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Preface

The subject of this book, first order large-sample theory, constitutes a co-
herent body of concepts and results that are central to both theoretical and
applied statistics. This theory underlies much of the work on such different
topics as maximum likelihood estimation, likelihood ratio tests, the boot-
strap, density estimation, contingency table analysis, and survey sampling
methodology, to mention only a few. The importance of this theory has
led to a number of books on the subject during the last 20 years, among
them Ibragimov and Has’minskii (1979), Serfling (1980), Pfanzagl and We-
flmeyer (1982), Le Cam (1986), Rüschendorf (1988), Barndorff-Nielson and
Cox (1989, 1994), Le Cam and Yang (1990), Sen and Singer (1993), and
Ferguson (1996).

These books all reflect the unfortunate fact that a mathematically com-
plete presentation of the material requires more background in probability
than can be expected from many students and workers in statistics. The
present, more elementary, volume avoids this difficulty by taking advan-
tage of an important distinction. While the proofs of many of the theorems
require a substantial amount of mathematics, this is not the case with the
understanding of the concepts and results nor of their statistical applica-
tions.

Correspondingly, in the present introduction to large-sample theory, the
more difficult results are stated without proof, although with clear state-
ments of the conditions of their validity. In addition, the mode of probabilis-
tic convergence used throughout is convergence in probability rather than
strong (or almost sure) convergence. With these restrictions it is possible
to present the material with the requirement of only two years of calculus
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and, for the later chapters, some linear algebra. It is the purpose of the
book, by these means, to make large-sample theory accessible to a wider
audience.

It should be mentioned that this approach is not new. It can be found
in single chapters of more specialized books, for example, Chapter 14 of
Bishop, Fienberg, and Holland (1975) and Chapter 12 of Agresti (1990).
However, it is my belief that students require a fuller, more extensive treat-
ment to become comfortable with this body of ideas.

Since calculus courses often emphasize manipulation without insisting on
a firm foundation, Chapter 1 provides a rigorous treatment of limits and
order concepts which underlie all large-sample theory. Chapter 2 covers the
basic probabilistic tools: convergence in probability and in law, the central
limit theorem, and the delta method. The next two chapters illustrate the
application of these tools to hypothesis testing, confidence intervals, and
point estimation, including efficiency comparisons and robustness consider-
ations. The material of these four chapters is extended to the multivariate
case in Chapter 5.

Chapter 6 is concerned with the extension of the earlier ideas to statistical
functionals and, among other applications, provides introductions to U -
statistics, density estimation, and the bootstrap. Chapter 7 deals with the
construction of asymptotically efficient procedures, in particular, maximum
likelihood estimators, likelihood ratio tests, and some of their variants.
Finally, an appendix briefly introduces the reader to a number of more
advanced topics.

An important feature of large-sample theory is that it is nonparametric.
Its limit theorems provide distribution-free approximations for statistical
quantities such as significance levels, critical values, power, confidence co-
efficients, and so on. However, the accuracy of these approximations is not
distribution-free but, instead, depends both on the sample size and on the
underlying distribution. To obtain an idea of the accuracy, it is necessary
to supplement the theoretical results with numerical work, much of it based
on simulation. This interplay between theory and computation is a crucial
aspect of large-sample theory and is illustrated throughout the book.

The approximation methods described here rest on a small number of
basic ideas that have wide applicability. For specific situations, more de-
tailed work on better approximations is often available. Such results are not
included here; instead, references are provided to the relevant literature.

This book had its origin in a course on large-sample theory that I gave
in alternate years from 1980 to my retirement in 1988. It was attended
by graduate students from a variety of fields: Agricultural Economics, Bio-
statistics, Economics, Education, Engineering, Political Science, Psychol-
ogy, Sociology, and Statistics. I am grateful to the students in these classes,
and particularly to the Teaching Assistants who were in charge of the asso-
ciated laboratories, for many corrections and other helpful suggestions. As
the class notes developed into the manuscript of a book, parts were read



Preface ix

at various stages by Persi Diaconis, Thomas DiCiccio, Jiming Jiang, Fritz
Scholz, and Mark van der Laan, and their comments resulted in many im-
provements. In addition, Katherine Ensor used the manuscript in a course
on large-sample theory at Rice University and had her students send me
their comments.

In 1995 when I accompanied my wife to Educational Testing Service
(ETS) in Princeton, Vice President Henry Braun and Division Head Charles
Davis proposed that I give a course of lectures at ETS on the forthcoming
book. As a result, for the next 2 years I gave a lecture every second week
to an audience of statisticians from ETS and the surrounding area, and in
the process completely revised the manuscript. I should like to express my
thanks to ETS for its generous support throughout this period, and also
for the help and many acts of kindness I received from the support staff in
the persons of Martha Thompson and Tonia Williams. Thanks are also due
to the many members of ETS who through their regular attendance made
it possible and worthwhile to keep the course going for such a long time.
Special appreciation for their lively participation and many valuable com-
ments is due to Charles Lewis, Spencer Swinton, and my office neighbor
Howard Wainer.

I should like to thank Chris Bush who typed the first versions of the
manuscript, Liz Brophy who learned LaTeX specifically for this project
and typed the class notes for the ETS lectures, and to Faye Yeager who
saw the manuscript through its final version.

Another person whose support was crucial is my Springer-Verlag Editor
and friend John Kimmel, who never gave up on the project, helped it along
in various ways, and whose patience knows no bounds.

My final acknowledgment is to my wife Juliet Shaffer who first convinced
me of the need for such a book. She read the early drafts of the manuscript,
sat in on the course twice, and once taught it herself. Throughout, she gave
me invaluable advice and suggested many improvements. In particular, she
also constructed several of the more complicated figures and tables. Her
enthusiasm sustained me throughout the many years of this project, and
to her this book is gratefully dedicated.

Erich L. Lehmann
Berkeley, California
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1
Mathematical Background

Preview

The principal aim of large-sample theory is to provide simple approxima-
tions for quantities that are difficult to calculate exactly. The approach
throughout the book is to embed the actual situation in a sequence of
situations, the limit of which serves as the desired approximation.

The present chapter reviews some of the basic ideas from calculus re-
quired for this purpose such as limit, convergence of a series, and continu-
ity. Section 1 defines the limit of a sequence of numbers and develops some
of the properties of such limits. In Section 2, the embedding idea is intro-
duced and is illustrated with two approximations of binomial probabilities.
Section 3 provides a brief introduction to infinite series, particularly power
series. Section 4 is concerned with different rates at which sequences can
tend to infinity (or zero); it introduces the o, �, and O notation and the
three most important growth rates: exponential, polynomial, and logarith-
mic. Section 5 extends the limit concept to continuous variables, defines
continuity of a function, and discusses the fact that monotone functions
can have only simple discontinuities. This result is applied in Section 6
to cumulative distribution functions; the section also considers alternative
representations of probability distributions and lists the densities of prob-
ability functions of some of the more common distributions.
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1.1 The concept of limit

Large-sample (or asymptotic∗) theory deals with approximations to prob-
ability distributions and functions of distributions such as moments and
quantiles. These approximations tend to be much simpler than the exact
formulas and, as a result, provide a basis for insight and understanding
that often would be difficult to obtain otherwise. In addition, they make
possible simple calculations of critical values, power of tests, variances of
estimators, required sample sizes, relative efficiencies of different methods,
and so forth which, although approximate, are often accurate enough for
the needs of statistical practice.

Underlying most large-sample approximations are limit theorems in which
the sample sizes tend to infinity. In preparation, we begin with a discussion
of limits. Consider a sequence of numbers an such as

an = 1 − 1
n

(n = 1, 2, . . . ): 0,
1
2
,
2
3
,
3
4
,
4
5
,
5
6
, · · · ,(1.1.1)

and

an = 1 − 1
n2

(n = 1, 2, . . . ): 0,
3
4
,
8
9
,
15
16

,
24
25

,
35
36

, · · · ,(1.1.2)

or, more generally, the sequences

an = a − 1
n

and an = a − 1
n2

(1.1.3)

for some arbitrary fixed number a.
Two facts seem intuitively clear: (i) the members of both sequences in

(1.1.3) are getting arbitrarily close to a as n gets large; (ii) this “conver-
gence” toward a proceeds faster for the second series than for the first. The
present chapter will make these two concepts precise and give some simple
applications. But first, consider some additional examples.

The sequence obtained by alternating members of the two sequences
(1.1.3) is given by

an =




a − 1
n if n is odd,

a − 1
n2 if n is even:

(1.1.4)

a − 1, a − 1
4
, a − 1

3
, a − 1

16
, a − 1

5
, a − 1

36
, · · · .

∗The term “asymptotic” is not restricted to large-sample situations but is used quite
generally in connction with any limit process. See, for example, Definition 1.1.3. For
some general discussion of asymptotics, see, for example, DeBruijn (1958).
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For this sequence also, the numbers get arbitrarily close to a as n gets
large. However, they do so without each member being closer to a than
the preceding one. For a sequence an, n = 1, 2, . . . , to tend to a limit a as
n → ∞, it is not necessary for each an to be closer to a than its predecessor
an−1, but only for an to get arbitrarily close to a as n gets arbitrarily large.

Let us now formalize the statement that the members of a sequence
an, n = 1, 2, . . . , get arbitrarily close to a as n gets large. This means
that for any interval about a, no matter how small, the members of the
sequence will eventually, i.e., from some point on, lie in the interval. If
such an interval is denoted by (a − ε, a + ε) the statement says that from
some point on, i.e., for all n exceeding some n0, the numbers an will satisfy
a − ε < an < a + ε or equivalently

|an − a| < ε for all n > n0.(1.1.5)

The value of n0 will of course depend on ε, so that we will sometimes write
it as n0(ε); the smaller ε is, the larger is the required value of n0(ε).

Definition 1.1.1 The sequence an, n = 1, 2, . . . , is said to tend (or con-
verge) to a limit a; in symbols:

an → a as n → ∞ or lim
n→∞

an = a(1.1.6)

if, given any ε > 0, no matter how small, there exists n0 = n0(ε) such that
(1.1.5) holds.

For a formal proof of a limit statement (1.1.6) for a particular sequence
an, it is only necessary to produce a value n0 = n0(ε) for which (1.1.5) holds.
As an example consider the sequence (1.1.1). Here a = 1 and an−a = −1/n.
For any given ε, (1.1.5) will therefore hold as soon as 1

n < ε or n > 1
ε . For

ε = 1/10, n0 = 10 will do; for ε = 1/100, n0 = 100; and, in general, for any
ε, we can take for n0 the smallest integer, which is ≥ 1

ε .
In examples (1.1.1)–(1.1.4), the numbers an approach their limit from

one side (in fact, in all these examples, an < a for all n). This need not be
the case, as is shown by the sequence

an =




1 − 1
n if n is odd

1 + 1
n if n is even


 = 1 + (−1)n

1
n

.(1.1.7)

It may be helpful to give an example of a sequence which does not tend
to a limit. Consider the sequence

0, 1, 0, 1, 0, 1, . . .

given by an = 0 or 1 as n is odd or even. Since for arbitrarily large n, an
takes on the values 0 and 1, it cannot get arbitrarily close to any a for all
sufficiently large n.

The following is an important example which we state without proof.
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Example 1.1.1 The exponential limit. For any finite number c,(
1 +

c

n

)n
→ ec as n → ∞.(1.1.8)

To give an idea of the speed of the convergence of an =
(
1 + 1

n

)n to its limit
e, here are the values of an for a number of values of n, and the limiting
value e(n = ∞) to the nearest 1/100.

TABLE 1.1.1.
(
1 + 1

n

)n to the nearest 1/100
n 1 3 5 10 30 50 100 500 ∞
an 2.00 2.37 2.49 2.59 2.67 2.69 2.70 2.72 2.72

To the closest 1/1000, one has a500 = 2.716 and e = 2.718. �
The idea of limit underlies all of large-sample theory. Its usefulness stems

from the fact that complicated sequences {an} often have fairly simple
limits which can then be used to approximate the actual an at hand. Table
1.1.1 provides an illustration (although here the sequence is fairly simple).
It suggests that the limit value a = 2.72 shown in Table 1.1.1 provides a
good approximation for n ≥ 30 and gives a reasonable ballpark figure even
for n as small as 5.

Contemplation of the table may raise a concern. There is no guarantee
that the progress of the sequence toward its limit is as steady as the tabu-
lated values suggest. The limit statement guarantees only that eventually
the members of the sequence will be arbitrarily close to the limit value, not
that each member will be closer than its predecessor. This is illustrated by
the sequence (1.1.4). As another example, let

an =




1/
√

n if n is the square of an integer (n = 1, 4, 9, . . . )

1/n otherwise.
(1.1.9)

Then an → 0 (Problem 1.7) but does so in a somewhat irregular fashion.
For example, for n = 90, 91, . . . , 99, we see an getting steadily closer to the
limit value 0 only to again be substantially further away at n = 100. In
sequences encountered in practice, such irregular behavior is rare. (For a
statistical example in which it does occur, see Hodges (1957)). A table such
as Table 1.1.1 provides a fairly reliable indication of smooth convergence
to the limit.

Limits satisfy simple relationships such as: if an → a, bn → b, then

an + bn → a + b and an − bn → a − b,(1.1.10)

an · bn → a · b(1.1.11)
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and

an/bn → a/b provided b �= 0.(1.1.12)

These results will not be proved here. Proofs and more detailed treatment
of the material in this section and Section 1.3 are given, for example, in
the classical texts (recently reissued) by Hardy (1992) and Courant (1988).
For a slightly more abstract treatment, see Rudin (1976).

Using (1.1.12), it follows from (1.1.8), for example, that(
1 + a

n

1 + b
n

)n
→ ea−b as n → ∞.(1.1.13)

An important special case not covered by Definition 1.1.1 arises when a
sequence tends to ∞. We say that an → ∞ if eventually (i.e., from some
point on) the a’s get larger than any given constant M. Proceeding as in
Definition 1.1.1, this leads to

Definition 1.1.2 The sequence an tends to ∞; in symbols,

an → ∞ or lim
n→∞

an = ∞(1.1.14)

if, given any M , no matter how large, there exists n0 = n0 (M) such that

an > M for all n > n0.(1.1.15)

Some sequences tending to infinity are

an = nα for any α > 0(1.1.16)

(this covers sequences such as 3
√

n = n1/3,
√

n = n1/2, . . . and n2, n3, . . . );

an = eαn for any α > 0;(1.1.17)

an = log n, an =
√

log n, an = log log n.(1.1.18)

To see, for example, that log n → ∞, we check (1.1.15) to find that log n >
M provided n > eM (here we use the fact that elogn = n), so that we can
take for n0 the smallest integer that is ≥ eM .

Relations (1.1.10)–(1.1.12) remain valid even if a and/or b are ±∞ with
the exceptions that ∞−∞,∞ · 0, and ∞/∞ are undefined.

The case an → −∞ is completely analogous (Problem 1.4) and requires
the corresponding restrictions on (1.1.10)–(1.1.12).

Since throughout the book we shall be dealing with sequences, we shall
in the remainder of the present section and in Section 4 consider relations
between two sequences an and bn, n = 1, 2, . . . , which are rough analogs of
the relations a = b and a < b between numbers.
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Definition 1.1.3 Two sequences {an} and {bn} are said to be (asymptot-
ically) equivalent as n → ∞; in symbols:

an ∼ bn(1.1.19)

if

an/bn → 1.(1.1.20)

This generalizes the concept of equality of two numbers a and b, to which
it reduces for the sequences a, a, a, . . . and b, b, b, . . . .

If bn tends to a finite limit b �= 0, (1.1.20) simply states that an tends
to the same limit. However, if the limit b is 0 or ±∞, the statement an ∼
bn contains important additional information. Consider, for example, the
sequences an = 1/n2 and bn = 1/n, both of which tend to zero. Since their
ratio an/bn tends to zero, the two sequences are not equivalent. Here are
two more examples:

an = n + n2, bn = n(1.1.21)

and

an = n + n2, bn = n2,(1.1.22)

in both of which an and bn tend to ∞. In the first, an/bn → ∞ so that
an and bn are not equivalent; in the second, an/bn → 1 so that they are
equivalent.

A useful application of the idea of equivalence is illustrated by the se-
quences

an =
1
n

+
3
n2

+
1
n3

, bn =
1
n

.(1.1.23)

Both an and bn tend to zero. Since their ratio satisfies

an
bn

= 1 +
3
n

+
1
n2

→ 1,

the two sequences are equivalent. The replacement of a complicated se-
quence such as an by a simpler asymptotically equivalent sequence bn plays
a central role in large-sample theory.

Replacing a true an by an approximating bn of course results in an error.
Consider, for example, the two equivalent sequences (1.1.22). When n =
100,

an = 10, 100, bn = 10, 000,
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and the error (or absolute error) is |an− bn| = 100. On the other hand, the

relative error =
∣∣∣∣an − bn

an

∣∣∣∣(1.1.24)

is
100

10, 100
which is less than .01. The small relative error corresponds to

the fact that, despite the large absolute error of 100, bn gives a pretty good
idea of the size of an.

As the following result shows, asymptotic equivalence is closely related
to relative error.

Lemma 1.1.1 The sequences {an} and {bn} are symptotically equivalent
if and only if the relative error tends to zero.

Proof. The relative error∣∣∣∣an − bn
an

∣∣∣∣ =
∣∣∣∣1 − bn

an

∣∣∣∣→ 0

if and only if bn/an → 1. �

The following is a classical example of asymptotic equivalence which
forms the basis of the application given in the next section.

Example 1.1.2 Stirling’s formula. Consider the sequence

an = n! = 1 · 2 · · ·n.(1.1.25)

Clearly, an → ∞ as n → ∞, but it is difficult from the defining formula
to see how fast this sequence grows. We shall therefore try to replace it by
a simpler equivalent sequence bn. Since nn is clearly too large, one might
try, for example, (n/2)n. This turns out to be still too large, but taking
logarithms leads (not obviously) to the suggestion bn = (n/e)n. Now only a
relatively minor further adjustment is required, and the final result (which
we shall not prove) is Stirling’s formula

n! ∼
√

2πn (n/e)n .(1.1.26)

The following table adapted from Feller (Vol. 1) (1957), where there is also
a proof of (1.1.26), shows the great accuracy of the approximation (1.1.26)
even for small n.

It follows from Lemma 1.1.1 that the relative error tends to zero, and this
is supported by the last line of the table. On the other hand, the absolute
error tends to infinity and is already about 30,000 for n = 10. �

The following example provides another result, which will be used later.
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TABLE 1.1.2. Stirling’s approximation to n!

n 1 2 5 10 100
n! 1 2 120 3.6288 × 106 9.3326 × 10157

(1.26) .922 1.919 118.019 3.5987 × 106 9.3249 × 10157

Error .078 .081 1.981 .0301 × 106 .0077 × 10157

Relative Error .08 .04 .02 .008 .0008

Example 1.1.3 Sums of powers of integers. Let

S(k)n = 1k + 2k + · · · + nk (k a positive integer)(1.1.27)

so that, in particular,

S(0)n = n, S(1)n =
n (n + 1)

2
, and S(2)n =

n (n + 1) (2n + 1)
6

.

These formula suggest that perhaps

S(k)n ∼ nk+1

k + 1
for all k = 1, 2, . . . ,(1.1.28)

and this is in fact the case. (For a proof, see Problem 1.14). �

Summary

1. A sequence of numbers an tends to the limit a if for all sufficiently
large n the a’s get arbitrarily close [i.e., within any preassigned dis-
tance ε] to a. If an → a, then a can be used as an approximation for
an when n is large.

2. Two sequences {an} and {bn} are asymptotically equivalent if their
ratio tends to 1. The members of a complicated sequence can often be
approximated by those of a simpler sequence which is asymptotically
equivalent. In such an approximation, the relative error tends to 0 as
n → ∞.

3. Stirling’s formula provides a simple approximation for n!. The relative
error in this approximation tends to 0 as n → ∞ while the absolute
error tends to ∞.

1.2 Embedding sequences

The principal aim of the present section is to introduce a concept which
is central to large-sample theory: obtaining an approximation to a given
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situation by embedding it in a suitable sequence of situations. We shall il-
lustrate this process by obtaining two different approximations for binomial
probabilities corresponding to two different embeddings.

The probability of obtaining x successes in n binomial trials with success
probability p is

Pn (x) =
(

n

x

)
pxqn−x where q = 1 − p.(1.2.1)

Suppose that n is even and that we are interested in the probability Pn

(n

2

)
of getting an even split between successes and failures. It seems reasonable
to expect that this probability will tend to 0 as n → ∞ and that it will be
larger when p = 1/2 than when it is �= 1/2.

To get a more precise idea of this behavior, let us apply Stirling’s formula
(1.1.26) to the three factorials in

Pn

(n

2

)
=

n!(n

2

)
!
(n

2

)
!
(pq)n/2 .

After some simplification, this leads to (Problem 2.1)

Pn

(n

2

)
∼
√

2
π
· 1√

n

(√
4pq
)n

.(1.2.2)

We must now distinguish two cases.
Case 1. p = 1/2. Here we are asking for an even split between heads and
tails in n tosses with a fair coin. The third factor in (1.2.2) is then 1, and
we get the simple approximation

Pn

(n

2

)
∼
√

2
π
· 1√

n
when p = 1/2.(1.2.3)

This result confirms the conjecture that the probability tends to 0 as n →
∞. The exact values of Pn

(n

2

)
and the approximation (1.2.3) are shown

in Table 1.2.1 for varying n.

TABLE 1.2.1. Pn

(n
2

)
for p = 1/2

n 4 20 100 500 1,000 10,000
Exact .375 .176 .0796 .0357 .0252 .00798
(1.2.3) .399 .178 .0798 .0357 .0252 .00798

A surprising feature of the table is how slowly the probability decreases.
Even for n = 10, 000, the probability of an exactly even 5,000–5,000 split
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is not much below .01. Qualitatively, this could have been predicted from
(1.2.3) because of the very slow increase of

√
n as a function of n. The table

indicates that the approximation is highly accurate for n > 20.
Case 2. p �= 1/2. Since

√
4pq < 1 for all p �= 1/2 (Problem 2.2), the approx-

imate probabilities (1.2.3) for p = 1/2 are multiplied by the nth power of a
number between 0 and 1 when p �= 1/2. They are therefore greatly reduced
and tend to 0 at a much faster rate. The exact values of Pn

(n

2

)
and the

approximation (1.2.2) are shown in Table 1.2.2 for the case p = 1/3. Again,

TABLE 1.2.2. Pn

(n
2

)
for p = 1/3

n 4 20 100 1,000 10,000
Exact .296 .0543 .000220 6.692 × 10−28 1.378 × 10−258

(2.2) .315 .0549 .000221 6.694 × 10−28 1.378 × 10−258

the approximation is seen to be highly accurate for n > 20.
A comparison of the two tables shows the radical difference in the speed

with which Pn

(n

2

)
tends to 0 in the two cases.

So far we have restricted attention to the probability of an even split,

that is, the case in which
x

n
=

1
2
. Let us now consider the more general

case that x/n has any given fixed value α (0 < α < 1), which, of course,
requires that αn is an integer. Then

Pn (x) =
(

n

αn

)(
pαq1−α

)n
and application of Stirling’s formula shows in generalization of (1.2.2) that
(Problem 2.3)

Pn (αn) ∼ 1√
2πα (1 − α)

· 1√
n

γn(1.2.4)

with

γ =
( p

α

)α( q

1 − α

)1−α
.(1.2.5)

As before, there are two cases.
Case 1. p = α. This is the case in which p is equal to the frequency of
success, the probability of which is being evaluated. Here γ = 1 and (1.2.4)
reduces to

Pn (αn) ∼ 1√
2πα (1 − α)

· 1√
n

when p = α.(1.2.6)
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TABLE 1.2.3. Pn

( n

100

)
for p = .01

x =
n

100
1 2 5 10 100

n 100 200 500 1,000 10,000
Exact .370 .272 .176 .126 .0401

(1.2.6) for α = .01 .401 .284 .179 .127 .0401
(1.2.8) .368 .271 .176 .125 .0399

γ 1 2 5 10 100

The exact values of Pn (αn) and the approximation (1.2.6) are shown in the
first two rows of Table 1.2.3 for the case α = .01. The results are similar to
those of Table 1.2.1, except that the approximation (1.2.6) does not become
satisfactory until n = 500. We shall return to this difficulty below.
Case 2. p �= α. Here formula (1.2.4) applies, and it can be shown that 0 <
γ < 1 when p �= α (Problem 2.4), so that the approximate probabilities
will be much smaller than when γ = α. The exact values of Pn (αn) and
the approximation (1.2.4) are shown in the first two rows of Table 1.2.4
for the case α = .01, γ = .02. Again, the results are similar to those for

TABLE 1.2.4. Pn

( n

100

)
for p = .02

x =
n

100
1 2 5 10 100

n 100 200 500 1,000 10,000
Exact .271 .146 .0371 .00556 1.136 × 10−15

(1.2.4) .294 .152 .0377 .00560 1.137 × 10−15

(1.2.8) .271 .146 .0378 .00582 1.880 × 10−15

γ 2 4 10 20 200

α = 1/2 (Table 1.2.2) except that it requires much larger values of n before
the approximation becomes satisfactory.

The diminished accuracy for n = 100 and 200 in Tables 1.2.3 and 1.2.4 is
explained by the small values of x in these cases, since the approximations
were based on the assumption that not only n but then also x = αn is
large. The table entries in question correspond to situations in which n is
large and x is small but, nevertheless, the probability Pn (x) of observing x
is appreciable. To obtain a better approximation for such cases, note that
Pn (x) is a function of the three variables x, p, and n. If p is fixed, it is
nearly certain that only large values of x will occur when n is large. To
obtain situations in which small values of x have appreciable probability
for large n, it is necessary to allow p to become small as n gets large.
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For large n, we expect x/n to be close to p; so small values of x, say
between 1 and 5, are most likely when np is in this range. This suggests
letting p be proportional to 1/n, say

p =
λ

n
.(1.2.7)

Then

Pn (x) =
n!

x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x
.

Now

n!
nx (n − x)!

=
n (n − 1) · · · (n − x + 1)

nx
→ 1 as n → ∞

and by (1.1.8)

(
1 − λ

n

)n−x
∼
(

1 − λ

n

)n
→ e−λ,

so that

Pn (x) → λx

x!
e−λ.(1.2.8)

The terms on the right side of (1.2.8) are the probabilities P (X = x) of the
Poisson distribution with parameter λ = E (X), and (1.2.8) is the Poisson
approximation to the binomial distribution.

To see how well the approximation works for small x and large n, con-
sider once more Table 1.2.4. The third row (with λ in place of γ) shows that
for small values of x, the Poisson approximation is considerably more ac-
curate than the earlier approximation (1.2.4) which was based on Stirling’s
formula. On the other hand, as x increases, the Poisson approximation
becomes less accurate.

Formulas (1.2.4) and (1.2.8) provide two different approximations for
binomial probabilities with large n. Both are obtained by considering se-
quences (n, pn, xn) for increasing n, and determining the limit behavior of
Pn (x) = f (n, x, p) for these sequences. A given situation can be viewed as
a member of either sequence. To be specific, suppose we want an approx-
imation for the case that n = 100, x = 1, and p = 1/100. We can embed
this situation in the two sequences as follows.

Sequence 1: p is fixed, x =
n

100
, n = 100, 200, 300, . . .

n = 100, x = 1, p = .01

n = 200, x = 2, p = .01
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n = 300, x = 3, p = .01

This is the sequence leading to (1.2.4) with α = .01.

Sequence 2: x is fixed, p = 1/n, n = 100, 200, 300, . . .

n = 100, x = 1, p = .01

n = 200, x = 1, p = .005

n = 300, x = 1, p = .00333 . . .

This is the sequence leading to (1.2.8) with λ = 1.

Table 1.2.3 shows that in this particular case, the approximation derived
from the second sequence is better.

Note: The two stated sequences are of course not the only ones in which
the given situation can be embedded. For another example, see Problem
2.14.

The present section illustrates a central aspect of large-sample theory: the
interplay and mutual support of theoretical and numerical work. Formulas
such as (1.2.4) and (1.2.8) by themselves are of only limited usefulness
without some information about their accuracy such as that provided by
Tables 1.2.1–1.2.4. On the other hand, the numbers shown in these tables
provide only snapshots. It is only when the two kinds of information are
combined that one obtains a fairly comprehensive and reliable picture.

Summary

1. For fixed p and large n, the binomial probabilities Pn (x) can be well
approximated (with the help of Stirling’s formula) for values of x
which are not too close to 0 or n by (1.2.4) and (1.2.5).

2. For small x, large n, and appreciable Pn (x), a better approximation
is obtained by letting p → 0 in such a way that np tends to a finite
limit.

3. These two examples illustrate the general method of obtaining ap-
proximations by embedding the actual situation in a sequence of sit-
uations, the limit of which furnishes the approximation. Among the
many possible embedding sequences, the most useful are those that
are simple and give good approximations even for relatively small n.

1.3 Infinite series

For a sequence of numbers a1, a2, . . . consider the partial sums

sn = a1 + a2 + · · · + an, n = 1, 2, . . . .
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If the sequence of the sums sn, n = 1, 2, . . . , tends to a limit l, we write

∞∑
i=1

ai = a1 + a2 + · · · = l.(1.3.1)

We call the left side an infinite series and l its sum.

Example 1.3.1 Three modes of behavior.

(i) Consider the sum

1
2

+
1
4

+
1
8

+ · · · =
∞∑
i=1

1
2i

.

Here the partial sums are

s1 =
1
2
, s2 =

1
2

+
1
4

=
3
4
, s3 =

1
2

+
1
4

+
1
8

=
7
8

and quite generally

sn =
1
2

+
1
4

+ · · · + 1
2n

.

This sum is equal to (Problem 3.9)

1
2n
[
1 + 2 + · · · + 2n−1

]
=

2n − 1
2n

= 1 − 1
2n

.

Thus sn → 1 and we can write

∞∑
i=1

1
2i

= 1.(1.3.2)

(ii) If ai = 1/i, the resulting series
∑

1/i is the harmonic series. It is
easily seen that

sn = 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+ · · · + 1
n

tends to infinity by noting that

1
3

+
1
4

>
1
4

+
1
4

=
1
2
,

that

1
5

+
1
6

+
1
7

+
1
8

>
4
8

=
1
2
,
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that the sum of the next 8 terms exceeds
8
16

=
1
2
, and so on.

A series for which sn tends to a finite limit l is said to converge to
l. A series for which sn → ∞ is said to diverge. A series of positive
terms a1+ a2+ · · · will always tend to a limit which may be finite or
infinite. It converges to a finite limit if the a’s tend to 0 sufficiently
fast, as in (1.3.2). It will diverge if the a’s do not tend to 0 or if they
tend to 0 sufficiently slowly, as in the harmonic series.

(iii) If the a’s are not all positive, the series may not tend to any limit,
finite or infinite. For example, if the a’s are +1,−1,+1,−1, . . . , then

sn =
{

1 if n is odd
0 if n is even

And lim sn does not exist. �

Example 1.3.2 Sums of powers of integers. The harmonic series of
Example 1.3.1 (ii) is the special case α = 1 of the sum of negative powers

∞∑
i=1

1
ia

.(1.3.3)

Since this series diverges for α = 1, it must also diverge when α < 1 since
then the terms tend to zero even more slowly. In fact, it can be shown that
the partial sums of (1.3.3) satisfy

sn =
n∑
i=1

1
iα

∼ n1−α

1 − α
if α < 1(1.3.4)

and

sn =
n∑
i=1

1
i
∼ log n if α = 1,(1.3.5)

both of which tend to ∞ as n → ∞. On the other hand, when α > 1, the
terms tend to 0 fast enough for (1.3.3) to converge to a finite limit.

Formula (1.3.4) holds not only for negative but also for positive powers
of the integers, so that (in generalization of (1.1.28))

sn =
n∑
i=1

iα ∼ n1+α

1 + α
for all α > 0.(1.3.6)

(For proofs of these results, see, for example, Knopp (1990).) �
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Example 1.3.3 The geometric series. The series (1.3.2) is the special
case of the geometric series

∑
xi when x = 1/2. If we start the series at

i = 0, we have

sn = 1 + x + · · · + xn−1 =
1 − xn

1 − x
.

For |x| < 1, this tends to the limit

∞∑
i=0

xi =
1

1 − x
.(1.3.7)

For x = 1, the series diverges since sn = n → ∞. For x = −1, we have
the case (iii) of Example 1.3.1 and sn therefore does not tend to a limit.
Similarly, the series diverges for all x > 1, while for x < −1, the series does
not tend to a limit. �

The geometric series is a special case of a power series

∞∑
i=0

cix
i.(1.3.8)

In generalization of the result for the geometric series, it can be shown that
there always exists a value r (0 ≤ r ≤ ∞), called the radius of convergence
of the series, such that (1.3.8) converges for all |x| < r and for no |x| > r;
it may or may not converge for x = ±r. The case r = ∞ corresponds to
the situation that (1.3.8) converges for all x. An example is provided by
the exponential series in Example 1.3.4 below. For an example with r = 0,
see Problem 3.4.

The following are a number of important power series. For each, the sum
and the radius of convergence will be stated without proof. These series
will be considered further in Section 2.5.

Example 1.3.4 The exponential series. In Example 1.1.1, an expres-
sion for any power of e was given in (1.1.8). An alternative expression is
provided by the infinite series

1 +
x

1!
+

x2

2!
+ · · · = ex,(1.3.9)

which converges for all x. For x = λ > 0, (1.3.9) shows that the Poisson
distribution (1.2.8) with probabilities

P (X = i) =
λi

i!
e−λ, i = 0, 1, 2, . . .

really is a distribution, i.e., that the probabilities for i = 0, 1, 2, . . . add up
to 1. �
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Example 1.3.5 Binomial series. For any real number α, the series

1 +
α

1!
x +

α (α − 1)
2!

x2 + · · · = (1 + x)α(1.3.10)

has radius of convergence 1.
Some special cases are worth noting.

(i) If α is a positive integer, say α = n, the coefficient of xi is zero for all
i > n and (1.3.10) reduces to the binomial theorem

(1 + x)n =
n∑
i=0

(
n

i

)
xi.

(ii) If α is a negative integer, say α = −m, (1.3.10) with x = −q reduces
to

(1 − q)−m = 1 +
(

m

1

)
q +
(

m + 1
2

)
q2 + · · · .(1.3.11)

This shows that the probabilities

P (X = i) =
(

m + i − 1
m − 1

)
pmqi, i = 0, 1, 2, . . . (0 < p < 1, q = 1 − p)

(1.3.12)

of the negative binomial distribution (listed in Table 1.6.2) add up
to 1.

(iii) For m = 1, (1.3.11) reduces to the geometric series (1.3.7) (with x = q)
and the distribution (1.3.12) reduces to the geometric distribution
with probabilities

P (X = i) = p · qi, i = 0, 1, 2, . . . .(1.3.13)

�

Example 1.3.6 The logarithmic series. The series

x +
x2

2
+

x3

3
+ · · · = − log (1 − x)(1.3.14)

has radius of convergence 1. When x = 1, it reduces to the harmonic series,
which in Example 1.3.1(ii) was seen to diverge. For 0 < θ < 1, (1.3.14)
shows that the probabilities

P (X = i) =
1

− log (1 − θ)
θi

i
, i = 1, 2, . . .(1.3.15)

of the logarithmic distribution add up to 1. (For a discussion of this distri-
bution, see Johnson, Kotz, and Kemp (1992), Chapter 7. �
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Summary

1. An infinite series is said to converge to s if the sequence of its partial
sums tends to s.

2. For any power series
∑

cix
i, there exists a number 0 ≤ r ≤ ∞ such

that the series converges for all |x| < r and for no |x| > r.

3. Important examples of power series are the geometric, the exponen-
tial, the binomial, and the logarithmic series.

1.4 Order relations and rates of convergence

In Section 1.1, two sequences an, bn were defined to be asymptotically equiv-
alent if an/bn → 1. This relation states that for large n, the numbers of
the two sequences are roughly equal. In the present section, we consider
three other relationships between sequences, denoted by o, �, and O, which
correspond to an being of smaller, equal, or less or equal, order than bn,
respectively. In a related development, we shall study the behavior of se-
quences exhibiting respectively slow, moderate, and rapid growth.

We begin by defining the relationship an = o (bn), which states that for
large n, an is an order of magnitude smaller than bn.

Definition 1.4.1 We say that an = o (bn) as n → ∞ if

an/bn → 0.(1.4.1)

When an and bn both tend to infinity, this states that an tends to infinity
more slowly than bn; when both tend to 0, it states that an tends to zero
faster than bn. For example,

1
n2

= o

(
1
n

)
as n → ∞(1.4.2)

since
1
n2

/
1
n

=
n

n2
→ 0. As is shown in Table 1.4.1, it makes a big difference

whether a sequence tends to 0 at rate 1/n2 or 1/n.

TABLE 1.4.1. Speed of convergence of 1/n and 1/n2

n 1 2 5 10 20 100 1,000
1/n 1 .5 .2 .1 .05 .01 .001
1/n2 1 .25 .04 .01 .0025 .0001 .000001

The following provides a statistical illustration of this difference.
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Example 1.4.1 Bayes estimator for binomial p. Suppose that X has
the binomial distribution b(p, n) corresponding to n trials with success
probability p. The standard estimator X/n is unbiased (i.e., satisfies
E (X/n) = p) and has variance pq/n. An interesting class of competitors
is the set of estimators

δ (X) =
a + X

a + b + n
.(1.4.3)

(δ (X) is the Bayes estimator which minimizes the expected squared error
when p has a beta prior with parameters a and b.)

Since

E [δ (X)] =
a + np

a + b + n
,

the bias of δ is

E [δ (X)] − p =
a + np

a + b + n
− p,

which simplifies to

bias of δ =
aq − bp

a + b + n
where q = 1 − p.(1.4.4)

Similarly, the variance of δ is

Var [δ (X)] =
npq

(a + b + n)2
.(1.4.5)

The accuracy of an estimator δ (X) of a parameter g (θ) is most com-
monly measured by the expected squared error E [δ (X) − g (θ)]2, which
can be decomposed into the two terms (Problem 4.1)

E [δ (X) − g (θ)]2 = (bias of δ)2 + variance of δ.(1.4.6)

When δ (X) is given by (1.4.3), the two components of the bias-variance
decomposition (1.4.6) make very unequal contributions to the squared error
since

(bias of δ)2

Var [δ (X)]
∼ (aq − bp)2

npq
→ 0 as n → ∞,

and hence

(bias of δ)2 = o [Var δ (X)] .

Both terms tend to zero, but the square of the bias tends much faster:
at the rate of 1/n2 compared to the rate 1/n for the variance. The bias
therefore contributes relatively little to the expected squared error. As a
numerical illustration, Table 1.4.2 shows the squared bias, the variance,
and the contribution of the squared bias to the total, for the case a = b =
1/2, p = 1/3.
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TABLE 1.4.2. Squared bias and variance of a biased estimator

n 10 50 100
(1)Variance .018 .0043 .0022
(2) (bias)2 .00023 .000011 .0000027
(2) / [(1) + (2)] .012 .0025 .0012

�
The results of this example are typical for standard estimation problems:

The variance and bias will each be of order 1/n, and so therefore will be
the expected squared error; the relative contribution of the squared bias to
the latter will tend to 0 as n → ∞. An important exception is the case of
nonparametric density estimation, which will be considered in Section 6.4.

The following example illustrates an important use of the o notation.

Example 1.4.2 Order of a remainder. Suppose that

an =
1
n
− 2

n2
+

4
n3

.(1.4.7)

An obvious first approximation to an for large n is

bn =
1
n

.(1.4.8)

Clearly, an ∼ bn. Let us denote the remainder in this approximation by Rn
so that

an =
1
n

+ Rn,(1.4.9)

where

Rn =
−2
n2

+
4
n3

= o (1/n) .(1.4.10)

The information provided by (1.4.9) and the right side of (1.4.10) is fre-
quently written more compactly as

an =
1
n

+ o

(
1
n

)
,(1.4.11)

where o (1/n) denotes any quantity tending to 0 faster than 1/n. We can
refine the approximation (1.4.8) by taking into account also the 1/n2 term,
and approximate (1.4.7) by

b′n =
1
n
− 2

n2
;(1.4.12)
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we can then write

an =
1
n
− 2

n2
+ o

(
1
n2

)
.(1.4.13)

Since the remainder is of order 1/n2 in the approximation (1.4.8) and of
order 1/n3 in (1.4.12), we expect the second approximation to be more
accurate than the first. This is illustrated by Table 1.4.3, which generally
supports this expectation but shows that for very small n, the first approx-
imation is, in fact, closer in this case. �

TABLE 1.4.3. The accuracy of two approximations

n 1 2 3 5 10 50
1
n
− 2

n2
+

4
n3

3.0 .5 .259 .152 .84 .0192

1/n 1.0 .5 .333 .200 1.00 .0200

1
n
− 2

n2
-1.0 0.0 .111 .120 .80 .0197

Note: The approximation (1.4.8) which takes account only of the principal
term (1/n) of (1.4.7) is a first order approximation while (1.4.12), which
also includes the next

(
1/n2

)
term, is of second order.

While higher order approximations tend to be more accurate, they also
suffer from some disadvantages: They are more complicated and, for the
probability calculations to be considered later, they typically require more
knowledge of the mathematical model. In addition, the higher order theory
is more difficult mathematically. For these reasons, in this book we shall
restrict attention mainly to first order approximations and shall make only
a few brief excursions into higher order territory.

The following are some simple properties of the o relation (Problem 4.3).

Lemma 1.4.1

(i) A sequence of a’s satisfies

an = o (1) if and only if an → 0.(1.4.14)

(ii) If an = o (bn) and bn = o (cn), then an = o (cn).

(iii) For any constant c �= 0,

an = o (bn) implies can = o (bn) .(1.4.15)
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(iv) For any sequence of number cn different from 0,

an = o (bn) implies cnan = o (cnbn) .

(v) If dn = o (bn) and en = o (cn), then dnen = o (bncn).

Example 1.4.3 The order relationship of powers of n. If an = nα, bn =
nβ , then an = o (bn), provided α < β. To see this, note that the ratio

an
bn

=
nα

nβ
=

1
nβ−α

tends to zero when α < β. Thus 4
√

n,
√

n, n, n2, n3, . . . constitute sequences
which tend to infinity as n → ∞ with increasing rapidity. �

Example 1.4.4 Exponential growth. For any k > 0 and a > 1, we have

nk = o (an) .(1.4.16)

To prove (1.4.16), write a = 1 + ε (ε > 0), and consider the case k = 2.
Instead of showing that n2/an → 0, we shall prove the equivalent statement
that

an/n2 → ∞.

For this purpose, we use the expansion

an = (1 + ε)n = 1 + nε +
(

n

2

)
ε2 +

(
n

3

)
ε3 + · · · >

(
n

3

)
ε3,

which shows that

an

n2
>

n (n − 1) (n − 2)
n2

· ε3

6
=
(

n − 3 +
2
n

)
· ε3

6
.

Since the right side tends to ∞ as n → ∞, this completes the proof for the
case k = 2. The argument for any other integer k is quite analogous. If k
is not an integer, let k′ be any integer greater than k. Then

nk = o
(
nk

′
)

and nk
′
= o (an) ,

and the result follows from part (ii) of Lemma 1.4.1.
More generally, it is seen that (Problem 4.7)

c0 + c1n + · · · + ckn
k = o (an)(1.4.17)

for any integer k, any a > 1, and any constants c0, c1, . . . , ck. Sequences
that are asymptotically equivalent either to (1.4.17) or to an (a > 1) are
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said to grow at polynomial or exponential rate, respectively. Exponential
growth is enormously much faster than polynomial growth, as is illustrated
in the first two rows of Table 1.4.4. This explains the surprising growth due
to compound interest (Problem 4.9).

Note: Because of this very great difference, it has been an important issue
in computer science to determine whether certain tasks of size n require
exponential time (i.e., a number of steps that increases exponentially) or
can be solved in polynomial time. �

Let us next consider some sequences that increase more slowly than nk

for any k > 0.

Example 1.4.5 Logarithmic growth. Let an = log n, bn = nk. Then

an = o (bn) for every k > 0. To show that
log n

nk
→ 0, it is enough by

Definition 1.1.1 to show that for any ε > 0, we have −ε <
log n

nk
< ε for

all sufficiently large n. Since log n/nk is positive, it is therefore enough to
show that for all sufficiently large n

n < eεn
k

,

which follows from Problem 4.7(ii). �

The three scales an, nk, and log n are the most commonly used scales for
the growth of a sequence tending to infinity, representing fast, moderate,
and slow growth, respectively. (Correspondingly their reciprocals a−n, n−k,
and 1/ log n provide standard scales for convergence to 0.) One can get an
idea of the differences in these rates by looking at the effect of doubling n.
Then, for example,

an = an becomes a2n = a2n = anan,

an = n2 becomes a2n = 4n2 = 4an,

an = log n becomes a2n = log (2n) = an + log 2.

Thus doubling n multiplies an in the first case by a factor which rapidly
tends to ∞; in the second case, by the fixed factor 4; finally in the third case,
doubling n only adds the fixed amount log 2 to an. Table 1.4.4 illustrates
these three rates numerically. While the first sequence seems to explode, the
last one barely creeps along; yet eventually it too will become arbitrarily
large (Problem 4.10(i)).

If an/bn tends to 0 or ∞, an is respectively of smaller or larger order than
bn. In the intermediate case that an/bn tends to a finite non-zero limit, the
two sequences are said to be of the same order or to tend to 0 or ∞ at
the same rate. (This terminology was already used informally at the end of
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TABLE 1.4.4. Three rates of invergence

n 1 2 5 10 15 20
en 2.7 7.4 148.4 22,026 3,269,017 4,851,165,195
n3 1 8 125 1000 3375 8000

log n 0 .7 1.6 2.3 2.7 3.0

Example 1.4.1 when it was stated that the bias and variance are typically
“of order 1/n.”)

The concept of two sequences being of the same order can be defined
somewhat more generally without requiring an/bn to tend to a limit.

Definition 1.4.2 Two sequences {an} and {bn} are said to be of the same
order, in symbols,

an � bn,(1.4.18)

if |an/bn| is bounded away from both 0 and ∞, i.e., if there exist constants
0 < m < M < ∞ and an integer n0 such that

m <

∣∣∣∣anbn
∣∣∣∣ < M for all n > n0.(1.4.19)

As an example, let

an = 2n + 3, bn = n.

Then
an
bn

< 3 holds when 2n + 3 < 3n,

i.e., for all n > 3, and

an
bn

> 2 holds for all n.

Thus (1.4.19) is satisfied with m = 2, M = 3, and n0 = 3.
It is easy to see that if an/bn tends to any finite non-zero limit, then

an � bn (Problem 4.11).

Lemma 1.4.2 If an � bn, then can � bn for any c �= 0.

The symbol � denotes equality of the orders of magnitude of an and bn
and constitutes a much cruder comparison than the asymptotic equivalence
an ∼ bn. This is illustrated by the statement of Lemma 1.4.2 that the
relationship an � bn is not invalidated when an is multiplied by any
fixed constant c �= 0. Definition 1.4.2 of equality of order is motivated by
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the extreme difference in the speed of convergence of sequences of different
order shown in Table 1.4.4. In the light of such differences, multiplication
by a fixed constant does little to change the basic picture.

In addition to o and �, it is useful to have a notation also for an being
of order smaller than or equal to that of bn. This relationship is denoted by
an = O (bn). It follows from Definitions 1.4.1 and 1.4.2 that an = O (bn) if
|an/bn| is bounded, i.e., if there exist M and n0 such that∣∣∣∣anbn

∣∣∣∣ < M for all n > n0.(1.4.20)

Note in particular that

an = O (1) if and only if the sequence {an} is bounded.(1.4.21)

Example 1.4.6 Information provided by ∼, �, O, and o. To illus-
trate the distinction among ∼, �, O, and o and the information they
provide about a remainder, suppose that

an =
1
n

+
b

n
√

n
+

c

n2
+

d

n2
√

n

is approximated by 1/n, so that

an =
1
n

+ Rn

with

Rn =
b

n
√

n
+

c

n2
+

d

n2
√

n
.

Then the following implications hold (Problem 4.20):

(i) Rn ∼ 1
n2

if and only if b = 0, c = 1;

(ii) Rn � 1
n2

if and only if b = 0, c �= 0;

(iii) Rn = O

(
1
n2

)
if and only if b = 0;

(iv) Rn = o

(
1
n2

)
if and only if b = c = 0.

�

Summary

1. For two sequences {an}, {bn}, we consider the possibilities that
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(a) an is of smaller order than bn; in symbols, an = o (bn),

(b) an is of the same order as bn; in symbols, an � bn,

(c) an is of order smaller than or equal to bn; in symbols, an = O (bn),

and we discuss some properties of these order relations.

2. Three of the most commonly encountered growth rates are the log-
arithmic (log n), polynomial

(
nk
)
, and exponential (an, a > 1), and

they satisfy

log n = o
(
nk
)

for all k > 0,

nk = o (an) for all k > 0, a > 1.

3. When approximating a complicated an by a simpler bn with remain-
der Rn, the three orders described in 1 can be used to characterize
our knowledge about the order of the remainder.

1.5 Continuity

So far we have been concerned with the behavior of sequences an, n =
1, 2, . . . . If the notation is changed from an to a (n), it becomes clear that
such a sequence is a function defined over the positive integers. In the
present section, some of the earlier ideas will be extended to functions of a
continuous variable x. Such a function is a rule or formula which assigns to
each value of x a real number f (x), for example, x2 + 1, ex, or sinx. The
function will be denoted by f , the value that f assigns to x by f (x).

To define the concept of limit, we begin with the limit of f (x) as x →
∞, which is completely analogous to the Definition 1.1.1 of the limit of a
sequence.

Definition 1.5.1 As x → ∞, f (x) tends (or converges) to a; in symbols,

f (x) → a as x → ∞ or lim
x→∞

f (x) = a,(1.5.1)

if, given any ε > 0, there exists M = M (ε) such that

|f (x) − a| < ε for all x > M.

A new situation arises when x tends to a finite value x0, because it can
then tend to x0 from the right (i.e., through values > x0) or from the
left (i.e., through values < x0 ). We shall denote these two possibilities by
x → x0+ and x → x0−, respectively.

We shall say that f (x) → a as x → x0+ if f (x) gets arbitrarily close to
a as x gets sufficiently close to x0 from the right. This is formalized in
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Definition 1.5.2 As x → x0+, f (x) tends to a; in symbols,

f (x) → a as x → x0 + or lim
x→x0+

f (x) = a,(1.5.2)

if, given any ε > 0, there exists δ > 0 such that

|f (x) − a| for all x0 < x < x0 + δ.(1.5.3)

The limit of f (x) as x → x0− is defined analogously.

Example 1.5.1 Let

f (x) =
{

x3 + 1 if x > 0
x3 − 1 if x < 0.(1.5.4)

Then

f (x) → 1 as x tends to 0 from the right,
f (x) → −1 as x tends to 0 from the left.(1.5.5)

To see the first of these statements, note that for x > 0,

|f (x) − 1| = x3 < ε when 0 < x < 3
√

ε,

so that (1.5.3) holds with δ = 3
√

ε. �

The one-sided limits f (x0+) and f (x0−) need not exist as is shown by
the classical example

f (x) = sin
1
x

(1.5.6)

Here there exist positive values of x arbitrarily close to 0 for which f (x)
takes on all values between −1 and +1 (Problem 5.3) so that f (x) does
not tend to a limit as x → 0+, and the same is true as x → 0−.

Two-sided limits are obtained by combining the two one-sided concepts.

Definition 1.5.3 We say that

f (x) → a as x → x0

if

lim
x→x0+

f (x) = lim
x→x0−

f (x) = a,(1.5.7)

i.e., if given any ε > 0, there exists δ > 0 such that

|f (x) − a| < ε for all x �= x0 satisfying |x − x0| < δ.(1.5.8)
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In Example 1.5.1, the limit as x → 0 does not exist since the two one-
sided limits are not equal. On the other hand, if f (x) = x3, it is seen that
f (x) → 0 as x → 0+ and as x → 0−, and that, therefore, lim

x→0
f (x) exists

and is equal to 0.
It is interesting to note that the definitions of lim

x→x0+
f (x), lim

x→x0−
f (x),

and hence lim
x→x0

f (x) say nothing about the value f (x0) that f takes on at

the point x0 itself but involves only values of f for x close to x0.
The relations ∼, �, O, and o extend in the obvious way. For example,

f (x) = o [g (x)] as x → x0 (x0 finite or infinite)

if f (x) /g (x) → 0 as x → x0 .
The limit laws (1.1.10)–(1.1.12) also have their obvious analogs; for ex-

ample, if f (x) → a and g (x) → b as x → x0, then f (x) + g (x) → a + b.
Similarly, the results of Examples 1.4.3 to 1.4.5 continue to hold when n is
replaced by x; for example,

log x

xa
→ 0 for any α > 0 as x → ∞.(1.5.9)

Definition 1.5.4 A function f is said to be continuous at x0 if f (x0+)
and f (x0−) exist and if

f (x0+) = f (x0−) = f (x0) .(1.5.10)

Any polynomial P (x) is continuous for all x; so is any rational function,
i.e., the ratio P (x) /Q (x) of two polynomials, at any point x for which
Q (x) �= 0. The exponential function ex is continuous for all x, and log x
for all x > 0 (the latter is not defined for x ≤ 0).

Continuity can be violated in a number of ways:

(a) Even if f (x0+) and f (x0−) exist and are equal, f (x0+) = f (x0−) =
a, say, it may happen that f (x0) �= a.

As an example, let

f (x) =
{

x2 if x �= 2
0 if x = 2.

(b) A more interesting possibility is that f (x0+) �= f (x0−), as was the
case in Example 1.5.1.

Definition 1.5.5 The function f is said to be continuous on the right at
x0 if f (x0+) exists and

f (x0) = f (x0+) .(1.5.11)

It is continuous on the left at x0 if f (x0−) exists and

f (x0) = f (x0−) .(1.5.12)
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If f (x0+) and f (x0−) exist, whether f is continuous on the right, on
the left, or neither depends on the value f (x0). The function f given by
(1.5.4) is continuous on the right at 0 if f (0) = 1 and continuous on the
left if f (0) = −1. If f (0) has a value different from ±1, it is continuous
neither on the right nor left at 0.

A function that is continuous on both the left and right at x0 is contin-
uous at 0.

Discontinuities of both types (a) and (b) are called simple discontinuities
or discontinuities of the first kind.

A classical example of the third possibility in which f (x0+) and/or
f (x0−) do not exist is provided by the function (1.5.6).

As this example shows, discontinuities that are not simple can occur.
They can, however, be ruled out for the important class of monotone func-
tions, i.e., functions that are either non-decreasing or non-increasing. This
follows from the following theorem which for the sake of simplicity is stated
for the non-decreasing case.

Theorem 1.5.1

(i) If an is a non-decreasing sequence (i.e., satisfies an ≤ an+1 for all
n), then either

(a) an is bounded above and tends to a finite limit as n → ∞
or

(b) an → ∞ as n → ∞.

(ii) Let f be a function defined for all a < x < b (−∞ ≤ a < b ≤ ∞)
which is non-decreasing (i.e., satisfies f (x) ≤ f (y) when x < y). If
a ≤ x0 ≤ b, then as x tends to x0 from the left (or the right), f (x)
tends either to a finite limit or to ∞ (−∞).

The proof (see Problem 5.11) depends on the following basic property
of real numbers, discussed, for example, in Rudin (1976) and Hardy (1908,
1992): Let S be a set of real numbers which is bounded above, i.e., there
exists a constant M such that x ≤ M for all x in S. Then among all
the upper bounds M , there exists a smallest one, which will be denoted
by supS. Analogously, if S is bounded below, there exists a largest lower
bound, denoted by inf S.

The least upper or greatest lower bound of a set S is a member of S, or
a limit of points in S, or both (Problem 5.12).

Example 1.5.2 Let S be the set of numbers 1 − 1
n

, n = 1, 2, 3, . . . . Then
inf S = 0 and supS = 1. The first of these is a member of S; the second is
not. �
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Summary

1. The definition of a limit of a sequence of numbers is extended to one-
and two-sided limits of a continuous variable.

2. A function f is continuous at a point x0 if its limit as x → x0 exists
and is equal to f (x0).

3. A function f has a simple discontinuity at x0 if the limits f (x0−)
and f (x0+) as x tends to x0 from the left or right exist but are either
not equal or are equal but �= f (x0) .

4. If a function f is monotone, the limits f (x0−) and f (x0+) exist for
all x0, and f can therefore have only simple discontinuities.

1.6 Distributions

The principal properties of random variables are reflected in their distri-
butions and the principal aspects of the limiting behavior of a sequence of
random variables in the limiting behavior of their distributions. Probabil-
ity distributions can be represented in a number of different ways, and we
shall in the present section consider several such representations, particu-
larly cumulative distribution functions, probability densities, and quantile
functions.

Definition 1.6.1 The cumulative distribution function (cdf) of a random
variable X is defined as

F (x) = P (X ≤ x) .(1.6.1)

Cumulative distribution functions have the following properties.

Theorem 1.6.1

(i) 0 ≤ F (x) ≤ 1 for all x;

(ii) F is non-decreasing;

(iii) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

(iv) All discontinuities of F are simple, that is, F (x−) and F (x+) exist
for all x.

(v) F is continuous on the right, that is, F (x) = F (x+) for all x.

(vi) The jump of F (x) at a discontinuity point x is equal to

F (x) − F (x−) = P (X = x) .(1.6.2)
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Proof. Parts (i) and (ii) are obvious; part (iv) follows from (ii) and The-
orem 5.1. For proofs of the remaining parts, see, for example, Hoel, Port,
and Stone (1971) or Parzen (1960, 1992). �

It follows from (vi) that F is continuous at x if and only if

P (X = x) = 0.

Such a point x is called a continuity point of F .
In this book, we shall be concerned primarily with two types of distribu-

tions:

(i) Continous distributions F which, in addition, are differentiable, that
is, possess a probability density f satisfying

F (x) =

x∫
−∞

f (t) dt.(1.6.3)

(ii) Discrete distributions, that is, distributions of a random variable X
for which there exists a countable set A of values a1, a2, . . . such
that

∞∑
i=1

P (X = ai) = 1.(1.6.4)

TABLE 1.6.1. Some common probability densities

Density Name Notation
1√
2πb

e−(x−a)
2/b2 Normal N

(
a, b2

)
1
b

e(x−a)/b[
1 + e(x−a)/b

]2 Logistic L (a, b)

1
b
e−(x−a)/b if x > a Exponential E (a, b)

1
2b

e−|x−a|/b Double Exponential DE (a, b)

1
b

if a − b

2
< x < a +

b

2
Uniform U

(
a − b

2
, a +

b

2

)
b

π

1
b2 + (x − a)2

Cauchy C (a, b)

Examples of the continuous case are the normal, exponential, χ2, uni-
form, and Cauchy distributions. Discrete distributions of particular impor-
tance are lattice distributions, i.e., distributions for which the set A is the
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set {a+k∆, k = 0, ±1, ±2, . . . } for some a and some ∆ > 0. Examples of
lattice distributions are the binomial and Poisson distributions. Distribu-
tions that are continous but not differentiable or that are partly continuous
and partly discrete are of lesser interest, although they are included in some
results concerning general classes of distributions.

The following result states some distributional facts that will often be
used.

Theorem 1.6.2 Let Xi (i = 1, . . . , n) be independently distributed accord-
ing to Fi. Then in the notation of Tables 1.6.1 and 1.6.2:

(i) If Fi is the Poisson distribution P (λi) , Y =
∑

Xi is distributed
according to P (

∑
λi).

(ii) If Fi is the normal distribution N
(
ξi, σ2i

)
, Y =

∑
Xi is distributed

according to N
(∑

ξi,
∑

σ2i
)
.

(iii) If Fi is the Cauchy distribution C (ai, bi), Y =
∑

Xi is distributed
according to C (

∑
ai,
∑

bi).

So far we have represented a probability distribution by its cdf (1.6.1);
alternatively, we might have used

F ∗ (x) = P (X < x) .(1.6.5)

This alternative satisfies (i)–(iv) and (vi) of Theorem 1.6.1, but condition
(v), continuity on the right, is replaced by continuity on the left.

In the continuous case (1.6.3), a distribution is often represented by its
density f ; in the discrete case, by its probability function

P (X = ai) , i = 1, 2, . . . .(1.6.6)

Tables 1.6.1 and 1.6.2 list some of the more common densities and proba-
bility functions.

Still another representation is by means of the inverse F−1 of F , the
so-called quantile function.

(a) If F is continuous and strictly increasing, F−1 is defined by

F−1 (y) = x when y = F (x) .(1.6.7)

(b) If F has a discontinuity at x0, suppose that F (x0−) < y < F (x0) =
F (x0+). In this case, although there exists no x for which y = F (x),
F−1 (y) is defined to be equal to x0.

(c) Condition (1.6.7) becomes ambiguous when F is not strictly increas-
ing. Suppose that

F (x)




< y for x < a
= y for a ≤ x ≤ b
> y for x > b.

(1.6.8)



1.6 Distributions 33

TABLE 1.6.2. Some common discrete distributions

Probability function
P (X = x)

Values Name Notation

(n
x

)
px (1− p)n−x x = 0, 1, . . . , n Binomial b (p, n)

1
x!λ

xe−λ x = 0, 1, . . . Poisson P (λ)

(m+x−1
m−1

)
pmqx x = 0, 1, . . . Negative Binomial Nb (p, m)

(
D
x

)(
N−D
n−x

)
(
N
n

) max (0, n− (N −D))
≤ x ≤ min (n, D)

Hypergeometric H (N, D, n)

Then any value a ≤ x ≤ b could be chosen for x = F−1 (y). The
convention in this case is to define

F−1 (y) = a,(1.6.9)

i.e., as the smallest value x for which F (x) = y. This causes F−1 to
be continuous on the left.

The three cases can be combined into the single definition

F−1 (y) = min {x: F (x) ≥ y} .(1.6.10)

With these conventions, the graph of F−1 is obtained by rotating the
graph of y = F (x) around the line y = x as the axis, so that the x-axis
points up and the y-axis to the right. (A simple way of accomplishing this
is to graph y = F (x) on semi-transparent paper and then to reverse the
sheet to obtain the graph of x = F−1 (y).) The resulting picture, illustrated
in Figure 1.6.1, shows that F−1 is defined on (0, 1), and that discontinuities
of F become converted into flat stretches of F−1 and flat stretches of F
into discontinuities of F−1.

1

a b

y

y
y

F(x0) = y0

x

x

x0

x0 = p–1(y)

FIGURE 1.6.1(a): y = F (x) FIGURE 1.6.1(b): x = F−1(y)
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The term quantile function reflects the close connection of F−1 with the
quantiles of F . In case (a), the p-quantile of F is defined as the point x
such that the probability F (x) to the left of x is equal to p, that is, as
x = F−1 (p). In case (b), when p = y, the p-quantile is the unique point x
for which F (x−) < p < F (x).

Note: The quantiles corresponding to p = 1/2, p = 1/4, and p = 3/4 are
called the median, first quartile, and third quartile, respectively.

In case (c), there is no uniquely agreed upon definition of quantile. If
(1.6.8) holds, some authors call any x in the interval [a, b] a y-quantile,
some define the y-quantile uniquely as a, while at least in the case of the

median, still others define it to be
1
2

(a + b), the midpoint of the interval

[a, b].
Cumulative distribution functions, probability densities, and quantile

functions constitute three possible ways of representing the distribution
of a random variable. Still other representations (which we shall not con-
sider here) are by means of moment generating functions or characteristic
functions.

Summary

1. The distributions of a random variable can be represented in vari-
ous ways: for example, by its cumulative distribution function, by its
probability density function, and by its quantile function.

2. Of particular interest are (i) the continuous case in which the cdf is
differentiable, its derivative being the probability density; and (ii) the
discrete case. Two tables exhibit some of the most common densities
in case (i) and probability functions in case (ii).

3. Cumulative distribution functions are non-decreasing and hence any
of their discontinuities must be simple. The points of discontinuity of
the cdf of a random variable X are the points x for which P (X = x)
is positive and this probability then equals the size of the jump at x.

1.7 Problems

Section 1

1.1 (i) Determine n0 (ε) of Definition 1.1.1 when an is given by (1.1.2).

(ii) Compare the smallest possible values of n0 (ε) for the cases that
an is given by (1.1.1) or (1.1.2) when ε = 1/1, 000, 000.
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1.2 (i) Show that the sequence an defined by (1.1.7) is also given by the
single formula

an = 1 + (−1)n · 1
n

.

(ii) If an is the nth member of the sequence (1.1.9), find a formula
for an analogous to that of (i).

1.3 Determine n0 (M) of Definition 1.1.2 when

(a) an =
√

n,

(b) an = n2,

and compare their values for the case M = 104.

1.4 Define the limit an → −∞ in analogy with Definition 1.1.2.

1.5 If f (a) = c0 + c1a + · · · + cka
k for all a, use (1.1.10) and (1.1.11) to

show that f (an) → f (a0) when an → a0.

1.6 If an → ∞, then

(i)
√

an → ∞;

(ii) log an → ∞;

(iii) 1/an → 0.

1.7 (i) Show that the sequence (1.1.9) tends to 0 as n → ∞ .

(ii) Make a table of an given by (1.1.9) for n = 75, 76, . . . , 100.

1.8 Let an → ∞ and let bn = an+1. Determine whether an ∼ bn for the
following cases:

(i) an = nk, k is a positive integer;

(ii) an = eαn, α > 0;

(iii) an = log n.

[Hint (iii): Apply Lemma 1.1.1 with bn = an+1.]

1.9 Replace each of the following quantities by a simpler one that is
asymptotically equivalent as n → ∞:

(i) n +
1
2
n2 +

1
3
n3;

(ii) n + 2 +
3
n

;

(iii)
1
n

+
2
n2

+
3
n3

.
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1.10 (i) If an ∼ bn, bn ∼ cn, then an ∼ cn;

(ii) if an ∼ bn, then
1
an

∼ 1
bn

.

(iii) If an ∼ bn, cn ∼ dn, then ancn ∼ bndn.

(iv) If an ∼ bn, then aαn ∼ bαn for any α > 0.

1.11 If an ∼ bn, cn ∼ dn, then

(i) an + cn ∼ bn + dn, provided an, bn, cn, and dn are all > 0;

(ii) The result of (i) need not hold without the restriction to positive
values.

1.12 If an → ∞, determine whether an ∼ bn implies that a2n+an ∼ b2n+bn.

[Hint: a2n + an = an (an + 1).]

1.13 Calculate the absolute and relative error in (1.1.26) for n = 7.

1.14 (i) Determine the sum
n∑
i=1

i3 and check that (1.1.28) holds for k = 3.

(ii) Prove (1.1.28) for general k.

[ Hint: (i) Add both sides of the equation (i + 1)4 − i4 = 4i3 + 6i2 +
4i + 1 from i = 1 to i = n + 1. (ii) Generalize the method of (i) and
use induction.]

1.15 If k remains fixed and N → ∞, use Stirling’s formula to show that(
N

k

)
∼ 1

k!
Nk(1.7.1)

and make a table giving an idea of the accuracy of this approximation.

1.16 (i) For fixed α (0 < α < 1), if k = αN is an integer and N → ∞,
show that (

N

k

)
∼ 1√

2πα (1 − α)N
· 1

αk (1 − α)N−k .

(ii) Compare this approximation with that of the preceding problem
for some representative values of k and N .

1.17 If 0 < γ < 1, then an = γn → ∞.

[Hint: Since γ > 0, it is enough to show that for any ε > 0 there
exists n0 such that γn < ε for all n > n0. Take logarithms on both
sides of this last inequality.]
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1.18 (i) For any positive γ,

an = n
√

γ → 1 as n → ∞.(1.7.2)

(ii) For γ = 1/8, 1/4, 1/2, 2, 4, 8, make a table showing the con-
vergence of an to 1.

[Hint: Suppose γ < 1. Then it is enough to show that for any ε, there
exists n0 such that n

√
γ < 1 + ε; take logarithms. The case γ < 1 can

be treated analogously.]

1.19 Make a table showing the absolute and relative error resulting from
approximating S

(2)
n (defined by (1.1.27)) by n3/3.

Section 2

2.1 Verify formula (1.2.2).

2.2 Show that
√

4pq < 1 for all p �= 1
2

(0 ≤ p ≤ 1).

2.3 Verify formula (1.2.4).

2.4 Show that γ defined by (1.2.5) is < 1 for p �= α.

2.5 For fixed x as n → ∞, the probability (1.2.1) satisfies

Pn (x) ∼ nxpxqn−x =
(

np

q

)x
qn.

2.6 Let X be distributed according to the hypergeometric distribution
shown in Table 1.6.2. If n is held fixed and D and N tend to infinity

in such a way that
D

N
= p remains fixed, use (1.7.1) to show that

P (X = x) →
(

n

x

)
pxqn−x.(1.7.3)

2.7 Make tables similar to Table 1.2.2 for p = 1/4 and p = 1/10.

2.8 Let X be binomial b (p, n) with p = 1/2 and n even. Generalize
formula (1.2.3) to determine whether for fixed d

P
(
X =

n

2
+ d
)
∼ c√

n
(1.7.4)

continues to hold for some c.

2.9 For x = 0 and x = 1, make a table showing the accuracy of the Pois-
son approximation (1.2.8) for λ = .1, .5, 1 and n = 5, 10, 20, 50, 100.
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2.10 Let X have the Poisson distribution P (λ) shown in Table 1.6.2.

(i) Show that for x = αλ (α fixed, λ → ∞),

P (X = x) ∼ 1√
2παλ

(
eα

eαα

)λ
.(1.7.5)

Note that this reduces to

P (X = x) ∼ 1√
2πλ

(1.7.6)

when α = 1.

(ii) Show that γ = eα/eαα satisfies 0 < γ ≤ 1 for all α > 0, and that
γ = 1 if and only if α = 1.

(iii) Make a table showing the accuracy of the approximations (1.7.5)
and (1.7.6) for selected values of α and λ.

2.11 Let X have the negative binomial distribution Nb (p, m) shown in
Table 1.6.2. For p = pm satisfying

m (1 − pm) → λ > 0 as m → ∞,

show that the negative binomial distribution tends to the Poisson
distribution P (λ).

2.12 Obtain approximations analogous to those of Problem 2.10 for the

probability P

(
X

m
= α

q

p

)
when α = 1 and α �= 1.

2.13 Provide an approximation analogous to (1.2.8) for the case that p is
close to 1 rather than to 0.

[Hint: If p is close to 1, q = 1 − p is close to 0.]

2.14 The sequences pn = 1/100, xn = n/100, n = 100, 200, 300, . . . and
xn = 1, pn = 1/n, n = 100, 200, 300, . . . provide two embeddings for
the triple n = 100, x = 1, p = 1/100.

(i) Show that the following provides another such embedding.

pn =
1

n
2 + 50

, xn =
n2

10, 000
, n = 100, 200, 300, . . . .

(ii) Give examples of two additional such embeddings.
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Section 3

3.1 (i) If 0 ≤ ai ≤ bi for all i and if
∑

bi converges, then so does
∑

ai
and

∑
ai ≤

∑
bi.

(ii) If
∑

ai and
∑

bi converge, then so do
∑

(ai + bi) and
∑

(ai − bi)
and

∑
(ai ± bi) =

∑
ai ±

∑
bi.

3.2 If
∑

|ai| converges, so does
∑

ai

[Hint: Let

bi =
{

ai if ai ≥ 0
0 otherwise and ci =

{
−ai if ai ≤ 0
0 otherwise.

Then
∑

bi and
∑

ci converge by part (i) of Problem 3.1 and hence∑
ai =

∑
(bi − ci) converges by part (ii).]

3.3 If
∑

ai converges, then ai → 0 as i → ∞ .

[Hint: Consider first the case that all ai ≥ 0. Then if ai does not
tend to 0, there exists ε > 0 such that infinitely many of the a’s are
> ε, and hence

∑
ai = ∞. The case of arbitrary ai can be reduced to

that of non-negative ai by the device used in the preceding problem.]

3.4 If ai = ii, the sum
∑

aix
i converges for no x �= 0, i.e., the radius of

convergence of the series is 0.

[Hint: aix
i = (ix)i and the result follows from the preceding prob-

lem.]

The next set of problems utilize the following result.

Theorem 1.7.1 If

f (x) =
∞∑
i=0

aix
i converges for all |x| < d,(1.7.7)

then for all |x| < d, the derivative of f is given by

f ′ (x) =
∞∑
i=1

iaix
i−1(1.7.8)

and the right side of (1.7.8) converges for all |x| < d.

3.5 Use Theorem 1.7.1 to show that if (1.7.7) holds, then the second
derivative of f is

f ′′ (x) =
∞∑
i=2

i (i − 1) aix
i−2 for all |x| < d.(1.7.9)
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3.6 (i) If X has the Poisson distribution P (λ), determine E (X) and
E [X (X − 1)].

(ii) Use (i) to find Var (X).

(iii) Determine the 3rd central moment µ3 = E (X − λ)3.

[Hint for (i): Use the fact that E (X) =
∞∑
i=1

iλi

i!
, the exponential

series (1.3.9), and (1.7.8).]

3.7 (i) Obtain E (X) ,Var (X), and E [X − E (X)]3 when X has the nega-
tive binomial distribution (1.3.12) instead of the Poisson distribution.

(ii) Specialize the results of (i) to the geometric distribution (1.3.13).

3.8 Solve Problem 3.7(i) when X has the logarithmic distribution (1.3.15).

3.9 Show that

1 + x + · · · + xn−1 =
xn − 1
x − 1

.

[ Hint: Multiply both sides by x − 1.]

Section 4

4.1 Prove the bias-variance decomposition (1.4.6).

[Hint: On the left side add and subtract E [δ (X)] inside the square
bracket.]

4.2 In Table 1.4.4, add the rows n10 and n20.

4.3 Prove parts (i)–(v) of Lemma 1.4.1.

4.4 (i) If an = o (cn) and bn = o (cn), then an + bn = o (cn).

(ii) If an, bn, cn, dn are all > 0, then an = o (cn) and bn = o (dn)
implies an + bn = o (cn + dn).

(iii) The conclusion of (ii) is no longer valid if the a’s, b’s, c’s, and d’s
are not all positive.

(iv) If an = o (bn), then an + bn ∼ bn.

4.5 Consider the three statements:

(1) bn ∼ an,

(2) bn = an + o (an),

(3) bn = an + o (1).

For each pair (i, j), determine whether (i) implies (j), (j) implies (i),
or whether neither implication holds.
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4.6 Replace each of the following quantities by a simpler one which con-
sists of only one of the terms and is asymptotically equivalent:

(i) log n +
1
2
n;

(ii) log n + log (log n);

(iii) n2 + en.

4.7 (i) Prove (1.4.17).

(ii) Prove that nk = o
(
ean

b
)

for any a, b > 0.

4.8 Show that [
1 +

c

n
+ o

(
1
n

)]n
→ ec as n → ∞.

[Hint: Given any ε > 0, there exists n0 such that 1 +
c − ε

n
< 1 +

c

n
+ o

(
1
n

)
< 1 +

c + ε

n
for all n > n0.]

4.9 A sum of S dollars is deposited in a checking account which pays p%
interest per annum. If the interest is compounded monthly, determine
the value of the account after n months.

4.10 Show that the following sequences tend to infinity as n → ∞:

(i) log n;

(ii) log log n.

4.11 If an/bn → l (0 < l < ∞), then an � bn.

4.12 State and prove the analogs of the five parts of Lemma 1.4.1 when
an = o (bn) is replaced by an � bn.

4.13 For each of the following functions f , determine whether f (cn) �
[f (dn)] if c and d are any positive constants:

(i) f (n) = 2n,

(ii) f (n) = n2,

(iii) f (n) = en,

(iv) f (n) = log n.

4.14 If bn → 0, and an and bn are both of the same order as cn, what can
you say about the relation of an and bn?

4.15 Examine the validity of the four parts of Problem 4.4 with o replaced
by �.
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4.16 Show that an � bn if and only if both an = O (bn) and bn = O (an).

4.17 State and prove the analogs of the five parts of Lemma 1.4.1 with o
replaced by O.

4.18

Let a1n and A1n be o (1/n)
a2n and A2n be o (1)
a3n and A3n be o (n)

∣∣∣∣∣∣
a4n and A4n be O (1/n)
a5n and A5n be O (1)
a6n and A6n be O (n)

For each of the sums ain + Ajn, determine the best possible order
statement.

[Hint: For example, a1n + A1n = o (1/n).]

4.19 In the preceding problem, assume that all the ain and Ajn are positive
and determine the best possible order statement for each product
ainAjn.

4.20 In Example 1.4.6, verify the statements (i)–(iv).

4.21 For the two statements

an = o (nα) , an = O
(
nβ
)
,

determine whether either implies the other, and hence which is more
informative when

(i) 0 < α < β,

(ii) β < α < 0.

4.22 Determine the order relation between

an =
√

log n and bn = log
(√

n
)

Section 5

5.1 Use Definition 1.5.1 to show that
√

x → ∞ as x → ∞.

5.2 Use Definition 1.5.2 to prove the second statement of (1.5.5).

5.3 There exist values x > 0 arbitrarily close to 0 for which sin (1/x)

(i) equals +1,

(ii) equals −1.

[Hint: sin y = 1 for all y =
π

2
+ k · 2π, k = 1, 2, . . . ]

5.4 Determine the behavior of cos (1/x) as x → 0+.
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5.5 Let f (x) = [x] denote the greatest integer ≤ x (sometimes called the
integral part of x). Determine at which values of x, f is continuous,
continuous from the right, and continuous from the left.

5.6 A function f is said to be differentiable at x if

lim
∆→0

f (x + ∆) − f (x)
∆

(1.7.10)

exists, and this limit is then called the derivative of f at x and denoted
by f ′ (x). If f is differentiable at x, then

(i) it is continuous at x,

(ii) an alternative expression for f ′ (x) is

f ′ (x) = lim
∆→0

f (x + ∆) − f (x − ∆)
2∆

.(1.7.11)

5.7 The following example shows that the existence of the limit (1.7.11)
does not necessarily imply that of (1.7.10). Let f (x) = min (x, 1 − x).
Determine for each 0 < x < 1 whether

(i) f is continuous,

(ii) the limit (1.7.10) exists,

(iii) the limit (1.7.11) exists.

5.8 Define

(i) f (x) ∼ g (x) as x → x0,

(ii) f (x) = O [g (x)] as x → x0.

5.9 Show that the results of Examples 1.4.3–1.4.5 remain valid if n is
replaced by a continuous variable x.

5.10 (i) If X has the binomial distribution (1.2.1), graph the function
f (x) = P (X ≤ x) for the case n = 2, p = 1/2. At its discontinuities,
is F continuous on the right, the left, or neither?

(ii) Solve part (i) if F (x) = P (X < x).

5.11 If f is non-decreasing on a < x < x0, then as x tends to x0 from the
left, f (x) tends either to a finite limit or to ∞.

[Hint: (i) If f (x0) < ∞, then f is bounded above for x < x0 by f(x0).
If m is the least upper bound of f(x) for x < x0, then f (x) → m as
x → x0 from the left.

(ii) If f (x) is not bounded above for x < x0, then f (x) → ∞ as
x → x0− . ]
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5.12 Give an example of each of the following three possibilities for a set
S with least upper bound m:

(i) m is a member of S but not a limit point of S;

(ii) m is a limit point of S but not a member of S;

(iii) m is both a member and a limit point of S.

5.13 Determine the inf and the sup of each of the following sets and de-
termine whether it is in the set.

(i) S =
{

1 +
1
n

, n = 1, 2, . . .
}

;

(ii) S =
{

1 + (−1)n
1
n

, n = 1, 2, . . .
}

;

(iii) S =
{

1
n
√

2 − 1
, n = 1, 2, . . .

}
.

5.14 If {an} and {bn} are two sequences of numbers with an ≤ bn for all
n and bn → b, then sup {an} ≤ b.

5.15 Let

f(x) =
{

1 if x = 1/n, n = 1, 2, . . .
0 for all other values of x.

Determine for which values of x the function f is continuous.

Section 6

6.1 Let F ∗ (x) =
1
2

[P (X ≤ x) + P (X < x)]. At a point of discontinuity
of F , determine whether F ∗ is continuous on the left, on the right,
or neither.

6.2 For any cdf F , the quantile function F−1 defined by (1.6.10) is

(i) nondecreasing;

(ii) continuous on the left.

6.3 For any cdf F , we have

(i) F−1 [F (x)] ≤ x for all −∞ < x < ∞;

(ii) F
[
F−1 (y)

]
≥ y for all 0 < y < 1.

6.4 Use the preceding problem to show that for any F ,

F (x) ≥ y if and only if x ≥ F−1 (y) .(1.7.12)
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6.5 If F is continuous at x and 0 < y = F (x) < 1, then

(i) F
[
F−1 (y)

]
= y but

(ii) F−1 [F (x)] may be < x.

[Hint (ii): Let x be the right-hand end point of a flat stretch of F .]

6.6 (i) The cdf of the logistic distribution L (0, 1) given in Table 1.6.1 is

F (x) =
1

1 + e−x
.(1.7.13)

(ii) Give an explicit expression for F−1.

[Hint (i): Differentiate (1.7.13).]

6.7 (i) The cdf of the exponential distribution E (0, 1) given in Table 1.6.1
is

F (x) = 1 − e−x.(1.7.14)

(ii) Give an explicit expression for F−1.

6.8 If X is distributed as U (0, 1), then − log X is distributed as E (0, 1).

6.9 If X has the continuous cdf F , then F (X) id distributed as U (0, 1).

[Hint: Use (1.7.12). ]

6.10 If the graph of F is rotated about the line y = x, the resulting inverse
F−1 is continuous on the left.

[Hint: Consider how south-north and west-east stretches of F (corre-
sponding to discontinuities and flat stretches, respectively) are trans-
formed under the rotation.]
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2
Convergence in Probability and in Law

Preview

This chapter develops the principal probability tools for first order large-
sample theory. The convergence of a sequence of real numbers is extended
to that of a sequence of random variables. Convergence of Xn in probability
(i.e., to a constant) and in law (i.e., the convergence of the distribution of
Xn to a limit distribution) are treated in Sections 1–3. Sections 4, 7, and 8
are concerned with the central limit theorem (CLT) which give conditions
for the standardized sum of n random variables to have a normal limit
distribution as n → ∞: In Section 4, the terms are assumed to be i.i.d.,
in Section 7, independent but no longer identically distributed; Section 8
considers sums of dependent variables. The CLT is strengthened in two
directions: (i) The Berry-Esseen theorem provides a bound for the error
of the normal approximation; (ii) a better approximation can usually be
obtained through the first terms of the Edgeworth correction (Section 4).
Finally, the usefulness of the CLT is greatly increased by Slutsky’s theorem
given in Section 3, and by the delta method (Section 5) which extends the
limit result to smooth functions of asymptotically normal variables.

2.1 Convergence in probability

In the present section, we extend the notion of the limit of a sequence of
numbers to that of the convergence of a sequence of random variables to a
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constant. As an example let Sn be the number of successes in n binomial
trials with success probability p. Then for large n, one would expect Sn/n
to be close to p. However, Definition 1.1.1 will not work, for it would require
that for any ε > 0, there exists n0 such that∣∣∣∣Snn − p

∣∣∣∣ < ε(2.1.1)

for all n > n0. But if 0 < p < 1, it is possible for n0 + 1 trials to result in
n0 + 1 heads, in which case, Sn/n = 1 for n = n0 + 1 and (2.1.1) would
be violated. What can be said is that for any large n, it is very unlikely
to get n heads in n trials (when p < 1), and more generally that for any
sufficiently large n, it is unlikely for (2.1.1) to be violated. This suggests
that the probability of the event (2.1.1) should tend to 1 as n → ∞, and
motivates the following definition.

Definition 2.1.1 A sequence of random variables Yn is said to converge
to a constant c in probability, in symbols

Yn
P→ c,(2.1.2)

if for every ε > 0,

P (|Yn − c| < ε) → 1 as n → ∞(2.1.3)

or equivalently

P (|Yn − c| ≥ ε) → 0 as n → ∞.(2.1.4)

Thus, roughly speaking, (2.1.2) states that for large n, the probability is
high that Yn will be close to c.

Before considering any examples, we shall first obtain a sufficient con-
dition for convergence in probability, which often is easier to check than
(2.1.3) or (2.1.4). This condition is based on the following lemma.

Lemma 2.1.1 Chebyshev inequality. For any random variable Y and
any constants a > 0 and c,

E(Y − c)2 ≥ a2P [|Y − c| ≥ a].(2.1.5)

Proof. The result holds quite generally, but we shall prove it only for the
case that the distribution of Z = Y − c has a density f(z). Then

E(Z2) =
∫

z2f(z)dz =
∫

|z|≥a

z2f(z)dz +
∫

|z|<a

z2f(z)dz

≥
∫

|z|≥a

z2f(z)dz ≥ a2
∫

|z|≥a

f(z)dz = a2P (|Z| ≥ a).
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If the distribution of Z is discrete, the integrals are replaced by sums. A
completely general proof requires a more general concept of integral. �

Theorem 2.1.1 A sufficient condition for Yn
P→ c is that

E(Yn − c)2 → 0,(2.1.6)

i.e., that Yn tends to c in quadratic mean.

Proof. Given any ε > 0, we have, by (2.1.5),

P [|Yn − c| ≥ ε] ≤ 1
ε2

E(Yn − c)2.

The limit relation (2.1.4) now follows from (2.1.6). �

Example 2.1.1 Binomial. If Sn is the number of successes in n binomial
trials with success probability p, let Yn = Sn/n and c = p. Then

E

(
Sn
n

− p

)2
= Var

(
Sn
n

)
=

pq

n
→ 0 as n → ∞

and it follows that
Sn
n

P→ p. �

Example 2.1.1 is a special case of the following result.

Theorem 2.1.2 Weak law of large numbers. Let X1, . . . , Xn be i.i.d.
with mean E(Xi) = ξ and variance σ2 < ∞. Then the average X̄ = (X1 +
· · · + Xn)/n satisfies

X̄
P→ ξ.(2.1.7)

Proof. The result follows from Theorem 2.1.1 and the fact that

E(X̄ − ξ)2 = Var(X̄) = σ2/n → 0 as n → ∞.

�
Note: The convergence result (2.1.7) remains true even if σ2 = ∞. For a
proof of this result which is due to Khinchine, see, for example, Feller (Vol.
1) (1957), Section X.2.

Example 2.1.1 (continued). To see that Example 2.1.1 is a special case
of Theorem 2.1.2, consider a sequence of binomial trials, and let

Xi =




1 if the ith trial is a success

0 otherwise.
(2.1.8)
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Then Sn =
n∑
i=1

Xi, Sn/n = X̄, and E(Xi) = p. �

The limit laws (1.1.10)–(1.1.12) of Chapter 1 have the following proba-
bilistic analogs.

Theorem 2.1.3 If An and Bn are two sequences of random variables sat-
isfying

An
P→ a and Bn

P→ b

respectively, then

An + Bn
P→ a + b and An − Bn

P→ a − b,(2.1.9)

An · Bn P→ a · b,(2.1.10)

and

An
Bn

P→ a

b
provided b �= 0.(2.1.11)

The proof requires the following lemma, which is also useful in other
contexts.

Lemma 2.1.2 If En and Fn are two sequences of events, then

P (En) → 1, P (Fn) → 1 implies P (En and Fn) → 1.

Proof. If Ē denotes the complement of E, we have

P (En and Fn) = P (Ēn or F̄n) ≤ P (Ēn) + P (F̄n) → 0.

�

Proof of (2.1.9). From

|(An + Bn) − (a + b)| ≤ |An − a| + |Bn − b|,

it follows that P{|(An + Bn) − (a + b)| < ε} ≥ P{|An − a| < ε/2 and
|Bn − b| < ε/2]}. Since P [|An − a| < ε/2] → 1 and P [|Bn − b| < ε/2] → 1,
Lemma 2.1.2 proves (2.1.9). (For the proof of (2.1.10) and (2.1.11), see
Problem 1.1). �

Another useful result is
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Theorem 2.1.4 If Yn is a sequence of random variables such that Yn
P→ c,

and if f is a function which is continuous at c, then

f(Yn)
P→ f(c).(2.1.12)

This is intuitively clear: With high probability, Yn will be close to c, and
by continuity, f(Yn) will then be close to f(c). (For a formal proof, see
Problem 1.3).

As an example, suppose that X1, . . . , Xn are i.i.d. according to a Poisson
distribution P (λ). Then X̄

P→ λ and therefore e−X̄
P→ e−λ.

An important statistical application of convergence in probability is the
consistency of a sequence of estimators.

Definition 2.1.2 A sequence of estimators δn of a parametric function
g(θ) is consistent if

δn
P→ g(θ).(2.1.13)

Example 2.1.2 Consistency of the mean. Let X1, ..., Xn be i.i.d. with
mean ξ and variance σ2 < ∞. Then X̄ is a consistent estimator of ξ. (This
is just a restatement of Theorem 2.1.2). �

Note: The notation and terminology used in Example 2.1.2 is rather im-
precise. The estimator X̄ depends on n and should be denoted by X̄n and
the convergence in probability is a statement not about a single estimator
but about the sequence of estimators X̄n, n = 1, 2, . . . . The abbreviations
used in Example 2.1.2 are customary and will often be used in this book.

Theorem 2.1.5 A sufficient condition for δn to be consistent for estimat-
ing g(θ) is that both the bias and the variance of δn tend to zero as n → ∞.

Proof. Theorem 2.1.1 and equation (1.4.6) of Chapter 1. �

Example 2.1.3 Consistency of sample moments. Let us now return
to the case that X1, . . . , Xn are i.i.d. with mean ξ, and suppose that
E|Xi|k < ∞ so that the kth central moment

µk = E(Xi − ξ)k

exists (Problem (1.9)). Then we shall show that the kth sample moment

Mk =
1
n

n∑
i=1

(Xi − X̄)k

is a consistent estimator of µk as n → ∞.
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To prove this result, suppose without loss of generality that ξ = 0. (If
ξ �= 0, replace Xi−ξ by Yi so that µk = E(Y k

i ) and note that
∑

(Xi−X̄)k =∑
(Yi − Ȳ )k.) By the binomial theorem, we have

1
n

∑
(Xi − X̄)k =

1
n

∑
Xk
i −

(
k

1

)
X̄

1
n

∑
Xk−1
i

+
(

k

2

)
X̄2 · 1

n

∑
Xk−2
i + · · · + (−1)kX̄k.

(2.1.14)

Now X̄
P→ 0 and, more generally,

1
n

n∑
i=1

Xr
i
P→ E(Xr

i ) for r = 1, 2, . . . , k by

the law of large numbers. From (2.1.10), it follows that all terms in (2.1.14)
tend in probability to zero, except the first term, which tends to µk, as was
to be proved. �

The Chebychev inequality shows that if a random variable Y has a small
variance, then its distribution is tightly concentrated about ξ = E(Y ). It
is important to realize that the converse is not true: the fact that Y is
tightly concentrated about its mean tells us little about the variance or
other moments of Y .

The following example shows that Yn
P→ c does not imply either

(i) E(Yn) → c

or

(ii) E(Yn − c)2 → 0.

Example 2.1.4 A counterexample. Let

Yn =




1 with probability 1 − pn

n with probability pn.
(2.1.15)

Then Yn
P→ 1, provided pn → 0 (Problem 1.2(i)). On the other hand,

E(Yn) = (1 − pn) + npn

which tends to a if pn = a/n and to ∞ if, for example, pn = 1/
√

n. This
shows that (i) need not hold, and that (ii) need not hold is seen analogously
(Problem 1.2(ii)). �

A crucial distinction.
The example shows clearly the difference between the probability limit

of Yn and the limiting behavior of moments such as E(Yn) or E(Yn − c)2.
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The limit relation Yn
P→ c states that for large n, Yn is very likely to be

close to c. However, it says nothing about the location of the remaining
small probability mass which is not close to c and which can strongly affect
the value of the mean and of other moments.

This distinction depends on the assumption that the distribution of the
Y ’s can have positive probability mass arbitrarily far out. The situation
changes radically if the Y ’s are uniformly bounded, and hence there exists
M such that

P [|Yn − c| < M ] = 1 for all n.

In that case

Yn
P→ c

implies both (Problem 1.8)

E(Yn) → c and E(Yn − c)2 → 0.

Additional insight into the one-sided relationship between convergence
in probability and the behavior of E(Y − c)2 can be obtained by observing
that a large value of E(Y − c)2 can obtain in two quite different situations:

(a) When the distribution of Y is very dispersed; for example, when Y
has a uniform distribution U(−A,A) with a very large value of A;

(b) As the result of a small probability very far out; for example, when
Y is distributed as

(1 − ε)N(0, σ2) + εN(ξ, 1)

with ε small but with a large value of ξ.

In both cases, the variance of Y will be large. However, in case (b) with
small values of ε and σ2, the distribution will be tightly concentrated about
0; in case (a), it will not.

Convergence in probability can be viewed as a stochastic analog of the
convergence of a sequence of numbers, of which Problem 1.6 shows it to be
a generalization. We shall now consider the corresponding analogs of the
relations o, �, and O for random variables.

Definition 2.1.3 A sequence of random variables An is of smaller order
in probability than a sequence Bn (in symbols

An = oP (Bn))
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if

An
Bn

P→ 0.(2.1.16)

In particular,

An = oP (1) if and only if An
P→ 0.(2.1.17)

The properties of o stated in Lemma 1.4.1 generalize in a natural way to
oP (Problem 1.10). For example, An = oP (Bn) implies

cnAn = oP (cnBn) and CnAn = op(CnBn)(2.1.18)

for any numbers cn and random variables Cn �= 0. Another relation is

cnoP (An) = oP (cnAn) and CnoP (An) = oP (CnAn) for cn, Cn �= 0.
(2.1.19)

The oP notation permits us to write statements such as

An = Bn + Rn

when Rn
P→ 0 or when nRn

P→ 0 very compactly as respectively

An = Bn + oP (1) or An = Bn + oP (1/n).

Here the latter statement follows from the fact that by (2.1.19),

noP (1/n) = oP (1).

There are analogous extensions from O to Op and from � to �P .

Definition 2.1.4 (i) A sequence An is said to be of order less than or
equal to that of Bn in probability (in symbols, An = OP (Bn)) if given
ε > 0 there exists a constant M = M(ε) and an integer n0 = n0(ε)
such that

P (|An| ≤ M |Bn|) ≥ 1 − ε for all n > n0.

(ii) A sequence An is said to be of the same order as Bn in probability
(in symbols, An �P Bn) if given ε > 0 there exist constants 0 < m <
M < ∞ and an integer no such that

P

[
m <

∣∣∣∣AnBn

∣∣∣∣ < M

]
≥ 1 − ε for all n > no.
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Summary

1. The convergence of a sequence of numbers is extended to the con-
vergence of a sequence of random variables Yn to a constant c. This
states that for large n, we can be nearly certain that Yn will differ
from c by an arbitrarily small amount, i.e., that the probability of Yn
falling within any preassigned distance ε of c tends to 1 as n → ∞.

2. A sufficient condition for Yn
P→ c is that E(Yn− c)2 → 0, which typi-

cally is much easier to check. In particular, it provides an easy proof
of the weak law of large numbers, which states that the average of n
i.i.d. variables with mean ξ and finite variance σ2 tends in probability
to ξ.

3. An important distinction must be made between the statements (a)
Yn

P→ c and (b) E(Yn) → c. The first of these statements concerns
only the bulk of the probability mass and is independent of the posi-
tion of the small remainder. On the other hand, (b) depends crucially
on the behavior of the Y ’s in the extreme tails.

4. A sequence of estimators δn of a function g(θ) is consistent if δn
P→

g(θ). The sample moments are consistent estimators of the population
moments.

5. The o, O, � notation for the comparison of two sequences of numbers
is extended to the corresponding oP , OP , �P notation for random
variables.

2.2 Applications

In the present section, we shall consider whether the sample mean X̄ is con-
sistent for estimating the common mean ξ of the X’s when these variables
(a) are independent but no longer identically distributed and (b) in some
situations when they are dependent. We shall also investigate the conver-
gence in probability of the sample quantiles to their population analogs.

Example 2.2.1 Estimation of a common mean. Suppose that X1, . . . ,
Xn are independent with common mean E(Xi) = ξ and with variances
Var(Xi) = σ2i . (Different variances can arise, for example, when each of
several observers takes a number of observations of ξ, and Xi is the average
of the ni observations of the ith observer.) Then

E(X̄ − ξ)2 =
1
n2

Var
(∑

Xi

)
=

1
n2

n∑
i=1

σ2i .
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It follows from Theorem 2.1.1 that X̄ will continue to be a consistent esti-
mator of ξ provided

n∑
i=1

σ2i /n
2 → 0, i.e., if

n∑
i=1

σ2i = o(n2).(2.2.1)

This covers, of course, the case that σ2i = σ2 for all i since then
∑

σ2i =
nσ2 = o(n2).

When the variances σ2i are not all equal, consider the cases that they are
either (a) decreasing or (b) increasing.

In case (a)

n∑
i=1

σ2i ≤ nσ21 = o(n2).

It follows that (2.2.1) holds and X̄ is consistent.
In case (b), condition (2.2.1) clearly will not hold if the σ2i increase too

fast, e.g., if σ2n ≥ n2, but will be satisfied if the increase is sufficiently slow.
Suppose, for example, that

σ2i = ∆iα for some α > 0.(2.2.2)

Then (1.3.6) shows that

∆
n∑
i=1

iα = o(n2)(2.2.3)

if and only if α + 1 < 2, i.e., if α < 1, and hence that X̄ is a consistent
estimator for ξ when σ2i is given by (2.2.2) with α < 1.

When α ≥ 1, the sufficient condition (2.2.3) does not hold and therefore
does not tell us whether X̄ is consistent. Consistency in this case turns out
to depend not only on the variances σ2i but also on other aspects of the
distributions Fi of the Xi. The following result shows that there will then
always exist distributions for which X̄ is not consistent. �

Theorem 2.2.1 If Yn, n = 1, 2, . . . , is a sequence of random variables with
normal distribution N(ξ, τ2n), then Yn

P→ ξ if and only if τ2n → 0.

Proof. We have

P (|Yn − ξ| ≤ a) = P

(∣∣∣∣Yn − ξ

τn

∣∣∣∣ ≤ a

τn

)
.(2.2.4)

Since (Yn− ξ)/τn is distributed as N(0, 1), the probabilities (2.2.4) tend to
1 if and only if a/τn → ∞, that is, if τ2n → 0. �
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If the Xi are independent N(ξ, σ2n), the distribution of X̄ is N(ξ, τ2n) with
τ2n =

∑
σ2i /n

2. It then follows from the theorem that X̄ is consistent for ξ
if and only if (2.2.1) holds.

The reason for inconsistency in the normal case when the variances in-
crease too fast is that the observations for large n (and hence large σ2n)
provide very little information about the position of ξ.

Necessary and sufficient conditions for X̄ to be consistent for ξ in the
general case of independent non-i.i.d. X’s are given, for example, in Chow
and Teicher (1978) and in Petrov (1995). From these, it can be shown that
when α ≥ 1, there will exist non-normal (heavy-tailed) distributions Fi for
which X̄ is consistent.

To summarize: X̄ is a consistent estimator of ξ for all sequences of dis-
tributions Fi satisfying (2.2.1), but when (2.2.1) does not hold, X̄ may or
may not be consistent dependent on the specific nature of the Fi.

Consider next the more general situation in which X1, . . . , Xn are inde-
pendent with E(Xi) = ξi,Var(Xi) = σ2i , and

δn =
∑

wiXi(2.2.5)

is a sequence of statistics, with the weights wi satisfying∑
wiξi = ξ, independent of n.(2.2.6)

Here we shall permit the weights to depend not only on i but also on n,
but we continue to denote them by wi instead of the more correct but
cumbersome w

(n)
i .

By Theorem 2.1.1, a sufficient condition for Yn to be a consistent esti-
mator of ξ is that

Var(δn) =
n∑
i=1

w2i σ
2
i → 0 as n → ∞.(2.2.7)

From Theorem 2.2.1, it follows that when the Xi are distributed according
to N(ξi, σi), then (2.2.7) is not only sufficient but also necessary for the
consistency of Yn.

We shall now illustrate this condition in a number of examples.

Example 2.2.2 Best linear estimator for a common mean. Let us
return to the situation of Example 2.2.1. When the variances σ2i are un-
equal, there exists a better linear estimator of ξ than X̄, which puts less
weight on the observations with larger variance. The best (i.e., minimum
variance) weighted average δn =

∑
wiXi (with

∑
wi = 1 so that E(

∑
wiXi)

= ξ) assigns to Xi the weight

wi =
1/σ2i
n∑
j=1

1/σ2j
(2.2.8)
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and its variance is (Problem 2.2)

Var(δn) =
1

n∑
j=1

1/σ2j

.(2.2.9)

The optimal linear estimator δn is therefore consistent for ξ if
n∑
j=1

1/σ2j → ∞ as n → ∞.(2.2.10)

Since Var(δn) ≤ Var(X̄), condition (2.2.10) is satisfied whenever (2.2.1)
holds and therefore in particular δn is consistent for ξ when the σ2i are
non-increasing and also when σ2i is given by (2.2.2) with 0 < α < 1. For

α > 1,
n∑
i=1

1/σ2i tends to a finite limit by Example 1.3.2 of Chapter 1, and

(2.2.10) therefore does not hold. Finally, when α = 1, it follows from (1.3.5)

that
n∑
i=1

1/σ2i ∼ log n and therefore tends to infinity. Thus (2.2.10) holds if

and only if α ≤ 1. As before, condition (2.2.10) is also necessary when the
X’s are normal. With regard to consistency, the improvement of δn over X̄
therefore is slight. The sufficient condition holds for α ≤ 1 instead of only
for α < 1.

However, consistency is a very weak property and a more useful compari-
son between X̄ and δn is obtained by a direct comparison of their variances.
The relative efficiency eX̄,δn of X̄ to δn is defined by (see Section 4.2)

eX̄,δn =
Var(δn)
Var(X̄)

,(2.2.11)

which is shown in Table 2.2.1 for α = 1/4, 1/2, 3/4, and 1.
The table shows that the improvement of δn over X̄ can be substantial,

particularly for values of α close to 1. �

TABLE 2.2.1. Relative efficiency of eX̄,δn for σ
2
i = iα

n 5 10 20 50 100 ∞
α = 1/4 .980 .970 .961 .952 .948 .938
α = 1/2 .923 .886 .854 .820 .801 .750
α = 3/4 .836 .763 .700 .633 .595 .438
α = 1 .730 .621 .529 .436 .382 0

Example 2.2.3 Simple linear regression. Let

Xi = α + βvi + Ei,(2.2.12)
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where α and β are unknown regression coefficients, the v’s are known con-
stants, and the E’s are i.i.d. variables with expectation 0 and variance σ2.
The standard estimators of α and β (which have optimality properties when
the E’s are normal) are

β̂ =
∑

(vi − v̄)Xi

/∑
(vj − v̄)2(2.2.13)

and

α̂ = X̄ − v̄β̂.(2.2.14)

To apply (2.2.7) to the consistency of δn = β̂ with

ξi = α + βvi, σ
2
i = σ2 and wi = (vi − v̄)

/∑
(vj − v̄)2,(2.2.15)

we first check that (Problem 2.4(i))∑
wiξi =

1∑
(vj − v̄)2

[
α
∑

(vi − v̄) + β
∑

vi(vi − v̄)
]

= β,(2.2.16)

independent of n. Thus, by (2.2.7), a sufficient condition for β̂ to be a
consistent estimator of β is that

Var(β̂) = σ2
∑

w2i = σ2
∑

(vi − v̄)2

(
∑

(vj − v̄)2)2
=

1∑
(vj − v̄)2

→ 0

and hence that
n∑
j=1

(vj − v̄)2 → ∞ as n → ∞.(2.2.17)

Similarly, it is seen (Problems 2.4(ii) and (iii)) that

E(α̂) = α(2.2.18)

and

Var(α̂) = σ2
[

1
n

+
1∑

(vj − v̄)2

]
.(2.2.19)

Hence a sufficient condition for α̂ to be consistent as n → ∞ is again (2.2.17)
The sufficient condition (2.2.17) involves a sequence of coefficients vj , but

in any given situation, the sample size n and the coefficients (v(n)1 , . . . , v
(n)
n )

are fixed. How then should we interpret the significance of the condition
for the given situation? When in Example 2.1.2 we stated that X̄

P→ ξ, the
implication was that for large n, the sample mean will be close to ξ with
high probability and that its value therefore provides a reliable estimate of
ξ. Analogously, in the present situation, the sufficiency of (2.2.17) permits
the conclusion that if

∑
(vj−v̄)2 is large, then β̂ provides a reliable estimate

of β. �
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Let us now return to the consistency of an average X̄ of n random vari-
ables, but consider the case that the variables are no longer independent.

Suppose that X1, . . . , Xn have a joint distribution with common mean
E(Xi) = ξ and with covariances Cov(Xi, Xj) = γij . Then E(X̄) = ξ and

Var(X̄) =
1
n2

n∑
i=1

n∑
j=1

γij .(2.2.20)

By Theorem 2.1.1 a sufficient condition for X̄ to be a consistent estimator
of ξ is therefore that

n∑
i=1

n∑
j=1

γij = o(n2).(2.2.21)

A difficulty with discussing dependent variables is the great variety of pos-
sible dependence structures. We here give only a few examples.

Example 2.2.4 Estimating a lot proportion. Consider a lot Π of N
items, of which D are defective and N−D satisfactory. A sample of n items
is drawn at random without replacement. Let

Xi =
{

1 if the ith item drawn is defective
0 otherwise.

(2.2.22)

Then

E(Xi) = p =
D

N
(2.2.23)

is the probability of a single item drawn being defective. It is easy to see
that (Problem 2.6)

Var Xi = pq, Cov(Xi, Xj) = −pq/(N − 1).(2.2.24)

The negative covariances reflect the negative dependence of the X’s, which
results from the fact that when one item in the sample is defective, this
decreases the chance of any other item drawn being defective.

To ask whether X̄, the proportion of defectives in the sample, is a con-
sistent estimator of p makes sense only if we let the population size N tend
to infinity as well as the sample size n. We then have

n∑
i=1

n∑
j=1

γij = npq − n(n − 1)
N − 1

pq < npq = o(n2).

Thus X̄ is consistent if both N and n tend to infinity. �
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Example 2.2.5 A two-sample probability. Suppose that X1, . . . , Xm

and Y1, . . . , Yn are samples from distributions F and G, respectively, and
that one wishes to estimate the probability

p = P (X < Y ).(2.2.25)

An unbiased estimator is

δ =
1

mn

m∑
i=1

n∑
j=1

Uij ,(2.2.26)

where

Uij = 1 or 0 as Xi < Yj or Xi ≥ Yj .(2.2.27)

Since δ is an average of mn terms, (2.2.21) becomes∑∑
γij;kl = o(m2n2),(2.2.28)

where

γij;kl = Cov(Uij , Ukl).

The γ’s are zero if all four subscripts i, j, k, l are distinct, from which it
follows that ∑∑

γij;kl = O(m2n) + O(mn2)

(for an exact formula, see Section 6.1). This shows that (2.2.28) holds, and
therefore δ is a consistent estimator of p, provided m and n both tend to
infinity. �

Example 2.2.6 A counterexample. As an example in which consistency
does not hold, suppose that one of two distributions F and G is chosen
with probability p and q, respectively, and then a sample X1, . . . , Xn is
obtained from the selected distribution. If the means and variances of the
two distributions have the known values ξ �= η and σ2, τ2, respectively, we
have

E(X̄) = pξ + qη,

so that

δ =
X̄ − η

ξ − η

is an unbiased estimator of p. It is intuitively clear that in the present
situation, no consistent estimator of p can exist. For suppose that instead
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of observing only a sample from F or G, we were actually told whether
the selected distribution was F or G. With this additional information, we
would only have a single trial with outcomes F or G having probabilities p
and q and we would thus be left without a basis for consistent estimation.

�

Consider finally a sequence of observations X1, X2, . . . taken at times
t1, t2, . . . , a so-called time series. If there is no trend, the distribution of the
X’s may be invariant under time changes, i.e., have the following property.

Definition 2.2.1 The sequence X1, X2, . . . is said to be stationary if for
any positive integers i and k, the joint distribution of (Xi, Xi+1, . . . , Xi+k)
is independent of i. The sequence is said to be weakly stationary if this
time independence is assumed only for the first and second moments of
(Xi, Xi+1, . . . , Xi+k).

Stationarity is a natural generalization of i.i.d. when the assumption of
independence is dropped.

For a stationary sequence the condition (2.2.21) for consistency of X̄ as
an estimator of θ = E(Xi) reduces to

nσ2 + 2[(n − 1)γ1 + (n − 2)γ2 + · · · + γn−1] = o(n2),(2.2.29)

where

γk = Cov(Xi, Xi+k)(2.2.30)

and hence to

1
n

n−1∑
k=1

(
1 − k

n

)
γk → 0.(2.2.31)

Example 2.2.7 Moving averages; m-dependence. As an example of
a stationary sequence, consider the moving averages

X1 =
U1 + · · · + Um

m
, X2 =

U2 + · · · + Um+1
m

, . . .(2.2.32)

or, more generally, the sequence

X1 = λ1U1 + · · · + λmUm, X2 = λ1U2 + · · · + λmUm+1, . . .(2.2.33)

where the U ’s are i.i.d. with mean θ and variance σ2 < ∞. The X’s have
the property that (X1, . . . , Xi) and (Xj , Xj+1, . . . ) are independent for
any i < j with j − i > m. Any sequence with this property is said to be
m-dependent.
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Since for any m-dependent sequence we have

γk = 0 if k > m(2.2.34)

and hence

1
n

n−1∑
k=1

(
1 − k

n

)
γk =

1
n

m∑
k=1

(
1 − k

n

)
γk → 0,

we see that (2.2.31) holds and X̄ is therefore consistent for estimating

E(Xi) = θ
m∑
i=1

λi.

For m-dependent sequences, condition (2.2.31) is satisfied because all
but a finite number of the γ’s are zero. This is a rather special situation.
However, more generally it is often the case that

γk → 0 as k → ∞,(2.2.35)

i.e., the dependence becomes negligible when the observations are very
far apart in time. (For some examples, see Section 2.8.) It can be shown
that (2.2.35) implies (2.2.31) (Problem 2.8), and hence that for any sta-
tionary time series satisfying (2.2.35), X̄ is consistent for θ = E(Xi). �

Summary

1. Sufficient conditions are obtained for X̄ and some other linear esti-
mators to be consistent estimators of their expectation when the X’s
are independent but not identically distributed.

2. The consistency problem of 1 is also considered for a number of situa-
tions in which the observations are dependent, including in particular
stationary sequences.

2.3 Convergence in law

At the beginning of Chapter 1, large-sample theory was described as deal-
ing with approximations to probability distributions and with the limit
theorems underlying these approximations. Such limit theorems are based
on a suitable concept of the convergence of a sequence of distributions.
As we saw in Section 1.6, distributions can be characterized in many dif-
ferent ways, for example, by their cumulative distribution functions, their
quantile functions, or their probability densities. We shall define here the
convergence of a sequence of distributions in terms of their cdf’s.

A natural starting point is a sequence {Hn, n = 1, 2, . . . } of cdf’s for
which the limit

lim
x→∞

Hn(x) = H(x)(2.3.1)
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exists for all x, and to ask whether it follows that H itself is a cdf. For
this, it must satisfy conditions (i), (ii), (iii), and (v) of Theorem 1.6.1.
Conditions (i) and (ii) are easily seen to hold (Problem 3.1). However the
following example shows that this is not the case for (iii), which states that

H(−∞) = lim
x→−∞

H(x) = 0 and H(+∞) = lim
x→∞

H(x) = 1.(2.3.2)

Example 2.3.1 Counterexample to (iii). Let Hn be the normal distri-
bution with mean 0 and with variance σ2n → ∞. Then if Xn has distribution
Hn, we have

Hn(x) = P

(
Xn

σn
≤ x

σn

)
= Φ

(
x

σn

)
,

where Φ is the cdf of the standard normal distribution N(0, 1). As σn → ∞,
x/σn → 0 and hence Φ(x/σn) → Φ(0) = 1/2. It follows that (2.3.1) holds
with H(x) = 1/2 for all x. Clearly, H does not satisfy (2.3.2).

What has happened is that half the probability has escaped to −∞ and
half to +∞. �

The more usual situation in which this kind of pathology does not occur
is characterized by the following definition:

Definition 2.3.1 A sequence of random variables Yn is bounded in prob-
ability if for any ε > 0, there exists a constant K and a value n0 such
that

P (|Yn| ≤ K) ≥ 1 − ε for all n > n0.

Note: It is seen from Definition 2.1.4 that Yn being bounded in probability
is equivalent to the statement

Yn = OP (1).

Example 2.3.2 Let

Yn =
{

0 with probability 1 − pn
n with probability pn.

Then Definition 2.3.1 shows that Yn is bounded in probability if pn → 0
but not if pn → p > 0. In the latter case, an amount p of probability escapes
to ∞ as n → ∞. �

A useful consequence of Definition 2.3.1 is the following lemma (Prob-
lem 3.2(ii)).
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Lemma 2.3.1 If the sequence {Yn, n = 1, 2, . . . } is bounded in probability
and if {Cn} is a sequence of random variables tending to 0 in probability,
then CnYn

P→ 0.

The following theorem shows that condition (2.3.2) is violated only if
some probability escapes to +∞ or −∞.

Theorem 2.3.1 If {Xn, n = 1, 2, . . . } is a sequence of random variables
with cdf Hn and if (2.3.1) holds for all x, then (2.3.2) holds if and only if
the sequence {Xn} is bounded in probability.

The result is easy to see and we do not give a formal proof.
Let us next turn to condition (v) of Theorem 1.6.1, which states that

a cdf is continuous on the right. If x is a continuity point of H, then H
is automatically continuous on the right at x. As the following example
shows, (v) need not hold at discontinuities of H.

Example 2.3.3 Counterexample. Let X have cdf F . Let

(a) Xn = X − 1
n

have cdf Hn, so that

Hn(x) = F

(
X ≤ x +

1
n

)
= F

(
x +

1
n

)
.

Then

Hn (x) → F (x+) = F (x)

and the limit F of Hn satisfies (v) for all x.

(b) Let X ′
n = X +

1
n

have cdf H ′
n. Then

H ′
n(x) = F

(
x − 1

n

)
→ F (x−)

and hence the limit of H ′
n violates (v) at all points of discontinuity of F .�

If in case (a) of this example we say that Hn → F , we would also want
to say that this relation holds in case (b). This is possible only if we require
(2.3.1) not for all points x but only for continuity points of H. One might
be concerned that such a restriction leaves the convergence definition too
weak. That this is not the case is a result of the fact (which we shall not
prove) that a cdf is completely determined by its values at all continuity
points. We shall therefore adopt the following definition.
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Definition 2.3.2 A sequence of distributions with cdf’s Hn is said to con-
verge to a distribution function H (in symbols, Hn → H) if

Hn(x) → H(x) at all continuity points x of H.(2.3.3)

If Yn is a sequence of random variables with cdf’s Hn, and Y has cdf H,
we shall then also say that Yn tends in law to Y , or to H; in symbols,

Yn
L→ Y or Yn

L→ H.(2.3.4)

The notation Yn
L→ Y is somewhat misleading since it suggests that for

large n, the random variable Yn is likely to be close to Y . In fact, Definition
2.3.2 only states that for large n, the distribution of Yn is close to that of
Y but not that the random variables themselves are close. To illustrate the
difference, suppose that X is uniformly distributed on (0, 1) and let

Yn =
{

X if n is odd
1 − X if n is even.

Then Yn has the uniform distribution U(0, 1) for all n and hence Yn
L→ X

and also Yn
L→ 1−X. In fact, Yn converges in law to any random variable,

however defined, which is distributed as U(0, 1). On the other hand, Yn
clearly does not get close to X when n is even, no matter how large.

A better notation than Yn
L→ Y would be d[Yn] → d[Y ] with d[ ] denoting

the distribution of the indicated variable, or d[Yn] −→ H, where H is the
limit distribution. We shall use Yn

L→ H as a shorthand version. This, in
fact, corresponds to common terminology such as “Yn is asymptotically
normal.”

Note: The symbol Hn → H is meant to imply that H is a cdf and thus in
particular satisfies (2.3.2).

Example 2.3.4 Normal. If Yn is normally distributed as N(ξn, σ2n) and
if ξn → 0, σn → 1, then Yn

L→ N(0, 1).
To see this, note that

Hn(x) = P

(
Yn − ξn

σn
≤ x − ξn

σn

)
= Φ

(
x − ξn

σn

)
.

Now (x− ξn)/σn → x and hence, since Φ is continuous, Hn(x) → Φ(x) for
all x. �

Example 2.3.5 Convergence in probability. If Yn
P→ c and Y is a ran-

dom variable with P (Y = c) = 1, then Yn
L→ Y ; in this sense, convergence

in probability is the special case of convergence in law in which the limit
distribution assigns probability 1 to a constant.
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To see this result, note that the cdf of Y is

H(y) =
{

0 if y < c
1 if y ≥ c.

For y < c, we have

Hn(y) = P (Yn ≤ y) → 0 = H(y).

For y > c, analogously,

Hn(y) = P (Yn ≤ y) → 1 = H(y).

For y = c, we cannot say whether Hn(y) → H(y) = 1 (Problem 3.4), but
we do not need to since c is a discontinuity point of H. �

The following consequence of convergence in law is often useful.

Theorem 2.3.2 If Yn converges in law to a distribution H, then the se-
quence Yn is bounded in probability.

Proof. Given ε > 0, we must find K and n0 such that P (−K ≤ Yn ≤
K) > 1− ε for all n > n0. Now (Problem 3.5) there exist continuity points
K1,K2 of H so large that H(K1) > 1 − ε/4 and H(−K2) < ε/4 and n0
such that for all n > n0,

Hn(K1) > H(K1) − ε/4 > 1 − ε/2 and Hn(−K2) < H(−K2) + ε/4 < ε/2

and hence that

P (−K2 ≤ Yn ≤ K1) ≥ Hn(K1) − Hn(−K2) > 1 − ε.

The result follows by taking K = max (|K1|, |K2|). �
A very general class of situations for convergence in law has as its starting

point a sequence of random variables Yn converging in probability to a
constant c.

Then

P (|Yn − c| < a) → 1 for all a > 0,

and one would expect that typically

P (|Yn − c| < an) →
{

0 if an → 0 sufficiently fast
1 if an → 0 sufficiently slowly.

(2.3.5)

If kn = a/an, (2.3.5) becomes

Pn(a) = P (kn|Yn − c| < a) →
{

0 if kn → ∞ sufficiently fast
1 if kn → ∞ sufficiently slowly.

(2.3.6)
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One might hope that there exists an intermediate rate kn → ∞ for which
Pn(a) tends to a limit which is strictly between 0 and 1. Such a factor kn
(called a normalizing constant) then magnifies the very small differences
|Yn − c| by just the factor needed to bring them into focus.

In many situations, one can guess the order of kn by the following argu-
ment. Suppose that

Hn(a) = P [kn(Yn − c) ≤ a] → H(a)

and that H is a cdf with finite variance v2. If τ2n is the variance of Hn, it
will typically (but not always; Problem 3.7) be the case that

Var [kn(Yn − c)] = k2nτ
2
n → v2

so that

kn ∼ v

τn
(2.3.7)

is the right magnification.

Note: If P [kn(Yn − c) ≤ a] tends to a limit strictly between 0 and 1 for
all a, this is also true for P [bkn(Y − c) ≤ a] for any b > 0 and hence the
factor bkn provides another suitable magnification. Thus any sequence kn
satisfying

kn � 1/τn(2.3.8)

will do as well as that determined by (2.3.7).

Example 2.3.6 De Moivre’s theorem. Let Xn have the binomial dis-
tribution b(p, n). Then

Yn =
Xn

n

P→ p.

Since

τ2n = Var Yn = pq/n,

we expect kn

(
Xn

n
− p

)
to tend to a limit distribution when kn �

√
n. It

was in fact shown by De Moivre (1733) that

√
n

(
Xn

n
− p

)
L→ N(0, pq)(2.3.9)

�
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Lemma 2.3.2 If Yn
L→ Y , and a and b are constants with b �= 0, then

b Yn + a
L→ b Y + a.

Proof. Let b > 0 and let x be a continuity point of bY + a. Then
x − a

b
is

a continuity point of Y and

P (b Yn + a ≤ x) = P

(
Yn ≤ x − a

b

)
→ P

(
Y ≤ x − a

b

)
= P (b Y + a ≤ x);

the proof for b < 0 is completely analogous. �
This lemma shows that (2.3.9) is equivalent to

√
n

(
Xn

n
− p

)
√

pq

L→ N(0, 1).(2.3.10)

Example 2.3.7 Uniform. Let X1, . . . , Xn be i.i.d. according to the uni-
form distribution U(0, θ). The maximum likelihood estimator (MLE) of θ
is X(n), the largest of the X’s. This is always less than θ, but tends to θ in
probability since, for 0 < c < θ,

P [θ − c < X(n) < θ] = 1 − P [X(n) < θ − c] = 1 −
(

θ − c

θ

)n
→ 1

by Problem 1.17. The variance of X(n) is (Problem 3.8)

τ2n = Var(X(n)) =
nθ2

(n + 1)2(n + 2)
� 1

n2
.(2.3.11)

This suggests that an appropriate magnifying factor by which to multiply
the difference θ − X(n) is kn = n.

Consider therefore the probability

Pn = P [n(θ − X(n)) ≤ x] = P [X(n) ≥ θ − x/n],

so that

1 − Pn = P
[
X(n) < θ − x

n

]
= P

(
X1 < θ − x

n

)n
=


θ − x

n
θ



n

=
(
1 − x

θn

)n
.

It follows from Example 1.1.1 that

1 − Pn → e−x/θ
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and hence that

Pn → 1 − e−x/θ = H(x),

where H is the cdf of a random variable Y with exponential density

h(y) =
1
θ
e−y/θ.(2.3.12)

�

The usefulness of a convergence result Yn
L→ Y is often greatly enhanced

by the following generalization of Lemma 2.3.2, which is commonly referred
to as Slutsky’s theorem.

Theorem 2.3.3 If Yn
L→ Y , and An and Bn tend in probability to con-

stants a and b, respectively, then

An + Bn Yn
L→ a + bY.(2.3.13)

(For a proof see, for example, Bickel and Doksum (1977) or Cramér
(1946)).
Corollary 2.3.1 If Yn

L→ Y and Rn
P→ 0, then

Yn + Rn
L→ Y.(2.3.14)

Corollary 2.3.2 If Yn
L→ Y and Bn

P→ 1, then

Yn
Bn

L→ Y.(2.3.15)

Note: In Corollaries 2.3.1 and 2.3.2, the variables An, Bn, and Rn are not
required to be independent of Yn.

When Yn
P→ c, typically τ2n = Var(Yn) → 0. The heuristic argument

leading to (2.3.6) suggests that one might then expect the existence of a
distribution H such that

kn(Yn − c) L→ H(2.3.16)

with

kn → ∞.(2.3.17)

The following is a useful converse.

Theorem 2.3.4 If the sequence {Yn} satisfies (2.3.16) and (2.3.17), then

Yn
P→ c.(2.3.18)
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The proof is left to Problem 3.17.
Following Definition 2.3.2, it was pointed out that Yn

L→ Y does not
imply that for large n, the random variable Yn is close to the random
variable Y . Such a relationship is expressed by the following definition.

Definition 2.3.3 A sequence of random variables Yn converges in proba-
bility to a random variable Y , in symbols,

Yn
P→ Y,(2.3.19)

if Yn − Y
P→ 0.

The following result (together with the example following Definition 2.3.2)
shows that (2.3.19) is stronger than (2.3.4).

Theorem 2.3.5 If Yn
P→ Y , then also Yn

L→ Y .

Proof. Let Rn = Yn − Y so that Yn = Y + Rn. If Yn
P→ Y , then Rn

P→ 0
by Definition 2.3.3 and hence Yn

L→ Y by Slutsky’s theorem. �

The following characterization of convergence in law is frequently taken
as its definition instead of Definition 2.3.2.

Theorem 2.3.6 A necessary and sufficient condition for Yn
L→ Y is that

E f(Yn) → E f(Y )(2.3.20)

for all bounded and continuous functions f .

For a proof see, for example, Billingsley (1986), Section 2a.
Convergence in law does not imply (2.3.20) if either the condition of

boundedness or of continuity is violated.

Example 2.3.8 Let

Yn =
{

Y with probability 1 − pn
n with probability pn

and let f be the function

f(y) = y for all y,

which is unbounded. Then Yn
L→ Y provided pn → 0 (Problem 3.14). On

the other hand, it was seen in Example 2.1.4 that (2.3.20) need not hold,
nor the corresponding result for the variance. �
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Thus, convergence in law of a sequence {Yn} to Y does not imply the
corresponding convergence of either expectation or variance. This extends
the conclusion of Example 2.1.4 and the note following it from convergence
in probability to convergence in law.

Example 2.3.9 The indicator function. To show that the assumption
of continuity cannot be dropped in Theorem 2.3.6, suppose that Yn

L→ Y
and that the distribution H of Y has a discontinuity at a. If f is the
indicator function

f(y) =
{

1 if y ≤ a
0 if y > a,

then

E [F (Yn)] = P (Yn ≤ a) = Hn(a) and E [f(Y )] = H(a).

Example 2.3.3 shows that Hn → H need not imply that Hn(a) tends to
H(a), and hence does not imply (2.3.20). �

Summary

1. A sequence of random variables is bounded in probability if none of
the probability mass escapes to +∞ or −∞ as n → ∞.

2. A sequence of cdf’s Hn converges to a cdf H (in symbols, Hn → H) if
Hn(a) → H(a) at all continuity points of H. The exception is needed
to avoid various inconsistencies and other complications.

3. If random variables Yn and Y have cdf’s Hn and H satisfying Hn →
H, we also say that Yn

L→ Y and Yn
L→ H. The first of these is

somewhat misleading; it concerns only the distributions of Yn and Y
and does not imply that Yn and Y themselves are close to each other
for large n.

4. Slutsky’s theorem states that if Yn
L→ Y and if An and Bn converge

in probability respectively to constants a and b, then An + BnYn
L→

a + bY ; in particular, if Yn
L→ Y and Rn

P→ 0, then Yn + Rn
L→ Y .

2.4 The central limit theorem

The central limit theorem (CLT) is not a single theorem but encompasses
a variety of results concerned with the sum of a large number of random
variables which, suitably normalized, has a normal limit distribution. The
following is the simplest version of the CLT.
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Theorem 2.4.1 Classical CLT. Let Xi, i = 1, 2, . . . , be i.i.d. with E(Xi) =
ξ and Var(Xi) = σ2 < ∞. Then

√
n(X̄ − ξ)/σ L→ N(0, 1)(2.4.1)

or equivalently

√
n(X̄ − ξ) L→ N(0, σ2).

A proof can be found in most probability texts and is sketched in Section
A.5 of the Appendix.

Example 2.4.1 Binomial. It follows from the representation of a bino-
mial variable X as a sum of i.i.d. variables Xi given by (2.1.8) that (2.3.9)
is a special case of Theorem 2.4.1. �

Example 2.4.2 Chi squared. The χ2-distribution with n degrees of free-

dom is the distribution of
n∑
i=1

Y 2i , where the Yi are independent N(0, 1).

Since E(Y 2i ) = 1 and Var(Y 2i ) = 2, it follows that

√
n

(
χ2n
n

− 1
)

L→ N(0, 2).(2.4.2)

The tendency to normality as n increases is shown in Figure 2.4.1. With
increasing n, the density becomes more symmetric and closer to the normal
density. �

The gain in generality from the binomial result (2.3.9) of de Moivre
(1733) to the central limit theorem (2.4.1) of Laplace (1810) is enormous.
The latter theorem states that the mean of any long sequence of i.i.d. vari-
ables — no matter what their distribution F , provided it has finite variance
— is approximately normally distributed. The result plays a central role in
probability theory, and for this reason was named the central limit theorem
by Polya (1920). A remarkable feature of the result is that it is distribution-
free. This makes it possible to derive from it statistical procedures which
are (asymptotically) valid without specific distributional assumptions.

The CLT permits us to approximate the probability

P
[√

n|X̄ − ξ|/σ ≤ a
]

by the area under the standard normal curve between −a and +a. This is a
first order approximation: It uses a limit theorem to approximate the actual
probability. Such approximations are somewhat crude and can be improved.
(For a review of such improvements, see Johnson, Kotz and Balakrishnan
(1994)). However, the resulting second (or higher order) approximations
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FIGURE 2.4.1. The density of χ2
n−n√
2n
for n = 1, 2, 5, 10

are more complicated and require more knowledge of the underlying dis-
tribution.

While the normal limit distribution in the CLT is independent of the
distribution F of the X’s, this is not true of the sample size required for
the resulting approximation to become adequate. The dependence of the
speed of convergence on F is illustrated by Figure 2.4.2, which shows the
histogram of

√
n(X/n − p)/

√
pq when X has the binomial distribution

b(p, n) for p = .05, .2, .5 and n = 10, 30, 90. The figure shows that for
each fixed p, the histogram approaches the normal shape more closely as
n increases, but that the speed of this approach depends on p: it is faster
the closer p gets to 1/2. In fact, for p = .05, the approximation is still quite
unsatisfactory, even for n = 90.

To get an idea of the sample size n needed for a given F , one can perform
simulation studies (Problem 4.3). Then if, for example, the approximation
is found to be poor for n = 10, somewhat better for n = 20, and satisfactory
for n = 50, one may hope (although there is no guarantee∗) that it will be
at least as close for n > 50.

The applicability of the CLT can be greatly extended by combining it
with Slutsky’s theorem, as is shown by the following two examples.

Example 2.4.3 Student’s t. When σ is unknown, the approximations
suggested by Theorem 2.4.1 cannot be used, for example, for testing ξ. It

∗For a counterexample, see Hodges (1957).
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FIGURE 2.4.2. Histograms of
√
n
(
X
n
− p
)
/
√
pq

is then frequently useful instead to obtain an approximation for P (
√

n|X̄−
ξ|/σ̂ ≤ a), where σ̂ is a consistent estimator of σ. Consider in particular
the statistic

tn =
√

nX̄√∑
(Xi − X̄)2/(n − 1)

.(2.4.3)

When the Xi (i = 1, . . . , n) are independent N(0, σ2), the distribution of
tn is the t-distribution with n− 1 degrees of freedom. Suppose now instead
that the Xi are i.i.d. according to an arbitrary fixed distribution F with
mean zero and finite variance σ2. Then it follows from Theorem 2.4.1 that√

nX̄/σ
L→ N(0, 1). On the other hand, it follows from Example 2.1.3 that

S2 =
1
n

∑
(Xi − X̄)2 P→ σ2.(2.4.4)

Application of Slutsky’s theorem thus shows that

tn
L→ N(0, 1).(2.4.5)

In particular, it follows that the t-distribution with n degrees of freedom
tends to N(0, 1) as n → ∞. �

Example 2.4.4 Sample variance. Let X1, X2, . . . be i.i.d. with E(Xi) =
ξ, Var(Xi) = σ2, and Var(X2i ) = τ2 < ∞, so that (2.4.4) holds. Consider
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now the limit behavior of

√
n(S2 − σ2) =

√
n

[
1
n

∑
X2i − X̄2 − σ2

]
.

Since the distribution of S2 does not depend on ξ, assume without loss of

generality (wlog) that ξ = 0. Then
√

n

[
1
n

∑
X2i − σ2

]
L→ N(0, τ2) by the

CLT. On the other hand,

√
nX̄2 =

1√
n

(
nX̄2

) P→ 0

since
√

n X̄ is bounded in probability by Theorem 2.3.1. It follows that

√
n(S2 − σ2) L→ N(0, τ2).(2.4.6)

�

Example 2.4.5 Cauchy. The classical example showing that the normal
tendency of X̄ asserted by the CLT requires some assumptions beyond i.i.d.
is the case in which the X’s are i.i.d. according to the Cauchy distribution
C(0, 1). Here the distribution of X̄ is the same as that of a single X, i.e.,
it is again equal to C(0, 1), regardless of the value of n. Thus, trivially, X̄
converges in law to C(0, 1) instead of being asymptotically normal. (For an
elementary proof, see, for example, Lehmann (1983, Problems 1.7 and 1.8
of Chapter 1) or Stuart and Ord (1987 p. 348)). �

Even more extreme examples exist, in which the tail of the distribution is
so heavy that X̄ is more variable than a single observation. In these cases,
as n increases, the sample is more and more likely to contain an observation
which is so large that it essentially determines the size of X̄. As a result,
X̄ then shares the variability of these outliers.

An example of such a distribution F is given by the distribution of X =
1/Y 2, where Y is N(0, 1). The density of F is (Problem 4.4)

f(x) =
1√

2πx3
e−

1
2x , x > 0.(2.4.7)

In this case, it turns out for any n that X̄ has the same distribution as
nX1 and is therefore much more variable than the single observation X1.
(For a discussion of the distribution (2.4.7), see, for example, Feller (Vol.
1) (1957, p. 231) and Feller (Vol. 2) (1966, p. 51)).

Example 2.4.6 Three distributions. The difference in behavior of the
sample mean X̄n from three distributions—(a) standard normal, (b) stan-
dard Cauchy, (c) the distribution (2.4.7)—is illustrated in Figure 2.4.3. The



2.4 The central limit theorem 77

figure is based on samples drawn from these distributions and shows box-
plots of the middle 50 of 100 averages of n = 1, 10, 100 observations for
the three situations. In case (a), the distribution of the mean X̄n shrinks

by a factor of
1√
10

as n increases from 1 to 10 and from 10 to 100; in

case (b), the distribution of X̄n is the same for all n; finally, in case (c),
the distribution expands by a factor of 10 as n is multiplied by 10.
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FIGURE 2.4.3. Boxplot of middle 50 of 100 averages from three distributions

The reason for restricting the boxplots to the middle 50 of 100 averages
is that the full set of 100 contains observations so extreme that it seriously
distorts the display. This can be seen from Table 2.4.1 which gives the
values of the extremes in addition to those of the median and quartiles
from the same samples. �

If the cdf of
√

n (X̄ − ξ)/σ is denoted by

Gn(x) = P

[√
n (X̄ − ξ)

σ
≤ x

]
,(2.4.8)

the central limit theorem states that for every x (when the variance of X
is finite),

Gn(x) → Φ(x) as n → ∞.(2.4.9)

However, it provides no indication of the speed of the convergence (2.4.9)
and hence of the error to be expected when approximating Gn(x) by Φ(x).
The following result gives a bound for this error.
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TABLE 2.4.1. Extremes, quartiles, and medians of 100 averages of means of 1,
10, and 100 observations from 3 distributions

Min 25% Med 75% Max
Normal 1 -2.6 -0.51 0.13 0.77 2.5

10 -0.77 -0.20 0.03 0.21 0.67
100 -0.21 -0.09 0.02 0.06 0.20

Cauchy 1 -14.72 -0.72 0.15 0.93 27.07
10 -23.67 -0.69 0.14 1.05 68.02

100 -145.15 -0.99 -0.18 1.01 30.81
(4.7) 1 0.12 0.76 2.44 8.71 1,454.16

10 0.00 7.05 16.01 141.22 14,421.33
100 11.22 81.89 210.85 587.19 95,096.87

Theorem 2.4.2 (Berry–Esseen). If X1, . . . , Xn are i.i.d. with distribu-
tion F , which has a finite third moment, then there exists a constant C
(independent of F ) such that for all x,

|Gn(x) − Φ(x)| ≤ C√
n

E|X1 − ξ|3
σ3

.(2.4.10)

For a proof, see, for example, Feller (Vol. 2) (1966) or Chung (1974).

Note: The important aspect of (2.4.10) is not the value of C but the fact
that C is independent of F . The smallest value of C for which (2.4.10)
holds is not known, but Theorem 2.4.2 does hold with C = .7975 and does
not when C < .4097 (van Beek (1972)).

The bound (2.4.10), unlike most of our earlier results, is not a limit
statement; it does not even assume that n → ∞, but is an exact statement
valid for any F , n, and x. The result has, however, important asymptotic
implications for the following situation.

Suppose that X1, . . . , Xn are i.i.d. according to a distribution F , but
that this common distribution depends on n. In such a case, Theorem 2.4.1
is not applicable since it assumes F to be fixed. The following example
shows that, in fact, the CLT then no longer holds without some additional
restrictions.

Example 2.4.7 Counterexample. Let X1, . . . , Xn be i.i.d. according to
the Poisson distribution P (λ) with λ = 1/n. Then

∑n
i=1Xi is distributed

as P (1), and hence with ξ = σ2 = 1/n and
√

n(X̄ − ξ)
σ

=
∑

Xi − nξ√
nσ

=
∑

Xi − 1,

it has the distribution of Y −1, where Y is distributed as P (1), and therefore
is not asymptotically normal. �
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A sufficient condition for the CLT to remain valid when F is allowed to
depend on n can be read from Theorem 2.4.2.

Corollary 2.4.1 Under the assumptions of Theorem 2.4.2,

Gn(x) → Φ(x) as n → ∞(2.4.11)

for any sequence Fn with mean ξn and variance σ2n for which

En|X1 − ξn|3
σ3n

= o
(√

n
)
,(2.4.12)

and thus in particular if (2.4.12) is bounded. Here En denotes the expecta-
tion under Fn.

Proof. Immediate consequence of Theorem 2.4.2. �

Example 2.4.8 Binomial with pn → 0. If Sn has the binomial distribu-
tion b(p, n), it was seen in Example 2.4.1 that

Sn − np
√

npq

L→ N (0, 1) .

Let us now consider the case that p = pn depends on n. Then it follows
from the representation of Sn as a sum of i.i.d. random variables Xi given
by (2.1.8), and by Corollary 2.4.1, that

Sn − npn√
npq

L→ N (0, 1) ,(2.4.13)

provided the standardized absolute third moment γn satisfies

γn =
E|X1 − pn|3

(pnqn)
3/2 = o

(√
n
)
.(2.4.14)

Now

E|X1 − pn|3 = pn (1 − pn)
3 + qnp

3
n = pnqn

(
p2n + q2n

)
and hence

γn =
p2n + q2n√

pnqn
.

If pn → p (0 < p < 1), then γn → p2 + q2
√

pq
and hence satisfies (2.4.14).

However, (2.4.14) holds also when pn → 0, provided this tendency is suffi-
ciently slow. For if pn → 0, then

γn ∼ 1
√

pn
.
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A sufficient condition for (2.4.13) is therefore 1√
pn

= o(
√

n) or

1
n

= o(pn).(2.4.15)

Thus in particular if pn � 1
nα , (2.4.13) holds for any 0 < α < 1. For α = 1,

we are, of course, in the case of the Poisson limit (1.2.7). �

Example 2.4.9 Sample median. Let X1, . . . , Xn be i.i.d. according to
the distribution

P (X ≤ x) = F (x − θ).

Suppose that F (0) = 1/2 so that θ is a median of the distribution of X and
that n is odd: n = 2m − 1, say. If X(1) ≤ · · · ≤ X(n) denotes the ordered
sample, the median of the X’s is then X̃n = X(m). Let us now find the limit
distribution of

√
n(X̃n − θ) under the assumption that F has a density f

with F ′(0) = f(0) > 0.
Since X̃n − θ is the median of the variables X1 − θ, . . . ,Xn − θ, its

distribution is independent of θ, and

Pθ

[√
n (X̃n − θ) ≤ a

]
= P0

[√
n X̃n ≤ a

]
= P0

[
X(m) ≤ a/

√
n
]
.(2.4.16)

Let Sn be the number of X’s exceeding a/
√

n. Then

X(m) ≤
a√
n

if and only if Sn ≤ m − 1 =
1
2
(n − 1).

Since Sn has the binomial distribution b(pn, n) with

pn = 1 − F
(
a/

√
n
)
,(2.4.17)

the probability (2.4.16) is equal to

P0

[
Sn ≤ n − 1

2

]
= P0

[
Sn − npn√

npnqn
≤
1
2 (n − 1) − npn√

npnqn

]
.

Since pn → 1−F (0) = 1/2 as n → ∞, it follows from the previous example
and Theorem 2.4.2 that

P0

(
Sn ≤ n − 1

2

)
− Φ

[ 1
2 (n − 1) − npn√

npnqn

]
→ 0 as n → ∞.

The argument of Φ is equal to

xn =

√
n
( 1
2 − pn

)
− 1
2
√
n√

pnqn
∼ 2

√
n

(
1
2
− pn

)

= 2a
F (a/

√
n) − F (0)

a/
√

n
→ 2af(0).
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Therefore, finally,

P
[√

n (X̃n − θ) ≤ a
]
→ Φ(2f(0)a),(2.4.18)

which shows that (Problem 4.5(i))
√

n (X̃n − θ) → N(0, 1/4f2(0)).(2.4.19)

So far, it has been assumed that n is odd. For even n, n = 2m say, the
sample median is defined as X̃n = 1

2

[
X(m) + X(m+1)

]
, and (2.4.16) can be

shown to remain valid (Problem 4.5(ii)). �

The error bound (2.4.10) holds for all F . For any particular F , the error
can therefore be expected to be smaller. Is it even of order 1/

√
n? This

question is answered by the following result.

Theorem 2.4.3 Let X1, . . . , Xn be i.i.d. with a distribution F which is not
a lattice distribution (defined in Section 1.6) and has finite third moment.
Then

Gn(x) = Φ(x) +
µ3

6σ3
√

n
(1 − x2)φ(x) + o

(
1√
n

)
,(2.4.20)

where µk = E(X − ξ)k denotes the kth central moment of the distribution
F . The second term in (2.4.20) is the first Edgeworth correction to the
normal approximation.

For a proof, see, for example, Feller (Vol. 2) (1966) or Gnedenko and
Kolmogorov (1954, §42).

Note: Under the assumptions of Theorem 2.4.3 the following stronger
statement holds. The remainder term Rn(x) which in (2.4.20) is denoted
by o(1/

√
n) satisfies

√
nRn(x) → 0 not only for each fixed x but uniformly

in x; i.e., for any ε > 0, there exists n0 = n0(ε) independent of x such that
|
√

nRn(x)| < ε for all n > n0 and all x. (For a more detailed discussion of
uniform convergence, see Section 2.6).

Under the stated assumptions, the error made in approximating Gn(x)
by Φ(x) is of order 1/

√
n when µ3 �= 0. It is of smaller order when µ3 = 0

and therefore in particular when the distribution of the X’s is symmetric
(about ξ). Roughly speaking, the second term on the right side of (2.4.20)
corrects for the skewness of Gn when F is asymmetric, bringing Gn closer
to the symmetry of the limit distribution Φ.

Example 2.4.10 Chi squared (continued). As an illustration of the
accuracy of the normal approximation, consider the approximation for χ2

given in (2.4.2) and its refinement (2.4.20). These approximations are shown
in the first column of Table 2.4.2 when F is the the χ2-distribution with
one degree of freedom for sample sizes n = 4, 6, 10, 20, 50, and 100.



82 2. Convergence in Probability and in Law

TABLE 2.4.2. Accuracy of three χ2 approximations

1 − Gn(X) .5 .1 .05 .01 F = χ2
1 F = χ2

2 F = χ2
5 F = χ2

10

1 − Φ(X) .590 .091 .026 .001 n = 4 n = 2

First Edg. Corr. .503 .121 .066 .005

Second Edg. Corr. .500 .090 .049 .014

1 − Gn(X) .575 .090 .029 .001 n = 6 n = 3

First Edg. Corr. .502 .115 .061 .006

Second Edg. Corr. .500 .094 .049 .014

1 − Gn(X) .559 .090 .032 .002 n = 10 n = 5 n = 2 n = 1

First Edg. Corr. .501 .110 .058 .007

Second Edg. Corr. .500 .097 .049 .012

1 − Gn(X) .542 .092 .036 .003 n = 20 n = 10 n = 4 n = 2

First Edg. Corr. .500 .105 .054 .009

Second Edg. Corr. .500 .099 .050 .011

1 − Gn(X) .527 .094 .040 .004 n = 50 n = 25 n = 10 n = 5

First Edg. Corr. .500 .102 .052 .010

Second Edg. Corr. .500 .100 .050 .010

1 − Gn(X) .519 .095 .043 .006 n = 100 n = 50 n = 20 n = 10

First Edg. Corr. .500 .101 .051 .010

Second Edg. Corr. .500 .100 .050 .010

The first row for each sample size gives the normal approximation 1 −
Φ(x) for the exact probability

1 − Gn(x) = P

[
χ2n√
2n

> x

]
.

(Note that in this table, the values 1 − Gn(x) are fixed. Thus x and hence
1 − Φ(x) depend on n.)

It is seen from this table that for 1−Gn(x) = .05 or .01, the relative error
of the normal approximation is still quite large, even at n = 100. This poor
performance is explained by the extreme skewness of the χ21-distribution
shown in Figure 2.4.1. The improvement as the skewness decreases can
be seen by considering instead the performance of the approximation for
F = χ22, χ25, and χ210, which are consecutively less skewed. Since χ22k is the
sum of k independent χ2 variables, the same tabular values correspond to
χ2 variables with successively larger degrees of freedom and proportionally
smaller sample sizes, as shown in the last three columns of Table 2.4.2.
The values for sample size n = 10 are pulled together in Table 2.4.3, which
illustrates the improvement of the normal approximation as F gets closer
to the normal shape.

The second row in Table 2.4.2 for each sample size shows the first Edge-
worth correction (2.4.20). In the present case, with F = χ21, we have µ3 = 8
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TABLE 2.4.3. Accuracy of the normal approximation for n = 10

F χ21 χ22 χ25 χ210
.559 .542 .527 .519 .5
.090 .092 .094 .095 .1
.032 .036 .040 .043 .05
.002 .003 .004 .006 .01

1 − Φ(x) 1 − Gn(x)

and σ2 = 2
√

2 so that (2.4.20) becomes

Gn(x) = Φ(x) +
√

2
3
√

n
[1 − x2φ(x)] + o

(
1√
n

)
.(2.4.21)

In all cases covered by the table, the correction is in the right direction
but, for small n, it sometimes overcorrects so much that the resulting error
exceeds that of the original (normal) approximation. However, generally
adding the correction term provides a considerable improvement.

The 1/
√

n term on the right side of (2.4.20) is the first term of the so-
called Edgeworth expansion. This expansion under mild assumptions on F
permits successive corrections to the approximation of Gn(x) by Φ(x) of
order 1/

√
n, 1/n, 1/n

√
n, . . . , with the remainder at each stage being of

smaller order than the last term. A detailed treatment of the expansion,
which is beyond the scope of this book, can be found, for example, in Feller
(Vol. 2) (1971) or in Gnedenko and Kolmogorov (1954). (See also McCune
and Gray (1982), Barndorff-Nielsen and Cox (1989), and Hall (1992)). The
process of successive approximations may be illustrated by the second step,
which subtracts from the right side of (2.4.20) the term

φ(x)
nσ4

[
µ4 − 3µ22

24
(x3 − 3x) +

µ23
72σ2

(x5 − 10x3 + 15x)
]

(2.4.22)

with the remaining error then being o(1/n). The results for χ2 are given
in the third row of Table 2.4.2, which shows a clear improvement over the
second row. Alternative more accurate approximations for χ2 are discussed
in Chapter 18 of Johnson, Kotz, and Balakrishman (1994).

Theorem 2.4.3 assumes that the distribution F is not a lattice distribu-
tion. When it is, (2.4.20) is not correct since another term of order 1/

√
n

must be taken into account, the so-called continuity correction. Suppose
that the difference between successive values of X is h. Then the difference
between successive values of Y =

√
n(X̄ − ξ)/σ is h/σ

√
n. Consider now

the histogram of the random variable Y . The bar of this histogram corre-

sponding to the value y of Y extends from y − h

2σ
√

n
to y +

h

2σ
√

n
, and

the probability P (Y ≤ y) is therefore the area of the histogram to the left
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1
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FIGURE 2.4.4. Continuity correction

of y +
h

2σ
√

n
. When this area is approximated by the corresponding area

under the normal curve, it is natural to approximate it by Φ
(

y +
h

2σ
√

n

)
rather than by Φ(y). This change is the continuity correction. † It follows
from Taylor’s theorem (to be discussed in the next section) that

Φ
(

y +
h

2σ
√

n

)
= Φ(y) +

h

2σ
√

n
φ(y) + o(

1√
n

).

This explains the version of Theorem 2.4.3 for lattice distributions F , which
states that for any lattice point x of F ,

Gn(x) = Φ(x) +
φ(x)√

n

[
µ3
6σ3

(1 − x2) +
h

2σ

]
+ o

(
1√
n

)
.(2.4.23)

For a proof, see Gnedenko and Kolmogorov (1954, §43). �

The normal approximation plays a central role in large-sample statistics
and its Edgeworth corrections are useful for more delicate investigations.
The importance of these approximations stems from their very general ap-
plicability, but this advantage also carries a drawback: better approxima-
tions in any particular case can usually be attained by taking into account
the special features of a given distribution. For many standard distribu-
tions, such approximations are discussed, for example, in Johnson, Kotz,
and Kemp (1992) and Johnson, Kotz, and Balakrishnan(1994,1995). In ad-
dition, extensive tables are available for most standard distributions, or
needed values can be obtained on a computer.

†Continuity corrections are discussed in more detail and with references to the liter-
ature in Maxwell (1982).
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Summary

1. If X1, X2, . . . are i.i.d. with mean ξ and finite variance σ2, then the
CLT states that

√
n(X̄ − ξ) L→ N(0, σ2) and

√
n(X̄ − ξ)

σ

L→ N(0, 1).

2. If Gn denotes the cdf of
√

n(X̄−ξ)/σ and Φ that of N(0, 1), then the
Berry-Esseen theorem provides a bound for the error |Gn(x)−Φ(x)|
in the normal approximation, which holds simultaneously for all x
and all distributions F of the Xi that have finite third moment.

3. A more accurate approximation than that stated in 1 is given by the
first Edgeworth correction, which adds a 1/

√
n correction term to the

approximation Φ(x) for Gn(x), and which holds for any distribution
F that is not a lattice distribution. For a lattice distribution, an
additional 1/

√
n term is required which corresponds to the continuity

correction.

2.5 Taylor’s theorem and the delta method

A central result of the calculus is Taylor’s theorem concerning the expansion
of a sufficiently smooth function about a point.

Theorem 2.5.1
(i) Suppose that f(x) has r derivatives at the point a. Then

f (a + ∆) = f(a) + ∆f ′(a) + · · · + ∆r

r!
f (r)(a) + o(∆r),(2.5.1)

where the last term can also be written as

∆r

r!

[
f (r)(a) + o(1)

]
.

(ii) If, in addition, the (r + 1)st derivative of f exists in a neighborhood of
a, the remainder o(∆r) in (2.5.1) can be written as

Rr =
∆r+1

(r + 1)!
f (r+1) (ξ),

where ξ is a point between a and a + ∆.

(For a proof, see Hardy (1992), Sec. 151).
An easy consequence is the following result which greatly extends the

usefulness of the central limit theorem.
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Theorem 2.5.2 If

√
n(Tn − θ) L→ N(0, τ2),(2.5.2)

then
√

n [f(Tn) − f(θ)] L→ N
(
0, τ2[f ′(θ)]2

)
,(2.5.3)

provided f ′(θ) exists and is not zero.

Proof. By Taylor’s theorem, with a = θ and ∆ = Tn − θ,

f(Tn) = f(θ) + (Tn − θ)f ′(θ) + op(Tn − θ)

and hence
√

n
[
f(Tn) − f(θ)] =

√
n(Tn − θ)f ′(θ) + op[

√
n (Tn − θ)

]
.(2.5.4)

The first term on the right side tends in law to N
(
0, τ2 [f ′ (θ)]2

)
. On the

other hand, it follows from (2.5.2) and Theorem 2.3.2 that
√

n (Tn − θ)
is bounded in probability and hence that the remainder tends to zero in
probability (Problem 5.1). The result now follows from Corollary 2.3.1. �

This theorem may seem surprising, since if X is normally distributed,
the distribution of f(X), for example, 1/X, log X, or eX , will typically
be non-normal. The explanation for this apparent paradox is found in the
proof. Since Tn

P→ θ, we are nearly certain that when n is large, Tn is very
close to θ; however, in a small neighborhood, a differentiable function is
nearly linear, and a linear function of a normal variable is again normal.
The process of approximating the difference f(Tn) − f(θ) by the linear
function (Tn − θ)f ′(θ) and the resulting limit result (2.5.3) is called the
delta method.

Example 2.5.1 For estimating p2, suppose that we have the choice be-
tween

(a) n binomial trials with probability p2 of success

or

(b) n binomial trials with probability p of success,

and that as estimators of p2 in the two cases, we would use respectively
X/n and (Y/n)2, where X and Y denote the number of successes in cases
(a) and (b), respectively. Then we have

√
n

(
X

n
− p2

)
→ N

(
0, p2

(
1 − p2

))
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and

√
n

((
Y

n

)2
− p2

)
→ N

(
0, pq · 4p2

)
.

At least for large n, X/n will thus be more accurate than (Y/n)2, pro-
vided

p2
(
1 − p2

)
< pq · 4p2.

On dividing both sides by p2(1 − p), it is seen that

X

n
or

Y 2

n2
is preferable as p >

1
3

or p <
1
3
.

�

Theorem 2.5.2 provides the basis for deriving variance-stabilizing trans-
formations, that is, transformations leading to an asymptotic variance that
is independent of the parameter. Suppose, for example, that X1, . . . , Xn

are i.i.d. Poisson variables with expectation λ. The variance of the X’s is
then also λ and it follows from the central limit theorem that

√
n
(
X̄ − λ

) L→ N (0, λ) .(2.5.5)

For inference problems concerning λ, it is often inconvenient that λ oc-
curs not only in the expectation but also in the variance of the limit
distribution. It is therefore of interest to look for a function f for which√

n
[
f
(
X̄
)
− f (λ)

]
tends in law to N(0, c2), where c2 does not depend on

λ.
Suppose more generally that

√
n (Tn − θ) L→ N

(
0, τ2 (θ)

)
.(2.5.6)

Then by Theorem 2.5.2,

√
n [f (Tn) − f (θ)] L→ N

(
0, τ2 (θ) (f ′)2 (θ)

)
,

provided the derivative of f ′ of f exists at θ and is �= 0. The limit distri-
bution on the right side will therefore have constant variance c2 if

f ′(θ) =
c

τ(θ)
.(2.5.7)

The resulting transformation f is said to be variance stabilizing.
The extensive literature on variance-stabilizing transformations and

transformations to approximate normality is reviewed in Hoyle (1973). Two
later references are Efron (1982) and Bar-Lev and Enis (1990).
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Example 2.5.2 Poisson. In the Poisson case, one has θ = λ, τ(θ) =
√

λ,
and (2.5.7) reduces to

f ′(λ) =
c√
λ

or f(λ) = 2c
√

λ.

Putting c = 1, we see that in fact

2
√

n
(√

X̄ −
√

λ
)

L→ N(0, 1).(2.5.8)

�

Example 2.5.3 Chi squared. Let Yi = X2i , where the X’s are indepen-
dent N(0, σ2). Then E(Yi) = σ2 and Var(Yi) = 2σ4, and (2.5.6) holds with
Tn = Ȳ , θ = σ2, and τ2(θ) = 2θ2. Equation (2.5.7) thus becomes

f ′(θ) =
c√
2θ

or f(θ) =
c√
2

log θ.

With c = 1, we see that√
n

2
log
(

Ȳ

σ2

)
→ N(0, 1).(2.5.9)

�

To illustrate the usefulness of such transformations, consider the problem
of finding (approximate) confidence intervals for the Poisson parameter
based on a large sample.

Example 2.5.4 Poisson confidence intervals. It follows from (2.5.8)
that for any λ > 0,

P

(∣∣∣√X̄ −
√

λ
∣∣∣ < uα/2

2
√

n

)
→ 1 − α,

where uα/2 is the point for which 1−Φ(uα/2) = α/2. This provides for
√

λ
the intervals √

X̄ −
uα/2

2
√

n
<

√
λ <

√
X̄ +

uα/2

2
√

n
(2.5.10)

at approximate confidence level 1−α. The lower end point can be negative
since X̄ can be arbitrarily close to zero. However, for any positive λ, we
have that X̄

P→ λ and uα/2/
√

n → 0, so that the probability of a negative
end point tends to zero as n → ∞. When this unlikely event does occur,
one would replace the negative end point by zero without changing the
probability of the resulting statement. From the so modified intervals for
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√
λ, one obtains the corresponding intervals for λ at the same level by

squaring. This leads to the approximate confidence intervals λ < λ < λ,
where

λ =



(√

X̄ − u

2
√

n

)2
if

u

2
√

n
< X̄

0 otherwise
and λ =

(√
X̄ +

u

2
√

n

)2(2.5.11)

Here and in what follows, we write u for uα/2.
There is an alternative way of deriving approximate confidence intervals

for λ. From (2.5.5), it follows that
√

n (X̄ − λ)√
λ

L→ N(0, 1)

and this limit result remains correct if in the denominator λ is replaced by
a consistent estimator, say λ̂ = X̄. The probability therefore tends to 1−α
that λ lies in the interval

X̄ − u√
n

√
X̄ < λ < X̄ +

u√
n

√
X̄,(2.5.12)

where the lower limit can again be replaced by 0 when it is negative.
The upper limits(√

X̄ +
u

2
√

n

)2
and X̄ +

u√
n

√
X̄

at first sight look rather different. However, the fact that(√
X̄ +

u

2
√

n

)2
= X̄ +

u√
n

√
X̄ +

u2

4n

shows that they differ only by the term u2/4n, which is of smaller order than
the first two terms and can therefore be expected to be small in relation to
them. The corresponding remark applies to the lower limit. �

In Theorem 2.5.2, it was assumed that f ′(θ) �= 0. Let us now consider
what happens when f ′(θ) = 0 but f ′′(θ) �= 0. Since the leading term in the
expansion (2.5.4) then drops out, it is natural to carry the expansion one
step further. By Theorem 2.5.1, this gives

f(Tn) = f(θ) + (Tn − θ)f ′(θ) +
1
2
(Tn − θ)2 [f ′′(θ) + Rn]

and since f ′(θ) = 0,

kn [f(Tn) − f(θ)] =
kn
2

(Tn − θ)2f ′′(θ) + op
[
kn(Tn − θ)2

]
.(2.5.13)
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Now it follows from (2.5.2) that

n(Tn − θ)2

τ2(θ)
L→ χ21 or n(Tn − θ)2 → τ2(θ)χ21,

where χ21 denotes the χ2-distribution with 1 degree of freedom. In order to
get a non-degenerate limit distribution for (2.5.13), it is therefore necessary
to take kn = n rather than

√
n. With this choice, the proof of Theorem

2.5.2 then shows that

n [f(Tn) − f(θ)] L→ 1
2
τ2(θ)f ′′(θ)χ21.(2.5.14)

It follows from this result that when f ′(θ) = 0 and f ′′(θ) �= 0, the
convergence of f(Tn) to f(θ) is faster than when f ′(θ) �= 0 so that (for
large n) f(Tn) does a better job of approximating f(θ) when f ′(θ) = 0
than when f ′(θ) �= 0. The reason for the faster convergence is qualitatively
easy to see from Figure 2.5.1. The vanishing of f ′ at θ means that f changes
very little in a small neighborhood of θ. Thus if Tn is close to θ, f(Tn) will
be very close to f(θ) and thus provide an excellent approximation.

θ Tn

f

a

θ Tn

f

b

FIGURE 2.5.1. Derivative and rate of change

Example 2.5.5 Binomial variance. Suppose X has the binomial
distribution b(p, n) corresponding to n trials and success probability p so
that

√
n

(
X

n
− p

)
→ N(0, pq).

The maximum likelihood estimator of the variance pq is δn =
X

n

(
1 − X

n

)
.

With θ = p and f(θ) = pq, it is seen from Theorem 2.5.2 that
√

n (δn − pq) → N
(
0, pq(1 − 2p)2

)
if p �= 1/2.



2.5 Taylor’s theorem and the delta method 91

Since f ′(p) = 1 − 2p, it follows that at p = 1/2, f ′ is zero and f ′′ = −2,
and by (2.5.14),

n(δn − pq) L→ −1
4
χ21 if p = 1/2.

�

Let us finally consider an example in which f ′(θ) does not exist.

Example 2.5.6 Absolute value. Suppose Tn is a sequence of statistics
satisfying (2.5.2) and that we are interested in the limiting behavior of |Tn|.
Since f(θ) = |θ| is differentiable with derivative f ′(θ) = ±1 at all values of
θ �= 0, it follows from Theorem 2.5.2 that

√
n (|Tn| − |θ|) → N(0, τ2) for all θ �= 0.

When θ = 0, Theorem 2.5.2 does not apply, but it is easy to determine the
limit behavior of |Tn| directly. With |Tn| − |θ| = |Tn|, we then have

P [
√

n |Tn| < a ] = P [−a <
√

nTn < a]
→ Φ

(a

τ

)
− Φ

(
−a

τ

)
= P (τχ1 < a),

where χ1 =
√

χ21 is the distribution of the absolute value of a standard
normal variable. The convergence rate of δn = |Tn| therefore continues to
be 1/

√
n, but the form of the limit distribution is χ1 rather than normal.

�

When the function f in (2.5.1) has derivatives of all orders, it is tempting
to let r → ∞ and obtain the expansion, Taylor’s series,

f(a + ∆) =
∞∑
i=0

f (i)(a)
i!

∆i.(2.5.15)

If the o(∆r) remainder in (2.5.1) is denoted by Rr, the expansion (2.5.15)
of f(a + ∆) as a power series in ∆ is legitimate only if

Rr → 0 as r → ∞.(2.5.16)

In particular, for a = 0, we get the expansion of f(x) as a power series in
x,

f(x) =
∞∑
i=0

f (i)(0)
i!

xi,(2.5.17)

provided

Rr = f(x) −
r∑
i=0

f (i)(0)
i!

xi → 0 as r → ∞.(2.5.18)

For the values of x for which (2.5.18) holds, (2.5.17) is Mac Laurin’s series
for f(x).
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Example 2.5.7 The geometric series. An example in which condition
(2.5.18) is easy to check is the case

f(x) =
1

1 − x
.

Then

f ′(x) =
1

(1 − x)2
, f ′′(x) =

2
(1 − x)3

, . . . , f (r)(x) =
r!

(1 − x)r+1
,

so that (2.5.1) with a = 0 and ∆ = x becomes

1
1 − x

= 1 + x + +x2 + · · · + xr + o(xr).

The remainder Rr is then

Rr =
1

1 − x
− (1 + x + · · · + xr) =

1
1 − x

[1 − (1 − x) (1 + x + · · · + xr)]

= xr+1/(1 − x).

Since this tends to 0 as r → ∞ provided |x| < 1, we get the expansion

1
1 − x

=
∞∑
i=0

xi for all |x| < 1.(2.5.19)

The right side of (2.5.19) is the geometric series considered in Example
1.3.3. When |x| > 1, (2.5.19) is no longer valid since Rr does not tend to
0. For example, if x = 2,

Rr =
xr+1

1 − x
= −2r+1 → −∞;

the left side of (2.5.19) is −1 and the right side is +∞, so that (2.5.19)
does not hold. �

Other examples of (2.5.17) are given in Examples 1.3.4–1.3.6 of Section
1.3 (Problem 5.11).

Summary

1. Taylor’s theorem approximates any sufficiently smooth function by
a polynomial—in the simplest and most important case by a linear
function—in the neighborhood of a given point.

2. The delta method shows that if Tn is approximately normal with
mean 0 and variance τ2(θ)/n, then for any differentiable function f
with f ′(θ) �= 0, f(Tn) is approximately normal with mean f(θ) and
variance τ2(θ)[f ′(θ)]2/n.
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3. In a number of important cases, the delta method permits the cal-
culation of a variance-stabilizing transformation by determining f so
that τ2(θ)[f ′(θ)]2 is independent of θ.

4. When the assumptions of 2 hold except that f ′(θ) = 0 but f ′′(θ) �=
0, the delta method shows that n[f(Tn) − f(θ)] is approximately
distributed as 12τ

2f ′′(θ)χ21.

5. By letting the number of terms in Taylor’s theorem tend to infinity,
one obtains Taylor’s series, and for a = 0 and ∆ = x Mac Laurin’s
series for a function f(x) all of whose derivatives exist, provided the
remainder tends to zero.

2.6 Uniform convergence

Consideration of approximate confidence intervals
(
θ, θ̄
)

for a parameter θ
such as those derived in Example 2.5.4 leads to an important distinction.

Suppose first that the intervals are exact confidence intervals with con-
fidence coefficient 1 − α. This can be expressed by saying that

for every θ: P
(
θ < θ < θ̄

)
= 1 − α.(2.6.1)

An obvious consequence is that

inf
θ

Pθ
(
θ < θ < θ̄

)
= 1 − α.(2.6.2)

Suppose now that
(
θn, θ̄n

)
are only approximate confidence intervals for

large n in the sense of the Poisson intervals of the last section. Then (2.6.1)
becomes

for every θ: Pθ
(
θn < θ < θ̄n

)
→ 1 − α as n → ∞.(2.6.3)

However, (2.6.3) no longer implies

inf
θ

Pθ
[
θn < θ < θ̄n

]
→ 1 − α.(2.6.4)

To see why this is so, consider several sequences of numbers {an (θ) , n =
1, 2, . . . } (in our case, the probabilities (2.6.3) for varying θ) converging
to a common limit c. We are concerned with the convergence of inf

θ
an (θ),

n = 1, 2, . . .
If there are only two such sequences, say {an} and {bn} with an → c and

bn → c as n → ∞, then also min(an, bn) → c as n → ∞.

Proof. Given ε > 0, there exist n1 and n2 such that |an−c| < ε for n > n1
and |bn − c| < ε for n > n2. Then if n > n0 = max(n1, n2), it follows that
both |an− c| and |bn− c| are < ε and hence also that |min(an, bn)− c| < ε.

This argument easily extends to any finite number of sequences (Problem
6.1) but breaks down when the number of sequences is infinite.
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Example 2.6.1 Counterexample. Consider the following sequences

1st sequence : 0 1 1 1 1 · · ·
2nd sequence : 0 0 1 1 1 · · ·(2.6.5)
3rd sequence : 0 0 0 1 1 · · ·

· · · · · ·

If we denote the ith sequence by {a(i)n , n = 1, 2, . . . }, then clearly, for every
i,

a(i)n → 1 as n → ∞.

On the other hand,

min
i=1,2,...

a(i)n = 0 for every n

since every column of (2.6.5) contains a zero. It follows that also

lim
n→∞

[
min

i=1,2,...
a(i)n

]
= 0.

�

Let us now apply this consideration to the upper end of the intervals
(2.5.12) for λ in the Poisson case, which is

X̄ +
uα/2√

n

√
X̄.(2.6.6)

When X1 = · · · = Xn = 0, the upper limit (2.6.6) is zero and the Pois-
son interval (2.5.12) therefore does not cover λ. How frequently this event
occurs depends on both λ and n. In fact,

P (X1 = · · · = Xn = 0) = e−nλ.

For any fixed n, this probability tends to 0 as λ → 0. It follows that for
any fixed n,

inf
λ

P

[
X̄ − u√

n

√
X̄ < λ < X̄ +

u√
n

√
X̄

]
= 0.

To get a better understanding of this phenomenon, consider the more
general situation of a sequence of events An whose probability Pn(θ) =
Pθ(An) depends on n and a parameter θ. In our example, θ = λ and the
events are

X̄ − u√
n

√
X̄ < λ < X̄ +

u√
n

√
X̄.
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Suppose that for each fixed θ, Pn(θ) → 1−α or, more generally, that for
each fixed θ, Pn(θ) tends to a limit P (θ). Still more generally, consider a
sequence of functions fn (not necessarily probabilities) converging pointwise
to a limit function f , i.e., such that

fn(x) → f(x) for all x.(2.6.7)

Then for each x and each ε > 0, there exists an integer n0(ε, x) such that

|fn(x) − f(x)| < ε if n > n0(ε, x).

Definition 2.6.1 The sequence fn(x) is said to converge to f(x) uniformly
(in x) if for each ε > 0, there exists n0(ε) independent of x such that

|fn(x) − f(x)| < ε for all x if n > n0(ε).(2.6.8)

Example 2.6.2

(i) Let fn(x) = x + 1/n. Then for each x, fn(x) → f(x) = x as n → ∞.
Since |fn(x) − f(x)| = 1/n, the convergence of fn to f is clearly
uniform.

(ii) Let fn(x) = x/n. For each x, fn(x) → f(x) = 0 as n → ∞.

Now

|fn(x) − f(x)| = x/n < ε(2.6.9)

if n > x/ε. The smallest n for which (2.6.9) holds is the smallest integer
> x/ε, and this tends to ∞ as x → ∞. There is thus no n0(ε) for which
(2.6.9) holds simultaneously for all x. �

Graphically, uniform convergence means that for any ε > 0, fn(x) will lie
entirely in the band f(x) ± ε for all sufficiently large n. This is illustrated
in Figure 2.6.1(a). In contrast, Figure 2.6.1(b) shows the case fn(x) = xn

(0 ≤ x ≤ 1), in which the convergence is not uniform (Problem 6.3).
In the light of Definition 2.6.1, the difficulty with the sequences (2.6.5) is

seen to be that these sequences converge to 1 for every i but not uniformly
in i. Similarly, the coverage probability of the intervals (2.5.12) tends to
1−α pointwise but not uniformly. Confidence intervals are discussed more
systematically in Section 4.1.

Convergence may be required not for all x but only for all x in some set
X of x-values. Suppose for example that in (ii) of Example 2.6.2, we are
only concerned with the set X of x-values between 0 and 1. Clearly, (2.6.8)
will hold for all 0 < x < 1 if n > 1/ε. Hence in this case, fn → f uniformly
on X.
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FIGURE 2.6.1. (a) Uniform convergence; (b) non-uniform convergence fn(x) = xn

Lemma 2.6.1 The sequence {fn} converges to f uniformly on X if and
only if

Mn = sup
x∈X

|fn(x) − f(x)| → 0 as n → ∞.(2.6.10)

Proof. This is clear from the fact that (2.6.10) holds if and only if for
each ε > 0, there exists n0(ε) such that

sup |fn(x) − f(x)| < ε when n > n0(ε),

and that this statement is equivalent to (2.6.8).
Another way of characterizing uniform convergence is provided by the

next lemma.

Lemma 2.6.2 The sequence {fn} converges to f uniformly on X if and
only if

fn(xn) − f(xn) → 0 as n → ∞(2.6.11)

for every sequence {xn} of points in X.

Proof. If fn → f uniformly, (2.6.11) is an immediate consequence of
Lemma 2.6.1. For a proof of the converse, see, for example, Knopp (1990,
p. 334).

Theorem 2.6.1 Polya. If a sequence of cumulative distribution functions
Hn tends to a continuous cdf H, then Hn(x) converges to H(x) uniformly
in x.

For a proof, see Parzen (1992, p. 438).
This result is illustrated by Theorem 2.4.2, where (2.4.10) shows that

the convergence of Gn(x) to Φ(x) is uniform in x and that the difference
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[Gn(x) − Φ(x)] divided by the standardized third moment E|X1 − ξ|3/σ3
tends to zero uniformly in F on the family of distributions with finite third
moment.

Still another example of uniform convergence can be found in the Note
following Theorem 2.4.3.

Summary

1. A sequence of functions fn defined over a space X converges to a
limit function f pointwise if fn(x) → f(x) for all x ∈ X; it converges
to f uniformly if the maximum (i.e., sup) difference between fn and
f tends to 0. This stronger mode of convergence is equivalent to the
requirement that

fn(xn) − f(xn) → 0 for every sequence of points xn ∈ X.

2. Polya’s theorem states that if a sequence of cdf’s Hn tends to a con-
tinuous cdf H, then it does so uniformly.

3. The distinction between pointwise and uniform convergence implies a
corresponding distinction for the coverage probability Pθ

(
θn < θ < θ̄n

)
of large-sample confidence intervals.

2.7 The CLT for independent non-identical
random variables

The classical CLT refers to the case that the X’s are i.i.d. The following
result provides an extension to sums of independent random variables that
are not necessarily identically distributed.

Theorem 2.7.1 Liapounov. Let Xi (i = 1, . . . , n) be independently dis-
tributed with means E (Xi) = ξi and variances σ2i , and with finite third
moments. If

Yn =
X̄ − E

(
X̄
)

√
Var
(
X̄
) =

√
n
(
X̄ − ξ̄

)
√

(σ21 + · · · + σ2n) /n
,(2.7.1)

then

Yn
L→ N (0, 1) ,(2.7.2)

provided

[
E
(∑

|Xi − ξi|3
)]2

= o

[(∑
σ2i

)3]
.(2.7.3)
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This is proved, for example, in Feller (Vol. 1) (1957) and Feller (Vol. 2)
(1966).

Note: To see that (2.7.2) requires some condition, consider the case that
each of the variables X2, . . . , Xn is a constant, say 0. Then the left side
of (2.7.2) reduces to (X1 − ξ1)/σ1 which has mean 0 and variance 1 but
otherwise can have any distribution whatever.

Condition (2.7.3) holds in particular when the X’s are i.i.d. with a finite
third moment since then the left side is of order n2 and the right side of
order n3. However, it does not cover Theorem 2.4.1, which has no third
moment requirement. A more general condition which is essentially both
necessary and sufficient is given in Section A.1 of the Appendix.

Corollary 2.7.1 Let Xi (i = 1, . . . , n) be independently distributed with
means ξi and variances σ2i and suppose that the X’s are uniformly bounded;
i.e., there exists a constant A such that

|Xi| ≤ A for all i.(2.7.4)

Then (2.7.2) holds, provided

s2n =
n∑
i=1

σ2i → ∞.(2.7.5)

Proof. We have ∑
|Xi − ξi|3 ≤ 2A

∑
(Xi − ξi)

2

and hence

E
∑

|Xi − ξi|3 ≤ 2As2n.

The left side of (2.7.3) is therefore ≤ 4A2s4n, which is o
[
(s2n)

3
]

when s2n →
∞. This proves (2.7.3) and hence (2.7.2). �

Example 2.7.1 Poisson binomial. Consider a sequence of so-called
Poisson-binomial trials (i.e., binomial trials with varying p) with success
probabilities p1, p2, . . . . Let Xi = 1 or 0 as the ith trial is a success or
failure and let X =

∑
Xi, so that X/n = X̄. Then the X’s are uniformly

bounded and hence

√
n

(
X

n
− p̄

)
√∑

piqi/n

L→ N(0, 1),(2.7.6)
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provided

s2n =
n∑
i=1

piqi → ∞ as n → ∞.(2.7.7)

Condition (2.7.7) will hold if the p’s are bounded away from 0 and 1,
that is, if there exists a constant a > 0 such that

a < pi < 1 − a for all i.

Since then both pi and qi are > a, we have piqi > a2 and hence s2n >
na2 → ∞. However, (2.7.7) can also hold when pi → 0, provided it tends
to 0 sufficiently slowly. Suppose, for example, pi = 1/i. Then

∑
piqi =

∑ 1
i
−
∑ 1

i2

and it follows from Examples 1.3.1 and 1.3.2 that
n∑
i=1

1
i
→ ∞ and

n∑
i=1

1
i2

tends to a finite limit, and hence that (2.7.7) holds. On the other hand, the

same example shows that (2.7.7) does not hold when pi =
1
ik

with k > 1.�

The limit (2.7.6) generalizes the normal limit (2.3.10) from binomial to
Poisson binomial trials. Corresponding generalizations are also available for
the Poisson limit (1.2.8) of the binomial in the case of rare events. We shall
consider such a result at the end of the section.

Example 2.7.2 Binomial sampling: Wilcoxon statistic. Let Ki be a
sequence of independent random variables taking on the values 1 and 0
with probabilities p and q = 1 − p respectively, and let Xi = aiKi and

Sn =
n∑
i=1

Xi. This corresponds to the process of binomial sampling where

the ith element of a population of size n has the “value” ai attached to
it and where a sample is drawn by including or excluding each of the n
elements with probability p or q, respectively. Thus Sn is the sum of the
a-values of the elements included in the sample. For the case ai = i and
p = 1/2, Sn (with change of notation) is the signed-rank Wilcoxon statistic
(3.2.27).

In the present case,

ξi = aip, σ
2
i = a2i pq, and E |Xi − ξi|3 = a3i pq

(
p2 + q2

)
.

Thus condition (2.7.3) reduces to
(∑

a3i

)2
= o
(∑

a2i

)3
.
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When ai = i, it follows from Example 1.1.3 that∑
a2i ∼ cn3 and

∑
a3i ∼ c′n4,

and condition (2.7.3) is seen to be satisfied. In particular, this proves asymp-
totic normality of the one-sample Wilcoxon statistic. �

Note: Condition (2.7.3), although sufficient for many applications, is not
necessary for (2.7.2). For weaker conditions, see Section A.1. A Berry–
Esseen type version of Theorem 2.7.1 is given in Petrov (1995, p. 111) and
Stroock (1993, p. 69).

The versions of the CLT considered so far have been associated with the
following two situations:

(A) X1, X2, . . . are independent according to a common distribution F
(Theorem 2.4.1).

(B) X1, X2, . . . are independent according to distributions F1, F2, . . . (The-
orem 2.7.1).

In Corollary 2.4.1, we had to deal with a generalization of (A), namely
that for each fixed n, the variables X

(n)
1 , . . . , X

(n)
n are i.i.d. but that their

common distribution Fn may depend on n. With a different notation, a
generalization of this model is described by a double array of random vari-
ables:

X11 with distribution F1
X21, X22 independent, each with distribution F2
· · ·
Xn1, Xn2, . . . , Xnn independent, each with distribution Fn.

(A′)

A CLT for (A′) can be obtained from Corollary 2.4.1 as a consequence of
the Berry–Esseen theorem. A more general result will be given in Theorem
2.7.2.

Even models (B) and (A′) are not general enough to cover many impor-
tant situations.

Example 2.7.3 Common mean. In Example 2.2.2, we considered the
consistency of the estimator δ =

∑
wiXi with

wi =
1/σ2i
n∑
j=1

1/σ2j

(2.7.8)

of the common mean ξ of n variables Xi independently distributed with
variance σ2i . Consistency was proved for the case that

n∑
j=1

1/σ2j → ∞ as n → ∞.(2.7.9)
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When the estimator is consistent, one would like to know its asymptotic
distribution. Since δ =

∑
Yi with Yi = wiXi, it seems at first glance

that one is dealing with a situation of type (B) so that Theorem 2.7.1 is
applicable. Note, however, that the notation is misleading. The weights wi
depend not only on i but also on n and should have been denoted by wni.
�

Such situations are covered by the following generalization (B′) of (A),
(B) and (A′), called a triangular array:

X11 with distribution F11
X21, X22 independent, with distribution F21, F22
· · ·
Xn1, . . . , Xnn independent, with distributions Fn1, . . . , Fnn.

(B′)

Example 2.7.4 Simple linear regression. As in Example 2.2.3 let

Xi = α + βvi + Ei,(2.7.10)

where the E’s are i.i.d. with mean 0, and the v’s are given constants. The
standard (least squares) estimators of β and α are

β̂ =

n∑
i=1

(
Xi − X̄

)
(vi − v̄)

n∑
j=1

(vj − v̄)2
=

n∑
i=1

vi − v̄∑
(vj − v̄)2

Xi,

α̂ = X̄ − β̂v̄.

(2.7.11)

Thus α̂ and β̂ are again linear functions of the X’s in which the coefficients
depend on both i and n. �

The following result extends Theorem 2.7.1 from model (A′) to model
(B′).

Theorem 2.7.2 (Liapounov) Let the Xij be distributed as in (B′) and
let

E (Xij) = ξij , Var (Xij) = σ2ij < ∞, and s2n = σ2n1 + · · · + σ2nn.(2.7.12)

Then
n∑
j=1

(Xnj − ξnj)
sn

=
X̄n − ξ̄n√
Var Xn

L→ N (0, 1) as n → ∞,(2.7.13)

provided 
 n∑
j=1

E |Xnj − ξnj |3


2

= o
(
s2n
)3

.(2.7.14)
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Note: In (2.7.14), the exponent 3 can be replaced by 2 + δ for any δ > 0.
This is proved, for example, in Billingsley (1986) and in Dudley (1989).

As an important application, we shall now give conditions under which
a linear function of i.i.d. random variables is asymptotically normal. In
particular, this will cover both Examples 2.7.3 and 2.7.4.

Theorem 2.7.3 Let Y1, Y2, . . . be i.i.d. with E (Yi) = 0, Var (Yi) = σ2 >
0, and E|Y 3i | = γ < ∞. Then

n∑
i=1

dniYi

σ

√√√√ n∑
i=1

d2ni

L→ N (0, 1) ,(2.7.15)

provided (
n∑
i=1

|dni|3
)2

= o

(
n∑
i=1

d2ni

)3
.(2.7.16)

Proof. With Xni = dniYi, the left side of (2.7.15) reduces to (2.7.13). Also,
ξni = 0,

σ2ni = σ2d2ni and hence s2n = σ2
n∑
i=1

d2ni,

and

E |Xni − ξni|3 = |dni|3 γ.

Condition (2.7.14) thus becomes (2.7.16). �
Condition (2.7.16), in turn, is equivalent to another which typically is

simpler to apply and to interpret.

Theorem 2.7.4 The sufficient condition (2.7.16) is equivalent to

max
i=1,... ,n

(
d2ni
)

= o
(∑

d2ni

)
.(2.7.17)

Proof. If (2.7.16) holds, then(
max (dni)

2
)3

=
(
max |dni|3

)2
≤
(∑

|dni|3
)2

= o
(∑

d2ni

)3
,

which implies (2.7.17). Conversely, if (2.7.17) holds, then

∑∣∣d3ni∣∣ ≤ max |dni|
∑

d2ni = o

(√∑
d2ni
∑

d2ni

)
= o
(∑

d2ni

)3/2
,
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which implies (2.7.16). �

The meaning of condition (2.7.17) is clear. It requires the individual
weights d2ni to become negligible compared to their sum, and thereby pre-
vents any one of the variables dniYi to have an undue influence and thereby
the kind of possibility mentioned in the note following Theorem 2.7.1.

As illustrations of Theorem 2.7.3 with condition (2.7.17), we shall now
determine conditions for asymptotic normality for the estimators of Exam-
ples 2.7.3 and 2.7.4.

Example 2.7.5 Common mean (continued). Consider the asymptotic
normality of the estimator δ of Example 2.7.3. Suppose that E |Xi|3 < ∞
for all i and let

Yi = (Xi − ξ) /σi.(2.7.18)

Then the assumptions of Theorem 2.7.3 are satisfied with σ2 = 1 and we
have

δ − ξ =
∑

wi(Xi − ξ) =
∑

dniYi(2.7.19)

with

dni =
1/σi
n∑
j=1

1/σ2j

(2.7.20)

and hence ∑
dniYi√∑

d2ni
=

δ − ξ√∑
1/σ2j

.

It follows that

δ − ξ√∑
1/σ2j

L→ N (0, 1) ,(2.7.21)

provided (2.7.17) holds, which in the present case reduces to

max
i=1,... ,n

(
1/σ2i

)
= o

(∑ 1
σ2j

)
.(2.7.22)

This condition is satisfied, for example, when the σ2j are equally spaced,
say σ2j = j∆ (Problem 7.2). �
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Example 2.7.6 Simple linear regression (continued). In the model of
Example 2.7.4, suppose that E(Ei) = 0,Var(Ei) = σ2, and E(|Ei|3) < ∞.
By (2.7.11),

β̂ − β =
∑

dni (Xi − ξi) ,

where ξi = E(Xi) and dni = (vi − v̄)/
n∑
j=1

(vj − v̄)2. It follows that

(
β̂ − β

)√∑
(vi − v̄)2/σ L→ N (0, 1) ,(2.7.23)

provided

max
i=1,... ,n

(vi − v̄)2 = o
(∑

(vj − v̄)2
)

.(2.7.24)

This same condition also ensures the asymptotic normality of (α̂−α) (Prob-
lem 7.11). �

Example 2.7.7 ‡Poisson binomial trials with rare events. In Section
1.2, we found that the Poisson distribution is the limit as n → ∞ of the
binomial distribution b(p, n) for rare events, more specifically when p =
λ/n. To generalize this result to the case of varying p, consider a triangular
array of Poisson binomial trials with success probabilities

p11; p21, p22; . . . ; pn1, . . . , pnn.

In generalization of the assumption np = λ, we shall assume that
n∑
i=1

pni → λ, 0 < λ < ∞.(2.7.25)

Although (2.7.25) implies that the p’s are small on the average when n
is large, it does not completely capture the idea of “rare events” in that
individual p’s can remain large. To avoid this possibility, we add to (2.7.25)
the condition

max (pn1, . . . , pnn) → 0 as n → ∞.(2.7.26)

A different argument leads to another condition. If the distribution of X
is to tend to the Poisson distribution P (λ) which has variance λ, we would
expect that

Var (X) =
n∑
i=1

pniqni =
n∑
i=1

pni −
n∑
i=1

p2ni → λ.

‡This somewhat more difficult example is not required in the remainder of the book.
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In view of (2.7.25), this would require
n∑
i=1

p2ni → 0.(2.7.27)

Actually, it is easy to see that when (2.7.25) holds, conditions (2.7.26)
and (2.7.27) are equivalent. That (2.7.27) implies (2.7.26) is obvious. Con-
versely, the inequality

n∑
i=1

p2ni ≤ max (pn1, . . . , pnn)
n∑
j=1

pnj

shows that (2.7.25) and (2.7.26) together imply (7.27).

Theorem 2.7.5 If X is the number of successes in n Poisson binomial
trials satisfying (2.7.25) and (2.7.27), then the distribution of X has the
Poisson limit P (λ).

Proof. The result will be proved§ by constructing suitable joint distribu-
tions for variables (Xi, Yi) such that

P (Xi = 1) = pi, P (Xi = 0) = qi(2.7.28)

and that the Yi are independent with Poisson distribution P (pi). Then

Y =
n∑
i=1

Yi has the Poisson distribution P

(
n∑
i=1

pi

)
and hence by (7.25)

converges in law to the Poisson distribution P (λ). If X =
∑

Xi, we shall
show that

P (X = Y ) → 1 as n → ∞,(2.7.29)

and hence that X also tends in law to P (λ).
Let P (Xi = a, Yi = b) = p

(i)
a,b for a = 0, 1 and b = 0, 1, 2, . . . and let

p
(i)
00 = e−pi − pi (1 − e−pi) , p

(i)
01 = 0, p

(i)
0y = pyi e

−pi/y! for y ≥ 2,

p
(i)
10 = pi (1 − e−pi) , p

(i)
11 = pie

−pi , p
(i)
1y = 0 for y ≥ 2,

with the Y ’s being independent of each other, and with pi ≤ .8 so that
p
(i)
00 ≥ 0. Then it is easily verified (Problem 7.9) that (2.7.28) holds and

that the distribution of Yi is P (pi). To show (2.7.29), note that (Problem
7.10) e−pi ≥ 1 − pi and hence that

P (Xi �= Yi) = 1 + pi − (1 + 2pi) e−pi ≤ 1 + pi − (1 + 2pi) = 2p2i .

§This proof is due to Hodges and Le Cam (1960). It is an early example of the
coupling method. For a detailed treatment of this method, see, for example, Lindvall
(1992).
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It follows that

P (X �= Y ) ≤ P (Xi �= Yi for some i) ≤
∑

P (Xi �= Yi) ≤ 2
∑

p2i

and hence by (2.7.27) that

P (X �= Y ) → 0 as n → ∞.

This concludes the proof. �
For additional results concerning this limit process, see Arratia et al.

(1990) and Barbour et al. (1992), Chapter 1, which is also a good source
for Poisson approximations in the case of dependent trials. �

Summary

1. The central limit theorem is generalized from the i.i.d. case in two di-
rections. Of the resulting situations, (A) and (A′) can be represented
by a single sequence of random variables; on the other hand, (B) and
(B′), because of the dependence on n, require a triangular array.

2. A central limit theorem for (B′) is Lyapounov’s Theorem 2.7.2 (and
its special case, Theorem 2.7.1, for (A′)) which assumes the existence
of third moments and states that the standardized average of the nth

row of the array tends in law to the standard normal distribution,
provided the sum of the third absolute central moments is not too
large.

3. An application of Lyapounov’s theorem leads to sufficient conditions
for the asymptotic normality of weighted sums of i.i.d. random vari-
ables. Slightly weaker conditions can be obtained from the Lindeberg
version of the CLT, which is discussed in Section A.1 of the Appendix.

4. The Lyapounov and Lindeberg extensions of the classical CLT pro-
vide conditions under which the standardized number of successes in
a sequence of Poisson binomial trials has a normal limit distribution.
Under different conditions corresponding to the case of “rare events,”
the number of successes has a Poisson limit.

2.8 Central limit theorem for dependent variables

In the preceding section, we considered the asymptotic behavior of the
average X̄ when X1, X2, . . . are a sequence of independent but not identi-
cally distributed random variables. The assumption of independence tends
to be made rather casually, even though often it is not appropriate (see,
for example, Kruskal (1988) and Beran (1992)). One reason for this neglect
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may be the difficulty of specifying appropriate models incorporating de-
pendence. Most of the work involving dependent sequences is beyond the
scope of this book (the appropriate literature is that dealing with stochas-
tic processes and time series). We shall in this and the next section mainly
restrict attention to the consideration of a few important examples.

If X1, . . . , Xn are n dependent variables with E(Xi) = θ and Var(Xi) =
σ2, it will frequently continue to be true that

√
n(X̄ −θ) tends to a normal

distribution with mean 0 and variance

τ2 = limVar
(√

n
(
X̄ − θ

))
(2.8.1)

so that
√

n
(
X̄ − θ

)
τ

L→ N (0, 1) .(2.8.2)

Now

Var
[√

n
(
X̄ − θ

)]
= σ2 +

1
n

∑∑
i	=j

Cov (Xi, Xj) ,(2.8.3)

which will tend to a finite limit provided the second term tends to a finite
limit γ,

1
n

∑∑
i	=j

Cov (Xi, Xj) → γ.(2.8.4)

Note that the sum in (2.8.4) contains n(n − 1) = O(n2) terms. A sim-
ple way in which (2.8.4) can occur is that Cov(Xi, Xj) = 0 for all but
O(n) number of pairs (i, j). Alternatively, (2.8.4) may hold if Cov(Xi, Xj)
tends to 0 sufficiently fast as |j − i| → ∞. If (2.8.2) and (2.8.4) hold, the
asymptotic distribution of

√
n
(
X̄ − θ

)
will differ from what it is in the

independent case only, in that the asymptotic variance is no longer σ2 but
τ2 = σ2 + γ, which may be either less than or greater than σ2.

Of particular interest is the case in which the sequence X1, X2, . . . is
stationary (Definition 2.2.1). The variance (2.8.3) then reduces to

Var
[√

n
(
X̄ − θ

)]
= σ2 +

2
n

n−1∑
k=1

(n − k) γk(2.8.5)

where γk = Cov (Xi, Xi+k), and (2.8.4) becomes

2
n

n−1∑
k=1

(n − k) γk → γ.

The limit γ will be finite, for example, when γk tends to zero at the rate
ak with 0 < a < 1, that is, when the covariances γk decay at an exponential
rate (Problem 8.1).
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Example 2.8.1 m-dependence. Recall from Example 2.2.7 that the se-
quence X1, X2, . . . is m-dependent if (X1, . . . , Xi) and (Xj , Xj+1, . . . , Xn)
are independent whenever j− i > m. An important class of examples of m-
dependent sequences is obtained from a sequence of independent variables
Z1, Z2, . . . by letting

Xi = φ (Zi, . . . , Zi+m) .(2.8.6)

If the sequence of Z’s is i.i.d., the X’s are not only m-dependent but also
stationary (Problem 8.2).

As pointed out in Example 2.2.7, a special case of m-dependence is a
sequence of moving averages, given by

φ (Zi, . . . , Zi+m) = (Zi + · · · + Zi+m) / (m + 1) .(2.8.7)

In the simplest case, m = 1 and Xi = (Zi + Zi+1) /2, and hence

n∑
i=1

Xi =
1
2
Z1 + (Z2 + · · · + Zn) +

1
2
Zn+1.(2.8.8)

If E (Zi) = θ, then
√

n
(
X̄ − θ

)
clearly has the same limit distribution as√

n
(
Z̄ − θ

)
, which is N

(
0, σ2

)
with σ2 = Var (Zi). Thus (2.8.2) holds with

τ2 = σ2 and this argument easily extends to general m (Problem 8.3).
In an m-dependent sequence, each Xi can be dependent on at most 2m

of the variables Xj with j �= i, so that the total number of pairs (Xi, Xj)
with Cov (Xi, Xj) �= 0 cannot exceed 2m · n = O (n). An m-dependent
sequence therefore provides an example of the first possibility mentioned
after (2.8.4).

The central limit theorem extends to the general case of a stationary
m-dependent sequence. �

Theorem 2.8.1 Let X1, X2, . . . be a stationary m-dependent sequence of
random variables. Then (2.8.2) will hold with

τ2 = σ2 + 2
m+1∑
i=2

Cov (X1, Xi)(2.8.9)

provided 0 < σ2 = Var (Xi) < ∞.

Proof. Without loss of generality, let E(Xi) = 0. To prove the result divide
the sequence of X’s into alternate blocks of lengths N and m, where m is
fixed but N will tend to infinity. Assume for the moment that n is a multiple
of N + m, say n = r (N + m). Then

n∑
i=1

Xi =
r∑
i=1

Ai +
r∑
i=1

Bi(2.8.10)



2.8 Central limit theorem for dependent variables 109

with

A1 = X1 + · · · + XN , B1 = XN+1 + · · · + XN+m,
A2 = XN+m+1 + · · · + X2N+m,... .

The crucial aspect of this decomposition of
∑

Xi is that the A’s are inde-
pendent since the intervening B’s separate them by m X’s.

We have

√
nX̄ =

1√
r (N + m)

r∑
i=1

Ai +
1√

r (N + m)

r∑
i=1

Bi.(2.8.11)

Since the A’s are i.i.d., it follows from the central limit theorem that for
any fixed N , the first term tends to N

(
0,Var

[
A1/

√
N + m

])
as r → ∞.

On the other hand,

E

[
1√

r(N+m)

∑r
i=1Bi

]2
= 1

r(N+m)Var (
∑r
i=1Bi) = 1

N+mVar (B1)

= 1
N+mE (X1 + · · · + Xm)2 ≤ m2

N+mσ2.

(2.8.12)

Since the right side tends to zero as N → ∞, this appears to complete the
proof of asymptotic normality by Theorem 2.3.3.

However, this argument overlooks the fact that the convergence of the
first term of (2.8.11) was asserted for N fixed, while convergence of the
second term requires N to tend to infinity. For the closing of this gap see,
for example, Anderson (1971, Section 7.7) or Ferguson (1996, Section 11).

So far, we have restricted n to multiples of N + m. If, instead, n =
r (N + m) + k with k < N + m, then X1 + · · · + Xn is given by the right
side of (2.8.10) plus a remainder term consisting of fewer than N + m X’s.
This remainder term tends in probability to 0 uniformly in r as N → ∞
(Problem 8.7). �

We shall next consider an example in which all the covariances
Cov (Xi, Xj) are different from zero.

Example 2.8.2 Stationary first order autoregressive process. Let
the X’s be defined successively by

Xi+1 = θ + β (Xi − θ) + Ui+1, |β| < 1, i = 1, 2, . . .(2.8.13)

with the Ui independent N(0, σ20). From (2.8.13), we see that

Xi+k − θ = βk (Xi − θ) + βk−1Ui+1 + · · · + βUi+k−1 + Ui+k.(2.8.14)

The variances of the X’s by (2.8.13) satisfy

Var (Xi+1) = β2Var (Xi) + σ20 .(2.8.15)
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If the sequence of the X’s is to be stationary, we must have

Var (Xi+1) = Var (Xi) for all i = 1, 2, . . . ,

and hence

σ2 = σ20/
(
1 − β2

)
,

where σ2 denotes the common variance of the X’s. Suppose that the se-
quence is started with an X1 which is N

(
θ, σ2

)
. Then this is the distribu-

tion of all the Xi, and hence the sequence is stationary.
Establishing (2.8.2) requires the proof of two facts: asymptotic normality

and that the variance of the limit distribution agrees with the limit (2.8.1)
of the variance. In the present case, the joint distribution of the X’s is
multivariate normal and hence

√
n
(
X̄ − θ

)
is normal for all n (see Chapter

5, Sec. 4), say N
(
0, σ2n

)
. If σn → τ , it then follows from Example 2.3.4 that

(2.8.2) holds. Since by (2.8.14)

γj = Cov (X1, Xj) = βj−1σ2,(2.8.16)

it is seen that (Problem 8.5)

Var
[√

n
(
X̄ − θ

)]
→ σ2

1 + β

1 − β
(2.8.17)

which is therefore the variance of the limiting distribution. �

The following definition illustrates one way in which one can characterize
dependence, the influence of which becomes small when the variables are
sufficiently far apart.

Definition 2.8.1 (α-mixing.) The sequence X1, X2, . . . is said to be α-
mixing if

|P [(X1, . . . , Xi) ∈ A and (Xi+m, Xi+m+1,...) ∈ B]
−P [(X1, . . . , Xi) ∈ A]P [(Xi+m, Xi+m+1,...) ∈ B] | ≤ αm

(2.8.18)

for all i,m,A, and B, with

αm → 0 as m → ∞.(2.8.19)

It can be shown that a stationary sequence X1, X2, . . . which is α-mixing
satisfies (2.8.2) if αm → 0 sufficiently fast and under some mild additional
assumptions. This result is proved, for example, in Billingsley (1986) under
the assumptions that αm = O

(
m−5) and E|X12i | < ∞.
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Example 2.8.3 Two-state Markov chains. Construct a sequence of
random variables X1, X2, . . . each taking on the values 1 and 0, as follows.
The starting variable X1 takes on the values 1 and 0 with probabilities

P (X1 = 1) = p1 and P (X1 = 0) = 1 − p1.(2.8.20)

Given the ith variable Xi, the probability that the next variable Xi+1 is
1 is

P (Xi+1 = 1|Xi = 0) = π0, P (Xi+1 = 1|Xi = 1) = π1.(2.8.21)

(Note that these transition probabilities are assumed to be independent of
i.) Such a sequence is a Markov chain, i.e., the probability of success on the
(i+1)st trial, given the outcomes of all the previous trials depends only on
the outcome of the ith trial.

If pk = P (Xk = 1), it follows from (8.20) that

pk+1 = pk (π1 − π0) + π0.(2.8.22)

In general, pk+1 �= pk, and the sequence will therefore not be stationary. A
necessary condition for stationarity is pk+1 = pk for all k, which implies

pk =
π0

1 − π1 + π0
(2.8.23)

and hence in particular

p1 =
π0

1 − π1 + π0
= p, say.(2.8.24)

It is easy to see that conditions (2.8.20) and (2.8.23) are not only neces-
sary but also sufficient for stationarity since any segment (Xi+1, . . . , Xi+k)
then has the same starting probability (2.8.23) and transition probabil-
ities (2.8.20) as the segment (X1, . . . , Xk). Since E

(
X̄
)

= E (X1) = p,
the statistic X̄ in the stationary case is an unbiased estimate of p. It will
therefore be a consistent estimator of p, provided Var

(
X̄
)
→ 0 as n → ∞.

To evaluate Var
(
X̄
)
, let us determine the covariance

γk = Cov (Xi, Xi+k)

which because of stationarity depends only on k. We can establish a simple
relationship between γk−1 and γk as follows. Using the fact that

E (XiXi+k) = γk−1 + p2,

we find

E (XiXi+k) = P (Xi = Xi+k = 1)
= P (Xi = Xi+k−1 = Xi+k = 1) + P (Xi = 1, Xi+k−1 = 0, Xi+k = 1)

= π1
(
γk−1 + p2

)
+ π0

(
p − γk−1 − p2

)
= π1p

2 + π0pq + (π1 − π0) γk−1.
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Now (Problem 8.10)

π1p
2 + π0pq = p2(2.8.25)

so that finally

γk = (π1 − π0) γk−1.(2.8.26)

Since

γ1 = E (XiXi+1) − p2 = p (π1 − p) ,

this leads to

γk = p (π1 − p) (π1 − π0)
k−1

.(2.8.27)

An easy calculation shows that (Problem 8.10)

(π1 − p) = q (π1 − π0) ,(2.8.28)

which gives the final result

γk = (π1 − π0)
k
pq.(2.8.29)

It follows from the last statement preceding Example 2.8.1 that Var X̄ → 0
and hence that X̄ is a consistent estimate of p. It further can be shown that
(Problem 8.11)

Var
[√

n
(
X̄ − p

)]
→ pq

1 + π1 − π0
1 − π1 + π0

.(2.8.30)

That the limit result (2.8.2) holds in the present situation can be proved
by using the fact that the X’s are α-mixing with αm tending to 0 expo-
nentially (see Billingsley (1986)) and in other ways. �

Examples 2.8.1–2.8.3 illustrate situations in which the dependence be-
comes weak as the variables move further apart. This is obviously so for
m-dependent variables, where the variables in fact become independent
once their distance exceeds m; in Examples 2.8.2 and 2.8.3, it is reflected
by the fact that the covariances and correlations decrease to 0 exponentially
as the distance between the variables tends to infinity.

Such short-term dependence is, however, not the only possibility and, in
fact, in many areas of application long-term dependence is not uncommon
(see, for example, Cox (1984), Hampel et al. (1986), and Beran (1992)).
Formally, a stationary sequence is said by some authors to exhibit short-

or long-term dependence as
∞∑
k=1

γk converges or diverges. (Convergence of
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∞∑
k=1

γk implies convergence to the same limit of
1
n

n∑
k=1

(n − k) γk, i.e., the

condition following (2.8.5); see Anderson (1971, Lemma 8.3.1).
In particular situations, which have been much studied but which are

beyond the scope of this book, the γ’s turn out to be given by (see for
example Beran (1989))

γk =
σ2

2

[
(k + 1)d − 2kd + (k − 1)d

]
, k = 1, 2, . . . ,(2.8.31)

where σ2 = Var (Xi) and 1 < d < 2. (For d = 1, the X’s are uncorrelated.)
Then (Problem 8.12)

γk ∼ d (d − 1)
k2−d

,(2.8.32)

so that γk → 0 very slowly (for d = 3/2, for example, at the rate 1/
√

k),∑
γk diverges, and Var

(
X̄n

)
is of order 1/n2−d. Since 2 − d < 1, (2.8.2)

cannot be expected to hold.

Example 2.8.4 Sampling from a 2-valued population. In Example
2.2.4, we considered a population Π of N items of which D are defective
and N − D are not, and a sample of n is drawn at random, i.e., in such a

way that all
(

N

n

)
possible samples of size n are equally likely. As before,

let Xi = 1 or 0 as the ith item drawn is or is not defective. Then for each
i,

P (Xi = 1) = D/N(2.8.33)

so that the X’s are identically distributed with mean and variance

E (Xi) =
D

N
and Var (Xi) =

D

N

(
1 − D

N

)
.(2.8.34)

The X’s are dependent with covariances

Cov (Xi, Xj) = −D (N − D)
N2 (N − 1)

(2.8.35)

The distribution of X =
n∑
i=1

Xi, the total number of defectives in the

sample, is the hypergeometric distribution given in Table 1.6.2. In Example
2.2.4, we were concerned with the consistency of X̄ = X/n as an estimator
of the proportion D/N of defectives; we shall now consider the asymptotic
distribution of this estimator as n → ∞.
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Since n ≤ N , the sample size n cannot tend to infinity without the pop-
ulation size N tending to infinity also. It is therefore necessary to consider
not a single population Π with fixed N , but a sequence of populations ΠN
with N → ∞ in which to embed the given situation. This leads to a dou-
ble sequence of the kind described in (A′) of the preceding section with n
replaced by N , where, however, now the variables

XN1, . . . , XNn(2.8.36)

are no longer independent. Furthermore, unlike the situations in Examples
2.8.1–2.8.3, the order of the variables in (8.35) has no significance, since
by the assumption of random sampling the joint distribution of these vari-
ables is completely symmetric, i.e., unchanged under permutation of the
variables.

Two natural embedding sequences are

(i) Fix n, let N → ∞, and let D = DN be such that

DN

N
→ p, 0 < p < 1.(2.8.37)

This will provide a reasonable approximation when the sample size n
is small compared to the population size N , while D is of the same
order of magnitude as N .

(ii) The numbers n and N − n of both types of items tend to infinity and
DN satisfies (2.8.37).

In the first case, the n draws become less and less dependent as the size of
the population increases and the (hypergeometric) distribution of X tends
to the binomial distribution b (p, n) as N → ∞.¶ A formal proof of this
result, which is a slight generalization of Problem 2.6 of Chapter 1, is easily
obtained by writing

P (x) =
(

n

x

)
DN !

(DN − x)!
(N − DN )!

(N − DN − n + x)!
(N − n)!

N !

∼
(

n

x

)
DN !

(DN − x)!Nx

(N − DN )!
(N − DN − n + x)!Nn−x →

(
n

x

)
pxqn−x.

(2.8.38)

Note that this result concerns a limit not as the sample size n tends to
infinity but for fixed n as the degree of dependence decreases.

Let us next consider the case, in which n and N both tend to ∞. We saw
in Example 2.2.4 that then X̄ is a consistent estimator of p. It, furthermore,

¶For a detailed discussion of the binomial and other approximations to the hyperge-
ometric distribution, see Johnson, Kotz, and Kemp (1992, p. 256).
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turns out as a special case of Theorem 2.8.2 that(
X

n
− D

N

)
√

Var (X/n)
L→ N (0, 1)(2.8.39)

with

Var
(

X

n

)
=

1
n

N − n

N − 1
D

N

(
1 − D

N

)
.(2.8.40)

Suppose in particular that D/N → p, so that

Var
(

X

n

)
∼ pq

n

N − n

N − 1
∼ 1

n
Var (Xi)

N − n

N − 1
.

If n = o (N), the third factor on the right side → 1, and with
X

n
= X̄, it

follows from (2.8.39) that

√
n
[
X̄ − E (Xi)

]
/
√

Var (Xi)
L→ N (0, 1)

as it would if the X’s were independent. On the other hand, if n is of the
same order as N,n ∼ λN say,

√
n
[
X̄ − E (Xi)

]
/
√

Var (Xi) will continue
to have a normal limit distribution but the asymptotic variance will be
1 − λ rather than 1.

These results reflect the dependence structure of the X’s. The correlation

of any two X’s is ρ = −1/ (N − 1). If n = o (N), then ρ = o

(
1
n

)
, so

that the dependence decreases rapidly with the sample size and becomes
asymptotically negligible. On the other hand, if n ∼ λN , it follows that
ρ ∼ −λ/n is of order 1/n and the dependence is strong enough to affect
the limit distribution.

Note: In the earlier examples, dependence was discussed in terms of the
covariances γk rather than the corresponding correlation coefficients. There
the two were in fact equivalent, since the variance σ2 was independent
of n. This is no longer the case in the present situation where Var (Xi)
depends on N and where correlation is then the more meaningful measure
of dependence. �

Example 2.8.4 is a special case of the following more general situation.

Example 2.8.5 Sampling from a finite population. Let the popula-
tion Π consist of N elements, to each of which is attached a numerical value,
v1, v2, . . . , vN . From this population, a random sample of n is drawn; let
the v-values in the sample be denoted by X1, . . . , Xn. Example 2.8.4 is the
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special case in which D of the v’s are equal to 1; the remaining N − D
equal to zero. As in this special case, the X’s are identically distributed
(with each X taking on the values v1, . . . , vN , each with probability 1/N),
but they are not independent.

In order to obtain a limit theory for
√

n
[
X̄ − E (Xi)

]
as n → ∞, we

must have not only n but also N tending to infinity and therefore, as before,
embed the given population Π in a sequence of populations Π1,Π2, . . . of
increasing size. Let us suppose that

Π1 consists of a single element with value v11;

Π2 consists of two elements with values v21, v22;

...
...

ΠN consists of N elements with values vN1, . . . , vNN .

�

Theorem 2.8.2 Let the n sample values from ΠN be denoted by XN1, . . . ,
XNn and their average by X̄n. Then

X̄n − E
(
X̄n

)
√

Var
(
X̄n

) → N (0, 1) ,(2.8.41)

provided

n and N − n both tend to infinity(2.8.42)

and either of the following conditions is satisfied:

(a)
n

N
is bounded away from 0 and 1 as N → ∞ and

max (vNi − vN ·)
2∑

(vNj − vN ·)
2 → 0(2.8.43)

or

(b)

max (vNi − vN ·)
2∑

(vNj − vN ·)
2
/N

remains bounded as N → ∞.(2.8.44)

Before considering the proof of this result, note that its implementation
requires evaluating E

(
X̄n

)
and Var

(
X̄n

)
. Since each Xi takes on the values

vN1, . . . , vNN with probability 1/N , we have

E
(
X̄n

)
= vN .(2.8.45)
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The variance of X̄n satisfies

1
n2

Var (XN1 + · · · + XNn) =
1
n

Var (XN1) +
n − 1

n
Cov (XN1, XN2) .

(2.8.46)

The first term on the right side is determined by

Var (XN1) = E (XN1 − vN ·)
2 =

1
N

N∑
i=1

(vNi − vN ·)
2
.(2.8.47)

The covariance term can be evaluated in the same way (Problem 8.14) or
more simply by noting that for n = N , we have Var (XN1 + · · · + XNN ) = 0
since XN1 + · · ·+ XNN = vn1 + · · ·+ vNN is a constant. Setting n = N in
(2.8.45), we therefore see that

Cov (XN1, XN2) =
−1

(N − 1)
Var (XN1) ,(2.8.48)

and, on combining (2.8.46) and (2.8.47), that

Var
(
X̄n

)
=

N − n

n (N − 1)
· 1
N

N∑
i=1

(vNi − vN ·)
2
.(2.8.49)

In the situation of Example 2.8.4 in which DN of the v’s are equal to
1 and the remaining N − DN are equal to 0, (2.8.49) reduces to (2.8.40)
(Problem 8.15).

Condition (2.8.43) is reminiscent of condition (2.7.17) with dNi = vNi −
vN . It is in fact possible to construct a sequence of independent variables
which in a suitable sense is asymptotically equivalent to the sequence of
the X’s and which satisfies (2.7.17). This equivalence can be used to prove
Theorem 2.8.2. An indication of this proof, which is due to Hajek (1961),
will be given in Section 4.4.

In Example 2.8.4(ii),
√

n is still a suitable normalizing factor for [X̄−
E(Xi)] even though the limiting variance is no longer guaranteed to be pq.
In (2.8.41), the needed normalizing factor may be quite different (Problem
8.16).

Example 2.8.6 Wilcoxon rank-sum statistic. Let vNi = i (i = 1, . . . , N)
so that

Ws =
n∑
i=1

XNi(2.8.50)

is the sum of n numbers drawn at random from the integers 1, . . . , N . Then
Ws is the Wilcoxon rank-sum statistic, which will be discussed in Section
3.2.
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Since Ws = nX̄n and vN · =
1
2

(N + 1), it follows from (2.8.45) that

E (Ws) =
1
2
n (N + 1) .(2.8.51)

Similarly,

1
N

∑N
i=1 (vNi − vN ·)

2 = 1
N

∑
v2Ni − v2N ·

= (N+1)(2N+1)
6 − (N+1)2

4 = N2−1
12

and hence

Var (Ws) = n (N − n) (N + 1) /12.(2.8.52)

To check condition (2.8.44), note that

max |vNi − vN ·| =
∣∣∣∣N − 1

2
(N + 1)

∣∣∣∣ = 1
2

(N − 1) .

Thus

max (vNi − vN ·)
2∑

(vNj − vN ·)
2
/N

=
(N − 1)2 /4
(N2 − 1) /12

,

which is clearly bounded as N → ∞. It therefore follows from Theorem
2.8.2 that

Ws − 1
2n (N + 1)√

mn (N + 1) /12
L→ N (0, 1)(2.8.53)

as n and m = N − n tend to infinity. �

Summary

1. The CLT continues to hold for a sequence of dependent variables if
the dependence is sufficiently weak. This is illustrated on a number
of stationary sequences, in particular for m-dependent variables, for
the first order autoregressive process and for 2-state Markov chains.

2. A different kind of dependence structure holds for simple random
sampling from a finite population. Conditions are given under which
the CLT holds in this case.
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2.9 Problems

Section 1

1.1 Prove (2.1.10) and (2.1.11).

[Hint for (2.1.10):

|AnBn − ab| = |An (Bn − b) + b (An − a)|
≤ |An (Bn − b)| + |b (An − a)| .]

1.2 In Example 2.1.4, show that

(i) Yn
P→ 1 if pn → 0;

(ii) E (Yn − 1)2 → ∞ if pn = 1/n.

1.3 Prove Theorem 2.1.4

[Hint: Given any a > 0, there exists b such that |f(y) − f(c)| < a,
provided |y − c| < b. It then follows that

P [|f (Yn) − f (c)| < a] ≥ P [|Yn − c| > b] .

1.4 In generalization of Lemma 2.1.2, show that if

P (En) → p and P (Fn) → 1,

then

P (En and Fn) → p.

1.5 (i) If Yn is a sequence of random variables for which

E |Yn − c| → 0,(2.9.1)

then Yn converges in probability to c.

(ii) Find an example in which (2.9.1) is satisfied but (2.1.6) is not.

1.6 Let cn be a sequence of numbers converging to c, and let Xn be a
random variable assigning probability 1 to cn. Then Xn

P→ c.

1.7 Let X1, . . . , Xn be i.i.d., each with probability density f , and let X(1)
be the smallest of the X’s. Show that X(1) is consistent for estimating
ξ when

(i) f(x) = 1 for ξ < x < ξ + 1, f(x) = 0 elsewhere;

(ii) f(x) = 2(x − ξ) for ξ < x < ξ + 1, f(x) = 0 elsewhere;

(iii) f(x) = e−(x−ξ) for ξ < x, f(x) = 0 elsewhere;
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(iv) Suppose that f(x) = 0 for all x < ξ. Give a simple condition on
f for X(1) to be consistent for estimating ξ which contains (i)–(iii) as
special cases.

[Hint: P
[
X(1) ≥ a

]
= [P (X1 ≥ a)]n .]

1.8 If there exists M such that

P (|Yn − c| < M) = 1 for all n,

and if Yn
P→ c, then

(i) E (Yn) → c; (ii) E (Yn − c)2 → 0.

1.9 For any positive integer k, if E|X|k < ∞, then E|X − a|k < ∞ for
any a.

[Hint: Expand (X − a)k .]

1.10 (i) Prove (2.1.18) and (2.1.19).

(ii) Generalize the remaining properties of o stated in Lemma 1.4.1
to op.

1.11 Work the following problems of Chapter 1 with the indicated modi-
fications:

(i) Problem 4.16 with O replaced by Op;

(ii) Problem 4.17 with o and O replaced by op and Op, respectively;

(iii) Problem 4.18 with o and O replaced by op and Op, respectively.

Section 2

2.1 In Example 2.2.1, if Xi = ±3i−1 with probability 1/2 each, show that
X̄ → ∞ with probability 1/2 and X̄ → −∞ with probability 1/2.

[Hint: Evaluate the smallest value that (X1 + · · · + Xn) /n can take
on when Xn = 3n−1.]

2.2 Verify (2.2.9).

2.3 An alternative expression for β̂ given by (2.2.13) is∑
(vi − v̄)

(
Xi − X̄

)
/
∑

(vj − v̄)2 .

2.4 Verify

(i) (2.2.16);

(ii) (2.2.18);

(iii) (2.2.19).
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2.5 If X1, . . . , Xm and Y1, . . . , Yn are independent with common mean
ξ and variances σ2 and τ2, respectively, use (2.2.1) to show that the
grand mean (X1 + · · · + Xm + Y1 + · · · + Yn) / (m + n) is a consis-
tent estimator of ξ provided m + n → ∞.

2.6 Verify (2.2.24).

2.7 (i) Show that if vn → ∞, then also v̄n = (v1 + · · · + vn) /n → ∞.

(ii) Use (i) to show that if vn → ∞, then
∑

(vi − v̄)2 → ∞ and hence
β̂ given by (2.2.13) is a consistent estimator of β.

[Hint: (i) Given any M , let k be so large that vi > M for all i > k.
Then for any n > k,

v̄n >
v1 + · · · + vk

n
+

(n − k)
n

M.

Holding M and k fixed, let n → ∞.

(ii) Note that
∑

(vi − v̄)2 > (v1 − v̄)2.]

2.8 (i) Generalize part (i) of the preceding problem to show that if vn
tends to any limit �, then also v̄n → �.

(ii) Give an example of a sequence of numbers vn such that v̄n tends
to a limit, but vn does not.

(iii) Show that (2.2.35) implies (2.2.31).

2.9 In Example 2.2.6, show that as n → ∞ the estimator δ has a limit
distribution which assigns probability p and q to the values 1 and 0,
respectively.

2.10 Let Y1, Y2, . . . be i.i.d. with mean ξ and variance σ2 < ∞, and let

X1 =
Y1 + · · · + Ym1

m1
; X2 =

Ym1+1 + · · · + Ym1+m2

m2
, . . .

so that Var(Xi) = σ2i = σ2/mi, i = 1, . . . , n.

(i) The estimator δn of ξ given by (2.2.5) and (2.2.8) is consistent for

estimating ξ, provided
n∑
i=1

mi → ∞ and hence in particular if either

(a) n → ∞ or (b) n is finite but at least one of m1, . . . ,mn tends to
∞.

(ii) The estimator X̄ is consistent if either (c) n → ∞ or (d) n is
finite and mi → ∞ for all i = 1, . . . , n, but not necessarily if only (b)
holds.
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2.11 In the standard two-way random effects model, it is assumed that

Xij = Ai + Uij (j = 1, . . . ,m; i = 1, . . . , s)

with the A’s and U ’s all independently, normally distributed with

E (Ai) = ξ, Var (Ai) = σ2A, E (Uij) = 0, Var (Uij) = σ2.

Show that X̄ =
∑∑

Xij/sm is

(i) not consistent for ξ if m → ∞ and s remains fixed,

(ii) consistent for ξ if s → ∞ and m remains fixed.

Section 3

3.1 If {Hn, n = 1, 2, . . . } is a sequence of cdf’s and H is a function such
that Hn(x) → H(x) for all x, then

(i) 0 ≤ H(x) ≤ 1 for all x;

(ii) H is non-decreasing.

3.2 (i) If Yn
P→ c (c finite), then Yn is bounded in probability.

(ii) Prove Lemma 2.3.1.

3.3 (i) If Yn is bounded in probability and if Kn is any sequence of con-
stants tending to ∞, then

P (|Yn| < Kn) → 1 as n → ∞.(2.9.2)

(ii) If Yn is bounded in probability and cn is any sequence of constants
tending to 0, then cnYn

P→ 0.

3.4 In Example 2.3.5, give an example each of a sequence of random
variables Yn with cdf Hn which converges to c in probability such
that Hn(c) does or does not converge to H(c) = 1.

3.5 Any cdf H has arbitrary large continuity points.

[Hint: The points of discontinuity of any cdf are countable. This fol-
lows from the fact that any collection of mutually exclusive intervals
is countable since each interval contains a rational number and the ra-
tionals are countable. Apply this fact to the intervals [H (x−) , H (x)]
at points x of discontinuity of H.

3.6 If kn (Yn − c) L→ H and kn → ∞, then Yn
P→ c.

3.7 Give an example in which kn (Yn − c) tends in law to random variable
Y with cdf, but where Var [kn (Yn − c)] does not tend to v2 = Var (Y ).
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3.8 In Example 2.3.7, verify (2.3.11).

3.9 (i) If X1, . . . , Xn are i.i.d. according to the uniform distribution
U (0, θ), obtain the suitably normalized limit distribution for

(a)
n + 1

n
X(n),

(b)
n

n − 1
X(n).

(ii) For large n, which of the three statistics (a), (b), or X(n) would
you prefer as an estimator for θ.

3.10 (i) If X1, . . . , Xn are i.i.d. according to the exponential density e−x,
x > 0, show that

P
[
X(n) − log n < y

]
→ e−e

−y

, −∞ < y < ∞.(2.9.3)

(ii) Show that the right side of (2.9.3) is a cumulative distribution
function. (The distribution with this cdf is called the extreme value
distribution.)

(iii) Graph the cdf of X(n) − log n for n = 1, 2, 5 together with the
limit e−e

−y

.

(iv) Graph the densities corresponding to the cdf’s of (iii).

3.11 Suppose that kn (Tn − g (θ)) L→ H, with H continuous. What can be
said about the limiting behavior of k′

n (Tn − g (θ)) when

(i)
k′
n

kn
→ d �= 0;

(ii)
k′
n

kn
→ 0;

(iii)
k′
n

kn
→ ∞ ?

3.12 Let X1, . . . , Xn be i.i.d. according to U (0, 1). Find the limit distri-
bution of n

[
1 − X(n−1)

]
.

3.13 Show that if Hn is the normal distribution with mean ξn and variance
σ2n, then Hn tends to the normal distribution H with mean ξ and
variance σ2 > 0 if and only if

ξn → ξ and σ2n → σ2.

3.14 In Example 2.3.8, show that Yn
L→ Y if pn → 0.

3.15 If Yn is bounded in probability and Rn = op (Yn), then Rn
P→ 0.
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3.16 If Hn → H, then

(i) Hn(an) → 1 if an → ∞,

Hn(an) → 0 if an → −∞.

(ii) Hn(an) → H(a) if an → a and a is a continuity point of H.

(iii) If Vn
L→ H and Wn

P→ 0 and if a is a continuity point of H, then

P [a − Wn ≤ Vn < a] → 0.

3.17 Prove Theorem 2.3.4.

Section 4

4.1 Replace (2.4.2) by an equivalent statement the right side of which is
N (0, 1) instead of N (0, 2).

4.2 Let Xn have distribution Fn satisfying

P (0 ≤ Xn ≤ 1) = 1.(2.9.4)

(i) Then E (Xn) = ξn, Var (Xn) = σ2n, and E |Xn − ξn|3 are all be-
tween 0 and 1.

(ii) Determine a sequence of distributions Fn satisfying (2.9.4) but
for which the standardized third moment

E |Xn − ξn|3 /σ3n(2.9.5)

is not o (
√

n).

4.3 (i) Determine the expectation and variance of the distribution

F (x) = (1 − ε)Φ (x) + εΦ
(

x − η

τ

)
.

(ii) By simulation, determine

p = PF


X̄ − E

(
X̄
)

√
Var
(
X̄
) ≤ x


 ,(2.9.6)

where X1, . . . , Xn are i.i.d. according to F , for

x = 0, 1, 2, ε = .1, .2, .3, n = 20, 50, 100

and the following combinations of η and τ :

(a) η = 0, τ = 1, 2, 3;

(b) τ = 1, η = .5, 1, 2;

(c) η = τ = .5, 1, 2,

and compare your results to the normal approximation Φ (x).
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4.4 Show that (2.4.7) is the probability density of X = 1/Y 2 when Y is
distributed as N (0, 1).

4.5 (i) Show that (2.4.19) follows from (2.4.18).

(ii) Show that (2.4.19) remains valid when n is even.

[Hint for (ii): Show that (2.4.19) remains valid when n = 2m and
X̃n is replaced by either Xm−1 or X(m), and hence also holds for their
average.]

4.6 Determine the limit distribution of
√

n
(
X̃n − θ

)
for the following

distributions ‖:

(i) F = N
(
0, σ2

)
,

(ii) F = U (−a, a),

(iii) F =double exponential,

(iv) logistic with F (x) = 1/ (1 + e−x).

4.7 (i) For each of the distributions (i)–(iv) of the preceding problem,
compare the limit distribution of

√
n
(
X̃ − θ

)
with that of

√
n
(
X̄ − θ

)
,

and in each case, determine whether for large n you would prefer X̄
or X̃ as an estimator of θ.

(ii) Use simulation to graph the cdf of
√

n
(
X̃n − θ

)
for n = 1, 3, 5,

and compare it with that of the limit distribution for the distributions
(ii) and (iii) of Problem 4.6.

4.8 Let X1, . . . , Xn be i.i.d. with cdf F and density f . For any 0 < p < 1,
let ξp be such that

F (ξp) = p,(2.9.7)

and suppose that f (ξp) > 0. If

n1
n

= p + o

(
1√
n

)
,(2.9.8)

then

√
n
(
X(n1) − ξp

) L→ N

[
0,

pq

[f (ξp)]
2

]
.(2.9.9)

4.9 If n = 2m, find the limit distribution of
√

n
(
X(m+d) − θ

)
as m → ∞

and d remains fixed, under the assumptions of Example 2.4.9.

‖The densities are given in Table 1.6.1 of Chapter 1.
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4.10 Note that the first correction term in (2.4.20) drops out when x = 1.
To see the effect of this phenomenon, make a table analogous to Table
2.4.2, but with the top row reading x = .5, 1, 2 instead of 1−Gn (x) =
.5, .1, .05, .01.

4.11 When F is symmetric, the correction given by the first correction
term of (2.4.20) drops out. Make a table like Table 2.4.2 using the
correction term (2.4.22) instead of (2.4.20) for the following distribu-
tions:

(i) logistic,

(ii) double exponential,

(iii) uniform U (0, 1).

4.12 If Y is the negative binomial variable defined in Table 1.6.2 of Chapter
1, then

E (Y ) =
mq

p
and Var (Y ) =

mq

p2
.

Show that

[Y − E (Y )] /
√

VarY L→ N (0, 1) as m → ∞.

[Hint: Represent Y as the sum of m i.i.d. random variables and apply
the central limit theorem.]

4.13 In Example 2.4.7, show that the sequence of distributions Fn =
P (1/n) does not satisfy condition (2.4.12).

[Hint: If X is distributed as P (λ), then E(X−λ)2 = E(X−λ)3 = λ.]

Section 5

5.1 If Yn is bounded in probability and Xn = op(Yn), then Xn
P→ 0.

5.2 Let X1, . . . , Xn be i.i.d. as N
(
θ, σ2

)
, σ = known, and let δ =

Φ
(

X̄ − a

σ

)
denote the maximum likelihood estimator of

p = P (Xi > a) = 1 − Φ
(

a − θ

σ

)
= Φ

(
θ − a

σ

)
.

Determine the limit distribution of
√

n (δ − p).

5.3 Let X1, . . . , Xn be i.i.d. according to the logistic distribution with
cdf F (x) = 1/

(
1 + eθ−x

)
. Construct an estimator δ

(
X̄
)

of F (0) and
state the limit distribution of

√
n
[
δ
(
X̄
)
− F (0)

]
.
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5.4 If X has the binomial distribution b (p, n), show that

√
n

(
arcsin

√
X

n
− arcsin

√
p

)
(2.9.10)

tends to a normal distribution with variance independent of p.

5.5 Let X1, . . . , Xn be i.i.d. N
(
θ, σ2

)
and consider the estimation of

θ2. The maximum likelihood estimator is δ1n = X̄2; an alterna-

tive (unbiased) estimator is δ2n = X̄2 − 1
n (n − 1)

S2, where S2 =∑(
Xi − X̄

)2. Obtain the limit distribution of

(i)
√

n
(
δin − θ2

)
, i = 1, 2 when θ �= 0;

(ii) a suitably normalized
(
δin − θ2

)
when θ = 0.

5.6 For any positive integer k, determine, under the assumptions of the
preceding problem, the limit distribution of a suitably normalized(
X̄k − θk

)
.

[Hint: For θ = 0, generalize the argument leading to (2.5.14).]

5.7 If X has the binomial distribution b (p, n), determine the limit distri-

bution of f

(
X

n

)
−f (p), suitably normalized, where f (p) = min (p, q).

[Hint: Consider separately the cases p < q, p > q, and p = q, and
follow the approach of Example 2.5.6.]

5.8 Suppose that
√

n (Tn − θ) L→ N
(
0, τ2

)
, and let

f (t) =
{

−at if t < 0
bt if t > 0.

Find the limit distribution of f (Tn) − f (θ), suitably normalized.

5.9 (i) If X is distributed as b (p, n), use (2.3.9) and the fact that
X

n

(
1 − X

n

)
is a consistent estimator of pq to obtain approximate

confidence intervals for p.

(ii) Obtain alternative approximate confidence intervals for p by using
the result of Problem 5.4.

(iii) Show that the two lower confidence limits of (i) and (ii) can be
negative and the upper ones greater than 1 but that for any fixed
0 < p < 1, the probability of either of these events tends to 0 as
n → ∞.

[Hint for (ii): Use the fact that sin (arcsin x) = x .]
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5.10 If X1, . . . , Xn are i.i.d. according to U (0, θ) and Tn = X(n), the limit
distribution of n

(
θ − X(n)

)
is given in Example 2.3.7. Use this result

to determine the limit distribution of

(i) n [f (θ) − f (Tn)], where f is any function with f ′ (θ) �= 0;

(ii) [f (θ) − f (Tn)] is suitably normalized if f ′ (θ) = 0 but f ′′ (θ) �= 0.

5.11 For the functions f (x) = ex, (1 + x)α, and −log (1 − x) respectively,
show that the coefficients f (i) (0) /i! of xi in (2.5.17) reduce to those
given in

(i) (1.3.9) of Chapter 1,

(ii) (1.3.10) of Chapter 1,

(iii) (1.3.14) of Chapter 1.

5.12 Graph the approximations

fr (x) =
r∑
i=0

f (i) (0)
i!

xi

for i = 1, 2, 3, 5 together with f (x) over the interval of convergence
for the functions of (1.3.9) and (1.3.14).

5.13 If f (x) = 1/ (1 − x), evaluate the Taylor series (2.5.15) for f (2 + ∆)

and use (2.5.19) to show that it gives a valid expansion for
1

1 − (2 + ∆)

=
−1

1 + ∆
.

Section 6

6.1 Let
{
a
(i)
n , n = 1, 2, · · ·

}
, i = 1, . . . , k, be k sequences satisfying

a(i)n → c as n → ∞ for every i = 1, . . . , k.

Then min
i=1,... ,k

a(i)n → c as n → ∞.

[Hint: Given ε, for each i there exists n
(i)
0 such that

∣∣∣a(i)n − c
∣∣∣ < ε for

n > n
(i)
0 .]

6.2 Explain where the argument of the preceding problem breaks down
if the finite number of sequences is replaced by an infinite number{
a
(i)
n , n = 1, 2, · · ·

}
, i = 1, 2, . . . .

6.3 If fn (x) = xn, then fn (x) → 0 for every 0 < x < 1.

(i) Show that for any 0 < a < 1, the convergence of fn (x) to 0 is
uniform for 0 < x < a, but that it is not uniform for 0 < x < 1.
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(ii) Construct a sequence of values xn such that fn (xn) tends to a
limit different from 0.

(iii) If Mn denotes the sup of fn (x) in 0 < x < 1, evaluate Mn and
show that it does not tend to zero.

6.4 Solve the three parts of the preceding problem when fn (x) =
x

x + n
and with the intervals 0 < x < a and 0 < x < 1 replaced by m < x <
M and −∞ < x < ∞, respectively.

6.5 Use the result of Problem 4.12 to derive approximate confidence in-
tervals for p based on a random variable Y with negative binomial
distribution Nb (p,m).

6.6 (i) For the approximate confidence intervals p < p < p̄ of Problem
5.9 show that

P
[
p < p < p̄ for all 0 < p < 1

]
= 0.

(ii) Solve the corresponding problem for the intervals of Problem 6.5.

Section 7

7.1 Verify that α̂ and β̂ given by (2.7.11) are the least squares estimators
of α and β, i.e., minimize

∑
(Xi − α − βvi)

2.

7.2 Show that (2.7.22) is satisfied for σ2j = j∆.

7.3 Show that (2.7.24) holds when
(i) vi = a + i∆,
(ii) vi = a + ∆ik for any positive integer k,
(iii) but not when vi = 2i.

7.4 Give an example of a sequence of positive numbers vi which is strictly
decreasing and tends to zero for which (2.7.24) does not hold.

7.5 If

(
n∑
i=1

|dni|k
)2

= o

(
n∑
i=1

d2ni

)k
, then the same inequality holds

when k is replaced by k + 1.

[Hint: Apply the Schwarz inequality to
[∑

|dni|k+1
]2

=
[∑

|dni|k · |dni
|
]2

.

7.6 (i) Suppose that kn (Tn − θ) tends in law to a limit distribution H
which does not assign probability 1 to any single point. It was shown
in Theorem 2.3.4 that if kn → ∞, then Tn

P→ θ. Show that if kn → 0,
then Tn does not tend to θ in probability.



130 2. Convergence in Probability and in Law

(ii) For what kind of variables would you expect kn to tend to 0?.

[Hint for (i): Find the limit of P (|Tn − θ| < a) as n → ∞.]

7.7 The following provides an example of the situation considered in the
preceding problem. Let Xj (j = 1, . . . , n) be independent and take on
the values ±j with probability 1/2 each. Show that√

3
n

X̄
L→ N (0, 1) ,

but that X̄ → ±∞ with probability 1/2 each.

[Hint: P
(
X̄ > M

)
→ 0 for any M > 0.]

Note: For a generalization of this problem, see Feller (Vol. 1) (1957),
pp. 239–240.

7.8 Give an example showing that (2.7.26) no longer implies (2.7.27)
when (2.7.25) does not hold.

7.9 If the pair of variables (Xi, Yi) has the joint distribution stipulated
in the proof of Theorem 2.7.5, then Xi has the distribution (2.7.28)
and Yi has the Poisson distribution P (pi).

7.10 Show that e−x ≥ 1 − x for all x.

[Hint: Use Taylor’s theorem 2.5.1(ii).]

7.11 (i) Let {ui}, {vi}, i = 1, . . . , n, be two sequences of numbers, each of
which satisfies (2.7.24) and for which in addition

∑
uivi = 0. Then

the sequence {ui + vi} also satisfies (2.7.24).

(ii) In Example 2.7.6 with α̂ given by (2.7.11), we have
√

n(α̂ −
α)/

√
Var α̂ → N(0, 1) (with Var(α̂) given by (2.2.19)), provided the

v’s satisfy (2.7.24).

[Hint for (i): Use the facts that (ui + vi)2 ≤ 2(u2i + v2i ) and that in
the present case

∑
(ui + vi)2 =

∑
u2i +

∑
v2i .]

Section 8

8.1 Show that
n∑
k=1

(n − k) |γk| tends to a finite limit as n → ∞ if γk/a
k

tends to a finite limit for some 0 < a < 1.

8.2 Show that the sequence X1, X2, . . . defined by (2.8.6) is stationary if
the Z’s are i.i.d.

8.3 For the sequence of moving averages given by (2.8.6) and (2.8.7), use
the representation corresponding to (2.8.8) for general m to show that
(2.8.2) holds with τ2 = Var (Zi).



2.9 Problems 131

8.4 If Z1, Z2, . . . are i.i.d. with E (Zi) = 0 and Var (Zi) = σ2, determine

the limit distribution of
n∑
i=1

ZiZi+1/
√

n.

8.5 For the autoregressive process (2.8.13), verify the limit (2.8.17).

8.6 Determine the limit distribution of
√

n
(
X̄ − θ

)
when the X’s are

given by (2.8.13) without assuming the normality of X1 and the U ’s.

[Hint: Express the sum X1+ · · ·+Xn as a linear function of X1 and
the U ’s and apply (2.7.17).]

8.7 In Theorem 2.8.1, suppose that n is not restricted to be a multiple
of N + m, so that n = r (N + m) + k with k < N + m. Then a sum

C = Xr(N+m)+1 + · · · + Xr(N+m)+k

has to be added to the right side of (2.8.10). Prove the analog of
(2.8.11) for this case by showing that

E

[
1√

r (N + m) + k

(
r∑
i=1

Bi + C

)]2
→ 0 as N → ∞

uniformly in r and k.

8.8 Consider the simplest ARMA (autoregressive moving average) pro-
cess, (an autoregressive process in which the U ’s, instead of being
i.i.d., constitute a moving average process) given by

Xi+1 = ξ + β (Xi − ξ) + (Zi−1 + Zi) ,

where the Z’s are i.i.d. N
(
0, σ21

)
and X1 is N

(
0, σ2

)
.

(i) State conditions under which this process is stationary.

(ii) Show that the resulting stationary process satisfies
√

n
(
X̄ − ξ

)
→

N
(
0, τ2

)
and evaluate τ2.

8.9 In the preceding problem, determine the limit distribution when X1
and the Z’s are no longer assumed to be normal.

8.10 Under the assumptions of Example 2.8.3, show that

(i) π1p
2 + π0pq = p2,

(ii) π1 − p = q (π1 − π0).

8.11 Verify (2.8.30).
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8.12 Verify equation (2.8.32).

[Hint: For large k, multiply and divide the right side of (2.8.31) by kd

and expand
(

1 +
1
k

)d
and

(
1 − 1

k

)d
by (1.3.10) to as many terms

as necessary.]

8.13 For 1 ≤ n < N , show that (N − n) / (N − 1) can tend to any value
between 0 and 1, depending on the limit of n/N .

8.14 Use the direct method leading to (2.8.47) to evaluate the covariance
term in (2.8.46).

8.15 Show that (2.8.49) reduces to (2.8.40) when DN of the v’s are equal
to 1 and the remaining N − DN are equal to 0.

8.16 (i) If vNi = ik for some positive integer k, show that

N∑
i=1

(vNi − vN ·)
2 =

N∑
i=1

v2Ni − ckN
2k+1

for some ck > 0.

(ii) In Example 2.8.5, use (i) and Theorem 2.8.2 to show that with
n proportional to N and vNi given in (i), kn

[
X̄n − E (Xi)

]
may be

asymptotically normally distributed with kn not proportional to
√

n.

8.17 It can be shown (Hajek (1960)) that (2.8.41) is valid if n and N − n
both tend to ∞ and

max (vNi − vN ·)
2∑N

j=1 (vNj − vN ·)
2 max

(
N − n

n
,

n

N − n

)
→ 0 as N → ∞.

(2.9.11)

(i) Show that this result implies the validity of (2.8.41) both under
(a) and under (b) of Theorem 2.8.2.

(ii) Construct an example in which (2.9.11) holds but neither (a) nor
(b) are satisfied.
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3
Performance of Statistical Tests

Preview

The basic quantities needed in hypothesis testing, once a test statistic has
been specified, are (i) the critical value that provides the desired level α,
(ii) the power of the test, and (iii) the sample size(s) required to achieve a
given power β. In addition, one will wish to know (iv) whether the test is
robust against departures from the assumptions under which it was derived
and (v) its efficiency relative to alternative tests.

For statistics that are asymptotically normal, simple approximate for-
mulas for (i)–(iii) are obtained in Sections 3.1–3.3. The same limit theory
permits investigating the robustness of the level of the test to departures
from assumptions such as in the i.i.d. one-sample case, the assumed shape
of the distribution, or the independence of the observations. To compare
different tests of the same hypothesis, their asymptotic relative efficiency
(ARE) is defined and a simple formula for it is obtained. As an application,
it is shown, for example, that certain non-parametric tests offer unexpected
efficiency advantages over their parametric competitors.

3.1 Critical values

The classical approach to hypothesis testing assumes that the random ob-
servables X = (X1, . . . , Xn) have a distribution depending on some un-
known parameters. In the simplest case, it depends only on one real-valued
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parameter θ, and the problem is that of testing the hypothesis

H : θ = θ0(3.1.1)

against the one-sided alternatives

K : θ > θ0.(3.1.2)

Suppose that H is rejected in favor of K when a suitable test statistic
Tn = T (X1, . . . , Xn) is too large, say, when

Tn ≥ Cn,(3.1.3)

where Cn is determined by

Pθ0 (Tn ≥ Cn) = α.(3.1.4)

Here α is the preassigned level of significance which controls the probability
of falsely rejecting the hypothesis when it is true.

In this section, we shall consider the problem of obtaining an approximate
value for Cn when n is large and for this purpose replace (3.1.4) by the
weaker requirement of an asymptotic level α satisfying

Pθ0 (Tn ≥ Cn) → α as n → ∞.(3.1.5)

In the rest of the section, we shall suppress the subscript θ0 in (3.1.4) and
(3.1.5) since all calculations will be performed under this distribution.

In many situations, it turns out that

√
n (Tn − θ0)

L→ N
(
0, τ2 (θ0)

)
(3.1.6)

so that
√

n

τ (θ0)
(Tn − θ0)

L→ N (0, 1) .(3.1.7)

The left side of (3.1.5) will then tend to α, provided
√

n

τ (θ0)
(Cn − θ0) → uα,(3.1.8)

where

1 − Φ (uα) = α.(3.1.9)

Here Φ is the cdf of a standard normal variable. The test (3.1.3) will there-
fore have asymptotic level α when

Cn = θ0 +
τ (θ0)uα√

n
+ o

(
1√
n

)
(3.1.10)
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and therefore in particular when

Cn = θ0 +
τ (θ0)uα√

n
.(3.1.11)

For this critical value, the test can then be written as
√

n (Tn − θ0)
τ (θ0)

≥ uα.(3.1.12)

Example 3.1.1 Poisson. If X1, . . . , Xn are i.i.d. according to the Poisson
distribution P (λ), the hypothesis H : λ = λ0 is rejected in favor of K :
λ > λ0 if X̄ ≥ Cn. Since (3.1.6) holds for Tn = X̄ with τ2 = λ0, the critical
value (3.1.11) becomes

Cn = λ0 + uα

√
λ0
n

(3.1.13)

and the rejection region (3.1.12) reduces to
√

n
(
X̄ − λ0

)
√

λ0
≥ uα.(3.1.14)

�
Note: Here and in other situations in which the distribution of Tn is lattice
valued, (3.1.12) is typically improved by applying a continuity correction.

In the present context this means replacing Cn by Cn−
1
2n

. A key reference

to other refinements is Peizer and Pratt (1968) and Pratt (1968). For later
references, see Johnson, Kotz, and Kemp (1992, Section 4.5).

The above argument easily extends to situations other than (3.1.6).

Example 3.1.2 Uniform. If X1, . . . , Xn are i.i.d. according to the uni-
form distribution U (0, θ), the hypothesis H : θ = θ0 is rejected against
θ > θ0 if X(n) ≥ Cn, where X(n) is the largest of the n X’s. We saw in
Example 2.3.7 that

n
(
θ − X(n)

) L→ E (0, θ) ,

where E (0, θ) denotes the exponential distribution with density
1
θ
e−x/θ

when x > 0. It follows that
n

θ

(
θ − X(n)

) L→ E (0, 1) .

Since X(n) ≥ Cn is equivalent to

n
(
θ0 − X(n)

)
θ0

≤ n (θ0 − Cn)
θ0

,
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(3.1.5) will hold, provided

n

(
1 − Cn

θ0

)
→ lα

and hence in particular when

Cn = θ0 −
θ0lα
n

,(3.1.15)

where lα is the lower α-point of the distribution E (0, 1). Since the cdf of
the latter is 1 − e−x, x > 0, we have

lα = − log (1 − α) .(3.1.16)

An approximate rejection region is therefore given by

n
(
θ0 − X(n)

)
θ0

≤ lα.(3.1.17)

�
In most applications, the distribution of the X’s depends not only on the

parameter θ being tested but also on certain additional nuisance parameters
ϑ. For the sake of simplicity, suppose again that Tn satisfies (3.1.6) and
(3.1.7), where, however, the asymptotic variance τ2(θ0, ϑ) may now depend
on ϑ. Since ϑ is unknown, (3.1.11) or (3.1.12) cannot be used. However,
often there is a simple remedy. If τ̂n is any consistent estimator of τ (θ0, ϑ),
it follows from (3.1.7) with τ(θ0) = τ (θ0, ϑ) and Slutsky’s theorem that

√
n (Tn − θ0)

τ̂n

L→ N (0, 1) .(3.1.18)

The process of dividing
√

n (Tn − θ0) by its estimated standard error in
order to produce a test with approximate level α is called studentization.
The test with rejection region

√
n (Tn − θn)

τ̂n
≥ uα(3.1.19)

has asymptotic level α and we can put

Cn = θ0 +
τ̂n√
n

uα.(3.1.20)

Note: The term “studentization” is a misnomer. The idea of replacing τ
by τ̂n was already used by Laplace. Student’s contribution was to work out
the exact distribution of (3.1.18) in the following situation.



3.1 Critical values 137

Example 3.1.3 One-sample t-test. Let X1, . . . , Xn be i.i.d. as N
(
ξ, σ2

)
,

both ξ and σ unknown, and consider testing

H : ξ = ξ0(3.1.21)

against the alternatives ξ > ξ0. Since X̄ is the natural estimator of ξ, one
would want to reject H when X̄ is sufficiently large. Now

√
n
(
X̄ − ξ

)
σ

L→ N (0, 1) ,(3.1.22)

so it is necessary to estimate σ. The standard estimator of σ2 is

σ̂2 =
1

n − 1

∑(
Xi − X̄

)2
,(3.1.23)

which is consistent by Example 2.1.3 and Theorem 2.1.3. On replacing σ
by σ̂, the rejection region (3.1.19) becomes

tn =
√

n
(
X̄ − ξ0

)
√

1
n − 1

∑(
Xi − X̄

)2 ≥ uα.(3.1.24)

As in all asymptotic work, the question arises as to how accurate the
approximation is. In the present case this means how close the probability
of (3.1.24) is to the intended α. The actual level of (3.1.24) is shown for
α = .1, .05, and .01 in Table 3.1.1. The table makes it clear that the ap-
proximation is inadequate when n = 5 and is still very rough when n = 10.
It becomes more acceptable when n = 20 and is reasonably satisfactory for
most purposes when n ≥ 30. The last of these statements does not follow
from the fact that the probability of (3.1.24) tends to α combined with the
values of Table 3.1.1 but stems from the belief—founded on experience,
not on mathematically established results—that in a situation as regular
as that of tn, the smooth improvement exhibited by Table 3.1.1 will con-
tinue to obtain also for larger values of n. (For reference on the accuracy of
the normal approximation and on further refinements, see Johnson, Kotz,
and Balakrishnan (1994) and Stuart and Ord (1987).

TABLE 3.1.1. Level of approximate t-test (3.1.24)

n = 5 10 20 30 50 80 100
α = .1 .134 .116 .108 .105 .103 .102 .100
= .05 .088 .067 .058 .056 .054 .052 .050
= .01 .040 .023 .016 .013 .012 .011 .010

Note: The exact distribution of tn, found by Student (1908), is now known
as the Student t-distribution (with n−1 degrees of freedom). This distribu-
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tion, which has been extensively tabled and which is widely available in sta-
tistical software, provides the exact value of Cn for which Pξ0 (tn ≥ Cn) =
α. It follows from Example 2.4.3 that Cn → uα as n → ∞. �

Example 3.1.4 Normal variance. Under the assumptions of the pre-
ceding example, consider testing the hypothesis H : σ = σ0 against the
alternatives σ > σ0. The hypothesis is rejected when S2 =

∑(
Xi − X̄

)2
/n

is sufficiently large. The unknown mean ξ is now a nuisance parameter;
however, the distribution of S2 depends only on σ, not on ξ. Despite the
presence of a nuisance parameter, we are in the situation described at the
beginning of the section: Once the data have been reduced to S2, only a
single parameter is involved. Example 2.4.4 found that

√
n

(∑(
Xi − X̄

)2
n

− σ2

)
→ N

(
0, τ2

)
,(3.1.25)

where τ2 = Var
(
X2i
)
. In the present case, which assumes normality, τ2 =

2σ4 and the rejection region (3.1.12) becomes

√
n

(∑(
Xi − X̄

)2
n

− σ20

)
≥ uα

√
2σ20(3.1.26)

or

1
n

∑(
Xi − X̄

)2 ≥ σ20 +

√
2
n

uασ20 .(3.1.27)

Note: The asymptotic level of this test is not affected if the factor 1/n of∑(
Xi − X̄

)2 is replaced by 1/ (n − 1) (Problem 1.7). �

We next consider some two-sample problems. For this purpose, the fol-
lowing fact is useful, which in Chapter 5 will be seen to be a special case
of a very general result (Theorem 5.1.5).

Lemma 3.1.1 If UN and VN are independent, and if

UN
L→ U, VN

L→ V,

then

UN ± VN
L→ U ± V.

Suppose we have independent samples X1, . . . , Xm and Y1, . . . , Yn with
distributions depending on real-valued parameters ξ and η, respectively.
Suppose that the hypothesis

H : η = ξ
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is rejected in favor of

K : η > ξ

when the difference Vn−Um is sufficiently large, where Vn = V (Y1, . . . , Yn)
and Um = U (X1, . . . , Xm). As in the one-sample case, we suppose that

√
m (Um − ξ) L→ N

(
0, σ2

)
as m → ∞,

√
n (Vn − η) L→ N

(
0, τ2

)
as n → ∞,

(3.1.28)

where σ2 and τ2 may depend on ξ and η, respectively. Let N = m + n and
suppose that for some 0 < ρ < 1,

m

N
→ ρ,

n

N
→ 1 − ρ as m and n → ∞,(3.1.29)

so that
√

N (Um − ξ) L→ N
(
0, σ2/ρ

)
,√

N (Vn − η) L→ N
(
0, τ2/ (1 − ρ)

)
.

(3.1.30)

It then follows from Lemma 3.1.1 that

√
N [(Vn − η) − (Um − ξ)] L→ N

(
0,

σ2

ρ
+

τ2

1 − ρ

)

or, equivalently, that

[(Vn − Um) − (η − ξ)]√
σ2

m
+

τ2

n

L→ N (0, 1) .(3.1.31)

Note: The assumption (3.1.29) can be avoided by applying the argument
to subsequences for which m/N converges. More useful perhaps is the re-
alization that in practice we are interested in (3.1.31) primarily as a basis
for approximating the situation at hand. For this purpose, we embed the
situation with given sample sizes m and n in a sequence of situations (with
m and n tending to infinity) which can be chosen at will and so, in partic-
ular, by keeping m/N fixed. If, for example, m = 10 and n = 20, we could
embed it in the sequence {m = K,n = 2K,K = 1, 2, . . . }.

If σ2 and τ2 are known, it follows from (3.1.31) that the rejection region

Vn − Um√
σ2

m
+

τ2

n

≥ uα(3.1.32)

provides a test of H against K at asymptotic level α. If σ2 and τ2 are
unknown, let σ̂2 and τ̂2 be consistent estimators. Then we shall show that
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(3.1.32) remains valid when σ2 and τ2 are replaced by σ̂2 and τ̂2 and hence
that the test with rejection region

Vn − Um√
σ̂2

m
+

τ̂2

n

≥ uα(3.1.33)

also has asymptotic level α.
To see that this substitution is legitimate, write the left side of (3.1.32)

as

(Vn − Um) − (µ − ξ)√
σ̂2

m
+

τ̂2

n

·

√√√√√√√
σ̂2

m
+

τ̂2

n
σ2

m
+

τ2

n

.

Now

N

(
σ̂2

m
+

τ̂2

n

)
σ̂2

ρ
+

τ̂2

1 − ρ

P→ 1 and
N

(
σ2

m
+

τ2

n

)
σ2

ρ
+

τ2

1 − ρ

→ 1

and hence by Slutsky’s theorem,

(Vn − Um) − (µ − ξ)√
σ̂2

m
+

τ̂2

n

L→ N (0, 1) ,

as was to be proved.

Example 3.1.5 Poisson and binomial two-sample problem. (i) Let
X1, . . . , Xm and Y1, . . . , Yn be i.i.d. according to Poisson distributions
P (λ) and P (µ), respectively. Then (3.1.28) applies with Um = X̄, Vn = Ȳ ,
ξ = λ, η = µ, σ2 = λ, and τ2 = µ. Since X̄ and Ȳ are consistent estimators
of λ and µ, the test (3.1.33) of H : λ = µ becomes

Ȳ − X̄√
X̄

m
+

Ȳ

n

≥ uα.(3.1.34)

(ii) Let X and Y be independent with binomial distributions b (p,m) and
b (π, n), respectively, representing the numbers of successes in binomial tri-
als performed under two different conditions A and Ā. Then (3.1.28) ap-
plies with Um = X/m, Vn = Y/n, ξ = p, η = π, σ2 = p (1 − p), and
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τ2 = π (1 − π). Since X/m and Y/n are consistent estimators of p and π,
respectively, the test (3.1.33) of H : π = p against π < p becomes

X

m
− Y

n√
X

m2

(
1 − X

m

)
+

Y

n2

(
1 − Y

n

) ≥ uα.(3.1.35)

Note: The data of Part (ii) of this example can be displayed in a 2 × 2
contingency table showing the counts in the four possible categories:

Success Failure
A X m − X
Ā Y n − Y

For the large literature concerning refinements of (3.1.35) and some of the
issues involved, see Agresti (1990, p. 68). �

Example 3.1.6 Comparing two normal means (Behrens-Fisher
problem). Let X1, . . . , Xm and Y1, . . . , Yn be samples from normal dis-
tributions N

(
ξ, σ2

)
and N

(
η, τ2

)
, respectively, where all four parameters

are unknown, and consider the problem of testing H : η = ξ against the
alternatives K : η > ξ. Since Ȳ − X̄ is a natural estimator of η − ξ, let
us reject H when Ȳ − X̄ is too large and, more specifically, when (3.1.33)
holds with Um = X̄, Vn = Ȳ ,

σ̂2 = S2X =
1

m − 1

∑(
Xi − X̄

)2 and τ̂2 = S2Y =
1

n − 1

∑(
Yj − Ȳ

)2
.

The exact probability αm,n (γ) of (3.1.33) in this case is complicated and
depends on γ = σ2/τ2. However, as m and n tend to infinity, αm,n (γ) tends
to α regardless of the value of γ. (For the extensive literature concerning
refinements of this test see Robinson (1982), Lehmann (1986, p. 304), and
Stuart and Ord (1991, p. 772). )

An assumption that is frequently made in this example is that σ2 = τ2.
Then the natural test statistic is

(
Ȳ − X̄

)
/

√
1
m

+
1
n√[∑(

Xi − X̄
)2 +

∑(
Yj − Ȳ

)2]
/ (m + n − 2)

(3.1.36)

and the situation is essentially that of Example 3.1.3 with the null distribu-
tion of (3.1.36) being the t-distribution with m + n− 2 degrees of freedom.
However, the gain in simplicity and a trivial gain in power must be bal-
anced against the effect which a violation of the assumption σ2 = τ2 may
have on the level. (See Example 3.1.6 (continued).) �
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Instead of testing the hypothesis (3.1.1) at a fixed level α by means of
the test (3.1.3), one often prefers to state the associated p-value, i.e., the
probability

α̂ (t) = P (Tn ≥ t) ,(3.1.37)

where t is the observed value of the test statistic Tn. If Tn satisfies the
asymptotic normality assumption (3.1.6), the p-value α̂ (t) can be approx-
imated by

Pθ0

[√
n (Tn − θ0)

τ (θ0)
≥

√
n (t − θ0)
τ (θ0)

]
.= 1 − Φ

[√
n (t − θ0)
τ (θ0)

]
.(3.1.38)

It is seen from Examples 3.1.1–3.1.5 how limit theorems can be used
to derive tests with approximately known signficance levels and to obtain
approximate p-values. However, it is important to be clear about the limita-
tions of this approach. The method provides a rather crude approximation
which is intended to give a simple ballpark figure but not a value of reliably
high accuracy. High accuracy can often be obtained from tables or com-
puter programs, but typically at a price. The results lose their simplicity
and the insights that the simple asymptotic formulas provide, and they
often require specific distributional assumptions which cannot be expected
to be exactly satisfied in practice.

The accuracy of an asymptotic method derived from a limit theorem
depends on the speed of the convergence to the limit. When applying such
a method to a new situation, it is good practice to spot-check the speed of
convergence through simulation.

To conclude this section, we shall consider two issues that cannot be
answered by the crude approach employed so far. We shall illustrate each
of them with a typical example.

Consider once more the test (3.1.19) for testing H : θ = θ0 against θ > θ0
in the presence of a nuisance parameter ϑ. The probability of the rejection
region (3.1.19) under the hypothesis will in general depend on ϑ; let us
denote it by αn (ϑ). There we saw that under (3.1.18)

αn (ϑ) → α for all n > n0 (ϑ) ,(3.1.39)

which was summarized by saying that the asymptotic level of the test
(3.1.19) is α. This statement is justified in the sense that for any given
values of ϑ and ε > 0, there exists n0 (ϑ) such that

|αn (ϑ) − α| < ε for all n > n0 (ϑ) .(3.1.40)

There is, however, an alternative way of looking at the concept of asymp-
totic level. For any given n, the actual (finite sample) level of (3.1.19) is

α∗
n = sup

ϑ
αn (ϑ) ,(3.1.41)
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the maximum probability of rejection when H is true. One may therefore
wish to require that

α∗
n → α as n → ∞.(3.1.42)

Unfortunately, (3.1.39) is not sufficient to guarantee (3.1.42) (Problem
1.13). What is required instead (see Lemma 2.6.1) is that the convergence
(3.1.39) is uniform in ϑ.

Example 3.1.6 Comparing two normal means (continued). In
Example 3.1.6, the probability αm,n (γ) of (3.1.33) under H depends on
γ = σ2/τ2. The function αm,n (γ) has been carefully investigated (see, for
example, Scheffé (1970)) and it has been shown that

αν1 ≤ αm,n (γ) ≤ αν0 for all γ,(3.1.43)

where αν is the tail probability of the t-distribution with ν degrees of
freedom

αν = P (tν ≥ uα)

and

ν0 = min (m − 1, n − 1) , ν1 = m + n − 2.(3.1.44)

Since, by Example 2.4.3, αν → α as ν → ∞, it is seen that both the
lower and upper bounds of αm,n (γ) in (3.1.43) tend to α and hence that
αm,n (γ) → α uniformly in γ and sup

γ
αm,n (γ) → α as m and n both tend

to infinity. Table 3.1.2 gives the range (3.1.43) of αm,n (γ) for some values
of α and of m and n.

TABLE 3.1.2. Range of αm,n (γ)

α = .01 α = .05 α = .1
m = n = 5 (.024, .040) (.069, .088) (.118, .135 )

m = 5, n = 10 (.018, .040) (.062, .088) (.111, .135)
m = 5, n = 20 (.015, .040) (.057, .088) (.110, .135)

m = n = 10 (.016, .022) (.059, .067) (.108, .116)
m = 10, n = 20 (.014, .022) (.056, .067) (.105, .116)
m = 15, n = 20 (.012, .018 ) (.055, .061) (.104, .110)

There exist relatively simple refinements of (3.1.33) such as the Welch
approximate t-test and the Welch-Aspin test for which αm,n (γ) differs only
slightly from α over the whole range of γ when ν0 ≥ 4. For references, see
Scheffé (1970), Wang (1971), and Lehmann (1986). �
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An aspect of the large-sample approach which can cause confusion and
uncertainty is non uniqueness i.e., the existence of several different large-
sample tests all of which seem equally natural. It will often turn out that
these tests are asymptotically equivalent (at least under the hypothesis) in
the following sense.

Definition 3.1.1 Two sequences of tests with rejection regions Rn and
R′
n respectively are asymptotically equivalent if under the hypothesis the

probability of their leading to the same conclusion tends to 1 as n → ∞.
If the rejection regions are given respectively by

Vn ≥ uα and V ′
n ≥ uα,(3.1.45)

then the tests will be asymptotically equivalent provided as n → ∞,

P [Vn ≥ uα, V ′
n < uα] + P [Vn < uα, V ′

n ≥ uα] → 0.(3.1.46)

Example 3.1.5(i) Poisson two-sample problem (continued). In
Example 3.1.5(i), the difference Ȳ −X̄ of the sample means was studentized

by dividing it by a suitable estimate of its standard deviation

√
λ

m
+

µ

n
.

Since X̄ and Ȳ are consistent estimators of λ and µ, respectively, the de-

nominator

√
X̄

m
+

Ȳ

n
was chosen in (3.1.34). However, since the level of the

test is calculated under the hypothesis µ = λ, we could instead write the

denominator in (3.1.32) as
√

λ

√
1
m

+
1
n

and estimate it by

√
mX̄ + nȲ

m + n

×
√

1
m

+
1
n

, which leads to the rejection region

(
Ȳ − X̄

)√
mn√

mX̄ + nȲ
≥ uα.(3.1.47)

Let us begin by comparing the test statistic of (3.1.34)

VN =
Ȳ − X̄√
X

m
+

Y

n

(3.1.48)

with that of (3.1.47)

V ′
N =

(
Ȳ − X̄

)√
mn√

mX̄ + nȲ
.(3.1.49)

An easy calculation shows that

V ′
N

VN
=

√
nX̄ + mȲ

mX̄ + nȲ
(3.1.50)
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and hence that

V ′
N < VN ⇐⇒ (n − m)

(
Ȳ − X̄

)
> 0.(3.1.51)

Suppose now first that m < n. Then if H is rejected by V ′
N at level α < 1/2,

it follows that H is also rejected by VN . If RN and R′
N denote the rejection

regions of the test (3.1.34) and (3.1.47) respectively, we thus have

R′
N ⊂ RN .(3.1.52)

It may seem surprising that of two tests with the same asymptotic level,
one has a larger rejection region than the other. This could of course not
happen if they had exactly the same level, but it causes no problem asymp-
totically where it implies that the probability of the set RN −R′

N tends to
zero as N → ∞. Since by (3.1.52), the tests (3.1.34) and (3.1.47) can lead
to different conclusions only if the sample point falls into RN but not into
R′
N , it follows from the remark just made that (3.1.46) holds in the present

case and the two tests are therefore asymptotically equivalent. �
The argument in the case m > n is analogous.
In this example, the two tests differ only in the denominator used for

studentizing the test statistic Ȳ − X̄. The following theorem provides a
very general class of situations in which two tests differing only in this way
are asymptotically equivalent.

Theorem 3.1.1 Consider two tests of H : θ = θ0, one of them given by
(3.1.19), the other by the rejection region

√
n (Tn − θ0)

τ̂ ′
n

≥ uα,(3.1.53)

where τ̂ ′
n is another consistent estimator of τ (θ0, ϑ). Then the tests (3.1.19)

and (3.1.53) are asymptotically equivalent.

Proof. If Vn and V ′
n denote the left sides of (3.1.19) and (3.1.53), respec-

tively, then the first term of (3.1.46) is equal to

P
[
uατ̂ ′

n ≤
√

n (Tn − θ0) < uατ̂ ′
n

]
.(3.1.54)

Since the middle term tends in law to a normal distribution and the first
and third terms both tend in probability to uατ (θ0, ϑ), it follows from
Theorem 2.3.3 that (3.1.54) tends to 0. By symmetry, the same is true for
the second term of (3.1.46). �
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Summary

1. When a sequence of test statistics is asymptotically normal, this fact
provides an approximation to the critical value when the hypothesis is
simple. In the case of a composite hypothesis, the asymptotic variance
of the test statistic can be estimated and an approximate critical value
then follows from Slutsky’s theorem. The calculations are illustrated
on a number of parametric situations. Numerical examples show how
the accuracy of the approximation improves with increasing sample
size.

2. Two sequences of tests are asymptotically equivalent if the proba-
bility of their reaching opposite conclusions tends to 0 as the sample
size(s) tend to infinity. To the order of approximation considered here,
the theory is unable to distinguish between asymptotically equivalent
tests.

3.2 Comparing two treatments

A frequently occurring question is whether a Treatment B is better than
another Treatment A (for example, a standard treatment or a placebo).
To test the hypothesis of no difference, Treatments A and B are applied
respectively to m and n subjects drawn at random from a large population.
Let X1, . . . , Xm and Y1, . . . , Yn denote their responses and denote by F
and G the distributions of the responses over the population if A or B were
applied to all of its members. If the population is large enough for the m+n
subjects to be essentially independent, the situation can be represented by
the population model

X1, . . . , Xm : i.i.d. F,
Y1, . . . , Yn : i.i.d. G

(3.2.1)

with the two samples X1, . . . , Xm and Y1, . . . , Yn also being independent
of each other.

Note: The model (3.2.1) is appropriate also for the comparison of two
populations Π and Π′ on the basis of samples of m and n subjects drawn
at random from these two populations.

In this section, we shall be concerned with testing the hypothesis

H : F = G (continuous)(3.2.2)

under various assumptions.
When F and G are normal with common variances F = N

(
ξ, σ2

)
and

G = N
(
µ, σ2

)
, the hypothesis reduces to H : µ = ξ, and the two-sample

t-test based on (3.1.36) is appropriate. When the distributions instead are
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F = N
(
ξ, σ2

)
and G = N

(
µ, τ2

)
, we are dealing with the Behrens-Fisher

problem (defined in Example 3.1.6) We shall now discuss the problem of
testing (3.2.2) without the assumption of normality against alternatives
which may be loosely described by saying that the Y ’s tend to be larger than
the X’s. (More specific alternatives will be considered in the next section.)
Of course, the normal-theory tests are asymptotically valid without the
assumption of normality, but their exact level depends on the common
distribution F . We shall now describe a test for which even the exact level
is independent of F .

Example 3.2.1 The Wilcoxon two-sample test. Let the responses
of the N = m + n subjects (X1, . . . , Xm;Y1, . . . , Yn) be ranked, with the
smallest observation having rank 1, the next smallest rank 2, and so on.
(The assumption of continuity in (3.2.2) ensures that the probability of any
ties is 0. For a discussion of the problem without this assumption, see, for
example, Lehmann (1998) or Pratt and Gibbons (1981).)

If S1 < · · · < Sn denote the ranks of the Y ’s among the set of all
N variables, then it follows from symmetry considerations that under the
hypothesis (3.2.2)

PH (S1 = s1, . . . , Sn = sn) =
1(
N
n

)(3.2.3)

for all
(

N

n

)
possible choices of 1 ≤ s1 < s2 < · · · < sn ≤ N (Problem 2.1).

The hypothesis is rejected by the Wilcoxon test when the rank-sum

Ws =
n∑
i=1

Si

is sufficiently large. It follows from (3.2.3) that under H, the distribution
of Ws is independent of the common underlying (continuous) distribution
F of the X’s and Y ’s. The null distribution of the Wilcoxon rank-sum
statistics Ws has been extensively tabled and is available in statitistical
packages.

By (3.2.3), this distribution is the same as that of a random sample of
n from the set {1, . . . , N} of all ranks. This is exactly the situation of
Example 2.8.6 where it was shown that

Ws − 1
2n (N + 1)√

mn (N + 1) /12
L→ N (0, 1) .(3.2.4)

The rejection region

Ws − 1
2n (N + 1)√

mn (N + 1) /12
≥ uα(3.2.5)
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therefore has asymptotic level α as m and n tend to ∞.
The subjects used for the comparison of two treatments are often not

obtained as a random sample from some population but may be the patients
in the hospital or the students in the classroom available at the time. It
is therefore fortunate that the Wilcoxon test can also be applied when the
N = n + m subjects are simply those at hand, provided

the assignment of the m + n subjects, m to A and n to B,
is made at random, i.e., in such a way that all possible(

N

n

)
assignments are equally likely.

(3.2.6)

Under this randomization model, the distribution of the B-ranks
S1, . . . , Sn continues to be given by (3.2.3). To see this, note that under
H, the response of each subject is the same regardless to which treatment
it is assigned. Thus the response, and therefore also its rank, can be con-
sidered to be attached to the subject even before the assignment is made.
The selection of a random sample of subjects to be assigned to Treatment
B therefore implies the random selection of their ranks and hence proves
(3.2.3).

As a consequence, the rejection region (3.2.5) has asymptotic level α not
only in the population model (3.2.1) but also in the randomization model
(3.2.6) as m and n tend to ∞.

An alternative representation of Ws, which will be useful later in this
chapter, can be obtained in terms of the Mann-Whitney statistic

WXY = Number of pairs (i, j) for which Xi < Yj .(3.2.7)

It is, in fact, easy to show (Problem 2.2) that

Ws = WXY +
1
2
n (n + 1) .(3.2.8)

It follows from (3.2.4) that

WXY − 1
2mn√

mn (N + 1) /12
L→ N (0, 1) .(3.2.9)

The asymptotic normality of WXY is proved by a very different argument
(which extends to the case F �= G) in Section 6.1. Tables for the Wilcoxon
statistic are usually given in terms of WXY rather than Ws.

If w denotes the observed value of WXY , the p-value of the Wilcoxon
test is

α̂ (w) = PH (WXY ≥ w) ,

which can be approximated by

α̂ (w) .= 1 − Φ

[
w − 1

2mn√
mn (N + 1) /12

]
.(3.2.10)



3.2 Comparing two treatments 149

The following table shows for three combinations of sample sizes and
several values of w, in the region of greatest interest, the value of α̂ (w),
its normal approximation without continuity correction (3.2.10), and the
corresponding approximation with continuity correction given by

α̂ (w) .= 1 − Φ

[
w − 1

2 −
1
2 mn√

mn (N + 1) /12

]
.(3.2.11)

TABLE 3.2.1. Normal approximation of p-value of Wilcoxon test∗

w 18 17 16 15 14
Exact .012 .024 .048 .083 .131

without .010 .019 .035 .061 .098 m = 3, n = 6
with .014 .026 .047 .078 .123

w 45 43 38 35 33
Exact .004 .010 .052 .106 .158

without .005 .011 .045 .091 .138 m = 4, n = 12
with .006 .012 .051 .102 .151

w 48 46 44 40 36 34
Exact .005 .010 .019 .052 .117 .164

without .006 .010 .018 .047 .104 .147 m = n = 8
with .007 .012 .020 .052 .114 .159

The table suggests that even with fairly small sample sizes, the normal
approximation with continuity correction will be adequate for most pur-
poses. It is also seen that in most cases the continuity correction improves
the approximation but that this is not so for all cases, particularly not for
very small probabilities. (For more accurate approximations, see Hodges,
Ramsey, and Wechsler (1990).) �

Example 3.2.2 The randomization t-test. For testing H : F = G in
the population model when F and G are normal with common variance,
the appropriate test is the two-sample t-test, which rejects when

t =
Ȳ − X̄√[∑(

Xi − X̄
)

+
∑(

Yj − Ȳ
)2]

/ (m + n − 2)
(3.2.12)

exceeds the critical value tm,n(α) of the t-distribution with m + n − 2
degrees of freedom. However, the exact level of this t-test—unlike that of

∗Adapted from Table 1.1 of Lehmann (1998).
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the Wilcoxon test—is no longer α when F is not normal, although it tends
to α as m and n → ∞ (and hence tm,n(α) to uα).

We shall now discuss an alternative, also based on t, which is free of
this defect. For this purpose, consider the null distribution of (3.2.12) in
the randomization model (3.2.6). In this model, the subjects are fixed and,
as was discussed in the proof of (3.2.3) following (3.2.6), the N = m + n
responses, say a1, . . . , aN , of the N subjects can then also be regarded as
fixed: The only random feature is the assignment of n of these subjects to
receive Treatment B and their a-values thus becoming Y ’s. The proof of
(3.2.3) therefore also shows that

P (Y1 = ai1 , . . . , Yn = ain) =
1(
N

n

)(3.2.13)

for each choice of the n subscripts

1 ≤ i1 < i2 < · · · < in ≤ N.

It follows that in the randomization model, the t-statistic (3.1.12) can take

on
(

m + n

n

)
values, each of which has probability 1/

(
m + n

n

)
. This ran-

domization distribution of t can be used as the basis for a test of H. If

r/

(
N

n

)
= α, the test rejects H for the r largest among the

(
N

n

)
values of

t, say, when

t ≥ K (a1, . . . , aN ) .(3.2.14)

Unfortunately, the evaluation of K (a1, . . . , aN ) is prohibitive except for
small values of m and n.

Let us therefore next consider the asymptotic behavior of the critical
value K. For this purpose, we must embed the given vector (a1, . . . , aN ) in
a sequence of such vectors, say {(aN1, . . . , aNN ), N = 1, 2, . . . }. We shall
show below that for such as sequence

K (aN1, . . . , aNN ) → uα,(3.2.15)

provided

n

N
is bounded away from 0 and ∞(3.2.16)

and the a’s satisfy

max (aNi − aN ·)
2∑

(aNj − aN ·)
2 → 0 as N → ∞,(3.2.17)
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where

aN · = (aN1 + · · · + aNN ) /N.(3.2.18)

Under these conditions, it follows from Theorem 2.8.2 and formulas (2.8.45)
and (2.8.49) that for every u,

P


 Ȳ − aN ·√

m

nN(N − 1)

∑
(aNj − aN ·)

2
≤ u


→ 1 − Φ (u) .(3.2.19)

After some manipulation (Problem 2.4), it can be shown that the inequality
in square brackets holds if and only if

t ≤
√

N − 2
N − 1

u√
1 − 1

N − 1
u2

.(3.2.20)

Since the right side of (3.2.20) tends to u as N → ∞, it follows that in the
randomization model (3.2.6),

P (t ≤ u) → Φ (u) ,(3.2.21)

i.e., the randomization distribution of t tends to the standard normal dis-
tribution. This finally proves (3.2.15).

The limit result (3.2.21) suggests that if m and n are large and compa-
rable in size, and if max (ai − ā)2 /

∑
(aj − ā)2 is small, the critical value

uα of the normal distribution provides a reasonable approximation to the
exact critical value of the randomization t-test. In this way, the usual t-test
with either the critical value of the t-distribution (or the asymptotically
equivalent uα which equals α only asymptotically) can be viewed as an
approximation to the randomization t-test. The latter has a level that is
independent of F and can therefore be made exactly equal to α. (For the
literature on randomization tests see, for example, Romano (1990) and
Welch (1990).)

Let us finally consider the randomization t-test (3.2.14) under the as-
sumptions of the population model (3.2.1). The ordered constants a(1) <
· · · < a(N) then become the values taken on by the order statistics of the
combined sample

(Z1, . . . , Zm+n) = (X1, . . . , Xm;Y1, . . . , Yn) ,

when F = G, and (3.2.13) becomes the conditional distribution of the Y ’s
given the N values of the Z’s. (That (3.2.31) is the correct formula of this
conditional distribution follows from the fact that the joint distribution of
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the Z’s is symmetric in its m+n variables.) Thus the randomization t-test
(3.2.14) has conditional level α for each set of values of the Z’s and hence
also unconditionally.

Furthermore, it can be shown that if F has finite fourth moment, then
condition (3.2.17) (with the Z’s in place of the a’s) holds with probability
tending to 1. It follows that the convergence (3.2.15) holds in probabil-
ity (Problems 3.2.10 and 3.2.11). Thus the usual t-test approximates the
randomization t-test not only in the randomization model but also in the
population model. �

For the two-sample problem, Examples 3.2.1 and 3.2.2 considered the
t- and Wilcoxon tests for both the population and the randomization
model. Corresponding possibilities are available for the one-sample prob-
lem. Again, there will be two models, but we shall this time consider three
tests: the Wilcoxon, t-, and sign test.

A principal application of the two-sample tests was the comparison of
two Treatments A and B on the basis of m and n subjects receiving A
and B, respectively. Unless these subjects are fairly homogeneous, a treat-
ment difference, when it exists, may be masked by the variability of the
responses. It is then often more efficient to carry out the comparison on
matched pairs of subjects. In the population case, we assume a popula-
tion of matched pairs. Examples are a population of twins, or situations in
which both treatments (e.g., two headache remedies) can be applied to the
same subject. In the randomization case, there exists an additional possi-
bility: to form pairs by matching on variables such as age, gender, severity
of disease, and so forth.

Example 3.2.3 One-sample t-test (population model). Consider
a population of pairs from which a sample of N pairs is drawn, with one
member from each pair receiving Treatment A and the other Treatment B.
Let the N pairs of responses be (Xi, Yi), i = 1, . . . , N . If we assume that
they are i.i.d. according to a bivariate normal distribution, the differences
Zi = Yi−Xi will be i.i.d. univariate normal (see Section 5.2), say N

(
ξ, σ2

)
,

and the hypothesis of no treatment differences H : ξ = 0 is tested by the
t-test of Example 3.1.3 with Zi, instead of Xi and N instead of n.

If we drop the assumption of normality and only assume that the pairs
(Xi, Yi) are i.i.d. according to some unknown bivariate distribution, then
under the hypothesis of no treatment difference, the variable Zi = Yi −Xi

has the same distribution as −Zi = Xi − Yi, i.e. the distribution of Zi is
symmetric about 0. If the Z’s have finite variance σ2, it is seen that (3.1.22)
and (3.1.23) (with Zi in place of Xi and N instead of n) remain valid and
the t-test (3.1.24) therefore continues to have asymptotic level α. �

Example 3.2.4 Sign test. If the distribution of the Z’s in the preceding
example is not normal, the level of the t-test is only asymptotically equal to
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α. A very simple test of the hypothesis H of symmetry about 0, which has
an exact level is the sign test based on the number N+ of positive Z’s. This
variable has a binomial distribution b (p,N) with p = P (Zi > 0). Under
H, we have p = 1/2, provided F is continuous. Under the alternatives that
Yi tends to be larger than Xi, and Zi is therefore shifted to the right, H is
rejected by the sign test when N+ is large, with the critical value calculated
from the binomial distribution. Since, under H,(

N+
N

− 1
2

)
/
√

1/4 L→ N (0, 1) as N → ∞,(3.2.22)

the exact rejection region can for large N be approximated by

2
(

N+
N

− 1
2

)
≥ uα(3.2.23)

which has asymptotic level α. �

Example 3.2.5 One-sample Wilcoxon test. The sign test uses from
each Zi only its sign, i.e., whether it is positive or negative. Suppose now
that N = 3 and consider the two possible samples

−1, 4, 5 and − 5, 1, 4.

They have the same value N+ = 2, yet one feels that the first gives a
stronger indication of a shift to the right. This suggests looking not only at
the signs of the Z’s but also at their absolute values. To obtain an analog
of the two-sample Wilcoxon test, let us rank |Z1|, . . . , |ZN | and denote by
R1 < · · · < Rm and S1 < · · · < Sn the ranks of the absolute values of
the negative and positive Z’s, where n = N+ and m = N − N+. For the
two cases with N = 3 displayed above, we have m = 1 and n = 2, and,
respectively,

R1 = 1, S1 = 2, S3 = 3 and R1 = 3, S1 = 1, S2 = 2.

The Wilcoxon signed-rank test rejects the hypothesis H of symmetry with
respect to 0 when

Vs = S1 + · · · + Sn > C.(3.2.24)

Here the rank sum S1 + · · · + Sn reflects both the number of positive Z’s
and their absolute values.

The rejection region (3.2.24) is formally the same as that based on Ws =
S1 + · · · + Sn in the two-sample case. However, in the earlier case, n was
fixed; now it is the value of N+ which is a random variable. This difference
is reflected in the null distribution of the S’s. In the two-sample case, it
was given by (3.2.3). In the present case, we shall show that instead

PH (N+ = n;S1 = s1, . . . , Sn = sn) =
1

2N
(3.2.25)
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for each possible set (n;S1, . . . , sn).
When the assumption that the pairs (Xi, Yi) consitute a random sample

from a large population is not satisfied, the Wilcoxon test (3.2.24) can be
applied if

the asignment of the two subjects within each pair to
the two treatments is made at random, i.e., with
probability 1/2 each and independently for each of
the N pairs.

(3.2.26)

In this randomization model, the absolute values |Z1|, . . . , |ZN | of the N
responses, and hence their ranks, are fixed and only their signs are random.
By (3.2.26), each of the 2N possible sign combinations of the signed ranks
±1, . . . ,±N is equally likely and has probability 1/2N . This proves (3.2.25)
for the randomization model.

To obtain the asymptotic distribution of Vs, let Z(1), . . . , Z(N) denote
the Z’s ordered according to their absolute values and let

Ij =
{

1 if Z(j) > 0
0 if Z(j) ≤ 0.

Then

Vs =
N∑
j=1

jIj(3.2.27)

and, by (3.2.26), the Ij ’s are independent and P (Ij = 1) = 1/2. It follows
that

E (Vs) =
1
2

N∑
j=1

j =
1
4
N (N + 1)(3.2.28)

and

Var (Vs) =
1
4

N∑
i=1

j2 =
1
24

N (N + 1) (2N + 1) .(3.2.29)

Furthermore, it follows from Theorem 2.7.3 with Yj = Ij and dNj
= j that

Vs −
1
4
N (N + 1)√

N (N + 1) (2N + 1) /24
→ N (0, 1) .(3.2.30)

To prove (3.2.30), it is only necessary to check condition (2.7.17) (Problem
2.6). For a comparison of the normal approximation with the exact values,
see Ramsey, Hodges, and Shaffer (1993).
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So far we have considered the distribution of Vs for the randomization
model. Suppose now that we are instead concerned with the population
model in which the variables Z1, . . . , ZN are i.i.d. according to a distribu-
tion F which is symmetric with respect to 0. In addition, we assume that
F is continuous, so as to rule out (with probability 1) the possibility of ze-
ros and ties. Then given |Z1|, . . . , |ZN |, (3.2.25) will continue to hold since
each Zj is as likely to be positive as negative. It follows from the earlier
argument for which (3.2.25) was the starting point that (3.2.30) continues
to hold in the present population model.

An alternative proof of (3.2.30) can be based on a representation of Vs
which is analogous to the representation (3.2.8) for Ws. For each 1 ≤ i ≤
j ≤ N , let Uij = 1 when (Zi + Zj) /2 > 0 and Uij = 0 otherwise. Then it
can be shown that ∑∑

1≤i≤j≤N
Uij = Vs.(3.2.31)

(For a proof see, for example, Lehmann (1998 p. 128).) A proof of (3.2.30)
based on (3.2.31) will be given in Section 6.1. �

Example 3.2.6 Randomization t-test (one-sample). Both the signed
Wilcoxon test statistic Vs and the sign test statistic N+ have the same null
distribution under the population and randomization model. However, as
discussed in Example 3.2.3, this equality no longer holds for the t-test,
which rejects when

tN =
√

NZ̄√
1

N − 1

∑(
Zi − Z̄

)2(3.2.32)

exceeds the critical value tN (α) of the t-distribution with N − 1 degrees of
freedom. In the population model, if the common distribution F of the Z’s
satisfies the hypothesis

H : F is symmetric about 0(3.2.33)

and if F has finite variance, the level of the t-test tends to α as N tend to
infinity.

In analogy to the randomization t-test of Example 3.2.2, there exists a
test based on tN with exact level α in the present one-sample case. Consider
the randomization model under which the N absolute values of the Z’s are
fixed, say a1, . . . , aN and

Zi = ±ai with probability 1/2 each,
independently for i = 1, . . . , N.

(3.2.34)

This model obtains in particular under the assumption (3.2.26). Then
the 2N possible observation vectors (Z1, . . . , ZN ) = (±a1, . . . ,±aN ) are
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equally likely, each having probability 1/2N , and the same is true for the
resulting 2N values of tN . If r/2N = α, the test that rejects for the largest
r value of tN , say, when

tN ≥ K (a1, . . . , aN ) ,(3.2.35)

then will have exact level α under the model (3.2.34).
To obtain an approximation for K = K (a1, . . . , aN ), we proceed as

in Example 3.2.2 and embed the given vector (a1, . . . , aN ) in a sequence
{(aN1, . . . , aNN ), N = 1, 2, . . . } and shall show that then

K (aN1, . . . , aNN ) → uα as N → ∞,(3.2.36)

provided

max a2Ni∑N
j=1 a2Nj

→ 0.(3.2.37)

To see this, write Zi as

Zi = aNiJi,(3.2.38)

where

Ji = 1 or − 1 as Zi > 0 or < 0,

so that in particular

E (Ji) = 0 and Var (Ji) = 1.

Then it follows from Theorems 2.7.3 and 2.7.4 that∑
Zi√∑
Z2j

=
∑

Zi√∑
a2Nj

L→ N (0, 1) ,(3.2.39)

provided (3.2.37) holds. Thus (3.2.39) implies that

P


 ∑

Zi√∑
a2Nj

≥ uα


→ α as N → ∞.(3.2.40)

It is easy to see (Problem 2.8) that the inequality in square brackets holds
if and only if

tN ≥ uα√
1 − u2α

N

·
√

N

N − 1
(3.2.41)
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and hence that

P [tN ≥ uα] → α,(3.2.42)

which implies (3.2.36).
The randomization t-test (3.2.35) has level α not only in the random-

ization model but also in the population model of Example 3.2.3, since
then the conditional distribution of the Z’s given |Zi| = ai (i = 1, . . . , N)
is given by (3.2.34)—and hence its conditional level is α—for each vector
(a1, . . . , aN ). In addition, it follows from (3.2.39) and (3.2.37) that the
conditional critical value K (a1, . . . , aN ) can be expected to be close to
the critical point uα of the normal or the critical value tN (α) of the t-

distribution when N is large and max a2i /

N∑
j=1

a2j is small. Whether uα or

tN (α) provides the better approximation is investigated by Diaconis and
Holmes (1994). They show that up to second order terms, and with cer-
tain additional conditions on the a’s, the normal approximation is more
accurate than the t-approximation if and only if K ≤ 3/2 where

K = N
∑

d4i /
(∑

d2i

)2
.

Their paper also develops an algorithm which makes it practicable to eval-
uate K (a1, . . . , aN ) exactly for N ≤ 30. �

Summary

1. For the comparison of two treatments, two types of models are pro-
posed: population models in which the subjects are assumed to be
drawn at random from some large population, and randomization
models in which the subjects are fixed but their assignment to the
two treatments is random. Both the sampling and the assignment are
carried out according to some specified design. Two designs are con-
sidered: (a) completely random drawing or assignment and (b) paired
comparisons.

2. The Wilcoxon tests for (a) and (b) and the sign tests for (b) are
distribution-free in the population model and are the same in the
population and the randomzation model.

3. The exact level of the t-tests for (a) and (b) in the population model
depends on the underlying distribution and (except in the normal
case) attains the nominal level only asymptotically. These tests can
be viewed as approximations to the randomization version of the t-
test, for which the nominal level is exact.
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3.3 Power and sample size

When testing H : θ = θ0 against θ > θ0, one important aspect of the test
(3.1.3) is the level α which controls the probability of rejecting H when
in fact θ = θ0. The calculations necessary to achieve the assigned level
at least approximately were discussed in the preceding sections. Another
equally important aspect which we shall now take up is the power of the
test against an alternative θ, i.e., the probability

βn (θ) = Pθ (Tn ≥ Cn)(3.3.1)

of rejecting H when in fact an alternative θ is the true parameter value. If
the hypothesis being tested is one of “no effect,” the power is the probability
of detecting an effect when it exists. Since it is desirable to reject the
hypothesis when it is false, one would like βn (θ) to be large when θ > θ0. As
the sample size n increases, one would expect βn (θ) to increase, hopefully
to 1, as n → ∞.

Definition 3.3.1 The sequence of tests (3.1.3) is said to be consistent
against the alternative θ if

βn (θ) → 1 as n → ∞.(3.3.2)

Theorem 3.3.1 Suppose that not only (3.1.6) holds but also that
√

n (Tn − θ) L→ N
(
0, τ2 (θ)

)
for all θ > θ0.(3.3.3)

Then the test (3.1.12) is consistent against all alternatives θ > θ0.

Proof. The power of the test with rejection region (3.1.12) can be written
as

βn (θ) = P
[√

n (Tn − θ) ≥ uατ (θ0) −
√

n (θ − θ0)
]
;(3.3.4)

since uατ (θ0) −
√

n (θ − θ0) → −∞ when θ0 < θ, it follows from (3.3.3)
and Problem 2.3.16 that βn (θ) → 1 as n → ∞. �

This result establishes consistency in Examples 3.1.1 and 3.1.4 and a
slight extension also shows it for Example 3.1.2 (Problem 3.1).

Note: The same argument also shows that βn (θ) → 0 for θ < θ0 (assuming
(3.3.3) to hold also for all θ < θ0).

Let us next consider the situation with nuisance parameters.

Theorem 3.3.2 Suppose that
√

n (Tn − θ) L→ N
(
0, τ2 (θ, ϑ)

)
for all θ > θ0 and all ϑ(3.3.5)

and that τ̂2n is a consistent estmator of τ2 (θ, ϑ). Then the test (3.1.19) is
consistent against all alternatives (θ, ϑ) with θ > θ0.
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Proof. The power of the test (3.1.19) against (θ, ϑ) is

βn (θ, ϑ) = P
[√

n (Tn − θ) − uατ̂n ≥ −
√

n (θ − θ0)
]
.

By Theorem 2.3.3 of Chapter 2,

√
n (Tn − θ) − uατ̂n

L→ N
(
−uατ (θ, ϑ) , τ2 (θ, ϑ)

)
and the result then follows from the fact that

√
n (θ − θ0) → ∞. �

Theorem 3.2.2 establishes consistency of the tests in Examples 3.1.3,
3.1.5, and 3.1.6 (Problem 3.2).

While consistency is reassuring, it provides little information concerning
the power of a test for a given sample size and alternative. What is needed
for this purpose is not that the limiting power is 1 but some limit value
which depends on the alternative and is strictly between α and 1. Such a
result can be obtained by embedding the actual situation with fixed n and
θ in a suitable sequence (n, θn). Consistency obtains when the information
provided by the data increases with increasing sample size, so that even-
tually near-perfect discrimination between θ0 and any fixed alternative θ
becomes possible. To keep the power away from 1, it is then necessary to
make the discrimination between θ0 and the alternative more difficult as
n increases, and this is achieved by considering alternatives θn which get
closer to θ0 as n increases and in the limit tend to θ0.

The approach seems contrived but becomes quite reasonable when seen
in context. The aim is to calculate the value of the power against a fixed
alternative θ for a given sample size n0. We expect this power to have some
intermediate value β, larger than α but smaller than 1. A limit argument
requires embedding the actual situation (θ, n0) in a sequence (θn, n), n =
1, 2, . . . , and one may hope for a good approximation if limβn(θn) is close to
β. An approximate value of βn(θ0) is then obtained by identifying n with n0
and θn with θ in this limiting power. How to implement this identification
will be shown following the proof of Theorem 3.3.3.

To see how to choose θn, consider the situation assumed in Theorem
3.3.1. Replacing θ by θn in (3.3.4) gives

βn (θn) = P
[√

n (Tn − θn) ≥ uατ (θ0) −
√

n (θn − θ0)
]
,

and this will tend to a limit strictly between α and 1, provided
√

n (θn − θ0)
tends to a finite positive limit ∆. These considerations motivate the follow-
ing result.

Theorem 3.3.3 Suppose that (3.3.3) holds in some neighborhood of θ0
and that, in addition,

√
n (Tn − θn)

τ (θn)
L→ N (0, 1) when θn → θ0(3.3.6)



160 3. Performance of Statistical Tests

and that τ2 (θ) is a continuous function of θ. Then for

θn = θ0 +
∆√
n

+ o

(
1√
n

)
,(3.3.7)

the power function βn (θn) of the test (3.1.3) against the alternatives θn
has the limit

βn (θn) → Φ
(

∆
τ (θ0)

− uα

)
.(3.3.8)

Proof. Since τ (θn) → τ (θ0) as θn → θ0, it follows from (3.3.6) and Theo-
rem 2.3.3 that

√
n (Tn − θn)

τ (θ0)
L→ N (0, 1)(3.3.9)

when θn is the true value. Now, by (3.3.4),

βn (θn) = P

[√
n (Tn − θn)

τ (θ0)
≥ uα −

√
n (θn − θ0)

τ (θ0)

]

and this tends to the right side of (3.3.8) by Theorem 2.3.3. �
We shall refer to the right side of (3.3.8) as the asymptotic power of

the test (3.1.3) against the alternatives (3.3.7) and when considered as a
function of ∆, as the asymptotic power function of (3.1.3).

This limit result can be used to obtain an approximation to the power
of the test (3.1.3) for a given alternative θ and sample size n by identifying

θ with θn = θ0 +
∆√
n

and solving for ∆ to get

∆ =
√

n (θn − θ0) .(3.3.10)

Substitution in (3.3.8) gives for βn (θ) the approximation

βn (θ) .= Φ
[√

n (θ − θ0)
τ (θ0)

− uα

]
.(3.3.11)

A different approximation to βn (θ) is obtained by starting from (3.3.6)
instead of (3.3.9). One then has

βn (θn) = P

[√
n (Tn − θn)

τ (θn)
≥ τ (θ0)

τ (θn)
uα −

√
n (θn − θ0)
τ (θn)

]
,

which leads, instead of (3.3.11), to the approximation

βn (θ) .= Φ
[√

n (θ − θ0)
τ (θ)

− uα
τ (θ0)
τ (θ)

]
.(3.3.12)
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One would expect (3.3.12) typically to be slightly more accurate than
(3.3.11) since the latter replaces the true value τ (θ) by an approxima-
tion. However, since other approximations are also involved, this will not
always be the case. In certain applications, the variance of Tn is much easier
to obtain under the hypothesis than under the alternatives; in such situ-
ations, (3.3.11) has the advantage of not requiring the latter calculation.
An example comparing the accuracy of the two approximations is given in
Table 3.3.1.

Lack of uniqueness such as that just encountered is a central feature of
large-sample theory which attains its results by embedding the given situa-
tion in a sequence with an infinite variety of different embedding sequences
available. As was pointed out in Section 1.2, the choice is typically guided
by the desire for both simplicity and accuracy. Simplicity is an important
virtue since it helps to highlight the most important features of a procedure,
thereby providing a powerful aid to intuitive understanding.

On the other hand, simplicity and highlighting of essentials often are
achieved by ignoring many of the finer details and may blur important dis-
tinctions. In addition, such a broad-gauged approach cannot be expected
to always achieve high accuracy. The resulting approximations can typi-
cally be improved, and some of the distinctions restored by adding second
(or higher) order terms. Although we shall occasionally discuss such re-
finements, the emphasis in this book will be on the unrefined first order
approximations obtainable by the convergence in law of a sequence of dis-
tributions.

Example 3.3.1 Binomial. If X has the binomial distribution b (p, n),
then (3.3.3) holds with Tn = X/n, θ = p, and τ2 (θ) = pq. Clearly, τ2 (θ)
is continuous, and (3.3.6) follows for any 0 < p0 < 1 from Example 2.4.8.

Theorem 3.3.3 thus applies, and for the problem of testing H : p = p0
against p > p0 at asymptotic level α it shows that the power against the
sequence of alternatives

pn = p0 +
∆√
n

(3.3.13)

has the limit

βn (pn) → Φ
(

∆
√

p0q0
− uα

)
.(3.3.14)

For the power βn (p) against a fixed alternative p, we obtain from (3.3.11)
and (3.3.12) the approximations

βn (p) .= Φ
(√

n (p − p0)√
p0q0

− uα

)
(3.3.15)
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and

βn (p) .= Φ
[√

n (p − p0)√
pq

− uα

√
p0q0
pq

]
.(3.3.16)

TABLE 3.3.1. Approximations to level and power in the binomial case; n = 100.

Power at ∆ = .1
Level Exact Approx. Exact Approx. (3.3.15) Approx. (3.3.16)

.1 .040 .023 .872 .954 .897
p0 = .3 .053 .041 .693 .704 .692

.5 .044 .036 .623 .639 .641

Table 3.3.1 shows for n = 100 and p0 = .1, .3, .5 the exact level closest
to α = .05, the corresponding asymptotic level of (3.1.12), the exact power
against the alternative p = p0 + .1, and its approximations (3.3.15) and
(3.3.16). The tables shows how rough the approximation (3.3.15) is even
when n = 100.† Improvement is possible by use of the continuity correction
(Problem 3.3). The table shows clearly the decrease of power for a fixed
value of p − p0 as p0q0 increases, i.e., as p0 moves away from 1/2. �

The principal difficulty in the application of Theorem 3.3.3 is the check-
ing of condition (3.3.6), which requires a certain amount of uniformity in
the convergence of Tn. Let us consider some examples which illustrate the
argument that can be used to establish (3.3.6).

Example 3.3.2 Poisson. Let X1, . . . , Xn be i.i.d. according to the Pois-
son distribution P (λ). To validate Theorem 3.3.3 and thereby obtain an
approximation for the power of the test (3.1.14) of Example 3.1.1, we need
to show that

√
n
(
X̄ − λn

)
√

λn

L→ N (0, 1)(3.3.17)

as λn tends to the hypothetical value λ0. This will follow from the Berry-
Essen theorem, provided the standardized third moment

E|X1 − λn|3

λ
3/2
n

†For a careful discussion of the accuracy of the normal approximation to the level
of the binomial test with and without continuity correction, see Ramsey and Ramsey
(1988) and Johnson, Kotz, and Kemp (1992, Section 6.1).



3.3 Power and sample size 163

can be shown to remain bounded as λn → λ0. This third moment condition
is an immediate consequence of the facts that

E|X1 − λn|3 → E|X1 − λ0|3 < ∞

and

λ3/2n → λ
3/2
0 > 0.

What saves the day in this and similar cases is that boundedness of the
standardized third moment is not required as λn tends to zero or infinity
but only in the neighborhood of some fixed 0 < λ0 < ∞.

It now follows from Theorem 3.3.3 that the power βn (λn) of the test
(3.1.14) has the limit

βn (λn) → Φ
(

∆√
λ0

− uα

)
(3.3.18)

against the alternatives λn = λ0 +
∆√
n

. An approximation to the power

βn (λ) against a given alternative λ is obtained from (3.3.11) as

Φ
(√

n (λ − λ0)√
λ0

− uα

)
.(3.3.19)

�

Theorem 3.3.3 extends easily to problems involving nuisance parameters
in addition to the parameter θ being tested.

Theorem 3.3.4 Under the assumptions of Theorem 3.3.3 and the addi-
tional assumptions that for a sequence of distributions (θn, ϑ) with θn → θ0,
the estimator τ̂2n is a consistent estimator of τ2 (θ0, ϑ) and that τ2 (θ, ϑ) is
a continuous function of θ for each ϑ, formula (3.3.8) remains valid for the
power of the test (3.1.19), where βn (θn) and τ2 (θ0) have to be replaced by
βn (θn, ϑ) and τ2 (θ0, ϑ), respectively.

Theorem 3.1.1 showed that tests obtained by studentizing
√

n (Tn − θ0)
by means of different consistent denominators are asymptotically equiv-
alent. From formula (3.3.8), we now see in addition that these different
asymptotically equivalent tests all have the same asymptotic power func-
tion. Note, however, that consistency of τ̂n as the estimator of τ (θ0, ϑ) is
now required not only under the distribution Pθ0,ϑ but also under the se-
quence Pθn,ϑ where θn → θ0. For an example showing that the latter does
not follow automatically, see Problem 3.4.
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Example 3.3.3 One-sample t-test. Under the assumptions of Example
3.1.3, it follows from the Berry-Esseen theorem that for a sequence ξn → ξ0
and fixed σ,

√
n
(
X̄ − ξn

)
σ

L→ N (0, 1)

and hence that also
√

n
(
X̄ − ξn

)
σ̂

L→ N (0, 1) ,(3.3.20)

where σ̂2 given by (3.1.23) is a consistent estimator of σ2 regardless of the
value of ξ. This verifies condition (3.3.6) and by Theorem 3.3.4 shows that
the power of the t-test against a sequence of alternatives

ξn = ξ0 +
∆√
n

and fixed σ has the limit

βn (ξn) → Φ
(

∆
σ

− uα

)
.(3.3.21)

By the usual argument, this leads to the approximation for the power
against a fixed alternative (ξ, σ),

βn (ξ) .= Φ
(√

n (ξ − ξ0)
σ

− uα

)
.(3.3.22)

�

Let us next apply this approach to the two-sample tests considered in Sec-
tion 3.1 following Lemma 3.1.1. Under assumptions (3.1.28) and (3.1.29),
it was seen that (3.1.33) provides a test of asymptotic level α. Suppose now
that the test statistics Um and Vn satisfy not only (3.1.28) but in analogy
with (3.3.6),

√
N (Um − ξm) → N

(
0, σ2/ρ

)
,√

N (Vn − ηn) → N
(
0, τ2/ (1 − ρ)

)
,

(3.3.23)

where ξm → ξ, ηn → η. Then for

ξm = ξ, ηn = ξ +
∆√
N

,(3.3.24)

the power function of the test (3.1.32) for testing H : η = ξ satisfies

βN (ξm, ηn) → Φ




∆√
σ2

ρ
+

τ2

1 − ρ

− uα


 .(3.3.25)
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Suppose, finally, that σ̂2N and τ̂2N are consistent estimators of σ2 and τ2 not
only when η = ξ but also under the alternatives (3.3.24). Then (3.3.25) is
valid for the power not only of (3.1.32) but also of (3.1.33).

The limit result (3.3.25) can be used like that of Theorem 3.3.3 to obtain
an approximation to the power of (3.1.33) against a given alternative (ξ, η)
and sample sizes m and n. Identifying η with ηn, we find ∆ =

√
N (η − ξ).

Substitution in (3.3.25) with m = ρN and n = (1 − ρ)N then leads to

βN (ξ, η) .= Φ


 η − ξ√

σ2

m
+

τ2

n

− uα


 .(3.3.26)

Example 3.3.4 Poisson two-sample problem. As an illustration, con-
sider the power function of (3.1.34). Here ξ = λ, η = µ, σ2 = λ, and τ2 = µ.
Condition (3.3.23) was checked in Example 3.3.2. It therefore remains to
check the conditions on the variances σ̂2m = X̄ and τ̂2n = Ȳ . To see that
Ȳ → µ in probability when Y1, . . . , Yn are i.i.d. P (µn) with µn → µ, recall
Theorem 2.1.1. This shows that Ȳ −µn

P→ 0, provided Var
(
Ȳ
)

= µn/n → 0,
which clearly is the case. Formula (3.3.25) thus shows that the power of
(3.1.34) against a sequence of alternatives µn = λ + ∆√

N
satisfies

βN (λ, µn) → Φ
[
∆
λ

√
ρ (1 − ρ) − uα

]
,(3.3.27)

which by (3.3.26) leads to the approximate formula

βN (λ, µ) .= Φ


 µ − λ√

λ
m + µ

n

− uα


 .(3.3.28)

�

In Theorem 3.3.3, the parameter θ plays a double role. It both labels
the distribution and indicates the location of the statistic Tn. For later
applications, it is convenient to allow for the separation of these two roles
and to replace (3.3.3) by

√
n [Tn − µ (θ)] L→ N

(
0, τ2 (θ)

)
.(3.3.29)

This modification leads to the following generalization of Theorem 3.3.3.

Theorem 3.3.5
(i) Suppose that (3.3.29) holds for θ = θ0. Then the test of H : θ = θ0,
which rejects when

√
n [Tn − µ (θ0)]

τ (θ0)
≥ uα(3.3.30)
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has asymptotic level α as n → ∞.
(ii) Suppose, in addition, that

√
n [Tn − µ (θn)]

τ (θ0)
L→ N (0, 1) when θn → θ0(3.3.31)

and that the function µ is differentiable at θ0 with

µ′ (θ0) > 0.(3.3.32)

Then the power βn (θn) of the test (3.3.30) against the alternatives (3.3.7)
has the limit

βn (θn) → Φ
[
∆µ′ (θ0)
τ (θ0)

− uα

]
.(3.3.33)

Proof. We have

βn (θn) = P

{√
n [Tn − µ (θn)]

τ (θ0)
≥ uα −

√
n [µ (θn) − µ (θ0)]

τ (θ0)

}
.

Now, by Theorem 2.5.1 of Chapter 2,

µ (θn) − µ (θ0) = (θn − θ0)µ′ (θ0) + o (θn − θ0)
= ∆√

n
µ′ (θ0) + o

(
1√
n

)
and substitution in βn (θn) completes the proof. �

For a fixed alternative θ, one finds, in analogy with (3.3.11), the approx-
imation

βn (θ) .= Φ
[√

n (θ − θ0)µ′ (θ0)
τ (θ0)

− uα

]
.(3.3.34)

As an illustration, consider the following version of Example 3.2.4.

Example 3.3.5 Sign test for center of symmetry. For comparing
two treatments in a paired comparisons design, Example 3.2.4 discussed
the sign test based on the number N+ of positive differences Zi = Yi − Xi

(i = 1, . . . , N). As was pointed out in the discussion preceding Example
3.2.4, under the hypothesis H of no treatment difference, the distribution
of the Z’s is symmetric about 0. In order to discuss the power of the test, it
is necessary to state the alternatives to H more specifically than was done
in Example 3.2.4. A natural such specification is obtained by assuming
that superiority of Treatment B over Treatment A results in shifting the
distribution of the Z’s to the right by a fixed amount θ, so that under the
alternatives, this distribution is symmetric about some θ > 0. The problem
then becomes that of testing

H : θ = 0 against K : θ > 0,(3.3.35)
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on the basis of observations Z1, . . . , ZN , which are i.i.d. according to a
distribution F (z − θ) where F is symmetric about 0.

The sign test rejects H when the number N+ of positive Z’s is sufficiently
large. If TN = N+/N and

p = Pθ (Zi > 0) = 1 − F (−θ) = F (θ) ,

H is equivalent to p = 1/2 and K to p > 1/2, and we are therefore in the
situation of Example 3.3.1. However, we are now interested in the power of
the test not against an alternative value of p but of θ. We could, of course,
translate (3.3.14) into an equivalent result concerning θ (Problem 3.17).
More conveniently, Theorem 3.3.5 gives the result directly. If we put

µ (θ) = p = F (θ)(3.3.36)

and if F has density f , the assumptions of Theorem 3.3.5 hold, and the
power of the test against the alternatives (3.3.7) satisfies

βn (θn) → Φ (2∆f (0) − uα) .(3.3.37)

Note 1: The test and its asymptotic power (3.3.37) remain valid if the
assumption of symmetry about 0 is replaced by the broader assumption
that 0 is the median of F so that θ is the median of the distribution of the
Z’s.
Note 2: Instead of the alternatives F (z − θ), one might want to consider

the more general alternatives F

(
z − θ

τ (θ)

)
. Let θn = ∆/

√
n as before and

suppose that τ (θ) is continuous so that

τ (θn) → τ (0) = 1.

Then under the assumptions of Example 3.3.5, formula (3.3.37) continues
to hold (Problem 3.18). �

Example 3.3.6 Wilcoxon test for center of symmetry. Under the
assumptions of the preceding example, an alternative test of H is the one-
sample Wilcoxon test discussed in Example 3.2.5. It follows from (3.2.30)
that the asymptotic form of this test has the rejection region

Vs − 1
4N (N + 1)√

N (N + 1) (2N + 1) /24
≥ uα.(3.3.38)

Here

Vs =
∑∑
1≤i≤j≤N

Uij ,
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with Uij given above (3.2.31). The test thus has the form (3.3.30) with

TN =
Vs(
N
2

) , µ (θ0) =
1
2
, and τN (θ0) =

1√
3
.(3.3.39)

It will be shown in Section 6.1 that, more generally, TN satisfies (3.3.31)
with

µ (θ) = Pθ [(Z1 + Z2) > 0] .(3.3.40)

To evaluate the asymptotic power (3.3.33), it is only necessary to determine
µ′ (θ0). Let us write

µ (θ) = P [(Z1 − θ) + (Z2 − θ) > −2θ] .(3.3.41)

The conditional probability of Z2 − θ > − (z1 − θ) − 2θ given z1 is 1 −
F [− (z1 − θ) − 2θ] since Z2 − θ is distributed according to F . The un-
conditional probability (3.3.41) is obtained by integrating the conditional
probability with respect to the distribution of (z1 − θ), which is again F ,
so that finally

µ (θ) =
∫

[1 − F (z − 2θ)] f (z) dz =
∫

F (−z + 2θ) f (z) dz.(3.3.42)

We thus find µ′ (θ) = 2
∫

f (−z + 2θ) f (z) dz and hence, with θ0 = 0,

µ′ (θ0) = 2
∫

f (−z) f (z) dz = 2
∫

f2 (z) dz.(3.3.43)

This result requires that the integral on the right side of (3.3.42) can be ob-
tained by differentiating under the integral sign. It can be shown (although
we shall not do so here) that this is permissible, provided the integral in
(3.3.43) is finite. For references, see Lehmann (1998, p. 373).

It follows from (3.3.39) and (3.3.43) that the asymptotic power of the
Wilcoxon test (3.3.38) is given by

βN (θN ) → Φ
[√

12∆
∫

f2(z)dz − uα

]
.(3.3.44)

�

Example 3.3.7 Wilcoxon two-sample test. In parallel to Example 3.3.6,
let us consider the power of the two-sample Wilcoxon test of Example 3.2.1
against the class of slight alternatives

G (y) = F (y − θ) .(3.3.45)
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Under the hypothesis H : θ = 0, the asymptotic behavior of WXY is given
by (3.2.9).

Let us now embed the given situation in a sequence with sample sizes
(mk, nk), k = 1, 2, . . . , satisfying

mk

Nk
→ ρ (0 < ρ < 1) , Nk = mk + nk,(3.3.46)

and a sequence of alternatives

θk =
∆√
Nk

.(3.3.47)

We wish to apply Theorem 3.3.5 to Tk = WXY /mknk. With n replaced by
Nk, we shall see in Section 6.5 that (3.3.29) and (3.3.31) hold with

µ(θ) = p(θ) = P (X < Y ) =
∫

[1 − F (x − θ)] f(x)dx(3.3.48)

and

τ (θ0) = τ(0) = lim

√
Nk (Nk + 1)

12mknk
=

1√
12ρ(1 − ρ)

.(3.3.49)

Theorem 3.3.5 thus applies and it only remains to evaluate µ′(0). In analogy
with (3.3.43), we find

µ′(0) =
∫

f2(x)dx(3.3.50)

and therefore for the asymptotic power of the two-sample Wilcoxon test

β (θk) → Φ
[√

12ρ (1 − ρ) ∆
∫

f2(x)dx − uα

]
.(3.3.51)

To complete the evaluation of the asymptotic power for any particular F ,

it is now only necessary to calculate
∫

f2 (Problem 3.23).

Note: The formal similarity of formulas (3.3.44) and (3.3.51) masks an
important difference: In the context of comparing two treatments, F refers
to the distribution of the X’s and Y ’s in (3.3.51) but to the distribution of
the differences Yi − Xi in (3.3.44).

As usual, the limit result (3.3.51) also provides an approximation. Re-
placement of ∆ by

√
Nθ and ρ by m/N leads to the approximate power

against a fixed alternative θ

β(θ) .= Φ

[√
12mn

N
θ

∫
f2(x)dx − uα

]
.(3.3.52)
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TABLE 3.3.2. Power of the Wilcoxon test against normal shift alternatives‡

∆/σ 0 .2 .4 .6 .8 1.0 1.5 2.0
Exact .049 .094 .165 .264 .386 .520 .815 .958

(3.3.52) .049 .098 .177 .287 .423 .568 .861 .977

Table 3.2.2 illustrates the accuracy of this approximation for the case
m = n = 7, α = .049, and F normal. Since the relative error throughout the
range of the table is less than 10%, the approximation is fairly satisfactory
even for these small sample sizes. �

The power approximations obtained in this section can be used to deter-
mine approximately the sample size required to achieve a desired power β
against a given alternative θ.

Under the assumptions of Theorem 3.3.3, the power against θ of the test
(3.1.12) based on n observations is approximately

Φ
[√

n (θ − θ0)
τ (θ0)

− uα

]
.

If we wish the power to be equal to β, we must solve the equation

Φ
[√

n (θ − θ0)
τ (θ0)

− uα

]
= β

for n. Since by definition of uβ

Φ (−uβ) = β,(3.3.53)

comparison of the last two displayed equations yields
√

n (θ − θ0)
τ (θ0)

= uα − uβ

and hence

n
.=

(uα − uβ)
2

(θ − θ0)
2 τ2 (θ0) .(3.3.54)

The same formula, with the obvious trivial changes, applies to the situation
covered by Theorem 3.3.4.

Example 3.3.8 Binomial sample size. The test is given by (3.1.12)
with Tn = X/n, θ = p and τ2 (θ) = pq so that (3.3.54) becomes

n =
(uα − uβ)

2

(p − p0)
2 p0q0.(3.3.55)

‡From Table 2.1 of Lehmann (1998).
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Table 3.3.3 shows the actual values of α and β for p = p0 + .1 when n is
determined by (3.3.55) with nominal values α = .05 and β = .9. As is clear
from (3.3.55), the required sample size decreases as p0 moves away from
1/2.

TABLE 3.3.3. Approximate sample sizes in the binomial case

p0 .1 .2 .3 .4 .5 .6 .7 .8
n 78 138 180 206 215 206 180 138
α .045 .050 .046 .058 .051 .044 .042 .038
β .808 .864 .873 .907 .906 .906 .916 .942

It is seen that the crude formula (3.3.55) gives fairly satisfactory results
unless p0 is close to 0 or 1. There are two reasons for this exception. For one,
the normal approximation to the binomial is less satisfactory for p close to
0 and 1. In addition, the fact that the variance pq under the alternative
was replaced by the null variance p0q0 matters relatively little when p is
close to 1/2 since pq as a function of y is fairly flat near 1/2 but has a more
important effect for p near 0 and 1 where pq becomes quite steep. This is
seen clearly from Table 3.3.4. �

TABLE 3.3.4. The function pq

p .1 .2 .3 .4 .5 .6 .7 .8
pq .09 .16 .21 .24 .25 .24 .21 .16

Example 3.3.9 Sample size for Student’s t. As another illustration of
(3.3.54), consider Student’s t-test with the rejection region given by (3.1.19)
with Tn = X̄, θ = ξ, and τ2 = σ2, so that (3.3.54) becomes

n
.=

(uα − uβ)
2

(ξ − ξ0)
2
/σ2

.(3.3.56)

Table 3.3.5 compares the approximate sample size obtained from (3.3.56)
with the exact sample size required to achieve power β against an alterna-
tive ξ at α = .05 for different values of β and (ξ − ξ0) /σ2. The agreement
is remarkably good over the whole range considered. �

Example 3.3.10 Sample size for Poisson two-sample problem. Set-
ting the approximate power (3.3.28) equal to β, and letting m = ρN and
n = (1 − ρ)N , we find for N the approximate formula

N
.=
(

uα − uβ
µ − λ

)2(
λ

ρ
+

µ

1 − ρ

)
.(3.3.57)
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TABLE 3.3.5. Sample size required by one-sided t-test

Appr. Exact Appr. Exact Appr. Exact
(ξ − ξ0)/σ .2 .5 .8

α = .05, β = .8 155 157 25 27 10 12
α = .05, β = .9 215 217 35 36 14 15
α = .05, β = .95 271 274 44 45 17 19

This formula also shows how to distribute a total sample of size N among
the two groups so as to minimize (approximately) the value of N required to
achieve power β against a given alternative (λ, µ). The value of ρ minimizing
the second factor in (3.3.57) is given by (Problem 3.20).

1
ρ

= 1 +
√

µ

λ
.(3.3.58)

In particular, the sample size is approximately minimized for close-by al-
ternatives (µ close to λ ) by putting ρ = 1 − ρ = 1/2, i.e., splitting the
total sample equally between the two groups. �

The argument leading to (3.3.54) can also be applied to the more general
situation covered by Theorem 3.3.5. Solving for n from (3.3.34) instead of
(3.3.11), one obtains, instead of (3.3.54), the approximate sample size

n
.=

(uα − uβ)2

(θ − θ0)2
/

[
µ′ (θ0)
τ (θ0)

]2
.(3.3.59)

Here the first factor depends on α, β, and the alternative θ but is inde-
pendent of the particular test being used. On the other hand, the second
factor is a characteristic of the test statistic and is independent of α, β,
and θ. The larger the (positive) quantity

µ′ (θ0)
τ (θ0)

,(3.3.60)

the smaller is the (approximate) sample size required to achieve power β
against the alternative θ at level α for any α, β, and θ. For this reason, the
quantity (3.3.60) is called the efficacy§ of the test sequence {Tn} for testing
H : θ = θ0. If

βn (θ) → Φ (c∆ − uα) , c > 0,(3.3.61)

it follows from Theorem 3.3.5 that the efficacy is equal to c.

§Different authors use different variants of this definition.
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Example 3.3.11 Sample sizes for two-sample Wilcoxon test. As an
illustration of (3.3.59), consider the situation of Example 3.3.7 where the
assumptions of Theorem 3.3.5 are satisfied with N = m + n in place of
n, τ (θ0) = 1/

√
12ρ (1 − ρ), θ0 = 0, and

µ′ (θ0) =
∫

f2 (x) dx.(3.3.62)

Therefore

N
.=

(uα − uβ)
2

θ2

/
12ρ (1 − ρ)

(∫
f2 (x) dx

)2
(3.3.63)

is the total (approximate) sample size needed to achieve power β when
testing H : θ = 0 against the alternative (3.3.45) at level α, with m = ρN
and n = (1 − ρ)N being the sample sizes of the two groups. The required
sample size is minimized by maximizing ρ (1 − ρ), i.e., by setting m = n =
N/2. �

Summary

1. Standard tests are typically consistent in the sense that their power
against any fixed alternative tends to 1 as the sample size(s) tend to
infinity.

2. To obtain a useful approximation to the power of a test, one there-
fore considers the power not against a fixed alternative but against a
sequence of alternatives tending to the hypothesis at a suitable rate.

3. By equating the asymptotic power to a preassigned value, one obtains
a simple formula for the sample size required to attain a given power.

3.4 Comparison of tests: Relative efficiency

The power of a test, in addition to providing a measure of performance,
also serves as a basis for the comparison of different tests.

Example 3.4.1 Testing a point of symmetry. Let Z1, . . . , ZN be i.i.d.
with a distribution F (z − θ) that is symmetric about a point θ. Three tests
with asymptotic level α for testing H : θ = 0 against θ > 0 were discussed
in Examples 2.3–2.5. Their rejection regions are respectively

√
NZ̄/σ̂ ≥ uα (t-test),(3.4.1)
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where σ̂ is the usual denominator of the t-statistic (3.1.24) (with Zi in place
of Xi ), and

2
√

N

[
N+
N

− 1
2

]
≥ uα (sign test),(3.4.2)

where N+ is the number of positive Z’s, and

VS − 1
4
N(N + 1)√

N (N + 1) (2N + 1) /24
≥ uα (Wilcoxon test),(3.4.3)

where VS is the one-sample Wilcoxon statistic defined in Example 3.2.5.
Actually, the tests (3.4.1)–(3.4.3) are not the exact versions of the t-,

sign, and Wilcoxon tests but the large-sample approximations in which the
exact critical value has been replaced by its limit uα (as N → ∞). The
results of the present discussion are not affected by this replacement, nor
by replacing σ̂ in (3.4.1) by any other consistent estimator of the standard
deviation σ of the Z’s.

The asymptotic power of these three tests against the alternatives θN =
∆/

√
N was shown in Section 3.3 to be given respectively by

β (θN ) → Φ
(

∆
σ

− uα

)
, t−test, (3.3.21),(3.4.4)

β′ (θN ) → Φ (2∆f (0) − uα) , sign test (3.3.37),(3.4.5)

and

β′′ (θN ) → Φ
(

∆
√

12
∫

f2 (z) dz − uα

)
, Wilcoxon test (3.3.44).

(3.4.6)

Which of these three tests is best (i.e., most powerful) is determined by
which of them has the largest coefficient of ∆, i.e., which of the three
quantities

c1 =
1
σ

, c2 = 2f (0) , c3 =
√

12
∫

f2 (z) dz(3.4.7)

is largest. (It is seen from (3.3.61) that ci is the efficacy of the associated
test.) This question has no universal answer, rather the answer depends on
the distribution F of the Z’s. In particular, for example, the best of the
three tests is the t-test when F is normal, the sign test when F is double
exponential, and the Wilcoxon test when F is logistic (Problem 4.1). �
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Consider now more generally two tests with power functions satisfying

βi (θN ) → Φ (ci∆ − uα) , i = 1, 2,(3.4.8)

against the alternatives θN = θ0 + ∆/
√

N . A natural asymptotic measure
of the superiority of test 2 over test 1 against a particular alternative ∆ > 0
is

lim [β2 (θN ) − β1 (θN )] = Φ (c2∆ − uα) − Φ (c1∆ − uα) .(3.4.9)

The sign of this difference is independent of ∆; however, its value is not.
To obtain a comparison that is independent of ∆, consider the situation

with which one is confronted when planning the study. One would then
wish to determine the sample size required by each test to achieve the
same asymptotic power β (α < β < 1) against the same alternative at the
same asymptotic level α. Under the assumptions of Theorem 3.3.5, this
sample size was seen to be given approximately by (3.3.59), i.e., by

N
.=

(uα − uβ)
2

(θ − θ0)
2 · 1

c2
,(3.4.10)

where |c| is the efficacy of the given test sequence,

c = µ′ (θ0) /τ (θ0) with µ and τ defined in (3.3.29).(3.4.11)

By (3.3.33), the asymptotic power of this test is

β (θN ) → Φ (c∆ − uα)

against the alternatives

θN = θ0 +
∆√
N

.

If N1 and N2 are the sample sizes required by two different tests with effi-
cacies c1 and c2 to achieve the same power β against the same alternatives
at the same level α, we have, by (3.4.10),

N1
N2

.=
c22
c21

= e2,1.(3.4.12)

The left side is the relative efficiency of test 2 with respect to test 1. If,

for example, it equals 1/2, then approximately N1 =
1
2
N2 or N2 = 2N1;

the second test is half as efficient as test 1 since it requires twice as large a
sample to achieve the same end. The right side of (3.4.12) is the asymptotic
relative efficiency (ARE). Under suitable regularity assymptions, the right
side is actually the limit of the left side as the sample sizes tend to ∞, as
will be shown in Theorem 3.4.1. Note that the ARE is independent of α
and β.
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Example 3.4.2 Testing a point of symmetry (continued). Let us
return now to the three tests of Example 3.4.1. From (3.4.4)–(3.4.6), we
can read off the relative efficiencies of the sign, Wilcoxon, and t-tests to
each other, as

eS,t (F ) = 4σ2f2 (0) ,(3.4.13)

eW,t (F ) = 12σ2
(∫

f2(z)dz

)2
,(3.4.14)

and

eS,W (F ) = f2 (0) /3
(∫

f2(z)dz

)2
.(3.4.15)

These formulas provide a basis for comparing the three tests for different
distributions F . Before doing so, we note that the efficiencies are indepen-
dent of scale; they are also independent of location since the distribution of
the Z’s was taken to be F (z − θ) (Problem 4.2). The efficiencies (3.4.13)–
(3.4.15) therefore depend only on the shape of the distribution F , which is
assumed to be symmetric about 0.

Consider first the case that F is the standard normal distribution, F = Φ.
It is easily seen (Problem 4.3) that

eS,t (Φ) =
2
π

∼ .637, eW,t (Φ) =
3
π

∼ .955.(3.4.16)

When the assumption of normality holds, the efficiency of the sign to the
t-test is therefore less than 2/3, which means that the sign test requires in
excess of 50% more observations than the t-test to achieve the same power.

The situation is much more favorable for the Wilcoxon test, which has
an efficiency loss of less than 5% relative to the t-test. For this reason,
the Wilcoxon test is a serious competitor of the t-test, and it is of interest
to see how their efficiencies compare when the assumption of normality
does not hold. From (3.4.14), one sees that eW,t(F ) is very sensitive to
small disturbances in the tail of the distribution. Moving small masses out
toward ±∞ will make σ2 tend to infinity while causing only little change

in
∫

f2. This shows that the Wilcoxon test can be infinitely more efficient

than the t-test for distributions differing only slightly from the normal. On
the other hand, it turns out that the Wilcoxon test can never be very much
less efficient than the t-test, that, in effect,

eW,t (F ) ≥ .864 for all F.(3.4.17)

(For a proof, see Lehmann (1998).) �
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Example 3.4.3 Two-sample Wilcoxon vs. t. A two-sample analog of
Example 3.4.1 is concerned with samples X1, . . . , Xm and Y1, . . . , Yn from
distributions F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) = F (y − θ) respec-
tively. Two tests for testing H : θ = 0 against θ > 0 are

(a) the t-test based on (3.1.36)

and

(b) the Wilcoxon test based on (3.2.9).

The approximate sample size N = m + n required by the Wilcoxon test
to achieve power β against an alternative value of θ was seen in Example
3.3.11 to be

N
.=

(uα − uβ)
2

θ2
/12ρ (1 − ρ)

(∫
f2
)2

,(3.4.18)

where ρ = m/N . The corresponding sample size N ′ for the t-test is (Prob-
lem 4.8)

N ′ .=
(uα − uβ)

2

θ2
σ2

ρ (1 − ρ)
.(3.4.19)

It follows that the efficiency of the Wilcoxon test relative to the two-sample
t-test continues to be given by the corresponding one-sample efficiency
(3.4.14), where, however, F is no longer restricted to be symmetric. In
particular, when F is normal, the efficiency is again equal to 3/π ∼ .955.
Also, (3.4.17) continues to hold for all F , symmetric or not.

TABLE 3.4.1. Exact efficiency eW,t (F ) for F = normal m = n = 5, α = 4/126

θ .5 1.0 1.5 2.0 2.5 3.0 3.5
β .072 .210 .431 .674 .858 .953 .988
e .968 .978 .961 .956 .960 .960 .964

Source: Table 2.3 of Lehmann (1998).

The efficiency (3.4.12) is the ratio of two approximate sample sizes, and
one must be concerned about its accuracy. Such a concern seems partic-
ularly appropriate since this approximation is independent of α, β, and θ
while the actual ratio of sample sizes required to achieve power β at level α
against an alternative θ will vary with these parameters. Table 3.4.1 shows
the exact efficiency in the normal case, i.e., the ratio (m′ + n′) / (m + n),
where it is assumed that m′ = n′. Here m′ + n′ is the total sample size re-
quired by the t-test to equal the power of the Wilcoxon test with m = n = 5
at level α = 4/126 over a range of values of θ and β. [Because of the discrete
nature of n′, no value of n′ will give exactly the desired power. To overcome
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this difficulty, n′ is calculated by randomizing between the two sample sizes
n′
0 and n′

0+ 1, the powers β′ and β′′ of which bracket the desired power β,
i.e., by n′ = pn′

0 + (1 − p) (n′
0 + 1), where p satisfies pβ′ + (1 − p)β′′ = β].

The most striking feature of the table is the near-constancy of e. As β
varies from .072 to .988, the range of e is .956 to .978, all values being
slightly above the large-sample approximate value of .955. �

Example 3.4.4 Choice of design in simple linear regression. Let Xi

be independent N
(
ξi, σ

2
)
, where

ξi = α + βvi (i = 1, . . . , N) .(3.4.20)

Then the test which rejects H : β = β0 when

(
β̂ − β0

)√∑
(vi − v̄)2√∑(

Xi − α̂ − β̂vi

)2
/ (N − 2)

≥ uα,(3.4.21)

with α̂ and β̂ given by (2.7.11), has asymptotic level α. This follows from
the fact that the exact null distribution of the test statistic (3.4.21) is the
t-distribution with N − 2 degrees of freedom. If

1
N

∑
(vi − v̄)2 → d,(3.4.22)

the power of this test against the alternatives

βn = β0 +
∆√
N

(3.4.23)

tends to (Problem 4.9)

Φ

(
∆
√

d

σ
− uα

)
(3.4.24)

and the efficacy of the test is therefore c =
√

d/σ.
The values of the v’s can be chosen by the experimenter and constitute

the design of the experiment. (Often the v’s depend on N and should
be denoted by vNi, but for simplicity, we shall retain the one-subscript
notation.) The most efficient design is obtained by maximizing d and hence∑

(vi − v̄)2. This sum can be made arbitrarily large by choosing the v’s
sufficiently far apart. However, in practice, the v’s will typically have to
lie in some finite interval which without loss of generality we may take
to be [0,1]. Subject to this condition, it is easy to see that for maximum
efficiency, the v’s must all lie on the boundary of the interval (i.e., take
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on only the values 0 and 1) and that the maximum value of
∑

(vi − v̄)2

satisfies (Problem 4.10(i))∑
(vi − v̄)2 ∼ N

4
as N → ∞.

(The value N/4 is attained exactly when N is even and half of the obser-
vations are placed at each end point.)

Unfortunately, a design which places all observations at either 0 or 1 has
a great drawback: It does not permit checking the assumption that the
regression is linear. For this reason, other less efficient designs are often
preferred. If we consider two designs (v1, . . . , vN ) and (v′1, . . . , v′N ), the
efficiency of the test based on the primed design to that of the unprimed
one is

e =
∑

(v′i − v̄′)2∑
(vi − v̄)2

.(3.4.25)

As an example, consider the design which places the v’s at the points 0,
1

N − 1
,

2
N − 1

, . . . , 1. Then (Problem 4.10(ii))

∑
(vi − v̄)2 ∼ N

12
,

so that the efficiency of this uniform design to the earlier 2-point design is
1/3.

Intermediate designs of course exist which make it possible to obtain
a check on linearity with a less drastic loss of efficiency. If, for example,
we put N/4 observations each at 0, 1/3, 2/3, and 1, the efficiency of this
4-point design to the earlier 2-point design is 5/9 (Problem 4.11).

When condition (3.4.22) holds with d > 0, as it does for the three designs
mentioned above, and if the v’s are bounded, then (2.7.24) of Chapter 2
is satisfied since max (vi − v̄)2 /N → 0 while

∑
(vi − v̄)2 /N → d > 0. It

follows that (3.4.24) and the efficiencies derived from it are valid without
the assumption of normality for the more general model (2.7.10). �

Relative efficiency was defined in (3.4.12) as the ratio of the approximate
sample sizes required by two tests to achieve the same performance. We
shall now give a somewhat more careful derivation of (3.4.12) as a limit
result, and at the same time provide a slight generalization which will be
useful below.

Theorem 3.4.1 Let T (i) =
{
T
(i)
N , N = 1, 2, . . . ; i = 1, 2

}
be two sequen-

ces of test statistics for testing H : θ = θ0 based on N observations, and
suppose that the power of T

(i)
N against the alternatives

θN = θ0 +
∆

Nγ/2(3.4.26)
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satisfies

βi (θN ) → Φ (ci∆ − uα) .(3.4.27)

Suppose now that N
(i)
k , k = 1, 2, . . . , are two sequences of sample sizes

and ∆1, ∆2 two positive constants such that the power of the test T
(i)

N
(i)
k

against the same sequence of alternatives

θ
(i)
k = θ0 +

∆i[
N
(i)
k

]γ/2 and θ
(1)
k = θ

(2)
k(3.4.28)

has the same limit

Φ (c1∆1 − uα) = Φ (c2∆2 − uα) = β.(3.4.29)

Then the ARE of test 2 with respect to test 1 is given by

e2,1 = lim
N
(1)
k

N
(2)
k

=
(

c2
c1

)2/γ
.(3.4.30)

Note: The sequences
{
N
(i)
k

}
are only required to satisfy (3.4.26) and hence

are not unique. However, it follows from (3.4.30) that the ARE e2,1 is
independent of the particular sequences chosen to satisfy (3.4.27) and that
the proof of (3.4.30) therefore at the same time establishes the existence of
the ARE.

Proof. From (3.4.28), we have

∆1[
N
(1)
k

]γ/2 =
∆2[

N
(2)
k

]γ/2 .
Therefore

∆2 = ∆1

[
N
(2)
k

N
(1)
k

]γ/2
.

It follows that the limit of N
(1)
k /N

(2)
k exists and equals

lim
k→∞

N
(1)
k

N
(2)
k

=
(

∆1
∆2

)2/γ
.(3.4.31)

On the other hand, (3.4.29) implies

c1∆1 = c2∆2(3.4.32)
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and hence (3.4.30), as was to be proved. �

For γ = 1, conditions under which (3.4.27) holds are given in Theorem
3.3.5. The constants c1 and c2 in (3.4.30) are then just the efficacies of T (1)

and T (2), respectively.

Example 3.4.5 Paired comparisons. In the paired comparison situa-
tion of Example 3.2.3 (with slight changes in notation), suppose that

E (Xi) = ξ, E (Yi) = η, Var (Xi) = Var (Yi) = σ2,

that the correlation between Xi and Yi is ρ, and that Zi = Yi−Xi(i = 1, . . .
, n) are independent normal. If E (Zi) = ζ, the hypothesis H : ζ = 0 is
being tested against K : ζ > 0 by the t-test with rejection region

√
nZ̄/τ̂ ≥ k,(3.4.33)

where τ̂2 =
∑(

Zi − Z̄
)2

/ (n − 1) is a consistent estimator of

τ2 = Var (Zi) = 2σ2 (1 − ρ)

and k is the critical value of the tn−1-distribution.
Suppose we are interested in two different methods of forming the pairs

for which the means ξ and η and the variance σ2 are the same but which
lead to different correlation coefficients ρ1 and ρ2. Then it follows from
Theorem 3.4.1 that the ARE of the second to the first method is

e2,1 =
1 − ρ1
1 − ρ2

.(3.4.34)

The higher the correlation, the greater is the efficiency of the associated
method of pairing. �

Example 3.4.6 Simple linear regression (continued). In Example
3.4.3, the regression model (3.4.20) was discussed in the context of a de-
signed experiment with the v’s restricted to a fixed range. But this model
arises also in situations such as time series in which the v’s may tend to
∞ as N → ∞. As an example, suppose that we are dealing with a linear
trend

vi = ia.(3.4.35)

Then (Problem 4.14)

∑
(vi − v̄)2 = a2

(
N3 − N

)
/12,(3.4.36)
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which violates (3.4.22). Such possibilities can often be accommodated by
replacing (3.4.22) by

1
Nγ

∑
(vi − v̄)2 → d.(3.4.37)

Under the assumptions of Example 3.4.4, the power of the test (3.4.21)
against the alternatives

βN = β0 +
∆

Nγ/2(3.4.38)

then continues to tend to (3.4.24) when (2.7.24) of Chapter 2 holds (Prob-
lem 4.15), and the efficacy of the test is therefore c =

√
d/σ, as before.

For vi = ai, this condition is easily checked (Problem 4.16), and (3.4.36)
shows that γ = 3 and d = a2/12, so that the efficacy of (3.4.21) with vi = ia
is c = a/σ

√
12. It follows that the ARE of the spacing vi = ai to that with

vi = i is a2/3. �

Example 3.4.7 Tests of randomness. Let us next consider a nonpara-
metric version of the preceding example. If X1, . . . , XN are independent
random variables with continuous distributions F1, . . . , FN , a standard test
of the hypothesis H : F1 = · · · = FN against the alternatives of an upward
trend (i.e., that the Xi tend to give rise to larger values with increasing i)
rejects when ∑

iRi ≥ cN ,(3.4.39)

where R1, . . . , RN are the ranks of X1, . . . , XN . Since, under H,

P (R1 = r1, . . . , RN = rN ) = 1/N !(3.4.40)

for each permutation (r1, . . . , rN ) of (1, . . . , N), the null distributions of∑
iRi is independent of the common null distribution F1 = · · · = FN = F

of the X’s, so that the test (3.4.39) is distribution-free.
The expectation and variance of

∑
iRi under H are given by (Problem

3.4.17)

EH

(∑
iRi

)
=

N (N + 1)2

4
(3.4.41)

and

VarH
(∑

iRi

)
=

N2 (N + 1)2 (N − 1)
144

.(3.4.42)

Furthermore, it can be shown that

[∑
iRi − N (N + 1)2 /4

]
/

√
Var
(∑

iRi

)



3.4 Comparison of tests: Relative efficiency 183

tends in law to N (0, 1) (for details, see, for example, Hajek and Sidak
(1967) or Lehmann (1998). The rejection region

∑
iRi − N(N+1)2

4

N (N + 1)
√

N − 1/12
≥ uα(3.4.43)

therefore has asymptotic level α.
Let us consider the ARE of the nonparametric trend test (3.4.43) with

respect to the corresponding normal theory test (3.4.21) with vi = i, from
which it differs mainly in its replacement of the original observations Xi

by their ranks Ri. The asymptotic power β
(1)
N of the latter test against the

alternatives (3.4.28) with γ = 3 continues to be given by (Problem 4.18)

β
(1)
N → Φ

(
∆

σ
√

12
− uα

)
.(3.4.44)

The asymptotic distribution of
∑

iRi under the alternatives is more
difficult. It is discussed in Hajek and Sidak (1967) as a special case of the

theory of simple linear rank statistics, i.e., statistics of the form
N∑
i=1

bih (Ri),

and more specifically in Aiyar, Guillier, and Albers (1979) and in the papers
cited there. We shall not develop this theory here, but without proof state
that under the alternatives (3.4.38) with γ = 3,

∑
iRi −

N (N + 1)2

4
− ∆N5/2

12

∫
f2

N5/2/12
→ N (0, 1) .(3.4.45)

It follows from (3.4.45) that the power of the trend test (3.4.43) against
the alternatives (3.4.38) with γ = 3 satisfies

β
(2)
N → Φ

(
∆
∫

f2 − uα

)
,(3.4.46)

and hence from Theorem 3.4.1 that the ARE of the trend test (3.4.43) with
respect to (3.4.21) with vi = i is

e2,1 =

[
12σ2

(∫
f2
)2]1/3

.(3.4.47)

This is equal to

e2,1 (F ) = [eW,t (F )]1/3(3.4.48)

where eW,t (F ) is the ARE of the Wilcoxon to the t-test obtained in Ex-
amples 3.4.1 and 3.4.2.
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From (3.4.48), it follows that

eW,t (F ) < e2,1 (F ) < 1 when eW,t (F ) < 1

and

eW,t (F ) > e2,1 (F ) > 1 when eW,t (F ) > 1.

In particular, when F is normal, e2,1 = .98, and the lower bound (3.4.17)
is replaced by

e2,1 (F ) ≥ .95 for all F.(3.4.49)

Under the assumptions of Theorem 3.4.1, the asymptotic relative effi-
ciency is independent of both α and β. That this is not the case in all
circumstances is shown by the following example. �

Example 3.4.8 One-sided vs. two-sided test. The one-sided test
(3.1.12) of H : θ = θ0 provides good power only against alternatives
θ > θ0. If it is desired to reject H also when θ < θ0, one may want to use
the two-sided rejection rule

√
n |Tn − θ0|
τ (θ0)

≥ uα/2,(3.4.50)

which also has asymptotic level α (Problem 3.7(i)). Since this test must
guard against a larger class of alternatives, one would expect it to be less
powerful against any θ > θ0 than the one-sided test which concentrates
its power on these alternatives. The limiting power of the one-sided test
against the alternatives

θn = θ0 +
∆1√

n
(3.4.51)

is given by (3.3.8); that of the test (3.4.50) against the alternatives

θn = θ0 +
∆2√

n
(3.4.52)

is (Problem 3.7(ii))

limβ(2)n (θn) = 1 − Φ
[
uα/2 −

∆2
τ (θ0)

]
+ Φ

[
−uα/2 −

∆2
τ (θ0)

]
.

The proof of Theorem 3.4.1 shows that if the alternatives (3.4.51) and
(3.4.52) coincide and if the one-sided test based on n1 and the two-sided
test on n2 observations achieve the same power against these alternatives,
then

e2,1 = lim
n1
n2

=
∆21
∆22

.(3.4.53)
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The ratio ∆21/∆
2
2 and hence the efficiency e2,1 is determined by the fact

that the limiting power of both tests is to be equal to some given value β.
The ARE e2,1 is therefore obtained by solving the equations

Φ
(

uα − ∆1
τ (θ0)

)
= Φ

[
uα/2 −

∆2
τ (θ0)

]
− Φ

[
−uα/2 −

∆2
τ (θ0)

]
= 1 − β

for ∆1 and ∆2. The resulting efficiency depends heavily on α and β, as is
shown in Table 3.4.2. �

TABLE 3.4.2. Efficiency of two-sided to one-sided test

β
α .2 .5 .8 .95
.01 .73 .82 .86 .89
.05 .52 .70 .79 .83
.10 .32 .61 .73 .79

Example 3.4.9 Uniform. If X1, . . . , Xn are i.i.d. according to the uni-
form distribution U (0, θ) it was seen in Example 3.1.2 that the test (3.1.17)
has asymptotic level α for testing H : θ = θ0 against θ > θ0. If the maxi-
mum of the X’s is not considered a safe basis for a test—perhaps because
of fear of gross errors—one might want to consider as an alternative the
rejection region

√
n
(
2X̄ − θ0

)
θ0/

√
3

≥ uα,(3.4.54)

which also has asymptotic level α (Problem 4.19(i)). The power of this test
against a sequence of alternatives θn → θ0 is

β1 (θn) = P

[√
n
(
2X̄ − θn

)
θ0/

√
3

≥ uα −
√

n (θn − θ0)
θ0/

√
3

]
(3.4.55)

and that of the test (3.1.17)

β2 (θn) = P

[
n
(
θn − X(n)

)
θ0

≤ lα +
n (θn − θ0)

θ0

]
.(3.4.56)

The left side of the inequality in square brackets in both these expressions
tends in law to a non-degenerate limit distribution. For β1 (θn) and β2 (θn)
to tend to a common limit β (α < β < 1) therefore requires that

θn − θ0 ∼
∆1√

n
and θn − θ0 ∼

∆2
n
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for some positive ∆1 and ∆2. It follows that the ARE of the test based on
the mean to that based on the maximum is zero (Problem 4.19(ii)).

Since this is unsatisfactory, let us consider as another alternative to
(3.1.17) a third rejection region of the form

n
(
θ0 − X(n−1)

)
θ0

≤ wα.(3.4.57)

Now the limit distribution of Y = n
(
θ0 − X(n−1)

)
/θ0 has density xe−x,

x > 0, and cdf (Problem 3.12 of Chapter 2)

P (Y ≤ y) = 1 − (1 + y) e−y, 0 < y.

Hence wα is determined by

(1 + wα) e−wα = 1 − α.(3.4.58)

The power of this third test against the alternatives θn ∼ θ0 +
∆3
n

is

Pθn

[
n
(
θ0 − X(n−1)

)
θ0

≤ wα

]
=P

[
n
(
θn − X(n−1)

)
θ0

≤ wα +
n (θn − θ0)

θ0

]

=P

[
n
(
θn − X(n−1)

)
θ0

≤ wα +
∆3
θ0

]
,

which tends to (Problem 3.4.20(i))

β3 (θn) → 1 −
(

1 + wα +
∆3
θ0

)
e−wα−∆3/θ0 .(3.4.59)

The asymptotic efficiency of the test based on X(n−1) relative to that based
on X(n) is therefore

e3,2 = ∆2/∆3,

where the right side has to be calculated from the equation

e−lα−∆2/θ0 =
(

1 + wα +
∆3
θ0

)
e−wα−∆3/θ0 .(3.4.60)

The solution will depend on both α and β (Problem 4.20(ii)). �

Summary

1. The criterion proposed for comparing two tests is their asymptotic
relative efficiency (ARE), the ratio of the sample sizes required to
achieve the same asymptotic power at the same asymptotic level α.
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2. Under assumptions that are frequently satisfied, the ARE is shown
to be independent of α and β, and to be equal to the ratio of the
efficacies of the two tests.

3. Among the examples in which the assumptions of 2 hold is the com-
parison of three tests of H : θ = θ0, where θ is the center of a
symmetric distribution and the choice of design in linear regression.

4. Two examples are given in which the ARE varies with α and β.

3.5 Robustness

Many of the tests discussed in the preceding sections of this chapter deal
with hypotheses concerning parameters θ of a parametric model. The dis-
tribution of the observable random variables is completely specified except
for the value of θ and possibly same nuisance parameters. Such models
are based on assumptions that often are not reliable. One such assumption
which is pervasive throughout the discussion of the preceding sections is
the independence of the observations X1, . . . , Xn. Another is the assump-
tion of identity of their distributions. Finally, there is the assumption that
the form of the distribution is known, for example, to be normal or expo-
nential. We shall refer to these assumptions as independence, identity, and
distribution, respectively.

When the assumptions underlying the calculations of the preceding sec-
tions are not valid, neither, of course, are the resulting values of the sig-
nificance level, power, or sample size. In the present context, we are not
primarily concerned with exact validity of these quantities but rather with
asymptotic validity as n → ∞. As we shall see, asymptotic validity may
continue to hold under violation of some model assumptions or it may
be seriously affected. These asymptotic results, reinforced by spot checks
for finite n, provide a useful guide to the reliability of standard tests and
confidence intervals.

Let us consider some asymptotically normal situations of the kind treated
in Sections 3.1–3.3.

Theorem 3.5.1 Let Tn be a sequence of test statistics which under the
postulated model satisfies

√
n [Tn − µ (θ0)]

τ (θ0)
L→ N (0, 1)

so that the test (3.3.30) has nominal asymptotic level α. We shall assume
α to be < 1/2, so that uα > 0. Suppose that the postulated model is wrong
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and that under the true model,
√

n [Tn − µ (θ0))
τ ′ (θ0)

L→ N (0, 1) .(3.5.1)

(i) If α′
n denotes the actual level of (3.3.30), then α′ = limα′

n exists and
is given by

α′ = 1 − Φ
[
uα

τ (θ0)
τ ′ (θ0)

]
.(3.5.2)

Therefore

α′ � α as τ ′ (θ0) � τ (θ0) .

(ii) If τ (θ0) depends on nuisance parameters and the test (3.3.30) is re-
placed by

√
n [Tn − µ (θ0)]

τ̂n
≥ uα,

where τ̂n is a consistent estimator of τ (θ0), the conclusion (3.5.2)
remains valid.

Proof.

(i) We have

α′
n = P

[√
n (Tn − µ (θ0))

τ ′ (θ0)
≥ uα

τ (θ0)
τ ′ (θ0)

]
→ 1 − Φ

(
uα

τ (θ0)
τ ′ (θ0)

)
= α′.

If τ ′ (θ0) � τ (θ0), then α′ � 1 − Φ (uα) = α, as was to be proved.

The proof for (ii) is completely analogous. �

Table 3.5.1, which shows α′ as a function of r = τ (θ0) /τ ′(θ0), gives an
idea of how much the actual α′ of (3.5.2) differs from the nominal α when

α = .05. Thus, for r = .75 when the actual τ ′ (θ0) is
4
3
τ (θ0), α′ is about

twice the nominal level.

TABLE 3.5.1. Actual level α′ given by (3.5.2) when nominal level α is .05

r .25 .50 .75 1.0 1.1 1.2 1.5 2.0
α′ .340 .205 .109 .050 .035 .024 .007 .0005

Let us denote by F the original model in which we are testing the hy-
pothesis H : θ = θ0. For example, F might specify that X1, . . . , Xn is a
sample from N

(
θ, σ2

)
. If we do not trust the normality assumption, we

might wish to investigate the behavior of the test of H : θ = θ0 under a
broader model F ′ such as
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(i) the X’s are a sample from F (x − θ), where θ = E (Xi) and where F
is an unspecified distribution with finite variance

or

(ii) the X’s are a sample from a symmetric distribution with θ as its
center of symmetry.

More generally, we shall consider the behavior of a test of H, which was
originally derived under some F , under a broader model F ′ for which θ has
a meaningful extension. Such extensions are illustrated by the models F ′

given by (i) and (ii). We shall then be interested in the asymptotic rejection
probability α′ (F ) of the test when F ∈ F ′ and θ = θ0. A test which has
asymptotic level α under F (the nominal level) is said to be conservative
under F ′ if

α′ (F ) ≤ α for all FεF ′ with θ = θ0,

liberal if

α′ (F ) ≥ α for all FεF ′ with θ = θ0,

and robust if

α′ (F ) = α for all FεF ′ with θ = θ0.

While conservative tests provide satisfactory control of the probability of
false rejection of H ′ : θ = θ0 in F ′, a level α′ unnecessarily smaller than
α is a mixed blessing since such a test is apt to be less powerful than it
might be at the permitted level α.

Example 3.5.1 Normal variance. If X1, . . . , Xn are assumed to be i.i.d.
according to the normal distribution N

(
ξ, σ2

)
, we saw in Example 3.1.4

that (3.1.26) is a rejection region for testing H : σ = σ0 against σ > σ0 with
asymptotic level α. Suppose now that in fact the assumption of normality
is in error and that instead the X’s are i.i.d. according to some other
distribution F with variance Var (Xi) = σ2 and with 0 < Var

(
X2i
)

= λ2 <
∞. Let us denote the resulting true probability of (3.1.26) by α′

n (F ). It
follows from Example 2.4.4 that

√
n

[
1
n

∑(
Xi − X̄

)2 − σ20

]
λ

L→ N (0, 1) .(3.5.3)

The conditions of Theorem 3.5.1(i) are therefore satisfied with τ2 = 2σ40
and (τ ′)2 = λ2, the variances of X2i when Xi is normal or has distribution
F , respectively.
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Since λ can take on any value between 0 and ∞, α′ = limα′
n can take

on any value between 0 and 1/2 regardless of the nominal level α, and
the test (3.5.3) is therefore very non-robust against violations of the nor-
mality assumption. What is particularly unfortunate is that a very small
disturbance of the normal distribution which would be impossible to detect
could cause an enormous increase in Var

(
X2i
)

and therefore in α′. (In this
connection, see the note “a crucial distinction” following Example 2.1.4.)

To illustrate this non-robustness result for some actual distributions,
suppose that F , instead of being normal, is a t-distribution with ν degrees
of freedom. Table 3.5.2 shows the value of α′ = α′(F ) when α = .05 as
a function of ν. As ν → ∞, the t-distribution tends to the normal and
α′ (F ) to α = .05. The tables shows dramatically how very misleading the

TABLE 3.5.2. α′ (F ) for F = t with ν degrees of freedom

ν 5 6 7 10 20 30 50 100 ∞
α′(F ) .205 .149 .122 .0896 .0656 .0597 .0555 .0526 .0500

nominal level α can be when the assumption of normality is violated.
It is important to be clear about the distinction among three different

uses that are being made of t in this chapter.

(a) There is the t-statistic tn defined by (3.1.24). This is defined for any
random variables X1, . . . , Xn regardless of the distribution of the
X’s.

(b) There is the classical result, discovered by Student, that tn is dis-
tributed according to the t-distribution with n−1 degrees of freedom
when the X’s are i.i.d. according to a normal distribution N

(
0, σ2

)
.

(c) Finally, in Table 3.5.2, the level of the χ2-test for variance is con-
sidered when the data distribution F of the X’s is a t-distribution
(rather than normal) for various degrees of freedom.

In connection with both (b) and (c), it is useful to realize that the t-
distributions are more heavy tailed than the normal distribution and that
they tend to the normal distribution as the number ν of degrees of freedom
tends to infinity. Already for ν = 10, the density of tν visually closely re-
sembles that of the standard normal density, and this resemblance increases
with increasing ν (Problem 5.5). The choice of a t-distribution for Table
3.5.2 is unconnected with the result (b). Its common use as a possible data
distribution is motivated primarily by its familiarity and simplicity.

For an example in which F is lighter tailed than the normal distribution,
see Problem 5.3.

Since in practice normality can never be guaranteed, it seems clear that
(3.1.26) is not a practicable test, However, in the present situation, an
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easy remedy is available. All that is required is studentization of (3.5.3)
in the sense of (3.1.18), i.e., replacing the true λ by a consistent estima-
tor λ̂n. Since λ2 is the variance of X2i , a consistent estimator of λ2 is∑(

Yi − Ȳ
)2

/ (n − 1) where Yi = X2i . A rejection region with asymptotic
level α is therefore given by

√
n

[
1
n

∑(
Xi − X̄

)2 − σ20

]
√∑(

X2i − X2
)2

/ (n − 1)

≥ uα,(3.5.4)

where X2 =
∑

X2i /n. Unfortunately, the convergence to α in this case
tends to be very slow. This is illustrated in Table 3.5.3, which shows the
rejection probability α′ of the test (3.5.4) as a function of n when the
nominal level is α = .05 and when the distribution of the X’s is F =
N(0, 1). �

TABLE 3.5.3. True level α′ of (3.5.4) when α = .05 and F = N(0, 1)

n 10 50 100 500 1,000 5,000 10,000
α′ .0082 .0173 .0235 .0364 .0396 .0456 .0466

Example 3.5.2 One-sample t-test. In the situation of the preceding ex-
ample, suppose we wish to test the mean rather than the variance. Believing
the X’s to be i.i.d. normal, we reject H : ξ = ξ0 in favor of ξ > ξ0 when
(3.1.24) holds. Consider now the situation in which the X’s are i.i.d., but
instead of being normally distributed, they are a sample from some other
distribution F with mean ξ and variance σ2. Let α′

n(F ) denote the true
rejection probability when ξ = ξ0. It follows immediately from the central
limit theorem and Theorem 2.3.3 that

α′
n(F ) → α as n → ∞(3.5.5)

for any distribution F with finite variance. The level of the t-test is therefore
asymptotically robust against non-normality.

Before trusting this robustness result, we need to know how close α′
n(F )

can be expected to be to α in practice, that is, for various distributions F
and sample sizes n. Some indications are provided by the following three
examples.

(i) F is the t-distribution with ν degrees of freedom. Here and in case
(ii), F is symmetric and the level of the one-sided test is just half of
that of the two-sided test given in Tables 3.5.4 (and 3.5.5). The table
shows clearly how α′

n(F ) gets closer to α as ν increases and hence tν
gets closer to normality.
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TABLE 3.5.4. α′
n(F ) for two-sided t-test when F is a t-distribution with ν degrees

of freedom

n α ν = 3 ν = 5 ν = 9
.01 .00624 .00754 .00851

5 .05 .03743 .04241 .04553
.10 .08375 .09085 .09465
.01 .00593 .00751 .00864

10 .05 .03935 .04445 .04720
.10 .08876 .09494 .09755
.01 .00671 .00818 .00915

20 .05 .04313 .04686 .04868
.10 .09441 .09804 .09965

Source: Yuen and Murthy (1974).

(ii) F is the standard normal distribution, truncated as ±a, so that its
density is

f (x) =
{

φ(x)/ [Φ(a) − Φ(−a)] if |x| < a
0 elsewhere.(3.5.6)

The uniform distribution with mean 0 is included as the limiting case
corresponding to a → 0. The test is the two-sided t-test.

TABLE 3.5.5. α′
n(F ) for two-sided t-test; F = standard normal truncated at ±a

n α a = 3.0 a = 2.0 a = 1.0 Uniform
5 .0102 .0118 .0168 .0200
10 .0102 .0114 .0134 .0142
21

.01
.0102 .0108 .0114 .0116

31 .0102 .0104 .0108 .0106
5 .0504 .0544 .0622 .0658
10 .0504 .0522 .0538 .0542
21

.05
.0502 .0508 .0512 .0514

31 .0502 .0504 .0508 .0508
Source: Scott and Saleh (1975).

On the whole, these two tables are reassuring for the t-test when
F is symmetric. Even for distributions as far from normal as t3
(heavy-tailed) and the uniform distribution (short-tailed), the val-
ues of α′

n(F ) are relatively close to the nominal α once n is as large
as 20 or 30, although they can be far off for small values of n such as
5 or even 10.
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(iii) To give an idea of how skewness of F affects α′
n(F ), Table 3.5.6

shows α′
n(F ) for four distributions from the family of Pearson curves.

These distributions can be indexed by their values of β1 = µ3/σ
3

and β2 = µ4/σ
4, which are standard measures of skewness and kur-

tosis, respectively. (For the normal distribution, β2 = 3.) The ta-
ble is taken from a large Monte Carlo study of Posten (1979). Since
this study shows that for these distributions, α′

n(F ) varies much less
with β2 than with β1, Table 3.5.6 gives α′

n(F ) for only one value of
β2 (β2 = 4.2) and four values of β1. The Pearson curves with β1 = 0
are all symmetric, and the case β1 = 0, β2 = 4.2 corresponds to
F = t9. The distributions corresponding to β1 = .4 and .8 are skewed
to the right and their ranges are (−∞,∞) and (0,∞) respectively.
Finally, the distribution corresponding to β1 = 1.6, β2 = 4.2 is a dis-
tribution which is so strongly skewed to the right that it is J-shaped.
(For more details about the Pearson curves, see Johnson, Kotz, and
Balakrishnan (1994, Chapter 12) and Ord (1985), and the references
listed there.)

TABLE 3.5.6. α′
n(F ) for t-test at α = .05 when F is a Pearson curve with β2 = 4.2

and indicated β1

Lower tail Upper tail Double tail
n

β1 10 20 30 10 20 30 10 20 30
0.0 .048 .052 .050 .049 .049 .050 .047 .050 .050
0.4 .068 .067 .063 .035 .037 .040 .052 .054 .052
0.8 .081 .076 .070 .029 .032 .036 .060 .059 .055
1.6 .109 .091 .082 .020 .025 .030 .083 .070 .063

Source: Posten (1979).

The table shows the strong effect of skewness on the level. As is typically
the case when F is skewed to the right, α′

n(F ) > α for the lower-tail
rejection region and < α for the upper tail. The two effects balance to some
extent for the two-sided (double-tailed) test. For values of β1 as large as .8
or 1.6, the table shows that even with n = 30 observations the difference
between α′

n(F ) and α can still be substantial.
It should be pointed out that, in general, the closeness of α′

n(F ) to α
depends not only on β1 and β2 but also on other aspects of F . For a
numerical example, see Lee and Gurland (1977).

The discussion of Table 3.5.6 suggests an explanation for the very slow
convergence of the level of (3.5.4) in the normal case. If in (3.5.4) the sample
mean X̄ is replaced by the population mean ξ, the resulting test statistic
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can be written as
√

n
[
Ȳ − E (Yi)

]
√∑(

Yi − Ȳ
)2

/ (n − 1)

with Yi = (Xi − ξ)2. It therefore becomes a t-statistic with the variables
Yi having a χ2-distribution with one degree of freedom. This distribution
is extemely skewed with β1 = 2

√
2 = 2.8284, much more skewed even than

the distributions with β1 = 1.6 considered in Table 3.5.6. It is therefore
not surprising that it requires an enormous sample size for the distribution
of this t-statistic to overcome the skewness and take on an approximately
normal shape.

Since the asymptotic level of the t-test is asymptotically robust against
non-normality in the sense of (3.5.5), it is natural to ask whether the same
is true for the asymptotic power of the test. An examination of the limit
result (3.3.21) for the power in the normal case shows (Problem 5.6) that it
does not use the assumption of normality but applies equally if the X’s are
a sample from any other distribution with finite third moment. (The third
moment assumption is made to ensure applicability of the Berry-Esseen
Theorem.) The power of the t-test is therefore robust against non-normality
in the sense that even for non-normal F , it is approximately the same as
it is when F is normal. This is, however, not as desirable a property as it
seems at first sight. For although the t-test has many optimum properties
in the normal case, in other cases much higher power can often be achieved
by other tests, as we saw in the preceding section. �

The robustness properties against non-normality of the one-sample t-test
extend with only slight modifications to the two-sample problem.

Example 3.5.3 Comparing two means. Consider the normal two-sample
test with rejection region

Ȳ − X̄√
σ̂2

m
+

τ̂2

n

≥ uα(3.5.7)

discussed in Example 3.1.6, but suppose that the X’s and Y ’s, in fact,

are samples from non-normal distributions F

(
x − ξ

σ

)
and G

(
y − η

τ

)
,

where ξ = E(Xi), σ2 = Var(Xi), η = E(Yj) and τ2 = Var(Yj). Then it is
seen from Lemma 3.1.1 that the probability of (3.5.7) under the hypothesis
H : η = ξ continues to tend to α. The asymptotic level of (3.5.7) is therefore
robust against non-normality. Note that this result does not even require
the distribution of the X’s and Y ’s to have the same form. Analogously,
it is easy to see that the asymptotic power of the test (3.5.7) against the
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alternatives η = ξ +
∆√
n

is also robust against non-normality (Problem

5.6). �

Let us next consider the simple linear regression situation of Example
2.7.4.

Example 3.5.4 Simple linear regression. Let Xi (i = 1, . . . , N) be in-
dependently distributed as N

(
ξi, σ

2
)
, where ξi = α+βvi. Then it was seen

in Example 3.4.4 that the test of H : β = β0 with rejection region (3.4.21)
has asymptotic level α.

Let us now consider the actual level of this test when in fact

Xi = α + βvi + Ei,(3.5.8)

where the E’s are i.i.d., not necessarily normal, with zero mean and fi-
nite variance σ2. It was seen in Example 2.7.6 that then the numerator of
(3.4.21) satisfies

(
β̂ − β

)√∑
(vi − v̄)2 L→ N

(
0, σ2

)
,(3.5.9)

provided

max (vi − v̄)2∑
(vj − v̄)2

→ 0.(3.5.10)

We shall now show that the square of the denominator of (3.4.21) tends in
probability to σ2. Combining these two facts, we see that under the model
(3.5.8), the asymptotic level of the test (3.4.21) continues to be α if (3.5.10)
holds, and that then the level of the test (3.4.21) is therefore robust against
non-normality.

The distribution of the denominator is independent of α and β (Problem
5.12) and we can therefore assume without loss of generality that α =
β = 0 so that the X’s are i.i.d. with mean zero and variance σ2. From the
definition of α̂ and β̂, it is seen that (Problem 5.13)

∑(
Xi − α̂ − β̂vi

)2
=
∑(

Xi − X̄
)2 − β̂2

∑
(vi − v̄)2 .(3.5.11)

Since ∑(
Xi − X̄

)2
/ (N − 2) P→ σ2

by Example 2.1.3, it remains only to show that

β̂2
∑

(vi − v̄)2 / (N − 2) P→ 0,(3.5.12)
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which follows immediately from (3.5.9). Now

Var
[
β̂
√∑

(vi − v̄)2
]

= σ2(3.5.13)

by (2.7.11), and it therefore follows that the asymptotic level of (3.4.21)
continues to be α under model (3.5.8). �

The robustness question of Example 3.5.2 can be viewed in another way.
If the true distribution F of the X’s is not known to be normal, the prob-
lem should perhaps be treated non-parametrically, that is, by testing the
hypothesis

H∗ : ξ = ξ0(3.5.14)

in the model

X1, . . . , Xn i.i.d. according to F ∈ F(3.5.15)

with ξ = E (Xi) and F the class of all distributions with finite variance.
From this point of view, the level of the t-test of H∗ is

α∗
n = sup

F∈F0

α′
n (F ) ,(3.5.16)

where F0 is the family of distributions F in F with ξ = ξ0 and the question
is whether α∗

n → α as n → ∞.
Closely related is the question of whether the convergence in (3.5.5) is

uniform in F , i.e., whether for any ε > 0, there exists n0 (independent of
F ) such that

|α′
n (F ) − α| < ε for all n > n0.

It follows in fact from Lemma 2.6.1 that uniform convergence in (3.5.5)
implies α∗

n → α. Unfortunately, these desirable properties do not hold. We
have instead

Lemma 3.5.1 For the t-test in its approximate form (3.1.24) or given
exactly in the note following Example 3.1.3,

inf
F∈F0

αn (F ) = 0 and sup
F∈F0

αn (F ) = 1(3.5.17)

holds for every n ≥ 2.

Proof. To prove the result for the sup, consider the subclass F1 of F
consisting of the distributions

F = γG + (1 − γ)H, 0 ≤ γ ≤ 1,(3.5.18)
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where G = N (µ1, 1) and H = N (µ2, 1) with γµ1 + (1 − γ)µ2 = ξ0. Then
for any set S in n-space,

PF [(X1, . . . , Xn) ∈ S] =
∫
· · ·
S

∫
Π [γg (xi) + (1 − γ)h (xi)] dx1 · · · dxn

≥ γn
∫
· · ·
S

∫
g (x1) · · · g (xn) dx1 · · · dxn = γnPG [(X1, . . . , Xn) ∈ S] ,

where g and h denote the densities of G and H, respectively.
If S is the rejection region of the t-test, then it is easy to see that

PG [(X1, . . . , Xn) ∈ S], which is the power of the t-test against the alterna-
tive G, tends to 1 as µ1 → ∞ (Problem 5.9(i)). On the other hand, γn → 1
as γ → 1. Thus by choosing µ1 and γ sufficiently large, the rejection prob-
ability of the t-test under F1 can be made arbitrary close to 1 and this
proves the second statement in (3.5.17). The proof of the result for the inf
is completely analogous (Problem 5.9(ii)). �

Lemma 3.5.1 thus leads to the disappointing conclusion that there exists
no sample size n for which αn (F ) ≤ α + ε for all F ∈ F . No matter how
large n is chosen, there will exist distributions F ∈ F for which αn(F ) is
arbitrary close to 1. While this fact should not be forgotten, Tables 3.5.3–
3.5.5 nevertheless suggest that for the distributions commonly encountered,
the nominal level of the t-test provides a reasonable approximation to the
actual level. �

Note: The conclusions of Lemma 3.5.1 hold not only for the t-test but also
(with the obvious modifications) for the tests of Examples 3.5.3, and 3.5.4.

In the examples considered so far, we examined the robustness of some
standard normal theory tests against violation of the normality assumption.
We next examine what happens to the level of such a test when the as-
sumption of independence is violated. This assumption is difficult to check
but frequently is not valid (for example, because measurements taken close
together in time or space often exhibit dependence). (For further discussion
of this assumption and the importance of guarding against its violations
see, for example, Cochran (1968) and Kruskal (1988).)

Here we give just a few illustrations. In each of these, the test statistic
will be a standardized or studentized mean such as in (3.1.22) or (3.1.24)
based on identically distributed variables X1, . . . , Xn with E (Xi) = θ and
Var (Xi) = σ2 < ∞, for which

√
n
(
X̄ − θ

)
√

Var
[√

n
(
X̄ − θ

)] → N (0, 1) .(3.5.19)
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Let us denote the correlation coefficient of Xi, Xj by ρij and the covariance
by γij = ρijσ

2. Then the square of the denominator of (3.5.19) is given by

Var
[√

n
(
X̄ − θ

)]
= σ2


1 +

1
n

∑∑
i 	=j

ρij


 .(3.5.20)

We are not interested in extreme forms of dependence such as, for exam-
ple, X1 = X2 = · · · = Xn, but, instead, shall restrict attention to cases in
which the correlations satisfy

1
n2

n∑
i=1

n∑
j=1

ρij → 0.(3.5.21)

This condition holds in particular when the ρ’s satisfy

1
n

∑∑
i 	=j

ρij → γ(3.5.22)

for some finite γ. Examples are given in Section 2.8. Note that γ is not the
average of the ρij and hence that |γ| is not necessarily ≤ 1.

Example 3.5.5 The one-sample t-test. (Effect of dependence). In
studying the effect of dependence on the t-test, we shall retain the assump-
tion of normality of the X’s and the identity of their distributions. Let
us assume then that (X1, . . . , Xn) have a joint multivariate normal distri-
bution (see Chapter 5, Section 4) with the marginal distribution of each
Xi being N(ξ, σ2). In analogy with (3.5.21), which implies that X̄ → ξ in
probability (see (2.2.21)), we shall also assume that

1
n2

∑∑
Correlation

(
X2i , X

2
j

)
→ 0(3.5.23)

so that

1
n

∑
X2i − X̄2

P→ σ2.(3.5.24)

Under these conditions, it turns out that the asymptotic behavior of the
t-test for testing the hypothesis H : ξ = ξ0 is determined by the limiting
behavior of

∑∑
ρij/n, that is, by the value of γ. �

Theorem 3.5.2 Let (X1, . . . , Xn) have a joint multivariate normal dis-
tribution with E (Xi) = ξ, Var (Xi) = σ2, and satisfying (3.5.22) and
(3.5.23). Then

(i) the distribution of the t-statistic (3.1.24) under H tends to the normal
distribution N(0, 1 + γ);
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(ii) the asymtotic level of the t-test (3.1.24) is

α′ = 1 − Φ
(

uα√
1 + γ

)
.(3.5.25)

Proof. Since the X’s are jointly normal, the numerator
√

n
(
X̄ − ξ0

)
of t is

also normal, with mean 0 and variance given by (3.5.20); it therefore tends
in law to N

(
0, σ2 (1 + γ)

)
. Consider next the denominator of t. Since it is

independent of ξ, assume without loss of generality that ξ = 0. Then the
second term on the right side of

1
n − 1

∑(
Xi − X̄

)2 =
1

n − 1

∑
X2i −

n

n − 1
X̄2

tends in probability to 0 while the first term by (3.5.23) tends to σ2. This
completes the proof of (i). Part (ii) is now an obvious consequence. �

It follows from this result that the level of the t-test is robust against
situations in which the dependence is so weak that

1
n

∑∑
i	=j

ρij → 0,(3.5.26)

a condition that will typically not hold unless the ρij are allowed to depend
on n and to tend to 0 as n → ∞.

To illustrate Theorem 3.5.2, we consider two stationary models with
dependent observations, which were formulated in Section 2.8.

Example 3.5.6 Moving averages. Suppose that Z1, Z2, . . . are i.i.d.
with distribution N

(
ξ, σ20

)
and that

Xi =
Zi + · · · + Zi+m

m + 1
.(3.5.27)

To see whether the t-test is still applicable, we only need to evaluate γ from
(3.5.22) (Problem 5.18). Alternatively, we can use the identity

∑
i=1

Xi =
Z1 + 2Z2 + · · · + mZm

m + 1
+ (Zm+1 + · · · + Zn)

+
mZn+1 + · · · + 2Zn+m−1 + Zn+m

m + 1

(3.5.28)

to see that
√

n
(
X̄ − ξ

)
has the same limit distribution as

√
n
(
Z̄ − ξ

)
and

hence that
√

n
(
X̄ − ξ

) L→ N
(
0, σ20

)
= N

(
0, (m + 1)σ2

)
.



200 3. Performance of Statistical Tests

It follows that

α′ = 1 − Φ
(

uα√
m + 1

)
> α.(3.5.29)

For example, when m = 3 and the nominal level is α = .05, it is seen from
Table 3.5.1 that α′ = .205. In the present case, it is, of course, easy to
correct for this problem by replacing the critical value uα in (3.1.24) by
uα

√
m + 1. �

Example 3.5.7 First order autoregressive process. Instead of (3.5.27),
suppose that the X’s are given by the stationary process (2.8.13) with
|β| < 1 so that

Var
[√

n
(
X̄ − θ

)]
→ σ2

1 + β

1 − β
,(3.5.30)

and hence that

1 + γ =
1 + β

1 − β
.(3.5.31)

Then the asymptotic level of the t-test can take on any value between 0
and 1/2 as β varies from −1 to +1. Thus under this model too, the t-test
is not robust. �

Example 3.5.8 Markov chains. In a sequence of binomial trials, let
Xi = 1 or 0 as the ith trial is a success or failure and reject H : p = p0 in
favor of p > p0 if

√
n
(
X̄ − p0

)
√

p0q0
≥ uα.(3.5.32)

To illustrate the behavior of this test under dependence, suppose that the
dichotomous trials form a stationary Markov chain. As was discussed in
Example 2.8.3, then

√
n
(
X̄ − p

)
√

pq

L→ N

(
0,

1 + π1 − π0
1 − π1 + π0

)
,(3.5.33)

so that in the notation of Theorem 3.5.1,

τ ′2(p0)
τ2(p0)

=
1 + π1 − π0
1 − π1 + π0

.(3.5.34)

We must now distinguish two cases.
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(a) If

π0 < π1,(3.5.35)

then (Problem 5.21)

π0 < p < π1,(3.5.36)

that is, the trials are positively dependent in the sense that success
on the (i − 1)st trial increases the probability of success on the ith

trial. In this case, τ ′(p0) > τ(p0) and the level of the test (3.5.32)
is liberal. For any fixed p = p0, the ratio τ ′(p0)/τ(p0) can be made
arbitrarily large by letting π0 → 0 and π1 → 1 (Problem 3.5.22), in
which case, the level of the test by (3.5.2) tends to 1/2.

(b) On the other hand, if

π1 < π0,(3.5.37)

we have

π1 < p < π0(3.5.38)

so that τ ′(p0) < τ(p0) and the test (3.5.35) is conservative. By letting
π1 → 0 and π0 → 1, we get τ ′(p0)/τ(p0) → 0, in which case, the level
of the test tends to 0.

We see that under the Markov model, the test (3.5.35) is robust (i.e.,
τ ′(p0)/τ(p0) = 1) if and only if π1 = π0, which implies π1 = π0 = p
and hence independence of the X’s. Weak dependence can, of course,
be modeled by

π1 = π1n = p + εn with εn → 0,(3.5.39)

in which case

π0 = π0n = p − p

q
εn(3.5.40)

by (2.8.23). Then the ratio (3.5.34) tends to 1, and the level of the
test tends to α.

If it were known that the only kind of dependence possible was that con-
sidered in this example, one could studentize (3.5.33) by replacing
(1 + π1 − π0) / (1 − π1 + π0) by (1 + π̂1 − π̂0) / (1 − π̂1 + π̂0), where π̂0 and
π̂1 are consistent estimator of π0 and π1, respectively. Unfortunately, it is
only rarely the case that this simple Markov dependence is the only kind
possible. �
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Summary

1. If the assumed model is wrong, use of the critical values determined
in Section 3.1 may lead to an asymptotic level α′ different from the
nominal level α. If α′ = α, the level of the test is said to be robust
against the deviation from the assumed model under consideration.

2. The normal theory tests of a mean, the difference of two means, and of
regression coefficients are robust against non-normality. On the other
hand, the normal tests of a variance or the ratio of two varicances is
non-robust and, in fact, is extremely sensitive to the assumption of
normality.

3. Although for any fixed distribution F with mean ξ0 and finite vari-
ance, the level αn(F ) of the one-sample t-test of H : ξ = ξ0 tends
to α as n → ∞, the maximum level supF αn(F ) is 1 for every fixed
n ≥ 2. Thus, despite the eventual robustness of the level, for each n0
there exist distributions F for which the true level αn(F ) is far from
the nominal α.

4. The problem of robustness arises not only for non-normality but also
for other possible departures from the assumed model, for example,
from independence. In particular Student’s t-test is typically non-
robust against dependence unless that dependence is very weak.

3.6 Problems

Section 1

1.1 Refine (3.1.13) and (3.1.14) by using the continuity correction in
(3.1.12).

1.2 Make a table of the exact value of (a) the probability of (3.1.14)
and (b) the corresponding probability for the test of Problem 1.1, for
α = .01, .05, .1 and a number of values of λ0 and n.

1.3 Let X be binomial b (p, n) and suppose the hypothesis H : p = p0 is
rejected in favor of K : p > p0 when X ≥ Cn. Derive formulas analo-
gous to (3.1.13) and (3.1.14), with and without continuity correction.

1.4 Make a table for the situation of Problem 1.3 analogous to that asked
for in Problem 1.2.

1.5 If Y has the negative binomial distribution (defined in Table 1.6.2),
then by Problem 4.12 of Chapter 2,(

Y − mq

p

)
p

√
mq

L→ N (0, 1) .(3.6.1)



3.6 Problems 203

Use this fact to obtain a test of H : p = p0 vs. K : p > p0 which for
large m has the approximate level α. (For a review of more accurate
approximations, see Johnson, Kotz, and Kemp (1992, Sect. 5.6).)

1.6 (i) Make a table giving the exact level of the test (3.1.17) for θ0 = 1
and α = .01, .05, .1 and various values of n.

(ii) Make a table comparing the exact probability of (3.1.27) with the
nominal level for σ0 = 1 and α = .01, .05, .1 and various values of n.
Determine how large n has to be before the approximation becomes
satisfactory.

1.7 Show that the asymptotic level of the test (3.1.27) remains α if the
factor 1/n on the left side is replaced by 1/(n − 1).

1.8 Let X1, . . . , Xn be i.i.d. according to the exponential distribution
E (ξ, a).

(i) Determine a test of H : a = 1 against a > 1 with asymptotic
level α, based on

∑[
Xi − X(1)

]
, analogous to the test (3.1.27) in

the normal case.

(ii) Determine a test of H : ξ = ξ0 against ξ > ξ0 with asymp-

totic level α, based on
(
X(1) − ξ0

)
/

1
n

∑[
Xi − X(1)

]
, analogous to

(3.1.24).

1.9 If Tn/T
′
n
P→ 1, and T ′

n converges in probability to a finite limit �= 0,
then Tn − T ′

n
P→ 0.

1.10 In Example 3.1.1, show that

(i) the rejection region

2
√

n
(√

X̄ −
√

λ0

)
≥ uα(3.6.2)

for testing H : λ = λ0 against λ > λ0 has asymptotic level α;

(ii) the tests (3.1.14) and (3.6.2) are asymptotically equivalent.

[Hint (i): Use Example 2.5.2.]

1.11 In generalization of the preceding problem, suppose that Tn is a test
statistic satisfying (3.1.7) and that f is a real-valued function for
which f ′(θ0) exists and is �= 0.

(i) The rejection region
√

n [f (Tn) − f (θ0)]
τ (θ0) f ′ (θ0)

≥ uα(3.6.3)

has asymptotic level α for testing H : θ = θ0.
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(ii) The tests (3.1.12) and (3.6.3) are asymptotically equivalent.

[Hint: Use equation (2.5.4).]

1.12 If the sequence of rejection regions Rn is asymptotically equivalent
to R′

n, and R′
n to R′′

n, show that Rn is also asymptotically equivalent
to R′′

n.

1.13 Use the following (or some other) example to show that (3.1.39) is
not enough to guarantee (3.1.42).

Example. Let X1, . . . , Xn be i.i.d. N
(
ξ, σ2

)
and let

Tn =
√

nX̄√
1

n − 1

∑(
Xi − X̄

)2 +
1
na

∑(
Xi − X̄

)2
, a > 1.

Consider the test of H : ξ = 0, which rejects when Tn ≥ uα.

1.14 In Example 3.1.5(i) (continued) show that

(i) the test with rejection region
√

Ȳ −
√

X̄

1
2

√
1
m

+
1
n

≥ uα(3.6.4)

has asymptotic level α;

(ii) (3.6.4) is asymptotically equivalent to (3.1.34) and (3.1.47).

1.15 The exact probability of (3.1.34), (3.1.47), and (3.6.4) under H : λ =
µ depends on µ. Use simulation to make a table of this value and
graph it as a function of µ for each of these tests when (i) m = 5,
n = 10; (ii) m = n = 10.

1.16 In Example (3.1.5(i)) (continued), when µ = λ the conditional distri-
bution of

∑
Yj given

∑
Xi+

∑
Yj = t is the binomial distribution

b(p, t) with p = n/(m + n). A small-sample level α test rejects when∑
Yi > C

(∑
Xi +

∑
Yj

)
, where C(t) is the smallest value for

which P [Y ≥ C(t)] ≤ α when Y has the distribution b(p, t). As m and
n → ∞,

∑
Xi +

∑
Yj

P→ ∞ and an approximate large-sample test
is obtained by replacing b(p, t) by its normal approximation. Show
that the resulting test coincides with (3.1.47).

1.17 Let X1, . . . , Xm and Y1, . . . , Yn be i.i.d. according to exponential
distributions E (ξ, a) and E (η, b), respectively. Find a two-sample
test of H : η = ξ against η > ξ analogous to the one-sample test of
Problem 1.8(ii), which has asymptotic level α.
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1.18 Let X and Y be independent binomial b(p,m) and b(π, n), respec-
tively.

(i) Using the normal approximation to the binomial, find a test of
H : p = π against p < π analogous to (3.1.47).

(ii) Show that the resulting test is asymptotically equivalent to (3.1.35).

Note: Detailed comparisons of the two tests are given by Cressie
(1978) and Andrés et al (1992).

1.19 In generalization of Theorem 3.1.1, one might conjecture that if the
tests (3.1.45) both have asymptotic level α and if, in addition,

Vn/V
′
n → 1 in probability,(3.6.5)

then the two tests would be asymptotically equivalent. That this is
not so can be seen by letting Vn and V ′

n be independently identically
distributed with the distribution which assigns probability α and 1−α

respectively to the points uα +
1
n

and uα − 1
n

.

1.20 Let X1, . . . , Xn be i.i.d. according to the uniform distribution
U (ξ − τ, ξ + τ).

(i) If ξ is known, let the hypothesis H : τ = 1 be rejected in favor of
τ > 1 when

max |Xi − ξ| > 1 +
1
n

log (1 − α) .(3.6.6)

Show that this test has asymptotic level α.

(ii) If ξ is unknown, replace ξ by ξ̂ =
[
X(1) + X(n)

]
/2. Show that the

test (3.6.6) with ξ replaced by ξ̂ no longer has asymtotic level α.

[Hint (ii): Note that

max
∣∣∣∣Xi −

X(1) + X(n)

2

∣∣∣∣ = 1
2
[
X(n) − X(1)

]
,

and use the fact (to be proved in Chapter 5) that if Y1, . . . , Yn are
i.i.d. U (0, τ), then

P

[
a

n
< Y(1) < Y(n) < τ − b

n

]
→ e−a/τ · e−b/τ .(3.6.7)

Note. This problem shows that replacement of a parameter by a
consistent estimator may change the asymptotic distribution of a test
statistic.
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1.21 Let X1, . . . , Xn be i.i.d., let p−, p0, p+ denote the probability that
Xi < 0,= 0, > 0, respectively, and consider the problem of testing

H : p− = p+

against the alternatives p− < p+.

(i) If N−, N0, N+ denote the number of X’s < 0, = 0, > 0, respec-
tively, then (

N+ +
1
2
N0 −

n

2

)/√
n

4
(1 − p0)

L→ N(0, 1).(3.6.8)

(ii) Replace the unknown p0 by a consistent estimator to determine
a test of H with asymptotic level α.

[Hint: Let Yi = 1, 1/2, 0 as Xi > 0, = 0, < 0, respectively, so that
N+ + 1

2N0 =
∑

Yi.

Note that under the hypothesis p+ +
1
2
p0 =

1
2

].

Section 2

2.1 Prove (3.2.3) for the population model that Z1, . . . , ZN are i.i.d. ac-
cording to some continuous distribution.

[Hint: Use the facts that the joint distribution of (Z1, . . . , Zn) is sym-
metric in its N variables and that the ranks s1, . . . , sn are attained
by some subset (Zi1 , . . . , Zin) of (Z1, . . . , ZN ).]

(Note that the result also follows from the fact that (3.2.3) is valid
in the randomization model (3.2.6).)

2.2 Verify the identity (3.2.8).

[Hint: The number of X’s smaller than the smallest Y is S1−1, that
smaller than the second smallest Y is S2 − 2, and so on.]

2.3 (i) Determine the range (i.e., the set of possible values) of

(a) Ws,

(b) WXY .

(ii) In the light of (i), why is it preferable to table the distribution of
WXY rather than that of Ws.

2.4 For u > 0, show that (3.2.20) is equivalent to the inequality in square
brackets in (3.2.19).

[Hint: Use the identities

Ȳ − aN =
m

n

(
Ȳ − X̄

)
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and∑
(aNj − aN ·)

2 =
∑

X2i +
∑

Y 2j − 1
N

(∑
Xi +

∑
Yj

)2
.]

2.5 In Example 3.2.2, suppose that m = n = 4, α = .1, and the values
a1, . . . , aN , when ordered, are

.93, 1.08, 1.56, 1.78, 2.15, 2.34, 3.01, 3.12.

(i) Determine the critical value K (a1, . . . , aN ) of (3.2.14) and com-
pare it with uα.

(ii) Obtain the value of (3.2.17).

2.6 Prove (3.2.30) by showing that dni
= i (i = 1, . . . , n) satisfies (2.7.16)

or (2.7.17).

2.7 In Example 3.2.6, suppose that N = 7, α = .1, and the values of
a1, . . . , aN , when ordered, are .21, .25, .41, .47. .49, .58, .80.

(i) Determine the critical value of (3.2.35) and compare it with uα.

(ii) Obtain the value of (3.2.37).

(iii) How do the results of (i) and (ii) change when the observation
.80 is changed to .60?

2.8 For uα > 0, show that (3.2.41) is equivalent to the inequality in the
square bracket of (3.2.40).

2.9 Use (2.8.45), (2.8.49), and the identity (3.2.8) to obtain the expecta-
tion and variance of WXY .

2.10 (i) If Z1, . . . , ZN are i.i.d. with E (Zi) = σ2, and E
(
Z4i
)

< ∞, then

maxZ2i∑
Z2i

→ 0 in probability.

(ii) Under the assumptions of (i), suppose that in addition (3.2.36)
holds for every sequence (aN1, . . . , aNN ) satisfying (3.2.37). Then

K (Z1, . . . , ZN ) → uα in probability.

[Hint (i) Since
∑

Z2i /N
P→ σ2, it is enough to show that maxZ2i /N

P→ 0. Now P [maxZ2i /N > ε] = P [Z2i > εN at least for one i] ≤
N P

(
Z2i > εN

)
, and the result follows from Chebyshev’s inequality.

(ii) Given ε > 0, there exists δ > 0 such that |K (aN1, . . . , aNN ) − uα|

< ε if
max a2i∑

a2i
< δ. ]
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2.11 (i) If Z1, . . . , ZN are i.i.d. with E
(
Z4i
)

< ∞, then

max
(
Zi − Z̄

)2
∑(

Zi − Z̄
)2 → 0 in probability.(3.6.9)

(ii) Under the assumptions of (i), assume (3.2.16) and suppose that, in
addition, (3.2.15) holds for every sequence (aN1, . . . , aNN ) satisfying
(3.2.17). Then

K (Z1, . . . , ZN ) → uα in probability.

[Hint: Without loss of quantity, assume E (Zi) = 0. Use Problem
2.10(i) and the fact that max

∣∣Zi − Z̄
∣∣ ≤ 2 max |Zi|. ]

Section 3

3.1 Prove consistency of the test (i) (3.1.14); (ii) (3.1.24); (iii) (3.1.17).

3.2 Prove consistency of the tests (i) (3.1.34); (ii) (3.1.35).

3.3 (i) Compare the entries of Table 3.3.1 with the corresponding values
when the continuity correction is used.

(ii) Prepare the corresponding table for the case that n = 400 instead
of 100.

3.4 Let X1, . . . , Xn be i.i.d. according to the Poisson distribution P (λ).
Show that

τ̂n = X̄ + 3
√

n
(
X̄ − λ0

)
tends in probability to λ0 when λ = λ0 but not when λ = λ0 +

∆
4
√

n
.

3.5 Make a table comparing the approximation (3.3.19) with the corre-
sponding exact power.

3.6 Make a table comparing (3.3.22) with the corresponding exact power
of the t-test.

3.7 In Theorem 3.3.3, replace the one-sided test (3.1.3) of H : θ = θ0 by
the two-sided test with rejection region

√
n |Tn − θ0|
τ (θ0)

≥ uα/2.(3.6.10)

(i) Show that this test has asymptotic level α.
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(ii) Show that its power against the alternatives (3.3.7) satisfies

βn (θn) → 1 − Φ
[
uα/2 −

∆
τ (θ0)

]
+ Φ

[
−uα/2 −

∆
τ (θ0)

]
.(3.6.11)

(iii) Determine whether the test is consistent against the alternatives
θ �= θ0.

3.8 Make a table showing (3.3.8) and (3.6.11) as functions of ∆/τ (θ0).
This shows the approximate loss of power when it is necessary to use
a two-sided rather than a one-sided test.

3.9 (Negative binomial) Obtain formulas for the limiting and the ap-
proximate power of the test of Problem 1.5 analogous to (3.3.14) and
(3.3.15).

3.10 (Poisson) Obtain the asymptotic power of the test (3.6.2) and com-
pare it with that given in (3.3.18) for the test (3.1.14).

3.11 (Uniform) Determine the limiting power of the test (3.1.17) against
the alternatives

(i) θn = θ0 +
∆√
n

and (ii) θn = θ0 +
∆
n

.

3.12 Assuming that the conditions of Theorem 3.3.3 hold with Tn, θ, and
τ(θ) replaced by f (Tn), f(θ), and τ(θ)f ′(θ), respectively, determine
the limiting power of the test (3.6.3) against the alternatives (3.3.7).

3.13 (Exponential) Determine the asymptotic power of the tests of Prob-
lems 1.8.

3.14 (i) Determine the asymptotic power of the test (3.1.32) applied to
the normal distributions assumed in Example 3.1.6.

(ii) Assuming σ = τ , determine the asymptotic power of the test
based on (3.1.36) and compare it with that obtained in (i).

3.15 (Poisson two-sample) Show that (3.3.27) remains valid if (3.1.34) is
replaced by

(i) (3.1.47);

(ii) (3.6.4).

3.16 Let X and Y be idependently distributed according to the binomial
distributions b(p,m) and b(π, n), respectively. Determine the asymp-
totic power of the two tests of Problem 1.18 against the alternatives
π = p + ∆/

√
N .

3.17 Translate (3.3.14) into a result concerning θ rather than p and com-
pare it with (3.3.37).
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3.18 Show that (3.3.37) continues to hold under the assumptions of Note
2 for Example 3.3.5.

3.19 Determine sample sizes n such that the following tests based on n
observations have approximate power β.

(i) (3.1.14) (Poisson);

(ii) (3.1.17) (Uniform);

(iii) The test of Problem 1.5 (Negative binomial);

(iv) The two tests of Problem 1.8 (Exponential);

(v) The sign test of Example 3.3.5.

[Hint: Use the results of (i) Example 3.3.2; (ii) Problem 3.11; (iii)
Problem 3.9; (iv) Problem 3.13; (v) Example 3.5.]

3.20 Show that
λ

ρ
+

µ

1 − ρ
(0 < ρ < 1) is minimized by (3.3.58).

3.21 Determine approximate total sample sizes N = m + n analogous to
(3.3.57) for the following two-sample tests:

(i) The test of Problem 3.14(i) (Behrens-Fisher problem);

(ii) The tests of Problems 1.18 and 3.16 (Binomial).

3.22 Let X1, . . . , Xm and Y1, . . . , Yn be independently distributed accord-
ing to the exponential distributions E (ξ, a) and E (η, b), respectively.

(i) Determine a test of H : η = ξ with asymptotic level α.

(ii) Obtain the limiting power of the test of (i) against a suitable
sequence of alternatives.

[Hint: Problems 1.8 and 3.19(iv).]

3.23 Calculate
∫

f2 (x) dx for the following distributions:

(i) Double exponential;

(ii) Logistic;

(iii) Exponential;

(iv) Uniform.

3.24 Use (3.3.52) to obtain an approximate formula for the sample size
m = n required by the Wilcoxon test of Examples 3.2.1 and 3.3.8 to
achieve power β against the alternative (3.3.45).

3.25 (i) Use (3.3.44) to obtain an approximation to the power of the one-
sample Wilcoxon test analogous to (3.3.52).

(ii) Determine a sample size N such that the Wilcoxon test (3.3.38)
has approximate power β against the alternative of Example 3.3.5.
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3.26 Assuming (3.6.11) to hold, determine the approximate sample size
needed to get power β against an alternative θ for the test (3.6.10)
when α = .05 and

(i) β = .8,

(ii) β = .9,

(iii) β = .95.

[Hint: Let Ψα(c) denote the area under the normal curve between
−uα/2 − c and +uα/2 − c, and solve the equation Ψα(c) = 1 − β
numerically.]

3.27 In Example 3.3.8, calculate the entries for Table 3.3.3 using the for-
mula obtained by specializing (3.3.59) instead of formula (3.3.55).

Section 4

4.1 In Example 3.4.1 Show that of the three quantities (3.4.7), the first,
second, and third is largest when F is respectively normal, double
exponential, and logistic.

4.2 If X has a distribution F that is symmetric about 0, show that if X
is replaced by

(i) aX,

(ii) X + b

the efficiencies (3.4.13)–(3.4.15) are unchanged.

4.3 Verify the efficiencies (3.4.16).

4.4 Evaluate the efficiencies (3.4.13)–(3.4.15) when F is

(i) double exponential,

(ii) logistic,

(iii) uniform.

4.5 If F (x) = (1 − ε)Φ(x) + εΦ(x/τ) with ε < 1/2, make tables showing
how each of the efficiencies (3.4.13)–(3.4.15) varies as a function of ε
and τ .

4.6 In the preceding problem, determine what happens to each of the
efficiencies (3.4.13)–(3.4.15) as τ → ∞.

4.7 Evaluate each of the efficiencies (3.4.13)–(3.4.15) when F is the t-
distribution with ν degrees of freedom.

[Hint: Var(tν) = ν/(ν − 2) if ν ≥ 2 and = ∞ if ν = 1.]

4.8 Verify (3.4.19).
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4.9 (i) Verify (3.4.24).

(ii) Determine the approximate sample size required for the test
(3.4.21) to achieve power λ against a fixed alternative of β > β0.

4.10 (i) If 0 ≤ v1, . . . , vN ≤ 1 show that the maximum value of
∑

(vi −
v̄)2 ∼ N/4.

(ii) If vi = i/(N − 1), i = 0, . . . , N − 1, show that
∑

(vi − v̄2) ∼ N

12
.

4.11 Show that the ARE (3.4.25) of the 4-point design with N/4 obser-
vations at each of 0, 1/3, 2/3, 1 to the 2-point design with N/2
observations at each of 0, 1 is 5/9.

4.12 (i) Solve Problem 4.10(i) when the v’s are only required to satisfy
|vi| ≤ 1 for all i.

(ii) Solve Problem 4.10(ii) when the v’s are equally spaced on (−1, 1)
instead of on (0, 1).

4.13 Under the assumption of Example 3.4.4, consider the problem of test-
ing H : α = α0 against K : α > α0.

(i) Show that the rejection region

(α̂ − α0)
√

N
∑

(vj − v̄)2 /
∑

v2j√∑(
Xi − α̂ − β̂vi

)2
/ (N − 2)

≥ uα(3.6.12)

has asymptotic level α when the Xi − α − βvi are i.i.d. according to
any distribution F with 0 mean and a finite variance. (The use of
the letter α to denote both the asymptotic level of the test and the
regression coefficient in (3.4.20) is unfortunate but should cause no
confusion.)

(ii) Solve the two parts of Problem 4.9 for the test (3.6.12), i.e., for
α instead of β.

(iii) Obtain the efficacy of the tests (3.6.12).

(iv) If −1 ≤ vi ≤ 1 for i = 1, . . . , N , determine for what choices of
the v’s the test (3.6.12) will have maximum efficacy.

[Hint: For (i): Problem 2.7.11 and formula (3.5.11).]

4.14 Verify (3.4.36).

4.15 When the vi satisfy (3.4.37), show that the power of the test (3.4.21)
against the alternatives (3.4.38) tends to (3.4.24).

4.16 Show that (2.7.24) holds when vi = ai.
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4.17 The expectation and variance of
∑

iRi under the hypothesis H of
Example 3.4.7 are given by (3.4.41) and (3.4.42), respectively.

[Hint: Under H, Ri takes on the values 1, . . . , N with probability
1/N each.]

4.18 Verify (3.4.44).

4.19 (i) Show that the test (3.4.54) has asymptotic level α.

(ii) Show that the ARE of the test (3.4.54) to that given by (3.1.17)
is zero.

4.20 (i) Verify (3.4.59).

(ii) Make a table analogous to Table 3.4.2 for the ARE of (3.4.57) to
(3.1.17).

4.21 If X1, . . . , Xn are i.i.d. according to the uniform distribution U(0, θ),
determine the distribution of n

[
θ − X(n−2)

]
/θ where X(1) < · · · <

X(n) are the ordered X’s.

[Hint: P
[
θ − X(n−2) > y/n

]
= pn + npn−1q +

(
n

2

)
pn−2q2, where

p = P

[
Xi ≤ θ − θy

n

]
.

4.22 For testing H : θ = θ0 against θ > θ0 under the assumptions of
Problem 4.21, consider the rejection region

n
(
θ0 − X(n−2)

)
θ0

≤ w′
α.(3.6.13)

(i) In analogy to (3.4.58), find an equation determining w′
α.

(ii) Find the ARE of the test (3.6.13) with respect to (3.4.57) and to
(3.1.17).

(iii) Make a table analogous to Table 3.4.2 showing the AREs of part
(ii).

4.23 Let {an} and {bn} be two sequences of positive numbers tending to
∞ for which

log bn/ log an → A.

(i) If A > 1, then bn/an → ∞; if 0 < A < 1, then bn/an → 0.

(ii) If A = 1 and bn/an tends to a limit l, then l can have any value
0 ≤ l ≤ ∞.

[Hint (i): If bn = anδn, then

log bn
log an

= 1 +
δn

log an
→ A.
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(ii) See what happens when (a) δn = k, independent of n, (b) when
δn = log an .]

4.24 Suppose log n (Tn − θ0) /τ (θ0) tends to a continuous strictly increas-
ing limit distribution H when θ = θ0 and that for any sequence
θn → θ0, (log n) (Tn − θn) /τ (θ0) tends to H when θn is the true
value of θ. Consider the test of H : θ = θ0 which rejects when

(log n) (Tn − θ0)
τ (θ0)

≥ να,(3.6.14)

where H (να) = 1 − α. Then the power of (3.6.14) against the alter-
natives

θn = θ0 +
∆

log n
+ o

(
1

log n

)
(3.6.15)

tends to

1 − H

(
να − ∆

τ (θ0)

)
.(3.6.16)

4.25 Let T (i) =
{
T
(i)
n , n = 1, 2, . . .

}
, i = 1, 2, both satisfy the assumptions

of the preceding problem. Suppose that the power of the test (3.6.14)
with T

(i)
n and τi (θ0) in place of Tn and τ (θ0) against the alternatives

(3.6.15) satisfies

βi (θn) → H (ci∆ − να) .(3.6.17)

Let n
(i)
k , k = 1, 2, . . . , be two sequences of sample sizes such that the

power of the test based on T (i) with n
(i)
k observations against the

common alternatives

θ
(i)
k = θ0 +

∆i

log n
(i)
k

+ o


 1

log
(
n
(i)
k

)

 , θ

(1)
k = θ

(2)
k(3.6.18)

both have the limit

H (να − c1∆1) = H (να − c2∆2) .(3.6.19)

Then (i)

lim
n
(1)
k

n
(2)
k

=
{

0
∞ if ∆1

<
>

∆2;

and
(ii) if ∆1 = ∆2, lim

[
n
(1)
k /n

(2)
k

]
need not exist, and if it does exist, it

can take on any value 0 ≤ e2,1 ≤ ∞.

[Hint: Problems 4.23 and 4.24.]
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Section 5

5.1 (i) For the test (3.1.26) discussed in Example 3.5.1, obtain a formula
for limα′

n(F ) when

F (x) = ρΦ(x) + (1 − ρ)Φ
(x

τ

)
.(3.6.20)

(ii) Make a table showing how lim α′
n(F ) varies as a function of ρ and

τ .

(iii) Use simulation to obtain the actual level α′
n(F ) for n = 20 and

some of the values of ρ and τ used in the table of part (ii).

5.2 Under the conditions of part (iii) of the preceding problem, use sim-
ulation to make a table showing the actual level of the test (3.5.4).

5.3 Determine the asymptotic level of the test (3.1.26) of Example 3.5.1
when F is the uniform distribution U (0, 1).

5.4 Let X1, . . . , Xm and Y1, . . . , Yn be independent normal N
(
ξ, σ2

)
and

N
(
η, τ2

)
, respectively, and consider the test of H : σ2 = τ2 against

σ2 < τ2 with rejection region√
(m + n) ρ (1 − ρ) /2

[
log S2Y − log S2X

]
≥ uα,(3.6.21)

where ρ = lim (m/ (m + n)), S2X =
∑(

Xi − X̄
)2

/ (m − 1) and S2Y =∑(
Yj − Ȳ

)2
/ (n − 1).

(i) Show that this test has asymptotic level α.

(ii) Show that the test is not robust against non-normality as m and
n → ∞.

[Hint (i): Use Theorem 2.5.2 and the results of Example 3.5.1.]

5.5 On a single graph, show the density of Student’s t-distribution with
ν degrees of freedom for ν = 2, 5, 10,∞.

5.6 Write out formal proofs of the facts that the power functions

(i) of the one-sample t-test (3.1.24) against the alternatives ξn =

ξ0 +
∆√
n

and

(ii) of the two-sample test (3.5.7) against the alternatives η = ξ+
∆√
N

are robust against non-normality.

5.7 Make a table analogous to Table 3.5.5 showing α′
n(F ) when F is the

normal mixture of Problem 5.1 for ρ = .1, .2, .3 and τ = 1, 2, 3.



216 3. Performance of Statistical Tests

5.8 Discuss the robustness against non-normality of the test (3.6.12) un-
der the model of Example 3.4.4.

5.9 (i) Under the assumptions of Lemma 3.5.1, show that

PG [(X1, . . . , Xn) εS] → 1 as µ1 → ∞.

(ii) Prove the first statement of (3.5.17).

5.10 Sketch the density of the distribution (3.5.18) for large µ1 and γ close
to 1.

5.11 Let Xi = ξi + Ei, where the E’s have mean 0, and for each i, let
ξ̂i =

∑
cijXj be a linear estimator of ξi which is unbiased, i.e., satisfy

E
(
ξ̂i

)
= ξi. Then the distribution of

∑(
Xi − ξ̂i

)2
is independent

of the ξ’s.

[Hint: Using unbiasedness, show that

∑(
Xi − ξ̂i

)2
=
∑(

Ei −
∑

cijEj

)2
.]

5.12 In the preceding problem, let ξi = α + βvi and ξ̂i = α̂ + β̂vi with
α̂ and β̂ given by (2.7.11) of Chapter 2. Show that the distribution

of
∑(

Xi − α̂ − β̂vi

)2
is independent of α and β by showing that

E (α̂) = α,E
(
β̂
)

= β.

5.13 Prove the identity (3.5.11).

[Hint: Use the fact that α̂ = X̄ − β̂v̂.]

5.14 Let Xi (i = 1, . . . , n) be independent N
(
ξ, σ2i

)
. Show that the t-test

(3.1.24) of H : ξ = ξ0 has asymptotic level α (and is therefore robust
against heterogeneity of variance) if

1
n2

∑
σ4i → 0 and

1
n

∑
σ2i is bounded away from 0(3.6.22)

and hence in particular when there exists constants 0 < m < M < ∞
such that m ≤ σ2i ≤ M for all i.

[Hint: Show that (3.6.22) implies

1
n

∑
X2i

/
1
n

∑
σ2i

P→ 1 as n → ∞.](3.6.23)
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5.15 Let X1, . . . , Xm and Y1, . . . , Yn be independently normally distributed
as N

(
ξ, σ2

)
and N

(
η, τ2

)
, respectively. In the belief that σ2 = τ2,

the hypothesis H : η = ξ is rejected when the two-sample t-statistic
(3.1.36) exceeds uα. Show that if in fact σ2 �= τ2 and m/ (m + n) → ρ,
the asymptotic level of the test is

1 − Φ

[
uα

√
ρσ2 + (1 − ρ) τ2

(1 − ρ)σ2 + ρτ2

]
(3.6.24)

and therefore that the asymptotic level of the test is close to α if m/n
is close to 1 but not otherwise.

5.16 (i) Given ρ, find the smallest and largest value of the factor of uα in
(3.6.24).

(ii) For nominal level α = .05 and ρ = .1, .2, .3, .4, determine the
smallest and largest asymptotic level of the two-sample t-test under
the assumptions of Example 3.5.3 as σ2/τ2 varies from 0 to ∞.

5.17 Under the assumptions of Example 3.5.3, use simulation to find the
actual level

(i) of the two-sample t-test,

(ii) of the test (3.5.7) when m = 10, n = 30, σ2/τ2 = 1/4, 1, 4.

5.18 In Example 3.5.5, determine the value of γ defined by (3.5.22) and
use (3.5.25) to check whether the resulting level of the t-test is α.

5.19 Consider the asymptotic level of the t-test under the model

Xi = ξ + β0Zi + β1Zi+1,

where the Z’s are independent with mean 0 and variance σ2.

(i) Show that γ = 2β0β1/(β20 + β21).

(ii) If β0 and β1 have the same sign, the asymptotic level is liberal and
takes on its maximum value when β0 = β1. Determine the maximum
value of the asymptotic level in this case when α = .01, .05, .1.

(iii) When β0 and β1 have opposite signs, the test is conservative;
find its minimum asymptotic level.

5.20 Let

Xi = ξ + β0Zi + β1Zi+1 + · · · + βkZi+k, i = 1, 2, . . . ,(3.6.25)

where the Z’s are independent with mean 0 and variance σ2. Gener-
alize the results of the preceding problem to this case and show that
γ can take an arbitrarily large values when k is sufficiently large.
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5.21 In Example 3.5.8, show that (3.5.35) implies (3.5.36).

5.22 (i) In Example 3.5.8(a), show that for any fixed p0, the ratio τ ′(p0)/
τ(p0) can be made arbitrarily large by letting π0 → 0 and π1 → 1.

(ii) In Example 3.5.8(b), show that for any fixed p0, the ratio τ ′(p0)/
τ(p0) → 0 as π1 → 0 and π → 1.

5.23 Let

Xij = Ai + Uij ; i = 1, . . . ,m; j = 1, . . . , s,(3.6.26)

where the unobservable A’s and U ’s are independent normal N
(
ξ, σ2A

)
and N

(
0, σ2

)
, respectively.

(i) Show that

Var(X̄) =
σ2

ms
[1 + (m − 1) ρ′] ,

where ρ′ is the common value of the ρij with i �= j.

(ii) Show that the level of the t-test (or the test (3.1.24)) of H : ξ = ξ0
is not robust against this dependence structure as m → ∞ with s
remaining fixed.

(iii) Determine the maximum asymptotic level of the t-test when
α = .05 and m = 2, 4, 6.

(iv) Show that the asymptotic level of the t-test is robust if m is fixed
and s → ∞.

5.24 Let Z1, Z2, · · · be i.i.d. N (0, 1) and Xi = γZi + (1 − γ)Zi+1, i =
1, . . . , n. Use simulation to find the actual level of the t-test when
the nominal level is .05 for n = 5, 10, 20 and γ = 1/4, 1/3, 1/2.
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4
Estimation

Preview

Estimation can be carried out in terms of confidence intervals or point
estimation. Of principal interest in the first case (treated in Section 4.1) is
the probability of covering the true value, and in the second case, the bias
and variance of the estimator. The latter are considered in Section 4.2, both
in terms of the asymptotic distribution of the estimator and of the limit
behavior of the finite sample quantities. Robustness of point estimators
against gross errors and comparison of competing estimators in terms of
their asymptotic relative efficiencies are the topics of Section 4.3. Finally,
Section 4.4 treats a special class of estimation problems: estimation of the
total or average of a finite population based on various methods of sampling
the population.

4.1 Confidence intervals

Rather than testing that a parameter θ of interest has a specified value θ0
(or falls short of θ0), one will often want to estimate θ. Two approaches
to the estimation problem are (i) estimation by confidence intervals with
which we shall be concerned in the present section and (ii) point estimation
which will be discussed in Section 2.

Confidence intervals for θ are random intervals(
θ (X1, . . . , Xn) , θ̄ (X1, . . . , Xn)

)
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which have a guaranteed probability of containing the unknown parameter
θ, i.e., for which

Pθ
[
θ (X1, . . . , Xn) ≤ θ ≤ θ̄ (X1, . . . , Xn)

]
≥ γ for all θ

for some preassigned confidence level γ. Since excessively large coverage
probability requires unnecessarily long intervals, we shall instead require
that

inf
θ

Pθ
[
θ (X1, . . . , Xn) ≤ θ ≤ θ̄ (X1, . . . , Xn)

]
= γ.(4.1.1)

Here we are concerned with intervals for which (4.1.1) holds approximately
when n is large and for this purpose, replace (4.1.1) by the weaker require-
ment

inf
θ

Pθ
[
θ (X1, . . . , Xn) ≤ θ ≤ θ̄ (X1, . . . , Xn)

]
→ γ as n → ∞.(4.1.2)

A still weaker condition is that for every θ,

Pθ[θ(X1, . . . , Xn) ≤ θ ≤ θ̄(X1, . . . , Xn)] → γ as n → ∞.(4.1.3)

As was discussed in Section 2.6, the requirement (4.1.3) does not imply
(4.1.2). We shall refer to intervals satisfying (4.1.3) and (4.1.2) respectively
as confidence intervals and as strong confidence intervals with asymptotic
confidence coefficient γ. For confidence intervals with asymptotic confidence
coefficient γ, the probability of their containing any given true θ will be
arbitrarily close to γ when n is sufficiently large, say differs from γ by less
than ε when n > nε(θ); when the intervals are strong, it is possible to
choose an nε which will work simultaneously for all θ (and the convergence
(4.1.3) will then be uniform in θ as discussed in Section 2.6).

Confidence intervals for θ are closely related to tests of the hypothesis

H(θ0) : θ = θ0(4.1.4)

against the two-sided alternatives θ �= θ0. Suppose that for every θ0, A(θ0)
is an acceptance region for H(θ0) at asymptotic level α, so that

Pθ[(X1, . . . , Xn) ∈ A(θ)] → 1 − α for every θ.(4.1.5)

Then if S(x1, . . . , xn) is the set of all values θ for which H(θ) is accepted
when X1 = x1, . . . , Xn = xn, it follows that

Pθ[θ ∈ S(X1, . . . , Xn)] = Pθ[(X1, . . . , Xn) ∈ A(θ)] → 1 − α for all θ.
(4.1.6)

Confidence sets for θ at asymptotic level γ = 1−α can therefore be obtained
by solving the inclusion statement (X1, . . . , Xn) ∈ A(θ) for θ.
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Example 4.1.1 Poisson. As in Example 3.1.1, let X1, . . . , Xn be i.i.d.
according to the Poisson distribution P (λ). Then∣∣∣∣∣

√
n
(
X̄ − λ0

)
√

λ0

∣∣∣∣∣ ≤ uα/2(4.1.7)

is the acceptance region of a test of H : λ = λ0 against λ �= λ0 which has
asymptotic level α.

Solving for λ0 by squaring and then completing the square shows (4.1.7),
with λ in place of λ0, to be equivalent to

∣∣∣∣∣λ − X̄ −
u2α/2

2n

∣∣∣∣∣ ≤
√

X̄u2α/2

n
+

u4α/2

4n2
(4.1.8)

and hence to an interval for λ centered at X̄ +
1
2n

u2α/2 and of length

2

√
X̄u2α/2

n
+

u4α/2

4n2
.(4.1.9)

Since the probability of (4.1.7) tends to 1 − α for every λ > 0, this is the
case also for (4.1.8). As pointed out in Example 3.1.1, the test (4.1.7) and
hence the intervals (4.1.8) are typically improved by applying a continuity
correction.

Alternative intervals are obtained by noting that X̄ is a consistent es-
timator of λ and that the acceptance region (4.1.7) therefore continues to
define a test with asymptotic level α if it is replaced by∣∣∣∣∣

√
n
(
X̄ − λ0

)
√

X̄

∣∣∣∣∣ ≤ uα/2.(4.1.10)

This leads to the intervals

X̄ −
uα/2√

n

√
X̄ < λ < X̄ +

uα/2√
n

√
X̄.(4.1.11)

A third approach is to begin by subjecting X̄ to the variance-stabilizing
square root transformation discussed in Example 2.5.2. As was shown in
Example 2.5.4, this leads to the intervals√

X̄ −
uα/2

2
√

n
<

√
λ <

√
X̄ +

uα/2

2
√

n
(4.1.12)

which can be converted into intervals for λ.
It is easy to see (Problem 1.1) that the three intervals (4.1.8), (4.1.11),

and (4.1.12) agree up to terms of order 1/
√

n.
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The intervals (4.1.11) suffer from the obvious defect that the lower limit
can be negative while λ is known to be positive. It is thus natural to replace
the lower end point of (4.1.11) by 0 whenever X̄ is negative, so that the
intervals become

max
(

0, X̄ −
uα/2√

n

√
X̄

)
< λ ≤ X̄ +

uα/2√
n

√
X̄.(4.1.13)

This change does not affect the coverage probability of the intervals. It is
interesting to note that the intervals (4.1.8) do not suffer from this draw-
back: Their left end point is always positive (Problem 1.2). �

Of the intervals (4.1.12) and (4.1.13) it was stated above that the prob-
ability of their covering any given value λ, when it is the true value, tends
to γ = 1 − α as n → ∞. On the other hand, it was seen in Section 2.6
following Example 2.6.1 that

inf
0<λ

P

[
X̄ −

uα/2√
n

√
X̄ ≤ λ ≤ X̄ +

uα/2√
n

√
X̄

]
= 0 for every n,(4.1.14)

so that the intervals (4.1.11) are not strong.

Example 4.1.1 Poisson (continued). Strong intervals obtain in Exam-
ple 4.1.1 if, as is often the case, it is possible to rule out values of λ less
than some a > 0 and so bound λ away from 0. In fact, we shall now show
that the left side of (4.1.14) tends to γ = 1 − α if the inf is taken not over
the whole set {0 < λ} but instead over the values λ ≥ a for some a > 0.
To prove this result, we shall show that

sup
a≤λ

P

[
X̄ +

u√
n

√
X̄ < λ

]
→ α

2
(4.1.15)

and

sup
a≤λ

P

[
X̄ − u√

n

√
X̄ > λ

]
→ α

2
,(4.1.16)

where u = uα/2.

Proof of (4.1.15). The probability on the left side of (4.1.15) is equal to

P

[(
X̄ − λ

)2
>

u2X̄

n
and X̄ − λ < 0

]

= P

{[(
X̄ − λ

)
− u2

2n

]2
>

λu2

n
+

u4

4n2
and X̄ − λ < 0

}
.
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Since X̄ − λ < 0 implies that X̄ − λ − u2

2n
< 0, the last probability is

≤P

[
X̄ − λ − u2

2n
< −

√
λu2

n
+

u4

4n2

]

=P

[(
X̄ − λ

)√
n√

λ
<

u2

2
√

λn
−
√

u2 +
u4

4λn

]
.

By the Berry–Esseen theorem, this last probability differs from

Φ

[
u2

2
√

λn
−
√

u2 +
u4

4λn

]

by less than

C√
n

E |X1 − λ|3

λ3/2
.

Therefore the left side of (4.1.15) does not exceed

sup
a≤λ

Φ

[
u2

2
√

λn
−
√

u2 +
u4

4λn

]
+

C√
n

sup
a≤λ

E |X1 − λ|3

λ3/2
.(4.1.17)

The first term of (4.1.17) tends to α/2 (Problem 1.4). It remains to show
that the second term tends to zero, which will be the case, provided

E |X1 − λ|3

λ3/2
is bounded for λ ≥ a.(4.1.18)

Now by a well-known inequality (see, for example, Cramér (1946, p. 176)
or Stuart and Ord (1987, p. 81))

E |X1 − λ|3 ≤
{
E (X1 − λ)4

}3/4
.(4.1.19)

Since (for example, see Stuart and Ord (1987))

E (X1 − λ)4 = λ + 3λ2,(4.1.20)

it follows that

E |X1 − λ|3

λ3/2
≤
(
λ + 3λ2

)3/4
λ3/2

=
(

1
λ

+ 3
)3/4

,

which is ≤
(

1
a

+ 3
)3/4

for λ ≥ a. This completes the proof of (4.1.15);

that of (4.1.16) is quite analogous (Problem 1.3). �
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Example 4.1.2 Binomial. The estimation of binomial p is so similar to
the Poisson case that it will only be sketched here, with the details left to
problems. If X is the number of successes in n binomial trials with success
probability p, then ∣∣∣∣∣∣∣∣

√
n

(
X

n
− p0

)
√

p0q0

∣∣∣∣∣∣∣∣
≤ uα/2(4.1.21)

is an acceptance region when H : p = p0 is being tested against the two-
sided alternatives p �= p0.

The inequality (4.1.21) with p in place of p0 can be solved for p to give
approximate confidence intervals for p, which can be simplified without
change of asymptotic level by neglecting higher order terms (Problem 1.7).

A simpler approach leading to the same intervals replaces (4.1.21) by the
asymptotically equivalent acceptance region∣∣∣∣∣∣∣∣∣∣

√
n

(
X

n
− p0

)
√

X

n

(
1 − X

n

)
∣∣∣∣∣∣∣∣∣∣
≤ uα/2,(4.1.22)

with the intervals then becoming

X

n
−

uα/2√
n

√
X

n

(
1 − X

n

)
< p <

X

n
+

uα/2√
n

√
X

n

(
1 − X

n

)
,(4.1.23)

where the lower limit may be replaced by 0 when it is negative and the
upper limit by 1 when it exceeds 1.

A third possibility, as in the Poisson case, is to first use a variance-
stabilizing transformation.

The binomial intervals (4.1.23) share with the Poisson intervals (4.1.11)
the property that the infimum (over 0 < p < 1) of their coverage probability
is 0 for every n (Problem 1.8). On the other hand, again in analogy with
Poisson case, the intervals become strong if p is known to satisfy a1 < p <
a2 for some 0 < a1 < a2 < 1 (Problem 1.9).

For a detailed comparison of various asymptotic confidence intervals for
p, see Schader and Schmid (1990) and the literature cited there.

It is frequently of interest to obtain intervals of the form∣∣∣∣Xn − p

∣∣∣∣ ≤ d,(4.1.24)

where d is a given number, and with probability approximately 1 − α of
(4.1.24) being correct. From (4.1.21), we can determine the approximate
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sample size n required to achieve this aim. Since

P

[∣∣∣∣Xn − p

∣∣∣∣ ≤
√

pq

n
uα/2

]
→ 1 − α as n → ∞,

the desired sample size is

n = pqu2α/2/d
2,(4.1.25)

which depends on the unknown p. A usable value of n can be determined
by replacing p by an estimate obtained from previous experience. Alterna-
tively, a conservative value is

n = u2α/2/4d
2(4.1.26)

since

pq ≤ 1/4 for all 0 ≤ p ≤ 1.(4.1.27)

Instead of controlling the absolute error
∣∣∣∣Xn − p

∣∣∣∣, one may—particularly

if p is expected to be small—prefer to control the relative error
∣∣∣∣Xn − p

∣∣∣∣ /p
and hence replace (4.1.24) by ∣∣∣∣Xn − p

∣∣∣∣ ≤ cp(4.1.28)

for some given value of c. Replacing d by γp in (4.1.25) leads to

n =
u2α/2

c2
· q

p
.(4.1.29)

�

Example 4.1.3 Normal mean. Let X1, . . . , Xn be i.i.d. as N(ξ, σ2).
Then ∣∣∣∣∣∣

√
n
(
X̄ − ξ0

)
√∑(

Xi − X̄
)2

/ (n − 1)

∣∣∣∣∣∣ ≤ uα/2(4.1.30)

is an acceptance region of a test of H : ξ = ξ0 against ξ �= ξ0, which
has asymptotic level α. Replacing ξ0 by ξ and solving for ξ leads to the
confidence intervals

X̄ − uα/2

√∑(
Xi − X̄

)2
n (n − 1)

≤ ξ ≤ X̄ + uα/2

√∑(
Xi − X̄

)2
n (n − 1)

.(4.1.31)
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The difficulty encountered in Examples 4.1.1 and 4.1.2 does not arise in
the present case since the probability Pn (ξ, σ) of (4.1.31) is independent of
both ξ and σ, so that (4.1.3) implies (4.1.2).

Consider next the problem of confidence intervals for ξ = E (Xi) when
the X’s are i.i.d. according to an unknown distribution F with finite vari-
ance. Then the coverage probability of the intervals (4.1.31) will continue
to tend to γ = 1−α for any fixed F . However, it follows from Lemma 3.5.1
that the coverage probability γn(F ) satisfies

inf
F

γn(F ) = 0 for every n.(4.1.32)

Thus in this non-parametric setting, the intervals (4.1.31) remain confi-
dence intervals for ξ in the sense of (4.1.3) but no longer in the strong
sense of (4.1.2). �

Example 4.1.4 Difference of normal means. Let X1, . . . , Xm and
Y1, . . . , Yn be independent i.i.d. as N

(
ξ, σ2

)
and N

(
η, τ2

)
, respectively.

Since
(
Ȳ − η

)
−
(
X̄ − ξ

)
= Ȳ − X̄ − ∆ with ∆ = η − ξ is distributed as

N

(
0,

σ2

m
+

τ2

n

)
, it is seen that the intervals for ∆ obtained by solving

∣∣Ȳ − X̄ − ∆
∣∣√

σ̂2

m
+

τ̂2

n

≤ uα/2(4.1.33)

consitute confidence intervals in the sense of (4.1.13) at asymptotic level
γ = 1−α if σ̂2 and τ̂2 are consistent estimators of σ2 and τ2; for example,
if

σ̂2 =
∑(

Xi − X̄
)2

/ (m − 1) and τ̂2 =
∑(

Yj − Ȳ
)2

/ (n − 1) .(4.1.34)

For this choice of σ̂2 and τ̂2 (and many others), it is in fact true that the
intervals are strong.

The following argument indicates why this latter result is true. Since(
Ȳ − X̄ − ∆

)
/

√
σ2

m
+

τ2

n
is exactly distributed as N (0, 1), it is enough to

show that (
σ̂2

m
+

τ̂2

n

)/(
σ2

m
+

τ2

n

)
(4.1.35)

tends to 1 uniformly in σ2 and τ2, i.e., that given any c > 0 and 0 < ε < 1,
there exists m0 and n0 independent of σ and τ such that

P



∣∣∣∣∣∣∣
σ̂2

m
+

τ̂2

n
σ2

m
+

τ2

n

− 1

∣∣∣∣∣∣∣ < c


 > 1 − ε when m > m0 and n > n0.
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Now σ̂2 is a consistent estimator of σ2 and the distribution of σ̂2/σ2 is in-
dependent of σ, and the analogous remark holds for τ̂2 and τ2. In addition,
σ̂2 and τ̂2 are independent. It follows that given any 0 < ε < 1, there exist
m0 and n0 such that

P

{∣∣∣∣ σ̂2/mσ2/m
− 1
∣∣∣∣ < c and

∣∣∣∣ τ̂2/nτ2/n
− 1
∣∣∣∣ < c

}
> 1 − ε for all m > m0, n > n0.

But

1 − c <
σ̂2/m

σ2/n
< 1 + c and 1 − c <

τ̂2/n

τ2/n
< 1 + c

implies that

1 − c <

σ̂2

m
+

τ̂2

n
σ2

m
+

τ2

n

< 1 + c

and this completes the proof of the uniform convergence in probability to
1 of (4.1.35). �

Example 4.1.5 Difference of two Poisson means. If X1, . . . , Xm and
Y1, . . . , Yn are independent Poisson with means E (Xi) = λ and E (Yj) = µ,
respectively, then (

Ȳ − µ
)
−
(
X̄ − λ

)
√

X̄

m
+

Ȳ

n

L→ N (0, 1)(4.1.36)

and hence the probability of the intervals

Ȳ − X̄ − uα/2

√
X̄

m
+

Ȳ

n
< µ − λ < Ȳ − X̄ + uα/2

√
X̄

m
+

Ȳ

n
(4.1.37)

tends to γ = 1 − α for every λ and µ as m and n tend to infinity. �

Example 4.1.6 Ratio of two Poisson means.∗ Since in many appli-
cations the parameters λ and µ of the preceding example are the rates at
which events are generated under two processes leading to the X’s and Y ’s,
respectively, it is of interest to obtain confidence intervals also for the ratio
µ/λ. Such intervals can be derived by conditioning on the sum X +Y = T ,
where X = X1 + · · · + Xm and Y = Y1 + · · · + Yn, and using the fact that

∗This somewhat more difficult example is not required in the remainder of the book.
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the conditional distribution of Y given T = t is the binomial distribution
b(p, t) with

p =
nµ

mλ + nµ
=

µ

ρλ + µ
, ρ =

m

n
.

In this conditional situation, approximate confidence intervals for p are
given by (4.1.22) with X and n replaced by Y and t, respectively, i.e., by∣∣∣∣∣∣∣∣

√
t

(
Y

t
− p

)
√

X

t
· Y

t

∣∣∣∣∣∣∣∣
≤ uα/2.(4.1.38)

The asymptotic validity of these intervals for any fixed λ and µ stems from
the fact that the conditional probability of (4.1.38) tends to 1−α as t → ∞.
However, in the present context, we should like to know that this is true
also for the unconditional probability of (4.1.38) with t replaced by T , as m
and n → ∞. We shall show this by using an extension of the central limit
theorem, which is of interest in its own right. The theorem is concerned
with the limit behavior of a sum of i.i.d. random variables when the number
of terms in the sum is random rather than fixed.

Theorem 4.1.1 Let Z1, Z2, . . . be i.i.d. with mean ζ and variance σ2 < ∞.
Let {νk} be a sequence of positive integer-valued random variables which
tend to ∞ in probability as k → ∞. If there exists a sequence of positive
constants Nk tending to infinity such that

νk
Nk

P→ 1,(4.1.39)

then
√

νk
(
Z̄k − ζ

) L→ N
(
0, σ2

)
,(4.1.40)

where Z̄k = (Z1 + · · · + Zνk) /νk.

The proof is sketched in Billingsley (1986).
If the ν’s are constants, (4.1.39) holds with Nk = νk, and (4.1.40) is an

immediate consequence of the central limit theorem since the convergence
in law of

√
N

(
Z1 + · · · + ZN

N
− ζ

)
L→ N

(
0, σ2

)
implies that for any subsequence Nk → ∞,

√
Nk

(
Z1 + · · · + ZNk

Nk
− ζ

)
→ N

(
0, σ2

)
.(4.1.41)
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What the theorem asserts is that in (4.1.41) the constant sample sizes Nk

can be replaced by random sample sizes νk satisfying (4.1.40).
To apply this result to the Poisson situation, consider a sequence of

sample sizes (mk, nk) both tending to infinity and with

mk

nk
= ρ (0 < ρ < 1) .

If X = X1+ · · ·+Xmk
, Y = Y1+ · · ·+Ynk

, and Tk = X +Y , then Tk
P→ ∞

as mk and nk → ∞ and (Problem 1.19)

Tk
mkλ + nkµ

P→ 1.(4.1.42)

The unconditional limit distribution of

√
Tk

(
Yk
Tk

− pk

)
(4.1.43)

with

pk =
nkµ

mkλ + nkµ
=

µ

ρλ + µ
= p

can be obtained by combining the facts that (i) conditionally given Tk = t,
Y is distributed as b(p, t) and that (ii) Tk has the Poisson distribution with
mean E(Tk) = mkλ + nkµ. By (i), the conditional distribution of Y given
t can be represented as the distribution of Z1+ · · ·+ Zt, where the Z’s are
independent, and Zi = 1 or 0 with probability p and q = 1−p, respectively.
The unconditional distribution of (4.1.43) is therefore the same as that of√

Tk
(
Z̄k − p

)
. It now follows from Theorem 4.1.1 and (4.1.41) that the

unconditional limit distribution of (4.1.43) is N (0, pq).

Example 4.1.7 Population median. Let Z1, . . . , ZN be i.i.d. according
to an unknown distribution function F with a unique median θ defined by

F (θ) = 1/2.(4.1.44)

We might try to base confidence intervals for θ on the sample median θ̃N .
In Example 2.4.9, it was shown (with slightly different notation) that if F
has density f with f(θ) > 0, then

√
n
(
θ̃ − θ

)
L→ N

(
0, 1/4f2 (θ)

)
.(4.1.45)

Confidence intervals based on (4.1.45) therefore would require a consistent
estimator of f(θ). (Some aspects of density estimation will be considered
in Section 6.4.)
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We shall instead derive confidence intervals for θ from the two-sided
tests of H (θ0) : θ = θ0, the one-sided version of which was treated in
Examples 3.2.4 and 3.3.5, but without the (now unnecessary) assumption
of symmetry. If SN = SN (θ0) ≤ N − k denotes the number of Z’s > θ0,
the hypothesis H(θ0) is accepted at level α when

k ≤ SN (θ0) ≤ N − k,(4.1.46)

where k satisfies the condition that the probability of (4.1.46) tends to 1−α
as N → ∞. Since

2
√

N

[
SN (θ0)

N
− 1

2

]
L→ N(0, 1)(4.1.47)

when θ = θ0, k can be determined from

P

[
2
√

N

(
k

N
− 1

2

)
≤ 2

√
N

(
SN (θ0)

N
− 1

2

)
≤ 2

√
N

(
N − k

N
− 1

2

)]
→ 1 − α

(4.1.48)

and hence by

1
2
− k

N
=

1
2
√

N
uα/2 + o

(
1√
N

)
or

k =
N

2
−

√
N

2
uα/2 + o

(√
N
)

.(4.1.49)

The conversion of (4.1.46) into confidence intervals can now be achieved by
means of the following lemma.

Lemma 4.1.1 Let a(1) < · · · < a(N) denote any ordered set of distinct real
numbers a1, . . . , aN . Then for any real number θ, the number SN (θ) of a’s
> θ satisfies

SN (θ) = N − i if and only if a(i) ≤ θ < a(i+1)(4.1.50)

and hence

k ≤ SN (θ) ≤ N − k if and only if a(k) ≤ θ ≤ a(N−k).(4.1.51)

The proof is immediate from the definition of SN .

Application of this lemma to (4.1.46) with k given by (4.1.49) shows
that if [x] denotes the greatest integer ≤ x and if u = uα/2, the coverage
probability of the intervals

Z( N
2 −

√
N
2 u

) ≤ θ < Z( N
2 +

√
N
2 u

)(4.1.52)

tends to 1 − α as N → ∞. Since the probability of (4.1.51) and hence of
(4.1.52) is independent of both θ and F but depends only on N (and α),
the intervals (4.1.52) are strong. �
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Example 4.1.8 Center of symmetry. If in the preceding example, the
Z’s can be assumed to be symmetrically distributed about θ, confidence
intervals for θ which tend to be more efficient can be based on the one-
sample Wilcoxon instead of the sign test. Let V ∗(θ) be the number of
averages (Zi + Zj)/2, i ≤ j, which are greater than θ, and consider the
acceptance region for the hypothesis H (θ0) : θ = θ0,

k ≤ V ∗ (θ0) ≤ M − k,(4.1.53)

where M =
(

N

2

)
+ N =

N (N + 1)
2

is the number of pairs i ≤ j. By

(3.2.30), when θ = θ0

V ∗ (θ0) −
N (N + 1)

4√
N (N + 1) (2N + 1) /24

L→ N (0, 1) when N → ∞(4.1.54)

and the constant k of (4.1.53) can therefore be taken as

k =
N (N + 1)

4
− uα/2

√
N (N + 1) (2N + 1) /24 + o

(
N3/2

)
.(4.1.55)

If V(1) < · · · < V(M) denotes the ordered set of M averages (Zi + Zj) /2,
i ≤ j, Lemma 4.1.1 shows that

V(k) ≤ θ ≤ V(M+1−k),(4.1.56)

with k given by (4.1.55), constitute strong confidence intervals for θ with
asymptotic level 1 − α (Problem 1.17). �

Note: The existence of strong confidence intervals in Examples 4.1.3, 4.1.4,
4.1.7 and 4.1.8 is typical for situations in which there exists a pivot, i.e., a
function of the observations X and the parameter θ to be estimated which
has a fixed distribution, independent of θ and all other parameters. In the
case of the median (Example 4.1.7), the pivot was

SN (θ) = Number of X ′s > θ,

which has the binomial distribution b

(
1
2
, n

)
; when the X’s were normal

N(ξ, σ2), it was (X̄ − ξ)/σ̂ when estimating ξ and σ̂/σ when estimating σ.
Without a pivot, strong confidence intervals are rare unless some bounds
are available for θ, as at the end of Example 4.1.1.

Summary

1. Asymptotic confidence intervals for a parameter θ derived from tests
of H(θ0) : θ = θ0 with asymptotic level α have asymptotic coverage
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of θ equal to 1 − α for each value of θ. They are said to be strong if
they have the additional property that also the inf (with respect to
θ) of the coverage probability tends to 1−α. Intervals both with and
without this property are illustrated on a number of parametric and
nonparametric situations.

2. The central limit theorem is extended to certain sums of i.i.d. vari-
ables with a random number of terms.

4.2 Accuracy of point estimators

Suppose that δn is an estimator of a parametric function h(θ) for which
√

n [δn − h(θ)]
τn

L→ N (0, 1) .(4.2.1)

Then the intervals (
δn − kτn√

n
, δn +

kτn√
n

)
(4.2.2)

satisfy

P

[
δn − kτn√

n
≤ h (θ) ≤ δn +

kτn√
n

]
→ 2Φ(k) − 1 = γ.(4.2.3)

They are therefore asymptotic confidence intervals for h(θ) in the sense of
(4.1.3). In particular, when k = 2, we have γ

.= .95, so that the estimator δn
differs from h(θ) by less than two times its asymptotic standard deviation
τn/

√
n with high probability. In this sense, the intervals (4.2.2) provide an

assessment of the accuracy of the estimator δn. If τn depends on θ and/or
some other parameters and therefore is not known, it can be replaced in
(4.2.1)–(4.2.3) by a consistent estimator τ̂n.

An alternative approach to the asymptotic accuracy of δn is obtained by
replacing the asymptotic variance τ2n by the limit of the actual variance

Var
{√

n [δn − h(θ)]
}

.(4.2.4)

As can be seen from the Note “A crucial distinction” in Section 2.1 and
from the discussion at the end of Section 2.3, even for large n these measures
need not agree. It can be shown (see, for example, Lehmann and Casella
(1998)) that if the limits of both τ2n and of (4.2.4) exist, then always

lim τ2n ≤ lim Var
{√

n [δn − h(θ)]2
}

.(4.2.5)

Although strict inequality may hold, in typical situations the two limits in
(4.2.5) will be equal, and one can then assert, for example, that δn will differ
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from h(θ) by less than two times its standard deviation with probability
approximately .95.

If the variance (4.2.4) tends to a finite limit a2 > 0, the variance of δn is
equal to

Var (δn) =
a2

n
+ o

(
1
n

)
.(4.2.6)

Another aspect of the accuracy of δn is its bias

b (δn) = E (δn) − h(θ),(4.2.7)

which often also is of order 1/n, say

b (δn) =
b

n
+ o

(
1
n

)
.(4.2.8)

As is seen from the bias-variance decomposition (1.4.6), the expected squared
error

E [δn − h (θ)]2 = Var (δn) + b2 (δn)(4.2.9)

is then also of order 1/n. Its main contribution comes from the variance
term since b2 (δn) is of order 1/n2.

In the following example, we shall illustrate a technique for obtaining
approximations to the bias and variance of an estimator and compare the
latter with the corresponding asymptotic variance, i.e., the variance of the
corresponding limit distribution.

Example 4.2.1 Estimating a normal probability. Let X1, . . . , Xn be
i.i.d. as N (θ, 1) and consider the estimation of

p = P (Xi ≤ u) = Φ (u − θ) .(4.2.10)

The maximum likelihood estimator of p is

δ = Φ
(
u − X̄

)
,(4.2.11)

and we shall attempt to obtain large-sample approximations for the bias
and variance of this estimator. Since X̄−θ is likely to be small, it is natural
to write

Φ
(
u − X̄

)
= Φ

[
(u − θ) −

(
X̄ − θ

)]
(4.2.12)

and to expand the right side about u− θ by Taylor’s theorem (Section 2.5)
as

Φ
(
u − X̄

)
= Φ (u − θ) −

(
X̄ − θ

)
φ (u − θ) + 1

2

(
X̄ − θ

)2
φ′ (u − θ)

− 16
(
X̄ − θ

)3
φ′′ (u − θ) + 1

24

(
X̄ − θ

)4
φ′′′ (ξ) ,

(4.2.13)
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where ξ is a random quantity that lies between u−θ and u−X̄. To calculate
the bias

E
[
Φ
(
u − X̄

)]
− Φ (u − θ) ,

we take the expectation of (4.2.13), which yields

E
[
Φ
(
u − X̄

)]
= p +

1
2n

φ′ (u − θ) +
1
24

E
[(

X̄ − θ
)4

φ′′′ (ξ)
]
.

The derivatives of φ(x) all are of the form P (x)φ(x), where P (x) is a
polynomial in x and are therefore all bounded (Problem 2.1). It follows
that ∣∣∣E (X̄ − θ

)4
φ′′′ (ξ)

∣∣∣ < ME
(
X̄ − θ

)4 = 3M/n2(4.2.14)

for some finite M . Using the fact that φ′(x) = −xφ(x), we therefore find
that

E(δ) = p − 1
2n

(u − θ)φ (u − θ) + O
(
1/n2

)
,(4.2.15)

where the error term is uniformly O
(
1/n2

)
by (4.2.14). The estimator δ

therefore has a bias of order 1/n which tends to zero as θ → ±∞.
In the same way, one can show that (Problem (2.2(i))

Var(δ) =
1
n

φ2 (u − θ) + O

(
1
n2

)
(4.2.16)

and hence that

Var
(√

nδ
)
→ φ2 (u − θ) .(4.2.17)

Since (Problem 2.2(ii))

√
n [δ − Φ (u − θ)] L→ N

(
0, φ2 (u − θ)

)
,(4.2.18)

the limit of the variance in this case is equal to the asymptotic variance.
It is interesting to see what happens if the expansion (4.2.13) is carried

one step less far. Then

E
[
Φ
(
u − X̄

)]
= p +

1
2n

φ′ (u − θ) +
1
6
E
[(

X̄ − θ
)3

φ′′(ξ)
]
.

Since the third derivative of φ is bounded, the remainder now satisfies

1
6
E
∣∣∣(X̄ − θ

)3
φ′′′ (ξ)

∣∣∣ < M ′E
∣∣X̄ − θ

∣∣3 = O

(
1

n3/2

)
.

The conclusion is therefore weaker than before. �



4.2 Accuracy of point estimators 235

The same argument can be used to prove the following theorem (Problem
2.3).

Theorem 4.2.1 Let X1, . . . , Xn be i.i.d. with E (Xi) = θ, Var (Xi) = σ2

and finite fourth moment, and let h be any function which is four times
differentiable. Then
(i) if the fourth derivative h(iv)(x) is bounded,

E
(
h
(
X̄
)]

= h (θ) +
σ2

2n
h′′ (θ) + O

(
1
n2

)
;(4.2.19)

(ii) if the fourth derivative of h2 is also bounded,

Var
[
h
(
X̄
)]

=
σ2

n
[h′(θ)]2 + O

(
1
n2

)
.(4.2.20)

If h′ (θ) �= 0, it follows from Theorem 2.5.2 that
√

n
[
h
(
X̄
)
− h(θ)

] L→ N
(
0, σ2 [h′(θ)]2

)
.

If (4.2.20) holds,

Var
[√

nh
(
X̄
)]

→ σ2 [h′(θ)]2 ,

so that again the limiting variance agrees with the asymptotic variance.
It is an attractive feature of Theorem 4.2.1 that assumptions are made

essentially only on the function h, not on the distribution of the X’s. On
the other hand, the assumption of a bounded fourth derivative is very
strong and often not satisfied in practice. Fortunately, the approximation
formulas (4.2.19) and (4.2.20) continue to hold in many cases in which h
does not satisfy the assumptions of Theorem 4.2.1. However, their validity
then depends on the particular distribution of the X’s being considered.

The following example illustrates an approach that may be applicable in
such cases.

Example 4.2.2 Let X1, . . . , Xn be i.i.d. N(θ, 1) and consider the estima-
tion of h (θ) = eθ by its maximum likelihood estimator δ = h

(
X̄
)

= eX̄ .
Since all derivatives of h are unbounded, Theorem 4.2.1 is not applicable.
However, we can expand eX̄ about eθ in powers of X̄ − θ to obtain

E
(
eX̄
)

= eθE

( ∞∑
k=0

(
X̄ − θ

)k
k!

)
= eθ

√
n

2π

∞∫
−∞

( ∞∑
k=0

yk

k!

)
e−

n
2 y

2
dy.

Since it is permissible to integrate a convergent power series term by term
and since √

n

2π

∫
y2ke−

n
2 y

2
dy =

1 · 3 · · · (2k − 1)
nk

=
(2k)!

nk2kk!
(4.2.21)
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and the odd moments of Y = X̄ − θ are zero, we see that

E
(
eX̄
)

= eθ
∞∑
k=0

1
nk

· 1
2kk!

.(4.2.22)

The right side is a power series in 1/n, and it follows from Theorem 2.5.1
that

E
(
eX̄ − eθ

)
=

eθ

2n
+ O

(
1
n2

)
.(4.2.23)

The bias of δ is therefore again of order 1/n. Analogously, one finds (Prob-
lem 2.10).

lim Var
[√

n
(
δ − eθ

)]
= e2θ.(4.2.24)

This agrees with the asymptotic variance of eX̄ (Problem 2.11).
However, unlike the situation of Theorem 4.2.1 where for any h with

bounded fourth derivatives this agreement held for all distributions with fi-
nite fourth moment, the present approach involves the moments of

(
X̄ − θ

)
and requires additional assumptions on the underlying distribution of the
X’s. �

Example 4.2.3 A counterexample. Consider once more the estimator
δ = eX̄ of h (θ) = eθ, but without the assumption that the i.i.d. X’s are
normal. Note that

E
(
eX̄
)

= E
[
eX1/n · · · eXn/n

]
=
[
E
(
eX1/n

)]n
.(4.2.25)

Thus for any finite n,

E
(
eX̄
)

= ∞(4.2.26)

for any distribution for which E
(
eαX
)

= ∞ for all 0 < α. An example of
such a distribution is given by the density

p(x) =
1
4
e−

√
|x−θ|(4.2.27)

which satisfies

E
(
eαX
)

=
1
4

∞∫
−∞

eαx−
√

|x−θ|dx = ∞ for any α �= 0.(4.2.28)

On the other hand,

√
n
(
eX̄ − eθ

)
L→ N

(
0, eθτ2

)
,
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where

τ2 =
1
2

∞∫
0

x2e−
√

|x|dx < ∞.(4.2.29)

�

This example shows that when taking the expectation of formal expan-
sions such as (4.2.13) or (4.2.22), it is crucial to check convergence of the
resulting series.

To illustrate still another approach to the approximation of means and
variances that is available in some cases, let us return once more to the
situation considered in Example 4.2.2.
Example 4.2.2. (continued). When the X’s are i.i.d. N (θ, 1), the mean
Y = X̄ is distributed as N (θ, 1/n), and hence

E
(
eaX̄
)

=
√

n

2π

∫
eay−

n
2 (y−θ)

2
dy,(4.2.30)

which, on completing the square in the exponent, reduces to

E
(
eaX̄
)

= eaθ · ea2/2n = eaθ
[
1 +

a2

2n
+ O

(
1
n2

)]
.

In particular therefore

E
(
eX̄
)

= eθ
[
1 +

1
2n

+ O

(
1
n2

)]
(4.2.31)

and

E

[(
eX̄
)2]

= E
(
e2X̄
)

= e2θ
[
1 +

4
2n

+ O

(
1
n2

)]
(4.2.32)

so that finally

Var
(
eX̄
)

=
1
n

e2θ + O

(
1
n2

)
(4.2.33)

and

Var
[√

n
(
eX̄ − eθ

)]
→ e2θ.(4.2.34)

Formula (4.2.30) with h(X̄) in place of eaX̄ shows that even in the normal
case, the limit of the actual mean or variance need not agree with the
asymptotic mean or variance. This follows from the fact that then (4.2.30)
is infinite when h(y) → ∞ sufficiently fast (for example, when h(y) = ey

4

(Problem 2.16)) while
√

n
[
h
(
X̄
)
− h (θ)

]
has finite asymptotic mean and

variance whenever h′ (θ) �= 0 and Var (Xi) < ∞. �
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Example 4.2.4 Reciprocal. The pitfalls in the calculation of the approx-
imate bias and variance of h

(
X̄
)

discussed in Example 4.2.2 (continued)
occur when h(y) tends to ∞ too fast as y → ∞. The same difficulty can
arise when h(y) → ∞ as y approaches some finite value y0. To illustrate
this situation, let X1, . . . , Xn again be i.i.d. N (θ, 1) and let h(y) = 1/y.
Then for any θ �= 0

√
n

(
1
X̄

− 1
θ

)
→ N

(
0,

1
θ4

)
.(4.2.35)

On the other hand,√
2π
n

E

(
1
X̄

)
=
∫
y 	=0

1
|y|e

−n
2 (y−θ)

2
dy.(4.2.36)

The integral is the sum of the integrals over y > 0 and y < 0, and for any
ε > 0, the former is

≥
ε∫
0

1
y
e−

n
2 (y−θ)

2
dy.

As y → 0,

e−
n
2 (y−θ)

2 → e−
n
2 θ

2
>

1
2

for all θ < ε

when ε is sufficiently small, and the integral over (0, ε) therefore exceeds

1
2

ε∫
0

1
y
, which is infinite. Thus, despite the asymptotic normality of 1/X̄,

its expectation does not exist for any n. (For a more detailed discussion of
the nonexistence of E(1/X̄), see Lehmann and Shaffer (1988).) �

Summary

1. The accuracy of a (suitably normalized) estimator can be measured
by its asymptotic variance or by the limit of its actual variance. These
two measures will typically, but not always, agree.

2. In typical situations, both the bias and the variance of an estimator
are of order 1/n. The main contribution to the expected squared error
then comes from the variance.

3. Approximate expressions for the bias and variance of an estimator
h(X̄) of h(θ) can be found by expanding h(X̄) about h(θ). This
approach and some of its difficulties are illustrated in a number of
examples.
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4.3 Comparing estimators

The accuracy of an estimator provides not only an indispensable measure
of its reliability but also a basis for comparing different estimators of the
same quantity. We shall consider here such comparisons both in terms of
the limiting and asymptotic variances of the estimators.

Suppose that for two competing estimators δ1 and δ2 of h(θ) based on n
observations, both bias and variance are of order 1/n, say

bi(θ) = Eθ (δi) − h(θ) =
ai
n

+ O

(
1
n2

)
(4.3.1)

and

Varθ δi =
τ2i
n

+ O

(
1
n2

)
.(4.3.2)

Then up to this order of accuracy, by (1.4.6) the expected squared error of
δi satisfies

Eθ [δi − h(θ)]2 = Varθ (δi) + O

(
1
n2

)
.(4.3.3)

The variance of δi can therefore be used as a measure of accuracy that
is asymptotically equivalent to the expected squared error up to terms of
order 1/n.

If we then want the variance of δ1 based on n1 observations to be asymp-
totically equivalent to terms of order 1/n1 to the variance of δ2 based on
n2 observations, we must have

τ21
n1

∼ τ22
n2

and hence

n1
n2

→ τ21
τ22

.(4.3.4)

The limit of the ratio n1/n2 of observations required for two statistical
procedures δ1 and δ2 to achieve the same asymptotic performance is the
asymptotic relative efficiency (ARE) e2,1 of δ2 with respect to δ1. (The
motivation for this definition is given in Section 4 of Chapter 3.) If (4.3.1)
and (4.3.2) hold (with n replaced by n1 and n2, respectively), we therefore
have

e2,1 =
τ21
τ22

.(4.3.5)
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Example 4.3.1 Estimating a normal probability. In Example 4.2.1,
we considered δ1 = Φ

(
u − X̄

)
as an estimator of

p = P (Xi ≤ u) = Φ (u − θ)(4.3.6)

when X1, . . . , Xn are N (θ, 1), and showed that δ1 satisfies (4.3.1) and
(4.3.2) with

τ21 = φ2 (u − θ) .(4.3.7)

An alternative estimator of p is

δ2 = [Number of Xi ≤ u] /n.(4.3.8)

Clearly, δ2 satisfies (4.3.1) with a2 = 0 since it is unbiased, and (4.3.2) with

τ22 = pq(4.3.9)

since Var (δ2) = pq/n. It therefore follows that

e2,1 =
φ2 (u − θ)

Φ (u − θ) [1 − Φ (u − θ)]
.(4.3.10)

This can be shown to be a decreasing function of |u − θ| (see Sampford
(1953)) so that we have

e2,1(θ) ≤
φ2(0)

Φ(0) [1 − Φ(0)]
=

2
π

.= .637 for all θ.(4.3.11)

As θ → ±∞, e2,1(θ) → 0 (Problem 3.2). The efficiency loss resulting from
the use of δ2 instead of δ1 is therefore quite severe. �

If the accuracy of δ is measured by its asymptotic variance rather than
its limiting variance lim (Var(δ)), an exactly analogous argument applies.
Instead of (4.3.1) and (4.3.2), we now assume that the estimators δ1 and
δ2 of h (θ) when based on n observations satisfy

√
n [δi − h (θ)] L→ N

(
0, (τ ′

i)
2
)

.(4.3.12)

Then for δ1 and δ2 based on n1 and n2 observations, respectively, to have
the same limit distribution requires that

√
n1 (δ1 − h(θ)) and

√
n1 (δ2 − h(θ)) =√

n1
n2

√
n2 (δ2 − h(θ)) have the same limit distribution and therefore that

τ ′2
1 = lim

n1
n2

τ ′2
2. Thus

e2,1 =
τ ′2
1

τ ′2
2
.(4.3.13)

When the limiting and asymptotic variances agree, then τ ′2
i = τ2i and the

two definitions lead to the same value.
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Example 4.3.2 Estimating a normal probability (continued). Of
the two estimators of p = Φ (u − θ) considered in Example 4.3.1, δ1 was
seen in Example 4.2.1 to satisfy

√
n (δ1 − p) → N

(
0, φ2 (u − θ)

)
(4.3.14)

while δ2 satisfies
√

n (δ2 − p) → N (0, pq) .(4.3.15)

Application of (4.3.13) therefore shows that the ARE based on asymp-
totic variances leads to the same efficiency (4.3.10) which was previously
obtained in terms of limiting variances. �

Example 4.3.3 Bayes estimator of binomial p. Let X be binomial
b(p, n) and let us compare the standard estimator δ1 = X/n with the
estimator

δ2(X) =
a + X

a + b + n
,(4.3.16)

which is the Bayes estimator corresponding to a beta prior with parameters
a and b. Then

δ2(X) =
X

n
− a + b

a + b + n
· X

n
+

a

a + b + n
.

Since
√

n

[
− a + b

a + b + n
· X

n
+

a

a + b + n

]
P→ 0(4.3.17)

(Problem 3.3(i)), it is seen that not only
√

n [δ1(X) − p] but also
√

n [δ2(X) − p] L→ N(0, pq) and, hence, that the ARE of δ2 to δ1 is equal to
1. The same result obtains if the ARE is computed in terms of the limiting
rather than the asymptotic variances (Problem 3.3(ii)). �

The previous two examples were concerned with parametric situations in
which the distribution is completely specified by one or more parameters.
However, efficiency calculations have proved particularly useful in a number
of so-called semi-parametric cases which involve not only unknown param-
eters but also unknown distribution functions. In many of these examples,
the asymptotic variance approach is considerably easier than that based
on the limiting variance. For this reason, we shall in Examples 4.3.4–4.3.8
compare estimators only in terms of their asymptotic variances.

Example 4.3.4 Center of symmetry. Suppose that X1, . . . , Xn are
i.i.d. according to a distribution which is symmetric about an unknown
center θ. The cdf of the X’s can be written as

P (Xi ≤ x) = F (x − θ) ,



242 4. Estimation

where the distribution represented by F is symmetric about 0. We shall
suppose that both θ and F are unknown and that it is desired to estimate
θ. (The problem of testing θ was considered in Example 3.2.5.)

If F were known to be normal, the estimator of choice would be X̄,
which in that case has many optimum properties. However, for non-normal
distributions, this estimator tends to be much less satisfactory since its
asymptotic variance is unnecessarily large. Of particular interest is the case
of distributions F that are more heavy-tailed than the normal. Samples
from such distributions typically contain some outlying observations which
strongly affect the mean. An easy way to make the estimator less sensitive
to such outliers is to give them less weight.

The estimator which goes furthest in this direction is the median X̃,
which puts all its weight on the central observation when n is odd and on
the two central observations when n is even. �

Example 4.3.5 The median. To see how successful X̃ is in improving
X̄ for heavy-tailed distributions, let us consider the ARE of X̃ to X̄ for an
arbitrary symmetric F (x − θ). We have

√
n
(
X̄ − θ

)
→ N

(
0, σ2

)
if σ2 = Var (Xi) < ∞, and by (2.4.19),

√
n
(
X̃ − θ

)
→ N

(
0, 1/4 f2 (0)

)
,

provided F has a density f with f(0) > 0. It follows that the ARE (4.3.13)
of X̃ to X̄ is

eX̃|X̄(F ) = 4σ2f2(0).(4.3.18)

It is seen that if one stretches the tail of the distribution, thereby increasing
σ2 while leaving the center of the distribution unchanged, the efficiency
will increase and tend to ∞ as σ2 → ∞. A limiting case is the Cauchy
distribution in which σ2 = ∞, so that e = ∞.

Since X̄ is optimal when F is normal, we must of course have e < 1 in
that case. For F = N(0, σ2), we have in fact f(0) = 1/

√
2πσ and hence e =

2/π .= 637. This may be unacceptably low if one believes the distribution to
be near normal, and it suggests as a compromise discarding not all except
the central observation, but only a proportion of the outer observations.�

Example 4.3.6 Trimmed mean. As an estimator intermediate between
X̄ and X̃ consider therefore the symmetrically trimmed mean, which dis-
cards the k largest and k smallest observations and uses as an estimator
the average of the remaining n − 2k observations. The mean and median
are the two extreme cases where either no observations or all except the
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central one or two observations are discarded. If
k

n
= α < 1/2, we shall

denote the resulting trimmed mean by

X̄α =
1

n − 2k
[
X(k+1) + · · · + X(n−k)

]
.(4.3.19)

More generally, X̄α can be defined for any α by (4.3.19) with k = [nα], the
largest integer ≤ nα. �

To determine the efficiency of X̄α for fixed α as n → ∞, we require its
asymptotic distribution.

Theorem 4.3.1 Let F be symmetric about 0 and suppose there exists an
interval (−c, c) which may be finite or infinite such that F (−c) = 0, F (c) =
1 and that F possesses a density f which is continuous and positive on the
interval (−c, c). (This assumption assures that there are no gaps where the
density is zero.) If X1, . . . , Xn are i.i.d. according to F (x − θ), then for
any 0 < α < 1/2,

√
n
(
X̄α − θ

)
→ N

(
0, σ2α

)
,(4.3.20)

where

σ2α =
2

(1 − 2α)2



ξ(1−α)∫
0

t2f(t)dt + αξ2 (1 − α)


 .(4.3.21)

Here ξ(α) is the unique value for which

F [ξ(α)] = α.(4.3.22)

This result will not be proved here (for a proof, see Bickel (1965) and
Stigler (1973)) but the following gives an idea of the argument. As will
be shown in section 5.1, the joint distribution of the quantiles X[αn] and
Xn+1−[αn] is asymptotically normal; in addition the conditional distribu-
tion of X[αn]+1, . . . , Xn−[αn] is that of a sample of n − 2[αn] observations
from the conditional distribution of Xi given X[αn] and Xn+1−[αn] and is
therfore asymptotically normal by the central limit theorem. By combining
these results one obtains the desired proof.

If σ2 is the variance of the Xi, it follows from (4.3.20) and (4.3.21) that
the ARE of X̄α to X̄ is given by

eX̄α,X̄(F ) =
σ2

σ2α
.(4.3.23)

The value of this ARE for F = normal, t5, and t3 is shown in Table 4.3.1 for
various values of α. As another example, consider the ARE (4.3.23) when
F is a normal mixture given by

F (x) = (1 − ε)Φ(x) + εΦ(x/τ).(4.3.24)
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The ARE for this case is shown in Table 4.3.2 for τ = 3 and a number
of values of ε and α. These two tables suggest that against heavy-tailed
distributions, the efficiency of X̄α holds up very well to that of X̄ for
α ≤ .125.

TABLE 4.3.1. Efficiency of X̄α to X̄ for t-distributions

α .05 .125 .25 .375 .50
Normal .99 .94 .84 .74 .64

t5 1.20 1.24 1.21 1.10 .96
t3 1.70 1.91 1.97 1.85 1.62

Source: Table 4.1 of Lehmann (1983), Chapter 5.

TABLE 4.3.2. Efficiency of X̄α to X̄ for normal mixtures

ε α .05 .1 .125 .25 .375 .5
.25 1.40 1.62 1.66 1.67 1.53 1.33
.05 1.20 1.21 1.19 1.09 .97 .83
.01 1.04 1.03 .98 .89 .79 .68
0 .99 .97 .94 .84 .74 .64

Source: Table 4.2 of Lehmann (1983), Chapter 5.

Since the efficiencies in Tables 4.3.1 and 4.3.2 are all fairly high, one may
wonder how low the value of eX̄α,X̄(F ) can get.

Theorem 4.3.2 For all F satisfying the assumptions of Theorem 4.3.1,

eX̄α,X̄(F ) ≥ (1 − 2α)2.(4.3.25)

Proof.

1
2
σ2 =

∞∫
0

t2f(t)dt =

ξ(1−α)∫
0

t2f(t)dt +

∞∫
ξ(1−α)

t2f(t)dt

≥
ξ(1−α)∫
0

t2f(t)dt + αξ2(1 − α) =
1
2
σ2α(1 − 2α)2.

�
When α = .1, for example, the lower bound (4.3.25) is .64. As α → 1/2,

it tends to 0 and the estimator gets close to the median.
The proof also shows for what distributions the lower bound is attained.

Equality will hold provided



4.3 Comparing estimators 245

∞∫
ξ(1−α)

t2f(t)dt = αξ2(1 − α).(4.3.26)

Since t > ξ(1−α) for all t over which the integral on the left side extends,
(4.3.26) can hold only if the distribution F assigns all of its probability α
in the interval (ξ (1 − α) ,∞) to the point ξ (1 − α).

If F is restricted to be unimodal, a somewhat better lower bound can be
obtained. One then has

eX̄α,X̄(F ) ≥ 1
1 + 4α

for all unimodal F.(4.3.27)

The lower bound is attained when F is uniform. For a proof, see Bickel
(1965).

The trimmed means (4.3.19) give zero weight to the outer 2k observations
and assign equal weight to the remaining ones. Instead, one may prefer a
smoother weighting which gives maximal weight to the central observation
and decreases the weights as one moves away from the center. This leads
to estimators of the form

n∑
i=1

wiX(i),(4.3.28)

where X(1) < · · · < X(n) are the ordered X’s. The linear functions (4.3.28)
of the order statistics, the so-called L-estimators, form one of three classes
that have been extensively studied in a search for more robust alternatives
to X̄ for estimating location (see, for example, the books by Huber (1981),
Hampel et al. (1986), and Staudte and Sheather (1990)). We shall conclude
the discussion of Example 4.3.4 with an estimator from one of the other
two classes, the R-estimators (so called because they can be derived from
rank tests).

Example 4.3.7 The Hodges-Lehmann estimator. Instead of the me-
dian θ̃ of the observations Xi, consider the median of the averages

˜̃
θ = med

i≤j

(
Xi + Xj

2

)
.(4.3.29)

If the Xj are i.i.d. according to a distribution F (x − θ) where F has a
density f and is symmetric about 0, then

√
n
(˜̃
θ − θ

)
L→ N

(
0,

1

12
[∫

f2(x)dx
]2
)

,(4.3.30)

provided
∫

f2(x)dx < ∞. This result can be obtained from the asymptotic

power (3.3.44) of the one-sample Wilcoxon test in the same way that the
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asymptotic distribution of the median was derived (in Example 2.4.9) from
that of the sign test statistic. For a proof see, for example, Hettmansperger
(1984) or Lehmann (1998).

The ARE of ˜̃
θ to X̄ is therefore

12σ2
(∫

f2(x)dx

)2
,(4.3.31)

the same as that of the Wilcoxon to the t-test given by (3.4.14). The nu-
merical values calculated there, and in particular the lower bound (3.4.17),
thus carry over to the present situation. �

Example 4.3.8 The two-sample shift model. As a second example of
a semiparametric model, let X1, . . . , Xm and Y1, . . . , Yn be i.i.d. according
to distributions

P (Xi ≤ x) = F (x) and P (Yj ≤ y) = F (y − ∆) ,(4.3.32)

respectively. In this model, which was already considered in (3.3.45) with
θ instead of ∆, the distribution of the Y ’s is shifted from that of the X’s
by an amount ∆. We now wish to estimate the shift parameter ∆.

If F were known to be normal, the X’s according to N
(
ξ, σ2

)
and the Y ’s

according to N
(
η, σ2

)
, we would estimate ∆ = η− ξ by Ȳ − X̄. As was the

case in Example 4.3.4, this normal-theory estimator may be quite unsatis-
factory when F is more heavy-tailed than the normal distribution because
of its sensitivity to outlying observations. We shall consider here only one
alternative, which is the two-sample analog of the estimator (4.3.29) in the
one-sample case.

Note that (Problem 3.8(i))

∆̄ = Ȳ − X̄ =
1

mn

m∑
i=1

n∑
j=1

(Yj − Xj) ,(4.3.33)

that is, ∆̄ is the average of the mn differences Yj − Xi, i = 1, . . . ,m;
j = 1, . . . , n. As an alternative, consider the median of these differences

∆̂ = med
i,j

(Yj − Xi) .(4.3.34)

Suppose the sample sizes m and n are such that

m

N
→ ρ,

n

N
→ 1 − ρ, where N = m + n and 0 < ρ < 1,(4.3.35)

and that F has a density f . Then it can be shown that (Problem 3.8(ii))

√
N
(
∆̂ − ∆

)
L→ N

(
0, τ2

)
,(4.3.36)
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where

τ2 =
1

ρ(1 − ρ)


 1∫

f2(x)dx



2

.(4.3.37)

On the other hand (Problem 3.8(iii))

√
N
(
∆̄ − ∆

)
→ N

(
0,

σ2

ρ(1 − ρ)

)
,(4.3.38)

and the efficiency of ∆̂ to ∆̄ is therefore

e∆̂,∆̄(F ) = 12σ2
(∫

f2(x)dx

)2
.(4.3.39)

Formally, (4.3.39) is the same as the efficiency (3.4.14) in the one-sample
problem, and the earlier results obtained for this case therefore continue
to apply. However, f is now not the density of the differences Yj − Xi of
which ∆̂ is the median but of the individual quantities Xi − ξ and Yi − η.
(For a connection between these two densities, see Problem 3.9.) �

The semiparametric models of Examples 4.3.3 and 4.3.7 represent gen-
eralizations of the normal models

Xi : N
(
ξ, σ2

)
and Xi : N

(
ξ, σ2

)
, Yj : N

(
η, σ2

)
(4.3.40)

in which the frequently unrealistic assumption of normality has been
dropped. However, to retain the parameters of interest, the models hold on
to the often still unrealistic assumptions of symmetry and shift. When these
assumptions are also dropped, an entirely different approach is needed,
which will be taken up in Section 6.2.

The models of Examples 4.3.3 and 4.3.7 are among the simplest semi-
parametric models. More general models are outlined by Oaks (1988); a
survey and classification is provided by Wellner (1985). For a thorough,
but more advanced, treatment, see the book by Bickel et al. (1993).

Comparisons are possible not only of different estimators of a parameter,
based on the same data, but also of estimators of a common parameter
occuring in different models or experiments. The following are two simple
illustrations.

Example 4.3.9 Two binomial designs. In Example 2.5.1, we consid-
ered estimating p2 by either δ1 = X/n or δ2 = (Y/n)2, where X and Y de-
note the numbers of successes in n binomial trials with success probabilities
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p2 and p, respectively. From the asymptotic distributions of
√

n

(
X

n
− p2

)

and
√

n

(
Y 2

n2
− p2

)
given there, it is seen that the ARE of δ2 to δ1 is

e2,1 =
p2
(
1 − p2

)
4p3q

=
1 + p

4p
.(4.3.41)

As noticed in the earlier example, Y 2/n2 is more efficient than X/n when
p < 1/3 and less efficient when p > 1/3. The efficiency result (4.3.41) shows
that e2,1 is a decreasing function of p and that e2,1 tends to ∞ as p → 0
and tends to 1/2 as p → 1. �

We have compared the two estimators when the parameter being esti-
mated is p2. Would the answer be different if we were estimating p instead?
The following result shows that it would not.

Theorem 4.3.3 Let δ1 and δ2 be two estimators of θ satisfying
√

n (δi − θ) L→ N
(
0, τ2i

)
,(4.3.42)

and let h be a differentiable function with h′(θ) �= 0. Then the ARE of
h (δ2n) to h (δ1n) as estimators of h(θ) has the same value τ21 /τ

2
2 as that of

δ2n to δ1n as estimators of θ.

Proof. The result follows immediately from the fact that the asymptotic
variance of

√
n [h (δi) − h (θ)]2 is obtained by multiplying τ2i by [h′(θ)]2. �

Example 4.3.9 illustrates the comparison, not so much of two estimators,
as of two designs. The following is another example of this kind; additional
examples can be found in the next section.

Example 4.3.10 Sampling with and without replacement. When
estimating a population mean, it is sometimes more convenient to draw
the sample with rather than without replacement. Let the N population
values be denoted by v1, . . . , vN and the n values drawn in such a sample
by X ′

1, . . . , X ′
n. Then the variables X ′

i are i.i.d. with expectation vN · and
variance τ2N given by (2.8.47). The average X̄ ′

n has mean vN · and variance
τ2N/n.

On the other hand, if X1, . . . , Xn denote the n values obtained when
the sample is drawn without replacement, the average X̄n by (2.8.49) has
variance

Var
(
X̄n

)
=

N − n

N − 1
· 1
n

τ2N .(4.3.43)

It follows that

eX̄′,X̄ = lim
N−n
N−1 ·

1
nτ2N

τ2N/n
= lim

(
1 − n

N

)
as N → ∞,(4.3.44)
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if this limit exists. (Of course in this case, one could simply interpret the
ratio of the variances as the finite relative efficiency since no approximations
are involved.) In particular, the ARE (4.3.44) is 1 if the sampling fraction
n/N tends to 0 as N → ∞, but it is < 1 if n/N tends to a positive limit.
Under mild assumptions (see Theorem 2.8.2), both

√
n
(
X̄n − vN ·

)
√

Var
(
X̄n

) and
√

n
(
X̄ ′
n − vN ·

)
√

Var
(
X̄ ′
n

) L→ N(0, 1).

Comparison of the asymptotic variances of the two estimators therefore
also leads to (4.3.44) as the ARE. �

So far, we have compared estimators for which both bias and variance
are of order 1/n so that up to terms of that order, the bias makes no
contribution to the expected squared error (4.2.9). Correspondingly, the
asymptotic (normal) distributions are centered at the value being estimated
and differ only in their variances. We shall now consider some situations in
which the bias is of order 1/

√
n and the square of the bias is then of the

same order as the variance. Correspondingly, the asymptotic distributions
of the estimators are biased, i.e., have expectations that differs from the
value being estimated. In fact, in the following examples, the asymptotic
distributions of the estimators being compared have the same variance and
differ only in their means. To see what happens in such situations, we must
first consider the corresponding problem in the exact, non-asymptotic case.

Let δ1 and δ2 be two estimators of θ with common variance τ2 (θ) and
with means

ηi = θ + bi(θ) (i = 1, 2),(4.3.45)

and suppose the accuracy of an estimator is measured by its expected
squared error

R(δ, θ) = E(δ − θ)2.(4.3.46)

Since then, by (4.2.9),

R (δi, θ) = τ2(θ) + b2i (θ),

the estimator with the smaller absolute bias also has the smaller expected
squared error, and, in particular, an unbiased estimator is preferred to any
biased estimator with the same variance.

An alternative measure of accuracy is provided by

P (|δ − θ| ≤ a) ,(4.3.47)

the probability that the estimator will not differ from the estimand by
more than a specified amount a. If the common distribution of (δi − ηi) is
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F , then

P [|δi − θ| < a] = F [a − bi (θ)] − F [−a − bi(θ)] .(4.3.48)

This is the area under F over an interval centered at −bi(θ) and of length
2a. Let us now consider the special case that

F is normal with mean zero (or more generally is
symmetric about 0 with a unimodal density).

(4.3.49)

Then the probability of an interval of given length decreases with the dis-
tance from its center. Thus in particular if δ1 is unbiased and δ2 biased,
then for any a > 0, the probability (4.3.47) is greater for δ1 than for δ2 so
that δ1 is more accurate than δ2 in this sense.

As we shall see in Example 4.3.12 below, when (4.3.49) does not hold,
the conclusion reached under this assumption need no longer be valid.

These results immediately carry over to the asymptotic situation. This
follows from the fact that if kn (δi − ηi) tends in law to F , then

limP [kn |δi − ηi| < a] = F (a) − F (−a).(4.3.50)

It is useful to note that when bi(θ) = 0 for i = 1 or 2, then by (4.3.45),
the limit distribution F has expectation θ.

Example 4.3.11 Let X1, . . . , Xn be i.i.d. with mean θ and finite variance
σ2, and as estimators of θ consider X̄ and

δ =
(

1 − α√
n

)
X̄ +

α√
n

θ0,(4.3.51)

where θ0 is a given value to which we think θ might be close. Then

bδ(θ) =
α√
n

(θ0 − θ) , bX̄(θ) = 0(4.3.52)

and

Varδ(θ) =
(

1 − α√
n

)2
σ2

n
, VarX̄(θ) =

σ2

n
.(4.3.53)

The expected squared error of δ and X̄ is therefore respectively

R (δ, θ) =
1
n

[
α2 (θ − θ0)

2 + σ2
(

1 − α√
n

)2]

=
1
n

[
α2 (θ − θ0)

2 + σ2
]

+ o

(
1
n

)(4.3.54)
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and

R
(
X̄, θ

)
= σ2/n.(4.3.55)

If θ �= θ0, in (4.3.54) the bias term is decisive and R
(
X̄, θ

)
< R (δ, θ)

to terms of order 1/n. On the other hand, when θ = θ0, both estimators
are unbiased and the two estimators then agree to order 1/n. When higher
terms are taken into account, we find that for large n, R (δ, θ0) < R

(
X̄, θ0

)
.

This is not unexpected since δ favors θ0.
If instead of the expected squared error of the estimators, we consider

their asymptotic distributions, we see that (4.3.54) and (4.3.55) are replaced
by

√
n (δ − θ) =

√
n
(
X̄ − θ

)
+ α

(
θ0 − X̄

) L→ N
(
α [θ0 − θ] , σ2

)
(4.3.56)

and
√

n
(
X̄ − θ

) L→ N
(
0, σ2

)
.(4.3.57)

For θ �= θ0, the remark following (4.3.49) shows that X̄ is better than δ in
the sense that

P
[√

n
∣∣X̄ − θ

∣∣ < a
]

> P
[√

n |δ − θ| < a
]

for all a.

When θ = θ0, the asymptotic distributions of the two estimators coincide.
This corresponds to the fact that R

(
X̄, θ0

)
= R (δ, θ0) up to terms of order

1/n. �

Example 4.3.12 Uniform. Let X1, . . . , Xn be i.i.d. U(0, θ). Then the
maximum likelihood estimator of θ is X(n), the largest of the X’s. Since

E
[
X(n)

]
=

n

n + 1
θ,(4.3.58)

X(n) is a biased estimator of θ. Multiplication by
n + 1

n
corrects the bias

and suggests as an alternative

δ =
n + 1

n
X(n).(4.3.59)

For these estimators, we have (Problem 3.12)

bX(n)(θ) =
−θ

n + 1
, VarX(n)(θ) =

nθ2

(n + 1)2 (n + 2)
(4.3.60)

and hence

R
(
X(n), θ

)
=

(2n + 2)
(n + 1)2 (n + 2)

θ2 ∼ 2θ2

n2
(4.3.61)
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and

bδ(θ) = 0, Varδ(θ) =
θ2

n (n + 2)
,(4.3.62)

so that

R (δ, θ) =
θ2

n (n + 2)
∼ θ2

n2
.(4.3.63)

Based on the expected squared error criterion, the ARE of X(n) to δ is
therefore

eX(n),δ(θ) =
1
2

for all θ.(4.3.64)

To make the corresponding comparison in terms of (4.3.47), note that
by Example 2.3.7,

n
(
θ − X(n)

) L→ E (0, θ)(4.3.65)

and hence

n
(
X(n) − θ

)
→ −E (0, θ) ,(4.3.66)

i.e., the distribution of −Y when Y is E(0, θ). Since the mean of this
distribution is −θ, the estimator X(n) has a negative asymptotic bias. From
(4.3.66), one finds that (Problem 3.13)

lim P
{
n
∣∣X(n) − θ

∣∣ < a
}

= 1 − e−a/θ(4.3.67)

and that

lim P {n |δ − θ| < a} =
{

1 − e−1−a/θ if θ < a
e−1+a/θ − e−1−a/θ if a < θ.

(4.3.68)

Comparison of (4.3.67) and (4.3.68) shows (Problem 3.13) that (4.3.67) is
less than (4.3.68), and hence the unbiased estimator is better in this sense,
when a > cθ where c is the unique positive solution of the equation

1
e
ec +

(
1 − 1

e

)
e−c = 1,(4.3.69)

and is worse when a < cθ. The ARE in this case therefore depends on a
(Problem 3.14). �
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Summary

1. The asymptotic relative efficiency (ARE) of one estimator with re-
spect to another is the ratio of the numbers of observations required
by the two estimators to achieve the same asymptotic variance. In
many situations, this equals the limiting ratio of the two actual vari-
ances. The concept is illustrated on a number of parametric and semi-
parametric examples. It also can be used to compare two experimental
designs.

2. The definition of the ARE has to be modified when the estimators
being compared are asymptotically biased.

4.4 Sampling from a finite population

Probabilistic results for simple random sampling from a finite population
were obtained in Examples 2.2.4, 2.8.4, and 2.8.5. We shall here discuss
some of their statistical implications and extend the results to other sam-
pling schemes.

Example 4.4.1 Sampling from a 2-valued population. Suppose that
a simple random sample of size n is drawn without replacement from a
population Π of N items, of which D are defective (or have some other
special characteristic) and N − D are not. If X denotes the number of
defectives in the sample, we saw earlier that

E

(
X

n

)
=

D

N
(4.4.1)

and

σ2n = Var
(

X

n

)
=

1
n
· N − n

N − 1
· D

N

(
1 − D

N

)
.(4.4.2)

Since we are concerned with large-sample behavior, we consider, as in Ex-
ample 2.8.4, a sequence of populations ΠN , N = 1, 2, . . . . Then not only Π
but also D and n require the subscript N , although we shall often suppress
this subscript. It is convenient to choose the embedding sequence ΠN in
such a way that

DN

N
= p(4.4.3)

remains constant, independent of N .

The estimator
X

n
of p was seen in Example 2.2.4 to be consistent if

n and N both tend to infinity,(4.4.4)
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and in Example 2.8.4 to satisfy(
X

n
− p

)
/σn

L→ N(0, 1),(4.4.5)

provided

n and N − n both tend to infinity.(4.4.6)

The extensive literature on refinements of the normal approximation is
reviewed in Johnson, Kotz, and Kemp (1992, Chapter 6).

Since

E

(
X

n

)
= p,(4.4.7)

X/n is an unbiased estimator of p and a natural measure of its accuracy
is its variance σ2n. Let us now consider the sample size required for the
variance σ2n of this estimator to satisfy

σ2n ≤ v20(4.4.8)

for a given value of v20 . For fixed N and p, the variance σ2n given by (4.4.2) is
a decreasing function of n, and the desired value of n is therefore obtained
by solving the equation

N − n

n
· pq

N − 1
= v20 .(4.4.9)

This has the solution

n0 =
pq/v20

1
N

[
N − 1 +

pq

v20

](4.4.10)

and the required sample size is the smallest integer ≥ n0. As N → ∞,

n0 →
pq

v20
.(4.4.11)

The sample size n required to obtain a given accuracy for the estimator X/n
of p therefore does not tend to infinity with the size of the population. This
fact, which is often felt to be anti-intuitive, becomes plausible by noting
that by (4.4.2)

σ2n ≤ pq

n
.(4.4.12)

To achieve (4.4.8), it is therefore enough to have

pq

n
≤ v20 .(4.4.13)
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However, pq/n is the variance of X/n when sampling with replacement,
which corresponds to a sequence of n binomial trials with success prob-
ability p and which therefore does not involve the population size N at
all.

The value of n0 given by (4.4.10) or (for large N) the approximate value
pq/v20 depend on the unknown p. An approximate sample size can be de-
termined by replacing p by an estimate obtained by previous experience.
Lacking such information, one can use the fact that pq ≤ 1/4 for all p, to
determine a conservative value of n0 by replacing pq in (4.4.10) or (4.4.11)
by 1/4. As an example, suppose that v0 = .01; then the approximate value
obtained from (4.4.11) is

n0
.= 10, 000pq ≤ 2, 500.

A sample size of 2,500 therefore provides a variance ≤ .0001 for arbitrarily
large populations.

Consider next how to determine confidence intervals for p. Exact intervals
can be obtained from the hypergeometric distribution of X, and for large
N can be approximated from the binomial distribution (Problem 2.6 of
Chapter 1). If n is also large, it is simpler to base the intervals on the
normal limit of the binomial as n → ∞. These are in fact the intervals
given in most textbooks on sampling.

At this point, we are faced with a conceptual difficulty. We saw above
that the sample size n required to achieve a given accuracy does not tend
to ∞ with N but remains bounded (the binomial approximation which
explained this phenomenon applies not only to the variance of the estimator
but equally to confidence intervals). Now we are letting n → ∞

To understand this apparent inconsistency, we must go back to the pur-
pose of embedding a given situation in a fictitious sequence: to obtain a
simple and accurate approximation. The embedding sequence is thus an
artifice and has only this purpose which is concerned with a particular pair
of values N and n and which need not correspond to what we would do in
practice as these values change.

There is therefore no problem with replacing the (approximate) bino-
mial confidence intervals by their normal approximation given as (4.1.23)
in Example 4.1.2. Instead of using this two-stage approximation (hyperge-
ometric → binomial → normal), we can also obtain intervals directly from
the normal approximation (4.4.5) where, of course, σn has to be replaced
by a consistent estimator. The resulting intervals are

X

n
− uα/2σ̂n < p <

X

n
+ uα/2σ̂n,(4.4.14)

where

σ̂2n =
1
n

N − n

N − 1
X

n

(
1 − X

n

)
.(4.4.15)
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If n is much smaller than N , one may want to choose a sequence with
n = o(N), and the factor (N −n)/(N − 1) can then be replaced by 1. This
leads to the asymptotically equivalent intervals (4.1.24). �

Example 4.4.2 Estimating a population size. The results of the pre-
ceding example provide a tool for estimating the unknown size N of an
animal population by means of the following capture-recapture method. A
first sample of size n1 is drawn and the members of the sample are marked.
The sample specimens are then released and allowed to mix with the rest
of the population. Later, a second random sample of size n2 is drawn from
the population and the number X of marked members in the sample is
noted. If p = n1/N denotes the (unknown) first sample fraction, we wish
to estimate N = n1/p.

Let X be the number of defective (i.e., marked) items in a random sample
of size n2 from a population containing a proportion p of defectives. If n1
is large enough to represent a non-negligible fraction of the population (so
that p is not too close to 0) and if n2 is large enough for the asymptotic
theory of Example 4.4.1 to be applicable, it follows that X/n2 is a consistent
estimator of p, and by Theorem 2.1.4,

n1n2
X

is a consistent estimator of
n1
p

= N.(4.4.16)

To obtain asymptotic confidence intervals for N = n1/p, suppose that

N − n2
N

→ λ as n2 and N − n2 → ∞.(4.4.17)

Then it follows from (4.4.2) and (4.4.5) that

√
n2

(
X

n2
− p

)
→ N (0, λpq)

and hence from Theorem 2.5.2 that

√
n2

(
n2
X

− 1
p

)
→ N

(
0, λq/p3

)
.(4.4.18)

This shows that the intervals

n1n2
X

− uα/2

√
n21λq̂

n2p̂3
< N <

n1n2
X

+ uα/2

√
n21λq̂

n2p̂3n
(4.4.19)

with p̂ =
X

n2
constitute confidence intervals for N with asymptotic level

1 − α.
An alternative approach to obtaining such intervals is to express the

confidence intervals (4.4.14) for p in terms of 1/p; the resulting intervals
differ from, but are asymptotically equivalent to (4.4.19) (Problem 4.3).
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For references to the extensive literature on capture-recapture methods
(including applications to the estimation of human populations), see Seber
(1982) and Thompson (1992). �

Example 4.4.3 Sampling from a finite population. As in Example
2.8.5, consider a simple random sample of size n from a population Π,
and embed this situation in a sequence of populations ΠN (N = 1, 2, . . . )
of elements vNi, i = 1, . . . , N . Then we saw in (2.8.45) and (2.8.49) that
the expectation and variance of the sample mean X̄n are given by

E
(
X̄n

)
= vN ·(4.4.20)

and

Var
(
X̄n

)
=

1
n

N − n

N − 1
τ2N ,(4.4.21)

where

τ2N =
1
N

N∑
i=1

(vNi − vN ·)
2(4.4.22)

is the population variance of ΠN . Also, in generalization (4.4.5), we have,
by Section 2.8,

X̄n − E
(
X̄
)

√
Var
(
X̄n

) → N(0, 1),(4.4.23)

provided

n and N − n both tend to infinity(4.4.24)

and

condition (a) or (b) of Theorem 2.8.2 holds.(4.4.25)

Note: An Edgeworth expansion for the distribution of X̄n is given by
Robinson (1978).

Let us now ask whether the sample average X̄n is a consistent estima-
tor of the population average vN.. When considering the consistency of X̄
for estimating the mean, based on n i.i.d. random variables X1, . . . , Xn

(in Chapter 2, Section 1), we took the distribution F of the X’s as fixed
(i.e., not changing with n). As a result, the mean and variance of that
distribution were also fixed and only the sample size n was changing. In
the present situation, where we are embedding the given population ΠN
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in a sequence of population Π1, Π2, . . . , it is convenient to use an embed-
ding sequence in which the population mean vN · and population variance
τ2N =

∑
(vNi − vN ·)

2
/N are constant, say

vN · = v and τ2N = τ2 for all N.(4.4.26)

For such a sequence, X̄n will be consistent for estimating v if the variance
(4.4.21) tends to 0 and hence if

1
n

N − n

N − 1
→ 0.(4.4.27)

Since (N − n) / (N − 1) ≤ 1, this condition will hold whenever n → ∞.

Note: It is seen from (4.4.21) that the same conclusion holds for any se-
quence ΠN with vN · = v for which τ2N is bounded as n and N → ∞.

As has been pointed out earlier, we are, of course, not dealing with a
sequence of populations but with a single population ΠN for a given N . The
sufficient condition for consistency that n → ∞ and τ2N remains bounded
suggests that for the given situation X̄ is likely to be close to vN · if

1
n

τ2N is small.(4.4.28)

Unfortunately, τ2N is unknown; so how can we check (4.4.28) or the condi-
tions for asymptotic normality which require that

max (vNi − vN ·)
2∑

(vNj − vN ·)
2

be small?(4.4.29)

Such a check may be possible if, as is usually the case, some information
about the v’s is available, either from past experience or from the physical
situation. Suppose, in particular, that we know some bounds within which
the v’s must lie, say

|vNi| ≤ M for all i.

Then it follows that τ2N ≤ 4M2, which provides a bound for (4.4.28). Un-
der the same conditions, the numerator of (4.4.29) is ≤ 4M2. Since the
denominator is a sum of non-negative terms, it cannot be very small unless
the v’s are highly concentrated. (It is, for example, ≥ R2/4, where R is the
range of the v’s). In this way, one may be able to obtain a check also on
(4.4.29).

If the limit result (4.4.23) holds, we can use (4.4.21) to obtain approxi-
mate confidence intervals for vN ·. As before, consider a sequence of popu-
lations satisfying (4.4.26). Then (4.4.23) states that

√
n
(
X̄n − v

)
τ

√
N − 1
N − n

L→ N(0, 1),(4.4.30)
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so that

P

[
√

n
∣∣X̄n − v

∣∣ < uα/2τ

√
1
n

N − n

N − 1

]
→ 1 − α.(4.4.31)

This limit relation provides confidence intervals for vN · = v when a consis-
tent estimator τ̂n is substituted for τ .

Now

τ2 =
1
N

N∑
i=1

v2Ni − v2,(4.4.32)

and a natural estimator of τ2 is therefore

τ̂2n =
1
n

n∑
i=1

X2i − X̄2n =
1
n

n∑
i=1

(
Xi − X̄n

)2
.(4.4.33)

A sufficient condition for X̄n to be a consistent estimator of v (and
hence X̄2n of v2) was earlier seen to be that n → ∞. The same argument
shows that in a sequence of populations in which not only vN · and τ2N are
independent of N but also the corresponding quantities when the vNi are
replaced by v2Ni, the condition n → ∞ will be sufficient for τ̂2n to be a
consistent estimator of τ2. �

Example 4.4.4 Stratified sampling. In the situation of Example 4.4.3,
more accurate estimators can typically be obtained by dividing the pop-
ulation into more homogenous subpopulations, called strata, and drawing
a random sample from each. Let there be s strata of sizes N1, . . . , Ns(∑

Ni = N
)
, and let independent samples of sizes n1, . . . , ns be drawn

from these strata.
We shall denote the values attached to the Ni elements of the ith stra-

tum by vij (j = 1, . . . , Ni; i = 1, . . . , s ). The notation differs from that
in Example 4.4.3, where one of the subscripts referred to the fact that we
are not dealing with a single population, but with a sequence of popula-
tions of increasing size. Such a sequence is needed of course also in the
present case, where we are now concerned with a sequence of populations
Π(k) (k = 1, 2, . . . ) subdivided into strata Π(k)i (i = 1, . . . , s) of sizes N

(k)
i

consisting of elements v
(k)
ij (j = 1, . . . , Ni; i = 1, . . . , s; k = 1, 2, . . . ).

For the sake of convenience, we shall in the following usually suppress the
superscript k. Let us denote the variance of the ith stratum by

τ2i =
1
Ni

Ni∑
j=1

(vij − vi·)
2
,(4.4.34)
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where

vi· =
1
Ni

Ni∑
j=1

vij .(4.4.35)

When the v’s in the ith stratum take on only two values, τ2i reduces to

τ2i =
Di

Ni

(
1 − Di

Ni

)
,(4.4.36)

where Di denotes the number of defectives or other special items in the ith

stratum.
If the v-values in the sample from the ith stratum are denoted by Xij

(j = 1, . . . , ni), the estimator of vi· corresponding to the estimator X̄n

considered in Example 4.4.3 is Xi· =
Ni∑
j=1

Xij/ni and the natural estimator

of the population average v·· =
∑

Nivi·/N is

X∗ =
∑ Ni

N
Xi·.(4.4.37)

Since the Xi· are independent, it follows that

Var (X∗) =
∑(

Ni

N

)2
V 2i ,(4.4.38)

where by (4.4.21)

V 2i = Var (Xi·) =
1
ni

Ni − ni
Ni − 1

τ2i .(4.4.39)

We shall now determine conditions for consistency and asymptotic nor-
mality of X∗ as k → ∞ under two different assumptions:

(a) The number s of strata is fixed and the sample sizes ni tends to infinity
for all i for which Ni/N does not tend to 0.

(b) The number s = s(k), k = 1, 2, . . . of strata tends to ∞ as k → ∞. �

Example 4.4.5 Stratified sampling with a fixed number of strata.
Since E (X∗) = v··, a sufficient condition for X∗ to be a consistent estimator
of v·· is that Var (X∗) → 0 and hence that

s∑
i=1

(
Ni

N

)2
V 2i → 0.(4.4.40)
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Let us suppose that [τ (k)i ]2 is bounded as k → ∞ for each i. Then V 2i =
O (1/ni) by (4.4.39), and a sufficient condition for (4.4.40) and hence for
consistency of X∗ is that

1
ni

(
Ni

N

)2
→ 0 for each i.(4.4.41)

This condition will hold in particular if

ni → ∞ for all i.(4.4.42)

Note however that (4.4.42) is not required for any value of i for which

Ni/N → 0.(4.4.43)

Since τ2i is bounded, such a stratum makes a negligible contribution to
Var(X∗) regardless of the value of ni.

In order to find conditions for the asymptotic normality of X∗, let us
write

X∗ − v··√
VarX∗

=
∑

wi
Xi· − vi·√

VarXi·
,(4.4.44)

where

wi =
Ni

N

√
VarXi·
VarX∗ =

Ni

N
Vi

/√√√√ s∑
j=1

(
Nj

N

)2
V 2j(4.4.45)

so that
s∑
i=1

w2i = 1.(4.4.46)

Asymptotic normality of (4.4.44) will now follow from the following
lemma, the proof of which will be considered in Problem 1.11 of Chap-
ter 5. �

Lemma 4.4.1 For each k = 1, 2, . . . , let w
(k)
i , i = 1, . . . , s, be constants

satisfying
s∑
i=1

w
(k)2

i = 1(4.4.47)

and let U
(k)
i (i = 1, . . . , s ) be s independent random variables satisfying

U
(k)
i

L→ N(0, 1) as k → ∞(4.4.48)

for each i for which w
(k)
i does not tend to 0 as k → ∞. Then
s∑
i=1

w
(k)
i U

(k)
i

L→ N(0, 1) as k → ∞.(4.4.49)
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Theorem 4.4.1 The estimator X∗ given by (4.4.37), for fixed s satisfies

X∗ − v··√
VarX∗

L→ N(0, 1) as k → ∞,(4.4.50)

provided n
(k)
i , N

(k)
i , and the values v

(k)
ij (j = 1, . . . , Ni) satisfy (4.4.24)

and (4.4.25) for each i = 1, . . . , s for which Ni/N does not tend to 0, with
n,N , and vNi replaced by n

(k)
i , N

(k)
i , and v

(k)
ij , respectively.

Proof. The result follows immediately from Lemma 4.4.1 and (4.4.23). �

Example 4.4.6 Stratified sampling with a large number of strata.
When s remains fixed as k → ∞, the estimator X∗ is the sum of a fixed
number of independent terms and asymptotic normality can be expected
only if these terms individually tend to normality. To model the situation
with a large number of strata, we shall let s → ∞. We are then dealing
with the sum of an increasing number of independent terms so that, un-
der suitable restrictions, the central limit theorem (CLT) applies. Since the
Ni, ni, and τ2i all depend on i, the terms are not identically distributed.
Conditions for asymptotic normality can therefore be obtained from Lia-
pounov’s theorem (Theorem 2.7.2) and somewhat better conditions from
the Lindeberg CLT of Section A.1 of the Appendix. The latter leads to the
following result which is proved in Bickel and Freedman (1984).

Theorem 4.4.2 In the notation of Theorem 4.4.1, the normal limit (4.4.50)
holds as s → ∞, provided

max
i=1,... ,s

(
Ni

N

)2
V 2i /ρi

∑(
Nj

N

)
V 2j

→ 0,(4.4.51)

where ρi = ni (Ni − 1) / (Ni − ni), and if there exists a constant M (inde-
pendent of k) such that

max
i=1,... ,s


 1

N
(k)
i

Ni∑
j=1

∣∣∣v(k)ij − v
(k)
i·

∣∣∣3

 ≤ M for all k.(4.4.52)

Since
1
ρi

≤ 1
ni
, condition (4.4.51) will hold, in particular, when

max(1/n(k)i ) → 0 and hence when

min
i=1,... ,s(k)

(
n
(k)
i

)
→ ∞ as k → ∞.(4.4.53)
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In analogy with (4.4.42), condition (4.4.53) is not required for values of
i for which w

(k)
i (given by (4.4.45)) tends to 0 (Problem 4.5).

Condition (4.4.52) holds whenever the v
(k)
ij are uniformly bounded, i.e.,

there exists M ′ such that∣∣∣v(k)ij ∣∣∣ ≤ M ′ for all i, j, and k.

It is thus satisfied in particular when the populations are 2-valued. �

Example 4.4.7 Ratio estimators. Example 4.4.3 was concerned with
the asymptotic behavior of the sample mean X̄n as an estimator of the
population mean vN · in simple random sampling. In many sampling situ-
ations, each unit has attached to it not only its v-value but also a second
auxiliary value w; for example, the v-value at some previous time. The
w’s provide additional information which, it is hoped, will lead to more
accurate estimation of v̄.

Consider therefore a population Π consisting of N units to each of which
are attached two numbers (v1, w1) , . . . , (vN , wN ). The w’s are assumed to
be positive. A random sample of n units is drawn from Π and the pairs
of values of the sampled units are denoted by (X1, Y1) , . . . , (Xn, Yn). A
natural estimator of v̄/w̄ is X̄/Ȳ . If w̄ is known, this suggests

R = w̄
X̄

Ȳ
(4.4.54)

as an estimator of v̄. Both R and X̄/Ȳ are called ratio estimators.
In order to discuss the asymptotic behavior of these estimators, let us—as

in Example 4.4.3—embed the given population in a sequence of populations
Π1,Π2, . . . . Suppose that ΠN consists of N units with values

(vN1, wN1) , . . . , (vNN , wNN ) .

It will be convenient to keep the population means constant,

vN · = v̄, wN · = w̄

say, and we shall denote the population variances by†

S2v =
1
N

∑
(vNi − v̄)2 and S2w =

1
N

∑
(wNi − w̄)2 .(4.4.55)

To prove asymptotic normality of Rn = R, write

Rn − v̄ =
w̄

Ȳn

[
X̄n − v̄

w̄
Ȳn

]
=

w̄

Ȳn
Z̄n,(4.4.56)

†In many books on sampling, S2 is defined with the denominator for N replaced by
N − 1. The asymptotic theory is not affected by this change.
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where

Zi = Xi −
v̄

w̄
Yi, i = 1, . . . , n.(4.4.57)

Thus, if

rNi = vNi −
v̄

w̄
wNi,(4.4.58)

the Z’s are a random sample from the population {rN1, . . . , rNN}. We shall
denote the associated population variance by

S2r =
1
N

∑
(rNi − rN ·)

2
.(4.4.59)

Theorem 4.4.3 The ratio estimator Rn of v̄ satisfies
√

n (Rn − v̄)√
N − n

N − 1
· 1
n

S2r

→ N(0, 1),(4.4.60)

provided n and N − n tend to ∞, and conditions (a) or (b) of Theorem
2.8.2 are satisfied with vNi replaced by rNi.

Proof. Under the stated assumptions, it follows from Theorem 2.8.2 that

Z̄ − E
(
Z̄
)

√
Var Z̄

L→ N(0, 1).(4.4.61)

Now

E(Z̄) = E(Zi) = v̄ − v̄

w̄
w̄ = 0

and

Var(Z̄) =
N − n

N − 1
· 1
n

S2r ;

thus (4.4.60) follows from (4.4.56), (4.4.61), and the fact that the factor
w̄/Ȳn in (4.4.56) tends to 1 in probability. �

Corollary 4.4.1 Under the assumptions of Theorem 4.4.3,

√
n

[
X̄n

Ȳn
− v̄

w̄

]
√

N − n

N − 1
· 1
n

Sr
w̄

L→ N(0, 1).(4.4.62)
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Proof. This follows immediately from Theorem 4.4.3 since

X̄n

Ȳn
− v̄

w̄
=

Rn − v̄

w̄
.

�
For Theorem 4.4.3 to be applicable in practice, it is necessary to replace

the unknown Sr in the denominator of (4.4.60) by a consistent estimator.
Since

S2r =
1
N

∑
v2Ni −

2
N

v̄

w̄

∑
vNiwNi +

v̄2

Nw̄2

∑
w2Ni,(4.4.63)

this only requires consistent estimators of

1
N

∑
v2Ni,

1
N

∑
vNiwNi, and

1
N

∑
w2Ni,(4.4.64)

and of v̄/w̄. Conditions for

1
n

∑
X2i ,

1
n

∑
XiYi, and

1
n

∑
Y 2i(4.4.65)

to be consistent estimators of (4.4.64) are given by (4.4.26), (4.4.27), and
the discussion following (4.4.33) with the obvious substitutions of v2Ni,
vNiwNi, and w2Ni for vNi. Consistency of X̄/Ȳ for estimating v̄/w̄ follows
from Corollary 4.4.1. �

Example 4.4.8 Comparison of ratio estimator and sample mean.
When an auxiliary variable is available, the ratio estimator Rn and the
sample mean X̄n provide two alternative estimators of v̄. To determine the
conditions under which each is preferred, consider the asymptotic relative
efficiency of X̄n to Rn. In Section 4.3, we discussed two different ways of
handling such a comparison: in terms of the actual and the asymptotic
variances. In the present case, the asymptotic variance approach is more
convenient. However, it requires a slight extension of the result (4.3.13)
for the ARE, namely the fact that (4.3.13) remains valid when assumption
(4.3.12) is replaced by

√
n

kin
[δi − h(θ)] L→ N

(
0, τ ′2

i

)
,(4.4.66)

provided

k1n
k2n

→ 1 as n → ∞ (Problem 4.6),(4.4.67)

If δ1 = Rn and δ2 = X̄n, (4.4.66) holds with h(θ) = v̄,

τ ′2
1 = S2r , τ ′2

2 = τ2,(4.4.68)
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and

k1n = k2n =

√
N − n

N − 1
.

Condition (4.4.67) is therefore satisfied.
Assuming (4.4.66), it follows from (4.3.13) and (4.4.68) that

eX̄n|Rn
= lim

∑(
vNi −

v̄

w̄
wNi

)2
∑

(vNi − v̄)2
.(4.4.69)

The numerator can be rewritten as

∑[
(vNi − v̄) + v̄

(
1 − wNi

w̄

)]2
=
∑

(vNi − v̄)2 +
v̄2

w̄2

∑
(wNi − w̄)2 − 2

v̄

w̄

∑
(vNi − v̄) (wNi − w̄)

and hence

eX̄n|Rn
= 1 +

v̄2

w̄2
S2w
S2v

− 2
v̄

w̄

Sw
Sv

ρ,(4.4.70)

where

ρ =

∑
(vNi − v̄) (wNi − w̄)

SvSw
(4.4.71)

is the population correlation coefficient of v and w.
Thus the ratio estimator R is more efficient than X̄n if and only if

v̄2

w̄2
Sw
Sv

< 2ρ
v̄

w̄

or equivalently if

1
2

v̄

w̄

/
Sv
Sw

< ρ when
v̄

w̄
> 0,

ρ <
1
2

v̄

w̄

/
Sv
Sw

when
v̄

w̄
< 0;

(4.4.72)

that is, if ρ is large positive when
v̄

w̄
> 0 and large negative when

v̄

w̄
< 0.�

Example 4.4.9 Cluster sampling. When interviewing a member of a
household, it may require relatively little additional effort to interview all
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members of the household. More generally, suppose that a population is
divided into groups, called clusters, that a simple random sample is drawn
not of n individual members but of n clusters, and that the v-values of
all members of each sampled cluster are obtained. On the basis of this
information, it is desired to estimate the total or average v-value of the
population.

Let there be N ′ clusters and let the ith cluster contain w′
i members with

v-values vij , j = 1, . . . , w′
i, i = 1, . . . , N ′. The population size is

N =
N ′∑
i=1

w′
i,(4.4.73)

and the total v-value of the ith cluster will be denoted by

v′i =
w′

i∑
j=1

vij .(4.4.74)

We shall assume that N ′/N tends to a finite positive limit. If X ′
i denotes

the v′-value of the ith sampled cluster, then X ′
1, . . . , X ′

n is a simple random
sample from {v′1, . . . , v′N ′} and X̄ ′

n is a consistent, asymptotically normal
estimator of the average

v̄′ =
1

N ′

N ′∑
i=1

v′i =
1

N ′

N ′∑
i=1

w′
i∑

j=1

vij(4.4.75)

of the cluster totals under conditions given in Example 4.4.3. However, the
quantity we wish to estimate is not (4.4.75), but the population average

v̄ =
1
N

N ′∑
i=1

w′
i∑

j=1

vij =
N ′

N
v̄′.(4.4.76)

It follows from the properties of X̄ ′
n that under the same conditions, the

estimator

δ1 =
N ′

N
X̄ ′
n(4.4.77)

of v̄ is also consistent and asymptotically normal (Problem 4.7).
An alternative to X̄n for estimating v̄′ is the ratio estimator which utilizes

the information provided by the cluster sizes w′
i. If Y ′

i denotes the value
of w′ associated with the sample value X ′

i, this ratio estimator is R′ =
w̄′X̄ ′

n/Ȳ
′
n. The corresponding estimator of v̄ is by (4.4.76)

δ2 = w̄′N
′

N

X̄ ′
n

Ȳ ′
n

.(4.4.78)
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Now

w̄′ =
1

N ′

N ′∑
i=1

w′
i =

N

N ′ ,

so that (4.4.78) reduces to

δ2 =
X̄ ′
n

Ȳ ′
n

.(4.4.79)

Conditions for the asymptotic normality of δ2 are given in Theorem 4.4.3;
the ARE of δ2 to δ1 is obtained as in (4.4.71).

It is interesting to note that if N ′ is known (as is often the case) the
estimator δ2 of v̄ requires no knowledge of the population size while this
is needed for δ1. The situation is just the opposite for the estimators δ∗1 =

N ′X̄ ′
n and δ∗2 = N

X̄ ′
n

Ȳ ′
n

of the population total Nv̄. �

Summary

Consistency and asymptotic normality are discussed for the standard esti-
mators of the total and average of a finite population Π, based on various
sampling schemes. To obtain an asymptotic theory, in each case it is neces-
sary to embed Π in a sequence of populations Π(k) of increasing size tending
to infinity.

(i) Simple random sampling from a population of two kinds of elements.
In this case, the embedding sequence Πk is chosen so that the propor-
tion D/N remains constant. In addition to considering the estimation
of the total and average of Π, it is also shown how to estimate the
size of Π using the capture-recapture method.

(ii) Simple random sampling from a population Π of items v1, . . . , vN .
The sequence Π(k) is now chosen so that the population mean and
variance remain constant. The implications of the asymptotic results
for the given finite population are discussed.

(iii) Stratified sampling. Asymptotic normality of the estimator is estab-
lished for two cases: (a) A fixed (possibly small) number of large
strata and (b) a large number of strata of arbitrary size.

(iv) Ratio estimators under simple random sampling when an auxiliary
variable is available. Conditions for the asymptotic normality of the
resulting ratio estimator are given and it is shown that this estimator
is more efficient than the sample mean, provided the auxiliary variable
is sufficiently highly correlated with the primary variable of interest.
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(v) Cluster sampling. When clusters are sampled instead of individuals,
two estimators are proposed for estimating the population average
or total. One is proportional to the sample mean of the clusters, the
other to a ratio estimator which uses cluster size as an auxilliary
variable. The two estimators differ not only in their efficiency but
also in whether they require knowledge of the population size (when
the number of clusters is known).

4.5 Problems

Section 1

1.1 Show that (4.1.8), (4.1.11), and (4.1.12) each differs from the others
only by terms of order O(1/n).

1.2 (i) The left endpoints of the intervals (4.1.8) are always positive.

(ii) Both the left and right end points of the intervals (4.1.11) are to
the left of the corresponding end points of (4.1.8).

1.3 Prove (4.1.16).

1.4 Show that the first term of (4.1.17) tends to α/2.

1.5 Determine lower confidence bounds for λ with asymptotic confidence
level 1−α corresponding to the intervals (4.1.8), (4.1.11), and (4.1.12).

1.6 In the preceding problem, determine whether these lower bounds

(i) can take on negative values,

(ii) constitute strong confidence bounds.

1.7 (i) Solve (4.1.21) to obtain approximate confidence intervals for p.

(ii) Show that neglecting higher order terms in the intervals of part
(i) leads to the intervals (4.1.23).

1.8 Prove that the infimum of the coverage probability of the binomial
intervals (4.1.23) is zero.

1.9 Show that the infimum of the coverage probability of the preceding
problem tends to 1−α when it is taken over a1 < p < a2(0 < a1 < a2
< 1) rather than over the full interval 0 < p < 1.

1.10 (i) Determine whether the lower and upper end points of the intervals
(4.1.23) can take on values less than 0 and greater than 1, respectively.

(ii) Answer the same question for the intervals obtained by solving
(4.1.21) for p0, and replacing p0 by p.
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1.11 Use (3.6.1) to obtain asymptotic confidence intervals for p in the
negative binomial situation in which binomial trials are continued
until m successes are obtained.

1.12 Let X1, . . . , Xn be i.i.d. according to the exponential distribution
E (ξ, a). Determine approximate confidence intervals for a based on∑[

Xi − X(1)
]
.

[Hint: Problem 1.8(i) of Chapter 3.]

1.13 In the preceding problem, show that the intervals

X(1) −
c1
n

∑[
Xi − X(1)

]
< ξ < X(1) −

c2
n

∑[
Xi − X(1)

]
,

0 < c2 < c1

are approximate confidence intervals for ξ with asymptotic confidence
coefficient γ = e−c1 − e−c2 .

[Hint: Problem 1.8(ii) of Chapter 3.]

1.14 Let X1, . . . , Xm and Y1, . . . , Yn be i.i.d. according to E (ξ, a) and
E (η, a), respectively. Determine approximate confidence intervals for
∆ = η − ξ.

1.15 Let X1, . . . , Xn be i.i.d. according to the uniform distribution U(0, θ).
Use (3.1.17) to obtain asymptotic confidence intervals for θ.

1.16 Let X1, . . . , Xn be i.i.d. according to the uniform distribution
U
(
ξ − a

2
, ξ +

a

2

)
, with both ξ and a unknown. Determine asymp-

totic confidence intervals for ξ.

[Hint: A test of H : ξ = ξ0 can be based on the statistic
1
2
(
X(1) + X(n)

)
/(

X(n) − X(1)
)
.]

1.17 Show that the intervals (4.1.56) with k given by (4.1.55) are strong
confidence intervals for θ.

1.18 Let X1, . . . , Xm and Y1, . . . , Yn be i.i.d. according to distributions

F (x) = P (Xi ≤ x) and G(y) = P (Yj ≤ y) = F (y − θ) ,

respectively, and let D(1) < . . . < D(mn) denote the ordered set of
mn differences Yj − Xi (i = 1, . . . ,m; j = 1, . . . , n). Determine an
approximate value for k so that the intervals

D(k) ≤ θ ≤ D(mn+1−k)

constitute confidence intervals for θ at asymptotic level 1 − α.

[Hint: Follow the method of Example 4.1.7 and use the asymptotic
normality result (3.2.9).]
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1.19 Prove (4.1.42).

Section 2

2.1 If φ denotes the standard normal density, then

(i) the kth derivative of φ is of the form P (x)φ(x), where P is a
polynomial of degree k, for k = 1, 2, . . . ;

(ii) all the derivatives φ(k)(x) are bounded functions of x.

2.2 Prove

(i) (4.2.16),

(ii) (4.2.18).

2.3 Prove Theorem 4.2.1.

[Hint: Use the fact that E
(
X̄ − θ

)3 = E (X1 − θ)3 /n2.]

2.4 Let X have the binomial distribution b(p, n). Use Theorem 4.2.1 to
determine up to order 1/n the bias and variance of

(i) δ =
(

X

n

)m
as an estimator of pm (m fixed; n → ∞);

(ii) h

(
X

n

)
as an estimator of h(p) =

(
m

k

)
pkqm−k at all points

0 < p < 1 at which
k

p
�= m − k

q
.

[Hint:
X

n
= X̄ where Xi = 1 or 0 as the ith trial is success or failure.]

2.5 Solve part (ii) of the preceding problem when h′(p) = 0 by carrying
the expansion of h(X̄) about h(p) one step further.

2.6 Let X1, . . . , Xn be i.i.d. according to the Poisson distribution P (λ).
Determine up to order 1/n the bias and variance of

(i) δ = e−X̄ ,

(ii)
X̄k

k!
e−X̄

as estimators of e−λ and
λk

k!
e−λ, respectively.

2.7 Let Y have the negative binomial distribution given in Table 1.6.2
and Problem 2.4.12.

(i) Show that δ =
1

1 + Y/m
is a consistent estimator of p as m → ∞.

(ii) Determine the bias and variance of δ up to terms of order 1/m.
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2.8 Under the assumptions of Theorem 4.2.1, consider the estimator δ′ =

h
(
cnX̄

)
of h(θ), where cn = 1 +

c

n
+ O

(
1
n2

)
. Then the bias of δ′

satisfies

E
[
h
(
cnX̄

)]
− h(θ) =

1
n

[
cθh′(θ) +

1
2
h′′(θ)σ2

]
+ O

(
1
n2

)

while the variance of δ′ is given by (4.2.20).

2.9 Determine the bias of δ up to terms of order 1/n2 for the estimators
of

(i) Problem 2.4 (i);

(ii) Problem 2.6 (i).

2.10 Prove (4.2.24).

2.11 Show that the limiting variance (4.2.24) agrees with the asymptotic
variance of eX̄ .

2.12 Let X1, . . . , Xn be i.i.d. according to the Poisson distribution P (λ).
Determine up to order 1/n the bias and variance of δ = eX̄ as an
estimator of eλ by the method of Example 4.2.2 (continued).

[Hint: Use the fact that X̄ = Y/n, where Y is distributed as P (nλ)
and that ey/n =

(
e1/n

)y
.]

2.13 Obtain a variant of Theorem 4.2.1 which requires existence and bound-
edness of only h(iii) instead of h(iv), but which asserts of the remain-
der term only that it is of order O

(
n−3/2).

[Hint: Use the fact that X̄ = Y/n, where Y is distributed as P (nλ)
and that ey/n =

(
e1/n

)y
.]

2.14 Let X1, . . . , Xn be i.i.d. according to the uniform distribution U(0, θ)
and let h be a function satisfying the conditions of Theorem 4.2.1.
Then

(i) E
[
h
(
X(n)

)]
−h(θ) = − θ

n
h′(θ)+

1
n2
[
θh′(θ) + θ2h′′(θ)

]
+O

(
1
n3

)
and

(ii) Var
[
X(n)

]
=

θ2

n2
[h′(θ)]2 + O

(
1
n3

)
.

2.15 Compare the variance in part (ii) of the preceding problem with the
asymptotic variance, i.e., the variance of the limiting distribution of
n
[
h
(
X(n)

)
− h(θ)

]
.

2.16 Show that the integral in (4.2.30) becomes infinite when eay is re-
placed by ey

4
.
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2.17 Under the assumptions of Problem 2.14,

(i) obtain the limiting distribution of n

[
1

X(n)
− 1

θ

]
;

(ii) show that E
[
1/X(n)

]
= ∞.

Section 3

3.1 If n1 and n2(n1) are two sequences of sample sizes for which

n1/n2 → c > 0 as n1 → ∞,

then O

(
1
nk1

)
implies O

(
1
nk2

)
and vice versa.

3.2 The efficiency e2,1 = e2.1(θ) given by (4.3.10) tends to 0 as θ → ±∞.

3.3 (i) Prove (4.3.17).

(ii) In Example 4.3.3, show that Var (δ2) /Var (δ1) → 1 as n → ∞.

3.4 (i) Determine the ARE (4.3.18) of X̃ to X̄ for the normal mixture
(4.3.24).

(ii) Use (i) to check the last column of Table 4.3.2.

(iii) Determine the range of values the ARE of (i) can take on for
varying values of ε and τ .

3.5 Let X1, . . . , Xn be i.i.d. Poisson P (λ). For estimating

p = P (Xi = 0) = e−λ,

obtain the ARE of δ = e−X̄ with respect to

p̂ = (Number of X ′s = 0)/n,

and discuss the behavior of the ARE as λ varies from 0 to ∞.

3.6 Solve the preceding problem when X1, . . . , Xm are i.i.d. according to
the negative binomial distribution discussed in Problem 2.4.12; the
quantity being estimated is

h(p) = P (X1 = 0) = pmq

and the estimators are

δ2 = p̂mq̂ with p̂ =
m

m +
∑

Xi

and

δ1 = Number of X ′s equal to zero/m.
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3.7 Let X1, . . . , Xn be i.i.d. as N
(
0, σ2

)
.

(i) Show that δ1 = k
∑

|Xi| /n is a consistent estimator of σ if and

only if k =
√

π/2.

(ii) Determine the ARE of δ1 with respect to δ2 =
√∑

X2i /n.

3.8 (i) Verify the identity (4.3.33).

(ii) Prove (4.3.36).

(iii) Prove (4.3.38).

3.9 If X and Y are independent, each with density f , the density of Z =

Y −X is f∗(z) =

∞∫
−∞

f (z + x) f(x)dx and hence f∗(0) =

∞∫
−∞

f2(x)dx.

[Hint: Make the transformation from (x, y) to x = x, z = y − x.]

3.10 Determine the efficiency e2,1 of Example 4.3.9 when X and Y are
distributed as Poisson P (λ2) and P (λ), respectively, and it is desired
to estimate λ2.

3.11 In Example 4.3.11

(i) determine the ARE of δ to X̄ based on expected squared error;

(ii) solve the preceding problem when expected squared error is re-
placed by the expected fourth power of the error, and compare the
two AREs.

3.12 Verify (4.3.60)–(4.3.63).

3.13 (i) Verify (4.3.67) and (4.3.68).

(ii) Show that (4.3.67) < (4.3.68) provided a/θ > c, where c = log(e−
1) is the unique positive solution of (4.3.69).

3.14 Make a table showing the ARE of X(n) to δ in Example 4.3.12 for
varying values of a/θ and compare it with (4.3.64).

3.15 Under the assumptions of Example 4.3.12

(i) find the bias of X(n−1) as an estimator of θ and determine a
constant cn for which δ = cnX(n−1) is unbiased;

(ii) determine the ARE of X(n−1) to (a) δ and (b) X(n) based on
expected squared error;

(iii) discuss the AREs of part (ii) based on (4.3.50) for suitable kn.
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3.16 Let X1, . . . , Xn be i.i.d. according to the exponential distribution
E(θ, 1).

(i) Find the bias of X(1) as an estimator of θ and determine cn so
that δ = X(1) − cn is unbiased.

(ii) Determine the ARE of X(1) with respect to δ (a) based on squared
error and (b) based on (4.3.50) for suitable kn.

Section 4

4.1 Under the assumptions of Example 4.4.1, suppose that instead of the
confidence intervals (4.4.14) for p, we are interested in intervals of the
form ∣∣∣∣Xn − p

∣∣∣∣ ≤ d.

For given d and α, find the (approximate) sample size n required for
these intervals to hold with probability 1 − α.

4.2 Make a table showing the approximate sample sizes required in the
preceding problem when α = .05, N = 100, 1, 000, 10, 000 and for
N = ∞ (given by (4.1.25)) as a function of p.

4.3 (i) In Example 4.4.2, obtain confidence intervals for N by expressing
the confidence intervals (4.4.14) in terms of 1/p.

(ii) Show that the intervals of (i) are asymptotically equivalent to
those given by (4.4.19).

4.4 (i) In Example 4.4.3, show that
n

n − 1
τ̂2n is an unbiased estimator of

N

N − 1
τ2.

(ii) Determine the bias of τ̂2N as an estimator of τ2.

4.5 Show that the requirement (4.4.53) can be relaxed under conditions
analogous to (4.4.43).

4.6 Prove that (4.3.13) remains valid when (4.3.12) is replaced by (4.4.66)
provided (4.4.67) holds.

4.7 Prove the asymptotic normality and consistency of the estimators
(4.4.77) and (4.4.79) under the conditions stated there.

4.8 (i) In Example 4.4.2, if
n1
n

= p and
n2
n

→ 1 − λ, show that the

length of the intervals (4.4.19) with p instead of p̂ is asymptotically
equivalent to

2
√

N

√(
1 − n1

N

)(
1 − n2

N

)
/
n1
N

· n2
N

,
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and hence is of order
√

N if 0 < p and λ < 1.

(ii) Show that this approximate length is minimized, for a fixed total
sample size n = n1 + n2 when n1 = n2.
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5
Multivariate Extensions

Preview

The basic concepts and results of Chapters 1 and 2 are extended from the
univariate to the multivariate case, i.e., from random variables to random
vectors. This includes in particular: convergence in probability and in law,
the normal distribution, the central limit theorem, and the delta method.
The theory is applied to the multivariate one- and two-sample problems
and regression, to goodness-of-fit tests, and to testing independence in a
2 × 2 table.

5.1 Convergence of multivariate distributions

Multivariate problems arise not only when the observations are vector-
valued and their distributions therefore multivariate but also in many uni-
variate problems involving the joint distribution of more than one statistic.
Large-sample theory for either case requires generalization of the basic re-
sults of Chapters 1 and 2 to the multivariate situation. We begin with some
definitions and results concerning convergence in probability and in law for
general k-variate distributions.

We shall be concerned with functions of k-tuples x = (x1, . . . , xk) which
may be viewed as points or vectors in k-dimensional space Rk. The distance
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‖ x, y ‖ between two points x and y is defined by

‖ x, y ‖=
√∑

(yi − xi)
2
,(5.1.1)

and a neighborhood of a point x(0) is the set N of all x satisfying

‖ x − x(0) ‖< δ(5.1.2)

for some δ > 0.

Definition 5.1.1 A sequence x(n), n = 1, 2, . . . , is said to converge to x(0),

x(n) → x(0),(5.1.3)

if ‖ x(n) − x(0) ‖→ 0, and x(0) is then called the limit of the sequence
x(n), n = 1, 2, . . . . This is equivalent to the convergence of each of the k
coordinates (Problem 1.1(i)).

The probability distribution of a random vector (X1, . . . , Xk) can be
characterized by its (multivariate) cumulative distribution function (cdf)

F (x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk) .(5.1.4)

For properties of cumulative distribution functions corresponding to those
in the univariate case given in Theorem 1.6.1 of Chapter 1, see, for example,
Billingsley (1986, Section 20). If there exists a function f such that

F (x1, . . . , xk) =

x1∫
−∞

· · ·
xk∫

−∞

f (u1, . . . , uk) du1, . . . , duk,(5.1.5)

then any f satisfying (5.1.5) for all (x1, . . . , xk) is a probability density of
F . As in the univariate case, a density is not unique defined by (5.1.5), but
it is determined up to sets of probability zero by

∂kF (x1, . . . , xk)
∂x1, . . . , ∂xk

∣∣∣∣
u1,... ,uk

= f (u1, . . . , uk) .(5.1.6)

Definition 5.1.2 A sequence of random vectors X(n) is said to converge
to c in probability if

P
(
X(n) ∈ N

)
→ 1(5.1.7)

for every neighborhood N of c. This is equivalent to the convergence in
probability of each component X

(n)
i to ci (Problem 1.1.(ii)).
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Definition 5.1.3 A real-valued function f of x is said to be continuous at
x(0) if for every ε > 0, there exists a neighborhood N of x(0) such that∣∣∣f(x) − f

(
x(0)
)∣∣∣ < ε for all x ∈ N.(5.1.8)

Note: Continuity of f at x(0) implies that f is continuous at x(0) in each
coordinate when the other coordinates are held fixed, but the converse is
not true (Problem 1.2).

In generalization of Theorem 2.1.4 (and its proof in Problem 1.3 of Chap-
ter 2) we have

Theorem 5.1.1 If X(n)
P→ c and if f is continuous at c then f

(
X(n)

)
P→

f (c).

Note: Definition 5.1.3 and Theorem 5.1.1 can be generalized further to the
case where not only x but also f is vector-valued. For this purpose, it is
only necessary to change

∣∣f(x) − f
(
x(0)
)∣∣ to ‖ f(x) − f

(
x(0)
)
‖.

A point x at which a cdf H is continuous is called a continuity point of
H. An interesting characterization of such points can be given in terms of
the following definition.

Definition 5.1.4 A point a is a boundary point of a set S in Rk if a is
either a point of S or a limit point of a sequence of points of S, and also a
point or a limit of a sequence of points of the complement of S. The set of
all boundary points of S is the boundary of S, denoted by ∂S.

Theorem 5.1.2 A point a is a continuity point of a cdf H if and only if
the boundary B of the set

{(x1, . . . , xk) : x1 ≤ a1, . . . , xk ≤ ak}
(shown in Figure 5.1.1 for the case k = 2) satisfies

PH(B) = 0.(5.1.9)

Proof. That (5.1.9) is necessary follows directly from the definition of
continuity since B is a subset of the set

{(x1, . . . , xk) : a1 − δ < x1 < a1 + δ, . . . , ak − δ < xk < ak + δ}
(5.1.10)

for all δ > 0 and since the probability of (5.1.10) under H tends to 0 as
δ → 0 if H is continuous at a. That (5.1.9) is also sufficient is shown for
example in Billingsley (1986, Section 20). �

In the univariate case (k = 1), the boundary of the set

{x : x ≤ a}
is the point a and condition (5.1.9) reduces to P (X = a) = 0. However,
Theorem 5.1.2 shows that when k > 1, PH (X = a) = 0 is no longer suffi-
cient for a to be a continuity point of H. For example, if H assigns proba-
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δS

δS

a b
a1

a2

S
S

a

FIGURE 5.1.1. Boundary of S

bility
1
2

each to the points (0,−1) and (−1, 0), then P (X1 = X2 = 0) is 0,

but (0, 0) is not a continuity point of H (Problem 1.5).
Convergence in law is now defined as in the univariate case (Definition

2.3.2).

Definition 5.1.5 A sequence of distributions with cdf’s Hn is said to con-
verge to a distribution with cdf H if

Hn (a) → H (a) at all continuity points a of H.(5.1.11)

The terminology and notation regarding convergence in law is used ex-
actly as in the univariate case.

The following result is an extension of Example 2.3.5 to the multivariate
case. For a proof and a generalization, see Problems 1.3 and 1.4.

Theorem 5.1.3 If the random vectors Y (n) =
(
Y
(n)
1 , . . . , Y

(n)
k

)
converge

in probability to a constant vector c, then

Y (n)
L→ Y ,

where Y is equal to c with probability 1.

Let X(n) be a sequence of random vectors with cdf Hn converging in law
to X with cdf H. One then often needs to know whether for some set S in
Rk,

P
(
X(n) ∈ S

)
→ P (X ∈ S) .(5.1.12)

That (5.1.12) need not be true for all S is seen from the case k = 1, S =
{x : x ≤ a}. Then (5.1.12) can only be guaranteed when a is a continuity
point of H.

Theorem 5.1.4 A sufficient condition for (5.1.12) to hold is that

P (X ∈ ∂S) = 0.(5.1.13)
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For a proof, see, for example, Billingsley (1986, Section 29).

Corollary 5.1.1 If(
X
(n)
1 , . . . , X

(n)
k

)
L→ (X1, . . . , Xk) ,

then

X
(n)
i

L→ Xi for every i.

The proof is left to Problem 1.9.
In applications of Theorem 5.1.4, the set S frequently takes the form

f
(
X(n)

)
≤ c. Then the following result provides a convenient way of check-

ing (5.1.12).

Theorem 5.1.5 Let X(n) =
(
X
(n)
1 , . . . , X

(n)
k

)
be a sequence of random

vectors that converges in law to a random vector X = (X1, . . . , Xk). Then
for any continuous real- or vector-valued function f of k arguments, we
have

f
(
X(n)

)
L→ f (X) .(5.1.14)

For a proof, see, for example, Serfling (1980, p. 24–25).
If f is real-valued and P [f (X) = c] = 0, so that c is a continuity point of

the distribution of f (X) and if S = {x : f (X) ≤ c}, then (5.1.14) implies
that P

[
X(n) ∈ S

]
→ P [X ∈ S].

Example 5.1.1 Difference of means. Let X1, . . . , Xm and Y1, . . . , Yn
be independently distributed according to distributions F and G, with
means ξ and η and finite variances σ2 and τ2, respectively. Then

√
m
(
X̄ − ξ

) L→ N
(
0, σ2

)
and

√
n
(
Ȳ − η

)
→ N

(
0, τ2

)
If

m

m + n
→ λ(0 < λ < 1), it follows that

√
m + n

(
X̄ − ξ

)
=

√
m + n

m

√
m
(
X̄ − ξ

) L→ N

(
0
σ2

λ

)

and
√

m + n
(
Ȳ − η

) L→ N

(
0,

τ2

1 − λ

)
and hence that

(√
m + n

(
X̄ − ξ

)
,
√

m + n
(
Ȳ − η

)) L→ (X,Y ),(5.1.15)
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where X and Y are independent random variables with distributions

N

(
0,

σ2

λ

)
and N

(
0,

τ2

1 − λ

)
, respectively. Since Y − X is a continuous

function of (X,Y ), it follows that

√
m + n

[(
Ȳ − X̄

)
− (η − ξ)

]
→ N

(
0,

σ2

λ
+

τ2

1 − λ

)

or, equivalently, that (
Ȳ − X̄

)
− (η − ξ)√

σ2

m
+

τ2

n

L→ N(0, 1).(5.1.16)

The problem of testing H : η = ξ against η > ξ was discussed in Example
3.1.6 and more generally in the comments following Lemma 3.1.1. We now
see that the conclusions stated there follow from the present Theorems
5.1.4 and 5.1.5. More specifically, consider the probability

P
{√

m + n
[(

Ȳ − X̄
)
− (η − ξ)

]
≤ z
}

.

By Theorem 5.1.4, this tends to

(P (Y − X) ≤ z) = Φ


 z√

σ2

λ
+

τ2

1 − λ




since P (Y − X = z) = 0. �

Example 5.1.2 Uniform distribution. Let X1, . . . , Xn be i.i.d. accord-
ing to the uniform distribution U (ξ, η). From Example 2.3.7 it follows
(Problem 1.12(i)) that the mariginal distributions of n

[
η − X(n)

]
and

n
[
X(1) − ξ

]
both tend to the exponential distribution E (0, η − ξ). Con-

sider now the joint distribution of these two variables. For any ξ < η and
any positive y, z, one has y + z < n(η− ξ) for n sufficiently large, and then

P
[
n
(
X(1) − ξ

)
> y and n

(
η − X(n)

)
> z
]

= P
[ y
n

+ ξ < X(1) and X(n) < η − z

n

]
=

[(
η − z

n

)
−
(
y
n + ξ

)]n
(η − ξ)n

=
[
1 − y + z

n(η − ξ)

]n
→ e

y
η−ξ · e z

η−ξ .

It follows that the variables n
[
X(1) − ξ

]
and n

[
η − X(n)

]
—although de-

pendent for each finite n—are independent in the limit, each with distri-
bution E (0, η − ξ).
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If η−ξ = 1 and R = X(n)−X(1) denotes the range of the X’s, the limiting
distribution of n(1 − R) has probability density xe−x, x > 0 (Problem
1.12(ii)).

The following result generalizes Theorem 2.3.3.

Theorem 5.1.6 (Multivariate Slutsky theorem). If(
X
(n)
1 , . . . , X

(n)
k

)
L→ (X1, . . . , Xk)(5.1.17)

and if A
(n)
i and B

(n)
i (i = 1, . . . , k) are random variables which tend in

probability to constants ai and bi respectively, then

(
A
(n)
1 + B

(n)
1 X

(n)
1 , . . . , A

(n)
k + B

(n)
k X

(n)
k

)
L→ (a1 + b1X1, . . . , ak + bkXk) .

(5.1.18)

For a proof, see Problem 1.14.

Closely related is the following result.

Theorem 5.1.7 If ∑
a
(n)
i X

(n)
i

L→ T(5.1.19)

and if

(i) A
(n)
i − a

(n)
i

P→ 0 for each i = 1, . . . , k as n → ∞
and

(ii) the variables X
(n)
i are bounded in probability as n → ∞, then∑

A
(n)
i X

(n)
i

L→ T.(5.1.20)

Proof. It follows from Lemma 2.3.1 that(
A
(n)
i − a

(n)
i

)
X
(n)
i

P→ 0 for each i

and hence that ∑
A
(n)
i X

(n)
i −

∑
a
(n)
i X

(n)
i

P→ 0.

Therefore
∑

A
(n)
i X

(n)
i has the same limit distribution as

∑
a
(n)
i X

(n)
i . �

Note: Condition (ii) holds in particular if the variables X
(n)
i converge in

law to some limiting variable Xi. On the other hand, Theorem 5.1.7 is not
valid without assumption (ii) (Problem 1.19).

A convenient tool for establishing convergence in law of a sequence X(n)

of random vectors is the following result due to Cramér and Wold, which
reduces the problem to the one-dimensional case.
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Theorem 5.1.8 A necessary and sufficient condition for(
X
(n)
1 , . . . , X

(n)
k

)
L→ (X1, . . . , Xk)(5.1.21)

is that

k∑
i=1

ciX
(n)
i

L→
k∑
i=1

ciXi for all constants (c1, . . . , ck) ,(5.1.22)

i.e., that every linear combination of the X
(n)
i converges in law to the cor-

responding combination of the Xi.

For a proof, see, for example, Serfling (1980) or Billingsley (1986).

Example 5.1.3 Orthogonal linear combinations. Let Y1, Y2, . . . be
i.i.d. with mean E (Yi) = 0 and variance Var(Yi) = σ2, and consider the
joint distribution of the linear combinations

X
(n)
1 =

n∑
j=1

anjYj and X
(n)
2 =

n∑
j=1

bnjYj

satisfying the orthogonality conditions (see Section 5.3)

n∑
j=1

a2nj =
n∑
j=1

b2nj = 1 and
n∑
j=1

anjbnj = 0.(5.1.23)

Then we shall show that, under the additional assumption (5.1.28), the
relation (5.1.21) holds with k = 2 and with (X1, X2) independently dis-
tributed, each according to the normal distribution N

(
0, σ2

)
.

To prove this result, it is by Theorem 5.1.7 enough to show that

c1X
(n)
1 + c2X

(n)
2 =

∑
(c1anj + c2bnj)Yj

L→ c1X1 + c2X2,(5.1.24)

where the distribution of c1X1 + c2X2 is N
(
0,
[
c21 + c22

]
σ2
)
. The sum on

the left side of (5.1.24) is of the form
∑

dnjYj with

dnj = c1anj + c2bnj .(5.1.25)

The asymptotic normality of such sums was stated in Theorems 2.7.3 and
2.7.4 under the condition that

max
j

d2nj/

n∑
j=1

d2nj → 0.(5.1.26)
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It follows from (5.1.23) that

n∑
j=1

d2nj = c21 + c22;(5.1.27)

furthermore

max d2nj ≤ 2 max
[
c21a

2
nj + c22b

2
nj

]
≤ 2
[
c21 max a2nj + c22 max b2nj

]
.

Condition (5.1.26) therefore holds, provided

max
j

a2jn → 0 and max
j

b2jn → 0 as n → ∞.(5.1.28)

Under this condition, it thus follows that

∑
dnjYj/

√∑
d2jn

L→ N
(
0, σ2

)
and hence by (5.1.27) that

∑
dnjYj

L→ N
(
0,
(
c21 + c22

)
σ2
)
,

as was to be proved. �

Example 5.1.4 Joint confidence sets for regression coefficients.
Let

Xi = α + βvi + Ei (i = 1, . . . , n) ,(5.1.29)

where the Ei are i.i.d. (not necessarily normal) with zero mean and common
variance σ2, and let

α̂ =
∑

aniXi, β̂ =
∑

bniXi(5.1.30)

with

ani =
1
n
− v̄ (vi − v̄)∑

(vj − v̄)2
and bni =

vi − v̄∑
(vj − v̄)2

(5.1.31)

be the estimators of α and β considered in Example 2.7.4 and 2.7.6. Then
(Problem 1.17)

α̂ − α =
∑

aniYi, β̂ − β =
∑

bniYi,(5.1.32)

where the Y ’s are i.i.d. with E (Yi) = 0, Var (Yi) = σ2, and with a distri-
bution which is independent of α and β.
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It was seen in Example 2.7.6 that β̂ − β, suitably normalized, is asymp-
totically normal if

max
i

(vi − v̄)2

n∑
j=1

(vj − v̄)2
→ 0 as n → ∞(5.1.33)

and the corresponding result for α̂−α was indicated in Problem 2.7.11(ii).
These results provide asymptotic tests and confidence intervals separately
for each of these parameters. We shall now consider joint confidence sets
for α and β, and the problem of testing H : α = α0, β = β0.

The result of the preceding example is not directly applicable since
(5.1.23) will typically not hold. We shall therefore replace α̂−α and β̂ − β
by

Y1n =
√

n
[
α̂ − α + v̄

(
β̂ − β

)]
=
∑

a′
niYi(5.1.34)

and

Y2n =
(
β̂ − β

)√∑
(vj − v̄)2 =

∑
b′niYi,(5.1.35)

where the a′
ni and b′ni are given by

a′
ni =

1√
n

, b′ni =
vi − v̄√∑
(vj − v̄)2

,(5.1.36)

which do satisfy (5.1.23). (For a method for deriving the linear functions
(5.1.34) and (5.1.35), see Problem 1.15.) The assumptions of Example 5.1.3
therefore hold with a′

ni and b′ni in place of ani and bni, respectively, and it
follows that

(Y1n, Y2n)
L→ (X1, X2) ,(5.1.37)

where X1, X2 are independent N
(
0, σ2

)
, provided (5.1.28) holds. This will

be the case if the v’s satisfy (5.1.33), which is therefore a sufficient condition
for the validity of (5.1.37). Under (5.1.33), it then follows from Theorem
5.1.5 that the distribution of

(
Y 21n + Y 22n

)
/σ2 tends to χ2 with 2 degrees of

freedom and hence that

n
[
(α̂ − α) +

(
β̂ − β

)
v̄
]2

+
(
β̂ − β

)2∑
(vi − v̄)2 L→ σ2χ22.(5.1.38)

The ellipses

n (α − α̂)2 + 2nv̄ (α − α̂)
(
β − β̂

)
+
(
β − β̂

)2∑
v2i ≤ Cγσ

2,(5.1.39)
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where Cγ is the lower γ critical value of χ22 and the left side of (5.1.39)
is a slight simplification of the left side of (5.1.38), therefore contain the
unknown parameter vector (α, β) with a probability that tends to γ as
n → ∞. It follows from Example 3.5.4 that

σ̂2 =
1
n

∑(
Xi − α̂ − β̂νi

)
P→ σ2,(5.1.40)

and hence that the sets (5.1.39) with σ2 replaced by σ̂2 constitute joint
asymptotic level γ confidence sets for (α, β). Finally, the set obtained from
(5.1.39) by replacing α and β by α0 and β0, respectively, then provides an
acceptance region for testing H : α = α0, β = β0 at asymptotic level 1−γ.
�

Summary

1. The definitions and properties of convergence in probability and in
law are extended from random variables to random vectors.

2. Convergence in law in the multivariate case can be reduced to the
univariate case by a result of Cramér and Wold which states that(
X
(n)
1 , . . . , X

(n)
k

)
converges in law to (X1, . . . , Xk) if and only if

k∑
i=1

ciX
(n)
i

L→
k∑
i=1

ciXi for all (c1, . . . , ck).

3. In generalization of Theorem 2.7.3, conditions are given for the con-
vergence of

(∑
anjYj ,

∑
bnjYj

)
, where the Y ’s are i.i.d. As an

application, joint confidence sets are obtained for the regression co-
efficients in simple linear regression.

5.2 The bivariate normal distribution

The two most important multivariate distributions are the multivariate
normal and the multinomial distributions. We shall in the present section
consider the special case of the bivariate normal which has the advantage
that its density can be stated explicitly, namely as

p(x, y) =
1

2πστ
√

1 − ρ2
×

exp

(
− 1

2(1 − ρ2)

[
(x − ξ)2

σ2
− 2ρ

(x − ξ) (y − η)
στ

+
(y − η)2

τ2

])
.

(5.2.1)

From (5.2.1), the following properties can be obtained by direct calculation
instead of requiring more abstract algebraic arguments.
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(i) If (X,Y ) has the joint density (5.2.1), then the marginal distributions
of X and Y are N

(
ξ, σ2

)
and N

(
η, τ2

)
, respectively (Problem 2.1(i)).

(ii) From (i), it follows that

ξ = E(X), σ2 = Var(X), η = E(Y ), τ2 = Var(Y ).(5.2.2)

It can further be shown (Problem 2.1(ii)) that ρ is the coefficient of
correlation between X and Y , i.e.,

ρ = Cov (X,Y ) /στ.(5.2.3)

(iii) Under (5.2.1), lack of correlation between X and Y is equivalent to
independence between X and Y . That independence implies ρ = 0 is
true without the assumption of normality (i.e., for any distribution
with finite second moments). The converse is not true in general; in
the normal case, it follows from (5.2.1).

Formula (5.2.1) breaks down when
(
1 − ρ2

)
σ2τ2 = 0 since then the

denominator of the constant factor is zero. This occurs when either ρ = ±1
or when σ or τ or both are zero. A correlation of +1 or −1 implies a linear
relationship aX+bY = c so that the distribution assigns probability 1 to the
line ax + by = c and hence probability 0 to any set that does not intersect
this line. For this distribution there cannot exist a density f satisfying
(5.1.5). Roughly, the argument is that f(x, y) would have to be zero for all
points off the line, so that the right side of (5.1.5) for x1 = x2 = ∞ would
reduce to ∫ ∫

ax+by=c

f (x, y) dxdy(5.2.4)

but that the set {(x, y) : ax + by = c} is ”too thin” for the integral (5.2.4)
to be positive. A bivariate distribution which assigns probability 1 to a line
or curve or point in the plane is said to be degenerate or singular.

The case σ2 = Var(X) = 0 corresponds to the situation in which X is
constant, i.e., the distribution assigns probability 1 to a line x = c. Finally,
if σ = τ = 0, all probability is concentrated on a single point x = c, y = d.
Such distributions are not often encountered as distributions of data, but
they cannot be ignored in asymptotic work since the limit of a sequence of
non-degenerate distributions can be degenerate.

Example 5.2.1 Degenerate limit distribution. Suppose that

Xn = X, Yn = X +
1
n

Z,
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where X and Z are independent normal N (0, 1). Then the joint distribution
of (Xn, Yn) is the non-degenerate bivariate normal distribution with means
ξn = ηn = 0 and (Problem 2.3(i))

σ2n = 1, τ2n = 1 +
1
n2

, ρn =
1√

1 +
1
n2

.

On the other hand, the joint distribution Hn of (Xn, Yn) satisfies (Problem
2.3(ii))

Hn(x, y) → H(x, y) for all (x, y),

where H is the distribution of (X,X). The limit distribution H is degen-
erate since it assigns probability 1 to the line y = x; it distributes this
probability over the line according to a normal density. �

Two important properties of bivariate normal distributions are stated
without proof in the following lemma; the corresponding results for general
multivariate normal distributions will be discussed in Section 5.4.

Lemma 5.2.1

(i) If (X,Y ) has the bivariate normal distribution with mean (ξ, η), vari-
ances σ2 and τ2, and correlation coefficient ρ, then the joint distri-
bution of

(X∗, Y ∗) = (a1X + b1Y, a2X + b2Y )

is again bivariate normal, with mean

(ξ∗, η∗) = (a1ξ + b1η, a2ξ + b2η) ,

variances

Var (aiX + biY ) = a2iσ
2 + 2aibiρστ + b2i τ

2 (i = 1, 2),(5.2.5)

and covariance

Cov (a1X + b1Y, a2X + b2Y ) = a1a2σ
2 + (a1b2 + a2b1) ρστ + b1b2τ

2.

(5.2.6)

(ii) If the distribution (X,Y ) is non-singular, then so is the distribution
of (X∗, Y ∗), provided

a1b2 − a2b1 �= 0.(5.2.7)

�
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We shall refer to
(
σ2, τ2, ρστ

)
as the covariance structure of a bivariate

distribution and shall frequently denote it by (σ11, σ22, σ12). The covariance
structure will be called non-singular if

σ2τ2
(
1 − ρ2

)
= σ11σ22 − σ212 > 0.(5.2.8)

Example 5.2.2 Simultaneous confidence intervals for regression
coefficients. In Example 5.1.4, we obtained a joint (elliptical) confidence
set for the coefficients (α, β) in the simple linear regression model (5.1.29).
We shall now use the results of that example and Lemma 5.2.1 to derive
simultaneous separate intervals

L1 ≤ α ≤ L̄1, L2 ≤ β ≤ L̄2.(5.2.9)

With Y1n and Y2n defined by (5.1.34) and (5.1.35), respectively, one finds

√
n (α̂ − α) = Y1n −

√
nv̄√∑

(vj − v̄)2
Y2n,

√
n
(
β̂ − β

)
=

√
nY2n√∑
(vj − v̄)2

.

Assuming (5.1.33), it therefore follows from (5.1.37) and Lemma 5.2.1 that
for large n, the joint distribution of (

√
n (α̂ − α),

√
n(β̂ − β)) is approxi-

mately the bivariate normal distribution (5.2.1) with ξ = η = 0,

Var
[√

n (α̂ − α)
]

= σ2


 1

n
+

v̄2∑
(vj − v̄)2


 ,

Var
[√

n
(
β̂ − β

)]
=

σ2∑
(vj − v̄)2

(5.2.10)

and correlation coefficient

ρ = −v̄/
√∑

v2j .(5.2.11)

Limits L1, L̄1, L2, and L̄2 for which the probability of (5.2.9) is approxi-
mately equal to the desired confidence level γ can now be determined from
tables or computer programs for the bivariate normal distribution with pa-
rameters (5.2.10) and (5.2.11). Here σ2 is replaced by σ̂2 given by (5.1.40)
and one may choose the L’s, for example, so that the probabilities of the
two intervals (5.2.9) are the same. �

Let us next state the form of the bivariate central limit theorem corre-
sponding to the univariate Theorem 2.4.1.
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Theorem 5.2.1 Bivariate central limit theorem. Let (Xi, Yi), i =
1, 2, . . . , be i.i.d. with E (Xi) = ξ, E (Yi) = η, Var (Xi) = σ2, Var (Yi) = τ2

and correlation coefficient ρ satisfying (5.2.8). Then the joint distribution
of (√

n
(
X̄ − ξ

)
,
√

n
(
Ȳ − η

))
tends in law to the bivariate normal distribution with density (5.2.1) in
which the means ξ and η are zero.

For a proof see Theorem 5.4.4.

Example 5.2.3 Joint limit distribution of uncorrelated, depen-
dent variables. Let X1, . . . , Xn be i.i.d. N

(
0, σ2

)
and consider the joint

distribution of
√

nX̄ and
√

n
(∑

X2i /n
)
. Since the correlation coefficient

of Xi and X2i is 0, it follows from Theorem 5.2.1 that, in the limit,
√

nX̄

and
√

n
(∑

X2i /n
)

are independent despite the fact that X2i is completely
determined by Xi.

The following argument gives an idea of how this asymptotic indepen-
dence comes about. Consider the conditional distribution of X̄ given not
only

∑
x2i but the values of X21 , . . . , X2n. Given X2i = x2i , the random

variable Xi takes on the values |xi| and − |xi| with probability 1/2 each,
independently for i = 1, . . . , n. If Yi = ±1 with probability 1/2 each,

∑
Xi

can be written as

∑
Xi =

n∑
i=1

|xi|Yi

and Theorem 2.7.3 applies with dni = |xi| to show that
∑

Xi/
√∑

x2i
L→

N(0, 1), provided (2.7.17) holds. When the Xi are independent N
(
0, σ2

)
,

it can be shown that with probability tending to 1, both (2.7.17) holds and∑
X2i /n is close to σ2 and hence the conditional distribution of

√
nX̄ is

close to N(0, 1). �

Example 5.2.4 Simultaneous inference for mean and variance. The
following slight modification of the preceding example has some statistical
interest. Let X1, . . . , Xn be i.i.d. N

(
ξ, σ2

)
and consider the problem of

simulaneously estimating or testing ξ and σ2. We shall then be interested
in the joint distribution of

√
n
(
X̄ − ξ

)
σ

and
√

n



∑(

Xi − X̄
)2

nσ2
− 1


 .(5.2.12)
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Since this distribution is independent of ξ and σ, suppose that ξ = 0. As
pointed out in the preceding example,

√
nX̄/σ and

√
n
[(∑

X2i /nσ2
)
− 1
]

(5.2.13)

are then asymptotically independently distributed by Theorem 5.2.1 ac-
cording to N(0, 1) and N(0, 2), respectively, the latter since in the normal
case Var

(
X2i /σ

2
)

= 2. This is then also the joint limit distribution of
(5.2.12), which provides the limiting probability of the simultaneous confi-
dence sets (Problem 2.4)

X̄ − aσ̂√
n
≤ ξ ≤ X̄ +

aσ̂√
n

,∑(
Xi − X̄

)2
n

−
√

2bσ̂2√
n

≤ σ2 ≤

∑(
Xi − X̄

)2
n

+
√

2bσ̂2√
n

(5.2.14)

where in the lower and upper limits we have replaced σ2 by σ̂2. �

Example 5.2.5 Joint and simultaneous confidence sets for two
means. Let (X1, Y1) , . . . , (Xn, Yn) be a sample from a bivariate (not nec-
essarily normal) distribution with means (ξ, η) and covariance structure(
σ2, τ2, ρστ

)
and consider the problem of simultaneous confidence inter-

vals for ξ and η. By the central limit theorem (CLT), the limit of

P

[√
n
∣∣X̄ − ξ

∣∣
σ

≤ a,

√
n
∣∣Ȳ − η

∣∣
τ

≤ b

]
(5.2.15)

as n → ∞ is equal to

Pρ [|V | ≤ a, |W | ≤ b] ,(5.2.16)

where (V,W ) have the bivariate normal distribution with 0 means and co-
variance structure (1, 1, ρ). For each value of ρ, we can therefore determine
constants a(ρ), b(ρ) for which the probability (5.2.16) is equal to the preas-
signed confidence coefficient γ. To be specific, suppose we take b(ρ) = a(ρ).
Then a(ρ) is a continuous function of ρ and it follows from Theorem 5.1.2
and the fact that the sample correlation coefficient R tends to ρ in proba-
bility (Problem 4.4) that if σ and τ are replaced by consistent estimators
σ̂ and τ̂ and if ρ is replaced by R, then

P
[∣∣√n

(
X̄ − ξ

)∣∣ ≤ σ̂a(R),
∣∣√n

(
Ȳ − η

)∣∣ ≤ τ̂ a(R)
]
→ γ.(5.2.17)

If we prefer intervals of the same length for ξ and η, we can proceed
slightly differently by considering the simultaneous intervals

√
n
∣∣X̄ − ξ

∣∣ ≤ a,
√

n
∣∣Ȳ − η

∣∣ ≤ a.(5.2.18)
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The probability of (5.2.18) is a continuous function of σ, τ , and ρ, and for
each (σ, τ, ρ), we can determine a(σ, τ, ρ) such that the limiting probability
of (5.2.18) is equal to γ. It then follows as before that the probability of
the simultaneous intervals

√
n
∣∣X̄ − ξ

∣∣ ≤ a (σ̂, τ̂ , R) ,
√

n
∣∣Ȳ − η

∣∣ ≤ a (σ̂, τ̂ , R)

tends to γ.
For joint confidence sets for (ξ, η), see Problem 2.5. �

Example 5.2.6 Testing for independence and lack of correlation.
In the bivariate normal model (5.2.1), the standard test of the hypothesis
H : ρ = 0, or, equivalently, H : X,Y are independent, rejects H in favor of
the alternatives ρ �= 0 when the sample correlation coefficient

R =

∑(
Xi − X̄

) (
Yi − Ȳ

)
/n

SXSY
(5.2.19)

is sufficently large in absolute value, where

S2X =
1
n

∑(
Xi − X̄

)2
, S2Y =

1
n

∑(
Yi − Ȳ

)2
.

Under H, we have

√
nR =

√
n
∑

XiYi/n

SXSY
−

√
nX̄Ȳ

SXSY

L→ N(0, 1).(5.2.20)

To see this limit result, note that the distribution of R is independent of
ξ = E(X) and η = E(Y ), so that we can assume ξ = η = 0. Since, under
H, the variables X and Y are independent, it follows that

Var(XY ) = E
(
X2Y 2

)
= E

(
X2
)
E
(
Y 2
)

= Var(X)Var(Y )(5.2.21)

and hence from the CLT that the first term on the right side of (5.2.20)
tends in law to N(0, 1). On the other hand, the second term tends in
probability to zero, and the result follows. The rejection region∣∣√nR

∣∣ ≥ uα/2(5.2.22)

therefore has asymptotic level α for testing H.
Let us now consider what happens to the level of (5.2.22) when the as-

sumption of normality is not justified. Suppose that (X1, Y1) , . . . , (Xn, Yn)
is a sample from some bivariate distribution F with finite second moments
and let its correlation coefficient be ρ. In the normal case, the hypothesis

H1 : ρ = 0(5.2.23)
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is equivalent to the hypothesis

H2 : X and Y are independent.(5.2.24)

This is not true in general and it then becomes necessary to distinguish
between H1 and H2.

Under H2 nothing changes; both (5.2.20) and (5.2.21) remain valid, and
tha asymptotic level of (5.2.22) therefore continue to be α. However, under
the weaker hypothesis H1, equation (5.2.21) will in general not hold any
more. In fact, even when ρ = 0,

γ2 =
Var(XY )

Var(X)Var(Y )
(5.2.25)

can take on any value between 0 and ∞. This can be seen, for example, by
putting (i) Y = X and (ii) Y = 1/X. If X is symmetric about 0, then in
case (i),

γ2 =
E
(
X4
)
−
[
E
(
X2
)]2

[E (X2)]2
,

which can be made arbitrarily large (including ∞) by putting enough
weight in the tail of the distribution of X. On the other hand, in case
(ii),

γ2 =
1

Var(X)Var
(

1
X

) .

Here the denominator can be made arbitrarily large by putting enough
weight near the origin, thereby making Var(1/X) large without changing
Var(X) much (Problem 2.7).

Since it follows from the argument leading to (5.2.20) under H that under
H1

√
nR → N

(
0, γ2

)
,(5.2.26)

we see that the asymptotic level of (5.2.22) can now take on any value α(γ)
between 0 and 1. Thus the level of the normal theory test is asymptotically
robust against non-normality under H2, but not under H1.

Another important aspect of (5.2.22) as a test of independence is the
behavior of its power against a fixed alternative ρ �= 0 as n → ∞. This
power can be written as

P



∣∣∣∣∣∣∣∣
√

n

[
1
n

∑
XiYi − ρστ

]
SXSY

+
√

nρστ

SXSY

∣∣∣∣∣∣∣∣
> uα/2


 .(5.2.27)
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Since the first term inside the brackets tends in law to N
(
0, γ2

)
, the proba-

bility (5.2.27) tends to 1 as n → ∞. The test (5.2.23) is therefore consistent
for testing H2 against any alternative ρ �= 0. On the other hand, when ρ = 0
but X and Y are not necessarily independent, the limiting probability of
(5.2.27) is just α(γ) and the test is therefore not consistent against such
alternatives. A non-parametric test of independence which is consistent
against all continuous alternatives to independence is given in Hoeffding
(1948b). �

Let us next extend the delta method (Theorem 2.5.2) to the bivariate
case. To this end, we require first an extension of Taylor’s theorem (Theo-

rem 2.5.1). Recall that the partial derivative
∂

∂xi
f (x1, . . . , xk) at the point

a = (a1, . . . , ak) is defined as

∂

∂xi
f (x1, . . . , xk)

∣∣∣∣
(a1,... ,ak)

=
d

dxi
f (a1, . . . , ai−1, , xi, ai+1, . . . , ak)

∣∣∣∣
xi=ai

,

that is, as the ordinary derivative with respect to xi when the remaining
variables are being held constant.

Theorem 5.2.2 Let f be a real-valued function of k variables for which
the k first partial derivatives exist in a neighborhood of a point a. Then

f (a1 + ∆1, . . . , ak + ∆k)

= f (a1, . . . , ak) +
∑

∆i
∂f

∂xi

∣∣∣∣
x=a

+ o

(√∑
∆2i

)
.(5.2.28)

We have given here only the statement corresponding to the case r = 1
of Theorem 2.5.1(i). Expansions corresponding to higher values of r and to
part (ii) of the theorem are, of course, also available if the needed higher
derivatives exist. See, for example, Serfling (1980) or Courant (1927, 1988).

The following result extends Theorem 2.5.2 to the bivariate case. In the
statement and proof, all derivatives ∂f/∂u, ∂f/∂v, ∂g/∂u and ∂g/∂v are
understood to be evaluated at the point u = ξ, v = η.

Theorem 5.2.3 Suppose that

√
n (Un − ξ) ,

√
n (Vn − η) L→ N (0,Σ) ,(5.2.29)

where N (0,Σ) denotes the bivariate normal distribution with mean (0,0)
and covariance structure σ11 = σ2, σ12 = ρστ , and σ22 = τ2. Let f and g be
two real-valued functions of two variables for which the expansion (5.2.28)
with k = 2 is valid at the point (ξ, η). Then the joint distribution of

√
n [f (Un, Vn) − f (ξ, η)] ,

√
n [g (Un, Vn) − g (ξ, η)](5.2.30)
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tends in law to the bivariate normal distribution with mean (0,0) and co-
variance structure (τ11, τ22, τ12) given by

τ11 =
(

∂f

∂u

)2
σ11 + 2

∂f

∂u

∂f

∂v
σ12 +

(
∂f

∂v

)2
σ22,

τ12 =
∂f

∂u

∂g

∂u
σ11 +

(
∂f

∂u

∂g

∂v
+

∂f

∂v

∂g

∂u

)
σ12 +

∂f

∂v

∂g

∂v
σ22,

τ22 =
(

∂g

∂u

)2
σ11 + 2

∂g

∂u

∂g

∂v
σ12 +

(
∂g

∂v

)2
σ22,

(5.2.31)

provided

∂f

∂u

∂g

∂v
�= ∂f

∂v

∂g

∂u
.(5.2.32)

Proof. By Theorem 5.2.2,

f (un, vn) − f (ξ, η) = (un − ξ)
∂f

∂u
+ (vn − η)

∂f

∂v
+ Rn,

g (un, vn) − g (ξ, η) = (un − ξ)
∂g

∂u
+ (vn − η)

∂g

∂v
+ R′

n,

where Rn and R′
n are both o

(√
(un − ξ)2 + (vn − η)2

)
. By (5.2.29) and

Lemma 5.2.1, the joint limit distribution of

√
n

[
(Un − ξ)

∂f

∂u
+ (Vn − η)

∂f

∂v

]
and

√
n

[
(Un − ξ)

∂g

∂u
+ (Vn − η)

∂g

∂v

]

is the bivariate normal distribution with mean (0,0) and covariance matrix
(5.2.31). To complete the proof, it is only necessary to show that

√
nRn

and
√

nR′
n tend to 0 in probability. Now

√
nRn = o

(√
n
[
(un − ξ)2 + (vn − η)2

])
.(5.2.33)

It follows from (5.2.29) that

n
[
(Un − ξ)2 + (Vn − η)2

]
is bounded in probability and hence that

√
nRn

P→ 0, and the same argu-
ment applies to

√
nR′

n. �

Corollary 5.2.1 Under the assumptions of Theorem 5.2.3, the distribu-
tion of

√
n [f (Un, Vn) − f (ξ, η)] L→ N (0, τ11) ,(5.2.34)

where τ11 is given by (5.2.31).
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Proof. (5.2.29) and Corollary 5.1.1. �

Example 5.2.7 The sample moments. If X1, . . . , Xn are i.i.d. with
mean ξ and finite central kth moment

µk = E (Xi − ξ)k ,(5.2.35)

it was shown in Example 2.1.3 that

Mk =
1
n

∑(
Xi − X̄

)k(5.2.36)

is consistent for estimating µk. We shall now consider the asymptotic dis-
tribution of

√
n (Mk − µk) ,(5.2.37)

under the assumption that the 2kth moment of Xi exists.
For the quantities

M ′
k =

1
n

∑
(Xi − ξ)k ,(5.2.38)

it follows from the central limit theorem that
√

n (M ′
k − µk)

L→ N
(
0, µ2k − µ2k

)
.(5.2.39)

In the special case k = 2, it was seen in Example 2.4.4 that

√
n (M2 − M ′

2)
P→ 0,(5.2.40)

and that, therefore, (5.2.36) has the same limit distribution as (5.2.38).
As we shall see, the corresponding result no longer holds when k > 2. To
obtain the asymptotic distribution of (5.2.36) for general k, note that∑(

Xi − X̄
)k =

∑
(Xi − ξ)k −

k
(
X̄ − ξ

)∑
(Xi − ξ)k−1 + · · · + (−1)k

(
X̄ − ξ

)k
so that

√
n (Mk − µk) =

√
n (M ′

k − µk)

−k
√

n
(
X̄ − ξ

) ∑ (Xi − ξ)k−1

n
+ · · · + (−1)k

√
n
(
X̄ − ξ

)k
n

.
(5.2.41)

Since

√
n
(
X̄ − ξ

)i =

[√
n
(
X̄ − ξ

)]i
(
√

n)i−1
P→ 0 for i > 1,
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all terms on the right side of (5.2.41) except the first two tend to 0 in
probability and

√
n (Mk − µk) therefore has the same limit distribution as
√

n (M ′
k − µk) − k

√
n
(
X̄ − ξ

)
M ′
k−1.(5.2.42)

For k = 2, M ′
k−1 = X̄ − ξ

P→ 0 and the second term becomes negligible
in the limit. This is no longer true when k > 2. To determine the limit
distribution of (5.2.42) in that case, consider the joint distribution of

√
n (M ′

k − µk) and
√

n
(
X̄ − ξ

)
.(5.2.43)

By the bivariate central limit theorem, (5.2.43) tends in law to the bivariate
normal distribution with mean (0,0) and covariance structure

σ11 = µ2k − µ2k, σ22 = σ2 = µ2, σ12 = µk+1.(5.2.44)

Since M ′
k−1

P→ µk−1, the joint limit distribution of
√

n (M ′
k − µk) and k

√
n
(
X̄ − ξ

)
M ′
k−1

is therefore bivariate with mean (0,0) and covariance structure

σ11 = µ2k − µ2k, σ22 = k2µ2k−1µ2, σ12 = kµk−1µk+1.(5.2.45)

Thus, finally, via (5.2.41) it is seen that
√

n (Mk − µk) → N
(
0, τ2

)
,(5.2.46)

where

τ2 = µ2k − µ2k + k2µ2k−1µ2 − 2kµk−1µk+1.(5.2.47)

�

Example 5.2.8 Effect size. In a paired comparison experiment, let Vi
and Wi denote the control and treatment responses within the ith pair. We
assume that the differences Xi = Wi−Vi are i.i.d. with mean ξ and variance
σ2 and we are interested in the effect size θ = ξ/σ, defined by Cohen (1969).
A natural estimator of θ is X̄/S, where S2 =

∑(
Xi − X̄

)2
/ (n − 1). To

set approximate confidence limits for θ requires the asymptotic distribution
of

√
n

(
X̄

S
− ξ

σ

)
.(5.2.48)

As starting point for obtaining the limit distribution of (5.2.48), consider
the joint distribution of

√
n
(
X̄ − ξ

)
and

√
n
(
S2 − σ2

)
,
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which has the same limit distribution as

√
n
(
X̄ − ξ

)
and

√
n



∑

(Xi − ξ)2

n
− σ2


 .(5.2.49)

By Theorem 5.2.1, the joint distribution of (5.2.49) tends to the bivariate
normal distribution with mean (0,0) and covariance structure

σ11 = Var (Xi) = σ2, σ22 = Var (Xi − ξ)2 = µ4 − σ4

and

σ12 = Cov
(
Xi, (Xi − ξ)2

)
= Cov

(
Xi − ξ, (Xi − ξ)2

)
= E (Xi − ξ)3 = µ3.

We can now apply Corollary 5.2.1 with Un = X̄, Vn = S2, and f(u, v) =

u/
√

v. Then ∂f/∂u = 1/
√

v and ∂f/∂v =
−u

2v
√

v
, and hence (5.2.48) has a

normal limit distribution with mean 0 and with variance

1
v
σ2 +

u

v2
µ3 +

u2

4v3
Var (Xi − ξ)2

∣∣∣∣
u=ξ,v=σ2

= 1 +
ξ

σ4
µ3 +

ξ2

4σ6
Var (Xi − ξ)2.

(5.2.50)

Consistent estimators of (5.2.50) which are needed to obtain confidence
intervals for θ = ξ/σ can be obtained in the usual way . �

Note: Since σ12 = µ3 = 0 when the distribution of the X’s is symmetric
about ξ, it follows that the two variables (5.2.49) are then asymptotically
independent. For the special case of normal variables, this was already seen
in Example 5.2.4.

Summary

1. The (non-degenerate) bivariate normal distribution is defined by its
density. An example shows that a sequence of such distributions can
have a degenerate limit which assigns probability 1 to a line, curve,
or point in a plane.

2. The univariate CLT is generalized to the bivariate case and is ap-
plied to obtain some joint and simultaneous confidence sets for two
parameters.

3. Taylor’s theorem is generalized to the multivariate case and used to
obtain a bivariate delta method. The latter result is used to obtain
limit distributions for sample moments and for the effect size in a
paired comparison experiment.
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5.3 Some linear algebra

The present section summarizes some results from linear algebra needed
for the rest of the chapter. We shall assume familiarity with the concepts
of matrix and determinant and with the addition and multiplication of
matrices.

Definition 5.3.1

(i) A set of k vectors ai = (ai1, . . . , ain) in Rn (i = 1, . . . , k; k ≤ n) is
linearly independent if

c1a1 + · · · + ckak = 0 implies c1 = · · · = ck = 0.

(ii) A k × n matrix A = (aij), k ≤ n, is of maximal rank if the k vectors
ai = (ai1, . . . , ain) formed by its rows are linearly independent; a
square matrix of maximal rank is said to be non-singular.

Lemma 5.3.1

(i) A square matrix A is non-singular if and only if its determinant |A| �=
0.

(ii) Let A be k × k and consider the linear transformation

y = Ax with x =




x1
...

xk


 , y =




y1
...
yk


(5.3.1)

as a transformation from k-dimensional Euclidean space Rk to itself.
Then A is non-singular if and only if the transformation (5.3.1) is
1 : 1.

(For a proof of this and other results stated in this section without proof,
see any book on linear algebra. A recent account particularly oriented to-
ward statistical applications is Harville (1997).)

As an illustration of (i), note that (5.2.7) states that the 2 × 2 matrix

A =
(

a1b1
a2b2

)
(5.3.2)

is non-singular.

Lemma 5.3.2 If the k× k matrix A is non-singular, there exists a unique
k × k matrix A−1, the inverse of A, satisfying

AA−1 = I,(5.3.3)
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where I is the k × k identity matrix


1 0 · · · 0
0 1 0 · · ·
· · ·
· · ·
· · 0
0 0 · · · 1




.(5.3.4)

The matrix A−1 also satisfies

A−1A = I.(5.3.5)

Example 5.3.1 Inverse of a 2× 2 matrix. Let ∆ = a1b2 − a2b1 �= 0 be
the determinant of the matrix A given by (5.3.2). Then

A−1 =
(

b2/∆ −b1/∆
−a2/∆ a1/∆

)
,(5.3.6)

as is seen by forming the product AA−1 . �

Example 5.3.2 Linear equations. The system of k linear equations in
k unknowns

Bx = c,(5.3.7)

where B is a non-singular k × k matrix and x and c are k × 1 column
matrices, has the unique solution

x = B−1c.(5.3.8)

If c = 0, the unique solution of (5.3.7) is x = 0. �

Definition 5.3.2

(i) The transpose A′ of a k × l matrix A with elements aij is the l × k
matrix the (i, j)-th element of which is aji.

(ii) A square matrix A is said to be symmetric if A′ = A, i.e., if aij = aji
for all i and j.

Elementary properties of transposed matrices are (Problem 3.1)

(AB)′ = B′A′(5.3.9)

and (
A−1)′ = (A′)−1 .(5.3.10)

A sequence of matrices An =
(
a
(n)
ij

)
is said to converge to a matrix

A = (aij); in symbols, An → A, if a
(n)
ij → aij for all i, j.
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Lemma 5.3.3

(i) If a sequence of non-singular matrices An converges to a non-singular
matrix A, then A−1

n → A−1.

(ii) If a sequence of random non-singular matrices An converges in prob-
ability to a constant non-singular matrix A (i.e., if a

(n)
ij

P→ aij for all

i, j), then A−1
n

P→ A−1.

Proof. Part (i) follows from the fact, not proved here, that each element
of A−1 is the ratio of two determinants which are sums and differences of
products of the elements aij . Part (ii) is an immediate consequence of (i).�

Definition 5.3.3 A k × k matrix A = (aij) is positive definite if the
quadratic form

k∑
i=1

k∑
j=1

aijuiuj > 0 for all (u1, . . . , uk) �= (0, . . . , 0) ,(5.3.11)

and is positive semi-definite if (5.3.11) holds with > replaced by ≥. The
corresponding terms are also applied to the quadratic form itself.

Example 5.3.3 Covariance matrix. Let (X1, . . . , Xk) be a random vec-
tor with covariance matrix Σ = (σij). Then for any constant vector u′ =
(u1, . . . , uk),

u′Σu =
∑∑

σijuiuj = Var
(∑

uiXi

)
≥ 0,(5.3.12)

so that Σ is positive semi-definite. Furthermore, Var
(∑

uiXi

)
> 0 unless

∑
uiXi = constant(5.3.13)

with probability 1. Thus, Σ is positive definite unless the joint distribution
of (X1, . . . , Xk) assigns probability 1 to some hyperplane (5.3.13). �

Note: When considering a quadratic form,∑∑
aijuiuj ,

we can assume without loss of generality that the matrix A is symmetric.
(Otherwise put bij = bji = (aij + aji) /2. Then B is symmetric and∑∑

bijuiuj =
∑∑

aijuiuj for all (u1, . . . , uk) .)

This symmetry assumption for quadratic forms will therefore be made from
now on.
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We shall next consider the behavior of a quadratic form

Q =
∑∑

aijxixj = x′Ax; x′ = (x1, . . . , xk)(5.3.14)

under a linear transformation

y = Bx,(5.3.15)

where B is a non-singular k × k matrix. Since

x′ax = y′ (B−1)′ AB−1y,(5.3.16)

it follows that in terms of the y’s, Q is a quadratic form with matrix

(
B−1)′ AB−1.(5.3.17)

Theorem 5.3.1 For any positive definite symmetric matrix A, there exists
a non-singular matrix B such that(

B−1)′ AB−1 = I(5.3.18)

and hence, if y = Bx, such that

k∑
i=1

k∑
j=1

aijxixj =
k∑
i=1

y2i .(5.3.19)

Example 5.3.4 Expectations and covariance matrices under non-
singular linear transformations. Consider the linear transformation

Y = BX,(5.3.20)

where X and Y are random column matrices with elements X1, . . . , Xk

and Y1, . . . , Yk, and B is a non-singular k × k matrix of constants.

Theorem 5.3.2

(i) If ξi = E (Xi) and ηi = E (Yi), the expectation vectors ξ and η are
related by

η = Bξ.(5.3.21)

(ii) The covariance matrices of X and Y

Σ = E (X − ξ) (X − ξ)′ and T = E (Y − η) (Y − η)′(5.3.22)

are related by

T = BΣB′.(5.3.23)
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Proof.

(i) By definition, yi =
∑

bijxj and hence

E (Yi) =
∑

bijξj .

(ii) The proof is left to Problem 3.5. �

Definition 5.3.4

(i) The length of a vector x = (x1, . . . , xk) is
√∑

x2i =
√

x′x, and the

inner product of two vectors x and y is
∑

xiyi = x′y, where x and
y are the column matrices with elements x1, . . . , xk and y1, . . . , yk,
respectively.

(ii) Two vectors x and y in Rk are said to be orthogonal if

x′y =
∑

xiyi = 0.(5.3.24)

Note: The length of x defined by (i) is equal to the distance (defined by
(5.1.1)) of x from the origin.

Definition 5.3.5 A k × k matrix A is said to be orthogonal if (a) its row
vectors aj are all of length 1 and (b) all pairs of row vectors ai, aj (i �= j)
are orthogonal.

Note: Some authors call such a matrix orthonormal and use the term
orthogonal more broadly for any matrix satisfying (b).

It follows immediately from Definition 5.3.5 that A is orthogonal if and
only if

AA′ = I or A′ = A−1.(5.3.25)

This shows further, by (5.3.5), that if A is orthogonal, so is A′. From
(5.3.25), it follows that the determinant |A| of an orthogonal matrix A
satisfies |A|2 = 1 and hence that

|A| = ±1.(5.3.26)

Lemma 5.3.4 An orthogonal transformation y = Qx of the vectors in
Rk leaves the lengths of vectors x and the inner products of pairs x, y un-
changed.
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Proof. The inner product of Qx and Qy is(
Qx,Qy

)
= x′Q′Qy = x′y

and the result for length follows by putting x = y. �
It follows, in particular, that if x and y are orthogonal, so are Qx and

Qy.

Theorem 5.3.3 For any symmetric matrix A there exists an orthogonal
matrix Q such that(

Q−1)′ AQ−1 = QAQ−1 is diagonal,(5.3.27)

that is, has all of off-diagonal elements equal to 0.

Corollary 5.3.1 If the diagonal matrix (5.3.27) is denoted by

Λ =




λ1 0
·

·
·

0 λk


(5.3.28)

and if y = Qx, then

k∑
i=1

k∑
j=1

aijxixj =
k∑
i=1

λiy
2
i .(5.3.29)

Note: The set of λ’s in (5.3.27) and (5.3.29) is unique except for their
order, and the λ’s are in fact the k roots of the equation

|A − λI| = 0,(5.3.30)

the eigenvalues of A. Here the symmetry of A implies that the roots
λ1, . . . , λk of the equation (5.3.30) are all real.

It is interesting to note that Theorem 5.3.1 is an easy consequence of
Theorem 5.3.3. To see this, note first that if A is positive definite, it follows
from (5.3.29) that all the λ’s are positive since otherwise the quadratic
form would be able to take on the value 0 or negative values. If we now let

D =




1/
√

λ1 0
·

·
·

0 1/
√

λk


 ,



306 5. Multivariate Extensions

we have

DQAQ′D′ = I

and DQ will therefore serve for the matrix
(
B−1)′ of Theorem 5.3.1.

Theorem 5.3.4 Let (X1, . . . , Xk) be a random vector with covariance ma-
trix Σ.

(i) There exists an orthogonal transformation Y = QX such that the
components Y1, . . . , Yk of Y are uncorrelated.

(ii) If Σ is non-singular, there exists a non-singular transformation Y =
BX such that the random variables Y1, . . . , Yk are uncorrelated and
all have variance 1.

Proof. These results follow immediately from (5.3.23) and Theorems 5.3.1
and 5.3.3. �

The covariance matrix of a random vector is the k-dimensional general-
ization of the variance of a random variable. It is sometimes useful to have
a corresponding generalization of the standard deviation. For this purpose,
we now define the square root A1/2 of a positive definite symmetric matrix
A as the unique symmetric, positive definite matrix C satisfying

C · C = A.(5.3.31)

To see that such a matrix exists, consider first the case that A is the
positive definite diagonal matrix with diagonal elements λ1, . . . , λk, all of
which are positive. Then if D is the diagonal matrix with diagonal elements√

λ1, . . . ,
√

λk, clearly D · D = Λ. If A is any positive definite, symmetric
matrix, there exists by Theorem 5.3.3 an orthogonal matrix Q such that
QAQ−1 is diagonal, say QAQ−1 = Λ, and hence

A = Q−1ΛQ = Q′ΛQ.

Substituting D · D for Λ, we therefore have

A = Q′DDQ = Q′DQ · Q′DQ.

Since C = Q′DQ is symmetric and positive definite, it satisfies the require-
ment for C = A1/2.

Let us finally show that there can only be one symmetric positive definite
matrix C satisfying (5.3.31). If C1 and C2 are two such matrices, they
satisfy C1C

′
1 = C2C

′
2 and hence

C−1
1 C2C

′
2C

′
1 = I.

It follows that C−1
1 C2 is positive definite, symmetric, and orthogonal. This

implies (Problem 3.9(ii)) that C−1
1 C2 = I and hence C1 = C2.
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An important application of matrices occurs when changing variables in
multiple integrals and probability densities. Let

g(x) = (g1(x), . . . , gn(x)),(5.3.32)

where the gi are real-valued continuous functions defined over a region S
in Rn. Suppose g defines a 1:1 mapping of S onto g(S), and that the gi
have continuous partial derivatives ∂gj/∂xi in S. For any point y in g(S),
let the unique point x for which g(x) = y be given by

xi = hi (y1, . . . , yn) .(5.3.33)

Finally, let

∂ (y1, . . . , yn)
∂ (x1, . . . , xn)

=
(

∂yj
∂xi

)
(5.3.34)

be the n×n matrix whose (i, j)-th element is ∂yj/∂xi. The determinant J
of the matrix (5.3.34)

J = Determinant of
(

∂gj
∂xi

)
(5.3.35)

is called the Jacobian of the transformation (5.3.32).

Example 5.3.5 Linear transformations. Let

yj =
n∑
i=1

aijxi (j = 1, . . . , n) .(5.3.36)

Then ∂yj/∂xi = aij , and the Jacobian of the transformation (5.3.36) is
therefore the determinant of the matrix (aij). In particular, if the transfor-
mation (5.3.36) is orthogonal, it follows from (5.3.26) that J = ±1. �

Suppose next that X = (X1, . . . , Xn) is a random vector with probability
density pX (x1, . . . , xn) defined over a region S in Rn, and that g satisfies
the assumptions made for (5.3.32). Then the probability density of Y =
g (X) is given by

pY (y1, . . . , yn) =pX (x1, . . . , xn) · |J |
=pX

[
h1
(
y
)
, . . . , hn

(
y
)]

· |J |,
(5.3.37)

where |J | denotes the absolute value of J . (See, for example, Cramér (1946,
Section 22.2).)
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Example 5.3.6 Joint distribution of sample mean and variance.
Let X1, . . . , Xn be i.i.d. N

(
0, σ2

)
so that

pX (x1, . . . , xn) =
1(√

2πσ
)n e

− 1
2σ2

n∑
i=1

x2
i

.(5.3.38)

To obtain the distribution of the sample mean X̄, make an orthogonal
transformation

yj =
n∑
i=1

aijxi(5.3.39)

such that y1 =
√

nx̄. The existence of such a transformation can be shown
by the construction used in Problems 1.15 and 1.16, which is known as the
Gram-Schmidt orthogonalization process. It is interesting to note that in the
following derivation we do not require explicit knowledge of this orthogonal
transformation. It follows from (5.3.37) and the fact that |J | = 1 that

pY (y1, . . . , yn) =
1(√

2πσ
)n e

− 1
2σ2

n∑
i=1

y2
i

since
∑

x2i =
∑

y2i . Thus the Y ’s are again independent normal N
(
0, σ2

)
,

and, in particular, Y1 =
√

nX̄ is distributed as N
(
0, σ2

)
. Furthermore,

∑(
Xi − X̄

)2 =
∑

X2i − nX̄2 =
n∑
i=1

Y 2i − Y 21 ,

so that
∑(

Xi − X̄
)2 is distributed as σ2χ2n−1 and is independent of Y1

and hence of X̄. �

Summary

1. A square matrix is non-singular if its rows are linearly independent.
A non-singular matrix has a unique inverse A−1 satisfying AA−1 = I.

2. A k × k matrix A = (aij) is positive definite if the quadratic form∑∑
aijuiuj is positive for all (u1, . . . , uk) = (0, . . . , 0). The co-

variance matrix of a random vector (X1, . . . , Xk) is positive definite
unless (X1, . . . , Xk) lies in some hyperplane with probability 1. The
square root A1/2 of a positive definite symmetric matrix A is the
unique positive definite symmetric matrix C satisfying C · C = A.

3. Any positive definite quadratic form in (x1, . . . , xk) can be reduced

to
k∑
i=1

y2i by a non-singular linear transformation y = Bx.



5.4 The multivariate normal distribution 309

4. A k × k matrix A = (aij) is orthogonal if each of its row vectors is of
length 1 and if each pair of row vectors satisfies the orthogonally con-

dition
k∑
ν=1

aiνajν = 0, i.e., if it satisfies AA′ = 1. Any quadratic form∑
aijxixj can be reduced to

∑
λiy

2
i by an orthogonal transforma-

tion y = Qx, where the λ’s are the roots of the equation |A − λI| = 0.

5. The Jacobian of a tranformation y = g(x) from Rn to Rn is the
determinant of the matrix of partial derivatives (∂yi/∂xj). The Ja-
cobian of a linear transformation is a constant; that of an orthogonal
transformation is ±1.

6. The probability density of Y = g (X) is the probability density of
X (expressed in terms of Y ) multiplied by the absolute value of the
Jacobian of the transformation.

5.4 The multivariate normal distribution

In Section 5.2, attention was restricted to the bivariate normal distribution
and the associated bivariate central limit theorem. Let us now consider the
general k-variate normal distribution, the density of which is of the form

Ce
− 1

2

k∑
i=1

k∑
j=1

aij(xi−ξi)(xj−ξj)
,(5.4.1)

where without loss of generality the matrix A = (aij) will be taken to be
symmetric. In addition, we shall assume A to be positive definite. To see
why this restriction is needed, consider the orthogonal transformation

y = Qx, η = Qξ,(5.4.2)

which according to (5.3.27)–(5.3.29) (with a change of notation) results in

∑∑
aij (xi − ξi) (xj − ξj) =

k∑
i=1

λi (yi − ηi)
2
.

By (5.3.37), the density of Y = QX is then

Ce
− 1

2

k∑
i=1

λi(yi−ηi)2
(5.4.3)

since |J | = 1. Now the integral over Rk of (5.4.3), and therefore of (5.4.1),
will be finite only if all the λ’s are positive and hence if A is positive definite.
In any other case, (5.4.1) therefore cannot be a probability density.



310 5. Multivariate Extensions

The reduction to (5.4.3) also enables us to evaluate the constant C. Since

√
λ

2π

∞∫
−∞

e−
1
2λ(y−η)

2
dy = 1,

it follows from (5.4.3) that

C =
1(√
2π
)k√Πλi.

By taking determinants on both sides of the equation

QAQ′ = Λ,(5.4.4)

where Λ is the diagonal matrix with diagonal elements λ1, . . . , λk, we see
that |A| = Πλi and hence that

C =

√
|A|(√
2π
)k .(5.4.5)

Since E (Yi) = ηi, it follows from (5.4.2) that

E (Xi) = ξi.(5.4.6)

From (5.4.3), it is seen that the covariance matrix of Y is Λ−1 and then
from (5.3.23) that the covariance matrix Σ of X = Q−1Y is Q−1Λ−1Q,
which by (5.4.4) implies that the covariance matrix of (X1, . . . , Xk) is

Σ = A−1.(5.4.7)

We shall denote the multivariate normal distribution given by (5.4.1) and
(5.4.5) with A = Σ−1 by N (ξ,Σ).

Theorem 5.4.1 If X = (X1, . . . , Xk) is distributed according to N (ξ,Σ)
and if Y = BX, where B is an r× k matrix (r ≤ k) of maximal rank, then
Y has the multivariate normal distribution N

(
η,BΣB′) with η = Bξ.

Proof. We shall here prove only the two most important special cases: (i)
r = k and (ii) r = 1. For a proof of the general result see Problem 4.2(ii).
Different proofs can be found in Anderson (1984) and Tong (1990).

(i) r = k.

By (5.3.17), the exponent in (5.4.1) satisfies

(x − ξ)′ A
(
x − ξ

)
=
(
y − η

)′ (
B−1)′ AB−1 (y − η

)
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and by Example 5.3.5, the Jacobian of the transformation y = Bx is
a constant. It follows that Y is multivariate normal with mean η and
covariance matrix

T =
[(

B−1)′ AB−1
]−1

= BA−1B′ = BΣB′,

as was to be proved.

(ii) r = 1

This part of the theorem states that any linear combination

Y = c1X1 + · · · + ckXk (at least one c �= 0)

is normal with

E (Y ) =
∑

ciξi and Var (Y ) =
∑∑

cicjσij .

The expectation and variance of Y are obvious. We shall prove normality
with the help of Theorem 5.3.1. Let B be a matrix satisfying condition
(5.3.18) of that theorem. Then QB also satisfies (5.3.18) for any orthogonal
matrix Q. Now there exists a rotation in the plane containing the vectors
(b11, . . . , b1k) and (c1, . . . , ck) which takes the vector (b11, . . . , b1k) into
a vector proportional to (c1, . . . , ck). This rotation is represented by an
orthogonal matrix Q satisfying

Q (b11 · · · b1k)′ = (dc1, . . . , dck) for some d �= 0.

Let Z = QBX and ζ = QBξ. Then

(
x − ξ

)′
A
(
x − ξ

)
=
(
z − ζ

)′ [(QB)−1
]′

A (QB)−1
(
z − ζ

)
and, by (5.3.18), [

(QB)−1
]′

A (QB)−1 = I,

so that

(
x − ξ

)′
A
(
x − ξ

)
=

k∑
i=1

(zi − ζi)
2
.

This shows that

Z1 =
k∑
i=1

dciXi

is distributed as N (0, 1) and hence proves the normality of Y =
k∑
i=1

ciXi.�
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Corollary 5.4.1 If (X1, . . . , Xk) is distributed as N
(
ξ,Σ
)
, then

(i) Xi is distributed as N (ξi, σii)

and, more generally,

(ii) any subset (Xi1 , . . . , Xir ) has an r-variate normal distribution with
mean (ξi1 , . . . , ξir ) and with covariances Cov (Xi, Xj) = σij.

Proof. (i) follows from the case r = 1 by letting c1 = 1, c2 = · · · = ck = 0
and the general case (ii) follows analogously. �

The following theorem establishes two properties of the multivariate nor-
mal distribution that are of great importance for statistical applications.

Theorem 5.4.2 Let (X1, . . . , Xk) be distributed according to (5.4.1).

(i) The linear function

Y = A1/2
(
X − ξ

)
(5.4.8)

has the k-variate normal distribution N(0, I), that is, the joint dis-
tribution of k independent N(0, 1) variables.

(ii) The quadratic form

∑∑
aij (Xi − ξi) (Xj − ξj) =

(
X − ξ

)′
A
(
X − ξ

)
(5.4.9)

is distributed as χ2 with k degrees of freedom.

Proof.

(i) By Theorem 5.4.1, the linear function (5.4.8) is distributed according
to the k-variable normal distribution with mean 0 and covariance
matrix

A1/2
∑

A1/2 = A1/2A−1A1/2 = A1/2
(
A1/2

)−1 (
A1/2

)−1
A1/2 = I

where the second equality follows from Problem 3.13.

(ii) The quadratic form (5.4.9) is equal to

[
A1/2

(
X − ξ

)]′ [
A1/2

(
X − ξ

)]
= Y ′Y =

k∑
i=1

Y 2i .

Since the Y ’s are independent N (0, 1) by (i), the result follows. (For
an alternative proof not depending on (i), see Problem 4.2.) �
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Theorem 5.4.2 provides the necessary information for calculating the
confidence coefficient of confidence sets and the null-distribution of test
statistics to be considered in the next section. Calculation of the power of
the tests requires the following extension.

Theorem 5.4.3 Let (X1, . . . , Xk) be distributed according to (5.4.1).

(i) The linear function

A1/2
(
X − η

)
has the k-variable normal distribution N

(
η − ξ, I

)
, that is, the joint

distribution of k independent normal variables with means (η1−ξ1, . . . ,
ηk − ξk) and each with unit variance.

(ii) The quadratic form∑∑
aij (Xi − ηi) (Xj − ηj) =

(
X − η

)′
A
(
X − η

)

is distributed as
k∑
i=1

(Yi + ci)
2 where Y1, . . . , Yk are independent

N (0, 1) and
∑

c2i =
(
η − ξ

)′
A
(
η − ξ

)
. This distribution is the non-

central χ2-distribution with non-centrality parameter
∑

c2i .

The proof is exactly analogous to that of Theorem 5.4.2 (Problem 4.3).

Theorem 5.4.4 Multivariate central limit theorem. Let X(j) =(
X
(j)
1 , . . . , X

(j)
k

)
, j = 1, . . . , n, be n i.i.d. k-variable row vectors with mean

ξ = (ξ1, . . . , ξk) and positive definite covariance matrix Σ. If

X̄i =
1
n

[
X
(1)
i + · · · + X

(n)
i

]
,(5.4.10)

then (√
n
(
X̄1 − ξ1

)
, . . . ,

√
n
(
X̄k − ξk

)) L→ N (0,Σ) .(5.4.11)

Proof. Let Y be a k-variate random vector with distribution N (0,Σ). In
order to prove that the left side of (5.4.11) tends in law to Y , it is by
Theorem 5.1.8 enough to show that

√
n
∑

ci
(
X̄i − ξi

) L→ N (0, c′Σc)(5.4.12)

for every constant vector c = (c1, . . . , ck). The left side of (5.4.12) is equal

to
√

n

k∑
j=1

ci

(
X
(j)
i − ξi

)
/n and the result now follows from the univariate

central limit theorem. �
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Example 5.4.1 Multinomial. Consider n multinomial trials, that is, in-
dependent trials, each with possible outcomes O1, . . . , Ok+1 having prob-
abilities p1, . . . , pk+1

(∑
pi = 1

)
, the same for each trial. Let X

(ν)
i = 1 if

the νth trial results in outcome Oi and = 0 otherwise, so that Yi =
n∑
ν=1

X
(ν)
i

is the total number of trials resulting in outcome Oi. Since Y1+· · ·+Yk+1 =
n, we shall restrict attention to the variables Y1, . . . , Yk. In the notation of
Theorem 5.4.4, X̄i = Yi/n and ξi = E

(
X
(ν)
i

)
= pi so that

(√
n

(
Y1
n

− p1

)
, . . . ,

√
n

(
Yk
n

− pk

))
L→ N (0,Σ) ,(5.4.13)

where Σ = (σij) is the covariance matrix of
(
X
(1)
1 , . . . , X

(1)
k

)
given by

(Problem 4.6(i))

σij =
{

pi (1 − pi) if j = i
−pipj if j �= 1.(5.4.14)

The limiting density of (5.4.13) is therefore given by (5.4.1) with ξ1 = · · · =
ξk = 0 and A =

∑−1. It is easily checked (Problem 4.6(ii)) that A = (aij)
is given by

aij =




1
pi

+
1

pk+1
if j = i

1
pk+1

if j �= i.
(5.4.15)

�

Example 5.4.2 Quantiles. The asymptotic distribution of the median,
which was established in Example 2.4.9 and was extended to any quantile
in Problem 4.8 of Chapter 2, generalizes to the joint distribution of several
quantiles.

Theorem 5.4.5 Let X1, . . . , Xn be i.i.d. according to a distribution with
cdf F having probability density f . For 0 < λ1 < · · · < λr < 1, let F (ξi) =
λi, and suppose that f is continuous and positive at the r points ξ1, . . . , ξr.
Then if n1 < · · · < nr < n are such that

ni
n

= λi + o

(
1√
ni

)
, i = 1, . . . , r,(5.4.16)

the joint distribution of
√

n
(
X(n1) − ξ1

)
, . . . ,

√
n
(
X(nr) − ξr

)
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is asymptotically normal with mean zero and covariance matrix Σ = (σij)
given by

σij =
λi (1 − λj)
f (ξi) f (ξj)

for all i ≤ j.(5.4.17)

This result can be proved, although we shall not do so here, by the
method of Example 2.4.8 and a multivariate Berry-Essen theorem (for such
a theorem, see, for example, Götze (1991)). An alternative proof can be
found in David (1981). �

We turn next to the k-variate version of the delta method, which was
stated for the case k = 2 in Theorem 5.2.3 and for k = 1 in Theorem 2.5.2.

Theorem 5.4.6 Suppose that(√
n
(
Y
(n)
1 − η1

)
, . . . ,

√
n
(
Y
(n)
k − ηk

))
L→ N (0,Σ) .(5.4.18)

Let fi (i = 1, . . . , k) be k real-valued functions of k variables for each of
which the expansion (5.2.28) is valid at the point (η1, . . . , ηk). Then the
joint distribution of the k variables

√
n
[
fi

(
Y
(n)
1 , . . . , Y

(n)
k

)
− fi (η1, . . . , ηk)

]
, i = 1, . . . , k,(5.4.19)

tends in law to the k-variate normal distribution with mean 0 and with
covariance matrix T = (τij) given by

τij =
k∑
s=1

k∑
t=1

σst
∂fi
∂ys

· ∂fj
∂yt

∣∣∣∣
y=η

(5.4.20)

provided the Jacobian matrix with (i, s)-th element equal to

∂fi
∂ys

∣∣∣∣
y=η

(5.4.21)

is non-singular.

The proof is exactly analogous to that of the bivariate result.

Corollary 5.4.2 Under the assumptions of Theorem 5.4.6, the distribu-
tion of

√
n
[
f1

(
Y
(n)
1 , . . . , Y

(n)
k

)
− f1 (η1, . . . , ηk)

]
(5.4.22)

tends in law to N (0, τ11), where τ11 is given by (5.4.20).
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Example 5.4.3 Correlation coefficient. Let (X1, Y1) , . . . , (Xn, Yn) be
i.i.d. according to some bivariate distribution with means E (X) = ξ,
E (Y ) = η, variances σ2 = VarX, τ2 = VarY , and correlation coefficient ρ.
Let

S2X =
1
n

∑(
Xi − X̄

)2
, S2Y =

1
n

∑(
Yi − Ȳ

)2(5.4.23)

and let

Rn =

1
n

∑(
Xi − X̄

) (
Yi − Ȳ

)
SXSY

(5.4.24)

denote the sample correlation coefficient. We shall assume that the mo-
ments

µij = E
[
(X − ξ)i (Y − µ)j

]
(5.4.25)

are finite for all (i, j) with i + j ≤ 4, and shall use Corollary 5.4.2 to
determine the limit distribution of

√
n (Rn − ρ) .(5.4.26)

(For ρ = 0, this limit was obtained in Example 5.2.6.)
We begin by recalling from (5.2.20) that

√
nRn =

√
n

n

∑
(Xi − ξ) (Yi − η)

SXSY
−

√
n
(
X̄ − ξ

) (
Ȳ − η

)
SXSY

and that the second term tends in probability to 0 since

√
n
(
X̄ − ξ

) (
Ȳ − η

)
=

1√
n

[√
n
(
X̄ − ξ

)√
n
(
Ȳ − η

)]
and the term in square brackets is bounded in probability. The limit dis-
tribution of (5.4.26) is therefore the same as that of

√
n (R′

n − ρ) ,(5.4.27)

where

R′
n =

1
n

∑
(Xi − ξ) (Yi − η) /SXSY .(5.4.28)

To determine the limit distribution of (5.4.27), we shall apply Corollary
5.4.2 with

Y
(n)
1 =

1
n

∑
(Xi − ξ) (Yi − η) , Y

(n)
2 = S2X , Y

(n)
3 = S2Y ,(5.4.29)
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and

f1 (u, v, w) =
u√
vw

.(5.4.30)

From the argument leading to (5.4.27), the joint limit distribution of
√

n
[
Y
(n)
1 − E (XY )

]
,
√

n
[
Y
(n)
2 − σ2

]
,
√

n
[
Y
(n)
3 − τ2

]
(5.4.31)

is seen to be unchanged if (5.4.29) is replaced by

Y
(n)
1 =

1
n

∑
(Xi − ξ) (Yi − η) ,

Y
(n)
2 =

1
n

∑
(Xi − ξ)2 , Y

(n)
3 =

1
n

∑
(Yi − η)2

(5.4.32)

and hence, by Theorem 5.4.4, is N (0,Σ), where the elements of σij of Σ
are

σ11 =Var [(X − ξ) (Y − η)] = E
[
(X − ξ)2 (Y − η)2 − ρ2σ2τ2

]
,

σ12 =σ21 = Cov
[
(X − ξ) (Y − η) , (X − ξ)2

]
= E

[
(X − ξ)3 (Y − η) − ρσ3τ

]
,

σ22 =Var (X − ξ)2 = E (X − ξ)4 − σ4,

σ13 =σ31 = Cov
[
(X − ξ) (Y − η) , (Y − η)2

]
= E

[
(X − ξ) (Y − η)3

]
− ρστ3,

σ23 =σ32 = Cov
[
(X − ξ)2 , (Y − η)2

]
= E

[
(X − ξ)2 (Y − η)2

]
− σ2τ2,

σ33 =Var (Y − η)2 = E (Y − η)4 − τ4.

(5.4.33)

It now follows from Corollary 5.4.2 that

√
n




1
n

∑
XiYi

SXSY
− ρ


→ N

(
0, γ2

)
(5.4.34)

with

γ2 =
(

∂f

∂u

)2
σ11 +

∂f

∂u

∂f

∂v
σ12 +

∂f

∂u

∂f

∂w
σ13

+
∂f

∂u

∂f

∂v
σ12 +

(
∂f

∂v

)2
σ22 +

∂f

∂v

∂f

∂w
σ23

+
∂f

∂u

∂f

∂w
σ13 +

∂f

∂v

∂f

∂w
σ23 +

(
∂f

∂w

)2
σ33,

(5.4.35)

which in matrix notation can be written as(
∂f

∂u

∂f

∂v

∂f

∂w

)
Σ


 ∂f/∂u

∂f/∂v
∂f/∂w


 .(5.4.36)
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Here

∂f

∂u
=

1√
vw

,
∂f

∂v
= −1

2
u√
v3w

,
∂f

∂w
= −1

2
u√
vw3

(5.4.37)

are evaluated at

u = ρστ, v = σ2, w = τ2.(5.4.38)

�

Example 5.4.4 The normal correlation coefficient. Of particular in-
terest is the distribution of the correlation coefficient in the case that the
bivariate distribution is normal. Evaluation of γ2 in this situation requires
knowledge of the moments (5.4.33). Since the distribution of Rn is inde-
pendent of ξ, η, σ, and τ , we can assume without loss of generality that
ξ = η = 0 and σ = τ = 1. The moments are then functions of ρ only and
are given by (see Problem 4.9 or, for example, Lehmann and Casella (1998,
p. 68))

σ11 = 1 + ρ2, σ12 = σ13 = 2ρ, σ22 = σ33 = 2, σ23 = 2ρ2(5.4.39)

and (5.4.35) reduces to (Problem 4.10)

γ2 =
(
1 − ρ2

)2
.(5.4.40)

Under the assumption of normality we can obtain a variance-stabilizing
transformation for Rn by the method of Chapter 2, Section 5. By (5.4.40),
we set

f ′(ρ) =
1

1 − ρ2
=

1
2

[
1

1 − ρ
+

1
1 + ρ

]

to find

f(ρ) =
1
2

log
1 + ρ

1 − ρ
.(5.4.41)

It follows that
√

n [f (Rn) − f(ρ)] → N (0, 1) .(5.4.42)

The transformation (5.4.41) is called Fisher’s z-transformation.∗

The limit result (5.4.42) can be used to obtain approximate confidence
intervals and tests for ρ (Problem 4.7). Since, in the normal case, ρ = 0

∗For a more detailed discussion of this transformation with references, see Mudholkar
(1983) and Stuart and Ord, Vol. 1 (1987). Much additional material on the distribution
of Rn is given in Chapter 32 of Johnson, Kotz, and Balakrishnan (1995).
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is equivalent to independence of X and Y , the test of H : ρ = 0 also
serves as a test of independence. If normality cannot be assumed, one can
obtain asymptotic inferences for ρ from (5.4.34) where it is then necessary
to replace the covariances σij given by (5.4.33) by consistent estimators.
Such an approach for the general k-variate case is discussed, for example,
by Steiger and Hakstian (1982). �

Summary

1. The non-singular multivariate distribution N
(
ξ,Σ
)

is defined by its
density (5.4.1); its expectation vector and covariance matrix are shown
to be ξ and Σ, respectively.

2. If X = (X1, . . . , Xk) is distributed as N
(
ξ,Σ
)

and B is an r ×
k (r ≤ k) matrix of constants of maximal rank r, then Y = BX
is distributed as N

(
Bξ,BΣB′). In particular, Xi is distributed as

N (ξi, σii), and, more generally, any subset of the X’s has a normal
distribution.

3. If X = (X1, . . . , Xk) is distributed as N
(
ξ,Σ
)
, then the quadratic

form
(
X − ξ

)′
A
(
X − ξ

)
with A = Σ−1 is distributed as χ2 with k

degrees of freedom and
(
X − η

)′
A
(
X − η

)
with η �= ξ as non-central

χ2.

4. If X(j), j = 1, . . . , n, are i.i.d. k-variate random vectors with com-
mon mean ξ and covariance matrix Σ and if X̄ denotes the average∑

X(j)/n, then the multivariate central limit theorem states that
√

n
(
X̄ − ξ

)
→ (0,Σ). Two important applications are the joint lim-

iting behavior of (i) the outcomes of n multinomial trials and (ii) r
quantiles of n i.i.d. random variables.

5. The delta method (Theorem 2.5.2) is extended to the multivariate
case. The result is used to obtain the asymptotic distribution of the
sample correlation coefficient with and without the assumption of
normality.

5.5 Some applications

As applications of the multivariate techniques of the preceding sections, let
us first consider the multivariate one- and two-sample problems.

Example 5.5.1 Confidence sets and test for a multivariate mean.
Let
(
X
(j)
1 , . . . , X

(j)
k

)
, j = 1, . . . n, be a sample from a k-variate distribution

with mean (ξ1, . . . , ξk) and non-singular covariance matrix Σ, and consider



320 5. Multivariate Extensions

the problem of estimating or testing the mean. By the multivariate central
limit theorem,

√
n
(
X̄1 − ξ1

)
, . . . ,

√
n
(
X̄k − ξk

) L→ N (0,Σ) as n → ∞,(5.5.1)

where

X̄i =
1
n

n∑
j=1

X
(j)
i .(5.5.2)

From this it follows by Theorem 5.4.2 and Theorem 5.1.5 that

√
n
(
X̄ − ξ

)′
A
√

n
(
X̄ − ξ

) L→ χ2k,(5.5.3)

where X̄ =
(
X̄1, . . . , X̄k

)
, ξ = (ξ1, . . . , ξk) and A = Σ−1. If Σ and, hence,

A are known, this leads to the confidence sets

n
(
ξ − X̄

)′
A
(
ξ − X̄

)
≤ Ck(5.5.4)

for ξ with asymptotic confidence coefficient γ, where

Ck∫
0

χ2k = γ.(5.5.5)

For k = 2 and in the notation of (5.2.1), the sets (5.5.4) reduce to

n

[
1
σ2
(
ξ − X̄

)2 − 2ρ
στ

(
ξ − X̄

) (
η − Ȳ

)
+

1
τ2
(
η − Ȳ

)2] ≤ C2
(
1 − ρ2

)
,

(5.5.6)

which are ellipses centered on
(
X̄, Ȳ

)
. In the general case, the sets (5.5.4)

are k-dimensional ellipsoids centered on the point
(
X̄1, . . . , X̄k

)
.

In applications, the covariance matrix Σ is typically not known. How-
ever, it follows from Problem 4.4 that the sample covariance matrix Σ̂ is
a consistent estimator of Σ, and from Lemma 5.3.3 and Problem 4.5 that,
therefore, Â = Σ̂−1 is a consistent estimator of A. This shows that the sets

n
(
ξ − X̄

)′
Â
(
ξ − X̄

)
≤ Ck(5.5.7)

constitute asymptotically valid confidence sets for (ξ1, . . . , ξk) at level γ for
any non-singular covariance matrix Σ and any fixed shape of the distribu-
tion F of (X1, . . . , Xk). However, the difficulty pointed out in (4.1.32) for
the case k = 1 of course persists in the present more general situation.

Note: If F is known to be multivariate normal, the exact distribution of the
left side of (5.5.7) is proportional to Hotelling’s T 2. Our asymptotic result
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therefore shows that the confidence intervals or tests based on Hotelling’s
T 2 are asymptotically robust against non-normality in the same sense in
which this was shown for Student’s t (in the case k = 1) in Example 4.1.3.

Let us next consider the power of the test of H : ξ = ξ(0) with rejection
region

n
(
X − ξ0

)′
Â
(
X̄ − ξ(0)

)
≥ Ck.(5.5.8)

The situation is quite analogous to that considered in Example 3.3.3. As
in the univariate case, the test can be shown to be consistent against any
fixed alternative ξ �= ξ(0). For this reason, we shall consider the power not
against a fixed alternative but against a sequence

ξ(k) = ξ
0

+
∆√
n

(5.5.9)

with ∆ = (∆1, . . . ,∆k) �= (0, . . . , 0).
The univariate Berry-Esseen theorem and Theorem 5.1.6 show that for

any fixed Σ and any sequence of vectors ξ(n) → ξ(0),

√
nÂ1/2

(
X̄ − ξ(n)

)
L→ N (0, I) .(5.5.10)

Here application of the Berry-Esseen theorem requires finiteness of the third
moment of

∑
ciXi for all (c1, . . . , ck), which is guaranteed by that of the

third moment of
∑

Xi. With ξ(n) given by (5.5.9), it follows that

√
nÂ1/2

(
X̄ − ξ(n)

)
L→ N

(
A1/2∆, I

)
(5.5.11)

and therefore that

n
(
X̄ − ξ(0)

)′
Â
(
X̄ − ξ(0)

)
L→ Y ′Y =

k∑
i=1

Y 2i ,(5.5.12)

where Yi is distributed as N (ηi, 1) and
∑

η2i = ∆′A∆. By Theorem 5.4.3,

the distribution of
k∑
i=1

Y 2i is the non-central χ2-distribution with k degrees

of freedom and non-centrality parameter
∑

η2i . If we denote a random

variable with this distribution by χ2
(∑

η2i

)
, the power of the test (5.5.8)

against the alternatives (5.5.9) tends to P
[
χ2
(∑

η2i

)
≥ Ck

]
. �

Example 5.5.2 Inference for the difference of two mean vectors.
In generalization of Example 4.1.4, consider samples

(
X
(r)
1 , . . . , X

(r)
k

)
, r =
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1, . . . ,m, and
(
Y
(s)
1 , . . . , Y

(s)
k

)
, s = 1, . . . , n, from k-variate distributions

F and G with means ξ = (ξ1, . . . , ξk) and η = (η1, . . . , ηk) and covariance
matrices Σ and T , respectively. We shall be concerned with testing H : η =
ξ or, more generally, with obtaining approximate confidence sets for η − ξ.

Let X̄i be defined by (5.5.2) and Ȳi correspondingly, let N = m+n, and
suppose that

m

N
→ ρ,

n

N
→ 1 − ρ as m and n → ∞ with 0 < ρ < 1.(5.5.13)

Then by the central limit theorem,

√
N
(
X̄ − ξ

)
→ N

(
0,

1
ρ
Σ
)

and

√
N
(
Ȳ − η

)
→ N

(
0

1
1 − ρ

T
)

and hence

√
N
[(

Ȳ − X̄
)
−
(
η − ξ

)]
→ N

(
0,

1
ρ
Σ +

1
1 − ρ

T
)

.(5.5.14)

It follows in analogy with (5.5.3) that

[(
η − ξ

)
−
(
Ȳ − X̄

)]′( 1
m

Σ +
1
n
T
)−1 [(

η − ξ
)
−
(
Ȳ − X̄

)] L→ χ2k.

(5.5.15)

If Σ and T are known, (5.5.15) provides confidence sets analogous to those
given by (5.5.4) in the one-sample case.

When Σ and T are unknown, we simply replace them by Σ̂ and T̂ and
obtain the confidence sets

[(
η − ξ

)
−
(
Ȳ − X̄

)]′( 1
m

Σ̂ +
1
n
T̂
)−1 [(

η − ξ
)
−
(
Ȳ − X̄

)]
≤ Ck

(5.5.16)

with Ck given by (5.5.5). As usual, (5.5.16) permits a more explicit repre-
sentation when k = 2 (Problem 5.1).

An assumption that is frequently made in this two-sample situation, but
that should not be made lightly, is that

Σ = T .(5.5.17)
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The ij-th element of the common covariance matrix is then estimated by

Sij =

[
m∑
r=1

(
X
(r)
i − X̄i

)(
X
(r)
j − X̄j

)

+
n∑
s=1

(
Y
(s)
i − Ȳi

)(
Y
(s)
j − Ȳj

)]
/ (m + n)

(5.5.18)

and if S = (Sij) is the resulting estimated covariance matrix, the left side
of (5.5.16) is replaced by

[(
η − ξ

)
−
(
Ȳ − X̄

)]′ 1
m + n

S−1 [(η − ξ
)
−
(
Ȳ − X̄

)]
.(5.5.19)

If F and G are known to be normal, then, except for a constant factor,
(5.5.19) is distributed as Hotelling’s T 2. It follows that under assumption
(5.5.17), the confidence intervals and tests based on Hotelling’s T 2 are
asymptotically robust against non-normality. On the other hand, as in the
univariate case (see Problem 5.15 of Chapter 3), they are not asymptotically
robust against inequality of the covariance matrices Σ and T unless Σ = T
or

m

n
→ 1 (Problem 5.2). �

Example 5.5.3 Simple linear regression. In generalization of Example
2.7.4, suppose that

Xiν = αi + βiviν + Eiν (i = 1, . . . , k; ν = 1, . . . , n) ,(5.5.20)

so that for each of the k components of the response vector (X1ν , . . . , Xkν),
we assume the simple linear regression structure of the univariate model.
In particular, the v’s are known constants while the errors (E1ν , . . . , Ekν)
are assumed to be n i.i.d. k-vectors distributed according to some k-variate
distribution F with mean (0, . . . , 0) and covariance matrix Σ.

The standard estimators of αi and βi, in generalization of (2.7.11), are

β̂i =

n∑
ν=1

(
Xiν − X̄i

)
(viν − v̄i)

n∑
ν=1

(viν − v̄i)
2

, α̂i = X̄i − β̂iv̄i,(5.5.21)

where

X̄i =
n∑
ν=1

Xiν/n, v̄i =
n∑
ν=1

viν/n.(5.5.22)

To obtain the joint asymptotic distribution of
(
β̂1 − β1, . . . , β̂k − βk

)
in

generalization of the univariate result given in Example 2.7.6, we require
the following multivariate version of Theorem 2.7.3.
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Theorem 5.5.1 Let (Y1ν , . . . , Ykν), ν = 1, . . . , n, be n i.i.d. k-vectors with
E (Yiν) = 0 for all i and covariance matrix Σ, and for each i, let

{
d
(i)
nν

}
,

ν = 1, . . . , n, be a double array of constants satisfying
∑
ν

d(i)
2

nν = 1 and

max
i,ν

d(i)
2

nν → 0 as n → ∞.(5.5.23)

Then (
n∑
ν=1

d(1)nν Y1ν , . . . ,

n∑
ν=1

d(k)nν Ykν

)
L→ N (0,Σ) .(5.5.24)

The proof, which will not be given here, utilizes Theorem 5.1.8 and then
applies an argument, analogous to that used to prove Theorem 2.7.3, to lin-

ear combinations
k∑
i=1

ci

n∑
ν=1

d(i)nνYiν . For details, see Arnold (1981, Theorem

19.16). �
From Theorem 5.5.1 with

d(i)nν =
viν − v̄i√∑

ν

(vkν − v̄k)
2
,(5.5.25)

it is seen that


√
n
(
β̂1 − β1

)
√∑

ν

(v1ν − v̄1)
2
, . . . ,

√
n
(
β̂k − βk

)
√∑

ν

(vkν − v̄k)
2


→ N (0,Σ) ,(5.5.26)

provided (5.5.23) holds.
Theorem 5.4.2 shows that

n
∑∑

aij

(
β̂i − βi

)(
β̂j − βj

)
√∑

(viν − v̄i)
2
∑

(vjν − v̄j)
2

L→ χ2k,(5.5.27)

where A = (aij) = Σ−1. If Σ is known, this provides confidence sets and
tests for β. If Σ is unknown, we can use the fact that the limit result (5.5.27)
remains valid when A = Σ−1 is replaced by the consistent estimator Σ−1

where the ij-th element of Σ is given by (Problem 5.4)

σ̂ij =
∑(

Xiν − α̂i − β̂iviν

)(
Xjν − α̂j − β̂jvjν

)
/n.(5.5.28)

Note: As was the case in Example 5.5.1 and with (5.5.19), when the distri-
bution of the E’s is k-variate normal, then, except for a constant factor, the
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quantity (5.5.27) is distributed as Hotelling’s T 2. This shows that the level
of the T 2-test for regression coefficients is asymptotically robust against
non-normality. �

Example 5.5.4 The multinomial one-sample problem. Consider a
sequence of n multinomial trials with k + 1 possible outcomes and, in the
notation of Example 5.4.1, let Y1, . . . , Yk+1 be the numbers of trials result-
ing in these outcomes. Then the joint distribution of (Y1, . . . , Yk+1) is the
multinomial distribution M (p1, . . . , pk+1; n) given by

P (Y1 = y1, . . . , Yk+1 = yk+1) =
n!

y1! · · · yk+1!
py11 , . . . , p

yk+1
k+1 .(5.5.29)

Here the p’s denote the probabilities of the outcomes and we have∑
pi = 1,

∑
yi = n.(5.5.30)

Let us now consider testing the hypothesis

H : pi = p
(0)
i , i = 1, . . . , k + 1(5.5.31)

against the alternatives that pi �= p
(0)
i for at least some i. The standard

test for this problem is Pearson’s χ2-test, which rejects H when

Q = n

k+1∑
i=1

(
Yi
n

− p
(0)
i

)2
/p
(0)
i ≥ Ck.(5.5.32)

The distribution of Q under a fixed alternative to H, suitably normalized,
can be shown to be asymptotically normal (Chapter 6, Problem 3.13). The
following theorem provides the asymptotic behavior of Q under H.

Theorem 5.5.2 The distribution of Q under H tends to the χ2-distribution
with k degrees of freedom as n → ∞.

Proof. It follows from (5.4.14) and Theorem 5.4.2(ii) that

n

k∑
i=1

k∑
j=1

aij

(
Yi
n

− p
(0)
i

)(
Yj
n

− p
(0)
j

)
L→ χ2k,(5.5.33)

where aij is given by (5.4.15). The left side of (5.5.33) is equal to

n

k∑
i=1

1

p
(0)
i

(
Yi
n

− p
(0)
i

)2
+

n

p0k+1

k∑
i=1

k∑
y=1

(
Yi
n

− p
(0)
i

)(
Yj
n

− p0j

)
.

The last term is equal to

n

[
k∑
i=1

(
Yi
n

− p0i

)]2
/p0k+1 = n

(
Yk+1

n
− p0k+1

)2
/p0k+1
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and the result follows. �
Thus (5.5.32) defines a test of H with asymptotic level α if we determine

Ck so that
∞∫

Ck

χ2k = α.(5.5.34)

For a book-length discussion of this test with many references, see Green-
wood and Nikulin (1996).

Some idea of the accuracy of the χ2-approximation can be obtained from
Table 5.5.1, which compares the exact value of P (Q ≥ C) with the ap-
proximate value P

(
χ2k ≥ C

)
for k = 3, p

(0)
1 = .2, p

(0)
2 = .3, p

(0)
3 = .5 and

n = 10, 25, 50 for a few values of C that give values of the probability
between .01 and .05.

TABLE 5.5.1. Exact and approximate rejection probabilities for the χ2-test

n = 10 n = 25 n = 50
Exact .050 .029 .047 .019 .015 .051 .030 .017
Approx. .049 .035 .043 .021 .015 .047 .032 .017

Source: Radlow and Alf (1975).

Corollary 5.5.1 The test (5.5.32) with Ck given by (5.5.34) is consistent
against any fixed alternative p �= p(0) .

Proof. Let (p1, . . . , pk+1) be any alternative with pi �= p0i for at least some
i, and suppose, in particular, that pi �= p0i . Write

√
n

(
Yi
n

− p0i

)
√

p0i
=

√
n

(
Yi
n

− pi

)
√

p0i
+

√
n

pi − p0i√
p0i

.(5.5.35)

Since Yi has the binomial distribution b (pi, n), the first term on the right
side converges in law to N

(
0, piqi/p0i

)
, and (5.5.35) therefore converges in

probability to +∞ or −∞, depending on the sign of pi− p0i . In either case,
Q

P→ ∞, and the probability of (5.5.32) therefore tends to 1. �
To obtain an approximation for the power of the test (5.5.32), let us

proceed as in Section 2 of Chapter 3 and consider the power not against a
fixed alternative but against a sequence of alternatives p

(n)
i tending to p0i

at the rate 1/
√

n, so that
√

n
(
p
(n)
i − p

(0)
i

)
→ ∆i,(5.5.36)

where
k+1∑
i=1

∆i = 0 since
∑(

p
(n)
i − p

(0)
i

)
= 0.
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Theorem 5.5.3 The limit distribution of Q under the alternatives (5.5.36)
is non-central χ2 with k degrees of freedom and non-centrality parameter

λ =
k+1∑
i=1

∆2i /p
0
i .(5.5.37)

Proof. In analogy with (5.5.35), write

√
n

(
Yi
n

− p0i

)
√

p0i
=

√
n

[
Yi
n

− p
(n)
i

]
√

p0i
+

∆i√
p0i

+ Rn,(5.5.38)

where Rn
P→ 0 as n → ∞. Then the joint limit distribution of the variables

on the left side of (5.5.38) is the same as that of

Zi =

√
n

[
Yi
n

− p
(n)
i

]
+ ∆i√

p0i
(i = 1, . . . , k) .(5.5.39)

It is intuitively plausible from (5.4.13) that the joint distribution of the
variables

√
n

(
Yi
n

− p
(n)
i

)
(5.5.40)

will tend in law to N (0,Σ), where Σ is given by (5.4.14), and hence that
T = (T1, . . . , Tk) with

Ti =
√

n

(
Yi
n

− p
(n)
i

)
+ ∆i (i = 1, . . . , k)(5.5.41)

will tend in law to N (∆,Σ), where ∆ = (∆1, . . . ,∆k). Once this is proved,
it follows from Theorem 5.4.3 that

√
nA1/2T

L→ N (∆, I)(5.5.42)

and

(√
nA1/2T

)′ (√
nA1/2T

)
L→ χ2k


 k∑
i=1

k∑
j=1

aij∆i∆j


 ,(5.5.43)

as claimed.
To prove the above statements concerning the variables (5.5.40) and

(5.5.41), we proceed as in Example 2.4.8. For this purpose, we can either
utilize a multivariate Berry-Esseen theorem (given, for example, by Götze
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(1991)) or reduce the problem to the univariate case by means of Theorem
5.1.8. We shall follow the second route here.

To this end, define the variables X
(j)
i , i = 1, . . . , k + 1, j = 1, . . . , n, as

in Example 5.4.1 so that Yi/n = X̄i, and consider the variables

√
n

k∑
i=1

ci

(
X̄i − p

(n)
i

)
/

√
Var
∑

ci

(
X̄i − p

(n)
i

)
.(5.5.44)

According to Corollary 2.4.1, the distribution of (5.5.44) will tend to the
standard normal distribution provided

En

k∑
i=1

ci

∣∣∣X(1)i − p
(n)
i

∣∣∣3
{

Varn

[
k∑
i=1

ci

(
X
(1)
i − p

(n)
i

)]}3/2 is bounded.(5.5.45)

Since for any fixed c1, . . . , ck the numerator is obviously bounded, it is
only necessary to check that the denominator is bounded away from 0 as
n → ∞. The denominator tends to{

Var0

[
k∑
i=1

ci

(
X
(1)
i − p0i

)]}3/2
(5.5.46)

and (5.5.45) will be proved if we can show that (5.5.46) is > 0 for all

(c1, . . . , ck). Now the variance in (5.5.46) is equal to
k∑
i=1

k∑
j=1

cicjσij so that

we need to show that Σ or, equivalently, A = Σ−1 is positive definite. By
the identity following (5.5.33),

∑∑
aijuiuj =

k∑
i=1

u2i
pi

+
1

pk+1

(
k∑
i=1

ui

)2
,(5.5.47)

which is positive unless all u’s are 0. This completes the proof of (5.5.45).
It follows that

√
n

k∑
i=1

ci

(
X̄i − p

(n)
i

)
→ N (0, c′Σc)

and application of Theorem 5.1.8 now proves that (5.5.40) and (5.5.41)
have the claimed limit distributions. �

For a discussion of the accuracy of the non-central χ2 approximation to
the power of Pearson’s χ2-test, see Slakter (1968). A different approxima-
tion will be considered in Chapter 6, Problem 3.13. �
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Example 5.5.5 The multinomial two-sample problem. Consider two
sequences of m and n multinomial trials each with k + 1 outcomes, and let
the numbers of trials resulting in outcomes 1, . . . , k +1 be (X1, . . . , Xk+1)
and (Y1, . . . , Yk+1) and their distributions M (p1, . . . , pk+1; m) and
M (q1, . . . , qk+1; n), respectively. To test the hypothesis

H : pi = qi for all i = 1, . . . , k + 1,(5.5.48)

consider the joint null distribution of the differences

Yi
n

− Xi

m
, i = 1, . . . , k.(5.5.49)

It is easily checked (Problem (5.5(i)) that under H, their covariance matrix

is
(

1
m

+
1
n

)
Σ, where Σ is the multinomial covariance matrix given by

(5.4.14). It follows from the proof of (5.4.13) that if m/n → ρ (0 < ρ < 1)
and N = m + n, then (Problem 5.5(ii))√

N
m

N

n

N

(
Y1
n

− X1
m

, . . . ,
Yk
n

− Xk

m

)
L→ N (0,Σ)(5.5.50)

and hence from the proof of Theorem 5.5.2 that under H,

Q = N
m

N

n

N

k+1∑
i=1

(
Yi
n

− Xi

m

)2
/pi

L→ χ2k.(5.5.51)

Let Ck be defined by (5.5.34), and let Q̂ be obtained from Q by replacing
pi by a consistent estimator p̂i. Then the rejection region

Q̂ ≥ Ck(5.5.52)

provides a test of H with asymptotic level α. �

Summary

Multivariate limit theory is applied to the following problems:

1. Developing asymptotic inference for
(i) the mean vector of a multivariate distribution;
(ii) the difference of the mean vectors of two distributions, both when
the covariance matrices are unequal and when they are equal;
(iii) a set of regression coefficients.

2. (i) Obtaining the limit distribution of Pearson’s χ2-statistic for test-
ing a multinomial distribution, and the asymptotic power of the re-
sulting test.
(ii) Treating the corresponding problem for testing the equality of
two multinomial distributions.
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5.6 Estimation and testing in 2 × 2 tables

Consider N independent trials, the outcome of each classified according to
two criteria, as A or Ā, and as B or B̄; for example, a series of operations
classified according to the gender of the patient and the success or failure
of the treatment. The results can be displayed in a 2 × 2 table, as shown
in Table 5.6.1, where NAB is the number of cases having both attributes

TABLE 5.6.1. 2× 2 table

B B̄
A NAB NAB̄ NA

Ā NĀB NĀB̄ NĀ

NB N
B̄

N

A and B, and so on. The joint distribution of the four cell entries is then
multinomial, corresponding to N trials and four possible outcomes with
probabilities, say pAB , pĀB , pAB̄ , and pĀB̄ .

A standard measure of the degree of association of the attributes A and
B is the cross-product ratio (also called odds ratio)

ρ =
pABpĀB̄
pĀBpAB̄

.(5.6.1)

An alternative form for ρ is obtained by using the fact that

pAB = pApB|A,

where pA and pB|A denote the probability of A and the conditional proba-
bility of B given A, respectively, and analogous equations for the other cell
probabilities. Substituting these expressions in (5.6.1) leads to

ρ =
pB|ApB̄|Ā
pB|ĀpB̄|A

.(5.6.2)

The attributes A and B are said to be positively associated if

pB|A > pB|Ā and pB̄|Ā > pB̄|A,(5.6.3)

and these conditions imply that

ρ > 1.(5.6.4)

It can be shown that also conversely ρ > 1 implies (5.6.3) (Problem 6.1).
In the case of negative dependence, the inequalities (5.6.3) and (5.6.4) are
reversed. Independence of A and B is characterized by equality instead of
inequality and hence by ρ = 1.

The odds ratio ρ is estimated by replacing the cell probabilities pAB , . . .
by the corresponding frequencies NAB/N, . . . , and this leads to the esti-
mator

ρ̂ =
NABNĀB̄

NAB̄NĀB

.(5.6.5)
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The following result gives the asymptotic distribution of the log odds ratio
log ρ̂ and of ρ̂.

Theorem 5.6.1 Under the multinomial distribution

M (pAB , pAB̄ , pĀB , pĀB̄ ;N)

assumed for the entries of Table 5.6.1, we have
√

N (log ρ̂ − log ρ) L→ N
(
0, τ2

)
(5.6.6)

with

τ2 =
1

pAB
+

1
pAB̄

+
1

pĀB
+

1
pĀB̄

,(5.6.7)

and
√

N (ρ̂ − ρ) L→ N
(
0, ρ2τ2

)
.(5.6.8)

Proof. To simplify the notation, put

Y1 =
NAB

N
, Y2 =

NAB̄

N
, Y3 =

NĀB

N
,

and

Y4 =
NĀB̄

N
= 1 − Y1 − Y2 − Y3

so that

log ρ̂ = log Y1 + log (1 − Y1 − Y2 − Y3) − log Y2 − log Y3.

Similarly, put

π1 = pAB , π2 = pAB̄ , π3 = pĀB ,

and

π4 = pĀB̄ = 1 − π1 − π2 − π3.

We shall prove (5.6.6) by applying Corollary 5.4.2 to the function

f (y1, y2, y3) = log y1 + log (1 − y1 − y2 − y3) − log y2 − log y3.
(5.6.9)

The partial derivatives of f evaluated at yi = πi (i = 1, 2, 3) are then

∂f

∂y1

∣∣∣∣
y=π

=
1
π1

− 1
π4

,
∂f

∂y2

∣∣∣∣
y=π

= − 1
π2

− 1
π4

,

∂f

∂y3

∣∣∣∣
y=π

= − 1
π3

− 1
π4

.
(5.6.10)
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It follows from Example 5.4.1 that the joint asymptotic distribution of
√

N (Y1 − π1) ,
√

N (Y2 − π2) ,
√

N (Y3 − π3)

is normal with covariance matrix given by (5.4.14) with k = 3 and π in place
of p. On substituting (5.6.10) and (5.4.14) into (5.4.20) with i = j = 1, we
find for the asymptotic variance τ2 of

√
N (log ρ̂ − log ρ),

(
π1 − π21

)( 1
π1

− 1
π4

)2
+
(
π2 − π22

)( 1
π2

+
1
π4

)2

+
(
π3 − π23

)( 1
π3

+
1
π4

)2
−
∑∑
i 	=j

πiπj
∂f

∂yi

∂f

∂yi

∣∣∣∣
y=π

(5.6.11)

and hence

τ2 = A − B,(5.6.12)

where

A = π1

(
1
π1

− 1
π4

)2
+ π2

(
1
π2

+
1
π4

)2
+ π3

(
1
π3

+
1
π4

)2
(5.6.13)

and

B =
3∑
i=1

3∑
j=1

πiπj
∂f

∂yi

∂f

∂yj

∣∣∣∣
y=π

=

(
3∑
i=1

πi
∂f

∂yi

∣∣∣∣
y=π

)2
.(5.6.14)

An easy calculation (Problem 6.2) now shows that

A =
1
π1

+
1
π2

+
1
π3

+
1
π4

+
1
π24

and B =
1
π24

,(5.6.15)

which proves (5.6.7).
The limit relation (5.6.8) follows from (5.6.6) by applying the delta

method (Theorem 2.5.2) to the function

ρ = f (log ρ) = elog ρ.(5.6.16)

�
The results (5.6.6) and (5.6.8) can be used to obtain confidence intervals

for log ρ and ρ. For this purpose, it is only necessary to replace the unknown
asymptotic variances τ2 and ρ2τ2 by the consistent estimators τ̂2 and ρ̂2τ̂2,
respectively, where ρ̂ is given by (5.6.5) and τ̂2 by

τ̂2 = N

(
1

NAB
+

1
NAB̄

+
1

NĀB

+
1

NĀB̄

)
.(5.6.17)
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The intervals are then respectively

|log ρ̂ − log ρ| ≤ uα/2τ̂ /
√

N(5.6.18)

and

|ρ̂ − ρ| ≤ uα/2ρ̂τ̂ /
√

N.(5.6.19)

Besides the measures ρ and log ρ, another popular measure of association
is Yule’s Q, defined as

Q =
pABpĀB̄ − pAB̄pĀB
pABpĀB̄ + pAB̄pĀB

.(5.6.20)

Q can be expressed in terms of ρ through the equation (Problem 6.3(i))

Q =
ρ − 1
ρ + 1

.(5.6.21)

A consistent estimator is

Q̂ =
ρ̂ − 1
ρ̂ + 1

,(5.6.22)

which has the asymptotic distribution (Problem 6.3(ii))

√
N
(
Q̂ − Q

)
→ N

(
0,

4ρ2

(1 + ρ)4
τ2

)
.(5.6.23)

Confidence intervals for Q can be obtained as in (5.6.17) and (5.6.18).
For additional measures of association and the properties of such mea-

sures, see Agresti (1990).
A problem that is frequently of interest in a 2 × 2 table is testing the

hypothesis of independence

H : ρ = 1.(5.6.24)

A natural test of H against the alternatives ρ > 1 of positive dependence
rejects H when ρ̂ − 1 is sufficiently large; more specifically, by (5.6.8), at
asymptotic level α when

√
N (ρ̂ − 1)

ρτ
≥ uα(5.6.25)

or equivalently when
√

N (NABNĀB̄ − NAB̄NĀB)
NAB̄NĀBρτ

≥ uα.(5.6.26)
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For (5.6.26) to become a usable test, it is still necessary to replace ρτ
by a consistent estimator. One possibility is to estimate it by ρ̂τ̂ , with ρ̂
and τ̂ given by (5.6.5) and (5.6.17), respectively. Alternatively, since the
probability of (5.6.25) needs to tend to α only under H, we can replace ρ
by its hypothetical value 1 and note that τ2 under H reduces to (Problem
5.6.5)

τ2 =
1

pApB
+

1
pApB̄

+
1

pĀpB
+

1
pĀB̄

=
1

pApĀpBpB̄
.(5.6.27)

A consistent estimator is obtained by replacing the probabilities pA, . . . by
the corresponding frequencies.

The standard test of H is in fact neither of these two tests but is given
by the rejection region

√
N (NABNĀB̄ − NAB̄NĀB)√

NANĀNBNB̄

≥ uα.(5.6.28)

This test also has asymptotic level α and, under H, is asymptotically equiv-
alent to (5.6.26). When the test is carried out against the two-sided alter-
natives ρ �= 1, H is rejected when the absolute value of (5.6.28) is ≥ uα/2
or, equivalently, when

N (NABNĀB̄ − NAB̄NĀB)2

NANĀNBNB̄

≥ C,(5.6.29)

where C is the upper α critical value of χ2 with one degree of freedom.
It is interesting to compare the foregoing results regarding the multi-

nomial model for the 2 × 2 table with the corresponding results for the
two-binomial model of Example 3.1.5(ii). The present situation differs from
the earlier one (after suitable adjustment of notation) in that the marginal
totals NA and NĀ, which are random in the multinomial case, are fixed,
and are equal to m and n, in the case of two binomials. In the latter, the
odds ratio is

pB|ApB̄|Ā
pB|ĀpB̄|A

,(5.6.30)

which by (5.6.2) agrees with its multinomial definition (5.6.1).
The test with rejection region

X

m
− Y

n√
X

m

(
1 − X

m

)
+

Y

n

(
1 − Y

n

) ≥ uα(5.6.31)

proposed in (3.1.35) does not agree with the corresponding multinomial
test (5.6.28). An alternative test which does agree with (5.6.28) is obtained
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by replacing the denominator of (5.6.31) by the estimator of the standard
deviation of the numerator under the hypothesis that pB|A and pB|Ā are
equal (Problem 6.7).

Two-by-two tables are the simplest examples of contingency tables, which
comprise not only larger two-way but also higher-dimensional tables. Their
description, modeling, and analysis are treated in books such as Bishop,
Fienberg, and Holland (1975), Reynolds (1977), and Agresti (1990). The
results of the present section generalize to larger tables, but the methods
used here become cumbersome and the problems are treated more easily
by a more general approach, which is discussed in Section 7.8.

Summary

1. Three measures of association in a 2×2 table, the odds ratio, the log
odds ratio, and Yule’s Q are shown to be asymptotically normal and
their asymptotic variances are derived.

2. A test of independence in a 2×2 table is obtained under the assump-
tion of a multinomial model and is compared with the corresponding
test for the two-binomial model in which the row totals are fixed.

5.7 Testing goodness of fit

A basic problem concerning a sample X1, . . . , Xn of i.i.d. observations is
to test whether the X’s have been drawn from a specified distribution or
family of distributions. Of the many procedures for testing the hypothesis
that the common distribution F of the X’s satisifies

H : F = F0,(5.7.1)

let us consider first Pearson’s χ2-test which has the advantage of simplicity
and flexibility. It forms the principal subject of the present section. Some
other tests will be discussed more briefly later in the section.

Suppose first that the X’s take on only a finite number of values a1, . . . ,

ak+1 with probabilities p1, . . . , pk+1

(∑
pi = 1

)
and let Yi be the number

of X’s equal to ai. Then attention can be restricted to the Y ’s,† whose
joint distribution is the multinomial distribution M (p1, . . . , pk+1;n) given
by (5.5.29). In terms of the Y ’s, the problem reduces to that of testing

H : pi = p
(0)
i for all i = 1, . . . , k + 1,(5.7.2)

which was treated in Example 5.5.4 by means of Pearson’s χ2-test given
by (5.5.32).

†They constitute sufficient statistics for the X’s.
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Application of Pearson’s test is not restricted to the case in which the X’s
take on only a finite number of values, but can be reduced to that case by
grouping. To test, for example, that n independent variables X1, . . . , Xn

come from a specified Poisson distribution P (λ0), one might group to-
gether all observations exceeding some value k0. If Y0, Y1, . . . , Yk0 , Yk0+1
then denote the numbers of X’s equal to 0, 1, . . . , k0, or exceeding k0, the
test (5.5.32) becomes applicable to the hypothesis P (λ0). Analogously, if
the hypothesis to be tested is that X1, . . . , Xn are i.i.d. according to the
standard normal distribution or any other specified continous distribution
F0, one can divide the real axis into k + 1 intervals

(−∞, a1) , (a1, a2) , . . . , (ak−1, ak) , (ak,∞)

and let a0 = −∞, ak+1 = ∞. If Yi is the number of observations falling
into the interval Ji = (ai−1, ai), i = 1, . . . , k + 1, then (Y1, . . . , Yk+1) has
the multinomial distribution M (p1, . . . , pk+1;n), where

pi = F (ai) − F (ai−1) .(5.7.3)

With p
(0)
i denoting the probabilities (5.7.3) computed under H, the test

(5.5.32) is therefore a test of H0 with asymptotic level α.
It is interesting to note that this test is obviously not consistent against

all alternatives F �= F0 since there are many distributions other than F0 for
which pi = p0i for all i = 1, . . . , k + 1, and for which therefore the rejection
probability tends to α rather than to 1 as n → ∞. A test of H0 that is
consistent against all F �= F0 will be given in Theorem 5.7.2.

So far, it has been assumed that the hypothesis H given by (5.7.1) com-
pletely specifies the distribution F0 and hence the probabilities p

(0)
i , but

in applications, it more typically specifies a parametric family Fθ and, ac-
cordingly, probabilities, say

H : pi = p
(0)
i (θ1, . . . , θr) .(5.7.4)

If the θ’s were known, the test would be based on

X2 =
k+1∑
i=1

[
Yi − np

(0)
i (θ1, . . . , θr)

]2
np
(0)
i (θ1, . . . , θr)

(5.7.5)

with k > r and asymptotic distribution χ2k under H. Since they are un-
known, it is natural to replace them by consistent estimators θ̂1, . . . , θ̂r.
Such a replacement will change the distribution of X2, with the change
depending on the particular estimators used.

Perhaps the most natural method from the present point of view is to
estimate the θi by the values θ̂i that minimize (5.7.5), the so-called mini-
mum χ2-estimators. Under suitable regularity conditions, the distribution
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of the resulting test statistic

X̂2 =
∑[

Yi − np
(0)
i

(
θ̂1, . . . , θ̂r

)]2
np
(0)
i

(
θ̂1, . . . , θ̂r

) = n
∑(

Yi
n

− p̂
(0)
i

)2
/p̂
(0)
i(5.7.6)

tends to the χ2-distribution with k − r degrees of freedom under H. A
rigorous treatment can be found in Cramér (1946, Section 30.3). For more
general discussions, see Rao (1973), Bishop, Fienberg, and Holland (1975),
Read and Cressie (1988), Agresti (1990), and Greenwood and Nikulin
(1996).

The χ2-approximation for the statistic Q of (5.5.32) or the statistic
(5.7.6) typically will not work well if the expectations E (Yi) of any of
the cell frequencies are very small. In this case, one may therefore wish to
combine cells with small expectations into larger ones not suffering from
this defect. If the expectations npi depend on unknown parameters, such
a combination rule has to be based on estimated probabilities p̂i, and the
resulting cell boundaries are therefore random instead of constant, as has
been assumed so far. The same difficulty arises with a slightly different type
of combination rule frequently used in practice in which the classes are de-
termined by combining adjoining cells containing too few observations.

Unfortunately, with a data-based combination rule, the multinomial dis-
tribution of the Y ’s given by (5.5.29), and the theory based on it, no longer
apply. To see what modifications are needed, consider a particularly simple
rule which might be used to determine the classes when the hypothesis
specifies that the distribution of the X’s is a given continuous distribution
F0 (so that, in particular, the X’s will be distinct with probability 1).

Suppose for the sake of simplicity that the sample size is a multiple of
k + 1, n = m (k + 1) say, and divide the real axis into k + 1 intervals,
Ki = (Ai−1, Ai), i = 1, . . . , k + 1, such that each interval contains exactly
m observations. Here we let A0 = −∞, Ak+1 = ∞ and can let

Ai = X(im),

where X(1) < · · · < X(n) denote the ordered observations. Then the statis-
tic (5.5.32) becomes

k+1∑
i=1

(
m − nP

(0)
i

)2
nP

(0)
i

= n

k+1∑
i=1

(
1

k + 1
− P

(0)
i

)2
P
(0)
i

,(5.7.7)

where

P
(0)
i = F0 (Ai) − F0 (Ai−1)

is the probability of an observation falling into the interval Ji and is now
a random variable.



338 5. Multivariate Extensions

More generally, let the numbers of observations mi in Ki be fixed but not
necessarily equal. (Although these numbers depend on n, we shall denote
them by mi rather than the more accurate but cumbersome m

(n)
i .) If Ai =

X(m1+···+mi), the natural analog to (5.5.32) becomes

Q′ = n

k+1∑
i=1

[mi

n
− P

(0)
i

]2
/P
(0)
i .(5.7.8)

It differs from (5.5.32) in that the frequencies Yi/n which were random
earlier have now been replaced by the constant frequencies mi/n, while the
fixed probabilities p

(0)
i have been replaced by the random P

(0)
i .

To determine the limit distribution of Q′, let us compare the situa-
tion of the constant intervals Ji = (ai−1, ai) and the random intervals
Ki = (Ai−1, Ai), which are shown in Figures 5.7.1(a) and 5.7.1(b). In this
comparison, we shall suppress the superscript zero in the p’s and P ’s.

J1 a1 a2J2

p1 = F(a1)
p1 + p2 =

F(a2)

F

a

K1 A1 A2K2

P1 = F(a1)
P1 + P2 =

F(a2)

F

b

FIGURE 5.7.1. Correspondence between fixed and random intervals

To make the two situations comparable, we must relate the A’s to the
a’s, which we do by requiring that the fixed numbers mi falling into the
random intervals Ki are equal to the expected numbers E (Yi) = npi falling
into the fixed intervals Ji. Because of the integer nature of the m’s, we shall
require this condition to hold only up to terms of order o (

√
n), so that the

condition relating to two situations becomes

mi

n
= pi + o

(
1√
n

)
.(5.7.9)

It follows from (5.7.9) that Ai
P→ ai, and hence that Pi = F (Ai) −

F (Ai−1)
P→ pi = F (ai) − F (ai−1).

Under assumption (5.7.9), we shall now prove the following equivalence
result.

Theorem 5.7.1 Let X1, . . . , Xn be i.i.d. according to a continuous distri-
bution F0. Let

a0 = −∞ < a1, < · · · < ak < ak+1 = ∞
be arbitrary constants with

pi = F (ai) − F (ai−1) ,(5.7.10)
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and let Yi be the number of X’s following into the interval Ji = (ai−1, ai).
Also, let m1, . . . ,mk be integers with

∑
mi = n and let Ai = (Xm1+···+mi

)
and

Pi = F (Ai) − F (Ai−1) .(5.7.11)

Then if (5.7.9) holds, the joint distribution of

√
n

(
Y1
n

− p1

)
, . . . ,

√
n

(
Yk
n

− pk

)
(5.7.12)

is the same as that of
√

n
(m1

n
− P1

)
, . . . ,

√
n
(mk

n
− Pk

)
.(5.7.13)

Proof. The joint limit distribution of (5.7.12) is, by Example 5.4.1, the
multivariate normal distribution N (0,Σ) with the elements σij of Σ given
by (5.4.14).

That (5.7.13) has the same limit distribution follows from Theorem 5.4.5.
Unfortunately for the present purpose, that theorem is stated not in terms
of the Pi and mi but in terms of their sums

P1 + · · · + Pi = F (Ai) = F
(
X(ni)

)
and m1 + · · · + mi = ni.(5.7.14)

Let us put

p1 + · · · + pi = λi,(5.7.15)

so that

λi =
ni
n

+ o

(
1√
n

)
,(5.7.16)

and ξi = ai so that

F (ξi) = λi.(5.7.17)

Since the variables F (X1) , . . . , F (Xn) constitute a sample from the uni-
form distribution U (0, 1), it follows from Theorem 5.4.5 that the variables

√
n
[
F
(
X(n1)

)
− λ1

]
, . . . ,

√
n
[
F
(
X(nk)

)
− λk

]
(5.7.18)

have a joint normal limit N (0, T ) with

τij = λi (1 − λj) for all i ≤ j,(5.7.19)

and by (5.7.16), the same is therefore true for the variables

(Z1, . . . , Zk) =
√

n
[
F
(
X(n1)

)
− n1

n

]
, . . . ,

√
n
[
F
(
X(nk)

)
− nk

n

]
.

(5.7.20)
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Let the variables (5.7.12) be denoted by

Y ′
i =

√
n

(
Yi
n

− pi

)
(5.7.21)

and let

Z ′
i =

√
n
(
Pi −

mi

n

)
=

√
n

[
F
(
X(mi)

)
− F

(
X(mi−1

)
− ni − ni−1

m

](5.7.22)

and

Zi =
√

n
[
F
(
X(ni)

)
− ni

n

]
.(5.7.23)

Then

Z ′
1 = Z1, Z ′

2 = Z2 − Z1, . . . , Z ′
k = Zk − Zk−1(5.7.24)

and it remains to determine the joint limit distribution of the Z ′
i’s from

that of the Zi’s.
Now a linear transformation takes an asymptotically normal vector with

distribution N (0, T ) into a vector with asymptotic distribution N (0, T ′),
where T ′ is obtained by applying the transformation (5.7.24) to variables
with covariance matrix T . In the present case, for example,

τ ′
12 = τ12 − τ11 = λ1 (1 − λ2) − λ1 (1 − λ1) = λ1 (λ1 − λ2) = −p1p2

and

τ ′
23 = τ23 − τ22 − τ13 + τ12

= λ2 (1 − λ3) − λ2 (1 − λ2) − λ1 (1 − λ3) + λ1 (1 − λ2)
= λ2 (λ2 − λ3) − λ1 (λ2 − λ3) = −p2p3.

In the same way, it is easily checked (Problem 7.2) that quite generally

τ ′
ij = σij ,(5.7.25)

where σij is given by (5.4.15). This completes the proof of the theorem. �
An easy consequence is

Corollary 5.7.1 Under the assumptions of Theorem 5.7.1, the goodness-
of-fit measure Q′ defined by (5.7.8) has a limiting χ2-distribution with k
degrees of freedom.

Proof. Since Pi
P→ pi and since the variables

√
n
(mi

n
− Pi

)
are bounded

in probability, Q′ has the same limit distribution as

Q′′ = n
∑(

Pi −
mi

n

)2
/pi.
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Now Q′′ is the same quadratic form in the variables (5.7.13), as Q is in the
variables (5.7.12). It thus follows from Theorem 5.7.1 that Q′′, and hence
Q′, has the same limit distribution as Q, which is χ2 with k degrees of
freedom. �

The asymptotic equivalence of Q and Q′ generalizes to the case where
parameters have to be estimated and to other ways of determining the
random cell boundaries. Results of this kind are discussed for example by
Bofinger (1973) and by Moore and Spruill (1975).

The asymptotic theory for the χ2-test (5.5.32) based on a division of the
real axis into k + 1 intervals assumed k to be fixed as n → ∞. However,
the argument showing lack of consistency suggests that at least for some
purposes it might be better to let k increase indefinitely with n so that
the subdivision becomes finer as n increases. The hypothesis H : pi = p

(0)
i ,

i = 1, . . . , k+1, then tests a number of parameters that increases and tends
to infinity as n → ∞. The resulting limit process is quite different from
those considered so far in this book in which the number of parameters
being tested or estimated was considered fixed. If k = k(n) → ∞ as n →
∞, it can be shown that under appropriate conditions, the distribution of
Q in (5.5.32), suitably normalized, tends to a normal rather than a χ2-
distribution (see, for example, Morris (1975)). This is plausible but does

not follow from the fact that
√

k

(
χ2k
k

− 1
)

L→ N (0, 2) (Example 2.4.2 and

Problem 7.3).
The problem of the best number of class intervals in the χ2-test has

been extensively treated in the literature (for references, see Stuart and
Ord (1991, Chapter 30)), but unfortunately it is very complex and has no
simple answer. One complicating issue is the fact that as k changes, the
dividing points a1, . . . , ak also change so that the problem really is that of
determining the best choice of both k and the points a1, . . . , ak. To avoid
this difficulty, much of the literature has dealt with the case in which the
a’s are determined so that p

(0)
1 = · · · = p

(0)
k+1 = 1/ (k + 1), this despite

some evidence in favor of unequal p’s (for a discussion and references, see,
for example, Rayner and Best (1989, p. 25)). Even with this simplifying
assumption, the answer depends strongly on the type of alternatives against
which good power is desired.

An alternative test of H that has more satisfactory power properties but
which is less flexible is based on a comparison of the hypothetical cdf F0
with the empirical (or sample) cdf defined by

F̂n(x) =
Number of Xi ≤ x

n
.(5.7.26)

The resulting Kolmogorov test rejects H : F = F0 when

Dn = sup
x

∣∣∣F̂n(x) − F0(x)
∣∣∣ > Cn.(5.7.27)
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An important property of Dn which we shall not prove is given in the
following lemma. (For a proof, see, for example, Lehmann (1998).)

Lemma 5.7.1 The null distribution of the Kolmogorov statistic Dn, i.e.,
the distribution of Dn when the X’s are i.i.d. according to F0, is the same
for all continuous distributions F0.

The null distribution of Dn therefore depends only on n. A table for
n ≤ 100 is provided, for example, by Owen (1962). A limit distribution for
large n requires magnification of Dn by a factor

√
n, and it is not normal

but given by (Kolmogorov, 1933)

P
(√

nDn ≤ z
)
→ L(z) = 1 − 2

∞∑
j=1

(−1)j−1 e−2j
2z2 .(5.7.28)

Formulas for the density and moments of the distribution can be found
in Johnson and Kotz, Vol. 2 (1970). Convergence to the limit distribu-

tion is slow. For n = 64, for example, P

(√
nDn ≤ 1

2

)
= .0495, but

from a table of the limit distribution (5.7.28) in Owen (1962), one ob-

tains limP

(√
nDn ≤ 1

2

)
= .036. The limit result (5.7.28) can be used to

establish the following two properties of the sample cdf F̂n as an estimator
of a continuous distribution F .

1. Since
√

nDn has a limit distribution, it follows from Theorem 2.3.4
that Dn

P→ 0. This shows that the sample cdf is a consistent estimator
of the true continuous cdf in the sense that the maximum difference
between the two curves tends to zero in probability.

2. Let c = L−1(γ) be the value for which L(c) = γ. Then the probability
is approximately γ that

sup
x

∣∣∣F̂n(x) − F (x)
∣∣∣ < c√

n
,(5.7.29)

i.e., that

F̂n(x) − c√
n

< F (x) < F̂n(x) +
c√
n

for all x.(5.7.30)

The inequalities (5.7.29) thus provide approximate confidence bands
for the unknown continuous cdf F .

Theorem 5.7.2 For testing (5.7.1), the Kolmogorov test—unlike Pear-
son’s χ2-test—is consistent in the sense that its power against any fixed
alternative F1 �= F0 tends to 1 as n → ∞.
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Proof. If α is the level of the test (5.7.27),
√

nCn → L−1 (1 − α) .(5.7.31)

Let a be any value for which F1(a) �= F0(a). Since
∣∣∣F0(a) − F̂n(a)

∣∣∣ ≤ Dn,
it follows that the power βn (F1) against F1 satisfies

βn (F1) = PF1 (Dn > Cn) ≥ P
[√

n
∣∣∣F̂n(a) − F0(a)

∣∣∣ ≥ √
nCn

]
.(5.7.32)

Now nF̂n(a) has the binomial distribution b(p, n) with p = F1(a), and hence
√

n
[
F̂n(a) − F1(a)

]
→ N (0, pq). Therefore

√
n
[
F̂n(a) − F0(a)

]
=

√
n
[
F̂n − F1(a)

]
+

√
n [F1(a) − F0(a)]

tends in probability to +∞ or −∞, as F1(a) > F0(a) or F1(a) < F0(a). In
either case,

√
n
∣∣∣F̂n(a) − F0(a)

∣∣∣ tends to ∞ in probability, and the result
follows from (5.7.31) and (5.7.32). �

The Kolmogorov test of H : F = F0 is one of a large class of tests that are
based on some measure of distance of the sample cdf from the hypothetical
F0. Two other examples are the Cramér-von Mises test which rejects when

Wn = n

∫ [
F̂n(x) − F0(x)

]2
f0(x)dx ≥ Cn,(5.7.33)

where f0 is the density of F0, and the Anderson-Darling test with rejection
region

An = n

∫ [F̂n(x) − F0(x)
]2

F0(x) [1 − F0(x)]
f0(x)dx ≥ Cn.(5.7.34)

These tests share the property of the Kolmogorov test stated in Lemma
5.7.1 that their null distribution is independent of F0. Both tend to be
more powerful than the Kolmogorov test. The An-test, in particular, is
more sensitive to departures from F0 in the tails of the distribution than
either Dn or Wn since the factor 1/F0(x) [1 − F0(x)] → ∞ as x → ±∞.

Tests based on statistics measuring the discrepancy between the empir-
ical and the hypothesized distribution functions (the so-called EDF (em-
pirical distribution function) statistics) such as the Kolmogorov, Cramér-
von Mises, and Anderson-Darling statistics tend to be more powerful than
Pearson’s χ2-test; in turn, An and Wn tend to perform better than the Kol-
mogorov statistic Dn. The statistics An and Wn are examples of V -statistics
which will be defined in Example 6.4.5 of Chapter 6. Their asymptotic dis-
tribution is normal under alternatives to H while degeneracy occurs under
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the hypothesis and the resulting asymptotic null distribution is then a mix-
ture of χ2-distributions. (See, for example, Durbin (1973), Hajek and Sidak
(1967), or Serfling (1980, Section 5.5.2).)

Complications arise when the hypothesis does not completely specify
the distribution F0 but instead only a parametric family F θ

0 . Then not
only the exact distribution of the EDF statistics but also their asymptotic
distribution depend on the shape of F0. A general discussion of the effect
of estimating parameters on the asymptotic distribution of a statistic is
given by De Wet and Randles (1987), who also provide references to the
literature on this problem.

To conclude this section, we shall briefly discuss some tests of the hy-
pothesis that F0 is a member of the family of normal distributions. Let
X1, . . . , Xn be i.i.d. according to a distribution F and consider the hy-
pothesis

H : F is a member of the family of normal distributions{
N
(
ξ, σ2

)
, −∞ < ξ < ∞, 0 < σ

}
.

(5.7.35)

We shall discuss only some of the many tests that have been proposed
for this problem. For a fuller treatment of the literature, see, for example,
D’Agostino (1982, 1986) and Shapiro (1990).

(i) Moment tests.

The first tests of normality go back to Karl Pearson and are based on
the third and fourth sample moments. Since the normal distribution
is symmetric about its mean, its third central moment is zero. The
third standardized moment

√
β1 =

E (Xi − ξ)3

σ3/2
(5.7.36)

is a measure of the skewness of the distribution F . It is therefore
natural to reject the hypothesis of normality if the standardized third
sample moment

√
b1 = M3/M

3/2
2(5.7.37)

is too large in absolute value, where Mk is defined in (5.2.36).

The asymptotic distribution of
√

b1 can be obtained by the method
used in Example 5.2.8 and is given by (Problem 7.4)

√
n
(√

b1 −
√

β1

)
L→ N

(
0, τ2

)
,(5.7.38)
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provided F has finite moments up to sixth order. Here

τ2 = Var (M3)
(

∂
√

b1
∂M3

)2
+ 2Cov (M2,M3)

∂
√

b1
∂M2

∂
√

b1
∂M3

+Var (M2)
(

∂
√

b1
∂M2

)2
,

(5.7.39)

where the derivatives are evaluated at the population moments.

In the normal case, the central moments

µk = E (Xi − ξ)k(5.7.40)

are equal to

µ1 = µ3 = · · · = 0 and µ2k = 1 · 3 · 5 · · · (2k − 1)µk2(5.7.41)

and it can be seen that τ2 = 6. D’Agostino (1986) suggests that the
normal approximation can be used when n ≥ 150 and provides tables
for smaller sizes. For further work, see Ramsey and Ramsey (1990).

A completely analogous development is possible for testing normality
against departures of tailheaviness, based on the standardized fourth
moment

b2 = M4/M
2
2 ,(5.7.42)

and shows that under the hypothesis of normality (Problem 7.5(ii)),
√

n (b2 − 3) /
√

24(5.7.43)

is asymptotically distributed as N (0, 1). Unfortunately, the conver-
gence to normality is very slow. For small and moderate n, the dis-
tribution of (5.7.43) is highly skewed and the normal approximation
is not recommended for n < 1000. To obtain faster convergence,
Anscombe and Glynn (1983) propose a function

Ψ
(

b2 − 3√
24

)
,(5.7.44)

which is adequate for n ≥ 20 (D’Agostino (1986, p. 390); see also
Ramsey and Ramsey (1993)).

It can also be shown that jointly
(√

n
(√

b1 −
√

β1
)
,
√

n (b2 − E (b2))
)

have a bivariate normal limit distribution (Problem 7.6). If the dis-
tribution of the X’s is symmetric, and hence in particular under the
hypothesis of normality,

√
b1 and b2 are uncorrelated and asymptoti-

cally independent. This fact can be used to obtain tests of normality
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that are effective against both asymmetry and non-normal tail be-
havior. In particular, under the assumption of normality,

n

(
b1
6

+
(b2 − 3)2

24

)
(5.7.45)

has a limiting χ2-distribution with 2 degrees of freedom. The same is
true of

n

[
b1
6

+ Ψ2
(

b2 − 3√
24

)]
,(5.7.46)

which converges to its χ2 limit much faster.

The tests of normality based on (5.7.45) or (5.7.46) are not consis-
tent against all alternatives but will give good power against the
alternatives that are often of greatest interest in which the alterna-
tive exhibits skewness and/or non-normal tail behavior. For a further
discussion of this and related tests with references to the literature,
see Bowman and Shenton (1986) and D’Agostino (1986).

(ii) χ2-Test.

As a second possibility, consider the classical χ2-approach with a fixed
number k + 1 of cells defined by k fixed division points a1, . . . , ak.
If the two nuisance parameters ξ and σ2 are estimated so as to min-
imize (5.7.5), the resulting X̂2 given by (5.7.6) has a limiting χ2k−2
distribution. In the present context, it seems more natural to use the
standard estimator

ξ̂ = X̄ and σ̂2 =
∑(

Xi = X̄
)2

/n(5.7.47)

which are known to be asymptotically efficient (see Chapter 7, Sec-
tion 4) rather than the minimum χ2-estimators. However, the limit
distribution of the resulting statistic is then no longer χ2. For a dis-
cussion of this difficulty, see, for example, Stuart and Ord (1991, 5th
Ed., Sections 30.17–30.19). We shall not consider χ2-type tests any
further here since better tests are available for testing normality.

(iii) Tests based on EDF statistics.

The Kolmogorov, Cramér-von Mises, and Anderson-Darling statistics
defined by (5.7.27), (5.7.33), and (5.7.34), respectively, can be used
for testing normality by applying them to the variables

(
Xi − X̄

)
/S.

The asymptotic theory of the resulting tests is beyond the scope of
this book; references to the literature can be found in Stephens (1986),
which also provides rules and tables for calculating critical values.
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(iv) Shapiro-Wilk-type tests.

This last class which provides powerful tests of normality against
omnibus alternatives is based on expected normal order statistics.
We begin by stating a few properties of expected order statistics.

Let X1, . . . , Xn be a sample from a distribution F0 and let X(1) ≤ · · · ≤
X(n) denote the ordered sample. Then the expected order statistics

ain = E
[
X(i)

]
, i = 1, . . . , n,(5.7.48)

depend on both i and n. However, for the sake of simplicity we shall some-
times suppress the second subscript.

(a) If E |X1| < ∞, then the expectations (5.7.48) exist for all i = 1, . . . , n.
(For a proof see David (1981).)

(b)
n∑
i=1

ain = nE (Xi).

This is immediate from the fact that
∑

X(i) =
∑

Xi.

(c) Hoeffding’s theorem (Hoeffding (1953)) Let Gn(x) denote the cdf of
the n constants a1n, . . . , ann, i.e.,

Gn(x) = (Number of a′s ≤ x) /n.(5.7.49)

Then

Gn(x) → F0(x) at all continuity points of F0.(5.7.50)

Let us now return to the case that X1, . . . , Xn are i.i.d. and that we wish
to test the hypothesis of normality given by (5.7.35). The expected order
statistics bin from N

(
ξ, σ2

)
satisfy

bin = E
[
X(i)

]
= ξ + σain,(5.7.51)

where the a’s are the expected order statistics from N(0, 1). [The inad-
equacy of our notation is seen from the fact that the sample size n oc-
curs on the left and right side of (5.7.51) but not the middle term. The
sample should be denoted by X

(n)
1 , . . . , X

(n)
n and the order statistics by

X
(n)
(1) , . . . , X

(n)
(n) ]. The a’s have been extensively tabled (for example, in Har-

ter (1961).
It is intuitively plausible that under the hypothesis, the X(i)’s should be

close to the bin’s and this idea receives support from Hoeffding’s theorem.
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This suggests testing H by means of the correlation coefficient of the bin’s
and the X(i)’s

W ′ =

∑(
bin − b̄n

) (
X(i) − X̄

)
√∑(

bin − b̄n
)2√∑(

X(i) − X̄
)2 .(5.7.52)

Since a correlation coefficient is unchanged under linear transformations of
the variables, we can in (5.7.52) replace the b’s by the a’s in which case by
(i) we have ān = 0. Note also that

∑(
X(i) − X̄

)2 =
∑(

Xi − X̄
)2 and

that
∑

ainX̄ = 0, so that W ′ can be written as

W ′ =

∑
ainX(i)√

a2in

√∑(
Xi − X̄

)2 .(5.7.53)

Since |W ′| ≤ 1 and under the hypothesis we would expect W ′ to be close
to 1, H is rejected for small values of W ′. This is the Shapiro-Francia test.

A natural alternative to W ′ proposed by De Wet and Venter (1972)
replaces the expected order statistics by

a′
in = Φ−1

(
i

n + 1

)
.(5.7.54)

(It is easy to see that the a′
in’s satisfy (5.7.50); Problem 7.7.)

Still another alternative for the constants ain is


a′′
1n
...

a′′
1n


 =




a1n
...

a1n


V −1,(5.7.55)

where V is the matrix of covariances of the X(i) given by

vij = E
(
X(i) − ain

) (
X(j) − ajn

)
.(5.7.56)

The resulting test is the Shapiro-Wilk (1965) test, the first and still one of
the most widely used of these correlation tests. For tables of critical values
for these tests, see Stephens (1986) and D’Agostino (1986). The asymptotic
theory of the test statistics was obtained for W in Leslie, Stephens, and
Fotopoulos (1986) and for W ′ in Verrill and Johnson (1987). The limit
distributions of n (W − E (W )) and n (1 − W ′) belong to the family of
distributions of the variables

∞∑
i=1

γi
(
Y 2i − 1

)
,(5.7.57)
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where the γ’s are real numbers and the Y ’s are independent N(0, 1). For
general discussions of distributions of this kind, see, for example, DeWet
and Ventner (1973) and Gregory (1977). Under a fixed alternative to H, the
appropriate normalizing factor is not n but

√
n and the limit distribution

is normal (Sarkadi (1985)). As a result, one would expect the tests to
be consistent against general fixed alternatives. Consistency was proved
against all non-normal alternatives with finite variance for W ′ by Sarkadi
(1975) and for W by Leslie, Stephens, and Fotopoulos.

Power comparisons of many of the tests considered in this section have
been made in a number of studies, among them Shapiro, Wilk, and Chen
(1968) and Pearson, D’Agostino, and Bowman (1977). A summary of re-
sults is provided by D’Agostino (1986), who dismisses χ2-tests and the
Kolmogorov test as not sufficiently powerful and recommends a moment
test based on the statistics b1 and b2, the Anderson-Darling test, and the
Shapiro-Wilk test, with the choice among them depending on the specific
alternatives against which power is sought.

Summary

1. Pearson’s χ2-test of goodness of fit is modified to deal with the situa-
tion in which fixed intervals containing random numbers of observa-
tions are replaced by random intervals determined so that the number
of observations in each has a predetermined fixed value. It is shown
that the test statistic has the same limiting χ2 distribution in both
cases.

2. As alternatives to Pearson’s χ2-test, several goodness-of-fit tests are
proposed which are based on a comparison of the empirical distribu-
tion function (EDF) with the hypothetical cdf. One such test, due to
Kolmogorov, is shown to be consistent against all alternatives and is
used as a basis for confidence bounds for an unknown continuous cdf.

3. Four classes of tests of normality are briefly discussed. They are based
respectively on (i) third and fourth sample moments, (ii) Pearson’s
χ2, (iii) EDF statistics, and (iv) correlation coefficients between the
n order statistics and n constants which correspond to the positions
at which one might expect the order statistics if the hypothesis were
true.

5.8 Problems

Section 1

1.1 (i) A sequence of vectors x(n) =
(
x
(n)
1 , . . . , x

(n)
k

)
tends to x(0) =(

x
(0)
1 , . . . , x

(0)
k

)
if and only if x

(n)
i → x

(0)
i for each i = 1, . . . , k.
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(ii) A sequence of random vectors X(n) converges in probability to a
constant vector c if and only if X

(n)
i → ci for each i.

1.2 (i) If a real-valued function f of x is continuous at a, then f(a1, . . . ,
ai−1, xi, ai+1, . . . , ak) is a continuous function of the variable xi at ai
for each i = 1, . . . , k.

(ii) That the converse of part (i) is not true can be seen by considering
the behavior of the function

f (x1, . . . , xk) =
x1 + · · · + xk
x21 + · · · + x2k

when (x1, . . . , xk) �= (0, 0, . . . , 0)

= 0 when (x1, . . . , xk) = (0, . . . , 0)

at the point a = (0, . . . , 0).

1.3 Prove Theorem 5.1.3.

1.4 Prove the following generalization of Theorem 5.1.3

Theorem. Let X(n) = (X(n)1 , . . . , X
(n)
r ) L→ X and Y (n) = (Y (n)1 , . . . ,

Y
(n)
s ) P→ c, then (X(n), Y (n)) L→ (X,Y ) where Y is equal to c with

probability 1.

1.5 (i) If P (X1 = −1, X2 = 0) = P (X1 = 0, X2 = −1) = 1/2, show that
(0, 0) is not a continuity point of the distribution H of (X1, X2).

(ii) Construct a bivariate distribution H of (X1, X2) such that

(a) X1 and X2 are independent,

(b) P (X1 = X2 = 0) = 0,

(c) the point (0, 0) is not a continuity point of H.

1.6 Let X be N(0, 1), let H be the bivariate distribution of (X,X), and
let S = {(x, y) : y = x}. Then

(i) ∂S = S and every point of ∂S is a continuity point of H,

(ii) PH [(X,X) ∈ ∂S] = 1.

[Hint for (ii): For any point (a, a) in ∂S, evaluate P (X ≤ a − ε,
X ≤ a − ε) and P (X ≤ a,X ≤ a).]

1.7 Let Xn = U + Vn, Yn = U − Vn, where U and Vn are independent

normal with means 0 and variances Var(U) = 1, Var (Vn) =
1
n

, re-
spectively.

(i) Show that (Xn, Yn) converges in law to a distribution H; determine
H and find its points of continuity and discontinuity.
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(ii) Find sets S and S′ such that the probabilities P [(Xn, Yn) ∈ S]
and P [(Xn, Yn) ∈ S′], respectively, do and do not converge to the
corresponding probabilities under the limit distribution.

1.8 (i) Generalize the definition of “bounded in probability” (Definition
2.3.1) to the bivariate case.

(ii) Prove the analog of Theorem 2.3.2 for the bivariate case.

1.9 Prove Corollary 5.1.1

[Hint: Let a be a continuity point of the distribution of Xi, and apply
Theorem 5.1.4 to the set S = {x : xi ≤ a}.]

1.10 Under the assumptions of Corollary 5.1.1, show that(
X
(n)
i , X

(n)
j

)
L→ (Xi, Xj) for all i, j.

1.11 (i) Under the assumptions of Example 5.1.1, consider the rejection
region

m
(
X̄ − ξ0

)2
σ2

+
n
(
Ȳ − η0

)2
τ2

≥ Cm,n

for testing H : ξ = ξ0, η = η0 at asymptotic level α. Use Theorem
5.1.5 to show that Cm,n → vα, where vα is determined by

P
(
χ22 ≥ vα

)
= α.

(ii) For testing the hypothesis H of part (i) at asymptotic level α,
consider the alternative test which accepts H when

max

{√
m
∣∣X̄ − ξ0

∣∣
σ

,

√
n
∣∣Ȳ − η0

∣∣
τ

}
≤ C ′

m,n.

Determine the limit of C ′
m,n as m,n → ∞.

1.12 Under the assumptions of Example 5.1.2, show that

(i) the marginal distributions of n
[
η − X(n)

]
and n

[
X(1) − ξ

]
both

tend to the exponential distribution E (0, η − ξ),

(ii) if η − ξ = 1 and R = X(n) − X(1), the limiting distribution of
n (1 − R) has probability density xe−x, x > 0.

1.13 Under the assumptions of Example 5.1.2, determine the joint limit
distribution of

(
n
[
X(2) − ξ

]
, n
[
η − X(n−1

])
.
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1.14 Prove Theorem 5.1.6.

[Hint: In the theorem of Problem 5.1.4, let

Y
(n)
i =

{
A
(n)
i for i = 1, . . . , k

B
(n)
i for i = k + 1, . . . , 2k

and f
(
x, y
)

= (y1 + x1yk+1, . . . , yk + xky2k). ]

1.15 Consider the variables X
(n)
1 and X

(n)
2 of Example 5.1.3 but without

assuming (5.1.23). There exist constants an, βn, and γn such that
a′
nj = αnanj and b′nj = βnanj + γnbnj satisfy (5.1.23), provided at

least one of the a’s and at least one of the b’s is �= 0, and the vectors
(an1, . . . , ank), (bn1, . . . , bnk) are not proportional. The conclusion of
Example 5.1.3 then holds for the variables

(∑
a′
njXj ,

∑
b′njXj

)
provided (5.1.28) holds with anj and bnj replaced by a′

nj and b′nj ,
respectively.

1.16 (i) Extend the result of Example 5.1.3 to three variables

X
(n)
1 =

∑
anjYj , X

(n)
2 =

∑
bnjYj , X

(n)
3 =

∑
cnjYj .

(ii) Extend the result of Problem 1.15 to the situation of part (i)
under the assumption that the a’s, b’s, and c’s satisfy no relation of
the form

k1n
∑

anj + k2n
∑

bnj + k3n
∑

cnj = 0.

1.17 Verify equation (5.1.32).

1.18 (i) For each n, let U
(n)
i , i = 1, . . . , s, be s independent random vari-

ables converging in law to Ui as n → ∞, and let w
(n)
i be constants

converging to wi. Then

s∑
i=1

w
(n)
i U

(n)
i

L→
s∑
i=1

wiUi.

(ii) If, in (i), the Ui are normal N(0, 1) and if

s∑
i=1

[w(n)i ]2 = 1 for all n,

then
∑

w
(n)
i U

(n)
i

L→ N(0, 1).
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[Hint for (i): Write w
(n)
i Ui as wiV

(n)
i with V

(n)
i =

w
(n)
i

wi
U
(n)
1 and

apply Theorem 5.1.6.]

Note: The conclusion (ii) remains valid without the assumption w
(n)
i

→ wi. This fact, which we shall not prove here, provides a proof of
Lemma 4.4.1.

1.19 Construct a counterexample to Theorem 5.1.7 if the variables X
(n)
i

are not required to be bounded in probability.

[Hint: Let k = 2, X(n)1 = Y1−kn, X2n = Y1+kn, and a1n = a2n = 1.]

Section 2

2.1 By completing the square in the expression

(y − η)2

τ2
− 2ρ

(x − ξ) (y − η)
στ

in the exponent of (5.2.1), show that

(i) the variables

Z =
Y − η

τ
− ρ

(X − ξ)
σ

and
X − ξ

σ

are independently normally distributed;

(ii) E (X − ξ) (Y − η) /στ = ρ ;

(iii) the quadratic form

1
1 − ρ2

[
(X − ξ)2

σ2
− 2ρ

(X − ξ) (Y − η)
στ

+
(Y − η)2

τ2

]

has a χ2-distribution with 2 degrees of freedom.

2.2 (i) If X and Y are independent with expectations ξ and η and vari-
ances σ2, τ2, then

ρ = E (X − ξ) (Y − η) /στ = 0.

(ii) Give an example in which ρ = 0 but X and Y are not independent.

[Hint for (ii): Let Y = g(X) for a suitable function g.]

2.3 In Example 5.2.1

(i) verify the correlation coefficient ρn;

(ii) show that Hn(x, y) → H(x, y) for all x, y.
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2.4 Determine the limiting probability of the simultaneous confidence
intervals (5.2.14).

2.5 In Example 5.2.5, determine joint asymptotic confidence sets for (ξ, η)
along the lines of Example 5.1.4.

[Hint: Assume first that σ, τ , and ρ are known and find a constant
c such that X̄ and Ȳ − cX̄ are uncorrelated.]

2.6 Show that
∑(

Xi − X̄
) (

Yi − Ȳ
)

=
∑

XiYi − nX̄Ȳ .

2.7 Determine a random variable X for which Var(X)Var(1/X) is arbi-
trarily large.

[Hint: Let X = ±ε with probability p/2 each and = ±1 with proba-
bility q/2 each.]

2.8 Let {(Xn, Yn) , n = 1, 2, . . . } be a sequence of pairs of random vari-
ables such that Yn > 0 and

√
n (Xn − ξ) ,

√
n (Yn − η)

tends in law to a bivariate normal distribution with zero means and
covariance structure (σ11, σ12, σ22). Obtain the limit distribution of
√

n

(
Xn

Yn
− ξ

η

)
.

2.9 (i) If (X1, Y1) , . . . , (Xn, Yn) is a sample from (5.2.1), determine the
joint limit distribution of

√
n
(
X̄ − ξ

)
and

√
n

[
1
n

∑
(Yi − η)2 − σ2

]
.

(ii) Suppose that the joint density of X and Y is p(x, y) instead of
being given by (5.2.1). Find symmetry conditions on p(x, y) under
which the limit distribution of (i) continues to hold.

[Hint for (i): Show that X̄ and
∑

(Yi − η)2 are uncorrelated.]

2.10 Bivariate exponential distribution.

The following distribution due to Marshall and Olkin (1967) arises
when two components of a system are subject to certain independent
events A, B, and C that terminate the life of the first component,
the second component, and both components, respectively. The joint
distribution of the lifetimes of the two components is given by

F̄ (x, y) = P (X > x, Y > y) = e−λx−µy−νmax(x,y), x, y > 0,
(5.8.1)
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where λ, µ, ν ≥ 0 and λ + ν, µ + ν > 0.

(i) Show that at all points x �= y, the distribution has a density

−∂2F̄ (x, y)
∂x, ∂y

=
{

λ(µ + ν)e−λx−(µ+ν)y if x < y
(λ + ν)µe−(λ+ν)x−µy if x > y.

(5.8.2)

(ii) P (X < Y ) =
λ

λ + µ + ν
, P (Y < X) =

µ

λ + µ + ν
, and hence

P (X = Y ) =
ν

λ + µ + ν
> 0 if ν > 0, so that the distribution has a

singular component.

2.11 For a sample X1, . . . , Xn of i.i.d. variables distributed as U(0, θ),
the limit distribution of Un = n

(
θ − X(n)

)
and Vn = n

(
θ − X(n−1)

)
were considered in Example 2.3.7 and in Problem 3.12 of Chapter 2,
respectively.

(i) Show that (Un, Vn) has a joint limit distribution given by

F̄ (a, b) = P [U ≥ a, V ≥ b]

=


 e−b/θ

[
1 +

b − a

θ

]
when a < b

e−a/θ when b < a.

(5.8.3)

(ii) The probability density of variables (U, V ) with distribution given
by (5.8.3) is

p(u, v) =




1
θ2

e−v/θ if u < v

0 otherwise.
(5.8.4)

(iii) The joint limit distribution of Yn = n (θ − Xn) and Zn = n[X(n)
−X(n−1)] has the density

PY,Z(y, z) =
1
θ2

e−(y+z)/θ,

so that in the limits Yn and Zn are independent.

Section 3

3.1 (i) Prove (5.3.9) and (5.3.10).

(ii) If A is symmetric, then so is A−1.

3.2 If A is symmetric and positive definite, then so is A−1.

[Hint: If the diagonal elements of (5.3.27) are λ1, . . . , λk, then those
of A−1 are 1/λ1, . . . , 1/λk. Taking the inverse of QAQ−1 = Λ shows
that QA−1Q−1 = Λ−1. ]
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3.3 If A is positive definite, so is BAB′ for any non-singular B.

[Hint: Use (5.3.14)–(5.3.16).]

3.4 (i) Show that the matrix
(

2 1
1 2

)
is positive definite;

(ii) Let A = (aij) be positive semidefinite and let B = (bij) be such
that bij = aij when i �= j and bii > aii for all i. Then B is positive
definite.

3.5 Verify (5.3.23).

3.6 (i) Show that the matrix
(

1/
√

2 1/
√

2
1/

√
2 −1/

√
2

)
is orthogonal.

(ii) Use the scheme




+ + + +
+ + − −
+ − + −
+ − − +


 to construct a 4×4 orthogonal

matrix.

3.7 Find a, b, c, and d so that the matrix


a a a

a a b
a c d


 is orthogonal.

3.8 Let

yj = xij (j = 1, . . . , n) ,(5.8.5)

where (i1, . . . , in) is a permutation of (1, . . . , n). Show that (5.8.5) is
an orthogonal transformation.

[Hint: Determine the matrix A if (5.8.5) is written as y = Ax.]

3.9 (i) A diagonal matrix is orthogonal if and only if all the diagonal
elements are ±1.

(ii) If A is positive definite, symmetric, and orthogonal, then it is the
identity matrix.

[Hint: (ii) Use Theorem 5.3.3 and part (i).]

3.10 If Q1 and Q2 are orthogonal, so is Q1Q2.

3.11 (i) Use Theorem 5.3.3 to prove the following generalization of The-
orem 5.3.1. For any symmetric matrix A (not necessarily positive
definite or even non-singular), there exists a non-singular matrix B
such that y = Bx implies∑∑

aijyiyi ≡ x21 + · · · + x2p − x2p+1 − · · · − x2p+q,(5.8.6)
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where p, q, and r = k − p − q are respectively the number of λ’s in
(5.3.28) that are positive, negative, and zero.

(ii) The matrix A of part (i) is positive semi-definite if and only if
q = 0, and non-singular if and only if r = 0.

3.12 Prove the following converse of the result of Example 5.3.3. Given
any symmetric, positive definite k × k matrix A, there exist random
variables Y1, . . . , Yk which have A as their covariance matrix.

3.13 If A is symmetric and positive definite, then so is A−1 by Problem
3.2. Show that

(
A−1)1/2 =

(
A1/2

)−1
.(5.8.7)

3.14 (i) If A =

k m(
A11 0
0 A22

)
k
m

is a non-singular (k + m) × (k + m)

matrix, then A11 and A22 are non-singular and A−1 =
(

A−1
11 0
0 A−1

22

)
.

(ii) If A is a non-singular (m + k) × (m + k) matrix of the form

A =
(

A11 A12
0 A22

)
, then A−1 is of the same form.

3.15 (i) Condition (5.3.26) is not sufficient for A to be orthogonal.

(ii) The two properties of Q asserted in Lemma 5.3.4 are not only
necessary but also sufficient for Q to be orthogonal.

[Hint for (ii): Evaluate QQ′.]

3.16 (i) Let X and Y be independent N (0, 1) and let

X = r cos θ, Y = r sin θ (0 < r, 0 < θ < 2π)

be (X,Y ) expressed in polar coordinates. Use (5.3.37) to find the
joint distribution of r and θ, and hence show that r2 = X2 + Y 2 is
distributed as χ2 with 2 degrees of freedom.

(ii) Let X, Y , and Z be independent N (0, 1) and let

X = r cos θ, Y = r cosφ sin θ, Z = r sinφ sin θ
(0 < r, −π/2 < θ < π/2, 0 < φ < 2π)

be (X,Y, Z) expressed in polar coordinates. Use the method of (i) to
show that r2 = X2 + Y 2 + Z2 is distributed as χ2 with 3 degrees of
freedom.
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Section 4

4.1 If X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) are two independent
k-vectors with covariance matrices Σ and T , respectively, then the
covariance matrix of X + Y is Σ + T .

4.2 (i) Prove Theorem 5.4.2(ii) directly without reference to (i) by mak-
ing an orthogonal transformation Y = QX which reduces (5.4.9) to∑

λi (Yi − ηi)
2.

(ii) Prove Theorem 5.4.1 for 1 < r < k.

[Hint for (ii): The case r = 2 asserts a joint normal distribution for
Y1 =

∑
ciXi and Y2 =

∑
diXi. To prove this, choose the transfor-

mation QB of the case r = 1 in such a way that the plane spanned by
the first two row vectors of B coincide with the plane spanned by the
vectors (c1, . . . , ck) and (d1, . . . , dk) and apply part (i) of Theorem
5.4.1 with k = 2.]

4.3 Prove Theorem 5.4.3.

4.4 In a sample from a bivariate distribution with finite second moments,
the sample covariance and sample correlation coefficient are consis-
tent estimators of their population analogs.

4.5 (i) In a sample from a bivariate distribution with non-singular co-
variance matrix, the probability that the sample covariance is non-
singular tends to 1 as the sample size tends to infinity.

(ii) The result of (i) remains true if bivariate is replaced by k-variate
for any k ≥ 2.

[Hint: (i) By Lemma 5.3.1 and (5.2.8), the population covariance
matrix is non-singular if and only if σ > 0, τ > 0, and −1 < ρ < 1.
The result now follows from the preceding problem.

(ii) The covariance matrix Σ is non-singular if and only if its de-
terminant is �= 0 and hence > 0. The result now follows from the
fact that this determinant is a continuous function of the covariances
(σ11, σ12, . . . , σk−1k, σkk).]

Note: If the underlying bivariate or k-variate distribution has a con-
tinuous density, it can be shown that the sample covariance matrix
is non-singular with probability 1 for every finite sample size n.

4.6 (i) Verify (5.4.14);

(ii) Verify (5.4.15).

4.7 Let (X1, Y1) , . . . , (Xn, Yn) be a sample from the bivariate normal
distribution (5.2.1). Use (5.4.34) and (5.4.40) to obtain approximate
confidence intervals for ρ.
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4.8 Let (X1, Y1) , . . . , (Xn, Yn) be a sample from the normal distribution
(5.2.1).

(i) Obtain the joint limit distribution of

√
n

(
X̄

SX
− ξ

σ

)
,
√

n

(
Ȳ

SY
− η

τ

)
,

where S2X and S2Y are given by (5.4.23).

(ii) Use the result of (i) to obtain joint and simultaneous confidence
sets for the effect sizes ξ/σ and η/τ .

[Hint: For (i), see Problem 2.8.]

4.9 (i) If (X,Y ) are bivariate normal with ξ = η = 0 and σ = τ = 1, then
U = Y − X and V = X + Y are independent normal N (0, 2(1 − ρ))
and N (0, 2(1 + ρ)), respectively.

(ii) Use (i) to prove (5.4.39).

4.10 Verify (5.4.40).

4.11 Consider samples (X1, Y1) , . . . , (Xm, Ym) and (X ′
1, Y

′
1) , . . . , (X ′

n, Y
′
n)

from two bivariate normal distributions with parameters (ξ, η, σ, τ, ρ)
and (ξ′, η′, σ′, τ ′, ρ′), respectively. Use (5.4.42) to obtain a test of the
hypothesis H : ρ = ρ′.

4.12 If in the k-variate normal density (5.4.1) all covariances σij with i ≤ r,
j > r (1 ≤ r < k) are zero, then (X1, . . . , Xr) and (Xr+1, . . . , Xn) are
independent.

[Hint: It follows from Problem 3.14(ii) that aij = 0 for all i ≤ r, j > r
and hence that the density (5.4.1) is the product of the densities of
(X1, . . . , Xr) and (Xr+1, . . . , Xk).

Section 5

5.1 For the case k = 2, write out the matrices

(i)
1
m

Σ̂ +
1
n
T̂ in (5.5.16);

(ii) S−1 in (5.5.19).

5.2 Show that the level of the test based on (5.5.19) is asymptotically
robust against inequality of the covariance matrices Σ and T if and
only if m/n → 1.

5.3 (i) Use the confidence sets (5.5.16) to obtain a test of H : η = ξ.

(ii) Determine the asymptotic power of the test of part (i) by proving
a result analogous to (5.5.12).
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5.4 Verify (5.5.28).

5.5 (i) Determine the covariance matrix of the variables (5.5.49).

(ii) Verify (5.5.50) and (5.5.51).

5.6 With the assumptions and notation of Example 5.2.7, determine the
limit of the joint distribution of

√
n (Mk − µk) and

√
n (Ml − µl) , k �= l, k, l ≥ 2.

5.7 Let (X1, Y1) , . . . , (Xn, Yn) be i.i.d. with covariance structure (σ11, σ22,
σ12). Determine the limit distribution of

√
n

[
1
n

∑(
Xi − X̄

) (
Yi − Ȳ

)
− σ12

]
.

5.8 Extend Example 5.2.5 and Problem 2.5 to samples (Xi, Yi, Zi) from
a trivariate distribution and to the problem of estimating the mean
vector (ξ, η, ζ).

5.9 In the notation of Example 5.2.5, show that the vector of sample
means

(
X̄, Ȳ

)
is asymptotically independent of the sample variances

σ̂2 and τ̂2 and the sample covariance
∑(

Xi − X̄
) (

Yi − Ȳ
)
/n, pro-

vided (Xi − ξ, Yi − η) has the same distribution as (ξ − Xi, η − Yi).

5.10 Let
(
X
(ν)
1 , . . . , X

(ν)
p

)
, ν = 1, . . . , n, be a sample from a p-variate

distribution with mean (ξ1, . . . , ξp), covariance matrix Σ = (σij),
and finite fourth moments

τijkl = E (Xi − ξi) (Xj − ξj) (Xk − ξk) (Xl − ξl) , i ≤ j ≤ k ≤ l.

If Sij =
n∑
ν=1

(
X
(ν)
i − X̄i

)(
X
(ν)
j − X̄j

)
/n denotes the (i, j)-th sample

covariance, show that the set of variables
√

n (Sij − σij) , i ≤ j,

has a normal limit distribution with 0 mean and express the covari-
ance matrix of the limit distribution in terms of the τijkl. (For asymp-
totic inferences concerning Σ, see, for example, Seber (1984, Section
3.5.8)).

Note: When the distribution of the
(
X
(ν)
1 , . . . , X

(ν)
p

)
is normal, the

τ ’s are determined by the σ’s and are given by

τijkl = σikσjl + σilσjk.

For a proof, see, for example, Anderson (1984, pp. 81–82).
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5.11 Determine the asymptotic power of the test (5.5.52) by obtaining a
result analogous to Theorem 5.5.3.

Section 6

6.1 Show that (5.6.4) implies (5.6.3).

[Hint: Use the fact that PB̄|A = 1 − PB|A and PB̄|Ā = 1 − PB|Ā.]

6.2 Verify (5.6.15).

6.3 Verify (i) (5.6.21); (ii) (5.6.23).

6.4 If ρ is defined by (5.6.1), show that ρ = 1 implies

PAB = PAPB , PAB̄ = PAPB̄ , etc.(5.8.8)

[Hint: Write PB = PAPB|A+PĀPB|Ā and use the fact that by Prob-
lem 6.1, ρ = 1 implies PB|Ā = PB|A.]

6.5 Prove (5.6.27).

[Hint: Use the result of the preceding problem.]

6.6 Find asymptotic confidence intervals for PB|Ā − PB|A

(i) in the 2-binomial model

(ii) in the multinomial model assumed in Table 5.6.1.

6.7 Under the hypothesis (5.6.24), show that Var
(

X

m
− Y

n

)
=

Npq

mn
,

which can be estimated by D2 = N
X + Y

mn

(
1 − X + Y

mn

)
. The test

obtained from (5.6.31) by replacing its denominator by D agrees with
the test (5.6.28).

Section 7

7.1 Let Yij , i = 1, . . . , r + 1, j = 1, . . . , s, have the multinomial dis-
tribution M (p11, . . . , pr+1,1; . . . ; p1s, . . . , pr+1,s;n) and consider the
hypothesis H that pij is independent of j for all i. Under H, the prob-
abilities pij = pi are then functions of the r + 1 unknown parameters
p1, . . . , pr+1. Determine the statistic (5.7.6).

7.2 Check equation (5.7.25).

7.3 (i) Explain why the fact that

√
k

[
χ2

k
− 1
]
L→ N(0, 2)
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does not prove that the distribution of the quadratic form Q defined
by (5.5.32), suitably normalized, tends to a normal distribution as
k → ∞.

(ii) Construct a specific counterexample to the incorrect assertion of
(i).

7.4 (i) Prove (5.7.38) with τ2 given by (5.7.39).

(ii) Check that in the normal case τ2 = 6.

7.5 (i) Obtain the limit distribution of
√

n (b2 − E(b2)) when X1, . . . , Xn

is a sample from a distribution possessing moments of sufficiently high
order.

(ii) Verify that (5.7.43) tends in law to N(0, 1) when F is normal.

7.6 (i) Show that
√

n
(√

b1 −
√

β1
)

and
√

n (b2 − E(b2)) have a joint limit
distribution that is bivariate normal.

(ii) If the distribution of the X’s is symmetric, show that the corre-
lation of the limit distribution of (i) is zero so that the two statistics
are asymptotically independent.

7.7 Show that the constants a′
in defined by (5.7.54) satisfy (5.7.50).

Bibliographic Notes

The history of the multivariate normal distribution, which goes back to
the work of Gauss and Laplace, is discussed in Stigler (1986) and Hald
(1998). Modern treatments of the distribution are given in books on multi-
variate analysis such as Anderson (1984) and in Tong (1990). Convergence
in probability and in law and the central limit in the multivariate case are
treated, for example, in Feller (Vol. 2) (1966), Billingsley (1986), and Fergu-
son (1996). The asymptotic theory of the multivariate one- and two-sample
problem and of regression is treated in Arnold (1981).

Discussions of the asymptotics of 2×2 and more general contingency ta-
bles can be found in Agresti (1990) and in Bishop, Fienberg, and Holland
(1975). Chi-squared tests for goodness of fit and for testing independence
in contingency tables were intitiated by Karl Pearson (1900), who obtained
limiting χ2-distributions for his test statistic. His result was correct for the
case of a simple hypothesis but failed to allow for the decrease in degrees
of freedom required when parameters have to be estimated. The neces-
sary correction was provided by Fisher (1922b). EDF-based alternatives
to χ2 were introduced by Cramér (1928) and von Mises (1931), followed
by Kolmogorov’s test of 1933. A rigorous treatment of EDF theory is pro-
vided by Hajek and Sidak (1967). A survey of goodness-of-fit testing from
a methodological point of view can be found in D’Agostino and Stephens
(1986).



6
Nonparametric Estimation

Preview

Chapters 3–5 were concerned with asymptotic inference in parametric mod-
els, i.e., models characterized by a small number of parameters which it was
desired to estimate or test. The present chapter extends such inferences to
nonparametric families F over which the unknown distribution F is al-
lowed to roam freely subject only to mild restrictions such as smoothness
or existence of moments. The parameters to be estimated are functionals
h(F ), that is, real-valued functions h(F ) defined over F . The estimator of
h(F ) will often be the plug-in estimator h

(
F̂n

)
, the functional h evaluated

at the sample cdf.
Section 1 deals with the special case of functionals h(F ) = Eφ(X1, . . . ,

Xa) where the X’s are i.i.d. according to F , and with their unbiased estima-
tors U = U (X1, . . . , Xn) based on a sample of size n > a. These so-called
U -statistics differ slightly from the corresponding V = h

(
F̂n

)
, but this

difference becomes negligible as n → ∞.
The general theory of statistical functionals h

(
F̂n

)
is discussed in Sec-

tions 2 and 3. The principal tool is the extension of the delta method (Sec-
tions 2.5 and 5.4) to the distribution of h

(
F̂n

)
− h (F ). This is achieved

by means of a Taylor expansion of this difference, the first term of which
turns out to be a sum of i.i.d. random variables. If the remainder Rn sat-
isfies

√
nRn

P→ 0, it follows that
√

n
[
h
(
F̂n

)
− h (F )

]
is asymptotically
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normal. The asymptotic variance is found to be the integral of the square
of the influence function which plays a central role in robustness theory.

Section 4 deals with density estimation, i.e., with estimating the prob-
ability density h (F ) = F ′ = f . Since h

(
F̂n

)
is not defined in this case,

certain kernel estimators are proposed as approximations. Due to this addi-
tional approximation, the rate of convergence of these estimators to h (F )
is slower than the standard rate 1/

√
n.

When the functional to be estimated is a measure of the performance of
h
(
F̂n

)
such as its bias, variance, or cdf, it depends not only on F but also

on the sample size n. The estimators λn

(
F̂n

)
of such functionals λn(F )

are called bootstrap estimators and are treated in Section 5. Conditions are
given for consistency, and examples are provided in which the bootstrap
estimator is not consistent. The estimator λn

(
F̂n

)
is often hard to calcu-

late, but it can be approximated arbitrarily closely by drawing a sufficiently
large sample from the known distribution F̂n. The bootstrap is of wide ap-
plicability even to problems which are otherwise quite intractable. It has
the additional advantage that when λn(F ) tends to a limit λ that does not
depend on F , then λn

(
F̂n

)
typically provides a better approximation to

λn(F ) than does the limit λ.

6.1 U -Statistics

Suppose that X1, . . . , Xn are i.i.d. with cdf F . We shall assume that F ,
instead of being restricted to a parametric family, is completely unknown,
subject only to some very general conditions such as continuity or existence
of moments. The “parameter” θ = θ(F ) to be estimated is a real-valued
function defined over this nonparametric class F , for example, the expecta-
tion, variance, standard deviation or coefficient of variation, or the median,
the probability F (a) = P (X1 ≤ a), and so on. Other possibilities for θ may
require more than one X for their definition, for example E |X2 − X1|, the
probability p = P [(X1, X2) ∈ S] that the pair (X1, X2) falls into some
given set S, or some function of p such as p2,

√
p, or 1/p. A real-valued

function θ defined over a set of distributions is called a statistical functional.
In the present section, we shall restrict attention to a particularly sim-

ple class of such functionals or parameters θ. To define this class, note
that for several of the examples given in the preceding paragraph, θ(F )
can be written as an expectation. This is obviously the case for E (X1)
and E |X2 − X1|, but applies also to P (X1 ≤ a), which can be written as
Eφ (X1) where φ(x) is 1 when x ≤ a and is 0 otherwise, and analogously
for p = P [(X1, X2) ∈ S]. On the other hand, it can be shown that neither
the median nor the standard deviation or coefficient of variation has this
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property, and the same is true for any function of p that is not a polyno-
mial, for example, 1/p or

√
p. For proof and further discussion, see Bickel

and Lehmann (1969).
The θ’s to be considered in this section are those for which there exists

an integer a and a function φ of a arguments such that

θ = E [φ (X1, . . . , Xa)] .(6.1.1)

We shall call such θ’s expectation functionals. The case of general function-
als θ not restricted to this class will be taken up in the next section.

Before proceeding, let us note that without loss of generality we can as-
sume φ to be symmetric in its a arguments. For if it is not, φ (Xi1 , . . . , Xia)
also satisfies (6.1.1) for any permutation (i1, . . . , ia) of (1, . . . , a) and so
therefore does the symmetric function

φ∗ (X1, . . . , Xa) =
1
a!

∑
· · ·
∑

(i1,... ,ia)

φ (Xi1 , . . . , Xi1) ,

where the sum extends over all a! such permutations.
Let us now turn to the estimation of θ by means of n observations

X1, . . . , Xn from F , where we shall assume that a ≤ n. Clearly, φ(X1, . . . ,
Xa) is an unbiased estimator of θ and so is φ (Xi1 , . . . , Xia) for any a-tuple

1 ≤ i1 < · · · < ia ≤ n.(6.1.2)

This shows that also

U =
1(
n

a

)∑ · · ·
∑

(i1,... ,ia)

φ (Xi1 , . . . , Xia)(6.1.3)

is an unbiased estimator of θ, where this time the sum extends over all a-
tuples satisfying (6.1.2). The unbiased estimator (6.1.3) is characterized by
the fact that it is symmetric in the n variables (X1, . . . , Xn) (Problem 1.4).
It is the only symmetric estimator which is unbiased for all F for which
θ(F ) exists, and it can be shown to have smaller variance than any other
such unbiased estimator. We shall in the next section find that U is closely
related (and asymptotically equivalent) to the plug-in estimator θ

(
F̂n

)
.

Our main concern in this section is the asymptotic behavior of U , but
let us first consider some examples of θ and U .

a = 1. In this case, θ = Eφ (X1) and

U =
1
n

n∑
i=1

φ (Xi) .(6.1.4)
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Since this is the average of n i.i.d. random variables, asymptotic normality
follows from the classical central limit theorem (Theorem 2.4.1) provided
0 < Var (X1) < ∞. Examples are θ = E (X1) and θ = P (X1 ≤ a).

a = 2.
(a) If φ (x1, x2) = |x2 − x1|, the statistics

U =
1(
n

2

)∑∑
i<j

|Xj − Xi|(6.1.5)

is known as Gini’s mean difference.
(b) If

φ (x1, x2) =
{

1 when x1 + x2 > 0
0 otherwise,(6.1.6)

then

W =
(

n

2

)
U(6.1.7)

is the number of pairs i < j for which Xi + Xj > 0 and

θ = P (X1 + X2 > 0) .(6.1.8)

The statistic W is closely related to the one-sample Wilcoxon statistic
(3.2.31).
(c) When the distribution F is discrete and Xi + Xj takes on the value 0
with positive probability, one may wish to replace (6.1.6) with

φ (x1, x2) =




1 if x1 + x2 > 0
1/2 if x1 + x2 = 0
0 if x1 + x2 < 0.

(6.1.9)

In this case,

θ = P (X1 + X2 > 0) +
1
2
P (X1 + X2 = 0) .(6.1.10)

Before stating any asymptotic results, let us speculate about what to
expect. For a sum of n i.i.d. variables with variance σ2, the variance of the
sum is nσ2, and the variance of their average is therefore σ2/n. In the case
a = 1, the variance of (6.1.4) therefore tends to 0 at rate 1/n. Consider
next the case a = 2, so that

U =
1(
n

2

)∑∑
i<j

φ (Xi, Xj) .(6.1.11)
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Since the right side is an average of(
n

2

)
∼ 1

2
n2

terms, one might be tempted to conjecture that the variance of U tends to
0 at the rate 1/n2. There is, however, an important difference between the
sums (6.1.4) and (6.1.11): In the latter case, the terms, although identically
distributed, are no longer independent.

To see the effect of this dependence, note that the variance of
(

n

2

)
U is

∑∑
i<j

∑∑
k<l

Cov [φ (Xi, Xj) , φ (Xk, Xl)] .(6.1.12)

This sum contains three kinds of terms. When all four subscripts i, j, k, l
are distinct, the pair (Xi, Xj) is independent of the pair (Xk, Xl) and the
terms of (6.1.12) corresponding to these pairs are therefore 0. A second
possibility is that only three of the four subscripts are distinct, that, for
example, i = k with j and l being different. Without counting these terms,
it is intuitively plausible that their number is of order n3. This leaves the
terms with i = k and j = l in which only two of the subscripts are distinct
and whose number is of order n2. Thus (6.1.12) is the sum of two terms
of order n3 and n2 respectively and Var(U) is obtained by dividing this

sum by
(

n

2

)2
. The result is of order 1/n, as it was in the case a = 1.

This is actually not so surprising since the information in U , regardless of
the value of a, is provided by just n i.i.d. variables, namely X1, . . . , Xn.
(A discussion of the amount of information contained in a data set will be
given in Chapter 7.)

The argument suggesting that Var(U) is of order 1/n can be made precise
by counting the various covariance terms and for general a then leads to
Theorem 6.1.1. Before stating this result, we require the following lemma.

Lemma 6.1.1

(i) If

φi (x1, . . . , xi) = Eφ (x1, . . . , xi, Xi+1, . . . , Xa) ,(6.1.13)

then

Eφi (X1, . . . , Xi) = θ for all 1 ≤ i < a.(6.1.14)

(ii) If

Var φi (X1, . . . , Xi) = σ2i ,(6.1.15)
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then

Cov
[
φ (X1, . . . , Xi, Xi+1, . . . , Xa) , φ

(
X1, . . . , Xi, X ′

i+1, . . . , X ′
a

)]
= σ2i ,

(6.1.16)

where X1, . . . , Xi, Xi+1, . . . , Xa, X ′
i+1, . . . , X ′

a are i.i.d. according
to F .

Proof. For the sake of simplicity we shall give the proof for the case a = 2,
i = 1 and under the assumption that F has a density f .

(i) Since

φ1 (x1) =
∫

φ (x1, x2) f (x2) dx2,

we have

Eφ1 (X1) =
∫ [∫

φ (x1, x2) f (x2) dx2

]
f (x1) dx1

=
∫ ∫

φ (x1, x2) f (x1) f (x2) dx1dx2 = θ.

(ii) Analogously,

Eφ21 (X1)

=
∫ [∫

φ (x1, x2) f (x2) dx2

] [∫
φ (x1, x3) f (x3) dx3

]
f (x1) dx1

=
∫ ∫ ∫

φ (x1, x2)φ (x1, x3) f (x1) f (x2) f (x3) dx1dx2dx3,

and (6.1.16) follows by subtracting θ2 from both sides and using part
(i). �

Theorem 6.1.1
(i) The variance of the U -statistic (6.1.3) is equal to

Var (U) =
a∑
i=1

(
a

i

) (
n − a

a − i

)
σ2i

/(
n

a

)
(6.1.17)

with σ2i given by (6.1.16). Here X1, . . . , Xi, Xi+1, . . . , Xa, X ′
i+1, . . . , X ′

a

are independently distributed according to the common distribution F .
(ii) If σ21 > 0 and σ2i < ∞ for all i = 1, . . . , a, then

Var
(√

nU
)
→ a2σ21(6.1.18)
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Proof.
(i) For the case a = 2, the proof is outlined above and given in more detail
in Problem 1.5. For the general case, see Lee (1990, Section 1.3).
(ii) Since (

n − a

k

)
=

1
k!

(n − a)(n − a − 1) · · · (n − a − k + 1) ∼ nk

k!
,(6.1.19)

the terms in the sum (6.1.17) corresponding to i > 1 are all of smaller order
than the term corresponding to i = 1. This latter term is asymptotically
equivalent to

σ21
ana−1

(a − 1)!

/
na

a!
=

a2σ21
n

,

and this completes the proof. �

Theorem 6.1.2
(i) If 0 < σ21 < ∞, then as n → ∞,

√
n (U − θ) L→ N

(
0, a2σ21

)
;(6.1.20)

(ii) if, in addition,

σ2i < ∞ for all i = 2, . . . , a,(6.1.21)

then also

U − θ√
Var U

L→ N(0, 1).(6.1.22)

We shall postpone discussion of the proof to the end of the section and
Problem 1.17.

Note 1: Condition (6.1.21) can be replaced by the seemingly weaker con-
dition σ2a < ∞. This follows from the fact that σ2i ≤ σ2a since the square of
a covariance is less than or equal to the product of the variances.

Note 2: Since the asymptotic variance in (6.1.20) involves only σ21 , it may
seem surprising that it is not enough in Theorem 6.1.2(ii) to require that
σ21 < ∞. The apparent paradox is explained by the possible difference
between the asymptotic variance a2σ21 and the limit of the actual variance.
It is seen from (6.1.17) that the actual variance of U involves not only
σ21 but also the variances σ22 , . . . , σ2a. If any of these latter variances is
infinite but σ21 < ∞, we have a case where the actual variance of

√
nU and

therefore its limit is infinite, while the asymptotic variance is finite. We
shall see another example of this phenomenon in Example 6.2.5 of the next
section.
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Example 6.1.1 One-sample Wilcoxon statistics. Consider the
U -statistics with a = 2 and with φ and θ given by (6.1.6) and (6.1.8),
respectively. Then

σ21 =Cov [φ (X1, X2) , φ (X1, X ′
2)]

=P [X1 + X2 > 0 and X1 + X ′
2 > 0] − [P (X1 + X2 > 0)]2 .

(6.1.23)

For any given F , the probabilities on the right side can be evaluated nu-
merically and, in a few cases, analytically (Problem 1.6).

The calculations greatly simplify when F is symmetric about 0. Then
−X1 has the same distribution as X1 and hence

P (X1 + X2 > 0) = P (X2 > −X1) = P (X2 > X1) .

If F is continuous (so that P (X1 = X2) = 0), it therefore follows from
symmetry that

P (X1 + X2 > 0) = 1/2.(6.1.24)

Analogously,

P (X1 + X2 > 0 and X1 + X ′
2 > 0) = P (X1 > X2 and X1 > X ′

2)

is the probability that X1 is the largest of the three i.i.d. variables X1, X2,
and X ′

2. For continuous F , we thus have

P (X1 + X2 > 0 and X1 + X ′
2 > 0) = 1/3(6.1.25)

and hence

σ21 = 1/12.(6.1.26)

The opposite of distributions symmetric about 0 in a certain sense are
distributions for which

P (X > 0) is 0 or 1.(6.1.27)

For such distributions, both terms on the right side of (6.1.23) are 0 or 1
and hence σ21 = 0. In fact, the variable U then degenerates to the constant
0 or 1.

As stated after (6.1.7), the statistic W =
(

n

2

)
U is the number of pairs

i < j for which Xi + Xj > 0. It is interesting to compare W with the
Wilcoxon statistic Vs of Example 3.2.5, which by (3.2.31) is the number of
pairs i ≤ j for which Xi+Xj > 0. If S denotes the number of positive X’s,
we therefore have

VS = W + S.(6.1.28)
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From this relation it can be seen that the standardized variables

VS − E (VS)√
Var (VS)

and
W − E(W )√

Var(W )

have the same limit distribution (Problem 1.7). �

Expectation functionals and U -statistics were defined in (6.1.1) and (6.1.3)
for the case that X1, . . . , Xn are n i.i.d. random variables. However, they
apply equally when the X’s are n i.i.d. random vectors. Then θ(F ) may, for
example, be a covariance, or if X = (Y1, . . . , Yk), it may be the probability
P (Y1 ≤ a1, . . . , Yk ≤ ak).

Another extension, which does require some changes, is from a single
sample to the s-sample case. Let

φ (x11, . . . , x1a1 ; . . . ;xs1, . . . , xsas)(6.1.29)

be a function of a1 + a2 + · · · + as arguments which is symmetric in each
of the s groups of arguments, and let

θ = Eφ (X11, . . . , X1a1 ; . . . ;Xs1, . . . , Xsas) ,(6.1.30)

where Xi1, . . . , Xiai are i.i.d., according to distributions Fi, i = 1, . . . , s,
and the s groups are independent of each other.

As an example, suppose that s = 2, a1 = a2 = 1, and

θ = P (X11 < X21) ,

where X11 and X21 are independent with distributions F1 and F2, respec-
tively. Then θ is given by (6.1.30) with

φ (x11, x21) =
{

1 when x11 < x21
0 otherwise.(6.1.31)

Another example with s = 2 and a1 = a2 = 1 is

θ = E (X21 − X11) ,

which is given by (6.1.30) with

φ (x11, x21) = x21 − x11.

Let us now consider estimating θ on the basis of independent observations
X11, . . . , Xn1 , from F1; X21, . . . , X2n2 from F2; etc. Suppose that

ai ≤ ni for all i = 1, . . . , s

and that the distributions F1, . . . , Fs are unknown, subject only to some
very general conditions. By (1.6.30),

φ (X11, . . . , X1a1 ; . . . ;Xs1, . . . , Xsas)
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is an unbiased estimator of θ, and so therefore is

φ
(
X1i1 , . . . , X1ia1

; . . . ;Xsr1 , . . . , Xsras

)

for any of the
s∏
i=1

(
ni
ai

)
sets of combinations

1 ≤ i1 < · · · < ia1 ≤ n1; . . . ; 1 ≤ r1 < · · · < ras ≤ ns.(6.1.32)

It follows that also

U =
1(

n1
a1

)
· · ·
(

ns
as

)∑φ
(
X1i, . . . , X1ia1

; · · · ;Xsr1 , . . . , xsras

)
(6.1.33)

is an unbiased estimator of θ, where the summation extends over all(
n1
a1

)
· · ·
(

ns
as

)
combinations (6.1.32), so that

E(U) = θ.(6.1.34)

The estimator U is symmetric in each of its s groups of variables and can be
shown to have the smallest variance among all estimators that are unbiased
for all F = (F1, . . . , Fs) for which θ(F ) exists.

It will be convenient in the following to denote the sum on the right side
of (6.1.33) by

W =
∑

φ
(
X1i1 , . . . , X1ia1

; · · · ;Xsr1 , . . . , Xsra1

)
.(6.1.35)

As an example, let s = 2, a1 = a2 = 2, and

φ (x11, x12;x21, x22) =
{

1 if |x12 − x11| < |x22 − x21|
0 otherwise.(6.1.36)

Then W is the number of quadruples i < j; k < l for which

|X1j − X1i| < |X2l − X2k| ,

a statistic that has been proposed for testing that F1 and F2 differ only by
a shift against the alternatives that F2 is more spread out than F1.

As a second example, let a1 = a2 = · · · = as = 1 and let

φ (x11; . . . ;xs1) = the number of pairs 1 ≤ α < β ≤ s for which xα1 < xβ1.
(6.1.37)

Then W is the so-called Jonckheere-Terpstra statistic which is used to test
H : F1 = · · · = Fs against the alternatives that the responses expected
under Fi+1 are larger than those expected under Fi for all i = 1, . . . , s− 1.
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Theorem 6.1.1 concerning the variance of U generalizes in a natural way
to several samples. Since the notation gets complicated, we shall state the
extension here only for the case s = 2. It is then convenient to make a
change of notation, replacing a1, a2 by a, b;n1, n2 by m,n; the variables
X1i, X2j by Xi, Yj and their distributions F1, F2 by F,G. The U -statistic
(6.1.33) now becomes

U =
1(

m

a

)(
n

b

)∑φ (Xi1 , . . . , Xia ;Yj1 , . . . , Yjb)(6.1.38)

with the sum extending over all

1 ≤ i1 < · · · < ia ≤ m; 1 ≤ j1 < · · · < jb ≤ n.(6.1.39)

Theorem 6.1.3
(i) The variance of the U -statistic (6.1.38) is

Var(U) =
a∑
i=1

b∑
j=1

(
a

i

)(
m − a

a − i

)
(

m

a

)
(

b

j

)(
n − b

b − j

)
(

n

b

) σ2ij ,(6.1.40)

where

σ2ij =Cov [φ (X1, . . . , Xi, Xi+1, . . . , Xa; Y1, . . . , Yj , Yj+1, . . . , Yb) ,

φ
(
X1, . . . , Xi, X ′

i+1, . . . , X ′
a, Y1, . . . , Yj , Y ′

j+1, . . . , Y ′
b

)]
.

(6.1.41)

Here the X’s and Y ’s are independently distributed according to F and
G, respectively, and the covariances (6.1.41) are ≥ 0 by an extension of
Lemma 6.1.1 (Problem 1.9).
(ii) If

σ210 = Cov[φ(X1, X2, . . . , Xa; Y1, . . . , Yb),
φ(X1, X ′

2, . . . , X ′
a; Y ′

1 , . . . , Y ′
b )] > 0,

σ201 = Cov[φ(X1, . . . , Xa; Y1, Y2, . . . , Yb),
φ(X ′

1, . . . , X ′
a; Y1, Y

′
2 , . . . , Y ′

b )] > 0,

and σ2aa > 0, and if N = m + n and

m

N
→ ρ,

n

N
→ 1 − ρ with 0 ≤ ρ ≤ 1,(6.1.42)

then

Var
(√

NU
)
→ σ2 =

a2

ρ
σ210 +

b2

1 − ρ
σ201.(6.1.43)
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Note: If 0 < ρ < 1, it is enough in (ii) to require that at least one of σ210
and σ201 is positive.

Example 6.1.2 Wilcoxon two-sample statistic. Consider the U -statistic
(6.1.38) with a = b = 1 and φ given by (6.1.31), so that

U =
1

mn

m∑
i=1

n∑
j=1

φ (Xi, Yj)(6.1.44)

with

φ(x, y) = 1 if x < y and = 0 otherwise(6.1.45)

and with

θ = P (X < Y ) .(6.1.46)

Then

σ210 =Cov [φ (X1, Y1) , φ (X1, Y ′
1)]

=P (X1 < Y1 and X1 < Y ′
1) − [P (X1 < Y1)]

2(6.1.47)

and, analogously,

σ201 = P (X1 < Y1, X ′
1 < Y1) − [P (X1 < Y1)]

2
.(6.1.48)

For any given distributions F of the X’s and G of the Y ’s, these variances
can be evaluated numerically and, in a few cases, analytically (Problems
1.10 and 1.11).

The calculations greatly simplify when F = G. Then, by symmetry, if F
is continuous,

P (X1 < Y1) = 1/2

and

P (X1 < Y1 and X1 < Y ′
1) = P (X1 < Y1 and X ′

1 < Y1) = 1/3

so that

σ201 = σ210 = 1/12(6.1.49)

and hence

Var
(√

NU
)
→ 1

12

(
1
ρ

+
1

1 − ρ

)
=

1
12ρ (1 − ρ)

.(6.1.50)

Another special case occurs when

P (X < Y ) is 0 or 1.(6.1.51)

Then not only are σ201 = σ210 = 0, but the variable U degenerates to the
constant 0 or 1 and hence Var(U) = 0. �
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Let us now return to the general U -statistics (6.1.33) and for this purpose
define

σi1,... ,is (0 ≤ i1 ≤ a1, . . . , 0 ≤ is ≤ as)

in obvious generalization of (6.1.41). Then we have the basic limit theorem
for s-sample U -statistics.

Theorem 6.1.4 Let the sample sizes n1, . . . , ns all tend to infinity in such
a way that

ni
N

→ ρi, 0 ≤ ρi ≤ 1,(6.1.52)

where N = n1 + · · · + ns, and let

0 < σ2100...0, σ2010...0, . . . , σ2000...1 < ∞.

(i) Then

U ′
N =

√
N (U − θ) L→ N

(
0, σ2

)
(6.1.53)

with

σ2 =
a21
ρ1

σ210...0 + · · · + a2s
ρs

σ200...1.(6.1.54)

(ii) If in addition σa1,... ,as < ∞, then also

Var
(√

NU
)
→ σ2(6.1.55)

and (U − θ) /
√

VarU → N(0, 1).

The proof will be postponed to the end of the section.
Another useful extension deals with the joint distribution of two U -

statistics. For the sake of simplicity, we shall suppose that they are both
one-sample U -statistics, say

U (1) =
1(
n

a

)∑ · · ·
∑

φ(1) (Xi1 , . . . , Xia) ,

U (2) =
1(
n

b

)∑ · · ·
∑

φ(2) (Xi1 , . . . , Xib)
(6.1.56)

with the summations defined as in (6.1.3) for an i.i.d. sample X1, . . . , Xn

(real- or vector-valued) and with a, b ≤ n. Let

θi = EU (i), i = 1, 2,
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and

σij = Cov[φ(1)(X1, . . . , Xi, Xi+1, . . . , Xa),

φ(2)(X1, . . . , Xj , X ′
j+1, . . . , X ′

b)],

where i ≤ a, j ≤ b. Then we have in generalization of Theorem 6.1.1:

Theorem 6.1.5 If a ≤ b, the covariance of U (1) and U (2) is

Cov
(
U (1), U (2)

)
=

a∑
i=1

(
b

i

)(
n − b

a − i

)
σii/

(
n

a

)
(6.1.57)

and

n Cov
(
U (1), U (2)

)
→ ab σ11.(6.1.58)

For a proof, see Hoeffding (1948a) or Lee (1990). Also, in generalization
of Theorem 6.1.2, we have

Theorem 6.1.6 If

Var φ(1) (X1, . . . , Xa) and Var φ(2) (X1, . . . , Xb) are both < ∞,

then (√
n
(
U (1) − θ1

)
,
√

n
(
U (2) − θ2

))
→ N (0,Σ) .(6.1.59)

Here Σ is the limiting covariance matrix of (
√

n(U (1) − θ1),√
n(U (2) − θ2)), the entries of which are given by (6.1.18) and (6.1.58),

provided Σ is positive definite.

Proof. If a = b, the result follows immediately from Theorem 5.1.8 and the
limit theorem 6.1.2 for a single U -statistic. The case a �= b can be handled
by noting that an a-dimensional U -statistic can also be represented as a
U -statistic of dimension b for any a ≤ b. (See hint for Problem 1.2.) Thus
U (1) and U (2) can be represented as U -statistics of common dimension b.�

Example 6.1.3 Wilcoxon and t. Suppose that X1, . . . , Xn are i.i.d. ac-
cording to a distribution F that is symmetric about ξ. Two widely used
tests of H : ξ = 0 are the one-sample t-test and Wilcoxon tests discussed
in Sections 3.1 and 3.2. It is tempting (and although frowned upon, not
unheard of) to compute both test statistics but report only the result of
the more significant of the two. If both tests are carried out at level α, the
true level α′ resulting from such practice will, of course, exceed α. Let us
see by how much.

For this purpose, we require the joint asymptotic null distribution of
X̄/σ̂ and of the one-sample Wilcoxon statistic discussed in Chapter 3 and
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in Example 6.1.1 of the present chapter. These two statistics are asymp-
totically equivalent to respectively U1 = X̄/σ and the U -statistic U2 given
by (6.1.11) with

φ (x1, x2) = 1 if x1 + x2 > 0, and = 0 otherwise.

Lemma 6.1.2 Under H, the joint limit distribution of
√

nU1 and
√

n(U2
−θ) with θ given by (6.1.8) is bivariate normal with mean zero and with

covariance matrix Σ =
(

1 γ

γ 1/3

)
, where

γ = E [max (X1, X2)] .(6.1.60)

Proof. From Theorem 6.1.5 and Example 6.1.1, it follows that the desired
limit distribution is bivariate normal with

σ2 = Var
(√

nU1
)

= 1 and τ2 = limVar
(√

nU2
)

= 1/3.

It remains to evaluate the covariance of (
√

nU1,
√

nU2) which, by (6.1.58),
is equal to

lim[n Cov (U1, U2)] = 2 Cov
[
X1
σ

, φ (X1, X2)
]

= 2E
[
X1
σ

φ (X1, X2)
]

.

Since φ (x1, x2) = φ (x2, x1) and since X1,−X1, X2, and −X2 all have the
same distribution, we have

E [X1φ (X1, X2)] =
1
2
E [X1φ (X1,−X2) + X2φ (−X1, X2)] .(6.1.61)

Now

X1φ (X1,−X2) =
{

X1 if X1 > X2
0 otherwise;

X2φ (−X1, X2) =
{

X2 if X2 > X1
0 otherwise;

and hence by (6.1.61)

E (X1φ (X1, X2)) =
1
2
E [max (X1, X2)] .

�
The distributions of the two test statistics

√
nU1 and

√
3nU2 both have

a standard normal limit under H and the procedure under consideration
therefore rejects H when at least one of them exceeds the standard normal
critical value uα. The rejection probability under H is therefore

α′ = P
[
max

(√
nU1,

√
3nU2

)
> uα

]
.(6.1.62)

The asymptotic value of α′ can be obtained from the bivariate normal
distribution given in Lemma 6.1.2. When α = .05, some typical values of
α′ are
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Normal Uniform Double Exponential
.059 .050 .066

Since it follows from (6.1.62) that α′ ≥ α, the value .05 for the uniform
distribution is the smallest α′ can be. On the other hand, it can be shown
(Jiang (1997)) that an upper bound for α′ is 1 − (1 − α)2, the value of α′

when the two test statistics in question are independent (Problem 1.15), so
that for α = .05, we have α′ ≤ .0975. (This upper bound is sharp.) �

To conclude the section, we shall now consider the proof of Theorem
6.1.4. The proof in the general case is somewhat tedious because of the
complexity of the notation. We shall therefore carry out the proof only for
the case s = 2, a1 = a2 = 1. The case s = 1, a1 = 2 is treated in Problem
1.17. A general proof can be found in Lee (1990), Lehmann (1998), and
Serfling (1980).

Proof of Theorem 6.1.4 when s = 2, a1 = a2 = 1. Let X1, . . . , Xm

and Y1, . . . , Yn be independently distributed with distributions F and G,
respectively, and with m and n satisfying (6.1.38). For

U =
1

mn

m∑
i=1

n∑
j=1

φ (Xi, Yj)(6.1.63)

and

θ = Eφ (X,Y ) = E (U) ,(6.1.64)

we wish to prove (6.1.53).
The proof utilizes the following lemma.

Lemma 6.1.3 Let T ∗
N , N = 1, 2, . . . , be a sequence of random variables,

the distributions of which tend to a limit distribution L, and let TN be
another sequence satisfying

E (T ∗
N − TN )2 → 0.(6.1.65)

Then the distribution of Tn also tends to L.

Proof. Let RN = TN−T ∗
N . Then it follows from Theorem 2.1.1 that RN

P→
0 and hence from Theorem 2.3.3 that TN has the same limit distribution
as T ∗

N .
The theorem will be proved by applying the lemma to

TN =
√

N (U − θ)(6.1.66)

and a sum T ∗
N of independent terms so that its limit follows from the central

limit theorem, and satisfying

E (T ∗
N ) = 0.(6.1.67)
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We then have

E (TN − T ∗
N )2 = Var (TN ) + Var (T ∗

N ) − 2 Cov (TN , T ∗
N ) .

It follows from (6.1.43) with a = b = 1 that

Var (TN ) → σ2 =
σ210
ρ

+
σ201

1 − ρ
(6.1.68)

and the proof will be completed by showing that also

Var (T ∗
N ) → σ2 and Cov (TN , T ∗

N ) → σ2.(6.1.69)

To carry out this program, i.e., to prove asymptotic normality of T ∗
N

and the relations (6.1.67) and (6.1.69), we must next define T ∗
N . For this

purpose, we introduce the functions

φ10(x) = Eφ(x, Y ) and φ01(y) = Eφ(X, y).(6.1.70)

For example, if φ is given by (6.1.45), we have

φ10(x) = P (x < Y ) = 1 − G(x),
φ10(y) = P (X < y) = F (y).(6.1.71)

By Problem 1.9, these functions satisfy

(i) Eφ10(X) = Eφ01(Y ) = θ

and

(ii) Var φ10(X) = σ210 and Var φ01(Y ) = σ201, where σ2ij is defined by
(6.1.41), so that

σ210 = Cov [φ (X1, Y1) , φ (X1, Y ′
1)](6.1.72)

and

σ201 = Cov [φ (X1, Y1) , φ (X ′
1, Y1)] .(6.1.73)

To apply Lemma 6.1.3, let us now define∗

T ∗
N =

√
N

{
1
m

[∑
φ10 (Xi) − θ

]
+

1
n

∑
[φ01 (Yj) − θ]

}
.(6.1.74)

Then (6.1.67) follows from (i), and hence by the central limit theorem

√
m

[
1
m

∑
φ10 (Xi) − θ

]
L→ N

(
0, σ210

)
(6.1.75)

∗An explanation for this choice of T ∗
N will be given at the end of Section 6.3.
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and

√
n

[
1
n

∑
φ01 (Yj) − θ

]
L→ N

(
0, σ201

)
.(6.1.76)

It now only remains to prove (6.1.69), which we shall leave to Problem
1.16. This completes the proof of Theorem 1.4. �
Example 6.1.2. Wilcoxon two-sample statistic (continued). Theo-
rem 6.1.4 establishes the asymptotic normality of the Wilcoxon two-sample
statistic for any distributions F and G for which not both σ210 and σ201
are 0. It can be shown (see, for example, Lehmann (1998, p. 366)) that
σ210 = σ201 = 0 if and only if (6.1.51) holds; i.e., if the distribution of the
Y ’s lies entirely to the right or to the left of the distribution of the X’s in
either of which cases WXY degenerates to a constant.

In particular, for any (F,G) not satisfying (6.1.51), this verifies (3.3.29)
with WXY = TN , which was required for the asymptotic power of the
two-sample Wilcoxon test against the shift alternatives

G(y) = F (y − θ)(6.1.77)

(Example 3.3.7.) However, this power result required asymptotic normality
not only against a fixed alternative but also against a sequence of alterna-
tives

Gk(y) = F (y − θk)(6.1.78)

with θk → 0.
To extend Theorem 6.1.4 to this case, consider once more the proof of

the theorem. This proof has two components:

(a) Application of the central limit theorem to T ∗
N ;

(b) Showing that E (TN − T ∗
N )2 → 0.

Of these, (b) causes no new difficulty since σ201 and σ210 are both continu-
ous functions of θ. A proof of (a) can be based on the Berry-Esseen theorem
by means of an argument already used in Example 3.3.2. The conditions of
the Berry-Esseen theorem will be satisfied if the third moments of φ10(X)
and φ01(Y ) are bounded and their variances are bounded away from 0.
The first of these conditions clearly holds since the φ’s are between 0 and
1. The variances in question are σ210 and σ201, which by (6.1.49) are equal
to 1/12 when F = G. Under the alternatives (6.1.78), they are continuous
functions of θ and hence bounded away from 0 as θ → 0.

Theorem 6.1.4 generalizes the central limit theorem for i.i.d. variables to
U -statistics. A corresponding generalization of the Berry-Esseen theorem
is also available, as is a Poisson limit theorem generalizing that obtained
for independent binomial trials in formula (1.2.8). A third problem not
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discussed here is that raised by the degenerate case σ2 = 0 in (6.1.55).
The limit result (6.1.53) then only states that

√
N(U − θ) P→ 0, and a

non-degenerate limit distribution will require a different normalization, in
typical cases N instead of

√
N . Detailed treatments of these three topics

are given in Lee (1990).

Summary

1. A special class of statistical functionals, the expectation functionals,
is defined. Their best unbiased estimators are the U -statistics, which
include a number of statistics used in testing and estimation, such as
the two-sample Wilcoxon statistic, the s-sample Jonckheere-Terpstra
statistic, and Gini’s mean difference.

2. It is shown that U -statistics are asymptotically normal, provided cer-
tain second moment conditions are satisfied.

6.2 Statistical functionals

As pointed out in Section 2.1 (following Example 2.1.2), one commonly
speaks of the asymptotic properties of the sample mean X̄ = (X1 + · · ·
+Xn)/n, although these properties really refer to the sequence X̄n, n =
1, 2, . . . , and the same remark applies to the sample median, the sample
variance, and so on. This shortcut terminology is suggested not only by its
convenience but also by a feeling that these statistics are in some sense the
“same” function of the observations for all n. The following is one way of
making this feeling precise.

Each of these statistics, or sequence of statistics, is a consistent estimator
of a corresponding population quantity: the sample mean X̄ of the expec-
tation E(X), the kth sample moment

∑(
Xi − X̄

)k
/n of the kth popula-

tion moment E [X − E(X)]k, the pth sample quantile of the pth population
quantile F−1(p), etc. Any such population quantity is a function of the dis-
tribution F of the Xi (which we are assuming to be i.i.d.) and can therefore
be written as h(F ), where h is a real-valued function defined over a collec-
tion F of distributions F . The mean h(F ) = EF (X), for example, is defined
over the class F of all F with finite expectation. The functions h(F ) are
what in the preceding section were defined as statistical functionals.

To establish the connection between the sequence of sample statistics
and the functional h(F ) that it estimates, define the sample cdf F̂n by

F̂n(x) =
Number of Xi ≤ x

n
.(6.2.1)

This is the cdf of a distribution that assigns probability 1/n to each of the
n sample values X1, X2, . . . , Xn. For the examples mentioned so far and
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many others, it turns out that the standard estimator of h(F ) based on n

observations is equal to h
(
F̂n

)
, the plug-in estimator of h(F ). Suppose,

for example, that h(F ) = EF (X). The expectation of a random variable
with cdf F̂n is the sum of the probabilities (1/n) multipled by the values
(Xi) taken on by a random variable with cdf F̂n, i.e.,

h
(
F̂n

)
=

1
n

X1 + · · · + 1
n

Xn = X̄.(6.2.2)

Analogously, when h(F ) = EF (X − E(X))k, it is seen that

h
(
F̂n

)
=

1
n

(
X1 − X̄

)k + · · · + 1
n

(
Xn − X̄

)k =
1
n

∑(
Xi − X̄

)k = Mk.

(6.2.3)

When viewed not as a function of n variables, but as a function of F̂n, X̄
or Mk is then indeed the “same” function h defined by (6.2.2) or (6.2.3)
for all n.

For the third example mentioned in which h(F ) = F−1(p) is a quantile
of F , a slight ambiguity mars the relation between the standard estimator
of h(F ) and h

(
F̂n

)
= F̂−1

n . Suppose, for example, that p = 1/2 and that

n = 2m is even. Then F̂−1
n

( 1
2

)
could be defined as any point in the interval[

X(m), X(m+1)
]
. As was discussed in Section 1.6, it is usually defined to be

the left-hand end point X(m). On the other hand, the standard definition
of the sample median is the midpoint

[
X(m) + X(m+1)

]
/2. As was seen in

Example 2.4.9, these two estimators are asymptotically equivalent.
Before discussing additional examples, it is convenient to introduce the

integral ∫
adF =

∫
a(x)dF (x) = EF [a(X)](6.2.4)

so that in particular

∫
adF =




∫
a(x)f(x)dx when F has a density f∑

a (xi)PF (X = xi) when F is discrete.
(6.2.5)

Thus, for example,

∫
a(x)dF̂n(x) =

1
n

n∑
i=1

a (xi) .(6.2.6)

The notation (6.2.5) extends in an obvious way to muliple integrals. For
example, if X and Y are independent with distributions F and G, respec-
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tively, then

E [a(X,Y )] =
∫ ∫

a(x, y)dF (x)dG(y)

=




∫ ∫
a(x, y)f(x)g(y)dxdy when F,G have densities f, g∑∑

a (xi, yi)PF (X = xi)PG (Y = yj)
when X and Y are discrete.

(6.2.7)

Since
(
F̂m, Ĝn

)
takes on the mn pairs of values (xi, yj) with probability

1/mn each, we have in particular∫ ∫
a(x, y)dF̂m(x)dĜn(y) =

1
mn

∑∑
a (xi, yj) .(6.2.8)

Example 6.2.1 Goodness-of-fit statistics. For testing the hypothesis
H that a distribution F equals some specified distribution F0 on the basis
of a sample X1, . . . , Xn, many goodness-of-fit statistics were discussed in
Section 5.7, among them:

(i) The Kolmogorov statistic

sup
x

∣∣∣F̂n(x) − F0(x)
∣∣∣ ;(6.2.9)

(ii) the Cramér-von Mises statistic∫ [
F̂n(x) − F0(x)

]2
dF0(x);(6.2.10)

(iii) the classical Pearson statistic

r∑
j=0

(
p̂j − p0j

)2
/p0j ,(6.2.11)

where p0j denotes the probability of the interval Ij = (aj , aj+1) under
F0 and p̂j denotes the observed proportion of observations in Ij .

Each of these statistics is of the form h
(
F̂n

)
, where in the first two cases

h(F ) = sup |F (x) − F0(x)| and h(F ) =
∫

[F (x) − F0(x)]2 dF0(x),

(6.2.12)
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respectively, and in the third case,

h(F ) =
r∑
j=0

[
F (aj+1) − F (aj) − p0j

]2
p0j

.(6.2.13)

�

Before attempting a general theory of these plug-in estimators, it is useful
to consider their large-sample behavior in a few examples.

Example 6.2.2 Estimating the cdf. If F (a) = P (X ≤ a) for some fixed
a, then

F̂n(a) =
Number of Xi ≤ a

n
.(6.2.14)

This is just the usual estimator of the unknown probability of an event by
the observed frequency of its occurrence.

The number Y of X ′s ≤ a has the binomial distribution

Y : b(p, n) with p = F (a).(6.2.15)

Since

E

(
Y

n

)
= p and Var

(
Y

n

)
=

pq

n
(q = 1 − p) ,(6.2.16)

it follows that

E
[
F̂n(a)

]
= F (a) and Var

[
F̂n(a)

]
=

1
n

F (a) [1 − F (a)](6.2.17)

so that F̂n(a) is unbiased and its variance is of order 1/n. In addition, it
follows from (2.3.9) that

√
n
[
F̂n(a) − F (a)

]
L→ N (0, F (a) [1 − F (a)]) .(6.2.18)

Both (6.2.17) and (6.2.18) imply that F̂n(a) is a consistent estimator of
F (a) for each fixed a. However, a much stronger consistency property can
be asserted if the difference between F̂n(x) and F (x) is considered not only
for a fixed x but simultaneously for all x, namely

Dn = sup
x

∣∣∣F̂n(x) − F (x)
∣∣∣ P→ 0 as n → ∞.(6.2.19)

For continous distribution F , this result was already pointed out in Section
5.7. It remains valid for general F , but the proof then requires special con-
sideration of the discontinuities. For a still stronger result, see, for example,
Serfling (1980, Section 2.1.4) or Billingsley (1986, Theorem 20.6).
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The limit (6.2.19) states that if we consider a symmetric band of width
2ε about F , then the probability that F̂n will lie entirely within this band
tends to 1 for any given ε > 0, no matter how small ε is. This provides a
justification for thinking of F̂n as an estimator of the unknown distribution
function F , and hence of h

(
F̂n

)
as an estimator of h(F ). �

Example 6.2.3 Estimating the mean. Let h(F ) be the expectation of
F , i.e.,

h(F ) =
∫

xdF (x) = ξ.(6.2.20)

Then by (6.2.2)

h
(
F̂n

)
=

1
n

n∑
i=1

Xi = X̄.(6.2.21)

(Typically, unless F is normal, this estimator is no longer a good choice
for estimating the expectation of F when the distributional form of F is
known.)

Clearly, X̄ is unbiased, its variance is σ2/n where σ2 is the variance of
the X’s, and

√
n
(
X̄ − ξ

) L→ N
(
0, σ2

)
, provided σ2 < ∞. �

In both Examples 6.2.2 and 6.2.3, the estimator h
(
F̂n

)
turned out to

be unbiased for estimating h(F ). This need not be the case, as is shown by
the following example.

Example 6.2.4 Central moments. Let h(F ) be the kth central moment
of F denoted by µk in Example 2.1.3. We have

h(F ) = µk = E (Xi − ξ)k ,(6.2.22)

where ξ = E (Xi), and

h
(
F̂n

)
= Mk =

1
n

∑(
Xi − X̄

)k
.(6.2.23)

In Section 2.1, Mk was found to be a consistent estimator of µk. We shall
now study the asymptotic behavior of Mk in more detail.

In the simplest case k = 2, µ2 reduces to Var (Xi) = σ2 and we find that

E (M2) =
1
n

E
∑[

(Xi − ξ) −
(
X̄ − ξ

)]2
=

1
n

[
E
∑

(Xi − ξ)2 − nE
(
X̄ − ξ

)2]
=σ2 − σ2

n
=

n − 1
n

σ2.

(6.2.24)
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The estimator M2 of µ2 = σ2 therefore has a negative bias of order 1/n. It
can, of course, be made unbiased by replacing M2 by

n

n − 1
M2.

As a slightly more complicated case that better illustrates the general
approach, consider

M3 =
1
n

∑(
Xi − X̄

)3
=

1
n

∑
X3i −

3
n2

∑
X2i
∑

Xj +
3
n3

∑
Xi

(∑
Xj

)2
− 1

n3

(∑
Xj

)3
.

Since the distribution of M3 does not depend on ξ, assume without loss of
generality that E (Xi) = ξ = 0 for all i. (This is equivalent to, but more
convenient than, carrying ξ along, as was done in (6.2.24).) Then all the
terms X2i Xj and XiX

2
j with i �= j, and the terms XiXjXk with all three

subscripts distinct, have zero expectation and one is left with

E (M3) = µ3

[
1 − 3

n
+

3
n2

− 1
n2

]
= µ3 −

3
n

µ3 +
2
n2

µ3.

The estimator M3 therefore again has a bias which is 0(1/n). Since

E (M3) =
(n − 1)(n − 2)

n2
µ3,

the bias can be eliminated through multiplication of M3 by n2/(n−1)(n−2).
The same type of argument shows quite generally that

E (Mk) = µk +
a

n
+ O

(
1
n2

)
(6.2.25)

with

a =
(

k

2

)
µk−2µ2 − kµk.(6.2.26)

(For details, see Problem 2.4(i) or Serfling (1980).)
The variance of Mk can be calculated in the same way. For k = 2, one

finds (Cramér (1946))

Var (M2) =
1
n2

E
[∑

X2i − nX̄2
]2

− [E (M2)]
2

=
µ4 − µ22

n
−

2
(
µ4 − 2µ22

)
n2

+

(
µ4 − 3µ22

)
n3

,

(6.2.27)

and quite generally that (Problem 2.4(ii))

Var (Mk) =
b

n
+ O

(
1
n2

)
(6.2.28)
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with

b = µ2k − 2kµk−1µk+1 − µ2k + k2µ2µ
2
k−1.(6.2.29)

Equations (6.2.25) and (6.2.28) show that both bias and variance of Mk

tend to 0 as n → ∞ and hence that Mk is consistent for estimating µk.
This was proved more directly in Example 2.1.3.

Instead of the asymptotic behavior of bias and variance, we may be
interested in the asymptotic distribution of

√
n (Mk − µk) .(6.2.30)

It will be shown in Section 6.3 that (6.2.30) tends in law to a normal
distribution with mean 0 and variance equal to the constant b given by
(6.2.29). Thus the variance of the limit distribution of (6.2.30) is equal to
the limit of Var [

√
n (Mk − µk)]. �

Example 6.2.5 U- and V -statistics. An important class of function-
als consists of the expectation functionals θ = h(F ) defined by (6.1.1).
Since F̂n assigns probability 1/n to each of the values X1, . . . , Xn, a in-
dependent variables with distribution F̂n take on each of the possible a-
tuples Xi1 , . . . , Xia with probability 1/na. The estimator h

(
F̂n

)
of θ =

EFφ (X1, . . . , Xa) is therefore

V = h
(
F̂n

)
=

1
na

n∑
i1=1

· · ·
n∑

ia=1

φ (Xi1 , . . . , Xia) .(6.2.31)

The statistics V are closely related to the one-sample U -statistics defined
by (6.1.3).

When a = 1, (6.2.31) reduces to

V =
1
n

n∑
i=1

φ (Xi) ,(6.2.32)

which agrees exactly with the U -statistic for a = 1.
Consider next the case a = 2. Then

U =
2

n(n − 1)

∑∑
i<j

φ (Xi, Xj) =
1

n(n − 1)

∑∑
i	=j

φ (Xi, Xj)(6.2.33)

while

V =
1
n2

n∑
i=1

n∑
j=1

φ (Xi, Xj) =
1
n2

∑
i	=j

∑
φ (Xi, Xj) +

1
n2

n∑
i=1

φ (Xi, Xi) .

(6.2.34)
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The statistics (6.2.33) and (6.2.34) differ in two ways: V has an extra term
corresponding to the pairs (i, j) with i = j, and the factor of the common
term is 1/n2 for V and 1/n(n− 1) for U . It is intuitively plausible and will
be seen below that asymptotically both these differences are negligible for
most purposes.

Since

E(U) = θ,(6.2.35)

the estimator U of θ is unbiased. On the other hand,

E(V ) =
n − 1

n
θ +

1
n

Eφ (X1, X1) = θ +
1
n

[Eφ (X1, X1) − θ](6.2.36)

so that typically V will be biased with the bias tending to 0 as n → ∞.

Theorem 6.2.1

(i) If the conditions of Theorem 6.1.2(i) are satisfied with a = 2, then

√
n (V − θ) L→ N

(
0, 4σ21

)
.(6.2.37)

(ii) If in addition σ22 < ∞ and

Eφ2 (X1, X1) < ∞,(6.2.38)

then also

Var
[√

n (V − θ)
]
→ 4σ21 .(6.2.39)

These results correspond exactly to those of Theorem 6.1.2 (i) and (ii).
However, because of the extra term in (6.2.33), (6.2.39) requires the addi-
tional condition (6.2.38).

Proof. From (6.2.33) and (6.2.34), it is seen that

√
n (Vn − θ) =

n − 1
n

√
n (Un − θ) +

√
n

n2

∑
[φ (Xi, Xi) − θ] .(6.2.40)

The first term on the right side tends in law to N
(
0, 4σ21

)
by Theorem

6.1.2, and the second term tends to zero in probability by the law of large
numbers. This completes the proof of (6.2.37); for the proof of (6.2.39), see
Problem 2.15. �

These results extend without much difficulty to general a.

Theorem 6.2.2

(i) If the assumptions of Theorem 6.1.2(i) hold, then (6.1.20) also holds
when U is replaced by V .
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(ii) If in addition, assumption (6.1.21) is replaced by the stronger as-
sumption

Var φ (Xi1 , . . . , Xia) < ∞

for all 1 ≤ i1 ≤ i2 ≤ · · · ≤ ia ≤ a, then also (6.1.22) remains valid
when U is replaced by V .

For the proof for the case a = 3, see Problem 2.5. �

Example 6.2.6 Quantiles. For fixed 0 < t < 1, let h(F ) = F−1(t) be
defined in the usual way as

F−1(t) = inf {x : F (x) ≥ t}(6.2.41)

Then h
(
F̂n

)
is the [nt]-th order statistics, which is one version of the [nt]-

th sample quantile. (In this connection see the discussion at the end of
Section 1.6.)

If F has a density which is continuous and positive in a neighborhood of
t, it was shown in Example 2.4.9 and Problem 4.8 of Chapter 2 that

√
n
[
h
(
F̂n

)
− h (F )

]
→ N

(
0,

F (t)[1 − F (t)]
{f [F−1(t)]}2

(6.2.42)

Under suitable regularity conditions it is proved by Bickel (1967) that the
bias and variance of h

(
F̂n

)
is of order 1/n and that the limit of the variance

of (6.2.42) agrees with the asymptotic variance. �

Examples 6.2.2–6.2.6 treated particular functionals h for which
√

n
[
h
(
F̂n

)
− h(F )

]
was shown to tend to a normal limit, and hence

h
(
F̂n

)
to be a consistent estimator of h(F ). However, the representation

of the estimators as functionals evaluated at the sample cdf is useful not
primarily for the consideration of particular cases as in suggesting the pos-
sibility of a general theory for this class of estimators.

To develop such a theory, we must first generalize some of the results
of Chapter 1 for functions of real variables, to functions of distributions.
For this purpose, it is convenient to think of distributions F as points of a
space, and to begin by considering the convergence of a sequence of such
points. In the vector-valued case of points x = (x1, . . . , xk), the following
three definitions of x(n) → a are equivalent:

(i) x
(n)
i → ai for each i = 1, . . . , k;

(ii) max
i=1,... ,k

∣∣∣x(n)i − ai

∣∣∣→ 0;
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(iii) d
(
x(n), a

)
→ 0, where d

(
x, y
)

=
√∑

(xi − yi)
2 .

In generalizing these definitions to distributions, note that we are com-
paring the coordinates xi (i = 1, . . . , k) with the values F (a), −∞ < a < ∞
(where we have switched from F (x) to F (a) to avoid the use of x for two
different meanings). The comparison becomes clearer if we write x(i) for
xi and establish the correspondence

i → a, x → F.

Generalization of (i)–(iii) now leads to the definition of Gn → F by

(i′) Gn(x) → F (x) for all x;

(ii′) sup
x

|Gn(x) − F (x)| → 0;

(iii′)
∫

[Gn(x) − F (x)]2 dF (x) → 0.

However, unlike (i)–(iii), the definitions (i′)–(iii′) are no longer equivalent.
Of the three, (ii′) is the most demanding and implies the other two (Prob-
lem 2.7). Many other definitions are possible, such as

Gn(x) → F (x) at all continuity points of F

or

d (Gn, F ) → 0,(6.2.43)

where d(F,G) is any measure of the distance between F and G. Here we
shall use (ii′), i.e., (6.2.43), where d is the Kolmogorov distance

d(F,G) = sup
x

|G(x) − F (x)| .(6.2.44)

Definition 6.2.1 A functional h is continuous at F if

sup
x

|Gn(x) − F (x)| → 0 implies that h (Gn) → h(F ).(6.2.45)

An immediate consequence of this definition and (6.2.19) is

Theorem 6.2.3 If X1, . . . , Xn are i.i.d. with cdf F and if h is a functional
that is continuous at F with respect to Kolmogorov distance, then

h
(
F̂n

)
P→ h(F ),(6.2.46)

i.e., h
(
F̂n

)
is a consistent estimator of h(F ).
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Proof. By (6.2.19), d
(
F̂n, F

)
→ 0 in probability. The continuity of h

implies that then h
(
F̂n

)
→ h(F ) in probability, as was to be proved. �

Let us now consider the continuity properties of some functionals.

Example 6.2.7 Continuity of functionals.

(i) For some fixed value a, let

h(F ) = F (a).(6.2.47)

Since

sup |Gn(x) − F (x)| → 0 implies Gn(a) → F (a),

the functional (6.2.47) is clearly continuous.

(ii) Let h(F ) be the distance between F and a fixed distribution F0 given
by

h(F ) =
∫

(F − F0)
2
dF0.(6.2.48)

Since

|h (Gn) − h(F )| =
∣∣∣∣
∫ [

(Gn − F0)
2 − (F − F0)

2
]
dF0

∣∣∣∣
≤2
∫

|Gn − F | dF0 ≤ 2 sup |Gn(x) − F (x)| ,

the functional (6.2.48) is continuous at all F .

(iii) Let h(F ) be the expectation of F , defined for all F for which this
expectation exists. Let F be any such distribution and let

Gn = (1 − εn)F + εnHn, 0 < εn < 1,

where Hn is any distribution with finite expectation. Then

d (Gn, F ) = sup |Gn(x) − F (x)| =εn sup |Hn(x) − F (x)|
≤εn → 0 as εn → 0.

On the other hand,

h (Gn) = (1 − εn)h(F ) + εnh (Hn) .

The right side can be made to tend to any value whatever by appro-
priate choice of Hn. Thus h(F ) = EF (X) is not continuous at any
F .
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The analogous argument applies to higher moments.

Note: This example shows that continuity, although by Theorem
6.2.3 sufficient for consistency, is far from necessary since X̄ and the
sample moments are consistent estimators of their population coun-
terparts without being continuous.

(iv) Assume that F−1 is continuous in a neighborhood of p, and let h(F )
denote the pth quantile of F . To see that h is continuous at any such
F , note that

F (x) + ε ≥ Gn(x) ≥ F (x) − ε for all x

implies

inf {x : F (x) + ε ≥ p} ≤ inf {x : Gn(x) ≥ p} ≤ inf {x : F (x) − ε ≥ p}

and hence that

d (Gn, F ) ≤ ε implies F−1(p − ε) ≤ G−1
n (p) ≤ F−1(p + ε)(6.2.49)

for any ε < min(p, 1 − p). From the continuity of F−1 at p, it now
follows that G−1

n (p) → F−1(p) as ε → 0. �

Summary

1. The natural estimator of a functional h(F ) defined over a large (non-
parametric) class F of distributions F is the plug-in estimator h

(
F̂n

)
,

where F̂n is the sample cdf.

2. The statistic F̂n(a) is a consistent estimator of F (a), and
√

n[F̂n(a)
−F (a)] has a normal limit. The maximum difference
max

∣∣∣F̂n(x) − F (x)
∣∣∣ tends to 0 in probability, and hence F̂n(x) P→

F (x) not only at every fixed point x = a but simultaneously for all
x.

3. Approximate values of the bias and variance, and asymptotic normal-
ity are obtained for a number of examples, including central moments
and quantiles.

4. If h is an expectation functional, h
(
F̂n

)
is a V -statistic. The V -

statistics are closely related to the U -statistics treated in Section 6.1.

5. Continuity of a functional with respect to a distance d = d(F,G)
is defined and is illustrated on some examples for the case of Kol-
mogorov distance.



6.3 Limit distributions of statistical functionals 393

6.3 Limit distributions of statistical functionals

Theorem 6.2.3 of the preceding section showed that h
(
F̂n

)
→ h(F ) in

probability when h is continuous. This result can be viewed as an ana-
log of Theorem 2.1.4 concerning the convergence in probability of f (Yn),
where {Yn, n = 1, 2, . . . } is a sequence of random variables. In the present
section, we shall be concerned with the corresponding problem regarding
convergence in law, more specifically with the convergence in law of

√
n
[
h
(
F̂n

)
− h(F )

]
(6.3.1)

when h is differentiable in a suitable sense. We are thus aiming for an analog
of Theorem 2.5.2 regarding the convergence in law of

√
n [f (Yn) − f(θ)].

With such a result, we might hope to accomplish three objectives:

(i) an understanding of why functionals such as the median or
V -statistics, which seem so far from being sums of independent ran-
dom variables, have a normal limit;

(ii) a formula for the asymptotic variance of (6.3.1);

(iii) simple sufficient conditions for the asymptotic normality of (6.3.1).

It turns out that we shall be successful with respect to the first two of these
aims but less so with the third. The following purely heuristic remarks have
the purpose of motivating the results (6.3.8)–(6.3.11).

The proof of Theorem 2.5.2 was based on a Taylor expansion

f(b) − f(a) = (b − a)f ′(a) + R,(6.3.2)

where the remainder R tends to zero as b → a. Before considering what
a corresponding expansion for functionals might look like, it is helpful to
take a look at the intermediate case of a differentiable function f of several
variables, for which (6.3.2) generalizes to

f (b1, . . . , bk) − f (a1, . . . , ak) =
k∑
i=1

(bi − ai)
∂f (x1, . . . , xk)

∂xi

∣∣∣∣
x=a

+ R,

(6.3.3)

where R → 0 as (b1, . . . , bk) → (a1, . . . , ak). (For discussion and applica-
tion of (6.3.3), see Section 2 of Chapter 5.)

For a corresponding expansion of a functional h, let us write

h(G) − h(F ) =
∫

h′
x(F )(dG(x) − dF (x)) + R.(6.3.4)

Here x replaces i; the integral replaces the sum in (6.3.3); dG(x) − dF (x)
replaces the difference bi − ai; F replaces (a1, . . . , ak); and h′

x(F ) as a
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function of x replaces the partial derivative ∂f (x1, . . . , xk) /∂xi
∣∣
x=a . The

expansion (6.3.4) is meaningful if R → 0 as d(F,G) → 0 for a suitable
distance function d, for example, the Kolmogorov distance. Since for any
constant c, ∫

c (dG(x) − dF (x)) = 0,

equation (6.3.4) can determine h′
x only up to an additive constant, and

h′
x(F ) is therefore usually standardized so that∫

h′
x(F )dF (x) = 0.(6.3.5)

Then (6.3.4) can be written as

h(G) − h(F ) =
∫

h′
x(F )dG(x) + R.(6.3.6)

Let us now replace G by the sample cdf F̂n and recall that d
(
F̂n, F

)
tends to zero in probability by (6.2.19). Then

h
(
F̂n

)
− h(F ) =

∫
h′
x(F )dF̂n(x) + Rn

=
1
n

n∑
i=1

h′
xi

(F ) + Rn,
(6.3.7)

where the main term is a sum of i.i.d. variables, which have expectation 0
by (6.3.5). It follows from the central limit theorem that

√
n
[
h
(
F̂n

)
− h(F )

]
L→ N

(
0, γ2(F )

)
(6.3.8)

with

γ2(F ) = E
{

[h′
x(F )]2

}
=
∫

[h′
x(F )]2 dF (x),(6.3.9)

provided

√
nRn

P→ 0.(6.3.10)

To give meaning to this result, it remains to define h′
x(F ). Let δx denote

the cdf of the distribution that places probability 1 at the point x, and let

Fε,x = (1 − ε)F + εδx.(6.3.11)

Then it turns out that in many situations in which (6.3.8) and (6.3.9) hold,
h′
x(F ) is given by the derivative with respect to ε of h (Fε,x) evaluated at
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ε = 0. It will be convenient to think of this derivative for fixed F as a
function of x, and it is commonly denoted by

IFh,F (x) =
d

dε
h [(1 − ε)F + εδx] |ε=0 = h′

x(F ).(6.3.12)

The vector of partial derivatives
∂f

∂x1

∣∣∣∣
x=a

, . . . ,
∂f

∂xk

∣∣∣∣
x=a

in (6.3.3) is thus

replaced by the infinite set of derivatives (6.3.12) for varying x. With the
notation (6.3.12), equations (6.3.5) and (6.3.9) become∫

IFh,F (x)dF (x) = 0(6.3.13)

and

γ2(F ) =
∫

IF 2h,F (x)dF (x).(6.3.14)

The function IF , the so-called influence function, has an interest inde-
pendent of its role in (6.3.4) and (6.3.9). It measures the rate at which
the functional h changes when F is contaminated by a small probability of
obtaining an observation x, and thus is a measure of the influence of such
a contamination. While continuity of h indicates whether the value of h at
a distribution close to F is close to its value at h, the influence function
provides a measure of this closeness, in particular the influence of a small
proportion of observations at x which do not “belong” to F , so-called gross
errors. The maximum (over x) of this influence, the quantity

λ∗ = sup
x

|IFh,F (x)| ,(6.3.15)

is called the gross-error sensitivity of h at F .
Let us now return to the three objectives (i)–(iii) stated at the beginning

of the section. An explanation for (i), the common occurrence of asymptotic
normality for very non-linear statistics, is seen to be analogous to that
given in Theorem 2.5.2 for functions of random variables. It is the fact that
if the Taylor expansion (6.3.7) is valid, then h

(
F̂n

)
− h(F ) can to first

order be approximated by a sum of i.i.d. random variables. An answer for
(ii), a formula for the asymptotic variance of (6.3.1), is given in (6.3.14),
which exhibits the asymptotic variance as the integral of the square of the
influence function.

There remains problem (iii): To determine conditions under which the
heuristic result (6.3.8) can be proved. This issue can be approached in two
ways. One is to obtain general conditions on h under which (6.3.10) will
hold. Such conditions involving not only the limit (6.3.12) but the more
general limit

lim
ε→0

d

dε
h [(1 − ε)F + εG](6.3.16)
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are provided by the theory of differentiation of functionals and require
(6.3.16) to converge uniformly as G ranges over certain sets of distributions.
Discussions of this theory can be found, for example, in Serfling (1980),
Huber (1981), Fernholz (1983), and Staudte and Sheaffer (1990).

For specific cases, an alternative and often more convenient approach
considers the expansion (6.3.7) as a heuristic device suggesting the right
answer, and then validates this answer by checking directly that the re-
mainder in (6.3.7) satisfies (6.3.10). Carrying out this approach in specific
cases requires the following steps.

1. Calculation of h (Fε,x) and the influence function

IFh,F (x) = h′
x(F ) =

d

dε
h (Fε,x)

∣∣∣∣
ε=0

.

2. Checking condition (6.3.13).

3. Checking condition (6.3.10).

4. Determining the asymptotic variance given by (6.3.9).

We shall now carry out this program for some specific functionals h. Some
of these were treated earlier by different methods. The results are obtained
here by a unified approach which provides additional insights.

Example 6.3.1 The mean. When h(F ) = ξ is the mean EF (x) of X, we
have

h (Fε,x) = (1 − ε)ξ + εx(6.3.17)

and hence

h′
x(F ) = IFh,F (x) =

d

dε
h (Fε,x) = x − ξ.(6.3.18)

Thus λ∗ = ∞ since the influence function (6.3.17) is unbounded. This
corresponds to the fact that a small mass placed sufficiently far out can
change the expectation by an arbitrarily large amount.

To check (6.3.13), we calculate∫
Ih,F (x)dF (x) =

∫
(x − ξ)dF (x) = 0,

as was to be shown.
Asymptotic normality of

√
n
[
h
(
F̂n

)
− h(F )

]
requires that the remain-

der Rn defined by (6.3.7) satisfies (6.3.10). In the present case,

h
(
F̂n

)
− h(F ) = X̄ − ξ =

1
n

∑
h′
xi

(F ).
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Thus Rn ≡ 0 and (6.3.10) is trivially satisfied.
Finally,

γ2(F ) = E [h′
X(F )]2 = E (X − ξ)2 = Var(X).

It follows that
√

n
[
h
(
F̂n

)
− h(F )

]
=

√
n
(
X̄ − ξ

)
→ N (0,Var(X)) ,

which in this case is simply the classical CLT.

Note: The last conclusion of course does not constitute a proof of the CLT
since the CLT was used to establish (6.3.8). �

Example 6.3.2 A goodness-of-fit measure. As a more typical exam-
ple, consider the measure of goodness of fit

h(F ) =
∫

(F − F0)
2
dF0(6.3.19)

corresponding to the Cramér-von Mises statistic (6.2.10). In order to cal-
culate the influence function, recall that

Fε,x(t) = (1 − ε)F (t) + εδx(t),

where δx(t) is the cdf of the distribution assigning probability 1 to the point
x so that

δx(t) =
{

0 if t < x
1 if t ≥ x.

(6.3.20)

Thus

h (Fε,x) =
∫

[(1 − ε)F (t) + εδx(t) − F0(t)]
2
dF0(t).

This is a quadratic in ε and its derivative (w.r.t. ε) is the coefficient of ε,
which is

h′
x(F ) = 2

∫
[F (t) − F0(t)] [δx(t) − F (t)] dF0(t).(6.3.21)

Since |h′
x(F )| is clearly less than 2, it is seen that the influence function is

bounded and hence λ∗ < ∞.
We leave the checking of (6.3.13) to Problem 3.1 and next prove (6.3.8) by

checking condition (6.3.10). The remainder Rn is, by (6.3.7) and (6.3.20),

Rn =
∫ (

F̂n − F0

)2
dF0 −

∫
(F − F0)

2
dF0

− 2
n

∫ n∑
i=1

(F − F0) (δxi
− F ) dF0.

(6.3.22)
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Now
∑

δxi
(t) is the number of x’s ≤ t and hence

1
n

∑
δxi

(t) = F̂n(t).(6.3.23)

Taking the difference of the first two terms in (6.3.21) and using (6.3.22)
we find (Problem 3.1) that

Rn =
∫ (

F̂n − F
)2

dF0 ≤ sup
(
F̂n(x) − F (x)

)2
.(6.3.24)

Since by (5.7.28),
√

nDn =
√

n sup
∣∣∣F̂n(x) − F (x)

∣∣∣ tends to a limit distri-

bution, the same is true for nD2n, which is therefore bounded in probability.
It follows that

√
nRn ≤ 1√

n
nD2n

P→ 0,

which proves (6.3.8).
This result was already mentioned in the paragraph following (5.7.34),

where it was stated that the asymptotic distribution of

Wn = h
(
F̂n

)
= n

∫ (
F̂n − F

)2
dF0

is normal, provided F �= F0. When F = F0, the influence function given by
(6.3.20) is seen to be 0 for all x and hence the asymptotic variance γ2(F0)
is also 0. The limit result (6.3.8) then only states that

√
n
(
h
(
F̂n

)
− h (F0)

]
P→ 0.

The correct normalizing factor in this case is no longer
√

n but n. The
situation is completely analogous to that encountered in the delta method
in Section 2.5 when contrasting the cases f ′(θ) �= 0 and f ′(θ) = 0.

To complete the discussion of (6.3.8), we must consider the asymptotic
variance

γ2(F ) = E [h′
X(F )]2 = 4

∫ [∫
(F − F0) (δx − F ) dF0

]2
dF (x).(6.3.25)

This value typically has to be obtained by numerical evaluation of the
double integral (6.3.25). For some cases in which (6.3.25) can be evaluated
explicity, see Problem 3.4(i). �

Example 6.3.3 Central moments. In Example 6.2.4, we dealt with the
bias and variance of h

(
F̂n

)
= Mk as estimator of h(F ) = µk. The asymp-

totic normality of
√

n (Mk − µk) =
√

n
[
h
(
F̂n

)
− h(F )

]
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was shown in Example 5.2.7. We shall now derive this result from the
present point of view.

We begin by calculating the influence function of µk. Since Fε,k is the
distribution of random variable Y defined by

Y =
{

X with probability 1 − ε
x with probability ε,

(6.3.26)

it follows that

h (Fε,x) = E (Y − η)k ,(6.3.27)

where

η = E(Y ) = (1 − ε)ξ + εx.

Thus

h (Fε,x) =E [(Y − ξ) − ε (x − ξ)]k

=E (Y − ξ)k − kε (x − ξ)E (Y − ξ)k−1 + · · ·

=
[
(1 − ε)E (X − ξ)k + ε (x − ξ)k

]
− kε (x − ξ)

[
(1 − ε)E (X − ξ)k−1 + ε (x − ξ)k−1

]
+ · · · .

(6.3.28)

It is seen that h (Fε,x) is a polynomial in ε, and that IFh,F (x) is therefore
equal to the coefficient of ε in (6.3.28), and hence is equal to

IFh,F (x) = (x − ξ)k − µk − k(x − ξ)µk−1.(6.3.29)

It follows that

E [IFh,F (X)] = E(X − ξ)k − µk − kµk−1E(X − ξ) = 0(6.3.30)

and (Problem 3.4(ii)) that

γ2(F ) = E
[
IF 2h,F (X)

]
=E
[
(X − ξ)k − µk

]2
− 2kµk−1E (X − ξ)k+1

+ k2µ2k−1E(X − ξ)2

=µ2k − µ2k − 2kµk−1µk+1 + k2µ2k−1µ2.

(6.3.31)

Equation (6.3.7) becomes

Mk − µk =
1
n

n∑
i=1

(Xi − ξ)k − µk −
k

n
µk−1

∑
(Xi − ξ) + Rn
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so that the remainder Rn is given by

Rn =
1
n

∑(
Xi − X̄

)k − µk −
1
n

∑
(Xi − ξ)k + µk + k

(
X̄ − ξ

)
µk−1.

Since the distribution of Rn does not depend on ξ, put ξ = 0 without loss
of generality. Then

√
nRn =

√
n

[
−kX̄

∑
Xk−1
i

n
+
(

k

2

)
X̄2
∑

Xk−2
i

n

− · · · + (−1)kX̄k + kX̄µk−1

]
.

Here all the terms of the form

√
nX̄r

∑
Xk−r
i

n
with r ≥ 2

tend to 0 in probability because
√

nX̄ and hence
(√

nX̄
)r is bounded in

probability and therefore

√
nX̄r =

(√
nX̄
)r

/
(√

n
)r−1 P→ 0.

The sum of the two remaining terms is

−k
√

nX̄



∑

Xk−1
i

n
− µk−1


 ,

which tends to 0 in probability since
√

nX̄ is bounded in probability and∑
Xk−1
i /n is a consistent estimator of µk−1. This completes the proof of

asymptotic normality with the asymptotic variance given by (6.3.30). The
result agrees with that obtained in Example 5.2.7. �

Example 6.3.4 Expectation functionals; V -statistics. In Example
6.2.5, it was seen that if h(F ) is a one-sample expectation functional, then
h
(
F̂n

)
is the associated V -statistic (6.2.31), which is asymptotically equiv-

alent to the corresponding U -statistic (6.1.3). Asymptotic normality of U -
statistics, not only for the one-sample case but for the general case of s
samples with U given by (6.1.33), was stated in Theorem 6.1.4. The proof
was given for s = 2, a1 = a2 = 1 at the end of Section 6.1 and was sketched
for s = 1, a = 2 in Problem 6.1.17. In these proofs, a crucial part was
played by the asymptotically equivalent statistics T ∗

N , given in (6.1.74) and
in Problem 1.17. The present approach provides an explanation of T ∗

N : It

is just the linear part of the Taylor expansion of
√

n
[
h
(
F̂n

)
− h (F )

]
. (An
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alternative way of arriving at the same result is given in Section A.2 of the
Appendix.)

We begin with the one-sample case so that X1, . . . , Xn are i.i.d. according
to F , and let

h(F ) = EFφ (X1, . . . , Xa)(6.3.32)

be an expectation functional and

V = h
(
F̂n

)
=

1
na

∑
· · ·
∑

φ (Xi1 , . . . , Xia)(6.3.33)

its V -estimator (6.2.31).
In order to calculate the influence function of h, note that

h(Fε,x) =
∫

· · ·
∫

φ(y1, . . . , ya)d[(1 − ε)F (y1) + εδx(y1)]

· · · d[(1 − ε)F (ya) + εδx(ya)].
(6.3.34)

The right side is a polynomial in ε of degree a, and its derivative (with
respect to ε) at ε = 0 is the coefficient of ε in (6.3.34). Thus

IFh,F (x)

=
∫

· · ·
∫

φ (y1, . . . , ya) [dδx (y1) − dF (y1)] dF (y2) · · · dF (ya)

+
∫

· · ·
∫

φ (y1, . . . , ya) dF (y1) [dδx (y2) − dF (y2)] dF (y3) · · · dF (ya)

+ · · · .

By (6.2.5),∫
φ (y1, . . . , ya) dδx (yi) = φ (y1, . . . , yi−1, x, yi+1, . . . , ya)

and therefore

IFh,F (x) =
a∑
i=1

[∫
· · ·
∫

φ (y1, . . . , yi−1, x, yi+1, . . . , ya)

dF (y1) · · · dF (yi−1) dF (yi+1) · · · dF (ya) − h(F )]

=
a∑
i=1

[Eφ (Y1, . . . , Yi−1, x, Yi+1, . . . , Ya) − h(F )] .

Since φ is symmetric in its a arguments, we have

Ih,F (x) = a [φ1(x) − h(F )] ,(6.3.35)
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where

φ1(x) = Eφ (x, Y2, . . . , Ya) .(6.3.36)

It follows from (6.1.14) with θ = h(F ) that∫
Ih,F (x)dF (x) = a [Eϕ1(X) − h(F )] = 0,

which checks (6.3.13). Also by (6.1.15),

γ2(F ) = a2 Var φ1(X) = a2σ21 .(6.3.37)

By the central limit theorem,

a

n

√
n
∑

[φ1 (Xi) − h(F )] L→ N
(
0, a2σ21

)
and this suggests by (6.3.7) that

√
n
[
h
(
F̂n

)
− h(F )

]
=

√
n

a

n

[∑
φ1 (Xi) − h(F )

]
+

√
nRn

L→ N
(
0, a2σ21

)
.

(6.3.38)

To prove (6.3.38), we need to show that

√
nRn

P→ 0,(6.3.39)

which will follow if we can show that

nE
(
R2n
)

=nE
[
h
(
F̂n

)
− a

n

∑
φ1 (Xi)

]2
=n Var

[
h
(
F̂n

)
− a

n

∑
φ1 (Xi)

]
→ 0.

(6.3.40)

The limit (6.3.40) can be proved by showing that the three quantities

n Var h
(
F̂n

)
, n Var

a

n

∑
φ1 (Xi) , and Cov

[
nh
(
F̂ )n

)
,
a

n

∑
φ1 (Xi)

](6.3.41)

all tend to a2σ21 as n → ∞ (Problem 6.3.14). Checking (6.3.41) (which for
a = 2, s1 = s2 = 1 is left to Problem 6.1.17) completes the proof of (6.3.38).
Note that throughout this discussion we have tacitly assumed that

σ21 > 0 and Var φ (X1, . . . , Xa) < ∞.(6.3.42)

An interesting special case of a V -statistic with s = 1, a = 2 is provided
by letting

h(F ) = φ (x1, x2) =
∫

[δx1(t) − F0(t)] [δx2(t) − F0(t)] dF0(t),(6.3.43)
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where F0 is some given cdf. Then

h
(
F̂n

)
=

1
n2

n∑
i=1

n∑
j=1

φ (Xi, Xj)

=
∫ 

∑
δxi(t)

n
− F0(t)





∑

δxj

n
− F0(t)


 dF0(t)

and hence, by (6.3.23),

h
(
F̂n

)
=
∫ (

F̂n − F0

)2
dF0.

Thus h
(
F̂n

)
is the Cramér-von Mises statistic for which asymptotic nor-

mality was proved in Example 6.3.2.
Let us now extend these considerations to the case of V -statistics with

s = 2, a1 = a2 = 1 treated earlier in the proof of Theorem 6.1.4 at the end
of Section 1. The two cases together give a good picture of the general sit-
uation. Let X1, . . . , Xm and Y1, . . . , Yn be i.i.d. according to distributions
F and G, respectively, and let

h(F,G) = EF,Gφ(X,Y ).(6.3.44)

Then

h
(
F̂m, Ĝn

)
=

1
mn

∑ m∑
i=1

n∑
j=1

φ (Xi, Yj) ,(6.3.45)

which is both a U - and a V -statistic.
The univariate expansion (6.3.6) with h′

x(F ) given by (6.3.12) is now
replaced by the bivariate expansion

h (F ∗, G∗) − h(F,G) =
∫

d

dε
h (Fε,x, G) |ε=0 [dF ∗(x) − dF (x)]

+
∫

d

dε
h (F,Gε,y) |ε=0 [dG∗(y) − dG(y)] + R,

(6.3.46)

where F has been replaced by (F,G) and G by (F ∗, G∗). Let us denote the
derivatives in (6.3.46) by

I
(1)
h,F,G(x) =

d

dε
h (Fε,x, G) |ε=0(6.3.47)

and

I
(2)
h,F,G(y) =

d

dε
h (F,Gε,y) |ε=0,
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and suppose that they have been standardized so that∫
I
(1)
h,F,G(x)dF (x) =

∫
I
(2)
h,F,G(y)dG(y) = 0.

Then the univariate expansion (6.3.4) with h′
x(F ) given by (6.3.12) becomes

h (F ∗, G∗) − h(F,G) =
∫

I
(1)
F,G,xdF ∗(x) +

∫
I
(2)
F,G,ydG∗(y) + R.(6.3.48)

We now substitute F̂m for F ∗ and Ĝn for G∗ to obtain, in generalization
of (6.3.7),

h
(
F̂m, Ĝn

)
− h(F,G) =

1
m

m∑
i=1

I
(1)
h,F,G (Xi) +

1
n

n∑
j=1

I
(2)
h,F,G (Yj) + Rm,n.

(6.3.49)

Let us next evaluate the first two terms in (6.3.49) for the case that h is
given by (6.3.44). Then

h (Fε,x, G) =
∫ ∫

φ(u, v)d [(1 − ε)F (u) + εδx(u)] dG(v)

and

d

dε
h (Fε,x, G) |ε=0 =

∫
φ(x, v)dG(v) − h(F,G),

and analogously

d

dε
h (F,Gε,y) |ε=0 =

∫
φ (u, y) dF (u) − h(F,G).

In the notation of (6.1.70), we have∫
φ(x, v)dG(v) = φ10(x) and

∫
φ(u, y)dF (u) = φ01(y)

and hence

h
(
F̂m, Ĝn

)
− h(F,G) =

1
m

∑
φ10 (Xi) +

1
n

∑
φ01 (Yj) + Rm,n.

(6.3.50)

The auxiliary random variable T ∗
N defined by (6.1.74) is thus exactly equal

to the linear part of

√
N
[
h
(
F̂m, Ĝn

)
− h(F,G)

]
.(6.3.51)
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It was shown in the proof of Theorem 6.1.4 (and Problem 1.16) that√
NRm,n

P→ 0 and hence that the V -statistic (6.3.45) is asymptotically
normal.

The Taylor expansion (6.3.48) has not brought any new results concern-
ing V -statistics. What it does bring, and what was missing in the earlier
proof of Theorem 6.1.4, is an interpretation of the linear function T ∗

N . In
that proof, the functions φ10 and φ01 came out of the blue without any
explanation. They have now been identified as the two components I(1)

and I(2) of the influence function. �
Examples 6.3.1–6.3.4 illustrate how the influence function approach can

be used to obtain the asymptotic normality result (6.3.8) in particular
cases. Let us now consider under what circumstances this result cannot be
expected to hold. Since we are dealing with a generalization of the delta
method, let us recall Theorem 2.5.2, where the conditions required for the
asymptotic normality of

√
n
[
f
(
X̄
)
− f(θ)

]
were that

(i) f is differentiable at θ

and

(ii) f ′(θ) �= 0.

The situation is quite analogous in the present case.

(i) Lack of smoothness.
Condition (i) suggests that for (6.3.8) to hold, the funtional h needs to

be sufficiently smooth (for sufficient conditions, see, for example, Serfling
(1980)). As an example in which this is not the case, suppose that h(F )
is the absolute value of the population median under the assumptions of
Example 2.4.9. Then it follows from Example 2.5.6 of that chapter that
√

n
[
h
(
F̂n

)
− h(F )

]
has a limit distribution which, however, is not normal

when the population median is zero. Another example is provided by the
Kolmogorov distance h(F ) = sup

x
|F (x) − F0(x)|. Here it turns out that

√
n
[
h
(
F̂n

)
− h(F )

]
tends to a non-normal limit distribution (depending

on F ) both when F = F0 and when F �= F0. For a discussion of this result,
see, for example, Serfling (1980, Sections 2.1.6 and 2.8.2).

(ii) Vanishing derivative. It was seen in Section 2.5 that when f ′(θ) = 0
in the situation of Theorem 2.5.2 but f ′′(θ) �= 0, the Taylor expansion
of f (Tn) about f(θ) needs to be carried a step further. The appropriate
normalizing constant for f (Tn)− f(θ) is then no longer

√
n but n, and the

limit distribution is no longer normal. Similarly, the asymptotic normality
(6.3.8) breaks down when, for the given distribution F , the derivative h′

x(F )
of h is equal to 0 for all x. This possibility is illustrated in Example 6.3.2.
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Summary

1. By making a formal Taylor expansion of h
(
F̂n

)
about h(F ), the dif-

ference h
(
F̂n

)
− h(F ) is expressed as the average of n i.i.d. random

variables plus a remainder Rn. If one can show that
√

nRn
P→ 0, it fol-

lows that
√

n
[
h
(
F̂n

)
− h(F )

]
tends in law to a normal distribution

with mean 0 and with a variance that is a function of the derivative
h′
F (x).

2. The functional derivative h′
F can frequently be calculated as the ordi-

nary derivative of the mixture of F and a one-point distribution with
respect to the mixing proportion. This derivative can be interpreted
as the influence function IFh,F (x), which measures the influence on
h(F ) of a small probability placed at a point x.

3. The influence function is calculated for a number of functionals h. For
each of them, it is then checked that the asymptotic variance γ2(F )
equals the integral of IF 2h,F (x).

4. Examples are given that show how the asymptotic theory of Points
1–3 fails when (i) h is not sufficiently smooth and (ii) the derivative
h′
x(F ) is identically 0.

6.4 Density estimation

Among the nonparametric estimation problems discussed in the preceding
sections, we considered in particular estimating the cdf F and the quantile
function F−1. When F has a density f , the latter provides a visually more
informative representation of the distribution, and in the present section, we
shall therefore consider the estimation of a probability density. We begin
with the estimation of f(y) for a given value y, and suppose that f is
continuous in a neighborhood of y and that f(y) > 0. Continuity assures
that f(y) is completely determined by F (Problem 4.1) and hence that
f(y) is a functional h(F ) defined over the class F of all distributions F
with density f continuous in a neighborhood of y with f(y) > 0.

To estimate h(F ) on the basis of a sample X1, . . . , Xn from F , we cannot
use h

(
F̂n

)
since F̂n does not have a density and h

(
F̂n

)
is therefore not

defined. However, since

f(y) = lim
h→0

F (y + h) − F (y − h)
2h

,(6.4.1)
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one might consider the estimator

f̂n(y) =
F̂n(y + h) − F̂n(y − h)

2h
.(6.4.2)

For large n, one would expect f̂n(y) to be close to

[F (y + h) − F (y − h)] /2h,

and for small h, the latter will be close to f(y). Thus one can hope that
with h = hn tending to 0 as n → ∞, the estimator f̂n(y), the so-called
naive density estimator, will be a consistent estimator of f(y). For suitable
sequences hn, this conjecture is confirmed by Theorem 6.4.1.

It is interesting to note that f̂n(y) is itself a probability density. Since it
is clearly non-negative, one only needs to show that

∞∫
−∞

f̂n(y)dy = 1.(6.4.3)

To see this, write

f̂n(y) =
1

2nh

n∑
j=1

Ij(y),(6.4.4)

where

Ij(y) = 1 if y − h < xj < y + h and 0 otherwise.(6.4.5)

Then

∫
f̂n(y)dy =

1
2nh

n∑
j=1

∞∫
−∞

Ij(y)dy =
1

2nh

n∑
j=1

xj+h∫
xj−h

dy = 1.

The basic properties of f̂n are easily obtained from the fact that
n
[
F̂n(y + h) − F̂n(y − h)

]
has the binomial distribution b(p, n) with

p = F (y + h) − F (y − h).(6.4.6)

It follows that

E
[
f̂n(y)

]
=

F (y + h) − F (y − h)
2h

=
p

2h
.(6.4.7)

The bias is therefore

b(y) =
F (y + h) − F (y − h)

2h
− f(y),(6.4.8)
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which tends to zero, provided

h = hn → 0 as n → ∞.(6.4.9)

Similarly, the variance of f̂n(y) is

Var
[
f̂n(y)

]
=

p(1 − p)
4nh2

.(6.4.10)

As hn → 0, the value of p

pn = F (y + hn) − F (y − hn) → 0.

From (6.4.10), we have

Var
[
f̂n(y)

]
∼ pn

2hn
· 1
2nhn

.

Since the first factor on the right side tends to f(y) > 0, Var
[
f̂n(y)

]
→ 0

as hn → 0 if in addition

nhn → ∞,(6.4.11)

that is, if hn tends to 0 more slowly than 1/n or, equivalently, if
1
n

= o (hn).
From these results, we immediately obtain sufficient conditions for the

consistency of f̂n(y).

Theorem 6.4.1 A sufficient condition for f̂n(y) to be a consistent esti-
mator of f(y) is that both (6.4.9) and (6.4.11) hold.

Proof. This follows directly from Theorem 2.1.1 and the bias-variance
decomposition (1.4.6). �

Although f̂n(y) is consistent for estimating f(y) when the h’s satisfy
(6.4.9) and (6.4.11), note that f̂n(y) as an estimator of f(y) involves two
approximations: f(y) by [F (y + h) − F (y − h)] /2h and the latter by f̂n(y).
As a result, the estimator turns out to be less accurate than one might have
hoped. However, before analyzing the accuracy of f̂n(y), let us note another
drawback. The estimator f̂n(y), although a density, is a step function with
discontinuities at every point xj ± h, j = 1, . . . , n. If we assume the true f
to be a smooth density, we may prefer its estimator also to be smooth.

To see how to modify f̂n for this purpose, consider the following descrip-
tion of (6.4.2). To any observation xj , the empirical distribution assigns
probability 1/n. The contribution of xj to f̂n (given by the term Ij(y)/2nh),
spreads this probability mass over the interval (xj − h, xj + h) according
to a uniform distribution. The ragged appearance of f̂n results from the
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discontinuities of the uniform density at its end points. This suggests a
natual remedy: In the construction of f̂n(y), replace the uniform density
U (xj − h, xj + h) by some other smoother density also centered on xj and
with a scale factor h. Such a density can be written as

1
h

K

(
y − xj

h

)
.(6.4.12)

With this change, the estimator of f(y) becomes

f̂n(y) =
1
n

n∑
j=1

1
h

K

(
y − Xj

h

)
,(6.4.13)

which reduces to (6.4.4) for K = U(−1, 1) (Problem 4.3). The estimator
(6.4.13) is called a kernel estimator with kernel K; the scale factor h is
called the bandwidth. We shall assume throughout this section that K is a
probability density, so that it is ≥ 0 and satisfies∫

K(z)dz = 1.(6.4.14)

In addition, we shall restrict attention to densities K that are symmetric
about 0. In generalization of (6.4.3), note that f̂n is a probability density
since it is non-negative and since

∫
f̂n(y)dy =

1
n

n∑
j=1

∫
K (t − xj) dt =

1
n

n∑
j=1

∫
K(z)dz = 1.

Let us now consider conditions under which the bias of the estimator
(6.4.13) tends to 0. Such conditions can be of two kinds: restrictions on (i)
the kernel K and (ii) the true density f . Since K is under our control and f
is unknown, conditions on K are preferable. Following (6.4.8), we saw that
when K is uniform density, then as hn → 0, the bias of f̂n(y) tends to 0
for any f that is continuous at y. No further assumptions on f are needed.
The corresponding fact is true for (6.4.13) under very weak conditions on
K, as is shown by the following theorem.

Theorem 6.4.2 Let f be any density that is continuous at y and let K be
any kernel which is bounded and satisfies

yK(y) → 0 as y → ±∞.(6.4.15)

Then the bias of f̂n(y) tends to 0, or, equivalently,

E
[
f̂n(y)

]
→ f(y) as h = hn → 0.(6.4.16)
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For a proof, see Parzen (1962), Rosenblatt (1971), or Scott (1992). We
shall instead prove a result which does make some smoothness assumptions
about f . The proof parallels that of Theorem 4.2.1 and gives somewhat
more detailed results, which will be needed to determine the best choice of
the bandwidth h.

Theorem 6.4.3 Let f be three times differentiable with bounded third deriva-
tive in a neighborhood of y and let K be a kernel symmetric about 0, with

∫
K2(y)dy < ∞,

∫
y2K(y)dy = τ2 < ∞, and

∫
|y|3K(y)dy < ∞.

(6.4.17)

(i) Then for any sequence hn, n = 1, 2, . . . , satisfying (6.4.9),

bias of f̂n(y) =
1
2
h2nf

′′(y)τ2 + o
(
h2n
)
.(6.4.18)

(ii) If, in addition, hn satisfies (6.4.11), then

Var
[
f̂n(y)

]
=

1
nhn

f(y)
∫

K2(y)dy + o

(
1

nhn

)
.(6.4.19)

Proof.
(i) Suppressing the subscript n, we find for the bias b(y) of f̂n(y),

b(y) =E

[
1
n

∑ 1
h

K

(
y − Xi

h

)]
− f(y)

=
∫

1
h

K

(
y − t

h

)
f(t)dt − f(y)

=
∫

K(z) [f(y − hz) − f(y)] dz.

(6.4.20)

Now by Taylor’s theorem (Theorem 2.5.1),

f(y − hz) = f(y) − hzf ′(y) +
1
2
h2z2f ′′(y) +

1
6
h3z3f ′′′(ξ),

where ξ lies between y and y − hz. Using the fact that
∫

zK(z)dz = 0, we

therefore have

b(y) =
1
2
h2f ′′(y)

∫
z2K(z)dz + Rn,(6.4.21)

where, with |f ′′′(z)| ≤ M ,

|Rn| ≤
Mh3

6

∫
|z|3K(z)dz = o

(
h2
)
,
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as was to be proved.
(ii) By (6.4.13), f̂n(y) is the average of n i.i.d. random variables and thus

n Var
[
f̂n(y)

]
=Var

[
1
h

K

(
y − X

h

)]

=
∫

1
h2

K2
(

y − t

h

)
f(t)dt −

[
E

1
h

K

(
y − X

h

)]2
.

Since the second term equals

[Ef̂n(y)]2 = [f(y) + b(y)]2,

we have by (6.4.18)

n Var
[
f̂n(y)

]
=

1
h

∫
K2(z)f(y − hz)dz −

[
f(y) + o

(
h2
)]2

=
1
h

∫
K2(z)

[
f(y) − hzf ′(y) +

1
2
h2z2f ′′(ξ)

]
dz + O(1).

Dividing by n and using (6.4.9) and (6.4.11), we see that all the terms in
Var f̂n(y) except the first tend to 0 and hence that

Var
[
f̂n(y)

]
=

1
hn

f(y)
∫

K2(z)dz + o

(
1
hn

)
(6.4.22)

as nhn → ∞ and hn → 0. �

Corollary 6.4.1 Under the assumptions of Theorem 6.4.3,

E
[
f̂n(y) − f(y)

]2
→ 0(6.4.23)

and hence f̂n(y) is a consistent estimator of f(y), provided

hn → 0 and nhn → ∞ as n → ∞.(6.4.24)

Proof. By (6.4.18) and (6.4.19), both the bias and variance of f̂n(y) tend
to zero and the result follows from the fact that

E
[
f̂n − f(y)

]2
= (Bias)2 + Variance.(6.4.25)

In order to specify the estimator f̂n(y) completely, it is necessary to
choose the bandwidth h. To obtain some insight into the effect of this
choice, consider the case of n = 2 observations and suppose that K is a
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unimodal density such as the normal. If h is very small, the mass of 1/2
for each xi, when spread out according to (6.4.12), will decrease so rapidly
away from xi that the sum of the two contributions will differ little from
the effect of each contribution alone (Problem 4.5).

The same is clearly true for any fixed number of observations as h be-
comes sufficiently small. In particular, f̂n(y) will then have one peak for
each observation. Consider, on the other hand, what happens for large h.
Then each contribution is nearly flat over a large interval centered at its
observation. As h → ∞, all individual features of the data disappear (Prob-
lem 4.5). These comments can be summarized by saying that the estimator
undersmooths or oversmooths when h is too small or too large, respectively.

To see how to find the right middle course for h, let us measure the
accuracy with which f̂n(y) estimates f(y) by the expected squared error
(6.4.25). From (6.4.18) and (6.4.19), we have

E
[
f̂n(y) − f(y)

]2
=

1
4
h4 [f ′′(y)]2 τ4 +

1
hn

f(y)
∫

K2(z)dz + Rn,

(6.4.26)

where

Rn = o
(
h4
)

+ o

(
1
hn

)
.(6.4.27)

Asymptotically, the best bandwidth is therefore obtained by minimizing

g(h) = ah4 +
b

h
(6.4.28)

with

a =
τ4

4
[f ′′(y)]2 and b =

1
n

f(y)
∫

K2(z)dz.(6.4.29)

Since

g′(h) = 4ah3 − b

h2
= 0

when

h = (b/4a)1/5 ,(6.4.30)

and since this value corresponds to a minimum of g (Problem 4.6), we see
that (6.4.28) is minimized by (6.4.30) and that the corresponding minimum
values of the two terms of g are

ah4 =
a1/5b4/5

44/5
and

b

h
= a1/5b4/5 · 41/5.
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Substituting a and b from (6.4.29) gives for the value of h minimizing
(6.4.26) when Rn is neglected,

h =

{
f(y)

∫
K2(z)dz

τ2 [f ′′(y)]2

}1/5/
1

n1/5
.(6.4.31)

It follows from (6.4.21) and (6.4.22) that the corresponding squared bias
and variance are both of the order 1/n4/5.

These results are quite different from those found in (4.2.8) and (4.2.6),
where the variance and the expected squared error tend to 0 at rate 1/n.
In the present case, these quantities tend to 0 at the slower rate 1/n4/5

(Problem 4.9). There is an additional difference between the present and
the earlier situation. The two components of (6.4.25) are now both of order
1/n4/5, and the square of the bias therefore makes a contribution even
asymptotically while it is asymptotically negligible when the rates are those
given by (4.2.6) and (4.2.8) of Chapter 4.

So far, we have considered f̂n(y) as an estimator of f(y) at a given
point y. However, more often one is interested in the whole curve f̂n(y),
−∞ < y < ∞ as an estimator of the density function f(y), −∞ < y < ∞.
We shall then measure the closeness of the estimator by the integrated
expected squared error∫

E
[
f̂n(y) − f(y)

]2
dy =

∫
Var f̂n(y)dy +

∫ [
Bias f̂n(y)

]2
dy.(6.4.32)

From (6.4.26), we have

∫
E
[
f̂n(y) − f(y)

]2
=

h4

4
τ4
∫

[f ′′(y)]2 dy +
1
hn

∫
K2(z)dz +

∫
Rn(y)dy.

(6.4.33)

Assuming that the integrated remainder is of smaller order than the other
terms, we determine the best bandwidth for this global criterion by mini-
mizing (6.4.28) with

a =
τ4

4

∫
[f ′′(y)]2 dy, b =

1
n

∫
K2(z)dz.(6.4.34)

The minimizing value of h is given by (6.4.30) and results in the miniumum
integrated expected squared error

5τ4/5

4n4/5

{∫
[f ′′(y)]2 dy

}1/5{∫
K2(z)dz

}4/5
+ o

(
1

n4/5

)
.(6.4.35)

A statement and proof of conditions on f and K under which (6.4.35) is
valid are given in Rosenblatt (1971). (There are some errors in Rosenblatt’s
formula (23), but they do not affect his proof.)
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Analogous considerations apply to the distributional limit behavior of
f̂n(y). By (6.4.13), f̂n(y) is the average of the n random variables

1
hn

K

(
y − Xi

hn

)
.(6.4.36)

Since the common distribution of these variables depends on n, we can-
not use the classical CLT (Theorem 2.4.1) but instead base ourselves on
Corollary 2.4.1 to obtain conditions for

f̂n(y) − Ef̂n(y)√
Varf̂n(y)

L→ N(0, 1)(6.4.37)

to hold. (Problem 4.10 or Rosenblatt (1971)). Besides conditions on f and
K, application of Corollary 2.4.1 requires that (6.4.24) be strengthened to

hn → 0 and nh3n → ∞,(6.4.38)

i.e., that hn tends to 0 more slowly than 1/n3.
A quantity of greater interest than the numerator of (6.4.37) is the dif-

ference f̂n(y) − f(y). Let us now consider the asymptotic behavior of this
difference for the case that h is given by (6.4.30). By the definition of bias,
we have

f̂n(y) − f(y)√
Var f̂n(y)

=
f̂n(y) − E

[
f̂n(y)

]
√

Var f̂n(y)
+

b(y)√
Var f̂n(y)

.(6.4.39)

Suppose that both the conditions of Theorem 6.4.3 and those required for
(6.4.37) are satisfied. Then the first term of (6.4.39) tends in law to N(0, 1)
while the second term tends to a constant ξ (Problem 4.10),

b(y)√
Varf̂n(y)

→ ξ,(6.4.40)

which is �= 0 unless f ′′(y) = 0. Thus

f̂n(y) − f(y)√
Varf̂n(y)

L→ N(ξ, 1),(6.4.41)

where
√

Var f̂n(y) is of order n−2/5. The estimator is therefore asymptot-
ically biased also in the distributional sense.

It is interesting to carry the analysis one step further and ask for the
kernel K that minimizes the principal term of (6.4.35) or of (6.4.22) with
h given by (6.4.31). In both cases, of the various factors making up this
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term, only τ4/5 =
(∫

z2K(z)dz

)2/5
and

(∫
K2(z)dz

)4/5
involve K, and

the desired kernel is obtained by minimizing

∫
z2K(z)dz

[∫
K2(z)dz

]2
.(6.4.42)

It can be shown that among all probability densities K, (6.4.42) is mini-
mized by any kernel of the form

K(z) =
1
c
p
(z

c

)
,(6.4.43)

where

p(z) =
{ 3

4

(
1 − z2

)
, |z| ≤ 1

0 elsewhere,(6.4.44)

the so-called Epanechnikov kernel. (For a proof of this result, see, for ex-
ample, Prakasa Rao (1983) or Hodges and Lehmann (1956).)

To see how much is lost by using a suboptimal kernel, let us consider the
asymptotic relative efficiency (ARE) of estimators based on two different
kernels. As in Section 4.3, this ARE is defined as the ratio of the numbers of
observations required by the two estimators to achieve the same accuracy
(6.4.35) [or (6.4.22)]. Equating the limiting values of (6.4.35) based on n1
and n2 observations, respectively, we find

lim τ1

∫
K2
1 (z)dz/n1 = lim τ2

∫
K2
2 (z)dz/n2(6.4.45)

and hence

e2,1 = lim
n1
n2

=
τ1

∫
K2
1 (z)dz

τ2

∫
K2
2 (z)dx

(6.4.46)

as the natural analog of (4.3.5). If we take for K1 the optimal parabolic
kernel (6.4.44), e2,1 becomes the absolute efficiency (within the class of
kernel estimators)

e (K2) =
A

τ2
∫

K2
2 (z)dz

.(6.4.47)

Here

A = τ1

∫
K2
1 (z)dz = 3/5

√
5,
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with K1 given by (6.4.44). Typical values of the efficiency (6.4.46) are (to
three decimals)

.951 (K2 = normal) , .930 (uniform) , .986 (triangular) .

On the other hand, if the kernel is sufficiently heavy tailed, the efficiency

e(K) can become arbitrary small as τ2 → ∞ without
∫

K2(z)dz tending

to 0 (Problem 4.14).
We have so far restricted attention to kernel estimators and have seen

that with optimal choice of bandwidth, these achieve a convergence rate of
n−4/5. Many other types of estimators are available and it is possible to ob-
tain some improvement (for the discussion of such estimators, see the books
by Silverman (1986), Scott (1992), and Wand and Jones (1995)). However,
in practice substantial improvements typically are impossible (see, for ex-
ample, Brown and Farrell (1990)). In any case, no nonparametric density
estimator can achieve the rate 1/n, which is the standard rate for the esti-
mation of most functionals h(F ) considered in Sections 6.1–6.3, including
that of densities given by a parametric family (Problem 4.15). The lower
rate for nonparametric density estimation is explained by the local nature
of an unrestricted density. Even if we know f(x) for all x outside an arbi-
trarily small neighborhood |x − y| < ε of y, this tells us nothing about the
value of f(x). Thus only observations very close to y provide information
concerning f(y). [ For a general theory of achievable rates, see Donoho and
Liu (1991).]

The estimation of probability densities extends in a fairly straightforward
way to the multivariate case. We shall only sketch this theory here. Let
f(y), y = (y1, . . . , ys), be the density of an s-dimensional distribution
F and suppose that f is unknown, subject only to certain smoothness
conditions. We wish to estimate f(y) at a given point y at which f(y)
is continuous and positive on the basis of n i.i.d. random vectors Xj =(
X
(j)
1 , . . . , X

(j)
s

)
from F . In generalization of (6.4.13), we shall consider

s-dimensional kernel estimators

f̂n(y) =
1
n

n∑
j=1

1
h1 · · ·hs

K

(
y1 − X

(j)
1

h1
, . . . ,

ys − X
(j)
s

hs

)
,(6.4.48)

where K is an s-dimensional probability density satisfying the symmetry
condition

K (−z1, . . . ,−zs) = K (z1, . . . , zs) .(6.4.49)

Thus in particular ∫
· · ·
∫

zjK(z)dz = 0 for all j,(6.4.50)
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where

dz = dz1 · · · dzs.(6.4.51)

The interpretation of f̂n(y) is exactly analogous to that of (6.4.13) in the
univariate case. For each observational point xj = (xj1, . . . , x

j
s), the prob-

ability mass 1/n assigned to it by the empirical distribution is spread out
according to the s-dimensional probability density

1
h1 · · ·hs

K

(
y1 − x

(j)
1

h1
, . . . ,

ys − x
(j)
s

hs

)
.(6.4.52)

As in the univariate case, it is easily seen that (Problem 4.16)∫
· · ·
∫

f̂n(y)dy = 1,(6.4.53)

so that f̂n(y) is a probability density.
In order to study the bias and variance of f̂n, we require an extension of

the multivariate Taylor theorem (Theorem 5.2.2).

Theorem 6.4.4 Let f be a real-valued function of s variables for which
the third partial derivatives exist in a neighborhood of a point a, and let
fi, fij, and fijk denote the first, second, and third partial derivatives

fi(t) =
∂f(x)
∂xi

∣∣∣∣
x=t

, fij(t) =
∂2f(x)
∂xi∂xj

∣∣∣∣
x=t

and fijk(t) =
∂3f(x)

∂xi∂xj∂xk

∣∣∣∣
x=t

.

(6.4.54)

Then

f(a1 + ∆1, . . . , as + ∆s) − f(a1, . . . , as)

=
∑

∆ifi(a) +
1
2

∑∑
∆i∆jfij(a) +

1
6

∑∑∑
∆i∆j∆kfijk(ξ),

where ξ is an intermediate point on the line segment connecting (a1, . . . , as)
and (a1 + ∆1, . . . , as + ∆s).

To evaluate the bias b(y) of f̂n(y), we now proceed as in the derivation
of (6.4.18), and find in analogy to (6.4.20) that

b(y) =
∫

K (z1, . . . , zs) [f (y1 − h1z1, . . . , ys − hszs)

−f (y1, . . . , ys)] dz1, . . . , dzs,
(6.4.55)
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where here and below we use a single integral sign to indicate integration
with respect to dz. We can expand the integrand according to Theorem
6.4.4 as

f (y1 − h1z1, . . . , ys − hszs) − f (y1, . . . , ys) =
∑

hjzjfj(y)

+
1
2

∑∑
hihjzizjfij(y) − 1

6

∑∑∑
hihjhkzizjzkfijk(ξ),

(6.4.56)

where ξ is a point on the line segment connecting y and (y+ ∆). The bias
is obtained by multiplying (6.4.56) by K(z) and integrating the product.
Here ∫

hjzjfj(y)K(z)d(z) = hjfj(y)
∫

zjK(z)dz = 0

by (6.4.50), so that

b(y) =
1
2

∑∑
hihjfij(y)

∫
zizjK(z)dz + Rn.(6.4.57)

To obtain an estimate of Rn, let us suppose that

hi = cih,(6.4.58)

where the c’s are fixed and h → 0. This means that we are letting all
the h’s tend to zero at the same rate. Then Rn = o

(
h2
)

under conditions
generalizing those of Theorem 6.4.3(i) (Problem 4.17) and hence

b(y) =
h2

2

∑∑
cicjfij(y)

∫
zizjK(z)dz + o

(
h2
)
.(6.4.59)

Since f̂n(y) is a sum of n i.i.d. random variables, we see as in the proof
of Theorem 4.3 (ii) that

n Var
[
f̂n(y

]
= Var

[
1

h1 · · ·hs
K

(
y1 − X1

h1
, · · · ,

ys − Xs

hs

)]

=
∫

1
h1, . . . , hs

K2(z)f (y1 − h1z1, . . . , ys − hszs) dz−
[
f(y) + o

(
h2
)]2

=
∫

1
h1, . . . , hs

K2(z)
[
f(y) −

∑
hjzjfj(y)

+
1
2

∑∑
hihjzizjfij(ξ)dz + O(1)

]
.

Restricting attention to h’s satisfying (6.4.58), we find

Var
[
f̂n(y)

]
=

1
nhs

s∏
i=1

c−1i f(y)
∫

K2(z)dz + o

(
1

nhs

)
(6.4.60)
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under suitable conditions on f and K (Problem 4.16). Sufficient conditions
for consistency of f̂n(f) as an estimator of f(y) are then the validity of
(6.4.59) and (6.4.60) together with (in generalization of (6.4.24))

h = hn → 0 and nhsn → ∞.(6.4.61)

Let us now determine the rate at which h should tend to zero so as to
minimize the expected squared error (6.4.25). Using the formulas (6.4.59)
and (6.4.60) for bias and variance and neglecting the remainder terms which
will not affect the rate, we find that

E
[
f̂n(y) − f(y)

]2
= ah4 +

b

hs
= g(h),(6.4.62)

where

a =
1
4

[∑∑
cicjfij(y)

∫
ziziK(z)dz

]2
(6.4.63)

and

b =

∏
c−1i

n
f(y)

∫
K2(z)dz.(6.4.64)

Since

g′(h) = 4ah3 − bs

hs+1
= 0

when

hs+4 =
bs

4a
and since this value of h corresponds to a minimum (Problem 4.18), we see
that (6.4.62) is minimized by

h =
(

bs

4a

) 1
s+4

.(6.4.65)

Substituting this value of h into (6.4.62) we find that the squared bias term

(
ah4
)

and the variance term (b/hs) both tend to 0 at the rate (1/n)

4
s + 4 ,

and so therefore does the expected squared error. This agrees with the
results for the case s = 1 and shows that for large n, the accuracy of f̂n(y)
decreases with s.

A dramatic illustration of this “curse of dimensionality” is provided by
Silverman (1986). Table 6.4.1 shows the number n of observations required
for the relative expected squared error

E
[
f̂n(y) − f(y)

]2
/f2(y)(6.4.66)

to be < .1, for the case that Y1, . . . , Ys are i.i.d. N(0, 1), the kernel K
is normal, c1 = · · · = cs = 1, y1 = · · · = ys = 0, and h is the optimal
bandwidth for the given situation.
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TABLE 6.4.1. Sample size required for (6.4.67) to be < .1 (f,K = normal)

s 2 4 6 8 10
n 19 223 2790 43,700 842,000
Source: Table 4.2 of Silverman (1986).

Summary

1. Kernel estimators f̂n(y) are defined for estimating a probability den-
sity f(y), and approximate formulas for their bias, variance, and ex-
pected squared error are derived. Conditions are given under which
f̂n(y) is consistent for estimating f(y).

2. With the kernel K fixed, the expected squared error is minimized
when the bandwidth hn tends to 0 at the rate 1/n1/5. The resulting
expected squared error is only of order 1/n4/5 instead of the rate 1/n
obtainable for standard estimation problems.

3. The optimal kernel is given by a parabolic density.

4. Other types of estimators can improve the convergence rate of 1/n4/5,
but none can reach the standard rate of 1/n. This is a consequence of
the local nature of a nonparametric density which makes its estima-
tion more difficult than that of the functionals considered in Section
6.3.

5. Under suitable regularity conditions, the kernel estimator f̂n(y) with
optimal bandwidth satisfies

f̂n(y) − f(y)√
Var
(
f̂n(y)

) → N (ξ, 1)

and is thus asymptotically biased.

6. The theory of kernel estimators is extended from univariate to mul-
tivariate densities.

6.5 Bootstrapping

In many applications, the functionals h(F ) of interest differ from those
considered in the preceding sections by depending not only on F but also
on the sample size n. In particular, this situation arises routinely when
evaluating the performance of an estimator θ̂n of some parameter θ or
functional h(F ). The following are some examples of estimators θ̂n based
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on a sample X1, . . . , Xn from F , and of some measures λn(F ) of their
performance.

Estimators:

(i) the sample mean θ̂n = X̄ as an estimator of the expectation h(F ) =
EF (X);

(ii) the sample median θ̂n as estimator of the population median;

(iii) the V -statistic (6.2.31) as estimator of the expectation (6.1.1);

(iv) the maximum distance θ̂n = sup
x

∣∣∣F̂n(x) − F0(x)
∣∣∣ of the sample cdf

from a given cdf F0, as an estimator of h(F ) = sup
x

|F (x) − F0(x)|.

Measures of the performance of θ̂n:
(A) the error distribution λn(F ) = PF

{√
n
[
θ̂n − h(F )

]
≤ a
}

or, for some scaling factor τ(F ),

(B) λn(F ) = PF




√
n
[
θ̂n − h(F )

]
τ(F )

≤ a


 .

Alternatively we might be mainly interested in some aspects of these error
distributions such as
(C) λn(F ) = the bias of θ̂n

or
(D) λn(F ) = the variance of

√
nθ̂n.

In the earlier sections of this chapter, we were concerned with the esti-
mation of a functional h(F ) by means of h

(
F̂n

)
. Correspondingly, we shall

now consider estimating λn(F ) by the plug-in estimator λn

(
F̂n

)
. This es-

timator together with some elaborations that it often requires is known as
the bootstrap. It was proposed in this connection by Efron in 1979 and has
been found to be applicable in a great variety of situations. Both theory and
applications are treated in an enormous literature, summaries of which can
be found in the books by Hall (1992), LePage and Billard (1992), Mammen
(1992), Efron and Tibshirani (1993), and Shao and Tu (1995).†

Before taking up some theoretical aspects of the estimator λn

(
F̂n

)
, we

must consider a problem that is illustrated by the following examples.

Example 6.5.1 Estimating the error probability (A). Suppose we
are concerned with the measure λn(F ) given by (A). The plug-in estimator

†We are here considering the bootstrap only for point estimation. However, it is
equally applicable to confidence intervals and hypothesis testing. These aspects are
treated in the books cited.
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λn

(
F̂n

)
of (A) is obtained by replacing the distribution F of the X’s in

(A) by the distribution F̂n. Then h(F ) becomes h
(
F̂n

)
. In addition, the

subscript F , which governs the distribution of θ̂n, must also be changed to
F̂n. To see what this last step means, write

θ̂n = θ (X1, . . . , Xn) ,(6.5.1)

that is, express θ̂n not as a function of F̂n but directly as a function of the
sample (X1, . . . , Xn). If, for example,

h(F ) = EF (X),(6.5.2)

then

θ (X1, . . . , Xn) = (X1 + · · · + Xn) /n.(6.5.3)

The function θ on the right side of (6.5.1) should have a subscript n which
we suppress for the sake of simplicity. The dependence of the distribution
of θ̂n on F results from the fact that X1, . . . , Xn is a sample from F . To
replace F by F̂n in the distribution governing θ̂n, we must therefore replace
(6.5.1) by

θ∗n = θ (X∗
1 , . . . , X∗

n) ,(6.5.4)

where X∗
1 , . . . , X∗

n is a sample from F̂n. With this notation, λn

(
F̂n

)
can

now be written formally as

λn

(
F̂n

)
= PF̂n

{√
n
[
θ∗n − h

(
F̂n

)
≤ a
]}

.(6.5.5)

To understand this estimator, note that the sample X∗
1 , . . . , X∗

n from F̂n
is only a conceptual sample from this distribution. A statement such as

P [(X∗
1 , . . . , X∗

n) ∈ S]

is simply a convenient notation for the probability that a sample from F̂n
falls into this set. The distribution F̂n assigns probability 1/n to each of
the observed values x1, . . . , xn, and (X∗

1 , . . . , X∗
n) is a hypothetical sample

from this distribution. In particular, the variables X∗
1 , . . . , X∗

n are condi-
tionally independent, given X1 = x1, . . . , Xn = xn. Let us now illustrate
the calculation of the estimator (6.5.5) on an example. �

Example 6.5.2 Estimating the error distribution of the mean. Let

θ = h(F ) = EF (X)
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so that h
(
F̂n

)
= X̄ and let us calculate (6.5.5) in the unrealistic case

n = 2. Suppose that the ordered values of X1 and X2 are

X(1) = c < X(2) = d.

Then X∗
1 and X∗

2 are independently distributed with

P (X∗
i = c) = P (X∗

i = d) = 1/2, i = 1, 2.

The pair (X∗
1 , X

∗
2 ) therefore takes on the four possible pairs of values

(c, c), (c, d), (d, c), (d, d),(6.5.6)

each with probability 1/4. Thus

θ∗ =
1
2

(X∗
1 + X∗

2 )

takes on the values c,
1
2
(c + d), d with probabilities

1
4
,

1
2
,

1
4
, respectively,

so that

θ∗ − h
(
F̂n

)
= θ∗ − 1

2
(c + d)

takes on the values

1
2
(c − d), 0,

1
2
(d − c) with probabilities

1
4
,

1
2
,

1
4
, respectively.(6.5.7)

From this distribution, we can now evaluate the probabilities (6.5.5) for
any given value of a (Problem 5.1). �

Example 6.5.3 Estimating the bias of the median. Let θ = h(F ) be
the median of F and λn(F ) the bias of the sample median θ̃n, i.e.,

λn(F ) = E
(
θ̃n

)
− θ.(6.5.8)

Then

λn

(
F̂n

)
= E (θ∗n) − θ̃n,(6.5.9)

where θ̃n is the median of the sample X1, . . . , Xn and θ∗n is the median of
a (hypothetical) sample X∗

1 , . . . , X∗
n from F̂n. Let us this time consider the

case n = 3. If X(1) = b, X(2) = c, and X(3) = d denote the ordered ob-
servations, the variables (X∗

1 , X
∗
2 , X

∗
3 ) can take on 33 = 27 possible triples

of values (b, b, b), (b, b, c), (b, c, b), . . . in generalization of (6.5.6). To obtain
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the probabilities for the corresponding ordered triples
(
X∗
(1), X

∗
(2), X

∗
(3)

)
,

we must count the number of cases with these values. For example,

P
(
X∗
(1) = b,X∗

(2) = b,X∗
(3) = c

)
= 3/27

since this probability is the sum of the probabilities of the cases (b, b, c),
(b, c, b), (c, b, b) for (X∗

1 , X
∗
2 , X

∗
3 ). The resulting distribution for

(
X∗
(1), X

∗
(2),

X∗
(3)

)
is

bbb bbc bbd bcc bcd bdd ccc ccd cdd ddd
1/27 3/27 3/27 3/27 6/27 3/27 1/27 3/27 3/27 1/27 .

(6.5.10)

The median X∗
(2) of (X∗

1 , X
∗
2 , X

∗
3 ) is b for the cases bbb, bbc, and bbd, and

so on, so that the distribution of X∗
(2) is

P
(
X∗
(2) = b

)
=

7
27

, P
(
X∗
(2) = c

)
=

13
27

, P
(
X∗
(2) = d

)
=

7
27

.(6.5.11)

Therefore λn

(
F̂n

)
, the estimator of the bias of θ∗n = X∗

(2), is by (6.5.9)

E
(
X∗
(2)

)
− X(2) =

[
7
27

X(1) +
13
27

X(2) +
7
27

X(3)

]
− X(2)

=
14
27

[
X(1) + X(3)

2
− X(2)

]
.

The estimator of the variance of the median X(2) can be calculated in the
same way (Problem 5.6(i)). �

A general algorithm for such calculations, suitable for small n, is dis-
cussed by Fisher and Hall (1991). However, the numbers of distinct cases

corresponding to (6.5.10) is shown by Hall (1987b) to be
(

2n − 1
n

)
, which

is 92,378 for n = 10 and increases exponentially. Except for small values of
n, the exact calculation of λn

(
F̂n

)
therefore is not feasible.

For large n, this difficulty creates a strange situation. The estimator
λn

(
F̂n

)
is a well defined function of the observations, but in practice we

are unable to compute it. The seminal paper of Efron (1979) provides a
way out.

Example 6.5.4 Bootstrapping a probability. Let us begin with case
(A), where λn

(
F̂n

)
is of the form

λn

(
F̂n

)
= PF̂n

[(X∗
1 , . . . , X∗

n) ∈ S](6.5.12)
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with X∗
1 , . . . , X∗

n being a sample from F̂n. Since F̂n is a known distribu-
tion, evaluating (6.5.12) is a special case of the problem of calculating the
probability

p = P [(Y1, . . . Yn) ∈ S] ,(6.5.13)

where (Y1, . . . , Yn) has a known distribution G, but S has a shape that
makes the calculation of the n-fold integral (6.5.13) difficult. A standard
remedy in such cases is simulation, i.e., generating a large sample of vectors
(Yi1, . . . , Yin), i = 1, . . . , B, from G and using the frequency p̂B with which
these vectors fall into S as an approximation of p. By the law of large
numbers,

p̂B
P→ as B → ∞,(6.5.14)

so that for sufficiently large B, we can be nearly certain that p̂B provides
a good approximation for p.

In order to apply this idea to the calculation of (6.5.12), we must draw
B samples X∗

i1, . . . , X∗
in from F̂n:

X∗
11, . . . , X∗

1n
. . . . . . . . . . . . . . .
X∗
B1, . . . , X∗

Bn.
(6.5.15)

These are Bn independent variables, each taking on the values x1, . . . , xn
with probability 1/n The situation differs from the general case described
after (6.5.13) in that G, the joint distribution of n independent variables
from F̂n, depends on the observations x1, . . . , xn: In fact, each of the vari-
ables X∗

ij is drawn at random from the population of n elements {x1, . . . ,
xn}. This process of resampling can be viewed as drawing a sample of size
Bn with replacement from {x1, . . . , xn}; the variables (6.5.15) are called a
bootstrap sample.

As in the general case, the estimator (6.5.12) is approximated by the fre-
quency λ∗

B,n with which the vector (X∗
i1, . . . , X∗

in) falls into S. For large B,

this frequency will be close to λn

(
F̂n

)
with high probability. If λn

(
F̂n

)
is

a reasonable estimator of λn(F ), so is λ∗
B,n, the bootstrap estimator, and the

two-stage process of estimating λn(F ) by λn

(
F̂n

)
and then approximating

the latter by λ∗
B,n is called bootstrapping. �

Example 6.5.5 Bootstrapping an expectation. Bootstrapping is not
restricted to case (A). Suppose that, as in (C), we are interested in esti-
mating the bias

λn(F ) = EF δ (X1, . . . , Xn) − h(F )(6.5.16)
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for some estimator δ of some functional θ = h(F ). Then

λn

(
F̂n

)
= EF̂n

δ (X∗
1 , . . . , X∗

n) − h
(
F̂n

)
(6.5.17)

and we saw in Example 6.5.3 that the difficulty of computing the first term
on the right side of (6.5.17) will typically be prohibitive except for small n.
To overcome this problem, we draw a bootstrap sample (6.5.15) as before.
For each i, we determine

δ∗i = δ (X∗
i1, . . . , X∗

in)

and then approximate λn

(
F̂n

)
by

λ∗
B,n =

1
n

B∑
i=1

δ∗i − h
(
F̂n

)
.(6.5.18)

By the law of large numbers, the average of the i.i.d. variables δ∗i tends in
probability to

E (δ∗i ) = Eδ (X∗
1 , . . . , X∗

n) ,

and hence for large B, λ∗
B,n will, with high probability, be close to λn

(
F̂n

)
.

The same approach will provide an approximation to λn

(
F̂n

)
when

λn(F ) is, for example, one of the cases (B) or (D) (Problem 5.8).
Bootstrapping introduces a new element which at first may be somewhat

confusing. The following comments may help to clarify its basic logic.

Note 1: It is tempting to think of λ∗
B,n as an estimator of λn

(
F̂n

)
. How-

ever, λn

(
F̂n

)
is not an unknown parameter but a quantity which, in prin-

ciple, is known although it may be difficult to calculate. The bootstrap
sample avoids the necessity of performing this calculation by providing an
approximation λ∗

B,n, which for large B is nearly certain to be very close

to λn

(
F̂n

)
. Thus λ∗

B,n is an approximator rather than an estimator of

λn

(
F̂n

)
.

Note 2: An objection that may be raised against the use of λ∗
B,n as an

estimator of λn(F ) is that it depends on the bootstrap samples (6.5.15)
and therefore introduces an extraneous randomization into the inference.
A repetition of the process would (with the same data (x1, . . . , xn)) gen-
erate another bootstrap sample and hence a different value for λ∗

B,n. This
argument loses much of its force by the fact that for given x1, . . . , xn and
sufficiently large B, the approximate λ̂B,n, though a random variable, is
with high probability close to a constant.
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Note 3: On first encountering the bootstrap idea, one may feel that it
achieves the impossible: to provide additional information (about λn(F ))
without acquiring more data. This is, of course, an illusion. The estimator
λ∗
B,n is not an improvement over λn

(
F̂n

)
, which remains the basic estima-

tor. What λ∗
B,n accomplishes—and this is very useful but not a miracle—is

to provide a simple, and for large B highly accurate, approximation to
λn

(
F̂n

)
when the latter is too complicated to compute directly.

Note 4: The two-stage process was described above as

(i) estimating λn(F ) by λn

(
F̂n

)
and

(ii) approximating λn

(
F̂n

)
by λ∗

B,n.

The method is, in fact, much more general, with many alternatives being
available for each of the stages.

Regarding (i), depending on the situation, quite different estimators may
be used to estimate λn(F ). The following example provides just one illus-
tration. �

Example 6.5.6 The parametric bootstrap. Suppose that we are esti-
mating the median θ of F by the sample median θ̃ = θ (X1, . . . Xn) and
wish to estimate the error probability

λn(F ) = P
[√

n
(
θ̃ − θ

)
≤ a
]
.(6.5.19)

If nothing is known about F , we would estimate λn(F ) by

λn

(
F̂n

)
= P

[√
n
(
θ̃∗ − θ̃

)
≤ a
]
,(6.5.20)

where θ̃∗ = θ (X∗
1 , . . . , X∗

n) is the median of a hypothetical sample X∗
1 , . . . ,

X∗
n from F̂n.
Suppose, however, that it is known that X1, . . . , Xn is a sample from a

Cauchy distribution C(θ, b) with center θ and scale parameter b. We might
then still use θ̃ to estimate θ (for an alternative, more efficient estimator,
see Section 7.3). However, instead of estimating (6.5.19) by (6.5.20), we
might prefer to estimate it by

λn
(
Fθ̃
)

= P
[√

n
(
θ̃∗∗ − θ̃

)
≤ a
]
,(6.5.21)

where θ̃∗∗ = θ (X∗∗
1 , . . . , X∗∗

n ) is the median of a hypothetical sample
X∗∗
1 , . . . , X∗∗

n from C(θ̃, b̂), the Cauchy distribution centered on θ̃ and with
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a scale parameter b̂ which is a consistent estimator (e.g., the maximum like-
lihood extimator) of b. This estimator utilizes the Cauchy structure of F .
At the second stage, the estimator (6.5.21) can then be approximated by
a bootstrap sample (X∗∗

i1 , . . . , X∗∗
in ), i = 1, . . . , B, from the Cauchy distri-

bution C(θ̃, b̂). �

Let us now return to the general case. Alternatives are available not
only for the first stage of the process but also for stage (ii). In particu-
lar, bootstrap samples may be obtained by resampling plans other than
simple random sampling. A variety of such plans (for example, antithetic,
balanced, and importance sampling) are discussed in the bootstrap liter-
ature, together with indications of the type of problems for which each is
appropriate.

We shall conclude the section with a fairly brief discussion of some the-
oretical properties of the plug-in estimator λn

(
F̂n

)
, such as consistency,

asymptotic normality, and comparison with more traditional estimators.
These problems concern only the behavior of the estimator itself, not that
of the approximation λ∗

B,n which is quite separate and presents little diffi-
culty.‡

In much of the bootstrap literature, the bootstrap is said “to work” if
λn

(
F̂n

)
is consistent for estimating λn(F ) in the sense that

λn

(
F̂n

)
− λn(F ) P→ 0.(6.5.22)

Before taking up the question of consistency it is useful to note that typi-
cally the sequence λn will tend to a limit λ, i.e., that

λn(F ) → λ(F )(6.5.23)

for all F under consideration. If
√

n
(
θ̂n − h(F )

)
has a limit distribution,

the limit (6.5.23) clearly exists when λn(F ) is given by (A) or (B). In
cases (C) and (D), it will often exist with λ(F ) ≡ 0 and λ(F ) equal to the
asymptotic variance, respectively.

Lemma 6.5.1 If (6.5.23) holds, then (6.5.22) holds if and only if

λn

(
F̂n

)
P→ λ(F ).(6.5.24)

Proof. The result is seen by writing

λn

(
F̂n

)
− λn(F ) =

[
λn

(
F̂n

)
− λ(F )

]
− [λn(F ) − λ(F )] .(6.5.25)

�

‡For this reason, it might be preferable to separate the two stages terminologically
and restrict the term “bootstrap” to the second stage.
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This lemma reduces the generalized consistency definition (6.5.22) to
the standard definition of convergence in probability of the estimator to a
constant.

Proving consistency in the present setting tends to be difficult and be-
yond the scope of this book because typically no explicit expression is avail-
able for the estimator λn

(
F̂n

)
which, instead, is expressed conditionally

in terms of the hypothetical variables X∗
i . The following example which

illustrates both situations in which λn

(
F̂n

)
is and is not consistent is an

exception; here λn

(
F̂n

)
can be expressed directly in terms of the X’s.

Example 6.5.7 U-statistics. Let

λn(F ) = E
(√

nθ̂n

)2
,(6.5.26)

where θ̂n is a U -statistic

U =
1

n(n − 1)

∑∑
i	=j

φ (Xi, Xj) .(6.5.27)

Then the proof of (6.1.17) shows that (Problem 5.11)

λn(F ) =
4 (n − 2)

n − 1
γ21 +

2
n − 1

γ22 ,(6.5.28)

where

γ21 = Eφ (X1, X2)φ (X1, X3) ≥ 0(6.5.29)

and

γ22 = Eφ2 (X1, X2) .(6.5.30)

Thus

λn(F ) → λ(F ) = 4γ21 .(6.5.31)

It follows from (6.5.28) that

λn

(
F̂n

)
=

4 (n − 2)
n − 1

γ∗2

1 +
2

n − 1
γ∗2

2 ,(6.5.32)

where

γ∗2

1 = EF̂n
φ (X∗

1 , X
∗
2 )φ (X∗

1 , X
∗
3 )(6.5.33)

and

γ∗2

2 = EF̂n
φ2 (X∗

1 , X
∗
2 ) .(6.5.34)
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The quantities γ∗2

2 and γ∗2

1 can be expressed in terms of the X’s as

γ∗2

2 =
1
n2

n∑
i=1

n∑
j=1

φ2 (Xi, Xj)(6.5.35)

and

γ∗2

1 =
1
n3

n∑
i=1

n∑
j=1

n∑
k=1

φ (Xi, Xj)φ (Xi, Xk) .(6.5.36)

That λn

(
F̂n

)
may not be consistent for estimating λn(F ) is a consequence

of the fact that U (and hence γ21 , γ22 , and λn(F )) depend only φ (xi, xj) for
i �= j, while γ∗2

1 and γ∗2

2 (and hence λn(F̂n)) depend also on φ (xi, xi).
The difficulty does not arise when γ21 , γ22 , and γ23 = Eφ2 (Xi, Xi) are

finite. For then, by the law of large numbers,

γ∗2

2
P→ γ22 and γ∗2

1
P→ γ21

and therefore by (6.5.28), (6.5.31), and (6.5.32), λn

(
F̂n

)
− λn(F ) P→ 0,

which proves consistency.
On the other hand, suppose that γ21 and γ22 and hence λn(F ) are finite

but

γ33 = Eφ2 (Xi, Xi) = ∞.

Note that

γ∗2

2 =
1
n2

∑∑
i	=j

φ2 (Xi, Xj) +
1
n2

∑
φ2 (Xi, Xi) .

Here the first term tends in probability to γ22 but what we can say about
the second term? Clearly,

1
n

∑
φ2 (Xi, Xi)

P→ ∞,

but
1
n2

∑
φ2 (Xi, Xi) can tend either to a finite limit or also to ∞. In the

latter case, γ∗2

2 and hence λn

(
F̂n

)
P→ ∞. Since λn(F ) is finite, λn

(
F̂n

)
is

then no longer consistent.
The first condition, that λn(F ) is finite, will be satisfied for instance by

any function φ satisfying

|φ(x, y)| < M for some M < ∞ and for all x �= y.
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We shall now give an example in which

1
n2

∑
φ (Xi, Xi)

P→ ∞(6.5.37)

and hence λn

(
F̂n

)
is not consistent.

Let X1, . . . , Xn be i.i.d. according to the uniform distribution U(0, 1)
and, noting that the boundedness condition on ϕ imposes no restriction on
ϕ(x, y) when x = y, let

φ2(x, x) = e1/x.(6.5.38)

To prove (6.5.37), we must show that

P

[
1
n2

∑
e1/Xi > A

]
→ 1 for any A > 0.(6.5.39)

Since ∑
e1/Xi > max e1/Xi

it is enough to show that

P
[
max e1/Xi > An2

]
→ 1

or, equivalently, that

P
[
max e1/Xi < An2

]
=
[
P
(
e1/X1 < An2

)]n
→ 0.

Now

P
(
e1/X1 < An2

)
= P

[
X1 >

1
log (An2)

]
= 1 − 1

log(An2)
.

To show that (
1 − 1

log(An2)

)n
→ 0,

note that
1

log(An2)
>

1√
n

for n sufficiently large. Since (Problem 5.9)

(
1 − 1√

n

)n
→ 0(6.5.40)

this completes the proof of (6.5.37). (This example with λn(F ) given by
(B) rather than by (6.5.26) is due to Bickel and Freedman (1981).) �
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As is suggested by this example, consistency typically holds, but cannot
be taken for granted. A good summary of both the theory and some of the
principal examples can be found in Chapter 3 of Shao and Tu (1995).

Note also that the discussion of Example 6.5.7 can be extended to cover
asymptotic normality (Problem 5.10).

Let us now return to the general problem of estimating functionals λn(F )
depending on F and on n, such as the performance measures (A)–(D) listed
at the beginning of the section. Consider, for example, λn(F ) given by (B).
As we saw in Section 6.3 and in earlier chapters, it will often be the case
that

λn(F ) = PF



√

n
[
θ̂n − h(F )

]
τ(F )

≤ a


→ Φ(a),(6.5.41)

and we would then use Φ(a) as an approximation for λn(F ) (both when
F is known and when it is not). The use of the central limit theorem is a
prime example of this approach.

If instead of (B) we consider (A), (6.5.36) implies that

λn(F ) = PF

[√
n
(
θ̂n − h(F )

)
≤ a
]
→ Φ(a/τ(F )).(6.5.42)

If F , and hence τ(F ), are known, we would use Φ(a/τ(F )) as our ap-
proximation for λn(F ). When F is unknown, we would replace τ(F ) by a
consistent estimator τ̂ , and approximate or estimate λn(F ) by Φ(a/τ̂). The
corresponding remarks apply to measures (C) and (D). If, for example,

λn(F ) = Var
(√

nθ̂n

)
→ τ2,

we would use τ̂2 as an approximation for λn(F ).
Quite generally, consider now the case that F is unknown and that

λn(F ) → λ,(6.5.43)

and suppose that λ does not depend on F . Then we can approximate λn(F )
by either λ or the bootstrap estimator λn

(
F̂n

)
. Which of the two provides

the better approximation?
Suppose that

λn(F ) = λ +
a(F )√

n
+ o

(
1√
n

)
,(6.5.44)

and, correspondingly,

λn

(
F̂n

)
= λ +

a
(
F̂n

)
√

n
+ oP

(
1√
n

)
.(6.5.45)
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If

a
(
F̂n

)
= a(F ) + oP (1),(6.5.46)

as will be the case, for example, when
√

n
[
a
(
F̂n

)
− a(F )

]
tends to a limit

distribution, it follows that the bootstrap estimator λn

(
F̂n

)
satisfies

λn

(
F̂n

)
= λn(F ) + oP

(
1√
n

)
.(6.5.47)

Thus the error of the bootstrap estimator is of smaller order than the error
of the classical estimator λ given by (6.5.43).

This argument depends crucially on the assumption that the leading
term λ in (6.5.44) is independent of F . Otherwise, (6.5.45) will be replaced
by

λn

(
F̂n

)
= λ

(
F̂n

)
+

a
(
F̂n

)
√

n
+ oP

(
1√
n

)
.(6.5.48)

The error of the bootstrap estimator then becomes

λn

(
F̂n

)
− λn(F ) =

[
λ
(
F̂n

)
− λ(F )

]
+

1√
n

[
a
(
F̂n

)
− a(F )

]
+ oP

(
1√
n

)

This is dominated by the first term which is typically of the same order
1/
√

n as the error of the classical estimator λ
(
F̂n

)
. A rigorous treatment

of these issues with many examples and references is given by Hall (1992).
We shall here give only one particularly simple example in which it is easy
to carry out the calculations explicitly.

Example 6.5.8 Performance of a variance estimator. Let X1, . . . , Xn

be i.i.d. with variance h(F ) = σ2 so that

h
(
F̂n

)
= M2 =

1
n

∑(
Xi − X̄

)2
.

(i) Consider

λn(F ) = Var
(√

nM2
)
.

Then by (6.2.27),

λn(F ) =Var
(√

nM2
)

=
(
µ4 − µ22

)
−

2
(
µ4 − 2µ22

)
n

+

(
µ4 − 3µ22

)
n2

(6.5.49)
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and hence

λn(F ) → λ(F ) = µ4 − µ22,(6.5.50)

which depends on F .

The classical estimator of λn(F ) is

λ
(
F̂n

)
= M4 − M2

2(6.5.51)

and the bootstrap estimator λn

(
F̂n

)
of λn(F ) is

λn

(
F̂n

)
=
(
M4 − M2

2
)
−

2
(
M4 − 2M2

2
)

n
+

M4 − 3M2
2

n2
.(6.5.52)

In both estimators, the dominating term is M4−M2
2 and the error is(

M4 − M2
2
)
−
(
µ4 − µ22

)
+ Op (1/n) .

By Example 6.3.3,

Mk = µk + Op

(
1√
n

)
(6.5.53)

and the error of both estimators is therefore of the same order 1/
√

n.

(ii) Consider next the bias of the estimator M2 of σ2. Since E (M2) =
(n − 1)σ2/n, we have

λn(F ) = bias of M2 = σ2/n(6.5.54)

and hence

λn(F ) → λ = 0.(6.5.55)

Therefore

λ − λn(F ) = σ2/n(6.5.56)

is of order 1/n. On the other hand, by (6.5.53),

λn

(
F̂n

)
=

1
n

M2 =
1
n

[
σ2 + Op

(
1√
n

)]
,

so that

λn

(
F̂n

)
− λn(F ) = Op

(
1/n3/2

)
.(6.5.57)

Thus, in this case, the bootstrap estimator provides a better approx-
imation to λn(F ), as predicted by the theory since the limit of λn(F )
is independent of F . �
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Summary

1. The bootstrap is concerned with the estimation of functionals λn(F )
that depend on n as well as on F . This situation arises in particular
when λn(F ) measures the performance of an estimator θ̂n.

2. The bootstrap estimator λn

(
F̂n

)
can be represented as a function

of the actual sample X1, . . . , Xn from F and a conceptual sam-
ple X∗

1 , . . . , X∗
n from F̂n. This representation shows that, except for

very small n, the calculation of λn

(
F̂n

)
often requires a prohibitive

amount of labor. The difficulty can be overcome by approximating
λn

(
F̂n

)
by means of bootstrap samples (X∗

i1, . . . , X∗
in), i = 1, . . . , B.

The resulting approximating converges in probability to λn

(
F̂n

)
as

B → ∞.

3. Consistency of λn

(
F̂n

)
as an estimator of λn(F ) is less routine and

more difficult to prove than consistency of classical estimators. The
second moment of a U -statistic provides a simple example in which
the bootstrap may or may not work, i.e., consistency may or may not
hold.

4. When λn(F ) → λ with λ independent of F , the bootstrap estimator
typically provides a better approximation to λn(F ) than does the
limit value λ, but this result can no longer be expected when the
limit λ(F ) of λn(F ) depends on F .

6.6 Problems

Section 1

1.1 Show that h(F ) = VarF (X) is an expectation functional.

[Hint: Let φ (x1, x2) =
2∑
i=1

(xi − x̄)2 .]

1.2 If θ1 and θ2 are expectation functionals, so is θ1 + θ2.

[Hint: Let θ1 = Eφ1 (x1, . . . , xa) and θ2 = Eφ2 (X1, . . . , Xb) and
suppose that a ≤ b. Let

φ′
1 (x1, . . . , xb) = φ1 (x1, . . . , xa) for all x1, . . . , xb,

and let φ = φ′
1 + φ2. ]
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1.3 If θ1 and θ2 are expectation functionals, so is θ1 · θ2 .
[Hint: With θ1 and θ2 defined as in Problem 1.2, let φ (x1, . . . , xa+b) =
φ1 (x1, . . . , xa)φ2 (xa+1, . . . , xa+b). ]

1.4 Show that the estimator (6.1.3) is symmetric in its n variables.

1.5 Prove (6.1.17) for the case a = 2.

[Hint: The total number of terms in (6.1.12) is
(

n

2

)2
; the number of

terms with i, j, k, l all distinct is
(

n

2

)(
n − 2

2

)
; the number of terms

with i = k, j = l is
(

n

2

)
. The remaining terms are all equal, and

their number is
(

n

2

)[(
n

2

)
−
(

n − 2
2

)
− 1
]

.]

1.6 Evaluate θ given by (6.1.8) and σ21 given by (6.1.23)
(i) for the normal mixture

F = (1 − ε)N(0, 1) + εN
(
η, τ2

)
;

(ii) for the uniform distribution U (θ − 1/2, θ + 1/2).

1.7 In Example 6.1.1, use (6.1.28) to show that

Vs − E (Vs)√
Var Vs

and
W − E(W )√

Var W

have the same limit distribution.

1.8 Verify (6.1.40) for the case s = 2, a = b = 1.
[Hint: Use the hint of Problem 1.5 but note that the total number
of terms is now m2n2.]

1.9 Prove the following extension of Lemma 6.1.1. If X1, X2, . . . and
Y1, Y2, . . . are independent with distributions F and G, respectively,
and if

ϕij(x1, . . . , xi; y1, . . . , yj) =
Eϕ(x1, . . . , xi, Xi+1, . . . , Xa; y1, . . . , yj , Yj+1, . . . , Yb)

then
(i) Eϕij(X1, . . . , Xi;Y1, . . . , Yj) = θ = Eϕ(X1, . . . , Xa;Y1, . . . , Yb)
and
(ii)

Var ϕij(X1, . . . , Xi;Y1, . . . , Yj)
= Cov[ϕ(X1, . . . , Xi, Xi+1, . . . , Xa;Y1, . . . , Yj , Yj+1, . . . , Yb),
ϕ(X1, . . . , Xi, X

′
i+1, . . . , X

′
a;Y1, . . . , Yj , Y

′
j+1, . . . , Y

′
b )].
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1.10 In Example 6.1.2, evaluate θ given by (6.1.46) when G(y) = F (y−∆)
and F is

(i) the uniform distribution U(0, 1);

(ii) the double exponential distribution DE(0, 1),

(iii) the logistic distribution L(0, 1).

1.11 (i) For the three parts of the preceding problem, evaluate σ210 and
σ201.

(ii) If G(y) = F (y − ∆), show that σ210 = σ201 when F is symmetric.

[Hint for (ii): Without loss of generality, suppose that F is symmet-
ric about 0. Then, for example,

P [X1 < Y1, Y
′
1 ] = P [X1 < X2 + ∆, X3 + ∆] ,

where the X’s are i.i.d. according to F .

1.12 In Example 6.1.2, show

(i) that P (X < Y ) = E [1 − G(X)];

(ii) that P (X1 < Y1, Y
′
1) = E [1 − G(X)]2;

(iii) that if F is continuous,

P (X1, X ′
1 < Y1) = E

[
F 2(Y )

]
.

1.13 (i) Show that the variances σ201 and σ210 given by (6.1.47) and (6.1.48)
can take on values different from 1/12 when F and G are two different
distributions, both symmetric about 0.

(ii) Under the same assumptions about F and G, show that the vari-
ance of the U -statistic (6.1.44) can take on values different from its
value when F = G.

1.14 Let (Xi, Yi) be i.i.d. according to a bivariate distribution F . Show
that h(F ) = Cov (Xi, Yi) is an expectation functional.

[Hint: Problem 1.1.]

1.15 If X1 and X2 are independent and P (Xi ≥ uα) = α for i = 1, 2, then

P [max (X1, X2) ≥ uα] = 1 − (1 − α)2 .

1.16 For TN and T ∗
N given by (6.1.66) and (6.1.74), respectively, prove

(6.1.69) and (6.1.65).
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1.17 Prove Theorem 6.1.2 for the case a = 2.

[Hint: Let φ1(x) = Eφ(x,X ′), θ = Eφ(X,X ′) = Eφ1(X), and σ21 =
Var φ1(X). For

Tn =
√

n(U − θ) and T ∗
n =

2√
n

n∑
i=1

[φ1 (Xi) − θ] ,

show that E (T ∗
n − Tn)

2 → 0.]

1.18 Let X1, X2, and X3 be i.i.d. N(0, 1) and let φ (x1, x2) = eλx1x2 with
1
2

< λ ≤ 1√
2
. Then σ21 and σ22 defined by (6.1.15) with a = 2 satisfy

σ21 < ∞ and σ22 = ∞.

[Hint: To evaluate

Eφ (X1, X2) =
1
2π

∫ [∫
eλxy − 1

2
y2dy

]
e−

1
2 e

2
dx,

evaluate first the inner integral by completing the square. Eφ2 (X1, X2)
follows by replacing λ by 2λ. The covariance requires

E [φ (X1, X2)φ (X1, Xe)] = EeλX1(X2+X3).

This can be handled in the same way, using the fact that X2 + X3 is
N(0, 2).]

Section 2

2.1 Let F = δx denote the distribution which assigns probability 1 to the
point x. Then ∫

a(y)dδx(y) = a(x)(6.6.1)

and

∫
· · ·
∫ k∑

i=1

a (yi) dδx1(y1) · · · dδxk
(yk) =

k∑
i=1

a (xi) .(6.6.2)

[Hint: Equation (6.6.1) follows immediately from (6.2.5); to see (6.6.2),
note that∫

· · ·
∫

a (y1) dδx1 (y1) dG2 (y2) · · · dGk (yk) =
∫

a (y1) dδx1(y1)

= a (x1)

for all G2, . . . , Gk.]
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2.2 Determine a functional h defined for all univariate distributions with

finite first moment for which h
(
F̂n

)
=

n∑
i=1

∣∣Xi − X̄
∣∣.

2.3 If X and X ′ are independently distributed according to F , determine
h
(
F̂n

)
when

(i) h(F ) = E |X ′ − X|,

(ii) h(F ) = F ∗−1(p) where F ∗ is the cdf of
1
2

(X + X ′).

2.4 Prove the results stated in

(i) (6.2.25) and (6.2.26);

(ii) (6.2.28) and (6.2.29).

2.5 Prove Theorem 6.2.2 for the case a = 3.

[Hint: Generalize the identity (6.2.34) to the case a = 3, and apply
the method of proof used for a = 2.]

2.6 Show that Definition 5.1.3 is equivalent to the statement that f is
continuous at a if

f (xn) → f(a)

for all sequences x(n) tending to a.

2.7 (i) Show that of the convergence conditions (i′)–(iii′) above (6.2.43)

(a) (ii′) ⇒ (i′);
(b) (ii′) ⇒ (iii′) .

(ii) Give an example of each:

(a) (i′) holds but (ii′) does not;
(b) (iii′) holds but (ii′) does not.

[Hint: Let Gn be the distribution assigning probability 1/2 to the

point 1 − 1
n

and distributing the remaining probability of 1/2 uni-

formly over the interval
(

1 − 1
n

, 1
)

.]

2.8 The definition (6.2.45) of continuity of a functional h in (6.2.46) was
given in terms of the convergence mode (ii′).

(i) Show that if h is continuous with respect to (ii′), it is also contin-
uous with respect to (iii′).

(ii) Show that the converse of part (i) is not correct.

[Hint: Problem 2.7.]
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2.9 (i) Let g (u1, . . . , uk) be a continuous function of k variables, and let
h1, . . . , hk be k functionals that are continuous at F0. Then g[h1(F ),
. . . , hk(F )] is continuous at F0.

(ii) Show that the functional (6.2.13) is continuous at all F .

[Hint for Part (ii): Part (i) and Example 6.2.7(i).]

The following set of problems deals with the estimation of the quantile
function Q(y) = F−1(y) defined by (6.2.41), without the assumption of a
density.

2.10 (i) Evaluate Q(y) when F is the cdf of the discrete distribution that
assigns probabilities p, q, and r (p+q+r = 1) to the points a < b < c,
respectively.

(ii) Show that neither of the equations

F [Q(y) = y] , Q [F (x)] = x

holds for all x and y.

2.11 Prove that quite generally

F [Q(y)] ≥ y, Q [F (x)] ≤ x.

2.12 In a sample of n from the distribution F of Problem 2.10, let X and
Y denote the numbers of observations equal to a and b, respectively,
and let Q̂n = F̂−1

n be the quantile function of F̂n. Show that

Q̂n(y) =




a for 0 < y ≤ X/n

b for
X

n
< y ≤ X + Y

n

c for
X + Y

n
< y ≤ 1.

2.13 Under the assumptions of the preceding problem, show that

Q̂n(y) P→ Q(y) for y �= p, p + q,

and determine the limit behavior of Q̂n(y) when y = p and y = p+ q.

2.14 Prove the following generalization of the preceeding problem.

Theorem 6.6.1 If X1, . . . , Xn are i.i.d. according to F , then

Q̂n(y) P→ Q(y)(6.6.3)
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holds unless there exist constants a and ∆ > 0 such that

F (a) = y(6.6.4)

and

F (x) = y for all a < x < a + ∆.(6.6.5)

(It can also be shown that if such a and ∆ do exist, then (6.6.3) does
not hold.)

[Hint: Let k = k(n) be such that

k

n
≤ y <

k + 1
n

(6.6.6)

and let n = Q(y), δ be any number > 0, and p = F (x + δ).

(a) Show that under the assumptions made,

P
[
Q̂n(y) ≤ x + δ

]
= P

[√
n

(
Sn
n

− p

)
≥

√
n

(
k

n
− p

)]
→ 1,

where Sn is the number of Xi ≤ x + δ.

(b) Show similarly that

P
[
Q̂n(y) ≤ x − δ

]
→ 0

and hence that

P
[
x − δ < Q̂n(y) ≤ x + δ

]
→ 1.]

2.15 Prove (6.2.39).

[Hint: Use the identity (6.2.34) to evaluate the covariance of the two
terms on the right side of (6.2.40) and use (6.1.57) with a = 1, b = 2.]

2.16 In generalization of (6.2.31) and in the notation of (6.1.38), the V -
statistic for s = 2 is

V =
1

manb

∑
φ (Xi1 , . . . , Xia ; Yj1 , . . . Yjb)

with the summation extending over all

1 ≤ i1, i2, · · · , ia ≤ m; 1 ≤ j1, j2, · · · , jb ≤ n.

(i) If the X’s and Y ’s are i.i.d. according to F and G, respectively,
and if

h(F,G) = Eφ (X1, . . . , Xa; Y1, . . . , Yb) ,
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show that V = h
(
F̂m, Ĝn

)
.

(ii) State the generalization of Theorem 6.2.2 for the present case.

(iii) Prove the theorem stated in (ii) for the case a = b = 2.

2.17 (i) With V given by (6.2.34) and

Var φ (Xi, Xj) < ∞, Var φ (Xi, Xi) = ∞,

the asymptotic variance of
√

n(V −θ) is 4σ21 < ∞, but Var [
√

n(V − θ)] =
∞ for all n and hence Var [

√
n(V − θ)] → ∞.

(ii) In particular, the conclusions of part (i) hold when φ (x1, x2) =
x1x2 and E

(
X2
)

< ∞ but E
(
X4
)

= ∞.

Section 3

3.1 In Example 6.3.2, check (6.3.13) and (6.3.23).

3.2 For a given functional h and cdf F0, let

h∗(F ) = h(F ) − h (F0) .

Then IFh∗,F (x) = IFh,F (x) for all x.

3.3 (i) Verify the influence function (6.3.29) of µk.

(ii) Graph the influence function of h(F ) = VarF (X) = µ2.

3.4 (i) Determine γ2(F ) for the cases

(i) F (t) = FK
0 (t); (ii) F (t) = pF0(t) + qF 20 (t), 0 < p < 1.

(ii) Verify γ2(F ) given by (6.3.31).

3.5 If h2 = k (h1) where h1 is a functional with influence function IFh1,F

and k is a differentiable function of a real variable, then the influence
function of h2 is given by

IFh2,F (x) = k′ [h1(F )] · IFh1,F (x).(6.6.7)

3.6 Use (6.6.7) and (6.3.28) to determine the influence function of the
standard deviation of a random variable X with distribution F .

3.7 Under the assumptions of Problem 3.5:

(i) If the influence function of h1 satisfies (6.3.13) so does the influence
function of h2.

(ii) If γ2h1
(F ) is given by (6.3.14) with h = h1, then

γ2h2
(F ) =

∫
IF 2h2,F (x)dF (x) = {k′ [h1(F )]}2 γ2h1

(F ).
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3.8 (i) Use the result of Problem 3.7(ii) to evaluate (6.3.14) when h(F )
is the standard deviation of F .

(ii) Use the result of Example 6.3.3 and of Theorem 2.5.2 to show that
the functional h(F ) of part (i) satisfies (6.3.8) with the asymptotic
variance γ2(F ) determined in part (i) .

3.9 (i) If h = h1/h2, the influence function of h is

IFh,F (x) =
h2(F )IFh1,F (x) − h1(F )IFh2,F (x)

h22(F )
.(6.6.8)

(ii) If the influence functions of h1 and h2 satisfy (6.3.13) so does that
of h = h1/h2.

3.10 Use (6.6.8) to obtain the influence function of the standardized third
moment of a random variable X with distribution F given by

h(F ) = E (X − ξ)3 /
[
E (X − ξ)2

]3/2
.(6.6.9)

Note: For the asymptotic normality of h
(
F̂n

)
, see Problem 7.4 of

Chapter 5.

3.11 The Wilcoxon statistic Vs is compared in Example 6.1.1 with the
U -statistic corresponding to the function φ (x1, x2) given by (6.1.6).
Compare both of these statistics with the V -statistic corresponding
to the same φ.

3.12 Under the assumptions of Problem 4.8 of Chapter 2, let h(F ) =
F−1(p) be the population p-quantile (0 < p < 1).

(i) Show that

F−1
ε,x (p) = F−1

(
p

1 − ε

)
if p < (1 − ε)F (x)

and determine F−1
ε,x (p) for the remaining values of p.

(ii) By differentiating F−1
ε,x (p), show that

IFh,F (x) = (p − 1)/f
[
F−1(p)

]
when x < F−1(p)

and determine IFh,F (x) for x = F−1(p) and x > F−1(p).

(iii) Verify (6.3.13) and show that

γ2(F ) =
∫

IF 2h,F (x), dF (x) = pq/
{
f
[
F−1(p)

]}2
.

(iv) Graph the influence function of part (ii) when F is the standard
normal distribution and p = .2, .4, .6.
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Note: The normal limit
√

n
[
h
(
F̂n

)
− h(F )

]
L→ N

(
0, γ2(F )

)
was

shown in Problem 4.8 of Chapter 2.

3.13 With the notation of Section 5.7 and Example 6.2.1, let

h(F ) =
∑(

pj − p0j
)2

/p0j

so that h
(
F̂n

)
is the Pearson statistic (6.2.11) for testing H : F = F0.

(i) Show that

IFh,F (x) = 2
pj − p0j

p0j
+ A when x ∈ Ij ,

where A = −2
∑(

pi − p0i
)
/p0i .

(ii) Check that (6.3.13) holds.

(iii) Show that

γ2(F ) =
∫

I2h,F (x)dF (x) = 4
∑[

pj − p0j
p0j

−
∑ pi − p0i

p0i

]2
.

(iv) Show that

√
n

[
h
(
F̂n

)
− h(F ) − 1

n

∑
Ih,F (Xi)

]
P→ 0.

(v) It follows from (i)–(iv) that

√
n
[
h
(
F̂n

)
− h(F )

]
L→ N

(
0, γ2(F )

)
.

Explain why this does not contradict Theorem 5.5.2 according to
which nh

(
F̂n

)
L→ χ2k.

Note: The normal limit distribution of Problem 3.13 under the as-
sumption of a fixed distribution F �= F0 and the non-central χ2 distri-

bution corresponding to pi = p0i +
∆√
n

obtained in Theorem 5.5.3 lead

to different approximations for the distribution of Pearson’s statistic
(6.2.11) for a given n and given values pi. Which approximation is
better depends on the values of the parameters. If all the differences
pi−p0i are small, one would expect better results from the non-central
χ2 approximation while the normal approximation would be favored
when none of the differences pi − p0i are small. This suggestion is
supported by closely related numerical comparisons carried out by
Brofitt and Randles (1977).
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3.14 Show that each of the three quantities (6.3.41) tends to a2σ21 as n →
∞.

Section 4

4.1 Suppose that f1 and f2 are densities of F , i.e., satisfy

F (b) − F (a) =

b∫
a

f1(x)dx =
∫ b

a

f2(x)dx for all a < b,

and that both are continuous at y. Then f2(y) = f1(y).

[Hint: Suppose that f1(y) < f2(y). Then there exists ε > 0 such that
f1(x) < f2(x) for all x satisfying y − ε < x < y + ε.]

4.2 If f is a density satisfying f(x) ≤ M for all x, then
∫

f2(x)dx ≤ M .

4.3 Show that (6.4.13) reduces to (6.4.4) when K is the uniform density

U

(
−1

2
,
1
2

)
.

4.4 (i) Verify the conditions (6.4.17) of Theorem 6.4.3 when K is the
normal density N(0, 1).

(ii) For K = N(0, 1), calculate the principal terms in (6.4.18) and
(6.4.19).

4.5 (i) With n = 2, x1 = −1, and x2 = +1, graph the estimators (a)
(6.4.2) and (b) (6.4.13) with K = N(0, 1) for some representative
values of h (small, medium, and large).

(ii) Carry out (i) with n = 3; x1 = −1, x2 = 1, x3 = 2.

4.6 Prove that the value of h given by (6.4.30) minimizes (6.4.28).

4.7 Graph f̂n(y) given by (6.4.13) with K = N(0, 1) as a function of y
if X1, . . . , Xn is a random sample of n = 5, 10, 20 from the following
densities f :

(i) f = N(0, 1);

(ii) f = U(0, 1);

(iii) f = E(0, 1);

(iv) f(x) =
1
2

when −2 < x < −1 and 1 < x < 2, and = 0 elsewhere,
for a number of values of h.
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4.8 (i) The normal mixture density f =
1
2
N(a, 1) +

1
2
N(−a, 1) has two

modes when a is sufficiently large, and is unimodal for sufficiently
small a.

(ii) Work Problem 4.7 for the density f of part (i) for a number of
different values of a including both unimodal and bimodal cases.

[Hint for (i): By differentiation of f(x), show that f ′(x) < 0 for all
x > 0 (and hence that f is unimodal) when

e2ax <
a + x

a − x
=
(
1 +

x

a

)(
1 − x

a

)−1
.

Expand both sides as a power series and compare the coefficients of
xk for a < 1/

√
2.]

4.9 Obtain expressions for c1, c2, and c3 if the quantities (1) (6.4.21), (2)
(6.4.22), and (3) (6.4.25) are expressed as cin

−4/5+ o(n−4/5) when h
is given by (6.4.30).

4.10 (i) Verify (6.4.40).

(ii) Use Corollary 2.4.1 to obtain conditions for (6.4.37) to hold.

4.11 Determine the limit behavior of (6.4.39) when h = hn is given not by
(6.4.30) but more generally by

(i) hn = c/n1/5;

(ii) hn = c/nα, α < 1/5;

(iii) hn = c/nα, α > 1/5,

where c is any positive constant and 0 < α < 1/3.

[Hint: In each case, evaluate the standardized bias b(y)/
√

Var f̂n(y).]

Note: The result of (ii) shows that it is possible to eliminate the
asymptotic bias found in (6.4.39) at the cost of a slower convergence
rate for f̂n(y).

4.12 Show that the quantity (6.4.42) is unchanged when K(z) is replaced

by
1
c
K
(z

c

)
, c > 0.

4.13 Verify the value of A given following (6.4.47).

4.14 Show that the efficiency (6.4.47) tends to 0 if

(i) K2 is a Cauchy distribution truncated at T when T → ∞;

(ii) K2 is a suitable mixture of normal distributions.



6.6 Problems 447

4.15 Let X1, . . . , Xn be i.i.d. with density f(x − θ), and suppose that f ′

exists and that θ̂n is an estimator of θ satisfying
√

n
(
θ̂n − θ

)
→

N(0, v2). Find the limit distribution of
√

n
[
f
(
y − θ̂n

)
− f(y − θn)

]
when f ′(θ) �= 0.

4.16 Verify (6.4.53).

4.17 Generalize Theorem 6.4.3(i) to find conditions for the validity of

(i) (6.4.59);

(ii) (6.4.60).

4.18 Check that (6.4.62) is minimized by (6.4.65).

Section 5

5.1 In Example 6.5.2, evaluate the probability (6.5.5) for all a.

5.2 Extend the calculations of Example 6.5.2 to the cases

(i) n = 3;

(ii) n = 4.

5.3 In Example 6.5.2, suppose λn(F ) is given by (B) instead of (A) so
that

λn(F ) = PF

[√
n
[
X̄n − E(X)

]
τ(F )

≤ a

]

and

λn

(
F̂n

)
= PF̂n


√n

(
X̄∗
n − X̄n

)
τ
(
F̂n

) ≤ a


 .

Suppose τ2(F ) = Var X, so that τ2
(
F̂n

)
=

1
n

∑(
Xi − X̄

)2. For

this situation calculate λn

(
F̂n

)
when

(i) n = 3;

(ii) n = 4.

5.4 Calculate 10 values of the estimator λn(F̂n) of the preceding prob-
lem for each of the normal mixture distributions of Problem 4.5 of
Chapter 3 corresponding to the four combinations ε = .1, .2, τ = 2, 3
by drawing a sample X1, . . . , Xn of n = 50 observations from the
distribution in question and then drawing 10 bootstrap samples of
B = 100 from F̂n.
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5.5 Carry out the preceding problem when the 10 values of λn(F̂n) are
obtained by drawing a new sample (Xi1, . . . , Xin), i = 1, . . . , 10, for
each of the 10 cases and a single bootstrap sample of B = 100 for
each sample xi1, . . . , xin.

5.6 (i) In Example 6.5.3, determine λn(F̂n) when λn(F ) is the variance
of X(2).

(ii) Extend the calculations of Example 6.5.3 to the case n = 4.

5.7 Let X1, . . . , Xn be a sample from F , and let θ = h(F ) and θ̃n be the
population and sample median, respectively. Determine the bootstrap
estimator λn

(
F̂n

)
when

(a) λn(F ) = P
[√

n
(
θ̃n − θ

)
≤ a
]

and

(b) λn(F ) = Var
[√

n
(
θ̃n − θ

)]
for (i) n = 3 and (ii) n = 4.

Note: If n is odd and x(1) < · · · < x(n), denote the ordered observa-
tions, then the median of X∗

1 , . . . , X∗
n is equal to x(i) if and only if at

least half of the X∗
j are ≤ x(i) and fewer than half are ≤ x(i−1). Since

the number of X∗
j ≤ x(i) has the binomial distribution b

(
1
n

, n

)
, it is

easy to write down a formal expression for the bootstrap estimator.
Using this expression, Ghosh et al. (1984) give conditions in case (b)
for consistency of λn

(
F̂n

)
and give an example in which consistency

does not hold. Conditions for consistency in case (a) are given by
Bickel and Freedman (1981) and Singh (1981).

5.8 Show how bootstrapping can be used to determine an approximation
of λn

(
F̂n

)
which converges to λn

(
F̂n

)
as B → ∞ for λn(F ) given

in Problem 5.3.

5.9 Show that
(

1 − 1√
n

)n
→ 0 as n → ∞.

[Hint: Write
(

1 − 1√
n

)n
=

[(
1 − 1√

n

)√
n
]√n

].

5.10 Discuss the asymptotic normality of

√
n
[
λn

(
F̂n

)
− λn(F )

]
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under the assumptions of Example 6.5.7 when γ21 , γ22 , and γ23 are all
finite.

[Hint: Use the results of Example 6.2.5.]

5.11 Verify (6.5.28).
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7
Efficient Estimators and Tests

Preview

Chapters 3–6 were concerned with the asymptotic performance of statisti-
cal estimation and testing procedures, and with the comparison of alterna-
tive procedures. In this last chapter, we discuss methods for constructing
procedures that are in some sense efficient, that is, asymptotically optimal.

The most widely used approach for such a construction is based on
Fisher’s maximum likelihood estimators (MLE) and some of its modifi-
cations. To avoid certain difficulties, we follow Cramér (1946) and replace
the MLE by a consistent root θ̂n of the likelihood equation. In Sections
1, 3, and 4, sufficient conditions are given in the one-parameter case for
such a root to exist and to be asymptotically normal with variance 1/I(θ).
Here I(θ) is the Fisher information, the properties of which are studied in
Section 2. A convenient first order approximation to θ̂n, which shares its
asymptotic properties, is developed in Section 3. The theory is generalized
to the multiparameter case in Sections 5 and 6.

Section 7 treats the corresponding testing problem and discusses three
classes of test procedures: the likelihood ratio, Wald, and Rao tests. In
Section 8, the results of the earlier sections are applied to some multinomial
models of contingency tables.
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7.1 Maximum likelihood

In this last chapter, we shall consider the construction of estimators which
are asymptotically efficient in a sense that will be made precise in Section
7.4. A starting point for the generation of such estimators is the method of
maximum likelihood. Suppose for a moment that X is a discrete random
quantity taking on values x with probabilities

Pθ(x) = Pθ(X = x)(7.1.1)

depending on a parameter θ taking on values in Ω. For fixed x, viewed as
a function of θ, the probability (7.1.1) is called the likelihood of θ and is
denoted by

L(θ) = Pθ(x).(7.1.2a)

The value θ̂(x) which assigns the largest possible probability to θ, i.e.,
which maximizes the likelihood (7.1.2a) in a sense, provides the best “ex-
planation” of the observation x and thus is a natural estimator of θ.

In the same way, if X has probability density pθ(x), the likelihood is
defined as

L(θ) = pθ(x).(7.1.2b)

In both cases, the value of θ maximizing L(θ) (if it exists) is called the
maximum likelihood estimator (MLE) of θ.

Example 7.1.1 Poisson. If Y1, . . . , Yn are i.i.d. according to the Poisson
distribution P (λ), the likelihood is

L(λ) = λΣyie−nλ/Πyi!(7.1.3)

This is maximized by (Problem 1.1(i))

λ̂ =
∑

yi/n,(7.1.4)

which is therefore the MLE of λ.
A difficulty that may be encountered in maximum likelihood estimation

is that an MLE may not exist. �

Example 7.1.2 Non-existence of MLE. Suppose in Example 7.1.1 that
for each i we observe only whether Yi is 0 or positive and let

Xi =
{

0 if Yi = 0
1 if Yi > 0.

Then

P (Xi = 0) = e−λ, P (Xi = 1) = 1 − e−λ,
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and the likelihood is

L(λ) = (1 − e−λ)Σxiee−λ
∑
(1−xi).(7.1.5)

This is maximized by (Problem 1.1(ii))

λ̂ = log
n∑

(1 − xi)
= − log(1 − x̄),(7.1.6)

provided
∑

(1 − xi) > 0, i.e., provided not all the xi are = 1.
When all the x’s are = 1, the likelihood becomes

L(λ) =
(
1 − e−λ

)n
,

which is an increasing function of λ. In this case, the likelihood does not take
on its maximum for any finite λ and the MLE does not exist. How serious
this problem is depends on how frequently the case X1 = · · · = Xn = 1
occurs. For any fixed n, the probability

P (X1 = · · · = Xn = 1) =
(
1 − e−λ

)n
(7.1.7)

tends to 1 as λ → ∞. Thus there will exist values of λ for which the
probability is close to 1 that the MLE is undefined. (Whether the MLE
exists when all the x’s are 0 depends on whether 0 is considered a possible
value of λ.)

On the other hand, for any fixed λ, the probability of (7.1.7) tends to 0
as n → ∞. If we define a modified MLE λ̂ by (7.1.6) when at least one of
the xi is �= 1 and arbitrary (for example, equal to 1) otherwise, it is seen
that λ̂ is consistent and in fact satisfies (Problem 1.3)

√
n
(
λ̂ − λ

)
L→ N

(
0, eλ − 1

)
.(7.1.8)

�

The finding of this example, that difficulties encountered with the MLE
for finite sample sizes may disappear in the limit as the sample size be-
comes large, is typical for i.i.d. samples from a suitably smooth parametric
family of distributions (but see Example 7.1.3). We shall in the present
section consider the asymptotic theory for the case of a single real-valued
parameter; the treatment of vector-valued parameters will be taken up in
Section 7.5.

A first property expected of any good estimator in the i.i.d. case is that
it be consistent. This holds, for example, for the MLE’s (7.1.4) and (7.1.6)
(Problem 1.4). However, even this rather weak property will not always
be satisfied as is shown by the following example due to Ferguson (1982,
1996).
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Example 7.1.3 A counterexample. Let X1, . . . , Xn be i.i.d. with a dis-
tribution which with probability θ is the uniform distribution on (−1, 1),
and with probability (1 − θ) is equal to the triangular distribution with
density (Problem 1.5)

1
c(θ)

[
1 − |x − θ|

c(θ)

]
, θ − c(θ) < x < θ + c(θ),(7.1.9)

where c(θ) is a continuous decreasing function of θ with c(0) = 1 and
0 < c(θ) ≤ 1 − θ for 0 < θ < 1, and with c(θ) → 0 as θ → 1. Thus, for
θ close to 1, the triangular component of the denisity is concentrated in
a narrow interval centered on θ, and its value 1/c(θ) at x = θ tends to
infinity as θ → 1. The situation is illustrated in Figure 7.1.1, which shows
both the uniform density and triangular density corresponding to a value
of θ close to 1. In this situation, it turns out that the MLE θ̂n exists for all
n but that instead of being consistent, i.e., of converging in probability to
θ, it converges to 1 as n → ∞ no matter what the true value of θ.

2

0

θ

c(θ) c(θ)

c(θ)

1

1

1

θ – θ +

FIGURE 7.1.1. Ferguson’s example

The example provides some insight into the working of maximum likeli-
hood. Given a sample x1, . . . , xn, we seek the distribution (and hence the
value of θ characterizing it), which assigns the greatest likelihood to this
sample. Because of the extremely high peak of the density when θ is very
close to 1, the occurrence of some x’s close to 1 (which for any θ will hap-
pen with near certainty when n gets large) is most likely when θ is near 1.
Thus, regardless of the true value of θ, for large n the MLE θ̂n will be close
to 1.
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The following is a more formal sketch of the main steps of the argument;
the details can be found in Ferguson (1982).

Instead of maximizing the likelihood Ln(θ), it is more convenient (and
equivalent) to maximize the log likelihood

ln(θ) = log Ln(θ).(7.1.10)

It can be shown that for any 0 < α < 1, there exists a constant K(α) such
that

max
0≤θ≤α

1
n

ln(θ) ≤ K(α) for all n.(7.1.11)

On the other hand, it turns out that (Problem 1.6)

X(n) = max (X1, . . . , Xn)
P→ 1(7.1.12)

and that

1
n

ln
(
X(n)

) P→ ∞,(7.1.13)

provided c(θ) → 0 sufficiently fast as θ → 1. Since (7.1.13) implies that

max
0≤θ≤1

1
n

ln(θ)
P→ ∞,(7.1.14)

it then follows from (7.1.11) that

P
(
θ̂n > α

)
→ 1

for any 0 < α < 1 and hence that θ̂n
P→ 1.

The densitities fθ(x) are quite smooth except for the discontinuity of
the derivative at θ caused by the sharp peak of the triangular distribution.
This discontinuity can be removed by replacing the family of triangular
distributions (7.1.9) by a suitable family of beta distributions (see Ferguson
(1982)). �

Examples 7.1.1 and 7.1.2 illustrate two quite different difficulties that
can arise with the MLE. In the first example, the problem is minor. The
sample point X1 = · · · = Xn = 1, for which none of the Y ’s are equal to
zero, suggests a very large value of θ but runs into the technical problem
that the range of θ is unbounded. Even for this sample, the MLE, if taken
to be ∞, points in the right direction; in addition, the probability of this
special case tends to zero as n → ∞ for all values of θ. Thus, for large n,
with a slight modification needed only in rare cases, the MLE will provide
a good idea of the position of θ.
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In contrast, no such technical difficulty arises in Example 7.1.3. Here the
MLE always exists, but for large n, it gives a totally misleading picture,
suggesting that θ is close to 1, regardless of the true value of θ.

Despite this example, in standard situations the MLE tends to be consis-
tent. Sufficient conditions for this to be the case are given in Wald (1949).
Unfortunately, they are often difficult to check and exclude many standard
problems. A simpler theory with conditions that are easier to check becomes
possible when consistency of the global maximum is replaced by that of a
suitable sequence of local maxima. This modification of the problem is due
to Cramér (1946), who gave the following conditions for the existence of a
consistent sequence θ̂n of local maxima of the likelihood function (satisfied,
for instance, by the smoothed version of Example 7.1.3). Such a sequence
turns out to be not only consistent but also efficient (see Section 7.5).

For the existence of such a consistent θ̂n, we make the following assump-
tions:

(C1) The distributions Pθ of the observations are distinct, i.e., Pθ1 = Pθ2
implies θ1 = θ2.

(C2) The parameter space Ω is an open interval
(
θ, θ̄
)
,

Ω : −∞ ≤ θ < θ < θ̄ ≤ ∞.

(C3) The observations are X = (X1, . . . , Xn), where the Xi are i.i.d. either
with probability density fθ(x) which will be assumed to be continuous
in x (the continuous case), or discrete with probabilities

Pθ(x) = Pθ (Xi = x)

(the discrete case).

(C4) The set

A = {x : fθ(x) > 0} or A = {x : Pθ(x) > 0}

is independent of θ.

(C5) For all x in A, fθ(x) or Pθ(x) is differentiable with respect to θ. Its
derivative will be denoted by f ′

θ(x) or P ′
θ(x).

Notes

1. When (C1) holds, the parameter θ is said to be identifiable. To illus-
trate non-identifiability, suppose that Y1, . . . , Yn are i.i.d. N(η, 1) and
let Xi = |Yi|. Then the distribution of the X’s depends only on |η|
and is therefore the same for η and −η. If only the X’s are observed,
the parameter η is unidentifiable since two different parameter values
(η and − η) lead to the same distribution of the observations. In this
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situation, η clearly cannot be estimated consistently since the X’s
provide no information as to whether it is positive or negative. (For a
general discussion of identifiability with references, see Basu (1983).)

2. Assumption (C4) is satisfied for the mixture distributions of Example
7.1.2 with A = (−1, 1); however, it does not hold for the family of
triangular distributions with densities (7.1.9).

3. We shall in the following state results for the continuous case. They
remain valid in the discrete case if all integrals are replaced by the
corresponding sums.

The following result asserts the consistency not of the MLE but of a
suitable sequence of local maxima of the likelihood.

Theorem 7.1.1 Let X1, . . . , Xn be i.i.d. with probability density satisfying
(C1)–(C5). Then there exists a sequence θ̂n = θ̂n (X1, . . . , Xn) of local
maxima of the likelihood function Ln(θ) which is consistent, i.e., which
satisfies

θ̂n
P→ θ for all θ ∈ Ω.(7.1.15)

For a proof of this result, see, for example, Cramér (1946) or Lehmann
and Casella (1998).

The local maxima are determined by setting the derivative of the likeli-
hood equal to 0,

∂

∂θ
[fθ (x1) · · · fθ (xn)] = 0.(7.1.16)

It is equivalent and, since the likelihood is a product, often more convenient
to find instead the local maxima of the log likelihood

ln(θ) =
∑

log fθ (xi)(7.1.17)

by solving the likelhood equation

l′n(θ) =
∑ f ′

θ (xi)
fθ (xi)

= 0.(7.1.18)

Here, as in Ln(θ), the notation suppresses the fact that ln(θ) and l′n(θ)
depend also on the x’s.

Theorem 7.1.1 does not guarantee the existence of a local maximum for
all (x1, . . . , xn) or, for a given n, even for any sample point. (See Example
7.1.2 and Problem 1.8.) It states only that with probability tending to 1
as n → ∞, the likelihood (or equivalently the log likelihood) has a local
maximum θ̂n = θ̂n (X1, . . . , Xn) such that θ̂n tends to the true value θ in
probability. A difficulty which will be discussed in Section 6.3 arises when
there are several local maxima since we then do not know which one to
choose so as to obtain a consistent sequence.
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Corollary 7.1.1 Under the assumptions of Theorem 7.1.1, if the likelihood
equation (7.1.18) has a unique root θ̂n for each n and all (x1, . . . , xn), then

(i) θ̂n is a consistent estimator of θ

and

(ii) with probability tending to 1 as n → ∞, θ̂n is the MLE.

Proof. Part (i) is an immediate consequence of Theorem 7.1.1.
(ii) If the likelihood equation has a unique root, this may correspond

to a local maximum, a local minimum, or an inflection point of ln(θ). In
the second and third case, there can then exist no local maximum and, by
Theorem 7.1.1, the probability of these possibilities therefore tends to 0.
It is thus enough to show that if θ̂n is a local maximum, it is the MLE.
Suppose this is not the case so that at some point θ′ �= θ̂n we have ln(θ′) >

ln

(
θ̂n

)
. Then ln(θ) must have a local minimum between θ̂n and θ′, and

this contradicts the uniqueness assumption. �

Example 7.1.4 Normal. Let X1, . . . , Xn be i.i.d. according to the nor-
mal distribution N

(
ξ, σ2

)
. The log likelihood is then

−n log
√

2π − n log σ − 1
2σ2

∑
(xi − ξ)2 .(7.1.19)

(i) Consider first the case that σ2 is known and ξ is the parameter to be
estimated. Differentiating (7.1.19) with respect to ξ, we see that the
likelihood equation is

1
σ2

∑
(xi − ξ) = 0,

which has the unique solution ξ̂ = X̄. Since the log likelihood (7.1.19)
is maximized by minimizing∑

(xi − ξ)2 =
∑

(xi − x̄)2 + n (x̄ − ξ)2 ,(7.1.20)

it follows that ξ̂ is also the MLE. Of course, that X̄ is a consistent
estimator of ξ was already seen in Example 2.1.2.

(ii) Suppose next that ξ is known and we wish to estimate σ2. The like-
lihood equation then becomes

−n

σ
+

1
σ3

∑
(xi − ξ)2 = 0,(7.1.21)

which has the unique solution

σ̂2 =
1
n

∑
(xi − ξ)2 .(7.1.22)
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Since the log likelihood tends to −∞ both as σ → 0 and as σ → ∞
(Problem 1.14), it follows that σ̂ is both a local maximum and the
MLE. An exception is the case x1 = · · · = xn = ξ in which the
likelihood is a strictly decreasing function of σ, but this event has
probability 0.

(iii) As a third possibility, suppose that ξ/σ is known, say

ξ = aσ, 0 < σ < ∞,(7.1.23)

and that we wish to estimate σ. Then the likelihood equation becomes
(Problem 1.15)

γ2 − γ
a
∑

xi∑
x2i

=
n∑
x2i

,(7.1.24)

where γ = 1/σ. If d = a
∑

xi/
[
2
∑

x2i

]
, (7.1.24) has the two solu-

tions

γ = d ±
√

n∑
x2i

+ d2.(7.1.25)

Only one of these is positive, so that in the range of possible values
of σ, the likelihood equation (7.1.24) has the unique solution

1
σ̂

= γ̂ =
a
∑

xi

2
∑

x2i
+

√√√√√√ n∑
x2i

+
a2
(∑

xi

)2
4
(∑

x2i

)2 .(7.1.26)

Since the log likelihood tends to −∞ as σ → 0 or σ → ∞ (Problem
1.14(ii)), it follows that σ̂ is both a local maximum and the MLE. �

Let us now return to the general situation considered in Theorem 7.1.1.
Consistency is a rather weak property. However, the assumptions (C1)–
(C5), together with some additional smoothness assumptions on the den-
sities fθ(x), permit the much stronger conclusion that any consistent se-
quence θ̂n = θ̂n (X1, . . . , Xn) of roots of the likelihood equation satisfies

√
n
(
θ̂n − θ

)
L→ N

(
0,

1
I(θ)

)
,(7.1.27)

where

I(θ) = E

[
∂

∂θ
log fθ(X)

]2
=
∫ [

f ′
θ(x)

fθ(x)

]2
fθ(x)dx,(7.1.28)
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which is assumed to satisfy

0 < I(θ) < ∞.(7.1.29)

An exact statement and proof of this basic result will be given in Section
7.3. Let us now give some simple illustrations of (7.1.27).

Example 7.1.1 Poisson (continued). If X has the Poisson distribution
P (λ) with

Pλ(x) =
λx

x!
e−λ,

then
∂

∂λ
[log Pλ(x)] =

x

λ
− 1 =

x − λ

λ

and hence

I(λ) =
1
λ2

E (X − λ)2 =
1
λ

.

Suppose now that X1, . . . , Xn are i.i.d. according to P (λ). Then it was
stated in Example 7.1.1 that the MLE of λ is λ̂ = X̄. If (7.1.27) applies, it
follows that

√
n
(
X̄ − λ

)
→ N(0, λ).(7.1.30)

In the present case, (7.1.30) is an immediate consequence of the central
limit theorem. �
Example 7.1.4 Normal (continued). Let X1, . . . , Xn be i.i.d. according
to the normal distribution N

(
ξ, σ2

)
. It is then easily seen that when σ is

known, I(ξ) = 1/σ2, and when ξ is known, I
(
σ2
)

= 1/2σ4. In both cases,
(7.1.27) follows directly from the CLT (Problem 1.16).

Let us next turn to case (iii) of Example 7.1.3 in which ξ = aσ, where a
is a known positive constant. The log likelihood of a single observation is
now equal to

log fσ(x) = − 1
2σ2

(x − aσ)2 − log σ − log
√

2π,

and its derivative with respect to σ is therefore

∂

∂σ
[log fσ(x)] =

1
σ3

(x − aσ)2 +
a

σ2
(x − aσ) − 1

σ
.(7.1.31)

Thus, since E(X − aσ) = E(X − aσ)3 = 0,

I(σ) =
1
σ6

E (X − aσ)4 +
a2

σ4
E (X − aσ)2 +

1
σ2

− 2
σ4

E (X − aσ)2

=
1
σ2
[
3 +
(
a2 − 2

)
+ 1
]

=
1
σ2
(
a2 + 2

)
.

(7.1.32)
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If (7.1.27) holds (which in Section 1.3 will be seen to be the case), it follows
that

√
n (σ̂ − σ) L→ N

(
0,

σ2

a2 + 2

)
.(7.1.33)

�
It is often of interest to estimate not θ itself but some function of θ.

Suppose that

η = g(θ)(7.1.34)

is strictly increasing (or decreasing) so that is has an inverse

θ = g−1(η).(7.1.35)

Then we can use η to label the distribution by writing

fθ(x) = fg−1(η)(x).(7.1.36)

If θ̂ maximizes the left side of (7.1.36), the right side is maximized by the
value η̂ of η for which g−1(η̂) = θ̂, i.e., by

η̂ = g
(
θ̂
)

.(7.1.37)

It follows that the MLE of g(θ) is g(θ̂).
Let us now drop the assumption that g is strictly monotone. Suppose,

for example, that g(θ) = θ2. Then we can no longer use η = g(θ) to
label the distributions since a given value of η corresponds to more than
one distribution. As a consequence, the likelihood of η is undefined and
the original definition of an MLE no longer applies. It turns out to be
convenient in this case to define the MLE of η by (7.1.37). As we shall see
later with this definition, η̂ will continue to possess the properties which in
the monotone case follow from its maximizing the likelihood. The following
is an example of such a result.

Corollary 7.1.2 Under the assumptions of Corollary 7.1.1, suppose that
g is a continuous function of θ. Then η̂n = g

(
θ̂n

)
is a consistent estimator

of η.

Proof. This follows immediately from Theorem 2.1.4. �

Summary

1. The maximum likelihood estimator (MLE) is defined as the global
maximum of the likelihood function. An example is given in which the
MLE does not always exist, but with the probability of this happening
tending to 0 as n → ∞. Another example shows that the MLE need
not be consistent even in very regular situations.
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2. A more convenient theory is obtained by shifting attention from the
global maximum to local maxima and hence to roots of the likeli-
hood equation. If θ̂n is a consistent sequence of roots of the like-
lihood equation, it follows under fairly weak regularity conditions
that

√
n
(
θ̂n − θ

)
is asymptotically normal with mean 0 and vari-

ance 1/I(θ), where I(θ) is the Fisher information.

7.2 Fisher information

The quantity I(θ) defined by (7.1.28) is frequently called “Fisher informa-
tion” or “the amount of information about θ contained in X.” However,
the suggestive term “information” should not be taken too seriously. It is
justified mainly by the fact that in many cases, under assumptions and
with restrictions that will be made precise in Section 7.5, 1/I(θ) is the
smallest asymptotic variance obtainable by an estimator δn satisfying a
limit relation of the form

√
n (δn − θ) L→ N (0, v(θ)) .(7.2.1)

Although we speak of the information contained in a single observation
X, the justification is thus primarily based on the assumption of a large
sample. To see what I(θ) has to say about the informativeness of a single
observation, note that the logarithmic derivative

∂

∂θ
[log fθ(x)] =

f ′
θ(x)

fθ(x)
(7.2.2)

is the relative rate∗ at which the density fθ(x) changes (as a function of
θ) at the point x. The quantity I(θ) is just the expected square of this
rate. It is plausible that the greater this expectation is at a given value
θ0, the easier it is to distinguish θ0 from nearby values of θ, and the more
accurately therefore θ can be estimated at θ = θ0. In this sense, the larger
I(θ) is, the more informative is X. However, this argument leaves many
other aspects of the relationship between X and θ out of consideration and
provides no basis for thinking of I(θ) as a comprehensive measure of the
amount of information contained in a single observation. As an illustration,
consider the following example.

Example 7.2.1 An informative observation with I(θ) = 0. Let X be
normally distributed with E(X) = θ3 and known variance σ20 , so that

fθ(x) =
1√

2πσ0
e
− 1

2σ2
0
(x−θ3)2

.

∗An interesting discussion of this rate is given in Pitman (1979, Chapter 4).
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Then

∂

∂θ
fθ(x) = −3θ2

(
x − θ3

)
and hence

I(θ) = 9θ4σ20 .

For θ = 0, we therefore have I(θ) = 0 despite the fact that if σ20 is small,
X provides a very accurate estimator of θ3 and thus of θ . �

Even the asymptotic justification of I (θ) works only in the regular kind
of situation in which (7.1.27) holds. To see the difficulties that arise without
this restriction consider the following non-regular example which violates
(C4) of Section 1.

Example 7.2.2 Uniform. Let X1, . . . , Xn be i.i.d. according to the uni-
form distribution U (0, θ), so that the likelihood is

Ln(θ) =
{

1/θn if 0 ≤ xi ≤ θ for all i
(
i.e. if 0 ≤ x(1) < x(n) ≤ θ

)
0 otherwise.

(7.2.3)

It follows that the MLE is equal to x(n), the largest of the x’s, i.e.,

θ̂n = X(n).(7.2.4)

As was seen in (2.2.17), n(θ̂n − θ) ends to a non-degenerate limit distri-
bution. Thus

√
n(θ̂n − θ) P→ 0,

which can be expressed by saying that
√

n(θ̂n − θ) tends in law to the
(degenerate) normal distribution N(0, 0). According to (7.2.7), we should
therefore have I(θ) = ∞. However,

log fθ(x) = log(1/θ) = − log θ if x < θ

so that

∂

∂θ
log fθ(x) =

−1
θ

if x < θ(7.2.5)

and hence I(θ) defined by (7.1.28) exists and is equal to

I(θ) =
1
θ2

θ∫
0

dx =
1
θ

< ∞.(7.2.6)
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Consideration of (7.2.2) indicates why, in the present case, I(θ) so inad-
equately reflects the information supplied by even a large sample about θ.
As pointed out, the logarithmic derivative (7.2.2) on which I(θ) is based
measures the change of the density from 1/θ0 at θ0 to 1/θ at a nearby θ.
However, it disregards the additional (and in fact much more important)
change at the end points θ0 and θ, where the density changes abruptly from
a positive value to 0. �

In line with these comments, we shall restrict the use of the measure
I(θ) to regular situations in which (7.1.27) holds and we shall interpret the
statement that the Fisher information (7.1.28) is the amount of information
about θ contained in X simply in the sense of (7.1.27).

Let us next consider some properties of Fisher information.

1. Alternative expressions for I(θ). The following result provides
two alternative expressions for Fisher information.

Theorem 7.2.1

(i) Suppose that (C1)–(C5) hold and that, in addition,

(C6) the derivative with respect to θ of the left side of the equation∫
fθ(x)dx = 1(7.2.7)

can be obtained by differentiating under the integral sign.
Then

Eθ

[
∂

∂θ
log fθ(X)

]
= 0(7.2.8)

and hence

I(θ) = Varθ

[
∂

∂θ
log fθ(X)

]
.(7.2.9)

(ii) Suppose that also

(C6)′ The first two derivatives with respect to θ of fθ(x) exist for all
x ∈ A and all θ, and the corresponding derivatives with respect
to θ of the left side of (7.2.7) can be obtained by differentiation
under the integral sign.
Then also

I(θ) = −Eθ

[
∂2

∂θ2
log fθ(X)

]
.(7.2.10)
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Proof.

(i) Differentiation of both sides of (7.2.7) gives (7.2.8), and (7.2.9)
then follows from (7.1.28).

(ii) Differentiation of

∂

∂θ
[log fθ(x)] =

[
∂

∂θ
fθ(x)

]
/fθ(x)

yields

∂2 [log fθ(x)]
∂θ2

=

∂2

∂θ2
[fθ(x)]

fθ(x)
−




∂

∂θ
fθ(x)

fθ(x)



2

,(7.2.11)

and the result follows from (7.2.7) by taking the expectation of (7.2.11).�

As an illustration of (7.2.10) consider once more Example 7.1.4 (con-
tinued). From (7.1.31), it is seen that

∂2

∂σ2
[log fσ(x)] = − 3

σ4
(x − aσ)2

−2a
σ3

(x − aσ) − 2a
σ3

(x − aσ) − a2

σ2
+

1
σ2

,

and hence that

−E

[
∂2

∂σ2
log fσ(X)

]
=

3σ2

σ4
+

a2

σ2
− 1

σ2
=

1
σ2
(
a2 + 2

)
,(7.2.12)

which agrees with the right side of (7.1.32).

2. Additivity. As one might expect, the information supplied by two
independent observations is the sum of the information supplied by
them separately.

Theorem 7.2.2

(i) Let X and Y be independently distributed with densities fθ and gθ
satisfying (C1)–(C6). If I1(θ), I2(θ), and I(θ) denote the amounts of
information about θ contained respectively in X, Y , and (X,Y ), then

I(θ) = I1(θ) + I2(θ).(7.2.13)

(ii) If X1, . . . , Xn are i.i.d. with density fθ satisfying (C1)–(C6),
then the information about θ contained in the sample (X1, . . . , Xn)
equals nJ(θ), where J(θ) is the common information contained in the
individual Xi.
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Proof. (i) By definition,

I(θ) =E

[
∂

∂θ
log fθ(X) +

∂

∂θ
log gθ(Y )

]2

=I1(θ) + I2(θ) + 2E
[

∂

∂θ
log fθ(X)

∂

∂θ
log fθ(Y )

]
.

(7.2.14)

Since X and Y are independent, the expected product in the third
term is equal to the product of the expectations, and the result follows
from (7.2.8).

(ii) This is an immediate consequence of (i). �

Note: From (7.2.14), it follows that (7.2.13) fails when

E

[
∂

∂θ
log fθ(X)

∂

∂θ
log gθ(Y )

]
= E

[
∂

∂θ
log fθ(X)

]
E

[
∂

∂θ
log gθ(Y )

]

is different from 0, that is, when both fθ and gθ fail to satisfy (7.2.8),
Consider, in particular, the case of n i.i.d. random variables X1, . . . , Xn.
In the notation of Theorem 7.2.2(ii), we then have

I(θ) = E

[
n∑
i=1

∂

∂θ
log fθ (Xi)

]2

= nJ(θ) + n(n − 1)
[
Eθ

∂

∂θ
log fθ (X1)

]2
.

(7.2.15)

Thus if (7.2.8) does not hold, as is the case in Example 7.2.2, I(θ) is
of order n2 rather than the usual order n.

3. Information about a function of θ. In Example 7.1.4 (continued),
it was stated that the information I

(
σ2
)

contained in a normal ob-
servation X with known mean about σ2 is 1/2σ4. Would the same
answer obtain for the information that X contains about σ? Let us
consider more generally the information I

(
σk
)

that X contains about
η = σk. The log likelihood

log fσ(x) = − 1
2σ2

(x − ξ)2 − log σ − log
√

2π(7.2.16)

can be expressed in terms of η as

log f∗
η (x) = − 1

2η2/k
(x − ξ)2 − log η1/k − log

√
2π.(7.2.17)

Then

∂

∂η
log f∗

η (x) =
1

kη
2
k+1

(x − ξ)2 − 1
kη

=
1

kη
2
k+1

[
(x − ξ)2 − η2/k

]



7.2 Fisher information 467

and it follows that

I∗(η) =
1

k2η(4+2k)/k
Var
[
(X − ξ)2

]
=

2
k2σ2k

.(7.2.18)

For k = 2, this reduces to the earlier 1/2σ4, as it should. For k = 1,
we find I(σ) = 2/σ2, and so on. Quite generally, the information X
contains about g(θ) depends not only on θ but also on g.

The argument leading to (7.2.18) can be used to evaluate I [g(θ)] more
generally. Suppose that η = g(θ) is a strictly increasing differentiable
function with derivative g′(θ). Expressed in terms of η, the density
fθ(x) then becomes

f∗
η (x) = fg−1(η)(x)

so that

∂

∂η

[
log f∗

η (x)
]

=
∂

∂η
[log fθ(x)]

dg−1(η)
dη

=
f ′
θ(x)

fθ(x)
1

g′(θ)
,

and hence

I∗(η) = I(θ)/ [g′(θ)]2 .(7.2.19)

It is seen from (7.2.19) that a more rapid change in g(θ) (i.e., an
increase in |g′(θ)|) will decrease I [g(θ)]. To see why this is reason-
able, suppose that I(θ), and hence the accuracy with which θ can be
estimated, is fixed. Then g(θ) can be estimated more accurately the
flatter the function g is at θ since a value θ′ at a given small distance
from θ will lead to a smaller deviation of g(θ′) from g(θ) the smaller
the value of |g′(θ)| is.

The most extreme case of this phenomenon occurs when g′(θ) = 0,
in which case I∗[g(θ)] = ∞. In this case, the function g is essen-
tially constant in a sufficiently small neighborhood of θ so that only
a rough idea of θ is needed to get very precise knowledge of g(θ).
A more quantitative interpretation of the phenomenon is obtained
by recalling formula (2.5.14). This shows that if θ̂n satisfies (7.1.27)
and g′(θ) = 0 but g′′(θ) �= 0, then n

[
g
(
θ̂n

)
− g(θ)

]
tends to a limit

distribution. Thus the error made when estimating g(θ) is then of
order 1/n, smaller than the 1/

√
n order which in (7.1.27) provided

the motivation for the information criterion I(θ).

So far, we have assumed that η = g(θ) is a strictly monotone function
of θ. Suppose now that this is not the case, that we wish to estimate,
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for example, g(θ) = θ2 or g(θ) = sin θ. The argument leading to
(7.2.19) then requires some modification since the inverse g−1 is no
longer uniquely defined.

To see that, except for a small change in notation, formula (7.2.19)
continues to apply when the assumption of monotonicity is dropped,
suppose that the derivative g′ exists and is continuous. Then if g′(θ) >
0, g′ will be positive in some neighborhood (θ − ε, θ + ε) of θ. In this
neighborhood, η = g(θ) is strictly increasing and therefore can be
inverted, so that the earlier argument applies. However, the inverse
function g−1(η) now depends not only on η but also on θ (different
values of θ can lead to the same value of η) and therefore will be
denoted by g−1θ (η). To illustrate, let g(θ) = θ2. Then

g−1θ (η) =
{ √

η if θ > 0
−√

η if θ < 0.(7.2.20)

To each of these branches of the inverse function, we can now apply
without any change the calculation that led to (7.2.19) to obtain

I∗θ (η) = I
[
g−1θ (η)

] [dg−1θ (η)
dη

]2
.(7.2.21)

Expressed in terms of θ, this reduces to

I∗θ [g(θ)] = I(θ)/ [g′(θ)]2 ,(7.2.22)

which is therefore the amount of information supplied by X about
g(θ).

Summary

1. The Fisher information I(θ) contained in an observation X about
θ measures the average relative rate of change in the density fθ(x)
as a function of θ. The term is misleading since I(θ) is a reasonable
measure of information only asymptotically as n → ∞, and even then
only in regular cases.

2. Several properties of I(θ) are discussed:

(i) Alternative expressions are given which are sometimes more con-
venient;

(ii) I(θ) is shown to be additive when two or more independent sets
of observations are combined;

(iii) a formula is obtained for the change of I(θ) under reparametriza-
tion.
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7.3 Asymptotic normality and multiple roots

The present section will further develop the theory of likelihood-based esti-
mation in two directions. First, we shall discuss conditions under which the
asymptotic normality result (7.1.27) holds and give a proof of the result-
ing theorem. This will be followed by consideration of the problem arising
when the likelihood equation has multiple roots. The guaranteed existence
of a root that is consistent and hence satisfies (7.1.27) is then inadequate
since it does not tell us how to find this root. We shall discuss some ways
of getting around this difficulty.

The following theorem gives sufficient conditions for the validity of the
limit result (7.1.27) which has been illustrated in the preceding section.

Theorem 7.3.1 Let X1, . . . , Xn be i.i.d. with density fθ(x) satisfying (C1)–
(C5) of Section 7.1, and suppose that in addition the following conditions
hold:

(C6)′′ For all x ∈ A (specified in (C4)), the density fθ(x) is three times
differentiable with respect to θ and the third derivative is continu-
ous. The corresponding derivatives of the integral

∫
fθ(x)dx can be

obtained by differentiating under the integral sign.

(C7) If θ0 denotes the true value of θ, there exists a positive number c (θ0)
and a function Mθ0(x) such that∣∣∣∣ ∂3

∂θ3
log fθ(x)

∣∣∣∣ ≤ Mθ0(x) for all x ∈ A, |θ − θ0| < c (θ0)(7.3.1)

and

Eθ0 [Mθ0(X)] < ∞.(7.3.2)

Then any consistent sequence θ̂n = θ̂n (X1, . . . , Xn) of roots of the like-
lihood equation satisfies

√
n
(
θ̂n − θ0

)
L→ N

(
0,

1
I (θ0)

)
,(7.3.3)

where it is assumed that

0 < I (θ0) < ∞.(7.3.4)

Proof. Let ln(θ) denote the log likelihood and l′n(θ), l′′n(θ), . . . its deriva-
tives with respect to θ. The proof is based on the facts that, on the one
hand, θ̂n satisfies l′n

(
θ̂n

)
= 0 and, on the other, θ̂n is known with high

probability to be close to θ0. Expansion of l′n

(
θ̂n

)
about l′n (θ0) will then

give us an equation for θ̂n − θ0 that will lead to the desired result.
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For any fixed x, expand l′n

(
θ̂n

)
about l′n (θ0) as

l′n

(
θ̂n

)
= l′n (θ0) +

(
θ̂n − θ0

)
l′′n (θ0) +

1
2

(
θ̂n − θ0

)2
l′′′n (θ∗n) ,(7.3.5)

where θ∗n lies between θ0 and θ̂n. Since the left side is zero, we have

√
n
(
θ̂n − θ0

)
=

l′n (θ0) /
√

n

−(1/n)l′′n (θ0) − (1/2n)
(
θ̂n − θ0

)
l′′′n (θ∗n)

.(7.3.6)

(Of course the quantities l′n(θ), l′′n(θ), . . . depend not only on θ but also on
the X’s.)

Of the three quantities on the right side, we shall show that

1√
n

l′n (θ0)
L→ N (0, I (θ0)) ,(7.3.7)

that

− 1
n

l′′n (θ0)
P→ I (θ0) ,(7.3.8)

and that

1
n

l′′′n (θ∗n) is bounded in probability.(7.3.9)

Since θ̂n
P→ θ0, (7.3.8) and (7.3.9) imply that the denominator on the right

side of (7.3.6) tends in probability to I (θ0), and (7.3.3) then follows.
To prove (7.3.7), note that by (7.1.18)

1√
n

l′n (θ0) =
√

n
1
n

∑ f ′
θ0

(Xi)
fθ0 (Xi)

.(7.3.10)

This is the normalized average of the i.i.d. random variables

f ′
θ (Xi)

fθ (Xi)
=

∂

∂θ
log fθ (Xi) .

The expectation of these variables is zero by (7.2.8), their variance is I (θ0)
by (7.2.9), and (7.3.7) thus follows from the CLT.

Consider next

− 1
n

l′′n (θ0) =
1
n

∑ f ′2
θ0 (Xi) − fθ0 (Xi) f ′′

θ0 (Xi)
f2θ0 (Xi)

=
1
n

∑[
f ′
θ0 (Xi)

fθ0 (Xi)

]2
− 1

n

∑ f ′′
θ0 (Xi)

fθ0 (Xi)
.
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By the law of large numbers, the first term tends to

Eθ0

[
f ′
θ0

(Xi)
fθ0 (Xi)

]2
= I (θ0) ,(7.3.11)

and the second term to

Eθ0

[
f ′′
θ0

(Xi)
fθ0 (Xi)

]
=
∫

f ′′
θ0(x)dx.(7.3.12)

The latter is zero by (7.2.8), which proves (7.3.8).
Finally,

1
n

l′′′n (θ) =
1
n

∑ ∂3

∂θ3
log fθ (Xi) .

It follows from (C7) that∣∣∣∣ 1nl′′′n (θ∗n)
∣∣∣∣ < 1

n

∑
Mθ0 (Xi)

when
∣∣∣θ̂n − θ0

∣∣∣ < c (θ0) and hence with probability tending to 1. Since the
right side tends in probability to Eθ0 [M (X1)], this completes the proof.�

Application of the theorem requires checking its various conditions. Dif-
ferentiation under an integral required for (C6)–(C6)′′ is treated in books
on calculus. The following conditions typically are easy to apply.

Lemma 7.3.1

(i) A sufficient condition for

h(θ) =

b∫
a

gθ(x)dx

to be differentiable under the integral sign, i.e., for h′(θ) to exist and
to be given by

h′(θ) =

b∫
a

∂

∂θ
gθ(x)dx

at a point θ = θ0 is that for some θ1 < θ0 < θ2, the function g
has a continuous derivative with respect to θ in the closed rectangle
a ≤ x ≤ b, θ1 ≤ θ ≤ θ2.
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(ii) If the range of integration is infinite, it is required in addition that

∫ b

a

∂

∂θ
gθ(x)dx →

∞∫
−∞

∂

∂θ
gθ(x)dx

uniformly for θ in some
neighborhood of θ0

(7.3.13)

as a → −∞, b → ∞.

To illustrate the checking of the conditions, let us consider once more
the examples of the preceding section.

Example 7.3.1 Poisson. We here replace θ by λ and fθ(x) by

Pλ(x) =
λx

x!
e−λ.(7.3.14)

Conditions (C1)–(C5) are clearly satisfied with the parameter space Ω being
the interval 0 < λ < ∞ and A being the set {0, 1, 2, · · · } of non-negative
integers.

To check (C6) in the present case, replace the integral of the density by
the sum of the probabilities (7.3.14). That

d

dλ

( ∞∑
x=0

λx

x!
e−λ

)
=

∞∑
x=0

[
∂

∂λ

(
λx

x!
e−λ
)]

is obvious in the present case since the left side is zero and the right side is

∞∑
x=1

λx−1

(x − 1)!
e−λ −

∞∑
x=0

λx

x!
e−λ = 0;

the argument for the second and third derivative is completely analogous.
To check (C7), note that

∂3

∂λ3
[log Pλ(x)] =

∂3

∂λ3
[x log λ − λ] =

2x
λ3

.(7.3.15)

If we required (7.3.1) to hold for all λ, we would be in trouble since 1/λ3 →
∞ as λ → 0. However, it is required to hold only for λ in some interval
λ0 − c (λ0) < λ < λ0 + c (λ0). If we take c (λ0) = λ0/2, the right side of

(7.3.15) is ≤ M0(x) =
2x

(λ0/2)3
, and E [M0(X)] =

16
λ20

< ∞. �

As was pointed out in Example 7.1.1 (continued), in the present case
the conclusion of Theorem 7.2.1 is immediate from the CLT. Let us now
consider the situation of Example 7.1.4(iii) where the conclusion does not
follow so directly.



7.3 Asymptotic normality and multiple roots 473

Example 7.3.2 Normal with fixed coefficient of variation. Let
X1, . . . , Xn be i.i.d. according to N

(
aσ, σ2

)
, where a is a given posi-

tive number. Then it was seen in Example 7.1.4(iii) that the likelihood
equation has a unique solution σ̂ given by (7.1.26), and in (7.1.32) that
I(σ) =

(
a2 + 2

)
/σ2. It thus follows from Theorem 7.3.1 that

√
n (σ̂ − σ) →

N(0, 1/I(σ)), provided we can check conditions (C1)–(C5), (C6)′′, and
(C7). The first five of the conditions cause no difficulty. Let us therefore
consider (C6)′′, and for this purpose apply Lemma 7.3.1. The conditions of
part (i) of the lemma are obviously satisfied. It remains to check (7.3.13),
i.e., that

b∫
a

∂k

∂σk
fσ(x)dx →

∞∫
−∞

∂k

∂σk
fσ(x)dx for k = 1, 2, 3

as a → −∞, b → ∞, uniformly for σ in some neighborhood of σ0, where
fσ(x) is the density of N(aσ, σ2). We shall in fact show that for all k

∞∫
b

∂k

∂σk
fσ(x) → 0 as b → ∞(7.3.16)

uniformly for σ in any sufficiently small interval 0 < σ1 < σ < σ2 < ∞,
and the corresponding result holds for the lower limit of the integral.

To prove (7.3.16) note that
∂k

∂σk
fσ(x) is of the form Pσ(x)fσ(x), where

Pσ(x) is a polynomial in x of degree k with coefficients depending on σ
(Problem 3.1). It is therefore enough to show that

∞∫
b

xke−
1

2σ2 (x−aσ)2dx → 0 uniformly for σ1 < σ < σ2, as b → ∞.(7.3.17)

Since (x − aσ)2 /σ2 is a minimum at σ = x/a and increases as σ tends
away from x/a in either direction, e−

1
2σ2 (x−aσ)2 is an increasing function of

σ in the interval (σ1, σ2), provided σ2 < x/a. Therefore if b > σ2, we have

e−
1

2σ2 (x−aσ)2 < e
− 1

2σ2
2
(x−aσ2)2

for all x < b and σ1 < σ < σ2,

and hence
∞∫
b

xke−
1

2σ2 (x−aσ)2dx <

∞∫
b

xke
− 1

2σ2
2
(x−aσ2)2

dx.

Since normal distributions have moments of all orders, it follows that the
right side (which no longer depends on σ) tends to zero as b → ∞, and this
completes the proof of (7.3.16).
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Condition (C7) is easy to check in the present case and is left as a
problem. �

In the regular case, i.e., when conditions (C1)–(C5), (C6)′′, and (C7)
hold, Theorem 7.3.1 describes the asymptotic behavior of any consistent
sequence of roots of the likelihood equation. The following result, due to
Huzurbazar (1948), shows that there is essentially only one consistent se-
quence of roots.

Theorem 7.3.2 Assume that the conditions of Theorem 7.3.1 hold. Then:

(i) If θ̂n is a consistent sequence of roots of the likelihood equation, the
probability tends to 1 as n → ∞ that θ̂n is a local maximum of the
log likelihood ln(θ).

(ii) If θ̂1n and θ̂2n are two consistent sequences of roots of the likelihood
equation, then

P
(
θ̂1n = θ̂2n

)
→ 1 as n → ∞.(7.3.18)

Proof. (i) We have assumed in (7.3.4) that I (θ0) > 0 and it follows from

(7.3.8) that
1
n

l′′n

(
θ̂n

)
P→ −I (θ0) and hence that

P

[
1
n

l′′n

(
θ̂n

)
< −1

2
I (θ0)

]
→ 1.

However, when at some point the first derivative of a twice-differentiable
function is zero and the second derivative is negative, the function has a
local maximum at that point. Thus

P
[
ln(θ) has a local max. at θ̂n

]
≥ P

[
1
n

l′′n

(
θ̂n

)
< 0
]
≥ P

[
1
n

l′′n

(
θ̂n

)
< −1

2
I (θ0)

]
→ 1.

(ii) Suppose the probability that θ̂1n �= θ̂2n does not tend to zero as n → ∞.
Then, by (i) and Lemma 2.1.2, the probability also does not tend to zero
that

θ̂1n �= θ̂2n and both θ̂1n and θ̂2n are local maxima.(7.3.19)

When (7.3.19) holds, there exists between the local maxima θ̂1n and θ̂2n a
local minimum, say θ∗n, which is then also a root of the likelihood equation.
If, in addition, for all sample points with θ̂1n = θ̂2n we define θ∗n to be
this common value, it is seen that θ∗n is a consistent root of the likelihood
equation. However, the probability that θ∗n is a local minimum does not
tend to zero, and this contradicts part (i). �
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Unfortunately, this essential uniqueness does not help us when there are
multiple roots since we do not know which of them provide a consistent
sequence. Part (i) of Theorem 7.3.2 suggests that we should choose a local
maximum, but if there are several of these, Example 7.1.2 (in Ferguson’s
smoothed version) shows that the largest may not be the right choice unless
additional restrictions are imposed on the distributions. One way out of
this impasse is available when we know some consistent estimator θ̃n of θ.
Then the root of the likelihood equation closest to θ̃n (which can be shown
to exist) will also be consistent, and hence constitutes a solution to our
problem. A drawback of this approach is that it requires determining all
the roots, which may not be an easy task.

The following alternative approach avoids these difficulties. It leads to
estimators which are no longer exact roots of the likelihood equation but
which have the same asymptotic behavior as θ̂n.

If, as is frequently the case, the likelihood equation l′n(θ0) = 0 has to be
solved iteratively, the first step of the Newton-Raphson method for doing so
replaces l′n(θ) by the linear terms of its Taylor expansion about a starting
value θ̃n, and therefore replaces the likelihood equation with the equation

l′n

(
θ̃n

)
+
(
θ − θ̃n

)
l′′n

(
θ̃n

)
= 0.(7.3.20)

This suggests the solution of the equation (7.3.20) for θ,

δn = θ̃n −
l′n

(
θ̃n

)
l′′n

(
θ̃n

) ,(7.3.21)

as a first approximation to the solution of the likelihood equation. The
procedure is then iterated by replacing θ̃n by δn and so on. (For more details
on this method, see, for example, Reddien (1985) and Barnett (1966).)
To implement the procedure, one must specify the starting point and the
stopping rule.

We shall here consider only the first step, that is, we propose (7.3.21) as
our estimator of θ. As a starting point, we can take any estimator θ̃n which
is not only consistent but has the stronger property of being

√
n-consistent,

i.e., which satisfies
√

n
(
θ̃n − θ

)
is bounded in probability,(7.3.22)

so that θ̃n tends to θ at least at rate 1/
√

n. This will be satisfied in partic-
ular by any estimator θ̃n for which

√
n
(
θ̃n − θ

)
tends in law to a non − degenerate limit distribution.

(7.3.23)

Such estimators, since they are not required to be efficient, are often easy
to find.
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Theorem 7.3.3 Under the assumptions of Theorem 7.3.1, if θ̃n is a
√

n-
consistent estimator of θ, the estimator (7.3.21) satisfies

√
n (δn − θ) L→ N(0, 1/I(θ)).(7.3.24)

Proof. As in (7.3.5), expand l′n

(
θ̃n

)
about l′n (θ0) to obtain

l′n

(
θ̃n

)
= l′n (θ0) +

(
θ̃n − θ0

)
l′′n (θ0) +

1
2

(
θ̃n − θ0

)2
l′′′n (θ∗n) ,(7.3.25)

where θ∗n lies between θ0 and θ̃n. It follows from (7.3.21) that

δn = θ̃n − 1

l′′n

(
θ̃n

) [l′n (θ0) +
(
θ̃n − θ0

)
l′′n (θ0) +

1
2

(
θ̃n − θ0

)2
l′′′n (θ∗n)

]

and hence that

√
n (δn − θ0) =

−
√

nl′n (θ0)

l′′n

(
θ̃n

) +
√

n
(
θ̂n − θ0

)1 − l′′n (θ0)

l′′n

(
θ̃n

) − 1
2

(
θ̃n − θ0

) l′′′n (θ∗n)

l′′n

(
θ̃n

)

 .

(7.3.26)

To prove (7.3.24), we shall show that
√

nl′n (θ0)

l′′n

(
θ̃n

) L→ N (0, 1/I (θ0))(7.3.27)

and

1 − l′′n (θ0)

l′′n

(
θ̃n

) − 1
2

(
θ̃n − θ0

) l′′′n (θ∗n)

l′′n

(
θ̃n

) P→ 0,(7.3.28)

which together establish the derived result.
The left side of (7.3.27) equals

l′n (θ0) /
√

n

l′′n (θ0) /
√

n
· l′′n (θ0) /n

l′′n

(
θ̃n

)
/n

,

of which the first factor tends in law to N (0, 1/I (θ0)) by (7.3.7) and (7.3.8).
The limit result (7.3.27) will therefore follow if we can show that

l′′n

(
θ̃n

)
/n

l′′n (θ0) /n

P→ 1.(7.3.29)
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For this purpose, we use the expansion

l′′n

(
θ̃n

)
= l′′n (θ0) +

(
θ̃n − θ0

)
l′′′n (θ∗n) ,(7.3.30)

where θ∗n is between θ0 and θ̃n. After division by l′′n (θ0), the second term
on the right side tends to 0 in probability by (C7) and (7.3.8)—the same
argument also proves (7.3.28). �
Note: The alternative estimator (7.3.21) can be useful not only in the
case of multiple roots but also when the likelihood equation has only a
single root but cannot be solved explicitly. An iterative method of solution
may then be required and such methods do not always converge. (For a
discussion of various iterative methods for solving likelihood equations, see,
for example, Stuart and Ord (1991, Section 18.21). Theorem 7.3.3 provides
asymptotically equivalent estimators which avoid this difficulty.

On the basis of Theorem 7.3.3, it is often easy to construct estimators
δn satisfying (7.3.24). This only requires checking the conditions of the
theorem and knowing or constructing a

√
n-consistent estimator.

Example 7.3.3 Logistic. Let X1, . . . , Xn be i.i.d. according to the logis-
tic distribution with cdf and density

Fθ(x) =
1

1 + e−(x−θ)
and fθ(x) =

e−(x−θ)[
1 + e−(x−θ)

]2 , −∞ < x < ∞,

and consider the problem of estimating θ. The loglikelihood is

ln(θ) =
∑

log fθ(xi) = nθ −
∑

xi − 2
∑

log
[
1 + eθ−xi

]
,

and the likelihood equation therefore becomes

n∑
i=1

eθ−xi

1 + eθ−xi
=

n

2
.(7.3.31)

Since for any sample point (x1, . . . , xn) the left side is a strictly increasing
function of θ which goes from 0 at θ = −∞ to n at θ = ∞, this equation
has a unique solution θ̂n. The conditions of Theorem 7.3.1 and Corollary
7.1.1 are satisfied (Problem 3.2) and by these results θ̂n therefore satisfies
(7.3.3). A straightforward calculation shows that (Problem 2.4)

I(θ) = 1/3(7.3.32)

so that
√

n
(
θ̂n − θ

)
L→ N(0, 3).(7.3.33)
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To determine θ̂n, we can solve (7.3.31) numerically. Alternatively, we
can obtain explicit estimators δn with the same limit behavior as θ̂n on
the basis of Theorem 7.3.3. For this purpose, we require a

√
n-consistent

estimator θ̃n of θ. Since the Xi are symmetrically distributed about θ, we
have E (Xi) = θ, and by the CLT, θ̃n = X̄n satisfies (7.3.23) and thus is√

n-consistent. The estimator

δn = X̄n −
l′n
(
X̄n

)
l′′n
(
X̄n

)(7.3.34)

therefore has the same asymptotic distribution as θ̂n. By differentiating
ln(θ), we find that the needed derivatives l′n and l′′n are given by

l′n(θ) = n − 2
∑ eθ−xi

1 + eθ−xi
(7.3.35)

and

l′′n(θ) = −2
∑ exi−θ

[1 + exi−θ]2
.(7.3.36)

Instead of taking θ̃n to be X̄n, we can, of course, take as the starting point
any other

√
n-consistent estimator of θ; for example, any of the estimators

of the center of a symmetric distribution considered in Example 4.3.4 such
as the median, a trimmed mean, the Hodges-Lehmann estimator, etc. �

In the present case, the mean, median and Hodges-Lehmann estimator
will typically be fairly close together, and one may then expect the same to
be true for the resulting estimators δn. In fact, the following result shows
that the estimators θ̂n and δn, and hence any two δn’s given by (7.3.21),
are quite generally likely to be close together.

Theorem 7.3.4 Let θ̂n be a consistent root of the likelihood equation, and
let δn be given by (7.3.21), where θ̃n is any

√
n-consistent estimator of θ.

Then under the assumptions of Theorem 7.3.1, we have

√
n
(
θ̂n − θ0

)
= −

√
nl′n (θ0)
l′′n (θ0)

+ Rn(7.3.37)

and

√
n (δn − θ0) =

−
√

nl′n (θ0)
l′′n (θ0)

+ R′
n,(7.3.38)

where Rn and R′
n tend to 0 in probability as n → ∞, and hence

√
n
(
δn − θ̂n

)
P→ 0.(7.3.39)
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Proof. To see (7.3.37), rewrite (7.3.6) as

√
n
(
θ̂n − θ0

)
+

l′n (θ0) /
√

n

l′′n (θ0) /n

=
l′n (θ0) /

√
n

−l′n (θ0) /n


 1

1 +
n

l′′n (θ0)
1
2n

(
θ̂ − θ0

)
l′′′n (θ∗n)

− 1


 .

It follows from (7.3.7)–(7.3.9) that the first factor on the right side is
bounded in probability and the second factor tends in probability to 0,
which verifies (7.3.37). Analogously, (7.3.38) follows from (7.3.27) and (7.3.28)
(Problem 3.6). �

It can in fact be shown that in a suitably regular situation, if δ
(1)
n and

δ
(2)
n are any estimators satisfying

√
n
(
δ(i)n − θ

)
L→ N(0, 1/I(θ)),(7.3.40)

then
√

n
[
δ(2)n − δ(1)n

]
P→ 0.(7.3.41)

Example 7.3.4 Mixtures. Let X1, . . . , Xn be i.i.d. according to a distri-
bution

Fθ = θG + (1 − θ)H, 0 < θ < 1,

where G and H are two specified distributions with densities g and h,
respectively. Conditions (C1)–(C7) will not hold in general but often can
be verified for particular choices of g and h and will be assumed in the
following. Since

l′n (θ) =
∑ g (xi) − h (xi)

θg (xi) + (1 − θ)h (xi)
=

n∑
i=1

1

θ +
h (xi)

g (xi) − h (xi)

(7.3.42)

is a strictly decreasing function of θ, the likelihood equation has at most
one root θ̂n and this satisfies (7.3.3) with (Problem 3.7)

I(θ) =
1

θ(1 − θ)


1 −

∞∫
−∞

g(x)h(x)
θg(x) + (1 − θ)h(x)

dx


 .(7.3.43)

Two extreme situations clarify the meaning of (7.3.43). If G = H, the
parameter θ becomes unidentifiable. To this corresponds the fact that the
integral on the right side of (7.3.43) is = 1, so that I(θ) = 0, suggesting
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that the observations tell us nothing about θ. At the other extreme is
the case in which G and H assign probability 1 to non-overlapping sets.
Then g(x)h(x) = 0 for all x, and I(θ) attains its maximum possible value
1/θ(1−θ). We can then tell from which of the distributions G and H each Xi

comes and beyond this the observations supply no additional information
about θ. The situation thus reduces to n binomial trials, each with possible
outcomes G and H having probabilities θ and 1 − θ, respectively, and
1/θ(1 − θ) is just the information provided by such a trial (Problem 2.1).

When the two distributions have some overlap but are vastly disparate,
the observations may provide nearly as much information even when their
densities are positive on the same set. Suppose, for example, that G and
H are the normal distributions N(−ξ, 1) and N(ξ, 1), respectively, with ξ
large. Then the observations are likely to take on large negative or positive
values and thereby give strong indications as to from which distribution
each comes. Correspondingly, I(θ) given by (7.3.43) tends to its maximum
value 1/θ(1− θ) as ξ → ∞ (Problem 3.8). (For approximations to I(θ), see
Hill (1963).)

As in Example 7.3.3, the likelihood equation can be solved only numeri-
cally. Explicit estimators δn satisfying (7.3.24) can be found using (7.3.21).
For this purpose, we require a

√
n-consistent estimator of θ. If G and H

have finite expectations ξ and η, respectively, we have

E (Xi) = θξ + (1 − θ) η.

Then the sample mean X̄n tends in probability to θξ + (1− θ)η and hence
with high probability we have

X̄n
.= θξ + (1 − θ)η and thus θ

.=
(
X̄n − η

)
/ (ξ − η) ,

provided η �= ξ. This suggests the estimator

θ̃n =
X̄n − η

ξ − η
,(7.3.44)

which is seen to be
√

n-consistent if not only the expectation but also the
variance of the X’s is finite. (Problem 3.9(i).)

If E (Xi) does not exist (for example, if G and H are Cauchy distribu-
tions), let a be a point for which G(a) �= H(a). Then

p = P (Xi ≤ a) = θG(a) + (1 − θ)H(a).(7.3.45)

Since the frequency

p̂n = (#Xi ≤ a) /n(7.3.46)

tends in probability to p, we will have with high probability

p̂n close to θG(a) + (1 − θ)H(a)
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and hence

θ close to
p̂n − H(a)

G(a) − H(a)
.

This suggests the estimator

θ̃n =
p̂n − H(a)

G(a) − H(a)
,(7.3.47)

which is
√

n-consistent (Problem 3.9(ii)). The estimator (7.3.47) also can
be used when η − ξ. �

In Theorems 7.3.1–7.3.3, it was assumed that both x and θ are real-
valued. The case of vector-valued parameters involves additional complica-
tions which will be taken up in Section 7.5. On the other hand, the gener-
alization to vector-valued x is trivial. An examination of the proofs of The-
orems 7.3.1–7.3.3 shows that nothing requires the X’s in the i.i.d. sequence

X1, X2, . . . to be real-valued, except that integrals such as
∫

fθ(x)dx will

become
∫ ∫

fθ(x, y)dxdy or
∫ ∫ ∫

fθ(x, y, z)dxdydz, etc. Let us illus-

trate the bivariate case with an example.

Example 7.3.5 Correlation coefficient. Let (X1, Y1) , . . . , (Xn, Yn) be
i.i.d. according to a bivariate normal distribution with means E (Xi) =
E (Yi) = 0, variances Var (Xi) = Var (Yi) = 1, and unknown correlation
coefficient ρ. We have

fρ(x, y) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

, −1 < ρ < 1,(7.3.48)

and the log likelihood is therefore

ln(ρ) = − 1
2(1 − ρ2)

∑(
x2i − 2ρxiyi + y2i

)
− n log

(
2π
√

1 − ρ2
)

.

(7.3.49)

The likelihood equation, after some simplification, becomes (Problem 3.10(i))

ρ
(
1 − ρ2

)
+
(
1 + ρ2

) ∑xiyi
n

− ρ

∑
x2i +

∑
y2i

n
= 0.(7.3.50)

This cubic equation has at least one solution in the interval −1 < ρ < 1
corresponding to a local maximum of the likelihood and at most two such
solutions (Problem 3.10(ii).) (A more detailed analysis of the roots is given
in Stuart and Ord (1991, Section 8.9), where it is shown that the probability
of there being more than one root tends to 0 as n → ∞.) When there are
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two maxima, the theory does not tell us which is closer to the true value. We
may then instead utilize Theorem 7.3.3. In the present case, the estimator

θ̃n =
∑

XiYi/n

is a
√

n-consistent estimator of E (XiYi) = ρ, and thus can be used in
(7.3.21).

To determine the asymptotic distribution of
√

n (δn − ρ), it remains to
evaluate I(ρ). From (7.3.49) with n = 1, it follows that

∂

∂ρ
log fρ(x, y) =

−ρ

(1 − ρ2)2
(
x2 − 2ρxy + y2

)
+

xy

1 − ρ2
+

ρ

1 − ρ2
,

and hence that

I(ρ) =
1

(1 − ρ2)4
E
[
ρ
(
X2 + Y 2

)
−
(
1 + ρ2

)
XY
]2 − ρ2

(1 − ρ2)2
.(7.3.51)

Equations (5.4.33) and (5.4.39) show that

E
(
X2Y 2

)
= 1 + 2ρ2, E

(
XY 2

)
= E

(
X2Y

)
= 0,

E
(
XY 3

)
= E

(
X3Y

)
= 3ρ, E

(
X4
)

= E
(
Y 4
)

= 3.(7.3.52)

Therefore, after some simplification (Problem 3.10(iii)),

I(ρ) =
(
1 + ρ2

)
/
(
1 − ρ2

)2
.(7.3.53)

�

In the examples considered so far, we found that in Examples 7.3.1–7.3.4
the likelihood equation has at most one root; in Example 7.3.5, there are
three roots but the probability of more than one (real) root tends to 0 as
n → ∞. The following example shows that, in general, the situation is not
so simple.

Example 7.3.6 Cauchy. Let X1, . . . , Xn be i.i.d. according to a Cauchy
distribution with density

fθ(x) =
1
π

1
1 + (x − θ)2

.(7.3.54)

Then the likelihood equation becomes

1
2
l′n(θ) =

n∑
i=1

θ − xi

1 + (xi − θ)2
= 0.(7.3.55)

By putting the middle expression on a common denominator, (7.3.55) is
seen to be equivalent to an equation of the form Pn(θ) = 0, where Pn is
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a polynomial of degree 2n − 1 with coefficients depending on the x’s. For
any (x1, . . . , xn), the likelihood equation can therefore have at most 2n−1
roots.

As θ → ∞, each term (θ − xi) /
[
1 + (xi − θ)2

]
tends to zero through

positive values, and the same is therefore true of the sum. Analogously,
l′n(θ) tends to zero through negative values as θ → −∞. This shows that
(7.3.55) always has at least one root and that the number Rn of roots is
odd, say

Rn = 2Kn − 1, 1 ≤ Kn ≤ n.

The limiting behavior of the number of roots is determined by the follow-
ing remarkable result due to Reeds (1985) which we shall not prove: The
probability P (Kn = k) that the likelihood equation (7.3.55) has exactly
2k − 1 roots satisfies

P (Kn = k) → 1
k!

(
1
π

)
e−1/π as n → ∞,(7.3.56)

that is, the random variables Kn has a limiting Poisson distribution P (λ)
with λ = 1/π.

Table 7.3.1 compares some Monte Carlo results for sample sizes n =
5, 7, 11, 15 with the limit distribution (7.3.56). (The Monte Carlo sample
sizes are 3,000 for n = 5, 7 and 1,000 for n = 11, 15.) Since Kn can take

TABLE 7.3.1. Monte Carlo and asymptotic distribution of Kn

K
n 1 2 3 4 1 + 2 + 3 + 4
5 .652 .768 .069 .011 1.0000
7 .670 .261 .058 .009 .998
11 .706 .245 .036 .012 .999
15 .696 .262 .039 .002 .999
∞ .727 .232 .037 .004 1.000

Source: Barnett (1966) and Reeds (1985).

on values as high as n, it is interesting to note that with probability close
to 1, its actual value is ≤ 4 (and hence the number Rn of the roots of the
likelihood equation ≤ 7 ) for all n. (On the other hand, it can be shown
that P (Kn = n) is positive for every n.)

In the present case, we cannot take the sample mean X̄n for θ̃n in (7.3.21)
since it is not consistent, but by Example 2.4.9, the sample median is

√
n-

consistent and therefore provides a possible choice for θ̃n. The asymptotic
distribution of the resulting estimator δn or of the consistent root of the
likelihood equation is then given by (7.3.24) with I(θ) = 1/2 (Problem 2.4).
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TABLE 7.4.1. Efficiency of the trimmed mean for a Cauchy distribution

α .5 .45 .4 .38 .35 .3 .25 .2 .15 .1 .5 0

Effic. .811 .855 .876 .878 .873 .844 .786 .696 .575 .419 .228 0

of X̄α

Adapted from Rothenberg, Fisher and Tilenius (1964).

Note: Barnett (1966 p. 154) finds that the local maximum closest to the
median is not always the absolute maximum although the proportion of
such cases is very small. �

Summary

1. Regularity conditions are given under which any consistent sequence
of roots of the likelihood equation is aymptotically normal, and it is
shown how to check these conditions in specific cases.

2. The first Newton-Raphson approximation for solving the likelihood
equation provides an estimator which is asymptotically equivalent to
the consistent solution. This estimator circumvents the difficulty of
selecting the correct root of the likelihood equation. Implementation
of the estimator only requires a

√
n-consistent starting point. The

procedure is illustrated on a number of examples.

7.4 Efficiency

In small sample theory, an estimator δ is often considered optimal for es-
timating θ if it minimizes Eθ (δ − θ)2 for all θ. This definition runs into
the difficulty that for any given θ0 there exists an estimator δ0 for which
Eθ0 (δ0 − θ0)

2 = 0, namely the constant estimator δ0 ≡ θ0 which estimates
θ to be θ0 regardless of the observations. Thus an estimator δ minimiz-
ing Eθ (δ − θ)2 simultaneously for all θ does not exist. Two principal ap-
proaches to overcome this difficulty are:

(a) to restrict the class of competing estimators by some suitable desir-
able condition; for example, unbiasedness;

(b) to replace the local optimality criterion which is required to hold
for every θ by a global criterion such as minimizing the maximum
expected squared error (minimax) or some average of the expected
squared error (Bayes).

The corresponding problem arises when trying to define efficient large-
sample estimators, and we can approach it in the same way. We shall here
follow route (a) and begin by restricting attention to consistent estima-
tors. This at least eliminates constant estimators but turns out not to
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be restrictive enough. Let us therefore restrict our class further to
√

n-
consistent estimators and among these to the important class of estimators
δn satisfying

√
n (δn − θ) L→ N (0, v(θ))(7.4.1)

for some function v(θ) with 0 < v(θ) < ∞ for all θ. This is a large class
which, in the regular cases with which we are primarily concerned here,
includes most of the estimators encountered in this and previous chapters.
The most desirable estimators in this class are those for which v(θ) is as
small as possible.

For a long time it was believed that in the i.i.d. case, under suitable
regularity assumptions on the distributions of the X’s, (7.4.1) implies†

v(θ) ≥ 1/I(θ).(7.4.2)

Since under the assumptions of Theorem 7.3.1 the estimator δn = θ̂n sat-
isfies (7.4.1) with v(θ) = 1/I(θ), θ̂n would then be efficient in the sense of
having unformly minimum asymptotic variance among all estimators sat-
isfying (7.4.1). This conjecture was disproved by Hodges by means of the
following construction (see Le Cam (1953)).

Example 7.4.1 The Hodges counterexample. Let δn be a sequence
of estimators satisfying (7.4.1) with 0 < v(θ) < ∞ for all θ. We shall now
construct an estimator δ′n which satisfies (7.4.1) with v(θ) replaced by

v′(θ) =
{

a2v(θ) when θ = θ0
v(θ) when θ �= θ0,

(7.4.3)

where θ0 is any given value of θ and a is any constant. For a < 1, we then
have v′(θ) ≤ v(θ) for all θ and v′ (θ0) < v (θ0) so that δ′n is an improvement
over δn.

Without loss of generality, let θ0 = 0 and let

δ′n =
{

aδn if |δn| ≤ 1/ 4
√

n
δn otherwise.(7.4.4)

Then

Pθ
[√

n |δ′n − θ| ≤ c
]

=Pθ
[√

n |δn| ≤ c 4
√

n and
√

n |aδn − θ| ≤ c
]

+ Pθ
[√

n |δn| > c 4
√

n and
√

n |δn − θ| ≤ c
]
.

If θ = 0, the second term on the right side tends to zero and the first term
has the same limit as

P0
[√

n |aδn| ≤ c
]
,
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which is Φ
(

c

av(θ)

)
− Φ

(
−c

av(θ)

)
, i.e.,

√
nδ′n

L→ N
(
0, a2v2(θ)

)
.(7.4.5)

Analogously, if θ �= 0, the first term tends to zero while the second term has
the same limit as P (

√
n |δn − θ| ≤ c) (Problem 4.1). Thus

√
n (δ′n − θ) →

N (0, v′(θ)) with v′(θ) given by (7.4.3). �

An easy extension of the argument shows that we can improve v(θ) (and
by putting a = 0 even reduce it to 0) not only at any given point θ0 but
at any given finite number of points (Problem 4.2). However it has been
shown (Le Cam (1953), Bahadur (1964)) that in the regular cases with
which we are dealing here, improvement over v(θ) = 1/I(θ) is possible only
on relatively “small” sets (technically, sets of Lebesgue measure 0) and in
particular not for all values θ in any interval, no matter how small.

Example 7.4.1 shows that even within the class of estimators satisfying
(7.4.1), no uniformely best estimator exists. However, the desired result
(7.4.2) does follow if we impose one further restriction on the estimators,
namely require v(θ) to be continuous (as it is for all the usual estimators).‡

This result is a consequence of the fact that if I(θ) and v(θ) are both
continuous and if v(θ) < 1/I(θ) for any θ0, then strict inequality also holds
for some interval containing θ0, which would violate Le Cam’s theorem.

Within the class of estimators δn satisfying (7.4.1) with continuous v(θ),
estimators satisfying (7.1.27) are therefore efficient in the sense that their
asymptotic variance cannot be improved anywhere. An important differ-
ence from the small-sample situation of unbiased estimators with uniformly
minimum variance is that, in the present situation, efficient estimators are
not unique. The consistent root of the likelihood equation is one such esti-
mator; the class of one-step estimators (7.3.21) provides another example;
a further large and important class of efficient estimators will be consid-
ered later in this section and in Section 7.5. Efficient estimators provide a
standard with which other estimators can be compared; the ARE eδ′n,δn of
an estimator δ′n with respect to an estimator δn satisfying (7.3.24) will be
called the (absolute) efficiency of δ′n.

Example 7.4.2 Normal. In Example 7.1.4(iii) and its continuations, we
considered the estimation of σ based on a sample X1, . . . , Xn from N

(
aσ, σ2

)
.

A consistent root σ̂n of the likelhood equation given by (7.1.26) provided
an efficient estimator of σ and we found that I(σ) =

(
a2 + 2

)
/σ2. Other

obvious estimators of σ are

δ1n = X̄/a with
√

n (δ1n − σ) → N
(
0, σ2/a2

)
(7.4.6)
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and

δ2n =

√∑(
Xi − X̄

)2
n − 1

with
√

n [δ2n − σ] → N
(
0, σ2/2

)
.(7.4.7)

We notice that the asymptotic variances of (7.4.6) and (7.4.7) are both
greater than 1/I(σ) = σ2/

(
a2 + 2

)
for all a. They must of course be at

least as large since σ̂n is efficient. For large a, δ1n is nearly as efficient as
σ̂n, and for small a, the corresponding fact is true for δ2n.

The estimators (7.4.6) and (7.4.7) suggest the more general class of esti-
mators

δ3n = αδ1n + (1 − α) δ2n.(7.4.8)

Since δ1n and δ2n are independent, the asymptotic variance of δ3n is[
α2 · 1

2
+ (1 − α)2 · 1

a2

]
σ2.(7.4.9)

The value of α minimizing (7.4.9) is (Problem 4.3)

α =
a2

a2 + 2
(7.4.10)

and the corresponding value of (7.4.9) is σ2/
(
a2 + 2

)
. The associated esti-

mator is therefore efficient. �

Example 7.4.3 Cauchy. In Example 7.3.6, we discussed efficient estima-
tors of the center of the Cauchy distribution (7.3.54), and suggested the
median θ̃n as a starting point for the one-step estimator (7.3.21). One may
wonder how much efficiency is lost if the median itself is used as the es-
timator of θ rather than the adjusted estimator (7.3.21). It follows from
(2.4.19) that

√
n
(
θ̃n − θ

)
L→ N

(
0,

π2

4

)
.(7.4.11)

On the other hand, the efficient estimator δn given by (7.3.21) satisfies
√

n (δn − θ) L→ N(0, 2).(7.4.12)

Thus the ARE of θ̃n with respect to δn, which is also the absolute efficiency

of θ̃n, is
8
π2

=̇.81.

†The information inequality (7.4.2) holds for the exact variance v(θ) of any unbiased
estimator of θ. However, this does not imply that (7.4.2) must hold in the present
situation since an estimator satisfying (7.4.1) need not be unbiased and since by Section
4.2 the asymptotic variance may be smaller than the actual variance.

‡It can be shown that estimators which are superefficient in the sense of satisfying
(7.4.1) but not (7.4.2) for all θ necessarily have some undesirable properties (see, for
example, Bahadur (1983) and Lehmann (1983)).
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We can improve this efficiency if instead of the median, we consider the
class of trimmed means defined by (4.3.19), the asymptotic variance of
which is given by (4.3.21). In the notation of Theorem 4.3.1, a proportion
α of the observations is discarded at each end and the trimmed mean
X̄α is the average of the remaining central portion of the sample. For the
Cauchy case, the asymptotic variance of this estimator has been obtained by
Rothenberg et al. (1964) and the resulting efficiency is shown in Table 7.4.1.
(The value α = .5 corresponds to the median.) The maximum efficiency
of .878 obtains for α = .38, i.e., when 24% of the sample is retained. One
can do better by using other linear functions of the order statistics or
quantiles. Bloch (1966), for example, finds that a linear function of five
quantiles (defined in Section 2.1) corresponding to p = .13, .40, .50, .60, .87
with weights −.052, .3485, .407, .3485,−.052 has an efficiency of .95. �

The following result shows that efficiency of an estimator is preserved
under smooth transformations.

Theorem 7.4.1 Suppose that δn is an efficient estimator of θ satisfying
(7.4.1) with v(θ) = 1/I(θ) and that g is a differentiable function of θ. Then
g (δn) is an efficient estimator of g(θ) at all points θ for which g′(θ) �= 0.

Proof. By Theorem 2.5.2,

√
n [g (δn) − g(θ)] L→ N

(
0, [g′(θ)]2 /I(θ)

)
.

By (7.2.22), the asymptotic variance [g′(θ)]2 /I(θ) is the reciprocal of the
amount of information I∗ [g(θ)] that an observation Xi contains about g(θ).
The result therefore follows from the definition of efficiency. �

The estimators (7.3.21) provide a large class of efficient estimators. The
remainder of this section will be concerned with another such class.

Example 7.4.4 Binomial. In Examples 1.4.1 and 4.3.2, we considered
the Bayes estimation of a probability p when X is binomial b(p, n) and p
has a prior beta distribution B(a, b). The Bayes estimator is then

δn(X) =
a + X

a + b + n
.(7.4.13)

Writing

√
n (δn(X) − p) =

√
n

(
X

n
− p

)
+

√
n

a + b + n

[
a − (a + b)

X

n

]
,

we see that
√

n [δn(X) − p] has the same limit distribution N(0, pq) as
the efficient estimator X/n. This shows that the estimators (7.4.13) are
themselves efficient for all a and b. �
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What is found in this special case is, in fact, a quite general phenomenon.
Let λ be a prior density for θ and let δλ = δλ (X1, . . . , Xn) be the Bayes
estimator which minimizes the average squared error∫

E (δ − θ)2 λ(θ)dθ.(7.4.14)

Then δλ is equal to the conditional expectation (under λ) of θ given
(x1, . . . , xn),

δλ = Eλ (θ|x1, . . . , xn)(7.4.15)

(see, for example, Berger (1985) or Robert (1994)). For i.i.d. X’s, it turns
out under fairly general conditions that δλ satisfies (7.3.24) and hence is
asymptotically efficient.

For this result, conditions are needed not only on ln(θ) but also on λ. For
suppose that λ assigns probability 0 to some subinterval ω of the param-
eter space Ω. Then the posterior (i.e., conditional) distribution of θ given
(x1, . . . , xn) will also assign probability 0 to ω and we then cannot expect
the Bayes estimator to be consistent for values of θ in ω. The following ex-
ample illustrates this phenomenon. For a statement of sufficient conditions
and a proof of the result, see, for example, Lehmann and Casella (1998).

Example 7.4.5 Discrete prior. Let X1, . . . , Xn be i.i.d. N(θ, 1), −∞ <
θ < ∞, and consider the Bayes estimator for the prior λ that assigns
probabilities p and q = 1 − p to the two points a < b. Then the posterior
distribution of θ given x1, . . . , xn assigns to the point a the probability
(Problem 4.4(i))

pa = P (θ = a|x1, . . . , xn) =
pe−

1
2

∑
(a−xi)2

pe−
1
2

∑
(a−xi)2 + qe−

1
2

∑
(b−xi)2

and to θ = b the probability pb = 1 − pa. The Bayes estimator by (7.4.15)
is then

δλ =
ape−

1
2

∑
(a−xi)2 + bqe−

1
2

∑
(b−xi)2

pe−
1
2

∑
(a−xi)2 + qe−

1
2

∑
(b−xi)2

.(7.4.16)

We shall now consider the limit behavior of this estimator for fixed θ as
n → ∞.

Write δλ as

δλ =
a + b

q

p
e−

1
2

∑ [(b−xi)2−(a−xi)2]

1 +
q

p
e−

1
2

∑ [(b−xi)2−(a−xi)2]
.(7.4.17)
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Since

1
2

∑[
(b − xi)2 − (a − xi)2

]
= (b − a)

∑(
b + a

2
− xi

)

= n(b − a)
(

b + a

2
− x̄

)

and X̄
P→ θ, it follows that this exponent tends in probability to ∞ for any

θ <
a + b

2
and hence that

δλ
P→ a for any θ <

a + b

2
,(7.4.18a)

and, analogously,

δλ
P→ b for any θ >

a + b

2
.(7.4.18b)

�

The Bayes estimator is therefore not consistent. (For the behavior of δλ
when θ = (a + b)/2, see Problem 4.4(ii).)

That, subject to some general conditions, all Bayes estimators are asymp-
totically efficient leaves the investigator free to select which prior distribu-
tion λ to use. If there is prior information concerning the likelihood of
different values of θ, this would play an important role in the choice. If
no such prior information is available, one may want to model this lack of
knowledge by using a non-informative prior.

Example 7.4.4 Binomial (continued). If X is binomial b(p, n), the
classical choice to model ignorance is the uniform distribution for p on (0,
1) which assigns the same probability density to all possible values of p. This
approach was used extensively by Laplace and throughout the 19th century.
Since the uniform distribution is the special case of the beta distribution
B(a, b) with a = b = 1, it follows from (7.4.13) that the corresponding
Bayes estimator is

δn(X) =
X + 1
n + 2

.(7.4.19)

Although the uniform distribution may at first glance seem the natural
way to model ignorance, two objections can be raised:

(i) The choice of p as the parameter is somewhat arbitrary; one could
equally well parametrize the distribution by

√
p, p2, . . . and a uniform

distribution for any of these choices would lead to a non-uniform
distribution for the others.
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(ii) When it comes to the estimation of p, the situation varies widely
with the true value of p: Values close to 0 and 1 are much easier to
estimate accurately (in terms of expected square error or asymptotic
variance) than values in the middle of the range. In order to take
this asymmetry into account, one may wish to determine a function
η = g(p), all values of which are equally easy to estimate, and then
assign a uniform distribution to η. Instead of determining g(p) for
this particular case, let us consider the problem more generally. �

Let X1, . . . , Xn be i.i.d. according to a density fθ(x) satisfying the con-
ditions of Theorem 7.3.1. An efficient estimator of θ is the consistent root
θ̂n of the likelihood equation and its asymptotic distribution is given by

√
n
(
θ̂n − θ

)
→ N(0, 1/I(θ)).

Unless I(θ) is constant, some values of θ can thus be estimated more ac-
curately than others. Let us therefore seek out a function g(θ) for which
the asymptotic variance of

√
n
[
g
(
θ̂n

)
− g(θ)

]
is constant. This function

is just the variance-stabilizing transformation which was found in (2.5.7)
to be given by (in the present notation)

g′(θ) = c
√

I(θ),(7.4.20)

where c can be any constant, which we will take to be positive. For η = g(θ),
we might then consider a uniform distribution as uninformative in the sense
of not providing more information about some values than about others.

A qualitative explanation of (7.4.20) can be obtained from the consider-
ations above (7.2.20). When I(θ) is small so that θ is difficult to estimate
accurately, the derivative g′(θ) given by (7.4.20) is also small so that g(θ)
changes slowly, thereby making it relatively easy to estimate it accurately.
The transformation g given by (7.4.20) balances these two effects so that
the resulting g(θ) can be estimated with the same accuracy for all θ.

Let us now determine the prior distribution for θ induced by the uniform
distribution for g(θ). For the moment, let us assume that the range of g is
finite, and then without essential loss of generality that it is the interval
(0, 1). If g(θ) is uniformly distributed on (0, 1), we have

P [g(θ) < y] = y for any 0 < y < 1

and hence

P (θ < z) = P [g(θ) < g(z)] = g(z).(7.4.21)

Here we are using the fact that g is strictly increasing since g′(θ) > 0 for
all θ by (7.4.20). It follows from (7.4.21) that the resulting non-informative
prior for θ has density g′(θ) given by (7.4.20), where c must now be chosen
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so that the integral of (7.4.20) is equal to 1. It was proposed for this purpose
by Jeffreys (1939) and is also known as the Jeffreys prior.

Let us now return to the first objection raised above against the uniform
prior for p and see how the Jeffrey’s prior fares under transformations of
the parameter. Let ζ = h(θ) be an alternative parametrization and, for
simplicity, suppose that h is strictly increasing. We saw earlier that the
information about h(θ) supplied by an observation that contains informa-
tion I(θ) about θ is I(θ)/ [h′(θ)]2. The Jeffreys distribution for ζ therefore
has density proportional to

√
I(θ)/h′(θ), which assigns to θ = h−1(ζ) the

density

c
√

I(θ)
h′(θ)

dζ

dθ
= c
√

I(θ).(7.4.22)

This is the Jeffreys prior for θ, which is therefore unchanged under
reparametrization. This choice of prior thus takes care of both the ob-
jections raised against the uniform prior for p in Example 7.4.4.

The invariance of the prior under transformations of the parameter has
an important consequence. Since the Bayes estimator corresponding to this
prior is the same for all parametrizations, we can choose as our basic pa-
rameter whichever is most convenient.

Example 7.4.4 Binomial (concluded). If Xi = 1 or 0 as the ith trial in a
sequence of binomial trials is a success or failure, the information contained
in an observation about p is (Problem 2.1)

I(p) = 1/pq.

The Jeffreys prior for p is therefore proportional to

1/
√

pq,(7.4.23)

and hence is the beta distribution B(1/2, 1/2). The Bayes estimator corre-
sponding to this non-informative prior is by (7.4.13)

δn(X) =
X + 1/2
n + 1

.(7.4.24)

�

Example 7.4.6 Location parameter. If X1, . . . , Xn are i.i.d. with den-
sity f(x−θ), −∞ < θ < ∞, the information I(θ) is a constant, independent
of θ (Problem 2.3). The Jeffreys prior (7.4.20) is therefore also constant.
One might visualize it as the uniform distribution on (−∞,∞). Unfortu-
nately,

∞∫
−∞

cdθ = ∞,
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so that we are no longer dealing with a probability distribution. Prior
densities whose integral is infinite are said to be improper. Their use can
be justified by considering them as approximations to a sequence of proper
prior distributions. In the present example, the improper density which is
constant on (−∞,∞) can, for example, be viewed as an approximation to
the uniform distribution on (−A,A) for large A or to a normal distribution
with large variance, in the following sense.

The Bayes estimator (7.4.15) is the conditional expectation of θ given
the observations; what matters therefore is the conditional distribution of
θ. As an example, suppose that f(x − θ) is the normal distribution with
mean θ and variance 1 and that θ is uniformly distributed on (−A,A).
Then the conditional density of θ given (x1, . . . , xn) is (Problem 4.8(i))

e−
1
2

∑
(xi−θ)2

A∫
−A

e−
1
2

∑
(xi−ξ)2dξ

for − A < θ < A.(7.4.25)

By writing
∑

(xi − θ)2 =
∑

(xi − x̄)2 + n (x̄ − θ)2 and expanding the
denominator analogously, this ratio is seen to be equal to

e−
n
2 (θ−x̄)

2

A∫
−A

e−
n
2 (ξ−x̄)

2
dξ

.(7.4.26)

Since the denominator tends to
∞∫

−∞

e−
n
2 (ξ−x̄)

2
dξ =

√
2π
n

(7.4.27)

as A → ∞, it follows that the conditional density (7.4.25) tends to the
normal density N (x̄, 1/n).

Consider now the corresponding formal calculation in which the prior
U(−A,A) is replaced by the improper prior c · dθ, −∞ < θ < ∞. If we
ignore the fact that this is not a density since its integral is infinite, and
write the joint (improper) density of θ and the x’s as

ce−
1
2

∑
(xi−θ)2/(2π)n/2,

the posterior density corresponding to (7.4.25) and (7.4.26) becomes

e−
1
2

∑
(xi−θ)2

∞∫
−∞

e−
1
2

∑
(xi−ξ)2dξ

=
e−

n
2 (θ−x̄)

2

∞∫
−∞

e−
n
2 (ξ−x̄)

2
dξ

=
√

n

2π
e−

n
2 (θ−x̄)

2
,
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which is the density of the normal distribution N (x̄, 1/n). Thus, although
we started with an improper prior, we end up with a proper posterior distri-
bution. This is intuitively plausible. Since the X’s are normally distributed
about θ with variance 1, even a single observation provides a good idea of
the position of θ. The Bayes estimator for the improper prior c · dθ is the
expectation of N (x̄, 1/n) and is therefore x̄.

The posterior distribution N (x̄, 1/n) obtained in this way is the limit of
the distributions (7.4.26) as A → ∞ and the Jeffreys Bayes estimator X̄
is the limit of the proper Bayes estimators when θ is U(−A,A) (Problems
4.8 and 4.9). It is in this sense that the improper prior can be viewed as a
limiting case of the priors U(−A,A). �

Returning now to the efficiency of improper Bayes estimators, we can
say quite generally that if for some n0 the conditional distribution of θ
given x1, . . . , xn0 is proper for all x1, . . . , xn0 (even though the prior is
improper), the efficiency of the Bayes estimator continues to hold under
the conditions required for proper priors.

Example 7.4.7 Scale parameter. Suppose that X1, . . . , Xn are i.i.d.
with density

θ−1f(x/θ), θ > 0.(7.4.28)

Then it was seen in Problem 2.6 that I(θ) is proportional to 1/θ2 and hence
the Jeffreys prior has a density of the form

g′(θ) = c/θ.

Since

b∫
a

1/θ = log b − log a, we are again dealing with an improper prior.

This case can be handled in complete analogy to that of a location family
(Problem 4.12). �

Example 7.4.8 Poisson process. In a Poisson process, let the number of
events occurring in a time interval of length l have the Poisson distribution
P (λl), with the numbers occurring in non-overlapping intervals being inde-
pendent. In such a process, the waiting time T required from the starting
point, say t = 0, until the first event occurs has the exponential density

fλ(t) = λe−λt, t > 0.(7.4.29)

We shall now consider the estimation of λ for two sampling schemes.

(i) Direct sampling. We observe the numbers of events X1, . . . , Xn oc-
curring in non-overlapping intervals of length 1, so that

Pλ (X1 = x1, . . . , Xn = xn) =
λ
∑
xi

Πxi!
e−nλ.
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It was seen in Example 7.1.1 (continued) that, in this case, I(λ) =
1/λ. The Jeffreys prior is therefore improper with density 1/

√
λ. The

corresponding posterior density of λ given the x’s is of the form

C (x1, . . . , xn)λx−1/2e−nλ,(7.4.30)

where x =
∑

xi and C is determined so that the integral of (7.4.30)
from 0 to ∞ is equal to 1. The distribution (7.4.30) is a gamma
distribution, the expectation of which is

δ(X) =
1
n

X +
1
2n

,(7.4.31)

the Bayes estimator for the Jeffreys prior. The consistent root of the
likelihood equation was earlier seen to be θ̂n = X/n.

(ii) Inverse sampling. Continue the process until n events have occurred,
and let T1, . . . , Tn denote the waiting times it takes for the occurrence
of the first event, from the first to the second, and so on. The joint
density of the T ’s is then

Πfλ(ti) = λne−λΣti for all ti > 0.(7.4.32)

The information a variable Ti contains about λ is (Problem 4.13)

I(λ) = λ2,(7.4.33)

and the Jeffrey’s prior is therefore improper with density proportional
to λ. The posterior density of λ is

λn+1e−λ
∑
ti ,(7.4.34)

which is proper for all
∑

ti > 0 and is in fact the density of a gamma
distribution. The expectation of (7.4.34) is

n + 2∑
Ti

,(7.4.35)

and this is therefore the Bayes estimator in the present case.

It is interesting to note that the non-informative priors are different in
cases (i) and (ii). It may seem awkward to have the prior depend on the
sampling scheme but this is of course a consequence of the definition of
non-informativeness given in and following Example 7.4.4 (continued). �

The present section has exhibited large classes of asymptotically efficient
estimators, an embarrassment of riches. First order asymptotic theory pro-
vides no guidance for choosing among these estimators. They all have the
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same asymptotic distribution and in fact any pair δ1n, δ2n of these estima-
tors satisfies

√
n (δ2n − δ1n)

P→ 0.

The most widely applied method of estimation at present is maximum
likelihood, which in regular cases has the advantages of

(i) providing typically, although not always, a consistent and hence effi-
cient root of the likelihood equation;

(ii) having a certain intuitive appeal as the value of the parameter making
the observed data most plausible;

(iii) leading to a unique estimator, although this uniqueness is marred
in practice by the fact that different algorithms for calculating the
maximum will lead to different answers.

On the other hand, writing from a Bayesian point of view, Berger (1985,
p. 90) states:

We would argue that non-informative prior Bayesian analysis is
the single most powerful analysis (Berger’s italics) in the sense
of being the ad hocmethod most likely to yield a sensible answer
for a given investment effort.

And he adds that

the answers so attained have the added feature of being, in
some sense, the most “objective” statistical answers obtainable
(which is attractive to those who feel objectivity is possible).

For further discussion of this choice of prior, see, for example, Bernardo
and Smith (1994), Robert (1994), and Kass and Wasserman (1996).

The difference between the MLE and the Jeffreys Bayes estimator is
typically of order 1/n and, except for very small sample sizes the choice
between these two representative estimators, is therefore not too important.

Summary

1. An asymptotically normal estimator is called efficient if its asymptotic
variance is 1/I(θ). A theorem of Le Cam implies that such an esti-
mator under suitable regularity conditions minimizes the asymptotic
variance among all asymptotically normal estimators whose asymp-
totic variance is a continuous function of the parameter. Efficient
estimators thus provide a standard with which other estimators can
be compared.



7.5 The multiparameter case I. Asymptotic normality 497

2. Not only consistent roots of the likelihood equations and the one-step
estimators (7.3.21) are asymptotically efficient but so are all Bayes
estimators that satisfy some not very stringent conditions, including
the requirement that the prior density is positive and continuous for
all parameter values.

3. To obtain a Bayes estimator of θ, one must first specify a prior dis-
tribution for θ. A popular choice is the Jeffreys prior which assigns
a uniform distribution to the function g(θ) for which the information
I∗[g(θ)] is constant.

7.5 The multiparameter case I. Asymptotic
normality

The previous sections developed the theory of efficient estimation for reg-
ular models containing only one parameter. However, except in the very
simplest cases, parametric models typically involve several parameters and
we shall now extend the results of Sections 7.1–7.4 to this more general
situation.

We begin by generalizing the concept of Fisher information under as-
sumptions corresponding to (C1)–(C5) of Section 7.1 which will be stated
in Theorem 7.5.1.

Definition 7.5.1 If X is a real- or vector-valued random variable with
density fθ(x) where θ = (θ1, . . . , θk), the information matrix I(θ) is the
k × k matrix with elements

Iij(θ) = E

[
∂

∂θi
log fθ(X)

∂

∂θj
log fθ(X)

]
.(7.5.1)

Example 7.5.1 Normal. Let X have the normal distribution N
(
ξ, σ2

)
with both parameters unknown. Then

log fξ,σ2(x) = −1
2

log σ2 − 1
2σ2

(x − ξ)2 − log
(√

2π
)

,

so that

∂

∂ξ
fξ,σ2(x) =

1
σ2

(x − ξ) and
∂

∂σ2
fξ,σ2(x) = − 1

2σ2
+

1
2σ4

(x − ξ)2.

It follows that

I
(
ξ, σ2

)
=
(

1/σ2 0
0 1/2σ4

)
.(7.5.2)

�



498 7. Efficient Estimators and Tests

As will be stated more precisely in Theorem 7.5.2, a consistent root(
θ̂1, . . . , θ̂k

)
of the likelihood equations, under suitable regularity condi-

tions, satisfies(√
n
(
θ̂1 − θ1

)
, . . . ,

√
n
(
θ̂k − θk

))
L→ N

(
0, I−1(θ)

)
,(7.5.3)

where 0 = (0, . . . , 0). If I(θ) is diagonal, as is the case in (7.5.2), so is I−1(θ)
by Problem 3.14(ii) of Chapter 5, and it then follows that the variables
√

n
(
θ̂1 − θ1

)
, . . . ,

√
n
(
θ̂k − θk

)
are asymptotically independent.

Example 7.5.2 Location-scale families. In generalization of Example
7.5.1, suppose that

fξ,σ(x) =
1
σ

f

(
x − ξ

σ

)
.(7.5.4)

Then the off-diagonal element I12 of I(ξ, σ) is

I12 =
1
σ2

∫
y

[
f ′(y)
f(y)

]2
f(y)dy(7.5.5)

where f ′ denotes the derivative of f . This is 0 whenever f is symmetric
about the origin (Problem 5.1). �

Example 7.5.3 Multinomial. In the multinomial situation of Example
5.4.1, the joint distribution of the variables Y1, . . . , Yk is

P (y1, . . . , yk) =
n!

y1!, . . . , yk+1!
py11 · · · pykk (1 − p1 − · · · − pk)

n−y1−···−yk .
(7.5.6)

Thus,

∂

∂pi
log P (y1, . . . , yk) =

yi
pi

− yk+1
pk+1

and

Iij = E

[(
Yi
pi

− n

)
−
(

Yk+1
pk+1

− n

)][(
Yj
pj

− n

)
−
(

Yk+1
pk+1

− n

)]
.

It follows from expansion of the right side and (5.4.15) (Problem 5.1(ii))
that

Iij =


 n

[
1
pi

+
1

pk+1

]
if i = j

n/pk+1 if i �= j.

(7.5.7)

�
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In order to generalize Theorem 7.2.1, let us next state the multivariate
analog of assumptions (C1)–(C6) .

(M1) The distributions Pθ are distinct.

(M2) There exists a neighborhood§ N of the true parameter point θ0 which
lies entirely within (i.e., is a subset of) Ω.

Note: Since the true θ0 is unknown, this condition can typically be
verified only by requiring that (M2) hold for every possible point θ0 of
Ω. A set Ω in Rk with this property is called open. Typical examples
of open sets are the intervals of points (θ1, . . . , θk) given by

|θi − ai| < c for all i = 1, . . . , k

and the balls

k∑
i=1

(θi − ai)
2

< c.

Here it is crucial in both cases that the inequalities are strict (Problem
5.2). In terms of this definition, there is little lost in replacing (M2)
by the stronger assumption

(M2′) The parameter space Ω is open.

(M3) The observations X1, . . . , Xn are n i.i.d. random variables or vec-
tors with continuous density fθ or discrete probability distribution
Pθ(x) = Pθ (Xi = x).

(M4) The set A on which fθ(x) or Pθ(x) is positive is independent of θ.

(M5) For all x in A, the partial derivatives
∂

∂θi
fθ(x) or

∂

∂θi
Pθ(x) exist for

all i = 1, . . . , k.

(M6) The partial derivatives of the left side of the equation∫
fθ1,... ,θk(x)dx = 1(7.5.8)

exist and can be obtained by differentiating under the integral sign,
and the corresponding fact holds for Pθ(x).

In the remainder of the section we shall state results and assumptions only
for the continuous case.

§Defined in (5.1.2).
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Theorem 7.5.1

(i) If (M1)–(M6) hold, then

Eθ

[
∂

∂θi
fθ1,... ,θk(X)

]
= 0(7.5.9)

and hence

Iij(θ) = Cov
[

∂

∂θi
log fθ(X),

∂

∂θj
log fθ(X)

]
.(7.5.10)

(ii) If in addition to (M1)–(M5) we have

(M6)′ The first two partial derivatives
∂2

∂θi∂θj
of fθ(x) exist for all x ∈ A

and all θ ∈ Ω, and if the corresponding derivatives of the left side of
(7.5.8) can be obtained by differentiating under the integral sign, then
also

Iij(θ) = −Eθ

[
∂2

∂θi∂θj
log fθ(X)

]
.(7.5.11)

Proof. The argument is completely analogous to that of Theorem 7.2.1
(Problem 5.3). �

Corollary 7.5.1 Under the assumptions of Theorem 7.5.1(ii), the matrix
I(θ) is positive semi-definite.

Proof. Example 5.3.3. �
The additivity results stated for the one-parameter case in Theorem 7.2.2

remain valid under the assumptions of Theorem 7.5.1(i) with I(θ), I1(θ), . . .
now denoting information matrices (Problem 5.4). The transformation for-
mula (7.2.20) also extends in a natural way to the multiparameter case.
More specifically, let

ηi = gi (θ1, . . . , θk) , i = 1, . . . , k,(7.5.12)

and let J be the Jacobian matrix with (i, j)th element ∂ηi/∂θj . Then the
information matrix for η will be (Problem 5.5)

I∗(η) = JI(θ)J ′.(7.5.13)

Let us next consider the multiparameter versions of Theorems 7.1.1 and
7.3.1, with the likelihood equation (7.1.18) now replaced by the set of equa-
tions

∂

∂θj
[f (x1, θ) , . . . , f (xn, θ)] = 0, j = 1, . . . , k,(7.5.14)
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or, equivalently,

l′j(θ) =
∂

∂θj
ln(θ) =

n∑
i=1

∂

∂θj
log f (xi, θ) = 0, j = 1, . . . , k,(7.5.15)

where ln(θ) as before denotes the log of the likelihood and l′j(θ) its deriva-
tive with respect to θj .

In addition to assumptions (M1)–(M6)′, we require:

(M6)′′ For all x ∈ A, all third derivatives
∂3

∂θi∂θj∂θk
fθ(x) exist and are

continuous, and the corresponding derivatives of the integral (7.5.8)
exist and can be obtained by differentiating under the integral sign,

and

(M7) If θ0 =
(
θ
(0)
1 , . . . , θ

(0)
k

)
denotes the true value of θ, there exist func-

tions Mijk(x) and a positive number c (θ0) such that∣∣∣∣ ∂3

∂θi∂θj∂θk
log fθ(x)

∣∣∣∣ ≤ Mijk(x)

for all θ with
∑(

θi − θ
(0)
i

)2
< c (θ0), where Eθ0 [Mijk(X)] < ∞ for

all i, j, k.

Finally, in generalization of (7.3.4), we shall assume that

(M8) the elements Iij(θ) of the information matrix are finite and the posi-
tive semidefinite matrix I(θ) is positive definite.

Theorem 7.5.2 Under assumptions (M1)–(M5), (M6)′′, (M7), and (M8),
there exists a solution θ̂n =

(
θ̂1n, . . . , θ̂kn

)
of the likelihood equations which

is consistent, and any such solution satisfies(√
n
(
θ̂1n − θ

(0)
1

)
, . . . ,

√
n
(
θ̂kn − θ

(0)
k

))
L→ N

(
0, I−1 (θ0)

)
.(7.5.16)

For a proof, see, for example, Lehmann and Casella (1998).
In particular, if the solution of the likelihood equations is unique, it

will then satisfy (7.5.16). On the other hand, it turns out that part (ii) of
Corollary 7.1.1 does not generalize to the multiparameter case. Even if the
unique root of the likelihood equations corresponds to a local maximum, it
need not be the global maximum of the likelihood function.

Example 5.1 Normal (continued). For a sample X1, . . . , Xn from N
(
ξ, σ2

)
,

the log likelihood is

ln (ξ, σ) = −n log σ − 1
2σ2

∑
(xi − ξ)2 − n log

(√
2π
)

.(7.5.17)
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The likelihood equations are therefore

∂

∂ξ
ln (ξ, σ) =

1
σ2

∑
(xi − ξ) = 0,

∂

∂σ
ln (ξ, σ) = −n

σ
+

1
σ3

∑
(xi − ξ)2 = 0,

which have the unique solution

ξ̂ = x̄, σ̂2 =
1
n

∑
(xi − x̄)2 .(7.5.18)

It follows from Theorem 7.5.2 and Example 7.5.1 that(√
n
(
X̄ − ξ

)
,
√

n

[
1
n

∑(
Xi − X̄

)2 − σ2
])

→ N(0,Σ),(7.5.19)

with Σ = (σij) = I−1 given by

σ11 = σ2, σ12 = 0, σ22 = 2σ4.(7.5.20)

This can, of course, also be checked directly from the bivariate central limit
theorem (Problem 5.6). �

Example 5.3 Multinomial (continued). From (7.5.6), it is seen that
the likelihood equations are

yi
pi

=
yk+1
pk+1

(i = 1, . . . , k),(7.5.21)

from which we get

n − yk+1 =
k∑
i=1

yi =
yk+1
pk+1

k∑
i=1

pi =
yk+1
pk+1

(1 − pk+1)

and hence yk+1 = npk+1. Substitution in (7.5.21) gives

p̂i =
yi
n

, i = 1, . . . , k + 1.(7.5.22)

It follows from Theorem 7.5.2 that(√
n

(
Yi
n

= p1

)
, . . . ,

√
n

(
Yk
n

− pk

))
→ N (0,Σ) ,

with Σ = (σij) = I−1, where I is given by (7.5.7). Comparison with (5.4.13)
shows that σij is given by (5.4.14). This result was seen directly from the
CLT in Example 5.4.1. �
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Example 7.5.4 Bivariate normal. Consider a sample from the bivariate
normal distribution (5.2.1), and let θ =

(
ξ, η, σ2, τ2, ρ

)
, σ > 0, τ > 0,

|ρ| < 1. Then the log likelihood is

ln(θ) = −n
[
log σ + log τ + 1

2 log
(
1 − ρ2

)]
− 1

2 (1 − ρ2)

[
1
σ2

∑
(xi − ξ)2 − 2ρ

στ

∑
(xi − ξ) (yi − η) +

1
τ2

∑
(yi − η)2

]
.

(7.5.23)

and the likelihood equations become, after some simplification,
∂

∂ξ
:

1
σ2

∑
(xi − ξ) =

ρ

στ

∑
(yi − η),

∂

∂η
:

1
τ2

∑
(yi − η) =

ρ

στ

∑
(xi − ξ),

∂

∂σ
:

1
(1 − ρ2)

[
1
σ3

∑
(xi − ξ)2 − ρ

σ2τ

∑
(xi − ξ) (yi − η)

]
=

n

σ
,

∂

∂τ
:

1
(1 − ρ2)

[
1
τ3

∑
(yi − η)2 − ρ

στ2

∑
(xi − ξ) (yi − η)

]
=

n

τ
,

∂

∂ρ
: ρ



∑

(xi − ξ)2

σ2
+

∑
(yi − η)2

τ2


−

(
1 + ρ2

) ∑ (xi − ξ) (yi − η)

στ

= nρ
(
1 − ρ2

)
.

The first two equations have the solution

ξ̂ = x̄, η̂ = ȳ(7.5.24)

or ρ2 = 1; the latter is ruled out if the distribution is assumed to be non-
degenerate. The solution of the last three equations is

σ̂2 =
1
n

∑
(xi − ξ)2 , τ̂2 =

1
n

∑
(yi − η)2 , ρ̂σ̂τ̂ =

1
n

∑
(xi − ξ) (yi − η) .

Thus the likelihood equations have the unique solution (7.5.24) and

σ̂2 =
1
n

∑
(xi − x̄)2 , τ̂2 =

1
n

∑
(yi − ȳ)2 ,

ρ̂ =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
.

(7.5.25)

If we put

γ = ρστ = E (Xi − ξ) (Yi − η) , γ̂ =
1
n

∑(
Xi − X̄

) (
Yi − Ȳ

)
,(7.5.26)

we can use the multivariate CLT to show that the joint limit distribution
of

√
n
(
ξ̂ − ξ

)
,
√

n (η̂ − η) ,
√

n
(
σ̂2 − σ2

)
,
√

n
(
τ̂2 − τ2

)
,
√

n (γ̂ − γ)

(7.5.27)
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is the 5-variate normal distribution with zero means and covariance matrix
(Problem 5.7)

Σ =
(

Σ1 0
0 Σ2

)
,(7.5.28)

where

Σ1 =
(

σ2 ρστ
ρστ τ2

)
(7.5.29)

and Σ2 is the 3 × 3 matrix with elements σij given by (5.4.33). These
latter covariances must then be evaluated for the case that the (Xi, Yi) are
bivariate normal when they become (see, for example, Anderson (1984, p.
49)




σ̂2 τ̂2 γ̂

σ̂2 2σ4 2ρ2σ2τ2 2ρσ3τ
τ̂2 2ρ2σ2τ2 2τ4 2ρστ3

γ̂ 2ρσ3τ 2ρστ3 2ρ2σ2τ2


(7.5.30)

Instead of the variables σ̂2, τ̂2, and γ̂, we may prefer to work with σ̂2, τ̂2,
and ρ̂ = γ̂/σ̂τ̂ as estimators of σ2, τ2, and ρ, respectively. The joint limit
distribution of these variables is again normal with a covariance matrix
that can be determined from (5.4.21), and which then reduces to (Problem
5.8)




σ̂2 2σ4 2ρ2σ2τ2 ρ
(
1 − ρ2

)
σ2

τ̂2 2ρ2σ2τ2 2τ4 ρ
(
1 − ρ2

)
τ2

ρ̂ ρ
(
1 − ρ2

)
σ2 ρ

(
1 − ρ2

)
τ2

(
1 − ρ2

)2


.(7.5.31)

�

Example 7.5.5 Multivariate normal. Let us now generalize Examples
7.5.1 (k = 1) and 7.5.4 (k = 2) by considering the general case of an i.i.d.
sample X1, . . . , Xn from the multivariate normal density (5.4.1) of Chapter
5, with both the mean vector (ξ1, . . . , ξk) and the covariance matrix Σ =
A−1 unknown.
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The log likelihood is equal to

n

2
log |A| − 1

2

n∑
ν=1

k∑
i=1

k∑
j=1

aij (xiν − ξi) (xjν − ξj)

=
n

2
log |A| − 1

2

n∑
ν=1

k∑
i=1

k∑
j=1

aij (xiν − x̄i) (xjν − x̄j)

+n

k∑
i=1

k∑
j=1

aij (x̄i − ξi) (x̄j − ξj) .

(7.5.32)

The derivative with respect to ξi of (7.5.32) is

∂

∂ξi
(5.32) = −2n

k∑
j=1

aij (x̄j − ξj) , i = 1, . . . , k.(7.5.33)

Since the matrix A = (aij) is assumed to be nonsingular, the system of

linear equations
∂

∂ξi
(5.32) = 0 in the k variables (x̄j − ξj), j = 1, . . . , k,

has the unique solution x̄j − ξj = 0, so that the likelihood equations have
the unique solution

ξ̂i = X̄i.(7.5.34)

Consider next the derivative of (7.5.32) with respect to aij . For this
purpose, we need to know how to differentiate a symmetric determinant
with respect to its elements.

Lemma 7.5.1 Let A = (aij) be a symmetric matrix with inverse A−1 =
Σ = (σij). Then

∂ log |A|
∂aij

=
{

2aij if i �= j
aij if i = j.

(7.5.35)

For a proof, see, for example, Graybill (1983) or Harville (1997).
From this lemma, it follows that

∂

∂aij
(7.5.32) =

{
nσij − nSij + 2n (x̄i − ξi) (x̄j − ξj) when j �= i
n

2
σii −

n

2
Sii + n (x̄i − ξi)

2 when j = i,

where

Sij =
∑(

Xiν − X̄i

) (
Xjν − X̄j

)
/n.(7.5.36)

Combined with (7.5.34), these equations have the unique solution

σ̂ij = Sij .(7.5.37)
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The estimators
{
ξ̂i = X̄i, σ̂ij = Sij

}
are in fact the MLEs, as is shown, for

example, in Anderson (1984) and Seber (1984).
The joint limit distribution of the variables

√
n
(
X̄i − ξi

)
, i = 1, . . . , k, and

√
n (Sij − σij) , i ≤ j,(7.5.38)

is now easily obtained from the CLT since it is unchanged if the Sij are
replaced by (Problem 5.9)

S′
ij =

∑
(Xiν − ξi) (Xjν − ξj) /n.(7.5.39)

By the multivariate CLT (Theorem 5.4.4), the joint limit distribution of
the variables (7.5.38) is therefore multivariate normal with means zero and
with covariance matrix equal to the covariance matrix of the variables

Xi − ξi (i = 1, . . . , k) and Tjl = (Xj − ξj) (Xl − ξl) , j ≤ l,(7.5.40)

where (X1, . . . , Xk) has the distribution (5.4.1). The required covariances
are

Cov (Xi, Xj) = σij , Cov (Xi, Tjl) = 0(7.5.41)

and

Cov (Tij , Trl) = σirσjl + σilσjr.(7.5.42)

For a proof of (7.5.42), see, for example, Anderson (1984, pp. 81–82).

Note: The asymptotic normality of the joint limit distribution of the vari-
ables (7.5.38) does not require the assumption of normality made at the
beginning of Example 7.5.5. Let X1, . . . , Xn be an i.i.d. sample from any
k-variate distribution with mean (ξ1, . . . , ξk) and nonsingular covariance
matrix Σ. Then the joint limit distribution of the variables (7.5.38) is
multivariate normal with mean zero regardless of the underlying distri-
bution of the X’s. This follows from the proof given in the normal case
since the multivariate CLT does not require normality of the parent dis-
tribution. However, the asymptotic covariance matrix will no longer be
given by (7.5.41) and (7.5.42), which depend on the assumption of nor-
mality. Even the asymptotic independence of the variables

√
n
(
X̄i − ξi

)
and

√
n (Sjl − σjl) no longer holds without some symmetry assumption.

(Note that when the X’s are normal, this independence holds not only
asymptotically but also exactly for any sample size n ≥ 2.) �

The difficulties in determining the efficient root of the likelihood equation
which were discussed in Section 7.3 for the case of a single parameter tend
to be even more severe when several parameters are involved. The follow-
ing extension of Theorem 7.3.3 will then frequently provide a convenient
alternative.
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Theorem 7.5.3 Suppose the assumptions of Theorem 7.5.2 hold and that
θ̃jn is a

√
n-consistent estimator of θj for j = 1, . . . , k. Let δin (i = 1, . . . , k)

be the solution of the set of linear equations

k∑
i=1

(
δin − θ̃in

)
l′′ij

(
θ̃n

)
= −l′j

(
θ̃n

)
, j = 1, . . . , k.(7.5.43)

Then δn = (δ1n, . . . , δkn) satisfies (7.5.3).

For a proof, see, for example, Lehmann and Casella (1998).
Note that (7.5.43) is just a set of linear equations in the unknowns δin.

For k = 1, the solution of (7.5.43) reduces to (7.3.21).

Example 7.5.6 Normal mixtures. Consider an industrial setting with a
production process in control, so that the outcome follows a known distribu-
tion, which we shall take to be the standard normal distribution. However,
it is suspected that the production process has become contaminated, with
the contaminating portion following some other, unknown normal distribu-
tion N

(
η, τ2

)
. To get an idea of what is going on, a sample X1, . . . , Xn of

the output is drawn. The X’s are therefore assumed to be i.i.d. according
to the distribution

pN(0, 1) + qN
(
η, τ2

)
.(7.5.44)

As a first step, it is desired to estimate the unknown parameters p, η, and
τ2.

Let us begin with the simpler two-parameter problem in which it is as-
sumed that τ2 = 1. Then the joint density of the X’s is

n∏
i=1

[
pe−

1
2x

2
i + qe−

1
2 (xi−η)2

]
/(2π)n/2.(7.5.45)

The loglikelihood is therefore

ln(p, η) =
n∑
i=1

log
[
pe−

1
2x

2
i + qe−

1
2 (xi−η)2

]
− n

2
log(2π)(7.5.46)

and its derivatives are

∂

∂p
ln(p, η) =

n∑
i=1

e−
1
2x

2
i − e−

1
2 (xi−η)2

pe−
1
2x

2
i + qe−

1
2 (xi−η)2

(7.5.47)

and

∂

∂η
ln(p, η) =

n∑
i=1

−q (xi − η) e−
1
2 (xi−η)2

pe−
1
2x

2
i + qe−

1
2 (xi−η)2

.(7.5.48)



508 7. Efficient Estimators and Tests

Rather than solving the likelihood equations, we shall find estimators sat-
isfying (7.5.3) by means of Theorem 7.5.3.

To obtain the needed starting
√

n-consistent estimators for p and η, we
shall employ the method of moments pioneered by Karl Pearson (1894).
If there are k unknown parameters, this method consists in calculating k
moments of Xi—typically the first k—and then determining the parameter
values for which the k population moments equal the corresponding sample
moments. In the present case, k = 2 and we find (Problem 5.12(i))

E (Xi) = qη, E
(
X2i
)

= p + q
(
η2 + 1

)
= 1 + qη2.(7.5.49)

The estimating equations for q and η are therefore

qη = X̄ and qη2 =
1
n

∑
X2i − 1,(7.5.50)

and the resulting estimators of q and η are

η̃ =

1
n

∑
X2i − 1

X̄
and q̃ =

X̄2

1
n

∑
X2i − 1

.(7.5.51)

That these estimators are
√

n-consistend follows from the fact that by the
bivariate central limit theorem,

√
n
(
X̄ − qη

)
,
√

n

(
1
n

∑
X2i − qη2

)
(7.5.52)

have a bivariate normal limit distribution. By Theorem 5.4.6,
√

n (η̃ − η) ,
√

n (q̃ − q)(7.5.53)

then also have a normal limit distribution and
√

n-consistency of η̃ and q̃
follows (Problem 5.12(ii)).

Note: For finite n, there is positive probability that q̃ will not be between
0 and 1 and hence will not provide a satisfactory estimate of q. However,
the probability of this event tends to 0 as n → ∞ (Problem 5.13).

Let us now return to the original three-parameter model (7.5.44). It is
interesting to note that the MLE does not exist for this model. To see this,
note that the joint density of the X’s is a sum of non-negative terms, one
of which is proportional to

1
τ
pn−1qe

− 1
2

n∑
i=2

x2
i− 1

2τ2 (y1−η)2
,

which tends to infinity for y1 = η as τ → 0. The likelihood is therefore
unbounded. However, the assumptions of Theorems 7.5.2 and 7.5.3 are
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satisfied. To apply the latter, we use the method of moments and calculate
(Problem 5.14(i))

E (Xi) = qη, E
(
X2i
)

= p + q
(
η2 + τ2

)
, E
(
X3i
)

= qη
(
η2 + 3τ2

)(7.5.54)

and thus obtain the estimating equations

qη = X̄, q
(
η2 + τ2 − 1

)
=

1
n

∑
X2i − 1,

qη
(
η2 + 3τ2

)
=

1
n

∑
X3i ,

(7.5.55)

which again can be solved explicitly and provide the needed
√

n-consistent
starting estimators (Problem 5.14(ii)).

In the same way, the method of moments can, in principle, be used to
obtain starting estimators for the full five-parameter mixture model which
replaces (7.5.44) by

pN
(
ξ, σ2

)
+ qN

(
η, τ2

)
.(7.5.56)

However, the likelihood equations then become more complicated. In addi-
tion, for the higher moments the convergence of the sample moments to the
true ones tends to be much slower and the sensitivity of the estimators to
the model assumptions much greater. For these reasons, alternative start-
ing estimators have been explored. Mixture models and the estimation and
testing of their parameters are discussed in the books by Everitt and Hand
(1981), Titterington, Smith, and Makov (1985), McLachlan and Basford
(1988), and Lindsay (1995). See also Titterington (1997). �

Summary

1. In the multiparameter case, the Fisher information I(θ) becomes a
matrix with properties generalizing those in the one-parameter situ-
ation.

2. Regularity conditions are given under which the likelihood equations
have a consistent, asymptotically normal solution.

3. The difficulty presented by multiple roots of the likelihood equations
can be circumvented by a one-step estimator which only requires
a
√

n-consistent starting point and the solution of a set of linear
equations.

7.6 The multiparameter case II. Efficiency

In the one-parameter case, two asymptotically normal estimators are com-
pared in terms of the variances of the limit distribution. The natural k-
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variate generalization is in terms of the covariance matrices of the es-
timators. More specifically, suppose that δn = (δ1n, . . . , δkn) and δ′n =
(δ′1n, . . . , δ′kn) are two estimators of θ = (θ1, . . . , θk) such that

√
n (δ1n − θ1) , . . . ,

√
n (δkn − θk) and

√
n (δ′1n − θ1) , . . . ,

√
n (δ′kn − θk)

(7.6.1)

are both asymptotically normal with means 0 and with covariance matrices
Σ(θ) and Σ′(θ). Then δn will be considered more efficient (in the sense of
≥) than δ′n if

Σ′(θ) − Σ(θ) is positive semidefinite for all θ.(7.6.2)

This definition is justified by the following result.

Theorem 7.6.1 If δn and δ′n are k-variate normal with common mean
θ and covariance matrices Σ(θ) and Σ′(θ), respectively, and if C is any
symmetric (about the origin) convex set in Rk, then

P
[(√

n (δ1n − θ1) , . . . ,
√

n (δkn − θk)
)
∈ C
]

≥ P
[(√

n (δ′1n − θ1) , . . . ,
√

n (δ′kn − θk)
)
∈ C
]
.

(7.6.3)

For a proof, see, for example, Tong (1990, p. 73).
A related property is provided by the following result.

Theorem 7.6.2 Let δn and δ′n satisfy (7.6.1) and let g be any function of
k variables for which the k first partial derivatives exist in a neighborhood
of θ = (θ1, . . . , θk). Then

√
n [g (δ1n, . . . , δkn) − g (θ1, . . . , θk)]

and
√

n [g (δ′1n, . . . , δ′kn) − g (θ1, . . . , θk)]

are asymptotically normal with means 0 and variances

v(θ) =
∑∑ ∂g

∂θi

∂g

∂θj
σij(θ) and v′(θ) =

∑∑ ∂g

∂θi

∂g

∂θj
σ′
ij(θ),(7.6.4)

where σij(θ) and σ′
ij(θ) are the (ij)-th element of Σ and Σ′, respectively.

If, in addition, (7.6.2) holds, then

v(θ) ≤ v′(θ) for all θ.(7.6.5)

Proof. Asymptotic normality with variances (7.6.4) follows from Theorem
5.4.6. If Σ′−Σ is positive semidefinite, the inequality (7.6.5) is an immediate
consequence of Definition 5.3.3. �
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A special case of Theorem 7.6.2 is the fact that
√

n (δin − θi) and√
n (δ′in − θi) are asymptotically normal with zero means and variances

vi(θ) and v′i(θ), respectively, satisfying

vi(θ) ≤ v′i(θ).(7.6.6)

In seeking an efficient estimator of (θ1, . . . , θk), we shall, in generalization
of the one-parameter case, restrict attention to estimators δn satisfying(√

n (δ1n − θ1) , . . . ,
√

n (δkn − θk)
) L→ N (0,Σ(θ))(7.6.7)

for some nonsingular covariance matrix Σ(θ), and within this class, consider
an estimator efficient if it minimizes Σ(θ) in the sense of (7.6.2). Under
the assumptions of Theorem 7.5.2, the estimators

(
θ̂1n, . . . , θ̂kn

)
satisfying

(7.5.16) are then efficient, that is, satisfy

Σ(θ) − I−1(θ) is positive semidefinite for any estimator δn
satisfying (7.6.7),(7.6.8)

provided we add the restriction that all elements of the matrices Σ(θ) and
I−1(θ) are continuous functions of θ. (For a proof, see Bahadur (1964)).

It was seen in Section 7.4 that (7.6.8) does not hold without some restric-
tions on the class of estimators δn. The significance of these restrictions,
asymptotic normality, and continuity of the covariances raises issues that
are beyond the scope of this book. The following comments are included
to give a more complete picture. However, they will provide only a rather
vague idea of the situation.

In the multivariate case, well-known counterexamples to the efficiency
of the MLE without such restriction are Stein-type shrinkage estimators.
(See, for example, Lehmann and Casella (1998).) These show the MLE
to be inadmissible when estimating a normal vector mean with k ≥ 3.
This small-sample result implies the corresponding result asymptotically.
In these examples, the asymptotic covariances are continuous. However,
the limit distribution of the more efficient estimator is not normal; in ad-
dition, it is biased, so that the comparison has to be made in terms of
expected squared error rather than variance. Analogous examples become
available without the restriction k ≥ 3 when one adopts a local point of
view similar to that taken in Theorem 3.3.3 in a testing framework. (See,
for example, Bickel (1984).) At the same time, the local approach permits
the introduction of appropriate regularity conditions (Bickel et al., 1993).

General classes of estimators that are efficient (i.e., satisfy (7.5.16)) are:

(i) consistent solutions θ̂n of the likelihood equations under the assump-
tions of Theorem 7.5.2;

(ii) the one-step estimators (7.5.43) under the assumptions of Theorem
7.5.3;
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(iii) Bayes estimators under assumptions stated for example in Le Cam
(1953) and Ferguson (1996).

The estimators (i) and (ii) are illustrated in the preceding section. We
shall now consider an example of multivariate Bayes estimation.

Example 7.6.1 Multinomial. In generalization of the binomial,
Example 1.3.1 and of Example 7.4.4 of the present chapter, suppose that
(Y1, . . . , Yk+1) have the multinomial distribution (5.5.29), and that the
vector (p1, . . . , pk+1) is distributed with probability density

Cpa1−1
1 · · · pak+1−1

k+1 , 0 < pi,
∑

pj = 1, 0 < ai,(7.6.9)

where

C = Γ (a1 + · · · + ak+1) /Γ (a1) · · ·Γ (ak+1) .(7.6.10)

The Dirichet distribution (7.6.9) is a generalization of the beta distribution
that was assumed in the binomial example, and under it we have

E(pi) = ai/

k+1∑
j=1

aj .(7.6.11)

The conditional joint distribution of the p’s given (y1, . . . , yk+1) is propor-
tional to (Problem 6.1)

py1+a1−1
1 · · · pyk+1+ak+1−1

k+1

and is therefore again a Dirichlet distribution. The Bayes estimator of
(p1, . . . , pk+1) under squared error is, in generalization of (7.4.13), the con-
ditional expectation of (p1, . . . , pk+1) given the y’s, and by (7.6.11) is thus

 a1 + y1

n +
∑

aj
, . . . ,

ak+1 + yk+1

n +
∑

aj


 .(7.6.12)

The joint limit distribution of

√
n


 Y1 + a1

n +
∑

aj
− p1


 , . . . ,

√
n


Yk+1 + ak+1

n +
∑

aj
− pk+1


(7.6.13)

is the same as that of the MLE

√
n

(
Y1
n

− p1

)
, . . . ,

√
n

(
Yk+1

n
− pk+1

)
(7.6.14)
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which was derived in Example 5.4.1 and in Example 7.5.3 of the present
chapter.

As was the case in the binomial Example 7.4.4, the asymptotic distri-
bution of the Bayes estimators (7.6.12) is independent of the choice of
a1, . . . , ak+1, and all these estimators are asymptotically efficient. This in-
dependence of the asymptotic distribution of Bayes estimators of the prior
distribution is a quite general phenomenon. For an exact statement and
proof, see Ferguson (1996) or Lehmann and Casella (1998). �

The definition of a prior distribution that could be considered non-
informative is more complicated in the multivariate than in the univariate
case treated in Section 7.4, and we shall not consider it here. For references,
see, for example, Bernardo and Smith (1994), Robert (1994), and Kass and
Wasserman (1996).

Instead of considering the estimation of the vector parameter (θ1, . . . , θk),
let us now suppose that interest centers on one of the parameters, say θ1,
with the others playing the role of nuisance parameters. If past experience
provides a considerable amount of information concerning (θ2, . . . , θk), one
might consider treating them as known. On the other hand, such reliance
on past experience always carries risks. The decision of whether to treat
them as known might depend on the gain in efficiency resulting from this
assumption. If θ̂1 and ˆ̂

θ1 denote efficient estimators when θ2, . . . , θk are
respectively unknown or known, we shall then be interested in the ARE of
θ̂1 to ˆ̂

θ1. The following example illustrates the calculation of such an ARE.

Example 7.6.2 Correlation coefficient. Consider the estimation of the
correlation coefficient ρ on the basis of a sample (X1, Y1) , . . . , (Xn, Yn)
from a bivariate normal distribution. If the means ξ and η and variances
σ2 and τ2 of X and Y are known, it was seen in Example 7.3.5 that an
efficient estimator ˆ̂ρ of ρ satisifies

√
n
(
ˆ̂ρ − ρ

)
→ N

(
0,

(
1 − ρ2

)2
1 + ρ2

)
.(7.6.15)

On the other hand, if ρ̂ is an efficient estimator of ρ when ξ, η, σ2, and τ2

are unknown, it follows from Example 5.4.3 that
√

n (ρ̂ − ρ) L→ N
(
0,
(
1 − ρ2

)2)
.(7.6.16)

By the definition of the ARE and (4.3.13), we therefore have

eρ̂,ˆ̂ρ =
1

1 + ρ2
.(7.6.17)

This is always ≤ 1, as it must be since ˆ̂ρ is efficient when the other pa-
rameters are known and ρ̂ is a competing estimator in this situation. The
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maximum gain in efficiency occurs when ρ is close to ±1. Knowledge of
the remaining parameters then nearly doubles the efficiency. On the other
hand, asymptotically this knowledge brings no gain when ρ = 0. �

Example 7.6.3 Normal mixtures. In Example 7.5.6, we considered one-
step estimators for a normal mixture model with the starting estimators
obtained by the method of moments. If, instead, these moment estimators
are used to estimate the parameters without the adjustment (7.3.21), one
must expect a loss of efficiency. The magnitude of this loss has been studied
by Tan and Chang (1972) for the mixture model

pN
(
ξ, σ2

)
+ qN

(
η, σ2

)
(7.6.18)

in which p, ξ, η, and σ2 are unknown but the variances of the two normal
distributions are assumed to be equal. The authors found that the ARE of
the moment estimator to the one-step estimator (or equivalently the MLE)
depends only on

p and ∆ = (η − ξ)/σ.(7.6.19)

Because of the symmetry of (7.6.18) with respect to the two component
distributions, attention can further be restricted to the values 0 < p ≤ .5.
Table 7.6.1 shows some of the ARE’s for the estimators of p and θ =
(η+ξ)/2 (which are also the absolute efficiencies of the moment estimators).

TABLE 7.6.1. Efficiency of moment estimators

p
∆ .05 .2 .4 .05 .2 .4
.5 .001 .010 .071 .009 .029 .133
1 .190 .565 .808 .212 .608 .914
2 .572 .771 .781 .645 .802 .783
4 .717 .832 .846 .623 .647 .640
5 .849 .904 .911 .630 .649 .647

ARE for p ARE for θ = (η + ξ)/2
Source: Tan and Chang (1972).

The table clearly shows the dramatic improvement of efficient estimators
over the moment estimators for small values of ∆ (i.e., when the two normal
distributions are relatively close), particularly when |p − 1/2| is large. Table
7.6.2 shows the values of the asymptotic variance of

√
n
(
θ̂n − θ

)
for the

efficient estimator θ̂n of θ for p = .2 and .4 and a number of values of
∆. This table indicates the large sample sizes that would be required for
accurate estimation of θ when ∆ is small. �

In general, the presence of unknown nuisance parameters decreases the
efficiency with which the parameters of interest can be estimated. This is,
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TABLE 7.6.2. Asymptotic variance of θ̂n

∆ .5 1 2 3 4 5
p = .2 185.5 105.0 10.9 3.8 2.3 1.8
p = .4 101.3 41.1 5.8 2.4 1.5 1.2

Source: Tan and Chang (1972).

however, not always the case, as can be seen from the estimation of the
mean ξ and variance σ2 of a normal distribution treated in Example 7.5.1
(continued). Here the estimator of ξ is X̄, regardless of whether or not σ2 is
known so that there is no efficiency loss due to not knowing σ2. The MLE of
σ2 is σ̂2 =

∑(
Xi − X̄2

)
/n when ξ is unknown and ˆ̂σ

2
=
∑

(Xi − ξ)2 /n

when ξ is known, but as is seen from Example 2.4.4,

√
n
(
σ̂2 − σ2

)
and

√
n
(
ˆ̂σ
2 − σ2

)
have the same limit distribution. Thus ignorance of ξ causes no loss of
asymptotic efficiency in the estimation of σ2.

To see just when there is or is not a loss of efficiency, consider a model de-
pending on the k parameters θ1, . . . , θk, with positive definite information
matrix

I(θ) = (Iij) and I−1(θ) = J(θ) = (Jij) .(7.6.20)

Then, under the assumptions of Theorem 7.5.2, there exist efficient esti-
mators

(
θ̂1n, . . . , θ̂kn

)
of (θ1, . . . , θk) such that

√
n
(
θ̂1n − θ1

)
, . . . ,

√
n
(
θ̂kn − θk

)
(7.6.21)

has a joint multivariate limit distribution with mean (0, . . . , 0) and covari-
ance matrix J(θ). In particular therefore,

√
n
(
θ̂jn − θj

)
→ N (0, Jjj) .(7.6.22)

On the other hand, if θ1, . . . , θj−1, θj+1, . . . , θk are known, it follows from
the definition of I(θ) and Theorem 7.3.1 with k = 1 that an efficient esti-

mator ˆ̂
θjn of θj satisfies

√
n
(ˆ̂
θjn − θj

)
→ (0, 1/Ijj) .(7.6.23)

The argument of Example 7.6.2 then shows that

1
Ijj

≤ Jjj ,(7.6.24)
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and we are looking for conditions under which equality holds in (7.6.24).
For this purpose, let us give a direct algebraic proof of (7.6.24) for the

case k = 2, j = 1, using the fact that by (5.3.6),

J11 = I22/∆, J12 = −I12/∆, J22 = I11/∆,(7.6.25)

where

∆ = I11I22 − I212.

Here ∆ is positive since I is positive definite (Problem 6.2), and we therefore
have I11I22 ≤ ∆, which is equivalent to (7.6.24). We furthermore see that
equality holds in (7.6.24) if and only if

I12 = 0,(7.6.26)

which is therefore a necessary and sufficient condition for θ̂1n to be as
efficient as ˆ̂

θ1n. By (7.6.25), condition (7.6.26) is equivalent to

J12 = 0(7.6.27)

and since J is the asymptotic covariance matrix of
√

n
(
θ̂1n − θ1

)
,

√
n
(
θ̂2n − θ2

)
, another equivalent condition is that

√
n
(
θ̂1n − θ1

)
and

√
n
(
θ̂2n − θ2

)
(7.6.28)

are asymptotically independent. Still another equivalent condition is that
(Problem 6.3)

√
n
(ˆ̂
θ1n − θ1

)
and

√
n
(ˆ̂
θ2n − θ2

)
(7.6.29)

are asymptotically independent.
These results are illustrated by the estimation of ξ and σ2 in a normal

distribution discussed above. Formula (7.5.2) shows that I12 = 0; the es-
timators X̄ and σ̂2 are asymptotically independent, as are X̄ and ˆ̂σ

2
, and

the efficiency with which either parameter can be estimated is unaffected
by whether or not the other parameter is known.

For more general location-scale families (7.5.4), it follows from Example
7.5.2 that the efficiency with which the location or scale parameter can be
estimated is not impaired by not knowing the other parameter, provided
the probability density is symmetric about the origin.

It is interesting to note that the conditions (7.6.26)–(7.6.29) are symmet-
ric in the two parameters. As a result, if the efficiency with which θ1 can
be estimated does not depend on whether θ2 is known, the corresponding
fact holds for the estimation of θ2.
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For analogous results concerning the estimation of k parameters, see
Problems 6.4–6.6.

The theory of efficient estimation developed in this and the preceding
section has so far been restricted to the case of a single sample of i.i.d.
variables or vectors. However, the theory extends with only minor changes
to the case of two or more samples.

Let us consider first the case that θ is real-valued and suppose that
Xγ1, . . . , Xγnγ

(γ = 1, . . . , r) are i.i.d. according to a distribution with
density fγ,θ and that the r samples are independent. We shall take r
as fixed and assume that the sample sizes nγ all tend to infinity at the
same rate. More specifically, we shall consider a sequence of sample sizes(
n
(ν)
1 , . . . , n

(ν)
r

)
, ν = 1, 2, . . . , with total sample size

Nν = n
(ν)
1 + · · · + n(ν)r

such that

n
(ν)
γ

Nν
→ λγ as ν → ∞,(7.6.30)

where
∑

λγ = 1 and the λγ are > 0.
A central concept in the i.i.d. case is the amount of information I(θ)

contained in a single observation. To see how to generalize this idea, recall
that the total amount of information contained in n i.i.d. observations is
T (θ) = nI(θ). In the present situation, assuming the information contained
in independent observations to be additive, the total amount of information
is

T (θ) =
r∑
γ=1

nγIγ(θ),

where Iγ(θ) denotes the information provided by an observation from fγ,θ.
The average information per observation is therefore

1
Nν

T (θ) =
r∑
γ=1

nγ
Nν

Iγ(θ),

which tends to

I(θ) =
r∑
γ=1

λγIγ(θ)(7.6.31)

as Nν → ∞. We shall see below that this average amount of information
plays the role of the information measure I(θ) defined by (7.1.28) in the
i.i.d. case.
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If

Lγ(θ) =
nγ∏
i=1

fγ,θ (xγ,i) and lγ(θ) =
nγ∑
i=1

log fγ,θ (xγ,i)(7.6.32)

denote the likelihood and log likelihood of θ based on the γth sample, the
likelihood and log likelihood based on all N observations is respectively

L(θ) =
r∏
γ=1

Lγ(θ) and l(θ) =
r∑
γ=1

lγ(θ),(7.6.33)

and the likelihood equation becomes

l′(θ) =
r∑
γ=1

l′γ(θ) = 0.

These considerations extend to the multiparameter case, where, however,
the notation becomes rather complicated. In addition, it will be at variance
with that used in the one-sample case, with Iγ(θ) and I(θ) now denoting
the information matrices and with the likelihood equation replaced by the
set of equations

l(j)(θ) =
r∑
γ=1

l(j)γ (θ) = 0, j = 1, . . . , k,(7.6.34)

where for each γ, the derivative l
(j)
γ (θ) is given by

l(j)γ (θ) =
nγ∑
i=1

∂

∂θj
log fγ,θ (xγ,i) .

In generalization of Theorem 7.3.1, we then have

Theorem 7.6.3 For each γ = 1, . . . , r, let Xγ1, . . . , Xγnγ
be i.i.d. with

density fγ,θ(x) satisfying the assumptions of Theorem 7.5.2, and suppose

that all N =
∑

nγ observations are independent. Let
(
n
(ν)
1 , . . . , n

(ν)
r

)
be

a sequence of sample sizes satisfying (7.6.30) where, in the following, we
shall suppress the index ν. Then any consistent sequence

θ̂N = θ̂N (X11, . . . , X1n1 , ; · · · ;Xr1, . . . , Xrnr )

of the likelihood equations (7.6.34) satisfies
√

N
(
θ̂N − θ0

)
L→ N

(
0, I−1 (θ0)

)
,(7.6.35)

where θ0 denotes the true value of θ and I(θ) is given by (7.6.31).
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Proof. We shall give the proof only for the case k = 1, i.e., that θ is real-
valued. Then equations (7.3.5) and (7.3.6) hold exactly as in the proof of
Theorem 7.3.1. The proof will be completed by verifying (7.3.7)–(7.3.9),
with n replaced by N throughout.

To prove the result corresponding to (7.3.7), write

1√
N

l′(θ) =
r∑
γ=1

(√
nγ
N

1
√

nγ
l′γ(θ)

)
.(7.6.36)

By (7.3.7) with nγ in place of n, we have

1
√

nγ
l′γ(θ)

L→ N (0, Iγ (θ0))(7.6.37)

and the result now follows from (7.3.36), (7.6.30), and the fact that l′1(θ),
. . . , l′r(θ) are independent.

Analogously

− 1
N

l′′ (θ0) = − 1
N

r∑
γ=1

l′′γ (θ0) =
∑[

nγ
N

· −1
nγ

l′′γ (θ0)
]

.(7.6.38)

Since nγ/N → λγ by (7.6.30) and −l′′γ (θ0) /nγ
P→ Iγ (θ0) by (7.3.8), it is

seen that (7.6.38) tends in probability to I (θ0), as was to be proved—the
extension of (7.3.9) follows in the same way (Problem 6.7).

Le Cam’s result, stated following Example 7.4.1, continues to apply in
the multisample case and shows that an estimator θ̂N satisfying (7.6.35) is
efficient in the class of all estimators satisfying (7.4.1) (with N in place of
n) with continuous v(θ). Other results that remain in force with only the
obvious changes are Theorem 7.3.3 concerning one-step estimators (Prob-
lem 6.8) and multivariate generalizations such as Theorems 7.5.2, 7.5.3,
and 7.6.2 (Problem 6.9). �

Example 7.6.4 The normal two-sample problem. Let X1, . . . , Xm

and Y1, . . . , Yn be independent samples from the normal distributions
N
(
ξ, σ2

)
and N

(
η, τ2

)
, respectively. If all four parameters are unknown, it

is seen as in Example 7.5.1 (continued) that the likelihood equations lead
to the estimators of ξ and σ2 given by (7.5.18) for the one-sample case
and to the corresponding one-sample estimators for η and τ2. Let us next
consider the situations in which it is assumed that either τ2 = σ2 or η = ξ.

(i) Common variance.

The log likelihood is now

l
(
ξ, η, σ2

)
= −(m + n) log σ − 1

2σ2
[∑

(xi − ξ)2 +
∑

(yj − η)2
]

+ C
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and the likelihood equations become

∂

∂ξ
:

m

σ2
(x̄ − ξ) = 0,

∂

∂η
:

n

σ2
(ȳ − η) = 0,

and
∂

∂σ
: −N

σ
+

1
σ3

[∑
(xi − ξ)2 +

∑
(yj − η)2

]
,

where N = m + n. These have the unique solution

ξ̂ = x̄, η̂ = ȳ, σ̂2 =
1
N

[∑
(xi − x̄)2 +

∑
(yi − ȳ)2

]
,

which are therefore the efficient estimators of ξ, η, and σ2, respec-
tively.

(ii) Common mean

To estimate the common mean η = ξ, let us suppose first that σ2 and
τ2 are known. The log likelihood is then

l(ξ) = −m log σ − n log τ − 1
2σ2

∑
(xi − ξ)2 − 1

2τ2
∑

(yj − ξ)2 + C,

and the likelihood equation has the unique solution (Problem 6.10(i))

ˆ̂
ξ =

(
mX̄

σ2
+

nȲ

τ2

)/(m

σ2
+

n

τ2

)
,(7.6.39)

which is a special case of the estimator given in Example 2.2.2 with
the weights (2.2.8).

If σ2 and τ2 are unknown, the efficiency of an efficient estimator ξ̂ of
ξ cannot exceed that of ˆ̂

ξ. However, if σ̂2 and τ̂2 are any consistent
estimators of σ2 and τ2, respectively, in particular, for example, if σ̂2

is given by (7.5.18) and τ̂2 is defined analogously, and if

ξ̂ =
(

mX̄

σ̂2
+

nȲ

τ̂2

)/(m

σ̂2
+

n

τ̂2

)
,(7.6.40)

the asymptotic distribution of
√

N
(
ξ̂ − ξ

)
is the same as that of

√
N
(ˆ̂
ξ − ξ

)
(Problem 6.10(ii)). This proves that ξ̂ is efficient. In a

similar way, one sees that σ̂2 and τ̂2 are efficient estimator of σ2 and
τ2. �

This argument shows that ξ̂, σ̂2, and τ̂2 minimize respectively the asymp-
totic variances of

√
N
(
ξ̂ − ξ

)
,
√

N
(
σ̂2 − σ2

)
, and

√
N
(
τ̂2 − τ2

)
when the

other parameters are unknown. However, it is not clear that this proves that
the vector

(
ξ̂, σ̂2, τ̂2

)
is efficient for estimating

(
ξ, σ2, τ2

)
in the sense of

(7.6.8). The following theorem shows that this conclusion is in fact justified.
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Theorem 7.6.4 For each i = 1, . . . , k, let θ̂i be an efficient estimator of
θi when the remaining parameters are unknown. Then under the assump-
tions of Theorem 7.5.2, the vector

(
θ̂1, . . . , θ̂k

)
is efficient for estimating

(θ1, . . . , θk) in the sense of (7.6.8).

Proof. Under the assumptions of Theorem 7.5.2, there exists an efficient
vector estimator (θ∗1 , . . . , θ∗k) of (θ1, . . . , θk). Thus

Σ̂ − Σ∗ is positive semidefinite,(7.6.41)

where Σ̂ and Σ∗ denote the asymptotic covariance matrices of
√

n(θ̂1−θ1),
. . . ,

√
n(θ̂k − θk) and

√
n (θ∗1 − θ1) , . . . ,

√
n (θ∗k − θk), respectively. There-

fore
k∑
i=1

k∑
j=1

(
σ̂ij − σ∗

ij

)
uiuj ≥ 0 for all vectors (u1, . . . , uk) ,(7.6.42)

where σ̂ij and σ∗
ij denote the (i, j)-th element of Σ̂ and Σ∗. Putting u1 =

· · · = ui−1 = ui+1 = · · · = uk = 0, we have

σ∗
ii ≤ σ̂ii

and hence, by the efficiency of θ̂i,

σ∗
ii = σ̂ii.(7.6.43)

It follows that∑∑
i	=j

(
σ̂ij − σ∗

ij

)
uiuj ≥ 0 for all (u1, . . . , uk) .

Let all u’s except ui and uj be 0. Then(
σ̂ij − σ∗

ij

)
uiuj ≥ 0 for all ui, uj .

Since uiuj can be both positive and negative, this implies that σ̂ij = σ∗
ij ,

so that Σ̂ = Σ∗, as was to be proved. �

Example 7.6.5 Regression. Let Xij , j = 1, . . . , ni and i = 1, . . . , r be
independently normally distributed with common variance σ2 and with
means

E (Xij) = α + βvi.(7.6.44)

The likelihood equations are (Problem 6.11(i))

α
∑

nivi + β
∑

niv
2
i =

∑
nivixi·,

α
∑

ni + β
∑

nivi =
∑

nixi·,

σ2 =
1
n

∑∑
(xij − α − βvi)

2
,

(7.6.45)
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where xi· =
∑

xij/ni and n =
∑

ni·. They have a unique solution(
α̂, β̂, σ̂2

)
, which is efficient since the assumptions of Theorem 7.5.2 hold

for each of the r samples. The estimators agree with the least squares esti-
mators given for a more general situation in (2.7.11) (Problem 6.11(ii)). �

In the regression model (7.6.44), we assumed that the observations were
taken at a fixed number of levels, many observations at each level. In con-
trast, the model considered in Examples 2.7.4 and 2.7.6 permits the number
of levels to tend to infinity as the number of observations increases and, in
particular, includes the case in which there is only one observation at each
level, so that the number of observations equals the number of levels. This
is an example of the general situation of independent nonidentical obser-
vations. This case requires more changes in the theory than the extension
from one sample to a fixed number of samples greater than one, and we
shall begin by considering a simple one-parameter example.

Example 7.6.6 Independent binomials with common p. Let Xi

(i = 1, . . . , n) be independent binomial b(p, ki). Then

L(p) =
∏(

ki
xi

)
pxiqki−xi

and an easy calculation shows that the maximum likelihood estimator is

p̂ =
∑

Xi∑
ki

.(7.6.46)

Since
∑

Xi has the binomial distribution b(p,N) with N =
∑

ki, we have

√
N(p̂ − p) L→ N(0, pq).(7.6.47)

Here the normalizing factor
√

N may have order very different from
√

n.
Suppose, for example, that ki = iα (α > 0). Then by (1.3.6),

N =
n∑
i=1

iα ∼ n1+α

1 + α
.

Therefore
√

N is of order n(1+α)/2 which can be of any order ≥
√

n. (For
an example in which also orders less than

√
n are possible, see Problem

6.13.)
The normalizing factor

√
N can be given an interpretation in terms of

information. The amount of information that Xj contains about p is

Ij(p) = kj/pq(7.6.48)
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and the total information the sample contains about p by Theorem 7.2.2 is
therefore

Tn(p) =
∑

Ij(p) =
∑

kj/pq = N/pq.(7.6.49)

Thus the normalizing factor Cn required for√
Cn(p̂ − p) → N(0, 1)(7.6.50)

is just
√

Tn(p).
Quite generally, the total amount of information in a set of independent

variables X1, . . . , Xn is

Tn(θ) =
n∑
j=1

Ij(θ),(7.6.51)

where Ij(θ) is the amount of information in Xj , and it turns out that under
suitable regularity conditions√

Tn(θ0)(θ̂n − θ0)
L→ N(0, 1).(7.6.52)

To see how to obtain conditions under which (7.6.52) holds, consider the
proof of Theorem 7.3.1. The expansion (7.3.6) remains valid with

ln(θ0) =
n∑
j=1

log fj,θ(Xj),

but (7.3.6) has to be replaced by

√
Tn (θ0)

(
θ̂n − θ0

)
=

l′n (θ0) /
√

Tn (θ0)

− 1
Tn (θ0)

l′′n (θ0) −
1

2Tn (θ0)

(
θ̂n − θ0

)
l′′′n (θ∗n)

.

(7.6.53)

Then

l′n (θ0) =
∑ ∂

∂θ
log fj,θ (Xj)

is a sum of n independent variables with mean 0 and variance Ij (θ0), and
conditions for

l′n (θ0)√
Tn (θ0)

to tend to N(0, 1)(7.6.54)

are given, for example, in Theorem 2.7.1. Sufficient conditions for

−l′′n (θ0) /Tn (θ0)
P→ 1(7.6.55)
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can be obtained from Example 2.2.2 (Problem 6.15), and the remainder
term can be handled as in the proof of Theorem 7.3.1.

A common feature of the extensions considered so far is that the number
of parameters remains fixed, independent of sample size. When this is not
the case, the situation can be very different, as is seen in the following
example due to Neyman and Scott (1948). �

Example 7.6.7 Common variance. Let (Xα1, . . . , Xαr), α = 1, 2, . . . , n,
be independently distributed as N

(
θα, σ2

)
. The situation is similar to that

of Theorem 7.6.3, but the sample sizes (previously denoted by nα and as-
sumed to → ∞) are now fixed and it is the number n of samples (previously
assumed fixed and denoted by r) that now tends to infinity. The parameter
being estimated is σ2, while the means θ1, . . . , θn are nuisance parame-
ters, the number of which tends to infinity with the number of samples. If
N = rn, the log likelihood is

ln
(
σ2; θ1, . . . , θn

)
= −N log σ − 1

2σ2
∑∑

(xαj − θα)2 + c,

and the likelihood equations have the unique solution

θ̂α = Xα·, σ̂2 =
1
rn

n∑
α=1

r∑
j=1

(Xαj − Xα·)
2
.

Consider now the n statistics

S2α =
1
r

r∑
j=1

(Xαj − Xα·)
2
, α = 1, . . . , n.

They are i.i.d. and, since

E
(
S2α
)

=
r − 1

r
σ2,

we see that

σ̂2 =
1
n

n∑
α=1

S2α
P→ r − 1

r
σ2,

so that σ̂2 is not consistent. While a simple modification (multiplication
by r/ (r − 1)) remedies this failure, the point of the example is that the
unique solution of the likelihood equations itself is not consistent. �

For some recent discussions of this example, see Bickel et al. (1993) and
Barndorff-Nielsen and Cox (1994).
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Summary

The asymptotic performance of an asymptotically normal estimator of a
vector parameter is characterized by the covariance matrix Σ(θ) of the limit
distribution. An estimator δn is considered more efficient than a competitor
δ′n if Σ′(θ)−Σ(θ) is positive semidefinite for all θ. An asymptotically normal
estimator is called efficient if Σ(θ) = I−1(θ).

When estimating a single parameter θ1, the presence of nuisance param-
eters (θ2, . . . , θk) generally decreases the efficiency with which θ1 can be
estimated. A necessary and sufficient condition for this not to be the case
is that the elements I12(θ), . . . , I1k(θ) of the information matrix are all 0.

The theory of efficient estimation is extended from the i.i.d. case to that
of a fixed number r of large samples. In this extension, the average amount
of information (averaged over the different samples) plays the role of I(θ)
in the i.i.d. case. An example shows that this theory no longer applies when
r is not fixed but is allowed to tend to ∞.

7.7 Tests and confidence intervals

So far in this chapter we have been concerned with efficient methods of
point estimation, the one-parameter case being treated in Sections 1–4,
and the multiparameter case in Sections 5 and 6. We shall now discuss
tests and confidence procedures based on these efficient estimators and
begin with the case of a single parameter θ.

A. The Wald Test. Suppose that X1, . . . , Xn are i.i.d. and consider
an estimator θ̂n which is efficient in the sense of satisfying

√
n
(
θ̂n − θ

)
L→ N (0, 1/I(θ)) ,(7.7.1)

for example, a consistent root of the likelihood equation under the assump-
tions of Theorem 7.3.1. If În is any consistent estimator of I(θ), it follows
that

√
n
(
θ̂n − θ

)√
În

L→ N(0, 1)(7.7.2)

and hence that

θ̂n −
uα/2√
nÎn

< θ < θ̂n +
uα/2√
nÎn

(7.7.3)

are confidence intervals for θ with asymptotic confidence coefficient 1 − α.
Here uα/2 is the upper α/2 point of the standard normal distribution.
If I(θ) is a continuous function of θ, as is typically the case, it follows
from Theorem 2.1.4 that În = I

(
θ̂n

)
is a consistent estimator of I(θ). An
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alternative estimator is suggested by (7.2.10). Since under the assumptions
of Theorem 7.2.1(ii) and 7.3.1, the proof of Theorem 7.3.2 shows that

− 1
n

l′′n

(
θ̂n

)
P→ I(θ),(7.7.4)

the left side of (7.7.4) provides a consistent estimator of I(θ). For a com-
parison of the estimators I

(
θ̂n

)
and −l′′n

(
θ̂n

)
/n, see Efron and Hinkley

(1978) and Runger (1980).
For testing the hypothesis

H : θ = θ0(7.7.5)

against the two-sided alternatives θ �= θ0 at asymptotic level α, (7.7.3)
leads to the Wald test with acceptance region

θ0 −
uα/2√
nÎn

< θ̂n < θ0 +
uα/2√
nÎn

(7.7.6)

or, equivalently, with rejection region∣∣∣θ̂n − θ0

∣∣∣ ≥ uα/2√
nÎn

.(7.7.7)

Since the calculation of the level of this test is based soley on the distri-
bution of θ̂n at θ0, we can in (7.7.6) and (7.7.7) replace În by I (θ0) and
reject H when ∣∣∣θ̂n − θ0

∣∣∣ ≥ uα/2√
nI (θ0)

.(7.7.8)

If H is to be tested against the one-sided alternatives θ > θ0 rather than
against θ �= θ0, the rejection region (7.7.8) is replaced by

θ̂n − θ0 ≥
uα√

nI (θ0)
.(7.7.9)

B. The Likelihood Ratio Test. A standard approach to testing (7.7.5)
is provided by the likelihood ratio test, which rejects when the maximum
of the likelihood divided by the likelihood under H,

Lx

(
θ̂n

)
Lx (θ0)

,(7.7.10)

is sufficiently large, where θ̂n is the MLE. Taking logarithms, this is equiv-
alent to rejecting when

∆n = ln

(
θ̂n

)
− ln (θ0)(7.7.11)
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is sufficiently large, where, as earlier, ln denotes the log likelihood. The fol-
lowing theorem provides the asymptotic null-distribution of (7.7.11) when
θ̂n is a consistent root of the likelihood equation. Typically, but not always,
θ̂n will be the MLE. With this understanding, we shall call the test based
on (7.7.10) or (7.7.11) the likelihood ratio test without insisting that θ̂n is
actually the MLE.

Theorem 7.7.1 Under the assumptions of Theorem 7.3.1, if θ̂n is a con-
sistent root of the likelihood equation, the null-distribution of 2∆n tends to
a χ2-distribution with 1 degree of freedom.

Proof. For any (x1, . . . , xn), we can expand ln

(
θ̂n

)
and l′n (θ0) in analogy

with (7.3.5) to obtain

ln

(
θ̂n

)
− ln (θ0) =

(
θ̂n − θ0

)
l′n (θ0) +

1
2

(
θ̂n − θ0

)2
l′′n (θ∗n) .(7.7.12)

Also, by (7.3.5) we have, since l′n

(
θ̂n

)
= 0,

−l′n (θ0) =
(
θ̂n − θ0

)
l′′n (θ0) +

1
2

(
θ̂n − θ0

)2
l′′′n (θ∗∗n ) ,(7.7.13)

where θ∗n and θ∗∗n lie between θ0 and θ̂n. Substitution of (7.7.13) into (7.7.12)
leads to

∆n = −n
(
θ̂n − θ0

)2 [ l′′n (θ0)
n

− 1
2

l′′n (θ∗n)
n

+
1
2

(
θ̂n − θ0

) l′′′n (θ∗∗n )
n

]
.

(7.7.14)

The third term tends to 0 in probability by (7.3.9), while l′′n (θ0) /n and
l′′n (θ∗n) /n both tend to −I (θ0) in probability by (7.3.8) and the argument
of (7.3.29), respectively. It follows that 2∆n has the same limit distribution
as

n
(
θ̂ − θ0

)2
I (θ0)(7.7.15)

and, in view of (7.7.1), this completes the proof. �
Actually, we have proved slightly more, namely that the test statistics

2∆n and n
(
θ̂ − θ0

)2
I (θ0)(7.7.16)

are asymptotically equivalent under θ0 in the sense that their difference
tends to 0 in probability (Problem 7.4). It follows from the following lemma
that the Wald and likelihood ratio tests are asymptotically equivalent under
H in the sense of Definition 3.1.1.
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Lemma 7.7.1 Suppose that Vn and V ′
n are two sequences of test statistics

satisfying V ′
n − Vn

P→ 0. If Vn has a continuous limit distribution F0, this
is also the limit distribution of V ′

n, and for any constant c, the tests with
rejection regions Vn ≥ c and V ′

n ≥ c are asymptotically equivalent.

Proof. That F0 is the limit distribution of V ′
n follows from Corollary 2.3.1.

To prove asymptotic equivalence of the two tests, let V ′
n = Vn + Wn. Then

P [Vn < c and V ′
n ≥ c] = P [c − Wn ≤ Vn < c] ,

and this tends to zero by Problem 3.16(iii) of Chapter 2. That P [Vn ≥ c
and V ′

n < c] → 0 is seen analogously. �

Example 7.7.1 Normal mean. Let X1, . . . , Xn be i.i.d. N(0, 1). Then
θ̂n = X̄ by Example 7.1.3. To test the hypothesis H : θ = 0, note that

ln(θ) = −1
2

∑
(xi − θ)2 − n log

(√
2π
)

,

and hence

2∆n =
∑

x2i −
∑

(xi − x̄)2 = x̄2.

The likelihood ratio test therefore rejects when

nx̄2 ≥ vα,

where vα is the upper α point of χ21. Since I (θ0) = 1, the Wald Test (7.7.8)
rejects when

√
n |x̄| ≥ uα/2.

In this case, these two rejection regions are not only asymptotically equiv-
alent, but they are exactly the same and their level is exactly equal to α.
�

Adaptation of the likelihood ratio test to the one-sided alternatives θ >
θ0 is less simple than it was for the Wald test. Rather than giving a general
theory of the one-sided problem, we shall illustrate it by Example 7.7.1 as
a prototype of the general case.

Example 7.7.1. Normal mean (continued). In Example 7.7.1, suppose
that only values θ ≥ 0 are possible and that we wish to test H : θ = 0
against θ > 0. Then the results of this chapter concerning asymptotic
normality and efficiency of a consistent root of the likelihood equation no
longer apply because the parameter space θ ≥ 0 is not open. The MLE of
θ is now (Problem 7.7.1(i))

θ̂n =
{

X̄ if X̄ > 0
0 if X̄ ≤ 0.(7.7.17)
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For θ > 0, the asymptotic behavior of θ̂n is as before, but for θ = 0 there
is a change (Problem 7.7.1(ii) and 7.7.1(iii)). Since the equation l′n(θ) = 0
has no solution when X̄ < 0, let us consider the likelihood ratio test based
on (7.7.11) with θ̂n given by (7.7.17), so that (for this example only)

2∆n =
∑

x2i −
∑(

xi − θ̄n
)2 =

{
nx̄2 if x̄ > 0
0 if x̄ ≤ 0.(7.7.18)

Since we are rejecting for large values of 2∆n and since

PH
(
X̄ > 0

)
= 1/2,

the rejection for α < 1/2 will be a subset of the set x̄ > 0. By (7.7.18), the
likelhood ratio test therefore rejects when

√
nX̄ ≥ uα.(7.7.19)

For generalizations of this example, see Chernoff (1954), Feder (1968),
and the related Problem 7.22. �

C. The Rao Scores Test. Both the Wald and likelihood ratio tests
require evaluation of θ̂n. Let us now consider a third test for which this
is not necessary. When dealing with large samples, interest tends to focus
on distinguishing the hypothetical value θ0 from nearby values of θ. (If the
true value is at some distance from θ0, a large sample will typically reveal
this so strikingly that a formal test may be deemed unnecessary.) The test
of H : θ = θ0 against θ > θ0 is locally most powerful if it maximizes the
slope β′ (θ0) of the power function β(θ) at θ = θ0. Standard small-sample
theory shows that this test rejects H for large values of

∂
∂θ [fθ (x1) · · · fθ (xn)] |θ=θ0

fθ0 (x1) · · · fθ0 (xn)
=

n∑
i=1

f ′
θ0

(xi)
fθ0 (xi)

= l′n (θ0).(7.7.20)

(See, for example, Casella and Berger (1990), p. 377.) We saw in (7.3.7)
that

1√
n

l′n (θ0)
L→ N (0, I (θ0)) ;

it follows that the locally most powerful rejection region

l′n (θ0)√
nI (θ0)

≥ uα(7.7.21)

has asymptotic level α.
The corresponding two-sided rejection region given by

|l′n (θ0)|√
nI (θ0)

≥ uα/2(7.7.22)
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is also locally best in a suitable sense. The quantity l′n(θ) is called the score
function; the test (7.7.22) is the Rao score test.

It is interesting to note that the Rao test (7.7.22) and the Wald test
(7.7.7) are asymptotically equivalent. This follows from the fact that

− 1√
n

l′n (θ0) −
√

n
(
θ̂n − θ0

)
I (θ0)

P→ 0,(7.7.23)

which, in turn, is a consequence of (7.3.6) and (7.3.8) (Problem 7.10).

Example 7.7.2 Logistic. Consider a sample X1, . . . , Xn from the logistic
distribution with density

fθ(x) =
e(x−θ)[

1 + e(x−θ)
]2 .

Then

ln(θ) =
∑

(xi − θ) − 2
∑

log
([

1 + e(xi−θ)
])

and

l′n(θ) = −n +
∑ 2e(xi−θ)

1 + e(xi−θ)
.

We also require I(θ), which by (7.3.32) is equal to 1/3 for all θ. The Rao
scores test therefore rejects H when√

3
n

∑ e(xi−θ) − 1
e(xi−θ) + 1

.

In this case, the MLE does not have an explicit expression and therefore
the Wald and likelihood ratio tests are less convenient. However, we can
get alternative, asymptotically equivalent tests by replacing θ̂n by the more
convenient one-step estimator δn given by (7.3.21) or by other efficient
estimators (see, for example, Stroud (1971) and Problem 7.7). �

The results obtained for the Wald, Rao, and likelihood ratio tests are
summarized in the following theorem.

Theorem 7.7.2 Under the assumptions of Theorem 7.7.1, the Wald test
(7.7.7), the Rao test (7.7.22), and the likelihood ratio test which for ∆n

defined by (7.7.11) rejects when√
2∆n ≥ uα/2,(7.7.24)

are asymptotically equivalent under H and all have asymptotic level α.
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The three tests are asymptotically equivalent not only under H but,
under slightly stronger assumptions than those made for the case θ = θ0,
also under a sequence of alternatives

θn = θ0 +
c√
n

,(7.7.25)

which in Theorem 3.3.3 was seen to be appropriate for power calculations.
In particular, the asymptotic power against the alternatives (7.7.25) is thus
the same for all three tests. In terms of their performance, we can therefore
not distinguish between them to the degree of accuracy considered here.
They do differ, however, in convenience and ease of interpretation.

Both the likelihood ratio test and the Wald test require calculating an
efficient estimator θ̂n, while the Rao test does not and is therefore the most
convenient from this point of view. On the other hand, the Wald test, being
based on the studentized difference(

θ̂n − θ0

)√
nI (θ0),

is more easily interpretable and has the advantage that, after replacement
of I (θ0) by I

(
θ̂n

)
, it immediately yields confidence intervals for θ.

The Wald test has the drawback, not shared by the other two, that it
is only asymptotically but not exactly invariant under reparametrization.
To see this, let η = g(θ) and suppose that g is differentiable and strictly
increasing. Then η̂n = g

(
θ̂n

)
and by (7.2.20)

√
I∗(η) =

√
I(θ)/g′(θ).(7.7.26)

Thus the Wald statistic for testing η = η0 is

[
g
(
θ̂n

)
− g (θ0)

]√
nI∗ (η0) =

√
nI (θ0)

(
θ̂n − θ0

) g
(
θ̂n

)
− g (θ0)(

θ̂n − θ0

) · 1
g′ (θ0)

.

The product of the second and third factor tends to 1 as θ̂n → θ0 but
typically will differ from 1 for finite n.

For a careful comparison of the three tests, these considerations need to
be supplemented by simulations and second order calculations. It seems
that the best choice depends on the situation, but various investigations
so far have not led to any clear conclusions. For further discussion, see, for
example, Cox and Hinkley (1974, Section 9.3), Tarone (1981), and Rayner
and Best (1989).

The Wald, Rao, and likelihood ratio tests, both one- and two-sided, are
consistent in the sense that for any fixed alternative, the probability of
rejection tends to 1 as the sample size tends to infinity. For the test (7.7.9),
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for example, the power against an alternative θ > θ0 is

βn(θ) =Pθ

[√
n
(
θ̂n − θ0

)
≥ uα/

√
I (θ0)

]

=Pθ

[
√

n
(
θ̂n − θ

)
≥ uα√

I (θ0)
−

√
n (θ − θ0)

]
,

(7.7.27)

which tends to 1 as n → ∞ by (7.7.1).
In the light of this result, the following example is surprising and some-

what disconcerting.

Example 7.7.3 Cauchy. Let X1, . . . , Xn be a sample from the Cauchy
distribution with density (7.3.54) so that

l′n(θ) = 2
n∑
i=1

xi − θ

1 + (xi − θ)2
.

Since I(θ) = 1/2 (Problem 2.4), the Rao test (7.7.21) rejects when

2

√
2
n

n∑
i=1

xi − θ

1 + (xi − θ)2
≥ uα.(7.7.28)

As θ → ∞ with n remaining fixed,

min (Xi − θ0)
P→ ∞

so that the left side of (7.7.28) tends in probability to 0 (Problem 7.11).
Since uα > 0 (for α < 1/2), it follows that the power of the test (7.7.28)
tends to 0 as θ → ∞. The test was, of course, designed to maximize the
power near θ0; nevertheless, a test with such low power at a distance from
H is unsatisfactory. �

Examples in which an analogous unsatisfactory behavior occurs for the
Wald test are discussed, for example, by Vaeth (1985), Mantel (1987), and
by Le Cam (1990a), who proposes modifications to avoid the difficulty.

There is, of course, no contradiction between stating that the power
function βn(θ) satisfies

βn(θ) → 1 as n → ∞ for any θ > θ0(7.7.29)

and

βn(θ) → 0 as θ → ∞ for any fixed n.(7.7.30)

The limit (7.7.30) shows that the consistency asserted by (7.7.29) is not
uniform in θ even when θ is bounded away from θ0. For any given θ and
any ε, there exists n(θ) such that

βn(θ) > 1 − ε for all n > n(θ).
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However, no n will work for all θ; as θ → ∞, so will n(θ).

Example 7.7.1. Cauchy (continued). Instead of the Rao test (7.7.21),
let us consider the Wald test (7.7.9), which against a fixed alternative θ > θ0
has power

βn(θ) =Pθ

[√
n
(
θ̂n − θ0

)
≥

√
2uα
]

=Pθ

[√
n
(
θ̂n − θ

)
≥

√
2uα −

√
n (θ − θ0)

]
.

This time βn(θ) → 1 as θ → ∞. The two tests (7.7.21) and (7.7.9)
therefore behave very differently as θ → ∞, which may seem puzzling in
view of the earlier claim of their asymptotic equivalence. However, this
claim was asserted only under or near the hypothesis. It was based on
(7.3.6)–(7.3.9). Of these, (7.3.6) is an identity which is always valid. On
the other hand, (7.3.7)–(7.3.9) are only proved under H, that is, assuming
θ0 to be the true value of θ. If instead some value θ �= θ0 is correct, these
limit results need no longer hold.

So far, we have assumed that the model depends on a single real-valued
parameter θ. Suppose next that θ is vector-valued, θ = (θ1, . . . , θk) say, as
in Section 7.5 and that the hypothesis

H : θ = θ0 = (θo1, . . . , θok)(7.7.31)

is to be tested against the alternatives θ �= θ0.
The considerations leading to the Wald test (7.7.7) easily generalize.

The starting point is an estimator θ̂n which is efficient, i.e., which satisfies
(7.5.16). Then it follows from Theorem 5.4.2 that the quadratic form

n
(
θ̂n − θ

)′
I(θ)

(
θ̂n − θ

)
= n

∑∑
Iij(θ)

(
θ̂in − θi

)(
θ̂jn − θj

)(7.7.32)

has a limiting χ2-distribution with k degrees of freedom. If vα is the upper
α-point of this distribution and if Îij is any consistent estimator of Iij(θ),
the ellipsoids

n
∑∑

Îij

(
θ̂in − θi

)(
θ̂jn − θj

)
< vα(7.7.33)

thus constitute confidence sets for the vector θ with asymptotic confidence
coefficient 1 − α.

The joint distribution (7.5.16) of the variables
√

n
(
θ̂1n − θ1

)
, . . . ,

√
n
(
θ̂kn − θk

)
can also be used to obtain simultaneous confidence intervals

for the k parameters θ1, . . . , θk. The method is analogous to that illustrated
in Example 5.2.5.
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An acceptance region for testing the hypothesis (7.7.31) can be obtained
by replacing θ by θ0 in (7.7.33), as was done for (7.7.6). However, since
the calculation of the level is based on the distribution of θ̂n at θ0, we can
now replace Îij by Iij (θ0) in (7.7.33) and thus, in generalization of (7.7.7),
obtain the rejection region of the Wald test

Wn = n
∑∑

Iij (θ0)
(
θ̂in − θoi

)(
θ̂jn − θoj

)
≥ vα(7.7.34)

at asymptotic level α.
To obtain the Rao scores test of H, note that, in generalization of (7.3.7),

the joint distribution of the score statistics

l′i (θ0) =
∂

∂θi
ln(θ)

∣∣∣∣
θ=θ0

under the assumptions of Theorem 7.5.1 satisfies (Problem 7.12)(
1√
n

l′1 (θ0) , . . . ,
1√
n

l′k (θ0)
)

→ N (0, I (θ0)) .(7.7.35)

From this limit result and Theorem 5.4.2, it follows that the scores test

Rn =
1
n

(l′1 (θ0) , . . . , l′k (θ0)) I−1 (θ0)




l′1 (θ0)
...

l′k (θ0)


 ≥ vα(7.7.36)

has asymptotic level α. Since
1
n

I−1(θ·) is the asymptotic covariance matrix

of
(
θ̂1n − θo1, . . . , θ̂kn − θok

)
, (7.7.36) can also be written as

Rn =
∑∑

σij (θ0) l′i (θ0) l′j (θ0) ≥ vα,(7.7.37)

where σij (θ0) denotes the asymptotic covariance of
(
θ̂in − θoi

)
and(

θ̂jn − θoj

)
.

Consider finally the likelihood ratio test. If ∆n is defined as in (7.7.11),
then Theorem 7.7.1 generalizes in the way one would expect. Specifically,
under the assumptions of Theorem 7.5.2, if θ̂n is a consistent root of the
likelihood equations, the distribution of 2∆n tends to a χ2-distribution
with k degrees of freedom. The proof parallels that of Theorem 7.7.1 with
the difference that the Taylor expansions of ln

(
θ̂n

)
and l′n

(
θ̂n

)
given by

(7.7.12) and (7.7.13) are replaced by the corresponding multivariate Taylor
expansions (Problem 7.13).

These results are summarized and slightly strengthened in the following
extension of Theorem 7.7.2.
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Theorem 7.7.3 Under the assumptions of Theorem 7.5.2, the Wald test
(7.7.34), the Rao test (7.7.37), and the likelihood ratio test which rejects
when

2∆n ≥ vα(7.7.38)

are asymptotically equivalent under H and all have asymptotic level α.

Example 7.7.4 Normal one-sample problem. Let X1, . . . , Xn be i.i.d.
N
(
ξ, σ2

)
. The problem of testing

H : ξ = ξ0, σ = σ0(7.7.39)

was treated on an ad hoc basis in Example 5.2.4. Let us now consider it
from the present point of view. The unique roots of the likelihood equations
are by Example 7.5.1 (continued)

ξ̂ = X̄, σ̂2 =
1
n

∑(
Xi − X̄

)2
,(7.7.40)

and the information matrix and its inverse are, by (7.5.2),

I
(
ξ, σ2

)
=
(

1/σ2 0
0 1/2σ4

)
and I−1

(
ξ, σ2

)
=
(

σ2 0
0 2σ4

)
.(7.7.41)

It follows that the Wald statistic is

Wn =
n

σ20

(
X̄ − ξ0

)2 +
n

2σ40

(
σ̂2 − σ20

)2
(7.7.42)

and the score statistic Rn can be determined analogously (Problem 7.14(i)).
From (7.7.40), it is seen that the log likelihood ratio statistic is (Problem

7.14(ii))

2∆n =
n
(
X̄ − ξ0

)2
σ20

+
nσ̂2

σ20
− n − n

[
log σ̂2 − log σ20

]
.(7.7.43)

The asymptotic equivalence of these two test statistics under H can be
checked directly by a Taylor expansion of log σ̂2−log σ20 (Problem 7.14(iii)).
�

Example 7.7.5 The multinomial one-sample problem. Let Y1, . . . ,
Yk+1 have the multinomial distribution M (p1, . . . , pk+1;n) given by (5.5.29),
and consider the hypothesis

H : pi = poi , i = 1, . . . , k + 1.(7.7.44)

For testing H, Pearson’s χ2-test based on the statistic

Qn = n
∑(

Yi
n

− poi

)2
/poi(7.7.45)
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was proposed in Example 5.5.4.
To obtain the Wald, Rao, and likelihood ratio tests, we need the following

results obtained in Examples 5.4.1, 5.5.4, 7.5.3, and 7.5.3 (continued):

(i) The likelihood equations have the unique solution

p̂i = Yi/n.(7.7.46)

(ii) The (i, j)th element of the information matrix I(p) is

Iij =


 n

[
1
pi

+
1

pk+1

]
if i = j

n/pk+1 if i �= j.

(7.7.47)

(iii) The conditions of Theorem 7.5.2 are satisfied and therefore

√
n

(
Y1
n

− p1

)
, . . . ,

√
n

(
Yk
n

− pk

)
L→ N (0,Σ)(7.7.48)

where the (i, j)th element σij of Σ = I−1(p) is

σij =
{

pi (1 − pi) if j = i
−pipj if j �= i.

(7.7.49)

By (7.7.46) and (7.7.47), the Wald statistic is therefore

Wn = n

k∑
i=1

k∑
j=1

1
pok+1

(
Yi
n

− poi

)(
Yi
n

− poi

)
+ n

k∑
i=1

1
poi

(
Yi
n

− poi

)2
.

(7.7.50)

It was seen in the proof of Theorem 5.5.2 that Wn = Qn, so that the
Wald test in the present case reduces to Pearson’s χ2-test.

Using (7.7.46), it is seen (Problem 7.15 (i)) that the logarithm of the
likelihood ratio statistic is

∆n =
k+1∑
i=1

Yi log
Yi
npoi

.(7.7.51)

In the present case, it is easy to check directly (Problem 7.15(ii)) that
under H,

Wn − 2∆n
P→ 0 as n → ∞.(7.7.52)

That Wn has a limiting χ2k-distribution was shown in Example 5.5.4
and the same limit distribution for 2∆n thus follows from (7.7.52).
Alternatively, we can prove this limit for 2∆n from Theorem 7.7.1.
For the Rao score test, see Problem 7.8. �
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The hypotheses considered so far are simple, that is, they completely
specify the distribution being tested. We shall now turn to the case, more
frequently met in applications, in which the hypothesis is composite. As-
suming again that θ = (θ1, . . . , θk), the hypothesis is then typically of the
form

H : g1(θ) = a1, . . . , gr(θ) = ar, 1 ≤ r < k.(7.7.53)

We shall instead treat the standard hypothesis

H : θ1 = θo1, . . . , θr = θor , 1 ≤ r < k,(7.7.54)

which can be obtained from (7.7.53) through reparametrization. For testing
H against the alternatives that θi �= θoi for at least some i, we have the
following generalization of the likelihood ratio part of Theorem 7.7.2.

Theorem 7.7.4 Suppose the assumptions of Theorem 7.5.2 hold and that(
θ̂1n, . . . , θ̂kn

)
are consistent roots of the likelihood equations for θ =

(θ1, . . . , θk). Suppose, in addition, that the corresponding assumptions hold
for the parameter vector (θr+1, . . . , θk) when θi = θoi for i = 1, . . . , r,

and that ˆ̂
θr+1,n, . . . ,

ˆ̂
θkn are consistent roots of the likelihood equations for

(θr+1, . . . , θk) under H. In generalization of (7.7.10), consider the likeli-
hood ratio statistic

Lx

(
θ̂n

)
Lx

(ˆ̂
θn

) ,(7.7.55)

where ˆ̂
θn =

(
θo1, . . . , θor ,

ˆ̂
θr+1,n, . . . ,

ˆ̂
θkn

)
. Then under H, if

∆n = ln

(
θ̂n

)
− ln

(ˆ̂
θn

)
,(7.7.56)

the statistic 2∆n has a limiting χ2r-distribution (Problem 7.16).

The conclusions of Theorems 7.7.2–7.7.4 hold not only for the i.i.d. case
but, under the assumptions and in the notation of Theorem 7.6.3, also for
the multisample case when each component distribution fγ,θ(x) satisfies
the assumptions of Theorem 7.5.2. (Problem 7.17.)

Example 7.7.6 Multinomial two-sample problem. Let (X1, . . . ,
Xr+1) and (Y1, . . . , Yr+1) be independent with multinomial distributions
M (p1, . . . , pr+1;m) and M (q1, . . . , qr+1, n), respectively, and consider the
hypothesis

H : pi = qi for all i = 1, . . . , r + 1.(7.7.57)



538 7. Efficient Estimators and Tests

Since
r+1∑
i=1

pi =
r+1∑
i=1

qi = 1, we shall as in Example 7.5.3 (continued) take

(p1, . . . , pr, q1, . . . , qr) as our parameters. In order to reduce the hypothesis
to (7.7.54), we make the further transformation to the parameters

θi = qi − pi, i = 1, . . . , r,
θi+r = qi, i = 1, . . . , r.

(7.7.58)

The hypothesis then becomes

H : θ1 = · · · = θr = 0.(7.7.59)

The likelihood is

m!∏r+1
i=1 xi!

r+1∏
i=1

pxi
i · n!∏r+1

j=1 yj !

r+1∏
j=1

q
yj
j(7.7.60)

and the likelihood equations have the unique solution

p̂i =
Xi

m
, q̂i =

Yi
n

and hence

θ̂i =
Yi
n

− Xi

m
, i = 1, . . . , r,

θ̂i+r =
Yi
n

, i = 1, . . . , r.

Under the hypothesis, the likelihood reduces to

m!n!∏
xi!
∏

yj !

r∏
i=1

qxi+yi
i (1 − q1 − · · · − qr)

xk+1+yk+1(7.7.61)

and the likelihood equations have the unique solution

ˆ̂qi = ˆ̂
θi+r =

Xi + Yi
m + n

, i = 1, . . . , r,(7.7.62)

while ˆ̂
θ1 = · · · = ˆ̂

θr = 0 (Problem 7.18).
The likelihood ratio statistic thus is

r+1∏
i=1

(
Xi

m

)Xi
(

Yi
n

)Yi
/(

Xi + Yi
m + n

)Xi+Yi

and its logarithm is

∆m,n =
r+1∑
i=1

[
Xi log

(
Xi

m

)
+ Yi log

(
Yi
n

)
− (Xi + Yi) log

(
Xi + Yi
m + n

)]
.

(7.7.63)
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All the conditions of Theorem 7.5.2 are satisfied and Theorem 7.7.4 ap-
plies with k = 2r so that 2∆m,n tends in law to χ2r as m and n tend to in-
finity while satisfying (7.6.30), i.e. at the same rate.¶ This is the same limit
distribution as that obtained in Example 5.5.5 for the statistics Q = Qm,n

given by (5.5.51). It can, in fact, again be shown that

2∆m,n − Qm,n
P→ 0.(7.7.64)

�

Let us next consider the extensions of the Wald and Rao tests of the
hypothesis (7.7.54), which are based on the limits(√

n
(
θ̂1n − θ1

)
, . . . ,

√
n
(
θ̂rn − θr

))
L→ N

(
0,Σ(r)(θ)

)
(7.7.65)

and (
1√
n

∂

∂θ1
ln(θ), . . . ,

1√
n

∂

∂r
ln(θ)

)
L→ N

(
0, I(r)(θ)

)
,(7.7.66)

respectively. Here
∑(r)(θ) and I(r)(θ) are the submatrices consisting of the

upper left-hand corner formed by the intersection of the r first rows and
columns of the covariance matrix

∑
(θ) and the information matrix I(θ),

respectively. From Theorem 5.4.2, it then follows that the quadratic forms

n
(
θ̂n − θ

)′ [
Σ(r)(θ)

]−1 (
θ̂n − θ

)
(7.7.67)

and

1
n

[
∂

∂θ1
ln(θ), . . . ,

∂

∂θr
ln(θ)

]′
I(r)(θ)−1

[
∂

∂θ1
ln(θ), . . . ,

∂

∂θr
ln(θ)

]
(7.7.68)

are distributed in the limit as χ2 with r degrees of freedom. Unfortunately,
the equations

[Σ(θ)]−1 = I(θ), [I(θ)]−1 = Σ(θ)

which simplified the writing of the Wald and Rao test statistics (7.7.32)
and (7.7.36) no longer hold when Σ and I are replaced by Σ(r) and I(r).

Instead (Problem 7.20),

[
Σ(r)

]−1
=
[
I(r)
]
− I12I

−1
22 I21,(7.7.69)

¶For the role of assumption (7.6.30), see the Note following Lemma 3.1.1.
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where

I(θ) =
(

I(r) I12
I21 I22

)r
k−r

.(7.7.70)

Since I12 = I ′21 and since I22 is positive definite, (7.7.69) shows that[
Σ(r)

]−1
≤ I(r).(7.7.71)

In the special case r = 1, this inequality was already seen in (7.6.24). As in
that case, the inequality (7.7.71) corresponds to the fact that (θ1, . . . , θr)
can be estimated at least as efficiently when (θr+1, . . . , θk) is known as
when it is unknown (Problem 7.21).

It follows from (7.7.69) that equality holds in (7.7.71) when I12 = 0
or, equivalently, by Problem 3.14 of Chapter 5, when the corresponding
submatrix Σ12 of Σ is 0 and the vectors(√

n
(
θ̂1n − θ1

)
, . . . ,

√
n
(
θ̂rn − θr

))
and(√

n
(
θ̂r+1,n − θr+1

)
, . . . ,

√
n
(
θ̂kn − θk

))
are therefore asymptotically independent. In that case, the quadratic forms
(7.7.67) and (7.7.68) reduce to

n

r∑
i=1

r∑
j=1

Iij (θo)
(
θ̂in − θoi

)(
θ̂jn − θoj

)
(7.7.72)

and

1
n

r∑
i=1

r∑
j=1

σij (θo)
∂

∂θi
ln(θ)

∂

∂θj
ln(θ)|θ=θ0 ,(7.7.73)

respectively.
There is another important case in which (7.7.67) and (7.7.68) simplify,

although in a different way. When r = 1,

Σ(r)(θ) = σ11(θ) and I(r)(θ) = I11(θ)

so that (7.7.67) and (7.7.68) reduce to

n
(
θ̂1n − θ1

)2
σ11(θ)

and
[

∂

∂θ1
ln(θ)

]2
/nI11(θ),(7.7.74)

respectively, where σ11(θ) is the asymptotic variance of
√

n
(
θ̂1n − θ1

)
.

In all these cases, the coefficients Iij (θ0) and σij (θ0) in the quadratic
forms (7.7.72) and (7.7.73), and 1/σ11(θ) and 1/I11(θ) in (7.7.74) may even,
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under the hypothesis, depend on the nuisance parameters (θr+1, . . . , θk).
They then have to be replaced by consistent estimators such as Iij

(
θ̂n

)
and σij

(
θ̂n

)
for the quadratic forms to become usable as test statistics.

When considering maximum likelihood estimation earlier in this chapter,
we obtained not only the asymptotic performance of the estimators θ̂n but
also established their efficiency within the class of asymptotically normal
estimators with continuous asymptotic variance. The corresponding situa-
tion for testing is more complicated. A more satisfactory theory, which is
also available for estimation and which avoids the restriction to asymptot-
ically normal estimators with continuous asymptotic variance, is based on
the concept of asymptotic local minimaxity. This theory, which is beyond
the scope of this book, is sketched in Le Cam and Yang (1990); see also
Lehmann and Casella (1998, Section 6.8).

Summary

1. Asymptotic tests and confidence sets can be obtained from the results
of the preceding sections in three different ways.

(i) The asymptotic distribution of the efficient estimators θ̂n =(
θ̂1n, . . . , θ̂kn

)
can be inverted in the usual way to obtain asymp-

totic confidence sets for θ = (θ1, . . . , θk) and hence also tests of
the hypothesis H : θ1 = θ10, . . . , θk = θk0.

(ii) One can use as a starting point the asymptotic distribution not
of the estimators θ̂n but instead of the score statistics l′i(θ),
i = 1, . . . , k. The procedure of (i) leads to the Wald test and
that of (ii) to Rao’s score test.

(iii) A third possibility is the likelihood ratio test which rejects when
ln

(
θ̂n

)
− ln (θ0) is sufficiently large.

2. The three types of tests are developed, compared, and illustrated first
for the simple hypothesis H when k = 1, then for the general case of
the simple hypothesis H for arbitrary k, and finally in the presence
of nuisance parameters.

7.8 Contingency tables

Section 5.6 gave an account of inference in a 2 × 2 table. We shall now
extend some of these results not only to a general a× b table but for quite
general contingency tables.

Suppose that we have N multinomial trials with probabilities p1, . . . , pk+1
for its k+1 possible outcomes. Then the numbers n1, . . . , nk+1 of trials re-
sulting in these outcomes has the multinomial distribution N(p1, . . . , pk+1;
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N) given by (5.5.29). The p’s are, of course, constrained to be between 0
and 1; in addition, they must satisfy

k+1∑
i=1

pi = 1.(7.8.1)

The vector of probabilities p = (p1, . . . , pk+1) therefore lies in a k-dimensional
subset of Rk+1; correspondingly, the k+1 p’s can be expressed as functions
of k parameters θ1, . . . , θk—for example, θ1 = pi, i = 1, . . . , k—which vary
over a subset of Rk. General classes of contingency tables are obtained by
assuming that the p’s are functions

pi = pi (θ1, . . . , θs)(7.8.2)

of s ≤ k parameters varying over a set ω in Rk.

Example 7.8.1 Two-way table. In generalization of the situation lead-
ing to the 2 × 2 table given as Table 5.6.1, consider N trials, the possible
outcomes of which are classified according to two criteria as A1, A2, . . . , or
Aa and as B1, B2, . . . , or Bb.

For example, a sample of N voters could be classified by age (young,
middle aged, old) and by gender (F, M). Let nij denote the number of
trials resulting in outcomes Ai and Bj , let ni+ = ni1 + · · · + nib denote
the number resulting in outcome Ai and n+j = nij + · · ·+ naj the number
resulting in outcome Bj . The results can be displayed in the a × b table
shown as Table 7.8.1.

TABLE 7.8.1. a× b contingency table

B1 B2 · · · Bb
A1 n11 n12 · · · n1b n1+
A2 n21 n22 · · · n2b n2+
...

Aa na1 na2 · · · nab na+
n+1 n+2 · · · n+b N

A submodel that is frequently of interest is obtained by assuming that
the categories A and B are independent. If

pij = P (Ai and Bj) , pi+ = P (Ai) , and p+j = P (Bj) ,

this assumption is expressed formally by

pij = pi+ · p+j .(7.8.3)

Since the probabilities pi+ and pj+ must lie between 0 and 1 and satisfy
a∑
i=1

pi+ =
b∑
j=1

p+j = 1(7.8.4)
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but are otherwise unconstrained, the ab probabilities are functions of the
(a − 1) + (b − 1) parameters

p1+, . . . , pa−1,+; p+1, . . . , p+,b−1,(7.8.5)

which can serve as the s = a + b − 2 parameters θ1, . . . , θs of (7.8.2).
This example extends in the obvious way to three-way and higher tables

with various possible independence structures (Problems 8.1–8.5).
As in Example 5.4.1, let X

(ν)
i = 1 if the νth trial results in outcome Oi

and let

Yi =
N∑
ν=1

X
(ν)
i , i = 1, . . . , k + 1,(7.8.6)

be the total number of trials resulting in outcome Oi. Then the N vectors(
X
(ν)
1 , . . . , X

(ν)
k+1

)
, ν = 1, . . . , N , are i.i.d., so that the theory of Sections

7.5 and 7.6 can be applied to obtain efficient estimators of the parameters
(θ1, . . . , θs) of (7.8.2).

The likelihood is

L(θ) =
N !

y1! · · · yk+1!
[p1(θ)]

y1 · · · [pk+1(θ)]yk+1 ,(7.8.7)

and the log likelihood is therefore

ln(θ) = y1 log [p1(θ)] + · · · + yk+1 log [pk+1(θ)] + log (N !/y1! · · · yk+1!) .
(7.8.8)

Differentiating with respect to θj , we obtain the likelihood equations

k+1∑
i=1

yi
pi(θ)

· ∂pi(θ)
∂θj

= 0 for j = 1, . . . , s.(7.8.9)

To conclude the existence of a consistent solution of these equations
that satisfies (7.5.16) requires checking the conditions of Theorem 7.5.2. Of
these, (M1), (M3), and (M4) are obviously satisfied. Condition (M2) must
be stipulated but typically causes no difficulty, and (M5) and (M6′′) will
be satisfied provided the functions pi(θ) have three continuous derivatives.
Condition (M8) can be checked once the information matrix has been com-
puted. Alternatively, one can replace the assumption that I(θ) is positive

definite by the assumption that the matrix
(

∂pi(θ)
∂θj

)
has rank s, which

implies (M8) (Problem 8.6).
This leaves (M7). Here it is important to recall that (as was pointed

out in Example 7.3.1) the bound on the third derivative is required not for
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all θ but only in some neighborhood of the true value, which in (M7) was
denoted by θ0. To see what is involved, consider

fθ (x1, . . . , xk) = p1(θ)x1p2(θ)x2 · · · pk+1(θ)xk+1 ,(7.8.10)

where one of x1, . . . , xk+1 is 1 and the others are 0. Then

∂

∂θj
fθ (x1, . . . , xk) = fθ (x1, . . . , xk)

k+1∑
i=1

xi
pi(θ)

· ∂pi(θ)
∂θj

.(7.8.11)

Continuing to differentiate, one sees that the third derivatives occurring
in (M7) are the product of fθ (x1, . . . , xk) with the sum of a number of
terms, each of which is the product of three factors: (i) one of the x’s, (ii)
a negative power of pi(θ), and (iii) a first, second, and third derivative of
pi(θ). The factor fθ (x1, . . . , xk) given by (7.8.10) is between 0 and 1 and
the x’s only take on the values 0 and 1. Both these factors are therefore
bounded.

The factors [1/pi(θ)]
t would cause difficulty if they had to be bounded

over all 0 < pi
(
θ0
)

< 1. However, a bound is only needed in a neighborhood
of the true θ0. Since 0 < pi

(
θ0
)

< 1, it follows from the continuity of pi
that there then also exists a neighborhood of θ0 in which ε < pi

(
θ0
)

for
some ε > 0 and in which therefore [1/pi(θ)]

t is bounded. Condition (M7)
will thus hold, provided the functions pi(θ) satisfy

For each i, the first three derivatives of pi(θ) are in
absolute value less than some constant M for all θ in some
neighborhood of θ0.

(7.8.12)

Under the stated conditions it follows that there exists a consistent root
θ̂ =

(
θ̂1, . . . , θ̂s

)
of the likelihood equations satisfying (7.5.16). The (i, j)th

element of the information matrix is

Iij(θ) = E

[
∂

∂θi
log fθ(X)

∂

∂θj
log fθ(X)

]
,(7.8.13)

which by (7.8.11) is the expectation of

[
X1
p1

∂p1
∂θi

+ · · · + Xk+1

pk+1

∂pk+1
∂θi

] [
X1
p1

∂p1
∂θj

+ · · · + Xk+1

pk+1
· ∂pk+1

∂θj

]
.

(7.8.14)

Here

(X1, . . . , Xk+1) = (0, . . . , 0, 1, 0, . . . , 0)

with probability pi when the 1 occurs in the ith position. Thus

E (XuXv) =
{

0 if u �= v
pu if u = v
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and (7.8.13) reduces to

Iij =
k+1∑
u=1

pu
p2u

∂pu
∂θi

∂pu
∂θj

=
k+1∑
u=1

1
pu

∂pu
∂θi

∂pu
∂θj

.(7.8.15)

We have therefore proved the following result. �

Theorem 7.8.1 Let (Y1, . . . , Yk+1) have the multinomial distribution
M (p1, . . . , pk+1;N) with the p’s given by (7.8.2). Concerning θ and the
functions pi(θ), assume the following:

(i) The parameter space Ω of θ is an open set in Rs and 0 < pi(θ) < 1
for all θ ∈ Ω and all i.

(ii) If θ �= θ′, the probability vectors (p1(θ), . . . , pk+1(θ)) and (p1(θ′), . . . ,
pk+1(θ′)) are distinct.

(iii) There exists a neighborhood of the true value θ0 in which the functions
pi(θ) have three continuous derivatives satisfying (7.8.12).

(iv) The information matrix (7.8.15) is nonsingular.

Then the likelihood equations (7.8.9) have a consistent root θ̂ = (θ̂1, . . . ,

θ̂k+1), and (√
N
(
θ̂1 − θ0

)
, . . . ,

√
N
(
θ̂s − θs

))
L→ N

(
0, I−1(θ)

)
(7.8.16)

where the elements Iij(θ) of the matrix I(θ) are given by (7.8.15).

For similar results with somewhat different conditions, see Rao (1973)
and Agresti (1990).

Example 7.8.2 Unrestricted multinomial. This example was already
treated in Example 5.4.1, and in Example 7.5.3. To consider it from the
present point of view, suppose again that (Y1, . . . , Yk+1) is distributed as
M (p1, . . . , pk+1;N). Since the p’s must add up to 1, we have s = k and
can put, for example, θi = pi(i = 1, . . . , k). Then (7.8.2) becomes

pi(θ) = θi (i = 1, . . . , s),
pk+1(θ) = 1 − (θ1 + · · · + θs)

and Ω is the set

Ω = {θ : 0 < θi < 1 for i = 1, . . . , s} .

Clearly, conditions (i)–(iii) of Theorem 7.8.1 are satisfied. To check (iv), it

is enough by Problem 8.6 to check that the matrix
(

∂pi(θ)
∂θj

)
has rank s.
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In the present case, this matrix is


1 0 · · · 0
0 1 · · · 0

0 0 · · · 1
−1 −1 · · · −1


 ,

the first s rows of which form a nonsingular s × s submatrix and which is
therefore of rank s. The likelihood equations are solved in Example 7.5.3
and have the unique solutions θ̂i = p̂i = Yi/n (i = 1, . . . , k). Theorem 7.8.1
then gives the asymptotic distribution of

(
θ̂1, . . . , θ̂k

)
which agrees with

the result of Example 7.5.3 (continued). �

Example 7.8.3 Two-way table under independence. Consider the
two-way Table 7.8.1 under the assumption (7.8.3) of independence. Since
the probabilities pi+ and p+j are restricted only by (7.8.4), we have s =
(a − 1) + (b − 1) and can take

θ1 = p1+, . . . , θa−1 = pa−1,+,

θ′1 = p+1, . . . , θ′b−1 = p+,b−1

as our parameters. Then

pij(θ) = θiθ
′
j for i = 1, . . . , a − 1; j = 1, . . . , b − 1;

pib(θ) = θi
(
1 − θ′1 − · · · − θ′b−1

)
for i = 1, . . . , a − 1;

paj(θ) = (1 − θ1 − · · · − θa−1) θ′j for j = 1, . . . , b − 1;

pab(θ) = 1 − θ1 − · · · − θa−1
(
1 − θ′1 − · · · − θ′b−1

)
.

The conditions of Theorem 7.8.1 are easily checked as in the previous ex-
ample (Problem 8.7).

The log likelihood is given by (7.8.8 with the pi(θ) replaced by the pij(θ)
and the y’s by the nij ’s, and thus is

ln (θ) = log

(
N !/

∏
ij

nij !

)
+
a−1∑
i=1

ni+ log θi +
b−1∑
j=1

n+j log θ′j

+na+ log (1 − θ1 − · · · − θa−1) + n+b log
(
1 − θ′1 − · · · − θ′b−1

)
.

The likelihood equations for θ1, . . . , θa−1 therefore become

ni+
θi

=
na+
θa

, i = 1, . . . , a − 1,

where θa = 1− θ1 − · · · − θa−1. Denoting this common ratio by c, we have
θi = cni+ for i = 1, . . . , a, and, summing over i, we find the unique solution
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of these likelihood equations to be

θ̂i =
ni+
N

, i = 1, . . . , a.

Analogously, the equations for θ′1, . . . , θ′b have the solution

θ′j =
n+j
N

, j = 1, . . . , b.

The resulting estimators for

pij = pi+p+j

are

ˆ̂pij =
ni+n+j

N2 .(7.8.17)

To obtain the limit distribution of
√

N
(
ˆ̂pij − pi+p+j

)
(7.8.18)

under the independence assumption (7.8.3), we begin by obtaining it in the
unrestricted multinomial model. �

Lemma 7.8.1 In the unrestricted multinomial model, the joint limit dis-
tribution of the two variables

√
N
(ni+

N
− pi+

)
and

√
N
(n+j

N
− p+j

)
(7.8.19)

is the bivariate normal distribution N (0,Σ), where Σ = (σij) is given by

σ11 = pi+ (1 − pi+) , σ22 = p+j (1 − p+j) , and σ12 = pij − pi+p+j .
(7.8.20)

Proof. Without loss of generality, let i = j = 1, and let

p11 = π1, p12 + · · · + p1b = π2, p21 + · · · + pa1 = π3,

so that

π1 + π2 = p1+ and π1 + π3 = p+1.(7.8.21)

It is convenient to begin with the joint distribution of the three variables

X =
√

N
(n11

N
− π1

)
, Y =

√
N

(
n12 + · · · + n1b

N
− π2

)
,

Z =
√

N

(
n21 + · · · + na1

N
− π3

)
.



548 7. Efficient Estimators and Tests

Since n11, n12+ · · ·+n1b, n21+ · · ·+na1 are the numbers of trials resulting
in three of the outcomes of N multinomial trials with the four outcomes

i = j = 1; i = 1, j > 1; i > 1, j = 1; i > 1, j > 1,

it follows from Example 5.4.1 that (X,Y, Z) has a trivariate normal limit
distribution with mean (0, 0, 0) and covariance matrix (τij) where

τii = πi (1 − πi) and τij = −πiπj for i, j = 1, 2, 3.(7.8.22)

The variables (X + Y, X + Z) therefore have a bivariate normal limit dis-
tribution with mean (0, 0), with variances

σ11 = τ11 + 2τ12 + τ22 = π1 (1 − π1) − 2π1π2 + π2 (1 − π2)
= (π1 + π2) (1 − π1 − π2) ,

σ22 = (π1 + π3) (1 − π1 − π3)
(7.8.23)

and covariance

σ12 = π1 (1 − π1) − π1π2 − π1π3 − π2π3
= π1 − (π1 + π2) (π1 + π3)

(7.8.24)

and by (7.8.21) this completes the proof of the lemma. �

The limit distribution of (7.8.18) can now be obtained from Theorem
5.2.3 with

U =
n1+
N

, V =
n+1
N

, ξ = p1+, η = p+1,

and f(u, v) = uv. We then have

∂f

∂u

∣∣∣∣
ξ,η

= p+1,
∂f

∂v

∣∣∣∣
ξ,η

= p1+,

and it follows that (7.8.18) with i = j = 1 has a normal limit distribution
with mean 0 and variance

σ2 = p2+1σ11 + 2p+1p1+σ12 + p21+σ22,

which, in terms of the p’s, equals (Problem 8.8)

σ2 = p+1p1+ [p+1 (1 − p1+) + p1+ (1 − p+1) + 2 (p11 − p+1p1+)] .(7.8.25)

Under the assumption of independence, the last term drops out, and the
asymptotic variance of (7.8.18) reduces to

σ2 = p+ipj+ [p+i (1 − pj+) + pj+ (1 − p+i)] .(7.8.26)
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Let us now compare the estimator ˆ̂pij of pij derived as (7.8.17) under
the independence assumption with the estimator

p̂ij =
nij
N

,(7.8.27)

which was obtained in (7.5.22) for the unrestricted multinomial model.
When the independence assumption is justified, it follows from (5.4.15)
and from (7.8.26) that the ARE of p̂ij to ˆ̂pij is

e =
pi+ (1 − p+j) + p+j (1 − pi+)

1 − pi+p+j
,(7.8.28)

which is equal to

1 − (1 − pi+) (1 − p+j)
1 − pi+p+j

.(7.8.29)

Thus the efficiency is always ≤ 1, as it, of course, must be since under the
independence assumption the estimator ˆ̂pij is efficient.

As an example, consider an a × a table with pij = 1/a2 for all i and j.
Then pi+ = p+j = 1/a so that independence holds and

e = 1 −
(
1 − 1

a

)2
1 − 1

a2

= 1 − a − 1
a + 1

=
2

a + 1
.(7.8.30)

This is a decreasing function of a which is equal to 2/3 when a = 2, 1/3
when a = 5, and tends to 0 as a → ∞. More generally, e given by (7.8.20)
tends to 0 as pi+ and p+j both tend to 0. When independence holds, the
loss of efficiency that results from ignoring this fact can therefore be quite
severe.

One must, however, also consider the consequences of using the estimator
ˆ̂pij in the belief that independence obtains when this is in fact not the case.
When pij �= pi+p+j , it follows from the asymptotic normality of (7.8.18)
that

√
N
(
ˆ̂pij − pij

)
=

√
N
(
ˆ̂pij − pi+p+j

)
−

√
N (pij − pi+p+j)(7.8.31)

tends in probability to +∞ or −∞ as pij < pi+p+j or pij > pi+p+j ,
i.e., the estimator p̂ij is then highly biased. Despite the resulting efficiency
advantage of the estimators ˆ̂pij when independence holds, this assumption
should thus not be made lightly. �

A natural next problem is to test the hypothesis of independence. We
have available the three tests (likelihood ratio, Wald, and Rao) discussed
in the preceding section as well as Pearson’s χ2-test considered in Section
5.7. The Wald and Rao tests have the disadvantage that they require eval-

uation of the matrices
[
Σ(r)(θ)

]−1
and

[
I(r)(θ)

]−1
and we shall therefore
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here restrict attention to likelihood ratio and χ2-tests which in the present
situation are much simpler.

It follows from (7.8.17) and (7.8.27) that the likelihood ratio statistic
(7.7.54) is equal to ∏

ij

n
nij

ij∏
ij

(ni+n+j)
nij /NN

,(7.8.32)

and hence that its logarithm is given by

∆N =
∑
i

∑
j

nij log
(

nij
(ni+n+j) /N

)
.(7.8.33)

By Theorem 7.7.4, the statistic 2∆N has, under the hypothesis, a limit-
ing χ2r-distribution where r is the number of parameters specified by the
hypothesis. In the present case, the number of parameters in the unre-
stricted model is ab − 1, while under the hypothesis of independence, it is
(a − 1) + (b − 1). It follows that

r = (ab − 1) − (a − 1) − (b − 1) = (a − 1)(b − 1).(7.8.34)

The likelihood ratio test therefore rejects the hypothesis of independence
at asymptotic level α when

2∆N > C,(7.8.35)

where
∞∫
C

χ2(a−1)(b−1) = α.(7.8.36)

Similarly, substitution (with the appropriate change of notation) of the
estimators (7.8.17) into (5.7.6) shows that Pearson’s χ2-statistic becomes

X2 =
∑∑ (

nij − ni+n+j

N

)2
ni+n+j/N

,(7.8.37)

which also has a limiting χ2r-distribution with r given by (7.8.34). An al-
ternative to (7.8.35) therefore rejects at asymptotic level α when

X2 > C,(7.8.38)

with C given by (7.8.36), as earlier.
The two tests are asymptotically equivalent as is shown, for example, in

Agresti (1990, Section 12.3.4), which also contains references and additional
information about these tests. Further results are provided by Loh (1989)
and Loh and Yu (1993).
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Summary

1. We consider contingency tables which exhibit the results of N multi-
nomial trials with k + 1 outcomes and with the probabilities of these
outcomes being functions pi = pi (θ1, . . . , θs) of s ≤ k parameters.

2. Conditions on the functions pi are given for the likelihood equations
to have a consistent root

(
θ̂1, . . . , θs

)
and the asymptotic covariance

matrix of the vector
(√

N
(
θ̂1 − θ1

)
, . . . ,

√
N
(
θ̂s − θs

))
is evalu-

ated.

3. The theory is applied to an a × b two-way layout both in the unre-
stricted case and under the hypothesis H of independence, and the
likelihood ratio test of H is obtained.

7.9 Problems

Section 1

1.1 Show that

(i) the likelihood (7.1.3) is maximized by (7.1.4);

(ii) the likelihood (7.1.5) is maximized by (7.1.6), provided not all
the xi are = 1.

1.2 Calculate the value of λ for which the probability (7.1.7) is equal to
1 − ε for ε = .05, .1, .2 and n = 1, 2, 3.

1.3 Prove (7.1.8).

1.4 Show that the MLEs (7.1.4) and (7.1.6) are consistent estimators of
λ.

1.5 (i) Show that (7.1.9) defines a probability density.

(ii) Give an example of a function c(θ) satisfying the conditions stated
following (7.1.9).

1.6 Prove (7.1.12).

1.7 In the context of Example 7.1.2, Ferguson (1982) shows that (7.1.13)
holds for

c(θ) = e(1 − θ)e−1/(1−θ)
4
.(7.9.1)

Provide a graph of c(θ) and the resulting fθ(x) for θ = .7, .8, .9, .95.
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1.8 Let X take on the values 1 and 0 with probabilities p and q = 1 − p,
respectively, and suppose that the parameter space Ω is the open
interval 0 < p < 1. Then the likelihood function L(p) has no local
maxima for either x = 0 or x = 1 and in neither case does the MLE
exist.

1.9 Let X1, . . . , Xn be i.i.d. copies of the random variable X of the pre-
ceding problem, so that the likelihood of p is

p
∑
xiqn−

∑
xi .

(i) Show that the conclusions of the preceding problem continue to
hold if either x1 = · · · = xn = 0 or x1 = · · · = xn = 1.

(ii) If 0 <
∑

xi < n, the likelihood equation has the unique root

p̂ =
∑

xi/n, and this corresponds to a local maximum.

(iii) If 0 <
∑

xi < n, the estimator p̂ of (ii) is the MLE.

[Hint for (iii): Show that ln(p) → ∞ as p → 0 or 1.]

1.10 Sketch a function h(θ), −∞ < θ < ∞, which

(i) has two local maxima but no global maximum;

(ii) has two local maxima, one of which is also the globabl maximum.

1.11 Let X1, . . . , Xn be i.i.d. N(ξ, 1) with ξ > 0. Then

(i) the MLE is X when X > 0 and does not exist when X ≤ 0;

(ii) the MLE exists with probability tending to 1 as n → ∞;

(iii) the estimator

ξ̂n = X when X > 0; ξ̂n = 1 when X ≤ 0

is consistent.

1.12 Let X1, . . . , Xn be i.i.d. according to a Weibull distribution with
density

a (θx)a−1 e−(θx)
a

, a, θ, x > 0.(7.9.2)

Show that

(i) the likelihood equation has a unique solution θ̂;

(ii) the solution θ̂ corresponds to a local maximum of ln(θ);

(iii) θ̂ is the MLE.
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1.13 Let X1, . . . , Xn be i.i.d. according to the Cauchy density

a

π

1
x2 + a2

, −∞ < x < ∞, 0 < a.

For the solution â of the likelihood equation, show the results of (i)–
(iii) of the preceding problem with a in place of θ.

1.14 Show that the log likelihood (7.1.19) tends to −∞ as σ → 0 and as
σ → ∞
(i) for any fixed ξ;

(ii) for any fixed value of a = ξ/σ.

1.15 Verify the likelihood equation (7.1.24).

1.16 Under the assumptions of Example 7.1.3, use the CLT to show that
the MLEs ξ̂ = X in (i) and σ̂2 given by (7.1.22) satisfy (7.1.27).

1.17 The definition of η̂ given by (7.1.37) as the MLE for non-monotone g
acquires additional justification from the following property. Let ωη
be the set of θ-values for which g(θ) = η and let

M(η) = sup
θ∈ωη

L(θ).

Then if θ̂ maximizes L(θ), η̂ maximizes M(η) (Zehna (1966), Berk
(1967)).

[Hint: Use the facts that

L
(
θ̂
)

= sup
Ω

L(θ), M(η̂) = sup
ωη

L(θ), and L
(
θ̂
)

= M(η̂).]

Section 2

2.1 If X has the binomial distribution b(p, n),

(i) determine I(p) from (7.1.28);

(ii) show that the MLE p̂ =
∑

Xi/n derived in Problem 1.9 satisfies
(7.1.27).

2.2 In a sequence of binomial trials, let Xi be the number of trials between

the (i − 1)st and ith success. Then Y =
n∑
i=1

Xi has the negative

binomial distribution Nb(p, n) given in Table 1.6.2.

(i) Show that the MLE of p is p̂ = n/(Y + n), i.e., the proportion of
successes when sampling stops.
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(ii) Determine I(p) from (7.1.28).

(iii) Verify (7.1.27).

[Hint for (iii): Use the limit result obtained in Problem 4.12 of
Chapter 2 and Theorem 2.5.2.]

2.3 For a location family with density f(x−θ), where f(x) > 0 and f ′(x)
exists for all x, show that

(i) I(θ) is independent of θ;

(ii) I(θ) is given by

I ≡
∫

[f ′(x)]2

f(x)
dx.(7.9.3)

2.4 Evaluate (7.9.3) for the cases that f is

(i) normal N(0, 1),

(ii) the logistic distribution L(0, 1);

(iii) the Cauchy distribution C(0, 1).

2.5 Let X have the double exponential distribution with density
1
2
e−|x−θ|.

(i) Determine I(θ) = I from (7.1.28).

(ii) Use the fact that
∑

|xi − θ| is minimized when θ = θ̂n is the

median of the X’s to show that θ̂n is the MLE.

(iii) Check that θ̂n satisfies (7.1.27) despite the fact that f ′
θ(x) does

not exist when x = θ.

[Hint for (iii): Problem 3.4 of Chapter 2.]

2.6 For the scale family with density θ−1f(x/θ), θ > 0, where f(x) > 0
and f ′(x) exists for all x, show that

I(θ) =
1
θ2

∫ [
xf ′(x)
f(x)

+ 1
]2

f(x)dx.(7.9.4)

2.7 Use (7.9.4) to evaluate I(θ) for the three densities of Problem 2.4.

2.8 Use the alternative expression (7.2.10) to determine I(θ) and compare
it with the value obtained from (7.1.28) for the following cases:

(i) Example 7.1.1;

(ii) Problem 2.1(i);

(iii) Problem 2.2(ii).
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2.9 Solve the preceding problem for the following cases:

(i) Problem 2.4 (i)–(iii);

(ii) Problem 2.5.

2.10 In Example 7.2.2, show that both (7.2.9) and (7.2.10) fail.

2.11 Show that (7.2.14) holds quite generally if I(θ) is defined by (7.2.10)
instead of (7.1.28).

2.12 If X has the binomial distribution b(p, n), determine the information
X contains about I(p). (See Problem 2.1.)

2.13 Check whether (C6) holds for the following distributions:

(i) the uniform distribution U

(
θ − 1

2
, θ +

1
2

)
;

(ii) the triangular distribution with density

fθ(x) = 1 − |x − θ| , −θ < x < θ;

(iii) the asymmetric triangular distribution with density

fθ(x) =
{

2(θ + 1 − x)/3 if θ < x < θ + 1
x − 2 − θ if θ − 2 < x < θ.

2.14 For each of the distributions of the preceding problem

(i) calculate I(θ) from (7.1.28);

(ii) obtain the limit distribution of a suitably normalized MLE;

(iii) compare the results of (i) and (ii) along the lines of Example
7.2.2.

Section 3

3.1 In Example 7.3.2:

(i) show that ∂kfσ(x)/∂σk is of the form stated there;

(ii) check condition (C7).

3.2 In Examples 7.3.1 and 7.3.3, check that the conditions of Theorem
7.3.1 and Corollary 7.3.1 are satisfied.

3.3 If θ̂n is a
√

n-consistent estimator of θ:

(i) determine constants an such that θ̂n + an is consistent but no
longer

√
n-consistent;

(ii) determine constants bn such that the conclusion of (i) holds for
estimators (1 + bn) θ̂n when θ �= 0.

The following problem shows that Theorem 7.3.3 no longer holds if
θ̃n is only required to be consistent rather than

√
n-consistent.
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3.4 Let X1, . . . , Xn be i.i.d. N(θ, 1). Use Problem 3.3(ii) with θ̂n = Xn

to construct a sequence of estimators of the form (7.3.21) with θ̃n
consistent (but not

√
n-consistent) for which (7.3.24) does not hold.

3.5 Suppose that the assumptions of Theorem 7.3.3 hold and that I(θ)
is a continuous function of θ. Then the estimator

δn = θ̃n +
l′n

(
θ̃n

)
nI
(
θ̃n

)(7.9.5)

satisfies (7.3.24).

[Hint: Use (7.3.8) and Theorem 2.1.1.]

3.6 Prove (7.3.38).

3.7 Prove (7.3.43).

[Hint: To simplify (7.1.28), use the fact that

h − g = [θg + (1 − θ)h − g] /(1 − θ)

and

g − h = [θg + (1 − θ)h − h] /θ.

3.8 If G = N(−ξ, 1) and H = N(ξ, 1), show that (7.3.43) tends to 1/θ(1−
θ) as ξ → ∞.

3.9 (i) Show that the estimator (7.3.44) is
√

n-consistent, provided the
X’s have finite variance.

(ii) Show that (7.3.47) is
√

n-consistent.

(iii) Determine a
√

n-consistent estimator of θ when η = ξ but EG
(
X2i
)
�=

EH
(
X2i
)

along the lines of (7.3.44) rather than (7.3.47).

3.10 (i) Verify the likelihood equation (7.3.50).

(ii) Prove the statement concerning the roots of the likelihood equa-
tion (7.3.50) made following (7.3.50).

(iii) Verify (7.3.53).

3.11 In Example 7.3.6, check that the conditions of Theorem 7.3.1 are
satisfied.

3.12 In Example 7.3.6, discuss the number and nature (i.e., maximum,
minimum, or inflection point) of the roots of the likelihood equation
when n = 2.
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3.13 If the assumptions of Theorem 7.3.3 hold and if I(θ) is a continuous
function of θ, show that the estimator

δn = θ̃n +
l′n(θ̃n)
nI(θ̃n)

satisfies (7.3.24).

[Hint: Use (7.3.8).]

Section 4

4.1 In Example 7.4.1, prove that
√

n (δ′n − θ) L→ N (0, v′(θ)) when θ �= 0.

4.2 If δn satisfies (7.4.1):

(i) construct an estimator δ′n which satisfies (7.4.3) for any given θ0 ;

(ii) for any given θ1, . . . , θk construct an estimator δ′n that satisfies
(7.4.1) with v(θ) replaced by a function v′(θ) for which

v′(θ)
{

< v(θ) for θ = θ1, . . . , θk
= v(θ) for all other θ.

4.3 Let δ1n and δ2n be independent and such that
√

n (δin − θ) L→
N
(
0, σ2i

)
, i = 1, 2, and let δ3n = αδ1n + (1 − α) δ2n. Then the

value of α minimizing the asymptotic variance of
√

n (δ3n − θ) is α =
σ22/
(
σ21 + σ22

)
and for this value the asymptotic variance of δ3n is

1/
(

1
σ21

+
1
σ22

)
.

4.4 In Example 7.4.5,

(i) verify the formula for P (θ = a|x1, . . . , xn);

(ii) show that when θ = (a + b)/2, the Bayes estimator δλ converges
to a or b with probability 1/2 each.

[Hint for (ii): Problem 3.11 of Chapter 2.]

4.5 In Example 7.4.5, obtain the Bayes estimator if the prior assigns
positive probabilities p1, . . . , pk

(∑
pi = 1

)
to the points a1 < · · · <

ak.

4.6 In Example 7.4.5, suppose that the X’s are i.i.d. according to the ex-

ponential distribution with density
1
θ
e−x/θ, x, θ > 0. With λ defined

as in the example, show that there exists a value θ0 (depending on a
and b) such that (7.4.18) holds with (a + b)/2 replaced by θ0.

4.7 Solve the preceding problem for the case that the X’s are i.i.d. and
Xi = 1 or 0 with probabilities θ and 1 − θ, respectively.



558 7. Efficient Estimators and Tests

4.8 In Example 7.4.6,

(i) verify the conditional density (7.4.26);

(ii) show that the conditional density formally obtained from the
improper Jeffreys prior is the proper distribution N (x, 1/n).

4.9 In Example 7.4.6, show that for any fixed (x1, . . . , xn) the Bayes
estimator corresponding to the prior U(−A,A) tends to x, the Bayes
estimator corresponding to the Jeffreys prior.

4.10 Solve the preceding two problems when the prior for θ is N
(
0, A2

)
instead of U (−A,A).

4.11 Solve Problems 4.8 and 4.9 for the case that X1, . . . , Xn are i.i.d.
N
(
0, σ2

)
and σ has the prior distribution U(a,A), and that a → 0

and A → ∞.

4.12 (i) Let X be a random variable with density f(x − θ). If θ has the
improper uniform prior on (−∞,∞), the posterior distribution of θ
given x is a proper distribution with density f(x − θ).

(ii) If X has density
1
θ
f
(x

θ

)
, θ > 0, and θ has the improper prior

with density a/θ, 0 < θ < ∞, determine the posterior density of θ
given x and show that it is a proper density.

4.13 Verify formula (7.4.33).

4.14 Consider a sequence of binomial trials with success probability p
which is continued until n successes have been obtained.

(i) Find the Jeffreys prior for p and determine whether it is a proper
or improper distribution.

(ii) Obtain the posterior distribution of p given Y = y, where Y + n
is the number of trials required to achieve n successes.

(iii) Determine the Bayes estimator of p.

4.15 In the following situations, show that the difference between the MLE
and the Jeffreys Bayes estimator is OP (1/n):

(i) Example 7.4.8 (i);

(ii) Example 7.4.8 (ii);

(iii) Example 7.4.4 (concluded);

(iv) Problem 4.12;

(v) Problem 4.10.
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Section 5

5.1 (i) Show that (7.5.5) is zero when f is symmetric about 0.

(ii) Verify (7.5.7).

5.2 In the (x, y)-plane, show that the set∣∣x − x0
∣∣ < a,

∣∣y − y0
∣∣ < b

is an open set, but the set∣∣x − x0
∣∣ < a,

∣∣y − y0
∣∣ ≤ b

is not.

5.3 Prove Theorem 7.5.1.

5.4 State and prove the multivariate generalizations of Theorem 7.2.2.

5.5 Prove formula (7.5.13).

5.6 Prove (7.5.19) directly from the bivariate CLT.

5.7 Prove that the joint limit distribution of the variables (7.5.27) is
multivariate normal with means 0 and covariance matrix given by
(7.5.28) and (7.5.29).

[Hint: Use the facts that (a) the limit distribution of
(
σ̂2, τ̂2, γ̂

)
is unchanged when

(
X,Y

)
is replaced by (ξ, η) and (b) the vari-

ables (Xi − ξ, Yi − η) are uncorrelated with the variables (Xi − ξ)2,
(Yi − η)2, (Xi − ξ)(Yi − η).]

5.8 Prove the result corresponding to Problem 5.7 for the variables σ̂2,
τ̂2, and ρ̂, and, in particular, verify (7.5.31).

5.9 Show that the limit distribution of the variables (7.5.38) is as claimed
in the text.

5.10 Let X1, . . . , Xn be i.i.d. according to the gamma density

1
Γ(a)ba

xa−1e−x/b, a > 1, b > 0,(7.9.6)

so that

E (Xi) = ab, Var (Xi) = ab2.(7.9.7)

(i) Show that the likelihood equations for a and b are

ab = X; log a − Γ′(a) = log X − 1
n

∑
log Xi.(7.9.8)
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(ii) As an alternative to consistent solutions of (7.9.8), use Theorem
7.5.3 to determine asymptotically efficient estimators with starting
point determined by the method of moments, i.e., by solving the
equations

ab = X; ab2 =
1
n

∑(
Xi − X

)2
.(7.9.9)

5.11 In generalization of Problem 3.13, show that the result of Theorem
7.5.3 remains valid when the coefficients l′′ij

(
θ̃n

)
in (7.5.43) are re-

placed by −Iij

(
θ̃n

)
, provided Iij(θ) is continuous for all i, j.

5.12 (i) Verify the moments (7.5.49).

(ii) Show that the variables (7.5.53) have a joint normal limit distrib-
tion, and determine its covariance matrix.

(iii) For k = 2, give explicit expressions for the estimators (δ1n, δ2n)
obtained from (7.5.43).

5.13 Show that q̃ defined by (7.5.51) can take on values both less than 0
and greater than 1, but that the probability of this happening tends
to 0 as n → ∞.

5.14 (i) Verify the moments (7.5.54).

(ii) Solve (7.5.55) to obtain explicit estimators q̃, η̃, and τ̃ , and show
that they are

√
n-consistent.

5.15 Let X1, . . . , Xn be i.i.d. with distribution Pθ depending on a real-
valued parameter θ, and suppose that

Eθ(X) = g(θ) and Varθ(X) = τ2(θ) < ∞,

where g is continuously differentiable function with derivative g′(θ) >
0 for all θ. Then the estimator θ̃ obtained by the method of moments,
i.e., by solving the equation

g(θ) = X,

is
√

n-consistent.

[Hint: Since θ̃ = g−1
(
X
)
, the result follows from Theorem 2.5.2.]

5.16 A vector X(n) =
(
X
(n)
1 , . . . , X

(n)
k

)
is bounded in probability if for any

ε > 0 there exists a k-dimensional cube

C = {(x1, . . . , xk) : |xi| < K for all i}
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and a value n0 such that

P
(
X(n)εC

)
> 1 − ε for all n > n0.

A sequence of estimators
(
θ̂1n, . . . , θ̂kn

)
of (θ1, . . . , θk) is

√
n-consistent

if the vector
√

n
(
θ̂1n − θ1

)
, . . . ,

√
n
(
θ̂kn − θk

)
is bounded in probability.

Show that X(n) is bounded in probability if and only if X
(n)
i is

bounded in probability for each i, and hence that
(
θ̂1n, . . . , θ̂kn

)
is

√
n-consistent if and only if θ̂in is

√
n-consistent for each i.

5.17 Let X1, . . . , Xn be i.i.d. with distribution Pθ1,θ2 depending on two
real parameters θ1 and θ2. Suppose that

Eθ1,θ2(X) = g1 (θ1, θ2) ; Eθ1,θ2
(
X2
)

= g2 (θ1, θ2) ,

where the functions gi have continuous partial derivatives ∂gi/∂θj ,
that the Jacobian ‖ ∂gi/∂θj ‖ is �= 0, and that the estimating equa-
tions

g1 (θ1, θ2) = X̄, g2 (θ1, θ2) =
n∑
i=1

X2i /n

have a unique solution
(
θ̃1n, θ̃2n

)
.

(i) Give a heuristic argument indicating why
(
θ̃1n, θ̃2n

)
will typically

be
√

n-consistent.

(ii) State conditions under which the conclusion of (i) will hold.

(iii) Generalize (i) and (ii) to the case of k parameters.

Section 6

6.1 In Example 7.6.1, show that the conditional distribution of p1, . . . , pk+1
given y1, . . . , yk+1 is the Dirichlet distribution with parameters a′

i =
ai + yi for i = 1, . . . , k + 1.

6.2 A 2 × 2 matrix A =
(

a b
b c

)
is positive definite if and only if (a) a

and c are positive and (b) ac > b2.

[Hint: Use the fact that A is positive definite if and only if ax2 +
2bx + c > 0 for all x.]
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6.3 Under the assumptions of Theorem 7.5.2, show that (7.6.29) is equiv-
alent to (7.6.28).

6.4 (i) Under the assumptions of Theorem 7.5.2, show that equality holds
in (7.6.24) (and hence that the efficiency with which θj can be es-
timated is the same whether or not (θ1, . . . , θj−1, θj+1, . . . , θk) is
known), provided

Iij(θ) = 0 for all i �= j.(7.9.10)

(ii) Equivalent to (7.9.10) is that
√

n
(
θ̂jn − θj

)
is asymptotically

independent of
{√

n
(
θ̂in − θi

)
, i �= j

}
.

[Hint: (i) If (7.9.10) holds, then also Jij(θ) = 0 for all i �= j by
Problem 3.14 of Chapter 5. The result then follows from the fact that
the (j, j)th element of IJ is 1.]

6.5 If the information matrix is of the form

I =

( r s

I1 0
0 I2

)
r

s
(7.9.11)

and if the assumptions of Theorem (7.5.2) hold, then

(i) the two sets of variables
{√

n
(
θ̂i − θi

)
, i = 1, . . . , r

}
and

{√
n
(
θ̂j − θj

)
, j = r + 1, . . . , r + s

}
are mutually independent;

(ii) The parameter vector (θ1, . . . , θr) can be estimated with the same
efficiency whether or not (θr+1, . . . , θr+s) is known.

6.6 Illustrate the results of the preceding problem on the multivariate nor-
mal distribution of Example 7.5.5, with (θ1, . . . , θr) corresponding to
the vector of means and (θr+1, . . . , θr+s) to the matrix of covariance.

6.7 Under the assumptions of Theorem 7.6.3, verify that (7.3.9) holds
with ln replaced by l.

6.8 State and proved an analog to Theorem 7.3.3 for the case of several
samples treated in Theorem 7.6.3.

6.9 Extend to the case of several samples the results of

(i) Theorem 7.5.2;

(ii) Theorem 7.5.3;

(iii) Theorem 7.6.2.
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6.10 In Example 7.6.4(ii):

(i) check that (7.6.39) is the unique solution of the likelihood equa-
tion;

(ii) show that
√

n
(
ξ̂ − ξ

)
and

√
n
(ˆ̂
ξ − ξ

)
have the same limit dis-

tribution.

6.11 (i) Verify the likelihood equations (7.6.45).

(ii) Show that the equations (7.6.45) have a unique solution which
agrees with the least squares estimators.

6.12 If A and B are two positive semi-definite k × k matrices with the
same diagonal elements, then A = B.

[Hint: The proof is analogous to that of Theorem 6.4.7.]

6.13 (i) If X has the Poisson distribution P (aλ) (a = unknown), deter-
mine the amount of information X contains about λ.

(ii) Let Xi (i = 1, . . . , n) be independent P (aiλ). Determine the MLE
λ̂ of λ and show that kn(λ̂n − λ) L→ N(0, 1) for suitable kn.

(iii) Show that kn =
√

Tn(λ), where Tn(λ) is the total amount of
information, and determine a sequence of a’s for which Tn(λ) is of
order n1/4.

6.14 In contrast to the preceding problem show that

(i) if X is N(0, a2σ2), the amount of information in X about σ2 is
independent of a;

(ii) if Xi (i = 1, . . . , n) are independent N(0, a2iσ
2), the total amount

of information Tn(σ2) is of order
√

n.

[Hint: Note that X/a is N(0, σ2).]

6.15 (i) Let Y1, Y2, . . . be a sequence of independent positive random vari-
ables with E (Yi) = η and Var (Yi) = τ2i . Show that if

E
[
Y − η

)2
=

1
n2

n∑
i=1

τ2i → 0,

then Y /η
P→ 1.

(ii) Use (i) to obtain sufficient conditions for (7.6.55).

6.16 Give sufficient conditions

(i) for (7.6.54) to hold;

(ii) for the second term in the denominator of (7.6.53) to tend to zero
in probability.

[Hint for (i): Use Theorem 2.7.1.]
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6.17 In Example 7.6.5, determine for all possible values of the v’s whether
the efficiency with which β can be estimated depends on whether or
not α is known.

6.18 Let X1, . . . , Xn be i.i.d. according to the exponential distribution
E(ξ, a) with density

fξ,a(x) =
1
a
e−(x−ξ)/a for x > ξ.(7.9.12)

(i) When ξ is known, show that the likelihood equation for estimating
a has a unique solution which is efficient by Theorem 7.3.1.

(ii) When ξ is unknown, show that the likelihood equations have a
unique solution

(
ξ̂, â
)

and that â is efficient for estimating a despite
the fact that the conditions of Theorem 7.5.2 are not satisfied.

[Hint for (ii): Use part (i).]

6.19 (i) In Example 7.6.7, show that σ̂2 is consistent for estimating σ2 if
n remains fixed and r → ∞.

(ii) What happens to σ̂2 if r =
√

n and n → ∞? Generalize.

Section 7

7.1 (i) Verify the maximum likelihood estimator θ̂n given by (7.7.17).

(ii) If θ > 0, show that
√

n
(
θ̂n − θ

)
L→ N(0, 1).

(iii) If θ = 0, the probability is 1/2 that θ̂n = 0 and 1/2 that
√

n
(
θ̂n − θ

)
L→ N(0, 1).

7.2 Determine the rejection region of the Wald, Rao, and likelihood ratio
tests of the following hypotheses against two-sided alternatives:

(i) H : λ = λ0 when the X’s are i.i.d. with Poisson distribution P (λ);

(ii) H : p = p0 when the X’s are independent with P (Xi = 1) = p,
P (Xi = 0) = 1 − p;

(iii) H : σ2 = σ20 when the X’s are i.i.d. N
(
0, σ2

)
.

7.3 For each part of the preceding problem, determine the one-sided Wald
and likelihood ratio tests.

7.4 Verify the asymptotic equivalence of the statistics (7.7.16).

7.5 Let X1, . . . , Xn be i.i.d. according to the Pareto distribution with
density

fθ(x) = θcθ/xθ+1, 0 < c < x, 0 < θ.
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(i) Determine the unique solution θ̂n of the likelihood equation and
find the limit distribution of

√
n
(
θ̂n − θ

)
.

(ii) Determine the Wald, Rao, and likelihood ratio tests of H : θ = θ0
against θ �= θ0.

[Hint for (i): Let η = 1/θ and solve the problem first for η.]

7.6 Suppose that
√

n (Tn − θ0) and
√

n (T ′
n − θ0) each tends to N(0, 1)

as n → ∞. Then the tests with rejection regions
√

n (Tn − θ0) ≥ uα and
√

n (T ′
n − θ0) ≥ uα,

respectively, are asymptotically equivalent if
√

n (T ′
n − Tn)

P→ 0

but not necessarily if T ′
n − Tn

P→ 0.

[Hint for Second statement: Let T ′
n = Tn + n−1/4.]

7.7 Show that both the test (7.7.8) and that based on (7.7.11) retain
their asymptotic level when θ̂n is replaced by the one-step estimator
δ̂n given by (7.3.21).

7.8 Determine the Rao score test for the hypothesis (7.7.44) and show
directly that the associated test statistic Rn has the same limit dis-
tribution as Wn.

7.9 In the model of Problem 7.2 (ii), suppose that p is restricted to the
interral p0 ≤ p0 < 1 where 0 < p0 < 1.

(i) Determine the MLE p̂n of p.

(ii) In analogy with Problem 7.1 determine the limit behavior of√
n (p̂n − p) both when p > p0 and when p = p0.

7.10 Prove (7.7.23).

7.11 Show that the left side of (7.7.28) tends in probability to 0 as θ → ∞
while n remains fixed.

7.12 Prove (7.7.35) under the assumptions of Theorem 7.5.1.

7.13 Prove Theorem 7.7.3.

7.14 For the normal one-sample problem of Example 7.7.4:

(i) determine the Rao score statistic Rn;

(ii) show that 2∆n is given by (7.7.43);

(iii) show directly that 2∆n−Wn
P→ 0 under H but not under a fixed

alternative
(
ξ, σ2

)
�=
(
ξ0, σ

2
0
)
.
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7.15 For the multinomial one-sample problem of Example 7.7.5:

(i) show that ∆n is given by (7.7.51);

(ii) check directly that (7.7.52) holds.

[Hint for (ii): If Zi =
(

Yi
n

− pi

)
/pi, then Wn = θ̂ =

k+1∑
i=1

piZ
2
i and

∆n =
∑

npi (Zi + 1) log (Zi + 1). To prove (ii), expand log (1 + Zi)

and use the facts that
∑

piZi = 0 and
√

nZi
L→ N (0, qi/pi). ]

7.16 Under the assumptions of Theorem 7.7.4, prove that 2∆n
L→ χ2r.

7.17 Prove that the conclusions of Theorems 7.7.2–7.7.4 hold for the mul-
tisample case under the assumptions of Theorem 7.6.3.

7.18 In Example 7.7.6, verify (7.7.62).

7.19 Let the square matrices A and B be partitioned as

A =
( r s

A11 A12
A21 A22

)
r

s
and B =

( r s

B11 B12
B21 B22

)
r

s
.

Then the product C = AB can be calculated as if the submatrices

were elements, i.e., C =
( r s

C11 C12
C21 C22

)
r

s
, where, for example, C12 =

A11B12 + A12B22.

7.20 Let A be partitioned as in the preceding problem and suppose that
A, A11, and A22 are nonsingular. Then if B = A−1, the submatrices
Aij and Bij satisfy

A11 =
(
B11 − B12B

−1
22 B21

)−1
, A12 = −B−1

11 B12A22,

A21 = −B−1
22 B21A11, A−1

22 =
(
B22 − B21B

−1
11 B12

)−1
.

[Hint: Show that BA is the identity matrix.]

7.21 Under the assumptions of Theorem 7.7.4, derive the inequality (7.7.71)
from the fact that (θ1, . . . , θr) can be estimated at least as efficiently
when (θr+1, . . . , θk) is known as when it is unknown.

7.22 Prove that (7.7.65) and (7.7.66) hold for the multisample case under
the assumptions of Theorem 7.6.3.
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7.23 For the two-sample Poisson problem, three tests were proposed in
Example 3.1.5 and Problem 1.21 of Chapter 3, given by (3.1.34),
(3.1.84), and (3.6.6), respectively. Obtain the likelihood ratio, Wald
and Rao, tests for this problem, and determine whether any of these
tests coincide.

7.24 Random effects model. Let Xij , j = 1, . . . ,m, i = 1, . . . , s be sm
observations satisfying

Xij = ξ + Ai + Uij ,

where the unobservable random variables Ai and Uij are indepen-
dently normally distributed with mean 0 and variances σ2A and σ2,
respectively. The probability density of the X’s is

1

(2π)sm/2 σs(m−1) (σ2 + mσA2)s
exp
[
− 1

2(σ2 + mσ2A)

]
×[

sm (x·· − ξ)2 + S2A

]
− 1

2σ2
S2,

where

S2A = m
s∑
i=1

(Xi· − X··)
2 and S2 =

s∑
i=1

m∑
j=1

(Xij − Xi·)
2
,

so that

S2A/
(
σ2 + mσ2A

)
and S2/σ2

are independent χ2s−1 and χ2s(m−1), respectively. The hypothesis H :
σ2A = 0 is to be tested against the alternatives σ2A > 0. Under these
assumptions show the following:

(i) The MLEs of σ2A and σ2 are σ̂2 = S2/s(m − 1) and

σ̂2A =




1
s
S2A − 1

s(m − 1)
S2 if S2A > S2/(m − 1)

0 otherwise.

(ii) Under H, the MLEs of σ2 and σ2A are

ˆ̂σ =
(
S2A + S2

)
/sm and ˆ̂σ

2
A = 0.

(iii) As s → ∞,

√
s

(
S2A/

(
σ2 + mσ2A

)
s

− 1

)
and

√
s(m − 1)

[
S2/σ2

s(m − 1)
− 1
]
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both tend in law to N(0, 2) and hence

P

[
S2A >

S2

m − 1

]
→ 1/2.

[Hint for (ii): Example 2.3.2.]

7.25 Use the preceding problem to determine the Wald and the likelihood
ratio test of H at level α < 1/2.

Section 8

8.1 Consider a three-way layout with probabilities for N multinomial tri-
als with possible outcomes Oijk having probabilities pijk(i = 1, . . . , a;
j = 1, . . . , b; k = 1, . . . , c) assumed to satisfy one of the following
model assumptions:

(a) unrestricted except for
∑
i

∑
j

∑
k

pijk = 1;

(b) outcome k independent of (i, j), i.e.,

pijk = pij+p++k,(7.9.13)

where + indicates summations over the corresponding subscript;

(c) complete independence, i.e.,

pijk = pi++p+j+p++k.(7.9.14)

For each of the three models find a suitable representation (7.8.2) and
the value of s.

[Hint: For models (a) and (b), this was already worked out (with a
different notation) in Examples 7.8.1 and 7.8.2.]

8.2 For each of the three models of the preceding section, show that
the likelihood equations have a unique solution and determine the
corresponding estimators

p̂ijk, ˆ̂pijk, and ˆ̂̂
pijk

of pijk in terms of the variables nijk, nij+, ni++, etc.

8.3 Obtain the limit distributions
√

N
(ˆ̂̂
pijk − pijk

)
,
√

N
(
ˆ̂pijk − pijk

)
, and

√
N (p̂ijk − pijk)

under each of the models (a), (b), and (c).
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8.4 Obtain and discuss the ARE of

(i) p̂ijk to ˆ̂pijk in models (b) and (c);

(ii) ˆ̂pijk to ˆ̂̂
pijk in model (c).

8.5 What can you say about the asymptotic behavior of

(i) ˆ̂pijk in model (a) when (7.9.13) does not hold;

(ii) ˆ̂̂
pijk in model (b) when (7.9.14) does not hold?

8.6 Let the likelihood be given by (7.8.7). Then if the Jacobian
∣∣∣∣
(

∂pi(θ)
∂θj

)∣∣∣∣
is �= 0, the information matrix I(θ) is positive definite.

8.7 Check the conditions of Theorem 7.8.1 in Example 7.8.3.

8.8 Verify equation (7.8.25).

8.9 Evaluate and discuss the efficiency (7.8.29) for an a×b table in which
pij = 1/ab.
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Appendix

This appendix briefly sketches some topics which a reader of large-sample
literature is likely to encounter but which, because of their more mathe-
matical nature, are not included in the main text.

Section A.1. The Lindeberg Condition for the central limit theo-
rem

In Theorem 2.7.2, we stated the Liapunov condition (2.7.14) as a simple
sufficient condition for the asymptotic normality of a sum of random vari-
ables which are independent but not necessarily identically distributed. The
following theorem, due to Lindeberg (1922) provides a weaker condition
which, under a mild additional assumption, is not only sufficient but also
necessary. At first sight, the Lindeberg condition looks rather forbidding,
but it turns out to be surprisingly easy to apply.

Theorem A.1.1. Let Xnj, j = 1, . . . , n; n = 1, 2, . . . , form a triangular
array of independent variables with

E(Xnj) = ξnj and Var(Xnj) = σ2nj ,(A.1.1)

and let

s2n = σ2n1 + · · · + σ2nn.(A.1.2)

If Gnj denotes the distribution of Ynj = Xnj − ξnj and

τ2nj(t) =
∫
|y|>tsn

y2dGnj(y),(A.1.3)
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then

X̄n − ξ̄n√
Var(X̄n)

L→ N(0, 1)(A.1.4)

provided

τ2n1(t) + · · · + τ2nn(t)
σ2n1 + · · · + σ2nn

→ 0 for each t > 0.(A.1.5)

For further discussion and a proof, see, for example, Feller (1971), Chung
(1974), Billingsley (1986), or Petrov (1995).

As a simple example, let us prove the following result, which was already
stated and proved in Chapter 2 as Corollary 2.7.1.

Corollary A.1.1. If there exists a constant A such that |Xnj | ≤ A for all
j and n, then a sufficient condition for (A.1.4) to hold is that

s2n → ∞ as n → ∞.(A.1.6)

Proof. We have |Ynj | ≤ 2A, and hence τ2nj(t) = 0 whenever tsn > 2A.
Given any t > 0, it follows from (A.1.6) that there exists n0 such that
tsn > A for all n > n0 and hence that the numerator of (A.1.5) is zero for
all n > n0. �

Under the assumptions of Corollary A.1.1, we have σ2nj ≤ A2 for all
j = 1, . . . , n and hence

max
j=1,...,n

σ2nj/s
2
n → 0 as n → ∞(A.1.7)

if (A.1.6) holds. Quite generally, (A.1.7) is a consequence of the Lindeberg
condition (A.1.5) (Problem 1.1). Condition (A.1.7) states that none of the
variances σ2n1, . . . , σ

2
nn can make a relatively large contribution to s2n. Some

such condition is needed to preclude possibilities such as X2 = · · · = Xn =
0. In that case, the left side of (A.1.4) reduces to (X1 − ξ1)/σ1, which can
have any distribution with mean 0 and variance 1. If (A.1.7) holds, the
Lindeberg condition (A.1.5) is not only sufficient but also necessary for the
validity of (A.1.4).

Let us next show that the Liapunov condition (2.7.14) implies (A.1.5).
To see this, note that∫

|y|>tsn
y2dGnj(y) ≤ 1

tsn

∫
|y|>tsn

|y|3dGnj(y) ≤ 1
tsn

E|Ynj |3.

Thus
1
s2n

n∑
j=1

∫
|y|>tsn

y2dGnj(y) ≤ 1
ts3n

∑
E|Ynj |3.
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Condition (2.7.14) states that the right side tends to 0, and hence implies
(A.1.5).

Section A.2. Hajek’s projection method

A central fact of first-order, large-sample theory is the asymptotic normal-
ity of various estimators and test statistics. For linear functions of indepen-
dent variables, this result is established by the central limit theorem (for
example, Theorem 1.1 of Section A.1), the applicability of which is greatly
extended by Slutsky’s theorem and the delta method. In more complicated
situations, the asymptotic normality of a statistic Tn can often be proved
by comparing Tn with a statistic T ∗

n known to be asymptotically normal
and showing that

E(Tn − T ∗
n)2 → 0.(A.2.1)

This method of proof was used in Chapter 6 for U - and V -statistics and
for smooth functionals h(F̂n) of the empirical cdf F̂n. Its principal difficulty
frequently lies in the determination of a suitable sequence of statistics T ∗

n .
In Section 6.3, T ∗

n was obtained as the linear part of the Taylor expansion
of h(F̂n) about h(F ). The following alternative approach is due to Hajek
(1961).

If asymptotic normality of Tn is to be shown by proving (A.2.1) for a
suitable T ∗

n , the chances of success clearly are best when T ∗
n is chosen among

the various candidates under consideration so as to minimize E(Tn−T ∗
n)2.

The following lemma provides a useful tool for this minimization.

Lemma A.2.1. For any statistics S, T , and T ∗ with finite variance, a
sufficient condition for

E(T − S)2 ≥ E(T − T ∗)2(A.2.2)

is that

E(T − T ∗)(T ∗ − S) = 0.(A.2.3)

Proof. Writing

(T − S)2 = [(T − T ∗) + (T ∗ − S)]2,

expanding the right side, and using (A.2.3), we have
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E(T − S)2 = E(T − T ∗)2 + E(T ∗ − S)2 ≥ E(T − T ∗)2.

�
Example A.2.1 Determining the minimizing sum

∑
ki(Xi). Suppose

that X1, . . . , Xn are independently distributed with distributions F1, . . . , Fn
and that Tn = T (X1, . . . , Xn) is a statistic satisfying E(Tn) = 0. As a class
of statistics for which we know conditions for asymptotic normality, let us
consider the class S of statistics

S =
n∑
i=1

ki(Xi) with E[ki(Xi)] = 0.(A.2.4)

Let us now determine the functions ki which minimize E(Tn − S)2 for a
given Tn. (The minimizing S = T ∗

n may be considered to be the projection
of Tn onto the linear space S.) We shall use Lemma A.2.1 to show that the
minimizing functions ki are the conditional expectations

ri(xi) = E[Tn | xi],(A.2.5)

so that the minimizing T ∗
n is

T ∗
n =

n∑
i=1

E(Tn | Xi).(A.2.6)

Before checking (A.2.3), note that by (A.2.5)

E[ri(Xi)] = E(Tn) = 0.(A.2.7)

That T ∗
n satisfies (A.2.3) for all S given by (A.2.4) will follow if we can

show that

E{(Tn − T ∗
n)[ri(Xi) − ki(Xi)] | Xi = xi} = 0(A.2.8)

and hence if we show that

E[(Tn − T ∗
n) | Xi = xi] = 0 for all i.(A.2.9)

The left side of (A.2.9) equals

E


Tn − ri(Xi) −

∑
j 	=i

rj(Xj) | Xi = xi


 .(A.2.10)

Since Xj is independent of Xi for all j �= i, (A.2.10) is equal to

E[Tn − ri(Xi) | xi] = 0,
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and this completes the proof of (A.2.3). �
Example A.2.2 One-sample V -statistics. As an application of (A.2.6)
consider the one-sample V -statistic of Example 6.3.4 with

θ = h(F ) = Eϕ(X1, . . . , Xa)(A.2.11)

and

h(F̂n) = V =
1
na

∑
· · ·
∑

ϕ(Xi1 , . . . , Xia),(A.2.12)

so that

Tn = V − θ = h(F̂n) − h(F ).(A.2.13)

The linear term of the Taylor expansion of h(F̂n) − h(F ) was found in
Section 6.3 to be

a

n

n∑
i=1

[ϕ1(Xi) − h(F )](A.2.14)

with

ϕ1(x) = Eϕ(x,X2, . . . , Xa).(A.2.15)

In the present approach, we have by (A.2.5) and (A.2.14),

ri(xi) =
1
na

E
∑

· · ·
∑

[ϕ(xi, Xj1 , . . . , Xja−1) + . . .

+ϕ(Xj1 , . . . , Xja−1 , xi) − aθ],

where the summation extends over all (n−1)a−1 (a−1)-tuples (j1, . . . , ja−1)
in which all the j’s are �= i. By symmetry of ϕ, we thus have

ri(xi) =
a

na
E

∑
· · ·
∑

j1 	=i,...,ja−1 	=i
[ϕ(xi, Xj1 , . . . , Xja−1) − θ]

=
a

n

(
n − 1

n

)a−1
Eϕ(xi, Xj1 , . . . , Xja−1)

and hence by (A.2.16) and (A.2.6)

T ∗
n =

a

n

(
n − 1

n

)a−1 n∑
i=1

[ϕ1(Xi) − θ].

This differs from (A.2.15) only by the factor [(n − 1)/n]a−1 which tends
to 1 as n → ∞. On multiplication by

√
n, the present approach therefore
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leads to the same suggested limit distribution as the method of Section 6.3
(Example 3.4).

Section A.3. Almost sure convergence

In Section 2.1, we defined convergence in probability of a sequence
X1, X2, . . . of random variables to a constant c by the condition that for
any ε > 0,

P (|xn − c| < ε) → 1 as n → ∞.(A.3.1)

An alternative convergence concept is almost sure convergence or conver-
gence with probability 1, also referred to as strong convergence. The se-
quence X1, X2, . . . is said to converge almost surely to c if

P (X1, X2, · · · → c) = 1.(A.3.2)

This condition does not assert that every realization x1, x2, . . . of the se-
quence converges to c but only that this event has probability 1.

Condition (A.3.2) is a probability statement concerning the (infinite di-
mensional) space of sequences (x1, x2, . . . ). Probability distributions over
this space cause no problem if the X’s are defined as functions over a
common probability space. When instead the X’s are defined in terms of
the distributions of (X1, . . . , Xn) for each n = 1, 2, . . . (as is the case, for
example, when X1, X2, . . . are independent, each with a given distribu-
tion), the induced probability distribution in the space of sequences can
be obtained by Kolmogorov’s extension theorem. (See, for example, Feller
(Vol. 2) (1966, Section IV.6) or Chung (1974, Theorem 3.3.4).)

It can be shown that equivalent to (A.3.2) is the condition that for every
ε > 0,

P (|Xk − c| < ε for all k = n, n + 1, . . . ) → 1 as n → ∞.(A.3.3)

Comparing (A.3.1) with (A.3.3) we see a crucial difference. Convergence
in probability is a statement about a single Xn; it says that when n is
sufficiently large, Xn is likely to be close to c. In contrast, almost sure
convergence is a simultaneous statement about a whole remainder sequence:
When n is sufficiently large, it is likely that all elements of the sequence
Xn, Xn+1, . . . are close to c.

Since (A.3.3) implies (A.3.1), it follows that almost sure convergence is a
stronger property than convergence in probability. The following example
exhibits a sequence which converges in probability but not almost surely.

Example A.3.1. Let X1, X2, . . . be independent with

P (Xn = 1) =
1
n

, P (Xn = 0) = 1 − 1
n

.
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Then Xn → 0 in probability since P (XN = 0) → 1. We shall now show
that the sequence does not tend to 0 with probability 1. Note that in the
present situation, the event

E : x1, x2, · · · → 0(A.3.4)

occurs if and only if there exists an integer a such that xa+1 = xa+2 =
· · · = 0. The event E is therefore the union of the events

E0 : x1 = x2 = · · · = 0

and
Ea : xa = 1, xa+1 = xa+2 = 0, a = 1, 2, . . . .

Since these events are mutually exclusive, it follows that

P (E) =
∞∑
a=0

P (Ea).(A.3.5)

Now

P (Ea) ≤ P (Xa+1 = Xa+2 = · · · = 0)(A.3.6)

and

P (Xa+1 = Xa+2 = · · · = 0)

=
(

1 − 1
a + 1

)(
1 − 1

a + 2

)
. . .

= lim
b→∞

[(
1 − 1

a + 1

)(
1 − 1

a + 2

)
. . .

(
1 − 1

b

)]

= lim
b→∞

(
a

a + 1
· a + 1
a + 2

. . .
b − 1

b

)
= lim
b→∞

a

b
= 0.

(A.3.7)

It follows that

P (Ea) = 0(A.3.8)

for every a. Thus, by (A.3.6), the probability of the event (A.3.5), far from
being equal to 1, is equal to 0. �

This example illustrates the difference between the two convergence con-
cepts. The sequence x1, x2, . . . consisting of 0’s and 1’s converges to 0 if
and only if it contains only a finite number of 1’s, and this event has prob-
ability 0, i.e., nearly all sequences contain an infinite number of 1’s. No
matter how sparse they are, they prevent convergence of the sequence to
0.

On the other hand, Xn
P→ 0 in the present case if and only if P (Xn =

1) → 0. This condition does not require an absence of 1’s from some point
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on, but only that, on the average, they appear less and less frequently
as we move further out in the sequence. As we have seen for nearly all
sequences, an occasional 1 will appear no matter how far we go out, and
yet Xn converges in probability to 0.

The probabilistic and statistical literature abounds with results using
one or the other of these concepts. Consistency of an estimator Tn of θ,
for example, is treated both in the strong and weak senses (convergence of
Tn to θ almost surely and in probability). Which of the two is preferred
is somewhat a matter of taste, with probabilists tending to opt for almost
sure convergence and statisticians for convergence in probability. Almost
sure convergence is the stronger property and therefore will typically also
require stronger assumptions. In statistics, the primary interest frequently
is on probabilities of the form

P (Tn − θ |< c),

where Tn is an estimator of the unknown θ. Convergence in probability has
the advantage of making a direct statement about such probabilities.

Section A.4. Large deviations

The principal probabilistic tool used throughout this book is the central
limit theorem together with its various extensions. For the case of n i.i.d.
random variables with mean ξ and variance σ2, this theorem states that

√
n(X̄ − ξ) → N(0, σ2),(A.4.1)

so that

P

[
(X̄ − ξ) ≥ a√

n

]
→ 1 − Φ(a/σ).(A.4.2)

An implication of this result is that typical values of the deviation X̄ − ξ
of X̄ from its mean ξ are of the order 1/

√
n while values of X̄ − ξ that

exceed a fixed amount a > 0 become very rare as n → ∞. The theory of
large deviations is concerned with probabilities of rare events such as

Pn = P (X̄ − ξ ≥ a), a > 0.(A.4.3)

Since (A.4.3) is equal to

P (
√

n(X̄ − ξ) ≥ a
√

n),

it is seen that Pn → 0 as n → ∞. Large deviation theory studies the rate
of this convergence.

For the case of i.i.d. variables, the solution is provided by the following
theorem due to Chernoff (1952).
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Theorem A.4.1. Let X1, X2, . . . be i.i.d. with mean ξ, let a > 0, and let

ρ = inf
t

[eatM(t)],(A.4.4)

where

M(t) = E[et(X−ξ)](A.4.5)

is the moment generating function of X − ξ. Then

lim
1
n

log P (X̄ − ξ ≥ a) = log ρ.(A.4.6)

For a proof, see, for example, Bahadur (1971) or Billingsley (1986).
The limit (A.4.6) suggests approximating log Pn by n log ρ and hence the

approximation

Pn ≈ ρn.(A.4.7)

Note, however, that (A.4.7) is not an equivalence relation. Suppose, for
example, that X − ξ is symmetric about 0 so that

P (|X̄ − ξ| ≥ a) = 2P (X̄ − ξ ≥ a).

Then it is seen that (Problem 4.1)

lim
1
n

log(P |X̄ − ξ| ≥ a) = log ρ(A.4.8)

so that we obtain the same approximation for

P (|X̄n − ξ| ≥ a) and P (X̄n − ξ ≥ a).

The approximation (A.4.7) gives only the exponential rate at which
Pn → 0.

Example A.4.1. Let X1, . . . , Xn be i.i.d. N(ξ, 1). Then (Problem A.4.2)

M(t) = et
2/2 and ρ = e−a

2/2.(A.4.9)

Various extensions of Chernoff’s theorem and statistical applications
are discussed for example in Bahadur (1971) and Rüschendorf (1988).
Book-length treatments of large deviation theory are, for example, Stroock
(1984), Deuschel and Stroock (1989), Bucklew (1990), and Dembo and
Zeitonni (1993).

Given the distribution F of the X’s, the probability

Pn(a) = Pξ(X̄ − ξ ≥ a), 0 < a,
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is a function of n and a. Large-sample approximations are obtained by
embedding the given situation in a sequence

{(an, n) : n = 1, 2, . . . }.(A.4.10)

The large deviation approximation corresponds to the sequence (A.4.10)
with an = a. On the other hand, in Section 3.2 we considered sequences of
the form

an = ξ +
∆√
n

.(A.4.11)

Then

P0

(
X̄ ≥ ∆√

n

)
→ 1 − Φ[

√
n(an − ξ)],

which suggests the approximation

1 − Φ(∆) = 1 − Φ[
√

n(an − ξ)](A.4.12)

for the probability (A.4.3).
Which approximation provides the more accurate result depends on the

situation. Since ρ < 1 unless X is equal to a constant with probability 1,
the approximate value (A.4.7) tends to 0 exponentially and is thus likely
to provide a good approximation only if Pn is small. For some numerical
results, see Groeneboom (1980). �
Section A.5. The central limit theorem: Sketch of a proof

The simplest version of the central limit theorem (Theorem 2.4.1) states
that if X1, . . . , Xn are i.i.d. with mean ξ and finite variance σ2, then the
distribution of

√
n(X̄ − ξ)/σ tends to the standard normal distribution.

This result, together with its extensions, is truly central to this book. It is
also very surprising: Why is the average of a large number of i.i.d. random
variables approximately the same irrespective of the common distribution
of the terms, and why has the limit distribution this particular form? The
following outline of the classical proof is intended to throw at least some
light on this mystery.

A direct attack on the theorem seems quite difficult because the calcu-
lation of the distribution of a sum of random variables typically is com-
plicated even when, as here, the variables are independent (Problem 5.1).
To circumvent this difficulty, the proof uses a standard mathematical de-
vice: Transform the mathematical objects with which we are concerned
into another sphere, in which the problem is easier to handle. Here are two
examples of this method with which the reader is familiar.

(i) Logarithms. Suppose we have to multiply together (by hand) n
numbers to form the product

x = x1 · x2 · · · · · xn.
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This calculation becomes much easier when we replace the numbers xi by
their logarithms yi = log xi since

y = log x = log x1 + · · · + log xn = y1 + · · · + yn

is a sum rather than a product. Of course, this addition does not give us x
itself but y = log x. To find the solution of the original problem, we must
transform back from y to x, i.e., take the antilogarithm x of y.

(ii) Analytic geometry. This powerful method allows us to solve prob-
lems of plane geometry by representing each point P in the plane by its
coordinates (x, y) in some coordinate system. Thus the points P are trans-
formed into a pair of numbers, and a straight line, for example, into a linear
equation. Conversely, the method can be used to illuminate algebraic prob-
lems through geometric insight.

In the first example, we represented each number x by its logarithm y; in
the second, each point P in the plane by its coordinates (x, y). In the same
spirit, to solve the central limit problem, we represent the distribution of a
random variable Y not by its cdf or its probability density or its quantile
function but, instead, by its moment generating function (mgf)

MY (t) = E(etY ).(A.5.1)

Then the distribution of the sum Y1 + · · · + Yn of n independent random
variables is represented by

MY1+···+Yn(t) = E[et(Y1+···+Yn)] = MY1(t) . . .MYn(t).(A.5.2)

When the Y ’s are also identically distributed, (A.5.2) reduces to

MY1+···+Yn
(t) = [MY1(t)]

n.(A.5.3)

Let us now apply this formula to the distribution of

X̄ − ξ

σ
=

1
n

∑ Xi − ξ

σ
= Ȳ ,(A.5.4)

where the variables

Yi = (Xi − ξ)/σ(A.5.5)

have expectation E(Yi) = 0 and variance E(Y 2i ) = 1. Expanding ety into a
Taylor series, we have

ety = 1 + ty +
1
2
t2y2 + Rt(y),(A.5.6)

where the remainder Rt is o(t2y2), and thus

MY (t) = 1 + tE(Y ) +
1
2
t2E(Y 2) + E[Rt(Y )]

= 1 +
1
2
t2 + E[Rt(Y )].

(A.5.7)
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It follows that

MΣYi
(t) =

[
1 +

1
2
t2 + E[Rt(Y )]

]n
(A.5.8)

and hence that (Problem 5.2)

M√
nȲ (t) =

[
1 +

t2

2n
+ E[Rt/√n(Y )]

]n
.(A.5.9)

By Problem 4.8 of Chapter 1, it will follow that

M√
nȲ (t) → et

2/2(A.5.10)

since (Problem 5.2)

E[Rt/√n(Y )] → 0 as n → ∞.(A.5.11)

An easy calculation (Problem 4.2) shows that et
2/2 is the moment gen-

erating function of the standard normal distribution. Thus, the moment
generating function of Ȳ tends to that of the standard normal.

To complete the proof, it is necessary to show that

(i) the standard normal distribution is the only distribution whose mgf
is et

2/2 (uniqueness theorem)

and

(ii) the convergence (A.5.10) of the mgf’s implies the convergence of the
associated distributions (continuity theorem).

These results are proved in most probability texts.
The proof outlined above suffers from one defect. While the CLT requires

only that the variance of the X’s is finite, the proof assumes the finiteness
of the mgf which implies the finiteness of all moments. This difficulty is
overcome by a slight modification of the proof, namely by replacing the
mgf MY (t) by the characteristic function

ϕY (t) = E(eitY ).

The latter exists for all distributions, and the proof goes through as before
but now applies to all distributions with finite variance.

Section A.6. Refinements of first-order, large-sample theory

As we have seen, the asymptotic approach which forms the subject of this
book provides a powerful and broadly applicable basis for statistical infer-
ence. However, it suffers from two drawbacks.
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(i) In some situations, the approximations it offers are too crude to give
satisfactory results.

(ii) The theory gives no indication of the accuracy of the approximation
and thus leaves the user in doubt about its reliability.

As has been emphasized throughout and has been illustrated in many exam-
ples, a way to instigate the second of these difficulties is through simulation,
which shows how well the approximation works for particular distributions
and sample sizes. Such numerical work can be greatly strengthened by
consideration of higher order asymptotics illustrated in Section 2.4 and
to be discussed further in this section. These theoretical results paint a
more general picture than that obtained through the snapshots provided
by simulation, and they give insight into the conditions under which the
first-order approximations can be expected to work satisfactorily.

Second and higher order approximations also help with the first difficulty
mentioned above by leading to improved approximations and making pos-
sible comparisons between different statistical procedures which first-order
theory is unable to distinguish. We now briefly sketch two examples of this
latter kind.

In Chapter 4, we considered two asymptotic approaches for point esti-
mation resulting in approximations for the variance of the estimator and
for its distribution. For testing and confidence procedures, only the sec-
ond of these approaches is available. Both approximations can be refined
by including second-order terms. To indicate what can be achieved by such
higher order considerations, we begin with an example of the first approach.

Example A.6.1 Comparing the Bayes and best unbiased estima-
tor. If X1, . . . , Xn are i.i.d. N(θ, 1), the best unbiased estimator of θ is
the sample mean δ = X̄. On the other hand, the Bayes estimator δ′ corre-
sponding to a prior normal distribution N(µ, τ2) with respect to squared
error loss can be shown to be

δ′(X1, . . . , Xn) =
nτ2X̄ + µ

nτ2 + 1
.(A.6.1)

The risk functions of these two estimators are

R′(θ) = E(δ′ − θ)2 =
nτ4 + (θ − µ)2

(nτ2 + 1)2
(A.6.2)

and

R(θ) = E(δ − θ)2 =
1
n

.(A.6.3)

Since (Problem 6.1)

R′(θ) =
1
n

+ O

(
1
n2

)
,(A.6.4)
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to order 1/n the two estimators have the same risk function and the ARE
of δ′ to δ is 1. This result tells us nothing about which of the two estimators
is to be preferred.

To obtain a more meaningful comparison, let us carry the expansion of
the risk functions in terms of powers of 1/n a step further. We then find
(Problem 6.1) that

R′(θ) =
1
n

+
1

n2τ2

[
(θ − µ)2

τ2
− 2
]

+ O

(
1
n3

)
(A.6.5)

while the formula (A.6.3) for R(θ) requires no change. To order 1/n2, the
Bayes estimator δ′ therefore has smaller risk than δ if

(θ − µ)2

τ2
< 2,(A.6.6)

that is, if µ is close to θ without τ2 being too small relative to the difference
|θ − µ|. This corresponds to one’s intuition that the Bayes estimator will
do well if the Bayes guess µ of θ is close to θ but if one also guards against
overconfidence by not making the variance τ2 of this guess too small.

An interesting quantitative comparison can be obtained by taking a view-
point similar to that of the ARE, and asking for the number n′ of observa-
tions needed by δ′ to match the performance of δ (based on n observations)
not only up to terms of order 1/n as was the case for the ARE but to terms
of order 1/n2. Putting n′ = n + d, we have by (A.6.5) for any finite d,

R′(θ) =
1

n + d
+

1
(n + d)2τ2

[
(θ − µ)2

τ2
− 2
]

+ O

(
1
n

)3
=

1
n
− d

n2
+

1
n2τ2

[
(θ − µ)2

τ2
− 2
]

+ O

(
1
n3

)
.

(A.6.7)

The two risk functions therefore will agree to order 1/n2, provided

d =
1
τ2

[
(θ − µ)2

τ2
− 2
]

+ O

(
1
n

)
.(A.6.8)

For large n, the Bayes estimator thus approximately saves

1
τ2

[
2 − (θ − µ)2

τ2

]
(A.6.9)

observations when (A.6.6) holds, while in the contrary case it requires ap-
proximately that many additional observations. It follows from (A.6.9) that
the Bayes estimator achieves its greatest savings relative to X̄ if µ = θ and
τ2 is very small, as one would have expected. The quantity (A.6.9) is called
the deficiency of X̄ relative to δ′. (For more general results of this kind, see
Hodges and Lehmann (1970) and Hu and Hwang (1990).) �
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As this example shows, second-order correction terms for the approxi-
mation to a variance in some simple cases can be quite straightforward,
needing only the next term in the Taylor expansion. On the other hand,
the higher order correction terms for approximating a distribution function
require an asymptotic expansion of the kind illustrated in Theorem 2.4.3.
The following is a simple illustration of this approach.

Example A.6.2 Comparing two tests. Suppose X1, . . . , Xn are i.i.d.
N(θ, 1) and that we are interested in testing H : θ = 0 against θ > 0. The
best (uniformly most powerful) test in this case accepts H when

√
nX̄ ≤ u,(A.6.10)

where u = uα is given by Φ(u) = 1 − α. Suppose, however, that we feel
somewhat unsure of the assumption that the variance of the X’s is equal
to 1. We might then prefer to use the test of Example 3.1.3 and accept H
for small values of

tn =
√

nX̄√
Σ(Xi − X̄)2/(n − 1)

.(A.6.11)

In Example 3.1.3, it was seen that the test with acceptance region

tn ≤ u(A.6.12)

has asymptotic level α, and it is easy to show that the ARE of (A.6.12)
relative to (A.6.10) is 1. It is therefore interesting to consider the deficiency
of the test based on tn rather than on

√
nX̄. This deficiency is the cost

incurred by using in the denominator of the test statistic, an estimate of
Var(Xi) rather than the assumed variance of 1, when the variance of the
X’s actually is equal to 1.

Such a comparison requires consideration not only of the asymptotic
level and power of the two tests but also their next order correction terms.
In particular, the levels of the two tests must agree to that order since,
otherwise, an apparent difference in power might in fact be due (at least
in part) to a difference in level, and it is then of course not surprising that
a larger rejection region will result also in larger power.

As a first task, we must therefore calculate a critical value v = vn for
which the level of the acceptance region

tn < v(A.6.13)

is equal to α not only in the limit but up to next order terms. We shall
only sketch the following derivation. For a rigorous treatment, see Problem
6.3 and Hodges and Lehmann (1970).

To calculate the probability of (A.6.13), write it as

P (
√

nX̄ ≤ vS) = EΦ(vS),(A.6.14)
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where

S2 = Σ(Xi − X̄)2/(n − 1)(A.6.15)

and where we are using the independence of X̄ and S2. Now Σ(Xi − X̄)2

has a χ2-distribution with ν = n − 1 degrees of freedom so that

S2 = χ2ν/ν.(A.6.16)

In the following, we shall use the facts that

E(S) = 1 − 1
4n

+ O

(
1
n2

)
,(A.6.17)

E(S − 1)2 =
1
2n

+ O

(
1
n2

)
,(A.6.18)

and

E|S − 1|3 = O

(
1
n2

)
.(A.6.19)

(For a discussion of these results and references, see, for example, Johnson,
Kotz, and Balakrishnan (1994, Section 18.3).)

Since by (A.6.17) we expect S to be close to 1, write (A.6.14) as

EΦ(vS) = EΦ[v + v(S − 1)]
= Φ(v) + vϕ(v)E(S − 1)

+
1
2
v2ϕ′(v)E(S − 1)2 +

1
6
v3E[ϕ′′(v∗)(S − 1)3]

(A.6.20)

where v∗ lies between v and vS. From (A.6.17)–(A.6.19), the boundedness
of v3ϕ′′(v) and the fact that ϕ′(v) = −vϕ(y), it follows (Problem 6.3(i))
that

EΦ(vS) = Φ(v) − 1
4n

ϕ(v)(v + v3) + O

(
1
n2

)

= Φ
[
v − 1

4n
(v + v3)

]
+ O

(
1
n2

)
.

(A.6.21)

Thus for (A.6.14) to agree with 1−α = Φ(u) up to terms of order 1/n, we
must have

u = v − 1
4n

(v + v3),

or, equivalently (Problem 6.3(ii)),

v = u +
1
4n

(u + u3).(A.6.22)
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To calculate the deficiency of the t-test (A.6.13) relative to the normal
test (A.6.10), we require an analogous expansion to terms of order 1/n of
the asymptotic power functions of the two tests and hence of the probabili-
ties of (A.6.10) and (A.6.13) for the alternatives θ = ξ/

√
n and θ′ = ξ/

√
n′,

respectively. Since the comparison must be made against the same alter-
natives, we require

θ′ =

√
n′

n
θ.(A.6.23)

We then have (Problem 6.3(iii))

P (
√

nX̄ < u) = Φ(u − θ)(A.6.24)

and

P (tn < v) = Φ

[
u −

√
n′

n
θ

(
1 − u2

4n′

)]
+ o

(
1
n

)
.(A.6.25)

If n′ = n + d, the factor of θ in (A.6.25) becomes√
n + d

n

(
1 − u2

4n

)
+ o

(
1
n

)
.(A.6.26)

Equality of (A.6.24) and (A.6.25) up to terms of order 1/n will thus hold,
provided √

n + d

n

(
1 − u2

4n

)
= 1 + o

(
1
n

)

and hence if

d =
u2

2
+ o(1).(A.6.27)

The asymptotic deficiency of (A.6.13) relative to (A.6.10) is therefore

d = u2α/2.(A.6.28)

As α increases from .01 to .1, the value of d decreases from 2.71 to .82; the
cost of the insurance policy represented by the t-test is thus quite low, on
the order of one to three observations.

Second-order considerations are useful not only for deficiency calcula-
tions such as those in the preceding two examples but also for improving
the accuracy of first-order approximations and for accuracy checks. They
provide an approach which is intermediate between the first-order asymp-
totic methods discussed in this book and the small-sample methods based
on assumed parametric models. Their conclusions are more detailed, but
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they are also more complicated and require more knowledge of the model
than the former, with the situation reversed in comparison with the latter.

The theory of the asymptotic expansions needed for a second-order ap-
proach (particularly Edgeworth and Cornish-Fisher expansions) is available
in principle, and a number of applications have been worked out, but in
many cases (for example, in the comparison of the test (3.1.35) with that of
Problem 3.1.18), it is still outstanding. A good introduction to the litera-
ture on higher order asymptotics is Ghosh (1994). See also Kolassa (1998).

Section A.7. Problems

Section A.1

1.1 Show that (A.1.5) implies (A.1.7).

[Hint: Use the fact that

σ2nj =
∫
|y|≤tsn

y2dGnj(y) +
∫
|y|>tsn

y2dGnj(y)

and hence that
σ2nj
s2n

≤ t2 +
τ2nj
s2n

.

Given ε > 0, let t =
√

ε/2 and let n be so large that τ2nj/s
2
n < ε/2.]

1.2 If X1, X2, . . . is a single sequence of random variables with Var(Xk) =
σ2k, s2n =

∑n
k=1 σ2k, condition (A.1.7) implies (A.1.6).

[Hint: If (A.1.6) does not hold, then—since the sequence s2n, n =
1, 2, . . . is non-decreasing—s2n tends to a finite limit c as n → ∞, and
hence s2n ≤ c for all n. Let k0 be such that σ2k0

> 0 and show that

maxk=1,...,n σ2k ≥ σ2
k0
c > 0 for n ≥ k0.]

1.3 Give an example of a triangular array for which (A.1.7) does not
imply (A.1.6).

1.4 Prove that Theorem 2.7.1 holds under the weaker condition in which
3 is replaced 2 + δ(δ > 0) on both sides of (2.7.3).

1.5 (i) If X1, . . . , Xn are i.i.d. with variance σ2 < ∞, then the Lindeberg
condition (6.1.5) is satisfied.

(ii) The situation (i) with E|Xi−ξ|3 = ∞ provides a class of examples
in which the Lindeberg condition holds but the Liapunov condition
does not.
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Section A.2

2.1 If
√

nT ∗
n is bounded in probability and

T ∗∗
n = knT

∗
n with kn → 1 as n → ∞,

then
n(T ∗∗

n − T ∗
n)2 P→ 0.

2.2 Suppose that X1, . . . , Xm and Y1, . . . , Yn are independently distributed
according to F and G, respectively. Let h(F,G) be given by (6.3.44)
and let

Tm,n = h(F̂m, Ĝn) − h(F,G).

Determine the function T ∗
m,n of the form

S =
m∑
i=1

a(Xi) +
n∑
j=1

b(Yj),

which minimizes E(Tm,n − S)2, and compare it with the linear term
of (6.3.50).

Section A.3

3.1 Show that convergence of Xn to c in quadratic mean, i.e., E(Xn −
c)2 → 0, neither implies nor is implied by almost sure convergence.

[Hint: (i) Example A.3.1; (ii) Let x1, x2, . . . be a sequence of numbers
converging to c and let Xn be equal to xn with probability 1. Then
Xn → c almost surely, but E(Xn − c)2 does not necessarily converge
to c.]

Section A.4

4.1 If (A.4.6) holds, so does (A.4.8).

4.2 Verify (A.4.9).

4.3 Evaluate M(t) and ρ for the case that the Xi take on the values 1
and 0 with probabilities p and q, respectively.

4.4 Under the assumptions of Example A.4.1, compare the approximation
(A.4.7) with the true value of Pn for a number of values of a and n.

4.5 Under the assumptions of Problem 4.3, compare the approximations
(A.4.7) and (A.4.12) with the true value of Pn for a number of values
p, a, and n.
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Section A.5

5.1 Let X2, X2, and X3 be independently distributed according to the
uniform distribution U(0, 1). Determine the distribution of (i) X1+X2
and (ii) X1 + X2 + X3.

5.2 Verify (A.5.9)–(A.5.11).

[Hint: To show (A.5.11), use the expression given in part (ii) of The-
orem 2.5.1 for the remainder term in (A.5.6).]

Section A.6

6.1 Verify the risk function (A.6.5).

6.2 In the binomial situation of Example 4.3.3 with a = b, compare the
Bayes estimator (4.3.16) with the best unbiased estimator X/n along
the lines of Example A.6.1.

6.3 Verify (i) the equation (A.6.21), (ii) the correction term (A.6.22) for
v, and (iii) the probabilities (A.6.24) and (A.6.25).

6.4 Make a table showing the deficiency (A.6.28) as α varies from .01
to .1.

Bibliographic Notes

For a review of the modern history of the central limit theorem, see Le Cam
(1986). Hajek’s projection method was used in Hajek (1961) without the
name. More explicit developments are given in Hajek and Siddak (1967)
and Hajek (1968). A general theory of large deviations was initiated by
Cramér (1938). Statistical applications were introduced by Chernoff (1952)
and developed further by Bahadur (1960,1971).

An introduction to Edgeworth expansions (including an account of their
history) is provided by Hall (1992). The deficiency concept is due to Hodges
and Lehmann (1970). More general views of higher order asymptotics are
presented by Ghosh (1994).



References

W. J. Adams. The Life and Times of the Central Limit Theorem. Kaedmon,
New York, NY (1974).

A. Agresti. Categorical Data Analysis. John Wiley & Sons, New York, NY
(1990).

R. J. Aiyar, R. L. Guillier, and W. Albers. Asymptotic relative efficiencies of
rank tests for alternatives. Journal of the American Statistical Association,
74:225–231 (1979).

J. Aldrich. R. A. Fisher and the making of maximum likelihood. Statistical
Science, 12:162–176 (1997).

T. W. Anderson. The Statistical Analysis of Time Series. John Wiley &
Sons, New York, NY (1971).

T. W. Anderson. An Introduction to Multivariate Analysis (2nd Edition).
John Wiley & Sons, New York, NY (1984).

A. M. Andrés, A. S. Mato, and I. H. Tejedor. A critical review of asymptotic
methods for comparing two proportions by means of independent samples.
Communication Statistics-Simulation, 21:551–586 (1992).

F. J. Anscombe and W. J. Glynn. Distribution of the kurtosis statistic b2
for normal samples. Biometrika, 70:227–234 (1983).

S. F. Arnold. The Theory of Linear Models and Multivariate Analysis. John
Wiley & Sons, New York, NY (1981).



592 References

R. Arriata, L. Goldstein, and L. Gordon. Poisson approximation and the
Chen-Stein method (with discussion). Statistical Science, 5:403–434 (1990).

R. R. Bahadur. Stochastic comparison of tests. Annals of Mathematical
Statistics, 31:275–295 (1960).

R. R. Bahadur. On Fisher’s bound for asymptotic variances. Annals of
Mathematical Statistics, 35:1545–1552 (1964).

R. R. Bahadur. Some Limit Theorems in Statistics. SIAM, Philadelphia,
PA (1971).

R. R. Bahadur. Hodges superefficiency. Encyclopedia of Statistical Science,
3:645–646 (1983).

R. R. Bahadur and L. J. Savage. The nonexistence of certain statistical
procedures in nonparametric problems. Annals of Mathematical Statistics,
27:1115–1122 (1956).

S. K. Bar-Lev and P. Enis. On the construction of classes of variance stabi-
lizing transformations. Statistics and Probability Letters, 10:95–100 (1990).

A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation. Clarendor
Press, Oxford, England (1992).

O. E. Barndorff-Nielsen and D. R. Cox. Asymptotic Techniques for Use in
Statistics. Chapman & Hall, London, England (1989).

O. E. Barndorff-Nielsen and D. R. Cox. Inference and Asymptotics. Chap-
man & Hall, London, England (1994).

V. D. Barnett. Evaluation of the maximum likelihood estimator where the
likelihood equation has multiple roots. Biometrika, 53:151–166 (1966).

A. P. Basu. Identifiability. Encyclopedia of Statistical Science, 4:2–6 (1983).

J. Beran. A test of location for data with slowly decaying serial correlations.
Biometrika, 76:261–269 (1989).

J. Beran. Statistical methods for data with long-range dependence (with
discussion). Statistical Science, 7:404–427 (1992).

J. Beran. Statistics for Long-term Memory. Chapman & Hall, New York,
NY (1994).

R. Beran. The role of Hajek’s convolution theory. Kybermetrika, 31:221–237
(1995).

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Second
Edition. Springer-Verlag, New York, NY (1985).

R. H. Berk. Review of Zehna (1966). Mathematical Review, 33:342–343
(1967).



References 593

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley, New
York, NY (1994).

P. Bickel. On some robust estimates of location. The Annals of Mathemat-
ical Statistics, 36:847–858 (1965).

P. Bickel. Some contributions to the theory of order statistics. Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-
ity, 1:575–591 (1967).

P. Bickel. Parametric robustness: Small biases can be worthwhile. The An-
nals of Statistics, 12:864–879 (1984).

P. Bickel and K. Doksum. Mathematical Statistics. Prentice-Hall, Engle-
wood Cliffs, NJ (1977).

P. Bickel and D. Freedman. Some asymptotic theory for the bootstrap. The
Annals of Statistics, 9:1196–1217 (1981).

P. Bickel and D. Freedman. Asymptotic normality and the boostrap in
stratified sampling. The Annals of Statistics, 12:470–482 (1984).

P. Bickel, C. A. Klaassen, Y. Ritov, and J. Wellner. Efficient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins University Press,
Baltimore, MD (1993).

P. Bickel and E. L. Lehmann. Unbiased estimation in convex families. The
Annals of Mathematical Statistics, 40:1523–1535 (1969).

P. Billingsley. Probability and Measure, 3rd ed. John Wiley & Sons, New
York, NY (1976, 1989, 1995).

Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate Analysis.
MIT Press, Cambridge, MA (1975).

D. Bloch. A note on the estimation of the location parameter of the Cauchy
distribution. Journal of the American Statistical Association, 61:852–855
(1966).

C. R. Blyth and H. A. Still. Binomial confidence intervals. Journal of the
American Statistical Association, 78:108–116 (1983).

E. Bofinger. Goodness-of-fit test using sample quantiles. Journal of the
Royal Statistical Society, (B)35:277–284 (1973).

K. O. Bowman and L. R. Shenton. Moment
(√

b1, b2
)

techniques. In R. B.
D’Agostino and M. A. Stephens, editors,Goodness–of–Fit Techniques, pages
279–329. Marcel Dekker, New York, NY (1986).

J. D. Broffitt and R. H. Randles. A power approximation for the chi-square
goodness-of-fit test: Simple hypothesis case. Journal of the American Sta-
tistical Association, 72:604–607 (1977).



594 References

L. D. Brown and R. H. Farrell. A lower bound for the risk in estimat-
ing the value of a probability density. Journal of the American Statistical
Association, 85:1147–1153 (1990).

J. Bucklew. Large Deviation Techniques in Decisions, Simulation, and Es-
timation. John Wiley & Sons, New York, NY (1990).

A. Buse. The likelihood ratio, Wald, and Lagrange multiplier tests: An
expository note. The American Statistician, 36:153–157 (1982).

G. Casella and R. L. Berger. Statistical Inference. Wadsworth, Pacific Grove,
CA (1990).

N. N. Cencov. Evaluation of an unknown density from observations. Soviet
Mathematics, 3:1559–1562 (1962).

H. Chernoff. A measure of asymptotic efficiency for tests of an hypothe-
sis based on the sum of observations. Annals of Mathematical Statistics,
23:493–507 (1952).

H. Chernoff. On the distribution of the likelihood ratio. Annals of Mathe-
matical Statistics, 25:573–578 (1954).

Y. S Chow and H. Teicher. Probability Theory: Independence, Interchange-
ability, Martingales. Springer-Verlag, New York, NY (1997).

K. L. Chung. A Course in Probability Theory (2nd Edition). Academic
Press, Boston, MA (1974).

W. G. Cochran. Errors of measurement in statistics. Technometrics, 10:637–
666 (1968).

W. G. Cochran. Sampling Techniques (3rd Edition). John Wiley & Sons,
New York, NY (1977).

J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Academic
Press, New York, NY (1969). (2nd edition, Erlbaum, Hillsdale, NJ (1988)).

R. Courant. Differential and Integral Calculus, Volume 1, 2nd ed. John
Wiley & Sons, New York, NY (1927). Reprinted in Wiley Classics Library
(1988).

D. R. Cox. Long-range dependence: A review. In H. A. David and H. T.
David, editors, Statistics: An Appraisal. (1984).

D. R. Cox and D. V. Hinkley. Theoretical Statistics. Chapman & Hall,
London, England (1974).

H. Cramér. On the composition of elementary errors. Skandinavisk Aktua-
rietidskrift, 11:141–180 (1928).
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expected order statistics from,

347
Fisher information in, 460
moment generating function of,

582
multivariate, 309. See also

Bivariate normal, Central
limit theorem, De Moivre’s
theorem, Multivariate
normal

Normal mean
Bayes and best unbiased

estimator of, 583
confidence intervals for, 225
improper prior for, 494
multivariate, 511
reciprocal of, 238
t-test for, 137, 153, 164, 225
and variance (joint) distribution

of, 291, 308
Wald and likelihood ratio test

for, 583. See also
t-test

Normal mixture, 446
maximum likelihood estimation

in, 507
moment estimators in, 514

Normal one-sample problem
estimation in, 458, 460, 473, 486,

501, 515
testing in, 528, 535

Normal two-sample problem, 141,
149, 226, 323, 519.
See also Behrens-Fisher
problem, Comparison of
two means

Normal variance, test for, 138, 189,
190, 215

Normalizing constant, 68

Nuisance parameters, 136, 142, 525
effect of, 515, 524

Odds ratio, 330, 365, 361
asymptotic distribution of, 331
confidence intervals for, 333

One-sample t-test, 137
for paired comparisons, 152
power of, 164. See also

Randomization t-test, t-test
One-sample Wilcoxon statistic, 99,

366, 370
One-sample Wilcoxon test, 153, 157,

168, 174
asymptotic efficiency relative to

sign and t-tests,
176, 177

power of, 168
simultaneous with t-test, 376

One-sided test, 134
compared to two-sided test, 184
critical value for, 134

One-step estimator, 475, 484, 486,
556, 557
for multiparameter case, 507, 511
efficiency of, 476, 511

Open set, 499
o-relation, 45

for continuous variables, 28
definition of, 18
of powers, 22
properties of, 21, 40

op-relation, 53, 54
Order

same, 35
smaller, 18

O-relation, 25, 45
for continuous variables, 28
properties of, 42

Op-relation, 54
Order relations, 18

for continuous variables, 28
Orthogonal

matrix 304, 309, 356, 357
transformation, 304. See also
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Gram-Schmidt
orthogonalization

Orthogonal linear combinations, joint
asymptotic distribution of, 284

Orthonormal, see Orthogonal

Paired comparisons, 152, 167, 181.
See also One-sample t- and
Wilcoxon tests, Sign test

Parameter, 364
Pareto distribution, 564
Parametric

bootstrap, 427
models, 363

Partial derivative, 295
extension to functionals, 395

Partitioned matrices, 566
Pearson χ2-statistic, as statistical

functional, 383, 444
Pearson’s χ2-test, 325, 336, 349, 536

choice of number of classes, 342
consistency of, 326
history of, 362
inconsistency of, 336
of independence, 550
of normality, 346
with number of cells tending to

infinity, 341
power of, 326, 329
with random cell boundaries, 327.

See also Contingency
tables, Goodness-of-fit
tests, Tests of normality

Pearson curves, 193
Permutation, as orthogonal

transformation, 356
Pitman efficiency, 218. See alsoARE
Pivot, 231
Plug-in estimator, 363, 365, 392

consistency of, 390. See also
Bootstrap

Point estimation, 219
Poisson-binomial trials, 98, 104, 105
Poisson distribution, 12, 16, 32, 38,

99, 204

as limit of binomial, 12
variance stabilizing

transformation for, 88
Poisson parameter

confidence intervals for, 88, 94,
221, 222

Jeffreys prior for, 495
maximum likelihood estimator

for, 452, 460, 472
test for, 135, 162. See also

Ratio of Poisson means
Poisson process, 494
Poisson two-sample problem, 140,

144, 165, 171, 204, 227
Polar coordinates, distribution of,

357
Polynomial growth rate, 1, 23.

See also Exponential and
logarithmic growth rates

Population mean as statistical
functional, 381, 382
discontinuity of, 391
estimation of, 385
influence function of, 396.

See also t-test,
Non-robustness of

Population model, 146, 148, 155, 157.
See also Randomization model

Population size, estimation of, 256
Population variance, 257
Positive association, 330
Positive definite or semidefinite

matrix, 302, 309, 356, 563
reduction to identity, 303
square root of, 306

Power of a test, 2, 133, 158
asymptotic, 160
formula for, 160, 165
robustness of, 194
of two-sample tests, 164

Power series, 16
differentiation of, 39

Prior distribution
Beta, 19, 241, 488
Dirichlet, 512
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discrete, 489
improper, 493
Jeffries, 492
noninformative, 490
uniform, 490

Probability density, 1, 31, 445
estimation of, 406
multivariate, 278
transformation of, 307, 309.

See alsoDensity estimation
Probability distributions,

representations of, see
Characteristic function,
Cumulative distribution
function, Moment
generating function,
Probability density,
Quantile function

p-value, 142

Quadratic form, 302
positive definite or semidefinite,

302
reduction to canonical form, 303,

305, 356
Quantile, 34, 389, 443

as statistical functional, 381, 382.
See also Sample quantiles

Quantile function, 31, 33, 34, 440
properties of, 44, 45. See also

Probability distributions,
Representations of

Quartile, 33

Radius of convergence (of a power
series), 16

Random effects model, 121, 567
Randomization model, 148, 154, 157.

See also Population model
Randomization t-test, 149, 151, 155,

157, 218
Randomness, tests of, 182
Ranks, distribution of, 147, 153, 206.

See also Signed ranks
Rank tests, 218. See also Wilcoxon

one- and two-sample tests
Rao scores test, 451, 529, 541, 570

asymptotic equivalence with
likelihood ratio and
Wald tests

behavior against distant
alternatives, 532

for multiparameter hypotheses,
534, 539. See also
Likelihood ratio test,
Wald test

Rare events, 99, 104. See also
Poisson distribution

Rates of convergence, 1, 23, 364,
416, 419

Ratio of Poisson means, 227
Ratio estimator, 263

compared with sample mean, 265
Reciprocal, of normal mean, 238
Regression, see Linear regression
Regression coefficients

asymptotic distribution of, 104
joint confidence sets for, 285
least squares estimators of, 101,

522
maximum likelihood estimation

of, 522
simultaneous confidence sets for,

290
tests of, 178, 195, 212

Relative efficiency, 2, 58, 175, 179.
See also Asymptotic relative
efficiency

Remainder, order of, 20
Resampling, 425
R-estimators, 245
Robustness of estimators, 219, 245,

449
Robustness of tests, 189, 202

under dependence, 198
under non-normality, 133, 189,

215

Sample cumulative distribution
function, 342, 363, 381, 392
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algorithm for sampling from, 424
bootstrap sampling from, 422,

424
conceptual sample from, 422, 435
distance from population cdf,

342, 343
as estimator of population cdf,

384, 385. See also
Cumulative distribution
function, EDF statistics,
Plug-in estimator

Sample mean
asymptotic distribution of, 73
law of large numbers for, 49
more variable than a single

observation, 76, 77.
See also Central limit
theorem, Large deviations

Sample median, 80, 478, 487
normal limit for, 81
as a statistical functional, 381.

See also Median
Sample moments, 51

asymptotic distribution of, 297,
387

bias of, 386
consistency of, 51, 358, 387
joint distribution of, 360
variance of, 386

Sample quantile, 389
asymptotic distribution of, 125,

389
bias and variance of, 389
joint asymptotic distribution of,

314
as a statistical functional, 381,

382
Sample size (required), 2, 133

formula for, 170
in sampling from a finite

population, 254
Sample variance

normal limit for, 76
Sampling from a finite population,

276

cluster, 266, 267, 269
simple random, 155, 253
stratified, 259, 260, 262, 268
with and without replacement,

248. See also Binomial
sampling, Finite population
average

Sampling from a 2-valued
population, 60, 113, 253.
See also Hypergeometric
distribution

Scale family, 494
improper prior for, 558
information in, 554. See also

Location family,
Location-scale family

Scale parameter, Jeffreys prior for,
494

Score function, 530
Second (and higher) order

asymptotic theory, 21, 432,
583, 587, 590

Semidefinite matrix, see Positive
definite or semidefinite matrix

Semiparametric model, 247
Sequence of numbers

asymptotic equivalence of, 6
limit of, 2, 3
of same order, 24
of smaller order, 18

Several sample problems
information in, 517
multiparameter case, 518

Shapiro-Francia test of normality,
348

Shapiro-Wilk test
of normality, 348
consistency of, 349

Shapiro-Wilk type tests of
normality, 347

Shrinkage estimators, 511
Sign test, 152, 166, 174

asymptotic efficiency relative to
t- and Wilcoxon tests,
176, 177
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power of, 167
required sample size, 170.

See also Center of
symmetry, Paired
comparison

Signed ranks, 154
distribution of, 153

Signed rank Wilcoxon statistic, 99.
See also One-sample
Wilcoxon statistic

Simple linear regression, 58
model for, 58
standard estimators, 59. See also

Regression coefficients
Simple random sampling, 268
Simulation, viii
Simultaneous inference

based on Wald tests, 533
for normal mean and variance,

291, 354
for two means, 292. See also Joint

or simultaneous
confidence sets

Slutsky’s theorem, 47, 70, 72
use in studentization, 136, 146
multivariate, 283

Smoothing, over and under, 412
Space of functions, 389
Square root of a positive definite

matrix, 306
Stationary, 62

Markov chain, 111, 200
process, 109, 200
sequence of random variables,

107, 108
Statistical functional, 363, 364, 381

asymptotic distribution of, 393,
449

asymptotic variance of, 393
continuity of, 390, 391, 439
differentiability of, 393, 396

Stirling’s formula, 7, 9
Stratified sampling, 259, 268

with fixed number of strata, 260
with large number of strata, 262

Strong confidence intervals, 220, 231
Studentization, 136, 163, 191
Student’s t-distribution, 75, 137, 190

normal limit for, 76
Student’s t-test, see t-test
Sums of powers of integers, 8, 15
sup of a set S, 29
Superefficiency, 486
Symmetric

distribution, 152
matrix, 301, 355. See also

Center of symmetry

Taylor series, 91, 93
Taylor expansion, 363, 393, 395, 403,

449, 573
Taylor’s theorem, 85

multivariate, 295, 417
Tests of independence, 293, 294, 334

consistent, 295
in two by two tables, 334
in two-way contingency tables,

550
Tests of normality, 344, 349. See also

EDF statistics, Moment
tests, Pearson’s χ2-test,
Shapiro-Wilk type tests

Time series, 62
Total amount of information, 523
Transformation to approximate

normality, 87
Transpose (of a matrix), 301
Triangular array, 101, 106
Transition probabilities, 111
Trimmed mean, 242, 243, 488
Truncated normal distribution, 192
t-test

asymptotic efficiency relative to
sign and Wilcoxon
tests, 176, 177

deficiency relative to X̄-test, 587
joint with Wilcoxon test, 376
one-sample, 137, 157, 171, 174,

176
nonrobustness of, 196, 198, 217
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power of, 164
randomization version of, 149,

152
for regression coefficients, 128
required sample size for, 171
robustness of, 191, 216
two-sample, 141, 157, 165
Welch approximate, 143. See also

Behrens-Fisher test,
Comparison of two
treatments, Paired
comparisons

Two by two table, 140, 335, 362
independence in, 331
multinomial model for, 331
positive association in, 330
testing in, 330, 334
two-binomial model for, 141, 334.

See also Contingency
table

Two-sample problem, 136, 146
binomial, 140, 205
exponential, 204
non-parametric, 147
normal, 141, 143, 146
Poisson, 140, 144, 165

Two-sample shift model, 246
Two-sample U -statistic, 373
Two-sample Wilcoxon statistic, 117,

118, 374
Two-sample Wilcoxon test, 147, 157,

168, 170
asymptotic efficiency relative to

t-test, 177
power of, 168
required sample size, 173

Two-sided test, 184, 208
compared with one-sided test,

184
Two treatments, comparison of, 146.

See also Comparison of
two treatments

Two-way contingency table, 542
comparison of independent and

unrestricted, 549

independence in, 542, 546

Uniform convergence, 93, 196
definition of, 95, 96. See also

Berry-Esseen theorem
Uniform distribution, 31, 45, 69, 122,

432
distribution of maximum, 69
distribution of range, 283, 351
estimation of parameters, 251
Fisher information in, 463
joint distribution of maximum

and minimum, 281
joint distribution of two extremes,

355
tests of parameters, 135, 185,

205
U -statistics, 363, 364, 371, 449

asymptotic distribution of, 369,
373, 375, 388, 573

Berry-Esseen theorem for, 380
covariance of two, 376
joint distribution of two, 375
Poisson limit theorem for, 380
tow-sample, 373
variance of, 367, 368, 373
and V -statistics, 387. See also

V -statistics

Variance
approximations for, 234, 236, 272
of an estimator, 2
of a function of an estimator,

235. See also
Asymptotic, Limiting,
Normal, and Sample
variance

Variance stabilizing transformation,
87, 93, 491
for binomial, 127
for Poisson, 88
for chi-squared, 88
for correlation coefficient, 318

Vectors
convergence of, 278
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inner product of, 304
length of, 304. See also

Multivariate cumulative
distribution function and
probability density

V -statistics, 387, 575
asymptotic distribution of, 388,

401
two-sample, 403, 441. See also

U -statistic

Waiting times (in Poisson process),
494

Wald test, 451, 525, 526, 541, 570
asymptotic equivalence with

likelihood ratio tests
and Rao scores test,
530, 531

confidence sets based on, 533
drawbacks of, 531, 532
for multiparameter hypotheses,

533, 539. See also
Likelihood ratio tests,
Rao scores tests

Weibull distribution, 552
Welch approximate t-test, 143
Welch-Aspin test, 143
Wilcoxon one-sample statistic and

test, see One-sample
Wilcoxon statistic and
test

Wilcoxon rank-sum statistic, see
Two-sample Wilcoxon
statistic

Wilcoxon signed-rank statistic, see
One-sample Wilcoxon
statistic

Wilcoxon two-sample statistic and
test, see Two-sample
Wilcoxon and test

Yule’s Q, 333
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