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Chapter 2 Solutions 1

Chapter 2 Solutions

2.1 (0.003)(2.54 x 1072/580 x 10~°) = number of waves = 131, ¢ = v},
A =c/v=3x10%/10' X\ = 3 cm. Waves extend 3.9 m.

2.2 A=c/v=3x10%/5x 10" =6 x 1077 m = 0.6y m.
A=3x108/60 =5 x 10° m =5 x 10% km.

2.3 v=) =5x10"7 x 6 x 10® = 300 m/s.

-. 2.4 The time between the crests is the period, so 7 = 1/2s; hence

', v = 1/7 = 2.0 Hz. As for the speed v = L/t =4.5 m/1.5 s = 3.0 m/s. We
now know 7, v, and v and must determine A. Thus,
A=v/v=30m/s/2.0 Hz = 1.5 m.

2.5 v=uvA=235x10°m/s=v(4.3 m); v =0.81 kHz.

I 2.6 v=vA=1498 m/s = (440 Hz)\; A = 3.40 m.

2.7 v=(10m)/2.0 s) = 5.0 m/s; ¥ = v/A = (5.0 m/s)/(0.50 m) = 10 Hz.

2.8 v =)= (w/2m)) and so w = (27/A)v.

29 6 —7/2 —m/4 0 /4 /2 37/4
sinf -1 —V2/2 0 V2/2 1 V2/2
cosf 0 V2/2 1 V2/2 0 —V2/2
sin(6 — m/4) —/2/2 -1 —V2/2 0 V2/2 1

! sin(f — /2) 0 -v2/2 =i -V2/2 0 Vv2/2
i sin(8 — 37 /4) V2/2 0 —v2/2 -1 —/2/2 0
sin(6 +/2) 0 V2/2 1 V2/2 0 —2/2




2 Chapter 2 Solutions

0 = 5w /4 3m/2 Tm/4 2r
sin @ 0 ~v2/2 -1 —V/2/2 0
cosf -1 —V2/2 0 Vv2/2 1
sin(8 — 7/4) V2/2 0 -V2/2 = -V2/2
sin(8 — 7/2) 1 V2/2 0 —v2/2 -1
sin(@ — 37/4) V2/2 1 v2/2 0 -v/2/2
sin(@ + 7/2) -1 —V2/2 0 v2/2 1

sin @ leads sin(6 — 7/2).

210 = | -»2  -x/a 0 A/4 A/2 3\/4 A
KT = 21/ Az - —n/2 0 m/2 x 3x/2 2n
cos(kz —m/2) | —=v2/2 —V2/2 V2/2  V2/2 —VB/2 22 22
cos(kz+3m/4) | V2/2 V22 —v2/2 V212 VB2 J3)2 32

211 | -2 ~7/4 0 T/4 7/2 3r/4 T
wt =2 /T - —/2 0 /2 ] 3x/2 x
sin(wt +7/4) | —-v2/2  —v2/2  V2/2  V2/2 —B)2 —Ji)2 32
sin(m/d—wt) | —v2/2 V32 VB/2 —V2l2 —V3)2 i)z 32

2.12 Comparing y with Eq. (2.13) tells us that A = 0.02 m. Moreover,
2m/A =157 m™! and so A = 27/(157m™!) = 0.0400 m. The relationship
between frequency and wavelength is v = v\, and so
v =v/A=12m/s/0.0400 m = 30 Hz. The period is the inverse of the
frequency, and therefore 7 = 1/v = 0.033 s.

213 (a) A=(4.0-0.0) m=4.0m. (b) v = v, so
v =v/)=(20.0 m/s)/(4.0 m) = 5.0 Hz. (c) Eq. (2.28)
¥(z,t) = Asin(kz — wt + ¢€). From the figure, A = 0.020 m:
k=2r/\=2m/(4.0 m) = 0.57 m™}; w = 27w = 2x(5.0 Hz) = 10.07 rad/s

Att =0,z =0, %(0,0) = —0.020 m;
%(0,0) = (0.020 m) sin(0.5m(0) — 10.07(0) + ) = (0.020 m) sin(e):
sin(e) = —1; € = —w/2. ¢(z,t) = (0.020 m) sin(0.57z — 10.07t — 7/2)

2.14 (a) A =(30.0—0.0) cm = 30.0 cm. () v="vA, so
v =v/) = (100 em/s)/(30.0 cm) = 3.33 Hz
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2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

(a) 7 = (0.20 — 0.00) s = 0.20 5. (b) v = 1/7 = 1/(0.20s) = 5.00 Hz.
(c) v =vA, so A =v/v = (40.0 cm/s)/(5.00 s!) = 8.00 cm.

¥ = Asin27(kz — vt), ¥1 = 4sin27(0.2z — 3t). (a) v =3, (b) A =1/0.2,
(c) 7 =1/3, (d) A=4, (e) v =15, (f) positive z

¥ = Asin(kz + wt), ¥, = (1/2.5) sin(7z + 3.5¢). (a) v = 3.5/2m,

(b) A =27/7, (c) T =2r/3.5, (d) A=1/2.5, (e) v =1/2, () negative z

Form of Eq. (2.26) ¥(z,t) = Asin(kz — wt) (a) w = 27v, s0

v = w/2r = (20.0 rad/s)/2x, (b) k = 27/A, so

X\ =27 /k = 2n/(6.28 rad/m) = 1.00 m, (c) v = 1/7, so

7 =1/v =1/(10.0/7 Hz) = 0.107s, (d) From the form of ¥, A=30.0 cm,
(e) v =w/k = (20.0 rad/s)/(6.28 rad/m) = 3.18 m/s, (f) Negative sign
indicates motion in +z direction.

&% /8z* = —k*p and 8%/6t* = —k*v*3). Therefore
8%/ 0z? — (1/v?)0% /02 = (—k* + k)¢ = 0.

824/ 0x? = —k%; PY/Ot? = —w; w/v? = (2mv)?[v? = (2m/A)? = K
therefore, 821/0z2 — (1/v?)0%*p/0t2 = (—k* + k*)Y =0

P(z,t) = Acos(hz —wt — (7/2)) =
A{cos(kz — wt) cos(—m/2) — sin(kz — wt) sin(~7/2)} = Asin(kz — wt)

v, = —wAcos(kz — wt + €), a, = —w?y. Simple harmonic motion since
ay X Y.

T = 2.2 x 10715 5; therefore v = 1/7 = 4.5 x 10** Hz; v = v},
A=v/v=66x10""mand k=2r/A=9.5x10° m™".

P(z,t) = (10°V/m) cos[9.5 x 10°m~(z + 3 x 108(m/s)t)]. It’s cosine
because cos0 = 1.

y(z,t) = C/[2 + (z + vt)?].
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2.25

2.26

2.27

2.28

2.29

2.30

2.31

Chapter 2 Solutions

¥(0,t) = Acos(kvt + m) = — Acos(kvt) = — A cos(wt), then
¥(0,7/2) = —Acos(wr/2) = —Acos(r) = A,
¥(0,37/4) = —Acos(3wr/4) = —Acos(37/2) = 0.

Since %(y,t) = (y — vt)A is only a function of (y — vt), it does satisfy the
conditions set down for a wave. Since 6%/8y* = 8%¥/6¢2 = 0, this
function is a solution of the wave equation. However, ¥(y, 0) = Ay is
unbounded, so cannot represent a localized wave profile.

k=m3x10°m™, w =79 x 10" Hz, v = w/k = 3 x 10° m/s.

dip/dt = 3/Ozdz/dt + (O/0y)(dy/dt) and let y = ¢ whereupon
dyp/dt = 0y /dz(+v) + 84/t = 0 and the desired result follows
immediately.

@/dt = (0p/dz)(dz/dt) + B¢/t = 0 = k(dz/dt) — kv and this is zero
provided dz/dt = *v, as it should be. For the particular wave of

Problem 2.20, ¢/dt = dp/dy(=v) ~ 85/8t = 3 x 10%(2e) + 79 x 104 =0
and the speed is —3 x 10® in/s.

—a(bz + ct)? = —ab?(z + ct/b)? = gz + vt) and s0 v = c/b and the wave
travels in the negative z-direction. Using Eq. (2.34) (Ov/ot). /(8¢ /01), =
—[A(=2a)(bz + ct)ce=alb=+)*] /[ A(—2a)(bz + ct)be—a(bz + ct)?] = —c/b;
the minus sign tells us that the motion is in the negative z-direction.

¥(2,0) = Asin(kz + €); P(—A/12,0) = Asin(—=/6 + ¢) = 0.866:
$()/6,0) = Asin(m/3 +€) = 1/2; ¥(A/4,0) = Asin(=/2 < ¢) = 0.
Asin(m/2 + €) = A(sinm/2cose + cos 7 /2sine) = Acose = 0, e==/2.
Asin(m/3 + 7/2) = Asin(5m/6) = 1/2; therefore A = 1. hence

¥(z,0) = sin(kz + 7/2).

Both (a) and (b) are waves since they are twice differentiable functions of
z — vt and z + vt, respectively. Thus for (a) ¥ = a?(z — bt/a)? and the
velocity is b/a in the positive z-direction. For (b) ¥ = a*(z + bt/a + c/a)?
and the velocity is b/a in the negative z-direction.
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2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

241

2.42

(a) ¥ (y,t) = exp —(ay — bt)?, a traveling wave in the +y direction, with
speed v = w/k = b/a. (b) not a traveling wave. (c) traveling wave in the
—z direction, v = a/b, (d) traveling wave in the +z direction, v = 1.

¥(z,t) = 5.0exp[—a(z + \/b/at)?], the propagation direction is negative z;
v =+/b/a=0.6 m/s. ¥(z,0) = 5.0 exp(—25z2).

A =v/v = 0.300 m; 10.0 cm is a fraction of a wavelength viz.
(0.100 m)/(0.300 m) = 1/3; hence 2m/3 = 2.09 rad.

30° corresponds to A/12 or (1/12)3 x 108/6 x 10' = 42 nm.

Y(z,t) = Asin2n(z/A£t/7), ¥ = 60sin 27(z/400 x 102 —¢/1.33 x 10715),
A = 400 nm, v = 400 x 1079/1.33 x 1075 = 3 x 10® m/s.
v =(1/1.33) x 10'® Hz, r =133 x 10~ 5.

¢iee = (cos a + isin @)(cos B + isin B) = (cos acos f — sin arsin ) +
i(sin c cos B + cos asin B) = cos(a + B) +isin(a + B) = i(a+h)

Pt = Ae“t Ae=t = A% /" = A. In terms of Euler’s formula

b = A%(coswt + isinwt)(coswt — isinwt) = A%(cos® wt + sin®wt) = A%

Ifz=m+iy,thenz‘im—iyandz—z‘=2yi.

P = Aexpi(k:z + kyy + k22), kz = ke, ky = kB, k. = k7,
k| = [(ka)? + (kB)? + (k7)2]V/? = k(a? + B2 + 7).

Consider Eq. (2.64), with 8%/0z? = o2f", 8% /0y* = B ",
8%4/822 = ¥ f", 8%p/0t? = v*f". Then

V2 — (1/v?)8%/8t* = (o + % +7* — 1) f" = 0 whenever
o+ +7 =1

A= h/mv =66 x 10-3/6(1) = 1.1 x 107 m.

k can be constructed by forming a unit vector in the proper direction and
multiplying it by k. The unit vector is
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2.44

2.45

2.46

2.47

2.48
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[(4=0)i+(2-0)j + (1 - 0)k)/ VAT F 22+ 12 = (4i +2j + k)/v21 and
k = k(414 25 + k)/V/21. 7 = 23 + 4} + 2k, hence
P(x,9,2,t) = Asin[(4k/v21)z + (2k//21)y + (k//21)z — wi].

k= (1i + 0j + Ok), 7 = zi + g + 2k, so0,

Y= Asin(k-7—wt +¢) = Asin(kz — wt + €) where k = 27/ (could use
cos instead of sin).

V(1) =Y[f — (R — 1), t] =9k -7, t) =gk - — k- (R —71),8] =
Y(k - 7,t) = (7, #) since £ - (7 — 73) = 0.

] E -%/2 -=/4 0 =/4 =x/2 3nfd = 5n/4 3n/2 Tn/4 2n
sin | -1 -1¥2 0 Y2 1 1/V2 0 -1/2 -1 -1/V2 0
26n@| -2 -2 0 Vi 2 V2 0 2 =2 -2 o
3sinf | -3 -3/V2 0 3/V2 3 3/V2 0 -3/v2 -3 -3/v2 0
'] | —xf2 -—=/4 O =/4 */2 3=/4 = Sx/4 3Ix/2 Tx/4a 2n
sin@ -1 -1V o i 1 Yyi o -ySi -1 -1\vE o
sin(f — 7 /2) 0 ~UYVZi -1 -yv2 0 Yv/iI 1 B 0 -1H2 -1
sinf +sin(@ — x/2) | -1 L I | 0 1 v 3 0 -1 -2 -1

Note that the amplitude of {sin(§) + sin(f — x/2)} is greater than 1, while
the amplitude of {sin(6) + sin(f — 47/4) is less than 1. The phase
difference is /8.

z =22 =)/4 0 A/ A2 3M\4 A
kx - —n/2 0 /2 ™ 3r/2 2
coskz -1 0 1 0 -1 0 1
cos(kz + ) 1 0 -1 0 1 0 -1
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3.1

3.2

3.3

3.4

3.5

Chapter 3 Solutions

Compare E, = 2cos[2m x 10"(t — z/c) + 7/2] to

E, = Acos[2nv(t — z/v) + 7/2]. (a) v = 10 Hz, v = ¢, and

A =c/v=23x108/10" = 3 x 10® m, moves in positive z-direction,
A =2 V/m, e = n/2 linearly polarized in the y-direction. (b) B; =0,
B, =0, B. = Ej/c.

E, =0, Ey = E; = Eysin(kz — wt) or cosine; B, =0, By, = —B; = E,/c,
or if you like,

= _ & CY P e 5 _ A - :
E= \/E(z + j) sin(kz =~ wt), B= 1) sin(kz — wt).

ﬂ(}
V2
First, by the right-hand rule, the directions of the vectors are right. Then
kE = wB and so (2nr/A\)E = wB = 2nvB, hence E = AvB =c.

O0F [0z = —kEqgsin(kz — wt); —0B/0t = —wBysin(kz — wt);
—kEg = —wBQ; Ey = (w/k)B(} and Eq (233) Lu’/k = C.

(a) The electric field oscillates along the line specified by the vector

—3+ \/35 . (b) To find Ey, dot E, with itself and take the square root, thus
Ey =+/9+ 2710°V/m = 6 x 10* V/m. (c) From the exponential

k.7 = (V5z +2y)(r/3) x 107, hence k = (v/5¢ + 27)(r/3) x 107 and
because the phase is k - ¥ — wt rather than k- 7+ wt the wave moves in the
direction of k. (d) k- k = (r x 107)2, k =7 x 10" m~! and

) = 2r/k = 200 nm. (&) w = 9.42 x 10" rad/s and

v =w/2m = 1.5 x 101 Hz. (f) v = vA = 3.00 x 10° m/s.



3.6

3.7

3.8

3.9

3.10

Chapter 8 Solutions

(a) The field is linearly polarized in the y-direction and varies sinusoidally
from zero at z = 0 to zero at z = z,. (b) Using the wave equation '

8°E, A &E, &E, 18&E,
+ + -5
oz " o2 T 92 & o

=0,

2 9

[-—k2 == = ] Ensm—cos(kz wt) =0
2 20

and since this is true for all z, 2, and ¢ each term must equal zero and so

= (w/c)y/1 — (cmr/wzp)2. (c) Moreover, v = w/k =c¢//1 — (cm/wzo)?.

(a) c=vA, sov=c/A = (3 x 10® m/s)/(550 x 10~° m) = 5.45 x 104 Hz.
(b) w =27y = 27(5.45 x 10" Hz) = 3.43 x 10%® rad/s;
k=2m/\=2m/(550 x 10™° m) = 1.14 x 10~" m~L. (c) Ey = cB,, so

= Ey/c = (600 V/m)/(3 x 10 m/s) = 2 x 107 V-s/m® =2 x 10~6 T.
(d) E(y,t) = Epsin(ky — wt + €); E(0,0) = 0 = Eysin(e), € = 0;
B(y,t) = Bysin(ky — wt + ¢€); B(0,0) =0 = B, sin(e), € = 0;
E(y,t) = (600 V/m)sin((1.14 x 10~" m~1)y — (3.43 x 105 rad/s)t);
B(y,t) = (2 x 10°T)sin((1.14 x 10~7 m~!)y — (3.43 x 10 rad/s)t).

By Gauss’ law, E = o /e, where 0 = g/A is the surface charge density.

Putting the average value of this electric field into ug = ¢9E?/2 gives
=g

ug = 0°/8¢.

up = B%/2u5; ¢ = 1/ /eofio, 50 o = 1/po. up = c*6oB%/2; E = ¢B, so
up = €0(CB)2/2 = 60E2/2 = Uug.

(cos?(k - 7 — wt)) = (1/T) ft+Tcosz(fc' —wt')dt'. Let k-7 — wt' = z; then
(cos?(k - 7 — wt)) = —(1/wT) [ cos® zdz = —(1/2wT) [(1 + cos2z)dz =
—(1/2wT)[z + 0.5sin 2:.':]'c F"“““’"T) . Similarly use

(sin?(k - 7 — wt)) = (1/2)(1 —cos2(k - 7 — wt)) and

(sin(E - 7 — wt) cos(k - 7 — wt)) = (1/2)(sin 2(E - 7 — wt)).
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3.11 Using the identity cos? o = (1 + cos 2a) we have
(cos? wt)r = (3[1 + cos 2wt]),. = 3[1+(cos 2wit)r] = 11+ (sincwT) cos 2wt].

3.12 Using the identity sin®a = 3(1 — cos 2a) we have
(sin? wt)r = (3[1 — cos 2wt])r = 3[1 — (cos 2wi)r]| = 1[1 — (sincwT) cos 2wt].

3.13 I=(S)r = (cGeoEox Bycos’(k-7—wT)) =
ceo| Eo % Bo|(cos?(k - 7 — wt)) = eoEoBo/2; Eo = cBo, ¢ = 1//Ioéo, SO
eoc = 1/poc. I = EZ/2cuo. If Eo = 15.0 V/m,
I = (15.0 V/m)?/2(3 x 10° m/s)(4m x 107 m-kg/C?) = 9375/ W/m® =
208 W/m”.

314 Total Power =20 W; Total Area at 1.0 m = 47(10.0 m)? = 47 m?;
I = Power/Area = (20 W)/(4r m?) = 5/7 W/m® = 1.6 W/m?®.

3.15 (a)r:l/v=10'75,v=c,_)\=c/u=cr=30m. :
(b) E, = 0.08 cos(2mv(t — z/), B, = Ey/c. (c) By Eq (3.44),
(S) = ceoEg/2.

3.16 Will find I, then Ey using Eq. (3.44). Total Power = L = 3.9 x 10% W;
Total Area at
1.5 x 10! m = 47(1.5 x 10! m)? = 9.0m x 10?2 m? = 2.8 x 10% m?.
I = Power/Area = (3.9 x 10% W)/(2.8 x 10® m?) = 1.4 x 10° W/m®.
From Eq. (3.44) I = (ceo/2)E2, s0 Eo = /21 ceo;

2(1.4 x 10 W/m?)
(3 x 108 m/s)(8.85 x 1012 s2-C*/m-ke)
Eo=1.0x10° V/m

Ey =

By = (Bo/V2)(=i+ 1), k = (2m/v/2X)(i + ), hence
E = (10/v/2)(=4 + 7) cos[(v2r/))(z +y) — wt] and
I = ceoE?/2 = 0.13 W/m®.

3.17
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3.18

3.19

3.20

3.21

'3.22

3.23

3.24

3.25

3.26

3.27

Chapter 3 Solutions

(a) I = cAt = (3.00 x 10® m/s)(2.00 x 10~ s) = 0.600 m. (b) The volume
of one pulse is V = ImR? = 2.9 x 10~¢ m?; therefore
(6.0 J)/V = 2.0 x 10° J/m°.

From Eq. (3.44), I = c5oE2/2 and so
Eo = /21 [ceq = V/7.535 x 102 = 2.7 x 10" V/m.

u = (power)(t)/(volume) = (10~3W(¢)/(nr?)(ct) =
1073W/m(1072)%(3 x 108), u = 1.1 x 10~° J/m®.

V = Al = Avt so that
N/At = nV/At = nv = 100 m~36 m/60s = 10 m~2s~.

I/E = I/hv = (19.88 x 10~2)/(6.63 x 10-%)(100 x 106) =
3 x 10* photons/m®s. n = (1/¢)(I/E) = 10 photons/m®.

N/t = P/hv = PA\Jhc = 2.8x 10 1.

P, =iV = (0.25)(3.0) = 0.75 W. This is the electrical power dissipated.
The power available as light is P = (0.01)P, = 75 x 10~* W. (a) The
photon flux is Fi/hv = PA/hc = 2.1 x 10'® photons/s. (b) There are

2.1 x 106 in volume (3 x 108)(15)(10~%) m2. Therefore

2.1 % 10%6/3 x 10° = 0.69 x 10" is the number of photons per cubic meter.
(c) I=75x10"* W/10 x 1074 m? = 7.5 W/m>.

I = P/4nr?, Eq = \/2I]egc, and By = Ey/c.

Imagine two concentric cylinders of radii 7, and 7, surrounding the wave.
The energy flowing per second through the first cylinder must pass through
the second; that is, (S;)27r; = (S2)2773, and so (S)27r =constant and
(S) varies inversely with . Therefore, since (S) oc EZ, Ey varies as 1/1/r.

p=E/c=hv/c=22x10B kgms~
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3.28

3.29

3.30

3.31

3.32

3.33

(dp/dt) = (dW/dt)/c, with area A, (P) = (dp/dt)/A = (dW/dt)[Ac = I]c.

From Eq. (3.52), the force exerted by the beam of light, AP = Ap/At,
where p(incident) = £ /c. For reflected light at normal incidence, Ap =
twice the incident momentum = 2(€/c)

AP = 2(E/c)/At, but, I = £/Area/time, so P = 2[/c.

At an angle 6 with respect to the normal, only the component of

momentum normal to the surface changes, so p(normal) = pcosé, so,
P(6) = 2Icosf/c.

E=300-100=3x10*J, p= E/c=10"% kg m/s.

(a) (P =2(S)/c=2(14 x 10° W/m?)/(3 x 108 m/s) = 9 x 107 N/m®.
(b) S, and therefore P, drops off with the inverse square of the distance,
and hence

(S) = [(0.7x10° m)=2/(1.5x 10" m)~?|(1.4 x 10° W/m?) = 6.4x10" W/m?,
and (P) = 0.21 N/m’.

I(absorbed) = I and I(scattered) = (1 — @)I; the pressure arises from
both contributions, viz. P = al/c+2(1 — a)I/c= (2 —a)I/c.

The reflected component has a momentum change, and thus a pressure, of
twice the incident momentum, while the absorbed component has a
momentum change of the incident momentum.

P (reflected) = 2(70.0%)I/c = 2(0.700)(2.00 x 10° W/m?)/(3 x 10° m/s)
= .93 x 1072 N/m’.
P (absorbed) = 2(30.0%)I/c = 2(0.300)(2.00 x 10° W/m?)/(3 x 10® m/s)
= .20 x 1072 N/m?.
P = P (reflected) + P (absorbed) = 1.13 x 10~ N/m”.

3.34 (S) = 1400 W/m?, (P) = 2(1400 W/m’/3 x 10° m/s) = 9.3 x 107° N/m?.
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3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

Chayter- 3 Solutions

(S) = (200 x 10° W)500 x 2 x 10~ 5) /A(1s),
(F) = A(P) = A(S)/c = 6.7 x 10~" N.

(F) = A(P) = A(S)/c =10 W/3 x 10° = 3.3 x 10-8 N,
a=3.3 x107/100 kg = 3.3 x 10~1° p/g?,
v=at=33x107"% = 10 m/s. Therefore t = 3 x 10° s or ¢ = 940 years.

B surrounds v in circles, and E is radial, hence E x B is tangent to the
sphere, and no energy radiates outward from it.

(a) v=15x 10" Hz, (b) A = v/v = 0.65¢/v =3.9 x 10~ m,
(c)n=c/v=15.

¢/v=242; v =1.24 x 108 m/s.

Ao = 540 nm; n = vAg/vA; Ao/n = A = 406 nm.
n=cfv=1/090=111=11.

n=c/v=(3x 10° m/s)(1.245 x 108 m/s) = 2.410

= vt = (¢/n)t = (3.00 x 10° m/s)(1.00 s)/1.333 = 2.25 x 10° m.
n=136=c/v; v=c/n=221x 10® m/s.

A = Xo/n = (500 nm)/1.60 = 3.12.5 nm;
(1.00 x 1072 m)/(312.5 X 109 m) = 3.2 x 10* waves.

t1 = (20.0 m)/(c/1.47) and t, = (20.0 m)/(c/1.63), hence
ta—1 =32/c=1.07x10"8s.

The number of waves in vacuum is ZB/)\o. With the glass in place, there
are (AB — L)/Ao waves in vacuum and an additional L/X waves in glass
for a total of (AB/)g) + L(1/X — 1/)). The difference in number is
L(1/X = 1/X), giving a phase shift of Ag of 2 for each wave; hence,
2rL(1/A~ 1/o) = 2rL(n/o — 1/Xo) = 27L/22¢ = 2000

Thermal agitation of the molecular dipoles causes a marked reduction in
K. but has little effect on n. At optical frequencies n is predominantly due
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3.48

3.49

3.50

3.51

3.52

3.53

3.54

to electronic polarization, rotations of the molecular dipoles having ceased
to be effective at much lower frequencies.

From Eq. (3.70), for a single resonant frequency we have

Ng? 1 13
o2 ()]
Egm, wO‘—‘w

since for low-density materials n = 1, the second term is < 1, and we need

only retain the first two terms of the binomial expansion of n. Thus
JI+7 ~1+z/2and n = 1+ Ng2/2em,(w] — w?).

(a) The polar molecule, water, in the liquid state, is relatively free to move
in response to the incident radiation. In the solid state, the molecules are
not free to move. (b) The radar (microwave) interacts strongly with the
liquid gater in the droplets.

The normal order of the spectrum for a glass prism is R, O, Y, G, B, V,
with red (R) deviated the least and violet (V) deviated the most. For &
fuchsin prism, there is an absorption band in the green, and so the indices
for yellow and blue on either side (n, and ng) of it are extremes, that is,
ny is the maximum, np the minimum, and ny > no > ng > ny > ng.
Thus the spectrum in order of increasing deviation is B, V, black band, R,
G

Since (Ng2/€om.)? has dimensions of frequency, the right-hand side is
dimensionless and the units check.

With w in the visible, w@ — w? is smaller for lead glass and larger for fused
silica. Hence n(w) is larger for the former and smaller for the latter.

Subtract 1 from each side of Eq. (3.70) and then invert both sides:
1/(n? — 1) = (egme/Ng2)(w§ — w?); since w = 2mc/A the desired result
follows.

C, is the value that n approaches as A gets larger.
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3.55

3.56

3.57

3.58

Chapter 3 Solutions

The horizontal values of n(w) approached in each region between
absorption bands increase as w decreases.

Subtracting the two equations 1.557 = ny = C) + C,/A? and

1.547 = ny = C1 + C3/ )] gives An = 0.01 = n; — ny = Cy(1/\2 — 1/22) so
that Cy = AnA2)2/()2 — A2) = 3.78 x 10° nm?. Then

C1 =ny — Co/ ) = 1.5345 and n(610nm) = C, + Cy/A2 = 1.545.

Binomially expanding n? ~ 1+ A/(1 — A3/A2) gives n? ~ 1+ A(1 + AZ/X?)
or n? = (1+ A)[1 + AN3/(1 + A)A?]. Taking the square root and expanding
again gives n & (1+ A)Y2[1 + AX2/2(1 + A)X2. This has the Cauchy form
with Cy = (1+ A)2 and C; = AN2/2(1 + A)Y/2.

v=FE/h=27x 10" Hz.
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4.1

4.2

4.3

4.4

4.5

Chapter 4 Solutions

E,s &< VE,/r = KV Eg/r; thus VK/r must be unitless, and so K has
units of (length)_z. The only quantity unaccounted for is A and so we
conclude that K = A~2, and I;/I; o< K oc A7%.

The degree of Rayleigh scattering is proportional to 1/X%. But ), = 1.45,
and so 1/X% = (1/1.45),)* hence violet is scattered (1.45)* = 4.42 times
more intensely than yellow. The ratio of yellow to violet is 22.6%.

The sinusoids represent the field, in this case the E-field of the
disturbance. The wavefront is a surface of constant phase and it meets
each sinusoid at the same point (same phase) in its development. The
outward radial lines are rays and they are everywhere perpendicular to the
wavefronts.

(a) On the left-hand side are the inertial, drag force, and elastic force
terms; on the right-hand side is the electric driving force. (b)

zo(—w? + w2 + iyw) = (g.Eo/m.) exp(ic), forming the absolute square of
both sides yields z2[(w?Z — w?)? + 7?w? = (g.Eo/m.)* and z, follows by
division and taking the square root. (c) As for «, divide the imaginary
parts of both sides of the first equation above, namely zoyw =

(g.Eo/me) sin o, by the real parts, zo(w — w?) = (geEo/me) cos & to obtain
o = tan~![yw/(w? — w?)]. o ranges continuously from 0 to /2 to m.

(a) The phase angle is retarded by an amount (nAy2m/X) — Ay27w /) or
(n —1)Ayw/c. Thus E, = Egexpiw[t — (n — 1)Ay/c—y/c] or

E, = Eoexp[—iw(n — 1)Ay/c| expiw(t — y/c) (b) Since e* =~ 1 + z for
small z, if n = 1 or Ay < 1, exp[—w(n — 1)Ay/c] = 1 —iw(n — 1)Ay/c
and since exp(—in/2) = —i, E, = By +w(n — 1)Ay(E./c) exp(—in/2).
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4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15
4.16

4.17

Chapter 4 Solutions
sin 58° = /(5.0 m), z = 4.2 m.

The statue is 16 m from the point of incidence, and since the ray-triangles
are similar, 4m : 16 mas3m:Y and Y = 12 m.

At the first mirror, 6, = ;. For the second, 6, = 90 — §, = 90 — ; and

n; sin6; = n,sinf,, sin 30° = 1.52sin 6, 6, = sin~'(1/3.04), so 6, = 19°13".

Prransverse = mu; sin 6;
= mu; sin 9;
where “m” is the presumed mass. But v; = v = Bt—P- So

(s0) sin6; = (BP)sinb,
sinﬁ,- = *-E"- sin gg
So
The factor %{i corresponds to ry;. .

The slope of the curve is n;, = n;/n,. Slope ~ 0.75/1.00, so that n, ~ 1.33.
This suggests that the dense medium is water.

6 = sin™*[(sin 45°)/2.42] = 17°, the angular deviation is 45° — 17° = 28°.

0. = sin™*[(n,,/n,) sin 6;] = sin~'[(8/9) sin 45°] = 39°. For a ray incident in
the glass at this angle,
6 = sin™"[(n,/n,,) sin 39°] = sin~*[(9/8) sin 39°] = 45°.

(8) e = ne/n; = (c/v)/(c/w:) = vifve = vAiJvAe = Ai/Ae. Therefore
A= N3/4=09 cm. (b) sinf; = ny;siné,, 6; = sin~2[(3/4) sin 45°] = 32°.

At = Ai/nyi = 600/1.5 = 400 nm, violet light.
1.008in 55° = nsin40°; n = 1.27 or 1.3.

1.33sin35° = 1.00sin 6,; 6, = 50°.
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4.18

4.19

4.20

4.21

4.22

4.23

For §; = 0, 10, 20, 30, 40, 50, 60, 70, 80,90 degrees, 6, =0, 6.7, 13.3, 19.6,
25.2, 30.7, 35.1, 38.6, 40.6, 41.8 degrees respectively.

Consider one ray on each side of the beam, with a perpendicular
separation D. The width of the beam on the interface is D cos 6;. Likewise,
the width of the beam at the interface is D' cos 6y, where D' is the
perpendicular separation (width) of the rays in the glass, and

D cosf; = D' cos,. (4.4) n;sin6; = n,sinf, so

cosb; = (1 — sin?4,)"/?
= (1 —sin?;/n2)"/?
SO
D cos 9i
= N2
(1 - 311;98,-)
(4.4) n;sin§; = n,sin 8, so sin(60.0°) = n;sin G. Diameter of emerging
beam (D) is related to the difference in horizontal displacement of red and
violet light (k) by D cos(60.0°) = h (See Problem 4.19). Red:
$in Breq = 5in(60.0°)/7irea = (v/3/2)/(1.505), brea = 35.1°%;
tan Ored = Prea/10.0 cm 50 hrea = (10.0 cm) tan(35.1°) = 7.04 cm. Violet:
Sin eviolet, = Sin(so-oo)/nviozet - (ﬁ/2)/(1-545), Gviolgt - 34.10;
Puiolet = (10.0 cm) tan(34.1°) = 6.77 cm. D = h/ cos(60.0°) =
(red — hviotet)/ 0s(60.0°) = (7.04 — 6.77)/(0.5) = 0.54 cm.

=

Na/Tw = da/dr = 1/1.333 = 0.750 = 3/4.

Using Figure 5.4.17, 1.00sin35° = 1.50sin 6y;; 6,1 = 22.48° and
c0s22.48° = (2.00 cm)/L; L = 2.16 cm or 2.2 cm.

sin §; = nsin §;/2; since sin2c = 2sincosq, sin §; = 2sin(6;/2) cos(6:/2)
and so setting these two expressions equal we get

1.70sin(6;/2) = 2sin(6:/2) cos(6;/2); cosb;/2 = 0.85;
31.79° = 6;/2; 6; = 63.6°.
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4.24

4.25

4.26

4.27

4.28

4.29

Chapter 4 Solutions

The glass will change the depth of the object from dg to d4, where
da/dr = 1.00/1.55; but dp = 1.00 mm; hence, ds = 0.645 mm and the
camera must be raised 1.00 mm — 0.645 mm = 0.355 mm.

dAl/dﬁl = 1. 50/1 33 de = 1.00 m; dAl = 1.1278 m; dng = dAl + 0.02 m;
da2/dpa = 1.00/1.50; d a2 = 1.3278(1.00/1.50) = 0.885 m.

The number of waves per unit length along AC on the interface equals
(BC/X:)/(BC'sin6;) = (AD/)\,)/(AD sin6;). Snell’s law follows on
multiplying both sides by c/v.

With the origin in the plane of incidence, z = 0; with the origin on the
interface y = 0 so (P:::» ) — kizx
(E,- T+ fr) — k2T + €,
(;\‘. . t-.+ E:) = kg::f: + €
and as €, = ¢ = 0, Eq. (4.19) becomes ki, = k,, = k;; or
kisin6; = k, sinf, = k,sin 6,. Since k = 2w/

sinf; siné,

Ai - P

which is the condition derived in Problem (4.26) for wave front continuity.

Let 7 be the time for the wave to move along a ray from b, to by, from a,
to a;, and from a; to as. Thus @ja; = biby = v;7 and ayaz = UiT.

sinf; = biby/a1by = v;/a1b,, sin 6, = ayaz/a1b; = v, /a1bs,

sin 6, = @ya3/a,b; = v;/a1bs, sin 0;/ sin 6; = v;/v; = ny/n; = ny; and 6; = 6,

n; sin 6; = n, sin 6;, ni(fé,» i) = n,(i:, X U,), where fc,-, k. are unit
propagation vectors. Thus n,(k; X 4,) — n;(k; x i) =0,

(neky — nj:,) X fin = 0. Let ngk; — nik; =T = I'at,,. T is often referred to as
the astigmatic constant; I" is the difference between the projections of n,k,
and n;k; on @,; in other words, take the dot product I - 4,,:

I' = ny cos 6, — n; cos ;.




Chapter 4 Solutions 19

4.30

4.31

4.32

4.33

4.34

4.35

Since 6; = 6,, kiz = k. and fc,y = —IE,.y, and since (af..l “ g Yk = fciy,
E{ = fi-r = Z(k, . ﬁn)ﬁn

Since SB’ > SB and B'P > BP, the shortest path corresponds to B’
coincident with B in the plane of incidence.

(Refer to Figure 4.28.) Let SP = a, distance along interface (S — B) =z,
distance of S and P from interface = h.

SB BP
t=" 4 —.
v Uy
T (h2 +m2)1}2 o (h:! o (a - m)z)l,!z
v; Vi

Minimize ¢(z) w.r.t. z.
dt z o —(a—1x) b
dr  v(h?+22)2 " v(h?+ (a-— z)2)1/2 =

sinf; =sinf, or 6, =6,

0

The mirrors are set as two sides of the acute triangle. The front of the
laser is placed along the third side. The inscribed triangle is found by
adjusting the position and the angle of the laser bean until the incoming
and reflected beams meet on the triangle.

n; sin 0; = nysin 6y, 6; = 6}, nasin 6 = ny sin 6;, nysin6; = n, sinf; and
g; = 0. cosb, = d/AB, sin(6; — 6:) = a/AB, sin(; — 6;) = (a/d) cos¥,,
dsin(6; — 6;)/ cosf, = a.

The left and right beams will be parallel if 6;(Left) = 6;(Right) in the final
medium (a). Since all interfaces are parallel, the transmitted angle into a
medium equals the incident angle at the next medium.
At each interface (4.5) sin@; = n; sin 6;.

Left: sin; = Ny Sin Gy = Nya(Na1 SiN 6ta) = N1aM1a(N2q Sin Or2)

= N1aN1aN2a (an sin Gga) = sin gta.
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4.36

4.37

4.38

4.39

Chapter 4 Solutions

Right: sin6; = nosin 6, = nja(n2) Siny2) = nya(ng) sinby,)

= N1aN21 (Na2 sin'r?m) = 8in B,.
For each beam, 6,, = 6;.

Rather than propagating from point S to point P in a straight line, the
ray traverses a path that crosses the plate at a sharper angle. Although in
so doing the path lengths in air are slightly increased, the decrease in time
spent within the plate more than compensates. This being the case, we
might expect the displacement a to increase with ng;. As ng; gets larger
for a given 6;, 6, decreases, 6; — 0, increases, and from the results of
Problem 4.30, a clearly increases.

JoE-dl'=— [ [,(8B/0t) - dS. This reduces in the limit to
E):(BC) — E1;(AD) = 0, since the area goes to zero and dB/dt is finite.
Thus Ey, = Ej..

From Eq. (4.40), r = (1.52 cos 30° — cos 19°13")/(cos 19°13' + 1.52 cos 30°),
where from Problem 4.8, 6, = 19°13'. Similarly,
t) = 2c0s30°/(cos 19°13' + 1.52 cos 30°), ryy = 0.165, t; = 0.766.

Starting with Eq. (4.34), divide top and bottom by n; and replace n;; with
sin 6;/ sin 6, to get

__sinf;cosb; — sin §; cos b,

" sin#, cosb; + sin6; cos ;'

which is equivalent to Eq. (4.42). Equation (4.44) follows in exactly the
same way. To find r| start the same way with Eq. (4.40) and get

i

sin 6; cos 6; — sin 6, cos 6,
sin @, cos 6; + sin f; cos §;

7|
There are several routes that can be taken now; one is to rewrite T as

__ sin#; cos ; — sin 6, cos §; cos 6; cos f; — sin 6; sin 6,
sin 6; cos 6; + sin 6, cos 6; cos 6; cos 6; + sin 6; sin 6,

Tl
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4.40

4.41

4.42

4.43

4.44

4.45

and so

e sin(6; — ;) cos(6; + 6;) _ tan(6: — 6.)
1= Sin(0; + 0;) cos(f; — 0:)  tan(fi +6:)

We can find tj, which has the same denominator, in a similar way.
From Snell’s law 8, = 12.748°; from Eq. (4.43),
7y = tan7.252°/ tan 32.748° = 0.1978;
using Eq. (4.42),
r) = —sin7.252°/ sin 32.748° = —0.2352;
(Eor]y = 71 Eaily = 1.98V/m;
[Eor]y = T1[Boi]L = —4.70 V/m.
For small angles Snell’s Law becomes 16; = nf,: from Eq. (4.42) using the

identity sin(a + 8) = sinacos§ + cose sin 8 and
ry = —(6:1 — 16,)/(6:1 + 16;) = —(n=1)/(n+1).

From (447), R=7%= (n—1/n+1)* = (1.522 - 1/1.522 + 1)% =043
T =1- R =0.95T.

T=1-R=1-12=1—(n—1/n+1)*=1—(1.33-1/1.33+1)* = 0.98.
From (4.55), I, = TT; = (0.98)(500 W/m?) = 490 W/m".

From (4.47),

R =12 = (n¢ — ni/me +m)? = (1.376 — 1.33/1.376 + 1.33)% = 0.000289.
T =1— R =0.999711. From (4.55)

I, = T = (0.999711)(400 W/m®) = 399.884 = 400 W/m®.

r ~ n, — ni/ne + ng. Air-water: r = %’% = 1/7 = 0.14. Air-crown glass:

T = %’/%%} = 1/5 = 0.20. More reflectance for glass. From (4.54) and (4.56).
I,/I; = R =% Air-water: R= (1 /7)% = 0.02. Air-crown glass:
R =(1/5)* = 0.04.
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4.46

4.47

4.48

Chapter 4 Solutions

sing =z —2°/3!+2°/5! - ... and so sin(a % f3) = (@£ p)[1 - (axp)?/6]
using Snell’s Law 6,(1 — 62/6 +...) = (6;/n)(1 - 62/6 +...). Use 16; = n,
and the fact that when z is very small (1 + 2)~! ~ 1 — z we have

b: = (6;/n)(1 - 62/6)(1 + 67/6n?) dropping terms higher than the third
power in 6; we get 0, = (6:/n)[1 — (n? - 1)§2/6n? and so

2 _
6; + 6, = b, [u%(h” 19,?)].

6n2

Using Eq. (4.42) and the power series representation of the sine, where
terms higher than the third power in 6; are dropped,

_n-lt+ghl?—1-(n—-1)7 (n—l) (1 93)
n+l-n?—1+n-19 \n+l n

cos(b; + 6,)/ cos(6; — 6,) =1 — 267 /n multiplying by the ratio of the sines
from the previous problem, viz., [(n — 1)/(r + 1)](1 — 6?/n) and dropping
higher order terms yields the desired equation.

From Snell’s Law nsin6; = 1sin90° = 1 and so with Eq. (4.42) in mind,
sin(a %+ ) = sinacos B + cosasin 3
and
sin(90° + ;) = sin 90° cos 6: & cos 90° sin §,;
then

sin(90° £ 6,) = 1 cosé,,

using sin®# + cos?0 = 1 and Snell’s Law

cosf; = V/1 — sin?6, = sin(90° + 6,) = V1—(1/n)?

and sor; — —1 at glancing incidence.
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4.49 Compute dr) /df; at 6; =90°; we’ll use df;/d6; = 0 and then prove it;
taking the derivative of Eq. (4.42) we get

dr, /df; = — cos(6; — 6;)/ sin(6; + 6:)
+ sin(6; — 6;) cos(6; + 0)/ sin®(6; + 6)
and for 6; = 90° this becomes
dr. /d6; = — sin 8,/ cos B, — sin 8, cos 6,/ cos’ 6, = 2tanb,
and using Snell’s Law, i.e, sin 6, = 1/n when 6; ~ 90°, and the fact that
cosf, = \/1_—5111—26:,
dr, /df; = 2tan 6, = 2sinf,/ cosf;, = 2/ncosb; = 2/@ :

this is the rise over the run at the end of the curve where 6; = 90°. Thus if
«, is the angle made ith the vertical tana; = VnZ —1/2.

4.50 [Eor|L + [EolL = [Eot].; tangential field in incident medium equals that in
transmitting medium, [Est/EoilL — [Eor/Eei]lL =1, tL — 7L = 1.
Alternatively, from Eqgs. (4.42) and (4.44),

sin(6; — 6,) + 2sin 6, cos€;

Sil‘l(ﬂ.‘ + 9;) -

sin §; cos ; — cosb; sinf; + 2sinf; cosf;
sin 6; cos 8; + cos 6; sin 6, -

1

iz

451 nysinb; = nesiné; so, sinf, = (ni/n,)sin; = (1.00/1.52) sin(30°) = 0.33.
6, = sin~1(0.33) = 19.2°.

(Eq. 4.44) t, = 2siné, cosb;/ sin(6; + 6;) = 2 sin(19.2°) cos(30°)/ sin(49.2°)
=0.75.

(Eq. 4.42) vy = —sin(6; — 0;)/ sin(6; + 6;) = — sin(10.8°)/ sin(49.2°) =
-—025 tJ_ + (—?"J_) = 075 + (025) = 100

4.52 0, =sin"'(1/1.5) = 42°.
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4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

Chapter 4 Solutions

Light incident from air to glass. 6, increases as 6; increases, so Maximum
6, should correspond to Maximum 6;.

(4.4) n;siné; = n,sinb, so, sinh, = (n;/n.) sin 6;.

Maximum 6; < 90° as 6; — 90°, sin6; — 1 so, sin §; = n;/n; = sin6,.

1.00/2.417 = sinf,; 6, = 24° diamond refracts light back out and so looks
brilliant.

sin48.0° = (1.00/n); n = 1.35.

9" — 45° —* gc

- n
sinf; = —, where ng=1
i

1
= =141
= sin 45°

Light entering at glancing incidence is transmitted at the critical angle
and those rays limit the cone of light reaching the fish; sinf, = 1 /1.333;
0. = 49° and the cone-angle is twice this or 98°.

sin 6, = n/n;; 6. = 59.1°.

1]

From Eq. (4.73) we see that the exponential will be in the form k(z — vt)
provided that we factor out k, sin 6;/n,, leaving the second term as
wnyit/ky sin 0;, which must be v,t. Hence wn,/(27/\;)n; sin 6; = v,, and so
v = ¢/n;sinb; = v;/sin 6;.

From the defining equation, § = k.[(sin® 6;/n?) — 1]'/2 = 3.702 x 10° m~?,
and since yf =1,y =2.7 x 10”7 cm.

The beam scatters off the wet paper and is mostly transmitted until the
critical angle is attained, at which point the light is reflected back toward
the source. tanf. = (R/2)/d, and so ns = 1/n; = sinftan~1(R/2d)].

1.00029 sin 88.7° = n sin 90°, n = 1.00003.

Let 6; = 0, = /2 — 6. Reflected beam is polarized if r, or ry equal zero.
(4.43)
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4.64

4.65

4.66

4.67

4.68

7 = tan(§; — 6.)/ tan(6; + 6;) = tan(m/2 — 6; — 0;)/ tan(7/2 — 6, + 6,)
= tan(w/2 — 26,)/ tan(w/2).

But tan(m/2) is infinite, so 7y = 0.

6; + 0, = 90° when 6; = 6, n;sinf, = n;sin 6, = n, cos by,
tan @, = ny/n; = 1.52, 6, = 56°40".

At 6,, 7 = 0. So from (4.38) 2t cos§; — 2t cos 6, = 0. Recall (4.4)
n; sin 6; = nysin6;. (3.59) n = \/eu/eopo and cos? @ = 1 — sin 6. Approach:
solve for tan 6, = sin 6,/ cos 6, where 6; = 0,. '

tan 6, = ny/n: = ng/ny, tanf, = ny/ny, tanb, = 1/ tand,.
sin 6,/ cos b, = cos b,/ sin 8. Therefore sin 8, sin §, — cos 6, cos 6, =0,
cos(f, +6;) =0, so 6, + 6, = 90°.

From Eq. (4.94), tanvy, = r1[Ex]/ry[Euly = (ro/m)) ta:n'y,- and from
Eqs. (4.42) and (4.43)

005(9,- == 91)

tan s, = ———t—— tanqy.
e = R

2
(456) R=(B=) ER = E%,+EL,. E% = B3 + EXy.

or o

(4.34) rL = g—:)l (4.38) r = (%:—5) :

2 2
_ Eors + Eoyy
EZ%, + E}

ol
- (Eor1/Eoir)?
1+ (Eoiy/ Eoir)?
(Eory/ Boip)?
(Eoir/ Eoiy)?

=1
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4.69

4.70

4.71

4.72

Chapter 4 Solutions

oo r?‘
_ T i I
1+cot?y; = tan®+; +1

=Ry sin® ik R" cos? Y
(457)T = S8 ( &) 2

T COS 9," Eo,;

o

as above, (%:f»)“ = t] sin®; + ¢ cos?y,, and using (4.63, 4.64),

Ty COS Gt
T = (n,— cos Gi) t?"'“'

T =T, sin®7; + T cos® ;.

Note that 6, = 41.8°. Note that R, increases steadily, while Rj has a
minimum at 6; # 0.

T\ = n,t3 cosb,/n; cosb;. From Eq. (4.44) and Snell’s law,
T - sin 6; cos b, \ [ 4sin? 6, cos? 6, ) __ sin 26; sin 26,
+ 7 \sin 8, cosé; sin®(6; +6,) /  sin®(6; +6,)

Use (4.62) and (4.43). Ry = rf = tan®(6; — 6,)/ tan?(§; + 6,) =
[sin®(6; — 64)/ cos?(6; — )] x [cos®(6; + 6,)/ sin®(6; + 6:)]. Note that Ry and
T} have now the same denominator.

Use (4.61) and (4.42). Ry =r% =sin*(§; — 0)/sin?(6; + 6,). Note that R,
and 7', have the same denominator.

If ; is the incident radiant flux or power and 7 is the transmittance
across the first air-glass boundary, the transmitted flux is then 7®;. From
Eq. (4.68) at normal incidence the transmittance from glass to air is also
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T. Thus a flux T®;T emerges from the first slide, and ;72N from the last
one. Since T'=1— R, T, = (1 — R)* from Eq. (4.67).

R=(05/25)2=4%, T =96%, T:=/(0.96)°=~ 78.3%.
4.73 T'= I(y)/fo = e“"y, Tl = &—a, Ir= (T]_)y. 'I}_ = (1 — R)2N(T1)d.

474 At 6, =0, R=Rj =R, = [(n—ni)/(n +n;)]%. As ny; — 1, ny — n; and
clearly R — 0. At 6; = 0, T = T = T, 4nn;/(ne +n;)? and since n, — ny,
limn,—1 T = 4n?/(2n;)? = 1. From Problem 4.61 and the fact that as
ng — n; Snell’s law says that 6, — 6;; we have

lim Tj = sin? 26;/ sin® 26; = 1, lim Ty = 1.

From Eq. (4.43) and the fact that R = rﬁ' and 6; — 6;, lim,,,—; Ry =0.

n; cos §; — ny cos b,

e e n; cos 6; + ny cos O,
__ €osf; — ny; cos 6,

"~ cos6; + ny cos b

_cosf; —nyy/1—sin’6,
cosb; + ngy/1 — sin? 6,

_ cosb; — y/n} — sin” 6;

cosf; + v/n% +sin’6;
n, cos B; — n; cos 6,

= n, cos B; + n; cos b,

_ Ny cos B; — \fl—sinzet
ng cosB; + /1 — sin® 6,
_ n}cos; — /ng — sin? 6,

nZ cos f; + \/nZ — sin® 6,

T
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4.76 For 6; > 6., Eq. (4.70) can be written

4.77

4.78

wf w0 o
cos 0; — i(sin® §; — n2)'/?
TL= ==
cos b; + i(sin® @, — n)/2’

cos?6; + sin?6; — n?) 1
cos?6; +sin®f;, —nZ

T =

Similarly nry = 1.

2sin 6, cos 6,
= sin(6f; + 62) cos(6; — 65)
S 2sin 6, cos 6,
= sin(:‘)l + 92) COS(GQ Z0 91)
sin 26, cos 26, e
sin?(6; + 65) cos2(6; — 6)

¢

ity = Ty

from Eq. (4.100). Similarly ¢, ¢, = T).

- [-ta.n(az—e,)r

9 [tan(ﬂl — 92)]

"I = | tan(, + 62) tan(d, + 0s)
o [tan(6,-6))]% ,
i3 [tan(ﬂl 5 =S

(484) Euity(62)4(62) + Euity (6,)ry (65) = B
(4.85) Ea,-r"(ﬂl)t" (91) + Eo.;t" (Gl)fil (92) = 0 where 6y = 6; = 9;, and

71(6) = 0. From Problem (4.66), 6, = 6;. From (4.84),

t"(ep)th(ﬁ;) +0=1;¢ (Gp)til(g;,) = 1. From (4.85), 7 (6,)t)(6,) +0 =0
since t)(6,) # 0, 7(6,) = 0. From (4.100), T} = tjty, when T} = 1, there is
no reflected wave, as T+ R = 1.
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4.79 From Eq. (4.45)

2sin 6, cos 6! 2sin @, cos 0
£ (6.))(6,) = | = P 2
1(63)t(67) [sm(ﬂp + 6.) cos(6!, — p)] [sin(a‘}p +61,) cos(fp — 6‘;,)]

sin 26, sin 26,
cos*(6, — 0)
- sin? 26,

" cos?(6, — 6:)

since 6, + 6, = 90°

sin? 26,
cos?(26, — 90°)

since sin 26, = sin 26, =1.

4.80 Can be used as a mixer to get various proportions of the two incident
waves in the emitted beams. This could be done by adjusting the gaps.
[For some further remarks, see H. A. Daw and J. R. Izatt, J. Opt. Soc.
Am. 55, 201 (1965).]

4.81 From Fig. 4.62 the obvious choice is silver. Note that in the vicinity of
300 nm, n; = ng ~ 0.6, in which case Eq. (4.83) yields R ~ 0.18. Just
above 300 nm, n; increases rapidly, while np decreases quite strongly, with
the result that R = 1 across the visible and then some.

4.82 Light traverses the base of the prism as an evanescent wave, which
propagates along the adjustable coupling gap. Energy moves into the
dielectric film when the evanescent wave meets certain requirements. The
film acts like a waveguide, which will support characteristic vibration
configurations or modes. Each mode has associated with it a given speed
and polarization. The evanescent wave will couple into the film when it
matches a mode configuration.
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5.1

5.2

5.3

5.4

5.5

Chapter 5 Solutions

Chapter 5 Solutions

All OPLs from S to P must be equal, therefore £yn, + &ing = sony + siny =
constant; drop a perpendicular from A to the optical axis, the point where
it touches is B. BP = s + s; — z and the rest follows from the
Pythagorean Theorem.

€o + £;3/2 = constant, 5 + (6)3/2 = 14. Therefore 24y + 3¢; = 28 when
ly=6,¢; =53, =T, £; = 4.66. Note that the arcs centered on S and P
have to intercept for physically meaningful values of 4, and 4;.

The OPD from F; to any point D on ¥ must be constant:

(FiA)n, + (AD)n, = C and (F1A) 4 (AD)nyp = Clna=Cif T
corresponds to the directrix of the ellipse, (F;A) = e(AD) where e is the
eccentricity; if nij, = e we get (FA) + (FRA) =C'.

A plane wave impinging on a concave elliptical surface becomes spherical.
If the second spherical surface has that same curvature, the wave will have
all rays normal to it and emerge unaltered.

Recall that the angles of a triangle sum to 180°.
62 + (180° — ¢) + B = 180°;
Oy = — L.
sin @y = sin(p — B)
= sin p cos(—f3) + cos psin(—pH)
=~ siny —sin 8
= h/R - h/s;
(180° — 1) + ¢ — o = 180°
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5.6

5.7

5.8

5.9

31
hh=vp+a
sin él = sin(p + )
= sin¢ cos o
+cospsina ~sinp +sina = h/R + h/s.

(4.4) nysinfy = ngsinby; ny(h/R+ h/so) = na(h/R — h/s;),
ﬂg/So o ﬂz/Si = ('ﬂ.z = nl)/R

From Snell’s Law n,6; = nyf;; tanf; = _yo/so and tan @, = —y;/s; since y; is
negative; thus 6; = y,/s, and 6; = —y;/s;, therefore
My = ¥i/Yo = —(n15:)/(n2So)-

From Eq. (5.8), 1/30.0 + 1.33/s; = (1.333 — 1.000)/5.0; s; = 40.7 cm and
My = —1.02, thus the image is 3.05 cm tall.

First surface: n;/s, +na/s; = (n2 —n1)/R, 1/1.2 4+ 1.5/s; = 0.5/0.1,

s; = 0.36 m (real image 0.36 m to the right of first vertex). Second surface
so = 0.20 — 0.36 = —0.16 m (virtual object distance).

1.5/(—0.16) + 1/s; = —0.5/(—0.1), s; = 0.069 m. The final image is real
(s; > 0), inverted (Mr < 0), and 6.9 cm to the right of the second vertex.

At the first surface from Eq. (5.8), 1/30.0 +1.33/s; = (1.333 — 1.000)/5.0
and s; = 40.7; a real image right of the vertex. For the second surface

s, = —30.7 cm and the image will be right of the second vertex, so
1.33/(—30.7) + 1/s; = (1.000 — 1.333)/(—5.000); and s; = 9.09 cm to the
right of the second surface. The first surface produces a magnification of
My = —1.02, thus the intermediate image is 3.05 cm tall. The second
surface produces a magnification of

My = —(m18:)/(n2s0) = —(1.333)(9.09)/(1.000)(—30.7) = 0.395

and the total magnification is the product of the two, viz., —0.403. The
image is real, inverted and minified.
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5.10

5.11

5.12

5.13

5.14

5.15

Chapter 5 Solutions
(5.16) 1/f = (n—1)(1/Ry — 1/R) where R, = —Rj, so

1/f = (n—-1)(2/Ry)
Ry = (n—1)(2)(f) = (1.5 — 1)(2)(+10.0 cm)
=10.0 cm

(6.17) 1/s,+1/s; = 1/f; s = 1.0 cm;

1/si=1/f—1/s,=1/10.0 cm — 1/1.0 cm = —9.0/10.0; s; = —1.1 cm.
(5.25) Mr = —s:/s, = —(—1.1 cm)/(1.0 cm) = +1.1. Image is virtual,
erect, and larger than the object.

(5.14) In the thin lens limit (d — 0) becomes

Nm/So + Nun/8; = (ng — nm) (1/Ry — 1/ Ry) so,

1/s0+1/s; = 1/f = (ng — Nun/nm)(1/ Ry — 1/Ry). For a double concave
lens R, <0, R >0, so that (1/R, — 1/R;) < 0. For air lens in water,
N < N, 50 that ng — n, < 0; 1/f > 0, lens is converging.

(5.15) 1/so+ 1/si = (ne — 1)(1/Ry — 1/Ry) so,

1/si=(ng—1)(1/R, — 1/Ry) — 1/s,; 1/s; = —13.3 cm.
(5.25) My = —s;/s, = —13.3/20.0 = +0.67. Image is virtual, erect, and
smaller than the object.

1/8+1.5/s; = 0.5/(—20). At the first surface, s; = —10 cm. Virtual image
10 cm to the left of first vertex. At second surface, object is real 15 cm
from second vertex. 1.5/15 + 1/s; = —0.5/10, s; = —20/3 = —6.66 cm.
Virtual, to left of second vertex.

(a) (5.17) 1/s, +1/s; = 1/f so,

1/si=1/f —1/s, = 1/(5.00 cm) — 1/(1000 cm); s; = 5.03 cm = 50.3 mm.
(b) (5.25) My = —s,/s, = —5.03 cm/1000 cm = —.00503.

Image size = | Mr|(object size) = (.00503)(1700 mm) = 8.55 mm.

So + Si = 5,8;/f to minimize s, + s;, (d/dso)(so + 8i) =0 = 1 + ds;/ds, or

i(SoSi)_ﬁ+&ﬁ_o
ds, \ f ) f ' fds,
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5.16

5.17

5.18

l 5.19

5.20

5.21

5.22

5.23
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Thus ds;/ds, = —1 and ds;/ds, = —si/s,, therefore s; = s,.
1/5 + 1/s; = 1/10, s; = —10 cm virtual, My = —s;/s, = 10/5 = 2 erect.

Image is 4 cm high. Or —5(z;) = 100, z; = —20,
My = —z;/f =20/10 = 2.

1/s, + 1/si =1/f. For 5, =0, f, o0, 2f, 3f, —f, —2f, f/2, 8: =0, o0, f,
2f, £3/2, /2, f2/3, —f, respectively.

Draw a ray at 6.0° to the axis passing through the center of the lens. The
image is virtual and on the image plane 50.0 cm in front of the lens. The
image height y; is gotten from the fact that tan6.0° = y;/f and so :
y; = 5.3 cm.

s; < 0 because image is virtual. 1/100 + 1/(-50) = 1/f, f = —100 cm.
Image is 50 cm to the right as well. M7y = —s;/s, = 50/100 = 0.5. Ant’s
image is half-sized and erect (Mg > 0). ) '

(5.16) 1/f = (ne— 1)(1/Ry — 1/Ry) = (1.5 — 1)(1/20 — 1/(—40)) = 3/80;
f=27cm. (5.17) 1/s,+1/s; =1/f s0 1/s; = 1/f —1/s, = 1/27 — 1/40;
s; = +80 cm. (5.25) My = —s;/s, = —80/40 = —2. Image is real, inverted,
at +80 cm and twice the size of the object.

1/f = (m = 1)[(1/R1) = (1/Rp)] = 0.5(1/00 — 1/10) = 0.5/10,
f=-20cm, D=1/f =-1/02=-5D.

(5.16) 1/f = (ne—1)(1/Ry —1/Ry) = (1.5 — 1)(1/(5.00 cm) — 1/00)
=1/(10.0 cm); f=+10.0 cm.
In a medium where n,, # 0, (5.16) becomes

1/f = ((ne = nm) /) (1/R1 — 1/ R2).
So, for water
(nm = 133), 1/f = ((1.5 — 1.33)/1.33)(1/(5.00 cm) — 1/00).
f =39.1 cm (so f increases).

(5.17) 1/ = 1/50+ 1/s: = 1/45 + 1/90 = 3/90; f = +30 cm.
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5.24

5.25

5.26

5.27
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(a) From the Gaussian lens equation 1/15.0 + 1/s; = 1/3.00,

s; = +3.75 m. (b) Computing the magnification, we obtain

Mr = —s;/s, = —3.75/15.0 = —0.25. Because the image distance is
positive, the image is real. Because the magnification is negative, the
image is inverted, and because the absolute value of the magnification is
less than one, the image is minified. (c) From the definition of
magnification, it follows that y; = Mgy, = (—0.25)(2.25 m) = —0.563 m,
where the minus sign reflects the fact that the image is inverted. (d) Again
from the Gaussian equation 1/17.5+ 1/s; = 1/3.00 and s; = +3.62 m. The
entire equine image is only 0.13 m long.

(5.17) 1/f = 1/s, + 1/s; so,
1/si =1/f —1/s, = 1/(—30) — 1/(+10) = —4/3.

si = —7.5 cm. (5.25) My = +s;/s, = ~(=7.5)/30 = 1/4 = 0.25.
(Image size) = Mr(object size) = (0.25)(6.00 cm) = 1.50 cm.

The Image is virtual, 7.5 cm in front of the lens, erect, and 1.50 c¢m tall.
|R1| = |Rs|, so (5.16) becomes
1/f = (ne = 1)(1/Ry = 1/(=Ry)) = (ne — 1)(2/Ry) = 1/s; + 1/s0;

So+8; = 60 cm (Image real). [M7| = (25 cm)/(5.0 cm) = 5 = Si/so S0,

8i = 5(50); 8o+ 5(s,) = 60 cm.

So =10 cm; s; =50 cm.

1/f=1/s,+1/s: =1/10+1/50 = 6/50; f = 8.3 cm.
Ry = (ne—1)(2)(f) = (1.5 — 1)(2)(8.3 cm) = 8.3 cm.

1/so+1/s; =1/f and My = —s;/s, = —1/2 hence 1/s, +2/s, = 1/f but
o = 60.0 cm, hence f = 20.0 cm; draw a ray cone from an axial image
point, it enters the edges of the lens and focuses at 30.0 cm and then
spreads out beyond to create a blur on the screen; from the geometry
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5.28

5.29

5.30

5.31

5.32

5.33
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(0.40 mm)/(10.0 mm) = (R/300 mm), R = 1.2 cm so the diameter is
2.4 cni.

The first thing to find is the focal length in water, using the lensmaker’s
formula. Taking the ratio

fuwl fa = fuw/(10 cm) = (ng — 1)/[(ng/nw) — 1] = 0.56/0.17 = 3.24;

fw = 32 cm. The Gaussian lens formula gives the image distance:

1/s; + 1/100 = 1/32.4; s; = 48 cm.

The image will be inverted if it’s to be real, so the set must be upside
down or else something more will be needed to flip the image;

Mgy = —3 = —5;/5,; 1/8,+ 1/3s, = 1/0.60; s, = 0.80 m, hence

0.80 m + 3(0.80 m) = 3.2 m.

1/f = (num —1)(1/R1 — 1/Ra), 1/ fu = (nim — 1)/(m — 1) fa = 0.125/0.5f,,
fw = 4fa'

1/s, + 1/s; = 1/ f hence for Aand B, 1/(1.1f) +1/s; = 1/f and so

s; = 11f, hence My = —s;/s, = —(11f)/(1.10f) = —10; both vectors are
imaged inverted and 10 times larger than life, viz, 1f long. A is in the
—z-direction and B is in the —z-direction. As for C, it stretches from its
tail at 11f to its tip at infinity.

Image-to-object distance = L = 501 + $i1 = So2 + Si2. Also,
So1 — Se2 =d =82 — s 1/f =1/si1+1/501;
]./f = 1/5.‘2+ 1/302 — 1/(3;'1 "‘d) + 1/(301 + d)

Approach: With three is independent equations (two for 1/f and
L = so1 + sq1) eliminate s,; and s;1, leaving f(L,d).

Find s;; first, and use this position for sup. (5.17) 1/f =1/s,+1/s;, so
1/sq = 1/fi — 1/sa1; 1/si = 1/(+30) — 1/(+50) = (5 — 3)/150;

s = 18.75 cm, which puts sg2 at (20 — 18.75) cm = +1.25 cm.

1/sia = 1/(4+50) — 1/(+1.25) = —0.78; sz = —1.3 cm, (Virtual image).
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5.36

5.37
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For the first lens si1 = (So1f1)/(s01 — f1) = +37.5 cm and My = ~1.50;
for the second lens s,y = 60.0 — 37.5 = +22.5 cm, and

si2 = (so2f2)/ (802 — f2) = +9.00 cm and Mpy = 9.00/22.5 = +0.40; the net
magnification is Mt = MpMpy = —0.60; the image is real, min?fecl, and
inverted.

Mr, = —351/501 =__f1;"‘(301 = fl). Mz, = '—-‘3:'2/302 = _3i2/(d — 8i1),
Mr = fisi2/(Sa1 — f1)(d — ;). From (5.30), on substituting for s;;, we
have Mt = fisio/[(so1 — f1)d — so1f1]-

(a) (5.17) 1/f = 1/s,+1/s, s0
1/sa=1/fi = /s = 1/(+10.0 cm) — 1/(+15.0 cm) = (3 — 2)/(30.0);
5i1 = 30.0 cm = 300 mm.

(b) Image is real, inverted, and larger than the object. _
(C) (525) .|M'T1 — -—S,-]/SO]_ = —300/150 = —2.00. (d) S;1 sets 8,9 at
—5.00 cm (beyond the second lens, virtual object).

- 1/8i2=1/f —1/s3 = 1/(=7.50 cm) — 1/(—5.00 cm) = (=2 + 3)/(15.00);

Si2 = 15.0 cm = 150 mm.

(e) Mn = —352/802 = -—(150)/(—500) = 3-00-MT = (MT;[)(MH) =
(—2.00)(3.00) = —6.00. (Image is real, inverted).

First lens 1/s;; = 1/30 — 1/30 = 0, s;; = co. Second lens

1/si2 = 1/(—20) — 1/(—00), the object for the second lens is to the right
at 0o, that is s,p = —00. s;3 = —20 cm, virtual, 10 em to the left of first
lens. My = (—00/30)(+20/ — o) = 2/3 or from (5.34)

Mz = 30(—20)/[10(30 - 30) — 30(30)] = 2/3.

(5:17) 1/f =1/s, + 1/s; so
/su =1/fi = 1/s01 = 1/(+15.0) — 1/(+25.0) = (5 — 3)/75.0;
si1 = +37.5 cmn, which makes s, = —12.5 cm.

Mp, = —si1 /501 = —25.0/37.5 = —0.67.
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1/sia=1/fs —1/502 = 1/(=15.0) — 1/(—12.5); sip = +75.0 cm.
ﬂfTQ = —5{2/802 = —(+75.0)/(—125) = +6.00.
My = (Mq)(Mgs) = (—0.67)(+6.00) = —4.00.

Linage is real, inverted, 75.0 cm beyond the second lens and 4 times the
size of the object.

5.39 For the two positive lenses, note that incoming parallel rays result in
outgoing parallel rays.
Ji1siz

(sol i fl) - Solfl

5.40 (5.34) Mr = -

: 5, fis Wi 1
B 0 = Sp1 = : = = —_
J Ut g = daf =8 =>00. Mp d(s— fi)—sfi d—(dfr/s) fr-
““j:*wMFﬁ‘
= SN | BN .

fo = fiMr = (+5.00 cm)(0.80 cm/0.10 cm) = +40.0 cm;
d= fi + fo = 4+45.0 cm.

5.41 Figure 5.99
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5.43

5.44

5.45

5.46
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In 5.43a, the rays through ks should bend away from the axis (diverging
lens). In 5.43b, ray 4 should be directed at F7; also |Fy| # |FY.

The angle subtended by L, at S is tan™! 3/12 = 14°. To find the image of
the diaphragm in L, we use Eq. (5.23): z,z; = f2, (—6)(z:) = 81,

z; = —13.5 cm, so that the image is 4.5 cm behind L,. The magnification
is —z;/f = 13.5/9 = 1.5, and thus the image (of the edge) of the hole is
(0.5)(1.5) = 0.75 cm in radius. Hence the angle subtended at S is
tan~'0.75/16.5 = 2.6°. The image of L, in L, is obtained from

(—4)(z;) = 81, z; = —20.2 cm, in other words, the image is 11.2 cm to the
right of L;. Mr = 20.2/9 = 2.2; hence the edge of L, is imaged 4.4 cm
above the axis. Thus its subtended angle at S is tan~!4.4/(12 + 11.2) or
9.8°. Accordingly, the diaphragm is the A.S., and the entrance pupil (its
image in L;) has a diameter of 1.5 cm at 4.5 cm behind ;. The image of
the diaphragm in L, is the exit pupil. Consequently, 1/2 +1/s; = 1 /3 and
8; = —6, that is, 6 cm in front of Ly. My = 6/2 = 3, so that the exit pupil
diameter is 3 cm.

Either the margin of L; or L, will be the A.S.; thus, since no lenses are to
the left of L,, either its periphery or P; corresponds to the entrance pupil.
Beyond (to the left of) point A, L; subtends the smallest angle and is the
entrance pupil; nearer in (to the right of 4), P; marks the edge of the
entrance pupil. In the former case P, is the exit pupil; in the latter (since
there are no lenses to the right of L,) the exit pupil is the edge of L, itself.

The A.S. is either the edge of L; or Ly. Thus the entrance pupil is either
marked by P, or P,. Beyond F,;, P, subtends the smaller angle; thus X;

locates the A.S. The image of the A.S. in the lens to its right, L, locates
P; as the exit pupil.

Draw the chief ray from the tip to L; such that when extended it passes
through the center of the entrance pupil. From there it goes through the
center of the A.S., and then it bends at L, so as to extend through the
center of the exit pupil. A marginal ray from S extends to the edge of the
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5.48
5.49

5.50

5.51

5.52

5.53

5.54

5.55

5.56

5.57

entrance pupil, bends at L; so it just misses the edge of the A.S., and then
bends at Ly so as to pass by the edge of the exit pupil.

Figures P.5.48a and P.5.48b.
No—although she might be looking at you.

The mirror is parallel to the plane of the painting, and so the girl’s image
should be directly behind her and not off to the side.

1/s, + 1/si = —2/R. Let R — c0: 1/s,+1/s: =0, s, = —s;, and
My = +1. Image is virtual, same size, and erect.

From Eq. (5.50), 1/100 + 1/s; = —2/80, and so s; = —28.5 cm. Virtual
(s; < 0), erect (Mg > 0), and minified. (Check with Table 5.5.)

(5.48) 1/s,+ 1/s; = —2/R, R =05 ft.
1/si = —2/R—1/s, = —2/(0.5 ft) = 1/(=5 ft), s =—5/21=-0.24 ft.
Mg = —s;/s, = (—0.24)/(5) = 0.048.

Image is virtual (seen in the mirror), erect, and 0.048 times the object size.

Ant has 3 images: from lens, from mirror, back out from lens.

(i) (5.17) 1/f = 1/s, + 1/s; so,

1/si=1/f —1/s, =1/50.0 — 1/250 = 4/250, s; = 62.6 cm (between lens
and mirror). (i) (5.48) 1/s, + 1/s; = =2/ R so,

1/s;i = =2/R—1/s, = 1/5,, (R = 00), 8; = —187.5 cm (virtual image).
(iii) 1/s; =1/f —1/50 = 1/50.0 — 1/(250 + 187.5), s; = +56.5 cm. Real
image, (left of lens).

Image on screen must be real, therefore s; is positive.
1/25 +1/100 = —2/R, 5/100 = —2/R, R = —40 cm.

The image is erect and minified. That implies (Table 5.5) a convex

spherical mirror.

From Eq. (5.8), 1/00 +n/s; = (n—1)/R; si = 2R; n/2R = (n — 1)/R;

=2



40

5.58

5.59

5.60

5.61

5.62

5.63

5.64

5.65
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Want |Mz| = [si/s,] = yi/yo = 1.0 cm/100 cm = .01. s, = 1000 cm.

|si] = soMz = (1000)(.01) = 10 cm. Want real image, so s; > 0, and image
will be inverted. Detector is 10 cm in front of the mirror.

(5.50) 1/s0 +1/si = 1/f; 1/f = 1/1000 + 1/10 = 101/1000; f = 9.9 cm.

To be magnified and erect the mirror must be concave, and the image
virtual; Mz = 2.0 = 5;/(0.015 m), s; = —0.03 m, and hence

1/f =1/0.015 m + 1/(—0.03 m); f =0.03 m and f = —R/2;

R =-0.06 m.

Mr = y;/yo = —s:/s,, using Egq. (5.51), 8; = fs,/(so — f), and since
f=-R[2, Mr=—f/(s; - f) = —(~R/2)/(so + R/2) = R/(2s, + R).

(5:49) f = —R/2 50 R = —2f. (5.50) 1/5, + 1/s; = 1/f. My = —s,/s,, 50
$i = —SoMr = —(10.0 cm)(0.037) = —0.37 cm (image is virtual).

1/f =1/s,+1/s: = 1/(10.0) + 1/(~0.37), f = —0.38 cm. .

R = —2(-0.38) = 0.76 cm.

(6:50) 1/f=1/s,4+1/s;; s,/f=1+ So/Si = (8i + 80)/si
= %4-—1) = (—MT + 1)/(-—MT) S5 = f(MT - 1)/Mjy.

(si/30
(6.50) 1/f = 1/s,+ 1/85; 8:/f = sifso+1= (—M7) +1; 5; = —f(Mp — 1).
Mp = —s;/25 cm = —0.064; s; = 1.6 cm. 1/254+1/1.6 = —2/R,
R=-3.0cm.

Image size in plane mirror equals object size, so | M7 (convex mirror)
| = 0.5; [Mr| = |si/so], s0 |si] = |so||Mz| = (5.0)(0.5) = 2.5 m;

8; = —2.5 m (image is virtual).

(5.50) 1/f =1/s, +1/s; = 1/(5.0 m) + 1/(—2.5m), =—2.5m.

(5.49) f = —R/2. Primary f, = —(—(200 cm))/2 = 4100 cm.

(5.50) 1/s, + 1/s; = 1/fps 8o = 00, 50 1/5; = 1/ fp; s = +100 cm. Object
for secondary is at s, = —25 cm. 1/f, = 1/s, + 1/sis01/s; =1/f, —1/s,.
Secondary f, = —R/2 = —(+60 cm)/2 = —30 cm.

1/si =1/(—30) — 1/(—25); s; = +150 cm, or 75 cm behind the primary.

The effective focal length of the “lens” is +75 cm.
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5.67

5.68

5.69

5.70

5.71

5.72
5.73

5.74

5.75

See Table 5.3. For f < s, < 2f, a real inverted image is made with

0o > s; > 2f. If this image is directed back at the same angles, the final
image will occur at the original object. So, for either type of mirror, it
should be placed at the image of the lens (at s;).

Mr = —8;/50, 50, i = —M7s, = —1.55,.

(5.50) 1/f = 1/so + 1/s; = 1/5,+ 1/(—1.55,); 1/10 = 1/3s,;
So = 10/3 = 3.3 em.

Note in Table 5.5, s, < f for an erect, magnified image.

= —R/2=30cm, 1/20+1/s; = 1/30, 1/s; = 1/30 — 1/20. s; = —60 cm,
My = —s;/s, = 60/20 = 3. Image is virtual (s; < 0), erect (M7 > 0),
located 60 cm behind mirror, and 9 inches tall.

Treat the first surface as a mirror with radius of curvature R.

(5.49) fm = —R/2, which is where the parallel reflected rays converge.
Lens: (516) 1/fg = (ﬂ.g — 1)(1/R1 = l/Rz); Rl = '—R, R2 = +R so
1/fe=(2—1)(1/(-R) —1/R) = —2/R; fe = —R/2 = fm.

Image is rotated through 180°.
From Eq. (5.65),
NA = (2.624 — 2.310)/2 = 0.550, Omax = sin™" 0.550 = 33°22".

Maximum acceptance angle is 20max = 66°44’. A ray at 45° would quickly
leak out of the fiber; in other words, very little energy fails to escape, even
at the first reflection.

Considering Eq. (5.66), log0.5 = —0.30 = —aL/10, and so L = 15 km.
From Eq. (5.65), NA = 0.232 and N,, = 9.2 x 102

(5.68) At = (Lng/c)(ns/nc — 1), so At/L = (ng/c)(ns/ne —1).
At/L = 1.500/(3 x 10~* km/ns)(1.500/1.485 — 1) = 50.51 km/ns.

Mg = —f/z, = —1/z,D. For the human eye D = 58.6 diopters.
z, = 230,000 x 1.61 = 371 x 10° km,
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Mr = —1/3.71 x 10°(58.6) = 4.6 x 101,
¥ = 2160 x 1.61 x 10° x 4.6 x 10~ = 0.16 mm.

Recall that the angles of a triangle sum to 180°. Recall that at both
mirrors 6, = 6;. For the triangle made by the three rays,

(26:1) + (26:2) + (180° — @) = 180° s0 @ = 2(6;; + ;). For the triangle
containing “B,” B+ (90° — ;1) + (90° — 6;2) = 180°. B = (6:1 + 6i2), s0,
a=20.

1/20+1/sio = 1/4, sip = 5 m. 1/0.3 + 1/s; = 1/0.6, s;c = —0.6 m.
Mz, = —5/10 = —0.5, My, = —(=0.6)/0.5 = +1.2, My, Mg, = —0.6.

From Table 5.3, the types, positions, and sizes of the images are OK, but
the rays from one portion of an object do not consistently trace to the
same portion of the image.

The pinhole allows the eye to get much closer to the object and still see it
clearly and that creates a larger retinal image. The pinhole works like a
magnifier.

Want same amount of light to reach the film. f/# varies as the square
root of the time, so we want f/5.5.

See figure. Ray 1 in the figure misses the eye-lens, and there is, therefore,
a decrease in the energy arriving at the corresponding image point. This is
vignetting.

Rays that would have missed the eye-lens in the previous problem are
made to pass through it by the field-lens. Note how the field-lens bends
the chief rays a bit so that they cross the optical axis slightly closer to the
eye-lens, thereby moving the exit pupil and shortening the eye relief. (For
more on the subject, see Modern Optical Engineering, by Smith.)

From Table 5.3, image is virtual, erect, and magnified. As thickness of lens

_a.pproachea 0, |s;| approaches s,, i.e., | M| approaches 1. However, the

entire bug is imaged, so that this can be used as a field-lens.
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5.84 (a) D =1/f.If so=o00, 1/f = /s D =1/(0.02 m) =50 m~". If
s, = 0.50 m, 1/f = 1/(0.50 m) + 1/(0.02 m, D = 52 i
(b) Accommodation of 2 m™.
(c) D =1/f =1/(0.25 m) + 1/(0.02 m) = 54 m~?. (d) Need to add 2 m™".

\ 5.85 Unaided cye,
D=1/f=1/s0+1/s;, (si=2cm),D=1/(1.25 m)+1/(0.02 m) = 50.8m™".

Want D = 1/f = 1/(0.25 m) + 1/(0.02 cm) = 54 m~!. Lens must have a
power of (54 — 50.8) = 3.2 m™~.

5.86 D, =D./(1+D.d)=32D/[1+ (3.2D)(0.017 m)] = +3.03D or to two
figures +3.0D. f; = 0.330 m, and so the far point is
0.330 — 0.017 m = 0.313 m behind the eye lens. For the contact lens
f.=1/3.2 =0.313 m. Hence the far point at 0.31 m is the same for both,
‘ as it indeed must be. ) :

5.87 () (5.77) MP = d,-D+1=(0.25 m)(1/.0254 m) +1 =103.
(b) Size = (M P)(object size) = 10.8(5.0 mm) = 54 mm diameter.
(c) tanay = Yo/do = (0.0254 m)/(0.25 m), oy, — 5.80° = 0.101 rad.
(d) tanaa = i/ L = y:/do = (0.054 m)/(0.25 m), e, = 12.19° = 0.213 rad.

5.88 (a) The intermediate image-distance is obtained from the lens formula
applied to the objective; 1/27 + 1/s; = 1/25 and s; = 3.38 x 10? mm. This
is the distance from the objective to the intermediate image, to which
must be added the focal length of the eyepiece to get the lens separation;
3.38 x 10% + 25 = 3.6 x 10> mm.

(b) Mz, = —si/s, = —3.38 x 10/27 = —12.5%, while the eyepiece has a
magnification of doD = 254/25 = 10.2x. Thus the total magnification is
MP = (—12.5)(10.2) = —1.3 x 10?; the minus sign just means the image is
inverted.

5.80 The x-ray “lens” is a mirrored surface that forms a portion of a
non-spherical mirror. The reflected rays converge to the focus (F}).
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5.90 (a) These are a parabola and a hyperbola of two sheets. The parabola and
left-hand hyperbola share a common focus, F;. Rays reflected from the
parabola head for that focus. Rays directed at the first focus of a
hyperbola reflect toward the second focus. (b) Parallel rays coming off the
parabola seem to be leaving its first focus. Because this is also the focus of
the ellipse the rays reflect toward its second focus.

5.91 The limit of resolution is 1.22\/D; at 0.50um, 1.22(0.50 x 10~6)/2.4
= 2.54 x 1077 radians; 1.0 x 10~2 = R2.54 x 10~7 and R = 39 km.
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(6.7) My = (—si1/So1)(—si2/S02) = —5;/8,. Let s, = oc so that s, = 5o,
Si1 = fl, S8i1 = fl, So2 = —(3-51 = d) Substituting into (67),

(= f1/s0)(=si2/ — (801 — d)) = —f /5.
f = fi(sia/ (—se2)) = fi(si2/ (81 — d)).
From

sz +1/sa=1/fs; 1/sa=1/fa—1/502, s2=s0f2/(s2 = f)-
f = (=fi/s:2)(se2f2/ (502 — f2))
= —fif2/(s02 = f2) = fifa/ (s — d+ fa).
1/ f = (sa —d+ f2)/ fif2 = 1/ fr + (sa — d)/ frfo:
But siy = f1, 50, 1/f =1/ fi+1/fa— d/ ffa-

From Eq. (6.8), 1/f =1/f' +1/f —d/f'f' =2/f —2/3f', f' =3f'/4
From Eq. (6.9), HiH; = (3f'/4)(2f'/3)/f' = f'/2. From Eq. (6.10),
HyeH, = —3f'/4)2f'/3)/f = =f'[2.

45

From Eq. (6.2), 1/f =0 when —(1/R; — 1/Rp) = (m — 1)d/m Ry R,. Thus

d. = ﬂ;(Rl — Rz)/(ﬂ.; = 1).
1/f =0.5[1/6 — 1/10 + 0.5(3)/1.5(6)10], f = +24;
hy = —24(0.5)(3)/10(1.5) = —2.4, hy = —24(0.5)(3)/6(1.5) = —4.

Since |h1| = |h2| it follows from Egs. (6.3) and (6.4) that
—f(n = 1)di/|Ro|ru = — f (y — 1)di/| Ra|mu and |Ry| = |Ry| which means
the lens is a sphere.
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J=(1/2)nR/(n—1); hy = +R, hy = —R.
This is a thick lens with —R; = Ry = R = 10 cm and d = 2R = 20 cm
(6.2) 1/f = (ne— 1)[1/R1 —1/Ry + (ne + l)d/TLgR]RQ]

= (1.33 - 1)[1/10 - 1/(~10) + (1.33 — 1)(20)/1.33(10)(~10)};

f =202 cm.

From Problem (6.6) or (6.7), (6.2) becomes 1/f = ((n, — 1)/n¢)(2/R),
with R = +10 cm. 1/f = ((1.4 - 1)/1.4)(2/10) = 0.057 cm™,
f=175cm. (6.1) 1/f = 1/s,+ 1/s;, where s, and s; are measured from
the principal planes. 1/s; = 1/f — 1/s, =1/(17.5) cm — 1/(400 — 10) cm;

s; =18.3 cm. (6.7) My = —s;/s, = —18.3/390 = —.047. Image is real,
inverted, and 0.047 times the size of the object.

(6.2) ]./f = (ﬂg = 1)[1/R1 - ]./Rz + ('ng -_ l)d/ﬂg.Rle];
(15— 1)[1/23 - 1/20 + (1.5 — 1)(9.0)/1.5(23)(20)] = 0,

[ =o0.
Generally, if

1/f=0, [1/Ri—-1/Ry+ (ne —1)d/neR1Ry] = 0;
(neRy — neRy + (g — 1)d)/neR Ry = 0;
(e —1)d =ne(Ry — Ry);  (Ry — Rp) = (ne — 1)/med
for ne =15, (R — Ry) = (15— 1)/1.5)d = d/3.

f=29.6+0.4 =230 cm; s, =49.8+ 0.2 = 50 cm; 1/5041/s; = 1/30 cm.
s; = 75 cm from Hj, and 74.6 cm from the back face.

From Eq. (6.2),
1/f = (1/2)[1/4.0 - 1/(=15) + (1/2)4.0/(3/2)(4.0)(—15)] = 0.147

and f = 6.8 cm. hy = —(6.8)(1/2)(4.0)/(=15)(3/2) = +0.60 cm, while
he = —2.3. To find the image 1/(100.6) + 1/s; = 1/(6.8); s; = 7.3 cm or
5 cm from the back face of the lens.
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6.13

6.14

6.15

6.16

For both, —R; = R = R, so (6.2) becomes

1/f = (n—1)[2/R + (n — 1)d/nR?;
1/f = (1.5 - 1)[2/50 + (1.5 — 1)(5.0)/1.5(50)?]; f = 49.2 cm.

(61) 1/f1 = 1/301 + 1/3,—1, SO 1/3,'1 = ]./fl = 1/501 = 1/(492)

(68) 1/f = 1/fu+1/f2 — 4/ fufa = 1/(+20) +1/(~20) — 10/(20)(~20);
f = +40 cm. The principal planes are found from (6.9) and (6.10).
(6.9) HuHh = fd/ f = (+40)(10)/(~20) = —20 em.

(6.10) HpH, = fd/ f = (+40)(10)/(20) = +20 cm.

-D
R = ; 11 from (6.16) where
D, =(n-1)/Ri=(15-1)/25cm =02 cm™.
11 ke
T = 6.24
[ 1]
DRI B e
| 12/460 1 |08 1
1 —D,

but Ry = 00, s0 Dy = 0.

10101 olf1 o2 1 02
29) A=RyTyRy= -
L) ReInRa [0 1”0.8 1“0 1 ] [0.8 1.16}

Check: |4| = 1(1.16) — 0.2(0.8) = 1.
Working in centimeters,
D, = (24-19)/R; =01 cm™, Dy=(1.9-24)/R; =—-0.05cm™

therefore
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A 1= S O
" et dfm 1[0 1
_| 17005 || 1 o][1 do1] [102 —0052
 [ogn 04 1//0 1 | | 04 096

(1.02)(0.96) — (0.4)(—0.052) = 0.979 + 0.0208 = 1.
We have

det A = anay —aay =1~ (Dy + Dy)dyy /ny + D, Dyd3, [},
+ (D1 + Dz)dg]_/?lsl -+ Dngdm/nu =
hy = ni1(1 = an)/(~a12) = (Dadar/nn) f = —(nus — 1)day f/Rymyy, from

Eq. (5.64) where nyy = ny; hy = nyy(agy — 1)/(—a12) = —(Qldglfntl)f from
Eq. (5.70), h = —(niy — 1)do1 f/Ringy.

A =RyF5R,, but for the planar surface

1 D
R = 4
0 1

which is the unit matrix, hence A4 = FoauR,.

J and Dy = (nyg —1)/(=Rs) but Rp = coR, = [ ; [l)}

Dy =(1.5-1)/0.5 =1 and D, = (1.5—-1)/—(~0.25) = 24 =

06 -2.6
0.2 0.8
and |A] = 0.48 +0.52 = 1.

From the equation above (6.34),

—~02 = —az = (1 ..1){i+i- [(ﬂ!;“&’ﬁq]}.

Ry, Ry| Rng
Solving for the reciprocal of the second radius gives
1 (ne — 1)] Ring 1 =
Ry [ = Ry (ne1 — 1) (ney — doy — Rynyy)

Then R; = 0.25 cm.
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1 -D
6.22 R, = [ ie i : ] from (6.16) where

D, =(n—1)/R, = (3/2—1)/ — 10.0 cm = —0.050 cm ™.

1 0 1 0 1 0
T - =
| du/n 1] [1.00/1.50 1] [0.67 1]
(1 -D,
72;2—_0 1 ]
but Rz = 00, so Dy = 0.
10][ 1 o][1 o005 1005
e e [0 1“0.6? 1”0 1 w [0.67 1.03]

Check: |A| = 1(1.03) — (0.05)(0.67) = 1.

[m:az-| ", —maijl
Y | Yi
=0 m=1, w=y
0 | [ o 1 005 | [ o
3l _y,-]=[0.67 1.03][%]
Wik a; + (0.05)y
| [ (0.67)cs + (1.03)y: ]

0=oq+ (0.08)y;, i = (0.67)ay + (1.03)y;,

both yield a; = (—0.05)(2.0) = —0.10 or 0.10 radians above the axis.

6.23 (6.34) 1/f = —a = —(Dy + Dy — D1 Dod/ns);

Dy = (ne—1)/Ry = (1.5 — 1)/0.5 = 1.0;

Dy = (ne— 1)/Ry = (1.5 — 1)/(—0.25) = —2.0.
1/f = —(1.0 — 2.0 — (10)(2.0)(0.3)/1.5, f =0.71.
ViH, = (1)(1 — an)/ — a1,

a1 =1 —"Dyd/ny =1 —(—2.0)(0.3)/1.5 = 1.4.
ViH; = (1 - 1.4)/1.4 = —0.29.

(6.36)
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(6.37) VaH; = (1)(ane — 1)/ — a;
az =1— (Did)/ne =1 - (1.0)(0.3)/1.5 = 0.8;
VoH, = (0.8 —1)/1.4 = —0.14.

For two reflections

-1 —2/(4¢) 1 o =1 e 1 [ 1 0
0 1 —d 1[Il 1 & 1

and this yields the desired matrix. When d = r the matrix for two

be
% otk

and since this is a unit matrix the light ray is back to where it started.

traversals becomes

and for four it is

See E. Slayter, Optical Methods in Biology.
]3—6_‘/@ = (Tll/'ﬂg)R/R = ﬂ]/'nz,

while CA/P'C’ = n, /n,. Therefore triangles ACP and ACF' are similar;
using the sine law

sin ZPAC/PC = sin ZAPC/CA
or nysin ZPAC = n, sin ZAPC, but 0; = ZPAC, thus
6. = LAPC = LP'AC,
and the refracted ray appears to come from P'.
From Eq. (5.6), let cos = 1 — ¢?/2; then

£, = [R?+ (s, + R)> — 2R(s, + R) + R(s, + R)??,
€' =[s3+R(so+ R)* ™2, &7 =[s? - R(si — R)@? 72,
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6.28

6.29

where the first two terms of the binomial series are used,
6t~ 5ot — (s, + R)R?/253R
where
p~h/R, £~ s+ (si— R)h?/2siR.
Substituting into Eq. (5.5) leads to Eq. (6.40).

Because (a) is symmetrical and looks like a somewhat altered Airy
pattern; this is spherical aberration. (b) This pattern is asymmetrical as if
the Airy system were pulled off to the side, so it corresponds to a little
coma. (c) This pattern is asymmetrical along two axes and must be due to
astigmatism.

Fig. P.6.29a is bi-axially asymmetric and therefore corresponds to
astigmatism. (b) is elongated along one axis and is due to coma, and
because the pattern isn’t very complicated there isn’t much of it.
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7.2

7.3

74

7.5
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Chapter 7 Solutions

E§ = 36 + 64 + 2(6)(8) cosm/2 = 100, Ey = 10;tana = 8/6, o = 53.1° =
0.93 rad. E = 10sin(1207t + 0.93).

E) = Ep cos(wt); Eo = Ep cos(wt + ag).
E = E; + E; = Ep coswt + Eg; cos(wt + a3)
= E1(2cos 3(wt + wi + ) cos 1 (wt — wt — a))

= 2Ep; cos(wt + ap/2) cos(—az/2).
Recall cos(—8) = cos 6, so,

E = (2Eq; cos(as/2))(cos(wt + a2/2)) = Eqy cos(:i;t + ).

To show that this follows from (7.9) and (7.10), recall that
cosf = sin(f + 7/2) so that

ap—= o +m/2=7/2, oy— ay+7/2.
In phase: a; = a3 cos(az — a;) = cos(0) = 1.

(79) Eg = Egl <+ Egz + 2Eq; Fge COS(QQ . (11)
= 5'31 o 5 E§2 + 2E01 Epz = (Eo1 + Eo2)?.

Out of phase, ap — oy = 7, cos(ag — @) = cosm = —1.
(7.9) E§ = E}, + E, — 2E0 By = (Eoy — Eg)?.

OPL = 2% = ) (¢/w:)z; = Y, cti, where ¢; is the time spent in
medium i. But ct; is also the distance the light would travel, in vacuum.

1 m/500 nm = 0.2 x 107 = 2,000,000 waves. In the glass

0.05/A¢/n = 0.05(1.5)/500 nm = 1.5 x 10°%;
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7.6

.0

in air
0.95/X = 0.19 x 107;
total 2,050,000 waves.

OPD = [(1.5)(0.05) + (1)(0.95)] — (1)(1),

OPD = 1.025 — 1.000 = 0.025 m,

A/Xo = 0.025/500 nm = 5 x 10* waves.
OPLg = nz = (1.00)(100 cm) = 100 cm = 1.00 m.
OPL4 =Y, niz: = (1.00)(89 cm) + 2(1.52)(0.5 cm)

+(1.33)(10 cm) = 103.82 cm = 1.0382 m.
A =0OPL4—OPLp=1.0382 — 1.00 = .00382 m.

(7.16) &= koA = (2m/Xo)A = 27(3.82 x 1072 m)/5.00 x 107° m
=7.64 x 10°m.
An integer multiple of 27, so waves are in phase.

E, = En sin[wt — k(z + &z)], so a; = —k(z + Az). E; = Eg sin[wt - k:l.‘],

so ap = —KzI.

(19) ~ E§ = Ej + Ef + 2E0 Ena cos(on — o)
= E2 + B2, + 2E% cos(—kz — (—k(z + Az))) = 2E5, (1 + cos kAz)
= 22, (cos(0) + cos(kAz)) = 4E3 cos*(kAz/2),

(see Problem 7.2),

Eo = 2Fq; cos(kAz/2).

Eo;sin o + Egz sinayg
e Ep, cosay + Egg cos ag

Eo1 sin(—k(z + Az) + Eg sin(—kz))
= Fo1 cos(—k(z + Az)) + Eo; cos(—kz)

(7.10) tanc
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_ 2sin 3(—k(z + Az) — kz) cos }(—k(z + Az) + kz)
 2cosi(—k(z + Az) — k) cos 3(—k(z + Az) + kz)
= tan(—kz — (kAz/2)), o= —k(z + (Az/2)).

7.8 E =EFE, + E; = Eg{sin[wt — k(z + Az)] + sin(wt — kz)}. Since
sin B + siny = 2sin(1/2)(8 + 7) cos(1/2)(8 — ),
E = 2Ey cos(kAz/2) sinfwt — k(z + Az/2)].

7.9 E = EgRele'*=+t) — gitka-wt)] = g, Re[e?=2; sin wi]
= Eo Re[2i cos kz sinwt — 2sin kz sin wt] = —2Ey sin kz sin wt.

Standing wave with node at z = 0.
7.10 E; =3coswt =340, (o1 = 0). E, = 4sinwt, but sinf = cos(f — 7/2), so
By =4cos(wt—m/2) =44 —7n/2. E3;='E, +E,.
E3, = E} + E}, + 2Ey Eg cos(on — o)
= 9+ 16 + 2(3)(4) cos(—n/2), E3, = 5.
(7.10) tana = (Ey; sin oy + Egy sin a3)/(Eo1 cos a; + Epg cos )
= (3(0) +4(-1))/(3(1) + 4(0)) = —4/3; = —53°,
80 ¢ = 53° = 0.93 rad. Note that o; < @, so E; leads Es.
7.11 By Faraday’s law, 0E/8z = —3B/0z. Integrate to get
B(z,t) = — /(65‘/6&3) dt = —2Fk cos k:r:fcoswt dt
= —2Ey(k/w) cos kz sin wt.
But Eok/w = Eo/c = By; thus B(z,t) = —2Bg cos kz sin wt.
7.12 Fringes are spaces A/2 vertically.

sin @ = (fringes/cm) vertical/(fringes/cm) on film;
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7.13

7.14

7.15

7.16

7.17

(fringes/cm) on film = (1/(A/2))/siné
= (1/5.50 x 107 cm)/ sin(1°) = 1.04 x 10°® em™".
Nodes are spaced at A/2 apart.
c=v), A=c/v=3x10® m/s/10" Hz = 0.03 m.
Node spacing is .015 m.
(7.30) E (standing wave) = 2Eq,sin kz coswt from two wave,
E; = Egsin(kz +wt); Egr = Egesin(kz — wt),
so,
E; = 50sin (3nz + 5mt) ; Eg = 50sin (37 — 57t) .

Heart beat frequency = v, — v; = 2 Ha.
One can see that the relative phase of the two waves varies, and that a
maximum occurs (positive or negative), and that a zero occurs when the
relative phase is £n (n odd). Also at the maxima, the relative phase
between one wave and the net wave is zero. At those zeroes where the
relative phase between one wave and the net wave is /2, the “faster”
wave “laps” the slower one, and the relative phase changes abruptly.
E, =Eo cos|(k. + Ak)z — (we + Aw)t];
E; = Eo; cos[(ke — Ak)z — (we — Aw)t];
E=E) + E; = 2Eq; cos 3[(kc + Ak)z — (we + Aw)t

+ (ke — Ak)z — (we — Aw)t] x cos 3[(kc + Ak)z — (we + Aw)t

— (ke — Ak)T + (we — Aw)t] = 2En [cos(k.z — wct) cos(Akz — Awt)]
so that k. = k, we = @, Ak = km, Aw = wy,. Wavelength of envelope

A, = 27/ km = 27/ Ak. Period of envelope Trn = 2m/wpm = 27/ Aw. Speed
of envelope An/Tm = (21/Ak)/(27/ Aw).
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7.18

7.19
7.20

7.21

7.22

7.23

7.24

7.25

7.26

Chapter 7 Solulions
E =FEjcosw,t + Epa cusw,,t cosw,t
= Ep coswct + (Eoe/2)[cos(we — wim)t + cos(we + wim)t).

Audible range v,, = 20 Hz to 20 x 10® Hz. Maximum modulation
frequency vm(max) = 20 x 10° Hz. v, — vpm(max) < v < v + v (max),
Av = 2v,,(max) = 40 x 103 Hz.

v=w/k = ak, v, = dw/dk = 2ak = 2v.
1/vy = d(v/v)/dv and the rest follows.

From the previous problem 1/v, = (n/c) — (vn®/c?)[d(c/n)]/dv and the
rest follows. '

v =/g)\ 21 = \/g[k, v, = v + kdv/dk, where

dv/dk = —(1/2k)\/g/k = —v/2k, so v, =uv/2.

We have A = 27/k, d\/dk = —27/k® = —\/k so that the term
kdv/dk = k(d)/dk)(dv/d)) = k(=\/k)dv/dA = —Adv/d) and the
expression for v, follows.

Vg = + kdv/dk and dv/dk = (dv/dw)(dw/dk) = v,dv/dw. Since v = ¢/n,

dv/dw = (dv/dn)(dn/dw) = —(c/n*)dn/dw,
Vg = v — (vyck/n?)dn/dw = v/[1 + (ck/n*)(dn/dw))
= c¢/[n + w(dn/dw)).

(7.40) ng = c/v,. From Problem 7.24 vy = c/(n+ 2(dn/dw)), so
ng =n+w(dn/dw) = n(v) + 2mv(dn(v)/2rdv) = n(v) + v(dn(v))/dv.

For v =a/), v, = v — Adv/d\ = a/A + Na/X? = 2a/) = 20.
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7.27

7.28

7.29

7.30

7.31

7.32

(7.38) v, = v+ k(dv/dk) = c¢/n — (kc/n?)(dn/dk)
= ¢/n — (ke/n?)(dn/d))(d\/dk)
= ¢/n — (kc/n?)(dn/d))(—27/k?)

= ¢/n + (21/k)(c/n?)(dn/dN) = c/n + (Ac/n?)(dn/d))
v = w/k = wo/ sin(kl/2)/(kl/2) = wo/ sinc(kl/2);
vy = dw/dk = wo/ cos(kl/2).

v = w/k therefore w? = w? + c*(w/v)* and
v =c/[l = (wp/w)?; v, = dw/dk = kjw = c[l — (wp/w)?)*/2.

For w? > w?, n? = 1 — (Ng?/wem.) Y_; f; = 1 — Ng? /w?egm,. Using the
binomial expansion, we have (1 — z)¥2 ~ 1 — z/2 for z < 1, so that
n=1— Ng?/2wem,, dn/dw= Ng?/em.w®.
vy = ¢ffn + wldn/du)] = c/[1 + Ne&/2eqm?]
and v, < ¢, v=c/n=c/[l - Ng?/ 2¢pm.w?]. By binomial expansion,
(1-z)'=1l4+z for z < 1,v=c[l+ N¢?/2eomw?]; vy, =c*
Ey = 2Eycoswt; Ep = jEpsin2wt. E=E+ Ey
= 2Eq coswt + 3 Fqsin 2wt = Eg(2 + sinwt) coswt.

Resultant is anharmonic, but periodic with period w.

_/: akzsinbkz dz = (1/23:1 |:f: cos|(a — b)kz|k dz
= / 005[(a+b)km]kdm] =0

0
if a # b. Whereas if a = b,
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7.33

7.34

7.35

7.36

7.37
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A A
/ sin® akz dz = (1/2&)/ (1 + cos2akz)k dz = )/2.
0 0
The other integrals are similar.

Even function, therefore B,, = 0.
Ma
=@/ [ dz=(2/3)(2\a) = 4/a,
=Ma

Ala

= (2/)\)/ (1) cosmkz dz = (4/mk)) sin mkz|)/*
—A/a

= (2/mm) sin 2mn /a.

Ao =0, A, = A, and all other A,, = 0 moreover B,, = 0 so
f(z) = Acos(rz/L).

Am =4/m? m #0; Ao = 87%/3; B,, = —4r/m.

Am = —2(1 + cosmx)/m(m? — 1) where m # 1 and A; = 0.

f(z) == f EoLbII;Efz/z cos kz dk
_ EoL [*sin(kL/2 + kz) EoL [°sin(kL/2 — kz)
= on / i Tt _/ kijz
Let kL/2 = w, (L/2)dk = dw, kz = wz’,
flz) =20 / Mrw_r’) f -l .
™ Jo w

where b= aL/2. Let w + w2’ = t, dw/w = dt/t, 0 < w < b and
0<t< (2’ +1)b. Let w— wz’ = —t in the other integral, 0 < w < b and
0<t< («/ - 1)b.

(="+1)b g ¢ @'-1b i 4
f(z) = i —Sm dt,
0 T 7w Jo

i) =2 5o i +1)) - -‘f’;‘i Sifb(z’ — 1)),
with 2’ = 2z /L.

zad
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7.38

7.39

7.40

7.41

7.42

7.43

By analogy with Eq. (7.61), A(w) = (At/2)Epsinc(w, — w)At/2. From
Table 1, sinc(n/2) = 63.7%. Not quite 50% actually, sinc(7/1.65) = 49.8%.
|(wp — w)AL/2| < m/2 or =7/ At < wp —w < m/At; thus appreciable values
of A(w) lie in a range Aw ~ 2w/At and AvAt .~ 1. Irradiance is
proportional to A%(w), and [sinc(7/2)]* = 40.6%.
Az, = cAt,, Az, ~ ¢/Av. But Aw/Aky = @/kg = c; thus
|Av/AXg| = 7/ X0, Az ~ cho/AdoD, AT, ~ NF/AXo. Or try using the
uncertainty principle: Az ~ h/Ap where p = h/) and AXg < Jo.

Az, = cAt. = 3 x 10° m/s10~8s = 3 m.

Ao ~ M%/Az, = (500 x 1072 m)?/3 m,

Ado~83x 107" m = 8.3 x 105 nm,
Ado/ o = Av/v =8.3 x 1075/500 = 1.6 x 10~" ~ 1 part in 10".
Av = 54 x 10° Hz; Av/p = (54 x 10%)(10,600 x 10~° m)/(3 x 10°m/s)

=191 x10~°. Az, = cAt, ~ c/Av, Az, ~ (3 x 10%)/(54 x 10°%)
= 5.55 x 10° m.

Av/v =2/10'; c =), so

v=c/A=3x 10® m/s/632.8 x 10™° m = 4.74 x 10" Hz.
(7.64) AL = cAt..

Frequency range is £2(4.74 x 10* Hz) or 9.48 x 10* Hz, so
At~1.05%x1075s. Al = (3 x 10® m/s)(1.05 x 1075 s) = 3.15 x 10° m.

Az, = cAt. =3 x 108 x 10710 = 3 x 10~ m, Av ~ 1/At, = 10'° Hz,
Ao ~ N3/ Az, (see Problem 7.35),
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7.44

7.45

7.46
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Ado ~ (632.8 nm)?/(3 x 1072 m) = 0.013 mn. Av = 10 Hz,
Az. = c x 107*° = 300 nm, A)g ~ A2/Az, = 133478 nm.

Av/v = AX/), (see Table 7.1)
= (1 x 107'° m)/(600 x 10~° m) = 1.67 x 10~4.
c=vA, so v=c/A=(3x10%m/s)/(600 x 10~° m)
=5.00x 10" Hz.  Av= (167 x 10~4)(5 x 10 Hz)
=8.35x10™ Hz, so At~1.20x10 s,
(7.64) Ale = cAt. = (3 x 10° m/s)(1.20 x 10~ 5) = 3.60 x 10~3 m.
AL, = 20). (7.64) AL, = cAt,, so

Ate = Alc/c = 20)o/c = 20(500 x 10~°m)/(3 x 10m/s) = 3.33 x 10~15 gec.
Av ~1/At, = 3 x 10" Hz.

Av/fv = AX/X, (see Table 7.1) = (1.2 x 16~° m)/(500 x 10~° m) = 0.0024.
c=vA sov=c/A= (3 x 10® m/s)/(500 x 10~° m) = 6.00 x 104 Hz.

Av = Frequency Bandwidth = (0.0024)(6.00 x 10 Hz) = 1.44 x 10'2 Hz.
At ~1/Av =6.94 x 1073 5.

(7.64) Al = cAt, = (3 x 10° m/s)(6.94 x 10~ §) = 2.08 x 10~ m,
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Chapter 8 Solutions

8.1 In each part the = and y components have the same amplitude Eq.
(a) E = (i — j)Eocos(kz — wt) is a P state at 135° or —45°.
(b) E = (i — j)Eosin(kz — wt) is also a P state at 135° or —45°. (c) E;
leads E, by m/4. Therefore it is an £ state and left-handed. (d) E, leads
E. by /2. Therefore it is an R state.

8.2 E, leads E, by m/2. Therefore it is a left-handed circularly-polarized
standing wave.

8.3 FEg = iEycos(kz — wt) + jEosin(kz — wt).
- = iE} cos(kz — wt) — j Ey sin(kz — wt).
E = Ep + B¢ = i(Eo + E}) cos(kz — wt) + 7(Eo — Ef) sin(kz — wt).

| Eo+E,=E! and Eo— Ej=Ej;
then
E = iEl cos(kz — wt) + j Eg, sin(kz — wt).

From Eqgs. (8.11) and (8.12) it is clear that we have an ellipse where
e=—m/2and a=0.

8.4 Eoy = Epcos25°;  Ep, = FEy sin 25°;
E(z,t) = (0.917 + 0.42k) Eq cos(kz — wt + 7/2).

8.5 k=k(+7)/V2

8.6 E = Eo[jsin(kz —wt) — k cos(kz — wt)].
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8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14
8.15

8.16

8.17

8.18
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6 =0° I =1 cos?0° =200 W/m?.
Half the energy is removed and half transmitted, hence I = 150 W/ m?.
(8.24) I(6) = I(0) cos®8 so I(6)/1(0) = cos?(60°) = (1/2)% = 0.25.

HN — 32, so 32% of incident light is (ideally) transmitted.
I, = (0.32)(0.32) ; = 0.10L.

In natural light each filter passes 32% of the incident beam. Half of the
incoming flux density is in the form of a P-state parallel to the extinction
axis, and effectively none of this emerges. Thus, 64% of the light parallel
to the transmission axis is transmitted. In the present problem 32%I;
enters the second filter, and 64%(32%I;) = 21%I; leaves it.

I = I cos? 6 = (200 W/m?) cos? 40° = 153 W/m?.

50% means all the light from the first polarizer, viz. (1 /2)f,-, is passed by
the second. Hence the angle is 90°.

I = I  cos? 6 = (200 W/m?) cos? 60° = (1/4)200 W/m? = 50 W/m>.
I = I cos?45° = (100 W/m?)0.50 = 50 W/m?.

The light from the first polarizer is at 10° and has an irradiance of
I; cos® 30° = 0.751;; this makes an angle of 60° with the next filter, hence
I = (0.75L) cos? 50° = 0.311;.

I" = flux density through middle polarizer = I, cos! 8 (8.24).
I' = I, cos?(45°) = I /2
I, = I' cos%(45°)
= (,/2)/2=1,/4

Without middle polarizer, I, = (Z;/2) cos?(50°) = 207 W/m?. With middle
polarizer, I, = (I;/2) cos?(25°) cos?(25°) = 337 W/m>.
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8.19
8.20
8.21

8.22

8.23

8.24

8.25

8.26

L =01/2); =1 cos? 30°; Iy = I, cos?30°; Iy = I3cos® 30° hence Iy =
(1/2); cos? 30° cos? 30° cos? 30° = 0.211; = 0.21(200 W/m?) = 42 W/m’

Ig = I1 00529 = 30%.{, and I, = 211; 30%13 = (1/2).{, COS‘2 9; 0.60 = 0052 9,
g-=39°

With 8 = wt, the emergent flux density is

I = 1B sin?fcos? § = (E2,/8)(1 — cos 26)(1 + cos 26)
= (E2,/8)(1 — cos®26) = (E%/16)(1 — cos46) = (I/8)(1 — cos4).

No. The crystal performs as if it were two oppositely oriented specimens in
series. Two similarly oriented crystals in series would behave like one thick
specimen and thus separate the o-and e-rays even more.

The polarization of the light is lost in the specular reflection from the
pencil dot. ‘

Light scattered from the paper passes through the polaroids and becomes
linearly polarized. Light from the upper left filter has its E-field parallel to
the principal section (which is diagonal across the second and fourth
quadrants) and is therefore an e-ray. Notice how the letters P and T are
shifted downward in an extraordinary fashion. The lower right filter passes
an o-ray so that the letter C is undeviated. Note that the ordinary image
is closer to the blunt corner.

(a) and (c) are two aspects of the previous problem. (b) shows double
refraction because the polaroid’s axis is at roughly 45° to the principal
section of the crystal. Thus both an o- and an e-ray will exist.

When E is perpendicular to the CO3 plane the polarization will be less
than when it is parallel. In the former case, the field of each polarized
oxygen atom tends to reduce the polarization of its neighbors. In other
words, the induced field is down while E is up. When E is in the
carbonate plane two dipoles reinforce the third and vice versa. A reduced
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8.28

8.29

8.30

8.31

8.32

8.33

8.34

8.35
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polarizability leads to a lower dielectric constant, a lower refractive index
and a higher speed. Thus v > v, .

(8.25) tan 6, = ny/n; = 9.0/1.0, 6, = 83.7°. The dipole is perpendicular to
the plane of incidence.

tanf, = n,/n; = 1.33/1.00, 6, = 53°.
tan@, = n,/n; = 1.65/1.33, 6, = 51.1°.
tan 6, = n,/n;; n; = tan 54.30° = 1.39.

tan 6, = ny/ne = 1.65/1.36 = 1.21 and §, = 50.5%; n,sin 6, = n, sin f;;
sin 6, = (1.36/1.65) sin 50.50° = 0.636 and 6, = 39.5°.

(4.5) sin6;/ sin 6; = ny; sin 6, = sin 6;/ny; = sin(40°)/1.5; 6, = 25.4°.

(8.26) Ry = tan®(6;—0,)/ tan?(6;+6;) = tan®(—14.6°)/ tan2(65.4°) = 0.014.
(8:27) Ry = sin*(6; — 6,)/ sin®(6; + 6;) = sin®(~14.6°)/ sin?(65.4°) = 0.077.
(8.28) R = 1(Ry + Ry) = 0.0455.

(929) V = L/(L, + I,) = (RL + R))/(RL + Ry + R) = 67%.

(4.5) sin6;/ sin 6; = ny; sin 6, = sin 6;/ny = sin(70°)/1.5; 6, = 38.8°.

(8.26) Ry = tan’(6, — 6;)/ tan?(f; + 6,) = tan?(—31.2°)/ tan?(108.8°) =
0.045.

(8:27) Ry = sin®(6; —6,)/ sin®(6; +6,) = sin?(—31.2°)/ sin?(108.8°) = 0.299.
(8.28) R = (R + Ry) = 0.172.

no = 1.6584, n, = 1.4864. Using Snell’s law, sin; = n, sin 6,, = 0.766,
Sin 6; = n, sin 6, = 0.766, sin 6, = 0.463, 6,, ~ 27°35’; sin 0, =~ 0.516,
Bre ~ 31°4"; AD =~ 3.

(3.59) n=c/v = A,/ A, 50 A = Ao/1.

Ordinary A, = A\,/n, = 589.3 nm/1.5443 = 381.6 nm.

Extraordinary A, = A,/n, = 589.3 nm/1.5533 = 379.4 nm. Same
frequency v = ¢/X, = (3 x 108 m/s)/5.893 x 10~7 m = 5.091 x 10" Hs.
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8.36

8.37

8.38

8.40

8.41

8.42

8.43

8.44

8.45

8.46

For calcite, n, > n.. Two spectra will be visible when (b) or (c) is used in
a spectrometer. The indices are computed in the usual way, using

n = sin[(a + 6,,)/2]/ sin(a/2), where 6, is the angle of minimum deviation
of either beam.

E. leads E, by m/2. They were initially in phase and E, > E,. Therefore
the wave is left-handed, elliptical, and horizontal.

sin 8. = NMiaisam /Mo = 1.55/1.658 = 0.935; 6, ~ 69°.

5 %

(¢) Undesired energy in the form of one of the P-states can be dis;‘)r';s'éd of
without local heating problems. (d) The Rochon transmits an undeviated
beam (the o-ray), which is therefore achromatic as well.

Each half wave plate rotates E by 26 = 2(m/40 rad) = n/20 rad. Stack of
plates rotates E by 10(m/20) = /2 rad. Ignoring surface reflections, I is
reduced by 1/2 at the first polarizer, but since the beam’s polarization is
rotated by 7/2 rad, I is not further reduced by the second polarizer.

3K
Placing the quarter wave plate first will have no eﬁ'eét on the irradiance.
The irradiance will be affected with the quarter wave plate following the
polarizer. ¥ oB

Emerging wave is elliptically polarized with £ = (7/2 — 7/4) = 7/4.

The polarizers are aligned. The cellophane is a half wave plate, so is seen
as “dark” (no beam passing through in this region).

Ay = 2rdAn /Ao but Ap = (1/4)(2m) because of the frfrr;gve shift.
Therefore Ap = 7/2 and d = 589.3 x 107°/2(1072) = 2.94 x 10~ m.

The R-state incident on the glass screen drives the electrons in circular
orbits, and they reradiate reflected circular light whose E-field rotates in
the same direction as that of the incoming beam. But the propagation
direction has been reversed on reflection, so that although the incident
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8.47

8.48

8.49

8.50

8.51

8.52

8.53

8.54

Chapter 8 Solutiong

light is in an R-state, the reflected light is left-handed. It will therefore be
completely absorbed by the right-circular polarizer.

Yes. If the amplitudes of the P-states differ. The transmitted beam, in a
pile-of-plates polarizer, especially for a small pile.

Concentration is 10 g/1000 cm® = .01 g/ cm®, so rotatory
power = .01(+66.45°) /10 cm = 0.06645°/cm. Light travels through
1 m = 100 cm, so emerging light is at 6.645° from vertical (clockwise).

Place the photoelastic material between circular polarizers with both
retarders facing it. Under circular illumination no orientation of the stress
axes is preferred over any other, and they will thus all be
indistinguishable. Only the birefringence will have an effect, and so the
isochromatics will be visible. If the two polarizers are different, that is, one
an R, the other an £, regions where An leads to Ay = 'will appear
bright. If they are the same, such regions appear dark.

From (8.32), Ap = (2m/A.)(|no — 1e|) 50 |1, — ne| = AAp/21L.
(8.40) An = A KE? = A K(V/d)? s0 AoAp/278 = A\ K (V/d)?
Ap = 21K (V/d)2.

Va2 = do/2ndres = 550 x10~°/2(1.58)%5.5x 10~12 = 10°/2(3.94) = 12.7kV.

cosf | |cosds® | [1/v/2] 1 |1
sinf | |singse [ | 1/v2| V2|1

Ey- B3 = (1)(e31) + (=2i)(ea2)* = 0, By = (2,)7.

J=

(a) By = (1,1,0,0) has relative irradiance of 1, and is horizontally
polarized. E» = (3,0,0, 3) has relative irradiance of 3, is right circularly
polarized. For both, V =1. (b) E=E, + E, = (4,1,0,3), and has both a
horizontal P component and an R component.

(c) (8:48) V = (St + 53 + 53)1/2/S, = (1% + 0% + 32)1/2/4 = (.79.

(d) E=(1,1,0,0) + (1,-1,0,0) = (2,0,0, 0) and is “natural” light
(unpolarized).
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8.55 (See Tables 8.5 and 8.6.)
1 <1

=1

S = % = Vertical P

o O =

[ SR < [N = [ oo
oo o o
Qo O =

0

Relative irradiance = 1/2. (8.48) V = (52 4 52 + 53)'/%/5, = 1.

8.56 (See Tables 8.5 and 8.6).

L0 2 otk 1
1looool]o 1]o0

S=— = = =450p

“=214 o 1 0l 71 ( )
oo0oo0o0|]|o 0

Relative irradiance = 1/2. (8.48) V = (S} + S5 + 83)"/%/5, = 1.

B e T
0 0

oy 01 e i
00 0 1]]o0 0
00 -10f|l0o] |oO]
itasa e 111 [z
T 0

8.58 ”
g0l ® 1 1
G oo jlo] o

Therefore light polarized at 45° is unchanged, as expected.

1. 0.0 0 1 1
g0 0 =1 1| _|o
001 0 6. 10
010 0 0 1

A horizontal P-state is changed to an R state.

67
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8.59 Fast axis @ = +45°, c0s90° = 0, sin 90° = 1. Quarter wave plate,
Ap =7/2; cos(m/2) = 0, sin(7/2) = 1.

1 0 0 0
0 c®+s%cosAp cs(l—cosAp) —ssinAgp
0 cs(1—cosAp) s®+ccosAyp csinAp

0 ssin Ap —csin Ay cos Ay
1 0 0 0 0 0L 0
10 0+1(0) o@)(1-0) -1(1) g 0 =1
0 0(1)(1—0) 1+0(0) 0(1) 001 0
0 1(1) —(0)(1) 0 0 1@ 0
8.60 Quarter wave plate, Ay = 7/2; cos(m/2) = 0, sin(7/2) = 1. Vertical fast
axis @ = 0, cos(0) = 1, sin(0) =0
1 0 0o 0
0 ®+s’cosAyp cs(l—cosAp) —ssinAgp
0 cs(1—cosAy) s®+c*cosAp csinAp
0 ssin Ap —csin Ay cos Ay
1 0 (10 0 0
o 1400 10 (1— —0(1) 01 0 0
0 100)(1-0) 0+1(0) 1(1) 00 0 1
0 o0Q) ~1(1) 00 -1 0
1.0 0o0}liree B 1000 ]
8.61 0 0 01 000 -1 L 0100
g 0" 1.9 001 O 0010
0 -1 00 010 O 0001

8.62 (From Problem 8.60).
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= R-state.

:

E, leads E, by 7/2 (see third part from right of Figure 8.7a).

E, leads E, by 7/2 (see third part from left of Figure 8.7a).

— ————
i
& o & o o o 7
-~
001__0 oo T o
o e e W 1_ o~ o O
A= R L RS =) e i S
L ] L —tRLl. J 1 |
1 Il I Il
L 1 1 P 17 1
-t O - - O O =~ O
e o | © = - o o 0
L _O.U.U.l__
o o o — I 1
- ———
S ol 22285 o - o o
2 _D..UOT_.
- O & - ==
T S = T = — (RS R——
UnU_nU
—_— ——
o &
— o - O O o O A Q
9 I @ g0 0 O ¥
EEs———— S

o = O O
- O o ©

8.63
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If polarizers are parallel, I, is a maximum at V = 0. Equivalent to
I, = I; cos?(Ap/2), so

It/.[g = COS2(TI'V/QV,V2) (from 843) = COSQ(?T/z) = (.

te® 0
8.66 [ N ] , where a phase increment of ¢ is introduced into both
e‘l

2 0
components as a result of traversing the plate. vacuum: l ] , perfect

00
absorber: :
00

2 0 0 0
0 t2 0 0
g 0.0
6 0 0 #

8.67

(=T = ==
o o o ©
{ e [ e T = T ==
Qo o O

8.68 V =I,/(I,+1.) = (S?+ 5%+ S3)"/2/Se,
L= (Si+ 83+ 8% I-L=1L.
Sy— (B +S2 8 2=1

o O O
- o O -

5
0
0
1
= 1.

5—(0+0+1)42
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9.1 E-Ey = (1/2)(Eie™* + Ejet) . (1/2)(Eye=t + Ejeit), where
Re(z) = (1/2)(z + 2*).
Ey - B = (1/4)[E, - Bye % + Fr . E3e®™t 4+ F) - By + B¢ - By).

The last two terms are time independent, while (E; . E"ge‘z‘“") — 0 and
(E; - E3e®*) — 0 because of the 1/Tw coefficient. Thus

I, =2(E, - B)) = (1/2)(E, - E; + E} - By).

9.2 The largest value of r; — 75 is equal to a. Thus if €; = €3, § = k(ry — 73)
varies from 0 to ka. If @ >> ), cos§ and therefore I35 will have a great
many maxima and minima and therefore average to zero over a large
region of space. In contrast, if « < ), § varies only slightly from 0 to
ka < 2m. Hence I)> does not average to zero, and from Eq. (9.17), I
deviates little from 4I5. The two sources effectively behave as a single
source of double the original strength.

9.3 Dropping the common time factor E; = E; exp(27iz/)) and
E3 = Eqexp|(2mi/))(z cos 6 + ysin )], adding these at the z = 0 plane
yields E = Ey{1 + exp((2mi/))(ysin 0)]}. The absolute square of this is the
irradiance viz. '

I(y) = 2E? [1 + cos (—%\Eysmﬁ)]

and the rest follows from the identity cos26 = 2cos?@ — 1. The cosine
squared has zeros at y = m\/(2sin6) where m is an odd integer. The
fringe separation is A/sinf. As 6 increases, the separation decreases.
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A bulb at S would produce fringes. We can imagine it as made up of a
very large number of incoherent point sources. Each of these would
generate an independent pattern, all of which would then overlap. Bulbs at
S; and S; would be incoherent and could not generate detectable fringes.

Ym = smA/a = 14.5% 1072 m and A = 0.0145 m: v = v/ = 23.7 kHz.
This is Young’s Experiment with the sources out-of-phase.

This is comparable to the “two-slit” configuration, (Figure 9.8), so we can
use (9.29) asinf,, = m\ (6,» may not be “small”). Let m = 1,
sin @ = y/(s* + y?)"/2, so,

ay = ANs® + 922 (a? — A2)y? = A%,
y = As/(a? — )2 c=u),

so A = ¢/v = (3 x 108 m/s)/(1.0 x 10° Hz) = 300 m.
y = (300 m)(2000 m)/((600 m)? — (300 m)?)*/2 =1.15 x 10° m

(a) r1 — 2 = £A/2, hence asinf; = £A/2 and
6, ~ +X/2a = £(1/2)(632.8 x 107 m)/(0.220 x 107> m)
= +1.58 x 1072 rad,
or since
Y1 = 86; = (1.00 m)(£1.58 x 10~ rad) = +1.58 mm.

(b) ys = s5M/a = (1.00 m)5(632.8 x 10-)/(0.200 x 10~ m) =
1.582 x 102 m. (c) Since the fringes vary as cosine-squared and the
answer to (a) is half a fringe width, the answer to (b) is 10 times larger.

6, is “small,” so we can use (9.28) 6,, = mA/a, 0, is radian,
a =mM/6m = [4(6.943 x 107 m)]/[1°(27 rad/360°)] = 1.59 x 10~* m.
Ay =~ (s/a)A, so,

= alAy/) = [(1.0 x 107 m)(10 x 10™° m)]/(4.8799 x 10~ m) = 2.05 m.
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9.10

9.11

9.12

9.13

9.14

9.15

9.16

Chapter 9 Solutions

(928) On = m/\/a Want el,red = 9’3,violet; (1)’\1‘6\']/0' = (2))\violet/a;
Aviolet = 390 nm. : '

Follow section (9.3.1), except that (9.26) becomes r; —r; = (2m’ — 1)(A/2)
for destructive interference, where m’ = £1,42, ..., so that (2m’ — 1) is an
odd integer. This léads to an expression equivalent to (9.28),

Oy = (2m — 1))/ 2a.

Follow section (9.3.1), except that (9.26) becomes r; — 75 + A = m\, where
A = Optical path differences in beam. Following 7, A = nd (for 6,,
“small”).

(r1—r2) =mA—A; abp =mA—nd; 6, =(m\—nd)/a.

As in section (9.3.1), we have constructive interference when OPD = mA.
There is an added OPD due to the angle, 8, of the plane wave equal to
asinf, so (9.26) becomes r; — 75 + asin 6 = mA. (9.24) 6,, ~ y/s and.
(9-25) r1 — 3 =~ ay/s are unchanged, for small 6, so

71 — 72 =mA—asinf = a(y/s) = afm; b, = (m)/a) — sin 6.

(9:27)  ym =(s/a)mX;  Yiea = [(2.0 m)/(2.0 x 10¢ m)](1)(4 x 10~7 m)
=4.0x10"3 m.
Y1,violet = [(2.0 m)/(2.0 x 10~% m)](2)(6 x 10~7 m) = 12.0 x 10~3 m.

Distance = 8.0 x 10~3 m.

73 = a® + 1} — 2ar; cos(90° — §). The contribution to cos§/2 from the third
term in the Maclaurin expansion will be negligible if

(k/2)(a®cos®8/2r)) < w/2; therefore 7 < a?/)\.

E = mv?/2; v = 0.42 x 10° m/s; A = h/mv = 1.73 x 10~° m;
Ay = sA/a = 3.46 mm.
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9.17 Av/Al=v/X; bv=vANX=1/At;
c=vA so v=c/\
A = (c/N)ANA = cANNY;
At. = N2[cA); AL = cAt. = c(N2/AN)
= A2/A\ = (500 nm)?/(2.5 x 10~* nm)
=1x10® nm=0.1 m~A.

918 E = E e + B+ E,ei@t5/2) [ = (E?) 7 = (E- E)r, 50, as in

section 9.1, I = (3/2)E? + 2E2{}(cos & + cos(36/2) + cos(56/2))} (three
terms of E; - E;, 3 cross terms of E; - E;). For each beam,

= 1
I = (E?)T = §E§,
at 6 = 0, so that for all three together I(6 = 0) = 3E?. Note that
(r, — 1) = asinf so that

8 = k(ry — 1) = k(asinf); (ra—m1)= (50:/2) sin @
so that 8 = k(rs — 1) = k(3asin ) where § = kasin6. So,
I1(6) = 1(0)/3 + (21(0)/9)(cos 6 + cos(36/2) + cos(56/2))
when @ = 0, the second term is zero.

9.19 A ray form S hits the biprism at an angle 6; (w.r.t normal), is refracted at
angle 6;, and hits the second face at angle (6: + ).
(4.4) (1)sin6; = (n)sin6;. (n)sin(6: + a) = (1) sin(8/2 + ), where angle ¢
. is defined in Figure 9.13. As 6; —» 0, 6; — 0; &, f are both “small.”
nsina = sin(6/2 + @), so na = (§/2) + @, 6 = 2(n — 1)a. From the figure
tan(6/2) = (a/2)/d, so

6/2~(a/2)/d, 6=a/d. afd=2(n-1)a, a= 2d(n — 1)c.
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9.21

9.22
9.23

9.24

9.25
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From Problem 9.19, a = 2d(n — 1)o; s = 2d, s0 d = 1m.
Ay = (s/a)A = sA\/2d(n — 1)a; ;:x =s\/2d(n - 1)Ay
= [(2m)(5.00 x 107 m)]/[2(1 m)(1.5 — 1)(5 x 10~4 m)] = 0.002 rad.

Ay = sho/2da(n — n').
Ay = (s/e)A, a =102 cm, a/2 = 5 x 10~3 cm.
6 = k(ry — r3) + 7 Lloyd’s mirror,

6 = k(a/2sin o — [sin(90° — 2a)]a/2sina) + ,

6 = ka(1 — cos2a)/2sina +,
maximum occurs for § = 27 when sin () /a) = (1 — cos 2a:) = 2sin® o,
First maximum & = sin~!()\/2a).

E), is reflected once. By, = E,; o0 (see 4.47)
= Eu(n—1)/(n+1) = E;(1.52 — 1)/(1.52 + 1) = 0.206E,;.
E,, is transmitted once, reflected once, then transmitted.
B = Bo(t6-0) (rasssie) htass—aie) = Eal2/ (1+n)][(1~n) /(1 +n)][2n(n +
D] = 4n(1 —n)/(n +1)° = E4[4(1.52)(1 - 1.52)]/(1 + 1.52)° = —0.198E,,,
(see 4.48) (— indicates 7 phase changed).
E3, is transmitted, reflected 3 times (internally), and then transmitted.
Bor = Eat(r')’t = Eal2/(1+n)][(1 - n)/(1 + n){(2n)/(n + 1)
= [dn(1 - n)*)/(n +1)° = E,[4(1.52)(1 — 1.52)%]/(1.52 + 1)°
= —0.008E,;

for water in air.
E,, = E,;(1.333 — 1)/(1.333 + 1) = 0.143E,,.

Ear = Exi[4(1.333)(1 — 1.333)]/(1 + 1.333)° = —0.140E,,.
E3r = Eoil4(1.333)(1 — 1.333)%/(1.333 + 1)° = —0.003E,,.
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9.26 Here 1.00 < 1.34 < 2.00, hence from Eq. (9.36) with m =0,
d = (0+1/2)(633 nm)/2(1.34) = 118 nm.

9.27 (9.36) dcosb; = (2m+ 1)(As)/4 for a maximum at (near) normal
incidence, and taking m = D (lowest value)

‘ d = Af/4=A/4n = (5.00 x 10~7 m)/4(1.36) =9.2 x 107° m.

9.28 (9.37) dcosb; = 2m(A f/4)-f0r minimum reflection!= 2m(\,/n)
at 8 ~ 0, A\, =nd/2m = [(1.34)(550.0 nm)]/2 m = 368.5(1/m) nm,
| m=1,2,3,...0r A, = 368.5 nm, 184.25 nm, 122.83 nm,....

9.29 Eq. (9.37) m = 2nyd/A = 10,000. A minimum, therefore central dark
region.

9.30 The fringes are generally a series of fine jagged bands, which are fixed with
respect to the glass. 5

9.31 2= dl[(Rl == dl) + R1] = 2R1d.1 — d% Slmlla.rly = 2R2d2 o= dg
d=d; —dy = (2%/2)(1/Ry1 — 1/Rp), d = mAs/2. As Ry — 00, T,
approaches Eq. (9.43).

9.32 (9.42) Zm = [(m + 1/2)A;R]"/2, air film, ny =1, 50 Ay = Ao
R = z2/(m +1/2)A, = (0.01 m)?/(20.5)(5 x 10~" m) = 9.76 m.

9.33 Az = )\;/2a, &= A/2ns;Az, a =5 x 107° rad= 10.2 seconds.

9.34 (9.40) Az = );/2a for fringe separation where o = d/z.
| Az = Ay/2(d/z) = z);/2d. Number of fringes = (length)/(separation)
= :B/AI S0,

z/Az = 2d/)\; = [2(7.618 x 107° m)]/(5.00 x 10~ m).

9.35 A motion of A\/2 causes a single fringe pair to shift past, hence
92)/2 = 2.53 x 10~° m and A = 550 nm.

9.36 Ad = N()\/2) = (1000)(5.00 x 10~7 m)/2 = 2.50 x 10~ m.




9.37

9.38

9.39

9.40

9.41

9.42

9.43

9.44
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A=Ad= hr(’\a/g'); A= (nairx = ﬂ-vacunmm);
N = 2A/X, = [2(1.00029 — 1.00000)(0.10 m)]/(6.00 x 10~7 m) = 97.

Fringe pattern comes from the interference of two beams, one that passes
through the lower medium (n,), and is reflected off its mirror, one that
passes through the top medium (n;) and is reflected off its mirror. The
two beams reflect off the front surface of the other medium.

It might be used to compare n,; and n, (especially if one changes, such as
due to pressure or temperature), or compare the flatness of one surface, to
a known optically flat surface.

E? = E,E} = B3(t¢)/(1 — r2e=#)(1 — r2e®),
I = L(#t')? /(1 — r?%e% — r2e¥ 1 14).

(a) R =0.80, therefore F' = 4R/(1 — R)? = 80.
(b) v =4sin™' 1/v/F = 0.448. (c) F = 21r/0.448. (d) C =1+ F.

2/[1+ F(A6/4)%] = 0.81[1 +1/(1 + F(A5/2)?)],
F?(A6)* — 15.5F(A8)2 — 30 = 0.

I = oy €08% 6/2, I = Ipax/2 when 6§ = 7/2, therefore v = . Separation
between maxima is 27. F = 27 /y = 2.

(4.47) r6,=0 = (n: — n;)/(ne + n;). Bare substrate: 7 = (n, — 1)/(ns + 1).
Substrate with film: 7' = ¢,_,r;_.t f-o- (4.48) tg,—0 = 2n;/(n; + ny), so,

™ = [2/(1 + ny)l[(n. — ns)/(ns + ny)][2ns/(ns + 1)], where ny = n. Note
that for ny > nsy > 1, both r and 7 are positive. But, with thickness \;/4,
a m phase shift occurs due to the OPD in the 7’ beam, 50 rpe, = 7 — 7.
Thus, the 7' beam (partially) cancels the 7 beam.

At near normal incidence (6; & 0) the relative phase shift between an
internally and externally reflected beam is 7 rad. That means a total
relative phase difference of (27/As)[2(Af/4)] + 7 or 2. The waves are in
phase and interfere constructively.
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9.45

9.46

9.47

9.48

ng =1, ns=mn,, N =,/

V154 =124, d=\/4=N/4n, =540/4(1.24) nm.

No relative phase shift between two waves.

The refracted wave will traverse the film twice, and there will be no
relative phase shift on reflection. Hence d = Ag/4ns = (550 nm)/4(1.38)
= 99.6 nm.

(9.36) dcosé, = (2m +1)(\s/4). Let 6, = 0, m = 0, (minimum thickness).
d = A,/4n = (5.50 x 10~7 m)/4(1.55) = 8.87 x 10~% m.

Note that in the triangle including 0 and r,, the length of the side from P,
to a plane, parallel to the surface, and containing point 2(z) is 71 cos6. So,
from zero elevation, h = r; cos @ + z(z) or z(z) = h — 71 cosé.

(9.108) can be demonstrated on the triangle (a,71,72), where a is the
length of the boom:

r3 =i +a® — 2rjacos(a + 90° — 0) = sin(y) = —cos(90° + )

and 5= k(fz = 1"1) = (2‘?’(/))(7‘2 == 7‘1).
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10.1 (R+¢€)* = R? + a?; therefore R = (a2 — £2)/2¢ =~ a?/2¢, ¢R = a?/2, so for
A L 4, AR > a?/2. Therefore R = (1 x 1072)210/2\ = 10 m.

10.2 Ep/2 = Rsin(6/2), E = 2Rsin(N§/2) chord length;
E = [Egsin(N6/2))/sin(6/2), I = E.

10.3 A “constant” phase shift is added due to the angle of the incident wave
reaching the ends of the slit at different phase, so that (10.11) becomes
7= R—y(sinf —sinf;) + .. .. This constant carries through the
integration, so that the definition of § in 10.18 (or 10.14) becomes
B = (kb/2)(sin @ — sin ;).

10.4 dsinfn, =ml, 6 = N§/2 =m, 7sinf = (1)(0.21), 6 = 2r/N = kdsin6,
sin@ = 0.03 so § = 1.7°. For sin# = 0.0009, # = 3 min.

10.5 Converging spherical wave in image space is diffracted by the exit pupil.
10.6 B =m, sinf=xA\/b~0, Lo~ +LA/b, L =~ £f,\/b.

10.7 Far field if R > b%/, 6%/ = (1 x 10™* m)?/(4.619 x 107 m)2 = 0.02.
Yes, far field. sinf, = \/b.

6; = sin™'(A/b) = sin™(4.619 x 10~ m/1 x 10~ m) = 0.26°.
Angular width = 26, = 0.52°.
10.8 bsinf,, = mA, so,

b=mM\/sinf, = 10(1.1522 x 107 m)/sin(6.2°) = 1.07 x 10~¢ m.
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In water, bsin6,, = m), where A = i Ao/ Nwater-

sin 6,, = mnair/\o/ ﬂfwa.ter/ b;
0, = sin~'[10(1.00029)(1.1522 x 10~° m)/(1.33)(1.07 x 107 m)]
=4.7°.
10.9 ) = (20 cm)sin36.87° = 12 cm.

10.10 « = (ka/2)sinb, § = (kb/2)sinf. a = mb, o = mfB, a = m2m,
N = number of fringes = a/7 = m2mr/m = 2m.

10.11 Is R > b*/A7, b = slit width.
b’A=(1x10""m)?/(5 x 107" m) = .02 m < 2.5 m.

Fraunhofer.
(Half) angular width of central maximum from

B =m = (kb/2)sinb,.
sinf; = 2r/kb=A/b= (5 x 107" m)/(1 x 107" m); 6, = 0.29°.
To what order Young’s fringe does 6, correspond?
a=m'r = (ka/2)sinf,. m' = (ka/2)sinb; = (a/))sinb,
= (2 x 107 m)/(5 x 1077 m)sin(0.29°) = 2.
So there are 4 “Young’s Fringes” in the central maximum.
10.12 a = 37/2N =x/2, I(6) = I(0)[(sin B)/B)*/N? and I/I1(0) ~1/9.

: 10.13 (10.17) I() = 1(0)(sin 8/B)?, where 8 = (kD/2)sinf. “Miniscule Area”
corresponds to the limit D — 0. As D — 0, 8 — 0, =0

lim 1(6) = Lim (I(0)(sin 8/8)*);
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10.14

10.15

10.16
10.17
10.18
10.19
10.20
10.21

10.22

10.23
10.24

10.25

Chapter 10 Solution,
As 8 — 0, sinc(3) — 1, so fl}in}JI(ﬂ) = I(0), i.e., same in all directions.

(from 10.41) B o [ [e*(Yv+22)/R4S. and I(Y, Z) o (E2). It E is an even
function of (Y, Z), E(-Y,-2Z) = E(Y, Z). If E is an odd function of
(Y, 2), E(-Y,-2) = —E(Y, 2), but I(-Y, —2) = I(Y, Z).

If the aperture is symmetrical about a line, the pattern will be symmetrical
about a line parallel to it. Moreover, the pattern will be symmetrical about
yet another line perpendicular to the aperture’s symmetry axis. This

follows from the fact that Fraunhofer patterns have a center of symmetry.

For the solution to this problem, please refer to the textbook.
Three parallel short slits.

Two parallel short slits.

An equilateral triangular hole.

A cross-shaped hole.

The E-field of a rectangular hole.

From section 10.2.5, first “ring” (maximum) occurs for u = kag/R = 5.14.
Interpolating from Table 10.1, J,(5.14) ~ —0.33954

From (10.55) I/I(0) = [2“2(“)] @ [2(_0'33954)] " o1

5.14
From Eq. (10.58), ¢, ~ 1.22(f/D)A =~ A.

For the solution to this problem, please refer to the textbook.

_(10.57) q1 = 1.22(R)\/2a)
= 1.22[(3.76 x 10° m)(6.328 x 107 m)]/2[1 x 10~* m)]
= 1.45 x 10° m.
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10.26

10.27

10.28

10.29

10.30

10.31

10.32

10.33

(10.59) (A@)min = 1.22)/D = [(1.22)(5.50 x 1077 m)}/(7.5 x 10~* m)

=8.9 x 1075 rad,”
which is about half the angular resolution of the pupil.

1 part in 1000. 3 yd ~ 100 inches.

(10.59) Agpin = 1.22)/D = [1.22(5.50 x 10~7 m)]/5.08 m

| = 1.32 x 1077 rad;
or Ap = 1.32 x 1077 rad(360°/2 rad) = 7.55 x 107°°; or
Ap = (7.55 x 107°°)(3600 sec/degree) = 2.72 X 102 arc sec.
To be resolved, s = rAp (Ayp in radians).

s = (3.844 x 10% m)(1.32 x 107") = 50.7 m.
To be resolved by eyes,
s =rlAp =1(1.22)/D)
= (3.844 x 10® m)[1.22(5.50 x 10~7 m)/(4 x 107° m)] = 6.4 x 10° m.
(10.32) asinfn, = mA;sinf, ~ y/R, so
a(Y/R) = Y = R\a=(2.0m)(6.943x107" m)/(3.0x107° m) = 0.46 m.

(10.32) asinfp, = mA; sinb; = 3X/a = 3(5.00 x 10~7 m)/(6.0 x 10~¢ m);
0 = 14°.

(10.32) asin by, = mA.
a=2)\/sin6, = 2(5.50 x 1077 m)/sin(25°) = 2.6 x 10~° m.

From Eq. (10.32), where a = 1/(1000 lines per cm) = 0.001 cm per line
(center to center), sinfm = 1(650 x 10~°m)/(0.001 x 10~% m) = 6.5 x 1072
ndlh =372

(10.32) asinfpm = mA. sinbm > Y /R; Yo = (mA/a)R = 10,000 lines/cm
= 10° lines/m so a = 107% m.

Y;(589.5923 nm) = [1(5.895923 x 10~" m)/107° m](1.00 m)
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10.34

10.35

10.36

10.37

10.38

10.39

10.40

Chapter 10 Solutions

= 0.5895923 m.

Y7(588.9953 nm) = [1(5.889553 x 10~7 m)/10~C 1n)(1.00 m)
= 0.5889953 m.

Separation = Y; — ¥/ = 5.97 x 10™* m.
(10.32) asinb, = m), so sinb,, = mA/a; is fy(red) > 6s(violet)?
5000 lines/cm = 5 x 10° lines/m; a =2 x 1076 cm.
sin f(red) = 2(7.8 x 107" m)/(2 x 107® m); ,(red) = 51.3°.
sin f3(violet) = 3(3.90 x 10~" m)/(2 x 10™® m) = 35.8°.

Spectra do not overlap. Note: Can see “by inspection” by comparing
factor of 2 in wavelength to factor of 3/2 in m’s.

The largest value of m in Eq. (10.32) occurs when the sine function is
equal to one, making the left side of the equation as large as possible, then
m =a/X = (1/10 x 10°)/(3.0 x 10°® m/s + 4.0 x 10" Hz) = 1.3, and only
the first-order spectrum is visible.

(10.32) asin@,, = m\, where A = \,/n.
sinfm =mM/a;  sin6;(vacuum)/ sin 6, (Mongo)
= [(D)Ao/a]/[(1)Ao/na]; n = sin(20.0°)/sin(18.0°) = 1.11.

sin§; = nsin @, Optical path length difference is
mA, asinb, — nasinf, = mA. A(sinf,, — sinb,) = m.

R =mN = 10°%, N =78 x 10°. Therefore m = 106/78 x 103,

- AXjer = A/m = 500 nm/(10%/78 x 10°) = 39 nm.

R = Fm = F2bpd/\ = 108A) ;s = A2/wnyd = 0.0125 nm.
R = \/OX =5802.9/5.9 = 999, N = R/m = 333.

Except on the central axis, there will be no regular pattern. A circular
Fraunhofer pattern (as in Figure 10.33d) could occur, with the intensity
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dependent on the degree of coherence. If the sources are completely
incoherent, the intensity goes to zero.

10.41 y=L)\/d, d=12x1076/12 x 1072 = 10~* m.

10.42 (From 10.75) B¢ = [-KiEapX/(p + r)|[sin(wt — kp — kr)|;=5¢_;

r=re_1)
sin(wt — kp — 7¢) — sin(wt — kp — kre—))
= sin(wt — kp — k(7o + £)\/2))
= sin(wt — kp — k(r, + (£ — 1)(1/2)))
= sin(wt — k(p + 7o) — 21\ /2)) — sin(wt — k(p + r‘,).
— (2m(€ —1)A/2]))).
Recall sin(a — B) = sin a:cos * cos asin 8 and sin ¢ = sin(¢ — 1)7 = 0.
cos(£ — 1)m = — cos &m; cos &m = (—1)'x, so
E, = (1) (2KEap))/(p + 7o) sin(wt — k(p + 75)).

10.43 A =2mp? [} sinpdp = 2mp*(1 — cos p),
cos = [0% + (p +10)2 — r]/20(p + 7o), Tt = ro + IA/2.
Area of first [ zones A = 2mp? — 7p(2p% + 2prg — IArg — BXN*/7)/(p + 70),
A =A— A= Arp(ro+ (321 — 1)\ /4)(p + 1p).

10.44 (10.78) becomes
E=|E|/2+(|E|/2 - | B +|E5l/2) + - - - + (| Em-1]/2 — | Eml]),

so that (10.80) becomes E < |E;|/2 — |E,|/2 and (10.82) becomes
E > |E,|/2 - |EL|/2 0 that (10.84) E= E < |Ey|/2 — |En|/2.

10.45 For the solution to this problem, please refer to the textbook.

10.46 I =(Io/2)([1/2-C(w)]* + [1/2 - S(w)]?),
I = (Io/2)(1/7vy)*[sin®(7v2/2) + cos?(mvd/2)] = Io/2(mv1)>
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10.47

10.48

10.49

10.50

10.51

10.52

10.53

10.54

Chapter 10 Solution,

Fringes in both the clear and shadow region [see M. P. Givens and W. L.
Goffe, Am. J. Phys., 34, 248 (1966)].

u = y[2/dr]'/?; Au= Ay x 10° = 2.5.
For the solution to this problem, please refer to the textbook.

We should see symmetry through the z-y plane in both patterns. The
keyhole should bear some resemblance to the combined patterns of a circle
and a rectanglar aperture. The image of the triangle should have nearly
3-fold symmetry.

As the slit widens, the pattern becomes more like that of a rectangular
aperture (see Figure 10.49).

(10.91) R, = mr ) so R, = (mr,)\)Y/2;
R; = (1(1.00 m)5.6819 x 107" m)/? = 7.54 x 10~ m.

The full first zone has a radius ¢ = 1.22R)/2a. Since area = 7q2, half the
first zone corresponds to ¢ = ,/v/2 = 1.22R\/2V/2a; I, = E3A? for a
plane wave, so (10.55) becomes

J 7 'Jl(kaq/R)r_ I, [Ji (ka(1.22R)/2v/320)/R) ]
2R? | kag/R | ~ 2R?| ka(1.22RA/2v20)/R
2
o [A(1.22n/ ‘/i)] ~ 21;;2(0.026)=—}%’5(0.013) (using Table 10.1)

T 2R | 122143

(From 10.42 and 10.43), I(0) oc $(AE4/R)?, recall (3.46) I = €.c(E®)r so,
I(0) = 3e,c(AEa/R)%; I(incident) = 3€c(AE4)? = (flux)(area) =

10 W/m?(5.0 x 10~3 m)? = 2.5 x 104 W; I(0) = I(incident)A/R? =

(2.5 x 10~ W)(5.0 x 103 m)2/(2.50 m)? = 1.0 x 10~° W.
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Chapter 11 Solutions

11.1 Epsin k,z = Eo(e™»* — e=»%) /24;

F(k) = % [-/i eiletkp)e 4o, -/: ei{k—kp}:dm}
_iEosin(k +kp)L  -iEgsin(k — kp)L
(k + k) (k = kp)
F(k) = iEoL[sinc(k — kp)L — sinc(k + kp)L).

11.2 (11.5) F(K) =/m f(z)e*=E = /L sin? k,e**® dz

L L
=f sinzkpzcoskpzdx+if sin® kyz dz
<0 I

L

= (2/3k;,)(sin® k,L).

= 3Tp sin® kp_‘r
11.3 cos?wyt =1/24(1/2) coszw,t = 1/2 + (1/4)(e*“rt + e~ 2rt),
1 5 iwt ]. 4 i(“_‘_zu )l 1 T ‘l( = )
Flw)y== | e*vdi+— e )t gt 4 = ellw—2wp)t gy
2 -T 4 =T 4 =T
1. 1 :
= —sinwT + g~ sin(w + 2p)T + 5-—5~

1
2(w + 2uwp) 2(w — 2wp)
F(w) = TsincwT + (T/2) sinc(w + 2w,)T + (T/2) sinc(w — 2wp)T.

————sin(w — 2w,)T

11.4 Show that F_I{F(K)} = f(:{;'),I where
f(z) =1, F(K)=2n(K).

(114) f(z) = (1/2n) F(K)e **=dK

—00

= {1/27r)/ om6(K)e = dK = ¢€® = 1.
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11.5  f(z) = Acos K,z = (A/2)(e'K* + etkoz);
F(K) = (A/?) -/m (eisz +e—i!(,,::)ez'1(m dr
= (A/2)[2r/(K + K.) + 21/ (K — K,)] = mA[2k/(K? — K2)].
11.6 Flaf(z) + bh(z)] = aF(k) + bH(k).
11.8 F(k) = Lsinc*kL/2 at k=0, F(0) = L, and F(+2r/L) = 0.
11.9 F(K) = [ f(z)e*=dz, (11.5).Let z — z/a;
F(K') = f - f(z/a)e* @/ d(z/a).
So, K' — Ka, and ¥{f(z/a)} = F(Ka). If, a = -1, F{f(—z)} = F(-K).
1130 F(K)=F{f(2)}= /00 f(z)e**dz, (11.5) (a function of K).
F{F{f(z)}} = F{F(K)} = f " F (K)e** dK.
(11.4) f(z) = (1/2n) f F(K)e K= dK,
0, 2nf(~2) = [, F(K)e'k= dK = F{F{(2)}} # f(2)
1111 Frect|(z — zo)/al} = [%, rect |(z - z,)/a|}eX=dz = [11], &= dz =
1/(K)e=|? | = 1/iK (K12 — e=K12) = (2/K) sin(K/2) = sinc(K/2).
11.12 F{rect|z|} = sinc(K/2), from Problem 11.10, F{F{f(2)}} =2nf(-z).

So, F{(1/2m)F{f(-z)} = f(z), let
f(z) =rect |z|, F{rect|z|} = sinc(K/2);
F{(1/2m)F{rect |z|}} = F{(1/27)sinc(K/2)} = f(z) = rect |z|,

since sinc(—z) = sinc(z).



Chagpter 11 Solutions 89

11.13

11.14

11.15

1T

11.19

11.20

11.21

FYF{f(z)}} = (1/2x) j:m =K JK /_m F(z)eKe da’

[t (o)

= [: 6(z — o) f(z') dz’ = f(z),

since the integral is zero except at z = z'.

F{f(z —z.)} = [*2, f(z — z,)e'X" dz. Change variables, 2’ = z — z,,
de’ = dz. F{f(z')} = [ f(z')eK=+20) g’ = ei%e [*° f(2')e*K= dz’. s0
that F{f(z — z,)} differs from F{f(z)} by only the phase factor e¥=°.

2 f@I(X —z)dz = — [ 7 f(X —2')h(z)dz’ = 2o (@) f(X —2')dz
where 2' =X —z,dz = —dz’. fxh=hx* f or

F(f xh) = F(f) - F(h) = F(h) - F(f) = F(h* f).

A point on the edge of f(z,y), for example, at (z = d,y = 0), is spread
out into a square 2¢ on a side centered on X = d. Thus it extends no
farther than X = d + ¢, and so the convolution must be zero at X =d+¢
and beyond.

f(z — z0) x h(z) = [ f(z — z0)A(X — z)dz, and setting = — zo = a, this
becomes [* f(e)h(X — a — zo)da = g(X — zo).

g(X) = f f(@)h(X — z)dz, (11.52)
f §(z)h(X — z)dz = h(X — 0)/ 8(z) dz, (see Section 11.2.3),
=h(X), since / 8(z)dr = 1.

For the solution to this problem, please refer to the textbook.
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11.22

11.24

11.25

11.27

11.28

11.29

Chapter 11 Solution
F{f(z) cos K.z} = F{f(z)(1/2)(eKo= 4+ ¢~iKeX)}
= (1/2) [ /_ : Fla)e K HK= g . [ : f () K-Koe dx]
= (1/2)[F(K + K,) + F(K — K,)).
F{f(z)sin Koz} = F{f(z)(1/2i)(K= — e=iKo=)}
= (1/2) [ /_ : F(a)eE+Ez gy _ [ : f(z)elk—Ka)z g x]

= (1/2)[F(K + K,) - F(K — K,)].

We see that f(z) is the convolution of a rect-function with two
6-functions, and from the convolution theorem,

F(k) = F{(rect(z) * [6(z — a) + 6(z + a)]}
= Flrect(z)] - F{[6(z — a) + 6(z + a)]}
= asinc(ka/2) - (¢** + e7**) = asinc(ka/2) - 2 cos ka.
f(z)*h(z) = [6(z+3)+6(z—2)+6(z—5)]xh(z) = h(z+3)+h(z—2)+h(z=5).

F {rect |z/(d/2)|} = sinc(K/d) = G(K);
FlEm bz —nd)} =T "™ = H(K); F(K) = G(K)H(K);
F(K) = F{f(z)} is zero at Knd =nm or Kd = .

For the solution to this problem, please refer to the textbook.
.A(‘y, Z) = A(_y: _Z)‘
E(Y,Z,t) x /fA(y, z)e'krytkzz) g g,

Change Y to -Y, Z to —Z, y to —¥, z to —z, then ky goes to —ky and
kz to —kgz.
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E(Y, Z,t) f ] A(—y, —z)eikvv+kza) dy g,
Therefore E(-Y,—Z) = E(Y, Z).

11.30 From Eq. (11.63),
E(Y,Z) = f / Aly, 2)e MY+ Ry

E'(Y,2) ://A(ay’ﬁz)eik(Yy+Zz)/Rdydz;

now letr y’ = ay‘ z’ == ﬁz:
= % _/ Al 2)eH /oW +EIBEVR gy 47!

or E'(Y, Z) = (1/aB)E(Y/a, Z/B).

1 [T
11.31 Cy = lim —-/ Asin(wt + €)Asin(wt — wT + €) dt
-T

A2 T
= lim — [% cos(wT) — %cos(2wt —wr + 26)] dt,
-T

since cos a — cos 8 = —2sin(1/2)(a + B) sin(1/2)(a — B). Thus
Cys = (A*/2) cos(wr).

b/2 ]
11.32 E(kz) = Ao cos(mz/b)e*2* dz
b/2

= Ap f cos(mz/b) cos(kzz) dz + i.Ap ] cos(mz/b) sin(kzz) dz

= bkz 1 1
E(kz) = Acos 2 L‘I‘/b— = SR 'ﬂ'/b'l'kz:l :

11.33 (From 11.52). h(X) = f(z) ® g(z) = [, f(z)g(X — z) dz, so,
f(z) x g(—z) = K(z) = [, f(z)g9(X + z) dz, which is the form of (11.86),
so f(z)* g(—2) = f(z) © g9(2).
11.35  f(t) = g(t) © h(t) = Acos(w,t) © et
Fw) = Gw)HW); Gw) = (A/2)(@n/(w + wo) + 27/ (w — wo));
H(w) =27/w — wo,




50, Fw) = 27 A/ (w = wo) (w/? - w2).
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12.1

12.2

12.3

12.4

12.5

Chapter 12 Solutions

At low pressures, the intensity emitted from the lamp is low, the
bandwidth is narrow, and the coherence length is large. The fringes will
initially display a high contrast, although they’ll be fairly faint. As the
pressure builds, the coherence length will decrease, the contrast will drop
off, and the fringes might even vanish entirely.

Over a long tiine interval, Ey x E, averages to zero. So,
((By + E2)®)r = (E})r + (Ef)T

The net irradiance becomes more uniform as more waves are added. There
will be a less distinct pattern, which corresponds to a smaller coherence
length. The irradiance will become constant as the bandwidth goes to
infinity.

Each sine function in the signal produces a cosinusoidal autocorrelation
function with its own wavelength and amplitude. All of these are in phase
at the zero delay point corresponding to 7 = 0. Beyond that origin the
cosines soon fall out of phase, producing a jumble where destructive
interference is more likely. (The same sort of thing happens when, say, a
square pulse is synthesized out of sinusoids—everywhere beyond the pulse
all the contributions cancel.) As the number of components increases and
the signal becomes more complex—resembling random noise—the
autocorrelation narrows, ultimately becoming a é-spike at 7 = 0.

(12-1) V= (Imax AT mi.n)/(fmax )2 Imin) = 2‘ Sinc(aﬂ'w/s’\)l/2 (from 12.8,
12.9), = | sinc(5 x 10~*7/1 x 1073)| = sinc(w/2) = 0.64.
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12.6

12.7

12.8

12.9

12.10

12.11

Chapter 12 Solutions

The irradiance at T arising from a point source is

41y cos*(6/2) = 2I5(1 + cos 6). For a differential source element of width dy
at point S’, y from the axis, the OPD to P at Y via the two slits is

A= (5'51+51P)—(5'5;+5,P = (§5,-5'5;)+ (S, P-5,P = ay/l+aY/s
from Section 9.3. The contribution to the irradiance from dy is then

dl « (14 coskA)dy, I « f_bﬁz(l + cos kA) dy,

d | .. (g iab ey ab
Iocb-f—E[sm(T-l-??—z-)—sm(T—g)]Iocb

+ (d/ka)[sin(kaY/s) cos(kab/2l) + cos(kaY/s) sin(kab/21)
— sin(kaY/s) cos(kab/2l) + cos(kaY/s) sin(kab/2l)],
I o< b+ (2l/ka) sin(kab/21) cos(kaY/s).

V = (Inax = Imin)/(Imax + Inin)y  JTinax = T1 + I + 2/ T1 T2},
Ioin = N1 + I = 2¢/T1 }A12|,  V = 4/Ti G| /2(5 + L):
When S"5,0’ — §'S,0” = A/2,3X/2,5A/2, .., the irradiance due to §' is
given by I’ = 41y cos?(§'/2) = 2I5(1 + cos &'), while the irradiance due to
S" is I" = 4y cos®(8" /2) = 4l cos?(6' + m)/2 = 2Io(1 — cos §'). Hence
I'+ 1" = 4l,.

Fringes disappear when w = s\/a so, a = A\(s/w), from Figure 12.3,

€/b=s/w, a=\¢/b)= (5893 x 10~" m)(1 m)/(1 x 10~ m)
=5.893 x 10~ m.

° = 0.0087 rad; h = 0.320/6 using Ao = 550 nm,

b=3
h = 0.32(550 nm)/0.0087 = 2 x 10~2 mm.

I)(t) = AL(t) + (I,); hence
(h(t+ 7)) = (((h) + ALt +7)][{E) + AL(t),

‘since (1) is independent of time.
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(I(t + 7)Ia(t)) = (I)(L) + (AL(t + 7)AL(T)),

if we recall that (Al (t)) = 0. Eq. (12.34) follows by comparison with
Eq. (12.32).

12.13 From Eq. (12.22), V = 2/(101)I/(101 + I) = 2y/10/11 = 0.57.

12.14 Fringes disappear when w = s\/a, 80, a = A(s/w), from Figure 12.3,
/b = s/w where £ = (mean) distance to sun; b = diameter of sun. a =
A(£/b) = [(5.50 x 10~7 m)(1.50 x 10** m)]/2(6.96 x 10° m) = 5.93 x 10~° m.

12.15 Using the van Cittert-Zernike theorem, we can find 4;2(0) from the
diffraction pattern over the apertures, and that will yield the visibility on
the observation plane: V = |%;2(0)| = | sinc 3|. From Table 1,
sinu/u = 0.85 when u = 0.97, hence mby/I\ = 0.97, and if
y = P, P; = 0.50 mm, then

b = 0.97(I\/my) = 0.97(1.5 m)(500 x 10~° m)/x(0.50 x 10~* m)

= 0.46 mm.

12.16 (12.23) V = [F12(7)]-
(12.1) V = (Imax — Imin)/(Imax + Imin) = 2| sinc(amw/sA)|/2 (from 12.8,
12.9), V = 0.90 = | sinc(amw/s\)| = | sinc(am(1.0 x 10~* m)/(10.0 m)
(5.00 x 1077 m))| = | sinc(200ma)|; sinz ~ z — z?/3|,
so sinc(z) ~ 1 — z2/3!; 0.90 = 1 — [(200ma)?/6]; a = 1.23 x 10~° m.

12.17 V = |sinc(amb/¢))|; as shown in Figure 12.6, V is a minimum when
(amb/eX) = mm, (m # 0). b/€ ~ sin(az — 1) = (a2 — o) for small angle,
so minimum V when [a(a2 — a1)7/A] = mm; a(az — o1) = mA.

12.18 From the van Cittert-Zernike theorem, the degree of coherence can be
obtained from the Fourier transform of the source function, which itself is
a series of §-functions corresponding to a diffraction grating with spacing
a, where asinf,, = mA. The coherence function is therefore also a series of

!
|
i
|
|
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6-functions. Hence the PP, the slit separation d, must correspond to the
location of the first-order diffraction fringe of the source if V' is to be
maximum. af; = )\, and so

d =10, ~ N/a = (500 x 107 m)(2.0 m)/(500 x 10~ m) = 2.0 mm.
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13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

Chapter 13 Solutions

T = 673 K, area of each faceis A =102 m?, 0 =567 x 1078 W m™2 K4,
then 0.97AI, = 0.97AoT* =110 W.

0.97I, = 0.970(T* — T4) = 76.9 W/m?* with T = 306 K and 7. = 293 K is
the temperature of the environment. Then 0.97AI, = 108 W for the
radiated power.

I, =228 x 10* W/m?, T = (I./o)"/* = 1420 K.
E ~ T*, so the energy radiated increases by a factor of 10%.

T = 306 K, Anax = 2.8978 x 1072 mK/T = 9.45 x 107 m = 9.5u m (in
the infrared).

If the blackbody is at T = 293 K, then
Amax = 2.8978 x 1072 m K/T = 9.9x m (in the IR).

T = 4.0 x 10* K, Vmax = ¢/Amax = ¢T/2.8978 x 1073 m K = 4.1 x 10'® Hz
(in the UV).

T = 2.8978 x 10~ m K/Amax = 2.8978 x 10~3 mK/4.65 x 10~7 m = 6230 K.
T = 2.8978 x 10~% m K/Amax = 4300 K.

We have for the total radiated power per unit area of the blackbody

P(T) = ‘/; Ld\ = 27{'}162-/0 A5(ehcfz\kaT — ]_)

& kT [* 2de -
_2“hcz(h_c)/o (-1
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13:11

13.12

13.13

13.14

13.15

13.16

Chapter 13 Solutions

by putting = = he/MkgT, d\ = —hedz/kpTz?. The value of the integral
over z is I'(4)¢(4) = 3!74/90 = 7%/15. Therefore the Stefan-Boltzmann law
follows,

2m® (kgT)*
P(T) = T e
E =hc/A=1.99 x 107% J m/\. Since 1 eV = 1.602 x 10~'° J and
1 nm = 10~° m, this gives E = 1240 eV nm/\. Therefore the energy of a
600 nm photon is 2.1 eV.

A(min) = 300 nm, E = hv = he/\ = 1240 eV nm/300 nm = 4.14 eV
=16.63 X102 J.

If the P =100 W light bulb has an efficiency of € = 2.5%, then the
radiated power is eP = Nhv/t, where N is the number of photons, v is
their frequency, and ¢ = 1 ms. In terms of the wavelength A = 550 nm, this
gives N = ePt/hv = ePt)/hc. The solid angle subtended by the d = 3 cm
diameter aperture at distance r = 100 ms is: aperature area/r? = mwd?/4r?.
Making the assumption that the light bulb emits isotropically, this is the
fraction of photon that passes through the aperature,

Nnd?/4r? = ePtAnd?/4r®hc = 4.9 x 10® photons.

Nhv = Nhec/X = (1.4 x 10°W/m?)(1m?)(1s) gives N = 49 x 10%.

The number of Ar atoms present in the chamber is

N = pV/kgT = 2.69 x 10*". Taking 1% of this number and using the given
excited-state lifetime yields 0.01NV/1.4 x 1078 s = 1.9 x 10% transitions per
second.

With energy density

s A1/ By
p(V) = (Bu/Bgl)e’“’/"BT =1

and Byp = By, the ratio of interest is Byp(v)/Ag = 1/(eh*/ksT —1).
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18.17 kT =4.14% 1072 J, E=32% 107" J, E/kgT = 77.3. Since
' exp(E/kpT) > 1, the ratio

1/(exp(E/kpT) — 1) ~ exp(—E/kpT) =~ 2.7 x 1074,
extremely low.

13.18 kgT =4.14x107° J, E=32x 107" J, E/kgT = 0.773. Then
1/(exp(E/ksT) — 1) = 0.86, much higher than in the previous problem.
Stimulated emission is quite likely at this high temperature (as at the
surface of a hotter star).

13.19 N;/N; = e"\Ei=B)/ksT 1 — (E; — E;)/kpT for |E; — E;| < kpT.
Therefore as T' — oo, N;/N; tends to 1.

13.20 T=30K, kgT=414x10"2],
E =he/A =199 x 10~ J m/\ = 9.48 x 10~ J,
E/kpT =229 x 1072
and the ratio 1/(exp(E/kpgT) — 1) ~ 43, so stimulated emission is very
likely, if not dominant. (The number of significant figures is important in
such a case.)

13.21 & ~244)\/D =515 x 10" rad, s = 7® = 5.15 x 1072 m or the diameter
of the spot on the wall is 5.1 cm.

13.22 The volume of the crystal is V = (7/4)D?L = 9.8 x 10~7 m3. Therefore
the mass of CryO3 present is

0.05 x 107%(3.7 x 10°)9.8 x 10~7 = 1.81 x 10~% Kg.

The mass of one Cr,03; molecule is 152 amu or 2.52 x 10~% Kg. Therefore
approximately 7.17 x 10'® Cr,O3 molecules. are present. Assuming that
each contributes two Cr*™ ions to lasing, Nions = 1.4 x 10'° ions participate
in the lasing action, at AF = 2.87 x 10719 J. Then Fiyy = NionsAE = 4.0 J;
the corresponding power is Eio./t = 4.0 J/5.0 x 107% s = 0.8 mW.
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13.27

13.28

13.29
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13.31
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N/t=P/AE =1.0x 107 J s7'/(1.96)(1.602 x 10719 J = 3.2 x 10*®
transitions per second.

AXo = A3Av/c=8.0 x 1075 nm.
Av = c/2L = 6 x 108 Hz, using v = ¢ when n = 1.
The condition Av = 1.4 x 10° = ¢/2L for n = 1 gives L = ¢/2Av = 11 cm.

I = (v/2)eE§ = (n/2)(eo/ o)/ E3, where p =~ po, E§ = 2(po/€0)**I/n,
(1o/€0)/? = 376.730Q, so Ey = 27.4(I /n)"/2.

® ~2.44)\/D = 2.6 x 1073 rad.

The three crossed gratings form a type of triangular lattice. The
diffraction spots will appear along the directions of the dual lattice, which
are directions connecting the centroids of the original lattice. As usual,
there will be a central spot of highest irradiance (intensity) and the
irradiance decreases with distance from this central spot. Reciprocals of
multiples of lattice constants of the original lattice are proportional to the
spatial frequencies present in the diffraction pattern. (Strictly speaking,
the lattice should have infinite extent in order to consider it a
mathematically periodic structure.)

In this case the four crossed gratings form a sort of rectangular lattice,
whose dual lattice is again rectangular. Therefore the diffraction spots will
be located along horizontal and vertical lines. The central spot has the
highest irradiance and the irradiance of the others decreases with distance
from the center. A horizontal slit filter will enhance the vertical lined
grating in the altered image, and vice versa. .

The horizontal grating gives a rc;w of diffraction spots, with the central
spot of highest irradiance. The details in the picture image are contained

in many high spatial frequency components. The picture can be enhanced

by using a filter which blocks out the diffraction pattern of the horizontal
grating.
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13.32 The circular grating present will generate a central spot of highest
irradiance, together with successive rings. In order to enhance the picture,
a spatial filter which blocks out these contributions should be used.

13.33 The filter is a long slit, perpendicular to the observed image.

13.34 From the geometry, f;f# = fi®: ko = ksin# and k; = ksin @, hence
sinf ~ 6 ~ koA/2m and sin ® ~ ® = k;\/2m, therefore 6/® = ko/k; and
k; = ko(®/0) = ko(f:/f:)- When f; > f; the image will be larger than the
object, the spatial periods in the image will also be larger, and the spatial
frequencies in the image will be smaller than in the object.

13.35 a = (1/50) cm: asin@ = mA, sinf = 6, hence 6 = (5000 m)), and the
distance between orders on the transform plane is f6 = 5000\ f = 2.7 mm.

13.36 (a) As in Figure 11.10, the transform of the cosine function will be a pa.u—
of é-functions, at = #d, where d is the spatial period of the cosine. To
pass only the first order terms, we need a filter with holes at these
positions, for the specific wavelength, as given by z/f ~sin6 = A\(1/d);
z = fA/d=[(2.0 m)(5.00 x 107 m)/(1 x 107° m) = 0.1 m, above and
below center. (b) Any “DC” components, and all high order components,
are removed. A smoothly varying cosine amplitude should be seen in the
image. (c) A filter with a hole in the center would pass only the DC term,
resulting in a lower intensity, uniform image.

13.37 Each point on the diffraction pattern corresponds to a single spatial
frequency, and if we consider the diffracted wave to be made up of plane
waves, it also corresponds to a single-plane wave direction. Such waves, by
themselves, carry no information about the periodicity of the object and
produce a more or less uniform image. The periodicity of the source arises
in the image when the component plane waves interfere.
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13.41
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The relative field amplitudes are 1.00, 0.60, and 0.60; hence E o< 1 +

0.60 cos(+ky") 4 0.60 cos(—ky') = 1+ 1.2 cosky'. This is a cosine oscillating
about a line equal te 1.0. It varies from +2.2 to —0.2. The square of this
will correspond to the irradiance, and it will be a series of tall peaks with
a relative height of (2.2), between each pair of which there will be a short
peak proportional to (0.2)%; notice the similarity with Fig. 11.32.

asin@ = A, here f6 = 50Af = 0.20 cm; hence A = 0.20/50(100) = 400 nm.
The magnification is 1.0 when the focal lengths are equal, hence the
spacing is again 50 wires/cm.

The random dots will add considerable “noise” to the pattern. The spatial
frequency is 1/(0.1 mm) = 10 mm~1. A filter that is the transform of the
regular pattern will remove the random dots.

The array of top hats corresponds to the pixels, so that each “selects” the
amplitude (density) of the picture within its radius. The transform will
look like a regular arrray of dots of varying amplitude. As in Figure 13.39,
filtering out the higher frequency components will yield a continuous
image.

The pinhole blocks the high-frequency components, which correspond to
the rapid spatial variations in the beam.

The randomly, but more or less uniformly, distributed particles in the milk
will tend to block the “regular” part of the beam, and thus enhance the
relative intensity of the speckle.

The inherent motion of the medium would cause the speckle pattern to
vanish.



