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Abstract: Conductance-based equations for electrically
active cells form one of the most widely studied
mathematical frameworks in computational biology. This
framework, as expressed through a set of differential
equations by Hodgkin and Huxley, synthesizes the impact
of ionic currents on a cell’s voltage—and the highly
nonlinear impact of that voltage back on the currents
themselves—into the rapid push and pull of the action
potential. Later studies confirmed that these cellular
dynamics are orchestrated by individual ion channels,
whose conformational changes regulate the conductance
of each ionic current. Thus, kinetic equations familiar from
physical chemistry are the natural setting for describing
conductances; for small-to-moderate numbers of chan-
nels, these will predict fluctuations in conductances and
stochasticity in the resulting action potentials. At first
glance, the kinetic equations provide a far more complex
(and higher-dimensional) description than the original
Hodgkin-Huxley equations or their counterparts. This has
prompted more than a decade of efforts to capture
channel fluctuations with noise terms added to the
equations of Hodgkin-Huxley type. Many of these
approaches, while intuitively appealing, produce quanti-
tative errors when compared to kinetic equations; others,
as only very recently demonstrated, are both accurate and
relatively simple. We review what works, what doesn’t,
and why, seeking to build a bridge to well-established
results for the deterministic equations of Hodgkin-Huxley
type as well as to more modern models of ion channel
dynamics. As such, we hope that this review will speed
emerging studies of how channel noise modulates
electrophysiological dynamics and function. We supply
user-friendly MATLAB simulation code of these stochastic
versions of the Hodgkin-Huxley equations on the
ModelDB website (accession number 138950) and http://
www.amath.washington.edu/,etsb/tutorials.html.

Introduction

Understanding the role of noise in cellular dynamics and

function is a central challenge across computational biology. This

is as true in neuroscience as in any field [1–3], and a universal

source of noise in electrically active cells that has garnered

increasing attention is the stochastic activity in ion channels [4–6].

This channel noise has been studied in a variety of neural systems

including electrical stimulation of the auditory nerve by cochlear

implants (e.g., [7,8]), as well as in entorhinal cortex [9], cerebellar

granule cells [10], and hippocampal CA1 pyramidal neurons [11].

Modeling studies have suggested that channel noise can influence

information processing [12], spike time reliability [13], stochastic

resonance [14], firing irregularity [10,15], subthreshold dynamics

[9,10], and action potential initiation and propagation in

morphologically detailed models [11,16]. Channel noise is at

work in many other systems such as the activity of cold receptor

cells [17], nicotinic acetylcholine receptors [18], and calcium

release by inositol 1,4,5-trisphosphate receptors [19].

Despite widespread interest in channel noise, it has remained

unclear what the options are for including this noise source in a

classical model of neurophysiology—the Hodgkin-Huxley (HH)

equations for the action potential [20]—and related conductance-

based models. The direct approach provides a gold standard for

these models: each of N channels of a particular type transitions

independently and randomly among discrete configurational

states. This yields a continuous-time Markov chain with voltage-

dependent transition probabilities; see [21] for a recent review. In

the limit that N?? for each channel type, deterministic

equations such as the classical HH equations are recovered [22–

27]. For finite N, one simulates the Markov process via a Gillespie-

type algorithm [16,28–30].

Is there a simpler approach, where one modifies familiar models

by adding a few well-placed noise terms? Beyond conceptual and

computational simplicity, this would provide a direct link to

powerful results on the dynamics and geometry of these differential

equations [31,32]. This line of research was initiated by Fox and

Lu [22,33], who derived candidate sets of stochastic differential

equations (SDEs) using a system size expansion applied to a

Markov chain version of the HH model. The past few years have

seen increasing interest in this problem, spurred on by the

promise, yet apparent shortcomings, of this SDE approach

[10,27,34–39].

As recent work attests [27,38,39], accurate methods for

incorporating channel noise into the HH equations are finally

emerging in the form of methods both new and old. These studies

demonstrate that adding noise terms to the HH equations can

indeed give a compressed and accurate reproduction of the

channel fluctuations. However, the placement of these terms is
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critical, and—as a decade of research attests—less than obvious. A

key focus of our review is a unified presentation of the methods

that provide the most accurate approximations to Markov chain

models of channel noise. A common feature of these methods is

that they introduce noise processes as conductances in the HH

equations.

While we largely treat the original form of the HH equations—a

standard reference point for neuron modeling and the focus of the

prior studies we review—we emphasize that these equations are

not the final word on ion channel kinetics. In fact, recent studies

have pointed to alternate kinetic schemes that better capture some

aspects of membrane dynamics and molecular configurations.

Below, we discuss the addition of channel noise to a specific model

of this type [40,41].

Stochastic Versions of the Hodgkin-Huxley
Equations

We consider the classical equations introduced by Hodgkin and

Huxley to model action potentials in the squid giant axon [20].

C
dV

dt
~{�ggNam3h(V{ENa){�ggKn4(V{EK){gL(V{EL)zI ð1Þ

dx

dt
~ax(1{x){bxx, where x~m,h, or n: ð2Þ

Here, V is the membrane voltage, and the gating variables m, h,

and n represent the fraction of open channel subunits of different

types, aggregated across the entire cell membrane. These fractions

are combined in the terms m3h and n4 to regulate total

conductances for Naz and Kz currents. The constant C

represents the capacitance of the cell membrane; ENa, EK, and

EL are reversal potentials; �ggNa and �ggK are maximal conductances;

and gL is the leak conductance.

Comprehensive introductions to this model can be found in

many standard texts [23,31,32]. We emphasize that our discussion

applies to any conductance-based model of excitable cells,

including point, compartmental, or spatially extended neurons,

related models of calcium release [42]. Moreover, as mentioned

above it is often important to consider models with alternate

schemes for channel kinetics, as we will undertake in a subsequent

section for an updated model of Naz [40] and Kz channel

dynamics [41].

To model channel noise within a differential equation

framework of the general form above, we seek ways of introducing

fluctuations into this deterministic system. We review three

approaches, which we classify as follows (and illustrate for the

classical HH equations):

N Current noise: Replace Equation 1 with

C
dV

dt
~{�ggNam3h(V{ENa){

�ggKn4(V{EK){gL(V{EL)zIzjV (t)

ð1�Þ

where jV (t) is a Gaussian white noise process.

N Subunit noise: Replace Equation 2 with

dx

dt
~ax(1{x){bxxzjx(t), where x~m,h, or n: ð2�Þ

where the jx(t) are Gaussian processes that may depend on x
and V .

N Conductance noise: Replace Equation 1 with

C
dV

dt
~{�ggNa(m3hzjNa)(V{ENa(t)){

�ggK(n4zjK(t))(V{EK){gL(V{EL)zI

ð1 � �Þ

where the noise processes jNa(t) and jK(t) are Gaussian

processes that may depend on x and V .

Table 1 summarizes the differences among these models, which

we now discuss in detail.

Current Noise
The simplest method for incorporating noise into the classical

HH equations is to add a fluctuating current term jV (t) to the

dV=dt equation, as shown in Equation 1*. Here, we assume jV (t)
is only a function of time. Stochastic currents of this form are

frequently used to drive the HH model, often in the context of the

diffusion approximation for synaptic inputs [43–45]. In the present

context, however, we emphasize that jV (t) is meant to represent

the combined effect of the stochastic activity of ion channels on the

voltage dynamics of the cell. This approach is appealing due to its

simplicity, but since channel noise is generated by the stochastic

activity of ion channels in the cell membrane, it seems likely that

the fluctuation term jV (t) should also depend on V or the subunit

variables. Another drawback is that, to date, there is no principled

method for determining the intensity of the noise. Nonetheless,

there may be cases in which current noise can be justified on

empirical grounds. For instance, for a single membrane area and a

constant applied current, Rowat compared the interspike interval

distribution generated by a Markov chain model to the

distribution generated by HH equations with current noise and

found remarkably close agreement [15].

Subunit Noise
In the HH framework, an ion channel’s configuration is

determined by the states of its constituent subunits, where each

subunit can be either in an open or closed state [6,23,46]. For

instance, each Kz channel is composed of four n-type subunits, all

of which must be open in order for the channel to be permeable to

Kz ions. Each subunit randomly transitions between its open and

closed state. This suggests that the most appropriate place to add

noise may be to the equations that describe the fractions of open

subunits, as in Equation 2*. Moreover, since one typically assumes

that all subunits are independent and all subunits of the same type

are statistically identical, it is tempting to combine the resulting

noisy fractions of open subunits to regulate conductances in the

same way as one would in the deterministic HH equations;

namely, by computing m3h and n4.

The variables m, h, and n represent the aggregated fraction of

open subunits, whereas the quantity that influences the membrane

potential is the fraction of individual open channels. In the limit of

infinitely many channels (and therefore vanishing fluctuation

terms), m3h and n4 do correctly model the fraction of open

channels. For a finite number of channels, however, there is no

guarantee that fluctuations in the these quantities will correctly

model fluctuations in the membrane-wide fractions of open

channels.

To see this, note that if all channels were gated by a single

subunit, then the subunit model would be appropriate—in this

case, the (noisy) fraction of open subunits is identical to the (noisy)
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fraction of open channels. In the HH model, however, four

subunits gate each channel. Combining the quantities m, h, and n
together to form the quantities m3h and n4 neglects the important

fact that each ion channel is composed of a specific package of

subunits. The states of the particular subunits within a channel,

not the average state of all subunits in the cell membrane,

determine whether that channel is open or closed. Thus, random

transitions of individual channels among their different configu-

rational states occur with different statistics than predicted by

random transitions of the aggregated subunit variables alone [27].

This fact leads to quantitative errors produced by the subunit noise

approach, as we will review below.

Subunit noise was first proposed in [22] and has been used

many times; see [10,14,17,19,47–54], among others. By applying a

system-size expansion to the states of populations of subunits, Fox

and Lu arrived at a Langevin equation description of the subunit

dynamics, precisely of the form of Equation 2*, where the noise

terms jx(V ,t) (x~m,h, or n) are Gaussian processes with covari-

ance function

E½jx(t),jx(t’)�~ ax(1{x)zbxx

N
d(t{t’): ð3Þ

Here, d(:) is the Dirac delta function and N represents either the

number of Naz channels for the m and h subunits or the number

of Kz channels for the n subunit. Although the authors

acknowledged that the subunit noise approach has no rigorous

justification and must be validated empirically, it has been widely

used as an approximation to Markov chain ion channel models.

However, numerical studies have revealed inaccuracies in this

approximation that persist even as the number of channels

increases [35,37]. Relative to the Markov chain model, the subunit

noise models produce weaker conductance and voltage fluctua-

tions [37,55], lower firing rates [12] (and, equivalently, longer

mean interspike intervals [35]), and less variability in the

occurrences and timing of spikes in response to a brief pulse of

current [34,36], and transmit information at a higher rate [12].

Furthermore, mathematical analyses of the voltage clamp statistics

of the subunit noise model have proven that it does not generate

stationary distributions of open channels that accurately approx-

imate those of the Markov chain model [27,38].

The analysis in [27] revealed similar inaccuracies in a related

model proposed by [19], in which the terms m3h and n4 terms in

Equation 1 are replaced by m1m2m3h and n1n2n3n4, respectively,

where the subscript denotes independent solutions to SDEs of the

form of Equation 2*. Others have proposed simplifying Equation 3 so

that the noise terms do not depend on V , and are simply Gaussian

white noise [10]. While such approaches may be justifiable on

empirical grounds, in general they should not be considered as

systematic approximations to Markov chain ion channel models.

Conductance Noise
The remaining possibility is to incorporate fluctuations directly

into the fractions of open channels. This seems natural, as the

fraction of open channels controls ionic currents. Our intuitive

understanding of the HH equations, which can be made rigorous

as in [23,25,27], tells us that the mean fractions of open Naz and

Kz channels are given by m3h and n4. The most direct approach

to adding channel noise to the HH equations, therefore, is to add

zero mean stochastic processes to the deterministic values of m3h
and n4. Following this idea leads to Equation 1**, which is a

compact mathematical description of channel noise that preserves

the original structure of the HH equations and has the

biophysically desirable interpretation that channel noise induces

fluctuations in the ionic conductances. We now review three

channel noise models [22,27,38] and, with a brief set of

calculations, place them in the unified framework of conductance

noise.

Conductance noise models based on voltage clamp. Two

recent studies have developed conductance noise models based on

stationary statistics of channel activity in voltage clamp—called the

‘‘quasistationary’’ channel model in [27] and the ‘‘effective’’ model

in [38]. Using the standard assumption that all ion channels are

independent, the stationary distribution of open channels in

voltage clamp is a binomial distribution parameterized by the total

number of channels and the probability that any given channel is

open. The probability that a channel is open depends on V , and

thus a voltage clamp analysis generates a family of binomial

distributions indexed by V , which is treated as a fixed parameter.

The means of the distributions of open channels are given by

familiar terms from the deterministic HH equations: m3h for Naz

channels and n4 for Kz channels. If these binomial distributions

are well approximated by Gaussian distributions, then the

stationary distribution of open channels in voltage clamp can be

accurately approximated by a family of zero mean, voltage-

dependent Gaussian processes that are added to the voltage-

dependent equilibrium values of m3h and n4.

The effective model of [38], for instance, represents the fraction

of open Kz channels in voltage clamp as n4zjK(V ,t) where the

stochastic process jK(V ,t) is the sum of independent Ornstein-

Uhlenbeck (OU) processes (i.e., Gaussian colored noise). In other

words, jK(V ,t)~
P

i fi(V ,t), where the fi(t) are defined by SDEs

of the form:

dfi(V ,t)~{
fi(V ,t)

ti(V )
dtzsi(V)dWi(t) ð4Þ

with timescales ti(V ) and noise amplitudes si(V ) [38]. The

quasistationary channel model in [27] produces equivalent

Gaussian processes in voltage clamp. The difference between the

two methods is that, in [27], there is a single noise process shared

Table 1. Classification of channel noise models.

Noise Model Voltage Dynamics Subunit Dynamics Fraction Open Na+ Channels Fraction Open K+ Channels

None Equation 1 Equation 2 m3h n4

Current Equation 1* Equation 2 m3h n4

Subunit Equation 1 Equation 2* m3h n4

Conductance Equation 1** Equation 2 m3hzjNa(t) n4zjK(t)

A summary of the three classes of channel noise models that we discuss in this review, and how they differ from the deterministic HH equations, which have no noise.
doi:10.1371/journal.pcbi.1002247.t001
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by all OU processes: dWi(t)~dW (t) for all i in Equation 4. While

this leads to different values of si(V ), our own simulations of these

models (not shown) did not reveal any systematic differences in the

outputs of the two models.

To simulate such conductance noise models for a freely evolving

membrane potential, one must assume Equation 4 is valid outside

of voltage clamp. In practice, one numerically integrates Equation

4, where V is updated in each time step according to Equation

1**. There is no assurance that this approach is valid in the context

of a dynamic membrane potential. If V changes on longer time

scales than the correlation times in the conductance fluctuations,

then such an approximation may be appropriate, but an essential

feature of neural dynamics is the rapid change in V during the

course of an action potential. Voltage clamp–based methods may

be less reliable, therefore, for modeling the spiking activity of

neurons.

These channel noise models were developed in [27] and [38] in

order to approximate the original Markov chain description of

channel kinetics. Their structural details—i.e., the number of

fi(V ,t) processes used to define jK (V ,t) and jNa(V ,t) and the

values of ti(V ) and si(V) in Equation 4—were defined based on

the stationary statistics of the Markov chain model. The voltage

clamp approach itself, however, can be made general and model

independent. The only necessary ingredients are the autocovar-

iance functions, as a function of the voltage clamp value, for

fluctuations in the conductances. Moreover, if these stationary

autocovariance functions can be expressed as sums of exponential

functions, then the Gaussian representation theory for multiple

Markov processes ensures that they can be approximated as a

linear combination of OU processes [56].

Conductance noise models based on Fox and Lu’s system

size expansion. Lacking in all of the previously discussed

methods is a direct approach for modeling the dynamics of

fluctuations in the fractions of open channels as the voltage V
dynamically evolves. Surprisingly, the early work of Fox and Lu

addressed this problem, but has apparently been overlooked ever

since. Fox and Lu derived a system of SDEs in which each

dynamical variable represents the fraction of ion channels in a

specified configuration. This differs from their more widely used

model, the subunit model discussed previously, in which the

dynamical variables represent the fractions of open subunits. The

resulting system of SDEs does not visibly resemble the HH

equations, but with a few calculations we next show that this

approach produces a conductance noise model in the form of

Equation 1**.

The starting point of Fox and Lu’s analysis are vectors that

describe the fractions of Naz and Kz channels in each

configuration as a function of time. We denote these by y(t) and

x(t). For instance, the elements of x represent the fraction of Kz

channels that have all subunits closed, three subunits closed and

one open, etc. The state that will be of most interest is the

conducting state, in which all subunits are open. We denote the

corresponding elements of y and x as yo and xo, and write the

current balance equation as:

C
dV

dt
~{�ggNayo(V{ENa){�ggKxo(V{EK){gL(V{EL)zI ð5Þ

The dynamics of yo and xo are determined by drift and diffusion

matrices (see below), which Fox and Lu obtained from the original

Markov chain description through a system size expansion

[22,33,57]. We omit the details of the system size expansion,

which can be found in [22,33]. We also note that a rigorous

discussion of a related method for passing from the Markov chain

kinetics to a system of SDEs has been recently presented [26]. The

result of Fox and Lu’s expansion is a coupled system of linear

SDEs of the form:

dy~ANa(V )ydtzSNa(V ,y)dWNa(t): ð6Þ

dx~AK(V )xdtzSK(V ,x)dWK(t): ð7Þ

The matrices ANa(V ) and AK(V ) are the drift term or

deterministic part of the dynamics, and are identical to the

transition matrices from the master equation representation of the

Markov chains for the Naz and Kz channels [22,25,27]. The

matrices SNa(V ,y) and SK(V ,x) are matrix square roots of

diffusion matrices; they depend on the state variable and the

voltage-dependent transition rates. Stochasticity arises via the

independent, standard Brownian processes WNa(t) and WK(t).

We now demystify the connection between these equations, in

which fractions of open channels are obtained from a high-

dimensional system of coupled SDEs, and the standard HH

equations, in which the fractions of open channels depend on the

subunit variables. The key is to split the equations for x and y into

two parts: a deterministic equation that exactly matches the gating

variable equation (2), and a fluctuation equation for the noise

terms. To accomplish this, we define new variables �xx and x̂x, which

evolve via:

d�xx~AK(V )�xxdt ð8Þ

dx̂x~AK(V )x̂xdtzSK(V ,�xxzx̂x)dW(t), ð9Þ

with initial conditions �xx(0)~x(0) and x̂x(0)~0. The sum �xxzx̂x
solves Equation 7, so this is an exact decomposition of x into a

deterministic part �xx and a fluctuation part x̂x. We can also apply a

similar decomposition to y. As discussed by a number of authors

[23,25,27], solutions to the deterministic equation (Equation 8)

can be generated by appropriate combinations of m,n,h, the gating

variables from the deterministic HH equations: �yyo~m3h and

�xxo~n4. This leaves the fundamental structure of the HH

equations intact. Equation 5 can be replaced by the modified

HH voltage equation (Equation 1**), where the conductance noise

terms jK(V ,t) and jNa(V ,t) are defined to be x̂xo(t) and ŷyo(t),
respectively.

In sum, the high-dimensional SDEs derived by Fox and Lu [22]

do not modify the deterministic structure of the HH equations.

Instead, as shown in Equation 9, their sole purpose is to shape the

fluctuations in the fractions of open channels. An important

strength of this method is that it yields a description of channel

fluctuations that is equally valid outside of voltage clamp.

Furthermore, as shown in [27], the stationary statistics of open

channels for this method match exactly those of the Markov chain

model, and it accurately replicates spiking statistics for channel

numbers as small as 600 Naz and 180 Kz channels (membrane

area of 10 mm2).

One complication in solving these systems of SDEs is the need

to determine SNa(V ,y) and SK(V ,x) by computing matrix square

roots in each time step. In order to guarantee the existence of these

matrix square roots, we replace the values y and x in the diffusion

matrices with deterministic values obtained from the gating

variables, or equivalently the solutions of Equation 8 for x and

the corresponding equation for y.
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Comparing Stochastic Versions of the Hodgkin-
Huxley Equations: Simulations

How well do the simplified noise models match the ‘‘gold

standard’’ Markov chain model of ion channel kinetics? Extensive

comparisons between Markov chain and subunit noise models

have been reported in prior studies [12,27,34,35,37]. Studies have

also compared Markov chain models to a current noise model

[15], voltage clamp conductance noise models [27,38], and Fox

and Lu’s system size–derived conductance model [27,39]. An

exhaustive numerical investigation of these approaches is beyond

the scope of this review, but in Figure 1 and Figure 2 we show

simulation results that illustrate key differences among these

approaches. All simulations use standard parameter values for the

HH equations [20]. The voltage clamp conductance noise model

is defined as in [38]. In all simulations, we used the Euler-

Maruyama method with 0:01 ms time step for solving the relevant

differential equations [58] and a Gillespie-type algorithm to

implement the ion channel kinetics in the Markov chain [28,30].

To generate Gaussian pseudorandom numbers, we produced

uniform pseudorandom numbers with the Mersenne Twister

algorithm [59] and then transformed these using the Box-Muller

method [60]. Simulation code is available upon request, and is

based on the work of [38] and [27]. Both of these groups have

made their code available on the ModelDB website [61], accession

numbers 127992 and 128502, respectively. To complement this

review, we supply user-friendly MATLAB simulation code of these

stochastic versions of the HH equations on the ModelDB website

(accession number 138950) and at our website http://www.amath.

washington.edu/,etsb/tutorials.html.

We will first compare time-varying distributions of the fractions

of open channels. Intuitively, one would expect that the number of

open channels (all of which are assumed to be independent),

should be binomially distributed. For a predefined voltage

trajectory, this is indeed the case, as has been proven by [25].

The time-varying distributions of the fractions of open Naz and

Kz channels in a Markov chain model of ion channel kinetics

approach an asymptotically stable, voltage-dependent binomial

distribution with means and variances given by solutions to the

deterministic subunit equations of Equation 2:

E½Fraction Open Nazchannels�~m3h ð10Þ

E½Fraction Open Kzchannels�~n4 ð11Þ

Var½Fraction Open Nazchannels�~ m3h(1{m3h)

NNa

ð12Þ

Var½Fraction Open Kzchannels�~ n4(1{n4)

NK
ð13Þ

We can use this result to compare channel noise models outside of

voltage clamp. Figure 1A shows a single voltage trace obtained

from a Markov chain model with 6,000 Naz channels and 1,800

Kz channels (membrane area 100 mm2) with no applied current

(I~0 mA cm{2). Using this sample path as an input to the channel

noise models, we compare the statistics of the fractions of open

channels for the different models. Figure 1B shows the mean

fractions of open Naz and Kz channels, as computed from

Equations 10 and 11. All channel noise models produced mean

values that were in close agreement with these values, so we did

not plot those results.

The results for the variance of the fractions of open channels, as

shown in Figure 1C and 1D, tell a different story. The variance in

the fractions of open Naz channels are computed from Equation

12 and shown in black in Figure 1C. The variance is accurately

captured by Fox and Lu’s conductance noise model (red), but

misestimated by the subunit noise model (blue) and voltage clamp

conductance noise model (green). Of particular note is the fact that

the voltage clamp conductance noise model fails to track the

Markov chain variance during the spike (right inset of Figure 1C).

Figure 1. Analysis of responses of channel noise models for a
fixed voltage trajectory. (A) Voltage trace obtained from the Markov
chain model with no current input, 6,000 Naz channels and 1,800 Kz

channels. Dynamics are characterized by a prolonged subthreshold
period followed by a spontaneous, channel noise-induced spike at
70 ms. (B) Means of fraction of open Naz and Kz channels for the
voltage trace shown in (A), as computed from Equations 10 and 11. (C)
Variance in the fraction of open Naz channels. (D) Variance in the
fraction of open Kz channels. Left insets in (C and D) show magnified
views of the period preceding the spike. Right inset in (C) shows
magnified view during the spike. For (C and D), exact variances (black)
were computed from Equation 12 and Equation 13 and all other
variances were estimated from 5,000 repeated simulations of the
channel noise models.
doi:10.1371/journal.pcbi.1002247.g001

PLoS Computational Biology | www.ploscompbiol.org 5 November 2011 | Volume 7 | Issue 11 | e1002247



This illustrates the point, made earlier, that voltage clamp methods

may not be appropriate in regimes when V changes rapidly. The

subunit noise model underestimates the variance during the

subthreshold period (left inset), and overestimates the variance

during the spike at *70 ms (right inset).

Figure 1D shows variances in the fraction of Kz channels.

Again, Fox and Lu’s conductance noise model is most consistent

with the equilibrium binomial distribution result. The voltage

clamp model provides a reasonably close approximation, but the

subunit noise model alternately undervalues the variance prior to

the spike (see inset), and overvalues the variance near the time of

the spike.

To illustrate the differences in the spiking activity of these

models, we simulated spike trains in response to constant current

inputs. In Figure 2, we show the mean and coefficients of variance

(CV) of interspike intervals (ISIs) obtained from simulations of the

Markov chain and SDE models. Similar simulation results have

been reported in [12,15,27,35]. We present results for different

amounts of constant current input (x-axis) and a membrane areas

of 100 mm2 (6,000 Naz channels and 1,800 Kz channels). The

magnitude of fluctuations in the current noise model was chosen so

that the mean insterspike interval of this model would match that

of the Markov chain model: jV (t)~1:94g(t) for a membrane area

of 100 mm2, where g(t) is a Gaussian white noise process with

mean zero and E½g(t)g(t’)�~d(t{t’).
In Figure 2A, we see that all models, with the known exception

of the subunit noise model (blue), accurately reproduce the mean

ISIs of the Markov chain (black), although there are slight

discrepancies apparent for the current noise (cyan) and voltage

clamp (green) methods. These discrepancies are even more visible

when comparing the coefficient of variation of the ISIs in

Figure 2B. For the conditions tested, and others reported in prior

studies [27,39], it is clear that Fox and Lu’s conductance noise

model (red) generates ISI statistics that are most similar to the

Markov chain model.

Beyond the Classical Hodgkin-Huxley
Formulation

We have focused our discussion on the HH equations because

they are a historical touchstone in the field of computational

neuroscience and the subject of a large body of research on the

effects and modeling of channel noise. These methods, however,

can be applied to many alternative models of ion channel

dynamics in excitable cells. To briefly illustrate this point, we

consider an updated model of Naz channel dynamics [40] and

Kz channel dynamics [41] that provide a more complete and

accurate description of observed spiking activity in the squid giant

axon preparation originally investigated by Hodgkin and Huxley

[41,62]. The details of this model can be found in [41].

Figure 3 illustrates the difference between the kinetic scheme for

the classical HH equations (Figure 3A) and the modified model

(Figure 3B). The channel is said to be open if it is in the (3,1) state

in Figure 3A and the O state in the modified Markov chain in

Figure 3B. In contrast to the classical HH description, the

modified model cannot be represented by a serial combination of

identical and independent subunit particles [40]. As such, the

modified model cannot be approximated with the typical subunit

noise model and it provides an important test of whether

conductance noise approximations can be applied to a rich set

of channel configurations.

In Figure 4, we characterize the response of this model to a step

of current that increases from 0 to 10 mA cm{2 at 50 ms.

Numerical methods are similar to those described above and in

[27]. A shorter time step of 0:005 ms was used for these

simulations. Parameter values are given in [41]. An action

potential produced by the Markov chain version of this model is

shown in Figure 4A with the onset time of the current step marked

by the gray arrow. To test the accuracy of this SDE approximation

method, we then used this voltage trace as an input to both the

Markov chain and a conductance noise SDE model using Fox and

Lu’s system size approach. The mean fractions of open Naz and

Kz channels are shown in Figure 4B, the variances of the open

Naz channels are shown in Figure 4C, and the variances of open

Kz channels are shown in Figure 4D. All statistics are computed

from 5,000 repeated simulations of the model using the same

voltage trace (Figure 4B) as the input. For the most part, the SDE

approximation accurately represents the activity of the Markov

chain model, although the variance of the fraction of open Kz

channels exceeds that of the Markov chain model following

initiation of the spike.

To investigate whether these discrepancies affect the times at

which spikes are generated, we study the distribution of simulated

spike times for the two models in response to the same current step

described above. The mean and standard error of ten histograms

created from 500 spike times each and a bin size of 0.15 ms are

shown in Figure 4E. The gray arrow marks the time at which a

Figure 2. ISI statistics for DC input. (A) Mean of ISIs for a membrane
area of 100 mm2 (6,000 Naz and 1,800 Kz channels). (B) CV of ISIs for
same membrane area as (A). 500 spikes were used to estimate the mean
and variance, and error bars indicate standard error in the mean for ten
repeated measurements for all models except the Markov chain model,
for which only four repeated measurements were used.
doi:10.1371/journal.pcbi.1002247.g002

Figure 3. Markov chain kinetic models of the Na+ channel in
squid giant axon. (A) Kinetic scheme for the classical HH model of the
Na channel. (B) Kinetic scheme for the Vandenberg and Bezanilla model
of the Na channel. Arrows are labeled with transition rates that are
functions of voltage, see [20] and [41] for further details. The open
states are those in the bottom right: (3,1) in (A) and O in (B).
doi:10.1371/journal.pcbi.1002247.g003
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deterministic ODE version of this model generates a spike. The

SDE model obtained using Fox and Lu’s system size approxima-

tion (red line) has some bias toward producing early spikes (before

52 ms) and late spikes (after 53 ms), but overall the two channel

noise models produce similar distributions of spike times in

response to this stimulus.

In sum, it appears that the conductance noise method of Fox

and Lu does accurately approximate the behavior of the Markov

chain version of this modified model of channel noise in the squid

giant axon, though the agreement is slightly less precise than for

the classical HH framework. This points to an interesting area for

future work: we anticipate that similar techniques can be applied

to approximate Markov chain models of other ion channels in

excitable cells, but such methods, and the details of their numerical

implementation, should be compared and validated by analytical

and numerical means.

Discussion

We stand at a promising moment for the study of channel noise

in conductance-based models. In recent years, due to a spate of

simulation studies drawing attention to discrepancies between

subunit noise models and Markov chain ion channel models

[12,27,34,35,37,38], there has been a growing sense of pessimism

regarding whether SDEs could prove an effective framework for

modeling the stochastic activity of populations of ion channels

(e.g., [55]). However, thanks to the development of novel

approximation methods [27,38] and the rediscovery, analysis,

and testing of past efforts [22,33], new life has been breathed into

the SDE approach. The validity of SDE versions of HH-type

equations is now more clearly established, and the door is open for

these models to generate insight into how channel effects spike

timing, reliability, propagation, and other aspects of neural

dynamics.

A central theme of this review is that the addition of fluctuations

in conductance terms, or equivalently in the fractions of open

channels, should be the preferred way for including channel noise

in stochastic versions of the HH equations and related models of

excitable cells. This approach, which we have termed conductance

noise, generates models that can be directly related to the

mathematical structure of underlying deterministic equations

and that accurately approximate Markov chain models. In the

case of the high-dimensional SDE model derived by Fox and Lu in

[22], this was not obvious at first glance, and may be one reason

why this aspect of their work has been overlooked. Through a brief

calculation, however, we elucidated the connection between this

model and the HH equations by showing how the high-

dimensional SDEs can be decomposed into a deterministic part

identical to the classical HH equations and a fluctuation part

representing channel noise.

Although SDE models for channel noise are generally validated

by making comparisons to the Markov chain model of ion channel

kinetics, there is no guarantee that the Markov chain framework

will remain the ‘‘gold standard.’’ Indeed, critiques of the Markov

chain approach have been articulated (cf. [63]) and alternative

mathematical models have been proposed (e.g., [64]). With this in

mind, it is useful to draw a distinction between ‘‘derived models’’

and ‘‘empirical models.’’ The subunit and conductance noise

models introduced by Fox and Lu [22,33] are in the former

category. They are constructed with explicit reference to the

conformational states of ion channels and their subunits, as

defined by a Markov chain model of ion channel kinetics. In

contrast, the current noise model and the voltage clamp

conductance noise models can be thought of as ‘‘empirical’’ since

Figure 4. Analysis of responses of modified channel noise
models to a step increase in current. (A) Voltage trace obtained
from the Markov chain model with 6,000 Naz channels and 1,800 Kz

channels. Input current is increased from 0 to 10 mA cm{2 at 50 ms,
onset time of the stimulus is marked by the gray arrow. (B) Means of
fraction of open Naz and Kz channels for the voltage trace shown in
(A). (C) Variance in the fraction of open Naz channels for the Markov
chain and system size-based conductance noise models. (D) Variance in
the fraction of open Kz channels for the Markov chain and system size-
based conductance noise models. Means and variances were estimated
from 5,000 repeated simulations of the channel noise models. (E)
Histogram of spike times in response to the step increase in current
described above. Solid lines show the mean of ten histograms
computed from 500 spike times each and error bars represent the
standard error in the mean. Gray arrow indicates the spike time of a
deterministic version of the model.
doi:10.1371/journal.pcbi.1002247.g004
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they can be constructed from observable quantities. In our

simulations, for instance, we used a spontaneous firing rate to set

the current noise level and the stationary statistics of open channels

in the Markov channel model to define the noise processes in the

voltage clamp conductance models. In principle, empirical

measurements of conductance fluctuations in voltage clamp,

without reference to a Markov chain model, could be used to

construct channel noise models. Empirical models that can be fit

to, or validated against, quantities that are readily available from

electrophysiological data are an attractive direction for future

research, as they may inspire new methods for incorporating

channel noise in conductance-based models.

The effects of channel noise have been a subject of intense

interest in computational neuroscience and related fields in

computational biology. The stochastic approaches reviewed in

this paper represent an important extension of the conductance-

based model framework introduced by Hodgkin and Huxley [20].

Due to decades of analysis of the HH equations and an abundance

of theoretical tools [65] and numerical methods (e.g., [66]) for

studying SDE models, we believe that appropriate methods for

adding noise processes to the HH equations and their cousins

throughout electrophysiology will play an important role in the

future of computational biology.
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