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a b s t r a c t

In this work, a novel binary version of the grey wolf optimization (GWO) is proposed and used to select
optimal feature subset for classification purposes. Grey wolf optimizer (GWO) is one of the latest bio-
inspired optimization techniques, which simulate the hunting process of grey wolves in nature. The
binary version introduced here is performed using two different approaches. In the first approach,
individual steps toward the first three best solutions are binarized and then stochastic crossover is
performed among the three basic moves to find the updated binary grey wolf position. In the second
approach, sigmoidal function is used to squash the continuous updated position, then stochastically
threshold these values to find the updated binary grey wolf position. The two approach for binary grey
wolf optimization (bGWO) are hired in the feature selection domain for finding feature subset
maximizing the classification accuracy while minimizing the number of selected features. The proposed
binary versions were compared to two of the common optimizers used in this domain namely particle
swarm optimizer and genetic algorithms. A set of assessment indicators are used to evaluate and
compared the different methods over 18 different datasets from the UCI repository. Results prove the
capability of the proposed binary version of grey wolf optimization (bGWO) to search the feature space
for optimal feature combinations regardless of the initialization and the used stochastic operators.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection provides a way for identifying the important
features and removing irrelevant (redundant) ones from the dataset
[1]. The feature selection objectives are data dimensionality reduction,
improving prediction performance, and good data understanding for
different machine learning applications [2]. In the real world applica-
tions, data representation often uses too many features with redun-
dancy features, which means certain features can take the role of
another and the unnecessary features can be removed. Moreover, the
relevant (interdependence) features have an influence on the output
and contain important information that will be obscure if any of them
is excluded [3].

Previously, an exhaustive search for the optimal set of features
(attributes) in a high dimensional space may be unpractical. Many
researches try to model the feature selection as a combinatorial
optimization problem, which the set of features lead to the best
feature space separability [4]. The objective function can be the
classification accuracy or some other criterion that might consider

the best trade-off between attribute extraction computational burden
and efficiency [5].

The classical optimization techniques have some restriction in
solving the problems, so that evolutionary computation (EC) algo-
rithms are the alternative for solving these limitations and searching
for the optimum solution of the problems. Evolutionary computation
(EC) algorithms are inspired from nature, social behavior, and biolo-
gical behavior of (animals, birds, fish, bat, firefly, wolves, etc.) in a
group. Many researchers have proposed different computational
methods, in order to mimic the behavior of these species to seek for
their food (optimal solution) [6].

Various heuristic techniques mimic the behaviour of biological
and physical systems in the nature and it has been proposed as
strong methods for global optimizations. Genetic algorithms (GA)
was the first evolutionary based algorithm introduced in the
literature and has been developed based on the natural process
of evolution through reproduction. GA has the ability to solve the
complex and non-linear problems. Moreover, GA has some dis-
advantages such as low performance and sticking in local minima
[7]. Particle swarm optimization (PSO) is one of the well-known
swarm algorithms. In particle swarm optimization (PSO), each
solution is considered as a particle with specific characteristics
(position, fitness, and a speed vector) which defines the moving
direction of the particle [8].
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Artificial bee colony (ABC) is a numerical optimization algorithm
based on foraging behavior of honeybees. In ABC, the employer bees
try to find food source and advertise the other bees. The onlooker bees
follow their interesting employer, and the scout bee fly spontaneously
to find the best food source [9]. A virtual bee algorithm (VBA) is
applied to optimize the numerical function in 2-D using a swarm of
virtual bees, which move randomly in the search space and interact to
find food sources. From the interactions between these bees results
the possible solution for the optimization problem [10]. A proposed
approach based on natural behavior of honeybees, which randomly
generated worker bees are moved in the direction of the elite bee. The
elite bee represents the optimal (near to optimal) solution [11].

In optimization algorithms, it is essential to have a convenient
balance between exploration and exploitation. In a bee swarm
algorithms, different behaviors of the bees give us the possibility
to create robust balancing technique between exploration and
exploitation [12]. Artificial fish swarm (AFS) algorithm mimics the
stimulant reaction by controlling the tail and fin. AFS is a robust
stochastic technique based on the fish movement and its intelli-
gence during the food finding process [13].

A binary version of the particle swarm optimization (BPSO)
modifies the old version of PSO algorithm to deal with the binary
optimization problems [14]. Moreover, an extended version of BPSO is
used to deal with feature selection problems [15]. The search space in
BPSO is considered as a hypercube; a particle may be seen to move to
nearer or farther corners of the hypercube by flipping various
numbers of bits [16]. Furthermore, a binary version of the gravitational
search algorithm (BGSA) is used for feature selection issue [17]. A
binary version of the bat algorithm (BBA) is applied for feature
selection purposes, where the search space is modelled as an n-cube.
It is important to assign for every bat a set of binary coordinates that
indicate if this feature will belong to the final feature set. So, the
optimal (near to optimal) solution corresponds to one hypercube's
corner [18]. There are many other researches with the same idea,
applied in a wide range of bio-inspired algorithms [19–21,23–27].

Grey wolf optimization (GWO) is a newly introduced evolu-
tionary algorithm, which proposes that the grey wolves have a
successful reproduction more than hunting in the pack. Two grey
wolves (male and female) have a higher position and managing
the other wolves in the pack [6]. In this paper, a novel binary
version of the grey wolf optimization is proposed to find optimal
regions of the complex search space. Grey wolf optimizer is one of
the latest bio-inspired techniques, which simulate the hunting
process of a pack of grey wolves in nature. The binary version
introduced here is performed using two different approaches.

The organization of this paper as the following: Section 2 presents
the background of continuous grey wolf optimization (CGWO). The
proposed new version of grey wolf optimization (GWO) describes in
Section 3. Section 4 presents a binary version of grey wolf optimiza-
tion (BGWO) for feature selection. The experimental results are
discussed in Section 5. Finally, conclusions are stated in Section 6.

2. Continuous grey wolf optimization (CGWO)

Mostly, grey wolves prefer to live in a pack. The group size is 5–12
on average. They have very strict rules in social dominant hierarchy.
According to [22] grey wolf pack consists of the following:

1. The alphas are leading the pack, the alpha wolves are respon-
sible for making decisions. The alphas decisions are dictated to
the pack.

2. The betas are subordinate wolves that help the alpha in
decision making or other activities. The beta can be either male
or female, and he/she is probably the best candidate to be the
alpha.

3. The omega play the role of scapegoat. Omega wolves always
have to submit to all the other dominant wolves. They are the
last wolves that are allowed to eat.

4. The deltas have to submit alphas and betas, but they dominate
the omega. Scouts, sentinels, elders, hunters, and caretakers
belong to this category. Scouts are responsible for watching
the boundaries of the territory and warning the pack in case of
any danger. Sentinels protect and guarantee the safety of the
pack. Elders are the experienced wolves who used to be alpha
or beta. Hunters help the alphas and betas when hunting prey
and providing food for the pack. Finally, the caretakers are
responsible for caring for the weak, ill, and wounded wolves in
the pack.

In the mathematical model for the GWO the fittest solution is
called the alpha ðαÞ. The second and third best solutions are named
beta ðβÞ and delta ðδÞ; respectively. The rest of the candidate
solutions are assumed to be omega ðωÞ. The hunting is guided by
α, β, δ, and ω follow these three candidates.

In order for the pack to hunt a prey they first encircling it. In
order to mathematically model encircling behavior, the following
Eqs. (1)–(4) are used.

X
!ðtþ1Þ ¼ X

!
pðtÞþ A

!
:D
!

; ð1Þ

where D
!

is as defined in Eq. (2), t is the iteration number, A
!

and

C
!

are coefficient vectors, X
!

p is the prey position, and X
!

is the
grey wolf position.

D
!¼ j C!� X!pðtÞ� X

!ðtÞj ; ð2Þ

the A
!

, C
!

vectors are calculated as in Eqs. (3) and (4).

A
!¼ 2a � r1!�a ð3Þ

C
!¼ 2r2

!
; ð4Þ

where a is linearly decreased from 2 to 0 over the course of
iterations, and r1; r2 are random vectors in [0, 1]. The hunt is
usually guided by the alpha. The beta and delta might also
participate in hunting occasionally. In order to mathematically
simulate the hunting behavior of grey wolves, the alpha (best
candidate solution), beta (the second best candidate solution), and
delta (the third best candidate solution) are assumed to have
better knowledge about the potential location of prey. The first
three best candidate solutions obtained so far and oblige the other
search agents (including the omegas) to update their positions
according to the position of the best search agents. So the updating
for the wolves positions is as in Eq. (5).

X
!ðtþ1Þ ¼ X1

�!þ X2
�!þ X3

�!
3

; ð5Þ

where X1
�!

; X2
�!

; X3
�!

are defined as in Eqs. (6)–(8), respectively.

X1
�!¼ j Xα

�!� A1
�! � Dα

�!j ; ð6Þ

X2
�!¼ j Xβ

�!� A2
�! � Dβ

�!j ; ð7Þ

X3
�!¼ j Xδ

�!� A3
�! � Dδ

�!j ; ð8Þ

where Xα
�!

; Xβ
�!

; Xδ
�!

are the first three best solutions in the swarm

at a given iteration t, A1
�!

; A2
�!

; A3
�!

are defined as in Eq. (3), and

Dα
�!

; Dβ
�!

; Dγ
�!

are defined using Eqs. (9)–(11), respectively.

Dα
�!¼ j C1

�! � Xα
�!� X

!j ; ð9Þ
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Dβ
�!¼ j C2

�! � Xβ
�!� X

!j ; ð10Þ

Dδ
�!¼ j C3

�! � Xδ
�!� X

!j ; ð11Þ

where C1
�!

; C2
�!

; and C3
�!

are defined as in Eq. (4).
A final remark about the grey wolf optimizer (GWO) is the

updating of the parameter a that controls the tradeoff between
exploration and exploitation. The parameter a is linearly updated in
each iteration to range from 2 to 0 according to Eq. (12).

a¼ 2�t
2

MaxIter
; ð12Þ

where t is the iteration number and MaxIter is the total number of
iteration allowed for the optimization. Algorithm 1 outlines the
continuous grey wolf optimization (CGWO) algorithm.

Algorithm 1. Continuous grey wolf optimization algorithm.

input: n Number of grey wolves in the pack,
NIter Number of iterations for optimization.

output: xα Optimal grey wolf position,
f ðxαÞ Best fitness value.

1. Initialize a population of n grey wolves positions randomly.
2. Find the α; β; and δ solutions based on their fitness values.
3. While Stopping criteria not met do

foreach Wolf iApack do
j Update current wolf 's position according to Eq: ð5Þ:
end

I Update a; A; and C:

II Evaluate the positions of individual wolves:
III Update α; β; and δ:

�����������������
end

3. The proposed binary grey wolf optimization

In the continuous grey wolf optimization (CGWO) wolves
continuously change their positions to whatever point in the
space. In some special problems such as feature selection, the
solutions are restricted to the binary {0, 1} values which motivates
a special version of the CGWO. In this work, a novel binary grey
wolf optimization (bGWO) is proposed for the feature selection
task. The wolves updating equation is a function of three position
vectors namely xα; xβ; xδ which attracts each wolf towards the first
three best solutions. In the bGWO, the pool of solutions is in binary
form at any given time; all solutions are on the corner of a
hypercube. According to the CGWO principle the positions of a
given wolf has been updated, while keeping the binary restriction
based on Eq. (5). We can apply one of two approaches, which
describe in more details in the following subsections.

3.1. Binary grey wolf optimization—approach 1 (bGWO1)

In this approach bGWO1 the main updating equation can be
formulated as shown in Eq. (13); see Algorithm 2.

Xtþ1
i ¼ Crossoverðx1; x2; x3Þ; ð13Þ

where Crossoverðx; y; zÞ is suitable cross over between solutions
x; y; z and x1; x2; x3 are binary vectors representing the effect of
wolf move towards the alpha; beta; delta grey wolves in order.
x1; x2; x3 are calculated using Eqs. (14), (17), and (20), respectively.

xd1 ¼
1 if ðxdαþbstepdαÞZ1
0 otherwise

(
ð14Þ

where xdα is the position vector of the alpha wolf in the dimension
d, and bstepdα is a binary step in dimension d that can be calculated
as in Eq. (15).

bstepdα ¼
1 if cstepdαZrand
0 otherwise

(
ð15Þ

where rand is a random number drawn from uniform distribution
A ½0;1�, and cstepdα is the continuous valued step size for dimension
d and can be calculated using sigmoidal function as in Eq. (16).

cstepdα ¼
1

1þe�10ðAd
1D

d
α �0:5Þ

; ð16Þ

where Ad
1, D

d
α are calculated using Eqs. (3), and (9) in the dimension

d.

xd2 ¼
1 if ðxdβþbstepdβÞZ1
0 otherwise

(
ð17Þ

where xdβ is the position vector of the beta wolf in the dimension d,
and bstepdβ is a binary step in dimension d that can be calculated as
in Eq. (18).

bstepdβ ¼
1 if cstepdβZrand

0 otherwise

(
ð18Þ

where rand is a random number drawn from uniform distribution
A ½0;1�, and cstepdβ is the continuous valued step size for dimension
d and can be calculated using sigmoidal function as in Eq. (19).

cstepdβ ¼
1

1þe�10ðAd
1D

d
β �0:5Þ

; ð19Þ

where A1
d, and Dd

β are calculated using Eqs. (3), (9) in the dimension
d.

xd3 ¼
1 if ðxdδ þbstepdδ ÞZ1
0 otherwise

(
ð20Þ

where xdδ is the position vector of the delta wolf in the dimension,
d and bstepdδ is a binary step in dimension d that can be calculated
as in Eq. (21).

bstepdδ ¼
1 if cstepdδ Zrand

0 otherwise

(
ð21Þ

where rand is a random number drawn from uniform distribution
A ½0;1�, and cstepdδ is the continuous valued step size for dimension
d and can be calculated using sigmoidal function as in Eq. (22).

cstepdδ ¼
1

1þe�10ðAd
1D

d
δ �0:5Þ

; ð22Þ

where Ad
1;D

d
δ are calculated using Eqs. (3), (9) in the dimension d.

A simple stochastic crossover strategy is applied per dimension
to crossover a; b; c solutions as shown in Eq. (23).

xd ¼
ad if rando1

3

bd 1
3rrando2

3

cd otherwise

8><
>: ð23Þ

where ad;bd; cd are the binary values for first, second and third
parameter in dimension d, xd is the crossover output at dimension
d, and rand is a random number drawn from uniform distribution
in the range [0, 1].

Algorithm 2. Binary grey wolf optimization algorithm – approach
1 (bGWO1).

input: n Number of grey wolves in the pack,

NIter Number of iterations for optimization.
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output: xα Optimal grey wolf binary position,
f ðxαÞ Best fitness value.

1. Initialize a population of n wolves positions at random
A ½0;1�.

2. Find the α; β; δ solutions based on fitness.
3. while Stopping criteria not met do

foreach Wolf iApack do
Calculate x1; x2; x3 using Eqs: ð14Þ; ð17Þ; andð20Þ
xtþ1
i ’crossover among x1; x2; x3 using Eq: ð23Þ:

�����
end

I Update a;A;C:

II Evaluate the positions of individual wolves:
III Update α; β; δ:

������������������
end

3.2. Binary grey wolf optimization – approach 2 (bGWO2)

In this approach only the updated grey wolf position vector is
forced to be binary; see Algorithm 3 using the main updating
equation as shown in Eq. (24).

xtþ1
d ¼ 1 if sigmoid

x1þx2þx3
3

� �
Zrand

0 otherwise

8<
: ð24Þ

where rand is a random number drawn from uniform distribution
A ½0;1�, xtþ1

d is the updated binary position in dimension d at
iteration t, and sigmoid(a) is defined in Eq. (25).

sigmoidðaÞ ¼ 1
1þe�10ðx�0:5Þ ð25Þ

Algorithm 3. Binary grey wolf optimization algorithm – approach
2 (bGWO2).

4. Binary grey wolf optimization for feature selection

In this section the two binary version s of grey wolf optimiza-
tion (bGWO1 and bGWO2) are exploited in feature selection for
classification problems. For a feature vector sized N the different
feature reducts would be 2N which is a huge space of features to be
searched exhaustively. So, the binary grey wolf optimization is
used to adaptively search the feature space for best feature

combination. The best feature combination is the one with max-
imum classification performance and minimum number of selected
features. The fitness function used in binary grey wolf optimization
to evaluate individual grey wolf positions is as shown in Eq. (26).

Fitness¼ αγRðDÞþβ
∣C�R∣
∣C∣

; ð26Þ

where γRðDÞ is the classification quality of condition attribute set R
relative to decision D, R is the length of selected feature subset, C is
the total number of features, α and β are two parameters
corresponding to the importance of classification quality and
subset length, αA ½0;1� and β¼ 1�α. We can see that the fitness
function maximizes the classification quality; γRðDÞ, and the ratio
of the unselected features to the total number of features;
∣C�R∣=∣C∣.

The above equation can be easily converted into a minimization
problem by using error rate rather than classification quality and
using selected features ration rather than using unselected feature
size. The minimization problem can be formulated as in Eq. (27).

Fitness¼ αERðDÞþβ
∣R∣
∣C∣

; ð27Þ

where ERðDÞ is the error rate for the classifier of condition attribute
set, R is the length of selected feature subset, and C is the total
number of features. αA ½0;1� and β¼ 1�α are constants to control
the importance of classification accuracy and feature reduction;
β¼ 0:01 in current experiments.

The main characteristic of wrapper methodologies in feature
selection is the use of the classifier as guide of feature selection
procedure. Wrapper based feature selection can be classified based
on the following three main items:

1. Classification method.
2. Feature evaluation criteria.
3. Search method.

K-nearest neighbor (KNN) [28] is a common simple method
used for classification. KNN is a supervised learning algorithm that
classifies an unknown sample instance based on the majority of
the K-nearest neighbor category. Classifiers do not use any model
for K-nearest neighbors and are determined solely based on the
minimum distance from the query instance to the training
samples. The KNN method is simple and easy to implement

input: n Number of grey wolves in the pack,
NIter Number of iterations for optimization.

output: xα Optimal grey wolf binary position,
f ðxαÞ Best fitness value.

1. Initialize a population of n wolves positions at random A ½0;1�.
2. Find the α; β; δ solutions based on fitness.
3. while Stopping criteria not met do

foreach Wolf iApack do
Update wolf i position to a binary position according to Eq: ð24Þ:����

end

I Update a;A;C:

II Evaluate the positions of individual wolves:
III Update α; β; δ:

�������������������
end
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method and hence it is very common classifier. In this proposed
system, the KNN is used as a classification to ensure the goodness
of the selected features.

Binary grey wolf optimization is used as a search method that
can adaptively search the feature space for maximizing the feature
evaluation criteria as shown in Eq. (26). A single dimension in the
search space represents individual feature and hence the wolf's
position represents a single feature combination or solution.

5. Experimental results and discussions

5.1. Data description

Eighteen datasets in Table 1 from the UCI machine learning
repository [29] are used in the experiments and comparisons
results. The datasets were selected to have various numbers of
attributes and instances as representatives of various kinds of
issues that the proposed technique will be tested on. For each
dataset, the instances are randomly divided into three sets namely
training, validation and testing sets in cross validation manner.

A wrapper approach for feature selection is used in this study
based on KNN classifier. A simple and commonly utilized learning
algorithm [28], KNN is utilized in the experiments based on trial
and error basis where the best choice of K is selected ðK ¼ 5Þ as the
best performing on all the datasets. Through the training process,
every wolf position represents one attribute subset. Training set is
used to evaluate the KNN on the validation set throughout the
optimization to guide the feature selection process. The test data
are kept hidden from the optimization and is let for final evalua-
tion. The proposed feature selection methods are benchmarked
with particle swarm optimization (PSO) [30] and genetic algorithm
(GA) [31] for evaluation. The global and optimizer-specific para-
meter setting is outlined in Table 2. All the parameters are set
either according to domain specific-knowledge as the α; β para-
meters of the used fitness function, or based on trial and error on
small simulations and common in the literature such as the rest of
parameters.

5.2. Evaluation criteria

Individual datasets are divided randomly into 3 different equal
portions namely validation, training, and testing datasets. The
partitioning of the data is repeated for 20 times to ensure stability

and statistical significance of the results. In each run, the following
measures are recorded from the validation data:

� Classification average accuracy is an indicator describes how
accurate is the classifier given the selected feature set. The
classification average accuracy can be formulated in Eq. (28).

AvgPerf ¼ 1
M

XM
j ¼ 1

1
N

XN
i ¼ 1

MatchðCi; LiÞ; ð28Þ

where M is the number of times to run the optimization
algorithm to select feature subset, N is the number of points
in the test set, Ci is the classifier output label for data point i, Li
is the reference class label for data point i, and Match is a
function that outputs 1 when the two input labels are the same
and outputs 0 when they are different.

� Statistical best is the minimum fitness function obtained for a
given optimizer at the different M operations of an optimiza-
tion algorithm. Best represents the most optimistic solution
acquired and can be formulated in Eq. (29).

best ¼ min
M

i ¼ 1
gi
n
; ð29Þ

where M is the number of times to run the optimization
algorithm to select feature subset, and gi

n
is the optimal

solution resulted from run number i.
� Statistical worst is the worst solution among the best solutions

found for running an optimization algorithm for M times.
Worst represents the pessimistic solution and can be formu-
lated in Eq. (30).

Worst ¼ min
M

i ¼ 1
gi
n
; ð30Þ

where M is the number of times to run the optimization
algorithm to select feature subset, and gi

n
is the optimal

solution resulted from run number i.
� Statistical mean is the average of solutions acquired from

running an optimization algorithm for different M running.
Mean represents the average performance a given stochastic
optimizer can be formulated in Eq. (31).

Mean¼ 1
M

XM
i ¼ 1

gi
n
; ð31Þ

where M is the number of times to run the optimization
algorithm to select feature subset, and gi

n
is the optimal

solution resulted from run number i.
� Std is a representation for the variation of the obtained best

solutions found for running a stochastic optimizer for M
different runs. Std is used as an indicator for optimizer stability

Table 2
Parameter setting for experiments.

Parameter Value

No of search agents 8
No of iterations 70
Problem dimension Number of features in the data
Search domain [0 1]
No. repetitions of runs 20
Crossover fraction in GA 0.8
Inertia factor of PSO 0.1
Individual-best acceleration factor of PSO 0.1
α Parameter in the fitness function 0.99
β Parameter in the fitness function 0.01

Table 1
Datasets description.

Dataset No. Attributes No. Instances

Breastcancer 9 699
Exactly 13 1000
Exactly2 13 1000
Lymphography 18 148
M-of-n 13 1000
Tic-tac-toe 9 958
Vote 16 300
Zoo 16 101
WineEW 13 178
SpectEW 22 267
SonarEW 60 208
PenglungEW 325 73
IonosphereEW 34 351
HeartEW 13 270
Congress 16 435
BreastEW 30 569
KrvskpEW 36 3196
WaveformEW 40 5000
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and robustness, whereas Std is smaller this means that the
optimizer converges always to same solution; while larger
values for Std mean much random results. Std is formulated
as in Eq. (32).

Std¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M�1

X
ðgi

n
�MeanÞ2

r
; ð32Þ

where M is the number of times to run the optimization
algorithm to select feature subset, gi

n
is the optimal solution

resulted from run number i, and Mean is the average defined in
Eq. (31).

� Average selection size represents the average size of the selected
features to the total number of features. This measure can be
formulated as in Eq. (33).

AVGSelectionSZ ¼ 1
M

XM
i ¼ 1

sizeðgi
n
Þ

D
; ð33Þ

where M is the number of times to run the optimization
algorithm to select feature subset, gi

n
is the optimal solution

resulted from run number i, size(x) is the number of on values
for the vector x, and D is the number of features in the original
dataset.

� Average F-Score is a measure that evaluate a feature subset such
that in the data space spanned by the selected features, the
distances between data points in different classes are as large
as possible, while the distances between data points in the
same class are as small as possible [32]. The Fisher score in this
work is calculated for individual features given the class labels
as in Eq. (34).

Fj ¼
Pc

k ¼ 1 nkðμjk�μjÞ2
ðσjÞ2

; ð34Þ

where Fj is the fisher index for feature j, μj; ðσjÞ2 is the mean and
standard deviation of the whole data set, nk is the size of class k,
and μk

j is the mean of class k. The average F-score is calculated
as the average of score sum of optimal solution found by
running individual optimizers for M times.

� Wilcoxon rank sum test proposed by Frank Wilcoxon [33] as a
nonparametric test. The test assigns ranks to all the scores
considered as one group, and then sums the ranks of each
group. The null hypothesis is that the two samples come from
the same population, so any difference in the two rank sums
comes only from sampling error. The rank-sum test is often
described as the nonparametric version of the t test for two
independent groups. It tests the null hypothesis that data in x
and y vectors are samples from continuous distributions with
equal medians, against the alternative that they are not.

The proposed two binary versions of grey wolf optimizers
(bGWO1 and bGWO2) are compared against two of the very
common optimizers namely particle swarm optimization (PSO)
and genetic algorithms (GA), and three different methods are used

Fig. 1. Sample initial grey wolves positions using small, normal and large
initialization.

Table 3
Mean fitness function obtained from the different optimizers using uniform
initialization.

Dataset bGWO1 bGWO2 GA PSO

Breastcancer 0.030 0.027 0.027 0.028
BreastEW 0.037 0.031 0.027 0.033
CongressEW 0.057 0.037 0.044 0.048
Exactly 0.315 0.217 0.291 0.277
Exactly2 0.244 0.246 0.242 0.249
HeartEW 0.136 0.127 0.142 0.144
IonosphereEW 0.106 0.084 0.111 0.101
KrvskpEW 0.065 0.038 0.047 0.055
Lymphography 0.196 0.151 0.168 0.159
M-of-n 0.135 0.038 0.067 0.068
PenglungEW 0.242 0.225 0.250 0.250
SonarEW 0.174 0.104 0.154 0.154
SpectEW 0.178 0.153 0.160 0.166
Tic-tac-toe 0.233 0.225 0.233 0.223
Vote 0.056 0.028 0.040 0.042
WaveformEW 0.214 0.200 0.206 0.221
WineEW 0.044 0.014 0.020 0.034
Zoo 0.127 0.112 0.118 0.133

Total 2.587 2.055 2.347 2.384

Table 4
Best fitness function obtained from the different optimizers using uniform
initialization.

DataSet bGWO1 bGWO2 GA PSO

Breastcancer 0.017 0.017 0.017 0.017
BreastEW 0.021 0.016 0.005 0.016
CongressEW 0.041 0.021 0.028 0.034
Exactly 0.275 0.069 0.257 0.180
Exactly2 0.213 0.234 0.234 0.234
HeartEW 0.122 0.100 0.111 0.122
IonosphereEW 0.085 0.068 0.094 0.085
KrvskpEW 0.056 0.022 0.035 0.031
Lymphography 0.143 0.102 0.122 0.143
M-of-n 0.087 0.000 0.021 0.000
PenglungEW 0.167 0.167 0.167 0.125
SonarEW 0.145 0.072 0.072 0.101
SpectEW 0.146 0.124 0.124 0.146
Tic-tac-toe 0.216 0.206 0.200 0.212
Vote 0.030 0.000 0.000 0.000
WaveformEW 0.206 0.186 0.199 0.205
WineEW 0.000 0.000 0.000 0.000
Zoo 0.077 0.000 0.000 0.077

Total 2.047 1.404 1.686 1.729
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to initialize the different optimization algorithms to ensure con-
vergence namely random initialization, small initialization, and
large initialization.

1. Small initialization: Search agents are initialized with the minor
number of random selected features. Therefore, if the number
of agents is less than the number of features, we will see that
each search agent will have a single dimension with 1. Of
course, the optimizer will search for feature(s) to be set to 1 to
enhance the fitness function value as in the standard forward
selection of features as shown in Fig. 1a.

2. Random initialization: Where all wolves' positions are randomly
initialized with a 0/1, values at each dimension, as shown
in Fig. 1b.

3. Large initialization: Search agents are set to its maximum. In
this case, we find a solution with all dimensions set to 1 and
solutions with all dimensions set to 1 except for single random
dimension set to 0. Of course, the optimizer will search for
feature(s) to be removed while keeping or enhancing the
fitness function value, as shown in Fig. 1c.

5.3. Performance on uniform random initialization

Table 3 outlines the performance of the different methods
namely genetic algorithms (GA), particle swarm optimization
(PSO), binary grey wolf optimization – approach 1 (bGWO1), and
binary grey wolf optimization – approach 2 (bGWO2) using
random initialization using fitness function defined in Eq. (27) in
a minimization mode. The table outlines the average fitness
obtained over the different runs.

We can remark that the best performance is achieved by the
proposed bGWO2 in the obtained fitness value, which proves the
capability of the bGWO2 for searching the feature space adaptively
better than the other methods. The similar results can be seen in
Tables 4 and 5 which outline the best and worst obtained fitness
function over all the runs.

The performance of the proposed bGWO1 is asserted also on the
test data as shown in Table 6, where the table outlines the classifica-
tion accuracy on test data; on the average, based on the selected
features by the different optimizers. We can remark that the perfor-
mance of the bGWO2 overcomes the obtained results for bGWO1, PSO,

Table 5
Worst fitness function obtained from the different optimizers using uniform
initialization.

DataSet bGWO1 bGWO2 GA PSO

Breastcancer 0.043 0.039 0.039 0.034
BreastEW 0.053 0.042 0.047 0.047
CongressEW 0.083 0.062 0.069 0.076
Exactly 0.335 0.317 0.326 0.323
Exactly2 0.260 0.263 0.251 0.260
HeartEW 0.156 0.156 0.167 0.189
IonosphereEW 0.120 0.103 0.128 0.120
KrvskpEW 0.078 0.059 0.064 0.072
Lymphography 0.265 0.204 0.204 0.184
M-of-n 0.201 0.144 0.141 0.123
PenglungEW 0.417 0.375 0.458 0.417
SonarEW 0.246 0.145 0.246 0.203
SpectEW 0.213 0.202 0.202 0.180
Tic-tac-toe 0.256 0.241 0.253 0.231
Vote 0.070 0.050 0.060 0.080
WaveformEW 0.232 0.208 0.221 0.229
WineEW 0.119 0.051 0.051 0.051
Zoo 0.176 0.176 0.176 0.176

Total 3.323 2.837 3.105 2.995

Table 6
Average performance of the features selected by the different optimizers on the test
data using uniform initialization.

Dataset bGWO1 bGWO2 Genetic PSO

Breastcancer 0.976 0.975 0.968 0.967
BreastEW 0.924 0.935 0.939 0.933
CongressEW 0.935 0.938 0.932 0.928
Exactly 0.708 0.776 0.674 0.688
Exactly2 0.745 0.750 0.746 0.730
HeartEW 0.776 0.776 0.780 0.787
IonosphereEW 0.807 0.834 0.814 0.819
KrvskpEW 0.944 0.956 0.920 0.941
Lymphography 0.744 0.700 0.696 0.744
M-of-n 0.908 0.963 0.861 0.921
PenglungEW 0.600 0.584 0.584 0.584
SonarEW 0.731 0.729 0.754 0.737
SpectEW 0.820 0.822 0.793 0.822
Tic-tac-toe 0.728 0.727 0.719 0.735
Vote 0.912 0.920 0.904 0.904
WaveformEW 0.786 0.789 0.773 0.762
WineEW 0.930 0.920 0.937 0.933
Woo 0.879 0.879 0.855 0.861

Total 14.853 14.973 14.649 14.796

Table 7
Average Fisher Index of the features selected by the different optimizers on the test
data using uniform initialization.

Dataset bGWO1 bGWO2 GA PSO

Breastcancer 7.033 6.513 6.266 6.241
BreastEW 10.047 6.949 9.196 8.323
CongressEW 3.541 3.182 3.499 4.529
Exactly 0.021 0.014 0.021 0.019
Exactly2 0.022 0.012 0.011 0.015
HeartEW 1.359 1.083 1.279 1.372
IonosphereEW 1.720 1.002 1.201 1.287
KrvskpEW 0.851 0.695 0.749 0.699
Lymphography 4.562 4.247 2.413 2.884
M-of-n 0.394 0.382 0.391 0.389
PenglungEW 119.911 95.454 119.295 127.077
SonarEW 1.757 0.917 1.497 1.328
SpectEW 0.719 0.519 0.645 0.661
Tic-tac-toe 0.057 0.045 0.047 0.046
Vote 3.631 2.453 3.512 3.442
WaveformEW 5.832 4.891 5.597 4.786
WineEW 8.549 7.380 7.960 7.285
Zoo 228.514 180.138 210.540 239.934

Table 8
Average selected feature ratio on the average for the different optimizers using
uniform initialization.

Dataset bGWO1 bGWO2 GA PSO

Breastcancer 0.644 0.511 0.556 0.556
BreastEW 0.700 0.433 0.600 0.580
CongressEW 0.438 0.412 0.412 0.563
Exactly 0.662 0.400 0.662 0.600
Exactly2 0.646 0.338 0.400 0.462
HeartEW 0.708 0.477 0.662 0.677
IonosphereEW 0.576 0.271 0.482 0.506
KrvskpEW 0.739 0.356 0.528 0.472
Lymphography 0.533 0.489 0.456 0.544
M-of-n 0.815 0.462 0.600 0.523
PenglungEW 0.494 0.383 0.489 0.513
SonarEW 0.620 0.267 0.517 0.510
SpectEW 0.582 0.391 0.482 0.509
Tic-tac-toe 0.800 0.578 0.578 0.644
Vote 0.537 0.300 0.475 0.463
WaveformEW 0.750 0.365 0.540 0.570
WineEW 0.677 0.508 0.554 0.554
Zoo 0.662 0.463 0.600 0.575

Average 0.644 0.411 0.533 0.546
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and GA, which proves its future performance on the unseen data, and
hence it can be used as a candidate for feature selection.

To assess data separability and compactness based on the selected
features fisher index is calculated on the average for selected features
from the different optimizers as shown in Table 7. We can see from
the table that the best optimizer achieving data compactness is the
bGWO1, which conforms that it can perform better for cla-
ssification tasks.

Table 8 outlines the mean selected features ratio for the
different optimizers. We can see that the performance of bGWO2

is superior in selecting less number of features while keeping its
good classification performance. This proves the capability of the
bGWO1 for searching capability for both the objectives of the
optimization and can be considered as a candidate for selecting
minimum number of features achieving superior performance.

For testing the robustness and repeatability of convergence of the
stochastic algorithms, the standard deviation of the obtained fitness
values is calculated on the 20 runs and outlined in Table 9. We can see
that the standard deviation is minimum for the bGWO2 and PSO, which
proves their stability, repeatability, and ability to reach optimal regard-
less of the used randomness and initial positions of the search agents.

5.4. Performance on large and small initialization

Fig. 2 outlines the best, mean and worst acquired fitness function
value averaged over all the data sets using the small and large
initialization. We can see from the figure that the bGWO2 is still
performing better than PSO and GA, which confirms the searching
capability of bGWO2.We can also remark that the large initialization is
performing better than small initialization regardless of the used
optimizer. This can be interpreted by that the large initialization
initializes the optimizer with solutions close to the optimal that is
commonly most of the features selected.

Fig. 3 outlines the performance on test data averaged over all the
data sets using the selected features from the different optimizers. We
can see from the figure that the bGWO2 still performing better than
other method. We can also remark that regardless of the used
initialization method the bGWO2 performs better than PSO and GA.
We can also remark that regardless of the used optimizer the init-
ialization using the large initialization is better than the small
initialization one.

Fig. 2. Mean, best and worst fitness obtained averaged over all the data sets from the different optimizer using the small and large initialization method (a) Small initialization and
(b) Large initialization.

Table 9
Standard deviation of the obtained fitness function values over the 20 runs for the
different methods using uniform initialization.

Dataset bGWO1 bGWO2 GA PSO

Breastcancer 0.012 0.010 0.009 0.007
BreastEW 0.013 0.011 0.016 0.013
CongressEW 0.017 0.016 0.017 0.020
Exactly 0.024 0.113 0.025 0.059
Exactly2 0.021 0.013 0.008 0.011
HeartEW 0.014 0.028 0.021 0.026
IonosphereEW 0.016 0.014 0.012 0.014
KrvskpEW 0.010 0.017 0.012 0.016
Lymphography 0.055 0.037 0.033 0.017
M-of-n 0.041 0.060 0.048 0.053
PenglungEW 0.104 0.091 0.121 0.114
SonarEW 0.042 0.031 0.069 0.051
SpectEW 0.027 0.032 0.029 0.015
Tic-tac-toe 0.015 0.012 0.021 0.009
Vote 0.019 0.019 0.025 0.029
WaveformEW 0.011 0.009 0.009 0.009
WineEW 0.046 0.022 0.022 0.021
Zoo 0.043 0.067 0.069 0.038
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Regarding the size of the selected features, Fig. 4 outlines the
average feature reduction over all the data sets for the different
optimizers. We can remark that the bGWO1 obtains the best redu-
ction regardless of the used initialization method. We can also remark

that as expected the large initialization outputs less reduction of
features.

To assess the repeatability and robustness, Fig. 5 outlines the
std measure averaged over the different used data sets using

Fig. 3. Average performance over the test data averaged over all the data sets using the different optimizers. (a) Small initialization. (b) Large initialization.

Fig. 4. Selected feature ration averaged over all the data sets using different optimizers using both small and large initialization. (a) Small initialization. (b) Large
initialization.
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different optimizers. We can see that the std measure is compar-
able for the two used initialization method and that the bGWO2
has comparable std measure with other used optimizers.

Table 10 outlines the Wilcoxon test calculated on the average
fitness obtained by the different optimizers on all the data sets. So,
individual elements presented to theWilcoxon are calculated using
the formula:

Wjk ¼
1
M

XM
i ¼ 1

Fitnessijk ð35Þ

where M is the number of data sets used, j is the optimizer used
for evaluation; bGWO-bGWO2-PSO-GA, k is the run number;
ranges from 1 to 20, and Wjk is the individual element presented
to the Wilcoxon test and stands for performance of optimizer j on
all the data sets at run k.

We can see from the results that the bGWO2 achieves significant
enhance over the PSO regardless of the used initialization method
achieving p-value of 0.008, 0.008, 0.023 on the large, small and normal
initialization indicating that test rejects the null hypothesis of equal
medians at the default 5% significance level. This proves the capability
of bGWO2 to find the optimal solution regardless of the initial solution
and the stochastic decisions employed throughout the search.

We can also see that the performance of bGWO2 achieves
significant advance over the GA in case of using large initialization;
p-value 0.008. This can be interpreted by the capability of bGWO2
to escape from the local minima; always initial solutions at large
initialization are near optimal, and find a global optima while GA
cannot but in the other initialization methods the task of finding
the global optima is much easier and hence global optima can be
found by both GA and bGWO2.

Assessing the performance of bGWO, we can see that its
significance in performance is smaller than the bGWO2 where it
only achieves significant performance over PSO in case of small
initialization; p-value 0.008, and achieves significant advance over
GA in case of using large initialization.

6. Conclusion and future work

In this work two novel binary versions of the grey wolf optimiza-
tion method were proposed for feature selection in wrapper mode.
The continuous version of grey wolf optimization (CGWO) is converted
into the binary form using two approaches. The proposed two binary
approaches are applied and used for feature selection in machine
learning domain using different initialization methods. The two
approach for binary grey wolf optimization (bGWO1 and bGWO2)
are hired in the feature selection domain for evaluation and results are
compared against two of the well-known feature selection methods
particle swarm optimization (PSO) and genetic algorithms (GA).

The evaluation is performed using a set of evaluation criteria to
assess different aspects of the proposed system. The obtained results
find out that the proposed binary version outperforms other methods
in the search capability. We found also that the performance of the
selected features on test data is best for the features selected by the
proposed algorithm. To assess the data separability based on the
selected features we used fisher index as an indicator and the
proposed feature selection method proves better separability. Regard-
ing repeatability and robustness, the proposed method is always
converge to same/similar solution regardless of the used randomness.
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