CUTOFF FREQUENCY OF ELLIPTIC WAVEGUIDE IN GHz
A=10.00Cm, B=6.61Cm
TM-EVEN MODES

m/n 1 2 3 4

0 1.468337 3.680880 5.941186 8.205988
1 2.094981 4.235918 6.482914 8.742022
2 2.757014 4.817258 7.041880 9.290942
3 3.435940 5.421744 7.616410 9.851845

TM-ODD MODES

m/n 1 2 3 4

1 2.556135 4.810018 7.073317 9.338991
2 3.123135 5.356686 7.611727 9.873238
3 3.718281 5.923989 8.164891 10.418922
4 4.332260 6.509350 8.731601 10.975337

TE-EVEN MODES

m/n 1 2 3 4

0 2.501066 4.783011 7.055468 9.325514
1 0.890284 3.069237 5.327188 7.592670
2 1.604605 3.680664 5.892695 8.144793
3 2.289425 4.326062 6.477174 8.710642

TE-ODD MODES

m/n 1 2 3 4

1 1.300689 3.644210 5.919730 8.190658
2 1.842372 4.194770 6.459768 8.725789
3 2.423427 4.771852 7.017336 9.273908
4 3.023162 5.370564 7.590763 9.834119
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Figure 4.3: Elliptic WaveguideTM01

4.3 Plane Wave in Elliptic Cylinder

The incident plane wave ψ = exp{jk(x cosφ0 + y sinφ0)} can be expand in
elliptic cylinder. The ψ may be Ez or Hz.

ψ =

∞∑
m=0

amcem(v, q)Mc(1)m (u, q) +

∞∑
m=1

bmsem(v, q)Ms(1)m (u, q) (4.47)

where am = 2jmcem(φ0, q) and bm = 2jmsem(φ0, q)



4.4. LINE SOURCE IN ELLIPTIC CYLINDER 145

4.4 Line Source in Elliptic Cylinder

An infinite Electric current source I0 which is located at r0(x0, y0) = r0(u0, v0)
can be expand in elliptic cylinder. For u0 > u

Ez = −I0
4
ωμH

(2)
0 (k|r− r0|)

= −I0
2
ωμ

{ ∞∑
m=0

aimcem(v, q)Mc(1)m (u, q)

+
∞∑
m=1

bimsem(v, q)Ms(1)m (u, q)

}
(4.48)

where for u0 > u we have

aim = cem(v0, q)Mc(4)m (u0, q)

bim = sem(v0, q)Ms(4)m (u0, q) (4.49)

and for u > u0

Ez = −I0
4
ωμH

(2)
0 (k|r− r0|)

= −I0
2
ωμ

{ ∞∑
m=0

aimcem(v, q)Mc(4)m (u, q)

+

∞∑
m=1

bimsem(v, q)Ms(4)m (u, q)

}
(4.50)

where for u > u0

aim = cem(v0, q)Mc(1)m (u0, q)

bim = sem(v0, q)Ms(1)m (u0, q) (4.51)

4.5 Scattering by Conducting Elliptic Cylin-

der

Scattering of a plane wave by metallic elliptic cylinder may be TM or TE
polarization.
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4.5.1 TM-Polarization

Let a TM plane wave at angle φ0 incident on elliptic metallic cylinder with
u0 = cosh−1(A

f
), f =

√
A2 − B2, Eq.(4.18), Fig.(4.4).

Figure 4.4: Scattering TM wave by a Conducting Elliptic Cylinder

Ei
z = exp{jk(x cosφ0 + y sin φ0)}

or

Ei
z =

∞∑
m=0

aimcem(v, q)Mc(1)m (u, q) +
∞∑
m=1

bimsem(v, q)Ms(1)m (u, q)

where aim = 2jmcem(φ0, q) and bim = 2jmsem(φ0, q). The scattered wave at
point v, u will be

Es
z =

∞∑
m=0

asmcem(v, q)Mc(4)m (u, q)

+
∞∑
m=1

bsmsem(v, q)Ms(4)m (u, q) (4.52)

where asm and bsm will be determined by boundary condition, i.e. Ei
z +Es

z on
the surface u0 at any angle must be zero. After some manipulation we will



4.5. SCATTERING BY CONDUCTING ELLIPTIC CYLINDER 147

have:

asm = −Mc
(1)
m (u0, q)

Mc
(4)
m (u0, q)

aim

bsm = −Ms
(1)
m (u0, q)

Ms
(4)
m (u0, q)

bim (4.53)

The bistatic RCS of a long elliptic cylinder is

σ2D =
4/kf√

cosh2 u0 − cos2 φ0

[ ∞∑
m=0

|asm|2cem(φ0, q)
2

∞∑
m=1

|bsm|2sem(φ0, q)
2

]
(4.54)
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Figure 4.5: Scattering TM wave by a Conducting Elliptic Cylinder

4.5.2 TE-Polarization

Let a TE plane wave at angle φ0 incident on elliptic metallic cylinder with
u0 = cosh−1(A

f
), f =

√
A2 − B2, Eq.(4.18), Fig.(4.6).

H i
z = exp{jk(x cosφ0 + y sinφ0)}
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Figure 4.6: Scattering TE wave by a Conducting Elliptic Cylinder

The scattered wave at point v, u will be

Hs
z =

∞∑
m=0

asmcem(v, q)Mc(4)m (u, q)

+

∞∑
m=1

bsmsem(v, q)Ms(4)m (u, q) (4.55)

where asm and bsm will be determined by boundary condition, i.e. ∂Hi
z

∂u
+ ∂Hs

z

∂u

on the surface u0 at any angle must be zero. After some manipulation we
will have:

asm = −Mc
′(1)
m (u0, q)

Mc
′(4)
m (u0, q)

aim

bsm = −Ms
′(1)
m (u0, q)

Ms
′(4)
m (u0, q)

bim (4.56)

where aim = 2(j)mcem(φ0, q) and b
i
m = 2(j)msem(φ0, q).
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Figure 4.7: Scattering TE wave by a Conducting Elliptic Cylinder

4.6 Scattering by PEMC Elliptic Cylinder

Solution of scalar wave equation in elliptical coordinate system will be (in
two dimensional ∂

∂z
= 0):

∇2ψ + k2ψ = 0 ==> ψ = ψe + ψo (4.57)

where

ψe = Mc(1),(4)m (u, q)cem(v, q) m = 0, 1, 2, · · · (4.58)

ψo = Ms(1),(4)m (u, q)sem(v, q) m = 1, 2, 3, · · ·

and q = (kf/2)2. We define two axillary vector M and N as

M = ∇× (ψaz)

N =
1

k
∇×M (4.59)

after some manipolation

M =
1

f
√

cosh2 u− cos2 v
(
∂ψ

∂v
au − ∂ψ

∂u
av)

N = kψaz (4.60)
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Now we consider a TMz plane wave

Ei = E0e
jk(x cosφ0+y sinφ0)az (4.61)

therefore we can write it as

Ei =

∞∑
n=0

aenN
e(1)
n (u, q) +

∞∑
n=1

aonN
o(1)
n (u, q) (4.62)

and

Hi =
j

η

[ ∞∑
n=0

aenM
e(1)
n (u, q) +

∞∑
n=1

aonM
o(1)
n (u, q)

]
(4.63)

where aen = 2jnE0

k
cen(φ0, q) and a

o
n = 2jnE0

k
sen(φ0, q) The scattered fields are

expanded in the form

Es =

[ ∞∑
n=0

benN
e(4)
n (u, q) + cenM

e(4)
n (u, q) (4.64)

+
∞∑
n=1

bonN
o(4)
n (u, q) + conM

o(4)
n (u, q)

]

Hs =
j

η

[ ∞∑
n=0

benM
e(4)
n (u, q) + cenN

e(4)
n (u, q) (4.65)

+

∞∑
n=1

bonM
o(4)
n (u, q) + conN

o(4)
n (u, q)

]

Since we have PEMC, there should be one more term for cross-polarized TE
components. Now we can apply boundary conditions for PEMC. The tan-
gential and normal field components have to satisfy the boundary condition
at the elliptic cylinder surface.

H i
t +Hs

t +M(Ei
t + Es

t ) = 0 (4.66)

ε(Ei
u + Es

u)−Mμ(H i
u +Hs

u) = 0 (4.67)
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applying these boundary conditions, we obtain the following system of linear
equations

Mc(4)n (u0, q)b
e
n +

j

Mη
Mc(4)n (u0, q)c

e
n = −aenMc(1)n (u0, q) (4.68)

Mc′(4)n (u0, q)b
e
n +

j

Mη
Mc′(4)n (u0, q)c

e
n = −aenMc′(1)n (u0, q) (4.69)

and

Ms(4)n (u0, q)b
o
n +

j

Mη
Ms(4)n (u0, q)c

o
n = −aonMs(1)n (u0, q) (4.70)

Ms′(4)n (u0, q)b
o
n +

j

Mη
Ms′(4)n (u0, q)c

o
n = −aonMs′(1)n (u0, q) (4.71)

where a is radius of the PEMC cylinder. By solving these equations we will
have

ben = −Mc
(4)
n (u0, q)Mc

(1)
n (u0, q) +M2η2Mc′(4)n (u0, q)Mc

(1)
n (u0, q)

(1 +M2η2)Mc′(4)n (u0, q)Mc
(4)
n (u0, q)

aen (4.72)

bon = −Ms
(4)
n (u0, q)Ms

(1)
n (u0, q) +M2η2Ms′(4)n (u0, q)Ms

(1)
n (u0, q)

(1 +M2η2)Ms′(4)n (u0, q)Ms
(4)
n (u0, q)

aon (4.73)

cen =
2Mη

π(1 +M2η2)Mc(4)n (u0, q)Mc′(4)n (u0, q)
aen (4.74)

con =
2Mη

π(1 +M2η2)Ms(4)n (u0, q)Ms′(4)n (u0, q)
aon (4.75)

4.7 Scattering by Dielectric Elliptic Cylinder

The scattering of electromagnetic wave by a elliptic dielectric cylinder is not
as simple as circular dielectric cylinder, because we do not have usual mode
orthogonality in elliptic cylinder. In this case we use a new method which is
described in following sections.
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Figure 4.8: Dielectric Elliptic Cylinder

TM-Polarization

We have a dielectric elliptic cylinder with electrical and geometry parameters
as shown in Fig.(4.8). We need the following integrals in our problems so it
is better to define:

Iccmn(qi, qj) =
1

π

∫ 2π

0

cem(v, qi)cen(v, qj)dv

Icsmn(qi, qj) =
1

π

∫ 2π

0

cem(v, qi)sen(v, qj)dv

Issmn(qi, qj) =
1

π

∫ 2π

0

sem(v, qi)sen(v, qj)dv

(4.76)

The result will be Iscmn(qi, qj) = Icsmn(qi, qj) = 0 and

Iccmn(qi, qj) =
∞∑
k=0

(1 + δ0k)A
m
k (qi)A

n
k(qj) (4.77)

when m and n are even, and

Iccmn(qi, qj) =

∞∑
k=1

Amk (qi)A
n
k(qj) (4.78)
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when m and n are odd. Similar

Issmn(qi, qj) =
∞∑
k=2

Bm
k (qi)B

n
k (qj) (4.79)

when m and n are even, and

Issmn(qi, qj) =
∞∑
k=1

Bm
k (qi)B

n
k (qj) (4.80)

when m and n are odd. The qi and qj belong to two different mediums.
Let a TM plane wave at angle φ0 incident on elliptic dielectric cylinder with
u0 = cosh−1(A

f
), f =

√
A2 − B2. The incident, scattered and penetrated

wave will be:
Ei
z = exp{jk1(x cos φ0 + y sinφ0)}

or

Ei
z =

∞∑
m=0

aimMc(1)m (u, q1)cem(v, q1) +
∞∑
m=1

bimMs(1)m (u, q1)sem(v, q1)

where q1 =
f2k21
4

, q2 =
f2k22
4

, k = ω
√
μεc and εc = ε0(εr − j σ

ωε0
). The value

of aim and bim will be aim = 2(j)mcem(φ0, q1), b
i
m = 2(j)msem(φ0, q1). The

scattered and transmitted wave will be

Es
z =

∞∑
m=0

asmMc(4)m (u, q1)cem(v, q1) +

∞∑
m=1

bsmMs(4)m (u, q1)sem(v, q1) (4.81)

Et
z =

∞∑
m=0

atmMc(1)m (u, q2)cem(v, q2) +

∞∑
m=1

btmMs(1)m (u, q2)sem(v, q2) (4.82)

where the asm, a
t
m and bsm, b

t
m are unknowns and will be found by boundary

conditions. At boundary u = u0 for any angle v we have Ei
z + Es

z = Et
z.

∞∑
m=0

aimMc(1)m (u0, q1)cem(v, q1) +

∞∑
m=1

bimMs(1)m (u0, q1)sem(v, q1) +

∞∑
m=0

asmMc(4)m (u0, q1)cem(v, q1) +

∞∑
m=1

bsmMs(4)m (u0, q1)sem(v, q1) =

∞∑
m=0

atmMc(1)m (u0, q2)cem(v, q2) +

∞∑
m=1

btmMs(1)m (u0, q2)sem(v, q2) (4.83)
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we multiply both side of Eq.(4.83) by factor cen(v, q1)/π and integrating over
0− 2π with respect to v, there will be

at0Mc
(1)
0 (u0, q2)I

cc
0n(q2, q1) + at1Mc

(1)
1 (u0, q2)I

cc
1n(q2, q1) + · · · +

atMMc
(1)
M (u0, q2)I

cc
Mn(q2, q1)− asnMc(4)n (u0, q1) = ainMc(1)n (u0, q1) (4.84)

where M is maximum terms in truncation of series. Now we can apply
magnetic field boundary conditions H i

v +Hs
v = H t

v, but

Hv =
1

f
√

cosh2 u− cos2 v

1

jωμ

∂Ez
∂u

therefore

1

μ2
{at0Mc

′(1)
0 (u0, q2)I

cc
0n(q2, q1) + at1Mc

′(1)
1 (u0, q2)I

cc
1n(q2, q1) + · · ·+

atMMc
′(1)
n (u0, q2)I

cc
Mn(q2, q1)} −

1

μ1

asnMc
′(4)
n (u0, q1) =

1

μ1

ainMc
′(1)
n (u0, q1)

(4.85)

The index n in both Eq.(4.84),Eq.(4.85) can be changed from 0−M , therefore
we have 2M + 2 unknown and 2M + 2 linear equations which can be divide
into four different submatrix.[

Amn Bmn

Cmn Dmn

] [
Xn

Yn

]
=

[
Gm

Hm

]
(4.86)

where
Amn =Mc(1)m (u0, q2)I

cc
mn(q2, q1)

Cmn =
1

μ2

Mc
′(1)
m (u0, q2)I

cc
mn(q2, q1)

Bmn = −Mc(4)m (u0, q1)δmn

Dmn =
−1

μ1
Mc

′(4)
m (u0, q1)δmn

Gm = ainMc(1)m (u0, q1)

Hm =
1

μ1
ainMc

′(1)
m (u0, q1)
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and the unknowns are

Xn = atn

Yn = asn

The same procedure can be applied to determine the coefficient bsm, b
t
m. The

number of unknown and linear equation in this case is 2M .

bt1Ms
(1)
1 (u0, q2)I

ss
0,n(q2, q1) + bt2Ms

(1)
2 (u0, q2)I

ss
1,n(q2, q1) + · · · +

btM,nMs
(1)
M (u0, q2)I

ss
M,n(q2, q1)− bsnMs(4)n (u0, q1) = binMs(1)n (u0, q1) (4.87)

and

1

μ2
{bt1Ms

′(1)
1 (u0, q2)I

ss
0,n(q2, q1) + bt2Ms

′(1)
2 (u0, q2)I

ss
1,n(q2, q1) + · · · +

btM,nMs
′(1)
M (u0, q2)I

ss
M,n(q2, q1)} −

1

μ1
bsnMs

′(4)
n (u0, q1) =

1

μ1
binMs

′(1)
n (u0, q1)(4.88)

[
Amn Bmn

Cmn Dmn

] [
Xn

Yn

]
=

[
Gm

Hm

]
(4.89)

Amn =Ms(1)m (u0, q2)I
ss
mn(q1, q2)

Cmn =
1

μ2
Ms

′(1)
m (u0, q2)I

ss
mn(q1, q2)

Bmn = −Ms(4)m (u0, q1)δmn

Dmn =
−1

μ1
Ms

′(4)
m (u0, q1)δmn

Gm = binMs(1)m (u0, q1)

Hm =
1

μ1

binMs
′(1)
m (u0, q1)

and the unknowns are

Xm = btm

Ym = bsm
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Figure 4.9: Distribution of electric filed along X and Y axis, TM-Polarization

TE-Polarization

We have a dielectric elliptic cylinder with electrical and geometry parameters
as shown in Fig.(4.10). Let a TEz plane wave at angle φ0 incident on ellip-
tic dielectric cylinder with u0 = cosh−1(A

f
), f =

√
A2 −B2. The incident,

scattered and penetrated wave will be:

H i
z = exp{jk1(x cosφ0 + y sinφ0)}

or

H i
z =

∞∑
m=0

aimMc(1)m (u, q1)cem(v, q1) +
∞∑
m=1

bimMs(1)m (u, q1)sem(v, q1)

where q1 =
f2k21
4

, q2 =
f2k22
4

, k = ω
√
μεc and εc = ε0(εr − j σ

ωε0
). The value

of aim and bim will be aim = 2(j)mcem(φ0, q1), b
i
m = 2(j)msem(φ0, q1). The

scatter and transmitted wave will be

Hs
z =

∞∑
m=0

asmMc(4)m (u, q1)cem(v, q1) +

∞∑
m=1

bsmMs(4)m (u, q1)sem(v, q1) (4.90)

H t
z =

∞∑
m=0

atmMc(1)m (u, q2)cem(v, q2) +

∞∑
m=1

btmMs(1)m (u, q2)sem(v, q2) (4.91)
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Figure 4.10: Dielectric Elliptic Cylinder

where the asm, a
t
m and bsm, b

t
m are unknowns and will be found by boundary

conditions. At boundary u = u0 for any angle v we have H i
z +Hs

z = H t
z.

∞∑
m=0

aimMc(1)m (u0, q1)cem(v, q1) +

∞∑
m=1

bimMs(1)m (u0, q1)sem(v, q1) +

∞∑
m=0

asmMc(4)m (u0, q1)cem(v, q1) +

∞∑
m=1

bsmMs(4)m (u0, q1)sem(v, q1) =

∞∑
m=0

atmMc(1)m (u0, q2)cem(v, q2) +

∞∑
m=1

btmMs(1)m (u0, q2)sem(v, q2) (4.92)

we multiply both side of Eq.(4.92) by factor cen(v, q1)/π and integrating over
0− 2π with respect to v, there will be

at0Mc
(1)
0 (u0, q2)I

cc
0n(q2, q1) + at1Mc

(1)
1 (u0, q2)I

cc
1n(q2, q1) + · · · +

atMMc
(1)
M (u0, q2)I

cc
Mn(q2, q1)− asnMc(4)n (u0, q1) = ainMc(1)n (u0, q1) (4.93)

whereM ismaximum terms in truncation of series. Now we can apply electric
field boundary conditions Ei

v + Es
v = Et

v, but

Ev =
1

f
√
cosh2 u− cos2 v

−1

jωε

∂Hz

∂u
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therefore

1

ε2
{at0Mc

′(1)
0 (u0, q2)I

cc
0n(q2, q1) + at1Mc

′(1)
1 (u0, q2)I

cc
1n(q2, q1) + · · ·+

atMMc
′(1)
n (u0, q2)I

cc
Mn(q2, q1)} −

1

ε1
asnMc

′(4)
n (u0, q1) =

1

ε1
ainMc

′(1)
n (u0, q1)

(4.94)

The index n in both Eq.(4.93),Eq.(4.94) can be changed from 0−M , therefore
we have 2M + 2 unknown and 2M + 2 linear equations which can be divide
into four different submatrix.[

Amn Bmn

Cmn Dmn

] [
Xn

Yn

]
=

[
Gm

Hm

]
(4.95)

where

Amn =Mc(1)m (u0, q2)I
cc
mn(q1, q2)

Cmn =
1

ε2
Mc

′(1)
m (u0, q2)I

cc
mn(q1, q2)

Bmn = −Mc(4)m (u0, q1)δmn

Dmn =
−1

ε1
Mc

′(4)
m (u0, q1)δmn

Gm = aimMc(1)m (u0, q1)

Hm =
1

ε1
aimMc

′(1)
m (u0, q1)

and the unknowns are

Xn = atn

Yn = asn

The same procedure can be applied to determine the coefficient bsm, b
t
m. The

number of unknown and linear equation in this case is 2M .

bt1Ms
(1)
1 (u0, q2)I

ss
0,n(q2, q1) + bt2Ms

(1)
2 (u0, q2)I

ss
1,n(q2, q1) + · · · +

btM,nMs
(1)
M (u0, q2)I

ss
M,n(q2, q1)− bsnMs(4)n (u0, q1) = binMs(1)n (u0, q1) (4.96)
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and

1

ε2
{bt1Ms

′(1)
1 (u0, q2)I

ss
0,n(q2, q1) + bt2Ms

′(1)
2 (u0, q2)I

ss
1,n(q2, q1) + · · · +

btM,nMs
′(1)
M (u0, q2)I

ss
M,n(q2, q1)} −

1

ε1
bsnMs

′(4)
n (u0, q1) =

1

ε1
binMs

′(1)
n (u0, q1)(4.97)[

Amn Bmn

Cmn Dmn

] [
Xn

Yn

]
=

[
Gm

Hm

]
(4.98)

Amn =Ms(1)m (u0, q2)I
ss
mn(q1, q2)

Cmn =
1

ε2
Ms

′(1)
m (u0, q2)I

ss
mn(q1, q2)

Bmn = −Ms(4)m (u0, q1)δmn

Dmn =
−1

ε1
Ms

′(4)
m (u0, q1)δmn

Gm = bimMs(1)m (u0, q1)

Hm =
1

ε1
bimMs

′(1)
m (u0, q1)

and the unknowns are
Xn = btn

Yn = bsn

4.8 Multilayer Dielectric Elliptic Cylinder

In this section we will study the scattering and penetration of EM plane
waves by Multilayer Lossy Dielectric Elliptic Cylinder for TMz polarization
Fig.(4.11). It will be easy to modify the TMz and get results for TEz polar-
ization as well. The wave that goes toward center of ellipse is called trans-
mitted wave and the wave that goes backwards we call it scattered wave. In
the ith layer we may have a current line source which is located at the point
u0, v0. therefore

E(i)t
z =

∞∑
n=0

atinMc(1)n (u, qi)cen(v, qi) +

∞∑
n=1

btinMs(1)n (u, qi+1)cen(v, qi) (4.99)
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Figure 4.11: Multilayer Dielectric Elliptic Cylinder

E(i)s
z =

∞∑
n=0

asinMc(4)n (u, qi)cen(v, qi) +

∞∑
n=1

bsinMs(4)n (u, qi)cen(v, qi) (4.100)

where qi = (kif/2)
2, ki = ω

√
μ0εi and f is semi confocal distance of elliptic.

We can write the same equation for any layer except for first layer where
as1n = bs1n = 0 and last layer where atN+1

n = btN+1
n = 0

At boundary ui the tangential electric and magnetic wave is continuous,
H it
v +H is

v = H
(i+1)t
v +H

(i+1)s
v , Eit

z + Eis
z = E

(i+1)t
z + E

(i+1)s
z therefore

Eit
z + Eis

z = E
(i+1)t
z + E

(i+1)s
z

∂Eit
z

∂u
+ ∂Eis

z

∂u
= ∂E

(i+1)t
z

∂u
+ ∂E

(i+1)s
z

∂u
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by inserting Eq.(4.99) and Eq.(4.100) into Eq.(4.101) we will have

∞∑
n=0

ati+1
n Mc(1)n (ui, qi+1)cen(v, qi+1) +

∞∑
n=1

bti+1
n Ms(1)n (ui, qi+1)sen(v, qi+1) +

∞∑
n=0

asi+1
n Mc(4)n (ui, qi+1)cen(v, qi+1) +

∞∑
n=1

bsi+1
n Ms(4)n (ui, qi+1)sen(v, qi+1) =

∞∑
n=0

atinMc(1)n (ui, qi)cen(v, qi) +

∞∑
n=1

btinMs(1)n (ui, qi)sen(v, qi) +

∞∑
n=0

asinMc(4)n (ui, qi)cen(v, qi) +

∞∑
n=1

bsinMs(4)n (ui, qi)sen(v, qi) +

∞∑
n=0

aI inMc(4)n (ui, qi)cen(v, qi) +

∞∑
n=1

bI inMs(4)n (ui, qi)sen(v, qi) (4.101)
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∞∑
n=0

ati+1
n Mc

′(1)
n (ui, qi+1)cen(v, qi+1) +

∞∑
n=1

bti+1
n Ms

′(1)
n (ui, qi+1)sen(v, qi+1) +

∞∑
n=0

asi+1
n Mc

′(4)
n (ui, qi+1)cen(v, qi+1) +

∞∑
n=1

bsi+1
n Ms

′(4)
n (ui, qi+1)sen(v, qi+1) =

∞∑
n=0

atinMc
′(1)
n (ui, qi)cen(v, qi) +

∞∑
n=1

btinMs
′(1)
n (ui, qi)sen(v, qi) +

∞∑
n=0

asinMc
′(4)
n (ui, qi)cen(v, qi) +

∞∑
n=1

bsinMs
′(4)
n (ui, qi)sen(v, qi) +

∞∑
n=0

aI inMc
′(4)
n (ui, qi)cen(v, qi) +

∞∑
n=1

bI inMs
′(4)
n (ui, qi)sen(v, qi) (4.102)

where the prim ′ shows derivative with respect u, and for the plane wave
incident we have ainn = 2(j)ncen(φ0, qN+1),b

in
n = 2(j)nsen(φ0, qN+1), and

aI in = − I0
2ωμ

Mc
(4)
n (u0, qi)cen(v0, qi), bI

i
n = − I0

2ωμ
Ms

(4)
n (u0, qi)sen(v0, qi). In

order to find the coefficient we use the C. Yeh method [64]. We multiply
both side of Eq.(4.101) and Eq.(4.102) first by cem(v, qi+1)/π and then by
sem(v, qi+1)/π, and integrate over interval (0, 2π), therefore for any boundary
we will have four important equations. In order to have a linear system of
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equation we truncate the series to maximum number M .

ati+1
m Mc(1)m (ui, qi+1) + asi+1

m Mc(4)m (ui, qi+1) =
M∑
n=0

atinMc(1)n (ui, qi)I
cc
m,n(qi+1, qi) +

M∑
n=0

asinMc(4)n (ui, qi)I
cc
m,n(qi+1, qi) +

∞∑
n=0

aI inMc(4)n (ui, qi)I
cc
m,n(qi+1, qi) (4.103)

ati+1
m Mc

′(1)
m (ui, qi+1) + asi+1

m Mc
′(4)
m (ui, qi+1) =

M∑
n=0

atinMc
′(1)
n (ui, qi)I

cc
m,n(qi+1, qi) +

M∑
n=0

asinMc
′(4)
n (ui, qi)I

cc
m,n(qi+1, qi) +

M∑
n=0

aI inMc
′(4)
n (ui, qi)I

cc
m,n(qi+1, qi) (4.104)

bti+1
m Ms(1)m (ui, qi+1) + bsi+1

m Ms(4)m (ui, qi+1) =
M+1∑
n=1

btinMs(1)n (ui, qi)I
ss
m,n(qi+1, qi) +

M+1∑
n=1

bsinMs(4)n (ui, qi)I
ss
m,n(qi+1, qi) (4.105)

bti+1
m Ms

′(1)
m (ui, qi+1) + bsi+1

m Ms
′(4)
m (ui, qi+1) =

M+1∑
n=1

btinMs
′(1)
n (ui, qi)I

ss
m,n(qi+1, qi) +

M+1∑
n=1

bsinMs
′(4)
n (ui, qi)I

ss
m,n(qi+1, qi) (4.106)
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bti+1
m Ms(1)m (ui, qi+1) + bsi+1

m Mc(4)m (ui, qi+1) =
M+1∑
n=0

btinMs(1)n (ui, qi)I
ss
m,n(qi+1, qi) +

M+1∑
n=1

bsinMs(4)n (ui, qi)I
ss
m,n(qi+1, qi) +

M+1∑
n=1

bI inMs(4)n (ui, qi)I
ss
m,n(qi+1, qi) (4.107)

bti+1
m Ms

′(1)
m (ui, qi+1) + bsi+1

m Ms
′(4)
m (ui, qi+1) =

M+1∑
n=1

btinMs
′(1)
n (ui, qi)I

ss
m,n(qi+1, qi) +

M+1∑
n=1

bsinMs
′(4)
n (ui, qi)I

ss
m,n(qi+1, qi) +

M+1∑
n=1

bI inMs
′(4)
n (ui, qi)I

ss
m,n(qi+1, qi) (4.108)

The index m also varies from 0 to M or from 1 to M + 1. Therefore after
applying the same procedure for each boundary, at the end we will have two
separate square matrix with 2N(M + 1)× 2N(M + 1) elements, one for a′s
and one for b′s coefficients. The Matrix will look like⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SNw TN−1 SN−1 0 · · · · · · · · ·
S′N
w T′N−1 S′N−1 0 · · · · · · · · ·
0 TN−1

w SN−1
w TN−2 · · · · · · · · ·

0 T′N−1
w S′N−1

w T′N−2 · · · · · · · · ·
. . .

0 · · · Siw Ti
w Si−1 T i−1 · · ·

0 · · · S′i
w T′i

w S′i−1 T′i−1 · · ·
. . .

0 · · · · · · · · · S2
w T2

w T1

0 · · · · · · · · · S′2
w T′2

w T′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

asN+1
m

atNm
asNm
...

asim
atim
...

at2m
as2m
at1m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
n

0
...

csm
ctm
cs′m
ct′m
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.109)
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The submatrix will be

Siw =Mc(4)m (qi+1, ui)δmn Ti
w =Mc(1)m (qi+1, ui)δmn

S′i
w =Mc

′(4)
m (qi+1, ui)δmn T′i

w =Mc
′(1)
m (qi+1, ui)δmn

Si = −Mc(4)m (qi+1, ui)I
ss
m,n(qi+1, qi) Ti = −Mc(1)m (qi+1, ui)I

ss
m,n(qi+1, qi)

S′i = −Mc
′(4)
m (qi+1, ui)I

ss
m,n(qi+1, qi) T′i = −Mc

′(1)
m (qi+1, ui)I

ss
m,n(qi+1, qi)

csim = Simn · ac(1)n ctim = Ti
mn · ac(4)n

cs′im = S′i
mn · ac(1)n ct′im = T′i

mn · ac(4)n
a1
m = 2(j)mce(φ0, qN+1)

(4.110)

If the line source be at layer number one, the terms csim and cs′im will be
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Figure 4.12: Two layer dielectric elliptic cylinder

zero. And if the line source be at layer number N +1 the terms ctim and ct′im
will be zero. If we have only incident plane wave, all the line current source
terms will be zero and the right hand side of the matrix Eq.(4.109)will have
only two terms of the incident plane wave.

4.9 Scattering by a Conducting Strip

The previous section was a general problem. In special case of elliptic cylinder
which looks like a strip, Fig.(4.13). If the small diameter of a conducting
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elliptic cylinder goes to zero, then we will have

Figure 4.13: TE or TM wave scattering by a conducting strip
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Figure 4.14: TE and TM wave scattering by a conducting strip; d = 2λ

4.10 Scattering from a semi-elliptical channel

in ground plane

In previous section we have solved scattering of EM wave from semi-circular
channel. Now we want to do the same problem for semi-elliptical case



4.10. SCATTERING FROMA SEMI-ELLIPTICAL CHANNEL IN GROUND PLANE167

Fig.(4.15).
A linearly polarized electromagnetic plane wave is incident at an angle φ0

Figure 4.15: TM

with respect to x−axis, on the structure shown in Fig.(4.15), in which free
space region is labeled medium I and dielectric region is labeled medium II .
For the TM case, the electric field, in each region, has only axial component
Ez.
In medium I (u > u1, 0 < v < π) the total field may be decomposed into
three parts: the incident, specularly reflected, and scattered fields. The in-
cident and specularly reflected fields are represented by

Ei
z = exp{jk1(x cos φ0 + y sinφ0)}

or

Ei
z =

∞∑
m=0

aimMc(1)m (u, q1)cem(v, q1) +

∞∑
m=1

bimMs(1)m (u, q1)sem(v, q1) (4.111)

Eref
z (u, v) = −Einc

z (u, v) with φ0 → 2 π − φ0 (4.112)
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where q1 =
f2k21
4

, q2 =
f2k22
4

, k = ω
√
μεc and εc = ε0(εr − j σ

ωε0
). The value of

aim and bim will be aim = 2(j)mcem(φ0, q1), b
i
m = 2(j)msem(φ0, q1).

The scattered field in medium I may be given my imposing boundary con-
dition Es

z = 0 on PEC substrate since sem(v, q1) = 0 at v = 0 and π, and it
is represented by

Es
z(u, v) =

∞∑
m=1

AmMs(4)m (u, q1)sem(v, q1) (4.113)

The total field in medium I is represented by

EI
z (u, v) = Ei

z(u, v) + Es
z(u, v) + Er

z(u, v) (4.114)

=

∞∑
m=1

AmMs(4)m (u, q1)sem(v, q1) +

∞∑
m=1

airmMs(1)m (u, q1)sem(v, q1)

where airm = 4(j)msem(φ0, q1).
In medium II(u < u1, π < v < 2π), the transmitted electric field may also
be represented as

EII
z (u, v) =

∞∑
m=0

BmMc(1)m (u, q2)cem(v, q2) +
∞∑
m=1

CmMs(1)m (u, q2)sem(v, q2)

(4.115)
From Maxwell’s equations, the v-components of the magnetic field may be
represented as

HI,II
v =

1

f
√
cosh2 u− cos2 v

1

jωμ

∂EI,II
z

∂u
(4.116)

The unknown coefficients Am, Bm and Cm can be determined with the bound-
ary conditions at u = u1 of zero tangential electric field on the channel
(π < v < 2π) and field continuity across the aperture (0 < v < π).
Continuity of electric field on aperture (0 < v < π).

∞∑
m=1

AmMs(4)m (u1, q1)sem(v, q1) +

∞∑
m=1

airmMs(1)m (u1, q1)sem(v, q1) =

∞∑
m=0

BmMc(1)m (u1, q2)cem(v, q2) +

∞∑
m=1

CmMs(1)m (u1, q2)sem(v, q2) (4.117)
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Continuity of magnetic field on aperture (0 < v < π).

1

μ1

[ ∞∑
m=1

AmMs
′(4)
m (u1, q1)sem(v, q1) +

∞∑
m=1

airmMs
′(1)
m (u1, q1)sem(v, q1)

]
=

1

μ2

[ ∞∑
m=0

BmMc
′(1)
m (u1, q2)cem(v, q2) +

∞∑
m=1

CmMc
′(1)
m (u1, q2)sem(v, q2)

]
(4.118)

and zero tangential electric field on the channel (π < v < 2π)

∞∑
m=0

BmMc(1)m (u, q2)cem(v, q2) +

∞∑
m=1

CmMs(1)m (u, q2)sem(v, q2) = 0 (4.119)

Since angular Mathieu functions with different parameters are not fully or-
thogonal, some normalization integrals may occur. Expansion of such in-
tegrals over [0, 2π] interval in terms of Mathieu expansion coefficients were
treated in [55]. In problems involving boundary conditions over half ellipse,
normalization integrals occur on [0, π] interval which can be computed by
Mathieu expansion coefficients as follows

Kss
mn(q1, q2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π
2

∑
k=1,3,...

Bm
k (q1)B

n
k (q2), m,n odd;

π
2

∑
k=2,4,...

Bm
k (q1)B

n
k (q2), m,n even;

0, otherwise.

(4.120)

Ksc
mn(q1, q2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
p=2,4,...

∑
k=1,3,...

2p
p2−k2B

m
p (q1)A

n
k(q2), m even,n odd;∑

p=1,3,...

∑
k=0,2,...

2p
p2−k2B

m
p (q1)A

n
k(q2), m odd,n even;

0, otherwise.

(4.121)

where

Ksc
mn(q1, q2) =

∫ π

0

sem(v, q1) cen(v, q2) dv (4.122)

Kss
mn(q1, q2) =

∫ π

0

sem(v, q1) sen(v, q2) dv (4.123)
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also ∫ 2π

π

sem(v, q) cen(v, q) dv = −Ksc
mn(q, q) (4.124)

∫ 2π

π

sem(v, q) sen(v, q) dv = Kss
mn(q, q) (4.125)

These expressions are also valid for complex parameter case. We multiply
both side of Eq.(4.117) and Eq.(4.118) by cen(v, q1) and integrating over [0, π]
and truncate it to maximum number of terms M , then we have

−
M∑
m=1

AmMs(4)m (u1, q1)K
ss
mn(q1, q2) +

M−1∑
m=0

BmMc(1)m (u1, q2)K
sc
mn(q2, q2) +

M∑
m=1

CmMs(1)m (u1, q2)K
ss
mn(q2, q2) =

M∑
m=1

airmMs(1)m (u1, q1)K
ss
mn(q1, q2)(4.126)

where n = 1, 2, · · ·M

− 1

μ1

M∑
m=1

AmMs
′(4)
m (u1, q1)K

ss
mn(q1, q2) +

1

μ2

M∑
m=0

BmMc
′(1)
m (u1, q2)K

sc
mn(q2, q2)

+
1

μ2

M∑
m=1

CmMs
′(1)
m (u1, q2)K

ss
mn(q2, q2) =

1

μ1

M∑
m=1

airmMs
′(1)
m (u1, q1)K

ss
mn(q1, q2)

(4.127)

We multiply both side of Eq.(4.119) by cen(v, q2) and integrating over [π, 2π],
and using properties of Eq.(4.124)

−
M−1∑
m=0

BmMc(1)m (u1, q2)K
sc
mn(q2, q2) +

M∑
m=1

CmMs(1)m (u1, q2)K
ss
mn(q2, q2) = 0

Now it is time to put Eq.(4.126), Eq.(4.127), and Eq.(4.128) into matrix
form. If we substitute n = 1, · · · ,M in the above equations, we will have a
square block matrix of 3M×3M which the 3M unknowns can be calculated.⎡⎣ A11

mn A12
mn A13

mn

A21
mn A22

mn A23
mn

A31
mn A32

mn A33
mn

⎤⎦⎡⎣ X1
n

X2
n

X3
n

⎤⎦ =

⎡⎣ B1
m

B2
m

B3
m

⎤⎦ (4.128)



4.11. EM WAVE SCATTERING BY ELLIPTIC CHIRAL CYLINDER171

where

A11
mn = −Ms(4)m (u1, q1)K

ss
mn(q1, q2), A12

mn =Mc(1)m (u1, q2)K
sc
mn(q2, q2),

A13
mn =Ms(1)m (u1, q2)K

ss
mn(q2, q2), A21

mn = − 1

μ1

Ms
′(4)
m (u1, q1)K

ss
mn(q1, q2),

A22
mn =

1

μ2
Mc

′(1)
m (u1, q1)K

sc
mn(q2, q2), A23

mn =
1

μ2
Ms

′(1)
m (u1, q1)K

ss
mn(q2, q2),

A31
mn = 0,A32

mn = −Mc(1)m (u1, q2)K
sc
mn(q2, q2),A

33
mn =Ms(1)m (u1, q2)K

ss
mn(q2, q2).

and right hand of the above matrix:

B1
m =

M∑
n=1

airmMs(1)m (u1, q1)K
ss
mn(q1, q2)

B2
m =

1

μ1

M∑
n=1

airmMs
′(1)
m (u1, q1)K

ss
mn(q1, q2), B3

m = 0, m = 1, 2, · · ·M

and the unknowns are

X1
n = An, n = 1, 2, · · · ,M

X2
n = Bn, n = 0, 1, · · · ,M − 1

X3
n = Cn, n = 1, 2, · · · ,M

4.11 EM Wave Scattering by Elliptic Chiral

Cylinder

We develop an exact solution for the TMz polarized electromagnetic wave
scattering by an elliptic chiral cylinder. Like the previous problems, the
incident, transmitted and scattered waves are expressed in terms of infinite
series of elliptic wave functions. The geometry of cylinder with TMz uniform
plane wave incident on it is shown in Fig.(4.16). Let us consider a TMz plane
wave

Ei = E0e
jk(x cos φ0+y sinφ0)az (4.129)
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Figure 4.16: Scattering from Elliptic Chiral Cylinder, TM-Polarization

therefore we can write it as

Ei =

∞∑
n=0

AenN
e(1)
n (u, q) +

∞∑
n=1

AonN
o(1)
n (u, q) (4.130)

and

Hi =
j

η

[ ∞∑
n=0

AenM
e(1)
n (u, q) +

∞∑
n=1

AonM
o(1)
n (u, q)

]
(4.131)

where Aen = 2jnE0

k
cen(φ0, q) and Aon = 2jnE0

k
sen(φ0, q). The scattered field

can be written as:

Es =

[ ∞∑
n=0

Be
nN

e(4)
n (u, q) + Ce

nM
e(4)
n (u, q) (4.132)

+

∞∑
n=1

Bo
nN

o(4)
n (u, q) + Co

nM
o(4)
n (u, q)

]
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Hs =
j

η

[ ∞∑
n=0

Be
nM

e(4)
n (u, q) + Ce

nN
e(4)
n (u, q) (4.133)

+
∞∑
n=1

Bo
nM

o(4)
n (u, q) + Co

nN
o(4)
n (u, q)

]

and the fields inside the elliptic chiral cylinder will be: Et = QR + jηcQL,

Ht = QL + j
ηc
QR and ηc =

√
μc
εc
.

QR =

∞∑
n=0

Re
n

[
Me(1)

n (u, qR)−Ne(1)
n (u, qR)

]
(4.134)

+

∞∑
n=1

Ro
n

[
Mo(1)

n (u, qR)−No(1)
n (u, qR)

]

QL =

∞∑
n=0

Len
[
Me(1)

n (u, qL) +Ne(1)
n (u, qL)

]
(4.135)

+

∞∑
n=1

Lon
[
Mo(1)

n (u, qL) +No(1)
n (u, qL)

]
where

kR =
ω
√
μcεc

1 + βω
√
μcεc

and

kL =
ω
√
μcεc

1− βω
√
μcεc

where qR = (kRf/2)
2, qL = (kLf/2)

2 and q = (kf/2)2. Now we can apply
boundary conditions in order to find eight array of unknown coefficients
Be
n, B

o
n, C

e
n, C

o
n,R

e
n, R

o
n, L

e
n, L

o
n at u = u0 for any values of v.

az · [Ei + Es − Et] = 0

av · [Ei + Es − Et] = 0

az · [Hi +Hs −Ht] = 0

av · [Hi +Hs −Ht] = 0 (4.136)
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The z-component of electric field will be:

Ei
z = k

∞∑
n=0

AenMc(1)n (u, q)cen(v, q) + k

∞∑
n=1

AonMs(1)n (u, q)sen(v, q) (4.137)

Es
z = k

∞∑
n=0

Be
nMc(4)n (u, q)cen(v, q) + k

∞∑
n=1

Bo
nMs(4)n (u, q)sen(v, q) (4.138)

Et
z = kL

∞∑
n=0

LenMc(1)n (u, qL)cen(v, qL) + kL

∞∑
n=1

LonMs(1)n (u, qL)sen(v, qL)

+ jηc

{
kR

∞∑
n=0

Re
nMc(1)n (u, qR)cen(v, qR) + kR

∞∑
n=1

Ro
nMs(1)n (u, qR)sen(v, qR)

}
(4.139)

The v-component of electric field will be:

Ei
v = 0

Es
v =

∞∑
n=0

Ce
nMc

′(4)
n (u, q)cen(v, q) +

∞∑
n=1

Co
nMs

′(4)
n (u, q)sen(v, q) (4.140)

Et
v = −

∞∑
n=0

LenMc
′(1)
n (u, qL)cen(v, qL)−

∞∑
n=1

LonMs
′(1)
n (u, qL)sen(v, qL)

+ jηc

{ ∞∑
n=0

Re
nMc

′(1)
n (u, qR)cen(v, qR) +

∞∑
n=1

Ro
nMs

′(1)
n (u, qR)sen(v, qR)

}
(4.141)

The z-component of magnetic field will be:

H i
z = 0

Hs
z =

jk

η

{ ∞∑
n=0

Ce
nMc(4)n (u, q)cen(v, q) +

∞∑
n=1

Co
nMs(4)n (u, q)sen(v, q)

}
(4.142)
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H t
z =

∞∑
n=0

kRR
e
nMc(1)n (u, qR)cen(v, qR) +

∞∑
n=1

kRR
o
nMs(1)n (u, qR)sen(v, qR)

+
jkL
ηc

{ ∞∑
n=0

LenMc(1)n (u, qL)cen(v, qL) +

∞∑
n=1

LonMs(1)n (u, qL)sen(v, qL)

}
(4.143)

The v-component of magnetic field will be:

H i
v =

j

η

{ ∞∑
n=0

AenMc
′(1)
n (u, q)cen(v, q) +

∞∑
n=1

AonMs
′(1)
n (u, q)sen(v, q)

}
(4.144)

Hs
v =

j

η

{ ∞∑
n=0

Be
nMc

′(4)
n (u, q)cen(v, q) +

∞∑
n=1

Bo
nMs

′(4)
n (u, q)sen(v, q)

}
(4.145)

H t
v =

∞∑
n=0

Re
nMc

′(1)
n (u, qR)cen(v, qL) +

∞∑
n=1

Ro
nMs

′(1)
n (u, qR)sen(v, qR)

− j

ηc

{ ∞∑
n=0

LenMc
′(1)
n (u, qL)cen(v, qL) +

∞∑
n=1

LonMs
′(1)
n (u, qL)sen(v, qL)

}
(4.146)

At boundary u = u0 for any angle v we have Ei
z + Es

z = Et
z, E

i
v + Es

v = Et
v,

H i
z +Hs

z = H t
z and H

i
v +Hs

v = H t
v therefore we have four equations

k
∞∑
n=0

AenMc(1)n (u0, q)cen(v, q) + k
∞∑
n=1

AonMs(1)n (u0, q)sen(v, q)

+ k
∞∑
n=0

Be
nMc(4)n (u0, q)cen(v, q) + k

∞∑
n=1

Bo
nMs(4)n (u0, q)sen(v, q)

= kL

∞∑
n=0

LenMc(1)n (u0, qL)cen(v, qL) + kL

∞∑
n=1

LonMs(1)n (u0, qL)sen(v, qL)

+ jηc

{
kR

∞∑
n=0

Re
nMc(1)n (u0, qR)cen(v, qR) + kR

∞∑
n=1

Ro
nMs(1)n (u0, qR)sen(v, qR)

}
(4.147)
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∞∑
n=0

Ce
nMc

′(4)
n (u0, q)cen(v, q) +

∞∑
n=1

Co
nMs

′(4)
n (u0, q)sen(v, q)

= −
∞∑
n=0

LenMc
′(1)
n (u0, qL)cen(v, qL)−

∞∑
n=1

LonMs
′(1)
n (u0, qL)sen(v, qL)

+ jηc

{ ∞∑
n=0

Re
nMc

′(1)
n (u0, qR)cen(v, qR) +

∞∑
n=1

Ro
nMs

′(1)
n (u0, qR)sen(v, qR)

}
(4.148)

jk

η

{ ∞∑
n=0

Ce
nMc(4)n (u0, q)cen(v, q) +

∞∑
n=1

Co
nMs(4)n (u0, q)sen(v, q)

}

= kR

∞∑
n=0

Re
nMc(1)n (u0, qR)cen(v, qR) + kR

∞∑
n=1

Ro
nMs(1)n (u0, qR)sen(v, qR)

+
j

ηc

{
kL

∞∑
n=0

LenMc(1)n (u0, qL)cen(v, qL) + kL

∞∑
n=1

LonMs(1)n (u0, qL)sen(v, qL)

}
(4.149)

j

η

{ ∞∑
n=0

AenMc
′(1)
n (u0, q)cen(v, q) +

∞∑
n=1

AonMs
′(1)
n (u0, q)sen(v, q)

}

+
j

η

{ ∞∑
n=0

Be
nMc

′(4)
n (u0, q)cen(v, q) +

∞∑
n=1

Bo
nMs

′(4)
n (u0, q)sen(v, q)

}

=
∞∑
n=0

Re
nMc

′(1)
n (u0, qR)cen(v, qL) +

∞∑
n=1

Ro
nMs

′(1)
n (u0, qR)sen(v, qR)

− j

ηc

{ ∞∑
n=0

LenMc
′(1)
n (u0, qL)cen(v, qL) +

∞∑
n=1

LonMs
′(1)
n (u0, qL)sen(v, qL)

}
(4.150)

From boundary conditions we have four equation; Eq.(4.147),..., Eq.(4.150),
with eight array unknowns Be

n, B
o
n, C

e
n, C

o
n, R

e
n, R

o
n, L

e
n, L

o
n First we multiply

both side of Eq.(4.147),..., Eq.(4.150) by cen(v, q) and integrating over [0, 2π],
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and using properties of Eq.(4.76) and changing index m,n from 0 toM there-
fore we have a big matrix consist of sixteen small matrix in the form:⎡⎢⎢⎣

A11
mn A12

mn A13
mn A14

mn

A21
mn A22

mn A33
mn A24

mn

A31
mn A32

mn A33
mn A34

mn

A41
mn A42

mn A43
mn A44

mn

⎤⎥⎥⎦
⎡⎢⎢⎣

X1
n

X2
n

X3
n

X4
n

⎤⎥⎥⎦ =

⎡⎢⎢⎣
B1
m

B2
m

B3
m

B4
m

⎤⎥⎥⎦ (4.151)

each small matrix A11
mn,A

12
mn, ... ,A44

mn is a square matrix (M+1) by (M+1)
with elements:

A11
mn = −kMc(4)n (u0, q)I

cc
mn(q, q)

A12
mn = kLMc(1)n (u0, qL)I

cc
mn(q, qL)

A13
mn = jkRηcMc(1)n (u0, qR)I

cc
mn(q, qR)

A14
mn = 0

A21
mn = 0

A22
mn = −Mc

′(1)
n (u0, qL)I

cc
mn(q, qL)

A23
mn = jηcMc

′(1)
n (u0, qR)I

cc
mn(q, qR)

A24
mn = −Mc

′(4)
n (u0, q)I

cc
mn(q, q)

A31
mn = 0

A32
mn =

j

ηc
kLMc(1)n (u0, qL)I

cc
mn(q, qL)

A33
mn = kRMc(1)n (u0, qR)I

cc
mn(q, qR)

A34
mn = −jk

η
Mc(4)n (u0, q)I

cc
mn(q, q)

A41
mn = − j

η
Mc

′(4)
n (u0, q)I

cc
mn(q, q)

A42
mn = − j

ηc
Mc

′(1)
n (u0, qL)I

cc
mn(q, qL)

A43
mn =

1

ηc
Mc

′(1)
n (u0, qR)I

cc
mn(q, qR)

A44
mn = 0
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where X1
n = Be

n, X
2
n = Ce

n, X
3
n = Len, X

4
n = Re

n and

B1
m = k

M∑
n=0

AenMc(1)n (u0, q)I
cc
mn(q, q)

B2
m =

j

η

M∑
n=0

AenMc
′(1)
n (u0, q)I

cc
mn(q, q)

B3
m = B4

m = 0

As you have noticed these formula are for even mode, If we multiply both
side of Eq.(4.147),..., Eq.(4.150) by sen(v, q) and integrating over [0, 2π],
and using properties of Eq.(4.76) and changing index m,n from 1 to M + 1
therefore we have a big matrix consist of:

A11
mn = −kMs(4)n (u0, q)I

ss
mn(q, q)

A12
mn = kLMs(1)n (u0, qL)I

ss
mn(q, qL)

A13
mn = jkRηcMs(1)n (u0, qR)I

ss
mn(q, qR)

A14
mn = 0

A21
mn = 0

A22
mn = −Ms

′(1)
n (u0, qL)I

ss
mn(q, qL)

A23
mn = jηcMs

′(1)
n (u0, qR)I

ss
mn(q, qR)

A24
mn = −Ms

′(4)
n (u0, q)I

ss
mn(q, q)

A31
mn = 0

A32
mn =

j

ηc
kLMs(1)n (u0, qL)I

ss
mn(q, qL)

A33
mn = kRMs(1)n (u0, qR)I

ss
mn(q, qR)

A34
mn = −jk

η
Ms(4)n (u0, q)I

ss
mn(q, q)

A41
mn = − j

η
Ms

′(4)
n (u0, q)I

ss
mn(q, q)

A42
mn = − j

ηc
Ms

′(1)
n (u0, qL)I

ss
mn(q, qL)
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A43
mn =

1

ηc
Ms

′(1)
n (u0, qR)I

ss
mn(q, qR)

A44
mn = 0

where X1
n = Bo

n, X
2
n = Co

n, X
3
n = Lon, X

1
n = Ro

n and

B1
m = k

M+1∑
n=1

AonMs(1)n (u0, q)I
ss
mn(q, q)

B2
m =

j

η

M+1∑
n=1

AonMs
′(1)
n (u0, q)I

ss
mn(q, q)

B3
m = B4

m = 0

The dimension of big matrix is 4M + 4 by 4M + 4.
For TEz polarization, we can use duality theorem.

4.12 Problems

• Problem 1 A uniform TMz plane wave incident on long conduction
elliptic cylinder with a = λ and b = λ/2 at angle φ0 = 900. Calculate
and draw its bistatic radar cross section and compare your result with
physical optic method.

• Problem 2 A uniform TEz plane wave incident on long conduction
elliptic cylinder with a = λ and b = λ/2 at angle φ0 = 900. Calculate
and draw its bistatic radar cross section and compare your result with
physical optic method.

• Problem 3 Find the scattering of EM wave by a PEMC elliptic cylin-
der for TEz polarization.

• Problem 4 A uniform TMz plane wave incident on a long lossy di-
electric elliptic cylinder with a = λ/2, b = λ/4 and εr = 5., σ = 0.05 at
angle φ0 = 300. Calculate and draw its bistatic radar cross section and
electric field along X and Y axis at frequency 1GHz inside dielectric
elliptic.
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• Problem 5 A uniform TMz plane wave incident on a two layer lossy
dielectric elliptic cylinder with parameters a2 = λ/2, b2 = λ/4, u1 =
u2/2, εr1 = 25., σ1 = 0.5[S/m], εr2 = 50., σ2 = 1.[S/m] at angle
φ0 = 300. Calculate and draw its bistatic radar cross section and
electric field along X and Y axis at frequency 1GHz inside elliptic.

• Problem 6 A uniform TMz plane wave incident on a long dielectric
elliptic cylinder with a = λ/2, b = λ/4 and εr = 5., σ = 0.05 at angle
φ0 = 300. The confocal distance of elliptic cylinder is filled with a
conducting strip. Fine the normalized RCS σ/λ of this configuration.

• Problem 7 Solve the above problems for TEz case.



Chapter 5

Parabolic Cylinder

”Weakness of attitude becomes weakness of character.”
Albert Einstein

5.1 Parabolic Cylindrical Coordinates

There are several different conventions for the orientation and designation of
these coordinates. In this work, following Morse and Feshbach (1953), the
coordinates u, v, z are used. In this convention, the traces of the coordinate
surfaces of the xy-plane are confocal parabolas with a common axis. The
u curves open into the negative x-axis; the v curves open into the positive
x-axis. The u and v curves intersect along the y-axis. A cylindrical parabolic
coordinate system is one in which coordinates (u, v, z) correspond to the
Cartesian coordinates given by; Fig.(5.1). They are related to Cartesian
Coordinates by

x =
1

2
(u2 − v2)

y = uv

z = z (5.1)

where v ≥ 0 and u may assume any real value, with its sign being the same
as that of the y coordinate. In Fig.(5.2) curves of constant u and v values are
shown in the z = 0 plane of cartesian coordinate system. Complete parabolic
cylinders are obtained when v is kept constant. For v = 0 the parabola in
the z = 0 plane degenerates into the positive x axis. Note also in the z = 0

181
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Figure 5.1: Parabolic cylindrical coordinates

plane that a complete family of parabolas are obtained as v increases from
zero to infinity. Curves with constant u are semi- parabolas, in this plane,
with u varying from −∞ to +∞). For u = 0 the semi-parabola in the z = 0
plane, degenerates into the negative x axis.

Figure 5.2: Curves of constant values of u and v
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y2 = 4F (x+ F )

x =
1

2
u20 −

y2

2u20

x = −1

2
v20 +

y2

2v20
(5.2)

where we denote the focal length by F , v0 =
√
2F . The parabolic cylinder

coordinates (u, v, z) are related to the circular cylindrical coordinates (ρ, φ, z)
by

ρ =
√
x2 + y2 =

1

2
(u2 + v2)

u = ±√
ρ+ x =

√
2ρ cos

φ

2

v =
√
ρ− x =

√
2ρ sin

φ

2
(5.3)

and unit vectors will be:

au =
1√

u2 + v2
(uax + vay)

av =
1√

u2 + v2
(−vax + uay) (5.4)

The Scale Factors are:

h1 =
√
u2 + v2

h2 = h1

h3 = 1 (5.5)

therefore ∇ · E, ∇×E and ∇ψ will be:

∇ · E =
1

h21
[
∂

∂u
(h1Eu) +

∂

∂v
(h1Ev)] +

∂Ez
∂z

∇× E = [
1

h1

∂Ez
∂v

− ∂Ev
∂z

]au + [
∂Eu
∂z

− 1

h1

∂Ez
∂u

]av

+
1

h1
[
∂

∂u
(h1Ev)− ∂

∂v
(h1Eu)]az

∇ψ =
1

h1
(
∂ψ

∂u
au +

∂ψ

∂v
av) +

∂ψ

∂z
az (5.6)
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The Helmholtz differential equation is:

1

u2 + v2

(
∂2ψ

∂u2
+
∂2ψ

∂v2

)
+
∂2ψ

∂z2
+ k2ψ = 0 (5.7)

Since our problems are long cylinder, the problem is two dimensional:

1

u2 + v2

(
∂2ψ

∂u2
+
∂2ψ

∂v2

)
+ k2ψ = 0 (5.8)

Attempt separation of variables by writing ψ(u, v) = U(u)V (v) then the
Helmholtz differential equation becomes:

∂2U

∂u2
+ [k2u2 − a]U = 0. (5.9)

∂2V

∂v2
+ [k2v2 + a]V = 0 (5.10)

where a is separation constant and

U(u) = c1Dν1(p1u) + c2Dν2(p2u)

V (v) = c3Dν3(p3v) + c4Dν4(p4v)

where ν1 = −j(a−jk)
2k

, ν2 = j(a+jk)
2k

= ν∗1 , ν3 = −ja−k
2k

, ν4 = j(a+jk)
2k

= ν∗3 .
p1 = (−1)3/4

√
2k, p2 = (−1)1/4

√
2k, p3 = (−1)1/4

√
2k, p4 = (−1)3/4

√
2k,

and the asterisk implies complex conjugate.
We may observe from Fig.(5.2) that the space will be divided into two region
by parabolic cylinder v = v0, the interior region, for which v ≤ v0 or x ≤
−1

2
v20 +

y2

2v20
and exterior region for which v ≥ v0.

If we are solving a problem in the interior region, the required regularity of
the solution in u = v = 0 (z axis) simplifies. If we now solve the problem in
the exterior region, the required regularity of the solution when v → ∞ will
also simplify. The general solution for interior region is:

ψ = AmDm(pu)Dm(p
∗v)

and the general solution for exterior region will be

ψ = AmDm(pu)D−m−1(p
∗v)

Between the function Dν(z) and D−ν−1(z) there exists the following linear
relation

Dν(z) =
Γ(ν + 1)√

2π

[
ejπν/2D−ν−1(jz) + e−jπν/2D−ν−1(−jz)

]
(5.11)
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5.2 Plane Wave in Parabolic Cylinder

The incident plane wave ψ = exp{jk(x cosφ0 + y sin φ0)} can be expand in
parabolic cylinder. The ψ may be Ez or Hz for TMz or TEz respectively.
For |φ0| < π/2 we have:

ψ =

∞∑
m=0

sec (
φ0

2
)
[j tan(φ0

2
)]m

m!
Dm(p

∗u)Dm(pv) (5.12)

and for |φ0| > π/2

ψ =

∞∑
m=0

csc (
φ0

2
)
[j cot(φ0

2
)]m

m!
Dm(pu)Dm(p

∗v) (5.13)

where p =
√
2jk and p∗ =

√−2jk∗. The first series, Eq.( 5.12), converges
well for values of φ0 near zero and the second, Eq.(5.13), for values near π.
When φ0 = 0 and the plane wave is moving to the left, parallel to the x axis,
the expression takes on the particularly simple form [11].

ejkx = D0(p
∗u)D0(pv)

e−jkx = D0(pu)D0(p
∗v)

(5.14)

5.3 Line Source in Parabolic Cylinder

An infinite Electric current source I0 which is located at r0(x0, y0) = r0(u0, v0)
can be expand in parabolic cylinder[11].

Ez = −I0
4
ωμH

(2)
0 (k|r− r0|)

=
I0√
2π
ωμ

∞∑
m=0

jm

m!
Dm(p

∗u0)Dm(p
∗u)

·
{
Dm(pv)D−m−1(p

∗v0); v0 > v
Dm(pv0)D−m−1(p

∗v); v > v0
(5.15)
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5.4 Plane Wave Scattering by a Conducting

Parabolic Cylinder, TMz Polarization

Let us consider a metalic parabolic cylinder as Fig.(5.3)

x = −1

2
v20 +

y2

2v20
(5.16)

As illusttrated in Fig.(5.3), the conducting parabolic cylinder is illuminated

Figure 5.3: Conducting parabolic cylinder

by a TMz polarized plane wave incident from the angle φ0 with respect to
the positive x axis, and with incident electric field given by:

Ei = ejk(x cosφ0+y sinφ0)az (5.17)

Since the angle of incident is between |φ0| > π/2 therefore

Ei
z =

∞∑
m=0

aimDm(pu)Dm(p
∗v) (5.18)

where

aim = csc (
φ0

2
)
[j cot(φ0

2
)]m

m!
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The scattered electric field which satisfies the radiation condition, is given
by:

Es
z =

∞∑
m=0

asmDm(pu)D−m−1(pv) (5.19)

where the asm are a series of unknown coefficients. Now we can impose bound-
ary condition Ei

z + Es
z = 0 at the v = v0, therefore

∞∑
m=0

aimDm(pu)Dm(p
∗v0) + asmDm(pu)D−m−1(pv0) = 0 (5.20)

or ∞∑
m=0

[
aimDm(p

∗v0) + asmD−m−1(pv0)
]
Dm(pu) = 0 (5.21)

we multiply both side of Eq.(5.21) by Dn(pu) and noting that the parabolic
cylinder functions satisfy the orthogonality relation∫ ∞

−∞
Dm(pu)Dn(pu)du =

m!
√
2π

p
δmn (5.22)

finally

asm = − Dm(p
∗v0)

D−m−1(pv0)
aim (5.23)

50 100 150 200 250 300

2

4

6

8

10

12
Scattering of a TM  Plane Wave by Parabolic Cylinder

Φ angle

σ/
λ

 

 

d=4λ, h=1.28λ

φi=180o

Series
MoM
PO

Figure 5.4: Scattering by a conducting parabolic cylinder
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5.5 Scattering by a Dielectric Parabolic Cylin-

der

Consider a parabolic cylinder as shown in Fig.(5.5)with electrical parameter
μ, ε, σ in free space. The incident TMz polarization electric filed will be given
as

Figure 5.5: Scattering by a dielectric parabolic cylinder

Ei
z = ejk0(x cosφ0+y sinφ0) =

∞∑
m=0

aimDm(p0u)Dm(p
∗
0v) (5.24)

where k0 = 2π/λ is wavenumber in free space, p0 =
√
2jk0, p

∗
0 =

√−2jk0
and

aim = csc (
φ0

2
)
[j cot(φ0

2
)]m

m!
(5.25)

The corresponding incident magnetic field will be find by

Hi =
1

−jωμ0
∇× Ei =

1

−jωμ0h

[
au
∂Ei

z

∂v
− av

∂Ei
z

∂u

]
(5.26)

where h =
√
u2 + v2. The problem is to find electromagnetic scattered fields

in free space and transmitted electromagnetic fields inside dielectric parabolic
cylinder. The scattered electric field which satisfies the radiation condition,
is given by

Es
z =

∞∑
m=0

asmDm(p0u)D−m−1(p0v) (5.27)
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and the corresponding scattered magnetic field will be found by

Hs =
1

−jωμ0
∇× Es =

1

−jωμ0h

[
au
∂Es

z

∂v
− av

∂Es
z

∂u

]
(5.28)

The electromagnetic fields inside the parabolic cylinder is

Et
z =

∞∑
m=0

atmDm(pu)Dm(p
∗v) (5.29)

where εc = ε0(εr − j σ
ωε0

), k = ω
√
μεc is complex wavenumber in dielectric

parabolic cylinder, p =
√
2jk, p∗ =

√−2jk∗ and atm is unknown coefficient
that are found by enforcing boundary conditions. At surface of v = v0 we
have

Ei
z + Es

z = Et
z

H i
u +Hs

u = H t
u

(5.30)

or

∞∑
m=0

aimDm(p0u)Dm(p
∗
0v0) +

∞∑
m=0

asmDm(p0u)D−m−1(p0v0) = (5.31)

∞∑
m=0

atmDm(pu)Dm(p
∗v0)

1

μ0

∞∑
m=0

aimDm(p0u)D
′
m(p

∗
0v0) +

1

μ0

∞∑
m=0

asmDm(p0u)D
′
−m−1(p0v0) = (5.32)

1

μ

∞∑
m=0

atmDm(pu)D
′
m(p

∗v0)

in which the prim implies differentiation with respect to v, i.e.,

D′
m(pv) =

∂Dm(pv)

∂v
=

[
p2v

2
Dm(pv)− pDm+1(pv)

]
(5.33)

Equation Eq.(5.30)and Eq.(5.31) represent two sets of equations in the un-
known coefficients asn and atn. An exact term by term solution of these equa-
tions is not possible since they contain parabolic cylinder functions with
diffrent arguments., i.e., different dependence on the circumferential coordi-
nate u. Thus, the eigenfunction in free space and inside cylinder are not
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orthogonal. The same nonorthogonality procedure of eigenfunction modes
that has periviously been used for elliptic dielectric cylinder, we will use in
this problem.
Before attemting to find the unknown coefficients asm and atm, we need to
define this integral:

Imn(pi, pj) =

∫ ∞

−∞
Dm(piu)Dn(pju)du (5.34)

if pi = pj = p we have:

Imn(p, p) =
m!

√
2π

p
δmn (5.35)

This integral has exact closed form expressions in terms of simple functions
and for nonnegative integer m and n.
For nonnegative integer orders, Dm(z) is the product of an exponential and
a Hermite polynomial:

Dm(z) = 2−
m
2 e−

z2

4 Hm(
z√
2
) (5.36)

where Hm(z) is Hermite polynomial. Inserting Eq.(5.36) into Eq.(5.34), Imn
can be expressed in terms of the Hermite polynomials as:

Imn(pi, pj) = 2−
m+n

2
2√

p2i + p2j

∫ ∞

−∞
e−x

2

Hm(ax)Hn(bx)dx (5.37)

where a =
√
2pi√
p2i+p

2
j

and b =
√
2pj√
p2i+p

2
j

. Let us use this short hand notation

Imn(pi, pj) = C · Imn(a, b) where the constant. C = 2−
m+n

2
2
√
π√

p2i+p
2
j

and

Imn(a, b) =
1√
π

∫ ∞

−∞
e−x

2

Hm(ax)Hn(bx)dx (5.38)

This integral can be calculated analytically. Ifm+n is odd, then Imn(a, b) = 0
otherwise it has valus that we have found it by Mathematica software. Some
of them are tabulated at appendix. We begin multiplying both sides of
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Eq.(5.31) and Eq.(5.32) by Dn(p0u), n = 0, 1, 2, . . . ,M and integrating from
−∞ to ∞. M is the truncation of our series. Therefore:

M∑
m=0

aimImn(p0, p0)Dm(p
∗
0v0) +

M∑
m=0

asmImn(p0, p0)D−m−1(p0v0) = (5.39)

M∑
m=0

atmImn(p, p0)Dm(p
∗v0)

1

μ0

M∑
m=0

aimImn(p0, p0)D
′
m(p

∗
0v0) +

1

μ0

M∑
m=0

asmImn(p0, p0)D
′
−m−1(p0v0) = (5.40)

1

μ

M∑
m=0

atmImn(p, p0)D
′
m(p

∗v0)

the indexm in both Eq.(5.39),Eq.(5.40) can be changed from 0−M , therefore
we have 2M + 2 unknown and 2M + 2 linear equations which can be divide
into four different submatrix.[

Amn Bmn

Cmn Dmn

] [
Xn

Yn

]
=

[
Gm

Hm

]
(5.41)

where
Amn = Dm(p

∗v0)Imn(p, p0)

Cmn =
1

μ
D′
m(p

∗v0)Imn(p, p0)

Bmn = −D−m−1(p0v0)Imn(p0, p0)

Dmn = − 1

μ0

D′
−m−1(p0v0)Imn(p0, p0)

Gm = aimDm(p
∗
0v0)Imn(p0, p0)

Hm =
1

μ0
aimD

′
m(p

∗
0v0)Imn(p0, p0)

and the unknowns are:
Xn = atn

Yn = asn
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5.6 Scattering by a Coated Dielectric Parabolic

Cylinder

In this section an eigenfunction solution to the problem of TM scattering by
a material coated perfectly conducting parabolic cylinder will be presented.
The surfaces of the perfect conductor and of the material coating are both
parabolic cylinders with the same focal line. The parabolic cylinder is a
shape of practical interest since it can model an isolated thick edge.
The basic geometry is shown in Fig.(5.6). The wavenumber in region 1 or 2

Figure 5.6: Geometry for a TM plane wave incident upon coated perfectly
conducting parabolic cylinder

is gien by
k1,2 = ω

√
μ1,2ε1,2

which will be complex if the repective region is lossy. In addition, in region
1 and 2 we define the parameter

p1,2 =
√

2jk1,2

The incident electric field can be expresses in term of the parabolic cylinder
functions:

Ei
z = ejk1(x cosφ0+y sinφ0) =

∞∑
m=0

aimDm(p1u)Dm(p
∗
1v) (5.42)
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aim = csc (
φ0

2
)
[j cot(φ0

2
)]m

m!
(5.43)

The corresponding incident magnetic field will be found by:

Hi =
1

−jωμ1

∇×Ei =
1

−jωμ1h

[
au
∂Ei

z

∂v
− av

∂Ei
z

∂u

]
(5.44)

where h =
√
u2 + v2. The scattered electric field which satisfies the radiation

condition, is given by:

Es
z =

∞∑
m=0

asmDm(p1u)D−m−1(p1v) (5.45)

and the corresponding scattered magnetic field will be found by:

Hs =
1

−jωμ1
∇× Es =

1

−jωμ1h

[
au
∂Es

z

∂v
− av

∂Es
z

∂u

]
(5.46)

The electromagnetic fields inside the parabolic cylinder is:

Et
z =

∞∑
m=0

atmDm(p2u)Dm(p
∗
2v) +

∞∑
m=0

btmDm(p2u)D−m−1(p2v) (5.47)

Ht =
1

−jωμ2
∇×Et =

1

−jωμ2h

[
au
∂Et

z

∂v
− av

∂Et
z

∂u

]
(5.48)

where atm and btm are unknown coefficients that are found by enforcing bound-
ary conditions. At surface of v = v1 we have:

Ei
z + Es

z = Et
z

H i
u +Hs

u = H t
u

(5.49)

At surface of v = v2, conducting surface, Et
z = 0

Et
z =

∞∑
m=0

atmDm(p2u)Dm(p
∗
2v2) +

∞∑
m=0

btmDm(p2u)D−m−1(p2v2) = 0 (5.50)

or by using the orthogonality of Eq.(5.22),

atmDm(p
∗
2v2) + btmD−m−1(p2v2) = 0 (5.51)
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btm = atm
Dm(p

∗
2v2)

D−m−1(p2v2)
(5.52)

and from boundary conditions at v = v1 we have:

∞∑
m=0

aimDm(p1u)Dm(p
∗
1v1) +

∞∑
m=0

asmDm(p1u)D−m−1(p1v1) =

∞∑
m=0

atmDm(p2u)Dm(p
∗
2v1) +

∞∑
m=0

btmDm(p2u)D−m−1(p2v1)

(5.53)

1
μ1

{ ∞∑
m=0

aimDm(p1u)D
′
m(p

∗
1v1) +

∞∑
m=0

asmDm(p1u)D
′
−m−1(p1v1)

}
=

1
μ2

{ ∞∑
m=0

atmDm(p2u)D
′
m(p

∗
2v1) +

∞∑
m=0

btmDm(p2u)D
′
−m−1(p2v1)

} (5.54)

We insert Eq.(5.52) into Eq.(5.53) and Eq.(5.54), therefore:

∞∑
m=0

aimDm(p1u)Dm(p
∗
1v1) +

∞∑
m=0

asmDm(p1u)D−m−1(p1v1) =

∞∑
m=0

atmDm(p2u)Vm

(5.55)

1
μ1

{ ∞∑
m=0

aimDm(p1u)D
′
m(p

∗
1v1) +

∞∑
m=0

asmDm(p1u)D
′
−m−1(p1v1)

}
=

1
μ2

{ ∞∑
m=0

atmDm(p2u)Wm

} (5.56)

where
Vm = Dm(p

∗
2v1) +

Dm(p∗2v2)
D−m−1(p2v2)

D−m−1(p2v1)

Wm = D′
m(p

∗
2v1) +

Dm(p∗2v2)
D−m−1(p2v2)

D′
−m−1(p2v1)

(5.57)

From Eq.(5.55), Eq.(5.56) and also Eq.(5.52) we can find the unknowns, i.e.
asm, a

t
m and btm.



Chapter 6

Conducting Wedge

”As far as the laws of mathematics refer to reality, they are not
certain, as far as they are certain, they do not refer to reality.”

Albert Einstein

6.1 Introduction

The scattering of electromagnetic wave by dielectric and conducting wedge
is an exceptionally difficult problem which at present time has no known
analytic solution. The wedge problem is an important one in at least two
areas. The first concerns radar reflections and electromagnetic pulse response
from dielectric objects which may be in free space or else buried. The second
concerns the use of geometric theory of diffraction(GTD) to calculate the
radiation properties of antennas and other reflectors.
In this chapter the scattering of electromagnetic waves by conducting wedge
will be considered only.

6.2 Line Source Near a Conducting Wedge

The configuration of conducting wedge and electric line source is depicted in
Fig.(6.1) It can be shown that the total electric field of line source near the
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Figure 6.1: Conducting Wedge

wedge can be written as

Et
z = Ei

z+E
s
z =

⎧⎪⎨⎪⎩
∑
ν

aνJν(kρ)H
(2)
ν (kρ0) sin[ν(φ0 − α)] sin[ν(φ− α)] ρ ≤ ρ0∑

ν

aνJν(kρ0)H
(2)
ν (kρ) sin[ν(φ0 − α)] sin[ν(φ− α)] ρ ≥ ρ0

(6.1)
where

ν =
mπ

2(π − α)
m = 1, 2, 3 . . .

aν = − πωμI0
2(π − α)

(6.2)

and correspondent magnetic field will be calculated by

H t
ρ = − 1

jωμ

1

ρ

∂Et
z

∂φ

H t
φ =

1

jωμ

∂Et
z

∂ρ
(6.3)
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6.3 Plane wave Scattering by ConductingWedge

TMz Polarization

If the line source in previous section goes to far distance, (kρ0 � 1, and
ρ0 > ρ), we will have TMz plane wave, therefore the total filed will be

Et
z = E0

∑
ν

jνJν(kρ) sin[ν(φ0 − α)] sin[ν(φ− α)] (6.4)

where we can say that Ei
z = Ei

0 exp{jk(x cosφ0 + y sinφ0)} incident at angle
φ0 on a conducting wedge of interior angle 2α. If the angle α = 0, then we
will have half-plane, and the above formula will be reduced to

Et
z = E0

∞∑
m=1

jm/2Jm/2(kρ) sin(
m

2
φ0) sin(

m

2
φ) (6.5)

6.4 Plane wave Scattering by ConductingWedge

TEz Polarization

For TEz polarization, it is better to study the magnetic line-source near a
conducting wedge. When the line source of Fig.(6.1)is a magnetic of current
Im, by considering boundary conditions, we find

H t
z = H i

z+H
s
z =

⎧⎪⎨⎪⎩
∑
ν

aνJν(kρ)H
(2)
ν (kρ0) cos[ν(φ0 − α)] cos[ν(φ − α)] ρ ≤ ρ0∑

ν

aνJν(kρ0)H
(2)
ν (kρ) cos[ν(φ0 − α)] cos[ν(φ − α)] ρ ≥ ρ0

(6.6)
where

ν =
mπ

2(π − α)
m = 0, 1, 2 . . .

aν = εν

[
πωεIm
4(π − α)

]
εν =

{
1 ν = 0
2 ν �= 0

(6.7)
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and correspondent magnetic field will be calculated by

Et
ρ =

1

jωε

1

ρ

∂H t
z

∂φ

Et
φ = − 1

jωε

∂H t
z

∂ρ
(6.8)

If the line source in previous section goes to far distance, (kρ0 � 1, and
ρ0 > ρ), we will have TEz plane wave, therefore the total filed will be

H t
z = H0

∑
ν

ενj
νJν(kρ) cos[ν(φ0 − α)] cos[ν(φ − α)] (6.9)

where we can say that H i
z = H i

0 exp{jk(x cosφ0+ y sinφ0)} incident at angle
φ0 on a conducting wedge of interior angle 2α. If the angle α = 0, then we
will have half-plane, and the above formula will be reduced to

H t
z = H0

∞∑
m=0

εm/2j
m/2Jm/2(kρ) cos(

m

2
φ0) cos(

m

2
φ) (6.10)

6.5 Problems

• 1 A electric line source is located at φ0 = 45o and ρ0 = 2λ of a right an-
gle conducting corner reflector. Find the electric pattern of line source
with conducting wedge theory and compare it with image theory.
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Chapter 7

Sphere

”The only real valuable thing is intuition.”
Albert Einstein

7.1 Solution of Helmholtz Equation in Spher-

ical Coordinates

One of the common equations that we usually encounter in electromagnetic
fields and waves is the scalar wave equation. The scalar wave equation which
has the common form of

∇2Ψ+ k2Ψ = 0 (7.1)

where k = ω
√
με is called Helmholtz Equation. In spherical coordinates as

defined in appendix, the wave equation Eq.(7.1) has the form of:

∇2Ψ+ k2Ψ =
1

r2
∂

∂r
(r2

∂Ψ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂Ψ

∂θ
) +

1

r2 sin2 θ

∂2Ψ

∂φ2
+ k2Ψ = 0

(7.2)
To solve the above equation, we use the separation of variables method, so
we define

Ψ = R(r)T (θ)F (φ) (7.3)

by substituting ψ into the Eq.(7.2) and multiplying the results by

r2 sin2 θ/RTF
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we will have

sin2 θ

R

d

dr
(r2

dR

dr
) +

sin θ

T

d

dθ
(sin θ

dT

dθ
) + k2r2 sin2 θ = − 1

F

d2F

dφ2
(7.4)

Since the left hand side of Eq.(7.4) is independent of φ, we let

− 1

F

d2F

dφ2
= m2 (7.5)

where m is the first separation constant. The requirement for such condi-
tion is necessary for the physical behavior of problem. By this assumption,
Eq.(7.4) reduces to

1

R

d

dr
(r2

dR

dr
) + k2r2 = − 1

T sin2 θ

d

dθ
(sin θ

dT

dθ
) +

m2

sin2 θ
= n(n+ 1) (7.6)

where n(n+1) is the second separation constant. Thus the separated equa-
tions are three different ordinary differential equations:

F ′′ +m2F = 0 (7.7)

R′′ +
2

r
R′ + [k2 − n(n+ 1)

r2
]R = 0 (7.8)

1

sin θ

d

dθ
(sin θT ′) + [n(n+ 1)− m2

sin2 θ
]T = 0 (7.9)

7.1.1 Simple Harmonic Functions

The simple one, F ′′ +m2F = 0 has the solution

F (φ) = c1e
jmφ (7.10)

where c1 is a constant and m = 0,±1,±2, · · ·

7.1.2 Spherical Bessel’s Functions

The second equation R′′ + 2
r
R′ + [k2 − n(n+1)

r2
]R = 0 is called the Spheri-

cal Bessel’s Differential Equation, the solution of it is called the Spherical
Bessel’s Functions, and it is given by

R(r) = c2z
(g)
n (kr) (7.11)
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where c2 is a constant and n = 0, 1, 2, · · · and g = 1, 2, 3, 4 represents types
of the Spherical Bessel’s Functions:

z(1)n (kr) = jn(kr) Spherical Bessel Function (7.12)

z(2)n (kr) = yn(kr) Spherical Neumann Function (7.13)

z(3)n (kr) = h(1)n (kr) Spherical Hankel Function of first kind (7.14)

z(4)n (kr) = h(2)n (kr) Spherical Hankel Function of second kind (7.15)

Each of these functions has special properties: g = 1 and g = 2 indicate
standing wave while g = 3 represents an inward traveling wave and g = 4 an
outward traveling wave. We should notice that

z(1)n (kr) = jn(kr) =
h
(1)
n (kr) + h

(2)
n (kr)

2
(7.16)

z(2)n (kr) = yn(kr) =
h
(1)
n (kr)− h

(2)
n (kr)

2j
(7.17)

for more properties and identities of Spherical Bessel’s Functions see ap-
pendix (E) and [12]

7.1.3 Associated Legendre Functions

The last equation; i.e. 1
sin θ

d
dθ
(sin θT ′) + [n(n + 1) − m2

sin2 θ
]T = 0 is another

famous equation which is called Legendre’s Associated Differential Equation.
The solution to that equation are called Associated Legendre Polynomials
Pm
n (cos θ). For more information and properties of these function see ap-

pendix (E).

7.1.4 Results of Helmholtz Equation

Now we have the solutions of three differential equations. After multiplying
the results, the general solution is:

Ψg
mn(r, θ, φ) =

∞∑
n=0

n∑
m=−n

Agmnz
(g)
n (kr)P |m|

n (cos θ)ejmφ (7.18)

where Agmn is a constant.
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7.2 Vector Wave Equation in Spherical Co-

ordinate System

For many problems in electromagnetic wave theory, solution of vector wave
equation is required. The only known general method for obtaining solution
of vector wave equation is the method of applying certain vector differential
operators to the scalar wave functions. The solutions are called vector wave
functions. Following it will be shown that how vector wave functions are
obtained from scalar wave functions and a number of spherical wave functions
will be defined. It will be then possible to derive expansion of plane wave
or the radiation from a Hertzian dipole in terms of these functions. This is
critical step which makes it possible to generalize the Mie theory to deal with
an incident field, and have realistic antenna. Now let us define vector wave
functions in the spherical coordinate system. The vector wave functions are
the solution of vector wave equation:

∇×∇×C− k2C = 0 (7.19)

with k = ω
√
μεc, εc = ε0(εr − j σ

ωε0
) in the case of lossy medium. The vector

wave Eq.(7.19) can always be replaced by a simultaneous system of three
scalar equations, but the solution of this system for any component of C
is in most cases impractical. It is only in rectangular system that three
independent equations are obtained and in that case, each one is in the form
of Helmholtz Equation Eq.(7.1). Elementary solutions of the equation may be
found from the following theorem which is stated without proof. IfΨ satisfies
the scalar wave equation ∇2Ψ+ k2Ψ = 0, then the vectors M and N defined
by:

M = ∇× (aΨ) (7.20)

N =
1

k
∇×M (7.21)

satisfy the vector wave equation and moreover, are related by:

M =
1

k
∇×N (7.22)

If Ψ1 and Ψ2 are two solutions of the scalar wave equation, Ψ1 + Ψ2 are
also a solution (Linearity), and therefore M1,M2,N1, and N2 also satisfy
the vector wave equation. Thus

∑
(amnM + bmnN) is also a solution to the



7.2. VECTORWAVE EQUATION IN SPHERICAL COORDINATE SYSTEM205

wave equation. a in Eq.(7.20) is a constant vector. Mie in 1908 made the
remarkable discovery that in spherical coordinate system, one can also find
a non constant vector a = rar, [where ar is radial unit vector], for which M
is also a solution of vector wave equation.
Let us define:

L = ∇Ψ (7.23)

M = ∇× (rarΨ) (7.24)

N =
1

k
∇×M (7.25)

It can be seen that L,M and N are the solution of the vector wave equation
∇ × ∇ × C − k2C = 0 and generate a complete orthogonal system. By
calculating the divergence of Eq.(7.23), we find:

∇ ·M = ∇ ·N = 0 (7.26)

i.e. the function M,N are solenoidal, but L is not.

∇ · L = ∇2ψ = −k2ψ (7.27)

Now we can expand any electromagnetic field in a source free region as sum
of the spherical wave functions. In the spherical case, there are two types of
waves: TE and TM. Where in our problem M stands for TE and N for TM
waves. Therefore in spherical coordinates the expansion of any field is:

E =
∞∑
n=1

m=n∑
m=−n

(amnM
g
mn + bmnN

g
mn) (7.28)

H =
j

η

∞∑
n=1

m=n∑
m=−n

(amnN
g
mn + bmnM

g
mn) (7.29)

where M and N are:

Mg
mn = Mg

mnrar +Mg
mnθaθ +Mg

mnφaφ (7.30)

Ng
mn = Ng

mnrar +Ng
mnθaθ +Ng

mnφaφ (7.31)

from M = ∇Ψ× rar and N = 1
k
∇×M, we have

Mg
mnr = 0 (7.32)

Mg
mnθ =

jm

sin θ
P |m|
n (cos θ)zgn(kr)e

jmφ (7.33)

Mg
mnφ = − d

dθ
P |m|
n (cos θ)zgn(kr)e

jmφ (7.34)
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Ng
mnr =

n(n + 1)

kr
P |m|
n (cos θ)zgn(kr)e

jmφ (7.35)

Ng
mnθ =

d

dθ
P |m|
n (cos θ)

1

kr

d

dr
[rzgn(kr)]e

jmφ (7.36)

Ng
mnφ =

jm

sin θ
P |m|
n (cos θ)

1

kr

d

dr
[rzgn(kr)]e

jmφ (7.37)

and the orthogonalities of M and N vectors will be∫ 2π

0

dφ

∫ π

0

dθ sin θMmn·Mm′n′ sin θ = δmm′δnn′
4πn(n+ 1)

2n+ 1

(n + |m|)!
(n− |m|)!{z

(g)
n (kr)}2

(7.38)∫ 2π

0

dφ

∫ π

0

dθ sin θNmn ·Nm′n′ sin θ = (7.39)

δmm′δnn′
4πn(n + 1)

(2n+ 1)r2
(n+ |m|)!
(n− |m|)!

[
n(n+ 1){z(g)n (kr)}2 + { d

dr
[rz(g)n (kr)]}2

]
∫ 2π

0

dφ

∫ π

0

dθ sin θMmn ·Nm′n′ sin θ = 0 (7.40)

where m,m′, n, n′ are integers
We can rewrite M and N in other format

M = Me + jMo = Me
o (7.41)

N = Ne + jNo = Ne
o (7.42)

where

Me
o = ∓maθ

sin θ
zgn(kr)P

m
n (cos θ)

sin
cos

(mφ) (7.43)

−aφz
g
n(kr)

∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)

Ne
o = ar

n(n + 1)

kr
zgn(kr)P

m
n (cos θ)

cos
sin

(mφ) (7.44)

+aθ
1

kr

∂

∂r
[rzgn(kr)]

∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)

∓maφ
sin θ

1

kr

∂

∂r
[rzgn(kr)]P

m
n (cos θ)

sin
cos

(mφ)
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and the orthogonality of M and N vectors will be∫ 2π

0

dφ

∫ π

0

dθMlmn ·Nl′m′n′ sin θ = 0 (7.45)

where l or l′ are even or odd, and m,m′, n, n′ are integers∫ 2π

0
dφ

∫ π
0
dθMlmn ·Ml′m′n′ sin θ

=

{
0 l �= l′ or m �= m′ or n �= n′
4π
εm

n(n+1)
(2n+1)

(n+m)!
(n−m)!

{zn(kr)}2 l = l′ , m = m′ and n = n′
(7.46)

∫ 2π

0
dφ

∫ π
0
dθNlmn ·Nl′m′n′ sin θ

=

⎧⎨⎩
0 l �= l′ or m �= m′ or n �= n′
4π
εm

n(n+1)
(2n+1)2

(n+m)!
(n−m)!

[(n+ 1){zn−1(kr)}2 + n{zn+1(kr)}2]
l = l′ , m = m′ and n = n′

(7.47)

7.2.1 Spherical Cavity Resonators

Suppose we have a spherical cavity with radius a. Now we want to find the
resonant frequency of this cavity. We have two type modes TEr and TM r.
If one takes E = M = ∇× (ψrar), for TE

r case, we have

E = c[∓maθ
sin θ

jn(kr)P
m
n (cos θ)

sin
cos

(mφ) (7.48)

−aφjn(kr)
∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)]

where c is amplitude and the corresponding H will be fund by H = −1
jωμ

∇×
E = k

−jωμN. We should mention that Pm
n (cos θ) = 0 if m > n therefore m is

always m ≤ n therefor the starting integer is m = 1, n = 1 why=?.
In some literature, for simplicity, they define ẑgn(x) = xzgn(x) as a Riccati

or schelkunoff Bessel functions.

H =
jc

η
[ar

n(n + 1)

kr
jn(kr)P

m
n (cos θ)

cos
sin

(mφ) (7.49)

+aθ
1

kr

∂

∂r
[rjn(kr)]

∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)

∓maφ
sin θ

1

kr

∂

∂r
[rjn(kr)]P

m
n (cos θ)

sin
cos

(mφ)]
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The boundary conditions that must be satisfied are

Eθ(r = a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) = 0
Eφ(r = a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) = 0

(7.50)

Either condition gives us the same results.

jn(ka) = 0 ⇒ ka = αnp (7.51)

where the αnp is the pth roots of spherical bessel function jn(ka). which is
tabulated in Tabel[G.3]. The resonant frequency can be written as

fr[TE
r
mnp] =

αnp
2πa

√
με

m = 0, 1, 2, · · · ≤ n
n = 1, 2, 3, · · ·
p = 1, 2, 3, · · ·

(7.52)

Following the same procedure as before, H = M = ∇× (ψrar) for TM
r, it

can be shown that

H = c[∓maθ
sin θ

jn(kr)P
m
n (cos θ)

sin
cos

(mφ) (7.53)

−aφjn(kr)
∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)]

and the corresponding E will be fund by E = 1
jωε

∇×H = k
jωε

N.

E = −jcη[arn(n+ 1)

kr
jn(kr)P

m
n (cos θ)

cos
sin

(mφ) (7.54)

+aθ
1

kr

∂

∂r
[rjn(kr)]

∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)

∓maφ
sin θ

1

kr

∂

∂r
[rjn(kr)]P

m
n (cos θ)

sin
cos

(mφ)]

Applying boundary condition Eθ = 0 at the surface of sphere, it leads to

Eθ(r = a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) = 0 ⇒
[
1

kr

∂

∂r
[rjn(kr)]

]
r=a

= 0 (7.55)

or
Ĵ ′
n(ka) = 0 ⇒ ka = α′

np (7.56)
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where α′
np represents the pth zeros of the derivative of the Riccati Bessel

function of order n, which is tabulated in Tabel[G.5]. The resonant frequency
can be written as

fr[TM
r
mnp] =

α′
np

2πa
√
με

m = 0, 1, 2, · · · ≤ n
n = 1, 2, 3, · · ·
p = 1, 2, 3, · · ·

(7.57)

7.2.2 What is a Schumann Resonance?

Believe it or not, the Earth behaves like an enormous electric circuit. The at-
mosphere is actually a weak conductor and if there were no sources of charge,
its existing electric charge would diffuse away in about 10 minutes. There
is a ’cavity ’defined by the surface of the Earth and the inner edge of the
ionosphere 55 kilometers up. At any moment, the total charge residing in
this cavity is 500, 000 Coulombs. There is a vertical current flow between the
ground and the ionosphere of 1 − 3x10−12 Amperes per square meter. The
resistance of the atmosphere is 200 Ohms. The voltage potential is 200, 000
Volts. There are about 1000 lightning storms at any given moment world-
wide. Each produces 0.5 to 1 Ampere and these collectively account for the
measured current flow in the Earth’s ’electromagnetic’ cavity.
The Schumann Resonances are quasi standing wave electromagnetic waves
that exist in this cavity. Like waves on a spring, they are not present all
the time, but have to be ’excited’ to be observed. They are not caused by
anything internal to the Earth, its crust or its core. They seem to be related
to electrical activity in the atmosphere, particularly during times of intense
lightning activity.
They occur at several frequencies between 6 and 50 cycles per second; specif-
ically 7.8, 14, 20, 26, 33, 39 and 45 Hertz, with a daily variation of about ±0.5
Hertz. So long as the properties of Earth’s electromagnetic cavity remains
about the same, these frequencies remain the same. Presumably there is some
change due to the solar sunspot cycle as the Earth’s ionosphere changes in
response to the 11-year cycle of solar activity. Schumann resonances are most
easily seen between 2000 and 2200 UT.
Given that the earth’s atmosphere carries a charge, a current and a voltage,
it is not surprising to find such electromagnetic waves. The resonant prop-
erties of this terrestrial cavity were first predicted by the German physicist
W. O. Schumann between 1952 and 1957, and first detected by Schumann
and Konig in 1954. The first spectral representation of this phenomenon was
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prepared by Balser and Wagner in 1960. Much of the research in the last 20
years has been conducted by the Department of the Navy1 who investigate
Extremely Low Frequency communication with submarines.
Schumann resonances in the Earth-ionosphere cavity are excited by the ra-
dial E-field component of lightning discharges (the frequency component of
EM waves produced by lightning at these Schumann resonance frequencies).
Lightning discharges (anywhere on Earth) contain a wide spectrum of fre-
quencies of EM radiation.

Schumann resonances were first definitively observed in 1960. (M. Balser
and C.A. Wagner, Nature 188, 638 (1960)).
Nikola Tesla may have observed them before 1900!!! (Before the ionosphere
was known to even exist!!!) He also estimated the lowest modal frequency to
be f01 ≈ 6Hz!!!
• On July 9, 1962, a nuclear explosion (EMP) detonated at high altitude
(400 km) over Johnson Island in the Pacific {Test Shot: Starfish Prime, Op-
eration Dominic I}.
- Measurably affected the Earths ionosphere and radiation belts on a world-
wide scale.
- Sudden decrease of ∼ 3 − 5% in Schumann frequencies, therefore increase
in height of ionosphere.
- Change in height of ionosphere: Δh = h′ − h � (0.03 − 0.05)R0 ≈
400− 600km!!!
- Height changes decayed away after several hours.
- Artificial radiation belts lasted several years.
• Note that number of lightning strikes, (e.g. in tropics) is strongly corre-
lated to average temperature.
- Scientists have used Schumann resonances and monthly mean magnetic
field strengths to monitor lightning rates and thus monitor monthly temper-
atures.
they all correlate very well.
•Monitoring Schumann Resonances rise Global Thermometer and it is useful
for Global Warming studies.

1For more information, see: ”Handbook of Atmospheric Electrodynamics, vol. I”, by
Hans Volland, 1995 published by the CRC Press. Chapter 11 is entirely on Schumann
Resonances and is written by Davis Campbell at the Geophysical Institute, University of
Alaska, Fairbanks AK, 99775. There is also a history of this research and an extensive
bibliography.
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7.3 Hertzian Dipole Expansion

The electromagnetic radiation of a Hertzian dipole can be found analytically.
Let the dipole moment be Po = poad where po = IΔl

jω
and I is the dipole

current, Δl the length of the dipole and finally ad is a unit vector showing
the orientation of the dipole at the point r0, θ0, φ0, can be found analytically
[9]. The result for r < r0 is:

E =
∞∑
n=1

m=n∑
m=−n

[
a(4)mnM

(1)
mn(r, θ, φ) + b(4)mnN

(1)
mn(r, θ, φ)

]
(7.58)

H =
j

η

∞∑
n=1

m=n∑
m=−n

[
a(4)mnN

(1)
mn(r, θ, φ) + b(4)mnM

(1)
mn(r, θ, φ)

]
(7.59)

and for r > r0, the superscripts (4) and (1) must be changed to (1) and (4),
respectively. therefore:

E =

∞∑
n=1

m=n∑
m=−n

[
a(1)mnM

(4)
mn(r, θ, φ) + b(1)mnN

(4)
mn(r, θ, φ)

]
(7.60)

H =
j

η

∞∑
n=1

m=n∑
m=−n

[
a(1)mnN

(4)
mn(r, θ, φ) + b(1)mnM

(4)
mn(r, θ, φ)

]
(7.61)

The values of a
(1),(4)
mn and b

(1),(4)
mn are:

a(1),(4)mn = (
−jk3p0
4πε

)
(n− |m|)!
(n+ |m|)!

2n+ 1

n(n + 1)
ad ·M(1),(4)

−m,n (r0, θ0, φ0) (7.62)

b(1),(4)mn = (
−jk3p0
4πε

)
(n− |m|)!
(n+ |m|)!

2n+ 1

n(n + 1)
ad ·N(1),(4)

−m,n (r0, θ0, φ0) (7.63)

7.4 Plane Wave Expansion

Consider a dielectric sphere with radius a illuminated by a uniform plane
wave propagating in the z direction and polarized in the x direction:

Ei = E0e
−jkzax (7.64)

Hi =
E0

η
e−jkzay (7.65)
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where η is intrinsic impedance of the medium. In the plane wave case, the
field expansions are derived from equation Eq.(7.43, 7.44) with m = ±1. The
expansion of such a plane wave in spherical coordinates is:

Ei = E0e
−jkzax = E0

∞∑
n=1

αn[M
1
o1n(kr) + jN1

e1n(kr)] (7.66)

Hi =
E0

η
e−jkzay =

jE0

η

∞∑
n=1

αn[N
1
o1n(kr) + jM1

e1n(kr)]

where αn = (−j)n 2n+1
n(n+1)

7.5 Dipole Antenna Near a Dielectric Sphere

Suppose that we have a Hertzian dipole antenna located at point r0, θ0, φ0

in the front of a dielectric sphere with radius a. We are asked to find the
electromagnetic radiation of this antenna at every point of space, including
inside dielectric sphere. The application of this arrangement is the mutual in-
teraction of the human head and the mobile antenna. According to Fig.(7.1),
for r < r0 we can write:

Ei =
∞∑
n=1

m=n∑
m=−n

[
A

(4)
i M(1)(r, θ, φ) +B

(4)
i N(1)(r, θ, φ)

]
(7.67)

Hi =
j

η1

∞∑
n=1

m=n∑
m=−n

[
A

(4)
i N(1)(r, θ, φ) +B

(4)
i M(1)(r, θ, φ)

]
(7.68)

and for r > r0 we will have:

Ei =
∞∑
n=1

m=n∑
m=−n

[
A

(1)
i M(4)(r, θ, φ) +B

(1)
i N(4)(r, θ, φ)

]
(7.69)

Hi =
j

η1

∞∑
n=1

m=n∑
m=−n

[
A

(1)
i N(4)(r, θ, φ) +B

(1)
i M(4)(r, θ, φ)

]
(7.70)

The transmitted and scattered fields will be:

Et =

∞∑
n=1

m=n∑
m=−n

[
atmnM

(1)(r, θ, φ) + btmnN
(1)(r, θ, φ)

]
(7.71)

Ht =
j

η2

∞∑
n=1

m=n∑
m=−n

[
atmnN

(1)(r, θ, φ) + btmnM
(1)(r, θ, φ)

]
(7.72)
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Figure 7.1: Dipole antenna near a dielectric sphere

Es =
∞∑
n=1

m=n∑
m=−n

[
asmnM

(4)(r, θ, φ) + bsmnN
(4)(r, θ, φ)

]
(7.73)

Hs =
j

η1

∞∑
n=1

m=n∑
m=−n

[
asmnN

(4)(r, θ, φ) + bsmnM
(4)(r, θ, φ)

]
(7.74)

where k1 = ω
√
μ1ε1, k2 = ω

√
μ2ε2. If the dielectric sphere have loss σ2, ε2

will be complex εr2c = εr2 − j σ2
ωε0

. The A
(1),(4)
i and B

(1),(4)
i are known from

antenna position and direction, and atmn, a
s
mn, b

t
mn and bsmn are unknowns. By

applying boundary conditions at the surface of sphere, Es
θ + Ei

θ = Et
θ and

Hs
θ + H i

θ = H t
θ. Let us assume that ρ1 = k1a, ρ2 = k2a for TE and TM

modes. And using Riccati-Bessel as new notation, b̂′n(z) = d
dz
[zbn(z)] we will

have:

Aijn(ρ1) + asmnh
(2)
n (ρ1) = atmnjn(ρ2) (7.75)

Ai
ρ1η1

Ĵ ′
n(ρ1) +

asmn
ρ1η1

Ĥ ′(2)
n (ρ1) =

atmn
ρ2η2

Ĵ ′
n(ρ2) (7.76)
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Bi

ρ1
Ĵ ′
n(ρ1) +

bsmn
ρ1

Ĥ ′(2)
n (ρ1) =

btmn
ρ2

Ĵ ′
n(ρ2) (7.77)

Bi

η1
jn(ρ1) +

bsmn
η1

h(2)n (ρ1) =
btmn
η2

jn(ρ2) (7.78)

with ρ1η1
ρ2η2

= μ1
μ2

and jn(z)h
′(2)
n (z)−j′n(z)h(2)n (z) = − j

z2
the four unknowns will

be:

asmn =

μ2
μ1
Ĵ ′
n(ρ1)jn(ρ2)− jn(ρ1)Ĵ ′

n(ρ2)

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− μ1

μ2
jn(ρ2)Ĥ ′(2)

n (ρ1)
Ai (7.79)

bsmn =
(μ1
μ2
)(k2
k1
)2Ĵ ′

n(ρ1)jn(ρ2)− jn(ρ1)Ĵ ′
n(ρ2)

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− (μ1

μ2
)(k2
k1
)2jn(ρ2)Ĥ ′(2)

n (ρ1)
Bi (7.80)

atmn =
−j/ρ1

jn(ρ2)Ĥ ′(2)
n (ρ1)− μ1

μ2
Ĵ ′
n(ρ2)h

(2)
n (ρ1)

aimn (7.81)

btmn =
j/ρ1

k1
k2
Ĵ ′
n(ρ2)h

(2)
n (ρ1)− k2μ1

k1μ2
jn(ρ2)Ĥ ′(2)

n (ρ1)
Bi (7.82)

7.6 Dipole Antenna Inside a Dielectric Sphere

The dielectric resonators are traditionally used in filter and oscillator ap-
plications, however, recently it is found that dielectric resonators (DR) of
different shapes can be designed to be efficient radiators at microwave fre-
quencies. The shape of DR can be cylindrical, rectangular, or hemispherical.
Hemispherical DR is chosen because of its simple interface with free space
which results in the simplicity and much accuracies. We can calculate the
fields of antenna inside and outside of a dielectric sphere Fig.(7.5) as:

Ei =

∞∑
n=1

m=n∑
m=−n

(A(1)
mnM

(4)(r, θ, φ) +B(1)
mnN

(4)(r, θ, φ)) (7.83)

Hi =
j

η2

∞∑
n=1

m=n∑
m=−n

(A(1)
mnN

(4)(r, θ, φ) +B(1)
mnM

(4)(r, θ, φ)) (7.84)
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Figure 7.2: Perturbation input impedance of a λ/2 dipole antenna near a
conducting sphere

and the fields radiated outside and reflected inside will be

Es2 =

∞∑
n=1

m=n∑
m=−n

(cmnM
(1)(r, θ, φ) + dmnN

(1)(r, θ, φ)) (7.85)

Hs2 =
j

η2

∞∑
n=1

m=n∑
m=−n

(cmnN
(1)(r, θ, φ) + dmnM

(1)(r, θ, φ)) (7.86)

Es1 =
∞∑
n=1

m=n∑
m=−n

(amnM
(4)(r, θ, φ) + bmnN

(4)(r, θ, φ)) (7.87)

Hs1 =
j

η1

∞∑
n=1

m=n∑
m=−n

(amnN
(4)(r, θ, φ) + bmnM

(4)(r, θ, φ)) (7.88)

By applying the boundary conditions we have

A(1)
mnh

(2)
n (ρ2) + cmnjn(ρ2) = amnh

(2)
n (ρ1) (7.89)

A
(1)
mnĤ ′(2)

n (ρ2)

ρ2η2
+
cmnĴ ′

n(ρ2)

ρ2η2
=

amnĤ ′(2)
n (ρ1)

ρ1η1
(7.90)
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Figure 7.3: Perturbation input impedance of a λ/2 dipole antenna near a
dielectric sphere

B
(1)
mnĤ ′(2)

n (ρ2)

ρ2
+
dmnĴ ′

n(ρ2)

ρ2
=

bmnĤ ′(2)
n (ρ1)

ρ1
(7.91)

B
(1)
mnh

(2)
n (ρ2)

η2
+
dmnjn(ρ2)

η2
=

bmnh
(2)
n (ρ1)

η1
(7.92)

and therefore,

amn =
Ĵ ′
n(ρ2)h

(2)
n (ρ2)− jn(ρ2)Ĥ ′(2)

n (ρ2)

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− μ2

μ1
jn(ρ2)Ĥ ′(2)

n (ρ1)
A(1)
mn (7.93)

bmn =
Ĵ ′
n(ρ2)h

(2)
n (ρ2)− jn(ρ2)Ĥ ′(2)

n (ρ2)

k1μ2
k2μ1

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− k2

k1
jn(ρ2)Ĥ ′(2)

n (ρ1)
B(1)
mn (7.94)

Equation Eq.(7.93) and Eq.(7.94) can be simplified, because

h′(2)n (z)jn(z)− j′n(z)h
(2)
n (z) = − j

z2
(7.95)
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Figure 7.4: Pattern of a λ/2 dipole antenna near a conducting sphere

Therefore:

amn =

j
ρ2

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− μ2

μ1
jn(ρ2)Ĥ ′(2)

n (ρ1)
A(1)
mn (7.96)

bmn =

j
ρ2

k1μ2
k2μ1

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− k2

k1
jn(ρ2)Ĥ ′(2)

n (ρ1)
B(1)
mn (7.97)

cmn =

μ2
μ1
Ĥ ′(2)

n (ρ1)h
(2)
n (ρ2)− Ĥ ′(2)

n (ρ2)h
(2)
n (ρ1)

Ĵ ′
n(ρ2)h

(2)
n (ρ1)− μ2

μ1
jn(ρ2)Ĥ ′(2)

n (ρ1)
A(1)
mn (7.98)

dmn =
(k2
k1
)2Ĥ ′(2)

n (ρ1)h
(2)
n (ρ2)− (μ2

μ1
)Ĥ ′(2)

n (ρ2)h
(2)
n (ρ1)

(μ2
μ1
)h

(2)
n (ρ1)Ĵ ′

n(ρ1)− (k2
k1
)2Ĥ ′(2)

n (ρ1)jn(ρ2)
B(1)
mn (7.99)

7.6.1 Small Dipole at Center of Dielectric Sphere

In the above section if the dipole was at center of dielectric sphere, we would
be faced with singularity. Now we want to look at this problem. suppose we
have a Hertzian dipole with length Δl and current I0 oriented in z direction
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Figure 7.5: Dipole Antenna Inside a Dielectric Sphere

at center of a dielectric sphere with radius a Fig.(7.6). We want to find E
or H fields at any point, inside or outside of dielectric sphere. Inside the
dielectric sphere we have two types of fields; incident and reflected waves but
outside the only transmitted wave. The electric and magnetic of Hertzian
antenna will be:

H =
I0Δle

−jβ1r

4πr

(
jβ1 +

1

r

)
sin θaφ 0 < r < a (7.100)

E =
jωμ1I0Δle

−jβ1r

4πr

[
ar

(
1

β1
2r2

− j

β1r

)
2 cos θ + aθ

(
1

β1
2r2

− j

β1r
− 1

)
sin θ

]
(7.101)

These can be written as

Hi =
−jβ2

1I0Δl

4π
h
(2)
1 (β1r)P

1
1 (cos θ)aφ

Ei =
1

jωε1
∇×Hi (7.102)
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Figure 7.6: Small Dipole at Center of Dielectric Sphere

We can denote Ai =
−jβ2

1I0Δl

4π
. The reflected wave from dielectric boundary

will be:
Hr = Arj1(β1r)P

1
1 (cos θ)aφ (7.103)

and the corresponding electric field:

Er =
∇×Hr

jωε1
(7.104)

and the transmitted wave:

Ht = Ath
(2)
1 (β2r)P

1
1 (cos θ)aφ (7.105)

and the corresponding electric field:

Et =
∇×Ht

jωε2
(7.106)

where β = ω
√
με and Er =

1
r sin θ

[ ∂
∂θ
(Hφ sin θ)]

1
jωε

and Eθ =
1
jωε

[−1
r

∂
∂r
(rHφ)].

In our problem Ar and At are unknowns and can be find by applying bound-
ary conditions.

H i
φ +Hr

φ = H t
φ Ei

θ + Er
θ = Et

θ (7.107)
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From these equations we find:

Aih
(2)
1 (β1a) + Arj1(β1a) = Ath

(2)
1 (β2a) (7.108)

Ai

εr1
ĥ
(2)′
1 (β1a) +

Ar

εr1
ĵ′1(β1a) =

At

εr2
ĥ
(2)′
1 (β2a) (7.109)

from the above equations we can find two unknowns.

7.6.2 Antenna Inside a Multilayer Dielectric Sphere

The antenna located inside the region 3, and we want to find the pattern of
antenna far from sphere, Fig.(7.7), The radiation fields of antenna will be

Ei =

∞∑
n=1

m=n∑
m=−n

(A(1)
mnM

(4)(r, θ, φ) +B(1)
mnN

(4)(r, θ, φ)) (7.110)

Hi =
j

η3

∞∑
n=1

m=n∑
m=−n

(A(1)
mnN

(4)(r, θ, φ) +B(1)
mnM

(4)(r, θ, φ)) (7.111)

If you want to find the fields in region 3 only, the condition that it is r > r0
or r < r0 should be used. The scattered fields inside region 3:

E(3) =

∞∑
n=1

m=n∑
m=−n

(a(3)mnM
(1)(r, θ, φ) + b(3)mnN

(1)(r, θ, φ)) (7.112)

H(3) =
j

η3

∞∑
n=1

m=n∑
m=−n

(a(3)mnN
(1)(r, θ, φ) + b(3)mnM

(1)(r, θ, φ)) (7.113)

The transmitted and reflected fields in region 2 will be;

E2t =
∞∑
n=1

m=n∑
m=−n

(a2tmnM
(4)(r, θ, φ) + b2tmnN

(4)(r, θ, φ)) (7.114)

H2t =
j

η2

∞∑
n=1

m=n∑
m=−n

(a2tmnN
(4)(r, θ, φ) + b2tmnM

(4)(r, θ, φ)) (7.115)

E2r =

∞∑
n=1

m=n∑
m=−n

(a2rmnM
(1)(r, θ, φ) + b2rmnN

(1)(r, θ, φ)) (7.116)

H2r =
j

η2

∞∑
n=1

m=n∑
m=−n

(a2rmnN
(1)(r, θ, φ) + b2rmnM

(1)(r, θ, φ)) (7.117)
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Figure 7.7: Antenna inside a multilayer dielectric sphere

And finally the fields in region 1 are:

E(1) =

∞∑
n=1

m=n∑
m=−n

(a(1)mnM
(4)(r, θ, φ) + b(1)mnN

(4)(r, θ, φ)) (7.118)

H(1) =
j

η1

∞∑
n=1

m=n∑
m=−n

(a(1)mnN
(4)(r, θ, φ) + b(1)mnM

(4)(r, θ, φ)) (7.119)

Now we use boundary conditions at r = R3 and r = R2 for TE and TM
modes. Again we assume that ρ3 = k3R3, ρ23 = k2R3, ρ2 = k2R2, ρ12 = k1R2

A(1)
mnh

(2)
n (ρ3) + a(3)mnjn(ρ3) = a2tmnh

(2)
n (ρ23) + a2rmnjn(ρ23) (7.120)

A
(1)
mn

ρ3η3
ĥ′

(2)

n (ρ3) +
a
(3)
mn

ρ3η3
ĵ′n(ρ3) =

a2tmn
ρ23η2

ĥ′
(2)

n (ρ23) +
a2rmn
ρ23η2

ĵ′n(ρ23) (7.121)

a2tmnh
(2)
n (ρ2) + a2rmnjn(ρ2) = a1mnh

(2)
n (ρ12) (7.122)
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a2tmn
ρ2η2

ĥ′
(2)

n (ρ2) +
a2rmn
ρ2η2

ĵ′n(ρ2) =
a
(1)
mn

ρ12η1
ĥ′

(2)

n (ρ12) (7.123)

From the four above equations, we can find four unknowns a
(3)
mn, a2tmn, a

2r
mn and

a
(1)
mn. A

(1)
mn is known from antenna position and configuration. And for TM

case

B1
mn

η3
h(2)n (ρ3) +

b3mn
η3

jn(ρ3) =
b2tmn
η2

h(2)n (ρ23) +
b2rmn
η2

jn(ρ23) (7.124)

B1
mn

ρ3
ĥ′

(2)

n (ρ3) +
b3mn
ρ3

ĵ′n(ρ3) =
b2tmn
ρ23

ĥ′
(2)

n (ρ23) +
b2rmn
ρ23

ĵ′n(ρ23) (7.125)

b2tmn
η2

h(2)n (ρ2) +
b2rmn
η2

jn(ρ2) =
b1mn
η1

h(2)n (ρ12) (7.126)

b2tmn
ρ2

ĥ′
(2)

n (ρ2) +
b2rmn
ρ2

ĵ′n(ρ2) =
b1mn
ρ12

ĥ′
(2)

n (ρ12) (7.127)

From the four above equations, we can find four unknowns b3mn, b
2t
mn, b

2r
mn and

b1mn. B
1
mn is known from antenna position and configuration.

Now let us look at multilayer case, a dipole antenna located at layer numbered
l and r > r0:

Ei =

∞∑
n=1

m=n∑
m=−n

(A(1)
mnM

(4) +B(1)
mnN

(4)) (7.128)

Hi =
j

ηl

∞∑
n=1

m=n∑
m=−n

(A(1)
mnN

(4) +B(1)
mnM

(4))

for r < r0 change: (1) ⇒ (4), and (4) ⇒ (1). The transmitted and scattered
wave in layer l and l �= N or l �= 1 will be:

Elt =

∞∑
n=1

m=n∑
m=−n

(altmnM
(1) + bltmnN

(1)) (7.129)

Hlt =
j

ηl

∞∑
n=1

m=n∑
m=−n

(altmnN
(1) + bltmnM

(1))
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Els =

∞∑
n=1

m=n∑
m=−n

(alsmnM
(4) + blsmnN

(4)) (7.130)

Hls =
j

ηl

∞∑
n=1

m=n∑
m=−n

(alsmnN
(4) + blsmnM

(4))

In layer #1:

E(1) =
∞∑
n=1

m=n∑
m=−n

(a(1)mnM
(4) + b(1)mnN

(4)) (7.131)

H(1) =
j

η1

∞∑
n=1

m=n∑
m=−n

(a(4)mnN
(4) + b(1)mnM

(4))

In layer #N :

E(N) =
∞∑
n=1

m=n∑
m=−n

(a(1)mnM
(1) + b(1)mnN

(1)) (7.132)

H(N) =
j

ηN

∞∑
n=1

m=n∑
m=−n

(a(1)mnN
(1) + b(1)mnM

(1))

and boundary conditions for TE and TM modes:

• M ⇒ TE

• N ⇒ TM

• l = 2, 3, · · · , N and r = rl For E&H
all coefficients can be found
{a(l)mn&blmn}, {a(l)mn&b(l)mn}, {aNmn&bNmn}

• Matrix Form of Coefficients:

• Sub-Matrix: TE case

TTE
l ×A = SA (7.133)
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• TTE
l Stands for:⎡⎢⎣ −h(2)n (kl−1rl) −jn(kl−1rl) h

(2)
n (klrl) jn(klrl)

−ĥ′(2)n (kl−1rl)

kl−1ηl−1

−ĵ′n(kl−1rl)

kl−1ηl−1

ĥ′
(2)
n (klrl)
klηl

ĵ′n(klrl)
klηl

⎤⎥⎦ (7.134)

• A Stands for: [a
(l−1)s
mn , a

(l−1)t
mn , a

(l)s
mn , a

(l)t
mn]T

• SA Stands for: [0, 0]T , if there is no source

• Sub-Matrix: TM case

TTM
l ×B = SB (7.135)

• TTM
l Stands for:⎡⎢⎢⎣

−h(2)n (kl−1rl)

ηl−1

−jn(kl−1rl)

ηl−1

h
(2)
n (klrl)
ηl

jn(klrl)
klηl

−ĥ′(2)n (kl−1rl)

kl−1

−ĵ′n(kl−1rl)

kl−1

ĥ′
(2)
n (klrl)
kl

−ĵ′n(klrl)
kl

⎤⎥⎥⎦ (7.136)

• B Stands for: [b
(l−1)s
mn , b

(l−1)t
mn , b

(l)s
mn , b

(l)t
mn]T

• SB Stands for: [0, 0]T , if there is no source

• If there is antenna in layer #l : TE case
for r = rl ⎡⎢⎢⎣

0

0

⎤⎥⎥⎦ ⇒
[
−Ai(1)mnh

(2)
n (klrl)

−Ai(1)mn
ĥ′

(2)
n (klrl)
ηlkl

]
= SA (7.137)

for r = rl+1 ⎡⎢⎢⎣
0

0

⎤⎥⎥⎦ ⇒
[
A
i(4)
mn jn(klrl+1)

A
i(4)
mn

ĵ′n(klrl+1)
ηlkl

]
= SA (7.138)
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• Four terms for antenna coefficient in layer #l
From 2× (l − 2) + 1 to 2× (l − 2) + 4 in TE mode

• If there is antenna in layer #l: TM case
for r = rl ⎡⎢⎢⎣

0

0

⎤⎥⎥⎦ ⇒
⎡⎣ −Bi(1)

mn
h
(2)
n (klrl)
ηl

−Bi(1)
mn

ĥ′
(2)
n (klrl)
kl

⎤⎦ = SB (7.139)

for r = rl+1 ⎡⎢⎢⎣
0

0

⎤⎥⎥⎦ ⇒
[
B
i(4)
mn

jn(klrl+1)

ηl

B
i(4)
mn

ĵ′n(klrl+1)

kl

]
= SB (7.140)

• Four terms for antenna coefficient in layer #l
From 2× (l − 2) + 1 to 2× (l − 2) + 4 in TM mode

• Total Matrix of Coefficient
TTE(2N − 2)× (2N − 2)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TTE
2 0 · · · 0

0 TTE
3 0 · · ·

...
...

...
...

0 · · · TTE
l · · ·

...
...

...
...

0 · · · 0 TTE
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2

...

Al

...

AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

SA

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.141)

• From solution of above matrix we find
{a1smn&a1tmn}, · · · {aNsmn&aNtmn}
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• Total Matrix of Coefficient
TTM(2N − 2)× (2N − 2)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TTM
2 0 · · · 0

0 TTM
3 0 · · ·

...
...

...
...

0 · · · TTM
l · · ·

...
...

...
...

0 · · · 0 TTM
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B2

...

Bl

...

BN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

SB

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.142)

• From solution of above matrix we find
{b1smn&b1tmn}, · · · {bNsmn&bNtmn}

7.6.3 Scattering by a Dielectric Sphere, Mie Theory

German physisist born in 1868 in Rostock and died in 1957 in Freiburg im
Breisgau in Germany. He studied natural science and mathematics in Ros-
tock and Heidelberg. He obtained his doctorate in 1891 in Heidelberg. From
1892 to 1902 he was an assistent at the Physics Institute at the Technical
University of Karlsruhe. In 1897 he obtained his Habilitation for theoreti-
cal physics. In 1902 he became a special professor (Extraordinarius) at the
University of Greifswald where he wrote his famous paper on particle light
scattering. In 1917 he became Professor at the University of Halle and in 1924
he joint the University of Freiburg. Mie theory provides rigorous solutions
for EM wave scattering by an isotropic sphere embedded in a homogeneous
medium. Extensions of Mie theory include solutions for core or shell spheres
and gradient-index spheres. Although these theories are restricted to the
case of a perfect sphere, the results have provided insight into the scattering
and absorption properties for a wide variety of pigment systems, including
non-spherical pigments.

Let a plane wave be incident on a dielectric sphere of radius a, as shown
in Fig.(7.9).
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Figure 7.8: Gustav Mie ( 1868 - 1957 )

Ei = E0e
−jk1zax =

∞∑
n=1

ain[M
(1)
o1n(k1r) + jN

(1)
e1n(k1r)] (7.143)

Hi =
E0

η1
e−jk1zay =

j

η1

∞∑
n=1

ain[N
(1)
o1n(k1r) + jM

(1)
e1n(k1r)]

where ain = (−j)n 2n+1
n(n+1)

E0. The scattered and transmitted waves will be:

Es =

∞∑
n=1

[asnM
(4)
o1n(k1r) + jbsnN

(4)
e1n(k1r)] (7.144)

Hs =
j

η1

∞∑
n=1

[asnN
(4)
o1n(k1r) + jbsnM

(4)
e1n(k1r)]

Et =

∞∑
n=1

[atnM
(1)
o1n(k2r) + jbtnN

(1)
e1n(k2r)] (7.145)

Ht =
j

η2

∞∑
n=1

[atnN
(1)
o1n(k2r) + jbtnM

(1)
e1n(k2r)]
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Figure 7.9: Scattering of Plane Wave by a Dielectric Sphere

At the boundary r = a, we have Ei
θ +Es

θ = Et
θ and also H i

θ +Hs
θ = H t

θ. The
same result will be found for Eφ component.

ainjn(ρ1) + asnh
(2)
n (ρ1) = atnjn(ρ2) (7.146)

ain
ρ1η1

ĵ′n(ρ1) +
asn
ρ1η1

ĥ′
(2)

n (ρ1) =
atn
ρ2η2

ĵ′n(ρ2) (7.147)

ain
ρ1
ĵ′n(ρ1) +

bsn
ρ1
ĥ′

(2)

n (ρ1) =
btn
ρ2
ĵ′n(ρ2) (7.148)

ain
η1
jn(ρ1) +

bsn
η1
h(2)n (ρ1) =

btn
η2
jn(ρ2) (7.149)

where ρ1 = k1a, ρ2 = k2a and k = ω
√
με.⎡⎢⎣ −h(2)n (ρ1) jn(ρ2)

−1
μ1
ĥ′

(2)

n (ρ1)
1
μ2
ĵ′n(ρ2)

⎤⎥⎦
⎡⎣ asn

atn

⎤⎦ =

⎡⎣ ainjn(ρ1)

ain
μ1
ĵ′n(ρ1)

⎤⎦ (7.150)

⎡⎢⎣ − 1
k1
ĥ′

(2)

n (ρ1)
1
k2
ĵ′n(ρ2)

−1
η1
h
(2)
n (ρ1)

1
η2
jn(ρ2)

⎤⎥⎦
⎡⎣ bsn

btn

⎤⎦ =

⎡⎢⎣
ain
k1
ĵ′n(ρ1)

ain
η1
jn(ρ1)

⎤⎥⎦ (7.151)
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If σ2 = ∞ or in other word, sphere is a perfect conductor, we will have:

asn = − jn(k2a)

h
(2)
n (k2a)

ain (7.152)

bsn = − ĵ′n(k2a)

ĥ′
(2)

n (k2a)
ain

7.7 Scattering by a PEMC Sphere

The expansion of incident plane wave will be

Ei = E0e
−jkzax = E0

∞∑
n=1

αn[M
(1)
o1n(kr) + jN

(1)
e1n(kr)] (7.153)

Hi =
E0

η2
e−jkzay =

jE0

η

∞∑
n=1

αn[N
(1)
o1n(kr) + jM

(1)
e1n(kr)]

where αn = (−j)n 2n+1
n(n+1)

. The scattered and transmitted waves will be

Es = E0

∞∑
n=1

αn[a
s
nM

(4)
o1n(kr) + csnM

(4)
e1n(kr) + jbsnN

(4)
e1n(kr) + jdsnN

(4)
o1n(kr)]

Hs =
jE0

η

∞∑
n=1

αn[a
s
nN

(4)
o1n(kr) + csnN

(4)
e1n(kr) + jbsnM

(4)
e1n(kr) + jdsnM

(4)
o1n(kr)]

(7.154)
Unlike the case of standard Mie theory, in which only the coefficient an and
bn are needed in the scattered field expansion, here, due to the mixing of
E and H in the boundary conditions, the coefficient cn and dn have to be
added. These new coefficients represent the cross-polarized components of
the scattered field. By applying boundary condition at the surface of PEMC
sphere with radius r = a, we will have

bnh
(2)
n (ka)− cnMηh(2)n (ka) = −jn(ka) (7.155)

bnMηĥ′
(2)

n (ka) + cnĥ′
(2)

n (ka) = −Mηĵ′n(ka) (7.156)

anMηh(2)n (ka)− dnh
(2)
n (ka) = −Mηjn(ka) (7.157)

anĥ′
(2)

n (ka) + dnMηĥ′
(2)

n (ka) = −ĵ′n(ka) (7.158)
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solving these equations we obtain

an = −h
(2)
n (ka)ĵ′n(ka) +M2ηjn(ka)ĥ′

(2)

n (ka)

(1 +M2η2)h
(2)
n (ka)ĥ′

(2)

n (ka)
(7.159)

bn = − ĥ
′(2)
n (ka)jn(ka) +M2ηĵ′n(ka)h

(2)
n (ka)

(1 +M2η2)h
(2)
n (ka)ĥ′

(2)

n (ka)
(7.160)

cn = dn =
−jMη

ka(1 +M2η2)h
(2)
n (ka)ĥ′

(2)

n (ka)
(7.161)

Note that in the limiting cases of a PEC sphere (M = ∞) and a PMC sphere
(M = 0) the cross-polarization coefficients cn and dn vanish.

7.8 Scattering by a DNG Sphere

....

7.9 Scattering by a Chiral Sphere

Electromagnetic waves propagation in chiral and bi-isotropic media has re-
cently been modeled by various numerical techniques in various studies. In
most of these studies, the validity of the developed techniques was verified by
comparing the numerical results to the results of one-dimensional and two-
dimensional problems that have known, exact solutions. For the techniques
for solving three dimensional problems, plane-wave scattering from a chiral
sphere was the benchmark. The exact analytical solution of the scattering by
a chiral sphere has been introduced by Bohren [60], and a detailed analysis of
the solution was given by Worasawate [61]. This formulation has been used
for verification of the scattering from arbitrary shaped three-dimensional chi-
ral objects using a Method of Moments analysis [62] and a Finite- Difference
Time-Domain analysis [63].
The spherical vector wave functions,Me

omn(kr) and Ne
omn(kr), required for
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the representation of the fields for chiral sphere is the same as 7.43-7.44.

Me
o = ∓maθ

sin θ
zgn(kr)P

m
n (cos θ)

sin
cos

(mφ) (7.162)

−aφz
g
n(kr)

∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)

Ne
o = ar

n(n+ 1)

kr
zgn(kr)P

m
n (cos θ)

cos
sin

(mφ) (7.163)

+aθ
1

kr

∂

∂r
[rzgn(kr)]

∂

∂θ
Pm
n (cos θ)

cos
sin

(mφ)

∓maφ
sin θ

1

kr

∂

∂r
[rzgn(kr)]P

m
n (cos θ)

sin
cos

(mφ)

Suppose we have a homogeneous chiral sphere with radius a with electrical
parameters (μ2, ε2, β) which have located in a homogeneous linear media
(μ1, ε1). The sphere is illuminated with a linearly polarized plane wave as

Einc = axE0e
−jk1z = axE0e

−jk1r cos θ (7.164)

Hinc = ay
E0

η1
e−jk1z = ay

E0

η1
e−jk1r cos θ (7.165)

this wave can be represented in terms of the spherical vector wave functions
in order to apply the appropriate boundary conditions.

Ei = E0e
−jk1zax =

∞∑
n=1

ain[M
(1)
o1n(k1r) + jN

(1)
e1n(k1r)] (7.166)

Hi =
E0

η1
e−jk1zay =

j

η1

∞∑
n=1

ain[N
(1)
o1n(k1r) + jM

(1)
e1n(k1r)]

where ain = (−j)n 2n+1
n(n+1)

E0. The scattered-field vectors, Es and Hs, are given
by

Es =
∞∑
n=1

{
[asnM

(4)
e1n(k1r) + bsnM

(4)
o1n(k1r)] (7.167)

+j[csnN
(4)
e1n(k1r) + dsnN

(4)
o1n(k1r)]

}
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Hs =
j

η1

∞∑
n=1

{
[asnN

(4)
e1n(k1r) + bsnN

(4)
o1n(k1r)] (7.168)

+j[csnM
(4)
e1n(k1r) + dsnM

(4)
o1n(k1r)]

}
and the fields inside the chiral sphere, Et and Ht, are given by

Et = QR + jη2QL (7.169)

Ht = QL +
j

η2
QR

where

QR =
∞∑
n=1

{
atn[M

(1)
e1n(kRr) +N

(1)
e1n(kRr)] (7.170)

+btn[M
(1)
o1n(kRr) +N

(1)
o1n(kRr)]

}

QL =

∞∑
n=1

{
ctn[M

(1)
e1n(kLr)−N

(1)
e1n(kLr)] (7.171)

+dtn[M
(1)
o1n(kLr)−N

(1)
o1n(kLr)]

}

kR =
ω
√
μ2ε2

1 + βω
√
μ2ε2

,

kL =
ω
√
μ2ε2

1− βω
√
μ2ε2

The scattered and internal electromagnetic fields of a chiral sphere of radius
r = a can be obtained using Equations 7.166-7.171. By applying boundary
conditions at r = a:

aφ · [Ei + Es −Et] = 0

aφ · [Hi +Hs −Ht] = 0



7.10. PROBLEMS 233

These equations are used to construct a set of simultaneous equations to
solve for the eight unknown coefficients asn, b

s
n,c

s
n, d

s
n, a

t
n, b

t
n,c

t
n and dtn.

ainjn(k1a) + bsnh
(2)
n (k1a) = btnjn(kRa) + jη2d

t
njn(kLa) (7.172)

+asnh
(2)
n (k1a) = atnjn(kRa) + jη2c

t
njn(kLa)

+
jdsn
k1

ĥ′
(2)

n (k1a) =
btn
kR
ĵ′n(kRa)−

jη2d
t
n

kL
ĵ′n(kLa)

jain
k1

ĵ′n(k1a) +
jcsn
k1
ĥ′

(2)

n (k1a) =
atn
kR
ĵ′n(kRa)−

jη2c
t
n

kL
ĵ′n(kLa)

−d
s
n

η1
h(2)n (k1a) = dtnjn(kLa) +

j

η2
btnjn(kRa)

−a
i
n

η1
jn(k1a)− csn

η1
h(2)n (k1a) = ctnjn(kLa) +

j

η2
atnjn(kRa)

jain
η1k1

ĵ′n(k1a) +
jbsn
η1k1

ĥ′
(2)

n (k1a) = −d
t
n

kL
ĵ′n(kLa) +

jbtn
η2kR

ĵ′n(kRa)

+
jasn
η1k1

ĥ′
(2)

n (k1a) = − ctn
kL
ĵ′n(kLa) +

jatn
η2kR

ĵ′n(kRa)

7.10 Problems

• 1 We have a partially dielectric filled spherical cavity as shown in
Fig.(7.10). Find the relations (characteristic equations) that the roots
of it will give us the resonant frequencies of TE and TM modes of this
cavity.

• 2 The Earths surface and the Earths ionosphere behave as a spherical
resonant cavity with the Earths surface approximately as the inner
spherical surface,(Earths mean equatorial radius): r = 6378km, the
height h (above the surface of the Earth) of ionosphere is: h = 100km.
Find the resonant frequency of this cavity.

• 3 Derive formula for E and H fields anywhere in the space, if the an-
tenna is located near a conducting sphere.

• 4 Center of a half wavelength dipole antenna is located at the point
x = 13 [cm], y = 0 and z = 0, directed in az near a conducting sphere
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Figure 7.10: partially dielectric filled spherical cavity

with radius a = 10[cm]. The working frequency is f=1 GHz and driven
current I0 = 1 A.
a) Find the E-Plane and H-Plane pattern of antenna.
b) Find the input impedance of antenna (the antenna is assumed to be
ideal)
c) What will happen when the antenna is moved away from the sphere.
Draw the input impedance against the distance from the sphere.
Hint: make a half wave dipole with current distribution I(z) = I0 cos(βz)
as N Hertzian dipoles with current In = I0 cos(βzn).

• 5 Center of half wavelength dipole antenna is located at point x =
13 [cm], y = 0 and z = 0, directed along az near a lossy dielectric
sphere with electrical parameters: σ = 1.23 and εr = 55.0, with radius
a = 10 [cm]. The working frequency is f=1 GHz and driven current
I0 = 1 A.
a) Find electric field intensity along x, y, z axes inside the sphere.
b) Find the E-Plane and H-Plane pattern of the antenna.
c) Find the input impedance of the antenna (the antenna is assumed
to be ideal)
d) What will happen when the antenna is moved away from the sphere.
Draw the input impedance against the distance from the sphere.

• 6 Write a general FORTRAN code that computes the pattern of a thin
wire dipole antenna which is located in any position in a multilayer
spherical dielectric.
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• 7 The center of a half wavelength thin dipole antenna which carry one
Ampere current and oriented along z is at center of dielectric sphere
with radius half wavelength and dielectric constant 9. Find E and H
field at r=1km, φ = π/4 and θ = π/4.

• 8 Find the normalized bistatic rcs σ
πa2

of a dielectric sphere with radius
a = λ/2 and εr = 4. in zox and zoy plane.

• 9 Find the normalized bistatic rcs σ
πa2

of a conducting sphere with
radius a = λ/2 in zox and zoy plane.

• 10 Write a general FORTRAN or MATLAB code that computes the
rcs of a multilayer spherical dielectric.
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Chapter 8

Spheroid

”Do not worry about your difficulties in Mathematics. I can as-
sure you mine are still greater.”

Albert Einstein

8.1 Spheroidal Coordinate systems

A spheroid is a quadric surface in three dimensions obtained by rotating an
ellipse about one of its principal axes. If the ellipse is rotated about its major
axis, the surface is called a prolate spheroid (similar to the shape of a rugby
ball). If the minor axis is chosen, the surface is called an oblate spheroid
(similar to the shape of the planet Earth). The sphere is a special case of the
spheroid in which the generating ellipse is a circle. A spheroid is a special
case of an ellipsoid where two of the three major axes are equal.

8.1.1 Prolate Spheroidal Coordinates

The prolate and oblate spheroids are used to construct the prolate and oblate
coordinate systems, usually denoted with the symbols ξ, η, φ. For both sys-
tems, the azimuthal coordinate φ is defined as the angle between a plane
passing through a point and the z-axis and the xz plane, measured from
the positive x-axis. For the prolate spheroidal coordinates, the surfaces of
constant ξ and η are prolate spheroids and hyperboloids of two sheets, while
for oblate spheroidal coordinates they are oblate spheroids and hyperboloids
of one sheet. The prolate spheroidal coordinate system ζ, η, φ is related to

237
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Figure 8.1: Prolate and Oblate Spheroid

cartesian coordinates x, y, z by the transformation

x = f((1− η2)(ξ2 − 1))1/2 cosφ (8.1)

y = f((1− η2)(ξ2 − 1))1/2 sinφ

z = fξη

with the ranges of the coordinates being

−1 ≤ η ≤ 1, 1 ≤ ξ <∞, 0 ≤ φ < 2π (8.2)

For oblate spheroidal coordinates the corresponding transformation is:

x = f((1− η2)(ξ2 + 1))1/2 cosφ (8.3)

y = f((1− η2)(ξ2 + 1))1/2 sinφ

z = fξη

−1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ φ < 2π (8.4)

The prolate coordinates ξ and η also bear a simple relationship to the focal
distances rA and rB: they are given by:

ξ =
rA + rB

2f
, η =

rA − rB
2f

(8.5)

Such a simple interpretation does not exist for oblate coordinates, because
in that case rA and rB are not well defined quantities.

r2A = x2 + y2 + (z + f)2 (8.6)

r2B = x2 + y2 + (z − f)2
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Figure 8.2: Prolate spheroidal coordinates

8.2 Relation with the Spherical Coordinate

Systems

The transformation between the unit vectors in the spherical and Spheroidal
Coordinate Systems is:

ar = ξ

[
ξ2 − 1

(ξ2 − η2)(ξ2 + η2 − 1)

]1/2
aξ (8.7)

+ η

[
1− η2

(ξ2 − η2)(ξ2 + η2 − 1)

]1/2
aη

aθ = η

[
1− η2

(ξ2 − η2)(ξ2 + η2 − 1)

]1/2
aξ

− ξ

[
ξ2 − 1

(ξ2 − η2)(ξ2 + η2 − 1)

]1/2
aη

aφ = aφ
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Figure 8.3: Prolate

and

r = f(ξ2 + η2 − 1)1/2 (8.8)

sin θ =

[
(ξ2 − 1)(1− η2)

(ξ2 + η2 − 1)

]1/2
cos θ =

ξη

(ξ2 + η2 − 1)1/2

8.2.1 The Scalar Wave Equation and Spheroidal Har-

monics

The prolate and oblate coordinates are two of the eleven coordinate systems
for which the (scalar) wave equation,

∇2ψ + k2ψ = 0 (8.9)

separates into three ordinary differential equations. From standard vector
analysis, the metric coefficients hξ, hη and hφ can be derived using (Eq8.1)
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Figure 8.4: Oblate Spheroidal Coordinates

and (Eq8.3); they are

hξ = f(
ξ2 − η2

ξ2 − 1
)1/2 (8.10)

hη = f(
ξ2 − η2

1− η2
)1/2

hφ = f((1− η2)(ξ2 − 1))1/2

for prolate coordinates, and

hξ = f(
ξ2 + η2

ξ2 + 1
)1/2 (8.11)

hη = f(
ξ2 + η2

1− η2
)1/2

hφ = f((1− η2)(ξ2 + 1))1/2

for oblate coordinates. With these coefficients, the Cartesian distance ele-
ment becomes:

dx2 + dy2 + dz2 = h2ξdξ
2 + h2ηdη

2 + h2φdφ
2 (8.12)
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Using the formula for the Laplacian, ∇2, in orthogonal curvilinear coordi-
nates (see [18]), the wave equation (Eq8.9) becomes:

∂

∂η

(
(1− η2)

∂ψ

∂η

)
+
∂

∂ξ

(
(ξ2 − 1)

∂ψ

∂ξ

)
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2ψ

∂φ2
+c2(ξ2−η2)ψ = 0

(8.13)
for prolate coordinates, and

∂

∂η

(
(1− η2)

∂ψ

∂η

)
+
∂

∂ξ

(
(ξ2 + 1)

∂ψ

∂ξ

)
+

ξ2 + η2

(ξ2 + 1)(1− η2)

∂2ψ

∂φ2
+c2(ξ2+η2)ψ = 0

(8.14)
for oblate coordinates. In these equations we have defined c = kf , which will
henceforth be known as the oblateness parameter. Note that Eq.(8.14) can
be obtained from Eq.(8.13)) with the substitutions

c −→ ±jc, ξ −→ ±jξ (8.15)

where the ± signs are independent. It thus follows from this fact that the
oblate spheroidal solutions will be related to the prolate via the same sub-
stitution. Our focus will henceforth be on the prolate functions, with the
understanding that the oblate ones can be readily obtained from these using
Eq.(8.15).

8.3 Helmholtz Equation and Spheroidal Func-

tions

We take the time dependence to be ejωt, therefore the Helmholtz differential
equation (∇2 + k2)ψ = 0 in prolate spheroidal coordinates is:

∂

∂ξ

[
(ξ2 − 1)

∂ψ

∂ξ

]
+
∂

∂η

[
(1− η2)

∂ψ

∂η

]
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2ψ

∂φ2
+c2(ξ2−η2)ψ = 0

(8.16)
and in oblate spheroidal coordinates, Helmholtz Equation may be obtained
from Eq.(8.16) by the transformations:

ξ → ±jξ, c→ ∓jc (8.17)

With these coordinate systems, the Helmholtz scalar wave equation becomes
separable. The solutions of the wave are expressed by the scalar wave func-



8.3. HELMHOLTZ EQUATION AND SPHEROIDAL FUNCTIONS 243

tions equation

ψmn = Smn(η, c)Rmn(ξ, c)
cos
sin

(mφ) (8.18)

then the ”radial solution” Rmn(ξ, c) and ”angular solution” Smn(η, c) satisfy
the differential equations:

∂

∂ξ

[
(ξ2 − 1)

∂

∂ξ
Rmn(ξ, c)

]
− (λmn − c2ξ2 +

m2

ξ2 − 1
)Rmn(ξ, c) = 0 (8.19)

∂

∂η

[
(1− η2)

∂

∂η
Smn(η, c)

]
+ (λmn − c2η2 − m2

1− η2
)Smn(η, c) = 0 (8.20)

where the separation constants (or eigenvalues) λmn are to be determined so
that Rmn(ξ, c) and Smn(η, c) are finite at ξ = ±1 and η = ±1 respectively.

The prolate angular functions S
(1)
mn(η, c), S

(2)
mn(η, c) can be expand in term

of associated Legendre functions of the first Pm
n (η) and second Qm

n (η) kinds
respectively.

S(1)
mn(η, c) =

∞∑
k=0,1

′
dmnk (c)Pm

m+k(η) (8.21)

S(2)
mn(η, c) =

∞∑
k=0,1

′
dmnk (c)Qm

m+k(η) (8.22)

where the prime (′) denotes that the summation is over only even values of
k when n − m is even, and over only odd values of k when n − m is odd.
Substitution of Eq.(8.21)and Eq.(8.22) in Eq.(8.20), with the subsequent use
of the associated Legendre differential equation and of the recursion formula
for the associated Legendre functions, yields the following recursion formula
for the coefficients dmnk :

(2m+k+2)(2m+k+1)c2

(2m+2k+3)(2m+2k+5)
dmnk+2(c)+[

(m+ k)(m+ k + 1)− λmn(c) +
2(m+k)(m+k+1)−2m2−1
(2m+2k−1)(2m+2k+3)

c2
]
dmnk +

k(k−1)c2

(2m+2k−3)(2m+2k−1)
dmnk−2(c) = 0, (k ≥ 0)

(8.23)

we can define:

αk =
(2m+k+2)(2m+k+1)

(2m+2k+3)(2m+2k+5)
c2

βk =
[
(m+ k)(m+ k + 1) + 2(m+k)(m+k+1)−2m2−1

(2m+2k−1)(2m+2k+3)
c2
]

γk =
k(k−1)

(2m+2k−3)(2m+2k−1)
c2

(8.24)
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Another important property of angle function is the orthogonality in the
interval −1 ≥ η ≥ 1 which results from the theory of Sturm-Liouville differ-
ential equations. Thus∫ 1

−1

Smn(η)Smn′(η)dη = δnn′Nmn (8.25)

where δnn′ is the Kroneker delta function and Nmn

Nmn = 2

∞∑
k=0,1

′
(k + 2m)!(dmnk )2

(2k + 2m+ 1)k!
(8.26)

is the normalization constant.
The radial function can be expressed as an expansion of spherical Bessel
functions as [12].

R(g)
mn =

( ξ
2−1
ξ2

)m/2

∞∑
r=0,1

′
dmnr

(2m+ r)!

r!

∞∑
r=0,1

′
dmnr

(2m+ r)!

r!
jr+m−nz(g)m+r(cξ) (8.27)

where z
(g)
m+r(cξ) represents the spherical Bessel functions jm+r(cξ), ym+r(cξ),

h
(1)
m+r(cξ), and h

(2)
m+r(cξ), for g = 1; 2; 3; 4 respectively [12].

8.4 Computation of Eigenvalues

In order to find the expansion coefficients, we have to find the eigenvaluesλmn
first. The Eq.(8.23) defines a set of homogeneous equations for dmnk (c). To
have nontrivial solution, the determinant must be zero, from which we can
determine the eigenvalues λmn(c), where parameter c may be real or complex.
This is equivalent to solving tridiagonal eigenvalue problem given by:⎡⎢⎢⎢⎢⎢⎣

β0 α0 0 · · ·
γ2 β2 α2 0 · · ·

. . .

0 · · · γ2k β2k α2k · · ·
. . .

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
dmn0 (c)
dmn2 (c)

...
dmn2k (c)

...

⎤⎥⎥⎥⎥⎥⎦ = λmn

⎡⎢⎢⎢⎢⎢⎣
dmn0 (c)
dmn2 (c)

...
dmn2k (c)

...

⎤⎥⎥⎥⎥⎥⎦ (8.28)
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where (n−m) are even. and⎡⎢⎢⎢⎢⎢⎣
β1 α1 0 · · ·
γ3 β3 α3 0 · · ·

. . .

0 · · · γ2k+1 β2k+1 α2k+1 · · ·
. . .

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
dmn1 (c)
dmn3 (c)

...
dmn2k+1(c)

...

⎤⎥⎥⎥⎥⎥⎦ = λmn

⎡⎢⎢⎢⎢⎢⎣
dmn1 (c)
dmn3 (c)

...
dmn2k+1(c)

...

⎤⎥⎥⎥⎥⎥⎦
(8.29)

where (n−m) are odd. The matrix Eq.(8.28) or Eq.(8.29) has eigenvectors
and eigenvalues which gives us eigenvalues for spheroidal wave functions. For
a given value of c, the value of the coefficients decreases as k increase. We
can truncate the number of linear equations. The truncation number gives
the accuracy of eigenvalues and depend on the value of c. In practice, we only
need a finite number of eigenvalues therefore truncation number is finite. In
our problem we have four matrix which each one gives the proper eigenvalues.
When the |c| > 500 is very large, we can use asymptotic expansion [13] for
λmn, m = 0, 1, 2 · · · and n = m,m+ 1, · · · .

An alternative method for calculating the characteristic values is to solve
transcendental equation derived from Eq.(8.23). Dividing Eq.(8.23) by dmnk ,
we obtain:

αk
dmnk+2(c)

dmnk (c)
+ βk − λmn(c) + γk

dmnk−2(c)

dmnk (c)
= 0 (8.30)

denoting

Nm
k = −αk−2

dmnk (c)

dmnk−2(c)
γmk = βk βmk = γkαk−2 (8.31)

we can write Eq.(8.30) as

Nm
k+2 = γmk − λmn(c)− βmk

Nm
k

(k ≥ 2) (8.32)

where Nm
2 = γm0 − λmn(c) and Nm

3 = γm1 − λmn(c), on the other hand, we
can rewrite Eq.(8.32) as

Nm
k =

βmk
γmk − λmn −Nm

k+2

(8.33)

by letting k → k + 2 in Eq.(8.33), we can obtain the expression for Nm
k+2 in

terms of Nm
k+4. A series of repeated substitutions similar to one described
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above yields another continued fraction for Nm
k+2 as

Nm
k+2 =

βmk+2

γmk+2 − λmn−
βmk+4

γmk+4 − λmn−
βmk+6

γmk+6 − λmn− · · · (8.34)

by letting k = n−m in Eq.(8.32) and Eq.(8.34) and denoting

U1(λmn) = γmn−m−λmn−
βmn−m

γmn−m−2 − λmn−
βmn−m−2

γmn−m−4 − λmn−
βmn−m−4

γmn−m−6 − λmn− · · ·
(8.35)

and

U2(λmn) = − βmn−m+2

γmn−m+2 − λmn−
βmn−m+4

γmn−m+4 − λmn−
βmn−m+6

γmn−m+6 − λmn− · · · (8.36)

we obtain the transcendental equation for λmn as

U1(λmn) + U2(λmn) = 0 (8.37)

The characteristic values can be determined by solving Eq.(8.37) using a
numerical method such as secant method with proper estimates which in
case of complex characteristic values we find it by solving one the proper
matrix.

8.5 Spheroidal Vector Wave Functions

By the application of vector differential operators to the scalar spheroidal
wave function given in Eq.(8.18), the vector spheroidal wave functions M
and N, [64], are defined as :

Mmn = ∇ψmn × a (8.38)

Nmn =
1

k
∇×Mmn

where a is either an arbitrary constant unit vector or the position vector r.
None of the coordinate unit vectors ξ,η, or φ in the spheroidal coordinate
systems has the properties required for a. Instead, the Cartesian unit vec-
tors can efficiently be used, because the transformation from the Cartesian
system to the spheroidal systems is relatively simpler. The three Cartesian
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unit vectors ax, ay, az and the radial vector ar generate the following prolate
spheroidal vector wave functions M(c; ξ, η, φ), N(c; ξ, η, φ):

M
p(g)
e
o
mn(c; ξ, η, φ) = ∇ψ(g)

e
o
mn(c; ξ, η, φ)× ap (8.39)

ap = ax, ay, az, p = x, y, z

M
r(g)
e
o
mn(c; ξ, η, φ) = ∇ψ(g)

e
o
mn(c; ξ, η, φ)× r (8.40)

N
p(g)
e
o
mn(c; ξ, η, φ) =

1

k
∇×M

p(g)
e
o
mn(c; ξ, η, φ)

N
r(g)
e
o
mn

(c; ξ, η, φ) =
1

k
∇×M

r(g)
e
o
mn

(c; ξ, η, φ)

in which e and o refer to the even and odd functions, respectively, and g
indicates the kind of function, g = 1, 2, 3, 4.
Explicit expressions for these vector spheroidal wave functions are available
in Flammer (1957). In the functions M

x(g)
e
o
mn

, M
y(g)
e
o
mn

, N
x(g)
e
o
mn

, N
y(g)
e
o
mn

the φ

dependence of various components is simply given by the product of cosφ or
sin φ with either cosmφ or sinmφ. It is convenient therefore to define the
following additional vector wave functions:

M
+(g)
e
o
m+1,n

(c; ξ, η, φ) =
1

2

[
M

x(g)
e
o
mn

(c; ξ, η, φ)∓M
y(g)
e
o
mn

(c; ξ, η, φ)
]

(8.41)

M
−(g)
e
o
m−1,n

(c; ξ, η, φ) =
1

2

[
M

x(g)
e
o
mn

(c; ξ, η, φ)±M
y(g)
e
o
mn

(c; ξ, η, φ)
]

(8.42)

N
+(g)
e
o
m+1,n(c; ξ, η, φ) =

1

2

[
N
x(g)
e
o
mn(c; ξ, η, φ)∓N

y(g)
e
o
mn(c; ξ, η, φ)

]
(8.43)

N
−(g)
e
o
m−1,n(c; ξ, η, φ) =

1

2

[
N
x(g)
e
o
mn(c; ξ, η, φ)±N

y(g)
e
o
mn(c; ξ, η, φ)

]
(8.44)

where the components with an index m + 1 have a φ dependence of either
cos(m + 1)φ or sin(m + 1)φ, whereas those with an index m − 1 have a
φ dependence of either cos(m − 1)φ or sin(m − 1)φ. The − and + signs
in Eq.(8.41)-Eq.(8.43), and the + and − signs in Eq.(8.42)-Eq.(8.44), on the
right-hand sides, are associated with the even and odd vector wave functions,
respectively.
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8.6 Expressions of the Spheroidal VectorWave

Functions

In all pairs of signs in the following expressions, the upper sign pertains to
the oblate functions and the lower one to the prolate functions.
�M

x(g)
e
o
mn(c; ξ, η, φ)

M
x(g)
e
o
mnη = − (ξ2 ± 1)1/2

f(ξ2 ± η2)1/2

[
Smn

d

dξ
R(g)
mn sinφ

cos

sin
mφ− mξ

ξ2 ± 1
SmnR

(g)
mn cosφ

sin

(−1) cos
mφ

]

M
x(g)
e
o
mnξ

=
(1− η2)1/2

f(ξ2 ± η2)1/2

[
d

dη
SmnR

(g)
mn sin φ

cos

sin
mφ+

mη

1− η2
SmnR

(g)
mn cosφ

sin

(−1) cos
mφ

]
M

x(g)
e
o
mnφ

=
1

f(ξ2 ± η2)

[
ξ(1− η2)

d

dη
SmnR

(g)
mn + η(ξ2 ± 1)Smn

d

dξ
R(g)
mn

]
cosφ

cos

sin
mφ

�M
y(g)
e
o
mn(c; ξ, η, φ)

The expressions of the components are obtained from those ofM
x(g)
e
o
mn

(c; ξ, η, φ)

by replacing the factor cos φ and sin φ by the sin φ and − cosφ, respectively.
� M

z(g)
e
o
mn(c; ξ, η, φ)

M
z(g)
e
o
mnη

=
mη

f(ξ2 ± η2)1/2(1− η2)1/2
SmnR

(g)
mn

sin

(−1) cos
mφ

M
z(g)
e
o
mnξ =

mξ

f(ξ2 ± η2)1/2(ξ2 ± 1)1/2
SmnR

(g)
mn

(−1) sin

cos
mφ

M
z(g)
e
o
mnφ

=
(1− η2)1/2(ξ2 ± 1)1/2

f(ξ2 ± η2)

[
η
d

dη
SmnR

(g)
mn − ξSmn

d

dξ
R(g)
mn

]
cos

sin
mφ

� M
r(g)
e
o
mn(c; ξ, η, φ)

M
r(g)
e
o
mnη

=
mξ

(ξ2 ± η2)1/2(1− η2)1/2
SmnR

(g)
mn

sin

(−1) cos
mφ

M
r(g)
e
o
mnξ =

(±)mη

(ξ2 ± η2)1/2(ξ2 ± 1)1/2
SmnR

(g)
mn

sin

(−1) cos
mφ

M
r(g)
e
o
mnφ =

(1− η2)1/2(ξ2 ± 1)1/2

(ξ2 ± η2)

[
ξ
d

dη
SmnR

(g)
mn ± ηSmn

d

dξ
R(g)
mn

]
cos

sin
mφ
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� M
+(g)
e
o
m+1,n

(c; ξ, η, φ)

M
+(g)
e
o
m+1,nη =

(ξ2 ± 1)1/2

d(ξ2 ± η2)1/2

[
Smn

d

dξ
R(g)
mn −

mξ

ξ2 ± 1
SmnR

(g)
mn

]
(−1) sin

cos
(m+ 1)φ

M
+(g)
e
o
m+1,nξ =

(1− η2)1/2

d(ξ2 ± η2)1/2

[
d

dη
SmnR

(g)
mn +

mη

1− η2
SmnR

(g)
mn

]
sin

(−1) cos
(m+ 1)φ

M
+(g)
e
o
m+1,nφ =

1

d(ξ2 ± η2)

[
ξ(1− η2)

d

dη
SmnR

(g)
mn + η(ξ2 ± 1)Smn

d

dξ
R(g)
mn

]
cos

sin
(m+1)φ

� M
−(g)
e
o
m−1,n

(c; ξ, η, φ)

M
−(g)
e
o
m−1,nη

=
(ξ2 ± 1)1/2

d(ξ2 ± η2)1/2

[
Smn

d

dξ
R(g)
mn +

mξ

ξ2 ± 1
SmnR

(g)
mn

]
sin

(−1) cos
(m− 1)φ

M
−(g)
e
o
m−1,nξ =

(1− η2)1/2

d(ξ2 ± η2)1/2

[
d

dη
SmnR

(g)
mn −

mη

1− η2
SmnR

(g)
mn

]
(−1) sin

cos
(m− 1)φ

M
−(g)
e
o
m−1,nφ

=
1

d(ξ2 ± η2)

[
ξ(1− η2)

d

dη
SmnR

(g)
mn + η(ξ2 ± 1)Smn

d

dξ
R(g)
mn

]
cos

sin
(m−1)φ

� N
x(g)
e
o
mn(c; ξ, η, φ)

N
x(g)
e
o
mnη =

1

kf 2(ξ2 ± η2)1/2

{[
ηSmn

∂

∂ξ

(
(ξ2 ± 1)3/2

(ξ2 ± η2)

d

dξ
R(g)
mn

)
− 1

(ξ2 ± 1)1/2
d

dη
SmnR

(g)
mn

+(1− η2)
d

dη
Smn

∂

∂ξ

(
ξ(ξ2 ± 1)1/2

ξ2 ± η2
R(g)
mn

)
− m2ηSmnR

(g)
mn

(1− η2)(ξ2 ± 1)1/2

]
cosφ

cos

sin
mφ

+
m

(ξ2 ± 1)1/2

[
d

dη
Smn +

η

1− η2
Smn

]
· R(g)

mn sin φ
sin

(−1) cos
mφ

}
N
x(g)
e
o
mnξ = − 1

kf 2(ξ2 ± η2)1/2

{[
ξ
∂

∂η

(
(1− η2)3/2

(ξ2 ± η2)

d

dη
Smn

)
R(g)
mn +

1

(1− η2)1/2
Smn

d

dξ
R(g)
mn

+(ξ2 ± 1)
∂

∂η

(
η(1− η2)1/2

ξ2 ± η2
Smn

)
d

dξ
R(g)
mn − m2ξSmnR

(g)
mn

(1− η2)1/2(ξ2 ± 1)

]
cos φ

cos

sin
mφ

+
m

(1− η2)1/2
Smn

[
ξ

ξ2 ± 1
R(g)
mn −

d

dξ
R(g)
mn

]
· sinφ sin

(−1) cos
mφ

}
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N
x(g)
e
o
mnφ =

(1− η2)1/2(ξ2 ± 1)1/2

kf 2(ξ2 ± η2)1/2

{[
1

(ξ2 ± 1)1/2
d

dη

(
(1− η2)1/2

d

dη
Smn

)
R(g)
mn

+
1

(1− η2)1/2
Smn

d

dξ

(
(ξ2 ± 1)1/2

d

dξ
R(g)
mn

)]
sinφ

cos

sin
mφ

m

[
1

(ξ2 ± 1)1/2
d

dη

(
η

(1− η2)1/2
Smn

)
R(g)
mn

− 1

(1− η2)1/2
Smn

d

dξ

(
ξ

(ξ2 ± 1)1/2
R(g)
mn

)
cosφ

sin

(−1) cos
mφ

}
� N

y(g)
e
o
mn

(c; ξ, η, φ)

The expressions of the components are obtained from those ofN
x(g)
e
o
mn(c; ξ, η, φ)

by replacing the factor cos φ and sin φ by the sin φ and − cosφ, respectively.
� N

z(g)
e
o
mn

(c; ξ, η, φ)

N
z(g)
e
o
mnη

=
(1− η2)1/2

kf 2(ξ2 ± η2)1/2

[
η
d

dη
Smn

∂

∂ξ

(
ξ2 ± 1

ξ2 ± η2
R(g)
mn

)

−Smn ∂
∂ξ

(
ξ(ξ2 ± 1)

ξ2 ± η2
d

dξ
R(g)
mn

)
+

m2ξSmnR
(g)
mn

(1− η2)(ξ2 ± 1)

]
cos

sin
mφ

N
z(g)
e
o
mnξ

=
(ξ2 ± 1)1/2

kf 2(ξ2 ± η2)1/2

[
ξ
∂

∂η

(
1− η2

ξ2 ± η2
Smn

)
d

dξ
R(g)
mn

− ∂

∂η

(
η(1− η2)

ξ2 ± η2
d

dη
Smn

)
R(g)
mn

+
m2ηSmnR

(g)
mn

(1− η2)(ξ2 ± 1)

]
cos

sin
mφ

N
z(g)
e
o
mnφ =

m(1− η2)1/2(ξ2 ± 1)1/2

kf 2(ξ2 ± η2)

[
ξ

(ξ2 ± 1)

d

dη
SmnR

(g)
mn

+
η

(1− η2)
Smn

d

dξ
R(g)
mn

]
(−1) sin

cos
mφ

� N
r(g)
e
o
mn(c; ξ, η, φ)

N
r(g)
e
o
mnη =

(1− η2)1/2

kf(ξ2 ± η2)1/2

[
d

dη
Smn

∂

∂ξ

(
ξ(ξ2 ± 1)

ξ2 ± η2
R(g)
mn

)
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±ηSmn ∂
∂ξ

(
ξ2 ± 1

ξ2 ± η2
d

dξ
R(g)
mn

)
∓ m2ηSmnR

(g)
mn

(1− η2)(ξ2 ± 1)

]
cos

sin
mφ

N
r(g)
e
o
mnξ =

(ξ2 ± 1)1/2

kf(ξ2 ± η2)1/2

[
(±)

∂

∂η

(
η(1− η2)

ξ2 ± η2
Smn

)
d

dξ
R(g)
mn

+ξ
∂

∂η

(
1− η2

ξ2 ± η2
d

dη
Smn

)
R(g)
mn − m2ξSmnR

(g)
mn

(1 − η2)(ξ2 ± 1)

]
cos

sin
mφ

N
r(g)
e
o
mnφ =

m(1− η2)1/2(ξ2 ± 1)1/2

kf(ξ2 ± η2)

[
(±)

1

(ξ2 ± 1)

d

dη
(ηSmn)R

(g)
mn

− 1

(1− η2)
Smn

d

dξ
(ξR(g)

mn)

]
sin

(−1) cos
mφ

� N
+(g)
e
o
m+1,n(c; ξ, η, φ)

N
+(g)
e
o
m+1,nη

=
2

kd2(ξ2 ± η2)1/2

[
ηSmn

∂

∂ξ

(
(ξ2 ± 1)3/2

(ξ2 ± η2)

d

dξ
R(g)
mn

)
+(1− η2)

d

dη
Smn

∂

∂ξ

(
ξ(ξ2 ± 1)1/2

ξ2 ± η2
R(g)
mn

)
− m+ 1

(ξ2 ± 1)1/2
d

dη
SmnR

(g)
mn −

m(m+ 1)η

(1− η2)(ξ2 ± 1)1/2
SmnR

(g)
mn

]
cos

sin
(m+ 1)φ

N
+(g)
e
o
m+1,nξ

= − 2

kd2(ξ2 ± η2)1/2

[
ξ
∂

∂η

(
(1− η2)3/2

(ξ2 ± η2)

d

dη
Smn

)
R(g)
mn

+(ξ2 ± 1)
∂

∂η

(
η(1− η2)1/2

ξ2 ± η2
Smn

)
d

dξ
R(g)
mn

+
m+ 1

(1− η2)1/2
Smn

d

dξ
R(g)
mn −

m(m+ 1)ξ

(1− η2)1/2(ξ2 ± 1)
SmnR

(g)
mn

]
· cos
sin

(m+ 1)φ

N
+(g)
e
o
m+1,nφ

=
2(1− η2)1/2(ξ2 ± 1)1/2

kd2(ξ2 ± η2)

[
1

(ξ2 ± 1)1/2
d

dη

(
(1− η2)1/2

d

dη
Smn

)
R(g)
mn

+
1

(1− η2)1/2
Smn

d

dξ

(
(ξ2 ± 1)1/2

d

dξ
R(g)
mn

)
+

m

(ξ2 ± 1)1/2
d

dη

(
η

(1− η2)1/2
Smn

)
R(g)
mn
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− m

(1− η2)1/2
Smn

d

dξ

(
ξ

(ξ2 ± 1)1/2
R(g)
mn

)
sin

(−1) cos
(m+ 1)φ

� N
−(g)
e
o
m−1,n

(c; ξ, η, φ)

N
−(g)
e
o
m−1,nη =

2

kd2(ξ2 ± η2)1/2

[
ηSmn

∂

∂ξ

(
(ξ2 ± 1)3/2

(ξ2 ± η2)

d

dξ
R(g)
mn

)

+(1− η2)
d

dη
Smn

∂

∂ξ

(
ξ(ξ2 ± 1)1/2

ξ2 ± η2
R(g)
mn

)

+
m− 1

(ξ2 ± 1)1/2
d

dη
SmnR

(g)
mn −

m(m− 1)η

(1− η2)(ξ2 ± 1)1/2
SmnR

(g)
mn

]
cos

sin
(m− 1)φ

N
−(g)
e
o
m−1,nξ = − 2

kd2(ξ2 ± η2)1/2

[
ξ
∂

∂η

(
(1− η2)3/2

(ξ2 ± η2)

d

dη
Smn

)
R(g)
mn

+(ξ2 ± 1)
∂

∂η

(
η(1− η2)1/2

ξ2 ± η2
Smn

)
d

dξ
R(g)
mn

− m− 1

(1− η2)1/2
Smn

d

dξ
R(g)
mn −

m(m− 1)ξ

(1− η2)1/2(ξ2 ± 1)
SmnR

(g)
mn

]
· cos
sin

(m− 1)φ

N
−(g)
e
o
m−1,nφ =

2(1− η2)1/2(ξ2 ± 1)1/2

kd2(ξ2 ± η2)

[
1

(ξ2 ± 1)1/2
d

dη

(
(1− η2)1/2

d

dη
Smn

)
R(g)
mn

+
1

(1− η2)1/2
Smn

d

dξ

(
(ξ2 ± 1)1/2

d

dξ
R(g)
mn

)

− m

(ξ2 ± 1)1/2
d

dη

(
η

(1− η2)1/2
Smn

)
R(g)
mn

+
m

(1− η2)1/2
Smn

d

dξ

(
ξ

(ξ2 ± 1)1/2
R(g)
mn

)]
(−1) sin

cos
(m− 1)φ



8.7. EXPANSIONS OF THE GREEN’S FUNCTIONS 253

8.7 Expansions of the Green’s Functions

The Green’s function G(r, r′) = exp(−jk|r−r′|)
4π|r−r′| can be expanded in terms of

spheroidal wave functions.

exp(−jk|r − r′|)
4π|r − r′| =

−jk
2π

∞∑
m=0

∞∑
n=m

2− δ0m
Nmn

Smn(c, η)Smn(c, η
′) · (8.45)

cosm(φ− φ′)

{
R

(1)
mn(c, ξ)R

(4)
mn(c, ξ′) ξ ≤ ξ′

R
(4)
mn(c, ξ)R

(1)
mn(c, ξ′) ξ ≥ ξ′

8.8 Expansions of the Radiation from Hertzian

Dipole

The radiation fields of a dipole which is located at the point r0 in free space
can be derived with the aid of magnetic vector potentialA and electric vector
potential F or from Hertz Vectors Πe and Πm at observation point r.

E = ∇×∇×Πe, H = jωε0∇×Πe (8.46)

E = −jωμ0∇×Πm, H = ∇×∇×Πm (8.47)

where Πe = 1
jωμ0ε0

A , Πm = 1
jωμ0ε0

F here the first set of formulas pertain to
an electric dipole and the second set to a magnetic dipole. The rectangular
components of the Hertz vectors are defined by

Πe
× =

e−jk|r−r0|

4πε0|r − r0|p×, Πm
× =

e−jk|r−r0|

4π|r − r0|m×, (× = x, y, z) (8.48)

where p× and m× are the components of the electric and magnetic dipole
moments along the ×- axis. But the radial Hertz vector associated with an
electric dipole of the moment pr or mr in radial direction is

Πe
r =

re−jk|r−r0|

4πε0|r − r0|pr, Πm
r =

re−jk|r−r0|

4π|r − r0|mr (8.49)

Let us consider an electric dipole oriented in the z-direction, az, and lying at
the point r0, θ0, 0, with spheroidal coordinates η0, ξ0, 0. The electromagnetic
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field of this dipole can be expanded in the spheroidal coordinate systems
when observation point is ξ ≤ ξ0:

E = (ωμI0Δl)

∞∑
m=0

∞∑
n=m

a(4)mnN
z(1)
emn(c; η, ξ, φ) (8.50)

H = (jkI0Δl)

∞∑
m=0

∞∑
n=m

a(4)mnM
z(1)
emn(c; η, ξ, φ) (8.51)

and for ξ0 ≤ ξ the fields are:

E = (ωμI0Δl)
∞∑
m=0

∞∑
n=m

a(1)mnN
z(4)
emn(c; η, ξ, φ) (8.52)

H = (jkI0Δl)

∞∑
m=0

∞∑
n=m

a(1)mnM
z(4)
emn(c; η, ξ, φ) (8.53)

In these equations k is the wave number of the medium, I0 antenna current,
Δl antenna length and a

(1),(4)
mn (c; η0, ξ0, 0) are:

a(1),(4)mn (c; η0, ξ0, 0) =
(2− δ0m)

2πNmn

Smn(c, η0)R
(4),(1)
mn (c, ξ0) (8.54)

The components of M
z(g)
emn will be:

Mz(g)
emnη =

mη

f
√
(ξ2 − η2)(1− η2)

SmnR
(g)
mn sinmφ (8.55)

M
z(g)
emnξ =

−mξ
f
√

(ξ2 − η2)(ξ2 − 1)
SmnR

(g)
mn sinmφ (8.56)

M
z(g)
emnφ =

√
(1− η2)(ξ2 − 1)

f(ξ2 − η2)

[
η
d

dη
SmnR

(g)
mn − ξSmn

d

dξ
R(g)
mn

]
cosmφ (8.57)

and the N
z(g)
emn component can be written as:

N z(g)
emnη =

1

kf 2

√
1− η2

ξ2 − η2

[
η
d

dη
Smn

∂

∂ξ

(
ξ2 − 1

ξ2 − η2
R(g)
mn

)
(8.58)

− Smn
∂

∂ξ

(
ξ(ξ2 − 1)

ξ2 − η2
d

dξ
R(g)
mn

)
+

m2ξ

(1− η2)(ξ2 − 1)
SmnR

(g)
mn

]
cosmφ
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N
z(g)
emnξ =

1

kf 2

√
ξ2 − 1

ξ2 − η2

[
ξ
∂

∂η

(
1− η2

ξ2 − η2
Smn

)
d

dξ
R(g)
mn (8.59)

− ∂

∂η

(
η(1− η2)

ξ2 − η2
d

dη
Smn

)
R(g)
mn

+
m2η

(1− η2)(ξ2 − 1)
SmnR

(g)
mn

]
cosmφ

N
z(g)
emnφ = − m

kf 2

√
(1− η2)(ξ2 − 1)

(ξ2 − η2)

[
ξ

ξ2 − 1

d

dη
SmnR

(g)
mn (8.60)

+
η

1− η2
Smn

d

dξ
R(g)
mn

]
sinmφ

8.9 Useful Spheroidal Integral

Because the Associated Legendre polynomials form a complete orthogonal
system over the interval−1, 1, any function may be expanded in terms of
them as

f(x) =
∞∑
n=0

anP
m
n (x) (8.61)

an =
(2n+ 1)(n−m)!

2(n+m)!

∫ 1

−1

f(x)Pm
n (x)dx

In the following two equation n, n′ ≥ m ≥ 0 and k > m− n:∫ 1

−1

Smn (c, η)S
m
n′(c, η)dη =

2

2n+ 1

(n +m)!

(n−m)!
δn,n′, (8.62)

∫ 1

−1

Smn (c, η)P
m
n+k(η)dη =

2

2n+ 2k + 1

(n +m+ k)!

(n−m+ k)!
dmnk δ

0,k mod 2
(8.63)

∫ 1

−1

(1− x2)ρ−1Pm
ν (x)dx (8.64)

=
π2mΓ(ρ+ 1

2
m)Γ(ρ− 1

2
m)

Γ(1 + 1
2
(ν −m))Γ(ρ− 1

2
ν)Γ(1

2
− 1

2
(ν +m))Γ(1 + ρ+ 1

2
ν)
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provided that 2�(ρ) > |�(m)|.
In order to find the unknown coefficients, the following formula are needed.
For m ≥ 1,

∞∑
t=0

Imnt,1 (c) · Pm−1
m−1+t(η) = (1− η2)−1/2Smn (c, η) (8.65)

Imnt,1 =

⎧⎪⎨⎪⎩ (2t+ 2m− 1)
∞∑
r=t

′
dmnr (c) (n−m) + t even

0 (n−m) + t odd

(8.66)

∞∑
t=0

Imnt,2 (c) · Pm−1
m−1+t(η) = (1− η2)1/2Smn (c, η) (8.67)

Imnt,2 (c) =

{
(t+2m−1)(t+2m)

2t+2m+1
dmnt − t(t−1)

2t+2m−3
dmnt−2 (n−m) + t even

0 (n−m) + t odd

(8.68)

∞∑
t=0

Imnt,3 (c) · Pm−1
m−1+t(η) = (1− η2)3/2Smn (c, η) (8.69)

for odd (n−m) + t the Imnt,3 = 0 but for even (n−m) + t we have

Imnt,3 (c) =
(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)(t+ 2m+ 2)

(2t + 2m+ 1)(2t+ 2m+ 3)
(8.70)

×
[

dmnt
2t+ 2m+ 1

− dmnt+2

2t+ 2m+ 5

]
− 2t(t− 1)(t+ 2m)(t+ 2m− 1)

(2t+ 2m− 3)(2t+ 2m+ 1)
·
[

dmnt−2

2t+ 2m− 3

− dmnt
2t+ 2m+ 1

]
+

t(t− 1)(t− 2)(t− 3)

(2t+ 2m− 3)(2t+ 2m− 5)

×
[

dmnt−4

2t+ 2m− 7
− dmnt−2

2t+ 2m− 3

]
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∞∑
t=0

Imnt,4 (c) · Pm−1
m−1+t(η) = (1− η2)5/2Smn (c, η) (8.71)

for odd (n−m) + t the Imnt,4 = 0 but for even (n−m) + t we have

Imnt,4 (c) = Imnt,3 −
{
(t + 2m− 1)(t+ 2m)(t + 2m+ 1)(t+ 2m+ 2)

(2t+ 2m+ 5)(2t+ 2m+ 1)
(8.72)

× t+ 2m+ 3

2t+ 2m+ 3

[
(t+ 1)dmnt

(2t+ 2m+ 1)(2t+ 2m+ 3)

+
(2m+ 1)dmnt+2

(2t+ 2m+ 3)(2t+ 2m+ 7)
− (2m+ t + 4)dmnt+4

(2t+ 2m+ 7)(2t+ 2m+ 9)

]
− t(t− 2m)(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)

(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m+ 3)

×
[

(t− 1)dmnt−2

(2t+ 2m− 3)(2t+ 2m− 1)
+

(2m+ 1)dmnt
(2t+ 2m− 1)(2t+ 2m+ 3)

− (t+ 2m+ 2)dmnt+2

(2t+ 2m+ 3)(2t+ 2m+ 5)

]
− t(t− 1)(t− 2)(t+ 2m− 1)(t+ 4m− 1)

(2t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m+ 1)

×
[

(t− 3)dmnt−4

(2t+ 2m− 7)(2t+ 2m− 5)
+

(2m+ 1)dmnt−2

(2t+ 2m− 5)(2t+ 2m− 1)

− (2m+ t)dmnt
(2t+ 2m− 1)(2t+ 2m+ 1)

]
+

t(t− 1)(t− 2)(t− 3)(t− 4)

(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)

×
[

(t− 5)dmnt−6

(2t+ 2m− 11)(2t+ 2m− 9)
+

(2m+ 1)dmnt−4

(2t+ 2m− 9)(2t+ 2m− 5)

− (2m+ t− 2)dmnt−2

(2t + 2m− 5)(2t+ 2m− 3)

]}

∞∑
t=0

Imnt,5 (c) · Pm−1
m−1+t(η) = η(1− η2)−1/2Smn (c, η) (8.73)
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for even (n−m) + t the Imnt,5 = 0 but for odd (n−m) + t we have

Imnt,5 (c) = tdmnt−1 + (2t+ 2m− 1)

∞∑
r=t

′
dmnr (c) (8.74)

∞∑
t=0

Imnt,6 (c) · Pm−1
m−1+t(η) = η(1− η2)1/2Smn (c, η) (8.75)

for even (n−m) + t the Imnt,6 = 0 but for odd (n−m) + t we have

Imnt,6 (c) =
(t + 2m− 1)(t+ 2m)

2t + 2m+ 1
·
[
(t+ 2m+ 1)dmnt+1

2t+ 2m+ 3
+

t · dmnt−1

2t+ 2m− 1

]
(8.76)

− t(t− 1)

2t+ 2m− 3
·
[
(t+ 2m− 1)dmnt−1

2t + 2m− 1
+

(t− 2)dmnt−3

2t+ 2m− 5

]
∞∑
t=0

Imnt,7 (c) · Pm−1
m−1+t(η) = η(1− η2)3/2Smn (c, η) (8.77)

for even (n−m) + t the Imnt,7 = 0 but for odd (n−m) + t we have:

Imnt,7 (c) =
(t + 2m− 1)(t+ 2m)(t+ 2m+ 1)(t+ 2m+ 2)(t+ 2m+ 3)

(2t+ 2m+ 1)(2t+ 2m+ 3)(2t+ 2m+ 5)
(8.78)

×
[

dmnt+1

2t+ 2m+ 3
− dmnt+3

2t+ 2m+ 7

]
− t(t− 2m)(t + 2m)(t+ 2m)(t+ 2m+ 1)

(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m+ 3)

×
[

dmnt−1

2t+ 2m− 1
− dmnt+1

2t + 2m+ 3

]
− t(t− 1)(t− 2)(t+ 2m− 1)(t+ 4m− 1)

(2t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m+ 1)
·
[

dmnt−3

2t+ 2m− 5

− dmnt−1

2t+ 2m− 1

]
+

t(t− 1)(t− 2)(t− 3)(t− 4)

(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)

×
[

dmnt−5

2t+ 2m− 9
− dmnt−3

2t + 2m− 5

]
∞∑
t=0

Imnt,8 (c) · Pm−1
m−1+t(η) = (1− η2)1/2

dSmn (c, η)

dη
(8.79)
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for even (n−m) + t the Imnt,8 = 0 but for odd (n−m) + t we have:

Imnt,8 (c) = −t(t +m− 1)dmnt−1 +m(2t+ 2m− 1)

∞∑
r=t+1

′
dmnr (c) (8.80)

∞∑
t=0

Imnt,10(c) · Pm−1
m−1+t(η) = (1− η2)5/2

dSmn (c, η)

dη
(8.81)
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for even (n−m) + t the Imnt,10 = 0 but for odd (n−m) + t we have:

Imnt,10(c) = Imnt,9 (c)−
{

(t + 2m− 1)(t+ 2m)(t+ 2m+ 1)

(2t+ 2m+ 1)(2t+ 2m+ 3)(2t+ 2m+ 5)
(8.82)

×
[
(t + 1)(t+ 2m+ 2)(t+ 2m+ 3)

2(2t+ 2m+ 3)
dmnt+1

+
(t+ 2)(t+ 3)(t+ 2m+ 1)

2(2t+ 2m+ 3)
dmnt+1

+
(t+ 2m+ 2)(t+ 2m+ 3)(t+ 2m+ 4)

2t+ 2m+ 7
dmnt+3

]
− t(t− 2m)(t + 2m− 1)

(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m+ 3)

×
[
t(t + 1)(t+ 2m− 1) + (t− 1)(t+ 2m)(t+ 2m+ 1)

2(2t+ 2m− 1)
dmnt−1

+
(t+ 2m)(t+ 2m+ 1)(t+m+ 2)

(2t+ 2m+ 3)
dmnt+1

]}
+

m(t + 2)(t+ 2m− 1)(t+ 2m)(t + 2m+ 1)

(2t+ 2m+ 1)(2t+ 2m+ 3)2
dmnt+1

+
t(t− 1)(t− 2)(t+ 4m− 1)(t+ 2m− 1)(t+m)

(t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m− 1)(2t+ 2m+ 1)
dmnt−1

+
mt(t + 2m− 1)

2t+ 2m+ 3
·
[

t + 1

2t+ 2m+ 1

− t(t− 2m)

(2t+ 2m− 3)(2t+ 2m− 1)

]
dmnt−1

+
t(t− 1)(t− 2)(t− 3)(t+ 4m− 1)(t+ 2m− 1)

2(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m− 5)2
dmnt−3

− t(t− 1)(t− 2)

(2t+ 2m− 3)(2t+ 2m− 5)2
·
[
(t− 3)(t− 4)(t+m− 2)

2t+ 2m− 7
+m(t− 2)

]
dmnt−3

+
t(t− 1)(t− 2)(t+ 2m− 3)

(2t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m+ 1)

×
[
(t− 2)(t− 1) + 4m(2m− 1) + (t− 2m− 1)(2m+ 1)

2(2t+ 2m− 5)

]
dmnt−3

− t(t− 1)(t− 2)(t− 3)(t− 4)(t+m− 5)

(2t+ 2m− 9)(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)
dmnt−5
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∞∑
t=0

Imnt,11(c) · Pm−1
m−1+t(η) = η(1− η2)1/2

dSmn (c, η)

dη
(8.83)

for odd (n−m) + t the Imnt,11 = 0 but for even (n−m) + t we have:

Imnt,11(c) = −t(t− 1)(t+m− 2)

2t + 2m− 3
dmnt−2 +m(2t + 2m− 1)

∞∑
r=t+2

′
dmnr (c) (8.84)

−
[
t(t− 1)

2
+

(t+ 2m)(t+ 2m− 1)

2(2t+ 2m+ 1)

]
dmnt

∞∑
t=0

Imnt,12(c) · Pm−1
m−1+t(η) = η(1− η2)3/2

dSmn (c, η)

dη
(8.85)

for odd (n−m) + t the Imnt,12 = 0 but for even (n−m) + t we have:

Imnt,12(c) =
(t+ 2m− 1)(t+ 2m)

(2t+ 2m+ 1)(2t+ 2m+ 3)
·
[(

t(t+ 2m+ 1)(t+ 2m+ 2)

2(2t+ 2m+ 1)
(8.86)

+
(t+ 1)(t+ 2)(t+ 2m)

2(2t+ 2m+ 1)

)
dmnt

+
(t+m+ 3)(t+ 2m+ 1)(t+ 2m+ 2)

2t+ 2m+ 5
dmnt+2

]
− 2t(t− 1)

(2t+ 2m− 3)(2t+ 2m+ 1)
·
[(

(t− 2)(t+ 2m− 1)(t+ 2m)

2(2t+ 2m− 3)

+
t(t− 1)(t+ 2m− 2)

2(2t+ 2m− 3)

)
dmnt−2

− m(t+ 1)(t+ 2m− 1)(t+ 2m)

(2t+ 2m− 5)(2t+ 2m− 3)2
dmnt

− mt(t− 1)

(2t+ 2m+ 1)
·
[
1− 2(t− 1)(2t+ 2m− 1)

(2t+ 2m− 3)2

]
dmnt−2

+
t(t− 1)(t− 2)(t− 3)(t+m− 4)

(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)
dmnt−4

For m = 0 we need special formulas

∞∑
t=0

I0nt,2(c) · P 1
1+t(η) = (1− η2)1/2S0

n(c, η) (8.87)
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for odd (n+ t) the I0nt,2 = 0 but for even (n+ t) we have:

I0nt,2(c) =
d0nt

2t+ 1
− d0nt+2

2t+ 5
(8.88)

∞∑
t=0

I0nt,3(c) · P 1
1+t(η) = (1− η2)3/2S0

n(c, η) (8.89)

for odd (n+ t) the I0nt,3 = 0 but for even (n+ t) we have

I0nt,3(c) =
(t+ 3)(t+ 4)

2t+ 5

[
d0nt

(2t+ 1)(2t+ 3)
− 2d0nt+2

(2t+ 3)(2t+ 7)
(8.90)

+
d0nt+4

(2t+ 7)(2t+ 9)

]
− t(t− 1)

2t+ 1

×
[

d0nt−2

(2t− 3)(2t− 1)
− 2d0nt

(2t− 1)(2t+ 3)
+

d0nt+2

(2t+ 3)(2t+ 5)

]
,

∞∑
t=0

I0nt,4(c) · P 1
1+t(η) = (1− η2)5/2S0

n(c, η) (8.91)

for odd (n+ t) the I0nt,4 = 0 but for even (n+ t) we have

I0nt,4(c) = I0nt,3(c)−
(t + 3)(t+ 4)(t+ 5)(t+ 6)

(2t+ 5)(2t+ 7)(2t+ 9)
(8.92)

×
[

d0nt+2

(2t+ 5)(2t+ 7)
− 2d0nt+4

(2t + 7)(2t+ 11)
+

d0nt+6

(2t+ 11)(2t+ 13)

]
− (t+ 3)(t+ 4)

2t+ 5
·
[

(t+ 1)(t+ 5)

(2t+ 5)(2t+ 7)
+

3t

(2t+ 1)(2t+ 5)

]
×

[
d0nt

(2t+ 1)(2t+ 3)
− 2d0nt+2

(2t + 3)(2t+ 7)
+

d0nt+4

(2t+ 7)(2t+ 9)

]
− t(t− 1)

2t+ 1
·
[

3(t+ 3)

(2t+ 1)(2t+ 5)
− (t+ 2)(t− 2)

(2t+ 1)(2t− 1)

]
×

[
d0nt−2

(2t− 3)(2t− 1)
− 2d0nt

(2t+ 3)(2t− 1)
+

d0nt+2

(2t+ 3)(2t+ 5)

]
+

t(t− 1)(t− 2)(t− 3)

(2t+ 1)(2t− 1)(2t− 3)

×
[

d0nt−4

(2t− 7)(2t− 5)
− 2d0nt−2

(2t− 1)(2t− 5)
+

d0nt
(2t+ 1)(2t− 1)

]
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∞∑
t=0

I0nt,6(c) · P 1
1+t(η) = η(1− η2)1/2S0

n(c, η) (8.93)

for even (n+ t) the I0nt,6 = 0 but for odd (n + t) we have

I0nt,6(c) =
t+ 3

2t+ 5

[
d0nt+1

2t+ 3
− d0nt+3

2t+ 7

]
+

t

2t + 1

[
d0nt−1

2t− 1
− d0nt+1

2t+ 3

]
(8.94)

∞∑
t=0

I0nt,7(c) · P 1
1+t(η) = η(1− η2)3/2S0

n(c, η) (8.95)

for even (n+ t) the I0nt,7 = 0 but for odd (n + t we have

I0nt,7(c) =
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)
(8.96)

×
[

d0nt+1

(2t+ 3)(2t+ 5)
− 2d0nt+3

(2t+ 5)(2t+ 9)
+

d0nt+5

(2t+ 9)(2t+ 11)

]
+

3t(t+ 3)

(2t+ 1)(2t+ 5)

×
[

d0nt−1

(2t− 1)(2t+ 1)
− 2d0nt+1

(2t+ 1)(2t+ 5)
+

d0nt+3

(2t+ 5)(2t+ 7)

]
− t(t− 1)(t− 2)

(2t− 1)(2t+ 1)

×
[

d0nt−3

(2t− 5)(2t− 3)
− 2d0nt−1

(2t− 3)(2t+ 1)
+

d0nt+1

(2t+ 1)(2t+ 3)

]
∞∑
t=0

I0nt,8(c) · P 1
1+t(η) = (1− η2)1/2

dS0
n(c, η)

dη
(8.97)

for even (n+ t) the I0nt,8 = 0 but for odd (n + t) we have

I0nt,8(c) = d0nt+1 (8.98)

∞∑
t=0

I0nt,9(c) · P 1
1+t(η) = (1− η2)3/2

dS0
n(c, η)

dη
(8.99)
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for even (n+ t) the I0nt,9 = 0 but for odd (n+ t) we have

I0nt,9(c) =
(t+ 3)(t+ 4)

2t+ 5

[
d0nt+1

2t+ 3
− d0nt+3

2t+ 7

]
(8.100)

− t(t− 1)

2t+ 1

[
d0nt−1

2t− 1
− d0nt+1

2t+ 3

]
∞∑
t=0

I0nt,10(c) · P 1
1+t(η) = (1− η2)5/2

dS0
n(c, η)

dη
(8.101)

for even (n+ t) the I0nt,10 = 0 but for odd (n+ t) we have

I0nt,10(c) = I0nt,9(c)−
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)
·
[

(t+ 1)d0nt+1

(2t+ 3)(2t+ 5)
(8.102)

+
1

2t+ 7

(
t+ 6

2t+ 9
− t+ 1

2t+ 5

)
d0nt+3 −

(t+ 6)d0nt+5

(2t+ 11)(2t+ 9)

]
− t(t+ 3)

2t+ 3

(
t + 4

2t+ 5
− t− 1

2t+ 1

)
·
[

(t− 1)d0nt−1

(2t− 1)(2t+ 1)

+
1

2t+ 3

(
t+ 4

2t+ 5
− t− 1

2t+ 1

)
d0nt+1 −

(t+ 4)d0nt+3

(2t+ 7)(2t+ 5)

]
+

t(t− 1)(t− 2)

(2t+ 1)(2t− 1)
·
[

(t− 3)d0nt−3

(2t− 5)(2t− 3)

+
1

2t− 1

(
t+ 2

2t+ 1
− t− 3

2t− 3

)
d0nt−1 −

(t+ 2)d0nt+1

(2t + 3)(2t+ 1)

]
∞∑
t=0

I0nt,11(c) · P 1
1+t(η) = η(1− η2)1/2

dS0
n(c, η)

dη
(8.103)

for odd (n+ t the Imnt,11 = 0 but for even (n+ t) we have

Imnt,11 =
t + 3

2t+ 5
d0nt+2 +

t

2t + 1
d0nt (8.104)

∞∑
t=0

I0nt,12(c) · P 1
1+t(η) = η(1− η2)3/2

dS0
n(c, η)

dη
(8.105)
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for odd (n+ t) the I0nt,12 = 0 but for even (n+ t) we have

I0nt,12(c) =
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)
·
(
d0nt+2

2t+ 5
− d0nt+4

2t+ 9

)
(8.106)

+
3t(t+ 3)

(2t+ 1)(2t+ 5)
·
(

d0nt
2t+ 1

− d0nt+2

2t+ 5

)
− t(t− 1)(t− 2)

(2t− 1)(2t+ 1)
·
(
d0nt−2

2t− 3
− d0nt

2t + 1

)

8.10 Scattering From a Conducting Spheroid

Figure (8.5) defines the geometry of the problem that we will consider. A
plane wave incident in a xz-plane with an angle θ0 between positive z axis
and the direction of incidence. For oblique incidence, the polarized incident

Figure 8.5: Geometry of the Conducting Prolate Spheroid

wave is resolved into two components as shown in Fig.(8.5): the TE mode for
which the electric vector of incident wave is per perpendicular to the incident
plane, and TM mode for which the magnetic vector field is perpendicular
to the incident plane. For θ0 �= 0 , we will consider two case separately.
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For θ0 = 0, the parallel incident, due to symmetry of configuration, we have
identical results for both cases.

Ei
TE = aye

−jk(x sin θ0+z cos θ0) (8.107)

Hi
TE =

1

Z
(ax cos θ0 − az sin θ0)aye

−jk(x sin θ0+z cos θ0)

where Z =
√
μ/ε is impedance of medium.

Ei
TE =

∞∑
m=0

∞∑
n=m

[
aimn(c, θ0)M

r(1)
e,mn(c, r) + bimn(c, θ0)N

r(1)
o,mn(c, r)

]
(8.108)

Hi
TE =

j

Z

∞∑
m=0

∞∑
n=m

[
aimn(c, θ0)N

r(1)
e,mn(c, r) + bimn(c, θ0)M

r(1)
o,mn(c, r)

]
where

aimn(c, θ0) =
2(2− δ0m)j

n

Nmn(c)

∞∑
k=0,1

′
αmnk (c, θ0) (8.109)

bimn(c, θ0) =
4mjn−1

Nmn(c)

∞∑
k=0,1

′
βmnk (c, θ0)

αmnk (c, θ0) =
dmnk (c)

(k +m)(k +m+ 1)

d

dθ0
Pm
m+k(cos θ0) (8.110)

βmnk (c, θ0) =
dmnk (c)

(k +m)(k +m+ 1)

Pm
m+k(cos θ0)

sin θ0

Es
TE =

∞∑
m=0

∞∑
n=m

[
asmnM

r(4)
e,mn(c, r) + bsmnN

r(4)
o,mn(c, r)

]
(8.111)

Hs
TE =

j

Z

∞∑
m=0

∞∑
n=m

[
asmnN

r(4)
e,mn(c, r) + bsmnM

r(4)
o,mn(c, r)

]
The asmn and bsmn are unknown and can be determined by applying boundary
conditions. At ξ = ξ0 the tangential electric fields on conducting spheroid
should be vanished. Therefore

∞∑
m=0

∞∑
n=m

[aimnM
r(1)
e,mnη(c; η, ξ0, φ) + bimnN

r(1)
o,mnη(c; η, ξ0, φ) + (8.112)

asmnM
r(4)
e,mnη(c; η, ξ0, φ) + bsmnN

r(4)
o,mnη(c; η, ξ0, φ)] = 0
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∞∑
m=0

∞∑
n=m

[aimnM
r(1)
e,mnφ(c; η, ξ0, φ) + bimnN

r(1)
o,mnφ(c; η, ξ0, φ) + (8.113)

asmnM
r(4)
e,mnφ(c; η, ξ0, φ) + bsmnN

r(4)
o,mnφ(c; η, ξ0, φ)] = 0

from Eq.(8.112) and Eq.(8.113) we can find unknowns asmn and bsmn.
Because of the orthogonality of the trigonometric functions cosmφ and sinmφ,
in each expansion, the coefficients of the same φ-dependent trigonometric
function must be equal, component by component; the equalities must hold
for each corresponding term in the summation over m. For the summation
over n, however, the individual terms in the series cannot be matched term by
term. This is the cause of difficulty in determining the unknown coefficients.
We do the same procedure as we did in scattering by elliptic cylinder. The
method used is as follows: the equation that stands for continuity of η compo-
nents, Eq.(8.112) , are multiplied by (ξ20−η2)5/2 = [(ξ20−1)+(1−η2)]5/2, and
the equations for φ-components, Eq.(8.113) , by (ξ20 − 1)−1/2(ξ20 − η2),where
these multipliers are positive in full range of η; then are factors that are
function of η are replaced by the series of associated Legendre functions of
the first kind, which are orthogonal functions in the interval −1 ≤ η ≤ 1.
For the m ≥ 1, we expand them in terms of Pm−1

m−1+t(η), but for m = 0 we
should expand them by the functions P 1

1+t(η) as we did in previous section.
By using the useful integrals of previous section in boundary condition equa-
tions, Eq.(8.112) and Eq.(8.113), we will reach:

∞∑
n=0

Ainta
i
mn +Bi

ntb
i
mn + Asnta

s
mn +Bs

ntb
s
mn = 0 (8.114)

for η-components.

∞∑
n=0

C i
nta

i
mn +Di

ntb
i
mn + Cs

nta
s
mn +Ds

ntb
s
mn = 0 (8.115)

for φ-components. We truncate the series to Max and index t in both
Eq.(8.114),Eq.(8.115) can be changed from 0 − Max, therefore we have
2Max + 2 unknown and 2Max + 2 linear equations which can be divide
into four different submatrix.[

A
(4)
nt B

(4)
nt

C
(4)
nt D

(4)
nt

][
ast
bst

]
+

[
A

(1)
nt B

(1)
nt

C
(1)
nt D

(1)
nt

] [
ait
bit

]
= 0 (8.116)
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with the incident matrix and known coefficients

−
[

A
(1)
nt B

(1)
nt

C
(1)
nt D

(1)
nt

] [
ait
bit

]
=

[
Gi
n

Hi
n

]
(8.117)

where

U r(g),t
mnη = mξ0

[
(ξ20 − 1)2Imnt,1 (c) + 2(ξ20 − 1)Imnt,2 (c) + Imnt,3 (c)

]
R(g)
mn(c) (8.118)

V r(g),t
mnη =

1

kf

{
(ξ20 − 1)2

[
R(g)
mn + ξ0

d

dξ0
R(g)
mn

]
Imnt,8 (c) (8.119)

+

[
(3ξ20 − 1)R(g)

mn + ξ0(ξ
2
0 − 1)

d

dξ0
R(g)
mn

]
Imnt,9 (c)

}
− 1

kf

{[
2ξ0

d

dξ0
R(g)
mn + (ξ20 − 1)

d2

dξ20
R(g)
mn

]
Imnt,7 (c)

+

[
(ξ20 − 1)2

d2

dξ20
R(g)
mn

]
Imnt,6 (c)

}
+

m2

kf

[
(ξ20 − 1)3/2Imnt,1 (c) + (ξ20 − 1)−1/2Imnt,7 (c)

+ 2(ξ20 − 1)1/2Imnt,6 (c)
]
R(g)
mn

U
r(g)
ntφ = ξ0I

mn
t,8 (c)R(g)

mn(c)− Imnt,6 (c)
d

dξ0
R(g)
mn (8.120)

V
r(g)
ntφ =

m

kf(ξ20 − 1)

{
Imnt,2 (c)R(g)

mn(c) + Imnt,11(c)R
(g)
mn(c) (8.121)

− (ξ20 − 1)Imnt,1 (c)

[
R(g)
mn + ξ0

d

dξ0
R(g)
mn

]}
We can rewrite the Eq.(8.115) in a general form of linear system of equations
A ·X = B and find the unknowns.
Now let us do the same procedure for TM polarization.

Ei
TM = (ax cos θ0 − az sin θ0)aye

−jk(x sin θ0+z cos θ0) (8.122)

Hi
TM =

ay
Z0
e−jk(x sin θ0+z cos θ0)
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for θ0 = 0 we have Ex = Z0Hy = e−jkz.
The expansions of the incident and scattered electric fields for the case of
transverse magnetic TM) polarization can be written in terms of vector
spheroidal wave functions as[64]

Ei
TM = −j

∞∑
m=0

∞∑
n=m

[
aimn(c, θ0)N

r(1)
e,mn(c, r) + bimn(c, θ0)M

r(1)
o,mn(c, r)

]
(8.123)

and corresponding magnetic filed can be found by ∇× E = − 1
jωμ

H

Es
TM =

∞∑
m=0

∞∑
n=m

[
asmnN

r(4)
e,mn(c, r) + bsmnM

r(4)
o,mn(c, r)

]
(8.124)

by the same procedure that we did for TE polarization we can find the
unknown coefficients.

8.11 Scattering From a PEMC Spheroid

In this section, we consider the scattering of electromagnetic waves from a
perfect electromagnetic conducting spheroid, when it is excited by a plane
wave of arbitrary polarization and angle of incidence. We express the inci-
dent and scattered electromagnetic fields in terms of vector spheroidal wave
functions and then imposing the appropriate boundary conditions on the
surface of the spheroid[64].
A perfect electromagnetic conducting (PEMC) medium can be considered
as a generalized form of a perfect electric conducting (PEC) medium and a
perfect magnetic conducting (PMC) medium, in which certain linear combi-
nations of electromagnetic fields become extinct. Since the tangential compo-
nents of the electric E) and magneticH) fields and the normal components of
the electric flux density D) and the magnetic flux density B) are continuous
across any interface, using the boundary conditions at the surface of a PEC
object and those at the surface of a PMC object and the fact that a PEMC
medium is a generalization of a PEC and a PMC medium, the boundary
conditions to be satisfied on the surface of a corresponding PEMC object
can be written as[57].

n× (H+ME) n · (D−MB) (8.125)
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where M is defined as the PEMC admittance, and n is the unit normal to
the boundary.
Consider an arbitrarily polarized, monochromatic uniform plane electromag-
netic wave with an electric field intensity of unit amplitude incident on a
PEMC spheroid located in free space, with its center at the origin of a
Cartesian coordinate system and its axis of symmetry along the z axis of
this coordinate system, as shown in Fig.(8.6). Without any loss of general-
ity, the y = 0 plane can be assumed to be the plane of incidence. The incident

Figure 8.6: Geometry of the PEMC spheroid

and scattered electric fields in the case of transverse electric TE polarization
can be expanded in terms of vector spheroidal wave functions M and N as
[64]

Ei
TE =

∞∑
m=0

∞∑
n=m

[
aimn(c, θ0)M

r(1)
e,mn(c, r) + bimn(c, θ0)N

r(1)
o,mn(c, r)

]
(8.126)

Es
TE =

∞∑
m=0

∞∑
n=m

[
asmnM

r(4)
e,mn(c, r) + bsmnN

r(4)
o,mn(c, r) (8.127)

+ csmnM
r(4)
o,mn(c, r) + dsmnN

r(4)
e,mn(c, r)

]
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where c = kf , with k being the wavenumber and f the semiinterfocal distance
of the spheroid, r denotes the spheroidal coordinate triad (ξ, η, φ), and θ0 is
the angle of incidence measured from the z axis. The expansion coefficients
of Eq.(8.127) are unknown, and those of Eq.(8.126) are given by

aimn(c, θ0) =
2(2− δ0m)j

n

Nmn(c)

∞∑
k=0,1

′
αmnk (c, θ0) (8.128)

bimn(c, θ0) =
4mjn−1

Nmn(c)

∞∑
k=0,1

′
βmnk (c, θ0)

where Nmn(c) is the normalization constant of the spheroidal angle function
Smn(c, cos θ0), δ0m is the Kronecker delta function, and

αmnk (c, θ0) =
dmnk (c)

(k +m)(k +m+ 1)

d

dθ0
Pm
m+k(cos θ0) (8.129)

βmnk (c, θ0) =
dmnk (c)

(k +m)(k +m+ 1)

Pm
m+k(cos θ0)

sin θ0

in which the prime over the summation sign indicating that the summation
is over only even(odd) values of k when n − m is even(odd), dmnk (c) are
the spheroidal expansion coefficients, and Pm

m+k are the associated Legendre
functions of the first kind. The vector spheroidal wave functions M and N
are defined as

M
r(g)
e
o
mn

(c, r) = ∇ψ(g)
e
o
mn

(c, r)× ar (8.130)

where ar is the unit position vector, and

ψ
(g)
e
o
mn(c, r) = Smn(c, η)R

(g)
mn(c, ξ)

cos

sin
(mφ) (8.131)

with Smn(c, η) and R
(g)
mn(c, ξ) being the spheroidal angle function and the

spheroidal radial function of the gth kind, respectively [65]. The vector
spheroidal wave functions N are obtained from M as

N
r(g)
e
o
mn

(c, r) =
1

k
∇×M

r(g)
e
o
mn

(c, r) (8.132)

The expansions corresponding to the incident and scattered magnetic fields
H i
TE ,Hs

TE are obtained from Eq.(8.126) and Eq.(8.127), respectively, using
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Maxwells equations. This corresponds to interchanging M and N on the
right-hand sides of Eq.(8.126) and Eq.(8.127), and multiplying each equation
by j/Z0, where Z0 is the wave impedance in free space.

Hi
TE =

j

Z0

∞∑
m=0

∞∑
n=m

[
aimn(c, θ0)N

r(1)
e,mn(c, r) + bimn(c, θ0)M

r(1)
o,mn(c, r)

]
(8.133)

Hs
TE =

j

Z0

∞∑
m=0

∞∑
n=m

[
asmnN

r(4)
e,mn(c, r) + bsmnM

r(4)
o,mn(c, r) (8.134)

+ csmnN
r(4)
o,mn(c, r) + dsmnM

r(4)
e,mn(c, r)

]
The expansions of the incident and scattered electric fields for the case of
transverse magnetic TM) polarization can be written in terms of vector
spheroidal wave functions as[64]

Ei
TM = −j

∞∑
m=0

∞∑
n=m

[
aimn(c, θ0)N

r(1)
e,mn(c, r) + bimn(c, θ0)M

r(1)
o,mn(c, r)

]
(8.135)

Es
TM =

∞∑
m=0

∞∑
n=m

[
asmnN

r(4)
e,mn(c, r) + bsmnM

r(4)
o,mn(c, r) (8.136)

+ csmnN
r(4)
o,mn(c, r) + dsmnM

r(4)
e,mn(c, r)

]
The expansions corresponding to the incident and scattered magnetic fields
Hi
TM , Hs

TM are obtained from Eq.(8.135) and Eq.(8.136) , respectively, using
Maxwells equations.

Hi
TM =

−1

Z0

∞∑
m=0

∞∑
n=m

[
amn(c, θ0)M

r(1)
e,mn(c, r) + bmn(c, θ0)N

r(1)
o,mn(c, r)

]
(8.137)

Hs
TM =

j

Z0

∞∑
m=0

∞∑
n=m

[
asmnM

r(4)
e,mn(c, r) + bsmnN

r(4)
o,mn(c, r) (8.138)

+ csmnM
r(4)
o,mn(c, r) + dsmnN

r(4)
e,mn(c, r)

]
Imposing the boundary conditions specified by Eq.(8.125) on the surface
ξ = ξ0 of the PEMC spheroid yields

aξ × [Hi
p +Hs

p +M(Ei
p + Ei

p)]|ξ=ξ0 = 0 (8.139)
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where p is either TE or TM , and aξ is the unit vector normal to the boundary
ξ = ξ0 denoting the surface of the spheroid. Equation Eq.(8.139) can now be
rewritten in the form

aξ × [Hi
pη +Hs

pη + M(Ei
pη + Ei

pη)]|ξ=ξ0 = 0 (8.140)

aξ × [Hi
pφ +Hs

pφ + M(Ei
pφ + Ei

pφ)]|ξ=ξ0 = 0

The unknown expansion coefficients are evaluated by solving a set of linear
equations obtained by substituting for the different components of the E and
H fields in Eq.(8.140) in terms of spheroidal wave function expansions, and
then using the orthogonality properties of the trigonometric functions and
the spheroidal angle functions as in [64].

8.12 Scattering by Circular Metallic Disks

Exact solution to problems of scattering of plane electromagnetic waves by
perfectly conducting bodies of finite dimensions are limited. From view point
of electromagnetic, spheroid has special shape. The limiting case of oblate
spheroid will be circular disk. The incident electric field is given by

Figure 8.7: Scattering of plane wave by circular conducting disk
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Ei = E0 (− cos θ0 cosαax + sinαay − sin θ0 cosαaz) e
−jki·r (8.141)

where

ki = k(− sin θ0ax + cos θ0az) (8.142)

k = ω
√
μ0ε0

The scattered electric field intensity at an arbitrary point r, θ, φ on the far
field sphere may be expressed as

Es =
jE0

kr

(
cosα

cos θ0
E‖ + sinαE⊥

)
e−jk

i·r (8.143)

It is convenient to express the scattered filed Es in terms of a normalized
field Es

n such that

Es =
aE0

2r
Es
ne

−jki·r (8.144)

This choice of normalized yields a particularly simple form for the normalized
radar cross section, i.e.,

σ

πa2
= |Es

n|2 (8.145)

The normalized electric field intensity in this case is given by

Es
n =

2j

ka

(
cosα

cos θ0
E‖ + sinαE⊥

)
(8.146)

where

E‖θ = cos θ

∞∑
m=0

{−2(2− δ0,m) cos(mφ) cosφ (8.147)

·Ym(cos θ, c, cos θ0) + j−m[Um+1 cos(m+ 1)φ

− (1 + δm,1)Um−1 cos(m− 1)φ]Ym(cos θ, c, 0)}

E‖φ =
∞∑
m=0

{−2(2− δ0,m) cos(mφ) sinφ (8.148)

·Ym(cos θ, c, cos θ0) + j−m[Um+1 sin(m+ 1)φ

+ (1 + δm,1)Um−1 sin(m− 1)φ]Ym(cos θ, c, 0)}
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E⊥θ = cos θ

∞∑
m=0

{2(2− δ0,m) cos(mφ) sinφ (8.149)

·Ym(cos θ, c, cos θ0)− j−m[Xm+1 sin(m+ 1)φ

−Xm−1 sin(m− 1)φ]Ym(cos θ, c, 0)}

E⊥φ =
∞∑
m=0

{−2(2− δ0,m) cos(mφ) cosφ (8.150)

·Ym(cos θ, c, cos θ0) + j−m[Xm+1 cos(m+ 1)φ

+ (1− δm,1)Xm−1 cos(m− 1)φ]Ym(cos θ, c, 0)}

and c = ka.
The function Ym are given in terms of the spheroidal radial functions R

(g)
mn(−jc, j0)

and the spheroidal angular functions Smn(−jc, cos θ) by

Ym(cos θ, c, cos θ0) =

∞∑
n=m
n−m
even

′
(−1)n

Nmn(−jc) ·
R

(1)
mn(−jc, j0)

R
(4)
mn(−jc, j0)

(8.151)

·Smn(−jc, cos θ0)Smn(−jc, cos θ)

The prim on the summation symbol emphasizes the fact that the summation
over n proceeds by increments of two as a consequence of the condition that
n−m is even. TheNmn is normalization function which we defined previously.
The Um and Xm functions are given by

Um = 2jm−1Wm−1 +Wm+1

ψm−1 + ψm+1

m ≥ 1 (8.152)

U0 = −jW1

ψ1

Um = 0 m < 0

Xm = 2jm−1Wm−1 −Wm+1

ψm−1 + ψm+1
m ≥ 1 (8.153)

Xm = 0 m < 0

Finally, the Wm and ψm functions are given in terms of the spheroidal func-
tions by
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Wm =

∞∑
n=m
n−m
even

′
(j)n

Nmn(−jc) ·
Smn(−jc, cos θ0)Smn(−jc, 0)

R
(4)
mn(−jc, j0)

(8.154)

ψm =
∞∑

n=m
n−m
even

′
(j)n

Nmn(−jc) ·
[Smn(−jc, 0)]2
R

(4)
mn(−jc, j0)

(8.155)
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Figure 8.8: RCS of conducting disk

8.13 EM Scattering by Dielectric Spheroid

Figure (8.9) defines the geometry of the problem that we will consider. A
plane wave incident in a xz-plane with an angle θ0 between positive z axis
and the direction of incidence. For oblique incidence, the polarized incident
wave is resolved into two components as shown in Fig.(8.9): the TE mode for
which the electric vector of incident wave is per perpendicular to the incident
plane, and TM mode for which the magnetic vector field is perpendicular
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Figure 8.9: Geometry of the dielectric prolate spheroid

to the incident plane. For θ0 �= 0 , we will consider two case separately.
For θ0 = 0, the parallel incident, due to symmetry of configuration, we have
identical results for both cases.

Ei
TE = aye

−jk0(x sin θ0+z cos θ0) (8.156)

Hi
TE =

1

Z0
(ax cos θ0 − az sin θ0)aye

−jk0(x sin θ0+z cos θ0)

where Z0 =
√
μ0/ε0 is impedance of free space.

Ei
TE =

∞∑
m=0

∞∑
n=m

[
aimn(c0, θ0)M

r(1)
e,mn(c0, r) + bimn(c0, θ0)N

r(1)
o,mn(c0, r)

]
(8.157)

Hi
TE =

j

Z0

∞∑
m=0

∞∑
n=m

[
aimn(c0, θ0)N

r(1)
e,mn(c0, r) + bimn(c0, θ0)M

r(1)
o,mn(c0, r)

]
where c0 = k0f and

aimn(c0, θ0) =
2(2− δ0m)j

n

Nmn(c0)

∞∑
k=0,1

′
αmnk (c0, θ0) (8.158)

bimn(c0, θ0) =
4mjn−1

Nmn(c0)

∞∑
k=0,1

′
βmnk (c0, θ0)
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αmnk (c0, θ0) =
dmnk (c0)

(k +m)(k +m+ 1)

d

dθ0
Pm
m+k(cos θ0) (8.159)

βmnk (c0, θ0) =
dmnk (c0)

(k +m)(k +m+ 1)

Pm
m+k(cos θ0)

sin θ0

Es
TE =

∞∑
m=0

∞∑
n=m

[
asmnM

r(4)
e,mn(c0, r) + bsmnN

r(4)
o,mn(c0, r)

]
(8.160)

Hs
TE =

j

Z0

∞∑
m=0

∞∑
n=m

[
asmnN

r(4)
e,mn(c0, r) + bsmnM

r(4)
o,mn(c0, r)

]

Et
TE =

∞∑
m=0

∞∑
n=m

[
atmnM

r(1)
e,mn(c, r) + btmnN

r(1)
o,mn(c, r)

]
(8.161)

Ht
TE =

j

Z

∞∑
m=0

∞∑
n=m

[
atmnN

r(1)
e,mn(c, r) + btmnM

r(1)
o,mn(c, r)

]
where Z =

√
μ/ε is impedance of dielectric spheroid and c = kf , k = ω

√
με.

The asmn, b
s
mn, a

t
mn and btmn are unknown and can be determined by

applying boundary conditions. At ξ = ξ0 the tangential electric and magnetic
fields on the dielectric spheroid are continous. Therefore

∞∑
m=0

∞∑
n=m

[
aimnM

r(1)
e,mnη(c0; η, ξ0, φ) + bimnN

r(1)
o,mnη(c0; η, ξ0, φ) + (8.162)

asmnM
r(4)
e,mnη(c0; η, ξ0, φ) + bsmnN

r(4)
o,mnη(c0; η, ξ0, φ)−

atmnM
r(4)
e,mnη(c; η, ξ0, φ) − btmnN

r(4)
o,mnη(c; η, ξ0, φ)

]
= 0

∞∑
m=0

∞∑
n=m

[aimnM
r(1)
e,mnφ(c0; η, ξ0, φ) + bimnN

r(1)
o,mnφ(c0; η, ξ0, φ) + (8.163)

asmnM
r(4)
e,mnφ(c0; η, ξ0, φ) + bsmnN

r(4)
o,mnφ(c0; η, ξ0, φ)−

atmnM
r(1)
e,mnφ(c; η, ξ0, φ) − btmnN

r(1)
o,mnφ(c; η, ξ0, φ)] = 0
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∞∑
m=0

∞∑
n=m

[
1

Z0
aimnN

r(1)
e,mnη(c0; η, ξ0, φ) +

1

Z0
bimnM

r(1)
o,mnη(c0; η, ξ0, φ) + (8.164)

1

Z0
asmnN

r(4)
e,mnη(c0; η, ξ0, φ) +

1

Z0
bsmnM

r(4)
o,mnη(c0; η, ξ0, φ) +

1

Z
atmnN

r(4)
e,mnη(c; η, ξ0, φ) +

1

Z
btmnM

r(4)
o,mnη(c; η, ξ0, φ)

]
= 0

∞∑
m=0

∞∑
n=m

[
1

Z0
aimnN

r(1)
e,mnφ(c0; η, ξ0, φ) +

1

Z0
bimnM

r(1)
o,mnφ(c0; η, ξ0, φ) + (8.165)

1

Z0
asmnN

r(4)
e,mnφ(c0; η, ξ0, φ) +

1

Z0
bsmnM

r(4)
o,mnφ(c0; η, ξ0, φ) +

1

Z
atmnN

r(1)
e,mnφ(c; η, ξ0, φ) +

1

Z
btmnM

r(1)
o,mnφ(c; η, ξ0, φ)] = 0

Like the scattering by conducting spheroid, the equation that stand for
continuity of η components, Eq.(8.162)and Eq.(8.164) , are multiplied by
(ξ20 − η2)5/2 = [(ξ20 − 1) + (1 − η2)]5/2, and the equations for φ-components,
Eq.(8.163) and Eq.(8.165) by (ξ20 − 1)−1/2(ξ20 − η2). We also truncate the se-
ries to Max term and index t in all Eq.(8.162),...,Eq.(8.165) can be changed
from 0 −Max, therefore we have 4Max + 4 unknown and 4Max + 4 linear
equations which can be divide into sixteen different submatrix.
For Eη-components:

∞∑
n=0

Ainta
i
mn +Bi

ntb
i
mn + Asnta

s
mn +Bs

ntb
s
mn = Atnta

t
mn +Bt

ntb
t
mn (8.166)

For Hη-components:

∞∑
n=0

Ainta
i
mn +Bi

ntb
i
mn + Asnta

s
mn +Bs

ntb
s
mn = Atnta

t
mn +Bt

ntb
t
mn (8.167)

For Eφ-components:

∞∑
n=0

C i
nta

i
mn +Di

ntb
i
mn + Cs

nta
s
mn +Ds

ntb
s
mn = Ct

nta
t
mn +Ds

ntb
t
mn (8.168)

or the [B1
n,B

2
n,B

3
n,B

4
n]
T can be be found by
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8.14 Problems

• 1 Find the RCS of conducting oblate spheroid for TE polarization.

• 2 Find the RCS of a circular metallic disk for TE polarization.

• 3 A conducting prolate spheroid with semi major axis A = λ/4 and
semi minor axis B = λ/8 is given. plot the rcs of it as a function of θ
when φ = 0 and φ = π/2



Chapter 9

Mesh Generation

” God does not care about our mathematical difficulties. He inte-
grates empirically.”

Albert Einstein

9.1 Introduction

Grid generation is an integral part of the majority of numerical methods
for the prediction of charge and potential. In the more general case, it in-
volves the discretization of the domain of interest in a big number of pre-
defined, simple-shaped, sub-domains, where the governing equations can be
expressed in more manageable terms. These sub-domains can be triangles,
quadri-laterals, etc. for two-dimensional fields, or tetrahedrals, pyramids,
cubes, etc, for three-dimensional domains. One particular type of grid, that
presents us with significant advantages in terms of flexibility, adaptivity and
generality is the so-called unstructured type. Such grids can in principal de-
scribe efficiently even the most complex geometries, are easier to construct
than their structured counterparts and allow for direct and accurate control
to their characteristics. The subject has been investigated extensively and
thus numerous techniques and algorithms are available in the literature, but
also as commercial and public domain software implementations.

Meshing can be defined as the process of breaking up a physical domain
into smaller sub-domains (elements) in order to facilitate the numerical so-
lution of a partial differential equation. While meshing can be used for a
wide variety of applications, the principal application of interest is the finite

281
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element method. Surface domains may be subdivided into triangle or quadri-
lateral shapes, while volumes may be subdivided primarily into tetrahedra
or hexahedra shapes. The shape and distribution of the elements is ideally
defined by automatic meshing algorithms.

The finite element method in recent decades has become a mainstay for
industrial engineering design and analysis. Increasingly larger and more com-
plex designs are being simulated using the finite element method. With its
increasing popularity comes the incentive to improve automatic meshing al-
gorithms.

At the inception of the finite element method, most users were satisfied
to simulate vastly simplified forms of their final design utilizing only tens or
hundreds of elements. Painstaking preprocessing was required to subdivide
domains into usable elements. Market forces have now pushed meshing tech-
nology to a point where users now expect to mesh complex domains with
thousands or millions of elements with no more interactions than the push
of a button.

Consumers of finite element technology such as aerospace and automotive
industries have immediate needs to shorten design cycles and overall time to
market. Improving the robustness, speed and quality of automatic meshers,
while only a small part of the entire process, can translate into increased
revenue and competitive advantage.

While there is certainly the incentive from a market-based perspective
to improve finite element meshing technology, opinions on the specifics of
what should be improved are diverse. Amongst users of finite element tech-
nology their has long been a debate as to what shape of element produces
the most accurate result. There is the often-held position that quadrilateral
and hexahedral shaped elements have superior performance to triangle and
tetrahedral shaped elements when comparing an equivalent number of de-
grees of freedom. Use of hex elements can also vastly reduce the number of
elements and consequently analysis and post-processing times. In addition,
hex and quadrilateral elements are more suited for non-linear analysis as well
as situations where alignment of elements is important to the physics of the
problem, such as in computational fluid dynamics or simulation of composite
materials.

The automatic mesh generation problem is that of attempting to define
a set of nodes and elements in order to best describe a geometric domain,
subject to various element size and shape criteria. Geometry is most often
composed of vertices, curves, surfaces and solids as described by a CAD or
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solids modeling package.
Many applications, use a ”bottom-up” approach to mesh generation. Ver-

tices are first meshed, followed by curves, then surfaces and finally solids. The
input for the subsequent meshing operation is the result of the previous lower
dimension meshing operation.

For example, nodes are first placed at all vertices of the geometry. Nodes
are then distributed along geometric curves. The result of the curve meshing
process provides input to a surface meshing algorithm, where a set of curves
define a closed set of surface loops. Decomposing the surface into well-shaped
triangles or quadrilaterals is the next phase of the meshing process. Finally,
if a solid model is provided as the geometric domain, a set of meshed ar-
eas defining a closed volume is provided as input to a volume mesher for
automatic formation of tetrahedra, hexahedra or mixed element types.

The journal articles referenced in this web site all are relevant to the
process of mesh generation. Although many authors will take radically dif-
ferent approaches, the ultimate goal is to provide a mesh that can be used
to solve a partial differential equation. This field is relatively new. Most of
the papers published in this area have been within the past five to ten years.
Many questions have been solved in this time, but there are still a significant
number of problems to be addressed.

Like any science, mesh generation has its jargon. Paul Heckbert has
compiled a brief glossary of words you may want to be familiar with when
viewing this web site.

”http://www.cs.cmu.edu/ ph/heckbert.html”

9.2 Classification of Mesh Generation

One of the important part in numerical electromagnetic computation is mesh
generation. A mesh is a discretization of a geometric domain into simple ele-
ments, for example a partition of a polygon into small triangles. Meshes find
use in computer graphics, geographic information systems, and finite element
methods. Although different applications have different requirements, it is
generally true that a good mesh will have small elements for detail, large
elements for efficiency, and ”nicely shaped” elements for accuracy. The first
task in numerical computation is discretization. It should mention that we
make just simple mesh for our simple computation. If you want more accrued
and sophisticated mesh see references. We have three type of discretization:
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a) volume discretization.
b) surface discretization.
c) line discretization.
It may be classified in other way:
a) One Dimensional Mesh Generation or (1D)
b) Two Dimensional Mesh Generation or (2D)
c) Three Dimensional Mesh Generation or 3DV,3DS; (3DV: meshing a

volume); (3DS: meshing the surface of a volume) Here we show some of
mesh for example.

9.3 Tools

Any work done, some instruments has been used. In our task we need
a) Personal Computer with at least 16 MB RAM, 200 MHz speed.
b) FORTRAN77 compiler
c) MATHEMATICA package
d) MATLAB package
MATLAB or MATHEMATICA will be used to show our results. So they

are used as graphical environment.
You may use other language such as Pascal or C, we prefer FORTRAN77

because you can change it other language easily. Are you ready? let us go.

9.4 1D Mesh Generation

We start with very simple and primitive problem. This type of mesh gen-
eration is not a well classical design, but is useful for our educational goal.
Suppose we have a straight line, and want to divide into N section. Each sec-
tion of the line is called an element or cell. Each element has two terminals.
We call those terminals as nodes. Each element has a common node with
adjacent element. In our computer program we usually need the coordinates
of each elements; or the distance between elements. In order to limit our
memory requirment, we define an integer array pointer NV(2,I)

NV(2,I) = array pointer(terminals of each element)
X(j), Y(j), Z(j) = coordinates of each nodes.
NP = total number of nodes.
NC = total number of cells or elements.
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For example NV(1,6) = 6 means that node number one (or in another
word first terminal) of element number six is equal to 6 and NV(2,6) = 7
means that the second terminal of element number six is 7. The first or second
X coordinates of element numbered j can be found from X(NV(1,j)),X(NV(2,j)).
Example:
We have a segment line denoted by two points: (3,7) and (-5,-4) in X-Y
plane. It is asked to divide it into 5 uniform elements. Write a FORTRAN
code that gives the coordinate of each elements.

In order to implement the described problem, a code in FORTRAN
was developed. The program was designed to calculate: NP (number of
nodes); X and Y coordinates of each node, NC(number of element). Pro-
gram LINE1D.FOR do this job. There is two subroutines in this code. One
of the important routine that we use in all of the mesh generation code is
TESTP(...). The main task of this subroutine is to check whether the pro-
duced node is previously created and marked or not. If it is new, the TESTP
accept it. The pointer ID may be 0 or 1. If it is old and periviously generated,
ID will be zero and return. Otherwise, it is new node and ID will be one.
Therefore this subroutine will accept it and fill the coordinate X,Y,(Z in 3D)
array. ID is also used for POINTER NV(j,NC), to show the terminals. In
all of our mesh generation codes we use this type of routine. You may have
better idea about mesh generation. Just do it and compare your results.

We use the MATHEMATICA to show the results. In order to show the
divisions on the line, it is better to make a file and load it in MATHEMAT-
ICA environment. As you see in LINE1D.FOR, the results is saved in file s.p
in directory c:\save\shape. It is better to make a small file in your MATH-
EMATICA directory. I assigned PLT.M name for it. By calling or in other
word loading that file, the graphic will be shown. Therefore

a) Make a file plt.m

b) Write on that file

sur:= <<c:\save\ shape\ s.p

Show[Graphics3D[sur],Boxed − > False]

c)In MATHEMATICA write <<plt.m it means that load plt.m

Notice: if the file s.p is in another directory, write your own PATH.

9.4.1 Glossary of Mesh Generation

NODE: a vertex in the mesh.
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ELEMENT : a polygonal or polyhedral piece in the mesh; most often a
triangle, quadrilateral, tetrahedron, or hexahedron

TRIANGULATION: given a set of points, connect them into a mesh of
triangles MESH GENERATION: a (typically 2-D or 3-D) domain, generate
nodes and triangulate them to create a mesh

ANISOTROPIC: not the same in all directions anisotropic mesh genera-
tion uses stretched elements; desired edge length is a function of orientation;
e.g. doesn’t strive for equilateral triangles graded mesh generation uses ele-
ments that vary in size as a function of position

STRUCTURED MESH: all elements and nodes have the same topology
(i.e. same number of neighbors)

UNSTRUCTRUCTURED MESH: elements and nodes can have different
topology; e.g. an arbitrary triangular subdivision

ADAPTIVE MESHING : iteratively regenerate mesh and solve Finite
Element problem, hopefully improving the mesh and the accuracy of the
solution on each iteration
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Figure 9.1: 3DS Mesh Generation: a missile made by triangular
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Figure 9.2: 3DS Mesh Generation: a missile made by triangular

Figure 9.3: 3DS Mesh Generation: surface made by triangular
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Figure 9.4: 3DV Mesh Generation made by tetrahedrons

Figure 9.5: 3DV Mesh Generation made by tetrahedrons
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Figure 9.6: 3DV Mesh Generation made by cubes

Figure 9.7: 3DS Mesh Generation made by triangles
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Figure 9.8: 3DV Mesh Generation made by tetrahedrons

Figure 9.9: 3DV: a cube made by 5 tetrahedrons
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Figure 9.10: 2D Mesh Generation made by triangles
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Figure 9.11: 1D Mesh Generation made by lines



Chapter 10

Finite Difference Method

” Peace cannot be kept by force. It can only be achieved by un-
derstanding.”

Albert Einstein

10.1 Introduction

Many engineering problems in electromagnetics may be formulated in terms
of partial differential equations. This may include electrostatic problems for-
mulated in terms of Laplace’s Equation ∇2Φ = 0 and Poisson’s Equation
∇2Φ = −q/ε equation respectively, and dynamic fields problems formulated
in term of Helmholtz’s Equation (∇2 + β2)E = jωJ where β is the complex
wave number, and the current source may or may not be zero. In electro-
magnetics scattering and radiation, J �= 0, and β is known. In waveguide
and cavity resonator problems, J = 0 and the β is unknown or in other word,
cutoff or resonant frequency will be unknown.

10.2 Numerical Differentiation

We can define three type approximation for first derivative

f ′(x) ≈ f(x+Δx)−f(x)
Δx

Forward Difference

f ′(x) ≈ f(x)−f(x−Δx)
Δx

Backward Difference

f ′(x) ≈ f(x+Δx)−f(x−Δx)
2Δx

Central Difference

(10.1)

293
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The Backward Difference (BD) and Forward Difference (FD) have truncation
error of O(Δx) and Central Difference (CD) has truncation error of O(Δx)2

(why ?)

10.3 Numerical Differentiation Formula

For simplicity, we use new notation: x = iΔx therefore Eq.(10.1) will be in
this form

f ′(x) ≈ fi+1−fi
Δx

Forward Difference

f ′(x) ≈ fi−fi−1

Δx
Backward Difference

f ′(x) ≈ fi+1−fi−1

2Δx
Central Difference

(10.2)

f ′(x) ≈ −fi+2 + 8fi+1 − 8fi−1 + fi−2

12Δx
+O(Δx)2 (10.3)

f ′(x) ≈ 9

8

fi+1/2 − fi−1/2

Δx
− 1

24

fi+3/2 − fi−3/2

Δx
+O(Δx)4 (10.4)

f ′′(x) ≈ fi+1 − 2fi + fi−1

(Δx)2
+O(Δx)2 (10.5)

f ′′(x) ≈ fi+2 − 2fi+1 + fi
(Δx)2

+O(Δx)2 (10.6)

f ′′(x) ≈ fi − 2fi−1 + fi−2

(Δx)2
+O(Δx)2 (10.7)

f ′′(x) ≈ −fi+2 + 16fi+1 − 30fi + 16fi−1 − fi−2

12(Δx)2
+O(Δx)4 (10.8)

In the following Δx = Δy = h

∂2f(x, y)

∂x2
≈ 1

3h2
(fi+1,j+1 − 2fi,j+1 + fi−1,j+1 + fi+1,j − 2fi,j + fi−1,j

+fi+1,j−1 − 2fi,j−1 + fi−1,j−1) +O(h2) (10.9)

∂2f(x, y)

∂x∂y
≈ 1

4h2
(fi+1,j+1 − fi+1,j−1 − fi−1,j+1 + fi−1,j−1) +O(h2) (10.10)
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∂2f(x, y)

∂x∂y
≈ −1

2h2
(fi+1,j + fi−1,j + fi,j+1 + fi,j−1

−2fi,j − fi+1,j+1 − fi−1,j−1) +O(h2) (10.11)

∂2f(x, y)

∂x4
≈ 1

h4
(fi+2,j − 4fi+1,j + 6fi,j − 4fi−1,j + 2fi−2,j) +O(h2) (10.12)

∂4f(x, y)

∂x2∂y2
≈ 1

h4
(fi+1,j+1 + fi−1,j+1 + fi+1,j−1 + fi−1,j−1 − 2fi+1,j

−2fi−1,j − fi,j+1 − 2fi,j−1 + 4fi,j) +O(h2) (10.13)

Figure 10.1: Equal Mesh Arms

∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
≈ 1

h2
(fi+1,j + fi,j+1 + fi−1,j + fi,j−1 − 4fi,j) +O(h2)

(10.14)

by using Laplacian notation ∂2f(x,y)
∂x2

+ ∂2f(x,y)
∂y2

= ∇2f(x, y)

∇2f(x, y) ≈ 1

12h2
{−60fi,j + 16(fi,j+1 + fi−1,j + fi,j−1)

−(fi+2,j + fi,j+2 + fi−2,j + fi,j−2)}+O(h4) (10.15)
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• Unequal Mesh Arms

In certain applications, the boundary of the domain of interest, in which a
solution for V is desired, does not fit the regular mesh structure required
by equal arm five point cell formula. In this case, a very fine mesh may
be utilized to minimize distortion of the shape of the boundary or different
finite difference formula for five point cell with unequal arms should be used.
Fig.(10.2).

Figure 10.2: Unequal Mesh Arms

Vi,j ≈ Vi+1,j

(1 + h1
h3
)(1 + h1h3

h4h2
)
+

Vi,j+1

(1 + h2
h4
)(1 + h2h4

h1h3
)
+

Vi−1,j

(1 + h3
h1
)(1 + h3h1

h2h4
)
+

Vi,j−1

(1 + h4
h2
)(1 + h4h2

h3h1
)

(10.16)

• FD in Cylindrical Coordinates

Laplace’s equation in cylindrical coordinates can be written as

∇2V =
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
+

1

ρ2
∂2V

∂φ2
+
∂2V

∂z2
(10.17)

Let us assume two dimension Laplace’s equation z = constant

∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
+

1

ρ2
∂2V

∂φ2
= 0 (10.18)
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with φ = jδφ, (j = 0, 1, 2, · · · ), and r = ih, (i = 1, 2, · · · ) we will have

Vi+1,j − 2Vi,j + Vi−1,j

h2
+

1

ih

Vi+1,j − Vi−1,j

2h

+
1

(ih)2
Vi,j+1 − 2Vi,j + Vi,j−1

(δφ)2
= 0 (10.19)

we can rearrange it

(1− 1

2i
)Vi−1,j + (1 +

1

2i
)Vi+1,j − 2

[
1 +

1

(iδφ)2

]
Vi,j

+
1

(iδφ)2
Vi,j−1 +

1

(iδφ)2
Vi,j+1 = 0 (10.20)

10.4 FD and Boundary Conditions

In EM problems we generally face with boundary, so we should implement
boundary condition in our computation and simulation. There are three type
of boundary condition:
Dirichlet Boundary Condition where ψ is given at the boundary
Neumann Boundary Condition where ∂ψ

∂n
is specified at the boundary

In order to program Neumann boundary condition, ADD an extra row of
points outside of the boundary ψn+1, and solve for them using ψn+1 =

∂ψ
∂n

+

ψn−1 which the term ∂ψ
∂n

is known, Fig.(10.3). In electrostatic we have

Figure 10.3: Neumann Boundary Condition
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∂V

∂n
= ∇V · n

E = −∇V (10.21)

and the third type is combination of Neumann and Dirichlet boundary con-
dition which is called Mixed Boundary Condition.

10.4.1 Symmetry

Let us look at the case shown in Fig.(10.4). The line ab is symmetric line.
The node (i, j) lies on symmetric line. Due to symmetry fictitious node
i+ 1, j is placed on the symmetric position of point (i− 1, j), in such a way

that ψ(i − 1, j) = ψ(i+ 1, j), therefore for ∂2ψ(x,y)
∂x2

+ ∂2ψ(x,y)
∂y2

= F (x, y) with
h = Δx = Δy

Figure 10.4: Symmetry Conditions

ψ(i, j) =
1

4

(
2ψ(i− 1, j) + ψ(i, j + 1) + ψ(i, j − 1)− h2F (i, j)

)
(10.22)

If the line of symmetry is diagonal as shown in Fig.(10.4), then

ψ(i, j) =
1

4

[
2ψ(i− 1, j) + 2ψ(i, j − 1)− h2F (i, j)

]
(10.23)
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Figure 10.5: Dielectric Boundary Condition

10.4.2 Dielectric Boundary Condition

Suppose we have two media with dielectric permittivity ε1 and ε2, Fig.(10.5).
And we want to apply Laplace or Poisson’s equation. What should we do at
the interface of two media? From Gauss’s law we have∮

s

D(r, t) · dS =

∫
v

ρ(r, t)dV∫
v

∇ ·DdV =

∫
v

ρdV (10.24)

According to Fig.(10.5) we can rewrite Eq.(10.24) as

∮
c

D · dL =

∮
c

εE · dL = Qenc = 0 (10.25)

At the interface we don’t have free charge. In static case we have E = −∇V
and substituting in Eq.(10.25) gives

∮
c

ε∇V · dL =

∮
c

ε
∂V

∂n
dl = Qenc = 0 (10.26)
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where ∂V
∂n

shows the derivative of V normal to the contour c. According to
Fig.(10.5) and Eq.(10.26) we will have∮

c

ε
∂V

∂n
dl = (

Vi,j+1 − Vi,j
h

)hε1 + (
Vi,j−1 − Vi,j

h
)hε2 +

(
Vi+1,j − Vi,j

h
)(
h

2
ε1 +

h

2
ε2) + (

Vi−1,j − Vi,j
h

)(
h

2
ε1 +

h

2
ε2) = 0(10.27)

Rearranging terms and dividing by ε0 :

εr1Vi,j+1 + εr2Vi,j−1 +
εr1 + εr2

2
Vi−1,j +

εr1 + εr2
2

Vi+1,j − 4
εr1 + εr2

2
Vi,j = 0 (10.28)

or

Vi,j =
εr1

2(εr1 + εr2)
Vi,j+1 +

εr2
2(εr1 + εr2)

Vi,j−1 +
1

4
Vi−1,j +

1

4
Vi+1,j (10.29)

The values are averaged at interfaces. This is not surprising, but we did not
originally assume averaging. If εr1 = εr2 we will have the same equation as
before.

10.5 Laplace Equation and Finite Difference

Method

Application of numerical differentiation can be used for Laplace and Poisson’s
Equation. Consider the Laplace equation in two dimension:

∂2V (x, y)

∂x2
+
∂2V (x, y)

∂y2
= 0 (10.30)

in rectangular domain described by x and y, we discretize the domain of
our problem and use 5-point computational molecules or Equal Arm Star,
Fig10.1, Δx = Δy = h we will have

∇2V (x, y) ≈ 1

h2
(Vi+1,j + Vi,j+1 + Vi−1,j + Vi,j−1 − 4Vi,j) (10.31)
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• Example

Suppose we have a 3cm× 4cm rectangle subject to the boundary conditions:

V (0, y) = 10 volts

V (4, y) = 0 volts

V (x, 0) = 20 volts

V (x, 3) = 40 volts (10.32)

let us lay out coarse mesh; Fig.(10.1) and h = 1 Applying difference equation
at each node 1 · · ·6 we will have;
V (I − 1, J)− 4V (I, J) + V (I + 1, J) + V (I, J − 1) + V (I, J + 1) = 0

− 4V1 + 10 + V3 + 40 + V2 = 0

−4V2 + 20 + V1 + 20 + V4 = 0

−4V3 + 40 + V1 + V4 + V5 = 0

−4V4 + 20 + V2 + V3 + V6 = 0

−4V5 + 40 + V3 + V6 + 0.0 = 0

−4V6 + 20 + V4 + V5 + 0.0 = 0 (10.33)

or in matrix form⎡⎢⎢⎢⎢⎢⎢⎣
−4 1 1 0 0 0
1 −4 0 1 0 0
1 0 −4 1 1 0
0 1 1 −4 0 1
0 0 1 0 −4 1
0 0 0 1 1 −4

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
V1
V2
V3
V4
V5
V6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
−50
−30
−40
−20
−40
−20

⎤⎥⎥⎥⎥⎥⎥⎦ (10.34)

10.6 Solution Methods of Difference Equa-

tion

There are two main methods for solving the system of equation:
a) Direct Method (Band Matrix Method)
b) Iterative Method
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Figure 10.6: Application of Laplace’s Equation

10.6.1 Band Matrix Method

Provided the boundary conditions are linear, as we got, the resulting system
of equations may be written as

A ·X = B (10.35)

The structure of the system ensures A is relatively sparse matrix, and X is
column vector: values of free nodes (unknown) and B is also column vector
(known). By using Gauss elimination method or LU Decomposition we can
find the unknowns. Careful choice of the order the matrix element may help
reduce the size of this matrix.
Because of the wide spread need to solve Laplace’s Equations, specialist
solvers have been developed for this problem. One of the best of these is
Hockney’s method. For more information you can see literatures. For the
above example, code is written and Gauss elimination is used so the result
would be

V1 = 23.56108 volts

V2 = 18.34369 volts

V3 = 25.90062 volts

V4 = 19.81366 volts

V5 = 20.22774 volts

V6 = 15.01035 volts (10.36)
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10.6.2 Iterative Methods

An alternative to direct solution of finite difference equation is an iterative
numerical solution. These iterative methods are often referred to as relax-
ation methods as an initial gauss at the solution is allowed to relax towards
the true solution, reducing the error as it dose so. There are a variety of
approaches with differing complexity and speed:
a) Jacobi
b) Gauss-Seidel
c) Successive Over Relaxation (SOR)

• Jacobi

The Jacobi is the simplest type of relaxation method. Let us consider the
special case when Δx = Δy. To find the solution for a 2D Laplace equation,
we use the following algorithm:
1) Initialize some value for V k

i,j (Initial Guess).
2) Apply the boundary conditions.
3) For each internal mesh point set

V
(k+1)
i,j = (V

(k)
i+1,j + V

(k)
i−1,j + V

(k)
i,j+1 + V

(k)
i,j−1)/4 (10.37)

4) Replace old solution V
(k)
i,j with new V

(k+1)
i,j .

5) If solution dose not satisfy tolerance, repeat from step 2.

• Gauss-Seidel

The Gauss-Seidel Iteration is very similar to Jacobi Iteration, the only differ-
ence being that the new estimate V

(k+1)
i,j is returned to solution V

(k)
i,j as soon

as it is completed, allowing it to be used immediately rather than deferring
its use to the next iteration. The advantages of this are:
a) Less memory required (there is no need to store V

(k+1)
i,j )

b) Faster convergence

• Successive over relaxation (SOR)

Suppose we want to solve A ·X = B. We can write A = I−C, therefore

(I−C) ·X = B ⇒ X = (I−C)−1 ·B (10.38)
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or
X = (I−C)−1B = (I+C+C2 +C3 + · · ·) ·B (10.39)

If we look carefully to Eq.(10.39); it tell us that we can get the result by
iteration. Therefore

X(k+1) = C ·X(k) +B (10.40)

provided that iteration be convergence. Now let us find the condition of
convergence. From mathematical view point the Eq.(10.40) is

X =
∞∑
n=0

Cn ·B = (I+C+C2 +C3 + · · · ) ·B (10.41)

This iteration converge if and only if that the absolute value of greatest
eigenvalue of matrix C be less than one. This can be estimated very easily
by finding greatest eigenvalue of matrix C by power method.
It may be the greatest eigenvalue of the matrix C be nearly one. In this
case the iterative method will be slow and time consuming. Is there any
rule that can be apply in order to increase the speed and get the result?
Yes, Mathematician tell us that we can do something. This method is called
Over-Relaxation. First, Instead of relation Xk+1 = C · X(k) + B we use
U(k+1) = C ·X(k) +B then the value of U(k+1) −X(k) will be multiply by ω
and will be added to X(k) therefore

X(k+1) = X(k) + ω(U(k+1) −X(k)) (10.42)

where ω is called Over Relaxation Factor and is greater than one. If ω is less
than one, it is called Under Relaxation Factor. Usually 1 < ω < 2 can be
determined by trial and error. So

X(k+1) = [I− ω(I−C)] ·X(k) + ωB (10.43)

X(k+1) = [I− ωA] ·X(k) + ωB (10.44)

If {λi} be the eigenvalues of matrix C, then the eigenvalues of C′ = I −
ω(I−C) will be {1− ω(1− λi)}.
To apply the method of SOR:
a) define residual R(k) at node Vi,j at k iteration

R = Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j (10.45)
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b) use iteration with relaxation factor ω

V
(k+1)
i,j = V

(k)
i,j +

ω

4
R(k) (10.46)

or simply

V
(k+1)
i,j = (1− ω)V

(k)
i,j +

ω

4
(V

(k)
i+1,j + V

(k)
i−1,j + V

(k)
i,j+1 + V

(k)
i,j−1) (10.47)

In rectangular shape region the optimum over relaxation factor is given by:

t = cos(
π

Nx
) + cos(

π

Ny
)

ω =
8−√

64− 16t2

t2
(10.48)

In the case of multiple dielectric, Fig.(10.5)

εr1Vi,j+1 + εr2Vi,j−1 + (
εr1 + εr2

2
)Vi−1,j + (

εr1 + εr2
2

)Vi+1,j

−4(
εr1 + εr2

2
)Vi,j = −ρvh

2

2ε0
(10.49)

perfect dielectric have no free charges, so ρv = 0. Now we can use SOR

R
(k)
i,j = (

2εr1
εr1 + εr2

)V
(k)
i,j+1 + (

2εr1
εr1 + εr2

)V
(k)
i,j−1 + V

(k)
i+1,j + V

(k)
i−1,j

−4V
(k)
i,j +

ρv
ε0(εr1 + εr2)

(10.50)

V
(k+1)
i,j = V

(k)
i,j +

ω

4
R

(k)
i,j (10.51)

10.7 Application of Finite Difference

Where there is a differential equation, in most cases FD method is applicable.
So in EM problem.
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10.7.1 Microstrip Transmission Line

The formulated difference equation with its special case described in the pre-
vious section may be applied to variety of engineering problems. Fig.(10.7)
was actually produced from paper [1] where the authors used a variational
technique to calculate the characteristic impedance and velocity of propaga-
tion in microstrips or partially filled coaxial transmission lines. In this kind of
general problem, the student will use difference equations, developed for both
equal and unequal arms, at an interface between difference dielectrics, and
may even utilize derivative boundary condition if symmetry is considered in
the solution. For simplicity, the microstrip structures with open boundaries
may be treated with Dirichlet boundary conditions at artificial boundaries
placed sufficiently far. Clearly, there is a tradeoff for how far such boundary
should be. Through several trial, students will quickly learn that excessively
far boundaries require very large matrices when a mesh or reasonable size is
used while very close boundaries are inaccurate unless a reasonable value of
V (instead of the assumed zero value) is known on these boundaries(which
is not the case). Hence, a sufficiently far boundary to justify the assumption
of V = 0 on it while maintaining a reasonably size matrix is desired. The

Figure 10.7: Transmission Line

only remaining question to be expected from students is how to relate cal-
culated values of the node potential to the engineering quantities of interest,
such as the characteristic impedance Z0 and the velocity of propagation Vp
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in the guiding structures of Fig.(10.7). Assuming TEM mode of propagation
in these structures, these values are given by

Vp =
1√
LC

, Z0 =

√
L

C
(10.52)

where L and C are the inductance and capacitance per unit length, respec-
tively. If the dielectric loading is assumed to have no effect on value of L,
then

Z0 =

√
LC0√
CC0

=
1

V0
√
CC0

(10.53)

Vp =
1√
LC

= V0

√
C0

C
(10.54)

where V0 =
1√
LC0

≈ 3× 108m/s.
C0 = Capacitance per unit length of transmission line without dielectric.
C = Capacitance per unit length of transmission line with dielectric.
Calculations of capacitance from the obtained potential distribution may be
done through Gauss’s law: hence,

C =
q

V

q =

∮
s

εE · dS = −
∮
c

ε∇ψ · dC = −
∮
c

ε
dψ

dn
dc (10.55)

where the two-dimensional closed surface S in Eq.(10.55) was replaced by the
closed contour C. This results in a charge q in columbus per unit length. Eval-
uating Eq.(10.55) by utilizing the discrete node values of V (see Fig.(10.8)
and using numerical differentiation and integration:

dψ

dn
= (ψn+1 + ψn)/dn (10.56)

trapezoidal integration = h[f(a)/2 + f(b)/2 +
∑

(f)]:

dV

dn
=

(Vj,2 − Vj,1)

hx
(10.57)
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Figure 10.8: Transmission Line

∮
c1

ε
∂ψ

∂n
· dl1 = hy

{
ε1[
ψ21 − ψ11

hx
+
ψ22 − ψ12

hx
+
ψ23 − ψ13

hx
]

+(
ε1 + ε2

2
)[
ψ24 − ψ14

hx
]

+ ε2[
ψ25 − ψ15

hx
+
ψ26 − ψ16

hx
]

}
(10.58)

where V0 is the initially assumed potential difference between the center con-
ductor and the ground.
The procedure in Eq.(10.58) is then repeated with the transmission line com-
pletely field with air. (i.e., the dielectric is removed) to calculate C0. Values
of C and C0 are used to calculate the characteristic impedance Z0 and the
velocity of propagation as given in Eq.(10.52).

10.8 Application to Eigenvalue Problems

In the previous section, attention was focused on solving partial differential
equations where the scalar function ψ was the only unknown. In eigenvalue
problems, including Helmholtz equations (∇2 + β2)ψ = 0, ψ is not the only
unknown, but instead both β and ψ are to be determined. For each value of
the eigenvalue βi there is a solution for ψi that represents the corresponding
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eigenfunction. In waveguide problems, for example, there is a ψi distribution
(field configuration of a propagating mode) for each value of the cutoff wave
number βi. In cavity resonator βi gives the resonant frequency of cavity
and ψi field configuration inside cavity. In such problems, by discretizing the
cross section of the waveguide or cavity by suitable square mesh and applying
the finite difference representation of the Helmholtz equation at each node,
we obtain the following matrix equation

(A− λI)Ψ = 0 (10.59)

where A is the coefficient matrix that results from applying the difference
equation at each node, λ = (4 − h2β2) is the unknown eigenvalues, and I
is identity matrix. In Eq.(10.59), both the eigenvalue λ and the eigenvector
Ψ are unknowns and must be determined. There are several ways of deter-
mining λ’s and the corresponding value of ψ’s. The following is summary of
these options:
1) First, Eq.(10.59) can be satisfied only if det[A−λI] = 0. Hence calculating
det[A−λI] = 0 will result in a polynomial in λ, which can then be solved for
the various eigenvalues λ’s. For each of these eigenvalues, the corresponding
eigenfunction Ψ may be obtain from Eq.(10.59).
2) The second alternative is to use the power method for solving eigenvalue
problems. In this iterative method we search for an eigenfunction Ψ that
satisfies the following equation:

AΨ = λΨ (10.60)

i.e., when A is multiplied by Ψ, the result will be constant multiplied by
the same Ψ. Hence, the iterative procedure starts by assuming the vector
Ψ (contains the value of ψ at the various nodes) and through the repeated
multiplications of Ψ with A, the solution will converge to a vector Ψ that
satisfies Eq.(10.60) multiplied by λm where m is the number of repeated
multiplications needed for the solution to converge. Detailed examination
of this method will prove its convergence for an arbitrary choice of the ini-
tial assumption of the vector Ψ as described elsewhere. The power method,
however, provides the eigenvector Ψ with largest eigenvalue λ. Since, in
waveguide problems we are interested in solution with the smallest eigen-
value, i.e., modes of lowest cutoff frequencies, the power method should be
applied on A−1, the inverse of matrix A. From Eq.(10.60)we have

A−1AΨ = λA−1Ψ (10.61)
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and since A−1A = I we obtain

A−1Ψ =
1

λ
Ψ (10.62)

Hence, applying the power method on A−1 results in the Ψ solution with
largest value which corresponds to the smallest eigenvalue λ.

3) The other available option is to use is to use the double iterative
procedure based on Liebmann’s method. The iterative procedure starts with
assuming a value for the eigenvalue λ = 4− h2β2. The potential ψk−1

i,j at the
(i, j)th mode in the (k − 1)th iteration is obtained from its known value in
the (k)th iteration by

ψ
(k+1)
i,j = ψ

(k)
i,j +

ωRi,j

(4− h2β2)
(10.63)

where ω is the acceleration factor 1 < ω < 2 that may be used to speed
up the convergence of the solution and Ri,j is the residual at (i, j)th node
calculated from

Ri,j = ψi,j+1 + ψi,j−1 + ψi+1,j + ψi−1,j − (4− h2β2)ψi,j. (10.64)

After a few iterations using Eq.(10.63) to improve the initial assumption for
the ψ’s values, the value of the eigenvalue λ = 4 − h2β2 should be updated
using Rayleigh formula

β2 =

∫ ∫
s
ψ∇2ψds∫ ∫
s
ψ2ds

(10.65)

Replacing ∇2ψ in Eq.(10.65) by its difference equation and carrying out the
integration in Eq.(10.65) using the discrete values of ψ, we obtain

β2 =

N∑
i=1

M∑
j=1

ψi,j [ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j]

h2
N∑
i=1

M∑
j=1

ψ2
i,j

(10.66)

where the summation is carried out over all points in the domain of interest.
The iteration procedure involves carrying out Eq.(10.63) for a few iterations
and then updating the eigenvalue using Eq.(10.66). The ψ distribution from
Eq.(10.63) should continue until convergent solution is obtained.
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• 1D Cavity Resonator

Let us find the resonant frequency of one simple cavity resonator by FD
method. Suppose we have two parallel perfect conducting plate, separated
by distance d. The resonant frequency of such one dimensional cavity ana-
lytically can be found by wave equation and boundary conditions. Fig.(10.9)

Figure 10.9:

Ex = Ae−jβz +Bejβz

Hy =
Ae−jβz −Bejβz

η
(10.67)

applying boundary condition; Ex = 0 at z = 0 and z = d, we will have
−2jA sin βd = 0 which gives the resonant frequency of 1D cavity resonator

fr =
m

2d
√
με

m = 1, 2, · · · (10.68)

Now let us find the resonant frequency by using Eq.(10.8).

16(ψi+1 + ψi−1)− (ψi+2 + ψi−2)− (30− 12h2β2)ψi = 0 (10.69)
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according to Fig.(10.9) we will have four linear equations, where λ = (30 −
12h2β2) and ψ = Ex

− λψ2 + 16ψ3 − ψ4 = 0

16ψ2 − λψ3 + 16ψ4 − ψ5 = 0

−ψ2 + 16ψ3 − λψ4 + 16ψ5 = 0

−ψ3 + 16ψ4 − λψ5 = 0 (10.70)

In matrix form ⎡⎢⎢⎣
−λ 16 −1 0
16 −λ 16 −1
−1 16 −λ 16
0 −1 16 −λ

⎤⎥⎥⎦
⎡⎢⎢⎣
ψ2

ψ3

ψ4

ψ5

⎤⎥⎥⎦ = 0 (10.71)

this matrix, Eq.(10.71) will give us the following eigenvalues
λ ≈ −9.0, 25.0,−26.788, 10.788

If d=3 centimeter, from relation fr =
C
2πh

√
30−λ
12

we will find

fr ≈ 5.136, 10.07, 14.34, 17.31[GHz].
The three modes of this type of cavity is plotted in Fig.(10.10).
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Figure 10.10: Modes of 1D cavity Resonator
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• FD Frequency Domain Method Applied to Waveguide

As we have seen finite difference frequency domain method has been used to
solve Laplace’s and Poisson’s equation. This can also be used to evaluate the
scalar wave equation ( Helmholtz Equation). Consider a waveguide, uniform
along the z direction, with an arbitrarily shape cross section located in x-y
plane. Let the waveguide be loaded homogeneously with isotropic lossless
material. Assume that modes vary as ej(ωt−βzz) where βz is propagation
constant (rad/sec).
All TE and TM mode fields may be derived from the scalar potential function
which satisfies the two dimensional Helmholtz equation

∇2
tψ + β2

cψ = 0

ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − (4− h2β2
c )ψi,j = 0 (10.72)

where ψ may be ψ = Ez for TM modes and ψ = Hz for TE modes and βc is
cutoff wave number. For any given mode these constants are related through

β2
z = ω2με− β2

c (10.73)

In rectangular waveguide we have:

βz =

√
ω2με− (

mπ

a
)
2 − (

nπ

b
)
2

(10.74)

where a&b are sides of rectangular waveguide and μ, ε are respectively, the
permeability and permittivity of isotropic medium filling the guide. Waveg-
uides have different modes. Multiple modes can exist in a waveguide at a
given time. The higher the frequency, the more modes can propagate. A
waveguide’s mode is determined by two things:
a) The frequency
b) The feed system
For TE Mode case m = 0, 1, 2 · · · and n = 0, 1, 2, · · · and for TM Mode case
m = 1, 2, 3 · · · and n = 1, 2, 3 · · · . When βz = 0 we can find cut off frequency
of waveguides.

The field distribution in the waveguide can often be found as an analytical
solution of the Helmholtz equation applying the boundary conditions. But
if it cannot be found analytically, FD frequency domain is good method for
such cases.
The potential function is subject to certain boundary conditions. For TM
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modes ψ = Ez = 0 at a perfectly conducting surface. This is Dirichlet
condition. For TE modes the Hz is tangential to the boundaries, hence Etan
should be zero at boundaries, therefore the Neumann boundary condition is
that ∂Hz

∂n
= 0 along such a surface.

Once solution of Eq.(10.72) are obtained subject to boundary conditions, the
electric and magnetic fields may be derived from the following equations:

TM modes: Et = −jβz
β2
c

∇tEz

Ht = −jωε
β2
c

az ×∇tEz

Hz = 0

TE modes: Ht = −jβz
β2
c

∇tEz

Et =
jωμ

β2
c

az ×∇tEz

Ez = 0 (10.75)

The steps to apply the FD method to Helmholtz Equation:
1. Divide the cross section of waveguide (x-y) plane into mesh
2. Apply 5-point difference formula Eq.(10.72).

• Band Matrix Method

To apply the FD method, we discretize the cross section of the waveguide by
suitable square mesh.

ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − (4− h2β2
c )ψi,j = 0 (10.76)

By applying Eq.(10.76) to all mesh nodes and using proper boundary condi-
tion, we will face with eigenvalue problem of the form:

(A− λI)ψ = 0 (10.77)

where A is a band matrix and λ = (4−h2β2
c ) is the eigenvalues of matrix A.

We may use power method to find the cutoff frequency of waveguide. This
method is memory consuming and accuracy deteriorates rapidly for higher
modes.
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• Derive SOR

Ri,j =
ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − (4− h2β2

z )ψi,j
(4− h2β2

c )
(10.78)

ψ
(k+1)
i,j = ψ

(k)
i,j + ωR(k) (10.79)

We GUESS βz, and iterate 3 or 4 times, then apply the Rayleigh formula to
find βz:

β2
c =

∫
s
ψ∇2ψdS∫
s
ψ2dS

(10.80)

In FD format

β2
c =

∑
i=1

∑
j=1

ψi,j[ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j ]

h2
∑
i=1

∑
j=1

ψ2
i,j

(10.81)

use this new value of βc and continue updating ψ.

10.9 Finite Difference Time Domain

The finite difference time domain (FDTD) method is one of the most widely
used computational methods in electromagnetics. There are a number of
reasons for this:
It is easy to understand, easy to implement in software, and since it is a time-
domain technique it can cover a wide frequency range with a single simulation
run. The FDTD method belongs in the general class of differential time do-
main numerical modeling method. Using FDTD Maxwell’s equations are
solved directly in time domain via finite difference and time stepping. The
basic approach is relatively easy to understand and is an alternative to the
more usual frequency-domain approaches.

• How does FDTD work?

When Maxwell’s differential form equations are examined, it can be seen that
the time derivative of the E field is dependent on the curl of H field. This
can be simplified to state that the change in the E (the time derivative) is
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dependent on the change in the H field across space( the Curl). This results
in the basic FDTD equation that the new value of the E field is dependent
on the old value of E field (hence the difference in time) and the difference
in the old value of the H field on either side of the E field point in space.
Naturally this is a simple description, which has omitted constants, etc. But
the overall effect is as described.
The H field is found in the same manner. The new value of H field is
dependent on the old value of the H field(hence the difference in time), and
also dependent on the difference in the E on either side of the H field point.
This description holds true for 1D,2D and 3D FDTD techniques. When
multiple dimension are considered, the difference in space must be considered
in all appropriate dimensions.

• Using FDTD

In order to use FDTD a computational domain must be established. The
computational domain is simply the ”space”where the simulation will be per-
formed. The E and H fields will be determined at every point within the
computational domain. The material of each cell within the computational
domain must be specified. Typically, the material will be either free space
(air), metal (perfect electrical conductor(PEC)), or dielectric, any material
can be used, as the permeability, permittivity, and conductivity can be spec-
ified.
Once the computational domain and the grid material is established, a source
is specified. The source can be an impinging plane wave, a current on a wire,
or an electric field between metal plates (basically a voltage between the two
plates), depending on the type of situation to be modeled.
Since the E and H fields are determined directly, the output of the simu-
lation is usually the E or H field at a point or a series of point within the
computational domain.

• What are the strengths of the FDTD Technique?

Every modeling technique has some strengths and some weaknesses. some
types of models were a given technique will excel and some types of models
were the same technique will have difficulty (if it is even possible to use)
performing rapidly and accurately.
FDTD is a very versatile modeling technique. It is a very intuitive technique,
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sources can easily understand how to use it, and know what to expect from
a given model.
FDTD is a time domain technique, and when a time domain pulse (such
as Gaussian pulse) is used as a source pulse, then a wide frequency range
is solved with only one simulation. This is extremely useful in applications
where resonant frequencies are not known exactly, or anytime that a broad-
band result is desired.
Since FDTD is a time domain technique which finds the E,H fields every-
where in the computational domain, it lends itself to providing animation
displays (movies) of the E,H filed movement throughout the model. This
type display is extremely useful to understanding exactly what is going on
the model, and help insure that the model is working correctly.
FDTD allows user to specify the material at all points within the computa-
tional domain. All materials are possible and dielectrics, magnetic material,
etc, can be simply modeled without the need to resort to ’work arounds’ or
’tricks’ to model these materials.
FDTD allows the effects of apertures to be determined directly. Shielding
effects can be found, and the fields both inside and outside a the structure
can be found directly.
FDTD provides the E and H fields directly. Since most EMI/EMC modeling
application are interested in the E,H fields, it is best that no conversions
must be made after the simulation has run to get these values.
Since the computational domain must end at some point (or we would be
modeling the entire universe !) a boundary must be established. FDTD has
a number of good absorbing boundary condition to chose from ( and some
that not quite so good). The absorbing boundary condition (ABC) simulates
the effect of free space beyond the boundary forever.

•What are the weaknesses of FDTD Technique?

Since FDTD requires that the entire computational domain be grided, and
these grids must be small compared to the smallest wavelength and smaller
than the smallest feature in the model, very large computational domain can
be developed, which result in very long solution times. Model with long, thin
features, (like wires) are difficult to model in FDTD because of the exces-
sively large computational domain required.
FDTD finds the E and H fields directly everywhere in the computational
domain. If the field values at some distance (like 10 meter away) are desired,
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it is likely that this distance will force the computational domain to be ex-
cessively large. Far field extensions are available for FDTD, but require some
amount of post processing.

10.9.1 One-Dimensional FDTD Formulation

In order to reduce the complexity of programming and display FDTD com-
putation, we formulate the difference equation in one dimension. We assume
that E and H are depend on time t and space z ie. E(z, t) and H(z, t),
therefore from Maxwell’s Equation for source free region lossy medium but
nonhomogeneous, we have

∂Ex
∂t

= − 1

ε(z)
[
∂Hy

∂z
− σ(z)Ex]

∂Hy

∂t
= − 1

μ(z)

∂Ex
∂z

(10.82)

Now let us use finite difference method instead of a direct analytical which
is usually done. Since the two equations are valid for every values of z and t,
we assume that Ex&Hy are continuous with respect to time and space. Let
t = nΔt and z = iΔz and following Yee’s notation

∂Ex(z, t)

∂t
� Ex[iΔz, (n + 1)Δt]−Ex[iΔz, nΔt]

Δt
=
En+1
x (i)− En

x (i)

Δt
(10.83)

∂Hy(z +
Δz
2
, t)

∂t
�

Hy[(i+ 1/2)Δz, (n + 1/2)Δt]−Hy[(i+ 1/2)Δz, (n− 1/2)Δt]

Δt
=

H
n+1/2
y (i+ 1/2)−H

n−1/2
y (i+ 1/2)

Δt
(10.84)

∂Ex(z, t)

∂z
� Ex[(i+ 1)Δz, nΔt] −Ex[iΔz, nΔt]

Δz

=
En
x (i+ 1)− En

x (i)

Δz
(10.85)
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∂Hy(z, t)

∂z
� Hy[(i+ 1/2)Δz, (n+ 1/2)Δt]−Hy[(i− 1/2)Δz, (n + 1/2)Δt]

Δz

=
H
n+1/2
y (i+ 1/2)−H

n+1/2
y (i− 1/2)

Δz
(10.86)

Using this type of notation, we can write Eq.(10.82) in finite difference ap-
proximations:

H
n+1/2
y (i+ 1/2)−H

n−1/2
y (i+ 1/2)

Δt
=

− 1

μ(i+ 1/2)

En
x (i+ 1)−En

x (i)

Δz
(10.87)

or simply

Hn+1/2
y (i+ 1/2) = Hn−1/2

y (i+ 1/2)−R[En
x (i+ 1)−En

x (i)] (10.88)

where R = Δt
μ(i+1/2)Δz

. We do the same job to the other equation

En+1
x (i)− En

x (i)

Δt
= − 1

ε(i)
[Hn+1/2

y (i+ 1/2)

−Hn+1/2
y (i− 1/2)]/Δz − σ(i)

ε(i)
En+1/2
x (i) (10.89)

the term E
n+1/2
x (i) can be treated to be an average over time increments

(i+1) and i;

En+1/2
x (i) =

En+1
x (i) + En

x (i)

2
(10.90)

Now rewriting it with new parameters we will have

En+1
x (i) = CaE

n
x (i)− Cb[H

n+1/2
y (i+ 1/2)−Hn+1/2

y (i− 1/2)] (10.91)

where

Ca =
2ε(i)− σ(i)Δt

2ε(i) + σ(i)Δt
(10.92)

Cb =
2Δt
Δz

2ε(i) + σ(i)Δt
(10.93)
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Equation Eq.(10.88) and Eq.(10.91) are useful for solution by iteration of
each equation alternatively, or in another word time stepping algorithms for
calculation of electric and magnetic field components. The update new value
of a field component at any layer points (or cell) depends only on its value
in the previous time step and the previous values of the components of the
other field at the adjacent spatial points. Hence, at any given time step, the
computation of a field component will proceed one point at a time.
The finite difference time domain numerical approach just discussed is quite
useful for studying one dimensional time dependent electric and magnetic
fields. The medium can have any conductivity, permittivity and perme-
ability characteristics. Even the case of a one dimensional inhomogeneous
medium, in the form of layered medium, can be conveniently modeled by
just specifying medium parameters at appropriate spatial points. In this ap-
proach, there is no restriction on the selection of the type of time dependent
excitation. One can discuss different pulse shapes relative to their frequency
content.

10.9.2 Excitation pulse

In a transient analysis one is generally interested in determining the scattered
response over a particular bandwidth of interest. To do this the input source
must incorporate all of the frequencies of interest. This can be achieved by
using a pulsed source, as opposed to a sinusoidal source. Generally there are
two types of input pulses used in the FDTD, the first is a raised cosine, and
the second is a Gaussian pulse.
♣ Raised Cosine Pulse
A raised cosine pulse consists of a single cycle of a cosine wave :

Ei(t) =

⎧⎨⎩
1− cos(2πFmaxt), if 0 < t < 1/Fmax

0 elsewhere.
(10.94)

We can define the impulse width as that where the function value is half its
maximum, thus the width of a raised cosine is 1/2Fmax, The spectrum of this
pulse can be calculated by taking Fourier transform, the result is:

E(f) =

∫ ∞

−∞
Ei(t)e

−j2πftdt =
∫ 1/Fmax

0

[1− cos(2πFmaxt)]e
−j2πftdt (10.95)
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or after many manipulation

E(f) =
ejπf/Fmax

Fmax[1− ( f
Fmax

)2]

sin(π f
Fmax

)

(π f
Fmax

)
(10.96)

This function has a shape similar to sinc(x), or sin x/x, but it decreases
faster. In fact, the spectrum given by Eq.(10.95) has a maximum value at
f = 0 and half maximum value at f = Fmax. The first zero is located at
f = 2Fmax. Therefore we can take 2Fmax as the effective bandwidth of the
raised cosine. As a result, the scattering field data, as determined from the
FDTD from using a raised cosine pulse as incident wave, includes at least
the scattering information in the frequency range of (0, 2Fmax). The wave-
length corresponding to Fmax is λmin = c

Fmax
. If the space increment is set as

δ = λmin

20
and cΔt = δ/2, then we have δ = c

20Fmax
and Δt = 1

40Fmax
, that is,

the raised cosine is sampled 40 times over the duration of the raised cosine
pulse.
♣ Gaussian Pulse
A traditional choice is the Gaussian pulse. We consider Gaussian pulse elec-
tric field in the form of:

Eg = E0e
− (t−t0)

2

2σ2 (10.97)

where E0 is amplitude, t0 center of the pulse and σ is related to pulse width.
This pulse will be excited at point z = z0. To illustrate the basic concept
of the numerical simulation of wave, the propagation of a Gaussian pulse
and half sinusoidal time pulse in many different medium ( lossless free space,
lossy or layered) will be considered. The source generator develops a half
sinusoidal pulse given by

Eg = E0 sin(2πfnΔt)δ(i− 1) n = 1, 2, · · · , N (10.98)

10.9.3 1D Helmholtz Wave Equation

Let us assume a one dimensional wave equation

∂2ψ(z, t)

∂z2
=

1

C2

∂2ψ(z, t)

∂t2
(10.99)
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that hitting boundary. We want to write a FORTRAN code

ψn+1(i) = (
CΔt

Δz
)2[ψn(i+ 1)− 2ψn(i) + ψn(i− 1)] + 2ψn(i)− ψn−1(i)

(10.100)
if τ = (CΔt

Δz
) = 1 then

ψn+1(i) = ψn(i+ 1) + ψn(i− 1)− ψn−1(i) (10.101)

The FORTRAN CODE WAV1.FOR is written for simple one dimensional
wave equation.

10.9.4 Stability in 1D FDTD

The stability and accuracy is another important issue which should be con-
sidered next. The choice of space increment Δz and time increment Δt is
dictated by the reasons of accuracy and algorithm stability, respectively. Let
us consider 1D wave equation

∂2ψ(z, t)

∂z2
=

1

C2

∂2ψ(z, t)

∂t2
(10.102)

We approximate the above equation by central differences

ψn+1(i)− 2ψn(i) + ψn−1(i)

(CΔt)2
=
ψn(i+ 1)− 2ψn(i) + ψn(i− 1)

(Δz)2
(10.103)

we look for a solution of a wave form which has the properties of oscillation,
attenuation and propagation.

ψn(i) = αne−jkz|z=iΔz (10.104)

this wave is stable if |α| ≤ 1 and unstable if |α| > 1. We plug solution into
second order difference equation

αn+1e−jkiΔz − 2αne−jkiΔz + αn−1e−jkiΔz

(CΔt)2
=

αne−jk(i+1)Δz − 2αne−jkiΔz + αne−jk(i−1)Δz

(Δz)2
(10.105)
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By simplifying the equation (10.105) we will have

α− 2 + α−1

(CΔt)2
=
e−jkΔz − 2 + ejkΔz

(Δz)2
(10.106)

This will give us
α2 − 2Aα + 1 = 0 (10.107)

where

A = 1− 2(
CΔt

Δz
)2 sin2(

kΔz

2
) (10.108)

To ensure the stability of the computed fields Δt is chosen to satisfy the
inequality for the one dimensional layer model as

CmaxΔt ≤ Δz (10.109)

where Cmax is maximum wave velocity within the model. This shows that in
order to ensure stability, the spatial discretization and the time step cannot
be increased beyond a certain limit. This means that a wave traveling from
a neighboring unit cell must not pass though the next cell within the time
step chosen. A conservative choice is

Cmax ·Δt = 0.5 ·Δz (10.110)

The stability limit can be derived for higher dimensional cases. In the 3D
case, we will have

CΔt ≤ 1√
1

Δx2
+ 1

Δy2
+ 1

Δz2

(10.111)

10.10 Absorbing Boundary Conditions

It is clear that we cannot simulate the propagation of the wave indefinitely,
and we need to terminate somehow the FDTD grid. The problem does
not exist in the case of spatially limited structure, like waveguide or cavity,
where we need to mode a region that trap the field inside. In most of the
problems, however, we need to simulate open space regions. In these cases,
simulation region must be limited, so we need to find a way to simulate
the open space. These boundary conditions are called Radiation Boundary
Conditions or Absorbing Boundary Conditions (ABC). Such ABCs have been
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the subject of investigations over many years. In the following sections, we
briefly review the most common ABCs, paying special attention to perfectly
matched layer. Next, we list the traditional local ABCs used in FDTD, and
highlight some of their properties. The listing follows the guidelines given in,
[28] chapter 7, in condensed form. The so called global ABCs never enjoyed
much popularity in FDTD, because they involve very expensive integration
of fields during each time step.
The most commonly used grid truncation techniques for open-region FDTD
modeling problems are the Mur absorbing boundary condition (ABC), the
Liao ABC, and various perfectly matched layer (PML) formulations. The
Mur and Liao techniques are simpler than PML. However, PML can provide
orders-of-magnitude lower reflections. The PML concept was introduced by
J.-P. Berenger in a seminal 1994 paper in the Journal of Computational
Physics. Since 1994, Berenger’s original split-field implementation has been
modified and extended to the uniaxial PML (UPML), the convolutional PML
(CPML), and the higher-order PML. The latter two PML formulations have
increased ability to absorb evanescent waves, and therefore can in principle be
placed closer to a simulated scattering or radiating structure than Berenger’s
original formulation

10.10.1 Bayliss-Turkel ABC

The Bayliss-Turkel ABC [51] can be applied most naturally in spherical co-
ordinates. Technically, it is a differential operator that annihilates a number
of terms in a series expansion of the outgoing field. The form of the annihila-
tor resembles that of the Sommerfeld radiation boundary condition, but the
Bayliss-Turkel operators are enhanced to annihilate not only 1/r terms, but
also higher-order terms. The order of the operator can be taken as a param-
eter. Usually a second-order operator is used, providing remainder terms of
the order 1/r5.
With moderate modifications, the Bayliss-Turkel operator can be applied
also in cylindrical coordinates, but unfortunately the application in Carte-
sian coordinates is not feasible. The practical realizations are reported to
provide reflections on the order of -40dB [28].
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10.10.2 Engquist-Majda operator and Mur ABC

Engquist-Majda developed a famous pseudodiffrential operator allowing wave
propagate in only one direction [28]. Theoretically, the ABC based on
Engquist-Majda operator is perfect for dispersionless media. The difficulty
lies in the realization of the pseudodifferential operator. Many subsequent
practical ABCs involve different approximations of the operator

√
1− S2, where S = c

∂s
∂t
. (10.112)

Approximating Eq.(10.112) by polynomials of S results in realizable algo-
rithms. The simplest approximations are based on Taylor expansion, and
efficiently implemented in FDTD by Mur [29]. The second-order Mur is a
notable simple ABC and a preferred choice if extremely good absorption is
not crucial.
In 1D formulation, we can observe that if we use dt = dz

2C
, since the field

travel at the speed of C, in one time step the field will travel only half a cell.
This means that to entirely cross one cell two time step are necessary. The
absorbing boundary conditions for 1D case can be therefore expressed by:

ψn+1/2(1) = ψn−2+1/2(2) for left side of the mesh
ψn+1/2(N) = ψn−2+1/2(N − 1) for right side of the mesh

(10.113)

Now let us see what will we get for 2D problems. The Eq.(10.99) can be
written in 2D as:

ψxx + ψyy − ψtt/C
2 = 0 (10.114)

where ψxx =
∂2ψ(x,y,t)

∂x2
and using L as operator notation, 2D wave equation will

be Lψ = 0 where operator L = D2
x+D2

y−D2
t and D

2
x =

∂2

∂x2
, D2

y =
∂2

∂y2
, D2

t =
1
C2

∂2

∂t2
. The Lψ can be factored into forward and backward traveling wave ie:

Lψ = L+L−ψ = 0 (10.115)

where

L− = Dx −Dt

√
1− S2

L+ = Dx +Dt

√
1− S2

S =
Dy

Dt
(10.116)
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Enquist and Majda show that a x-traveling wave will be absorbed if L−ψ = 0
at x=0,. This is EXACT and no approximation are made.
If you find ψ such that L−ψ = 0, then the wave will be perfectly absorbed.
None will reflect. For discrete programming (such as FDTD), approximation
of L− are made:
First Order:(Using Taylor Expansion)

√
1− S2 ≈ 1 (10.117)

therefore

L− ≈ ∂

∂x
− 1

C

∂

∂t
(10.118)

or

(
∂

∂x
− 1

C

∂

∂t
)ψ

∣∣∣∣
x=0

= 0 (10.119)

Γ =
cos(θ)− 1

cos(θ) + 1
(10.120)

which is Γ = 0% for normal incident θ = 90 wave and Γ ≈ 17% for 45o

incident wave Fig.(10.11).
Second Order:

Figure 10.11:

√
1− S2 ≈ 1− S2

2
(10.121)

therefore

L− ≈ ∂

∂x
− 1

C

∂

∂t

⎛⎝1− 1

2

(
∂
∂y

1
C
∂
∂t

)2
⎞⎠ (10.122)
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multiply L− by 1
C
∂
∂t

we will have

L− ≈ 1

C2

∂2

∂x∂t
− 1

C2

∂2

∂t2
+

1

2

∂2

∂y2
(10.123)

(
1

C2

∂2

∂x∂t
− 1

C2

∂2

∂t2
+

1

2

∂2

∂y2

)
ψ

∣∣∣∣
x=0

= 0 (10.124)

In this case Γ = 0% for normal incident θ = 90 wave and Γ ≈ 3% for
45o incident wave. Both the 1st and 2nd order are called ”MUR” boundary
conditions approximations, and are therefor it is not perfect. The amount of
error depends on:
• The angle of incidence.
• The cell size and frequency.
Steps of finite difference and absorbing boundary condition for applying to
FDTD:
a) Apply numerical differentiation to derivatives.
b) Apply Boundary condition.

ψn+1(i) = ψn(i− 1) +

(
τ − 1

τ + 1

)(
ψn+1(i− 1)− ψn(i)

)
(10.125)

where τ = CΔt
Δz

Solved problem

Derive Eq.(10.125).
Solution:

∂ψ(z, t)

∂z
=

ψn+1(i)− ψn+1(i− 1)

Δz
∂ψ(z, t)

∂z
=

ψn(i)− ψn(i− 1)

Δz
∂ψ(z, t)

∂t
=

ψn+1(i)− ψn(i)

Δt
∂ψ(z, t)

∂t
=

ψn+1(i− 1)− ψn(i− 1)

Δt

We use the average of above relation to
(
∂
∂z

+ 1
C
∂
∂t

)
ψ = 0 for a wave traveling

from LEFT to RIGHT and have absorbing boundary at cell i Eq.(10.125).
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For a wave traveling from RIGHT to LEFT we should use absorbing bound-
ary condition

(
∂
∂z

− 1
C
∂
∂t

)
ψ = 0

ψn+1(i− 1) = ψn(i) +

(
τ − 1

τ + 1

)(
ψn+1(i)− ψn(i− 1)

)
(10.126)

Let at the domain edge (say i = 1 and i = M), we should know ψ(M + 1)
and ψ(0) which is outside the domain for the computation. we may either
set this value to zero, in which case we will get reflections back into the
domain off the ends, or we may implement absorbing boundary condition.
The absorbing boundary conditions can be implemented as:

ψn+1(M + 1) = ψn(M) +

(
τ − 1

τ + 1

)(
ψn+1(M)− ψn(M + 1)

)
ψn+1(0) = ψn(1) +

(
τ − 1

τ + 1

)(
ψn+1(1)− ψn(0)

)
(10.127)

In 3D the ABC will be

(∂x − c−1∂t)ψ(x, y, z, t) = 0, x = xmin

(∂x + c−1∂t)ψ(x, y, z, t) = 0, x = xmax

(∂y − c−1∂t)ψ(x, y, z, t) = 0, y = ymin

(∂y + c−1∂t)ψ(x, y, z, t) = 0, y = ymax

(∂z − c−1∂t)ψ(x, y, z, t) = 0, z = zmin

(∂z + c−1∂t)ψ(x, y, z, t) = 0, z = zmax (10.128)

10.10.3 Liao extrapolation

Another proposition for ABC is given by Liao et al. [30]. As interpreted
in [28], the Liao ABC can best be understood as a simple extrapolation
of the fields inside the computational domain to the outer boundary. In
the extrapolation, several time levels and several spatial points inside the
computational domain are involved to efficiently perform the extrapolation.
The extrapolated value is then used in normal manner in update equations.

The reflectivity of a three-time level Liao ABC is reported to be much
less than any of the computationally comparable versions of the other ABCs
discussed so far, and about 20 dB less than second-order Mur[28].
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10.10.4 The Perfectly Matched Layer Boundary Con-

dition for FDTD

Recently, Jean Pierre Berenger published a novel approach called Perfectly
Matched Layer (PML) [31] [32]that yields improved performance compared
to the earlier techniques. Typically MUR’s first or second order Absorb-
ing Boundary Conditions have been used with acceptable results. However,
for the cases of multilayered dielectric materials extending to the ABC, the
results were not very useful as significant reflections were corrupting the re-
sults. The Berengers PML ABC is based on an artificial absorbing layer
surrounding the simulation region. This layer then absorbes any outgoing
wave in a similar fashion to the Mur’s ABC’s discussed previously.
The crux of the PML definition is that the Yee cells in the PML region are
split into 12 components instead of the usual six components.
The governing equations are similar to the standard FDTD equations, how-
ever, there exists several extra parameters. For the case of Ex, the electric
field vector propagating in the Y direction, the terms σy, and σmy are con-
ductivity terms depending on the depth in the PML material. An important
point to note is that the conductivity values for the electric field, and mag-
netic field are offset by half a space step.
In order to efficiently implement the PML Boundary condition for FDTD,
several points must be taken into consideration. Firstly is that for the three
dimensional case, the FDTD region consists of 6 field components, whereas
the PML region has 12 firld components, both E, and H fields are split.
The most common temptation is to allocate a huge block of 12 field com-
ponents, and use that - however, it wastes a LOT of memory. An efficient
scheme, as Berenger suggested, is to divide the simulation regions, between
FDTD and PML. This enables optimal usage of memory for FDTD with
PML, including using double precision field components for the PML re-
gions, and single precision field components for the standard FDTD region.
The detailed description of the PML theory is given in [32]. We point out here
the aspects of importance regarding FDTD implementation and numerical
computation. The PML formulation of Maxwell’s equations can be written
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as:

ε0
∂Exy
∂t

+ σyExy =
∂(Hzx +Hzy)

∂y
μ0
∂Hxy

∂t
+ σ∗

yHxy = −∂(Ezx + Ezy)

∂y

ε0
∂Exz
∂t

+ σzExz = −∂(Hyx +Hyz)

∂z
μ0
∂Hxz

∂t
+ σ∗

zHxz =
∂(Eyx + Eyz)

∂z

ε0
∂Eyz
∂t

+ σzEyz =
∂(Hxy +Hxz)

∂z
μ0
∂Hyz

∂t
+ σ∗

zHyz = −∂(Exy + Exz)

∂z

ε0
∂Eyx
∂t

+ σxEyx = −∂(Hzx +Hzy)

∂x
μ0
∂Hyx

∂t
+ σ∗

xHyx =
∂(Ezx + Ezy)

∂x

ε0
∂Eyx
∂t

+ σxExz =
∂(Hyx +Hyz)

∂x
μ0
∂Hzx

∂t
+ σ∗

xHzx = −∂(Eyx + Eyz)

∂x

ε0
∂Ezy
∂t

+ σyEzy = −∂(Hxy +Hyz)

∂y
μ0
∂Hzy

∂t
+ σ∗

yHzy =
∂(Exy + Exz)

∂y

(10.129)

where σi and σ∗
i denote electric and magnetic conductivities. Each field

component is split into two subcomponents. If the condition

σi
ε0

=
σ∗
i

μ0
(10.130)

is satisfied the characteristic impedance of the lossy free space medium equals
that of lossless vacuum and no reflection occurs for a plane wave propagating
in normal direction across a vacuum-medium interface.
One should note that the perfectly match interface exist only for continuum
space. For discretize space where E and H field components do not lie in the
same plane (Yee Cell), the interface produces reflections [32]. This is due to
the fact that in numerical process there is no equal absorption for the electric
and magnetic fields because of their position in the FDTD elementary cell.
The reflection error can be minimized by choosing a certain profile of con-
ductivity depending on the distance from interface. Berenger found that the
parabolic profile yields optimum absorption. In practical computations, the
PML medium consists of several layers. Eq.(10.129)and Eq.(10.130) shows
that the PML formulation corresponds to that of a physical medium. If
σx = σy = σz = σ∗

x = σ∗
y = σ∗

z = 0, Eq.(10.129)and Eq.(10.130) reduce to
Maxwell’s equations in free space. Hence, the implementation in FDTD does
not involve a special treatment.

For application of PML in dielectric media, the conductivities are chosen
such that the phase velocity of the propagating wave inside PML medium
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does not change when it crosses the interface between two different dielectric
materials. This leads to the condition

σi
ε0

=
σir1
ε0εr1

=
σir2
ε0εr2

= · · · (10.131)

where σir1 denotes the electric conductivity in the dielectric medium with εr1.
The corresponding magnetic conductivity can be calculated from Eq.(10.131).
The electric conductivity of first layer σi(0) defines the cutoff frequency of
the PML medium [32]. Frequency lower than

fc =
σi(0)

2πε0
(10.132)

are reflected.

Original Formulation

In 2D TE case, the equations governing the original PML are:

ε0
∂Ex
∂t

+ σyEx =
∂(Hzx +Hzy)

∂y
, (10.133)

ε0
∂Ey
∂t

+ σxEy = −∂(Hzx +Hzy)

∂x
, (10.134)

μ0
∂Hzx

∂t
+ σ∗

yHzx = −∂Ey
∂x

, (10.135)

μ0
∂Hzy

∂t
+ σ∗

yHzy =
∂Ex
∂y

. (10.136)

Here, the Hy component has been split: Hz = Hzzx + Hzy. The corner-
stone of PML is that σ∗

x and σ∗
y can be chosen independently. If they were

constrained to be equal, equations Eq.(10.135) and Eq.(10.136) could be
merged, resulting ordinary Maxwell’s equations with magnetic conductiv-
ity. Note that Eq.(10.133) and Eq.(10.136) allow direct implementation with
FDTD. A PML can conveniently be parameterized by the set (σx, σ

∗
x, σy, σ

∗
y).

Vacuum is a special case, namely (0, 0, 0, 0). Berenger showed in [31] that a
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PML is perfectly matched to vacuum at an interface normal to x-direction,
i.e. producing no reflection from the interface at any angle of incidence and
any frequency, provided it is of the form (σx, σ

∗
x, 0, 0), and the matching con-

dition
σx
ε0

=
σ∗
x

μ0
(10.137)

is fulfilled. At an interface normal to y-direction, matching is obtained by
a medium (0, 0, σy, σ

∗
y), provided the conductivities again satisfy a similar

condition than Eq.(10.137). Berenger’s original paper involved only 2D case;
PML was soon generalized into 3D [52].

10.11 Dispersion

When we simulate a pulse wave that propagates in a medium, we see that the
shape of pulse changes as it moves along a path. We can name this effects
dispersion. In other word, wave propagation velocity in numerical simulation
may vary with frequency, direction of propagation, and distance. It happens
in frequency dependent materials. This error in differential forms happens
because of error in numerical differentiation. If dz ≈ λ/10 gives less than
10% error. You will observe this effect in your simulation.

10.12 Problem

The purpose of this exercise is to understand and use finite difference ap-
proximation in transient analysis of dielectric slabs.
Consider Maxwell’s equations in time domain, namely

∇×E(r, t) = −μ∂H(r, t)

∂t

∇×H(r, t) = ε
∂E(r, t)

∂t
(10.138)

1) Show that in one dimension in a charge free medium, the scalar wave
equation derived from Eq.(10.138) may be expressed as

∂2Ex(z, t)

∂t2
= c2

∂2Ex(z, t)

∂z2
(10.139)
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2) Use the difference Eq.(10.101) approximations, write a computer program
to implement the finite difference equation. At z = 0, enforce a source
condition in time such that

Ex(0, t) = e−(t−t0)2/2σ2

where t0 is chosen such that the pulse is essentially zero at t = 0. The pa-
rameter σ controls the width of Gaussian pulse, and therefore should be set
reasonably small (order of 10-20 spatial cell wide). Set up your program so
that in the center of the domain you have a dielectric slab whose thickness
is several times the spatial step size Δz.
3) Run your program and monitor the output for the pulse hitting the di-
electric slab. Also run the code such that cΔt

Δz
≤ 1 or cΔt

Δz
� 1

4) Use absorbing boundary conditions at both ends of spatial domain.

10.12.1 Two Dimensional FDTD

We consider a scattering problem in two dimensions. we assume that the
field components do not depend on the z coordinate of a point ∂

∂z
= 0.

Furthermore, we take ε and μ be constants and J = 0. The only source of
our problem is then an incident wave. This incident wave will be scattered
after it encounters the obstacle. The obstacle will be of few wavelengths in
its linear dimension. Further simplification can be obtained if we observe the
fact that in cylindrical coordinates we can decompose any electromagnetic
field into transverse electric and transverse magnetic fields ifε and μ are
constants. The two modes of electromagnetic wave are characterized by
1) Transverse Electric (TE)

Hx = Hy = 0, Ez = 0,

∂Hz

∂t
=

1

μ

(
∂Ex
∂y

− ∂Ey
∂x

)
∂Ex
∂t

=
1

ε

(
∂Hz

∂y
− σEx

)
∂Ey
∂t

=
1

ε

(
−∂Hz

∂x
− σEy

)
(10.140)
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2) Transverse Magnetic (TM)

Ex = Ey = 0, Hz = 0,

∂Hx

∂t
=

1

μ

(
−∂Ez
∂y

)
∂Hy

∂t
=

1

μ

(
∂Ez
∂x

)
∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(10.141)

Let in our problem conductivity be zero σ = 0 and C be a perfect conducting
boundary curve. We approximate it by a polygon whose sides are parallel
to the coordinate axes. if the grid dimensions are small compared to the
wavelength, we expect the approximation to yield meaningful results.

Letting

τ = ct =
1√
με
t (10.142)

and

η =

√
μ

ε
= 376.7 (10.143)

we can write the finite difference equation for TE and TM waves.
TE waves:

Hn+1/2
z (i+ 1/2, j + 1/2) = Hn−1/2

z (i+ 1/2, j + 1/2)

− 1

η

Δτ

Δx

[
En
y (i+ 1, j + 1/2)−En

y (i, j + 1/2)
]

+
1

η

Δτ

Δy
[En

x (i+ 1/2, j + 1)− En
x (i+ 1/2, j)] (10.144)

En+1
x (i+ 1/2, j) = En

x (i+ 1/2, j)

+
1

η

Δτ

Δy

[
Hn+1/2
z (i+ 1/2, j + 1/2)

− Hn+1/2
z (i+ 1/2, j − 1/2)

]
(10.145)

En+1
y (i, j + 1/2) = −1

η

Δτ

Δx

[
Hn+1/2
z (i+ 1/2, j + 1/2)

− Hn+1/2
z (i− 1/2, j + 1/2)

]
(10.146)
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TM waves:

En+1
z (i, j) = En

z (i, j)

+ η
Δτ

Δx

[
Hn+1/2
y (i+ 1/2, j)−Hn+1/2

y (i− 1/2, j)
]

− η
Δτ

Δy

[
Hn+1/2
x (i, j + 1/2)−Hn+1/2

x (i, j − 1/2)
]

(10.147)

H
n+1/2
x (i, j + 1/2) = H

n−1/2
x (i, j + 1/2)

− 1
η
Δτ
Δy

[En
z (i, j + 1)−En

z (i, j)]
(10.148)

H
n+1/2
y (i+ 1/2, j) = H

n−1/2
y (i+ 1/2, j)

+ 1
η
Δτ
Δx

[En
z (i+ 1, j)−En

z (i, j)]
(10.149)

• Numerical Computations for TM waves

For further numerical discussion we shall limit ourselves to TM waves. In this
case we use the finite difference equations Eq.(10.147), Eq.(10.148),Eq.(10.149).

The value for E0
x(i, j), H

1/2
y (i+1/2, j), and H

1/2
x (i, j−1/2) are obtained from

the incident wave. We choose t such that when t=0 the incident wave has
not countered obstacle. Subsequent values are evaluated from the finite dif-
ference equations Eq.(10.148), Eq.(10.149). The boundary condition is ap-
proximated by putting the boundary value of En

z (i, j) equal to zero for any
n.

To be specific, we shall consider the diffraction of an incident TM wave
by a perfect conducting square. The dimensions of the obstacle, as well as
the profile of incident wave, are shown in Fig.(10.12). Let the incident wave
be plane, with its profile being a half sine wave. The width of the incident
wave is taken to be α units and the square has sides of length 4α unit. The
incident wave will have only an Ey component and an Hy component. We
choose

Δx = Δy = α/8 (10.150)

and

Δτ = cΔt =
1

2
Δx = α/16 (10.151)

A finite difference scheme over the whole x-y plane is impractical; we therefore
have to limit the extent of our calculation region. we assume that at time
t=0, the left traveling plane wave is ”near the obstacle. For a restricted
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Figure 10.12: Scattering from Conducting Square by TM wave

period of time, we can therefore replace the original problems by equivalent
problem shown in Fig(??).

The input data are taken from the incident wave with

Ez(x, y, t) = sin
[
(x−50α+ct)π

8α

]
0 ≤ x− 50α+ ct ≤ 8α

Hy(x, y, t) =
1

η
Ex(x, y, t) (10.152)

Numerical results are presented for the TM waves discussed above. To gain
some idea of the accuracy of the finite difference equation, we have used the
Eq.(10.148), Eq.(10.149) with the initial Ez being a half sine wave for the
case of no obstacle. We note that the outer boundary conditions will not
affect this incident wave as there is no Hx component in the incident wave.
Ninety-five time cycles were run with the finite difference system Eq.(10.148),
Eq.(10.149), and the machine output is shown in Fig.(10.13). The oscillation
and the widening of the initial pulse is due to the imperfection of finite
difference system. Fig.(10.14) shows the value of Ez of the TM wave as a
function of the horizontal grid coordinate i for a fixed vertical grid coordinate
j = 30. At the end of five time cycle, the wave just hits the obstacle. The line
j = 30 does not meet the obstacle, but is ”sufficiently” near the obstacle to be
affected by a ”partially reelected” wave. There is also a partially transmitted
wave. The phase of the reflected wave is opposite that of the incident wave,
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as required by the boundary condition of the obstacle. There should also be a
decrease in wave amplitude due to cylindrical divergence, but the calculation
was not carried far enough to show this effect. Fig.(??) shows the value of
Ez of the TM wave as a function of the horizontal grid coordinate i for a
fixed vertical grid coordinate j = 50. This line(j = 50) meets the obstacle,
and hence we expect a reflected wave going to the right. These expectations
are borne out in Fig.(??). After the reflected wave from the object meets
the right boundary, the wave is reflected again. This effect is shown for the
time cycle 75, 85 and 95.

Fig.(??) is for j = 65. This line forms part of the boundary of the
obstacle. Because of the required boundary condition, Ez is zero on boundary
point. To the right of the obstacle there is a ”partially” reflected wave of
about half the amplitude of a fully reflected wave. To the left of the obstacle
there is a ”transmitted” wave after 85 time cycles.

When σ �= 0 the general FDTD formula for TEz and TMz polarization
will be
•TMz:

∂Ez
∂y

= −μ∂Hx

∂t
− σ(m)Hx

∂Ez
∂x

= μ
∂Hy

∂t
− σ(m)Hy

∂Hy

∂x
− ∂Hx

∂y
= ε

∂Ez
∂t

+ σ(e)Ez (10.153)
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2
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1

2
, j)H
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2

y (i+
1

2
, j)

+ Cb(i+
1

2
, j)

[
En
z (i+ 1, j)− En

z (i, j)

Δx

]
(10.155)
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En+1
z (i, j) = Cc(i, j)E

n
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+ Cd(i, j)

⎡⎣Hn+ 1
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y (i− 1
2
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Δx

⎤⎦
+ Cd(i, j)
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2

x (i, j − 1
2
)−H
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2

x (i, j + 1
2
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Δy

⎤⎦ (10.156)

where the cell media coefficients are given by

Rb(i, j) =
Δt

μ(i, j)
(10.157)

Ca(i, j) =
1− σ(m)(i,j)Δt

2μ(i,j)

1 + σ(m)(i,j)Δt
2μ(i,j)

(10.158)

Cb(i, j) =
Rb(i, j)

1 + σ(m)(i,j)Δt
2μ(i,j)

(10.159)

and

Rd(i, j) =
Δt

ε(i, j)
(10.160)

Cc(i, j) =
1− σ(e)(i,j)Δt

2ε(i,j)

1 + σ(e)(i,j)Δt
2ε(i,j)

(10.161)

Cd(i, j) =
Rdi, j)

1 + σ(e)(i,j)Δt
2ε(i,j)

(10.162)

•TEz:

∂Hz

∂y
= ε

∂Ex
∂t

+ σ(e)Ex

−∂Hz

∂x
= ε

∂Ey
∂t

+ σ(e)Ey

∂Ey
∂x

− ∂Ex
∂y

= −μ∂Hz

∂t
− σ(m)Hz (10.163)
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10.12.2 Three Dimensional FDTD

using the MKS system of units, and assuming that the dielectric parameters
μ, ε and σ are independent of time, the following system of scalar equations
is equivalent to Maxwell’s equations in the rectangular coordinate system.

∂Hx

∂t
=

1

μ

(
∂Ey
∂z

− ∂Ex
∂y
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∂Hy

∂t
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μ
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ε

(
∂Hx
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1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(10.167)
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Yee introduces a set of finite difference equations for the system of Eq.(10.167).
Following Yee’s notation, we denote a space lattice point as

(i, j, k) = (iΔx, jΔy, kΔz) (10.168)

where δ = Δx = Δy = Δz is the space increment, and δt is the time incre-
ment. Yee uses finite difference expressions for the space and time derivatives
that are both simply programmed and second order accurate in δ and in δt,
respectively,

∂F n(i, j, k)

∂x
=
F n(i+ 1/2, j, k)− F n(i− 1/2, j, k)

δt
+O(δ2) (10.169)

∂F n(i, j, k)

∂t
=
F n+1/2(i, j, k)− F n−1/2(i, j, k)

δt
+O(δt2) (10.170)

To achieve the accuracy of Eq.(10.169), and to realize all of the space deriva-
tives of Eq.(10.167), Yee positions the components of E and H about a unit
cell of the lattice as shown in Fig(??). To achieve the accuracy of Eq.(10.170),
he evaluates E and H at alternate half time steps. The result of these as-
sumptions is the following system of finite difference equations for the system
of Eq.(10.167).
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With the system of Eq.(10.171)-Eq.(10.176), the new value of a field vector
component at any lattice point depends only on its previous value and on
the previous values of the components of other vector at adjacent points.
Therefore, at any given time steps, the computation of a field vector may
proceed one point at a time. Computer storage must be provided for 11
quantities at each unit cell of the lattice: the 6 field vector components, the
values of ε and σ, and maximum |Ex|, |Ey|, and |Ez| achieved during the
final half-wave cycle of time stepping.

• Far Field Transformation

FDTD can only be used in limited space around the calculating subject.
In many problems, e.g., in scattering problems, the far field is needed. A
near field to far field transform fulfills this purpose. The near field to far
field transform is based on Huygens’s surface equivalence theorem. A Huy-
gens’s surface is set around the scatterer. The equivalent currents equal to
J = n×H and M = E×n, where n is the local surface unit normal, H and
E are the magnetic and electric fields at the surface. E and H are calculated
in the FDTD. With the equivalent currents, the far field is obtained using
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the Green’s function.
The FDTD method computes the fields in a region around the objects that
lies in the near-field. To determine the far-field scattering or radiation pat-
tern, the near-field data can be transformed to the far-field by weighting it
with the free space Green’s function and integrating over a surface, S, sur-
rounding the objects. The near field electric and magnetic fields calculated
in the FDTD program are time domain quantities. To implement the far
field transform, these values must be converted to frequency domain values
using a discrete Fourier transform, which is implemented by computing the
and quadrature components separately.

Er = Es sin(ωt)
Ei = Es cos(ωt)

where Es represents any time domain field component on the surface S at t =
nΔt. When a sinusoidal plane wave source is used they are only calculated
at time steps during the last period of the sinusoidal wave. Thesin and cos
quadrature components are transformed to complex phasor quantities using

E =
√
Er

2 + Ei
2e−j arctan (

Ei
Er

) (10.177)

Once the near-field time-domain values are converted to frequency domain
values, the equivalent electric and magnetic surface current densities, Js and
Ms, are defined on the surface S as:

Js(r
′) = n×H

Ms(r
′) = −n×E

(10.178)

where r′ is a point on S and is a unit vector normal to S, where the origin
of the far field transform is located in the center of the grid. The E and H
quantities in Eq.(10.178) refer to the complex phasor values computed with
Eq.(10.177). The vector potentials A and F are computed by numerically
integrating Js and Ms over the surface S,

A = μ0e−jβr

4πr

∫ ∫
s
Jse

jβr′ cosψds′

F = ε0e−jβr

4πr

∫ ∫
s
Mse

jβr′ cosψds′
(10.179)

where r is a point in the far field and ψ is the angle between r and r′. The
term r cosψ in the exponent is written as:

r′ cosψ = (x′ cosφ+ y′ cos φ) + z′ cos θ (10.180)
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The far field electric and magnetic field components, in spherical coordinates,
are then given by:

Eθ = −jω(Aθ + ηFφ) (10.181)

Eφ = −jω(Aφ − ηFθ) (10.182)

Hθ =
jω

η
(Aθ − ηFφ) (10.183)

Hφ = −jω
η
(Aφ + ηFθ) (10.184)

where η =
√

μ
ε
and

Aθ = Ax cos θ cos φ+ Ay cos θ sinφ−Az sin θ (10.185)

Aφ = −Ax sinφ+ Ay cosφ (10.186)

Aθ = Fx cos θ cos φ+ Fy cos θ sinφ− Fz sin θ (10.187)

Fφ = −Fx sinφ+ Fy cos φ (10.188)

The far field scattering pattern Fs(θ, φ) is defined by:

Fs(θ, φ) =
1

2
�(EθH∗

φ) +
1

2
�(−EφH∗

θ ) (10.189)

where θ and φ are the angles measured from the z and x axes, respectively,
in spherical coordinates. Physically this represents the scattered intensity at
any point in the far field. Other parameters such as the anisotropy and scat-
tering cross-section can be computed from the scattering pattern, Fs(θ, φ).

In two dimensional case the formula for far fields will be

Eφ(ρ, φ) = −jωμAφ − jβFz (10.190)

Ez(ρ, φ) = −jωμAz − jβFφ

where

A(ρ, φ) =
e−jβρ√
8jβπρ

∫
S

Js(ρ
′)e−jβρ

′ cos(φ−φ′))ds′ (10.191)

F(ρ, φ) =
e−jβρ√
8jβπρ

∫
S

Ms(ρ
′)e−jβρ

′ cos(φ−φ′))ds′
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• Source In Scattering Problem

A number of different sources can be used to find the scattered fields including
a Gaussian pulse plane wave, sinusoidal pulse, and sinusoidal plane wave. The
incident fields described by Gaussian pulse are

Einc = E0e− (r − r0)
2

w2
(10.192)

This source however is not a single frequency, or monochromatic plane wave.
A single frequency source is modeled with either a sinusoidal pulse or a
continuous wave source. In either case the incident field is of the form

Einc = E0 sin(ωt) (10.193)

In the case of a pulse, the incident field is turned off after a specified number
of time steps

10.13 Problems

• 1 Write a program to show the truncation error of three different type
derivatives Eq.(10.1) for function f(x) = 3x3 + 4x2 − 5x + 1 at point
x = 2.5.

• 2 Write the matrix for the Fig.(10.6); a: without using symmetry, b:
with symmetry.

• 3 Write a program to find the ∇2f(x, y) for function f(x, y) = x+y+3
x2+y2

at origin. Compare your numeric result with analytic result

• 4 Write an FD code to compute the cutoff frequencies of the first ten
TM and TE modes of a rectangular waveguide with dimensions 1 cm x
2 cm. Compare your results to the analytical cutoff frequencies. How
rapidly do the FD results approach the exact results as the number of
grid points increases?

• 5 Fine the capacitance per meter of a air filled coaxial cable with inner
radius of r1 = .005m and uter radius of r2 = .01m. Compare your
result with analytical formula C = 2πε0

ln(
r2
r1

)
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Figure 10.13: Ez of the TM wave in the absence of the obstacle for various
time cycle
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Figure 10.15: Yee’s Cell
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Chapter 11

Functional Methods

” God does not care about our mathematical difficulties. He inte-
grates empirically.”

Albert Einstein

11.1 Introduction

Many problems in electrical and mechanical engineering may be formulated
by Functonal Methods. The Functonal Methods is a mathematical base for
Method of Moment (MoM) and Finite Element Method (FEM). In order
to understand these methods and related ones, we first review math terms
in linear algebra, then functional or variational will be defined, and finally
approximation methods will be used for solution of integral or differential
equations.

Functional methods =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Variational

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Indirect methods
Iteration methods
Rayleigh-Ritz method
Weinstein’s method
Trefftz’s method
......

Weighted Residuals

⎧⎪⎪⎨⎪⎪⎩
Point Matching Method
Galerkin’ Method
Subdomain Method
Least Square Method

349
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11.2 Review of Linear Algebra

11.2.1 Linear Space

Let x1,x2,x3, · · · be elements of a set S. These elements are called vectors.
Let α1, α2, α3, · · · be the elements of the field of numbers F. Those belong
to field of real R or complex C numbers. The set S is a linear space if the
following addition and multiplication rule can be applied.
• Addition
1) (x1 + x2) + x3 = x1 + (x2 + x3)
2) There exists a zero vector 0 such that x1 + 0 = 0 + x1

3) For every x1 ∈ S, there exists −x1 ∈ S such that x1 + (−x1) = (−x1) +
x1 = 0.
4) x1 + x2 = x2 + x1

• Multiplication
1) α1(α2x1) = (α1α2)x1

2) 1x1 = x1

3) α1(x1 + x2) = α1x1 + α1x2

4) (α1 + α2)x1 = α1x1 + α2x1

Sometimes in mathematics we deal with linearly dependent vectors. Let
x1,x2,x3, · · · be elements of a set vectors in S. The vectors are linearly
dependent if there exists αk ∈ F, for k = 1, 2, · · ·n, not all zero, such that

n∑
k=1

αkxk = 0 (11.1)

In another word, if the only way to satisfy Eq.(11.1) is αkk = 1, 2, · · ·n, then
the elements xk, k = 1, 2, · · ·n are linearly independent. The sum

n∑
k=1

αkxk (11.2)

is called a linear combination of vectors xk

11.2.2 Inner Product Space

A linear space S is a complex inner product space, if for every ordered pair
(x,y) of vectors in S, there exists a unique scalar in C, symbolized 〈x,y〉,
such that:
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1) 〈x,y〉 = 〈y,x〉∗ [* = complex conjugate]
2) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
3) 〈αx,y〉 = α〈y,x〉α ∈ C
4) 〈x,y〉 ≥ 0, with equality if and only if x = 0
If 〈x,y〉 = 0 the vectors x,y are called orthogonal. In this book we define
inner (dot or scalar) product of any two elements 〈f , g〉 as

〈f , g〉 =
∫
Ω

f(r)g(r)∗dΩ (11.3)

11.2.3 Normed Linear Space

A linear space S is a normed linear space if, for every vector x ∈ S, there is
assigned a unique number ‖x‖ ∈ R such that the following rules apply:
1) ‖x‖ ≥ 0 with equality if and only if x = 0
2) ‖αx‖ = |α|‖x‖, α ∈ F
3) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖
Although there are many possible definitions of norms, we exclusively use
the norm induced by the inner product, defined by

‖x‖ =
√
〈x,x〉 (11.4)

• Hilbert Space

A linear space is a Hilbert space if it is complete in norm induced by inner
product.

11.2.4 Definition and Properties of Operators

An operator represents the relationship between two functions as

L(f) = g (11.5)

The properties of an operator determine the methods used for numerical
solution of the operator equations.

• Linear Operator

The operator L is linear if

L(f1 + f2) = L(f1) + L(f2) (11.6)
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L(cf) = cL(f) (11.7)

where c is a constant.

• Symmetric Operator

The L is a symmetric operator if

〈Lf1, f2〉 = 〈f1,Lf2〉 (11.8)

where f1, f2 are any two vectors in space L.

• Positive definite Operator

If
〈Lf , f〉 > 0 (11.9)

for all f �= 0 in its domain, L is a positive definite operator.

• Self-adjoint Operator

The adjoint of operator L is the operator L∗ such that

〈Lf1, f2〉 = 〈f1,L∗f2〉 (11.10)

where the domain of L∗ is same as L. If L = L∗, the operator L is called
self-adjoint.
� A self-adjoint operator is symmetric.
� The operators having even power such as ∇2 and ∇2 + ∂2

∂t2
are self-adjoint,

but operator with the odd power are not.
� If the kernel of an integral equation is symmetric, then the integral operator
is self-adjoint. (we will talk about kernel later on)

• Eigen Value of an Operator

If there is a number λ and vector (or element) x �= 0 such that

Lx = λx (11.11)

where λ and x are called eigen value and eigen vector of operator L, respec-
tively.
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11.2.5 The relation between the properties of opera-

tors and solution of the operator equations

The purpose of various numerical methods that are used to solve the elec-
tromagnetic field problems is to convert an operator equation into a matrix
equation. Both the approximation approach for the formulation and the so-
lution methods for resulting matrix equation dependent on the properties of
the differential and integral operators.
1) If L is symmetric positive definite, then the operator equation L(f) = g
has only one stable solution.
2) If L is self-adjoint positive definite operator in Hilbert space, then the
solution of Eq.(11.5) can be approximated by the associated problem which
minimizes the quadratic functional I(f). (we call function of function as
functional)

I(f) = 〈Lf , f〉 − 〈f , g〉 − 〈g, f〉 (11.12)

3) Self-adjoint operators are symmetric and generate a symmetric matrix
which has real eigenvalues.
4) If the inverse operator L−1 exists, the solution of the original operator
equation is unique.

11.3 Linear Operators and Quadratic Forms.

The solution, f , of a self-adjoint linear differential equation

Lf = g in Ω (11.13)

corresponds to a stationary point for the quadratic form

I(f) = 〈Lf , f〉 − 2〈f , g〉 (11.14)

• Proof:

I(f) is stationary if for all functions w : ∂
∂α
{I(f + αw)}α=0 = 0

I(f + αw) = 〈f + αw,L(f + αw)〉 − 2〈f + αw, g〉 (11.15)

or

I(f+αw) = 〈f ,Lf〉−2〈f , g〉+α{〈w,Lf〉+〈f ,Lw〉−2〈w, g〉}+O(α2) (11.16)
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Thus I stationary ⇐⇒ 〈w,Lf + 〈f ,Lw〉 − 2〈w, g〉 = 0 for all w. Because L
is self adjoint, 〈f ,Lw〉 = 〈w,Lf , 〉 so the condition for I stationary becomes
〈w,Lf〉− 〈w, g〉 = 〈w,Lf − g, 〉 = 0. Thus, for every admissible variation w
we have

〈w,Lf − g〉 =
∫
Ω

w(Lf − g)dΩ = 0 (11.17)

Since w is arbitrary, this requires that the residual r = Lf − g vanish every-
where in Ω, that is, the differential equation Eq.(11.5) is satisfied.

The proof shows that we can solve the differential equation Eq.(11.5) by
finding the function f that makes I(f) stationary. In physical contexts, I is
often represents the energy and the solution of the differential equation is
the one that minimize the energy.

We can interpret Eq.(11.17) as saying that the residual weighted by an
arbitrary function w in the region Ω is zero.

11.4 Rayleigh-Ritz Method

In electrical engineering, energy is minimum if the system is stable. The
Rayleigh-Ritz method is based on the above principle. It is a variational
method in which the boundary value problems as expressed by L(f) = g is
formulated by variational expression, referred to as functional I(f). Thus,
the advantage of the variational formulation is that it makes it possible to
find approximate solutions. The Rayleigh-Ritz method consists of:

• Approximation of f by an expansion in a finite set of basis or trial
functions ψj(r), j = 1, 2, · · · , N

f(r) ≈ ˜f(r) =

N∑
j=1

ajψj(r) (11.18)

• Evaluation of the quadratic variational form I(f) as a function of the
expansion coefficients

I(a1, a2, · · · , aN ) = I(f̃) = 〈f̃ ,Lf̃〉 − 2〈f̃ , g〉 = (11.19)∑
i

∑
j

aiaj〈ψi(r),Lψj(r)〉 − 2
∑
i

ai〈ψi(r), g〉 (11.20)

or
I(a1, a2, · · · , aN) =

∑
i

∑
j

Lijaiaj − 2
∑
i

giai (11.21)
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where Lij = 〈ψi(r),Lψj(r)〉 and gi = 〈ψi(r), g〉. Note that since the operator
L is self-adjoint, the matrix L is symmetric Lij = Lji.

• Determination of the expansion coefficient ai by recalling that I is
stationary with respect to all coefficients:

∂I

∂ak
=

∑
j

Lkj +
∑
i

Likai − 2gk = 2
∑
i

Lkiai − 2gk = 0 (11.22)

or simply ∑
i

Lkiai = gk (11.23)

Eq.(11.23) is linear symmetric N ×N system for the expansion coefficients.
In matrix form we will have:⎡⎢⎢⎢⎣

〈ψ1,L(ψ1)〉 〈ψ1,L(ψ2)〉 · · · 〈ψ1,L(ψN)〉
〈ψ2,L(ψ1)〉 〈ψ2,L(ψ2)〉 · · · 〈ψ2,L(ψN)〉

...
〈ψN ,L(ψ1)〉 〈ψN ,L(ψ2)〉 · · · 〈ψN ,L(ψN)〉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a1
a2
...
aN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
〈ψ1, g〉
〈ψ2, g〉

...
〈ψN , g〉

⎤⎥⎥⎥⎦
(11.24)

11.5 Weighted Residual

Having defined a 〈·, ·〉 and norm ‖ · ‖, the calculation essentially amounts to
minimization of a residual vector

L(f) = g (11.25)

Let us approximate the function f as

f̃ =

N∑
j=1

αj · fj (11.26)

where uj are the chosen base functions, and αj is unknown coefficient which
should be determined. A set of equations for the coefficients αj are the
obtained by taking the inner product of Eq.(11.26) with a set of weighting or
testing functionsw: [wi] = [w1, w2, · · ·wN ]. In another word, If we denote r =
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L(f̃ − f) as residual, we should minimize this residue by weighting function
w, as

〈r,w〉 = 0 (11.27)

According to Eq.(11.25) we will have :

〈L(f̃)− g,w〉 = 0 (11.28)

or
〈L(f̃),w〉 = 〈g,w〉 (11.29)

we can rewrite the Eq.(11.29) as

< wi,L(f) >=< wi, g > i = 1, 2, · · · , N (11.30)

Due to the linearity of operator L(·), if we substitute the expansion of func-
tion f in Eq.(11.30, we have:

N∑
j=1

αj < wi,L(fj) >=< wi, g > i = 1, 2, · · · , N (11.31)

by expanding the Eq.(11.31, we have:

α1〈wi,L(f1)〉+ α2〈wi,L(f2)〉+ · · ·+ αN〈wi,L(fN)〉 = 〈wi, g〉 (11.32)

i = 1, 2, · · · , N or⎡⎢⎢⎢⎣
〈w1,L(f1)〉 〈w1,L(f2)〉 · · · 〈w1,L(fN)〉
〈w2,L(f1)〉 〈w2,L(f2)〉 · · · 〈w2,L(fN)〉

...
〈wN ,L(f1)〉 〈wN ,L(f2)〉 · · · 〈wN ,L(fN)〉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
〈w1, g〉
〈w2, g〉

...
〈wN , g〉

⎤⎥⎥⎥⎦
(11.33)

This set of equations can be written in the matrix form:

[A][X] = [B] (11.34)

where [A] is an N × N matrix, [X ] and [B] are vectors with N elements,
so Aij = 〈wi,L(fj)〉, Xj = αj and Bi = 〈wi, g〉, for i = 1, 2, · · · , N and
j = 1, 2, · · · , N . The solution is then

[X ] = [A]−1[B] (11.35)

The solution of Eq.(11.35) may be exact or approximate, depending upon
the choice of the base function [fi] and weighting function [wi].
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11.6 Galerkin’s Method

In the Galerkin’s method the weighting function and base function are the
same, therefore we will have the matrix equation⎡⎢⎢⎢⎣

〈f1,L(f1)〉 〈f1,L(f2)〉 · · · 〈f1,L(fN)〉
〈f2,L(f1)〉 〈f2,L(f2)〉 · · · 〈f2,L(fN)〉

...
〈fN ,L(f1)〉 〈fN ,L(f2)〉 · · · 〈fN ,L(fN)〉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
〈f1, g〉
〈f2, g〉

...
〈fN , g〉

⎤⎥⎥⎥⎦
(11.36)

11.7 Least Square Method

In the least square method, our interest is the square of the error over the
domain of the problem

I =

∫
Ω

r2dΩ (11.37)

next we compute the derivatives

∂I

∂αi
= 2

∫
Ω

r
∂r

∂αi
dΩ, i = 1, 2, · · · , N (11.38)

It implies from Eq.(11.38) that

∂I

∂αi
= 0 i = 1, 2, · · · , N (11.39)

Therefore I is stationary and the square of the error attain its minimum. In
explicit form the linear system will be⎡⎢⎢⎢⎣

〈L(f1),L(f1)〉 〈L(f1),L(f2)〉 · · · 〈L(f1),L(fN)〉
〈L(f2),L(f1)〉 〈L(f2),L(f2)〉 · · · 〈L(f2),L(fN)〉

...
〈L(fN),L(f1)〉 〈L(fN),L(f2)〉 · · · 〈L(fN),L(fN)〉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
〈L(f1), g〉
〈L(f2), g〉

...
〈L(fN), g〉

⎤⎥⎥⎥⎦
(11.40)
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11.8 Entire-Domain and Sub-Domain Method

The choice of base (trial) and weighting (testing) functions is very important
factor in solution of electromagnetic problems. It is proved that the base and
weighting functions do not have to be complete in the domain of the operator,
so we can have two kinds of expansion functions: subdomain and entire
domain expansion functions. In boundary element method, the boundary is
subdivided so the subdomain expansion function should be used. In following
we formulate common expansion functions.

• Point Collocation Method

In the point matching or collocation method, the weighting function w is
such that wi = δ(r− ri), where the fixed points ri ∈ Ω, (i = 1, 2, · · · , N) are
called collocation points. Here Dirac’s delta functions δ(r− ri) are defined
as:

δ(r− ri) =

⎧⎨⎩
∞, if r = ri

0 elsewhere.
(11.41)

Inserting Eq.(11.41) in Eq.(11.33), the linear system takes the form

⎡⎢⎢⎢⎣
L[f1(r1)] L[f2(r1)] · · ·L[fN (r1)]
L[f1(r2)] L[f2(r2)] · · ·L[fN (r2)]

...
L[f1(rN)] L[f2(rN)] · · ·L[fN(rN)]

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g(r1)
g(r2)
...

g(rN)

⎤⎥⎥⎥⎦ (11.42)

• Pulse Functions

The pulse functions {Pn(x), n = 1, 2, · · · , N} is defined as

Pn(x) =

⎧⎨⎩
1 x ∈ Δxn

0 else
(11.43)
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Let the weight function one dimensional problem be pulse function, such that⎡⎢⎢⎢⎣
∫ x2
x1

Lf1(x)dx
∫ x2
x1

Lf2(x)dx · · · ∫ x2
x1

LfN(x)dx∫ x3
x2

Lf1(x)dx
∫ x3
x2

Lf2(x)dx · · · ∫ x3
x2

LfN(x)dx
...∫ xN

xN−1
Lf1(x)dx

∫ xN
xN−1

Lf2(x)dx · · ·
∫ xN+1

xN
LfN+1(x)dx

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∫ x2
x1
gdx∫ x3

x2
gdx
...∫ xN+1

xN
gdx

⎤⎥⎥⎥⎦
(11.44)

• Triangle Functions

The triangle functions {Tn(x), n = 1, 2, · · · , N} is defined as

T1(x) =

⎧⎨⎩
1− x−x1

Δ1
x1 ≤ x ≤ x2

0 otherwise

Tn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− xn−x

Δn−1
xn−1 ≤ x ≤ xn

1− x−xn
Δn

xn ≤ x ≤ xn+1

0 otherwise

TN(x) =

⎧⎨⎩
1− xN−x

ΔN−1
xN−1 ≤ x ≤ xN

0 otherwise

(11.45)

where Δn = xn+1 − xn for n = 1, 2, · · · , N − 1. The T1(x) starts at the
beginning of the region at x = x1 and TN(x) ends at the end of the region at
x = xN . Thus T1(x) and TN(x) are only half triangles. For more information
see [?]

• Piecewise Sinusoidal Function

The piecewise sinusoidal function Sn(x) is defined as

Sn(x) =

⎧⎨⎩
sin(k(Δ−|x−xn|))

sin(kΔ)
, |x− xn| ≤ Δ

0 otherwise

(11.46)
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where k is the wave number. The piecewise sinusoidal function Eq.(11.46) is
often used in the analysis of wire antenna.

11.9 Eigenvalue Problems

The classical mathematical eigenvalue problem in electromagnetic is defined
as the solution of the following equation:

Lf = λf (11.47)

where the f may be the modes of a cavity resonator or a waveguide and λ
may be related to resonant frequency of a cavity or cutoff frequency of a
waveguide. With the method of weighted residual we solve and change the
problem as

A ·X = λB ·X (11.48)

or simply
C ·X = λX (11.49)

where C = B−1 · A, and the eigenvalues and corresponding eigenvectors
should be determined. If we denote r = (L−λ)(f̃ − f) as residual, we should
minimize this residue by weighting function w, as

〈r,w〉 = 0 (11.50)

According to Eq.(11.47) we will have :

〈L(f̃)− λf̃ ,w〉 = 0 (11.51)

or
〈L(f̃),w〉 = λ〈f̃ ,w〉 (11.52)

or

N∑
j=1

αj < wi,L(fj) >= λ

N∑
j=1

αj < wi, fj > i = 1, 2, · · · , N (11.53)

by expanding the Eq.(11.53), we have:

α1〈wi,L(f1)〉+ α2〈wi,L(f2)〉+ · · ·+ αN〈wi,L(fN)〉 =

λ{α1〈wi, f1〉+ α2〈wi, f2〉+ · · ·+ αN 〈wi, fN〉} (11.54)
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i = 1, 2, · · · , N or⎡⎢⎢⎢⎣
〈w1,L(f1)〉 〈w1,L(f2)〉 · · · 〈w1,L(fN)〉
〈w2,L(f1)〉 〈w2,L(f2)〉 · · · 〈w2,L(fN)〉

...
〈wN ,L(f1)〉 〈wN ,L(f2)〉 · · · 〈wN ,L(fN)〉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ =

λ

⎡⎢⎢⎢⎣
〈w1, f1〉 〈w1, f2〉 · · · 〈w1, fN〉
〈w2, f1〉 〈w2, f2〉 · · · 〈w2, fN〉

...
〈wN , f1〉 〈wN , f2〉 · · · 〈wN , fN〉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2
...
αN

⎤⎥⎥⎥⎦ (11.55)

This set of equations can be written in the matrix form:

[A][X ] = λ[B][X] (11.56)

where [A] and [B] are an N×N matrix, [X] vector with N elements, so Aij =
〈wi,L(fj)〉, Bij = 〈wi, fj〉, Xj = αj , for i = 1, 2, · · · , N and j = 1, 2, · · · , N .
The solution of Eq.(11.56) give us the eigenvalues and eigenvectors of the
matrix C = B−1 ·A.
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Chapter 12

Method of Moments

” The secret to creativity is knowing how to hide your sources.”
Albert Einstein

12.1 Introduction

In previous chapter we introduce the main mathematical structure for solu-
tion L(f) = g type problem. In this chapter we will work on special type of
operators and usually have special name which we call it Method of Moments.
The operators may be in integral of integro-differential form.

12.2 What is the Method of Moments?

One of the best known numerical methods in computational electromagnetic
is the Method of Moments or MoM which become popular by Harrington [7]
in 1967. The MoM is based on residual method for electromagnetic Integral
or Integro-differential equation. The MoM can be applied to time-harmonic
problems, once the integral equation governing the electromagnetic phenom-
ena is known. The good example is the calculation of the current distribution
on a dipole antenna. According to electric or magnetic excitation, there are
two types of Integral Equation, Electric Field Integral Equation or briefly
(EFIE) and Magnetic Field Integral Equation or briefly (MFIE). We shall
derive these equation in the following section.

363
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12.3 How does MoM work?

The MoM technique requires that the entire structure to be modeled be
broken down into wires and/or metal plates (in the case of metallic structure).
or small cubic box in the case of dielectric structure or combination of both.
Each wire is subdivided to a number of wire segments which must be small
compared to the frequencies wavelength (so that the assumption of a constant
value of current across that wire segment is valid). Each metal plate is
subdivided into a number of surface patches, which must be small compared
to the wavelength (again so the assumption of constant current is valid). In
case of dielectric structures, cubic box must be small enough, in order to get
better and accurate results.

Once the model is defined, a source is imposed (a plane wave approaching,
or a voltage source on one of the wire segments). The MoM technique is to
determine the current on every wire segment and surface patch due to the
source and all the other currents (or the other wire segments and surface
patches). Once these currents are known, then the E field at any point in
space is determined from the sum of all the contributions from all the wire
segments and surface patches.

12.4 What are the strengths of the MoM Tech-

nique?

Every modeling technique has some strengths and some weaknesses. Some
types of models were a given technique will excel and some types of models
were the same technique will have difficulty (if it is even possible to use)
performing rapidly and accurately.
MoM is a very versatile modeling technique. It is also a very intuitive tech-
nique, so users can easily understand how to use it, and know what to expect
from a given model. Users can picture the RF currents on a structure and
understand how they would lead to a E/H field. MoM models only the struc-
ture, and not the space around it. Therefore, long wires are easily modeled
using MoM.
Since MoM is a frequency domain technique, it can solve problems very
quickly, if only one frequency is desired. If multiple frequencies are desired,
then the simulation will take longer, but still solutions are often available is
a short amount of time.
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12.5 The weaknesses of the MoM Technique?

Although MoM is very easy to use for wires and metal plates, it is very
difficult to use for dielectric and special magnetic materials. Special solution
techniques do exist to allow dielectric in a MoM solution, but these are not
widely implemented and care must be taken when they are used.
MoM assumes the current on a wire segment, or on a surface patch to be the
same throughout the conductors depth. Therefore, using MoM to determine
the effect of an aperture with fields both inside and outside is difficult.
MoM is a frequency domain technique, therefore, if a wide frequency range is
desired in the solution, the simulation must be run a number of times. If the
frequency step size is not sufficiently small, important effects (e.g. resonance)
may be over looked.

12.6 Basic solution of method of moments

1) Derive an appropriate integral equation (IE) governing your electromag-
netic problem
2) Convert the IE into a matrix equation using the method of weighted rsid-
uals.
3 ) Evaluate impedance or admittance immittance matrix and excitation vec-
tor elements.
4) Solve the linear system and obtain your unknowns.
we encounter two kinds of integral equation in electromagnetism.
1) Fredholm Integral Equation of First Kind

−
∫
V

G(r, r′)f(r′)dr′ = g(r) (12.1)

2) Fredholm Integral Equation of Second Kind

h(r)f(r)−
∫
V

G(r, r′)f(r′)dr′ = g(r) (12.2)

where G(r, r′) is the kernel of the integral equation, in general case it is
dyadic. The kernel of integral equation is Green’s Function. Physically,
a Green’s function represents the field arising from an impulse source. A
Green’s function may be viewed as the electromagnetic impulse response of
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the physical system under consideration. The g(r) is the known excitation.
The excitation is applied field; i.e., the field that excites in the structure
for which the Green’s function has been obtained. h(r) is the immittance
function, it is often a surface impedance or admittance. V is the region
over which integral equation is applicable and f(r) is the unknown function
to be determined. It is usually an electric or magnetic charge density or
an equivalent electric or magnetic current density. It should be noted that if
eigenfunction of Green’s function are used as base functions, then immittance
matrix is sparse due to the orthogonality of these eigenfunctions.
Let us start with simple one dimensional MoM problem.
• Example (1): Charge Q[C] will be put on a piece of wire with radius a
and length L, find charge distribution density on the wire.

Figure 12.1: Charge distribution on a rod

• Solution: It is clear that charge density on each end is maximum and in
middle is minimum. Now we want to find this fact by mathematics. The
surface charge density σ(z) is depend on z so the governing Integral Equation
will be:

V =
1

4πε0

∫ ∫
σ(z′)adφ′dz′√

(x− x′)2 + (y − y′)2 + (z − z′)2
(12.3)

we take observation point on x = 0, y = 0, z and x′2 + y′2 = a2 so Eq.(12.3)
will be reduce to

V =
a

2ε0

∫
σ(z′)dz′√

(a2 + (z − z′)2
(12.4)
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Let us divide the total length of rod into N section or cell and each cell

have length d, and take σ(z) =

n=N∑
n=1

αnσn(z) and use weighting function as

wm = δ(z − zm) (point matching ) and base function in the form of

σn(z) =

{
1 if zn − d/2 < z < zn + d/2
0 otherwise

(12.5)

therefore the Zmn = 〈Lfn, wm〉 will look like

Zmn =
a

2ε0

∫ L

0

∫ zn+d/2

zn−d/2

δ(z − zm)dzdz
′√

a2 + (z − z′)2
(12.6)

after using delta function properties

Zmn =
a

2ε0

∫ zn+d/2

zn−d/2

dz′√
a2 + (zm − z′)2

(12.7)

by change of variables we can find the elements of matrix Zmn with the help
of following integral formula very easily∫

du√
a2 + u2

= ln[u+
√
a2 + u2] (12.8)

In our problem V = g is known and since it is a metallic wire it is equipoten-
tial, so we assume that it is one volt V = 1. The value of Vm = 〈v, wm〉 will
be Vm = 1. The unknowns αn = In will be found by solution of this linear
equation [Zmn] · [In] = [Vm]. We may attack the problem by other weighting
and base functions. Suppose weighting and base function be the same

σn(z) =

{
1 if zn − d/2 < z < zn + d/2
0 otherwise

(12.9)

In another word Galerkin method with pulse function as base function. In
that condition the only change that we have is Zmn.

Zmn =
a

2ε0

∫ zm+d/2

zm−d/2

∫ zn+d/2

zn−d/2

dzdz′√
a2 + (z − z′)2

(12.10)

and the result of this double integral will be∫ ∫
dUdV√
a2 +X2

=
√
a2 +X2 −X ln(X +

√
a2 +X2) ;X = U − V (12.11)
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The FORTRAN Code rod.for rod1.for is written and you can check the re-
sults.
•Exercise: Write a program for previous example when base function is
triangular function.
• Example (2): We have a square metallic sheet, and we put Q[C] charge
on it. find charge distribution on that square and capacitance of it.
• Solution: The integral equation of our problem is

V =
1

4πε0

∫ ∫
σ(x′y′)dx′dy′√

(x− x′)2 + (y − y′)2
(12.12)

In our problem V = g is known and since it is a metallic conductor it is
equipotential, so we assume it is one volt V = 1. We divide the square into
small square or another word N cell. Each cell has side d. First let use
weighting function as wm(x, y) = δ(x− xm)δ(y − ym) (point matching); and
base function as (Pulse function)

σn(x, y) =

{
1 if xn − d/2 < x < xn + d/2, yn − d/2 < y < yn + d/2
0 otherwise

(12.13)
The elements of our matrix will be Zmn = 〈Lfn, wm〉, therefore we will have
four integral (why ?)

Zmn =
1

4πε0

∫ xn+d/2

xn−d/2

∫ yn+d/2

yn−d/2
[

∫ ∞

−∞

∫ ∞

−∞

δ(x− xm)(y − ym)dxdy√
(x− x′)2 + (y − y′)2

]dx′dy′

(12.14)
according to properties of delta function we will have:

Zmn =
1

4πε0

∫ xn+d/2

xn−d/2

∫ yn+d/2

yn−d/2

dx′dy′√
(xm − x′)2 + (ym − y′)2

(12.15)

by changing U = xm−x′, V = ym−y′, dU = −dx′, dV = −dy′ and U1 = xm−
(xn−d/2), U2 = xm−(xn+d/2), V 1 = ym−(yn−d/2), V 2 = ym−(yn+d/2)
therefore we will have:

Zmn =
1

4πε0

∫ U2

U1

∫ V 2

V 1

dU · dV√
U2 + V 2

(12.16)
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so the result will be:

(4πε0)Zmn = V 1 ln(U1 +
√
U12 + V 12) + U1 ln(V 1 +

√
U12 + V 12)−

V 1 ln(U2 +
√
U22 + V 12)− U2 ln(V 1 +

√
U22 + V 12)−

V 2 ln(U1 +
√
U12 + V 22)− U1 ln(V 2 +

√
U12 + V 22) +

V 2 ln(U2 +
√
U22 + V 22) + U2 ln(V 2 +

√
U22 + V 22) (12.17)

Let us find the 〈g, wm〉, in our problem g = V and wm is delta function as
mentioned above. The vector 〈g, wm〉 = 1., so the matrix [A][X ] = [B] is
ready for solution. There are many ways for finding [X] and we usually use
Gauss elimination method. Fig.(12.2) shows distribution of charge on a cir-
cular conductive disk and it is compared with exact method which is given
on appendix.
• Example (3): Charge Distribution on Microstrip. We will assume that
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Figure 12.2: Charge distribution on a circular conducting disk

entire upper half space is filled with the same material, Fig[??]. Science we
have perfect ground, we employ the image theory method to create an equiv-
alent problem for upper half space. The potential at point r in homogeneous
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space in 2D problem is given by

V (r) =
1

2πε

∫
c′
ρ(r′) ln

(
1

r − r′

)
dl′ (12.18)

or

V (r) = − 1

2πε

∫
c′
ρ(r′) ln

(√
(x− x′)2 + (y − y′)2

)
dl′ (12.19)

Note that we must integrate along all contours C ′ that we have surface charge.
Hence C ′ includes both the strip and its image. Now, we will apply the
boundary condition that on the top strip

V (r) = V0 ∀r ∈ {upper strip} (12.20)

Using Eq.(12.20) in Eq.(12.19) and accounting for both the +ρl and −ρl
charge distribution on the strips then

V0 = − 1

2πε
{
∫
top

ρ(r′) ln(
√

(x− x′)2 + (d− d)2)dl′ (12.21)

+

∫
bottom

−ρ(r′) ln(
√

(x− x′)2 + (d+ d)2)dl′}

or

V0 = − 1

2πε

∫ w

0

ρ(r′)
[
ln(|x− x′|)− ln

(√
(x− x′)2 + 4d2

)]
dx′ (12.22)

This is the integral equation for the line charge density on the strip. Now
let us use pulse expansion as a base function for charge density and delta
function as a weighting functions (Point Matching Method). Therefore

ρ(r′) =
N∑
n=1

αnPn(x
′; xn−1, xn) (12.23)

After using point matching and pulse expansion we will have a set of linear
equations.

V0 = − 1

2πε

N∑
n=1

αn

∫ xn

xn−1

G(|xm − x′|)dx′ m = 1, · · · , N (12.24)
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where G(|x−x′|) = ln(|x−x′|)− ln
(√

(x− x′)2 + 4d2
)
and the above equa-

tion is a matrix equation of the form:

[Vm]︸︷︷︸
N×1

= [Zmn︸︷︷︸
N×N

] · [ αn︸︷︷︸
N×1

] (12.25)

where Vm = V0 and

Zmn = − 1

2πε

∫ xn

xn−1

G(|xm − x′|)dx′ m �= n (12.26)

As before, the process for obtaining a numerical solution from Eq.(12.25)
is to fill[V ] and [Z], then solve this system of equations for the line charge
density coefficients α. In particular, for [V ] choose v=1 volt, and compute
Eq.(12.26)analytically, if possible, or use numerical integration. In this par-
ticular problem, we are able to evaluate Eq.(12.26) analytically science a
simple antiderivative of the integrand is available.
In order to evaluate Eq.(12.26) analytically, we will begin with a segment
of width Δ located at the origin that is supporting a uniform line charge
density ρl: Fig[??]. The electrostatic potential at point r produced by this
pulse of line charge density is:

V (r) = − 1

2πε

∫ Δ/2

−Δ/2

ln
[√

(x− x′)2 + y2
]
dx′ (12.27)

where r does not lie anywhere on this strip, the potential is

V (r) = − 1

2πε
{(x+Δ/2) ln

[
(x+Δ/2)2 + y2

]
(12.28)

− (x−Δ/2) ln
[
(x−Δ/2)2 + y2

]− 2Δ

+ 2y

[
tan−1(

x+Δ/2

y
)− tan−1 (

x−Δ/2

y
)

]
}

Using Eq.(12.28) in Eq.(12.26), it can be shown that for m �= n:

Zmn = − 1

4πε

{
(Δmn +Δ/2) ln

[
(Δmn +Δ/2)2

(Δmn +Δ/2)2 + 4d2

]
(12.29)

− (Δmn −Δ/2) ln

[
(Δmn −Δ/2)2

(Δmn −Δ/2)2 + 4d2

]
− 4d

[
tan−1(

Δmn +Δ/2

2d
)− tan−1 (

Δmn −Δ/2

2d
)

]}
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where Δmn = xm − xn. For self cell evaluations, Zmm, the observation point
will be located at the center of segment in the chosen point matching scheme.
Referring to the Fig[??], if x = y = 0, it can be shown that V (0) = ρl

2πε
[1 −

ln(Δ/2)], Consequently, from this result it can be shown that for m = n we
have:

Zmm =
Δ

2πε
[1− ln(Δ/2)] (12.30)

+
1

4πε

{
Δ ln[(Δ/2)2 + 4d2]− 2Δ + 8d tan−1(

Δ

4d
)

}

12.7 Electric Field Integral Equation, EFIE

The integro-differential equation for the current distribution based on the
electric field operator is called the electric field integral equation (EFIE). In
this section, we are interested in the electric field operator equation. The
method of moments is applied to the electric field boundary value equation
to obtain a set of linear equations for the induced electric surface current
on the surface of a scatterer or antenna. We shall give a derivation of the
operator equation in this Section, and we will concentrate on evaluating the
so called impedance matrix.

Let S denote the surface of a perfectly conducting scatterer with unit
normal vector n may be either open or closed. The incident electric field Einc

is due to an impressed source in the absence of the scatterer. The boundary
condition is such that the sum of the incident, Ei, and the scattered,Es,
electric fields has no tangential component on the perfectly conducting body
surface, i.e.,

Ei
tan + Es

tan = 0 on S (12.31)

where the subscript “tan” denotes the components tangential to the surface
S. J is the electric current which is induced on the surface due to the incident
field. If S is open, we regard J as the vector sum of the currents on opposite
sides of S.

The scattered electric field can be represented by the vector potential and
the scalar potential which are produced by the surface current, as below:

Es(J) = −jωA−∇φ (12.32)



12.7. ELECTRIC FIELD INTEGRAL EQUATION, EFIE 373

The magnetic vector potential, A, and the electric scalar potential φ are
given by [8]:

A(r) = μ0

∫
S

J(r′)
e−jβ|r−r′|

4π|r− r′|ds (12.33)

φ(r) =
1

ε0

∫
S

σ(r′)
e−jβ|r−r′|

4π|r− r′|ds (12.34)

An ejωt time dependence is assumed and is suppressed, and β = ω
√
μ0ε0 =

2π
λ
, where λ is the wavelength. The permeability and permittivity of the sur-

rounding medium are μ0 and ε0, respectively, and r and r′ are the arbitrarily
located observation point and source point, respectively. The surface charge
density σ is related to the surface divergence of J through the equation of
continuity,

∇s · J = −jωσ. (12.35)

where ∇s is the surface divergence operator. Substituting Eq.(12.32) into
Eq.(12.31) an integro-differential equation for J is given by

(jωA+∇φ)tan = Ei
tan r on S (12.36)

WithA and φ given by Eq.(12.33) and Eq.(12.34), Eq.(12.36) is called electric
field integral equation (EFIE).

12.7.1 TM-wave Scattering from Conducting Cylinder
with Arbitrary Cross Section

Let us find the cross section of a metalic cylinder with method of moments.
A TM wave incident normally to a cylinder.

Ei = aze
jk(x cosφ0+y sinφ0) (12.37)

Hi =
1

−jωμ∇× Ei (12.38)

The incident wave produce current density Jz witch in turn will produce
scattered field Es

z .

Es = az
−kη
4

∫
c

Jz(c)H
(2)
0 (kR)dc (12.39)

Hs =
1

−jωμ∇× Es (12.40)
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where R =
√
[x(c)− x′(c)]2 + [y(c)− y′(c)]2 and c is a parameter on contour

of cylinder. On the surface of cylinder Ei
z + Es

z = 0 therefore we will have
the following integral equation on cylinder.

Ei
z =

kη

4

∫
c

Jz(c)H
(2)
0 (kR)dc (12.41)

Let us use point matching with pulse as a base functions.

Jz =

N∑
n=1

JnPn(c) (12.42)

where

Pn(c) =

{
1 if c ∈ to cell n
0 otherwise

(12.43)

If we divide the contour of cylinder with N cells, and coordinate xi, yi be
the center of cell i = 1, 2, · · ·N , then by using MoM formula, we will have a
N ×N linear system of equation AX = B.

Bm = Ei
z(xm, ym) m = 1, 2, · · · , N

Amn = kη
4
H

(2)
0 (kRmn)ΔCn m �= n

Xn = Jn n = 1, 2, · · · , N unknowns

(12.44)

where Rmn =
√
(xm − xn)2 + (ym − yn)2 and ΔCn is length of cell n. It is

obvious that if m = n the Rmn = 0,or Hankel function will be infinite or in
another word we will have singularity! In order to remove the singularity, the
expansion of Hankel function with small argument will be used. H

(2)
0 (x) ≈

1− j 2
π
ln(γx

2
) where γ = 1.781072418. If we assume that the cell length ΔCn

is small and flat, then the Amm will be

Amm =
kηΔCm

4

{
1− j

2

π

[
ln

(
γkΔCm

4

)
− 1

]}
(12.45)

After finding the Jn we can calculate the scattering electromagnetic fields at
any points in xy plane. E

Es
z = −

N∑
n=1

Jn
kηΔCn

4
H

(2)
0 (kR) (12.46)
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where R =
√

(x− xn)2 + (y − yn)2; x, y is coordinates of observation point
and xn, yn are source points.
There is another method to remove the singularity. Instead of expanding
Hankel function of small argument, we can use the exact formula.

I =

∫ x2,y2

x1,y1

H
(2)
0 (kR)dc

= ΔCH
(2)
0 (

kΔC

2
)

− πΔC

2

{
H

(2)
0 (kΔC/2)H1(kΔC/2) +H

(2)
1 (kΔC/2)H0(kΔC/2)

}
(12.47)

where ΔC =
√

(x2 − x1)2 + (y2 − y1)2 and H0, H1 are Struve Function of
zero and first order respectively.

12.8 Magnetic Field Integral Equation, MFIE

In this section the magnetic field integral equation is derived for conducting
scatterer. It is well known that the MFIE applies only to closed bodies, so
that throughout this section we assume that the object has no boundary
edges. Let S be the surface of that perfectly conducting scatterer with unit
normal vector n. Suppose that the incident magnetic field Hi is due to an
impressed source in the absence of scatterer. The scatterer is in a homoge-
neous space with electrical parameters (μ0, ε0), where μ0 is the inductivity or
permeability and ε0 is the capacitivity or permittivity. The result of enforcing
the boundary condition on the magnetic field is given by:

n× (Hi +Hs) = 0 on S− (12.48)

where n is an outward unit normal vector on S, S− is the surface is just
inside of S, and Hi and Hs are the incident and scattered magnetic fields,
respectively. The tangential component of the scattered magnetic field can
be expressed as a limit for observation points r not on an edge, (see [4]).

n×Hs = lim
r→S

n×∇×A = −Js
2

+ n×
∫ ∫

S

Js(r
′)×∇′G(r, r′)ds′ (12.49)

The Js is the induced electric surface current on S, and the integral on the
right hand side in Eq.(12.49), with the field point exactly on S, is interpreted
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as the Cauchy principal value. G(r, r′) is free space Green’s function, and
∇′ is the gradient operator on the primed coordinates. The Green’s function
and its gradient are given below as

G =
e−jβR

4πR
(12.50)

and

∇′G = (r− r′)
(1 + jβR)e−jβR

4πR3
(12.51)

where β is the wave number, R is the distance between the source point and
the observation point which is R = |r− r′|, and r approaches S from the
interior. Substituting Eq.(12.49) into Eq.(12.48), we obtain the magnetic
field integral equation:

Js
2

− n×
∫ ∫

S

Js(r
′)×∇′G(r, r′)ds′ = n×Hi. (12.52)

In order to apply the method of moments, the surface of the scatterer is
decomposed into a set of triangular patches using a parametric description
of the surface. The procedure of the parametric surface model generation
has been described in mesh generation chapter. The next step after surface
modeling is to define a set of basis functions which are used to approximate
the surface current. As long as S is a closed and smooth surface, the MFIE
yields good results even with a simple modeling in which the current on each
patch is approximated by a constant pulse function and a MoM solution is
pursued by point matching at the center of each patch. Here, the electric
surface current can be approximated as a linear combination of the expansion
functions with a set of unknown coefficients.

Js(r) =

N∑
n=1

Jn(r) (12.53)

where
Jn(r) = I1nP

1
n(r) + I2nP

2
n(r) (12.54)

and

Pi
n(r) =

{
ain for r ∈ ΔSn
0 elsewhere

(12.55)

for i = 1, 2;n = 1, 2, · · ·N and ΔSn is the nth of the N triangular patches on
which the unknown currents are to be determined. The unit vectors ain are



12.8. MAGNETIC FIELD INTEGRAL EQUATION, MFIE 377

two arbitrarily chosen orthogonal unit vectors on the plane of ΔSnas shown
in Fig.(12.3). A simple way to select a consistent orientation for a1

n is to let
it be perpendicular to the x or z coordinate, that is, by defining

Figure 12.3: A Triangular Patch

a1
n =

{
nn × az if nn × az �= 0
nn × ax otherwise

(12.56)

where the nn is the unit vector normal to the surface ΔSn and pointed
outward to the exterior of the closed surface S. Next we define

a2
n = nn × a1

n (12.57)

Another way to define these unit vectors is to choose them to be in phase
with the incident wave, more closely approximating the phase of Js. Thus
we define

a1
n =

n×Hi(rn)

|n×Hi(rn)| (12.58)

and choose a2
n according to Eq.(12.57) where rn is the position vector from

the origin to the center of the patch ΔSn.
To obtain the outward unit normal vector on the patch, we note that for the
patch in Fig.(12.3),

nn =
(rr − rq)× (rp − rr)

|(rr − rq)× (rp − rr)| (12.59)
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By choosing weighting function Wi
m as

Wi
m = δ(r− rm)P

i
m(r) i = 1, 2; m = 1, 2, · · · , N (12.60)

and applying method of MoM, we have

N∑
n=1

2∑
j=1

Z ij
mnI

j
n = V i

m i = 1, 2; m = 1, 2, · · · , N (12.61)

After a long manipulations we have

vim = aim · 2nm ×Hi(rm) (12.62)

and

Z ij
mn = δnmδ

j
i −

1 + jβRmn

2nR2
mn

e−jβRmnΔSn
[
aim · nm × (ajn ×Rmn)

]
(1− δnm)

(12.63)
After finding currents components we would like to calculate the far fields.
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Figure 12.4: Scattering by a conducting Sphere
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12.9 Pocklington Integral Equation

Let us assume that we have a straight wire antenna with length L = 2H and
radius a which is small compared to wavelength λ. a

L
do not need to be small.

Axial current component I(z) is the only significant component, Fig.(12.5).
Modeling the current distribution is infinitely thin sheet of current forming

Figure 12.5: A Dipole Antenna

a tube of radius a. We use EFIE in order to analyze the problem.
step 1: Find the operator L
E = Ei + Es must be zero at the surface of wire, but Es = −jωA − ∇Φ
where A = μ

∮ ∫
s
J e

−jkR

4πR
ds and Φ = 1

ε

∫ ∫
s
σ e

−jkR

4πR
ds. Let us apply boundary

conditions, i.e. total electric field must vanish on the surface Et
tan(rs) = 0.

therefore Ei
tan(rs) = −Es

tan(rs). It is possible to show that the scattered
electric field can be expressed as:

Escat
z = −jωAz − ∂Φ

∂z
=

−j
ωμε

(k2Az +
∂2Az
∂z2

) (12.64)
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where the Lorentz condition ∂Az

∂z
= −jωμεΦ have been applied. We also

know that:

Az =
μ

4π

∫ ∫
s

Jz
e−jkR

R
ds

=
μ

4π

∫ L

0

∮ 2π

0

Jz
e−jkR

R
adφ′dz′

= μ

∫ L

0

Iz(z
′)G(z, z′)dz′ (12.65)

Therefore, the EFIE becomes:∫ L

0

Iz(z
′)
[
(
∂2

∂z2
+ k2)G(z, z′)

]
dz′ = −jωεEinc

z (ρ = a) (12.66)

whereG(z, z′) = e−jkR

4πR
with R =

√
a2 + (z − z′),∂G(z,z′)

∂z
= −∂G(z,z′)

∂z′ ,∂
2G(z,z′)
∂z2

=
∂2G(z,z′)
∂z′2 . Therefore the equation Eq.(12.66) is known as Pocklington’s Integral

Equation. We can rewrite it in other form

jωμ

4π

[
(1 +

1

k2
∂2

∂z′2
)

] ∫ h

−h
Iz(z

′)G(z, z′)dz = Einc
z (z) (12.67)

Now we are going t to find the current distribution on a wire antenna. We
break up the wire into N segments, and expand J(z) in series:

J(z)

N∑
n=1

anJn(z) (12.68)

Jn(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin{k0(z−zn−1)}
sin{k0(zn−zn−1)} (zn−1 < z < zn)

sin{k0(zn+1−z)}
sin{k0(zn+1−zn)} (zn < z < zn+1)

0 elsewhere

(12.69)

jωμ

4π

N∑
n=1

an

[
(1 +

1

k2
∂2

∂z′2
)

] ∫ zn+1

zn−1

Jn(z
′)G(z, z′)dz = Einc

z (z) (12.70)
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Figure 12.6: Current distribution on a wire antenna

or

jωμ

4π

N∑
n=1

an

[
(1 +

1

k2
∂2

∂z′2
)

] ∫ zn+1

zn−1

Jn(z
′)G(z, z′)dz = Einc

z (z) (12.71)

and by using weighting function we will have

jωμ

4π

N∑
n=1

an

∫ zm+1

zm−1

Jm(z)

[
(1 +

1

k2
∂2

∂z′2
)

] ∫ zn+1

zn−1

Jn(z
′)G(z, z′)dzdz′ (12.72)

=

∫ zm+1

zm−1

Jm(z)E
inc
z (z)dz

To rewrite it in matrix form:

[Zmn][an] = [Vm] (12.73)

where

Zmn =

∫ zm+1

zm−1

Jm(z)En(z)dz (12.74)

and

En =
jωμ

4π

[
(1 +

1

k2
∂2

∂z2
)

] ∫ zn+1

zn−1

Jn(z
′)G(z, z′)dz′ (12.75)

Piecewise Sinusoidal(PWS) basis function are used since they closely resem-
ble the current distribution on a thin wire. PWS basis functions start to
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Figure 12.7: Piecewise sinusoidal basis function

become straight lines as the sample interval becomes small with respect to
a wavelength. By summing the contributions of basis functions where they
overlap (which occurs in every segment except the first and last), a continu-
ous function can be created. Now let us apply Basis and Weighting Functions
to our Pocklington’s Integral Equation. The Galerkin approach using PWS
basis functions is the most commonly used approach in electromagnetic. The
En(z

′) can be calculated for PWS as

En(z
′) = j30

[
1

sin{k0(zn−zn−1)}{cos(k0(zn − zn−1))G(z
′, zn)−G(z′, zn−1)}

+ 1
sin{k0(zn+1−zn)}{cos(k0(zn+1 − zn))G(z

′, zn)−G(z′, zn+1)}
]

(12.76)
and

Zmn =

∫ zm

zm−1

sin{k0(z′ − zm−1)}
sin{k0(zm − zm−1)}En(z

′)dz′+
∫ zm+1

zm

sin{k0(zm+1 − z′)}
sin{k0(zm+1 − zm)}En(z

′)dz′

(12.77)

Vm = −
∫ zm

zm−1

sin{k0(z′ − zm−1)}
sin{k0(zm − zm−1)}E

i
zdz

′ −
∫ zm+1

zm

sin{k0(zm+1 − z′)}
sin{k0(zm+1 − zm)}E

i
zdz

′

(12.78)
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12.9.1 1D Cavity Resonator

Suppose two large flat mirror separated by distance d. We want to find the
first two lowest resonant frequency of this 1D cavity by analytic and point
matching MoM with a base functions; f1 = z(1 − z

d
) and f2 = z[1 − ( z

d
)2].

Figure 12.8: 1D Cavity resonator

We select w1 = δ(z − d
3
) and w2 = δ(z − 2d

3
). The wave equation will be

∂2Ex
∂z2

+ k2Ex = 0

The solution will be Ex = Ae−jkz +Be+jkz and by applying boundary con-
dition at z = 0 and z = d that Ex = 0.

−2jA sin(kd) = 0

therefore kd = mπ; m = 1, 2, ... or the resonant frequencies or eigenvalues
will be fr =

mc
2d

and eigenfunction Ex = −2jA sin(mπ
d
z). Now let us use MoM

for this problem.
f̃ = α1f1 + α2f2

The Amn = 〈Lfn, wm〉

A11 =

∫ d

0

2

d
δ(z − d

3
)dz =

2

d
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A12 =

∫ d

0

6

d2
zδ(z − d

3
)dz =

2

d

A21 =

∫ d

0

2

d
δ(z − 2d

3
)dz =

2

d

A22 =

∫ d

0

6

d2
zδ(z − 2d

3
)dz =

4

d

and the Bmn = 〈fn, wm〉

B11 =

∫ d

0

z(1− z

d
)δ(z − d

3
)dz =

2d

9

B12 =

∫ d

0

z[1 − (
z

d
)2]δ(z − d

3
)dz =

8d

27

B21 =

∫ d

0

z(1 − z

d
)δ(z − 2d

3
)dz =

2d

9

B22 =

∫ d

0

z[1 − (
z

d
)2]δ(z − 2d

3
)dz =

10d

27

after calculating the eigenvalues, the approximate resonant frequency will be
fr =

3c
2πd

and fr =
3
√
3c

2πd
. If d = 1 meter, the exact first and second resonant

frequency would be 150MHz and 300MHz respectively but the Method of
Moments will give us 143.31MHz and 248.22MHz. Now let us use wn = fn
Galerkin Method. In this case the (kd)2 = 10 and 42, therefore the resonant

frequency would be fr = c
√
10

2πd
and fr = c

√
42

2πd
respectively. If d = 1 meter,

the first and second resonant frequency will be fr = 150.98MHz and fr =
309.43MHz, respectively.

12.10 Problems

• 1 A TM plane wave E = aze
−jβx is incident on a perfect electric con-

ductor (pec) with radius a = λ. Find normalized bistatic RCS of this
cylinder by method of moments and physical optic method and com-
pare your results with rigorous solution.

• 2 A plane wave with frequency of 1GHz is incident on a perfectly
conducting sphere with radius λ/2. Find the RCS of the sphere by
MFIE and compare your results with Mie method.
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Figure 12.9: Modes in 1D cavity resonator by MoM, d = 3Cm
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Chapter 13

Finite Element Method (FEM)

”I want to know God’s thoughts; the rest are details.”
Albert Einstein

13.1 Introduction

The Finite Element Method (FEM) is one the most important numerical
method that has been used for boundary value problems. The finite element
method was first outlined in 1942 by Courant [48]. When preparing the text
of his 1942 address to the American Mathematical Society for publication,
he added a two-page appendix on the use of variational methods in potential
theory, following the principles already described by Lord Rayleigh. Choos-
ing a piecewise linear approximation on a set of triangles, which he called
elements, he constructed two-dimensional examples, so marking the birth of
the finite element method. Its application to electronic engineering only be-
gan in 1969, when a finite element solution of the classical waveguide mode
problem was published in a special issue of the Italian journal Alta Frequenza
[49]. Other articles soon followed, on magnetic fields in nonlinear materials,
on dielectric loaded waveguide, and other well-known problems. Finite ele-
ments were soon applied also to integral operators in both electrostatic and
antenna problems. In the 1980s this method developed rapidly.
In this introductory course, we will start with theoretical foundations and al-
gorithm implementations for one-dimensional problems so that we can learn
the essential tools that carry over to higher dimensions. The student will be
acquainted with basic role Rayleigh-Ritz Method which we discussed in gen-

387
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eral as Functional Method in variational concepts. Originally in Rayleigh-
Ritz method they use entire domain base functions but in FEM they use
sub-domain base functions. The basic idea of FEM is to divide the solution
domain into a number of small sub-domain region which each one is called
element. In one dimensional case, it is segment line, in 2D it may be trian-
gle, rectangle or mutigonal shapes. In 3D it may be pyramid, cubic or other
shapes.
There are five essential steps in Finite Element Method
(1) Discretizing the domain of problem
(2) Selection of interpolation functions
(3) Derivation of element characteristic matrices and vectors
(4) Assembling of characteristic matrices and vectors
(5) Solution of the system of equations (AX = B)

Figure 13.1: One, two and three-dimensional mesh generation

13.2 One Dimensional FEM

In this section we will consider one dimensional Laplace, Poisson and eigen-
value problem in the form of 1D cavity resonator. In each case these prob-
lem which will be given, the reader should verify their results with analytical
methods.
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13.2.1 1D Laplace Equation

1D Laplace Problem: Implement the one-dimensional finite-element so-
lution of the Laplace equation if :
a- L = 4m
b- V1 = −1V
c- V2 = +1V
d- εr(x) = 2 + sin(πx/2) (x-in meter)
and compare your results with exact solution.
Solution We have faced with a electrostatic problem with nonhomogeneous
media. We discrete the length of 1D problem into sub-domain or element,
Fig.(13.2). In that figure, e shows the element’s numbering, i shows the
global nodes numbering and j shows the local nodes numbering. Therefore
for each element we have two local numbers, we give number 1 to the left
node and 2 to right node. As shown in Fig.(13.2), local numbering is give
for element e = 2. This element also have global numbering. i = 2 for first
node and i = 3 for second node. We may divide the length L = 4m into N
elements. This was mesh generation for our 1D problem.
Now we should proceed in order to find potential distribution along 1D prob-
lem with boundary conditions as it is mentioned.

Figure 13.2: 1D global and local Numbering

V (x) =

N∑
e=1

Ve(x) (13.1)

The simple way to approximate the V e(x) within an element is polynomial
approximation, ie;

Ve(x) = a+ bx (13.2)

and field in each element:

Ee = −∇Ve = −bax (13.3)
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Let the potential at nodes xe1, and x
e
2 for element e be V e

1 , V
e
2 . therefore[

V e
1

V e
2

]
=

[
1 xe1
1 xe2

] [
a
b

]
(13.4)

from these equation we can find a and b in terms of potentials and positions.
Or the potential at each element will be

Ve(x) =

2∑
i=1

αi(x)V
e
i (13.5)

where

α1(x) =
xe2 − x

xe2 − xe1

α2(x) =
x− xe1
xe2 − xe1

(13.6)

The α1(x) and α2(x) are called the element shape functions. Now we should
find, energy of each element.

We =
1

2

∫ xe2

xe1

ε(x)|E|2dx =
1

2

∫ xe2

xe1

ε(x)

∣∣∣∣dVe(x)dx

∣∣∣∣2dx (13.7)

Substituting Eq.(13.5) into Eq.(13.7), we have

We =
1

2

2∑
i=1

2∑
j=1

V e
i

[∫ xe2

xe1

ε(x)

(
dαi(x)

dx

)(
dαj(x)

dx

)
dx

]
V e
j (13.8)

or we may define a 2 by 2 matrix as

Ce
ij =

∫ xe2

xe1

ε(x)

(
dαi(x)

dx

)(
dαj(x)

dx

)
dx (13.9)

which the energy of our element in matrix form will be

We =
1

2
[Ve]

t [Ce] [Ve] (13.10)

which is similar to W = 1
2
CV 2 storing energy in capacitor. In Eq.(13.9)

superscript t stand for transpose of the matrix.

[Ve] =

[
V e
1

V e
2

]
(13.11)
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[Ce] =

[
Ce

11 Ce
12

Ce
21 Ce

22

]
(13.12)

which is usually called stiffness matrix that comes from mechanical engineer-
ing and its value will be

[Ce] =
ε

xe2 − xe1

[
+1 − 1
−1 + 1

]
(13.13)

if ε be constant, otherwise we should proceed the integration.
Up to here, we have calculated the energy of only one element and total
energy will be the assembling energy of all the elements:

W =
N∑
e=1

We =
1

2
[V]t [C] [V] (13.14)

where

[V] =

⎡⎢⎢⎢⎣
V1
V2
...
VM

⎤⎥⎥⎥⎦ (13.15)

where M is the number of nodes, N is the number of elements and [C] is
called Global Stiffness Matrix. We can rewrite the total energy of the system
as:

W =
1

2

[
Vf Vp

]t [ Cff Cfp

Cpf Cpp

] [
Vf

Vp

]
(13.16)

where the vector Vf shows the free or unknown potentials, and Vp stands
for prescribed or known potentials. The matrix [C] divided into four block
capacitor matrix.
If we differentiate energy with respect to free potentials, we will obtain[

Cff Cfp

] [ Vf

Vp

]
= 0 (13.17)

or simply
[Cff ][Vf ] = −[Cfp][Vp] (13.18)

which looks like A ·X = B and solution of it is straight forward. As we know
from numerical analysis, there are two methods for solution of A · X = B
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equation: Direct and Indirect. Gauss Elimination method is a direct method
but Iteration Method, is called as indirect method. Let us find a way for
indirect method. In order to find a way for obtaining the unknown potentials,
let us return to Eq.(13.14). If we differentiate energy with respect to unknown
potential nodes and put them equal zero, we will have K = N − 2 equations.
One of the unknown potential or free node, say Vk, will be

Vk = − 1

Ckk

[
K∑

i=1,i 
=k
ViCki

]
(13.19)

This means that the nodes which is connected directly to node k contributes
to potential Vk. We guess some value for each free potentials, then by itera-
tion we reach the exact value.
Exact solution: Let also find exact solution for the above problem. We
start by Gauss’s law ∇ ·D = ρ and electrostatic case, E = −∇V in inhomo-
geneous ε(x) media.

∇ · (εE) = ρ = ∇ε · E+ ε∇ ·E (13.20)

or

∇ε · ∇V + ε∇2V = −ρ (13.21)

In our 1D problem, the differential equation will be ε′V ′ + εV ′′ = 0.

13.2.2 1D Poisson Equation

1D Poisson Problem: Implement the one-dimensional finite-element so-
lution of the Poisson equation if :
a- L = 4m
b- V1 = −1V
c- V2 = +1V
d- εr(x) = 2 + sin(πx/2) (x-in meter)
e- ρ = 1 (C/m)
and compare your results with exact solution.
Solution Like the previous Laplace problem, we divide the domain into el-
ements, and denote for each node an unknown potential. we also know each
node’s charges. We approximate the potential and charge distribution on our
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Figure 13.3: 1D Laplace Equation

1D problem as:

Ve(x) =

2∑
i=1

αi(x)V
e
i (13.22)

ρe(x) =

2∑
i=1

αi(x)ρ
e
i (13.23)

and energy associated to an element will be:

We =
1

2

∫ xe2

xe1

[
ε(x)

∣∣∣∣dVe(x)dx

∣∣∣∣2 − 2ρe(x)Ve(x)

]
dx (13.24)

or

We =
1

2

2∑
i=1

2∑
j=1

V e
i

[∫ xe2

xe1

ε(x)

(
dαi(x)

dx

)(
dαj(x)

dx

)
dx

]
V e
j (13.25)

−
2∑
i=1

2∑
j=1

V e
i

[∫ xe2

xe1

αi(x)αj(x)dx

]
ρej (13.26)
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By introducing new notation:

T eij =

∫ xe2

xe1

αi(x)αj(x)dx (13.27)

The above equation can be written in matrix form:

We =
1

2
[Ve]

t [Ce] [Ve]− [Ve]
t [Te] [ρe] (13.28)

where [ρe] = [ρe1 ρe2]
t, and [Ce] is the same as Eq.(13.12) and Eq.(13.13).

[Te] =

[
T e11 T e12
T e21 T e22

]
(13.29)

After some simple manipulation

Tij =

{ xe2−xe1
3

If i = j
xe2−xe1

6
If i �= j

(13.30)

The total energy of the system will be

W =
N∑
e=1

We =
1

2
[V]t [C] [V]− [V]t [T] [R] (13.31)

where [V] , [C] are the same as before, but the new nodal charge vector [R]
will be

[R] =

⎡⎢⎢⎢⎣
ρ1
ρ2
...
ρM

⎤⎥⎥⎥⎦ (13.32)

We can rewrite the total energy of the system as:

W =
1

2

[
Vf Vp

]t [ Cff Cfp

Cpf Cpp

] [
Vf

Vp

]
−[

Vf Vp

]t [ Tff Tfp

Tpf Tpp

] [
Rf

Rp

]
(13.33)

where the vector Vf shows the free or known potentials, and Vp stands for
prescribed or unknown potentials. The [C] and [T] divided into four block
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matrix. Minimization of energy with respect to free potentials, ∂W
∂Vf

= 0, will

use system of linear equations:

[Cff ][Vf ] = −[Cfp][Vp] + [Tff ][Rf ] + [Tfp][Rp] (13.34)

which looks like A ·X = B that can be solved by regular methods. Iteration
method is another choice for obtaining unknown potentials. We do the job
as before, but in this case we have more terms.

Vk =
1

Ckk

[
−

K∑
i=1,i 
=k

ViCki +
K∑
i=1

TkiRi

]
(13.35)

we know the potential of boundaries, also we may guess some value for each
free node, then by iteration we reach the exact value. Solution CODE for
these two problems will be in FEM1D directory.
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Figure 13.4: 1D Poisson Equation
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13.2.3 1D Cavity Resonator

1D CavityResonator Problem: Suppose we have 1D cavity resonator,
like two large and long mirror, Fig.(13.5), which is separated by distance d,
Find
a- Resonant frequencies of this cavity
b- Draw first, second and third modes of it and confirm your results with
exact solution.
Solution: We should find two things, first; eigenvalues which gives us res-
onant frequencies of the cavity, second; eigenfunctions which gives us the
modes of cavity. The general quadratic functional for Helmholtz’s equation
∇2ψ + k2ψ = g will be

Figure 13.5: 1D Cavity Resonator

I(f) = 〈Lf , f〉 − 2〈f , g〉 = 1

2

∫ [|∇ψ|2 − k2ψ2 + 2ψg
]
dv (13.36)

which in our 1D problem g = 0 and ψ(z) = Ex(z). We divide the domain of
the problem into elements and for each element we devote a shape function

ψe(z) =

2∑
i=1

αi(z)ψ
e
i (13.37)
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We do the same procedure as we have done for pervious problem,

Ie(ψe) =
1

2
[ψe]

t [Ce] [ψe]− k2

2
[ψe]

t [Te] [ψe] (13.38)

(13.39)

where [ψe] = [ψe1 ψe2]
t

Ce
ij =

∫ xe2

xe1

(
dαi(x)

dx

)(
dαj(x)

dx

)
dx (13.40)

and Te the same value as before. The global functional will be

I(ψ) =
N∑
e=1

Ie(ψe) (13.41)

or

I(ψ) =
1

2
[Ψ]t [C] [Ψ]− k2

2
[Ψ]t [T] [Ψ] (13.42)

where

[Ψ] =

⎡⎢⎢⎢⎣
ψ1

ψ2
...
ψM

⎤⎥⎥⎥⎦ (13.43)

Boundary conditions tells us that tangential component of electric fields on
mirror vanishes; ψ1 = Ex(0) = 0 and ψM = Ex(d) = 0 The [C] and [T] are
global matrices and consisting of local matrices [Ce] and [Te], respectively. We
reform these equation as free and prescribe node fields, the same procedure
as before. Therefore

I(ψ) =
1

2

[
Ψf Ψp

]t [ Cff Cfp

Cpf Cpp

] [
Ψf

Ψp

]
−k

2

2

[
Ψf Ψp

]t [ Tff Tfp

Tpf Tpp

] [
Ψf

Ψp

]
(13.44)

We take derivative and setting it to be equal to zero.

∂I(ψ)

∂Ψf
= 0 (13.45)
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which gives us[
Cff Cfp

] [ Ψf

Ψp

]
− k2

[
Tff Tfp

] [ Ψf

Ψp

]
= 0 (13.46)

by applying boundary conditions, Ψp = 0, we will have[
Cff

] [
Ψf

]
= k2

[
Tff

] [
Ψf

]
(13.47)

or [
T−1
ff ·Cff

]
[Ψf ] = k2 [Ψf ] (13.48)

which looks like equation of A ·X = λX, general eigenvalue problem. eigen-
values of this equation,λ, give us resonant frequency of 1D cavity resonator,
and eigenvectors, X, of it can be used to show the modes of cavity.
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Figure 13.6: Modes of 1D Cavity Resonator by FEM, d = 6Cm

♣ Problems

• 1-If you were using second order linear elements Ve(x) = a+ bx + cx2,
what should be changed in the above formula and what would be the
results.

• 2- In 1D cavity resonator d = 5Cm and filled equally by three different
dielectric εr1 = 3, εr2 = 7, εr3 = 1.5. Find the dominant resonant
frequency and mode of the cavity. Confirm your results by exact values.
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13.3 Two Dimensional FEM

Two dimensional finite element analysis can be performed with either quadri-
lateral or triangular elements. In electromagnetics, triangular elements are
typically used as triangles can be easily approximate objects with arbitrarily
shapes. A triangular element or cell in a finite element mesh consists of nodes
or points that define the vertices of each triangle. It also consists of edges
that make up sides of each element. Mesh generation plays an important

Figure 13.7: Element e consists of nodes i,j and k oriented in a counter
clockwise order. Element e also consists of edges si,sj and sk which are
opposite nodes i,j and k, respectively.

role in finite element method. There are many commercial and free mesh
generation packages available. For our educational problems, we should do
the job ourself. Let us start with an electrostatic problem.

2D Laplace Problem: Fined the capacitance of a air filled coaxial ca-
ble with inner radius of R1 = 1Cm and outer radius of R2 = 2Cm. Draw
distribution of potential and Compare your results with exact values. Inner
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potential 1V and outer potential grounded.

• 1- MeshGeneration or Discretization is the first step. The cross
section of the coaxial cable is divided into small triangles in x, y plane,
so each triangle is called an element. In Fig.(9.1), the local numbering
and global numbering are shown for element number 3. The numbers
inside the triangle vertex is local numbering and outside of it are global.
Mesh generation of coaxial cable is also shown in Fig.(13.8).
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Figure 13.8: 2D-Mesh Generation of a Coaxial Cable

• 2- Base Function Suppose we have an element and every node has
a potential. How the potential can be found inside this triangle ap-
proximately? The same as one dimensional, interpolation is a choice.

Ve(x, y) = a + bx+ cy (13.49)

Let potential at local nodes (xi, yi); i = 1, 2, 3 of element number e be
V e
i . therefore

V e
1 (x1, y1) = a+ bx1 + cy1

V e
2 (x2, y2) = a+ bx2 + cy2

V e
3 (x3, y3) = a+ bx3 + cy3 (13.50)
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or ⎡⎣ V e
1

V e
2

V e
2

⎤⎦ =

⎡⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤⎦⎡⎣ a
b
c

⎤⎦ (13.51)

These equations can be rewrite them as in 1D case:

Ve(x, y) =
3∑
i=1

αi(x, y)V
e
i (13.52)

α1(x, y) =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

α2(x, y) =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

α3(x, y) =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y](13.53)

where A is the area of element e,

A =
1

2
[(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)] (13.54)

and αi(x, y); i = 1, 2, 3 are called the element shape functions. Now we
should find, energy of each element, E = −∇V = −(bax + cay).

We =
1

2

∫
ε(x, y)|E|2ds = 1

2

∫
ε(x, y)|∇V |2ds (13.55)

Similar to 1D case, we can rewrite the Eq.(13.55) as

We =
1

2

3∑
i=1

3∑
j=1

V e
i

[∫
ε(x, y)∇αi(x, y) · ∇αj(x, y)ds

]
V e
j (13.56)

Defining a 3× 3 matrix as

Ce
ij =

∫
ε(x, y)∇αi(x, y) · ∇αj(x, y)ds (13.57)

We =
1

2
[Ve]

t [Ce] [Ve] (13.58)
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which is similar to W = 1
2
CV 2 storing energy in a capacitor. Vector

[Ve] and matrix [Ce] will be:

[Ve] =

⎡⎣ V e
1

V e
2

V e
3

⎤⎦ (13.59)

[Ce] =

⎡⎣ Ce
11 Ce

12 Ce
13

Ce
21 Ce

22 Ce
23

Ce
31 Ce

32 Ce
33

⎤⎦ (13.60)

Now let us assembly the energy of all elements, to find total energy of
system or in another word, to find a function of function.

W =
N∑
e=1

We =
1

2
[V ]t [C] [V ] (13.61)

where

[V] =

⎡⎢⎢⎢⎣
V1
V2
...
VM

⎤⎥⎥⎥⎦ (13.62)

Some values of vector [V ] is given at boundaries which we called them
prescribe potentials, and some unknowns, free potential, which we should
find them. TheM is the number of nodes, N is the number of elements
and [C] is called Global Stiffness Matrix. We can rewrite the total en-
ergy of the system as:

W =
1

2

[
Vf Vp

]t [ Cff Cfp

Cpf Cpp

] [
Vf

Vp

]
(13.63)

The matrix [C] divided into four block capacitor matrix. If we differ-
entiate energy with respect to free potentials, we will obtain

[
Cff Cfp

] [ Vf

Vp

]
= 0 (13.64)

or simply
[Cff ][Vf ] = −[Cfp][Vp] (13.65)
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which looks like A ·X = B and solution of it is straight forward. As
we know from numerical analysis, there are two methods for solution of
A ·X = B equation: Direct and Indirect. Gauss Elimination method
is a direct method but Iteration Method, is called as indirect method.
Let us find a way for indirect method. In order to find a way to find
the unknown potentials, let us return to Eq.(13.61). If we differentiate
energy with respect to unknown potential nodes and put them equal
to zero, we will have F equations, (F=number of free nodes). One of
the unknown potential or free node, say Vk, will be

Vk = − 1

Ckk

[
K∑

i=1,i 
=k
ViCki

]
(13.66)

This means that the nodes which is connected directly to node k, con-
tributes to potential Vk. We guess some value for each free potentials,
then by iteration we reach the exact value.

By those method we can find the potentials inside the coaxial problem and
as long as the triangle be small, we will get more accurate results. The
capacitance can be calculated by W = 1

2
CV 2

d = 1
2
[V ]t [C] [V ]. where, Vd is

potential difference between inner and outer of coaxial cable. Sice we can
calculate W , thus C = 2 ∗W/V 2

d . The capacitance of unit length for a
coaxial capacitor can be determined exactly by:

C =
2πε0

ln(R2/R1)

13.4 Waveguide Modes

The scalar wave equation for a homogeneous isotropic medium is chosen.
The equation is written as:

∇2ψ + k2ψ = 0 (13.67)

where k2 is eigenvalue. The FEM solves the Eq.(13.67) by minimization of
a corresponding functional given by:

I(ψ) =
1

2

∫
s

[
(
∂ψ

∂x
)2 + (

∂ψ

∂y
)2 − k2ψ2

]
ds (13.68)
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where S represent the area cross section area of the waveguide. k2 = εrk
2
0−k2z ,

and k0 = 2π
λ0
,free space wave number, and kz wave number of waveguide.

When kz = 0, we can find the cutoff frequency of waveguide. εr is relative
permittivity of waveguide. The preceding functional automatically satisfies
the wave equation and Neumann boundary condition. Like the previous
example, the cross section area of waveguide should be divided into small
triangles. Hence we can write:

I(ψ) =
N∑
e=1

1

2

∫
s

[
(
∂ψe
∂x

)2 + (
∂ψe
∂y

)2 − k2ψ2
e

]
dS (13.69)

where
ψe(x, y) = a+ bx+ cy (13.70)

for simplicity we considered linear terms. Using the linear approximation in
Eq.(13.70), we can write

ψe1 = a + bx1 + cy1, ψe2 = a+ bx2 + cy2, ψe3 = a + bx3 + cy3 (13.71)

or like previous work, we can write

ψe(x, y) =

3∑
i=1

αi(x, y)ψ
e
i (13.72)

and αi(x, y) is the same as before; Eq.(13.53). Rewriting I(ψ) in matrix form
as we have done it in 2D case;

Ie(ψe) =
1

2
[ψe]

t [Ce] [ψe]− k2

2
[ψe]

t [Te] [ψe] (13.73)

(13.74)

where [ψe] = [ψe1 ψe2 ψe3]
t

Ce
ij =

∫
s

∇αi · ∇αjdS (13.75)

and Te

T eij =

∫
s

αiαjdS (13.76)
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The global functional will be

I(ψ) =

N∑
e=1

Ie(ψe) (13.77)

or

I(ψ) =
1

2
[Ψ]t [C] [Ψ]− k2

2
[Ψ]t [T] [Ψ] (13.78)

where

[Ψ] =

⎡⎢⎢⎢⎣
ψ1

ψ2
...
ψM

⎤⎥⎥⎥⎦ (13.79)

For TMz case, Eq.(13.78) can be rewritten as:

I(ψ) =
1

2

[
Ψf Ψp

]t [ Cff Cfp

Cpf Cpp

] [
Ψf

Ψp

]
−k

2

2

[
Ψf Ψp

]t [ Tff Tfp

Tpf Tpp

] [
Ψf

Ψp

]
(13.80)

We take derivative and setting it to be equal to zero.

[
Cff Cfp

] [ Ψf

Ψp

]
− k2

[
Tff Tfp

] [ Ψf

Ψp

]
= 0 (13.81)

by applying boundary conditions, Ψp = 0, we will have[
Cff

] [
Ψf

]
= k2

[
Tff

] [
Ψf

]
(13.82)

For TEz modes, the Ψ represent the axial magnetic field, Hz, and the bound-
ary condition is the Neumann condition, ∂ψ/∂n = 0, where n is the normal
to perfectly conducting boundary. In FEM, this is a natural boundary con-
dition and need not be imposed.[

C
] [

Ψ
]
= k2

[
T

] [
Ψ

]
(13.83)

The Ψ may be Ez for TMz modes or Hz for TE
z modes. Suppose we have

calculated the ψei for each element, which may be for TEz or TMz modes.
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How can we find other components Ex, Ey, Hx, Hy? From waveguide section,
for TEz we have:

Ex =
∂ψ
∂y
, Ey = −∂ψ

∂x

Hx =
−1
jωμ

∂2ψ
∂x∂z

, Hy =
−1
jωμ

∂2ψ
∂y∂z

Hz =
k2z−εrk20
jωμ

ψ

(13.84)

and for TMz :
Hx =

∂ψ
∂y
, Hy = −∂ψ

∂x

Ex =
1
jωε

∂2ψ
∂x∂z

, Ey =
1
jωε

∂2ψ
∂y∂z

Ez =
k2z−εrk20
jωε

ψ

(13.85)

hence; ∂ψe(x,y)
∂x

, ∂ψe(x,y)
∂y

, ∂2ψ
∂x∂z

and ∂2ψ
∂y∂z

. should be calculated.

∂ψe(x, y)

∂x
=

1

2A
[(y2 − y3)ψ

e
1 + (y3 − y1)ψ

e
2 + (y1 − y2)ψ

e
3] (13.86)

∂ψe(x, y)

∂y
=

1

2A
[(x3 − x2)ψ

e
1 + (x1 − x3)ψ

e
2 + (x2 − x1)ψ

e
3] (13.87)
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Appendix A

Fourier Transform

A.1 Introduction

The Fourier and Laplace transform are widely used in solving problems in
science and engineering. The Fourier transform is used in linear system anal-
ysis, antenna design, optical random process modeling, probability theory,
quantum physics, and boundary value problems.

In this section will review the Fourier transform formula. We have four
types of Fourier Transform.

Time Domain Frequency Domain

Continuous & Nonperiodic Continuous & Nonperiodic

x(t) X(f)

x(t) =

∫ ∞

−∞
X(f)ej2πftdf ⇐⇒ X(f) =

∫ ∞

−∞
x(t)e−j2πftdt (A.1)
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Time Domain Frequency Domain

Continuous & Periodic Discrete & Nonperiodic

x(t) = x(t+ Tp) X(mf0), f0 =
1
Tp

x(t) =

∞∑
m=−∞

X(mf0)e
j2πmf0t ⇐⇒ X(mf0) =

1

Tp

∫ Tp

0

x(t)e−j2πmf0tdt

(A.2)

Time Domain Frequency Domain

Discrete & Nonperiodic Continuous & Periodic

x(nT ), T = 1
fp

X(f) = X(f + fp)

where T is sampling rate and related to maximum frequency of the signal
fmax as T ≤ 1

2fmax
.

x(nT ) =
1

fp

∫ fp

0

X(f)ej2πfnTdf ⇐⇒ X(f) =

∞∑
n=−∞

x(nT )e−j2πfnT (A.3)

Time Domain Frequency Domain

Discrete & Periodic Discrete & Periodic

x(nT ) = x(nT +NT ), T = 1
Nf0

X(mf0) = X(mf0 +Nf0), f0 =
1
NT

x(nT ) =
N−1∑
m=0

X(mf0)e
j2π
N
mn ⇐⇒ X(mf0) =

1

N

N−1∑
n=0

x(nT )e
−j2π
N

mn (A.4)
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The last one which is called Discrete Fourier Transform (DFT), can be rep-
resented in matrix form. Since a digital computer works only with discrete
data, numerical computation of the Fourier transform of x(t) requires discrete
sample values of x(t), which we will call it x(nT ). In addition, a computer
can compute X(f) only at discrete values of f , that is, it can provide discrete
samples of the transform, X(mf0)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(0)

X(f0)

...

X[(N − 1)f0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 W · · · W (N−1)

... · · · · · · · · ·

1 W (N−1) · · · W (N−1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)

x(T )

...

x[(N − 1)T ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.5)

where W = e−
j2π
N , and T is the sampling time interval T ≤ 1

2fmax
and

fmax is the maximum frequency that is needed for x(t) processing. If we
need more resolution in spectrum of x(t) i.e. f0 = 1

NT
we should increase

the period Tp = NT , or in another word increasing dimension of matrix
N ×N . Fast Fourier Transform or (FFT) can be used for the computation
of X(0), X(f0), · · ·X[(N − 1)f0]. The FFT algorithm developed by Tukey
and Cooley in 1965, [25] which reduces the number of computation from
something on the order of N2 to N logN . The algorithm is simplified if N is
chosen to be a power of 2, but it is not a requirement.
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Appendix B

Matrix

B.1 Basic Definitions

The system of simultaneous linear algebraic equations involving real or com-
plex numbers:

y1 = a11x1 + a12x2 + · · ·+ a1NxN
y2 = a21x1 + a22x2 + · · ·+ a2NxN

.

.

.
yM = aM1x1 + aM2x2 + ·+ aMNxN

(B.1)

The system in summation notation:

ym =

N∑
n=1

amnxn 1 ≤ m ≤M (B.2)

As we will see, this equation can be expressed as a matrix times a column
vector.

A = [amn] =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .
. . . . . .
aM1 aM2 . . . aMN

⎤⎥⎥⎥⎥⎥⎥⎦ (B.3)
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Column vector: a single columned matrix:

C =

⎡⎢⎢⎢⎢⎢⎢⎣
c1
c2
.
.
.
cN

⎤⎥⎥⎥⎥⎥⎥⎦ (B.4)

Row vector: a single rowed matrix:

r =
[
r1 r2 . . . rN

]
(B.5)

Equality: A = B means that all of the elements in the two matrices are
equal, amn = bmn
Special Matrices

• The Null or Zero matrix: 0 all elements are zero

• The Kronecker delta: δmn =

{
1 m = n
0 m �= n

• Diagonal matrices:

D =

⎡⎢⎢⎣
d11 0 . . . 0
0 d22 . . . 0
. . . . .
0 0 . . . dMN

⎤⎥⎥⎦ (B.6)

• The Identity matrix: Imn = δmn

I =

⎡⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
. . . . .
0 0 . . . 1

⎤⎥⎥⎦ (B.7)

Matrix Operations

Unary: Operations on a single matrix
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• Scalar multiplication: A = λB, amn = λbmn

• Transpose:AT . [amn]
T = anm Note that

CT =

⎡⎢⎢⎢⎢⎢⎢⎣
c1
c2
.
.
.
cN

⎤⎥⎥⎥⎥⎥⎥⎦

T

=
[
c1 c2 . . . cN

]
(B.8)

• Complex conjugate:A∗. [amn]
∗ = a∗mn

• Hermitian conjugate or adjoint: A†. [amn]
† = a∗nm

• Inverse:A−1. A−1A = AA−1 = I

• Trace: TrA =
m=M∑
m=1

amm. Square matrices only.

Binary: Operations that combine matrices

• Addition: C = A+B. cmn = amn + bmn

• Subtraction: C = A−B. cmn = amn − bmn

• Array multiplication: C = A ◦ B. cmn = amnbmnNot standard, but
useful.

• Matrix multiplication C = AB. cmn =
k=K∑
k=1

amkbkn 1 ≤ m ≤ M

1 ≤ n ≤ N , A is M by K and B is K by N.⎡⎢⎢⎢⎢⎢⎢⎣
c11 c12 . . . c1N
c21 c22 . . . c2N
. . . . . .
. . . . . .
. . . . . .
cM1 cM2 . . . cMN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 . . . a1K
a21 a22 . . . a2K
. . . . . .
. . . . . .
. . . . . .
aM1 aM2 . . . aMK

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
b11 b12 . . . b1N
a21 a22 . . . b2N
. . . . . .
. . . . . .
. . . . . .
bK1 bK2 . . . bKN

⎤⎥⎥⎥⎥⎥⎥⎦
(B.9)
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• A matrix left (pre)-multiplying a column vector: Y = AX, ym =
N∑
n=1

amnxn 1 ≤ m ≤ M

⎡⎢⎢⎢⎢⎢⎢⎣
y1
y2
.
.
.
yM

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .
. . . . . .
aM1 aM2 . . . aMN

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x1
x2
.
.
.
xN

⎤⎥⎥⎥⎥⎥⎥⎦ (B.10)

• A matrix right (post)-multiplying a row vector:Y = XA, yn =
M∑
m=1

xmamn 1 ≤ n ≤ N

[
y1 y2 . . . yM

]
=

[
x1 x2 . . . xN

]
⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .
. . . . . .
aM1 aM2 . . . aMN

⎤⎥⎥⎥⎥⎥⎥⎦
(B.11)

• Important properties of matrix multiplication

– Matrix multiplication is not commutative

– The mnth element of the result is the sum of products between
elements from the mth row of A and the nth column of B.

– For pre-multiplication of x by A, x can be organized into columns
which are related to the columns in the result through matrix
column-vector products. The column structure is preserved.[ (

y11
y21

)(
y21
y22

) ]
=

[
a11 a12
a12 a22

] [ (
x11
x21

)(
x21
x22

) ]
(B.12)

where (
y11
y21

)
=

[
a11 a12
a12 a22

](
x11
x21

)
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and (
y12
y22

)
=

[
a11 a12
a12 a22

](
x12
x22

)
– For post-multiplication of x by A, x can be organized into rows

which are related to the rows in the result through row-vector
products matrix. The row structure is preserved.[

(y11 y12)
(y21 y22)

]
=

[
(x11 x12)
(x21 x22)

] [
a11 a12
a12 a22

]
(B.13)

where

(y11 y12) = (x11 x12)

[
a11 a12
a12 a22

]
and

(y21 y22) = (x21 x22)

[
a11 a12
a12 a22

]
More Special Matrices

– Real: A∗ = A

– Symmetric: AT = A

– Skew-symmetric or anti-symmetric: AT = −A

– Hermitian: A† = A

– Orthogonal: A−1 = AT

– Unitary: A−1 = A†

– Idempotent: A2 = A

– Nilpotent: Am = 0 for some integer m.

Example: Left-multiplication of a 2-element column vector by a 2x2 matrix

Let A =

[
a11 a12
a12 a22

]
, b =

[
b1
b2

]
and c =

[
c1
c2

]
We have, for left multiplication, c = Ab and that c =

[
c1
c2

]
=

[
a11b1 + a12b2
a12b1 + a22b2

]
.

Inverse of a square non-singular matrix: A−1A = AA−1 = I
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• 1. The following is a formula for calculating the inverse using the
cofactors of the matrix. This method has fallen out of favor in recent
years and has been replaced by the Gauss-Jordan method described
later in this section. For actually computing, the Gaussian elimination
method of solution, described later in this lecture, is preferred for its
efficiency.

(A−1)mn =
cofactor(anm)

det(A)
=

cofactor[(AT )mn]

det(A)
(B.14)

Note: it is the cofactor transpose that is used in the inverse,

cofactor(anm) = (−1)m+n ·
(

The determinant of a matrix with the
mthrow and thenthcolumn removed

)
|A| = det(A) =

∑
m

amn0cofactor(amn0) for any n0

=
∑
n

am0n cofactor(am0n) for anym0

Singular matrices: det(A) = 0

• 2. Some definitions (see for example Howard Eves Elementary Matrix
Theory Dover, 1980,N.Y.)

– Partitioning a matrix. Partitioning of a matrix is just the grouping
together of rows and/or columns. Vertical and horizontal lines
between the rows and columns are used to denote the partitions.
The elements in the various partitions can be grouped into sub-
matrices in the matrices as is demonstrated in the appendix on
block matrices⎡⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤⎦ =

⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ (B.15)

Augmenting a matrix: Augmenting a matrix is adding rows or
columns.

– Elementary Row Operations
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∗ o(m,n): interchange rows m and n.

∗ o(cn:multiply row n by scalar c.

∗ o(m + cn): multiply the row n by a constant c, then add it
to the row m. m �= n

– Row equivalence: Matrix B is row-equivalent to matrix A if and
only if B is obtainable from A by finitely many elementary row
operations.

• 3. To invert the matrix A using the Gauss-Jordan method:⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦
First augment the matrix with the identity matrix:

[A I] =

⎡⎣ a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1

⎤⎦
Then, perform elementary row operations on the augmented matrix
with the goal of converting the left partition into the identity matrix.
When this goal is reached, the right partition will contain the desired
inverse. It helps to keep track of the operations performed. The end
result will be

[
I A−1

]
=

⎡⎣ 1 0 0 a−1
11 a−1

12 a−1
13

0 1 0 a−1
21 a−1

22 a−1
23

0 0 1 a−1
31 a−1

32 a−1
33

⎤⎦
Example: the first step in the inversion⎡⎣ a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1

⎤⎦−−−−→
o(

1

a11
I)

⎡⎣ 1 a12/a11 a13/a11 1/a11 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1

⎤⎦
• 4. Inverses of the elementary row operations

– a. o(m,n) interchange rows m and n.

– b. o(c−1n) multiply row n by scalar 1/c.
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– c. o(m − cn)multiply the row n by the constant c then subtract
the result from row m. m �= n

• 5. Elementary Column operations

– a. o′(m,n) interchange columns m and n.

– b. o′(cn) multiply column n by a scalar c.

– c. o′(m + cn) multiply the column n by the constant c then add
the result to column m.m �= n

• 6. Column equivalence: Matrix B is column-equivalent to matrix A if
and only if B is obtainable from A by finitely many elementary column
operations.

• 7. Inverses of the elementary column operations

– a. o′(m,n) interchange columns m and n.

– b. o′(c−1n) multiply column n by a scalar 1/c.

– c. o′(m − cn) multiply the column n by the constant c then
subtract the result from column m.m �= n

Triangular Matrices
Triangular matrices have non-zero elements only on the diagonal and either
above the diagonal or below the diagonal. There may be any number of zeros
on the diagonal.

1. Upper triangular These matrices have non-zero elements only on the
diagonal and above the diagonal. As an example, consider

A =

⎡⎣ a11 a12 a13
0 a22 a23
0 0 a33

⎤⎦
2. Lower triangular The matrices have non-zero elements only on the diagonal
and above the diagonal. As an example consider

A =

⎡⎣ a11 0 0
a21 a22 0
a31 a32 a33

⎤⎦
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Echelon form
The echelon form of a matrix is a matrix arrived at through the application of
elementary row and column operations to the original matrix. In the resulting
matrix, the first non-zero element of each row is one. It is positioned one
element to the right of the first non-zero element in the row above it. (Note
Kreyszig’s definition does not require the first non-zero element in each row
to be one.)
The echelon form distinguishes itself from the upper-triangular matrix in that
the latter is only for square matrices whereas non-square matrices may be in
the echelon form. Also, there is no constraint on the first non-zero element
in any row.
The result is upper triangular, through there may exist a row below which
all elements are zero, but above which each row has at least one non-zero
element. For example, the following matrix is in echelon form,

A =

⎡⎣ a11 a12 a13
0 0 a23
0 0 0

⎤⎦
Gaussian elimination
Another way of solving a set of linear equations is Gaussian elimination.
The original matrix is first augmented with the knowns in the equation set.
Elementary row operations are then applied to the augmented matrix with
the goal of converting the left partition into an upper triangular matrix. The
last variable is solved for, and then its value is substituted into the previous
row to get the next to last variable. The substitutions continue row by row
until all of the variables are determined.
For example let our set of linear equations be represented by: y = Ax or[

y1
y2

]
=

[
a11 a12
a21 a22

] [
x1
x2

]
(B.16)

We augment A to get:

[
a11 a12
a21 a22

] [
y1
y2

]
We then apply an elementary row operation[

a11 a12
a21 a22

] [
y1
y2

]
o(2− a21

a11
1)

→
[
a11 a12 y1
0 a22 − a21

a11
a12 y2 − a21

a11
y1

]
The second row then corresponds to the equation(

a22 − a21
a11

a12

)
x2 = y2 − a21

a11
y1
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We solve for x2 and substitute the result into the equation represented by
the first row,

a11x1 + a12x2 = y1

We then solve for x1 . If we succeed in bringing the matrix into echelon form,
but there is one or more rows of zeros, then the original matrix was singular.
As a matter of terminology, the process of subtracting one equation from
those below it in order to eliminate the left-most variable is known as pivot-
ing. The equation that is being subtracted is called the pivot equation. Its
left-most element is called the pivot.

Matrix division
Given a matrix and its inverse, we have that

A−1A = AA−1 = I

Can we define a division operation? The first attempt at such a definition
might be BA−1 = B/A. This is sometimes known as right division. The
second attempt might be A−1B = B\A sometimes called left division. Both
of these operations are used. They do not necessarily give the same result.
The reason is that matrix multiplication is not commutative.

Block matrices
The idea of partitioning matrices can be carried a step further. After a matrix
has been partitioned into sub-matrices, the sub-matrices can be named. As
an example lets take a 4x4 matrix and name it A. One particular partitioning
is

A =

⎡⎢⎢⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎦
Lets name the sub-matrices

A11 = [a11] A12 =
[
a12 a13 a14

]
A21 =

⎡⎣ a21
a31
a41

⎤⎦ A33 =

⎡⎣ a22 a23 a24
a32 a33 a34
a42 a43 a44

⎤⎦
We can write A in terms of its sub-matrices as

A =

[
A11 A12

A21 A22

]
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The expression on the right is called a block matrix. It is a matrix whose
elements are themselves matrices. Block matrices have a fascinating property,
above and beyond being a handy organizational tool. With some limitations,
they obey the same operational rules as simple matrices. Let B be a block
matrix representing a simple matrix of the same dimensions as A.

B =

[
B11 B12

B21 B22

]
Addition and subtraction carry over because

A±B =

[
A11 A12

A21 A22

]
±

[
B11 B12

B21 B22

]
=

[
A11 ±B11 A12 ±B12

A21 ±B21 A22 ±B22

]
The most interesting question is whether matrix multiplication carries over.
The answer is yes, under certain circumstances. We can see what these cir-
cumstances are by writing out the general definition of matrix multiplication.

(AB)mn =
K∑
k=1

AmkBkn

The number of columns in all of the Amk must be he same as the number of
rows in all of the Bkn. This condition is fulfilled if A and B are partitioned
such that the grouping of the columns in A is the same as the grouping of
the rows of B.

Translating to homogeneous coordinates
The systems we have been considering are governed by the equation

y0 = A0x0

This equation is a homogeneous linear equation. The systems that are de-
scribed by this equation are linear systems. There are systems that are
governed by inhomogeneous linear equations.

y = Ax+ b

For those systems, the methods that we have been studying do not apply.
Fortunately, there is a straightforward method for converting the inhomo-
geneous equations to homogeneous equations. The tactic is to augment the
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matrix and the vectors. Using a 3 x 3 matrix for this example we start with
the matrix and vectors

A =

⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ b =

⎡⎣ b1
b2
b3

⎤⎦ x =

⎡⎣ x1
x2
x3

⎤⎦ y =

⎡⎣ y1
y2
y3

⎤⎦
Next we augment the matrix and input vector to be

A′ =

⎡⎢⎢⎣
a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
0 0 0 1

⎤⎥⎥⎦ x′ =

⎡⎢⎢⎣
x1
x2
x3
1

⎤⎥⎥⎦
The output of the equation y′ = A′x′ is

y′ =

⎡⎢⎢⎣
y1
y2
y3
1

⎤⎥⎥⎦
Surprisingly enough, the first three elements of the output vector are exactly
what we desire. As an additional bonus, the fourth element is exactly what
is needed to make y′ suitable for being operated upon by another matrix in
the format of A′.



Appendix C

VECTOR ANALYSIS

In this appendix relationships, identities, theorems and transformation of a
vector in some coordinate systems will be shown.

C.1 Rectangular Coordinate System

The coordinate vectors ax, ay, az form an orthogonal system of unit vectors
in a Cartesian coordinate system. Element of volume is dV = dxdydz and
Element of length is dL = dxax+dyay+dzaz, and |dL| = √

dx2 + dy2 + dz2.

A = Axax + Ayay + Azaz (C.1)

|A| =
√
A2
x + A2

y + A2
z (C.2)

A ·B = AxBx + AyBy + AzBz (C.3)

ax × ay = az , ay × az = ax, az × ax = ay (C.4)

A×B = (AyBz −AzBy)ax + (AzBx −AxBz)ay + (AxBy −AyBx)az (C.5)

∇ψ = ax
∂ψ

∂x
+ ay

∂ψ

∂y
+ az

∂ψ

∂z
(C.6)

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(C.7)

429
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∇×A = ax(
∂Az
∂y

− ∂Ay
∂z

) + ay(
∂Ax
∂z

− ∂Az
∂x

) + az(
∂Ay
∂x

− ∂Ax
∂y

) (C.8)

∇ · ∇ψ = ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(C.9)

∇2A = ∇(∇ ·A)−∇×∇×A (C.10)

∇×∇× (ax ×A) = −ax ×∇(∇ ·A)−∇× (
∂A

∂x
) (C.11)

∇(∇ · (ax ×A)) = −ax ×∇×∇×A−∇× (
∂A

∂x
) (C.12)

∇∇ · (ψax) = ax∇2ψ (C.13)

∇ · (ax ×A) = −ax · ∇ ×A (C.14)

∇(ax ·A) = ax ×∇×A+
∂A

∂x
(C.15)

∇(ax ×A) = ax∇ ·A− ∂A

∂x
(C.16)

∇2A = ax∇2Ax + ay∇2Ay + az∇2Az (C.17)

∇(∇ ·A) = ax(
∂2Ax
∂x2

+
∂2Ay
∂x∂y

+
∂2Az
∂x∂z

)

+ay(
∂2Ax
∂x∂y

+
∂2Ay
∂y2

+
∂2Az
∂y∂z

) (C.18)

+az(
∂2Ax
∂x∂z

+
∂2Ay
∂y∂z

+
∂2Az
∂z2

)
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∇×∇×A = ax(−∂
2Ax
∂y2

− ∂2Ax
∂z2

+
∂2Ay
∂x∂y

+
∂2Az
∂x∂z

)

+ay(−∂
2Ay
∂x2

− ∂2Ay
∂z2

+
∂2Ax
∂x∂y

+
∂2Az
∂y∂z

) (C.19)

+az(−∂
2Az
∂x2

− ∂2Az
∂y2

+
∂2Ax
∂x∂z

+
∂2Ay
∂y∂z

)

∇2(ψax) = ax∇2ψ (C.20)

∇2(ax ×A) = ax ×∇2A (C.21)

C.2 General Curvilinear Coordinates

One of the main advantages of the vector calculus is the possibility to formu-
late physical laws without using some particular coordinate system. If one
has to solve a special case of electromagnetic field defined by given boundary
conditions it is necessary to decompose corresponding vector equations into
coordinate components and to solve them in that coordinate system. The
choice of a suitable coordinate system can significantly simplify the solution.
In the opposite the case construction of a suitable analytical solution is rather
tedious. The appropriate coordinate system is chosen in such a way that its
coordinate surfaces, obtained by putting the particular coordinates equal to
constants, coincide with the boundary surfaces of the region in which the
solution is to be seek.
In this respect the definition and utilization of curvilinear coordinate system
is one of the important topics that are necessary to cope with for a proper
understanding of the formulation and solution of electromagnetic problems.
Let us consider three independent, unambiguous and smooth functions f1(x, y, z),
f2(x, y, z), f3(x, y, z), of the three independent space variables x, y, z in the
cartesian coordinate system (x, y, z). Setting these functions equal to con-
stant parameters u1, u2, u3 defines three surfaces, that can be labeled by
these numbers, see Fig.(C.1). Common intersection of the surfaces u1 =
const1, u2 = const2, u3 = const3 defines one point in the space to which a
set of three unique numbers (u1, u2, u3) can be assigned. These numbers
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Figure C.1: General Curvilinear Coordinates

are called curvilinear coordinates of that point, see Fig.(C.1). The set of
equations

u1 = f1(x, y, z)
u2 = f2(x, y, z)
u3 = f2(x, y, z)

(C.22)

can be solved and the solution can be written in the form

x = g1(u1, u2, u3)
y = g2(u1, u2, u3)
z = g3(u1, u2, u3)

(C.23)

It defines the position of the point A in the cartesian system (x, y, z) using
coordinates (u1, u2, u3), where r = xax + yay + zaz = g1(u1, u2, u3)ax +
g2(u1, u2, u3)ay + g3(u1, u2, u3)az is the position vector of the point A and
ax, ay, az are the unit vectors aligned in the space with the coordinate axes
of the cartesian system, see Fig.(C.1). An elementary displacement of the
point A in the space can be described by the differential formula

dr =
∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3 (C.24)
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The small change along each coordinate curve is tangential to the curve.
Define

ai =
∂r

∂ui
, i = 1, 2, 3 (C.25)

a1, a2, a3 are called the basic vectors of the general curvilinear coordinate
system at point A(u1, u2, u3). It is to be noted that the absolute values of
a1, a2, a3 are not equal to 1, they are generally not unit vectors. If a1⊥a2⊥a3

we have the orthogonal curvilinear coordinate system. In the following we
shall consider only orthogonal coordinate systems. The relation Eq.(C.24)
can be rewritten into the form

dr = h1(u1, u2, u3)du1a1 + h2(u1, u2, u3)du2a2 + h3(u1, u2, u3)du3a3 (C.26)

where we have put ai = hi(u1, u2, u3)ai where i = 1, 2, 3. The functions
h1, h2, h3 are usually called the metric coefficients. The physical meaning
of these coefficients can be understood when defining the length elements
along the particular directions given by vectors a1, a2, a3 respectively. Con-
sequently the change of the curvilinear coordinate dui can be transformed
into corresponding displacement in space by multiplying it by hi, correspond-
ing metric coefficient see Fig.(C.2). Similarly one can define elementary co-
ordinate surface corresponding with the elementary changes of a couple of
coordinates. It is explicitly defined by the

dSi = dsj × dsk. (C.27)

Using expressions for elementary displacements dsj,dsk from Eq.(C.27) it is
possible to write

ds = dr = h1du1a1 + h2du2a2 + h3du3a3 (C.28)

In Eq.(C.28) the relations a1 × a2 = a3, a2 × a3 = a1 and a3 × a1 = a2 were
used. According to Eq.(C.28) a general elementary surface dS is composed
of the three elementary surfaces dS1, dS2, dS3 oriented along the unit vectors
a1, a2, a3 see Fig.(C.2). Elementary volume element dV can be described by

dV = dsi · dSi = h1h2h3du1du2du3 (C.29)

C.2.1 Gradient

Gradient of a scalar function is a vector the direction of which points the
maximum growth of the function and its magnitude is equal to the derivative
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Figure C.2: Definition of the elementary displacement ds, surface dS and
volume dV , respectively

of that function along that direction. To obtain the formula for the gradient
of a scalar function in curvilinear coordinate system (u1, u2, u3) let us consider
the function ψ(u1, u2, u3). For the differential of the function one can write

dψ =
∂ψ

∂u1
du1 +

∂ψ

∂u2
du2 +

∂ψ

∂u3
du3 (C.30)

we know that ds = h1du1a1 + h2du2a2 + h3du3a3, therefore we define ∇ψ =
1
h1

∂ψ
∂u1

a1 +
1
h2

∂ψ
∂u2

a2 +
1
h3

∂ψ
∂u3

a3, so

dψ = ∇ψ · ds (C.31)

The gradψ = ∇ψ is defined as gradient of the function ψ.

C.2.2 Divergence

The divergence of a vector function A(u1, u2, u3) is defined by the formula

divA = ∇ ·A = lim
ΔV→0

∮
A · dS
ΔV

(C.32)
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The volume of the considered region is expected to be shrunk to a very small
elementary volume. In this case one can speak about the volume density of
the outflow of the vector as a function of point position in the space.
To obtain the formula for divergence in curvilinear coordinate system we
use the relations for elementary surface and volume element. After some
mathematical manipulations, we have

divA = ∇ ·A =
1

h1h2h3

[
∂(A1h2h3)

∂u1
+
∂(A2h3h1)

∂u2
+
∂(A3h1h2)

∂u3

]
(C.33)

C.2.3 Curl

The third and last of the special differential operator analysis which is fre-
quently used for the characterizing of a special physical vector fields is curl-
operator. The curl of a vector field, denoted curlA or ∇×A (the notation
used in this work), is defined as the vector field having magnitude equal to
the maximum ”circulation” at each point and to be oriented perpendicularly
to this plane of circulation for each point. More precisely, the magnitude of
∇×A is the limiting value of circulation per unit area. Written explicitly

(∇×A) · n = lim
ΔS→0

∮
C
A · dS
ΔS

(C.34)

where the right side is a line integral around an infinitesimal region of area
S that is allowed to shrink to zero via a limiting process and n is the unit
normal vector to this region. If ∇ × A = 0, then the field is said to be an
irrotational field. The symbol ∇ is variously known as ”nabla” or ”del.”
The curl can be similarly defined in arbitrary orthogonal curvilinear coordi-
nates using A = A1a1 +A2a2 +A3a3. In an orthogonal curvilinear system is
given by

∇×A =
1

h2h3

[
∂(h3A3)

∂u2
− ∂(h2A2)

∂u3

]
a1 (C.35)

+
1

h3h1

[
∂(h1A1)

∂u3
− ∂(h3A3)

∂u1

]
a2

+
1

h1h2

[
∂(h2A2)

∂u1
− ∂(h1A1)

∂u2

]
a3
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C.3 Cylindrical Coordinate System

The coordinate vectors aρ, aφ, az form an orthogonal system of unit vectors
in a cylindrical coordinate system. Element of volume is dV = ρdρdφdz;
element of length is dL = dρaρ + ρdφaφ + dzaz , |dL| =

√
dρ2 + ρ2dφ2 + dz2

A = Aρaρ + Aφaφ + Azaz (C.36)

|A| =
√
Aρ

2 + Aφ
2 + Az

2 (C.37)

A ·B = AρBρ + AφBφ + AzBz (C.38)

aρ × aφ = az , aφ × az = aρ, az × aρ = aφ (C.39)

A×B = (AφBz −AzBφ)aρ+ (AzBρ−AρBz)aφ+ (AρBφ−AφBρ)az (C.40)

daρ
dφ

= aφ,
daφ
dφ

= −aρ (C.41)

∇ψ = aρ
∂ψ

∂ρ
+ aφ

1

ρ

∂ψ

∂φ
+ az

∂ψ

∂z
(C.42)

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

(C.43)

∇ · aρ = 1

ρ
; ∇ · aφ = ∇ · az = 0 (C.44)

∇×A = aρ(
1

ρ

∂Az
∂φ

− ∂Aφ
∂z

)+aφ(
∂Aρ
∂z

− ∂Az
∂ρ

)+az(
1

ρ

∂(ρAφ)

∂ρ
− 1

ρ

∂Aρ
∂φ

) (C.45)

∇× aφ =
az
ρ
; ∇× aρ = ∇× az = 0 (C.46)

∇2ψ =
1

ρ

∂

∂ρ
(ρ
∂ψ

∂ρ
) +

1

ρ2
∂2ψ

∂φ2
+
∂2ψ

∂z2
(C.47)
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∇2A = aρ(
∂2Aρ
∂ρ2

+
1

ρ

∂Aρ
∂ρ

− Aρ
ρ2

+
1

ρ2
∂2Aρ
∂φ2

− 2

ρ2
∂Aφ
∂φ

+
∂2Aρ
∂z2

)

+aφ(
∂2Aφ
∂ρ2

+
1

ρ

∂Aφ
∂ρ

− Aφ
ρ2

+
1

ρ2
∂2Aφ
∂φ2

− 2

ρ2
∂Aρ
∂φ

+
∂2Aφ
∂z2

)

+az(
∂2Az
∂ρ2

+
1

ρ

∂Az
∂ρ

+
1

ρ2
∂2Az
∂φ2

+
∂2Az
∂z2

) (C.48)

Note:
∇2A �= aρ∇2Aρ + aφ∇2Aφ + az∇2Az (C.49)

∇∇ ·A = aρ(
∂2Aρ
∂ρ2

+
∂2Az
∂ρ∂z

+
1

ρ

∂2Aφ
∂ρ∂φ

+
1

ρ

∂Aρ
∂ρ

− 1

ρ2
∂Aφ
∂φ

− Aρ
ρ2

)

+aφ(
1

ρ

∂2Az
∂φ∂z

+
1

ρ2
∂2Aφ
∂φ2

+
1

ρ

∂2Aρ
∂ρ∂φ

+
1

ρ2
∂Aρ
∂φ

)

+az(
∂2Az
∂z2

+
1

ρ

∂2Aφ
∂φ∂z

+
∂2Aρ
∂ρ∂z

+
1

ρ

∂Aρ
∂z

) (C.50)

∇×∇×A = aρ(− 1

ρ2
∂2Aρ
∂φ2

− ∂2Aρ
∂z2

+
∂2Az
∂ρ∂z

+
1

ρ

∂2Aφ
∂ρ∂φ

+
1

ρ2
∂Aφ
∂φ

)

+aφ(−∂
2Aφ
∂z2

+
1

ρ

∂2Az
∂φ∂z

− ∂2Aφ
∂ρ2

− 1

ρ

∂Aφ
∂ρ

+
Aφ
ρ2

− 1

ρ2
∂Aρ
∂φ

+
1

ρ

∂2Aρ
∂φ∂ρ

)

+az(−∂
2Az
∂ρ2

− 1

ρ2
∂2Az
∂φ2

+
∂2Aρ
∂ρ∂z

+
1

ρ

∂Aφ
∂φ∂z

+
1

ρ

∂Aρ
∂z

− 1

ρ

∂Az
∂ρ

) (C.51)

C.4 Spherical Coordinate System

The coordinate vectors ar, aθ, aφ form an orthogonal system of unit vectors in
a spherical coordinate system. Element of volume is dV = r2 sin θdrdθdφ. El-
ement of length is dL = drar+rdθaθ+r sin θdφaφ, and |dL| =

√
dr2 + r2dθ2 + r2 sin2 θdφ2

A = Arar + Aθaθ + Aφaφ (C.52)

|A| =
√
A2
r + A2

θ + A2
φ (C.53)

A ·B = ArBr + AθBθ + AφBφ (C.54)
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ar × aθ = aφ, aθ × aφ = ar, aφ × ar = aθ (C.55)

A×B = (AθBφ−AφBθ)ar + (AφBr −ArBφ)aθ + (ArBθ −AθBr)aφ (C.56)

dar
dθ

= aθ,
daθ
dθ

= −ar,
dar
dφ

= sin θaφ,
daθ
dφ

= cosφaφ (C.57)

ar × ax = aφ cos θ cosφ+ aθ sin φ

ar × ay = aφ cos θ sinφ− aθ cosφ (C.58)

ar × az = −aφ sin θ

∂ar
∂φ

= sin θaφ;
∂ar
∂θ

= aθ;

∂aθ
∂θ

= −ar;
∂aθ
∂φ

= cos θaφ; (C.59)

∇ψ = ar
∂ψ

∂r
+ aθ

1

r

∂ψ

∂θ
+ aφ

1

r sin θ

∂ψ

∂φ
(C.60)

∇ ·A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

(C.61)

∇×A =
ar

r sin θ
[
∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ
]

+
aθ
r
[

1

sin θ

∂Ar
∂φ

− ∂

∂r
(rAφ)]

+
aφ
r
[
∂

∂r
(rAθ)− ∂Ar

∂θ
] (C.62)

∇2ψ =
1

r2
∂

∂r
(r2

∂ψ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
) +

1

r2 sin2 θ

∂2ψ

∂φ2
(C.63)
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∇2A = ar(
∂2Ar
∂r2

+
2

r

∂Ar
∂r

− 1

r2
Ar +

1

r2
∂2Aθ
∂θ2

+
cot θ

r2
∂Ar
∂θ

+

1

r2 sin2 θ

∂2Ar
∂φ2

− 2

r2
∂Aθ
∂θ

− 2 cot θ

r2
Aθ − 2

r2 sin θ

∂Aφ
∂φ

)

+aθ(
∂2Aθ
∂r2

+
2

r

∂Aθ
∂r

− Aθ
r2 sin2 θ

+
1

r2
∂2Aθ
∂θ2

+
cot θ

r2
∂Aθ
∂θ

+
1

r2 sin2 θ

∂2Aθ
∂φ2

+
2

r2
∂Ar
∂θ

− 2 cot θ

r2 sin θ

∂Aφ
∂φ

)

+aφ(
∂2Aφ
∂r2

+
2

r

∂Aφ
∂r

− Aφ
r2 sin2 θ

+
1

r2
∂2Aφ
∂θ2

+
cot θ

r2
∂Aφ
∂θ

+
1

r2 sin2 θ

∂2Aφ
∂φ2

+
2

r2 sin θ

∂Ar
∂φ

+
2 cot θ

r2 sin θ

∂Aθ
∂φ

) (C.64)

Note:

∇2A �= ar∇2Ar + aθ∇2Aθ + aφ∇2Aφ (C.65)

C.4.1 Rectangular to Cylindrical and Spherical Trans-

formation

Let point x, y, z be in rectangular, and the same point in cylindrical be ρ, φ, z
and in spherical be r, θ, φ, thus

x = ρ cosφ

y = ρ sinφ (C.66)

z = z

x = r sin θ cos φ

y = r sin θ sin φ (C.67)

z = r cos θ

∂

∂x
= cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
;

∂

∂y
= sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
(C.68)
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∂

∂x
= sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
∂

∂y
= sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cos φ

r sin θ

∂

∂φ
∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(C.69)

ax = aρ cos φ− aφ sin φ

ay = aρ sin φ+ aφ cosφ (C.70)

az = az

ax = ar sin θ cos φ+ aθ cos θ cos φ− aφ sin φ

ay = ar sin θ sin φ+ aθ cos θ sinφ+ aφ cosφ

az = ar cos θ − aθ sin θ (C.71)

Ax = Aρ cosφ− Aφ sin φ

Ay = Aρ sinφ+ Aφ cosφ (C.72)

Az = Az

⎡⎢⎢⎢⎢⎣
Ax

Ay

Az

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cosφ − sin φ 0

sin φ cos φ 0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Aρ

Aφ

Az

⎤⎥⎥⎥⎥⎦ (C.73)

Ax = Ar sin θ cos φ+ Aθ cos θ cosφ− Aφ sinφ

Ay = Ar sin θ sin φ+ Aθ cos θ sin φ+ Aφ cos φ

Az = Ar cos θ −Aθ sin θ (C.74)

⎡⎢⎢⎢⎢⎣
Ax

Ay

Az

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
sin θ cosφ cos θ cos φ − sinφ

sin θ sin φ cos θ sin φ cosφ

cos θ − sin θ 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Ar

Aθ

Aφ

⎤⎥⎥⎥⎥⎦ (C.75)
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C.4.2 Cylindrical to Rectangular and Spherical Trans-

formation

Let point x, y, z be in rectangular, and the same point in cylindrical be ρ, φ, z
thus

ρ =
√
x2 + y2

φ = sin−1 y√
x2+y2

= cos−1 y√
x2+y2

= tan−1 y
x

aρ = ax cosφ+ ay sinφ

aφ = −ax sinφ+ ay cos φ (C.76)

az = az

aρ = ar sin θ + aθ cos θ

az = ar cos θ − az sin θ (C.77)

aφ = aφ

∂

∂ρ
=

x√
x2 + y2

∂

∂x
+

y√
x2 + y2

∂

∂y
;

∂

∂φ
= x

∂

∂y
− y

∂

∂x
(C.78)

Aρ = Ax cosφ+ Ay sinφ

Aφ = −Ax sinφ+ Ay cos φ (C.79)

Az = Az

⎡⎢⎢⎢⎢⎣
Aρ

Aφ

Az

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cosφ sinφ 0

− sin φ cosφ 0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Ax

Ay

Az

⎤⎥⎥⎥⎥⎦ (C.80)

⎡⎣ Aρ

Az

⎤⎦ =

⎡⎣ sin θ cos θ

cos θ − sin θ

⎤⎦⎡⎣ Ar

Aθ

⎤⎦ (C.81)
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C.4.3 Spherical to Rectangular and Cylindrical Trans-

formation

Let point x, y, z be in rectangular, and the same point in spherical be r, θ, φ
and in cylindrical be ρ, φ, z,; thus

r =
√
x2 + y2 + z2 (C.82)

θ = sin−1

√
x2 + y2√

x2 + y2 + z2
= cos−1 z√

x2 + y2 + z2
= tan−1

√
x2 + y2

z

φ = tan−1 y

x

and the same point in cylindrical:

r =
√
ρ2 + z2 (C.83)

θ = sin−1 ρ√
ρ2 + z2

= cos−1 z√
ρ2 + z2

= tan−1 ρ

z

φ = φ

∂

∂r
=

x√
x2 + y2 + z2

∂

∂x
+

y√
x2 + y2 + z2

∂

∂y
+

z√
x2 + y2 + z2

∂

∂z

∂

∂θ
=

xz√
x2 + y2

∂

∂x
+

yz√
x2 + y2

∂

∂y
−

√
x2 + y2

∂

∂z

∂

∂φ
= x

∂

∂y
− y

∂

∂x
(C.84)

ar = ar sin θ + az cos θ

aθ = aρ cos θ − az sin θ (C.85)

aφ = aφ

ar = ax sin θ cosφ+ ay sin θ sinφ+ az cos θ

aθ = ax cos θ cosφ+ ay cos θ sinφ− az sin θ (C.86)

aφ = −ax sin φ+ ay cosφ

Ar = Ax sin θ cosφ+ Ay sin θ sinφ+ Az cos θ

Aθ = Ax cos θ cosφ+ Ay cos θ sin φ− Az sin θ (C.87)

Aφ = −Ax sin φ+ Ay cosφ
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⎡⎢⎢⎢⎢⎣
Ar

Aθ

Aφ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Ax

Ay

Az

⎤⎥⎥⎥⎥⎦ (C.88)

C.5 Addition and Multiplication of Vectors

A ·A = |A|2 (C.89)

A ·A∗ = |A|2
A+B = B+A

A ·B = B ·A
A×B = −B ×A

(A+B) ·C = A ·C+B ·C
(A+B)×C = A×C+B×C

A · (B×C) = B · (C×A) = C · (A×B)

A× (B×C) = B(A ·C)−C(A ·B)

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C)

(A×B)× (C×D) = (A×B ·D)C− (A×B ·C)D
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C.6 Differentiation of Vector Fields

∇ · ∇ ×A = 0 (C.90)

∇×∇ψ = 0

∇(ψ + φ) = ∇ψ +∇φ
∇(ψφ) = φ∇ψ + ψ∇φ
∇(

φ

ψ
) =

ψ∇φ− φ∇ψ
ψ2

∇× (A+B) = ∇×A+∇×B

∇ · (A+B) = ∇ ·A+∇ ·B
∇ · (ψA) = ∇ψ ·A+ ψ∇ ·A
∇ · (A

ψ
) =

ψ∇ ·A−A · ∇ψ
ψ2

∇× (ψA) = ∇ψ ×A+ ψ∇×A

∇× (
A

ψ
) =

ψ∇×A+A×∇ψ
ψ2

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B

∇×∇×A = ∇(∇ ·A)−∇2A

∇× (A×B) = A∇ ·B−B∇ ·A+ (B · ∇)A− (A · ∇)B

C.7 Coordinate Differentials Formula

∂

∂x
= ax · ∇ ∂

∂y
= ay · ∇

1

hn

∂

∂n
= an · ∇ 1

ht

∂

∂t
= at · ∇

(C.91)

C.8 Integration

In the following equations, ψ, φ are scalar fields and A,B are vector fields.
If region V is bounded by the closed surface S, then∮

S

A · dS =

∫
V

(∇ ·A)dV Divergence Theorem (C.92)
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∫
V

[(∇×A) · (∇×B)−A · (∇×∇×B)]dV =

∮
S

(A×∇×B) · dS (C.93)∫
V

(φ∇2ψ−ψ∇2φ)dV =

∮
S

(φ∇ψ−ψ∇φ) · dS Green′s Identity (C.94)∫
V

(φ∇2ψ +∇ψ · ∇φ)dV =

∮
S

(φ∇ψ) · dS (C.95)∫
V

(∇φ) · (∇×A)dV =

∮
S

φ(∇×A) · dS =

∮
S

(A×∇φ) · dS (C.96)

Also, If the surface S spans the closed contour C, then∮
C

(∇ψ) · dL = 0 (C.97)

∮
S

(∇×A) · dS = 0 (C.98)∮
C

A · dL =

∫
S

(∇×A)·dS Stokes′ Theorem (C.99)

C.9 The Dirac Delta Function

The Dirac δ-function answers the need to describe quantities that exist only
at a point, along a line, or on a sheet; in other words, quantities that do not
extend over all dimensions.

δ(at) =
1

|a|δ(t) (C.100)

δ(t) = δ(−t) (C.101)

δ′(t) = −δ′(−t) (C.102)

δ(t2 − a2) =
1

2a
[δ(t+ a) + δ(t− a)] (C.103)

f(t)δ(t− t0) = f(t0)δ(t− t0) (C.104)



446 APPENDIX C. VECTOR ANALYSIS

∫
f(t)δ(t− t0)dt = f(t0) (C.105)

∫
f(t)δ(n)(t− t0)dt = (−1)nf(t0) (C.106)

δ[f(t)] =
N∑
i=1

δ(t− ti)

|df(ti)/dt| where f(ti) = 0, i = 1, 2, 3 · · ·N (C.107)

∫
g(t)δ[f(t)]dt =

N∑
i=1

g(ti)

|df(ti)/dt| (C.108)

δ(r− r′) (3D delta function)

= δ(x− x′)δ(y − y′)δ(z − z′) (Cartesian)

=
δ(ρ− ρ′)

ρ
δφ− φ′δ(z − z′) (Cylindrical)

=
δ(r − r′)
rr′

δ(θ − θ′)
sin θ

δ(φ− φ′) (spherical)

=
δ(r − r′)
rr′

δ(cos θ − cos θ′)δ(φ− φ′) (spherical) (C.109)

C.10 Useful Formulas

In EM computation, we usually face with mathematical manipulation with
distance source and observation point. The following formula may be useful
in those computations:

R = (x− x′)ax + (y − y′)ay + (z − z′)az (C.110)

R = |r− r′| =
√
(x− x′)2 + (y − y′)2 + (z − z′)2 (C.111)

aR =
R

R
=

(x− x′)
R

ax +
(y − y′)
R

ay +
(z − z′)
R

az (C.112)

∇R = aR (C.113)
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∂R

∂x
=
x− x′

R
= −∂R

∂x′
(C.114)

∇F (R) = −∇′F (R) = F ′(R)aR (C.115)

∇ · [F (R)aR] = −∇′ · [F (R)aR] = 2F (R)

R
+ F ′(R) (C.116)

∇ · aR =
2

R
(C.117)

∇× [F (R)aR] = 0 (C.118)

∇2F (R) = ∇′2F (R) =
2F ′(R)
R

+ F ′(R) (C.119)

∇2Rn = n(n + 1)Rn−2 (C.120)

∇2 1

R
= −4πδ(r− r′) (C.121)

(∇2 + β2)(
e−jβR

R
) = −4πδ(r− r′) (C.122)

∇(
e−jβR

R
) = −(

1 + jβR

R
)(
e−jβR

R
)aR (C.123)

∇ · (RB) = aR ·B; ∇× (RB) = aR ×B; (C.124)

where B is constant vector.

∇F (t− R/c) = −F
′(t− R/c)

cR
aR = −∇′F (t− R/c) (C.125)

∇F (t− R/c)

R
= [−F

′(t−R/c)

cR
+
F (t− R/c)

R2
]aR = −∇′F (t−R/c)

R
(C.126)

∇ · J(t−R/c) = −1

c
aR · J′(t− R/c) (C.127)
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∇× J(t− R/c) = −1

c
aR × J′(t−R/c) (C.128)

∇ · J(t− R/c)

R
= −[

J(t−R/c)

R2
+

J′(t−R/c)

cR
] · aR (C.129)

∇× J(t− R/c)

R
= − 1

R2
aR × J(t−R/c)− 1

cR
aR × J′(t− R/c) (C.130)

∇2F (t− R/c) = − 2

cR
F ′(t−R/c) +

F ′′(t− R/c)

c2
(C.131)

∇2J(t−R/c) = − 2

cR
J′(t− R/c) +

J′′(t− R/c)

c2
(C.132)

∇2J(t−R/c)

R
=

J′′(t−R/c)

c2R
(C.133)

Identities involving the plane-wave function
E is a constant vector, k = |k|.

∇(e−jk·r) = −jke−jk·r (C.134)

∇ · (Ee−jk·r) = −jk · Ee−jk·r (C.135)

∇× (Ee−jk·r) = −jk× Ee−jk·r (C.136)

∇2(Ee−jk·r) = −jk2Ee−jk·r (C.137)

Identities involving the transverse/longitudinal decomposition
n is a constant unit vector, An ≡ n · A, ∂

∂n
≡ n · ∇, At ≡ A − nAn and

∇t ≡ ∇− n ∂
∂n

A = At + nAn (C.138)

∇ = ∇t + n
∂

∂n
(C.139)

n ·At = 0 (C.140)
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(n · ∇)φ = 0 (C.141)

∇tφ = ∇φ− n
∂φ

∂n
(C.142)

n · (∇φ) = (n · ∇)φ =
∂φ

∂n
(C.143)

n · (∇tφ) = 0 (C.144)

∇t · (nφ) = 0 (C.145)

∇t × (nφ) = −n× (∇tφ) (C.146)

∇t × (n×A) = n∇t ·At (C.147)

n× (∇t ×A) = ∇tAu (C.148)

n× (∇t ×At) = 0 (C.149)

n · (n×A) = 0 (C.150)

n× (n×A) = −At (C.151)

∇φ = ∇tφ+ n
∂φ

∂n
(C.152)

∇ ·A = ∇t ·At +
∂An
∂n

(C.153)

∇×A = ∇t ×At + n×
[
At

∂u
−∇tAu

]
(C.154)

∇2φ = ∇2
tφ+

∂2φ

∂n2
(C.155)
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∇×∇×A = ∇t ×∇t ×At − ∂2At

∂n2
+∇t

∂An
∂n

+ n

[
∂

∂n
(∇t ·At)−∇2

tAn

]
(C.156)

∇2A = ∇t(∇t ·At) +
∂2At

∂n2
−∇t ×∇t ×At + n∇2An (C.157)



Appendix D

Analytic Geometry

D.1 Elementary Geometry

D.1.1 Plane Triangle

In the following formulas, S stands for the area of triangle; α, β and γ are
the interior angles; a, b and c; are the sides opposite the angle α, β and γ
respectively; ha, hb and hc are the attitudes corresponding to sides a, b and
c; ra, rb and rc are the radii of escribed circles tangent to sides a, b and c,
respectively; p is the semiperimeter, p = 1

2
(a + b + c); R is the radius of a

circumscribe circle; r is the radius of an inscribed circle,
• Area of triangle:

S =
1

2
aha =

1

2
bhb =

1

2
chc

=
1

2
ab sin γ =

abc

4R
= pr

= ra(p− a) = rb(p− b) = rc(p− c) =
√
rarbrcr

= p(p− a)tan
α

2
= p(p− b)tan

β

2
= p(p− c)tan

γ

2

= p2 tan
α

2
tan

β

2
tan

γ

2

=
√
p(p− a)(p− b)(p− c) (D.1)
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• Law of Cosines:

a2 = b2 + c2 − 2bc cosα

b2 = a2 + c2 − 2ac cos β

c2 = a2 + b2 − 2ab cos γ (D.2)

• Law of Sines:
a

sinα
=

b

sin β
=

c

sin γ
= 2R (D.3)

•Law of Tangents

a+ b

a− b
=

tan α+β
2

tan α−β
2

=
cot γ

2

tan α−β
2

b+ c

b− c
=

tan β+γ
2

tan β−γ
2

=
cot α

2

tan β−γ
2

c+ a

c− a
=

tan γ+α
2

tan γ−α
2

=
cot β

2

tan γ−α
2

(D.4)

• Remarkable lines in a triangle: The median ma onto side a:

ma =
1

2

√
2b2 + 2c2 − a2 (D.5)

The bisector la to side a

la =
2ab cos γ

2

a + b
=

2ac cos β
2

a + c
(D.6)

• Equilateral triangle (with side a)

S =
a2
√
3

4
(D.7)

The radius of a circumscribed circle and inscribed circle

R =
a
√
3

3
r =

a
√
3

6
(D.8)
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D.2 The Straight Line in a Plane

The general equation of a straight line is

Ax+By + C = 0 (D.9)

The distance between the straight line Ax+By + C = 0 and point x0, y0

d =
|Ax0 +By0 + C|√

A2 +B2
(D.10)

Three points (x1, y1), (x2, y2) and (x3, y3) be in collinear:∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (D.11)

Equation of a line connecting two points (x1, y1) and (x2, y2):

y − y1 =
y2 − y1
x2 − x1

(x− x1) (D.12)

For the straight lines y = k1x+ b1 and y = k2x+ b2:
a) k1 = k2 parallel condition;
b) k1k2 = −1 perpendicular condition;
c) The angle between two lines tanφ = | k2−k1

1+k1k2
|

The condition that the three lines A1x+B1y +C1 = 0, A2x+B2y +C2 = 0
and A3x+B3y + C3 = 0 intersect at one point is:∣∣∣∣∣∣∣∣∣∣∣∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (D.13)
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D.3 Equation of a Plane

Ax+By + Cz +D = 0 (D.14)

Equation of a plane passing through three points (x1, y1, z1), (x2, y2, z2) and
(x3, y3, z3) ∣∣∣∣∣∣∣∣∣∣∣∣

x− x1 y − y1 z − z1

x− x2 y − y2 z − z2

x− x3 y − y3 z − z3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (D.15)

∣∣∣∣ y2 − y1 z2 − z1
y3 − y2 z3 − z2

∣∣∣∣ (x− x1) +

∣∣∣∣ z2 − z1 x2 − x1
z3 − z2 x3 − x2

∣∣∣∣ (y − y1)+

∣∣∣∣ x2 − x1 y2 − y1
x3 − x2 y3 − y2

∣∣∣∣ (z − z1) = 0

(D.16)

Distance of point (x0, y0, z0) from plane Ax+By + Cz +D = 0

d =
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
(D.17)

Equation of line perpendicular to the plane Ax + By + Cz + D = 0 and
through point (x0, y0, z0).

x− x0
A

=
y − y0
B

=
z − z0
C

(D.18)

The angle between two planes A1x+B1y+C1z +D1 = 0, and A2x+B2y +
C2z +D2 = 0

cosφ =
|A1A2 +B1B2 + C1C2|√

A2
1 +B2

1 + C2
1

√
A2

2 +B2
2 + C2

2

(D.19)



Appendix E

Series

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · |x| <∞ (E.1)

cosh(x) = 1 +
x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+ · · · |x| <∞ (E.2)

sinh(x) =
x

1!
+
x3

3!
+
x5

5!
+
x7

7!
+
x9

9!
+ · · · |x| <∞ (E.3)

tanh(x) = x− x3

3
+

2x5

3 · 5 − 17x7

32 · 5 · 7 +
62x9

32 · 5 · 7 · 9 + · · · |x| < π

2
(E.4)

coth(x) =
1

x
+
x

3
− x3

3 · 5 +
2x5

32 · 5 · 7 + · · · |x| < π (E.5)

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
· · · |x| <∞ (E.6)

sin x =
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · · |x| <∞ (E.7)

tanx = x+
x3

3
+
2 ∗ x5
3 · 5 +

17x7

32 · 5 · 7 +
62x9

32 · 5 · 7 · 9 + · · · |x| < π

2
(E.8)

cot x =
1

x
− x

3
− x3

32 · 5 − 2 ∗ x5
32 · 5· −

x7

32 · 52 · 7 − · · · 0 < |x| < π (E.9)

cos−1 x =
π

2
−x−1

2
·x

3

3
−1 · 3
2 · 4 ·

x5

5
−1 · 3 · 5
2 · 4 · 6 ·

x7

7
−· · · −1 < |x| ≤ 1 (E.10)
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sin−1 x = x+
1

2
· x

3

3
+
1 · 3
2 · 4 ·

x5

5
+
1 · 3 · 5
2 · 4 · 6 ·

x7

7
+ · · · −1 < |x| ≤ 1 (E.11)

tan−1 x = x− x3

3
+
x5

5
− x7

7
+ · · · − 1 < |x| ≤ 1 (E.12)

cot−1 x =
1

x
− 1

3x3
+

1

5x5
− 1

7x7
+ · · · 1 < |x| (E.13)

= π +
1

x
− 1

3x3
+

1

5x5
− 1

7x7
+ · · · |x| < −1

sinh−1 x =

⎧⎨⎩ x− x3

2·3 +
1·3x5
2·4·5 − 1·3·5x7

2·4·6·7 + · · · |x| < 1

±(ln |2x|+ 1
2·2x2 − 1·3

2·4·4x4 +
1·3·5

2·4·6·6x6 − · · · )
[
+ if x ≥ 1
− if x ≤ −1

]
cosh−1 x = ±{

ln(2x)− ( 1
2·2x2 +

1·3
2·4·4x4 +

1·3·5
2·4·6·6x6 + · · · )}[

+ if cosh−1 x > 0, x ≥ 1
− if cosh−1 x < 0, x ≥ 1

]
(E.14)

tanh−1 x = x+
x3

3
+
x5

5
+
x7

7
+ · · · |x| < 1 (E.15)

coth−1 x =
1

x
+

1

3x3
+

1

5x5
+

1

7x7
+ · · · |x| > 1 (E.16)

E.1 Taylor Series For Functions of Two Vari-

ables

f(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b)
+ 1

2!
{(x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)}+ · · ·

(E.17)



Appendix F

Complex Inverse Trigonometric
Function

The inverse trigonometric and hyperbolic functions are the multivalued func-
tion that are the inverse functions of the trigonometric and hyperbolic func-
tions.

F.1 Range of usual principal value

The trigonometric functions are periodic, so we must restrict their domains
before we are able to define a unique inverse.

Table F.1: Range of usual principal value
y = f(z) Alternate notations Range of usual principal value

y = sin−1(z) y = arcsin(z) −π
2
≤ y ≤ π

2

y = cos−1(z) y = arccos(z) 0 ≤ y ≤ π
y = tan−1(z) y = arctan(z) −π

2
< y < π

2

y = cot−1(z) y = arc cot(z) −π
2
≤ y ≤ π

2
, y �= 0

y = sec−1(z) y = arc sec(z) 0 ≤ y ≤ π, y �= π
2

y = csc−1(z) y = arc csc(z) −π
2
≤ y ≤ π

2
, y �= 0
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F.2 Definitions as infinite series

The inverse trigonometric functions can be defined in terms of infinite series.

arcsin(z) =

∞∑
n=0

(
(2n)!

22n(n!)2
z2n+1

2n+ 1

)
, |z| < 1

arccos(z) =
π

2
− arcsin(z) =

π

2
−

∞∑
n=0

(
(2n)!

22n(n!)2
z2n+1

2n+ 1

)
, |z| < 1

arctan(z) =
∞∑
n=0

(−1)nz2n+1

2n + 1
, |z| < 1

arc cot(z) =
π

2
− arctan(z) =

∞∑
n=0

(−1)nz2n+1

2n+ 1
, |z| < 1

arc csc(z) = arcsin(z−1)

arc sec(z) = arccos(z−1)

F.3 Natural logarithm’s expressions

The inverse trigonometric functions may be expressed using natural loga-
rithms.

arcsin(z) = −j ln(jz +
√
1− z2) (F.1)

arccos(z) = −j ln(z +
√
z2 − 1) (F.2)

arctan(z) =
j

2
(ln(1− jz)− ln(1 + jz)) (F.3)

arc cot(z) =
j

2

(
ln(1− j

z
)− ln(1 +

j

z
)

)
(F.4)

arc csc(z) = −j ln(jz−1 +
√
1− z−2) (F.5)

arc sec(z) = −j ln(z−1 +
√
z−2 − 1) (F.6)
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F.4 Derivatives of inverse trigonometric func-

tions
d

dz
arcsin(z) =

1√
1− z2

(F.7)

d

dz
arccos(z) = − 1√

1− z2
(F.8)

d

dz
arctan(z) =

1

1 + z2
(F.9)

d

dz
arc cot(z) = − 1

1 + z2
(F.10)

d

dz
arc csc(z) = − 1

z
√
z2 − 1

(F.11)

d

dz
arc sec(z) =

1

z
√
z2 − 1

(F.12)

F.5 Indefinite integrals of inverse trigonomet-

ric functions∫
arcsin(z)dz = z arcsin(z) +

√
1− z2 + C (F.13)∫

arccos(z)dz = z arccos(z)−
√
1− z2 + C (F.14)∫

arctan(z)dz = z arctan(z)− 1

2
ln (1 + z2) + C (F.15)∫

arc cot(z)dz = zarc cot(z) +
1

2
ln (1 + z2) + C (F.16)∫

arc csc(z)dz = zarc csc(z) + ln (z +
√
z2 − 1) + C (F.17)∫

arc sec(z)dz = zarc sec(z)− ln (z +
√
z2 − 1) + C (F.18)
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Appendix G

SPECIAL FUNCTIONS

Bessel, Hankel and Legendre functions have been used in various part of elec-
tromagnetics such as: circular waveguides and cavity resonators, scattering
of EM waves from cylindrical and spherical objects. Series expansions of
these functions, and knowledge of the differentiation and recurrence formula
often required. In this appendix, we assembled some useful formulas of these
functions. For more detailed treatment of these functions, see one of the
standard text on those subjects [12]

G.1 Bessel Functions

Bessel equation is:

z2
∂2ψ

∂z2
+ z

∂ψ

∂z
+ (z2 − ν2)ψ = 0 (G.1)

Solutions are:
a) Bessel function of first kind Jν(z)

Jν(z) =

∞∑
m=0

(−1)mzν+2m

m!Γ(m+ ν + 1)2ν+2m

J−ν(z) =

∞∑
m=0

(−1)mzν+2m

m!Γ(m− ν + 1)2ν+2m
(G.2)
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The function Γ(m−ν+1) = Γ(p) is the generalized factorial function known
as the Gamma function. It is defined by

Γ(p) =

∫ ∞

0

xp−1e−xdx (G.3)

where for p = n (an integer), the Gamma function becomes the factorial
Γ(m + n + 1) = (m + n)! The two solutions given by Eq.(G.1) are then no
longer independent, but instead are related by

J−n(z) = (−1)nJn(z) (G.4)

Jn(−z) = (−1)nJn(z) (G.5)

The order of equation is given by value of ν. In general ν will be non-integer.
For integer vale of ν the symbol n is usually used.
b) Bessel function of second kind Yν(z) (also called Neumann function)
A second independent solution of Eq.(G.1) is defined by

Yν(z) =
Jν(z)cos νπ − J−ν(z)

sin νπ
(G.6)

and for integer value of ν = n

Y−n(z) = (−1)nYn(z) (G.7)

c) Bessel function of third kind H
(1)
ν (z) (also called Hankel function of first

kind)

d)Bessel function of forth kind H
(2)
ν (z) (also called Hankel function of second

kind)

Solution to Eq.(G.1) may be written in term of Bessel function of first
and second kind and is called Hankel function of first and second kind.

H(1)
ν (z) = Jν(z) + jYν(z)

H(2)
ν (z) = Jν(z)− jYν(z) (G.8)

H
(1)
−ν (z) = ejνπH(1)

ν (z) H
(2)
−ν (z) = ejνπH(2)

ν (z) (G.9)
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G.1.1 Bessel Functions for Small and Large Arguments

for z � 1:

Jν(z) ≈ zν

zνν!
Yν(z) ≈ −2ν(ν − 1)!

πzν
(G.10)

J0(z) ≈ 1, Y0 ≈ −2

π
ln

2

γ0z

Jn(z) ≈ 1

n!
(
z

2
)n, Yn(z) ≈ −(n− 1)!

π
(
2

z
)n, n = 1, 2, · · · (G.11)

0! = 1 and γ0 = eγ = 1.781072 · · ·
γ = Euler’s constant= 0.57721566 · · ·
for large value arguments:

Jν(z) ≈
√

2

πz
cos(z − νπ

2
− π

4
)

Yν(z) ≈
√

2

πz
sin(z − νπ

2
− π

4
)

H(1)
ν (z) ≈

√
2

πz
ej(z−

νπ
2
−π

4
)

H(2)
ν (z) ≈

√
2

πz
e−j(z−

νπ
2
−π

4
) (G.12)

G.1.2 Differentiation and Integration of Bessel Func-

tions

In the following formulas Zν(z) may denote any kind of the function: Jν(z),

Yν(z), H
(1)
ν (z), H

(2)
ν (z) and Z ′

ν(z) means d
dz
[Zν(z)]

Z ′
0(z) = Z1(z)

Z ′
1(z) = Z0(z)− 1

z
Z1(z)

zZ ′
ν(z) = νZν(z)− zZν+1(z) = zZν−1(z)− νZν(z) (G.13)

d

dz
[zνZν(z)] = zνZν−1(z)

d

dz
[z−νZν(z)] = −z−νZν+1(z) (G.14)
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useful recurrence formulas

2νZν(z) = z[Zν−1 + Zν+1(z)] (G.15)

∫
zνZν−1(z)dz = zνZν(z) (G.16)∫
z−νZν+1(z)dz = −z−νZν(z) (G.17)∫
zZ2

ν (αz)dz =
z2

2
[Z2

ν(αz)− Zν−1(αz)Zν+1(αz)]

=
z2

2
[Z ′2

ν(αz) + (1− ν2

α2z2
)Z2

ν (αz)] (G.18)∫
zZν(αz)Zν(βz)dz =

z

α2 − β2

× [βZν(αz)Zν−1(βz)− αZν−1(αz)Zν(βz)] , α �= β

(G.19)

G.2 Bessel Functions of Integer Order

Jn(z) =
∞∑
m=0

(−1)mzn+2m

m!(m+ n)!2n+2m
(G.20)

For small value of the argument:

J0(z) = 1; Jn(z) =
zn

n!2n
(G.21)

Y0(z) = −2

π
ln

2

z
=

2

π
(ln z − 0.11593); Y n(z) = −2n(n− 1)

π(z)n
; n > 0

(G.22)

H
(1)
−n(z) = ejnπH(1)

n (z) H
(2)
−n(z) = ejnπH(2)

n (z) (G.23)

useful recurrence formulas

2nZn(z) = z[Zn−1 + Zn+1(z)] (G.24)
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∫
z[Zn(z)]

2dz =
z2

2
[Z2

n(z)− Zn−1(z)Zn+1(z)] (G.25)

Yn−1(z)Jn(z)− Yn(z)Jn−1(z) =
2

nz
(G.26)

H
(1)
n+1(z)H

(1)
n (z)−H

(2)
n+1(z)H

(2)
n (z) =

4

jπnz
(G.27)

Jn(z) J1−n(z) + Jn−1(z)J−n(z) =
2 sinnπ

nz
(G.28)

J ′
0(z) = −J1(z) (G.29)

J2(z) = J0(z) + 2J ′′
0 (z) = J0(z)− 1

z
J ′
0(z) (G.30)

cos(z) = J0(z)− 2J2(z) + 2J4(z) · · · (G.31)

sin(z) = 2J1(z)− 2J3(z) + 2J5(z) · · · (G.32)

cos(z sin θ) = J0(z) + 2J2(z) cos 2θ + 2J4(z) cos 4θ · · · (G.33)

sin(z sin θ) = 2J1(z) sin θ + 2J3(z) sin 3θ + 2J5(z) sin 5θ · · · (G.34)

[J0(z)]
2 + 2[J1(z)]

2 + 2[J2(z)]
2 + 2[J3(z)]

2 + · · · = 1 (G.35)

Generating function:

ez(t/2−1/2t) =

+∞∑
n=−∞

tnJn(z) (G.36)

ejz sin θ =

+∞∑
n=−∞

ejnθ Jn(z); ejz cos θ =

+∞∑
n=−∞

ejn(θ+π/2)Jn(z) (G.37)
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If n is a positive integer and (m + 2n + 1) is positive

(m− 1)

∫ x

0

tmJn+1(t)Jn−1(t)dt = xm+1[Jn+1(x)Jn−1(x)− J2
n(t)]

+(m+ 1)

∫ x

0

tmJ2
n+1(t)dt (G.38)

J0(z) =
2

π

∫ ∞

0

sin(x cosh t)dt; Y0(z) = −2

π

∫ ∞

0

cos(x cosh t)dt (G.39)

J0(z) =
1

π

∫ π

0

cos(x cos t)dt =
1

π

∫ π

0

cos(x sin t)dt (G.40)

Jn(z) =
1

π

∫ π

0

cos(nt− x sin t)dt (G.41)

∫ ∞

0

e−jkxJ0(kρ)dk = (ρ2 − x2)−1/2 ρ and x are real (G.42)

∫ x

0

tJ0(t)dt = xJ1(x) (G.43)

∫ ∞

0

Jn(x)dx = 1 (G.44)

∫ ∞

0

Jn(kx)

x
dx =

1

n
; n = 1, 2, 3, · · · (G.45)

∫ ∞

0

e−atJm(bt)
dt

t
=

1

mbm
[(a2 + b2)

1
2 − a]m (G.46)

(a and b are real and positive)∫ ∞

0

e−atJm(bt)tmdt =
(2b)mΓ(m+ 1

2
)

Γ(1
2
)(a2 + b2)(m+ 1

2
)

(G.47)

Jn(z) =
1

2πjm

∫ π

0

ejz cos(nt)dt (G.48)

Jn(z) =
2(2/z)n

Γ(1
2
)Γ(1

2
− n)

∫ ∞

1

sin zt(t2 − 1)(−n−
1
2
)dt (G.49)
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Table G.1: Roots of Bessel Functions Jn(zm) = 0
n m=1 m=2 m=3 m=4 m=5

0 2.405 5.520 8.654 11.792 14.931
1 3.832 7.016 10.173 13.324 16.471
2 5.136 8.417 11.620 14.796 17.960
3 6.380 9.761 13.015 16.223 19.409

Yn(z) = − 2(2/z)n

Γ(1
2
)Γ(1

2
− n)

∫ ∞

1

cos zt(t2 − 1)(−n−
1
2
)dt (G.50)

∫ π/2

0

[J1(x sin θ)]
2 dθ

sin θ
=

∫ 1

0

[J1(xt)]
2

t(1− t2)1/2
dt =

1

2
− J1(2x)

2x
(G.51)

∫ π/2

0

Jm(z sin θ)(sin θ)
m+1(cos θ)2n+1dθ =

2n

zn+1
Γ(n+ 1)Jm+n+1(z) (G.52)

∫ ∞

0

Jm(tz)dt

∫ ∞

0

Jm(tu)F (u)udu = F (z) (Fourier−Bessel Integral)

(G.53)

∫ ∞

0

Jm(a sin θ)Jn(b cos θ)(sin θ)
m+1(cos θ)n+1dθ = am/bn

Jm+n+1[(a
2 + b2)1/2]

(a2 + b2)(m+n+1)/2

(G.54)

∫ π/2

0

cos (a cos θ) cos (b sin θ)dθ =
π

2
J0[(a

2 + b2)1/2] for b > a ≥ 0 (G.55)

G.3 Roots of Bessel Functions

Four roots of Jn(zm) = 0 are given in Table(G.1), and four roots of J ′
n(zm) = 0

are given in Table(G.2), respectively.
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Table G.2: Roots of the First Derivative of Bessel Functions J ′
n(zm) = 0

n m=1 m=2 m=3 m=4 m=5

0 0 3.832 7.016 10.173 13.324
1 1.841 5.331 8.536 11.706 14.864
2 3.054 6.706 9.969 13.170 16.348
3 4.201 8.015 11.346 14.586 17.789

G.4 Modified Bessel Functions

Modified Bessel equation of order ν is

z2
∂2ψ

∂z2
+ z

∂ψ

∂z
− (z2 + ν2)ψ = 0 (G.56)

There are two solution for this equation:
a) Modified Bessel Function of first kind Iν(z), order ν
b) Modified Bessel Function of second kind Kν(z), order ν
For noninteger values of ν two independent solutions are:
Iν(z) and I−ν(z) where

Iν(z) =
∞∑
m=0

zν+2m

m!Γ(m+ ν + 1)2ν+2m
(G.57)

When ν is an integer, two solution are related by In(z) = I−n(z).

In(−z) = (−1)nIn(z) (G.58)

Another solution is given by

Kn(z) =
π

2 sin νπ
[I−ν(z)− Iν(z)] (G.59)

for integer values of ν = n, Eq.(G.59) reduces to

Kν(z) =
2

cosnπ
[
∂I−n(z)
∂n

− ∂In(z)

∂n
] (G.60)

and Eq.(G.60) is second independent solution. Generating function for Iν(z)
is:

ez(t+
1
t
)/2 =

∞∑
n=−∞

Iν(z)t
ν (G.61)
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G.4.1 Small and Large Arguments

For z � 1 the Iν(z) and Kν(z) functions are given by

Iν(z) ≈ zν

2νν!
Kν ≈ 2ν−1(ν − 1)

zν
(G.62)

and for large z:

Iν(z) ≈ ez√
2πz

(G.63)

Kν(z) ≈
√

π

2z
e−z (G.64)

G.4.2 Recurrence Formulas for Modified Bessel Func-

tions

zI ′ν(z) = νIν(z) + zIν+1(z) (G.65)

zK ′
ν(z) = νKν(z)− zKν+1(z) (G.66)

zI ′ν(z) = zIν−1(z)− νIν(z) (G.67)

zK ′
ν(z) = −zKν−1(z)− νKν(z) (G.68)

d

dz
[zνIν(z)] = zνIν−1(z) (G.69)

d

dz
[zνKν(z)] = −zνKν−1(z) (G.70)

d

dz
[z−νIν(z)] = z−νIν+1(z) (G.71)

d

dz
[z−νKν(z)] = −z−νKν+1(z) (G.72)

2νIν(z)] = z[Iν−1(z)− Iν+1(z)] (G.73)

2νKν(z)] = −z[Kν−1(z)− Iν+1(z)] (G.74)
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G.4.3 Ber and Bei Functions

The real and imaginary parts of Jn(xe
j3π
4 ) are denoted by Bern(x) and

Bein(x), respectively:

Bern(x) =
∞∑
k=0

(x/2)2k+n

k!Γ(n+ k + 1)
cos

(3n+ 2k)π

4
(G.75)

Bein(x) =
∞∑
k=0

(x/2)2k+n

k!Γ(n+ k + 1)
sin

(3n+ 2k)π

4
(G.76)

G.4.4 Ker and Kei Functions

The real and imaginary parts of Kn(xe
jπ
4 ) are denoted by Kern(x) and

Kein(x), respectively:

Kern(x) = −{ln(x/2) + γ}Bern(x) + π

4
Bein(x)

+
1

2

n−1∑
k=0

(n− k − 1)!(x/2)2k−n

k!
cos

(3n+ 2k)π

4
+

1

2

∞∑
k=0

(x/2)2k+n

k!(n + k)!
{Φ(k) + Φ(n + k)} cos (3n+ 2k)π

4
(G.77)

Kein(x) = −{ln(x/2) + γ}Bein(x)− π

4
Bern(x)

−1

2

n−1∑
k=0

(n− k − 1)!(x/2)2k−n

k!
sin

(3n+ 2k)π

4

+
1

2

∞∑
k=0

(x/2)2k+n

k!(n+ k)!
{Φ(k) + Φ(n + k)} sin (3n+ 2k)π

4
(G.78)

where γ = .5772156 · · · is Euler’s constant and

Φ(n) = 1 +
1

2
+

1

3
+ · · ·+ 1

n
Φ(0) = 0 (G.79)
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G.5 Spherical Bessel Functions

When the coordinate system is spherical, we usually see special type of Bessel
function. Spherical Bessel equation is:

z2ψ′′ + 2zψ′ + [z2 − n(n + 1)]ψ = 0 (G.80)

Solutions are:
a) Spherical Bessel function of first kind jn(z)
b) Spherical Bessel function of second kind yn(z)

c) Spherical Bessel function of third kind h
(1)
n (z)

d) Spherical Bessel function of forth kind h
(2)
n (z)

Spherical Bessel function is related to common Bessel function by:

jn(z) =

√
π

2z
Jn+ 1

2
(z)

jn(−z) = (−1)njn(z)

j−n(z) = (−1)nyn−1(z), n > 0

yn(z) =

√
π

2z
Yn+ 1

2
(z)

yn(−z) = (−1)n+1yn(z)

h(1)n (z) = jn(z) + j yn(z)

h(2)n (z) = jn(z)− j yn(z) (G.81)

The order of these equations is given by value of n. The function jn(z), yn(z)
for n=0,1,2 are:

j0(z) =
sin z

z
; y0(z) = −cos z

z

h
(1)
0 (z) =

ejz

jz
; h

(2)
0 (z) =

e−jz

−jz (G.82)

j1(z) =
sin z

z2
− cos z

z
; y1(z) = −cos z

z2
− sin z

z

h
(1)
1 (z) = −e

jz

z
(1 +

j

z
); h

(2)
1 (z) = −e

−jz

z
(1− j

z
) (G.83)
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j2(z) = (
3

z3
− 1

z
) sin z − 3 cos z

z2
; y2(z) = (

3

z3
− 1

z
) cos z − 3 sin z

z2

h
(1)
2 (z) = −je

jz

z
(1 +

3j

z
− 3

z2
); h

(2)
2 (z) =

je−jz

z
(1− 3j

z
− 3

z2
) (G.84)

G.5.1 Small and Large Arguments Approximation

For z � 1 the jn(z) and yn(z) functions are given by

jn(z) ≈ zn

1 · 3 · 5 · · · (2n + 1)
=

2nn!zn

(2n+ 1)!
(G.85)

yn(z) ≈ 1 · 3 · 5 · · · (2n− 1)

zn+1
(G.86)

And for large arguments z � 0

jn(z) ≈ 1

z
cos [z − π

2
(n+ 1)] (G.87)

yn(z) ≈ 1

z
sin [z − π

2
(n+ 1)] (G.88)

G.5.2 Recurrence Relations

If we denote jn(z), y(z), h
(1)
n (z), h

(2)
n (z) for (n = 0,±1,±2 · · · ) by fn(z), we

can write:
fn−1(z) + fn+1(z) = (2n+ 1)z−1fn(z) (G.89)

nfn−1(z)− (n+ 1)fn+1(z) = (2n+ 1)
d

dz
fn(z) (G.90)

n+ 1

z
fn(z) +

d

dz
fn(z) = fn−1(z) (G.91)

n

z
fn(z)− d

dz
fn(z) = fn+1(z) (G.92)

G.5.3 Cross Products

jn(z)yn−1(z)− jn−1(z)yn(z) = z−2 (G.93)

jn+1(z)yn−1(z)− jn−1(z)yn+1(z) = (2n+ 1)z−3 (G.94)
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Table G.3: Roots of Spherical Bessel Functions
n m=1 m=2 m=3 m=4 m=5

0 π 2π 3π 4π 5π
1 4.493 7.725 10.904 14.066 17.221
2 5.763 9.095 12.323 15.515 18.689
3 6.988 10.417 13.698 16.924 20.122

Table G.4: Roots of First Derivative of Spherical Bessel Functions
n m=1 m=2 m=3 m=4 m=5

0 0 4.493 7.725 10.904 14.066
1 2.081 5.940 9.205 12.404 15.579
2 3.342 7.290 10.613 13.846 17.043
3 4.514 8.583 11.972 15.244 18.468

G.5.4 Roots of Spherical Bessel Function

Four roots of jn(zm) = 0 and j′n(zm) = 0 are given in Table(G.3), and
Table(G.4), respectively.

G.5.5 Riccati Bessel Functions

Another set of spherical Bessel and Hankel functions which appears in solu-
tions of EM problems are those denoted by B̂n where B̂ stands to represent
Ĵn, Ŷn, Ĥ

(1)
n and Ĥ

(2)
n . These are related to the spherical Bessel and Hankel

functions [denoted bn to represent jn, yn, h
(1)
n and h

(2)
n ] and regular Bessel

and Hankel functions [denoted by B(n+ 1
2
) to represent Jn+ 1

2
, Yn+ 1

2
, H

(1)

n+ 1
2

and

H
(2)

n+ 1
2

] by

B̂n(z) = zbn(z) =

√
πz

2
Bn+ 1

2
(z) (G.95)

The term d
dz
[zbn(z)] is usually used, so by Riccati-Bessel

B̂′
n(z) =

d

dz
[zbn(z)] = bn(z) + zb′n(z) (G.96)
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Table G.5: Roots of First Derivative of Riccati-Bessel Functions
n m=1 m=2 m=3 m=4 m=5

1 2.743 6.116 9.3166 12.485 15.643
2 3.870 7.443 10.713 13.920 17.102
3 4.973 8.721 12.063 15.313 18.524
4 6.061 9.967 13.380 16.674 19.915

G.6 Legendre Functions

The differential equation (0 ≤ x ≤ 1) :

(1− x2)
d2T

dx2
− 2x

dT

dx
+ [n(n+ 1)− m2

1− x2
]T (x) = 0 (G.97)

[m and n are integers]. When m=0, there are two linearly independent
solutions:
a) Pn(x) Legendre function of first kind.
b) Qn(x) Legendre function of second kind.
If n = 0, 1, 2, · · · solutions of Eq.(G.97) are Legendre Polynomials Pn(x)
given by Rodrigue’s formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (G.98)

The first few of them have explicit form

P0(x) = 1; P1(x) = x; P2(x) =
3x2 − 1

2
; P3(x) =

5x3 − 3x

2
(G.99)

and for second kind:

Q0(x) =
1

2
log

1 + x

1− x

Q1(x) =
x

2
log

1 + x

1− x
− 1

Q2(x) =
3x2 − 1

4
log

1 + x

1− x
− 3x

2

Q3(x) =
5x2 − 3x

4
log

1 + x

1− x
− 5

2
x2 +

2

3
(G.100)
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The singularity occur at points x± 1

Pn(1) = 1; Pn(−1) = (−1)n (G.101)

Pn(0) =

{
0 n = Odd

(−1)n/2 1·3·5···(n−1)
2·4·6···n n = Even

(G.102)

Qn(0) =

{
0 n = Even

(−1)(n+1)/2 2·4·6···(n−1)
1·3·5···n n = Odd

(G.103)

Qn(1) = ∞; Qn(∞) = 0 (G.104)

P ′
n(0) = −(n+ 1)Pn+1(0); P ′

n(1) =
1

2
n(n + 1) (G.105)

∫ π

0

P2n(cos θ)dθ = π[
(2n)!

(2nn!)2
]2 (G.106)

∫ π

0

P2n+1(cos θ) cos θdθ = π
(2n)!(2n+ 2)!

[2nn!2n+1(n + 1)!]2
(G.107)

G.6.1 Orthogonality and Expansion Series∫ +1

−1

[Pn(x)]
2dx =

2

2n + 1
(G.108)

∫ +1

−1

Pn(x)Pm(x)dx = 0 if m �= n (G.109)

f(x) = A0P0(x) + A1P1(x) + A2P2(x) + · · · (G.110)

Ak =
2k = 1

2

∫ +1

−1

f(x)Pk(x)dx (G.111)
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G.7 Recurrence Relations

xP ′
n(x)− P ′

n−1(x) = nPn−1(x) (G.112)

(x2 − 1)P ′
n(x) = nxPn−1(x)− nPn−1(x) (G.113)

P ′
n(x)− xP ′

n(x) = (n+ 1)Pn(x) (G.114)

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (G.115)

P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x) (G.116)

Formula Eq.(G.112) to Eq.(G.116) are also valid for Qn(x) and any linear
combination of Pn(x) and Qn(x).

G.8 Associated Legendre Functions

When m is different from zero in Eq.(G.97), the linearly independent solution
are the Associated Legendre Functions of the first and the second kind.

(1− x2)
d2T

dx2
− 2x

dT

dx
+ [n(n + 1)− m2

1− x2
]T (x) = 0 (G.117)

where m and n are integer, and m ≤ n.

Pm
n (x) = 0 if m > n (G.118)

Pm
n (x) = (1− x2)m/2

dm

dxm
Pn(x) m ≤ n (G.119)

For example:
P 1
1 (x) = (1− x2)(

1
2
); P 1

2 (x) = 3x(1− x2)(
1
2
);

P 2
2 (x) = 3(1− x2); P 1

3 (x) =
3
2
(5x2 − 1)(1− x2)(

1
2
);

P 2
3 (x) = 15x(1− x2); P 3

3 (x) = 15(1− x2)(
3
2
)

Associate Legendre Functions of second kind:

Qm
n (x) = (1− x2)m/2

dm

dxm
Qn(x) (G.120)
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For example:
Q1

1(x) = (x2 − 1)
1
2 ( x
x2−1

− 1
2
log x+1

x−1
);

Q1
2(x) = (x2 − 1)

1
2 (3x

2−2
x2−1

− 3
2
x log x+1

x−1
);

Q2
2(x) =

3
2
(x2 − 1) log x+1

x−1
− 3x2−5x

x2−1

G.8.1 Recurrence Relations

Pm+1
n−1 (x) = xPm+1

n (x)− (n−m)(1− x2)
1
2Pm

n (x) (G.121)

Pm+1
n+1 (x) = xPm+1

n (x) + (n+m+ 1)(1− x2)
1
2Pm

n (x) (G.122)

Pm+2
n (x)− 2(m+ n)x

(1− x2)
1
2

Pm+1
n (x)− (n−m)(n +m+ 1)Pm

n (x) = 0 (G.123)

(n+ 1−m)Pm
n+1(x)− (2n+ 1)Pm

n (x) + (n +m)Pm
n−1(x) = 0 (G.124)

Relations Eq.(G.121) to Eq.(G.124) are also valid for Qm
n (x) and any linear

combination of Pm
n (x) and Qm

n (x).

G.8.2 Derivative of Associated Legendre Functions

d

dx
Pm
n (x) =

(n+m)Pm
n−1(x)− nxPm

n (x)

1− x2
(G.125)

let x = cos θ, therefore

d

dθ
Pm
n (x) =

1

2
[(n +m)(n−m+ 1)Pm−1

n (x)− Pm+1
n (x)] (G.126)

G.8.3 Special Values

d

dθ
Pm
n (x) = −(1− x2)1/2

d

dx
Pm
n (x) (G.127)

mPm
n (cos θ)

sin θ
=

⎧⎨⎩
0 m = 0
1
2
cos θ{(n−m+ 1)(n+m)Pm−1

n (cos θ)+
Pm−1
n (cos θ)}+m sin θPm

n (cos θ) m > 0
(G.128)
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dPm
n (cos θ)

dθ
=

⎧⎨⎩
−P 1

n(cos θ) m = 0
1
2
{(n−m+ 1)(n+m)Pm−1

n (cos θ)−
Pm+1
n (cos θ)} m > 0

(G.129)

limθ→0
mPm

n (cos θ)

sin θ
=

{
n(n + 1)/2 m = 1
0 m �= 1

(G.130)

limθ→π
mPm

n (cos θ)

sin θ
=

{
(−1)n+1n(n+ 1)/2 m = 1
0 m �= 1

(G.131)

limθ→0
d

dθ
Pm
n (cos θ) =

{
n(n + 1)/2 m = 1
0 m �= 1

(G.132)

limθ→π
d

dθ
Pm
n (cos θ) =

{
(−1)n+1n(n + 1)/2 m = 1
0 m �= 1

(G.133)

G.8.4 Generating Function for Pm
n (x)

(2m)!(1− x2)m/2tm

2mm!(1− 2tx+ t2)m+ 1
2 )

=
∞∑
n=m

Pm
n (x)tn (G.134)

G.8.5 Orthogonality of Pm
n (x) and Expansion Series∫ +1

−1

Pm
n (x)Pm

l (x)dx = 0 if n �= l (G.135)

∫ +1

−1

[Pm
n (x)]2dx =

2

2n+ 1

(n+m)!

(n−m)!
(G.136)

f(x) = AmP
m
m (x) + Am+1P

m
m+1 + Am+2P

m
m+2 + · · · (G.137)

where

Ak =
2k + 1

2

(k −m)!

(k +m)!

∫ +1

−1

f(x)Pm
k (x)dx (G.138)
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G.9 Parabolic Cylinder Functions

In mathematics, the parabolic cylinder functions are special functions defined
as solutions to the differential equation

∂2ψ

∂z2
+ (az2 + bz + c)ψ = 0 (G.139)

This equation is found, for example, when the technique of separation of
variables is used on differential equations which are expressed in parabolic
cylindrical coordinates.
The above equation may be brought into two distinct forms Eq.(G.140) and
Eq.(G.141) by complete the square and rescaling z, called H. F. Weber’s
equations (Weber 1869):

∂2ψ

∂z2
− (

z2

4
+ a)ψ = 0 (G.140)

and
∂2ψ

∂z2
+ (

z2

4
− a)ψ = 0 (G.141)

If ψ(a, z) is a solution, then so are ψ(a,−z), ψ(−a, jz) and ψ(−a,−jz).
If ψ(a, z) is the solution of Eq.(G.140), then ψ(−ja, zej π

4 ) is the solution
of Eq.(G.141) and by symmetry ψ(−ja,−zej π

4 ), ψ(ja,−ze−j π
4 ),ψ(ja, ze−j

π
4 )

are the solution of Eq.(G.141). There are independent even and odd solu-
tions of the form Eq.(G.140). These are given by (following the notation of
Abramowitz and Stegun):

y1(a, z) = e−z
2/4M(1

2
a + 1

4
, 1
2
, 1
2
z2)

y2(a, z) = ze−z
2/4M(1

2
a+ 3

4
, 3
2
, 1
2
z2)

(G.142)

where M(a, b, z) is the confluent hypergeometric function.

G.9.1 Parabolic Cylinder Functions Dν(z) or U(a, z)

The first solution of Eq.(G.140) is defined by

Dν(z) = U(a, z) = cos
πν

2
w1(z) + sin

πν

2
w2(z) (G.143)
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where ν = −(a + 1
2
) and

w1(z) =
1√
π

Γ( 1
2
+ 1

2
ν)

2−ν/2 y1(z)

w2(z) =
1√
π

Γ(1+ 1
2
ν)

2−ν/2−1/2 y2(z)

(G.144)

where y1(z) and y2(z) are given by Eq.(G.142).

D−n−1(z) = jn
√
2n−1πe

z2

4 erfc(
z√
2
) (G.145)

G.9.2 Parabolic Cylinder Functions Vν(z) or V (a, z)

The second solution of Eq.(G.140) is defined by

Vν(z) = V (a, z) =
1

Γ(1 + ν)

[
cos

πν

2
w2(z)− sin

πν

2
w1(z)

]
(G.146)

where w1(z) and w2(z) are given by Eq.(G.144).

G.9.3 Recurrence Relations

U ′(a, x) +
1

2
xU(a, x) + (a+

1

2
)U(a+ 1, x) = 0 (G.147)

U ′(a, x)− 1

2
xU(a, x) + U(a− 1, x) = 0 (G.148)

2U ′(a, x) + U(a− 1, x) + (a+
1

2
)U(a + 1, x) = 0 (G.149)

V ′(a, x)− 1

2
xV (a, x)− (a− 1

2
)V (a− 1, x) = 0 (G.150)

V ′(a, x) +
1

2
xV (a, x)− V (a+ 1, x) = 0 (G.151)

2V ′(a, x)− V (a + 1, x) + (a− 1

2
)V (a− 1, x) = 0 (G.152)
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G.10 Hermite Polynomial

In the Sturm-Liouville Boundary Value Problem, there is a special case called
Hermite’s Differential Equation which arises in the treatment of the harmonic
oscillator in quantum mechanics. Hermite’s Differential Equation is defined
as:

y′′ − 2xy′ + 2ny = 0 (G.153)

The Hermite Polynomials can be expressed by Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

) n = 0, 1, 2, 3, . . . (G.154)

H0(x) = 1,
H1(x) = 2x,
H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x,
H4(x) = 16x4 − 48x2 + 12,
H5(x) = 32x5 − 160x3 + 120x,
The Hermite polynomials Hn(x) are set of orthogonal polynomials over the
domain with weighting function e−x

2
It can be shown that:∫ ∞

−∞
e−x

2

Hm(x)Hn(x)dx = 2nn!
√
πδmn (G.155)

By using this orthogonality, a piecewise continuous function f(x) can be
expressed in terms of Hermite Polynomials:

f(x) =

∞∑
n=0

CnHn(x) (G.156)

where

Cn =
1

2nn!
√
π

∫ ∞

−∞
e−x

2

f(x)Hn(x)dx (G.157)

Whether a Hermite Polynomial is an even or odd function depends on its
degree n.

Hn(−x) = (−1)nHn(x) (G.158)

Hn(x) is an even function, when n is even
Hn(x) is an odd function, when n is odd
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G.10.1 Recurrence Relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (G.159)

H ′
n(x) = 2nHn−1(x) (G.160)

G.10.2 Special Integrals

let us define:

Imn(a, b) =
1√
π

∫ ∞

−∞
e−x

2

Hm(ax)Hn(bx)dx (G.161)
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If m + n is odd the value of this integral is Imn(a, b) = 0. If m + n is even
the value of this integral is function of a and b.

I0,0(a, b) = 1
I0,2(a, b) = 2(b2 − 1)
I0,4(a, b) = 12(b2 − 1)2

I0,6(a, b) = 120(b2 − 1)3

I0,8(a, b) = 1680(b2 − 1)4

I0,10(a, b) = 30240(b2 − 1)5

I1,1(a, b) = 2ab
I1,3(a, b) = 12ab(b2 − 1)
I1,5(a, b) = 120ab(b2 − 1)2

I1,7(a, b) = 1680ab(b2 − 1)3

I1,9(a, b) = 30240ab(b2 − 1)4

I2,2(a, b) = 4(1− a2 − b2 + 3a2b2)
I2,4(a, b) = 24(b2 − 1)(1− a2 − b2 + 5a2b2)
I2,6(a, b) = 240(b2 − 1)2(1− a2 − b2 + 7a2b2)
I2,8(a, b) = 3360(b2 − 1)3(1− a2 − b2 + 9a2b2)
I2,10(a, b) = 60480(b2 − 1)4(1− a2 − b2 + 11a2b2)
I3,3(a, b) = 24ab(3 − 3a2 − 3b2 + 5a2b2)
I3,5(a, b) = 240ab(b2 − 1)(3− 3a2 − 3b2 + 7a2b2)
I3,7(a, b) = 10080ab(b2 − 1)2(1− a2 − b2 + 3a2b2)
I3,9(a, b) = 60480ab(b2 − 1)3(3− 3a2 − 3b2 + 11a2b2)

I4,4(a, b) = 48(3− 6a2 + 3a4 − 6b2 + 36a2b2 − 30a4b2 + 3b4 − 30a2b4 + 35a4b4)

I4,6(a, b) = 1440(b2 − 1)(1− 2a2 + a4 − 2b2 + 16a2b2 − 14a4b2 + b4−
14a2b4 + 21a4b4)

I4,8(a, b) = 20160(b2 − 1)2(1− 2a2 + a4 − 2b2 + 20a2b2 − 18a4b2 + b4−
18a2b4 + 33a4b4)

I4,10(a, b) = 120960(b2 − 1)3(3− 6a2 + 3a4 − 6b2 + 72a2b2 − 66a4b2 + 3b4−
66a2b4 + 143a4b4)

(G.162)
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I5,5(a, b) = 480ab(15− 30a2 + 15a4 − 30b2 + 100a2b2−
70a4b2 + 15b4 − 70a2b4 + 63a4b4)

I5,7(a, b) = 20160ab(b2 − 1)(5− 10a2 + 5a4 − 10b2+
40a2b2 − 30a4b2 + 5b4 − 30a2b4 + 33a4b4)

I5,9(a, b) = 120960ab(b2 − 1)2(15− 30a2 + 15a4 − 30b2+
140a2b2 − 110a4b2 + 15b4 − 110a2b4 + 143a4b4)
I6,6(a, b) = 2880(5− 15a2 + 15a4 − 5a6 − 15b2 + 135a2b2−
225a4b2 + 105a6b2 + 15b4 − 225a2b4 + 525a4b4−
315a6b4 − 5b6 + 105a2b6 − 315a4b6 + 231a6b6)

I6,8(a, b) = 40320(b2 − 1)(5− 15a2 + 15a4 − 5a6 − 15b2+
165a2b2 − 285a4b2 + 135a6b2 + 15b4 − 285a2b4+
765a4b4 − 495a6b4 − 5b6 + 135a2b6 − 495a4b6 + 429a6b6)

I6,10(a, b) = 3628800(b2 − 1)2(1− 3a2 + 3a4 − a6 − 3b2+
39a2b2 − 69a4b2 + 33a6b2 + 3b4 − 69a2b4+
209a4b4 − 143a6b4 − b6 + 33a2b6 − 143a4b6 + 143a6b6)

(G.163)
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I7,7(a, b) = 40320ab(35− 105a2 + 105a4 − 35a6 − 105b2 + 525a2b2−
735a4b2 + 315a6b2 + 105b4 − 735a2b4 + 1323a4b4−
693a6b4 − 35b6 + 315a2b6 − 693a4b6 + 429a6b6)

I7,9(a, b) = 725760ab(b2 − 1)(35− 105a2 + 105a4 − 35a6−
105b2 + 595a2b2 − 875a4b2 + 385a6b2 + 105b4 − 875a2b4 + 1771a4b4

−1001a6b4 − 35b6 + 385a2b6 − 1001a4b6 + 715a6b6)

I8,8(a, b) = 80640(35− 140a2 + 210a4 − 140a6 + 35a8 − 140b2+
1680a2b2 − 4200a4b2 + 3920a6b2 − 1260a8b2 + 210b4 − 4200a2b4+
14700a4b4 − 17640a6b4 + 6930a8b4 − 140b6 + 3920a2b6 − 17640a4b6+
25872a6b6 − 12012a8b6 + 35b8 − 1260a2b8 + 6930a4b8 − 12012a6b8 + 6435a8b8)

I8,10(a, b) = 7257600(b2 − 1)(7− 28a2 + 42a4 − 28a6 + 7a8−
28b2 + 392a2b2 − 1008a4b2 + 952a6b2 − 308a8b2+
42b4 − 1008a2b4 + 3892a4b4 − 4928a6b4+
2002a8b4 − 28b6 + 952a2b6 − 4928a4b6+
8008a6b6 − 4004a8b6 + 7b8 − 308a2b8 + 2002a4b8−
4004a6b8 + 2431a8b8)

I9,9(a, b) = 1451520ab(315− 1260a2 + 1890a4 − 1260a6 + 315a8−
1260b2 + 8400a2b2 − 17640a4b2 + 15120a6b2−
4620a8b2 + 1890b4 − 17640a2b4 + 47628a4b4−
49896a6b4 + 18018a8b4 − 1260b6 + 15120a2b6−
49896a4b6 + 61776a6b6 − 25740a8b6 + 315b8−
4620a2b8 + 18018a4b8 − 25740a6b8 + 12155a8b8)

I10,10(a, b) = 14515200(63− 315a2 + 630a4 − 630a6 + 315a8 − 63a10 − 315b2+
4725a2b2 − 15750a4b2 + 22050a6b2 − 14175a8b2 + 3465a10b2 + 630b4 − 15750a2b4+
73500a4b4 − 132300a6b4 + 103950a8b4 − 30030a10b4 − 630b6 + 22050a2b6−
132300a4b6 + 291060a6b6 − 270270a8b6 + 90090a10b6 + 315b8 − 14175a2b8+
103950a4b8 − 270270a6b8 + 289575a8b8 − 109395a10b8 − 63b10 + 3465a2b10−
30030a4b10 + 90090a6b10 − 109395a8b10 + 46189a10b10)

(G.164)
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G.11 Struve Functions

In mathematics, Struve functionsHν(z), are solutions y(x) of the non-homogenous
Bessel’s differential equation:

z2
d2y

dx2
+ z

dy

dz
+ (z2 − ν2)y =

4(z/2)ν+1

√
πΓ(ν + 1

2
)

(G.165)

introduced by Hermann Struve (1882). The complex number ν is the order of
the Struve function, and is often an integer. The modified Struve functions
Lν(z) are equal to −je−jνπ/2Hν(jz).
Since this is a non-homogenous equation, solutions can be constructed from
a single particular solution by adding the solutions of the homogeneous prob-
lem. In this case, the homogenous solutions are the Bessel functions, and the
particular solution may be chosen as the corresponding Struve function.

G.11.1 Power series expansion

Struve functions, denoted as Hν(z) have the following power series form:

Hν(z) =

∞∑
k=0

(−1)k

Γ(k + 3
2
)Γ(k + ν + 3

2
)
(
z

2
)2k+ν+1 (G.166)

where Γ(z) is the gamma function.

G.11.2 Recurrence Relations

Hν−1(z) +Hν+1(z) =
2ν

z
Hν(z) +

(z/2)ν√
πΓ(ν + 3

2
)

(G.167)

Hν−1(z)−Hν+1(z) = 2H ′
ν(z)−

(z/2)ν√
πΓ(ν + 3

2
)

(G.168)

H ′
0(z) = 2/π −H1(z) (G.169)

d

dz
(zνHν) = zνHν−1 (G.170)

d

dz
(z−νHν) =

1√
π2νΓ(ν + 3

2
)
− z−νHν+1 (G.171)
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G.11.3 Special Properties

Hν(x) ≥ 0 (x > 0 and ν ≥ 1

2
) (G.172)

H−(n+ 1
2
)(z) = (−1)nJn+ 1

2
(z) (n and integer ≥ 0) (G.173)

H 1
2
(z) = (

2

πz
)
1
2 (1− cos z) (G.174)

H 3
2
(z) = (

z

2π
)
1
2 (1 +

2

z2
)− (

2

πz
)
1
2

(
sin z +

cos z

z

)
(G.175)

H0(z) =
4

π

∞∑
k=0

J2k+1(z)

2k + 1
(G.176)

H1(z) =
2

π
− 2

π
J0(z) +

4

π

∞∑
k=1

J2k(z)

4k2 − 1
(G.177)



488 APPENDIX G. SPECIAL FUNCTIONS



Appendix H

Numerical Computations

H.1 Numerical Integrals Formula

Transformation∫ b

a

f(x)dx =
1

2
(b− a)

∫ 1

−1

f(
b− a

2
t+

b+ a

2
)dt (H.1)

Trapezoidal Rule

h = (b− a)/n with truncation error: Rn = −nh3f ′′(ξ)
12

a ≤ ξ ≤ b∫ b

a

f(x)dx = h(
1

2
f0 + f1 + f2 + · · ·+ fn−1 +

1

2
fn) (H.2)

Simpson’s Rule

with truncation error: Rn = −nh5f ′′(ξ)
180

a ≤ ξ ≤ b∫ b

a

f(x)dx =
h

3
(f0+4f1+2f2+4f3+2f4+ · · ·+2fn−2+4fn−1+ fn) (H.3)

Gauss-Legendre Formula The Gauss-Legendre integration formula is the
most commonly used form of Gaussian quadratures. It is based on the Leg-
endre polynomials of the first kind Pn(x).∫ b

a

f(x)dx =
1

2
(b− a)[α1f(x1) + α2f(x2) + · · ·+ αrf(xr)] (H.4)

αk =
2(1− u2k)

(r + 1)2P 2
r+1(uk)
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where k = 1, 2, · · · , r, and Pr(u) = Legendre Polynomial of order r and
u1, u2, · · · , ur are zeros of Pr(u)
Gauss-Chebyshev Formula The Gauss-Chebyshev formula based on the
Chebyshev polynomials of the first kind Tn(x) has more handy integration
points and weights. But more variation of parameters may be needed.∫ b

a

f(x)dx =

∫ 1

−1

g(ζ)√
1− ζ2

dζ =
b− a

2

n∑
k=1

w(ζk)
√
1− ζ2kf(

b− a

2
ζk +

b+ a

2
)+Rn(ζ)

(H.5)
where

ζ = 2x−b−a
b−a ,⇒ x = b−a

2
ζ + b+a

2
,−1 < ζ < 1,

ζk = cos (2n−1)π
2n

,
w(ζk) =

π
n
,

g(ζ) = b−a
2

√
1− ζ2f( b−a

2
ζ + b+a

2
),

Rn(ζ) =
π

2n−1(2n)!
g2n(ζ)
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Table I.1: Relative Permittivity εr of Some Dielectrics
Material εr Material εr
Vacuum 1.0000 Nylon 3.5
Beewax 2.35 Barium tetratitanate 37

Transformer oil 2.24 Glass 3.8-6.8
Mica 6.0 Rubber 2.3-4
Lucite 3.0 Parafin 2.24
Silicon 11.9 Porcelains 5-10

Germanium 16. Sea Water 72
Gallium Arsenide 13.1 Distilled water at 20oC 80.0

Etanol 24.3 Benzene 2.28
Metanol 32.6 Polyetylene 2.24
Neoprene 6.7 Teflon 2.08
Plexiglass 2.60 Titania 96
Paper 2-4 Dry Soil 3-4
SiO2 3.9 Bakelite 5.0

Table I.2: Physical Constants

Permittivity of free space ε0 = 8.8541878× 10−12 ≈ 10−9

36π
farad/meter

Permeability of free space μ0 = 4π × 10−7henry/meter
Velocity of light in vacuum c0 = 2.99792458× 108 ≈ 3× 108 m/s

Charge of electron e = 1.6021892× 10−19C
Mass of electron me = 9.109534× 10−31kg
Mass of proton mp = 1.672648× 10−27kg

Boltzmann’s constant k = 1.380662× 10−23J/oK
Plank’s constant � = 1.054× 10−34J − s

Gyromagnetic ratio γ = 1.759× 1011 C/Kg (for g=2)
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Table I.3: Conversion
1 eV = 1.6021892× 10−19 Julios

1 Tesla = 104 Gauss
Magnetic flux 1Wb = 108 Maxwell

Mag. Field 1A/m = 4π × 10−3 Oersted
Energy 1J= 107 ergs
Force 1N = 105 dynes

Table I.4: Dielectric Strength
Air 30× 106 Porcelain 20× 106

Transformer oil 15× 106 Glass 10× 106

Mica 50× 106 Rubber 40× 106

Table I.5: Conductivity of Some Materials
Conductors σ(S/m) Conductors σ(S/m)

Silver 6.173× 107 Iron 1.03× 107

Copper 5.813× 107 Distilled Water 2× 10−4

Aluminum 3.816× 107 Lead 0.48× 107

Zinc 1.67× 107 Mercury 1.04× 106

Tungsten 1.825× 107 Steel(silicon) 2× 106

Platinum 9.52× 106 Steel(stainless) 1.1× 106

Sea Water ≈ 4 Earth 10−4 − 10−7

Insulators σ(S/m) Insulators σ(S/m)
Fused quartz 10−17 Mica 10−15

Glass 10−12 Transformer oil 10−11

Porcelain 10−13 Rubber 10−15
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Table I.6: Relative Permeability μr of Some Materials
Material μr Material μr
Bismuth 0.99983 Air 1.00000036
Silver 0.99998 Copper 0.99999
Water 0.99999 vacuum 1.00000
Cobalt 250 Nickel 600

Cold rolled steel 2,000 Mu metal 100,000
Purified iron 180,000 78 Permalloy 100,000
Soft iron 5,000 Supermalloy 800,000



Appendix J

Useful Electrical Relations

Let total charge Q be on a conducting ellipsoid with semi-axes a > b > c
along the x,y and z axes, respectively [13]. The capacitance of it will be
found by

C =
Q

V0
=

8πε∫∞
0
[(a2 + η)(b2 + η)(c2 + η)]−

1
2dη

(J.1)

and the density charge distribution is

σ =
Q

4πabc
[
x2

a4
+
y2

b4
+
z2

c4
]−

1
2 (J.2)

When c = 0 we will have an elliptic disk, so the Eq.(J.2) reduces to

σ =
Q

4πab
[1− (

x

a
)2 − (

y

b
)2]−1/2 (J.3)

If a = b the shape reduces to oblate spheroid. The capacitance of which is
readily obtained

C =
4πε

√
a2 − c2

tan−1
√

(a/c)2 − 1
(J.4)

and the charge density, becomes

σ =
Q

4πa2c
[
ρ2

a4
+
z2

c4
]−1/2 (J.5)

If where c→ 0, x2 + y2 = ρ2, we have the infinitely thin circular disk with

C = 8εa (J.6)
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The charge density derives directly from Eq.(J.3) with a = b and x2+y2 = ρ2

σ =
Q

4πa
√
a2 − ρ2

(J.7)

This value holds, for each side of the disk. For axial symmetry about the
x-axis, b = c, we have a prolate spheroid, and the capacitance is

C =
4πε

√
a2 − b2

tanh−1
√

1− (b/a)2
(J.8)
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