


springer Series in Statistics 

Advisors: 
P. Bickel, P. Diggle, S. Fienberg, K. Krickeberg, 
I. Olkin, N. Wermuth, S. Zeger 

Springer 
New York 
Berlin 
Heidelberg 
Barcelona 
Hong Kong 
London 
Milan 
Paris 
Singapore 
Tokyo 



Springer Series in Statistics 

Andersen/Borgan/Gill/Keiding: Statistical Models Based on Counting Processes. 
Andrews/Herzberg: Data: A Collection of Problems from Many Fields for the Student 

and Research Worker. 
Anscombe: Computing in Statistical Science through APL. 
Berger: Statistical Decision Theory and Bayesian Analysis, 2nd edition. 
Bolfarine/Zacks: Prediction Theory for Finite Populations. 
Borg/Groenen: Modem Multidimensional Scaling: Theory and Applications 
Bremaud: Point Processes and Queues: Martingale Dynamics. 
BrockwelUDavis: Time Series: Theory and Methods, 2nd edition. 
Daley/Vere-Jones: An Introduction to the Theory of Point Processes. 
Dzhaparidze: Parameter Estimation and Hypothesis Testing in Spectral Analysis of 

Stationary Time Series. 
Efromovich: Nonparametric Curve Estimation: Methods, Theory, and Applications. 
Fahrmeir/Tutz: Multivariate Statistical Modelling Based on Generalized Linear 

Models. 
Farebrother: Fitting Linear Relationships: A History of the Calculus of Observations 

1750-1900. 
Farrell: Multivariate Calculation. 
Federer: Statistical Design and Analysis for Intercropping Experiments, Volume I: 

Two Crops. 
Federer: Statistical Design and Analysis for Intercropping Experiments, Volume II: 

Three or More Crops. 
Fienberg/Hoaglin/Kruskal/Tanur(Eds.): A Statistical Model: Frederick Mosteller's 

Contributions to Statistics, Science and Public Policy. 
Fisher/Sen: The Collected Works of Wassily Hoeffding. 
Good: Permutation Tests: A Practical Guide to Resampling Methods for Testing 

Hypotheses. 
Goodman/Kruskal: Measures of Association for Cross Classifications. 
Gourieroux: ARCH Models and Financial Applications. 
Grandell: Aspects of Risk Theory. 
Haberman: Advanced Statistics, Volume I: Description of Populations. 
Hall: The Bootstrap and Edgeworth Expansion. 
Hdrdle: Smoothing Techniques: With Implementation in S. 
Hart: Nonparametric Smoothing and Lack-of-Fit Tests. 
Hartigan: Bayes Theory. 
Hedayat/Sloane/Stufken: Orthogonal Arrays: Theory and Applications. 
Heyde: Quasi-Likelihood and its Application: A General Approach to Optimal 

Parameter Estimation. 
Heyer: Theory of Statistical Experiments. 
Huet/Bouvier/Gruet/Jolivet: Statistical Tools for Nonlinear Regression: A Practical 

Guide with S-PLUS Examples. 
Jolliffe: Principal Component Analysis. 
Kolen/Brennan: Test Equating: Methods and Practices. 
Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume I. 

(continued after index) 



Springer Series in Statistics 
(continued from p. ii) 

Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume II. 
Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume III. 
Kres: Statistical Tables for Multivariate Analysis. 
Kiichler/S0rensen: Exponential Families of Stochastic Processes. 
Le Cam: Asymptotic Methods in Statistical Decision Theory. 
Le Cam/Yang: Asymptotics in Statistics: Some Basic Concepts. 
Longford: Models for Uncertainty in Educational Testing. 
Manoukian: Modern Concepts and Theorems of Mathematical Statistics. 
Miller, Jr.: Simultaneous Statistical Inference, 2nd edition. 
MostellerAVallace: Applied Bayesian and Classical Inference: The Case of the 

Federalist Papers. 
Parzen/Tanabe/Kitagawa: Selected Papers of Hirotugu Akaike. 
Politis/Romano/Wolf: Subsampling. 
Pollard: Convergence of Stochastic Processes. 
Pratt/Gibbons: Concepts of Nonparametric TTieory. 
Ramsay/Silverman: Functional Data Analysis. 
Rao/Toutenburg: Linear Models: Least Squares and Alternatives. 
Read/Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. 
Reinsel: Elements of Multivariate Time Series Analysis, 2nd edition. 
Reiss: A Course on Point Processes. 
Reiss: Approximate Distributions of Order Statistics: With Applications 

to Non-parametric Statistics. 
Rieder: Robust Asymptotic Statistics. 
Rosenbaum: Observational Studies. 
Ross: Nonlinear Estimation. 
Sachs: Applied Statistics: A Handbook of Techniques, 2nd edition. 
Sdmdal/Swensson/Wretman: Model Assisted Survey Sampling. 
Schervish: Theory of Statistics. 
Seneta: Non-Negative Matrices and Markov Chains, 2nd edition. 
Shao/Tu: The Jackknife and Bootstrap. 
Siegmund: Sequential Analysis: Tests and Confidence Intervals. 
Simonojf: Smoothing Methods in Statistics. 
Singpurwalla and Wilson: Statistical Methods in Software Engineering: 

Reliability and Risk. 
Small: The Statistical Theory of Shape. 
Stein: Interpolation of Spatial Data: Some Theory for Kriging 
Tanner: Tools for Statistical Inference: Methods for the Exploration of Posterior 

Distributions and Likelihood Functions, 3rd edition. 
Tong: The Multivariate Normal Distribution. 
van der Vaart/Wellner: Weak Convergence and Empirical Processes: With 

Applications to Statistics. 
Vapnik: Estimation of Dependences Based on Empirical Data. 
Weerahandi: Exact Statistical Methods for Data Analysis. 
West/Harrison: Bayesian Forecasting and Dynamic Models, 2nd edition. 
Walter: Introduction to Variance Estimation. 
Yaglom: Correlation Theory of Stationary and Related Random Functions I: 

Basic Results. 



Sam Efromovich 

Nonparametric Curve 
Estimation 
Methods, Theory, and AppUcations 

With 130 Figures 

Springer 



Sam Efromovich 
Department of Mathematics and Statistics 
University of New Mexico 
Albuquerque, NM 87131-1141 
USA 

Library of Congress Cataloging-in-Publication Data 
Efromovich, Sam. 

Nonparametric curve estimation : methods, theory, and applications 
/ Sam Efromovich. 

p. cm. — (Springer series in statistics) 
Includes bibliographical references and index. 
ISBN 0-387-98740-1 (hardcover) 
1. Nonparametric statistics. 2. Estimation theory. 1. Title. 

II. Series. 
QA278.8.E35 1999 
519.5—dc21 99-13253 

© 1999 Springer-Verlag New York, Inc. 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, 
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly 
analysis. Use in connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now known or here-
after developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even 
if the former are not especially identified, is not to be taken as a sign that such names, as 
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely 
by anyone. 

ISBN 0-387-98740-1 Springer-Verlag New York Berlin Heidelberg SPIN 10709119 



To my parents



Preface

Appropriate for a one-semester course, this self-contained book is an in-
troduction to nonparametric curve estimation theory. It may be used for
teaching graduate students in statistics (in this case an intermediate course
in statistical inference, on the level of the book by Casella and Berger
(1990), is the prerequisite) as well as for diverse classes with students from
other sciences including engineering, business, social, medical, and biolog-
ical among others (in this case a traditional intermediate calculus course
plus an introductory course in probability, on the level of the book by Ross
(1997), are the prerequisites).

There are several distinguishing features of this book that should be
highlighted:
- All basic statistical models, including probability density estimation, non-
parametric regression, time series analysis including spectral analysis, and
filtering of time-continuous signals, are considered as one general problem.
As a result, universal methods of estimation are discussed, and students
become familiar with a wide spectrum of applications of nonparametric
methods.
- Main emphasis is placed on the case of small sample sizes and data-
driven orthogonal series estimates (Chapters 1–6). Chapter 7 discusses
(with proofs) modern asymptotic results, and Chapter 8 is devoted to a
thorough discussion of nonseries methods.
- The companion software package (available over the World Wide Web)
allows students to produce and modify almost all figures of the book as well
as to analyze a broad spectrum of simulated and real data sets. Based on
the S–PLUS environment, this package requires no knowledge of S–PLUS
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and is elementary to use. Appendix B explains how to install and use this
package; it also contains information about the affordable S–PLUS Student
Edition for PC.
- “Practical Seminar” sections are devoted to applying the methods studied
to the analysis and presentation of real data sets. The software for these
sections allows students to analyze any data set that exists in the S–PLUS
environment.
- “Case Study” sections allow students to explore applications of basic
methods to more complicated practical problems. These sections together
with “Special Topic” sections give the instructor some flexibility in choos-
ing additional material beyond the core.
- Plenty of exercises with different levels of difficulty will allow the
instructor to keep students with different mathematical and statistical
backgrounds out of trouble!
- “Notes” sections at the end of each chapter are primarily devoted to books
for further reading. They also capture some bibliographic comments, side
issues, etc.
- Appendix A contains a brief review of fundamentals of statistical in-
ference. All the related notions and notations used in the book may be
found there. It is highly recommended to review these fundamentals prior
to studying Chapters 3–8. Also, exercises for Appendix A may be used as
a first quiz or homework.

A bit of advice to the reader who would like to use this book for self-study
and who is venturing for the first time into this area. You can definitely
just read this book as any other text without using the companion soft-
ware. There are plenty of figures (more than a hundred), which will guide
you through the text. However, if you have decided to study nonparamet-
rics, then you are probably interested in data analysis. I cannot stress too
strongly the importance of combining reading with analyzing both simu-
lated and real data sets. This is the kind of experience that you can gain
only via repeated exercises, and here the software can make this process
dramatically quicker and less painful. Using the software will allow you to
check virtually every claim and development mentioned in the book and
make the material fully transparent. Also, please review the fundamentals
outlined in Appendix A prior to studying Chapters 3–8.

All further developments related to this book will be posted on the
WWW page http://www.math.unm.edu/∼efrom/book1, and the author
may be contacted by electronic mail as efrom@math.unm.edu.

Acknowledgments
I would like to thank everyone who in various ways has had influence on
this book. My biggest thanks go to Mark Pinsker. Alex Samarov graciously
read and gave comments on a draft of the book. John Kimmel provided
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invaluable assistance through the publishing process. Three “generations”
of my students who took the class on nonparametric curve estimation based
on this book shared with me their thoughts, comments, and suggestions. I
thank all of you.

Sam Efromovich
Albuquerque, USA, 1999
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1
Introduction

Methods of nonparametric curve estimation allow one to analyze and
present data at hand without any prior opinion about the data. In this
chapter we discuss several basic applications of this approach via analyzing
real data sets. These data sets are interesting, give insight into the nature
of nonparametric curve estimation, and raise important practical questions
that will be answered in the following chapters.

1.1 Density Estimation in the Exploration and
Presentation of Data

Density estimation is one of the most fundamental problems in statistics.
The simplest problem is formulated mathematically as follows. Let us con-
sider a univariate continuous random variable X distributed according to
a probability density f . This phrase means that for any practically inter-
esting set B of real numbers we can find the probability (likelihood) that
X belongs to this set by the formula

P (X ∈ B) =
∫

B

f(x)dx. (1.1.1)

For instance, for B = [a, b] we get that P (a ≤ X ≤ b) =
∫ b

a
f(x)dx.

Then one observes n independent realizations X1, X2, . . . , Xn of X, and
the aim is to find an estimate f̃(x), based on these observations, that fits
the underlying f(x).
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A customary and very natural use of density estimates is to present a
data set at hand, as well as to make a kind of informal investigation of
properties of the data. This is exactly what we would like to do in this
section, leaving the more rigorous analysis until Chapters 3 and 7.

As an example, consider a particular data set of a daily numbers game
(lottery) run by a state government. This type of lottery is an excellent
tool for understanding the problem because lotteries are a common feature
of our life, and their simplicity makes it attractive for millions of people;
the foundations of probability and statistics are based on games of chance;
and lotteries raise many unanswered questions ranging from “Is the lottery
fair?” to “Can we win, and if so, then how?”

We begin with a specific data set for the New Jersey Pick-It lottery, a
daily numbers game run by the state of New Jersey. (In this book we use
data sets available as a part of the standard S–PLUS package.) The data
set is lottery and it is for 254 drawings just after the lottery was started,
from May 1975 to March 1976.

The rules of the game are as follows. At the time of purchase, a player
chooses a three-digit number ranging from 000 to 999. Pick-It lottery is a
pari-mutuel game where the winners share a fraction of the money taken
in for a particular drawing. Half of the money bet during the day is placed
into a prize pool (the state takes the other half), and anyone who picked the
winning number shares equally in the pool. The lottery allows a player to
make a combinations bet on three different digits. For example, if the player
picks the number 791, then the player wins if in a winning number the digits
appear in any order. Thus, the ticket 791 wins on 179, 197, etc. Payoffs for
the numbers with duplicate digits are not shared with combination betters,
and thus may be higher. In short, to win big, pick numbers like 001 or 998,
whereas to win often, pick numbers like 012 or 987.

The available data set consists of the winning number and the payoff for
a winning ticket for each drawing. Let us begin with the statistical analysis
of winning numbers. The stream of these numbers is shown in Figure 1.1a,
and the first number was 810 and the last 479. Such a diagram nicely
shows the “wild” dynamics of the winning numbers, but it is very difficult
to assess this data set in such a representation. Unfortunately, this is how
such data sets are typically presented to the public.

Thus, our first aim is to understand how to present such a data set better.
Before doing this, let us pause for a second and try to understand what we
would like to realize and gain from the analysis of the winning numbers.
Let us look at one of the possible reasons to look more closely at this data
set. It is assumed that the game is fair, so the chance for a winning number
to fall within an interval, say [200, 240] should be the same for any interval
of the same length. Thus, we may divide the interval [0, 999] into equal
subintervals and then count the winning numbers that fall into each of
the subintervals. If the lottery is fair, then such a frequency distribution
of winning numbers should look “reasonably” flat. If this is not the case,
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FIGURE 1.1. (a) Daily winning numbers from the 254 New Jersey Pick-It lottery
drawings from May 1975 to March 1976. (b) Default S–PLUS histogram for this
data set. (c) A histogram with 50 bins. (d) A histogram with 5 bins. All the
histograms are overlaid by the parametric normal density estimate (dashed line),
the universal nonparametric density estimate (solid line), and the ideal uniform
density (dotted line), which corresponds to a fair drawing procedure.

then the lottery is not fair, and one can use this lack of fairness to one’s
advantage in picking more favorable numbers or, nowadays, do even better
by visiting a trial lawyer.

In Figure 1.1b a default S–PLUS histogram, which is the most common
format for representing relative frequencies of grouped data, is shown. Such
a default histogram is just a realization of the above-discussed idea about
how to look at the data in the frequency domain. A histogram is also a
favorite tool of data analysts—they use it as a first look at the data—so
let us briefly explain how it is created (a more rigorous discussion of a
histogram may be found in Section 8.1). A histogram is formed by dividing
the real line into equally sized intervals (called bins); it is a step function
that begins at the origin and whose heights are proportional to the number
of sample points (here the winning numbers) contained in each bin. The
simplicity of a histogram explains why it is the oldest and most widely
used density estimate. The bin width and origin must be chosen to show
features of the data, and in Figure 1.1b they are chosen by the S–PLUS
function hist.

Now that we have seen what professional data analysts like to observe,
let us find out what they think about this particular data set and this
particular histogram. (Recall that the “ideal” histogram, corresponding
to a fair drawing, would look like the dotted line.) A typical subjective
conclusion based on visualization of this histogram sounds like this one:
“The histogram looks fairly flat—no need to inform a grand jury.” This
particular quotation is taken from the book by Becker, Chambers, and
Wilks (1988). Clearly, a data analyst should be very experienced and well
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trained to make such a conclusion from just visualizing this histogram,
because, at first glance, it is absolutely not flat, and should you show it to
players at the wrong place and time, expect a riot.

We cannot judge this conclusion right now (a lot of training in analyzing
similar diagrams awaits us). Instead, let us return to a more thorough
discussion of how the S–PLUS function hist creates default histograms.

The procedure of creating a default histogram is based on the assumption
that an underlying density is the familiar bell-shaped normal density (the
definition of a normal density may be found in Appendix A, but it is not
needed at this point). In Figure 1.1b the dashed line is the estimated normal
density shown over the interval [0, 999]. Note that this normal curve does
not resemble the histogram at all, and it is also far from the flat uniform
distribution that should be expected for a fair game. As a reflection of this
inconsistency, the default histogram shows us the peculiar small bar at the
left tail that represents the single time that 000 was the winning number.
This is in part because the normal curve (the dashed line) is skewed, and
its mode (mean) is apparently less than 500.

Thus, we can reasonably suspect that the default histogram does not tell
us the whole story about the winning numbers and even may misrepresent
them because in no way does the normal density (the dashed line) resemble
the default histogram.

Finally, on the top of everything, Figure 1.1b shows us the universal
nonparametric estimate (the solid line), which we shall thoroughly study
in this book. This estimate tells us an absolutely unbelievable story from
the point of view of both the normal density estimate and the default
histogram: smaller numbers were more likely than larger ones.

Probably, we are now too overwhelmed by all this information, so let us
again pause for a second and summarize our preliminary conclusions. We
now understand that the default histogram is an estimate and it may be
imperfect especially if an underlying density does not resemble a normal
(bell-shaped) density. Second, both the nonparametric estimate and the
parametric normal estimate tell us that the data are skewed. Thus, thinking
logically, our next step should be to look more closely at the underlying
winning numbers. After all, these numbers and only these numbers may
tell as the full story. We can easily do this using a histogram with a larger
number of bins (smaller bin width).

In Figure 1.1c we see the “zoomed-in” histogram with 50 bins and a
correctly chosen origin at the number 000. This histogram is also overlaid
by the above-discussed estimates. Here each bin contains winning numbers
within the range of 20 numbers, so it gives us a rather detailed impression
about relative frequencies of the winning numbers. But does such a detailed
histogram help us to answer the questions raised? The answer is “no” be-
cause this particular histogram is even more confusing. How many local
modes do you see? What is the strange situation with the smallest winning
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numbers; is it a fraud? In short, the detailed histogram only increases our
confusion.

If our attempt at zooming-in failed, let us try to zoom-out. After all, if
the game is fair, then the numbers of winning numbers within wide bins
should be approximately the same due to all the basic limit theorems of
probability theory (they are discussed in Appendix A).

Figure 1.1d shows us the histogram with only 5 bins (that is, winning
numbers are combined in groups within every 200 of numbers, and we may
expect about fifty winning numbers within each bin). As soon as you see this
histogram, you may cry “BINGO.” Now we clearly see what was happening
during the first 11 months of the lottery. Indeed, the smaller numbers were
more generous to the players, and this coincides with the main message
of the nonparametric estimate. There are some disagreements about the
largest numbers, but at least in general the situation has been cleared up.

What we have done with you so far reflects the main issue of modern
nonparametric estimation—the science and art of smoothing a data set.
We have seen that improper smoothing may make a problem extremely
complicated. It takes some time and training to understand how to smooth
a particular data set, and it takes some time and training to understand
the messages of nonparametric estimates.
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FIGURE 1.2. Zoomed–in histograms and the universal nonparametric density
estimates for 4 fairly (uniformly) simulated sets of 250 winning lottery numbers.
{Information in curly brackets contains comments on how to use the software to
repeat or modify a particular figure, whereas information in square brackets is
about arguments of the S-function. As is indicated by the square brackets in this
caption, another simulation can be performed and then visualized on the screen
of the monitor. The argument l, shown in the square brackets, allows one to
control the number of bins (or respectively the bin width, which will be 1000/l).
For instance, to get a histogram with just 5 bins, like the one shown in Figure
1.1d, type > ch1(f=2,l = 5). More about using this software may be found in
Appendix B.} [l = 50]
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Now let us return to one of the questions raised at the beginning of this
section. Namely, we have this particular data set at hand. What can be
said about the fairness of the drawing? Does the nonparametric estimate
indicate an unfair game, or is this just a natural deviation due to the
stochastic nature of the drawing? The scientific answer, based on the theory
of hypothesis testing, will be given in Section 3.8. Here, instead of invoking
that powerful theory, we shall use a very simple and convincing approach
based on Monte Carlo simulations of winning numbers ranging from 000
to 999. Modern computers allow us to simulate such numbers with great
confidence in their fairness; after all, let us hope that computers are not
influenced by a local government. Another reason to look at such generators
is the fact that nowadays many players use a computer (called an electronic
advisor) to pick a number.

In Figure 1.2 four fairly (according to a uniform distribution) generated
sets of 250 winning numbers are shown via detailed histograms and the
nonparametric estimates. As we see, both the particular data sets and the
estimates may have peculiar forms. At least formally, these simulations
support the conclusion of the experts cited earlier “. . . no need to inform
a grand jury.”

Note that as in our previous discussion, the detailed histograms do not
clarify the situation and do not help to visualize the underlying uniform
density. Here again a zoomed-out histogram is a better way to analyze a
data set.

Another lesson from Figure 1.2 is that you cannot judge one estimate
(for instance the nonparametric one) via analyzing another nonparametric
estimate (in this case the histogram).
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FIGURE 1.3. The time series of the 254 payoffs from May 1975 to March 1976 and
two corresponding histograms with different bin widths overlaid by the universal
nonparametric estimate (the solid line).
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Simulations such as those shown in Figure 1.2, when one knows an un-
derlying density, are very useful for both training and choosing the correct
estimates. We shall often use simulated data sets for these purposes.

Now it is time to look at the payoffs. The stream of payoffs is shown in
Figure 1.3a. Probably the only interesting information that may be gained
from this diagram is that only five times was a payoff larger than $600,
with the largest payoff being $869.50.

The by now familiar histograms and the nonparametric estimates are
shown in two other diagrams. Note that here the default histogram (b) looks
reasonable because it shows a frequency distribution with a pronounced
mode describing most typical payoffs and a long right tail describing the
rarer big payoffs. The more detailed histogram (c) is rather confusing: Are
there 3 or even more modes? The nonparametric estimate reasonably well
describes both the dynamics of the data and the flat right tail with large
but rare payoffs.

Let us look at two more periods of this lottery available in the standard
S–PLUS package. Figure 1.4 presents 3 data sets for periods shown in the
titles. What we see resembles the pattern of the simulated sets shown in
Figure 1.2 and confirms our preliminary conclusion that the drawings are
fair.

Figure 1.5 depicts similar descriptive characteristics for the payoffs. Here
we see that while the skewed bell shape of the frequency distributions
remained the same over the years, a very peculiar change occurred in that
the range of the payoffs appeared to be shrinking. Indeed, if during the first
year of the lottery both small and large payoffs were recorded, then over
the years both the smallest and largest payoffs simply disappeared.

In the beginning of this section we raised questions about the fairness of
the drawings and methods to win. We were able to answer the first question,
at least heuristically, via analyzing independently simulated data sets. The
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FIGURE 1.4. Default histograms overlaid by the nonparametric density estimates
of winning numbers in the New Jersey Pick-It lottery for three time periods.
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FIGURE 1.5. Default histograms overlaid by the nonparametric density estimates
of payoffs in the New Jersey Pick-It lottery for three time periods.

answer to the second question is based on the analysis of the relationship
between a picked number and the corresponding payoff (note that if the
drawings are fair, then the only chance to win big is to bet on numbers that
are out of favor among other players). Such a problem is called a regression,
and the regression approach will be considered in the next section. On the
other hand, a probability density approach has its own way to give insight
into such a problem.

Let us for a moment return to the formula (1.1.1). Assume that we
are interested in understanding what is the likelihood that by betting on a
number between 120 and 140 the corresponding payoff will be between $500
and $550. In other words, we would like to think about likelihood of the pair
number–payoff. In this case the set B should be a 2-dimensional rectangle,
and the corresponding density becomes a bivariate density f(x1, x2). The
value of such a density at a point in the x1x2-plane tells us about the
likelihood of the winning number and the payoff occurring in some vicinity
of the point (x1, x2). After all, the winning numbers and the payoffs come
in pairs for each drawing, so it is natural to look at their joint distribution.

Figure 1.6 shows nonparametric estimates (surfaces) for the three sets of
the lottery numbers. These surfaces allow us to make several conclusions.
We see that all the surfaces have a saddle-type shape. Of course, the eye
is drawn to the crests (the lines along the top of the saddles) and to the
summits. The pattern is rather typical, namely, during the first two periods,
picking the smaller or larger number led to nice payoffs, while during the
third period the largest numbers were more generous to the players. Note
that such an outcome is in part due to the observed particular irregularities
in the winning numbers drawn and also due to the fact that to win big a
picked number should be out of favor among other players. This resembles
much more serious (in terms of the amounts of money involved) betting
situations, such as sporting events or stock picking, in which to win really
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FIGURE 1.6. Nonparametric estimates of bivariate densities of the winning num-
bers and payoffs in the New Jersey Pick-It lottery for three time periods. The
density estimates are multiplied by 106.

big, one should not follow the crowd. Figure 1.6 apparently indicates that
not all numbers were equally favorable among the players.

Finally, let us explain the basic idea of how the universal nonparamet-
ric density estimator works, because this, in turn, explains why Chapter
2 is devoted to the purely mathematical subject of orthogonal series
approximation.

Typically, the density f(x) of a continuous random variable X may be
well approximated by a series fJ(x),

fJ(x) :=
J∑

j=0

θjϕj(x), (1.1.2)

as the parameter J becomes large (in this book the notations := and =:
mean “by definition”). Here J is called the cutoff, {ϕj(x), j = 0, 1, . . .}
are some fixed and known functions (typically elements of a classical
orthonormal basis), and the coefficients θj are calculated by the formula

θj =
∫ ∞

−∞
f(x)ϕj(x)dx. (1.1.3)
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Recall that f is the probability density of a random variable X, so by
definition of the expectation,

θj =
∫ ∞

−∞
f(x)ϕj(x)dx =: E{ϕj(X)}. (1.1.4)

Thus, θj is the expectation of the random variable ϕj(X), and then a
natural estimate of θj is the sample mean θ̂j := n−1 ∑n

l=1 ϕj(Xl).
Finally, a series estimate with cutoff J is

f̂J(x) :=
J∑

j=0

θ̂jϕj(x). (1.1.5)

This is the basic idea of an orthogonal series approach used to construct
a universal nonparametric estimate.

1.2 Nonparametric Regression

A classical model of nonparametric regression is defined as follows. We
observe n pairs {(X1, Y1), . . . , (Xn, Yn)}, and it is supposed that

Yl = f(Xl) + εl, l = 1, 2, . . . , n, (1.2.1)

where ε1, . . . , εn are iid realizations of a random variable (error) ε with
zero mean and finite variance. The problem is to estimate the regression
function f . The variables Xl are referred to as the design points (predictors
or independent variables), while Yl are referred to as responses (or dependent
variables). Design points may be either iid realizations of a random variable
X or fixed deterministic points; the former model is called random design
regression and the latter fixed design regression.

As with nonparametric density estimation, one of the main aims of non-
parametric regression is to highlight an important structure in the data
without any assumption about the data. In other words, the nonparametric
approach allows the data speak for themselves.

Now we are in a position to answer the question raised in the previous
section about a winning strategy for picking the numbers in the New Jer-
sey Lottery. Since the winning numbers and the payoffs come in pairs, to
gain information about the structure and a possible relationship between
these two variables, it is helpful to construct a scattergram for the data.
Such a plot, also called a scatter plot or scatter diagram, exhibits pairs of
observations as points in the xy-plane. The hope is that by analyzing such
graphs where one variable is plotted versus another, some kind of a pattern
or relationship may be discovered.

Scatter plots for the three periods of the New Jersey lottery, where win-
ning numbers are considered as predictors and payoffs as responses, are
shown in Figure 1.7. Ignore, for a moment, the solid lines superimposed on
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FIGURE 1.7. Nonparametric regression estimates superimposed on the winning
number-payoff scatter plots for the 3 periods of the New Jersey Pick-It lottery.

the scatter plots, and try to answer the following questions. Can you see
any structure in the data? Does the payoff depend on the winning num-
ber? Can you suggest a winning strategy? Perhaps some help is needed to
answer all these questions, so let us look at the nonparametric regression
estimates (these estimates are based on the same idea discussed at the end
of Section 1.1) shown by the solid lines. Now it is simpler to recognize some
patterns in the data sets. We see that during all these years, on average, the
smallest and largest numbers were most generous to the players. During
the onset of the game (the first period) the smallest numbers were overall
the best bet, and the largest just a bit behind. Note that this conclusion
is not related to the phenomenon, discussed in the previous section, that
smaller winning numbers were drawn more often during that period. Here
we consider an average payoff given a winning number, and the only fact
that matters here is that few players picked small or large numbers during
the first year of the lottery. Probably, the players were reluctant to bet on
numbers like 003 or 998.

Note that the solid lines may be used to analyze the preferences of players
during these periods to choose this or that number. Namely, they are in-
versely proportional to the likelihood for a number to be chosen by a player.
Thus, for instance, the numbers near the minimum of the nonparametric
estimate were most popular among the players.

Let us use this approach to see what was the mood among the players
during the next years. The second year of the lottery is shown in the middle
diagram, and we see that the least favorable numbers were the largest, while
the most popular were around 250. Note that while during the second
year there was no shift in the players’ opinion about what numbers to bet
on (of course, on numbers close to 250!), more players decided to bet on
smaller numbers and numbers around 600, so now the solid curve has no
pronounced mode near 600.
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FIGURE 1.8. Nonparametric regression estimates superimposed on the payoff-
winning number scatter plot for the New Jersey Pick-It lottery.

Finally, 5 years after the inception of the lottery it looks as if everyone
was a bit tired; see the right diagram of Figure 1.7. No longer was there a
consensus among the players about what was a lucky number (while still
they preferred numbers from 250 to 500). There was again a bit of bias
toward larger numbers, but it was absolutely minor in comparison with the
second year.

Another curious regression is the inverse one where the payoff is the
predictor and the winning number is the response. The point of such a
regression is that knowing a payoff, one wants to make a bet on an average
winning number. The corresponding scatter plots, overlaid by the nonpara-
metric estimates, are shown in Figure 1.8. As we see, the nonparametric
estimates tell us that knowing a payoff does not help us to choose the corre-
sponding winning number. There is additional interesting information that
may be gained from these nonparametric estimates. Note that these hori-
zontal estimates show us the average winning numbers. Thus, we see that
on average the winning numbers were slightly above 400 during the first
period (do you recall the nonparametric estimate in Figure 1.1?), then the
average winning number jumped slightly above 500 during the next period
(do you recall the nonparametric estimate for this period in Figure 1.4?),
and finally it settled down near the expected 500 (again recall the nonpara-
metric estimate shown in Figure 1.4). This remark ends our introductory
discussion of the lottery data; see more in Section 3.8.

1.3 Time Series Analysis

Time series analysis is probably the most exciting topic in nonparametric
curve estimation. A typical nonparametric problem is the classical decom-
position of a realization of a time series into a slowly changing function
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known as a “trend component,” or simply trend, a periodic function referred
to as a “seasonal component,” and finally a “random noise component,”
which in terms of the regression theory should be called the time series of
residuals.

The problem of finding a trend may be solved by the methods of nonpara-
metric regression. Estimation of a seasonal component is more involved,
since its period is unknown. Here the nonparametrics shines again because
the spectral density is the tool to search after the periods. Namely, for a
discrete stationary time series {Xt, t = 1, 2, . . .} with zero mean and finite
variance, under mild assumptions the spectral density f(λ) at the frequency
λ is defined as

f(λ) := (2π)−1θ0 + π−1
∞∑

j=1

θj cos(jλ), −π < λ ≤ π, (1.3.1)

where θj = E{XtXt+j} is the covariance at lag j. Then, if the spectral
density has a mode at frequency λ∗, then this may indicate a seasonal
component with the period

T ∗ = 2π/λ∗. (1.3.2)

Thus, to find the period of a seasonal component one should first es-
timate the spectral density. It is apparent how to apply the orthogonal
series approach to this problem: The basis is given (here it is the cosine
basis), and Fourier coefficients are expressed as the mathematical expec-
tation. Thus, if n realizations X1, X2, . . . , Xn are given, then the familiar
empirical covariance,

θ̂j = n−1
n−j∑
l=1

XlXl+j , (1.3.3)

may be used as an estimator of θj .
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FIGURE 1.9. Rainfall data for New York City.
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Let us see how this idea works. As an example, consider the time series
of New York City’s annual rainfall from 1896 to 1957 (the data file is
rain.nyc1). In Figure 1.9 the data are shown. The diagram nicely presents
the dynamics of the rainfall over the years. Recall that traditional weather-
related questions are about patterns: Is there any pronounced pattern in
the rainfall? Does the rainfall decrease or increase with passing years? Is
the weather more volatile now than it was ten (twenty, sixty, etc.) years
ago?

Even using the nice presentation of the data in Figure 1.9, it is not clear
how to answer these questions. So below, the answers are exhibited using
the approach of Chapter 5.

The first two diagrams in Figure 1.10 repeat the data set using different
formats. Diagram 1.10.3 shows us the estimated trend. It tells us that no
global change has occurred over those years. We also see that on average
New York City had about 42.3 inches of rainfall per year.

Diagram 1.10.4 shows us the data minus the estimated trend (called
detrended data). Here the fun begins. Do you see any periodic component
here that represents a pattern with a reasonably small period, say between
4 and 12 years? Probably the answer is “no.”

This is the place where the nonparametric spectral density estimate may
shine. This estimate is shown in diagram 1.10.5, and you can see the pro-
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FIGURE 1.10. Nonparametric analysis of rainfall data for New York City.
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nounced mode near the frequency 1.05. The period, estimated by formula
(1.3.2), is 5.97, and it is shown in the subtitle.

As soon as the period is known, we may estimate the underlying seasonal
component. It is shown in diagram 1.10.6. Note that its range is about 5
inches, so for New York City this is about 12 percent of its average rainfall.
Of course, this is a minor phenomenon for New York City’s rainfall. On
the other hand, think about the stock market, where you can recognize a
12 percent seasonal component!

Of course, the data set is relatively small, and this may play a joke on us.
However, the message of this example is clear: The nonparametric approach
may allow us to find a “needle in a haystack.”

The diagrams 7–8 allow us to analyze the residuals. They will be
explained in Chapter 5.

One of the most powerful mathematical tools invented quite recently
for approximation of spatially inhomogeneous curves and images is
wavelets. They are just very special orthonormal elements and may be
straightforwardly used in our series approach.

Let us see how the nonparametric wavelet estimate, which will be dis-
cussed in Section 4.4, performs for the famous sunspots data set, which
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FIGURE 1.11. Wavelet decomposition of monthly sunspot data. The top time
series, which starts at January 1749, is the sum of the other two.
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contains monthly means of daily numbers of sunspots. The time series starts
at January 1749, and here we consider the case of 1024 consecutive months.

The top diagram in Figure 1.11 shows us the complexity of this time
series. The wavelet estimate, shown in the middle diagram, does a remark-
able job in exhibiting the main structure of the data, and it preserves all
but fine details. The residuals are remarkably small; only during extremely
volatile periods do they exceed 10 spots. We can think about the sunspots
time series as being synthesized by two different instruments, similar to a
musical orchestration that is the sum of notes from each instrument. As
we discussed earlier, such a decomposition of a time series (a sound) into
components (notes) is the main approach of the time series theory. And the
nonparametric approach plays an important role in such a decomposition.
Note that here you can see a pronounced periodic component (modulated
in time) with a period about 130 months. The period is too large for the
monthly data frame, but it is perfect for the annual data frame, where the
period is about 11 years.

Finally, this chapter is the only one that does not contain a section
with exercises. To compensate for such an omission, consider the following
problem. Many famous scientists and philosophers have conjectured that
the history of our civilization has been greatly affected (and even predeter-
mined) by the sun’s activity (this is why the count of sunspots goes back to
the eighteenth century). In other words, such events as wars, riots, revolu-
tions, as well as periods of prosperity and peace, are highly correlated with
the sunspot numbers. Use your knowledge of history and test this theory.



2
Orthonormal Series and
Approximation

The orthonormal series approach is the primary mathematical tool for
approximation, data compression, and presentation of curves used in all
statistical applications studied in Chapters 3–7. The core topics are given
in the first two sections. Section 2.1 considers series approximations via
visualization, and Section 2.2 gives a plain introduction in how fast Fourier
coefficients can decay. Among special topics, Section 2.3 is devoted to a
more formal discussion of the mathematics of series approximation, and it
is highly recommended for study or review. Reading other special sections
is optional and can be postponed until they are referred to in the following
chapters.

2.1 Introduction to Series Approximation

In this section three particular orthonormal systems are introduced and
discussed via visualization of their approximations. The first one is the
cosine system that will be the main tool in the following chapters. The
second one is a polynomial system based on orthonormalization of the
powers {1, x, x2, . . .}; this system is an excellent tool for approximating
polynomial curves. The third one is a Haar system, which is a good tool
for approximation of discontinuous functions; this basis is also of special
interest because it is the simplest example of wavelets, which are relative
newcomers to the orthogonal series scene.
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FIGURE 2.1. The corner functions. {This set may be seen on the monitor by
calling (after the S–PLUS prompt) > ch2(f=1). A corner function may be
substituted by a custom-made one, see explanation in the caption of Figure 2.3.}

For the performance assessment, we choose a set of corner (test) func-
tions. Corner functions should represent different functions of interest that
are expected to occur in practice. In this book eight specific corner func-
tions with some pronounced characteristics are used, and they are expected
to be approximated quite well or quite poorly by different systems. The set
is shown in Figure 2.1.

To make all statistical simulations as simple as possible, the corner
functions are some specific probability densities supported on [0, 1]. They
are defined via uniform and normal (dµ,σ(x) := (2πσ2)−1/2e−(x−µ)2/2σ2

)
densities or their mixture.

Below, each of the corner functions is briefly discussed. These functions
are arranged in order of the decreasing smoothness of their 1-periodic
continuations.
1. Uniform. This is a uniform density on [0, 1], that is, f1(x) := 1. The Uni-
form is the smoothest 1-periodic function in our set, and we shall see that
despite its triviality, neither its approximation nor statistical estimation
is elementary. Moreover, this function plays a central role in asymptotic
theory, and it is an excellent tool for debugging different types of errors.
2. Normal. This is a normal density with mean 0.5 and standard deviation
0.15, that is, f2(x) := d0.5,0.15(x). The normal (bell-shaped) curve is the
most widely recognized curve. Recall the rule of three standard deviations,
which states that a normal density dµ,σ(x) practically vanishes whenever
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|x − µ| > 3σ. This rule helps us to understand the curve. It also explains
why we do not divide f2 by its integral over the unit interval, because this
integral is very close to 1.
3. Bimodal. This is a mixture of two normal densities, f3(x) :=
0.5d0.4,0.12(x) +0.5d0.7,0.08(x). The curve has two pronounced and closely
located modes, which why the curve is included in the set.
4. Strata. This is a function supported over two separated subintervals.
In the case of a density, this corresponds to two distinct strata in the
population. This is what differentiates the Strata from the Bimodal. The
curve is obtained by a mixture of two normal densities, namely, f4(x) :=
0.5d0.2,0.06(x) + 0.5d0.7,0.08(x). (Note how the rule of three standard devi-
ations was used to choose the parameters of the normal densities in the
mixture.)
5. Delta. The underlying idea of the next curve is to have an extremely
spatially inhomogeneous curve that vanishes over the entire interval except
for an extremely small region at the center (x = 0.5) where the function
is very large. Such a function resembles many practical situations where a
short but abrupt deviation from a normal process occurs. The Delta mimics
the theoretical delta function, which has zero width and is integrated to 1.
The Delta is defined as a normal density with very small standard deviation,
f5(x) := d0.5,0.02(x).
6. Angle. This is a function whose 1-periodic continuation is continuous
and extremely smooth except of the points x = k and x = k + 0.5,
k = 0,±1, . . . , where the derivative changes sign. The Angle is f6(x) :=
(1/0.16095)d1,0.7(x) if 0 ≤ x ≤ 0.5 and f6(x) := (1/0.16095)d0,0.7(x) if
0.5 < x ≤ 1.
7. Monotone. This function is smooth over the interval, but its 1-periodic
continuation has a jump at all integers x. We shall see that this makes
approximation of such a function challenging due to boundary effects.
This also explains why the Monotone is ranked number 7 among the sug-
gested corner functions. The Monotone is defined by the formula f7(x) :=
d2,0.8(x)/

∫ 1
0 d2,0.8(u)du.

8. Steps. This is the least smooth function in our set. The function is chal-
lenging for smooth series like a trigonometric or polynomial one. Moreover,
its approximation is not rosy even for wavelets. The name of the function
is clear from the graph. The Steps is defined by f8(x) := 0.6 for 0 ≤ x < 1

3 ,
f8(x) := 0.9 for 1

3 ≤ x < 3
4 and f8(x) := 204

120 for 3
4 ≤ x ≤ 1.

Now, let us recall that a function f(x) defined on an interval (the do-
main) is a rule that assigns to each point x from the domain exactly one
element from the range of the function. Three traditional methods to define
a function are a table, a formula, and a graph. For instance, we used both
formulae and graphs to define the corner functions.

The fourth (unconventional) method of describing a function f(x) is via
a series expansion. Suppose that the domain is [0, 1]. Then
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f(x) =
∞∑

j=0

θjϕj(x), where θj =
∫ 1

0
f(x)ϕj(x)dx . (2.1.1)

Here the functions ϕj(x) are known, fixed, and referred to as the orthonor-
mal functions or elements of the orthonormal system {ϕ0, ϕ1, . . .}, and the
θj are called the Fourier coefficients (for a specific system we may use
the name of the system in place of “Fourier”; for instance, for a Haar
system we may refer to θj as Haar coefficients). A system of functions
is called orthonormal if the integral

∫ 1
0 ϕs(x)ϕj(x)dx = 0 for s �= j and∫ 1

0 (ϕj(x))2dx = 1 for all j. Examples will be given below.
Note that to describe a function via an infinite orthogonal series expan-

sion (2.1.1) one needs to know the infinite number of Fourier coefficients.
No one can store or deal with an infinite number of coefficients. Instead, a
truncated (finite) orthonormal series (or so-called partial sum)

fJ(x) :=
J∑

j=0

θjϕj(x) (2.1.2)

is used to approximate f . The integer parameter J is called the cutoff.
The advantage of this approach is the possibility of an excellent compres-

sion of the data. In statistical applications this also leads to the estimation
of a relatively small number of Fourier coefficients. Roughly speaking, the
main statistical issue will be how to choose a cutoff J and estimate Fourier
coefficients θj . Thus, the rest of this section is devoted to the issue of how a
choice of J affects visualization of series approximations. This will give us
a necessary understanding and experience in choosing reasonable cutoffs.

Below, several orthonormal systems are introduced and then analyzed
via the visualization of partial sums.

Cosine orthonormal system on [0, 1]. The elements are

ϕ0(x) := 1 and ϕj(x) :=
√

2 cos(πjx) for j = 1, 2, . . . . (2.1.3)
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FIGURE 2.2. The first four elements of the cosine system. {Recall that any 4 (or
fewer) elements may be visualized using the argument set.j.} [set.j = c(0,1,2,3)]
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The first four elements are shown in Figure 2.2. It is not easy to believe
that such elements may be good building blocks for approximating different
functions, but surprisingly, they do a good job in approximation of smooth
functions.

To visualize partial sums, several particular cutoffs, namely J = 3, J = 5,
and J = 10, are chosen. Then Fourier coefficients are calculated by (2.1.1),
and the partial sums (2.1.2) are shown in Figure 2.3. (Note that here and
in what follows an underlying corner function is always shown by the solid
line. As a result, all other curves are “hidden” behind a solid line whenever
they coincide.)

Consider the partial sums shown. The Uniform is clearly described by
the single Fourier coefficient θ0 = 1, all other θj being equal to zero be-
cause

∫ 1
0 ϕj(x)dx = 0 whenever j > 0 (recall that the antiderivative,

see the definition below at (2.1.4), of cos(πjx) is (1/πj) sin(πjx); thus∫ 1
0

√
2 cos(πjx)dx =

√
2(πj)−1[sin(πj1) − sin(πj0)] = 0 for any positive

integer j). Thus, there is no surprise that the Uniform is perfectly fitted
by the cosine system—after all, the Uniform corner function is the first
element of this system.

Approximation of the Normal is a great success story for the cosine
system. Even the approximation based on the cutoff J = 3, where only 4
Fourier coefficients are used, gives us a fair visualization of the underlying
function, and the cutoff J = 5 gives us an almost perfect fit. Just think
about a possible compression of the data in a familiar table for a normal
density into only several Fourier coefficients.

Now let us consider the approximations of the Bimodal and the Strata.
Note that here partial sums with small cutoffs “hide” the modes. This
is especially true for the Bimodal, whose modes are less pronounced and
separated. In other words, approximations with small cutoffs oversmooth
an underlying curve. Overall, about ten Fourier coefficients are necessary
to get a fair approximation. On the other hand, even the cutoff J = 5 gives
us a correct impression about a possibility of two modes for the Bimodal
and clearly indicates two strata for the Strata. The cutoff J = 10 gives us
a perfect visualization except for the extra mode between the two strata.
This is how the cosine system approximates a constant part of a function.
We shall see the same behavior in other examples as well.

The approximations of the Delta allow us to summarize the previous
observations. The partial sum with J = 3 oversmooths the Delta. Approxi-
mations with larger cutoffs do a better job in the visualization of the peak,
but the valley is approximated by confusing oscillations (“wiggles”). This
corner function allows us to gain necessary experience in “reading” cosine
approximations. Note that the wiggles are “suspiciously” symmetric about
x = 0.5, which is the point of the pronounced mode. This will always be the
case for approximating a function like the Delta. This is how a trigonomet-
ric approximation “tells” us about a spatially inhomogeneous underlying
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FIGURE 2.3. Approximation of corner functions (solid lines) by cosine series:
dotted, short-dashed, and long-dashed lines correspond to cutoffs J = 3, J =
5, and J = 10, respectively. The 6th function is custom-made. {The optional
argument CFUN allows one to substitute a corner function by a custom-made
corner function. For instance, the choice CFUN = list(3, ′′2 ∗ x − 3 ∗ cos(x) ′′)
implies that the third corner function (the Bimodal) is substituted by the positive
part of 2x−3 cos(x) divided by its integral over [0,1], i.e., the third corner function
will be (2x − 3 cos(x))+/

∫ 1

0
(2u − 3 cos(u))+du. Any valid S–PLUS formula in x

(use only the lower case x) may be used to define a custom-made corner function.
This option is available for all Figures where corner functions are used. Only for
this figure to visualize approximations of the Angle set CFUN=list(6,NA). The
choice of cutoffs is controlled by the argument set.J. The smaller number of
approximations may be used to make curves more recognizable. On the other
hand, even 4 curves are well recognizable on a color monitor. Try > ch2(f=0)
to test colors. [set.J = c(3,5,10), CFUN = list(6, ′′2 − 2 ∗ x − sin(8 ∗ x) ′′)]

function. Note that here even the cutoff J = 10 is not enough for a good
representation of the Delta. Clearly the cosine system is not very good
for approximation of this particular corner function. On the other hand,
if it is known that an underlying function is nonnegative, then a projec-
tion onto the class of nonnegative functions creates a dramatically better
visualization. This will be discussed in detail in Section 3.1.

The approximations of the custom-made function are fairly good even
for J = 3 (of course, the representation of the tails needs more Fourier
coefficients). Let us use this particular example to discuss the approxima-
tion of a function near the boundary points. As we see, the partial sums
are flattened out near the edges. This is because derivatives of any partial
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sum (2.1.2) are zeros at the boundary points (derivatives of cos(πjx) are
equal to −πj sin(πjx) and therefore they are zero for x = 0 and x = 1). In
other words, the visualization of a cosine partial sum always reveals small
flat plateaus near the edges (you could notice them in all previous approx-
imations as well). Increasing the cutoff helps to decrease the length of the
plateaus and improve the visualization. This is the boundary effect, and we
shall discuss in Section 2.6 how to overcome it.

A similar situation occurs for the Monotone. Here the only reason to
increase the cutoff is to diminish the boundary effect.

The approximations of the Steps are not aesthetically appealing, to say
the least. On the other hand, it is the purpose of this corner function to
“explain” to us how the cosine partial sums approximate a piecewise con-
stant function. In particular, let us look at the long-dashed line, which
exhibits overshoots of the steps in the underlying function. This is the fa-
mous Gibbs phenomenon, which has to do with how poorly a trigonometric
series converges in the vicinity of a jump. The natural conjecture would be
that the overshoots vanish as J → ∞, but surprisingly, this does not take
place (actually, that overshoots are proportional to a jump).

Note that while cosine approximations are not perfect for some cor-
ner functions, understanding how these partial sums perform may help
us to “read” messages of these approximations and guess about underlying
functions. Overall, for the given set of corner functions, the cosine system
does an impressive job in both representing the functions and the data
compression.

Polynomial orthonormal system on [0, 1]. This is probably the most
familiar system of functions {ϕj(x) =

∑j
l=0 ajlx

l, j = 0, 1, 2, . . .}. Here j is
called the degree of the polynomial ϕj , and the coefficients {ajl} are chosen
in such a way that the polynomials are orthonormal.

The underlying idea of this system is as follows. It is absolutely nat-
ural to approximate a function by a linear combination of the power
functions 1, x, x2, . . . (this resembles the idea of a polynomial regres-
sion). Unfortunately, the power functions are not orthonormal. Indeed,
recall that the antiderivative G(x) of xk is equal to xk+1/(k + 1), so∫ 1
0 xkdx = G(1) − G(0) = (k + 1)−1; see (2.1.4) below. On the other hand,

the power functions may be used as building blocks for creating a poly-
nomial orthonormal system using the Gram–Schmidt orthonormalization
procedure discussed in detail in Section 2.3.

The Gram–Schmidt procedure is very simple and performs as follows.
The first function is normalized and becomes the null element of the poly-
nomial basis, namely, ϕ0(x) := 1/[

∫ 1
0 12dx]1/2 = 1. The first element ϕ1(x)

is calculated using x and ϕ0(x) by the formula

ϕ1(x) :=
x − (

∫ 1
0 ϕ0(u)udu) ϕ0(x)

[
∫ 1
0 (v − (

∫ 1
0 ϕ0(u)udu) ϕ0(v))2dv]1/2

.
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FIGURE 2.4. The first four elements of the polynomial system. {Recall that the
information in the square brackets tells us that any 4 (or fewer) elements of this
system may be visualized using the argument set.j.} [set.j=c(0,1,2,3)]

A straightforward calculation shows that ϕ1(x) =
√

3(2x − 1). Then any
other element is defined by recursion. For instance, to find the element
ϕj(x), all previous elements are to be calculated, and then ϕj is defined
via the previous elements and xj by

ϕj(x) :=
xj −∑j−1

l=0 (
∫ 1
0 ujϕl(u)du)ϕl(x)

[
∫ 1
0 (vj −∑j−1

l=0 (
∫ 1
0 ujϕl(u)du)ϕl(v))2dv]1/2

.

The first four elements of the polynomial orthonormal system are shown
in Figure 2.4.

Note that the idea of the direct approximation of f by a power series∑J
j=0 bJjx

j is so natural and so appealing that it is worthwhile to explain
why in place of a power series the orthonormal series is recommended. The
only (but absolutely crucial) reason is the simplicity in calculating polyno-
mial coefficients θj . Indeed, we can always write fJ(x) =

∑J
j=0 θjϕj(x) =∑J

j=0 bJjx
j . The power series clearly looks simpler and more natural. On

the other hand, its coefficients bJj should be calculated for every J , and
there is no simple formula for doing this. Actually, probably the best way
to find bJj is first to calculate θj (note that they do not depend on the
cutoff J !) and then use them for calculating bJj .

Prior to the discussion of the partial sums of the polynomial system, it
is worthwhile to explain how Fourier coefficients θj can be calculated for a
particular underlying f . The fundamental theorem of calculus states that
for a function g(x) continuous on [0, 1],∫ 1

0
g(x)dx = G(1) − G(0), (2.1.4)

where G(x) is an antiderivative of g, that is, dG(x)/dx = g(x), x ∈ [0, 1].
Thus, if an antiderivative for f(x)ϕj(x) is known, then a calculation of
the Fourier coefficient θj =

∫ 1
0 f(x)ϕj(x)dx is elementary. Unfortunately,

in many cases antiderivatives are unknown, and this natural approach can-
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not be used. Also, we should always keep in mind statistical applications
where an underlying function is unknown and, typically, only its noisy
observations at some particular points are given.

Thus, instead of (2.1.4), a numerical integration based on values of a
function at some points may be of a special interest. As an example, con-
sider the widely used trapezoid rule for numerical integration. Let h = 1/N
and xk = kh for k = 0, 1, . . . , N . Assume that the second derivative φ(2) of
the function φ is continuous. Then it is possible to show that for some x∗

in [0, 1] the following formula holds:∫ 1

0
φ(x)dx = [(h/2)(φ(x0) + 2φ(x1) + 2φ(x2) + · · · + 2φ(xN−1) + φ(xN ))]

− (1/(12N2))φ(2)(x∗). (2.1.5)

The first term on the right side gives us the trapezoid rule, and the second is
called the discretization (or numerical) error. Note that the discretization
error decreases proportionally to 1/N2.

As you see, to implement the trapezoid formula it is sufficient to know
values of f at N + 1 equidistant points. Also, the formula is simple. Of
course, a numerical error will be presented. On the other hand, for our
purposes of understanding how partial sums perform, these errors can be
considered as a positive phenomenon. Indeed, in all statistical applications
Fourier coefficients are estimated with some stochastic errors. Here we do
not have them, but the numerical errors can simulate for us the effect of
stochastic ones. As a result, we shall gain experience in dealing with partial
sums whose Fourier coefficients are contaminated by errors.

The trapezoid rule has been used to calculate the polynomial coefficients
(with N = 300) for the corner functions; these polynomial approximations
are shown in Figure 2.5. The eye is drawn to the partial sums for the
Uniform. The Uniform serves as an excellent test for debugging all possible
errors because we know for sure that all partial sums are to be identical to
the underlying function (indeed, the Uniform should be perfectly matched
by ϕ0(x) = 1). But what we see is rather puzzling because only the partial
sum with the cutoff J = 3 gives us a fair representation of the curve.
Moreover, the approximations perform inversely to our expectations and
previous experience, where larger cutoffs meant better approximation. The
reason is the numerical errors, and we see how they affect the partial sums.
Note that a larger cutoff implies a larger number of calculated coefficients
and therefore a larger cumulative error. This is clearly seen in Figure 2.5.1.
Thus, in the presence of errors, an optimal cutoff is not necessarily the
largest, and a choice of an optimal cutoff is based on a compromise between
a fair approximation and cumulative errors due to incorrectly calculated
polynomial coefficients. We shall see that this is also the main issue for all
statistical settings where stochastic errors are inevitable.
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FIGURE 2.5. Approximation of the corner functions (solid lines) by polynomial
series: Dotted, short-dashed, and long-dashed lines correspond to cutoffs J = 3,
J = 5, and J = 10, respectively. [set.J=c(3,5,10)]

Among other approximations shown in Figure 2.5, it is worthwhile to
mention the exceptionally good approximation of the Monotone. Here even
J = 3 gives us a perfect approximation. Also, we see that the polynomial
basis has its own boundary effects, and they can be pronounced.

Haar orthonormal system on [0, 1]. This system is of special interest
because it is a good tool to approximate piecewise constant functions and
it is the simplest example of wavelets. It is easier to draw elements of the
Haar system than to define them by formulae; in Figure 2.6 the first four
elements are shown.

The wavelet literature refers to the function F (x) as the scaling or wavelet
father function and to M(x) as the wavelet function or wavelet mother
function. Note that the mother function is integrated to zero, while the
father function is integrated to one. The name mother is motivated by
the fact that all other elements are generated by the mother function. For
instance, the next two elements shown in Figure 2.6 are

√
2M(2x) and√

2M(2x − 1). Already you have seen the two essential operations for cre-
ating the elements: translation and dilation. Translation is the step from
M(2x) to M(2x − 1), while dilation is from M(x) to M(2x). Thus, start-
ing from a single mother function, the graphs are shifted (translated) and
compressed (dilated). The next resolution level (scale) contains functions
2M(22x), 2M(22x − 1), 2M(22x − 2), and 2M(22x − 3). Note that each of
these four functions is supported on an interval of length 1

4 . This procedure
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FIGURE 2.6. The first four functions of Haar system. In the title a = 21/2.

may be continued, and in the end we get a Haar system with elements F (x)
and Mjk(x) := 2j/2(2jx − k), j = 0, 1, . . . and k = 0, . . . , 2j − 1. Here j
denotes the resolution level, and k denotes the shift.

Elements of a Haar system are localized; for instance, Mjk(x) is supported
on [2−jk, 2−j(k+1)]. This is what makes them so special. In short, one can
expect that Haar elements will be good building blocks for approximation
of nonsmooth functions.

It is customary to write the Haar partial sum as

fJ(x) := θ0F (x) +
J∑

j=0

2j−1∑
k=0

θjkMjk(x). (2.1.6)

Here J is the maximum multiresolution level (or the number of multires-
olution components or scales), and thus 2J+1 Haar coefficients are used. In
other words, a Haar partial sum may be based on 2, 4, 8, 16, etc. terms.
Typically, only a small portion of Haar coefficients is significant, and all
others are negligibly small. This implies good data compression.

The Haar system is so simple that we can even guess the Haar coefficients.
For instance, let f(x) be equal to 1 on the interval [0, 1

4 ] and vanish beyond
the interval. Try to guess how to approximate the function by the elements
shown in Figure 2.6. (This is a nice puzzle, and the answer is f(x) =
0.25F (x) + 0.25M(x) + 0.5M(2x); of course, we can always solve such a
puzzle using the formula (2.1.1).)

Figure 2.7 shows how a Haar system approximates the corner functions:
the dotted line is based on 16 Haar coefficients (J = 3), and the short-
dashed line on 64 Haar coefficients (J = 5). We see that the trapezoid
rule of numerical integration gives relatively large numerical errors. Here
we again do nothing to improve the numerical method of integration (later
we shall use the toolkit S+WAVELETS for accurate calculation of these
coefficients).

A promising case is the approximation of the Delta function. The lo-
calized Delta is almost perfectly (apart of its magnitude and smoothness)
represented by the Haar partial sum with J = 5 due to the localized prop-



28 2. Orthonormal Series and Approximation

1.  Uniform

0.0 0.2 0.4 0.6 0.8 1.0

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

2.  Normal

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.  Bimodal

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

4.  Strata

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

5.  Delta

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

6.  Angle

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
0

1.
2

1.
4

7.  Monotone

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

8.  Steps

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

FIGURE 2.7. Approximation of the corner functions (solid lines) by the Haar
basis: Dotted and short-dashed lines correspond to the number of multiresolution
scales J = 3 and J = 5, respectively. [set.J=c(3,5)]

erty of Haar elements. The Strata is also nicely approximated, and again
this is due to the localized nature of Haar elements.

With all other corner functions the situation is not too rosy, and the main
issue is not even the nonsmooth approximations but the large number of
Haar coefficients necessary to get a fair approximation.

An interesting example is the case of the Steps. By all means, it should be
the exhibition case for the Haar system. But we see that while the second
jump is perfectly shown (let us ignore the numerical errors), this is not
the case for the first jump. The issue is that the second jump is perfectly
positioned at the point x = 3

4 , while the first jump is positioned at the point
x = 1

3 , which cannot be matched by any dyadic Haar element. Thus, a Haar
approximation is forced to use a sequence of elements to approximate the
first jump. The important conclusion from the Steps is that even a piecewise
constant function cannot be perfectly fitted by the Haar system whenever
it has a jump at a point different from 2−l, l = 0, 1, . . ..

To analyze Haar coefficients, the S+WAVELETS module of S–PLUS
has two built-in functions: dwt and mra. The former computes the discrete
wavelet transform and allows us to visualize Haar coefficients at differ-
ent resolution levels. The latter computes the multiresolution analysis and
allows us to visualize a set of multiresolution approximations.

Figure 2.8 illustrates the analysis of the Normal and the Steps corner
functions based on 64 = 26 equidistant values of the corner functions.
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FIGURE 2.8. Haar coefficients and multiresolution approximations of the Normal
and the Delta functions by the Haar system. Approximations are based on 2L

equidistant values of the functions; the default is L = 6. {The set of approximated
corner functions is controlled by the argument set.cf. Recall that before using
any figure with wavelets, the S+WAVELETS module should be loaded using the
command > module(wavelets) at the S–PLUS prompt.} [set.cf =c(2,5), L=6]

These plots are standard in S+WAVELETS, so let us explain how to read
them. The first column of plots shows locations and magnitudes of Haar
coefficients for the Normal. The top graph (idwt) shows the underlying
curve; you can see that this is indeed the Normal. The bottom of the first
column shows a magnitude of the Haar coefficient for the father function
(see row s6). The Haar coefficient θ00 for the mother function should be
shown in row d6, but the Normal function is symmetric about 0.5, so this
coefficient is zero and thus not shown. In row d5 we see both approximate
locations of elements and magnitudes of corresponding Haar coefficients for
M1,0 and M1,1, etc.

The second column of plots illustrates multiresolution approximations.
Row S6 shows the approximation by the father function. This approxi-
mation is often referred to as the low-frequency approximation. Because
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θ00 = 0, the approximation f0(x), shown in row S5, is the same as the low-
frequency approximation S6. The Haar partial sum with J = 1 is shown in
row S4, with J = 2 in S3, with J = 3 in S2, and with J = 4 in S1. Finally,
the approximated function is shown in the top row called Data. Note that
the approximation with J = 5, which includes the finest elements with the
Haar coefficients shown in d1, is not exhibited.

Similarly, the third and fourth columns show Haar coefficients and partial
sums for the Delta.

These diagrams allow us to count the number of Haar coefficients needed
for a “good” approximation of the curves. Let us begin with the Normal.
Probably, the approximation S1 (which corresponds to J = 4) may be
considered as a good one, and then 2J+1 = 32 Haar coefficients should be
calculated. However, we see that only 24 of them are significant (to get the
number 24, just calculate the total number of coefficients shown in rows s6
and d6–d2). Thus, for the Normal curve the Haar system compresses the
data essentially worse than the cosine or polynomial bases (just look again
at Figure 2.3, where only 6 Fourier coefficients give us an almost perfect
approximation and 4 Fourier coefficients give us a good visualization). Also,
Haar approximation S3, based on 7 Haar coefficients, is a caricature of the
Normal.

The outcome is quite the opposite for the Delta. Here just 9 Haar
coefficients give us a fair visualization S1.

What is the conclusion? We see that there is no magical orthonormal
system. Roughly speaking, smooth functions are better approximated by
smooth elements, and thus cosine or polynomial systems can be recom-
mended; nonsmooth functions may be better approximated by Haar or
other wavelet systems. On the other hand, knowledge of how a particular
system approximates a function allows us to recognize a pattern and then,
if necessary, change the system. This is the reason why it is worthwhile to
know both approximation properties of a particular orthonormal system
and different orthonormal systems oriented on approximation of a specific
type of function.

2.2 How Fast Fourier Coefficients May Decrease

The previous section introduced us to the world of orthonormal series
approximations via visualization of partial sums for 8 corner functions.
Another possible approach is a theoretical one that allows us to analyze
simultaneously large classes of functions f that are square integrable on
[0, 1], i.e., when

∫ 1
0 f2(x)dx < ∞. This approach is based on the famous

Parseval identity. For the cosine or polynomial orthonormal systems this
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identity is written as ∫ 1

0
(f(x) − fJ(x))2dx =

∑
j>J

θ2
j , (2.2.1)

where fJ is the partial sum (2.1.2), and for the Haar system as

∫ 1

0
(f(x) − fJ(x))2dx =

∑
j>J

2j−1∑
k=0

θ2
jk, (2.2.2)

where here fJ is the partial sum (2.1.6).
Thus, the faster Fourier coefficients decrease, the smaller cutoff J is

needed to get a good global approximation of f by a partial sum fJ(x)
in terms of the integrated squared error (ISE). Note that in nonparametric
statistics the ISE is customarily called the integrated squared bias (ISB).

The aim of this section is to explain the main characteristics of a function
f that influence the rate at which its Fourier coefficients decrease.

First, let us begin with the cosine system. We would like to understand
what determines the rate at which Fourier coefficients θj =

∫ 1
0

√
2 cos(πjx)

f(x)dx of an integrable function f decrease as j → ∞.
To analyze θj , let us recall the technique of integration by parts. If u(x)

and v(x) are both differentiable functions, then the following equality, called
integration by parts, holds:∫ 1

0
u(x)dv(x) = [u(1)v(1) − u(0)v(0)] −

∫ 1

0
v(x)du(x). (2.2.3)

Here du(x) := u(1)(x)dx is the differential of u(x), and u(k)(x) denotes the
kth derivative of u(x).

Assume that f(x) is differentiable. Using integration by parts and the
relations

d cos(πjx) = −πj sin(πjx)dx, d sin(πjx) = πj cos(πjx)dx, (2.2.4)

we may find θj for j ≥ 1,

θj =
√

2
∫ 1

0
cos(πjx)f(x)dx =

√
2(πj)−1

∫ 1

0
f(x)d sin(πjx)

=
√

2
(πj)

[f(1) sin(πj) − f(0) sin(0)] −
√

2
(πj)

∫ 1

0
sin(πjx)f (1)(x)dx.

Recall that sin(πj) = 0 for all integers j, so we obtain

θj = −
√

2(πj)−1
∫ 1

0
sin(πjx)f (1)(x)dx. (2.2.5)

Note that | ∫ 1
0 sin(πjx)f (1)(x)dx| ≤ ∫ 1

0 |f (1)(x)|dx, and thus we may con-
clude the following. If a function f(x) is differentiable, then for the cosine
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system,

|θj | ≤
√

2(πj)−1
∫ 1

0
|f (1)(x)|dx, j ≥ 1. (2.2.6)

We established the first rule (regardless of a particular f) about the rate
at which the Fourier coefficients decrease. Namely, if f is differentiable and∫ 1
0 |f (1)(x)|dx < ∞, then |θj | decrease with rate at least j−1.
Let us continue the calculation. Assume that f is twice differentiable.

Then using the method of integration by parts on the right-hand side of
(2.2.5), we get

θj = −
√

2
πj

∫ 1

0
sin(πjx)f (1)(x)dx =

√
2

(πj)2

∫ 1

0
f (1)(x)d cos(πjx)

=
√

2
(πj)2

[f (1)(1) cos(πj) − f (1)(0) cos(0)] −
√

2
(πj)2

∫ 1

0
cos(πjx)f (2)(x)dx.

(2.2.7)
We conclude that if f(x) is twice differentiable then for some finite

constant c,

|θj | ≤ cj−2
∫ 1

0
|f (2)(x)|dx, j ≥ 1 . (2.2.8)

Thus, the Fourier coefficients θj of smooth (twice differentiable) functions
decrease with rate not slower than j−2.

So far, boundary conditions (i.e., values of f(x) near boundaries of the
unit interval [0, 1]) have not affected the rate. The situation changes if f is
smoother, for instance, it has three derivatives. In this case integration by
parts can be used again. However, now the decrease of θj may be defined by
boundary conditions, namely by the term [f (1)(1) cos(πj) − f (1)(0) cos(0)]
on the right-hand side of (2.2.7). Note that cos(πj) = (−1)j , so all these
terms are equal to zero only if f (1)(1) = f (1)(0) = 0. This is the bound-
ary condition that allows θj to decrease faster than j−2. Otherwise, if the
boundary condition does not hold, then θj cannot decrease faster than j−2

regardless of how smooth the underlying function f is.
Now we know two main factors that define the decay of Fourier coeffi-

cients of the cosine system and therefore the performance of an orthonormal
approximation: smoothness and boundary conditions.

A customary rule of thumb, used by many statisticians, is that an
underlying function is twice differentiable. As we have seen, for twice dif-
ferentiable functions the cosine system yields the optimal decrease of θj

regardless of the boundary conditions. Thus, the cosine system may be a
good tool in statistical applications.

The case of the polynomial basis is discussed in Section 2.6.
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Now let us consider a similar problem for the Haar basis. Using the
specific shape of the mother function M(x) (see Figure 2.6) we write,

|θjk| =
∫ (k+1)2−j

k2−j

f(x)Mjk(x)dx

≤ 2−j(max |Mjk(x)|)(max f(x) − min f(x))/2,

where both the maximum and the minimum are taken over
x ∈ [k2−j , (k + 1)2−j ]. Because max |Mjk(x)| = 2j/2, we get

2j−1∑
k=0

|θjk| ≤ 2−1−j/2 sup
2j+1∑
k=1

|f(tk) − f(tk−1)|, (2.2.9)

where the supremum (see definition of the supremum below line (A.45)
in Appendix A) is taken over all possible partitions of the unit interval
0 ≤ t0 < t1 < · · · < t2j+1 ≤ 1.

The quantity TV(f) := lim m→∞ sup
∑m

k=1 |f(tk) − f(tk−1)|, where the
supremum is taken over all possible partitions 0 ≤ t0 < t1 < · · · < tm ≤ 1
of the unit interval, is called the total variation of the function f on [0, 1].
Note that the total variation of a monotone function is equal to |f(1)−f(0)|.

Thus, we get from (2.2.9) that

2j−1∑
k=0

|θjk| ≤ 2−1−j/2 TV(f). (2.2.10)

This inequality shows how the sum of absolute values of Haar coefficients
at a resolution scale j decreases as j increases. Such behavior is typical for
wavelet coefficients (see more in Section 2.5).

Absolutely similarly we establish that

2j−1∑
k=0

|θjk|2 ≤ 2−2−j (QV(f))2, (2.2.11)

where

QV(f) := lim
m→∞ sup

(
m∑

k=1

|f(tk) − f(tk−1)|2
)1/2

(2.2.12)

is called the quadratic variation of f on [0, 1]. Here again the supremum is
taken over all possible partitions 0 ≤ t0 < t1 < · · · < tm ≤ 1 of the unit
interval.

These are the fundamentals that we need to know about the series ap-
proximation. The topic of how the decay of Fourier coefficients depends on
various properties of an underlying function and, conversely, what Fourier
coefficients may tell us about an underlying function, is a well-developed
branch of mathematics. We shall discuss more formally other interesting
mathematical results and approaches in the following sections.
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2.3 Special Topic: Geometry of Square Integrable
Functions

It would be beneficial to know that square integrable functions, which
are the primary target in nonparametric curve estimation, may be viewed
like points or vectors in a finite-dimensional Euclidean space, only with
their own notion of perpendicular coordinates, distance, angle, Pythagorean
theorem, etc.

Denote by L2 = L2([0, 1]) the space of all square integrable functions
with domain [0, 1]. In other words, L2 is the set of all functions f such that
‖f‖ := (

∫ 1
0 |f(x)|2dx)1/2 < ∞. Note that bounded functions belong to L2

because if |f(x)| ≤ c < ∞, then
∫ 1
0 |f(x)|2dx ≤ c2

∫ 1
0 dx = c2 < ∞.

Below, the geometry of L2 is discussed via a sequence of steps that make
the similarity between L2 and k-dimensional Euclidean space Ek of points
v = (v1, . . . , vk) apparent. We shall also consider vectors in Ek that are
directed line segments like ones shown in Figure 2.9. In what follows we
shall denote by �v the vector from the origin to the point v. Figure 2.9
reminds us the main rule of finding the difference (and respectively the
sum) of two vectors.

• L2 is a linear space. If �v and �u are two vectors in Ek, then a�v + b�u ∈
Ek for any real numbers a and b. A space with this property is called
linear because any linear combination of its elements is again an element
of this space. Let us verify that L2 is linear. Using the Cauchy inequality
2|abf(x)g(x)| ≤ a2f2(x) + b2g2(x), which is a corollary of the elementary
|af(x) − bg(x)|2 ≥ 0, implies

‖af + bg‖2 =
∫ 1

0
(af(x) + bg(x))2dx ≤ 2a2‖f‖2 + 2b2‖g‖2 . (2.3.1)

Thus, any linear combination of two square integrable functions is again a
square integrable function. In short, af + bg ∈ L2 whenever f, g ∈ L2 and
a and b are real numbers.

• Distance between two square integrable functions. If v and u are
two points in Ek then the Euclidean distance (length, norm) between them
is [

∑k
j=1(vj−uj)2]1/2. Note that this definition is based on the Pythagorean

theorem and the orthonormality of the basic vectors of the Cartesian co-
ordinate system. In particular, the length (norm) of a vector �v, which is
the distance between the origin and the point v, is [

∑k
j=1 v2

j ]1/2. Also, the
length of the difference �v−�u of two vectors corresponding to points v and u
is [

∑k
j=1(vj − uj)2]1/2, which is exactly the distance between those points.

For functions we may define the distance between two square integrable
functions f and g as ‖f − g‖. In particular, this definition implies that
the norm of f is ‖f‖. Below, we shall see that this definition preserves all
properties of classical Euclidean geometry.
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FIGURE 2.9. Illustration to the discussion of the orthogonality between two
square integrable functions. The origin is denoted by 0.

• The orthogonality (perpendicularity) of square integrable
functions. The crown jewel of Euclidean geometry is the Pythagorean
theorem. Recall that this famous theorem is about a right triangle whose
two sides are perpendicular, i.e., the angle between them is 90◦ (see Figure
2.9, where the angle γ is 90◦). Recall that the side opposed to the right
angle is called the hypotenuse, and the other sides are called legs. The
Pythagorean theorem states that the sum of the squares of the legs of a
right triangle is equal to the square of the hypotenuse. Moreover, this is a
property only of right triangles. In other words, to check that two sides are
perpendicular it suffices to check that the sum of the squares of these sides
is equal to the square of the other side.

Let us use this Pythagorean rule for introducing the notion of orthog-
onal (or one may say perpendicular) square integrable functions. Figure
2.9 illustrates the underlying idea. Let f and g be two square integrable
functions, which may be thought as either points in L2 or the correspond-
ing vectors. As we have defined earlier, their lengths (norms) in L2 are
‖f‖ and ‖g‖. The Pythagorean rule together with Figure 2.9 implies that
if these two functions are orthogonal (perpendicular), then the equality
‖f‖2 + ‖g‖2 = ‖f − g‖2 must hold. Let us check when this happens:

‖f −g‖2 =
∫ 1

0
(f(x)−g(x))2dx = ‖f‖2 +‖g‖2 −2

∫ 1

0
f(x)g(x)dx . (2.3.2)

Thus, we may say that two square integrable functions f and g are orthog-
onal (perpendicular) in L2 if their inner product 〈f, g〉 :=

∫ 1
0 f(x)g(x)dx is

zero. Moreover, the angle γ between two functions in L2 may be defined
via the relation

cos(γ) := 〈f, g〉/[‖f‖ ‖g‖]. (2.3.3)

The definition (2.3.3) fits the geometry of Euclidean space Ek, where the
inner product, also referred to as the dot product, is defined as 〈�v, �u 〉 =∑k

j=1 vjuj . Let us check that the absolute value of the right side of (2.3.3)
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is at most 1. This follows at once from the Cauchy–Schwarz inequality

〈f, g〉 ≤ ‖f‖ ‖g‖, (2.3.4)

where equality holds iff f = ag for some real number a. Let us prove this
assertion. First, note that if ‖f‖ ‖g‖ = 0, then the assertion clearly holds.
Thus, consider the case ‖f‖ ‖g‖ > 0. As in (2.3.1), for t1(x) := f(x)/‖f‖
and t2(x) := g(x)/‖g‖ we may write

0 ≤ ‖t1 − t2‖2 = ‖t1‖2 + ‖t2‖2 − 2〈t1, t2〉.
This together with ‖t1‖ = ‖t2‖ = 1 implies (2.3.4), with equality if and

only if ‖t1 − t2‖ = 0, which is equivalent to f = ag.
Finally, to finish our “triangles” business, recall that Euclidean geometry

tells us that a side of a triangle is not longer than the sum of the other two
sides. Such a property is called the triangle inequality. This property also
holds in L2. Indeed, (2.3.2) together with the Cauchy–Schwarz inequality
implies

‖f ± g‖ ≤ ‖f‖ + ‖g‖ . (2.3.5)

• Coordinate system in L2. What makes a Euclidean space so trans-
parent and intuitively clear? Why is the procedure of depicting a point in
this space so simple? The answer is obvious: the familiar Cartesian (rectan-
gular) coordinates make this space so convenient. Thus, let us briefly recall
this coordinate system and then try to introduce its analogue for L2.

Cartesian coordinates in Ek are defined by k perpendicular basic unit vec-
tors {�b1, . . . ,�bk}. By definition, the basic vectors proceed from the origin to
the points whose Cartesian coordinates are {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.
Then a vector �v may be written as �v =

∑k
j=1 vj

�bj , and it is easy to check
that vj = 〈�v,�bj〉.

Thus, “translation” of the Cartesian system of coordinates into the “lan-
guage” of the space of square integrable functions is straightforward. Let
{ϕ1, ϕ2, . . .} be a system of square integrable functions that are pairwise or-
thogonal and have unit norms, that is, 〈ϕj , ϕl〉 = 0 if j �= l and ‖ϕj‖ = 1.
This system is called orthonormal. Also, let us assume that this system
spans L2, that is, for any f ∈ L2 and ε > 0 there exist a positive integer
n and numbers c1, . . . , cn such that ‖f −∑n

j=1 cjϕj‖ ≤ ε. If such a system
of functions exists, then it is called an orthonormal basis, or simply basis.

Then the elements of a basis may be declared as the basic unit vectors
in L2. Indeed, they are orthonormal, and it is possible to show that as is
the case for a finite-dimensional Euclidean space,∥∥∥f −

n∑
j=1

θjϕj

∥∥∥ = min
{cj}

∥∥∥f −
n∑

j=1

cjϕj

∥∥∥, where θj = 〈f, ϕj〉. (2.3.6)

In other words, the best representation of a function by a linear combination
of n basic unit vectors is one in which the coefficients are Fourier coeffi-
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cients. Thus Fourier coefficients play the role of coordinates of a function
in the space L2 where the coordinate system is created by the orthonormal
elements of the basis.

Let us prove (2.3.6). Write
∥∥∥f −

n∑
j=1

cjϕj

∥∥∥2
=
∥∥∥f −

n∑
j=1

θjϕj +
n∑

j=1

(θj − cj)ϕj

∥∥∥2

=
∥∥∥f −

n∑
j=1

θjϕj

∥∥∥2
+
∥∥∥ n∑

j=1

(θj − cj)ϕj

∥∥∥2

+ 2
〈
f −

n∑
j=1

θjϕj ,

n∑
j=1

(θj − cj)ϕj

〉
.

The orthonormality of the elements {ϕj} together with the definition of
the Fourier coefficients θj implies that the inner product term is zero. This
yields (2.3.6).

• Gram–Schmidt orthonormalization. How can one construct a
basis in L2? To answer this question, let us assume that a countable sys-
tem {ψ1, ψ2, . . .} of square integrable functions spans L2 (in other words,
this system is dense in L2). Note that we can always discard an element
ψn of this system if it is a linear combination of the previous elements
ψ1, . . . , ψn−1, that is, if ψn(x) =

∑n−1
l=1 clψl(x). Thus, let us assume that

this system contains only linearly independent elements.
Then a basis may be constructed using the Gram–Schmidt orthonormal-

ization procedure. The first element ϕ1 is defined by

ϕ1(x) := ψ1(x)/‖ψ1‖. (2.3.7)

Then all the following elements are defined by the recursion

ϕj(x) :=
ψj(x) −∑j−1

l=1 〈ψj , ϕl〉ϕl(x)∥∥ψj(x) −∑j−1
l=1 〈ψj , ϕl〉ϕl(x)

∥∥ . (2.3.8)

• The projection theorem. The notion of a projection of a point
onto a set of points is well known for Euclidean spaces. The projection
of a point onto a set is defined as the point of this set that is nearest to
the point. If there is more than one such point, then all these points are
called projections. For instance, in a plane, the projection of a point onto a
straight line is the foot of the perpendicular from the point to the line. In
this case the (orthogonal) projection is unique. In three-dimensional space,
the projection of a point onto a plane is also unique: This is the foot of
the perpendicular from the point to the plane. Of course, there are plenty
of examples where a projection is not unique. For instance, a projection
of the center of a circle onto the circle is not unique, because all points of
the circle are equidistant from its center. Note that the difference between
the line–plane case and the circle case is that a line and a plane are linear



38 2. Orthonormal Series and Approximation

subspaces of two-dimensional Euclidean space, while the circle is not. Also,
the projection may not exist. For instance, consider points on the real line
and let us try to project the point 2 onto the interval [0, 1). There is no
nearest point, because the point 1, which could be a natural projection,
does not belong to the interval. On the other hand, the projection onto
[0, 1] is well-defined, and it is the point 1. Note that the first interval is half
open, while the second is closed, and this is what makes the difference.

Keeping these examples in mind, we would like to formulate the result
about a unique projection in L2 of a function f onto a linear subspace. Let
us say that a linear subspace L of L2 is a closed subspace if L contains all
of its limits points, that is, if fn ∈ L and ‖g − fn‖ → 0 then g ∈ L. The
following result states that the projection of a function f onto a closed linear
subspace is always unique, and moreover, the geometry of this projection
is absolutely similar to the examples for Euclidean spaces.

The projection theorem. Let L be a closed linear subspace of L2. Then
for each f ∈ L2 there exists a unique element f∗ ∈ L (the projection of f
onto L) such that

‖f − f∗‖ = inf
g∈L

‖f − g‖. (2.3.9)

Moreover, f∗ is the projection iff the difference f − f∗ is orthogonal to all
elements of L. (Thus, the projection f∗ is unique, and it may be called the
orthogonal projection of f onto L.)

The proof of this theorem may be found, for instance, in the textbook
by Debnath and Mikusinski (1990).

• Hilbert space. The previous step finished our discussion of the ge-
ometry of L2. On the other hand, we are so close to understanding the
notion of a Hilbert space that it is irresistible to discuss it here because
both Euclidean spaces and L2 are particular examples of a Hilbert space.

Let H be a linear space with an inner product. Denote by x, y, and z any
3 elements of H and by a any real number. An inner product 〈x, y〉 should
satisfy the following properties: 〈x, y〉 = 〈y, x〉; 〈x + y, z〉 = 〈x, y〉 + 〈y, z〉;
〈ax, y〉 = a〈y, x〉; 〈x, x〉 ≥ 0, with equality iff x = 0. The distance in
H between two elements is declared to be ‖x − y‖ := 〈x − y, x − y〉1/2.
Then the space H is called a Hilbert space if for any sequence of elements
xn ∈ H the fact ‖xn − xm‖ → 0 as n, m → ∞ implies that xn converges
to some x ∈ H (in other words, any Cauchy sequence converges to an
element of the Hilbert space, and this property is called completeness).
One more definition is due: A Hilbert space is called separable if there
exists a countable system of elements that approximates any other element
from the space.

It is possible to show that L2, with the inner product defined via the
Lebesgue integral, is a separable Hilbert space. A proof of this result may
be found in the textbook by Debnath and Mikusinski (1990), and a sketch
of a proof will be given in the next section. We do not discuss here the
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Lebesgue integral but note that for all practically interesting functions
discussed in the book it is equal to the Riemann integral.

• Two useful relations. Let {ϕj} be an orthonormal basis in L2 and
let θj = 〈f, ϕj〉 =

∫ 1
0 f(x)ϕj(x)dx be the jth Fourier coefficient of f ∈ L2.

Then the following relations hold: The Bessel inequality
n∑

j=1

θ2
j ≤ ‖f ||2 , n = 1, 2, . . . , (2.3.10)

and the Parseval identity

‖f‖2 =
∞∑

j=1

θ2
j . (2.3.11)

The Bessel inequality is implied by the line

0 ≤
∥∥∥f −

n∑
j=1

θjϕj

∥∥∥2
= ‖f‖2+

∥∥∥ n∑
j=1

θjϕj

∥∥∥2
−2

〈
f,

n∑
j=1

θjϕj

〉
= ‖f‖2−

n∑
j=1

θ2
j .

The fact that {ϕj} is a basis in L2 means that ‖f −∑n
j=1 θjϕj‖ → 0 as

n → ∞. This together with the last line yields the Parseval identity.

2.4 Special Topic: Classical Trigonometric Series

The classical orthonormal trigonometric Fourier system is defined by

ϕ0(x) := 1, ϕ2j−1(x) :=
√

2 sin(2πjx),

ϕ2j(x) :=
√

2 cos(2πjx), j = 1, 2, . . . . (2.4.1)

Our first object is to discuss how the partial trigonometric (Fourier)
sums

SJ(x) :=
2J∑

j=0

θjϕj(x) (2.4.2)

approximate an underlying integrable function f and why this system is
a basis in L2. In this section θj :=

∫ 1
0 f(x)ϕj(x)dx denote the Fourier

coefficients, which are well-defined for integrable f .
Fourier sums for the corner functions are shown in Figure 2.10. Be aware

that here the Fourier sum SJ is based on 1+2J Fourier coefficients. Because
the trigonometric elements (2.4.1) are 1-periodic, the Fourier sums are 1-
periodic as well. This definitely shows up in the approximation of functions
like the Monotone and the Steps (Section 2.6 explains how to improve
approximations of aperiodic functions). Also, the approximations of the
Steps again exhibit the Gibbs phenomenon of overshooting. Interestingly, as
J → ∞, the overshoot approaches approximately 9% of a jump. (Historical
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FIGURE 2.10. Approximation of the corner functions (solid lines) by Fourier
sums: Dotted, short-dashed, and long-dashed lines correspond to J = 2, J = 3,
and J = 5, respectively. [set.J =c(2,3,5)]

notes and discussion of this interesting phenomenon may be found in Dym
and McKean 1972, Section 1.6.) In general, the Gibbs phenomenon occurs
in the vicinity of any jump of a piecewise smooth function, and at this
point the Fourier sums converge to the average value of the function. This
is clearly exhibited in Figure 2.10.7. (It is worthwhile to know that even
some wavelet expansions, discussed in the following section, suffer from
overshooting. Thus, in one way or another nonsmooth functions present a
challenge for any orthonormal system.)

Let us now focus on the theory of convergence of Fourier sums SJ(x)
to f(x) at a given point x ∈ [0, 1] as J → ∞. Such convergence is called
pointwise. Substituting the expressions for Fourier coefficients θj into the
right-hand side of (2.4.2) yields

SJ(x) = 2
∫ 1

0
f(t)

[1
2

+
J∑

k=1

(cos(2πkx) cos(2πkt) + sin(2πkx) sin(2πkt))
]
dt,

and because cos(α − β) = cos(α) cos(β) + sin(α) sin(β), we get

SJ(x) = 2
∫ 1

0
f(t)

[1
2

+
J∑

k=1

cos(2πk(t − x))
]
dt. (2.4.3)
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The expression inside the square brackets may be simplified using the
following trigonometric formula and notation,

1
2

+
J∑

k=1

cos(2πku) =
1
2

sin(π(2J + 1)u)
sin(πu)

=:
1
2
DJ(u) , (2.4.4)

with the understanding that DJ(0) := 2J +1. The function DJ(u) is called
the Dirichlet kernel, and it plays a central role in the study of pointwise
convergence.

Note that graphs of DJ(u − .5) resemble the approximations in Figure
2.10.5. Namely, as J → ∞, the peak tends to infinity and the symmetric
oscillations to either side of the peak become increasingly rapid, and while
they do not die away, on the average they cancel each other. In short, as
J → 0, the Dirichlet kernels approximate the theoretical delta function.

From now on let us assume that f(x) is 1-periodic, that is, f(x + 1) =
f(x) for all x (in this case the unit interval may be thought as a unit
circular circumference with identified endpoints 0 and 1). Then the function
f(t)DJ(t − x) is also 1-periodic in t. The substitution z = t − x gives

SJ(x) =
∫ 1

0
f(x + z)DJ(z)dz. (2.4.5)

Recall that the theoretical delta function is integrated to 1, and from (2.4.5)
it is easy to see by choosing f(x) ≡ 1 that the Dirichlet kernel has the same
property, ∫ 1

0
DJ(z)dz = 1. (2.4.6)

Thus we may write

SJ(x) − f(x) =
∫ 1

0
[f(x + z) − f(x)]DJ(z)dz. (2.4.7)

An important conclusion from (2.4.7) is that a pointwise approxima-
tion should crucially depend on the local smoothness of an approximated
function f in the vicinity of x.

The expression (2.4.7) is the key to all the main properties of the Fourier
sum. For instance, assume that f is a twice differentiable function, and
set g(x, z) := (f(x − z) − f(x))/ sin(πz). Under the assumption, the par-
tial derivative ∂g(x, z)/∂z exists, and let us additionally assume that this
derivative is bounded. Then integration by parts implies

SJ(x) − f(x) =
∫ 1

0
g(x, z) sin(π(2J + 1)z)dz

= (π(2J + 1))−1
[
g(x, 1) + g(x, 0) +

∫ 1

0
(∂g(x, z)/∂z) cos(π(2J + 1)z)dz

]
.
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Thus, under our assumption (recall that C is a generic positive constant)

max
x

|SJ(x) − f(x)| < CJ−1. (2.4.8)

This result allows us to make the following two conclusions. First, if an
approximated function is sufficiently smooth, then it may be uniformly
approximated by Fourier sums. Second, because twice differentiable func-
tions may approximate any square integrable function in the L2-norm, this
together with (2.4.8) implies that the trigonometric system is a basis in L2.

More properties of Fourier sums may be found in Exercises 2.4.2–4.
For pointwise convergence it might be a good idea to smooth (shrink) the

Fourier coefficients, that is, to multiply them by some real numbers between
0 and 1. Smoothing (shrinkage) is also a key idea of adaptive nonparametric
series estimation (as well as many other statistical approaches). Let us
consider two famous smoothing procedures.

The Fejér (Cesáro) sum is the average of Fourier sums,

σJ(x) := [S0(x) + S1(x) + · · · + SJ−1(x)]/J. (2.4.9)

It is easy to see that σJ is a smoothed partial sum SJ−1. Indeed,

σJ(x) = θ0ϕ0(x) +
J−1∑
j=1

(1 − j/J)[θ2j−1ϕ2j−1(x) + θ2jϕ2j(x)].

A remarkable property of the Fejér sum is that if f is nonnegative, then
σJ is also nonnegative (thus the Fejér sum is a bona fide approximation for
probability densities). To check this we use (2.4.3)–(2.4.4) and write

σJ(x) = J−1
∫ 1

0

[ J−1∑
k=0

sin(π(2k + 1)z)/ sin(πz)
]
f(x + z)dz.

This equality together with
∑J−1

k=0 sin(π(2k + 1)z) = sin2(πJz)/ sin(πz)
implies

σJ(x) = J−1
∫ 1

0
[sin(πJz)/ sin(πz)]2f(x + z)dz. (2.4.10)

This expression yields the nonnegativity of the Fejér sum whenever f is
nonnegative. The function ΦJ(z) := J−1[sin(πJz)/ sin(πz)]2 is called the
Fejér kernel. Thus σJ(x) =

∫ 1
0 ΦJ(z)f(x + z)dz.

Another useful property of the Fejér sum is that if f is continuous and
1-periodic, then σn(x) → f(x) uniformly over all x ∈ [0, 1]. Also, the Fejér
sum does not “overshoot” (does not suffer from the Gibbs phenomenon).
The proof may be found in Dym and McKean (1972, Theorem 1.4.3).

The performance of Fejér sums is shown in Figure 2.11 (note that the
number of elements of the trigonometric basis used is the same as in Figure
2.10). Due to the smoothing, the Fejér approximations are worse for visual-
izing modes than the similar trigonometric approximations (just compare
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FIGURE 2.11. Approximation of the corner functions (solid lines) by Fejér
(Cesáro) sums: dotted, short-dashed, and long-dashed lines correspond to J = 3,
J = 4, and J = 6, respectively. [set.J = c(3,4,6)]

the approximations for the Bimodal, the Strata, and the Angle). On the
other hand, the approximations of the Delta are nonnegative, the first step
in the Steps is shown much better, and there are no overshoots. In short,
we see exactly what has been predicted by the theory.

One more interesting property of Fejér sums is that |σJ(x)| ≤
maxx |f(x)|; see Exercise 2.4.7 and Figure 2.11. Fourier sums have no such
property. On the other hand, if f is a trigonometric polynomial of degree
n, then Fourier sums SJ are equal to f for J ≥ n, while Fejér sums have no
such property. The next smoothing procedure has both these properties.

The de la Vallée Poussin sum, which is a trigonometric polynomial of
degree 2J − 1, is given by

VJ(x) := (SJ + SJ+1 + . . . + S2J−1)/J (2.4.11)

= θ0ϕ0(x) +
J−1∑
j=1

[θ2j−1ϕ2j−1(x) + θ2jϕ2j(x)]

+
2J−1∑
j=J

(2 − j/J)[θ2j−1ϕ2j−1(x) + θ2jϕ2j(x)].

It is clear that VJ(x) = f(x) if f is a trigonometric polynomial of degree
n ≤ J . Also, direct calculations show that VJ(x) = 2σ2J(x) − σJ(x), which
implies |VJ(x)| ≤ 3 max x |f(x)|.
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Another remarkable property of this sum is that under very mild con-
ditions it converges uniformly to f , and it is within a factor 4 of the best
sup-norm approximation by trigonometric polynomials of degree J . Also,
for the case of smooth functions there is a simple formula for the pointwise
approximation error.

To describe these properties mathematically, define the (inhomogeneous)
Lipschitz function space (class) Lip 0,α,L, 0 < α ≤ 1, 0 < L < ∞, of
1-periodic functions:

Lip 0,α,L := {f : sup
x

|f(x)| < ∞, sup
x,h

|f(x + h) − f(x)||h−α| ≤ L < ∞ }.

(2.4.12)
Here α is the order and L is the constant of the Lipschitz space.

Also, we define a Lipschitz space Lipr,α,L of r-fold differentiable and
1-periodic (including the derivatives) functions:

Lip r,α,L := {f : sup
x

|f(x)| < ∞, f (r) ∈ Lip0,α,L }. (2.4.13)

Here f (r) denotes the rth derivative of f . (A Lipschitz space of order
α < 1 is often referred to as a Hölder space. We shall use this notion
in the next section which is devoted to wavelets, because wavelet coeffi-
cients characterize Hölder functions but not Lipschitz functions of order
α = 1.)

Proposition 2.4.1. Let us restrict our attention to 1-periodic functions
f . Then for any trigonometric polynomial TJ of degree J , i.e., TJ(x) =∑2J

j=0 cjϕj(x), the de la Vallée Poussin inequality holds:

sup
f∈Lp

(‖VJ − f‖p/‖TJ − f‖p) ≤ 4, 1 ≤ p ≤ ∞. (2.4.14)

Here Lp-norms are defined as ‖g‖p := (
∫ 1
0 |g(x)|pdx)1/p, 1 ≤ p < ∞,

‖g‖∞ := supx∈[0,1] |f(x)| is the sup-norm of g, and Lp := {g : ‖g‖p < ∞}
is the Lp space of functions with finite Lp-norm.

Proposition 2.4.2. For any integer r ≥ 0, 0 < α ≤ 1, and a finite L there
exists a constant c such that

sup
f∈Lipr,α,L

sup
x∈[0,1]

|VJ(x) − f(x)| ≤ cJ−β , β := r + α . (2.4.15)

The proofs of these propositions may be found in Temlyakov (1993, p. 68)
and DeVore and Lorentz (1993, p. 205), respectively.

Due to these properties, de la Vallée Poussin sums are the primary tool
in pointwise estimation of functions. Figure 2.12 exhibits these sums.

Only for the case p = 2 do Fourier sums “enjoy” the nice properties
formulated in these propositions. This is not a big surprise, because Fourier
coefficients and Fourier sums are specifically designed to perform well for
square-integrable functions. On the other hand, it is amazing that a simple
smoothing (shrinkage) of Fourier coefficients allows one to attain the best
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FIGURE 2.12. Approximation of the corner functions (solid lines) by de la Vallée
Poussin sums: Dotted, short-dashed, and long-dashed lines correspond to J = 2,
J = 3, and J = 4, respectively. [set.J = c(2,3,4)]

possible convergence within a reasonable factor in any Lp-norm. This fact
tells us that it is worthwhile to use Fourier coefficients as building blocks
in approximation of functions.

Let us return to Fourier sums and approximations in the L2-norm. By
the Parseval identity (2.3.11),

‖f − SJ‖2 =
∑
j>2J

θ2
j . (2.4.16)

Recall that the approximation theory refers to the left-hand side of (2.4.16)
as the integrated squared error, but we shall use here the statistical notion
of the integrated squared bias (ISB),

ISBJ(f) := ‖f − SJ‖2 =
∑
j>2J

θ2
j . (2.4.17)

According to (2.3.5), SJ is the optimal trigonometric polynomial of
degree J for approximation of a square integrable function f under the L2-
norm. Thus, all known results about optimal approximation of functions
from specific function classes may be applied to ISB. The next proposition
states that ISBJ converges similarly to (2.4.15). It is discussed in DeVore
and Lorentz (1993, p. 205), and its direct proof may be found in Bary
(1964, Section 2.3).
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Proposition 2.4.3. For any integer r ≥ 0, real α ∈ (0, 1] and finite L there
exists a finite constant c such that

sup
f∈Lipr,α,L

ISBJ(f) ≤ cJ−2β , β := r + α. (2.4.18)

There are two important function spaces defined via Fourier coefficients.
The Sobolev function space (ellipsoid) Wβ,Q, 0 ≤ β, Q < ∞, is

Wβ,Q :=
{

f : θ2
0 +

∞∑
j=1

(1 + (2πj)2β)[θ2
2j−1 + θ2

2j ] ≤ Q
}

. (2.4.19)

Clearly, if β = 0, then according to the Parseval identity, Wβ,Q is the space
of functions whose L2-norm is at most Q1/2. If f is r-fold differentiable and
1-periodic (including the derivatives), then the inequality ‖f + f (r)‖2 ≤ Q
together with the Parseval identity implies f ∈ Wr,Q. Recall that f (r) de-
notes the rth derivative. Exercise 2.4.6 shows that a Sobolev space is larger
than just a set of functions whose rth derivatives are square integrable;
on the other hand, this set of functions is the main reason why Sobolev
functions are considered in statistical applications. (Rules of integration
and differentiation of Fourier sums may be found in Bary 1964, Sections
1.23.8–9, 1.24.)

Another important example of a function space that may be defined via
Fourier coefficients is the space of analytic functions,

Aγ,Q := {f : |θ0| ≤ Q, |θ2j−l| ≤ Qe−γj , l = 0, 1, j = 1, 2, . . .} . (2.4.20)

Analytic functions are 1-periodic and infinitely differentiable (i.e., they are
extremely smooth), and the parameters (γ, Q) define a region in the xy-
plane where a complex-valued function f(x + iy) may be expanded into a
convergent power series.

Note that a function belongs to one of the above-defined spaces if and
only if the absolute values of the Fourier coefficients satisfy some restric-
tions. In other words, the signs of Fourier coefficients play no role in the
characterization of these function spaces. In this case the basis used is called
unconditional.

Now let us consider two different bases closely related to the classical
trigonometric one.

Half-range trigonometric systems on [0, 1]. A shortcoming of the
classical trigonometric basis is that any partial sum is periodic. The follow-
ing half-range trigonometric (cosine) basis is popular among statisticians
because it allows one to approximate aperiodic functions very nicely. This
is also the reason why we introduced it in Section 2.1.

The underlying idea is that a function f(x), 0 ≤ x ≤ 1, is considered as an
even 2-periodic function on the interval [−1, 1]; that is, f(−x) = f(x). Then
the classical trigonometric basis is used, and because

∫ 1
−1 f(x) sin(πjx)dx =

0 for any integrable even function, the only nonzero Fourier coefficients
correspond to cosine functions.
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Thus, we get the half-range trigonometric (cosine) basis on [0, 1] de-
fined by {1,

√
2 cos(πx),

√
2 cos(2πx), . . . }. To see that the elements are

orthonormal it suffices to recall that cos(jπx) is an even function.
For the case of functions vanishing at the boundary points, that is, when

f(0) = f(1) = 0, the half-range sine basis is defined as {√
2 sin(πx),√

2 sin(2πx), . . .}. To see that the elements are orthonormal, recall that
sin(πjx) is an odd function.

Complex trigonometric basis on [0, 2π]. For the case of the in-
terval of support [0, 2π], the classical trigonometric orthonormal system
in L2([0, 2π]) and its Fourier coefficients are defined similarly to (2.4.1)–
(2.4.2), only here ϕ0(x) = (2π)−1/2, ϕ2j−1(x) = π−1/2 sin(jx), ϕ2j(x) =
π−1/2 cos(jx), and θj =

∫ 2π

0 f(x)ϕj(x)dx.
Then, the famous Euler’s formulae

cos(jx) = [eijx + e−ijx]/2, sin(jx) = [eijx − e−ijx]/2i, (2.4.21)

where i2 := −1 is the complex unit, imply the expansion

f(x) =
∞∑

k=−∞
ck(2π)−1/2e−ikx (2.4.22)

of a function f(x) supported on [0, 2π]. Here

c0 = θ0, ck = [θ2k +iθ2k−1]/
√

2, c−k = [θ2k −iθ2k−1]/
√

2, k > 0. (2.4.23)

This gives us the complex trigonometric system {eisx, s = 0, ±1, ±2, . . .}.
For complex functions the inner product is defined by 〈f, g〉 :=

∫ 2π

0 f(x)
ḡ(x)dx, where ḡ is the complex conjugate of g (i.e., a + ib = a − ib). For
example, ck = 〈f, e−ikx〉 =

∫ 2π

0 f(x)eikxdx because eikx = e−ikx, and
〈f, g〉 = 〈g, f〉. While similar to the sine–cosine basis, the complex basis is
more convenient in some statistical applications like regression with mea-
surement errors in predictors or density estimation with indirectly observed
data.

2.5 Special Topic: Wavelets

In Section 2.1 the Haar basis was introduced, which is the simplest exam-
ple of a wavelet basis. We have seen that the Haar basis has an excellent
localization property. On the other hand, because its elements are not
smooth, stepwise Haar approximations of smooth functions may be con-
fusing. Thus, if a smooth approximation is desired, then smooth father and
mother wavelets should be used.

Smooth wavelets are relative newcomers to the orthogonal approximation
scene. Their name itself was coined in the mid 1980s, and in the 1990s
interest in them among the statistical community has grown at an explosive
rate.
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There is both bad and good news about smooth wavelets. The bad news
is that there are no simple mathematical formulae to describe them. Figure
2.13 depicts four smooth mother functions. The functions have a contin-
uous, wiggly, localized appearance that motivates the label wavelets. Just
by looking at these graphs it is clear why there are no nice formulae for
these wiggly functions.

The good news is that there are software packages that allow one to em-
ploy wavelets and calculate wavelet coefficients very rapidly and accurately
(the last is a very delicate mathematical problem by itself, but fortunately,
nice solutions have been found). Here we use the module S+WAVELETS
mentioned in Section 2.1 Also, we shall see that these wiggly functions are
good building blocks for approximation of a wide variety of functions.

Four types of smooth wavelets are supported by S+WAVELETS. The
first is the familiar Haar. The second is the Daublets. These wavelets are
continuous, have bounded support, and they are identified by “dj” where
j is an even integer between 4 and 20. The mother wavelets “d4” and
“d12” are shown in the first two plots in Figure 2.13. The number j of a
wavelet indicates its width and smoothness. Wavelets with larger indices
are typically wider and smoother.

The third type of supported wavelets is Symmlets, which are also contin-
uous, have bounded support, and are more symmetric than the Daublets.
Symmlet 8 (“s8”), which is one of the most popular among statisticians, is
shown in the third diagram in Figure 2.13. Here again, the larger the index
of the Symmlet, the wider and smoother the mother function.

The last type is Coiflets. These wavelets have an additional property of
vanishing moments. Coiflet “c12” is shown in Figure 2.13.

It is necessary to know that the toolkit S+WAVELETS was cre-
ated for the analysis of time series (it is assumed that observations are
f(1), f(2), . . . , f(n)), so the following multiresolution expansion is very
special. Under the assumption that n is divisible by 2j0 , the wavelet partial
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FIGURE 2.13. Four different mother wavelets “d4,” “d12,” “s8,” and “c12.”
{Recall that before any figure with wavelets is used, the S+WAVELETS module
should be loaded with the command > module(wavelets).} [set.wav=c( ′′d4 ′′,
′′d12 ′′, ′′s8 ′′, ′′c12 ′′)]
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FIGURE 2.14. Wavelet coefficients and default multiresolution approximations
of the Normal and the Steps corner functions. Functions are given at n =
128 equidistant points, and the wavelet used is Symmlet 8. {The choice of a
wavelet and two corner functions is controlled by the arguments wav and set.cf,
respectively.} [n=128, set.cf= c(2,8), wav= ′′s8 ′′]

sum for time series is defined by

fj0(x) :=
n/2j0∑
k=1

sj0,kφj0,k(x) +
j0∑

j=1

n/2j∑
k=1

dj,kψj,k(x). (2.5.1)

Here j0 is the number of multiresolution components (or scales), ψj,k(x) :=
2−j/2ψ(2−jx−k), φj,k(x) := 2−j/2φ(2−jx−k), ψ(x) is the wavelet function
(mother wavelet), and φ(x) is the scaling function (father wavelet); sj0,k

and dj,k are wavelet coefficients. The notation is the same as in the toolkit.
As we explained in Section 2.1, S+WAVELETS allows us to visualize

wavelet coefficients and multiresolution approximations. As in Figure 2.8,
let us consider approximation of the Normal and the Steps by the Symmlet
8 (“s8”) shown in Figure 2.14. Here the particular case n = 128 and j0 = 5
is exhibited.

We see that approximation of the Normal is significantly improved in
comparison to the Haar approximation shown in Figure 2.8. Here even
approximation by the four father functions (see the second diagram in the
bottom row, S5, which is called the low-frequency part) gives us a fair
visualization. However, only the partial sum S3 gives us an approximation
that resembles the underlying function. Recall that in Figure 2.3 a good
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approximation had been obtained by using only 5 Fourier coefficients; here
we need at least 16 wavelet coefficients.

The outcome changes for the Steps function. Here the approximations
are better than by trigonometric bases but much worse than by the Haar
basis. Also, the Gibbs phenomenon (the overshoot of jumps), familiar from
trigonometric approximations, is pronouncedly represented.

Now let us consider a wavelet expansion of a function f(x), −∞ < x <
∞. Let φ′ be a father wavelet and let ψ′ be a mother wavelet. Denote
by θj,k :=

∫∞
−∞ f(x)ψ′

j,k(x)dx the wavelet coefficient that corresponds to
ψ′

j,k := 2j/2ψ(2jx − k) and by κj,k :=
∫∞

−∞ f(x)φ′
j,k(x)dx the coefficient

that corresponds to φ′
j,k(x) := 2j/2φ(2jx−k). Then, for any integer j1, the

wavelet multiresolution expansion of a square integrable function f is

f(x) =
∞∑

k=−∞
κj1,kφ′

j1,k(x) +
∞∑

j=j1

∞∑
k=−∞

θj,kψ′
j,k(x). (2.5.2)

Note that if a function f vanishes beyond a bounded interval and the
wavelets also vanish beyond a bounded interval, then the number of nonzero
wavelet coefficients at the jth resolution level is at most C2j .

Let us consider two function spaces that can be characterized by absolute
values of wavelet coefficients (when a wavelet basis is an unconditional
basis). The first one is the Hölder space Hr,α with 0 < α < 1, which is
defined as the space (2.4.13), only here the assumption about 1-periodicity
is dropped. Then the following characterization result holds (the proof may
be found in Meyer 1992, Section 6.4): There exist wavelets such that

f ∈ Hr,α ⇔ |θj,k| < c12−j(r+α+1/2), |κj0,k| < c2 , (2.5.3)

where c1 and c2 are some constants. No characterization of Lipschitz spaces
with α = 1 exists. In this case a larger Zygmund function space may be
considered; see Meyer (1992, Section 6.4).

The second function space is a Besov space Bσ
pqQ, 1 ≤ p, q ≤ ∞, 0 <

σ, Q < ∞, which includes both smooth and discontinuous functions like
Hölder functions and functions of bounded total variation. The definition
of this space may be found in Meyer (1992, Section 2.9), and it is skipped
here. Instead, its characterization via wavelet coefficients is presented (the
mathematics of this characterization and assumptions may be found in
Meyer 1992, Section 6.10),

Bσ
pqQ :=

{
f :

[ ∞∑
k=−∞

|κj1,k|p
]1/p

+
( ∞∑

j=j1

[
2j(σ+1/2−1/p)

[ ∞∑
k=−∞

|θj,k|p
]1/p

]q)1/q

< Q

}
. (2.5.4)
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For instance, a Hölder space Hr,α corresponds to Bβ
∞∞Q, β := r + α,

and the space of functions of bounded total variation is a superset of B1
11Q

and a subset of B1
1∞Q′ . These two examples shed light on the meaning of

the parameters σ, p, q, and Q.

2.6 Special Topic: More Orthonormal Systems

This section reviews several orthonormal systems that may be useful for
approximation of functions from particular spaces.

• Polynomials on a bounded interval. For classical polynomials the
customarily studied bounded interval is [−1, 1]. An orthonormal basis for
the space L2([−1, 1]), with the inner product 〈f, g〉 :=

∫ 1
−1 f(x)g(x)dx, is

generated by applying the Gram–Schmidt orthonormalization procedure
(2.3.7)–(2.3.8) to the powers {1, x, x2, . . .}. Also, the jth element Gj(x) of
this basis may be calculated via the formula

Gj(x) =
1

j!2j

√
(2j + 1)/2

dj

dxj
(x2 − 1)j . (2.6.1)

It is worthwhile to note that the well-known Legendre polynomials
Pj(x) =

√
2/(2j + 1)Gj(x), which are built-in functions in many soft-

ware packages, are orthogonal but not orthonormal. To compute Legendre
polynomials, the recurrence formula

Pn(x) = n−1[(2n − 1)xPn−1(x) − (n − 1)Pn−2(x)], (2.6.2)

together with the facts that P0(x) = 1 and P1(x) = x, is especially useful.
The following assertion, whose proof may be found in DeVore and

Lorentz (1993, Section 7.6), shows how the integrated squared bias of the
polynomial approximation decreases.

Proposition 2.6.1. Let f be r-fold differentiable and

|f (r)(t) − f (r)(s)| ≤ Q|t − s|α, where t, s ∈ [−1, 1] , 0 < α ≤ 1. (2.6.3)

Then there exists a constant c such that the polynomial partial sums
S∗

J(x) :=
∑J

j=0〈f, Qj〉Qj(x) satisfy the relation∫ 1

−1
(f(x) − S̃∗

J(x))2dx ≤ cJ−2(r+α). (2.6.4)

•Polynomials on [0,∞). Sometimes it is convenient to approximate an
underlying function on a half-line [0,∞). In this case the idea is to mod-
ify the inner product in such a way that the integration over the half-line
is well-defined. The customary approach is to consider the inner product
〈f, g〉 :=

∫∞
0 f(x)g(x)e−x2

dx and then apply the Gram–Schmidt orthonor-
malization procedure to the polynomials {1, x, x2, . . .}. This defines the
Laguerre basis.
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•Polynomials on (−∞,∞). The approach is the same and the inner
product is defined by 〈f, g〉 :=

∫∞
−∞ f(x)g(x)e−x2

dx. Then the Gram-
Schmidt procedure is applied to the polynomials {1, x, x2, . . .}, and the
system obtained is called the Hermite basis.

•A set of discrete points. So far, we have discussed the case of func-
tions from L2 that are defined on intervals. For many practical problems
a function is defined only at a set of discrete points, and there is no inter-
est in values of this function at other points. Let there be m such points
{x1, x2, . . . , xm}. Then the inner product may be defined as

〈f, g〉 :=
m∑

k=1

pkf(xk)g(xk), (2.6.5)

where pk are some positive “weights.” If these weights are summable to
1, then the inner product is just E{f(X)g(X)}, where X is a discrete
random variable with probability mass function pk, and E{·} denotes the
expectation.

Thus, for any system {ψ1(x), . . . , ψJ(x)}, a problem of best approxi-
mation, which is the analogue of the L2-approach, becomes the familiar
problem of finding the coefficients {cj} minimizing

∑J
k=1 pk[f(xk) −∑m

j=1 cjψj(xk)]2.
It was shown by Chebyshev (the famous probabilistic inequality (A.26)

also bears his name) that orthonormalization of the polynomials {1, x, x2,
. . .} gives a complete orthonormal system (basis) in this setting. More
details may be found in Kolmogorov and Fomin (1957, Section 7.3.8). Sim-
ilarly, orthonormalization of trigonometric functions also leads to a basis at
discrete points. Note that for the case of identical weights and equidistant
points on [0, 1] the trigonometric system is the orthonormal basis.

•Enriched bases. So far, we have discussed only classical bases. In
some cases it is worthwhile to enrich a classical basis by elements like
linear, quadratic, or step functions, which allow one to approximate a set
of targeted functions.

As an example, let us begin with the case of the trigonometric sine–cosine
system. We have seen in Section 2.4 that its approximations of aperiodic
functions were terrible.

The issue is that the elements of the basis are periodic, and the deriva-
tives of the elements are also periodic. Thus, to fit aperiodic functions, this
basis should be enriched by aperiodic elements, for instance, by the linear
function x and the quadratic function x2.

Since both the linear and quadratic functions are not orthonormal to the
elements of the trigonometric system, the Gram–Schmidt procedure should
be used.

Approximations of the corner functions by the trigonometric system en-
riched by the linear function are shown in Figure 2.15. The partial sums for
the Monotone and the Steps look much better. The only remaining pattern
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FIGURE 2.15. Approximation of the corner functions (solid lines) by Fourier
sums enriched by the linear function: dotted, short-dashed, and long-dashed lines
correspond to the cutoffs J = 2, J = 3, and J = 5, respectively. [set.J =c(2,3,5)]
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FIGURE 2.16. Approximation of the corner functions (solid lines) by Fourier
sums enriched by the linear and quadratic polynomial functions: Dotted, short-
dashed, and long-dashed lines correspond to cutoffs J = 2, J = 3, and J = 5,
respectively. [set.J=c(2,3,5)]
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that catches eye is that near the edges, the Monotone (and the Angle) are
not represented very well. This is because the derivative of a partial sum
is still periodic.

Thus, let us additionally enrich this new basis by the quadratic function.
The corresponding approximations are shown in Figure 2.16. As we see, now
the Angle and the Monotone are represented near the boundaries much
better. On the other hand, some other corner functions are fitted worse
(especially for the smallest cutoff) near the edges. So, for the case of small
cutoffs there are pros and cons in this enrichment.

Now let us consider the more challenging problem of enriching the cosine
basis by a function that mimics a step function at a point a. The aim is to
get a perfect fit for the first jump in the Steps.

Set φ(x, a) = 1 if 0 ≤ x ≤ a and φ(x, a) = 0 if a < x ≤ 1; that is, φ(x, a)
is a step function with unit jump at the point a. We add the step function
to the set of the first 1+J cosine functions {ϕ0 = 1, ϕj =

√
2 cos(πjx), j =

1, . . . , J} and then use the Gram–Schmidt orthogonalization procedure to
get the (2 + J)th element of the enriched system,

φ(x, a, J) :=
φ(x, a) − a −∑J

j=1 21/2(πj)−1 sin(πja)ϕj(x)[ ∫ 1
0 (φ(u, x0) − x0 −∑J

j=1 21/2(πj)−1 sin(πja)ϕj(u))2du
]1/2 .
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FIGURE 2.17. Approximation of the corner functions (solid lines) by the cosine
basis enriched with the step function φ(x, a) with the default value a = 1

3 : Dotted,
short-dashed, and long-dashed lines correspond to J = 3, J = 5, and J = 10,
respectively. [a=1/3, set.J=c(3,5,10)]
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Denote θj =
∫ 1
0 f(u)ϕj(u)du and κ(a, J) =

∫ 1
0 f(u)φ(u, a, J)du. Then, a

partial sum

SJ(x, a) :=
J∑

j=0

θjϕj(x) + κ(a, J)φ(x, a, J) (2.6.6)

is used to approximate f . Partial sums are shown in Figure 2.17.
Let us begin the discussion of these approximations with the Uniform.

The numerical errors are apparently large because the trapezoid rule is used
for nonsmooth functions. Also note how “aggressively” the step function
tries to find its place for the smallest cutoffs. The same pattern is clearly
seen in the Bimodal and the Strata diagrams. This is because there is plenty
of room for the step function when only several cosine functions are used to
approximate a spatially inhomogeneous function. On the other hand, the
enriched basis does a superb job in visualizing the first jump in the Steps.

2.7 Exercises

2.1.1 Suggest corner functions with 3 and 4 modes using mixtures of normal
densities.
2.1.2 Repeat Figure 2.3 with different cutoffs. Answer the following ques-
tions: (a) What are the minimal cutoffs (if any) for each corner function
that imply a reasonable fit? (b) How does the cosine system approximate
a constant part of a function? (c) Indicate graphs that exhibit the Gibbs
phenomenon.
2.1.3 Verify that for the polynomial system, ϕ1(x) =

√
3(2x − 1). Also,

calculate ϕ2(x).
2.1.4 Find an antiderivative for: (a) 3x − 5x2; (b) 5 cos(2x) − 3 sin(5x).
2.1.5 Verify (2.1.5).
2.1.6 Repeat Figure 2.5 with different cutoffs. What are the minimal cutoffs
for each corner function (if any) that give a reasonable fit? Compare these
cutoffs with those obtained for the cosine system in Exercise 2.1.2.
2.1.7 Repeat Figure 2.8 for different corner functions, and discuss the
outcomes.
2.1.8 Explain the multiresolution approximation of the Delta function
shown in Figure 2.8.
2.2.1 Let fJ(x) =

∑J
j=0 θjϕj(x). Find

∫ 1
0 (fJ+L(x) − fJ(x))2dx.

2.2.2 For fJ from the previous exercise, check that
∫ 1
0 f2

J(x)dx =
∑J

j=0 θ2
j .

2.2.3 Verify (2.2.3).
2.2.4 Assume that the boundary condition f (1)(0) = f (1)(1) holds, and f
has either 3 or 4 derivatives. How fast do the Fourier coefficients (for the
cosine basis) decrease? Hint: Continue (2.2.7) using integration by parts.
2.2.5 Find how fast the Fourier coefficients (for the cosine system) of the
functions x, x2, x3, x4 decrease.
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2.2.6 Verify (2.2.9).
2.2.7 Verify (2.2.11).
2.2.8 Find the total and quadratic variations of cos(jπx) on [0, 1].
2.3.1 Prove that if f1 and f2 are square integrable, then f1f2 ∈ L1.
2.3.2 Show that both the inner product 〈f, g〉 in L2 space and the dot
product 〈�v, �u〉 in Ek satisfy the properties of an inner product formulated
in the subsection Hilbert space.
2.3.3 Check the orthogonality (in L2) between the following two functions:
(a) 1 and sin(ax); (b) sin(ax) and cos(bx); (c) cos(ax) and cos(bx); (d) 1
and x + a; (e) x and ax + bx2.
2.3.4 We say that a sequence of functions fn converges to f in the L2-norm
if and only if ‖fn − f‖ → 0 as n → ∞. Let sequences fn and gn converge
in the L2-norm to f and g, respectively. Prove that (a) the sum of two
sequences fn + gn converges to the sum of their limits f + g; (b) if an is a
sequence of real numbers converging to a, then the sequence of functions
anf converges to af ; (c) the following convergence holds,

〈fn, gn〉 → 〈f, g〉. (2.7.1)

2.3.5 Let n functions {fj , j = 1, 2, . . . , n} be orthogonal in L2. Prove
that these functions are also linearly independent, that is, the identity∑n

j=1 ajfj(x) ≡ 0, x ∈ [0, 1] implies, a1 = a2 = · · · = an = 0.
2.3.6 Establish that if a series

∑n
j=0 θjϕj(x) converges to a function f in

L2 as n → ∞ and {ϕj} is an orthonormal system in L2, then

θj = 〈f, ϕj〉 =
∫ 1

0
f(x)ϕj(x)dx. (2.7.2)

2.3.7 Let f1, f2, . . . , fk be pairwise orthogonal, i.e., 〈fl, fj〉 = 0 whenever
l �= j. Verify that ‖∑k

l=1 fl‖2 =
∑k

l=1 ‖fl‖2.
2.3.8 Check that for any orthonormal system {f1, f2, . . .} the equality ‖fl−
fj‖ =

√
2 holds for l �= j.

2.3.9 Using the Gram–Schmidt procedure, orthogonalize the set of func-
tions {1, x, x2}. As a result, the first three elements of the Legendre
polynomial basis on [0, 1] are obtained.
2.3.10 Using the Gram–Schmidt procedure, orthogonalize the following set
of trigonometric functions enriched by the power functions {1, sin(2πx),
. . . , sin(2πNx), cos(2πx), . . . , cos(2πNx), x, x2}. As a result, you get a so-
called trigonometric-polynomial system.
2.3.11 Show that the element (2.3.8) is orthogonal to the elements ϕs,
s = 1, . . . , j − 1.
2.3.12 Verify (2.3.6) using the projection theorem.
2.3.13 Find the orthogonal projection (in L2) of a function f ∈ L2 onto a
subspace of all linear combinations of the functions {1, cos(πx), cos(π2x)}.
2.4.1 Repeat Figure 2.10 with different cutoffs, and then for every corner
function find a minimal cutoff that gives a fair fit.
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2.4.2 Let f ∈ L1 (i.e.,
∫ 1
0 |f(x)|dx < ∞) and let for some δ > 0 the Dı́ni

condition
∫ δ

−δ
|(f(x + t) − f(x))/t|dt < ∞ hold. Then SJ(x) → f(x) as

J → ∞. Hint: See Theorem 8.1.1 in Kolmogorov and Fomin (1957).
2.4.3 Suppose that f is bounded, has only simple discontinuities, and
at every point has left and right derivatives. Then SJ(x) converges to
limδ→0[f(x + δ) + f(x − δ)]/2. Hint: See Remark 8.1.1 in Kolmogorov and
Fomin (1957).
2.4.4 Let f be bounded and differentiable and let its derivative be square
integrable. Then SJ(x) converges to f(x) uniformly over all x ∈ [0, 1]. Hint:
See Theorem 8.1.2 in Kolmogorov and Fomin (1957).
2.4.5 Check (2.4.10).
2.4.6 The function f(x) = |x−0.5| is not differentiable. Nevertheless, show
that it belongs to a Sobolev class W1,Q with some Q < ∞.
2.4.7 Show that Fejér sums satisfy |σJ(x)| ≤ maxx |f(x)|. Hint: Begin with
considering f(x) = 1 and then using (2.4.10) show that the Fejér kernel is
integrated to 1.
2.4.8 Use Figure 2.11 to find cutoffs for Fejér sums that give the same
visualization of modes as the Fourier sums in Figure 2.10.
2.4.9 Use Figure 2.12 to find cutoffs for de la Vallée Poussin sums that
give the same visualization of modes as the Fourier sums in Figure 2.10.
2.5.1 Repeat Figure 2.14 with two other wavelets having the parameter j
different from 8. Discuss how this parameter affects the data compression
property of wavelet approximations.
2.5.2 Repeat Figure 2.14 for two other corner functions. Discuss how
smoothness of an underlying function affects the data compression.
2.5.3 Repeat Figure 2.14 with different n, different corner functions, and
different wavelets. Find the best wavelets for the corner functions.
2.6.1 Explain how to calculate the polynomial basis for L2([0, 1]).
2.6.2 Find G1, G2, and G3 using (2.6.1).
2.6.3 For the subsection “Polynomials on (−∞,∞)” find the first four
elements of the Hermite basis. Hint: Recall that π−1/2e−x2

is the normal
N(0, .5) density.
2.6.4 Prove that a trigonometric basis is orthonormal on a set of equidistant
points.
2.6.5 Use Figure 2.17 to analyze how the cutoff J affects the visualization
of pseudo-jumps in the smooth corner functions.
2.6.6 Try different parameters a in Figure 2.17. Explain the results.

2.8 Notes

The basic idea of Fourier series is that “any” periodic function may be
expressed as a sum of sines and cosines. This idea was known to the Baby-
lonians, who used it for the prediction of celestial events. The history of the
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subject in more recent times begins with d’Alembert, who in the eighteenth
century studied the vibrations of a violin string. Fourier’s contributions be-
gan in 1807 with his studies of the problem of heat flow. He made a serious
attempt to prove that any function may be expanded into a trigonomet-
ric sum. A satisfactory proof was found later by Dirichlet. These and other
historical remarks may be found in Dym and McKean (1972). Also, Section
1.1 of that book gives an excellent explanation of the Lebesgue integral,
which should be used by readers with advanced mathematical background.
The textbook by Debnath and Mikusinskii (1990) is devoted to Hilbert
spaces. The books by Bary (1964) and Kolmogorov and Fomin (1957) give
a relatively simple discussion (with rigorous proofs) of Fourier series.

The simplest functions of the variable x are the algebraic (ordinary)
polynomials Pn = c0 + c1x + · · · + cnxn of degree n. Thus, there is no
surprise that they became the first and powerful tool for approximation of
other functions. Moreover, a theorem about this approximation, discovered
in the nineteenth century by Weierstrass, became the cornerstone of modern
approximation theory. For a continuous function f(x), x ∈ [0, 1], it asserts
that there exists a sequence of ordinary polynomials Pn(x) that converge
uniformly to f(x) on [0, 1]. There are many good books on approximation
theory (but do not expect them to be simple). Butzer and Nessel (1971)
is the classical reference. Among recent ones, DeVore and Lorentz (1993),
Temlyakov (1993), and Lorentz, Golitschek and Makovoz (1996) may be
recommended as solid mathematical references.

The mathematical theory of wavelets was developed in the 1980s and
it progressively appeared to be useful in approximation of spatially inho-
mogeneous functions. There are several relatively simply written books by
statisticians for statisticians about wavelets, namely, the books by Ogden
(1997) and Vidacovic (1999), as well as the more mathematically involved
book by Härdle et al. (1998). The book by Mallat (1998) discusses the
application to signal processing.

The book by Walter (1994) gives a rather balanced approach to the
discussion of all orthogonal systems, and it is written on a level accessible
to graduate students with good mathematical background.



3
Density Estimation for Small Samples

This chapter is devoted to the data-driven orthogonal series estimation of a
univariate density for the case of small sample sizes. An estimator is defined
and discussed in Section 3.1. This estimator is called universal because
it will also be used for other statistical models including nonparametric
regression and spectral density estimation. Section 3.2 studies risks of this
estimator via lower bounds (oracle inequalities). These bounds allow us to
say how far the suggested estimate is from a “golden standard.” Section
3.3 explores different data-driven estimators, which will be used in some
special cases. The remaining sections are devoted to special cases where the
applicability of the universal estimator to a broad spectrum of statistical
settings is explored. Finally, the practical seminar is devoted to a discussion
of how to use the universal estimator for the analysis and presentation of
real data sets.

3.1 Universal Orthogonal Series Estimator

In this section the classical (and simplest) model of probability density
estimation is considered, where n independent and identically distributed
observations X1, X2, . . . , Xn of a random variable X are given. It is sup-
posed that X is distributed according to an unknown probability density
f(x), and the problem is to estimate f(x) over the interval [0, 1] based
only on the data. Remark 3.1.2 at the end of this section explains how to
estimate f over an arbitrary interval. In some cases it is also of interest to
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estimate f over its support, which may be unknown. Remark 3.2.3 discusses
this issue, and this discussion is continued in Section 3.9.

The recommended data-driven estimator is defined below at (3.1.14), so
now step by step we consider the motivation behind this estimator, and
then we will study this estimator via Monte Carlo simulations.

The underlying idea of an orthogonal series estimator is as follows. As we
know from Chapter 2, under mild assumptions a function f(x), x ∈ [0, 1],
may be approximated by a partial sum (truncated orthogonal series),

fJ(x) :=
J∑

j=0

θjϕj(x), 0 ≤ x ≤ 1, where θj =
∫ 1

0
ϕj(x)f(x)dx. (3.1.1)

Here {ϕj} is an orthonormal basis; in this chapter the cosine basis {ϕ0(x) =
1, ϕj(x) =

√
2 cos(πjx), j = 1, 2, . . .}, discussed in Section 2.1, is used.

Recall that J is called the cutoff, and θj is called the jth Fourier coefficient
of f corresponding to the jth element ϕj of the basis used.

Note that θ0 = P (0 ≤ X ≤ 1); thus θ0 ≤ 1 with equality iff f vanishes
beyond the unit interval.

We also discussed in Section 2.4 that in many cases it was worthwhile
to smooth (shrink toward the origin) the Fourier coefficients (to multiply
them by constants that took on values between 0 and 1), so consider a
smoothed partial sum

fJ(x, {wj}) :=
J∑

j=0

wjθjϕj(x), 0 ≤ x ≤ 1, where 0 ≤ wj ≤ 1. (3.1.2)

Thus, the statistical problem of estimation of the density f is converted
into that of finding estimates for (i) Fourier coefficients {θj}; (ii) the cutoff
J ; (iii) the smoothing coefficients (weights) {wj}. It is worthwhile to note
that all of the known series estimators differ only by methods of estimating
the weights and the cutoff, because the choice of an estimate for Fourier
coefficients is straightforward. Indeed, according to (3.1.1) and the fact that
f is the probability density, the Fourier coefficient θj may be written as

θj = E{I{X∈[0,1]}ϕj(X)}. (3.1.3)

Recall that E{·} denotes the expectation (theoretical mean) and I{A} is
the indicator of an event A, that is, the indicator is equal to 1 if A occurs
and is 0 otherwise. Then the natural estimate of the theoretical mean is
the sample mean,

θ̂j := n−1
n∑

l=1

I{Xl∈[0,1]}ϕj(Xl). (3.1.4)

This is the estimate used in all known nonparametric density estimators.
Note that we use diacritics (e.g., “hat,” “tilde,” or “bar”) above a param-
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eter or a function to indicate that this is an estimate (statistic) of the
corresponding parameter or function.

The next step is to choose a cutoff J . The choice crucially depends on
what kind of goodness of fit one wishes to get from an estimator f̃J(x).
In this chapter we restrict our attention to a global risk called the mean
integrated squared error (the abbreviation is MISE) and defined by

MISE(f̃J , f) := E

{∫ 1

0
(f̃J(x) − f(x))2dx

}
. (3.1.5)

Define f̃J(x) :=
∑J

j=0 θ̂jϕj(x). (Note that during the step of choosing
J we set wj ≡ 1. The reason is based on the simplicity and the numerical
analysis presented in the next sections. Also note that using weights wj < 1
may increase the cutoff.) Then Parseval’s identity (recall (2.3.11)) implies

MISE(f̃J , f) =
J∑

j=0

E{(θ̂j − θj)2} +
∑
j>J

θ2
j . (3.1.6)

This equality gives us the key idea on how to choose the cutoff J . Because
the optimal cutoff minimizes MISE, it minimizes the sum of the two terms
in the right-hand side of (3.1.6). Let us consider these two terms.

The first term is the variance of f̃J , and it is the sum of J + 1 variances
Var(θ̂j) = E{(θ̂j−θj)2} of the sample mean estimates θ̂j . A straightforward
calculation, based on the elementary trigonometric equality

cos2(α) = [1 + cos(2α)]/2, (3.1.7)

shows that for j > 0

E{(θ̂j − θj)2} = Var(θ̂j) = θ0n
−1 + [θ2j2−1/2 − θ2

j ]n−1 = djn
−1, (3.1.8)

where dj := θ0 + θ2j2−1/2 − θ2
j . As we know from Chapter 2, Fourier

coefficients θj decay rather rapidly as j increases. Thus, we choose d̂ = θ̂0
as an estimate for all dj , j = 0, 1, . . ..

The second term in (3.1.6) is the integrated squared bias ISBJ(f) =∑
j>J θ2

j . It is impossible to estimate this sum directly because it contains
infinitely many terms. Instead, let us note that by Parseval’s identity

ISBJ(f) =
∫ 1

0
f2(x)dx −

J∑
j=0

θ2
j (3.1.9)

and that the term
∫ 1
0 f2(x)dx is a constant. Thus, the problem of finding

a cutoff J that minimizes (3.1.6) is equivalent to finding a cutoff that
minimizes

∑J
j=0(d̂n−1 − θ2

j ). Here we used the above-suggested estimate
d̂n−1 for the variances.

Thus, we need to decide how to estimate θ2
j . Because θ̂j is an unbiased

estimate of θj (i.e., E{θ̂j} = θj), a natural estimate could be θ̂2
j . However,
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this estimate is biased because E{θ̂2
j } = θ2

j +Var(θ̂j), see (A.5) in Appendix
A. Because d̂ is the estimate for nVar(θ̂j), we choose θ̂2

j − d̂n−1 as an
estimate for θ2

j .
Remark 3.1.1. An attractive alternative unbiased estimate of θ2

j is the
U-statistic, θ̃2

j = (2/(n(n − 1))
∑

1≤l<m≤n ϕj(Xl)ϕj(Xm). Sometimes this
estimate may be very convenient, because it does not depend on estimation
of dj . Also note that θ̂2

j − θ̃2
j is an unbiased estimate of Var(θ̂j).

Now we are in a position to combine these ideas and suggest the following
estimate of the cutoff

Ĵ := argmin 0≤J≤Jn

J∑
j=0

(2d̂n−1 − θ̂2
j ). (3.1.10)

Recall that the function argmin 0≤s≤S{as} returns the value s∗ that is
the index of the smallest element among {a0, a1, . . . , aS}. In (3.1.10) the
search for the optimal cutoff is restricted from above by some reasonable
upper bound Jn. Based on the results of the following two sections, we set
Jn = �cJ0+cJ1 ln(n)�, where �x� is the rounded-down x and cJ0 and cJ1 are
parameters (coefficients) whose default values are 4 and 0.5, respectively.
(Exercises 3.1.14–16 are devoted to finding optimal coefficients for each
particular setting; see also Section 3.9.)

Finally, we need to choose the smoothing coefficients wj . It has been
established in Example A.25, see (A.38) in Appendix A, that the best
smoothing coefficients minimizing MISE are

w∗
j =

θ2
j

θ2
j + E{(θ̂j − θj)2}

. (3.1.11)

We have discussed above how to estimate the components of this ratio.
Note that θ2

j is nonnegative and that we do not want to shrink θ̂0 because
if [0, 1] is the support of f , then θ̂0 = 1 implies a series estimate that is
correctly integrated to unity. Thus we set

ŵ0 := 1 and ŵj := (1 − d̂/nθ̂2
j )+, j > 0 . (3.1.12)

Here (x)+ := max(0, x) denotes the positive part of x.
This gives us the estimator

f̄(x) :=
Ĵ∑

j=0

ŵj θ̂jϕj(x). (3.1.13)

The estimator (3.1.13) is a classical smoothed series estimator, which will
be discussed in detail in the following two sections. For practical purposes,
we would like to make two “improvements” on this estimator. The first one
is based on the idea of obtaining a good estimator for spatially inhomoge-
neous densities like the Delta; see Figure 2.1.5. As we discussed in detail
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in Section 2.1, such a density requires a relatively large number of Fourier
coefficients for a fair visualization. Thus we add to the estimate (3.1.13)
high-frequency terms, which are shrunk by a hard threshold procedure, and
get the estimate

f̃(x) :=
Ĵ∑

j=0

ŵj θ̂jϕj(x) +
cJM Jn∑
j=Ĵ+1

I{θ̂2
j
>cT d̂ ln(n)/n}θ̂jϕj(x). (3.1.14)

Here cJM and cT are again parameters (coefficients) that define the max-
imal number of elements included into the estimate and the coefficient in
the hard threshold procedure. The default values are 6 and 4, respectively.
Note that a high-frequency element is included only if the corresponding
Fourier coefficient is extremely large and thus cannot hurt estimation of
smooth functions like the Normal.

The necessity of the second improvement is obvious. An estimate f̃ is
integrated to θ̂0, which is at most 1, but may take on negative values.
Fortunately, it is a simple problem to find a projection of f̃ in L2([0, 1])
onto a class of nonnegative functions integrated to θ̂0. The projection is

f̂(x) := (f̃(x) − c)+, plus removing small bumps, (3.1.15)

where the constant c is such that
∫ 1
0 f̂(x)dx = θ̂0. Then, as is highlighted

in (3.1.15), small bumps are removed. This procedure is explained below.
The procedure (3.1.15) is illustrated in Figure 3.1. The solid line in the

diagram (a) shows a hypothetical density estimate integrated to θ̂0. Note
that θ̂0 is the proportion of observations that have fallen into the unit in-
terval. Because the estimate takes on negative values, the area under the
curve and above the x-axis is more than θ̂0. Then a positive constant c
exists such that the shaded area under the estimate and above the dashed
horizontal line (at the level c) equals θ̂0. The nonnegative projection (de-
fined at (3.1.15)) is shown in the diagram (b), and it is the nonnegative
part of the estimate where the new x-axis is translated to the point c. Note
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FIGURE 3.1. (a) A density estimate integrated to θ̂0. (b) Nonnegative projection
of the estimate on a class of densities. (c) The projection with small bumps
removed.
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that the projection is a bona fide density, that is, it is integrated to θ̂0
and nonnegative. While the projection is an improvement of the original
density, the next step, illustrated in the diagram (c), is based on the fol-
lowing idea. We know from Figure 2.3.5 that a cosine series approximates
the horizontal tails of the Delta by waves that are similar to those shown
in the diagram (a). As a result, in the projection (b) we see several bumps,
that have nothing to do with the underlying density but are just the waves
“leftovers.” Thus, the last step is to remove bumps that we believe are due
solely to the oscillatory approximation of the flat parts of an underlying
density. The procedure is as follows. Let fa and fb be the estimates shown
in diagrams (a) and (b). We know that fb is an improvement of the original
estimate, and the decrease in MISE is δ :=

∫ 1
0 (fa(x)−fb(x))2dx. The value

of δ gives us an idea of which bump is significant and which is not. Namely,
let [t1, t2] be the domain of a bump. If

∫ t2
t1

f2
b (x)dx < cBδ, then this bump

may be removed. In all the following figures the coefficient cB is equal to
2. Finally, since bump-removing decreases the integral of the estimate, the
final step is to divide the estimate by this integral and then multiply by
θ̂0. The obtained estimate is again bona fide.

The universal estimator is constructed. We call it universal because it
will be used with the same values of the coefficients for all the settings and
models. On the other hand, these values are not necessarily optimal for a
particular setting and model; exercises are devoted to the choice of optimal
values.

Several questions immediately arise. First, how does this estimator per-
form for small sample sizes? Second, is it possible to suggest a better
estimator?

The rest of this section is devoted to answering the first question, and
the next two sections give an answer to the second question.

To evaluate the performance of the estimator, we use Monte Carlo sim-
ulations where data sets are generated according to each of the corner
densities shown in Figure 2.1. For these densities θ̂0 = 1 because they are
supported on [0, 1]. Then estimates for sample sizes 50, 100, and 200 are
shown in Figure 3.2. This figure exhibits results of 8 times 3 (that is, 24)
independent Monte Carlo simulations. Note that particular estimates de-
pend on simulated data sets, so they may be better or worse. A particular
outcome, shown in Figure 3.2, is chosen primarily with the objective of the
discussion of possible estimates.

Let us begin the discussion of the exhibited estimates with a general re-
mark. The main beneficiary of the added high-frequency terms in (3.1.14)
and the procedure (3.1.15) of obtaining a bona fide estimate is the Delta.
Note that the estimates in Figure 3.2.5 are dramatically better than all the
approximations (based on the underlying density (!)) discussed in Chapter
2. Moreover, for n = 200 even the magnitude of the peak is shown almost
correctly. For all other estimates, as will be clear from the following two
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FIGURE 3.2. Data-driven cosine series (universal) estimates: Dotted, short-
dashed, and long-dashed lines correspond to n = 50, n = 100, and n = 200.
The underlying corner densities are shown by solid lines. Note that a solid line
may “hide” other lines, and this implies a perfect estimation. For instance, in
the diagram Uniform the dotted line coincides with the solid one, and thus it
is invisible. {Recall that this figure may be repeated (with other simulated data
sets) by calling (after the S–PLUS prompt) the S-function > ch3(f=2). Also,
see the caption of Figure 2.3 about a custom-made density. All the arguments,
shown below in square brackets, may be changed. Let us review these arguments.
The argument set.n allows one to choose 3 (or fewer) different sample sizes. Set
sam=T to see samples for the first sample size. The arguments cJ0 and cJ1
control the parameters cJ0 and cJ1, which are used to calculate Jn in (3.1.10).
Note that S–PLUS does not recognize subscripts, so we use cJ0 instead of cJ0,
etc. The argument cJM is used in (3.1.14) as the factor for the highest possible
frequency, and cT is used in (3.1.14) as the coefficient in the hard thresholding.
Furthermore, cB is the coefficient in the procedure of removing small bumps. Also
recall that below in the square brackets the default values for these arguments
are given. Thus, after the call > ch3(f=2) the estimates will be calculated with
these values of the coefficients. If one would like to change them, for instance to
use a different threshold level, say cT = 6, make the call > ch3(f=2, cT=6).}
[set.n=c(50,100,200), sam=F,cJ0 = 4, cJ1 = .5, cJM = 6, cT = 4, cB = 2]

sections, the estimates (3.1.13) and (3.1.14) typically coincide (there are no
large high-frequency terms). Estimation of some densities, and the Strata is
a particular example, greatly benefits from the procedure (3.1.15) of bona
fide estimation. Indeed, we clearly see two strata in Figure 3.2.4, while
some oscillations were always presented in approximations discussed in Sec-
tion 2.1. Exercise 3.1.15 explains how to visualize the impact of removing
bumps.

Now, let us look at other densities. First of all, the examples of the
Uniform and the Angle show that a twofold increase in the sample size



66 3. Density Estimation for Small Samples

does not necessarily improve an estimate. Moreover, it may be dramatically
worse. Just look at the diagram for the Angle, where the best estimate is
the dotted line corresponding to n = 50.

This does not happen often, but the fact that larger sample sizes may
lead to worse estimates is counterintuitive.

To understand this phenomenon, let us consider a simple example. Sup-
pose an urn contains 5 chips and we know that 3 of them have one color
(the “main” color) and that the other two chips have another color. We
know that the colors are red and green but do not know which one is the
main color. We draw a chip from the urn and then want to make a decision
about the main color. The natural bet is that the color of the drawn chip
is the main color (after all, the chances are 3

5 that the answer is correct).
Now let us continue the game and draw two more chips. Clearly, a deci-
sion based on three drawn chips should only be better. However, there is
a possible practical caveat. Assume that the main color is green and the
first chip drawn is also green. Then the conclusion is correct. On the other
hand, if two next chips are red (and this happens with probability 1

6 ), the
conclusion will be wrong despite the increased “sample size.”

The estimates for the Normal are good; all the estimates for the Bimodal
clearly show the modes; the estimates for the Strata exhibit two strata.
For the Monotone the outcomes are not perfect, but you get the correct
impression about the underlying density. For the Steps, it will be explained
in Section 3.7 how to improve the long-dashed line by taking a projection
on a class of monotone densities.

Let us return one more time to the Uniform and the Angle diagrams.
Is it possible to avoid the oscillations of the particular estimates? One of
the possibilities to do this is to decrease Jn by choosing smaller values for
cJ0 and cJ1. The caveat is that in this case the estimation of a density like
the Strata or the Bimodal may be worse, because these densities require
larger cutoffs. Thus, an optimal choice of these two coefficients is a tradeoff
between a better estimation of functions like the Uniform and the Angle and
a better estimation of functions like the Bimodal and the Strata. Section
3.2 will shed theoretical light on this choice.

Another possibility to explore the universal estimator is to analyze Figure
3.3. Here the histograms help us to shed light on the underlying data sets
(the histogram estimate was discussed in Section 1.1, and a review may be
found in Section 8.1). Note that each figure is based on new Monte Carlo
simulations; thus the underlying data sets in Figure 3.3 are different from
those in Figure 3.2.

For the Uniform we see that the estimate does remarkably well for this
complicated data set, whereas the histogram is oscillatory. The estimate
for the Normal is skewed, and both tails are shown incorrectly. But can the
estimator be blamed for this? The answer is “no.” Recall that the density
estimate describes the underlying data set. Thus, the fact that the estimate
is zero to the right of 0.85 is consistent with the data set, and the same may
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FIGURE 3.3. Performance of the universal estimator for simulated data sets of
sample size n = 100. Histograms are overlaid by the underlying densities (solid
lines) and estimates (dotted lines). [n =100, cJ0 = 4, cJ1 = .5, cJM = 6, cT =
4, cB = 2]

be said about the left tail. Also, we see that the mode of the estimate is
skewed to the left, and it is higher than the mode of the underlying density.
But again, this is consistent with the data at hand.

A similar situation is exhibited in the Bimodal diagram. Here the left tail
of the estimate does not vanish appropriately, and the histogram explains
why. On the other hand, the two modes are well exhibited, and their loca-
tions are shown correctly. Note that here the nonparametric estimate does
help us to see the shape of the Bimodal, which is not obvious when one
tries to analyze the histogram. The estimate for the Strata absolutely cor-
rectly shows the two strata, but the magnitude of the left one is shown too
conservatively. Here the histogram does a better job in showing the differ-
ence between the strata. On the other hand, the location of the main mode
is shown more correctly by the nonparametric estimate. For the Delta the
universal estimate does a remarkable job in showing us both the location
of the peak and the symmetric shape of the Delta, while the histogram is
clearly skewed.

Now let us look at the Angle diagram. The estimate is bad; no doubt
about this. But can we improve it having this particular data set at hand?
The answer is “no.” The mode of the dotted line is shifted to the left, but
this is what we see in the data. Also, the right tail goes up instead of down,
but again, there are no data that could “convince” the estimate to go down
(just for comparison, look at the left tail, where the data clearly indicate
that the underlying density decreases). The Monotone is another example
that explains why density estimation is the art of smoothing. Here both
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the left and right tails of the estimate incorrectly represent the underlying
density. On the other hand, for this data set the only other option for
an estimate to show tails correctly is via waves (indeed, look at the tails
of the histogram). Among these two options, the universal estimate chose
the better one because at least the monotonic nature of the underlying
density was exhibited correctly. On the other hand, the histogram explains
why oscillatory nonparametric estimates for densities like the Uniform, the
Angle, and the Monotone may appear for particular simulations.

Finally, consider the case of Steps. Here it is worthwhile to put yourself
in the shoes of the data-driven estimator. Look at this particular data
set, compare it with the underlying density, and then try to answer the
following two questions. Is there anything in this data set that indicates
the underlying Step density? Can you suggest a procedure of smoothing
this particular histogram that will “beat” the universal estimate? If your
answers are “yes,” then try to apply your procedure to the other histograms.
If your algorithm regularly outperforms the universal estimate, then it is
better.

Two conclusions may be drawn from the analysis of these particular es-
timates. First, the visualization of a particular estimate is useful and sheds
light on the estimator. Second, a conclusion may not be robust if it is based
only on the analysis of just several simulations. The reason is that for any
estimator one can find a data set where an estimate is perfect or, conversely,
very bad. Thus, every experiment (every figure) should be repeated many
times (the rule of thumb, based on the author’s experience, is that the
results of at least 20 simulations should be analyzed before making a con-
clusion). Also, there exist more rigorous methods for assessing the quality
of estimation. We shall discuss them in the following two sections.

Remark 3.1.2. In the case where the density is estimated over a given
interval [a, b] (or data are given only for this interval), to convert the prob-
lem to the case of the [0, 1] interval one first should rescale the data and
compute Yl := (Xl − a)/(b − a). The rescaled observations are distributed
according to a density fY (y), which is then estimated over the unit interval
[0, 1]. Let f̃Y (y), y ∈ [0, 1], be the obtained estimate of the density fY (y).
Then the corresponding estimate of fX(x) over the interval [a, b] is defined
by f̃X(x) := (b − a)−1f̃Y ((x − a)/(b − a)), x ∈ [a, b]. Figure 3.4 shows how
this approach works for the interval [0.4, 0.9]. The particular outcome for
the Normal is the worst one. We see that the dotted line (the estimate) is
oscillatory, and this is very confusing. On the other hand, these oscillations
perfectly fit the data set over the interval [0.4, 0.9]. The decision of the es-
timator is not so clear for the case of the Uniform, but the message of the
estimate is that there are more observations near 0.9 than near 0.4, and
this is what we may agree with. Also, keep in mind that for this setting the
estimator has at hand only those of the 100 observations that belong to the
interval [0.4, 0.9]. This decreases the size of the data sets and does not allow
the estimator to make a conclusion about the smoothness of an underlying
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FIGURE 3.4. The universal estimates over a subinterval [a, b] = [0.4, 0.9]. His-
tograms (except for the Delta) and underlying densities (solid lines) are shown
over the support [0, 1], and the estimates (dotted lines) are shown over [a, b]. The
sample size is n = 100. [n =100, a=.4, b=.9, cJ0 = 4, cJ1 = .5, cJM = 6, cT =
4, cB = 2]

density based on other observations. On the other hand, this figure sheds
light on the idea of a “local” estimation when one estimates density at a
point x based only on the observations nearest to that point. Apparently,
this may be a good idea for estimation of spatially inhomogeneous densities.

Remark 3.1.3. Consider the setting where one would like to estimate an
underlying density over its finite support [a, b], which is unknown. In other
words, both the density and its support are of interest. (Recall that by the
support we mean a minimal interval beyond which the density vanishes.)
In this case the only sure fact about the support is that, according to
Exercise A.12 in Appendix A, P (a < X < X(1)) = P (X(n) < X < b) =
1/(n + 1), where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the ordered observations.
Thus, a =: X(1) − d1 and b =: X(n) + d2, where both d1 > 0 and d2 > 0
should be estimated. Let us use the following approach. If an underlying
density is flat near the boundaries of its support, then for a sufficiently
small positive integer s we have (X(1+s) − X(1))/s ≈ X(1) − a = d1, and
similarly (X(n) − X(n−s))/s ≈ b − X(n) = d2. The default value of s is 1.
Thus, we set

d̂1 := (X(1+s) − X(1))/s, d̂2 := (X(n) − X(n−s))/s. (3.1.16)
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FIGURE 3.5. The universal estimates based on the support [0, 1] and a support
estimated according to (3.1.16). These estimates are shown by dotted and dashed
lines, respectively. Underlying histograms and densities (solid lines) are shown as
well. [n =100, s=1, cJ0 = 4, cJ1 = .5, cJM = 6, cT = 4, cB = 2]

More precise estimation of d1 and d2 requires estimation of both the
density and its derivatives near X(1) and X(n), and this is a complicated
problem for the case of small sample sizes.

Figure 3.5 illustrates how this idea works. The histograms for simulated
data sets of size n = 100 are overlaid by estimates that use the support
[0, 1] (the dotted lines) and by estimates that use the estimated support
[X(1) − d̂1, X(n) + d̂2] (the dashed lines). We see that for densities that are
flat near the edges the recommended method performs well. All the other
estimates are apparently affected by the fact that the support is unknown.
And this takes its toll for the cases of densities with light tails. Just look
at the Normal, the Bimodal, and especially the Delta. There is no way for
small samples to indicate that the support is [0, 1], and as a result, these
estimates are discontinuous over [0, 1].

What if it is known that a density is continuous over the real line? In
other words, let an underlying density vanish (be equal to zero) at boundary
points of the support. Then an estimated support may be defined as a
minimal interval where the data-driven estimate (3.1.15) vanishes at its
boundary points.

Figure 3.6 illustrates this approach, and it also allows us to understand
how this or that hypothetical support (the interval [a, b]) affects the uni-
versal estimate. Here the left diagram (a) shows a histogram for simulated
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FIGURE 3.6. The effect of a chosen interval (support) [a, b] = [X(1)−d1, X(n)+d2]
on the universal estimate (the dotted line). The case of the sample size n = 100
is considered. The solid line shows the underlying density. The diagram (a) shows
the histogram overlaid by the universal estimate over an interval calculated by
formula (3.1.16). For the same data set the diagram (b) shows the estimate that
is based on a minimal support [a, b], shown in the title of the diagram, such that
the estimate vanishes at the boundary points. Two other diagrams (c) and (d)
exhibit outcomes for particular d1 and d2 shown in the title. {The diagrams (c)
and (d) are plotted interactively after entering (at the prompt “1:”) d1 and d2
from the keyboard (use a space between these numbers and then press ENTER
(RETURN)). The argument corden allows one to change the underlying density.}
[n =100, corden = 4, s=1, cJ0 = 4, cJ1 = .5, cJM = 6, cT = 4, cB = 2]

data. This histogram is overlaid by the underlying density (the solid line)
and the estimate (the dotted line) based on a support calculated with the
help of (3.1.16). We see that the estimate does a good job apart from the
discontinuity in the right tail. The diagram (b) again depicts the underly-
ing density and exhibits the estimate with the minimal support where the
estimate vanishes at its boundary points. This support is larger, and we
also see the pronounced flat appendix to the left tail of the right stratum,
which is also seen in the histogram. The other two diagrams show estimates
for some particular values of d1 and d2. In general, the larger a hypothetical
support, the smoother the corresponding estimate.

Remark 3.1.4. We shall see that for different settings, which in-
clude regression, filtering, and spectral density estimation, the parameter
d := limj,n→∞ nE{(θ̂j − θj)2}, where θ̂j is an appropriate sample mean
estimate of θj , defines the factor in changing a sample size that makes esti-
mation of an underlying curve comparable, in terms of the same precision
of estimation, with the density estimation model over the known support
[0, 1] when d̂ = d = 1. In other words, the problem of density estimation
may be considered as a basic one for analyzing other models. Thus we shall
refer to the coefficient d as the coefficient of difficulty. We shall see that
it is a valuable tool, which allows us to judge the complexity of a problem
based on experience with the density estimation.
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3.2 Lower Bounds (Oracle Inequalities)

The aim of this section is to develop lower bounds for MISE (mean inte-
grated squared error) that could be used to answer the question of Section
3.1 on how far this or that estimate is from a “golden standard.” Also, we
shall discuss the ideas of how to suggest a “good” data-driven estimator.
In this section it is assumed that the support of an estimated function is
[0, 1].

Asymptotic (when n → ∞) theory obtains lower bounds theoretically,
basically using limit theorems discussed in Appendix A. An estimate is said
to be optimal if its MISE is close to a lower bound. This is also a prudent
method to rank estimators. For the case of small sample sizes we cannot
use limit theorems. Thus we employ the idea of oracle inequalities for a
family of corner functions.

The idea is as follows. We choose an ideal oracle (pseudo-estimator) that
is based on both data and an underlying density. Then for a particular
underlying density an exact risk (i.e., MISE) of the oracle is calculated,
and it serves as the lower bound (“golden standard”).

To explain the idea more precisely, consider the setting of Section 3.1
with [0, 1] being the support, and recall that then an orthonormal series
estimator may be written as

f̂(x, {wj}) := 1 +
∞∑

j=1

wj θ̂jϕj(x). (3.2.1)

Then, the only difference between estimators is in the method of choosing
the weights wj . Assume that these weights may depend on an underlying
density f . Then we refer to this estimator as an oracle (guru or supervisor)
because the oracle knows both the data and the underlying density. On the
other hand, an oracle may use the underlying density f only for choosing
the weights, and oracles differ by how they choose the weights.

Below we define linear, raw truncated, smoothed truncated, and hard-
threshold oracles.

(i) Linear (optimal smoothing) oracle. This is a pseudo-estimator with
weights w∗

j defined in (3.1.11). As we know from Example A.25 in Appendix
A, this estimator has the minimal MISE over all possible estimates (3.2.1).
It is worthwhile to repeat here the explanation why this is the case. Using
Parseval’s identity we write

MISE(f̂ , f) := E

{∫ 1

0
(f̂(x, {wj}) − f(x))2dx

}
=

∞∑
j=1

E{(wj θ̂j − θj)2}

=
∞∑

j=1

(w2
j E{θ̂2

j } − 2wjE{θ̂j}θj + θ2
j ). (3.2.2)
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Note that the sample mean is an unbiased estimate of the mean. Thus here
we have E{θ̂j} = θj , and therefore E{θ̂2

j } = Var(θ̂j) + θ2
j due to (A.5).

Substituting these relations into (3.2.2) we get

MISE(f̂ , f) =
∞∑

j=1

[w2
j (θ2

j + Var(θ̂j)) − 2wjθ
2
j + θ2

j ]

=
∞∑

j=1

(θ2
j + Var(θ̂j))[wj − θ2

j /(θ2
j + Var(θ̂j))]2

+
∞∑

j=1

θ2
j Var(θ̂j)/(θ2

j + Var(θ̂j)). (3.2.3)

Thus, the MISE is minimized by the smoothing (shrinkage) coefficients
w∗

j = θ2
j /(θ2

j + V ar(θ̂j)) that are optimal pseudo-coefficients (they depend
on f). The corresponding estimator is called a linear oracle. We have also
obtained the exact expression for the MISE of the linear oracle,

OMISEL =
∞∑

j=1

w∗
j Var(θ̂j). (3.2.4)

The abbreviation OMISEL stands for the oracle MISE of linear estimate.
Also, recall that the formula to calculate Var(θ̂j) is given in (3.1.8).

The OMISEL is a natural candidate for the lower bound (oracle inequal-
ity) for the MISE of any estimator. If the MISE of an estimator is close
to the OMISEL, then we may conclude that the estimator is efficient (at
least for a given underlying density).

On the other hand, it is not clear how to mimic the linear oracle by a
data-driven estimate because this oracle uses (and thus knows) absolutely
all Fourier coefficients. Thus, let us introduce several less “informed” oracles
that know only some Fourier coefficients and therefore may be mimicked
by a data-driven estimator.

(ii) Raw truncated oracle. This is the estimator (3.2.1) with wj = 1 for
j ≤ J∗ and wj = 0 otherwise (the name is clear from the procedure where
only the cutoff J∗ may depend on f), that is,

f̂T (x) = 1 +
J∗∑
j=1

θ̂jϕj(x).

This oracle is very simple, and the only parameter chosen by the oracle
is the optimal cutoff J∗ := argmin{R∗(k), k = 0, 1, . . .}, where R∗(k) is the
MISE of the raw truncated oracle, that is, according to (3.1.6), R∗(k) =∑k

j=1 Var(θ̂j) +
∑

j>k θ2
j .

The MISE of the raw truncated oracle is equal to R∗(J∗) and we call it
the OMISET (here the letter T stands for “truncated,” and we shall often
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refer to this estimator as truncated). Thus,

OMISET =
J∗∑
j=1

Var(θ̂j) +
∑

j>J∗
θ2

j . (3.2.5)

To simplify mimicking this oracle, as in Section 3.1 we use n−1 as the
estimate of Var(θ̂j). In general, this may imply a cutoff J different from
the optimal J∗. However, direct calculations of OMISET for all the corner
densities and sample sizes from 25 to 1000 have revealed that J∗ = J .
Thus, from now on the cutoff J is used in place of J∗.

The raw truncated oracle is appealing due to its simplicity. At the same
time, this oracle ignores the possibility of improving the performance by
shrinking (multiplication by weights) the chosen J Fourier coefficients. The
next oracle does exactly this.

(iii) Smoothed truncated oracle. This oracle performs like the raw trun-
cated one, only in addition, it shrinks the first J Fourier coefficients via
multiplication by optimal smoothing coefficients w∗

j . The exact MISE of
this oracle is simply calculated,

OMISES =
J∑

j=1

w∗
j Var(θ̂j) +

∑
j>J

θ2
j . (3.2.6)

Here the letter S in the abbreviation OMISES stands for “smoothed
truncated,” and we shall refer to this oracle as smoothed.

We shall see that overall a data-driven estimator that mimics this oracle
is the best one.

The smoothed oracle shrinks the estimated coefficients, the alternative
being to “keep” or “kill” them. This is the approach of the next oracle.

(iv) Hard-threshold truncated oracle. This oracle again considers the first
J Fourier coefficients as the raw truncated oracle does, but then it keeps or
kills them according to the rule wj := I{θ2

j
>2 ln(n)/n} (recall that I{A} is the

indicator of an event A). The truncation is motivated by the asymptotic
theory discussed in Section 7.4. The abbreviation for the MISE of this
oracle is OMISEH. Here the letter H stands for “hard-threshold,” and the
oracle is referred to as hard-threshold. Then

OMISEH =
J∑

j=1

[Var(θ̂j)I{wj=1} + θ2
j I{wj=0}] +

∑
j>J

θ2
j . (3.2.7)

The belief that this oracle should perform well for small sample sizes
is based on the conjecture that a majority of squared Fourier coefficients
has the “large-small” property, that is, they are either large or small in
comparison with n−1.

Now all the four oracles have been introduced, and we are in a position
to study them. A special remark is to be made about computing the MISE
for the Uniform density. For this density OMISEL = OMISET = OMISEH
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FIGURE 3.7. Ideal cutoff J.

= OMISES = 0 and J = J∗ = 0. This is not a “fair” lower bound, espe-
cially if we would like to study ratios of risks. Thus only for the Uniform
density do we “ask” all the oracles to set J = J∗ = 1 and OMISEL
= OMISET = OMISEH = OMISES = n−1.

Let us analyze MISE of the oracles for our set of 8 corner densities shown
in Figure 2.1 and for a set of 10 sample sizes (25, 50, 75, 100, 150, 200,
400, 600, 800, and 1000). Overall, we have 80 experiments (examples), and
each experiment is devoted to a particular density and sample size. To
visualize all the experiments simultaneously in one figure (see Figure 3.7
as an example) we refer to the horizontal axis as “experiments,” where
coordinate i.0 corresponds to density #i with a sample size 25; similarly,
coordinates i.1, i.2, . . . , i.9 correspond to density #i with sample sizes of
50, 75, 100, 150, 200, 400, 600, 800, and 1000, respectively.

First let us consider the optimal cutoffs J shown in Figure 3.7 (it is
worthwhile to repeat that for all the experiments J = J∗). When you
look at the ideal cutoffs, it is striking that except for the Delta the cutoffs
are surprisingly small. In no way do they try to match the sample size.
Thus, we see that an orthogonal series estimator is a good tool for data
compression and developing simple formulae for underlying densities (of
course, here this conclusion is based only on the analysis of the corner
densities, but it is also supported by the asymptotic theory). The Delta is
a very special case, and it is worthwhile to explain why. Due to Parseval’s
identity, the sum of the squared Fourier coefficients is equal to the integral
of the squared Delta density, which is relatively large (for a theoretical
delta function the integral is equal to infinity). This implies that there are
many large (in comparison with n−1/2) Fourier coefficients that are to be
estimated even for the smallest sample sizes. This example is worthwhile
to keep in mind because it shows that the integral of a squared function
may have a significant effect on the optimal cutoff. Note also the relatively
large ideal cutoffs for the Strata explained by the same reason.
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FIGURE 3.8. Oracle ratios OMISES/OMISEL, OMISET/OMISEL, and
OMISEH/OMISEL shown by the letters S, T, and H, respectively.

The other interesting conclusion is that the ideal cutoff as a function
in n is not necessarily a strictly increasing function. The Normal and the
Bimodal are particular examples that show this clearly.

Now let us consider MISE of the oracles. Recall that OMISEL may be
used as a lower bound or the benchmark for the other oracles. Moreover, we
shall see in Chapter 7 that asymptotically it is the best among all possible
estimators over a wide variety of function classes. Thus we refer to the
inequalities MISE ≥ OMISEL and MISE/OMISEL ≥ 1 as the lower bound
and the oracle inequality, respectively, and to the ratio MISE/OMISEL as
the oracle ratio.

Let us consider the oracle ratios for the “less informed” oracles. The
oracle ratios are shown in Figure 3.8. The ratios confirm the previous theo-
retical conclusion that the smoothed oracle performs better than the other
two. Secondly, for all the experiments OMISES is close to OMISEL, and
this supports our choice of the cutoff J that minimizes the approximation
n−1J +

∑
j>J θ2

j of MISE of the raw truncated oracle, our simplified es-
timation of Var(θ̂j) by n−1, and the approach to choose J by minimizing
MISE of the raw truncated oracle instead of the smoothed one.

The truncated oracle does not perform as well as the smoothed one.
This is primarily due to the phenomenon discussed above of small and
large Fourier coefficients. For instance, all odd Fourier coefficients of the
Normal density are zero, and this explains why this oracle does not perform
well for the Normal density. A similar situation occurs for the Delta and
the Angle. However, the truncated oracle is much simpler than the others,
and this is a plus for a data-driven estimator that mimics it, as we shall
see later.

For some experiments OMISET is close to OMISES (see the Bimodal
and the Strata). As a result, a simpler data-driven estimator, mimicking
the raw truncated oracle, may perform better than a more complicated
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smoothed adaptive estimator. This remark is important because the choice
of a data-driven estimator should not be made solely on the merits of an
underlying oracle. The simplicity of mimicking is another important factor,
and the truncated oracle is the simplest to mimic.

The analysis of the ratio OMISEH/OMISEL and the fact that OMISEH
is typically significantly smaller than OMISET for the smallest sample sizes
also confirms our conjecture about the “large–small” property of squared
Fourier coefficients in comparison with n−1. As we have discussed, for den-
sities like the Normal and the Angle we clearly have “large” and “small”
Fourier coefficients, while for the Monotone all coefficients are “large.” The
latter is due to the the fact that |θj | decreases at the rate j−2; recall (2.2.8)
and the discussion below that line.

3.3 Data-Driven Estimators

In this section we study data-driven (adaptive) estimators that mimic
the above-introduced oracles (except for the linear oracle) and bear their
names. The linear oracle serves as an “unmanageable” benchmark and gives
us the lower bound.

Let us formally define the estimators. Recall that [0, 1] is the support, so
d̂ = θ̂0 = 1.

An adaptive (raw) truncated estimator is

f̂t(x) := 1 +
Ĵ∑

j=1

θ̂jϕj(x), (3.3.1)

where Ĵ is defined in (3.1.10).
A smoothed estimator mimics the smoothed truncated pseudo-estimator

and is defined in (3.1.13).
A hard-threshold estimator mimics the hard-threshold truncated oracle

and is defined by

f̂h(x) := 1 +
Ĵ∑

j=1

I{θ̂2
j
>2 ln(n)/n}θ̂jϕj(x). (3.3.2)

Finally, to make all these estimators bona fide, the procedure (3.1.15) is
used.

To analyze the estimators, a Monte Carlo study is used. For each
experiment (that is, for a density and a sample size), we make a suf-
ficiently large number m of repeated simulations (here m = 5000) and
then calculate the average integrated squared error (AISE) defined as
m−1 ∑m

l=1

∫ 1
0 (f̂l(x) − f(x))2dx, where f̂l is an estimate based on data gen-

erated by the lth Monte Carlo simulation. We shall use the natural notation
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FIGURE 3.9. The ratios AISES/OMISEL and AISES/OMISET shown by the
letters L and T, respectively. For the Delta the ratios are truncated at 5.0.

AISES, AISET, and AISEH for the average risks of smoothed, truncated,
and hard-threshold estimators.

Let us begin the analysis with the oracle inequalities for the smoothed
estimator. The ratios AISES/OMISEL and AISES/OMISET are shown in
Figure 3.9. The ratios for the Delta are truncated at level 5 because they are
very large (go to 90) for reasons discussed previously (recall that because
of this we are adding high-frequency terms in (3.1.14)). Overall, it is fair
to say that this adaptive estimator performs well in comparison with the
oracles. Note that for a majority of the experiments the ratio is less than 2,
and this is an absolutely amazing result because the OMISEL is the lower
bound (oracle inequality) for the MISE. Moreover, we see that for some
experiments the data-driven estimate outperforms the truncated oracle.
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FIGURE 3.11. Differences J̄ − J .

Now let us consider how the other estimators perform. In Figure 3.10
the ratios AISET/AISES and AISEH/AISES are shown.

We see that for some experiments with the Bimodal and the Strata den-
sities the truncated estimator outperforms the smoothed one, but overall
the smoothed estimator is clearly the “winner.”

Finally, let us consider the important part of our estimators—mimicking
J by the estimate (3.1.10). The differences between the average (over the
same m = 5000 Monte Carlo simulations) value J̄ of the estimates Ĵ and the
ideal J are shown in Figure 3.11. For the case of the Delta the differences
are very large; thus we just set them to −1; this is the reason why the
thresholded terms are added in (3.1.14). Overall, we see that the estimate
does a good job in finding optimal cutoffs.

3.4 Case Study: Survival Analysis

Survival analysis is a class of statistical methods that were originally ap-
plied to the study of deaths, thus explaining the name. However, for now
this is an important part of statistics that is useful for studying different
events including equipment failures, stock market crashes, job termina-
tions, births, arrests, and retirements. It is worthwhile to note that in
different fields scientists have given their own names to the topic; for exam-
ple, reliability analysis (engineering), duration analysis (economics), event
history analysis (sociology), and transition analysis (economics). The dif-
ferent names do not imply different mathematical methods but emphasize
different applied aspects.

In this section, as an example, we consider the problem of density
estimation for the case of right-censored observations.

Let X denote a lifetime random variable whose observations may be
right-censored. An observation X is right-censored if all you know about X
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is that it is greater than some given value. An example that motivated the
name is as follows. Suppose that X is a person’s age at death (in years),
and you know only that it is larger than 61, in which case the time is
censored at 61 (this may occur if the person at age 62 moved to another
part of the country or to another country and can no longer be traced).
Another example is the lifetime of a light bulb that may accidently break
before it burns out. But in no way is the notion of censoring restricted to
event times. For instance, if you know only that the invoice price of a car
is greater than $20,000, then the price is right-censored at $20,000.

Clearly, censoring changes the problem, and we cannot use the previous
algorithms directly. Nevertheless, the underlying idea of series estimation
again may be used.

Let us put right censoring into a statistical framework. Assume that X is
a random variable with density fX(x), x ∈ (−∞,∞), and that there exist
n iid realizations X1, . . . , Xn of X.

The problem is to estimate fX over the interval [0, 1] when the real-
izations are not available to us directly, but instead, the data (Yl, δl),
l = 1, 2, . . . , n, are given, where Yl = min(Xl, Tl), δl = I{Xl≤Tl}, and Tl

are iid random variables that “censor” the random variable of interest X.
Such data are called censored on the right (or right-censored), and all the
examples discussed above fall into this framework. Recall that I{A} is the
indicator of an event A, that is, it is equal to 1 if the event occurs and 0
otherwise. Thus, the data at hand consist of either realizations of X that
are not larger than corresponding realizations of T or realizations of T
otherwise.

Probably, the first “natural” idea of how to estimate f is to use only
the uncensored realizations of X. Let us see what happens in this case.
Assume that T is uniformly distributed on [0, 1.5] and then use the idea
together with the data-driven density estimate (3.1.15). The results are
shown in Figure 3.12. We see that the estimates are skewed to the left (with
respect to the underlying corner densities), and this is a natural outcome.
Indeed, by using only uncensored observations, the proportion of smaller
observations is increased, and this implies the skewness. This is probably
most clearly seen for the Uniform, the Strata, the Angle, and the Steps.

Thus, the “naive” approach does not work. To understand how to find a
series estimate, we again begin with writing a partial sum,

fX
J (x) =

J∑
j=0

θjϕj(x) , 0 ≤ x ≤ 1, where θj =
∫ 1

0
fX(x)ϕj(x)dx . (3.4.1)

Recall that the main idea of a series estimate is to write down the Fourier
coefficient θj as the expectation of a function ψj(Y, δ) of the observed pair of
random variables (Y, δ), that is, to find ψj(Y, δ) such that θj = E{ψj(Y, δ)}.
Then the sample mean estimate θ̂j = n−1 ∑n

l=1 ψj(Yl, δl) may be used.
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FIGURE 3.12. The universal estimates based only on noncensored realizations:
Dotted, short-dashed, and long-dashed lines correspond to n = 50, n = 100, and
n = 200. Data are censored on the right by the uniform random variable U(0, a).
The solid lines show the underlying corner densities. [set.n =c(50,100,200),
a=1.5, cJ0 = 4, cJ1 = .5, cJM = 6, cT = 4, cB = 2]

To choose a function ψj , we should find the distribution of the observed
pair (Y, δ). Recall that δ takes on values 0 or 1. Write

P (Y ≤ y, δ = 1) = P (min(X, T ) ≤ y, X ≤ T ) = P (X ≤ y, X ≤ T )

=
∫ y

−∞
fX(x)(1 − FT (x))dx. (3.4.2)

Here FT (y) := P (T ≤ y) is the cumulative distribution function (cdf) of T .
Recall that the function GT (y) := 1−FT (y) is called the survivor function
corresponding to the cdf FT . Then the relations

θj =
∫ 1

0
fX(y)ϕj(y)dy =

∫ ∞

−∞
I{0≤y≤1}fX(y)GT (y)[ϕj(y)/GT (y)]dy

= E{δI{0≤Y ≤1}[ϕj(Y )/GT (Y )]}
show that one can choose ψj(Y, δ) := δI{0≤Y ≤1}ϕj(Y )/GT (y). This implies
the following sample mean estimate:

θ̂j := n−1
n∑

l=1

δlI{0≤Yl≤1}ϕj(Yl)/GT (Yl). (3.4.3)

Of course, it is assumed that GT (Yl) is not equal to 0.
As an exercise, let us check that (3.4.3) is indeed an unbiased estimate

of θj . Write

E{θ̂j} = E{δI{0≤Y ≤1}ϕj(Y )/GT (Y )}
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= E{(I{δ=0} + I{δ=1})δI{0≤Y ≤1}ϕj(Y )/GT (Y )}
= E{I{δ=1}I{0≤Y ≤1}ϕj(Y )/GT (Y )} = θj ,

where (3.4.2) was used to get the last equality.
To use the data-driven estimate (3.1.14), we need to suggest an estimate

d̂ of nVar(θ̂j) (recall that for the uncensored case the estimate d̂ = θ̂0 is
used). This is not a complicated issue. Write

nVar(θ̂j) = E
{(

δI{0≤Y ≤1}ϕj(Y )/GT (Y )
)2}− θ2

j

=
∫ 1

0
ϕ2

j (y)(fX(y)/GT (y))dy − θ2
j .

Then using (3.1.7) we get

nVar(θ̂j) =
∫ 1

0
(fX(y)/GT (y))dy +

∫ 1

0
ϕ2j(y)(fX(y)/GT (y))dy − θ2

j .

Note that
∫ 1
0 ϕ2j(y)(fX(y)/GT (y))dy is the (2j)th Fourier coefficient of

fX(x)/GT (y), and, as we know from Section 2.2, Fourier coefficients practi-
cally vanish for large j. Thus, to estimate the variance we need to estimate∫ 1
0 (fX(y)/GT (y))dy = E{δI{0≤Y ≤1}(GT (Y ))−2}. Again, to estimate the

expectation a sample mean estimate can be recommended,

d̂ := n−1
n∑

l=1

δlI{0≤Yl≤1}(GT (Yl))−2. (3.4.4)

Thus, if the survivor function GT (y) is given, then the data-driven es-
timate (3.1.14) can be used straightforwardly with θ̂j and d̂ defined at
(3.4.3) and (3.4.4), respectively. What do we do if the survivor function is
unknown? Fortunately, it is a well-known problem to estimate a survivor
function for censored data. Here the only point that should be clarified is
that T is left censored by X. Then one of the widely used estimates is the
product-limit (Kaplan–Meier) estimate,

G̃T (x) := 1, x < Y(1); G̃T (x) := 0, x > Y(n);

G̃T (x) :=
l−1∏
i=1

[(n − i)/(n − i + 1)]1−δ(i) , Y(l−1) < x ≤ Y(l), (3.4.5)

where (Y(l), δ(l)) are ordered Yl’s with their corresponding δl’s, l = 1, . . . , n.
The survivor function GT (y) is assumed to be positive at the point y = 1
(recall that the function is used in the denominator of the ratio (3.4.3)).
Thus the product-limit estimate is also truncated from below,

ĜT (x) := max(G̃T (x), 1/ ln(n)). (3.4.6)

Now the estimate (3.1.14) may be used straightforwardly with (3.4.3)
and (3.4.4) as estimates of θj and d, and ĜT used in place of GT . Finally,
the bona fide procedure (3.1.15) is implemented.
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The estimator obtained is completely data-driven, and Figure 3.13 shows
how it performs. Overall, the estimates are fairly good, but definitely the
censoring takes its toll and makes the estimation worse in comparison with
the case of direct data. Is it possible somehow to quantify the effect of
the censorship and understand what characteristics of X and T affect the
estimation? In other words, if someone is experienced in density estima-
tion based on direct data, what is the needed increase in the number of
observations to get a comparable quality of estimation?

This important question is not simple even for asymptotic theory. The
issue is that traditional asymptotic theory studies rates of the MISE con-
vergence, and these rates are not affected by the censoring. Thus constants
of the MISE convergence should be studied. Section 7.7 shows that for
an m-fold differentiable function, the convergence of MISE is proportional
to (dc/n)2m/(2m+1), where dc :=

∫ 1
0 (fX(y)/GT (y))dy; see (7.7.1). Note

that dc ≥ ∫ 1
0 fX(x)dx, with equality only if no censoring occurs. We

refer to dc as the coefficient of difficulty due to censoring (CDC) and
to rc := dc/d =

∫ 1
0 (fX(x)/G(x))dx/

∫ 1
0 fX(x)dx as the relative CDC

(RCDC). The meaning of RCDC is as follows: For large sample sizes, rcn
censored observations give us about the same precision of estimation as n
direct observations of X.

Can this simple asymptotic rule be used for the case of small samples?
To answer this question, let us consider some particular cases. For X dis-
tributed according to the corner densities (ordered as shown in Figure 3.13)
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FIGURE 3.13. The universal estimates for right-censored data. Data are censored
by a uniform U(0, a) random variable, a = 1.5. The dotted, short-dashed, and
long-dashed lines correspond to n = 50, n = 100, and n = 200. The solid lines
show the underlying densities. [set.n =c(50,100,200), a=1.5, cJ0 = 4, cJ1 = .5,
cJM = 6, cT = 4, cB = 2]



84 3. Density Estimation for Small Samples

1

1

1

1
1

1

1

1

1

1

1

1

1
1

11

1

1

1

11

1
1

1

1

11

1

1

1

1

1

11

1

1

1

1
1

1

1

1

11
1
1
1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1
1

1

1

1

1

1

11

1

11

1

1

1
1

1

2

2

2

2

2
2

2

2

22

2

2

2

22

2

2

2

2

2

2

2

2
2

2

2

2

22
2

2

2

2

22

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2
2

2

2
2

2

2

2

22

2
22

2

2

2
2

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3
3

3
3

3
3

3

3

3
3

3

3

3

3

3

3

3

33

3

3
3

3

3

3

3

3

3

33
3

33

3
3

3

3

3

3

3

33
3

3

3

3

3
3

3
3
3

3

33

3

4

4

4

4

4

4

4
4

4
4

4
4

4

4

4

4

4

4

4

4

4
4

4
4

4

4
4
4

4
4

4

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4
4

4
4

4

4

4

4

4
4
44

4

4

4

44
44

44

4
4
4

5

55

5

5

5

5

55

5

5

5
5

5

5

5

5

5

5

5

5

5

55
5

55

5

5

5

5

5

55

5

5

5

5

5

5

55

555

5
5

5
5

5

5

5

5
5

5

55

5

5
5

5

5

5
5
5

5

5

5
5

5

5
5

5

5

5

5

5
5

5
5

6

6

6
6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

666
6

6
6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6
6
6

6

6

6

6

66

6

6

6

66

6

6

6

6

6

6

6
6

6
6

6

6

6

6

6

6

66
66

EXPERIMENTS

RA
TI

O

1 2 3 4 5 6 7 8Uniform Normal Bimodal Strata Delta Angle Monotone Steps

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

FIGURE 3.14. Ratios AISEC/AISED, where for censored data the sample size of
directly observed data sets is multiplied by the RCDC. Points 1, 2, 3 correspond
to Uniform U(0, a) censoring with a = 1.2, 1.5, and 2. Points 4, 5, 6 correspond
to Exponential E(λ) censoring with λ = 1, 1.5, and 2.

and T being U(0, 1.5), the RCDC are equal to 1.7, 1.5, 1.6, 1.6, 1.5, 1.6,
2, and 1.9. Thus, for instance, for the Monotone we need twice as many
censored observations to match the case of uncensored data. One more
example. Let T have Exponential E(2) distribution, i.e., GT (y) = e−λy,
y ≥ 0, and the rate λ is equal to 2. Then the RCDC are 3.2, 2.8, 3.2, 3,
2.7, 3.1, 4.3, and 3.9. Thus, the exponential censoring makes the problem
extremely complicated, and one needs dramatically larger sample sizes to
get estimates comparable to estimates based on direct data.

To verify that RCDC is a reasonable coefficient for finding a necessary in-
crease in the size or small samples, the following experiment was conducted.
Six censoring distributions were considered: 3 Uniform U(0, a) with a equal
to 1.2, 1.5, and 2; and 3 Exponential E(λ) with λ equal to 1, 1.5, and 2. For
all these experiments, i.e., the corner functions, the censored distributions,
and the sample sizes 25, 50, 75, 100, 150, 200, 400, 600, 800, and 1000
(see the discussion about an experiment in Section 3.2), 500 Monte Carlo
simulations were made with sample sizes multiplied by the corresponding
RCDC. Then calculated average integrated squared errors (for the cen-
sored observations) AISEC were compared with the previously obtained
(in Section 3.2) AISED for the case of direct observations.

These ratios are shown in Figure 3.14. The result clearly supports the
possibility to use the RCDC as a measure of difficulty due to censorship.

Remark 3.4.1. (Left Censoring) A symmetric problem to right cen-
soring is left censoring, where the variable of interest is censored on the left.
For instance, when a physician asks a patient about the onset of a particular
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disease, a typical answer is that it occurred prior to some specific date. In
this case the variable of interest is left-censored. To “translate” this setting
into right censoring, choose a value A that is not less than all available left-
censored observations and then consider a new data set that is A minus the
given left-censored observations. The new data set is right-censored. Find
the universal estimate for this right-censored data, and this estimate is the
mirror image of the desired estimate for the left-censored data.

3.5 Case Study: Data Contaminated by
Measurement Errors

There are many situations where a random variable is not observed directly.
The case of censored data discussed above is a particular example. In this
section another case is discussed where realizations of X are measured
with some nonnegligible errors (the data are error contaminated). Note that
errors occur not necessarily due to an imperfect measurement tool; in many
cases, like a study of the behavior of insects, only indirect measurements
are possible. Another classical example is a score on an IQ test that should
measure the IQ of a person. Quantities that cannot be directly measured
are sometimes called latent.

In this section a rather simple mathematical model of independent ad-
ditive errors is considered, where realizations of Y = X + ε are given and
X is a random variable of interest.

To make this section even more interesting and enrich the “toolbox”
of models, we shall consider the practically important case of directional
(angular, circular) data where data are measured in the form of angles.
Such data may be found almost everywhere throughout science. Typical
examples include departure direction of birds and animals from points of
release, wind and ocean current directions, times of accidents occurrence,
and energy demand over a period of 24 hours. Thus, it is worthwhile to be
familiar with these random variables. At the end of this section it will be
explained how to solve the problem for data on the real line.

It is customary to measure directions in radians with the range [0, 2π)
radians. In this case the mathematical procedure of translation of any value
onto this interval by modulo 2π (the shorthand notation is [mod 2π]) is
useful. As an example, 3π[mod 2π] = 3π − 2π = π, and −2.1π[mod 2π] =
−2.1π + 4π = 1.9π. In words, you add or subtract j2π (where j is an
integer) to get a result in the range [0, 2π).

The statistical setting is as follows. The data are n independent and
identically distributed realizations (so-called directions) Yl, l = 1, 2, . . . , n,
of a circular random variable Y that is defined by Y := (X + ε)[mod 2π]
(or Y := (X[mod2π]+ε[mod2π])[mod2π]), where the random variable ε is
independent of X. The variable ε is referred to as the measurement error.
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The problem is to estimate the probability density fX(x), 0 ≤ x < 2π,
of the random variable X[mod 2π].

Before explaining the solution, several comments about circular random
variables should be made. Many examples of circular probability densities
are obtained by wrapping a probability density defined on the line around
the circumference of a circle of unit radius (or similarly one may say that
a continuous random variable on the line is wrapped around the circum-
ference). In this case, if Z is a continuous random variable on the line and
X is the corresponding wrapped random variable, then

X = Z[mod 2π] , fX(x) =
∞∑

k=−∞
fZ(x + 2πk). (3.5.1)

While the notion of a wrapped density is intuitively clear, the formulae
are not simple. For instance, a wrapped normal N(µ, σ2) random variable
has the circular density (obtained after some nontrivial simplifications)

fX(x) = (2π)−1
(
1 + 2

∞∑
k=1

e−k2σ2/2 cos(k(x − µ))
)
.

Fortunately, these complications with wrapped densities are not crucial
for an orthogonal series estimation whenever a correct basis is chosen. For
this setting a complex trigonometric basis, discussed in Section 2.4, see
(2.4.22)–(2.4.23), is the most convenient. Indeed, a partial Fourier sum
may be written as

fX
J (x) := (2π)−1

J∑
j=−J

hX(j)e−ijx, (3.5.2)

where

hX(j) :=
∫ 2π

0
fX(x)eijxdx = E{eijX} (3.5.3)

is the characteristic function of the random variable X. Here i is the
imaginary unit, that is, i2 = −1.

Note that |hX(j)| ≤ 1, and the characteristic function is real whenever
the random variable is symmetric about 0.

For the case of a wrapped distribution we get, according to (3.5.1),

hX(j) =
∫ 2π

0

∞∑
j=−∞

fZ(x + 2πk)eijxdx = hZ[mod 2π](j) = hZ(j). (3.5.4)

While formula (3.5.1) for a wrapped density is not very convenient,
formula (3.5.4) for the corresponding characteristic function is simple.
Moreover, if we let X and ε be independent, then

hX+ε(j) = E{eij(X+ε)} = hX(j)hε(j). (3.5.5)
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FIGURE 3.15. Densities of (X + ε)[mod 1], where X is distributed according
to the corner densities (shown by solid lines) and ε is N(0, σ2). The dotted,
short-dashed, and long-dashed lines correspond to σ equal to 0.02, 0.1, and 0.3,
respectively. {σ is the Greek letter “sigma,” so the corresponding argument is
named sigma.} [set.sigma=c(.02,.1,.3)]

Thus if the sum Y = X + ε is observed, then hX(j) = hY (j)/hε(j).
It is assumed that the characteristic function hε(j) of ε does not vanish,
and recall that the last formula is valid for both circular and linear random
variables. This together with (3.5.2) explains the underlying idea of an esti-
mate. Namely, the characteristic function of the observed random variable
Y is estimated, and then it is divided by the characteristic function of the
measurement error ε. This gives us an estimate of hX(j), which may be
used in (3.5.2).

Equation (3.5.5) also explains why the problem is said to be ill-posed.
The reason is that if hε(j) is small, then even a large change in hX(j)
leads to a relatively small change in hY (j). Because only the hY (j) may be
estimated, this makes the problem ill-posed.

To “visualize” the ill-posedness, Figure 3.15 shows densities of Y = (X +
ε)[mod1] for X distributed according to the corner densities (shown by
solid lines) and ε being normal N(0, σ2) with σ equal to 0.02, 0.1, and 0.3.
Below, we refer to the density of Y as a convolved density; the reason for
this adjective is explained in Appendix A; see (A.18). The normal error
with the smallest standard deviation, 0.02 (see the dotted lines), makes
a difference only in the visualization of the convolved Monotone and the
convolved Steps because they become periodic. Also, the sharp angle in the
Angle becomes a smooth one, the Delta resembles a typical normal density,
and the sharp steps in the convolved density Steps disappear. In short, such
a small measurement error makes a circular random variable continuous,
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and while it is easy to recognize the original densities, the problem of testing
for the presence of jumps or sharp angles becomes extremely complicated.

As we see, the situation dramatically changes for the case of normal errors
with larger standard deviations. Here the recognition of the underlying
densities becomes a “puzzle.”

It is of a special interest to look at the case of Figure 3.15.1. We see that
the convolved densities are always uniform. This is because the character-
istic function of the Uniform density is hU (0) = 1 and hU (j) = 0 for any
integer j �= 0. As a result, if a measurement error is uniformly distributed,
then no recovery of a convolved density is possible. Such an extreme setting
is called irregular. Note that we avoid such a setting due to the assumption
that hε(j) does not vanish at integers j.

Now we are in a position to explain the problem of estimation (recovery)
of the density of X based on observations of the sum Y = (X +ε)[mod2π].
The observations of Y allow us to estimate the characteristic function hY (j)
by the empirical characteristic function

ĥY (j) := n−1
n∑

l=1

eijYl . (3.5.6)

Then the natural estimate of hX(j) is ĥX(j) := ĥY (j)/hε(j). Consider
the mean squared error of estimation of hX(j) by ĥX(j),

E{|ĥX(j) − hX(j)|2} = E{|ĥY (j) − hY (j)|2}/|hε(j)|2
= n−1(1 − |hY (j)|2)/|hε(j)|2. (3.5.7)

As an example, if ε is normal N(0, σ2), then hε(j) = e−j2σ2/2, that is,
the decrease in hε(j) is extremely fast. The asymptotic theory shows that
this implies an extremely slow logarithmic convergence of MISE (after all,
this is an ill-posed problem). A normal error is the worst-case scenario (for
instance, Cauchy error is better and Gamma error is dramatically better),
but it is also the most typical measurement error.

After all these “scary” asymptotic scenarios, it is necessary to explain
why we have a chance to get a reasonable estimation (in comparison with
no-error case) for small sample sizes. According to Figure 3.7, typical cutoffs
are not large. Thus, if hε(j) is not too small for the first values of j (and
typically this is the case), then a reasonable recovery, which is comparable
with the case of direct observations, is possible. In short, for small sample
sizes we see only the onset of ill-posedness. Of course, for moderate and
large samples no fair competition between the cases of direct and indirect
data is possible. Also, there is no way to nicely restore a density like the
Delta, where too many high-frequency components should be estimated for
a decent recovery.

Finally, prior to writing down a recommended data-driven estimate, con-
sider the practically important case of an unknown characteristic function
hε(j). In this case measurement errors are to be studied via this or that
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sampling procedure, and there is no way to “bypass” this. As an example,
let us assume that m realizations ε′

l, l = 1, 2, . . . , m, of the measurement
error ε are given. (Another possible sampling procedure is discussed in
Exercise 3.5.9.) Then the empirical characteristic function

ĥε(j) := m−1
m∑

l=1

eijε′
l (3.5.8)

may be used in place of an unknown characteristic function hε. The rule
of thumb is that m = n is sufficient, and in many practically interesting
settings m may even be less than n.

Let us now define a data-driven estimate. Set bn to be the integer part of
[cb ln(ln(n+20))]−1, and J ′

n to be the rounded-up d0+d1[ln(n+20)]1/(d2bn)

with the default parameters cb = 8, d0 = 2, d1 = 0.5, and d2 = 10. The
recommended data-driven estimator is

f̃n(x) := (2π)−1
J′

n∑
j=−J′

n

(1 − |ĥY (j)|−2n−1)+

× (ĥY (j)/hε(j))I{|hε(j)|>cHn−1/2+bn }e
−ijx. (3.5.9)

Recall that (z)+ := max(z, 0) is the positive part of z, and the default value
of cH is 1. To make the estimate bona fide, the nonnegative projection
f̂n(x) = (f̃n(x)−c)+ is used, where the nonnegative constant c is such that
f̂n(x) is integrated over [0, 2π] to unity. Finally, the procedure of removing
small bumps is used.

Particular estimates for normal N(0, σ2), σ = 0.1, measurement error
and sample sizes n = 50 and n = 1000 are shown in Figure 3.16, where
we again use the corner densities to generate X, which is then wrapped
around the circumference of a circle of unit length. Thus, all the under-
lying densities are 1-periodic. Please, do not read the caption. Can you
guess which line corresponds to which sample size? This would be a trivial
question for the case of direct data, but not so here because MISE has only
a logarithmic rate of convergence. Probably, the cases of the Uniform, the
Angle, the Monotone, and the Steps would vote for the dotted line being
the estimate based on 1000 observations, while the Bimodal would vote for
the dashed line being the estimate based on 1000 observations. Curiously,
for the Normal, the Strata, and the Delta the twentyfold increase in the
sample size has no feasible effect on the estimates. This is what makes this
problem so specific and complicated. On the other hand, we see that for
n = 50 (the dotted lines) the estimates are not bad in comparison with the
estimates based on direct data and shown in Figures 3.2–3.

Of course, we have seen the worst-case scenario of a normal measurement
error. A majority of other errors imply much better recovery because their
characteristic functions decrease much more slowly.
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FIGURE 3.16. Estimates of the underlying corner densities (which are not shown)
for the case of a normal N(0, σ2), σ = 0.1, measurement error and sample sizes
50 (dotted lines) and 1000 (dashed lines). The data are circular with the range
[0,1]. {Subscripts cannot be used in S-functions, so cb is denoted by cb, d0 by d0,
etc.} [set.n=c(50,1000), sigma=.1, cb=8, d0=2, d1=.5, d2=10, cH=1, cB=2]

Finally, let us consider the case where X is not circular and is supported
on an interval [0, T ]. Write,

f(x) = T−1 + (2/T )
∞∑

j=1

Re{hX(jπ/T )} cos(jπx/T ), (3.5.10)

where Re{z} is the real part of a complex number z. Then the direct
analogue of the estimate (3.5.9) is the estimate

f̃n(x, hε) := T−1 + (2/T )
2J ′

n∑
j=1

(1 − |ĥY (j)|−2/n)Re{ĥY (jπ/T )/hε(jπ/T )}

× I{|hε(jπ/T )|>cHn−1/2+bn } cos(jπx/T ). (3.5.11)

The estimator becomes simpler when errors are symmetric about zero.
In this case hε(j) is real, and we may write

f̃n(x, hε) = T−1 + (2/T )
2J ′

n∑
j=1

(1 − θ̂−2
j n−1)+

× [θ̂j/hε(jπ/T )]I{|hε(jπ/T )|>cHn−1/2+bn )} cos(jπx/T ), (3.5.12)
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FIGURE 3.17. Histograms of n = 100 realizations of Y := (X+ε)[mod1] overlaid
by underlying densities (solid lines) and estimates (3.5.12) of the density fX

shown by dotted lines. The measurement error ε is normal N(0, σ2). [n=100,
sigma=.1, cb=8, d0=2, d1=.5, d2=10, cH=1, cB=2]

where

θ̂j = n−1
n∑

l=1

cos(jπYl/T ) . (3.5.13)

As usual, the bona fide procedure (3.1.15) is the final step.
Figure 3.17 is a convenient tool to understand both the problem and the

suggested solution. Here T = 1, and let us look, as an example, at the
Delta diagram. Does the histogram exhibit the underlying Delta density?
Is it symmetric? Do you see that the range of the data is about 0.6, that is,
much larger than the tiny support of the Delta? All these questions show
the complexity of this setting and allow us to conclude that the estimator
performs reasonably well under these circumstances.

3.6 Case Study: Length-Biased Data

This case is another example of indirect observations where an observed
random variable Y is supported on [0, 1] and has the probability density

fY (y) := g(y)fX(y)/µ, (3.6.1)
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where g(y) is a given positive function and fX is a probability density of
interest that is also supported on [0, 1]. Thus,

µ =
∫ 1

0
g(x)fX(x)dx, (3.6.2)

and note that because fX is unknown, the parameter µ is also unknown.
It is clear that the problem is indirect because one has observations of Y

and would like to estimate the density of an unobserved X. But why are
the data called length-biased? The simplest way to understand this is to
consider an example of the setting.

Suppose that a researcher would like to know the distribution of the
ratio of alcohol in the blood of liquor-intoxicated drivers traveling along
a particular highway. The data are available from routine police reports
on arrested drivers charged with driving under the influence of alcohol (a
routine report means that there are no special police operations to reveal
all intoxicated drivers). Because a drunker driver has a larger chance of
attracting the attention of the police, it is clear that the data are length-
biased toward higher ratios of alcohol in the blood. Thus, the researcher
should make an appropriate adjustment in a method of estimation of an
underlying density of the ratio of alcohol in the blood of all intoxicated
drivers.

There are many other similar examples in different sciences where a
likelihood for an observation to appear in a sample depends on its value.
In many cases a linear g(x) is recommended, but in general the function
g(x) should be studied via additional experiments.

Probably the first idea of how to solve the problem is to estimate fY and
then divide it by g. This is a good idea, but it does not lead to an optimal
estimation according to the asymptotic theory. Also, for small sample sizes
some problems may arise for a set of points x where g(x) is relatively small.

Thus, let us use our standard series approach and try to estimate the
Fourier coefficient θj =

∫ 1
0 ϕj(x)fX(x)dx via the expectation E{ψ(Y )}

of some function ψ(Y ). Assume for a moment that µ is given. Then the
straightforward choice ψ(y) := µϕj(y)/g(y) leads to the sample mean
estimate based on n iid realizations Y1, . . . , Yn of Y ,

θ̂j := µn−1
n∑

l=1

ϕj(Yl)/g(Yl). (3.6.3)

Let us check that (3.6.3) is an unbiased estimate of θj . Write

E{θ̂j} = µE

{
ϕj(Y )
g(Y )

}
= µ

∫ 1

0

fY (y)ϕj(y)
g(y)

dy =
∫ 1

0
ϕj(y)fX(y)dy = θj .
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The parameter µ used in (3.6.3) is, of course, unknown. A recommended
estimate is (we use the notation g−k(x) := (1/g(x))k)

µ̂ :=
1

n−1
∑n

l=1 g−1(Yl)
. (3.6.4)

The idea of this estimate is that 1/µ̂ is an unbiased estimate of 1/µ.
Indeed,

E{1/µ̂} = E{g−1(Y )} = µ−1
∫ 1

0
g(y)fX(y)g−1(y)dy = 1/µ.

Finally, to use the data-driven estimate (3.1.14), we need to find an
estimate d̂ for nE{(θ̂j − θj)2}. Again, assuming that µ is given, we write
for θ̂j defined at (3.6.3),

nE{(θ̂j − θj)2} = E{(µϕj(Y )/g(Y ))2} − θ2
j .

Then, using (3.1.7) we get

E{(µϕj(Y )/g(Y ))2} = µ2E{g−2(Y )} + µ22−1/2
∫ 1

0
fY (y)g−2(y)ϕ2j(y)dy.

Note that the second term is the (2j)th Fourier coefficient of the function
2−1/2µ2fY (y) g−2(y). As we know from Section 2.2, under mild conditions
these coefficients vanish for large j. Thus, we may define the coefficient of
difficulty due to length-biased data:

d := µ

∫ 1

0
fX(y)g−1(y)dy = µ2E{g−2(Y )}. (3.6.5)

Then a natural estimate of the coefficient of difficulty is

d̂ := µ̂2n−1
n∑

l=1

g−2(Yl). (3.6.6)

The suggested estimator is based on the function g(x), which may be
unknown. It is impossible to estimate both f and g based only on observa-
tions of Y . Thus, an additional experiment should be done. For instance,
if fX is given, then observations of Y could be used to estimate g(x) by
the above-recommended estimator. Indeed, g(x) can always be thought of
as a density (otherwise divide it by its integral), and then the problem is
symmetric with respect to g and fX .

Estimates for the case of g(x) = 0.1 + 0.9x and Monte Carlo simulated
data with the corner functions being the underlying densities are shown
in Figure 3.18. As we see, for this particular case the estimates, except of
several “bad guys,” are relatively good. This indicates that the coefficient of
difficulty should be moderate. To tackle this coefficient note that d, defined
in (3.6.5), may be written as

d = E{g(X)}E{g−1(X)}. (3.6.7)
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FIGURE 3.18. Estimates for length-biased data with g(x) = a + bx, a = 0.1
and b = 0.9. The dotted, short-dashed, and long-dashed lines correspond to the
sample sizes 50, 100, and 200. The solid lines show the underlying corner densities.
[set.n=c(50,100,200), a=.1, b=.9, cJ0=4, cJ1 =.5, cJM=6, cT=4, cB=2]

Using Cauchy–Schwarz inequality (A.9) with Z1 =
√

g(X) and Z2 = 1/Z1
we get that d ≥ 1, with equality for the case of direct data. For the given
g and the corner densities, the coefficients of difficulty, rounded to the first
digit after the decimal point, are 1.4, 1.1, 1.1, 1.3, 1.0, 1.3, 1.2, 1.4. Recall
that the support is [0, 1], so as in Section 3.4 the coefficient of difficulty is
equal to the relative coefficient of difficulty. Thus, the coefficient of diffi-
culty shows the increase in a sample size that allows us to get about the
same precision of estimation as for the case of direct data. The numbers
presented support our preliminary conclusion that this setting is not much
more complicated than the case of direct observations. On the other hand,
the cases of the Uniform and the Steps may sometimes present a surprise.
Such a “surprise” is clearly seen in the Steps diagram.

Finally, it is worthwhile to comment on how the Monte Carlo simulations
of Y with the probability density (3.6.1) have been made. Here the two-
steps acceptance-rejection method has been used (see Exercise 3.6.5).

Step 1. Simulate X according to fX and independently simulate a
uniform U(0, 1) random variable U .

Step 2. Find a (preferably minimal) constant c ≥ 1 such that g(x)/µ ≤ c
for all x. If U ≤ g(X)/cµ, then set Y := X, otherwise return to Step 1.
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3.7 Case Study: Incorporating Special Features

It is quite common that some qualitative characteristics of a curve are
known a priori or are being sought. For instance, it may be known a priori
that an underlying density is monotone; in this case an estimate should be
monotone as well. Another example is the case where it is important to
know the shape of a curve near boundaries; since the cosine estimates are
always flat near boundaries, we should address such an issue. In all these
cases it is desirable to have an estimator that incorporates these features.

Let us begin with the case of estimation of monotone densities, to be
specific, nondecreasing ones. Clearly, for the case of monotone densities the
series estimate (3.1.15) may be not bona fide, see the examples in Figures
3.2.1, 3.2.7, and 3.2.8.

There are two possible approaches to solve this problem: Either suggest
a new special procedure for estimation of monotone densities, or use any
estimator and then find its projection onto a class of monotone curves. The
asymptotic theory (Section 7.7) tells us that the second approach leads
to optimal estimation for large sample sizes. Thus, if we believe that an
estimator is good, then we may use it for estimation of any density, and
then, if it is given that an underlying density is monotone, use a monotonic
projection. Such an approach is convenient and robust because the original
estimate may be visualized together with its monotonic projection.

A monotonic projection is extremely simple. Let f̂1, . . . , f̂m be the values
of a nonmonotone estimate at points x1 < x2 < · · · < xm. Then:

(i) Start with the pair (f̂1, f̂2) and find the first pair (f̂j , f̂j+1) such that
f̂j > f̂j+1, i.e., the first pair from the left where monotonicity fails.

(ii) Replace both f̂j and f̂j+1 by their average value, i.e., by (f̂j+f̂j+1)/2.
(iii) Beginning with the pair (f̂j−1, f̂j), check that after the modification

(according to step (ii)) of the original estimate, all pairs to the left, that
is, the pairs (f̂j−1−s, f̂j−s), s = 0, 1, . . . , j − 2, satisfy the monotonicity
requirement f̂j−1−s ≤ f̂j−s. If for some s∗ monotonicity fails, then replace
all the elements in the triplet (f̂j−1−s∗ , f̂j−s∗ , f̂j−s∗+1) by their average
value (f̂j−1−s∗ + f̂j−s∗ + f̂j−s∗+1)/3.

(iv) If the modified estimate is monotone, then stop. This is the
monotonic projection. If not, then return to step (i).

Let us see how this procedure works using Figure 3.19. The top row shows
data-driven series estimates (3.1.15) for simulated data, and the bottom
row shows the corresponding monotonic projections. First of all, we see
that if an estimate is already monotone, then the monotonic projection
simply reproduces it. If an estimate is not monotone, then the monotonic
projection replaces it by a “ladder-like” function. The short-dashed lines
in the Monotone and Steps diagrams clearly exhibit how the monotonic
projection works. The case of the long-dashed lines in the Steps diagrams
exhibits a “miracle” of the monotonic projection when an “ugly” oscillatory
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FIGURE 3.19. Data-driven estimates and their monotonic projections. The solid
lines are the underlying densities. The dotted, short-dashed, and long-dashed
lines correspond to n = 50, n = 100, and n = 200. The number of knots used
is reduced to make the calculation of the projection faster. This implies rougher
lines and slopes in the stepwise curves. [set.n=c(50,100,200), cJ0=4, cJ1 =.5,
cJM=6, cT=4, cB=2]

estimate in the top diagram becomes an almost perfect estimate of the Steps
shown in the right bottom diagram.

Now let us explain how to improve the performance of a cosine series
estimate near edges. Recall that the main issue is that this estimate al-
ways flattens out near edges; more precisely, its derivative is always zero
at the boundary points. The problem is to get a correct visualization of
an underlying density like the Monotone and at the same time preserve a
good estimation for functions like the Normal where no improvement of the
cosine estimate is required. In short, any addition that targets a particular
corner function (here the Monotone) should not hurt estimation of others.

The key idea of solving this boundary problem was explained in detail
in Section 2.6, and it was to enrich the cosine basis by polynomial terms
x and x2 that should take care of derivatives near edges. (Note that if the
issue is, say, the second derivative near edges, then the cosine basis should
be enriched by x, x2, and x3.)

Technically, a cosine-polynomial data-driven estimate is constructed sim-
ilarly to the cosine data-driven estimate (3.1.13), so it is worthwhile to
explain it using the steps that led us to (3.1.13). First, instead of a par-
tial sum (3.1.1) based on the elements (1, ϕ1, . . . , ϕJ) we use a partial sum
based on the elements (1, ϕ′

1, . . . , ϕ
′
J), where these elements are obtained

by applying the Gram–Schmidt orthonormalization procedure (2.3.8) to
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FIGURE 3.20. Histograms overlaid by the underlying density (solid line), cosine
estimates (dotted line), and cosine-polynomial estimates (dashed line). The sam-
ple sizes are shown in the titles. [set.n=c(50,100,200), corden=7, cTP=4, cJ0=4,
cJ1 = .5, cJM=6, cT=4, cB=2]

(1, ϕ1(x), . . . , ϕJ−2(x), x, x2). Note that ϕ′
j = ϕj for j ≤ J − 2 and only

ϕ′
j for j = J − 1, J need to be calculated (Exercise 3.7.2).
Then, using ϕ′

j in place of ϕj , we obtain the estimate f̄ defined at
(3.1.13). In short, this is the optimal smoothed estimate that always uses
the two polynomial terms. Then, the nonnegative projection is used.

Now we make the last step, which is to use or not to use the cosine-
polynomial estimate. The issue is that we would like to use it only if the
Fourier coefficients for the polynomial terms are statistically significant.
To do this, we use the same approach as in the decision to include or not
to include high-frequency terms in (3.1.14). Namely, if θ̂2

j < cTP ln(n)/n,
j = J−1, J , then the cosine estimate (3.1.15) is used; otherwise, the cosine-
polynomial estimate is used. The default value for cTP is 4. As you see, the
approach is extremely cautious toward including the polynomial terms.

Figure 3.20 illustrates the performance of the estimator obtained. Here
we show the underlying Monotone density, estimates obtained by the esti-
mator of Section 3.1 based on the cosine basis, the estimates based on the
cosine-polynomial basis, and the histograms.

Let us discuss the particular outcomes shown in Figure 3.20. First of
all, consider the case of 50 observations. Here the estimates coincide, i.e.,
no polynomial terms are used. This is well justified because nothing in
the underlying histogram indicates that there is a need to improve the
tails of the cosine estimate. Note that while this particular estimate is
very poor, it correctly describes the data set at hand, which reveals no
monotonicity in the underlying density. For the case of 100 observations
the cosine-polynomial estimate significantly improves the visually aesthetic
appeal. It also correctly shows the dynamic of the Monotone near edges.
The outcome for the case of 200 observations is even more impressive.
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3.8 Special Topic: Goodness-of-Fit Tests

This is, finally, the section where we will discuss the question raised in
Section 1.1 about fairness of the drawings in the New Jersey Pick-It lottery.
Recall that in that section we tried to answer this question via analyzing
several Monte Carlo simulations. This approach is not scientific but very
convincing, so it is worthwhile to have it in the “toolkit.” (A review of
the last part of Appendix A devoted to parametric hypothesis testing is
recommended; below we use notions and notations introduced there.)

The problem may be stated as a hypothesis testing where the null hy-
pothesis H0: the underlying distribution for winning numbers is uniform on
[000, 999] (i.e., the lottery is fair) is tested against the alternative hypothe-
sis Ha: the underlying distribution for winning numbers is not uniform (the
lottery is not fair). A corresponding test is called a goodness-of-fit test. We
shall consider several goodness-of-fit tests (be prepared that they may give
sharply different conclusions, similar to the opinions of expert witnesses
called by prosecutors and defense lawyers in a trial). Also, we shall see that
there is no loss in generality in considering a uniform distribution as the
null hypothesis.

a. Tests based implicitly on the empirical cumulative distribu-
tion function. These are “oldy but still goody” classical goodness-of-fit
tests when one might be interested in testing H0: F = F0 versus Ha :
F �= F0. Here F is an underlying cdf (cumulative distribution function)
of n iid observations X1, . . . , Xn generated according to this cdf. In what
follows we shall always assume that F is continuous (this is, of course, the
case where the probability density exists).

It has been explained in Appendix A that empirical cdf F̄n, defined at
(A.32), is a good estimate for an underlying cdf. Exercise 3.8.2 summarizes
some basic properties of the empirical cdf. Then, consider a distance (not
necessarily metric) D(F̄n, F0) between the empirical cdf and the cdf F0 of
the null hypothesis. We may expect that the distance will be small under
the null hypothesis and large under the alternative hypothesis. Thus, the
rejection region, based on this distance, should be

R := {(X1, . . . , Xn) : D(F̄n, F0) > cαδn }, (3.8.1)

where the decaying sequence δn and the constant (for a fixed α) cα are
such that the probability of the rejection region given the null hypothesis
(i.e., the first-type error) is equal to the level of significance α.

The main issue is to choose a distance that should satisfy the following
two requirements: (i) cα and δn are easily computed (at least asymptoti-
cally); (ii) the test is consistent, that is, given an alternative distribution, its
power (the probability of the rejection region given this alternative hypoth-
esis) tends to 1. Recall that the power is 1 minus the second-type error; thus
the consistency implies that the second-type error asymptotically vanishes.

Now let us consider the main particular test discussed in this subsection.
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a1. Kolmogorov test. Consider the Kolmogorov–Smirnov distance
introduced in Appendix A (see the paragraph above the line A.33),

DK(F̄n, F ) := sup
x∈(−∞,∞)

|F̄n(x) − F (x)|. (3.8.2)

The goodness of fit test, based on this distance, is called the Kolmogorov
test. The following proposition,

lim
n→∞ P (DK(F̄n, F0) > cn−1/2|F = F0) = K(c) := 2

∞∑
l=1

(−1)l+1e−2l2c2
,

(3.8.3)
proved by Kolmogorov, allows us (by a rule of thumb for n > 30) to set
δn = n−1/2 and choose cα as the solution to the equation K(c) = α.

The Kolmogorov test may be easily inverted to get a corresponding
confidence band for an underlying cdf with the confidence coefficient 1−α,

{F : DK(F̄n, F ) ≤ cαn−1/2}. (3.8.4)

Let us apply this method for the lottery.number data set discussed in
Section 1.1. Because there are 254 observations, we apparently may use the
asymptotic formula (3.8.3) for computing the p-value. Recall that p-value
is the smallest level of significance for which the null hypothesis would be
rejected given the observed data.

Figure 3.21 illustrates both the Kolmogorov test and confidence band for
this data set. The solid line is the empirical cdf, which is a step function, and
the dashed line is the uniform cdf (the null hypothesis). The Kolmogorov
test looks after the largest distance between these lines, and the location of
the largest distance D̂K is highlighted by the dashed-dotted vertical line.
For this particular case, D̂K = 0.08 (it is not shown in this figure). Two
dotted lines, parallel to the empirical cdf, show the Kolmogorov confidence
band with the confidence coefficient 1 − α.

For solving the hypothesis testing problem, Figure 3.21 reports the p-
value for the Kolmogorov test. This p-value is denoted by p-valK and shown
in the title. Its calculation is based on the formula

p-valK := K(D̂Kn1/2), (3.8.5)

where D̂K is the observed Kolmogorov–Smirnov distance (statistic). The
calculated p-value is 0.11. Thus, if the level of significance α ≥ 0.11, then
the Kolmogorov test rejects the null hypothesis with the judgment that the
lottery is unfair, and conversely for the case α < 0.11.

a2. Several related tests. There are many alternatives to the Kol-
mogorov test where different distances (not necessarily metrics) are used.
Here we mention several of them just to give a flavor of this approach.
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FIGURE 3.21. The Kolmogorov goodness-of-fit test and the corresponding confi-
dence interval. The data set is lottery. number rescaled onto [0, 1]. Recall that
this is the set of winning numbers for the New Jersey Pick-It lottery from May
1975 to March 1976 discussed in Section 1.1. The solid line shows the empirical
cdf; the dashed line shows the cdf of the Uniform distribution, which is the null
hypothesis. The dashed-dotted vertical line shows the location of the largest dis-
tance D̂K (the value of the Kolmogorov–Smirnov distance) between these two
functions (between the solid and dashed lines). The title shows the calculated
p-value of the Kolmogorov test, denoted by p-valK. The two dotted lines show
the Kolmogorov confidence band with the confidence coefficient 1 − α, where the
value α = 0.05 is shown in the subtitle. This figure also shows in the title p-values
for the Moran, chi-squared, and nonparametric series tests denoted by p-valM,
p-valC, and p-valN, respectively. {Recall that α is the Greek letter alpha, so we de-
note the argument α by alpha. Any alpha from the set {.01, .02, .05, .1, .15, .2, .25}
may be chosen. The choice of a data set is controlled by the argument DATA. The
sample size n of a data set DATA is shown in the subtitle. This figure allows one
to test any data set available in the S–PLUS environment. Remark 3.8.1 explains
how to use this Figure for the case of an arbitrary (not necessarily Uniform) null
distribution. The number l of bins for the chi-squared test is given in the subtitle,
and it is controlled by the argument l. The arguments m, cJ0, and cJ1 control
the parameters of the nonparametric test.} [DATA = lottery.number, alpha =
.05, l=10, m=100, cJ0=4, cJ1=.5]

Smirnov test. This is probably the closest one to the Kolmogorov test.
It is based on the one-sided Kolmogorov–Smirnov distance,

D+(F̄n, F ) := sup
x∈(−∞,∞)

[F̄n(x) − F (x)] . (3.8.6)

It was established by Smirnov that

lim
n→∞ P (D+(F̄n, F0) > cn−1/2|F = F0) = e−2c2

, (3.8.7)

which makes the calculation of rejection regions and p-values elementary.
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ω2 (von Mises–Smirnov) test. This is the test based on the normed
integrated squared error of the empirical cdf,

Dω2(F̄n, F ) := n

∫ ∞

−∞
(F̄n(x) − F (x))2dx. (3.8.8)

There exists a closed formula that allows one to calculate cα, but it is too
complicated to present here.

Before considering several tests based on different ideas, let us recall the
following classical result of probability theory.

Let X be distributed according to a continuous cdf F (x). Define a new
random variable Y := F (X). It is clear that this new random variable is
supported on the unit interval [0, 1], and it is also not difficult to show
that Y is uniformly distributed on [0, 1]. Indeed, denote by F [−1](y) (read
“F-inverse”) the inverse of F . Note that the inverse is unique because F (x)
is continuous in x, and write for any 0 ≤ y ≤ 1,

P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F [−1](y)) = y. (3.8.9)

This implies the uniform distribution of F (X).
Let us formulate this assertion as a remark.
Remark 3.8.1. Let X be a random variable with a continuous cdf F (x).

Then the random variable F (X) is uniformly distributed on [0, 1]. Thus, by
considering statistics F0(X1), . . . , F0(Xn) in place of the original observa-
tions X1, . . . , Xn, one may convert testing the null hypothesis H0: F = F0
into testing the null hypothesis H0: F is uniform on [0, 1]. In particular,
this method allows us to use Figure 3.21 for the case of any continuous
distribution F0.

Now we are in a position to consider several more nonparametric tests.
b. Moran test. This is a very simple and intuitively clear goodness-

of-fit test. According to Remark 3.8.1, it is sufficient to consider the case
where the null hypothesis states that the underlying distribution is uniform
on [0, 1]. Then the Greenwood–Moran test statistic is defined as the sum
of squared spacings,

M̂n :=
n∑

l=0

(X(l+1) − X(l))2. (3.8.10)

Here X(1) ≤ X(2) ≤ · · · ≤ X(n) are ordered observations, X(0) := 0 and
X(n+1) := 1.

The underlying idea of this test statistic is as follows. It is not difficult
to show (Exercise 3.8.4) that the sum

∑n
l=1 y2

l takes on its minimum, given∑n
l=1 yl = 1, at y1 = y2 = · · · = yn = 1/n. Thus, the Greenwood–Moran

test statistic is minimal for equidistant observations. This implies that the
rejection region should correspond to large values of this test statistic,
which indicate irregular spacings.
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There is a very simple asymptotic rule for finding the α-level test due to
the formula

lim
n→∞ P (n1/2(nM̂n/2 − 1) ≥ c) = 1 − Φ(c), (3.8.11)

where Φ(x) is the cdf of a standard normal random variable. This implies
the following rejection region (use it if the sample size is at least 30):

RM := {(X1, . . . , Xn) : n1/2(nM̂n/2 − 1) ≥ zα}, (3.8.12)

where zα is defined as the solution to the equation Φ(z) = 1 − α.
Let us use the Moran test for the lottery data. The p-value, denoted by

p-valM and calculated by the formula p-valM:= 1 − Φ(n1/2(nM̂n/2 − 1)),
is shown in the title of Figure 3.21. It is 0.06, and thus, according to the
Moran test, the null hypothesis about fairness of the lottery is accepted
only for levels of significance that are less than 0.06.

We are now in a position to consider a goodness-of-fit test that is a clear
favorite among data analysts. It is called the chi-squared test because the
limit distribution of the test statistic is chi-squared.

c. Chi-squared test. There are many practical problems where hy-
potheses should be tested based on grouped data. Recall the example in
Section 1.1 where testing the fairness of the lottery was based on visualiz-
ing the histogram in Figure 1.1(b), which is an example of a grouped data
set, with the experts’ conclusion “. . .The histogram looks fairly flat—no
need to inform a grand jury. . ..” Here we would like to discuss how one can
make such a conclusion based solely on the analysis of a histogram, and we
begin with this lottery histogram.

Assume that the null hypothesis H0 is that the underlying distribution
for the winning numbers is uniform on [000, 999]. Then, ignoring the left
bin in the default histogram in Figure 1.1(b), which corresponds to only
one winning number 000, we get ten bins (cells). Thus, theoretically, under
the null hypothesis a winning number belongs to each bin with the same
probability 1

10 . Let us denote, just for generality, by pk the probability that
a winning number belongs to the kth bin, and by l the number of bins (for
our particular case pk = 1

10 and l = 10 because we ignore the left bin with
only one number 000). Then, on average, the kth bin should contain npk

numbers (Exercise 3.8.5).
Denote by Xk the observed number of the winning numbers from the

kth bin. Then the chi-squared test statistic is

χ̂2 :=
l∑

k=1

(Xk − npk)2/(npk). (3.8.13)

(χ is the Greek letter “chi,” so χ2 should be read as “chi squared”).
This test statistic is absolutely natural because large deviations of ob-

served Xk from the expected npk express lack of fit of the observed data
to the null hypothesis. Note that because X1 + X2 + · · · + Xl = n, there
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are only l − 1 independent observations, or in other words, l − 1 degrees of
freedom.

The rejection region of the chi-squared test is defined as

Rχ2 := {(X1, . . . , Xl) : χ̂2 > cl−1,α}. (3.8.14)

Here cl−1,α is the quantity similar to the familiar zα, only here, instead of
a standard normal random variable, a chi-squared random variable χ2

l−1
with l − 1 degrees of freedom is used, and cl−1,α is defined as the solution
to the equation

P (χ2
l−1 ≥ cl−1,α) = α. (3.8.15)

There are both special tables and software that allow one to find these
values. Note that χ2

l :=
∑l−1

j=1 ξ2
j , where ξj are iid standard normal. This

indicates that the formulated test should be used when all npk are relatively
large; the rule of thumb is npk ≥ 8 whenever α ≥ 0.01. Also, if the number
of bins is more than 30, then the distribution of (1/

√
2l)(χ2

l − l) may be
approximated by a standard normal distribution (see also Exercise 3.8.6).
Exercise 3.8.7 discusses a particular rule of thumb for choosing m.

For the Lottery data the p-value for the chi-squared test, denoted by
p-valC, is shown in the title of Figure 3.21. This value is 0.61, so the
chi-squared test based on the default histogram positively supports the
conclusion of the experts who just visualized that histogram.

d. Nonparametric series test. Here we consider a test that is moti-
vated by the following idea of Neyman (1937). Consider a density supported
on [0, 1]. Parseval’s identity implies that the integral of the squared density
is equal to 1 if and only if it is uniform. Otherwise, this integral is larger
than 1. Thus, the integral

∫ 1
0 f2(x)dx may check the null hypothesis that

the underlying distribution is uniform. Then the natural test statistic is
(here Jn is the same as in (3.1.10))

T̂n =
Jn∑
j=1

θ̂2
j . (3.8.16)

Because any data set may be rescaled onto [0, 1], this approach is general.
Of course, for small sample sizes it may be a problem to calculate the
distribution of this test statistic. Here we bypass this step by using Monte
Carlo simulations. This is a “trick” that is worthwhile to discuss on its own
merits. The idea is as follows. For practical applications we need to know
the p-value. To get it, let us simulate m samples of length n according to the
uniform distribution (which is the distribution under the null hypothesis)
and then count the number Y of samples whose test statistics (3.8.16)
are larger than the observed T̂n. Clearly, Y is distributed according to
the Binomial distribution B(m, p), where p is the estimated p-value. Then
p̄ = Y/m is the natural unbiased estimate of p, and recall that E{(p̄−p)2} =
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p(1 − p)/m. The last formula allows one to choose m. Note that this test
may be used for very small sample sizes, and its simplicity is appealing.

In Figure 3.21 the p-value, based on m = 100 Monte Carlo simulations,
is shown as p-valN and it is 0.56. This p-value has a very simple meaning:
Among 100 samples simulated according to the uniform distribution, 56
had the value of the test statistic larger than one observed for the lottery
numbers.

Thus, as in the outcome of the simulations shown in Figure 1.2, the
nonparametric series test strongly supports the fairness of the lottery.

As we have seen from the analysis of the lottery data, conclusions of
different tests may differ dramatically: They range from the prudent belief
of the chi-squared and nonparametric tests in the fairness of the lottery
to a rather suspicious opinion of the Kolmogorov and Moran tests. Thus,
it is necessary to be trained in using these tests. Figure 3.22 is a tool
to gain such experience. It is based on intensive Monte Carlo study of
these tests. Namely, for an underlying corner density and a sample size,
100 simulations are analyzed by these four tests, and as in Figure 3.21,
p-values are calculated.

Results of 24 particular experiments are presented by boxplots. A boxplot
is a way to look at the overall shape of a data set (here 100 p-values). The
central box shows the data between “hinges” which are approximately the
first and third quartiles of the p-values. Thus, about 50% of the data are
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FIGURE 3.22. The boxplots of 100 p-values based on repeated Monte Carlo
simulations according to the indicated underlying corner densities and sam-
ple sizes. For instance, the boxplot K25 in the top diagram shows the overall
shape of 100 p-values obtained by the Kolmogorov test for 100 independent sam-
ples of size 25 from the Uniform corner density. {The arguments set.nn, set.l,
set.cden, and reps allow one to change sample sizes, the corresponding numbers
of bins for the chi-squared test, corner densities, and the number of repeated
simulations.} [set.nn=c(25,50), set.l=c(3,5), set.cden=c(1,2,6), reps=100, alpha
= .05, m=100, cJ0=4, cJ1=.5]
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located within this box and its height is equal to the interquartile range.
The horizontal line in the interior of the box is located at the median of the
data, it shows the center of the distribution for the p-values. The whiskers
(the dotted lines extending from the top and bottom of the box) extend
to the extreme values of the data or a distance 1.5 times the interquartile
range from the median, whichever is less. Very extreme points are shown
by themselves.

The experiment shows that for small sample sizes and the Uniform un-
derlying density the observed p-values may range from very small to almost
1. Here some preference may be given to the Moran test. On the other hand,
this test is not the best for the two other densities where the nonparametric
test is the best.

3.9 Special Topic: Basis Selection

We discussed the case of two different bases (cosine and cosine–polynomial)
in Section 3.7. Because the cosine–polynomial basis is a cosine one with sev-
eral extra polynomial elements, the selection has been made via analyzing
the magnitude of the Fourier coefficients of the extra polynomial terms.

What can be done if two different bases are considered? Let us consider
an approach that is motivated by the ideas of Sections 3.1–3.

Suppose that gj , j = 0, 1, 2, . . ., is a basis, f̃ is a corresponding data-
driven estimate (3.1.14), and θj =

∫
f(x)gj(x)dx are the Fourier coefficients

of an underlying density f . For the sake of simplicity, let us assume that
in (3.1.14) the weights ŵj are either 0 or 1 (the more general case is left as
Exercise 3.9.1). Then this estimate tries to match the oracle

f̃∗(x) :=
cJM Jn∑

j=0

wj θ̂jgj(x), (3.9.1)

where wj = 1 if θ2
j > E{(θ̂j − θj)2} and wj = 0 otherwise. The MISE of

this oracle is

MISE(f̃∗, f) =
cJM Jn∑

j=0

E{(wj θ̂j − θj)2}

=
cJM Jn∑

j=0

wjE{(θ̂j − θj)2} +
[ cJM Jn∑

j=0

(1 − wj)θ2
j +

∑
j>cJM Jn

θ2
j

]
. (3.9.2)

The term in square brackets is the integrated squared bias. Using
Parseval’s identity it may be written as

cJM Jn∑
j=0

(1 − wj)θ2
j +

∑
j>cJM Jn

θ2
j =

∫ 1

0
f2(x)dx −

cJM Jn∑
j=0

wjθ
2
j . (3.9.3)
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This implies

MISE(f̃∗, f) =
cJM Jn∑

j=0

wj [E{(θ̂j − θj)2} − θ2
j ] +

∫ 1

0
f2(x)dx. (3.9.4)

Note that
∫ 1
0 f2(x)dx is a constant; thus a basis minimizes the MISE if

and only if it minimizes the risk

R({gj}) :=
cJM Jn∑

j=0

wj [E{(θ̂j − θj)2 − θ2
j ]. (3.9.5)

It was discussed in Section 3.1 how to estimate E{(θ̂j − θj)2} and θ2
j .

Thus, we may use a plug-in estimate R̃({gj}) of the risk R({gj}). If several
bases are considered, then the smaller estimated risk indicates the better
basis. This selection method may be referred to as a method of empirical
risk minimization.

Let us check this approach for the two half-range trigonometric bases
discussed in Section 2.4. Recall that the first one is the cosine one, which
has been used in all the sections, and the second one is the sine one, i.e.,
ψj(x) = 21/2 sin(πjx), j = 1, 2, . . ..

The sine basis may be used only for densities that vanish at the bound-
ary points, so let us restrict our attention to the corner densities Normal,
Bivariate, Strata, and Delta. Note that while both these bases are trigono-
metric, they have different specifics. The cosine basis will always give us
an estimate integrated to unity because 1 is its first element. The sine
basis does not necessarily imply an estimate integrated to unity, but the
endpoints of the estimate will be correctly equal to zero.

For both these bases n−1 may be used as the estimate of E{(θ̂j − θj)2}
and thus θ̂2

j − n−1 as a natural estimate of θ̂2
j (Exercise 3.9.4).

The result of a particular experiment is shown in Figure 3.23. Here the
dotted and dashed lines depict the cosine and sine estimates. The choice
based on empirical risk minimization is shown in the title of each dia-
gram. Also, in brackets the “correct” choice is shown based on the minimal
integrated squared error, i.e., on ISE :=

∫ 1
0 (f̂(x) − f(x))2dx.

This figure is interesting from several points of view. Firstly, we may
analyze how the universal estimate performs for the two bases. Overall,
we see no dramatic differences (repeated simulations show that sometimes
estimates have different shapes, but this does not occur often). On the other
hand, the differences are clear in the estimates of the Bivariate. Here the
interesting situation is that while the estimates are poor, there is nothing
in the data that may indicate the correct magnitudes of modes of the
underlying Bivariate density. Another curios case is the Strata. Look at the
right tails of the estimates. The sine estimate (the dashed line) correctly
vanishes because it cannot perform differently, while the cosine estimate
(the dotted line) shows the right tail incorrectly. On the other hand, the
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FIGURE 3.23. Basis selection based on 4 sets of n = 100 observations depicted
by histograms. The compared bases are the half-range cosine and sine ones. The
underlying densities (Normal, Bivariate, Strata, and Delta) are shown by solid
lines; the cosine estimates are shown by dotted lines, and the sine estimates by
dashed lines. The choice based on a smaller empirical risk is shown in the title
of each diagram, and the choice based on a smaller integrated squared error (the
benchmark) is shown in brackets. [n=100, cJ0=4, cJ1=.5, cJM=6, cT=4, cB=2]

“incorrect” right tail of the cosine estimate is supported by the particular
histogram, while the “correct” right tail of the sine estimate is solely due
to the nature of the sine basis.

Secondly, we can understand how the visualization of an underlying den-
sity by an estimate is correlated with its ISE. Here the basis shown in
brackets is the one that should be chosen if one believes that ISE is the
right criterion. For the Normal this choice looks right because the dotted
line gives a better visualization. The Bivariate case is a difficult one be-
cause none of the estimates are good, but it allows us to understand the
meaning of the smaller ISE because here the dashed line has a smaller ISE.
For the Strata the dashed line has a smaller ISE, and this is a reasonable
outcome. For the Delta, the dashed line has a smaller ISE, and this again
agrees with the better visualization of the Delta by the dashed line.

Finally, let us discuss the particular recommendations of the empirical
risk minimization method. In 2 cases out of 4 the recommendations were
wrong. For the Strata, the wrong recommendation is to use the dotted line.
But is it possible by looking at the data, to make a different recommenda-
tion, i.e., to recommend the dashed line? It is not an easy task. The Delta
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diagram is another interesting example. Here again the conclusion of the
empirical risk minimization method is wrong, and the recommended dotted
line is worse near the peak than the rejected sine estimate (dashed line).
But look at the pronounced peak of the histogram. This peak explains the
decision made by the empirical risk minimization procedure because the
dotted line fits the data better. On the other hand, both these estimates
give us a similar visualization and almost perfect magnitudes of the Delta.

3.10 Practical Seminar

The objective of this seminar is to use the universal estimator (3.1.15)
for the analysis of real (not simulated) data sets and to explore the effect
of different parameters of this estimator on obtained estimates. Also, our
attention will be devoted to estimation of a density over its support. As
we know from Section 3.1, this is a rather complicated problem, since the
support is typically unknown (of course, there are settings like the lottery
winning numbers where the support is known).

As an example, let us consider New York City’s rainfall in inches for
every year from 1869 to 1957. The rainfall (as observations over the years)
was shown in Figure 1.9.

For the rainfall data, Figure 3.24(a) shows the default S–PLUS histogram
(recall the discussion in Section 1.1 that this histogram assumes a normal
underlying density) and the universal nonparametric estimate calculated
over the range [32.7, 58.7] of the observed rainfall. Recall that the caption
of Figure 3.2 contains a cumulative review of all the arguments.

The nonparametric estimate shown in the diagram (a) is rather shocking.
As in the histogram, it is skewed, and the largest mode is positioned sim-
ilarly to the “mode” of the histogram, but the second mode and the right
tail of the universal estimate are eye-catching. It looks as if something is
wrong with the universal estimate.

However, before criticizing the universal estimate, let us try to under-
stand why we so trust in the histogram estimate and do not believe in the
universal estimate. Probably, the reason is that a histogram is the most
widely used and known tool to present data, and a particular histogram is
created by the respected statistical software. However, the issue is that a
histogram is just one of many nonparametric tools to visualize the data.
Thus, in Figure 3.24(a) we see two different estimates, and neither has a
“birthright” superiority.

Let us zoom in on the data by increasing the number of bins from 6 to
40. The corresponding histogram, overlaid by the same estimate, is shown
in Figure 3.24(b); it explains the “strange” shape of the universal estimate.
We see that the two modes are justified, and moreover, the right tail of the
estimate corresponds to the zoomed-in data.
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FIGURE 3.24. Effect of a support on histogram and universal estimate. The
underlying data set is the New York City’s rainfall data. (a) The default histogram
overlaid by the universal estimate estimated over the interval [a, b] := [32.7, 56.1],
which is the range of the observed rainfall. (b) The histogram with 40 bins overlaid
by the same universal estimate as in (a). (c) Both the histogram with 9 bins and
the universal estimate are over the interval [31.7, 57.1]. (d) Both the histogram
with 9 bins and the universal estimate are over the interval [30.7, 58.1]. {The
supports in diagrams (c) and (d) are [a − del1, b + del1] and [a − del2, b + del2],
respectively.} [del1=1, del2=2, cJ0=4, cJ1=.5, cJM=6, cT=4, cB=2]

Thus, the series estimate has alerted us that the data set is not as simple
as it is presented by the default histogram, and it is worthwhile to look at
the data more closely. And this is one of the main aims of nonparametric
curve analysis—to give us a first look at the data and alert us to possible
deviations from traditionally assumed parametric distributions.

Let us continue our study of the rainfall data and the exploration of the
series estimate. Recall that the only parameter of the data-driven series
estimate that has been chosen manually is the interval of support. In the
diagrams (a)–(b) we made the assumption that the support was the range
of the rainfall. From a probabilistic point of view, it is not realistic to expect
that the observed minimal and maximal rainfalls coincide with the possible
minimal and maximal rainfalls in New York City (the probabilistic part of
the issue is discussed in Exercise A.12 of Appendix A). Thus, just to get a
feeling for the issue, let us add 1 inch to the left and right sides of the ob-
served range (this is a rather reasonable increase). Then the corresponding
universal estimate together with the corresponding histogram based on 9
bins (and that also covers the increased interval) is shown in Figure 3.24(c).
Similarly, Figure 3.24(d) shows the histogram (with 9 bins) overlaid by the
universal estimate over the interval with 2 inches added to each side of the
range. We see that increasing the support interval dramatically affects the
series estimate.

The example also shows that the smoothness of an underlying curve
plays a crucial role in nonparametric estimation. “To smooth or not to
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FIGURE 3.25. An analysis of how the interval [a, b], which is the supposed sup-
port of an estimated density, affects the universal estimate for the New York
City’s rainfall data. {A data set is chosen by the argument DATA. The left
diagram shows a histogram with l bins running from the minimal to maximal ob-
servations shown in the title. The next diagram shows the universal estimate with
the support [a, b] shown in the title and calculated using (3.1.16). The two right
diagrams correspond to the universal estimates with supports controlled by the
arguments set.sup1=c(a,b) and set.sup2 = c(a,b).} [Data=rain.nyc1, l=25, s=1,
set.sup1=c(31.7, 59.7), set.sup2=c(30.7, 60.7), cJ0=4, cJ1=.5, cJM=6, cT=4,
cB=2]

smooth, this is the question” in nonparametric curve analysis. This also
explains why professional statisticians working in this area are called the
“smoothing community.”

Figure 3.25 allows one to choose any S–PLUS compatible data set and
explore how a possible support affects the estimate. The left diagram is a
histogram with l bins (this number is controlled by the argument l, which
allows one to zoom in and out data). The second diagram shows the esti-
mate where (3.1.16) is used to choose the support. Finally, the two right
diagrams allow one to look at estimates with manually chosen supports.
Note the change in the right tail of the estimate as b increases.

Figure 3.26 allows one to explore how parameters of the universal esti-
mate affect the presentation of a data set at hand. In particular, here the
effect of cJ0 is considered. Also recall that the caption to Figure 3.2 reviews
all parameters of the universal estimate.

Figure 3.26 considers the data set auto.stats, which is a matrix whose
rows are data concerning 72 automobiles and whose columns are different
variables. The variables include fuel consumption (“Miles per Gallon”),
price (“Price”), dimensions (“Trunk,” “Headroom,” “Length”), weight
(“Weight”), and clearance required to make a U-turn (“Turning Circle”).
Here we consider the clearance required to make a U-turn. The left diagram
shows a histogram with 25 bins; its title depicts the maximal and minimal
observations, and the subtitle shows the sample size. Three other diagrams
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FIGURE 3.26. Effect of a parameter on the universal estimate. Here the param-
eter cJ0 is explored that affects the choice of Jn used in the procedure (3.1.10)
of calculation of optimal cutoff. The data set is the diameters of turning cir-
cles of 74 cars. {A data set is chosen by the argument DATA; the default set
is DATA = auto.stats[,“Turning Circle”]. If one wishes to analyze a different
variable of this data set, say weights, then set DATA = auto.stats[ ,“Weight”].
The left diagram shows a histogram of the DATA with l bins running from the
minimal to maximal observations shown in the title. The sample size is shown
in the subtitle. The next 3 diagrams correspond to 3 different values of the run-
ning argument arg, which may be cJ0, cJ1, cJM, cT, or cB. The values of the
running argument are controlled by the argument set.arg, and they are shown in
the corresponding titles. The considered interval (support) is the same for all the
3 diagrams and is controlled by set.sup=c(a,b). If a = −99.9, then the default
support is calculated using (3.1.16). The interval [a, b] is shown in the subtitles.}
[arg= “cJ0”, set.arg=c(4,2,1), Data= auto.stats[ ,“Turning Circle”], l=25, s=1,
set.sup=c(-99.9, 0), cJ0=4, cJ1=.5, cJM=6, cT=4, cB=2]

show the universal estimate with 3 different values of cJ0 shown in their
titles. The support [a, b] is shown in the subtitles.

Let us analyze the graphs. The default estimate with cJ0 = 4 shows
3 modes and indicates a possibility of 3 clusters. Here the distribution of
diameters of turning circles is considered. It is natural to assume that these
3 clusters correspond to economic, full size, and luxury (like the Lincoln)
cars. Thus, this estimate, based on only 72 observations, looks rather real-
istic. The smaller cJ0, the smaller the number of Fourier coefficients that
may participate in the estimate (recall that this argument is used in (3.1.10)
to calculate Jn). Here, because the underlying density clearly has several
modes, a decrease in Jn takes its toll in terms of smoothing the data and
hiding the clusters. We see that the case cJ0 = 2 implies a bimodal density
with a peculiar right tail, and the case cJ0 = 1 just smoothes everything
and hides the structure of this data set.
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3.11 Exercises

3.1.1 Let [0, 1] be the support of an estimated density f . Explain why in
this case there is no need to estimate θ0.
3.1.2 First, show that (3.1.4) is an unbiased estimate of θj . Second, explain
why the estimate wj θ̂j is biased when wj �= 1 and θj �= 0. Finally, why
would one prefer to use a biased estimate wj θ̂j in place of the unbiased θ̂j?
3.1.3 Verify (3.1.8).
3.1.4 Verify (3.1.9).
3.1.5 Let θ̂j be the sample mean estimate (3.1.4). Find E{θ̂2

j } and Var(θ̂2
j ).

3.1.6 Show that the first sum on the right-hand side of (3.1.6) is the
variance of f̃J , while the second one is the integrated squared bias.
3.1.7 Explain the underlying idea of (3.1.10).
3.1.8 Remark 3.1.1 defines the U -statistic θ̃2

j . Find E{θ̃j}, E{θ̃2
j }, and

Var{θ̃j}. Also verify that θ̂2
j − θ̃2

j is an unbiased estimate of Var(θ̂j).
3.1.9 Using notations of the previous exercises, suggest an estimate of the
optimal weight w∗

j = θ2
j /(θ2

j + Var(θ̂j)) that is based on θ̂2
j and θ̃2

j .
3.1.10 Explain how (3.1.12) is obtained.
3.1.11 Write down and comment on all the steps of calculating the
universal estimate.
3.1.12 Explain all the parameters (coefficients) of the universal estimate.
3.1.13 Repeat Figure 3.2 approximately 10 times (note that each time new
data sets are generated). Print hard copies, and then make your conclusion
about the worst, the best, and “typical” estimates for each corner density.
3.1.14 Choose 3 sample sizes. Then, using Figure 3.2, find optimal param-
eters (arguments) of the universal estimate for every corner density. Also,
try to find parameters that are reasonably good for all the corner densities.
3.1.15 Use Figure 3.2 with cB = 0. This will exhibit estimates without
removing bumps. Discuss the outcomes and then, again using this figure,
suggest an optimal cB for the Strata and the Delta.
3.1.16 Use Figure 3.3 to find optimal arguments for (a) the Uniform and
the Normal; (b) the Bimodal and the Strata; (c) the Uniform, the Delta,
and the Monotone; (d) the Angle and the Strata.
3.1.17 Repeat Figure 3.4 with different intervals of estimation. Then
explain how an interval affects the universal estimates.
3.1.18 Use Figure 3.6 to explain how a choice of the support affects
estimation of the Delta, the Bimodal, and the Strata.
3.1.19 Use Figure 3.6 and explain how a larger support (say, [−1, 3]) affects
estimation of the Uniform.
3.1.20 For densities supported on [0, 1], the coefficient of difficulty is 1
(recall the definition given in Remark 3.1.4). What is the value of the
coefficient of difficulty for densities supported on an interval [a, b]?
3.1.21 Consider a pair (X, Y ) of nonnegative random variables uniformly
distributed under a nonnegative curve f(x) integrated to unity on [0, 1],
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that is, the pair is uniformly distributed on the set {(x, y) : 0 ≤ y ≤
f(x), 0 ≤ x ≤ 1}. What is the marginal density of X?
3.2.1 Can the data-driven estimator of Section 3.1 be written as (3.2.1)?
3.2.2 Suggest an example of the density where J∗ �= J for the
hard-threshold oracle.
3.2.3 Check (3.2.6). Hint: Recall (3.2.3)–(3.2.4).
3.2.4 Verify (3.2.7).
3.2.5 Explain for what kind of densities the ideal cutoff J should be
relatively large even for the smallest sample sizes.
3.2.6 What can be said about odd Fourier coefficients (for the cosine
system) of the Normal corner density?
3.2.7 Explain why the ideal cutoff J does not increase with n running from
50 to 1000 for a particular density shown in Figure 3.7. Hint: Recall how
fast Fourier coefficients of analytic functions decrease.
3.2.8 According to Figure 3.8, the linear oracle always performs better
than the smoothed one, and the smoothed oracle always performs better
than the truncated one. Explain why.
3.3.1 How close is AISE to MISE for m = 5000?
3.3.2 Figure 3.9 indicates that for some experiments the data-driven
estimate outperforms the truncated oracle. Is this possible?
3.3.3 Consider Figure 3.9. Why are the ratios AISES/OMISEL so large for
the Angle?
3.3.4 Figure 3.10 indicates that despite the fact that the smoothed oracle
performs better than the truncated one, for some experiments the trun-
cated estimator (which mimics the truncated oracle) performs better than
the smoothed estimator (which mimics the smoothed oracle). Explain this
phenomenon.
3.3.5 Based on Figure 3.11, can you suggest any improvements in the
estimation of the optimal cutoff?
3.3.6 Explain why for the Uniform the difference J̄ − J is always positive
(see Figure 3.11).
3.4.1 Explain all steps in establishing (3.4.2). Then find P (Y ≤ y, δ = 0).
3.4.2 Calculate the variance of the estimate (3.4.3).
3.4.3 Find the expectation and the variance of the estimate (3.4.4).
3.4.4 Consider a particular realization {(Yl, δl), l = 1, 2, . . . , 10} and draw
a graph of the product-limit estimate (3.4.5).
3.4.5 Repeat Figure 3.13 with different sets of arguments for the estimate.
What is a good set for each corner function and all the corner functions?
Is the recommended set robust to the sample size?
3.4.6 Suppose that a reliable estimation of the Normal density requires at
least 75 observations. A data analyst may have to deal with a data set that
may be right-censored by either uniform U(0, 1.5) or Exponential with the
rate λ = 2 random variable. For these two cases, what minimal sample
sizes may be recommended for a reliable estimation?



114 3. Density Estimation for Small Samples

3.4.7 Verify the idea of dealing with left censoring suggested in Remark
3.4.1. Then write down the estimate.
3.5.1 Let Y = (X + ε)[mod2π], where ε is uniform on [0, 2π]. Show that Y
is also uniform regardless of the distribution of X.
3.5.2 Let X and ε be random variables with the densities fX and fε. Find
the density of the sum Y = X + ε.
3.5.3 Let hX(u) := E{eiuX} be the characteristic function of a random
variable X. Show that hX(0) = 1, |hX(u)| ≤ 1, hX(u) is a real function if
X is symmetric about zero.
3.5.4 Calculate characteristic functions for Uniform, Cauchy, Exponential,
and Gamma random variables. Then explain how measurement errors with
these distributions will affect the recovery of an underlying density.
3.5.5 Explain the formulae (3.5.4)–(3.5.5).
3.5.6 Repeat Figure 3.15 with different values of σ (it is controlled by
sigma). What is the value of this argument when the difference between
the convolved Normal and the convolved Bimodal practically disappears?
3.5.7 What are the expectation and the variance of the estimate (3.5.6)?
3.5.8 Use Figure 3.16 to find optimal arguments.
3.5.9 Assume that the characteristic function hε(j) of the measurement
error is real. Based on twice-repeated observations Yls = Xl + εls, s = 1, 2
and l = 1, 2, . . . , n, suggest an estimate of fX .
3.5.10 Explain why the right tail decreases in the histogram shown in
Figure 3.17.7.
3.5.11 Use Figure 3.17, and for every corner function find a minimal σ such
that the deconvolution is practically impossible. Then analyze the result.
3.5.12 Use Figure 3.17 to analyze data sets for the cases of σ equal to 0.05,
0.1, and 0.2. Explain why the problem of recovery of an underlying density
fX is called ill-posed. Make hard copies of cases where there is no way to
realize an underlying density from the analysis of data.
3.5.13 Use Figure 3.17 to find optimal arguments for the cases σ = 0.05
and σ = 0.1.
3.6.1 Suggest an example of length-biased data.
3.6.2 Find the expectation and the variance of the estimate (3.6.3).
3.6.3 Find the expectation and the variance of the estimate (3.6.4).
3.6.4 Show that the coefficient of difficulty (3.6.5) is at least 1, with equality
if g(x) ≡ 1.
3.6.5 Show that the variable Y , generated by the acceptance–rejection
method, has the desired density fY . Hint: see Rubinstein (1981, p. 46).
3.6.6 Use Figure 3.18 to find optimal arguments of the estimate. Are they
robust to changes in the function g?
3.7.1 Repeat Figure 3.19 with arguments that lead to highly oscillatory
estimates for all the three corner densities. Then compare the projections
and analyze them.
3.7.2 Find elements (1, ϕ′

1, . . . , ϕ
′
J) of the cosine–polynomial basis.
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3.7.3 Using Figure 3.20, find optimal arguments for the Monotone density.
Then check how the estimate performs for the other densities.
3.8.1 Let F (x) be the cdf that has the probability density. Show that this
cdf is continuous in x.
3.8.2 Consider the empirical cdf F̄n(x) defined at (A.32) in Appendix A,
and let F (x) be an underlying cdf. Show that for each fixed x ∈ (−∞,∞),
(a) F̄n(x) is an unbiased estimate of F (x); (b) Var(F̄n(x)) = F (x)(1 −
F (x))/n; (c) F̄n(x) is asymptotically normal N(F (x), F (x)(1 − F (x))/n).
3.8.3 What can be said about the Kolmogorov confidence band (3.8.4) in
terms of the probability of covering an unknown underlying cdf?
3.8.4 Given

∑n
l=1 yl = 1, show that

∑n
l=1 y2

l ≥ 1/n and the minimum is
attained by y1 = · · · = yn = 1/n.
3.8.5 Consider n identical trials where a random variable X belongs to a
set A with the probability p. Find the expectation and the variance of the
number of trials when X ∈ A. Hint: Recall the binomial random variable.
3.8.6 Consider the χ̂2 test statistic defined at (3.8.13). Prove that

E{χ̂2} = l − 1, Var(χ̂2) = 2(l − 1) + n−1
[ l∑

k=1

p−1
k − l2 − 2l + 2

]
.

3.8.7 A typical rule of thumb to choose the number l of bins for the chi-
squared test is to choose an l between 4(2n2/z2

α)1/5 and half that value. As
a result, for the particular case of α = 0.05 the choice l = �2n2/5� is often
recommended. Test this rule using Figure 3.22.
3.8.8 Use Figure 3.21 to test two other years of the lottery (the data sets
are lottery2.number and lottery3.number). Draw a conclusion about
the fairness of the lottery.
3.8.9 Use Figure 3.22 with different sample sizes. Then analyze the out-
comes and rank the tests in terms of the accurate acceptance of the Uniform
and accurate rejection of the other corner function.
3.8.10 Using Figure 3.22, try to find optimal parameters for the tests.
3.9.1 Consider the general case of an estimate (3.1.14) with 0 ≤ ŵj ≤ 1.
Suggest analogue of (a) The oracle (3.9.1); (b) The oracle’s risk (3.9.5); (c)
The empirical risk.
3.9.2 Show that (3.9.1) is the oracle for the estimate (3.1.14) with ŵj being
either 0 or 1.
3.9.3 Check (3.9.2).
3.9.4 Prove that for the sine basis and a density supported on [0, 1], the
relation nE{(θ̂j − θj)2} → 1 as n → ∞ holds. Hint: Follow along the lines
(3.1.7)–(3.1.8) and use sin2(α) = [1 − cos(2α)]/2.
3.9.5 How do coefficients of the universal estimate affect the sine and cosine
estimates? Hint: Use Figure 3.23.
3.10.1 Repeat Figures 3.24–6 for different variables of the data sets air
and auto.stats.
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3.12 Notes

3.1 The first result about optimality of Fourier series estimation of non-
parametric densities is due to Chentsov (1962). Chentsov never was satisfied
with the fact that this estimate could take on negative values. Thus, later
he recommended to estimate g(x) := log(f(x)) by a series estimate ĝ(x)
and then set f̂(x) := eĝ(x); see Chentsov (1980) and also Efron and Tibshi-
rani (1996). Clearly, the last estimate is nonnegative. Recall that we dealt
with this issue by using the projection (3.1.15).

The idea of smoothing Fourier coefficients is due to Watson (1969). A
historical overview of smoothing procedures may be found in the book
by Tarter and Lock (1993, Sections 4.5–4.6). Also, in Sections 4.2–4 of
that book different algorithms of choosing cutoffs are discussed. The reader
familiar with the ideas of Akaike’s information criteria, presented in Akaike
(1973), and penalized estimation, see B́ırge and Massart (1997), may find
the similarity between (3.1.10) and these approaches striking.

Series density estimators are discussed in the books by Devroye and
Györfi (1985, Chapter 12), Thompson and Tapia (1990, Section 2.4), Tarter
and Lock (1993, Chapter 4), and Hart (1997, Section 3.3), where also
further references may be found.

Asymptotic justification of using data-driven Fourier series density
estimators is given in Efromovich (1985).

3.2–3 The asymptotic minimaxity of the linear oracle over all possible
estimators and the possibility to mimic it by a data-driven estimator for
smooth densities is established in Efromovich and Pinsker (1982) and Efro-
movich (1985). Using wavelet bases allows one to establish similar results
for spatially inhomogeneous densities as well, see the review in Härdle et
al. (1998, Chapter 10) and Efromovich (1999a).

Similar results for a different set of 18 corner densities are presented in
Efromovich (1996b).

3.4 The books by Collett (1994) and Venables and Ripley (1977, Chapter
12) discuss the survival analysis and give plenty of examples.

3.5 The statistical analysis of directional data is as old as the analysis
of linear data. For instance, the theory of errors was developed by Gauss
primarily to analyze directional measurements in astronomy. There are
several excellent books about directional data, for instance, Mardia (1972)
and Fisher (1993). Practical examples of using the universal estimator are
discussed in Efromovich (1997a). Different proposed methods for deconvo-
lution of an underlying density are discussed in the book by Wand and
Jones (1995, Section 6.2.4).

3.6 Examples of length-biased data may be found in articles by Zelen
(1974) and Morgenthaler and Vardi (1986). A review of different estimators
may be found in the book by Wand and Jones (1995, Section 6.2.2).
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3.7 A very nice discussion of estimation of monotone densities may be
found in the textbook by Devroye (1987, Chapter 8). The book by Barlow
et al. (1972) is another useful reference. The book by Härdle (1990, Section
8.1) discusses the same problem for regression models. Robust estimation
is discussed in Huber (1981).

Probably the first results about using enriched trigonometric–polynomial
bases may be found in the textbook by Krylov (1955). Eubank and
Speckman (1990) discuss the use of this basis for regression setting, and
Efromovich (1997d) discusses its use for a data-driven density estimation.

3.8 A comprehensive review of classical goodness-of-fit techniques may
be found in the textbook edited by D’Agostino and Stephens (1986).
The book by Hart (1997) discusses both theoretical and applied aspects
of nonparametric model checking. A comprehensive review of asymptoti-
cally minimax tests for nonparametric hypotheses may be found in Ingster
(1993).

3.9 The article by Marron and Tsybakov (1995) discusses some aspects
of visual error criteria for qualitative smoothing. A book-length treatment
of visualizing data is given by Cleveland (1993).

3.10 Discussion of practical examples may be found, for instance, in the
books by Silverman (1986) and Simonoff (1996).



4
Nonparametric Regression for Small
Samples

This chapter is devoted to data-driven orthogonal series estimators for dif-
ferent models of nonparametric regression where a data analyst wishes to
know how one variable responds to changes in another variable. The sim-
plest model of additive homoscedastic regression is discussed in Section
4.1. We shall see that estimation of a regression function is similar to the
density estimation discussed in Sections 3.1–3.3 (an asymptotic equivalence
of these two models is discussed in Section 7.2). There are two important
corollaries from this fact. First, estimators and oracles developed and stud-
ied for the density model can be directly used for the regression model.
Second, we may use the coefficient of difficulty defined in Chapter 3 to
assess sample sizes for regression models that give us comparable (with
density estimation) precision of estimation.

More complicated and practically interesting heteroscedastic regression
models are considered in Section 4.2. In particular, the standard deviation
of additive errors may be a function of the predictor; in this case it is re-
ferred to as the scale (spread, volatility) function. Estimation this function
is an important topic in many applications, and it is discussed in Section
4.3. The case of spatially inhomogeneous regression functions and wavelet
series estimators is considered in Section 4.4.

These four sections constitute the core material. All the others are de-
voted to different special cases; in particular, robust regression is discussed
in Section 4.6. Section 4.12, “Practical Seminar,” is devoted to employing
the universal estimator for the analysis of real data sets.
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4.1 Classical Model of Homoscedastic
Nonparametric Regression

The aim of regression curve estimation is to find a relationship between
variables X and Y that allows one to quantify the impact of X on Y .

The simplest mathematical model is as follows. Let n pairs of observa-
tions (X1, Y1), . . . , (Xn, Yn) be given such that

Yl = f(Xl) + σεl , l = 1, 2, . . . , n . (4.1.1)

Here Yl are called responses (or dependent variables), and the so-called
predictors (independent variables or covariates) X1, . . . , Xn are either iid
realizations of a uniform random variable U(0, 1) or fixed equidistant points
Xl = l/(n + 1). The random variables εl are iid realizations of a random
variable ε with zero mean and unit variance. (The abbreviation iid stands
for independent identically distributed. Also, recall that σ and ε are the
Greek letters “sigma” and “epsilon,” respectively.) The positive constant σ
defines the standard deviation (spread or scale) of the additive error σε. De-
pending on the model of predictors, the regression is referred to as random-
or fixed-design regression. The regression model is called homoscedastic if
the variance of errors is constant (does not depend on predictors) and pre-
dictors are either equidistant or uniformly distributed. Note that for the
case of random design, pairs (Xl, Yl) are iid realizations of a pair of random
variables (X, Y ), where Y = f(X) + σε.

The problem is to estimate the regression function f(x), 0 ≤ x ≤ 1, by
an estimate f̂n with minimal mean integrated squared error (the shorthand
notation is MISE), which is E{∫ 1

0 (f̂n(x) − f(x))2dx}.
A plot of the pairs (Xl, Yl) in the xy-plane (so-called scattergram or

scatter plot) is a useful tool to get a first impression about a data set
at hand. Consider a Monte Carlo simulation of observations according to
(4.1.1) for a fixed-design regression with n = 50, σ = 1, ε being standard
normal and the regression functions being the corner functions shown in
Figure 2.1. The scattergrams are displayed in Figure 4.1, where dots show
the simulated pairs of observations. The scattergrams are overlaid by linear
least-squares regression lines calculated by the S–PLUS function lsfit.

An appealing nature of the regression problem is that one can easily
appreciate its difficulty. To do this, try to draw curves f(x) through the
middle of the cloud of dots in the scattergrams that, according to your own
understanding of the data give a good fit (describe a relationship between X
and Y ) according to the model (4.1.1). Or even simpler, because in Figure
4.1 the underlying regression functions f are known, try to recognize them
in the cloud of dots.

In Figure 4.1.1 the relationship clearly depends on your imagination.
Note that even the linear least-squares regression is confused, despite the
fact that this is the best tool of regression analysis for fitting a curve like
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FIGURE 4.1. Simulated, according to (4.1.1), fixed-design scattergrams of size
n = 50 overlaid by linear regression lines. The coefficient of difficulty is d =
σ2 = 1, so the precision of estimation of a regression function should be about
the precision of estimation of a probability density discussed in Section 3.1. {To
repeat this figure with new simulated data sets type at the S–PLUS prompt >
ch4(f=1). The sample size n and the standard deviation σ of the additive error
are controlled by the arguments n and sigma.} [n=50, sigma=1]

the Uniform. The underlying Normal function is recognizable in Figure
4.1.2 (especially if you know that the underlying function is the Normal),
but note that linear regression is again not a big help. For the case of the
Bimodal regression function, only knowledge of the underlying function
may help one to see a line through these points that resembles the Bi-
modal. The Strata is another example where no relationship can be easily
recognized. The Delta is the interesting case, where knowledge of the un-
derlying function helps to visualize it. Otherwise, linear regression would
be a good choice with the 4 points near x = 0.5 announced as “clear”
outliers. The Angle is a very complicated case, where it is difficult to recog-
nize the underlying function, which has no sharp features. The Monotone
is nicely visualized, and here the linear regression does a good job. The
Steps regression function is another complicated case, where it is difficult
(if not impossible) to recognize the underlying function. Moreover, it looks
reasonable to suggest that the regression function is increasing as x → 0.

Overall, except for the several “lucky” corner functions, manual analysis
via visualization is not too helpful, and this explains why a data-driven
estimation, where data speak for themselves, is important.

The underlying idea of a series estimator is to approximate f by a partial
sum,

fJ(x) :=
J∑

j=0

θjϕj(x), 0 ≤ x ≤ 1, where θj :=
∫ 1

0
ϕj(x)f(x)dx (4.1.2)
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are Fourier coefficients and J is a cutoff. The functions ϕj can be elements
of any basis {ϕj , j = 0, 1, . . .} in L2([0, 1]). As in Sections 3.1–3.3, here the
cosine basis {ϕ0(x) = 1, ϕj(x) =

√
2 cos(πjx), j = 1, 2, . . .} is used.

The problem is to find good estimators for the Fourier coefficients θj

and an optimal cutoff J that minimizes MISE. A natural estimator for
each Fourier coefficient θj is

θ̂j := n−1
n∑

l=1

Ylϕj(Xl). (4.1.3)

Indeed, for fixed design regression the estimator (4.1.3) is a naive numer-
ical integration formula (Exercise 4.1.2), while for random design this is a
sample mean estimator because the assumption E{ε} = 0 implies

E{θ̂j} = E{Y ϕj(X)} =
∫ 1

0
f(x)ϕj(x)dx = θj .

Then, according to Section 3.1, a good estimator of an optimal cutoff J
is based on a good estimator of dj := nE{(θ̂j − θj)2}. Under some mild
assumptions on f , a straightforward calculation (Exercise 4.1.3) shows that
for fixed-design regression,

nE{(θ̂j − θj)2} = σ2 + rnj =: d + rnj , (4.1.4)

where rnj vanishes for large j and n. Thus, if σ2 is known, then the natural
choice of the estimate d̂j for dj is d̂j = d̂ := σ2.

Recall that for the density estimation problem, where a density was esti-
mated over its support [0, 1], a similar estimate was d̂ = 1. Thus, if σ2 = 1,
then the fixed-design regression and the density estimation settings are sim-
ilar in the sense that they have the same coefficient of difficulty d = 1. (In
Section 7.2 this conclusion will be supported by asymptotic equivalence.)

This similarity is useful for the analysis of both the regression and the
density models. Indeed, the advantage for the regression model is that
the data-driven estimators, oracles, and oracle inequalities developed in
the previous chapter can be used straightforwardly for the regression. For
the probability density model the advantage is that the regression model
can serve as a simple tool to understand and visualize the coefficient of
difficulty, which for the regression is just the variance of errors. Recall that
the ratio of coefficients of difficulty (which is called the relative coefficient
of difficulty) gives us a rule of thumb on how to change a sample size to
get a comparable precision of estimation; see the discussion in Section 3.4.
For instance, if d = 1

4 , then one needs a quarter of the observations to
get a quality of estimation comparable with the setting where d = 1 (for
instance, comparable with the density estimation studied in Section 3.1 or
the regression with σ = 1). Thus, to visualize this rule of thumb for d = 1

4
it suffices to simulate data according to (4.1.1) with σ = 0.5.
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FIGURE 4.2. Simulated, according to (4.1.1), fixed-design scattergrams overlaid
by linear regression lines, n = 50 and σ = 1

2 . The coefficient of difficulty is
d = σ2 = 1

4 , so the precision of estimation of a regression function should be
about the precision of estimation for the case σ = 1 and the quadruple sample
size, i.e., 200 observations. {This figure was created by the call ch4(f=1, n=50,
sigma=.5).}

Such Monte Carlo simulations (with σ = 0.5) are shown in Figure 4.2.
Comparison of Figures 4.1 and 4.2 shows the meaning of the coefficient of
difficulty. In Figure 4.2 all the underlying regression functions, with the
possible exception of the Uniform, the Angle, and the Steps, are quite
recognizable. On the other hand, the scattergrams for the Uniform, the
Angle, and the Steps indicate that for the sample size n = 50 even the
coefficient of difficulty d = 1

4 is not sufficiently small to recognize these
functions “manually.” This conclusion will be important for the evaluation
of the performance of data-driven estimators. (See also Exercise 4.1.1.)

Now let us return to the search for a good estimator of nE{(θ̂j − θj)2}
for the case of random design. According to Exercise 4.1.4,

d′
j := nE{(θ̂j − θj)2} = Var(Y ϕj(X)) =

∫ 1

0
(f2(x) + σ2)ϕ2

j (x)dx − θ2
j

=
(∫ 1

0
f2(x)dx + σ2

)
+
[
2−1/2

∫ 1

0
f2(x)ϕ2j(x)dx − θ2

j

]
. (4.1.5)

According to Section 2.2, the term in the square brackets practically van-
ishes for large j, so (4.1.5) can be approximated by d′ :=

∫ 1
0 f2(x)dx + σ2.

Comparison with (4.1.4) reveals that the estimator θ̂j performs worse for
the random design. This is not the curse of a random design, and in the
next section a better estimator will be suggested. On the other hand, the
simplicity of θ̂j is so appealing that it makes its consideration worthwhile.

Let us stress that d′ is not the coefficient of difficulty for the random-
design regression; the next section shows that both these designs have the
same coefficient of difficulty d.
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Below, we continue the discussion only for the case of the fixed design.
The crucial difference between the density and regression settings is the
necessity for the regression setting to suggest a good estimator of d := σ2.
(Recall that θ̂0 was a good estimator of d for the density model.) Thus,
several options to estimate d will be suggested.

First, the following universal estimate may always be used,

d̂UV := n(J2,n)−1
J1,n+J2,n∑
j=J1,n+1

θ̂2
j , (4.1.6)

where J1,n and J2,n are some slowly increasing sequences. For instance,
J1,n = Jn and J2,n = 2Jn serve well (the sequence Jn was defined in
Section 3.1 and will be reminded below). The underlying idea of (4.1.6) is
that nE{θ̂2

j } = d + rjn, where rjn → 0 as j and n increase; see (4.1.5) and
Exercise 4.1.5. An attractive modification of (4.1.6) is instead of averaging
{θ̂2

j , J1,n < j ≤ J1,n+J2,n} to consider the squared normed sample median
of absolute values {|θ̂j |, J1,n < j ≤ J1,n + J2,n}, that is,

d̂UM := n[1.48 median({|θ̂j |, J1,n < j ≤ J1,n + J2,n})]2.

The underlying idea of the last formula is that for a normal N(0, σ2)
random variable ξ the following approximate relation between the vari-
ance σ2 and the median of the of the random variable |ξ| holds, σ2 ≈
[1.48 median(|ξ|)]2. Because the sample median is essentially more robust
to outliers than the sample mean, using d̂UM may be a good idea for robust
estimation. We shall use this method in Sections 4.4 and 4.10.

Second, if f(x) is smooth, then

Yl+1 − Yl = σ(εl+1 − εl) + [f(Xl+1) − f(Xl)] = σ(εl+1 − εl) + on(1),

where on(1) → 0 as n → ∞ (recall that we consider the case where Xl =
l/(n+1)). Thus, these differences allow one to estimate d because E{(εl+1−
εl)2} = 2. We shall use this approach in Section 5.8.

Another possibility to estimate d, which will be our main approach in
the chapter due to its versatility, is to straightforwardly use its definition.
The approach is as follows. Let us for a moment assume that an underlying
regression function f is known. Then, it is natural to estimate d = σ2 by
the sample variance estimator

d̃V := n−1
n∑

l=1

(Yl − f(Xl))2.

Since f is unknown, we may plug in a naive truncated estimate,

f̃J(x) :=
J∑

j=0

θ̂jϕj(x). (4.1.7)
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Such a plug-in estimate with a relatively small J is a good choice for all
the corner functions except the Delta. The problem is that the Delta has
extremely large Fourier coefficients θj even for relatively large j (in other
words, the pilot estimate f̃ does not give a good fit of the Delta especially for
x near the point 0.5; see the ideal approximations in Figure 2.3.5. Of course,
the cutoff J may be increased, but then it leads to overfitted estimates for
smooth corner functions (after all, recall that we need to find d for a good
choice of a cutoff).

One of the possible approaches to solve this puzzle is as follows. For the
case of smooth underlying regression functions even a relatively small J
makes all the residuals Yl − f̃J(Xl) approximately the same in the sense
that there should be no outliers. (Recall that outliers are sample values that
cause surprise in relation to the majority of the sample.) The situation is
inverse for a function like the Delta, where we shall see several outliers. On
the other hand, for large J there are no outliers even for the Delta case.
Thus, we can use the notion of outliers to choose an initial cutoff J̃ . The
only point that is to be clarified is how to determine the outliers.

Here we use the following approach. We assume that if the sample vari-
ance of the residuals is smaller than a coefficient r times the squared normed
sample median of absolute residuals, then there are no outliers; otherwise,
outliers are presented, and J̃ should be increased. In other words, here we
use the familiar statistical fact that the sample variance is not resistant to
outliers, while the sample median is.

Thus, to find an initial pilot cutoff J̃ , we begin with J = 0 and calculate
two estimates of d: the sample variance estimate

d̃V (f̃J) := n−1
n∑

l=1

(Yl − f̃J(Xl))2 (4.1.8)

and the squared normed sample median estimate

d̃M (f̃J) := [1.48 median({|Yl − f̃J(Xl)|, l = 1, . . . , n})]2. (4.1.9)

If

d̃V (f̃J) < rd̃M (f̃J), (4.1.10)

then we stop and J̃ = J ; otherwise, we increase J and repeat the previous
step. The maximal considered J is cJMJn.

Using this initial cutoff, the initial estimate of d is calculated by (4.1.8).
Then we use the estimate (3.1.14) of f with (4.1.3) being the estimate of
θj . This estimate of f is used as a pilot estimate in (4.1.8) for calculating
the estimate d̂ of d. Using d̂ in (3.1.14) we obtain an estimate f̂ of f . Note
that recursion of these steps is possible

Now, after the discussion of all these ideas, let us formally write down the
universal data-driven estimate. First, we estimate all the Fourier coefficients
θj , 0 ≤ j ≤ cJMJn, using (4.1.3). Recall that Jn is the rounded down
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cJ0 + cJ1 ln(n) and cJ0 and cJ1 are coefficients with the default values 4
and 0.5 (the same as in Section 3.1).

Second, the initial cutoff J̃0 is estimated as explained above; namely,
this is the minimal J̃ , 0 ≤ J̃ ≤ cJMJn, such that (4.1.10) holds. Third, the
initial estimate d̃ is calculated by (4.1.8) with J being the initial estimate
J̃0. Fourth, we make the first iteration in using the estimate (3.1.10) to
calculate a pilot estimate of J . Namely, a pilot estimate of the cutoff is
calculated by the formula

J̃ := argmin 0≤J≤Jn

J∑
j=0

(2d̃n−1 − θ̂2
j ). (4.1.11)

Then the smoothing weights (coefficients)

w̃j := (1 − n−1d̃/θ̂2
j )+ (4.1.12)

are calculated (recall that (x)+ := max(0, x) denotes the positive part).
Then, according to (3.1.14), the pilot estimate of f is calculated as

f̃(x) :=
J̃∑

j=0

w̃j θ̂jϕj(x) +
cJM Jn∑
j=J̃+1

I{θ̂2
j
>cT d̃ ln(n)/n}θ̂jϕj(x). (4.1.13)

Here cT is the same coefficient of thresholding as in (3.1.14) with the default
value 4, and similarly, cJM = 6.

Finally, we calculate the estimate f̂ by repeating the previous steps: (i)
the estimate d̂ of d is calculated by (4.1.8) with the use of the pilot estimate
f̃ ; (ii) the calculated estimate d̂ is used in (4.1.11) to find the optimal cutoff
Ĵ ; (iii) the estimate d̂ is used to calculate the optimal weights ŵj defined
at (4.1.12); (iv) the optimal weights ŵj and the optimal cutoff Ĵ are used
in (4.1.13) to calculate the universal data-driven estimate f̂ .

Figure 4.3 illustrates the performance of the universal data-driven es-
timate for the fixed-design regression and the particular case of standard
normal errors. Here d = σ2 = 1, so the coefficient of difficulty is the same
as for the problem of estimation of the corner densities. On the other hand,
here the estimator should estimate the coefficient of difficulty, that is, σ2,
and this is a complicated problem by itself. Keeping this in mind, we see
that these estimates are relatively good and resemble the density estimates
shown in Figures 3.2 and 3.3.

We may conclude from this particular figure that our idea (4.1.10) of
comparison between two estimates of d worked out nicely: Both smooth
(low-frequency) functions like the Uniform and spatially inhomogeneous
(high-frequency) functions like the Delta are well estimated. Let us look
more closely at the short-dashed lines, which correspond to the underly-
ing scattergrams. We see that all deviations from the underlying regression
functions are justified by the scattergrams. For instance, the estimate for
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FIGURE 4.3. The universal estimates for fixed-design regression with standard
normal errors (σ = 1): Dotted, short-dashed, and long-dashed lines correspond to
the sample sizes 50, 100, and 200. The underlying regression functions are shown
by solid lines. Scatter plots for n = 100 are shown by triangles. {The argument
set.n controls the sample sizes, and n controls the scattergrams; thus it should
belong to set.n. The argument sigma controls σ.} [set.n=c(50,100,200), n=100,
sigma=1, cJ0=4, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

the Uniform slopes downward, but we see the same trend in the scatter-
gram as well. The second stratum in the Strata is shown too wide, but the
scattergram again supports this particular shape of the universal estimate.
The case of the Monotone is another example where the estimate (short-
dashed line) has a wrong left tail but this tail does fit the data. In short, it
is important to keep in mind that while we know an underlying regression
function, the universal estimator does not. Thus, to “judge” an estimate,
it is always worthwhile to look at the underlying data.

4.2 Heteroscedastic Nonparametric Regression

In this section we relax two important assumptions of the classical ho-
moscedastic regression setting discussed in the previous section. First,
predictors are no longer necessarily equidistant or uniformly distributed.
Second, σ is no longer necessarily constant and may be a function of the pre-
dictor. Such a setting is called heteroscedastic. More formally, it is assumed
that n pairs of observations (X1, Y1), . . . , (Xn, Yn) satisfy

Yl = f(Xl) + σ(Xl)εl, (4.2.1)
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FIGURE 4.4. Scattergrams simulated according to (4.2.1) and corresponding
linear regression lines. The design is random with the design density h(x) being
the Monotone density, εl are standard normal, and the scale function σ(x) is the
Angle function times a constant σ; the sample size is n = 100. {The argument
desden controls the choice of design density h(x). The scale function σ(x) =
σfj(x) is chosen by the argument sigma, which controls σ, and by the argument
scalefun, which controls j.} [n=100, desden=7, scalefun=6, sigma=1]

where εl are iid realizations of a random variable ε with zero mean and unit
variance, and σ(x) is a nonnegative function. Set X0 = 0 and Xn+1 = 1.
Then fixed-design predictors are defined by the formula

∫ Xl+1

Xl

h(x)dx =
1

n + 1
, (4.2.2)

where h(x) is a probability density supported on [0, 1] and bounded below
from zero on this interval; that is,

∫ 1
0 h(x)dx = 1 and h(x) > C > 0 for

0 ≤ x ≤ 1. The corresponding case of a random design has predictors
X1, X2, . . . , Xn that are iid realizations of a random variable X with the
probability density h(x). In both these cases the density h(x) is called the
design density, and σ(x) is called the scale (spread or volatility) function.

To highlight some of the difficulties of a heteroscedastic setting, consider
Monte Carlo simulations for the case of a random design with a standard
normal ε, n = 100, the Monotone corner function being the design density
h(x), and the Angle corner function times a constant σ being the scale
function σ(x). As usual, the corner functions (shown in Figure 2.1) serve
as underlying regression functions. Scatter plots are displayed in Figure
4.4. The analysis of these clouds of data sets reveals that a special artistic
imagination is necessary to recognize the underlying regression functions.
Note that even the Normal, which was so easily recognizable in Figure
4.1.2, is no longer easily recognizable, and the linear regression is extremely
confused; see Figure 4.4.2.
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Among other interesting features it is worthwhile to note that in Figure
4.2.4 only one observation is available to the left of X = 0.17. This is
because the design density is the Monotone, i.e., predictors are skewed
to the right edge of the unit interval. As a result, we may expect a poor
estimation of the left tail of a regression function. Also, in Figure 4.2.8 the
Angle scale function makes the responses more spread out (sparse) in the
middle of the unit interval. This can easily lead one to the wrong conclusion
that the underlying regression curve decreases in the left half of the interval.
The Delta is another curious story, where the heterogeneity of errors allows
one to see the pronounced wave in the left half of the interval.

Overall, it is clear that a heteroscedastic setting may be extremely com-
plicated for a manual fitting. It is also fair to say that the problem is
objectively very difficult, since neither regression function nor design den-
sity nor distribution of errors nor scale function are known. And each of
these components can make the problem of finding a relationship between
X and Y very complicated.

On the other hand, despite the fact that the problem becomes essen-
tially more complicated, we shall see that the slightly modified estimator
of Section 4.1 is still a good choice.

First of all, let us consider some possible modifications of the estimate
(4.1.3) for θj . Define

θ̂j := n−1
n∑

l=1

Ylϕj(Xl)

ĥ(Xl)
, (4.2.3)

where ĥ(x) := max(h̃(x), 1/[10 + ln(n)]) and h̃(x) is the estimate (3.1.15)
of an underlying design density h(x) based on n observations X1, . . . , Xn.
(For the case of a fixed design an underlying density h(x) is known, so it
may be used instead of ĥ(x).) Assuming that ĥ(x) ≡ h(x), this is again a
naive numerical integration for the fixed design and an unbiased estimate
for the random design, because

E{θ̂j} = E{Y ϕj(X)/h(X)} =
∫ 1

0
f(x)ϕj(x)dx = θj . (4.2.4)

Then, either the universal estimate (4.1.6) of d is used, or we use the
sample variance or the sample median estimates of d only here, as in (4.2.3),
based on the normed differences (Yl − f̃J(Xl))/ĥ(Xl).

The outlined data-driven estimate is reliable, predictable, robust, and
well understood.

However, as was explained in the previous section, for the random design
this estimator performed worse than for the fixed design. Below, we explain
how to overcome this caveat.

This is not a difficult problem to suggest a unique estimator that is
optimal for both random and fixed designs. Surprisingly, the only needed
change is in the estimator of the Fourier coefficients. Namely, we begin with
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ordering pairs of observations in ascending order according to predictors
(note that pairs are always ordered in this way for a fixed-design regression).
In other words, we arrange the predictors in ascending order and denote
them and the corresponding responses by (X(l), Y(l)), l = 1, 2, . . . , n. Also,
define artificial X(l) := 2X(1)−X(2+l) for l < 1 and X(l) := 2X(n)−X(2n−l)
for l > n. Set s to be the rounded-up s0 +s1 ln(ln(n+20)) with the default
parameters s0 = s1 = 0.5. Then, define the estimator of θj by

θ̃j := (2s)−1
n∑

l=1

Y(l)

∫ X(l+s)

X(l−s)

ϕj(x)dx . (4.2.5)

Note that this estimator is similar to (4.1.3), since it is again a kind of
naive numerical integration. Also, for the case of a random design, under
very mild assumptions, the difference X(l+s) − X(l−s) is inversely propor-
tional to nh(X(l))/(2s), so the estimator is similar to (4.2.3). Indeed, we
can write that “approximately”

(2s)−1Y(l)

∫ X(l+s)

X(l−s)

ϕj(x)dx ≈ Y(l)ϕj(X(l))(X(l+s) − X(l−s))/(2s)

≈ n−1Y(l)ϕj(X(l))/h(X(l)).

The reason why the integral of ϕj(x) is taken in (4.2.5) is explained by the
fact that ϕj(x) for large j is a highly oscillatory function, and therefore the
integration gives a more accurate estimate. This integration also does not
make the computations more complicated because for ϕ0(x) = 1, ϕj(x) =√

2 cos(πjx) the integrals are easily calculated, namely;

D̂jls := (2s)−1
∫ X(l+s)

X(l−s)

ϕj(x)dx (4.2.6)

= (2s)−1(
√

2/πj)[sin(πjX(l+s)) − sin(πjX(l−s))], j > 0

and D̂0ls = (2s)−1(X(l+s) − X(l−s)).
Surprisingly, the estimator (4.2.5) implies asymptotically efficient esti-

mation as n → ∞ and outperforms the sample mean estimator (4.2.3) for
the case of a random design. This is why we shall use this slightly more
complicated estimator.

Then, all the steps defined in the previous section of computing the
universal estimator f̂ are the same with the only modification in (4.1.8)–
(4.1.9), where now in place of the residuals Y(l) − f̃J(X(l)) the weighted
residuals n(Y(l) − f̃J(X(l)))D̂0ls are used.

The underlying idea of using these weighted residuals is that they allow
us to estimate the coefficient of difficulty,

d :=
∫ 1

0

σ2(x)
h(x)

dx, (4.2.7)

for heteroscedastic regression; see Exercise 4.2.9.



130 4. Nonparametric Regression for Small Samples

1.  Uniform

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3
2.  Normal

X

Y

0.0 0.2 0.4 0.6 0.8 1.0
-2

0
2

4
6

3.  Bimodal

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

4.  Strata

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

4

5.  Delta

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

6.  Angle

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

6

7. Monotone

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

4

8.  Steps

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

FIGURE 4.5. The universal estimates for heteroscedastic random-design regres-
sion with the design density being the Monotone, the scale function being the
Angle, and standard normal εl. The dotted, short-dashed, and long-dashed lines
correspond to sample sizes 50, 100, and 200; scatter plots for n = 100 are shown
by triangles, and underlying regression functions are shown by solid lines. {Let
us review all the arguments given below in square brackets. The arguments set.n
and n control the sample sizes of the simulated data sets and the scattergrams,
respectively. The argument desden controls the choice of design density h(x),
and the choice of scale function σ(x) = σfj(x) is controlled by the arguments
sigma=σ and scalefun=j. Other arguments control the coefficients of the univer-
sal estimate. The arguments s0 and s1 control the coefficients s0 and s1, which
define s used in the estimate (4.2.5) of the Fourier coefficients. Recall that s
is the rounded-up s0 + s1 ln(ln(n + 20)). Arguments cJ0 and cJ1 control the
coefficients cJ0 and cJ1, which define Jn used for choosing the optimal cutoff
(4.1.11). Recall that Jn is the rounded-down cJ0 + cJ1 ln(n). The arguments
cJM and cT control the coefficients cJM and cT , which define the high-frequency
part of the estimate (4.1.13). The argument cB controls the coefficient cB in the
bump-removing procedure discussed in Section 3.1. Finally, r is used to find a
pilot cutoff in the procedure (4.1.10).} [set.n=c(50,100,200), n=100, desden=7,
sigma=1, scalefun=6, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT =4, cB=2, r=2]

Data-driven estimates f̂ for data sets, generated similarly to the data
sets shown in Figure 4.4, are plotted in Figure 4.5. The estimates resemble
those for homoscedastic regression, but it is fair to say that they are worse,
and this is apparent for the smallest sample sizes. The reason is that for this
particular case the coefficient of difficulty, calculated according to (4.2.7),
is d = 1.5. Also, on a top of this complication, in many particular cases
only a few realizations are observed near the left edge. For instance, Figure
4.5.4 shows a particular case where only 7 observations (from a hundred!)
fall in the region x ≤ 0.25, i.e., a quarter of the domain is covered by only
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7 observations from a hundred. This is what may make a particular data
set of heteroscedastic regression so complicated for analysis.

Finally, it is worthwhile to discuss the coefficient of difficulty d defined
in (4.2.7). The coefficient does not depend on the underlying f ; thus it is
possible to find an optimal design density that minimizes this coefficient.
A simple calculation (see Exercise 4.2.8) shows that the optimal design
density h∗(x) and the corresponding minimal coefficient of difficulty d∗ are
defined by the formulae

h∗(x) :=
σ(x)∫ 1

0 σ(x)dx
and d∗ :=

(∫ 1

0
σ(x)dx

)2
. (4.2.8)

Of course, the optimal design density h∗(x) depends on the scale function
σ(x), which is typically unknown. This is one of many reasons why the next
section is devoted to estimation of the scale function.

4.3 Estimation of Scale Function

Consider the model (4.2.1) with an additional assumption that the random
variable ε, which generates the iid ε1, . . . , εn, has a finite fourth moment,
i.e., E{ε4} < ∞. Also recall that E{ε} = 0 and E{ε2} = 1. The objective
of this section is to estimate the scale function σ(x). To avoid possible
confusion, let us set g(x) := σ2(x) and recall that σ(x) is nonnegative.

We begin the discussion with recalling the idea of estimating the scale
parameter σ in the classical parametric location-scale model Y = θ + σε
where n iid realizations Y1, . . . , Yn of Y are given. The customarily used
estimate of the squared scale parameter g := σ2 is

ĝ := n−1
n∑

l=1

(Yl − θ̄)2, where θ̄ := n−1
n∑

l=1

Yl. (4.3.1)

This classical parametric estimate has two steps. The first step is to
estimate the location parameter θ, and usually the sample mean estimate
θ̄ is used. Then, this estimate is subtracted from the observations. Note
that if θ̄ ≈ θ (this notation means that θ̄ is approximately equal to θ), then
Yl − θ̄ ≈ σεl, and thus ĝ in (4.3.1) is again the sample mean estimate of g.
Indeed, write Z ′

l := (Yl − θ̄)2 ≈ g + g(ε2
l − 1), and because by assumption

E{ε2} = 1, the estimate ĝ in (4.3.1) is a sample mean estimate.
This idea can be straightforwardly expanded to the nonparametric case.

The first step is to estimate f (the location function) by the estimate f̃
suggested in the previous section. Then statistics Zl are calculated by the
formula

Zl := (Yl − f̃(Xl))2. (4.3.2)
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FIGURE 4.6. The universal estimates of the scale function (shown by solid lines),
which is the Angle function. The model is a heteroscedastic random design re-
gression (4.2.1) with design density being the Monotone and standard normal
error ε. Underlying regression functions are the corner functions. The dotted,
short-dashed, and long-dashed lines correspond to the sample sizes 50, 100, and
200. Scatter plots for n = 100 are shown by triangles. {The scale function is
σfj(x) where j =scalefun.} [set.n=c(50,100,200), n=100, desden=7, sigma=1,
scalefun=6, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT =4, cB=2, r=2]

Note that as in the parametric case,

Zl ≈ g(Xl) + g(Xl)(ε2
l − 1). (4.3.3)

The relation (4.3.3) resembles the heteroscedastic nonparametric regres-
sion model discussed in Section 4.2, and thus the universal estimator of
that section can be used directly for the pairs (Zl, Xl) in place of (Yl, Xl).
This gives us the estimate ĝ(x).

Finally, the universal estimate of the scale function σ(x) is defined by
σ̂(x) =

√
(ĝ(x))+. Recall that (x)+ denotes the positive part of x.

Let us see how this procedure works for the case, considered in Section
4.2, of the Angle scale function, the Monotone design density, and a stan-
dard normal ε. Estimates of the Angle scale function are plotted in Figure
4.6. Here the data sets are simulated similarly to sets shown in Figure 4.5.
To assess the complexity of the problem, recall that the issue here is to
evaluate the spread of responses around an unknown underlying regression
curve as a function in predictor. Keeping this in mind, the universal es-
timator performs surprisingly well. Even for n = 50 (dotted lines) we get
some impression of the Angle scale function, and the particular cases of the
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FIGURE 4.7. This figure is similar to Figure 4.6, only here the Bimodal is the
scale function. {This figure was created by the call ch4(f=6, scalefun=3).}

Bimodal, the Monotone, and the Steps are good. Also recall that the Angle
has been a very complicated corner function for the density and the re-
gression estimation discussed in Sections 3.1 and 4.2. The case of the Delta
regression function is a disappointment; however, this is a very special case,
where a “poor” estimation of the regression function near x = 0.5 is the
issue. On the other hand, estimates in Figure 4.6.8 are surprisingly good,
where despite typically poor estimation of the underlying regression func-
tion, the scale function is recovered well. Here even the short-dashed line is
relatively not bad in comparison with estimates shown in Figures 4.3.6 and
4.5.6. The short-dashed line in the Bimodal diagram is a disappointment,
but it is a good example of what one may get if the underlying regression
function is poorly estimated.

What will be the quality of estimation of a scale function like the Bi-
modal? Will we be able to see the modes? To answer these questions, we
just repeat Figure 4.6 with the Bimodal used in place of the Angle. A
particular outcome is shown in Figure 4.7. Apart from the left tails, the
estimator performs well, keeping in mind the previously discussed complex-
ity of the problem. Recall that the left tail phenomenon is due solely to
the Monotone design density; there is nothing radical that may be done to
improve the estimation. Thus, for a heteroscedastic regression it is worth-
while to visualize simultaneously an underlying design density (using the
estimator 3.1.15) and a particular scattergram, because this allows us to
be alert to the possibility of this phenomenon.
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4.4 Wavelet Estimator for Spatially
Inhomogeneous Functions

In this section we consider the equidistant regression model of Section 4.1
and explain how the universal estimator of Section 3.1 (and respectively the
estimator of Section 4.1) can be used for the case of a wavelet basis. Because
wavelet bases are most interesting for the case of spatially inhomogeneous
functions, in this section we use a new set of corner functions that repre-
sents different types of spatial inhomogeneity. Another interesting aspect of
this section is that we discuss how to compare two data-driven estimators
using Monte Carlo simulations. In particular, in this section we compare
the universal estimator (we shall often refer to it as Universal), which is
defined below, with an excellent data-driven wavelet estimator SureShrink
supported by the S+WAVELETS toolkit and developed for wavelet bases.

A review of Section 2.1, specifically the part about the Haar basis, and
Section 2.5 is recommended.

We begin with several examples that shed light on the problem. Results
of two numerical experiments are shown in the two columns of Figure 4.8.
Let us begin with the left column. The top diagram is a scatter plot with
connected points (time series) based on 1024 equidistant observations of
an underlying signal plus normal errors. The signal-to-noise ratio (snr) is
3, and this small ratio makes the setting very challenging because the snr
defines σ in (4.1.1) by the formula σ = sdev(f)/snr, where sdev(f) is the
sample standard deviation for {f(X1), . . . , f(Xn)}.

Is an underlying signal recognizable? It is clear that there is a sine-like
trend, but all other “fine” details are not so obvious. Now, let us look at
the diagram below. Here a signal, recovered by Universal, is shown. While
the trend of the estimate looks rather satisfactory, the pronounced verti-
cal spike “spoils” the general picture. After all, there are plenty of similar
vertical lines in the noisy signal, so it looks as if this spike is simply unfil-
tered noise. Now let us look at the third diagram, where a signal recovered
by SureShrink is depicted. This estimate looks very reasonable: There are
no pronounced vertical spikes, and low-frequency oscillations resemble the
possible performance of a smart moving average filter. Overall, due to that
vertical spike, the estimate depicted by SureShrink looks more reasonable
than the universal estimate.

Now let us look at the underlying signal “singcubic” shown in the
bottom diagram. It reveals that Universal performs essentially better
than SureShrink in terms of both recovering the smooth background and
depicting the pronounced vertical spike, which has a width of about 0.005.

Since the underlying signal is known, you can notice that the SureShrink
estimate also shows the vertical spike, but it is so drastically shrunk that it
is almost invisible among the low-frequency oscillations that surround the
spike.



4.4 Wavelet Estimator for Spatially Inhomogeneous Functions 135

NOISY SINGCUBIC

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1

UNIVERSAL

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

0.
0

1.
0

SURESHRINK

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

0.
0

0.
5

1.
0

SINGCUBIC

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

0.
0

1.
0

NOISY SINGRAMP

0.0 0.2 0.4 0.6 0.8 1.0

-0
.8

-0
.4

0.
0

0.
4

UNIVERSAL

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.2

0.
2

0.
6

SURESHRINK

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.2

0.
2

SINGRAMP

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.2

0.
2

0.
6

FIGURE 4.8. Recovery of two spatially inhomogeneous signals by universal and
SureShrink data-driven wavelet estimators. The signal-to-noise ratio is 3, and
n = 1024 equidistant observations are made. The wavelet is Symmlet 8. {The
signal-to-noise ratio is controlled be the argument snr. The choice of a wavelet
basis is controlled by the argument wavelet. The arguments j0, cJ, cT, and cU
control the coefficients j0, cJ , cT , and cU of the universal estimate (4.4.2). Recall
that to reproduce a figure with wavelets, the S+WAVELETS module should
be installed by calling > module(wavelets). [wavelet= ′′s8 ′′, snr=3, n=1024,
j0=6, cJ=1, cT=4, cU=1]

On the other hand, the “attitude” of the estimators toward the pro-
nounced noisy bump near the point 0.2 is quite the opposite: Universal
smoothes this bump, and SureShrink leaves it untouched. This reveals
that these two adaptive estimators use different strategies for low and high
frequencies.

Now let us consider the right column of diagrams in Figure 4.8, where
a different signal is considered. We begin the discussion with the top dia-
gram showing the data. It is given that the underlying signal has a smooth
background, one pronounced jump, and two pronounced vertical spikes;
can you recognize such a signal by analyzing this diagram? Now let us see
how the estimators have solved this puzzle; to judge the “answers,” the
underlying signal “singramp” is shown in the bottom diagram. As we see,
Universal again outperforms SureShrink in both the quality of smoothing
the low-frequency parts of the signal and depicting the two vertical spikes.
Note that SureShrink also indicates these spikes, but they are drastically
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shrunk and difficult to recognize. Also, we see that Universal competes with
SureShrink in the visually aesthetic presentation of the jump discontinuity.

One of the important characteristics of any wavelet estimator is its data
compression property, that is, how many nonzero wavelet coefficients are
used to reconstruct a signal. To analyze this property, we use the discrete
wavelet transform (DWT) function of the S+WAVELETS toolkit, which
exhibits wavelet coefficients dj,k and sj,k of an orthogonal wavelet partial
sum

fj0(t) :=
n/2j0∑
k=1

sj0,kφj0,k(t) +
j0∑

j=1

n/2j∑
k=1

dj,kψj,k(t). (4.4.1)

Here we follow the notation and notions of this toolkit, namely, a given data
set is an equidistant regression (a regular time series), j0 is the number
of multiresolution components (or scales) used, and the functions φj0,k

and ψj,k are wavelet functions that are generated from the father wavelet
(or scaling function) φ and the mother wavelet (or wavelet function) ψ
through scaling and translation as follows: φj,k(t) := 2−j/2φ(2−jt − k) and
ψj,k(t) := 2−j/2ψ(2−jt−k). To simplify the discussion, only dyadic sample
sizes n = 2l are considered.

Note that the coefficients d1,k correspond to the finest scale and dj0,k to
the coarsest one. On the other hand, it is worthwhile to recall that roughly
speaking, the coarsest scales represent the underlying smooth behavior of a
signal, while the finest scales are responsible for its high-frequency behavior
(fine details). Also, due to the dyadic nature of a wavelet basis, the number
of nonzero wavelet coefficients on a scale can be equal to the total number
of wavelet coefficients on the coarser scales (in other words, a good data
compression property of a wavelet estimator is primarily defined by how it
deals with the finest scales).

Now we know what to look for in the DWT. The four columns of Fig-
ure 4.9 show us the DWT of the “bumps” signal, noisy signal, universal
estimate, and SureShrink estimate. The left column of plots displays the
DWT of the signal “bumps.” The original signal is plotted in the top row.
The wavelet coefficients are plotted in the remaining rows, going downward
from the finest scale d1 to the coarsest scales d6 and s6 in the bottom two
rows. The wavelet coefficients are plotted as vertical lines extending from
zero, they are plotted at approximately the position of the corresponding
wavelet function. The wavelet coefficients for mother wavelets are plotted
on the same vertical scale, so that the relative importance can be measured
by comparing the magnitudes (but the scale is different for the signal and
s1 level). The second column shows the DWT of the signal plus a Gaussian
white noise. The third column shows the DWT of the universal estimate,
and the right column shows the DWT of the SureShrink estimate.

We see that both estimates nicely capture the bumps, but it is fair to say
that the smooth background is better shown by Universal (just compare
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FIGURE 4.9. DWT of the signal “bumps,” noisy “bumps,” universal estimate,
and SureShrink estimate. [signal= ′′bumps ′′,wavelet= ′′s8 ′′, snr=3, n=1024,
j0=6, cJ=1, cT=4, cU=1]

the valleys). Now let us look at the corresponding DWT. It is worthwhile
to recall that the estimators have at hand the noisy wavelet coefficients
shown in the second column, so let us see how they use them. Let us begin
with the coarsest level s6. As you see, Universal smoothes (shrinks) the
noisy coefficients, while SureShrink simply keeps all the noisy coefficients.
Such a strategy is also clearly pronounced in the scale d5. On the finest
scales the estimators “exchange” their strategies of smoothing, which is
clearly seen in scale d1. Also, on the finest scales Universal is more “picky”
in its choice of the coefficients (just look at d3 or d2), but then it leaves
them untouched. On the other hand, SureShrink keeps essentially a larger
number of shrunk noisy coefficients. As a result, it can be expected that
Universal compresses data better than SureShrink, and below, an intensive
Monte Carlo study will confirm this conclusion.

Let us summarize our preliminary conclusions. We have seen that Uni-
versal and SureShrink employ quite opposite algorithms on how to pick
and smooth (shrink) wavelet coefficients, and this leads to rather different
approximation and data compression properties that favor the Univer-
sal estimator. Of course, we have seen only several examples. Are they
repeatable? This is the next issue that we would like to explore.

First, let us define the universal estimator using the notation of the
S+WAVELETS toolkit. For an equidistant regression of a sample size n,
which is interpreted by S+WAVELETS as a regular time series of length
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n, the S+WAVELETS toolkit allows one to calculate estimated wavelet
coefficients d̂j,k and ŝj,k. Using the same notations as in (4.4.1), define a
nonadaptive (since a cutoff J is not specified) universal estimator as

f̃(t, J) (4.4.2)

:=
j0−J∑
j=1

∑
k

d̂j,(k)I{|d̂j,(k)|>σ̂n−1/2 min(cT 2j0−J−j ,(2cU log(n))1/2)}ψj,(k)(t)

(4.4.3)

+
j0∑

j=j0−J+1

n/2j∑
k=1

(1−σ̂2/nd̂2
j,k)+d̂j,kψj,k(t)+

n/2j0∑
k=1

(1−σ̂2/nŝ2
j0,k)+ŝj0,kφj0,k(t).

(4.4.4)
In (4.4.3) the summation over k is from 1 to cJn2−2(j0−J)−1+j .

As with SureShrink, the default value of j0 is 6; the estimate σ̂2 is calcu-
lated via the finest-scale wavelet coefficients d1,k by the robust median-scale
estimator (4.1.9) with d̂1,k used in place of the residuals. Here d̂j,(k) are or-
dered (descending) empirical wavelet coefficients (i.e., |d̂j,(1)| ≥ |d̂j,(2)| ≥
· · ·), and ψj,(k)(t) are the corresponding mother wavelets. The default val-
ues of the coefficients are cJ = 1, cT = 4, and cU = 1. Also recall that (x)+
denotes the positive part of x.

As in (3.1.14) and (4.1.13), we see two terms (4.4.3) and (4.4.4) in the
universal estimate that are high- and low-pass filters. The low-pass filter
(4.4.4) uses smoothing, while the high-pass filter (4.4.3) uses threshold-
ing. There is a tiny difference between the thresholding procedures used
for the cosine basis in (3.1.14) and here in (4.4.3) for a wavelet basis. For
the cosine basis the threshold level is the same for all components. Here,
because a wavelet basis has a dyadic structure, the threshold level exponen-
tially increases, and the maximal number of nonzero top wavelet coefficients
exponentially decreases for finer scales (as the frequency increases). Apart
from this modification, (4.4.2) is identical to the universal Fourier estimate.

Finally, a data-driven cutoff Ĵ is chosen absolutely similarly to (4.1.11)
by the procedure of an empirical risk minimization,

Ĵ := argmin1≤J≤j0

{
2σ̂2NJ −

∫ 1

0
(f̃(t, J))2dt

}
. (4.4.5)

Here NJ is the number of nonzero wavelet coefficients used by f̃(t, J). The
universal wavelet estimator f̃(t, Ĵ) is defined.

Let us briefly recall the algorithm of the estimator SureShrink (a more
detailed discussion is given in Section 7.4, where the name is also explained).
SureShrink chooses (one at a time) threshold levels for 4 finest-resolution
scales d1–d4, while for the coarsest scales s6, d6, and d5 threshold levels
are zero by default, i.e., all noisy wavelet coefficients on these coarsest scales
are kept unfiltered. The procedure of choosing a data-driven threshold level



4.4 Wavelet Estimator for Spatially Inhomogeneous Functions 139

DOPPLER

0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

0.
0

0.
2

0.
4

NOISY DOPPLER

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.2

0.
2

0.
6

UNIVERSAL

0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

0.
0

0.
2

0.
4

SURESHRINK

0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

0.
0

0.
2

0.
4

JUMPSINE

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
10

15
20

NOISY JUMPSINE

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
10

20

UNIVERSAL

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
5

10
15

20

SURESHRINK

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
5

10
15

20

CREASE

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

NOISY CREASE

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

UNIVERSAL

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

SURESHRINK

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

BLOCKS

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

NOISY BLOCKS

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4
6

UNIVERSAL

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

6

SURESHRINK

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

FIGURE 4.10. Four different spatially inhomogeneous signals and the correspond-
ing noisy signals, universal, and SureShrink estimates. [set.signal=c( ′′doppler ′′,
′′jumpsine ′′, ′′crease ′′, ′′blocks ′′), set.wavelet=c( ′′s8 ′′, ′′s8 ′′, ′′s8 ′′, ′′haar ′′),
snr=3, n=1024, j0=6, cJ=1, cT=4, cU=1]

t̂j for the jth scale is an empirical risk minimization. The shrinkage is soft
thresholding, where an estimated wavelet coefficient is sgn(d̂j,k)(|d̂j,k| −
t̂j σ̂n−1/2)+. The motivation of using the soft thresholding instead of a
hard thresholding is that the soft thresholding is continuous in d̂j,k, and
this implies an easier procedure for computing the empirical risk.

Now we are ready to begin a Monte Carlo comparison of these two data-
driven estimators. First, we begin with the analysis of the visual appeal of
particular estimates for 4 signals supported by S+WAVELETS and called
“doppler,” “jumpsine,” “crease,” and “blocks.” These signals represent
functions with different types of spatial inhomogeneity and are “classi-
cal” corner functions used in the wavelet literature. In the examples the
default Symmlet 8 wavelet is used for all signals except “blocks,” where
the Haar wavelet is used. Recall that these wavelets are customarily used
by statisticians.

Signals, noisy signals, universal, and SureShrink estimates are shown in
Figure 4.10. For “doppler” both estimates give a fair visualization of the
time-varying frequency of the signal, and the universal apparently better
restores the smooth background. The signal “jumpsine,” with two pro-
nounced jumps (two change-points of the first order), is shown in the
second column. Here the universal estimate nicely restores these two jumps
(at least not worse than the SureShrink). Note that for other simulations
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Universal may “catch” spikes (as it did in Figure 4.8) created by noise be-
cause the signal-to-noise ratio is extremely small. Exercise 4.4.4 is devoted
to choosing optimal coefficients, which may either improve the ability of
Universal to search after spikes or attenuate it.

The signal “crease,” which has one pronounced change-point of the sec-
ond order (the derivative has a jump), is shown in the third column. Here
the universal estimate outperforms the SureShrink estimate in all aspects of
signal restoration. An interesting situation occurs with the signal “blocks,”
whose estimation is the trademark of SureShrink. Here the universal es-
timate looks “cleaner” over the tops of the blocks, but the SureShrink is
better near some change-points where the overshootings hurt the universal
estimate. Recall our discussion in Section 2.5 that wavelets are not immune
against the Gibbs phenomenon (overshooting).

So far, we have discussed only the visual appeal of restored signals. Since
the compared estimators have their own pluses and minuses, and for one
particular simulation SureShrink looks better and for another the outcome
may flip over, we should develop a more consistent method for comparison
of the two estimators. One of the possibilities is based on using an intensive
Monte Carlo study. The approach is as follows.

Let us, as in Section 3.2, define an experiment as a combination of a
sample size n and an underlying signal. Consider sample sizes from the
set {512, 1024, 2048} and signals from the set {“doppler”, “jumpsine”,
“crease”, “blocks”, “cubic”}; overall, 15 different experiments. Here the
signal “cubic” is a smooth cubic polynomial f(x) = 32x(x − 1)(2x − 1)/3
supported by S+WAVELETS. Then for every experiment we (i) repeat
independently 1000 numerical simulations that are similar to the above-
discussed; (ii) calculate the sample mean and standard deviation (over
these 1000 simulations) of the ratios: the integrated squared error (ISE)
of the universal estimate / the integrated squared error of SureShrink; (iii)
calculate the sample mean (again over these 1000 simulations) of the ra-
tios: number of nonzero wavelet coefficients used by universal / number of
nonzero wavelet coefficients used by SureShrink.

Step (ii) allows us to compare the estimates in terms of integrated
squared errors (if the ratio is smaller than 1, then the Universal per-
forms better, and vice versa), while step (iii) allows us to compare the
data compression properties of these adaptive estimators (again, if the ra-
tio is smaller than 1, then the Universal compresses data better, and vice
versa).

The results of this intensive Monte Carlo study are presented in Table
4.1. They confirm our preliminary conclusion made via visualization of par-
ticular estimates in Figures 4.8–4.10. We see that for all the experiments
with the exception of the case n = 512 and the signal “jumpsine,” the ap-
proximation property of the universal estimator is better, and the difference
in the performances becomes more pronounced for the larger sample sizes.
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Moreover, this nice approximation property is combined together with the
superior data compression property of the universal estimator.

Table 4.1. Sample Means (Sample Standard Deviations) of
Ratios of ISE and Data Compression: Universal/SureShrink

Sample Mean Ratio (Standard Deviation) of ISE
Size “doppler” “jumpsine” “crease” “blocks” “cubic”
512 .95 (.13) 1.06 (.3) .77 (.6) .6 (.1) .68 (.5)

1024 .84 (.09) .85 (.2) .5 (.3) .6 (.1) .39 (.2)
2048 .67 (.1) .66 (.09) .39 (.09) .57 (.1) .34 (.1)

Mean Ratio of Data Compression
512 .57 .81 .42 .66 .36

1024 .54 .51 .31 .48 .28
2048 .5 .34 .27 .34 .25

This study explains how to compare two data-driven estimators via an
intensive Monte Carlo study. Note that here again we used the approach
of analyzing the quality of estimation via a set of corner (test) regression
functions. In general, this set should be chosen based on prior experience
or intuition about possible underlying regression functions.

4.5 Case Study: Binary and Poisson Regressions

In many practical settings the regression model is slightly different from
the model (4.2.1). Namely, for a pair of observations (X, Y ) with the pre-
dictor X and the response Y , the regression function f(x) is defined as the
conditional expectation of Y given X, that is,

f(x) := E{Y |X = x}. (4.5.1)

Thus, the regression function f is interpreted as an average value of the
response Y given X = x. (Recall that the notion of the conditional expec-
tation and its properties are reviewed in Appendix A.) As in Section 4.1,
depending on the design of predictors, the regression can be either fixed or
random.

This approach has a clear geometric sense, namely, for a given x one
searches for means of responses and then connects the means by a regression
line.

Note that all the previously considered models could be written as (4.5.1)
because the error ε had been supposed to be independent of predictor X,
and therefore E{Y |X = x} = f(x) + E{ε|X = x} = f(x).

Model (4.5.1) can be rewritten in a form that resembles the previously
studied additive models, namely as

Y = f(X) + η(X, f), where E{η(X, f)|X = x} = 0. (4.5.2)
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The difference between models (4.5.2) and (4.2.1) is that in model
(4.5.2) the additive error can be rather complicated and depend on both
the regression function and the predictor. Nevertheless, we shall see that
the universal estimator f̂ of Section 4.2, developed for the case of het-
eroscedastic regression, can be used again for model (4.5.2) whenever
E{η2|X = x} ≤ C < ∞.

Let us consider two classical examples of such a setting.
• Example of Binary Regression. First, let us recall the notion of a

classical Bernoulli random variable. Suppose that a trial, or an experiment,
whose outcome can be classified as either a “success” or as a “failure,” is
performed. Let Y = 1 when the outcome is a success and Y = 0 when it is a
failure. Then the probability mass function of Y is given by P (Y = 1) = f
and P (Y = 0) = 1−f , where a constant f , 0 ≤ f ≤ 1, is the probability that
the trial is a success. Then a direct calculation shows that the expectation
of Y is equal to f and the variance to f(1 − f).

Note that the outcome of the trial can be written as Y = f + η, where
E{η} = 0 and E{η2} = f(1 − f). Thus, if n independent trials are re-
peated, then the problem of estimation of the probability of success f can
be considered as a nonparametric regression (4.5.1), where f(x) is constant.

Now let us make this Bernoulli setting more complicated. Assume that
the probability of a success f is a function of a predictor x, that is, f = f(x).
Then, the pair (X, Y ) is given such that Y = 1 with the probability f(X)
of a success and Y = 0 with the probability 1 − f(X) of a failure. The
problem is to estimate the function f(x).

Such a regression problem is an absolutely natural generalization of the
Bernoulli setting, and it occurs in a number of fields from biological assay
and gambling to the testing of explosives and reliability theory. Several
specific examples are as follows. Let Y be equal to 1 if the level of patient’s
cholesterol is less than a given threshold after 100 days of taking a dosage
X of some medicine. Then f(X) is the probability of a successful treatment
as a function of the dosage X. Repeated experiments with hitting a target
by a missile with different distances X between the point of launching the
missile and the target is another example where f(X) is the probability
of success that is a function of the distance. One more example is the
probability of dropping out of graduate school as a function of GRE score.

For such a problem the response can be written as Y = f(X) + η(X, f),
where E{η(X, f)|X = x} = 0 and E{(η(X, f))2|X = x} = f(x)(1−f(x) ≤
1
4 , so the universal estimator of Section 4.2 can be used directly.

Let us check how this universal data-driven estimator performs for the
case of the corner functions being the probability of success. Here all the
corner functions, shown in Figure 2.1, with the exception of the Uniform are
divided by their maximal value, and in place of the Uniform the function
f(x) = 3

4 is used (but here we again refer to this f as the Uniform).
Estimates for Monte Carlo simulated data, where underlying regression

functions are the corner functions and predictors are generated according
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FIGURE 4.11. The estimates for binary random-design regression with design
density being the Monotone: Dotted, short-dashed, and long-dashed lines cor-
respond to n = 50, n = 100, and n = 200; scatter plots for n = 100 are
shown by triangles; the underlying regression functions are shown by solid
lines. [set.n=c(50,100,200), desden=7, n=100, s0=.5, s1=.5, cJ0=4, cJ1=.5,
cJM=6,cT =4, cB=2, r=2]

to the Monotone density, are shown in Figure 4.11. For the case of n = 100
the scatter plots are shown by triangles; these plots show the complexity
of the binary regression. For instance, for the Normal it is difficult even to
realize that the scattergram corresponds to a regression function symmetric
about x = 0.5, so it is surprising how well the estimator performs.

Several other particular cases are even more interesting. Let us begin
with the Strata diagram and recall that we look at the short-dashed line,
which corresponds to the scatter plot. Note that here the universal esti-
mator should “create” the left tail of an estimate based just on several
observations. More precisely, there are just 2 observations to the left of
x = 0.2. And despite this obstacle, we can clearly see the shape of the
Strata.

An even more impressive outcome is for the Angle. The estimate (short-
dashed line) is clearly bad, but is it possible to suggest a better one for this
particular data set? First of all, the estimate correctly shows the magnitude
of the Angle. Second, the right tail is not really bad, keeping in mind the
underlying observations. The left tail is the reason why we refer to this
particular estimate as “bad.” However, let us look at the data at hand.
Any reasonable “handmade” estimate would increase as x changes from .4
to 0. Thus, the fact that the estimate correctly decreases near the left edge
and moreover approaches the correct value at the left boundary is amazing.
Overall, it is fair to say that the universal estimator performs well under
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these very complicated circumstances. Also note that no “local” estimator
can deal with such a setting.

Now let us derive the coefficient of difficulty for this setting. According
to (4.2.7), the coefficient of difficulty for binary regression is

d =
∫ 1

0
f(x)(1 − f(x))h−1(x)dx. (4.5.3)

Note that f(x)(1−f(x)) ≤ 0.25 and this allows one to get an upper bound
for the coefficient of difficulty. Also, according to (4.2.8), the optimal design
density for binary regression is

h∗(x) =
f(x)(1 − f(x)∫ 1

0 f(u)(1 − f(u))du
. (4.5.4)

• Example of Poisson Regression. First, let us recall the notion of a
Poisson random variable. A random variable Y taking on one of the values
0, 1, 2, . . . is said to be a Poisson random variable with parameter f if for
some f > 0, P (Y = k) = e−ffk/k!. Note that E{Y } = f and Var(Y ) = f .

Customary examples of random variables that obey the Poisson prob-
ability law are as follows: The number of misprints on a page of a book;
the number of wrong telephone numbers that are dialed in a day; the num-
ber of customers entering a shopping mall on a given day; the number
of α-particles discharged in a fixed period of time from some radioactive
material; the number of earthquakes occurring during some fixed time span.

It is not difficult to imagine that in all the above-mentioned examples
the parameter f can depend on another measured parameter (predictor)
X, and this defines the Poisson regression that satisfies (4.5.1) because
E{Y |X = x} = f(x). Also, E{(Y −f(X))2|X = x} = f(x), so the universal
estimator of Section 4.2 can be used again. Note that here the coefficient
of difficulty is

d =
∫ 1

0
f(x)h−1(x)dx, (4.5.5)

and the optimal design density is

h∗(x) =
f(x)∫ 1

0 f(u)du
. (4.5.6)

An example of Monte Carlo simulations and the corresponding universal
estimates is shown in Figure 4.12. Here the underlying regression functions
and the design of predictors are identical to the binary regression case.
Also, the scatter plots are shown by triangles for the case n = 100. The
scatter plots are rather specific, so some training is necessary to get used
to them. But the main rule of thumb is the same: The larger the response
for X = x, the larger the underlying regression function f(x). Keeping this
in mind, we see that while the short-dashed estimate for the Normal is
bad, it perfectly describes the underlying scattergram. The same may be
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FIGURE 4.12. The estimates for Poisson random-design regression with the
Monotone design density: Dotted, short-dashed, and long-dashed lines correspond
to n = 50, n = 100, and n = 200; scatter plots for n = 100 are shown by triangles;
the underlying regression functions are shown by solid lines. [set.n=c(50,100,200),
n=100, desden=7, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

said about the Strata. Here the short-dashed line shows the left stratum
absolutely incorrectly. As a result, instead of a pronounced peak we see
a small bump. But are there any data to indicate the correct stratum?
There are no such data at all. The same may be said about the Monotone
diagram. Also, look at the Angle diagram. Can you see any indication in
the scatter plot on the underlying Angle regression function? The universal
estimator sees none, and this looks like a reasonable answer. On the other
hand, here the estimate based on 200 observations is almost perfect apart
from the small flat tails.

4.6 Case Study: Quantile and Robust Regression

In many practically interesting cases the relationship between a predictor
X and a response Y cannot be interpreted as a mean or a conditional mean,
simply because these means do not exist. For instance, consider the model
Y = f(X) + ε, where the additive error ε is distributed according to a
Cauchy distribution with the density

fε(x) :=
k

π(k2 + x2)
, −∞ < x < ∞, (4.6.1)

where k is the scale parameter.
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Figure 4.13 illustrates the complexity of this setting by exhibiting scatter
plots for the underlying corner regression functions, Cauchy error with
the scale parameter k = 0.5, uniformly distributed predictors, and the
regression model

Y = f(X) + ε. (4.6.2)

The scatter plots are overlaid by least-squares regression lines.
First of all, please look at the scales for the responses. The eye is drawn to

Figure 4.13.7, where one response is about −200. Clearly, this is an outlier
(and this is the reason why the Cauchy distribution customarily serves as a
test for the robustness of an estimator for the presence of outliers), and it
may be easily removed. However, this does not solve the problem. Let us, for
example, consider the diagram Strata. What are the outliers here? Because
the underlying regression function is known, clearly the 3 observations with
responses larger than 7 are outliers. On the other hand, the diagram Delta
shows us that there are only 3 points that indicate the presence of the
pronounced mode of the Delta, and these points should not be removed. In
short, while for the case of smooth functions (like those studied by classical
linear regression theory) one can suggest smart and relatively simple pro-
cedures for identifying outliers, this becomes an extremely difficult issue
for the case of spatially inhomogeneous nonparametric curves.

What is so special about Cauchy random variables? The answer is that
a Cauchy random variable has “heavy tails” and, as a result, has neither
a variance nor an expectation. Moreover, a Cauchy random variable has
the peculiar property that the sample mean of its iid realizations has the
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FIGURE 4.13. Simulated scattergrams based on 50 observations and overlaid
by linear regression lines. The underlying regression functions are the corner
functions; the errors have Cauchy distribution (4.6.1) with k = 0.5. [k=.5, n=50]
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same distribution as the underlying Cauchy random variable. In short, the
sample mean cannot serve as an estimator, and all the familiar asymptotic
results such as the law of large numbers and the central limit theorem fail.

On the other hand, the probability density (4.6.1) of the Cauchy distri-
bution is symmetric about zero, and therefore its median is equal to zero.
Thus, the regression model (4.6.2) has a different and absolutely natural
meaning here: The underlying regression function f(x) is a curve such that
in a small vicinity of a point x, half of the responses are larger and the other
half smaller than f(x). Apparently, this regression function is unaffected by
any extreme responses in a set of data. Thus, the median regression may be
an attractive alternative to the mean regression when one wants to describe
the relationship between predictor and response under the assumption that
the errors may have a distribution like Cauchy.

The caveat of such a regression is that the estimation of functions like
the Delta will suffer. Also, it should be clear from the beginning that for
traditional normal errors a median regression implies worse estimation. To
shed light on the issue, consider the problem of estimation of a parameter θ
based on n iid observations Yl = θ+εl, l = 1, 2, . . . , n, where εl are standard
normal. If θ̄n := n−1 ∑n

l=1 Yl is the sample mean and θ̃n := median({Yl, l =
1, 2. . . . , n}) is the sample median, then the ratio E{(θ̃n−θ)2}/E{(θ̄n−θ)2}
is, for instance, 1.47 for n = 20 and increases to 1.57 as n → ∞.

Now let us return to the search of an estimator for the median regression.
The following explains the underlying idea of the recommended approach.
It is known that a sample median for a Cauchy random variable is an
unbiased estimate of the median, and it also has a finite second moment
whenever the sample size is at least 5; see Exercise 4.6.2.

Thus, our strategy is as follows. First, we seek a moving sample median
for neighbor predictors (assuming that an underlying regression function is
smooth). Then we use the universal estimate of Section 4.2.

To make the first step, as in Section 4.2, the pairs of observations are
arranged in ascending order according to the predictors. Recall that the
notation for such pairs is {(Y(l), X(l)), l = 1, 2, · · · , n}, where X(1) ≤ · · · ≤
X(n). Then, for every l such that m < l < n − m the sample median
of {Y(l−m), Y(l−m+1), . . . , Y(l+m−1), Y(l+m)} is calculated and denoted by
Y ′

(l), where m is the rounded-down m0 + m1 log(log(n)) with the default
values m0 = 2 and m1 = .3. For boundary points we set Y ′

(l) = Y(m+1) for
1 ≤ l ≤ m and Y ′

(l) = Y(n−m) for n − m ≤ l ≤ n.
As a result, the new sequence of pairs (Y ′, X) of observations is created,

and

Y ′ = f(X) + η, (4.6.3)

where now E{η} = 0 and E{η2} ≤ C < ∞. Then the universal estimator
of Section 4.2 is used.
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FIGURE 4.14. The estimates for median regression with Cauchy errors (the scale
coefficient k = 0.5) and uniform design predictors: Dotted, short-dashed, and
long-dashed lines correspond to the sample sizes 50, 100, and 200. The underly-
ing regression functions are shown by solid lines. {Here the arguments m0 and
m1 control the coefficients m0 and m1 used in the formula for calculation of
the window-width for the moving sample median.} [set.n=c(50,100,200), k=.5,
m0=2, m1=.3, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

Figure 4.14 depicts the estimates based on data sets simulated by uni-
formly distributed predictors and Cauchy errors with the scale parameter
k = 0.5. It is not a surprise that the estimates are worse than for all the
previously discussed settings, and the visualization of the Delta is lost. Here
simply more observations are needed for a reliable estimation, and we leave
this as Exercise 4.6.8.

Despite the poor outcomes for the small sample sizes, which have been
predicted, there is no need to be too pessimistic about median regression.
Cauchy error is a classical test example that is simply far too extreme
for many applications. Some “milder” examples of test errors are given in
Exercises 4.6.4–4.6.5.

The sample median is a characteristic of a data set that splits ordered
observations into two equal parts. A sample α-quantile is another character-
istic of a data set that divides it into two parts such that the αth proportion
of observations is less and the (1−α)th proportion is larger than this quan-
tile. Classical examples of quantiles are the first (α = 0.25) and the third
(α = 0.75) quartiles, which together with the median (α = 0.5) divide a
set of data into four equal parts.

There are at least two important reasons to study quantile regression.
The first one is that in some cases an underlying regression function is
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defined as a conditional αth quantile,

P (Y ≤ fα(x)|X = x) = α. (4.6.4)

(Median regression is a particular example with α = .5.) The second reason
is that for the case of an additive heteroscedastic regression

Y = f(X) + σ(X)ε, (4.6.5)

it may be of interest to visualize both f and an αth quantile curve defined
in (4.6.4) because together they shed light on the volatility function σ(x).
Also, in some cases quantile curves have their own merits. A particular
example is tracking the price of a particular stock over a period of time
where one is typically interested not only in the average price but also in
its quantiles over the time period.

The approach of median regression can be straightforwardly extended
to the case of quantile regression, only here a sample quantile estimator
needs to be used in place of a sample median estimator; the parameter m
is defined as the rounded-down m0 +m1 log(log(n))+m2|α − 0.5| with the
default m2 = 6.

The performance of the quantile estimator may be analyzed with the
help of Figure 4.15, which shows scatter plots (n = 100) simulated accord-
ing to equidistant fixed-design regressions with additive normal errors and

1.  Uniform

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3

2.  Normal

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3
4

3.  Bimodal

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

4

4.  Strata

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

5.  Delta

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

6.  Angle

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3

7.  Monotone

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3
4

8.  Steps

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3
4

FIGURE 4.15. Interquartile bands for fixed-design heteroscedastic regressions
with standard normal error and the scale function being the Angle. Scatter plots
for n = 100 are shown by triangles. Dotted and dashed lines are the estimates of
the first and third quartiles, and together they present the estimated interquartile
bands. The underlying regression functions are shown by solid lines. {The scale
function is σfj(x) where j = scalefun.} [n=100, sigma=1, scalefun=6, m0=2,
m1=.3,m2=6, s0=.5, s1=.5, cJ0=2, cJ1=.5, cJM=6,cT =4, r=2]
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the scale function being the Angle. The scatter plots are overlaid by the
underlying regression functions (solid lines), the first quartile regression es-
timates (dotted lines), and the third quartile regression estimates (dashed
lines). Note that first and third quartile regression lines should be parallel
for the case of a constant scale function and not parallel otherwise. More
precisely, the width of an interquartile band is proportional to the under-
lying scale function. We may clearly see this in the estimated bands for the
Normal, the Strata, the Monotone, and the Steps.

Finally, let us consider the notion of a robust nonparametric regression.
The primary concern of this regression is to be less sensitive to outliers, i.e.,
to responses which cause surprise in relation to the majority of the sample.
Median regression discussed earlier and shown in Figure 4.14 is a particular
example of this type of regression. Recall that its idea was to replace re-
sponses by sample medians Y ′

(l) of local subsamples {Y(l−m), Y(l−m+1), . . . ,

Y(l+m−1), Y(l+m)}, and then use the universal estimator. It was also ex-
plained that if noise was normal then using a local sample mean, in place
of the local sample median, implied a better estimation. On the other hand,
a sample mean is not robust to outliers.

There are several reasonable compromises between the sample mean and
sample median estimates, for instance, trimmed means or linear combina-
tions of order statistics (L-estimators). Here we shall explore a local Huber
estimate

Y h
(l) := argmina

l+m∑
k=l−m

ρh((Y(k) − a)/ŝ), (4.6.6)

where the loss function ρh is defined by ρh(x) := x2/2 if |x| ≤ h and
ρh(x) := h|x| − h2/2 if |x| > h, and ŝ is the normed median estimate of
the scale factor introduced in Section 4.1. Note that as h gets larger, the
loss function ρh(x) will agree with x2/2 over most of its range, so that
Y h

(l) comes closer to the sample mean. As h gets smaller, the absolute loss
function implies that Y h

(l) comes closer to the sample median. The value
h = 1.45 is considered as a default one. Below we shall refer to a universal
estimate based on Y h

(l) in place of Y(l) as the Huber estimate.
Figure 4.16 is devoted to exploring three nonparametric estimators: the

universal of Section 4.2, median and Huber. As an example, Tukey errors
are used, they are defined in Exercise 4.6.5 and the caption of Figure 4.16.
Scatter plots in Figure 4.16 show how Tukey errors create outliers, and they
also explain why the problem of estimation of a regression function with
these errors is so complicated (just look at the Angle scattergram). Uni-
versal, median, and Huber estimates are shown by dotted, short-dashed,
and long-dashed lines, respectively. The robust estimators perform rather
similarly, only for the Delta and the Monotone the particular Huber es-
timates are better. As about their comparison with the universal, we see
that the Bimodal, the Strata, and the Delta functions are better estimated
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FIGURE 4.16. Performance of the universal, median, and Huber estimators. The
corresponding estimates are shown by the dotted, short-dashed, and long-dashed
lines. Underlying functions are shown by solid lines. The sample size is n = 100,
the errors are σ times Tukey random variables with cdf F (x) = (1 − t1)Φ(x) +
t1Φ(x/t2). Here Φ(x) is the standard normal cdf, σ = 1, t1 = 0.2, and t2 = 4.
{One may change the parameter h of the Huber estimate and the parameters
of errors.} [n=100, h=1.45, t1=.2, t2=4, sigma=1, m0=2, m1=.3,m2=6, s0=.5,
s1=.5, cJ0=2, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

by the robust estimators. On the other hand, the smoother functions, as
the Uniform and the Normal, are better estimated by the universal.

Overall, apart of the extreme cases like Cauchy errors, the universal
estimator of Section 4.2 performs relatively well and it is robust.

4.7 Case Study: Mixtures Regression

Let us begin with the parametric case where f(x) := θ. Assume that ζ and
ξ are two independent random variables with known and different means
and some finite variances. Also, let Z be a Bernoulli random variable that
takes on the value 1 with probability θ and 0 with probability 1 − θ. Then
suppose that a new random variable Y is generated by the formula

Y := Zζ + (1 − Z)ξ. (4.7.1)
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In words, Y is equal to ζ with probability θ and to ξ with probability
1 − θ. The random variable Y is called a mixture because the cumulative
distribution function FY (c) of Y is

FY (c) = θF ζ(c) + (1 − θ)F ξ(c). (4.7.2)

The classical parametric problem is to estimate the parameter θ based
on iid observations Y1, . . . , Yn of Y . Define E{ζ} =: µζ , E{ξ} =: µξ, and
assume that µζ �= µξ. Then

E{Y } = θµζ + (1 − θ)µξ,

that yields

θ =
E{Y } − µξ

µζ − µξ
.

Thus, a sample mean estimator for the rescaled data (Yl −µξ)/(µζ −µξ),
l = 1, 2 . . . , n, can be used as an estimator of the parameter θ.

One of the classical applications of mixtures models is to describe a
change-point problem. For example, let ζ correspond to the case where an
object functions normally and ξ corresponds to the case where it functions
abnormally. Then changing θ from 1 to 0 implies abnormal functioning.
Thus, estimation of θ allows one to find a change point.

Now let us consider a nonparametric setting where f is a function of some
predictor X (for change point problems X is typically a time). In this case
the data at hand are the pairs of observations (Xl, Yl), l = 1, 2, . . . , n, where

Yl := Zlζl + (1 − Zl)ξl, (4.7.3)

and Zl are independent Bernoulli random variables that take on values 1
and 0 with probabilities f(Xl) and 1 − f(Xl), respectively, and ζl and ξl

are iid realizations of ζ and ξ.
The problem is to estimate the regression function f(x).
As in the parametric case, set Y ′ := (Y − µξ)/(µζ − µξ). This implies

that

E{Y ′|X = x} = f(x). (4.7.4)

Thus, the mixtures regression is a particular case of model (4.5.1), and it
can be solved by the method discussed in Section 4.5. Note that 0 ≤ f(x) ≤
1, so the modified corner functions of that section may be used here.

In Figure 4.17 Monte Carlo simulated scatter plots (for n = 100) are
shown by triangles (the regression design is fixed equidistant), and the scat-
ter plots are overlaid by estimates. Here the corner functions are modified
according to Section 4.5, ζ is N(muzeta, sdzeta2), and ξ is N(muxi, sdxi2)
with the default values muzeta = 0, muxi = 1, sdzeta = 0.7, and
sdxi = 0.5.

Note that the equidistant regression is similar to a time series, so the
estimates allow us to observe what has been happening over time. Overall,
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FIGURE 4.17. The estimates for the equidistant mixtures regression: Dotted,
short-dashed, and long-dashed lines correspond to the sample sizes 50, 100, and
200. Scatter plots are shown by triangles for n = 100. Underlying regression
functions (shown by solid lines) are the same as the functions used for the bi-
nary regression. [set.n=c(50,100,200), n=100, muzeta=0, muxi=1, sdzeta=.7,
sdxi=.5, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

except for the Delta case, the estimates are good. For the Delta case the
sample sizes are too small to catch the “short-time” change of the underly-
ing distribution. Also note that the scatter plots are so specific that manual
analysis via visualization is complicated.

4.8 Case Study: Dependent Errors

Consider again the setting of Section 4.1, where one observes n pairs of
observations (X1, Y1), . . . , (Xn, Yn) such that

Yl = f(Xl) + εl, (4.8.1)

and the predictors X1, . . . , Xn are either iid realizations of a uniform
random variable U(0, 1) or fixed equidistant points Xl = l/(n + 1).

The important assumption made in Section 4.1 was that the errors εl

were independent. What will happen if errors are dependent?
The aim of this section is to show that the dependency among errors

crucially affects fixed-design regression but may have a relatively mild effect
on random-design regression. In short, a random design is more resistant
(robust) to possible deviations from the case of independent errors.

To shed light on the issue, we begin with the case of a constant regression
function f(x) = θ0 and consider the variance of the sample mean estimator
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θ̂0 = n−1 ∑n
l=1 Yl defined in (4.1.3). In this section it is assumed that

the errors are zero-mean and have uniformly bounded variances, that is,
E{ε2

l } ≤ C < ∞ for all l. Also, in general the errors ε1, ε2, . . . , εn may have
different distributions.

A simple calculation, based on the property (A.10) of the expectation,
shows that E{θ̂0} = θ0, so the sample mean estimator is always unbiased
regardless of the dependency among the errors.

The situation dramatically changes for the variance of this estimator.
Let γ(i, j) := E{εiεj} denote the autocovariance function of the errors.
Recall that if the errors are independent, then γ(i, j) = 0 for all i �= j and
γ(i, i) = E{ε2

i } = Var(εi). Then the variance of the sample mean estimator
θ̂0 is calculated straightforwardly:

Var(θ̂0) = E{(θ̂0 − E{θ̂0})2}

= E
{(

n−1
n∑

l=1

εl

)2}
= n−2

n∑
i,j=1

γ(i, j). (4.8.2)

Thus, if the errors are independent, then Var(θ̂0) = n−1[n−1 ∑n
i=1 γ(i, i)]

< Cn−1, that is, we get the familiar rate n−1 of decreasing the variance as
the size of a sample increases. Otherwise, the variance may decrease more
slowly.

A practically interesting example is the case of long-memory errors of
order α where the autocovariance function γ(i, j) = γ(i−j) is proportional
to |j − i|α, 0 < α < 1 (a Monte Carlo example with such errors will
be considered later). Direct calculations show that in this case Var(θ̂0) is
proportional to n−α.

Thus dependent errors can make the parametric regression problem
extremely complicated. But does this imply a curse for nonparametric
regression?

Asymptotic theory shows that there is no way to avoid the curse of de-
pendent errors for fixed-design regression. On the other hand, the outcome
is not so glum for random-design regression.

To explain the “miracle” of random design, let us calculate the variance
of the estimator θ̂j for some positive j. Write

E{(θ̂j − θj)2} = n−2E
{[ n∑

l=1

(Ylϕj(Xl) − θj)
]2}

(4.8.3)

= n−2E
{[ n∑

l=1

((f(Xl)ϕj(Xl) − θj) + εlϕj(Xl))
]2}

= n−2E
{ n∑

l,t=1

[
(f(Xl)ϕj(Xl) − θj)(f(Xt)ϕj(Xt) − θj)

+ 2(f(Xl)ϕj(Xl) − θj)εtϕj(Xt) + εlεtϕj(Xl)ϕj(Xt)
]}

.
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FIGURE 4.18. The case of long-memory errors of order α. The errors are the
same for both fixed- and random-design regressions. The solid lines show the
underlying Normal regression function, the dashed lines show the estimates, and
triangles show scatter plots. {It is a very good idea to repeat this figure with
different values of α (controlled by alpha) and n to understand the nature of
dependent errors and how they affect scatter plots. The choice of an underlying
regression function is controlled by the argument corfun.} [set.n=c(50,100,200),
corfun=2, alpha=.3, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

Using the relation E{f(X)ϕj(X)} =
∫ 1
0 f(x)ϕj(x)dx = θj , where X is

uniform U(0, 1), the orthonormality of elements {ϕj} of the cosine basis,
independence the predictors and the errors, and independence of predictors,
we get

E{(θ̂j −θj)2} = n−1
[ ∫ 1

0

(
f(x)ϕj(x)−θj

)2
dx

+ n−1
(
2
∫ 1

0
f(x)ϕ2

j (x)dx
n∑

l=1

E{εl} +
n∑

l=1

E{ε2
l }
)]

, j ≥ 1. (4.8.4)

Note that (4.8.4) holds even if errors are not zero-mean. Thus, even if
E{εl} �= 0 and the errors are dependent, (4.8.4) implies that the variance
of the sample mean estimator θ̂j , j ≥ 1, converges to zero proportionally
to n−1.

To use this promising result, let us consider the problem of estimating
the shape of a regression function f defined as ψ(x) := f(x)−∫ 1

0 f(u)du. In
other words, the shape of a curve is the curve minus its average value, and
in a majority of practical problems the shape is the main concern, since it
describes the dynamics of a curve. Because ψ(x) =

∑∞
j=1 θjϕj(x), we can

use directly the estimator of Section 4.1. This together with (4.8.4) implies
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that for the considered random-design regression the dependent errors may
have no significant affect on the precision of estimation. On the other hand,
the accuracy of estimation of the average value θ0 is always affected by the
dependency.

Now let us explore the merits of this theoretical heuristic for the case of
reasonable sample sizes. We use two approaches. First, in Figure 4.18 we
show estimates of Section 4.1 for the case of long-memory errors of order α
for both fixed equidistant design (the top row) and random uniform design
(the bottom row). Because the errors are the same for both these designs,
we clearly see how design affects the estimation. First of all, the particular
case of n = 50 (the left column of diagrams) shows the meaning of the
long-memory errors: Here except for only 2 realizations out of 50 all the
errors are negative. Note that the errors are zero-mean, but simply many
of them are needed to get a negligible sample mean. This is what makes
the setting so complicated. As a result, both estimates are shifted down.

On the other hand, there is a remarkable difference in shapes of the
estimates. We see that the estimate based on the random design apparently
resembles the shape of the Normal, while the estimate based on the fixed
design does not. The particular scatter plots also explain why for the fixed
design the long-memory dependency is translated into long-memory spatial
dependence, whereas the random design spreads the errors along the x-axis
and makes them more spatially “independent.” The same outcomes occur
for the cases of larger sample sizes.

The second recommended approach to explore the merits of the theory is
to use intensive Monte Carlo simulations. Here, as an example, we compare
precisions of the universal estimator of Section 4.1 for the fixed and random
designs via intensive Monte Carlo study.

In the Monte Carlo study the underlying regression function f is the
normal density with parameters (0.3, 0.22), and the errors are either iid or
long-memory Gaussian (defined above) with α = 0.5 and α = 0.3.

For every experiment with a particular family of errors and a design of
predictors, the average integrated squared error (AISE) is calculated based
on 1000 repeated simulations, and we write AISEF and AISER for the cases
of fixed and random designs. We also consider two different estimands: the
function (f) and its shape (ψ).

In Table 4.2 ratios of different AISEs are shown. Column (a) indicates the
estimand that is either the function f or its shape ψ. Column (b) indicates
what type of errors have been used in the ratio; for instance, the ratio 0.5/iid
means that the AISE of the numerator has been calculated for the case of
long-memory errors with α = 0.5, while the AISE of the denominator
has been calculated for the case of iid standard normal errors. Column (c)
indicates the design of regression, for instance, F/R means that the AISE of
the numerator has been calculated for fixed-design regression and that the
AISE of the denominator has been calculated for random-design regression.
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In other columns the ratios are shown for indicated sample sizes 50, 100,
200, 400, and 1000.

Table 4.2. Ratios of AISEs for the case of random and fixed designs,
iid and long-memory errors, and the estimand being either the underlying
regression function or its shape

(a) (b) (c) n=50 n=100 n=200 n=400 n=1000
f iid/iid F/R 0.50 0.49 0.43 0.55 0.56
f .5/iid F/F 3.52 5.15 7.81 9.04 13.54
f .5/iid R/R 2.08 2.46 2.88 3.72 4.86
f .3/iid F/F 5.30 9.46 15.42 23.04 35.56
f .3/iid R/R 2.96 4.24 5.74 9.44 13.51
ψ iid/iid F/R 0.49 0.47 0.44 0.49 0.53
ψ .5/iid F/F 2.30 3.22 4.46 6.90 9.12
ψ .5/iid R/R 1.64 1.62 1.60 1.58 1.52
ψ .3/iid F/F 1.28 4.18 6.96 10.78 16.62
ψ .3/iid R/R 1.72 1.68 1.68 1.66 1.66

In the first 5 rows f is the estimand. The first line compares the perfor-
mance of the estimate for the different designs but the same iid errors. We
see that the estimate performs better for the fixed design, and this is not
a surprise, due to the discussion in Section 4.1.

The second through fifth rows explore the robustness of the estimate
for different errors using the same design. For instance, in the second row
for the fixed design the average ratios of the AISE for long-memory errors
with α = 0.5 to the AISE for iid errors are shown. Overall, we see that the
random design is essentially more robust.

In the sixth through tenth rows the shape is the estimand. These results
clearly support the conclusion of asymptotic theory that the random design
together with the universal estimate makes the estimation robust, while this
is not the case for the fixed design.

Numerical experiment confirms the above theoretical conclusion about
the superiority of the random design over the fixed in terms of robustness
for possible deviations from independent errors.

The conclusion of this section is as follows. Whenever errors in responses
are dependent, then the estimation of an underlying regression function
may become dramatically more difficult. There is a striking difference be-
tween random- and fixed-design regressions, namely, while for a random
design estimation of the shape of a regression function is almost immune
(robust, resistant) to the dependency, for a fixed design there is no cure
against the dependency. Thus, if there is a choice between these two designs,
the preference should be given to a random design.



158 4. Nonparametric Regression for Small Samples

4.9 Case Study: Ordered Categorical Data

The aim of this section is to discuss the case where responses are categorical.
Examples of such responses are a car that has been driven with speed below
35, between 35 and 55, or above 55 miles per hour; a patient who has no
pain, mild pain, moderate pain, severe pain, or acute pain; a person who
drinks no beers a day, 1 beer a day, more than 1 but fewer than 5 beers
a day, and at least 5 beers a day; the overall rating of a proposal can be
poor, fair, good, very good, or excellent.

Note that all these categorical responses have a natural logical ordering
and thus are referred to as ordinal responses. This is a class of categorical
responses that we shall consider. (On the other hand, so-called nominal
responses have no natural logical ordering; examples are the color of eyes
or the place of birth of a respondent to a survey.)

Assume that an ordinal categorical data set is obtained by a grouping
(discretization) of responses. This is a clear-cut case for the examples with
car speed and number of beers drunk per day (indeed, for instance, a person
can drink on average 4.75 beers per day). On the other hand, even for
the examples about ratings of proposals and responses about pain, the
categorical response can be modeled as a grouping of continuous responses.

Then it is easy to imagine similar nonparametric regression problems
such as how a dosage of this or that medicine affects pain, or how the length
of a rehabilitation program affects drug-addiction, or how the number of
previously published papers affects the rating of a proposal.
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FIGURE 4.19. Simulated example of a categorical random-design regression with
the Normal corner function being the underlying regression function, the Mono-
tone being the design density, normal N(0, σ2) independent additive errors, and
n = 50; the left diagram shows the unobserved data and the bounds for 4
categories; the right diagram shows the corresponding categorical data. [n=50,
corfun=2, desden=7, sigma=1]
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To give an impression about categorical nonparametric regression, let
us consider the numerically simulated data shown in Figure 4.19. The left
diagram shows an example of simulated classical additive regression, which
was discussed in Section 4.1. The scatter plot is overlaid by boundaries for
4 categories: Y < −1, −1 ≤ Y < 1, 1 ≤ Y < 3, and 3 ≤ Y . This data set is
not available to a practitioner who gets only the grouped responses (cate-
gorical data) shown in the right diagram. Thus, instead of the traditional
pairs (Xl, Yl), where Yl = f(Xl) + εl, there is a set of pairs (Xl, Zl) where
Zl is the number of a cell (category) for an unobserved Yl. Note that on
top of the traditional complications of classical regression, categorical data
give no information on how underlying unobserved responses are spread
out over cells. In particular, this can severely influence estimation of such
functions as the Delta or the Strata because the information about values
of the extreme observations is hidden.

On the other hand, categorical regression is a curious example, where
additive errors may help. Indeed, consider a case where a regression function
is f(x) = 0 and cells are as shown in Figure 4.19. If there are no additive
errors, then the categorical data are (Xl, 2), l = 1, 2, . . . , n. Thus, the only
given information is that all responses are within the cell [−1, 1), and there
is no way to estimate the underlying regression function; it may be either
f(x) = 0 or f(x) = 0.5 sin(5x) or f(x) = x − 0.5x2. Moreover, even if
there are additive errors but their range is not large enough, for instance
εl are uniform U(−0.49, 0.49), then for all the above-mentioned regression
functions the responses are still Zl = 2. See also Exercise 4.9.1.

Let us begin the discussion of a possible estimator with the paramet-
ric case f(x) ≡ θ and the model of grouping data shown in Figure 4.19.
Let p̄ be the proportion of observations that have categories 3 or 4. Then
the probability P (θ + ε ≥ 1) =: p, which is the theoretical proportion of
observations in the third and fourth categories, is

p = P (ε ≥ 1 − θ) = 1 − F ε(1 − θ). (4.9.1)

The foregoing shows that for this example a natural estimate of θ is

θ̄ = 1 − Qε(1 − p̄), (4.9.2)

where Qε(α) is the quantile function, that is, P (ε ≤ Qε(α)) = α.
This example shows how to solve the problem of categorical regression

because we can convert it into binary regression, discussed in Section 4.5.
Thus, the suggested procedure is as follows.
Step 1. Combine the ordered categories into two groups of “successes”

and “failures.” Ideally, the boundary in responses that separates these two
groups should be such that both successes and failures spread over the
domain of predictors. For instance, for the example shown in Figure 4.19
the only reasonable grouping is {(1, 2), (3, 4)}.
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FIGURE 4.20. The estimates for categorical data sets generated according to
Figure 4.19. Dashed and dotted lines correspond to estimates p̂ and f̂ of the binary
probabilities and the regression functions. The underlying regression functions are
shown by solid lines. [n=100, desden=7, sigma=1, a=.005, b=.995, s0=.5, s1=.5,
cJ0=4, cJ1=.5, cJM=6,cT =4, cB=2, r=2]

Step 2. Use the estimator p̂(x) of Section 4.5 to estimate the probability
of a success. If no information about the additive error ε is given, this is
the last step. If the distribution of ε is given, then go to step 3.

Step 3. This step is based on the assumption that a categorical data set
is generated by grouping responses of an additive regression Yl = f(Xl)+εl

where the distribution of a continuous error ε is given. Let Yl belong to the
success group iff Yl ≥ a. Then

f̂(x) = a − Qε
(
1 − [p̂(x)]cb

)
, (4.9.3)

where [z]cb = max(b, min(z, c)) and the last truncation allows one to avoid
infinite values for f̂ . The “default” values of b and c are 0.005 and 0.995.

Let us check how this procedure performs. In Figure 4.20 the estimates
p̂(x) and f̂(x) are shown by dashed and dotted lines, respectively. The data
sets are simulated according to Figure 4.19. The estimates are relatively
good even in comparison to the case of direct observations. Of course, in
some case, like the Delta, we simply cannot restore the magnitude of an
underlying regression curve because all responses larger than 3 look alike.
On the other hand, for all the other corner functions, categorical data allow
us to restore the underlying curves.

The suggested estimator is not optimal because it is based only on partial
information. Nevertheless, asymptotically the suggested estimator is rate
optimal (the notion is defined in Section 7.1), it is a good choice for the case
of small sample sizes where typically several categories contain a majority
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of responses, and it is simple. An asymptotically optimal estimator, where
the suggested f̂ is used as a pilot estimate, is discussed in Section 7.7.

4.10 Case Study: Learning Machine for Inverse
Problems with Unknown Operator

In many applications, ranging from traditional signal communication to
medical imaging, one is interested in solving an operator equation.

Consider an operator equation g = Hf , f ∈ F , where a function g, a
linear operator H, and a class F of estimated functions f are given. The
problem is to restore f . Such a problem has been one of the main topics in
mathematics over the centuries. Classical examples of linear operators are
the differential operator, like Hf(x) := df(x)/dx, or the integral operator,
like Hf(x) :=

∫
h(x, u)f(u)du. Typically, it is assumed that an operator

is known and g is observed directly. Then there exist numerous theoreti-
cal and numerical methods on how to invert the problem and restore f .
The problem becomes essentially more complicated when g is observed in
additive noise, i.e., one observes realizations of Y := Hf(X)+ε. This prob-
lem resembles classical regression, only here one should combine classical
regression technique with inversion. Recall that we considered a similar
problem for a density estimation in Section 3.5.

The aim of this section is more ambitious. We would like to consider a
problem where observations of g are noisy and the operator H is unknown.
In this case we use a traditional approach of learning theory based on
making additional observations that allow us to estimate H (the procedure
of estimating H is often referred to as training or study). To do this, a set
of training functions e1, . . . , em from the class F is chosen, and then these
training functions are used in place of an unknown f , that is, a training data
set is given that is a set of noisy observations of Hel, l = 1, . . . , m. Then,
based on a noisy observation of Hf , which is called the main observation,
and the training set, a learning machine (i.e., a data-driven estimator)
should recover f .

Let us explain both the problem and a suggested solution via a classical
example of heat flow on an interval. The mathematical setting is as follows.
The temperature u(f, t, x) in a rod of length 1 (here f = f(x) is the initial
temperature, t is the time, and x is the coordinate) with ends held at
temperature 0 is described by the heat equation,

∂u(f, t, x)/∂t − (1/2)∂2u(f, t, x)/∂x2 = 0 , t > 0, 0 < x < 1 , (4.10.1)

subject to u(f, t, x) = 0 for t ≥ 0, x = 0 and x = 1, and u(f, 0, x) = f(x).
Note that (4.10.1) may be written as u = Hf , and the problem is to es-

timate the initial temperature f(x), 0 ≤ x ≤ 1, based on noisy equidistant
measurements of the temperature u(f, t0, x) at some moment t0 > 0. Nei-
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ther the operator H nor the time t0 is known to a practitioner. Why is this
setting interesting? The reason is that (4.10.1) is a mathematical simplifi-
cation of real practical problems, where, for instance, a possible cavity in
a studied rod may lead to drastic changes in the operator. Thus, operators
(here a rod) should also be studied.

Now let us formulate the statistical setting. With respect to the tem-
perature u(f, t0, x) at a moment t0, we have a classical regression problem
where one observes

Yl = u(f, t0, l/(n + 1)) + σεl, l = 1, 2, . . . , n . (4.10.2)

There is a dramatic difference between (4.10.2) and the model (4.1.1)
discussed in Section 4.1. In the model (4.10.2) the function of interest is
an initial temperature f(x), while in Section 4.1 we were interested in
estimating the current temperature u = Hf . Thus, we should estimate u
and then solve the operator equation. Because H is unknown, it should be
estimated. Learning theory suggests to use a training data set where some
known initial temperatures are used and observations of the corresponding
temperatures at the moment t0 are made. In other words, the training
observations are

Zjl = u(ej , t0, l/(n + 1)) + νεjl, l = 1, 2, . . . , n, j = 1, . . . , m, (4.10.3)

where ej , j = 1, 2, . . . , m, are known initial temperatures. The parameters
σ and ν may be different. In short, the results of an additional series of
m training experiments are given, and they may be used to estimate an
underlying operator. Based on these training data sets and the main ob-
servation (4.10.2), a learning machine should recover an unknown initial
temperature f .

Because we discuss orthogonal series estimators, it is natural to use
the first elements of a basis as the training functions. Here these func-
tions are temperatures with the boundary conditions ej(0) = ej(1) = 0.
Among the bases discussed in Chapter 2, only the sine basis with elements
{ej =

√
2 sin(jπx), j = 1, 2, . . .} has this property. Thus, we shall use these

elements as training functions. The first two elements are shown in the di-
agrams (e) and (g) of Figure 4.21. A choice of the training functions is the
only manual procedure of the learning machine (4.10.8) defined below.

Before describing this machine, let us try it in action. Namely, let us
numerically model the heat equation in a rod and then analyze the recovery
of an initial temperature. The measurement errors εl and εjl are simulated
as iid standard normal, σ = ν = 0.2 and t0 = 0.05. Also, the learning
machine is allowed to make m = 6 training experiments.

Figure 4.21 illustrates both the problem and the solution. The initial
(unknown) temperature f(x) = 10x(x − 1)(x − 0.3) is shown in diagram
(a). Then, over time the temperature in the rod is changing according to
the heat equation (4.10.1), and at a particular time t0, the temperature
u(f, t0, x) is shown in diagram (b). Were the heat equation and the time
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FIGURE 4.21. Recovery of initial temperature in a rod by learning machine.
The top row illustrates the main experiment and the estimated temperature.
The bottom row illustrates the training experiments. {It is assumed that σ = ν
and the parameter ν is controlled by the argument nu (ν is the Greek letter
“nu”). The time t0 is controlled by the argument t0. The number m of training
experiments is controlled by the argument m.} [n=50, nu=.2, t0=.05, m=6]

t0 known, then the problem of calculating the initial temperature would
become the classical ill-posed problem of solving the operator equation,
that is a very complicated mathematical problem by itself.

Our problem is essentially more complicated than the classical one. First,
the current temperature u(f, t0, x) is not known; instead, its noisy mea-
surements at n = 50 equidistant points are given. These measurements
are shown in diagram (c). Recall that the scattergram (c) is called the
main observation because here we see observations related to the estimated
initial temperature. Second, neither the heat operator nor the time t0 is
given. Instead, as we discussed earlier, the learning machine is allowed to
make several active experiments with the rod. These active experiments are
as follows. The first experiment is based on using the initial temperature
e1(x) and noisy measurements of the corresponding current temperature
u(e1, t0, x) shown in diagrams (e) and (f), respectively. Absolutely simi-
larly, the learning machine gets the results of the experiment where e2 is
used as the initial temperature. The information about the second training
experiment is shown in diagrams (g) and (h). And this training continues
until all m training experiments are performed.

Thus, if for instance m = 2, then the learning machine has at hand the
measurements shown in diagrams (c), (f), and (h). No other information is
available.
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The initial temperature recovered by the learning machine is shown
in diagram (d). Note that it remarkably resembles the underlying initial
temperature (a) and in no way resembles the current temperature (b).
Moreover, for this particular data set the learning machine decided to use
only the first two training experiments, that is, the estimated initial tem-
perature (d) is based only on the data shown in diagrams (c), (f), and (h).
The result is truly impressive.

Now let us formulate the general setting and describe the learning
machine. The so-called main set of observations is

Yl := Hf(Xl) + σεl, l = 1, 2, . . . , n. (4.10.4)

Here Xl are either equidistant fixed or uniformly distributed predictors on
[0, 1], and H is a linear operator. It is also known that f belongs to some
function class F .

Because the operator H is unknown, m additional training sets are given,

Zjl := Hej(Xjl) + νεjl , l = 1, 2, . . . , n, j = 1, . . . , m, (4.10.5)

where these sets are generated similarly to (4.10.4) only with the known
functions ej in place of an estimated f . Thus, it is assumed that ej ∈ F .
Also, in general, σ �= ν. It is assumed that the stochastic terms εl and εjl

are iid zero-mean and unit-variance.
Thus, a learning machine has at hand m + 1 scatter plots (regressions).

Let us additionally assume that e1, e2, . . . are elements of a basis that is
“reasonable” for approximation of f(x), Hf(x), and Hej(x). The meaning
of a reasonable basis is that a partial sum of m elements may give us a
reasonable approximation of all these functions.

Then we may write f(x) =
∑∞

j=1 θjej(x) and Hej(x) =
∑∞

k=1 µjkek(x),
where θj and µjk are the corresponding Fourier coefficients (with respect
to the basis {e1, e2, . . .}). Because H is a linear operator, we may write

Hf(x) = H

∞∑
j=1

θjej(x) =
∞∑

j=1

θjHej(x) =
∞∑

j=1

∞∑
k=1

θjµjkek(x).

Thus,

Hf(x) =
∞∑

k=1

( ∞∑
j=1

θjµjk

)
ek(x) =:

∞∑
k=1

akek(x).

For each particular regression, the Fourier coefficients can be estimated
by the estimator (4.1.3). Denote the estimated Fourier coefficients of Hf(x)
by {âk, k = 1, 2, . . .} and the estimated Fourier coefficients of Hej(x) by
{µ̂jk, k = 1, 2, . . .}.

Then, for every J = 1, . . . , m we may write

âk =:
J∑

j=1

θ̂Jjµ̂jk, k = 1, 2, . . . , J. (4.10.6)
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Here θ̂Jj , j = 1, . . . , J , are solutions of this system of J equations, and they
are natural estimates of the Fourier coefficients θj .

Then, as in the previous sections, the optimal cutoff Ĵ is defined as

Ĵ := argmin 1≤J≤m

J∑
j=1

(2σ̂2λ̂−2
Jj − θ̂2

Jj). (4.10.7)

Here λ̂J1, . . . , λ̂JJ are eigenvalues of the J ×J matrix with the entries µ̂jk,
σ̂2 = (3Jn)−1 ∑6Jn

j=3Jn+1 â2
j , and Jn is the rounded-down 1 + 0.5 ln(n).

The learning machine is defined as

f̂(x) :=
Ĵ∑

j=1

θ̂jej(x). (4.10.8)

It is important to stress that the success of the learning machine crucially
depends on a choice of training functions. Also, machine learning is one of
the most challenging problems in nonparametric curve estimation theory.

4.11 Case Study: Measurement Errors in
Predictors

Let us return to the simplest model of additive homoscedastic regression,

Yl = f(Xl) + σεl, l = 1, 2, . . . , n, (4.11.1)

with predictors Xl uniformly distributed on [0, 1]. In Section 4.1 we dis-
cussed the problem of estimation of f based on pairs {(Xl, Yl), l = 1, . . . , n}
of observations. Here we consider a case where both predictors and re-
sponses are noisy, that is, instead of underlying predictors Xl only their
noisy measurements

Ul = Xl + ξl, l = 1, 2, . . . , n, (4.11.2)

are given. It is assumed that X, ε, and ξ are independent and Xl, εl and
ξl are their iid realizations.

The problem is to estimate f based on a set of data {(Ul, Yl), l =
1, 2, . . . , n}.

There is both bad and good news, based on results of the asymptotic
theory, about the regression with errors in predictors. The bad news is that
the setting is ill-posed, and it is similar to one discussed in Section 3.5. In
other words, the errors in predictors drastically affect MISE convergence.
The good news is that the series data-driven estimator is the best among
all possible estimators, and a case of small sample sizes is only the onset of
the ill-posed problem.

We restrict our attention only to the case of a normal N(0, σ2
ξ ) measure-

ment error ξ in (4.11.2). The reason is that it is the most complicated and
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(unfortunately) most common case. Even the case of a Cauchy measure-
ment error is much better, and errors with distributions like Gamma or
Double Exponential are just “peanuts” in comparison with a Normal error.

To understand a necessary modification of the cosine estimator suggested
in Section 4.1, let us calculate the expectation of the estimate (4.1.3) of θj

if we use noisy observations Ul in place of unobserved Xl, i.e., we ignore
measurement errors in predictors. Recall that

θ̂j = n−1
n∑

l=1

Ylϕj(Ul), (4.11.3)

and write

E{θ̂j} = E
{

n−1
n∑

l=1

Ylϕj(Ul)
}

= E{Y ϕj(U)}

= E{f(X)ϕj(U)} + σE{εϕj(U)}
=

√
2E{f(X) cos(jπ(X + ξ))}. (4.11.4)

In the last equality we used the assumption that ε and U are independent,
ε is zero-mean, and {ϕj} is the cosine basis.

To analyze (4.11.4) we use the elementary trigonometric equality

cos(α + β) = cos(α) cos(β) + sin(α) sin(β). (4.11.5)

Then, using the independence of the predictor X and the measurement
error ξ, we get

E{f(X) cos(jπ(X + ξ))} = E{f(X) cos(jπX)}E{cos(jπξ)}
+ E{f(X) sin(jπX)}E{sin(jπξ)}

= E{f(X) cos(jπX)}E{cos(jπξ)}.

In the last equality we used the fact that for a normal zero-mean random
variable ξ the identity E{sin(jπξ)} = 0 holds.

Now recall (see details in Section 3.5) that for a zero-mean normal
random variable ξ the expectation E{cos(jπξ)} is equal to the value
hξ

j := E{eijπξ} = e−(jπσξ)2/2, which is the value of the characteristic
function of ξ at the point jπ.

Combining the results, we obtain

E{Y ϕj(U)} = θjh
ξ
j . (4.11.6)

There are three straightforward conclusions from (4.11.6). First, if pre-
dictors are polluted by errors and this fact is unknown, then any estimator
is inconsistent. Thus, it is not wise to ignore such a possibility. Sec-
ond, because hξ

j decreases exponentially in j, a small error in estimation
E{Y ϕj(U)} causes large deviations in an estimate of θj . This is the reason
why this type of problem is called ill-posed. Finally, finding a good unbi-
ased estimate of θj is not difficult. Indeed, we may simply set (recall that
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FIGURE 4.22. Regression (4.11.1)–(4.11.2) with normal N(0, σ2
ξ ) measurement

errors in predictors. Scatter plots of observations {(Yl, Ul), l = 1, . . . , n} are over-
laid by the underlying regression functions (solid lines) and the estimates (dotted
lines). {The coefficients σ, σξ, cb, d0, d1, d2, and cH of the estimator (4.11.9) are
controlled by the arguments sigma, sigma.xi, cb, d0, d1, d2, and cH, respectively.}
[n=100, sigma=1, sigma.xi=.2, cb=8, d0=2, d1=.5, d2=10, cH=1]

hξ
0 = 1)

θ̃0 = θ̂0, θ̃j :=
(
nhξ

j

)−1
n∑

l=1

(Yl − θ̃0)ϕj(Ul). (4.11.7)

Also, a straightforward calculation shows that

E{(θ̃j − θj)2} = n−1(hξ
j)

−2
(∫ 1

0
(f(x) − θ0)2dx + σ2

)
(1 + rnj), (4.11.8)

where rnj vanishes as j and n increase. This formula explains why this
setting is so complicated. The asymptotic theory tells us that MISE decays
at an extremely slow logarithmic rate. (The formula (4.11.8) also shows
that the more slowly the characteristic function of a measurement error
decreases, the better is the estimation of a regression function.)

Because a good unbiased estimator of Fourier coefficients is suggested,
we can employ the data-driven estimator (3.5.12) of Section 3.5 suggested
for a similar ill-posed problem,

f̃n(x) :=
Jn∑
j=0

(1 − θ̂−2
j σ̂2n−1)+ θ̃jI{|hξ

j
|>cH σ̂n−1/2+bn }ϕj(x). (4.11.9)

Here θ̂j are defined in (4.11.3), σ̂ := 1.48 median({|Yl − θ̃0|, l = 1, . . . , n}) is
the normed sample median, bn = 1/cb ln(ln(n + 20)), Jn is the rounded-up
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d0+d1[ln(n+20)]1/d2bn , and the default coefficients are cb = 8, d0 = 2, d1 =
0.5, d2 = 10, and cH = 1. Finally, if a regression function is nonnegative,
then the bona fide projection is used.

Figure 4.22 explains the setting (4.11.1)–(4.11.2). Here we see an ex-
tremely difficult particular case where σξ = 0.2. It is apparent from the
scatter plots that they can no longer be an inspiration for a manual search
after a regression function because everything is blurred and a majority of
the scatter plots look alike. Can one see the Delta or the Bimodal in the
corresponding scattergrams? The answer is “no.” Thus, here we may rely
only on an estimator. Recall the discussion in Section 3.5 that for the case
of small sample sizes we see only the onset of the ill-posed problems. This
is what one may hope for.

Finally, note that the asymptotic theory shows that the standard devi-
ation σ of the additive noise in the responses, see (4.11.1), affects neither
constant nor rate of MISE convergence. This is an interesting asymptotic
phenomenon, and Exercise 4.11.8 explains how to explore this issue.

4.12 Practical Seminar

The aim of this seminar is to gain experience in using the universal
estimator of Section 4.2 for real data sets.

In Figure 4.23 (please look only at the top row of diagrams) four differ-
ent data sets are shown by plotting the pairs of observed predictors and
responses in the xy-plane (recall that this diagram is called a scattergram).
The corresponding sample sizes n are shown in the subtitles. Do you see any
pronounced relationship between X and Y in each of these 4 scattergrams?

All these data sets are challenging, so the answer “no” is okay. Let us
see whether a classical parametric regression may help us to gain some
understanding of these data sets. The most widely used parametric estimate
is linear regression. It is assumed that the regression function is f(x) :=
β0 + β1x, and then the problem is to estimate the y-intercept β0 and the
slope β1 by minimizing the least-squares error

∑n
l=1(Yl − β0 − β1Xl)2. The

result leads to the familiar least-squares linear regression. Exercise 4.12.1
discusses the underlying idea of this linear regression.

The linear least-squares regression lines are shown in the middle row
of the diagrams (again, please do not look at the bottom row). Do the
regression lines help you to realize the relationships between X and Y ? Do
you see any interesting structures in the data sets highlighted by the linear
regression lines? For the data set (a) the linear regression probably helps to
visualize a possible relationship between X and Y , but for the other data
sets their structures are still puzzles.

Now let us consider a nonparametric approach based on the universal
estimate of Section 4.2 (it is apparent that all these regressions are het-
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FIGURE 4.23. Four data sets. The scattergrams are shown in the first row, the
scattergrams overlaid by the linear regression lines are shown in the second row,
and the scattergrams overlaid by the universal estimates are shown in the third
row. {The arguments of the estimator are reviewed in the caption to Figure
4.5.} [X1 =saving.x[, 1], Y1 =saving.x[, 5],X2 =saving.x[, 5], Y2 = saving.x[,
2],X3 =chernoff2[, 1],Y3 =chernoff2[, 4],X4 = chernoff2[, 1], Y4 = chernoff2[,
3], s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT=4, cB=2, r=2]

eroscedastic). The nonparametric estimates are shown in the bottom row.
As we see, only for the scattergram (a) do the linear and the nonparametric
regression graphs resemble each other. For the data set (b) the nonpara-
metric estimate reveals an absolutely unexpected (in comparison with the
linear regression) structure of the data, and the nonparametric curve helps
us to see this bell-shaped relationship between X and Y . For the data set
(c) the nonparametric estimate again “opens our eyes” to the structure of
the data, which is rather complicated. Finally, the curve in diagram (d)
looks absolutely natural; it is now probably surprising that we were unable
to realize this pronounced structure from the scattergram.

Now let us explain the data sets. The scattergram (a) shows family sav-
ings as a percentage of disposable income in the 1960s (the Y variable)
versus the percentage of population younger than 15 years old (the X vari-
able) for 50 countries. The data file is saving.x. (All the data sets are from
the standard S–PLUS distribution.)
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For this data set the linear regression line clearly indicates that the youth
population diminishes savings, and such a conclusion has common sense.
The statement of the nonparametric estimate is just “softer” within the two
distinct clusters of countries with smaller and larger young populations.
Note that there is a significant gap between these clusters. Moreover, let us
note that the two countries on each side of the boundaries between the clus-
ters have the smallest savings among all the 50 countries; these countries
are Iceland (X = 34.03, Y = 1.27) and Chile (X = 39.74, Y = 0.6). These
two countries are apparently outliers due to their specific geopolitical situ-
ation during the 1960s when the data were collected. On the other hand, it
is possible to change the arguments of the universal estimate in such a way
that it will pronouncedly indicate these two clusters and highlight these
two outliers (Exercise 4.12.2).

Let us continue the analysis of the diagrams in Figure 4.23. In column (b)
we again use the data file saving.x, only here savings are the X variables
and the percentage of population older than 75 are the Y variables. Analyz-
ing this data set, we would like to understand how welfare and prosperity
of nations (supposedly measured in units of savings) affect the length of life
of their citizens. The conclusion of the linear regression is straightforward,
and it definitely has common sense: Savings do not harm and help to live
longer. The conclusion of the nonparametric estimate is not so straight-
forward. Moreover, it is controversial (but this is typically the case with
nonparametric methods because they address “small things” that other-
wise may be easily overlooked, so when using nonparametric estimates be
ready for nonstandard outcomes). The nonparametric regression tells us
that while moderate savings are necessary to increase the length of life,
large savings (per family) are not healthy for a nation. But please, do
not rush off with some kind of “left-wing” sociological and political con-
clusions. The message of this nonparametric estimate should be read as
follows. Suppose that one plays a game to guess in which of two countries
(among the 50 countries considered) the percentage of senior citizens in the
1960s was larger when the only information about these two countries is
that their average levels of savings per family were about 12% and 21%.
Then, the nonparametric regression curve tells us that it is better to bet on
the first country. Clearly, the answer, based on linear regression or rational
sociological reasoning, should be different.

Now let us try to understand why the nonparametric curve suggested
such a contradictory conclusion and why we have no reason to use the bell
shape of the curve to condemn large savings. In the scattergram (b) we have
a peculiar combination of two factors. The first one is the low density of
countries with the largest savings (do you see that there are only 4 (among
50) nations with savings more than 15%?). The second factor is that the
two countries with the largest savings per family are Zambia (X = 18.56,
Y = .56), which has the lowest percentage of senior citizens among all the
nations, and Japan (X = 21.1, Y = 1.91), which also has a relatively low
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percentage of seniors. Clearly, in the 1960s these two countries were outliers
for certain geopolitical and historical reasons. Curiously, only the example
of Denmark (X = 16.85, Y = 3.93) allows us to believe that nice savings
(per family) may prolong life.

Finally, a “small” detail about the notion “savings” should be added. Us-
ing the command > help(saving.x) we can get some information about
the data set saving.x. It is explained that “savings” means aggregate per-
sonal saving divided by disposable income. Thus, the “prosperity” of a
nation is proportional to aggregate savings and inversely proportional to
income. This explanation sheds light on the message of the bell-shaped
nonparametric estimate.

This example shows that nonparametric regression is a good tool to
attract our attention to unusual structures in data sets. Then, if necessary,
a data analyst should discuss the meaning of “messages” with specialists.
It is also worthwhile to repeat that it is not the aim of nonparametric
regression to be the only judge in solving scientific or political questions.

The last two scattergrams in Figure 4.23 are based on the famous min-
eral contents data set chernoff2, which is a 53 by 12 matrix representing
the mineral analysis of a 4500 foot core drilled from a Colorado mountain-
side. Twelve variables (columns) represent assays of seven mineral contents.
Fifty-three equally spaced specimens (rows) along the core were assayed.
What we see in the diagrams is that a nonparametric regression curve can
dramatically change the visualization of a data set. Also, you may notice
the excellent flexibility of nonparametric curves.

Figure 4.24 allows us to shed further light on a data set and at the
same time be trained in using coefficients of the universal estimate. Here
the default data set is the set shown in Figure 4.23(d). The scattergram
is very complicated and deserves further investigation. The sample size
n = 53 is shown in the subtitle. Here we try to assess this structure via the
coefficient cT . Recall that this is the coefficient used in the procedure of
hard thresholding high-frequency components. Thus, increasing cT implies
fewer high-frequency components, while decreasing cT keeps more high-
frequency components. The particular values of cT may be seen in the
titles.

The first diagram corresponds to cT = 8, which is essentially larger
than the default value cT = 4 used for the second diagram. As we see,
there is no high-frequency component with extremely large power, so using
cT = 4 and cT = 8 implies the same estimate. If we are decreasing cT ,
then more and more high-frequency components with “moderate” power
are included. In particular, the third diagram with cT = 0.1 looks very
interesting and informative; it apparently sheds light on the data at hand.
The smallest cT = 0.01 does not help us to see anything new, and the
corresponding estimate apparently undersmooths the data because we see
too many high-frequency oscillations.
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FIGURE 4.24. The effect of a particular “running” coefficient on the universal
estimate. {Two data sets, DATAX and DATAY, are the predictors and the cor-
responding responses. The running argument is chosen by arg, and its values by
set.arg.} [arg= “cT”, set.arg = c(8, 4, .1, .01), DATAX = chernoff2[,1], DATAY
= chernoff2[,3], s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT=4, cB=2, r=2]

Such an approach, where a data set is analyzed via a spectrum of es-
timates, allows us to see different frequency components of a data set at
hand. It is a convenient method to shed new light on the data.

Finally, let us solve a problem that will help us to realize a difference
between probability density estimation and nonparametric regression prob-
lems. At first glance, it is difficult to be misled, but keep in mind that many
practical settings may be rather confusing.

Consider the problem of estimating the probability of a fatal injury after
a car accident as a function of the speed of the car at the time of the
accident. Is this a probability density estimation or a regression problem?

This is one of the particular scenarios where estimation of a probability
becomes a regression problem because here the question of interest is how
the speed (predictor) affects the probability of a fatal injury (response) and
the answer is to be a function that gives you the probability of a fatal injury
for a given speed. Thus, this is a regression problem, more specifically, the
binary regression discussed in Section 4.5.

4.13 Exercises

4.1.1 Repeat Figure 4.1 with different n (for instance, choose n = 25, 100,
300), and for each n and each corner function find a largest value of the
argument sigma such that the underlying corner function is still visually
recognizable. Rank the corner functions according to ascending sigma and
explain the obtained ranks.
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4.1.2 Explain why (4.1.3) may be considered as a naive numerical integra-
tion formula for calculation of θj defined at (4.1.2.). Hint: Use 1/(n + 1) in
place of 1/n and then assess the difference.
4.1.3 Verify (4.1.4). Hint: Use (3.1.7).
4.1.4 Verify (4.1.5). Hint: Use (3.1.7).
4.1.5 Find the expectation of the estimate (4.1.6) and show that it is a
consistent estimate of the coefficient of difficulty d as n, j → ∞.
4.1.6 Explain the underlying idea of (4.1.7). Hint: See Sections 3.1–3.3.
4.1.7 Using Figure 4.3, choose 3 particular sample sizes and try to find
arguments (coefficients) of the estimator that are optimal for a set of 2
and then a set of 4 corner functions. Hint: Begin with a description of the
arguments and write down what particular characteristics of the estimator
are affected by them. Divide the arguments into 2 groups of more and less
important ones for improving the estimation of the chosen corner functions.
Begin to play around with more important arguments and then polish your
estimator with the help of other arguments.
4.1.8 As in the previous exercise, what values of coefficients (or values
of arguments of the S-function) would you recommend for all the corner
functions and the sample size n = 100? Also, does a smaller σ, say σ = 0.1,
affect your choice?
4.2.1 Explain the difference between a homoscedastic and a heteroscedastic
regression. Give two practical examples.
4.2.2 Repeat Figure 4.4 ten times and count the number of scattergrams
where the underlying regression functions are recognizable. Then repeat
this experiment with sigma = 0.5. Analyze the results.
4.2.3 Verify (4.2.4).
4.2.4 Explain the underlying idea of the estimator (4.2.5): (a) heuristically;
(b) mathematically by finding its bias and variance.
4.2.5 What is the difference between the estimates (4.2.3) and (4.2.5)?
When would you recommend using each of them?
4.2.6 Repeat Figure 4.5 with different values of σ. Explain the results.
Choose a particular n and find a particular σ for which estimates “rea-
sonably” fit the underlying regression functions in, say, about 90% of
realizations.
4.2.7 Show that nE{(θ̂j − θj)2} → d as j increases (the coefficient of
difficulty d is defined at (4.2.7)).
4.2.8 Establish (4.2.8). Hint: Use the following Cauchy–Schwarz inequality
for square integrable functions g and p,

∣∣∣ ∫ 1

0
g(x)p(x)dx

∣∣∣2 ≤
∫ 1

0
g2(x)dx

∫ 1

0
p2(x)dx, (4.13.1)

and the fact that h(x) is the density supported on [0, 1].
4.2.9 Set d̂V = n

∑n
l=1[(Y(l) − f̃J(X(l)))D̂0ls]2, where D̂0ls are defined in

(4.2.6). Consider the mean squared error δn = E{(d̂V − d)2} of estimation
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of the coefficient of difficulty d defined at (4.2.7) and (a) discuss possible
assumptions that imply δn → 0 as n → ∞. (b) What can be said about
the rate of decrease of δn?
4.2.10 (a) Would you recommend any changes in the values of coefficients
of the estimator used in Figure 4.5? (b) Would you recommend any changes
in these values to make the estimator more robust to changes in σ and n?
4.3.1 Find the expectation and the variance of the estimates θ̄ and ĝ defined
at (4.3.1).
4.3.2 Set Zl = (Yl − θ̄)2, where θ̄ is defined in (4.3.1). Explain why one
may write Zl ≈ g + g(ε2

l − 1).
4.3.3 Using the previous exercise, explain the motivation of (4.3.3).
4.3.4 Let ĝ(x) be an estimate of a nonnegative function g(x), 0 ≤ x ≤ 1.
This estimate may take on negative values. Suggest a projection of ĝ in L1
and L2 on a class of nonnegative functions.
4.3.5 Using Figure 4.6, suggest optimal values of coefficients of the estima-
tor for any set of 2 and then 3 corner functions. Is your recommendation
robust to changes in n?
4.3.6 Use Figure 4.6 with σ = 0.5 and then with σ = 2. Would
you recommend any changes in the default values of coefficients of the
estimator?
4.3.7 Use Figure 4.6 with the Normal being the scale function. Would
you recommend any changes in the default values of coefficients of the
estimator?
4.3.8 Repeat Figure 4.6 with a different design density. Would you
recommend any changes in the default values of coefficients of the
estimator?
4.3.9 Suppose that each predictor may be generated according to a de-
sired distribution. Suggest a sequential procedure that leads to the optimal
design (4.2.8) for the case of an unknown scale function.
4.4.1 Repeat Figure 4.8 and find cases where Universal catches false spikes
created by noise. Then find values for arguments of Universal such that
these false spikes appear extremely rarely but the underlying spikes are
still shown. Consider the cases of signal-to-noise ratios equal to 3, 5, 10
and sample sizes 512, 1024, and 2048.
4.4.2 Use Figure 4.9 and find values of coefficients of Universal such that it
“kills” all wavelet coefficients at the finest scale s1. Conversely, find values
of coefficients for which all finest noisy wavelet coefficients are kept.
4.4.3 Use Figure 4.9 and signals from Table 4.1 to find optimal values of
coefficients of the universal estimator for the cases of signal-to-noise ratios
3, 5, 10 and sample sizes 512, 1024, and 2048.
4.4.4 Use Figure 4.10 and find optimal values of coefficients of Universal
for the cases of signal-to-noise ratios 3, 5, 10 and sample sizes 512, 1024,
and 2048.
4.4.5 Find an expression for MISE of the universal estimator. Explain how
its coefficients affect the MISE.
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4.4.6 Write down the main differences between the universal and
SureShrink estimators. Explain them using Figure 4.9.
4.4.7 Repeat Figures 4.8–10. Find particular cases where SureShrink out-
performs the universal estimator and discuss the outcomes. Then, suggest
optimal coefficients for the Universal.
4.5.1 Let Z be a Bernoulli random variable with the probability p of a
success. Find the expectation and the variance of Z. Draw a plot of the
variance as a function of p.
4.5.2 Explain why the models considered in Sections 4.1–4.2 can be
considered as particular cases of (4.5.1).
4.5.3 Explain why the estimator of Section 4.2, developed for a particular
case of an additive regression, may also be used for the general model
(4.5.2).
4.5.4 Find f(x) that maximizes the coefficient of difficulty (4.5.3).
4.5.5 Verify (4.5.4).
4.5.6 Using Figure 4.11, would you recommend any changes in the values of
coefficients of the universal estimator? Is your conclusion robust to changes
in the design density?
4.5.7 Verify that the given formulae for the probability mass function,
the expectation and the variance of a Poisson random variable are correct.
Hint: Use Taylor’s formula ex = 1 + x + x2/2! + x3/3! + · · ·.
4.5.8 Explain why Poisson regression is a particular case of the model
(4.5.1).
4.5.9 Verify (4.5.6).
4.5.10 Repeat Figure 4.12 several times, make hard copies, and explain
the scatter plots using the definition of Poisson regression.
4.5.11 Using Figure 4.12, would you recommend any changes in the values
of coefficients of the estimator? Is your recommendation robust to changes
in the sample size n?
4.6.1 Let X1, . . . , Xn be iid with distribution F and density f . Let the
ordered X’s be denoted by X(1) ≤ · · · ≤ X(n). Prove that the density of
X(k) is given by

fX(k)(x) =
n(n − 1)!

(k − 1)!(n − k)!
F k−1(x)(1 − F (x))n−k f(x).

4.6.2 Let X̃n be the sample median of n iid realizations of a Cauchy random
variable. Show that E{X̃2

n} < ∞ when n ≥ 5, while E{X̃2
n} = ∞ for n < 5.

Hint: Use Exercise 4.6.1.
4.6.3 Let X1, . . . , Xn be iid according to a Cauchy distribution. Show that
E{X2

(k)} < ∞ if and only if 3 ≤ k ≤ n − 2, where the notation of Exercise
4.6.1 is used.
4.6.4 A family of symmetric distributions with greatly varying heaviness in
the tails is a family of Student’s t distributions with ν degrees of freedom,
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whose density is

fν(x) :=
Γ((ν + 1)/2)√

νπΓ(ν/2)
(1 + x2ν−1)−(ν+1)/2.

Here Γ(x) is the gamma function. For ν = 1 this reduces to the Cauchy
distribution for which E{|X|} = ∞. For ν = 2 the expectation exists but
the variance is still infinite. For ν ≥ 3 the variance is finite. As ν → ∞ the
distribution tends to normal. Show that:
a. For ν = 2 the sample median has a finite variance for n ≥ 3.
b. E{X2} = ν/(ν − 2) for ν ≥ 3.
4.6.5 Another family of distributions that is often used to test robustness
of a procedure to a deviation from a normal distribution is a Tukey model
T (ε, τ), where

FX(x) := (1 − ε)Φ(x) + εΦ(x/τ)

and Φ is a standard normal cumulative distribution function. Find the
expectation and the variance of X. Also, explain why Tukey errors may be
a good test for robustness.
4.6.6 Use Figure 4.13 to find a case where scatter plots in Figure 4.13.1
and Figure 4.13.5 are similar.
4.6.7 Use Figure 4.13.1 to find a scatter plot that strongly indicates a
presence of false oscillations created by Cauchy errors.
4.6.8 Using Figure 4.14, for each corner function find a minimal sample
size that allows a reasonable and reliable estimation.
4.6.9 Using Figure 4.14, find optimal values of coefficients of the estimator
for a set of 4 corner functions.
4.6.10 Explain how a quantile regression can be used to indicate a
heteroscedastic regression.
4.6.11 How many observations can be expected to fall within an
interquartile band?
4.6.12 Use Figure 4.15 to find optimal values of coefficients of the
estimator.
4.6.13 Write a short report about the effect of parameter h on Huber
estimate. Support your conclusion by using Figure 4.16.
4.6.14 Use Figure 4.16 and analyze how parameters of Tukey errors affect
the estimates.
4.7.1 Verify (4.7.2).
4.7.2 Consider the parametric case (4.7.1) where µζ = µξ but Var(ζ) �=
Var(ξ). Suggest a consistent estimator of θ.
4.7.3 Under the condition of Exercise 4.7.2, suggest a nonparametric
estimate of f(x) for the model (4.7.3).
4.7.4 Using Figure 4.17, find values of coefficients of the estimator that
lead to showing a pronounced mode for the Delta and, at the same time,
to a fair estimation of the other corner functions.
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4.8.1 Let X1, . . . , Xn be iid realizations of a random variable X. What is
a sufficient assumption for the sample mean estimate X̄ = n−1 ∑n

l=1 Xl to
be an unbiased estimate of the expectation of X?
4.8.2 What assumption is sufficient for X̄ to be a consistent estimate of
the expectation of X?
4.8.3 Verify (4.8.2).
4.8.4 Show that for the case of long-memory errors of order α, the variance
Var(θ̂0) of this sample mean estimate is proportional to n−α.
4.8.5 Explain each step in obtaining (4.8.3).
4.8.6 Explain how (4.8.4) has been obtained.
4.8.7 Does (4.8.4) imply that the variance of θ̂j decreases at the parametric
rate n−1?
4.8.8 Consider the case of a heteroscedastic regression Yl = f(Xl) +
σ(Xl)εl, l = 1, 2, . . . , n. Note that in this case the additive errors and pre-
dictors are dependent. Nevertheless, show that even in this case a random
design may lead to more robust estimation than a fixed design.
4.8.9 Use Figure 4.18 and find corner functions that are least and most
affected by long-memory errors. Explain the outcome.
4.8.10 Would you recommend any changes in the arguments of the
estimator based on the analysis of Figure 4.18?
4.9.1 Use Figure 4.19 with σ equal to 2, 1, 0.5, 0.25, and 0.1. Also consider
several underlying regression functions. Does a decrease in the standard
deviation of the error help to recognize an underlying curve based on the
categorical data?
4.9.2 Using Figure 4.20, would you recommend any changes in the default
values of coefficients of the estimator?
4.9.3 Find the expectation and the variance of the estimate (4.9.2).
4.9.4 Suppose that for the particular set of data shown in Figure 4.19 one
suggested to combine the data into the following two groups: {(1), (2, 3,
4)}. What outcome can be expected in this case? Would you recommend
such a combination?
4.9.5 Consider the case of censored responses at a level C such that one
observes Zl = min(C, Yl) in place of responses Yl. Suggest a data-driven
estimator for this setting.
4.10.1 Is the sine basis a good choice for the example of heat flow on the
interval? What is a good basis for a case where temperature at the right
end of a rod is not fixed?
4.10.2 Under what circumstances would you recommend using a learning
machine? Give several examples.
4.10.3 Why do we use a learning machine for a problem like the heat flow
on an interval? Is it possible to solve this problem using another approach
(without training sets)?
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4.10.4 Suppose that the standard deviations σ and ν of additive error terms
in (4.10.2) and (4.10.3) are different. How does this affect the estimation?
Also, if you have a choice, which standard deviation should be smaller?
4.10.5 Use Figure 4.21 to find a maximal standard deviation ν such that
a reliable restoration of the initial temperature is still possible.
4.10.6 Use Figure 4.21 to find a maximal time t0 such that a reliable
restoration of the initial temperature is still possible.
4.10.7 Use Figure 4.21 to find a minimal sample size n such that a reliable
restoration of the initial temperature is still possible. Also, find how the
standard deviation ν affects this sample size.
4.11.1 Explain all steps in obtaining (4.11.4).
4.11.2 Is (4.11.7) a sample mean estimate of θj?
4.11.3 Verify (4.11.8).
4.11.4 Calculate the MISE of the estimate (4.11.9).
4.11.5 Consider the case of a double exponential measurement error ε,
where pε(x) = b−1e−|x−µ|/b, −∞ < x < ∞, and suggest a truncated
estimate that is based on minimization of the MISE.
4.11.6 Explain the underlying idea of the estimator (4.11.9).
4.11.7 Repeat Figure 4.22 and try to recognize the underlying curves.
Then reduce σξ and find a maximal value where the corner functions are
visualized from the scatter plots.
4.11.8 Repeat Figure 4.22 with smaller standard deviations σ. Does this
help for the case of σξ = 0.2? Does this help for the case of σξ = 0.05?
Also, compare and explain the answers.
4.11.9 Explain why asymptotically the standard deviation of the error in
responses affects neither the constant nor the rate of MISE convergence.
Hint: Use the result of Exercise 4.11.4. Then compare the variance and the
integrated squared bias (ISB) terms of the MISE. Show that the variance
is negligibly small in comparison with the ISB.
4.11.10 Choose a particular pair (σ, σξ) and suggest optimal arguments of
the estimator using Figure 4.22.
4.11.11 Suggest a data-driven estimator for the case of a heteroscedastic
regression.
4.11.12 Suggest a data-driven estimator for the case of an arbitrary
measurement error in predictors.
4.12.1 Explain the underlying idea of least-squares linear regression. Hint:
Consider the model Y = f(X) + ε where f(X) is a linear function and the
error ε is a random variable with zero mean and finite variance. Then show
that for both random- and fixed-design regressions the relation f(x) =
E{Y |X = x} holds. Finally, recall (and prove) that f(x) minimizes the
conditional mean squared error MSE := E{(Y − f(x))2|X = x}.
4.12.2 Use Figure 4.23 and find values of coefficients of the universal es-
timator such that a nonparametric estimate separates the two clusters in
diagram (a) and thus highlights the two countries with the smallest savings.
Also explain how this change affects the other diagrams.
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4.12.3 Use Figure 4.23 and find values of coefficients that make the
nonparametric estimates optimal according to your own judgment of the
structure of these data sets.
4.12.3 Use arguments Y j and Xj, j = 1, 2, 3, 4, to choose any other 4 data
sets and analyze them using Figure 4.23.
4.12.4 Using Figure 4.24, explore the effect of other arguments of the
estimator.
4.12.5 Analyze the first 3 data sets of Figure 4.23 using Figure 4.24. To do
this, use the arguments DATAX and DATAY. For instance, to explore the
data set (a) just set DATAX = saving.x[ ,1] and DATAY = saving.x[ ,5].

4.14 Notes

There are many good books where different applied and theoretical aspects
of nonparametric regression are discussed. These books include Eubank
(1988), Müller (1988), Nadaraya (1989), Härdle (1990, 1991), Wahba
(1990), Green and Silverman (1994), Wand and Jones (1995), and Si-
monoff (1996), among others. A chapter-length treatment of orthogonal
series estimates may be found in Eubank (1988, Chapter 3).

4.1 Asymptotic justification of the universal estimator for the regression
model is given in Efromovich (1986), where it is established that for smooth
functions a data-driven series estimator outperforms all other possible data-
driven estimators. Practical applications are also discussed.

4.2 The heteroscedastic regression was studied in Efromovich (1992)
and Efromovich and Pinsker (1996), where it is established that asymp-
totically a data-driven orthogonal series estimator outperforms any other
possible data-driven estimators whenever an underlying regression function
is smooth. Also, Efromovich and Pinsker (1996) give results of numeri-
cal comparison between the universal and local linear kernel estimators
discussed in Section 8.4.

4.3 The textbook by Lehmann and Casella (1998, Chapter 3) gives a
comprehensive treatment of the problem of estimation of a scale parameter.
The book by Carroll and Ruppert (1988) discusses regression settings where
estimation of the scale (variance) function becomes the central issue. It also
reviews many different useful techniques and approaches.

4.4 The books by Ogden (1997), Mallat (1998), and Vidacovic (1999) are
relatively simple and give a nice discussion of wavelets and their use in re-
gression problems. The article by Donoho and Johnstone (1995) introduces
and discusses the data-driven estimator SureShrink. This estimator is con-
sidered as a benchmark for all other wavelet estimators. The asymptotic
justification of the Universal is given in Efromovich (1997c, 1999a).

4.5 The asymptotic justification of the universal estimator for the consid-
ered settings is given in Efromovich (1996a) and Efromovich and Thomas
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(1996). In the latter article a discussion of parametric and nonparametric
methods of binary regression may be found, and application of the universal
estimator to a real data set is discussed.

4.6 A discussion of the problem of robust regression, including a review
of different robust methods and quantile estimators, may be found in the
book by Fan and Gijbels (1996). A rigorous mathematical discussion of
robust parametric estimation is given in Serfling (1980) and Huber (1981).

4.7 Parametric mixtures models are discussed in the book by Lehmann
and Casella (1998, p. 456). The model of mixture of distributions is dis-
cussed in the book by Prakasa Rao (1983, Chapter 10). The asymptotic
justification of using the universal estimator is given in Efromovich (1996a).

4.8 The book by Beran (1994) covers diverse statistical methods and
applications for dependent data. The fact that dependent errors may dra-
matically slow down MISE convergence for fixed design regression was
established in Hall and Hart (1990). Asymptotic analysis of the problem
and other aspects, including the dependency between predictors and the de-
pendency between predictors and error terms, are discussed in Efromovich
(1997c, 1999b). The book by Dryden and Mardia (1998) discusses statistical
shape analysis.

4.9 A chapter-length discussion of the problem of nonparametric estima-
tion for ordered categorical data may be found in Simonoff (1996, Chapter
6). The asymptotic justification of using the universal estimator and other
related examples may be found in Efromovich (1996a).

4.10 The discussion of ill-posed problems and operator equations arising
in statistical applications may be found in the books by Wahba (1990) and
Vapnik (1995). The latter book also discusses the fundamentals of learning
theory. Mathematical justification of the learning machine, as well as the
asymptotic theory of learning machines for solving operator equations with
unknown operator, is given in Efromovich and Koltchinskii (1997).

4.11 The book by Carrol, Ruppert, and Stefanski (1995) is devoted
to measurement errors in nonlinear models. Optimal estimation for both
regular and irregular settings is discussed in Efromovich (1994c).



5
Nonparametric Time Series Analysis
for Small Samples

In this chapter we shall discuss some basic topics of time series analysis, in-
cluding the classical decomposition of a time series into deterministic trend
and seasonal components and a random component, as well as spectral den-
sity estimation. Special topics include cases of missing observations, hidden
additive components, and bivariate time series.

5.1 Estimation of Trend and Seasonal Components
and Scale Function

A time series (process) is a set of pairs of observations (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) where each response Yl has been recorded at a specific time
Xl, and traditionally X1 < X2 < · · · < Xn. Then, the simplest classical
decomposition model of a time series is

Yl := f(Xl) + S(Xl) + σ(Xl)εXl
, (5.1.1)

where f(x) is a slowly changing function known as a trend component; S(x)
is a periodic function with period T (that is, S(x + T ) = S(x) for all x),
known as a seasonal (cyclical) component (it is also customarily assumed
that the integral or sum of the values of the seasonal component over the
period is zero); σ(x) is called a scale function (it is also often referred to, es-
pecially in finance and econometrics literature, as a volatility); and εXl

are
random components that may be dependent, and in this case the responses
Yl become dependent as well. Recall that the familiar phrase “a random
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walk down Wall street” is motivated by this type of classical decomposi-
tion, and a primary argument in the literature is about the presence or
absence of a deterministic part and about the type of a random walk.

A typical feature of a time series is that predictors Xl are equidistant
integers. Thus, without loss of generality, we may set Xl = l. Then a
time series is completely described by the responses {Yl, l = 1, 2, . . .},
which may be treated as a sequence of regular observations in time, and
this explains why such a sequence is called a time series. Of course, many
practical examples are indeed sequences in time, but there are plenty of
other examples; for instance, data may be collected in space. In the latter
case the data are often referred to as spatial data, and there is even a special
branch in statistics, known as geostatistics, that is primarily concerned
with the analysis of such data. A particular example will be considered in
Section 6.7. In this chapter, for the sake of clarity, we shall use only time
series terminology and assume that data are collected sequentially in time.

Another typical feature of a time series is that the errors {ε1, ε2, . . .} in
(5.1.1) may be dependent. Moreover, the case of dependent errors is the
main topic in time series analysis. Thus, we begin our discussion with a
short introduction to a class of ARMA processes, which are a good tool to
model series of dependent random variables. Then we shall discuss methods
of estimation of a trend, seasonal component, and scale function.

• Causal ARMA Processes. The main assumption about the class
of time series (5.1.1) that we wish to consider is that the noise εl is a
realization of a so-called second-order zero-mean stationary time series {εl}
= {. . . , ε−1, ε0, ε1, . . .} such that (i) E{ε2

l } < ∞ for all l, that is, the second
moment is finite; (ii) E{εl} = 0 for all l, that is, the expectation is zero;
(iii) the autocovariance function γ(l, s) := E{εlεs} satisfies the relation
γ(l, s) = γ(l +h, s+h) for all l, s, and h, that is, a translation in time does
not affect the autocovariance function.

Note that property (iii) implies that γ(l, s) = γ(l − s) = γ(s − l). To
see this just set h = −s and h = −l. Thus a second-order zero-mean
stationary time series is characterized by its autocovariance function γ(h)
at the lag h. Also note that no assumptions about higher moments or about
distributions of the errors are made.

The simplest kind of second-order stationary error is one in which the
random variables {εl} are uncorrelated (that is, γ(h) = 0 for h �= 0), with
mean 0 and variance 1. Let us denote such time series by {Zl} and call it
a standard white noise. A classical example is a time series of iid standard
Gaussian random variables, which is the white noise that we shall use in all
the following simulations, and we call it a standard Gaussian white noise.

Then a wide variety of dependent second-order stationary processes can
be generated by using a white noise and a set of linear difference equations.
This leads us to the notion of an autoregressive moving average process of
orders p and q, an ARMA(p, q) process for short. By definition, the process
{Xt, t = . . . ,−1, 0, 1, . . .} is said to be an ARMA(p, q) process if {Xt} is
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second-order stationary and for every t,

Xt − a1Xt−1 − · · · − apXt−p = σ(Zt + b1Zt−1 + · · · + bqZt−q), (5.1.2)

where {Zt} is a standard white noise, σ > 0, the orders p and q are nonneg-
ative integers, and a1, . . . , ap, b1, . . . , bp are real numbers. For the case of a
Gaussian white noise we shall refer to the corresponding ARMA process as
a Gaussian ARMA process.

Two particular classical examples of an ARMA process are a moving
average MA(q) process, which is a moving average of q + 1 consecutive
realizations of a white noise,

Xt = σ(Zt + b1Zt−1 + · · · + bqZt−q), (5.1.3)

and an autoregressive AR(p) process satisfying the difference equation

Xt − a1Xt−1 − · · · − apXt−p = σZt. (5.1.4)

Each of these examples plays an important role in the analysis of time
series. For instance, prediction of values {Xt, t ≥ n + 1} in terms of
{X1, . . . , Xn} is relatively simple and well understood for an autoregres-
sive process; see Exercise 5.1.16. Also, for a given autocovariance function
it is simpler to find an AR process with a similar autocovariance function.
More precisely, if an autocovariance function γ(j) vanishes as j → ∞, then
for any integer k one can easily find an AR(k) process with the autoco-
variance function equal to γ(j) for |j| ≤ k. The “negative” side of an AR
process is that it is not a simple issue to find a stationary solution for
(5.1.4), and moreover, it may not exist. For instance, the difference equa-
tion Xt −Xt−1 = σZt has no stationary solution, and consequently there is
no AR(1) process with a1 = 1. The discussion of such tricky things is be-
yond the scope of this book, and in what follows a range for the coefficients
that “keeps us out of trouble” will always be specified.

The advantages of a moving average process are its simple simulation,
the given expression for a second-order stationary solution, and that it
is very close by its nature to white noise, namely, while realizations of a
white noise are uncorrelated, realizations of an MA(q) process are uncor-
related whenever the lag is larger than q. The “minus” of MA processes
is that, surprisingly, they are not so easy for prediction and estimation as
AR processes. Thus, among the two, typically AR processes are used for
modeling and prediction. Also, AR processes are often used to approximate
an ARMA process.

Now we are in a position to define a causal (future-independent) ARMA
process (or more specifically, a causal process with respect to an underlying
white noise {Zt}). The idea is that it is quite natural to expect that an
ARMA time series {Xt} depends only on current and previous (but not
future!) realizations of the white noise. Thus, we say that an ARMA process
{Xt} generated by a white noise {Zt} is causal if Xt =

∑∞
j=0 cjZt−j , where

the coefficients cj are absolutely summable. Clearly, MA(q) processes are
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causal, but not all AR(p) processes are; for instance, a stationary process
corresponding to the difference equation Xt −2Xt−1 = Zt is not causal. We
shall not elaborate more on this issue and note only that below, we consider
simulations of only Gaussian ARMA(1, 1) processes corresponding to the
difference equation Xt − aXt−1 = σ(Zt + bZt−1) with |a| < 1 and −a �= b.
It may be directly verified (Exercise 5.1.17) that for such a this equation
has a stationary and causal solution Xt = σZt + σ(a + b)

∑∞
j=1 aj−1Zt−j .

This ends our brief discussion of ARMA processes.
The aim of the next subsections is to explain methods of estimation of

the deterministic components f(x), S(x), and σ(x) in (5.1.1) where Xl = l
and noise {εl}, l = 1, . . . , n, is zero-mean and second-order stationary.
A comprehensive example that combines all the steps is postponed until
Section 5.3 because finding periods of seasonal components is based on
estimation of the spectral density, which is discussed in Section 5.2.

• Estimation of a Trend. There is no surprise that time series anal-
ysis customarily uses methods of estimation of a trend that are also used
by regression analysis, namely, methods such as parametric least-squares
regression or smoothing by means of a moving average. On the other hand,
the nonparametric orthogonal series approach, developed in Chapter 4,
seems an attractive alternative to these classical methods. Indeed, if a time
series has a deterministic term that is written as

∑∞
j=0 θjϕj(x), then the

low-frequency part of this series,

f(x) :=
Jmax∑
j=0

θjϕj(x), 0 ≤ x ≤ n, (5.1.5)

can be referred to as a trend component (or simply trend). Here {ϕj} are
elements of a basis in L2([0, n]) and θj are the Fourier coefficients. The
choice of Jmax is typically up to the practitioner, who defines the meaning
of the trend and seasonal components in the frequency domain.

Then the data-driven universal estimator of Section 4.2 can be used to
estimate the trend. (Recall that to use the universal estimator we always
rescale data onto [0, 1].) Moreover, the estimator is greatly simplified by
the fact that its cutoff should be at most Jmax. Then, all the examples
considered in Chapter 4 can be viewed as some particular time series.

• Estimation of a Scale Function. The primary concern of the clas-
sical time series theory is that the stochastic term in (5.1.1) should be
second-order stationary, that is, the scale function σ(x) should be constant.
Since this is typically not the case, the usually recommended approach is
to transform a data set at hand in order to produce a new data set that can
be successfully modeled as a stationary time series. In particular, to reduce
the variability (volatility) of data, Box–Cox transformations are recom-
mended when the original positive observations Y1, . . . , Yn are converted to
ψλ(Y1), . . . , ψλ(Yn), where ψλ(y) := (yλ−1)/λ, λ �= 0, and ψλ(y) := log(y),
λ = 0. By a suitable choice of λ, the variability may be significantly reduced.
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Apparently, the nonparametric technique of Section 4.3 may be used as
well. Firstly, we use the nonparametric estimator of a scale function sug-
gested in Section 4.3. All the examples considered in Section 4.3 illustrate
how the approach works. Then the original observations are divided by the
estimate, and this should give us a new data set with a nearly constant
variability of its stochastic term.

• Estimation of a Seasonal Component. Traditional time series anal-
ysis assumes that the period T of an underlying seasonal component S(x)
is given. (We shall discuss in the next two sections how to find the pe-
riod with the help of the spectral density; also note that in many practical
examples, such as daily electricity demands or monthly average tempera-
tures, periods of possible cyclical components are apparent.) By definition,
S(x + T ) = S(x) for any x, and if a time series is defined at integer points,
then

∑T
l=1 S(l) = 0 (a seasonal component should be zero-mean).

Using these two assumptions, classical time series theory recommends
the following method of estimating a seasonal component. First, a given
time series is detrended by the formula Ỹl = Yl − f̃(l), where f̃(l) is an
estimated trend. Then, the natural procedure for estimating S(j) is the
sample mean estimate

S̃(j) := �(n − j)/T �−1
�(n−j)/T	∑

r=0

Ỹj+rT , j = 1, 2, . . . , T. (5.1.6)

Recall that �a� denotes the rounded-down a. Note that (5.1.6) is
a nonparametric estimate because no parametric underlying model is
assumed.

To understand how this conventional method performs, let us consider a
simple example. Assume that Ỹl = S(l)+σεl, l = 1, 2, . . . , n, where n = kT ,
k is integer, and ε1, ε2, . . . are iid standard normal. Then

S̃(j) = S(j)+σk−1
k∑

r=1

εj+rT = S(j)+σk−1/2 ηj , j = 1, 2, . . . , T, (5.1.7)

where ηj := k−1/2 ∑k
r=1 εj+rT are again iid standard normal. Thus, if k

is large enough (that is, if n is large and T is relatively small), then the
conventional estimator should perform well.

On the other hand, if k is small and, respectively, the period T is large
(and this is a rather typical case in many applications), then another
approach may be used. It is apparent that (5.1.7) is an equidistant non-
parametric regression model with S(x) being the regression function and
the period T being the sample size. Thus, the universal nonparametric es-
timator of Section 4.2 (or Section 4.2) may be used straightforwardly to
estimate S(j) based on T observations (5.1.7). Note that the nonparametric
estimator smoothes the conventional estimate (5.1.6).
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FIGURE 5.1. Three simulated time series shown by squares connected by the
dotted lines, with no trends and different seasonal components of period T = 20.
The underlying seasonal components, shown by solid lines, are the Uniform, the
Normal, and the Angle corner functions minus 1. Stochastic terms are generated
by a Gaussian ARMA(1, 1) process εt − aεt−1 = σ(Zt + bZt−1), where {Zt}
are iid standard normal, a = 0.4, b = 0.3, and σ = 1. {The length n of the
realizations is controlled by the argument n. The period T of seasonal components
is controlled by the argument Per. The parameters σ, a, and b of the ARMA(1,1)
noise are controlled by the arguments sigma, a, and b. Use |a| < 1. The argument
set.seas allows one to choose any 3 corner functions as the underlying seasonal
components.} [n=100, Per=20, sigma=1, a=.4, b=.3, set.seas=c(1,2,6)]

Figure 5.1 shows 3 simulated time series (with no trends) of length n =
100 where seasonal components have period T = 20 and they are the corner
functions Uniform, Normal, and Angle minus 1. Noise terms are generated
by a Gaussian ARMA(1, 1) process εt − 0.4εt−1 = Zt + 0.3Zt−1.

Let us consider these particular time series. It is known that the time
series in Figure 5.1.1 has neither trend nor seasonal component, while the
two others do have seasonal components, but is it apparent from the data?
And what do we mean here by a trend and a seasonal component?

Let us begin the discussion with the second question. According to
(5.1.5), the trend and seasonal components are separated in the frequency
domain. Because it is easier to think about the frequency domain in terms
of periods, let a deterministic periodic component with period less than
Tmax be referred to as a seasonal component, and as a trend component
otherwise. For instance, if we set Tmax = 40, then no pronounced trend with
this or larger period is visible in Figure 5.1.1, while a seasonal component
with period between 10 and 20 is a likely bet. Note that such an illusion of
the presence of a seasonal component is a trademark of ARMA processes.
Moreover, long-memory processes, considered in Section 4.8, may create
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even an illusion of a trend component. Now assume that Tmax = 5. In this
case apparently no seasonal component is present, but a slightly smoothed
dotted line that connects the observations may be a possible bet on an
underlying trend.

Now let us look at the second diagram with the underlying Normal sea-
sonal component. The fact that this is very pronounced seasonal component
makes it easier to conclude that a seasonal component does exist. On the
other hand, it is not an easy task to estimate it; just look at the time be-
tween 70 and 90 where the shape of this component is completely lost due
to the noise.

The third diagram illustrates another typical challenge caused by de-
pendent observations. Look at the first half of the observations; here a
majority of observations are above the seasonal component. The situation
changes for the second part of the observations. This is what may cause
great confusion in any estimate, and this is what the dependency means.

Now let us return to our discussion of the separation of seasonal compo-
nent and trend. Here all depends on the choice of Tmax, or in other words,
on what we mean by a slowly changing trend component. Fortunately, typ-
ically this is a clear-cut issue for practical applications. For instance, for a
long-term money investor, Tmax is about several years, while for an active
stock trader it may be just several days or even hours.

If Tmax is specified, then Jmax in (5.1.5) is defined as the minimal in-
teger such that ϕJmax(x + Tmax) ≈ ϕJmax(x) for all x. For instance, for
the cosine basis on [0, n] with the elements ϕ0(t) := n−1/2, ϕj(t) :=
(n/2)−1/2 cos(πjt/n), j = 1, 2, . . ., 0 ≤ t ≤ n, we get

Jmax = �2n/Tmax�. (5.1.8)

Now let us return to the first question, namely, can we visualize any trend
or seasonal component in the particular realizations shown in Figure 5.1?
Assume that Tmax is defined approximately correctly, say Tmax = 30. In
other words, if we detect a deterministic cyclical component with period less
than 30, then it is a seasonal component; otherwise it is a trend. Then, even
in this case of correctly chosen Tmax, it is not easy (or even impossible) to
correctly realize the underlying seasonal components. The issue, of course,
is that the stochastic term is relatively large.

Now let us look at how the conventional estimator (5.1.6) and the
nonparametric estimator perform for time series generated as in Figure
5.1.

Figure 5.2 exhibits estimated values of seasonal components for 8 differ-
ent seasonal components, which are our familiar corner functions minus 1.
What we see is an example of how to choose an optimal smoothing. Re-
call that the nonparametric estimator smoothes estimates calculated by the
conventional estimator, and it performs well only if the period of a seasonal
component is relatively large. In all the cases, with the apparent exception
of the Delta (and maybe the Strata), the nonparametric estimator performs
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FIGURE 5.2. Seasonal components computed by the conventional method (5.1.6)
(shown by triangles connected by dotted lines) and by the nonparametric uni-
versal estimator (dashed lines), which smoothes the conventional estimates. The
underlying seasonal components are shown by solid lines. Time series are gen-
erated similarly to ones shown in Figure 5.1. {The first 5 arguments allow one
to change the simulated time series; they are explained in the caption of Figure
5.1. The rest of the arguments control the coefficients of the universal estimator
explained in the caption of Figure 4.5.} [n=100, Per=20, sigma=1, a=.4, b=.3,
s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2]

well. In other words, it smoothes correctly. For the cases of the Strata and
apparently the Delta, the conventional method is better. Exercise 5.1.14
is devoted to choosing optimal values of coefficients of the nonparametric
estimator, and Exercise 5.1.15 to the cases where it is worthwhile to em-
ploy this estimator. In short, we should keep in mind that in the regression
model (5.1.7) the period T of an estimated seasonal component (regression
function) plays the role of the sample size. Thus the case of the period
T = 20 is a challenging problem for a nonparametric estimator.

5.2 Estimation of Spectral Density

There are two rather distinct approaches to the analysis of stationary time
series: the spectral (frequency) domain approach and the time domain (dy-
namic) approach. The particular strength of the spectral approach is the
simplicity of visualization of periodicities and separation long-term and
short-term effects, whereas the time domain approach with its explicit
equations for an underlying time series, and an important particular case of
ARMA(p, q) processes, is easy for predictions and describing the dynamics
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of time series. This section is concerned with the first approach, namely,
with nonparametric spectral density estimation, but with eyes open to the
possibility that an underlying process is an ARMA(p, q) time series.

Analysis of time series is customarily based on the assumption of second-
order stationarity after removing the trend and seasonal components and (if
necessary) rescaling the original data. This explains why both the study and
estimation of second-order characteristics is the most important topic in
the analysis of such time series. Let Xt, for t = . . . ,−1, 0, 1, . . ., be a second-
order stationary time series with mean 0 and autocovariance function
γ(j) := E{Xt+jXt}. Then the second-order properties of a time series are
completely described by its autocovariance function, or, equivalently, under
mild conditions (for instance, a sufficient condition is

∑∞
j=−∞ |γ(j)| < ∞),

by its Fourier transform, which is called the spectral density function,

f(λ) := (2π)−1
∞∑

j=−∞
γ(j) cos(jλ) (5.2.1)

= (2π)−1γ(0) + π−1
∞∑

j=1

γ(j) cos(jλ), −π < λ ≤ π. (5.2.2)

Here the frequency λ is in units radians/time, and to get (5.2.2) we used
the relation γ(−j) = γ(j).

Because the autocovariance function is symmetric, the spectral density
is also symmetric in λ about 0, i.e., the spectral density is an even function.
Thus, it is customary to consider a spectral density on the interval [0, π].
The spectral density is also a nonnegative function (like the probability
density), and this explains why it is called a density.

Formula (5.2.1) shows why the spectral density is such a good tool for
searching for periodicities; indeed, a peak in f(λ) at frequency λ = λ∗

indicates a possible periodic phenomenon with period

T ∗ =
2π

λ∗ . (5.2.3)

This formula explains why spectral domain analysis is the main tool in
searching after periods of seasonal components. The next section gives us
an example of how to use this formula.

Now let us explain how to estimate the spectral density. Let a finite
realization X1, . . . , Xn of a second-order stationary time series (recall that
we always assume that its mean is zero) be given. The classical sample
autocovariance estimator is defined as

γ̂(j) := n−1
n−j∑
l=1

Xl+jXl, j = 0, 1, . . . , n − 1. (5.2.4)

Note that the divisor n is not equal to the number n − j of terms in the
sum. Thus, the sample autocovariance is a biased estimator. On the other
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hand, this divisor ensures that an estimate corresponds to some second-
order stationary series. (For all our purposes the divisor n− j may be used
as well.)

Then, according to (5.2.2), if one wants to estimate a spectral density,
a natural step is to plug in the sample autocovariance function in place of
an unknown autocovariance function. The resulting estimator (up to the
factor 1/2π) is known as a periodogram,

I(λ) := γ̂(0) + 2
n−1∑
j=1

γ̂(j) cos(jλ) = n−1
∣∣∣ n∑

l=1

Xle
−ilλ

∣∣∣2. (5.2.5)

Here i is the imaginary unit, i.e., i2 := −1, eix = cos(x) + i sin(x), and the
periodogram is defined at the so-called Fourier frequencies λk := 2πk/n,
where k are integers satisfying −π < λk ≤ π. Examples of periodograms
are given below.

This simple tool for spectral-domain analysis, invented in the late nine-
teenth century, has been both the glory and the curse of this analysis. The
glory, because many interesting practical problems were solved at a time
when no computers were available. The curse, because the periodogram,
which had demonstrated its value for locating periodicities, proved to be
an erratic and inconsistent estimator.

The reason for the failure of the periodogram is clear from the point
of view of nonparametric curve estimation theory discussed in Chapter
3. Indeed, based on n observations, the periodogram estimates n Fourier
coefficients (values of an underlying autocovariance function) and then just
plugs them in. This explains the erratic performance and inconsistency.

Thus, it is no surprise that in the 1940s interest in frequency-domain in-
ference was reawakened by ideas of averaging (smoothing) the periodogram
in the neighborhood of each Fourier frequency (today known as kernel
smoothing, discussed in Chapter 8) and by procedures of orthogonal series
estimation, in which the sample autocovariance function is smoothed. In
particular, the latter approach led to lag-window Tukey estimators

f̃(λ) := (2π)−1γ̂(0) + π−1
J∑

j=1

w(j/J)γ̂(j) cos(jλ), (5.2.6)

which are the cosine series estimators familiar from the previous chapters.
Here the lag window function w(x) is such that |w(x)| ≤ 1 and w(x) = 0
for x > 1, and J is called the window width or cutoff. For instance, the
simplest lag window function is rectangular, where w(x) = 1 for x ≤ 1, and
this implies a truncated estimator.

This series estimator is the most apparent application of the orthogonal
series approach, since the spectral density is defined via the cosine series.

Thus, for the problem of estimation of the spectral density, the uni-
versal data-driven estimator (3.1.15) of Section 3.1 may be employed
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straightforwardly with γ̂(j) used in place of θ̂j and where the coefficient of
difficulty,

d := 2π
∫ π

−π

f2(λ)dλ = γ2(0) + 2
∞∑

j=1

γ2(j), (5.2.7)

is estimated by

d̂n := γ̂2(0) + 2
Jn∑
j=1

γ̂2(j). (5.2.8)

Here the sequence Jn is the same as in Section 3.1.
Exercise 5.2.8 shows that if an underlying time series is a causal ARMA

process with bounded fourth moments, then

E{(γ̂(j) − γ(j))2} = dn−1(1 + rnj), (5.2.9)

where rnj → 0 as both n and j increase. Relation (5.2.9) explains formula
(5.2.7) for the coefficient of difficulty of estimation of the spectral density.

Figure 5.3 illustrates the performance of the estimator for an underlying
Gaussian ARMA(1, 1) time series Yt − 0.4Yt−1 = 0.5(Zt + 0.5Zt−1). The
top diagram shows a particular realization that “slowly” oscillates over
time. This is because here the covariance between Yt and Yt−1 is positive.
This follows from the following formula for calculating the autocovariance
function of the causal ARMA(1, 1) process Yt − aYt−1 = σ(Zt + bZt−1),
|a| < 1:

γ(0) =
σ2[(a + b)2 + 1 − a2]

(1 − a2)
, γ(1) =

σ2(a + b)(1 + ab)
(1 − a2)

,

γ(j) = aj−1 γ(1), j ≥ 2. (5.2.10)

See sketch of the proof in Exercise 5.2.9. Note that if a > 0 and b > 0, then
γ(1) > 0, and a realization will “slowly” change over time. On the other
hand, if a + b < 0 and 1 + ab > 0 (for instance, consider a moving average
MA(1) process Yt = σ(Zt + bZt−1) with negative b), then a realization may
change its sign almost every time. Thus, depending on a and b, we may see
either slow or fast oscillations in a realization of an ARMA(1, 1) process.

Figure 5.3.2 shows the underlying theoretical spectral density of the
ARMA(1, 1) process. As we see, because here both a and b are posi-
tive, in the spectral domain low frequencies dominate high frequencies.
(To look at the inverse situation, the MA(1) process mentioned earlier
may be considered.) The formula for calculating the spectral density is
f(λ) = σ2|1 + beiλ|2/[2π|1 − aeiλ|2], and it is a particular case of the
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FIGURE 5.3. The top diagram shows a particular realization of a Gaussian
ARMA(1, 1) time series Yt − aYt−1 = σ(Zt + bZt−1), t = 1, 2, . . . , n, where
a = 0.4, b = 0.5, σ = 0.5, and n = 120. The diagram below shows the spectral
density of this ARMA process. The two bottom diagrams show the periodogram
estimate and the universal spectral density estimate. {The length n of a realiza-
tion is controlled by the argument n. The parameters of an ARMA(1, 1) process
are controlled by the arguments sigma, a, and b. Use |a| < 1. All the other
arguments control the coefficients of the universal estimator (3.1.15), and they
are explained in the caption of Figure 3.2. Note that the string sp is added to
these arguments to indicate that they control the coefficients of the universal
spectral density estimator.} [n=120, sigma=.5, a=.4, b= .5, cJ0sp=4, cJ1sp=.5,
cJMsp=6, cJTsp=4, cBsp=2]

following formula for a causal ARMA(p, q) process defined at (5.1.2),

f(λ) =
σ2
∣∣∣1 +

∑q
j=1 bje

−ijλ
∣∣∣2

2π
∣∣∣1 −∑p

j=1 aje−ijλ
∣∣∣2 . (5.2.11)

Now let us see how the periodogram (5.2.5) and the universal nonpara-
metric estimator show us the underlying spectral density. (The interesting
feature of positively correlated time series is that it may create an illusion
of a seasonal component; see Figure 5.3.1. Thus, it will be of a special inter-
est to watch how the nonparametric estimates handle such a realization.)
The periodogram is shown in Figure 5.3.3. As we see, it does not resem-
ble the underlying spectral density, and moreover, its mode at frequency
λ∗ ≈ 0.55 indicates the possibility of a seasonal component with period
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11 (the formula (5.2.3) was used to find this period). It is easy to believe
in this conclusion after visualizing the series in Figure 5.3.1, but we know
that this is just an illusion and there is no seasonal component. This is why
a periodogram cannot be used as a reliable tool for searching for cyclical
components.

The bottom diagram exhibits the universal estimate, which correctly
shows the absence of any seasonal component (there are no modes in the
frequency region of possible seasonal components). Also, the estimate nicely
resembles the underlying spectral density.

Now let us discuss the following important question, which always arises
when one uses a nonparametric estimator for the case of a parametric
underlying model. Assume that we have some information about an under-
lying time series, for instance, that it is an ARMA(p, q) process. Then, is it
worthwhile to use a nonparametric estimator that ignores this information?

To answer this question, let us make some preliminary comments about
parametric spectral density estimators. For the case of a Gaussian AR time
series, a well-known parametric adaptive spectral density estimator, sup-
ported by S–PLUS, is an estimator based on Akaike’s information criterion
(AIC). In short, this is a parametric penalized maximum likelihood esti-
mator of the order p; see more in Chapter 8 about the method. We do
not discuss this parametric estimate in more detail because it is supported
by S–PLUS and we can use it as a given tool. (If an underlying process
is ARMA(p′, q), then S–PLUS recommends approximating it by an AR(p)
process, that is, again use that parametric estimate.) The only information
that is required by this estimator is the largest possible value of p.

Thus, let us explain how to compare our universal nonparametric estima-
tor with this parametric one. We perform a Monte Carlo study that should
be absolutely favorable to the parametric estimate; here this means that
an underlying time series is a Gaussian AR(p) process with p ≤ 7, and this
maximal order 7 is given to the parametric estimator. Then, the paramet-
ric estimator is used as an oracle (because it knows the underlying model)
for the nonparametric one, and their performances are compared. (Note
that the idea of this experiment resembles the experiments with oracles
discussed in Sections 3.2–3.3.)

Our particular experiment is as follows. For each pair (p, n) of p ∈
{1, 2, 3, 4, 5, 6, 7} and n ∈ {30, 50, 100, 300, 500, 1000}, 1,000 independent
Monte Carlo simulations of a causal Gaussian AR(p) time series are per-
formed where roots of the autoregressive polynomials are iid uniform with
absolute values between 2 and 10. Then, for each realization from the set
of 1,000 simulations, the parametric oracle’s estimate and the universal
estimate are calculated, and the ratios of their integrated squared errors
(ISE) are computed. Table 5.1 displays the sample medians of these ratios.
If the ratio is larger than 1, then the oracle (Akaike’s parametric estimator,
which knows that the underlying model is AR(p) and p ≤ 7) is better than
the universal estimator, and vice versa.
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Table 5.1. Median Ratios of Sample ISE: Universal/Oracle

p n = 30 n = 50 n = 100 n = 300 n = 500 n = 1000
1 1.2 1.5 1.5 1.7 2.8 2.1
2 1.3 1.3 1.5 1.6 1.7 1.8
3 0.9 1.3 1.3 1.3 1.5 1.5
4 0.9 1.2 1.3 1.3 1.4 1.4
5 1.1 1.0 1.0 1.1 1.1 1.5
6 1.0 0.9 1.0 1.2 1.1 1.5
7 1.0 1.0 1.0 1.2 1.1 1.5

There is no surprise that the outcome is favorable to the parametric or-
acle, especially for large n and small p; after all, the oracle “knows” the
underlying model up to a fixed number of parameters, whereas the non-
parametric estimates are based only on data. Nonetheless, the outcome of
the experiment is promising, because the ratios are very reasonable, espe-
cially for the smallest sample sizes (which we are primarily interested in)
and larger orders (more complicated models). In short, even if one knows
the underlying AR process up to several parameters, the best paramet-
ric estimator does not significantly outperform the universal data-driven
estimator for the case of small sample sizes.

To shed further light on the issue, consider a similar experiment only
for some specific Gaussian AR(1) processes Xt − aXt−1 = Zt with a equal
to 0.5, 0.1, 0.05, and 0. For n = 100, the ratios are 1.6, 0.95, 0.92, and
0.87. Thus for the case of small a (including a white noise time series), the
nonparametric estimator outperforms the parametric ones. Also note that
if an underlying process is not AR(1) but, for instance, a Gaussian MA(1)
process Xt = Zt+0.5Zt−1, then the ratio is 0.41, that is, the nonparametric
estimator dramatically outperforms the parametric one.

Thus, it is fair to conclude that only for the cases where a practitioner
is absolutely sure in an underlying parametric dynamic model is there an
incentive to use only a parametric estimator. Otherwise, it is wiser to begin
with a nonparametric estimate as a “first look at the data at hand” and
then, if it confirms a prior opinion about an underlying parametric model,
use a parametric estimator. Such a conservative approach allows one to
avoid inconsistent estimation due to a wrong prior assumption.

5.3 Example of the Nonparametric Analysis of a
Time Series

Let us combine all the earlier steps in the nonparametric analysis of a time
series and explore them together via an example. The example and all steps
are illustrated by Figure 5.4. Because everything in this section is about
this figure, this is the only section where it is also discussed how to repeat
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4. Detrended Data
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6. The Estimated Seasonal Component
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7. Detrended and Deseasonalized Data
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8. Estimated Scale Function
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9. Rescaled Residuals
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FIGURE 5.4. The comprehensive nonparametric analysis of a time series. In
diagrams 3, 8, and 10 the estimates are shown by dashed lines and the underlying
functions by solid lines. In diagram 6 the conventional estimate is shown by
squares, and its smoothing by the universal estimate is shown by the solid line.
The subtitle to diagram 7 shows which estimate, c - conventional or u - universal,
was used. The subtitle to diagram 10 shows the coefficients of the ARMA(1, 1)
process that give the best fit to the time series of rescaled residuals. {Use |a| < 1.}
[n=120, trendf=3, scalef=2, sigmasc=.5, ss=1, sc=1, a = -.3,b= -.5, TMAX=35,
Tseas=10, ManualPer=F, seasest= ′′c ′′,set.period=c(8,12), set.lambda=c(0,2),
lbscale=.1, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2, cJ0sp=4,
cJ1sp=.5, cJMsp=6, cJTsp=4, cBsp=2]

this figure using the software (it is simply impossible to discuss all details
in the caption).

The underlying deterministic part f(t)+S(t), 1 ≤ t ≤ n, is shown in Fig-
ure 5.4.1, and it resembles many practical examples. Here the trend f(t) is
the Bimodal corner function (with domain [1, n]), and the seasonal compo-
nent is a trigonometric function S(t) := ss sin(2πt/Tseas)+sc cos(2πt/Tseas)
with the period Tseas. The length of observations n is controlled by the ar-
gument n with the default value 120. The trend component is chosen by
the argument trendf, and the seasonal component is set by the arguments
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ss, sc, and Tseas; the default values of these arguments are trendf = 3,
ss = 1, sc = 1, and Tseas = 10.

The stationary stochastic term is generated by a normed ARMA(1, 1)
process εt = ε′

t/(E{ε2
t })1/2, where ε′

t −aε′
t = Zt +bZt−1 and {Zt} is a stan-

dard Gaussian white noise. The default values are a = −0.3 and b = −0.5.
We discussed an ARMA(1, 1) process earlier; thus we may predict that this
particular stochastic component will be highly oscillatory and its spectral
density should monotonically increase in frequency. Then this stationary
stochastic term is multiplied by a scale function. The scale function is a
coefficient σsc times 1 plus the Normal corner function with the domain
[1, n], i.e., the scale function is σsc(1 + f2(l/n)), where f2(x) is the Normal
corner function. The choice of a corner function, used in the scale function,
is controlled by the argument scalef with the default value 2, and the factor
σsc is controlled by the argument sigmasc with the default value 0.5.

Data are generated by adding the scaled stochastic term to the determin-
istic one. A particular realization is shown by dots in Figure 5.4.2, and this
is the data set (time series) at hand. Can you realize the underlying trend,
seasonal component, scale function, and the structure of the noise from the
data? The answer is probably “no,” so let us see how the nonparametric
data-driven procedures discussed earlier handle this data set.

The first step is the nonparametric estimation of the trend. Recall that
according to Section 5.1, the trend and seasonal components are separated
in the frequency domain, see (5.1.5), and the boundary Jmax is defined via
a manually chosen Tmax. For this data set we choose the default Tmax = 35,
which according to (5.1.8) implies Jmax = 7; the choice of Tmax is controlled
by the argument TMAX. By choosing this default value we assume that
a cosine approximation (5.1.5) with Jmax = 7 may approximate well an
underlying trend and, at the same time, does not touch a possible seasonal
component, which, by the assumption, has a period less than 35.

The nonparametric estimate of the trend (the dashed line) is shown in
Figure 5.4.3. It clearly oversmooths the underlying trend, but it is nec-
essary to be fair toward this estimate. Yes, this estimate is much worse
than Binomial’s best estimates, which we saw in the previous chapters. On
the other hand, now the problem is much more complicated: The setting
is heteroscedastic with the pronounced scale function, the errors are de-
pendent, and there is a significant seasonal component whose period and
magnitude are comparable with the distance and the difference between
the modes of the underlying Bimodal trend shown by the solid line. This is
what causes the trend estimate to be essentially smoother than the under-
lying Bimodal trend. Actually, even by visualizing the first diagram where
the deterministic part is shown, it is not an easy task to realize the modes
of the underlying Bimodal model, and the situation becomes much more
complicated with the noisy time series exhibited in the second diagram.

The next step is to detrend the data (subtract the estimated trend from
the original data), and the result is shown in the fourth diagram (Figure
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5.4.4). Now, based on this time series, one must recover the underlying
seasonal component. Can you recognize the seasonal component in this
detrended data? Because we know that the seasonal component is a trigono-
metric function, we can see it in the right tail, less so in the left tail, but in
the main middle part of the time series the seasonal component is absolutely
blurred. This is what makes the heteroscedastic setting so complicated.
(One of the options is to use a Box–Cox transformation discussed in the
subsection “Estimation of Scale Function” of Section 5.1; we do not use it
here because we would like to see how the “pure” nonparametric methods
will perform.)

Now let us see how our nonparametric analysis performs. The nonpara-
metric spectral density estimate of the detrended data is shown in Figure
5.4.5. {Recall that as in Section 5.2, arguments of the spectral density esti-
mate have the attached string sp, for instance, cJ0sp is the argument that
controls the coefficient cJ0 of this estimate. This allows one to use separate
arguments for the regression estimate, which recovers the trend and scale
functions, and the spectral density estimate.}

Diagram 5 indicates that the detrended data have a spectral density
with a pronounced mode at the frequency about 0.6. The period 9.62 (the
estimated period) calculated according to (5.2.3) is given in the subtitle.
The corresponding rounded (to the nearest integer) period is 10, and this
is exactly the underlying period.

While for these particular data the rounded estimated period has been
determined correctly, this is not always the case. The small sample sizes
and large errors may take their toll and lead to an incorrect estimate of the
period. We shall discuss such a case a bit later.

Then the rounded estimated period is used to estimate the underlying
seasonal component. Squares in Figure 5.4.6 show the conventional esti-
mate (5.1.6); the solid line shows how the universal nonparametric estimate
smooths the conventional estimate. As we see, the conventional estimate is
not perfect, but it is fairly good for the setting considered. Note that its
magnitude is correct, and the phase is shown absolutely correctly. Keep in
mind that each point is the average of just 12 observations, so even for a
parametric setting this would be considered a small sample size. The non-
parametric estimate apparently oversmooths the data because the period
10 is too small; recall the discussion in Section 5.1.

The next step is to deseasonalize the detrended data, that is, to subtract
an estimate of the seasonal component. The argument seasest (which is
shorthand for seasonal estimate) allows one to use either the conventional or
the universal nonparametric estimate of the seasonal component by setting
seasest = ′′c ′′ or seasest = ′′u ′′, respectively. The data obtained are shown
in Figure 5.4.7, and the argument used is given in the subtitle. Note that
at this step the data may be referred to as the time series of residuals
because the original data set is detrended and deseasonalized (the estimated
deterministic part is removed).
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The detrended and deseasonalized time series is clearly not stationary,
since its variability in the middle part is essentially larger than in the tails.
This conclusion is supported by the estimate of the underlying scale func-
tion (which is σsc(1 + f2(t/n) with f2(x), 0 ≤ x ≤ 1, being the Normal
corner function and σsc = 0.5). The scale function is shown by the solid
line in Figure 5.4.8. The estimate (dashed line) is almost perfect in the
middle part, but the tails “spoil” the outcome. This is explained by the
cumulative effect of a not perfect estimate of the deterministic part, the
small sample size, and dependent errors. Nevertheless, under the circum-
stances and because the range of the underlying scale function is shown
just perfectly, it is fair to rate this particular scale estimate as a good one.

The next step is to rescale the residuals shown in Figure 5.4.7 to obtain
a stationary noise. The rescaled residuals are simply the residuals divided
by the estimated scale function. To avoid a zero divisor, the estimate is
truncated from below by the argument lbscale; the default value is 0.1.

Thus, here we divide the detrended and deseasonalized data shown in
Figure 5.4.7 by the estimated scale function shown in Figure 5.4.8. The
result is shown in Figure 5.4.9. The hope is that these data are stationary
and that they correspond to a simple stochastic process like an ARMA(p, q)
with small orders p and q. Visual analysis shows that there is no apparent
trend, or a seasonal component, or a scale function. Thus, our final step is
to look at the spectral density estimate of the rescaled residuals. The esti-
mate (the dashed line) is shown in Figure 5.4.10. As we see, the estimate
exhibits no pronounced modes (which can indicate the presence of deter-
ministic periodic components), and we see that in this time series high
frequencies dominate low frequencies. Thus, this time series looks like a
stationary one, and with the help of the experience gained from Figure 5.3,
we may conjecture that an ARMA(1, 1) process εt −aεt−1 = σ(Zt +bZt−1)
with negative a and b may be a good bet on an underlying stochastic term.
Indeed, the underlying spectral density (the solid line) has a similar shape,
and the fact that it is below the estimate tells us that the rescaled resid-
uals have a larger variance than a typical realization from the underlying
ARMA(1, 1) process where a = −0.3 and b = −0.5. Also, the subtitle shows
us the estimated parameters of the ARMA(1, 1) process that gives the best
fit to the data. They are obtained using the S–PLUS function (parametric
maximum likelihood estimate) arima.mle.

This finishes our analysis of this particular time series.
Now let us return to Figure 5.4.5. Here the frequency of the mode cor-

rectly defines the period by the formula (5.2.3), but this is not always the
case. First, there may be several local modes created by both a seasonal
component and a stochastic component, and large errors may produce a
wrong global mode. As a result, the period will be estimated incorrectly.
One of the possibilities to avoid such a complication is to use prior infor-
mation about the domain of possible periods. To play around with this
possibility, two arguments are added to Figure 5.4, namely, set.period and
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set.lambda. The first one, set.period = c(T1,T2), allows one to skip esti-
mation of a seasonal component whenever an estimated period is beyond
the interval [T1, T2]. The second argument, set.lambda = c(λ1, λ2), allows
one to restrict the search for the mode to this particular frequency inter-
val. While these two arguments do a similar job, they are good tools for
gaining the necessary experience in dealing with the time and frequency
domains. {Graphics 6 and 7 are skipped if the estimated period is beyond
the interval [T1,T2], in which case a warning statement is issued.}

The second reason for the failure of the estimation of the period is that
due to large noise and small sample size, the mode of an estimated spectral
density may be relatively flat. As a result, even if a spectral density esti-
mate is close to an underlying density in the sense of integrated squared
error, locations of the estimated mode and the underlying mode may dif-
fer significantly. To understand why, consider, as an example, frequencies
λ∗

1 = 0.6, λ∗
2 = 0.59, and λ∗

3 = 0.54. Then, according to (5.2.3), the cor-
responding periods are T ∗

1 = 2π/0.6 = 10.47, T ∗
2 = 2π/0.59 = 10.64, and

T ∗
3 = 2π/0.54 = 11.63, which imply the rounded periods 10, 11, and 12, re-

spectively. Thus, due to the rounding a relatively small error in the location
of a mode may imply a significant error in the estimated period.

Two questions immediately arise: how to detect such a case and how to
correct the mistake. To answer the first question, let us look at another
realization of Figure 5.4 (i.e., another realization of the noise term), shown
in Figure 5.5. As we see, here the estimated period (see the subtitle for
Figure 5.5.5) is 10.87, and this leads to the wrong period, 11. Let us assess
the consequences of using this wrongly estimated period. First, the esti-
mated seasonal component in no way resembles the underlying one. While
this rather chaotic estimate cannot be the indicator of a wrongly estimated
period, it should raise a flag of suspicion. Then, we see that the rescaled
residuals in Figure 5.5.9 apparently exhibit a cyclical component. This is
a one more reason to suspect the mistake. The estimated scale function
(the dashed line in diagram 8) is dramatically oversmoothed because now
the subtracted estimated seasonal component plays the role of an extra
additive noise.

Finally, the estimated spectral density (the dashed line) in Figure 5.5.10
indicates that the seasonal component was not removed. Indeed, we see
that the shape of this estimate resembles the shape of the spectral density
of detrended data shown in Figure 5.5.5. This spectral density of rescaled
residuals is the most reliable indicator of a wrongly estimated period.

The obvious method to cure such a mistake is to try a different period
for estimation of a seasonal component, and here the apparent choice of
the period is T = 10, which is the rounded-down estimated period. {To do
this, set the argument ManualPer = T (in S–PLUS “T” stands for “True”
and “F” for “False”). This stops the calculations at diagram 5, and the
first 5 diagrams are displayed. Then the program prompts for entering a
period from the keyboard. At the prompt 1: enter a period (here it should
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FIGURE 5.5. Another realization of Figure 5.4 where period of the seasonal
component is estimated incorrectly.

be 10, but any integer period may be tried) from the keyboard and then
press Return; then at the prompt 2: just press Return. This completes the
procedure, and the seasonal component will be calculated with the period
entered. The period will be shown in the subtitle of diagram 6.} We do not
illustrate this procedure by a separate figure because the result is similar
to diagrams shown in Figures 5.4.6–5.4.10.

Another useful practical comment is as follows. In many cases a spectral
density estimate of rescaled residuals has a relatively large left tail while an
underlying theoretical spectral density does not. A particular example will
be given in the next section. One of the typical reasons for such a mistake is
a poorly estimated trend. Unfortunately, for the cases of small sample sizes
and relatively large errors there is no cure for this “disease,” but knowledge
of this phenomenon may help in explaining a particular outcome.
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5.4 Case Study: Missing Observations

In the previous section we have considered the case of a classical realization
X1, X2, . . . , Xn of a time series {Xt}. In many practical situations some of
the observations may be skipped (missing). This happens due to stochastic
circumstances or because there is no way to obtain realizations at some
particular moments. Classical examples of the second case are as follows.
Suppose that a researcher should collect some daily data about a group of
students at a particular school. Since schools are closed on weekends, every
sixth and seventh observation will be missed. Another example is observa-
tions of an object from a satellite that periodically “loses” the object. We
shall see that a case of deterministically skipped data may be essentially
worse than a case of data skipped at random. Thus, the more difficult case
of deterministically skipped data will be of our primary interest.

Another interesting practical interpretation of the setting is the case of
spatial data (recall the discussion in Section 5.1) that are not collected at
a regular grid but may be approximated by a model of data at a regular
grid with skipped (missing) observations. For such a setting, for instance,
geostatistics considers the problem of interpolation of an underlying trend
at skipped points as one of the most important.

What are the necessary changes in our estimates to consider a case of
missing observations? Let us again consider the general problem illustrated
by Figure 5.4 and discuss a similar analysis for the particular example
where every sixth and seventh observation is missed. This mimics a time
series of weekly observations with missing weekends.

Figure 5.6 illustrate this setting. The first diagram shows by dots the
unobserved deterministic part, which is the same as in Figure 5.4.1, only
here every sixth and seventh observation (“weekends”) is skipped. Figure
5.6.2 shows observed noisy observations (data at hand). Note that in this
time series of length 120 only 86 observations are available and 34 are
missing. Thus, the quality of estimation should be worse than for the case
considered in Figure 5.4 simply because the sample size is smaller.

The smaller number of observations is not the only issue to worry about.
Let us consider a case where every other realization is skipped. Then there
is no way to estimate an underlying autocovariance function (just think
about estimation of γ(1) = E{Xt+1Xt}). Similarly, if a seasonal compo-
nent has a period equal (or for small samples even close) to the period of
missing realizations, then a problem of estimating such a seasonal compo-
nent becomes impossible. As an example, if for the case of missing weekends
a seasonal component has period equal to 7 (a weekly seasonal component),
then there is no way to estimate values of this seasonal component at week-
ends because there are no such observations. Note that this is not the case
if the periods are different. For instance, if a seasonal component has period
10, then during the first 10 days the sixth and seventh observations of the
seasonal component are missing, during the second 10 days the third and
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9. Rescaled Residuals
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FIGURE 5.6. Nonparametric time series analysis for the case of missing observa-
tions. The structure of this figure is the same as that of Figure 5.4. {The sequence
of available and missing observations is controlled by the argument set.obs with
the default value set.obs=c(1,1,1,1,1,0,0), which implies weekly observations with
missing weekends.} [n=120, set.obs=c(1,1,1,1,1,0,0), trendf=3, scalef=2, sig-
masc=.5, ss=1, sc=1, a = -.3,b= -.5, TMAX=35, Tseas=10, ManualPer=F,
seasest= ′′c ′′, set.period=c(8,12), set.lambda=c(0,2), lbscale=.1, s0=.5, s1=.5,
cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2, cJ0sp=4, cJ1sp=.5, cJMsp=6,
cJTsp=4, cBsp=2]

fourth observations of that decade are missing, etc. Also, if observations are
missing at random, then only the reduced sample size is the issue. Thus, in
general a case of deterministically skipped observations may be essentially
worse than a case with stochastically missing data.

Keeping in mind these warnings about possible complications, let us con-
tinue the discussion of Figure 5.6. Our next step is to estimate the trend.
Since we use the nonparametric estimator of Section 4.2, that is, the esti-
mator for a heteroscedastic regression model, no changes are needed at this
step because a heteroscedastic regression allows any spacing of predictors.
In other words, the universal estimator is robust to missing observations.
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The estimate is shown in Figure 5.6.3, and it is relatively good. Note that
here the estimated trend is based on a smaller sample size than the es-
timates in Figures 5.4.4 and 5.5.4, and furthermore, the observations are
regularly missing.

The detrended time series is shown in Figure 5.6.4. Note that here again
every sixth and seventh realization is skipped.

The next step is to estimate the spectral density of the detrended data.
The estimator of Section 5.2 cannot be used here because the sample auto-
covariance estimator (5.2.4) requires all n observations. However, it is not
difficult to find a reasonable substitution for the sample autocovariance
estimator. Recall that γ(j) := E{Xt+jXt}, so an unbiased estimator is

γ̃(j) := (1/m̂j)
∑

l∈M̂j

Xl+jXl, (5.4.1)

where M̂j is a random set of l ∈ {1, 2, . . . , n} such that pairs (Xl+j , Xl) are
observed (i.e., both Xl+j and Xl are not missing) and m̂j is the number of
such pairs. Then the estimator of Section 5.2 may be used straightforwardly
with γ̃(j) in place of γ̂(j) and the number m̂0 of available observations in
place of n.

A particular spectrum estimate is shown in Figure 5.6.5. Here it depicts
the location of the mode correctly (it implies the period 10.05), but look at
the huge right tail. Here the estimator ignores it because, as we discussed
in the previous section, the argument set.lambda restricts the search after
the period of seasonal component to the frequencies [0, 2].

When the period is found, all the following steps until Figure 5.6.10 are
the same as in Figure 5.4. In particular, in Figure 5.6.8 we see that the es-
timate of the scale function (the dashed line) oversmooths the underlying
scale function (the solid line). On the other hand, this estimate correctly ex-
hibits the symmetric shape as well as the correct minimal value of the scale
function. In Figure 5.6.10 we use the same modified spectrum estimator as
in Figure 5.6.6. The particular spectral density estimate is not perfect, but
it indicates that there is no pronounced seasonal component. Note that
the left tail, which shows the presence of low-frequency harmonics in the
rescaled residuals, is due to imperfect estimation of the trend.

5.5 Case Study: Hidden Components

In the previous sections we discussed the problem of estimating a trend
component and a seasonal component in the deterministic part of a time
series. There was no problem in separating these two components, since by
definition, they have different spectrum domains.

Here we would like to consider a more complicated case where a trend is
a linear combination of several low-frequency components. We begin with
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a rather simple model of a time series with no seasonal component or a
nuisance hidden component (the general case will be considered later)

Yl := f(l) + σ(l)εl, l = 1, 2, . . . , n, (5.5.1)

where the trend f(l) is a weighted sum of K hidden additive components,

f(l) :=
K∑

k=1

wkψ′
k(l). (5.5.2)

The problem is to estimate either the hidden additive components ψ′
k(t),

k = 1, . . . , K, when the weights {wk} are given or the weights wk, k =
1, . . . , K, when {ψ′

k} are given. Below we consider both these problems.
• Estimation of Hidden Components. First of all, it is apparent

that in general to estimate the hidden components one needs at least K
realizations like (5.5.1) with different weights. Thus, let us assume that
K realizations like (5.5.1) are given with K different vectors of weights
Ws := (ws1, . . . , wsK), s = 1, . . . , K. Thus, we observe K different noisy
combinations of additive components,

Ysl :=
K∑

k=1

wskψ′
k(l) + σ(l)εsl, l = 1, 2, . . . , n, s = 1, 2, . . . , K, (5.5.3)

where {εsl, l = 1, 2, . . . , n}, s = 1, . . . , K, are K independent realizations
of a second-order stationary time series.

Let us apply our orthogonal series approach to solve this problem. Define
ψk(x) := ψ′

k(xn) where ψk(x) is a function supported on [0, 1], and recall
our traditional notation {ϕj(x)} for elements of the cosine basis on [0, 1].
Then the problem of estimating ψ′

k(x) is equivalent to estimating ψk(x),
which may be solved via estimation of the Fourier coefficients

ukj :=
∫ 1

0
ψk(x)ϕj(x)dx. (5.5.4)

Using observations (5.5.3) we can estimate the Fourier coefficients

θsj :=
∫ 1

0
fs(x)ϕj(x)dx (5.5.5)

of the trends

fs(x) :=
K∑

k=1

wskψk(x) (5.5.6)

(rescaled onto the unit interval) by a sample mean estimate

θ̂sj := n−1
n∑

l=1

Yslϕj(l/n). (5.5.7)
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Let us use uppercase letters for denoting K-component column vectors
with corresponding lowercase entries, for instance, Θj := (θ1j , θ2j , . . . , θKj)′,
and by W the K × K matrix with entries wsk. Then, (5.5.4)–(5.5.6) imply
the following system of linear equations:

θsj =
K∑

k=1

wskukj , 1 ≤ s ≤ K. (5.5.8)

The system of linear equations (5.5.8) may be compactly written as the
following matrix equation:

Θj = WUj . (5.5.9)

Assume that the matrix W is invertible and denote its inverse by W−1.
Then

Uj = W−1Θj . (5.5.10)

Thus, since the entries of the matrix Θj may be estimated by the sample
mean estimate (5.5.7), we simply plug the estimates into (5.5.10) and then
get estimates ûkj . Recall that

ψk(x) =
∞∑

j=0

ukjϕj(x),

and because the Fourier coefficients ukj are estimated, our universal
nonparametric estimator may be used straightforwardly.

Figure 5.7 illustrates both the setting and how the estimator performs for
the case K = 3 and the hidden components being the Normal, the Strata,
and the Monotone. First, let us look at the left column of diagrams. The
top time series “First Noisy Composition” shows a particular realization
of (5.5.1)–(5.5.2) with the weights shown in the subtitle. The error term
is a Gaussian ARMA(1, 1) process εt − 0.4εt−1 = 0.5(Zt + 0.3Zt−1), see
examples in Figure 5.1, multiplied by a scale function. The scale function
is equal to 1 plus the Normal corner function with the domain [1, n].

Similarly, the second and third time series are shown in the diagrams be-
low. The analysis of these three time series reveals that even the knowledge
of the underlying components and the weights does not help to realize them.
This is a rather typical situation with linear combinations of functions. So
let us see how the estimator, which has at hand only these 3 realizations
and the corresponding weights (in other words, the data shown in the left
column), solves this puzzle. Estimates of the components (dashed lines)
are shown in the right column of Figure 5.7. As we see, the estimates are
pretty good and allow us easily to realize the shape of the underlying hidden
components (solid lines).

In practical applications the matrix of weights W may not be known
exactly. Figure 5.8 allows us to analyze how this can affect the estimates.
It is assumed that a given matrix W̃ is equal to an underlying matrix
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FIGURE 5.7. Recovery of hidden components. The left column of diagrams
shows the time series of observations (noisy compositions); the known underlying
weights are shown in the corresponding subtitles. The right column of diagrams
shows the estimated components (dashed lines) and the underlying components
(solid lines). {The default hidden components are the Normal, Strata, and Mono-
tone corner functions with the domain [1, n]; their choice is controlled by the
argument set.adc. It is possible to consider K equal to 2, 3, or 4, and then
K components should be chosen using set.adc. The underlying weights for the
jth composition are controlled by the argument wj. The error term is a Gaussian
ARMA(1, 1) process εt−bεt−1 = σ(Zt+bZt−1) multiplied by a scale function. The
parameters of the ARMA(1, 1) process are controlled by the arguments a, b, and
sigma. The scale function is equal to 1 plus a corner function whose choice is con-
trolled by the argument scalef. All other arguments control the coefficients of the
universal estimator.} [n=120, set.adc=c(2,4,7), w1=c(2,1.5,1), w2=c(1,2,1.7),
w3=c(1.4, 1.5, 2),w4=c(1,1,1,2), scalef=2, a=.4, b= .3, sigma=.5, s0=.5, s1=.5,
cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2]

W plus a random matrix with entries being independent standard normal
variables multiplied by σ1/n1/2. In other words, this mimics the case where
the entries are measured with normal N(0, σ2

1/n) additive errors. Figure
5.8 shows three columns of estimates (dashed lines) obtained for different
values of σ1. Each column is obtained similarly to the right column in
Figure 5.7, and all the estimates are based on the same data set. Thus,
the only difference between the columns is that different noisy matrices W̃
are used. The corresponding σ1 may be seen in the subtitles. Note that the
first column, which corresponds to the case σ1 = 0, shows estimates with
the correctly known matrix of weights, the two others with noisy matrices.
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FIGURE 5.8. Recovery of hidden components (solid lines) with a noisy matrix
of weights. The estimator is the same as the one used in Figure 5.7, and the
estimates are shown by dashed lines. The difference with Figure 5.7 is that here
normal N(0, σ2

1/n) errors are added to the underlying weights, and these noisy
weights are then used by the estimator. Each column corresponds to a specific
noise level shown in the subtitle. Because the first column corresponds to the case
σ1 = 0 (the weights are known correctly), it allows one to see the effect of noisy
weights on the recovery of hidden components. {The set of σ1 used is controlled
by the argument set.sigma1.} [set.sigma1=c(0,2,5), n=120, set.adc=c(2,4,7),
w1=c(2,1.5,1), w2=c(1,2,1.7), w3=c(1.4, 1.5, 2),w4=c(1,1,1,2), scalef=2, a=.5,
b= .3, sigma=.5, s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2]

As we see, incorrect information about weights may lead to a wrong
estimation. Figure 5.8 is a useful tool to get first-hand experience in un-
derstanding how random errors in W may affect the recovery of hidden
components.

• Learning Machine for Estimating Weights. The problem of esti-
mating weights {wk} of a noisy composition (5.5.1)–(5.5.2) arises in many
applications where the main issue is not to recover components but to
estimate weights. For instance, in applied spectroscopy weights may be
considered as concentrations of mixed substances with different spectral
profiles.

A typical complication of such a problem is that the components ψk(x)
are not known as well, so a learning machine should be used (recall the
discussion of learning machines in Section 4.10). Here we consider the case
where a training data set consists of noisy compositions with known weights
(similar to those shown in Figure 5.7), and then a composition with un-
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known weights is given (we shall refer to a composition whose weights
should be estimated as the composition).

The underlying idea of a learning machine is as follows. As in (5.5.8)
we may write for the Fourier coefficients {θj} of a trend f(x) of the
composition,

θj =
K∑

k=1

wkukj , j = 0, 1, . . . , (5.5.11)

where recall that {ukj , j = 0, 1, . . .} are the Fourier coefficients (5.5.4) of
the kth component ψk(x).

Note that were the Fourier coefficients θj and ukj known, then (5.5.11)
implies a classical regression problem with respect to the weights {wk}. In
our case the Fourier coefficients are unknown, but we may estimate them
from given noisy compositions and then plug them into (5.5.11). There
are some complications that arise by using such a plugging-in because we
get a problem of linear regression with errors in predictors (recall Section
4.11). Here we do not discuss an optimal solution but simply restrict the
set of Fourier coefficients in (5.5.11) to j = 0, 1, 2, . . . , JW in the hope that
the first Fourier coefficients are typically large and thus the errors will be
relatively small. (Recall that Figure 5.8 gave us some feeling and experience
in dealing with such a situation.) Set JW = 5, and note that it must be
at least K − 1. Then the corresponding linear regression problem may be
solved by standard methods, here the S–PLUS function lm is used.

The performance of this learning machine is illustrated in Figure 5.9. The
training set of 3 noisy compositions with known weights (but unknown
components) is shown in the left column, the data are simulated as in
Figure 5.7, and the same notation is used. The top diagram in the right
column shows the simulated noisy composition; the corresponding weights
are shown in the subtitle and they should be estimated. Thus the learning
machine knows the 4 sets of data shown (3 training noisy compositions
plus the main one), and it knows the weights for the training compositions
shown in the left column.

The diagram “Estimated Components” exhibits the estimated hidden
additive components; they are obtained similarly to those shown in the
right column of Figure 5.7 and based only on the training sets shown in
the left column. As we see, these particular estimates are not perfect but
give us a fair impression about the shapes of the underlying Normal, Strata,
and Monotone corner functions.

The bottom diagram shows the estimate of the composition. Roughly
speaking, the learning machine then tries to fit this estimate by weighted
compositions of the estimated components shown above. The important
technical detail is that the learning machine does it solely via the first
1 + JW Fourier coefficients of these 4 curves. The estimated weights are
shown in the subtitle for the right bottom diagram, and this is the “answer”
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FIGURE 5.9. Learning machine for estimating weights. Training noisy composi-
tions, which are similar to those shown in Figure 5.7, are exhibited in the left
column. The noisy composition with unknown weights is shown in the right top di-
agram. The weights (unknown to the learning machine) are shown in the subtitle
of this diagram, and the estimated weights are shown in the subtitle of the right
bottom diagram. The two other diagrams in the right column show the “inter-
nal” product of the learning machine: estimated components and the estimated
underlying regression function for the top scattergram. {The parameter JW is
controlled by the argument JW with the default value JW = 5; note that JW
must be at least K − 1. The choice of underlying estimated weights is controlled
by the argument wc. The argument set.adc controls the triplet of underlying
components.} [n=120, JW=5, set.adc=c(2,4,7), w1=c(2,1.5,1), w2=c(1,2,1.7),
w3=c(1.4, 1.5, 2),w4=c(1,1,1,2), scalef=2, a=.5, b= .3, sigma=.5, s0=.5, s1=.5,
cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2]

given by the learning machine. For this particular set of data the estimates
are 0.9, 1.9, and 3.1, and this is a good outcome for the case of 3 hidden
components, the sample size 120, and dependent errors.

• Extra Nuisance Component. Consider a more general setting where
in model (5.5.1) an extra nuisance additive component G′(l) is presented,
namely, when the time series is

Yl = f(l) + G′(l) + σ(l)εl, l = 1, 2, . . . , n, (5.5.12)

and (5.5.2) holds.
Our estimators can easily handle this case under the following assump-

tion: G′(l) is the same in all the experiments. In other words, in all the
experiments the deterministic components are fs +G′. Under this assump-
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tion, the nuisance additive component G′ becomes an extra (K + 1)th
additive component with the constant weight equal to 1 for all the experi-
ments. In other words, if we set ψ′

K+1(l) := G′(l), wK+1 := 1, and consider
the case of K + 1 hidden components, then the problem is reduced to the
previously discussed ones with just an additional (K + 1)th experiment.
Then, for instance, the problem of estimating the additive components is
solved based on K + 1 experiments with different weights for the first K
components. {To simulate the situation, use Figure 5.7 and set the last el-
ements in the vectors ws to 1; then the Kth component may be considered
as a nuisance one. Similar changes are needed in Figures 5.8–5.9.}

Another useful comment is as follows. Suppose that this nuisance com-
ponent is a seasonal component and its frequency is beyond JW , that is,
Jmax + 1 ≥ JW . Then this nuisance seasonal component has no effect on
our nonparametric estimators because they perform in the low-frequency
domain.

5.6 Case Study: Bivariate Time Series

In many practical situations it is necessary to analyze a pair of time series.
For instance, the relationship between the price and supply of a commodity
is of a central interest for econometrics, and the relationship between the
number of police officers on the streets and the level of crime is of a central
interest for a government.

We begin our discussion with one simple but very informative example
of a bivariate time series {(Xt, Yt)} defined by

Xt = σ1Z
X
t , t = 1, 2, . . . , n, (5.6.1)

Yt = bXt−k + σ2Z
Y
t , t = 1, 2, . . . , n. (5.6.2)

Here ZX
t and ZY

t are independent standard Gaussian white noises (that is,
these time series are iid standard normal), the coefficients σ1 and σ2 are
nonnegative, b is real, and the parameter k, which is called a delay, is an
integer and may be either positive or negative.

The important feature of this bivariate time series is that for a positive
k the time series {Xt} leads the time series {Yt}, while for negative values
of k the situation is reversed. Also, it is apparent that these two univariate
time series have a linear relationship, since the second time series is simply
a lagged multiple of the first time series with added noise.

Is it possible to realize such a structure of the bivariate time series via
just visualizing its realization? Let us check this. The two top diagrams in
Figure 5.10 show particular realizations of the first univariate time series
{Xt} and the second univariate time series {Yt}. As we see, it is not an
easy task to realize from visualizing these time series that they are related
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FIGURE 5.10. Realization of a bivariate time series (5.6.1)–(5.6.2) with b = 1,
σ1 = σ2 = 1, k = 3, and n = 120. The bottom diagram shows the estimates
of the absolute coherency (solid line) and phase spectrum (dotted line). {All
notations for the arguments are apparent, for instance, DELAY controls the delay
k in (5.6.2).} [b=1, sigma1=1, sigma2=1, DELAY=3, n=120, cJ0=4, cJ1=.5,
cJM=6, cT=4, cB=2]

in any sense. In short, due to the relatively large additive noise in (5.6.2),
visualization is not fruitful.

Thus, let us try to solve this problem using a statistical approach. Recall
(see Section 5.2) that for a zero-mean and second-order univariate sta-
tionary time series {Xt} its main characteristics are the autocovariance
function

γXX(h) := E{Xt+hXt} (5.6.3)

and, under a mild assumption like
∑∞

h=−∞ |γXX(h)| < ∞, the correspond-
ing spectral density

fXX(λ) := (2π)−1
∞∑

h=−∞
γXX(h)e−ihλ, λ ∈ (−π, π] . (5.6.4)

Because the autocovariance function is symmetric, i.e., γ(h) = γ(−h), the
spectral density is a real and even function.

To analyze the relationship between two zero-mean and second-order
stationary sequences {Xt} and {Yt}, we shall use very similar notions of
the cross-covariance

γXY (h) := E{Xt+hYt} (5.6.5)
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and, under a mild assumption like
∑∞

h=−∞ |γXY (h)| < ∞, the cross spectral
density or simply cross spectrum

fXY (λ) := (2π)−1
∞∑

h=−∞
γXY (h)e−ihλ, λ ∈ (−π, π]. (5.6.6)

The similarity between the auto-characteristics and cross-characteristics
is striking, but there is one very important difference that is necessary to
know. While any autocovariance function is always symmetric and thus
any spectral density is real, a cross-covariance may be asymmetric, that
is, γXY (h) may differ from γXY (−h), and this implies a complex cross
spectrum. To see this, let us calculate the cross-covariance function for
the example (5.6.1)–(5.6.2). Using the assumption that ZX

t and ZY
t are

independent standard white noises, a simple calculation shows that

γXY (h) = bσ2
1I{h=−k}. (5.6.7)

Recall that I{A} is the indicator function of an event A. Thus, the cross–
covariance between the series (5.6.1) and (5.6.2) is not zero only for h = −k,
thus it is not symmetric in h. As a result, the corresponding cross spectral
density (5.6.6) becomes complex and is defined by the formula

fXY (λ) = (2π)−1bσ2
1(cos(kλ) + i sin(kλ)). (5.6.8)

Thus only in the case of the zero delay k = 0 is the cross spectrum real.
Since it is not very convenient to analyze a complex function directly,

we shall use the following approach. First, let us recall that any complex
number may be expressed in polar coordinates. Correspondingly, a complex
spectrum fXY (λ) := fr(λ) + ifim(λ) may be written as

fXY (λ) = αXY (λ)eiφ(λ),

where αXY (λ) := [f2
r (λ) + f2

im(λ)]1/2 is called the amplitude spectrum and
φ(α) := arg(fr(λ) + ifim(λ)) ∈ (−π, π] is called the phase spectrum. Note
that by definition the phase spectrum lies between −π and π.

Second, recall the notion of a correlation coefficient between two zero-
mean random variables U and V , ρUV := E{UV }/[E{U2}E{V 2}]1/2. The
correlation coefficient varies between −1 and 1 and measures the extent to
which these random variables are linearly related, namely, the larger the
absolute value of ρUV the stronger the linear relationship between U and
V . For the case of the spectrum, we can introduce the similar notion of the
absolute coherency

KXY (λ) :=
αXY (λ)

[fXX(λ)fY Y (λ)]1/2 . (5.6.9)

The absolute coherency lies between 0 and 1, and like the coefficient of
correlation it measures the extent to which these two series are linearly
related at frequency λ.
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As an example, let us calculate the above-defined characteristics for the
bivariate time series (5.6.1)–(5.6.2). Simple calculations show that the am-
plitude spectrum, the phase spectrum, and the absolute coherency are
defined by the following formulae (recall that the notion of module was
introduced in Section 3.5):

αXY (λ) = (2π)−1|b|σ2
1 , (5.6.10)

φXY (λ) = (kλ + π)[mod 2π] − π, (5.6.11)

K(λ) = |b|σ1/(b2σ2
1 + σ2

2)1/2. (5.6.12)

These results are the key to understanding statistical methods for the
analysis of a bivariate time series. First, we see that the delay k is exactly
the slope of the phase spectrum φXY (λ) because this phase spectrum is
piecewise linear with constant slope k (like the dotted line in the bottom
diagram in Figure 5.10). Of course, this will not be the case for an arbitrary
bivariate time series. However, the derivative (slope) dφXY (λ)/dλ of the
phase spectrum can still be regarded as a measure of the phase lag of Yt

behind Xt at frequency λ. This explains why the derivative (slope) of a
phase spectrum is called the group delay. (The derivative may be negative,
and this indicates that Yt leads Xt.) Thus, visualizing the phase spectrum
allows one to reveal which time series is the leader and which one is the
follower. Second, the absolute coherency (5.6.12) becomes closer to 1 if
either bσ1 increases or σ2 decreases. These conclusions are well understood
because in both these cases the effect of the additive noise σ2Z

Y
t on Yt in

(5.6.2) becomes smaller. Thus, the absolute coherency is indeed a notion
that is similar to the correlation coefficient, and it shows how strong a
linear relationship between {Xt} and {Yt} is at frequency λ.

These are the reasons why both the absolute coherency and the phase
spectrum are the two primary characteristics used in the spectrum analysis
of bivariate time series.

Now let us explain how to estimate these characteristics. Since the only
new function here is the cross spectral density (5.6.6), we note that a partial
sum for (5.6.6) should be written as

fXY (λ, J1, J2) := (2π)−1
J2∑

j=−J1

γXY (j)e−ijλ. (5.6.13)

In contrast to estimating a spectral density where J1 = J2 (see (5.2.6)),
here J1 and J2 may be different because the cross-covariance in general is
not symmetric. Apart from this, the estimator of Section 5.2 may be used
straightforwardly with the only modification that the estimated cutoffs are
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defined by the formula

(Ĵ1, Ĵ2) := argminj1,j2

( j2∑
j=−j1

(2d̂n−1 − γ̂2
XY (j)), 0 ≤ j1, j2 ≤ Jn

)
,

(5.6.14)
where

γ̂XY (j) := n−1
n−j∑
l=1

Xl+jYl (5.6.15)

is the sample cross-covariance, which is used in place of the sample
covariance, and

d̂ :=
Jn∑

j=−Jn

γ̂XX(j) γ̂Y Y (j) (5.6.16)

is the estimated coefficient of difficulty.
Estimates of the absolute coherency and the phase spectrum, calculated

for the bivariate time series shown in Figure 5.10, are exhibited in the bot-
tom diagram of that figure. These estimates are almost perfect. The slope
of the estimated phase spectrum is approximately 3 at all frequencies. The
estimated absolute coherency also correctly shows that the linear relation-
ship between these two time series is practically the same at all frequencies.
Also note that the coherency is far from 1, and this is absolutely right be-
cause the variance of the independent additive noise in Yt is equal to the
variance of Xt. To get the absolute coherency close to 1, the coefficients
of the model should be changed, as has been discussed above. Also, it is
very useful to look at the estimates when the delay is negative. Thus, it is
highly recommended to do Exercise 5.6.4.

Now let us apply our methodology and nonparametric universal estima-
tors to an econometrics model that defines a bivariate time series with the
first component {Pt} being the mean corrected price of a commodity and
the second component {St} being the supply of this commodity at time t.
The model is defined as

Pt = −bP St + σP ZP
t , St = bSPt−1 + σSZS

t , t = 1, . . . , n , (5.6.17)

where 0 < bP , bS < 1, time series {ZP
t } and {ZS

t } are independent standard
Gaussian white noises, and the initial value of the price is P0 = 1.

Figure 5.11 shows a particular realization of this econometrics model; see
the top two diagrams. Here bP = 0.4, bS = 0.8, σP = 1, and σS = 0.5.

It is not an easy task to analyze these realizations manually, so let us
see what our nonparametric estimates, shown in the bottom two diagrams,
tell us about this bivariate time series. The estimated absolute coherency
reveals that a linear relationship between price and supply is strongest at
high frequencies. Thus, our next step is to understand who leads whom at
high frequencies. This we do with the help of the estimated phase spectrum,
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FIGURE 5.11. A case study of econometrics model (5.6.17) for price and supply.
The top two diagrams show particular realizations of price and supply, and the
bottom two diagrams show the estimated absolute coherency and phase spec-
trum. [bP=.4, bS=.8, sigmaP=1, sigmaS=.5, price0=1, n=120, cJ0=4, cJ1=.5,
cJM=6, cT=4, cB=2]

which clearly indicates that price leads supply because the slope of the
estimate is positive. Moreover, the slope at high frequencies is about 1,
so we see that even the delay may be correctly defined via analyzing the
estimated phase spectrum. These conclusions give us some insight into the
relationship between price and supply based on this bivariate time series,
and they do correspond to the underlying model.

5.7 Case Study: Dynamic Model and Forecasting

Consider the nonlinear dynamic model

Yt := f(Yt−1) + s(Yt−1)εt, Y0 := ξ, t = 1, 2, . . . , n . (5.7.1)

Here Yt is called a state of the model, f is called an iterative map, and s is
called a scale map. The noise εt is a stationary time series, for instance an
ARMA process, and ξ is an initial state of the model. Note that if s(y) = 0,
then Yt = f(Yt−1), i.e., a current state of this dynamic model is defined
solely by its previous state (the states are iterated). This explains the name
of f .
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At first glance, the dynamic model (5.7.1) may resemble a classical time
series model Xt := f(t) + σ(t)εt, where f(t) is the deterministic part
(trend/seasonal component) and σ(t) is a scale function. However, these
models are absolutely different: The deterministic component in a classical
time series decomposition is a function of time, while in a dynamic model
the deterministic component is a function of the previous realization.

Dynamic systems naturally arise in applications where one believes that
a current state of a model is defined primarily by its previous state and
a current “noise.” They are also used to approximate stochastic differen-
tial equations, for instance the equation for a continuous-in-time diffusion
process yt,

dyt = ψ(yt)dt + σ(yt)dB(t), t ≥ 0, y0 = ξ. (5.7.2)

Here B(t) is a Brownian process (the definition will be given in Section
7.2), ψ is called a drift function, and σ is called a volatility function. A
famous example is the Black–Scholes model for the stock price St,

dSt = (µ + ν2/2)Stdt + νStdB(t), t ≥ 0, S0 = ξ. (5.7.3)

The parameters µ and ν are the so-called stock drift and volatility.
To explain a relationship between (5.7.1) and (5.7.2), consider equidistant

observations of yt with the sampling interval δ := 1/n. For large n these
observations may be approximately written as the Euler scheme

yt = n−1ψ(yt−δ) + yt−δ + n−1/2σ(yt−δ)Zt, t = δ, 2δ, . . . , y0 = ξ, (5.7.4)

where Zt are iid normal random variables. Thus, if we set f(y) = n−1ψ(y)+
y, s(t) = n−1/2σ(y), and consider standard normal εt, then the relationship
becomes transparent.

Let us explain how the universal estimate may be used for finding it-
erative and scale maps f and s. Define Xt := Yt−1 and rewrite (5.7.1)
as

Yt := f(Xt) + s(Xt)εt, X1 = ξ, t = 1, 2, . . . , n. (5.7.5)

This equation, at least formally, resembles the classical heteroscedastic
regression problem discussed in Sections 4.2–4.3, where f was called the
regression function and s the scale function. Thus, we may try to use the
universal estimates of those sections for estimation of both f and s.

Figure 5.12 illustrates how a dynamic model iterates and how the uni-
versal estimator performs. The top diagram shows a particular realization
of states simulated by a dynamic model (5.7.1). Here the iterative map
is f(y) = 2y/(1 + 2y2), and the scale map is 2 times a standard normal
density. The noise term is a Gaussian ARMA(1, 1) process εt + 0.3εt−1 =
Zt + 0.4Zt−1. The initial state Y0 is a realization of a uniform random
variable ξ on (0, 1).

The analysis of this particular realization, based on methods discussed in
Section 5.1, shows that there is no visible trend, and a seasonal component
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1.  A  time  series  simulated  by  a  dynamic  model

t

Y 
( t

 )

0 20 40 60 80 100 120

-2
-1

0
1

2

•
•

•

•
•

•
• • • ••

•

•

•

•
•

•

•
•

••

•

•

•

••

•

•

••

•

••
••

•
•

•
• •

•

•• ••
•

•
••

• •
•

••

••
• •

•
•

•

•

•

•

•

•
• •

•
•

•
•

••
•

•• ••
•

•
•

•

•
•

• •

•

•
•

••

•

•

• •
•

•
••

•
• • ••

•
•

•

•
•

•
•

•

•
•

• •
•

•

2.  A  scatter  plot  of  Y(t)  versus  Y(t-1) 

Y ( t - 1 )

Y 
( t

 )

-2 -1 0 1 2

-2
-1

0
1

2

3.  Estimate  of  an  iterative  map

t

f (
 t 

)

-2 -1 0 1 2

-0
.5

0.
0

0.
5

4.  Estimate  of  a  scale  map

t

s 
( t

 )

-2 -1 0 1 2

0.
2

0.
4

0.
6

0.
8

FIGURE 5.12. Analysis of a dynamic model. The underlying maps are shown by
the solid lines and their estimates by dashed lines. The underlying iterative map is
f(Y ) = AY/(1+BY 2), and the underlying scale map is σ times a normal density
with zero mean and standard deviation sd. The default values are A = 2, B = 2,
σ = 2, and sd = 1. The initial value is a realization of a uniformly distributed
random variable on [0, 1]. The noise term εt is a Gaussian ARMA(1, 1) process
εt −aεt−1 = Zt +bZt−1, where Zt are iid standard normal, a = −0.3, and b = 0.4.
{The length of a time series is controlled by the argument n; all other arguments
are explicit.} [n=120, A=2, B=2, sigma=2, sd=1, a=−.3, b=.4, s0=.5, s1=.5,
cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2]

with period about 20 is a remote possibility. In short, it is difficult to see
something special in this realization.

The second diagram depicts a scatter plot of current states Yt versus
previous states Yt−1 (or Yt versus Xt). This diagram sheds light on the
iterative process, and look how inhomogeneous the scatter plot is. We see
that relatively large values of the scale map s(y) for y around zero make the
regression problem complicated. Also, only several observations are located
beyond the interval (−1.3, 1.3).

The third diagram shows us that the universal estimator does a fair job in
recovering f . Note that the shape of the underlying iterative map is clearly
recognizable, and even the slopes of the tails are correctly indicated. On
the other hand, note that there is no way to estimate this map over a larger
interval because no Yt with large absolute values are given.

The bottom diagram shows the restored scale map. Again, the shape is
clearly recognizable, and the quality of estimation is reasonable.
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Thus, we see that the universal estimator may be used for analyzing
a dynamic model. On the other hand, it is necessary to know that this
problem may be extremely complicated for different f , s, and noise.

Interestingly, the role of noise in the estimation of maps f and s is abso-
lutely crucial and resembles the situation discussed in Section 4.9, where a
large noise was necessary for a consistent estimation. Indeed, let us assume
that s(y) = 0 (no noise term) and f(y) > 0 for y > 0. Then, a positive Y0
implies positive Yt, t = 1, 2, . . ., and thus there is no chance to restore f(y)
for negative y.

Let us finish this section by introducing one more interpretation of the
dynamic model. Assume that Y1, Y2, . . . is a time series, and one would like
to make a forecasting of an observation Yt+1 based on a previous Yt. This
problem is also called a one-step prediction. Then a dynamic model may
be used again for the definition of a nonlinear one-step prediction f(Yt).

5.8 Case Study: Change-Point Problem

The change-point problem has a long history in statistics due to important
applied settings where abrupt and localized changes are the main concern.
They appear to have arisen originally in the context of quality control,
where one observes the output of a production process sequentially and
wants to signal any departure of the average output from some known
target process. Other familiar examples include the analysis of the inci-
dence of a disease in epidemiology, climate change problems, seismology,
and performance of stock markets.

In a studied time series context, a change-point may be defined as a
point with a discontinuity in at least one component of a time series or its
derivative. Most typical situations are as follows: discontinuity (jump) in a
trend or its derivative; discontinuity in the period of a seasonal component;
change in the noise distribution, for instance a change in parameters of an
ARMA process or distribution of an underlying white noise.

We have discussed in Section 4.7 the problem of changing over a time dis-
tribution of a noise. The aim of this section is to consider another classical
example of estimation of a trend with a jump discontinuity.

The considered approach is identical to one discussed in Section 5.1, only
here the cosine basis enriched by a step function is used. This basis was
introduced and discussed in the last subsection of Section 2.6. Recall that
the corresponding partial sum of f(x), 0 ≤ x ≤ 1, was defined in (2.6.6) as

SJ(x, a) :=
J∑

j=0

θjϕj(x) + κ(a, J) φ(x, a, J), 0 ≤ x ≤ 1,
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where θj =
∫ 1
0 f(u)ϕj(u)du, ϕj are elements of the cosine basis (2.1.3),

κ(a, J) =
∫ 1
0 f(u)φ(u, a, J)du, and φ(x, a, J) is the orthogonal element ob-

tained by applying Gram–Schmidt orthogonalization to a step function
φ(x, a) := I{x≤a}, 0 ≤ x ≤ 1.

The problem of estimation of these Fourier coefficients is identical to
one discussed in Section 4.1, and the recommended estimator may be used
directly. On the other hand, it is worthwhile to discuss several related issues.

The first issue is a possibility to use a relatively simple procedure dis-
cussed in Section 4.1 of finding a pilot estimator of the variance σ2 of
the noise (that is, d). Let us assume that Yt := f(t) + σεt, where εt is
a second-order stationary process with E{εt} = 0 and E{ε2

t } = 1. Then,
Yt+1 − Yt = (f(t + 1) − f(t)) + σ(εt+1 − εt), which implies

E{(Yt+1 − Yt)2} = (f(t + 1) − f(t))2 + σ2E{(εt+1 − εt)2}. (5.8.1)

Recall the notion of the quadratic variation of a function; see (2.2.12).
Here f is defined at integer points over an interval [1, n]. If the corre-
sponding quadratic variation increases more slowly than n, then (5.8.1)
implies that ν̂2 := (n − 1)−1 ∑n−1

t=1 (Yt+1 − Yt)2 may be a good estimator
of σ2E{(εt+1 − εt)2}. Note that if f has a jump discontinuity of a size S,
then this jump affects ν̂2 by the term S2/(n−1). Also, if the noise is white,
then E{(εt+1 − εt)2} = 2 and ν̂2/2 becomes a consistent estimate of σ2.
Below we shall test the estimate ν̂2.

The second issue is how to calculate an optimal cutoff J and a possible
location a of a jump. This is done similarly to (4.1.11), namely

(Ĵ , â) := argmin0≤J≤Jn, a∈An

[
2(J + 2)d̃ −

J∑
j=0

θ̂2
j − κ̂2(a, J)

]
. (5.8.2)

Here Jn is again the rounded-down cJ0 + cJ1 ln(n), and An is a net of
integers where a jump may occur; in general this is {1, 2, . . . , n}, but any
reasonable net may be used to speed up the calculation. The statistic d̃ is
an estimate of the coefficient of difficulty; in the numerical example d̃ = ν̂2.

Then the estimate is defined as

f̂(t) :=
Ĵ∑

j=0

w̃j θ̂jϕj

( t

n

)
+κ̂(â, Ĵ)I{(κ̂(â,Ĵ))2>cT d̃ ln(n)n−1}φ

( t

n
, â, Ĵ

)
. (5.8.3)

The shrinkage weights w̃j are defined in (4.1.12). Note that the differ-
ence with (4.1.13) is that high-frequency terms are not included because
we assume that an estimated trend is smooth except for a possible jump
discontinuity.

Figure 5.13 shows how this estimator performs. Two time series are
Ys,t := fs(t)+σεt, t = 1, 2, . . . , n, s = 1, 2. The same Gaussian ARMA(1, 1)
noise is added to a smooth trend f1 and a discontinuous trend f2. Here
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FIGURE 5.13. Estimation of a trend with a possible jump discontinuity. The
two columns of diagrams correspond to the cases of continuous and discontin-
uous trends. The underlying trends and their estimates are shown by solid and
dashed lines, respectively. The ARMA(1, 1) noise is the same in both time series.
{The parameters a, b and the standard deviation of an ARMA(1, 1) process are
controlled by the arguments a, b, and sigma. The size of the jump is controlled
by the argument jump. The length of a time series is controlled by n. To make
the calculations faster, the default is cJ0 = 1 and the search after the loca-
tion of a jump is performed over 17 equidistant points, which are the rounded
0.1n, 0.15n, . . . , 0.9n.} [n=100, jump=.8, sigma=.3, a=.4, b=.4, cJ0=1, cJ1=.5,
cT=4]

εt = σX ′
t, where X ′

t = Xt/(E{X2
t })1/2, Xt+1 − aXt = Zt+1 + bZt, and Zt

is a standard Gaussian white noise, σ = 0.3, and a = b = 0.4.
The top diagrams depict two particular time series. The left one indicates

a decreasing trend, while the second one shows no pronounced trend. The
bottom diagrams show us the underlying trends f1 and f2 (solid lines)
and the corresponding universal estimates (dashed lines). We see that our
guess about the trend in the left time series was correct. The right bottom
diagram reveals that the underlying trend f2 is identical to f1, only at
the moment t = 60 it has a jump discontinuity. Note that the universal
estimator (5.8.3) correctly rejected a jump discontinuity for the left time
series and correctly indicated both the location and the size of the change-
point for the right time series.

Now, when we know the underlying trends, it is easy to see the change-
point in the top right diagram. On the other hand, note that the change
in the time series over the time interval [57, 63] is about 1.6, that is, it is
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twice as large as the size 0.8 of the underlying jump. Also, can you clearly
see the location of a jump? This is what makes the change-point problem
so difficult. To solve it manually, one needs to estimate an underlying trend
before and after a possible change-point, and this is a complicated problem
for the relatively large noise considered in this example.

Finally, let us note that wavelets are another type series estimator that
are absolutely natural for solving change-point problems. No changes in the
universal wavelet estimator are required, and Figures 4.8-4.10 illustrate the
performance.

5.9 Practical Seminar

The aim of this seminar is to use the comprehensive nonparametric analysis
developed in Section 5.4 for a real time series.

Let us consider the S–PLUS data file hstart, which contains the time
series of US monthly housing starts from January 1966 to December 1974.
Here we use an analogue of Figure 5.4, where the first two diagrams are
identical and show the underlying time series using different formats.

Figure 5.14 shows an analysis of monthly US housing starts. The first
two diagrams are the data. Note that the connected points and the points
alone give a rather different visualization of the same data set.

To separate a trend from a seasonal component, we use the maximal
period Tmax = 35, i.e., a period of about 3 years. We discussed in Section
5.3 why this was a reasonable choice for the training time series shown
in Figure 5.4. Note that the time series of the monthly US housing starts
remarkably resembles the training time series.

Diagram 3 shows the estimated trend (the low-frequency change) in the
housing starts. We see both the famous boom and the tragic collapse of the
housing market. The detrended data show that the residuals are significant,
and it looks as if a pronounced seasonal component is present. The spectral
density of detrended data supports our conclusion. But look how flat this
estimate is near its mode. As we know, this may lead to some troubles in
searching for the period of the seasonal component.

The estimated period (according to (5.2.3)) of an underlying seasonal
component is 10.93 (it is shown in the subtitle for diagram 5), and this is
clearly not the expected 12-month period, which should be the period for
such a time series. Nevertheless, let us continue our default analysis and
not invoke the option ManualPer=T, which allows us to use any period (we
shall do this later). At first glance, the estimated seasonal component, de-
picted in diagram 6, looks nice. (The smoothed nonparametric estimate (the
solid line) is not applicable here because the period is too small.) On the
other hand, please pay attention to the fact that the seasonal component
is smallest during the summer season and largest during the winter season.
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7. Detrended and Deseasonalized Data
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9. Rescaled Residuals
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FIGURE 5.14. A comprehensive nonparametric analysis of monthly US housing
starts from January 1966 to December 1974. {The choice of a time series is
controlled by the argument DATA. All other arguments are the same as in Figure
5.4 and are explained in Section 5.3.} [DATA=hstart, TMAX=35, Tseas=10,
ManualPer=F, seasest= ′′c ′′, set.period=c(8,12), set.lambda=c(0,2), lbscale=.1,
s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=6, cT=4, r=2, cB=2, cJ0sp=4, cJ1sp=.5,
cJMsp=6, cJTsp=4, cBsp=2]

This does not look right and indicates a phase shift due to a wrongly esti-
mated period. Moreover, the spectral density estimate in the last diagram,
which is the ultimate judge, apparently indicates that no deseasonalizing
has occurred.

We know from Section 5.3 that in this case other periods, which are close
to 11, should be tested. Here the nature of the data suggests trying a 12-
month period (a year). To do this, we repeat this figure with the argument
ManualPer=T and, when the figure stops after diagram 5, enter from the
keyboard the period 12. The result is shown in Figure 5.15.

Our first glance is at the final diagram. Here all is okay, and the residuals
may be modeled by an ARMA model. The seasonal component, shown by
squares in diagram 6, looks very reasonable. We see a slow start in January
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7. Detrended and Deseasonalized Data
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9. Rescaled Residuals
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10. Spectral Density of Rescaled Residuals
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FIGURE 5.15. A comprehensive nonparametric analysis of monthly US housing
starts from January 1966 to December 1974. This figure is similar to Figure 5.14,
only here the correct period T = 12 is used. {To get this figure, call >ch5(f=14,
ManualPer=T). The program will stop at the 5th diagram, so you will see the
estimated period 10.93. Then the program will ask you to enter a period. Enter
12 from the keyboard. Then the rest of the diagrams will be displayed.}

and February, which is followed by a spurt in March and April. Then only
in December do we see a significant slowing down.

The estimated volatility of the detrended and deseasonalized data, shown
in diagram 8, looks a bit strange. There is no doubt that the right tail
is shown correctly because the volatility increases during the periods of
booms and collapses. But the left tail looks strange. Thus, let us examine
diagram 7, where the underlying data (residuals) are shown. We see that
the residuals decrease almost linearly during the first year and the range
is about 40, the largest over all the years. This is what has been indicated
by the scale estimate.



224 5. Nonparametric Time Series Analysis for Small Samples

5.10 Exercises

5.1.1 Give several practical examples of time series with pronounced trend
and seasonal components. Hint: Examples like monthly sales of airline tick-
ets or monthly demand of electricity may help us to think about other
possible time series. Also, the history of Wall Street is full of such examples.
5.1.2 Suppose that Xt = Zt + bZt−1, t = 1, 2, . . . , n, where Zt are iid stan-
dard normal (standard Gaussian white noise). Find the joint cumulative
distribution function of (X1, . . . , Xn), and prove that this time series is
second-order stationary.
5.1.3 Let {Zt} be a standard Gaussian white noise. Which of the following
processes are second-order stationary? Also, for each stationary process
find the mean and the autocovariance function. (a) Xt = a + bZt. (b)
Xt = Zt cos(wt). (c) Xt = ZtZt−1. (d) Xt = Zt cos(wt) + Zt−1 sin(wt).
5.1.4 Assume that {Xt} and {Yt} are uncorrelated second-order stationary
sequences. Show that their sum is also second-order stationary with the
autocovariance function equal to the sum of the autocovariance functions
of {Xt} and {Yt}.
5.1.5 Consider the monthly (or annual) sunspot data discussed in Section
1.4. What choice of Jmax would you recommend for separating a seasonal
component with period about 10 years?
5.1.6 Check that the autocovariance function satisfies the inequality
|γ(h)| ≤ γ(0) for any lag h. Hint: Use the Cauchy–Schwarz inequality.
5.1.7 Explain (5.1.7).
5.1.8 Why is it assumed that a seasonal component is summed to zero?
5.1.9 Repeat Figure 5.1 with both positive and negative values of b. How
does the sign of b affect the realizations? Make similar experiments with a.
5.1.10 Repeat Figure 5.1 with different a and b, and find the most
misleading cases.
5.1.11 Repeat Figure 5.1 with different seasonal components. Which
components are most difficult and which simplest for visualization? Why?
5.1.12 Let {Xt} have a seasonal component with period T . Consider a new
time series Yt = Xt − Xt−T . What can be said about this new sequence?
Is it plausible to use the differencing to eliminate the seasonal component?
5.1.13 Use the idea of the previous exercise and suggest a method of
eliminating a linear trend.
5.1.14 Would you recommend any changes in the default values of
coefficients of the estimate used in Figure 5.2?
5.1.15 Use Figure 5.2 to answer the following questions. If σ (controlled
by the argument sigma) is reduced, then does the conventional estimator
outperform the nonparametric one? If the answer is yes, then what is the
boundary value of σ when this happens? Also, how do the sample size and
the period of the seasonal component affect that boundary value?
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5.1.16 Let X1, . . . , Xn, n ≥ p, be a realization of a causal AR(p) process
(5.1.4). Show that the estimate X̂n+1 :=

∑p
j=1 ajXn+1−j is the best linear

predictor of Xn+1 that minimizes the mean squared error R := E{(X̃n+1 −
Xn+1)2} over all linear estimates X̃n+1 :=

∑n
j=1 cjXn+1−j . Also, can the

assumption about causality be dropped? Hint: Write the mean squared
error as

R = E
{( p∑

j=1

(cj − aj)Xn+1−j +
n∑

j=p+1

cjXn+1−j − Zn+1

)2}
,

and also note that due to causality of the AR(p) process, the inequality
R ≥ E{Z2

n+1} holds.
5.1.17 At the end of the subsection Causal ARMA Processes, a causal and
stationary solution of the ARMA(1, 1) difference equation is suggested.
(a) Check it. (b) Does the conclusion hold for |a| ≥ 1?
5.2.1 Explain why (5.2.1) implies (5.2.2). Also, is it correct to refer to this
formula as a cosine orthogonal series expansion?
5.2.2 Show that the spectral density of a second-order stationary time
series is always a real, even, and nonnegative function.
5.2.3 Consider the sunspot data discussed in Section 1.3 and find the
frequency of the seasonal component. Hint: Use (5.2.3).
5.2.4 Find the mean and variance of the sample autocovariance function
(5.2.4). Is it an unbiased estimate? Can you suggest an unbiased estimate?
Was the assumption about second-order stationarity sufficient for solving
this exercise?
5.2.5 The sample autocovariance function may be computed for any data
set, and it is not restricted to realizations of a stationary series. What
may be said about this estimate if the data contain a trend or a seasonal
component?
5.2.6 Consider an MA(1) process Xt = Zt + bZt−1. Draw the correspond-
ing autocovariance function and spectral density for the cases of positive
and negative b. Discuss the graphics. Use your conclusions to analyze
corresponding simulations made by Figure 5.3.
5.2.7 Check the equality in (5.2.5).
5.2.8 Using Exercise (5.2.4), check (5.2.9) for a causal ARMA process with
bounded fourth moments.
5.2.9 Establish (5.2.10). Hint: Recall that second-order stationarity im-
plies that the autocovariance function is well defined and depends only on
the lag, that is, γ(j) = E{Xt+jXt} for any t. The causality implies that
Xt =

∑∞
j=0 cjZt−j for some absolutely summable coefficients {cj}. Using

these facts, obtain 4 different equations via multiplying both sides of the
difference equation Xt −aXt−1 = σ(Zt +bZt−1) by Xt, Xt−1, Zt, and Zt−1.
Then take expectations and get

γ(0)−aγ(1) = σE{XtZt}+σbE{XtZt−1}, γ(1)−aγ(0) = σbE{Xt−1Zt−1},
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E{XtZt} = σ , E{XtZt−1} − aE{Xt−1Zt−1} = σb .

Because E{Xt−1Zt−1} = E{XtZt}, one gets a system of 4 linear equations
in 4 variables. Its solution will imply (5.2.10).
5.3.1 Explain the underlying idea of formula (5.1.8) and how to use it for
separating a trend component from a seasonal component.
5.3.2 Consider the monthly and annual sunspot data discussed in Section
1.3. What Tmax and the corresponding Jmax would you recommend for
these time series?
5.3.3 Using Figure 5.4, find a minimal n such that either detrending or
deseasonalizing becomes impossible.
5.3.4 Using Figure 5.4, find most difficult to estimate trend and seasonal
components among the set of corner functions.
5.3.5 Choose several different trends, seasonal components, error terms,
and sample sizes. Would you recommend any changes in the values of
coefficients of estimates used by Figure 5.4?
5.3.6 Use Figure 5.4 and answer the following question. What are the types
of ARMA(1, 1) errors that make the problem of detrending more and less
complicated? Answer the same question for deseasonalizing.
5.3.7 What changes in the values of coefficients of the spectral density
estimate would you recommend to improve the estimation of the period of
an underlying seasonal component? Recall that these arguments end with
the string sp.
5.3.8 Explain why the arguments set.period and set.lambda duplicate each
other.
5.3.9 Let the estimated period be 9.95. What periods would you like to try
in this case using the argument ManualPer=T, which allows one to choose
the period manually?
5.4.1 Give and then discuss several practical examples of time series with
missing observations. Then, give several similar examples for spatial data.
Also, does the notion of causality have a sense for spatial data? Hint for
the last question: Think about spatial data related to a river and lake.
5.4.2 Consider two second-order stationary time series of the same suf-
ficiently large length. In the first one every other observation is skipped,
while in the second one half of the observations are skipped at random.
Which series would you prefer to deal with to estimate the autocovariance
function? Suggest a consistent estimator for that series.
5.4.3 Show that (5.4.1) is an unbiased estimator of γ(j) if mj > 0. Also,
assuming that fourth moments exist, find its variance.
5.4.4 Use Figure 5.6 and answer the following questions: (a) Let 2 of every
7 observations be missing. Does the location of these missing observations
affect the analysis of the time series? (b) Decrease n and find a maximal n∗

such that the analysis becomes impossible. (c) What particular values of
TMAX would you recommend for the cases of the Uniform and the Strata
trend components? (d) Would you recommend any changes in the values
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of the coefficients of the estimates? (e) Set Tseas = 7, run Figure 5.6, and
explain the results.
5.5.1 Give several practical examples of time series whose trends have
hidden additive components. Discuss a possibility to recover them.
5.5.2 Let the weights {wk} in (5.5.2) be given and let K > 1. Explain
why knowing only a realization of (5.5.1) is not sufficient for estimating
the hidden components.
5.5.3 Explain how (5.5.8) is obtained.
5.5.4 Explain the matrix equation (5.5.9).
5.5.5 Why should the matrix W be invertible? Also, for the case where a
nuisance additive component is present, what is a necessary property of W
to recover the hidden components?
5.5.6 Explain all the diagrams in Figure 5.7.
5.5.7 Use Figure 5.7 and find most difficult and simplest triplets of hidden
components among the set of corner functions.
5.5.8 Explain all steps of the data-driven estimator for the case of a
nuisance additive component.
5.5.9 Use Figures 5.7–5.9 to explore the case of a nuisance additive
component.
5.6.1 Establish (5.6.7) and (5.6.8).
5.6.2 Consider a bivariate time series {(Xt, Yt)} where Xt = Zt, Yt =
aXt + bXt−k, and Zt is a standard Gaussian white noise. Find: (a) the
covariance function and spectral density for each univariate time series; (b)
the cross-covariance and cross spectrum; (c) the absolute coherence; (d)
the phase spectrum. Also, what conclusion about this pair of time series
may be drawn from the analysis of the absolute coherence and the phase
spectrum?
5.6.3 Find formulae for the absolute coherence and the cross spectrum of
the econometrics model (5.6.17).
5.6.4 Use Figure 5.10 to analyze outcomes for negative delays and large b.
Also, is there a set of parameters in the model (5.6.1)–(5.6.2) that allows
one to visualize the linear relationship between these two series via their
realizations?
5.6.5 Using Figure 5.11, find parameters of the econometrics model when
realizations do not appear to be stationary. Explain the outcome.
5.6.6 Using Figure 5.11, analyze the effect of the parameters bP and bS on
the coherence and phase spectrum.
5.6.7 Would you recommend any changes in the default values of
coefficients of the estimates used by Figures 5.10–5.11?
5.7.1 Consider a dynamic model (5.7.1) for the particular f(y) used in
Figure 5.12 and s(y) = 0 (no noise term). Draw a typical series of states.
5.7.2 Give several examples in which a dynamic model may be used as an
approximation of a real time series.
5.7.3 Is the time series (5.7.1) second-order stationary?
5.7.4 Repeat Figure 5.12 several times. Are the outcomes stable?
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5.7.5 Repeat Figure 5.12 with different values of the coefficients A and B.
Discuss the results.
5.7.6 Repeat Figure 5.12 with different values of the coefficients σ, a, and
b that define the noise term. Discuss the results.
5.7.7 Suggest optimal coefficients of the estimator used in Figure 5.12.
5.8.1. Verify (5.8.1).
5.8.2. Give an example where ν̂2/2 is an asymptotically unbiased estimate
of σ2.
5.8.3. Use Figure 5.13 to analyze how the size of a jump and the variance
of a noise affect the estimation.
5.8.4. Use Figure 5.13 and analyze coefficients of an ARMA(1, 1) process
which are more and less favorable to estimation of a trend with a jump
change-point.
5.9.1 Make a comprehensive analysis of a time series available in the S–
PLUS time series data-files. Write a short report about the analysis.

5.11 Notes

The main practical message of this chapter is similar to the previous ones:
nonparametric methods should always be used as a first look at the data
at hand. Even if someone is absolutely sure that an underlying model is
a parametric one, say a linear trend plus AR(1) noise, it is worthwhile
to check this assumption using nonparametric methods. This conservative
approach costs nothing but may prevent inconsistent conclusions.

5.1 A relatively simple introduction to the topic may be found in the
textbooks by Brockwell and Davis (1991, Chapter 1), Diggle (1990), and
Schumway (1988). The book by Ripley (1988) is devoted to spatial pro-
cesses. Fan and Gijbels (1996, Chapter 6) review and discuss nonseries
estimates for nonparametric analysis of time series.

5.2 The asymptotic justification of a series spectral density estimator has
been explored by Bentkus (1985), Efromovich (1984, 1998b), Efromovich
and Pinsker (1981, 1986), Levit and Samarov (1978), Rudzkis (1985), Rudz-
kis and Radavicius (1993), and Samarov (1977) among others.

5.3 A rigorous mathematical discussion of estimation of parameters of
ARMA processes may be found in Brockwell and Davis (1991, Chapter 8).

5.4 Parametric state-space models with missing observations are dis-
cussed in the book by Brockwell and Davis (1991, Section 12.3).

5.5 A related topic of testing on the presence of hidden periodicities
(seasonal components) is discussed in the book by Brockwell and Davis
(1991, Section 10.2).

5.6 The classical parametric theory of multivariate time series, including
the discussion of the econometrics model, may be found in the book by
Brockwell and Davis (1991, Chapter 11).
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5.7 The books by Prakasa Rao (1983, Chapter 6) and Doukhan (1994,
Section 2.4) give a mathematical discussion of this and related models.
Applications in mathematical finance as well as the relation to the fa-
mous Black–Scholes model are discussed in the book by Baxter and Rennie
(1996).

5.8 Using Gibbs phenomenon and wavelets for finding change-points is
discussed in Pawlak (1994) and Wang (1995), respectively.

5.9 Applications of the universal estimator to real time series may be
found in Efromovich (1998b), where also the historical overview of time-
and frequency-domain approaches is given.



6
Estimation of Multivariate Functions
for Small Samples

In this chapter we shall discuss several topics in multivariate function
estimation with applications to density and regression estimation.

The chapter begins with a discussion of a natural extension of ap-
proximation methods discussed in Chapter 2. We shall see that using
tensor–product bases makes the problem of series approximation of mul-
tivariate functions similar to the univariate case. Nonetheless, several
technical difficulties arise. First, apart from bivariate functions (surfaces),
there is no simple tool to visualize a multidimensional curve. Second, we
have seen in Section 2.1 that to approximate fairly well a smooth univariate
function, about 5 to 10 Fourier coefficients are needed. For the case of a d-
dimensional curve this translates into 5d to 10d Fourier coefficients. Since
these coefficients must be estimated, this makes the estimation problem
complicated for the case of small samples. Third, suppose that n = 100
points are uniformly distributed over the five dimensional unit cube [0, 1]5.
What is the probability of having some points in a neighborhood of rea-
sonable size, say a cube with side 0.2? Since the volume of such a cube is
(0.2)5 = 0.00032, the expected number of points in this neighborhood is n
times (0.2)5, i.e. 0.032. As a result, no averaging over that neighborhood
can be performed. For this example, to get on average of 5 points in a cube,
its side should be 0.55, that is, more than a half of the range along each co-
ordinate. This shows how sparse multivariate observations are. Fourth, the
notion of a small sample for multivariate problems mutates. Suppose that
for a univariate regression a grid of 50 points is considered sufficient. Then
this translates into 50 points along each axis, i.e., into 50d data points.
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These complications present a challenging problem, which is customarily
referred to as the curse of dimensionality. However, in no way does this
curse imply that the situation is hopeless.

We begin the discussion with some classical series approximation re-
sults and their effect on risk convergence. Then classical settings of density
estimation and nonparametric regression are discussed. The universal es-
timator can be used for any dimension, and it allows a straightforward
extension to all the more complicated models discussed in Chapters 3 and 4.
In some multivariate regression settings an additive model for a regression
function may be a fair assumption that drastically simplifies estimation.
We discuss this approach in Section 6.5.

6.1 Series Approximation of Multivariate Functions

We begin with the case of bivariate functions. The classical examples are
surfaces and images. This case explains all complications of approximation
of multivariate functions. On the other hand, its relative simplicity and the
availability of good methods for visualizing bivariate functions make this
case an excellent introduction into the world of multivariate functions.

Denote by L2(A × B) the space of square integrable bivariate functions
f(x, y) such that

∫
A

∫
B

f2(x, y)dx dy < ∞.
Let {φn, n = 0, 1, . . .} and {ψm, m = 0, 1, . . .} be two bases in the

one-dimensional spaces L2(A) and L2(B), respectively. Then products of
elements from these two bases,

{ϕnm(x, y) := φn(x)ψm(y), n, m = 0, 1, . . . }, (6.1.1)

constitute a basis in L2(A × B). This basis is called a tensor-product basis.
Thus all the univariate bases discussed in Chapter 2 may be used to create
the corresponding tensor-product bases for two-dimensional spaces.

As an example, the cosine tensor-product basis in L2([0, 1]2) (here
[0, 1]2 := [0, 1] × [0, 1] is the unit square) has the elements

ϕ00(x, y) = 1, ϕ01(x, y) =
√

2 cos(πy), ϕ02(x, y) =
√

2 cos(2πy), . . . ,

ϕ10(x, y) =
√

2 cos(πx), ϕ11(x, y) = 2 cos(πx) cos(πy), . . . . (6.1.2)

A corresponding partial sum with cutoffs J1 and J2, respectively relative
to the variables x and y, is

fJ1J2(x, y) :=
J1∑

j1=0

J2∑
j2=0

θj1j2ϕj1j2(x, y), (6.1.3)

where the Fourier coefficients θj1j2 are defined by the formula

θj1j2 :=
∫ 1

0

∫ 1

0
f(x, y)ϕj1j2(x, y)dx dy. (6.1.4)
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FIGURE 6.1. Three bivariate corner functions: (a) the Normal by the Normal; (b)
the Bivariate by the Bivariate; (c) the Strata by the Strata. These functions are
shown by perspective plots (upper row), image plots (middle row), and counter
plots (bottom row). {The arguments cij allow one to visualize a product of any
two corner functions. For instance, by choosing c11 = 3 and c12 = 5 the product
of the Bivariate by the Delta can be visualized in column (a), by choosing c21 = 7
and c22 = 8 the product of the Monotone by the Steps can be visualized in column
(b), etc. Precaution: It takes a relatively long time to print a hard copy of an
image plot, and it also takes a lot of memory to store an image. Therefore, in
all other figures with images we shall use a relatively small number of pixels
controlled by the argument num.pel. This argument is equal to the square root
of the number of pixels used.} [c11=2, c12=2, c21=3, c22=3, c31=4, c32=4]

A bivariate polynomial (Legendre) tensor-product basis is defined
absolutely similarly.

For performance assessment we choose a set of bivariate corner functions
that are products of our corner functions shown in Figure 2.1. Overall this
set contains 64 bivariate functions. In Figure 6.1, three bivariate corner
functions are shown: Diagram (a) is the product of the Normal by the
Normal; (b) is the product of the Bivariate by the Bivariate; (c) is the
product of the Strata by the Strata.

The top row of diagrams shows the perspective plots created by the S–
PLUS function persp. Perspective plots give a three-dimensional view of
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FIGURE 6.2. Approximations by cosine and polynomial partial sums (6.1.3) of
the bivariate functions shown in Figure 6.1. {The arguments Jkj control cutoffs;
for instance, J12 controls J2 for column (a) and J31 controls J1 for column (c).
Thus, these indices are the same as in the arguments ckj.} [c11=2, c12=2, c21=3,
c22=3, c31=4, c32=4, J11=5, J12=5, J21=8, J22=8, J31=8, J32=8]

bivariate curves in the form of a matrix of heights on an evenly spaced
grid. The heights are connected by line segments to produce the mesh
appearance of such plots. A perspective plot can be modified by choosing a
different “eye” location. Figure 6.4 in Section 6.3 illustrates this possibility.

The second row of diagrams in Figure 6.1 shows image plots of the same
bivariate functions. Image plots are produced by the S–PLUS function im-
age. Although the gray-scale images are not impressive, they look very
attractive on a color monitor, and color prints are very informative. Also,
even the gray-scale images exhibit bivariate functions nicely.

The bottom row shows the counter plots of the same bivariate functions
created by the S–PLUS function counter. A counter plot shows a surface
as a set of counter lines on a grid representing the other two variables.

Figure 6.2 shows partial trigonometric and polynomial sums (approxi-
mations) of the 3 bivariate functions shown in Figure 6.1. The diagrams
(a) correspond to cutoffs J1 = J2 = 5, the diagrams (b) to J1 = J2 = 8,
and the diagrams (c) to J1 = J2 = 8.
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Now let us explain how theoretical results on approximation of a uni-
variate function are extended to the bivariate case. A standard theoretical
result looks as follows. Fix y = y0 and assume that f(x, y0) as a func-
tion of x is smooth, say it is Lipschitz Lipr1,α1,L uniformly over y0 (see
the definition of these functions in (2.4.13)). Denote by β1 := r1 + α1 the
parameter of smoothness corresponding to x. Let us also assume that a
similar assumption holds for f(x0, y) as a function in y with the parameter
of smoothness β2. Then the integrated squared bias IBSJ1J2 of the partial
sum (6.1.3) satisfies

ISBJ1J2 :=
∫ 1

0

∫ 1

0
(f(x, y) − fJ1J2(x, y))2dx dy ≤ C[J−2β1

1 + J−2β2
2 ].

(6.1.5)
Recall that C denotes finite and in general different constants.

Comparison of (6.1.5) with the univariate approximation result (2.4.18)
shows that the integrated squared bias (the error of approximation) for a
bivariate function is at most a factor times a sum of integrated squared
biases for approximations in each argument. By itself this is a good out-
come, since the errors are simply added. The problem is that to get (6.1.5),
the number of Fourier coefficients should be of order J1J2. This is what
makes a multivariate statistical problem essentially more complicated than
a univariate one. Indeed, in statistical applications every Fourier coefficient
that is used in a partial sum should be estimated, and as we know from
previous chapters, an extra estimated Fourier coefficient usually adds the
value Cn−1 to the variance term. Thus, in a univariate case the mean in-
tegrated squared error (MISE) is proportional to Jn−1 + J−2β , where β
is the parameter of smoothness of an estimated univariate curve. In the
bivariate case, MISE is proportional to J1J2n

−1 + J−2β1
1 + J−2β2

2 .
As a result, a straightforward calculation (Exercises 6.1.3–6.1.4) shows

that in the univariate case the optimal cutoff J∗ and the corresponding
MISE are proportional to

J∗ � n1/(2β+1), MISE � n−2β/(2β+1), (6.1.6)

whereas for the bivariate case (set ρ := β1β2/(β1 + β2))

J∗
1 � nρ/β1(2ρ+1), J∗

2 � nρ/β2(2ρ+1), MISE � n−2ρ/(2ρ+1). (6.1.7)

There are several important conclusions from these simple results that
shed light on the problem of estimation of multivariate functions. First, let
β1 ≤ β; that is, a bivariate function, as a function in x, is not smoother
than a univariate function. Then, regardless of how smooth this bivariate
function is in y (that is, regardless of how large β2 is), the bivariate func-
tion cannot be estimated more accurately than the univariate one. This
conclusion plainly follows from the inequality β2/(β1 + β2) < 1.

Second, these results show that if β = ρ, then a bivariate function may be
estimated with the same accuracy (up to a constant factor) as the univariate
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one. This allows us to appreciate the complexity of estimating a bivariate
function via our experience of estimating univariate functions.

Note that we have discussed the complexity of the problem via the or-
thogonal series approach. It is possible to show that the conclusion holds for
any other method, in short, there is no other method that can outperform
a series approach.

The case of bivariate functions is straightforwardly extended to the
case of d-variate functions f(x1, x2, . . . , xd). For instance, the complex
trigonometric expansion for f ∈ L2([0, 1]d) will be

f(x1, x2, . . . , xd) =
∞∑

j1,j2,...,jd=−∞
θj1j2···jd

ei2π(j1x1+j2x2+···+jdxd),

where the Fourier coefficients are

θj1j2···jd
:=

∫ 1

0
· · ·

∫ 1

0
f(x1, x2, . . . , xd)e−i2π(j1x1+j2x2+···+jdxd)dx1 · · · dxd.

Also, a d-dimensional analogue of formula (6.1.5) for integrated squared
bias will have d terms, each corresponding to the smoothness of an un-
derlying function in a particular coordinate. Thus, all the issues discussed
earlier can be straightforwardly extended to higher dimensions (Exercise
6.1.5).

6.2 Density Estimation

We begin with the estimation of a bivariate density f(x, y) of a pair of
random variables (X, Y ), which, in general, can be dependent. Assume
that f(x, y) should be estimated over the unit square [0, 1]2 based on n iid
realizations (Xl, Yl), l = 1, 2, . . . , n, of (X, Y ). (The estimators discussed
below are similar to ones suggested in Sections 3.1–3.3, so a review of those
sections is recommended.)

Consider a series estimator based on the bivariate cosine tensor-product
basis (6.1.2). According to (6.1.3), a projection series estimator should look
like

f̃J1J2(x, y) :=
J1∑

j1=0

J2∑
j2=0

θ̂j1j2ϕj1j2(x, y). (6.2.1)

Here θ̂j1j2 is an estimate of the Fourier coefficient

θj1j2 =
∫ 1

0

∫ 1

0
ϕj1j2(x, y)f(x, y)dx dy = E{I{(X,Y )∈[0,1]2}ϕj1j2(X, Y )}.

Recall that I{A} is the indicator of an event A.
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Since θj1j2 is the expectation of I{(X,Y )∈[0,1]2}ϕj1j2(X, Y ), it is natural
to estimate the Fourier coefficient by a sample mean estimate

θ̂j1j2 := n−1
n∑

l=1

I{(X,Y )∈[0,1]2}ϕj1j2(Xl, Yl). (6.2.2)

Then, as in (3.1.8) we may obtain that

E{(θ̂j1j2 − θj1j2)
2} = n−1(θ00 + rn,j1,j2), (6.2.3)

where rn,j1,j2 decays as n, j1, and j2 increase. This implies that the co-
efficient of difficulty is d := θ00, and if [0, 1]2 is the support, then d = 1.
Thus, as in the univariate case the estimation of a bivariate density may
be considered as a basic model for all other problems.

Moreover, we may straightforwardly use the universal estimator sug-
gested in Section 3.1. Let us repeat the steps of this estimator using the
same notation as in Section 3.1.
Step 1. Fourier coefficients θj1j2 , 0 ≤ j1, j2 ≤ cJMJn, are estimated by the
sample mean estimator (6.2.2), and d̂ := θ̂00.
Step 2. As in (3.1.10), optimal cutoffs Ĵ1 and Ĵ2 are calculated by the
formula

(Ĵ1, Ĵ2) := argmin 0≤J1≤Jn, 0≤J2≤Jn

{ J1∑
j1=0

J2∑
j2=0

[2d̂n−1 − θ̂2
j1j2 ]

}
. (6.2.4)

Step 3. Smoothing weights are calculated:

ŵ00 := 1 and ŵj1j2 := (1 − d̂/nθ̂2
j1j2)+, j1 + j2 > 0. (6.2.5)

Step 4. The universal estimate is calculated:

f̃(x, y) :=
Ĵ1∑

j1=0

Ĵ2∑
j2=0

ŵj1j2 θ̂j1j2ϕj1j2(x, y)

+
∑

(j1,j2)∈D

I{θ̂2
j1j2

>cT d̂ ln(n)/n}θ̂j1j2ϕj1j2(x, y), (6.2.6)

where D is the set of indices (j1, j2) such that 0 ≤ j1, j2 ≤ cJMJn with
deleted indices considered in the first term of (6.2.6).
Step 5. A bona fide series estimate is defined as

f̂(x, y) := (f̃J1J2(x, y) − c)+, (6.2.7)

where (x)+ = max(0, x) denotes the positive part of x, and the constant c

is chosen in such a way that f̂(x, y) is a bona fide density on [0, 1]2, that
is, ∫ 1

0

∫ 1

0
f̂(x, y)dx dy = 1. (6.2.8)

Also, small bumps are removed, as discussed in Section 3.1.
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FIGURE 6.3. Estimation of three bivariate densities shown in Figure 6.1. The
top, middle, and bottom rows correspond to sample sizes 50, 100, and 200. The
estimator is universal. {Here the “new” arguments are set.n, which controls the
choice of sample sizes; estimate, which allows one to use either the default uni-
versal estimate or the hard-threshold estimate; in this case set estimate = ′′h ′′

and you will see the change in the title as well. The arguments cJ0, cJ1, cJM,
cT, cB control the coefficients of the estimator. The coefficients of the universal
estimator are reviewed in the caption of Figure 3.2, and for the hard-threshold
estimator check with (6.2.9) and recall that here the default is cT=2.} [set.n
= c(50,100,200), c11=2, c12=2, c21=3, c22=3, c31=4, c32=4, cJ0=4, cJ1=.5,
cJM=2, cT=4, cB=1, estimate = ′′u ′′]

These 5 steps define the universal bivariate estimator. Note that an
extension to the d-variate case is straightforward.

To evaluate the performance of this estimator, consider the following
Monte Carlo experiment. We study estimation of bivariate densities shown
in Figure 6.1 for particular samples of sizes 50, 100, and 200. Recall that
for the univariate corner densities and the same sample sizes particular
realizations are shown in Figure 3.2.

Figure 6.3 shows particular estimates. As we see, the data-driven es-
timator does a decent job even for the smallest sample sizes. A striking
similarity with the univariate cases is that larger samples may sometimes
lead to worse estimates. This is clearly the case for the Strata by Strata
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density. A remark is needed about the procedure of removing small bumps.
For the bivariate case it is probably more correct to refer to this proce-
dure as removing small “hills,” and some training with different coefficients
cB is recommended. Figure 6.3 uses the default value cB = 1. Also, to
make the calculations faster, the default value of the coefficient cJM is
2. (Recall that for a d-variate function the universal estimator calculates
(1+cJMJn)d Fourier coefficients.) Repeated simulations show that estima-
tion of bivariate densities is a reasonable task even for the smallest sample
sizes.

The universal estimate is relatively simple; nevertheless, for multivariate
settings it is also worthwhile to consider a simpler hard-threshold series
estimator (recall the discussion in Sections 3.2–3) of a d-variate density.
The estimator is defined as

f̃(x1, x2, . . . , xd) :=

cJM Jn∑
j1,j2,...,jd=0

I{θ̂2
j1j2···jd

>cT d̂ ln(n)/n}θ̂j1j2···jd
ϕj1j2···jd

(x1, x2, . . . , xd). (6.2.9)

Then the bona fide projection (Step 5) is performed. Since thresholding is
applied to all the estimated Fourier coefficients, it may be worthwhile to
decrease the default cT from 4 to 2. The reason for the decrease is that the
universal estimator uses thresholding only at high frequencies for search-
ing for extraordinary large Fourier coefficients, while the hard-threshold
estimator applies the same thresholding to all Fourier coefficients.

The simplicity of this estimator is extremely important for multivari-
ate settings. Note that no minimization problems like (6.2.4) should be
solved; one just calculates sample mean estimates of Fourier coefficients
and then thresholds them. We know from Sections 3.2–3.3 that this data-
driven estimator performs relatively well for estimating univariate densities.
Simulations show that the quality of estimation is reasonable for bivariate
functions as well.

In Figure 6.3 we analyzed cases of independent random variables. Now
let us test the hard-threshold estimate for the case of dependent variables.
Figure 6.4 exhibits the case where X is distributed according to the Mono-
tone corner density, and Y is distributed according to the Normal corner
density if X ≤ 0.5 and according to the Strata corner density if X > 0.5.
The particular sample size is n = 100.

The shape of this estimate, except for some minor boundary “wings,”
nicely mimics the shape of the underlying bivariate density. Indeed, for
small x this estimate, as a function in the y coordinate, mimics a normal
density, and for x close to 1 it resembles the Strata. On the other hand, for
any fixed y the estimate, as a function of x, resembles the Monotone.
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FIGURE 6.4. Estimation of the bivariate density for the dependent X and Y
based on n = 100 observations. Two perspective plots of the universal estimate
with two different “eye” locations are shown. {This figure allows one to use the
universal estimate as well; to do this, set estimate = ′′u ′′, and then the argument
cT will be automatically reset from 2 to the default value 4. The title always
indicates which estimate has been used. The sample size is controlled by the
argument n.} [n = 100, cJ0=4, cJ1=.5, cJM=6, cT=2, cB=1, estimate = ′′h ′′]

6.3 Density Estimation in Action: Discriminant
Analysis

A basic problem of discriminant analysis is as follows. An observation can
belong to a population 1 or population 2. Distributions of these popula-
tions are unknown. We must decide to which population that particular
observation belongs based on given training sets (samples) from the first
and the second population.

Such a problem is at the core of the theory of learning machines whose
decisions are typically based on using additional training sets. As an ex-
ample, assume that one wants to create a learning machine that gives a
recommendation to buy or not to buy a used car. This machine, using re-
sults of specific tests of a used car, should give a specific recommendation:
to buy or not to buy. To “train” the learning machine, results of tests for
two sets of good and bad cars are available. Based on these training sets,
a learning machine should develop an algorithm that separates good cars
from bad ones. A similar example is automated medical diagnosis. Here
an observation is a list with results of specific medical tests for a patient
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whose diagnosis should be determined, and a training set is a collection of
files with results of tests for patients with known diagnoses.

To put ourselves in a statistical mood, let us recollect a classical solution
of this problem in which distributions of populations are supposed to be
known. Let f1(xd) and f2(xd) be densities for a d-dimensional data-vector
xd from the first and second populations. For instance, the first population
is a population of good cars and the second is of bad cars; or the first
population is a population of healthy patients and the second is of patients
with the flu. (In these particular examples xd represents a file with results
of available tests). A familiar maximum likelihood approach would allocate
an observation zd to the first population if

f1(zd) ≥ f2(zd) (6.3.1)

and to the second population otherwise. A more general hypothesis testing
known as a Bayesian approach, where the probability p of zd to be from
the first population is assumed to be known, leads to the rule of allocating
zd to the first population if

f1(zd) ≥ qf2(zd), (6.3.2)

where q is a given constant. For instance, for the Bayesian approach q =
(1 − p)/p; see Problem 6.3.2.

A rule that defines the allocation of an observation to a particular
population (like (6.3.1) or (6.3.2)) is called a discrimination rule.

In a majority of practical applications the densities f1 and f2 are un-
known, so the discrimination rule must be estimated from training sets. In
this case parametric discrimination theory assumes that the unknown den-
sities come from some parametric family. There is no surprise, then, that
typically this family is chosen to be a multivariate normal with respective
mean vectors µd

1 and µd
2 and common variance matrix V . Then training sets

can be used to estimate these parameters. Denote sample mean estimates
by µ̄d

1, µ̄d
2, and the pooled sample variance matrix by V̄ . Then a simple

calculation shows that the maximum likelihood discrimination rule (6.3.1)
becomes a familiar Fisher’s linear discrimination rule

(zd − (µ̄d
1 + µ̄d

2)/2)′V̄ −1(µ̄d
1 − µ̄d

2) ≥ 0. (6.3.3)

Also recall that if the normal populations have different variance ma-
trices, then each variance matrix should be estimated based on the
corresponding training set, and then (6.3.1) leads to a quadratic discrimi-
nation rule where the allocation depends on the value of a quadratic form
in the observed data.

Now it is easy to appreciate the beauty and simplicity of the nonpara-
metric approach. Indeed, because the densities f1 and f2 are unknown but
samples according to these densities are given, they may be estimated by a
nonparametric estimator, for instance, by the data-driven universal estima-
tor of Section 6.2. Then, according to (6.3.2), the ratio of these estimates
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defines a nonparametric discrimination rule. Note that training sets from
f1 and f2 may have different sample sizes; in the numerical example they
will be of the same size denoted by n.

There is one specific detail in using this plug-in method. In areas where
both f1 and f2 are smaller than or equal to the accuracy of the nonparamet-
ric density estimation, the ratio of the estimates cannot be a good estimate
of the ratio f1/f2. To avoid this complication, let us make no recommen-
dations for such areas. In other words, if both densities are small, then no
discrimination is made and this fact is declared.

As a result, the nonparametric discrimination rule (nonparametric learn-
ing machine) divides the domain into 3 areas. If an observation belongs to
the first area, then it is declared to belong to population 1. If an observation
belongs to the second area, then it is declared to belong to population 2. If
it belongs to the third area, then no decision is made, since values of both
estimated densities are too small in that area. In the following example
they are to be smaller than t(ln(n + 3)/n)1/2, where t is a coefficient with
default value 3.
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FIGURE 6.5. Nonparametric discriminant analysis based on training sets of size
n = 50. The first and second populations have densities shown in Figures 6.1(a)
and (c), respectively. The left diagram shows two particular training sets. Real-
izations from the first and second populations are shown by the symbols 1 and
2. The ideal discrimination rule (6.3.2) with q = 1, based on the underlying den-
sities, is shown in the middle diagram. The grey area corresponds to the points
where both these densities are smaller than t(ln(n)/n)1/2, t = 3. The nonpara-
metric discrimination rule is shown in the right diagram. {As in Figure 6.1, the
arguments c1j, j = 1, 2, control the choice of an underlying bivariate density
for the first population and c3j, j = 1, 2, for the second population. The argu-
ment num.pel controls the number of pixels. It may be worthwhile to increase
this number while visualizing this figure on a monitor, but for making a hard
copy it is better to keep this number smaller to avoid a long printing time. All
other arguments are apparent.} [n = 50, q = 1, t=3, num.pel=50, c11=2, c12=2,
c31=4, c32=4, cJ0=4, cJ1=.5, cJM=2, cT=4, cB=2, estimate = ′′u ′′]
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The result of a Monte Carlo simulation for n = 50 is shown in Figure 6.5.
The left diagram shows a training set from a population 1 that corresponds
to the bivariate density shown in Figure 6.1(a), and another training set
from a population 2 that corresponds to the bivariate density shown in
Figure 6.1(c). The discriminant analysis recalls a puzzle for youngsters in
kindergarten: One should paint the area where the 1’s are predominant in
black, the area where the 2’s are predominant in white, and in grey the
area where no conclusive decision can be made.

Let us see how an oracle, who knows the underlying densities, and the
nonparametric estimator, here based on the universal estimate, perform.
The ideal discrimination rule, “painted” by the oracle, is shown in the
middle diagram. This is a rather complicated discrimination rule. Note
that all the boundaries should be smooth, but here we use a relatively
small number of pixels, which implies rough boundaries.

The discrimination rule calculated by the nonparametric learning ma-
chine is shown in the right diagram. Based just on 50 observations from
each population, this rule does a good job. It correctly shows 4 spots where
the second population is predominant. The only incorrect detail is that the
top left spot touches the boundary but this particular detail is supported
by the data at hand. Also note that the outliers from the first population
are correctly ignored. So, overall this result is good for such a small sample
size.

6.4 Nonparametric Regression

Consider the heteroscedastic bivariate regression model

Y = f(X1, X2) + σ(X1, X2) ε, (6.4.1)

where (X1, X2) are predictors (a pair of random variables that may be
dependent, and in what follows we shall often refer to them as covariates)
with a design joint density h(x1, x2) supported on the unit square [0, 1]2

and that is bounded from zero on this square, σ(x1, x2) is a bivariate scale
function, and ε is a zero-mean and unit-variance error that is independent
of the predictors.

The problem is to estimate the bivariate regression function (surface)
f(x1, x2) based on n iid realizations {(Yl, X1l, X2l), l = 1, 2 . . . , n} of the
triplet of random variables (Y, X1, X2).

The underlying idea of a series estimation of a bivariate regression func-
tion is absolutely the same as in the univariate case discussed in Section 4.2.
First, we choose a convenient basis, for instance, the cosine tensor-product
basis {ϕj1j2(x1, x2)} defined in (6.1.2). Then, according to Section 6.1, a
bivariate regression function f(x1, x2) can be approximated by a partial



6.4 Nonparametric Regression 243

sum,

fJ1J2(x1, x2) :=
J1∑

j1=0

J2∑
j2=0

θj1j2ϕj1j2(x1, x2), (6.4.2)

where the Fourier coefficients θj1j2 are defined as

θj1j2 :=
∫ 1

0

∫ 1

0
f(x1, x2)ϕj1j2(x1, x2)dx1 dx2. (6.4.3)

The main statistical issue is how to estimate the Fourier coefficients. The
key idea is to rewrite the right-hand side of (6.4.3) as the expectation of a
function of the triplet (Y, X1, X2), and then use a sample mean estimate.
Using the assumption that the design density h(x1, x2) is bounded from
below from zero on [0, 1]2 and that the error ε is zero-mean and independent
of the predictors, we write,

θj1j2 =
∫ 1

0

∫ 1

0
[f(x1, x2)ϕj1j2(x1, x2)/h(x1, x2)]h(x1, x2)dx1 dx2

= E{f(X1, X2)ϕj1j2(X1, X2)/h(X1, X2)}
= E{[f(X1, X2) + σ(X1, X2) ε]ϕj1j2(X1, X2)/h(X1, X2)}
= E{Y ϕj1j2(X1, X2)/h(X1, X2)}. (6.4.4)

Thus, the natural estimate of θj1j2 is the sample mean estimate

θ̂j1j2 := n−1
n∑

l=1

Ylϕj1j2(X1l, X2l)/h(X1l, X2l). (6.4.5)

If a design density is unknown, and this is the typical case, then a density
estimate h̃ should be plugged in. As an example, in this section we shall
use the hard-threshold estimate of Section 6.2. Because a density estimate
is used as the divider, it is truncated from below. Thus, the plugged-in
density estimate is defined as

ĥ(x1, x2) := max(cD/ ln(n), h̃(x1, x2)). (6.4.6)

Here cD is a coefficient with the default value 1.
Then, as in Section 6.2, either a universal estimator or hard-threshold

estimator may be used. Again, as an example, here we consider a hard-
threshold estimator whose simplicity makes it so attractive for multivariate
settings. A hard-threshold data-driven estimator is defined as

f̂(x1, x2) :=
cJM Jn∑
j1,j2=0

I{θ̂2
j1j2

>cT σ̂2 ln(n)n−1}θ̂j1j2ϕj1j2(x1, x2), (6.4.7)

where σ̂2 is the sample variance of responses. Then, if it is known that an
underlying regression surface is larger than a given constant or integrated
to a given constant, a projection like (6.2.7) should be used to get a bona
fide estimate.
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FIGURE 6.6. Scatter diagrams and data-driven hard-threshold estimates for two
regression surfaces. The underlying surfaces are the surfaces shown in Figures
6.1(a) and 6.1(c), only here we increase their level by 2 (this is done to see all the
spikes in the scattergrams). The sample size is n = 50. {The new arguments are
cD, which controls the coefficient cD used in (6.4.6), and sigma, which controls
the value of the scale coefficient σ.} [c11=2, c12=2, c21=4, c22=4, n = 50,
sigma=.3, cJ0=4, cJ1=.5, cJT=2, cJM=2, cB=2, cD=1]

Figure 6.6 illustrates both the problem and how the data-driven esti-
mate performs. In diagram (a) a scatter plot is shown that was created
by a Monte Carlo simulation of (6.4.1) based on 50 predictors uniformly
distributed on the square [0, 1]2; a regression function is 2 plus the Nor-
mal by the Normal corner functions (here we add 2 to a regression surface
to make all responses positive and therefore visible in the scattergram),
σ(x1, x2) = 0.3, and ε is a standard normal error. The heights of the
drawn vertical spikes show values of responses, and their locations in the
X1-X2 plane show the predictors.

First of all, look at how sparse these 50 observations are, and compare
with the univariate scattergrams with the same sample size in Figure 4.1.
At first glance, it is even difficult to believe that you see 50 observations;
it looks as though the number is at most several dozen. Also, there are
huge empty spaces on the square with no observations at all, and there-
fore no information about an underlying regression surface for these spots
is available. Thus, such a scattergram explains all the complexities of a
multivariate setting better than any words or theorems.
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Diagram (b) shows how the estimator (6.4.7) performs for this data set.
As we see, the estimate nicely resembles the Normal by the Normal surface,
and this particular outcome is truly impressive because the sample size is
very small for a bivariate problem. On the other hand, other simulations
may lead to worse estimates; after all, even for univariate random design
regressions the sample size n = 50 is very small for a reliable estimation.

The bottom row of diagrams in Figure 6.6 shows a scatter plot and
estimate for the case of the underlying regression surface the Strata by the
Strata shown in Figure 6.1(c), and here again 2 is added to that corner
surface to visualize all the responses. This scattergram again illustrates the
complexity of the bivariate setting, and again the sparsity of the data is
striking. It is also fair to say that a manual fitting of a surface to the data is
extremely complicated, while it is typically not a problem for a univariate
setting with 50 observations and coefficient of difficulty 0.09; just recall
Figure 4.2.

The nonparametric estimate in diagram (d) correctly shows the number
of hills and their separation and location. However, there is no chance to
see the correct magnitudes for a sample of this size.

6.5 Additive Regression Model

The classical linear regression model for the case of a d-dimensional pre-
dictor (covariate) assumes that fL(x1, . . . , xd) := β0 +

∑d
k=1 βkxk is an

underlying regression function. Note that by this assumption a regression
function is both linear and additive in the predictors. If we drop the assump-
tion on the linearity and preserve the additivity, then we get an additive
model,

Y = fA(X1, . . . , Xd) + σε := β +
d∑

k=1

fk(Xk) + σε. (6.5.1)

Here Y is a response that corresponds to d possibly dependent predictors
(covariates) X1, . . . , Xd with a joint d-variate design density h(x1, . . . , xd);
fk(x), k = 1, . . . , d, are unknown univariate functions; ε is a random vari-
able that is independent of the predictors and has zero mean and unit
variance; and σ is a scale parameter.

The problem is to estimate a regression function fA and its additive
univariate components fk based on n iid realizations {(Yl, X1l, . . . , Xdl),
l = 1, 2, . . . , n}.

Note that the problem of estimating additive univariate functions is inter-
esting on its own merits because these functions show additive contributions
of covariates.

To use a series approach, let us additionally assume that a known design
density h(x1, . . . , xd) is supported on the d-dimensional unit cube [0, 1]d
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and that it is bounded away from zero on this cube. Also, to make the
additive functions unique, we assume that∫ 1

0
fk(x)dx = 0, k = 1, 2, . . . , d. (6.5.2)

To estimate the univariate components fk(x), we choose a univariate
basis, for instance the cosine basis {ϕj , j = 0, 1, . . .} defined in (2.1.3).
Then the partial sums

fkJ(x) :=
J∑

j=1

θkjϕj(x) (6.5.3)

may be used as approximations of fk(x) for x ∈ [0, 1]. Here θkj denotes the
jth Fourier coefficient of fk (the kth additive component), that is,

θkj :=
∫ 1

0
fk(x)ϕj(x)dx. (6.5.4)

Note that due to (6.5.2) we have θk0 = 0.
These partial sums lead us to the following approximation of a regression

function fA:

fAJ(x1, . . . , xd) := β +
d∑

k=1

J∑
j=1

θkjϕj(xk). (6.5.5)

Now we are in a position to figure out how to estimate these Fourier
coefficients. As usual, we try to write them as an expectation of a function
of observations and then use a corresponding sample mean estimate.

For the constant term β we write using (6.5.1)–(6.5.2) that

E{Y/h(X1, . . . , Xd} =
∫ 1

0
· · ·

∫ 1

0
fA(x1, · · · , xd)dx1 · · · dxd = β. (6.5.6)

This implies the use of a sample mean estimate

β̂ := n−1
n∑

l=1

Yl/h(X1l, . . . , Xdl). (6.5.7)

Now let us discuss a possible estimation of θkj . Write for j ≥ 1,

θkj =
∫ 1

0
fk(xk)ϕj(xk)dxk =

d∑
s=1

∫ 1

0
fs(xs)ϕj(xk)dxk. (6.5.8)

In (6.5.8) the second equality holds because for any j ≥ 1 and s �= k,∫ 1

0
fs(xs)ϕj(xk)dxk = fs(xs)

∫ 1

0
ϕj(xk)dxk = 0.
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Continuing (6.5.8) we obtain for j ≥ 1,

θkj =
∫ 1

0

d∑
s=1

(β + fs(xs) )ϕj(xk)dxk =
∫ 1

0
fA(x1, . . . , xd)ϕj(xk)dxk

=
∫ 1

0
· · ·

∫ 1

0
fA(x1, . . . , xd)ϕj(xk)dx1 · · · dxd

= E
{(

fA(X1, . . . , Xd) + σε
)
ϕj(Xk)/h(X1, . . . , Xd)

}
= E{Y ϕj(Xk)/h(X1, . . . , Xd)}. (6.5.9)

Thus, each Fourier coefficient is written as an expectation. (Note that
covariates may be dependent.) Then a natural sample mean estimate is

θ̂kj := n−1
n∑

l=1

Ylϕj(Xkl)/h(X1l, . . . , Xdl). (6.5.10)

Set J∗ to be the rounded-up cJM (cJ0+cJ1 ln(n)). Then, a hard-threshold
estimator of the kth additive component is

f̂k(x) :=
J∗∑
j=1

I{θ̂2
kj

>cT σ̂2 ln(n)n−1}θ̂kjϕj(x), (6.5.11)

where σ̂2 is a sample variance of responses. The steps for calculating a
universal estimator are left as Exercise 6.5.8.

A corresponding data-driven series estimate for fA is

f̂A(x1, . . . , xd) := β̂ +
d∑

k=1

f̂k(xk). (6.5.12)

In the case of an unknown design density h, its estimate is plugged in.
Recall a similar approach and the discussion in Section 6.4.

Figure 6.7 shows how the series estimator (6.5.11) recovers additive com-
ponents. Here d = 4, and the underlying additive functions are the Uniform,
the Normal, the Strata, and the Monotone (recall that 1 is always sub-
tracted from these functions to satisfy (6.5.2)), and the predictors are iid
according to the Uniform distribution on [0, 1]. The sample size is n = 500,
the noise ε is standard normal, σ = 0.2 and β = 1.

The particular estimates are reasonably good, keeping in mind the high
dimensionality. On the other hand, the sample size n = 500 is a moderate
one. Repeated simulations show that essentially smaller sample sizes do
not allow a stable recovery of these additive components. Thus, while the
problem is not so difficult as a multivariate 4-dimensional one, the case of 4
components does take its toll in terms of the necessity to use larger sample
sizes than ones used for univariate and bivariate settings.

Recall that no assumption about independence of covariates has been
made to obtain the formula (6.5.9). The following Monte Carlo experiments
show that a possible dependence of predictors is indeed not an issue.
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FIGURE 6.7. Data-driven estimates of 4 additive components for the case of
the additive model (6.5.1) with iid uniform predictors and normal errors. The
underlying components are shown by solid lines and the estimates by dashed
lines. Here n = 500, σ = 0.2, and β = 1. {The set of underlying additive functions
is chosen by the argument set.k, whose cardinality is d.} [set.k =c(1,2,4,7), n =
500, sigma=.2, cJ0=4, cJ1=.4, cJM=.5, cT=2 ]
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additive components for the case of dependent covariates with unknown design
density. The underlying components are shown by solid lines. The noise is normal
and σ = 0.2. {The choice of underlying additive components is controlled by the
argument set.k.} [set.k =c(2,7), n = 50, sigma=.2, cJ0=4, cJ1=.5, cJM=.5,
cT=2, cB=2, cD=1]

Consider Figure 6.8. The left diagram shows a scattergram obtained
by a Monte Carlo simulation of (6.5.1) with f1 and f2 being the Normal
and the Monotone, ε being standard normal, σ = 0.2, and β = 2. The
first predictor is generated by a random variable X1, which is distributed
according to the Monotone density. The second predictor is generated by
a random variable X2, which is distributed uniformly if X1 < 0.5 and it is
distributed according to the Angle density otherwise.

Can you realize the underlying additive components from this scatter-
gram? It is apparently not a simple puzzle, so let us see how our estimator
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FIGURE 6.9. Estimates of a constant term β and two additive components for
the case of dependent covariates with unknown design density. The sample size
n = 200 is shown in the title of the left diagram. Estimates are shown by dashed
lines and underlying components by solid lines. [set.k=c(2,3), n = 200, sigma=.2
cJ0=4, cJ1=.5, cJM=.5, cT=2, cB=2, cD=1]

solves it. Estimates of the components are shown in the middle and right di-
agrams. These particular estimates are very good even in comparison with
the univariate regression cases shown in Figure 4.3; see the case n = 50.
But note that here the standard deviation of errors is five times less.

Figure 6.9 exhibits a similar experiment, only here instead of the scat-
tergram an estimate of the constant term β = 2 is shown as a horizontal
line whose y-intercept is β̂. (This figure may be used for larger sample sizes
where a scattergram is too “overcrowded” by spikes.) We see that several
hundred observations allow one to recognize the shape of the Bimodal.

We conclude that if an underlying regression model is additive, then its
components can be fairly well estimated even for the case of relatively small
(with respect to the corresponding general multivariate setting) sample
sizes. Also, even if an underlying regression function is not additive, then
such a model may shed some light on the data at hand. This explains why
the additive model may be used as a first look at the data.

6.6 Case Study: Conditional Density

We discussed in Section 4.5 that in many cases a regression function f may
be defined as the conditional expectation, i.e., f(x) := E{Y |X = x}. The
notion of conditional expectation was introduced in Appendix A; see (A.13)
and (A.20) for discrete and continuous random variables, respectively. Here
we shall discuss the case of continuous random variables; thus recall that
the conditional expectation of Y , given that X = x, is

E{Y |X = x} :=
∫ ∞

−∞
yfY |X(y|x)dy. (6.6.1)
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Here fY |X(y|x) is the conditional density of Y , given that X = x; if the
marginal density fX(x) :=

∫∞
−∞ fXY (x, y)dy is positive, then

fY |X(y|x) := fXY (x, y)/fX(x). (6.6.2)

The relation (6.6.1) implies that the regression function f(x) is a func-
tional of the conditional density, and thus the conditional density may
reveal more about the relationship between X and Y than the regression
function. Also, recall that if the conditional density is either multimodal
or highly skewed or has heavy tails (like a Cauchy density discussed in
Section 4.6), then the regression function (6.6.1) is no longer a reasonable
characterization of the relationship between X and Y .

In short, a conditional density may give a more detailed and correct
picture of the relationship between X and Y . Also, note that apart from
the case of a uniform X, a joint density fXY (x, y) may not resemble the
corresponding conditional density (6.6.2).

If fX(x) is positive over a set where a conditional density fY |X(y|x)
should be estimated, then the ratio f̂XY (x, y)/f̂(x) of the estimates dis-
cussed in Sections 6.2 and 3.1 may be used. This is a reasonable approach
if it is also given that fX(x) is bounded from below by a known positive
number and the sample size is relatively large. Otherwise, all the problems
discussed in the previous sections arise, and in that ratio a relatively small
denominator may “spoil” this plug-in estimate.

Thus, let us consider our “universal” approach based on the analysis of
Fourier coefficients of an estimated function.

Consider the problem of a series approximation of a conditional density
over a unit square [0, 1]2. Then a partial sum (6.1.3) with the cosine tensor-
product basis (6.1.2) may be used, where the Fourier coefficients are

θj1j2 =
∫ 1

0

∫ 1

0
fY |X(y|x)ϕj1j2(x, y)dx dy

=
∫ 1

0

∫ 1

0

(
fY X(y, x)/fX(x)

)
ϕj1j2(x, y)dx dy

= E{I{(X,Y )∈[0,1]2}ϕj1j2(X, Y )/fX(X)}. (6.6.3)

Thus, the Fourier coefficients of a conditional density may be written
as expectations of random variables I{(X,Y )∈[0,1]2}ϕj1j2(X, Y )/fX(X), and
they may be estimated by a sample mean estimate.

The only issue here is that again the marginal density fX(x) is un-
known. On the other hand, a sample mean estimate uses this density
only at values equal to observations, and this makes the situation much
simpler. For instance, the universal estimate may be plugged in. Another
approach was discussed in Section 4.3, which was to estimate fX(X(l)) via
a normed spacing nD̂0ls. Recall that X(l) are ordered predictors, D̂0ls =
(2s)−1(X(l+s) − X(l−s)), and s is the rounded-up s0 + s1 ln(ln(n + 20)),
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s0 = s1 = 0.5. This implies the following estimate of the Fourier coefficients:

θ̂j1j2 =
n∑

l=1

I{(X(l),Y(l))∈[0,1]2}D̂0lsϕj1j2(X(l), Y(l)) . (6.6.4)

Then either a universal or hard-threshold series bivariate estimator may
be used for estimation of fY |X .

In Figure 6.10 the hard-threshold estimator is studied. The left column of
diagrams shows two scatter plots with the same predictors and underlying
“regression functions” but different noises. The top one is a classical case
of a zero-mean normal noise whose variance depends on X. The right top
diagram shows the corresponding estimated conditional density over the
unit square. Let us explore what this estimate “tells” us about the data
set. First, we see that the shown ridge is approximately linear in X with
a positive slope. This is consistent with the analysis of the scatter plot.
For smaller X’s the estimate also reveals that the noise is unimodal (just
look at any slice of this surface given X). We cannot draw this conclusion
for the largest values of X because only part of the conditional density is
shown, but this part perfectly resembles a normal density with the mean
about 0.9 and the standard deviation about 0.1. Note that for the larger
X’s the crest is clearly observed. Also, we see that the height of the ridge
depends on X.

Now let us return to the top scattergram. First of all, we see that only a
few observations have values of X less than 0.15 and larger than 0.85. Thus,
there is no way to use any local method of estimation of the conditional
density over approximately 30% of the square. Also, note that any verti-
cal strip of width, say, 0.05 contains an insufficient number of points for
estimating fY |X(y|x) as a univariate density. Moreover, can you say that
points located near any vertical slice resemble normally distributed points?
And on top of this, look at the main body of points with X ∈ [0.4, 0.8]. If
you ignore points beyond this strip, then it is even difficult to be sure that
the body of points slopes upward.

Thus, keeping in mind that the estimator shows us an underlying condi-
tional density over the unit square, the estimate depicts a classical linear
relationship between predictor and response over this area. But is the es-
timator correct? To answer this question, let us explain how the data set
was generated. The regression curve is a linear one, 0.4 + 0.5X. The noise
is normal with zero mean and standard deviation 0.2 − 0.15X. Thus, we
see that the estimate shows a correct positive trend in the data. For X = 0
the estimate is a bit skewed, and its mode is at Y = 0.55 instead of the
correct Y = 0.4. But can an estimate do better? The perfect shape of a
normal density with mean 0.4 and standard deviation 0.2 implies a domain
with range about 1.2, but there are no data to indicate this.

For X = 1 the underlying conditional density is normal with mean 0.9
and standard deviation 0.05. By analyzing the corresponding vertical slice
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FIGURE 6.10. Estimation of a conditional density fY |X(y|x) for two different
data sets. {In both scatter plots the X’s are the same iid realizations of a normal
random variable N(mX, sdX2) with mX = 0.5 and sdX = 0.2. In both examples
the Y ’s are generated according to a linear regression model Y = m1 +m2X + ε,
m1 = 0.4, m2 = 0.5, with specific noise terms for the top and bottom diagrams.
For the top diagram the noise is normal with mean zero and standard deviation
sd1+sd2X, sd1 = 0.2, and sd2 = −0.15. For the bottom diagram the noise is more
complicated. It is a mixture ε = (1 − θ)ξ1 + θξ2 where ξ1 and ξ2 are independent
normal N(mY1, sdY 2

1 ) and N(mY2, sdY 2
2 ), mY1 = −0.3, sdY1 = 0.1, mY2 = 0.2,

and sdY2 = 0.1. The Bernoulli random variable θ takes on values 1 and 0 with the
probabilities pr and 1−pr, pr = 0.3. The sample size n = 200 is shown in the titles
of the left diagrams, where also the corresponding numbers m of observations
within the unit square [0, 1]2 are indicated.} [n = 200, m1=.4, m2=.5, sd1=.2,
sd2=−.15, mX=.5, sdX=.2, mY1=−.3, sdY1=.1,mY2=.2, sdY2=.1, pr = .3,
s0=.5, s1=.5, cJ0=4, cJ1=.5, cJM=.5, cT=4, cB=2]

of the estimate, we conclude that the mean is shown almost correctly and
the shape is also almost perfect. Thus, if the estimate were twice as wide
for smaller X, then it could be declared as a perfect one.

Now let us look at the left bottom scatter plot. If we ignore points to
the right of X = 1 and to the left of X = 0.15 (overall 9 points from
200), then no pronounced trend (slope) in the data may be visualized. A
closer look at the data reveals that points are denser in the bottom part of
the scattergram, but this also may be an illusion. You can easily imagine
something similar in the top scattergram.

The estimate in the right bottom diagram tells us a lot about the data
and relationship between X and Y . We see a canyon created by two ridges
sloped upward. The valley between the ridges is pronounced, and now we
can also recognize it in the left bottom scattergram. Also, vertical (with
constant X) slices of the estimate reveal that the ridges are unimodal.
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Now it is time to “reveal” the underlying relationship between X and Y .
This is a model Y = 0.4 + 0.5X + (1 − θ)ξ1 + θξ2, where θ is a Bernoulli
random variable that takes on the value 1 with probability 0.3 and 0 with
probability 0.7. The random variables ξ1 and ξ2 are independent normal
with means −0.3 and 0.2 and equal standard deviations 0.1. Thus, the
underlying conditional density indeed has two ridges of different heights
that slope upward.

Note that for the bottom example the line 0.4 + 0.5X cannot be called
a regression function because E{Y |X = x} = 0.25 + 0.5x. Also, even this
expectation does not describe the relationship between X and Y because
it is much more involved. On the other hand, the estimated conditional
density sheds light on and explains this complicated relationship.

6.7 Practical Seminar

The main objective of this seminar is to apply the density estimators of
Section 6.2 to real data sets and then analyze their performance. Then
a spatial data set, analyzed by the regression estimator of Section 6.4, is
considered.

We begin with a bivariate density estimation. The particular data set is
a pair of random variables from the data file state.x77. This data set is
a matrix whose columns contain various statistics about the 50 states of
the United States. The first variable X1 is “Income,” and this is per capita
income in 1974. The second variable X2 is “Illiteracy” in 1970 given as a
percentage.

The first diagram in Figure 6.11 allows us to look at the data (pairs of
observations are shown as a scattergram, and the sample size is given in
the title). We see that the data are sparse and heavily concentrated near
low Illiteracy and moderate Income. Also, there is a clear tendency for a
state with smaller Income to have a higher Illiteracy. The state with the
largest Income, $6315, is Alaska, which has a rather moderate Illiteracy of
1.5. This state is a clear outlier, since there is no other state with Income
larger $5500. Another extreme state is Louisiana, which has the highest
Illiteracy, 2.8, combined with one of the smallest Incomes, but in no way
is this state an outlier because you can see several other states nearby. On
the other hand, the top right corner is empty, that is, there are no states
with large Incomes and high Illiteracy. Also, there is a smaller empty spot
in the bottom left corner, which tells us that the smallest Incomes imply
high Illiteracy.

Now we would like to get a bivariate density (surface) that reflects all
the observations. Here again, as in the previous seminars, we simultane-
ously look at a spectrum of estimates with different values of a particular
“running” argument. As an example, we check the influence of the coeffi-
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FIGURE 6.11. Data set of Income (X1) and Illiteracy (X2) and the sequence
(spectrum) of universal bivariate density estimates (multiplied by the product
of ranges of the two variables) with different values of coefficients cJ0 shown in
the subtitles. The sample size n = 50 is shown in the title. {Figure 6.3 may
be used as a prototype. To analyze this particular data set, we set DATA =
state.x77[, c(2, 3)], that is, we use an n × 2 matrix where the first column is
“Income” and the second one is “Illiteracy.” Any other data set should have the
same format of an n × 2 matrix. To get more information about this data set,
call > help(state.x77). The running coefficient is chosen by arg, and its values
by set.arg. The default estimator is universal; the hard-threshold estimator may
be used by setting estimate= ′′h ′′.} [DATA=state.x77[,c(2,3)], estimate= ′′u ′′,
arg= “cJ0”, set.arg=c(6,4,2,0,-1), cJ0=4, cJ1=.5, cJM=2, cT=4, cB=1]

cient cJ0. The values are shown in the subtitles. Also, recall that both the
universal and hard-threshold estimates may be used, and the fact that the
universal estimator was used is highlighted by the title.

As we see, the values cJ0 = 6 and the default cJ0 = 4 imply approxi-
mately the same estimates with the tiny difference between the left corners.
The estimates correctly show us: the main areas of concentration of the
points; that the density is positive at and near the corner of smallest In-
comes (X1) and high Illiteracy (X2) due to Louisiana and several other
“neighbors”; that Alaska made its presence apparent by a small ridge that
runs along the line X2 = 1.5 for largest Incomes X1 > $6000 (you can see
it behind the largest hill); that the density vanishes at the “correct” cor-
ners, and even boundaries of the empty spaces are shown almost perfectly.
The only caveat is the small hill near the Illiteracy X2 = 1.2 and small
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FIGURE 6.12. Contour plot of a rescaled spatial data set “switzerland” and the
corresponding regression estimate. {Any spatial data (a matrix DATAS) defined
on a regular grid may be analyzed. Otherwise a data set should be given by
vectors X1, X2, and Y . Arguments of the estimate are the same as in Figure
6.6.} [DATAS=switzerland, X1=NA, X2=NA, Y=NA, cJ0=4, cJ1=.5, cJT=2,
cJM=2, cB=2, cD=1]

Incomes; it is doubtful and may be explained by the nature of the series
approximation. Overall, for just 50 observations, the result is fabulous.

If the number of Fourier coefficients is reduced by using a smaller cJ0,
then this changes the estimate. As should be expected, the estimate be-
comes smoother and fewer fine details are shown. The case of cJ0 = 2 is
still pretty good. We do not see here the ridge showing Alaska, but on the
other hand the estimate for smallest Incomes is more realistic. The two
last estimates with the smallest cJ0 also show us the main features, but
look at the increased domain of the main hill. For instance, for cJ0 = −1
the estimate vanishes only for Incomes (X1) larger than $6000, while the
estimate with cJ0 = 4 vanishes for incomes larger than $5500.

Figure 6.12 is devoted to analyzing spatial data sets where one of
the main issues is interpolation and smoothing. The considered data set
“switzerland” is measurements of topological heights of Switzerland on 12
by 12 grid. Accuracy of the data is questionable, that is, the data set is
probably contaminated by errors. Thus using the estimator of Section 6.4 is
quite appropriate. The left diagram shows the contour plot of the rescaled
data, and the right one shows the corresponding estimate. The estimate
correctly shows the main inner peak with coordinates (X1 = 4, X2 = 6)
but heights of some peripheral peaks are probably exaggerated.
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6.8 Exercises

6.1.1 Repeat Figure 6.1 with different corner functions. Try to “read” and
compare the three different methods of presentation of surfaces using a
color monitor (do not make hard copies, since it takes too much time).
Which method do you prefer and why?
6.1.2 Choose 4 different triplets of bivariate functions and repeat Figure
6.2 for them. What cutoffs are sufficient for a fair visualization of these
bivariate functions? Where do you prefer to use a cosine approximation
and where a polynomial one?
6.1.3 Verify (6.1.6).
6.1.4 Verify (6.1.7).
6.1.5 Consider the case of a d-variate function that is approximated by a
partial sum with cutoffs J1, . . . , Jd. As in the bivariate case, it is possible to
show that the MISE of a series estimate is proportional to n−1 ∏d

s=1 Js +∑d
s=1 J−2βs

s . Find optimal cutoffs and the corresponding MISE for this
d-variate case.
6.2.1 Show that the estimate (6.2.2) satisfies the relation E{θ̂j1j2} = θj1j2 .
Then, how do we refer to such an estimate?
6.2.2 Verify (6.2.3).
6.2.3 Suggest an extension of the bivariate estimate (6.2.6) to the d-variate
case.
6.2.4 Repeat Figure 6.3 with different values of coefficients of the estimator.
Answer the following questions: (a) What are the most complicated and
the simplest corner densities for estimation? (b) Choose 3 particular corner
densities and find minimal sample sizes that give a “stable” visualization
of the shape of these particular densities.
6.2.5 Draw a sketch of the underlying density used in Figure 6.4. Then
repeat Figure 6.4 with different sample sizes and draw a conclusion about
a minimal sample size that gives a “stable” visualization of this density.
6.3.1 Let P1 be the probability of a wrong decision given that zd is from a
population 1, and let P2 be the probability of a wrong decision given that
zd is from a population 2. Show that the rule (6.3.1) minimizes the total
probability P1 + P2.
6.3.2 Using the notation of Problem 6.3.1, show that the rule (6.3.2) min-
imizes the Bayes error pP1 + (1 − p)P2, where p is the probability that an
observation is from the population 1.
6.3.3 Verify (6.3.3).
6.3.4 Repeat Figure 6.5 with different arguments n, q, t, and estimate.
Then answer the following questions: (a) What are the minimal sample
sizes of training sets for which the learning machine “reliably” mimics the
ideal discrimination rule? (b) How does the parameter q affect the discrim-
inant analysis? (c) What is the role of the parameter t? (d) Which density
estimator would you recommend to use?



6.8 Exercises 257

6.4.1 Explain all 4 steps in establishing (6.4.4).
6.4.2 Is the estimate (6.4.5) unbiased for the parameter θj1j2? Then
suppose that the error ε depends on predictors. Does this change the
answer?
6.4.3 Explain the motivation of the hard-threshold rule used in (6.4.7).
6.4.4 Repeat Figure 6.6 with different arguments, and then answer the
following questions: (a) What corner functions may be “reliably” estimated
based on samples of size 50, 100, 200 given σ = 0.1? (b) Consider σ = 1 and
answer question (a). (c) What is the most complicated regression function
for visualizing its shape among the corner ones for the case of sample size
n = 200? (d) Choose 4 different underlying regression surfaces and find for
them minimal sample sizes that imply a reliable estimation.
6.5.1 Where is the assumption (6.5.2) used?
6.5.2 Verify (6.5.6).
6.5.3 Does the relation (6.5.6) hold if the error ε depends on the predictors?
6.5.4 Verify (6.5.8).
6.5.5 Verify and then explain all the steps in obtaining (6.5.9). Also explain
why the assumption j ≥ 1 is important.
6.5.6 Explain why the suggested procedure of a data-driven estimation
does not require the independence of covariates.
6.5.7 Repeat Figure 6.7 with different arguments including different num-
bers of additive components. Then answer the following questions. (a) For
a chosen set of additive components, what is a minimal sample size that
allows a “reliable” visualization of all the additive functions? (b) Consider
the case of 3 additive functions and the sample size 100. Among the corner
functions, what are the simplest and most difficult triplets for estimation?
6.5.8 Write down and then explain all the steps of a universal estimate.
Hint: Use Sections 4.1, 4.2, and 6.2.
6.5.9 Repeat Figure 6.8 with different additive components. Are there com-
ponents that may be realized from the scattergrams? What sample size is
optimal for such a visualization?
6.5.10 Would you recommend any changes in the values of coefficients of
the estimator used by Figure 6.8?
6.6.1 Explain the notion of a joint, conditional, and marginal density.
6.6.2 Let X and Y be independent. What is fY |X?
6.6.3 Let Y = X + (1 + X2)Z where Z is a standard normal. Find fY |X

and describe it.
6.6.4 Explain (6.6.4).
6.6.5 Write down a universal estimate for a conditional density.
6.6.6 Choose any two coefficients used in Figure 6.10 and then analyze
their effect on the estimates.
6.6.7 Find boundary values of parameters of the noise terms which make
the estimation impossible. How do these values depend on n?



258 6. Estimation of Multivariate Functions for Small Samples

6.7.1 Explore the influence of all the other coefficients of the universal
estimate. Hint: Changing default arguments may be beneficial for such an
analysis.
6.7.2 Consider the hard-threshold estimate (set estimate = ′′h ′′) and
explore it using Figure 6.11.
6.7.3 Choose any other data set (for instance, the other pair of observations
from state.x77 or a pair from air) and analyze the estimates.
6.7.4 Try to find optimal coefficients of the estimate used in Figure 6.12.
6.7.5 Consider another spatial data set and analyze an estimate.

6.9 Notes

Although generalization of most of the univariate series estimators to mul-
tivariate series estimators appears to be feasible, we have seen that serious
problems arise due to the curse of multidimensionality, as it was termed
by Bellman (1961). The curse is discussed in the books by Hastie and Tib-
shirani (1990), Scott (1992), and Silverman (1986). Many approaches have
been suggested aimed at a simplification and overcoming the curse: additive
and partially linear modeling, principal components analysis, projection
pursuit regression, classification and regression trees (CART), multivariate
adaptive regression splines, etc. Many of these methods are supported by
S–PLUS and briefly discussed in the book by Venables and Rippley (1997),
where further references may be found.

6.1 Approximation theory is discussed in the books by Nikolskii (1975),
Temlyakov (1993), and Lorentz, Golitschek, and Makovoz (1996). Donoho
(1997) discusses the case of anisotropic smoothness.

6.2 A book-length discussion of multivariate density estimates (with a
particular emphasis on kernel estimators) is given by Scott (1992). The
asymptotic justification of the series approach is given in Efromovich
(1994b), where spherical data are considered as an example.

6.3 The formulation of the problem and the terminology are due to Fisher
(1936, 1952). The problem is a particular case of a more general theory of
pattern recognition, see the books by Rippley (1996) and Vapnik (1995).

6.4 A review of nonseries estimators may be found in the book by Fan
and Gijbels (1996, Chapter 7). The asymptotic justification of the series
approach is given in Efromovich (1994b).

6.5 A book-length treatment of additive models may be found in Hastie
and Tibshirani (1990). Hart (1997, Section 9.4) discusses an additivity test
that checks the correctness of additive models.

6.6 A kernel estimator of a conditional density is discussed in the book
by Fan and Gijbels (1996, Section 6.2.3).



7
Filtering and Asymptotics

This chapter is primarily devoted to a discussion of asymptotics when the
size of a sample tends to infinity. Nowadays it is customary to study the
asymptotics via a filtering model thanks to the equivalence principle, which
basically says that under certain conditions an asymptotic result proved
for a filtering model also holds for corresponding density, regression, and
spectral density models.

Thus, we begin this chapter with an introduction to a filtering model,
which is also interesting on its own merits and is of primary interest in many
applications including communication systems and econometrics. Both the
cases of large noise (which is equivalent to small sample sizes) and small
noise (which is equivalent to large sample sizes) are discussed in detail,
and all the main asymptotic results are proved. As a result, sifting through
some mathematics, especially in Sections 7.1, 7.3 and 7.4, is required. This
effort will be rewarded by understanding methods for finding asymptoti-
cally sharp and rate optimal estimates for functions and their derivatives.
Section 7.4 discusses methods of adaptive estimation. The multivariate case
is considered in Section 7.5. All other sections are devoted to special topics.

7.1 Recovery of a Signal Passed Through Parallel
Gaussian Channels

In this section we discuss the ideas and results of asymptotic nonparametric
curve estimation theory using the model of the recovery of a signal trans-
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FIGURE 7.1. Parallel Gaussian channels.

mitted via k independent continuous parallel Gaussian channels depicted
in Figure 7.1. The output Yj of the jth channel is equal to the sum of the
input Xj and the Gaussian (normal) noise Zj ,

Yj := Xj + Zj , j = 1, 2, . . . , k. (7.1.1)

Here Z1, . . . , Zk are independent identically distributed (iid) realizations
of a normal random variable Z with zero mean and variance σ2. We shall
refer to Zj as noise. The noise is assumed to be independent of the input
signal. Note that in many channels, including radio and satellite links,
additive noise may be due to a variety of causes. Also recall that by the
central limit theorem (see Appendix A) the cumulative effect of a large
number of small random effects should be approximately normal. Thus the
Gaussian assumption is reasonable in a large number of situations, and this
explains why the model of parallel Gaussian channels is a key example in
information and communication theories.

The relation of this communication system to a curve estimation setting
is as follows. Assume that a continuous-in-time t signal f(t), 0 ≤ t ≤ 1,
can be written as a partial sum

f(t) :=
k∑

j=1

Xjgj(t), 0 ≤ t ≤ 1. (7.1.2)

Here {gj(t), j = 1, 2, . . . , k} is a set of k finite functions from L2([0, 1]),
that is, |gj(t)| < ∞ and

∫ 1
0 g2

j (t)dt < ∞. Recall that we use the notation
ga(t) := (g(t))a. We shall refer to gj(t), j = 1, . . . , k, as coding functions
because they allow one to code a continuous-in-time function (7.1.2) by
the k-dimensional vector (X1, . . . , Xk). Then the communication system
in Figure 7.1 allows one to transmit such a function (signal). It is always
assumed that the set {gj(t)} is known at the receiving end of this commu-
nication system. Then the problem is to recover the input signal f or its
sth derivative f (s) based on k noisy observations Y1, . . . , Yk and the coding
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functions {gj(t)}. Define f (0)(t) := f(t), and then we can always refer to
this problem as estimation of the sth derivative f (s), where s is a natural
number, that is, s = 0, 1, . . ..

Probably the most familiar practical example of the expansion (7.1.2) is
the case where f(t) is band-limited in the frequency domain and gj(x) =
ϕj−1(x) are elements of the classical trigonometric basis defined in (2.4.1).
In this case each channel represents a different frequency and phase. A
similar example is the cosine basis, in which case each channel represents a
different frequency. A more modern example is the case of a wavelet basis,
where each channel corresponds to a specific scale–location.

Two familiar criteria to measure the quality of the restoration of f (s) by
an estimate f̂s are as follows. The first one is global, where the recovery of
f (s)(t) for all t ∈ [0, 1] is taken into account. Here we consider the mean
integrated squared error (MISE) defined as

MISE(f̂s, f
(s)) := E

{∫ 1

0
(f̂s(t) − f (s)(t))2dt

}
. (7.1.3)

The second criterion is pointwise, where the recovery of f(t) only at a
point t0 ∈ [0, 1] is of interest. Here we consider the mean squared error
(MSE) defined as

MSE(f̂s(t0), f (s)(t0)) := E{(f̂s(t0) − f (s)(t0))2}. (7.1.4)

It is apparent that in general both these risks should decrease as the
noise level becomes smaller. The primary aim of this section is to explore
how fast they may decrease. We shall see that the rate of convergence of
these risks dramatically depends on the smoothness of estimated functions
and, of course, s. In this section we shall study two familiar function classes
discussed in detail in Chapter 2: analytic and Lipschitz.

We begin with the case of analytic functions defined via their Fourier
coefficients θj =

∫ 1
0 f(t)ϕj(t)dt. Here {ϕj(t), j = 0, 1, . . .} is the classi-

cal sine–cosine trigonometric basis defined in (2.4.1). An analytic function
space is defined as

Aγ,Q := {f : |θ0| ≤ Q, |θ2j−l| ≤ Qe−γj , l = 0, 1, j = 1, 2, . . .}. (7.1.5)

This class has been introduced and discussed in Section 2.4; see (2.4.20).
Here let us just briefly recall that there are plenty of interesting examples of
such functions. For instance, if a circular random variable is contaminated
by a normal error, the noisy random variable has an analytic density. An-
other example is the spectral density of a causal ARMA process. Also recall
that these functions are extremely smooth and infinitely differentiable.

Below we formulate the main results about estimation of analytic func-
tions. Recall that the notions of a supremum, infimum, and minimax risk
are explained in Appendix A, and the minimax approach is also discussed
below in Remark 7.1.1; oσ(1) denotes (in general different) sequences that
tend to 0 as σ → 0, and �x� denotes the rounded-down x.
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Theorem 7.1.1 Let a signal f(t) =
∑∞

j=0 θjϕj(t), 0 ≤ t ≤ 1, be trans-
mitted by setting Xj := θj−1, j = 1, 2, . . . , k, via the parallel Gaussian
channels (7.1.1) where Zj are iid normal N(0, σ2), 0 < σ < 1. Then, for
any s = 0, 1, . . . and t0 ∈ [0, 1], and regardless of how large the number k of
parallel channels is, the following lower bounds for the minimax risks hold:

inf
f̃s

sup
f∈Aγ,Q

MSE(f̃s(t0), f (s)(t0)) ≥ Ps,γ (ln(σ−1))2s+1σ2(1+oσ(1)), (7.1.6)

inf
f̃s

sup
f∈Aγ,Q

MISE(f̃s, f
(s)) ≥ Ps,γ (ln(σ−1))2s+1σ2(1+oσ(1)), (7.1.7)

where

Ps,γ := 2(2π)2s(2s + 1)−1γ−2s−1, (7.1.8)

and the infimum is taken over all possible estimators f̃s based on both the
output signals Y1, . . . , Yk and the parameters σ, γ, and Q.

Moreover, set Jγ := 2�γ−1 ln(σ−1)� + 1, and let the number of available
channels k be at least Jγ . Then the projection estimator,

f̂(t) :=
Jγ∑

j=1

Yjϕj−1(t), (7.1.9)

is a versatile sharp minimax estimator, that is,

sup
f∈Aγ,Q

MSE(f̂ (s)(t0), f (s)(t0)) = Ps,γ (ln(σ−1))2s+1σ2(1+oσ(1)), (7.1.10)

sup
f∈Aγ,Q

MISE(f̂ (s), f (s)) = Ps,γ (ln(σ−1))2s+1σ2(1 + oσ(1)). (7.1.11)

In other words, the lower bounds (7.1.6)–(7.1.7) are asymptotically (as σ →
0) sharp and attainable by the sth derivative of the projection estimate.

This proposition is an example of what the asymptotic theory is about,
namely, it allows one to find best estimators and understand how well func-
tions (and their derivatives) from large function classes may be estimated
(recovered). Note that both rates and optimal constants for MSE and MISE
convergences are established.

Remark 7.1.1 Game Theory and Minimax. It may be convenient to
think about both the setting of Theorem 7.1.1 and the minimax approach in
terms of concepts of the game theory. We may think that nature (player I)
chooses a function f(t) =

∑k
j=1 Xjϕj−1(t), and the statistician (player II),

based on the noisy observations Y1, . . . , Yk, tries to estimate f(t). Nature’s
strategies or choices are {Xj} (and in some cases coding functions as well),
while the statistician’s strategies or choices are f̂(t). The lower bounds
(7.1.6)–(7.1.7) tell us that nature’s choice may be such that best strategies
of the statistician cannot lead to smaller risks. On the other hand, regardless
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of nature’s choices, the statistician can use the projection estimate, which is
the best strategy against smartest plays made by nature, and guarantee the
accuracy (7.1.10)–(7.1.11). In other words, a minimax approach is based on
the greatest respect to nature (player I) by assuming that nature employs
only optimal strategies and never makes mistakes.

Proof of Theorem 7.1.1 We begin with establishing the lower bounds
(7.1.6)–(7.1.7). First, let us recall one classical result of parametric
estimation theory; see the sketch of proof in Exercise 7.1.3.

Lemma 7.1.1 Let Y := θ + σξ, where θ ∈ [−cσ, cσ] is an estimated
parameter, c and σ are positive constants, and ξ is a standard normal
random variable. Then there exists a random variable Θ independent of ξ
with the density supported on [−cσ, cσ] such that

inf
θ̃

sup
θ∈[−cσ,cσ]

E{(θ̃ − θ)2} ≥ inf
θ̃

E{(θ̃ − Θ)2} ≥ µ(c)c2

1 + c2 σ2. (7.1.12)

Here the infimum is taken over all possible estimates θ̃ based on the triplet
(Y, c, σ), and the Ibragimov–Khasminskii function µ(c) is such that µ(c) ≥
0.8 and µ(c) → 1 as c → 0 or c → ∞.

We use this lemma to establish the following proposition. Define a func-
tion class D(c, k) := {f : f(t) =

∑k
j=1 Xjgj(t), Xj ∈ [−cσ, cσ], j =

1, . . . , k}. Note that this class includes all possible signals transmitted via
k parallel channels whose entries may have absolute values not larger than
cσ. Also, recall that the coding functions gj are finite and square integrable.

Lemma 7.1.2 Consider the communication system (7.1.1) depicted in
Figure 7.1 and satisfying the assumptions of Theorem 7.1.1. Suppose that
all the coding functions {gj(t), j = 1, 2, . . . , k} are s-fold differentiable and
all the derivatives are finite. Also suppose that a function f(t) ∈ D(c, k),
0 ≤ t ≤ 1, is transmitted as explained in Theorem 7.1.1. Then

inf
f̃s(t0)

sup
f∈D(c,k)

MSE(f̃s(t0), f (s)(t0)) ≥ µ(c)c2σ2

1 + c2

k∑
j=1

(g(s)
j (t0))2, (7.1.13)

inf
f̃s

sup
f∈D(c,k)

MISE(f̃s, f
(s)) ≥ µ(c)c2σ2

1 + c2

k∑
j=1

∫ 1

0
(g(s)

j (t))2dt. (7.1.14)

Here µ(c) is the Ibragimov–Khasminskii function introduced in Lemma
7.1.1, and the infimum is taken over all possible estimates f̃s(t) based on
output signals (Y1, . . . , Yk) and parameters c and σ.

Proof of Lemma 7.1.2 It suffices to look after best estimates among a class
of the estimates f̂s(t) =

∑k
j=1 X̂jg

(s)
j (t), where X̂j are statistics based on

all the output signals and parameters c and σ. The last sentence looks quite
reasonable in light of (7.1.1)–(7.1.2); nevertheless, it should be proved, and
we do this at the end of this proof.
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Then, to establish (7.1.13) we write

MSE(f̃s(t0), f (s)(t0)) = E
{[ k∑

j=1

(X̂j − Xj)g
(s)
j (t0)

]2}
. (7.1.15)

Using the fact that a minimax risk is not smaller than a corresponding
Bayes risk and then the equality (A.42) in Appendix A, we may write for
iid Θj , j = 1, 2, . . . , k, distributed as the random variable Θ in Lemma
7.1.1,

sup
f∈D(c,k)

MSE(f̂s(t0), f (s)(t0)) ≥ E{[
k∑

j=1

(E{Θj |(Y1, . . . , Yk)}−Θj)g
(s)
j (t0)]2}.

(7.1.16)
Recall that if Θj is the jth input signal, then Yj = Θj + σξj is the cor-
responding outcome. Here ξj are iid standard normal and independent of
Θ1, . . . ,Θk. This implies that (Θj , Yj) and {Yl, l = 1, . . . , k, l �= j} are
independent. Thus E{Θj |(Y1, . . . , Yk)} = E{Θj |Yj} and

E{[E{Θl|Yl} − Θl][E{Θm|Ym} − Θm]} = 0, l �= m.

In the last line we used the relation E{E{Θl|Yl}} = E{Θl} based on the
definition of conditional expectation; see (A.14) and (A.20) in Appendix
A. Thus we get that

inf
f̃(t0)

sup
f∈D(c,k)

MSE(f̂s(t0), f (s)(t0))

≥
k∑

j=1

E{(E{Θj |Yj} − Θj)2}(g(s)
j (t0))2

≥
k∑

j=1

inf
θ̃j

E{(θ̃j − Θj)2}(g(s)
j (t0))2. (7.1.17)

Then Lemma 7.1.1 yields (7.1.13). A lower bound for the minimax MISE is
established following the same lines of the proof because the MISE is just
the MSE integrated over [0, 1]. Following (7.1.15)–(7.1.17) we write

sup
f∈D(c,k)

MISE(f̂s, f
(s)) = sup

f∈D(c,k)

∫ 1

0
E
{[ k∑

j=1

(X̂j − Xj)g
(s)
j (t)

]2}
dt

≥
∫ 1

0
E
{[ k∑

j=1

(E{Θj |(Y1, . . . , Yk)} − Θj)g
(s)
j (t)

]2}
dt

≥
k∑

j=1

inf
θ̃j

E{(θ̃j − Θj)2}
∫ 1

0
(g(s)

j (t))2dt.

Then (7.1.12) yields (7.1.14).
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To complete the proof of Lemma 7.1.2, let us explain why we can restrict
our attention to the specific estimates f̂s. For the pointwise approach this
is elementary because if, for instance, g

(s)
j (t0) �= 0 (if there is no such

j ∈ {1, 2, . . . , k}, then the assertion (7.1.13) is apparent), then we may set
X̂j = f̃s(t0)/g

(s)
j (t0) and all other X̂l = 0. The case of MISE is also simple.

The projection of an estimate f̃s on the closed linear span of {g
(s)
j , j =

1, 2, . . . , k} either does not change or decreases the MISE (recall Section
2.3 and the projection theorem), and this explains why it suffices to consider
only estimates f̂s that belong to that span. Lemma 7.1.2 is proved.

Lemma 7.1.2 is the key tool to establish lower bounds for minimax risks
over different function spaces because it suffices to find an appropriate class
D(c, k) that belongs to a given function class.

Introduce J := 2 max(1, �γ−1 ln(σ−1)(1 − 1/ ln(ln(σ−1)))�), which is a
“bit” smaller than Jγ and consider Xj ∈ [− ln(σ−1)σ, ln(σ−1)σ] for j =
1, . . . , J . Then a direct calculation together with definition (7.1.5) of the
class Aγ,Q of analytic functions shows that if σ is sufficiently small (more
precisely if ln(σ−1)σ < Qe−γJ/2), then all the signals fJ(t) =

∑J
j=1 Xjϕj(t)

belong to Aγ,Q. Since the number k of channels is arbitrarily large, we
assume that the k is at least J , and therefore we may transmit all the
elements of fJ . Thus we can use (7.1.13) and write

inf
f̃s(t0)

sup
f∈Aγ,Q

MSE(f̃s(t0), f (s)(t0))

≥ inf
f̃s(t0)

sup
{Xj∈[− ln(σ−1)σ,ln(σ−1)σ], j=1,...,J}

MSE
(
f̃s(t0),

J∑
j=1

Xjϕ
(s)
j (t0)

)

≥ µ(ln(σ−1))
[
(ln(σ−1))2/(1 + (ln(σ−1))2)

]
σ2

J∑
j=1

[ϕ(s)
j (t0)]2. (7.1.18)

A calculation based on using the familiar relation cos2(α) + sin2(α) = 1
shows that uniformly over t ∈ [0, 1],

J∑
j=1

[ϕ(s)
j (t)]2 = Ps,γ (ln(σ−1))2s+1(1 + oσ(1)). (7.1.19)

Then (7.1.18), (7.1.19) and the property µ(c) → 1 as c → ∞ imply the
lower bound (7.1.6). The lower bound (7.1.7) for the minimax MISE is
established absolutely similarly, and the proof is left as an exercise.

Now let us establish the upper bounds for risks of the estimator (7.1.9).
Denote by θj :=

∫ 1
0 f(t)ϕj(t)dt the jth Fourier coefficient of a signal f(t),

and recall that Yj := θj−1 +Zj (we count the elements of the trigonometric
basis beginning from 0 and the channels from 1, and this causes that minor
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complication in indices). Recall that Zj are zero-mean and write

MSE(f̂ (s)
Jγ

(t0), f (s)(t0))

= E
{( Jγ∑

j=1

(Yj − θj−1)ϕ
(s)
j−1(t0) +

∑
j>Jγ

θj−1ϕ
(s)
j−1(t0)

)2}

= E
{[ Jγ∑

j=1

Zjϕ
(s)
j−1(t0)

]2}
+
( ∑

j>Jγ

θj−1ϕ
(s)
j−1(t0)

)2
. (7.1.20)

In (7.1.20) the MSE is written as the sum of the variance and the squared
bias terms. To estimate the variance term we use the elementary relation

E
{( m∑

j=1

ηjaj

)2}
= Var

( m∑
j=1

ηjaj

)
= σ2

m∑
j=1

a2
j , (7.1.21)

which holds for any iid η1, . . . , ηm with zero mean and variance σ2 and any
finite constants a1, . . . , am. Together with (7.1.19) this implies

E
{[ Jγ∑

j=1

Zjϕ
(s)
j−1(t0)

]2}
= σ2

Jγ∑
j=1

[
ϕ

(s)
j−1(t0)

]2
= Ps,γ(ln(σ−1))2s+1σ2(1 + oσ(1)). (7.1.22)

The squared bias term is estimated by the following lines:

sup
f∈Aγ,Q

[ ∑
j≥Jγ

θjϕ
(s)
j (t0)

]2
≤ C

[ ∑
j≥Jγ

jse−γj/2
]2

≤ CJ2s
γ e−γJγ ≤ C(ln(σ−1))2sσ2. (7.1.23)

Here and in what follows C denotes (in general different) positive constants.
Using the results in (7.1.20) we get

sup
f∈Aγ,Q

MSE(f̂ (s)
Jγ

(t0), f (s)(t0)) ≤ Ps,γ (ln(σ−1))2s+1σ2(1+oσ(1)). (7.1.24)

Absolutely similarly (just by integration of the right-hand side of (7.1.20)
and then using (7.1.21)–(7.1.23)) we get

sup
f∈Aγ,Q

MISE(f̂ (s)
Jγ

, f (s)) ≤ Ps,γ (ln(σ−1))2s+1σ2(1 + oσ(1)) . (7.1.25)

Since the upper bounds (7.1.24) and (7.1.25) asymptotically coincide
with the lower bounds (7.1.6) and (7.1.7), we conclude that the estimator
f̂

(s)
Jγ

(t) is sharp minimax. This also shows the versatility of this estimator.

In short, if the parameter γ is known, then f̂Jγ
(t) is an ideal estimator

for analytic functions because both the rate and the constant of the risks’
convergences are optimal, derivatives of the optimal estimator of an under-
lying input signal are optimal estimates of the corresponding derivatives of
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the input signal, and the optimal estimator is both pointwise and globally
optimal. This constitutes a beautiful bouquet of asymptotic properties that
are difficult to beat. This remark concludes the proof of Theorem 7.1.1.

Theorem 7.1.1 shows that analytic functions and their derivatives may
be estimated with accuracy just a bit worse (in terms of a logarithmic
factor) than a single parameter. So now let us consider a function class
where nonparametrics takes a much larger toll. We shall discuss a familiar
class of Lipschitz functions with r continuous derivatives such that

|f (r)(u) − f (r)(v)| ≤ L|u − v|α . (7.1.26)

Here 0 < α ≤ 1, and the Lipschitz constant is L < ∞; note that here we
do not assume that f is periodic.

To get lower bounds we can use the characterization of (generalized)
Lipschitz classes via wavelets discussed in Section 2.5. We leave exploring
this approach as Exercise 7.1.9 (it also will be used in Section 7.5). Instead,
here we shall use a self-contained method of the proof.

First of all, let us begin with some notions. We say that f is locally
Lipschitz at a point t0 if (7.1.26) holds for u and v in some vicinity of
t0. This function space we denote by Lipr,α,L(t0). If (7.1.26) holds for all
u, v ∈ A, then we denote this space by Lipr,α,L(A).

Theorem 7.1.2 Consider a signal f(t) :=
∑∞

j=1 θjgj(t), 0 ≤ t ≤ 1,
where {gj} are coding functions. Suppose that this signal is transmitted via
the parallel Gaussian channels (7.1.1) by setting Xj := θj. It is assumed
that the noise in channels is normal N(0, σ2) with 0 < σ < 1. Consider
any s = 0, . . . , r and t0 ∈ [0, 1]. Then, regardless of how large the number
k of the channels, the following lower bounds for the minimax risks hold:

inf
f̃s

sup
f∈Lipr,α,L(t0)

MSE(f̃s(t0), f (s)(t0)) ≥ Cσ4(β−s)/(2β+1), (7.1.27)

inf
f̃s

sup
f∈Lipr,α,L([0,1])

MISE(f̃s, f
(s)) ≥ Cσ4(β−s)/(2β+1). (7.1.28)

Here β := r + α, the supremum over f means that the supremum over the
corresponding {θj} and {gj} is considered, and the infimum is taken over
all possible estimators f̃s based on outputs (Y1, . . . , Yk), the coding functions
{gj}, and parameters r, α, L, and σ.

Estimators that attain these lower bounds will be considered in Section
7.3.

Proof of Theorem 7.1.2 Consider a function m(t) = e−1/(1−4x2)I{x∈[− 1
2 , 1

2 ]}
infinitely differentiable on the real line; see Figure 7.2. Such exceptionally
smooth functions with bounded support are called mollifiers.

We shall use this mollifier as a building block to construct coding func-
tions. We do this, as in the construction of a wavelet basis, by dilation
and translation, only here all will be essentially simpler because either one
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FIGURE 7.2. A mollifier.

coding function is used for the analysis of MSE or a single resolution level
of coding functions is used for the analysis of MISE.

First, consider the lower bound for the minimax MSE. Set g1(t) :=
2J/2 m((t − ts,J )2J), where J := �(2β + 1)−1 log2(σ−2)� and the sequence
of points ts,J is such that |m(r)((t0 − ts,J )2J)| ≥ c∗ > 0. Note that, for
instance, t1,J = t0 cannot be used, because m(1)(0) = 0, but if ts is a
point such that |m(s)(ts)| ≥ c∗ > 0, and such a point always exists for a
sufficiently small c∗, then we may set ts,J = t0 − ts2−J .

Then, let us check that f1(t) := X1g1(t) belongs to Lipr,α,L(t0) if
X1 ∈ [−cσ, cσ] with a sufficiently small positive constant c. First, note
that the mollifier m(t) belongs to the Lipschitz space Lipr,α,Lr

( (−∞,∞) )
with some finite Lipschitz constant Lr. Second, recall the chain rule
for differentiation of a composite function, which implies that the lth
derivative of the function m(c(t − a)) may be calculated by the formula
dlm(c(t − a))/dtl = clm(l)(c(t − a)). This rule yields

g
(l)
1 (t) = 2(l+1/2)Jm(l)((t − ts,J )2J), l = 0, 1, . . . . (7.1.29)

Using these results we write

|f (r)
1 (u) − f

(r)
1 (v)| ≤ |X1||g(r)

1 (u) − gr
1(v)|

≤ |X1|2(r+1/2)J |m(r)((u − ts,J )2J) − m(r)((v − ts,J )2J)|
≤ cσ2(r+1/2)JLr|(u − v)2J |α ≤ [cLrσ2(2β+1)J/2]|u − v|α. (7.1.30)

For σ < 1 we get σ2(2β+1)J/2 ≤ 1; thus any c ≤ L/Lr implies f1 ∈
Lipr,α,L(t0). Then, using (7.1.13) with k = 1, (7.1.29), and definitions of J
and ts,J , we get

inf
f̃s(t0)

sup
f∈Lipr,α,L(t0)

MSE(f̃s(t0), f (s)(t0))

≥ inf
f̃s(t0)

sup
f∈D(c,1)

MSE(f̃s(t0), f (s)(t0)) ≥ Cσ2(g(s)
1 (t0))2

= Cσ2[2(2s+1)J/2 m(s)((t0 − ts,J )2J)
]2

≥ Cσ2σ−(4s+2)/(2β+1) = Cσ4(β−s)/(2β+1).



7.1 Recovery of a Signal Passed Through Parallel Gaussian Channels 269

The lower bound (7.1.27) is established. Note that only one channel has
been used in the proof, so, using the terminology of Remark 7.1.1, nature
may make its best game by using only one coding function whose magnitude
is unknown to the statistician.

Now let us consider a lower bound for the minimax MISE. Here we use
k := 2J − 1 coding functions and

fk(t) :=
k∑

j=1

Xjgj(t), where gj(t) := 2J/2m(2J t − j). (7.1.31)

If Xj ∈ [−cσ, cσ] with a sufficiently small c, then absolutely similarly to
(7.1.30) we verify that fk(t) ∈ Lipr,α,L([0, 1]) (Exercise 7.1.13). Also, using
(7.1.29) we get that

∫ 1
0 (g(s)

j (t))2dt ≥ Cσ−4s/(2β+1). Then,

inf
f̃s

sup
Lipr,α,L([0,1])

MISE(f̃s, f
(s)) ≥ inf

f̃s

sup
f∈D(c,k)

MISE(f̃s, f
(s))

≥ Cσ2
k∑

j=1

∫ 1

0
(g(s)

j (t))2dt ≥ Cσ22Jσ−4s/(2β+1)

≥ Cσ2σ−2/(2β+1)σ−4s/(2β+1) = Cσ4(β−s)/(2β+1).

Theorem 7.1.2 is proved.

Remark 7.1.2 Special Features. When a lower bound for minimax
risks is studied, it is often desirable to reduce an underlying function space
to incorporate some additional restrictions. For instance, signals may be
positive, bounded, periodic, or monotone. The above-proposed proofs allow
us to consider such settings rather straightforwardly. Indeed, in the proofs
all the function spaces D(c, k) were spaces of 1-periodic and bounded func-
tions. Only some minor modifications are needed for the case of positive
or monotone functions. For instance, consider the case of positive func-
tions (like densities) on [0, 1] and the last proof for Lipschitz functions and
the MSE. We considered a subclass of functions f(t) = X1g1(t) such that
maxt |f(t)| = oσ(1). Thus, if instead of using only 1 channel we add a sec-
ond one and choose X2 = 1 and a corresponding sufficiently smooth coding
function g2(t) bounded from below on [0, 1], then X1g1(t) + g2(t) will be
positive on [0, 1] whenever σ is sufficiently small. Absolutely similarly, for
the case of monotone functions one extra monotone coding function should
be introduced. In short, if f satisfies a restriction, then in the course of find-
ing a lower bound all the fk(t) =

∑k
j=1 Xjgj(t) ∈ D(c, k) should satisfy

this restriction. Because both {Xj} and the coding functions {gj} may be
typically chosen with great flexibility, natural restrictions like periodicity
or monotonicity are easily incorporated.

Remark 7.1.3 Local Minimax. This remark continues the discussion
of the previous one, only here the notion of a local minimax is the objec-
tive. All minimax risks considered in this section were global over a function
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space, i.e., the supremum was taken over the whole function space. Using
the terminology of Remark 7.1.1, this implies that nature may choose any
function from that space to beat the statistician. In practice it is often more
reasonable to think that an underlying function belongs to some vicinity
of a particular function f∗, for instance, we consider only f such that
maxt |f(t) − f∗(t)| < δσ where δσ → 0 as σ → 0. In this case the minimax
approach is called local. The only new issue in the analysis of a local mini-
max is the lower bound. Here the approach of Remark 7.1.2 works perfectly:
Introduce a new first coding function g1(t) := f∗(t) and set X1 := 1. Then
the proofs may be straightforwardly repeated. In particular, if δσ > σ2/3,
then the result of Theorem 7.1.1 holds for the local minimax, where the
supremum is taken over f ∈ Aγ,Q ∩ {ψ : maxt∈[0,1] |ψ(t) − f∗(t)| < δσ }.
The proof is left as Exercise 7.1.16.

Remark 7.1.4 Efficient Estimation. The assertion of Theorem 7.1.2
is about rates of risk convergence, while the assertion of Theorem 7.1.1 is
about both rates and sharp constants of risk convergence. As in classical
parametric theory, an estimate whose risk attains both optimal rate and
a sharp constant is called (asymptotically) efficient. It is possible to go
further and explore a subclass of efficient estimates whose risks converge
with optimal constant and rate of the second order in σ. As a result, a best
estimator among efficient estimators may be found. Let us consider a par-
ticular example of estimation of the integral functional F (t) :=

∫ t

0 f(x)dx
(note that F is the cumulative distribution function for a density model).
The claim is that under the assumption of Theorem 7.1.1 for any t0 ∈ (0, 1),

inf
F̃

sup
f∈Aγ,Q

MSE(F̃ (t0), F (t0)) ≥ σ2
(
t0 − γ + oσ(1)

π2 ln(σ−1)

)
, (7.1.32)

and the estimate F̂ (t) :=
∫ t

0 f̂(x)dx, where f̂ is defined in (7.1.9), is second-
order efficient, i.e.,

sup
f∈Aγ,Q

MSE(F̂ (t0), F (t0)) = σ2
(
t0 − γ + oσ(1)

π2 ln(σ−1)

)
. (7.1.33)

The proof of this assertion is left as Exercise 7.1.17, where a detailed hint
is given. Note that this example adds one more nice property to the pro-
jection estimate (7.1.9), namely, it is not only versatile in the sense that
its derivatives are efficient estimates of the derivatives, but its integral is
a second-order efficient estimate of the corresponding integral functional.
The case of MISE is left as Exercise 7.1.18.

Remark 7.1.5 Bayesian Approach. Let us assume that in (7.1.1) the
input signals are independent random variables. Then, according to (A.40)
(see Appendix A) a Bayes estimator,

f̂B(t) :=
k∑

j=1

E{Xj |Yj}gj(t) , (7.1.34)



7.2 Filtering a Signal from White Noise 271

minimizes both Bayes MISE and Bayes MSE, in short, BMISE and BMSE.
Here BMISE(f̂ , f) := E{∫ 1

0 (f̂(t) − ∑k
j=1 Xjgj(t))2}, and BMSE is de-

fined similarly. Note that this assertion holds for any independent parallel
channels (not necessarily Gaussian).

If the channels are Gaussian and Xj are normal N(0, ν2
j ), then according

to Example A.27 the Bayes estimate f̂B becomes the Wiener filter,

f̂W (t) =
k∑

j=1

ν2
j

ν2
j + σ2 Yjgj(t). (7.1.35)

Moreover, it is not difficult to calculate the risks of f̂W . For instance, let
{gj} be the sine-cosine basis, ν2

2j+1 = ν2
2j , j = 1, 2, . . . and k is odd. Then

BMISE(f̂W , f) = BMSE(f̂W (t0), f(t0)) = σ2
k∑

j=1

ν2
j

ν2
j + σ2 . (7.1.36)

Suppose that σ is sufficiently small, and let us give two examples of
ν2

j that explain the relationship between the minimax and Bayesian ap-
proaches. First, let ν2

j be proportional to e−2γj ; then an appropriate choice
of k implies that the BMISE decreases as the right-hand side of (7.1.11).
Second, let ν2

j be proportional to j−2β−1; then an appropriate choice of k
implies that the BMISE decreases proportionally to the right-hand side of
(7.1.28). Thus, asymptotically these prior distributions “mimic” the min-
imax estimation of analytic and Lipschitz functions. Verification of the
calculations is left as Exercise 7.1.20.

7.2 Filtering a Signal from White Noise

The objective of this Section is to discuss a mathematically fruitful gen-
eralization of the communication system (7.1.1) in which the number k of
parallel channels becomes infinity. There are two particular benefits from
this generalization. The first one is that we will be able to introduce an
important notion of a Brownian motion and a continuous-in-time filtering
model. The second one is that we will be able to introduce the principle
of equivalence between that communication system and statistical models
discussed in the previous chapters.

We begin the discussion with a filtering model and a Brownian motion.
Consider the system depicted in Figure 7.1 where Zj are iid normal

N(0, σ2). Because in this section we use only the classical sine–cosine
trigonometric basis {ϕj , j = 0, 1, . . .}, we assume that the channels are
numerated from 0 to k − 1 instead of 1 to k. Set fk(t) :=

∑k−1
j=0 θjϕj(t),

0 ≤ t ≤ 1, and note that θj =
∫ 1
0 ϕj(t)fk(t)dt are the Fourier coefficients of
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fk. This continuous-in-time signal can be transmitted by the system (7.1.1)
if we set Xj := θj , j = 0, 1, . . . , k − 1.

Then the corresponding continuous-in-time output signal yk(t) may be
defined as

yk(t) :=
k−1∑
j=0

Yjϕj(t). (7.2.1)

Such an idea of thinking about k discrete outputs {Yj} as the Fourier co-
efficients of a continuous-in-time output signal yk(t) looks rather attractive;
after all, yk(t) is an unbiased estimate of the transmitted fk(t).

However, a serious complication arises as k increases. Write

yk(t) = fk(t) +
k−1∑
j=0

Zjϕj(t) =: fk(t) + W ∗
k (t),

and consider the stochastic term W ∗
k (t). For any particular moment in

time t this term is a normal random variable with mean zero and (if k is
odd) variance σ2k because

∑k−1
j=0 ϕ2

j (t) = k for the classical trigonometric
elements (recall that ϕ2j−1(t) = 21/2 sin(2πjt) and ϕ2j(t) = 21/2 cos(2πjt),
so ϕ2

2j−1(t) + ϕ2
2j(t) = 2 for j = 1, 2, . . .). Thus, if k increases, then this

stochastic term just blows up.
To avoid this complication, we use the following simple trick. Let us in-

stead of matching a continuous-in-time input signal fk(t) match its integral∫ t

0 fk(u)du. This integral is again a continuous-in-time signal, and the cor-
responding continuous-in-time output signal is Yk(t) :=

∫ t

0 yk(u)du. To see
why this approach is better, write

Yk(t) =
∫ t

0
fk(u)du +

k−1∑
j=0

Zj

∫ t

0
ϕj(u)du =:

∫ t

0
fk(u)du + B∗

k(t). (7.2.2)

Since Zj are zero-mean random variables, we get that Yk(t) is an unbiased
estimate of

∫ t

0 fk(u)du. Also, the stochastic term B∗
k(t) for a given time t

is a normal random variable with mean zero and variance

Var
(
B∗

k(t)
)

= σ2
k−1∑
j=0

(∫ t

0
ϕj(u)du

)2
. (7.2.3)

This variance, as a sequence in k, has two nice properties: It is always
less than σ2t, and it tends to σ2t as k → ∞. Let us verify these properties
using the Parseval identity (2.3.11). Set pt(u) := I{0≤u≤t} and write

t =
∫ 1

0
p2

t (u)du =
∞∑

j=0

(∫ 1

0
pt(u)ϕj(u)du

)2
=

∞∑
j=0

(∫ t

0
ϕj(u)du

)2
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=
k−1∑
j=0

(∫ t

0
ϕj(u)du

)2
+
∑
j≥k

(∫ 1

0
pt(u)ϕj(u)du

)2
.

This implies the above-formulated properties of Var(B∗
k(t)).

As we see, for a fixed time t the stochastic term B∗
k(t) converges to a

normal random variable N(0, σ2t) as k → ∞. Thus, at least formally, we
can consider the limit of B∗

k(t) as k → ∞. Denote this limit by B∗(t) and
call it a Brownian motion on [0, 1]. A so-called standard Brownian motion
is obtained by using standard normal Zj , i.e., σ2 = 1, and we denote it by
B(t). It is possible to show that a Brownian motion (the limit) does not
depend on an underlying basis in L2(0, 1); see Exercise 7.2.4. Properties of
a Brownian motion are formulated in Exercise 7.2.3. (These properties are
customarily used to define a Brownian motion, and then our approach is
used as an example that shows how this process may be generated.)

If we denote by Y (t) the formal limit of Yk(t) as k → ∞, then we can
compactly write that the input signal f(t) satisfies any of the following two
stochastic equations:

Y (t) =
∫ t

0
f(u)du + σB(t), 0 ≤ t ≤ 1, (7.2.4)

or

dY (t) = f(t)dt + σdB(t), 0 ≤ t ≤ 1. (7.2.5)

Here Y (t), 0 ≤ t ≤ 1, is called an observed (continuous-in-time) signal.
Also, just formally, the derivative W (t) := dB(t)/dt is called a standard
white Gaussian noise.

The white noise is a pure mathematical notion. Indeed, a white noise
W ∗(t) :=

∑∞
j=0 Zjϕj(t) has the same power at all frequencies (this ex-

plains the name “white”). Thus its total power is infinity, and no physical
system can generate a white noise. On the other hand, its frequency-limited
version W ∗

k (t) =
∑k−1

j=0 Zjϕj(t) has a perfect physical sense, and at least
theoretically, W ∗

k (t) may be treated as W ∗(t) passed through an ideal low-
pass rectangular filter. This explains why a white noise is widely used in
communication theory.

A mathematical model where a continuous-in-time input signal f(t) sat-
isfies stochastic equation (7.2.4) or (7.2.5) is called an observation of a
signal in a white Gaussian noise, and the problem of estimation (recovery)
of a signal f is called filtering a signal from a white Gaussian noise. Also,
the stochastic equations (7.2.4)–(7.2.5) mean that outputs Yj of parallel
Gaussian channels can be written as

Yj =
∫ 1

0
ϕj(u)dY (t) = Xj + σZ ′

j , j = 0, 1, . . . , (7.2.6)

where here Z ′
j are iid standard normal. And conversely, if Y0, Y1, . . . are

outputs of the channels, then Y (t) =
∑∞

j=0 Yj

∫ t

0 ϕj(t)dt.
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Let us look at some realizations of a truncated (in the frequency domain)
Brownian motion (denote iid standard normal variables by ξj)

B∗(t, k, n, d) := (d/n)1/2
k−1∑
j=0

ξj

∫ t

0
ϕj(u)du, (7.2.7)

and the corresponding truncated white Gaussian noise

W ∗(t, k, n, d) := (d/n)1/2
k−1∑
j=0

ξjϕj(t). (7.2.8)

These stochastic processes are often referred to as frequency-limited; the
notion is clear from the fact that no high frequencies are present. Note that
we use both the parameter d and the parameter n in the definition instead
of just σ = (d/n)1/2. The reason is that, as we shall explain later, for the
equivalent models of density estimation and nonparametric regression, d
plays the role of the coefficient of difficulty and n plays the role of the
sample size. Moreover, if we repeat n times the transmission of a signal via
k parallel Gaussian channels with σ2 = d and then average the outputs,
the corresponding mathematical model may be written using a frequency-
limited Brownian motion (7.2.7) or a frequency-limited white noise (7.2.8).

The top row of diagrams in Figure 7.3 shows three particular realizations
of a frequency-limited (k = 100) Brownian motion (7.2.7) with d = 1 and n
shown in the subtitles. The bottom row of diagrams shows the correspond-
ing frequency-limited white noise. As we see, realizations of a Brownian
motion may have very different shapes and create an illusion of pronounced
trends or seasonal components (recall the discussion in Chapter 5). Thus,
for instance, it is not a surprise that many Wall Street pundits think that
Brownian motion is an excellent (and the only realistic) model for stock
and bond prices. Indeed, we see a bear market (the left diagram), a market
in transition (the middle diagram), and a bull market. However, all these
realizations are purely stochastic, and here we know this for sure.

Below each Brownian motion the corresponding white noise is depicted.
Note that here we consider a continuous-in-time white noise (a stochastic
process with continuous time), whereas in Chapter 5 we discussed a discrete
white noise (a time series with discrete time). It is extremely beneficial
to spend some time playing around with this figure and getting used to
possible patterns of Brownian motions and white noise.

Now let us return to the mathematical problem of filtering a signal from
a white noise for models (7.2.4) or (7.2.5). The Fourier coefficients of the
signal f may be estimated by

θ̂j :=
∫ 1

0
ϕj(t)dY (t) = θj + σξj . (7.2.9)

If we knew the parameter σ, then we could use the universal estimator
of Section 3.1 by setting the sample size n equal to the rounded-up σ−2.
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FIGURE 7.3. Realizations of a frequency-limited Brownian motion (7.2.7) and
the corresponding white noise (7.2.8). {The argument set.n controls the set of
n.} [set.n = c(50,100,100), k=100, d=1]

(Recall that for the general setting of a density estimation with coefficient
of difficulty d and sample size n the formal equality d/n = σ2 holds.) There
is no way to estimate σ2 without some additional assumptions. Probably
one of the most reasonable assumptions, based on the results of Chapter
2, is that an underlying signal f(t) has small power at high frequencies,
that is, θ2

j are small for large j. Then, if (7.2.9) holds for all j ≤ k and k is
sufficiently large (recall that (7.2.7)–(7.2.8) are mathematical approxima-
tions of some real stochastic processes that are always frequency-limited,
so (7.2.9) typically holds only for low frequencies), then a sample variance

σ̂2 := m−1
k∑

j=k−m+1

θ̂2
j (7.2.10)

may be used as an estimate of σ2 by choosing a reasonable m.
Figure 7.4 illustrates the performance of this universal data-driven esti-

mator. The underlying transmitted signals are our corner functions. The
noise is generated by a frequency-limited Brownian motion defined at
(7.2.7) and illustrated in Figure 7.3, so we know what this motion and
the corresponding white noise look like. The filtering model may be consid-
ered as an analogue to all the other statistical models, and to get a “feeling”
of those models just choose a corresponding coefficient of difficulty d and
a sample size n. In particular, in this figure the case of d = 1 (which is the
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FIGURE 7.4. Filtering a signal from a frequency-limited (k = 100) white Gaus-
sian noise by the universal estimate. The underlying signals are shown by solid
lines. Dotted, short-dashed, and long-dashed lines correspond to the sample sizes
50, 100, and 200. The variance σ2 := d/n is estimated by (7.2.10) with m = 30;
the parameters d = 1 and k = 100. {Recall that the caption of Figure 3.2 reviews
the coefficients of the universal estimate.} [set.n=c(50,100,200), d=1, k=100,
m=30, cJ0 = 4, cJ1 = .5, cJM = 6, cT = 4, cB = 2]

coefficient of difficulty for the classical density and homoscedastic regres-
sion models with additive standard normal errors) and our traditional set
50, 100, and 200 of sample sizes are considered.

As we see, the particular estimates resemble those obtained for the equiv-
alent settings in the previous chapters. The case of the Uniform signal and
n = 100 is especially interesting. Note that here all θj are equal to 0, ex-
cept that θ0 = 1. And look at that peculiar “signal” (the short-dashed
line) created by the white noise. Here σ = 1/

√
100 = 0.1, and this looks

like a small standard deviation, but as we see (and as we know from Figure
7.3) a Brownian motion may present surprises. Also note that outcomes
depend on an underlying function. The same level of noise causes no prob-
lems in recognizing the “bright” signals, like the Delta, whose low-frequency
Fourier coefficients are huge in comparison to this noise, and at the same
time it causes problems in recognizing “dull” functions like the Uniform or
the Angle whose low-frequency coefficients are relatively small.

Now let us return to the asymptotics. First, note that the asymptotic
lower and upper bounds for the minimax MSE and MISE obtained in Sec-
tion 7.1 are also valid for the filtering model because no assumption on
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the boundedness of k has been made. On the other hand, since equations
(7.2.4)–(7.2.5) are the same for any basis {gj} in L2([0, 1]) (see Exercise
7.2.4), we may use the approach of Section 7.1 for any system of coding
functions that is a basis. This is one of many examples that shows why a
mathematical generalization may be so fruitful.

Second, a so-called principle of equivalence says that if a risk with a
bounded loss function is considered, then, under mild assumptions on the
smoothness of f , all results that are valid for the filtering model are also
valid for other statistical models including probability density estimation,
regression, and spectral density estimation. We discussed earlier the tech-
nical part of the equivalence, namely, that σ2 = d/n. In other words, the
power of a noise in a particular channel mimics the ratio between the co-
efficient of difficulty and the sample size. There is no need for us to go
into more detail about this principle, because we shall use (without proof)
only one of its corollaries. Namely, under the assumption that an under-
lying function f is Sobolev or Lipschitz with the parameter of smoothness
β = r+α > .5 or under the assumption that an underlying function is ana-
lytic, the lower bounds obtained in Section 7.1 hold for the other equivalent
statistical models as well, except for a local MSE result discussed below.

Remark 7.2.1 For the case of a local minimax, discussed in Remark
7.1.3, the corresponding density model is locally equivalent to the filtering
model dY (t) = f(t)dt + (f∗(t)/n)1/2dB(t), 0 ≤ t ≤ 1. Assuming that
f∗(t) > C > 0, no changes occur for the MISE, but an extra factor f∗(t0)
appears in the sharp constant of MSE convergence (Exercise 7.2.10).

In the next section we shall discuss simultaneously the upper bounds for
three statistical models, and this will be a convincing example to support
the principle of equivalence.

7.3 Rate Optimal Estimation When Smoothness Is
Known

In this section we simultaneously study three statistical models: (i) filtering
model where one observes a continuous-in-time output signal Y (t),

Y (t) =
∫ t

0
f(u)du + n−1/2B(t), 0 ≤ t ≤ 1, (7.3.1)

and B(t) denotes a standard Brownian motion; (ii) density estimation
model where n iid observations X1, X2, . . . , Xn are drawn from a dis-
tribution with a density f(x) supported on [0, 1]; (iii) random design
nonparametric regression where n pairs {(Xl, Yl), l = 1, . . . , n} are ob-
served, the responses Yl := f(Xl) + ξl where f is an estimated regression
function, the predictors X1, . . . , Xn are iid uniform on [0, 1], and additive
errors ξ1, . . . , ξn are iid standard normal.



278 7. Filtering and Asymptotics

Suppose that a function f (which may be either a signal, a probability
density, or a regression function) belongs to a Lipschitz function space
Lipr,α,L of 1-periodic functions defined at (2.4.13) in Section 2.4. Recall
that r is a nonnegative integer, α ∈ (0, 1], and L < ∞. Then Theorem 7.1.1
together with Remark 7.1.2 and the equivalence principle (introduced at the
end of Section 7.2) implies the following lower bound for the minimax risks
of estimation of the sth derivative whenever the parameter of smoothness
β := r + α is greater than 0.5:

inf
f̃s(t0)

sup
f∈Lipr,α,L

MSE(f̃s(t0), f (s)(t0)) ≥ Cn−2(β−s)/(2β+1), (7.3.2)

inf
f̃s

sup
f∈Lipr,α,L

MISE(f̃s, f
(s)) ≥ Cn−2(β−s)/(2β+1). (7.3.3)

The aim of this section is to show that if the parameter of smoothness
β is known, then the same estimator is rate optimal (attains these lower
bounds with perhaps different constants C) for all the statistical models.
Recall that C denotes positive and in general different constants.

Let {ϕj , j = 0, 1, . . .} be the trigonometric basis (2.4.1), J :=
2�n1/(2β+1)�, and denote by θj :=

∫ 1
0 ϕj(u)f(u)du the jth Fourier

coefficient of f .
Also, let θ̂j denote an estimator of θj . Specific estimators for each model

will be defined later.
For the case of the global risk MISE we may use the projection estimator

f̂(x) :=
J∑

j=0

θ̂jϕj(x). (7.3.4)

To have the same estimator for the cases of both the global risk MISE
and the local risk MSE, we “smooth” a projection estimator and use

f̃(x) := V̂J(x), (7.3.5)

where V̂J(x) is the de la Vallée Poussin sum (2.4.11) with the Fourier
coefficients θj being replaced by the estimates θ̂j .

Our first step is to prove the following proposition.

Theorem 7.3.1 Let the mean squared error of an estimator θ̂j decrease
with the parametric rate n−1 uniformly over 0 ≤ j ≤ J , that is,

E{(θ̂j − θj)2} ≤ Cn−1, 0 ≤ j ≤ J. (7.3.6)

Then, for any s = 0, . . . , r the sth derivative of a projection estimate (7.3.4)
is globally rate optimal, that is, its MISE attains (up to a constant) the
lower bound (7.3.2), namely,

sup
f∈Lipr,α,L

MISE(f̂ (s), f (s)) ≤ Cn−2(β−s)/(2β+1). (7.3.7)



7.3 Rate Optimal Estimation When Smoothness Is Known 279

The de la Vallée Poussin estimate (7.3.5) also satisfies (7.3.7), that is, it
is globally rate optimal. If additionally the estimate θ̂j is unbiased, that is,

E{θ̂j} = θj , 0 ≤ j ≤ J, (7.3.8)

and for any sequence of uniformly bounded numbers a0, a1, . . . , aJ

E

{( J∑
j=0

(θ̂j − θj)bjsaj

)2
}

≤ CJ2s+1n−1, (7.3.9)

where

bjs :=
[ ∫ 1

0

(
ϕ

(s)
j (t)

)2
dt

]1/2

, (7.3.10)

then the sth derivative of the estimate (7.3.5) is pointwise rate optimal,
that is, for any x0 ∈ [0, 1] its MSE attains (up to a constant) the lower
bound (7.3.3), namely,

sup
f∈Lipr,α,L

MSE(f̃ (s)(x0), f (s)(x0)) ≤ Cn−2(β−s)/(2β+1). (7.3.11)

In words, this proposition tells us that under mild assumptions, namely,
if the Fourier coefficients can be estimated with the parametric rate n−1 in
addition to some minor assumptions for the case of the pointwise approach,
the estimator (7.3.5) is both globally and pointwise rate optimal for any
underlying model (filtering, probability density, etc.), and the projection
estimator (7.3.4) is globally rate optimal for all these models. Also, the
estimates are versatile because their derivatives are rate optimal estimates
of the corresponding derivatives of an estimated function. This result is
exactly in the spirit of the principle of equivalence that essentially says
that a good solution for one model should also be a good solution for other
models.

Let us first prove this assertion (the proof is plain) and then show how
to construct an estimator θ̂j that satisfies the formulated conditions.

Proof of Theorem 7.3.1 To verify (7.3.7) we use Parseval’s identity and
the notation of (7.3.10),

E
{∫ 1

0
(f̂ (s)(x)−f (s)(x))2dx

}
=

J∑
j=0

b2
jsE{(θ̂j −θj)2}+

∑
j>J

b2
jsθ

2
j . (7.3.12)

Then we note that
J∑

j=0

b2
js ≤ C

J/2∑
j=0

j2s ≤ CJ2s+1,

and that f (s) ∈ Lipr−s,α,L. The last fact, according to (2.4.18), implies∑
j>J b2

jsθ
2
j < CJ−2(β−s). These results together with the assumption
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(7.3.6) and J := 2�n1/(2β+1)� imply

MISE(f̂ (s), f (s)) ≤ C[n−1J2s+1 + J−2(β−s)] ≤ Cn−2(β−s)/(2β+1).

The upper bound (7.3.7) is verified.
The proof of (7.3.11) is similar. We note that according to (7.3.8) the

estimate θ̂j of θj is unbiased. Thus E{f̃ (s)(x)} = V
(s)
J (x), where VJ(x) is

the de la Vallée Poussin sum (2.4.11). Using this we get

MSE(f̃ (s)(x0), f (s)(x0)) = E{(f̃ (s)(x0) − V
(s)
J (x0) + V

(s)
J (x0) − f (s)(x0))2}

= E{(f̃ (s)(x0) − V
(s)
J (x0))2} + (V (s)

J (x0) − f (s)(x0))2.

Note that f̃ (s)(x0) − V
(s)
J (x0) =

∑4J−1
j=0 wjϕ

(s)
j (x0)(θ̂j − θj), where 0 ≤

wj ≤ 1 are smoothing weights in the de la Vallée Poussin sum (2.4.11).
Thus, if we set aj := wjϕ

(s)
j (x0)/bjs, then aj are uniformly bounded. This

together with (7.3.9) and (2.4.15) yields (7.3.11). Also, by integrating the
MSE we establish that this estimator is also globally rate optimal. We leave
more detailed calculations as Exercise 7.3.1. Theorem 7.3.1 is proved.

Now we are in a position to suggest an estimator θ̂j that satisfies the
assumptions (7.3.6), (7.3.8), and (7.3.9).

For the filtering model it is natural to set θ̂j :=
∫ 1
0 ϕj(t)dY (t). According

to (7.2.6) we get θ̂j = θj +n−1/2Z ′
j , where Z ′

j are iid standard normal. Then
the conditions (7.3.6), (7.3.8), and (7.3.9) obviously hold.

For the density model the natural estimator is a sample mean estimator,

θ̂j := n−1
n∑

l=1

ϕj(Xl),

since θj =
∫ 1
0 ϕj(x)f(x)dx = E{ϕj(X1)}. Thus the conditions (7.3.6) and

(7.3.8) hold. Let us verify (7.3.9). We shall do it assuming that β > 0.5.
Write

E

{( J∑
j=0

(θ̂j − θj)bjsaj

)2
}

=
J∑

j,i=0

E{(θ̂j − θj)(θ̂i − θi)}bjsajbisai. (7.3.13)

Since θ̂j is an unbiased estimate of θj we get

E{(θ̂j − θj)(θ̂i − θi)} = E{θ̂j θ̂i} − θjθi (7.3.14)

= n−2E
{ n∑

l,m=1

ϕj(Xl)ϕi(Xm)
}

− θjθi

= n−2
[ n∑

l=1

E{ϕj(Xl)ϕi(Xl)} +
n∑

l �=m=1

E{ϕj(Xl)ϕi(Xm)}
]

− θjθi

= n−1E{ϕj(X1)ϕi(X1)} + n(n − 1)n−2θjθi − θjθi
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= n−1
[ ∫ 1

0
f(x)ϕj(x)ϕi(x)dx − θjθi

]
.

Now let us recall Bernstein’s inequality for Fourier coefficients of Lips-
chitz functions (this is the place where we use the periodicity of estimated
Lipschitz functions and the assumption β > 0.5):

sup
f∈Lipr,α,L

∞∑
j=0

|θj | < ∞ if r + α > 0.5. (7.3.15)

Exercise 7.3.4 (with detailed hints) is devoted to the proof of (7.3.15).
Thus,

∑J
j,i=1 |θjθi| ≤ C if f ∈ Lipr,α,L and r + α > 0.5. Also note

that the product ϕj(x)ϕi(x) can be written as a sum of weighted elements
of the trigonometric basis. For instance, 21/2 cos(2πjx)21/2 cos(2πix) =
2−1/2[21/2 cos(2π(j − i)x)+21/2 cos(2π(j + i)x)]. The results imply (7.3.9).
The more detailed calculations are left as Exercise 7.3.5.

For the nonparametric regression we choose a sample mean estimate

θ̂j := n−1
n∑

l=1

Ylϕj(Xl), (7.3.16)

since θj =
∫ 1
0 f(x)ϕj(x)dx = E{Y1ϕj(X1)}. Then (7.3.6) and (7.3.8) are

obvious. The condition (7.3.9) is verified absolutely similarly to the case of
the density model, so we leave this step as Exercise 7.3.6.

Is it possible to relax the assumption about the periodicity of an esti-
mated function? The answer is yes, and this may be done by using the cosine
basis (for β < 1.5) or by enriching a trigonometric basis by polynomial
elements, as has been explained in Section 2.6.

We conclude that if the smoothness parameter β is known, then a simple
series estimator is both globally and pointwise rate optimal. Another im-
portant conclusion is that these results support the principle of equivalence
because a rate optimal estimator for a particular model is also rate optimal
for the other models whenever an estimated function is sufficiently smooth.

7.4 Adaptive Estimation

We have shown in the previous sections that if the parameter of smoothness
β := r+α is known for a Lipschitz function space Lipr,α,L, then there exist
rate optimal minimax estimators. Recall that n−2β/(2β+1) is the minimax
rate of convergence for both MISE (global risk) and MSE (pointwise risk)
defined in (7.1.3) and (7.1.4).

In a majority of practical applications the parameter of smoothness is
unknown. After all, nonparametric estimation is typically a first glance at
the data at hand. Thus the aim of this section is to discuss estimates that
are adaptive to an unknown smoothness, i.e., data-driven. We shall see that
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there exists a difference between adaptive global and pointwise minimax
estimation. While the MISE of adaptive estimators can attain the minimax
rate, that is, it is not necessary to know the parameter β (in this case the
data speak for themselves), no adaptive estimator has MSE that converges
with the minimax rate for all Lipschitz functions. More precisely, the MSE
of optimal adaptive estimator converges with the adaptive minimax rate
(n/ ln(n))−2β/(2β+1). Thus the absence of information about β slows down
the convergence of minimax MSE, and the logarithmic penalty should be
paid. On the other hand, it will be explained that only “few” Lipschitz
functions must pay that penalty and all others may be estimated with
the classical rate n−2β/(2β+1). The outcome is much better for analytic
functions with unknown coefficient γ, where only the sharp constant in
MSE convergence may be lost.

Thus in this section we discuss the cases of global and pointwise adaptive
estimation separately. Also recall that due to the principle of equivalence
it suffices to explain all methods only for one of the statistical models. In
this section, if a model is not specified, it is assumed that it is the filtering
model (7.3.1).

• Global Estimation. Below, several methods are discussed that can be
used for optimal asymptotic estimation. Some of them are close “relatives”
and some are familiar from the previous chapters, where they were used
for the cases of small samples.

1 Universal Thresholding. This method may lead to a loss of a loga-
rithmic factor in the minimax rate of MISE convergence. On the other hand,
its simplicity is so appealing that it is worthwhile to begin the discussion
of data-driven series estimators with this method.

The underlying idea of universal thresholding is as follows. Consider the
case of parallel Gaussian channels shown in Figure 7.1 with Zj being iid
N(0, σ2) and assume that we transmit a function f(t) =

∑k
j=1 θjgj(t) by

setting Xj = θj . Here gj are elements of a basis in L2(0, 1), for instance,
the trigonometric or wavelet basis, and θj =

∫ 1
0 gj(t)f(t)dt. As we know,

such a setting is equivalent to the filtering model (7.3.1), but it is simpler
to explain the idea using the model of parallel channels.

Set σ := n−1/2. Then the outputs are

Yj := θj + Zj = θj + n−1/2Z ′
j , j = 1, 2, . . . k, (7.4.1)

where Z ′
j are iid standard normal.

Now let us assume for a moment that f(t) = 0 for 0 ≤ t ≤ 1, that is, all
the input signals θj are zeros. Then an ideal procedure for the recovery of
this signal should realize that the inputs are zeros and that all outputs Yj

are just noise. Under this assumption, let us consider the extreme noise

Z ′
(k) := max

1≤j≤k
Z ′

j . (7.4.2)
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It is a simple exercise to estimate the probability that an extreme element
Z ′

(k) of k iid standard normal random variables is larger than a positive
constant z. Indeed, since the probability that this extreme is larger than
z is less than the sum of the probabilities that each of the iid standard
normal Z ′

j is larger than z, we write

P
(
Z ′

(k) > z
) ≤

k∑
j=1

P (Z ′
j > z) = kP (Z ′ > z).

Here Z ′ is a standard normal random variable. Recall a well-known
property of the distribution of a standard normal random variable Z ′:

P
(
Z ′ > z

)
<
(
z(2π)1/2)−1

e−z2/2. (7.4.3)

Combining the results we get the inequality

P
(
Z ′

(k) > z
) ≤ k

(
z(2π)1/2)−1

e−z2/2. (7.4.4)

Because Zj = n−1/2Z ′
j , the last inequality implies

P
(
Z(k) > zn−1/2) ≤ k

(
z(2π)1/2)−1

e−z2/2. (7.4.5)

We have obtained an inequality that is the key for understanding the
idea of universal thresholding. Namely, we know that for Lipschitz and
Sobolev (discussed in Exercise 7.1.15) function spaces the optimal number
k of channels is proportional to n1/(2β+1). Thus, even if nothing is known
about β we can say that the number k∗ := �n/ ln(n)� is asymptotically
larger than any optimal k. Then the inequality (7.4.5) implies the following
rough inequality:

P
(
Z(k∗) > (2x ln(n))1/2n−1/2) < n1−x/ ln(n), x ≥ 1. (7.4.6)

Note that if x ≥ 1, then the probability that the extreme noise is larger
than (2x ln(n))1/2n−1/2 tends to zero as n increases. Also, due to the sym-
metry of a standard normal distribution the same inequality holds for
max1≤j≤k∗ |Zj | in place of Z(k∗).

This result shows how to construct a data-driven estimator which per-
forms well for the case of zero input signal. Namely, it “keeps” θ̂j whose
absolute values are larger than (2x ln(n))1/2n−1/2 and “kills” the others.
As a result, except of an event of a small probability, if an input signal is
zero, then the threshold estimate is also zero.

A universal threshold estimator is defined as

f̂(t) :=
n/ ln(n)∑

j=1

I{Y 2
j

>2cT d̂ ln(n)n−1}Yjgj(t), (7.4.7)

with the default cT = 1 and d̂ = 1.
Note that this is a completely data-driven estimator for the filtering

model where σ2 = n−1 and thus d := nσ2 = 1. On the other hand, as
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we explained in Section 7.1, in many cases the parameter σ2 (the vari-
ance of a noise in a channel), or equivalently the coefficient of difficulty
d, is unknown. In this case the estimator (7.2.10) may be used. For a
filtering model with a normal noise, as an example, the sample variance
σ̂2 := [(2/n)

∑
n/2<j≤n Y 2

j ]1/2 may be used for an asymptotic study. An-
other choice is to use a robust estimator, for instance, a rescaled sample
median of absolute deviations discussed in Section 4.1.

Let us now explain why the universal thresholding may imply the loss
of a logarithmic factor in the MISE convergence. The reason is that a
function f may have Fourier coefficients θj with absolute values just a
bit less than the minimal universal threshold level

√
2cT ln(n)n−1. For

instance, consider the case of the Sobolev function class Wβ,Q defined in
(2.4.19). As we know from Exercise 7.1.15, the minimax MISE(f̃ , f) over
the Sobolev space converges as n−2β/(2β+1) (this is the same rate as for
a Lipschitz class with the same parameter of smoothness). Then a simple
calculation (Exercise 7.4.3) shows that for any positive c,

sup
f∈Wβ,Q

k∗∑
j=1

I{θ2
j
<c ln(n)n−1}θ

2
j ≥ C(n/ ln(n))−2β/(2β+1). (7.4.8)

As a result, some Sobolev functions will be “killed” by the universal
thresholding while their integrated squared bias (and thus MISE) is propor-
tional to the right-hand side of (7.4.8). A similar result holds for Lipschitz
functions (Exercise 7.4.4).

Thus, the universal thresholding may imply the loss of a logarithmic
factor in MISE convergence, and we have seen in Section 3.3 that a hard
threshold estimator does perform slightly worse than a smoothing estimator
for small sample sizes. On the other hand, the simplicity of this procedure
is so appealing and in some cases the issue of the extra logarithmic factor
is so minor that this method deserves to be included in our “tool-box” of
adaptive estimators. We shall also see that this method is an optimal one
for adaptive minimax pointwise estimation.

2 Empirical Risk Minimization. The underlying idea of this method
is as follows: Consider the MISE of an estimator, understand which part of
the risk is affected by an unknown parameter, estimate that part of the risk
by a statistic, and then choose the value of the parameter that minimizes
that statistic.

As an example, consider the case of a projection estimator (7.3.4) where
the cutoff J is the only parameter to be adaptively chosen. To make the
setting more general, consider the case where σ2 = dn−1 and recall that
for our basic models d = 1.
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According to (7.3.12), the MISE of this estimator is the sum of the
variance and the integrated squared bias term, that is,

MISE(f̂ , f) = n−1d(J + 1) +
∑
j>J

θ2
j .

Here we used the formula E{(θ̂j − θj)2} = E{(θj + (d/n)1/2Z ′
j − θj)2} =

dn−1. Using Parseval’s identity
∫ 1
0 f2(t)dt =

∑J
j=0 θ2

j +
∑

j>J θ2
j , we get

MISE(f̂ , f) =
J∑

j=0

(dn−1 − θ2
j ) +

∫ 1

0
f2(t)dt. (7.4.9)

Since
∫ 1
0 f2(t)dt is a constant for a particular underlying f , we see that

an optimal cutoff J that minimizes (7.4.9) is also the one that minimizes∑J
j=0(dn−1 − θ2

j ). This is the part of the risk that may be estimated. As
an example, let us use the unbiased estimate θ̂2

j − d̂n−1 of θ2
j . This implies

the following procedure for choosing a data-driven cutoff:

Ĵ := argmin 0≤J≤J∗
n

J∑
j=0

(2d̂n−1 − θ̂2
j ). (7.4.10)

Here d̂ is the estimator discussed earlier, and d̂ is equal to 1 for our basic
models. Also, J∗

n is the maximal cutoff. For instance, one can always set
J∗

n := �n/ ln(n)�. Also recall that the function argminJ∈AΨ(J) returns the
value of J from the set A that minimizes Ψ(J).

Then the corresponding adaptive projection estimator is

f̃(t) :=
Ĵ∑

j=0

θ̂jϕj(t). (7.4.11)

Recall that this adaptive estimator has been thoroughly studied for sam-
ples of small sizes; in Section 3.3 we referred to it as raw truncated. Overall,
this estimator performed well.

This finishes our discussion of the empirical risk minimization procedure.
Before considering the next procedure of adaptation, let us pause for a

moment and discuss the following question. In the previous method our
aim was to find a data-driven cutoff J of a projection estimator. But is a
projection estimator, that mimics a partial sum (also called a linear approx-
imation), always rate optimal? We know that this is the case for smooth
functions, say Lipschitz. But this may be not the case for nonsmooth func-
tions, for instance, for functions with bounded total variation which have
jumps. In this case a nonlinear approximation,

fM(J)(x) :=
∑

j∈M(J)

θjϕj(x), (7.4.12)
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may outperform the linear approximation fJ :=
∑J

j=0 θjϕj(x). Here M(J)
is a set of J + 1 natural numbers, that is, a set of cardinality J + 1.

Note that a nonlinear approximation always dominates the linear one
because the choice M(J) = {0, 1, . . . , J} implies the linear approximation.
It is the luck of smooth functions that linear approximations are optimal
for them.

We have considered a universal thresholding that mimics a nonlinear
approximation. The next adaptive method, which is closely related to
empirical risk minimization, allows one to mimic (7.4.12) straightforwardly.

3 Penalization. The relation (7.4.9) implies that including a jth term of
a series estimate increases its variance on dn−1 and decreases its integrated
squared bias on θ2

j . Thus, the choice of an optimal set M may be achieved
by solving the minimization problem

M̂ := argminM(J)

{
pen(J)d̂n−1 −

∑
j∈M(J)

θ̂2
j , 0 ≤ J ≤ J∗

n

}
. (7.4.13)

Here pen(J) is a penalty function, and the minimization is considered over
both J and sets M(J).

For instance, if pen(J) = C(J + 1), then we get an analogue of the
empirical risk minimization method. In some cases a larger penalty function
may be recommended. For instance, choosing pen(J) = C ln(J)J makes the
penalization similar to the universal thresholding.

It is possible to show that by choosing an appropriate penalization func-
tion this adaptation leads to rate optimal estimation over a wide variety of
function spaces and bases including wavelets.

Different examples of penalization will be considered in Section 8.6.
4 Cross-Validation. Here the basic idea is to calculate an estimate

based on a part of the data and then choose parameters of the estimate
that give the best fit to the rest of the data. This is a method that is
simpler to explain using the regression model (iii) defined at the beginning
of Section 7.3.

Let f̂(x, λ) be any estimator of an underlying regression function that
depends on a parameter λ. For instance, λ can be a cutoff of a projection
estimator, that is, λ = J . Then denote by f̂−l(x, λ) the same estimator,
only calculated without using the lth pair (Xl, Yl) of observations. Then it
is natural to expect that f̂−l(Xl, λ) should well approximate the response
Yl if λ is close to an optimal value λ∗. This leads to a cross-validation least-
squares procedure of choosing the parameter λ (the so-called leave-one-out
method),

λ̂ := argminλ

n∑
l=1

(Yl − f̂−l(Xl, λ))2. (7.4.14)

Absolutely similarly, a leave-m-out method is defined.
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A cross-validation typically implies a rate optimal adaptive estimation.
An example of how to apply this method to the case of a density model is
discussed in Section 8.10.

5 Efromovich–Pinsker Block Shrinkage. This is a data-driven es-
timator whose underlying idea is to mimic the linear smoothing oracle
discussed in Sections 3.2–3. We shall see that this is possible for the case
of smooth functions (like Lipschitz and analytic), and it is also a reason-
able approach for estimation of spatially inhomogeneous functions. The
theoretical trademark of this data-driven estimator is that it is sharp min-
imax (efficient) over Sobolev and analytic function classes. Its practical
trademark is the simplicity—no optimization problem is involved.

Let us begin the discussion with a parametric setting and review of results
obtained in Appendix A and Sections 3.2–3. Suppose that one would like to
recover a parameter θ based on an observation Y := θ +n−1/2Z ′, where Z ′

is a standard normal random variable. Also assume that the only allowed
method of recovery is a shrinkage estimator θ̂ := λY , where λ is a constant.
Write the mean squared error of this estimate,

E{(λY − θ)2} = λ2E{Y 2} − 2λE{Y }θ + θ2. (7.4.15)

A shrinkage (smoothing) weight λ∗ that minimizes the mean squared
error (7.4.15) is

λ∗ =
E{Y }θ

E{Y 2} =
θ2

θ2 + n−1 . (7.4.16)

As we see, the optimal weight is the ratio of a squared estimated signal
θ2 to the second moment of an observed signal Y , or in other words, λ∗ is
the ratio between the powers of the input and output signals. Also

E{(λ∗Y − θ)2} = n−1 θ2

θ2 + n−1 = n−1λ∗. (7.4.17)

Let us compare the optimal shrinkage with a hard-threshold shrinkage
where λ may be either 0 or 1 (for instance, this is the idea of a penalization
method or a hard-threshold method). If λ = 0, then the estimate is zero,
and the mean squared error is θ2 ≥ n−1λ∗ with equality iff θ = 0. If λ = 1,
then the estimate is equal to Y and the mean squared error is n−1 > n−1λ∗.
In short, the optimal shrinkage does a superb job.

Let us extend this parametric result to a nonparametric setting. Consider
a smoothing filter (shrinkage estimator)

f̃(t) :=
∞∑

j=0

λjYjϕj(t), (7.4.18)
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where λj are constants (so-called shrinkage weights or coefficients). Then
Parseval’s identity yields

MISE(f̃ , f) =
∞∑

j=0

E{(λjYj − θj)2}. (7.4.19)

Thus, according to (7.4.15)–(7.4.16), the optimal shrinkage weights are

λ∗
j =

θ2
j

θ2
j + n−1 , (7.4.20)

and according to (7.4.17), the MISE of the optimal smoothing filter

f̃∗(t) :=
∞∑

j=0

λ∗
jYjϕj(t) (7.4.21)

can be calculated by the formula:

MISE(f̃∗, f) = n−1
∞∑

j=0

λ∗
j . (7.4.22)

Recall that (7.4.21) is the analogue of the linear oracle for the density
model discussed in Sections 3.2–3, and for the case of small samples we
have used a naive mimicking (7.4.20) by estimates λ̂j := (Y 2

j − n−1)+/Y 2
j .

On the other hand, we explained in Section 3.3 that asymptotically the
naive mimicking may lead to inconsistent estimation. The reason for this
negative conclusion is that E{(Yj −θj)2} = n−1. Thus, if θ2

j is close to n−1,
then the naive estimator λ̂j of λ∗

j becomes inconsistent.
Thus, something else should be suggested for mimicking (7.4.21). Here we

consider the Efromovich–Pinsker block shrinkage procedure. Let us explain
the idea for the case of Lipschitz functions. We know that a projection
estimator f̃(t) =

∑n1/(2β+1)

j=0 Yjϕj(t) is rate optimal. Note that it uses unit
weights for low frequencies and zero weights for high frequencies; in other
words, all Fourier coefficients are grouped into two blocks, and then the
same shrinkage is applied to all Fourier coefficients from a block. Thus,
if we consider a net of blocks that includes (or approximates) those two
blocks for any β, then optimal shrinkage within each block may lead to an
optimal data-driven estimation.

To explore this idea, let us divide the set of natural numbers (frequencies)
{0, 1, 2, . . .} into a sequence of blocks Gm, m = 1, 2, . . .. For instance, one
may set G1 = {0}, G2 = {1, 2}, G3 = {3, 4, 5, 6, 7, 8}, etc. It is not necessary
that these blocks are clusters (include only neighbors). Also, blocks may
depend on n.
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Consider an estimator that applies the same shrinkage weight wm to all
Fourier coefficients within a corresponding block Gm, that is,

f̂(t) :=
∞∑

m=1

wm

∑
j∈Gm

Yjϕj(t). (7.4.23)

Then a direct calculation shows that an optimal weight w∗
m that

minimizes the MISE of f̂ is (compare with (7.4.20))

w∗
m =

|Gm|−1 ∑
j∈Gm

θ2
j

|Gm|−1
∑

j∈Gm
θ2

j + n−1 . (7.4.24)

Here |Gm| denotes the number of elements in the block Gm (i.e., the
cardinality of Gm). Note that if |Gm| = 1, then (7.4.24) becomes (7.4.20).

The optimal weight (7.4.24) for a block of Fourier coefficients looks sim-
ilarly to the shrinkage weight (7.4.20) for a singular coefficient, but the
crucial difference is that in (7.4.24) the optimal weight depends on the
mean value of squared Fourier coefficients from the block (i.e., on the mean
power of the input signals). This is the key point of any block procedure
because the mean power may be estimated better than a single one. More
precisely, according to Exercise 7.4.11,

E
{(

|Gm|−1
∑

j∈Gm

(Y 2
j − n−1) − |Gm|−1

∑
j∈Gm

θ2
j

)2}

= |Gm|−1n−1
[
2n−1 + 4|Gm|−1

∑
j∈Gm

θ2
j

]
. (7.4.25)

The larger |Gm| is, the better the estimation of w∗
m. On the other hand,

the larger a block is, the farther w∗
m is from the optimal individual shrinkage

(7.4.20). Thus the choice of blocks is a tradeoff between mimicking optimal
singular shrinkage and the better accuracy of estimating w∗

m.
The Efromovich–Pinsker block shrinkage estimator is defined as

f̂(t) :=
M∑

m=1

ŵm

∑
j∈Gm

θ̂jϕj(t), (7.4.26)

where

ŵm :=
Θ̂m

Θ̂m + d̂n−1
I{Θ̂m>tmd̂n−1}. (7.4.27)

Here θ̂j = Yj , d̂ = 1, tm are threshold coefficients, which may depend on
n, and M is a sufficiently large sequence in n, as an example, such that∑

m>M

∑
j∈Gm

θ2
j ≤ Cn−1/ ln(n), and

Θ̂m := |Gm|−1
∑

j∈Gm

(θ̂2
j − d̂n−1) (7.4.28)
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is an unbiased estimate of Θm := |Gm|−1 ∑
j∈Gm

θ2
j .

Note that the used shrinkage ŵm is the product of a continuous shrinkage
and a hard thresholding. Below we shall explore the effect of these two
factors on the estimation.

Let us make several remarks about the choice of blocks Gm and thresh-
old levels tm. For asymptotically efficient (when both the rate and constant
of MISE convergence are asymptotically optimal) estimation of smooth
functions, the threshold levels should decay, while for a rate optimal es-
timation it suffices for them to be bounded. If the noise in channels has
a bounded eighth moment, then the boundness of

∑M
j=1 |Gm|−1t−3

m im-
plies sharp mimicking of the block shrinkage oracle (7.4.23–24). For normal
noise this assumption may be relaxed, and for instance, it suffices that the
sequence

∑M
j=1 exp(−c|Gm|t2m) be bounded for a sufficiently small c.

Second, let us check how block shrinkage works for the case of wavelets
and small sample sizes (a review of Sections 2.5 and 4.4 is recommended),
and let us get some feeling on how two factors in the used shrinkage (7.4.27)
affect the estimation. Using the setting and notation of Section 4.4, the
block shrinkage estimator may be written as

f̂(x) =
n/2j0∑
k=1

ŝj0,kφj0,k(x) +
j0∑

j=1

n/(2jLj,n)∑
m=1

[D̂j,m/(D̂j,m + σ̂2n−1)]

× I{D̂j,m>tj,nσ̂2n−1}
∑

k∈Gj,m,n

d̂j,kψj,k(x), (7.4.29)

where Gj,m,n := {k : Lj,n(m − 1) < k ≤ Lj,nm} are the blocks for
the jth resolution scale, which have the same length Lj,n := |Gj,m,n|, and
D̂j,m := L−1

j,n

∑
k∈Gj,m,n

(d̂2
j,k − σ̂2n−1).

To assess the effect of blocks and threshold levels on estimation, as well
as to evaluate the robustness of the Efromovich–Pinsker procedure with
respect to the choice of blocks and threshold levels, consider two particular
sets of these parameters. The first particular estimator (we shall refer to it
as an estimator with “increasing blocks and t = 0”) has Lj,n = bn2�(j0−j)/3	

and tj,n = 0; here bn is the largest dyadic (i.e., 2k, k = 1, 2, . . .) number
that is at most log2(n). The second particular estimator (we shall refer to
it as one with “constant blocks and t = 5”) has Lj,n = bn and tj,n = 5.

Thus, the first set of parameters implies that a continuous smoothing is
the primary factor in the shrinkage (7.4.27), and one may expect that the
corresponding estimator will perform well, because blocks increase as the
scales become finer. The second set implies that a hard threshold is the
primary factor, and one may expect that the corresponding estimator will
perform well, because the threshold level is sufficiently large (but note that
it is a constant while, for instance, the level in the universal thresholding
procedure is 2 ln(n); see subsection 1).
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FIGURE 7.5. Performance of two particular block shrinkage wavelet estimators.
The SureShrink estimate of the toolkit S+WAVELETS is given as a benchmark.
Estimates are shown by solid lines and the underlying signals by dashed lines. The
sample size is n = 1024, the signal-to-noise ratio is 3, the wavelet is Symmlet 8.
{Do not forget to download the wavelet toolkit by calling > module(wavelets).
The arguments n, snr, set. signal, wavelet, t1, and t2 control the sample size,
signal-to-noise ratio, two underlying signals, the wavelet, and threshold levels for
the first and the second estimator.} [n=1024, snr=3, set.signal=c( ′′doppler ′′,
′′jumpsine ′′), wavelet= ′′s8 ′′, t1=0, t2=5]

Figure 7.5 shows particular estimates of the familiar “doppler” and
“jumpsine” signals for the case of n = 1024 and signal-to-noise ratio 3.
As in Section 4.4, j0 is equal to 6 and the Symmlet 8 wavelet is used. As
a reference estimator, the SureShrink estimate is also shown. As we see,
the block shrinkage estimators perform reasonably well for these particular
simulations. This shows robustness of the procedure with respect to the
choice of its parameters.

Intensive Monte Carlo simulations for different sample sizes and signal-
to-noise ratios support this conclusion. The first estimator (the one with
zero threshold level) performs exceptionally well in terms of integrated
squared errors (ISE) but slightly worse than both the second block shrink-
age estimator and SureShrink in terms of data compression (the latter is
not a surprise). The second block shrinkage estimator is comparable with



292 7. Filtering and Asymptotics

SureShrink in terms of ISE and yields better data compression. Repeated
simulations also show that the first estimator (with zero threshold level)
periodically produces estimates whose smooth parts are contaminated by
blocks of shrunk noise, which ideally should be “killed.” The asymptotic
theory discussed below explains why a nonzero thresholding is required for
optimal estimation.

One more remark is must be made. These two examples show that the
choice of blocks and threshold levels is rather flexible, but extremes should
be avoided. For instance, the choice of blocks that are whole resolution
scales implies poor estimation.

Let us finish the discussion of the Efromovich–Pinsker block shrinkage
estimator by presenting an asymptotic proposition that is an “adaptive”
version of Theorem 7.1.1. Note that the noise may be non-Gaussian.

Theorem 7.4.1 Consider the transmission of an analytic function f(x)
via k parallel channels shown in Figure 7.1. It is assumed that the noise
Zj is zero mean, E{Z2

j } = σ2 := n−1, E{Z8
j } < Cn−4, 1 ≤ j ≤ k, and

k > (ln(n))2. Set θ̂j := Yj+1, and choose M , blocks Gm, and threshold
levels tm such that elements of Gm are smaller than elements of Gm+1,

|Gm|−1t−3
m → 0 and tm → 0 as m → ∞, (7.4.30)

∑
m>M

∑
j∈Gm

e−γj = on(1) ln(n)n−1,
M∑

m=1

|Gm|−1t−3
m = on(1) ln(n), (7.4.31)

and for any positive c there exists a sequence m(n, c) such that the se-
ries

∑m(n,c)
m=1 |Gm|/ ln(n) → c as n → ∞. Then the Efromovich–Pinsker

block shrinkage estimator (7.4.26) is a versatile sharp minimax estimator
satisfying (7.1.11) with σ2 = n−1, that is, for any s = 0, 1, . . .,

sup
f∈Aγ,Q

MISE(f̂ (s), f (s)) = Ps,γ (ln(n1/2))2s+1n−1(1 + on(1)). (7.4.32)

For instance, M = �ln(n)�, the set G1 = {0}, Gm = {(m − 1)(m − 2) +
1, . . . , m(m − 1)}, m > 1, and threshold levels tm = 1/ ln(m + 1) satisfy
the assumption of Theorem 7.4.1.

Proof. The proof consists of several steps whose detailed verification is
left as Exercise 7.4.15.

Step 1. A direct calculation, which is similar to verification of (7.1.11),
shows that the estimate

f̃γ(x) := θ̂0 +
M∑

m=1

wγ,m

∑
j∈Gm

θ̂jϕj(x) (7.4.33)

satisfies (7.4.32) if wγ,m = 1 for m ≤ m(n, γ−1) and wγ,m = 0 other-
wise. Note that this estimate depends on γ, i.e., it is a pseudo estimate (it
depends on an underlying function space).
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Step 2. According to (7.4.23)–(7.4.24), the estimate (7.4.33) is dominated
by the oracle

f̃∗(x) := θ̂0 +
M∑

m=1

w∗
m

∑
j∈Gm

θ̂jϕj(x). (7.4.34)

The estimate does not depend on γ, but the weights w∗
m depend on an

underlying function; thus we refer to it as an oracle.
Step 3. The inequality (a + b)2 ≤ (1 + ρ)a2 + (1 + ρ−1)b2, ρ > 0 implies

MISE(f̂ (s), f (s)) ≤ (1 + ρ)MISE(f̃∗ (s), f (s)) + (1 + ρ−1)MISE(f̂ (s), f̃∗ (s)).
(7.4.35)

Note that the first term satisfies (7.4.32) if ρ → 0 as n → ∞.
Step 4. Consider the second term in (7.4.35) by applying Parseval’s

identity,

MISE(f̂ (s), f̃∗ (s)) =
M∑

m=1

E
{

(w∗
m − ŵm)2

∑
j∈Gm

θ̂2
j

∫ 1

0
(ϕ(s)

j (x))2dx
}

.

(7.4.36)
Step 5. A direct calculation shows that

E
{

(w∗
m − ŵm)2

∑
j∈Gm

θ̂2
j

∫ 1

0
(ϕ(s)

j (x))2dx
}

≤ Cn−1( m∑
l=1

|Gl|
)2s|Gm|[w∗

m(t1/2
m +(|Gm|t3m)−1/2)+|Gm|−2t−3

m ]. (7.4.37)

Step 6. Choose a slowly decreasing ρ → 0 as n → 0, and then steps 1–5
yield (7.4.32). Theorem 7.4.1 is proved.

6 SureShrink Wavelet Estimator. This is an adaptive estimator that
is rate optimal over the Besov space Bσ

pqQ, p, q ≥ 1, σ− 1
2 +p−1 > 0, defined

in (2.5.4). The key idea of this adaptive procedure is as follows. Consider
a wavelet expansion (2.5.2)

f(t) =
∑

k

κj1,kφ′
j1,k(t) +

∞∑
j=j1

∑
k

θj,kψ′
j,k(t), 0 ≤ t ≤ 1. (7.4.38)

Here the sum is over all integer k, and recall that for a wavelet with
bounded support the number of nonzero wavelet coefficients on a resolution
scale j is at most C2j .

Set J to be the maximal integer such that 2J < n/ ln(n). Denote by κ̂j1,k

and θ̂j,k estimates of the corresponding wavelet coefficients; for instance, the
estimates suggested in Section 7.3 can be used with the obvious replacement
of the elements of the trigonometric basis by elements of a wavelet basis.

Then it is possible to show that there exist threshold levels λn,j1 , λn,j1+1,
. . . , λn,J , depending on parameters of the underlying Besov space, such that
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a soft-threshold estimator

f̂(t) :=
∑

k

κ̂j1,kφ′
j1,k(t) +

J∑
j=j1

∑
k

sgn(θ̂j,k)(|θ̂j,k| − λn,j)+ψ′
j,k(t), (7.4.39)

is rate minimax over the Besov space. Here sgn(x) denotes the sign of x,
and recall that (x)+ := max(0, x). In other words, a soft-threshold shrinkage
sgn(θ̂j,k)(|θ̂j,k| − λn,j)+ may imply a rate minimax estimation.

The important part of this theoretical result is that optimal threshold
levels may be the same for all wavelet coefficients from a resolution scale.
Thus, these levels may be estimated, for instance, by the empirical risk
minimization procedure, for every resolution scale one at a time.

This is the key idea of the adaptive procedure SureShrink. An unbiased
estimate of the mean squared error of a soft-threshold shrinkage estimator
was developed in the 1980s by Stein. This explains the abbreviation SURE,
which stands for Stein’s unbiased risk estimation.

For a jth resolution scale and a filtering model with d̂ = 1, the empirical
risk is defined as

SURE({θ̂j,k}, λ) :=
∑

k

[
n−1 − 2n−1I{|θ̂j,k|≤λ} + min(θ̂2

j,k, λ2)
]
,

and then an adaptive threshold λ̂n,j , which minimizes the SURE, is used
in the soft-threshold procedure (7.4.39).

SureShrink is a built-in S-function of the S+WAVELETS toolkit, and
we saw its performance for small sample sizes in Section 4.4 and in Figure
7.5. This is a good estimator for both small and large sample sizes, and it
is considered as a benchmark for other data-driven wavelet estimators.

7 Universal Wavelet Estimator. The universal data-driven estima-
tor, discussed in detail in Chapters 3–5 for the cosine basis, may be
used for a wavelet basis as well. A particular estimator was defined in
(4.4.2)–(4.4.5). This estimator matches properties of SureShrink over Besov
function spaces. Moreover, if Efromovich–Pinsker block shrinkage is applied
to its linear part, then this estimator becomes sharp minimax over Sobolev
function spaces. This makes this estimator particularly attractive for esti-
mation of monotone functions (or similar order-restricted functions), since
it guarantees both an optimal rate of convergence and, if an underlying
function is smooth enough, a sharp minimax convergence.

Now, when we know different methods of adaptation, it is apparent
that the adaptive procedure (4.4.5) is just an empirical risk minimization
discussed in subsection 2 (to see this, compare (4.4.5) with (7.4.10)).

8 Block Threshold Estimator. This is an estimator (7.4.26) (or its
wavelet version (7.4.29)) with weights ŵm := I{∑

j∈Gm
(θ̂2

j
−cT d̂n−1)>0

}. If

we just for a moment forget about blocks, then, using the terminology of
Sections 3.2–3.3, this estimator is a hard-threshold one. Also, if a relatively
large cT is used by both block shrinkage and block threshold estimators,
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then their performance is almost identical. Thus, the estimates “constant
blocks and t = 5” in Figure 7.5 show how a wavelet block threshold esti-
mator may perform (note that in our notation cT = t + 1). Overall, this is
a simple and reliable estimator with a good data compression property.

To shed light on the block threshold approach, consider the case of a
filtering model (7.3.1) with f(t) = 0 (no input signal) and constant blocks
of a length L := |Gm|. In this case the ideal solution is to “kill” signals in
all blocks, and this occurs if

∑
j∈Gm

θ̂2
j ≤ cT |Gm|n−1 for m = 1, . . . , M .

For the case of a zero input signal we have θ̂j = Zj where Zj are iid normal,
E{Zj} = 0, and Var(Zj) = n−1. Thus we should explore

∑
j∈Gm

Z2
j .

Let ξ1, ξ2, . . . be iid standard normal. A direct calculation shows that

E
{

exp
( L∑

l=1

ξ2
l /4

)}
= exp(L ln(2)/2).

This relation yields

P
( L∑

l=1

ξ2
l > cT L

)
≤ E

{
exp

( L∑
l=1

ξ2
l /4−cT L/4

)}
= exp(−L(cT −ln(4))/4).

(7.4.40)
Thus,

P
(

max
m∈{1,...,M}

∑
j∈Gm

Z2
j > cT Ln−1

)
≤ M exp(−L(cT − ln(4))/4).

This inequality explains why a block threshold estimator may imply a
reliable filtering a pure noise signal. For instance, consider blocks of a log-
arithmic length, say, L = �ln(n)�. Recall that any series estimate is based
on at most n/ ln(n) Fourier (wavelet) coefficients, so M < n/ ln2(n). Thus,
if cT − ln(4) > 4, then the probability of a not ideal estimation decreases
as n−c, c > 0. This example motivated the choice of the parameters for the
“constant blocks and t = 5” estimate used in Figure 7.5.

This discussion of the case of a zero input signal reveals a striking sim-
ilarity between how the universal threshold and block threshold adaptive
estimates deal with zero input signals. On the other hand, the difference
between the statistical properties of these estimators is also striking: While
the minimax MISE of the universal threshold estimate loses the logarithmic
factor, the block threshold estimator is rate optimal over a wide spectrum
of spatially inhomogeneous and smooth functions.

9 Bias–Variance Tradeoff. Let us begin an explanation of this method
via a particular case of two Lipshitz spaces L1 := Lipr1,α1,L1 and L2 :=
Lipr2,α2,L2 with different smoothness parameters β1 > β2 (recall that
β := r +α). In this case the projection estimator f̂J , defined at (7.3.4) and
“equipped” with two particular cutoffs J1 < J2, Js := �n1/(2βs+1)�, may es-
timate Lipschitz functions from L1 and L2 with optimal MISE convergence
whenever β is given. Thus the only issue is how to choose a right estimate
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(cutoff). The estimate f̂J1 is simpler and implies better data compression;
thus let us try to understand when it is worthwhile to use f̂J2 .

The MISE of a projection estimate f̂J may be written as a variance term
plus an integrated squared bias term,

MISE(f̂J , f) = (J + 1)n−1 +
∑
j>J

θ2
j .

As we know,
∑J2

j=J1+1 θ2
j may be estimated by

∑J2
j=J1+1(θ̂

2
j −n−1). Thus,

it is worthwhile to choose f̂J2 only if for a sufficiently large C

J2∑
j=J1+1

θ̂2
j > Cn−1(J2 − J1).

The MISE(f̂J2 , f) is always proportional to n−1J2, i.e., this holds for both
f ∈ L1 and f ∈ L2. Also, for large n the cutoff J2 is always significantly
larger than J1. Thus, the term n−1(J2−J1) is proportional to MISE(f̂J2 , f).
Set R2 := n−1J2, and note that R2 is proportional to the MISE.

Also note that by Parseval’s identity,

J2∑
j=J1+1

θ̂2
j =

∫ 1

0
(f̂J1(x) − f̂J2(x))2dx =: l(f̂J1 − f̂J2) ,

where l(·) is the loss function (integrated squared error) used in MISE.
Combining these facts, we may conclude that the more complicated

estimate f̂J2 should not be chosen if

l(f̂J1 − f̂J2) < CR2. (7.4.41)

We have obtained an algorithm of a bias–variance tradeoff for the case
of two competing estimates.

In the general case of an unknown β, there is a net of m cutoffs
J1 < J2 < · · · < Jm that allows one to estimate (approximate) any under-
lying function whenever the cutoffs and m may depend on n. (It is more
accurate to refer to this net as a sequence of nets.) Also, set Rs := n−1Js

for the corresponding variance terms (Rs is proportional to the minimax
MISE when Js is the optimal cutoff). Then the method of bias–variance
tradeoff implies a pairwise comparison between the corresponding m pro-
jection estimates. A relatively simple algorithm of pairwise comparison is
as follows:

f̂ := f̂Jk̂
, where k̂ := min{k : l(f̂Jk

− f̂Js
) < CRs, k ≤ s ≤ m}. (7.4.42)

Note that (7.4.42) coincides with (7.4.41) when m = 2. The procedure
of a pairwise bias–variance tradeoff is called Lepskii’s algorithm.

It is possible to show that a bias–variance tradeoff may be used for a
wide class of loss functions.
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• Pointwise Estimation. The remarkable outcome of the previous sub-
section on global estimation is that a data-driven estimator may have the
same MISE convergence as an estimator that knows that an underlying
function is Lipschitz with a given smoothness β. The same outcome holds
for analytic, Besov, and many other function spaces.

The situation changes if a pointwise approach is used. Consider, as an
example, the case of two Lipschitz spaces L1 := Lipr1,α1,L and L2 :=
Lipr2,α2,L, where β1 := r1 + α1, β2 := r2 + α2, and β1 > β2. In other
words, smoother functions belong to the space L1, and thus L1 ⊂ L2. Let
us assume that for some function f1 ∈ L1 there exists an estimator f̃ that
is rate optimal over L1, that is,

MSE(f̃(t0), f1(t0)) < Cn−2β1/(2β1+1). (7.4.43)

Then the following assertion holds (its relatively simple proof for differ-
entiable functions may be found in Brown and Low 1996b). It is always
possible to find a function f2 from a larger space L2 such that the optimal
rate n−2β2/(2β2+1) is not attainable by the estimate f̃ . More precisely,

MSE(f̃(t0), f2(t0)) ≥ C(n/ ln(n))−2β2/(2β2+1). (7.4.44)

Because (7.4.44) holds for any f̃ satisfying (7.4.43), we have established
the lower bound for minimax MSE of an adaptive estimator. Below we
shall consider two data-driven estimators whose MSE converge at the rate
(n/ ln(n))−2β/(2β+1) for a Lipschitz space with unknown smoothness β.
This will imply that the rate (n/ ln(n))−2β/(2β+1) is the optimal adaptive
rate for a minimax MSE convergence.

The statement formulated above is an explanation of the slogan that
“minimax MSE of adaptive estimators loses a logarithmic factor (pays a
logarithmic penalty).” This slogan should be considered only as popular
statistical jargon because the mathematical fact is that the lower minimax
bound (7.3.2) is not attainable whenever β is unknown.

There is no need to be too pessimistic about this outcome. The reason
is that we discuss minimax rates, that is, this result just tells us that one
can always find two functions with different parameters of smoothness that
cannot be simultaneously estimated with optimal nonadaptive rates. But
are there many such functions? It will be explained below that the set of
functions where the logarithmic loss must occur is relatively small, and for
all other Lipschitz functions the nonadaptive rate n−2β/(2β+1) is attainable.
In other words, the logarithmic loss is inevitable for some functions, but
luckily enough this loss occurs only for a small subset of Lipschitz functions.

While it is beyond the scope of this subsection to discuss all the details,
it may be worthwhile to recall a familiar example from classical parametric
theory. Consider a random variable X distributed according to a binomial
distribution B(n, p), that is, X is a number of “successes” in n Bernoulli
trials with the probability of “success” p. If p is unknown, then the classical
estimate of p is the sample mean X̄ := X/n. On the other hand, using
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the method of finding minimax estimates outlined in Appendix A, it is
possible to show that the minimax estimate is p̂ = (X + n1/2/2)/(n +
n1/2). The mean squared error R(X̄, p) := E{(X̄ − p)2} was calculated in
Appendix A, and it is n−1p(1−p). The mean squared error of the minimax
estimate is R(p̂, p) = (1 + n1/2)−2/4. A comparison of these errors shows
that R(p̂, p) < maxp R(X̄, p), that is, for some p the minimax estimator
is better. On the other hand, the inequality R(p̂, p) < R(X̄, p) holds only
for p ∈ (0.5 − cn, 0.5 + cn), where cn → 0 as n → ∞. Thus, the minimax
estimator is better than the traditional one only for p in some shrinking
(as n → ∞) vicinity of p = 0.5. Also, any reasonable prior distribution for
p implies that the Bayes risk of X̄ is smaller than the Bayes risk of the
estimate p̂.

The adaptive logarithmic penalty for MSE has the same flavor: Some
Lipschitz functions cannot be estimated with the nonadaptive optimal rate,
but a “majority” of functions may be estimated with the nonadaptive rate.

Below two methods will be considered that lead to an optimal adaptive
pointwise series estimation with the minimax rate (n/ ln(n))−2β/(2β+1). The
first estimator is extremely simple, but it does not allow one to control a
subset of functions where no logarithmic penalty is paid. The second one
is more involved, but it allows one to control this subset of functions where
the nonadaptive rate n−2β/(2β+1) is attained.

a. Universal Wavelet Threshold Estimator. The optimal adaptive
rate (n/ ln(n))−2β/(2β+1) resembles the rate of the universal threshold es-
timator (recall (7.4.8) and the discussion), and this is indeed the simplest
among rate optimal data-driven estimators.

Here we apply the idea discussed in subsection 1 to a wavelet basis. Set
J := �log2(n/ log2(n))� and consider the following universal hard threshold
wavelet estimator (the notation of Section 4.4 is used):

f̂(t) :=
∑

k

κ̂j0,kφ′
j0,k(t) +

J∑
j=j0

∑
k

I{θ̂2
j,k

>2 ln(n)d̂n−1} θ̂j,kψ′
j,k(t). (7.4.45)

The beauty of this fantastically simple data-driven estimator is that
under very mild assumptions it is rate optimal, that is, it is possible to
show that its MSE converges with the optimal adaptive minimax rate
(n/ ln(n))2β/(2β+1). The proof is left as Exercise 7.4.12.

b. Bias–Variance Tradeoff. It is possible to show that Lepskii’s pro-
cedure (7.4.42) may be directly applied to this case. The only changes are
as follows. The loss function is l(f1 − f2) := (f1(x0) − f2(x0))2; note that
this is the loss function used in the MSE; see (7.1.4). The estimates f̃Jk

are de la Vallée Poussin sums (7.3.5) with cutoffs J1 < J2 < · · · < Jm; the
corresponding risks are Rk := Jkn−1(ln(n))1−ln(Jk)/ ln(n). To see that Rk

are indeed the adaptive risks corresponding to the cutoffs Jk, note that if
Jk =: �n1/(2βk+1)�, then Rk = (n/ ln(n))−2βk/(2βk+1)(1 + on(1)).
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Then the bias–variance tradeoff estimate (7.4.42) implies MSE conver-
gence at the optimal adaptive minimax rate (n/ ln(n))−2β/(2β+1).

To control a set of Lipschitz functions where the optimal nonadaptive
rate n−2β/(2β+1) is attainable, a more complicated Efromovich–Low algo-
rithm of a bias–variance tradeoff has been suggested. It is based on a pilot
net and a main net of cutoffs. The main net is similar to one used in Lep-
skii’s algorithm, i.e., it is a net of cutoffs J1 < J2 < · · · < Lm that allows
one to estimate any Lipschitz function with an optimal rate. The additional
net of pilot cutoffs J∗

1 < · · · < J∗
m together with the corresponding risks

R∗
k is used only to choose an optimal cutoff from the main net. Then, a

bias–variance tradeoff estimator is defined as

f̃ := f̃Jk̂
, where k̂ := min{k : l(f̃J∗

k
− f̃J∗

s
) < CR∗

s , k ≤ s ≤ m}. (7.4.46)

A particular example of this estimate is discussed in Exercise 7.4.14.
Using two nets of cutoffs together with a special net of risks {R∗

k}
makes the algorithm extremely flexible. For instance, as in the example
of the minimax estimation of the probability of a success for a binomial
experiment, it is possible to show that under mild assumptions a Bayes
pointwise risk of the estimate (7.4.46) decreases with the optimal nonadap-
tive rate n−2β/(2β+1) (recall that a Bayesian approach was introduced in
Remark 7.1.5). This result sheds new light on the issue of the logarithmic
penalty and how “often” it should be paid. Another interesting aspect of
the Efromovich–Low algorithm is as follows. It is possible to show that

sup
f∈Lipr,α,L

P (Jk̂ > bn1/(2β+1)) = on(1)n−1, β := r + α.

Here b is a positive constant that may be controlled by coefficients of the
estimator, and recall that n1/(2β+1) is the optimal (up to a factor) cutoff
for the underlying Lipschitz space. Thus, this data-driven estimator implies
almost optimal (up to a factor) data compression.

• The Case Where No Adaptation Is Needed for Optimal Es-
timation. Let us finish this section about adaptive estimation with an
example of a setting where, surprisingly, no adaptation is needed for optimal
estimation of Lipschitz functions with unknown smoothness.

Consider a classical example of a communication system where an in-
put signal f is first passed through a linear filter and then its output is
contaminated by a white noise, i.e., an observed signal Y (t) satisfies the
differential equation

dY (t) =
∫ 1

0
h(t − x)f(x)dx + n−1/2dB(t), 0 ≤ t ≤ 1. (7.4.47)

Here h(t) is an impulse response kernel of a linear filter. This signal trans-
mission model is similar to a density estimation model with measurement
errors considered in Section 3.5; another important analogue is a blurred
regression model that is a discrete analogue of (7.4.47).
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The problem of recovery of an input signal for the model (7.4.47) is also
referred to as a deconvolution or ill-posed problem.

Assume that both the signal and the impulse response kernel are 1-
periodic and

h(t) :=
∞∑

j=−∞
hjψj(t), (7.4.48)

where

C0(|j| + 1)c0e−c|j|ν ≤ |hj | ≤ C1(|j| + 1)c1e−c|j|ν , (7.4.49)

ψj(t) := e−ij2πt is the classical complex trigonometric basis discussed in
Section 2.4, C0 > 0, C1 > 0, c and ν are some given positive constants, and
c1 and c2 are some real numbers that will have no effect on the problem.

Then, as in our discussion in Sections 7.1–3, one may show that for
f ∈ Lipr,α,L the optimal minimax estimator is the same for both MSE and
MISE risks, and it is

f̂(t) :=
Jn∑

j=−Jn

(∫ 1

0
ψ−j(x)dY (x)dx

)
h−1

j ψj(t), (7.4.50)

where

Jn := �(ln(n)(1 − 1/ ln(ln(n)))/2c)1/ν�. (7.4.51)

The beauty of this estimate is that it depends on neither r nor α, that
is, no information about smoothness of a recovered signal is needed for
optimal estimation. Thus, no adaptation is needed either.

The explanation of this phenomenon is very simple: The MSE and MISE
of the optimal estimate are defined by their squared bias terms, and the
variance terms are negligible in comparison to the squared bias terms. To
shed light on this statement, let us formulate and then prove it for the
case of a global risk MISE. Proof of a similar result for MSE and that the
suggested estimator is versatile, namely, that its derivatives are optimal
estimates of derivatives, are left as an exercise.

Theorem 7.4.2 For the convolution filtering model (7.4.47)–(7.4.49)
with 1-periodic signal and impulse response kernel, the following lower
bound for the minimax MISE holds:

inf
f̃

sup
f∈Lipr,α,L

MISE(f̃ , f) ≥ C (ln(n))−2β/ν , β := r + α, (7.4.52)

where the infimum is taken over all possible estimators f̃ based on the data,
the impulse response kernel, and the parameters r, α, and L. This bound
is attained (up to a constant factor) by the estimate (7.4.50), that is,

sup
f∈Lipr,α,L

MISE(f̂ , f) ≤ C (ln(n))−2β/ν . (7.4.53)
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Proof. Let us begin with establishing the lower bound (7.4.52). Set m :=
�(ln(n)(1 + 1/ ln(ln(n)))/2c)1/ν� and note that m is a “bit” larger than
Jn. Consider an input signal f∗(t) := θ(ψ−m(t) + ψm(t)). It is easy to
check that for a real θ this signal is also real, and if θ2 ≤ C∗m−2β , then
f∗ ∈ Lipr,α,L whenever C∗ is sufficiently small.

According to (7.2.6), the observed statistics are Y−m = θh−m +
n−1/2Z ′

−m and Ym = θhm+n−1/2Z ′
m. Note that in general the variables are

complex, so to get real numbers we use the traditional “trick” and consider
the equivalent real statistics Y1 := (Ym+Y−m)/2 and Y2 := (Ym−Y−m)/2i.
Then we may conclude that any estimate of θ based on these two statistics
will be dominated by an optimal estimate of θ based on the observation
Y := θ +a|hm|−1n−1/2Z ′, where a is a sufficiently small constant and Z ′ is
a standard normal random variable. Then Lemma 7.1.1 together with the
directly verified relation m−2β = on(1)n−1|hm|−2 yields the desired lower
bound,

inf
f̃

sup
f∈Lipr,α,L

MISE(f̃ , f) ≥ inf
θ̃

sup
θ2≤C∗m−2β

E{(θ̃ − θ)2}

≥ Cm−2β ≥ C(ln(n))−2β/ν .

The upper bound is established even more easily. A calculation shows
that |hJn

|−2n−1 = on(1)J−2β
n . Also, according to (2.4.18) we get that

supf∈Lipr,α,L

∑
j>Jn

θ2
j ≤ CJ−2β

n . These results together with Parseval’s
identity imply the upper bound (7.4.53). Theorem 7.4.2 is proved.

As we see from the proof, for the deconvolution problem the phenomenon
of “no adaptation is needed” is due to the fact that the MISE of the op-
timal estimate has a variance term that is negligible in comparison to the
squared bias term. Thus, no variance–bias tradeoff is needed. Recall that
this outcome is just opposite to the estimation of analytic functions dis-
cussed in Section 7.1, where the efficiency of the optimal estimate for both
MSE and MISE risks was due to the negligible squared biases in comparison
to the variance terms. Thus, in both these cases no bias–variance tradeoff
is needed for optimal estimation, and this is what makes these two cases
so simple. On the other hand, the difference between these two settings is
dramatic. Analytic functions may be estimated with an almost paramet-
ric rate ln(n)/n, while an optimal deconvolution is possible only with an
extremely slow logarithmic rate.

7.5 Multivariate Functions

The objective of this section is to explain what stands behind the expression
“the curse of multidimensionality” discussed in Chapter 6 for particular
examples.
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The issue is that estimation of a multivariate function becomes very
complicated, since typically the sample size needed for accurate curve es-
timation increases dramatically even if the dimensionality increases rather
modestly.

The simplest way to shed some theoretical light on the issue is to derive
lower bounds for minimax MISE and MSE convergences.

Suppose that we would like to estimate a d-variate function f(td) for
values of vectors td := (t1, t2, . . . , td) from the unit d-dimensional cube
[0, 1]d. As an example, consider functions that are Hölder H0,β(L, L1), 0 <
β < 1, that is, |f(ud) − f(vd)| ≤ L|ud − vd|β and |f(td)| ≤ L1. Below we
skip the parameters 0, L1, and L2 in the notation for this space, that is,
we simply write Hβ .

To establish lower bounds for the minimax MISE and minimax MSE we
again use the approach of Section 7.1. We choose a multivariate wavelet
basis with bounded support and then transmit wavelet coefficients of a
signal f(td) via parallel Gaussian channels, as shown in Figure 7.1. As we
know, this is an analogue of a filtering model, and to make the setting
similar to a multivariate density estimation or a multivariate regression,
let us assume that σ2 := n−1.

To establish a lower bound for the minimax MISE, consider a signal

f(td) :=
2J−1∑

s1,s2,...,sd=0

XJ,sd ψ′
J,sd(td), (7.5.1)

where J := �log2(n1/(2β+d))�, sd := (s1, s2, . . . , sd), and the wavelet func-
tion ψ′

J,sd(td) :=
∏m

l=1 ψ′
J,sl

(tl) is a a d-variate function created by a
product of d univariate wavelet functions ψ′

J,sl
(tl) at the Jth resolution

scale.
It is well known, see, for instance, Meyer (1992, Section 6.4), that there

exist wavelets such that a function (7.5.1) belongs to Hβ if and only if
(compare to (2.5.3) where d = 1)

|XJ,sd | ≤ C2−J(2β+d)/2. (7.5.2)

Thus, if in (7.5.1) all XJ,sd ∈ [−cn−1/2, cn−1/2] and c is sufficiently small,
then f(td) defined in (7.5.1) belongs to Hβ (Exercise 7.5.1).

Using k = 2Jd channels one can transmit the signal (7.5.1) via the com-
munication system shown in Figure 7.1, and then, according to (7.1.14)
(note that to get (7.1.14) we never really used the fact that the input sig-
nal is univariate, and the only needed modification in the proof is to use
d-variate coding functions and the corresponding integrals),

inf
f̃

sup
f∈Hβ

MISE(f̃ , f)
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≥ inf
f̃

sup
{X

J,sd ∈ [−cn−1/2,cn−1/2]}
MISE

(
f̃ ,

2J−1∑
s1,s2,...,sd=0

XJ,sdψ′
J,sd

)

≥ µ(c)c2

(1 + c2)n

2J−1∑
s1,s2,...,sd=0

∫
[0,1]d

(ψ′
J,sd(td))2dtd

≥ Cn−12Jd = Cn−2β/(2β+d). (7.5.3)

It is even simpler to establish a lower bound for the minimax MSE. As in
Section 7.1 we note that for any td0 ∈ [0, 1]d it is always possible to assume
that there exists sd

0 such that

|ψ′
J,sd

0
(td0)|2 ≥ C2dJ . (7.5.4)

Then consider f(td0) := X1ψ
′
J,sd

0
(td0). As was explained above, if X1 ∈

[−cn−1/2, cn1/2], then f ∈ Hβ . Thus, we set k = 1, transmit only one input
signal X1, and then, according to (7.1.13), get

inf
f̃(td

0)
sup

f∈Hβ

MSE(f̃(td0), f(td0))

≥ inf
f̃(td

0)
sup

X1∈[−cn−1/2,cn−1/2]
MSE(f̃(td0), X1ψ

′
J,sd

0
(td0))

≥ Cn−12dJ = Cn−2β/(2β+d). (7.5.5)

We conclude that both the minimax MISE and the minimax MSE for the
estimation of d-dimensional Hölder functions cannot converge faster than
n−2β/(2β+d).

To shed light on how this rate affects estimation of multivariate curves
and to get a feeling for the necessary sample sizes, consider the following
example. Suppose that we would like to estimate a Hölder function with
a MISE or MSE not larger than δ = 0.1. Assume that β = 0.5 and that
there exists a rate optimal estimator whose risk is n−2β/(2β+d). Then, to get
this precision of estimation, one needs at least n∗(d) observations, where
n∗(d) is the rounded-up δ−1−d. In particular, n∗(1) = 100, n∗(2) = 1000,
n∗(3) = 10000, and n∗(4) = 100000. This is what defines the curse of
multidimensionality, because to get a reasonable precision of estimation,
astronomically large sample sizes are needed even for moderate dimensions.

On the other hand, it is a good idea to know that estimation of mul-
tivariate functions is not necessarily so complicated. Consider a function
space of d-variate analytic functions

f(td) :=
∞∑

j1,...,jd=0

θjd ϕjd(td), (7.5.6)

where ϕjd(td) := ϕj1(t1) · · ·ϕjd
(td) are the elements of the trigonometric

tensor-product basis (see Section 6.1) and θjd =
∫
[0,1]d ϕjd(td)f(td)dtd are
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Fourier coefficients that satisfy the inequality

|θjd | ≤ Q exp
{

−
d∑

l=1

γl�(jl + 1)/2�
}

. (7.5.7)

Denote this function class by AγdQ.
Suppose that for a statistical setting one can suggest an estimator θ̂jd of

Fourier coefficients θjd such that

E{(θ̂jd − θjd)2} ≤ Cn−1. (7.5.8)

Note that such an estimator exists for all the models considered.
Define a projection estimator

f̂(td) :=
J1∑

j1=0

J2∑
j2=0

· · ·
Jd∑

jd=0

θ̂jdϕjd(td), (7.5.9)

where Jl := 2�γ−1
l ln(n)/2�. Denote by D all natural indices (j1, . . . , jd)

that are not included in the sum (7.5.9). Then direct calculations, based
on Parseval’s identity, show that

sup
f∈A

γdQ

MISE(f̃ , f) = n−1
d∏

l=1

(Jl +1)+
∑

jd∈D

θ2
jd ≤ C (ln(n))d n−1. (7.5.10)

Thus, at least asymptotically, estimation of multivariate analytic
functions is scarcely worse than estimation of univariate functions.

The conclusion from (7.5.5) and (7.5.10) is that smoothness of multi-
variate functions plays a far more dramatic role in their estimation than
for their univariate counterpart. Thus, optimal adaptive estimation be-
comes necessary for the multivariate case. Fortunately, almost all methods
of adaptation discussed in Section 7.4 may be used for multivariate settings.

7.6 Special Topic: Estimation of Quadratic
Functionals

In the previous sections we have discussed estimation of a linear functional
f(t0), that is, the value of a function at a given point. In this section
we would like to estimate a nonlinear functional, namely, a quadratic
functional

Fs(f) :=
∫ 1

0
(f (s)(t))2dt, (7.6.1)

where f (s) is the sth derivative of f .
Let us begin with the case s = 0, filtering model (7.3.1), and the as-

sumption that f belongs to the Sobolev function space Wβ,Q defined in
(2.4.19).
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A natural idea of how to estimate a functional is to plug in an estimate
of an underlying function. Let is check this idea. For our function space, a
projection estimator

f̂(t) :=
J∑

j=0

θ̂jϕj(t) (7.6.2)

is globally rate optimal if J = 2�n1/(2β+1)�. Here

θ̂j =
∫ 1

0
ϕj(t)dY (t) = θj + n−1/2Z ′

j , (7.6.3)

{ϕj} is the trigonometric basis (2.4.1), θj =
∫ 1
0 ϕj(t)f(t)dt is the jth

Fourier coefficient of an underlying f , and Z ′
j are iid standard normal;

see (7.2.6).
It is clear from Parseval’s identity that a plug-in estimator F0(f̂) has a

very simple form,

F0(f̂) =
J∑

j=0

θ̂2
j . (7.6.4)

Now let us calculate the mean squared error of this plug-in estimator. The
calculations are straightforward and based on the fact that odd moments
of Z ′

j are zero and E{(Z ′)2m} = (2m − 1)(2m − 3) · · · 1. Write

E{(F0(f̂) − F0(f))2}

= E
{[ J∑

j=0

(
θ2

j + 2n−1/2Z ′
jθj + n−1(Z ′

j)
2 − θ2

j

)−
∑
j>J

θ2
j

]2}

= 4n−1
J∑

j=0

θ2
j + n−2[(J + 1)2 + 2(J + 1)]

− 2n−1(J + 1)
∑
j>J

θ2
j +

(∑
j>J

θ2
j

)2

= 4n−1
∫ 1

0
f2(t)dt +

(
n−1(J + 1) −

∑
j>J

θ2
j

)2

+ 2n−2(J + 1) − 4n−1
∑
j>J

θ2
j . (7.6.5)

For the Sobolev space the absolute value of the second term in (7.6.5)
is at most Cn−4β/(2β+1), and the absolute values of the third and fourth
terms are at most Cn−(4β+1)/(2β+1). Thus for some |Cn| < C < ∞,

E{(F0(f̂) − F0(f))2} = 4F0(f)n−1 + Cnn−4β/(2β+1) (7.6.6)
= 4F0(f)n−1(1 + on(1)) if β > 0.5. (7.6.7)
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We see that the plug-in estimator gives a perfect parametric rate n−1 of
the mean squared error convergence if an underlying function is sufficiently
smooth. It is also possible to show that the factor 4F0(f) in (7.6.7) cannot
be improved, that is, this estimator is asymptotically efficient.

Thus, this plug-in estimator is an excellent one. However, there are at
least two reasons why it is worthwhile to find an alternative estimator. The
first one is that the plug-in estimator is based on β, since f̂(t) is based
on β. The second one is that it is of interest to understand how one can
efficiently estimate the quadratic functional for the case β ≤ 0.5.

As an alternative procedure, consider the data-driven estimator

F̂0 :=
J0∑

j=0

(θ̂2
j − n−1), J0 := 2�n/ ln(n)�. (7.6.8)

Clearly, this estimator is motivated by the Parseval identity F0(f) =∑∞
j=0 θ2

j and by the unbiased estimator θ̂2
j − n−1 of θ2

j .
Let us calculate the mean squared error of F̂0. Write for f ∈ Wβ,Q,

E{(F̂0 − F0(f))2} = E
{( J0∑

j=0

(θ̂2
j − n−1 − θ2

j ) −
∑
j>J0

θ2
j

)2}

= 2(J0 + 1)n−2 + n−14
J0∑

j=0

θ2
j +

( ∑
j>J0

θ2
j

)2
≤ 4F0(f)n−1(1 + on(1)) + CJ−4β

0 . (7.6.9)

We see that this simple data-driven estimator outperforms the plug-
in estimator, which is based both on data and β, because J−4β

0 =
(n/ ln(n))−4β = o(1)n−1 whenever β > 1

4 while (7.6.7) holds only for β > 1
2 .

Our conclusion from this example is twofold. First, a plug-in idea usu-
ally works out for sufficiently smooth underlying functions. Second, it is
always worthwhile to look at the specific nature of a functional and then
consider (if possible) a simpler estimate that is based on the structure of
the functional. As we have seen, such an attempt may pay a dividend.

What will occur if the smoothness parameter β is smaller than 1
4? It is

possible to show that in this case the rate decreases from the parametric
n−1 to a slower n−8β/(4β+1). Thus this case is called irregular. There is
one more bit of “bad” information about the irregular case: An adapta-
tion penalty, which is again a logarithmic factor (similar to the adaptive
pointwise estimation discussed in Section 7.4), should be paid.

It is easy to extend these results to the case of estimating the functionals
Fs(f), that is, integrals of squared derivatives. Let us again assume that
f ∈ Wβ,Q and β > 2s + 0.25. Set Js := 2�n1/(4s+1)/ ln(n)� and define the
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estimator

F̂s :=
Js∑

j=0

(θ̂2
j − n−1)

∫ 1

0
(ϕ(s)

j (t))2dt. (7.6.10)

Note that
∫ 1
0 (ϕ(s)

j (t))2dt = (2π�(j + 1)/2�)2s, j > 0.
Clearly, this estimator is motivated by the Parseval identity

Fs(f) =
∞∑

j=0

θ2
j

∫ 1

0

(
ϕ

(s)
j (t)

)2
dt. (7.6.11)

Then, according to Exercise 7.6.4, if β > 2s + 0.25, then for f ∈ Wβ,Q

E{(F̂s − Fs(f))2} = 4F2s(f) n−1 (1 + on(1)). (7.6.12)

It is again possible to show that the factor 4F2s(f) cannot be improved.
Thus the data-driven estimator (7.6.10) is asymptotically efficient.

Extension of these results to other statistical models is straightforward:
Just use the estimates θ̂j of Fourier coefficients θj recommended in Section
7.3. On the other hand, we mentioned in Section 7.3 that the principle of
equivalence has its limits whenever an estimated function is not smooth
enough. Consider an interesting example that explains this limit.

Let us evaluate the possible risk of estimating F0(f) for the case of the
random design regression model (iii) defined at the beginning of Section
7.3. Recall that the responses are Yl = f(Xl) + ξl, where predictors Xl are
iid uniform on [0, 1] and ξl are iid standard normal. Consider the estimator

F̂ := n−1
n∑

l=1

(Y 2
l − 1). (7.6.13)

Note that the predictors are not used by this estimator. Also, this is a
sample mean estimator, because

E{Y 2
l − 1} = E{(f(Xl) + ξl)2 − 1} = E{f2(Xl)} =

∫ 1

0
f2(x)dx = F0(f).

The mean squared error of a sample mean estimate always decreases
proportionally to the inverse sample size. More precisely,

E{(F̂ − F0(f))2} = n−1
[ ∫ 1

0
(f2(x) + 2)2dx − (F0(f))2 − 2

]
. (7.6.14)

Thus, if for filtering model the rate of the mean squared error conver-
gence, as a function of β, has an elbow at the point β = 1

4 , there is no
such phenomenon for the regression model, where the rate is always pro-
portional to n−1 regardless of the smoothness of an underlying regression
function. This shows the limits of the equivalence principle.

Note that the elegance of the data-driven estimator (7.6.13) is appealing.



308 7. Filtering and Asymptotics

7.7 Special Topic: Racing for Constants

There are many interesting statistical settings where asymptotic constants
are of special interest simply by themselves regardless of the fact that some-
one wants to find a sharp estimator as we did in Theorem 7.1.1. In this
section three such statistical problems are discussed.

The first one is the estimation of a monotone density, the second one
is estimation of a density based on censored data, and the third one is a
general setting of nonparametric regression.

Estimation of a monotone density is probably one of the most beautiful
and interesting nonparametric problems. It is known that any monotone
density can be estimated with MISE that converges proportionally to n−2/3

regardless of how smooth the underlying monotone density. This fact will
be discussed in Section 8.6, and here just note that if a monotone function
is bounded, then its total variation is bounded, and this implies the rate
n−2/3. Recall that without monotonicity the rate is n−2β/(2β+1), where β
is the parameter of smoothness for Lipschitz or Sobolev function spaces.
Thus, a discontinuous monotone density can be estimated with a precision
of estimation of a differentiable density.

What will occur if a density is monotone and β > 1? Can monotonicity
improve the convergence in this case? It took a long time to answer this
question, and it was only in the early 1980s that Kiefer gave a negative
answer. Thus, monotonicity does not affect the rate of MISE convergence
whenever an underlying density is differentiable.

On the other hand, it is clear that monotonicity is important additional
information. Can monotonicity affect the sharp constant of MISE conver-
gence for the case of differentiable functions? This question was raised in
the famous article by Kiefer (1982).

Why is this problem important? Suppose that monotonicity does affect
a sharp constant. Then this implies that a special procedure of estima-
tion should be used that takes into account monotonicity. On the other
hand, if monotonicity does not affect this constant, then any sharp minimax
estimator can be used. Also, since a monotonic function cannot approxi-
mate a nonmonotonic one, an estimate that is based on the assumption of
monotonicity is not robust.

It has been established that monotonicity does not affect a sharp con-
stant. Thus, at least asymptotically, there is no need for a special estimator
for monotonic functions. Moreover, a universal wavelet estimator allows
one to get rate optimal estimation over a wide spectrum of function spaces
automatically, that is, if an underlying density is monotone and not dif-
ferentiable, it has MISE convergence n−2/3, and otherwise the rate is
n−2β/(2β+1).

Our second example is estimation of a density based on censored data.
We discussed this setting in Section 3.4 for the case of small sample sizes.
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Let us briefly recall one of the possible settings. We are interested in
an underlying density f of iid unobserved survival times X1, . . . , Xn of
n items or individuals that are censored on the right by iid nonnegative
random variables T1, . . . , Tn. Denote the distribution of T ’s by G∗ and set
G := 1 − G∗ for their survivor function.

The problem is to suggest an estimate of f that is based on right-censored
data (Yl, δl), l = 1, 2, . . . , n, where Yl = min(Xl, Tl) and δl = I{Xl≤Yl}.

The question is how the censoring affects MISE convergence, where one
is interested in estimating f over a given interval [a, b]. For this particular
setting we consider MISE(f̃ , f) :=

∫ b

a
(f̃(x) − f(x))2dx.

It was established in the 1980s that under mild assumptions on G and
for densities f ∈ Wβ,Q, the rate of the MISE convergence is n−2β/(2β+1),
that is, it is the same as for the case of directly observed X1, . . . , Xn. This
result shows that rates of MISE convergence shed no light on the effect of
censorship on density estimation. On the other hand, it is apparent that
censorship affects the precision of estimation and the rates simply do not
reveal this.

The situation changes if the analysis of a sharp constant, which is sim-
ilar to the analysis of risks for estimation of analytic functions in Section
7.1, is performed. It shows that under a very mild assumption there is an
additional factor d′ in the sharp constant of the minimax (over the Sobolev
function class) MISE convergence, and

d′ :=
[ ∫ b

a

(f(x)/G(x))dx
]2β/(2β+1)

. (7.7.1)

Recall that in Section 3.4 the coefficient d = (d′)(2β+1)/2β was referred
to as the coefficient of difficulty due to censoring.

Finally, let us consider the problem of nonparametric regression in a gen-
eral setting. This problem is motivated by classical parametric estimation
problems, so it is worthwhile to begin with a very brief review of parametric
problems.

Let n iid observations V1, V2, . . . , Vn be given that are drawn from a
distribution with a density p(v|θ) that depends on a parameter θ. Several
familiar examples are as follows. (i) A model with a location parameter
where Vl = θ + ξl, l = 1, 2, . . . , n, and ξl are errors with a density pξ(v).
In this case p(v|θ) = pξ(v − θ). (ii) A model with a scale parameter where
Vl = θξl. In this case p(v|θ) = (1/θ)pξ(v/θ). (iii) A mixture model where

p(v|θ) = θg(v) + (1 − θ)h(v), 0 ≤ θ ≤ 1,

g and h are densities of two different random variables (typically it is as-
sumed that their means are different). In other words, with probability θ
the observed random variable V is generated from the density g and with
probability 1 − θ from the density h. (iv) A model of censored data where
Vl = min(Ul, c) and Ul = θ + ξl. In other words, unobserved data are gen-
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erated by a location model and then censored at the level c. (v) A binomial
model where V1, . . . , Vn are observed successes and failures and θ is the
probability of a success.

In parametric asymptotic theory we are interested in efficient estimation
of the parameter θ in the following sense. If θ̂n is an estimate of θ, then
we say that it is asymptotically efficient if n1/2(θ̂n − θ) is asymptotically
normal with zero mean and variance 1/I(θ), where

I(θ) :=
∫

[(p′(v|θ))2/p(v|θ)]dv (7.7.2)

is the Fisher information. Here p′(v|θ) := ∂p(v|θ)/∂θ.
The definition of an asymptotically efficient estimate is motivated by the

famous Rao–Kramer inequality, which states that under mild assumptions
the variance of any unbiased estimate cannot be smaller than 1/nI(θ).

Also recall that under mild assumptions a maximum likelihood esti-
mate is asymptotically efficient. Except for some trivial cases, there is
no close formulae for this estimate, so in many practical applications the
Newton–Raphson one-step approximation of this estimate is used. The
approximation is based on using a pilot estimate θ̃ that satisfies the assump-
tion E{(n1/4(θ̃n − θ))2} → 0 as n → ∞. Then the one-step approximation,
which is also called the scoring estimate, is used:

θ̂n := θ̃n +
L(1)(θ̃n)
nI(θ̃n)

. (7.7.3)

Here L(1)(θ) =
∑n

l=1 p′(Vl|θ)/p(Vl|θ) is the derivative of the log-likelihood
function L(θ) :=

∑n
l=1 ln(p(Vl|θ)). Under mild assumptions, it is possible

to show that the scoring estimate (7.7.3) is asymptotically efficient.
Now we are in a position to explain how to use these classical parametric

results for nonparametric regression settings.
First, a general parametric model of iid observations drawn from a dis-

tribution with a density p(v|θ) is straightforwardly translated into the
following nonparametric model. It is assumed that n iid pairs of obser-
vations (X1, Y1), . . . , (Xn, Yn) are generated by a pair of random variables
(X, Y ) with a joint density pX,Y (x, y) = h(x)p(y|f(x)). Here h(x) is the
density of the predictor X supported on [0, 1], Y is the response, and f(x)
is an estimated regression function.

This generalized model includes all the regression settings considered in
Chapter 4. For instance, if p(y|f(x)) = pξ(y − f(x)), we get a classical
additive model Y = f(X) + ξ, which is an analogue of the parametric
location model. If p(y|f(x)) = (1/f(x))pξ(y/f(x)), we get the model of a
scale (volatility) regression Y = f(X)ξ, etc.

Second, the notion of asymptotically efficient estimation is translated into
a sharp (efficient) nonparametric estimation. Under mild assumptions, it is
possible to show that for the generalized regression model and f ∈ Wβ,Q



7.8 Special Topic: Confidence Intervals, Confidence Bands, and Hypothesis Testing 311

the sharp constant for the minimax MISE convergence is

C∗ :=
[ ∫ 1

0
[h(x)I(f(x))]−1dx

]2β/(2β+1)
P (β, Q), (7.7.4)

where

P (β, Q) := (2β/2π(β + 1))2β/(2β+1)(2β + 1)1/(2β+1) Q1/(2β+1) (7.7.5)

is a so-called Pinsker constant. Note that C∗ = P (β, Q) for a model of
additive regression with standard Gaussian noise and uniformly distributed
predictors where I(θ) = 1, θ ∈ (−∞,∞), and h(x) = 1, x ∈ [0, 1].

Because all the considered models have the same familiar rate n−2β/(2β+1)

of MISE convergence, only the constant (7.7.4) indicates how a particular
regression model affects MISE convergence.

If one would like to find an optimal design for an experiment, that is, a
design density h(x) that minimizes (7.7.4), it is easy to do. Using Cauchy–
Schwarz inequality (2.3.4) we get the relation∫ 1

0
[h(x)I(f(x))]−1dx ≥

[ ∫ 1

0
[I(f(x))]−1/2dx

]2
,

with equality if and only if

h∗(x) :=
[
[I(f(x))]1/2

∫ 1

0
[I(f(t))]−1/2dt

]−1
. (7.7.6)

Thus, (7.7.6) defines the optimal design density. For instance, since for
the additive regression model the Fisher information is always constant
(see Exercise 7.7.2), the optimal design for an additive regression is always
uniform regardless of the distribution of errors. In the general case a pilot
estimate of f is needed to find the optimal design density (7.7.6).

Finally, note that parametric theory allows us to suggest a rather simple
sharp minimax procedure of nonparametric series estimation based on the
scoring estimator (7.7.3). Indeed, since θj are parameters, the scoring esti-
mator can be used for estimating θj for all the regression models discussed.
It is possible to show that this procedure together with Efromovich–Pinsker
block shrinkage implies a sharp minimax estimation where the constant
(7.7.4) is attained.

7.8 Special Topic: Confidence Intervals, Confidence
Bands, and Hypothesis Testing

We begin with a review of basic results of the parametric theory (see also
Appendix A). Let one observe X = θ+σξ where θ is an unknown parameter
and ξ is a standard normal random variable. A 1 − α confidence interval
estimate of θ is an interval that encloses θ with the probability at least
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equal to the confidence level 1 − α, 0 < α < 1. Recall that a well-known
confidence interval estimate of θ is

CI(X, α) := [X − σzα/2, X + σzα/2]. (7.8.1)

Here zα/2 is defined as a function in α such that P (ξ > zα/2) = α/2.
Also recall that the confidence interval (7.8.1) is closely related to a two-

tailed hypothesis test. Consider a classical Neyman–Pearson problem of
testing a null hypothesis θ = θ0 versus an alternative hypothesis θ �= θ0
with the level of significance α. The problem is to find a rejection region
R(θ0, α) such that if Y belongs to this region, then the null hypothesis is
rejected; otherwise the null hypothesis is accepted, and the probability of
rejection under the null hypothesis should be at most α, that is, P (Y ∈
R(θ0, α)|θ = θ0) ≤ α. In other words, given that the null hypothesis is true,
it may be rejected with probability at most α.

Then a customarily used rejection region is

R(θ0, α) := {X : X �∈ [θ0 − σzα/2, θ0 + σzα/2]}. (7.8.2)

The striking similarity between (7.8.1) and (7.8.2) is not surprising, be-
cause the confidence interval estimation and the hypothesis testing are dual
problems. A method of finding an interval estimate by inverting a test (and
vice versa) is a fairly general technique in parametric statistics. Also, the
reader with a major in statistics might recall that the test with the rejec-
tion region (7.8.2) is uniformly most powerful unbiased and the confidence
interval estimator (7.8.1) is uniformly most accurate unbiased; see more in
Exercise 7.8.3.

Direct extension of these classical parametric problems is a nonparamet-
ric analogue when one wants to find a confidence interval for f(t0) (which
can be considered as a parameter) or solve a corresponding two-tailed
hypothesis testing problem.

Let us explore these two problems for the case of analytic functions
f ∈ Aγ,Q, defined in (7.1.5), and the filtering model (7.3.1). According to
(7.1.11), the projection estimate

f̂(t0, Y ) :=
Jγ∑

j=0

θ̂jϕj(t0) (7.8.3)

is sharp minimax. Here {ϕj} is the classical sine–cosine trigonometric basis
on [0, 1],

θ̂j :=
∫ 1

0
ϕj(t)dY (t), Jγ := 2�γ−1 ln(n1/2)�. (7.8.4)

Then using (7.2.9) with σ = n−1/2 we get

f̂(t0, Y ) =
Jγ∑

j=0

θjϕj(t0) + n−1/2
Jγ∑

j=0

ξjϕj(t0)
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= f(t0) + n−1/2
Jγ∑

j=0

ξjϕj(t0) −
∑
j>Jγ

θjϕj(t0). (7.8.5)

Here θj =
∫ 1
0 ϕj(t)f(t)dt are Fourier coefficients of f , and ξ0, ξ1, . . . are iid

standard normal random variables.
The second term in (7.8.5) is a normal random variable N(0, n−1(Jγ+1)).

The third term is the bias, which for large n is negligible in comparison to
the standard deviation of the second term, namely,

sup
f∈Aγ,Q

∣∣∣ ∑
j>Jγ

θjϕj(t0)
∣∣∣ ≤ Ce−γ(γ−1 ln(n1/2)) ≤ Cn−1/2. (7.8.6)

Recall that we consider the case of large n; thus both the parametric
confidence interval estimate (7.8.1) and the parametric rejection rule (7.8.2)
can be used for our nonparametric setting with f̂(t0, Y ) in place of X and
σn := (n−1Jγ)1/2 in place of σ. This implies the nonparametric confidence
interval

NCI(f̂(t0, Y ), α) := [f̂(t0, Y ) − zα/2σn, f̂(t0, Y ) + zα/2σn], (7.8.7)

and the nonparametric rejection region is

NR(f0(t0), α) := {Y : f̂(t0, Y ) �∈ NCI(f0(t0), α)}. (7.8.8)

Here f = f0 is the null hypothesis and f̂(t, Y ) is the estimate (7.8.3).
The procedures enjoy the property of being asymptotically uniformly most
accurate (powerful) unbiased.

Let us show, as a simple exercise, that for any f ∈ Aγ,Q the recommended
confidence interval (7.8.7) encloses an unknown f(t0) with probability at
least 1 − α + on(1), where on(1) → 0 as n → ∞. Write

inf
f∈Aγ,Q

P
(
f(t0) ∈ [f̂(t0, Y ) − zα/2σn, f̂(t0, Y ) + zα/2σn]

)
= inf

f∈Aγ,Q

P
(∣∣f(t0) − f̂(t0, Y )

∣∣ ≤ zα/2σn

)

= inf
f∈Aγ,Q

P
(∣∣∣n−1/2

Jγ∑
j=0

ξjϕj(t0) −
∑
j>Jγ

θjϕj(t)
∣∣∣ ≤ zα/2σn

)

≥ P
(∣∣∣n−1/2

Jγ∑
j=0

ξjϕj(t0)
∣∣∣ ≤ zα/2σn − Cn−1/2

)
≥ 1 − α + on(1).

Here in the third line we used (7.8.5), in the first inequality of the last
line we used (7.8.6), and the last inequality is based on the fact that the
random variable n−1/2 ∑Jγ

j=0 ξjϕj(t0) is normal N(0, n−1(Jγ + 1)).
The approach discussed so far has been pointwise, that is, for a given

point t0 we have suggested a confidence interval for estimating f(t0). In
many cases it is also desirable to have a global confidence band that shows
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that an underlying signal f(t) belongs to that band for all t with at least
a probability 1 − α.

The key idea in finding a confidence band is to use (7.8.5)–(7.8.6) and
then study a sequence of random variables

ZJ := (J + 1)−1/2 max
0≤t≤1

J∑
j=0

ξjϕj(t), (7.8.9)

which is the normed maximum of the second term (the frequency-limited
white noise) in (7.8.5).

As in the definition of zα/2, let us define zα/2,J as a value satisfying

P (ZJ ≥ zα/2,J ) := α/2. (7.8.10)

These values can be found by a Monte Carlo method. For instance,
z0.05,4 = 1.97, z0.05,10 = 2.1, and z0.01,10 = 2.49. {The S-function zal-
pha(a,J) of our software toolkit allows one to get values of za,J .} Then a
natural confidence band estimator is (Exercise 7.8.4)

CB =
[
f̂(t, Y ) − zα/2,Jγ

σn), f̂(t, Y ) − zα/2,Jγ
σn)

]
. (7.8.11)

Recall that σn = (n−1Jγ)1/2. A corresponding dual problem of hypothesis
testing is considered absolutely similarly; see Exercise 7.8.5.

7.9 Exercises

7.1.1 Consider a single Gaussian channel Y = X + Z where the noise Z is
normal N(0, σ2) and the input X is an unknown constant (parameter). Let
w∗ = X2/(X2 + σ2). Show that mean squared error of a linear estimate
X̂ = wY , where w is a constant (shrinkage weight), satisfies the relation

E{(wY − X)2} ≥ E{(w∗Y − X)2} = w∗σ2. (7.9.1)

7.1.2 Consider the Gaussian channel of Exercise 7.1.1 and assume that the
input X is a normal random variable N(0, c2σ2) and Z is a normal N(0, σ2)
noise independent of X. Show that any estimate X̃ of X based on output
Y satisfies

E{(X̃ − X)2} ≥ E{(λY − X)2} = λε2, (7.9.2)

where λ := c2/(c2 + 1).
7.1.3 Consider the Gaussian channel of Exercise 7.1.1 and assume that the
input X = θ is a constant and θ ∈ [−cσ, cσ]. Let X̂ be any estimator of X
based on both the output Y and the parameters c and σ. Show that there
exists a random variable Θ with a cumulative distribution function F (x)
satisfying F (−cσ) = 0 and F (cσ) = 1 such that

inf
X̂

sup
X∈[−cσ,cσ]

E{(X̂ − X)2} (7.9.3)
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≥ inf
X̂

∫ cσ

−cσ

E{(X̂ − x)2}dF (x) = E{(E{Θ|Y } − Θ)2} (7.9.4)

= µ(c)c2σ2/(1 + c2), (7.9.5)

where µ(c) ≥ 0.8 and µ(c) → 1 as c → ∞ or c → 0. Hint: The inequality
(7.9.4) states that a minimax risk is not smaller than a corresponding
Bayes risk. After working on Exercises 7.1.1–7.1.2, the relations (7.9.4) and
(7.9.5) should be intuitively clear. Their rigorous proof is more involved;
see Donoho, Liu, and MacGibbon (1990).
7.1.4 Compare the lower bounds of the previous exercises and discuss them.
7.1.5 Verify the lower bound (7.1.7).
7.1.6 Prove the relations (7.1.21).
7.1.7 Consider the variance and the squared bias terms of the MSE in
(7.1.20). One of them is negligible in comparison to the other. Which one?
Also, is it possible to find a cutoff that makes these two terms comparable?
Would you recommend to use this cutoff?
7.1.8 Verify (7.1.25).
7.1.9 Suggest a proof of Theorem 7.1.2 for 0 < α < 1 using a wavelet basis
as a set of coding functions. Hint: Use the characterization (2.5.3).
7.1.10 How does the fact that the sth derivative is the estimand affect
the convergence of the minimax risks for Lipschitz and analytic functions?
Explain why the difference is so dramatic.
7.1.11 Find the first and second derivatives of the mollifier and draw their
graphs.
7.1.12 Consider a set of functions (7.1.31). What is the support of fk(t)?
What can be said about f

(l)
k (0) and f

(l)
k (1), l = 0, 1, . . .?

7.1.13 Let fk(t) be as defined in (7.1.31). Show that if all the Xj are in
the interval [−cσ, cσ] with a sufficiently small c, then fk ∈ Lipr,α,L([0, 1]).
Hint: explore how many coding functions gj(t) vanish at points t = u and
t = v; then use (7.1.30).
7.1.14 Use Remark 7.1.2 and indicate necessary changes in the proofs
for the case of positive and decreasing f(t) on [0, 1] functions. Also, for
Theorem 7.1.1 consider the case where underlying functions are probability
densities supported on [0, 1].

7.1.15 Let f(t) =
∑2�σ−2/(2β+1)	

j=1 Xjϕj−1(T ), where {ϕj} is the classical
trigonometric basis (2.4.1). Show that for any combination of values {Xj}
such that {Xj ∈ [−cσ, cσ], j = 1, . . .} the function f(t) belongs to a Sobolev
function space Wβ,Q, defined in (2.4.19) whenever c is sufficiently small.
Then use this result to find the asymptotic minimax MISE over this func-
tion class. Hint: Follow along the steps of the proof of Theorem 7.1.1. The
answer should be the same as for a Lipschitz space with the same parameter
of smoothness β.
7.1.16 Prove that the assertion of Theorem 7.1.1 holds for the local
minimax introduced in Remark 7.1.3.
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7.1.17 Prove the assertion of Remark 7.1.4. Hint: Follow along the lines
of the proof of Theorem 7.1.1 and use the following technical results:∑Jγ

j=0[
∫ t

0 ϕj(x)dx]2 = t − 2π−2J−1
γ (1 + oσ(1)), which may be proved us-

ing Parseval identity for the function I{x∈[0,t]} (see the line below (7.2.3));
Check that E{(E{Θj |Yj} − Θj)2} = σ2(1 + oσ(1) ln−1(σ−1) ).
7.1.18 Can a second-order efficient estimator be suggested under MISE
criteria?
7.1.19 Check (7.1.34)–(7.1.36).
7.1.20 Verify the assertion of the last paragraph in Remark 7.1.5.
7.1.21 Let us compare the optimal smoothing and hard thresholding.
Suppose that Y = θ + σξ where ξ is a standard normal random vari-
able and θ is an estimated parameter. (a) Show that λ∗ = θ2/(θ2 + σ2)
minimizes MSE(λ) := E{(λY − θ)2} over all real λ. (b) Show that
λ′ = Iθ2>σ2 minimizes the MSE(λ) over all λ ∈ {0, 1}. (c) Verify the
relation 1

2 ≤ MSE(λ∗)/MSE(λ′) ≤ 1.
7.2.1 Show that (7.2.1) is an unbiased estimate of fk(t), i.e., E{yk(t)} =
fk(t).
7.2.2 Let Zj , j = 0, 1, . . ., be iid normal N(0, σ2). Show that for each
t ∈ [0, 1] a random variable B2k(t) := σ−1 ∑2k

j=0 Zj

∫ t

0 ϕj(u)du is normal

with zero mean and variance
∑2k

j=0(
∫ t

0 ϕj(u)du)2.
7.2.3 One of the classical definitions of a standard Brownian motion is as
follows. A standard Brownian motion starting at level zero and defined on
[0, T ] is a stochastic process {B(t), 0 ≤ t ≤ T} satisfying the conditions:
(a) B(0) = 0; (b) B(t2) − B(t1), B(t3) − B(t2), . . . , B(tn) − B(tn−1) are
independent for every integer n ≥ 3 and every 0 ≤ t1 < t2 < · · · < tn ≤ T ;
(c) The random variable B(u) − B(v) is normal N(0, u − v) for 0 ≤ v <
v ≤ T . Then, let B1(t) and B2(t) be two independent standard Brownian
motions. Describe properties of a linear combination of these processes.
7.2.4 Let a standard Brownian motion be defined according to Exercise
7.2.3. Then existence of this process may be established by the following
experiment. Let Z ′

l , l = 1, 2, . . ., be iid realizations of a standard normal
random variable and let {gj , j = 1, 2, . . .} be elements of an orthonormal
basis in L2[0, T ]. Set Bk(t) :=

∑k
j=1 Z ′

j

∫ t

0 gj(u)du. Show that Bk(t) con-
verges almost surely to a standard Brownian motion on [0, T ] as k → ∞.
Hint: See the book by Gihman and Skorohod (1974).
7.2.5 Consider the communication system (7.1.1) shown in Figure 7.1. As-
sume that the noise is normal and coefficients {Xj} of an input signal
f(t) =

∑k
j=1 Xjgj(t) are sent n times via this system to improve the re-

liability of the transmission. Show that such a method makes this system
equivalent to the system (7.1.1) with the smaller noise level σ∗ = σ/n1/2.
7.2.6 Write down all the steps of the universal estimate for filtering a signal
from a white noise.
7.2.7 Use the principle of equivalence and formulate Theorems 7.1.1 and
7.1.2 for a density model.
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7.2.8 Use the principle of equivalence and formulate Theorems 7.1.1 and
7.1.2 for a regression model.
7.2.9 Use the principle of equivalence and formulate Theorems 7.1.1 and
7.1.2 for a density model with right-censored data. Hint: Recall that σ2 =
d/n and use the coefficient of difficulty introduced in Section 3.4.
7.2.10 Prove the assertion of Remark 7.2.1 for estimation of a density
f ∈ Aγ,Q ∩ {ψ : |ψ(t) − f∗(t)| < n−1/3, f∗(t) > C > 0, 0 ≤ t ≤ 1}.
7.3.1 The proof of Theorem 7.3.1 has outlined how to establish the fact
that the estimator (7.3.5) is both globally and pointwise rate optimal. Write
down a step-by-step proof.
7.3.2 Prove that all the conditions of Theorem 7.3.1 hold for the case of a
filtering model and θ̂j =

∫ 1
0 ϕj(t)dY (t).

7.3.3 Explain all the steps in the lines (7.3.14).
7.3.4 Prove Bernstein’s inequality (7.3.15). Hint: Begin with

(
∞∑

j=0

|θj |)2 = (
∞∑

j=0

(1 + j)−β(1 + j)β |θj |)2 ≤
∞∑

j=0

(1 + j)−2β
∞∑

j=0

(1 + j)2β |θj |2.

The assumption β := r + α > 0.5 implies that
∑∞

j=0(1 + j)−2β converges.
The inequality

∑∞
j=0(1+j)2βθ2

j < C < ∞ is verified by a direct calculation.
(Several different proofs may be found in Bary 1964, Section 2.3.)
7.3.5 Finish the outlined proof of (7.3.9) for the density model.
7.3.6 Verify that conditions of Theorem 7.3.1 hold for the estimate (7.3.16).
7.3.7 Consider the model of the spectral density estimation discussed in
Section 5.2, and suggest an estimator θ̂j of the correlation coefficients θj =
E{XtXt+j} that satisfies the conditions of Theorem 7.3.1.
7.4.1 Verify (7.4.3).
7.4.2 Verify (7.4.6).
7.4.3 Establish (7.4.8). Hint: Use (2.4.19) and find the largest J such that
θ2

j = c ln(n)/n, 0 ≤ j ≤ J , and the corresponding f still belongs to Wβ,Q.
Then calculate the value of Jc ln(n)/n.
7.4.4 Verify (7.4.8) for a Hölder space and a wavelet basis. Hint: Use the
characterization (2.5.3).
7.4.5 Let Y = θ + σZ ′, where Z ′ is a standard normal random variable.
Show that Y 2 − σ2 is an unbiased estimate of θ2

j .
7.4.6 Verify (7.4.9).
7.4.7 Explain why in (7.4.10) the maximal J∗

n can be chosen as �n/ ln(n)�.
7.4.8 Explain how (7.4.16) is obtained.
7.4.9 Verify (7.4.17).
7.4.10 Check the optimality of the block shrinkage (7.4.24).
7.4.11 Prove (7.4.25). Hint: E{(Z ′)2k} = (2k − 1)(2k − 3) · · · 1.
7.4.12 Show that MSE of the hard-threshold estimator (7.4.45) attains the
adaptive minimax rate.
7.4.13 Repeat Figure 7.5 with different coefficients and find optimal ones.
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7.4.14 Consider the problem of adaptive estimation of f(t0) from Lipr,α,L

for the filtering model (7.3.1). It has been shown in Section 7.3 that if the
parameter of smoothness β = r + α is given, then a plug-in de la Vallée
Poussin sum V̂J(t0) satisfies (7.3.11). Let β > 0.5. Then the data-driven
cutoff Ĵ is defined as follows. Set J∗

m to be the integer part of (ln(n))2dm,
where d > 2 is a fixed constant and m = 0, 1, . . .; K to be the maximum
integer satisfying the inequality J∗

K < n1/2(ln(n))−3; βm to be a solution
of equation [n/ ln(n)]1/(2β+1) = J∗

m; Jm to be equal to J∗
m that is closest to

J∗
m[ln(n)]1/(2βm+1); Ĩ(i, j) = f̃n(j, 0) − f̃n(i, 0); k̃ = min{l : |Ĩ(J∗

l , J∗
m)|2 ≤

6 ln(n)J∗
mn−1, l ≤ m ≤ K; 0 ≤ l ≤ K}. Then we set Ĵ = Jk̃ and use V̂Ĵ(t0)

as an adaptive estimate of f(t0). Show that

sup
f∈Lipr,α,L

MSE(V̂Ĵ(t0), f(t0)) ≤ C(n/ ln(n))−2β/(2β+1). (7.9.6)

Hint: Solution and discussion may be found in Efromovich and Low (1994).
7.4.15 Check all the steps of the proof of Theorem 7.4.1.
7.5.1 Verify that a function (7.5.1) is Hölder Hβ whenever |XJ,sm | ≤ cn−1/2

for a sufficiently small c.
7.5.2 Prove the inequality (7.5.3).
7.5.3 Explain (7.5.4).
7.5.4 Verify (7.5.10).
7.6.1 Give examples of statistical models where θ̂2

j − n−1 is an unbiased
estimate of the squared Fourier coefficient θ2

j .
7.6.2 Explain the steps in (7.6.5).
7.6.3 Verify (7.6.6)–(7.6.7).
7.6.4 Let θ̂j = θj +n−1/2Z ′

j where Z ′
j are iid standard normal. Check that

E
{[ M∑

j=m

j2k(θ̂2
j −n−1−θ2

j )
]2}

= n−1
[
4

M∑
j=m

j4kθ2
j +2n−1

M∑
j=m

j4k
]
. (7.9.7)

7.6.5 Using the result of the previous exercise, check the validity of (7.6.12)
for the case β > 2s + 0.25.
7.6.6 Suggest an estimate of F0(f) whose mean squared error converges as
n−8β/(4β+1) for f ∈ Wβ,Q where 0 < β ≤ 0.25.
7.6.7 Verify (7.6.14).
7.6.8 Consider the heteroscedastic nonparametric random design regres-
sion discussed in Section 4.2. Suggest a data-driven estimator of the integral
of the squared regression function.
7.7.1 Consider a monotone estimate, that is, an estimate that can be only
monotone. Show that such an estimate cannot fit a nonmonotone density
in the sense that the MISE does not decay.
7.7.2 Calculate the Fisher information for the model (i) of a location
parameter. Is it always constant?
7.7.3 Consider a binomial regression and calculate the optimal design of
the experiment. Hint: Use (7.7.6).
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7.7.4 Consider the Exercise 7.7.3 for a scale regression.
7.8.1 Show that for Y = θ + σξ, with ξ being standard normal, the
probability for the parameter θ to be covered by the interval (7.8.1) is
1 − α.
7.8.2 Find β(θ) := P (Y ∈ R(θ0, α)|θ), where a rejection region R(θ0, α) is
defined in (7.8.2). The β(θ) is called the power function of the test.
7.8.3 Consider a class of tests such that the probability of a rejection re-
gion given a null hypothesis is at most the level of significance α and the
probability of a rejection region given an alternative hypothesis (power)
is at least α. Such tests are called unbiased. If additionally under any al-
ternative hypothesis an unbiased test maximizes the power (minimizes the
second type error) over all unbiased tests, then this test is called uniformly
most powerful unbiased (UMPU). The corresponding inverted confidence
interval is called uniformly most accurate unbiased. Indicate such tests and
confidence intervals among those considered in the section.
7.8.4 Verify that the probability that f(t) is covered by the band (7.8.11)
for all 0 ≤ t ≤ 1 is at least 1 − α + on(1).
7.8.5 Suggest a test dual to the confidence band (7.8.11). Hint: Invert
(7.8.11).

7.10 Notes

First, let us make several general remarks.
• There is a deep connection between statistics and communication

(information) theory. As an example, let Y1, . . . , Yn be random variables
generated according to a density f(yn|θ), yn := (y1, . . . , yn), where θ is
a realization of a random variable Θ with density g. This problem may
be treated as a classical statistical (Bayesian) one where based on n ob-
servations the statistician should estimate θ. It also may be considered as
a classical problem of communication (information) theory where a signal
θ is sent n times via a channel whose outcomes are distributed accord-
ing to the density f(yn|θ). As we have discussed in Section 7.7 (see also
Lehmann and Casella 1998, Section 2.5), for the iid case the Fisher informa-
tion I(θ) =

∫
(∂f(y|θ)/∂θ)2f−1(y|θ)dy is the quantity that describes the

statistical setting in terms of an optimal estimation. For communication
theory a similar quantity is the Shannon information

S(Θ, Y n) :=
∫

g(θ)f(yn|θ) ln
(

f(yn|θ)∫
g(u)f(yn|u)du

)
dyndθ. (7.10.1)

This quantity describes the information in the output signals Y1, . . . , Yn

about the input signal Θ. It was established in the 1970s that there is a pre-
cise asymptotic relationship between these two informations. For instance,
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for the iid case under mild assumptions,

S(Θ, Y n) =
1
2

ln
( n

2πe

)
+
∫

g(θ) log
(

I1/2(θ)
g(θ)

)
dθ + on(1). (7.10.2)

Similar assertions are established for the multiparameter case, depen-
dent observations, sequential samplings, etc. Pinsker (1972) initiated this
research by proving (7.10.2) for the case of additive channels discussed in
Section 7.1 and by establishing beautiful results about connections between
the information theory and statistics. These results were further developed
in a series of publications; see, for instance, Ibragimov and Khasminskii
(1973), Efromovich (1980a), and Clarke and Barron (1990).

The exact asymptotic relationship between Shannon and Fisher infor-
mations not only explains why the filtering model was used in this chapter
as the basic one for the asymptotic analysis, but it also sheds light on the
equivalence principle discussed in Section 7.2.

• In this book only fixed sample sizes have been considered. In many
cases, especially if a given precision of estimation is required, sequential
plans of sampling may be needed. These are the plans where based on pre-
vious observations, the data analyst may either stop observations and take
an action (estimate an underlying function or test a hypothesis) or continue
the sampling and ask about the next observation. This is the setting where
adaptive estimators shine, and the theory becomes extremely interesting
(and mathematically more involved). The sequential setting is discussed
in Prakasa Rao (1983), Efromovich and Pinsker (1989), and Efromovich
(1980b, 1989, 1995b, 1999c), where further references may be found.

• The recent books by Härdle et al. (1998) and Nemirovskii (1999) cover
some modern topics in series estimation. Ibragimov and Khasminskii (1981,
Chapter 7), Devroye and Györfi (1985, Chapter 12) and Eubank (1988,
Chapter 3) also present the asymptotic results for series estimates.

7.1 The first sharp minimax result is due to Pinsker (1980). It was es-
tablished for a filtering model and Sobolev spaces, and a series approach
was used. This series approach was used later for obtaining sharp minimax
results for density, spectral density, and different regression models, includ-
ing heteroscedastic models and generalized models. See the discussion in
Efromovich and Pinsker (1982, 1984, 1996b) and Efromovich (1986, 1996a).

Ibragimov and Khasminskii (1984) introduced the function µ(c) used
in Lemma 7.1.1. Donoho, Liu, and MacGibbon (1990) give a historical
overview of exploring this function and the lower bound.

Results on sharp estimation of analytic densities supported on the real
line may be found in Golubev and Levit (1996) and Golubev, Levit, and
Tsybakov (1996), where second-order efficiency is also discussed. Sharp
results are also known for different loss functions, for instance, the case of
the sup-norm is discussed in Korostelev (1993) and Donoho (1994). The
research on sharp local minimax was initiated by Golubev (1991).
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There is a deep connection between the parametric, semiparametric, and
nonparametric approaches. See the article by Koshevnik and Levit (1976)
and the book by Bickel et al. (1993).

Bayesian approach is discussed in Berger (1985); see also Zhao (1993).
7.2 The principle of equivalence is formulated in the articles by Brown

and Low (1996a) and Nussbaum (1996). Limits of the equivalence are dis-
cussed in Efromovich and Samarov (1996), Brown and Zhang (1998), and
Efromovich (1999b). A discussion of Brownian motion and related filtering
models may be found in the books by Ibragimov and Khasminskii (1981)
and Mallat (1998).

7.3 The first results about rate optimal series estimation are due to
Chentsov (1962); see also the book by Chentsov (1980). Rate optimal series
estimates for different loss functions are discussed in the book by Ibragimov
and Khasminskii (1981, Section 7.4). See also Stone (1980) and Samarov
(1992). Influence of Kolmogorov’s ideas on optimal nonparametric curve
estimation is discussed by Ibragimov and Khasminskii (1990). Rate optimal
estimation of linear functionals is discussed, for instance, in Ibragimov and
Khasminskii (1987) and Donoho and Liu (1991).

7.4 Donoho and Johnstone (1994) is a good reference to read about the
universal threshold procedure. The books on application of wavelets, men-
tioned in the notes to Chapter 4, also consider this basic method. Polyak
and Tsybakov (1990) discuss optimality of the empirical risk minimization
procedure for a projection series estimator. This article also contains fur-
ther references. The penalization method is discussed in Barron, Birgé,
and Massart (1999). The cross-validation technique is analyzed in the
books by Eubank (1988) and Wahba (1990). DeVore and Temlyakov (1995)
discuss the mathematical results on linear and nonlinear approximations.
Important asymptotic results are due to Rubin and Vitale (1980).

The block shrinkage estimator is introduced and discussed in detail in
Efromovich and Pinsker (1984, 1996) and Efromovich (1985, 1986, 1996c,
1997c, 1998c, 1999a). In those articles further references may be found.

Rate optimality of SureShrink over Besov spaces is established in Donoho
and Johnstone (1995), where results of Monte Carlo simulations are pre-
sented as well; see also Goldenshluger and Nemirovski (1997). The block
threshold method is suggested and explored in Hall, Kerkyacharian, and
Picard (1998). See also Efromovich (1995a, 1996c) and Cai (1999).

The first result on the loss of a logarithmic factor for adaptive estimation
of a function at a point and the first adaptive kernel estimator based on
Lepskii procedure is due to Lepskii (1990), see also Lepskii (1992). Judit-
sky (1997) used this procedure to find an adaptive hard threshold wavelet
estimator for the case of the Lp-loss function. The research on exploring
subsets of Lipschitz spaces that are free from the logarithmic penalty was
initiated in Efromovich and Low (1994, 1996a,b). In those articles the two-
nets algorithm of bias–variance tradeoff is suggested, and its property to
control both the penalty-free subset and data compression is analyzed.
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In this section we discussed the cases of analytic and Lipschitz spaces.
What will happen if a function belongs to the union of these spaces, that
is, may it be smooth or supersmooth? Surprisingly, all the results remain
valid, and no additional penalties should be paid; see Efromovich (1998a).
In that article the loss of a sharp constant for adaptive MSE convergence
and the case of analytic functions is established.

Rate-optimal, sharp, adaptive, versatile, and robust series estimators for
different deconvolution models are discussed in Ermakov (1992), Korostelev
and Tsybakov (1993, Chapter 9), Efromovich (1994c, 1997a,b), Hengartner
(1997), and Efromovich and Ganzburg (1999), among others.

7.5 Sharp minimax results, including an adaptive estimator for spherical
data, may be found in Efromovich (1994b).

7.6 Efromovich (1994a), Efromovich and Low (1996a,b), and Efro-
movich and Samarov(1996, 1999) discuss adaptive estimation of quadratic
functionals.

7.7 Pinsker (1980) pioneered the race for constants. Proofs of the re-
sults may be found in Efromovich (1996a, 1997d). Nemirovskii, Polyak,
and Tsybakov (1985) pioneered the discussion about linear versus nonlinear
estimation.

7.8 Hart (1997) gives a book-length treatment of series approaches for
hypothesis testing and related topics; see also Ingster (1993).



8
Nonseries Methods

This chapter reviews the main nonseries methods of nonparametric curve
estimation. Whenever it is worthwhile, a method is explained for all the
given statistical models.

8.1 The Histogram

The most widely used probability density estimator is the histogram. It
is also the only density estimator that is studied in all undergraduate
statistical classes and is supported by all statistical software.

Given an origin x0 and a bin width h, we define the bins of a histogram
to be the intervals [x0 + mh, x0 + (m + 1)h), m = 0,±1,±2, . . . .

Let X1, X2, . . . , Xn be independent and identically distributed (iid)
random variables. Then the histogram is defined by the formula

f̂n(x) := (1/nh)[number of observations in the same bin as x]. (8.1.1)

To construct a histogram we have to choose both an origin and a bin
width; the choice of a bin width primarily controls the amount of smoothing
inherent in the procedure.

Three histograms with different width of bins for the same data simulated
according to the Bivariate density (recall Figure 2.1) are shown in Figure
8.1. Here the origin x0 = 0. The left histogram, based on only 5 bins
over the interval [0, 1], oversmooths the data, and as a result only one
mode is shown. The histogram in the middle, based on 9 bins, correctly
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FIGURE 8.1. Histograms with different numbers of bins. A sample of size n = 50
is generated from the Bivariate corner density shown by the solid line. {The argu-
ments n, cdensity, and set.nb allow one to choose the sample size, an underlying
corner density from our set of 8 densities shown in Figure 2.1, and numbers of
bins for the 3 diagrams, respectively.} [n=50, cdensity=3, set.nb=c(5,9,25)]

shows the number of modes. Finally, the right histogram, based on 25 bins,
undersmooths the underlying density, but it nicely shows the data.

As we see, undersmoothing produces a wiggly picture with many artifi-
cial and confusing modes, while oversmoothing hides modes and obscures
the fine structure. The patterns in Figure 8.1 reflect the most important
issue for any nonparametric estimator, namely, how to smooth data. Some
software, including S–PLUS, use approximately log2(n)+1 number of bins,
which is the Sturge’s formula motivated by a normal underlying density.

8.2 The Naive Density Estimator

From the definition of a probability density, if X has density f(x), then

f(x) = lim
h→0

(2h)−1P (x − h < X < x + h). (8.2.1)

The naive estimate, based on n iid observations X1, . . . , Xn of X,
straightforwardly mimics this equality,

f̂n(x) := (2hn)−1[number of observations falling in (x−h, x+h)]. (8.2.2)

To express the estimator more transparently, define the weight function

w(x) :=
1
2
I{|x|≤1}. (8.2.3)

Then the naive estimator may be written as

f̂n(x) = (nh)−1
n∑

l=1

w((x − Xl)/h). (8.2.4)
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FIGURE 8.2. Naive density estimates of the Bivariate density with different
widths h obtained for the same data set of size n = 50. {The choice of widths is
controlled by the argument set.h, and the choice of an underlying corner density
by cdensity.} [n=50, cdensity=3, set.h=c(.1,.2,.3)]

Figure 8.2 shows three naive estimates with different widths h for the
case of 50 observations generated from the Bivariate density. As we see,
the naive estimates are not wholly satisfactory either esthetically or for
use as an estimate for presentation. Moreover, the ragged character of the
plots can give a misleading impression about artificial modes. This behavior
of the estimator follows from the definition that an estimate is step-wise
constant with jumps at the points Xl ± h.

A principal difference between the naive estimator and the histogram is
that there is no origin x0, and the center of the bin is an observation. We
shall see in the next section that the naive estimator is a particular case of
a large family of kernel estimators.

8.3 Kernel Estimator

In this section we discuss one of the main methods of modern nonpara-
metric curve estimation theory, which is called kernel smoothing. Kernel
smoothing, as with series estimation, can be used for any statistical model,
so below we discuss its applications for probability density estimation, non-
parametric regression, and spectral density estimation. Kernel estimators
are certainly the most mathematically studied nonparametric method, and
the fundamentals of this theory will be given in Section 8.9.

• Probability Density Estimation. The naive estimator introduced
in the previous section was the first example of kernel estimation. Recall
that the main drawback of the naive estimator was its stepwise nature.
But it is easy to generalize the naive estimator to overcome this drawback.
Namely, it suffices to replace in (8.2.4) the rectangular weight function
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(8.2.3) by a smooth weight function. Kernel estimation theory refers to
a weight function as a kernel function (or simply kernel) and denotes it
by K(x). By assumption the kernel function (as with the rectangle weight
function) is integrated to unity, that is,∫ ∞

−∞
K(x)dx = 1. (8.3.1)

Due to the last equation, any probability density function (for instance,
a normal density) can be used as the kernel function. Then, as with the
naive estimator, a kernel density estimator is defined by

f̂n(x) := (nh)−1
n∑

l=1

K((x − Xl)/h), (8.3.2)

where h is referred to as either the bandwidth, or window width, or smoothing
parameter. To analyze a kernel estimator it is useful to keep in mind that
if K(x) is the density of a random variable Z, then

Kh(x) := h−1K(x/h)

is the density of the scaled random variable hZ, that is, h is a scaling
parameter. In particular, if K(x) is a standard normal density, then h plays
the role of the standard deviation. This interpretation of the bandwidth
is helpful in choosing reasonable values for h. Note that the choice of a
nonnegative kernel implies that an estimate is also nonnegative.
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FIGURE 8.3. How the kernel density estimator works. In the left diagram 3
particular observations are shown by crosses. Standard Gaussian kernel functions
(shown by dotted lines) are centered at each observation, and then the kernel
density estimate (solid line) is the normed sum of these kernel functions. The right
diagram shows a similar procedure only with the bandwidth h = 0.5. {The choice
of 3 observations from the interval [0, 12] is controlled by the argument set.X, and
the choice of 2 bandwidths is controlled by the argument set.h.} [set.h=c(1,.5),
set.X=c(4,5,8)]
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Figure 8.3 illustrates how the kernel estimator (8.3.2) works for a partic-
ular case of 3 observations X1 = 4, X2 = 5, X3 = 8, a standard Gaussian
kernel (that is, K(x) = (2π)−1/2e−x2/2 is the standard normal density),
bandwidths h = 1 and h = 0.5. The kernel estimator is constructed by
centering a scaled kernel at each observation; then the value of a kernel
estimate at a point x is the average of the 3 kernel ordinates at that point.
We see that the kernel estimate spreads each “bump” with weight 1/n
and therefore the combined contributions from each data point are larger
in regions where there are many observations. Clearly, in these regions it
is expected that the underlying density has a relatively large value. The
opposite occurs in regions with relatively few observations.

A comparison of the estimates in Figure 8.3 to those in Figure 8.2 shows
that the kernel estimate inherits all the continuity and differentiability
properties of the kernel function. Also note that the effect of the bandwidth
is very important. Figure 8.3 shows that changing the bandwidth from 1 to
0.5 dramatically affects the shape of the kernel estimate and transforms it
from a bimodal shape to a strata shape. Second, the support of the kernel
estimate shrinks from approximately [0, 12] to [2, 10]. Thus, the bandwidth
may dramatically change the shape of a kernel estimate.

Let us consider a numerical example for the case of 100 observations
drawn from the Strata density; see Figure 8.4. Here the S–PLUS function
density is used with a Gaussian kernel (note that this is not a standard
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FIGURE 8.4. The effect of bandwidth on kernel density estimation. Each diagram
corresponds to a specific bandwidth shown in the title. Kernel density estimators,
based on n = 100 iid realizations from the Strata density, are shown by dotted
lines. The solid line shows the underlying Strata. {The underlying density may be
changed by the argument cdensity. The choice of the kernel is controlled by the
argument kernel, the default is kernel= ′′gaussian ′′, and the possible alternatives
are ′′cosine ′′, ′′triangular ′′, and ′′rectangular ′′. The bandwidths for the second
and third diagrams are controlled by the argument set.h.} [cdensity=4, n=100,
set.h=c(.15,.6), kernel= ′′gaussian ′′]
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normal density). The default h is equal to the range of data divided by
2(1+log2 n); this rule is again motivated by Sturge’s formula mentioned in
Section 8.1. We see that this bandwidth is too small, and thus the spurious
fine structure becomes visible. Furthermore, the small bandwidth creates
the illusion of narrower support of an underlying density. On the other
hand, the bandwidth h = 0.6 is too large for those particular data, and the
strata nature of the underlying density is obscured. Also note that in this
case the estimate gives a false impression by overestimating the support
of the distribution. The graph in the middle indicates that the bandwidth
h = 0.15 is just right for this particular data set.

What we see in these three graphs is rather typical for nonparametric es-
timates. The left graph is undersmoothed, the right graph is oversmoothed,
and the middle graph looks good. This is the reason why the nonparametric
estimation is often referred to as a smoothing technique.

• Nonparametric Regression. The kernel method may be used for
other statistical models as well. Consider, for example, the following fixed
design homoscedastic regression model,

Yl := f(l/n) + σεl, l = 1, 2, . . . , n, (8.3.3)

where the errors εl are independent with zero mean and unit variance. Then
a kernel estimator is defined by the formula

f̂n(x) := (nh)−1
n∑

l=1

YlK((x − l/n)/h). (8.3.4)

Note that this estimator simply performs moving averaging, or in other
words, local averaging of responses. An example of such averaging for the
case of the rectangular kernel (8.2.3) and the bandwidth h = 0.3 is shown
in Figure 8.5. The data set, shown by crosses, is simulated by adding to
the corner function Steps normal N(0, (0.5)2) errors.

While this particular kernel estimate for only 10 observations looks not
too bad (but not too good either), it is not difficult to realize that the
rectangular kernel may lead to extremely erratic and confusing estimation.
{To see this using Figure 8.5, try, for instance, several simulations with the
arguments n = 20 and h = 0.08.} Another important conclusion is that
even for this rather artificial example with only 10 observations the ker-
nel estimate is relatively good for the interior region but it is much worse
near the boundaries, where it is about a half of the values of the under-
lying regression curve. This is especially apparent for the right boundary,
where despite the presence of the large response, the kernel estimate goes
downward.

To understand why the estimator exhibits such different behavior for
interior and boundary points, it is worthwhile to explore this estimator
mathematically. This is especially easy to do for the case of the kernel
being the rectangular weight function (8.2.3). First, we plug (8.3.3) into
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FIGURE 8.5. The performance of the kernel estimator (8.3.4) with the rectan-
gular kernel function for regression model (8.3.3). The scatter plot is shown by
crosses. The underlying regression function is the Steps, and it is shown by the
solid line, and the estimate by the dotted line. {The argument regrfun allows one
to change an underlying regression function.} [n=10, h=.3, regrfun=8, sigma=.5]

(8.3.4) and get

f̂n(x) =
1

nh

n∑
l=1

f(l/n)w((x − l/n)/h) +
σ

nh

n∑
l=1

εlw((x − l/n)/h), (8.3.5)

where w(x) is the “box” (8.2.3). Let h = dn/n, where dn is an integer-
valued sequence in n. Assume that x is an “interior” point of the support
[0, 1], that is, dn/n < x < 1 − dn/n. Then (8.3.5) may be written as

f̂n(x) =
1

2dn

∑
{l: −dn/n≤x−l/n≤dn/n}

f(l/n) +
σ

2dn

∑
{l: −dn/n≤x−l/n≤dn/n}

ξl.

This expression allows us to understand all the main features of kernel
estimators for the interior points. For example, consider the mean squared
error for a point x �= l/n, l = 1, 2, . . .. Write

MSE := E{[f̂n(x) − f(x)]2} (8.3.6)

= E{[(E{f̂n(x)} − f(x)) + (f̂n(x) − E{f̂n(x)})]2}

= (E{f̂n(x)}−f(x))2+E{(f̂n(x)−E{f̂n(x)})2} =: SBIAS+VAR (8.3.7)

=
[
(2dn)−1

∑
{l: −dn/n≤x−l/n≤dn/n}

{f(l/n) − f(x)}
]2

+ (2dn)−1σ2. (8.3.8)

In the line (8.3.7) we used the relation E{(c + Z)2} = c2 + E{Z2}, which
holds for any constant c and random variable Z with zero mean and finite
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variance. Also, in this line the familiar notation for the squared bias and
the variance terms of MSE were introduced.

Thus (8.3.6)–(8.3.8) show that optimal estimation is based on a tradeoff
between the squared bias term and the variance term. The bandwidth h
plays a crucial role in this tradeoff. Namely, the bias is decreased by making
the bandwidth smaller, but the variance is decreased by making the band-
width larger. (This resembles how a cutoff affects the MSE of an orthogonal
series estimate, and it is possible to show that an optimal bandwidth is,
roughly speaking, inversely proportional to an optimal cutoff. This remark
is helpful to understand the dynamics of kernel estimation.)

Now let us explore more precisely how the bandwidth affects the MSE.
Consider the case where an underlying regression function f is Lipschitz
Lipα(L) of order α, that is, |f(x + δ) − f(x)| ≤ L|δ|α, 0 < α ≤ 1. (Note
that we do not assume here that f is 1-periodic and to emphasize this use
a slightly different notation than in Section 2.4.) Then

SBIAS ≤
[
(L/2dn)

∑
{l: −dn/n≤x−l/n≤dn/n}

|x − l/n|α
]2

≤ (1 + α)−2L2h2α(1 + 1/(hn))2α. (8.3.9)

Here we used the definition h = dn/n. Using this inequality on the right-
hand side of (8.3.8), we get

MSE ≤ (1 + α)−2L2h2α(1 + 1/(hn))2α + σ2/(2hn). (8.3.10)

Let us find the optimal bandwidth h∗
n that minimizes the right-hand side

of (8.3.10) for sufficiently large n. Exercise 8.3.13 gives us the solution,

h∗
n = [(1 + α)2σ2/4αL2]1/(2α+1)n−1/(2α+1)(1 + on(1)). (8.3.11)

Recall that on(1) denotes a generic decaying sequence in n as n → ∞, i.e.,
on(1) → 0 as n → ∞. Substituting the optimal h∗

n into the right-hand side
of (8.3.10) gives us for f ∈ Lipα(L),

MSE ≤
[ Lσ2α

(1 + α)(4α)α

]2/(2α+1)
(1 + 2α)n−2α/(2α+1)(1 + on(1)). (8.3.12)

Thus, the smoother the underlying function (i.e., the larger α), the larger
the optimal bandwidth and the smaller the corresponding MSE. This result
together with the conclusion of Section 7.3, that supf∈Lipα(L) MSE cannot
decrease faster than n−2α/(2α+1), shows that this kernel estimator is asymp-
totically rate optimal for an interior point x and for Lipschitz functions of
a known order 0 < α ≤ 1.

The situation changes drastically for boundary points. Consider the case
of a continuous regression function. Then it follows from (8.3.5) that when x

is 0 or 1 we have E{f̂(x)} → f(x)/2 as h → 0, and this is what we have seen
in Figure 8.5. This implies that the kernel estimator is not even consistent
at the boundary points unless f(0) = f(1) = 0. An intuitively simple way
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of improving the estimator is clear from the first term on the right-hand
side of (8.3.5). Namely, instead of the denominator nh one should use a
denominator that is equal to the number of nonzero summands in that
sum. Another way to solve the problem is to use special boundary kernels.

Apart from thinking about the kernel estimate (8.3.4) as a moving aver-
age, there is another way of looking at this estimate that is also useful for
understanding how to generalize this estimate for the case of randomly or
unequally spaced predictors.

Let us assume that the kernel function K(x) is unimodal, symmetric
about zero, integrated to unity, and it has vanishing tails. All the examples
of kernel functions considered so far satisfy this assumption. Also assume
that f(x) is continuous in x near some point x0. Then for sufficiently small
h we have

f(x0) ≈
∫ ∞

−∞
f(x)Kh(x − x0)dx, (8.3.13)

where Kh(x) = h−1K(x/h). The integral in (8.3.13) is called the con-
volution integral, and the idea of such an approximation is called the
approximation in h by an integral operator with kernel K.

Let us verify (8.3.13) for the case of the rectangular kernel (8.2.3). Write

h−1
∫ ∞

−∞
f(x)w((x − x0)/h)dx = (2h)−1

∫ x0+h

x0−h

f(x)dx ≈ f(x0),

where the last relation holds because due to the continuity of f(x) near
point x0 we have

max
|t|≤h

|f(x0 + t) − f(x0)| → 0 as h → 0.

Figure 8.6 illustrates graphically both the convolution formula and the
approximation by the integral operator. Here the kernel is a standard nor-
mal density and h = 0.05. The solid line shows a function f(x) that
is approximated at point x0 = 0.6. The dotted line shows the kernel
Kh(x−x0) centered at the point x0. Then the dashed line shows the prod-
uct f(x)Kh(x − x0). Note that this product is asymmetric about x0, since
the function f(x) is increasing in x near x0. Then, according to (8.3.13),
the value f(x0), shown by the cross, is approximately equal to the inte-
gral of the dashed line. To assess this integral, the dot–dash line shows the
function ψ(x) =

∫ x

−∞ f(u)Kh(u−x0)du, which asymptotically (as x → ∞)
is equal to the integral (8.3.13). We see that to the right of x = 0.8 the
function ψ(x) flattens out, so ψ(1) ≈ ψ(∞). The value ψ(1) is shown by
the crossed rectangle. The last step is to check that f(x0) ≈ ψ(1), and the
validity of this relation is apparently supported by the graph.

Another useful interpretation of the convolution formula, based on some
probabilistic ideas, is discussed in Exercise 8.3.15.
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FIGURE 8.6. Illustration of the convolution formula (8.3.13).

Now we are in a position to use the approximation by the kernel op-
erator for the case of random design regression. Assume that a data set
(Yl, Xl), l = 1, 2, . . . , n, is generated by the model Y := f(X)+ε where the
predictor X is a random variable with density g(x) and ε is a zero-mean
error independent of the predictor. Then using (8.3.13) we write,

f(x0) ≈
∫ ∞

−∞
f(x)Kh(x − x0)dx = E{f(X)Kh(X − x0)/g(X)}

= E{Y Kh(X − x0)/g(X)}. (8.3.14)

Thus, the estimated function is equal to the expectation of the product
Y Kh(X − x0)/g(X). Using the familiar sample mean estimator we get the
following kernel estimator:

f̃(x0) := n−1
n∑

l=1

YlKh(Xl − x0)/g(Xl). (8.3.15)

Note that this estimator coincides with (8.3.4) if g(x) = 1, 0 ≤ x ≤ 1
(the design density is uniform on [0, 1]). It is also a simple exercise to repeat
these calculations and see that the estimator is absolutely natural for the
case of fixed design predictors with design density g(x); see (4.2.2).

In many practical applications the design density g(x) is unknown and
should be estimated based on the data. The first and absolutely natural
idea is to plug in the kernel density estimate (8.3.2). Such substitution
implies the Nadaraya–Watson kernel estimator

f̂n(x) :=
∑n

l=1 YlKh(x − Xl)∑n
l=1 Kh(x − Xl)

. (8.3.16)

Another idea of estimating g(x), discussed in detail in Section 4.2, is
based on the fact that spacings between ordered predictors are inversely
proportional to the underlying density. Using this idea in (8.3.15) leads to
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FIGURE 8.7. Nadaraya–Watson kernel estimates with 3 different bandwidths
for equidistant regression model with normal N(0, σ2) additive errors. A scatter
plot for n = 25 observations is shown by crosses. Estimates are shown by the
dotted lines, underlying regression function by the solid line. {The default kernel
is ′′normal ′′, the possible alternatives are ′′box ′′ and ′′triangle ′′. The standard
deviation σ is controlled by the argument sigma. The argument set.h allows one to
choose 3 bandwidths.} [n=25, sigma=.5, kernel= ′′normal ′′, set.h = c(.1,.2,.3)]

either the Priestly–Chao kernel estimator

f̂n(x) :=
n∑

l=1

Y(l)(X(l) − X(l−1))Kh(X(l) − x) (8.3.17)

or the Gasser–Müller kernel estimator

f̂n(x) :=
n∑

l=1

Y(l)

∫ sl

sl−1

Kh(u − x)du, (8.3.18)

with sl−1 := (X(l)+X(l−1))/2, (Y(l), X(l)) being sorted according to ordered
predictors X(0) ≤ X(1) ≤ · · · ≤ X(n+1) , X(0) = −∞, X(n+1) = ∞.

These are the three main types of classical kernel estimators.
The Nadaraya–Watson estimator is supported by the S–PLUS func-

tion ksmooth. Figure 8.7 illustrates the performance of this estimator
based on 25 simulated data generated by the underlying regression function
2.5+cos(7x) and normal N(0, (0.5)2) additive error. Three kernel estimates
with different bandwidths are shown. The left one, with the smallest band-
width, apparently undersmooths the data, and as a result, the estimate
is too wiggly and too sensitive to “outliers.” The second estimate, corre-
sponding to h = 0.2, looks better. However, look at the following peculiar
feature of the estimate: It is too low and too high at the peak and valley,
respectively. This is a typical performance of a kernel estimator whose bias
is smallest where the underlying regression function is almost linear. The
right diagram shows that the bandwidth h = 0.3 is too large and the data
are oversmoothed.
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• Spectral Density Estimation. The notion of the spectral density
and its importance in time series analysis was discussed in Section 5.2.
Recall that if {Xt, t = . . . ,−1, 0, 1, . . .} is a second-order stationary time
series with mean 0 and autocovariance function γ(j) := E{Xt+jXt}, then
under mild assumptions (for instance, the condition

∑∞
j=0 |γ(j)| < ∞ is

sufficient), the spectral density function is defined as

f(λ) := (2π)−1γ(0) + π−1
∞∑

j=1

γ(j) cos(jλ), −π < λ ≤ π. (8.3.19)

Here the frequency λ is in units radians/time.
Let a finite sample X1, . . . , Xn be given; then the familiar sample au-

tocovariance estimator is defined by γ̂(j) := n−1 ∑n−j
l=1 Xl+jXl. Then, a

natural step to estimate the spectral density is to plug the sample auto-
covariance function into the right-hand side of (8.3.19). At the so-called
Fourier frequencies λk := 2πk/n, the resulting estimator (up to the factor
1/2π) is called a periodogram,

I(λk) := γ̂(0) + 2
n∑

j=1

γ̂(j) cos(jλk). (8.3.20)

The underlying idea of kernel spectral density estimation is based on the
remarkable theoretical result that under mild assumptions, for sufficiently
large n the periodogram can be approximately written as

(2π)−1I(λk) ≈ f(λk) + f(λk)ξk, λk ∈ (0, π), (8.3.21)

where ξk are zero-mean random variables with bounded moments.
Thus, at least for large n the problem of spectral density estimation

resembles an equidistant nonparametric regression model where values of
the periodogram at Fourier frequencies play the role of responses. Then a
kernel estimation (smoothing) may be used straightforwardly.

8.4 Local Polynomial Regression

Let us begin with recalling the underlying idea of a linear least-squares
regression. It is assumed that pairs (Yl, Xl) of observations satisfy the linear
model

Yl := β0 + β1Xl + ε′
l, l = 1, 2, . . . , n, (8.4.1)

where the errors ε′
l are independent random variables with zero mean and

finite variances. Using the least-squares criterion, the estimated y-intercept
β̂0 and the slope β̂1 are defined as the minimizers of the sum of squared
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errors,

(β̂0, β̂1) := argmin(β0,β1)

n∑
l=1

(Yl − β0 − β1Xl)2. (8.4.2)

Then the linear least-squares regression is defined as f̂(x) := β̂0 + β̂1x.
Now let is look at the scatter plot shown by crosses in Figure 8.8. It is

absolutely clear that a straight line cannot satisfactorily fit these data. But
does this mean that the least-squares idea has no application for such a
data set? The answer is “no.”

For instance, one may try to fit the data locally by a straight line. Indeed,
if f(x) is sufficiently smooth, then Taylor’s expansion implies

f(x) ≈ f(x0) + (x − x0)f ′(x0) (8.4.3)

for all x in a small neighborhood of x0. Thus, a straight line can fit a data
set locally. In this case the classical linear model (8.4.1) becomes

Yl := β0(x) + β1(x)Xl + ε′′. (8.4.4)

Define the functions β̂0(x) and β̂1(x), which are the minimizers for a sum
of locally weighted squared errors,

(β̂0(x), β̂1(x)) := argmin(β0(x),β1(x))

n∑
l=1

(Yl −β0(x)−β1(x)Xl)2Kh(x−Xl).

(8.4.5)
Here, as in the previous section, K(x) is the kernel (kernel function),
Kh(x) := h−1K(x/h), and h is the bandwidth. Then the estimator

f̂(x) := β̂0(x) + β̂1(x)x (8.4.6)

is called a local linear regression smoother or local linear fit. Note that in
(8.4.5) every observation (the pair of predictor and response) affects the
choice of the local y-intercept and slope with weight equal to the height of
the function Kh at the point equal to the distance between the predictor
and the point x. Thus, the farther the predictor from x, the smaller the
effect of the response on the estimate. As a result, the bandwidth h dra-
matically affects that influence. Another useful point of view in (8.4.5) is
to consider a local linear fit as a weighted least-squares regression at the
point x.

The idea of local linear regression is illustrated by Figure 8.8. The scatter
plot for 50 equidistant predictors is shown by crosses, and the observa-
tions are generated by a regression function (the dashed line) plus normal
N(0, (0.5)2) errors. Let us consider the local linear estimation for the point
x = 0.3 using the rectangular kernel (8.2.3) and h = 0.15. The dotted
line shows K0.15(x − 0.3) centered at the point x = 0.3. Then the formula
(8.4.5) implies that for this rectangular kernel all weights are the same
within the support of this kernel, and thus one needs to find an ordinary
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FIGURE 8.8. Idea of a local linear fit. The dashed line is an underlying regression
function. Simulated data are shown by crosses. The dotted line shows rectangular
kernels with h = 0.15. Local linear fits for points x = 0.3, x = 0.65, and x = 1
are shown by triangles, and the corresponding local linear least-squares regression
lines are shown by the solid lines.

least-squares regression based only on observations with predictors Xl such
that 0.3 − h ≤ Xl ≤ 0.3 + h, that is, with predictors that belong to the
support of this rectangular kernel. This ordinary regression is shown by the
solid line, and its value at the point x = 0.3, shown by the triangle with the
X-coordinate x = 0.3, is the value of the local linear regression at x = 0.3.
Note that this triangle fits the underlying curve very nicely. The situation is
not so rosy for the case x = 0.65, where a similar approach gives a poor fit.
Clearly, the reason is that the valley requires an essentially smaller value
of bandwidth. The third point is x = 1, which nicely illustrates why the
idea of local linear regression is so appealing for boundary points.

Figure 8.9 illustrates how the kernel function and bandwidth affect the
local linear estimation. The data set is simulated as in Figure 8.8. The
rectangular kernel is (8.2.3), and the Gaussian kernel is a standard normal
density. We see that as with the classical kernel estimators, discussed in the
previous section, local linear estimates are affected by the smoothness of the
kernel. However, this effect is not so drastic as a wrongly chosen bandwidth.
In short, for samples of small sizes bandwidth is the main factor to look
for, and typically all smooth kernels will do a similar job. Now let us turn
our attention to the boundary points. For the points near the right edge,
the local linear estimation is almost perfect whenever the bandwidth is
not too large (in this case oversmoothing occurs). On the other hand, the
situation is more complicated with the left edge, where the estimates do
not flatten out. This tiny left tail is a challenging problem for a local linear
estimator because the underlying curve sharply changes, and thus a smaller
bandwidth is needed. On the other hand, a smaller bandwidth increases the
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FIGURE 8.9. The effect of the kernel and the bandwidth on the local linear
regression. A scatter plot of 50 observations of an equidistant regression with
iid normal N(0, σ2), σ = 0.5, additive errors (the same for all the 6 diagrams)
is shown by crosses. The underlying regression function is shown by the solid
line and the local linear regressions by the dashed lines. The estimates in the
top row of the diagrams are obtained using the rectangular kernel, the estimates
in the bottom row by the Gaussian kernel. The bandwidths are shown in the
subtitles. {The argument set.h controls bandwidths.} [n=50, sigma=.5, set.h =
c(.15,.06,.03)]

effect of particular errors, and we clearly see how a single relatively large
error (which implies the small response at x = 0.08) affects the estimates.

Of course, a local linear fit is not the only possible one. Local constant
fit is another possibility, and in general, a local polynomial fit is an alter-
native. Let p be the degree of the polynomial being fit. At a point x0 the
estimatorf̂(x, p, h) is obtained by fitting the polynomial

β0 + β1(x − x0) + · · · + βp(x − x0)p (8.4.7)

to a data set {(Yl, Xl), l = 1, 2, . . . , n} using weighted squares with kernel
weights h−1K((Xl − x0)/h). The value of

f̂(x, p, h) :=
p∑

j=0

β̂j(x)xj , (8.4.8)
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is the height of the polynomial fit at the point x where the vector-function
(β̂0(x), . . . , β̂p(x)) minimizes

n∑
l=1

[Yl−(β0(x)+β1(x)(Xl−x)+· · ·+βp(x)(Xl−x)p)]2Kh(Xl−x). (8.4.9)

The estimate (8.4.8) is called a local polynomial regression of order p.
Simple explicit formulae exist for the case of a local constant regression

(p = 0) where the estimator coincides with the Nadaraya–Watson kernel
estimator,

f̂(x, 0, h) =
∑n

l=1 YlKh(xl − x)∑n
l=1 Kh(xl − x)

. (8.4.10)

The local linear estimator (p = 1) is

f̂(x, 1, h) =
n−1 ∑n

l=1[ŝ2(x, h) − ŝ1(x, h)(Xl − x)]Kh(Xl − x)Yl

ŝ2(x, h)ŝ0(x, h) − [ŝ1(x, h)]2
, (8.4.11)

where

ŝr(x, h) := n−1
n∑

l=1

(Xl − x)rKh(Xl − x). (8.4.12)

The local polynomial smoothers inherit the drawbacks of classical poly-
nomial regressions, and one of the main ones is their high sensitivity to
extreme observations, i.e., to outliers in response variables. Thus it is
preferable to have a robust method that is resistant to outliers.

Locally weighted scatter plot smoothing (LOWESS) is a procedure that
makes the locally weighted least squares method more robust to outliers.
This procedure is supported by the S–PLUS function lowess. There are
several steps in this procedure. First, a local polynomial fit is calculated.
Second, residuals are found. Third, weights are assigned to each resid-
ual: Large (respectively small) residuals receive small (respectively large)
weights. Fourth, a local polynomial fit is calculated one more time, but now
by assigning to each observation a new weight that is the product of the
weight at the initial fit and the weight assigned to its residual from that ini-
tial fit. Thus the observations showing large residuals in the initial fit (and
which are possibly outliers) are downweighted in the second fit. The above
process is repeated several times, resulting in the estimator LOWESS.

8.5 The Nearest Neighbor Method

The nearest neighbor method is a procedure typically used for density
estimation. The underlying idea of the method is based on the definition
of the probability density,

f(x) = lim
h→0

(2h)−1P (x − h < X < x + h),
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FIGURE 8.10. Nearest neighbor density estimate with k = 2 for the case of 3
observations. The estimate is shown by the solid line over the unit interval; the
observations are shown by crosses.

and then noting that we expect k = n(2h)f(x) observations falling in a box
of width 2h and centered at the point of interest x.

Recall that the naive estimator, discussed in Section 8.2, is based on
using a fixed bandwidth h, calculating the number k̂ of observations such
that they belong to the interval [x − h, x + h], and then setting

f̂n(x) :=
k̂

n2h
. (8.5.1)

In contrast, the nearest neighbor method is based on a fixed number of
points k that determines the width of a box in a search. Thus, we calculate
the Euclidean distance ĥ from the point of interest x to the distant kth
observation and define the kth nearest neighbor density estimate by

f̃n(x) :=
k

n2ĥ
. (8.5.2)

The similarity between (8.5.1) and (8.5.2) is striking.
Note that for x less than the smallest data point X(1) we have ĥ(x) =

X(k)−x. Here X(k) denotes the kth ordered observation. Thus the estimate
(8.5.2) is proportional to |x|−1 as x → −∞. We observe the same behavior
for the right tail of the estimate. Thus, tails are estimated extremely badly
and need to be discarded from consideration.

Figure 8.10 illustrates this estimator for the case k = 2 and three data
points 0.3, 0.6, and 0.7. The graph nicely shows the underlying idea of this
estimator, namely, that density is inversely proportional to the size of the
box needed to contain a fixed number k of observations. The drawback
of the nearest neighbor method is that the derivative of a nearest neigh-
bor estimate is discontinuous. As a result, the estimate can give a wrong
impression. Also, this estimate is not integrable due to its heavy tails.

On the other hand, the underlying idea of this estimate that the prob-
ability density is inversely proportional to the distance between ordered
observations (spacing) is very attractive. Recall that it has been intensively
used, for instance, in Sections 4.2 and 8.3.
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The idea of the nearest neighbor method can be used in a kernel estimator
where the bandwidth is chosen to be ĥ. Such a kernel estimator is called a
kth neighbor kernel estimate,

f̃n(x) :=
(
nĥ(x)

)−1
n∑

l=1

K
(
(x − Xl)/ĥ(x)

)
, (8.5.3)

and this is a kernel estimate with a data-driven bandwidth. However, this
is not an entirely data-driven method, because a choice of k should be
made. Note that this generalized estimate becomes the ordinary kth nearest
neighbor estimate when the kernel function is rectangular.

An appealing feature of the nearest neighbor method is its simplicity in
expanding to a multivariate setting. To define a nearest neighbor estimate
in s-dimensional space, let dk(x) be the Euclidean distance from x to the
kth nearest data point, and let Vk(x) be the (s-dimensional) volume of the
s-dimensional sphere of radius dk(x). Thus Vk(x) = cs[dk(x)]d, where cs is
the volume of the s-dimensional sphere with unit radius, that is, c1 = 2,
c2 = π, c3 = 4π/3, etc. Then, the nearest neighbor method is defined by

f̃n(x) :=
k

nVk(x)
. (8.5.4)

Note that if we set the kernel function K(x) := 1/ck within the sphere
of unit radius and K(x) := 0 otherwise, then the nearest neighbor method
is identical to a kernel smoothing. This connection between the kernel and
nearest neighbor method demonstrates that a study of the nearest neighbor
method can be based on the theory of kernel estimation.

8.6 The Maximum Likelihood Method

We begin with recalling the idea of maximum likelihood estimation of a pa-
rameter. A maximum likelihood estimate (MLE) of a parameter is defined
as the value of the parameter that maximizes the probability (likelihood) of
the observed data. Let fθ be an underlying density given the parameter θ
and let n iid observations X1, X2, . . . , Xn be given. Then a maximum like-
lihood estimate θ̂ is defined as the maximizer of the likelihood

∏n
l=1 fθ(Xl),

that is,
∏n

l=1 fθ̂(Xl) = max θ

∏n
l=1 fθ(Xl).

For example, let X be normal with unknown mean θ and variance σ2.
Then the maximum likelihood estimate, based on only one observation X1,
is θ̂ = X1, because this value of the parameter θ maximizes the likelihood
(2πσ2)−1/2 exp{−(X1 − θ)2/2σ2}.

Similarly, for the case of a density estimation based on n iid realizations
X1, . . . , Xn, we can define the likelihood of a density f(x) as

L(f |X1, . . . , Xn) :=
n∏

l=1

f(Xl). (8.6.1)
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Unfortunately, if we shall try to maximize this likelihood over all possible
densities, the likelihood can be made arbitrarily large. Indeed, just think
about a density that is a mixture of n normal densities with means Xl

and variance σ2. Such a density has an arbitrarily large likelihood as the
variance becomes smaller, but due to its “bumpy” structure it is clearly far
from any smooth underlying density.

There are several possible cures for this problem. Before exploring them,
let us consider a problem that became the glory of the maximum likelihood
method and that was elegantly solved in the 1950s by Grenander.

Assume that it is known that an underlying density is bounded and
monotone (nonincreasing) on its support [0,∞). Then Grenander explored
the maximum likelihood estimate for this particular class of densities, that
is, when the maximum of (8.6.1) was taken only over the bona fide (mono-
tone) densities. His first assertion was that the MLE is a step function with
breakpoints (jumps) at the order statistics X(l), l = 1, 2, . . . , n. And the
next step was a closed procedure for finding the MLE of an underlying
density, namely, the MLE is the density whose distribution function is the
smallest concave majorant of the empirical distribution function.

All the steps of Grenander’s estimate are illustrated in Figure 8.11.
Note that the success of the MLE for the case of monotone densities has

been due to the restriction of a class of considered densities. Thus, it is
not surprising that Grenander suggested to restrict the class of densities
for the general setting as well and to choose f only from a given sequence

X X X(1) (4) (5)

smallest concave majorant

Grenander’s monotone density estimate

empirical cdf

+ + + + +
(2)X X (3)0

FIGURE 8.11. Steps for finding the MLE estimate of a bounded nonincreasing
density supported on [0, ∞). The first step is to arrange the data (here 5 observa-
tions shown by crosses) in ascending order from the smallest to the largest, i.e.,
find order statistics X(1) ≤ X(2) ≤ · · · ≤ X(5). The second step is to draw the
empirical cumulative distribution function, which is a step function with jumps
equal to the inverse sample size (here 0.2) at the order statistics. The third step
is to find the smallest concave majorant of the empirical cdf. Finally, the slopes
of this majorant give us the stepwise MLE, which is Grenander’s estimate.
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of classes Sn. Such a sequence is called a sieve, and the estimation method
is called the method of sieves.

A particular example of such an estimate is the histogram. To see this,
choose Sn := {f : f is constant on the interval [(j−1)hn, jhn), j is integer,
hn decays as n → ∞}. Then it is not difficult to see that in this case the
maximum likelihood sieve estimator is

f̂n(x) := (hnn)−1
n∑

l=1

I{Xl∈ [(j−1)hn,jhn)}, x ∈ [(j − 1)hn, jhn). (8.6.2)

Indeed, we are looking for parameters cj (heights of a maximum likeli-
hood histogram) such that hn

∑∞
j=−∞ cj = 1 and the likelihood

∏∞
j=−∞ c

νj

j

(or the logarithm of this product
∑∞

j=−∞ νj ln(cj), which is called the log-
likelihood) takes on a maximum value. Here νj =

∑n
l=1 I{Xl∈ [(j−1)hn,jhn)},

and it is assumed that 00 := 1 and 0 × ∞ := 0. According to the method
of Lagrange multipliers, optimal parameters should maximize

∞∑
j=−∞

νj ln(cj) − µhn

∞∑
j=−∞

cj , (8.6.3)

where µ is a Lagrange multiplier (a real number).
Recall that the method of Lagrange multipliers states that all lo-

cal extrema of the function f(x1, . . . , xs), subject to the constraint
g(x1, . . . , xs) = 0, will be found among those points (x1, . . . , xs) for which
there exists a real number µ such that

∂F (x1, . . . , xs, µ)/∂xl = 0, l = 1, . . . , s, ∂F (x1, . . . , xs, µ)/∂µ = 0, (8.6.4)

where

F (x1, . . . , xs, µ) := f(x1, . . . , xs) − µg(x1, . . . , xs), (8.6.5)

assuming that all the indicated partial derivatives exist. In short, given
a constraint one should find relative extrema of a weighted sum of the
aim function and the constraint function. (Exercise 8.6.4 gives an elegant
example of using this method.)

Via differentiation of (8.6.3) we see that the optimal parameters are
c∗
j = νj/µhn, and then µ = n because the constraint hn

∑∞
j=−∞ c∗

j = 1
should hold and

∑∞
j=−∞ νj = n by definition of νj . This implies (8.6.2).

Another particular example of a sieve is Sn = {f : f ∈ D, R(f) ≤ C}.
Such an approach leads to a maximum penalized likelihood method. Here D
is a given class of densities, R(f) is a penalty function, and C is a constant.

The Lagrange multipliers method implies choosing the f in D that
maximizes the penalized log-likelihood,

lµ(f) :=
n∑

l=1

ln(f(Xl)) − µR(f), (8.6.6)
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where µ ≥ 0 is the Lagrange multiplier or so-called smoothing param-
eter. The probability density that maximizes this likelihood is called a
maximum penalized likelihood density estimate. Several examples of the
penalty function are R(f) :=

∫∞
−∞(a[df(x)/dx]2 + b[d2f(x)/d2x]2)dx and

R(f) :=
∫∞

−∞([d2f(x)/d2x]2/f(x))dx.
Note that while (8.6.6) is motivated by the sieve approach, it may be

looked at as a penalization approach. In this case µ should be chosen rather
than the constant C in the constraint R(f) ≤ C. Since the choice of µ
is more intuitively clear, it is customary to discuss this problem via the
parameter µ rather than C.

The parameter µ in (8.6.6) (or respectively the constant C) becomes
similar to the bandwidth or the cutoff for kernel and series estimates, re-
spectively. It controls the amount of smoothing, and increasing µ leads to
smoother estimates and vice versa. This is why µ is called a smoothing
parameter.

As with parametric maximum likelihood estimation, the main problem
in the implementation of a nonparametric maximum likelihood method is
computational: How does one find that maximum? Curiously enough, some
recommended computational approaches are based on an orthogonal series
approach. Namely, one writes f̂(x) :=

∑J
j=0 θjϕj(x), where ϕj are elements

of an orthogonal basis, and then applies the penalized maximum likelihood
method to J + 1 parameters (θ0, . . . , θJ). As a result, such a maximum
likelihood method is converted into the series approach discussed in the
previous chapters.

8.7 Spline Approximation

We begin with fundamentals.
• Review of Interpolation Theory. Assume that a table of n pairs

(x1, y1), . . . , (xn, yn) is given, and assume that the xl’s form an increasing
sequence of distinct points. The table represents n points in the Cartesian
plane, and we would like to connect these points by a smooth curve. Thus
we seek to determine a curve that is defined for all x and that takes on the
corresponding values yl for each of the distinct xl’s in this table. Such a
curve is said to interpolate the table, and the points xl are called nodes.

The first and absolutely natural idea of finding an interpolating curve
is to use a polynomial function in x, that is, pn(x) :=

∑n−1
i=0 aix

i. Such
a function is called an interpolating polynomial of degree n. Note that
at each of n nodes this polynomial satisfies pn(xl) = yl. Then a natural
expectation is that if the table represents points of an underlying function
f(x) (that is, f(xl) = yl), then the function f(x) will be well approximated
by the interpolating polynomial pn(x) at all intermediate points. Moreover,
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it might be expected that as the number of nodes increases, this agreement
will become better and better.

However, in the history of mathematics a severe shock occurred when
it was realized that this expectation was ill-founded. A counterexample
is provided by the Runge function f(x) := 1/(1 + x2), x ∈ [−5, 5], with
n + 1 equidistant nodes including the endpoints. (Note that the Runge
function is proportional to a truncated Cauchy density, which is a familiar
“troublemaker” in statistics.) It has been proven that

lim
n→∞ max

x∈[−5,5]
|pn(x) − f(x)| = ∞.

In short, a polynomial approximation of this extremely smooth function
is wiggly, and the maximal error of the approximation at nonnodal points
increases beyond all bounds!

The moral is that a polynomial interpolation of a high degree with many
nodes is a risky operation, since the resulting polynomials may be very
unsatisfactory as representations of the underlying functions. (It is of in-
terest to note that this conclusion resembles the conclusion of the theory of
orthogonal series estimation that recommends against using large cutoffs.)

To avoid this phenomenon, it can be worthwhile to relax the assumption
that f(x) should be globally (for all x) interpolated by a polynomial, and in-
stead use a piecewise local polynomial interpolation. Such an interpolation
is called a spline function or simply a spline.

A spline function S(x) is a function that consists of polynomial pieces
joined together with certain smoothness conditions.

A simple example is a polygonal function (or first-degree spline) whose
pieces are linear polynomials joined together. See Figure 8.12, where an
example of such a spline is shown by the dotted line.

An x-coordinate at which a spline function changes its character is called
a knot. In Figure 8.12 the knots are 0, 0.2, 0.4, 0.6, 0.8, and 1. Between knots
xj and xj+1 we define a first-degree spline as S(x) = ajx + bj =: Sj(x).
This spline is piecewise linear. Usually, S(x) is defined as S1(x) for x < x1
and as Sn−1(x) for x > xn, where x1 and xn are the boundary knots.

A second-degree spline is a piecewise quadratic polynomial such that S(x)
and its derivative S(1)(x) are continuous.

The negative side of linear and quadratic splines is that the slope changes
abruptly for a linear spline, as it does for the second derivative of a
quadratic spline. This makes the curve not pleasing to the eye.

A cubic (third-degree) spline is such that S(x) is a piecewise cubic poly-
nomial with continuous first S(1)(x) and second S(2)(x) derivatives. This
is the spline that is most often used in applications, and the reason why is
clear from Figure 8.12.

Let us calculate the number of parameters (degrees of freedom) of a cubic
spline based on n knots and the number of restrictions (side conditions).
Since between knots xj and xj+1 a cubic spline is a cubic polynomial, that
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FIGURE 8.12. First-degree spline function (dotted line) and natural cubic spline
(solid line) for the case of 6 equally spaced knots.

is, Sj = aj + bjx + cjx
2 + djx

3, there are 4(n − 1) variables (check this
with Figure 8.12) and 2 + 2(n − 2) + 2(n − 2) = 4(n − 1) − 2 constraints.
These constraints are due to the necessity for a cubic spline to be equal to
given values at every knot, and its first and second derivatives should be
continuous at every interior point. Since we are two restrictions short, let
us add two constraints, S(2)(x1) = S(2)(xn) = 0, and then refer to such a
spline as the natural cubic spline.

As we mentioned in the beginning of this section, a global polynomial
interpolation may lead to undesired oscillations. In contrast, natural cu-
bic spline interpolation nicely matches the smoothness of an underlying
function. This follows from the following famous result of spline theory.

Theorem 8.7.1. If S is the natural cubic spline function that inter-
polates a twice differentiable function f at knots x1 < x2 < · · · < xn,
then ∫ xn

x1

[S(2)(x)]2dx ≤
∫ xn

x1

[f (2)(x)]2dx. (8.7.1)

Proof. Let g(x) := f(x) − S(x). Then at the knots we have g(xl) = 0
because S exactly fits f at the knots. Also, f (2)(x) = S(2)(x) + g(2)(x).
Thus,∫

[f (2)(x)]2dx =
∫

[S(2)(x)]2dx +
∫

[g(2)(x)]2dx + 2
∫

g(2)(x)S(2)(x)dx.

We see that the equality
∫ x2

x1
g(2)(x)S(2)(x)dx = 0 implies (8.7.1), so it

suffices to verify this equality. We shall do this by applying the technique
of integration by parts (recall (2.2.3)) to the integral in question. Write

∫ xn

x1

g(2)(x)S(2)(x)dx =
n−1∑
j=1

[
S(2)(x)g(1)(x)

∣∣∣xj+1

xj

−
∫ xj+1

xj

S(3)(x)g(1)(x)dx
]
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=
[
S(2)(xn)g(1)(xn) − S(2)(x1)g(1)(x1)

]−
n−1∑
j=1

∫ xj+1

xj

S(3)(x)g(1)(x)dx.

The first term is equal to zero because our spline is a natural cubic spline,
i.e., S(2)(x1) = S(2)(xn) = 0. To calculate the second term we note that a
cubic spline between two knots can be written as aj + bjx + cjx

2 + djx
3,

and then ∫ xj+1

xj

S(3)(x)g(1)(x)dx = 6dj

∫ xj+1

xj

g(1)(x)dx = 0

because g(xj) = f(xj) − S(xj) = 0. The theorem is proved.

While spline functions are an appealing tool for interpolating smooth
functions, finding them numerically is not a simple task. Thus, special
spline functions have been developed that are well adapted to numerical
tasks. The first example is the B-spline, which forms a “basis” for the set
of all splines.

Suppose we have an infinite set of knots · · · < x−2 < x−1 < x0 < x1 <
x2 < · · ·. Then the jth B-spline of zero-degree is defined by B0

j (x) = 1 if
xj ≤ x < xj+1 and B0

j (x) = 0 otherwise. In short, B0
j (x) is a “box” of unit

height (a rectangular kernel) placed on the interval [xj , xj+1).
With the function B0

j as a starting point we now generate all the higher-
degree B-splines by a simple recursive formula:

Bk
j (x) =

(x − xj)Bk−1
j (x)

xj+k − xj
+

(xj+k+1 − x)Bk−1
j+1 (x)

xj+k+1 − xj+1
, k ≥ 1. (8.7.2)

Then a kth-degree B-spline is defined as

Sk(x) :=
∞∑

j=−∞
θk

j Bk
j−k(x). (8.7.3)

A basic question is how to determine the coefficients θk
j in this expansion.

Note that since B-splines of positive degree are not orthogonal, there are
no simple formulae similar to those we have for an orthogonal series expan-
sion. Nevertheless, direct calculations show that the zero- and first-degree
interpolating B-splines are extremely simple,

S0(x) =
∞∑

j=−∞
yjB

0
j (x), S1(x) =

∞∑
j=−∞

yjB
1
j−1(x).

For higher-degree splines, some arbitrariness exists in choosing these
coefficients. We shall not pursue this issue further, since in statistical appli-
cations one is interested in an approximation rather than an interpolation,
and then a least-squares approach can be used. But it is worthwhile to note
that as in the zero- and first-degree cases, interpolating splines are linear
in yj .
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There exist several other useful spline bases, including the Kimeldorf–
Wahba and the Demmler–Reinsch bases. These two bases are particularly
useful as theoretical tools, and the latter resembles a trigonometric basis.

Finally, let us recall the following illuminating result, which has
motivated the smoothing spline estimator discussed below.

Assume that an m-fold differentiable function f(x) is supported on an
interval [a, b] and that it satisfies the following restrictions: (i) f(xl) = yl,
l = 1, 2, . . . , n; (ii) the (m − 1)th derivative f (m−1)(x) is continuous in x.
Then the problem is to find among all such functions the function that has
the minimal integral of its squared mth derivative, that is, the function
with the minimal value of

∫ b

a
(f (m)(x))2dx.

It has been shown that the solution of this problem is unique and the
function in question is a polynomial spline satisfying the restriction (i) with
xl being knots in addition to satisfying the following three side conditions:
(a) f is a polynomial of degree not larger than m − 1 when x ∈ [a, x1] and
x ∈ [xn, b]; (b) f is a polynomial of degree not larger than 2m − 1 for the
interior points x ∈ [xl, xl+1], l = 1, 2, . . . , n; (c) f(x) has 2m−2 continuous
derivatives on the real line.

In short, the minimizer f∗ is a spline with polynomial pieces joined at the
knots xl so that f∗ has 2m − 2 continuous derivatives. Note that in many
applications the assumption m = 2 is quite reasonable, and in this case
the solution is a natural cubic spline. This case has also the following nice
physical interpretation. Assume that f(x) is an interpolating curve created
by a metal strip. Then the integral

∫ b

a
(f (2)(x))2dx is proportional to the

potential energy of the strip. Thus, since a strip in equilibrium should have
minimal potential energy, the equilibrium curve of such a strip is a natural
cubic spline.

• Spline Smoothing for Nonparametric Regression. Consider the
homoscedastic regression model

Yl := f(Xl) + εl, l = 1, 2, . . . , n, (8.7.4)

where εl are independent and identically distributed zero-mean errors.
One of the possible methods of using splines to approximate an underly-

ing regression function is to use a spline basis, for instance, a cubic B-spline
basis. In this case one chooses a fixed knot sequence −∞ < t1 < t2 < · · · <
tJ < ∞, which may differ from predictors, and then calculates elements of
a corresponding cubic spline basis. It is possible to show that only J + 4
elements of this basis are needed. With some abuse of notation, denote
these elements by Bj(x) and write a corresponding polynomial spline as

S(x) =
J+4∑
j=1

θjBj(x). (8.7.5)
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Then the coefficients θj can be calculated, for instance, as parameters
minimizing the sum of squared errors

n∑
l=1

[
Yl −

J+4∑
j=1

θjBj(Xl)
]2

. (8.7.6)

Denote by θ̂j the least-squares estimates and then define a polynomial
spline estimator by the formula

f̂n(x) :=
J+4∑
j=1

θ̂jBj(x). (8.7.7)

Note that this estimator is similar to a series estimator, and the number
of knots J defines the roughness of this estimate.

Another approach is based on the idea of finding a smooth curve that
minimizes the penalized sum of squared errors

n−1
n∑

j=1

(Yj − f(Xj))2 + µ

∫ b

a

[f (m)(x)]2dx (8.7.8)

for some nonnegative µ. Then, as in the earlier interpolation approach,
the solution of this minimization problem is a spline, and it is called a
smoothing spline estimator.

In particular, for the case of m = 2 the minimizer of (8.7.8) is a nat-
ural cubic spline. Note that µ plays the role of a smoothing parameter.
Indeed, the first sum in (8.7.8) penalizes the lack of fidelity of the spline
approximation to the data. The second term is responsible for the smooth-
ness of the spline approximation. To see this, let us consider the extreme
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FIGURE 8.13. Smoothing spline estimates for two simulated data sets of non-
parametric equidistant regression with iid N(0, σ2) errors, σ = 0.5. Estimates and
the underlying regression function are shown by dashed and solid lines. Scatter
plots are shown by crosses. The sample size is n = 50. [n=50, sigma=.5]
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cases µ = 0 and µ = ∞. The former case leads to an interpolation, that is,
f̂(Xl) = Yl, l = 1, . . . , n. The latter leads to a linear regression because it
implies f (2)(x) ≡ 0.

Thus, µ is referred to as a smoothing parameter, and it controls the
shape of the smoothing spline estimator, which can be changed from the
most complicated and “wiggly” interpolation model to the simplest and
smoothest linear model.

In other words, (8.7.8) represents a tradeoff between the fidelity of fit to
the data, as represented by the residual sum of squares, and the smoothness
of the solution, as represented by the integral of the squared mth derivative.

The smoothing spline estimator for the case m = 2 is supported by the S–
PLUS function smooth.spline, which chooses the smoothing parameter
µ by a cross-validation procedure (Section 8.10 explains the idea of this
procedure). Estimates for two particular simulated data sets are shown by
dashed lines in Figure 8.13. Observations are simulated according to (8.7.4)
with normal N(0, (0.5)2) errors. As we see, the smoothing spline estimator
gives a good approximation.

8.8 Neural Networks

The exciting idea of neural networks stems from attempts to model the hu-
man brain. Note that all the previously discussed nonparametric methods
have been motivated by either mathematical results or numerical methods
or fast computers. However, the human brain has many abilities, such as
understanding fuzzy notions or making inferences based on past experience
and relating them to situations that have never been encountered before.
Such abilities would also be desirable in nonparametric estimation. This
explains in part the motivation to understand and model the human brain.

The basic computational unit of the brain is the neuron. A human brain
has approximately 1011 neurons, which act in parallel and which are highly
interconnected. Figure 8.14 shows a simplified model of the neuron. The
neuron receives a weighted sum of inputs and then, using its activation
function s(u), calculates an output Y = s(

∑n
j=1 wjXj). For instance, the

McCulloch–Pitts model assumes that s(u) is a step (threshold) function
such that s(u) = 0 if the net input u is smaller than a unit threshold level
(|u| < 1) and s(u) = 1 otherwise. This implies that this neuron fires (Y = 1)
or not (Y = 0) depending on the value of the weighted sum of inputs.
Although this particular model is simple, it has been demonstrated that
computationally it is equivalent to a digital computer. In other words, a set
of interconnected McCulloch–Pitts neurons can perform as a conventional
digital computer.

Moreover, it is easy to see that this neuron can solve classical statistical
problems like regression analysis or hypothesis testing. As an example, con-
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FIGURE 8.14. Model of a neuron. The inputs Xj are multiplied by weights wj .
Y = s(

∑n

j=1 wjXj) is an output.

sider the problem of nonparametric equidistant regression where responses
Xl = f(l/n) + σεl, l = 1, 2, . . . , n. Then all the earlier methods, including
least-squares linear regression, kernel smoothing, and spline estimation,
can be written as a weighted sum of the responses, f̂n(x) =

∑n
l=1 wl(x)Xl.

Thus f̂n(x) can be computed by the neuron shown in Figure 8.14 with an
identity activation function s(u) = u. The only issue is that appropriate
weights should be chosen.

Another appealing example is hypothesis testing. Consider the classical
one-tailed test H0 : θ ≤ 0 versus Ha : θ > 0 with the level of significance α.
The data are iid normal random variables Xl with mean θ and variance σ2.
The well-known solution of the problem is to reject the null hypothesis H0 if∑n

l=1 n−1Xl > (σ/n1/2)zα, where zα satisfies P (ξ0 > zα) = α with ξ0 being
a standard normal random variable. Thus, in this case the McCulloch–
Pitts neuron solves this hypothesis testing problem with identical weights
wj = 1/(σzαn1/2). Note that the neuron fires (Y = 1) if the null hypothesis
is rejected.

Thus as soon as the solution to a problem can be written as a linear com-
bination of input variables that is transformed by a function, this solution
can be obtained by a neuron.

More complicated problems can be solved by a neural network, which is
a set of neurons that are highly interconnected. A generic example is given
in Figure 8.15. This network is constructed with layers of units, and thus
it is called a multilayer network. A layer of units is composed of units that
perform similar tasks. A feed-forward network is one where units in one
layer pass data only onto units in the next upper layer. The zero (input)
layer consists of the input units, which are simply inputs Xj . An ith unit of
the input layer is connected to a jth unit of the first hidden layer according
to a weight w0

ji. This weight is interpreted as the strength of the connection
from this ith unit on the zero (input) layer to the jth unit on the first
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FIGURE 8.15. A generic multilayer feed-forward neural network.

(hidden) layer. Then the output of this jth unit is Yj = s1(
∑

i w0
jiXi).

Units on other layers perform similarly. When counting layers it is common
practice not to count the input layer, because it does not perform any
computation, but simply passes data onto the first layer. So the network
shown is termed a three-layer one.

The main problem in using neural networks is to compute optimal
weights. Typically this is done by calculating the gradient of a risk func-
tion, and this requires smooth activation functions. Two common choices
are the logistic function s(u) := 1/(1 + e−u) or the hyperbolic tangent
s(u) := (eu − e−u)/(eu + e−u). These activation functions are smooth
approximations of the step function, and they are referred to as sigmoid
functions due to their s-shape.

One of the reasons why multilayer neural networks, and two-layer net-
works in particular, are interesting is that it has been shown that a two-layer
feed-forward neural network with a significant number of hidden units can
approximate a continuous function to any degree of accuracy. Thus, such
a neural network becomes a powerful modeling tool.

The main practical question in operating a neural network is how to
adapt it to a particular problem. The human brain, which is the prototype,
can learn or be trained with or without the help of a supervisor. Supervised
learning (learning with a teacher) occurs when there is a known target
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value associated with each input in the training set. The brain compares
its outcome with the target shown by a teacher, and the difference is used
for adaptation. Unsupervised learning is needed when the training data lack
a target output; for instance, the brain can learn that a gray sky is more
likely to produce rain than a blue one.

Similar procedures of supervised and unsupervised learning can be
developed for a neural network. For a given structure of a network, math-
ematically it means an adaptive choice of weights {wk

ij}. A widely used
method is a back-propagation algorithm that minimizes a discrepancy be-
tween outputs and some target values by calculating the gradient of the
risk according to the Lagrange multipliers technique. Typically there are
many local minima, so heuristics and experience in using this method are
required. There is no surprise that a commonly used criterion is that of least
squares, which, to ensure a smooth curve, may be penalized by adding a
function based on the second derivative of the modeled curve. Recall that
a similar approach was used for splines.

8.9 Asymptotic Analysis of Kernel Estimates

In this section we consider a problem of estimation of the density f of a ran-
dom variable X based on its n iid realizations X1, . . . , Xn when n is large.
We are interested in optimal kernel estimation, namely, in understanding
what kind of kernels and bandwidths delivers an optimal estimation for
large samples (as n → ∞).

In Section 8.3 we introduced the kernel density estimator,

f̂(x) := (nh)−1
n∑

l=1

K((x − Xl)/h). (8.9.1)

Recall that K is called the kernel and h the bandwidth.
We would like to study the pointwise mean squared error of the kernel

estimate,

MSE := E{(f̂(x) − f(x))2}, (8.9.2)

and the global mean squared integrated error of the kernel estimate,

MISE := E
{∫

(f̂(x) − f(x))2dx
}

. (8.9.3)

In this section the integral is taken over the real line.
Consider the case where an underlying density f belongs to a Lipschitz

space Lipr,α(L), that is, f is bounded, r-times differentiable, and its rth
derivative f (r) is Lipschitz of order α, 0 < α ≤ 1. In short,

|f(x)| ≤ C, |f (r)(x1) − f (r)(x2)| ≤ L|x1 − x2|α. (8.9.4)
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Then, as we know from Chapter 7, f may be such that regardless of the
procedure of estimation, both MSE and MISE decay at a rate not faster
than n−2β/(2β+1), where β := r + α.

Our aim is to explore kernel estimates that attain this rate.
To do this, we begin by introducing the class of kernels that will be

considered. Define a class Sr,α of kernels K(t) that are symmetric about
zero (i.e., even), bounded, and such that∫

K(t)dt = 1, (8.9.5)∫
tsK(t)dt = 0, s = 1, . . . ,max(1, r), (8.9.6)∫

|tr+αK(t)|dt < ∞. (8.9.7)

In words, this is the class of kernels that are even, bounded, integrated
to unity, all their moments up to the rth are zero, and the product tβK(t)
is absolutely integrable. Note that in (8.9.6) only even s impose restrictions
(since the kernel is even), so for r ≤ 1 this class includes all the previously
discussed density kernels. On the other hand, if r ≥ 2, then nonnegative
kernels do not satisfy (8.9.6) and thus do not belong to Sr,α. As we shall
see, a kernel taking negative values is required for asymptotically optimal
estimation of densities with smooth second derivative.

To make the following mathematical manipulation easier to understand,
let us recall some elementary relations related to the variance of a random
variable Z,

Var(Z) = E{(Z − E{Z})2} = E{Z2} − (E{Z})2 ≤ E{Z2}, (8.9.8)

and if Z1, . . . Zn are iid realizations of the Z, then

Var(n−1
n∑

l=1

Zl) = n−1Var(Z). (8.9.9)

Now we are in a position to study the MSE of the kernel estimate (8.9.1).
It is convenient to use the notation Kh(x) := h−1K(x/h) because it allows
us to rewrite this estimate as a sample mean estimate,

f̂(x;h) = n−1
n∑

l=1

Kh(x − Xl). (8.9.10)

Using (8.9.8), the MSE may be written as a sum of the variance and the
squared bias terms,

MSE = Var(f̂(x)) + [E{f̂(x)} − f(x)]2 =: VAR + SBIAS. (8.9.11)

Using (8.9.8)–(8.9.9) and the fact that f is the density of X, we may
write for the variance term,

VAR = n−1Var(Kh(x − X)) = n−1(E{[Kh(x − X)]2} − [E{Kh(x − X)}]2)
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= n−1
(∫

[Kh(x − u)]2f(u)du −
[ ∫

Kh(x − u)f(u)du
]2)

. (8.9.12)

The squared bias term we rewrite using (8.9.5):

SBIAS =
[ ∫

Kh(x − u)(f(u) − f(x)du
]2

. (8.9.13)

Note that both these terms have a similar structure, so to continue the
study we need the following simple relation for m = 1, 2:∫

[Kh(x − u)]mf(u)du =
∫

h−m[K((x − u)/h)]mf(u)du

= h−m+1
∫

[K(t)]mf(x + ht)dt. (8.9.14)

Here the first equality is due to the definition of Kh, and the second is due
to the change of variable t = (u − x)/h and the symmetry of K(t).

Using (8.9.14) in (8.9.12), we get for the variance term,

VAR = (nh)−1
∫

[K(t)]2f(x+ht)dt−n−1
(∫

K(t)f(x+ht)dt
)2

. (8.9.15)

Now is the moment to use the assumption about smoothness of the un-
derlying density f . We replace f(x + ht) by f(x) + (f(x + ht) − f(x)) and
then note that the following relation holds for densities from Lipr,α(L):∫

|K(t)|m|f(x + ht) − f(x)|dt = oh(1), m = 1, 2. (8.9.16)

Here oh(1) denotes a generic sequence in h such that oh(1) → 0 as h → ∞.
Let us check (8.9.16) for the case of the least smooth density with r = 0.

Using (8.9.4), (8.9.7), and boundness of the kernel we may write for m =
1, 2,∫

|K(t)|m|f(x + ht) − f(x)|dt ≤ L|h|α
∫

|K(t)|m|t|αdt = oh(1). (8.9.17)

The case of differentiable densities with r ≥ 1 is left as Exercise 8.9.8.
Using (8.9.16) in (8.9.15) after the replacement of f(x + th) we get

VAR = (nh)−1 f(x)
∫

[K(t)]2dt + oh(1)(nh)−1. (8.9.18)

Now we consider the SBIAS at (8.9.13). If r = 0, then using (8.9.14) and
then (8.9.4) gives us

SBIAS =
[ ∫

K(t)(f(x + ht) − f(x))dt
]2

≤ h2α
[
L

∫
|tαK(t)|dt

]2
.

(8.9.19)
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The case r > 0 is considered similarly with the help of the Taylor
expansion

f(x + ht) = f(x) +
r−1∑
j=1

(ht)j

j!
f (j)(x) +

(ht)r

r!
f (r)(yht), (8.9.20)

where yht is a point between x + ht and x. Write

SBIAS =
[ ∫

K(t)
( r−1∑

j=1

(ht)j

j!
f (j)(x) +

(ht)r

r!
f (r)(yht)

)
dt
]2

(8.9.21)

=
[ ∫

K(t)
(ht)r

r!
(
f (r)(yht) − f (r)(x) + f (r)(x)

)
dt
]2

(8.9.22)

≤ h2β
[L

r!

∫
|tβK(t)|dt

]2
. (8.9.23)

Here the equality (9.8.22) is obtained using (8.9.6), and the inequality
(9.8.23) using (8.9.4) and (8.9.6).

The comparison of (8.9.23) to (8.9.19) shows that (8.9.23) holds for all r.
Thus, plugging the obtained upper bounds for the variance and the squared
biased terms into (8.9.11) gives us

MSE ≤ (nh)−1f(x)
∫

[K(t)]2dt + h2β

[
L

r!

∫
|tβK(t)|dt

]2

+ oh(1)(nh)−1.

(8.9.24)
Using a bandwidth h∗

n that is proportional to n−1/(2β+1), we obtain that
MSE ≤ Cn−2β/(2β+1) (recall that C is a generic finite constant). Thus, a
kernel estimator is pointwise rate optimal.

Let us make a remark about the necessity of condition (8.9.6) which
excludes nonnegative density kernels if r ≥ 2. Let f belong to a Lipschitz
class with r ≥ 2. Then, according to (8.9.21)–(8.9.22), the SBIAS always
has the terms [hj

∫
tjK(t)dtf (j)(x)/j!]2, j = 1, . . . , r. These terms should

be of the optimal order h2(r+α), 0 < α ≤ 1, for all small h and all x. This
can be the case only if all these terms are 0. Thus, (8.9.6) is a necessary
condition for a kernel estimate to be rate optimal.

Let us formulate this result as a mathematical proposition.

Theorem 8.9.1. A kernel estimate with the kernel from the class Sr,α

and the bandwidth proportional to n−1/(2β+1) is rate optimal over a Lip-
schitz class Lipr,α(L), 0 < α ≤ 1, that is,

sup
f∈Lipr,α(L)

MSE ≤ Cn−2β/(2β+1), (8.9.25)

where β = r + α and C is a finite constant. Also, the condition (8.9.6) is
necessary for the rate optimal estimation.

So far we have considered the MSE. According to (8.9.3), MISE is the
integrated MSE over the real line. Thus, we can directly integrate the right
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hand side of (8.9.25) only if a global integrated risk is considered over a
finite interval. To consider the MISE over the real line, one may assume
that L = L(x) in the definition of the Lipschitz class and then add some
properties of L(x) that will allow the integration. We leave this as Exercise
8.9.12.

The relation (8.9.24) gives us an upper bound in terms of the class of
densities, while in many cases it would be better to have an upper bound
expressed in terms of an underlying density. For instance, this may be
beneficial for adaptive estimation, as we shall see in Section 8.10.

Let us explore this problem for a case of a kernel being bounded even
density with finite fourth moment; such a kernel is widely used by data
analysts. We shall restrict this case to densities f ∈ Lip2,α(L) where α
may be as small as desired and L may be as large as desired. In other
words, we assume that an underlying density is twice differentiable and its
second derivative is Lipschitz of any order, which is unknown. The reason
why we consider such densities is clear from Theorem 8.9.1, which states
that twice-differentiable densities are the boundary case for nonnegative
kernels to be optimal.

Our aim is to find an expression for the MSE and optimal bandwidth
via an underlying density f (but not via β and L as in (8.9.24)).

The relation (8.9.18) for the variance term is written via f . Thus we need
to get an expression for the SBIAS. Using the Taylor expansion (8.9.20)
with r = 2, (8.9.21), and the assumption

∫
tK(t)dt = 0, we get

SBIAS =
h4

4

[ ∫
t2K(t)f (2)(yht)dt

]2
. (8.9.26)

Combining this result with (8.9.18) we obtain that

MSE =
f(x)
nh

∫
[K(t)]2dt(1+oh(1))+

h4

4

[ ∫
t2K(t)f (2)(yht)dt

]2
. (8.9.27)

Then as in (8.9.17) we get that

MSE =
(f(x)

nh

∫
[K(t)]2dt +

h4

4

[
f (2)(x)

∫
t2K(t)dt

]2)
(1 + oh(1)).

(8.9.28)
This is the kind of expression for the MSE that we wanted to get because

it is based solely on the kernel, the bandwidth, and the underlying density.
The optimal bandwidth h∗(x), which minimizes the right-hand side of

(8.9.28), is

h∗(x) :=

[
f(x)

∫
(K(t))2dt

]1/5

[
f (2)(x)

∫
t2K(t)dt

]2/5 n−1/5. (8.9.29)

Here we ignored the factor 1+oh(1) because it is close to 1 for large n, and
then we used the elementary fact that cn−1y−1 +y4/4 takes on its minimal
value at y∗ = (cn−1)1/5.
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The bandwidth (8.9.29) performs optimal variance–bias tradeoff. Note
that the larger the second derivative, the smaller the optimal bandwidth,
and vice versa. This is a rather natural property because the value of the
second derivative tells us how far an underlying curve is from a straight
line where all observations should be used with the same weights.

Substituting this optimal bandwidth into (8.9.28), we get

MSE = (5/4)CK [f (2)(x)]2/5[f(x)]4/5n−4/5(1 + on(1)), (8.9.30)

where

CK :=
[ ∫

t2K(t)dt
]2/5[ ∫

(K(t))2dt
]4/5

. (8.9.31)

Now we are in a position to explore an optimal kernel function K(x). Un-
der the previous assumptions, the optimal kernel must minimize CK . There
is no unique minimizer because CK is the scale invariant. Thus, if we add an
additional restriction on the second moment of the kernel,

∫
t2K(t)dt = σ2,

then the minimizer is Ke(t, σ) := (3/(4
√

5σ2))[1 − t2/(5σ2)]I{t2≤5σ2}. This
kernel is called the Epanechnikov kernel. It is customary to choose a kernel
supported on [−1, 1], which implies σ2 = 0.2.

It is useful to note that CK is not too sensitive to changing the kernel. For
instance, if instead of the Epanechnikov kernel a standard normal density
is used (this choice allows us to analyze any derivative, and it makes the
estimate extremely smooth), then CK increases 1.05 times. If the uniform
on [−1, 1] density is used (this choice leads to an estimate that looks like a
histogram), then the increase is 1.08 times. Therefore, many statisticians
believe that the choice of a kernel is not too important. Unfortunately, this
is not the case asymptotically, because as we know from our results on series
estimators, the rate of convergence may be much faster than n−4/5, while
positive kernels can give us only the rate n−4/5. To improve the convergence
one must consider kernels that take on negative values.

Let us formulate these results as a mathematical proposition.

Theorem 8.9.2 Let a kernel K be a bounded even density with a finite
fourth moment. Let an underlying density be from Lip2,α(L), α > 0. Then
the mean squared error of the kernel estimate (8.9.1) with the bandwidth
(8.9.29) satisfies (8.9.30). Also, among all such kernels the asymptotically
optimal one is the Epanechnikov kernel.

Now let us briefly consider a global approach for the case of nonnegative
kernels. Under mild assumptions it is possible to show that the factor 1 +
oh(1) in (8.9.28) tends to 1 uniformly over all x. Then the integration of
both sides of (8.9.28) yields

MISE =
( 1

nh

∫
(K(t))2dt +

h4

4

∫
[f (2)(x)]2dx

[ ∫
t2K(t)dt

]2)
(1 + oh(1)).

(8.9.32)
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Then the optimal global bandwidth is

h∗ =

[ ∫
(K(t))2dt∫

(f (2)(x))2dx
( ∫

t2K(t)dt
)2
]1/5

n−1/5. (8.9.33)

This is the formula that is used by the plug-in adaptive technique dis-
cussed in the next section because the only characteristic of f used by this
bandwidth is the quadratic functional of its second derivative. As we know
from Section 7.6, this functional may be easily estimated.

Finally, we plug this bandwidth into (8.9.32) and get the desired formula
for the optimal MISE,

MISE =
5
4

[ ∫
t2K(t)dt

]2/5[ ∫
(K(t))2dt

]4/5

×
[ ∫

(f (2)(x))2dx
]1/5

n−4/5(1 + on(1)). (8.9.34)

8.10 Data-Driven Choice of Smoothing Parameters

In this section we consider several methods of data-driven choice of
smoothing parameters that are used for small sample sizes.

• Reference Method. Were an underlying estimated function (proba-
bility density, regression function, etc.) known, then for all the estimators
discussed a correct optimal smoothing parameter could be calculated. The
idea of the reference method is to pretend that an underlying function is
a particular one, choose it as a reference, and then use the corresponding
optimal smoothing parameter.

As an exercise, let us find an optimal global bandwidth (8.9.33) using
the reference method. Let the reference density φσ(x) be normal φσ(x) =
σ−1φ1(x/σ), where φ1(x) is the standard normal density. We may use the
chain rule to find the first derivative φ

(1)
σ (x) = σ−2φ

(1)
1 (x/σ) and then

the second derivative φ
(2)
σ (x) = σ−3φ

(2)
1 (x/σ). Then, using the change of

variable u = x/σ we calculate∫
[φ(2)

σ (x)]2dx = σ−6
∫

[φ(2)
1 (x/σ)]2dx = σ−5

∫
[φ(2)

1 (u)]2du

= [3/(64π)1/2]σ−5 ≈ 0.2σ−5. (8.10.1)

Here the integrals are over the real line.
Then we plug this result in the (8.9.33) and get the reference method

bandwidth for a given σ,

hn :=

[
(64π)1/2

∫
[K(t)]2dt

3
[ ∫

t2K(t)dt
]2

]1/5

σn−1/5. (8.10.2)
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Finally, any reasonable estimate of σ may be plugged in.
An advantage of the reference method is its simplicity, and it may be

very good if luckily an underlying function resembles the reference. A
disadvantage is that the estimate may be bad if that luck fails.

• Cross-Validation. This is the adaptation technique when part of a
sample is used to obtain information about another part. We have discussed
this technique for the example of regression in Section 7.4, so let us here
explain it for the probability density model.

Suppose that we would like to find an optimal smoothing parameter h
that minimizes the MISE of an estimate f̂(x;h) based on n iid observations
from this density. Write

MISE(f̂(x;h), f) = E
{∫

[f̂(x;h)]2dx − 2
∫

f̂(x;h)f(x)dx
}

+
∫

[f(x)]2dx.

The last term does not depend on the smoothing parameter h, so we
should minimize the expectation. Note that we cannot do this directly
because the underlying density f is unknown. Thus, let us assume that
an extra Xn+1th observation is given. Using the independence of the
observations we may write

E
{∫

f̂(x;h)f(x)dx
}

= E
{
f̂(Xn+1; h)

}
, (8.10.3)

and then estimate this expectation via a sample mean.
We do not have extra observations, but we can consider a sample with

one deleted observation. This leads to the so-called leave-one-out estima-
tor n−1 ∑n

l=1 f̂−l(Xl;h) of E{∫ f̂(x;h)f(x)dx}, where f̂−l(Xl;h) is the
estimator based on the sample with deleted lth observation.

Thus the least-squares leave-one-out cross-validation implies the choice
of h∗ that minimizes

LSCV(h) :=
∫

[f̂(x;h)]2dx − 2n−1
n∑

l=1

f̂−l(Xl;h). (8.10.4)

Clearly, a portion of observations may be deleted as well and then the
corresponding sample mean used.

• Plug-in Method. This is another popular method, which is typically
motivated by asymptotic results that claim a formula h∗(f) for a smoothing
parameter when the underlying function f is supposed to be known. Then
an estimate of f , or if this is the case, estimates of some functionals of f ,
are plugged in.

As an example, consider the formula (8.9.33) for the asymptotically opti-
mal global bandwidth. This bandwidth depends on the unknown quadratic
functional F2(f) =

∫
[f (2)(x)]2dx, which is the integral of the squared sec-

ond derivative. Thus, we may estimate this functional (see Section 7.6) and
then plug an estimate in.



360 8. Nonseries Methods

8.11 Practical Seminar

The aim of this seminar is to gain experience in using the Nadaraya–Watson
kernel regression estimator for the analysis of real data sets. This estimator
was discussed in Section 8.3, and Figure 8.7 illustrated its performance for
a simulated data set.

Recall that the Nadaraya–Watson estimator is supported by the S–PLUS
function ksmooth with two arguments: kernel and bandwidth. Four kernels
may be chosen: “box”, “triangle”, “parzen” (which is a box kernel convolved
with a triangle kernel), and “normal”. Recall that all these kernels are
nonnegative and that the estimate inherits the smoothness of the kernel.
However, among these two arguments, bandwidth is the critical one.

Now, after this short review, let us consider a particular data set and
apply our method of a “running” argument to assess the performance of
this kernel estimator.

The particular data set is saving.x, which is a matrix with 5 columns
(variables) describing averaged statistics over 1960–1970 (to remove busi-
ness cycles or other short-term fluctuations) for 50 countries. Just for the
record, the variables (columns) are (1) Percentage of population younger
than 15 years old; (2) Percentage of population older than 75; (3) Income,
which is per capita disposable income in U.S. dollars; (4) Growth, which
is the percent rate of change in per capita disposable income; (5) Savings
rate, which is aggregated personal savings divided by disposable income.

Here we consider the regression of Percentage of population older than
75 (the response Y ) on the Income (the predictor X). In short, we would
like to know how the nation’s prosperity (measured in units of Income)
affects the percentage of the nation’s elderly population.
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FIGURE 8.16. Nadaraya–Watson kernel estimates with different bandwidths for
a real data set with the predictors X and responses Y . Here the particular data
set is saving.x with the predictor being Income and the response being Percent-
age (of population older than 75). The sample size is 50, and it is shown in the
subtitles. Titles indicate the bandwidth h and the kernel. {A data set is con-
trolled by the arguments X and Y , which should be columns.} [X=saving.x[,3],
Y=saving.x[,2], kernel= ′′normal ′′, set.h = c(.1,.2,.3,.4)]
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Figure 8.16 shows us how the Nadaraya–Watson estimator with normal
kernel highlights the relationship between the Income and the Percentage.
As we see, all four estimates give us a correct overall description of the data
at hand. The estimate with the smallest bandwidth h = 0.1 tries to fit all
the tiny details and to inform us about them. Note that the 3 countries
with the largest Incomes are Canada (X = 2983), Sweden (X = 3299),
and United States (X = 4002). Thus, while the right tail of the estimate
looks strange, the reality is that in the 1960s both Canada and the United
States enjoyed unprecedented prosperity together with the so-called period
of baby boomers (the percentages of youngsters with age at most 15 are 32
and 29, respectively; see more in Section 4.12). Sweden also prospered, but
with a larger percentage of senior citizens (in part because in the 1960s their
youngsters constituted only 23 percent of the total population). These three
countries are almost solely responsible for approximately a quarter of the
range of Income and for the relationship between Income and Percentage
for superrich nations. And this is the message of the right tail of the kernel
estimate with the smallest bandwidth 0.1.

The larger the bandwidth, the smoother the estimate and the smaller
the number of tiny details we can see. Note that when you analyze a real
data set like the one considered, it is not a clear-cut issue to say that the
estimate oversmooths data and that the estimate undersmooths it. After
all, all depends on what you would like to see. All these estimates are
almost identical for low and moderate Incomes (only the first one is a bit
“undersmoothed”), so the only important difference between them is in
the message about Percentages for the largest Incomes. The estimate with
h = 0.1 may look undersmoothed for the largest Incomes, but at the same
time, it sends us the strongest (and absolutely correct) message that for rich
countries the relationship between a nation’s prosperity and Percentage of
elderly population is very complicated. Indeed, the percentage of the elderly
population in the richest countries was very sensitive to such parameters
as participation in wars and current birth rates, among others. On the
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FIGURE 8.17. Nadaraya–Watson kernel estimates with 4 different kernels sup-
ported by S–PLUS. The data set is the same as in Figure 8.16. [X=saving.x[,3],
Y=saving.x[,2], h=.3, set.kernel= c( ′′box ′′, ′′triangle ′′, ′′parzen ′′, ′′normal ′′)]
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other hand, the smoothest estimate with h = 0.4 looks right in terms of a
hypothetical relationship between a nation’s prosperity, defined as income
per capita, and the percentage of senior citizens. After all, we all want to
believe that this is the case, and probably this should be the case.

Figure 8.17 shows us how a choice of the kernel affects the Nadaraya–
Watson estimate. We see that the estimate inherits the smoothness of the
underlying kernel. The “box” kernel does not look right here, and the “tri-
angle” is just a bit rough. The two others are almost identical, but the
normal kernel implies the smoother estimate.

8.12 Exercises

8.1.1 Can the histogram (8.1.1) be referred to as a sample mean estimate?
8.1.2 The classical definition of the histogram is based on using bins of
identical widths. Some statisticians argue in favor of using variable bins.
Discuss possible pros and cons of a histogram with variable bins.
8.1.3 Let f be a continuous density supported on [0,1]. Suggest a histogram
estimate f̂n such that E{∫ 1

0 (f̂n(x) − f(x))2dx} → 0 as n → ∞.
8.1.4 Consider sample sizes 50 and 100 and corner densities the Strata
and the Monotone. Using Figure 8.1, for each pair of a sample size and a
density, find the optimal width of bins. Then explain the result.
8.1.5 Give an example of a data set where two reasonable choices of the
origin may crucially affect the histograms.
8.2.1 Is the naive estimate a sample mean estimate? Is it a pointwise
unbiased estimate?
8.2.2 Let an underlying density f(x) be positive and continuous at the
point x0. Find the variance of f̂n(x0) for the case of small h. Hint: Recall
the binomial random variable.
8.2.3 Repeat Exercise 8.1.4 with the naive estimate and Figure 8.2.
8.2.4 What are the main differences between the histogram and naive
density estimate? When would you prefer to use each of them?
8.2.5 Is a naive estimate differentiable (smooth)? Suggest a modification
that would lead to a twice differentiable (smooth) estimate.
8.3.1 Is the kernel estimate (8.3.2) an unbiased estimate of an underlying
density at a point x0? Does the location of this point (interior or boundary)
or the value of the bandwidth affect the answer?
8.3.2 Let (8.3.1) hold and let the kernel be nonnegative. Is the kernel
estimate (8.3.2) integrated to one and nonnegative?
8.3.3 Use Figure 8.4 with sample sizes 50, 100, and 200, and find cor-
responding optimal bandwidths. Then repeat the same experiment for
the Uniform density. Draw a conclusion on how the sample size and the
underlying density affect the choice of optimal bandwidth.
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8.3.4 Using Figure 8.5, answer the following question. How does the
standard deviation σ of the noise term affect the optimal bandwidth?
8.3.5 Increase the sample size n in Figure 8.5 and find a qualitative
relationship between the sample size and optimal bandwidth.
8.3.6 Let σ = 0 (no error term) and thus Yl = f(l/n). Explain the per-
formance of the kernel estimate (8.3.4) for this particular case. Also, what
bandwidth would you recommend to use for this case?
8.3.7 Explain lines (8.3.6)–(8.3.8).
8.3.8 As in (8.3.6)–(8.3.8), consider the case x = l/n.
8.3.9 Use (8.3.6)–(8.3.8) and answer the following question. Let the band-
width h be increased. How does this affect the squared bias and the variance
terms in the MSE?
8.3.10 Give an example of a regression function that is (a) Lipschitz of
order 0.5 but not differentiable; (b) not Lipschitz.
8.3.11 Explain all the steps in (8.3.9). Hint: Think about how to bound
from above the series

∑k
j=1 jα.

8.3.12 Explain how the inequality (8.3.10) was obtained.
8.3.13 For large n find h that minimizes (8.3.10). Hint: If a function g(h)
is differentiable, then its derivative is equal to zero at the local extrema
(minima and maxima). If this function is twice differentiable, then the
second derivative is negative at local maxima and positive at local minima.
8.3.14 Can the inequality in (8.3.12) be replaced by equality if the factor
1 + on(1) is replaced by On(1)? The On(1) is a generic bounded sequence
in n. Also, can we do this if additionally supf∈Lipα(L) MSE is used in place
of MSE on the left-hand side of (8.3.12)?
8.3.15 Let Z := X+hY , where X and Y are independent random variables
with densities pX(u) and pY (u). Show that the density pZ(u) of the sum
may be written as the convolution integral pZ(u) =

∫∞
0 pX(x)h−1pY ((u −

x)/h)dx. Then, use this result to explain (8.3.13).
8.3.16 Explain all steps in obtaining (8.3.14).
8.3.17 Consider the case of a fixed-design regression with design density
g(x). Then, as in (8.3.14)–(8.3.15), suggest a kernel estimator.
8.3.18 Use definition (4.2.2) of the design density for a fixed design re-
gression to explain why both (8.3.17) and (8.3.18) are good data-driven
estimates of the right-hand side of (8.3.14). Then, discuss the same question
for a random-design regression. Hint: Recall the fact, discussed in Section
4.2, that under mild assumptions the difference X(l+s) − X(l−s) between
ordered predictors is inversely proportional to nh(X(l))/(2s).
8.3.19 Write down a kernel estimate for the spectral density that smooths
the periodogram at the Fourier frequencies.
8.4.1 Explain how the kernel function and the bandwidth affect a local
linear fit.
8.4.2 Find the mean and variance of a local linear estimate at an interior
point.
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8.4.3 Explain why a local linear fit performs well at boundary points, while
a kernel estimate does not.
8.4.4 Using Figure 8.9, explain how the sample size and variance of errors
affect an optimal bandwidth.
8.4.5 Suppose that a variable bandwidth h(x) is available. Using Figure
8.9, suggest a reasonable variable bandwidth.
8.4.6 What order p of a local polynomial regression would you suggest for
the regression function in Figure 8.9?
8.5.1 Explain the idea of the kth nearest neighbor method.
8.5.2 Describe the shape of tails of a nearest neighbor estimate.
8.5.3 Let n be increased. How should k be changed?
8.5.4 Consider the case of 2 observations and draw a sketch of the nearest
neighbor estimate with k = 1.
8.5.5 Consider the case of 4 observations of a pair of random variables.
Draw a sketch of the nearest neighbor estimate of an underlying bivariate
density with k = 2.
8.5.6 What can be said about the tails of the nearest neighbor estimate
for a bivariate density?
8.5.7 Explain a possible difference in performances of kth neighbor kernel
estimators with Gaussian and rectangular kernels.
8.5.8 Write down the multivariate nearest neighbor estimator as a kernel
estimator.
8.6.1 Let X1, . . . , Xn be iid normal N(θ, σ2). Then (a) given σ2, find the
MLE of θ; (b) given θ, find the MLE of σ2; (c) find the MLE of the pair
(θ, σ2).
8.6.2 Let a random variable X have the binomial distribution B(p, n). Find
the MLE of the probability of success p.
8.6.3 Explain the maximum likelihood sieve estimator (8.6.2).
8.6.4 Using the Lagrange multipliers method, find the pair (x, y) such that
their product xy takes on the maximum possible value given x2 + y2 = C.
Also, give a geometric interpretation of this problem.
8.7.1 Explain the problem of interpolation. Suggest several possible
solutions, and then discuss their pluses and minuses.
8.7.2 What kind of a cubic spline is called a natural cubic spline? What is
the reason for introducing a natural cubic spline?
8.7.3 Explain possible practical implications of Theorem 8.7.1.
8.7.4 What is the place in the proof of Theorem 8.7.1 where we use the
fact that the cubic spline is natural?
8.7.5 Explain the least-squares spline estimator (8.7.7).
8.7.6 What are the estimates that minimize (8.7.8) with the smoothing
parameters µ = 0 and µ = ∞?
8.8.1 Explain how a kernel density estimator may be constructed using a
neural network.
8.8.2 Consider the previous exercise for the case of a regression.
8.8.3 Can a neural network be used for orthogonal series estimation?
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8.8.4 Explain how a neural network solves hypothesis testing problems.
8.8.5 Suggest a problem where using a 2-layer neural network may be
beneficial.
8.9.1 Does a twice-differentiable function belong to Lip1,1(L)?
8.9.2 What are the boundary values of r and α such that a symmetric,
bounded density with finite second moment still belongs to the class Sr,α?
8.9.3 Let K(x) := 3

4 (1 − x2)I|x|≤1. What class Sr,α is this kernel from?
8.9.4 Consider kernels K(x) := a + bx + cx2 + dx3 + ex4 supported on
[−1, 1]. Find the parameters that imply K ∈ S3,α, 0 < α ≤ 1.
8.9.5 A kernel that belongs to all Sr,α, r ≥ 0, is called a superkernel. Give
an example and explain why such kernels may be useful. Hint: Look at
K(x) := (1/2π)

∫
cos(tx)[1 − exp{−1/t2}]dt, and recall Theorem 8.9.1.

8.9.6 A kernel K(x) := C exp{−1/(1 − x2)}I|x|≤1 is called a mollifier.
What class Sr,α does this kernel belong to? What are the properties of
this kernel? Hint: Think about how smooth this kernel is and look at its
support. Also, we discussed this kernel before.
8.9.7 Explain all the steps in (8.9.14).
8.9.8 Establish (8.9.16) for r > 0.
8.9.9 Is the assumption (8.9.5) used to obtain lines (8.9.21)–(8.9.23)?
8.9.10 MISE is simply the integrated MSE. Can we get an upper bound
for MISE by formal integration of the right-hand side of (8.9.24)?
8.9.11 Consider the case f ∈ Lip0,α(L). Find a nonasymptotic upper
bound for the MSE, that is, a bound without o(1).
8.9.12 Solve the problem of finding an upper bound for the MISE
formulated after Theorem 8.9.1.
8.9.13 Check that the Epanechnikov kernel minimizes (8.9.31).
8.9.14 Prove (8.9.32) using any necessary assumption about f .
8.9.15 Is the Epanechnikov kernel also optimal for the MISE criteria?
8.9.16 Establish a result, similar to Theorem 8.9.1, for a regression model.
8.10.1 The double-exponential (Laplacian) density is fλ(x) := 1

2λe−λ|x|,
−∞ < x < ∞. Use the reference method and this density to find the
data-driven bandwidth.
8.10.2 Let the data-driven kernel estimator of the previous exercise be
used to estimate a normal density. Compare its MISE with the MISE of a
similar kernel estimator with the correct reference density.
8.10.3 Suggest a leave-one-out cross-validation procedure for a kernel (a)
density estimator and (b) spectral density estimator.
8.10.4 Consider the smoothing spline estimator (8.7.8) and suggest an
adaptive method for choosing the smoothing parameter.
8.10.5 Explain a leave-m-out cross-validation procedure for regression and
density models. Are there situations where using large m may be attractive?
8.11.1 Analyze the relationship between Percentage of youngsters (X =
saving.x[,1]) and Percentage of senior citizens (Y = saving.x[,2]). Then use
the result to continue the discussion of Section 8.11.
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8.11.2 Choose several data sets and analyze the Nadaraya–Watson kernel
estimator using different bandwidths and kernels. Then explain which of
the two arguments is more critical.

8.13 Notes

There is a wide choice of books about nonseries estimation methods.
Comprehensive bibliographic notes may be found in the books by Fan
and Gijbels (1996) and Simonoff (1996). A book-length discussion on
classification and regression trees is given in Breiman et al. (1984).

8.1-8.2 The book by Silverman (1986) presents a simple introduction to
these basic methods.

8.3 The literature on kernel estimation is extremely vast. A combina-
tion of books by Simonoff (1996) and Wand and Jones (1995) may be
used for further reading. The first asymptotic results are due to Akaike
(1954), Rosenblatt (1956), and Parzen (1962). Among recent ones, Lep-
skii, Mammen, and Spokoiny (1997) established rate optimality of kernel
estimators with variable bandwidth over Besov spaces. Thus the kernel esti-
mates may be an alternative to wavelet estimates for estimation of spatially
inhomogeneous functions.

8.4 A book-length treatment of local polynomial regression is given by
Fan and Gijbels (1996). An interesting discussion may be also found in
Korostelev and Tsybakov (1993).

8.5 Simple rules survive! Since its conception in the 1950s, the nearest
neighbor method still attracts the attention of many followers. Probably the
simplest further reading is Silverman (1986, Section 5.2). An application to
pattern recognition may be found in Devroye, Györfi, and Lugosi (1996).

8.6 The textbook by Devroye (1987) and the book by Grenander (1981)
may be recommended for a mathematically mature reader.

8.7 The books by Eubank (1988), Green and Silverman (1994), and
Wahba (1990) give a comprehensive account on both theory and ap-
plications of spline techniques. Sharp minimax results are discussed in
Nussbaum (1985), Speckman (1985), and Golubev and Nussbaum (1992),
among others.

8.8 The books by Ripley (1996) and Venables and Ripley (1997) are a
good combination for the reader who would like to combine theory with
S–PLUS applications.

8.9 In addition to the books mentioned for Section 8.3, the textbook by
Devroye (1987) may be recommended.

8.10 All the above-mentioned books discuss data-driven estimators. See
also Lepskii (1990), where the first kernel estimator, which attains the
optimal adaptive rate of MSE convergence for Lipschitz functions, was
suggested.



Appendix A. Fundamentals of
Probability and Statistics

Statistics of nonparametric curve estimation is founded on parametric
statistics, which, in turn, depends on the theory of probability. It will be
sufficient for our purposes to present here only the basic definitions, con-
cepts, and machinery of probability theory and parametric statistics in a
form useful for nonparametric statistics. The reader interested in a more
detailed and comprehensive account of these theories may refer to books
by Ross (1997) and Casella and Berger (1990).

• Probability Theory. Many sets of data that are of a practical interest
are generated by a random experiment which is an act or process that leads
to a single outcome that cannot be predicted with certainty in advance. For
instance, one may be interested in the number of heads (H) and tails (T)
generated by flipping two coins or in a daily stock price. The outcome of an
experiment will not be known in advance, but we can always suppose that
the set of all possible outcomes is known. For the first example it is a set of
four outcomes ({HH}, {HT}, {TH}, {TT}), for the second an interval of
possible prices. We shall refer to such a set as the sample space and denote
it by Ω.

Let us begin our discussion with the case of the discrete sample space
Ω = {w1, w2, . . .} with a finite or countably infinite number of single
outcomes wl, l = 1, 2, . . ., also called elementary or simple events. By as-
sumption a simple event cannot be decomposed into simpler outcomes of
the experiment. A particular collection of possible outcomes of an experi-
ment is called an event. In other words, an event is any subset of Ω including
Ω itself. For instance, the event “at least one head” in the experiment of flip-
ping two coins is the collection of 3 single outcomes ({HH}, {HT}, {TH}).
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An event of interest can often be viewed as a composition of two or more
events. Union and intersection are two typical ways for forming such an
event. The union of two events A and B is the event that occurs if either
A or B or both occur on a single performance of the experiment, and it
is denoted by the symbol A ∪ B. In other words, the union consists of all
outcomes that are either in A or in B or in both A and B. The intersection
of two events A and B is the event that occurs if both A and B occur on a
single performance of the experiment, and it is denoted by A ∩ B. In other
words, the intersection consists of all outcomes that are in both A and B.
Note that because the intersection of any two simple events is empty, it
is natural to introduce such an empty (or so-called null or nonoccurring)
event and denote it by ∅. Also, a very useful concept is the complementary
event: The event Ac is the complement of the event A if it occurs when A
does not, in other words, the complement of A consists of all outcomes in
the sample space Ω that are not in A. In particular, Ωc = ∅.

The theory of probability assigns a probability (likelihood) to events. For
the case of a discrete sample space, there are five steps for calculating
the probability of an event: (1) Define the experiment. (2) List the simple
events. (3) Assign probabilities to the simple events in such a way that
they are numbers between 0 and 1 and their total is 1. (4) Determine the
collection of simple events contained in the event of interest. (5) Sum prob-
abilities of the simple events from that collection to obtain the probability
of the event of interest.

We shall denote the probability of an event A by P (A). Note that we
may write P (A) =

∑
l: wl∈A P (wl), P (A) + P (Ac) = 1, P (Ω) = 1, and

P (∅) = 0.

Example A.1 Consider the experiment of tossing two coins assuming that
they are balanced (fair). Let A be the event “two heads,” let B be the event
“no heads,” and let C be the event “at least one tail.” Find the probabilities
of the following events: (i) A ∪ B, (ii) A ∩ B, (iii) B ∩ C, (iv) Ac.
Solution: Recall that the sample space of this random experiment consists
of four simple events; using our notation we may write that w1 = {H,H},
w2 = {H,T}, w3 = {T, H}, and w4 = {T, T}. It is given that the coins
are balanced (fair), and thus all these simple events occur with the same
likelihood, i.e., P (w1) = P (w2) = P (w3) = P (w4) = 1

4 . Note that all these
probabilities are between 0 and 1 with the total 1; thus the requirement of
step 3 for calculating probabilities of events is satisfied. Then we do steps 4
and 5 separately for each of the events of interest. (i) Note that A = {H,H}
and B = {T, T}, so their union is A ∪ B = (w1, w4), which, according to
step 5 for calculating probabilities of events, implies P (A ∪ B) = P (w1) +
P (w4) = 1

2 . (ii) The intersection of A and B is the empty event; thus
P (A ∩ B) = P (∅) = 0. (iii) Note that C = ({H,T}, {T, H}, {T, T}). Thus
B∩C = {T, T} and P (B∩C) = P (w4) = 1

4 . (iv) Note that the complement
of A is the event C. Thus P (Ac) = P (C) = P (w2) + P (w3) + P (w4) = 3

4 .
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Another way to find this probability is to use the formula P (Ac) = 1 −
P (A) = 1 − P (w1) = 1 − 1

4 = 3
4 .

Example A.2 A ball is “randomly drawn” from a bowl containing two
white and three red balls. What is the probability that the ball is red?
Solution: The phrase “randomly drawn” means that we at random (with
the same likelihood) draw a ball. Here the sample space consists of 5 out-
comes (two white and three red balls), and all outcomes have the same
probability 1

5 . Because there are 3 red balls in the bowl, the probability of
the event that the first ball is red is equal to 1

5 + 1
5 + 1

5 = 3
5 .

In many cases it is desirable to study two events simultaneously. The
events A and B are called independent if P (A∩B) = P (A)P (B). Otherwise,
we refer to such events as dependent.

Example A.3 Consider the experiment of Example A.1. Define which of
the following events are independent: (i) The first flip is a head and both
flips are heads; (ii) The first flip is a head and the second is a tail.
Solution: (i) The intersection of these events is the elementary event
{H,H}, and its probability is equal to 1

4 . The probability of the first event
is 1

2 and that of the second is 1
4 , and because 1

4 �= 1
2 · 1

4 we conclude
that these events are dependent. This conclusion supports our intuition
about dependency, because if the second event occurs (we know that both
flips are heads) then this implies that the first flip is a head. (ii) The
intersection of these two events is the elementary event {HT} and its
probability is 1

4 . The probability that the first flip is a head is equal to
P ({HH})+P ({HT}) = 1

2 and the probability that the second flip is a tail
is equal to P ({HT}) + P ({TT}) = 1

2 (recall that the probability of any
event is to be calculated via the sum of probabilities of elementary events
that imply the event). Thus we get 1

4 = 1
2 · 1

2 , and therefore these two events
are independent.

To finish our discussion of the events and their probabilities, two useful
remarks are due. First, if we set ∪n

l=1Al = A1 ∪ A2 ∪ · · · ∪ An and similarly
∩n

l=1Al = A1∩A2∩· · ·∩An, then DeMorgan’s laws (∪n
l=1Al)c = ∩n

l=1A
c
l and

(∩n
l=1Al)c = ∪n

l=1A
c
l make the relationship between the basic operations of

forming unions, intersections, and complements very simple.
Second, the five steps formulated above of finding probabilities of events

are based on the following three axioms of probability.
Axiom 1 The probability of any event should be between 0 and 1, that is,
0 ≤ P (A) ≤ 1.
Axiom 2 The probability that an outcome of a random experiment belongs
to the sample space Ω is equal to 1, that is, P (Ω) = 1.
Axiom 3 For any countable sequence of mutually exclusive events A1, A2, . . .
(that is, the events such that Ai ∩ Aj = ∅ when i �= j, or, in words, events
with no common outcomes) the following relation holds, P (∪∞

l=1Al) =∑∞
l=1 P (Al).
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Discrete Random Variables. In many cases it is convenient to define
quantities of interest as numbers. These quantities of interest, or more
formally, real-valued functions defined on a sample space, are known as
random variables. A random variable that can take on at most a countable
number of possible values is said to be a discrete random variable. For a
discrete random variable X we define the probability mass function f(a) of
X as f(a) := P (X = a). Recall that := or =: means “by definition.”

Example A.4 An experiment consists of tossing 2 fair coins. If we let X
denote the number of heads, find its probability mass function f(k) :=
P (X = k), i.e., the probability that the number of heads is equal to k.
Solution: It is clear that f(k) = 0 for k < 0 and k > 2 because there
are no elementary events that lead to such events (in other words, these
events are empty events). Thus, we should calculate the probability mass
function for k = 0, 1, and 2. We get f(0) = P (X = 0) = P ({TT}) = 1

4 ,
f(1) = P (X = 1) = P ({HT})+P ({TH}) = 1

4 + 1
4 = 1

2 , and f(2) = P (X =
2) = P ({HH}) = 1

4 . Thus the answer is: f(k) = 0 for k < 0, f(0) = 1
4 ,

f(1) = 1
2 , f(2) = 1

4 , and f(k) = 0 for k > 2.

The probability mass function f(x) gives us a complete description of
a discrete random variable. The other complete characteristic is the cu-
mulative distribution function (cdf ) F (x) := P (X ≤ x). To stress that the
probability mass function and the cumulative distribution function describe
a particular random variable X, we may write fX(x) and FX(x).

Example A.5 Find the cumulative distribution function of the random
variable in Example A.4.
Solution: By definition, F (x) = P (X ≤ x) =

∑
−∞<k≤x f(k), and there-

fore F (x) = 0 for x < 0, F (x) = 1
4 for 0 ≤ x < 1, F (x) = 3

4 for 1 ≤ x < 2,
and F (x) = 1 for x ≥ 2. Thus, the cumulative distribution function is a
step function with jumps equal to P (X = k) at points k = 0, k = 1, and
k = 2.

In many situations it is of interest to study more than one random vari-
able associated with the same experiment. In order to deal with such cases,
we begin with the case of two discrete random variables X and Y .

The joint cumulative distribution function of X and Y is defined by
FXY (x, y) := P ((X ≤ x)∩(Y ≤ y)), and the corresponding joint probability
mass function by fXY (x, y) := P ((X = x) ∩ (Y = y)).

The joint cumulative distribution as well as the probability mass func-
tion completely define two random variables. In particular, the marginal
cumulative distribution and marginal probability mass function of X are
defined by FX(x) := FXY (x,∞) and fX(x) :=

∑
y fXY (x, y), respec-

tively. Here
∑

y fXY (x, y) means the summation over all values y of Y .
Note that it suffices to sum only over values y such that fY (y) > 0 because∑

y fXY (x, y) =
∑

y:fY (y)>0 fXY (x, y).
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Example A.6 Consider again Example A.4 and let Y denote the number
of tails. Find the joint probability mass function of X and Y .
Solution: Note that the only possible values (x, y) of X and Y are such
that they are nonnegative and x + y = 2 (the total number of heads and
tails should be 2). Thus we conclude that fXY (0, 2) = P ({TT}) = 1

4 ,
fXY (1, 1) = P ({HT} ∪ {TH}) = 1

2 , fXY (2, 0) = P ({HH}) = 1
4 , and

fX,Y (x, y) = 0 for all other values of (x, y).

Example A.7 Let X and Y be discrete random variables with the joint
probability mass function fXY (x, y). Find the probability mass function
for the sum Z = X + Y .
Solution: Because fX+Y (z) := P (X + Y = z), using the third axiom of
probability yields that P (X + Y = z) =

∑
x:fX(x)>0 P ((X = x) ∩ (Y =

z − x)) =
∑

x:fX(x)>0 fXY (x, z − x). This gives us the answer,

fX+Y (z) =
∑

x:fX(x)>0

fXY (x, z − x). (A.1)

As in the definition of independent events, two discrete random variables
X and Y are called independent if fXY (x, y) = fX(x)fY (y) (in terms of
distribution functions if FXY (x, y) = FX(x)FY (y)).

As an example, note that for the case of independent X and Y the
formula (A.1) is simplified,

fX+Y (z) =
∑

x:fX(x)>0

fX(x)fY (z − x). (A.2)

Let A and B be two events and P (B) > 0. Then the conditional proba-
bility of A given B is defined by P (A|B) := P (A∩B)/P (B). Similarly, if X
and Y are two discrete random variables, we define the conditional probabil-
ity mass function of X given Y = y by fX|Y (x|y) := fXY (x, y)/fY (y), and
we define the conditional cumulative distribution function by FX|Y (x|y) :=
P (X ≤ x|Y = y) =

∑
u: u≤x fX|Y (u|y). Note that if X is independent

of Y , then the conditional probability mass function and the conditional
distribution function are equal to the unconditional ones.

Example A.8 In Example A.7, find the conditional probability mass
function of Y given Z = z.
Solution: Using (A.1) we write,
fY |Z(y|z) = fY Z(y, z)/fZ(z) = fXY (z − y, y)/

∑
x: fX(x)>0 fXY (x, z − x).

Besides the probability mass function and cumulative distribution
function, which completely describe random variables, several other charac-
teristics are customarily used and give some partial descriptions of random
variables.
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Four of the most important such characteristics are: (i) The expectation
(the expected value or the mean) of X, denoted by E{X} and defined by

E{X} :=
∑

x:fX(x)>0

xfX(x) =:
∫ ∞

−∞
xdFX(x). (A.3)

(ii) The variance of X, denoted by Var(X) and defined by

Var(X) := E{[X − E{X}]2} =
∑

x:fX(x)>0

[x − E{X}]2fX(x). (A.4)

(iii) The kth moment of X is defined by µk(X) := E{Xk}, k = 1, 2, . . . .
Clearly, the first moment is the mean, while the second moment is equal
to the variance plus the squared mean, i.e.,

E{X2} = Var(X) + [E{X}]2. (A.5)

(iv) The covariance of two random variables X and Y , denoted by
Cov(X, Y ) and defined by

Cov(X, Y ) := E{(X − E{X})(Y − E{Y })}. (A.6)

The standard deviation, which is equal to the square root of the variance,
is another useful characteristic. Note that the standard deviation has the
same units as the variable, while the variance is measured in squared units.
Also, the correlation of two random variables X and Y , denoted by ρ(X, Y )
and defined by ρ(X, Y ) := Cov(X, Y )/[Var(X)Var(Y )]1/2, is often used.

Example A.9 In Example A.4 calculate the mean, the variance, and the
standard deviation of X.
Solution: We begin by calculating the mean. Write, E{X} =

∑2
k=0 kf(k)

= 0· 1
4 +1· 2

4 +2· 1
4 = 1. This is a rather obvious outcome because on average

we should get one head after tossing two fair coins. Then we may calculate
the variance, Var(X) =

∑2
k=0(k − 1)2f(k) = (−1)2 1

4 + (0)2 2
4 + (1)2 1

4 = 1
2 .

Finally, the standard deviation is equal to 2−1/2.

Suppose that we are given a random variable X along with its probability
mass function and we want to calculate not the expected value of X but the
expectation of some function g(X), for instance, X4. The straightforward
way to do this is as follows: define Y := g(X), find the probability mass
function fY (y), and then calculate

∑
y:fY (y)>0 yfY (y). However, it turns

out that the expectation of g(X) may be calculated much simpler by the
formula

E{g(X)} =
∑

x: fX(x)>0

g(x)fX(x). (A.7)
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Similarly, for any two random variables X and Y and a bivariate function
g(x, y),

E{g(X, Y )} =
∑

(x,y): fXY (x,y)>0

g(x, y)fXY (x, y). (A.8)

Below, whenever it is not confusing, we may write
∑

x g(x)f(x) or simply∑
g(x)f(x) in place of

∑
x: f(x)>0 g(x)f(x).

Example A.10 Prove that if X and Y are independent then for any
constants a, b, c, and d,

E{(aX + b)(cY + d)} = (aE{X} + b)(cE{Y } + d).

Solution: Using (A.8) we write, E{(aX+b)(cY +d)} =
∑

(x,y)(ax+b)(cy+
d)fXY (x, y). Then, because X and Y are independent,

∑
(x,y) (ax+b)(cy+

d)fXY (x, y) = [
∑

x(ax+b)fX(x)][
∑

y(cy+d)fY (y)]. This yields the result.

Example A.11 Prove that for any two random variables X and Y the
correlation ρ(X, Y ) (i) takes on values between −1 and 1; (ii) is equal to 0
whenever X and Y are independent; (iii) is equal to 1 if X = Y and equal
to −1 if X = −Y .
Solution: (i) The proof is based on the famous Cauchy–Schwarz inequality

|E{Z1Z2}|2 ≤ E{Z2
1}E{Z2

2}, (A.9)

which holds for any two random variables Z1 and Z2. It is proved for a
general setting in Section 2.3; see the paragraph below line (2.3.4). Set Z1 =
X −E{X}, Z2 = Y −E{Y } and then using the Cauchy–Schwarz inequality
we get |Cov(X, Y )| ≤ [Var(X)Var(Y )]1/2. The last inequality implies the
desired result. (ii) Because X and Y are independent, the assertion follows
from Example A.10. (iii) Note that E{(X−E{X})(X−E{X})} = Var(X),
which together with Example A.10 implies the assertion.

Example A.11 shows that the correlation is a very convenient numerical
characteristic of dependency between two random variables.

There are several other useful formulae that are proved similarly to Ex-
ample A.10. Let X and Y be random variables and a and b be constants.
Then,

E{aX + bY } = aE{X} + bE{Y }, (A.10)

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2ab Cov(XY ). (A.11)

An important corollary of (A.11) and Example A.11(ii) is that if X and Y
are independent, then

Var(aX + bY ) = a2Var(X) + b2Var(Y ). (A.12)

Let us define the indicator of an event B as a function I{B} such that
I{B} = 1 if B occurs and I{B} = 0 if B fails to occur. For instance,
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I{3>2} = 1, while I{2=3} = 0. This function allows us to write the proba-
bility P (X ∈ A) of the event X ∈ A as the expectation of I{X∈A}, that is,
P (X ∈ A) = E{I{X∈A}}. Indeed, write E{I{X∈A}} =

∑
x I{x∈A}fX(x) =∑

x: x∈A fX(x) = P (X ∈ A), or even simpler E{I{X∈A}} = P (X ∈
A)1 + P (X �∈ A)0 = P (X ∈ A).

To study numerical characteristics of a random variable X given Y = y,
define the conditional expectation of X given Y = y,

E{X|Y = y} :=
∑

x

xfX|Y (x|y). (A.13)

The conditional expectation plays a central role in both probability and
statistics due to the formula

E{X} = E{E{X|Y }}, (A.14)

which allows one to calculate the expectation of X via the expectation of its
conditional expectation given a random variable Y . Here E{X|Y } := ϕ(Y )
where ϕ(y) := E{X|Y = y}. To prove (A.14) write,

E{E{X|Y }} =
∑

y: fY (y)>0

[∑
x

xfX|Y (x|y)
]
fY (y)

=
∑

x

∑
y: fY (y)>0

x
[
fXY (x, y)/fY (y)

]
fY (y)

=
∑

x

∑
y

xfXY (x, y) =
∑

x

x
[∑

y

fXY (x, y)
]

=
∑

x

xfX(x) = E{X}.

Example A.12 A miner is trapped in a mine containing two doors. The
first door leads to a tunnel that will take him to safety after 2 hours; the
second door leads to a tunnel that will return him to the mine after 1 hour
of travel. Assume that the miner is equally likely to choose either door each
time. Find the expected length of time until he reaches safety.
Solution: Let X denote the amount of time (in hours) until the miner
reaches safety, and let Y denote the door he initially chooses. Then
E{X} = E{E{X|Y }} = E{X|Y = 1}P (Y = 1) + E{X|Y = 2}P (Y =
2) = (1/2)[E{X|Y = 1} + E{X|Y = 2}]. Clearly, E{X|Y = 1} = 2, while
E{X|Y = 2} = 1 + E{X} because after returning to the mine everything
begins again. Combining the results we get E{X} = 1

2 [2+1+E{X}], which
yields E{X} = 3. Thus on average it takes three hours for the miner to
reach safety.

To finish our discussion of discrete random variables, let us introduce
two classical discrete random variables.

The Binomial Random Variable. Suppose that the outcome of a trial
(random experiment) can be classified as either a “success” or a “failure.”
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The example of tossing a coin is a particular case. If we let Z = 1 when the
outcome is a success and Z = 0 when it is a failure, then the probability
mass function is given by fZ(1) = p and fZ(0) = 1 − p, where p, 0 ≤
p ≤ 1, is the probability that the trial is a “success.” Suppose that we
independently repeat this experiment n times. Then the random variable
X that is equal to the number of successes is called binomial, and in this
case we write that X is distributed according to B(n, p). The probability
mass function of a B(n, p) random variable is given by the formula f(k) =
[n!/k!(n − k)!]pk(1 − p)n−1, E{X} = np, and Var(X) = np(1 − p). Here
0 ≤ k ≤ n, k! = k · (k − 1) · · · 1 for k > 1, 1! = 1, and 0! = 1. A binomial
random variable B(1, p) (that is, the outcome of a single trial, denoted
above by Z) is often referred to as a Bernoulli random variable.

The Poisson Random Variable. A random variable X, taking on
values 0, 1, 2, . . ., is said to be a Poisson random variable with param-
eter λ > 0 if P (X = k) = e−λλk/k!, k = 0, 1, 2, . . .. Note that the
familiar Taylor expansion, eλ =

∑∞
k=0 λk/k! yields that the Poisson ran-

dom variable is defined correctly. Straightforward calculation shows that
E{X} = Var(X) = λ. This explains why λ is called the intensity of the
Poisson random variable. The Poisson random variable is closely related to
the Binomial random variable, since the cumulative distribution function
of a Poisson random variable with the intensity λ is the limit of the cu-
mulative distribution function of B(n, p) when n → ∞ and np → λ. The
latter also sheds light on the formulae for the expectation and the variance
of a Poisson random variable.

Continuous Random Variables. A random variable X is called con-
tinuous if there exists a nonnegative function fX(x) such that

∫∞
−∞ fX(x)dx

= 1, and the cumulative distribution function FX(x) := P (X ≤ x) of X
may be written as

FX(x) =
∫ x

−∞
fX(u)du. (A.15)

The function fX(x) is called the probability density function or simply
density of the continuous random variable X. From the definition we get
P (X = x) = P (X ≤ x) − P (X < x) = 0 for any number x, and this
represents a major distinction between continuous and discrete random
variables. Also, for any two constants a ≤ b we get P (a ≤ X ≤ b) =∫ b

a
fX(x)dx. Moreover, dFX(x)/dx = fX(x) at the points of continuity of

the density, thus a continuous probability density is the derivative of the
cumulative distribution function. Both the cumulative distribution function
and the probability density give a complete description of the correspond-
ing random variable. Also note that if a function is integrable to 1 and
nonnegative, then it is the probability density of a random variable.
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Example A.13 Suppose that X is a continuous random variable that de-
scribes the amount of time in days that a printer functions before breaking
down, with probability density function fX(x) = Ce−x/50 for x ≥ 0 and
fX(x) = 0 otherwise. Find C and the probability that it will function less
than 30 days.
Solution: Due to axiom 2,

P (X < ∞) =
∫ ∞

−∞
fX(x)dx = 1. (A.16)

Recall the integration formula
∫ b

a
Ce−x/λdx = Cλ[e−a/λ − e−b/λ]. This

formula together with (A.16) gives C = 1/50. Then,
P (X < 30) =

∫ 30
0 (1/50)e−x/50dx = [e0/50 − e−30/50]/50 = [1 − e−3/5]/50.

As in the discrete case, we define the expectation of a continuous random
variable as

E{X} :=
∫ ∞

−∞
xfX(x)dx =

∫ ∞

−∞
xdFX(x).

Recall that notions of variance, standard deviation, covariance, and correla-
tion are defined via the expectation, so there is no need for new definitions.
Another group of important characteristics of a distribution of a continuous
random variable X are the αth quantiles qX

α such that P (X ≤ qX
α ) = α.

While moments of X may not exist (the Cauchy random variable with
the density fX(x|θ) = 1/(π(1 + (x − θ)2)) has no moments), the quan-
tiles always exist. The customarily analyzed quantiles are the first quartile,
the median (second quartile), and the third quartile, which correspond to
α = 0.25, 0.5, 0.75.

Let us define two specific continuous random variables.
The Uniform Random Variable. A random variable X is said to be

uniformly distributed over the interval [a, b] if its probability density func-
tion is given by f(x) = 1/(b−a) for a ≤ x ≤ b and f(x) = 0 otherwise. We
shall often refer to this random variable by saying that X is U(a, b). Note
that f is nonnegative and integrated to unity, so it is indeed a probabil-
ity density. It is customary to refer to [a, b] as the support of the density.
In general, the support is a minimal set such that the probability density
vanishes (is equal to zero) beyond the set.

The name “uniform” is explained by the fact that for any a ≤ a1 ≤ b1 ≤ b

we have P (a1 ≤ X ≤ b1) =
∫ b1

a1
(b−a)−1dx = (b1−a1)/(b−a). In words, the

probability that a uniform random variable is in any particular subinterval
of [a, b] is proportional to the length of the subinterval. A straightforward
calculation shows that E{X} = (a + b)/2 and Var(X) = (b − a)2/12.

The Normal Random Variable. We say that X is a normal random
variable N(µ, σ2) if its density is given by

f(x) = (2πσ2)−1/2 e−(x−µ)2/2σ2
, −∞ < x < ∞ . (A.17)
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Direct calculations show that E{X} = µ and Var(X) = σ2, that is,
the normal random variable is completely defined by its mean and vari-
ance. There are several properties of a normal random variable that will
be important to us. The first one is that the graph of a normal density is
a symmetric bell-shaped curve about the mean. The second is that f(x)
practically vanishes (becomes very small) whenever |x − µ| > 3σ (the so-
called rule of three sigma). The third is that the sum of two independent
normal random variables with parameters (µ1, σ

2
1) and (µ2, σ

2
2) is again a

normal random variable N(µ1 + µ2, σ
2
1 + σ2

2).

Example A.14 A random variable X is called standard normal if it is
N(0, 1). Show that if Y is N(µ, σ2), then (Y − µ)/σ is a standard normal
random variable.
Solution: Write, P ((Y − µ)/σ ≤ y) = P (Y ≤ µ + yσ) = (2πσ2)−1/2∫ µ+yσ

−∞ e−(u−µ)2/2σ2
du. Then the substitution v = (u − µ)/σ gives the

desired P ((Y − µ)/σ ≤ y) = (2π)−1/2
∫ y

−∞ e−v2/2dv.

We say that X and Y are jointly continuous if there exists a function
fXY (x, y) (the two-dimensional or bivariate probability density) such that
FXY (x, y) := P (X ≤ x, Y ≤ y) =

∫ y

−∞
∫ x

−∞ fXY (u, v)du dv.
If X and Y are jointly continuous, then they are individually continuous,

and the marginal density of X can be obtained by the integration, fX(x) :=∫∞
−∞ fXY (x, y)dy. The marginal density of Y is defined absolutely similarly.

For such random variables, necessary and sufficient conditions for their
independence is fXY (x, y) = fX(x)fY (y) for all x and y.

Example A.15 The joint density function of independent random vari-
ables X and Y is given. Find the probability density of X + Y . (This
example is the continuous counterpart of Example A.7.)
Solution: Typically, the simplest way to solve such a problem is first to
find the cumulative distribution function and then take the derivative. We
write FX+Y (z) = P (X + Y ≤ z) =

∫ ∫
x+y≤z

fXY (x, y)dx dy =
∫∞

−∞ fX(x)
[
∫

y: y≤z−x
fY (y)dy]dx =

∫∞
−∞ fX(x)FY (z −x)dx. Taking the derivative, we

get

fX+Y (z) =
∫ ∞

−∞
fX(x)fY (z − x)dx. (A.18)

The right side of (A.18) is called the convolution of fX and fY on the
real line. Thus, the density of the sum of two independent random variables
is equal to the convolution of their densities.

The conditional probability density function of X given Y = y is defined
for all values of y such that fY (y) > 0 by the formula

fX|Y (x|y) := fXY (x, y)/fY (y). (A.19)
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The conditional expectation of g(X) given Y = y is calculated by the
formula

E{g(X)|Y = y} =
∫ ∞

−∞
g(x)fX|Y (x|y)dx. (A.20)

Also, as in the discrete case,

P (X ∈ A) = E{I{X∈A}} =
∫

A

fX(x)dx, (A.21)

P ((X, Y ) ∈ B) = E{P ((X, Y ) ∈ B|Y )}
=
∫ ∞

−∞
P ((X, y) ∈ B|Y = y)fY (y)dy. (A.22)

Example A.16 Let X and Y be independent continuous random variable.
Find the distribution of X + Y by conditioning on the value of Y .
Solution: Write P (X + Y ≤ z) =

∫∞
−∞ P (X + Y ≤ z|Y = y)fY (y)dy =∫∞

−∞ P (X ≤ z − y|Y = y)fY (y)dy. Then using the independence of X and
Y we get P (X + Y ≤ z) =

∫∞
−∞ FX(z − y)fY (y)dy.

Much of the previous development carries over to the case of more than
two random variables. In this case we define an n-dimensional random vec-
tor or sequence Xn = (X1, X2, . . . , Xn) via its joint cumulative distribution
function FXn

(xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). For instance,
jointly continuous random variables X1, X2, . . . , Xn are independent if and
only if fXn

(xn) = fX1(x1)fX2(x2) · · · fXn(xn) for all xn.
The Multivariate Normal Distribution. We begin with several pre-

liminary notions. Let an n-dimensional random vector Xn = (X1, . . . , Xn)′

be a column vector each of whose components is a random variable. Here
A′ denotes the transpose array A (vector or matrix). If E{|Xi|} < ∞
for each i, then the expectation of Xn is defined as the column vector
E{Xn} = (E{X1}, . . . , E{Xn})′. In the same way the expectation of any
array of random variables (e.g, a matrix of random variables) is defined.

For two random vectors Xn and Y n such that all their entries have a
finite second moment, we define the covariance matrix of Xn and Y n by
the matrix MXnY n = Cov(Xn, Y n) = E{(Xn − E{Xn})(Y n − E{Y n})′}.
Note that the (l, m) entry of the covariance matrix is the Cov(Xl, Ym).

If an is an n-component column vector of constants, Bn×m is an n × m
matrix of constants, and Xn is a random vector with elements that have a
finite second moment, then the random variable Y n = an + Bn×mXm has
the mean

E{Y n} = an + Bn×mE{Xm}, (A.23)

and the covariance matrix

MY nY n = Bn×mMXmXm(Bn×m)′. (A.24)
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By definition, a random vector Y n is said to be multivariate normal (to
have a multivariate normal distribution) if and only if there exist a column
vector an, a matrix Bn×m, and a random vector Xm with independent
standard normal random components such that Y n = an + Bn×mXm.

The joint probability density of a multivariate normal vector Y n with
expectation µn and the n × n covariance matrix B is

fY n

(yn) =
1

(2π)n/2(detB)1/2 exp{−(yn − µn)′B−1(yn − µn)/2}. (A.25)

Limit Theorems. Let n independent and identically distributed (from
now on we use the shorthand notation iid) random variables X1, X2, . . . , Xn

be given. In other words, all these random variables have the same distri-
bution as a random variable X, and therefore they may be considered as
n independent realizations of X. A typical problem of statistics is to esti-
mate the expectation (theoretical mean) E{X} based on the realizations.
A natural approach is to estimate E{X} by the so-called sample mean
X̄ = [X1 + X2 + · · · + Xn]/n.

How close are X̄ and E{X}? A first and rather rough answer is given by
the Chebyshev inequality, which states that if Y is a random variable with
finite mean and finite variance, then for any value k > 0,

P (|Y − E{Y }| ≥ k) ≤ Var(Y )/k2. (A.26)

To study the sample mean with the help of the Chebyshev inequality we
calculate

E{X̄} = E{X}, (A.27)
Var(X̄) = Var(X)/n, (A.28)

(here (A.10) and (A.12) have been used), and then find that

P (|X̄ − E{X}| ≥ k) ≤ Var(X)/nk2. (A.29)

We conclude that the sample mean becomes closer and closer to the
theoretical mean (the expectation) as the sample size n increases.

Example A.17 Suppose that the levels of insulin measured during the day
are iid random variables with mean 12 and variance 2. Using the Chebyshev
inequality, estimate the probability that the level of insulin takes on values
between 10 and 14.
Solution: Let X denote the level of insulin. To use (A.26) set k = 2 and
write P (10 < X < 14) = P (|X − E{X}| < 2) = 1 − P (|X − E{X}| ≥ 2).
Then, using the Chebyshev inequality we get P (|X−E{X}| ≥ 2) ≤ 2/22 =
1
2 . Thus we conclude that P (10 < X < 14) ≥ 1

2 .

Now we are going to discuss two limit theorems, the first of which is
classified as a “law of large numbers” and the second as a “central limit
theorem.” The former is concerned with the convergence of the sample
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mean to the theoretical mean as n → ∞. The latter studies cases where
the sample mean may be approximately described by a normal random
variable with the expectation equal to the theoretical mean.

Here we give two examples of such results.
The Weak Law of Large Numbers. Let X1, X2, . . . , Xn be iid random

variables with a finite mean µ. Then for any ε > 0

P (|X̄ − µ| > ε) → 0 as n → ∞. (A.30)

The Central Limit Theorem. Let X1, X2, . . . , Xn be iid random vari-
ables with mean µ and finite variance σ2, and let ξ be a standard normal
random variable. Then for any real x,

P
(n1/2(X̄ − µ)

σ
≤ x

)
→ P (ξ ≤ x) = (2π)−1/2

∫ x

−∞
e−u2/2du as n → ∞.

(A.31)
Note that both the law of large numbers and the central limit theorem

tell that X̄ should be close to E{X} for large n.

• Parametric Statistics. Here we discuss basic concepts of paramet-
ric statistics that deal with a sample of n iid random variables Xn :=
(X1, X2, . . . Xn). We refer to n as the sample size. We also often refer to Xl

as the lth realization (observation) of a random variable X with the same
distribution. If the realizations are arranged in ascending order (from the
smallest to the largest), then they are called ordered statistics and denoted
by X(1), X(2), . . . , X(n), where X(1) ≤ X(2) ≤ · · · ≤ X(n).

The main assumption of parametric statistics is that the cumulative dis-
tribution function FX

θ (x) of X is known up to the parameter θ, and θ ∈ S
where the set S is known. For instance, X may be a normal random vari-
able with unknown nonnegative mean θ and unit variance, in which case
S = [0,∞).

Customarily, three topics are studied: (i) point estimation of a parameter;
(ii) confidence interval estimation of a parameter; (iii) hypotheses testing.
Let us clarify the topics via an example. Suppose that we know that the
temperature at noontime tomorrow has a normal distribution with un-
known mean. Then, based on previous measurements of the temperature,
(i) point estimation gives us a recipe on how to find an estimate of the
mean (how to find a point estimate); (ii) confidence interval estimation
gives us a recipe on how to find an interval that covers the mean with at
least a given probability; (iii) hypotheses testing gives us a recipe on how
to answer questions like “will the mean be above 70◦F?” or “will the mean
be below 50◦F?”

Let us consider methods of these three topics.

Point Estimation of a Parameter. The estimate of a parameter θ is
a function of observations. We use different diacritics above θ such as θ̂ and
θ̃ to denote estimates or statistics based on a given data set. Similarly, if
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any functional or function of a parameter is estimated, then the functional
or function with a diacritic above denotes an estimate (statistics).

The mean squared error MSE(θ̂, θ) := Eθ{(θ̂ − θ)2} is traditionally used
to measure the goodness of estimating θ by an estimate θ̂. Here Eθ{·}
denotes the expectation according to the distribution Fθ, and we use this
subscript when it is important to stress that the underlying distribution
depends on the parameter.

Example A.18 Let X1, X2, and X3 be iid with a symmetric distribution
about θ. We would like to compare the following three estimates of θ:
θ̂1 = X̄, θ̂2 = X(2), and θ̂3 = (X(1) + X(3))/2. For the case where the
observations are uniformly distributed on [0, 1] find the best estimate that
minimizes the mean squared error.
Solution: Here we should make straightforward calculations. They show
that the mean squared error is equal to 1/36, 1/20, and 1/40 for the first,
second, and third estimates, respectively. Thus, the third estimate is the
best. Note that the answer crucially depends on the assumption about
the underlying uniform distribution. For instance, for the case of a normal
distribution the first estimate (the sample mean) has the minimal mean
squared error.

In the example above we simply suggested several reasonable estimates
and then compared their risks—here mean squared errors. The theory of
point estimation has developed many general methods of finding estimates.
Below, we briefly consider several of them.

Plug-In Method. Suppose that θ may be written as θ = G(Fθ). Then
the plug-in estimate is defined as θ̂ = G(F̂ ), where F̂ is an estimate of the
cumulative distribution function Fθ.

Recall that by definition Fθ(x) = P (X ≤ x|θ), and therefore Fθ(x) =
E{I{X≤x}|θ}. Thus, Fθ(x) is the expectation of the random variable I{X≤x}
and may be estimated by a sample mean estimate,

F̄n(x) := n−1
n∑

l=1

I{Xl≤x}. (A.32)

The statistic F̄n(x) plays a central role in statistics and probability, and it
is referred to as the empirical cumulative distribution function.

Example A.19 Let n iid realizations X1, . . . , Xn of a random variable X
with a finite unknown mean µ be given. Find a plug-in estimate of µ.
Solution: Recall that µ = E{X} =

∫∞
−∞ xdFµ(x), where Fµ(x) denotes the

cumulative distribution function of X given the mean µ. Then the plug-in
estimate is µ̂ =

∫∞
−∞ xdF̄n(x), and according to (A.3) µ̂ = n−1 ∑n

l=1 Xl =
X̄. Thus, here the plug-in estimate is the sample mean.
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Example A.20 We observe n realizations of a uniform random variable
U(θ, θ + 1). Find the plug-in estimate of θ.
Solution: One of the possible ways to describe θ via the cumulative dis-
tribution function Fθ(x) of X given the parameter θ is to write θ =∫∞

−∞ xdFθ(x)−0.5. In words, we notice that θ is equal to the mean minus a
half. Then, Example A.19 implies that the plug-in estimate is θ̂ = X̄ − 0.5.

The underlying idea of a plug-in estimate is that an empirical cumula-
tive distribution function should approximate an underlying cumulative
distribution function. And this is indeed the case. For instance, con-
sider the following measure of closeness between F and F̄n: D̂n :=
sup−∞<x<∞ |F̄n(x) − F (x)|, known as the Kolmogorov–Smirnov distance.
Then it can be shown that for iid realizations there exists a finite positive
constant C (not depending on F ) such that

P (D̂n > d) ≤ C exp
{− 2nd2}, d > 0. (A.33)

This inequality gives us a theoretical justification of the plug-in method.
Maximum Likelihood Method. Let fθ(x) be the probability density

(or the probability mass function) of X that is known up to the parameter
of interest θ ∈ S. The maximum likelihood estimate is a statistic that max-
imizes the likelihood function (joint density at the point Xn) fθ(Xn) over
θ ∈ S.

Example A.21 Find the maximum likelihood estimate of the mean µ of
a normal random variable based on its n iid realizations.
Solution: The likelihood function is equal to

fµ(Xn) = (2πσ2)−n/2 exp
{

−
n∑

l=1

(Xl − µ)2/2σ2
}

= (2πσ2)−n/2 exp
{

−
[ n∑

l=1

X2
i − 2µnX̄ + nµ2

]
/2σ2

}
, (A.34)

and it is easy to see that it is maximized by µ̂ = X̄ because −2µnX̄+nµ2 =
n(µ − X̄)2 − nX̄2. Thus, for a normal random variable the sample mean is
the maximum likelihood estimate. Note that here the maximum likelihood
estimate coincides with the plug-in estimate.

Example A.22 In Example A.20 find a maximum likelihood estimate.
Solution: We observe X1, . . . , Xn that are uniformly distributed over an
interval [θ, θ + 1]. To find a maximum likelihood estimate, we should find
a convenient expression for the joint density as a function of θ. Note that
the likelihood function is equal to 1 if θ ≤ X(1) ≤ X(n) ≤ 1 + θ and
it is equal to 0 otherwise (here the crucial point is that the likelihood
function is explicitly written as a function of θ). Thus any θ̂ such that
X(n) − 1 ≤ θ̂ ≤ X(1) is a maximum likelihood estimate. This is an example
where the maximum likelihood estimate is not uniquely defined. In such
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cases we choose any maximum likelihood estimate; in particular, we can
set θ̂ = X(1) or θ̂ = X(n) − 1.

Example A.23 Consider the following mixture of a normal density with
parameters (µ, σ2) and a standard normal density,

fµ,σ(x) =
1
2
(2πσ2)−1/2e−(x−µ)2/2σ2

+
1
2
(2π)−1/2e−x2/2.

Here θ = (µ, σ2), and one observes n iid realizations of a random variable
with the mixture density. Suppose that σ2 > 0. Show that the maximum
likelihood method fails to estimate θ.
Solution: For iid observations it is always more convenient to deal with
the log-likelihood function Lθ(Xn) = ln(fθ(Xn)) rather than the likeli-
hood function. Set µ̂0 = X1. Then for any given constant C there exists
a sufficiently small σ2

0 such that the log-likelihood will be larger than C.
Indeed,

L(µ̂0,σ2
0)(X

n) > ln
(
1/2(2πσ2

0)1/2)+
n∑

l=2

ln
(
(1/2(2π)1/2)e−X2

i /2)

= − ln(σ0) −
n∑

l=2

(X2
i /2) − n ln

(
2(2π)1/2) > C.

Thus the maximum likelihood method is in trouble here because the like-
lihood may be as large as desired when σ0 decreases. This example shows
the limits of the maximum likelihood method.

Unbiased Estimation. An estimate θ̂ is called unbiased if Eθ{θ̂} = θ.

Example A.24 Let us observe n iid realizations of a normal random
variable with known mean µ and unknown variance σ2. Consider the
following two estimates of the variance: σ̂2

1 = n−1 ∑n
l=1(Xl − µ)2 and

σ̃2
2 = n−1 ∑n

l=1(Xl − X̄)2. Which estimate is unbiased?
Solution: Write for the former estimate Eσ{σ̂2

1} = Eσ{(X − µ)2} = σ2.
Thus this estimate is unbiased. Note that σ̂2

1 is the sample mean, plug-
in estimate, and maximum likelihood estimate simultaneously. The second
estimate may be written as σ̃2

2 = σ̂2
1 − (X̄ − µ)2, and therefore it is biased.

Curiously, the bias is always negative. Note that the estimate does not
depend on µ, and it is not difficult to modify the estimate and make it
unbiased. Namely, the estimate

σ̂2 := (n/(n − 1))σ̃2
2 = (n − 1)−1

n∑
l=1

(Xl − X̄)2 (A.35)

is unbiased. It is customarily used when the mean is unknown.
Let us rewrite the mean squared error as

MSE(θ̂, θ) = Eθ{(θ̂ − E{θ̂})2} + (Eθ{θ̂} − θ)2

=: Varθ(θ̂) + SBIASθ(θ̂). (A.36)
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The last line is the expansion of the mean squared error into the sum of
the variance and the squared bias terms. This expansion explains why an
unbiased estimation is appealing. On the other hand, for some settings
no unbiased estimate exists (see Exercise A.13). Also, even if an unbiased
estimate exists, it may be worthwhile to consider a biased one. For instance,
consider the case where the unknown mean of a normal random variable
is estimated. In this case the sample mean X̄ is an unbiased estimate.
However, if it is given that the mean is nonnegative (that is, θ ∈ S =
[0,∞)), then the biased estimate θ̃ = max(0, X̄) will always be better (has
smaller error) than X̄. In other words, for this setting the estimate X̄ is
inadmissible because it is dominated by θ̃.

So far we have considered methods based on ideas other than direct
minimization of the mean squared error. Let us consider several approaches
based on direct minimization of the mean squared error or its functionals.
We begin with one curious approach.

Example A.25 Let us observe n iid realizations of a random variable with
unknown mean θ and known variance σ2. As we know, here the sample
mean X̄ is a natural estimate of θ. Explore the possibility to decrease the
mean squared error by a linear estimate λX̄, 0 ≤ λ ≤ 1, where λ (a so-
called shrinkage coefficient because it shrinks the sample mean X̄ towards
origin) does not depend on the data (it is not a statistic) but may depend
on both θ and σ2.
Solution: Consider the mean squared error of the linear estimate λX̄,

Eθ{(λX̄ − θ)2} = λ2Eθ{X̄2} − 2λθ2 + θ2

= Eθ{X̄2}(λ − θ2/Eθ{X̄2})2 + θ2(Eθ{X̄2} − θ2)/Eθ{X̄2}.

Then, the equality Eθ{X̄2} = σ2n−1 + θ2 allows us to write

Eθ{(λX̄ − θ)2}

= (σ2n−1 + θ2)[λ − θ2/(σ2n−1 + θ2)]2 + θ2σ2n−1/(σ2n−1 + θ2). (A.37)

Thus, we conclude that the optimal shrinking coefficient λ∗ (that minimizes
the mean squared error) is defined by

λ∗ =
θ2

σ2n−1 + θ2 . (A.38)

Also, we get the following lower bound for the risk,

Eθ{(λX̄ − θ)2} ≥ min
λ

Eθ{(λX̄ − θ)2} = λ∗σ2n−1. (A.39)

Of course, λ∗ depends on θ, which is unknown. However, several conclusions
may be made. Firstly, we see that shrinking may lead to a decrease in
the mean squared error. Secondly, the right side of (A.39) gives us a lower
bound for the mean squared error over all possible linear estimates. Finally,
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one can try to estimate λ∗ by a plug-in estimate. Interestingly, all these
ideas play a central role in data-driven nonparametric curve estimation.

Bayesian Approach. A Bayes estimate is an estimate of θ that
minimizes the averaged mean squared error (or so-called Bayes error),∫

S
Eθ{(θ̂ − θ)2}dG(θ), where G is the prior cumulative distribution func-

tion with the domain S. As a result, both the Bayes estimate and the
Bayes error do not depend on an underlying parameter, but they do de-
pend on the prior distribution. If we let Θ denote a random variable with
the prior distribution function G, then the Bayes estimate is calculated by
the formula

θ̂(G) = E{Θ|Xn}. (A.40)

Example A.26 Prove that (A.40) is the Bayes estimate.
Solution: First, let us show that if X is a random variable with finite
variance, then for any constant c the following inequality holds,

E{(X − E{X})2} ≤ E{(X − c)2}, (A.41)

with equality if and only if c = E{X}. Indeed, E{(X − c)2} = E{(X −
E{X} + E{X} − c)2} = E{(X − E{X})2} + (E{X} − c)2. This implies
(A.41). Then according to (A.14) we may write for any estimate θ̃ based on
observations Xn that E{(θ̃−Θ)2} = E{E{(θ̃−Θ)2|Xn}}. Note that while
considering the conditional expectation E{(θ̃ − Θ)2|Xn} we may assume
that θ̃ is a constant. This together with (A.41) implies the result. In other
words,

min
θ̃

E{(θ̃ − Θ)2} = E{(E{Θ|Xn} − Θ)2}, (A.42)

where the minimum is taken over all possible estimators θ̃.

Example A.27 Let X1, . . . , Xn be iid realizations of a normal N(θ, σ2)
random variable X, and let σ2 be given. Find a Bayes estimate of θ for the
normal N(µ, b2) prior distribution.
Solution: The joint density of Θ and Xn is

fXn,Θ(xn, θ) =
1

(2πσ2)n/2(2πb2)1/2 exp
{

−
∑n

l=1(xl − θ)2

2σ2 − (θ − µ)2

2b2

}
.

Recall that to obtain the distribution of Θ given Xn, the joint density is
divided by the marginal density fXn

(xn). Write

fΘ|Xn

(θ|xn) = ψ(xn) exp
{

− [θ − (b2x̄ + σ2n−1µ)/(b2 + σ2n−1)]2

2[n−1σ2b2/(b2 + σ2n−1)]

}
.

Here x̄ = n−1 ∑n
l=1 xl and ψ(xn) := ψ(xn, b, σ2, n) is a function not involv-

ing θ. The main step is to look at the posterior density fΘ|Xn

(θ|xn) and
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realize that as a function in θ it is again a normal density with mean

E{Θ|Xn = xn} =
b2

b2 + σ2n−1 x̄ +
σ2n−1

b2 + σ2n−1 µ (A.43)

and variance

Var(Θ|Xn = xn) =
b2σ2n−1

b2 + σ2n−1 . (A.44)

According to (A.40), the estimate (A.43) is the Bayes estimate. Also, (A.44)
gives us the Bayes error. Note that the Bayes estimate becomes essentially
the estimator X̄ for large n and it is close to the prior mean µ for large
σ2n−1. This outcome is intuitively reasonable.

Minimax Approach. While the Bayesian approach is based on averag-
ing the mean squared error, the goal of the minimax approach is to select
the best possible estimate for worst-case scenario of a parameter in the set
S, that is, an estimate θ̃ is called a minimax estimate if

sup
θ∈S

E{(θ̃ − θ)2} = inf
θ̂

sup
θ∈S

E{(θ̂ − θ)2}. (A.45)

Recall that the supremum supx∈D ψ(x) is the smallest number a such
that a ≥ ψ(x) for all x ∈ D. The infimum infx∈D ψ(x) is the largest
number b such that b ≤ ψ(x) for all x ∈ D. We use these notions instead
of maximum and minimum because the last two may not exist in some
settings. For instance, maxx∈(0,1) x2 and minx∈(0,1) x2 do not exist, whereas
supx∈(0,1) x2 = 1 and infx∈(0,1) x2 = 0.

The minimax approach is more conservative than the Bayesian approach,
but at least formally it does not depend on a prior distribution. However,
as we shall see from the following assertion, a customarily used method to
find a minimax estimate is based on using a Bayesian approach.

Proposition A.1 If a Bayes estimate has a constant mean squared error
(that does not depend on the estimated parameter), then this estimate is
minimax. Moreover, if there is a sequence of Bayes estimates whose mean
squared errors converge to a constant, then the limit of the Bayes estimates
is the minimax estimate.

Example A.28 For the setting of Example A.27, find a minimax estimate.
Solution: Due to Proposition A.1, we are to find a prior distribution such
that the Bayes risk is constant or approximates a constant. If we consider
the prior distributions of Example A.27 and then let b → ∞, then the Bayes
estimate becomes the familiar sample mean X̄ with the risk equal to σ2/n.
This risk is constant (it does not depend on θ), and therefore the sample
mean is the minimax estimate of the mean of a normal random variable.

Confidence Interval Estimation. Consider the following problem. Let
X be normal N(θ, σ2); we would like to find an interval (based on X) that
“covers” the unknown mean θ with probability at least 1 − α, 0 ≤ α ≤ 1
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(1 − α is referred to as the confidence coefficient). Consider the interval

(X − zα/2σ, X + zα/2σ), (A.46)

where zα/2 is the (1 − α/2)-quantile of a standard normal distribution
(i.e., it is the solution to the equation P (Z > zα/2) = α/2, where Z is a
standard normal random variable). First, we see that this interval covers
θ with the probability 1 − α because Pθ(X − zα/2σ < θ < X + zα/2σ) =
Pθ(−zα/2 < (X − θ)/σ < zα/2) = P (−zα/2 < Z < zα/2) = 1 − α. Second,
it is easy to see from the bell shape of normal density that any interval
(X − zα/2σ + c, X + zα/2σ + c) with c �= 0 covers the mean with probability
less than 1−α. This makes using (A.46) as a 1−α confidence interval very
appealing.

This simple setting together with the central limit theorem allows us to
suggest confidence intervals for more complicated models. Suppose that n
iid realizations X1, . . . , Xn of a random variable X with unknown mean
θ and a finite variance are observed. To find a 1 − α confidence interval,
consider the sample mean X̄. By the central limit theorem, for large n
the distribution of X̄ is approximately normal with mean θ and variance
σ2

n := σ2/n. Thus, we may use formula (A.46) and plug-in X̄ in place of X
and σn in place of σ. This yields the 1 − α confidence interval:

(X̄ − zα/2σn, X̄ + zα/2σn). (A.47)

If σ is unknown then the estimate (A.35) may be used.
Testing Statistical Hypotheses (Neyman–Pearson Approach).

We shall discuss the concepts of this approach via considering the fol-
lowing particular problem. Let a sample X1, . . . , Xn of n iid realizations
X1, . . . , Xn, from a normal distribution with unknown mean θ∗ and known
variance σ2, be given. Then the problem is to decide whether the mean is
equal to a given value θ0 or not. Thus, the possible probability distributions
of the observations are grouped into two aggregates, one of which is called
the null hypothesis and is denoted by H0, and the other of which is called
the alternative hypothesis and is denoted by Ha. In short, we may write
that we would like to test H0: θ∗ = θ0 versus Ha: θ∗ �= θ0.

The particular hypothesis H0 is called simple because the null hypothe-
sis completely specifies the probability distribution; the alternative one is
called composite because it does not specify the distribution.

According to the Neyman–Pearson paradigm, a decision to reject H0 in
favor of Ha is made only if observations belong to the rejection (critical)
region R, which completely describes the hypothesis test. The complement
Rc of the rejection region is called the acceptance region. Then two types
of errors may occur:
1. H0 may be rejected when it is true. Such an error is called a type I error
(first type error), and its probability is e1 = P (Xn ∈ R|θ∗ = θ0). The
rejection region is chosen in such a way that e1 = α, where the parameter
α is preassigned and is called the significance level of the test. The level of
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significance is customarily chosen between 0 and 0.25.
2. H0 may be accepted when it is false. Such an error is called a type II error
(second type error). For our particular example this error is defined for any
parameter θ �= θ0, and its probability is e2(θ) = P (Xn ∈ Rc|θ∗ = θ).

One more useful notion is the power of the test defined as β(θ) := P (Xn ∈
R|θ∗ = θ) for θ �= θ0. In words, this is the probability that H0 is rejected
when it is false and the underlying mean is equal to θ. Clearly, e2(θ) =
1−β(θ), so the larger the power of a test, the smaller its second type error.

Because the first type error is fixed in advance (it is equal to the level
of significance α), the optimal test should maximize the power. Also note
that formally we may write β(θ0) = e1, so the power as a function in θ ∈
(−∞,∞) is a convenient tool to describe the probabilities of all considered
errors.

Now, when we know the setting and the terminology, let us suggest a
reasonable test (rejection region). Because the problem is about the mean
of iid normal random variables, one can estimate the mean by a sample
mean estimate X̄ = n−1 ∑n

l=1 Xl and then reject H0 if the sample mean
is far from θ0. In such a case X̄ is called a test statistic, and the rejection
region is

R := {(X1, . . . , Xn) : |X̄ − θ0| ≥ c},

where c should be such that e1 = α. To fund such c we write

e1 = P ( (X1, . . . , Xn) ∈ R|θ∗ = θ0) = P (|X̄ − θ0| ≥ c |θ∗ = θ0) = α.

Under the null hypothesis, X̄ is normally distributed with mean θ0 and
variance σ2

n = σ2/n. Thus, c = zα/2σn gives the solution to the above
equation. Recall that zα/2 is the (1−α/2)-quantile of the standard normal
distribution. Thus we obtain that the rejection region is

R := {(X1, . . . , Xn) : |X̄ − θ0| ≥ zα/2σn}. (A.48)

Note that the level of significance α is the core ingredient of the Neyman–
Pearson paradigm; however, its choice is typically subjective. Thus, in many
applications it makes more sense to report a statistic that is called the p-
value (observed level of significance). For a chosen rejection region and
a given data set, the p-value is the smallest value of α for which the null
hypothesis will be rejected. For the test (A.48) it is calculated by the formula

p-value = P
(|Z| > |X̄ − θ0|/σn

∣∣θ∗ = θ0
)

, (A.49)

where Z is a standard normal variable independent of X̄.
Let us check that (A.49) is indeed the observed level of significance.

Assume that α ≥ γ̂, where γ̂ is the right part of (A.49). Then

zα/2 ≤ zγ̂/2 = |X̄ − θ0|/σn.

This implies |X̄ − θ0| ≥ zα/2σn, which in turn implies the rejection of
H0 according to (A.48). Conversely, if α < γ̂, then the null hypothesis
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is accepted. This completes the proof. As we see, the p-value completely
describes a data set for the Neyman–Pearson paradigm.

Finally, according to (A.48) the acceptance region of the test is

Rc = {(X1, . . . , Xn) : |X̄ − θ0| < zα/2σn}. (A.50)

As we see, the confidence interval (A.47) is just the inverted acceptance
region (A.50). Indeed, according to (A.50), we accept H0: θ∗ = θ0 if θ0 ∈
(X̄ − zα/2σn, X̄ + zα/2σn), and according to (A.47) this means that we
accept H0 if θ0 belongs to the 1 − α confidence interval. In other words,
the 1 − α confidence interval consists precisely of all values of θ0 for which
the null hypothesis is accepted with the level of significance α.

What we have seen is the well-known method of finding confidence inter-
val estimates via inverting hypothesis tests, and vice versa. Also, we have
seen that a good estimator may lead to finding an attractive test.

Exercises

A.1 Prove that P (E ∩ F ) ≥ P (E) + P (F ) − 1.
A.2 Show that if events E1, E2, . . . , En are independent, then

P (E1 ∪ E2 ∪ · · · ∪ En) = 1 −
n∏

l=1

(1 − P (El)). (A.51)

A.3 Prove that if P (Ei|E1 ∩ · · · ∩ Ei−1) > 0, i = 1, 2, . . . , n, then

P (E1 ∩ E2 ∩ · · · ∩ En) = P (E1)P (E2|E1) · · ·P (En|E1 ∩ · · · ∩ En−1).

A.4 Express P (X ≥ a) via the cumulative distribution function of X.
A.5 Let F be the cumulative distribution function of X. Find the cu-
mulative distribution function of Y = αX + β, where α > 0 and β are
constants.
A.6 The joint distribution of two discrete random variables X and Y is
P (X = 0, Y = 0) = .2, P (X = 0, Y = 1) = .3, P (X = 1, Y = 0) = .3,
P (X = 1, Y = 1) = .2. Are these random variables independent?
A.7 The joint probability density function of X and Y is given by f(x, y) =
exp(−x − y), 0 ≤ x < ∞, 0 ≤ y < ∞. Find P (X < Y ).
A.8 Show that (i) E{(X −a)2} is minimized at a = E{X}; (ii) E{|X −a|}
is minimized at a equal to the median of X.
A.9 Let a, b, c, and d be constants. Show that Cov(a + bX, c + dY ) =
bdCov(X, Y ).
A.10 Show that Cov(

∑n
i=1 Xi,

∑n
i=1 Yi) =

∑n
i=1

∑n
j=1 Cov(Xi, Yj).

A.11 Show that (A.10)–(A.12) hold.
A.12 Let X(1), . . . , X(n) be ordered iid realizations of a continuous random
variable X supported on a finite interval [a, b] and having a continuous
density f on [a, b]. Check that P (a ≤ X ≤ X(1)) = P (X(n) ≤ X ≤ b) =
1/(n + 1). Hint: The event X ≤ X(1) occurs if and only if all n realizations
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are larger than X. Using independence of X and the realizations, get

P (a ≤ X ≤ X(1)) =
∫ b

a

P (x ≤ X(1)|X = x)f(x)dx

=
∫ b

a

n∏
l=1

P (x ≤ Xl)f(x)dx =
∫ b

a

[P (x ≤ X)]nf(x)dx

Note that P (x ≤ X) = 1 − F (x) where F is the cumulative distribution
function of X. Also, we have f(x) = dF (x)/dx, x ∈ [a, b]. Thus,

∫ b

a
[P (x ≤

X)]nf(x)dx =
∫ b

a
[1−F (x)]ndF (x) =

∫ 1
0 zndz where in the last equality we

used the substitution z = 1 − F (x), and that F (a) = 0 and F (b) = 1.
A.13 Let X be distributed according to the binomial distribution B(p, n),
0 < p < 1. Suggest an unbiased estimate of p and find its mean squared
error. Also, show that no unbiased estimate of 1/p exists. Hint: Recall that∑k

l=0 alx
l = 0 for all x ∈ (a, b), a < b, if and only if all al = 0.

A.14 Let X1, X2, . . . , Xn be iid normal N(θ, σ2). Suggest an unbiased
estimate of θ2. Also, find the mean squared error of this estimate.
A.15 Let X be a random variable, and we are interested in estimating the
parameter θ = P (a ≤ X ≤ b). Suggest an unbiased estimate based on n iid
realizations of X and find its mean squared error.
A.16 Let X and Y be two random variables. Suggest an unbiased estimate
of the parameter θ = P (X ≤ Y ) and then find its mean squared error. Also,
can the independence of these random variables help to solve the problem
of estimating θ?
A.17 Let X be a binomial random variable with n = 100 trials and the
probability p of “success.” Suggest a 1 − α confidence interval for the p.
A.18 Let X be normal with mean θ∗ and variance σ2. Test the null hy-
pothesis H0: θ∗ = θ0 versus Ha: θ∗ > θ0 at the level of significance α. For
the suggested test find the first type error, the second type error for θ > θ0,
the power function, the p-value (observed level of significance).



Appendix B. Software

The software may be used in the S–PLUS environment under UNIX or
under Windows. If you do not have a free access to the S–PLUS then the
following information may be useful. The S–PLUS 4.5 Student Edition for
PC is sold by Duxbury Press (Web: www.duxbury.com) for the cost of a
regular textbook (the wavelets package is extra).

Below we discuss how to install and use the software when the
S–PLUS 3.x under UNIX is used (this is the most “complicated”
scenario). Consult the file news.INSTALLATION at the web site
http://www.math.unm.edu/∼efrom/book1 about installation for other S–
PLUS versions.

By downloading the software, the user agrees to consider it as a “black-
box” and employ it for educational purposes only.

Setup Information.
1. Prior to downloading the software, you need to create a separate direc-
tory, say SE, and make it your working directory. To do this you type (after
each line you press Return):

% mkdir SE
% cd SE

2. Create a subdirectory of SE called .Data by
% mkdir .Data

This subdirectory is for use by S–PLUS itself and hence has a UNIX ‘dot
name’ to be hidden from casual inspection. Then type

% cd .Data
Now you are in the subdirectory where the software will be downloaded.



392 Appendix B Software

3. The software is available over the World Wide Web. Point your browser
at

http://www.math.unm.edu/∼efrom/book1

The file book1.tar.gz contains the compressed version of all the S–PLUS
functions. To download this file in Netscape press the right mouse button
over the link to the file and choose “save link as” and tell it to save it to
your SE/.Data S–PLUS subdirectory. This ends the World Wide Web part
of the setup.
4. Return to your SE/.Data subdirectory. To decompress the compressed
file, type

% gunzip book1.tar.gz
This should extract a file called book1.tar. Then type

% tar -xf book1.tar
This will extract all the individual S–PLUS function files. The software is
installed.

Tutorial.
1. To begin S–PLUS session you type

% cd
(after this command you are in the main directory)

% cd SE
(after this command you are in your S–PLUS working directory)

% Splus
Then, after a couple of seconds, you will see the sign > which is the S–
PLUS prompt. You are ready to go.
If you would like to use the wavelets package, type

> module(wavelets)
To look at graphics you must create a special window by typing

> motif()
To interrupt a program hold down the key marked Control and hit c. This
will interrupt the current operation, back out gracefully, and return to the
prompt. Another way to do this is again to hold down Control and hit xc.
2. To repeat a Figure j.k (the kth figure in the jth chapter), whose caption
has square brackets (only these figures may be repeated!), type

> chj(fig=k)
You will see in the Graphics window a diagram similar to Figure j.k
only with may be different simulated data. Actually, it is enough to type
chj(f=k). For instance, by typing

> ch4(f=1)
you repeat Figure 4.1 with the same default arguments shown in the square
brackets. If you would like to repeat this particular figure with different
arguments from those shown in the square brackets, for instance, you would
like to change in Figure 4.1 the sample size n from 50 to 100 and the
standard deviation sigma from 1 to 2, then type



Appendix B Software 393

> ch4(f=1, n=100, sigma=2)
You will see scatter plots with one hundred points overlaid by linear re-
gression lines. Note that an argument may be a numeric value, a string, a
vector of numeric values, or a vector of strings. For instance, it may be set
equal to 10, ′′box ′′, c(10, 50, 100), or c( ′′box ′′, ′′gaussian ′′), respectively.

To make a hard copy of a figure shown in the Graphics window you need
to drag the mouse in such a way that the arrow is positioned at Graph in
the Graphics window. Then you push the left button, and while holding
down on the button move the cursor down to the option marked print and
release the button.

Also note that the caption to Figure 2.3 explains how to create a custom-
made corner function (or generate a sample according to the density).

To finish the S–PLUS session you type
> q()
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Härdle, W., 117, 179, 320
Hastie, T.J., 258
Hengartner, N.W., 322
Huber, P.J., 117, 180

Ibragimov, I.A., 320, 321
Ingster, Yu.I., 117, 321

Jones, M.C., 116, 179, 366
Johnstone, I., 116, 321, 321
Juditsky, A., 321

Kerkyacharian, G., 117, 320, 321
Khasminskii, R.Z., 320, 321
Kiefer, J., 308
Klaassen, A.J., 321
Kolmogorov, A.N., 58
Koltchinskii, V., 180
Korostelev, A.P., 320, 366
Koshevnik, Yu.A., 320
Krylov, A.N., 117

Lehmann, E. L., 179, 319
Lepskii, O.V., 321, 366
Levit, B.Y., 228, 320
Liu, R.C., 320, 321
Lock, M.D., 116
Lorentz, G.G., 45, 58
Low, M.L., 321, 322
Lugosi, G., 366

MacGibbon, B., 320
Makovoz, Y., 58, 258
Mallat, S., 58, 179, 321
Mammen, E., 366
Mardia, K.V., 116, 180
Marron, J.S., 117
Massart, P., 116, 321

McKean, H.P., 58
Meyer, Y., 50, 302
Mikusinski, P., 58
Morgenthaler, S., 117
Müller, H.-G., 179

Nadaraya, E.A., 179
Nemirovski, A.S., 320, 321
Nessel, R.J., 58
Neyman, J., 103
Nikolskii, S.M., 258
Nussbaum, M., 321, 366

Ogden, T., 58, 179
Olshen, R.A., 366

Parzen, E., 366
Pawlak, M., 229
Picard, D., 117, 320, 321
Pinsker M.S., 116, 179, 229, 320
Polyak, B.T., 321
Prakasa Rao, B.L.S., 180, 320

Radavicius, M., 228
Rennie, A., 229
Ripley, B. D., 116, 258, 366
Ritov, Y., 321
Rosenblatt, M., 366
Ross, S., 361
Rubin, H., 321
Rubinstein, R.Y., 114
Rudzkis, R., 228
Ruppert, D., 179

Samarov, A., 228, 321, 322
Skorohod, A.V., 316
Scott, D.W., 258
Serfling, R.J., 180
Shumway, R. H., 228
Silverman, B.W., 117, 258, 366
Simonoff, J.S., 117, 179, 366
Speckman, P., 117, 366
Spokoiny, V., 366
Stephanski, L.A., 180
Stephens, M.A., 117
Stone, C.J., 321, 366

Tapia, R.A., 116
Tarter, M.E., 116



Author Index 405

Temlyakov, V.N, 258, 321
Thomas, E., 179
Tibshirani, R., 116, 258
Tompson, J.R., 116
Tsybakov, A.B., 117, 320, 366

Vapnik, V.N., 180, 258
Vardi,Y., 116
Venables, W.N., 116, 258
Vidacovic, B., 58
Vitale, R.A., 321

Wahba, G., 179, 321, 366
Walter, G.G., 58
Wand, M.P., 116, 179, 366
Wang, Y., 229
Watson, G.S., 116
Wellner, J.A., 321
Wilks, A.R., 3

Zelen, M., 116
Zhang, C.-H., 321
Zhao, L.H., 321



Subject Index

(·)+, 62
�·�, 62
:=, 370
E{·}, 372, 376
I{·}, 373
X(l), 380
o(1), 261
argmin, 62
inf, 386
sup, 386
Aγ,Q, 46
Bσ

pqQ, 50
Hr,α, 50
Lipr,α,L, 44, 266
L2, 34
Wβ,Q, 46
C, 266
cB , 64, 65, 130
cJ0, 62, 65, 130
cJ1, 62, 65, 130
cJM , 63, 65, 130
cT , 63, 65, 130
r, 124, 130
s0, 129, 130
s1, 129, 130

Adaptive estimation, 77, 358

bias-variance tradeoff, 295, 298
block shrinkage, 287
block thresholding, 294
cross-validation, 286, 359
empirical risk minimization, 106,

284
penalization, 286
plug-in method, 359
reference method, 358
sureshrink, 293
universal, 63, 125, 129, 236, 294
universal thresholding, 282

Additive regression model, 245
Akaike’s information criteria, 116
Analytic functions (Aγ,Q), 46

estimation of, 265, 313
ARMA process, 182

causal, 183
spectral density of, 192

Autocovariance function, 154, 182
estimation of, 189, 191

Axioms of probability, 369

Bandwidth, 326
optimal, 356, 358
variable, 366

Basis, 36
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Basis (continued)
complex trigonometric, 47
cosine, 20
cosine–polynomial, 54, 96
enriched, 52
Haar, 26
Hermite, 52
Laguerre, 51
Polynomial, 23, 52
selection of, 105
sine, 47
trigonometric (Fourier), 39
unconditional, 46
wavelet, 47

Bayesian approach, 270, 385
Bernstein’s inequality, 281
Best linear estimate, 73
Besov space (Bσ

pqQ), 50
Bessel inequality, 39
Binary regression, 142
Bivariate density, 8

estimation of, 235, 253
Bivariate time series, 210
Black–Scholes model, 216
Boundary effects, 23, 32, 328
Box–Cox transformations, 184
Boxplot, 104
Brownian motion, 273, 316

Categorical data, 158
Cauchy inequality, 34
Cauchy–Schwarz inequality, 36,

173, 373
Central limit theorem, 381
Change-point, 152, 218
Characteristic function, 86

empirical, 88
Chebyshev inequality, 379
Coding functions, 260
Coefficient of difficulty, 71

due to censoring, 83
for regression, 121
for spectral density, 191

Conditional density, 371, 377
estimation of, 249

Conditional expectation, 374, 378
Confidence band, 99
Confidence interval, 313, 387
Convolution, 299, 331, 377

Corner (test) functions, 18
custom-made, 22

Correlation, 372
Counter plot, 232
Covariance, 372
Cross-covariance, 211
Cross-spectrum, 212
Cumulative distribution function

(cdf), 370
empirical, 381
joint, 370
marginal, 370

Curse of dimensionality, 231, 301

Data compression, 140
Data set

auto.stats, 111
chernoff2, 171
hstart, 221
lottery, 2, 11, 100
rain.nyc1, 13, 14, 109
saving.x, 169, 360
state.x, 253
sunspots, 15
switzerland, 255

Deconvolution, 300, 322
De la Vallée-Poussin sum, 43

inequality, 44
Density estimation, 59, 253, 323
Derivatives, 262, 278
Design density, 127

optimal, 131, 144, 311
Diffusion process, 216
Directional data, 85
Dirichlet kernel, 41
Discriminant analysis, 239
Distribution

Bernoulli, 142, 375
binomial, 374
Cauchy, 145, 175
double exponential, 178, 365
exponential, 84
multivariate normal, 379
normal, 376
Poisson, 144, 375
Student’s t, 175
Tukey, 151, 176
uniform, 376

Dynamic model, 215



Subject Index 409

Econometrics model, 214
Efficient estimation, 73, 270, 310

second order, 270
Efromovich–Pinsker estimator, 287
Estimation of parameters, 380
Expectation, 372, 376

Fejér (Cesáro) sum, 42
Filtering model, 273, 277
Fisher information, 310
Forecast (prediction), 218, 225
Fourier series, 20
Functional, 270, 304

Gibbs phenomenon, 23, 39, 50
Goodness-of-fit test, 98
Gram–Schmidt orthonormalization,

37
Grenander’s estimate, 341

Haar functions, 26
Hard-threshold estimate, 77
Heat equation, 161
Hidden components, 203

estimation of weights, 207
Hilbert space, 38
Histogram, 323
Hölder space (Hr,α), 44, 50, 302
Huber estimator, 150

Ibragimov–Khasminskii function,
263

Ill-posed problem, 87, 166, 300
irregular, 88

Image, 232
Independent events, 369
Independent random variables, 371,

377
Indicator, 373
Interpolation, 343

Joint distribution, 370

Kaplan-Meier estimator, 82
Kernel estimator, 325

asymptotics, 352
boundary effect, 328, 330
Gasser–Müller, 333
kth neighbor, 339

Nadaraya–Watson, 332
of density, 325
of regression function, 328
of spectral density, 334
Priestly–Chao, 333

Kernel (function), 326
optimal, 357
superkernel, 365

Lagrange multipliers method, 342
Learning machine, 161, 207, 239
Length-biased data, 91
Lepskii’s algorithm, 296, 321
Likelihood function, 382
Linear regression, 168, 334
Lipschitz space (Lipr,α,L), 44, 267
Local linear regression, 335
Local polynomial regression, 338
Location-scale model, 131
Long-memory errors, 154
Loss of a logarithmic factor, 297,

321
LOWESS, 338

Maximum likelihood estimate, 340,
382

Mean integrated squared error
(MISE), 61, 234, 262, 357

Mean squared error (MSE), 234,
262, 357

adaptive rate for, 297
Measurement error, 85, 165
Minimax, 262

asymptotic MISE, 262, 278
asymptotic MSE, 262, 279

Missing data, 201
Mixtures regression, 151
Moment, 372
Monotone density, 96, 341
Monte Carlo study, 75, 84, 140, 193
Multiresolution analysis (mra), 28

Nearest neighbor method, 339
Neural network, 349
Newton-Raphson procedure, 310
Nonlinear approximation, 285
Nonnegative projection, 63
Nonparametric regression, 10, 118

additive, 245
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Nonparametric regression
(continued)

bivariate, 242
fixed design, 10, 119, 126
generalized, 310
heteroscedastic, 126
homoscedastic, 119
random design, 10, 119, 126

Operator, 161
Optimal design, 311
Oracle, 72

hard-threshold, 74
linear, 72
smoothed, 74
truncated, 73

Ordered observations, 175, 380
Orthogonal series estimator, 10, 63
Orthonormal system, 36
Outliers, 124, 146

Parallel channels, 260
Parseval’s identity, 39
Partial sum, 20, 60, 231
Penalization, 116, 286, 342
Penalty function, 286, 342
Periodogram, 190
Perspective plot, 232
Pinsker constant, 311
Poisson regression, 144
Principle of equivalence, 277, 321

limits of, 307, 321
Probability, 368
Probability density function, 375

bivariate, 377
marginal, 377

Probability mass function, 370
joint, 370
marginal, 370, 377

Projection, 38
monotonic, 95
on densities in L2, 63

Projection theorem, 38
p-value, 388

Quantile, 376
regression, 145

Quadratic variation, 33

Regression function, 10
Removing small bumps, 63
Robust regression, 150, 157

Sample mean, 381
Scale (spread, volatility) function,

127
estimation of, 131, 179

Scattergram (scatter plot), 11, 119
Seasonal component, 14, 181, 185,

187
Sequential estimation, 320
Shannon information, 320
Shape, 155
Shrinkage, 287
Sieve, 342
Signal-to-noise ratio (snr), 134
Smoothing coefficients, 60
Soft-threshold estimator, 294
Spatial data, 182, 255
Spectral density, 189

estimation of, 190
Spline, 344

B-spline, 346
natural cubic, 345

Spline smoothing, 347
Standard deviation, 372
Survival analysis, 80

right censoring, 80
left censoring, 84

Survivor function, 81
Support, 69

Taylor expansion, 355
Tensor-product basis, 231
Tests of hypotheses, 98, 311, 387

Chi-squared, 102
Kolmogorov, 99
Moran, 101
Nonparametric, 103
Smirnov, 100
von-Mises-Smirnov, 101
UMPU, 313, 319
unbiased, 319

Time series, 181
second-order stationary, 182

Thresholding, 74
Block, 294
Hard, 74, 298
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Soft, 139, 294
Universal, 282, 298

Trend component, 181, 184, 187
Triangle inequality, 36
Total variation, 33

Universal series estimator, 63, 129
Unbiased estimation, 383

Variance, 372

Wavelets, 47
dwt, 136
estimator, 138, 290, 294
multiresolution expansion, 50,

136
Weierstrass theorem, 58
White noise, 182, 273
Wiener filter, 271


