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Preface 

The idea for this book a r m  from a short course the authors have been giving a t  the 
University of Kent annually since 1974, to an audience consisting mainly of schoolteachers. 
The course has several aims, but one of the most important is to give the participants guided 
experience in solving problems in statistics. We have found that many people have a passing 
acquaintance with the various concepts encountered in a typical introductory statistics course for 
those with a basic knowledge of calculus: the sort of course which in Britain might be given to 
sixth-form mathematicians or to first year undergraduates. By contrast, people usually have 
little experience in applying the concepts in practical examples, and hence lack confidence. 

These attributes of experience and confidence are vital to teachers and students >like, and 
since they can be gained most effectively by working through examples, we feel that a book of 
worked solutions to problems, containing many notes and comments, will be found to be of 
value. 

Since this book is not designed as  a standard textbook, we have in general not included 
straightforward expository material, even if a fair proportion of examination questions require 
‘bookwork’ answers. By and large, such answers can be obtained most effectively through 
reading a good textbook, and we have framed most of the problems so as to omit these matters. 
Occasionally, however, inclusion of a ‘bookwork’ section of a problem has enabled us to widen 
horizons somewhat by discussing techniques slightly beyond most syllabuses, and we have felt it 
hclpful to do this. 

Since most readers of this book will have interests in solving problems set in public or 
professional examinations at  A-level or first year undergraduate level, we have devised the 
problems after perusing many examination questions set a t  this level. The problems are all 
original, although we have in many (but not all) cases ensured that they are realistic in standard 
and style by keeping actual questions in mind while devising them; at  the same time, we have of 
course taken care to respect the copyright in published examination questions. In this way we 
aim to give readers an insight into how professional statisticians view and deal with the sorts of 
problems set as questions in public examinations. Some relatively difficult problems (or parts of 
problems) have been marked with asterisks. Readers may prefer to postpone working through 
these parts until they have become familiar with the more straightforward material. 

In one respect, though, that of length, the problems included in this book are often not 
representative of examinations questions. As we noted above, bookwork sections of questions 
have typically been excluded. But in general we have, in any case, preferred not to  restrict 
ourselves to  ‘standard’ length problems. In particular, when we have felt it desirable to explore 
the links between related statistical techniques we have extended a problem to well beyond 
acceptable examination length. 

A quick glance through the pages of this book will reveal the authors’ approach. When 
statistics is compared with, say, mechanics as an examination subject, we find that the algebraic 
manipulations are relatively straightforward, but the real difficulty comes from determining 
which techniques to apply to which problem. Because of this, straightforward solutions to 
problems are of limited value unless they contain a discussion of why the technique used is the 
most appropriate one. We have therefore deliberately elaborated solutions into more than bald 
‘model answers’, and have in almost all cases provided extensive notes to the solutions, which 
we hope will add to the value of the solutions themselves. Some notes give alternative methods 
of solution, while others present solutions to related problems. We feel that it will often be 
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from examining the notes that the reader will discover the relationships between the various 
statistical techniques which will give the confidence needed to  tackle new problems. Some of 
the notes are more advanced in standard; as with the more difficult problems these have been 
marked with asterisks. 

The most basic division in Statistics is that between probability and inference, and accordingly 
we use such a division in this book. One can describe the distinction between these two areas in 
a variety of ways. Perhaps the simplest is to note that problems of inference start with sample 
information and aim to make statements about the groups or populations from which the 
samples were randomly drawn. Thus, we have incomplete information about a population, and 
wish to infer what we can about that population. 

A straightfonvard, if informal, way of starting this process is to construct a histogram from 
the sample. In doing this we aim to discover from what distribution the data might have come. 
Having completed such a preliminary analysis, and perhaps having performed a goodness-of-fit 
test, we may assume that a variable has, say, a normal distribution, but with the parameters of 
that distribution unknown. In such a case the inferences are then required only about those 
parameters. Other examples of inference are found in problems of regression and correlation in 
which a random sample gives partial information about the relationship between two variables. 
In inference, therefore, we have knowledge about part of a population, and we can regard 
inference as a form of generalisation. 

Probability, by contrast, is the r e v e m  process of arguing from general knowledge to special 
cases, a process of deduction. Since making deductions from axioms is the basic procedure of 
pure mathematics, probability is essentially a branch of mathematics, that branch dealing with 
problems with random or haphazard elements. So, typically, problems in  probability theory 
describe the background, state where the haphazard (or random) features occur, and, generally, 
require one to calculate the probability of some event of interest. 

The link between probability and statistical inference is just as clear-cut as is the distinction 
between them. Since inference attempts to make statements about entire populations on the 
basis of the partial information given by a sample, these statements cannot be both definitive 
and guaranteed as true. For example, if we test two fertilisers on a sample of crops, we cannot 
be certain that the one which appears to be the better will always give superior results; the most 
we can d o  is to  couch our conclusion in terms of probability. Thus the statistician cannot do 
without results in probability theory in making inferences. 

As with most examination questions, the problems devised for this book often do not fall 
neatly into single categories. It follows that, while the problems have been grouped according 
to the topic of primary interest, many problems have facets which take them out of their 
section, and sometimes indeed into a different chapter. Consequently, there are several 
occasions in early chapters in which reference is made to later material for further details, or for 
related material. The fact that statistical problems are so interdependent emphasises the unity 
of the subject; it is not just a collection of isolated techniques, but a comprehensive approach to 
the analysis of data. 

By contrast, we 
expect readers to dip into this book; it is not intended to be the book which cannot be put 
down, but we hope it is the one which when picked up helps to resolve difficulties about how a 
technique is carried out and when it is appropriate. The only caution we would give a reader 
who does wish to dip into the book is that the introductions to individual chapters and sections 
should normally be read along with the problems, since notation and terminology are usually 
introduced there. 

We have taken a common-sense approach to the matter of the accuracy to which calculations 
are carried out. Our aim is almost always to ensure that the result of an entire sequence of 
calculations is presented to a reasonable number of significant digits, and is accurate to the 
number of digits quoted. (There are one or two exceptions to this rule, for cases in which 
results are conventionally quoted to a fixed accuracy only.) Thus, for example, since tables of 

A textbook is designed to  be read from beginning to end, in sequence. 
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Student’s r-distribution on 10 degrees of freedom are generally given to three or four significant 
digits, it is pointless calculating a corresponding statistic to any greater accuracy, but it would 
be rather risky to be much less accurate in our calculations. 

In most cases we have presented some intermediate values in a sequence of calculations. A 
difficulty in doing this is that if such a value is presented only to the number of significant 
digits in the initial or final values, the sequence of calculations may not a p  ar to be correct. 
(As an unrealistically simple example, suppose we were evaluating 10/ F 10 to 2 significant 
digits, without using the obvious method of cancelling! We would have to write 

10 10 * = 32 = 3.2, 

but, of course, dividing 10 by 3.2 gives 3.125.) 
Our practice in this book has been to present any intermediate steps to a reasonable accuracy, 

as a help to the reader wishing to follow the calculations through. But subsequent calculations 
are based not on the value presented but on a more accurate one; it is basically as if one was 
using a calculator which held the intermediate value to 8 significant digits, and one recorded a 
value only to a few significant digits as an aide-memoire. 

A student completely unfamiliar with a subject does not start to study it by reading a book of 
worked examples. Accordingly, we have written for those who have read a first-level textbook 
such as A Basic Course in Statistics, by G. M. Clarke and D. A. Cooke (Edward Arnold, 
London, Second Edition, 1983), and will therefore be familiar with the terminology and most 
of the concepts of elementary probability and statistics. We d o  not set out to teach 
systematically matters like conditional probability, use of normal tables, histograms, r -tests and 
correlation (just to take a single example from each chapter). We assume that the reader has 
encountered these, and either knows what is involved or has a favourite textbook in which to 
look them up. 

Finally, no book is ever the fruit of the effort and imagination of the authors alone. While we 
naturally accept full responsibility for any errors that may remain, we are grateful to all whose 
perceptive comments have helped to sharpen our own ideas about suitable ways to present and 
solve these problems. In particular, we warmly acknowledge the extensive questioning directed 
at us by the participants on our courses over the years, without whom we would not have 
embarked on the task of producing full solutions to all these problems. 

Different authors have contributed different sections to this book, but we have shared in the 
production of all parts of the volume. Inevitably, some authors have contributed more than 
others, and in particular the task of overall editorial responsibility was mainly undertaken by 
one of us (E.E.B.). 

The production of the book owes a great deal to the magnificent service offered by the 
Computing Laboratory a t  the University of Kent, and especially the Electronic Publishing 
Research Unit established by Mrs Heather Brown. The book was typed at  a computer terminal, 
using the rrof system, and the authors are most grateful for the provision of these facilities, 
without which the successive revisions of the material would have been very much more 
difficult. 

Eryl Bassett 
J. Michael Bremner 

Ian Jolliffe 
Byron Jones 

Byron J .  T. Morgan 
Philip M. North 

Canterbury, 
June, 1986 
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Preface to the 2000 reprint 

Since this book was first published in 1986, many aspects of statistical work have moved on. 
In particular, the availability of computer packages to undertake tedious calculations has 
become much greater, and the packages have become more sophisticated and easy to use. In 
our view, these very desirable developments do not reduce the need for a book like the present 
one. Our approach aims to improve a student’s understanding of statistics, and to help students 
appreciate which techniques might be appropriate for any particular problem; this approach is 
quite complementary to the need for computing assistance. 

In 1986, we viewed the material as particularly suitable for students taking courses at about 
the level of A-level examinations in England and Wales, and for those teaching or advising 
them, as well as for first-year undergraduates at university. Developments since then suggest to 
us that the material should be all the more suitable for first-year undergraduates or those taking 
the Higher Certificate examinations of the Royal Statistical Society. This level corresponds to 
that of calculus-based introductory courses in Probability and Statistics in many other parts of 
the world. 

We remarked in the original preface that we were writing for those who have read a first-level 
textbook such as that by G. M. Clarke and D. A. Cooke. We are pleased to see that that book has 
now reached its fourth edition, and are happy to continue recommending it. We give a full 
reference below. 

The authors wish to express their gratitude to Sunil Nair and Dr Lu Jitan of World Scientific 
Publishing for the energy and enthusiasm they have shown in arranging for this book to be once 
again in print. Naturally, we continue to accept responsibility for any errors which remain. 

Eryl Bassett 
J. Michael Bremner 

Ian Jolliffe 
Byron Jones 

Byron J. T. Morgan 
Philip M. North 

Novembel; 1999 

Reference: A Basic Course in Statistics, by G. M. Clarke and D. A. Cooke. (Arnold, London, 
Fourth Edition, 1998.) 
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1 Probability and Random Variables 

As Professor Sir John Kingman remarked in a review lecture in 1984 on the 150th 
anniversary of the founding of the Royal Statistical Society, 

The remark was challenged and led to an interesting discussion, but it is unquestionable that, a t  
an elementary level, almost all statistical analyses depend for their validity on results in 
probability. (Exceptions are graphical methods - construction of histograms and so on; and 
indeed it is to a substantial extent the growth of less formal, graphically based, techniques in 
more advanced areas which made the above remark controversial.) It is natural, therefore, that 
methods based upon probability theory appear throughout this book. 

From Chapter 3 onwards, probability will be just a means to an end, a tool to enable us to 
make valid statistical inferences. But in this chapter and the next we examine it more for its 
own sake. The first section of this chapter is devoted to a discussion of problems involving the 
manipulation of events and their corresponding probabilities, and the use of the basic laws and 
theorems of probability theory. Later, in Section lB,  we cover problems involving random 
variables and their distributions, paving the way for the coverage of well-known probability 
distributions in Chapter 2. 

‘The theory of probability lies a t  the root of all statistical theory’. 

1A Probability 

The theory of probability has, as its central feature, the concept of a repeatable random 
experiment; that is, an experiment the outcome of which is uncertain. Obvious examples are 
simple games using dice or playing cards. The set of all possible outcomes of an experiment is 
known as its sample space (another term which is sometimes used is possibility space), and 
subsets of this are called events. In many problems, the aim will be to calculate the probability 
associated with some event of interest. 

Very often the sample space will have an easily recognised structure, and one can then exploit 
this structure mathematically to calculate any required probabilities. The most common 
structures of this sort occur when a sample space is a set of integers, or a set of real numbers, 
and these are examined in Section 1B. In the present section we deal with problems in which 
we have no such advantage. The tools used in this section, therefore, are the general ones of 
probability theory, applicable in all cases. In particular we will need to use the addition and 
multiplication laws, and the law of total probability and Bayes’ Theorem. 

The problems set in this section generally require a numerical answer. For a calculation to be 
possible one must be able to assign a probability numerically to each of the outcomes of the 
experiment concerned. Some problems may relate to situations possessing sufficient symmetry 
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for the assumption of ‘equally likely outcomes’ to be appropriate; calculation of probabilities 
then reduces simply to a question of counting outcomes. For other problems such an 
assumption may not be appropriate, and we must be given, directly or indirectly, values of the 
probabilities of various events. The first six problems in this section are of the former type, 
while the remaining five are of the latter. 

Probability problems are often found difficult. Whereas a typical problem in another area 
will fall into one of a range of standard categories, so that a standard method of solution will be 
appropriate, this is less often true of probability problems. Indeed, it is frequently the case that 
there are two or more possible approaches to the solution of a problem, and that none of these 
is clearly ‘best’; the choice of an approach is often largely a matter of personal taste. We have, 
therefore, presented more than one solution to several of the problems in this section. This is, 
in part, to demonstrate the range of different approaches that can be used. Another reason for 
presenting multiple solutions is that they illustrate a method of checking solutions (a familiar 
experience of those struggling with probability problems is that of reaching what turns out to be 
the wrong answer through an apparently flawless argument). If two solutions, using different 
methods, produce the same answer there is some hope that it may be correct! The luckless 
examination candidate is, unfortunately, unlikely to have time for this. 

We use a natural and conventional notation. The probability of an event will be denoted by 
Pr(xucr), where ‘XXZT’  represents a verbal statement defining the event. A notation as simple 
as this suffices for some cases, but when the description of events is complex we resort to  
notation for the events themselves. Thus we may specify that an event will be denoted by a 
symbol - a-capital letter, perhaps with a subscript, e.g. En - and we will then, of course, write 
Pr(E,) for its probability. Finally, we denote the conditional probability of A given B by the 
standard notation Pr(A i B ) .  

lA.l The wellington boots 

Three young children are attempting to retrieve their Wellington boots from a cupboard. Each 
selects two boots a t  random; the cupboard contains no other boots. 
(a) Find the probability that each obtains the correct pair of boots. 
(b) Find the probability that each obtains a pair of boots (not necessarily the correct pair). 
(c) Find the probability that a t  least one obtains the correct pair of boots. 
(d) Now suppose that two pairs of boots are red, and one pair is yellow, and that the children 
select boots of the correct colour and put them on (without distinguishing between left and 
right). Find the probability that all three children end up wearing their own boots correctly. 

Solution 
For the first three parts of the question we shall adopt a sample space consisting of all possible 
allocations of two boots to  each of the three children. There are = 90 such allocations, 
each with probability &. 
(a) Since only one allocation is correct, the probability that each child obtains the correct pair 
of boots is &. 
(b) If we denote the three children by A, B, and C and let, for example, CAB stand for the 
outcome in which A obtains the boots belonging to C, B obtains those belonging to A, and C 
obtains those belonging to B, there are six outcomes in which each child obtains a pair, viz. 
ABC , ACB , BAC , BCA , CAB, CBA . Thus the probability of this event is $ = A. 
(c) We consider first allocations such that A obtains the correct pair of boots, while B and C 
do not. To count these, we note that, since A is to have the correct boots, we need only 
consider allocations of boots to B and C. There are 6) = 6 of these, of which all but one result 
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in B and C obtaining incorrect pairs of boots. Thus there are 5 allocations with the property 
that only A obtains the correct boots; similarly there are 5 allocations such that only B obtains 
the correct boots, and 5 such that only C does. Adding to these the single allocation such that 
they all obtain the correct boots, we find that there are 16 allocations which result in a t  least 
one child obtaining the correct boots, so that the required probability is $ = &. 
(d) We may consider the red and yellow boots separately. The probability that the child with 
the yellow boots puts them on correctly is :. For the red boots, we consider a sample space 
consisting of all 4! possible allocations of the boots to the feet of the children concerned (in 
this part of the question the order is important). Only one such allocation is correct, so that the 
probability that the red-booted children are correctly shod is = $. Finally, assuming 
independence between the allocation of red and yellow boots, we obtain the probability that all 
three children are correctly shod as X & = &. 

Notes 

(1) The words ‘at random’ are frequently encountered in  questions such as this. Strictly 
speaking, they imply only that the outcome cannot be predicted in advance. The interpretation 
we have chosen here is much stronger, implying, for parts (a) and (b), that each of the 90 
possible outcomes has the same chance of occurring. Such an assumption of ‘equally likely 
outcomes’ is in line with everyday usage in statements such as ‘Winning Premium Bond 
numbers are chosen at  random.’ In solving probability problems, it is the natural one in the 
absence of any further information, and we shall frequently make it in our solutions to the 
problems which follow. 
(2) It is possible to solve parts (a)-(c) on the basis of a sample space in which all 6 !  possible 
ordered allocations of the boots to the children are equally likely. Then, for example, there are 
8 (= 23) outcomes in which all three children obtain the correct boots, since each child can 
obtain his (or her) boots in two possible orders. 

(3) Some readers may prefer to tackle this problem by dividing each part into stages and using 
the multiplication laws of probability. We now present a solution along these lines. 
(a) We may imagine A having first choice of boots, followed by B and finally C .  If we adopt a 
notation in which, for example, A l  denotes the event that the first boot chosen by A belongs to  
A. we require the probability of the event AlnA2flBlnA2nC1flCZ. This probability may be 
expressed as 

Pr(A I)Pr(A 2 1 A ,)Pr(B 1 A l n ~ 2 ) P r ( n 2  ~A l n ~ 2 n ~  1) 

(we have omitted two further conditional probabilities in order to  shortcn the above expression: 
they relate to C‘s ‘choice’, and are both equal to 1 since C has no choice a t  all). Now 
Pr(A1) = I ,  since A has initially 6 boots to choose from, of which 2 are correct; and 
Pr(A2/Al) = $, since at  this stage A has 5 boots to choose from, of which 1 is correct. 
Similarly, Pr(B1 l A l n A 2 )  = z .  and Pr(B2 lA.lflA2nB1) = f .  h4ultiplying these probabilities, we 
obtain the solution $, as before. 

(b) If we let M A  stand for the event that A obtains a matching pair of boots, and so on, we 
require 

Pr(MAnMBnMc) = Pr(MA)Pr(Ms IMA) 

(as above, the third component P r ( M c l M A n M s )  is equal to 1, and has therefore been 
omitted). Now Pr(MJ is just the probability that the second boot selected by A matches the 
first, i.e. f ;  similarly Pr(MB(MA) = f .  Multiplying these probabilities, we obtain the solution 

(c) We now let A denote the event that A obtains the correct pair of boots, and define B and 
C similarly. We then require Pr(A U B  UC). Using the general addition law for three events, 

1 
15 . - 
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this probability may be expanded as 

Pr(A) + Pr(B) + Pr(C) - Pr(AnB)  - P r ( B n c )  - Pr(AnC) + P r ( A n B n c ) .  

Now, using the notation used in solving part (a), since A = A lnA2,  we obtain 

Pr(A) = Pr(Al)Pr(A2IA1) = $ X f  = A. 
Similarly, Pr(B) and Pr(C) have the same value. 

The four remaining terms that we require in order to obtain Pr(AUBUC) are all the same, 
and equal to Pr(A n B  nC) (since, for example, if A and B obtain the correct boots, so also 
must C). This probability has already been shown, in part (a), to be $. Thus 

Pr(AUBUC) = 3 X &  - 3 x &  + & = A, 45 

(d) We shall use a notation in which, for example, L A  will stand for the event that the boot 
worn by A on his (or her) left foot is the correct one. We may, without loss of generality, take 
it that A is the owner of the yellow boots. Dealing first with these, we obtain 

Pr(LAnRA) = Pr(LA)Pr(RAILA) = + x i  = 3. 
Turning to the red boots, we obtain 

Pr(L BnRBnLCnRC) = Pr(LB) x Pr(RB B) x Pr(Lc 1 LBnRB) x Pr(Rc 1 L BnRBnLC) 
= LxlxLxL = 1. 

4 3 2 1  24 

Multiplying these two probabilities, we obtain the solution &, as before. 

1A.2 Dealing four cards 
Four cards are dealt from a standard pack of 52 cards. Find 
(i) the probability that all four are spades; 
(ii) the probability that two or fewer are spades; 
(iii) the probability that all four are spades, given that the first two are spades; 
(iv) the probability that spades and hearts alternate. 

Solution 
We shall solve this problem using three different approaches. Of these, Method 1 is probably 
the most straightforward and appealing. 
Method 1 
Let si denote the event that the i th card dealt is a spade, and Hi the event that it is a heart. 
The required probabilities are then obtained as follows: 

(i) ~ r ( s ~ n s ~ n s ~ n s ~ )  = Pr(Sl)Pr(& iSl)Pr(S3 1s1ns2)Pr(s4  Is,ns2ns,) 
- 13 12 11 10 - - X - X - - X -  

52 51 50 49 

(ii) Rather than sum the probabilities of the three events ‘no spades’, ‘one spade’, and ‘two 
spades’, it will be simpler to adopt the standard device of obtaining the probability of the event 
complementary to that specified in the problem, and then subtracting from 1. Adopting this 
approach, we have to calculate the probabilities of only two events; there is, indeed, a further 
reduction in effort, since we have already found one of these probabilities in the solution to 
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part (i). Thus 

Pr(two or fewer are spades) = 1 - Pr(three are spades) - Pr(al1 four are spades), 

Pr(three are spades) = Pr(SlnS2nSgl s 4 )  + Pr(SlnS2n 53nS4) 

and, since the second of the probabilities is known, we need only the following: 

+ Pr ( s lnS2ns3ns4)  + ~ r ( S ~ n s ~ n s ~ n s ~ ) .  

The first of these four probabilities is 
13 12 11 39 
52 51 50 4 9 '  Pr(Sl)Pr(S2 IS1)Pr(s3 Is1ns2)pr( F4 ls1ns2ns3) = - x - x- x- 

Similarly, the remaining three probabilities are 
13 12 39 11 13 39 12 11 39 13 12 11 -x-x-x- , -x-x-x- , - -x-x-x-  
52 51 50 49 52 51 50 49 52 51 50 49 

respectively. Combining these results with the solution to part (i), we obtain 
13x l2x11  x10) + (4x 1 3 x 1 2 ~  11 x39) 

52 x 51 x 50 x 49 
Pr(two or fewer are spades) = 1 - ( 

19 912 
20 825 . 

=-  

11 10 
50 49 

= -x- 

- 11 - -  
245 ' 

(iv) The required probability is composed of two parts, Pr(S1nH2nS3nHq) and 
Pr(HlnS2nH3nS4). The first of these probabilities is 

13 13 12 12 = - x - x  - x -, 
52 51 50 49 Pr(SI)Pr(H2 1S1)Pr(s3 ~ s ~ ~ H ~ ) P ~ ( H ~  

and the second is found, similarly, to have the same value. The required probability is thus 

156 =- 2 x 1 32 x 122 
52X51x5OX49 20825 ' 

Method 2 

In this method we base our solutions on the enumeration of appropriate outcomes in a sample 
space consisting of all possible hands of four cards, taking the order in which the cards are dealt 
into account. This sample space consists of 52x51 x50x49 outcomes - all equally likely. 
(i) The number of different hands consisting of four spades is 13 x 12 x 11 x 10. Hence the 
probability that a hand consists entirely of spades is gs, as before. 

(ii) As in Method 1, it is simpler to count the number of hands with three or four spades and 
subtract. The number of different hands consisting of three spades followed by one card which 
is not a spade is 13 X 12x 11 x 39; considering the three other positions in which the card which 
is not a spade can appear, we see that the number of relevant hands is the same for each. 
Hence the total number of hands containing three or four spades is ( 1 3 ~ 1 2 ~ 1 1 ~ 1 0 )  + 
( 4 ~ 1 3 ~ 1 2 X l l x 3 9 ) ,  from which we can deduce the same answer as that obtained by 
Method 1. 
(iii) In order to obtain the required conditional probability, we must find the probability that 
the first two cards are spades. Since the number of hands with this property is 13 x 12X50X49, 
it follows that the corresponding probability is g. Dividing the probability obtained in 
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answer to (i) by this quantity, we obtain the required result. 
(iv) The number of possible hands in which spades and hearts alternate, with a spade in the 
first position, is 13X13X12x12; the number of hands in which spades and hearts alternate, 
with a heart in the first position, is the same. We thus obtain the same probability as was 
obtained by Method 1.  
Method 3 
In this method (which can be used only for parts (i) and (ii) of the problem) we again consider 
a sample space of equally likely four-card hands, but d o  not take the order in which the cards 
are dealt into account. There are thus 

(i) There are (i3) possible hands consisting of four spades. The probability of such a hand is 
thus 

outcomes in the sample space. ("42) 

which, after appropriate cancellations, reduces to the solution already obtained. 
(ii) To count the number of hands containing three spades and one card of another suit, we 
note that there are 39 possibilities for the latter card, and that each of these may be combined 
with ('33) possible combinations of three spades. The total number of hands is thus 39x 

and, dividing by ("4') and cancelling, we obtain the same answer as before. 

Notes 

(1) In Method 1 ,  the introduction of an appropriate notation for the events of interest makes it 
possible to write out a fairly concise, yet clear, solution. While one might prefer a solution 
where the events are described verbally, this becomes somewhat lengthy. Consider, for 
example, part (i): 

Pr(al1 four cards are spades) 

= Pr(first card is a spade) 

x Pr(second card is a spade I first card is a spade) 

x %(third card is a spade 1 first two cards are spades) 

x Pr(fourth card is a spade I first three cards are spades) 

= . . . etc. 

On the other hand, writing down Pr(SSSS), without explaining what this means, is not enough; 
and the inadequacy of such a notation becomes more evident when we start writing out a 
solution, involving meaningless terms like Pr(S iSS). (See Note 5 to Problem lA.10 and 
Note 1 to Problem 1B.3 for a discussion of similar points.) 
(2) In solving part (ii) by Method 1 it  is tempting, in finding the probability of three spades, to 
obtain Pr(SInS,nS,ns,) and then multiply by four, on the grounds that there are four 
possible positions for the card which is not a spade. What is more, this argument works! 
However, although the argument is valid for similar questions involving the rolling of dice, or 
the random selection of cards wirh replacernenr (and is fundamental to the derivation of the 
binomial distribution), it is not valid in situations where selection is performed withour 
replacement. In the present case note that, although the four components which are summed to 
obtain the probability of three spades are equal, the probabilities which are multiplied to  obtain 
them are not. A slightly more complicated argument, such as that we have given, is therefore 
necessary. (See Note 2 to Problem 1B.3 for a similar point, and for mention of a problem for 
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which the simpler argument does not give the correct answer.) 
(3) When we are dealing with a sample space in which all outcomes are equally likely, we may 
use the fact that 

n (A nt?) 
n ( B )  ’ 

Pr(A I B )  = 

where n denotes the number of outcomes in the indicated event. Thus, in solving part (iii) by 
Method 2, we have 

n(s1ns2ns3ns4) = 1 3 x 1 2 ~  11 XIO, 

n(sIns,) = 1 3 x 1 2 ~ 5 0 ~ 4 9 ,  

and 

leading to the same result as before. 
* (4) As a further variant on the Method 2 solution to part (iii), we may consider a reduced 

sample space in which, given that the first two cards dealt are spades, there are 50x49 
possibilities for the next two cards dealt - all of them equally likely. Of these, 11 x 10 consist 
of two spades, so that the required conditional probability is $:;, as before. 

This argument is rather less straightforward than it may seem. We are, in fact, conditioning 
on the first two cards being a particular pair of spades (the three and the queen, say). Since the 
probability obtained does not depend on which pair we are conditioning on, it is also the 
probability conditional on the first two cards being any pair of spades. 

* ( 5 )  While the approach of Method 1 is probably the simplest for this problem, that of 
Method 3 can be more easily extended to cover similar problems where larger numbers are 
involved. For example, the probability that, in a hand consisting of ten cards, six are spades is, 
by an argument similar to that used for part (ii), 

We are dealing here with the hypergeometric distribution, which is discussed in greater detail in 
Problem 2A. 11. 

1A.3 The school assembly 

At the morning assembly, five schoolchildren - Alan, Barbara, Clare, Daniel and Edward - 
sit down in a row along with five other children (whose names need not concern us here). If 
the children arrange themselves at random, find the probabilities of the following events. 
(a) Alan and Barbara sit together. 
(b) Clare, Daniel and Edward sit together. 
(c) Clare, Daniel and Edward sit together but Alan and Barbara sit apart. 
(d) Daniel sits between Clare and Edward (but not necessarily adjacent to either of them). 

Solution 
There are at least two ways of solving this problem. One is based on enumerating the seating 
arrangements corresponding to the events of interest, there being lo! equally likely 
arrangements in all. A second approach involves the multiplication of appropriate probabilities 
and conditional probabilities. We shall solve all four parts of the problem using the first 
approach (referred to as Method 1 below), and parts (a), (b), and (d) using the second 
(Method 2). 
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Method 1 

(a) To count the number of possible arrangements here, we consider permutations of nine 
objects, one of which consists of A(1an) and B(arbara) sitting together, the other eight being the 
remaining children. The number of possible permutations of nine objects is 9! so that, after 
allowing for the fact that A may be sitting to the left, or to the right, of B, the total number of 
arrangements in which A and B sit together is 2x9!. The required probability is thus 

2x9!  1 - = -  
l o !  5 .  

(b) As in the solution to part (a), we consider permutations of eight objects: C(lare), D(anie1) 
and E(dward) sitting together, and the remaining seven children. Since there are 3! possible 
internal arrangements of the group of three children, and 8! ways of arranging the eight objects 
in order, the required probability is 

3!x8! 1 - -  _ -  
l o !  15 ' 

(c) Direct enumeration is difficult here. We note, however, that we already know the 
probability that C, D and E sit together so that, if we can find the probability that they sit 
together and A and B sit together, we may obtain the required probability by subtraction. 
Formally, 

Pr(ABncDE) = Pr(CDE) - P r ( m n c m ) .  

(Here, with a slight misuse of notation, we use AB to denote the event that A and B sit together 
and CDE the event that C, D and E sit together.) We find Pr(AB flCDE) by considering the 7! 
possible permutations of seven objects, one consisting of A and B, one consisting of C, D and 
E, and the other five being the remaining children. Taking into account the 2 possible orders 
for A and B and the 3! possible orders for C, D and E, we obtain 

2X3!X7! = 
60 ' 

Pr(ABnCDE) = 
lo! 

The solution to this part of the problem is therefore 
1 1 1  
15 60 20 '  
- - - = -  

(d) Consider first the seven other children. They can be arranged in lOx9X8X . . . X4 
( = lo! /3!) ways. For each such arrangement, there are 2 ways in of arranging C, D and E in 
the remaining seats with D sitting between C and E. Thus the solution to this part is 

2x10!/3! 1 = -  
lo! 3 '  

Method 2 
(a) If we consider the position of A, there are two different situations: when A i s  in an end 
position, and when A is in an internal position. The required probability is thus 

Pr(A in end position)Pr(B next to A I A in end position) 

+ Pr(A in internal position)Pr(B next to A I A in internal position) 

1 
5 '  

= -  

(The conditional probabilities are obtained by regarding the nine possible positions for B, given 
that of A, as equally likely.) 
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(b) Let us consider first the event that C, D and E sit together in  that order. For this to  be 
true, C must be in one of the positions 1, 2, . . . , 8. If C is in  position i (1 5 i 5 8), the 
conditional probability that C, D and E sit together in  that order is 

Pr(D in  position i +11 C in position i) X 

Pr(E in  position i +2 I C in  position i , D in  position i + 1) 
1 1  
9 8  

= -x - - .  

Thus 

Pr(C, D and E sit together in that order) 
1 1  

= Pr(Cinoneofpositions1,2,. . . ,8)X-X- 
9 8  

8 1 1  
l o  9 8 

= - x - x -  

Finally, since there are  6 (i.e. 3!) possible orders for C, D and E to be considered, the required 
probability is 6 = 1 15 . 

(c) A solution to this part using Method 2, although possible, is rather complicated, and is not 
provided here. 
(d) We solve this part by first working conditionally on D s  position, which must be one of 
2, 3, . . . , 9; each of these has probability &. If D sits in position i, the conditional 
probability that C sits to the left of him and E sits to  the right of him is 

i-1 10-i 
-X-* 

- 9  8 '  

the conditional probability that C sits to the right of him and E sits to the left has the same 
value. Thus the probability we require is 

9 

i =2 
Pr(D in position i )  X Pr(C and E on opposite sides of D 1 D in position i )  

- 2(1X8 + 2x7 + . . . + 8 x 1 1  - 
10X9X8 

240 1 
720 6 '  

_ -  - 

Notes 

(1) We remarked in Note 5 to Problem 1A.2 that, while an approach based on splitting the 
experiment into stages (cf. Method 2 for this problem, and Method 1 for Problem 1A.2) may 
suggest itself as the most natural approach for many problems, it may turn out that some 
problems require us to enumerate outcomes in the sample space of the whole experiment. 
Although the latter approach may not appeal, because of the complicated combinatorial 
arguments that it can involve, it can sometimes prove (as in this problem) more powerful than 
the former. 
(2) A simple solution to (d) follows from the observation that there are six possible orders in 
which C, D and E can sit, these being equally likely. Since two of these orders are such that D 
sits between C and E, the required probability is a = +. 
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1A.4 The second card 
Two cards are dealt from a pack. Find the probability that the second card dealt is a heart. 

Solution 

The answer is clearly +, since all four suits must be equally likely. If this argument appears 
treacherous in its simplicity, the argument given in the following paragraph may be preferred. 

If we let Hi ( i  = 1, 2) denote the event that the i th  card dealt is a heart then, using the law 
of total probability, 

Pr(H2) = P ~ ( H I ) P ~ ( H ~  1 ~ ~ )  + Pr( i? 1 ) ~ r ( ~ 2  I i? 1) 

13 12 
5 2  5 1  

1 
4 ‘  

= -  

Notes 
(1) Newcomers to the study of probability theory frequently find this question confusing. A 
common answer when the question is put to a class is ‘It depcnds on what the first card is’ - 
but what is asked for is not a conditional probability, but the unconditional probability that the 
second card is a heart. The conditional probabilities appear in the second of the given 
solutions, where the unconditional probability is obtained as their weighted average. 

(2) Even students who are clear about what is being asked for are reluctant to trust the first 
method of solution, preferring the second approach. This approach will not, however, extend 
easily to similar problems involving many cards. For example, suppose we require the 
probability that, when ten cards are dealt, the last one is a heart. While it is again clear that 
this is f, the sceptical will find that the previous approach has become rather cumbersome, 
involving the enumeration of 29 possibilities. They may, however, make use of an argument 
based on considering all of the 5 2 x 5 1  x . . . ~ 4 3  possible hands of 10 cards (taking the order of 
dealing into account) to be equally likely. To  count the number of such hands in which the 
final card is a heart we note that, for each of the 13 possibilities for the final card, there are 
5 1 X 5 0 X  . . . x 4 3  different possibilities for the preceding nine. Thus the probability that the 
last card is a heart is 

1 3 X 5 1 X 5 0 X .  . . x 4 3  1 
5 2 X 5 1 X 5 0 X .  . . x 4 3  4 ’  

= -  

* 1A.5 A birthday coincidence 
The two authors of a letter to The Times, published in September 1984, wrote as follows: 

‘Whilst we were travelling by train back from work with two other friends, we 
happened to discover that the four of us had birthdays on three successive days, two 
being on the same day. Using our limited arithmetic and electronic calculators we 
have worked out the odds of this rare occurrence as being approximately 1,350,000 
to 1.’ 

Verify the correctness of the stated odds. 
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Solution 
As with several of the problems in this section, we shall present more than one solution, 
illustrating different possible approaches. In presenting each solution we shall refer to the four 
passengers as P I ,  P 2 ,  P3 and P4. 
Method 1 

We shall consider the four passengers in order, and introduce the following notation, relating to 
P, . The event that this passenger has the same birthday as one of those previously considered 
will be denoted by S,; A, will denote the Occurrence of a birthday adjacent to, i.e. one day 
before or after, one of the birthdays of those previously considered; C, will denote the 
occurrence of a birthday close to, i.e. two days before or after, that of PI, while we will let B, 
stand for the event that P,’s  birthday falls berween that of P I  and the ‘close’ birthday of another 
passenger. The event which aroused the interest of the letter-writers then occurs if the events 
relating to P2, P3 and P4 are either 

(i) two As and an S ,  in any order, or 
(ii) a C ,  a B and an S , with the C preceding the B but the S in any position. 
We shall consider these two possibilities in turn. 

A2nS3nA1 and Af lA3nS4.  The first of these three events has probability 
To obtain the probability of (i), we sum the probabilities of the three events S2nA3nA4,  

Similarly, the second and third events have probabilities 
2 2 2  8 Pr(A2)Pr(S31A2)Pr(A4/A2nS3) = -X--x-- = - 

365 365 365 3653 

and 
2 2 3  12 

365 365 365 3653 Pr(A2)Pr(A31A2)Pr(S41A2nA3) = -X-X-- = - 

respectively. Totalling these, we find that the probability corresponding to (i) is 24. 
3653 

Turning now to (ii), we obtain the required probability as 

Pr(s2nc3nB4) + Pr(c2ns3ns4) + p r ( c 2 n ~ , n s 4 )  

2 2 1  x-x-] + “x-x-) 1 3  
365 365 365 365 365 365 365 365 365 

Finally, we add the probabilities corresponding to (i) and (ii) to  obtain the result 

giving odds against the observed coincidence of about 1 350 752 to 1. 
Method 2 
For the event of interest to  Occur it must be the case that two of the passengers have the same 
birthday, while the remaining passengers have birthdays which, along with the common 
birthday of the first two, fall on three consecutive dates. It will be sufficient to consider the 
case when P I  and P2 have the same birthday. When we have found the corresponding 
probability, symmetry considerations will enable us to obtain the solution to  the problem by 
multiplying by 6 (since this is the number of distinct pairs amongst the four passengers). 
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Forgetting, for the moment, about P2, the probability that P I ,  P3 and P4 have birthdays on 
consecutive dates is obtained by adding the probabilities of two events. First, P3’s birthday may 
be one day before or after that of PI ,  and P4’s birthday must then occur immediately before or 
after the pair of dates occupied by the birthdays of P1 and P3: the associated probability is 
-~ 2 2 =i Second, P3’s birthday may be two days before or after that of PI, in which case 
365 3-55 = 2 ’  

P4’s birthday must occur between the two dates: the probability of this is && = 2. Thus 

the probability that PI, P3 and P4 have birthdays on consecutive dates is 6, and so the 
probability that all four passengers have birthdays on three consecutive dates, with P 1  and P 2  
having the same birthday, is L. Finally, the answer to the problem is obtained by multiplying 
this probability by 6, obtaining the result 36. 

Method 3 
Another possible approach is along lines fairly similar to those followed in Method 1, but 
considers first the probability that the birthdays of the four passengers fall on three direrent 
dates, leaving consideration of the problem of consecutive dates until the end of the solution. 
As in the earlier solution, we consider the four passengers in order and, for i = 2, 3, 4, let Di 
stand for the event that Pi’s birthday is diferent from those considered earlier. The probability 
that the four birthdays fall on three different days is then 

M52 

35.52 

3-55’ 

3-553 

~ r ( ~ ~ n ~ ~ n  Zi 4 )  + prp2n Zi 3 n ~ 4 )  + Pr(D 2 n ~ 3 n ~ 4 )  
3 6 4 , L X -  363)  + [ - 1 xxxm] 

365 365 365 365 365 365 365 365 365 

The probability we have just obtained is composed of equal components corresponding to 
each of the e) possible combinations of three days, but only 365 such combinations are of 
three consecutive days. The probability that the four have birthdays on three consecutive days 
is thus obtained by multiplying the probability obtained in the previous paragraph by 

-=  365 6 .  
(3f5) 364x363 ’ 

we obtain the same probability as by the other two methods. 
Method 4 

We consider a sample space of outcomes of the form (61, 62,  b3, b4) ,  where bi denotes the 
birthday of passenger Pi :  there are 3654 such outcomes, all equally likely. To solve the problem 
we must count the number of outcomes having the required property. This can be done by 
considering a particular set of three days and then multiplying by 365. 

For a particular set of three days, there are three possibilities to consider, depending on 
whether the duplicated birthday is on the first, second or third day. Consider one of these: the 
number of possible allocations of passengers to the three birthdays is 4!/2 = 12. The total 
number of outcomes with the required property is therefore 365X3X12 and, dividing by 3654, 
we obtain the same result as before. 

Notes 
(1) In our solution we ignore leap years and do not take account of the fact that birthdays are 
not uniformly distributed throughout the year. To allow for these two factors would complicate 
matters immensely. 
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(2) The solution using Method 1 is, in a sense, the least elegant of those presented, but 
represents possibly the most reliable approach. The method depends on the systematic 
enumeration of all outcomes favourable to the required event, and we have chosen to do this by 
considering outcomes involving two ‘adjacent’ birthdays first, and then dealing with those 
involving a ‘close’ and a ‘between’ birthday. 

There are other methods of enumerating all favourable outcomes. One is by means of a tree 
diagram, such as that sketched in Figure 1.1. 

Figure 1.1 Tree diagram for events in Problem 1A.5 

Construction of the diagram begins with the observation that, for the event of interest to occur, 
we must have one of A2,  C2 and S2 (B2 being meaningless); if we have A2, then we must have 
A 3  or SJ; and so on. (For further comments on the r d e  of tree diagrams in solving probability 
problems, see Note 6 to Problem lA.lO.) 

Another approach, closely related to that described above, is to consider all outcomes of the 
form D2f lE3nF4 (or, to use a suitable contracted notation, DEF) ,  where each of D ,  E and F is 
one of A ,  3 C and S . There are 64 such outcomes, which we may imagine listed in some 
systematic way, for example in alphabetical order: AAA , AAB , AAC , . . . SSC , SSD . Of the 
outcomes in this list some (such as the first) do not contribute to the event of interest, while 
others (such as the second) are meaningless or impossible. Eliminating these, we find that the 
outcomes remaining are AAS , ASA CBS CSB , SAA and SCB . 
(3) Checking solutions to probability problems can be difficult - as we have remarked 
elsewhere, one is often uneasy until two different solutions to a problem yield the same answer. 
Since we have presented four solutions which agree with one another and with the odds quoted 
by the authors of the letter to The Times, we feel happy that our solution is correct. It is, 
however, only fair to confess that, while working on this problem, one of us also produced a 
number of incorrect solutions. It is also interesting to note that we were, at one stage, 
somewhat confused by the fact that a check that we applied to a correct solution seemed to fail. 

It is sometimes useful to consider, for checking purposes, a small-scale version of a problem. 
In this case we considered the same problem for a ‘year’ of 3 days, since the entire sample space 
of 81 outcomes could then be easily enumerated. Unfortunately the methods we have used in 
our solution then lead to a probability of 6, which is clearly ridiculous. On reflection, we 

realised that the arguments we have used all break down for such a short ‘year’: for example, in 
Method 1, a ‘close’ birthday is also an ‘adjacent’ birthday. They are, however, valid for a 
‘year’ of 4 days, for which the probability is 6. 

(4) Letters of the the type quoted above appear, from time to time, in the press: generally the 
smallness of the probability seems to be taken as a ‘surprise index’, a measure of the remarkable 

3 

43 
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nature of the event. 
It is instructive, however, to  consider how this ‘surprise index’ ought to be assessed. If a 

letter were submitted to  The Times to the effect that four people had birthdays on January 12, 
February 23, April 24 and September 6, one imagines that the editor might not find space for it 
- yet the probability of this event, 4! /3654, is far smaller than that referred to in this problem. 
To judge how surprised one ought to be by a claim, one must consider the probability, not only 
of the event itself, but also of any other event which would justify a similar claim. It is this fact 
which rules out a claim based on the four dates specified above. In the case of the four 
passengers, a letter might also have been sent in the event of 

(i) all birthdays on a t  most two consecutive days, 
(ii) three birthdays on one day, 
(iii) all birthdays on the same day of the month (but in different months), 
and so on. Even after allowing for this, however, it is likely that the observed event will still 
seem quite unusual. 

To calculate a useful ‘surprise index’ one has not just to calculate the probability of the event 
observed, but to  add the probabilities of all other events of the same type, but even more 
‘unusual’. This is, of course, the sort of calculation required in finding a significance level in 
hypothesis testing, and we shall return to this topic in Chapter 4. 

1A.6 Winning at craps 
In the game of craps, the player throws two dice. On his first throw he wins if the total is 7 or 
11,  and loses if it is 2, 3, or 12. If his total on the first throw is not one of these figures, he 
continues to throw the dice until he either repeats the total of his first throw (in which case he 
wins) or obtains a total of 7 (in which case he loses). Find the probability that he wins. 

Solution 
The probability distribution of the total score on two dice is obtained as the solution to Problem 
1B.2. Dealing first with the possibility that the player wins on his first throw, we see that this 
has Probability 

6 2  Pr(score = 7) + Pr(score = 11) = - + - 
36 36 

(Although it might seem natural to  simplify the fractions involved here, it will be more 
convenient to retain the common denominator 36 in all probabilities until later in the solution.) 

We now have to deal with the remaining possibilities. First, consider the case when the first 
throw results in a 4: this has probability & which, for the moment, we shall denote by w .  
Similarly, the probability of a score of 7, which is &, will be denoted by I .  The introduction of 
this notation will enable us to deal with other possibilities for the first throw merely by changing 
the values of w and 1 .  

Given that the first throw results in a 4, the probability of a win a t  the i th subsequent throw 
( i  = 1, 2, . . . ) is (1 - w - f ) i - l  w (since i - 1 throws which result in  neither a 4 nor a 7 have 
to be followed by a final throw which results in a 4). Summing these probabilities, we find that 
the probability of a win, given that the first throw results in a score of 4, is 

The contribution to the total probability of a win associated with the first score being a 4 is then 
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W L  Pr(first score is 4)xPr(win 1 first score is 4) = - w + 1  

- 1 32 - -x- 
36 3 + 6 '  

Since the probability of a score of 10 is also &, the contribution to the total probability of 
winning associated with that initial score is the same as the above. We may deal similarly with 
initial scores of 5 and 9 (with w = 4). and with initial scores of 6 and 8 (with w = f ) .  
Combining all these results, we obtain the probability of winning as 

Notes 
(1) It is interesting to see how close the probability of winning (0.493) is to one half. If the 
game is played in a casino, there is a small advantage to the house, so that it makes a steady 
profit; players, however, perceiving the odds to be close to even, are happy to play the game. 

Instances of gambling odds very close to even have been the subject of interest from the 
earliest days of the mathematical study of probability theory. In the seventeenth century the 
Chevalier de MCrt, a French gambler, approached the mathematician Pascal with a number of 
problems. One of these concerned his observation that, while he had a better than even chance 
of throwing at least one six in four throws of a die, his chance of throwing at least one double 
six in twenty-four throws of a pair of dice was rather less than even. The probabilities of 
success in these two ventures can be Seen to be 

1 - [sr = 0.518 and 1 - [gr = 0.491 

respectively. 
* (2) The fact that the probability of obtaining a 4 before a 7 (or, more generally, of obtaining a 

winning score before a losing score) takes the simple form - coupled with the observation 
w + 1 '  

that this is just the conditional probability of scoring 4, given that the score is either 4 or 7, 
suggests an alternative argument which does not involve the summation of series. The basis of 
this argument is that we condition on the number of throws until the game terminates, and use 
the law of total probability, forming a weighted average of the conditional probabilities 
obtained. Thus 

W 

0 

Pr(p1ayer wins) = I: Pr(game terminates at throw k) 
k = Z  

xPr(p1ayer wins 1 game terminates at throw k). 

(Although we have not indicated it explicitly, all probabilities in the above are conditional on 
the first throw resulting in a 4.) 

At this stage it appears as if this method, like that used in the main solution, involves the 
summation of series, but we can avoid this when we note that the conditional probability of 
winning appearing on the right hand side does not depend on the value of k on which we are 
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conditioning: it is 
W Pr(score is 4 1 score is 4 or 7) = - 

w + I '  
The unconditional probability of winning must therefore have the same value. (Strictly 
speaking, the need to sum a series has not disappeared. But the right hand side of the above 
expression becomes 

I) 

W W x Pr(game terminates at throw k) = - X I ,  
w + 1 = 2  w + I  

the sum being 1 since it is the sum of the probability function of the length of the game.) 

1A.7 The fisherman 
Each Sunday a fisherman visits one of three possible locations near his home: he goes to the sea 
with probability +, to a river with probability a, or to a lake with probability i. If he goes to 
the sea there is an 80% chance that he will catch fish; corresponding figures for the river and 
the lake are 40% and 60% respectively. 
(a) Find the probability that, on a given Sunday, he catches fish. 
(b) Find the probability that he catches fish on at least two of three consecutive Sundays. 
(c) If, on a particular Sunday, he comes home without catching anything, where is it most 
likely that he has been? 
(d) His friend, who also goes fishing every Sunday, chooses among the three locations with 
equal probabilities. Find the probability that the two fishermen will meet at least once in the 
next two weekends. 
(Any assumptions you make in solving this problem should be clearly stated.) 

Soh tion 
We shall use the following notation: 

S : he goes to the sea; 
R : he goes to the river; 
L : he goes to the lake; 
F : he catches fish. 

The given information may then be written as 
1 4 
2 5 
1 2 
4 5 
1 3 
4 5 

Pr(S) = -, 

Pr(R) = -, 

Pr(L) = -, 

Pr(F is) = -, 

Pr(F IR) = -, 

Pr(F lL) = -. 

(a) Using the law of total probability, 

Pr(F) = Pr(S)Pr(F IS) + Pr(R)Pr(F lR) + Pr(L)Pr(F I L )  

= ('.q 2 5  + (ax$) + p) 4 5  

13 
20. 

z -  
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(b) It follows from the solution to part (a) that the number of Sundays on which he catches fish 
is a random variable X having the binomial distribution B ( 3 ,  $). The required probability is 
thus 

Pr(X = 2) + Pr(X = 3) = 3 [:$I - 1 - - ;;) + [:;I3 - 
- 2873 

4000 
- -  

(c) From (a), P r ( 2 )  = 1 - Pr(F) = &. Hence 

20 
Similarly 

- 
20 

So it is most likely that he has been to  the river. 
(d) If, now, we let S1 denote the event that the first fisherman goes to the sea and S2 the event 
that the second goes to the sea, and define R1, R2, 151, L 2  similarly, the probability that they 
meet on a given Sunday is 

= I'.']+ 2 3  [LX']+ 4 3  p] 4 3  

1 
3 '  

= -  

The probability that they fail to meet over two weekends is then (1 - t)2 = $, so that the 
probability that they meet a t  least once is 1 - $ = $. 

The assumptions made in solving this problem are, in parts (b) and (d), that the fishermen 
choose independently in different weeks and, in part (d), that they choose independently of one 
another. (There is a further assumption in part (d), namely that they meet if they both go to 
the same location.) 
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Notes 
(1) In (c) we are using Bayes’ Theorem, although this is, to some extent, disguised by the fact 
that the denominator, Pr( F ), is obtained from the answer to part (a). 
(2) We can simplify the answer to (d) by observing that the probability that they meet on a 
given Sunday is just the probability that the second chooses the same location as the first, 
namely f .  This argument applies only since the second chooses each of the three locations with 
the same probability. 

1A.8 Testing lightbulbs 
The stock of a warehouse consists of boxes of high, medium and low quality lightbulbs in  
respective proportions 1 : 2 : 2. The  probabilities of bulbs of the three types being unsatisfactory 
are 0.0, 0.1 and 0.2 respectively. IF a box is chosen at  random and two bulbs in it are tested 
and found to be satisfactory, what is the probability that it contains bulbs 
(i) of high quality; 
(ii) of medium quality; 
(iii) of low quality? 

Solution 
We shall adopt the following notation for events of interest: 

ii : the box chosen contains high quality bulbs; 
M : the box chosen contains medium quality bulbs; 
I. : the box chosen contains low quality bulbs; 
S : the two bulbs tested are found to be satisfactory. 

The given information concerning the proportion of boxes of the three types may be written in 
the following form: Pr(f1) = 0.2, Pr(M) = 0.4, Pr(L) = 0.4. From the information on 
quality, we deduce that 

Pr(S i H )  = 1.0, 

Pr(S I M )  = (1 .0 -0 .1 )~  = 0.81, 

Pr(S I L )  = (1.0 - 0,2)2 = 0.64. 

We may now use Bayes’ Theorem. Probability (i) is 
Pr(H)Pr(S jH) 

Pr(H)Pr(S lH) + Pr(M)Pr(s I M )  + Pr(t )Pr(S it) 
0.2x1.0 

( 0 . 2 ~ 1 . 0 )  + ( 0 . 4 ~ 0 . 8 1 )  + (0 .4~0 .64 )  

Pr(ii is) = - 

= __ ____ 

- 0.2 _ -  
0.2 + 0.324 + 0.256 

o’2 - 0.256. 
0.78 

- 

Probabilities (ii) and (iii) are obtained similarly. For (ii), we find 
0.324 
0.78 

Pr(M I S )  = - = 0.415 

and, for (iii), 
0.256 
0.78 

Pr(L I S )  = -- = 0.328. 
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Notes 
(1) This is a fairly standard type of problem involving the use of Bayes’ Theorem, made 
slightly more complicated by the fact that two bulbs are being tested. Note the computational 
simplification which results from writing down the values (0.2, 0.324 and 0,256) of the 
probabilities Pr(H IS), Pr(M IS) and Pr(L IS) in the course of finding probability (i): 
probabilities (ii) and (iii) then follow almost immediately, without the need to ‘start afresh’. 
(2) The three probabilities obtained should, of course, add to 1.0. The fact that their total 
appears to be 0.999 is due to  the rounding errors created by recording the calculated values to 
three decimal places. 

1A.9 Designing a navigation system 

A spacecraft navigation system consists of components of two types - A and B - connected in 
a series-parallel arrangement, as in Figure 1.2. 

1 
I I I 

Figure 1.2 Illustration of series-parallel system 

The systcm will function as long as a t  least one component of each type functions. The 
probability that a type A component will function correctly throughout the planned lifetime of 
the spacecraft is 0.9; the corresponding probability for a component of type B is 0.8 .  
Components may be assumed to fail independently of one another. 

The numbers of components of the two types may be vaned in order to adjust the probability 
of failure of the navigation system. 
(a)  Show that a requirement that the probability of failure of the entire system should be less 
than 1% may be met by using three components of each type (as in the diagram above). 

(b) If components of type A weigh 1 kg, while those of type B weigh 2 kg, what is the 
composition of the most reliable navigation system weighing 11 kg or less? 

Solution 

(a) Suppose the system consists of a Components of type A and b components of type B. Then 

Pr(system functions) = Pr(at least one type A component functions) 

x Pr(at least one type B component functions) 

= (1.0 - Pr(al1 type A components fail)} 

~ ( 1 . 0  - Pr(al1 type B components fail)} 

= ( 1 . 0 - 0 . 1 ~ ) x ( 1 . 0 - 0 . 2 ~ ) .  

If a = b = 3 ,  this equals 0.999x0.992 = 0.991 and, sincc this excccds 0.99, the requirement 
of part (a)  is met. 
(b) In order to  solve this part, we could examine all systems weighing 11 kg (there is clearly no 
point in considering systems weighing less, since any such system can be improved upon by 
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adding components of type A). There are five systems in all; we can, however, reduce the 
number of possibilities that we have to investigate if we observe that the system considered in 
part (a) weighs less than 11 kg and, therefore, that the system we are seeking must exceed this 
in reliability, i.e. must have reliability exceeding 0.991. It follows that a and 6 must satisfy 

1.0 - 0.1" z 0.991, i.e. a 2 3, 

and 

1.0 - 0.2' 2 0.991, i.e. 6 2 3. 

This leaves just two possibilities to be considered: a = 5, 6 = 3, with reliability 

(1.0 - 0.1~)~(1.0 - 0.2~) = 0.992, 

(1.0 - o.i3)x(1.0 - 0.2~) = o w ,  
and a = 3, 6 = 4, with reliability 

so that the best configuration weighing 11 kg or less consists of three components of type A and 
four of type B. 

Note 
Part (b) is an example of a knapsack problem, in which integer variables (here a and b )  must 
be chosen to maximise some quantity (here the system reliability) while satisfying constraints 
imposed by available resources (weight in this case). Although small-scale problems of this type 
can be solved relatively easily, since there are relatively few possibilities to consider, the 
solution of larger problems requires a more sophisticated approach. 

1A.10 The sports club 
Three quarters of the members of a sports club are adults, and one quarter are children. Three 
quarters of the adults, and three fifths of the children, are male. Half the adult males, and a 
third of the adult females, use the swimming pool at the club; the corresponding proportion for 
children of either sex is four fifths. 
(a) Find the probability that a member of the club uses the swimming pool. 
(b) Find the probability that a member of the club who uses the swimming pool is male. 
(c) Find the probability that a member of the club is female. 
(d) Find the probability that a member of the club who uses the swimming pool is female. 
(e) Find the probability that a male user of the swimming pool is a child. 
(f) Find the probability that a member of the club who does not use the swimming pool is 
either female or an adult. 

Solution 
In our solution we shall let A denote the event that a member of the club is an adult, and C the 
event that he or she is a child. We shall let M and F stand, respectively, for the events that a 
member is male or female, and S for the event that he or she uses the swimming pool. The 
given information may then be summarised as follows: 

3 1 
4 4 Pr(A) = -, Pr(C) = -; 

3 1 
4 4 Pr(M IA) = -, Pr(F lA) = -; 
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3 2 Pr(M/C)  = -, Pr(FIC) = -. 5 5 ’  
1 1 -. 
2 3 ’  Pr(S / A n M )  = -, Pr(S IAnF)  

4 
Pr(s IcI1M) = Pr(S I c n F )  = Pr(S IC) = - 

5 

(a) Pr(S) = Pr(AnMnS)  + Pr(AnFnS)  + Pr(CnS) 
= Pr(A)Pr(M IA)Pr(S lA n M )  + Pr(A)Pr(F jA)Pr(S / A  n F )  

+ Pr(C)Pr(S IC) 

= [ + x + x + ]  + + ( a x ; ]  

9 1 1  = - + - + -  
32 16 5 

87 - 0.544. 
160 

- 

Now Pr(S) has been obtained as the answer to part (a), and 

Pr(M ns ) = Pr(A nhf ns ) + Pr(C T\M ns ) 
9 
32 = - + Pr(c )Pr(M 1 c p r ( s  1 M nc) 

9 3 321 
32 25 800 

= -  +-  = -. 

so 
321 
800 

160 
Pr(M IS) = 7 = 0.738. - 

(c) Pr(F) = Pr(A)Pr(F IA) + Pr(C)Pr(F IC) 

3 1  
16 10 

= - + - = 0.288. 

(d) We could proceed here as in the solution to part (b), but can save work by making use of 
the solution to that part of the question, since the required probability is simply 

Pr(F 1s) = 1 - Pr(M IS). 
Since Pr(M IS) = 0.738 the solution is 0.262. 
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(e) 

The 
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numerator and denominator in the above expression have already appeared in the solution 
to part (b). Substituting their values, we obtain 

3 
25 

Roo 

~ 

Pr(C I M n S )  = 321 = 0.299. 
~ 

(f) The required probability is 
Pr{(A uF)n S } 

Pr( S ) Pr(A U F  I s ) = - 

The denominator in this expression is easily obtained from the solution to part (a): 
73 
160 

P r ( S )  = 1 - P r ( s )  = -. 

To obtain the value of the numerator, it is simplest to split the event of interest into three 
mutually exclusive components, and to sum their probabilities. We obtain 

Pr{(A UF)n S } = Pr(A nMn S ) + Pr(A nFn S ) + P r ( c  nFn S ) 

+ Pr(C)Pr(F I C)Pr(  S j c n q  
= Pr(A)Pr(M IA)Pr( S IAnM) -t Pr(A)Pr(F ~ A ) P r (  iA n F )  

- 9 1 1 341 - - + - + - = -  
32 8 50 800 

We now obtain the required probability: 

Notes 
(1) For the sake of accuracy, we have obtained the answer to each part in fractional form, 
converting to a decimal a t  the end. The  disadvantages of earlier conversion may be illustrated 
by considering part (b): using Pr (MnS)  = 0.401 and Pr(S) = 0.544, we obtain the inaccurate 
result Pr(M I S )  = 0.737. 
(2) Although the statement of this problem does not include the words ‘randomly selected’, our 
answer assumes, in effect, that these words have been inserted after the words ‘Find the 
probability that a’ in each part. It is not uncommon to encounter examination questions stated 
in a somewhat loose manner, and to  have to make suitable assumptions in order to reach a 
solution. In this problem the assumption of random selection is the only reasonable one to  
make. (As discussed in Note 1 to Problem 1A.1, the word ‘random’ has a rather specific 
meaning here.) The assumption might not be valid in real life: consider, for example, 
answering part (a)  when the answer is to relate to a member visiting the club on a morning 
when the swimming pool is closed. 

(3) In our solutions to later parts we have, where it helps to  shorten the solution, made use of 
results appearing in the solutions to earlier parts. There is, however, no need to d o  this and, in 
an earlier draft of the solution, we did so to  a lesser extent than we d o  now. In solving 
examination questions, it is important to bear in mind that work done in solving earlier parts of 
a question may pave the way for solving later parts. It is important, however, to guard against 
spending too much time looking for such ‘short-cuts’ or attempting to use them at  all costs. 
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Sometimes, even if earlier results con be used, it is easier to start afresh. This is the case in 
part (f) of the present problem. 
(4) There is a simpler solution to part (f). Rather than find the required conditional 
probability directly, we seek the conditional probability of the complementary event (that the 
member is a male child). This is 

73 
160 

Now the denominator in this expression is --, as before; and the numerator is 

Substituting these values we obtain 

Pr(C n M  ~ s ) = 0.066, 

and hence 

Pr(A U F  3 ) = 1 - 0,066 = 0.934, 

as obtained beforc. 
(5) This is a rather unappealing problem, not because the concepts involved are particularly 
advanced, but because of the complicated nature of the manipulations required and, possibly, 
because it is difficult to imagine why anyone would be interested in the more intricate questions 
asked. It is, however, not unlike some examination questions that we have seen - hence its 
inclusion. 

The solution we have presented is fairly concise, due to the use of set-theoretic notation; but, 
like many arguments which are, apparently, of a fairly abstract mathematical nature, it can be 
understood more easily by bearing in mind, while studying it, the meaning of the various events 
involved. The arguments could be presented verbally, but the result would become very 
lengthy. Thus, for example, we could begin the solution to part (a) in the following manner. 

‘A swimmer can be either an adult or a child, so we have to add the probabilities of 
an adult swimmer and a child swimmer. We need not take the sex of the child into 
account in finding the latter probability, since the probability that a child is a 
swimmer does not depend on sex, but we d o  have to take account of sex in finding 
the probability of an adult swimmer: this probability is then expressed as the sum of 
the probabilities of an adult male swimmer and an adult female swimmer . . . ’ 

So far, we’ve dealt with the first line of our solution, and there’s a lot more to go! The 
advantages of our more concise approach in presenting a solution are evident, but it is important 
to bear in mind in reading the solution (particularly if it seems rather mystifying) that it 
represents an argument along the lines we have expanded in words above for the initial section, 
and mentally to perform similar expansions on other sections. (See Note 1 to Problem 1A.2 
and Note 1 to  Problem 1B.3 for further discussion of the rBle of set themetic notation in the 
solution of problems in probability.) 

(6) One way of getting to  grips with a problem such as this is by means of a rough tree 
diagram. Readers will notice that we d o  not make much use of tree diagrams in this chapter. 
This reflects our view that, while tree diagrams have undoubted advantages in the teaching of 
probabirity and in the early stages of solving a complicated problem, they d o  not always 
constitute the best method of presenting the final solution. A tree diagram on its own is not 
enough. It has to be supplemented by sufficient verbal explanation to establish conventions, 
define notation, and to relate the diagram to the problem and its solution. With many 
problems it turns out, after a tree diagram has been produced, that only a small section of the 
diagram is needed for a solution. For these reasons we have, in solving a number of problems 
for which a tree diagram might have been considered, preferred to present a verbal solution (we 
include in this category solutions in which many of the ‘words’ are mathematical symbols). 
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Figure 1.3 Tree diagram for events in Problem lA.10 

We present, in Figure 1.3, a tree diagram relating to this problem. The notation adopted is 
that already described, and the conventions followed are  that the probabilities in brackets 
alongside the branches of the tree are appropriate conditional probabilities, whereas those 
appearing, unbracketed, a t  the nodes are the unconditional probabilities of the corresponding 
combinations of events. A solution of the problem based on this diagram would be completed 
by identifying, for each part, the probabilities to be extracted from the diagram, and 
performing, with appropriate explanation, the necessary operations on these probabilities. Since 
this would repeat much of what we have already done, we shall not d o  this. We have, 
however, indicated on the diagram where the probabilities required for each part can be found, 
and the reader can thus relate the diagram to our earlier solution. It will be noted that most of 
the probabilities on the diagram are used in solving at  least one part of the problem, so that not 
much of the work involved in the construction of the diagram is ‘wasted’. The  situation would 
have been somewhat different for a problem consisting of only a few of the six parts of the 
present problem, and it is interesting to note that, while our original solution to part (a) 
involves the addition of three probabilities, a solution based on a tree diagram would involve 
the addition of four and, quite possibly, the calculation of several others. 

l A . l l  Playing the fruit machine 
A fruit machine takes l o p  coins. A t  each play it pays out 30p with probability f ;  no other 
payouts are possible. 
(a) Find the probability that a player who starts with 20p and plays until her funds are 
exhausted plays at  least six times. 
(b) Find the probability that a player who still has some money left after playing five times has 
a t  least three more plays. 
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Solution 
(a) We shall represent possible sequences of results by sequences of letters, letting W stand for 
a win and L for a loss. To find the probability of a t  least six plays, we shall find the probability 
of five or fewer and subtract from 1. There are three possibilities to  be considered: LL, 
LWLLL, and WLLLL. Assuming independence of successive plays, the corresponding 
probabilities are 

4 [$I2,  f~ [+I4, and f~ ($1 . 

Thus the probability that she plays fewer than six times is 
4 (t)* + 2 X t X  (tl = 0.721. 

It follows that the probability that she plays at  least six times is 0.279. 
(b) What we require is 

Pr(she plays a t  least nine times 1 she plays at  least six times) 

- Pr(she plays at  least nine times) 
Pr(she plays a t  least six times) ' 

- 

The denominator has been obtained already. To obtain the numerator, we proceed as before, 
finding the probability that she plays at  most eight times and subtracting from 1. In addition to 
the three possibilities considered above, there are seven other possibilities which result in eight 
or fewer plays in all. These are LWWLLLLL, LWLWLLLL, LWLLWLLL, WWLLLLLL, 
WLWLLLLL, WLLWLLLL, and WLLLWLLL. The probability of eight or fewer plays in all 
is therefore 

The required conditional probability is thus 

Note 
The numerator in the conditional probability obtained in the solution to part (b) should be, 
strictly speaking, the probability that the player plays at least six times and plays at  least nine 
times. Since the latter implies the former, the probability reduces to that of the latter. 

1B Random Variables 
In this section we move on to problems in which the sample space consists of the integers, or 

the real line, or a subset of either. In such cases the experiment will have an outcome which is 
a number, which varies from one repetition of the experiment to another, and is callcd, 
naturally enough, a random variable. 

The problems in this section concentrate on the distributions of random variables and their 
properties. Methods of investigating these differ according to the type of random variable; the 
most common types are discrete and continuous random variables. Both can have their 
distribution described by a cumulative distribution function (sometimes abbreviated to distribution 
function or c . d . f . ) ;  other functions which will be examined are the probability function (or 
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probabiliry mass function, or pf.) for discrete random variables, and the probability density 
function (or densiry function, or p .d . f . )  for continuous random variables. 

The problems here also deal with the most important summarising measurcs for distributions 
based on the concept of expectation. In particular one is often required to calculate the mean 
and variance of a distribution. 

The notation used will extend that used in Section 1A. Random variables are commonly 
denoted by capital letters, typically those near the end of the alphabet. So we might wish to 
calculate Pr(X = 3 )  or Pr(X 2 -2), or, more generally, Pr(X = x), where X denotes a random 
variable and x denotes a value which X might take. The cumulative distribution function of a 
random variable X will be denoted by F x ( x ) ,  i.e. we define F x ( x )  = Pr(X s x ) ,  as a function 
of x .  If X is discrete, its probability function is Pr(X = x ) ,  and it is sometimes convenient to 
denote this by p x ( x ) .  If X is a continuous random variable, its probability density function will 
be denoted by f x ( . r ) .  Note that it is the subscript which indicates the identity of the random 
variable; occasionally the subscript will be omitted when the context makes it unnecessary. 

Our notation for expectation and variance is also natural and conventional. We denote the 
expectation of a random variable X simply by E(X) ,  whether X be discrete or continuous. The 
concept of expectation extends to functions of random variables; the expectation of g (X) will be 
denoted by E[g(X)] .  (The shape of any brackets used carries no significance.) In particular, 
for the special case g (X)  = {X - E(X)}*, we obtain the variance of X , denoted here by Var(X). 
Thus 

Var(X) = E[{X - E(X)}2]. 

Finally, we note that the reader may find problems in later chapters which are closely related 
to those in this section. Besides those in the following chapter, Problems 4D.1, 4D.2 and 5D.2 
are worth mentioning in this connection. 

lB.l The highest score in a game of dice 
(a) A random variable X is defined as the larger of the scores obtained in two throws of an 
unbiased, six-sided, die. Show that 

Pr(X = x )  = x = l , 2  , . . . ,  6. (2x - 1)  
36 ’ 

(b) A random variable Y is defined as the highest score obtained in k independent throws of 
an unbiased, six-sided, die. Find an expression for the probability function of Y .  

Soh tion 
(a) Let S 1  and S 2  denote the two scores, so that X = max(S1, S2). The two events {X S X }  

and {S, 5 x }  n { S 2  s x }  are clearly equivalent. Therefore 

Pr(X 5 x )  = P r ( S I S x  n S 2 s x )  

= Pr(S 5 x )  Pr(S2 s x) ,  by independence. 
1 X 

6 6 Now Pr(S, = j )  = -, i = 1, 2; j = 1, 2, . . . , 6 ,  so that Pr (S; 5 x )  = -, and therefore 

But 

Pr(X = x )  = Pr(X S X )  - Pr(X S X - l ) ,  

1 2-m x = l , 2  , . . . ,  6 .  
36 ’ 36 

= -{x2 - (x - 1) } - 
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(b) Let S,, . . . , s& denote the k scores, so that Y = max(S1, . . . , s k ) .  By an extension of 
the result above for the caSe k = 2, we obtain 

k 

i = l  
Pr(Y s y )  = fl Pr(& ~ y )  

and so 

Pr(Y = y )  = Pr(Y s y )  - Pr(Y s y - 1 )  
- 1 - 6'w - 0, y = l , 2  , . . . ,  6. 

Notes 
(1) An alternative solution to  part (a) is as follows. The event {X = x } ,  that the larger of S, 
and S, equals x , occurs if S = x and S2 5 x or if S 5 x and S2 = x .  Denoting these two 
events by A and B , we see that the event {X = x }  is just A UB , so we obtain 

Pr(X = X )  = Pr(A U B )  = Pr(A) + Pr(B) - Pr(A n B ) .  

1 x  But Pr(A) = - x -, and by symmetry this is also Pr(B). Further, the event A n B  is just the 
6 6  

event that S = x and S2 = x , and so has probability 1136. We thus find 

as required. While this method is more direct, and therefore seems more natural, it does not 
extend easily from the case k = 2 to the general case of part (b). 
(2) In problems dealing with the largest of a set of random variables, it is often much simpler 
to find the cumulative distribution function than to find the probability function. (The latter 
can, of course, be calculated once the cumulative distribution function is known.) A similar 
approach may be adopted for the smallest of a set of random variables. 
(3) The cumulative distribution function is also particularly useful when one needs to find the 
distribution of a random variable defined as a function of another. This technique is discussed 
in Problems lB.10 and l B . l l .  

(4) In part (b) we would expect that, as k - m, Pr(Y = 6) - 1.  We see that 

% , a s k  - m , P r ( Y  = y ) - O f o r y < 6 , w h i l e  Pr(Y = 6 ) - 1 .  

1B.2 
Two unbiased dice are thrown simultaneously, and the sum of the scores on their uppermost 
faces is recorded. What is the distribution of this quantity, and what are its mean and 
variance? 

The total score from lwo dice 

S o h  tion 

The simplest approach is to denote the scores on the faces shown by the two dice by X and Y ,  
and to write 2 = X + Y as the total, whose distribution is required. Clearly, the range of the 
random variable 2 is the set of integers from 2 to 12 inclusive, and the probability distribution 
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of Z is thus found by obtaining the set of probabilities Pr(Z = z ) ,  z = 2, 3 ,  . . . , 12. Starting 
with the event Z = 2, we see by independence that 

Pr(Z = 2) = Pr(X = 1 n Y = 1) 
1 1  1 
6 6 36 

= Pr(X = l)xPr(Y = 1) = -x- = -, 

and by essentially the same reasoning 
1 

36 
Pr(Z = 12) = -. 

Now the event Z = 3 will occur if X = 1 and Y = 2 or if X = 2 and Y = 1, two mutually 
exclusive events. So, by the addition law of probability, 

Pr(Z = 3 )  = {Pr(X = l)xPr(Y = 2)) + {Pr(X = 2)xPr(Y = l)},  

with the products appearing because events relating to X are independent of those relating to Y . 
Thus 

and, again, similar reasoning shows that 
2 

36 
Pr(Z = 11) = -. 

Extending the argument further, we find three possible patterns of values - in an obvious 
notation, (1, 3 ) ,  (2, 2) and ( 3 ,  1) - contributing to the event Z = 4, and three patterns 
contributing to Z = 10, so we obtain 

3 
36 

Pr(Z = 4) = Pr(Z = 10) = -; 

similarly 
4 

36 
Pr(Z = 5 )  = Pr(Z = 9) = -. 

Also 
5 

36 
Pr(Z = 6 )  = Pr(Z = 8) = -, 

since for each of these there are five patterns of values of X and Y contributing to the event 
concerned. 

Finally we show in detail the calculation for Pr(Z = 7), and note in passing that the other 
cases could also have been dealt with in this more rigorous way. We see that the event Z = 7 
occurs when, whatever value x is taken by X , Y takes the value 7 - x . So we obtain 

6 

I - 1  
6 

I =1 

Pr(Z = 7 )  = x P r ( x  = x  n Y = 7 - x )  

= I: Pr(X = x )  Pr(Y = 7 - x ) ,  by independence, 

= z - x -  6 1  1 = - 6 
.=,6 6 3 6 '  

We thus obtain the first result we require, the probability distribution of the random variable 
Z , which can most conveniently be expressed as a table. 
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2 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

p r ( z = z )  1 1 1 A L 5 I A J 1 L 
36 36 36 36 36 36 36 36 36 36 36 

We now require the mean and variance of the distribution of Z .  The mean can in fact be 
found easily, by symmetry, but in principle the calculation is as follows. 

12 

I =2 
E(Z) = x z  Pr(Z = z )  

1 
36 

= -{(2x1) + (3x2) + (4x3) + (5x4) + (6x5) + 

+ (7x6) + (8x5) + (9x4) + (10x3) + (11x2) + (12x1)) 

To obtain the variance of Z we first obtain E(Z2), viz. 

E(Z2)= & { ( 2 2 ~ 1 )  + ( 3 2 ~ 2 )  + (42X3) + (52X4) + (62X5) + 
+ (72x6) + (8*x5) + (g2X4) + (102x3) + (112x2) + (122x1)) 

- 1974 -- 
36 ' 

We now obtain the variance of Z simply, as 
1974 35 
36 6 

Var(z) = - - 72 = -. 

Hence E(Z) = 7 and Var(2) = 9 = 5.833. 

Notes 
(1) The method used in the solution to obtain the variance of Z is, generally, the best one to 
use, but occasionally some feature of a problem makes another approach slightly easier, and in 
fact this is the case here. There are two alternative methods, both of which are slightly quicker 
than that used in the solution. The first of these uses the fact that the distribution of Z is 
symmetrical about E(Z), which is itself a convenient integer, so that Var(Z) can be calculated 
easily from the formula usually used only as a definition, viz. 

Var(Z) = E[{Z -E(Z)}2]. 

Noting that {Z - 7}2 takes only 6 values, 0, 1, 4, 9, 16 and 25, we obtain 
1 35 

6 
Var(Z) = ~ { ( 6 x O )  + (10x1) + (8x4) + (6x9) + (4x16) + (2X25)} = -, 

as before. 

sum of two random variables X and Y , so that 

E(Z) = E(X) + E(Y), 

The other method is more sophisticated, but can be extended readily. We recall that Z is the 

and since X and Y are independent we also have the result 

Var(Z) = Var(X) + Var(Y) = 2Var(X), 
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since X and Y have the same distribution. Now this distribution is the simple one, with 
probability attached to each of the six values 1, 2, 3, 4, 5 and 6. Straightforward calculation 
then shows that Var(X) = y ,  whence the required result. 

The advantage of this method is that it extends easily to  the sum of any number of dice, and 
not just two. The fact that for independent random variables variances can simply be added, as 
well as expectations, means that we can immediately write down, for W ,  the corresponding sum 
for n dice, 

7n 
2 E(W) = -, 

and 
35n Var(W) = - 12 

Note that in order to obtain these results we d o  not have to find the probability distribution of 
W ;  indeed this would be very difficult. 
(2) The solution is presented in symbolic terms; we define various events and apply the laws of 
probability to them in order to obtain the probability distribution of Z. One could alternatively 
have presented the same method pictorially, representing the 36 outcomes of the experiment as 
a 6 x 6  grid of points. The  sample space for the experiment will then consist of the 36 outcomes 
corresponding to these points, and to  each point there is attached a probability (& to each) and 
a value of Z (the sum of the values for X and Y) .  Summing the probabilities of outcomes with 
any particular value for Z will then give the probability of that value of Z, and hence the 
probability distribution. 

1B.3 Selecting balls from an urn 
An urn contains three red and five white balls. A ball is drawn a t  random, its colour is noted, 
and it is replaced along with another ball of the same colour. This process is repeated until 
three balls have been drawn. Find the mean and standard deviation of the number of red balls 
drawn. 

Solution 
We have to find the probability distribution of X , the number of red balls drawn. We begin by 
finding Pr(X = 0), which is equal to 

Pr(first ball is white) x Pr(second ball is white 1 first ball is white) 

X Pr(third ball is white 1 first two balls are white) 

Turning to Pr(X = l), we find that there are three outcomes to consider. The first ball drawn 
may be. red, and the second and third white; or the first may be white, followed by a red and 
another white; or two white balls may be followed by a red one. The first of these outcomes 
has probability 

Pr(first ball is red) x Pr(second ball is white I first ball is red) 

xPr(third ball is white 1 first is red, second is white) 

We may similarly obtain the probabilities of the other two outcomes as 
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and 

respectively. Summing the ... ree probabilities we have obtained, we find that 
3 
8 

Pr(X = 1) = -. 

The next value of X ,  2, is dealt with similarly; again there are three outcomes to consider, 
depending on whether the single white ball drawn is in the first, second, or third position. We 
obtain 

1 
4 '  

_ _ -  

Finally, 

Having obtained the probability distribution of X , it  is now a simple matter to obtain its mean 
and standard deviation. Calculations are as follows: 

0 x 7 )  + ( 1 x 9 )  + (2x6)  + ( 3 x 2 )  - 27 9 - - = _.  
24 24 8 '  

E(X) = ( 

0x7) + (1x9)  + ( 4 x 6 )  + (9x2)  = 51 - 17 _ -  
24 24 8 ' 

E(X2) = ( 

(The replacement, in the above, of the previously obtained values of the probability function of 
X by values expressed relative to  a common denominator of 24 simplifies the computations 
somewhat.) Thus 

55 

and hence the standard deviation of X is 

fl = 0.927 

Notes 
(1) The above solution, if written out in full without recourse to words like 'similarly', is rather 
lengthy. The  use of set theoretic notation would enable us to  produce a rather shorter solution. 
If we let Ri denote the event that the i th ball drawn is red, and Wi the event that it is white, we 
may write, for example, 

Pr(X = 2) = Pr(Wl)xPr(R2 IWl)xPr(R3 lW1nR2) 

+ Pr(Rl) x Pr(W2 1 R1) x Pr(R3 I Rln W2) 

+ Pr(R x Pr(R2 I R1) x Pr(W3 lR lf1R2). 

We may still decide to keep the length of the solution eventually presented within bounds by 
not writing out everything in detail, but the use of a notation such as this may help a lot when 
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we are producing the detailed rough work that precedes a final solution. (See Note 1 to 
Problem 1A.2 and Note 5 to Problem lA.10 for discussions of similar points.) 

One might consider using a tree diagram to solve this problem. Since all branches of the tree 
would have to be explored in the course of solving the problem, there would not be the 
objection that there sometimes is on grounds of wasted effort. (See Note 6 to Problem 1A.10 
for a discussion of the rde of tree diagrams in the solution of problems in probability.) 
(2) Notice that the three probabilities that are summed to obtain Pr(X = 1) are all the same. 
This suggests that we could get away with calculating just one component, and multiplying by 
three (on the grounds that the red ball could be drawn first, second, or third). The  same 
applies to the case X = 2. An approach on these lines would, however, require justification; the 
dangers of assuming that it will work are illustrated by a variant of the present problem in 
which each ball is replaced along with one of the other colour: for this variant the approach of 
'multiplying by three' will not work. (See also Note 2 to Problem 1A.2.) 

1B.4 The game of darts 
Three players A, B and C, take turns (in the specified order) to throw a dart a t  a dartboard; the 
first to hit the bull wins. In one throw, the probability that A hits the bull is A; the 
corresponding probabilities for B and C are $ and f respectively. 

(a) Show that the three players are equally likely to win. 
(b) Find the expected number of throws in  the game. 

Solution 
(a) The probability that A wins in the first round is clearly &. To obtain the probability that 
A wins in the second round we note that, if this is to happen, all three players must miss in the 
first round: the probability of this event is 

(1 - &)x( l  - L)x(l - +) = 2. 9 

Thus 

Pr(A wins in round 2) = Pr(al1 three miss in round 1) 

x Pr(A hits in  round 2 1 all three miss in round 1) 

Similarly 

Pr(A wins in round 3) = Pr(al1 three miss in rounds 1 and 2) 

X Pr(A hits in  round 3 I all three miss in rounds 1 and 2) 

and, in general, for i = 1, 2, . . . , 
Pr(A wins in round i) = +qi-', 

where we introduce the symbol q to represent the probability 6 in the mathematical 
manipulations which follow. The  probability that A wins is thus 

and substituting 6 for q we find the probability to be f. 
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Turning our attention to €3, we see that the probability that B wins in the first round is 

Pr(A misses)xPr(B hits) = (1 - $)X+ 
- 1  -~ 

10 . 
As with A, we continue to  find that the probability that B wins in round i is $qi-'; hence, 
summing over i ,  the probability that B wins is also i. Finally, by subtraction, the probability 
that C wins is f .  (Alternatively, this result may be obtained using arguments similar to  those 
above: the probability that C wins in round i is found to be the same as for the other two 
players.) 
(b) From the results obtained in solving part (a), we see that the number of throws T in the 
game has the probability function 

f $ ,  i = 1 , 2 , 3 ,  

A q ,  i = 4, 5 ,  6 ,  

&q2, i = 7, 8 ,  9, I Pr(T = i )  = 

\ etc. 

Hence 

E(T) = $ ( l + 2 + 3  + ( 4 + 5 + 6 ) q  + ( 7 + 8 + 9 ) q 2  + . . . ) 
= A(2 + 5q + 8q2 + . . . ) 

= L ( 3  + 6q + 9q2 + . . . ) 
10 

10 

- q 1 + q  10 + q 2 + . . . )  

3 
10 
- 9 

lo 
- 

-- - - 
(1  - q ) 2  1 - 9  

Notes 
(1)  We are, throughout our solution, assuming that the results of different throws are  
independent. 
(2) Some readers may wonder how we arrived at  our solution to part (b). In finding the 
expectation and variance of a discrete probability distribution one frequently finds that the 
series to  be summed are closely related to the series which one encounters in demonstrating that 
the probability function of the distribution sums to 1. Thus, for example, we encounter 
binomial series when dealing with the binomial distribution, exponential series when dealing 
with the Poisson distribution, and, in particular, binomial expansions of negative powers of 
1 - q ,  where q = 1 - p ,  when dealing with the geometric distribution (see Problem 2A.10). 
Some links between the present distribution and the geometric distribution are explored briefly 
in Note 5. 

To demonstrate that the probability function of T sums to  1, we note that the sum is 

p( l  + q + q2  + 93 + . . . ), 
where p = & = 1 - q .  Since the series in brackets can be recognised as the binomial 
expansion of (1 - q ) - '  it is possible that, in seeking E(T), we may find other binomial 
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expansions of 1 - q useful; in particular, we recollect that 

(1 - q ) y  = 1 + 2q + 3q2 + 4q3 + . . . . 
The series we require to evaluate in finding E ( T )  has coefficients (2, 5, 8, . . . ) in arithmetic 
progression, with a common difference of 3, and the expansion of 3(1 - q)-’ has the same 
property. Thus the difference between these series must be a series with all coefficients equal, 
i.e. a multiple of (1 - q)-’. 

An alternative approach, which some may prefer, is the following. The series to be summed 
is 

S = 2 + 5q + 8q2 + l l q 3  + . . . 
(then E ( T )  = & S ) .  Noting that 

qs = 2q + 5q2  + 8q3 + . . . 

(1 - q ) S  = 2 + 3q + 3q2 + 3q3 + . . . . 
and subtracting, we obtain 

We may now recognise that the right hand side of this equation is equal to 2 + 3q( l  - q ) - l ,  
and hence proceed to evaluate S. Alternatively, we may repeat the process of multiplying by q 
and subtracting, obtaining 

( l - q ) 2 S  = 2 + q .  

Substituting the value $ for q , we obtain S = 30, and hence E ( T )  = 9. 

(3 )  There is another way of solving part (a). Since the argument is similar to that described in 
Note 2 to Problem 1A.6, we shall not give full details here. The basis of the method is that we 
condition on the fact that the game finishes in round k (k = 1 ,  2, . . . ). If the game has not 
ended before round k , the probabilities that A,  B and C will win in this round are all t. Thus 
the conditional probabilities that they will win, given that the game ends in this round, are all 
equal to i; since these d o  not depend on k , they are also the unconditional probabilities. 

(4) Another way of solving the problem is through the use of recurrence relationships. As our 
first illustration of this approach, we shall find the probability that A wins - call this pA. Then 

pA = Pr(A wins in round 1) + Pr(A wins in a subsequent round) 

= & + Pr(al1 three miss in round 1)  

x Pr(A wins in a subsequent round all three miss in round 1) 

- 1  7 - + =PA. 

We have now obtained a recurrence relationship for PA which. on rearrangement, gives the 
equation $PA = A, with the solution PA = 1 

A similar approach is also possible with part (b). If we let E denote the expected number of 
throws in the game, then 

3 ’  

= (24 + ( 6 x 2 )  + ( 6 x 3 )  + ( & x ( 3  + E ) )  

(This follows from the fact that the number of throws in the game takes each of the values 1, 2 
and 3 with probability i, and otherwise, with probability &, the game effectively ‘restarts’ after 
the first three throws.) The above recurrence relationship simplifies to &E = g, leading to 
E = 9. 

(5) In solving part (b) we could have made use of the fact that the number of rounds in the 
game (including the final, possibly incomplete, round) has a geometric distribution with 
parameter p = &. The expected number of rounds in the game is therefore T. Now there will 
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be three throws in all but the last round; in the last the expected number of throws is 2. Thus 

E(T) = (T - 1)X3  + 2 = 9 .  

Finally, we remark that the method of Note 4 may be used to find the mean of the geometric 
distribution, as an alternative to the more usual method involving the summation of series. 

1B.5 The randomised response experiment 
Let 0 denote the probability that a randomly sampled individual in some population voted 
Conservative in the last General Election. In a particular type of ‘randomised response’ 
experiment, each of a random sample of individuals from this population responds ‘True’ or 
‘False’ to one of the following two statements. 

(a) I voted Conservative a t  the last General Election. 
(b) I did not vote Conservative at  the last General Election. 
A randomising device is used to ensure that the probabilities of responding to (a)  and (b) are p 
and 1 - p respectively, where p is known and 0 < p  < 1. If A is the probability that an 
individual responds ‘True’, write down an expression for A in terms of p and 8. 

For a group of mathematics teachers attending a statistics course, 24 out of 43 responded 
‘True’ in an experiment in which p was fixed at 0 .3 .  Use these figures to estimate 8. 

Solution 
In a rudimentary but obvious notation, we obtain 

Pr( ‘True’) = Pr( ‘True’ n question is (a)) + Pr( True’  rl question is (b)) 

= p Pr( True’  to (a) ) + (1 - p )  Pr(‘True’ to (b) ), 

i.e. A = p 0  + (1 - p ) ( l  - 0 )  = (2p - l ) 0  + 1 - p ,  

since the only people who respond ‘True’ to (a)  are those who did vote Conservative, and 
similarly only those who did not vote Conservative respond ‘True’ to (b). 

In the numerical example, we can estimate A by 
24 A = -  
43 ’ 

Substituting this, and p = 0.3, in equation (*) above and solving for 0 gives 8 = 0.355 as an 
estimate of 0. 

Notes 
(1) This problem indicates a way of obtaining estimates of proportions of populations taking 
part in an ‘embarrassing’ activity; for example, excecding speed limits regularly or smoking at  
school - outside the staff room, that is. We see from equation (*) that the method cannot 
work if p is set a t  0.5. As long as p is not too close to 0 or 1 then the individual response of a 
subject does not give a strong indication of the true activity of that subject. With this 
restriction, the value of p is chosen so as to maximise the precision of the estimator of 8 
resulting from the experiment. In practice this means that p is chosen to be as close to 0 or 1 as 
is possible, while still making it clear to subjects that their true position will remain private. 

The randomising device used could simply be a pack of cards, which the subject can take and 
shuffle as much as desired before selecting a card, or may be a bag of beads of different 
colours. The only important property of the randomising procedure is, of course, that it should 
be impossible (and clear to the subject that it is impossible) for the interviewer to know whether 
statement (a) or (b) was chosen by the subject. 
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(2) From Note 1 ,  we see that it is important that the rules of the experiment be clear to the 
subjects. A preliminary experiment with the mathematics teachers mentioned in the problem 
Produced (from the 5 1  then taking part in the experiment) an estimate X = 35/51, which gives 
8 = 0.034. But in addition to performing the randomised response experiment, the participants 
also wrote down on a slip how they had voted, and this gave a direct estimate of 8 of 
21/51 = 0.41. One can use this latter figure to derive a confidence interval for 8, and a 95% 
interval (0.27, 0.55) was obtained by the first method shown in the solution to Problem 4C.3. 
We see that the value 0.034 is very far away from this, which, in a crude way, suggests that the 
technique might not have been adequately explained to the teachers. The value 0.355 obtained 
in a later experiment is, of course, quite consistent with the confidence interval above. 

The two estimates of 8 found above, 0.41 and 0.034, can be compared more formally, and 
correctly, as follows. For the 21 teachers who admitted to  voting Conservative, the probability 
of responding ‘True’ in the randomised response experiment is 0.3; for the other 30 teachers, 
the probability of responding ‘True’ is 0.7. So if X is a random variable denoting the total 
number responding ‘True’, we can write 

x = x, + x2; 
where X, and Xc are independent binomially distributed random variables with distributions 
B (21, 0.3) and B (30, 0.7) respectively. Hence 

E(X) = (21X0.3) + (30X0.7) = 27.3 

and Var(X) = (21x0.3x0.7) + ( 3 0 ~ 0 . 7 ~ 0 . 3 )  = 10.71. 

Using a normal approximation to the distribution of X,  we find that, approximately, 
X - N(27.3, 10.71). The observed value of X from the randomised response experiment was 
35, and the corresponding standardised normal deviate z is 

35 - - 27.3 
i =  = 2.20, rn 

using a continuity correction since X is discrete. This value of 2 therefore shows a significant 
difference at  the 5% level but not a t  the 1% level. 
(3) There are  many variations on the basic randomised response technique. See, for example, 
Problem 4D.6 for a different version, in which statement (b) above is replaced by an ‘innocent’ 
statement, concerning the timing of the subject’s birthday. As will be seen in the solution to 
Problem 4D.6, the procedure is very much as in the present problem, but one needs to know the 
probability of replying ‘True’ to the innocent statement. (If this probability is unknown, one 
can undertake the randomised response experiment twice, using different values of p , which 
will give two equations to be solved for the two unknown probabilities.) 

18.6 Finding a probability density function 
A continuous random variable X , with mean unity, has probability density function fx (x) given 
bY 

Find the values of a and b . 

Solution 
In order to solve for the two unknown values a and b , we need two equations involving a and 
b .  These equations are obtained from the two items of information that we are given, as 
follows. 
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(i) The function f x ( x )  is a probability density function. Hence 
b 

fa(6 - ~ ) ~ d x  = 1 ,  
0 

h 
-U 6 - x  a n d s o  [ ( ’’1 = 1, 

0 

resulting in the equation ab3 = 3. 
(ii) The mean of X is unity. So 

b 

J a ( 6  - ~ ) ~ x d x  = 1, 
0 

and thus 
b 

af(6 - x ) ~ ( x  - 6  +b)dx  = 1.  
0 

Splitting terms in the second bracket gives 
b b 

-af(b -x)’& + abJ(6 - x ) ~ &  = 1, 
0 0 

and these integrals are evaluated as above to yield 

ab4 ab4 
-I_ 

4 + - = 1 7  3 
which simplifies to  give ab4 = 12. This is to be solved together with the equation ab3 = 3 
obtained earlier. We now see that 6 = 4 and a = &. 

Note 
In some respects this problem might be thought rather unrealistic, in that one rarely finds a 
random variable with a quadratic density function in nature. (Such random variables are, 
however, of value in simulation, where they are used as a basis for generating other 
distributions, and in particular the normal distribution.) If a histogram of observations on some 
random variable showed symmetry, and the range was restricted, one might perhaps consider 
using a quadratic density function as a rough approximation. 

The most direct value in this problem resides mainly in the reinforcement it can give, using 
only elementary calculus, to the result that all probability density functions integrate to 1 over 
the relevant range, and to the formula fx f x ( x ) d x  for the expectation of a random variable X . 

1B.7 Positioning the pointer 
In a psychological experiment investigating how individuals change their assessments of 
probability in the light of data, subjects have to indicate their probabilities for certain events by 
moving a pointer on a scale between 0 and 1. Consider a subject who is unable to give any 
worthwhile assessment of a particular probability, and decides to place the pointer randomly, 
with each point in (0 , l )  equally likely to be the point chosen. In such a case, what is the 
probability that the ratio of the resulting shorter segment to the longer segment is less than $? 
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Solution 

1 
- u  
0 

1B.7 

Figure 1.4 Position of pointer on (0, 1) scale 

Let u denote the distance from 0 to the pointer (see Figure 1.4). From the symmetry of the 
problem it is sufficient to consider the case U < i; we thus require 

Notes 
(1) An alternative way of obtaining the solution is as follows. The event of interest occurs 
when U < f or, by symmetry, when U > ;. The required probability is therefore 

Pr(U < +) + Pr(U > +) = 5. 
(2) Experiments on the assessment and revision of probabilities are easily camed out and can 
be revealing. Suppose a bag of 10 balls is used, 7 of the balls being red and 3 black. Before 
drawing any balls from the bag, a subject’s estimate of the probability that a ball drawn at 
random is red may be 0.5. The subject may then successively select balls at random, observe 
their colour and replace them in the bag, each time revising his or her estimate of the 
probability of drawing a red ball. Experiments of this kind have shown that subjects behave 
conservatively in comparison with the predictions of Bayes’ Theorem. 

* (3) A random variable with a uniform distribution, conditioned as in this problem, remains a 
uniform random variable. 

This result is sometimes useful in the area of simulation. For example, suppose we want to 
simulate a random variable X with the binomial distribution B ( 2 , ; ) .  One way of doing this 
would be to select two independent random variables, U1 and U2, say. both uniformly 
distributed over the range (0,l). We then set X = / I  + 12,  where Ii = 1 if Ui > ; and 0 
otherwise, for i = 1, 2. For each value of X we need to generate two uniform random 
variables, and quite often generating such variables is a time-consuming feature of simulation. 

We now see that we do not need to select a new value for U 2 ,  but rather we can re-use U1. 
Thus if, say, U1 < t, then 2U1 is uniformly distributed over (0, l), and may thus be used in 
place of U2. 

We can verify this as follows. For 0 5 x 5 1, 
P r ( 2 U l c x  n U1<0.5) 

Pr(2Ul<x 1 U l t 0 . 5 )  = Pr( U < 0.5) 
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Pr(UI< f x )  Pr(UI< 0.5 1 ~ 1 <  f x )  
Pr(UI < 0.5) 

- - 

Now, since 0 5 x 5 1 , O  5 f x  5 f ,  and so U1 I fx  implies that U1 I f .  So we obtain 

+ x  x 1 
Pr(2UI < x  I U1 < 0.5)  = 7 = x ,  as required. 

- 
2 

As an illustration, suppose that U1 = 023442. Since U1 > 0.5 we set I I  = 1. In this case 
U1 > 0.5, but 1 - U1 < 0.5, and so in place of U2 we can take 2(1 - U l )  = 0.3116 < 0.5. We 
therefore set 12 = 0, and so obtain the simulated value of X = 11 + 12 = 1. 

1B.8 
A continuous random variable X has probability density function fx(x) given by 

Finding the mode and median of a distribution 

f x ( ~ )  = k ( 2 - ~ ) ( ~  - 5 ) ,  2 5 ~  1 5 ,  

= 0, elsewhere. 

Find the value of k , and hence deduce the mean and variance of X. What are the values of the 
mode and median of the distribution of X? 

Solution 
Sincefx(x) is a probability density function, the area under it must be unity, i.e. 

Jfx(x)dx = 1, 

where the integral is taken over the range of the random variable X .  We can clearly use this 
result to evaluate k , as follows. 

5 

j k (2 -x ) (x  -5)dx = 1, 
2 

5 

i.e. k s (  -x2 + 7x - 1O)dx = 1. 
2 

9 2 
2 9 

and this gives k X- = 1 or k = -. 
The mean of X is defined as 

5 
x4 7x3 7 

= 2 [-- + - - 5x2 J 2  = T ‘  
9 4 3  

The variance of X may be written as Var(X) = E(X2) - {E(X)}2. Thus we require 

2 5  5 

2 2 
E(X2) = sx2fx(x)dr = 9 sx2(2 - X)(X - 5) dr 
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leading to 
127 49 9 
10 4 2 0 ’  

Var(X) = __ - - = - 

The density function in this problem is parabolic, and so we have a single mode, rn , given by 
the value of x which maximises f x  (x) over the range 2 5 x 5 5. Now 

-- dfx(x) - k(-2x + 7) 
dx 

= 0 when x = 3. Thus the mode of the distribution is a t  x = I. and so ~ 

(Differentiating again shows that ___ d2fx(x) - - -7k. This is always negative, and in particular 

when x = 5, providing confirmation that the stationary value is a maximum.) 

d f  x (1 ) 
dx 

d x 2  

In order to determine the median, M ,  we need to  solve the equation 

from the definition of the median. Thus 

2 M  1 -J(2-x)(x - 5 ) d x  = -, 
9 2  2 

so that 
M + __ - 1 0 x g  = 2, 1 

9 3 2  I-‘ 7x2 

leading to 

M 3  7M2 + - -  
This equation reduces to  the cubic 

4M3 - 42M2 + 120M - 77 = 0. 

The equation has solution M = : (see Note 2) and so we may factorise the cubic as 

(2M - 7)(2M2 - 14M + 11) = 0. 

The equation 2M2 - 14M + 11 = 0 has roots 0.902 and 6.098, both of which are unacceptable 
since we must have 2 5 M 5 5 . The median is therefore given by M = 5. 
Notes 
(1) This problem is useful in  indicating the type of manipulation needed to calculate the 
population mean, variance, mode and median for a simple probability density function. 
(2) In this example the mean, mode and median all coincide at  x = 3. The reason for this 
result is simply that the probability density function fx(x), being parabolic, is symmetrical, as 
shown in Figure 1.5. Had this graph been drawn initially then the common identity of the 
mean, mode and median a t  x = f would have been spotted instantly. Indeed, had this fact not 
been known then the root M = : to the cubic equation (*) would not have been obvious. We 
see therefore the value of a rough graph, in shedding light on otherwise purely algebraic 
manipulations which might well have produced the wrong answer from a n  arithmetic error. 
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Figure 1.5 Probability density function for Problem 1B.8 

(3) As F x ( x )  is a continuous, increasing, function of x in the range 2 5 x 5 5 ,  the equation 
F x ( x )  = is known then, 
strictly, no further analysis is necessary to find the median. 

can only have one root for x in this range. Once the root x = 

1B.9 Buffon’s needle 
Two infinitely long parallel lines are a distance a apart, and a needle of length 1 ( I  < a )  is 
dropped and spun so as to fall with its midpoint equally likely to lie at any point between the 
lines, and equally likely to point in any direction. Show that the probability that the needle 
crosses one of the lines is -. 21 

=a 

Solution 
This complex problem involves two jointly distributed random variables: D , the distance of the 
midpoint from one of the lines, and 6, the angle made by the needle with the lines. From the 
conditions stated, D is uniformly distributed between 0 and a while, independent of D ,  6 is 
uniformly distributed between 0 and 71. 

The simplest solution follows from a conditional argument. Suppose that, on a particular 
throw of the needle, 6 takes the value 8. Then, given this, the needle will cross a line if its 
midpoint lies closer than -sin 8 to either of the two lines, i.e. 1 

2 
1 1 .  -sin8 + -sin8 
2 2 

a 
Pr(A 18 = 8) = 9 

where A is the event that the needle crosses a line. Hence 
n 

Pr(A) = JPr(A 18 = O)fe(O)dO 
0 
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Notes 
( 1 )  The argument in equation (*) is a form (strictly, an extension) of the law of total 
probability, also discussed in Problems 1A.4 and 1A.7 ,  amongst others. This probability could 
have been arrived at  by examining the joint probability density function of D and 6 and 
integrating it over the relevant region. But the double integral involved is avoided by the 
conditional argument; indeed it often simplifies an analysis to look for a random variable on 
which one can condition. 
( 2 )  This problem, in which a needle is dropped randomly onto a grid (simplified here to just 
two lines, without loss of generality), is given the name of Buffon’s needle, and the 
corresponding experiment can be used to estimate n. Suppose that a needle is thrown randomly 
n times onto the grid; let X be the number of occasions on which a line is crossed. Then 
(under reasonable assumptions) X will be binomially distributed with index n and parameter 
(i.e. probability of success) -. The fraction - will then give an estimate of this probability, 

21n and one can transform this in a simple way to give an estimate - for n. (There is an obvious ax 
problem if no ‘successes’ occur; we d o  not deal with this here, beyond commenting that by 
choosing I ,  a and n appropriately such an eventuality can be made extremely unlikely.) 
(3) The experiment can be extended and modified in various ways, of which we mention just a 
few. 

(i) The double grid. Suppose that the needle falls randomly onto a grid of squares of size 
a x a .  Clearly there are now (for a needle of length 1 5 a )  three possibilities: that the 
needle falls entirely within a square (probability 1 - (4r - r 2 ) / T ) ,  where r = l / a  , that 
it crosses exactly one line (2(2r  - r 2 ) / n ) ,  and two lines ( r 2 / n ) .  Results from a n  
experiment can then be used in a variety of ways to produce an estimate of n. For 
example, one might equate the proportion crossing two lines to r2/.rr, or the proportion 
crossing at  least one line (i.e. not lying entirely within a square) to (4r --r2)/n. 

The experiment thus offers many opportunities for class discussion. For example, 
different members of the group may try the experiment with different values of r ,  and 
for any set of results both the estimates noted above might be calculated. Comparison of 
results will then throw light on the properties of the various estimators, and this in turn 
can give a basis for a discussion of concepts such as efficiency of estimators. 
Needles of length greater than a .  When the length 1 of the needle exceeds the distance a 
between lines the situation is naturally more complicated. But in one respect it remains 
very simple. If in the original solution we let X denote the number of lines crossed by 
the needle, then plainly X can be only 0 or 1, and 

21 X 
nu n 

(ii) 

21 
na  

E(X) = OxPr(X =0) + lxPr(X = 1) = Pr(A) = -. 

Now suppose a long needle has bands painted across it so that the lengths 11 ,  12, , . . , I,,, 
of the m individual sections are all less than a .  If we denote by Xi the number of lines 
(0 or 1 )  crossed by the section of length li , and if the entire needle crosscs X lines, then 

x = x 1 + x2 + . . . + x, , 

2 
na  

= -(!I 

In other words the 
represents the mean 
crossed. 

+ E(X2) + . . . + E(X,,,) 
21 
n a  

+ 12 + . . , + 1,) = -. 

same value is calculated now as before, but for a long needle it 
number of lines crossed, rather than the probability of a line being 
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(iii) Curved needles. In our discussion of long needles above we made no use of the customary 
property of needles of being straight. In principle, each individual section of the needle 
has to be straight, but there is no requirement that the whole needle shares this property. 
Further, we are quite entitled to have the individual sections of infinitesimal length, so 
that by a limiting argument the needle can be of any (two-dimensional!) shape. 

An interesting special case, which we leave to the reader to develop, is that in which 
the needle is in the shape of a circle. 

(4) The basic single and double grid experiments have been used by the authors in courses a t  
the University of Kent over several years. It must be said that the results have not always been 
regarded as convincing proof that the value of TT can safely be left in the care of statisticians, 
although an unscrupulous operator could select results so as to show that good estimates can be 
produced. For example, in the single grid experimcnt, results over three years' courscs for 
teachers gave 2487 lines crossed out of 3890 trials in w,hich I = a ,  i.e. the needle was the same 
length as the distance between lines; this gives an estimate of the probability that a line is 
crossed to be 0,639 and a corresponding estimate of T as 3.128. In the double grid experiment, 
over two years, there were 3110 trials, of which 153 resulted in the needle lying entirely within 
the square, 1032 had both lines crossed, and in the rcmaining 1933 only one of the lines was 
crossed. The estimate of T based on the number crossing both lines is j+$31+T, which gives 

Bearing in mind the link with the binomial distribution, we see that the results above can be 
manipulated to give tests of hypotheses (or, more likely, confidence intervals) for the 
probabilities of the various relevant events, along the lines shown in Problems 4C.2 and 4C.3. 
Since these probabilities are all straightforward functions of T, corresponding inferences can be 
drawn about n.  This can again lead on to discussions of efficiency of estimation, optimum 
choice of r , and so on. 

3,155. 

lB.10 Transforming a random variable 

Find the mean and variance of the continuous random variable X with probability density 
function given by 

31-4, x 21, 
jX(') = ( 0 ,  otherwise. 

A new random variable Y is defined by the relation Y = X--'. Find the cumulative 

Verify that, for X and Y as given above, E(XY) # E(X)E(Y), and explain why this result 
distribution function of Y ,  and hence derive its probability density function. 

holds in this particular example. 

Solution 
By definition, 
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The cumulative distribution function of Y is given by F y ( y )  = Pr(Y IY ) .  W e  can see that 
the two events {Y 5 y } and {X 2 y-l} are identical, and so, for 0 I y 11, 

Pr(Y 5 y = pr(X 2 y - ' )  
cc 

= 3Jx-4d-x 

= y 3 .  

Y -' 

The probability density function of Y is then given by 

We have already found E(X) to  be i, and now we obtain 

so, clearly, E(X)E(Y) = :. But, by definition, XY = 1 always, so 

E(XY) = 1 # = E(X)E(Y). 

Had we found that E(XY) = E(X) E(Y), then the covariance between X and Y would have 
been zero, as would the correlation. However, Y is a monotonically decreasing function of X , 
so that X and Y are clearly correlated - negatively, as one would expect. 

Notes 
(1) When dealing with unusual density functions, and also when deriving new ones, it is often 
useful to check that (as required for a density function) they integrate to unity. Here 

50 X 

s f x ( x ) d x  = ~ S X - ~ ~ X  = 1 ,  and 
--XI 1 

1 1 

(2) It is useful to remember that the probability density function of a new random variable is 
often readily obtained by first deriving its cumulative distribution function and then 
differentiating, as was done here. Another example is given in Problem 1B. 11. 
(3) Notwithstanding the comment in Note 2, there is another, quicker, method of deriving the 
density function of a random variable defined (as in this problem) through a transformation. 
The method is available only when the function Y = g ( X )  defining the transformation is 
strictly monotonic, i.e. its derivative always takes the same sign. When this happens it can be 
shown that, given the density function f x ( x )  of X and the transformation y = g ( x ) ,  

where we express the right hand side in terms of y by solving the equation y = g ( x )  for x and 
substituting for x .  

For the current problem, f x ( x )  = 3x-4 and the transformation is y = x- ' ,  so that 
L!Y = -x-'. We thus obtain, from equation (*) above, dr 
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and substituting y p1 for x gives f u ( y )  = 3y2, as before. 

(4) In problems of this type it is almost always far simpler to use the expression 

Var(x) = E(x~)  - {E(x)}~ 

Var(X) = E[{X-E(X)}2]. 

when calculating a variance, rather than the alternative and equivalent form 

An exception is discussed in Note 1 to Problem lB.l; some further comments on calculating 
variances are made in Note 1 to Problem 2A.2. 

18.11 Length of a chord of a circle 
In Figure 1.6, OP is a radius of a circle with centre 0 and radius r .  A point Q is chosen on 
OP in such a way that all points on OP have the same chance of being chosen. The chord 
passing through Q at right angles to OP meets the circle at points A and B .  Find the 
probability density function of the length AB , and show that the probability that AB is greater 
than r is 0466.  

Figure 1.6 

Solution 

Since the point Q is randomly positioned, the distances OQ and AB are both random variables, 
and we denote them by X and Z respectively. We are given that X is uniformly distributed on 
the range (0, r ) ,  and require the distribution of Z.  The random variable Z is, of course, a 
function of X; by Pythagoras’ Theorem we see that 

x2  + ( 3 ~ ) ~  = r2. 

In problems of this sort the simplest approach is to obtain first the distribution function F z ( z )  

of Z ,  i.e. Pr(Z CZ). Now, from the above equation, Z = 2-, so the event {Z s z }  can 
be written as c2-5 I}, or as Q 2: m}. Since these events are identical, they 
must have the same probability, so 

~ , ( z )  = Pr(z 12) = Pr(X Z V Z ~ Z ) .  
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We now use the fact that X is equally likely to take any value in the range ( 0 , r ) .  The 
probability that it lies between m and r is thus 

r - G G %  
r 9 

so that 

GG% 
FZ(Z)  = 1 - r 

To obtain the probability density function of Z we merely differentiate. Hence 

d 
dz 2r 

fz(Z) = --F,(z) = - - 

To evaluate Pr(2 > r )  it is simplest to write 

Pr(Z > r )  = 1 - Pr(Z s r )  

as required. 

Notes 
(1) Like Problem lB.lO, this problem deals with the transformation of random variables. 
Some questions of this type are readily answered by working directly with the probability 
density function, as is demonstrated in Note 3 to Problem lB.lO. In other cases, as here, it is 
simpler to work with the cumulative distribution function. 

This problem is not an easy one; in particular, attempts to solve it by working with 
trigonometric functions of the angle AOP could result in difficulties. 
(2) The answer to the second part of the problem could have been obtained by integrating the 
density function of Z over the range from r to 2 r ,  but this was not necessary here. 
(3) In the solution we used an intuitive method to evaluate Pr(X 2 w). There is, of 
course, a rigorous approach available, which some readers may prefer. Since X is uniformly 
distributed on the range (0 ,  r ) ,  its density function is given by 

1 f x ( x )  = T, O s x  s r ,  

and is 0 elsewhere. Thus X has cumulative distribution function 
X Fx(x )  = T, O s x  s r .  

But 

Pr(X 2 V7ZGi) = F x ( r )  - F~(GG%) 

as found in the solution. 
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In this chapter we make the short jump from the general examination of random variables 
and their distributions to dealing with some of the most important probability distributions; the 
chapter will concentrate particularly on the binomial, Poisson and normal distributions. 
Naturally we also give some discussion to others, if only to encourage readers to avoid habits of 
thought which may dictate, for example, that if the binomial distribution cannot be used in a 
problem involving a discrete random variable, then the distribution must be Poisson, which is 
certainly not the case. 

A feature of the problems in this chapter is that many involve two or more distributions. 
Such problems are by no means artificial. Indeed, as we shall see, one of the skills of the 
specialist in probability theory is to  appreciate the opportunities to save effort in complex 
problems through breaking them down into manageable components, each involving, perhaps, 
just a single distribution. A closely related skill, also involved in some of these problems, is 
that of appreciating the relationships, both exact and approximate, between different 
distributions. 

2A Discrete Distributions 
For discrete random variables, particularly, the art of getting to grips with a problem is 

largely that of recognising circumstances leading to  each of the well-known probability 
distributions. So, for example, if in a problem one can identify independent ‘trials’, each with 
the same probability of a ‘success’, then the total number of these ‘successes’ in a fixed number 
of ‘trials’ (whatever these represent in the context of the problem) has a binomial distribution. 
This section concentrates on the binomial and Poisson distributions, when it is appropriate to 
use them, and when it is suitable to use a n  approximation. In some cases we use one discrete 
distribution to approximate another, if that is appropriate and seems useful. In other cases an 
approximation using the normal distribution is used. 

It is convenient to deal here with a few small points of notation for these distributions. We 
shall use the notation ‘X - B ( n  ,p ) ’  to denote that a random variable X has the binomial 
distribution with index n and parameter p ; the index of a binomial distribution is the number of 
‘trials’, and the parameter is the probability of ‘success’. Similarly, if a random variable Y has a 
Poisson distribution with mean p we shall write Y - Poisson(p). (When using a normal 
distribution approximation we shall also, naturally, make use of appropriate notation; for 
convenience, we defer a full description of normal distribution notation until the introduction to 
Section 2B, but note briefly here that we use the virtually standard notation N ( p ,  a2) for the 
distribution and @ ( z )  for the cumulative distribution function of the standardised normal 
distribution N ( 0 ,  l).) 
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There are many other discrete distributions, and we also deal with some of these, for example 
the negative binomial, geometric and hypergeometric distributions. 

2A.1 The squash match 
Paul and Eric are playing squash, and Paul is determined to win a t  least two games. 
Unfortunately his chance of winning any one game is only f,  and this chance remains constant 
however many games he plays against Eric. The players agree to play 5 games and, if Paul has 
won at  least two by then, play ceases. Otherwise Paul persuades Eric to play a further 5 games 
with him. What is the probability 

(i) that only 5 games are played, and Paul wins at  least two of them; 
(ii) that 10 games have to be played, and Paul wins a t  least two? 

Solution 
We denote the number of games Paul wins out of the first five games by XI, and the number 
out of the second five (if played) by X2. Then X1 - B ( 5 ,  a), and X2 will have the same 
distribution. 
(i) We require Pr(X1 2 2), and this is most simply evaluated as 

Pr(X1 2 2) = 1 - Pr(Xl= 0) - Pr(X1= 1) 

= 1 - ( 3 5  - 5 ( + ) ( 3 4  

376 - 0.367 - 1024 - 243 - 405 - - 
1024 1024 

(ii) We now require the probability that ten games are played, and that Paul wins at  least two; 
we denote this event by S . From the conditions stated, X1 must be 0 or 1, and X1 + X2 must be 
two or more. We thus obtain 

Pr(S) = Pr(X1 = 0 n X2 2 2) + Pr(X1 = 1 n x2 2 l ) ,  

by the addition law of probability for mutually exclusive events. Now each of these events is 
itself the intersection of two independent events, to which the multiplication law can be applied. 
Hence 

Note 
The  binomial distribution could be used in the solution because it was clear that the first five 
games could be. regarded as five independent ‘trials’, in  each of which there were just two 
possible results, ‘success’ for Paul, and ‘failure’, with the same probability of success on each 
trial. (Trials of this type are often termed ‘Bernoulli trials’.) Under these circumstances the 
total number of successes, XI, is known to have a binomial distribution. 
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2A.2 Sampling incoming batches 
Show that the binomial distribution with index n and parameter p has mean np and variance 

A company taking delivery of a large batch of manufactured articles accepts the batch if 
either (a) a random sample of 6 articles from the batch contains not more than one defective 
article, or (b) a random sample of 6 contains two defective articles, and a second random 
sample of 6 is taken, and found to contain no defectives. If 20% of the articles in the batch are 
actually defective, what is the probability that the company will accept the delivered batch? 

w(1 - - P I .  

Solution 
If X - B ( n  , p ) ,  then 

Pr(X = x )  = ( ; ) p x ( l  - p y - x ,  x = o , I , .  . . ,n. 

From the definition of expectation, we thus obtain 

E(X) = g x ( : ) p x ( l  -p)"".  
x =o 

But.(;) = n c I : ) , f o r x  = 1 , 2 ,  . . . ,  n ,  andtheinit ialterm(x=O)inthesummationis  
zero. Hence 

since substitutinf y = x - 1 in the summation shows it to be just the binomial expansion of 
Ip + (1 --p))'- , or, equivalently, the sum of probabilities in  the B (n -1,p) distribution. 

To obtain Var(X), we first use an extension of the method above to obtain E{X(X - l)}. We 
find 

E{X(X - 1)) = i x ( x  - 1) ( i ) p x ( l  -p)"'. 
x =o 

= n(n  - 1)pz ,  

since using the substitution y = x - 2 shows that the summation is 1. We can now deduce an 
expression for Var(X) as 

v a r ( x )  = E ( x ~ )  - {E(x)}~ 

= E{X(X - 1)) + E(X) - {E(X)}2 

= n(n - l)pZ + np - nzpz = np(1 - p ) ,  

Thus the expectation of X is np and its variance is np (1 - p ) .  
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In the numerical part of the problem we denote the numbers of defectives in the first and 
second samples by X1 and X2 respectively. These random variables are independent, and both 
have the binomial distribution with index n = 6 and parameter p = 0.2, where p is the 
probability that an item is defective. 

A batch will be accepted if X1 5 1 or if X1 = 2 and X2 = 0. Thus 

Pr(batch is accepted) = Pr((X15 1) U (Xl = 2 n X2 = 0)) 

= Pr(X15 1) + Pr(Xl= 2 n X 2  = 0), 

by the addition law of probability for mutually exclusive events. Now 

Pr(X1 I 1) = Pr(X1= 0) + Pr(XI= 1) 

= (0.S)6 + {6X(0~2)X(0~8)5} = 0.6554. 

We also obtain, by independence of X1 and X2, 

Theref ore 

Pr(batch is accepted) = 0,6553 + 0,0644 = 0,720. 

Notes 

(1) In the solution, we obtained Var(X) by first finding an expression for E{X(X - 1)). Use of 
this device is far from obvious, but its value is seen from the cancellation that was possible in 
the binomial coefficient. In this way we could say that the device used matches the problem. 
The same method also works for the Poisson distribution (see Problem 2A.7), but in general the 
only advice that can be given is to look at  the mathematical structure of the probability function 
and see if there is any feature which can be exploited. This is done, for example, in Note 1 to 
Problem 1B.2 in which the function (X -7)2 is used. See also the ncgative binomial 
distribution, in Problem 2A.10, for which the variance is most easily found through the formula 

v a r ( x )  = E{X(X + 1)) - E(X) - {E(x)}*. 

(2) In answering the numerical part of the problem it is necessary to assume from the statement 
in the problem that the batch is ‘large’, so that the proportion of defective articles remains 
constant even after sampling some of the articles without replacement. This allows us to use the 
binomial distribution. Strictly speaking, of course, when items are taken from a finite 
population, the proportion with some attribute changes; the distribution of the number of 
‘successes’ is no longer binomial, but hypergeometric. (See Problem ZA.l l  for a discussion of 
this distribution.) 

(3) ‘Success’ and ‘failure’ are only really standard labels used for the two possible outcomes of 
a Bernoulli trial. In fact ‘success’ may sometimes constitute what we might more readily think 
of as failure. In the above example, for instance, we have taken ‘success’ to correspond to a 
defective article. 

* (4) The technique of probabiliry generating functions, though more advanced, can be used 
profitably in theoretical work on the binomial and other discrete distributions. In summary, a 
discrete distribution can be described completely by its probability generating function (or 
p.g.f.) just as it can by the more usual probability function. The p.g.f. of a random variable X 
is defined as a function Gx(r )  = E ( r X ) ,  and we outline some of its main properties. 
(a) Expanding Gx(r )  as a power series in t ,  the coefficient of t’ is Pr(X = x ) ;  hence the name 

of the function. 
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(b) The moments (in particular the mean and variance) of X can be found by differentiating 
Gx(r )  w.r.t. t ,  and then evaluating the derivatives a t  t = 1 .  Specifically, 

E(X) = G ’ x (  1) 

and 

E{X(X - 1)} = G”x(  l) ,  

so that 

Var(X) = G ” x (  1 )  + G ’ x (  1 )  - {G’x(  1 ) p .  

(c) The p.g.f. of the sum of any number of independent random variables is the product of 

Applying the technique to  the total number of successes in n independent trials, in each of 
which the probability of success is p ,  we define random variables Y 1 ,  Y 2 ,  . , , , Y , ,  with Yi 
being 1 if trial i is a success and 0 if not. Denoting the p.g.f. of Y j  by G i ( t ) ,  we find 

their individual p.g.fs. 

G j ( r )  = (1 - p ) t o  + pr’ = ( 1 - p )  + p t ,  i = 1 , 2 ,  . . . ,n. 
But X = Y 1 + Y2 + . . . + Y,, , so by property (c) above we obtain 

Gx(t )  = ( ( 1  - P I  + PI’’ 
as the p.g.f. of X ,  where X - B (  n , p ) .  

We can now use this result to obtain the mean and variance of X . Differentiating, we obtain 

~ ’ ~ ( t )  = n p { ( l  - p )  + p t ) ” p * ,  

and substituting t = 1 gives, immediately, E(X) = np. Differentiating again, we find that the 
second derivative is, similarly, n ( n  - l)p2 when t = 1, and thus we obtain, easily, 

Var(X) = n ( n  - 1)p2  + np - (np)’ = np(1  - p ) .  

Note that by expanding the p.g.f. in powers of t we obtain, as the term in r ’ ,  

and thus find the coefficient of t r  to be the probability function of the binomial distribution. 

2A.3 Sampling for defective items 
A machine produces articles of which an average of 10% are defective. Find an approximate 
value for the probability that a random sample of 500 of these articles contains more than 25 
which are defective. What, approximately, is the probability that the sample contains fewer 
than 60 defectives? 

S o h  tion 
The number of defectives. X ,  in the random sample of size 500 has the binomial distribution 
with n = 500 and p = 0.1. To obtain an approximate value for the probability Pr(X > 2 5 ) ,  we 
use the normal approximation to this distribution: that is, we use the normal distribution with 
the same mean and variance. We have 

mean = np = 500X0.1 = 50, variance = np(1 - p )  = 5 0 0 ~ 0 ~ 1 ~ 0 ~ 9  = 45. 

Hence we use the N ( 5 0 , 4 5 )  distribution or, equivalently, transform to 

X -50  
= = Y E -  

and use the standardised normal distribution N (0, l ) ,  with distribution function @(.). 
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Since we are approximating a discrete distribution (binomial) by a continuous distribution 
(normal) we include a continuity correction. From tables of the normal distribution we find 
that 

2 5 + + - 5 0  
= @(-3.652) = 1-0.9999 = 0.0001. [ 6.7082 ] Pr(X 5 2 5 )  = 

But we require Pr(X > 25), given by Pr(X > 25) = 1 - Pr(X 5 25) = 0.9999. 
Similarly, for Pr(X < 60) we require 

6 0 - + - 5 0  [ 6.7082 ] = a(1.416) = 0.9216. 

The probability that there are fewer than 60 defectives is thus approximately 0.922. 

Notes 
(1) As stated in the solution, the distribution of the number of defectives in  the sample is 
binomial. This is because, for each of the 500 articles separately, whether or not it is found to 
be defective can be thought to  constitute a Bernoulli trial, independent of all the others. (See 
the Note to Problem 2A. 1 .) However, since the number of articles in the sample is large, the 
normal approximation can be safely used here; the words ‘approximate’ and ‘approximately’ in 
the statement of the problem indicate that this is what is required. Note that the normal 
distribution can provide a good approximation to the binomial distribution even when this is not 
symmetrical, as will be the case. when p # i. However, the further from 3 the value of p is, 
the larger will be the value of n required for the approximation to be a good one. 

A rough check on whether or not the normal distribution is likely to provide a good 
approximation to a particular binomial distribution can be carried out by seeing how much of 
the tails of the normal distribution is outside the range of the binomial distribution (a  
binomially distributed random variable has a finite range, whereas that of a normally 
distributed random variable is infinite). For example, in the above case, 0 is closer to the mean 
(SO) than 500, but even this is more than 7 standard deviations away from the mean. Since 
much less than 1% of the normal distribution is contained beyond 3 standard deviations from 
the mean, the indication here is that the normal approximation should be very good. A useful 
rule of thumb is that the approximation is reasonable if both np and n (1 - p )  exceed 5. 
(2) A continuity correction is used because a discrete distribution is being approximated by a 
continuous distribution. To see what is happening here, one can think of approximating the 
probability that X = 25, for instance, in this problem. Now, for a random variable with a 
continuous distribution, the probability that the variable takes some specified value exactly is 
zero. This is clearly not the case for a random variable which has a discrete distribution. The 
above probability is then approximated by the area under the probability density function curve 
for N(50,45) between the values 24.5 and 25.5. Similarly the probability that X = 24 is 
approximated by the area under the curve between 23.5 and 24.5; continuing in this way, the 
probability that X 5 25 is approximated by the entire area to the left of 25.5. 
(3) The final probability in the solution has been rounded to 3 decimal places because linear 
interpolation in the tables of the normal distribution was used to obtain the fourth figure, and 
since the calculated probability is only an approximation anyway. 

2A.4 The music recital 

Regular music recitals are held in a small hall with seating for an audience of 98 people. The 
booking office staff find that, on average, 3% of people who book for a recital fail to turn up, 
and adopt a policy of selling up  to 100 tickets for any recital. What is the probability that for a 
recital for which 100 tickets have been sold, everyone who turns up has a seat? 
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Solution 
The number X of ticketholders who fail to turn up for the recital has a binomial distribution 
with index n = 100 and parameter p = 0.03, and hence mean = np = 3 .  We need to find the 
probability that two or more people fail to turn up (when there will be a seat for everyone), i.e. 
to find 

Pr(X 2 2) = 1 - Pr(X < 2) = 1 - Pr(X = 0) - Pr(X = 1). 

Since n is large and p is small we may approximate the binomial probabilities using the Poisson 
distribution with the same mean, 3. Hence the required probability is (approximately) 

1 - e-3 - 3eP3 = 1 - 4e-3 = 1 - 0.199 = 0.801. 

Notes 
(1) We are told that, on average, 3% of people who have booked for recitals fail to turn up, 
and have to make the assumption that the rate of non-attendance stays constant over time when 
computing the required probability. In practice this may not be the case as, for example, 
different times of the year or the varying fame of performers may affect the attendance rates. 
We are also, in using the binomial distribution, making the assumption that people who have 
booked act independently with regard to attendance or non-attendance. It is most unlikely that 
this assumption is valid, since many will book in small groups and it will often be the case that 
the failure of one member of a group to attend will be associated with the non-attendance of 
some or all of the other members of that group. Thus a solution based on the binomial 
distribution can only be approximate. It is clear, however, that such a solution is the best 
possible given the information at our disposal. 
(2) The use of the Poisson approximation to the binomial distribution is less necessary now 
than it was when the only computational aids generally available were mathematical tables and 
mechanical calculators. With a modern scientific calculator it is (almost) a simple matter to 
calculate the required binomial probabilities exactly, as follows: 

Pr(X z 2) = 1 - (O.97)'Oo - 1 0 0 ~ ( 0 ~ 0 3 ) ~ ( 0 ~ 9 7 ) ~  = 0,805. 

The reason we say that the direct calculation of binomial probabilities is almost a simple 
matter is that, if n is large, calculation of the necessary binomial coefficients by substituting the 
values of n and x in 

will fail because some of the factorials involved will overflow the calculator. This may be 
avoided, as in the above calculations, by appropriate cancellation before entering any figures 
into the calculator. It may also be avoided by calculating probabilities sequentially, as is done 
for the Poisson distribution in Problem 2A.8: beginning with the value of Pr(X = 0), we obtain 
the probabilities of other values of X using the recurrence relationship 

n - x  + 1 p 
x 1 - p  

Pr(X = x )  = Pr(X = x  - 1). 

(3) Confusion often arises as to which approximation to the binomial distribution to use when 
n is large. The two possibilities are the Poisson and normal distributions. The Poisson 
distribution is, mathematically, the limiting form of B ( n  , p )  as n -m and p -0 in such a way 
that the product np remains constant. The present problem gives an example where n is large 
and p is small, and hence the Poisson approximation is appropriate. 

The normal distribution approximation also depends mathcmatically on n tending to infinity, 
but note the rule of thumb given in Note 1 to Problem 2A.3 that the approximation is likely to 
be reasonable if the products np and np (1 - p )  are both greater than 5. (It is also worth noting 
that the normal distribution can be derived as a limiting form of the Poisson as its single 
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parameter, p, tends to infinity, so that the normal distribution can be used to approximate the 
Poisson distribution for large p. We thus see how the Poisson approximation to the binomial 
distribution might in turn lead to  a normal approximation.) 

Although we see from this discussion that it is clearly the Poisson distribution which is 
appropriate to the present problem, it makes little difference numerically which approximation 
is used. If we use the normal approximation we find the answer to be 0.810 rather than 0.801. 
However, this does not alter the fact that, from the structure of the problem, it is the Poisson, 
not the normal, distribution which provides the appropriate approximation. 

2A.5 Marking a multiple-choice test 
(a) A multiple-choice test paper contains 50 questions; for each question three answers are 
given, one of which is correct. The two incorrect answers to any question are designed to be 
plausible, so that an ignorant candidate could be expected to pick an answer quite a t  random. 
If the examination is marked simply by giving one mark per correct answer, what should the 
pass mark be if the probability that a completely ignorant candidate passes is to be 
approximately 1 %? 
(b) Suppose now that the examination is marked by awarding two marks per correct answer, 
but deducting one mark for every incorrect answer. If an ignorant candidate attempts every 
question, what is the expectation and variance of the candidate’s total score? 
(c) Consider the position of a candidate when the scoring system is as in part (b), but with only 
one mark for a correct answer, and when the pass mark is 28. The  candidate has revised half 
the syllabus thoroughly, and finds that he is certain of the correct answers to half the questions. 
To gain the extra 3 marks needed to pass he decides to  guess a t  the answers to a few more 
questions. Would the probability of passing be greater if he picked just three more questions 
hoping to get them all correct, or if he guessed at  five questions? 

Solution 

(a) Let the number of correct answers given by an ignorant candidate be denoted by X .  Then 
X - B ( 5 0 ,  +), and for this distribution a normal approximation is acceptable, so we conclude 
that, approximately, 

X - N ( 5 0 x + ,  ~ O X ~ X ; ) ,  i.e. X - N(F, (?)*). 
We are required to  find that value x such that Pr(X 2 x )  =z 0.01 and so we have to solve for x 
in the equation 

Now @(k) = 0.99 implies that k = 2.3263, so we have 
1 - w ,  

10 = 2.3263, X - z  3 
- 
3 

or x = - + - 50 + ___ 23’263 - - 24.92. In practice this obviously means that the pass mark 

should be set a t  25. 
(b) As in part (a), the distribution of X is B ( 5 0 ,  +). Since X is the number of correct answers 
and 50 - X the number of incorrect answers, the score S of the candidate who attempts every 
question is a random variable such that 

2 3  3 

S = 2X + (-1)(50-X) = 3X - 50. 
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We see therefore that E(S) = 3E(X) - 50 and Var(S) = 9Var(X). From standard properties 
of the binomial distribution used in part (a), E(X) = -- and Var(X) = ---, so we reach 50 100 

3 9 
E(S) = 0, Var(S) = 100. 

(c) With one mark per correct answer and half the syllabus known, the candidate has 25 marks 
in the bag, with up to 25 further questions available to secure the extra 3 marks. (The problem 
with guessing at many of these 25 further questions is that he is twice as likely to guess 
incorrectly, and be penalised, as to get an answer right.) If three further questions are 
attempted, all must be correct in order to pass, and the probability p 3  of this is p 3  = (i)3. If 
five questions are attempted, then at  least 4 must be correct to secure the three marks needed, 
and the probability p s  of this is 

11 p s  = ( ' ) 5  + S X ( L ) d ( ? )  = - 
3 3 3 5 '  

9 1 1  
35 35 

Since p3 = - < - = p5, we see that the better strategy is to try five further questions. 

Notes 
(1) While the numbers have been kept simple, the set-up is a moderately realistic one, and 
scoring systems of the type described are in use. They do, of course, offer candidates 
considerable incentive to revise, since guesswork is most unlikely to be rewarded. In practice, 
candidates are usually not guessing quite a t  random, and if the scoring scheme is known to 
them they have interesting strategic choices. For example, to maximise the total expected score, 
a candidate should attempt a question if he assesses the chance of answering it correctly a t  
f or more under the scheme in (b), but under the system in (c) only if the chance exceeds +. 

Other possibilities include allowing candidates to  check two (or, if appropriate, even more) 
answers to the same question, and gain reduced credit if the correct answer is one of those 
checked. 
(2) In part (c) the statement of the problem allows us to restrict attention to just 3 or 5 extra 
questions. In practice one would wish to calculate the optimum number of extra questions to 
choose, A little reasoning shows that choosing four questions is not sensible, since the 
candidate can then pass only by answering all four correctly, a more difficult task than guessing 
three out of three. Similarly, choosing six questions is worse than choosing five. However, a 
little calculation shows that, if seven extra questions are attempted, the probability p 7  of getting 
five or more correct is 1 1 / 3 5 ,  and this strategy is thus just as good as choosing five extra 
questions. If eight or nine 
questions are tried, then a t  least six must be answered correctly. Trying nine questions is 
therefore a better strategy than trying eight, and the probability of success from nine questions 
is 835 /39 ,  which is smaller than p5  and p 7 .  

Trying more than seven questions is not advisable, though. 

2A.6 The insect breeding experiment 

(a) Two sets of n independent trials are performed, independently of each other, and each trial 
results in either success or failure, the probability of success being p 1  in the first set of trials and 
p 2  in the second set. Show that the probability P of obtaining x1 successes in the first set and 
x2 successes in the second set is given by 

P = Kp;'p?(l  - p l ) n - X ' ( l  -p2)"-Iz, 

where K depends only on n , x 1  and x 2 .  If p 1  = p and p 2  = p 2 ,  find an expression for log P 
and show that, for given values of n , x1 and x2,  log P has a maximum value when p is such 
that 

(xl + 2 x 2 )  - (n - x l ) p  - 3np2 = 0. 
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(b) An insect breeding experiment was conducted in two sections, in each of which 100 insects 
of a particular species were raised. In the first section a proportion p was expected to have a 
certain colour variation and in the second section the proportion with this colour variation was 
expected to  be p 2 ,  but the value of p was not known. In the event there were 22 insects in  the 
first section, and 7 in the second section, which possessed the colour variation. Find the value 
of p which maximises the probability of this result. 

Solution 
(a) The number of successes in the first set of n independent trials has a binomial distribution, 
and the probability of obtaining x1 successes is 

Similarly, the probability of obtaining x2 successes in  the second set of n independent trials is 
given by the binomial distribution as 

(: .]P: ( 1  - P2)n-X2.  

The two sets of n independent trials are also independent of each other, so that the two 
probabilities above should be multiplied together to yield the probability of the composite event 
described in the statement of the problem. The required probability is therefore 

P = Kp;'p;'(l - ~ 1 ) ~ - ~ ' ( 1  - P ~ ) ~ - I ' ,  

where 

clearly K depends only on n , x 1  and x2. 
Putting p = p and p 2  = p 2  in the expression for P , we obtain 

p = Kp x , + h 2  ( 1  - ~ ) " - ~ ~ ( 1  - P ~ ) " - ~ '  

and, taking logarithms, 

log P = log K + ( x 1 + 2 x 2 ) l o g p  + ( n - x l ) l o g ( l - p )  + (n-xz)log(l-p2). 

To maximise log P , whilst holding n , x and x2 constant, we differentiate with respect to p to 
obtain 

L=-..------ dlo P x 1 + 2 x 2  n - 1 1  2 p ( n  - x 2 )  
dP P 1 - P  1 - p 2  . 

Equating this to  zero leads to  the equation 

( X l + h 2 ) ( 1  - p 2 )  - ( n  - x 1 ) p ( l  + p )  - 2 ( n  -x2)p2  = 0 ,  

i.e. (XI + 2x2) - (n - x l ) p  - 3np2 = 0, 

as required. A local maximum value of log P is then given when the value of p is one of the 
roots of this quadratic equation. Now denoting the left hand side of the equation in p above by 
g(p), we see that g (0) > 0 and that g ( 1 )  < 0; also that the coefficient of p 2  is negative. It 
follows that the roots of the equation g ( p )  = 0 are real, and that one lies in the range ( 0 , l )  
and the other is negative. (There are special cases when X I =  x2 = 0 and when they both equal 
n .) Differentiation shows that the second derivative of log P is negative whenever p > 0, so the 
root of the equation g ('p) = 0 in (0 , l )  gives a maximum for log P . 
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(b) We note that the situation in the insect breeding experiment is precisely that which was 
defined in part (a), but with particular values of n (loo), x 1  (22) and x 2  (7) specified. We 
therefore substitute for n , x 1  and x 2  in the equation for p , and obtain 

36 - 78p  - 300p2 = 0 ,  or 50p2 + 13p - 6 = 0. 

This factorises to give 

(25p - 6)(2p + 1) = 0, 

which has solutions p = & and p = -+. Since p is a probability, between 0 and 1, the root 
that we require is p = &. The general result given in part (a)  shows that this root maximises 
the value of log P . 

Notes 
(1) The second, numerical, part of the problem follows directly from the first, algebraic, part. 
When answering examination questions, candidates often fail to recognise the relevance of the 
first part of a question to the second part. 
(2) Although it is not necessary to realise it in order to solve the problem, the method being 
used here to find the value of p maximising l o g P  is the method of rnnxirnurn likelihood 
estimation. The model for the insect breeding experiment depends on a parameter p , which we 
wish to estimate. The method proceeds by finding that value of p for which the probability that 
the values actually observed occur is maximised. The method of maximum likelihood is one of 
the most commonly used methods of estimation in statistics (see Problems 2A.11 and 4D.4 for 
other examples of its use). Another is the method of least squares (see Note 4 to Problem 5A.1 
for its use in the context of linear regression). Others are the method of moments and the 
minimum chi-squared method. 

(3) In applying the method of maximum likelihood to a problem like the present one, we 
usually find that the quantity to be maximised is a product of several terms (themselves 
probabilities or probability densities). It is usually easier to find the maximum of a sum of 
terms rather than that of a product. A simple way to convert a sum to a product is to take 
logarithms, as was done here. Now since log P is a monotonic function of P , if we require the 
value of p maximising P , this can equivalently, and more easily, be done by finding the value 
maximising log P . This is what was done in the solution above. 

2A.7 The telephone exchange 
A telephone exchange receives, on average, 5 calls per minute. Find the probability 

(i) that in a 1-minute period no calls are received; 
(ii) that in a 2-minute period fewer than 4 calls are received; 
(iii) that in a 20-minute period no more than 102 calls are received; 
(iv) that out of five separate 1-minute periods there are exactly four in which 2 or more calls 

are received. 

Solution 
(i) We assume that the number of incoming calls in one minute has the Poisson distribution 
with mean 5 .  Hence, if X is the number of incoming calls in one minute, 

Then 

Pr(X = 0) = C5 = 0.007 
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(ii) The number of calls in a 2-minute period, Y ,  has the Poisson distribution with mean 10. 
Hence 

Pr(Y < 4) = Pr(Y = 0, 1, 2 or 3) 

= e lo 1 + 10 + - + - = 0.010. - I  102 2! 103  3! 1 
(iii) The number of calls, W, in 20 minutes has the Poisson distribution with mean 100. We 
require Pr(W 5 102) and, since the mean of the distribution is large, are able to use a normal 
approximation. Since the mean and variance of the Poisson distribution are the same, the 
appropriate normal distribution is N(100, lo2). Using a continuity correction, we find 

1 102 + + - 100 
Pr(W 5 102) I- @ 

= a(0.25) = 0.599. 

(iv) In any 1-minute period chosen at  random the probability of 2 or more calls being received 
is 

1 - Pr(O or 1 calls) = 1 - 8 ( 1  + 5 )  

= 0.9596. 

Then, using the binomial distribution B ( 5 ,  0.9596), the probability that exactly four out of five 
1-minute periods contain 2 or more calls is 

5(0,9596)4(1 - 0.9596) = 0.171. 

Notes 

(1) Although it is not explicitly stated in the problem, the intention is that we should assume 
that the number of telephone calls in one minute has a Poisson distribution. This arises if we 
assume that calls are distributed a t  random over time, with no tendency either to arrive in 
groups or to be evenly spaced. We also assume that there is no change over time in the rate a t  
which calls are received. 

A mathematically precise formulation of these assumptions is provided by the Poisson process , 
a model for completely random occurrences in time, with the following properties: 

(i) events relating to non-overlapping intervals of time are statistically independent, 
(ii) in any small time interval ( t ,  t + t i t ) ,  the probability of an occurrence in the interval is 

proportional to the length of the interval, 

(iii) in any small time interval ( t ,  r + 6 r ) ,  the probability of two or more occurrences is 
proportional to ( 6 t ) 2 ,  i.e. is negligible. 

While we have given the exact definition, for completeness, the important fact is simply that, 
when occurrences are completely haphazard in time, the number of these occurrences in a fixed 
time is a random variable with a Poisson distribution. It is this which justifies use of the 
Poisson distribution in so many cases involving accidents, infrequent occurrences, etc. An 
application of the Poisson process to the arrival of customers a t  a queue can be found in 
Problem 4D.4. Similar arguments, with ‘space’ replacing ‘time’, justify the appropriateness of 
the Poisson distribution in other contexts (see, for example, Problem 2A.8). 

In many applications, but in particular in the field of ecology, the Poisson distribution is 
often used to describe the distribution of organisms in two- or three-dimensional space. 
Alternative distributions (if the organisms are not distributed randomly) can be described as 
regular or clustered, and interest often centres on fitting one of the so-called contagious 
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distributions to  clustered, clumped or aggregated data. An example of a contagious distribution 
is the negative binomial distribution (see Problem 2A.10); all have the property that the 
variance is greater than the mean. 
(2) In part (iv) we need to compute probabilities from two distributions (Poisson and 
binomial), and to combine these. It is not uncommon to find problems of this type, where the 
probability p of 'success' in a Bernoulli trial is calculated from some standard distribution, and 
then used in the calculation of a binomial probability. 

2A.8 Random sultanas in scones 

(a) Show that for a Poisson distribution the mean is equal to the variance. 

(b) In a bakery 3600 sultanas are added to a mixture which is subsequently divided up to make 
1200 fruit scones. Assuming that the number of sultanas in each scone follows a Poisson 
distribution, estimate 

(i) the number of scones which will be without a sultana; 
(ii) the number with 5 or more sultanas. 

Solution 

(a) If X - Poisson(p), then Pr(X = x )  = e-'p"/x!, x = 0,1, . . . , and so 
W 

E(X) = E x P r ( X  = x )  
x -0 
D W 

= E x P r ( x  = x )  = e-'xxp'/x! 

= pe-'Ep*-*/(x - I)! = p, 

x =1 1 =1 
W 

x =1 

since substituting y = x - 1 in the summation shows it to be just the expansion of e p  in powers 

For Var(X), we first consider E{X(X - l)}. By a n  essentially similar argument, this is s e n  
of p. 

to be 
W 

E{X(X - 1)} = E x ( .  - l)eOp'/x! 
I -2 

W 

= p2e-*E px-2/(x - 2)! = p2. 
x =2 

this time using a substitution y = x - 2 in the summation. We now find 

Var(X) = E{X(X - 1)} + E(X) - {E(X)}2 

= p 2 + p - p 2 = p L .  

We see therefore that for the Poisson distribution the mean and variance are equal. 
(b) The  mean of the Poisson distribution is simply the average number of sultanas per scone, 
which is 3600/1200 = 3. Hence, if X is the number of sultanas in a scone, 

3" Pr(X = x )  = e ~ ~ - , x  = 0, 1 , .  . .. 
X !  

Substituting x = 0 in this expression, we obtain the probability that any one scone contains no 
sultanas as e--3 = 0,04979. To estimate the number of scones without a sultana we need to 
multiply this probability by the total number of scones. Hence, since 1 2 0 0 ~ 0 . 0 4 9 7 9  = 59.7, 
the estimated number of scones without a sultana is 60. 
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Now 
4 

x -0 
Pr(5 or more sultanas) = 1 - I: Pr(X = x ) .  

Computing the required probabilities sequentially, using the recurrence relationship 
5 

X 
Pr(X = x )  = -Pr(X = x  - l) ,  

we obtain 

Pr(X = 1) = :Pr(X = 0) = 0.1494; 

Pr(X = 2) = iPr(X = 1) = 0.2240; 

Pr(X = 3) = +Pr(X = 2) = 0.2240; 

Pr(X = 4) = iPr(X = 3) = 0.1680. 

4 

x =o 
Hence Pr(X = x )  = 0.8153 and so 

Pr(5 or more sultanas) = 1 - 043153 = 0.1847 

The estimated number of scones with 5 or more sultanas is therefore 1200~0.1847 = 221.7, 
i.e. 222 to the nearest whole number. 

Notes 
(1) In this problem the use of the Poisson distribution depends on an assumption that the 
sultanas are ‘randomly’ distributed through the mixture. For a detailed discussion of what the 
word ‘randomly’ means in this context, see Note 1 to Problem 2A.7. 
(2) To find values of the Poisson probability function in solving this problem, we have made 
use of a simple relationship between successive values. Such an approach can frequently 
simplify calculations when we are dealing with discrete distributions (see, for example, Note 2 
to Problem 2A.4). A potential hazard here, though, is that of compounding rounding errors. 
Care needs to be taken to account for a sufficiently large number of decimal places in the 
working to achieve the degree of accuracy ultimately desired. Better still, if a suitable 
calculator is available, is to  carry out the sequence of calculations entirely within the machine, 
writing down any results needed but basing subsequent calculations on the more accurate value 
still held in the calculator. 

The reader may have noted that this was done in the calculation above. The probability that 
X = 1 was recorded as 0,1494 while Pr(X = 2 )  was recorded as 0.2240. But 
lx0.1494 = 0.2241, yet in fact both figures given in the solution are accurate to four decimal 
places. 
(3) Note that Pr(X = 2) = Pr(X = 3) in this example. This illustrates a property of the Poisson 
distribution which holds whenever the mean p is an integer, namely that 
Pr(X = p - 1) = Pr(X = p). When p is not an integer, then if p > 1 the successive probabilities 
increase progressively to a unique maximum (corresponding to the largest integer less than p), 
and then decrease monotonically, while if p < 1 they simply decrease monotonically. 

(4) In calculating Var(X) in part (a) we used the device of first calculating E{X(X - 1)). A 
short discussion of this device can be found in Note 1 to Problem 2A.2. 

* ( 5 )  The problem of obtaining the mean and variance of a Poisson distribution can be tackled 
using the probability generating function. (The function is defined generally, and some of its 
properties are given, in Note 4 to Problem 2A.2.) 

2 
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If a random variable X has a Poisson distribution with mean p, it  has p.g.f. Gx(r )  given by 
W 

Gx( r )  = E(tX) = x t x P r ( X  = x )  
x =o 

In the present problem we require the mean and variance of X ,  and these can be found by 
differentiation. For the mean we require G f x (  l), and obtain 

G 'X(t) = pep('-'), 

and evaluating this at z = 1 gives E(X) = p. Differentiating again, we find the second 
derivative to be p2 when z = 1, so, from the result presented in Note 4 to Problem 2A.2, we 
obtain 

Var(X) = G"x( 1) + G ' x (  1) - {G'x( I)}* = p2 + p - p2 = p = E(X) 

* 2A.9 Relationship between binomial and Poisson distributions 
Independent random variables X and Y have Poisson distributions with means p1 and p2 
respectively, and the random variable Z is defined as Z = X + Y. 
(a) Show that the distribution of Z is a Poisson distribution. 
(b) Show that, conditional upon the event Z = z , the distribution of X is binomial, and find its 
index and parameter. 

Solution 
(a) The most direct method evaluates Pr(Z = z),  for values of z 2 0, by splitting the event 
{Z = z }  into mutually exclusive component events whose probabilities can then be added 
together. Now Z = z  if X = O  and Y =z, or if X = 1 and Y = z - 1 ,  or if X = 2  and Y = z - 2 ,  
and so on, ending with the event that X = z and Y = 0. These z + 1 components are mutually 
exclusive, and each is the intersection of two independent events, for example {X = 1) and 
{Y = z-1). We thus obtain 

z 
Pr(Z = z )  = x P r ( X  = x  Y =z-x ) ,  

x =o 
by the addition law of probability. Further, by independence, 

Pr(X = x n Y = z - x )  = Pr(X = x )  Pr(Y = z -x )  

and so 
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Rearranging the terms in this expression gives 

P f  P r  
-(y+*) 1 Pr(Z = z )  = e 

x = o x ! ( z - x ) !  z 

where, for clarity, we have written p = pi/(p~ + pz). It is clear that the sum in this expression 
is just the binomial expansion of b + (1 - p )y , and is thus 1 ; hence 

i.e. Z has the Poisson distribution with mean p1 + p2. 

(b) To find the conditional distribution of X given the event Z = z ,  we simply need to 
evaluate Pr(X = x i Z = z), using the ordinary formula for conditional probability 

Pr(X = x  n Z = z )  

Pr(Z = z) P r ( X = x  / Z = z ) =  

The denominator was found in part (a), and the numerator can be re-expressed as 
Pr(X = x n Y = z - x ) .  The advantage of so doing is that X and Z are not independent, but 
X and Y are, so that the joint probability can be evaluated as a product, viz. 

we thus obtain 
e-PIPf e-)4Plq-r 

i.e. conditional upon Z = z, X - B z, ___ [ PI”:,, 1. 
Notes 
(1) This rather tricky problem is included partly to provide a basis for a later one, Problem 
4C.8. (While the present problem is purely an exercise in manipulating probabilities, its 
application is quite practical, providing us with a two-sample test for use with data from Poisson 
distributions.) The problem also shows how closely interlinked the binomial and Poisson 
distributions are; it is not just the case that one can sometimes be used as an approximation to 
the other. 
(2) As in Problem 2A.2, probability generating functions (p.g.fs) can be used to advantage 
here, since the aim in part (a) is to find the distribution of the sum of two independent random 
variables. (Further details of definition, etc. can be found in Note 4 to Problem 2A.2.) If a 
random variable W has a Poisson distribution with mean k, it has p.g.f. C ; , ( t )  given by 
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rn 

G w ( t )  = E ( t W )  = 

as seen in Problem 2A.8. Conversely, any function of t of this form will be the p.g.f. of a 
random variable with a Poisson distribution, and whatever replaces p in the formula will be the 
mean of its distribution. 

t"Pr(W = w )  = e*('-'), 
w =O 

Now X and Y both have Poisson distributions, so we find 
rr,O - 1) G x ( r )  = e 
*4(1 - 1) and G y ( t )  = e - . 

But Z = X + Y ,  so, by the multiplicative property of p.g.fs, 

G Z ( t )  = G X ( t ) X G Y ( t )  

- - JP, +*)(I - 1) 
f 

and from the form of this function of t we see that Z must have the Poisson distribution with 
mean p1 + p?. 

This argument is only slightly shorter than the more direct one used in the solution. But it is 
much more powerful, since it extends immediately to finding the distribution of the sum of 
three or more independent random variables; it follows naturally that the sum of any number of 
independent Poisson random variables will itself have a Poisson distribution. All one has to d o  
is to multiply together the appropriate number of p.g.fs, and the product will be seen to be of 
the required form. By contrast, using an extension of the direct method of the solution to part 
(a) is very cumbersome. 

2A.10 Tossing a coin until 'heads' appears 

(a) In a series of independent tosses of a coin, with probability p of the coin landing 'heads', 
and probability 1 - p  of it landing 'tails', obtain an expression for Pr(X = x) ,  
x = 1,2,3,  . . . , where X is a random variable denoting the number of tosses until the first 
head appears. 

(b) If rn is a positive integer, obtain an expression for Pr(Y = y ) ,  y = r n ,  rn + 1, rn +2, , , , , 
where Y is a random variable denoting the number of tosscs until the rn th head appears. 

Solution 

(a) As an illustration, consider the case x = 5, when we observe: 

TTTTH 

Since the tosses are independent, we obtain 

Pr(X = 5 )  = (1 - p ) " ,  

and, in general, 

Pr(X = x )  = (1 - p ) I p l p ,  x = 1, 2, 3, . . .. 

We say that the random variable X has a geometric distribution, with parameter p . 
(b) In this case, to obtain the result Y = y , we must have a sequence of tosses of the following 
form: 

Tossnumber 12345 . . . y -  1 y 
Result 'ITHHT ... T H 

The first y - 1 tosses result in m - 1 heads and y - rn tails, with these heads and tails arranged 
in any order. Thus the sequence TTHHT ... T illustrated corresponds to just one of the 
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c r:] possible orderings for the first y - 1 tosses in which there are exactly rn - 1 heads; the 
probability of obtaining rn - 1 heads from these tosses is found from the binomial BO, -1,p) 
distribution. The probability that the y th toss is a head is simply p . We see therefore that 

The random variable Y is said to have a negative binomial distribution, with parameters rn and 
p .  We note that when rn = 1 we have the special case of the geometric distribution found in 
Part (4. 

Notes 
(1) We may readily check that, for the geometric distribution, the probability function sums 
to 1,  since 

The reader may care to  perform the same check for the negative binomial distribution. 

verify the following result, which connects negative binomial and binomial random variables: 
* (2) By considering the number of heads in n + m independent tosses of a coin we can readily 

Pr(Y I n + r n )  = Pr(Z 2 r n ) ,  (*) 
for n = 0 ,1 ,2 ,  , . . , where Y has the negative binomial distribution given in the problem and 
Z is a binomial random variable with the B (n + rn , p )  distribution. 

The event {Z 2 r n }  occurs if there are a t  least rn heads in the first n + rn tosses, which implies 
that the number of tosses Y until the rn th head must be no larger than n + rn . The two events 
{Y 5 n + r n }  and {Z 2 m }  are identical, and thus have the same probability, so that equation (*) 
holds. 

It is instructive (and far more difficult) to prove equation (*) using algebra. We require 

i.e. 

After cancelling p m ,  we see that, for i = 0,1,. . . , n ,  the coefficient of (1 - p ) i  on the left 
hand side is simply 

while on the right hand side the coefficient is 

and the equality of these two expressions follows from considering the coefficient of w i  on both 
sides of the identity 

where w is a dummy variable. 
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2A.11 
A lake contains n fish. A sample of m fish ( m  < n )  is caught; the fish are marked, and all are 
then returned to the lake. Latex, a second sample of k fish (k < n )  is caught. Making 
reasonable assumptions about the way in which the sampling would be carried out, find an 
expression for Pr(X = x) ,  where X is the number of marked fish in the second sample. 

This probability is a function of the known quantities k and m , the number x of marked fish 
in the second sample, and n , which will often be unknown in practice. Viewing Pr(X = x )  as a 
function g ( n )  of n ,  examine the ratio g ( n ) / g  ( n  -1) and hence obtain the value of n for which 
g ( n  ) is a maximum. 

Estimating the size of a f s h  population 

S o h  tion 
In this solution we assume that marking the fish does not affect them in any way, so that 
marked fish mingle freely with others, and are no more and no less likely to be caught again in 
the second sample. We assume also that the population is stable, so that there are no births, 
deaths or migrations during the investigation. 

different 
ways. Our assumption about the sampling is that all these ways are  equally likely so that each 
of the possible samples has probability (It1-l of being the one selected. 

We now need to count the number of ways of selecting the second sample in which X = x .  
Now if X = x , then the number of unmarked fish in  the second sample is k - x . We can choose 
the x marked fish in (T] ways, and for each of those ways we can choose the k - x unmarked 

Since k fish are caught in the second sample, this sample can be chosen in t) 

. ,  
fish in (“k 1;) ways. Thus the total number of ways of selecting the second sample such that 

X = x is t) (“k IF,), each with probability (kn)-’, and so 

Pr(X = x )  = , max(O,m+k-n)sx  S m i n ( k , m ) .  
(It) 

The bounds shown for x are needed to ensure that the binomial coefficients are valid, and they 
also correspond to the practical constraints of the problem. 

The function g ( n  ) is simply Pr(X = x )  viewed as a function of the unknown n , so we have 

and substituting n - 1 for n gives 

so that 
g ( n )  = ( n  - m ) ! ( n  -k)!(n - l ) ! ( n  - 1 - m  - k  + x ) !  

g(. - 1) ( n - m - k + x ) ! n ! ( n  - 1 - k ) ! ( n  - 1 - m ) !  

- - ( n  - m ) ( n  - k )  = q, say. 
( n  - m  - k  + x ) n  

Now when q > 1, 

( n  - m ) ( n  - k )  > ( n  - m  - k  + x ) n ,  
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i.e. 

n 2 - n k  - m n  + m k  > n 2 - n m  - k n  + n r ,  

which results in 

as long as x > 0. If x = 0 then q > 1 for all values of n ,  so there is no finite value of n for 
which g ( n )  is a maximum. We now turn back to  the case x > 0, in which case q > 1 whenever 
n < r n k / x .  Hence, for n < m k / x ,  g ( n )  > g(n-1),  while, for n > m k / x ,  g ( n )  < g ( n - - 1 ) .  
and so the function g ( n )  takes its maximum value when n = [ m k / x ] ,  the integer part of mklx .  

Notes 
(1) The distribution of X is called the hypergeometric distribution, on account of the form of its 
probability generating function, which is a hypergeometric function. (This distribution also 
arises in Problem 1A.2.) 

In sampling from a finite population, when one counts the number of sample members X with 
some attribute, the distribution of X is hypergeometric when the sampling is done without 
replacement (the usual practice). Had the second sample of fish been selected with 
replacement, the distribution of X would have been the binomial distribution B ( k ,:), since in 
this case the k ‘trials’ are independent, each with the same probability of ‘success’, i.e. 
obtaining a marked fish. 

When k is small relative to n , the difference between sampling with and without replacement 
will be slight, and the hypergeometric distribution can be approximated by the binomial 
distribution above, which is generally easier to manipulate mathematically. Approximation by 
the normal distribution may also be possible. 
(2) If we wish to obtain an estimate of an unknown population size n (and in practice this is 
often the aim of such an investigation), it is intuitively sensible to select that value of n 
maximising Pr(X = x ) ,  i.e. g ( n ) .  The resulting estimator, [mk / X I ,  is an example of what is 
termed a muximum likelihood estimator. (Other examples can be found in Problems 2A.6 and 
4D.4.) As it happens, the estimator mk/x follows from simply equating the proportions of 
marked fish in the lake and in the second sample, viz. 

m x  
n k ‘  
_ - _  - 

For example, suppose that n = 1000 (although in practice we would not know this) and that 
rn = 100, so that in fact 10% of the fish are marked, and that we select k = 50 fish in the 
second sample. Then we might observe x = 7 marked fish. In this event the estimate of n 
would be 714. In practice, as  well as  calculating a point estimate for n we would also obtain a 
confidence interval, but omit this here for reasons of space. 

* (3) To illustrate the ideas involved in the method of maximum likelihood, we use a small-scale 
example. Suppose that in the first sample 5 fish were caught and marked, and that another 3 
were caught in the second sample, of which 2 had been marked. We then have m = 5, k = 3 
and x = 2, and we wish to estimate n , the total number of fish in the lake. Since this is just an 
illustration, let us suppose for the moment that there are only two possible values for n , n = 6 
and n = 14. For these two values we can easily calculate g ( n ) ,  and find that g(6) = f and 
g (14) = z i .  Now the function g ( n )  gives the probability of observing x = 2 in the second 
sample; that is, it gives the probability of occurrence of what has occurred. Since g ( 6 )  2g(14), 
the value n = 6 is more plausible than is n = 14, since what we have observed to occur is 
distinctly less likely in the latter case. If we had to estimate n , with only these two values from 
which to choose, the case for picking n = 6 would seem a strong one. 
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In practice, we are, of course, not restricted to just a couple of possible values for n ;  the 
argument above suggests that a sensible way of estimating n is to pick that value for which 
g ( n ) ,  the probability of Occurrence of what has been observed, is a t  a maximum. The method 
is widely used, and the function g ( n )  is termed the fikelihoodfinction. The method is then the 
method of marimum likelihood, and the value of n for which the likelihood is maximised is 
called the m i r n u m  likelihood estimate of n . 

In the case illustrated above, m = 5 ,  k = 3 and x = 2. A little calculation shows that 
g ( 6 )  = 1 g ( 7 )  = 4, g ( 8 )  = g, g(9) = g, and so on. The maximum value is a t  7, which is 
therefore the maximum likelihood estimate of n . 
(4) An interesting light can be shed on this method of estimating population sizes by simulating 
the method, using the same known values of n ,  m and k each time. A histogram could be 
drawn to summarise the resulting sample of estimates of n , and its location and spread, relative 
to the (known) value of n can be examined. Typically one finds that the spread can be quite 
large, unless very large values of m and k are used. 
( 5 )  Procedures of this type are known as capture-recapture experiments, and are employed in 
practice, but ways of increasing precision are usually incorporated, such as conducting the 
sampling more than twice. There are always practical problems to overcome, and the basic 
assumptions of the method, mentioned above, may not be valid in practice. For example, fish 
with different histories of capture may have different ‘catchability’, and one may also have to 
take into account the fact that the fish population will typically not be stable, as assumed in this 
problem. 

A useful, practical, exercise can result from trying such a sampling experiment in, say, a 
school playground. It would, a t  any rate, provide a refreshing alternative to the dreary routine 
of taking the register twice daily. 

2 ’  

2A.12 Collecting cigarette cards 
Cigarette packets used to contain cards representing such things as flowers, film stars or football 
teams. A complete set would comprise n different cards, say, and collectors would aim to 
obtain a complete set. Clearly, the first packet bought would contain a new card which would 
start the collection. The next card obtained might simply duplicate the first card, or it might 
also be a new card, and add to the collection, and so on. Obtain expressions for the mean and 
variance of the number of packets which must be purchased until a complete set of cards is 
obtained. 

Solution 
Let Z denote the total number of packets purchased until the complete set of cards is obtained. 
Then we can write 

2 = 1 + X 2  + x3 + . . . + X ” ,  

in which the X s  denote independent random variables; X2 is the number of packets (after the 
very first) until the second card is added to the collection, X3 is the number of extra packets 
until the third new card, and so on. Hence 

n 

E(Z) = 1 + I: E(Xi) 
i -2 

n 

t = 2  
and Var(Z) = x V a r ( X , ) ,  by independence. 

We now obtain the expectation and variance of X, , the number of packets needed to secure the 
i th  new card, once i - 1  have been obtained. In this case, for each packet bought, the 
probability is ( i - 1 ) h  that the card it contains is an old one and, correspondingly, the 
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probability is ( n - i + l ) / n  that the card is new. Since, for fixed i ,  the probability of 'success' 
(i.e. a packet with a new card) is constant, and the 'trials' are independent, the number of trials 
until the first success, Xi, has the geometric distribution with parameter (n -i + l ) / n  . (This 
distribution is discussed in more detail in Problem 2 A . 1 0 . )  

We thus see that 

P r ( X 2 = k )  = [ ; Ik - '  [%I, k = 1 , 2 , .  . . , 

Pr(X3=t)  = [+]k-l[+], k = 1 , 2 , .  . . , 

and, in general, 

Now if a random variable X has a geometric distribution such that 

pr(X = k )  = ( I  - ~ ) ~ - ' p ,  k = 1 , 2 , .  . . , 
then E(X) = l / p  and Var(X) = ( 1  - p ) / p 2 .  Hence we obtain 

E(Xi) = 
n 

n - i + l  
and 

var(xi) = n ]'[+I= n ( i  - 1 )  
n - i + l  ( n  - i + 1)2 ' 

Thus, from equations ( 1 )  and (2) above, 
n 

i =2 
E(2) = 1 + n x ( n  - - i  + l ) - l  

and 

These expressions can be written more simply as 
n -1  

E(Z) = 1 + nZ1- l  
j=l  

and 

j=l  

Notes 

(1) As an illustration of these results we consider the case n = 6, in which case we obtain the 
following expectations and variances. 

6 6 E(X2) = --; Var(X2) = -; 
5 25 
3 3 E(X3) = -; Var(X3) = 7 ;  2 
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E(X4) = 2 ; Var(X4) = 2; 

E(X5) = 3 ; Var(X5) = 6; 

E(X6) = 6 ;  Var(X6) = 30. 

Hence the expectation of Z is given by 

E(Z) = 1 + 1.2 + 1.5 + 2 +  3 + 6 = 14.7, 

and its variance is given by 

Var(Z) = 0.24 + 0.75 + 2 + 6 + 30 = 38.99. 

We can see from this information alone that the distribution of Z is likely to be skew, since the 
minimum possible value, 6, is just 1.4 standard deviations below the mean. 
(2) Note that the solution is greatly facilitated by considering Z as the sum of independent 
random variables. The novelty in the problem lies in the fact that the Xs, while independent, 
are not identically distributed. 

The problem is solved by straightforward, though repeated, use of the geometric distribution, 
and in particular its mean and variance. These can, naturally, be derived from first principles 
if necessary, using suitable summations. 
(3) When n = 10, the distribution of Z forms the basis of what is termed the coupon-collector 
test for randomness of a set of decimal digits. 

* (4) Calculation of the mean and variance of Z is, in practice, only the first step in an analysis. 
One can, of course, go further and derive the distribution of Z ,  but this is more difficult. We 
present below an outline of how we proceed in the important case n = 10, which (see Note 3) is 
used to test decimal digits for randomness. We have the equation 

10 

i =2 
z = 1 + zxi 

relating 2 to the independent random variables X2,. . . , Xl0. Because of independence, the 
probability generating function (or p.g.f.; see Note 4 to Problem 2A.2) is the product of the 
p.g.fs of the component random variables. After some algebra we find that Z has p.g.f. G , ( t )  
given by 

n(1O - it) 
i = l  

which may be written in partial fraction form as 

This can be expanded as a power series in t ,  and the coefficient of tJ in this series will be the 
probability that Z = j. In this way it can be shown that 
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2B Continuous Distributions 

In this section we concentrate principally on the normal distribution, reflecting its central rble 
in statistics. A matter of key importance is that of learning how to read tables of the 
standardised normal distribution, i.e. N( 0, l ) ,  in the customary notational system in which 
N( p,u2) represents the normal distribution with mean p and variance u2. Since this is not a 
conventional textbook we d o  not include these tables here, but recommend the reader to get to 
know the layout in several books of statistical tables, so as to  appreciate the variety of ways in 
which the standard information can be presented. Two good sets of tables are those by D. V. 
Lindley and W. F. Scott (New Cambridge Elernentory Sratisrical Tables, Cambridge University 
Press, 1984) and by H. R. Neave (Elementary Stotisrics Tables, George Allen & Unwin, 1981). 

A frequently-used piece of notation in this section, and indeed elsewhere, is @ ( z ) ,  the 
probability that Z 5 2 ,  where Z - N (  0, l), (read ‘Z has the normal distribution with mean 0 
and variance 1’). Readers will be familiar with the standardisation property of the normal 
distribution, that if X - N (  p, u2), then (X - k)/u - N( 0, l ) ,  so that in this case 

2B.1 The slippery pole 
A boy is trying to climb a slippery pole and finds that he can climb to a height of at  least 
1,850111 once in five attempts, and to a height of at  least 1 .700m nine times out of ten 
attempts. Assuming that the heights he can reach in various attempts form a normal 
distribution, calculate the mean and standard deviation of the distribution. Calculate also the 
height that the boy can expect to exceed once in one thousand attempts. 

Solution 
If the boy reaches a height of at  least 1.850 m once in five attempts, there is a probability of 0 .2  
that the height he reaches on any one attempt is a t  least 1.850m. Similarly, reaching a height 
of at  least 1.700 m nine times out of ten corresponds to a probability of 0.1 of failing to reach a 
height of 1,700 m. These probabilities are represented by the shaded areas in Figure 2.1. From 
tables, the standardised normal deviate corresponding to an upper tail area of 0.2 (i.e. a 
cumulative probability of 0.8) is 0.8418. Similarly, the standardised normal deviate 
corresponding to a tail area of 0.1 (cumulative probability of 0.9) is 1,2817. 
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Figure 2.1 P.d.f. of normal distribution for Problem 2B.1 

If we denote the unknown mean of the normal distribution by p. and the unknown standard 
deviation by u we can write down two equations for p and u. These are 
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0.15 Adding (1) and (2) gives __ = 2.1235. Hence u = 0,0706m. Substituting for u in (1) or 

(2) gives p = 1.7905 m. 
In order to calculate the height the boy can expect to exceed once in one thousand attempts, 

we find from tables of the normal distribution that the standardised normal dcviatc 
corresponding to a tail area of 0.001 is 3.092 (i.e. O(3.092) = 0.999). Hence, if x is the 
required height, 

5 

giving x = 2,009 m. 

Notes 
(1) An alternative, more concise, way of writing out the derivation of the simultaneous 
equations (1) and (2) is as follows. 

Suppose @ ( z )  is the distribution function of the standard normal distribution N ( 0 , l )  and 
that W'(y) is the value of z for which @ ( z )  = y .  Then the information given in the question 
allows us to write 

1.85 -p- Hence - = W'(0.8) = 0.8418 
U 

and - = @-1(0.1) = -1.2817. 
U 

(2) In problems of this type it is always a good idea to draw a sketch diagram, similar to that 
shown in Figure 2.1, in  order to visualise exactly what is required. (In Figure 2.1, the curve is 
drawn and calibrated accurately, so that, for example, the shaded region on the right hand side 
has area exactly 0.2. One can naturally only draw an accurate diagram once one has calculated 
p and u. However, examining the figures given shows that 1.85 must lie above the mean, and 
1.70 below it: a sketch diagram showing a normal distribution and the positions of 1.70 and 
1.85 in relation to the mean will help to check for gross errors in arithmetic in the solution.) 

2B.2 Mixing batches of pesticide 
The concentration of a certain active agent in a liquid form of a pesticide must not exceed 12 
parts per million. The pesticide is made up  in batches in which the concentration varies 
normally between batches, with mean 8 parts per million and standard deviation 1.5 parts per 
million. What proportion of batches exceeds the permitted maximum? 

If two batches are mixed equally by volume the resulting concentration is the average of the 
two concentrations in the constituent batches. What proportion of such mixed samples exceeds 
the permitted maximum? What proportion falls below 3 parts per million (the level a t  which 
the pesticide Ceases to have any effect)? 



72 Probability Distributions 2B.3 

Solution 

For the first part, the standardised normal deviate of interest is ~ = 2.667. From tables, 

the corresponding tail area is 0.0038, which is therefore the proportion of batches which exceed 
the maximum concentration. 

If C1 is the concentration of the first batch and C2 is the concentration of the second batch 
(both in parts per million), then the resulting concentration is C = i ( C l  + C 2 ) .  If the batches 
are chosen at  random, independently of each other, then C has a normal distribution with mean 
l ( 8  z + 8) = 8 and variance f{(1.5)2 + (1.5)’} = 1.125, and hence standard deviation 1,0607. 

For the proportion which now exceeds the permitted maximum concentration, the 
standardised normal deviate is = 3.771, with corresponding tail area 

1 - (D(3.771) = 0.0001, which is the required proportion. 
To find the proportion falling below 3 parts per million, we consider the standardised normal 

3 - 8  deviate - = -4.714, with corresponding tail area 1 - a(4.714) = 0.0000, correct to 4 
1.0607 

decimal places. (In fact, cP(-4.714) zz 0.000 001 2.) 

12 - 8 
1.5 

1.0607 

Note 
The factor in the expression for the mean of C is easy to remember, but many students find 
difficulty with the corresponding factor f in  the variance. This arises because a variance, being 
the average squared deviation of an observation from its mean, is measured in  the square of the 
original units. Generalising the problem, if we were to mix the batches in  unequal proportions 
w and 1 - w ,  so that C = wC1 + (1 - w)C,,  we would obtain 

E(C)  = w E(C1) + (1 - w)E(C2), 

but 

v a r ( c )  = w2Var(C1) + (1 - w ) ~ v ~ ~ ( c Z ) ,  

C1 and C2 being independent. 

problem. 
Note that in no circumstances would one average the standard deviations in this type of 

2B.3 Tolerances for metal cylinders 
In a manufacturing process circular metal cylinders are being produced as components of a 
certain product. For a cylinder which is produced to be usable, its length must be between 
8.45 cm and 8.65 cm, and its diameter between 1.55 cm and 1.60 cm. The  process is running in 
such a way that the cylinders have lengths which are normally distributed about a mean of 
8.54 cm with standard deviation 0.05 cm while, independently, the diameters are  normally 
distributed about a mean of 1.57 cm, with standard deviation 0.01 cm. Find 
(i) the percentage of cylinders produced whose lengths fall outside the specified limits; 
(ii) the percentage of cylinders produced whose diameters fall outside the specified limits; 
(iii) the percentage of cylinders that cannot be used; 
(iv) the chance that in  a sample of five cylinders taken at random, four are usable and one fails 

to meet the specifications. 
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Solution 
(i) We need to calculate appropriate tail areas of the distribution of lengths of cylinders, i.e. 
N(8.54, 0.052). The specified Limits are 8.45 and 8.65, and the required tail areas are shown 
as the shaded areas in Figure 2.2. 

r 8  
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'vr 4 
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0 
8.35 8.40 8.45 8.50 8.55 8.60 8.65 8.70 8.75 
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Figure 2.2 Normal distribution with mean 8.54 and s.d. 0.05 

To obtain the tail areas we first of all find standardised normal deviates corresponding to the 
given limits. These are 

8.65 - 8.54 = 2,20, 
0.05 

and 

From tables of the normal distribution, the required areas are 1 - a(2.20) = 0.0139 and 
@(-1230) = 1 - a(1.80) = 0.0359. Therefore the percentage of cylinders whose lengths fail 
to meet the specifications is lOO(0.0139 + 0.0359) = 4.98%. 
(ii) We now need to find the total area in the tails of the distribution corresponding to 
standardised normal deviates 

1.60 - 1.57 
0.01 = 3  

and 
1.55 - 1.57 

0.01 
- = -2. 

From tables, these are 1 - a ( 3 )  = 0.001 35 and 1 - a(2)  = 0,022 75. Hence the percentage 
of cylinders whose diameters fail to meet the specifications is lOO(0.00135 + 0.022 75)%, or 

(iii) Let A be the event that a cylinder chosen at random fails to meet the specified limits for 
length, and let B be the corresponding event for diameter. Then the event that a cylinder 
chosen at random from those produced fails to meet the specifications is simply A UB , and 

2.41 %. 

Pr(AUB) = Pr(A) + Pr(B) - Pr(AflB). 

Now, by independence, 

Pr(A n B )  = Pr(A)Pr(B) = 0.0498~0.0241 = 0.0012. 

Hence 

Pr(AUB) = 0,0498 + 0.0241 - 0.0012 = 0,0727, 

i.e. the percentage of cylinders that will not meet the specifications is 7.27%. 
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(iv) Using thc binomial distribution with index n = 5 and parameter p = 0.9273 (where p is 
the probability that a cylinder meets the specifications) we find that the probability that 4 out of 
5 cylinders meet the specifications is 

(~)(0.9273)‘(0.0727) = 0.269. 

Notes 

(1) The first two parts of this problem are standard exercises in computing probabilities from 
the normal distribution. The third part then uses these in an exercise in combining probabilities 
of different events, which are not mutually exclusive. Finally, part (iv) uses the probabilities 
obtained from the normal distribution in an application of the binomial distribution, a common 
form of problem. 
(2) There is a slightly shorter way of solving part (iii) of the problem. Using the notation of 
that part, the event whose probability is required is the complement of n s . We then 
obtain, by independence, 

1 - P r ( 2  f lE)  = 1 - Pr(A)Pr(B)  = 1-(1 -0.0498)(1 -0.0241) = 0,0727. 

2B.4 
A manufacturer of matches claims that boxes contain, on average, 49 matches. On checking 
output over a substantial period, the manager finds that 3% of boxes contain fewer than 46 but 
25% contain 51 or more. Making reasonable assumptions, calculate the mean and standard 
deviation of the number of matches per box. Do you feel that the manufacturer’s claim is 
plausible? 

The number of matches in a box 

Solution 

The problem contains no statement of the distribution of the number of matches in a box. The 
random variable is clearly discrete, but no conventional model seems very plausible. It might 
be reasonable to assume a fairly symmetrical distribution, and the natural approach to the 
problem would be to make use of the normal distribution, employing a continuity correction. 

Following this approach, and letting p and u denote the mean and standard deviation, we 
have 

@ [46 -k - p 1 = 0.03 

and 1 - @ _ _ _ ~  = 0.25, r1 -: - 1 
giving two simultaneous equations in the two unknowns. From normal tables, @ ( k l )  = 0.03 
gives k l  = -1.88, while @ ( k 2 )  = 0.75 gives k 2  = 0.67. We thus solve 

p - 1,880 = 45.5 

and p + 0.670 = 50.5 ,  

and these give p = 49.19, u = 1.96. Since 
manufacturer’s claim. 

> 49, we naturally d o  not complain about the 



2B.S Continuous Distributions 75 

Notes 

(1) Here the 
problem is, instead, to  calculate them. This is because the wording of the problem implies that 
it is not just sample information that is available. Had the problem referred to, say, results 
from 200 randomly selected boxes the problem would have been one of inference, and, indeed, 
rather a difficult one. 
(2) The final part of the problem is worded somewhat vaguely, and offers literal-minded 
mathematicians an opportunity to quibble. Since the calculation does not give p exactly 49 a 
claim that the average is 49 is not literally correct, but the conclusion drawn in the solution is 
nonetheless the only reasonable one to draw in the real world. 
(3) The comment in the solution about conventional (discrete) models reflects the statistician’s 
natural approach to a problem like the present one. Noting that the random variable is 
discrete, one runs through a catalogue of plausible models, trying to imagine independent trials 
with constant probability of success (binomial), number of events in a fixed period (Poisson), 
and so on. These two are plainly implausible here; in real life the statistician might encounter a 
problem like this through consultation with the manufacturer, and would then have the 
opportunity to  observe the manufacturing process and use the experience to develop an 
appropriate model. 

(4) A manipulation similar to  that used here is considered in greater detail in Problem 2B.1. 
The two problems differ in principle only in that here we have a discrete random variable, and 
therefore need to use a continuity correction. 

In many examples one estimates a population mean or standard deviation. 

2B.5 Fitting plungers into holes 

A random variable X has a N ( p x ,  a:) distribution. Independently, a random variable Y has a 
N (pY , a:) distribution. What is the distribution of X -Y? 

In the manufacture of a certain mass-produced article, a circular plunger has to be fitted 
inside a circular cylinder. It is known that the manufacturing process is adjusted so that the 
diameters of plunger and cylinder are normally distributed, with mean and standard deviation 
as follows: 

External diameter of plunger: mean 99.7 mm, standard deviation 0.15 mm. 
Internal diameter of cylinder: mean 100.2 mm, standard deviation 0.20 mm. 

If components are selected at  random for assembly, what proportion of plungers will not fit? 

Solution 
A random variable which is a linear combination of a pair of independently and normally 
distributed random variables also has a normal distribution, whose mean and variance can be 
found from the usual rules for sums and differences of independent random variables. Here we 
note that 

E(X - Y )  = E(X) - E(Y) = px - pY, 

and 

Var(X - Y )  = v a r ( x )  + Var(Y) = a,2 + a: 
and therefore find that X - Y - N ( p x  - p,, , a; + a;). 

To answer the numerical part we note that a plunger will not fit into a cylinder if the external 
diameter of the plunger is greater than the internal diameter of the cylinder. Denoting the 
internal diameter of the cylinder by X and the external diameter of the plunger by Y (both in 
millimetres), we find that px = 100.2, pY = 99.7, a, = 0.15 and a,, = 0.20, in the notation of 
the first part of the problem. Hence X - Y  has a normal distribution with mean 
100.2-99.7 = 0,5mm,  and variance 0.15’ + 0.20’ = 0.0625mm2, so that the standard 
deviation is 0.25 mm. 
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We now need Pr(X - Y < 0). To obtain this we use the standardised normal deviate 

- -2. 0 - 0.5 
0.25 

-- 

From tables of the standardised normal distribution, we find the cumulative probability 
corresponding to this value to be 1 - @(2) = 1 - 0.97725 = 0.02275. This is therefore the 
proportion of plungers that will not fit inside the cylinders. 

Notes 
* (1) The first part of the problem requires no more than general results on the expectation and 

variance of linear combinations of independent random variables, and knowing that linear 
combinations of normal random variables remain normal. This latter result is quite difficult to 
demonstrate by direct methods, but is shown easily using the method of moment generating 
functions. 

For a random variable X ,  the moment generating function (or m.g.f.) is defined as  
M x ( s )  = E(ea) ,  which can be evaluated as 

W 

Mx(s) = Je"fx(.+, 
-9 

where f x ( x )  is the probability density function of X .  (The m.g.f. can also be used for a 
discrete random variable, and an analogous formula is used.) Now the m.g.f. has properties 
rather similar to  those of the probability generating function (see Problem 2A.2) and, in 
particular, the function can be used to obtain the distribution of the sum of independent 
random variables. 

If we write W = U + V ,  where U and V are independent random variables, then 

M , ( s )  = E(e") = E(esU e"") = E(e")E(e'") = M u ( s ) M v ( s ) ,  

where independence of U and V is used to justify writing the expectation of the product esuesv 
as the product of expectations. 

We now use this result to evaluate the distribution of X - Y ,  noting that we require the 
diference between, not the sum of, random variables. We need first to know the form of the 
moment generating function of N (k, a*): algebraic manipulation gives the result 

where the integral is evaluated by taking the terms in the exponent together and 'completing the 
square'. We now identify U with X and V with - Y ;  the former is easy, but for the latter we 
need 

M , ( s )  = E ( e " )  = E(e-"Y) = M y ( - s ) .  

We now obtain 

and 
p (-s) + lo?( -s)2 

M , ( s )  = M~(-s) = e ' 2 y  

- y s  + 1u2s2 
2 Y  = e  



26.6 Continuous Distributions 77 

Since W = U + V ,  W has moment generating function 

and by comparing this expression with the eneral formula above for the m.g.f. M ( s )  of 
N ( p ,  u2) we see that W - N(px  - p y ,  02 + uy). 
(2) In problems like this the concept of ‘fitting’ can be misleading. What is intended b p  the 
problem (which is typical of questions of this nature) is simply whether the plunger can be 
inserted inside the cylinder, with no implication as to whether the fit is tight or loose, for 
example. (However, it is not at all difficult to adapt the problem to cope with an extra 
requirement that the internal diameter of the cylinder should not be more than, say, 1 mm 
greater than the external diameter of the plunger. The proportion of plungers that fit is then 
just Pr(0 I X - Y I 1) which is easily found to be @(2) - @(-2) = 0.954.) 
(3) It is worth, perhaps, emphasising that the numerical part of the problem requires the use of 
the result of the theoretical part. This is a common situation, but is often missed by candidates 
answering examination questions. 

1 

26.6 Bird wingspans 

The wingspans of the females of a certain species of bird of prey form a normal distribution 
with mean 168.75 cm and standard deviation 6.5 cm. The wingspans of the males of the species 
are normally distributed with mean 162.5cm and standard deviation 6cm. What is the 
probability that, if a male and female are taken at random, the male has a larger wingspan than 
the female? 

Solution 
If the wingspan of a female is denoted by X and that of a male by Y then X - Y has a normal 
distribution with mean 168.75 - 162.50 = 6.25, and variance (6.5)2 + 62 = 78.25, and hence 
standard deviation 8.846. We now need to find Pr(X - Y < 0), the shaded area shown in 
Figure 2.3. The corresponding value in the standardised normal distribution is 

We require the cumulative probability corresponding to this standardised normal variate; from 
tables of the normal distribution we obtain 

1 - Q(0.707) = 1 - 0.760 = 0.240. 

t 
0 .- 
Y 

v 
3 
.I- 

0.05 

0 . 0 4 j A  

x - Y  
Figure 2.3 Normal distribution with mean 6.25 and variance 78.25 
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Note 
This is a standard problem on the application of the normal distribution. The only point to  
note is that the problem needs to be tackled by considering the distribution of the difference 
X - Y between the two random variables; we recall that differences between independent 
normal random variables are  themselves normally distributed, and that the variance of the 
difference between two independent random variables is the sum of their variances. (A more 
detailed discussion of this topic can be found in Problem 2B.5.) 

2B.7 
Random variables XI, Xz, . . . , Xlm are all independent and all have the normal distribution 
with mean 0 and standard deviation 1. Write down functions of the X s  which have the 
distributions below, justifying the results you use. 

Distributions related to the normal 

(a) N ( O ?  4) 
(b) x:0 

(c) 150 

(d) F48,50 

Solution 
(a) Y 1  = X I  + X2 + x3 + X4 - N(O,4).  
The mean of Y 1  is the sum of the means, its variance is the sum of the variances (since the X s  
are independent) and the sum of normal random variables is normal. 

(b) Y2 = EX: has the xfO distribution. 

By definition, the square of N ( 0 , l )  is xf ,  and the sum of n independent x:  random variables 
has the x: distribution. 

10 

;=I  

(c) Y 3  = has the t-distribution on 50 degrees of freedom. 

i = l  

By definition, the ratio of an N ( 0 , l )  random variable to  the square root of an independent x2 
random variable divided by its number ( u ,  say) of degrees of freedom has the t-distribution 
with Y degrees of freedom. 

98 

i=51 
2 X,2/48 

has the F-distribution with 48 and 50 degrees of freedom. (d) ‘4 = 50 

2 Xiz/50 
i -1  

By definition, the ratio of two independent x2 random variables, each divided by the 
corresponding number of degrees of freedom, has the F-distribution with those numbers of 
degrees of freedom. 

Notes 
(1) This problem might be. thought unlikely to  appear in a public examination, although in fact 
it is based on a genuine examination question. It does, in any case, serve to illustrate the basic 
results concerned with sampling distributions related to the normal. These - x 2 ,  t and F - are 
crucial to a full understanding of the basis of many common procedures in statistical inference. 
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For example, squaring Y3 in part (c) gives a random variable whose numerator X& has the 
x: distribution. Noting the definition in part (d), we see that Y] is distributed as F with 1 and 
50 degrees of freedom. Generalising, we see that the square of a t ,  random variable is Fl,v, a 
result we shall make use of in a regression problem, Problem 5A.2. 

(2) The solution to this problem is, of course, not unique. At  a trivial level, renumbering the 
X s  is obviously acceptable. But there are, as well, several other correct solutions, and we note 
some of these below. 

For part (a), Y; = 2 1  has the required distribution, since the mean remains zero, the 
variance is increased by a factor of the square of the multiplier and the distribution remains 
normal. This is a s e a l  case of the result that, if X - N( k,u2), then 
UX + 6 - N( a p + 6 ,  a2u2). 

For part (b), Y; = E(X,-F)* , where x = x X i / l l ,  also has the &, distribution. (This is 
11 11 

i= l  i =1 
a natural function to  consider because of its link with the sample variance.) 

natural t -statistic is 
An alternative for part (c) also comes from consideration of normal samples. The most 

where x is a sample mean and s the corresponding sample standard deviation; for n = 51 we 

will have 50 degrees of freedom, so set x = cU,/5l and s2 = x(xi - x)2 /50 .  
51 51 

1 1 

An alternative to  Y4 comes from an F-test for comparing two sample variances. The 
numerator and denominator would be of the general form of Y;, each divided by the 
appropriate number of degrees of freedom. Thus, for example, we could use 

100 
E (Xi  - x ,)2/48 

y; = i;? 

2 (Xi - X )2/50 
i=l 

where 2 
variables. 

is the mean of X I ,  . . . , X51 and x b is the mean of the remaining 49 random 

2B.8 Failures of belt drives 

(a) An exponential distribution has probability density function 

Show that the mean of the distribution is a and the variance is a2. 
(b) A machine contains two belt drives, of different lengths. These have times to failure which 
are exponentially distributed, with mean times Q and 2a. The machine will stop if either belt 
fails, and the failures of the belts are independent. Show that the chance that the machine is 
still operating after a time a from the start is ep3R. 

Solution 
(a) The mean is given by 

r ca 

E(X) = s x  f (x)& = J-xLe-z’adx. 
-a o a  
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Integrating by parts, this becomes 

W 

To obtain the variance we first find 

E ( X 2 )  = s x 2 f ( x ) d x  
W 

--.zI 

Integrating by parts gives 

9 

= 2aJxLe"/"dX = 2aE(X) = 2u2. 
o a  

We now obtain 

var(x) = E ( x ~ )  - { E ( x ) } ~  = 2a2 - a' = a2, 

as required. 
(b) We require the probability that both belts have failure times greater than a which is, by 
independence, the product 

Pr(first belt has failure time > a )  XPr(second belt has failure time > a) .  

For the first belt, 
W 

Pr(fai1ure time > a )  = J le -x /"dr  
a a  

and, for the second belt, 

Hence the probability that the machine continues to operate after time a is e-' x eCm = e-3R. 

Notes 
(1) Although the general expressions for E ( X ) ,  E ( X 2 )  involve integrals evaluated between 
limits -m and m, the range of values for which the probability density function is non-zero is 
more restrictive than this for many distributions. In this example f ( x )  = 0 for x < 0; hence 
the limits for the integrals are 0 and m. 
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* (2) The moment generating function, described in Note 1 to Problem 2B.5 for the normal 
distribution, can be found very easily for the exponential distribution. By definition 

M x ( s )  = E(ed) = Je"f(x)dr  
--P 

= -  s <a-1 
1 -as'  

As could be expected from its name, the moment generating function can be used to obtain the 
moments of probability distributions. Specifically, the mean is given by E(X) = M',(O),  and 
the second moment E(X2) is given by M " x ( 0 ) .  For the exponential distribution we thus obtain 
E(X) = a and E(X2) = 2a2, a slightly shorter method than the direct one given in the solution. 

2B.9 Guaranteed life of a machine 
The lifetime in hours of a certain component of a machine has the continuous probability 
density function 

The machine contains five similar components, the lifetime of each having the above 
distribution. The makers are considering offering a guarantee that not more than two of the 
original components will have to be replaced during the first 1000 hours of use. Find the 
probability that such a guarantee would be violated, assuming that the components wear out 
independently, and that if a component does fail then the replacement used is of particularly 
high quality and will certainly last for the 1000 hours. 

Solution 
For each component, the probability that the component wears out within the first 1000 hours 
of use is given by 

loo0 
Pr(1ifetime < 1000 hours) = Le-x/looodx 

0 1000 

= 1 - eP1 = 0,6321 

To find the required probability we now use the binomial distribution. Since there are 5 
components, acting independently, and all have probability 0.6321 of wearing out, the number 
X which d o  wear out is binomially distributed with index (i.e. n )  5 and parameter (i.e. p )  
0,6321. We require the probability that X exceeds 2, i.e. 

Pr(X = 3) + Pr(X = 4) + Pr(X = 5 )  

= -  5 x 4  (0.6321)3 (0.3679)2 + 5 (0.6321)4 (0.3679) + (0,6321)' 
1 x2 

= 0.3418 + 0.2937 + 0,1009 = 0.736. 
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Notes 
(1) The first part of the solution is a direct application of the exponential distribution, although 
to solve the problem one does not have to know this. The exponential distribution is commonly 
used as a waiting time distribution, or a time-to-failure distribution. 
(2) The second part of the solution makes use of the binomial distribution. As in several other 
problems discussed in this chapter, calculations involving another distribution have to be used 
first to obtain the value of the binomial parameter p . 
(3) Despite the mean lifetime being 1000 hours, the probability that more than two components 
fail during this period is quite high, a t  0.74. It would plainly be very silly of the makers to 
offer the proposed guarantee! 

The reason for the probability being as high as this is simply that the exponential distribution 
is very skew. Although the mean lifetime is 1000 hours, the probability that an individual 
lifetime is less than this is as high as 0.6321. Had the distribution been symmetrical, the 
probability that an individual lifetime would be less than 1000 hours would have been i, and 
the distribution of X would thus have been B ( 5 ,  5 ) .  It is easy to show that for this distribution 
Pr(X > 2) = i, distinctly less than 0.74, although still too high a value to Contemplate offering 
a guarantee. 

* (4) Although in the statement of the problem it was made clear (twice!) that failures of 
replacement components could be ignored, in practice this is an important consideration. The 
theory underlying the analysis is that of the Poisson process, described in Note 1 to Problem 
2A.7. In such a process, ‘occurrences’ (here failures) take place randomly in time, and the 
total number of these occurrences in a fixed time has a Poisson distribution (and the interval 
from some starting-point to  an Occurrence has an exponential distribution, as given above). It 
can be shown that, for any single original component (and any replacements needed for it) the 
number of failures in 1000 hours has the Poisson distribution with mean 1; since there are five 
components, acting independently, the total number of failures Y will have the Poisson 
distribution with mean 5,  so 

52 Pr(Y > 2) = 1 - e-5 - 5ep5 - -e = 0.875. 
2! 

2B.10 Watch the birdie 

A nature reserve has one bird of an uncommon species which frequents the large expanse of 
reed beds there. It is found that if a birdwatcher arrives a t  the path adjoining the reed beds, 
the probability that he or she is still waiting there to see the bird a time y later, where y is 
measured in minutes, is 

1 +Y 2 -+Y 
-e + -e , y ~ 0 .  
3 3 

Find the probability that a birdwatcher spends between 2 and 4 minutes waiting to see the bird, 
and the mean and variance of the time that he or she waits there. 

Solution 
Let Y denote the time (in minutes) that the birdwatcher waits on the path. Then we require 
Pr(2 5 Y I 4), and are given that 

1 -9 + ?sy 
3 Pr(Y > y )  = -e 3 
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= 0.2366. 

To find the mean and variance of Y we use the direct approach based on its probability 
density function f y ( y ) .  If the distribution function of Y is F y ( y ) ,  then, for y 2 0, 

F y ( y )  = 1 - Pr(Y > y )  

and so the density function f y ( y )  is given by 

Hence the mean waiting time is given by 

E(Y) = i y L  [c'y+e-'y)dy 
0 6  

1 - fY 4Y 
xi - 1  

= - [-2ye - - 4ye 

= - [-2e 

lo - +[ [-2e 6 

1 
3 

To obtain Var(Y) we first obtain E(Y2), given by 
1 -$ - 1  

E(Y2) = $y2z [e + e  "')dy 
0 

We integrate by parts twice, and obtain 

40 8 [ - t ~  - - 72 = 24, 
0 3  E ( Y ~ )  = - + - -4e 3 3  

The variance of Y is thus given by 
100 116 
9 9 

Var(Y) = E(Y2) - {E(Y)}' = 24 - ~ = -. 

Notes 
(1) This problem is a straightforward application of the exponential distribution, also seen in 
Problems 2B.8 and 2B.9, once it is realised that the expression given in the statement of the 
problem is not the probability density function. The wording does in fact make this clear, but it 
is our experience that many students try to answer the problem thinking that what is given is the 
probability density function. 
(2) The problem concerns a mixture of exponential distributions, one with mean 2 and one with 
mean 4 minutes. Such a mixture of distributions has been found very useful in analysing 
periods of employment, for example, within the civil service, and one often finds questions of 
this kind set in such a context. 
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* (3) Sometimes the density function of a random variable can be expressed as a mixture of 
density functions corresponding to distributions of known mean and variance. In this event, 
there is an alternative and simpler method, based on the component distributions, of finding the 
mean and variance. We have here, for the density function of Y ,  

and can write this as a mixture of exponential density functions, viz. 

We now make use of the results given in Problem 2B.8 that, for a random variable X with 
density function a-le-x’a, E(X) = a and E(X2) = 2a2. Returning to equation (*), and 
substituting a = 2 and Q = 4 in turn, we obtain 

1 2 10 
3 3 3 E(Y) = -(2) + -(4) = -, 

and 
1 2 

3 E(Y2) = ~ ( 2 x 2 ~ )  + -(2X4*) = 24, 

thus giving 

Var(Y) = E(Y~)-{E(Y)}~ 
100 116 
9 9 

= 24 - - = -, asbefore. 

* (4) If Y is a continuous random variable, taking values on the range (0,m) only, and with 
cumulative distribution function Fr (y ), then integration by parts readily reveals that 

x1 

E(Y) = JU - FY(Y))dY. 
0 

This result allows one to obtain E(Y) directly from the cumulative distribution function, 
without needing to construct the density function fr(y) .  Employing this result here, we find 

II 

E(Y) = JPr(k’ >y)dy 
0 

= [ $ x i ]  + [$xl]  = y ,  asbefore. 

* (5) It is important to distinguish between mixtures of density functions and mixtures of random 
variables. Let X1 and X2 be independent random variables with density functions 

i e  , x 2 0 ,  and i e  ‘ , x 5 0, respectively. Then, from equation (*) in Note 3, Y has a 
density function which is a mixture of the densities of X1 and X2, in proportions f and f 
respectively. But if we define a random variable W = fX1 + 3x2, the density of W is not 
given by equation (*). 

-11 - I X  
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The distribution of W is most easily found by using moment generating functions (m.g.fs; see 
Note 1 to Problem 2B.5 for some details of their definition and use). The m.g.f. M w ( s )  of W 
is defined as 

+XI + +az 
1 

:'xz 

M w ( s )  = E(e") = E(e 

= E(e3 )E(e ), 

for suitable values of s .  But X1 and X2 are exponentially distributed random variables, and 
their m.g.fs take a simple form. We have, for example, 

Similarly we obtain 

and so, for s C $, 
1 1  
2 ' 4  

(f - $ s ) ( f  - 3 s )  
3 

1 -  ' 
8 '  

- 3 - 
= -1x- 2 

2 s  

+ +"---- 8 
3 1 - 

using partial fractions. But this is the form of a mixture (with weights -f and :) of m.g.fs of 
exponential distributions (see Note 2 to Problem 2B.8) and we thus obtain 

2B.11 Breaking a rod at random 
(a) A rod of length 21 is broken into two parts at a point whose position is random, in the 
sen= that the point is equally likely to be anywhere on the rod. Let X be the length of the 
smailor part. Write down the probability density function (p.d.f.) of X ,  and find the 
expectation of X . 
(b) Two rods, each of length 21, are independently broken in the manner described above. Let 
Y be the length of the shortest of the four parts thus obtained. Find the cumulative distribution 
function F r b )  of Y. Hence, or otherwise, show that Y has p.d.f. given by 

2, o s y  Sf,  
fro?) = (y'' otherwise. 

Show that the expected value of Y is In, and find Var(Y). 
(c) For the situation described in part (b), let Z1 be the sum of the lengths of the two smallest 
parts and let 22 be the sum of the lengths of the smallest and largest of the four parts. Find the 
mean and variance of Z1 and Z2. 
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Solution 
(a) The breakpoint is uniformly distributed along the rod, so that the length X of the smaller 
part is itself uniformly distributed on the interval [0, I ] .  Its probability density function is thus 

1/1, o s x  5 1 ,  
fx(x) = { O ,  otherwise. 

The expectation of X can be written down directly as if, because of the symmetry of the p.d.f. 
f x ( x ) .  Alternatively, it can be derived from 

W 

Jw) = J X f x ( X ) h  
--Jo 

(b) If X1 and X2 are the lengths of the shorter parts of the two rods, then Y = min(X1, X2). 
We require FY(y ) ,  the cumulative distribution function of Y ,  given by 

F y ( y )  = Pr(Y s y )  = 1 -Pr(Y > y ) ,  

and note that the event (Y > y ) will occur if and only if XI > y and Xz > y . So 
F y ( y )  = 1 - P r ( X l > y  n X 2 > y )  

= 1 -Pr(XI>y)Pr(Xz>y),  

since the two rods are broken independently. Now, for i = 1,2, 
W 

W X i  > Y ) = Jfx (X )& 
Y 

Y < o ,  
= (f-y)/f ,  O s y s f ,  1: Y > f ,  

6: y > f .  

and therefore 

y <o, 
F y ( y )  = l - ( l - y ) W ,  o s y  I f ,  

Differentiating Fy(y) with respect t o y  to obtain the p.d.f. fy(y) gives 

2(f-y)/12, o s y  s f ,  
fYb) = c, otherwise, 

as required. 
The expected value of Y is given by 

ID 

E(Y) = JYfYWdY 
-W 

I 
= J2y(f -y)/f2dy, 

0 
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E(Y) = 

- - 

1 

[$ - g] 0 

1 - 21/3 = 1/3. 

Now Var(Y) = E(Y2) - {E(Y)}2, and since 
I 

E(Y2) = s2y2(1 -y)/f2dy 
0 

we obtain 

(c) If XI and X2 are  as defined in part (b), then Z1 = XI + X2, so 

E(Z1) = E(X1) + E(X2) = f l  + f l  = 1. 

The rods are broken independently, so that 

Var(Z1) = Var(X1) + Var(X2) 

= 2Var(X), 

since X1 and X2 have the same distribution as the random variable X defined in part (a). But 
I 

E ( X 2 ) =  s x 2 / l d r  = 12/3, 
0 

and so 

Var(X) = E(X2) - {E(X)}2 = 12/3 - 12/4 = 12/12. 

Hence Var(Z1) = 12/6. 

the same rod, so that necessarily Zz = 21, a constant. Hence E(Z2) = 21 and Var(Z2) = 0. 
To obtain the distribution of Z2 we note that the shortest and longest parts must come from 

Notes 
(1) The terms expected value, expectation and mean are all used in the statement of the problem 
and in the solution. They do, of course, all have the same meaning. 
(2) The results found in the solution to this problem can be used to deduce the mean lengths of 
the four parts. Let X(;) denote the length of the i t h  smallest part, for i = 1 , 2 , 3  and 4. Then 
from part (b) of the solution we find that E(X(I)) = E(Y) = 1/3 ,  while from part (c) we obtain 
E(Xp) + X(*)) = E(Zl) = 1. We see immediately that E(X(g) = 1 - 1/3 = 2113. Further, since 
each rod was of length 21, we have that 

X(1) + X(4) = X(2) + X ( 3 )  = 21 f 
so that E(X(3)) = 41/3 and E(X(4)) = 51/3. The mean values of the lengths of the four parts 
are thus in the ratio 1 :2:4:5. 
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2C Simulating Random Variables 
The understanding of random variables and probability distributions is often enhanced by 

simulation, a valuable technique whose power is often underestimated. It has become very 
widely used since the advent of computers. Almost all computers have a facility for producing 
random numbers through the RND function in BASIC and equivalent functions in other 
programming languages. (Note that some versions of BASIC for micro-computers use slightly 
different forms, for example, RND(l).) A central requirement for serious work is that one 
must have a reliable source of random digits, and efficient ways of simulating random variables 
from a variety of probability distributions. 

The problems that follow consider simple ways of generating uniform random numbers, and 
go on to investigate how these may be used to simulate random variables with distributions such 
as the Poisson and normal. 

2C.1 Simulating random variables 
Suppose a continuous random variable with a uniform distribution over the range (0, l )  is 
observed to take the value 0.8438. Use this value to generate an observation from each of the 
following distributions: 

(i) the uniform distribution with range (1,3); 
(ii) the Poisson distribution with mean 2; 
(iii) the normal distribution with mean 10 and variance 25. 

Solution 
(i) If U has a uniform distribution on the range (0, l), then X = 1 + 2U has a uniform 
distribution on the range (1,3); therefore we set X = 1 + (2x0.8438) = 2.6876. 
(ii) We can construct the cumulative distribution function of a random variable X having a 
Poisson distribution with mean 2 as follows: 

Pr(X =0)  = eC2 = 0.1353; 
Pr(X = 1) = 2e-* = 0.2707, so Pr(X 5 1) = 0.4060; 
Pr(X = 2) = 4C2/2 = 0.2707, so Pr(X 5 2) = 0.6767; 
Pr(X = 3) = 8eP2/3! = 0.1804, so Pr(X 5 3) = 0.8571; 
Pr(X = 4) = 16C2/4! = 0.0902, so Pr(X 5 4) = 0.9473; 

and so on. We are told that the uniform random variable takes the value 0.8438, and so obtain 
X = 3, since 

0.6767 < 0.8438 < 0.8571. 

(See Note 1 for a full justification of this procedure.) 
(iii) As in part (ii), we again use the cumulative distribution function, but now of a continuous 
random variable Z with the standardised normal distribution. 

From tables of the standardised normal distribution function, the value z for which 
Pr(Z 12) = 0.8438 is given by z = 1.010, which we may use as a value taken by Z. Now if 
Z - N ( 0 ,  l ) ,  then X = 10 + 5Z has the N(10,25) distribution; hence in order to obtain a value 
for the random variable X we simply set X = 10 + (5~1 .010)  = 15.05. 

Notes 
(1) Part (ii) provides a particular example of a general method for simulating discrete random 
variables. We now describe this method for the case of a non-negative random variable X .  (A 
further example is given in Problem 2C.3.) 
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If a random variable X has probability function Pr(X = i )  = p i ,  i = 0,1,2,  . . . , then we 
can simulate values of X by first simulating a value for U ,  a random variable with the uniform 
distribution on the range (0, l), and following the rules below: 

We operate these rules by first testing result (1). Then, if U 2 PO,  we apply the tests in (2) in 
sequence, first with i = 1, then i = 2, and so on, until we find a value of i for which (2) is 
satisfied. 

It is easy to  see why the rules enable us to simulate X correctly. For example, we would set 
X = 3 if and only if 

2 

and the probability of this event is simply the length of this interval, i.e. 

(Po  + P1 + P 2  + P 3 )  - (Po  + P1 + P 2 )  = P37 

since U is uniformly distributed over the range (0,l) .  So we see that, by implementing the 
rules, Pr(X = 3) = p3 ,  as required, and in general Pr(X = i) = pi. 

In many cases this procedure will not be very efficient. (For example, when p o  is very small 
then the test: U < P O  will usually fail.) In such cases it is not difficult to devise ways of 
improving efficiency, and the reader might like to consider how this might be done. 

* (2) Once again, in part (iii), we have used a particular example of a general rule, this time for 
simulating a continuous random variable. To simulate a continuous random variable X with 
cumulative distribution function F x ( x ) ,  we obtain a simulated value u for a random variable U 
uniformly distributed on the range (0 ,  l), and simulate X by the value x found by solving the 
equation 

F x ( x )  = u 

for x . We now explain why this rule works. 

F x ( x )  = Pr(X s x ) .  Hence 
As U is uniformly distributed over (0 ,  l), Pr{U 5 F x ( x ) }  = F x ( x ) ,  and by definition 

Pr{U s F x ( x ) }  = Pr(X s x ) .  

Since F x ( x )  is a cumulative distribution function of a continuous random variable it is a 
monotonic increasing function of x , and so the two events {X 5 x }  and {Fx (X) 5 Fx ( x ) }  are 
equivalent and have the same probability. Thus 

Pr(X S x )  = Pr{F,(X) s F x ( x ) } ,  

and from the previous displayed equation we see that 

Pr{U 5 F x ( x ) }  = P r { F x ( X )  5 F x ( x ) } .  

This demonstrates that U and F x ( X )  have the same distribution, and so to simulate a value for 
X we simply obtain a value for U and then solve the equation F x ( X )  = U for X , the rule used 
in the solution. 
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2C.2 Using dice to obtain random numbers 
In a series of ten tosses of two distinguishable dice A and B , the following faces are uppermost 
(the face for A appearing first in each bracket): 

Explain how you would use the dice to generate uniformly distributed random numbers in the 
range 0000 to 9999, and illustrate your explanation by obtaining a four-digit random number 
from the data. Use this random number to obtain a random observation from the binomial 
distribution with index 3 and parameter 0.3, and a random observation from the exponential 
distribution with parameter 1.  

Solution 
There are six possible outcomes for each of A and B , and hence 36 (equally-likely) outcomes in 
all. If we reject outcomes in which A and B show the same face, i.e. outcomes of the form 
( i , i ) ,  i = 1,2 ,  . . . , 6 ,  then we are left with 30 outcomes, which can be used to generate 
decimal digits as follows. 

Outcomes Digit 

(122) (193) ( 1 9 4 )  0 
(175) (196) (271) 1 
(233) (274) (2,5) 2 
(296) (391) (372) 3 
(3,4) (3,5) (3,6) 4 
(4,1) (492) (473) 5 
(495) (426) (571) 6 
(572) (573) (534) 7 
(5,6) (f5,2) 8 
( 6 3 )  ( 6 4 )  (6 , s )  9 

Thus, for example, we would choose the digit 5 if we obtain from the dice one of the three 
outcomes (4, l ) ,  (4,2) and (4,3); the probability of this (given that pairs ( i f  i )  are rejected) is 

3x(')' 6 
-- 1 3o - lo, as required. - 

36 

The pairs given thus result in the sequence 0 , 3 , 1 , 5 , 9 , 6 , 6 , 4 , 0  of decimal digits, the pair 
(2,2) being rejected. If we take these digits in fours, viz. 0315, 9664, we obtain the required 
numbers. 

To simulate an observation on a random variable X with the B (3,0.3) distribution, we note 
that 

Pr(X = i )  = [~)(O~3)'(0.7)3-2,  i = O,1,2,3,  

so that, for example, Pr(X = 0) = 0.343. Using the first of the four-digit numbers, 0315, and 
treating it as a uniformly distributed random number on the range ( 0 , l )  by preceding it by a 
decimal point, we see that 0 < 0.0315 < 0.343, so we take X = 0 as the value for X. 

To simulate an exponentially distributed random variable Y with parameter A ,  given the value 
u of a uniformly distributed random variable on the range (0, l), we set 

1 
A 

Y = --logy. 

We are given that A = 1, and taking u = 0,9664 as the second four-digit number, 9664, again 
preceded by a decimal point, we obtain Y = -10&(0.9664) = 0.0342. 
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Notes 
(1) An alternative, but more wasteful, way of utilising the dice would be to return the result 
for the dice as 0 or 1 according as the face shown is one of 1 , 2 , 3  or one of 4,5,6.  The 
resulting binary digits could then be taken four a t  a time, and treated as binary numbers, so 
that, for example, 1000 would be 8, 0110 would be 6, and so on. Rejecting values greater than 
9 would then result in a sequence of equiprobable digits in the range 0-9, which could then be 
combined as required. 

This approach is wasteful when dice are used, as we have noted. It could, however, be 
considered if one were using coins instead, by treating ‘heads’ as 1 and ‘tails’ as 0. 

The fact that we can simulate uniform random numbers in two ways draws attention to the 
fact that the solution given is not unique - indeed, this is commonly the case in simulation. 
For example, we could have used any way of allocating the 30 results to the 10 digits, as long 
as just three were assigned to each. 
(2) The methods used to simulate the binomial and exponential random variables are as 
discussed in the notes to Problem 2C.1. To simulate an exponential random variable Y with 
density function f y ( y )  = he-’?, we can simply set U = Fy(Y), where U is, as usual, uniformly 
distributed on the range (0 , l ) .  For the exponential distribution we obtain 

Y 

FYb) = JfY(X)& 
0 

and so we could set U = 1 - e-” to give 
1 
A 

Y = --loge(l - V) .  

But we now note that if U is uniformly distributed on (0 ,  l), so is (1 - U ) ,  and hence we can 
replace U by (1 - V )  in the expression above without affecting the distribution of Y .  We can 
thus use 

1 
Y = --log,U A ; 

this is to be preferred, since it involves slightly less arithmetic. 
(3) A random variable with the binomial 8(3 ,0 .3 )  distribution can be simulated directly, using 
the basic definition of such a random variable as the number of successes in 3 independent 
trials, each with probability 0.3 of success. If, as in the solution, we reject results of the form 
( i  , i ) ,  then we could regard the Occurrence of any one of the nine outcomes 

(172) (193) (194) 
(1 , s )  (1,6) 
( L 3 )  (2 ,4)  ( L 5 )  

as a success and the Occurrence of any other pattern as a failure. Clearly, with this assignment, 
the probability of a success will be 0.3. For the first three tosses shown in the statement of the 
problem, viz. (1,3),  (3 ,2)  and (1,6),  we have, respectively, success, failure and success, so we 
would record 2 as the first simulated value of the binomial random variable. For the second 
three results given (excluding the result (2 ,2)  which is rejected), viz. (4 ,2) .  ( 6 , 3 )  and (4 ,6) ,  
we have three failures, so return 0. 

This method of simulating Bernoulli trials (whether using dice or computer-generated random 
numbers) is always available for simulating binomial random variables. It is quite efficient for 
small values of n , but since the arithmetic (or computer time) required is proportional to n it is 
less attractive for large values of R . 
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2C.3 Ants on flower heads 

The number of ants on a flower head is a random variable having the following distribution. 

Numberofants  0 1 2 3 4 5 or more 
Probability 0.2050 0.3162 0.2804 0.1562 0,0422 0 

(a) Use the following observations on a random variable with a uniform distribution on ( 0 , l )  
to draw a random sample of size four from the distribution of ants: 

0.157 74, 0.602 82, 0.455 81, 0.493 68. 

(b) Explain how you would use simulation to estimate the probability that a plant will have 3 
or more ants, if the number of flower heads on a plant is a random variable having the Poisson 
distribution with mean 5 .  

Solution 
(a) If X is a random variable denoting the number of ants on a flower head, then the 
cumulative distribution function of X is given by the foilowing table. 

i Pr(X l i )  

0 0.2050 
1 0.5212 
2 0.8016 
3 0.9578 
4 1.0000 

If a random variable U is uniformly distributed on the range (0, l), then 

Pr(0.0000 < U 5 0.2050) = 0.2050 = Pr(X = 0), 

Pr(0.2050 < U 5 0.5212) = 0.3162 = Pr(X = l), 

and so on. We can use the general algorithm for simulating discrete random variables (see 
Note 1 to Problem 2C. 1) to simulate X . We see that 

0.0000 < 0.15774 < 0.2050, resulting in X = 0, 

0.5212 < 0.60282 < 0.8016, resulting in X = 2, 

0.2050 < 0.45581 < 0.5212, resulting in X = 1, 

0.2050 < 0.49368 < 0.5212, resulting in X = 1. 

The required sample thus consists of the four values 0, 2, 1, 1.  
(b) Let Y denote the total number of ants on a randomly selected plant, and let Z denote the 
number of flower heads on that plant. We are given that 

&5' 
Pr(Z = i )  = - 

i !  ' 
i = 0 , 1 , 2 , .  . . 

If we write p = Pr(Y ?3) ,  then we need to estimate p using simulation. We can d o  this by 
simulating values of Y for n plants (where n is chosen beforehand), and counting the number 
of times - r ,  say - for which the simulated value of Y is 3 or more. The estimate of p will 
then be rln . 
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In outline, the simulation proceeds as follows. 

(i) Se t r  = Oandnc = 1. 

(ii) Simulate Z , denoting the simulated value by z . 
(iii) If z > 0, simulate z independent values XI, x2, . . . , x, for X. (If z = 0, then there are 

no flower heads on the plant, and consequently the plant will not support any ants.) 

(iv) If z > 0, form the sum y = E x i ;  if z = 0, set y = 0. 

(v) If y 2 3, increase r by 1. 
(vi) Increase nc by 1. 
(vii) If nc I n , return to step (ii). Otherwise stop, and record r/n as the estimate of p 

I 

i = l  

Notes 

(1) Part (a) is a straightforward example of the use of a cumulative distribution function to 
simulate a discrete random variable, given a supply of independent random variables uniformly 
distributed on the range (0 , l ) .  
(2) The distribution of Y, in part (b), is an example of what is termed a compound 
distribution, since 

Pr(Y = i )  = Pr(X1 + X 2  + .  . . +Xz = i ) ,  

where Z itself is a random variable. The distribution of such compound random variables can 
be found analytically using the technique of probability generating functions. (See Note 4 to 
Problem 2A.2 for a definition and discussion of properties.) If we define G x ( t )  = E(rX), 
Gy(r )  = E(tY) and G Z ( t )  = E(rZ) as the p.g.fs of X ,  Y and Z respectively, then the p.g.f. of Y 
can be shown to be given in general by the result G y ( t )  = Gz{Gx(r ) } ,  so that here 

where by definition 

G x ( t )  = 0.2050 + 0.31621 + 0.2804t2 + 0.1562r3 + 0,0422t4. 

We can in fact proceed further with this analysis. If we let qi = Pr(Y 2 i ) ,  i = 0,1,2,  . . ., 
m 

and let Q(0) = EBiqi, for 0 c 0 5 1, then we find 
i =O 

31 3 1 3 1  

Q(0) = xeiPr(Y i i )  = xeixPr(Y = j ) .  
i =O i d J  j = i  

Reversing the order of summation gives 
i .  

Q(e) = xpr(Y = j )Ee i  
31 

j =O i =O 

since 0 5 0 5 1. We thus obtain 

Q(e) = (I  - e)-l{i - eGy(e)}. 
Consequently, p = Pr(Y 2 3) is given by the coefficient of O3 in the power series expansion of 

After some algebra, we find in the present case that Pr(Y s 3) = 0,902. 
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(3) An analytic solution to a problem, such as that found in Note 2 above, is preferable to that 
found by simulation, although, as in the present problem, the latter may well be easier. If, in 
the n simulations, a value of Y of 3 or more is obtained R times, then R is a binomially 
distributed random variable, viz. R - B ( n  , p ) ,  so that 

Var(Rln) = p ( 1  - p ) / n  5 1/(4n). 

So, if we require the accuracy of estimation of p from the simulation to be such that, say, 
Var(R/n) I E, it suffices to choose n such that 4n 2 E-', i.e. to take n 2 1/(4e), which could 
result in a very large value for n. The simulation could then be very time-consuming, and the 
solution it provides can, of course, only be an approximate one. 

By contrast, an analytic solution is exact, and since it is in algebraic form it can be adapted 
easily. For example, if in the present problem the mean number of flower heads per plant 
changes from 5 to 6, the only change in the analytic solution is to alter 5 to 6 in the expression 
for Q (0) above. 
(4) Some examples of estimating Pr(Y 2 3 )  by simulation, using the method described in the 
solution, are given in the table below. For each value of n , three simulations were performed. 

Estimate of Pr(Y 2 3) 
using n simulations n 

10 
10 
10 

100 
100 
100 

1000 
1000 
1000 

10000 
10000 
10000 

1 .o 
0.9 
0.7 
0.91 
0.94 
0.88 
0.908 
0.882 
0.886 
0.9025 
0.9079 
0.9033 



3 Data Summarisation and Goodness-of-Fit 

With this chapter we move away from probability and consider part of the process of 
statistical inference. When one obtains data from a randomly selected sample, the observations 
are usually of interest not in themselves, but rather in what they can tell us about the 
population from which they were randomly selected. The precise technique used (a t-test, or a 
confidence interval for a binomial parameter, for example) will depend, naturally, on 
circumstances, but there are some general principles applying to most problems. 

The most basic of these is that, before undertaking the main analysis, one should wherever 
possible examine the raw data, in order to discover whether any assumptions which are crucial 
to that analysis Seem likely to be satisfied. A rule of thumb stemming from this is that plotting 
the data is a good way to start any data analysis. Accordingly we discuss some plotting methods 
in the first of the two sections of this chapter. 
In the second section, we carry the process a stage further, in order to present some rather 

more sophisticated ways of checking assumptions. In many practical problems, a central 
assumption will be that the data form a random sample from some named distribution; we call 
the process of matching up distribution to data the ‘fitting’ of the distribution, and we are 
naturally concerned to check the quality, or goodness, of the fit. 

We have just one cautionary remark. Although it is good practice always to carry out these 
preliminary analyses, we recognise that it will not always be feasible to do so in the artificial 
conditions of, say, a three-hour examination; similarly, for reasons of space we have not usually 
been able to include plots and goodness-of-fit tests for data analysed in Chapters 4 and 5 .  

3A Data Summarisation 
In this short section we present some problems involving the calculation of summary statistics, 

for example means and variances, from data. The data may be given in grouped form, or the 
individual observations may be available, and we consider ways of dealing with both types. We 
discuss also the corresponding problems of graphical presentation of data. 
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3A.1 The weights of club members 

The members of a sports club, 60 male adults, had their weights recorded, in pounds. The 
weights are given in the table below. 

171 160 144 132 154 160 160 158 148 160 131 153 
131 165 139 163 149 149 140 149 150 161 136 144 
165 174 153 149 157 169 147 156 149 171 149 154 
153 149 147 154 145 158 160 152 156 138 167 142 
165 155 140 155 158 147 149 169 148 174 150 144 

Construct a cumulative frequency table foi these weights, using classes of width 5 lb, starting at 
129.5 Ib. Hence draw a cumulative frequency graph, and use this to find the median and serni- 
interquartile range. 

Use the grouped frequency table to calculate the mean and standard deviation, and compare 
them with the values obtained using the original, ungrouped, data. 

Solution 
The number of values falling into each of the classes is given in the table below, together with 
the cumulative frequencies. 

Weight Frequency Cumulative 
Frequency 

129.5-134.5 
134.5-139.5 
139'5-144.5 
144.5-149.5 
149.5-154.5 
154.5-159.5 
159.5-164.5 
164'5-169'5 
169 5-1 74.5 

3 
3 
6 

14 
9 
8 
7 
6 
4 

3 
6 

12 
26 
35 
43 
50 
56 
60 

To obtain the cumulative frequency graph, each cumulative frequency is plotted against the 
upper boundary of the corresponding class interval. The points plotted are then connected by 
straight lines. The cumulative frequency graph is shown in Figure 3.1. 

The quartiles, usually denoted by Ql ,  Q2 and Q3, are the values which divide the total 
frequency into quarters. The second quartile Q2 is, of course, the median. To obtain the value 
of Ql, using the graph, the point on the vertical axis corresponding to i n  is first found, where 
n = 60. The point on the graph corresponding to this value is then projected down onto the 
horizontal axis. This latter value is Ql. For the data, Q l  z 1461b. The values for Q2 and Q3 

are found similarly, using i n  and i n  respectively; we find that Q2 1521b and Q3 161 lb. 

The semi-interquartile range is 

$(Q3 - Qt) = i(161 - 146) = 7.51b. 

To calculate the mean and standard deviation we require the class mid-points i.e. 132, 137, 
142, 147, 152, 157, 162, 167, 172. To make the calculations slightly easier we recode these 
values using x *  = ( x  - 152)/5, where x is the original value and x' the coded value. The 
coded mid-points are -4, -3, -2, -1, 0, 1, 2, 3, 4. The mean of the coded data is then 

3X(-4) + 3X(-3) + . . . + 6 x 3  + 4 x 4  = - - 
- 0.15. 

60 60 
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Figure 3.1 Cumulative frequency graph for data on weights 

Converting back to the original scale shows the mean to be 152 + 5X0.15 = 152.751b. The 
variance of the coded data is 

3X(-4)2 + 3 ~ ( - 3 ) '  + , , , + 6X32 + 4 ~ 4 ~  - 
60 

S" = - 
60 

where the term 92 is the square of the sum of the coded values. The variance in the original 
scale is then S2xxs2 = 110.69, in units of pounds, squared. The standard deviation is the 
square root of this value, i.e. 10.521b. 

To find the mean and variance of the 60 original observations it is convenient to subtract 100 
temporarily from each value. With this informal coding, we find the mean of the raw (i.e. 
ungrouped) data to be 

71 + 60 + , . . + 50 + 44 3175 = - = 52.917, 
60 60 

so that the mean weight is 152,917 Ib; using the same coding we find that the variance is 

602 + . . . + SO2 3- 442 - 

Subtracting 100 does not affect the variance, so that we find the variance of the set of data to 
be 106.48 and the standard deviation to be its square root, 10.321b. 

To compare the summary statistics obtained from raw and grouped data, we need only note 
that the agreement is very good. 

Notes 
(1) Alternative ways of coding the class mid-points are possible, for example X *  = ( x  - 132)/5. 
Coding is always optional, and arbitrary; it is done for convenience only, and will not affect the 
result (once this is transformed to the original scale). 
(2) Clearly, if the original data values are available, any summary statistics such as the mean 
and standard deviation should be calculated from them rather than from a corresponding 
grouped frequency table. It is always good practice to make use of the full information 
available. 
(3) The frequency distribution is slightly skewed and this is reflected in the mean having a 
slightly higher value than the median. (A fuller discussion of skewness is given in the Notes to 
Problem 3A.3.) 
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(4) Fifty percent of the data lie between the values of Q l  and Q3, by definition. If the data 
given here were normally distributed, then 50% of the data would lie within a range of 0.6745 
of a standard deviation on either side of the mean. Since here the standard deviation is 
10.32 Ib, this range becomes 6.96 Ib. This value is slightly smaller than the semi-interquartile 
range on account of the asymmetry of the distribution. 
( 5 )  The values of Q1, Q2 and Q3 could have been obtained directly from the table of 
cumulative frequencies without drawing the graph. For example, the median may be calculated 
as 

Q 2 = L  +- m X C ,  

where, if the class which contains the median value is referred to as the median class, then L is 
the lower boundary of the median class, m is its frequency, f is the cumulative frequency up to 
its lower boundary and c is its width. 

For the data here we have 

Q2 = 149.5 + 30*265 = 15172. 
9 

The calculation of Q l  and Q3 can be done similarly. If n is odd the same fcrmulae are used. 
(6) There is no reason why we should restrict our attention to dividing the distribution into four 
equal parts. The nine values which divide the area into ten equal parts are called deciles and 
the ninety-nine values which divide the distribution into one hundred equal parts are called 
percentiles. In general these cut points are called quantiles. 

(7) In calculating the variance in this problem, the divisor was taken as n , rather than n -1. 
The value n - I  is used when the data are considered as a sample from a larger population and 
the aim is to obtain an estimate of the true (but unknown) population variance. When all that 
is required is to summarise the data in hand, with no reference to a parent population, the 
divisor n is generally used. 

(8) It is convenient to place here a rather lengthy note on the vexed question of ‘ n  versus 
n - 1 ’ .  The truth is that in advanced work the divisor to be used is nearly, if not quite, 
arbitrary; within limits, one can use any divisor. (The discussion in Note 2 of Problem 4D.3 
gives an example of an uncommon one.) In a report one must, naturally, say which divisor was 
used, so that readers can convert to any alternatives they may prefer. 

At  an elementary level the facts of life are rather different. Statistics is then not an activity, 
but a subject with a syllabus which is taught and examined. The syllabus may well reflect the 
view of an examiner, who may well not be professionally involved with statistics and thus may 
have a partial view, and unfortunately may also have a bee in his bonnet about a ‘correct’ 
answer. The painful difficulty is, of course, that what is correct to one examiner may not be to 
another. Textbooks, likewise, may adopt different conventions. 

In this awkward situation the reader will appreciate that we are not going to pretend to 
produce definitive answers to the vexed qucstion; our case is that no answer could be definitive. 
But we will attempt to clear some confusion by giving some positive answers, by nailing a few 
theses to tiie door, as it were, and by drawing distinctions between similar, but not identical, 
situations. 

The basic problem can be posed in its most confusing way in the form: ‘We are given a set xl, 
x2, . . . , x, of values. What is the variance of XI, x 2 ,  . . . , x,?’ Since we will be 
recommending different answers to the question according to what sort of values the x s  are, our 
first thesis is that one should never put the question that way, never think in terms of ‘variance 
of a sct of values’. We recall that in probability theory the term ‘variance’ has a precise 
definition; when we have a random variable X ,  its variance Var(X) is 

Var(X) = E[  {X - E(X)}2]. 
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We shall now consider four ways in which these values X I ,  x 2 ,  . . . , x,, can be viewed, and 
examine the concept of variance for each. 
(i) The values have been selected from some larger set or population of values. The  interest in  
the xs lies in what they reveal about the larger set, rather than in themselves. 

In these circumstances the x s  are clearly a sample, and the almost invariable convention is to 
use n - 1  as divisor. To use any other divisor would require corresponding changes to be 
made to formulae (such as those used in the t-tests) and possibly also to statistical tables. 
Use of n -1 does also have the advantage that the estimator of the variance of the population 
is unbiased. Despite its arbitrariness, therefore, use of n -1 is so common that to fail to use 
it would be counted a mistake. The  resulting quantity is called the sample variance; this term 
almost always connotes a divisor of n - 1. 

(ii) The values form a complete set or population, from which one member is to be chosen at  
random, with each of the n members having the same chance of being the one chosen. 

If we decide to denote by X ,  say, the value of the population member chosen, then X will be 
a random variable with a distribution such that 

1 
n 

Pr(X = xi) = -, i = 1, 2, . . . , n.  

The variance of X can then be obtained from the usual definitional expression 

Var(X) = E[{X - E(X)}2] 

and since 

1 "  
n l=l 

E(X) = - E x i  = X, say, 

it follows that 

In this case, where the variance has its usual rde in relation to a discrete random variable 
and its probability distribution, the divisor n is indicated. 

(iii) The values form a complete set and one wishes to provide a summary measure of their 
spread, without any implications as to sampling from them. 

Here we want to find a way to measure spread, and there is nothing to suggest that concepts 
based on probability have any relevance. The corrected sum of squares, X ( x ,  - X )*, and the 
two measures obtained from it by division, are of course worth considering as measures, and 
the divisor n is generally felt to be better. One reason for this is easiest to see by means of 
a n  example. If we have a set of 10 values X I , .  . . ,x10, and the corrected sum of squares is 
900, then our measure of spread will be 90 if we divide by n , i.e. by 10, or 100 if we divide 
by 9. Now suppose that the values we have are  exactly duplicated, so that our set now 
consists of 20 values. The corrected sum of squares will now be 1800, and the measure of 
spread will be found by dividing this either by n ,  20, or by n - 1 ,  19. Most people would 
argue that the spread of the 20 values is just the same as for the set of 10. If we use n as 
divisor, then our measure of spread is 1800/20 = 90, as before. But using n - 1  gives 
1800/19, or 94.7, compared with 100 previously. 

(iv) The  values form a complete set or population, from which a random sample will be 
selected, without replacement. 

There are arguments for both divisors here, but use of n - 1  does have advantages. In its 
favour is the fact that, when a random sample is selected without replacement (the usual case 
when the population is finite) the sample variance will be used to estimate the spread of the 
population values. The  sample variance will conveniently give an unbiased estimator only if 
the smaller divisor is consistently used, both for sample and population. 
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It seems then that in the case of a sample there is no real difficulty; one uses the sample 
variance formula, involving n -1. In the case of a population, or complete set, both divisors 
have their advantages. By and large, those arguments supporting the use of n often prevail in 
elementary discussions, and that divisor is commonly recommended for the 'variance of a 
population' in first-level examinations. But the reader will have noticed that we draw this 
conclusion with some reluctance, since it overlooks more sophisticated arguments and therefore 
gives a dogmatic prescription which is in fact based on an incomplete assessment. 

3A.2 Histogram for catches of fish 
A keen angler kept a record of the weight of each of his last 51 catches of fish. The weights, 
recorded to the nearest 0.1 kg, are as given in  the following table. 

Weight (kg) 0.0-0.4 0.5-0.9 1.0-1.2 1.3-1.7 1.8-2.1 2.2-3.7 3.8-5.2 
Frequency 9 12 8 8 8 4 2 

Draw a histogram for the data, and use it to  calculate the modal class. 

Solution 
Before the histogram can be drawn, we need to modify the class boundaries given in the 
problem. This is because the data are continuous, but only recorded to the nearest 0.1 kg. 
Thus a recorded weight of 0.4 kg represents an actual weight somewhere in the range from 
0.35 kg to 0.45 kg, and similarly for the other classes. The only exception is in the first class, 
where a recorded weight of 0.0 clearly represents a weight in  the range (0.0 kg, 0.05 kg). 

In a histogram we draw a rectangle for each class so that the area of the rectangle is 
proportional to the frequency in that class. With equal class widths, the appropriate areas are 
easily constructed. But when the classes have unequal widths, the heights of the rectangles can 
no longer be taken equal to the observed frequencies, and rescaling is necessary. For example, 
classes 0.95-1.25 and 1.25-1.75 both have frequencies of 8, but the class widths are 0.3 and 0.5 
respectively. So, if in a histogram the height for the second of these classes is 8, that for the 
first must be E x 8  = 13;. 

We now rescale the frequencies in  all classes whose class width is not 0.5; by analogy with 
probability density, we refer to a rescaled frequency as a frequency density. The frequency 
densities for the classes are given in the table below, and the histogram constructed from the 
frequency densities is shown in Figure 3.2. 

Frequency density 
per 0.5 kg Class boundaries 

0.00 - 0.45 10.00 
0.45 - 0.95 12.00 
0.95 - 1.25 13.33 
1.25 - 1.75 8.00 
1.75 - 2.25 8.00 
2.25 - 3.75 1.33 
3.75 - 5.25 0.67 

From the histogram we see that the modal class is (0.95, 1.25). 
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Figure 3.2 Frequency densities: total catch of fish (kg) 

Notes 
(1) As the weights are recorded to the nearest tenth of a kilogram the class boundaries are 
taken as 0, 0.45, 0.95, etc. This reflects the continuous nature of the data and the need to 
ensure that no data value could possibly belong to two different classes. (For a continuous 
measurement, the chance that an observation is precisely 0.45 is negligible, so there is no 
confusion in specifying this value as a dividing point between two adjacent classes. In problems 
where measurements are made to a given accuracy, and we are then required to group further, 
we would have to ensure that no value could appear in two classes. Indeed, in the present 
problem we could have gone further and specified, for example, the second class as ‘above 0.45 
but not above 0.95’; but this would have been unnecessarily cumbersome.) 
(2) With continuous data, as here, it is usual to quote the modal class, that is, 0.95 - 1.25. 
Sometimes one is expected to calculate a single value for a mode when data are presented in 
frequency table form, as here. The usual method is a graphical one, and has some theoretical 
backing when the histogram is constructed with classes of equal width. Of course, in the present 
case class widths are not all the same, and the method is therefore not applicable. 

The basis of the method is that one approximates the histogram, in the region of its 
maximum, by a quadratic curve. If one were to draw a parabola through three points, the 
mid-point of the horizontal bar of the histogram for the modal class and corresponding points 
for the classes either side of the mode, then the maximum of this quadratic could be considered 
to be an approximation to the mode for the set of data. (A similar justification, valid under the 
same condition of equal width classes, can be given by constructing a quadratic such that the 
areas under the curve are equal to the areas under the histogram for the three relevant classes.) 

The location of the maximum can be found very simply by drawing two straight lines and 
finding their intersection. The easiest way to describe the lines is to show how they could be 
drawn for the present data (although, as we have noted, the method is not applicable when 
classes are of unequal width). The required lines are always drawn diagonally across the modal 
class, and for the present data we would join the point (0.95, 12.00) to (1.25, 13.33) and join 
(0.95, 13.33) to (1.25, 8.00). The intersection of these two lines then indicates the position 
(although not the height) of the maximum of the quadratic. 



102 Data Summarisation and Goodness-of-Fit 3A.3  

3A.3 Distribution of examination marks 
The following table shows the number of candidates who scored 0, 1, . . . , 10 marks for a 
particular question in an examination. 

M a r k 0  1 2  3 4 5 6 7 8 9 1 0  
No.of Candidates 8 10 49 112 98 86 54 37 28 12 6 

Calculate the mean, median and mode of the distribution of marks. What feature of the 
distribution is suggested by the fact that the mean is greater than the median? 

Solution 
(a) The mean is the straightforward average of the 8 + 10 + . . . + 12 + 6 = 500 marks. 
Hence the meanis 

(8x0) + (10x1) + . . . + (6x10) 2241 4,48. = - =  
500 500 

(b) The median of n values, put in order of magnitude, is the middle value. It is the value 
ranked in position ( n  +1)R if n is odd and is the average of the two middle observations, i.e. 
those ranked ( n R )  and ( n n  + l),  when n is even. In this problem, n = 500 and so the 
median is the average of the 250th and 251st in order of magnitude. These are both 4, so the 
median is also 4. 
(c) The mode is that value which occurs with the greatest frequency, so is clearly 3 here. 
(d) The mean, 4.48, is greater than the median, 4, which suggests that the distribution is 
positively skewed, that is, the values to the right of the median are more spread out than are 
those on the left. This cannot affect the median, clearly, but the extra spread on the right 
causes the mean to be greater. 

Notes 
(1) If a distribution is precisely symmetrical, the mean and median will coincide. By contrast, 
when the distribution is asymmetrical, and has a relatively long tail to the right (like, for 
example, the distribution of personal incomes), it is said to be positively skewed. In a similar 
way a negatively skewed distribution has a relatively long tail to the left. Any skewness is often 
apparent if a bar chart (or, for continuous data, a histogram) is drawn. 
(2) When a distribution is skewed, the median is usually a valuable measure of location. This 
is because it is unaffected, unlike the mean, by a small number of particularly large (or small) 
data values, which could be judged not to be of significance in assessing the general location of 
the distribution. (For example, giving the median income of employed persons in a town will 
usually tell more about that town's prosperity than giving the mean income.) 

The mode is another possible measure of location, but suffers the serious disadvantages that it 
is not necessarily unique, and is not strictly relevant to sample data from a continuous 
distribution (but see also Problem 3A.2). In particular, an over-rigorous attitude to samples 
from continuous distributions might suggest that since the n observations wil l  all be different 
there will be n modes! 
(3) There are severai ways of measuring the skewness in a set of sample data. Two which are 
fairly easy to calculate are 

mean - mode 
standard deviation 

(i) skewness = 

and 
3(mean - median) 
standard deviation ' 

(ii) skewness = 
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Both of these make use of the fact that while in a symmetrical distribution with a single mode 
the mean, median and mode coincide, as asymmetry grows the three gradually drift apart; it is a 
most rough-and-ready rule that equates the numerators of the expressions above. For the data 
given in the problem, the standard deviation is 2.00, and the two measures of skewness are, 
therefore, (i) 0.74 and (ii) 0.72. 

However, these two measures are not ideal, as can be seen by examining the data below. 

M a r k 0  1 2  3 4 5 6 7 8 9 1 0  
No. of Candidates 7 23 88 105 110 114 88 68 36 20 4 

It is straightforward to show that the mean, median and mode are 4.58, 4 and 5 respectively. 
Formula (i) wil l  therefore give a negative value, while formula (ii) gives a positive value. It is 
apparent from a bar chart of the data that the skewness is positive rather than negative. 

Overall, formula (ii) would generally be preferred to (i) because it uses the median rather 
than the mode; as mentioned in Note 2 the mode may not be unique. 
(4) In practice, neither of these two formulae for skewness is often used. Just as the location 
of the distribution of some random variable X can be measured by E(X) and its spread by the 
variance E[{X-E(X)}2], the second moment, a measure based on the third moment 
E[{X-E(X)}3] can be used to measure skewness. One can go further and examine higher 
moments; in particular a measure of kurtosis, the peakedness in  the centre of the distribution is 
based on the fourth moment E[{X-E(X)}4]. The measures just mentioned are moments of 
probability distributions, and the technique extends in a natural way when the population is 
finite. By analogy with case (ii) in Note 8 to Problem 3A.1 we would, for example, base a 
measure of the skewness of observations X I ,  x2,  . . . , x,, on the third moment formula 
1 "  
" i = l  

These moments are useful in characterising the shape of unusual distributions. They link up, 
as might be expected, with the moment generating function, discussed briefly in Problem 2B.5; 
this function, expanded as a power series, can be used to calculate moments conveniently. 

--Z(Xi - F ) 3 .  

3A.4 Consumption of cigarettes 

The table below gives data purporting to show the percentages of men and women whose daily 
consumption of cigarettes lies in various ranges. Draw appropriate pie charts to illustrate the 
data and bring out the principal features. 

Number of Percentage of 
cigarettes men women 

1-5 3 5 
6-10 5 6 
11-15 6 7 
16-20 7 6 
21-30 11 7 
3 1-40 10 5 

over 40 8 4 
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Solution 
The production of a pie chart is a fairly trivial matter, and we will not insult the reader by 
dwelling on the details of arithmetic. The  principle is, of course, that the angle assigned to 
each category, for men and women separately, is in proportion to  the number in that category. 
There is just one point to notice, that the percentages for men add up to 50, those for women to  
40 (the remainder being non-smokers), and so the pie charts are constructed so that the total 
areas are in the corresponding proportions, with the radius of the chart for men being fi/m _ _  ~ 

of that for women. The charts are presented in Figure 3.3. 

Men Women 
KEY 

1 -  5 

6 -  10 

11 -15  

16 - 20 

21 -30 

31 -40 

over 40 

Figure 3.3 Pie charts: numbers of cigarettes smoked daily 

The principal feature, shown both by the table and the charts, is that more men than women 
smoke, and the consumption of cigarettes by male smokers is generally higher than that of 
women smokers. 

Notes 
(1) We should emphasise that the figures used above are fictional, chosen so that a few points 
could be madc without excessive calculation. 
(2) A decision as to sppropriateness of a particular pie chart is by no means as trivial as the 
production of the chart itself. In the current case there are several alternative ways of 
presenting the data, each with its advantages. The pie charts shown above are the most basic 
ones. But one could argue for several alternatives. 
(i) The ranges used are unequal, and many statisticians would be happy to sacrifice the detail 

within the narrower ranges so as to have all the categories of equal size, 1-10, 11-20, and 
so on. (The final category is awkward, of course, but leaving it as it is would not cause 
much difficulty.) 

(ii) Making the pies of different sizes does bring out the fact that more men than women 
smoke. But if the aim of the display is to compare individual men and women with other 
members of their own sexes, as in ‘I smoke less than most men, but you smoke more than 
most women’, then equal-sized pie charts would present the information more effectively. 
(But see also Note 4.) 

(iii) A very strong case could be made out for including non-smokers in the pie charts. If this 
were done, exactly half the pie for men would be assigned to the ‘non-smoker’ category, 
with the other categories reduced in proportion; for women similar calculations would be 
needed. In this case the pies would have equal sizes (unless one wished to be very finicky 
and take account of the different numbers of males and females in the population). 
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(3) Yet another pair of pie charts seems possible if we examine the data from the viewpoint of 
the tobacco companies, wishing to see where the bulk of their trade comes from. Although 7% 
of women smoke between 11 and 15 cigarettes a day, while only 4% smoke more than 40, more 
cigarettes in total will be sold for the 4% than for the 7%. The pie charts above d o  not show 
this, but the feature can be brought out by looking at  the population of cigarettes rather than 
the population of people. 

If we argue that those who smoke between 1 and 5 a day will smoke 3 a day on average, and 
similarly for the other categories (8, 13, 18, 25.5, 35.5 and (a  guess) 45.5), then on average, 
for every 100 people, the total numbers of cigarettes smoked daily can be found by extending 
the original table as follows. 

Range 

none 
1-5 

6-10 
11-15 
16-20 
21-30 
31-40 

over 40 

Total 

Percentage of 
men women 

50 60 
3 5 
5 6 
6 7 
7 6 

11 7 
10 5 
8 4 

100 100 

Number smoked by 
men women 

0 0 
9 15 

40 48 
78 91 

126 108 
280.5 178.5 
355 177.5 
364 182 

1252.5 800.0 

Pie charts could be constructed for the data in the last two columns in the table; note that the 
chart for men would now have an area larger than that for women by a factor of 1252.5/800,0, 
since that many more cigarettes are consumed by men than by women. The ratio of the radii 
would thus be about 1.25, while for the charts in Figure 3.3 the ratio is about 1.12. 
(4) Other facets of the data could be brought out by use of other techniques, and indeed it is 
arguable that since the categories are ordered, i.e. form a natural sequence, the use of pie 
charts will obscure this rather important point. Certainly the production of cumulative 
frequency polygons or graphs, as in Problem 3A.1, or histograms, as in Problem 3A.2, would 
be useful. 

3B Goodness-of-Fit 
Most practical problems in statistical inference have as a basic model that one or more 

random samples are selected from some distribution or distributions. In some problems the 
random samples are observed directly, and an analysis such as, for example, a confidence 
interval for a normal variance, or a two-sample t-test, will be called for. In more complex cases 
one may have only indirect observations; for example, in regression problems the observations 
on the dependent variable involve a systematic (linear) component and a random component, 
and it is the set of random components that are taken to come from some distribution, usually 
the normal. 

The statistical analysis resulting from any assumed model naturally depends on that model: if 
the model is incorrect then so will be the conclusions, a t  least in detail. So while it may be 
acceptable as an academic exercise to assume that observations form a random sample from 
some distribution, making such an assumption without adequate evidence would be contrary to 
good scientific practice - and therefore also contrary to good statistical practice. 
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It follows that we must devise methods of testiqg assumptions as to distributional shape. 
There are many such tests, both formal and informal. At  simplest, one can construct a 
histogram and assess by eye whether it is of roughly the required shape; as one would expect, 
there are more sophisticated methods, discussed in the problems below. 

3B.l 
Two dice were thrown 180 times, and a t  each throw the number X of sixes was recorded, with 
the following results. 

Numbers of sixes in dice throws 

Number of sixes ( x )  0 1 2 Total 
Frequency u,) 105 70 5 180 

(a) Test the hypothesis that the distribution of X is binomial with probability p of obtaining a 
six given by p = t. 
(b) Explain how the test would be modified when the hypothesis to be tested is that X has a 
binomial distribution, but p is unspecified. 

Solution 
(a) The appropriate test here is a x2 goodries-of-fit test, and the null hypothesis is: 

N o :  X -. B ( 2 , i ) .  

The test statistic C has the form 

where f, is the observed frequency of x sixes, and ex is the corresponding 'expected' frequency 
when H o  is true. Now, denoting Pr(X = x )  by p x ,  x = 0,1 ,2 ,  we obtain, under tlo, 
ex = np, = 180px, and 

so that eo = 125, el = 50 and e2 = 5 .  Thus 

105 - 125)2 + (70 - 50)2 + = 11,20. 
120 50 5 c = (  

Now, under H o ,  the test statistic C has approximately a x2  distribution with 2 degrees of 
freedom, and H o  will be rejected for large values of C .  The upper 1 %  point of ~2 is 9.21, so 
we reject H o  at  the 1% significance level. 
(b) The null hypothesis is now that X has a binomial distribution, but with parameter p 
unspecified. The  test statistic has the same form as in part (a), except that ex is now given by 
ex = n i x  = 180px, where p, is a n  estimate of the probability that X = x ,  based on the binomial 
distribution with parameter - Total number of sixes observed 

= Total number of throws of dice ' 
The test statistic C still has, approximately, a x2 distribution, but the number of degrees of 
freedom is reduced by 1. 
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Notes 
(1) The number of degrees of freedom associated with the test statistic is, in general, k - I ,  
where k is the number of different classes or values into which the range of the random variable 
X is divided. However, k -1 is only the appropriate number when the distribution of X is fully 
specified, as in part (a). When parameters have to be estimated, as in part (b), the degrees of 
freedom are reduced by the number of parameters estimated. 
(2) Calculations for the modified test are not specifical!y asked for in part (b) of the problem, 
but they are given here for completeness. We have 6 = 80/360 = 2/9, so calculate 

Hence eo  = l08$, e l  = 62; and e2 = 8$, and thus 

(105 - (5 - 8$)2 
= 2.81. ' I  ' I  

8; 

This value of C is to  be compared with the x2 distribution on 1 degree of freedom, and the null 
hypothesis is to  be rejected if the value lies far enough into the upper tail. The 5% point of the 
xf distribution is 3.84, well above 2.81, so in this case the null hypothesis will not be rejected 
at any of the conventional significance levels. 
(3) The x2 goodness-of-fit test generally rejects a null hypothesis only for lnrge values of C ,  
since small values imply an exceptionally close fit, with observed frequencies being very close to 
the expected frequencies. However, if it  is suspected that the data are 'fixed' or fraudulent, 
then the lower tail of x2 may also be of interest. Thus, a very small value of C may lead to 
suspicions that the data had been made up rather than actually observed. (A fairly well known 
example is the pioneering experiment of Gregor Mendel, on inheritance of colour in sweet pea 
plants. The observed proportions with particular colours are so close to the theoretical ones that 
it is generally believed today that the experimenter must have given the data a bit of a helping 
hand.) 
(4) In this problem the notation C is used for the x2 goodness-of-fit test statistic, rather than 
X2 which is used in most other problems. In the past x2 was often used as the symbol for the 
statistic as well as for the distribution it takes, but this may cause confusion and is rarely done 
nowadays. The notation X2 is quite often found, but this is itself not very satisfactory. In the 
present problem, the binomial random variable was already denoted by the very commonly used 
X , and use of X2 as well would have been confusing! 

3B.2 The occurrences of thunderstorms 
The table below gives the number of thunderstorms reported in a particular summer month by 
100 meteorological stations. 

No. of thunderstorms (x ) 0 1 2  3 4 5  

V) 22 37 20 13 6 2 Number of stations 
reporting x thunderstorms 

(a) Test whether these data may be reasonably regarded as conforming to a Poisson 
distribution. 
(b) The average number of thunderstorms per month throughout the year is 1.0. Test whether 
the data above are well fitted by a Poisson distribution with mean 1 . O .  
(c) The binomial distribution with n = 5 , p  = 0.3 provides a good fit to the above data. 
Without further calculation state why, nevertheless, this binomial model is inappropriate. 
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Solution 
As in Problem 3B.1, the appropriate test for each of parts (a) and (b) is a x2  goodness-of-fit 
test; in the current problem, part (b) has the distribution completely specified, as in part (a) of 
Problem 3B. 1, whereas in part (a) here there is one parameter to be estimated, as in part (b) of 
Problem 3B. 1 .  
(a) The null hypothesis H o  is that the random variable X , the number of thunderstorms, has a 
Poisson distribution with probability function p ( x )  = e-+pX/x!, x = 0, 1 , 2 ,  . . . , with p 
unspecified. The data are given in the form of observed frequencies, fi, for 6 classes, 
corresponding to x = 0, 1 ,  2, 3, 4 and 5 or more (see Note 1). The 'e!pected' frequencies, e i ,  
required for the goodness-of-fit test statistic are calculated from ei = npi = 100ij , where Pi is 
obtained from the probability function above with p replaced by its estimate, the sample mean 
x . For the present data, X = 1.5, and 

e l  = rial = 100e-"5 = 22.3, 

ep = .a2 = lOO~1.5e-"~  = 33.5, 

- 

2 -1.5 
e3 = na3 = IOOX W = 25.1, 

2! 
. .  

eg = n - e l  - e2 - . . . - es = 1.8. 

If any of the eis is smaller than 5 ,  it is usual to combine adjacent classes until all e js  exceed 5 
(see Note 3). This will be achieved in the present example if the last two classes are combined, 
so that there are now 5 classes, and the new final class corresponds to x 2 4. 
The x' goodness-of-fit test statistic C can now be computed as 

Cfi - ei12 - - (22 - 22.3)2 + (37 - 33.5)2 + (20 - 25.1)2 
22.3 33.5 25.1 c = z  

i = l  ei 

13 - 12,6)2 + E c  = 1,76, 
12.6 6.5 

+ (  

The test statistic has, approximately, a x2 distribution with 3 degrees of freedom (see Note 1 of 
Problem 3B.1). The computed value is well below the upper 5% point of x$, which is 7.81, so 
the Poisson distribution provides a good fit to the present data. 
(b) The null hypothesis is now that X has a Poisson distribution with mean p = 1.0. In the x2 
goodness-of-fit test statistic the f is  are unchanged, but the e j s  are calculated from the 
probability function for the Poisson distribution with mean 1 .O ,  leading to the following values; 

e l  = lOOe-'" = 36.8, 

e2 = 100e-"O = 36.8, 
,-1.o 

e3 = 100- = 18.4, 2! 
. . .  

e6 = 100 - e l  - e2 - . . . - e5 = 0.4. 

This time it seems appropriate to combine the last three classes so that the new final class 
corresponds to x 5 3, with expected frequency 8.0. The test statistic is then 

Vi - ei)2 - (22 - 36.8)' + (37 - 36.8)2 + (20 - 1E.4)2 + 

= 27,22. - 
i= l  ei 36.8 36.8 18.4 8.0 

The test statistic again has, approximately, a x2 distribution with 3 degrees of freedom; one 
degree of freedom was lost compared to part (a) because there is one fewer class, but one was 
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gained because there are no unspecified parameters to estimate. The upper 1% point of x: is 
11.34, so that a Poisson distribution with mean 1.0 is not a good fit to the data. The physical 
explanation for this result is probably that thunderstorms are more frequent in the summer than 
the winter, and that although Poisson distributions may fit individual months’ frequencies of 
thunderstorms, the means of such distributions vary from month to month. Therefore, a 
common Poisson distribution cannot be fitted to all months of the year. 
(c) A binomial distribution with n = 5 defines a random variable which can take only the 
values 0, 1, 2,  3, 4 ,  5. But X ,  the number of thunderstorms per month, can clearly exceed 5, 
so that the binomial distribution cannot be appropriate for X . This illustrates that a good fit of 
a distribution to  a set of data is no guarantee that the distribution is a sensible one. 

Notes 
(1) The observed frequencies actually correspond to  x = 0, 1,  2, 3, 4 and 5. However, values 
of x greater than 5 can occur. (They have non-zero probabilities if a Poisson distribution is 
assumed.) In a x2 goodness-of-fit test, the set of all possible values for X is divided into 
classes, so values of x 2 6 must be included in some class. It is therefore convenient to 
consider the final observed frequency as corresponding to x 2 5. 
(2) Confusion sometimes arises concerning whether ‘expected’ frequencies, ei , should be 
rounded to the nearest integer. The eis need not be integers, in the same way that expectations 
of random variables need not be integers for integer-valued random variables (for example, the 
expected value of the uppermost face when a fair die is thrown is 3.5). In fact, rounding the e,s 
to the nearest integer will tend to worsen the x2 approximation to the distribution of 

xui - ei)2/ei ,  where k is the number of classes. However, there is no need to calculate the 

eis to a high degree of precision; one decimal place is often felt to be sufficient. 

(3) The distribution of 2 ui - ei)2/ei is only approximately x 2 ,  but the approximation is good 

provided that none of the eis is too small. The  best known ‘rule of thumb’ is that none of the 
eis  should be less than 5. If this is not so for the classes as chosen initially, then adjacent 
classes should be combined until e, 2 5 for all classes. This procedure has been adopted in the 
present example, but it is really more stringent than is necessary. In practice, the x 2  
approximation will still be. a good one if all eis are  greater than 1, and only a small proportion 
are less than 5. 

Thus, in part (b) of the problem, if only the last two, rather than the last three, classes are 
combined, then the last two expected frequencies become 6.1 and 1.8. A x2 approximation is 
still reasonable, and there are now 5 classes. The value of the test statistic becomes 35.25, and 
there are now 4 degrees of freedom. The upper 1% point of xf  is 13.28, so the conclusion that 
the Poisson distribution with mean 1 does not provide a good fit is a t  least as clear-cut as 
before. 
(4) It is not really necessary to look up tables of the x2  distribution in part (a). It is useful to 
remember that the mean of a x2 random variable (with v degrees of freedom, say) is v, and its 
variance is 2v. If the observed value of the test statistic is less than v, or if it exceeds v by no 
more than about m, then it is certainly not necessary to consult x2 tables in order to discover 
that the data provide no significant evidence of lack of fit to the postulated distribution. (This 
follows because the x: distribution can be approximated by a normal distribution with mean v 
and variance 2v; the approximation is a close one for v greater than about 100.) 
( 5 )  The aim of a goodness-of-fit test is, of course, to determine whether a particular 
distribution - here the Poisson - can be regarded as a plausible model for the data. Strictly, 
what we d o  is to set up  and test a null hypothesis that the observations form a random sample 
from the specified distribution. The natural alternative hypothesis is that the observations form 
a random sample from some other distribution. 

k 

i = l  

k 

i = l  
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The x2 goodness-of-fit test is a general-purpose test, which aims to reject the null hypothesis 
whenever the data come from another distribution. It is comprehensive, in the sense that, given 
a large enough sample, it can distinguish between any null hypothesis distribution and any 
other distribution. But while this is clearly desirable, it overlooks the fact that, usually, some 
alternative distributions are much more likely than are others. In the present case, we wish to 
test the hypothesis that the distribution is Poisson. Now one well-known feature of the Poisson 
distribution is the equality of mean and variance; it follows that one might consider as a test 
statistic the sample index of dispersion, defined as I = s 2 / X ,  in a natural notation. The null 
hypothesis would then be accepted if I were close to 1, and rejected otherwise. 

This cannot be regarded as a comprehensive, general-purpose test, since it cannot be used 
unless the null distribution is Poisson. Nor can it be expected to discriminate between the 
Poisson and another distribution for which the mean and variance are the same. But in practice 
a likely alternative to the Poisson distribution is one with a different (usually larger) variance. 
(See, for example, the discussion of contagious distributions in Note 1 to Problem 2A.7.) 

Rather than work directly with the statistic I, we carry out this test in practice by calculating 

where n is the sample size and X I ,  x2 ,  , . . , xn are the observations. It turns out that, 
approximately, C - x:-1, and the test is therefore called the x2 index of dispersion test. 
Applying the test to the data in the present problem, we find that the sum of the 100 
observations is 150 and the sum of their squares is 380; thus 

- 150 1502 
100 100 x = - -  - 1.5; ( n  - l)s2 = 380 - - = 155. 

Hence C = 155/1.5 = 103.33. This is very close to the centre of the x2 distribution on 99 
degrees of freedom (see Note 4), and we therefore accept the null hypothesis that the data come 
from a Poisson distribution. 

SpeCialised tests have also been constructed for other distributions (and in particular for the 
normal distribution). These generally out-perform the x2 goodness-of-fit test for the 
distribution concerned, but cannot sensibly be used for other null hypothesis distributions. (The 
problem of testing for independence in contingency tables has similar features; we discuss these 
in Note 1 to Problem 5C.2.) 

3B.3 The distribution of I.Q. 
Measurements of I.Q. were made for a random sample of 200 grammar school children, with 
the results given below. Test whether a normal distribution gives a satisfactory fit to the data. 

I.Q. No. of children I.Q. No. of children 

80-84 
85-89 
90-94 
95-99 

100-104 
105-109 
110-1 14 
115-1 19 
120-124 

1 
3 
16 
33 
44 
31 
26 
20 
8 

125-129 8 
130-134 2 
135-139 2 
140-144 1 
145-1 49 2 
150-154 0 
155-159 2 
160-1 64 1 
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Solution 
In order to use the x2  goodness-of-fit test, ‘expected’ frequencies are required for all categories. 
We denote the observed frequency in class i by f i  and the corresponding expected frequency by 
e i .  To find ei one must estimate the probability pi of an observation falling in class i. Then 
ei = n i l ,  where a, is the estimate of pi. 

We are fitting a normal distribution, but neither the mean, p, nor variance u2, is given. We 
therefore estimate p and u2 from the data using X and s 2 ,  the sample mean and variance, 
calculated by assuming that each observation is situated at the midpoint of its class. With this 
assumption, X = 107.58 and s 2  = 165.38. 

For class i ,  the value of pi is then obtained, from tables of the standardised normal 
distribution, by calculating the probability that a normal random variable with mean 107.58 and 
variance 165.38 takes a value between the lower and upper boundaries of that class. For 
example, consider the fourth class which has lower and upper boundaries 94.5 and 99.5 
respectively. The required probability is 

1 99.5 - 107.58 94.5 - 107.58 [ d165.38  1 - @[  d165.38  ’ a4 = @ 

where the function @(z ) is the cumulative distribution function of the standardised normal 
distribution. Hence 

a 4  = @(-0.628) - @(-1.017) 

= 0.2650 - 0.1546 = 0,1104, 

and so e4 = 2OOp4 = 22.1. 
This calculation must be repeated for all the other classes (see Note 2), but we find that the 

eis  for the last six classes are  (rounded to one decimal place) 2.3, 0 .9 ,  0 .3 ,  0.1, 0.0 and 0.0 
respectively, which are rather small. These classes are therefore combined (see Note 3 to 
Problem 3B.2), reducing the number of classes to 12. The values of f i  and ei for these twelve 
classes are as follows. 

Class f i  ei Class fi ei 

5 84 1 7.3 110-114 26 29.1 
85-89 3 8.7 115-119 20 23.7 
90-94 16 14.9 120-124 8 16.5 
95-99 33 22.1 125-129 8 10.0 

100-104 44 28.1 130-134 2 5.2 
105-109 31 30.8 2 135 8 3.6 

The x2 statistic X 2  is 

and under the null hypothesis that the data come from a normal distribution it has, 
approximately, a x 2  distribution with 9 degrees of freedom (9 = no. of classes - 1 - 2, since 
two parameters p and u2 were estimated). The value of X 2  is 36.52, which is well above any of 
the usual percentage points for x;  ; for example, the 1 % point is 21.67. We therefore conclude 
that the normal distribution does not provide a good fit to these data. (A possible explanation 
is given in Note 4.)  
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Notes 
(1) There are several points to be made regarding the choice of classes and class boundaries. 
Frequently the only data given are the numbers of observations in each of a set of pre- 
determined classes, but sometimes individual observations are given, and classes must be chosen 
as part of the solution. 

When classes are already given, it is usually straightforward to calculate or estimate the 
probability of falling in each class (under Ho) and hence obtain the e;s. However, there are two 
possible slight complications. 

Class boundaries may not be uniquely defined. This occurs in the present example where 
the first class contains observations up to 84, and the second class starts at 85. Fitting a 
normal distribution implies that I.Q. is continuous and could, in theory, take any value 
between 84 and 85. Assuming that it has been recorded to the nearest whole number, it is 
natural to take the boundary midway between 84 and 85, at 84.5. However, for other 
types of data, a different rule might be appropriate for deciding where to put the class 
boundary. For example, for ‘age last birthday’ and classes 15-19, 20-24, the boundary 
would be at 20, rather than at 19.5. 
The first or last class might be open-ended. In the present problem, for example, the first 
class could have been specified as simply ‘I.Q. 5 84’. This causes no problems in 
determining ei for the class, but it would make the calculation of mean and variance (if 
needed) ambiguous. 

When classes have to be chosen as part of a problem, convenience and common-sense play a 
large part in the choice, as with the choice of classes for a histogram. For moderate-sized data 
sets there should be as many classes as possible, subject to none of the eis being too small. 
However, there is little point in using more than about twenty classes (only possible with large 
data sets) unless a very sensitive test is required. Class boundaries should be chosen so that 
(a) it is easy to assign observations to classes; 
(b) it is easy to look up, or calculate, probabilities, and hence obtain expected frequencies, for 

Requirements (a) and (b) may sometimes be difficult to attain simultaneously, so that some 
trade-off, using common-sense, will be necessary. 
(2) For the first class, 

each class. 

has been calculated as 

the estimated probability of an I.Q. less than or equal to 84.5. We could have estimated 
instead the probability of I.Q. falling between 79.5 and 84.5, but we would then have needed to 
introduce one or more extra classes, all with f; = 0 ,  corresponding to values below 79.5. In 
theory there is no reason why this should not be done, provided that none of the eis for the new 
classes is too small, but in practice it is usual to take the classes as given and to treat the first 
and last classes as open-ended when calculating e;s.  
(3) Since I.Q. tests are generally constructed so that the score has a known mean p (which is 
usually 100) and known variance u2 for the population as a whole, we might have been 
required to test the fit of a normal distribution with specified mean and variance. The 
calculation would proceed as before with p and u2 replacing X and s2, but the test statistic 
would have two additional degrees of freedom. (A better, more informative, way of arranging 
these analyses would be first to test the fit of a normal distribution, as done in the solution 
here; then, if the fit were satisfactory, to assume normality and test hypotheses concerning p 
and u2. Similar considerations apply to the tests for specific binomial and Poisson distributions 
discussed in Problems 3B.1 and 3B.2.) 

(4) Given the context of the data it is hardly surprising that a normal distribution does not give 
a good fit. One would expect that there would be some cut-off value below which there were 
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very few I.Q. values amongst children selected for a grammar schocl. This would lead to a 
non-symmetric distribution for I.Q. whose upper tail is much longer than the lower tail, and 
this is indeed what is observed. Notice that, even without the formal test of significance, the 
pattern of the differences cfi - ei) gives rise to strong suspicions that the normal distribution is 
not a good fit. The first three differences are negative, followed by four positive differences, 
then five negative differences, and finally one further positive difference. 

3B.4 Frontal breadths of skulls 
An anthropologist collected details of 462 skulls of Burmese tribesmen. The data below give 
the frequencies of occurrence of different values of ‘frontal breadths’ (measured to the nearest 
mm) for the skulls. Construct a probability plot for the data, and discuss briefly whether you 
feel that the data could have been randomly drawn from a normal distribution. 

Use your plot to estimate the mean and standard deviation of the distribution. 

Range 
~ 

87-88 
89-90 
91-92 
93-94 
95-96 
97-98 
99-100 
101-102 
103- 104 
105-106 
107-108 
109-110 
11 1-1 12 
113-114 
115-116 

Cumulative 
Frequency Frequency 

5 5 
9 14 

26 40 
34 74 
59 133 
68 201 
80 281 
64 345 
47 392 
42 434 
12 446 
5 45 1 
3 454 
4 458 
4 462 

Solution 
In a probability plot the data values are plotted on the arithmetic scale, while the cumulative 
relative frequencies are plotted on the transformed scale. For grouped data, as here, the data 
values used are the class boundary points, (88.5, 100.5, . . . , 114.5), and against these are 

as percentages. (Note that the two extreme points (86.5,0%) and (116.5,100%) cannot be 

The probability plot for the data is shown in Figure 3.4. For clarity we have not drawn a 
straight line through the points on the plot, but have indicated by small circles two points 
through which such a line might go. 

If the sample (which is, of course, pretty large) were in  fact a random sample from a normal 
distribution, we would expect the probability plot to give virtually a straight line. In fact the 
plot is, by and large, straight, although the top few points d o  seem to deviate rather 
systematically from the line given by the rest. One might rcasonably conclude that in the 
extreme upper tail (about the top 3%) the data depart slightly from the normal shape. But the 
departure is not great, and would be consistent with two or three observations being recorded 

plotted the corresponding cumulative relative frequencies &, g, z, . . . , =, 458 all expressed 

plotted.) 
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Figure 3.4 Probability plot: skull data from Problem 3B.4 
(Based on ‘Chartwell’ probability paper, produced by H. W. Peel & Company Limited.) 

near 115 (exaggeration!) rather than near 110, so in general one would feel that the normal 
distribution fits the data rather well. 

As noted above, we have not superimposed a line on the points in Figure 3.4, but have 
indicated where a line through most of the points might Lie. This ‘line’ cuts the 50% line at 
about the point 99.5, and similarly meets the 5% and 95% Lines at points 91.6 and 107.4. The 
difference between these is an estimate of 2x1.645~7, where u is the standard deviation of the 
distribution. We thus find estimates of the mean and standard deviation of the distribution to 
be 99.5 and 4.80 respectively. 

Notes 
(1) The basis of the transformation used for the probability scale on probability paper can be 
expressed very precisely in mathematical terms. For our purposes it may be more helpful to 
think of it as follows, in terms of an ‘infinite’ sample, a sample so large that a histogram (with 
correspondingly narrow class intervals) would take precisely the shape of a normal distribution 
density function. A probability plot drawn for such an ‘infinite’ sample would give an exact 
straight line. 
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In practice, of course, such a result would be highly suspicious, and one has to  decide 
whether the ‘crooked’ appearance of .a real plot is due to non-normality or to chance 
fluctuations. As yet, there is no sound, objective, way to  d o  this, but the following 
consideration may be helpful. As we have seen, an ‘infinite’ normal sample shows as a straight 
line. Correspondingly, if one had an ‘infinite’ sample from some other distribution with a fairly 
smooth density function, one would expect the probability plot to  show as a fairly smooth curve. 
The question of normality or non-normality thus boils down to assessing whether the plot more 
nearly resembles points haphazardly scattered about a straight line or about a smooth curve; one 
must also bear in mind that, with random data, points are necessarily randomly positioned, and 
must therefore not draw very sweeping conclusions on the basis of the exact positions of one or 
two points. 

(2) In the solution we used the slope and intercept of the probability plot to provide estimates 
of the parameters p and u of the normal distribution. The basis of this method is as follows. If 
one had a perfect straight line, from an ‘infinite’ sample, then obviously the 50% point would 
give the population mean p, and since 90% of the distribution (from the 5 %  point to the 95% 
point) lies in the range p - 1,6450 to p + 1,645u, one could calculate u. For a real sample, 
the simplest method of estimating these parameters is to draw a ‘good’ line through the set of 
points, and to note the values corresponding to the 5% and 95% points. One then estimates p 
by the 50% point, and uses the distance between the other two points as an estimate of 
2 x  1.6450; a simple division by 3.29 thus gives the estimate of u. 

Of course, any two points will suffice to determine the slope of a straight line, so one could 
use values other than 5% and 95% if it were more convenient, with, naturally, a corresponding 
change to the divisor. Obviously any such informally produced estimates cannot be expected to 
be as efficient as the standard X and s (in the usual notation), but they d o  offer speed and 
simplicity. 
(3) The presentation of the data in the statement of the problem is partly helpful and partly 
distinctly unhelpful. The inclusion of the Cumulative Frequency column is a help, if not a 
substantial one; typically one would have to calculate this column from the preceding one. The 
unhelpful part is the first column, which appears to exclude values between 88 and 89, between 
90 and 91, etc. The difficulty is resolved by looking above the table, where we find that the 
data are measured to the nearest millimetre; thus, the class described as 93-94 in fact contains 
those skulls with breadths between 92.5 and 94.5. 
(4) A probability plot is, in essence, a way of testing the goodness of fit of a distribution to 
some data. The same job could have been done by use of a x 2  test, as in Problem 3B.3. 
Conversely, a probability plot could have been done for the I.Q. data of that problem. 

3B.5 Rotating bends 

A set of 15 observations was made on the number of million cycles to failure of certain 
industrial components known as ‘rotating bends’. It was thought that the logarithms of these 
quantities might be normally distributed; these logarithms are given below (to base 10, with 1 
added for convenience): 

0.301 0,519 0.653 0,690 0.892 
0.964 0.978 0.987 1.017 1.233 
1.342 1.357 1.562 1.845 1.944 

Produce a probability plot for the data, and discuss briefly whether you feel that the underlying 
distribution might be a normal distribution. 



116 Data Summarisation and Goodness-of-Fit 3B.S 

Solution 
When producing a probability plot for a set of individual observations, one starts by rearranging 
the sample values in ascending order of magnitude. One then plots the observations. on the 
linear axis of the probability paper, against appropriate quantities on the probability scale; these 
quantities are rather like the cumulative relative frequencies of Problem 3B.4, but the 
underlying ideas are somewhat different. A common practice, which we shall follow here, is to 
plot observation i ( i  = 1,2,  . . . ,n) against i / ( n + l )  (expressed as a percentage). For the 
current data n = 15, so the points plotted are (0.301, 6.25), (0.519, 12.50), . . . , 
(1.944, 93.75). The resulting plot is shown in Figure 3.5. We find the points to be arranged 
roughly in a straight line, and conclude that there is no strong suggestion that the data do not 
come from a normal distribution. 

1 
.99 

Figure 3.5 Probability plot: rotating bend data of Problem 3B.5 
( B a d  on 'Chartwell' probability paper, produced by H. W. Peel & Company Limited.) 
Notes 
(1) The technique used here is in essence the same as that for grouped data (see Problem 
3B.4), except that we make use of all the information available, and thus plot every point 
individually. The most natural method might seem to be to plot observation i (in ascending 
order of magnitude) against i l n  (expressed, like others following, as a percentage), since i/n is 
the proportion of the sample lying at or below the value taken by observation i .  This is 
unsatisfactory, however, for a variety of reasons. (One rather basic reason is that the smallest 
observation can be plotted (against l /n)  but not the largest, since n l n ,  i.e. loo%, is off the 
edge of the paper.) 

A small adjustment overcomes this particular problem; in the solution we used i / ( n  +1) in 
place of i l n .  This has the advantage of symmetry; the smallest observation (in the current 
sample) is plotted against &, or 6.25%, while the largest is plotted against $, or 
93.15% = 100% - 6.25%. 
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(2) The use of i / ( n + l )  as the ‘plotting position’ also has some theoretical backing. This is 
rather hard to summarise, but we can indicate a key result. Suppose we select a random sample 
from the uniform distribution on the range (0 , l )  and plot the values obtained as points on a 
line of unit length. Clearly, the n points divide the line into n + 1  regions. The key result is 
that each of these regions has mean length (n+l)-’; in other words, the n points divide the 
line, on average, into n + 1  equal parts; so that the average position of observation i is i l ( n  +l). 
(While we have presented this result for the special case of the uniform distribution, there is a 
generalisation covering any continuous distribution, and it is this which gives i / ( n + l )  its 
theoretical support.) 
(3) For small data sets, the plotting position used for the transformed scale of the probability 
plot is fairly arbitrary. As noted above, one can object to the position i / n  on grounds of lack of 
symmetry. Such a requirement restricts one, in practice, to plotting positions of the form 

i - b  
n + 1 - 2 6 ’  

but there is no general agreement on the best value for b . Popular choices are b =0, used in the 
solution, and given some justification above, b =ID, used more frequently with grouped data, 
and in some cases (though we cannot give a justification here) 6 =3/8. The plots from all these 
positions are, however, virtually indistinguishable, so one’s judgement as to the straightness or 
otherwise of a set of points is not really likely to be affected. 
(4) The Notes to Problem 3B.4 are also relevant here. In particular, one can use the 
probability plot in Figure 3.5 to estimate the parameters of the normal distribution. 
( 5 )  The reader will note that the data presented are the logarithms of the number of million 
cycles to failure of the components, and may wish to take anti-logarithms and thus discover 
whether the original data could be regarded as normal; this will be an instructive exercise, 
showing clearly that the normal distribution does not fit the original data. 
(6) In many problems in this book, techniques have been used which depend for their validity 
on the data being normally distributed. In practice, most statisticians would routinely obtain a 
probability plot, or some equivalent test of normality, before proceeding with such analyses. 
One must not, of course, expect that with only a few observations available one will be able to 
decide firmly whether or not the underlying distribution is normal. A random sample of size 15 
is still very small (though the plot suggested in Note 5 is decisive enough) and generally one 
needs at least 20 observations before one can have much confidence that a plot can distinguish 
normality from non-normality. (This point could usefully be explored with a class, with 
different members producing probability plots using samples of different sizes.) On the other 
hand, many techniques discussed later, though assuming normality, are still reasonably effective 
whenever the distribution is not too obviously non-normal. A probability plot is very useful in 
reassuring a statistician when this is the case. 

3B.6 Distribution of accidents in a factory 
The table shows the number of recorded accidents in each week in a large factory, over a period 
of 100 weeks. 

No. of accidents (x) 0 1 2 3 4 5 6 7 or more 

c f )  5 15 21 24 17 11 5 2 No. of weeks with 
x accidents 

Use probability paper 
(i) to verify that a Poisson distribution provides a good fit for the data; 
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(ii) to estimate the mean of the distribution; 
(iii) to estimate the probability that a particular future week wil l  have more than 8 accidents, 

assuming that the same Poisson distribution remains valid in the future. 

Solution 

Figure 3.6 Poisson probability plot from accident data (Problem 3B.6) 
(Based on ‘Chartwell’ probability paper, produced by H. W. Peel & Company Limited.) 

(i) The data are plotted on Poisson probability paper in Figure 3.6. The assessment of whether 
a Poisson distribution is a good fit, based on such a plot, is subjective. The idea is that if a 
Poisson distribution is appropriate then the plotted points will lie close to a straight line parallel 
to the vertical axis. 

The points are plotted on the curved lines which correspond to different values, c ,  of the 
random variable X ,  as indicated on the right-hand scale of the paper. The position of each 
plotted point is determined by an estimate of Pr(X 2 c) ,  which is calculated as the proportion 
of the data taking values of c or more. The left-hand scale on the paper gives this exceedance 
probability. 

In the present example the points do indeed lie close to such a line, with no obvious 
systematic deviation, so we conclude that the Poisson distribution provides a good fit to the 
data. 
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(ii) If exact Poisson probabilities are plotted on Poisson probability paper, then they lie on a 
vertical line, whose intercept on the horizontal axis is the mean of the distribution. Thus the 
intercept of the fitted line provides an estimate of the mean. For the present example, the 
estimate is somewhere between 2.9 and 3.0; it is impossible to be very precise when fitting the 
line by eye. (Counting the class ‘7 or more accidents’ as ‘7 accidents’, the sample mean number 
of accidents in a week is 2.96.) 
(iii) As stated above, the left-hand scale on Poisson probability paper gives the exceedance 
probabilities for a Poisson random variable with mean given on the horizontal scale. Observing 
where the line c = 9 intersects the plotted vertical straight line, and reading off on the left 
hand scale, gives an estimate of the probability of more than eight accidents. The estimate is 
0.003. 

Note 
The present problem illustrates the use of one of the less well-known types of probability paper, 
that for the Poisson distribution. Because such paper is relatively rare, we have included notes 
at the appropriate points in the solution, rather than gathering them together. 



4 Inference 

To most statisticians inference lies at the heart of the subject. The process of inference, of 
drawing conclusions from sample data about the entire, but unobservable, group from which the 
sample was randomly drawn, is in essence the universal process of scientific discovery and 
shares its obvious importance. 

Applications of inference are naturally frequent in scientific areas, but not only in those 
areas. Inference is used in opinion polling and in any form of sample enquiry, in educational 
research, and indeed in a vast range of applications. In this book we cover many different types 
of problem in which inferences are required. Some types, for example regression, analysis of 
variance and goodness-of-fit testing problems, are dealt with in other chapters, but it is 
important to keep in mind that all are particular facets of inference. 

In this chapter we concentrate on relatively straightforward cases involving the binomial, 
Poisson and normal distributions. But even with this restriction the scope is still wide. Thus we 
may be working with a single random sample, or may be comparing results from two samples. 
We may (in the case of the normal distribution, particularly) be working with an extra, 
unknown, parameter, or may have no such difficulty. The inferences may be required either in 
the form of confidence intervals or tests of hypotheses, and in the latter case we may need one- 
tailed or two-tailed tests. 

We have divided this chapter into four sections. The first two deal with the normal 
distribution, Section 4A deals with problems involving a single sample and Section 4B with 
two-sample problems. Section 4C deals with discrete data problems, and in particular those 
involving the binomial and Poisson distributions. Finally, in Section 4D we present a variety of 
problems not falling into any of the earlier categories, nor into the specialised types of inference 
discussed in Chapters 3 and 5 .  

4A One Sample: Normal Distribution 
In this first section we confine attention to the case in which a single random sample is 

selected from a normal distribution, and inferences are required about any unknown 
parameters. Using the conventional notation N(p,u2), the possible problems are those of 
making inferences about p when u is known (of very limited applicability in practice, but useful 
as a stepping-stone on the way to dealing with more realistic cases) and of making inferences 
about one or both of the parameters when neither is known. (The case where p is known but u 
is not rarely occurs in practice.) In each of these cases an inference may be required either in 
the form of a test of an appropriate hypothesis or in the form of the production of a confidence 
interval. 
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Notation for inferences relating to normal distributions is virtually standardised, and we shall 
be using it freely here and elsewhere. In particular, X (or, alternatively, 7, X2, etc.) will 
always be a sample mean, and s2 denotes a sample variance (using the divisor n - 1). 

Notation for percentage points of the normal, t , x2 and F -distributions is not as standardised, 
and it is convenient to  note our conventions here. For the standardised normal distribution, the 
symbol z seems to  be emerging as a near-standard, and a simple and convenient notation is 20.05 

for the 5 %  point, ~ 0 . 0 1  for the 1% point, and so on; thus ~ 0 . 0 5  is the point above which 5% of 
N( 0 , l )  lies, i.e. ~ 0 . 0 5  = 1.645. When working algebraically, we denote the point above which 
a proportion a lies (sometimes known as the l O O a  percentage point, or written as the lOOa% 
point) by z a .  

A similar notation will be used for the other distributions, except that r and x2 have a 
parameter, the number of 'degrees of freedom', attached to them; the F-distribution has two 
such parameters. W e  use subscripts to  denote the numbers of degrees of freedom, so that, for 
example, the 5 %  point of the r-distribution on 8 degrees of freedom will be written t g , ~ . ~ ~ ;  its 
value is 1.860. Further examples follow; the 1 %  point of the x 2  distribution on 10 degrees of 
freedom (which takes the value 23.21) will be written as x$,o.O1, and the 0.1% point of the 
F-distribution on 3 and 7 degrees of freedom (18.77) will be denoted by F3,7,0.001. (When we 
work algebraically, we modify the notation in a natural way; note that when the number of 
degrees of freedom is a function it will sometimes be placed in brackets, for clarity, as in  
1(~-1),&, the point in the t-distribution on n -1 degrees of freedom above which a proportion 
a/2 lies.) 

4A.1 Inngths of manufactured bolts 
Bolt.. are manufactured with a nominal length of 5cm, and it is known from past experience 
that the variance of the lengths of such bolts is 0.05 cm2. A random sample of 10 bolts is taken 
from a box containing a large number of bolts, and their lengths (in cm) are found to be 

5.68, 5.13, 5 .82 ,  5.71, 5.36, 5.52,  5.29, 5.77, 5.45, 5.39. 

(a) Find 95% confidence limits for the mean length, p, of bolts in the box, stating clearly any 
assumptions made in deriving the limits. 
(b) Without doing a formal test of a hypothesis, discuss whether p = Scm is a plausible 
hypothesis, given the result in part (a). 

(c) By looking only at  the number of bolts, out of 10, whose lengths are greater than Scm, 
construct a formal test of the null hypothesis H o  : c~ = 5 cm, against the alternative IfI  : p # 5 cm. 

Solution 

(a) We make the following assumptions. 
(i) The variance, u2, of the lengths of the bolts is known, and is 0.05 cm2. 
(ii) The observations are normally distributed, so that the sample mean 2 has the distribution 

With these assumptions, 95% confidence limits are given by X 5 1 , 9 6 a / f i .  For the present 
data, Y = 5,512, so the limits are 

N ( p , u 2 / n ) ,  i.e. N ( p , 0 . 0 0 5 )  when u2 = 0.05 and n = 10. 

or 5,512 -+ 0.139, i.e. the limits are 5.373 and 5.651. (Another way of expressing this is to say 
that (5.373,5.651) is a 95% confidence interval for p.) 

(b) The value p = 5 cm is a long way outside the 9.5% confidence limits for c ~ ,  and therefore 
p = 5 cm does not seem to be a plausible value for the parameter p. 
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(c) Each bolt is independently chosen, and each has the same probability of having a length 
greater than 5 cm. Thus the number Y of bolts longer than 5 cm is a binomial random variable 
with the number of ‘trials’ equal to 10. The probability p of success depends upon p; if 
p = 5 cm and the distribution is symmetric (though not necessarily normal) then p = ’;. Thus, 
making the assumption of symmetry, the null hypothesis Ho : p = 5 cm is equivalent to 
H o : p  = i, and a two-sided alternative will be equivalent to H ,  : p  # 4. The test statistic is 
simply Y, and the probability of obtaining a value of Y as extreme as the observed value, 
y = 10, is 

Pr(Y = 10) + Pr(Y = 0) = (;)lo + ( + ) ‘ O  = (+)9 = 0.002, 

because a two-tailed test is required. Since the probability found is less than 0.01, H o  would be 
rejected at  the 1% level (also, of course, a t  the 5% and 10% levels) but not a t  the 0.1% level. 

Notes 
(1) The statement of the problem clearly implies that the variance is to be treated as  known 
( i x .  that assumption (i) should be made). However, suppose now that u had not been given, 
and so had to be treated as unknown. Then the expression X * z a R a / f i  for the confidence 
limits would need to be replaced by X f t ( n - l ) , d s / G ,  where s2 is the sample variance and 
r(,pl),aR is the value exceeded with probability a/2 by a random variable with the r-distribution 
on n -1 degrees of freedom, i.e. it is the appropriate percentage point of r . 

In the present example, 
n 2  

s2 = 1 {?xi? - [ E x i ]  I n ]  = $ (304.2874 - (55.12)2/10 
1-1 n -1  i = l  

and t9,0.025 = 2.26, so the limits become 5,512 2 2.26Xv0.05177/10, or 5.512 2 0.163; i.e. 
the limits of the 95% confidence interval are 5.349 and 5.675. 

The value of s2  is very similar to the value specified earlier for u2, but the limits for p are 
wider, since r-distributions have longer tails than does N( 0 , l ) .  This reflects the additional 
uncertainty because of the fact that u is unknown, rather than being a fixed, known, constant. 

Assumption (ii), that observations are normally distributed, is needed because the sample size 
used is rather small. When the sample size is large, the sample mean x is approximately 
normally distributed, regardless (almost!) of the distribution of the individual observations, 
from the Central Limit Theorem. However, the result is asymptotic, and cannot be assumed to 
be effective when the sample size is as small as 10, unless the shape of the distribution of 
individual observations is known to be very close to that of the normal distribution. 
(2) There is an equivalence between tests of hypotheses and confidence intervals. In the 
present example, a test of H o  : p = po against H I  : p # po will have as a test statistic 

and H ,  will be rejected in a test of size (or significance level) a if the value z taken by Z is 
such that 1z 1 ? z d .  But z will be in this rejection region if ,  and only if, po is outside the 
corrcsponding confidence interval for p with confidence coefficient 1 - a. 

Since po = 5 cm is outside the 95% confidence interval found in part (a) it follows that 
H o  : p = 5 cm will be rejected at  the 5% level. In fact, 

= 7.24, 5,512 - 5.000 
vmmi z =  

so that H ,  will in this case be rejected also at  very much smaller significance levels. 
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(3) The solution given to part (c) is not the only acceptable one, since in  principle other types 
of test could be constructed. However, little could be done without making a n  assumption of 
symmetry. The  test used in the solution is, in fact, known as the sign test, and is a non- 
parametric test. Since the test converts the hypothesis into one concerning p , the probability 
that an observation is greater than 5 cm, the null hypothesis is then expressible as 

Pr(observation > 5 )  = +, 

and one is really testing the hypothesis that the population median is 5cm.  
distribution is symmetric, the mean and median are, of course, identical. 

When the 

4A.2 Liletimes of electrical components 

Consider a confidence interval, with confidence coefficient 1 -a, for the mean of a normal 
distribution with known variance u2, based on a random sample of n observations. How does 
the width of the interval change 

(i) as n is increased, keeping u2 and a fixed; 
(ii) as u2 is increased, keeping n and a fixed; 
(iii) as Q is decreased, keeping n and u2 fixed? 

The standard deviation of the lifetime of a certain type of electrical component is 144 hours. 
How large a sample of the components must be taken to be (a) 95%,  (b) 99% confident that 
the error in the estimated mean lifetime of such components will not exceed (i) 15 hours, (ii) 20 
hours? 

Solution 

The width of the confidence interval is 2 z d  u / 6 ,  so that 
(i) as n increases, the width decreases and is proportional to 1 / 6  ; 
(ii) as u2 increases, the width increases and is proportional to u; 
(iii) as a decreases, the width increases, since the width is proportional to z d  and zan increases 

These three results are all intuitively reasonable. 
We now assume that lifetimes are normally distributed, and that the term ‘error in the 

estimated mean’ is interpreted as the half-width, w ,  of a n  appropriate confidence interval. 
(Other interpretations are discussed in Note 4.)  Because. of normality, w = z d u / V % ,  since 
the confidence interval has end-points X 2 z a u / f i ,  and we require w .I wo,  where 
w o  = 15, 20 in (i), (ii) respectively. 

Now w 5 w o  implies z d u / V %  5 w o  or n 2 ( z ~ u / w ~ ) ~ .  We are given that u = 144 and 
from tables of the normal distribution we find z d  = 1.96 and 2.58 in (a) and (b) respectively. 
Thus we have, rounding up to the nearest integer (see Note 6), 

as a decreases, i.e. as 1 - a, the confidence coefficient, increases. 

for case (a)(i), n 2 

forcase(a)(ii),  n 2 

As might be expected, larger sample sizes are needed to achieve higher degrees of confidence, 
and also to  obtain narrower confidence intervals. 
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Notes 
(1) The assumption of normality is almost certainly intended here, even though distributions of 
lifetimes are often positively skewed and hence not normal. In any case, with the large values 
of n found in the solution, the mean of the observations will be approximately normally 
distributed (by the Central Limit Theorem) even if individual observations are  not. There are 
also possibilities for transforming data before an analysis to  reduce skewness. See, for example, 
the data in Problems 3B.5 and 4B.5, where logarithms of the original values were used. 
(2) In the solution we assumed normality of the observations. No alternative distribution 
seems very natural, although general results can be obtained from Tchebychev’s inequality? 
which is valid for any distribution. The inequality states that, for any random variable Y, 

1 Pr(jY-E(Y)l > k m )  < 2, 
where k is any positive constant. If Y = x , then its variance is a%, and k d f i  can be 
interpreted as the ‘error in  the estimated mean’, since it is the half-width of a confidence 
interval derived from Tchebychev’s inequality. 

Then k d 6  5 wo 
1 

k 2  
For a 95% confidence interval, put - = 0.05, so that k = 4.47. 

implies that 

n 2 k202/w$ = 2Oo2/w$. 

For case (a)(;), wo = 15 and u = 144, so that n 2 20x(144)’/152 = 1843. Similar 
calculations may be done for the other parts of the problem. 

Because Tchebychev’s inequality holds for any distribution, the confidence interval which it 
gives for p is generally much wider than a corresponding confidence interval based on specific 
distributional assumptions. Hence the sample size needed to achieve a given width has to be 
much greater when it is based on Tchebychev’s inequality, rather than on specific distributional 
assumptions. 

(3) Another interpretation of the problem is that we are required to find the minimum value of 
n such that Pr( 1 x -pi I w o )  2 1 -a. However, since k - N ( p , u 2 / n ) ,  it  follows that 

Z = wo6]. For t y  probability to 

be. greater or equal to  1 - Q,  we must have - 2 z a ,  i.e. n 2 [F] , so we have the 

- - N(0,1),  and Pr( 1 X -pi 5 wo )  = Pr 
a/ n 

(T 

same answer as before. 
(4) Other interpretations of ‘error in the estimated mean’ include the full width of a confidence 
interval for the mean, and the standard error of the mean. The full width of the interval is 2 w ,  
so that the required sample sizes will be 22, or 4, times those for the half interval, w .  By 
contrast, the standard error of the mean is u / f i  = w / z d ,  so for that interpretation the 
required sample sizes will be ( l / z d ) ’  times those for w . 
( 5 )  If the variance, u’, is not known, but a estimate s2 is available based on an initial (pilot) 

sample of size m , then n 2 will provide a guide to the size of sample needed 

in order to provide a confidence interval of half-width less than or equal to W O .  However, this 
will only be an approximate guide to the correct value for n . Usually the estimate of cr2 used in  
the confidence interval will be based on all the n observations taken, and will be different from 
s2, unless n c m , in which case no further observations are needed. 

If n > m , the estimated value for n will be approximate, but it is more likely to overestimate 
than to underestimate since r( , , - l ) ,d > t ( , - l ) , a  for n > m .  

t ( , , - l ) , a  - I :or 
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(6) For case (a)(i), ( Z ~ U / W ~ ) ~  = 354.04. If n = 354, then w is (very slightly) greater than 
wo. But n must be an integer, since it is a sample size, so we need n 2 355 in order to obtain 
w 5 wo. Similar considerations apply, of course, in the three other cases. 

4A.3 The diameters of marbles 
A machine produces marbles whose diameters are normally distributed with mean 12.00mm. 
After modification of the machine, the diameters of a random sample of 105 marbles produced 
were found to have mean 12.010 mm and standard deviation 0,050 rnm. Would you conclude 
that the modification has affected the mean diameter? 

S o h  tion 
Since the population standard deviation is unknown, a z-test cannot be used, and a t-test is 
appropriate. The null hypothesis is that the modification has not affected the mean diameter, 
i.e. that p = 12.00mm; the alternative is that the mean has been affected, i.e. that 
p # 12.00mm, a two-sided alternative. We note that X = 12.010, that s = 0.050 and that 
n = 105. 

The t -statistic is defined as 

t = w, 
so here 

12.010 - 12.000 = 2,049, 
O.OSdl05  t =  

and this must be compared with percentage points of the t-distribution on n-1, i.e. 104, 
degrees of freedom. Since the alternative hypothesis is two-sided, a two-tailed test is needed, 
and the two-tailed 5% point of t l w  is 1.98, so the result is just significant a t  the 5% level. Such 
a level is commonly regarded as providing moderate, if not strong, evidence against a null 
hypothesis; we conclude that the mean diameter has been affected. 

Notes 
(1) Had the problem referred to the modification increasing rather than affecting the mean 
diameter, the alternative hypothesis would have been one-sided, i.e. that p > 12.00 mm, and a 
one-tailed test would have been required. The t-statistic is still 2,049, but the 5% critical value 
is now 1.66. The hypothesis is still rejected at the 5% level but not a t  the 1% level, for which 
the critical value is 2.36. 
(2) With 104 degrees of freedom, the t-statistic can be considered as approximately distributed 
as N(0 , l ) .  So in this case, as in others when the sample size exceeds about 30, the more easily 
memorable percentage points of N(0,1), e.g. 1 .96 for a two-tailed 5% point, may be used as an 
approximation. The conclusion is the same. 
(3) The problem might easily have asked for a 95% confidence interval to be given for p, 
instead of for a test of a hypothesis. The confidence interval argument would have started from 
the fact that, using equation (*), the statistic t has Student’s t-distribution on 104 degrees of 
freedom, and that only p (the parameter of interest) is unknown. The  two-tailed 5% point of 
tla being 1.98, we therefore have 

or 

Pr(-1.98 c -+ ~r 1.98) = 0.95, 
s/  n 

Pr(X - 1 . 9 8 ~ 1 6  5 p 5 X + 1 . 9 8 s / f i )  = 0.95. 
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The 95% confidence interval for p is thus (X - 1 , 9 8 s / f i ,  X + 1 . 9 8 s / f i )  and substituting 
X = 12.010, s = 0,050, n = 105 gives the answer, viz. (12.000, 12.020). The null hypothesis 
value 12.00 seems to come just on the edge of this confidence interval, which reflects the fact 
that the t-statistic in the solution was very close to the critical value 1.98. However, if we were 
to work to unrealistic accuracy, we would find the lower limit of the confidence interval to be 
just above 12.00. The  exclusion (if only just!) of this point p = 12.00 from the 95% two-sided 
interval is merely a re-expression of the statement that on a 5% two-tailed test the hypothesis 
p = 12.00 is rejected. (See also Note 2 to Problem 4A.1.) 
(4) Although it is correct to conclude, as in the solution, that the mean diameter has been 
affected, most practising statisticians would take note of the fact that the value 2.049 is only 
just larger than 1.98, the critical value. Had one of the sample values been only a little 
smaller, the result might not have been significant at the 5% level, and statisticians are, 
generally, averse to basing decisions on evidence as slender as this. In such cases one might 
recommend that further evidence be obtained with a view to clarifying the matter. (Note that if 
a second random sample of 105 also had mean 12.010mm and s.d. 0.050mm, the value of t 
from the combined sample of 210 would now be 2.90, and would be judged highly significant.) 
( 5 )  The use by statisticians of the word ‘significant’ gives rise to much confusion. The 
difficulty lies in the fact that the word has slightly different technical and non-technical 
meanings, and not unnaturally these can be confused. 

To focus ideas we consider the example of a crop experiment in which the aim is to compare 
the effects of two fertilisers A and B , applying each fertiliser to a random sample of plants and 
using a t -test to compare the sample mean yields. From the ‘significance test’ one might decide 
that ‘the mean yield for A is significantly higher than that for B’. 

Now the natural interpretation of this is that A is better than B by an amount which is 
‘significant’, or important, so that A would be likely to give much better results than B .  
Unfortunately, such an interpretation would be wrong. The true meaning of ‘significant’, in 
this context, is simply that the observed result signijies that the null hypothesis is felt to be 
implausible and is thus rejected. In other words, the difference between the sample means is 
sufficiently large to indicate to us that the true mean for A is greater than that for B ; note, 
though, that we have not said by how much it is greater, and hence we cannot say that A is 
better by an important, o r  ‘significant’, amount. Indeed, one reason for using large samples is 
to enable us to detect very small differences. 

As we have seen, a hypothesis test cannot tell us by how much the mean for A exceeds that 
for B . This question will often be of interest, and the complementary technique of confidence 
intervals aims to answer it. 

4A.4 
The manager of a bottling plant is anxious to reduce the variability in net weight of fruit 
bottled. Over a long period the standard deviation has been 15.2gm. A new machine is 
introduced, and the net weights (in grams) in randomly selected bottles (all of the same 
nominal weight) are 

987, 966, 955, 977, 981, 967, 975,980, 953, 972. 

Variability in weight of bottled fruit 

Would you report to  the manager that the new machine has a better performance? 

Solution 
With data of this sort we assume that the weights are independently normally distributed, say 
N ( p ,  u2). The mean p is unknown, and interest centres on the variance u2, for which we have 
HO : u2 = 08 = 15,22 ; H I  : u2 < 02. For tests concerning the variance of a normal distribution 
the appropriate statistic is C = ( n  -l)s2/u$ , where s2 is the sample variance; denoting the 10 
sample members by xl,. . . , x r o ,  we have %Ti = 9713 and 2: = 9435347, and hence 
Z(xi - X ) 2  = 1110.1. This is, of course, (n-l)s2,  so C = 4.805. Under the null hypothesis 
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C has the x 2  distribution with 9 degrees of freedom, and the lower 5 %  point is 3.30. The null 
hypothesis that the standard deviation is unchanged at  15.2 gm cannot therefore be rejected, so 
we would not report that the new machine is better. 

Notes 
(1) The x2  distribution is asymmetric, and many people find using its percentage points tricky. 
In the problem above it is clear that the lower - and less usual - tail is needed, since we wish 
to accept the alternative hypothesis that the standard deviation has been reduced only if the 
sample standard deviation is sufficiently small. In working out what values of x2  constitute the 
lower tail, it may be. helpful to remember that E(C) = v, where v is the number of degrees of 
freedom. So in the case being discussed, values of x2  above 9 are towards the upper tail, values 
less than 9 towards the lower tail. (A fuller discussion of this point is given in Note 4 to 
Problem 3B.2.) 
(2) Suppose the problem had asked for a two-sided 95% confidence interval for u2 . To obtain 
a confidence interval from first principles, one starts with a pivoralfunction, a function of sample 
members and the parameter of interest alone, whose distribution is known. In the present case, 
C = ( n  -l)s2/c2 is such a function, and its distribution is indeed known, i.e. x2  with 9 degrees 
of freedom. (Another example is given in Problem 4B.6.) Using tables of the x2 distribution, 
we can thus write 

with equal tail areas being omitted at  each end of the range. The confidence interval for u2 is 
thus 

1 (n -l)s2 ( n  -l)s2 
19.02 ' 2.70 

Since (n- l ) s2  = 1110.1, the interval is (58.36, 411.15). The corresponding 95% confidence 
interval for u, the standard deviation, is found by simply taking square roots, leading to the 
interval (7.64, 20.28). 
(3) With many modern calculators it is quite feasible to work directly with raw data (as we did 
above) when obtaining sums and sums of squares, but one must naturally be careful to avoid 
errors resulting from truncation, particularly when finding the square of a number with many 
significant digits. For the data above, we might well have coded by subtracting 950, say, and 
indeed this would have been very desirable had the data been analysed without using a 
calculator. 

4A.5 
(a) For a certain type of manufactured product, the weight is expected to be 350gm, and the 
standard deviation is known to be 20gm. The mean weight of 9 randomly selected items was 
362 gm. Was there evidence of a change in weight, and if so a t  what level of significance? 
(b) The process was changed, but with the standard deviation remaining the same. Nine 
randomly selected items had weights (in grams) of 

Changes in weight of manufactured product 

327,350,374,359,397,367,331,368,385. 

Is there now evidence that the mean weight has been increased? 
(c) For the data in part (b), would it be reasonable to suggest that the standard deviation has 
probably changed? 
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Solution 

(a) The population standard deviation (a, say) is known to be 20, so that a r-test is 
unnecessary. We test the null hypothesis that the mean p is = 350 against a two-sided 
alternative. The  sample mean X is 362, and we calculate 

X-PO 362 - 350 
ul n 20i 9 

z = -yJ- = = 1.80. 

This lies between the familiar percentage points 1.645 and 1.96, so the result is significant a t  
the 10% level only. We conclude that the evidence for a change is only very slight. 
(b) The natural estimate of is provided again by the sample mean X, which is again 362. 
The test statistic z is, thus, still 1.80, but the wording of the problem shows that this time a 
one-tailed test is needed. The 5% point is therefore 1.645, and we would conclude that there is 
reasonable evidence for an increase in mean weight. 
(c) We now need to test the hypothesis u = 20 against a two-sided alternative hypothesis. The 
test of a general null hypothesis u = uo is based on the statistic C = ( n  - l)s2/a$, which under 
this null hypothesis has a x2 distribution on n - 1 degrees of freedom, n being the sample size. 
Here n = 9  and (coding the observations by subtracting 300 from each) the sum of the 
observations is 558 and the sum of squares is 38 894. Hence 

( n  - l)s2 = 38894 - 55g2/9 = 4298. 

The test statistic C is thus 4298/202, or 10.745, to be compared with tables of x2 on 8 degrees 
of freedom. Now &,.g = 3.49 and X $ , O . ~  = 13.4, so the value observed lies comfortably in the 
central portion of the distribution. We d o  not, therefore, reject the null hypothesis a = 20, and 
we conclude that the evidence does not suggest that the standard deviation has probably 
changed. 

Notes 
(1) All the analyses undertaken in this problem assume that the observations are a random 
sample from a normal distribution. Such assumptions are commonly left unstated, as in the 
formal solution here, but it is really a good idea always to  make assumptions explicit. Of the 
assumptions made here, it would not be possible to assess randomness without information as to 
how sampling was conducted. However, assuming randomness, normality can in principle be 
tested informally using a probability plot, or more formally using a goodness-of-fit test such as 
the x2 test. The problems in Section 3B show how such tests can be done, though with a sample 
of size only 9 it would be almost impossible to determine whether the underlying distribution is 
normal. 
(2) Notwithstanding the comments in Note 1, z -tests and t-tests are not very sensitive to failure 
of an assumption of normality, in the sense that if the distribution is actually not normal but of 
a not utterly dissimilar shape the size (i.e. the significance level) of a test will be close to the 
nominal size. By contrast, tests on 
variances are distinctly more sensitive to non-normality, and F-tests (for comparing two sample 
variances) are extremely sensitive. 
(3) This problem is based on a real examination question. But the analysis required in 
part (b), in particular, falls short of normal statistical practice. It is hard to imagine 
circumstances in which, a change having occurred, one could be so sure that the standard 
deviation was unaltered that one would wish to analyse data without first checking the 
assumption. In practice one would usually avoid such an assumption by using a t-test. 

This result follows from the Central Limit Theorem. 
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4A.6 Estimating the mean and variance 

$ ( x i -  X)2,  both of which are  used (a) Discuss the two expressions - 2 (xi - X )2 and - 1 ”  
n j=] ( n  -1) ; = I  . .  

to measure the spread of a set of observations x l ,  x 2 ,  . . . , x,, 

(b) A random sample of n observations is taken from a distribution; the sum of the 
observations is r , ,  and the sum of the squares of the observations is t2 .  Explain how to estimate 
the mean and the variance of the distribution from which the random sample was taken. 
(c) Given the random sample described in part (b), write down expressions (based on t l  

and t 2 )  for estimates of the mean and variance of the mean of a further, independent, random 
sample of size m , from the original distribution. 
(d) Given that n = 25 ,  t l  = 400 and r 2  = 8800, construct a 99% confidence interval for the 
mean of the distribution, and use it to test whether or not this mean could be 20. 

Solution 

(a) Given a set of n observations, xl, x 2 ,  . . . , x,,, the quantity s: = l 5 ( x , - F ) ’  gives a 
n i = l  

measure of ‘spread’ for this set of observations. It can be thought of as the variance of the 
discrete probability distribution which assigns probability l / n  to each of the values 
xl, x 2 ,  . . , , x , .  (Further discussion can be found in Note 8 to Problem 3A.1.) I f  we simply 
wish to summarise the ‘spread’ of observations, then s: , or its square root, provides a suitable 
measure. 

If the n observations are a random sample from some larger (possibly infinite, possibly 
hypothetical) population or distribution, then we may want to use the sample to make 
inferences about the variance, u2, of the population or distribution. The statistic s; can be 
used as an estimate of c2, as well as being a summary measure for the sample, but 
s2 = -- I 5 ( x ,  - X )2 is usually preferred as an estimate. There are various reasons for this 

(n -1) i = l  
preference (and some reasons, too, why s: might be used) but the main one is that s2 is 
obtained from an unbiased estimator for u2, whereas s; is not. Of course, if n is large, it 
makes very little practical difference whether s 2  or s; is used. 

(b) The obvious estimate of the mean, p, is r 1 h .  Also, following on from part (a), the 
obvious estimate of the variance c2 is s2, which can be written as 

(c) If the original distribution has mean p and variance u2, then the sample mean, for a 
sample of size m , has a distribution with mean and variance a2/rn. The obvious estimates of 

n 
t l  32 1 these quantities are, from (b), X = - and - = ____ m m ( n - 1 )  

31, n 
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(d) Assuming that the distribution is normal, confidence limits for the mean are of the form 

I 400 I 400 
25 X * tcn-l),de. Now X = - = 16.0 and s2 = $ 8800 - && = 100. Also 

t24,0.005 = 2.80, from tables, so the limits of the 9'9% confidence' interval are 
16.0 * 2.80xlO/d%, or 16.0 2 5.6. Thus the required interval is (10.4, 21.6). 

This interval includes the value 20.0, so on the basis of this confidence interval the hypothesis 
that p = 20 would be accepted at  the 1 %  level. 

Notes 
(1) No assumptions are asked for, or spelled out, in this problem. Either the assumption of 
normality is intended, or perhaps it could be assumed that, in part (d), n = 25 is large enough 
for the sample mean to be normally distributed, regardless of the distribution of individual 
observations. In either case the expression X 2 z & s / G  might be used for the confidence 
interval, that is, we might replace t ( , - l ) , &  by z a .  For n = 25 and Q = 0.01, we have 
t24,o.W5 = 2.80. But ~ 0 . 0 0 5  = 2.58, so the corresponding interval will be somewhat narrower. 
(2) The value 20 hypothesised for p is not very far inside the interval. For example, if a 90% 
interval is constructed, rather than a 99% interval, using t24,0.05 = 1.71, then the interval is 
(12.58 , 19.42), which does not include 20. Thus the hypothesis p = 20 would have been 
rejected at  the 10% level. (See Note 2 to  Problem 4A.1, amongst other places, for further 
discussion of the links between confidence intervals and tests of hypotheses.) 

4B Two Samples: Normal Distribution 
We now move on to the naturally more complex case where we have observations from two 

normal distributions, and the object is to compare corresponding parameters of the 
distributions. In many respects the analyses of means are, mathematically, straightforward 
extensions of single-sample procedures; but there are techniques needed for two-sample 
problems which d o  not derive directly from the single-sample case. For example, when 
comparing variances of two samples the appropriate analysis requires a test based on the 
F -distribution. 

48.1 

(a) On a particular day a random sample of 12 tins of peas is taken from the output of a 
canning factory, and their contents are weighed. The mean and standard deviation of weight 
for the sample are 301.8gm and 1.8gm respectively. Find 99% confidence limits for the mean 
weight of peas in tins produced by the factory on the day in question. 
(b) On the following day a further random sample of 12 tins is taken, and the mean and 
standard deviation of contents for this sample are 302.1 gm and 1.6 gm respectively. Assuming 
that the variances of the weights are the same on the two days, show that a 95% confidence 
interval for the difference between mean weights on the two days includes zero. 
(c) Assume now that the samples on both days are from the same population. Find a 99% 
confidence interval for the mean weight of tins in that population, based on both samples. 

Weights of tins of peas 

Solution 
(a) The confidence limits for the mean net weight of tins produced on the first day have the 
general form 
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as was given in part (d) of the solution to Problem 4A.6. In the current example, X = 301.8, 
s = 1.8, n = 12, a = 0.01, and t11,0.005 = 3.106, so the limits are 

The limits are therefore 300.19 gm and 303.41 gm. 
(b) The phrasing of this part of the question differs from that of part (a), in that it asks for a 
confidence interval rather than confidence limits. Confidence limits are simply the end-points of 
a confidence interval. Making the suggested assumption of equal variances for the populations 
of tins produced on the two days, the expression for a confidence interval for the difference in 
means between the two days has the general form 

where s," is the pooled variance for the two samples (see Note 3), and the remaining notation is 
conventional. 

But El = 301.8, X, = 302.1, sp2 = 2.90, a = 0.05, and t2Z,0.mS = 2.074, so the required 
interval has end-points 

-0.3 f 2 . 0 7 4 x m x d -  

The interval is therefore (- 1,74,1.14), which includes zero. 
(c) Since the confidence interval for the difference between mean weights includes zero the 
assumption specified, that the samples come from a common population, seems not 
unreasonable. Given two independent random samples of sizes n 1  and n 2 ,  with sample means 
x and X2  and with sample variances x; and 5 2 ,  the mean and variance of the combined 
sample are given by 

- 

- 
- n l x  + n 2 X 2  .r = ______ 

"1 + "2 

and 

n 1  + t12 - I 

(See Problem 4B.3 for a fuller discussion of these formulae.) 
- (12X301.8) + (12X302.1) = 301,9s, 

24 
I = 

and 

L3 

The reauired confidence interval has the same form as that 

For the present data, 

= 2.80. 

in part (a), but with F, s and n . ,  
now taking the values just calculated for the combincd sample of 24 observations. Thus the 
interval has end-points X 2 t23,0005 x s / f i ,  which become 301.95 2 2.81 x 1 . 6 7 / m  or 
301.95 rt 0.96. The interval is therefore (300.99, 302.91). (An alternative, simpler. interval is 
discussed in Note 3.) 
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Notes 
(1) In each part of this problem, a confidence interval or pair of confidence limits is required. 
Occasionally a single confidence limit, or equivalently a one-sided confidence interval, is 
wanted and the current problem illustrates a situation where a one-sided interval might be 
considered appropriate. 

Suppose that the tins are labelled as weighing 300gm net, and that it is a legal requirement 
for the mean weight of contents of all tins to  be at  least 300gm. The  management will then be 
more interested in a lower limit for the mean weight than an upper limit (though, of course, if 
the mean weight is too far above 300gm7 profits will be eroded). A lower limit, with 
confidence coefficient 1-a, is 

In the current example, i11.0.01 = 2.718, so that a 99% lower confidence limit for the mean 
weight, based on the first sample, is 

301.8 - (2.718x1.8/*), 

or 300.39 gm. The corresponding one-sided confidence interval now consists of all values 
greater than 300.39gm. Although this type of interval is substantially different from the two- 
sided 99% interval, in particular because it has no upper limit, it still has the same probability 
of covering the true mean weight. In fact, any interval of the form 

where a1 + a2 = a, has the same coverage probability (1-a). In practice, however, the most 
usual choices of al, a2 are 

(i) a1 = a 2  = a/2, leading to the usual (two-sided) confidence interval, 
(ii) a1 = a, a2 = 0, leading to  a lower confidence limit, and a corresponding one-sided 

confidence interval with no upper bound, and 
( i i i )a l  = 0, 1x2 = a, leading to a n  upper confidence limit, and a corresponding one-sided 

confidence interval with n o  lower bound. 
The equivalence between (two-sided) confidence intervals and (two-tailed) tests of hypotheses 

was discussed in Note 2 to Problem 4A. 1. There is similarly an equivalence between one-sided 
confidence intervals and one-tailed tests of hypotheses. For example, a test of H o :  p = p o  
against H1: p > (or HI: p C h) will reject H O  at  significance level a if and only if p o  is 
below (above) the one-sided lower (upper) confidence limit for p, with confidence coefficient 
1-a. 

Finally, it should be noted that one-sided confidence limits, and intervals, can readily be 
found in other situations (e.g. intervals for variances, binomial parameters, differences between 
means, etc.) by simple modifications of the expressions for two-sided intervals. Often, all that 
is needed is to look a t  one, rather than both, of the two-sided limits, but replace $a by a in the 
cut-off of the appropriate distribution ( z  t ,  x2,  etc.). 
(2) For the confidence interval in part (b) to  be valid, one must assume that variances for the 
two populations of interest are equal. There is also an unspoken assumption that weights are 
normally distributed underlying all the confidence intervals in the problem. 

If the assumption of equal variances is in doubt, it can be tested using the F-test (see the 
Note to  Problem 4B.3). In the present case s: and s z  are close enough for a formal test to be 
unnecessary but, for completeness, we perform the test. The ratio of sample variances is easily 
seen to be 
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This is to be compared with percentage points of the F-distribution on n - 1 and n2  - 1 
degrees of freedom and, since Fll , l l ,o .o5 = 2.82 > 1.27, we would accept the null hypothesis 
that the two variances are equal. (The result is not even significant a t  the 10% level, on a 
two-tailed test.) 

When the variances are not equal, there is no single standard form for a confidence interval 
for the difference in means, unless "1  and n2 are large. In this event an interval whose 
confidence coefficient is approximately 1-a is given by 

using a natural notation. Since the two samples are large, the sample variances will be good 
estimates of the true variances, so the expression is an approximation to  

which gives a confidence interval, with confidence coefficient exactly 1 -a, when the variances 
uf and uj are known, and normality can be assumed. The  latter expression is still 
approximately valid in the absence of normality, for large enough samples, because of the 
Central Limit Theorem. 

Returning to the expression 

we illustrate its use for the current data. The  sample sizes are really too small to guarantee a 
good approximation but, because sf and s j  are very similar, the interval given by the 
approximation will not be too different, numerically, from that found earlier. The  interval has 
end-points 

{ (1%)2 + 11.6)2)$ 
12 12 

-0.3 2 1.96 

= -0.3 t 1.96X0.695, 

i.e. the interval is (-1.66, 1.06). In fact, because of the equal sample sizes, 

where s,' is the pooled variance, as used in part (b), and the only difference between the 
interval found there and the present one is the replacement of t22,0.025 = 2,074 by 
20.025 = 1.96, which makes the latter interval somewhat narrower than it should be. 
(3) The so-called pooled variance, s;, for the two samples is given by 

( n l - - I ) s ?  + ( n 2 - 1 ) s Z  
s," = 

n l + n 2 - 2  f 

which reduces to ;(s; + s j )  when n l  = "2. Note that 

2 " (x,; - X)2  

j = l i = 1  n1+ n 2 -  1 
which is, in general, not the same as s2 = , the sample variance which 
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would be obtained if we treated all n1+n2 observations as coming from a single population, as 
required in the final part of the problem. In part (b), the population variances, but clearly not 
the means, are assumed to  be the same, so we use the first expression. 

In part (c), a confidence interval can be constructed using s,' instead of s2. Such an interval 
has end-points 

This will generally be slightly wider than that based on s , which uses the additional information 
that the two samples are drawn from populations with the same mean, and hence gains a degree 
of freedom. However, the interval is only slightly wider, and is somewhat easier to calculate. 
In the present example, the interval using s; is (300.97, 302.93), with width 1.96, compared to 
the interval using s 2  which has width 1.92. 

48.2 Experimental teaching of arithmetic 

In a study of a new method of teaching arithmetic, claimed to  improve on conventional 
techniques, 400 children were divided a t  random into two groups A and B, of sizes 250 and 150 
respectively. Those in group B were taught using the experimental method, while those in 
group A were taught by conventional methods. After completion of the course all the pupils 
were given the same test paper, and the group scores were as follows. 

Group A : mean 67.8, variance 60.4, 
Group B : mean 70.2, variance 55.6.  

Is there any evidence that method B is effective? State carefully your null hypothesis, 
alternative hypothesis and conclusion. 

Solution 

We use a natural notation, with a subscript A or B indicating the group concerned. So we have 
nA = 250, ttB = 150, F A  = 67.8, F B  = 70.2, s i  = 60.4, and s z  = 55.6. = 250 
observations on method A will be assumed to be. independent N ( ~ A ,  ui), and similarly the 
nS = 150 on B are N ( p B ,  ui). The null hypothesis will be that the two methods are equally 
effective; i.e. we have H o  : pA = pB . Since B is an experimental method a natural alternative to 
consider is whether it improves on the standard method, A, so we choose the one-sided 
alternative hypothesis H 1 : pa < pa. 

Since the population variances 02 and m i  are unknown, a natural test to consider is a two- 
sample r-test, which depends for its validity on equality of these two variances. In this case s 2  
and s; are very close, so such an assumption is very reasonable. The appropriate test statistic 
for the hypothesis H o  is then 

The 

- - 
X A  - x B  

1 '  I =  

s [* + 3% 
where s2, the pooled estimate of the common population variance, is given by 

and the statistic r has the r-distribution on nA + ng - 2 degrees of freedom. 
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Straightforward calculation now gives 
2 4 9 x 6 0 4  + 149x55.6 = 58,60, ,2 = 

398 
so that 

= -3.036. 67.8 - 70.2 
t =  

The r-distribution on 398 degrees of freedom is, for all practical purposes, the same as N( 0, l),  
so for a one-tailed test a t  the 5% level the critical value is -1,645. Corresponding critical 
values for 1% and 0.1% tests are -2.326 and -3.090. We therefore reject the hypothesis a t  
the 1% level (if not quite a t  the 0.1% level), and conclude that there is strong evidence that 
method B improves on its competitor. 

Notes 
(1) The plausibility of the assumption that u i  = us2 can be judged formally by setting up that 
assumption as a hypothesis and testing it. The test for equality of variances of two normal 
distributions is an F-test with test statistic s?/s?, here equal to  1,086. This has to be compared 
with percentage points of the F-distribution on 249 and 149 degrees of freedom, using a two- 
tailed test (unless there is some reason to d o  otherwise, not hinted at  in the statement of the 
present problem). 

Unfortunately, few published tables deal in such high numbers for the degrees of freedom, 
but one can sometimes get a lower bound for a percentage point by looking at  the ‘m’ row or 
column of tables of F. So, for example, we find that the 10% point (on a two-tailed test) of 
F , , l S ~  is 1.223, and the corresponding point of F249,1@ will be larger than this. Since the 
observed ratio is only 1.086, the hypothesis of equality of u i  and us2 cannot be rejected. (It is 
possible to be more precise than this, since there are formulae, quoted in some books of tables, 
giving approximate percentage points for use when the numbers of degrees of freedom are 
large.) 
(2) In the solution we assumed the data to be normally distributed when deriving the r -test. In 
practice, when samples are as large as they are hcre, the Central Limit Theorem gives assurance 
that the sample means have distributions adequately approximated by normal distributions, 
unless the distribution of the individual observations is very odd. 

(3) While arguments based on the r-test are logically sound, there is an alternative two-sample 
test for equality of normal means. This is available when the samples are large (i.e. the theory 
ju;tifyinf it is asymptotic) but it does have the advantage of not requiring the assumption that 
u i  = us. The equivalent confidence interval procedure is described in Note 2 to Problem 
4B. 1. 
(4) In the special case in which nA = nB = n ,  say, the test of the null hypothesis pA = p B  is 
carried out by comparing the statistic 

- - 
X A  - 1 s  

s V2/n 
with percentage points of the t-distribution on 2n - 2 degrees of freedom. Now if a two-tailed 
test is required, one can perform the test by comparing !FA -Fs I with t s m ,  where t 
represents the appropriate percentage point of the r-distribution. What we are doing is, 
therefore, to compare the observed difference between the sample means with 

t,,&vzx, 
where v is the number of degrees of freedom, here 2n - 2. The quantity displayed is known as 
the Least Significant Difference, and an equivalent quantity is used in Problems 5B.1 and 5B.3. 
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48.3 Milk yield of cows 

(a) Two independent random samples of sizes "1, n2 are available, with sample means XI ,  F 2  
and sample variances s: , s$ respectively. If the two samples are combined to give a single 
sample of size n 1  + n2,  and with sample mean X and variance s2, show that 

n l X l  + " 2 x 2  

n 1 +  n 2  
x =  

and 

(b) A random sample of 10 dairy cows is taken from a large herd at Farm A, and the weekly 
milk yield, in kg, is recorded for each cow in the sample. Similar measurements are made for a 
random sample of 15 cows from a large herd at Farm B. The sample mean and sample 
variance for Farm A are 142 kg and 440 k 2 ,  whereas the sample mean and sample variance for 
the combined sample of 25 cows are 158 kg and 816 k$ respectively. Calculate the mean and 
variance for the sample of cows from Farm B. 
(c) Find a 95% confidence interval for the variance of milk yield at Farm A. 
(d) Repeat part (c) for Farm B and discuss carefully, without doing any further formal 
analysis, whether the variances at the two farms could be equal. 

Solution 
(a) For the sample mean, we have 

X = (Sum of all nl + n2 observations)/(nl + n2) 

"I  "2 

i=l i = l  
= ( + Z x z i ) / ( n 1  + nz), with obvious notation, 

= ( n l x l  + n z F 2 ) / ( n 1  + n2). 

To derive the formula for sample variance we make use of an identity for the sum of squares of 
any set of observations y1, y2, . . . , yn about any constant c ,  viz. 

i ( Y i  - c y  = icyi - y) '  + n ( Y  - c y ,  
I=l  i = l  

where is the sample mean of the n observations. 
From first principles, the sample variance of the n l  + n2 observations is given by 

,2 = {Sum of squares about the common mean X} 
n 1 + n 2 - 1  

Now, from equation (*), we have for the first sample 
" I  " I  

j - 1  i = l  
E ( q i - X ) 2  = C(X]i - X1)2 + ,Il(Xl - X)* = (n1  - 1)s; + n1(?r1 - X)*, 

and similarly for the second sample. Hence 

( r r 1 + n 2 - 1 ) s 2 =  ( n 1 - l ) s f  + ( n 2 - 1 ) s J  + n l ( ~ l - - ~ ) ~  + n 2 ( ~ 2 - ~ ) ~ .  
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n l F l  + n 2 F 2  

"1 + n2 
Now, since X = , we obtain 

and similarly 

Combining all these we reach the required result 

(b) This is simply an application of part (a). For the means, we have (in kg) 
(nl + n 2 ) F  - "1x1 

"2 
x2 = 

- 25x158 - 10x142 = 168.67kg, - 
15 

For variances, 

24x816 - 9x440 - - (142 - 168.67)2 

14 
- 25 - 

- 19584 - 3960 - 4266.67 = 81 ,24 kg - 
14 

(c) Confidence intervals for a variance are based on the x2 distribution; for example, the 
interval for 012 has the form 

(n1-  lb? 
x&, - 0.(1 -an) 

c: a? c ("1 - lb? 
xi?., -l),an 

where &-I) ,& and x $ , - ~ ) , ( ~ - d )  are upper and lower +a points, respectively, of the x2 
distribution with (nl-1)  degrees of freedom. For a 95% interval, x&,.m = 19.02 and 
x$,o.w~ = 2.70, from standard statistical tables, so the interval is 

I"", 19.02 s] = (208.20, 1466.67). 
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(d) The required interval is 

(n2 - 1)s; (n2 - 1)s; __ 
' 2  X m ?  I ) , O  025 X ( n ,  - 1),0 975 I. 

and from a table of the x2 distribution we find that x ; d , 0 0 2 ~  = 26.12 and x;4,0975 = 5 63, so 
the interval is 

There is a considerable amount of overlap between the intervals for uf and uj, so it seems 
plausible that the variances for the two farms could be the same. 

* Note 

Despite the conclusion above, it is not necessarily the case that overlap between confidence 
intervals implies that equality of the two parameters is plausible. Consider, for example, the 
normal means pl and p2 when the corresponding variances a?, ui are known. A confidence 

interval for pl - p 2  has half-width z d ( a f / n l  + oj/n2)', (cf. Note 2 to Problem 4B.1) so 
equality of p.1 and p 2  is implausible if 

1 

1 

~ XI - ~ 2 1  > z d ( a : / n l  + u?/n2)T. 

However, individual intervals for p1 , p 2  will overlap if 

1 XI - x 2 /  < Z d U l / f i  + Z&U2/*. 
1 

Now z d ( u l / f i  + u 2 / 6 )  2 z d ( u f / n I  + o$/n2)'. (In the simplest case when u1 = a 2  

and n1 = n 2 ,  the ratio of (ul/V'& + a2/ f i )  and (a;/nl + a22/n2)' is *.) We see, 
therefore, that overlap between intervals can occur when p1 = p 2  is implausible. 

The formal test of Ho: af = a; was not required here, but it is based on the F-distribution. 
H o  is rejected in favour of H I :  uf # a2 if 

s12 s? 
- > F ( n l - l ) , ( n 2 - l ) , d  
s2 $ 1  

or 7 > F(n2-l) , (n , - l ) ,d .  

(Since these percentage points of F are always greater than 1, we need only consider whichever 
of s:/sj and s i / s f  is greater than one, and compare it with the relevant F-distribution.) 

In the present example, sf/sf  = 1.84 and Fl4,g,0.m5 = 3.80, so H O  would be accepted. This 
test can, in fact, be adapted to give a confidence interval for af/a? of the form 

But F9,14,0.025 = 3.21, so the interval is 

") = (0.17, 2.07), 
1.84X3.21 ' 1.84 

which comfortably includes the null value a?/uj = 1 
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4B.4 Speeding up mathematical tasks 
Eight schoolchildren, chosen at  random from the first year of a large school, were given, 
without prior warning, a mathematical task, and the time taken (in minutes) by each child to 
complete the task was recorded. 

The following day the children were instructed how to perform such tasks efficiently, and a 
week later they were tested again on a similar task. Once again, the time taken to complete the 
task was recorded for each child and the results were as follows. 

Time taken (minutes) 

Child 1 2 3 4 5 6 7 8 

Beforeinstruction 26 20 17 21 23 24 21 18 
After instruction 19 14 13 16 19 18 16 17 

(a) Find a 90% confidence interval for the mean time taken by first year children (i) before 
instruction, and (ii) after instruction, assuming that times are normally distributed. 

(b) Find a 90% confidence interval for the mean diffcrcnce between times before and after 
instruction, for first year children. 

(c) Approximately how many children would have been needed in the sample in order to 
achieve a confidence interval in part (b) whose total width is 2 minutes? 

Solution 

(a) The familiar formula X 2 t ( , ,  I),,* gives the required confidence intervals. We shall 

use a subscript 1 to denote measurements made before instruction and subscript 2 for the later 
ones. Before instruction, 

8 8 
x ~ l j  = 170, z.~fj = 3676, 

i - 1  i = l  

(Coding the data would simplify the arithmetic a little - see Problem 3A.1.) After instruction, 
8 8 
X X ~ ;  = 132, EX?; = 2212, 
i - 1  i = l  

Since t7,o.o5 = 1,895, the 90% confidence limits for the mean time before instruction are 

21.25 * 1 . 8 9 5 m  = 21.25 5 2.02, 

so the 90% confidence interval is (19.23 , 23.27). After instruction the corresponding limits 
become 

16.5 * 1.895- = 16.5 2 1.48, 

i.e. the 90% confidence interval is (15.02 , 17.98). 
(b) To obtain an interval for the difference between means on the two occasions, we use the 
fact that the data are paired. The  interval is then 
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where 2 is the mean difference for the samples, and s] is the sample variance for the 
individual differences. The  individual differences are 

7 , 6 ,  4, 5 , 4 , 6 , 5 ,  1, 

38 8 8 
SO Edi = 38 and E d ?  = 204. Hence = - = 4.75 (= 21.25 - 16.5 = X l  - r2), and 

i = l  8 i = l  

The 90% confidence limits for the mean difference (or, equivalently, the difference between 
means) are therefore 

4.75 2 1,895- 

= 4.75 2 1.23. 

The 90% confidence interval is thus (3.52, 5.98). 

(c) The width of the confidence interval in part (b) is 2r~n-11,0.05 sd and so it  is proportional 

to l/G. If we took a larger sample, then r (n-1) ,o.05 would decrease, and sd would change, but 
to get an approximate idea of the sample size needed to achieve a given width, we will keep 
these quantities fixed. 

A sample of size 8 gives an interval of width 2.46, so to get the width down to 2 (minutes), 
we will need a sample size of approximately 8 ~ ( 2 . 4 6 ) * / ( 2 ) ~  = 12.1, and rounding up  gives a 
required sample size of 13 children. 

T' 

Notes 
(1) The expression for a confidence interval for a difference between two means used in 
Problem 4B.1 would not be appropriate here, because it does not take into account the 
correlation between the times for each child (those who were fastest before instruction also tend 
to be fastest after instruction). Because of this correlation, the quantity s:(llnl + l / n J  over- 
estimates the variance of X I  - X2, hence leading to an interval that is wider than necessary, as 
we shall now verify numerically. The erroneous interval is 

( x l  - '2) * t ( n l + n , - 2 ) , 0 . 0 5  sp f l l  + l l n 2 .  

90% confidence interval has end-points 

4.75 2 1.761 6.96 - + - { [; ;I}; 
and the interval is thus (2.43, 7.07). We see that the failure to  take into account the paired 
nature of the data leads to a 'confidence interval' whose width is almost twice as great as that of 
the correct one. (A related matter is discussed in Note 1 to Problem 4B.5.) 
(2) As with Problem 4B.1, the situation in this problem is one where a one-sided confidence 
interval might be of interest. Suppose, for example, that the instruction period involves 
expensive equipment. A lower confidence limit for the mean rmprovement in speed provided by 
the instruction might then be required before deciding on the purchase of expensive equipment. 
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As before, there is an equivalence between one-sided (two-sided) confidence intervals for 
differences between means and corresponding one-tailed (two-tailed) tests of hypotheses 
regarding differences in means. When diflerences between means (or between binomial 
proportions - see Problems 4C.5 and 4C.6) are of interest, it is much more common to be 
asked to set up a test of the hypothesis of no difference between means (or proportions), rather 
than to construct a confidence interval. The latter procedure is nevertheless a useful one, and it 
can be used to test the hypothesis of equal means (proportions) simply by seeing whether or not 
zero is contained in the interval. 

* (3) If we wished to get a slightly better estimate of the required sample size, we could take 
account of the variation in t ( , -1) ,o.05 as n vanes, although it will only decrease from 1.895 to 
1,645 as n goes from 8 to infinity, a relatively small amount of change compared with the 
possible variations in sd as the sample size is increased. However, there is little we can do to 
take account of change in sd , so we consider it to be fixed. The calculations in part (c) suggest 
a sample size of 13, but since the value of t should be less than 1,895, it may be possible to 
achieve the required width with a smaller sample size. In fact, for n = 12, the width is 

2tl l ,o.o5Xsd/f i  = 2x1’796- = 1.90. 

For n = 11, the width is 

2X1 .812XVTSTi - i  = 2.002, 

so the required width of 2 minutes is achieved, by these (still approximate) calculations when 
n = 12, but it is not quite achieved for n = 11. (It will, of course, be achieved for n = 11 if 
sd for the larger sample is slightly smaller than that of the original sample. Conversely, it may 
not be achieved for larger n if sd increases.) 

4B.5 Peeling potatoes faster 
An experiment was conducted to compare the performance of two potato peelers, and in 
particular to discover whether the typical user might be able to peel potatoes faster with one 
rather than the other. Ten volunteers were used, and each was given both peelers for a period 
before the experiment in order to gain familiarity with them. In the experiment the volunteer 
subjects used both peelers on standardised amounts of potatoes, and then repeated the 
experiment with the peelers used in the opposite order, so as to eliminate any effect due to 
ordering. The table below gives, for each subject, the mean of the natural logarithms of time 
(in seconds) needed to complete the tasks. 

Peeler 
B Subject A 

1 2.33 2.34 
2 2.76 2.79 
3 1.91 1.91 
4 2.62 2.60 
5 2.01 2.03 
6 1.77 1.80 
7 1.81 1.81 
8 1.99 2.00 
9 1.97 1.98 

10 2.26 2.30 

Use Student’s t-test, at the 5% level of significance, to test whether the peelers differ in their 
efficiency. 
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Solution 
For data of this type a paired sample t-test is required. We therefore form the 10 differences 
d,, . , , , dlo between the results for peelers A and B, viz. 

-0.01, -0.03, 0.00, 0.02, -0.02, -0.03 , 0.00, -0.01, -0.01, -0.04. 

Treating them as a random sample from N ( p ,  u2), we test the null hypothesis p = 0 (with u2 
unknown). In a natural notation, we thus compare 

with the two-tailed 5% p i n t s  of Student's t-distribution on 9 degrees of freedom, i.e. with 
k2.262. Since 2 = -0.013 and s = 0.0177, the value of I is -2,327. We thus reject the null 
hypothesis, and conclude that the peelers differ in their mean level of efficiency. 

Notes 

normal distribution. A simple model which leads to the required condition is that 
* (1) For a paired-sample t-test to be justified, the differences must be a random sample from a 

result = effect of subject + effect of peeler + random error, 

as long as the random errors are themselves normally distributed. This model is in fact just a 
restatement of the standard model leading to a two-way analysis of variance, discussed in 
Problem 5B.3. In fact the paired-sample r-test is just a special case of two-way analysis of 
variance, though it is customarily justified using a more intuitive approach. 
(2) The problem asks for a test that the two peelers differ. This does indicate, of course, that 
a two-tailed test is required, but is, as a hypothesis, too vague to use as a null hypothesis. 
(There is no way in which such a hypothesis could be formally disproved.) 
(3) The paired sample test is used because the 20 observations arose through both peelers being 
used by the same 10 volunteers. Had there been 20 volunteers, 10 randomly allocated to peeler 
A and the remaining 10 to peeler B, the two-sample t-test (i.e. the test for two independent 
samples, as discussed in Problem 4B.2) would have been needed. 

(4) If one peeler were more efficient than the other, one would expect it to have the effect of 
reducing the time required by a fraction rather than by a constant. Similarly, a good subject 
might do the job in half the time, rather than in 10 seconds less. For these reasons, it seems 
implausible for a model such as that in Note 1 to apply to the times themselves, but if one takes 
logarithms the model might well be a reasonable one. 

There are many other circumstances in which one feels instinctively that a multiplicative 
rather than an additive model is likely to be more appropriate; the analysis then almost 
invariably starts by taking logarithms. This is particularly true in the area of economics, in 
which many quantities (inflation, wage claims, discounts) are naturally discussed in terms of 
percentages or proportions. 
(5) The data used in this problem are recorded to 3 significant digits. But the test used is 
based on the differences dl,  d?,  . . . , dlo, and through cancellation these are only available to 
one significant digit. In practice most statisticians would argue that in these circumstances the 
t-statistic could not be calculated at  all accurately, and that the results from a test ought 
therefore to be regarded with some caution. In the solution the value of t was found to be 
-2.327, and the appropriate percentage point was -2.262. These values are really too close 
for us to feel confident in rejecting the null hypothesis a t  the 5% levei. 

Even if we were to reject the hypothesis, there remains the fact that the observed differences 
are very small. The discussion in Note 5 to Problem 4A.3 of the distinction between statistical 
and practical significance is of considerable relevance here. 
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* 4B.6 Estimating a ratio 
Independent normal random variables X and Y have means p and p p  respectively, and both 
have variance 1. The ratio p of their means is of particular interest. Show that the distribution 
of Y - pX depends upon p, but not upon p. 

A single observation is made on each of X and Y ,  resulting in values x and y respectively. 
Use your result to test the hypothesis p = 1 against an alternative p # 1 at  the 5% level when 
(i) x = 0.3 and y = 2.7, 
(ii) x = 0.3 and y = 1.5. 

Solution 
We are given that X - N ( p ,  1)  and Y - N(pp,  1)  independently. We thus obtain 

E(Y - p X )  = E(Y) - pE(X) = p p  - pp = 0 
and, by independence, 

Var(Y - p ~ )  = Var(Y) + p2Var(X) = 1 + p2. 

Since linear combinations of normally distributed random variables are themselves normally 
distributed we obtain 

Y - p X  - N ( 0 , 1 + p 2 ) ,  

depending on p alone, as required. 

the hypothesis is taken as true. 
parameter p is eliminated, and under the null hypothesis that p = 1 

To test a hypothesis we examine the sampling distribution of an appropriate statistic, when 
The statistic Y - pX is appropriate, since the unwanted 

Y - p x  = Y -x - N ( O , 2 ) ,  

( Y  -X) - N( 0 , l ) .  

so that 

77 
For case (i) the observed value of Y - X is y - x = 2 4 ,  and 2 4 ~  = 1,697, which we must 
compare with the well-known percentage points of N(O, l ) ,  using a two-tailed test. Since 
-1.96 < 1.697 < +1.96, we d o  not reject the hypothesis that p = 1 on the 5% two-tailed test, 
despite the observed ratio 2.7/0.3 of 9.0. 

We would naturally expect from this that for case (ii) the hypothesis will again not be 
rejected, and so it turns out. Now y - x  is 1.2, with a corresponding standardised deviate of 
1.2/*, which is clearly not outside the range (-1.96, +1,96). 

Notes 
(1) This relatively unfamiliar piece of theory gives valuable insights. Note that the problem 
involves two unknown parameters and p; interest lies in one, p, only, while p is an example 
of what is actually termed a nuisance parameter. In order to make inferences about the 
parameter of interest, p must be eliminated from the problem. This is done in general by 
finding a so-called pivotuf function: that is, a function of the observations and the parameter of 
interest whose sampling distribution does not depend on any parameter. In the present case 
Y - pX has this property. (See. Note 2 to Problem 4A.4 for a related discussion.) 

Another, much more familiar, problem can also be set in the same framework, the problem 
of inference about a normal mean when the variance u2 is unknown. The mean of the 
distribution is now the parameter of interest, while u is the nuisance parameter. As is well 
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known, the problem is solved by use of Student’s t-test. 
appropriate statistic would have been 

Had u been known, then the 

555 
using an obvious notation. However, with u unknown, this statistic cannot be calculated, and 
we use instead thc pivotal function 

x - p  
S A G  ’ 

whose distribution (Student’s t on n - 1 degrees of freedom) does not depend on the unknown 
parameter u, and so overcomes the difficulty, just as Y - pX does in the present problem. 
(2) The problem also gives an unusual but most valuable insight into the meaning of 
confidence intervals. A common but mistaken view of a confidence interval is that the entire 
natural range for a parameter (--M to -M in the case of p here) gives a 100% confidence interval 
for that parameter, while a lesser degree of confidence will be attached to any narrower 
interval. This simple approach does in fact work for many straightforward problems (and hence 
perpetuates the mistaken view!) but the present problem has attracted much academic interest 
because the simple ideas break down. 

The easiest way of obtaining a confidence interval for p is to make use of the link with tests 
of hypotheses; a 95% confidence interval for p consists of all values for p not rejected by a 
hypothesis test a t  the 5% level. In the present problem we were required to test the hypothesis 
p = 1, and we can generalise. this to test the hypothesis p = PO. The appropriate test statistic is 
now Y - pfi, and when p = po the distribution of the statistic is N( 0 , l  + pt). Denoting the 
observed value of Y - pfi by y - p ~ ,  we see that we must compare 

Y - P #  _- m 
with percentage points of N( 0, l ) ,  for example, with 21.96 for a 5% test. Accordingly a value 
po for p lies in the 95% confidence interval if 

== +1,96, m- -1.96 5 

i.e. if (’ - p ~ ) ’  5 1.962 = 3.8416. The 95% confidence interval for p thus includes all those 
1 + P t  

values po satisfying 

01 -POX)’ 5 3.8416(1 + pt), 

or  ( y 2  - 3.8416) - 2xypo + (x2-3.S416)p; 5 0. 

(For any other confidence coefficient, one merely changes the coefficient 3,8416 = 1.96’.) One 
now obtains the confidence interval simply by solving a quadratic equation, but it is important 
to note that the confidence interval is not necessarily the interval between the two roots; if 
ix I < 1.96 the coefficient of p i  is negative, so values between the roots will be the only ones 
not in the confidence interval! This happens, of course, when x = 0.3, so in case (i) here the 
95% confidence interval for p is the entire real line except for the interval (-1.20, 0.77). Note 
that the value p = 1 lies inside the confidence interval, as  is required, since the hypothesis p = 1 
was not rejected. 

One would have expected the same feature to occur in case (ii), but in fact this case is still 
more awkward. When x = 0.3,  y = 1.5, the quadratic inequality reduces to 

-1.5916 - 0.9po - 3.7516~2 5 0, 

or 3.7516~8 + 0 . 9 ~ 0  + 1.5916 2 0. 
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The corresponding quadratic equation has no real roots, so the inequality is satisfied for all 
real values po. It follows that the 95% confidence interval for p is (-a, m), a finding which 
gives the amateur and the experienced statistician alike rather a jolt. 

The paradox arises because it is easy to slip into the error of imagining that every 95% 
confidence interval has a 95% chance of covering the true value of the parameter concerned, 
and similarly for other levels of confidence, so that (-m, m) can only be a 100% confidence 
interval. Of several correct interpretations of confidence intervals, it  is convenient to use here 
the link with hypothesis tests. A 95% confidence interval is that interval including all values of 
the parameter held to be consistent with the data (i.e. not rejected) on a 5% test. In the present 
case (ii), it is clear that it would be hard to  sustain a claim that any particular value for 
p = E(Y)/E(X) was incompatible with the two observations. A simple (and, frankly, too 
rough-and-ready) argument to justify this looks at  x and y separately. From x = 0.3, a 95% 
confidence interval for p = E(X) is (-1.66, 2.26). A similar interval for p p  = E(Y) is 
(-0.46, 3.46). Since both intervals include positive and negative values, and since in particular 
the interval for E(X) contains 0 it is easy to see that it is quite plausible for p to be small or 
large, positive or negative; the information available from x and y does not enable us to 
exclude any real value from the confidence interval as being incompatible with the data. 

We have perhaps taken the reader quite far enough into uncharted territory already. We 
ought, however, to add the comment that this paradoxical - not to say perverse - behaviour of 
confidence intervals noted above has not escaped the attention of academic statisticians, and 
that it has been the subject of lively controversy. 

4C Binomial and Poisson Distributions 
While calculations for tests and intervals are generally simplest for normal distributions, the 

problems are no less important when other distributions are involved, most particularly the 
binomial and Poisson. (In fact these distributions can be especially instructive, particularly 
when the numbers involved are kept small and convenient.) 

A difficulty with the binomial and Poisson distributions is that, Rith increasing sample size, 
calculations quickly become tiresome, especially when finding confidence intervals. 
Approximations are then of great value, and in particular the normal distribution can provide a 
very good approximation, as mentioned in Note 1 to Problem 2A.3 and in Problem 2A.7. Use 
of the normal distribution is illustrated several times in this section. 

4C.1 T h e  pink and white flowers 

A seed manufacturer claims that in a particular variety sold by him there will be one white 
flower for every three pink flowers. You buy a packet and plant the contents, obtaining 21 
pink and 3 white flowers. Do you accept the manufacturer’s claim? 

Solution 

The ‘claim’ that 75% of flowers will be pink is simply a hypothesis that p , the probability of a 
pink flower, is 0.75. The number X of pink flowers arising from the planting of 24 seeds is 
binomially distributed; so we are required to  examine whether 21 seeds is ‘extreme’ in the 
context of B (24, 0.75). The significance level of the result is just the probability of observing a 
result a t  least as extreme. Now the probability of observing 21 or more is 

(:;) (0.75)21(0.25)3 + ( ;$)(0.75)22(0.25)2 + ( :j)(0.75)23(0.25)’ + (0.75)24, 

or 0,1150. This would, then, be the significance level on a one-tailed test, but here a two-tailed 
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test is needed, since there is nothing in the problem to suggest that an alternative p > 0.75 is 
intendcd. The two-tailed test will have a significance level roughly double 0.115, so there is no 
question of rejecting the hypothesis p = 0.75. We accordingly accept the manufacturer’s claim. 

Notes 
(1) Two-tailed tests for discrete data are difficult, as they are with non-symmetrical sampling 
distributions generally, since it is hard to judge when a result is as extreme as the one observed, 
but in the other tail. In the current case a two-tailed test is needed, and the difficulty just 
mentioned is avoided because there is no question of significance even on a one-tailed test, and 
thus a fortiori the two-tailed test will be non-significant. 

Had a significance level been required, the most reasonable solution would have been to treat 
the (binomial) distribution as symmetrical about x = 18. (Note 1 to Problem 2A.3 provides 
some justification for this.) We would then calculate 

Pr(X 5 15) + Pr(X 1 2 1 )  

as the significance level. In fact Pr(X 5 15) = 0.1213, so overall the significance level is 

(2) For the B(24, 0.75) distribution a normal approximation is not unreasonable. Using a 
continuity correction, we have 

0,1150 + 0,1213 = 0.2363. 

21 - 5 - 18 
Pr(X 2 21) =Z 1 - 4  [ v9n ] = 1 - Q(1.1785) = 0.1193. 

Note that the approximate value 0.1193 lies between the two exact values for the two tails, 
0.1150 and 0.1213. 
(3) A 3 : l  ratio of pink to white flowers arises from Mendelian theory when colour is 
determined by a single gene with two alleles, pink being dominant over white, and when cross- 
breeding occurs in a particular way. Probability theory is frequently used by geneticists. It is 
nowadays being used to  advantage in genetic counselling, when parents with a family history of 
some hereditary disease contemplate having a child. 

Conversely, genetic applications offer practical interest to the student of probability, since the 
probabilities involved can be calculated exactly, rather than just algebraically. To obtain 
numerical results gives some satisfaction, but these are generally only available when one can 
identify equally likely outcomes for the experiment involved. At  an elementary level, a t  least, 
such outcomes can rarely be identified outside trivial games of chance, rather dry problems of 
sampling and problems in genetics. 

4C.2 

It is claimed that 90% of men cannot tell the difference between two different brands of 
Cheddar cheese, but of the members of a random sample of 500 men, 72 could distinguish 
between them. Is the claim justified? 

Distinguishing between brands of cheese 

Soh tion 
Let p be the proportion of the male population who can distinguish, and let X be the number in 
the sample who can. Reasonable assumptions indicate that X has the binomial distribution with 
index 500, i.e. n = 500, and parameter p . The null hypothesis is that p = 0.1, and under this 
hypothesis E(X) = 50, whereas in fact 72 were observed. 
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The significance level of the test is Pr(X 2 72), where this probability is calculated under the 
assumption that the null hypothesis X.- B ( 5 0 0 ,  0.1) is true. For n = 500, p = 0.1, the 
normal approximation to  the binomial distribution is quite adequate, so we treat X as  if 
X - N(50, 45). Using the continuity correction, we thus calculate 

72 - - 50 
z = = 3.205, 

and we require the significance level of such a value. Consulting a normal table, we find that 
the value is above the 0.1% point (3.09) on a one-tailed test, and we therefore confidently 
reject the claim. 

Notes 
(1) The 'reasonable' assumptions referred to in the solution are that the results from different 
sample members are independent, each having the same probability of being able to distinguish 
between the cheeses. These conditions are assured once we are told that a random sample has 
been selected, although if one were undertaking a real investigation there are more questions to 
be asked, for example about just what the target population is. 
(2) In the solution, a one-tailed test was used, though the wording of the question does not 
unambiguously indicate the need for this. It seems reasonable to  argue, however, that the claim 
is really that at feast 90% cannot tell the difference, since no-one would contemplate rejecting 
the claim if it turned out that 95% cannot distinguish. Indeed, another way of expressing the 
hypotheses involved in this question is to say that one is testing H o : p  s 0.1 against 

(3) Use of the normal approximation to the binomial distribution is standard when the numbers 
involved are of the order of magnitude of those in this problem. (Notes 1 and 2 to Problem 
2A.3 give further discussion of the approximation.) 

Had the numbers involved been smaller, the logic of the test would have been the same, but 
use of the normal distribution would not have been justified. Had the sample been of size 10, 
with 3 being able to distinguish (clearly unrealistically small numbers but adequate for 
displaying principles) then X - B(10, p )  and the significance level would have been 
Pr(X 2 3). when p = 0.1. The probability is most easily calculated as 

HA : p  > 0.1. 

1 - Pr(X = 0) - Pr(X = 1 )  - Pr(X = 2)  

= 1 - (0.9)'' - 10(0,9)9(0.1) - 45(0,9)8(0.1)2 

= 0.070, 

Such a result would therefore have been significant a t  the 10% level but not at the 5 %  level, 
and would not have been regarded as providing strong evidence against the claim. 

4C.3 

A building society wishes to estimate the proportion, p , of its savings account holders who are 
women. Records are scanned for a sample of 80 accounts and it is found that 22 are held by 
women. 
(a) Find an approximate two-sided 90% confidence interval for p ,  stating clearly any 
assumptions which are necessary for the approximation to be valid. 
(b) Ideally, the society would like to  estimate p with a precision of 20.02 (in the sense that a 
90% confidence interval should have half-width no greater than 0.02). How large a sample size 
would be necessary to achieve this precision? 

Women investors in building societies 
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Solution 

(a) We use the normal approximation 'p the binomial distribution, i.e. if X is the number of 
women in a sample of size n , and p = X / n ,  then p - N ( p , p ( l - p ) / n ) ,  with the usual 
notation. The two assumptions which are necessary for this result are as follows. 
(i) X has a binomial distribution, for which we need the sample to be random. This implies 

that all accounts have the same chance of being chosen, and also that the probability of an 
account-holder being female does not depend on the sex of the other account-holders in the 
sample. This can only be approximately true for a finite population of account-holders, but 
is a reasonable approximation provided that the sample is only a small fraction of the 
population. 

(ii) The sample size is large enough for the normal approximation to be an adequate 
approximation to the binomial. A value of 80 is certainly large enough, unless p is close to 
zero or one, which is not the case here. (Further discussion of this point can be found in 
Note 1 to Problem 2 A . 3 . )  

Returning to the approximate result p^ - N ( p  , p  ( 1  - p ) / n ) ,  it follows that 

This leads to two possible ways of obtaining an approximate confidence interval for p (cf. 
Problem 4D.4 for the corresponding possibilities for a Poisson parameter). Replacing p by a in 
the denominator of the left hand side of the inequality leads to 

so that an approximate confidence interval for p , with confidence coefficient 1 - a ,  has end- 
points 

In the present example, -p  ̂ = $ = 0.275, and, for a 90% interval, zo.05 = 1.645, so the limits 
are 

1 

0.275 2 1.645{0.275X0.725/80}' = 0.275 2 0.082. 

The interval is therefore (0 .193,  0 .357) .  
A second possibility is to square the inequality 

obtaining the quadratic inequality 

p'(n + z & )  - p(2na + z & )  + n a 2  5 0. 

Since the coefficient of p 2  is positive, the inequality will be satisfied for values of p lying 
between the two roots of the corresponding quadratic equation, and these roots will therefore 
give the end-points of an approximate confidence interval for p . Given the large sample size, 
the results for the confidence interval are unlikely to be very different from those obtained by 
the cruder approximation given abpve, but we give them for the sake of completeness. For the 
present problem we have n = 80, p = $ and zaR = 1.645, so the quadratic equation becomes 

8 2 . 7 0 6 ~ ~  - 4 6 . 7 0 6 ~  + 6,050 = 0, 

and the roots of this equation are 0.201 and 0.363, i.e the interval is (0 .201,  0 .363)  
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As predicted, the interval is similar to that given by the cruder approximation, but note that 
it is not centred on the sample proprt ion p .  The lower limit is closer to d than is the upper 
limit; this is standard behaviour for p < :, and the phenomenon, unsurprisingly, becomes more 
extreme as approaches zero. Conversely, for > i, the upper limit is closer to p  ̂ than is the 
lower limit. 
(b) The half-width of the interval based on the cruder approximation is 
w = 1 , 6 4 5 m .  Suppose that the first sample of 80 accounts has already been taken, 
so that we have p = 0.275. Then w = 1.645d0.275xO.725/n and so w I 0.02 if 

2 1.645d0.275 x 0 .729 0.02 . This condition will hold if 
2 

x0.275x0.725 = 1348.8 

Thus, rounding up to the nearest integer we need n 2 1349, so a further 1269 accounts need to 
be examined in addition to  the 80 in the initial sample. 

Notes 
* (1) The alternative expression for the confidence interval given in part (a) is really too 

complicated to be used to  estimate n in part (b). The two expressions will, in this example, 
give very similar numerical values for n . In any case, a very precise value for n is not usually 
required in practice in this sort of problem. The main objective is usually to get an approximate 
(perhaps conservative) idea of the sample size required to achieve the desired precision of 
estimation. A decision can then be made as to whether 
(i) the indicated value of n is reasonable, or 
(ii) the indicated value of n is too large to be feasible (which may be the case in this 

example), so that a lower degree of precision must be accepted, or a different method of 
sampling adopted, or 

(iii) the indicated value of n is so small that a larger value is feasible, and hence greater 
precision can be achieved. 

* (2) If an estimate of p is available, either from an initial sample as here, or from prior 
knowledge, then it can be used in the expression z a m  for the half-width of an 
interval. However, it should be noted that having determined n , and taken a total sample size 
n , the estimate one obtains from the whole sample will generally be different from that used 
to determine n .  The confidence interval based on the whole sample will therefore not have 
exactly the required width. (It could be narrower or wider.) A conservative approach is to 
round up n to the nearest 10, 50 or 100, or whatever is convenient, rather than just to the 
nearest integer. 

A n  alternative procedure, which guarantees that the precision will be at least that desired, is 
to replace p by i, rather than by . This is another conservative procedure since a (1 -d ) is 
maximised, and hence the interval is longest, when a = i. However, the procedure is often 
not too conservative, unless a is very close to 0 or 1, since the function i(1-d) is fairly ‘flat’ 
in the vicinity of p = i. For example, its values range only between 0.21 and 0.25 for values 
of p^ between 0.3 and 0.7. In the present example, the conservative approximation leads to 

n >  [ - k:l ] X0.25 ,  or 1692 (rounding up  to the nearest integer). 

This same, conservative, approach is generally used in the fairly common situation where 
there is no initial sample, i.e. we * ~ s h  to estimate the value of n required to achieve a given 
precision, but there is no estimate p of p available. Provided that p is not expected to be close 
to 0 or 1, the conservative approach is a reasonable one to take in these circumstances. 

2 
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4C.4 Are telephone numbers random? 

In an experiment to test whether final digits of telephone numbers are random, a random 
sample of 40 digits is selected from a large telephone directory. The  hypothesis of randomness 
will be accepted if there are a t  least 17 but not more than 22 even digits in the sample, and 
rejected otherwise. Using a suitable approximation, find the probability of a Type I error. 

A friend of yours claims that in fact more telephone numbers are odd than even. How would 
you check whether this is true, using a 5% test based on a random sample of size 50? 

Solution 
A binomial distribution is appropriate here, and if X denotes the number of even digits, we first 
require Pr(17 5 X 22) when X - B(40, 3). Using a normal approximation, and 
remembering the continuity correction, we obtain 

’ I u I I u I’  
where p = np = 20 and u = dnp(1-p) = fl. 

The result is, then, Q(0.79) - @ ( - l . l l )  = 0.6517, which is the probability of accepting the 
null hypothesis that p = i. Since a Type I error is to reject a correct null hypothesis, the 
probability of doing so is 1 - 0.6517, or 0.3483. 

When investigating the friend’s claim, the null hypothesis is, still, that p = f, but the 
alternative is now that p < i. Accordingly, we would reject the hypothesis only when X is 
unusually small for a B (  50, f) random variable. We need to  calculate the value of x such that 
Pr(X 5 X )  =Z 0.05. Using a normal approximation with continuity correction then gives 

Pr(X S X )  =Z @ = 0.05, 

and therefore 
~ + 1 - 2 5  2 w- = -1.645, 

giving x = 18.68. Recalling that X is in  fact a discrete random variable, we would thus reject 
the null hypothesis that p = only if we observed 18 or fewer even digits. 

Notes 
(1) In the second part of the problem, the wording seems to hint that the hypothesis to test is 
that p < f. In deciding cn the most appropriate null hypothesis in  any problem, it is often 
helpful to recall that the null hypothesis can never be proved to be. true; it is ‘accepted’ if it is 
consistent with the data, but that is all. Accepting a hypothesis is not the same as being 
convinced of its truth, since there might well be (and, indeed, always are) other hypotheses also 
consistent with the data. 

In the present case the aim is really to see whether the hypothesis p = 3 (strictly, p 2 f) is 
rejected as being inconsistent with the data, so that p < i is the only remaining possibility. 
Accordingly, p = 

(2) In the solution to the second part of the problem we rounded 18.68 down to 18 rather than 
to the nearest integer. This was done because the precise definition of a 5% test requires the 
probability of rejecting the null hypothesis when true to be no more than 5%. When the 
distributions involved are continuous, one can generally choose the critical values so that the 
probability is exuctfy 5%, but this is, of course, not possible with discrete data. In this problem, 

is selected as the null hypothesis, with a one-sided alternative. 
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the normal approximation suggests that rejecting when there are 19 or fewer even digits would 
give a probability of error slightly greater than the nominal 5%, and this would be 
unacceptable. 

(In fact, use of exact calculations for B (  50, i) rather than the normal approximation would 
have shown that Pr(X 5 18) = 0.0325 and Pr(X 5 19) = 0.0595. If one rejected the null 
hypothesis on 19 even digits, one wouid then have been using a significance level of about 6%, 
while rejecting only on 18 even digits would imply a significance level nearer 3%.) 

4C.5 Smoking in public places 
A sample survey was conducted to  determine the opinion of a large electorate on a new policy 
concerning smoking in public places. k random sample of 200 men and 230 women was used, 
and 130 of the men and 130 women agreed with the policy. Discuss whether the two following 
hypotheses are tenable: 

(i) that 50% of all women in the electorate agree with the policy; 
(ii) that the proportion of men agreeing exceeds that of women. 

Solution 

It is natural, and reasonable, to  assume a binomial model for this problem. In part (i), we take 
the number of women agreeing, X ,  as binomial, with n = 230, and unknown p (equal to pJ , 
say). Noting that the observed value for X is 130, we test the hypothesis pr: = 0.50. The 
numbers involved are clearly large enough for a normal distribution approximabon to be used, 
so we calculate 

130 - - (230X0.50) 

V230 X0.50 X 0.50 
z =  = 1.91 

For a two-tailed 5% test the critical value is the ubiquitous 1.96, so we d o  not reject the 
hypothesis that the proportion is 50%. In the wording of the question, we find the hypothesis 
that 50% of women agree with the policy to  be tenable. 

For part (ii), we need formally to  test the hypothesis pm = p,, using a natural notation. 

Estimates of these probabilities are given by bm = 130 and p, = -. Using a normal 

approximation, as in part (i), the relevant distributional results are 

- 130 
200 230 

Under the null hypothesis that p m  = pJ = p , say, we thus obtain, approximately, 

a,,, -aJ - N O,p( l -p )  - + __ . [ [2:0 2:o I] 
To obtain a test we thus need to estimate the common probability p ; since, overall, 260 out of 
430 agree, the appropriate estimate is -. We thus calculate as a test statistic 

130 130 

260 
430 

This value is to be compared with percentage points of N( 0 , l )  and, for a one-tailed test a t  the 
5% level, the appropriate percentage point is 1,645. Since 1.794 > 1,645 we reject, a t  the 5% 
level, the null hypothesis that the proportions are the same, and conclude that there is 
reasonable evidence that the proportion of men agreeing exceeds that of women. 
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Notes 
(1) In part (i) of the question there is no mention of any alternative hypothesis. It would be 
excessively arbitrary to use a one-tailed test (which tail would one use?) so a two-tailed test is 
the only acceptable possibility. 
(2) The wording of part (ii) is rather odd. Taken literally, the hypothesis stated is obviously 
tenable; one could hardly use the data given to  refute a claim that more men than women agree 
with the policy. But the test performed is probably what an examiner would want; if, as here, 
the hypothesis of equality is rejected, it means that no hypothesis inconsistent with the one 
stated is tenable. 
(3) Two-sample binomial tests are somewhat tricky, and while it is fairly easy to see why the 
distribution of 

is approximately N(O,l) ,  it is less straightforward to show that this holds when, in the 
denominator, p is replaced by a sample estimate. (One might be forgiven for thinking that the 
distribution might be changed from normal to Student’s t ,  but in fact this does not happen.) 
The mathematical result that justifies this procedure is based on asymptotic theory, and it is 
reasonable to  a r  ue that with 430 observations the estimate of p will be an accurate one, so that 
replacing p by - should have little effect. %O 

430 
Two-sample tests for binomial parameters can be conducted using the technique of contingency 

tables, discussed in Section 5C. The related topic of confidence intervals for problems with two 
binomial samples is treated in Problem 4C.6. 

4C.6 Smoking habits of history and statistics teachers 
In a large survey it is found that 40% of schoolteachers are smokers. Small random samples are 
taken of teachers of various subjects and it is found that of 20 teachers of statistics, four are 
smokers, whereas there are eleven smokers in a sample of 25 history teachers. 
(a) Suppose that 40% of all statistics teachers smoke. Calculate, approximately, the probability 
that 4 or fewer are smokers in a random sample of 20 such teachers. 
(b) Find an approximate 95% confidence interval for the overall proportion of statistics 
teachers who smoke, using the information from the sample described above. 
(c) Without doing formal tests of hypotheses, use the results of (a) and (b) to discuss whether 
the proportion of smokers among statistics teachers is likely to  be the same as that for all 
teachers. 
(d) Find an approximate 95% confidence interval for the difference between the proportions of 
smokers among history teachers and among statistics teachers. 

Solution 

(a) The number of smokers in the sample, X, is a binomial random variable with n = 20 trials 
and probability of success p = 0.4. The distribution of X is approximately normal with mean 
np = 8, and variance n p ( 1 - p )  = 4.8, so that 

4 + 3 - 8  
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where Z is a random variable having the standard normal distribution. Thus 

= Pr(Z c -1.60)  = 0.055. 

(b) If p  ̂ = X / n  , then p^ - N ( p  , p ( 1 - p ) / n )  approximately, so that an approximate confidence 
interval for p has end-points 

where z d  is an appropriate normal distribution percentage point. (The form this interval 
should take is discussed further in Problem 4C.3.) From the information given we obtain a = & = 0.2, and z a  = 1.96 for a 95% interval, so the limits of the interval are 

0 . 2  2 1 . 9 6 d 0 . 2 X 0 . 8 / 2 0  = 0 . 2  2 0.175, 

i.e. the confidence interval for p is (0 .025,  0.375) 
(c) The solution to part (a) shows that, if the proportion of statistics teachers who smoke is 
0 . 4 ,  the probability of observing as few as four smokers in a random sample of 20 statistics 
teachers is rather small. (The exact probability is 0,051, as shown in Note 1.) From part (b), 
the approximate 95% confidence interval for p fails to include 0.4, though only just. (The 
improved approximation described in Note 2 gives an interval which just includes 0.4.) 

Thus the results of parts (a) and (b) both suggest, although not conclusively, that the 
proportion of smokers among statistics teachers may be different from that for all teachers. 
(d) An approximate confidence interval for the difference in proportions of smokers for the 
two types of teacher has end-points 

where il  = l - a l ,  i 2  = l - a z ,  and n1  and "2 are the sample sizes. For the given samplcs, 
p^, = 11/25 = 0 .44 ,  p^2 = 0.2 ,  n1 = 25 and n2  = 20, and for the required 95% interval 
zan = 1.96, so the interval has end-points 

20 

= 0.24 2 1.96 V0.009 86 + 0.008 00 

= 0.24 2 0.262,  

so that the 95% confidence interval for the difference between the proportions in the two groups 
is (-0.022, 0.502) .  

Notes 

( 1 )  In part (a), the binomial probability could be calculated exactly as 

or looked up in published tables of the binomial cumulative distribution function. The value is 
in fact 0.051, which is not too different from that given by the normal approximation. Note 
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also that a continuity correction has been incorporated into the approximate expression given in 
the solution. Without this correction, the probability would be approximated by 

Pr (. I s] = Pr(Z I -1.83) = 0,034, 

which is substantially less accurate. 
(2) The lower limit of the approximate confidence interval in (b) is rather close to zero, which 
is a signal that the approximation may not be particularly good. If we use the slightly better 
approximation described in Problem 4C.3, we find the end-points of the interval to be the roots 
of the quadratic equation in p 

Substituting n = 20, I; = 0.2  and z a  = 1.96 we find the roots to be 0,080 and 0,416. The 
interval is therefore (0.080, 0.416). Note that the lower limit is further from zero, but so is the 
upper limit; the overall width is somewhat smaller than that of the poorer approximate interval 
used in part (b). 
(3) Although it was not asked for, the formal test of Ho: p = p o  against H I :  p # P O  (or against 
HI:  p > p o  or H1: p < P O )  is based on the test statistic 

which has an approximate N ( 0 , l )  distribution under Ho.  With p  ̂ = 0 .2 ,  p o  = 0 .4 ,  
qo  = 1-po = 0 .6 ,  and n = 20, the value of the test statistic is -0.2/-, or -1.83, 
which is identical to the value of the z-statistic without a continuity correction given in Note 1 .  
The test statistic here can also be modified, and indeed improved, by incorporating a continuity 
correction, although this seems to be rarely done. Note, however, that in neither case is the test 
exactly equivalent to the approximate confidence interval given in, the solution to (b). This is 
because, in the approximate confidence interval, the variance of p A i s  estimated by p (1 -p ) ln  . 
However, for the test of the hypothesis p = p o  the distribution of p is calculated under H o ,  in 
which case Var($) is known and is equal to po(l-po)/n.  

* (4) When making inferences about differences between two binomial parameters p 1  and p ? .  
bascd on a normal approximation, there is not an exact equivalence between interval estimation 
and hypothesis testing (as in inference regarding a single binomial parameter - see Note 3 
above - but unlike most inference involving means, differences of means, variances or ratios of 
variances). This, as in Note 3, is because Of the different expressions for variances in the two 
situations. In interval estimation Var(p1 - p 2 )  is estimated by i l Y l / n 1  + d 2 4 2 / n 2 .  However, in 
hypothesis testing it is the variance under the null hypothesis which is required. With the 
standard null hypothesis H o :  p 1 = p 2 ,  it is usual to estimate p 1 and p 2  by a common estimate a, 
which is the overall proportion of ‘successes’ in the two samples combined. The variance of a l  - p^2 is then estimated by 

Note also that, as with differences of means, it is much more common to test [lo: p 1  = p 2  than 
to find a confidence interval for p 1 - p2 .  
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4C.7 Ignition problems in cars 

(a) A new car model has a design fault, as a result of which 10% of production cars have a 
particular ignition problem. Engineers have come up  with a modification which they hope will 
end the difficulty, and a pilot run of 30 cars is manufactured using the modified design. State 
and briefly justify a distribution you might consider using to model the number of cars X in this 
pilot run with the ignition problem. 
(b) Suppose that the modification has no effect on the problem. Using your model, find 
Pr(X = 0) and Pr(X = 1). If in fact no cars have the problem, would the manufacturer be 
justified in concluding that the change has definitely improved the situation? 
(c) Suppose now that the problem occurs in only 1% of cars manufactured in the modified 
way. Estimate the probability that in the first 500 cars there are no more than two still with the 
problem. 
(d) Later, the manufacturer claims that as a result of the modification the problem occurs in 
only 0.5% of cars. A n  independent survey of 500 cars finds that 6 have the problem. Is the 
manufacturer’s claim reasonable? 

Solution 

(a) The binomial distribution is the natural one to use in this context. Since it arises when one 
counts the number of ‘successes’ in n independent ‘trials’, all with the same probability p of 
success, it would be justified if the modified design is consistently used in the pilot run, so that 
the probabilities are  all the same, and that the results for different cars are independent. 
(b) We now assume X to have the binomial distribution with n = 30, and suppose that p is 
still 0.1. The distribution of X is thus B(30,0,1), so that Pr(X = 0) = (0,9)30 = 0.0424, and 
Pr(X = 1) = 30(0,1)(0.9)29 = 0.1413. 

The null 
hypothesis is that p = 0.1 and, since the manufacturer is said to be wanting to conclude that 
there has been an improvement, the alternative hypothesis is one-sided. The result obtained, 
X = 0, is the most extreme possible, so the ‘tail area’ equivalent is simply its probability, 0,042. 
Since this is less than 0.05 the result is significant a t  the 5 %  level, which could be regarded as 
plausible evidence supporting an improvement. 
(c) We now gather that the probability of trouble is reduced to 0.01. In 500 cars (assuming 
independence) the number X having trouble will be distributed 8(500,0~01). The required 
probability could, in principle, be calculated exactly from that distribution, but (in the usual 
notation) with n large and p very small a Poisson approximation is justified, so we can take X 
as Poisson (500 xO.01). The probability required is, thus, 

The problem faced by the manufacturer is simply one of hypothesis testing. 

(d) We conduct the test by comparing the observation made, 6, with the null hypothesis 
distribution of X ,  B ( 500,O.OOS). As in part (c), the distribution is adequately approximated 
by the Poisson distribution with the same mean, S O O X O ~ O O S  = 2 .5 .  We thus calculate the 
probability of a result a t  least as extreme as 6, i.e. we find 

2.52 2.53 2.54 Pr(X 2 6) = 1 - Pr(X I 5 )  = 1 - e-2’5 1 + 2.5 + ~ + __ + --- + __ 2! 3! 4! 

= 1 - 0.9580 = 0.0420. 

The result is significant a t  the 5% level, providing plausible evidence to contradict the 
manufacturer’s claim. 
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Notes 

(1) Parts (a)  and (c) of this problem are exercises in distribution theory, and could have been 
placed in Chapter 2. Parts (b) and (d) also require the calculation of probabilities for standard 
distributions, and show how such calculations appear in the context of tests of hypotheses. 

(2) In part (d) we were required to test a hypothesis concerning a binomial parameter. It is 
not very common to find a Poisson approximation used in connection with such a test, but it is 
in fact the best way to  proceed when the values of n and p (in the standard notation) are such 
that the approximation is valid. 

(3) In parts (c) and (d) the Poisson distribution is used as an approximation. As mentioned in 
Note 2 to Problem 2A.4 such approximations are less valuable now than they once were. In 
fact it is not too awkward to calculate the various probabilities exactly; for example, the exact 
result in part (c) is 0,123. The reader will note, though, that the approximation is a very close 
one. 

4C.8 

(a) At an accident black spot junction, road accidents generally occur a t  a rate of 5 per month, 
on average. After road modifications, there is 1 accident in the first month. Does this provide 
evidence that the modifications have reduced the risk of accidents? 

(b) One member of the local district council examines the detailed records, and finds that in 
the two months immediately before the modifications there were 10 accidents. On the basis of 
this information alone, with the fact that there was 1 accident in the following month, would 
you conclude that there has been an improvement? 

Modifying an accident black spot 

Solution 
(a)  To determine the significance of there being 1 accident, we need the sampling distribution 
of Y ,  the number of accidents in a month. Since accidents can be presumed to occur a t  
random, the Poisson is the appropriate distribution. Our hypothesis is, then, that 
Y - Poisson(S), and to test it against the one-sided alternative we simply require 

5e+ Pr(X 5 1) = e-’ + - = 6epS = 0.040. 
l! 

Since this is less than 0.05 the result is significant a t  the 5% level, and there is therefore some 
reasonable evidence for an improvement in safety at the spot. 

* (b) We now work on the basis of information about only three months; because of this, the 
mean number of accidents in a month is now unknown. The model on which analysis is based 
is that if X is the number of accidents in the two months before modification, and Y the 
number in the following month, then X - Poisson(2~1) and Y - Poisson(F2), where p1 and p2 
are the monthly accident rates before and after respectively. We require to test H o  : p1 = p2 
against H1 : p1 > p2 ,  on the basis of observing X to be 10 and Y to be 1. 

Now a two-sample test for the Poisson distribution is performed by arguing first that the total 
number of accidents, 11, is irrelevant to judging the hypothesis. Working conditionally on 
X + Y = 11, we obtain 

that is, conditionally on X + Y = 11, the distribution of X is binomial with index 11 and 
parameter p given by 

2Pl 
2Fl + P2. 

P =  
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(A theoretical justification of this result is provided in  the solution to Problem 2A.9.) Now, 
under the null hypothesis that pl = p2, p = 5; while, under the alternative, p > f .  The 
problem thus reduces to assessing an observation of 10 as coming from B(11, ;), on a one- 
tailed test. The significance level is 

(;;)(+)"(+) + (+)I1 = 0.0751 

The result is thus not significant a t  the 5% level, and we would not conclude on the basis of the 
information available that there has been an improvement. 

Notes 
(1) Writers are often rather casual when dealing with randomness. The  wording of part (a) 
was devised to  illustrate this, and the reader may have noticed that the solution to that part 
simply presumes randomness of occurrence of accidents and hence a Poisson distribution for Y .  
The theoretical basis for this is the Poisson process, a model for completely haphazard 
Occurrences in time, discussed further in Note 1 of Problem 2A.7. 
(2) There are several points in the wording of the question meriting some discussion. 
Trivially, one would query use of the word 'month', since months are of different lengths. In 
practice statisticians d o  not analyse data in isolation, and in this case matters of definition 
would obviously be cleared up in discussion with the practitioner involved. 

In a similar way one would in practice query use of data for the period immediately following 
the modification. Warning signs are usually erected, and generally drivers approach recently 
modified junctions with especial care. It is customary to wait for a while until it is felt that 
motorists have become used to the new layout and then make a comparison as in part (b) 
between comparable periods. (Again, in practice, one might wish to take account of seasonal 
traffic loads and patterns, and perhaps weather and light conditions; in a popular summer 
holiday area it would be silly to compare accident rates in summer with those out of season.) 
(3) The test used in part (b) is simple to apply but quite advanced in concept. The theoretical 
basis is given in Problem 2A.9. Intuitively, one can reason that if accidents occur a t  the same 
rate before and after, then each of the 11 accidents is twice as likely to take place in the two 
months before as in  the one month after modification; i.e. the chance of it being before the 
modification is $. Since this holds separately for each of the 11, a binomial model results. 

(4) The reader will have noticed that despite similar information - a reduction in accident rate 
from 5 per month to 1 in one month - being given in parts (a) and (b), the conclusions drawn 
in the solutions to those parts are different. This happens because the information in part (a) is 
in fact much more precise than that in part (b); in the latter case we have just two months' 
figures and could derive from them only a (fairly wide) confidence interval for pl, while in 
part (a) we are given that pl = 5 .  

We have, in effect, a particular case of a general finding that tests will be more powerful, and 
confidence intervals narrower, when a parameter is given than when it has to be estimated from 
a random sample. (A similar illustration is given by inferences about the mean of a normal 
distribution; when a2 is unknown confidence intervals are usually longer than corresponding 
ones when a2 is known: see Note 1 to Problem 4A.1.) 
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4D Other Problems 
Finally we include some inference problems which d o  not fall naturally into the categories 

earlier in this chapter, nor into the discussion of structured data in the next chapter. The  
problems are basically of three types. Some deal with distributions other than the normal, 
binomial and Poisson, which were picked out for attention earlier; others discuss general 
principles, raising issues such as the value of having unbiased estimators and the meaning of 
confidence intervals. These are included mainly to encourage examination of basic statistical 
concepts, which should always be subject to constructive criticism and not just taken for 
granted. We also include two problems on methods of quality control. This is a topic of 
considerable practical importance, but often overlooked in elementary treatments of statistics. 

* 4D.1 Sampling bags of apples 
On a supermarket shelf there are ten l$kg bags of apples. Three of these bags contain 11 
apples, six bags contain 10 apples, and one bag contains 9 apples. Suppose that a sample of 
three bags is selected randomly, without replacement, and let T be the total number of apples 
in the three selected bags. 

(a) By considering all possible samples of three bags, obtain the sampling distribution of T . 
(b) Show that the sample mean x = f T  is an unbiased estimator for the mean number of 
apples, F, in all ten bags. 
(c) Find the variance of T , and hence the standard error of x . 
(d) Consider the situation where three bags are selected a t  random with replacement. Show 
that, in this case, the variance of x is 0.12. 

Solution 

(a) There are ('3') = $ = 120 ways of choosing three bags from ten, and under random 

sampling all are equally likely. Listing these possibilities gives the following table (see Note 1). 

Number of bags Number of ways Value 
containing x apples of choosing such of 

x = 9  x = l O  x = l l  a sample T 

1 2 0 15 29 
0 3 0 20 30 
1 1 1 18 30 
0 2 1 45 31 
1 0 2 3 31 
0 1 2 18 32 
0 0 3 1 33 

120 

Adding the probabilities for each value of T ,  we find that the sampling distribution of T has 
probability function p (1) = Pr(T = t )  as in the table below. 

t 29 30 31 32 33 
15 
m - 

?a 
im 

4a 
1?0 

18 - im 
1 
120 

~ 
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(b) The mean number of apples in all ten bags is 
1x9)  + (6x10) + (3x11) = 10,2, 

10 c L =  ( 

While we could calculate E(T) directly, our calculations will be simplified, particularly in 
part (c) below, if we transform T to, say, S = T - 30 . Then E(T) = E(S) + 30, and 

3 

s =-1 
E(S) = sPr(S = s )  

72 3 
120 120 5 

= L(-15 + 48 + 36 + 3) = __ = - = 0.6. 

Hence E ( T )  = 30.6, so that 

E ( $ T )  = $E(T) = 10.2; 

thus fT is an unbiased estimator for p. 

(c) Since T = S + 30, Var(T) = Var(S), and it will be much simpler to calculate Var(S). 
Now 

v a r ( s )  = E ( s ~ )  - {E(s)}~  

and 
3 

s - - 1  
E(S2) = s2Pr(S = s )  

It follows that 

The variance of x is therefore 
1 7 
9 75 

v a r ( F  ) = -Var(T) = -, 

so that the standard error of x is a = 0.3055. 

(d) When sampling with replacement, the variance of the sample mean is 0 2 / n ,  where o2 is 
the variance of a single observation and n is the sample size. Let X denote a single observation. 
Then X has the probability function given by the table below. 

X 9 10 11 

Pr(X = x )  1/10 6/10 3/10 
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We therefore obtain E(X) = 10.2 = p, and 

E(X2) = x x 2 P r ( X  = x )  
11 

x =9 

= L(81 + 600 + 363) = 104.4. 10 

Hence u2 = 104.4 - (10.2)2 = 104.4 - 104.04 = 0.36, so that u2/n = 0.12. 

Notes 
(1) The entries in the table giving the sampling distribution of T are  found by combinatorial 
arguments. For example, consider the combination (1,1,1). This can occur in 

ways. Similarly, the combination (0 ,2 ,1)  can occur in 

1 6 3  
(01 G )  (1) = 45 

ways, and so on 
(2) There is an alternative way of tackling part (d) which, however, takes much longer. In 
sampling with replacement there are lo3 = 1000 possible samples, each of which is equally 
likely to be the one chosen. Just as in the solution to part (a), one can construct a table listing 
the possible ways in which samples can arise, together with their probabilities of occurrence. 
The same reasoning as in that part of the solution can then be used to obtain Var(T) and hence 
v a r ( 2  ). 
(3) In the case of sampling with replacement we found the variance of x to  be 0.12. The 
standard error of x is just the square root, i.e. 0.3465, which is larger than the v a h e  0,3055 
found for the corresponding case where sampling was done without replacement. It is natural 
to expect this, and indeed it will always occur, since when sampled items are not replaced more 
information is likely to be gained about the population. 

4D.2 Two discrete random variables 
A discrete random variable Y takes the values -1, 0 and 1 with probabilities $3, 1 - 8 and ;ti 
respectively. Y 2  be two independent random variables, each with the same 
distribution as Y .  
(a) List the possible values of {Yl, Y 2 )  that may arise and calculate the probability of each. 
Verify that your probabilities sum to unity. 
(b) By calculating the value of ( Y 2  - Y 1 ) 2  for each possible pair { Y l ,  Y 2 } ,  determine the 
sampling distribution of ( Y 2  - Y1)2 .  
(c) Show that X = $ ( Y 2  - Y 1 ) 2  is an unbiased estimator for 0, and find Var(X) as a function 
of 0. 

(d) Now suppose that Y1, Y 2 ,  . . . , Y,, are n independent observations on the random variable 
Y. Since 0 is the probability that Y is not zero, a possible estimator for ti is the proportion, Z , 
of non-zero values among Y,, Y 2 ,  , , . , Y,. Write down the mean and variance of Z ,  and 
state, giving your reasons, which of X and Z you would prefer as an estimator for 0 when 
n = 2. 

Lct Y1 and 
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S o h  tion 
(a) The table below gives the joint probability for each possible value taken by the pair of 
random variables {Yl, Y2). The probabilities Pr(YI = y1, Y2 = y2) are given by the product 
Pr(Y1 = yl)Pr(Y2 = yz), for y1 = -l,O,l, and y2 = - l , O , l ,  because Y1 and Y2 are  
independent. 

Y2 I -1 0 1 -; j :e2 ;e(i - ; e 2  e) 

'e2 +e(i -e) 'e2 
Y1 +e(i - e) (1 - e)2 +e(i - e) 

The sum of these nine probabilities is 

{4x+e2} + { s x f e ( i  - e)} + { i x ( i  - e)2} 
= e2 + 2 q i  - e) + (1 - el2 
= {e + (1 - e)}2 = i2  = 1, 

so that the probabilities sum to unity as required. 
(b) Let U = ( Y 2  - Y I ) ~ ;  a table of values of U for each of the possible values of {Yl, Y2} is 
given below. 

-1 

1 
Y1 0 

Y2 

-1 0 1 

0 1 4  
1 0 1  
4 1 0  

We see from this table that U can take just three possible values, and by combining the 
information from the two tables we can evaluate their probabilities. We see first that 

Pr(U = 0) = +e2 + ( i - e l 2  + +e2 
= +e2 + ( i - e l 2  

= 1 - 2 e + p 2 .  

Similarly we obtain 

Pr(U = 1) = 4{;0(1 - e)} = 20(1 - e), 

Pr(U = 4) = 2(fe2) = +02. 

and 

The sampling distribution of U is thus as shown in the following table. 

U I  0 1 4 
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(c) We have X = $U, so obtain directly E(X) = iE(U) and Var(X) = fVar(U). From the 
sampling distribution of U we find 

E(U) = o x { i  - 213 + ;e2} + ix{2e(i-e)} + 4x{3e2} 

= 2e(i - e) + 2e2 = 28. 

Hence E(X) = :(20) = 8, so X is an unbiased estimator for 8. 

To obtain the variance of U (and hence that of X), we first find E(U2), as follows. 

E ( u ~ )  = 0 ~ x 1 1  - 2e + ;e2} + i2x{2e(i-e)} + 42x{3e2) 

= 2e(1 - e) + 819 
= 20 + 68’. 

We thus obtain 

v a r ( v )  = E(u~)-{E(u)}~ 

= 28 + 6€12 - (29)’ 

= 2e + 2e2 = 2e(i + 0). 

Hence 

Var(x)  = +Var(U) = +6(1 + e). 

(d) In a sample of n independent observations Y1, Yz, . . . , Y,, on the random variable Y ,  
each of the n has the same probability 0 of being non-zero. Hence V ,  the number of the {Y,} 
which are non-zero, is a binomial random variable with index n and parameter, i.e. probability 
of ‘success’, 6. Thus E(V) = n o ,  and Var(V) = n 8 ( 1  - 0). Hence, if Z = V / n ,  E(Z)  = 6 
and Var(Z) = O(l-6)h. Therefore Z is an unbiased estimator for 0, for any positive integer 
value of n ,  and, in particular, when n = 2, Var(Z) = $e(l - 0). 

Since 6 > 0, Var(Z)=$8(1 - 6) < $6(l + 6) = Var(X). We see then that X and Z are both 
unbiased estimators, but Z has the smaller variance, and on this basis Z would be preferred to 
X as an estimator for 0. 

Notes 

(1) In part (c) we found the mean and variance of X in terms of those of U ,  and then worked 
with the sampling distribution of U. We could, alternatively, have found the sampling 
distribution of X and then obtained E(X) and Var(X) directly from it. Since X = f U ,  its 
sampling distribution is as given in the following table. 

(2) Part (d) is somewhat open-ended, since in the statement of the problem no indication is 
given as to the basis of preference between X and Z .  The obvious measures which one would 
consider using as criteria are bias and variance, and since both estimators are unbiased Z is 
preferred to X because of its smaller variance. But in some circumstances one may have to 
choose between one estimator which is unbiased but has fairly large variance and another which 
is slightly biased but has smaller variance, and in such cases the choice may well be a difficult 
one. Problem 4D.3 contains relevant material. 



4D.3 Other Problems 163 

4D.3 Mean square error of estimators 
Explain what the following statements mean: 
(i) Y is a statistic, 
(ii) the statistic Y is a n  unbiased estimator of 0. 
Suppose now that a statistic Y is an unbiased estimator of a parameter 0 and has variance k O2 . 
If one defines the mean square error MSE(X) of any estimator X of 0 by 

MSE(X) = E{(X - O)’},  

calculate MSE(cY) , where c is some constant, and find the value of c for which MSE(cY) is a 
minimum. 

Solution 

(i) Since a statistic is a function of observed random variables, Y must be such a function. 
(ii) The random variable Y has expectation 8. 

From the expression given for the mean square error (MSE) of any random variable X , 
We are now given that E(Y) = 8, Var(Y) = k 0 2 ,  and require the mean square error of cY. 

MSE(X) = E{(X - 0)’) 

= E(X2 - 20X + 0’) 
= E(X2) - 20E(X) + 0* 

= Var(X) + (E(X)}* - 20E(X) + 0’. 

Substituting cY for X ,  we obtain 

MSE(CY) = c2ke2 + ( C e ) *  - 2 0 . ~ 0  + e2 
= B2(c2k + c’ - 2c + 1) = m e 2 ,  say. 

To obtain the value of c for which this mean square error is a minimum, straightforward 
differentiation gives 

dm 
dc 
- = 2kc + 2~ - 2, 

and setting this to zero gives c = (k + l)-’. (The second derivative is positive for all values of 
c , so the stationary value is a minimum.) 

Notes 
(1) The problem centres on use of expectation and variance formulae, and helps to remind us 
of a variety of useful results. One of these is analogous to the result in mechanics that the 
moment of inertia of a body about a point is least when that point is the centre of mass. In 
probability and statistics this is translated into results that E{(X - O)’} and x(xz  - e)2 are 
minimised when 8 is the mean; i.e. 8 = E(X) in the first case and 8 = X , the sample mean, in 
the second. These results are related to  the following useful identities: 

E{(X - q2} = v a r ( x )  + {E(x) - 0)’; 

In the case of the current problem the first of these results could have been quoted to give 

MSE(X) = v a r ( x )  + {E(x) - el2, 
sometimes paraphrased as: ‘MSE equals variance plus bias squared’ 
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c (2) In the context of estimation the theory in this problem is useful in drawing attention to the 
possibility of using biased estimators to  advantage. Elementary textbooks occasionally hint that 
bias is undesirable, yet in practice almost all statisticians would prefer a slightly biased 
estimator with small variance to an unbiased estimator with large variance; a sensible general 
criterion is that of mean square error. 

The most straightforward example to which this theory applies is the estimation of the 
variance u2 of a normal distribution from a random sample XI, X2, . . . , X, . Since 

E{$(Xi - x ) 2 }  = (n -l)u2, 

the usual estimate is s2, the corrected sum of squares divided by n -1 . The choice of n -1 as 
divisor may give rise to  worries, but is justified, of course, on grounds of bias. But if we 
remove the requirement of unbiasedness other possibilities open up. 

When sampling is from a normal distribution the random variable z ( X i  - x)'/u2 has a x2 
distribution on n -1 degrees of freedom, which has expectation (n -1) and variance 2 ( n  -1). It 
follows that the usual estimator of u2 is unbiased, and has variance 204/(n-1). If we now 
convert to the notation of the problem, 8 = u2 and k = 2/ (n  -1) . The solution shows that the 
mean square error will be a minimum for c = (k +l)-' = (n - l ) / (n + l ) .  The rather surprising 
finding is that instead of producing an unbiased estimator by using the divisor ( n - l ) ,  one 
might consider using (n +l) ,  which would minimise mean square error. (But it is important to 
add that such an estimator should be used with caution; for example, it would be quite invalid 
to use it in the formula for a t-test, or indeed use it in place of s2 in  any other standard 
formula!) 

i=l 

4D.4 Arrivals at a petrol station 
A small petrol station has a single pump. Customers arrive one at  a time, their inter-arrival 
times indepcndently distributed with density function 

f ( t )  = AeC", t 2 0, 

for some unknown A > 0. The times taken to serve customers are also independent and follow 
a normal distribution with unknown mean and variance. 

(a) Discuss how you might estimate A ,  and the parameters of the normal distribution, given 
observations on service times for n customers, together with the n - 1  intervals between their 
arrivals. 

(b) Show that, in a fixed time interval of length T ,  starting immediately after an arrival, the 
probability of no further arrivals is eChT. 

(c) It can be shown that the number of arrivals in any time interval of length T has a Poisson 
distribution with mean AT.  Suggest how this result might be used to give another method for 
estimating A .  

(d) In a random sample of 1-hour periods the numbers of arrivals were 

12,12,15,18,11,12,14,17,10,14. 

Find a 95% confidence interval for the mean number of arrivals per hour, based on a normal 
approximation to the Poisson distribution. 

Solution 
(a) For estimation of A ,  we record a sample of inter-arrival times, and calculate the sample 
mean, y ,  which will give a suitable estimate for the mean of the distribution, p. Now, the 
relation between and A is given by 
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= [-re&‘ low + !e-”dr, integrating by parts, 
0 

Since A = l/p and y is an appropriate estimate for p, we could estimate A by 1/ 7. (There are 
other approaches to estimating A based, like the present approach, on inter-arrival times, but 
this seems to  be the most obvious.) 

A 
sample of service times is available, and the sample mean, X , and the sample variance, sz, can 
be calculated easily. These will then provide estimates for the mean and variance of the normal 
distribution. 
(b) The probability that there are no arrivals in an interval of length T ,  starting immediately 
after an arrival takes place, is given by 

Estimation of the parameters of the normal distribution is relatively straightforward. 

W 

Pr(inter-arrival time > T)  = Jf( t )dt  
T 

which is e-”, as required. (In fact the result holds for any time interval of length T ,  not 
necessarily starting immediately after an amval.) 
(c) Suppose that the number of arrivals is counted for n non-overlapping intervals each of 
length T. These then form a random sample of size n from a distribution with mean A T .  Thus 
the sample mean, X, will provide a n  estimate of W, so that a suitable estimate of A is T/T. 
In fact the intervals used for counting need not all be of the same length, though they should 
not overlap. With unequal intervals the form of an appropriate estimate for A will be somewhat 
more complicated, namely 

i T i  ’ 
i =I 

where Ti is the length of the i th interval and xi is the number of arrivals in that interval. 
(d) Suppose now that A is the mean number of arrivals in one hour, and that XI. XI, . . . , X, 
form a random sample of numbers of arrivals, with sample mean x. Since the mean and 
variance of a Poisson distribution are the same, E(X)  = A and V a r ( x )  = A h .  Using a 
normal approximation to the distribution of we have, approximately, x - N ( h ,  Ah). Hence 

and so 

where z0/2 is, as usual, a percentage point of N(0 , l ) .  Thus 
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This, as it stands, does not give a confidence interval for A since the variance term a 
involves A .  However, replacing a by an estimator gives as an approximate interval 

x -t z c v ” m .  

For the given data, the sample mean is 13.5, and, for a 95% interval, z d  = 1.96, so the 
interval has end-points 

13.5 2 1.96-, 

i.e. 13.5 * 2.28 or (11.22, 15.78). 

Notes 
* (1) The method used in the solution to part (d) is not the only possible one. It parallels the 

first of two methods used in the solution to Problem 4C.3 for the corresponding binomial 
distribution problem. In that problem an alternative solution was shown, and in the case of the 
Poisson distribution here we give below two other ways in which a normal approximation can be 
used to obtain an approximate confidence interval for A .  

One possibility is to replace V% by s / 6 ,  where s2  is the sample variance and equals 6.72 
for the present data. The limits are therefore 

13.5 -t 1.96-, or 13.5 2 1.61, 

i.e. the interval for A is (11.89, 15.11). 
It would, in fact, be more appropriate here to use tg,0.025 = 2.262 rather than ~ 0 . 0 2 5  = 1.96, 

since we are essentially treating our sample of 10 obServations as coming from a normal 
distribution with mean A and using the distribution of - to find a confidence interval for 
A.  In this event the interval becomes (11.65, 15.35). 

X - A  
s /fi 

Another possibility, which gives a closer approximation, is to square the inequality 

which holds with probability approximately 1 - a, to give a quadratic inequality in A 

n(%-A)2 5 z & A ,  

or 

n A2 - A(z& + 2n k ) + n x 2  I 0. 

This inequality is satisfied if A lies between the two roots A1 and A2 of the equation 

nX2 - A(Z& + 2n X )  + n X 2  = 0. 

But the probability is 1 - a that the inequality is satisfied, so that (Al, A,) gives a confidence 
interval for A ,  with confidence coefficient 1 -a. For the present example the roots of this 
quadratic are 

2n 

i.e. the roots are 11.40 and 15.98, so that the 95% confidence interval is (11.40, 15.98). 
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Comparing the three approximations we see that the first and the third are reasonably close, 
with the latter, more accurate, interval being slightly wider. The second approximation is the 
narrowest; this is because for the present data the sample variance is substantially smaller than 
would be expected, given the mean and a Poisson assumption. If the Poisson assumption is 
valid then this second approximate interval is probably misleadingly precise. 

* (2) If a random variable X has a Poisson distribution, then Var(X) = E(X) = A ,  say. Because 
of this, it is not a t  first clear that, when one has a random sample from a Poisson distribution, 
one should use the sample mean rather than the sample variance to  estimate the parameter A .  
In fact there are several cogent reasons for doing this. Some lie outside the scope of this book, 
but we show here that the sample mean gives the maximum likelihood estimate of A .  (See 
Problems 2A.6 and 2A.11 for a definition and discussion of the maximum likelihood method of 
estimation.) 

Suppose we obtain a random sample of size n from the Poisson distribution with mean (and 
variance) equal to A,  and let the observations be denoted by XI, x 2 ,  . . . , x, .  Then the 
probability f that these values XI, x 2 ,  . . . , x, are observed is given by 

where the sum and product are both over the range i = 1 , 2 ,  . . . , n . To find the maximum 
likelihood estimate of A we treat I as a function of A ,  and find the value of A a t  which it takes 
its maximum value. We could d o  this by differentiating 1 with respect to A ,  but in fact it is 
easier, and equivalent, to differentiate logl .  We find 

log f = -n A + Di log A - log ( n x i  !), 

so that 
d log l E- 

- -n+- - - l .  
dA A '  

and setting this to zero gives X = a i / n ,  the sample mean X. The maximum likelihood 
estimate of A is thus X. 
(3) In this problem the arrival pattern of customers a t  the queue is what is termed a Poisson 
process. Such a process was defined formally in Note 1 to Problem 2A.7. We see here, from 
part (b), that in a Poisson process the gap between consecutive events (a continuous random 
variable) has an exponential distribution, while the number of events in a fixed time (a discrete 
random variable) has a Poisson distribution. 

* 4D.5 Confidence intervals for an exponential distribution 
A continuous random variable X with a n  exponential distribution has probability density 
function 

f ( x )  = b+? O, 
elsewhere. 

The mean and variance of this distribution are known to be A-' and A-2 respectively. 
(a) Find, in terms of A ,  numbers a and b such that Pr(X < a )  = Pr(X > b )  = 0.05, so that 
Pr(a 5 X 5 6 )  = 0.90. Deduce that Pr(0.334X 5 A-' I 19,496X) = 0.90; hence write down 
a 90% confidence interval for A-' based on a single observation on the random variable X.  
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(b) Let x denote the mean of a random sample of 81 observations on X. 
approximate distribution of x , and hence show, using the approximation, that 

State the 

Pr(0.8212 5 A-' 5 1 . 2 7 8 2 )  = 0.95. 

(c) In a random sample of 81 observations on a random variable Y ,  the sample mean is 10.2 
and the sample standard deviation is 10.6. Find a 95% confidence interval for cr2, the variance 
of Y ,  assuming that Y has a normal distribution. Use the probability statement in part (b) to 
find an approximate 95% confidence interval for u2, if Y has in fact the same distribution as X 
above, rather than a normal distribution. 

Solution 

(a) The first of the required numbers, a ,  is such that 
a 

J ~ ( X ) &  = 0.05. 
-m 

Now the integral is 

Therefore eUX" = 1 - 0.05 = 0.95, so u = -A-'1oge(0.95) = 0,0513A-'. Similarly, 6 is such 

that j f ( x ) d x  = [-.-'"Ib= = e- 

Now, since u = O.O513A-', we can express Pr(X < a )  as Pr(X < 0.0513K')  or 
Pr(A- ' > X/0.0513); we thus obtain Pr(X < a ) =  Pr(A-' > X/0.0513) = Pr(A-' > 19.496X). 
Similarly Pr(X > 6 )  can be expressed as Pr(X > 2.996A-'), i.e. as Pr(A-' < X/2.996), so 
that Pr(X-' < 0,334X) = 0.05. The random 
interval (O,334X, 19.496X) has a 90% chance of covering the parameter A-', and is therefore a 
90% confidence interval for A-'. 
(b) For large samples, a sample mean x has approximately a normal distribution, regardless 
(almost) of the distribution of the individual obxrvations, from the Central Limit Theorem. 
Here the individual observations have mean A- 

P 

= 0.05, and therefore. 6 = -X-'log,(0~05) = 2,996A-'. 
b 

Hence Pr(0.334X 5 A-' 5 19.496X) = 0.90. 

and variance A ', so that, approximatcly, 

and 

Thus 

The inequality in the brackets is now manipulated so as to leave K' on the left hand side, and 
we thus obtain 
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Similarly, looking at  the other tail, we find that 

leads to 

< 7 1  6 2  = 0.025. 
n + 1.96 

Thus 

and substituting n = 81 gives 

7.04 
9 x  Pr - [ 10.96 

i.e. Pr(04321X 5 A-' 5 1 . 2 7 8 x )  = 0.95, as required. 

(c) If Y has a normal distribution, and s2 is the sample variance, then (n-l)s2/u2 has a x 2  
distribution with ( n  -1) degrees of freedom, and a confidence interval for u2 is given by 

Now x&,o.975 = 57.15 and x & , o . ~ s  = 106.63, so the interval is 

Finally, we are given that Y has in fact the same (exponential) distribution as X. Using the 
result found in part (b), we have 

Pr(0.821X I A-' 5 1 , 2 7 8 2 )  = 0.95, 

and simply squaring terms in the inequality (all of which are necessarily positive) gives 

Pr((0.8212 )' 5 A-' 5 (1 .278x )') = 0.95. 

But X-' is the variance of Y ,  so {(0.821x)2,  (1 .278x)2} gives a 95% confidence interval for 
Var(Y). Substituting x = 10.2 gives for this interval 

((0.821 X10,2)2, (1,278X 10.2)'}, 

or (70.13, 169.93), a somewhat wider interval than that based on the normal assumption for Y .  

* 4D.6 Glue sniffers 
(a) If S2 is an unbiased estimator of the variance c2 of some distribution, explain why S is not. 
in general, an unbiased estimator of the corresponding standard deviation u. 

(b) Let XI, X? be the numbers of successes in two independent binomial experiments, with 
n l ,  n2  trials respectively and with the same probability p of success in each experiment. If 
a ,  = Xl/n1, 

Determine the range of values of the ratio n l / n 2  for which V a r ( a )  < V a r ( a l )  and 
V a r ( a )  < Var(a2). Show that, if n l  f n 2 ,  then there is an unbiased estimator for p of the 
form 6 = wa1 + ( I - w ) ; ~ ,  where 0 < w < 1, with smaller variance than b.  

= X 2 / n 2 ,  and a = : ( a 1  + a'), show that is an unbiased estimator for p .  
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(c) In order to estimate the proportion of pupils in a secondary school who were glue sniffers, 
it was decided to interview a random sample of pupils. On such a sensitive subject a direct 
question would be unlikely to elicit a truthful answer, so each pupil in the sample was asked to 
toss a fair coin and, without divulging the outcome to the interviewer, to answer ‘Yes’ or ‘No’ 
to one of two questions, depending on the outcome of the toss. If the pupil tossed a head the 
question to be answered was ‘Is your birthday in April?’; whereas on a tail the question was ‘Do 
you sniff glue?’. It is known that the proportion of pupils with April birthdays is 0.1. Given 
that the overall proportion of sampled pupils who answered ‘Yes’ was 0.08, estimate the 
proportion of pupils in the school who sniff glue. 

Solution 
(a) In general, if X is a random variable, and g(X)  is a function of X ,  then 
E&(X)} # g{E(X)}, except when g ( X )  is a linear function of X or, trivially, when X is a 
constant. Thus, if X is an unbiased estimator of 8, then g ( X )  will not, in general, be an 
unbiased estimator of g(8). This part of the problem is concerned with a special case of this 
general result, where X = S2 and g(X) = fi . 

In this special case the result can be proved directly without much trouble. Consider the 
variance of S : 

Var(S ) = E[{S -E(S )j2]. 

This will be. greater than zero unless S is a constant. But 

v a r ( s )  = E(s*)-{E(s)}~, 

so that 

{E(S)}* < E(S2) = a2; 

i.e. E(S)  < u. 

(b) Quoting results for binomial distributions, E(X1) = n p  and E(X2) = n p .  We thus find 
that 

E ( i d  = W i d  = Pt 

E(d) = +{E(dl) + E(d2)) = +(P + P )  = P ,  

and hence that 

so that d is an unbiased estimator of p .  Further, from standard results, Var(X1) = ti 1p (1 - p )  
and Var(X2) = n Q ( l  - p ) ,  so Var(p^l) = p(1 - p ) / n 1  and Var(p2) = p(1 - p ) l n 2 .  Because 
the two experiments are independent, so are and a*. By the additive properties of variance 
for independent random variablcs we have 

Hence the required condition Var( a )  < Var( a,) will be satisfied if 

i.e. if 

or 

, 1 1 + ” 2  4 

“ l ” 2  “ 1  
< --, 
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This condition reduces to  " 1  < 3n2 ,  or nl/n2 < 3. Similarly, V a r ( a )  < Var(a2)  if nZ/nl  < 3, 
and so the two conditions quoted both hoId if 

1 " 1  - < - < 3 .  
3 "2 

To show that there-is an unbiased estimator of p of the form given with a smaller variance than 
p , consider d = wp 1 + ( 1  - w)p2,  where 0 5 w 5 1.  Then 

E(d) = w E ( d 1 )  + (1  - w ) E ( i 2 )  

= wp + ( 1 - w ) p  = p ,  

so that d is seen to be unbiased. For its variance we have 

v a r ( d ) =  w2Var( i l )  + ( 1  - w)*var(&, 

since d l  and d 2  are independent. Thus 

We see from this that V a r ( p )  depends on w only through the first term in the square bracket, 
which contains a squared component and is therefore a t  a minimum when w' = n I/(n + n?); for 
any other value of w , Var( d )  will be greater. But the estimator corresponds to w = i, so 
that Var(p)  < V a r ( a )  unless w = i, i.e. unless n l  = n2. 

(c) The probability that a pupil returns a 'Yes' answer is 

Pr('Yes' ~ A 1 )  Pr(A 1) + Pr('Yes' 1 A2) Pr(A2), 

where A l  and A2 are respectively the events that the first and second questions arc answered. 
Let the proportion of pupils who sniff glue be p . Then 

Pr('Yes') = Pr(birthday in April) Pr(Head) + Pr(sniffs glue) Pr(Tai1) 
1 1  1 1 
10 2 2 2 2 0 '  

x- + p x -  = e + -  - - -  

If we equate this expression to the observed proportion answering 'Yes', 0.08. and solve the 
equation for p ,  the result is an intuitively reasonable estimator of p .  (In fact it is unbiascd, 
and has other desirable properties.) We thus solve 

0.08 = 0.5; + 0.05, 

i.e. a = 2 ~ ( 0 , 0 8  - 0.05) 

= 0.06. 

Thus the proportion of glue sniffers at the school is estimated to be 0.06, or 6%. 
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Notes 
(1) All three parts of this problem are difficult; in particular, parts (a) and (c) are non- 
standard and somewhat open-ended. However, questions similar to all three parts have 
appeared as parts of (separate) public examination questions in the U.K. 

(2) There is an alternative derivation of the value of w which, in part (b), minimises Var(b) .  
This is in some respects a more natural approach, since to many people differentiation is the 
most straightforward way of identifying a minimum. If we differentiate the expression for 
Var(d)  we obtain 

dw dw 

Equating this to zero gives 2w/n1 = 2(1 - w)/n2, and we thus obtain the equation 
n2w = n 1  - n l w  , whose solution is, as expected, w = nl/(nl + n 2 ) .  Further, we can 
differentiate again to obtain 

which is necessarily positive for valid values of p ,  n 1  and t i 2 .  The stationary value for w is 
therefore a minimum, as required. 

(3) The final part of the question is open-ended in several respects, but the solution given is 
the most natural one. A less formal way of looking at  the problem is to argue that since the 
two questions have the same chance of being answered, the overall probability of a ‘Yes’ answer 
is a simple average of the two individual probabilities. Setting this average equal to the 
observed proportion giving a ‘Yes’ answer, and solving, gives 

0.08 = ;(0.1 + a ) ,  
which gives 

(4) The intcrvicwing technique discussed in part (c) is known as the randomised response 
techriiyue. Another version of the technique is described in Problem 1B.5. 

= 0.06, as before. 

4D.7 Quality control for bolts 
A machine produces bolts, and for each bolt there is a probability p of it being defective, 
results for different bolts being independent. A large batch of the machine’s production is 
inspected by a customer in order to  determine whether the batch should be purchased. In the 
inspection, 10 bolts are selected at  random and examined: if none is defective the batch is 
accepted, and if three or more are defective it is rejected. If only one or two are defective, a 
further sample of 10 is selected, and the batch is accepted if, in total, there are no more than 
two defectives. 
(a) What is the probability of a decision being made at the first stage? 
(b) Find the probability that the batch is accepted (i) if p =0,05,  (ii) if p =0.15. 
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Solution 

(a) A decision is made at  the first stage unless the number of defectives is 1 or 2. The  
required probability is thus 

(b) It is easiest to work algebraically in the first instance, and to let A denote overall 
acceptance, and Bo, B l ,  B2 and B3 denote, respectively, 0 ,  I ,  2 and 3 or more defectives a t  the 
first stage. (We denote the corresponding events for the second stage by B i  , B; , B ;  and B ;  .) 
Clearly Bo, B1 ,  B 2  and B 3  are mutually exclusive and exhaustive, so the conditions for the law 
of total probability are satisfied, and we have 

Pr(A) = ZPr(B,)Pr(A [Bi) .  
3 

i =O 

Further, Pr(Bo) = (l--p)*', Pr(B1) = l O ~ ( l - p ) ~ ,  Pr(B2) = 45p2(1--p)8, and Pr(B3) could if 
needed be found by subtraction. The  conditional probabilities are quite easily found. Trivially 
Pr(A IBo) = 1 ,  Pr(A lB , )  = 0. If B1 occurs, then acceptance follows if the second sample 
contains no more than 1 defective; i.e. 

Pr(A 1B1) = Pr(Bi)+Pr(B;). 

Similarly 

Pr(A lB,) = Pr(Bi) 

We thus obtain 

Pr(A) = Pr(Bo) + Pr(BI){Pr(Bi) + Pr(B;)} + Pr(Bz)Pr(Bi) 

= (1-p)10{i+10p(1-p)9 + 1 4 5 ~ ~ ( i - ~ ) * } ,  

since Pr(Bz*) = Pr(B,), i = 0 , 1 , 2 , 3 .  Substituting p = 0.05 gives Pr(A) = 0.93, while when 
p = 0.15 the probability becomes 0.44. 

Notes 
(1) While the problem contains relatively straightforward numbers the set-up described is quite 
realistic, in that a double sampling scheme of this type is quite frequently employed in quality 
control work. (Often the sample sizes will be somewhat larger, and in many cases one will be 
interested in rather smaller values for p.)  The probability of batch acceptance, treated as a 
function of the proportion p of defectives, is termed the operating characteristic or O.C.  of the 
procedure, and in practice an important aim is to achieve a satisfactory O.C. without excessive 
cost. For example, in practice one might wish to  compare the O.C. for the current sampling 
scheme with that for a scheme which samples, say, 8 at the first stage, with a further 15 if a 
second stage is needed. Considerable research effort has gone into devising suitable schemes for 
all situations, and tables containing details of these schemes are published by various bodies 
concerned with manufacturing standards, for example the British Standards Institution. 

(2) In the current case, and indeed in most elementary problems involving ideas of quality 
control, items sampled are classified only as defective or otherwise; the resulting sampling 
schemes are described as sampling by ariributes. In many practical cases items will be acceptable 
if a measurement lies within certain limits, often called tolerance limits. and if such a 
measurement is made it offers opportunities for using extra information in a sampling scheme. 
Such schemes are described as sampling by variables, and can offer significant savings in effort 
over the simpler attribute sampling schemes. 
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4D.8 A control chart for mass-produced articles 
Articles are mass-produced to a specified width of 0.15cm. In order to check that the 
production process is running satisfactorily, random samples of five articles are taken at  regular 
time intervals, and the widths measured. The following are the means and ranges of the widths 
in 20 consecutive samples, where the widths are measured from the specified value in units of 
0.0001 cm. 

Sample Sample Sample 
number mean range 

Sample Sample Sample 
number mean range 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 .o 32 
2,4 21 

-2.4 19 
3.2 6 
1.4 11 
1.2 17 
2.6 13 
0.4 9 

-2.2 14 
-3.8 8 

11 -1.6 
12 -2.2 
13 1.6 
14 0.4 
15 2 .o 
16 3 .O 
17 1.6 
18 -7.6 
19 -5.4 
20 -4.2 

18 
14 
6 

15 
18 
16 
18 
11 
15 
8 

Using these results, convert the average range into an estimate of the standard deviation of the 
widths of the articles in the population of manufactured articles. (If the range of a random 
sample of size 5 from a normal population is r ,  then an estimate of the standard deviation is 
given by multiplying r by 0.4299.) 

Hence draw a control chart for means, showing both 2.5% control limits (warning limits) and 
0.1% control limits (action limits). Describe how this chart could be used to determine whether 
or not the manufacturing process is under control. What would your conclusion be for the data 
provided? 

Solution 
From the values of the 20 sample ranges given, the mean is 289/20 = 14.45, in working units, 
or 1 4 . 4 5 ~  lOP4cm. The average range of samples of size 5 (assuming that they are taken from 
a normal population) provides an estimate of the population standard deviation equal to 
0.4299 x 14.45 x lop4 = 6.2121 X 10p4cm. Hence an estimate of the standard error of the mean 
of a sample of size 5 is 6 . 2 1 2 1 / f i  = 2.778, in the working units. 

From tables of the standardised normal distribution, Q(2.242) = 0,9875, so that 2.5% 
control limits are a t  a distance 2.242x2.778 = 6.23 either side of zero. (Recall that the 
measurements quoted are the discrepancies between the actual widths and the specified value, 
0.15 cm, in units of 0.0001 cm.) 

Similarly, 0.1% control limits are obtained by scanning tables of the standardised normal 
distribution to find the value x such that Q(x) = 0,9995; we obtain x = 3,290, and conclude 
that the control limits are 3.290X2.778 = 9.14 either side of zero. 

The control chart for means is therefore as shown in Figure 4.1. Inspecting the diagram, we 
sec that just one mean (from sample 18) falls outside the 2.5% (warning) limits, and none 
outside the 0.1% (action) limits. Now, even if the process were under control, we would 
expect, on average, one in 40 of the sample means to fall outside the 2.5% limits, and here one 
out of 20 so far has done so. This, therefore, provides some warning that the process might be 
getting out of control, but the evidence is far from conclusive, and no immediate action would 
be taken. 
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-12' 

_ - - - - -  Warning limits 
Action limits 

Sample number 

Figure 4.1 Control chart for Problem 4D.8 

One should also examine the pattern of the points in Figure 4.1 over time to check, for 
example, whether the means have an upward or downward trend, rather than fluctuating 
randomly. Such trends, or other obvious patterns, d o  not seem to be discernible here. 

Notes 
(1) Multiplying factors for converting sample ranges to estimates of population standard 
deviations, for various sample sizes, are tabulated in some books of statistical tables. One such 
source, from which the value 0.4299 was obtained, is Elementary Statistics Tables, by 
H. R. Neave. 
(2) A similar control chart could also be constructed for the ranges, to provide an additional 
check on the process. If this is done for the data provided, the conclusions are much the same 
as for the mean. 
(3) We note a t  the end of the solution that the pattern of the points should be examined to test 
for a trend or some other regular (perhaps cyclic) variation. The techniques of time series 
analysis provide us with appropriate tests; in particular the statistic S described in Problem 5D.2 
can be used to test for a trend here. 
(4) In Figure 4.1 the points representing the sample means are joined by straight lines. This is 
an optional feature of a control chart; generally, including these lines can make any trend or 
cyclic pattern easier to see. But we have seen charts, especially when the number of points 
plotted is large, when joining them by lines obscures details and is thus a hindrance. 



5 Analysis of Structured Data 

As in Chapter 4, the problems in this chapter are all concerned with inference from sample 
data. In that chapter we discussed problems in which one or two random samples had been 
selected from some distribution, usually the normal, binomial or Poisson, and the inferences 
required concerned the parameter or parameters of the distribution concerned. But the data in 
these problems had very little structure, and had the values been presented in a different order 
the conclusions would have remained the same. (In the two-sample problems the allocation of 
observations to samples would, of course, have to  remain the same!) By contrast, the data in  
each of the sections of this chapter present a well-defined structure, and the problems are thus 
slightly more advanced than most of those in Chapter 4. There is, however, little in common 
between the various sections of this chapter, and we therefore keep this general introduction to 
a minimum, preferring to introduce the individual sections at  greater length. 

5A Regression and Correlation 

People often confuse the techniques of regression and correlation. Mathematically, they are 
rather similar, and either could be applied baldly to many data sets. Both apply to situations in 
which measurements are  recorded on two variables, x and y say. But their essential difference 
lies in the process of specifying an appropriate mathematical model for the data. 

If the aim is simply to  assess the strength of the relationship between x and y , and both can 
be regarded as random variables, then correlation is appropriate; by contrast, regression is used 
when x and y are nor to be treated symmetrically, perhaps when only one is random and the 
other is under an experimenter’s control. Of course, little is clear-cut in statistics, and there are 
circumstances in which both techniques can legitimately be used. But it must be said that 
misuse is very frequent (see, for example, Problem 5A.4), and for some reason this is 
particularly true of correlation. 

The majority of examination questions on correlation, a t  the level we are considering, seek 
very little in the way of understanding on the part of the candidate; all that is required is 
familiarity with computational techniques and a few mechanical procedures for hypothesis 
testing and interval estimation. This reflects two facts. One is that a correlation coefficient is 
very frequently, like a variance, a ‘nuisance parameter’ which has to be estimated but is not 
itself of particular interest. The other is that sitiations where correlation coefficients are of 
interest to the statistician typically involve, rather than a single sample from a bivariate 
distribution, one or several samples from multivariate distributions. The problems on 
correlation we have included here represent the ‘nursery slopes’ of the study of correlation, in 
the same sense as the z-test for a normal mean, appropriate to the somewhat unrealistic 
situation when the variance is known, paves the way for the more useful r -test. 



5A.1 Regression and Correlation 177 

In many respects the same is true of the regression problems to be found here; we confine 
ourselves to cases in which there is a single explanatory (or ‘independent’) variable, although in 
statistical practice one is usually faced with many possible variables, the aim being to determine 
which, if any, help to explain the observed variability in the dependent variable y .  For 
example, as this note was being written, we received a report of a survey into the annual income 
of statisticians in the United Kingdom. In that survey annual income was the dependent 
variable, and sex, age, location (in London or elsewhere), number of jobs held, period in 
current job, and qualifications were, amongst others, explanatory variables. 

We noted above that the two techniques are similar mathematically. Since they share the 
same basic calculations, it is natural that we should present these using a common notation. 
We suppose that the data available consist of n pairs of observations, (XI, yI), (x2, y2), . . . , 
( x , ,  y n ) .  The three major quantities needed are the corrected sums of squares and products, 
which we denote by S,, S, and S,. The corrected sums of squares S, and S, are the 
familiar quantities which appear when we calculate a sample variance. The former is defined as 

n 

i = l  
s, = E ( x ;  - x )2, 

but is almost always calculated as 

The expressions for S, are similar, while the corrected sum of products is 
n 

i= l  
s, = X ( X j  - X)(y; - 7 )  

the former being the definition and the latter being more suitable for calculation. 
It follows that the basic calculations required from a sample of pairs ( x i ,  y i ) ,  

i = 1, 2, . . . , n , are the sums %i and X y i ,  the sums of squares %: and ZyF and the sum of 
products Z r i y i ,  where in each case the sum is over the range from i = 1 to n . 

In the first few problems below we give the calculations in detail, including explicit limits on 
summations, and with each step given. But such detail does get tedious, and in later problems 
we omit some intermediate details of calculations and streamline notation somewhat; thus, for 

example, z x i y i  can in many circumstances be shortened to Xxy without loss of clarity. 
n 

i= l  

5A.1 The numbers of pensioners 
The data below show, for the years given, the numbers (to the nearest thousand) receiving 
U.K. retirement pensions. 

Year I 1966 1971 1975 1976 1977 1978 1979 

6679 7677 8321 8510 8637 8785 8937 No. of retirement 
pensions (thousands) 

Plot the data and fit an appropriate least-squares regression line, drawing the line on your 
graph. Is there convincing evidence that the number of pensioners is increasing? 

Use your results to estimate the expected number of pensioners in 1979, 1981, 1985 and 
2000, and comment on your findings. 
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Solution 

In 

f 9Ooo- 
0 .- 
$ 8500- 
n 

8Ooo- 

7500- 

7000- 

6500- 
KEY 
Least sauares line 

m! I 1 

1965 1970 1975 1: 30 

Figure 5.1 Data on retirement pensioners, from Problem 5A.1 

The required plot is shown in Figure 5.1. To calculate the least-squares regression line for 
numbers like the ones above it is simplest to use some form of coding; an arbitrary but fairly 
sensible coding scheme subtracts 1970 from the year and 8000 from the number of pensioners 
(itself in thousands), dividing the result by 100. The data are then as follows. 

Year (x) -4 1 5 6 7 8 9 
Pensioners (r) -13.21 -3.23 3.21 5.10 6.37 7.85 9.37 

The following basic calculations start the analysis: 
7 7 
E X ,  = 32.0, 

i - 1  i = l  
x y i  = 15.46, 

7 I 
ZX? = 272.00, 
i -1  i = l  

7 
Exiy i  = 287.98. 
i = l  

2~: = 411,247, 

We next obtain the corrected sums of squares and products: 

S, = 272.00 - 32.02 = 125,714, 
7 

15.462 
7 

Sfi = 411.247 - - = 377.103, 

The estimated regression line has gradient = ~ 217'306 - - 1,729, and its intercept is given by 

6 = 15'46 - (1'729x32'0) = -5.693. The line y = -5.693 + 1 . 7 2 9 ~  is shown in Figure 
125.7 14 

7 
5.1,  together With the data given in the problem. 

We are asked to consider evidence that the number of pensioners is increasing, and to d o  this 
we examine the null hypothesis that it is stationary; that is, that t h e  slope p of the true 
regression line is zero. Under this null hypothesis, E(p) = 0 and Var(p) = u2/S,, where a' is 
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the error variance; we note that o2 is estimated by 

1'729 = 35.68 with critical values of the t-distribution on 5 
V0.2950/125.7 

We thus compare 

degrees of freedom; the 0.1% critical value, for a one-tailed test, is 5.89, and the evidence that 
the number of pensioners is increasing is therefore compelling. 

The regression line found is 

y = -5.693 + 1 . 7 2 9 ~ ,  

with both x and y in coded form. Predictions for y are required for values of x coded as 9, 1 1 ,  
15 and 30. Substituting in the regression equation gives, respectively, 9.864, 13.321, 20,235 
and 46.164 for coded values of y and 8986.4, 9332.1, 10023.5, 12616.4 for the values in the 
original scale. 

A natural comment to make is that the results show the dangers of extrapolation; it might be 
reasonable to try to predict for a year or two, but predictions for further ahead are increasingly 
implausible. One would couple these findings with the curvature evident in the plot; it appears 
from the latter that the growth in the number of pensioners is not linear, but started to tail away 
before 1979. Thus all the predictions seem likely to exaggerate the actual number of 
pensioners, the later ones grossly so. 

Notes 
(1) In many cases there can arise legitimate doubts about whether correlation or regression is 
the more appropriate technique. When one of the variables is time, however, no such doubt is 
possible. Correlation is valid when both measurements are on random variables, and is thus 
inappropriate here. 

(2) Most statisticians would feel that the relationship between y and x is not adequately 
described by a straight line with random scatter, but that a curved relationship is indicated. A 
common way of proceeding is to test adequacy of the linear model 

y = a + px + Q ,  

where 4 represents a random error term, by comparing the fit of this model with that of the 
quadratic regression model 

y = a + px + yx2 + E. 

We d o  not have the space here to discuss fully how to fit the latter model, but readers will see 
that the bcst-fitting parabola 

y = -5.217 + 1 . 8 7 2 ~  - 0 . 0 2 9 1 ~ ~  

gives a very much closer fit to the data. In the table overleaf, we show, for each value of x , the 
observed value of y , together with the predicted, or fitted, values given by the two equations, 
linear and quadratic. (All quantities are coded as in the solution.) A simple way of assessing 
the fit of an equation is to calculate the differences between the observed and fitted values; 
these discrepancies, usually termed residuals, are also given in the table and are plotted in 
Figure 5.2.  

The plot of the residuals from the linear equation has a distinctly curved shape, and in itself 
indicates that such a model is inadequate. By contrast, the residuals from the quadratic model 
appear haphazard. (Note 2 to Problem 5D.2 shows how one could approach the testing of these 
residuals for randomness, although a satisfactory test would require far more observations than 
have been given here.) 
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-4 
1 
5 
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7 
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9 

-13.210 
-3.230 

3.210 
5.100 
6.370 
7.850 
9,370 

-12.608 -13.170 
-3,965 -3.375 

2.949 3.414 
4.678 4.966 
6.407 6.459 
8.135 7.894 
9.864 9,272 

-0,602 -0,040 
0.735 0,145 
0.261 -0.204 
0.422 0.134 

-0.037 -0.089 
-0,285 -0.044 
-0.494 0,098 

i =1 

and the best-fitting line then has slope and intercept given by the expressions at  the start of this 
note. Since the estimates are found by minimising the sum of squares of the discrepancies, they 
are naturally known as least squares estimates. The method is widely used in regression and 
analysis of variance problems; it was used in Note 2 to fit the second-degree model by choosing 
u, fl and y to minimise the expression 

n 

i = l  
C(y;  - Q - px; - y x i y .  
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5A.2 Graduate unemployment 
It has been suggested that the unemployment rate for graduates of U.K. universities may 
depend on the proportion of Arts students in those universities. A random sample of 9 
universities (excluding any with medical students) gave the following results. Do you conclude 
that the suggestion is justified? 

Percentage of Percentage of 
Arts students graduates unemployed 

Solution 

x x x  

X 
X 

X 

x x  

X 

0 1  I I I I I I I 

0 10 20 30 40 50 60 70 t 
A m  students (%) 

Figure 5.3 Unemployment percentage data of Problem 5A.2 

34.81 
32.05 
65.37 
64.09 
75.61 
44.82 
53.96 
64.00 
69.35 

20.6 
13.0 
24.4 
19.0 
25.5 
16.7 
16.7 
24.7 
21.5 

3 

Figure 5.3 shows a plot of the data, in which there is a clear indication of a relationship 
between the two variables. Since the suggestion that unemployment depends on subject balance 
within a university implies that we have one explanatory and one dependent variable, regression 
is the appropriate technique to use. We employ a natural notation, with arts percentage 
denoted by x and percentage unemployed by y . Calculation of sums, sums of squares and sum 
of products gives the following: n = 9, Ilr = 504.06, Zy = 182.1, Ilr2 = 30 162.5, 
Zy2 = 3830.09, Y q  = 10 596.0, where the sums are taken over the nine universities. 

We can now proceed to estimate the gradient f3 in the regression line y = a + px.  We first 
calculate the corrected sums of squares and products; the results obtained appear on the 
following page. 
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504.06X182.1 = 397,166, 
9 

S , = & -  = 10596.0 - 

s, = c x 2 -  O2 = 30 1 6 2 5  - = 1931.79 
9 

and 

The estimate of P is, therefore, fi = 397.166/1931.79 = 0.2056. To determine whether the 
dependent variable y is related to the explanatory variable x we need to test the hypothesis 
Ho: p = 0, and to do this we need to specify the statistical model more precisely. Employing 
the model 

E(Y,) = a+PxI, i = 1, 2 , .  . . , n ,  Var(Y,) = u2, i = l ,  2 , .  . . , n ,  

with different Y s independently normally distributed, we then obtain 

fi - N ( P ,  u2/S,,). 

The unknown variance u2 is estimated conventionally by s2, where 

and, by analogy with inference about the mean of a single random sample, we obtain 

We thus test the hypothesis p = 0 by comparing this quantity, in which p is replaced by the 
null hypothesis value 0, with percentage points of the t-distribution. Here s =  0,2056, 
s 2  = 9,135 and S, = 1931.79. so that the statistic is 2,990. Comparing this with tables of the 
t-distribution on 7 degrees of freedom we find that the 5% and 1% critical values for a two- 
tailed test are 2.36 and 3.50 respectively. The result is thus significant a t  the 5 %  level, though 
not at the more stringent 1%,  and, rejecting the hypothesis that p = 0, we conclude that the 
proportion of Arts students is relevant to the unemployment rate. 

Notes 
(1) The mathematical aspects of the solution above have been written out in some detail, but 
the practical problems of interpretation in problems like these are often subtle and easy to 
overlook. In the present case there are many questionable elements, including the following: 
(i) normality; is it plausible? 
(ii) linearity of relationship: how plausible is that? 
(iii) is it reasonable to judge the relationship from records of 9 of the 18 universities without 

(iv) would there not be many more possible explanations for variations in unemployment rates 

* (2) The calculation of s above is a little cumbersome, and the presentation of an Analysis of 
Variance table often helps to formalise the process - and indeed illustrates the links regression 
has with one-way and two-way analysis of variance. (Section 5B deals with these topics.) For 
the present case the table is as follows. 

medical schools? 

which d o  not directly involve the proportion of Arts students? 
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Degrees of Sum of Mean 
Freedom Squares Q u a r e  Source 

Regression 1 8166 81.66 
Residual 7 63.94 9.135 

Total 8 14560 

The estimate s2 of o2 is then the Residual Mean Square, and the test of the hypothesis p = 0 
can alternatively be performed by taking the ratio 81.66/9.135 = 8.939, and comparing it with 
tables of the F-distribution on 1 and 7 degrees of freedom. (Mathematically, the square of a 
random variable with Student’s t-distribution has an F-distribution, as we see in Note 1 to 
Problem 2B.7. In this case the t-statistic is 2.9898, whose square is 8.939. We see that the 
tests in the solution and in this note are identical, and are not competitors.) 
(3) The wording of the problem, with its use of ‘depend’, justifies the employment of a two- 
tailed test. Yet these matters are in many cases not all that clear cut. Since ‘everybody knows’ 
that Science graduates are more employable than Arts graduates (a point hinted at  by the 
exclusion of universities with medical schools), it is a t  least arguable that one is not really 
interested in a negative regression coefficient, and that a one-tailed test coulg be justified. A 
sensible approach to a problem of this sort is to try to take a reasonable view df the intention of 
the problem, and then to justify the decision taken, one-tail or two-tail, in words. But it is 
important to remember that it is the intention of the problem, and not the appearance of the 
data, which matters. It is bad practice to decide which test to  perform after looking at  the data. 
(4) While it is not required for this particular problem, it is worth noting that once has been 
obtained one can straightforwardly calculate 

& = 7 - 6X = 20.23 - 56.01 X0.2056 = 8.72, 

so that the regression line is y = 8.72 + 0.2056~.  

5A.3 
The data below are claimed to relate to  four experiments, which were conducted with the 
objective of investigating the effect of the value of a variable x on the associated value of a 
variable y .  In each experiment the same values of x were used: thus only one column of x- 
values is given, while there are four columns of y-values, one for each experiment. 

Regression for several sets of data 

X Y1 Y2 Y3 Y4 

10.0 
8.0 

13.0 
9 .o 

11.0 
14.0 
6.0 
4 *O 

12.0 
7.0 
5.0 

21.26 
20.51 
20.15 
22.28 
21.36 
22.30 
21.35 
18.81 
23.63 
18.73 
20.01 

22.40 
21434 
21.35 
22.15 
22.27 
20.43 
20.25 
17.66 
21.90 
21.15 
19.05 

20.70 
20.43 
25.31 
20.56 
20.80 
21.19 
20.21 
19.90 
20.95 
20.31 
20.09 

22.94 
19.85 
19.65 
20.25 
22.38 
23.84 
20.55 
19.53 
21.55 
19.72 
20.19 
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For each set of data: 

(i) obtain the equation of the least squares regression line of y on x ; 
(ii) plot the data, and comment on the results. 

Solution 

(i) Our basic calculations for the first set of data are as follows: 
11 11 
E x ,  = 99.0, 

1 = I  I =1 
x y l  = 230.45, 

11 1 1  
c x 12 = 1001.0, 
I =1 I = I  

x y , ’  = 4850.3015, 

11 

1-1 
 EX,^, = 2104.85. 

Corrected sums of squares and products are then 

99,02 
11 s, = 1001.0 - -- = 110.0, 

230.452 
11 S,.,, = 4850.3015 - -__ = 22,374, 

99.0x230.45 = 30,8, S.Iy = 2104.85 - 
11 

We continue to find estimates of the slope p and intercept Q of the regression line as follows: 

99.0 0.28X- = 18.43. 230.45 a=-- 
11 11 

When we turn to the other three data sets, we find that the results of the basic calculations, 
and therefore of the whole analysis, are the same. 

(i;) Plots of the four data sets are  presented in Figure 5.4. 
The plot of the first data set reveals nothing untoward. The other three data sets, however, 

result in plots which indicate that the statistical analysis we have performed is inappropriate. 
The plot of the second data set indicates a strong curvilinear relationship: a possible analysis for 
this data set would be one in which the regression of y on x is quadratic (see Note 2 to Problem 
5A.1). In a plot of the third data set all but one of the points lie close to a straight line, the 
other being far above the line. Such an observation (an outlier) merits our attention: in this 
case the best approach might be to reanalyse the data with this observation deleted (see Note 3). 
The appearance of the fourth data set suggests that the variability of y increases with the 
corresponding value of x . In such a case the method of least squares, which we have used to fit 
the regression line, is inappropriate, since it attaches equal weight to all observations in fitting 
the regression line. 

Notes 
(1) The fact that all four experiments yield results leading to exactly the same analysis is 
clearly suspicious. The data in this question have been artificially constructed to illustrate the 
point that an unthinking analysis of data can, through the application of inappropriate methods, 
lead to conclusions which are seriously in error. When contemplating any statistical analysis, it 
is important to check that the assumptions underlying that analysis are, a t  least approximately, 
valid for the data in hand. For bivariate data, where an analysis based on correlation or 
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Figure 5.4 Plots for data of Problem 5A.3 
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(a) y 1  against x 

regression techniques is contemplated, a simple plot is an important preliminary to (or part of) 
the analysis. (We are referring here, of course, to ‘real life’, rather than to the more artificial 
process of answering examination questions, in which plots, unless specifically asked for, are 
usually something of a luxury.) 

Three of the data sets in this problem are based on sets originally presented by 
F. J .  Anscombe in an article published in 1973 in The American Statisticiarl These have been 
modified so that the basic calculations for regression yield precisely the same results for each 
data set, whereas results for the original data sets, while in close agreement, were not identical. 
It can be instructive to conduct a class exercise in which students are each given one of the four 
data sets and asked to fit a regression line. Comparing numerical results they should find that 
their answers agree exactly, but when they plot the data they find that they have been analysing 
different sets, and that some have been doing an inappropriate analysis. Thus they learn, 
through experience, the value of plotting data before any further analysis. 
(2) The problem could have asked for a more detailed analysis, involving questions such as 
those posed in Problems 5A.1 and 5A.2,  but, in view of the artificial nature of the data, we did 
not feel this was justified. It is worth remarking, however, that if we had asked for any further 
analysis along these lines the results would have been the same for all four data sets. The same 
would apply if we were to set a problem involving the production of (product moment) 
correlation coefficients for the four data sets. 
(3) The problem of outliers is encountered in all areas of statistics, and not just in regression. 
It is not good practice for a statistician to discard observations just because they ‘don’t look 
right’. But when outlying observations are present, including them in a standard analysis can 
render that analysis meaningless, as can easily be seen by superimposing the regression line 
y = 18.43 + 0 28x on a scatterplot of y3 against x .  We frequently resolve this difficulty not 
by discording any outliers, but by reporting separately on them and then analysing and reporting 
on the remaining data in the usual way. Before this is done, however, each offending 
observation should be scrutinised to see if, for example, there has been a simple error in 
transcribing a figure (in which case the error can be corrected and the data reanalysed), or to 

(b) y2 against x (c) y3 against x (d) y4 against x 
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see if the experimenter has any explanation for the discrepancy (in which case the observation 
might be omitted from further formal analysis). Sometimes such scrutiny reveals nothing, in 
which case there may be no alternative to deleting (and reporting separately on) the offending 
observation(s). If this course of action has to be considered, informal judgments as to whether 
suspicious-looking observations are outliers or not may be supplanted by formal statistical tests 
designed for this purpose. In the case of the third data set in this problem the picture is 
sufficiently clear for no formal test to be necessary. 
(4) A fifth data set which gives precisely the same results as the four in this problem has ten 
y-values, 21.20, 18.74, 21.98, 19.70, 22.66, 19.32, 21.62, 20.91, 20.13 and 20.44, all 
corresponding to x = 8, and an eleventh y-value of 23.75 corresponding to x = 19. Though this 
data set is less well suited to a class exercise of the type described in Note 1 ,  it illustrates 
another important statistical point. The observation corresponding to x = 19 is influential: 
whereas even a quite large change in any of the other y-values would have only a slight effect 
on the fitted regression line, a change in this value would noticeably alter the fitted line. Thus 
the accuracy of our estimates depends crucially on the reliability of a single observation; this 
would generally be regarded as an unsatisfactory state of affairs. (Note that there is no 
suggestion that a standard regression analysis is inappropriate for this data set. Our objection 
here is to  the design of the experiment giving rise to the data; indeed, a further objection to the 
design is that it does not permit us to detect situations, such as those illustrated by the second 
and fourth data sets, in which a standard analysis would be inappropriate.) 

5A.4 
The table below gives the values of the following quantities over the years 1967-1975. 
x :  The annual inflation rate in the U.K. (measured as a percentage). 
y : The excess money supply two years previously (measured as a percentage). 
z :  The number (in thousands) of cases of dysentery reported in Scotland during the previous 

Inflation, money supply and dysentery 

year. 

X Y Z 

1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 

2.5 4.7 4.3 
4.7 1.9 4 .5  
5 .4  7 .8  3.7 
6 . 4  4 .0  5 .3  
9 .4  1 .3  3 .0  
7.1 7 .8  4.1 
9 .2  11.4 3.2 

16.1 23.4 1.6 
24.2 22.2 1.5 

(a) Calculate the product moment correlation coefficient between variables x and ;J and 
demonstrate that the value you have obtained differs significantly from zero. 
(b) Do the same for variables x and z . 
(c) These data were presented in letters which appeared in the correspondence columns of The 
Times in April, 1977. The writer of one letter suggested that the values of x and y 
demonstrated clearly the effect of the money supply on inflation, while the writers of a later 
letter maintained that those of x and z showed clearly the effectiveness of Scottish dysentery in 
keeping prices down. Comment on these claims. 
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Solution 

(a) The basic calculations Zx = 85.0, Zy = 84.5, 2’ = 1166.72, Zy’ = 1335.43 and 
L y  = 1174.86 lead to corrected sums of squares and products S,, = 363.94, Sn = 542.07 and 
Sg = 376.80. The correlation coefficient between x and y is therefore 

- 0.848. 
376.80 

d363.94 x 542.01 - 
rT = 

To demonstrate that this value differs significantly from zero we note, if appropriate tables 
are available, that the critical value of the correlation coefficient based on a sample of size 9 for 
a two-sided test a t  the 1% significance level is 0.7977. Since our observed value of rq exceeds 
this critical value it may be judged to be highly significant. 

If tables of critical values for the correlation coefficient are not available, we calculate 

= 4.239. 7 
1.0 - 0,84S2 

t = 0.848 

Comparing this value with critical values of the t-distribution with 7 degrees of freedom, we 
find that it exceeds the (two-tailed) 1% point (3.4995); again, we judge our observed 
correlation to be highly significant. 

(b) Our basic calculations follow the same pattern as that followed in the solution to part (a); 
some quantities, however, have been calculated already and details will not be repeated here. 
New quantities required are Zz = 31.2, Zz’ = 121.38 and Cxz = 234.61, leading (along with 
results obtained earlier) to S ,  = 13.22 and S ,  = -60.06. Recalling that S, = 363.94, we find 
that the correlation coefficient between x and z is 

- = -0.866. -60.06 
363.94x 13.22 r,, = 

As before we note, if tables of critical values of the correlation coefficient are available, that 
our observed value of r,,, being less than -0.7977, is significant a t  the 1% level. 
Alternatively, we calculate 

- -4.578. 
1.0 -:),866’ - 

t = -0,866 

Once again, since ~t 1 > 3.4995, we reject the hypothesis of zero correlation in the underlying 
population, testing at  the 1 % significance level. 

(c) In linking the rate of inflation to the reported prevalence of dysentery in Scotland, the 
authors of the second letter, uhile not necessarily disagreeing with the suggestion of a link 
between the moncy supply and the rate of inflation, were making the point that the conclusion 
of the earlier letter should be treated with extreme caution. To draw attcntion to the fact that 
the misuse of statistical techniques (and correlation in particular) can lead to ‘proofs’ of 
erroneous hypotheses, they produced a statistical argurncnt leading to a conclusion which was 
clearly ridiculous. 

The fundamental error in arguments, based on data such as these, leading to the conclusion 
that ‘y causes inflation’ (where ‘y ’ represents any possible cause, not necessarily the particular 
quantity discussed above), is that the demonstration of associalion bctwccn y and inflation docs 
not imply that y in fact causes inflation. We are dealing with observational, rather than 
experimental, data and it is possible (and, indeed, likely) that both y and the rate of inflation 
are affected by other factors. 
Notes 
( I )  In corrclation studies we treat the two variables syrnmctrically, and all that wc can 
demonstrate is an association. Here we arc tcrnpted to intcrprct the association i n  tcrms such as 
‘ y  causes inflation’, rather than ‘inflation causes y ’ ,  mcrcly bccausc the thc observations of y 
precede the corresponding obscrvations of the inflation rate. 
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(2) Examples of ‘spurious correlation’ like the above, where the observations are gathered 
through time, frequently arise because there is an underlying time trend in the variation of the 
two quantities under observation. That this is the case in  this example is easily seen by, for 
example, plotting the variables against time. Time, indeed, provides a better ‘explanation’ of 
variations in the inflation rate than either of the other variables: the correlation coefficient 
between the rate of inflation and the year is 0.875. 

The presence of a time trend means that correlation techniques are inappropriate for the data 
of this problem, since we d o  not have a random sample from a bivariate distribution. 
Unfortunately, public examination questions which ask the candidate to make inappropriate use 
of correlation coefficients are quite common, and this fact justifies our inclusion of the problem 
in this book. (Calculating a correlation coefficient between the rate of inflation and time a t  the 
end of the preceding paragraph is also, strictly speaking, invalid - see Note 1 to Problem 5A. 1. 
We are, however, using the correlation coefficient here merely as a numerical measure on the 
basis of which to compare apparent strength of relationships.) 
(3) The two tests for significance of the correlation coefficient used in our solution are 
equivalent. A partial demonstration of their equivalence is possible if we consider, for 
example, a value of r equal to the 1% critical value, 0.7977. This transforms to a 1-value of 

= 3,4997 7 
0 . 7 9 7 7 v  1 .O - 0.7977* 

which, to the accuracy we are justified in claiming given that the value we are transforming is 
accurate to four significant figures, agrees with the critical value obtained from t-tables. 

A test based on the z -transformation of the correlation coefficient is also possible: however, 
since it is based on an approximation, the exact tests that we have used are preferred. See 
Note 2 to Problem 5A.5 for a comparison between the exact and approximate tests. 
(4) We have seen in Note 2 that correlation techniques are inappropriate here. Regression 
techniques (with the rate of inflation as the response variable) would be more appropriate, since 
they d o  not require a random sample from a bivariate distribution, and the aim of regression is 
to e.rpluin variation in one quantity in terms of another. The same problems arise, however, 
since we are dealing with observational data. 

The close links between the techniques of regression and correlation may be illustrated if we 
consider the application of regression techniques to the data of this problem. If, in particular, 
we fit a regression line with y as the dependent variable and x as the explanatory variable, we 
obtain (as in Problems 5A.1 and 5A.2) fi = 1.035 and s2 = 21.71. A test of the null 

1.035 hypothesis p = 0 may then be based on a t-statistic with the value 
v21.71/363,94 

which, we note, is the value obtained in the solution to part (a). 

= 4.239 

5A.5 
The heights (in cm) and weights (in kg) of thirteen male and ten female students are given 
below: 

Correlation between height and weight 

Male 
Height Weight Height Weight 

183 65.5 190 79.5 
170 64.0 182 62.0 
178 64.0 192 86.0 
173 66.0 173 76.5 
175 58.5 175 64.0 
178 67.0 188 64.0 
185 72.0 

Height 

170 
165 
168 
163 
160 
155 
168 

Female 
Weight Height Weight 

72.5 160 54.0 
51.0 160 6.5.5 
57.5 157 56.5 
44.5 
52.0 
59.5 
64.5 
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(a) Obtain 95% confidence intervals for the correlation coefficients between height and weight 
for the male and female students. 

(b) Is there any evidence in the data to suggest that the two correlation coefficients differ? 

Solution 
(a) We shall let h denote height, and w weight. Starting with the male students, standard 
calculations lead to Zh = 2342.0, Zw = 889.0, Ch2 = 422 522.0, Zw2 = 61 538.0 and 
Zhw = 160 527.5, and hence to  Shh = 601.6923, S, = 744.0769 and Shw = 370.7308. The 
sample correlation coefficient between height and weight for the male students is therefore 

= 0.554. 370.7308 
V601.6923 X 744.0769 

r,  = 

To obtain a confidence interval for the correlation coefficient pm between height and weight 
for male students, we use Fisher's z-transformation. The transformed value of r ,  is 

1.0 + 0,554 = o,624 
1.0 - 0,554 

2, = ylog,  1 
The distribution of z, is approximately normal with variance 1 / ( n  -3), where n is the sample 
size. A 95% confidence interval for the transformed value of pm therefore has end-points 

1.96 
iZT9 0,6242 

i.e. 0.004 and 1,244. Applying the inverse transformation to  the upper limit we find, as the 
upper limit of our confidence interval for p, , 

Applying the same transformation to the lower limit, we find that the transformed value is the 
same as the untransformed value (since the z-transformation has very little effect on values 
close to zero). Our 95% confidence interval for p, is therefore (0.004, 0.847). 

Turning now to the female students, we obtain Zh = 1626.0, Cw = 577.5, Xh2 = 264 616.0, 
Cw2 = 33946.75 and Xhw = 94022.5, leading to Shh = 228.40, S, = 596,125 and 
S h  = 121.00. The sample correlation coefficient between height and weight for the female 
students is therefore 

= 0,328. 121.00 
" = -3x596 .125  

To obtain a confidence interval for the correlation coefficient pr between height and weight 
for female students, we proceed as we did for male students. We obtain 

The 95% confidence interval for the transformed correlation coefficient has end-points 
1.96 0.3402 - v7' 

i.e. (-0.400, 1.081). The corresponding interval for pf is (-0.380, 0.794). 

(b) A test of the equality of pm and py may be based on the difference between the observed 
values of z, and z r :  if the two population correlation coefficients are the same, the distribution 
of z, - zf is approximately N ( 0 ,  1/10 + 1/7).  A test of the null hypothesis that the two 
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population coefficients are equal may therefore be performed by comparing the statistic 

Zm - Zf - 
t / l / l O  + 1 / 7  

with critical values of the standard normal distribution; since the observed value of this statistic 
is 0.576, there is no reason to reject the null hypothesis. 

Notes 
(1) Two points about the z-transformation are worth mentioning. The first is the obvious one 
that, despite the notation which is in almost universal use, the distribution that is used to 
approximate that of z is not the standard normal distribution N(0,l) .  The second is that, 
although we have indicated in the solution to this problem how the z -transformation and its 
inverse can be computed on a calculator with exponential and logarithmic functions, some 
readers may prefer to use tables of the two transformations. It is the common practice for such 
tables to deal only with positive values of r and z ,  since negative values may be dealt with 
using the easily verifiable properties z ( - r )  = - z ( r )  and r ( - z )  = - r ( z ) .  
(2) The fact that the confidence interval obtained for pm does not include the value zero 
indicates that, testing at  the 5% significance level, the null hypothesis pm = 0 should be 
rejected - but only just, since the lower limit of the interval lies quite close to zero. This 
suggests that, since our method based on the z-transformation is only approximate, it might be 
interesting to investigate the accuracy of the approximation by comparing with the results of an 
exact test. Doing so, we reach the same conclusion, since the appropriate critical value for the 
correlation coefficient obtained from tables is 0.5529. This suggests that, a t  least when the 
underlying correlation coefficient is close to zero, methods involving the z -transformation may 
provide a fairly good approximation to the exact distribution, even for quite small sample sizes. 
We can investigate this point further by finding the value of r which would, at the 5% 
significance level, have been judged ‘just significant’ by an approximate test based on the 
z-transformation. This would correspond to a value of / z  1 of 1 , 9 6 O O / m  = 0.6198, which 
transforms to a value of 1 r I of 0.5510, quite close to  the exact critical value quoted above. 

(3) Since the (product moment) correlation coefficient for male students exceeds the 5% 
critical value by only a narrow margin, this example permits an interesting comparison with 
rank correlation methods. If, for example, we calculate Spearman’s coefficient, we obtain the 
value 0,386 (adjusting for ties), or 0.397 (without adjustment). Since the 5% critical value for 
Spearman’s coefficient, based on a sample of size 13, is 0.560, the observed value is not 
significant. The difference between the results of these two tests illustrates the loss of 
information resulting from the replacement of the actual values of height and weight by ranks. 

5A.6 Judging a beauty contest 

The twelve contestants in a beauty contest are judged by two judges, each of whom ranks the 
contestants in order. The results are as follows: 

Contestant 1 2 3 4 5 6 7 8 9 10 11 12 
JudgeA 8 2 1 12 9= 5 =  5=  9=  3 9=  7 4 
JudgeB 8= 2 =  1 10 6 2= 12 8= 4 5 11 7 

Calculate a rank correlation coefficient between the two judges’ results and perform an 
appropriate significance test. Comment on your results. 
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Solution 

Since the statement of the problem does not specify which rank correlation coefficient is to be 
used, we present two solutions, one involving Spearman's coefficient and one involving 
Kendall's. 
Spearman's coertieient 

Letting u and 6 respectively represent the ranks assigned by judges A and B, Spearman's 
coefficient can be calculated as the product moment correlation coefficient between the a s  and 
6 s .  (The tied ranks 2 = ,  5 = ,  8= and 9 =  are replaced by the values 2 .5 ,  5 . 5 ,  8.5 and 10.0.) 
Performing the usual calculations, we obtain 

S, = 140.5, SM = 142.0, Sd = 78.75. 

Spearman's rank correlation coefficient is therefore 

To assess the significance of this value, we consult tables for Spearman's coefficient, and find 
that the 5% and 10% critical values for a sample of size 12 are 0.5874 and 0.5035 respectively. 
(Although we are performing a two-tailed test, there is a fairly strong argument in favour of a 
one-tailed test - see Note 1.) Our observed value, therefore, differs from zero at the lo%, but 
not a t  the 5%, level of significance. There is thus a fairly strong indication that the two judges 
tend to agree (as contestants would hope), but the evidence is hardly conclusive: the calculated 
correlation coefficient reflects the fact (obvious on inspecting the data) that their agreement is 
far from total. 

An alternative method of calculating rs is to make use of the formula 

i = l  r s = l -  
n ( n 2 -  1)  ' 

where n denotes the number of contestants and, for i = 1 ,  2, . . . , n , di denotes the difference 
between the ranks ai and bi assigned to the i t h  contestant. This formula is exact if there are no 
ties in either ranking, but is only approximate otherwise; the approximation is, however, fairly 
good unless there are many ties. For our data, we obtain the values below. 

U; 8.0 2.0 1.0 12.0 10.0 5.5 5.5 10.0 3.0 10.0 7.0  4.0 
b, 8.5 2.5 1.0 10.0 6.0 2.5 12.0 8.5 4.0 5.0 11.0 7 . 0  

di -0.5 -0.5 0.0 2.0 4.0 3.0 -6.5 1.5 -1.0 5.0 -4.0 -3.0 

12 
We now find that x d :  = 125.0, so that 

i =1 

As can be seen, the approximation performs well for this example. 
Keodall's coefficient 

To calculate this coefficient, we consider all n(n - 1 ) / 2  pairs of contestants. For each pair we 
score + 1 if the two judges rank the two contestants in the same way, and -1 if they are ranked 
differently: if the two contestants are awarded the same rank by either or both of the judges the 
score is 0. If the total of the scores obtained is S ,  Kendall's coefficient r, is defined as the 
ratio 

S 
rK = - 7  
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where N A  and NB are the numbers of pairs ranked distinctly by A and B respectively. If there 
were no ties in the judges’ rankings both N A  and NB would be equal to n ( n  - 1)/2,  i.e. to 66 
in this problem. As it  is, the members of four pairs are tied by A (one pair having the rank 
5.5, while three pairs have the rank lo), and there are two pairs tied by B. Thus N A  = 62, and 

One way of calculating S involves first rearranging the observations from left to right so that 
the ranks awarded by one of the judges (it does not matter which) are in nondecreasing order. 
We then work through the contestants from left to right, considering the ranks awarded by the 
other judge. For each contestant we consider the ranks appearing to the right of his or her 
position in the list, excluding those corresponding to  contestants tied with the current contestant 
by the first judge. We score + 1  for higher ranks, and -1 for lower ranks; noting the 
contribution to the total score, we move on to the next contestant. If we choose Judge A as the 
first judge, results are as follows. 

N B  = 64. 

J u d g e A  1 2 3 4 5.5 5 . 5  7 8 10 10 10 12 
J u d g e B  1 2.5 4 7 2.5 12 11 8.5 8.5 6 5 10 

Score 11 9 7 2 6 -6 -5 -1 1 1 1 0 

(It may be in order to explain how some of the above scores are obtained. The first is obtained 
by considering all ranks to the right of the ‘1’ in the ‘Judge B’ row. Since all eleven of these 
exceed 1, the score of 11 is obtained. The eighth score is obtained by considering the four 
ranks appearing to  the right of the first ‘8.5’ in that row. Of these, one exceeds 8.5, and two 
are less than this value, so that the score is 1 - 2 = -1. The ninth is obtained by considering 
the three ranks appearing to the right of the ‘8.5’ in the row of Judge B’s ranks, but excluding 
the ranks 6 and 5 due to ties in Judge A’s ranking: this leaves just the rank 10, leading to a 
score of 1 - 0  = 1.) 

Totalling the scores obtained, we find that S = 26; thus 

Comparing the value of rK with tables, we find that it differs significantly from zero at  the 
10% level, but not a t  the 5% level (the appropriate critical values are 0,3939 and 0.4545 
respectively). Our conclusions are thus similar to those reached through the calculation of r, . 

As with Spearman’s coefficient, there is an alternative method of calculation for rK which is 
only approximate in the presence of ties, but which is often used unless there are many ties. 
The (slight) simplification in this method is that we ignore ties in calculating N A  and NB, so 
that both have the value n ( n  - 1) /2 .  With this simplification, for our data, we have 

We note that the effect of ignoring ties, though greater than in the case of Spearman’s 
coefficient, is slight. 

Notes 
(1) Although in most hypothesis testing problems it is fairly clear whether a one- or two-tailed 
test is appropriate (and a fairly good rule is to use the latter unless the wording of the problem 
indicates that departures from the null hypothesis in a particular direction are of interest), there 
are some problems where the situation is rather less clear-cut. In such situations our view 
would be that either type of test would be valid, provided that some justification is given for the 
choice. In this problem, despite the absence of any wording which suggests a one-tailed test, 
there is a strong argument in favour of a test which rejects the null hypothesis for large positive 
values of the correlation coefficient, since such values indicate some agreement between the two 
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judges and this is what we would hope to  detect. Large negative values indicate systematic 
disagreement, which could lead us to suspect that one or other of the judges is worse than 
useless! 

Despite this argument, we have chosen to perform a two-tailed test, on the grounds that, if 
there is systematic disagreement, we would be interested in detecting and, if possible, explaining 
it. 

(Note that there is nothing in the statement of the problem to tell us whether a (numerically) 
high rank corresponds to a good or a bad candidate. It is, of course, not necessary to know this 
provided that the two judges are following the same convention in ranking the candidates. If 
thcy did not, we would expect to observe results suggesting a degree of systematic 
disagrccmcnt.) 
( 2 )  The presence of ties in the rankings causes two problems. The first is that computational 
formulae which d o  not corrcct for tics lead to results which are slightly inaccurate. This can, of 
course, be overcome (as in our  solution) by using the corrcct formulae: this does not add much 
to the work involved in the case of Kendall's coefficient, and need not add much in the case of 
Spcarman's coefficient if a suitable calculator is available. 

The second problem resulting from the presence of ties in the rankings concerns the tables o f  
critical values for the two coefficients. These are based on the distributions which arise if the 
ranks awarded by each judge are independent random permutations of the integers 
1, 2 ,  , . The tables are thus, strictly speaking, inappropriate in the presence of tics. 
There is no totally satisfactory way round this problem, and all we can d o  is hope that the 
presence of relatively few ties has only a slight effect on the accuracy of the tabulated values. 

(3) If tables for testing the significance of rank correlation coefficients are not available, 
approximations may be used. For Spearman's coefficient it is possible to use tables for the 
product moment correlation coefficient (or, equivalently, to transform the value of rs to a value 
which may be checked against r-tables, as in Problem 5A.4). The approximation is fairly good 
even for quite small values of n : for n = 12 we can compare the exact 5 %  critical value used in 
our solution (0.5874) with the corresponding value for the product moment correlation 
coefficient (0.5760). 

For Kendall's coefficient a normal approximation can be used: in the absence of association, 
the distribution of r, is approximately normal with mean zero and variance 
2(2n + 5)/9n(n - 1). For a good approximation, however, we require a value of ti rather 
larger than we have here: the exact 10% critical value (0.3939) may be compared with the 
approximation 1.6449- = 0.3635. 

(4) A concise expression for the quantity S which appears in the definition of Kcndall's 
coefficient is 

, ti. 

where 

1 i f x > O  
sign(x) = 0 i f x  = 0  

-1 i f x < O  i 
It is possible to derive a similar expression for S, , viz. 

This shows that Kendall's coefficient is similar to Spearman's coefficient, but makes rather less 
use of the information provided by the ranks, just as Spearman's coefficient is a version of the 
product moment correlation coefficient which replaces actual data values by ranks. 
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5B Analysis of Variance 
This topic is mainly covered at undergraduate level, where it can play a very prominent r61e. 

It does have a very wide application, especially in industrial and agricultural research, and is 
therefore of particular value through the insights it offers into the practical applications of 
statistics. 

The method was devised by Sir Ronald A. Fisher, and is just one of his fundamental 
contributions to statistics. Its main application is to what are called comparative experiments; 
these are experiments in which we may compare, for example, the yields of two or more types 
of crop, or the fuel consumption of different models of car, or measures of hand-eye 
coordination of children of different ages. In each of these cases, we obtain experimental data. 
Roughly speaking, the analysis always proceeds by measuring the total variability in the data 
(by the corrected sum of squares of all the data values), and then allocating this to the various 
possible sources of that variability. In this way one can judge the importance or otherwise of 
the various sources, and draw appropriate conclusions. 

At  its simplest, the analysis of variance can be viewed as little more than an extension of the 
two-sample t-test to more than two samples. But the topic is much richer than that. Two-way 
analysis of variance (and, indeed, generalisations which we do not cover here) shows the power 
of statistical methods of conducting and analysing experiments so as to draw conclusions 
simultaneously about two types of variation. Thus, in the crop yield example above, one would 
not in practice conduct an experiment solely to compare yields of a few types of crop. In all 
commercial farming, fertilisers are applied to crops, and experiments would be performed to 
obtain information simultaneously about crops and fertilisers. The idea of experimenting in this 
way was considered rather unsound when Fisher first put it forward, but is now recognised as 
being one of the most important contributions of statistics to scientific experimentation. 

5B.1 
An industrial plant was maintained at  different temperatures on four successive days, and on 
each day three samples were taken from the process and analysed for quality; a score was 
awarded in arbitrary units, and the resulting scores are given in the table below. 

Relationship between quality and temperature 

Temperature (Day) 
100°C (1) 120°C (2) 140°C (3) 160°C (4) Sample 

~ ~~~ ~~ 

1 41 54 50 38 
2 44 56 52 36 
3 48 53 48 41 

Is there evidence to suggest that average score depends on temperature? If so, determine 
between which temperatures there are significant differences a t  the 5% level. 

Solution 

Although the data appear in the form of a two-way table, the three scores in each column are, 
in fact, simply repeated (and presumed independent) samples a t  the same temperature. Hence 
a one-way analysis of variance model is appropriate, and we aim to partition the total variability 
of the data, as measured by the corrected sum of squares about the sample mean, into two 
components, a ‘between temperatures’ component and a ‘within temperatures’ component. This 
is done in the Analysis of Variance table which appears on the opposite page; the necessary 
calculations are given separately at  the end of the solution. 
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Source 
Degreesof Sum of Mean 
Freedom Squares Square F -ratio 

Between temperatures 3 434.25 144.75 23.16 
Within temperatures 8 50.00 6.25 

Total 11 484.25 

The calculated F-ratio, 23.16, is now compared with the tabulated upper percentage points of 
the F-distribution on 3 and 8 degrees of freedom. At  the 1% significance level the tabulated 
value is 7.59. The result is thus highly significant, giving very strong evidence that temperature 
affects score. 

To discover more about the precise way in which score is affected by temperature, we can 
calculate the so-called Least Significant Difference (LSD) at the 5% level. We obtain 

LSD = 2.306g2X6.25/3 = 4.71; 

in this formula 2.306 is the upper 2+% point of the r-distribution on 8 degrees of freedom, and 
6.25 is the mean square within temperatures. 

The sample means for the four temperatures are now compared to see which pairs differ by 
more than the LSD. The  means are (in ascending order of temperature) 44.33, 54,33, 50.00 
and 38.33. We see then that the means for temperatures 120" and 140" are not significantly 
different at the S %  level, but all other pairs are significantly different at that level, and in 
particular the means for 100" and 160" are lower than the other two. We conclude that the 
mean score is highest for the two intermediate temperatures. 

Calculations 

For problems in the Analysis of Variance the calculations are rather more lengthy than in most 
others in this book, and it is convenient to sct out the working leading to the Analysis of 
Variance table here. A satisfactory sequence of calculations is presented below. 

Grand total, GT = (41 + 4 1  + . . . t 36 + 41) = 561; number of observations, ) I  = 12. 

Correction factor, CF = (GT)'/n = 561'/12 = 26226.75. 
Totals for temperatures: T I  = 133, T 2  = 163, T 3  = 150, T J  = 115. 

Numbcrs of observations: t i 1  = t i 2  = 113 = ~ I J  = 3. 

Uncorrected total sum of squarcs, USS = 41' + 44' + . , , + 36' t 41' = 2671 1. 

(Corrected) total sum of squares, CSS = USS - CF = 26 7 11 - 26 226.75 = 484.25. 

T :  T: T: T: 
1 1 ,  I12 f 1 3  I l j  

Between temperatures sum of squarcs, SSB = -- + -- t -- + -- - C F  

1 
3 

= -(133'+ 163'+ 150'+ 1 1.5') - CF = 26661 - 26226 75 = 434 25. 

Within temperatures sum of squares = CSS - SSB = 484.25 - 434 25 = 50 00. 

(viii) Degrees of frcedom: 

Total = I I  - 1 = 11, 

Between temperatures = 4 - 1 = 3, 

Within tempeiatures = 11 - 3 = 8. 

(ix) Mean square = sum of squarcs / degrees of freedom. 
(x) F-ratio = 144.75/6.25 = 23.16. 
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Notes 

(1) As in most statistical analyses, the data are assumed to satisfy some theoretical model and 
calculations are done to determine whether the model is correct. In this problem we assume 
that the three scores observed at  each temperature are a random sample from a normal 
distribution with a particular mean and variance. We may denote the mean of the distribution 
of scores at temperature 100" by p1, the mean at  temperature 120" by p2, etc. Then, if all 
temperatures produce different mean scores, we have made 3 inde endent observations on each 

u2, is assumed to be the same in all four distributions - this is a very important assumption, 
and would, of course, be checked in practice. The null hypothesis that we adopt is that 
p, = p2 = p3 = p4 and we wish to test if this is true rather than the alternative hypothesis that 
at least two of these means are different. If the null hypothesis is true then the calculated 
F -ratio ought to have an F-distribution. 
(2) The formula for the Least Significant Difference at  level a is given by 

of the distributions N(pl,u2),  N(p2,u2), N(p3,m2) and N(p4,u f ). Notice that the variance, 

LSD = t , , a m ,  

where s2  is the within temperatures mean square, and v is its number of degrees of freedom, 
t , , d  is the appropriate i-distribution percentage point and N is the number of data values used 
to compute each of the means being compared. 

The method derives from the conventional two-sample t-test for the difference between two 
means; a short discussion is given in Note 4 to Problem 4B.2. 
(3) The LSD is a convenient and equivalent way of performing the six possible i-tests that 
would be required to compare each pair of means. The LSD method, however, ignores the fact 
that six hypothesis tests are being performed, not one, and so the significance level of 5% is an 
underestimate of the true chance of rejecting the null hypothesis when it is true. More 
advanced statistical techniques are available, however, for overcoming this difficulty. 
(4) Although the LSD method is a legitimate one to use here, a better analysis can be obtained 
by making use of the fact that the four temperatures can be placed in a natural order, from low 
to high. Presumably the aim of the experiment was to discover which temperature is likely to 
maximise the mean score, and consequently there is a definite and intentional structure amongst 
the four temperatures. This structure has not been exploited in the given solution. 

The underlying assumption that might have been made when planning the experiment was 
that score is likely to exhibit a roughly quadratic relationship with temperature: that is, if mean 
score were denoted by y and temperature by t then the relationship would be 
y = a + bt + ct2. If a ,  b and c could be estimated, the maximum of this function, if it 
existed, could be obtained using calculus. With four equally spaced temperatures, as here, 
there are simple formulae for estimating a , b and c . 
(5) In an experiment of the type described it is important that the conditions under which the 
industrial process is run are identical (except for temperature change) on each of the different 
days. Otherwise it is impossible to  decide whether the differences between the four means are 
due to the temperature change or due to a change in the day. If the choice of day was thought 
to affect the score then a more involved experiment would be required. 

5B.2 The rubber content of guayule plants 
A random sample of 50 plants was selected from a field containing one-year-old plants of a 
variety of guayule, a plant species yielding rubber. Of the 50, 25 were classified as Normal 
(N). 14 were classified as Off-type (0) and 11 as Aberrant (A). The data on the following 
page show the percentage rubber content from each plant. 
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6.93 
6.42 
7.01 
7.31 
6.81 
7.00 
7.42 

Normal 

6.38 6.68 
7.26 7.29 
6.84 7.12 
7.25 6.86 
7.32 6.48 
6.42 6.20 
7.27 6.43 

Off- type 

7.10 5.70 4.84 
6.30 5.01 6.20 
6.83 5.82 4.46 
6.68 5.24 5.58 

5.88 5.24 
6.04 5.58 
6.10 6.01 

Aberrant 

6.34 6.40 
4.25 8.90 
7.70 5.90 
6.36 7.10 
5.51 
4.72 
7.90 

(a) Test the null hypothesis that there is no difference in mean rubber content between the 
three types of plant. 

(b) If the means of the distributions of each type of plant are denoted by pN, PO and pA 
respectively, test the following particular null hypotheses: 

(i) PN = PA; 

( 4  PO = +(PN + PA). 

Solution 

The data are classified in one way only and so the appropriate statistical model is that for a 
one-way analysis of variance. The Analysis of Variance table follows, the necessary 
calculations being laid out a t  the end of the solution. 

Source F -ratio Degreesof Sum of Mean 
Freedom Squares Q u a r e  

Between types 2 15,5457 7.7728 14.04 
Within types 47 26.0182 0.5536 

Total 49 4 1.5 639 

(a) The F-ratio for testing the null hypothesis that FN = PO = PA is 14.04 on 2 and 47 
degrees of freedom. The tabulated upper 1% point of the F-distribution on these degrees of 
freedom is, by interpolation, 5.11. (Statistical tables are often less detailed for degrees of 
freedom higher than 40.) The F-ratio is highly significant, giving overwhelming evidence of a 
difference between the three types of plant. 
(b) (i) To test the null hypothesis that pN = FA we express the hypothesis as FN - FA = 0 and 
use a t-test. If XN and FA are the observed means of the two types and s’ is the within types 
mean square, the t-statistic is 

and has the t -distribution on 47 degrees of freedom. For the data in this problem, t is given by 
6.864 - 6,462 ,50 

The 24% point of the t-distribution on 47 degrees of freedom is, again by interpolation, 2.01. 
On a two-tailed test at the 5% level, we therefore find no evidence to reject the null hypothesis. 
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(ii) To test the hypothesis that po = i ( p N +  pJ, we again use a t-test. Using X, to denote 
the sample mean for Off-type plants, the appropriate statistic is 

x, - i ( X N +  XA) 
_ _ _ _ _ _ ~  r =  

For the given data we find 
5.550 - i(6.864 + 6.462) 

which we must also compare ui th  the I-distribution on 47 degrees of freedom. The tabulated 
0.5% point is approximately 2.69, so the hypothesis will be rejected at the 1% level on a two- 
tailed test. There is convincing evidence that ko is not equal to ;(kN + kA). 

Overall, our conclusion is that the mean rubber contents of Normal and Aberrant plants are 
very similar, but that they differ from that of Off-type plants. 

Calculations 
(i) Grand total, GT = 320.39; number of observations, n = 50. 
(ii) Correction factor, CF = (CT)’ /n = 320.392/50 = 2052,995. 
(iii) Totals for types of plant: T ,  = 171.61, T o  = 77.70, T A  = 71.08. 

Numbers of observations: n,  = 25,  no = 14, nA = 11. 

(iv) Uncorrected total sum of squares, USS = 2094.5589. 
(v) (Corrected) total sum of squares, 

CSS = USS - CF = 2094.5589 - 2052.995 = 41,5639. 

T i  T A  T i  
“ N  “0 “ A  

(vi) Ektwecn types sum of squares, SSB = - + - + - - CF = 15.5457. 

(vii) Within types sum of squares = CSS - S S B  = 26,0182. 
(viii) Degrees of freedom: 

Total = n -1 = 49, 

Between types = 3 - 1 = 2, 

Within types = 49 - 2 = 47. 

(ix) Mean square = sum of squares / degrees of freedom. 
(x) F-ratio = 7.7728/0.5536 = 14.04. 

Notes 
(1) The tests used in the solution require several conditions to be met for their validity. These 
are that the observations are independent and normally distributed, all with the same variance. 
In part (a), under the null hypothesis, the values obtained from the 50 plants are a random 
sample from N( p,u2), where p is the common value of pN, po and pA, and u2 is the common 
variance of the observations. Under the alternative, the measurements on the three types of 
plant form three independent random samples, from normal distributions with different means 
but with the same variance. (Strictly, the means are not necessarily all different; the alternative 
hypothesis is just that they are not all the same.) 
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(2) In the solution to Problem 5B.1 we used the Least Significant Difference method, but have 
not used it here. This is mainly because, in part (b), there are only two null hypotheses of 
interest, and because the second of these does not involve a simple comparison of two mean 
values. The LSD can be used when the aim is to make comparisons between pairs of means. 
(In fact, its use is rather more complicated when, as here, the sample sizes are unequal.) 
(3) The r-test is useful when testing more complex null hypotheses than those such as pA = p, 
where p is some specified value, or p~ = PA. A r -test can be generated to test such hypotheses 
as a p N +  b p o +  c p A  = 0, for any given constants a ,  b and c .  In part (b)(ii) we used, in 
effect, a = c = - f and b = 1. In these cases the test is conducted by using, as numerator, an 
estimate of a pLN + b po+ c p ~ ,  viz. a XN + b TO + c FA. Now, treating this as a random 
variable, Y ,  say, we find that 

a202 b 2 a 2  c2m2 

“N “0 “ A  
Var(Y) = ___ + - + -  

“N “0 “ A  

Since, under the hypothesis a p~ + b po + c pc = 0, Y is normally distributed and has mean 
zero, 

” 

when the hypothesis is true. In the usual way, replacing u2 by s 2  gives us a statistic with a 
1 -distribution. 

5B.3 The quality of electronic components 

In a factory manufacturing electronic components there are four machine operators and five 
machines producing similar items. The quality of the components having been quite variable, 
an experiment was conducted to determine whether the variability was caused by differences 
between machines, differences between operators or both. The production was observed for 
each shift, with each operator using each of the five machines for a whole shift. The quality of 
the components produced during any shift was assessed by quality control inspectors on a scale 
of 0 to 100, with 100 corresponding to perfect quality and 0 to useless material. The results 
were as given in the following table. 

Machine 
A B C D E  Operator 

1 56 92 53 93 68 
2 64 83 55 95 62 
3 62 80 56 96 62 
4 51 78 44 88 69 

Carry out an appropriate analysis of variance, and test for differences between operators and 
between machines. 

Solution 
In this experiment there are two main sources of variability: differences between operators and 
differences between machines. The statistical model that is appropriate is, therefore, that for a 
two-way analysis of variance. The Analysis of Variance table follows, the calculations being 
presented at  the end of the solution. 
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Degrees of Sums of Mean F -ratios Source Freedom Squares Squares 

Operators 3 129.75 43.25 1.99 
Machines 4 4754.30 1188.57 54.75 
Residual 12 260.50 21.71 

Total 19 5144.55 

The F -ratio for testing the null hypothesis that there are no differences between operators is 
1.99 on 3 and 12 degrees of freedom. This value is compared with upper percentage points of 
the F-distribution; the 5% point is 3.49, comfortably above the observed value. Hence this null 
hypothesis cannot be rejected at  the 5% level. We cannot, therefore, conclude that the 
variability in component quality is a result of differences between the operators. 

In a similar way the F-ratio for testing the null hypothesis of no differences between the 
machines is 54.75. This value is highly significant, since it far exceeds 9.63, the 0.1% point of 
the F-distribution on 4 and 12 degrees of freedom. We conclude that there is overwhelming 
evidence to reject this null hypothesis. In other words, quality does vary from one machine to 
another. 

Calculations 

(i) Grand total, GT = 1407; number of observations, n = 20. 
(ii) Correction factor, CF = (GT)2/n = 1407?20 = 98982.45. 
(iii) Totals for operators: 01 = 362, 02 = 359, 0 3  = 356, 0 4  = 330. 
(iv) Totals for machines: M A  = 233, M B  = 333, Mc = 208, M D  = 372, M E  = 261. 
(v) Uncorrected total sum of squares, USS = 562 + 922 + . . . + 692 = 104 127. 
(vi) (Corrected) total sum of squares, 

(vii) Number of machines, n, = 5 ;  number of operators, n, = 4. 
CSS = USS - CF = 104 127 - 98982.45 = 5144.55. 

0: of 0: 01 
(viii) Sum of squares between operators, OSS = - + - + - + - - CF 

"m n, n, "m 
1 
5 

= -(3622 + 3592 + 3562 + 3302) - 98982.45 = 129.75. 

M i  Mi M: M i  M $  
Sum of squares between machines, MSS = - + - + - + - + - - CF 

no no nn no no 
1 
4 

= -(2332 + 3332 + 20B2 + 3722 + 2612) - 98982.45 = 4754.30. 

Residual sum of squares, 

Degrees of freedom: 
RSS = CSS - OSS - MSS = 5144.55 - 129.75 - 4754.30 = 260.50. 

Total = n - 1 = 19, 

Between operators = n, - 1 = 3, 

Between machines = n, - 1 = 4, 

Residual = 19 - 3 - 4 = 12. 

Mean square = sum of squares I degrees of freedom. 
(xiii)F-ratios: 43,2921.71 = 1.99; 1188.57/21.71 = 54.75. 



SB.3 Analysis of Variance 201 

Notes 
(1) The statistical model for data such as these is that the observed data value can be expressed 
as rn + a  + b + e ,  where rn is the overall mean quality level, a is the effect on mean quality 
caused by using a particular operator, b is the effect on mean quality caused by using a 
particular machine, and e is a random variable which is normally distributed with mean zero 
and variance u2. Such a model is usually referred to as additive. Note that all data are 
assumed to have a common variance u2. (There are techniques for checking these assumptions, 
and the analysis can be modified if necessary.) 
(2) The data are discrete and are restricted to lie in the range 0-100. Clearly, they cannot be 
exactly normally distributed. However, data such as those considered here are often 
approximately normal, and this is usually good enough for practical purposes. 
(3) If it is necessary to decide which particular machines differ, the Least Significant 
Difference (LSD) method can be used. (See Problem SB.l for another example of the use of 
the LSD, and Problem 4B.2 for a note on the theory.) In this problem the LSD, calculated at  
the 5% significance level, is 

LSD = 2.18d2X21.71/4 = 7.18. 

The means of the data collected on each machine are, respectively, 58.25, 83.25, 52.00, 93.00 
and 65.25. The difference between each pair of means is now compared with the LSD. If the 
difference between any two means is greater than the LSD, then those means are significantly 
different at the 5% level. Here all means are significantly different except for those of the pairs 
(A, C) and (A, E), which have differences of 6.25 and 7.00, respectively. 

The formula for the LSD at  the 1OOu% significance level is 

LSD = t , , , d l / K ,  

where s2 is the Residual Mean Square, v being the corresponding number of degrees of 
freedom, where t v , d  is the appropriate percentage point of the t-distribution on v degrees of 
freedom, and no is the number of data values used to compute each mean. 

* (4) As in Problem 5B.1, we must be aware that when using the LSD we are, in fact, 
performing six separate t-tests. The 5% significance level should therefore be interpreted with 
caution. One alternative here would be to use a 1% significance level and obtain better 
protection against rejecting the null hypothesis when it is true. The only change in the 
calculations would be to use the r-value for a 1% test, i.e. 3.05. The LSD would then change 
to 10.05. At  this level the means of machines B and D are now also not significantly differcnt. 
The overall conclusion would now be that machines B and D have a higher quality product than 
do the other three machines. Of these three, machine A has production quality intermediate 
between those of C and E. 

In the present 
example this would imply that the difference in mean quality between two machines depends on 
which operators are using the machines. To test for non-additivity each operator would need to 
use each machine for a t  least two shifts. This would give repeat quality values on each 
combination of operator and machine, and a model allowing for interaction could be used. 

* (5) Two-way data often exhibit what is termed interaction, or non-additivity. 
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5C Contingency Tables 
While one undertakes the analysis of relationships between variables by the techniques of 

regression and correlation, the topic of contingency tables deals with the analysis of data 
showing the relationship between attributes. Thus we may wonder to what extent certain social 
habits (for example, smoking) are related to age, or to sex (or, indeed, to both), or might wish 
to examine whether cirrhosis of the liver and alcohol consumption are related. 

The basic method of data presentation is straightforward. If we have two types of attribute, 
one with two categories (male, female) and one with three (low, moderate, high) we place each 
individual into the appropriate one of the six possible categories. thus forming what we call a 
( 2 x 3 )  cotiritigetit-y /able of frequencies. Of course, these numbers and attributes can be 
gcncraliscd, as will be seen in the following problems. 

In  practice, most contingency tablcs are many-dimcnsional. and techniques have been devised 
recently to analysc such tables. For example, a topic of currcnt interest is whether there is any 
relationship bctwccn presence of heart disease and amount of exercise taken. In  an 
invcstigation of this qucstion, individuals would also necd to be categoriscd by such factors as 
age. SCX, nationality and type of diet. 

5C.I The value of rainfall forecasts 
Forecasts of rainfall are made in three categories, namely ‘no rain’, ‘light rain’ and ‘heavy 
rain’. The table below summarises the incidence of each type of forecast and the observed 
rainfall for a sample of 141 forecasts. 

Forecast rainfall 
Observed rainfall 

No rain 
Light rain 

23 38 
Total 31 26 141 

(a) Find the ‘expected’ frequencies for each combination of forecast rainfall and observcd 
rainfall under the hypothesis, H o ,  that there is no association between the forecast and the 
observed rainfall. 
(b) Use a test based on the x 2  distribution to decide whether or not H o  is plausible. 

Solution 
(a) We denote the ‘expected’ frequency of-okervation for class i of observed rainfall and class 
j of forecast rainfall by el l .  Then e,, = tipI p , , where n is the total number of forecasts, p ,  is 
the observed proportion, and hence the estimated probability, of occasions with observed 
rainfall of type i ,  and p  ̂ is similarly the observed proportion of forecasts of type j .  
Calculating e,, for the data in the problem gives the following table. 

Forecast rainfall Observed rainfall 

No rain 
Light rain 15.5 

21 .o 10.0 7.0 

38 78 
141 141 For example, e3l = 141 x ~ x --- = 21.0 (to one decimal place, which is all that is needed 

here). The other e,]s are obtained similarly. 
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(b) The form of the test statistic is very similar to that for x2 goodness-of-fit tests, as discussed 
in Chapter 3. We obtain 

34 - 41.5)’ + (24 - 19,7)* + . , , + (6  - 7.0)’ 
41.5 19.7 7 .0  

x2 = ( 

Under H o  the test statistic X’ has, approximately, a x’ distribution with ( r  -l)(c -1) degrees of 
freedom, where r and c are the numbers of rows and columns in the table. In the present 
example r = c = 3, so that there are 4 degrees of freedom. 

As with the x 2  goodness-of-fit test, If0 is usually rejected only for large values of X 2 .  The 
upper 10% and 5% points for x: are 7.78 and 9.49, so H-0 would be rejected at  the lo%, but 
not the 596, significance level. Thus, there is some evidence, although it is not very strong, of 
association between the forecasts and the observed rainfall. 

Notes 
(1) In the solution to part (a) we used the expression e,, = tip, p , and showed, as an example, 
how the formula produces the value 21.0 for e31. As can be seen from the expression for e31, 
cancellation is possible, and indeed is normally done. A simple gcneral formula for e,, is 

~~ 

e;, = total for row i x total for column i 
grand total 

so that, for example, 

(2) The conclusion to part (b)  was that the data containcd some slight evidence against f/o, i .e. 
in favour of an association between the forccast and the actual weather. In  practice, thc 
statistician would now go on, in consultation with specialists in the topic, to consider what form 
any association between these categories might take. In the prcsent case, it is interesting to note 
that, if anything, the association is the reverse of the one to be expected. For cxamplc, when 
henry rain is forecast the observed frequency of no rain is greater than its cxpected frequency. 

SC.2 
In a survey, 1000 individuals were asked how often they took exercise in the form of cycling. 
There were three possible responses, namely ‘never’, ‘occasionally’ and ‘frequently’. A similar 
question was asked with respect to walking. with the same thrce possible responses. 

Of the 1000 individuals, 75 said that they frequcntly walked and cycled, 10 nevcr walked but 
cycled frequently, 35 never cycled but walked frequently, and 100 never walked and never 
cycled. In all, 200 individuals never cycled and 125 never walked, whereas 700 cycled 
occasionally and 150 walked frequently. 
(a) Arrange the data in the form of a (3x3 )  contingency table, and state how many of the 
1000 individuals both cycle and walk occasionally. 
(b) Apply a x 2  test to the ( 3 x 3 )  table, stating clearly the hypothesis which it is designed to 
test. 

A survey of exercise habits 
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Solution 
(a) The (3x3 )  table is given below. The entries marked by a n  asterisk are given in the 
problem, and the remaining entries follow by subtraction. 

1 eq 1 Yevr O c c f F  F r e q F t l y  1 1 Never 

Fr uentl 35* 40 75* 150* 
Total 200* 700* 100 1000* 

Walking Occasionally 

Hence the n u m b r  of individuals who both cycle and walk occasionally is 645. 
(b) The  usual x2 statistic is 

u,, - e J 2  cc  7 
I = l J = l  

where the f , s  are the entries in the table of observed frequencies constructed in part (a) and the 
e,Js are the corresponding expected frequencies under the null hypothesis. The statistic is 
designed to test the null hypothesis that the variables defining the margins of the table (in this 
case the amounts of cycling and walking) are independent, against a general alternative. The  
eys  are calculated as in Problem 5C.1, so that, for example, 

725 loo 72.5, 1 1  

e23 = n ~ 2 . p . ~  = 10OOx-x- = 1000 1000 

A complete table of ei,s is given below. 

Cycling 

Never 
507.5 72.5 725 

30.0 105.0 15.0 150 
Total 200 700 100 1000 

The test statistic is 

x 2  = (100-25.0)2 + (15-87.5)’ + (10-12.5)’ + .  . . + ( 75-15‘0)2 = 693.64, 
25.0 87.5 12.5 15.0 

Under the null hypothesis of independence, the test statistic X 2  has a x2 distribution with 
( r - l ) ( c - 1 )  = 4 degrees of freedom. The  value of X 2 ,  693.64, greatly exceeds any of the 
usual percentage points for xi. We therefore conclude that amounts of walking and cycling are 
not independent. 

Notes 
(1) The x 2  test for contingency tables, as with the x2 goodness-of-fit test, can detect any sort of 
alternative to the null hypothesis. Thus the x2 test will have some chance of detecting any 
dependence between the two variables, no matter what form this might take. However, in some 
circumstances only one particular type. of dependence is of major interest as an alternative to 
independence. This is true, in particular, when the categories of the two variables are ordered, 
and it is anticipated that they will increase or decrease together. This would happen in the 
present example if it were thought that the alternative to independence is that amounts of 
exercise in the two activities increase together. We would probably not, for example, consider 
an alternative where those who occasionally cycled rarely walked, but those in the other two 
categories, who ‘never cycled’ or ‘frequently cycled’, walked more than average; such a n  
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alternative would however be detected by a x2  test. 
If the range of plausible alternatives is restricted, then there may be other tests which are  

better able to detect them (are more powerful) than the x 2  test. This increased power is 
obtained by losing the ability to detect alternatives outside the limited range of interest. 

In the present example the evidence of dependence is so strong that there is no need to  
consider tests other than x2 .  However, in  tables with ordered categories where the x2  test just 
fails to reject independence, a more specific test based on restricted alternatives may provide 
conclusive evidence against independence. Note, however, that it is not acceptable to 'snoop' 
through the data, trying to discover a plausible alternative hypothesis, and then choose the test 
most likely to reject the null hypothesis in favour of that alternative. In principle, one ought to 
decide on the test to be used before collecting the data. (A similar point is made in the 
discussion of Problem 5A.2,  in relation to choice of a one-tailed or two-tailed test in a different 
context.) 
(2) It is really not necessary to calculate the value of the x 2  statistic precisely in this example, 
unless an exact significance level (or p-value) is required. The first term in the expression for 
the statistic is 225, which on its own greatly exceeds any of the usual x 2  percentage points. 

* 5C.3 Sex ratios of insects 
(a) In a contingency table with r rows and 2 columns the observations in row i are nil  and niz, 
with row totals n i .  = nil + ni2,  i = 1,2, . . . , r ;  the column totals are r1 and n .2, with 

Show that the x 2  statistic for testing 
independence of the variables defining the rows and columns of the table can be written as 

+ n.2  = n ,  the total number of observations. 

Hence, or otherwise, show that it can be expressed as 

(b) Samples of a certain species of insect were collected from two different locations, and the 
number of females was observed. There were 44 females in the 100 insects collected at  the first 
location, and 86 females out of 200 insects a t  the second location. Test whether the proportions 
of females differ between the two locations. 
(c) A further sample of 200 insects is taken at  a third location and found to contain 110 
females. Consider the data from all three locations simultaneously, and test whether there are 
differences in the proportions of females between the three locations. 

Solution 
(a) The x2  statistic is given in general by 

say, and in the present case J ,  = ni, and e,J = n, .n . , /n  , i = 1,2,  , . . , r ,  j = 1,2 .  Now 
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But 

ni2 - n, n .?/n = n i .  - nil  - ni. (n - n . l ) /n  

- ni .  - n I I  - n i .  + nl.n.l/n - 

= - ( n f l  - ni.n.l/n). 

Hence 

so that 

required. 

We now w s h  to obtain the second expression for X2. Expanding the numerator, we find that 

1-1 2:- nI 1 - 1  " I  I =I n I-i 

r ( n , l - n , n l / n ) *  r n,: 2 n 1  r n: r 
= E- - n E n , 1  + ,En ,  
- r n,l 2 n :  n :  r r - Z - - -  

n n / = I  " I  I =1 , = I  

t1,; tl : 
= E- - -, 

+ -, since zn, = n and E n f l  = n 

/ = I  " I  n 

We thus obtain 

the required expression. 

(b) This can be viewed either as a test of equality of two binomial parameters or as a (2x2) 
contingency table. These two viewpoints lead to apparently different, but in fact equivalent, 
test statistics, and we will give both methods, for completeness. 

Method 1 
Let p I  and p2 be the proportions of female insects in the populations at  the two locations. We 
then wish to test H,,: p ,  = p2  against H I :  p 1  # p2. If a, and p2 are the sample proportions of 
females, then using the normal approximation to  the binomial distribution we have, 
approximately, 

di - ~ h ,  Piqi/ni), i = 1 , 2 ,  
where qi = 1 -pi and ni is the number of observations (or trials) in sample i . Assuming that 
the two samples are independent, it follows that, approximately, 

1. [ 1 "2 

P l Q l  +p292 
p ]  - p2 - N PI - P 2 ,  I- 

under H,, where p is the common value of p1 and pz  under this hypothesis, and q = 1 - p .  



5c.3 Conringency Tables 207 

The value of p is of course unknown, but the obvious estimate is a ,  the proportion of females 
in the two samples together. We have then that, approximately, 

when No is true, and 2 can be used as our test statistic. 
For the given data, P I  = 0.440, d2 = 0,430, a = 0.433, n 1  = 100, n2 = 200, SO 

- 0.010 - - -_-- 0,440 - 0.430 - 

Since this value is to be compared with percentage points of N ( 0 ,  I )  on a two-tailed test, for 
example, -1 96 and +1.96 for a test of size 5%. we conclude that there is no evidence of any 
difference between p ,  and p 2 .  This might have been expected, given the obvious closeness of 
the two sample proportions it and a2. 
Method 2 
Expressing the data as a contingency table we obtain the following. 

56 114 

Total 

170 

300 

The {e;,} needed in the x 2  test statistic X2 are given by 

130X 200 
300 

and eI2  = -__ = 86f ,  

and similarly e21 = 56; and eZ2 = 113;. (Since the numbers in the ‘Total’ row and column are 
given, the last three of these could have been calculated by subtraction; for example, 
eI2  = 130 - e l l . )  The x 2  statistic X 2  is therefore 

(44 - 43i)2 (86- 86$)* (56 - 56$)2 (114 - 113f)2 + ______ 
43+ 86$ 56; 113; 

x2 = + + 

This is, in fact, simply the square of 2 calculated above. Since Z - N ( 0 , l )  approximately, it 
follows that Z 2  - x: approximately, so we have here separate confirmation that the statistic X2 
for the x2 test does indeed have, approximately, a x 2  distribution. It is clear, as with Method 1 
above, that the statistic provides no evidence to contradict the hypothesis of independence 
between location and proportion of females. 
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Female 
sex Male 

Total 

x . 3  

Location 
1 2 3 Total 

48 96 96 240 
52 104 104 260 

100 200 200 500 

(c) We now have a (2 x 3) contingency table, as follows. 

Location I 1 2 31Total 

sex Eay;le 1 44 86 1;; 1 :;; 
Total 100 200 200 500 

56 114 

The expected frequency e l l  of females in location 1, assuming independence between location 
and proportion of females, is given by 

and the remaining expected numbers can be calculated similarly (with some alternatively 
obtained by subtraction) to  give the following table of expected frequencies. 

The x2 test statistic X2 then takes the value 

2 (44-48)2 + j86-96)2 + . . , + ( 90- 104)2 = 6.57. 
48 96 104 

x -  

The number of degrees of freedom is ( r  - l )x(c  - 1)  = 1 x2 ,  and the 5% and 2+% points of 
xj are 5.99 and 7.38 respectively. There is thus evidence at  the 5% level, but not a t  the 2+% 
level, that the proportions of females in the three locations are different. 

Notes 
(1) Algebraic manipulations similar to those in part (a) of the solution show the equivalence of 
Z2 and X2, the statistic for the x2 test. There is yet another expression for X2 which is available 
for (2x2) tables and is simpler to calculate than the more general expressions. This is 

x2 = - n(n11n22 - n12n2d2 

x2 = n(ad - bC)2 

2 

n 1 n 2 n  In 2 

where nl , " 2 ,  n 1 and n 2 are the marginal totals of the table, and n is the grand total. It is 
usually quoted in the alternative notation 

(a + b ) ( c  + d ) ( a  + c ) ( b  + d )  ' 
where a ,  b , c and d are the four observed frequencies n 11, n 12, "21 and "22 respectively. 
Substituting e,, = n, n , /n into the general expression, and some algebraic manipulation, quickly 
leads to the alternative expression. In the present example the alternative expression gives 

(2) The distribution of the test statistic calculated for contingency tables is only approximately 
the x2 distribution. As with goodness-of-fit tests, the main restriction needed to ensure a good 
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Female 
Sex Male 

approximation is that none of the el,s is too small, where ‘small’ takes on roughly the same 
meaning as for goodness-of-fit tests. (See Note 3 to Problem 3B.2.) 

For (2x2) tables the a proximation can be improved by replacing cf, - ez,)2 in the test 

of a continuity correction. Continuity corrections are appropriate whenever a discrete 
distribution is approximated by a continuous distribution, and the exact distribution of the x2 
test statistic is discrete, whereas of course the x2 distribution is continuous. 

Continuity corrections are, in theory, also desirable for larger tables, but they are less likely 
to make much difference to the value of the test statistic and they d o  not take a simple form, so 
are generally ignored. Even for (2x2) tables, Yates’ correction will often make very little 
difference to the result. Also, the correction in fact tends to ‘over-correct’. Without the 
correction there is a tendency for Ho to be rejected slightly too often, whereas the opposite is 
the case (the test being said to become conservative) when the correction is used. 

ible to calculate the exact 
distribution of the test statistic, rather than relying on the Xcpproximation.  The exact 
distribution is related to the hypergeometric distribution, which is the distribution of any one of 
the individual cell values. (See Problem 2A.7 for a discussion of this distribution.) Calculating 
the exact distribution becomes very tedious when the marginal totals are a t  all sizeable, which is 
in any case when the x2 approximation will be a good one. 
(3) Given the conclusions in parts (b) and (c) it seems likely that locations 1 and 2 both differ 
from location 3, but not from one another. If this alternative were of interest, rather than the 
very general alternative of there being some difference between the three locations, a more 
powerful test is available by combining the first two columns of the contingency table. If this is 
done we reach the table below (with expected frequencies in parentheses). 

statistic by ( If,-e,, 1 - i) 4 . This modification is termed Yam’ correction, and is a special case 

For (2x2) tables, if the marginal totals are not very large, it  is 

130 (144.0) 110 (96.0) 1 240 
170 (156.0) 90 (104.0) 260 

Location 
1 and 2 3 1 Total 

Total I 300 200 I 500 

The test statistic now takes the value 

142 [G 1 1 1  + 96 + 156 + 

or, incorporating Yates’ correction, 

1 1 1  
144 96 156 
- + - + - + 

These values lie between the 2+% (5.02) and 1% (6.63) critical values of x:, so that the 
evidence is moderate, but still not conclusive, that there are differences between the locations. 
The present test is, however, somewhat more powerful than the general one presented earlier. 

(4) In the solution to part (b), Method 1 ,  we followed the standard, and intuitively sensible, 
practice, of replacing p1  and p2 by a common estimate p^ rather than by separate estimates p^, 
and p^z when the null hypothesis is H o : p l  =p2. However, some authors use separate 
estimators, and such use cannot be ruled out as completely unacceptable. 
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5D Time Series 

One of the types of statistical information which come most readily to the public eye is that 
contained in regular government publications. Thus, for example, most governments publish 
monthly a great number of economic and social statistics; unemployment figures and balance of 
trade figures are perhaps the most prominent, but there are many more. These statistics, giving 
the successive values taken by some variable a t  more or less regular intervals of time, are known 
as lime series, and while the discussion above has concentrated on the prominent governmental 
area, applications of time series analysis occur much more widely. For example, meteorological 
data h a w  been kept regularly over many years, so that the analysis of time series in climatology 
is a standard technique. Another example is found in the area of dendrochronology, the dating 
of wooden objects through the analysis of the widths of successive tree-rings; these tree-rings are 
formed by the annual growth of bark on a tree, and the width reflects (amongst other things) 
rainfall, so that matching of rings from different trees through the methods of time series is a 
practical method. 

Time series analysis is, however, rather a difficult subject, and seldom encountered in 
examinations at  the level we have been considering in this book. We end with two 
representative, but rather different, time series problems, as an introduction to this interesting 
topic. 

5D.l 
(a) In the analysis of a time series, explain what are meant by the terms trend. seasonal 
variation and random varinrion. 

(b) For a period of 19 weeks, from mid-November until the end of March, the weekly 
electricity consumption of a Canadian household was recorded, and the results are given below. 
Plot the data on a graph. 

The electricity consumption of a Canadian household 

Units of 
Week electricity 

1 65 
2 73 
3 72 
4 68 
5 73 
6 86 
7 79 
8 87 
9 82 

10 82 

Units of 
Week electricity 

11 74 
12 75 
13 73 
14 67 
15 67 
16 62 
17 60 
18 63 
19 62 

(c) Calculate an appropriate moving average in order to smooth the series, and plot its values 
on the graph. 
(d) Plot, separately, the remainder left when the moving average is subtracted from the 
observed series, and discuss how the graphs in (c) and (d) are related to the ideas of trend, 
seasonal variation and random variation. 

(e) Discuss, with reasons, what you think might happen to electricity consumption during the 
next 20 weeks after the end of the series given in (b). 
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Solutioa 
(a) A traditional approach to the analysis of time series is to imagine that an observed series is 
the sum (or perhaps the product) of three separate parts, as below. 
(i) A slowly-varying, ‘smooth’ part of the series which represents the long-term rrend. 

(ii) A periodic component which repeats itself regularly. This seasonal variation usually has a 
period of one year and is caused by the different nature of environmental or human behaviour 
at different times of year. The term seasonal variation is, however, sometimes used to represent 
other periodic behaviour with a fixed period, for example diurnal variation. 
(iii) Random variation is essentially what remains after trend and seasonal variation have been 
removed from a series. It is not necessarily random in the strict sense that successive values are 
independent. Typically, indeed, they are not independent, and this random component of a 
series can include, for example, behaviour which is almost periodic in nature. 
(b) The required graph is shown in Figure 5 . 5 .  

(c) There are several moving averages which could be used. If we denote the series by 
x , ,  r = 1,2,. . . ,19, and denote the moving average by y, ,  then we could consider using the 
following: 

(i) a simple three-point moving average 

y, = +(I,-, + x ,  + x , + I ) ,  t =2,3,. . . ,18; 

(ii) a simple f ive-pint  moving average 

y, = +<x,-, + X , - l  + XI + X,+l + x,+*), t = 3,4, . . . ,17; 

(iii) a three-point moving average with linearly decreasing weights, i.e. weights which decrease 
linearly on either side of r 

(iv) a five-point moving average with linearly decreasing weights 

These are by no means the only possibilities, but any of them would be adequate for the present 
problem. A moving average is generally based on an odd number of time points, since using an 
even number will result in an expression for y,  for a fractional value of t .  This would be 
inconvenient when one is trying to compare x1 and y , .  

Only one of the above moving avcragcs is required here, but for illustration we calculate y, 
using two of them, (ii) and (iii). These will give, respectively, the most drastic and least drastic 
smoothing of the series, among the four listed. 

Week y, (ii) y, (iii) I Week y, (ii) y ,  (iii) 

2 
3 70.2 
4 74.4 
5 75.6 
6 78 6 
7 81.4 
8 83.2 
9 80.8 

10 80.0 

70.75 
7 1.25 
70.25 
75.0 
81 .0 
82.75 
83.75 
83.25 
80.0 

11 77.2. 76.25 
12 74.2 74.25 
13 71.2 72.0 
14 68.8 68.5 
15 65.8 65.75 
16 63.8 62.75 
17 62.8 61.25 
18 62.0 
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Both these moving averages are plotted on the graph in Figure 5 . 5 ;  it can be seen that they give 
similar, though certainly not identical, pictures. 

Moving Awrage (ii) 

I I I I I I I I I 

Week e, (ii) e, (iii) 

2 2.25 
3 1.8 0.75 
4 -6.4 -2.25 
5 -2.6 -2.0 
6 7.4 5.0 
7 -2.4 -3.75 
8 3.8 3.25 
9 1.2 -1.25 

10 2.0 2.0 

0 

Week e, (ii) e, (iii) 

11 -3.2 -2.25 
12 0.8 0.75 
13 1.8 1.0 
14 -1.8 -1.5 
15 1.2 1.25 
16 -1.8 -0.75 
17 -2.8 -1.25 
18 1 .o 

Week 

The plots shown in Figure 5.6 of these two series of {e,} are very similar, although the second, 
which smooths less drastically than the first, follows the original series more closely and so 
tends to have smaller values of 1 e, 1 .  

Moving averages may be used to  estimate the trend in a series, since they give a smooth 
version of the series and trend is defined as the ‘smooth part’ of any series. In this example the 
‘trend’ is in reality part of a seasonal cycle with maximum electricity consumption occurring in 
December and January. However to identify a separate seasonal part in a series, it is necessary 
to have two or more complete cycles. In the present case where only part of a cycle is available, 
any seasonal variation will appear as part of the trend. 

The remainder series, e,, therefore estimates the extent of random variation. In the present 
example, there is some evidence of a pattern among successive values of e, in that an increase in 
e, at point t has a tendency to  be followed by a decrease, and vice versa. However, with such a 
short series the evidence is not conclusive, and it is possible that e, is a series of independent, 
identically distributed random variables (i.e. e, is a random series in the strict sense of the 
word). 



SD.2 Time Series 2 13 

Week 

Figure 5.6 Plots of remainder series for Problem 5D.1 

(e) It is always dangerous to extrapolate (forecast) a series without additional information, 
apart from the observed values of the series, of what might happen in  the future. In the present 
example, the graph is ambiguous; the consumption could be part of the way through a long 
decline, or the decline may be showing signs of levelling off. From the context of the problem, 
it is likely that electricity consumption will continue to fali for another month or two as heating 
and lighting requirements decline, whereas in late summer (towards the end of the 20-week 
forecast period) the consumption will probably begin to rise again. There could also be a 
secondary peak in the middle of summer, because of additional refrigeration requirements. 

Note 
The choice of a moving average to use is rather subjective, and the main consideration is the 
amount of smoothing which is required. Typically, a moving average will become smoother if 
(a) the number of terms used in the average is increased, and 
(b) the weights are all equal, not decreasing either side of t . 
Thus, in the solution, moving average (ii) gives the smoothest result of the four averages 
mentioned, and (iii) gives the least smooth. 

5D.2 
A time series consists of observations xl, x2. . . . . x ,  taken on a random variable a t  equally- 
spaced points of time. If, of three consecutive observations xt and x r + l ,  xr is the smallest 
or largest of the three, then there is said to be. a turning-point in the series a t  time t . Let S be 
the total number of turning-points in the series of n observations. 
(a) For the case n = 4, suppose that xl, x2, x 3  and x4 take the values 1, 2, 3 and 4 in some 
order. Write down all the permutations of these four numbers, and for each permutation write 
down the value which S would take if x1  were the first number, x2 the second, and so on. If all 
permutations are equally likely, what is the probability function of S ?  

(b) Now suppose that X I ,  x2, . . . , x, are independent observations, all from the same 
continuous probability distribution. Show that the expected value of S is $ ( n  - 2). 

Turning points in a time series 
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S o h  tion 
(a) There are 24 permutations of the numbers 1 ,  2, 3 and 4. These are set out in the table 
below, together with the associated values taken by S , the number of turning-points. 

Permutation s 1 Permutation s 

1 2 3 4  0 
1 2 4 3  1 
1 3 2 4  2 
1 3 4 2  1 
1 4 2 3  2 
1 4 3 2  1 

2 1 3 4  1 
2 1 4 3  2 
2 3 1 4  2 
2 3 4 1  1 
2 4 1 3  2 
2 4 3 1  1 

3 1 2 4  1 
3 1 4 2  2 
3 2 1 4  1 
3 2 4 1  2 
3 4 1 2  2 
3 4 2 1  1 

4 1 2 3  1 
4 1 3 2  2 
4 2 1 3  1 
4 2 3 1  2 
4 3 1 2  1 
4 3 2 1  0 

Amongst the 24 permutations, the frequency of ‘S=O’ is 2, that of ‘ S = l ’  is 12 and that of 
‘S =2’ is 10. Since the permutations are given to be equally likely, each has probability &, and 
the probability distribution of S is thus as in the table below. 

(b) The relative positions of the x s  when arranged in order of magnitude determine the value 
of S . Given these positions, the actual values taken by the x s  are irrelevant to S . Note also 
that, because the distribution of the xs is continuous, ties (i.e. instances of equality between 
two or more x s) can be assumed to have probability zero. 

Consider now three consecutive observations x,-1, x, and x,+1. These can be permuted in 3!, 
or 6, ways. For four of these, viz. {x, <x,-l <x,+l), {x, <x,+l  <x,-J, {x,+l <x,-1 <x,} and 
{x,-~ < xril < x , ) ,  there is a turning-point a t  time t , and for the other two there is not. Because 
the observations are independent and identically distributed, each of the six permutations has 
the same probability, so we obtain 

Pr(turning-point a t  t )  = $ = $ 
Now S = S2 + S 3  + . . . + S,-1, where, for r = 2,3 ,  . . . , n  -1, S, is defined as 1 if there is a 
turning-point a t  time t , and as 0 otherwise. Then 

E(S) = ‘i‘E(S,), 
I =2 

and since 

E ( S , ) = O x P r ( S I = 0 ) + 1 x P r ( S , = 1 ) =  f ,  r = 2 , 3  , . . . ,  n - 1 ,  

we obtain 

E(S) = f ( n  -2 ) .  
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Notes 
(1) This problem is concerned with finding a probability distribution and an expectation, and 
could therefore have been included in Section 1B. However, it is presented here in the context 
of the analysis of a series of observations in time, i.e. a time-series, and so is relevant to the 
present section. 
(2) The result E(S) = EE(S,), used in solving part (b), does not require Sz, S3. . , , , S, -1 to 
be independently distributed and, indeed, they are not. This lack of independence means that 
we could not use a similar argument to obtain Var(S). 
(3) Turning-points provide one way of detecting whether or not a time series is ‘purely 
random’, in the sense that all observations are independent and identically distributed. The 
alternatives to randomness are often a steadily increasing or decreasing trend, cyclic behaviour 
or some other structure underlying the series. 

For most structured time series, the number of turning-points will be less than would be 
expected for a purely random series. Given the distribution of S for a purely random series 
(found here for n = 4) a test of the hypothesis of randomness can therefore be carried out which 
will reject the hypothesis for particularly small values of S . 

Such a test could also be used in connection with a regression analysis. One of the 
assumptions in regression is that the ‘random errors’ are independent and identically 
distributed. One can test this by examining the residuals, i.e., the discrepancies between the 
observed values and the predicted values. (See Problem 5A.1 for an example.) Plotting these 
residuals against values of time or some other potential explanatory variable can be used to test 
the ‘randomness’ of the errors. 
(4) The test based upon turning-points, like several other tests for randomness, is capable of 
detecting many different forms of structure in a time series. However, if one particular type of 
structure, such as a linear trend, is of particular interest, other, more specialised, tests will 
usually have greater power. 
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one-way, 5B.1-2 
structure of treatments in, 196 
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exact, 147, 150, 168, 209 
arithmetic, experimental teaching of, 4B.2 
arithmetic progression, use of, 34 
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73 

155, 183 
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assessment of probability, 1B.7 
association 

between categories, 202 
between variables, 187 

checking of, 53, 105, 184-5 
in analysis of variance, 198 
normal distribution, 74, 122, 124, 128, 

random sample, 22 
symmetrical distribution, 74 

assumptions in statistical problems, 147 

130, 148 

asymmetrical distribution, 102 
attributes 

relationship between, 202 
sampling by, 173 

authors, fallibility of, 13 
average, moving, 5D.l 
average range, 4D.8 

bar chart, 103 
BASIC programming language, 88 
batch acceptance, probability of, 173 
batches, sampling incoming, 2A.2 
batches of pesticide, mixing, 2B.2 
Bayes’ theorem, use of, 18-19, 1A.8, 38 
beauty contest, judging a, 5A.6 
belt drives, failures of, 2B.8 
bends, rotating, 3B.5 
Bernoulli trials, 47, 50, 52 

and binomial distribution, 48 
simulation of, 91 

bias of estimators, 129, 163-4, 4D.6, 170 
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and Bernoulli trials, 48 
and hypergeometric distribution, 66 
and negative binomial distribution, 64 
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comparison of estimators, 4D.6 
confidence intervals, 4C.3, 4C.6 
exact and approximate tests, 147 
expectation and variance, 49 
hypothesis tests for, 4C.1-2, 4C.4-6 
inappropriate use, 109 
models for, 75 
normal approximation to, 2A.3, 52, 

Poisson approximation to, 2A.4, 155 
simulation of, 38, 2C.2 
sum of random variables, 170 
two-sample test for, 206 
use in contingency tables, 152, 206 
use in double sampling, 173 
use in sign test, 122 

2A.5, 146-8, 151, 153, 206 

bird wingspans, 2B.6 
birdie, watch the, 2B.10 
birthdays, 1A.5 
bivariate probability distribution, 161 
black spot, modifying an accident, 4C.8 
bolts 

lengths of manufactured, 4A.1 
quality control for, 4D.7 

boots, wrellington, l A . l  
bottled fruit, variability in weight of, 4.4.4 
boundaries, class, 100-101, 112, 115 
breaking a rod at random, 28.11 
British Standards Institution, 173 
Buffon’s needle, IB.9 
building societies, women investors in, 4C.3 

Canadian household, electricity consumption 

capture-recapture experiment, 2A. 11 
cards 

of a ,  5D.1 

collecting cigarette, 2A.12 
playing, 1A.2, 1A.4. 35 

cars, ignition problems in, 4C.7 
categories, association between, 202 
cautionary tales, 32 
Central Limit Theorem, 122, 124, 128, 133, 

chart 
168 

bar, 103 
control, 4D.8 
pie, 3A.4 

checking assumptions, 53, 105, 184, 185 
checking solutions, methods for, 2, 13 
checks for valid probability density 

cheese, brands of, 4C.2 
Chevalier de Mere, 15 
children sitting in a row, 1A.3 
x2 distribution, 2B.7, 128, 137-8 

degrees of freedom, 78 
normal approximation, 109 
percentage points, 127 

combining classes, 108-9, 111 
choice of tail, 107 
critical region, 202 
for contingency table, 5C.1-2 
for goodness-of-fit, 3B.1-3 
for normal variance, 4A.4 
power of, 209 
statistic, 106 
validity of approximation, 208 

functions, 44 

x2 test 

chord of circle, length of, 1B.11 
cigarette cards, collecting, 2A.12 
cigarette consumption, 3A.4 
civil service employment data, 83 
class, determination of modal, 3A.2 
class boundaries, choice of, 100-101, 112, 

class experiments, suggestions for, 38, 42, 

class widths, histogram with unequal, 100 
classes in x2 test, combining, 108, 109, 111 
client, consultation with, 75 
climatology, time series in, 210 
club members, weights of, 3A.1 
coding of data, 96-7. 127, 139, 159, 178 
coefficient, see correlation, confidence 

interval 
coin, tossing a ,  2A.10 
combinatorial arguments, 1A.1, 160 
comparative experiments, 194 
complementary events, use of, 4 ,  23, 48, 74 
components of systems 

115 

185 

in series-parallel arrangement, 1A.9 
independence of, 19 
lifetimes of electrical, 4A.2 
quality of electronic, SB.3 

compound distribution, 93 
conditional probability, 2 ,  4 ,  7 ,  17, lA.8 

distribution, 2A.9, 156 
confidence interval 

and confidence limits, 131 
and hypothesis test, 122, 125-7, 130-1, 

141, 144, 154, 189 
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effect of confidence coefficient, 4A.2 
effect of sample size, 4A.2, 140-1, 149 
effect of variance, 4A.2 
for binomial parameter, 4C.3, 4C.6 
for correlation coefficient, 5A.5 
for exponential mean, 168 
for difference, 4B.1, 138, 48.4 
for normal mean, 4A.1-2, 125-6, 4B.1, 

for normal variance, 127, 4B.3, 168-9 
for T ,  43 
for Poisson mean, 165-6 
for proportion, 4C.6 
interpretation, 144-5 
overlapping, 138 
paradoxical behaviour, 145 
width, 4A.2, 4B.4, 4C.3 

4B.4 

confidence limib, see confidence interval 
conservative procedures, 149, 209 
contagious distributions, 58-9, 110 
contingency table, 5C. 1-3 

and binomial distribution, 152, 206 
alternative tests, 204 
x 2  test, 204, 208 
degrees of freedom, 202 
Yatcs’ correction, 209 

continuity correction, use of, 36, 52, 58, 74, 

continuous random variable, 25, 1B.6, 70 
75, 146, 147, 209 

simulation, 89 
expectation and variance, 83 

contrasts in analysis of variance, 197, 199 
control chart, 4D.8 
correctcd sum of squares, 99, 164, 177 

in analysis of variance, 195, 198, 200 
in regression, 178, 182, 184, 187 

continuity, 36, 52, 58, 74-5, 146-7 
factor, 195 
Yates’, 209 

correlation, 44, 176-7, 5A.4-6 
and regression, 176, 181, 188 
choice of tails, 192 
in paired data, 140 
interpretation, 187 
misuse, 187-8 
t-distribution, 187-8 
ties, 191-3 
two-sample test, 189 
z -transformation, 188-9 

correlation coefficient 
product moment, 5A.4--5 
Kcndall’s, 5A.6 
Spearman’s, 5A.6  

correction 

counselling, genetic, 146 
coupon-collector test, 69 
covariance of random variables, 18.10 
cows, milk yield of, 48.3 
craps, winning at the game of, 1A.6 
cubic equation, 40 
cumulative distribution function, 25-7, 44, 

46, 82 
and expectation, 84 
as monotonic function, 89 
in simulation, 2C.1 
normal distribution, 2B.1 

cumulative frequency, 96, 105, 113 
curvilinear regression, 179 
cyclic behaviour in time series, 212, 215 
cylinders, tolerances for metal, 2B.3 

dangers of extrapolation, 179, 180, 213 
darts, game of, 1B.4 
data 

coding of, 96-7, 127, 139, 159, 178 
grouped, 113 
paired, 4B.4-5 
plotting of, 95, 105, 113, 5A.3 
presentation of ordered, 105 
snooping, 205 
trends in, 175 
thoughtless analysis, 184 

de Mere, Chevalier, 15 
deciles, 98 
decimal places, choice of number of, 52 
defective items, sampling for, 2A.3 
degrees of freedom, 78, 107, 121, 134 

in analysis of variance, 195, 198, 200 
in contingency table, 202 

dendrochronology, 210 
density 

frequency, 100 
function, see probability density function 

dependent variable, 177 
design of experiments, 186 
deviate, standardised normal, 36, 72, 73 
diagrams in solutions, use of, 13, 24, 32, 71 
diameters of marbles, 4A.3 
dice problems, 1A.6, lB.l 

number of sixes, 3B.1 
total score, 1R.2 
use in simulation, 2C.2 

between random variables, 2B.5-6, 140 
between normal means, 4B.1, 138, 48.4 
between proportions, 4C.6 
in large samples, 133 
least significant, 136, 195-6, 199, 201 

difference 
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differentiation, finding mode by, 40 
digit, random, 88 
discrete distributions, 25, 47 

exact and approximate tests, 146, 150, 

expectation and variance, 159, 162, 214 
joint distribution, 4D.2 
modelling, 155 
normal approximation, 36, 28.4 
simulation, 2C.1, 2C.3 

155 

dispersion, index of, 110 
distribution, see under numes of particular 

distributions 
distribution function, see cumulative 

distribution function 
divisor for sample variance, 98, 164 
double integration, 42 
double sampling, 4D.7 
duration of a game, l A . l l ,  33 
dysentery, 5A.4 

ecology, 58 
economics, 142 
efficiency of estimators, 43 
elections, voting in general, t6.5 
electrical components, lifetimes of, 4A.2 
electricity consumption of a Canadian 

electronic components, quality of, 5B.3 
embarrassing activities, 35 
employment data, civil service, 83 
enumeration of outcomes, methods based on 

equal variances, assumption of, 131 
equally likely outcomes, l A . l ,  7,  90 
equations 

household, 5D.1 

systematic, 5, 13 

cubic, 40 
yuadratic, 144 
simultaneous, 71, 74 

mean square, 4D.3 
rounding, 19, 22, 60 
standard, 124, 159-60, 174 
type I, 4C.4, 196, 201 

biased, 129, 164 
efficiency of, 43 
from probability plot, 114-5, 119 
in regression, 182 
minimum variance, 172 
mean square error of, 4D.3 
of n, 1B.9 
of population size, 2A.11 
of ratio. 4B.6 

error 

estimation 

precision, 35, 171 
use of remainder series, 212 
see also confidence interval, maximum 

likelihood estimation 
events, 1-4, 6 

complementary, 23, 74 
indcpendent, 17 
mutually exclusive, 28 

examination marks, 3.4.3 
examination of raw data, 95 
examination questions, wording of, 22 
exclusive events, mutually, 28 
exercise habits, survey of, 5C.2 
expectation of random variable, 26, 29, 31, 

37. i8 .8 ,  18.10, 28.4. 83 
and variance, 59, 110 
and cumulative distribution function, 84 
and expected value, 87 
binomial distribution, 49 
difference, 75-6 
effect of scaling, 72, 96-7 
exponential distribution, 26.8, 165, 167 
for discrete random variable, 159, 162, 

geometric distribution, 34, 68 
linear combination, 72 
normal distribution, 2B.1 
of sample standard deviation, 170 
Poisson distribution, 58, 2A.8 
sum, 29, 36, 42, 2A.12, 170, 215 
uniform distribution, 86 
see also mean 

expected frequency, 106, 108 
in contingency table, 202, 207 
normal distribution, 11 1 
small values, 208 

capture-recapture, 2A.11 
comparative, 194 
design of, 186 
randomised response, 1B.5, 170-2 
suggestions for class, 38, 42, 67 

214 

experiment, 1 

explanatory variable, 177, 179 
exponential distribution, 2B.8-9, 4D.4-5 

and Poisson process, 167 
applications, 82 
expectation and variance, 165, 167 
inference, 168 
mixed, 28.10 
moment generating function, 81 
normal approximation for mean, 169 
simulation, 2C.2 
skewness, 82 

extrapolation, dangers of, 179, 180, 213 
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factory, accidents in, 3B.6 
failures of belt drives, 28.8 
F-distribution, 2B.7, 135 

Fisher, Sir R. A., 194 
Fisher’s z -transformation in correlation, 

188-90 
fishing, problems involving, 1A.7, 2A.11, 

3A.2 
fitted values in regression, 179 
fitting distributions to data, 95 
fitting of parabola, 179 
fitting plungers into holes, 28.5 
flower heads, ants on, 2C.3 
flowers, pink and white, 4C.1 
forecasting in time series, dangers of, 213 
forecasts, weather, 5C.1 
F-ratio in analysis of variance, 195, 197 
frequency, cumulative relative, 11 3 
frequency density, 100 
frequency graph, cumulative, 96, 105 
frequency polygon, cumulative, 105 
frequency table, cumulative, 96 
frontal breadths of skulls, 38.4 
fruit, variability in weight of bottled, 4A.4 
fruit machine, lA.11 
F -test 

see also F-test 

for equality of variances, 133, 135 
in regression, 183 
in two-way analysis of variance, 200 

of random variable, 26-7, 170 
of two random variables, 161 
of an unbiased estimator, 170 
see also under names ofparticular functions 

function 

game 
duration, 33 
highest score in dice, 113.1 
odds close to evens, 15 
probability of winning, lA.6, 1B.4 

gaps in Poisson process, 165 
general elections, voting in, 1B.5 
generating function, see moment generating 

function, probability generating 
function 

genetic counselling, 146 
geometric distribution, 33, 34, 2A.10, 68 
geometric series, use of, 14, 33 
geometrical probability, 18.11 
glue sniffers, 4D.6 
goodness-of-fit tests, 3B.1-6 

from probability plot, 3B.4 
Poisson distribution, 3B.6 

graduate unemployment, 5A.2 
graph, cumulative frequency, 96, 105 
graphical methods, 3A.1-2, 3A.4 

for finding a mode, 101 
see also plots 

grouped data, plotting, 113 
guaranteed life of a machine, 2B.9 
guayule plants, rubber content of, 5B.2 

heart disease and exercise, relationship 

height and weight, correlation between, 5A.5 
histogram, 3A.2, 105 

hypergeometric distribution, 7 ,  S O ,  2A.11, 

between, 202 

unequal class widths, 100 

209 
and binomial distribution, 66 

in analysis of variance, 196 
in goodness-of-fit, 106 
in regression, 178, 182 

and confidence interval, 122, 125-7, 

binomial parameter, 4C.1-2, 154-5 
choice of tails, 125, 128, 142, 145-7, 

conservative, 209 
correlation coefficient, 188 
for median, 123 
in analysis of variance, 200 
in contingency table, 5C.l-3 
normal mean, o2 known, 4A.5 
normal mean, m2 unknown, 130, 4A.3, 

normal variance, 4A.4 
of randomness, 4C.4 
7r, 43 
power, 205, 209, 215 
randomness in regression, 5A.2, 215 
ratio of means, 4B.6 
robustness, 128 
see also entries for one- and two-sample 

tests, goodness-of-fit tests, and for 
particular tests and distributions 

hypothesis, choice of, 109, 134, 150, 155 

hypothesis test 

130-1, 141, 144, 154, 189 

152, 155, 179, 183, 192-3, 205 

143-4 

ignition problems in cars, 4C.7 
income of statisticians, annual, 177 
independence of components of systems, 19 
independent events, multiplication law for, 

independent random variables, sum of, 87 
independent samples and paired samples, 

17 

test for, 142 
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independent variable, 177 
index 

of binomial distribution, 47 
of dispersion, 11 0 

quadratic, 148 
Tchebychev’s, 124 

inference, 95, 120, 176 
and probability, vi, 1, 43 

inflation, 5.4.4 
influential observations in regression, 186 
insect breeding experiment, 2A.6 
insects, sex ratios of, 5C.3 
interaction in two-way model, 201 
interquartile range, 96 
intersection of events, 3 
inversion method of simulation, 2C.1 

inequality 

derivation, 91 
exponential distribution, 90 

I. Q., distribution of, 3B.3 

joint probability density function, 42 
joint probability function, 161 
jointly distributed random variables, 1B.9, 

4D.2 

Kendall’s correlation coefficient, 5A.6 
Kent, University of, 35-6, 43 
Kingman, Prof. Sir J. F. C. ,  1 
knapsack problem, 20 
kurtosis, 103 

larger of two random variables, l B . l  
largest of a set of random variables, 27 
Least Significant Difference, 135, 196 

and type I error, 196, 201 
in analysis of variance, 195, 199, 201 

least squares, method of, 57, 5A.1, 180, 184 
lifetimes of electrical components, 4.4.2 
lightbulbs, testing, 1A.8 
limits 

confidence, see confidence interval 
tolerance, 2B.3, 173 
warning and action, 4D.8 

Lindley, D. V., 70 
linear combinations of normal random 

variables, 72, 2B.5-6, 79 
location, measure of, 102 
logarithms, use of, 115, 142 

machine, guaranteed life of a ,  2B.9 
manufactured bolts, lcngths of, 4A.1 
manufactured product, changes in weight of, 

4A.5 

marbles, diameters of, 414.3 
marking a multiple-choice test, 2.4.5 
marks, examination, 3.4.3 
mass, centre of, 163 
mass-produced items, control chart for, 4D.8 
matches in a box, number of, 2B.4 
mathematical tasks, speeding up, 48.4 
mathematics teachers, 1B.5 
maximum likelihood estimation, 56, 57, 66, 

mean, 96, 102 
167 

calculation, 96, 48.3 
distribution of, 128 
estimation from plot, 114 
standard error of, 124, 159-60, 174 
see also expectation, normal mean, 

sample mean 
mean square error, 4D.3 
means, control chart for, 4D.8 
median, 1B.8, 96, 97,102,  123 
Mendel, Gregor, 146 
MtrC, Chevalier de, 15 
metal cylinders, tolerances for, 2B.3 
milk yield of cows, 4B.3 
minimum mean square error, 163 
minimum variance estimator, 172 
mixed exponential distribution, 2B.10 
mixtures 

of probability density functions, 83-4 
of random variables, 28.2, 84 

modal class, 101 
mode 

of a distribution, 1B.8 
of a random sample, 100-102 
of Poisson distribution, 60 
use of differentiation, 40 

in analysis of variance, 196, 201 
in regression, 184 
Poisson, 58, 109, 156 

models, 74-5, 105, 142, 151, 155 

moment generating function, 76, 81, 85 
moment of inertia, 163 
moments, 51, 103 

method of, 57 
money supply, 5A.4 
moving average, 5D.1 
multiple-choice test, marking a ,  2A.5 
multiplication law of probability, 3 ,  11, 12, 

56, 73 
for conditional probabilities, 4 ,  9 
for independent events, 17 

multiplicative model, 142 
music recital, 2A.4 
mutually exclusive events, 28 
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n versus n - 1 as divisor, 98 
nature reserve, 2B.10 
Neave, H. R . ,  70, 175 
negative binomial distribution, 59, 2A.10 

non-additivity in two-way model, 201 
non-parametric tests, 123 
non-symmetric distributions, tests for, 146 
non-uniformity of birthdays, 12 
normal approximation 

and binomial distribution, 64 

binomial distribution, 2A.3, 2A.5, 

x' distribution, 109 
discrete distribution, 36, 2B.4 
exponential mean, 169 
Poisson distribution, 58, 165-7 
rank correlation coefficient, 193 
t -distribution, 125 

normal deviate, 36, 72-3 
normal distribution 

146-51, 153, 206 

assumption of, 74, 122, 124, 128, 130 
cumulative distribution function, 2B.1 
expectation and variance, 2B.1 
fitting, 11 1 
goodness-of-fit, 38.3-5 
linear combinations, 2B.5--6, 79 
mixtures, 28.2 
moment generating function, 76 
plotting, 3B.4-5 
range of random sample, 174 
related distributions, 2B.7 
simulation, 2C.1 
simultaneous equations, 71 
square of, 78 
standardised, 70 
tables, 174 

confidence interval, 4A.2, 125-6, 4B.1, 

difference, 4B.4 
hypothesis test, 4A.3, 4A.5, 130, 143-4 
ratio, 4B.6 
two-sample tests, 4B.2 

normal variance 
confidence interval, 4B.3, 168-9 
estimation, 170, 4D.8 
hypothesis test, 4A.4 
two-sample test, 135 

percentage points, 121 
regression, 177 
use of, 6, 11, 16, 20, 23, 30-1 

nuisance parameter, 143, 157, 176 
numbers, variance of set of, 98 

normal mean 

4B.4 

notation 

occurrences in time, random, 156 
Occurrences of thunderstorms, 3B.2 
odds, 1A.5, 15 
one-sample tests 

for binomial distribution, 4C.5 
for Poisson distribution, 4C.8 
1-test, 4A.3, 130 
see also normal mean, normal variance 

one-sided confidence interval, 131, 140-1 
one-tailed and two-tailed tests, 125, 128, 

142, 145-7, 152, 1.55, 205 
in correlation, 192-3 
in regression, 179, 183 

one-way analysis of variance, 5B.1-2 
operating characteristic, 173 
opinion polling, 120 
ordered data, presentation of, 105 
ordering, problems involving, 1A.3 
outcomes, equally likely, 1A.1, 13 

outliers in  regression, treatment of, 185-6 

paired data, 4B.4, 4B.5 

use in simulation, 90 

comparison with independent samples, 
142 

t-test, 142 
parabola, fitting of, 179 
parabolic probability density function, 40 
parameter 

binomial distribution, 47 
nuisance, 143, 157, 176 

partial fractions, use of, 85 
Pascal, Blake, 15 
peas, weights of tins of, 4B.1 
percentage p i n t s ,  121 

for F-distribution, approximate, 135 
for x2 ,  127 

percentiles, 98 
permutations, use of, 8, 214 
personal probability, 38 
pesticide, mixing batches of, 2B.2 
petrol station, arrivals a t  a ,  4D.4 
T ,  inference from Buffon's needle, 1B.9 
pictorial solution, 30 
pie chart, 3A.4 

radius of, 104 
pink and white flowers, 4C.l 
pivotal function, 127, 143-4 
playing card problems, 1A.2, 1A.4, 35 
plots, 95 

in regression, 5A.3 
probability, 3B.4--6, 128 

plungers into holes, fitting, 2B.5 
pointer, positioning a ,  1B.7 
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Poisson distribution, 33, 2A.7-9 
and binomial distribution, 2A.9 
and exponential distribution, 82 
and Poisson process, 82, 167 
applications, 60 
approximation to binomial, 2A.4, 155 
confidence interval for mean, 165-6 
expectation and variance, 110 
fitting, 3B.2, 3B.6 
justification, 58 
mode, 60 
models for, 75 
normal approximation, 58, 165-6 
maximum likelihood estimate, 167 
one-sample test, 4C.8 
probability generating function, 60-3 
probability plot, 3B.6 
simulation, 2C.1, 2C.3 
two-sample test, 4C.8 

Poisson process, 58, 82, 157, 4D.4 
pooled variance, 131, 133-4 
population, estimating size of, 2A.11 
positions, choice of plotting, 116 
possibility space, 1 
potatoes, peeling faster, 48.5 
power of a test, 205, 209, 215 
practice, good statistical, 97, 105, 128, 157 
precision of estimators, 35, 171 
prediction from regression line, 5A.1 
Premium Bonds, 3 
presentation of ordered data, 105 
presentation of solution to probability 

probability 
problem, 6 

addition law, 28, 73 
assessment of, 1B.7 
average, 10 
conditional, 2, 7, 17, 1A.8 
geometrical, 18.11 
in binomial distribution, 17 
law of total, 8, 1A.4, 21, 35, 42, 171, 

multiplication law, 4, 9, 73 
personal, 38 
sequential calculation, 53, 60 
subtraction, 8 

evaluating constant, 39, 44 
joint, 42 
mixtures of, 84 
use of cumulative distribution function, 

see also under names of particular 

173 

probability density function, 26, 1B.6, 39 

86 

distributions 

probability function, 25, 33 
see also under nurnes of particular 

distributions 
probability generating function, 50-1, 69 

Poisson distribution, 60-63 
use for moments, 51 

probability mass function, see probability 

probability paper, 39.4-6 
function 

normal distribution, 3B.4-5 
Poisson distribution, 3B.6 

probability plotting, 3B.4-6 
estimating moments, 114 
interpretation, 115, 128 

product moment correlation coefficient, 5A.4 
products, corrected sum of, 177, 178, 182, 

proportion 
184, 187 

estimation of, 170 
confidence interval for, 4C.6 
confidence interval for difference, 4C.6 
see also binomial distribution 

psychological experiment, 1B.7 
Pythagoras’ theorem, 45 

quadratic 
equation, 144 
inequality, 148 
regression, 179 
relationship, 196 

quality, relationship with temperature, 5B. 1 
quality control, problems involving, 28.2, 

quantiles, 98 
quartiles, 96, 98 
questions, wording of examination, 22 
queueing problems, 4D.4 

rainfall forecasts, value of, 5C.1 
random 

4D.7-8, 5B.3 

digit, 88 
numbers, 38, 2C.l-3 
occurrences in time, 156 
sample, 22, 102 
selection at, 3, 1B.7, 42, 45, 55 

random series, turning points, 215 
random variable 

continuous, 25, 1B.6, 70 
discrete, 25, 47 
expectation and variance, 29, 18.10, 83, 

function of, 26-7, 170 
simulation of, 2C.1-3 
transformation of, 1B.10, 170 

162 
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random variables 
covariance, lB.10 
difference between, 2B.5-6, 140 
function of, 161 
jointly distributed, 1B.9, 4B.2 
largest, lB . l  
linear combinations of normal, 72, 

mixture of normal, 2B.2, 2B.6, 8 4  
smaller of two, 86 
sum of, 1B.2, 36, 42, 62-3, 2A.12, 87, 

sum of Poisson, 2A.9 

2B.5-6, 79 

170, 215 

random variation in a time series, 5D.l 
randomised response experiment, 1B.5, 4D.6 
randomness 

hypothesis tests for, 69, 4C.4, 215 
of telephone numbers, 4C.4 
testing residuals for, 179 

average, 4D.8 
conversion to standard deviation, 4D.8 
interquartile, 96 
of random sample from normal 

distribution, 174 
of random variable, 27 

range 

rank correlation, 5A.6 
ratio, estimating a, 4B.6 
recurrence relationships, 34 
reduced sample space, 7, 15, 16 
regression, 5A.1-3 

and correlation, 176, 181, 188 
analysis of variance table, 182-3 
class exercise, 185 
curvilinear, 179 
estimation of variance, 182 
fitted values, 179 
distribution of slope, 178 
erroneous use, 184 
interpretation, 178, 182 
outliers, 185-6 
residuals, 179 

relative frequency, cumulative, 11 3 
reliability of systems, 19-20 
remainder series, 212 
replacement, sampling with and without, 6, 

66, 99, 4D.1 
residual mean square, 183 
residuals in regression, 179 
retirement pensioners, numbers of, 5A.l 
robustness of hypothesis tests, 128 
rotating bends, 3B.5 
rounding errors, 19, 22, 60 
rubber content of guayule plants, 5B.2 

sample 
location, 102 
range, 174 
size, 4A.2, 140-1, 149 
standard deviation, 170 
see also mean, variance 

sample space, 1, 3, 7,  15-16 
samples, combining, 4B.1, 4B.3 
sampling 

assumption of random, 22 
acceptance, 2A.2, 4D.7 
bags of apples, 4D.1 
binomial, 173 
by attributes, 173 
by variables, 173 
double, 4D.7 
two-stage, 4D.7 

based on normal distribution, 78 
function of two random variablcs, 161 
sample variance, 79 

sampling distribution, 4D.1-2 

sampling for defective items, 2A.3 
sampling incoming batches, 2A.2 
sampling methods, 1B.3 
sampling with and without replacement, 6, 

66, 99, 4D.1 
scaling, effect on expectation and variance, 

72 
school assembly, 1A.3 
school register experiment, 67 
scones, random sultanas in, 2A.8 
score 

highest in a game of dice, l B . l  
total from two dice, 1B.2, 1B.6 

Scott, W. F., 70 
seasonal variation, 5D.1 
selection 

at  random, 3, 1B.3, 55, 2B.11 
of model, 75 

semi-interquartile range, 96 
sequential calculation of probabilities, 53, 

series 
60 

geometric, 14, 33 
techniques for summing, 34 
see also time series 

series-parallel system, 1A.9 
set notation, use of, 31 
several sets of data, regression for, 5A.3 
sex ratios of insects, 5C.3 
sign test, 122-3 
significance level, 14, 145, 147 
significant difference, see least significant 

difference 
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significant result, interpretation of, 126, 142 
simulation, 37, 67, 2C.1-3 

Bernoulli trials, 91 
binomial distribution, 38, 2C.2 
comparison with analytic method, 94 
discrete distributions, 2C.3 
exponential distribution, 90 
inversion method, 2C.l 
normal distribution, 2C.l 
Poisson distribution, 2C.1, 2C.3 
uniform distribution, 2C.l 

simultaneous equations, use of, 71, 74 
size of test, 122, 128 
skew distribution, 97, 102, 124 
skewness, 3A.3 

exponential distribution, 82 
skulls, frontal breadths of, 3B.4 
slippery pole, 2B.l 
slope of regression line, null hypothesis for, 

small expected frequencies, problems with, 

smaller of two random variables, 

smoking habits of statistics and history 

178-82 

208 

distribution of, 86 

teachers, 4C.6 
in public places, 4C.5 

smoothing of a time series, 211-2 
snooping, data, 205 
solution, assumptions made in, 147 

by enumerating appropriate outcomes, 5 
methods for checking, 13 
pictorial, 30 
presentation of, 6 
use of diagrams in, 71 

sources of variability, 199 
space, see sample space 
spacecraft, navigation system for, 1A.9 
Spearman’s correlation coefficient, 5A.6 
speeding up mathematical tasks, 4B.4 
sports club, 1A.10 
spread, measures of, 99, 129 
spurious correlations, 187 -8 
squash match, 2A.1 
stages, use of method of, 3, 9 
standard deviation 

calculation of, 96 
conversion of range to, 4D.8 
estimation for normal distribution, 170 
estimation from probability plot, 114 
expectation of sample, 170 
for normal distribution, 28.1 

standard error of sample mean, 124, 
159-60, 174 

standardisation of normal distribution, 70 
standardised normal deviate, 36, 72-3 
statistic, definition, 163 
statistical inference, place of, 120 
statistical practice, good, 97, 105, 128, 157 
statistical tables, books of, 70 
statistician, consultation with client, 75 
statisticians, annual income of, 177 
subtraction of probabilities, 8 
suggestions for class experiment, 38, 42 
sultanas in scones, random, 2A.8 
sum of independent random variables 

distribution, 1B.2, 87 
expectation and variance, 29, 36, 2A.12, 

Poisson distribution, 2A.9 
sums of squares and products 

in analysis of variance, 195, 198, 200 
in regression, 177-8, 182, 184, 187 

170, 215 

surprise index, 13 
survey of exercise habits, 5C.2 
swimming pool, lA.10 
symmetrical distribution 

assumption of, 74 
probability density function, 40 

symmetry, arguments based on, 11, 29, 123 
systems, reliability of, 19-20 

table, cumulative frequency, 96 
table look-up method, 2C.1, 92 
table, see also analysis of variance, 

contingency table 
tables, books of statistical, 70 
tables of normal distribution, 70, 2C.1, 174 
tales, cautionary, 32 
Tchebychev’s inequality, 124 
t-distribution, 2B.7, 122, 141 

degrees of freedom, 78 
in correlation, 187 
normal approximation to, 125 
relationship with F-distribution, 79 

teaching of arithmetic, experimental, 4B.2 
telephone exchange, 2A.7 

temperature, relationship between quality 

test 

numbers, randomness of, 4C.4 

and, 5B.1 

coupon-collector, 69 
multiple choice, 2A.5 
sign, 122-3 
see also hypothesis test 

thunderstorms, occurrences of, 3B.2 
ties in rank correlation, treatment of, 191-3 
Times, The, 10, 186 
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tins of peas, weights of, 4B.l 
tolerance limits, 2B.3, 173 
total probability, law of, 8, 1A.4, 21, 35, 

42, 171, 173 
total score from two dice, 1A.6, 1B.2 
total sum of squares, 195, 198, 200 
transformation of random variables, 1B.10, 

treatments, structure of, 196 
tree diagrams, use of, 13, 24, 32 
trend, 175, 5D.1 
trials, see Bernoulli trials 
t -test 

170 

in analysis of variance, 198-9 
in correlation, 188 
in regression, 182-3 
one-sample, 4A.3, 4B.5 
paired sample, 142 
two-sample, 134, 194 

turning points in a time series, 5D.2 
two-sample tests 

effect of unequal variances, 133 
for correlation coefficients, 189 
for binomial distribution, 4C.5, 206 
for normal means, 48.2 
for normal variances, 4B.3 
for Poisson distribution, 4C.8 
t-test, 134, 194 

two-stage sampling, 4D.7 
two-tailed tests, see one-tailed tests 
two-way analysis of variance, 5B.3 
Type I error, 4C.4, 196, 201 

unbiased estimator, 99, 129, 159, 162-3, 

unemployment, graduate, 5A.2 
uniform distribution, 38, 86, 2C.1 
uniform random numbers, 38, 2C.1-3 
union of events, 3 
University of Kent, 35-6, 43 
unthinking analysis of data, 184 
unusual events, identification of, 14 
urn problems, 1B.3 

validity of arguments 

170 

checking assumptions, 53 
x2  approximation, 208 
confidence intervals, 131 
normal approximation to  binomial, 52 
probability density functions, 44 

value, expected, 87 
value of rainfall forecasts, 5C.1 
variability, sources of, 199 
variability in weight of bottled fruit, 4A.4 
variable 

dependent, 177 
explanatory, 177 
independent, 177 
see also random variable 

variables, sampling by, 173 
variance, 26, 29, 31, 18.8, lB.lO, 50, 2B.4, 

83, 162 
biased estimation, 164 
binomial distribution, 49 
divisor, 98-9, 164 
effect of scaling, 72 
exponential distribution, 2B.7, 167 
geometric distribution, 68 
identities for, 163 
of difference, 75-6, 140 
of linear combination, 72 
of sum, 29, 36, 2A.12, 170 
Poisson distribution, 2A.8, 110 

see also analysis of variance, normal 
pooled, 131, 133-4 

variance 
verbal arguments, disadvantage of, 23 
voting in general elections, 1B.5 

warning limits, 4D.8 
watch the birdie, 2B.10 
weather forecasts, 5C.1 
weight, problems involving, 3A.1, 4A.4-5, 

4B.1, 5A.5 
weighted average of probabilities, 10 
wellington boots, l A . l  
width of confidence interval, 4A.2, 4B.4, 

4c .3  
and sample size, 140-1, 149 

widths, histogram with unequal class, 100 
wingspans, bird, 2B.6 
women investors in building societies, 4C.3 
wording of examination questions, 22 

Yates’ correction for 2 x 2 contingency table, 
209 

z-test, use of, 4A.5 
z -transformation in correlation, Fisher’s, 

188-90 




