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 Problem: 

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields 

with parameters of more than 1000 bits.

 High computational effort on CPUs with 32-bit or 64-bit arithmetic

 Large parameter sizes critical for storage on small and embedded

 Motivation:

Smaller field sizes providing equivalent security are desirable

 Solution:

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes 

with coefficient sizes of 160-256 bits, reducing significantly the computational

effort.

 Motivation
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 Computations on Elliptic Curves

• Elliptic curves are polynomials that define points 

based on the (simplified) Weierstraß equation:

y2 = x3 + ax + b 

for parameters a,b that specify the exact shape 

of the curve

• On the real numbers and with parameters 

a, b    R, an elliptic curve looks like this 

• Elliptic curves can not just be defined over the real 

numbers R but over many other types of finite fields.

Example: y2 = x3 −3x+3 over R
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 Computations on Elliptic Curves (ctd.)

 In cryptography, we are interested in elliptic curves module 

a prime p:

 Note that Zp = {0,1,…, p -1} is a set of integers

with modulo p arithmetic



Definition: Elliptic Curves over prime fields

The elliptic curve over Zp, p>3 is the set of all 
pairs (x,y)    Zp which fulfill

y2 = x3 + ax + b mod p
together with an imaginary point of infinity θ,
where a,b    Zp and the condition

4a3+27b2 ≠ 0 mod p.
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 Computations on Elliptic Curves (ctd.)

 Some special considerations are required to convert elliptic 

curves into a group of points 

 In any group, a special element is required to allow for 

the identity operation, i.e.,

given P   E: P + θ = P = θ + P

 This identity point (which is not on the curve) is 

additionally added to the group definition 

 This (infinite) identity point is denoted by θ

 Elliptic Curve are symmetric along the x-axis

 Up to two solutions y and -y exist for each quadratic 

residue x of the elliptic curve

 For each point P =(x,y), the inverse or negative point is 

defined as -P =(x,-y)





θ

P

-P



point at 
infinity
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 Computations on Elliptic Curves (ctd.)

 Generating a group of points on elliptic curves 

based on point addition operation P+Q = R, i.e.,

(xP,yP)+(xQ,yQ) = (xR,yR)

 Geometric Interpretation of point addition operation

 Draw straight line through P and Q; if P=Q use

tangent line instead

 Mirror third intersection point of drawn line with 

the elliptic curve along the x-axis

 Elliptic Curve Point Addition and Doubling Formulas

Point Addition

Point Doublingx3 = s2 −x1−x2 mod p  and y3 = s(x1 −x3)−y1 mod p

where

s = 
p

xx
yy mod

12

12




p
y

ax mod
2

3
1

2
1 

; if P ≠ Q (point addition)

; if P = Q (point doubling) =P+P

227/24



 Computations on Elliptic Curves (ctd.)

 Example: Given E: y2 = x3+2x+2 mod 17 and point P=(5,1)

Goal: Compute 2P = P+P = (5,1)+(5,1)= (x3,y3)

s =            = (2 · 1)−1(3 · 52 + 2) = 2−1 · 9 ≡ 9 · 9 ≡ 13 mod 17

x3 = s2 − x1 − x2 = 132 − 5 − 5 = 159 ≡ 6 mod 17

y3 = s(x1−x3) − y1 = 13(5 − 6) − 1= −14 ≡ 3 mod 17

Finally 2P = (5,1) + (5,1) = (6,3)

1

2
1

2
3

y
ax 
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 Computations on Elliptic Curves (ctd.)

 The points on an elliptic curve and the point at infinity θ form cyclic subgroups

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)

3P = 2P+P = (10,6) 12P = (0,11)

4P = (3,1) 13P = (16,4)

5P = (9,16) 14P = (9,1)

6P = (16,13) 15P = (3,16)

7P = (0,6) 16P = (10,11)

8P = (13,7) 17P = (6,14)

9P = (7,6) 18P = (5,16)

10P = (7,11) 19P = θ

This elliptic curve has order #E = |E| = 19 since it contains 

19 points in its cyclic group.

P

θ
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 Number of Points on an Elliptic Curve

• How many points can be on an arbitrary elliptic curve?

• Consider previous example: E: y2 = x3+2x+2 mod 17 has 19 points

• However, determining the point count on elliptic curves in general is hard

• But Hasse‘s theorem bounds the number of points to a restricted interval

Definition: Hasse‘s Theorem:

Given an elliptic curve module p, the number of points 

on the curve is denoted by #E and is bounded by

p+1-2 ≤ #E ≤ p+1+2   

• Interpretation: The number of points is „close to“ the prime p

• Example: To generate a curve with about 2160 points, a prime with a length of about 

160 bits is required
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 Elliptic Curve Discrete Logarithm Problem

 Cryptosystems rely on the hardness of the Elliptic Curve Discrete

Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a primitive element P and another element T on an elliptic curve E.

The ECDL problem is finding the integer d, where 1 ≤ d ≤ #E such that

P + P +…+ P = dP = T.

d times

 Cryptosystems are based on the idea that d is large and kept secret and attackers cannot 

compute it easily

 If d is known, an efficient method to compute the point multiplication dP is required to 

create a reasonable cryptosystem

 Known Square-and-Multiply Method can be adapted to Elliptic Curves

 The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm
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 Double-and-Add Algorithm for Point Multiplication

 Double-and-Add Algorithm

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits di

Output: T = d P 

Initialization:

T = P

Algorithm:

FOR i = t −1 DOWNTO 0

T = T +T mod n

IF di = 1

T = T +P mod n

RETURN (T)
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Example: 26P = (110102)P = (d4d3d2d1d0)2 P.

Step
#0 P = 12P inital setting
#1a P+P = 2P = 102P DOUBLE (bit d3)
#1b 2P+P = 3P = 102 P+12P = 112P ADD (bit d3=1)
#2a 3P+3P = 6P = 2(112P) = 1102P DOUBLE (bit d2)
#2b no ADD (d2 = 0)
#3a 6P+6P = 12P = 2(1102P) = 11002P DOUBLE (bit d1)
#3b 12P+P = 13P = 11002P+12 P = 11012P ADD (bit d1=1)
#4a 13P+13P = 26P = 2(11012P) = 110102P DOUBLE (bit d0)
#4b no ADD (d0 = 0)
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 The Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

 Given a prime p, a suitable elliptic curve E and a point P=(xP,yP)

 The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

 Joint secret between Alice and Bob: TAB = (xAB, yAB)

 Proof for correctness:
 Alice computes aB=a(bP)=abP

 Bob computes bA=b(aP)=abP since group is associative

 One of the coordinates of the point TAB (usually the x-coordinate) can be used as session key (often after 

applying a hash function)
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Alice

Choose kPrA= a     {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab



Bob

Choose kPrB= b     {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab

A

B
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 The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.)

 The ECDH is often used to derive session keys for (symmetric) encryption

 One of the coordinates of the point TAB (usually the x-coordinate) is taken as session key

 In some cases, a hash function (see next chapters) is used to derive the session key
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Alice

Choose kPrA= a     {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab = (xT,yT)

Define key kAES = xT

Given a message m:
Encrypt c = AESkAES(m)



Bob

Choose kPrB= b     {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab= (xT,yT)

Define key kAES = xT

Received ciphertext c:
Decrypt m = AES-1

kAES(c)

A

B
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 Security Aspects

 Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA (1024-3076 

bit)?

 Attacks on groups of elliptic curves are weaker than available factoring algorithms or integer 

DL attacks

 Best known attacks on elliptic curves (chosen according to cryptographic criterions)

are the Baby-Step Giant-Step and Pollard-Rho method

 Complexity of these methods: on average, roughly steps are required before the ECDLP can 

be successfully solved

 Implications to practical parameter sizes for elliptic curves:

 An elliptic curve using a prime p with 160 bit (and roughly 2160 points) provides a security of 280

steps that required by an attacker (on average) 

 An elliptic curve using a prime p with 256 bit (roughly 2256 points) provides a security of 2128

steps on average

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

p
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 Implementations in Hardware and Software

 Elliptic curve computations usually regarded as 

consisting of four layers: 

 Basic modular arithmetic operations are 

computationally most expensive

 Group operation implements point doubling

and point addition

 Point multiplication can be implemented using 

the Double-and-Add method

 Upper layer protocols like ECDH and ECDSA

 Most efforts should go in optimizations of the 

modular arithmetic operations, such as 

 Modular addition and subtraction

 Modular multiplication 

 Modular inversion
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Protocol
(ECDSA)

Point 
Multiplication 

(k·P)

Group Operation
P+Q, 2·P

Modular Arithmetic
( +, -, x , ÷  )
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 Implementations in Hardware and Software

 Software implementations

 Optimized 256-bit ECC implementation on 

3GHz 64-bit CPU requires about 2 ms per point 

multiplication

 Less powerful microprocessors (e.g, on 

SmartCards or cell phones) even take 

significantly longer (>10 ms)

 Hardware implementations 

 High-performance implementations with 256-bit 

special primes can compute a point 

multiplication in a few hundred microseconds 

on reconfigurable hardware

 Dedicated chips for ECC can compute a point 

multiplication even in a few ten microseconds
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• Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. It requires, for 

instance, arithmetic modulo a prime.

• ECC can be used for key exchange, for digital signatures and for encryption.

• ECC provides the same level of security as RSA or discrete logarithm systems over Zp with 

considerably shorter operands (approximately 160–256 bit vs. 1024–3072 bit), which results in 

shorter ciphertexts and signatures.

• In many cases ECC has performance advantages over other public-key algorithms.

• ECC is slowly gaining popularity in applications, compared to other public-key schemes, i.e., many 

new applications, especially on embedded platforms, make use of elliptic curve cryptography.
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 Lessons Learned
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 Motivation

• Alice orders a pink car from the car salesmen 
Bob 

• After seeing the pink car, Alice states that she 
has never ordered it:

• How can Bob prove towards a judge that Alice 
has ordered a pink car? (And that he did not 
fabricate the order himself)

 Symmetric cryptography fails because both 
Alice and Bob can be malicious

 Can be achieved with public-key cryptography
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 Basic Principle of Digital Signatures
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 Main idea

• For a given message x, a digital signature is 
appended to the message (just like a conventional 
signature).

• Only the person with the private key should be 
able to generate the signature.

• The signature must change for every document.

The signature is realized as a function with the 
message x and the private key as input.

The public key and the message x are the inputs 
to the verification function.
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Content of this Chapter
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 Core Security Services

1. Confidentiality: Information is kept secret from all but 
authorized parties.

2. Integrity: Ensures that a message has not been modified in 
transit.

3. Message Authentication: Ensures that the sender of a 
message is authentic. An alternative term is data origin 
authentication.

4. Non-repudiation: Ensures that the sender of a message can 
not deny the creation of the message. (c.f. order of a pink car)

The objectives of a security systems are called 
security services.
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 Additional Security Services

5. Identification/entity authentication: Establishing and 
verification of the identity of an entity, e.g. a person, a 
computer, or a credit card.

6. Access control: Restricting access to the resources to 
privileged entities.

7. Availability: The electronic system is reliably available.

8. Auditing: Provides  evidences about security relevant 
activities, e.g., by keeping logs about certain events.

9. Physical security: Providing protection against physical 
tampering and/or responses to physical tampering attempts

10. Anonymity: Providing protection against discovery and misuse 
of identity.
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Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)



 Main idea of the RSA signature scheme
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To generate the private and public key:

• Use the same key generation as RSA encryption.

To generate the signature:

• “encrypt” the message x with the private key

• Append s to message x

To verify the signature:

• “decrypt” the signature with the public key

• If x=x’, the signature is valid

s = sigKpriv(x) = xd mod n

x’=verKpub(s)=se mod n
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 The RSA Signature Protocol

Alice Bob

Kpr = d
Kpub = (n, e)

Compute signature:
s = sigkpr(x) ≡ xd mod n

Kpub

(x,s)

Verify signature:
x‘ ≡ se mod n
If x‘ ≡ x mod n → valid signature
If x‘ ≡ x mod n → invalid signature
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 Security and Performance of the RSA Signature Scheme

Security:

The same constrains as RSA encryption: n needs to be at 
least 1024 bits to provide a security level of 80 bit.

 The signature, consisting of s, needs to be at least 1024 bits 
long

Performance:

The signing process is an exponentiation with the private key 
and the verification process an exponentiation with the public 
key e.

 Signature verification is very efficient as a small number can 
be chosen for the public key.
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 Existential Forgery Attack against RSA Digital Signature

Alice Bob
Kpr = d
Kpub = (n, e)

1. Choose signature:
s Zn

2. Compute message:
x ≡ se mod n

(n,e)

(x,s)

Verification:
se ≡ x‘ mod n

since se = (xd)e ≡ x mod n
→ Signature is valid

Oscar



(n,e)
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 Existential Forgery and Padding

• An attacker can generate valid message-signature 
pairs (x,s)

• But an attack can only choose the signature s and 
NOT the message x

 Attacker cannot generate messages like „Transfer 
$1000 into Oscar‘s account“

Formatting the message x according to a padding scheme can be used to 
make sure that an attacker cannot generate valid (x,s) pairs. 

(A messages x generated by an attacker during an Existential Forgery 
Attack will not coincide with the padding scheme. For more details see 
Chapter 10 in Understanding Cryptography.)
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Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)
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 Facts about the Digital Signature Algorithm (DSA)

• Federal US Government standard for digital 
signatures (DSS)

• Proposed by the National Institute of Standards 
and Technology (NIST)

• DSA is based on the Elgamal signature scheme 

• Signature is only 320 bits long

• Signature verification is slower compared to RSA



258/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Digital Signature Algorithm (DSA)

Key generation of DSA:

1. Generate a prime p with 21023 < p < 21024

2. Find a prime divisor q of p-1 with 2159 < q < 2160

3. Find an integer α with ord(α)=q

4. Choose a random integer d with 0<d<q

5. Compute β ≡ αd mod p

The keys are:

kpub = (p,q,α,β)

kpr = (d)
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 The Digital Signature Algorithm (DSA)

DSA signature generation :

Given: message x, signature s, private key d and public 
key (p,q,α,β)

1. Choose an integer as random ephemeral key kE

with 0<kE<q

2. Compute r ≡ (αkE mod p) mod q

3. Computes s ≡ (SHA(x)+d ∙ r) kE
-1 mod q

The signature consists of (r,s)

SHA denotes the hashfunction SHA-1 which computes 
a 160-bit fingerprint of message x. (See Chapter 11 of 
Understanding Cryptography for more details)
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 The Digital Signature Algorithm (DSA)

DSA signature verification

Given: message x, signature s and public key (p,q,α,β)

1. Compute auxiliary value w ≡ s-1 mod q

2. Compute auxiliary value u1 ≡ w ∙ SHA(x) mod q

3. Compute auxiliary value u2 ≡ w ∙ r mod q

4. Compute v ≡ (αu1 ∙ β u2  mod p) mod q

If v ≡ r mod q → signature is valid

If v ≡ r mod q → signature is invalid
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Proof of DSA:

We show need to show that the signature (r,s) in fact satisfied the 
condition r ≡ v mod q:

s ≡ (SHA(x))+d ∙r) ∙ kE
-1 mod q

 kE ≡ s-1 SHA(x) + d ∙ s-1 r mod q

 kE ≡u1+d ∙ u2 mod q

We can raise α to either side of the equation if we reduce modulo p:

 αkE mod p ≡ αu1+d∙u2 mod p

Since β ≡ αd mod p we can write:

 αkE mod p ≡ αu1 βu2 mod p

We now reduce both sides of the equation modulo q:

 (αkE mod p) mod q ≡ (αu1 βu2 mod p) mod q

Since r ≡ αkE mod p mod q and v ≡ (αu1 βu2 mod p)  mod q, this expression is 
identical to:

 r  ≡ v 
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 Example

Alice Bob

Key generation:
1. choose p = 59 and q = 29
2. choose α = 3
3. choose private key d = 7
4. β = αβ = 37 ≡ 4 mod 59

Sign:
Compute has of message H(x)=26
1. Choose ephermal key kE=10
2. r = (310 mod 59) ≡ 20 mod 29
3. s = (26 + 7 ∙ 20) ∙ 3) ≡ 5 mod 29

(p, q, α, β)=(59, 29, 3, 4)

(x,(r, s))=(x,20, 5)

Verify:
w ≡ 5-1 ≡ 6 mod 29
u1 ≡ 6 ∙ 26 ≡ 11 mod 29
u2 ≡ 6 ∙  20 ≡ 4 mod 29
v = (311 ∙ 44 mod 59) mod 29 = 20
v ≡ r mod 29 → valid signature
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 Security of DSA

To solve the discrete logarithm problem in p the powerful index 
calculus method can be applied. But this method cannot be 
applied to the discrete logarithm problem of the subgroup q. 
Therefore q can be smaller than p. For details see Chapter 10 and 
Chapter 8 of Understanding Cryptography .

p q hash output 
(min)

security levels

1024 160 160 80
2048 224 224 112
3072 256 256 128

Standardized parameter bit lengths and security levels for the DSA
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 Elliptic Curve Digital Signature Algorithm (ECDSA)

• Based on Elliptic Curve Cryptography (ECC)

• Bit lengths in the range of 160-256 bits can be chosen 
to provide security equivalent to 1024-3072 bit RSA 
(80-128 bit symmetric security level)

• One signature consists of two points, hence the 
signature is twice the used bit length (i.e., 320-512 bits 
for 80-128 bit security level).

• The shorter bit length of ECDSA often result in shorter 
processing time

For more details see Section 10.5 in Understanding 
Cryptography
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 Lessons Learned

• Digital signatures provide message integrity, message authentication and non-repudiation.

• RSA is currently the most widely used digital signature algorithm.

• Competitors are the Digital Signature Standard (DSA) and the Elliptic Curve Digital 

Signature Standard (ECDSA).

• RSA verification can be done with short public keys e. Hence, in practice, RSA 

verification is usually faster than signing.

• DSA and ECDSA have shorter signatures than RSA

• In order to prevent certain attacks, RSA should be used with padding.

• The modulus of DSA and the RSA signature schemes should be at least 1024- bits long. 

For true long-term security, a modulus of length 3072 bits should be chosen. In contrast, 

ECDSA achieves the same security levels with bit lengths in the range 160–256 bits.



Fig.. 1.2 Absorbing and squeezing phase of Keccak
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Fig. 1.3 The internal structure of Keccak
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Fig. 1.4 The state of Keccak
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Fig. 1.5 The Theta Step of Keccak – visually
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Fig. 1.5 The Theta Step of Keccak – pseudo code
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• Input: state array A[x,y]

• Output: manipulated state array A[x,y]

• C[x] = A[x,0]  A[x,1]  A[x,2]  A[x,3]  A[x,4] x = 0…4

• D[x] = C[x-1]  rot(C[x+1],1) x = 0…4

• A[x,y] = A[x,y]  D[x] x,y = 0…4



Table 1.3 The rotation constants of Keccak
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Fig. 1.6 The Chi Step of Keccak
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Table 1.4 The round constants of Keccak
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Motivation
Problem: 

Naive signing of long messages generates a signature of same length.

• Three Problems

• Computational overhead

• Message overhead

• Security limitations

• For more info see Section 11.1 in “Understanding Cryptography”.

Solution:
Instead of signing the whole message, sign only a digest (=hash) 

Also secure, but much faster

Needed:
Hash Functions
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Notes:

• x has fixed length

• z, y have fixed length

• z, x do not have equal length in general

• h(x) does not require a key.

• h(x) is public.

x

zi = h( xi || zi-1 )

sigkpr
z)

xi

z

y = sigkpr
(z)

 Digital Signature with a Hash Function
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 Basic Protocol for Digital Signatures with a Hash Function:

Alice Bob

z = h(x)
s = sigKpr

(z)

(x, s)

z' = h(x)
verKpub

(s,z')=true/false

Kpub
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 Principal input–output behavior of hash functions



279/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1
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 The three security properties of hash functions
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 Hash Funktionen: Security Properties

• Preimage resistance: For a given output z, it is impossible to find any
input x such that h(x) = z, i.e., h(x) is one-way. 

• Second preimage resistance: Given x1, and thus h(x1), it is computa-
tionally infeasible to find any x2 such that h(x1) = h(x2).

• Collision resistance: It is computationally infeasible to find any pairs
x1 ≠ x2 such that h(x1) = h(x2).
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 Hash Funktionen: Security
It turns out that collison resistance causes most problems

• How hard is it to find a collision with a probability of 0.5 ?

• Related Problem: How many people are needed such that two 
of them have the same birthday with a probability of 0.5 ? 

• No! Not 365/2=183.   23 are enough ! This is called the 
birthday paradoxon (Search takes ≈√2n steps) .

• For more info see Chapter 11.2.3 in Understanding 
Cryptography.

• To deal with this paradox, hash functions need a output size of 
at least 160 bits.
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Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1
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 Hash Funktionen: Algorithms

• MD5 - family

• SHA-1: output - 160 Bit; input - 512 bit chunks of message x;

operations - bitwise AND, OR, XOR, complement und cyclic shifts.

• RIPE-MD 160: output - 160 Bit; input - 512 bit chunks of message x; 
operations – like in SHA-1, but two in parallel and combinations of them 
after each round.

Hash Algorithms

based on
block ciphers

Special Algorithms,
e.g. MD5 - family
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Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1



 SHA-1

• Part of the MD-4 family.

• Based on a Merkle-Dåmgard construction.

• 160-bit output from a message of maximum length  264

bit.

• Widely used ( even tough some weaknesses are known)
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 SHA-1 High Level Diagramm
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• Compression Function consists of 80 rounds which are divided into four 

stages of 20 rounds each



 SHA-1: Padding

• Message x has to be padded to fit a size of a multiple of 512 bit.

• k ≡ 512 − 64 − 1 − l = 448 − (l + 1) mod 512.
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 SHA-1: Hash Computation

• Each message block xi is processed in four stages with 20 rounds each

SHA-1 uses:

• A message schedule which computes a 32-bit word W0,W1,...,W79 for each of the 80 

rounds

• Five working registers of size of 32 bits A,B,C,D,E

• A hash value Hi consisting of five 32-bit words Hi
(0), Hi

(1), Hi
(2) , Hi

(3), Hi
(4)

• In the beginning, the hash value holds the initial value H0, which is replaced by a new 

hash value after the processing of each single message block. 

• The final hash value Hn is equal to the output h(x) of SHA-1.
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 SHA-1: All four stages
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 SHA-1: Internals of a Round
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Stage t Round j Constant Kt Function ft

1 00…19 K=5A827999 f(B,C,D)=(B∧C)∨(¯B∧D)
2 20…39 K=6ED9EBA1 f(B,C,D)=B⊕C⊕D
3 40…59 K=8F1BBCDC f(B,C,D)=(B⊕C)∨(B⊕D)∨(C⊕D)
4 60…79 K=CA62C1D6 f(B,C,D)=B⊕C⊕D
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 Lessons Learned: Hash-Funktions

• Hash functions are keyless. The two most important applications of hash 
functions are their use in digital signatures and in message authentication 
codes such as HMAC.

• The  three  security  requirements  for  hash  functions  are  one-wayness,  
second preimage resistance and collision resistance.

• Hash functions should have at least 160-bit output length in order to 
withstand collision attacks; 256 bit or more is desirable for long-term 
security.

• MD5, which was widely used, is insecure. Serious security weaknesses 
have been found in SHA-1, and the hash function should be phased out. 
The SHA-2 algorithms all appear to be secure.

• The ongoing SHA-3 competition will result in new standardized hash 
functions in a few years.
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 Further Informations: Hash-Funktionen

• Overview over many Hash Functions with Spezifications:

• http://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo

• Birthday Paradox: Wikipedia has a nice explanation

• http://en.wikipedia.org/wiki/Birthday_problem

• SHA Standards

• SHA1+2: http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf

• SHA3 Overview: http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

• CrypTool is a learning program which also can hash:

• http://www.cryptool.org/



• The principle behind MACs

• The security properties that can be achieved with MACs

• How MACs can be realized with hash functions and with block ciphers

 Content of this Chapter
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• Similar to digital signatures, MACs append an authentication tag to a message

• MACs use a symmetric key k for generation and verification

• Computation of a MAC: m = MACk(x)

 Principle of Message Authentication Codes
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1. Cryptographic checksum

A MAC generates a cryptographically secure authentication tag for a given message.

2. Symmetric 

MACs are based on secret symmetric keys. The signing and verifying parties must share a secret 

key.

3. Arbitrary message size 

MACs accept messages of arbitrary length.

4. Fixed output length 

MACs generate fixed-size authentication tags.

5. Message integrity

MACs providemessage integrity: Any manipulations of a message during transit will be detected 

by the receiver.

6. Message authentication 

The receiving party is assured of the origin of the message.

7. No nonrepudiation 

Since MACs are based on symmetric principles, they do not provide nonrepudiation.

 Properties of Message Authentication Codes
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• MAC is realized with cryptographic hash functions (e.g., SHA-1)

• HMAC is such a MAC built from hash functions

• Basic idea: Key is hashed together with the message

• Two possible constructions:

• secret prefix MAC: m =MACk(x) = h(k||x)

• secret suffix MAC: m =MACk(x) = h(x||k)

• Attacks: 

• secret prefix MAC: Attack MAC for the message x = (x1,x2, . . . ,xn,xn+1), where xn+1 is an arbitrary 

additional block, can be constructed from m without knowing the secret key

• secret suffix MAC: find collision x and xO  such that h(x) = h(xO), then m = h(x||k) = h(xO||k)

• Idea: Combine secret prefix and suffix: HMAC (cf. next slide)

 MACs from Hash Functions
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• Proposed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in 1996

• Scheme consists of an inner and outer hash

• k+ is expanded key k

• expanded key k+ is XORed with the inner pad

• ipad = 00110110,00110110, . . .,00110110

• opad = 01011100,01011100, . . .,01011100

• HMACk(x) = h[(k+⊕opad)||h[(k+⊕ipad)||x]]

• HMAC is provable secure which means (informally speaking): The MAC can only be broken if a 

collision for the hash function can be found.

 HMAC

298/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl



• MAC constructed from block ciphers (e.g. AES)

• Popular: Use AES in CBC mode

• CBC-MAC:

 MACs from Block Ciphers
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• MAC Generation

• Divide the message x into blocks xi

• Compute first iteration y1 = ek(x1⊕IV)

• Compute yi = ek(xi⊕yi−1) for the next blocks

• Final block is the MAC value: m =MACk(x) = yn

• MAC Verification

• Repeat MAC computation (m‘) 

• Compare results:In case m’= m, the message is verified as correct

• In case m’ ≠ m, the message and/or the MAC value m have been altered during transmission

 CBC-MAC

300/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl



• MACs provide two security services, message integrity and message authentication, using 

symmetric techniques. MACs are widely used in protocols.

• Both of these services also provided by digital signatures, but MACs are much faster as they are 

based on symmetric algorithms.

• MACs do not provide nonrepudiation.

• In practice, MACs are either based on block ciphers or on hash functions.

• HMAC is a popular and very secure MAC, used in many practical protocols such as TLS.

 Lessons Learned
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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 Classification of Key Establishment Methods

In an ideal key agreement protocol, no single party can control 
what the key value will be.
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It is often desirable to frequently change the key in a cryptographic system. 

Reasons for key freshness include:

• If a key is exposed (e.g., through hackers), there is limited damage if the key is changed often

• Some cryptographic attacks become more difficult if only a limited amount of ciphertext was 

generated under one key

• If an attacker wants to recover long pieces of ciphertext, he has to recover several keys which 

makes attacks harder

 Key Freshness
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 Key Derivation

 In order to achieve key freshness, we need to generate new keys frequently.

 Rather than performing a full key establishment every time (which is costly in 
terms of computation and/or communication), we can derive multiple session
keys kses from a given key kAB.

 The key kAB is fed into a key derivation function together with a nonce r („number
used only once“).

 Every different value for r yields a different session key
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 Key Derivation 

 The key derivation function is a computationally
simple function, e.g., a block cipher or a hash
function

Alice Bob

generate nonce r

derive session key
Kses= ekAB (r)

r

derive session key
Kses= ekAB (r)

 Example for a basic protocol:
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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 The n2 Key Distribution Problem

 Simple situation: Network with n users. Every user wants to communicate
securely with every of the other n-1 users.

 Naïve approach: Every pair of users obtains an individual key pair
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 The n2 Key Distribution Problem

Shortcomings

 There are n (n-1) ≈ n2 keys in the system

 There are n (n-1)/2 key pairs

 If a new user Esther joins the network, new
keys kXE have to be transported via secure
channels (!) to each of the existing usersa

 Only works for small networks which are
relatively static

Example: mid-size company with 750 employees

 750 x 749 = 561,750 keys must be distributed securely
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• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack
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 Content of this Chapter
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 Key Establishment with Key Distribution Center

Alice Bob

derive session key
Kses= eKA (yA)

KDC
KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB) generate session key kses

yA = eKA (kses)
yB = eKB (kses)

yA yB

derive session key
Kses= eKB (yB)

y= eKses (x) y x= e-1
Kses (y)

 Key Distribution Center (KDC) = Central party, trusted by all users

 KDC shares a key encryption key (KEK) with each user

 Principle: KDC sends session keys to users which are encrypted with KEKs

message y

311/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl



 Key Establishment with Key Distribution Center

 Advantages over previous approach: 

Only n long-term key pairs are in the system

 If a new user is added, a secure key is only needed between the user
and the KDC (the other users are not affected)

Scales well to moderately sized networks

 Kerberos (a popular authentication and key distribution protocol) is based on 
KDCs

 More information on KDCs and Kerberos: Section 13.2 of Understanding 
Cryptography
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 Key Establishment with Key Distribution Center

Remaining problems: 

 No Perfect Forward Secrecy: If the KEKs are compromised, an attacker
can decrypt past messages if he stored the corresponding ciphertext

 Single point of failure: The KDC stores all KEKs. If an attacker gets
access to this database, all past traffic can be decrypted.

 Communication bottleneck: The KDC is involved in every
communication in the entire network (can be countered by giving the
session keys a long life time)

 For more advanced attacks (e.g., key confirmation attack): Cf. Section
13.2 of Understanding Cryptography
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Alice

Recall: Diffie–Hellman Key Exchange (DHKE)

Bob

Choose random private key
kprA = a ∈ {1, 2,…, p-1}

Choose random private key
kprB = b ∈ {1, 2,…, p-1}

Compute public key
kpubA = A = αa mod p

Compute public key
kpubB = B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

 Widely used in practice

 If the parameters are chosen carefully (especially a prime p > 21024), 
the DHKE is secure against passive (i.e., listen-only) attacks

 However: If the attacker can actively intervene in the communciation,
the man-in-the-middle attack becomes possible

Public parameters α, p 
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Alice

Man-in-the-Middle Attack

Bob

kprA = a
kpubA = A = αa mod p

kAO = (B´)a mod p

A

 Oscar computes a session key kAO with Alice, and kBO with Bob

 However, Alice and Bob think they are communicationg with each other ! 

 The attack efficiently performs 2 DH key-exchanges: Oscar-Alice and Oscar-Bob

 Here is why the attack works:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

Alice computes: kAO = (B´)a = (αo)a

Oscar computes: kAO = Ao = (αa)o

Bob computes: kBO = (A´)b = (αo)b

Oscar computes: kBO = Bo = (αa)o
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Alice

Implications of the Man-in-the-Middle Attack

Bob

kprA = a
kpubA = A = αa mod p

kAO = (B´)a mod p

A

 Oscar has no complete control over the channel, e.g., if Alice wants to send an 
encrypted message x to Bob, Oscar can read the message:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

y = AESkA,O (x)
y

decrypt  x = AES-1
kA,O (y)

re-encrypt  y´= AESkB,O (x)
y´

x = AES-1
kB,O (y´)
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Very, very important facts about the Man-in-the-Middle Attack

 The man-in-the-middle-attack is not restricted to DHKE; it is
applicable to any public-key scheme, e.g. RSA encryption. 
ECDSA digital signature, etc. etc.

 The attack works always by the same pattern: Oscar replaces the
public key from one of the parties by his own key.

 The attack is also known as MIM attack or Janus attack

 Q: What is the underlying problem that makes the MIM attack possible?

 A: The public keys are not authenticated: When Alice receives a public key which is
allegedly from Bob, she has no way of knowing whether it is in fact his. (After all, a key
consists of innocent bits; it does not smell like Bob‘s perfume or anything like that)

Even though public keys can be sent over unsecure channels, they
require authenticated channels.
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 Certificates

 In order to authenticate public keys (and thus, prevent the MIM attack) , all public keys
are digitally signed by a central trusted authority.

 Such a construction is called certificate

certificate = public key + ID(user) + digital signature over public key and ID

 In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice) )

 Certificates bind the identity of user to her public key

 The trusted authority that issues the certificate is referred to as certifying authority (CA)

 „Issuing certificates“ means in particular that the CA computes the signature sigKCA(kpub)
using its (super secret!) private key kCA

 The party who receives a certificate, e.g., Bob, verifies Alice‘s public key using the public
key of the CA
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Alice

Diffie–Hellman Key Exchange (DHKE) with Certificates

Bob

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

Cert(Alice)

kprA = a

kpubA = A

Cert(Alice)  = ((A, IDA), sigKCA (A,IDA))

Cert(Bob)

kprB = b

kpubB = B = αb mod p

Cert(Bob)  = ((B, IDB), sigKCA (B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

CA
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• Note that verfication requires the public key of the CA for verKpub,CA

• In principle, an attacker could run a MIM attack when kpub,CA is being distributed

 The public CA keys must also be distributed via an authenticated channel!

Certificates

 Q: So, have we gained anything? 
After all, we try to protect a public key (e.g., a DH key) by using yet another
public-key scheme (digital signature for the certificate)?

 A: YES! The difference from before (e.g., DHKE without certificates) is that
we only need to distribute the public CA key once, often at the set-upt
time of the system

 Example: Most web browsers are shipped with the public keys of many
CAs. The „authenticated channel“ is formed by the (hopefully) correct
distribution of the original browser software.
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Definition: The entire system that is formed by CAs together with the necessary 

support mechanisms is called a public-key infrastructure (PKI).

 Public-Key Infrastructure
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• In the wild certificates contain much more information than just a 

public key and a signature.

• X509 is a popular signature standard. The main fields of such a 

certificate are shown to the right.

• Note that the „Signature“ at the bottom is computed over all other 

fields in the certifcate (after hashing of all those fields).

• It is important to note that there are two public-key schemes 

involved in every certificate:

1. The public-key that actually is protected by the signature („Subject‘s 

Public Key“ on the right). This was the public Diffie-Hellman key in 

the earlier examples.

2. The digital signature algorithm used by the CA to sign the certificate 

data.

• For more information on certificates, see Section 13.3 of 

Understanding Cryptography

 Certificates in the Real World
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There are many additional problems when certificates are to be used in systems with a large number 

of participants. The more pressing ones are:

1. Users communicate which other whose certificates are issued by different CAs

• This requires cross-certification of CAs, e.g.. CA1 certifies the public-key of CA2. If 

Alice trusts „her“ CA1, cross-certification ensures that she also trusts CA2. This is 

called a „chain of trust“ and it is said that „trust is delegated“.

2. Certificate Revocation Lists (CRLs)

• Another real-world problem is that certificates must be revoced, e.g., if a smart card 

with certificate is lost or if a user leaves an organization. For this, CRLs must be 

sent out periodically (e.g., daily) which is a burden on the bandwidth of the system.

More information on PKIs and CAs  can be found in Section 13.3 of Understanding Cryptography 

 Remaining Issues with PKIs
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