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List of Symbols

The symbols that are used throughout the book for various important quantities
are defined in the following list. In some cases, the same symbol has different
meaning in different parts of the book; it should be clear from the context.

a Acceleration vector, Dv
Dt

A Matrix of normalized eigenvectors [see Eq. (3.9.8)]
B Left Cauchy–Green deformation tensor (or Finger tensor),

B = F · FT; magnetic flux density vector

B̃ Cauchy strain tensor, B̃ = F−T · F−1; B̃−1 = B
B( , ) Bilinear form
c Specific heat, moisture concentration
c Couple vector
cv, cp Specific heat at constant volume and pressure
C Right Cauchy–Green deformation tensor, C = FT · F;

fourth-order elasticity tensor [see Eq. (6.3.4)]
Cij Elastic stiffness coefficients
d Third-order tensor of piezoelectric moduli
D Internal dissipation
da Area element (vector) in spatial description
dA Area element (vector) in material description
ds Surface element in current configuration
dS Surface element in reference configuration
dx Line element (vector) in current configuration
dX Line element (vector) in reference configuration
D Symmetric part of the velocity gradient tensor, L = (∇v)T;

that is, D = 1
2

[
(∇v)T +∇v

]
; electric flux vector;

mass diffusivity tensor
D/Dt Material time derivative
Di Internal diameter
e Specific internal energy
e Almansi strain tensor, e = 1

2

(
I− F−T · F−1

)
ê A unit vector
êA A unit basis vector in the direction of vector A
ei A basis vector in the xi−direction
eijk Components of alternating tensor, E
E Green–Lagrange strain tensor, E = 1

2

(
FT · F− I

)
;

E,E1, E2 Young’s modulus (modulus of elasticity)

Êi Unit base vector along the Xi material coordinate direction
electric field intensity vector

Eij Components of the Green–Lagrange strain tensor
f Load per unit length of a bar
f Body force vector
f( ) Function
fx, fy, fz Body force components in the x, y, and z directions
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F Deformation gradient, F = (∇0x)
T; force vector

F Functional mapping
g Acceleration due to gravity; function; internal heat generation
g Gradient of temperature, g = ∇θ
G Shear modulus (modulus of rigidity)
h Height of the beam; thickness; heat transfer coefficient
H Total entropy (see Section 5.4.3.1); unit step function
H Nonlinear deformation tensor [see Eq. 6.6.25)];

magnetic field intensity vector
I Second moment of area of a beam cross section; functional
I Unit second-order tensor
I1, I2, I3 Principal invariants of stress tensor
J Determinant of the matrix of deformation gradient (Jacobian);

polar second moment of area of a shaft cross section
J Current density vector; creep compliance
Ji Principal invariants of strain tensor E or

rate of deformation tensor D
k Spring constant; thermal conductivity
k Thermal conductivity tensor
K Kinetic energy
Kij Stiffness coefficients
Ks Shear correction factor in Timoshenko beam theory
�ij Direction cosines [see Eq. (2.2.71) or Eq. (4.3.4)]
L Length; Lagrangian function
L Velocity gradient tensor, L = (∇v)T

L( ) Linear form
[L] Matrix of direction cosines, �ij
m A scalar memory function (or relaxation kernel)
m Couple traction vector [see Eq. (5.3.33)]
M Bending moment in beam problems
M Couple stress tensor; magnetization vector
n̂ Unit normal vector in the current configuration
ni ith component of the unit normal vector n̂
N Axial force in beam problems

N̂ Unit normal vector in the reference configuration

NI Ith component of the unit normal vector N̂
p Pressure (hydrostatic or thermodynamic)
p Angular momentum vector; vector of pyroelectric coefficients
P Point load in beams; perimeter
P First Piola–Kirchhoff stress tensor; polarization vector
q Distributed transverse load on a beam
q0 Intensity of the distributed transverse load in beams
q0 Heat flux vector in the reference configuration
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qn Heat flux normal to the boundary, qn = ∇ · n̂
qf Moisture flux vector
qi Force components
q Heat flux vector in the current configuration
Q First moment of area; volume rate of flow
Q Rotation tensor [see Eq. (3.8.12)]
Qh Heat input
QJ Joule heating
r Radial coordinate in the cylindrical polar system
r0 Internal heat generation per unit mass in the

reference configuration
rh Internal heat generation per unit mass in the

current configuration
R Radial coordinate in the spherical coordinate system;

universal gas constant
R Position vector in the spherical coordinate system;

proper orthogonal tensor
S A second-order tensor; second Piola–Kirchhoff stress tensor
Se Electric susceptibility tensor
Sij Elastic compliance coefficients
t Time
t Stress vector; traction vector
T Torque; temperature
u Displacement vector
u, v, w Displacements in the x, y, and z directions
u1, u2, u3 Displacements in the x1, x2, and x3 directions
U Internal (or strain) energy
U Right Cauchy stretch tensor
v Velocity, v = |v|
v Velocity vector, v = Dx

Dt
V Shear force in beam problems; potential energy due to loads
V Left Cauchy stretch tensor
Vf Scalar potential
w Vorticity vector, w = 1

2∇× v
W Power input
W Skew symmetric part of the velocity gradient tensor,

L = (∇v)T; that is, W = 1
2

[
(∇v)T −∇v

]
x Spatial coordinates
x, y, z Rectangular Cartesian coordinates
x1, x2, x3 Rectangular Cartesian coordinates
X Material coordinates
Y Relaxation modulus
z Transverse coordinate in the beam problem;

axial coordinate in the torsion problem
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Greek symbols
α Angle; coefficient of thermal expansion
αij Thermal coefficients of expansion
βij Material coefficients, βij = Cijk�αk�

χ Deformation mapping
δ Variational operator used in Chapter 7; Dirac delta
δij Components of the unit tensor, I (Kronecker delta)
Δ Change of (followed by another symbol)
ε Infinitesimal strain tensor
ε̃ Symmetric part of the displacement gradient tensor,

(∇u)T; that is, ε̃ = 1
2

[
(∇u)T +∇u

]
ε0 Permittivity of free space
εij Rectangular components of the infinitesimal

strain tensor
φ A typical variable; angular coordinate in the spherical

coordinate system; electric potential; relaxation function
φf Moisture source
Φ Viscous dissipation, Φ = τ : D; Gibb’s potential;

Airy stress function
γ Shear strain in one-dimensional problems
Γ Internal entropy production; total boundary
η Entropy density per unit mass; dashpot constant
η0 Viscosity coefficient
κ0, κ Reference and current configurations
λ Extension ratio; Lamé constant; eigenvalue
μ Lamé constant; viscosity; principal value of strain
μ0 Permeability of free space
ν Poisson’s ratio; νij Poisson’s ratios
Π Total potential energy functional
θ Angular coordinate in the cylindrical and spherical

coordinate systems; angle; twist per unit length;
absolute temperature

Θ Twist
ρ Density in the current configuration; charge density
ρ0 Density in the reference configuration
σ Boltzman constant
σ̃ Mean stress
σ Cauchy stress tensor
τ Shear stress; retardation or relaxation time
τ Viscous stress tensor
Ω Domain of a problem
Ω Skew symmetric part of the displacement gradient tensor,

(∇u)T; that is Ω = 1
2

[
(∇u)T −∇u

]
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ω Angular velocity
ω Infinitesimal rotation vector, ω = 1

2 ∇× u
ψ Warping function; stream function; creep function
Ψ Helmholtz free energy density; Prandtl stress function
∇ Gradient operator with respect to x
∇0 Gradient operator with respect to X
[ ] Matrix associated with the enclosed quantity
{ } Column vector associated with the enclosed quantity
| | Magnitude or determinant of the enclosed quantity
˙( ) Time derivative of the enclosed quantity
( )∗ Enclosed quantity with superposed rigid-body motion

( )
′

Deviatoric tensors associated with the enclosed tensor

Note:
Quotes by various people included in this book were found at different web sites;
for example, visit:

http://naturalscience.com/dsqhome.html,
http://thinkexist.com/quotes/david hilbert/, and
http://www.yalescientific.org/2010/10/from-the-editor-imagination-in-science/.

The author cannot vouch for their accuracy; this author is motivated to include
the quotes at various places in his book for their wit and wisdom.





Preface to the Second Edition

Tis the good reader that makes the good book; in every book he finds passages which seem
confidences or asides hidden from all else and unmistakeably meant for his ear; the profit of
books is according to the sensibility of the reader; the profoundest thought or passion sleeps
as in a mine, until it is discovered by an equal mind and heart.

—– Ralph Waldo Emerson (1803–1882)

You cannot teach a man anything, you can only help him find it within himself.

—– Galileo Galilei (1564–1642)

Engineers are problem solvers. They construct mathematical models, develop
analytical and numerical approaches and methodologies, and design and manu-
facture various types of devices, systems, or processes. Mathematical develop-
ment and engineering analysis are aids to designing systems for specific function-
alities, and they involve (1) mathematical model development, (2) data acquisi-
tion by measurements, (3) numerical simulation, and (4) evaluation of the results
in light of known information. Mathematical models are developed using laws
of physics and assumptions concerning the behavior of the system under consid-
eration. The most difficult step in arriving at a design that is both functional
and cost-effective is the construction of a suitable mathematical model of the
system’s behavior. It is in this context that a course on continuum mechanics or
elasticity provides engineers with the background to formulate a suitable math-
ematical model and evaluate it in the context of the functionality and design
constraints placed on the system.

Most classical books on continuum mechanics are very rigorous in mathemat-
ical treatments of the subject but short on detailed explanations and including
few examples and problem sets. Such books serve as reference books but not as
textbooks. This textbook provides illustrative examples and problem sets that
enable readers to test their understanding of the subject matter and utilize the
tools developed in the formulation of engineering problems.

This second edition of Introduction to Continuum Mechanics has the same
objective as the first, namely, to facilitate an easy and thorough understanding
of continuum mechanics and elasticity concepts. The course also helps engi-
neers who depend on canned programs to analyze problems to interpret the
results produced by such programs. The book offers a concise yet rigorous
treatment of the subject of continuum mechanics and elasticity at the
introductory level. In all of the chapters of the second edition, additional
explanations, examples, and problems have been added. No attempt has been
made to enlarge the scope or increase the number of topics covered.

The book may be used as a textbook for a first course on continuum me-
chanics as well as elasticity (omitting Chapter 8 on fluid mechanics and heat
transfer). A solutions manual has also been prepared for the book. The solution
manual is available from the publisher only to instructors who adopt the book
as a textbook for a course.
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Since the publication of the first edition, several users of the book com-
municated their comments and compliments as well as errors they found, for
which the author thanks them. All of the errors known to the author have
been corrected in the current edition. The author is grateful, in particular, to
Drs. Karan Surana (University of Kansas), Arun Srinivasa (Texas A&M Uni-
versity), Rebecca Brannon (University of Utah), Vinu Unnikrishnan (University
of Alabama), Wenbin Yu (Utah State University), Srikanth Vedantam (Indian
Institute of Technology, Madras), Shailendra Joshi (National University of Sin-
gapore), Ganesh Subbarayan (Purdue University), S. H. Khan (Indian Institute
of Technology, Kanpur), and Jaehyung Ju (University of North Texas) for their
constructive comments and help. The author also expresses his sincere thanks
to Mr. Peter Gordon, Senior Editor (Engineering) at Cambridge University
Press, for his continued encouragement, friendship, and support in producing
this book. The author requests readers to send their comments and corrections
to jn reddy@yahoo.com.

J. N. Reddy
College Station, Texas

What is there that confers the noblest delight? What is that which swells a man’s breast with
pride above that which any other experience can bring to him? Discovery! To know that you
are walking where none others have walked ... —– Mark Twain (1835–1910)

You can get into a habit of thought in which you enjoy making fun of all those other people
who don’t see things as clearly as you do. We have to guard carefully against it.

—– Carl Sagan (1934–1996)



Preface to the First Edition

If I have been able to see further, it was only because I stood on the shoulders of giants.

—– Isaac Newton (1643–1727)

Many of the mathematical models of natural phenomena are based on fundamen-
tal scientific laws of physics or otherwise, extracted from centuries of research
on the behavior of physical systems under the action of natural “forces.” To-
day this subject is referred to simply as mechanics – a phrase that encompasses
broad fields of science concerned with the behavior of fluids, solids, and complex
materials. Mechanics is vitally important to virtually every area of technology
and remains an intellectually rich subject taught in all major universities. It
is also the focus of research in departments of aerospace, chemical, civil, and
mechanical engineering, and engineering science and mechanics, as well as ap-
plied mathematics and physics. The last several decades have witnessed a great
deal of research in continuum mechanics and its application to a variety of prob-
lems. As most modern technologies are no longer discipline-specific but involve
multidisciplinary approaches, scientists and engineers should be trained to think
and work in such environments. Therefore, it is necessary to introduce the sub-
ject of mechanics to senior undergraduate and beginning graduate students so
that they have a strong background in the basic principles common to all major
engineering fields. A first course on continuum mechanics or elasticity is the
one that provides the basic principles of mechanics and prepares engineers and
scientists for advanced courses in traditional as well as emerging fields such as
biomechanics and nanomechanics.

There are many books on mechanics of continua. These books fall into two
major categories: those that present the subject as a highly mathematical and
abstract subject, and those that are too elementary to be of use for those who
will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelas-
ticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics,
mechanobiology, and nanoscience. As is the case with all other books written
(solely) by the author, the objective is to facilitate an easy understanding of the
topics covered. It is hoped that the book is simple in presenting the main con-
cepts yet mathematically rigorous enough in providing the invariant form as well
as component form of the governing equations for analysis of practical problems
of engineering. In particular, the book contains formulations and applications
to specific problems from heat transfer, fluid mechanics, and solid mechanics.

The motivation and encouragement that led to the writing of this book came
from the experience of teaching a course on continuum mechanics at Virginia
Polytechnic Institute and State University and Texas A&M University. A course
on continuum mechanics takes different forms – from abstract to very applied
– when taught by different people. The primary objective of the course taught
by the author is two-fold: (1) formulation of equations that describe the motion
and thermomechanical response of materials and (2) solution of these equations
for specific problems from elasticity, fluid flows, and heat transfer. The present
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book is a formal presentation of the author’s notes developed for such a course
over the last two and half decades.

With a brief discussion of the concept of a continuum in Chapter 1, a re-
view of vectors and tensors is presented in Chapter 2. Since the language of
mechanics is mathematics, it is necessary for all readers to familiarize them-
selves with the notation and operations of vectors and tensors. The subject of
kinematics is discussed in Chapter 3. Various measures of strain are introduced
here. The deformation gradient, Cauchy–Green deformation, Green–Lagrange
strain, Cauchy and Euler strain, rate of deformation, and vorticity tensors are
introduced, and the polar decomposition theorem is discussed in this chapter. In
Chapter 4, various measures of stress – Cauchy stress and Piola–Kirchhoff stress
measures – are introduced, and stress equilibrium equations are presented.

Chapter 5 is dedicated to the derivation of the field equations of continuum
mechanics, which forms the heart of the book. The field equations are derived
using the principles of conservation of mass and balance of momenta and energy.
Constitutive relations that connect the kinematic variables (e.g., density, tem-
perature, and deformation) to the kinetic variables (e.g., internal energy, heat
flux, and stresses) are discussed in Chapter 6 for elastic materials, viscous and
viscoelastic fluids, and heat transfer.

Chapters 7 and 8 are devoted to the application of the field equations de-
rived in Chapter 5 and constitutive models of Chapter 6 to problems of linearized
elasticity, and fluid mechanics and heat transfer, respectively. Simple boundary-
value problems, mostly linear, are formulated and their solutions are discussed.
The material presented in these chapters illustrates how physical problems are
analytically formulated with the aid of continuum equations. Chapter 9 deals
with linear viscoelastic constitutive models and their application to simple prob-
lems of solid mechanics. Since a continuum mechanics course is mostly offered
by solid mechanics programs, the coverage in this book is slightly more directed,
in terms of the amount and type of material covered, to solid and structural
mechanics.

The book was written keeping undergraduate seniors and first-year graduate
students of engineering in mind. Therefore, it is most suitable as a text book for
adoption for a first course on continuum mechanics or elasticity. The book also
serves as an excellent precursor to courses on viscoelasticity, plasticity, nonlinear
elasticity, and nonlinear continuum mechanics.

The book contains so many mathematical equations that it is hardly possible
not to have typographical and other kinds of errors. I wish to thank in advance
those readers who are willing to draw the author’s attention to typos and errors,
using the e-mail address: jn reddy@yahoo.com.

J. N. Reddy
College Station, Texas
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1

INTRODUCTION

I can live with doubt and uncertainty and not knowing. I think it is much more interesting to
live not knowing than to have answers that might be wrong.

—– Richard Feynmann (1918–1988)

What we need is not the will to believe but the will to find out.

—– Bertrand Russell (1872-1970)

1.1 Continuum Mechanics

The subject ofmechanics deals with the study of deformations and forces in mat-
ter, whether it is a solid, liquid, or gas. In such a study, we make the simplifying
assumption, for analytical purposes, that the matter is distributed continuously,
without gaps or empty spaces (i.e., we disregard the molecular structure of mat-
ter). Such a hypothetical continuous matter is termed a continuum. In essence,
in a continuum all quantities such as mass density, displacements, velocities,
stresses, and so on vary continuously so that their spatial derivatives exist and
are continuous.1 The continuum assumption allows us to shrink an arbitrary
volume of material to a point, in much the same way as we take the limit in
defining a derivative, so that we can define quantities of interest at a point. For
example, mass density (mass per unit volume) of a material at a point is defined
as the ratio of the mass Δm of the material to its volume ΔV surrounding the
point in the limit that ΔV becomes a value ε3, where ε is small compared with
the mean distance between molecules

ρ = lim
ΔV→ε3

Δm

ΔV
. (1.1.1)

In fact, we take the limit ε → 0. A mathematical study of the mechanics of such
an idealized continuum is called continuum mechanics.

The primary objectives of this book are (1) to study the conservation prin-
ciples in mechanics of continua and formulate the equations that describe the
motion and mechanical behavior of materials, and (2) to present the applications
of these equations to simple problems associated with flows of fluids, conduction
of heat, and deformations of solid bodies. Although the first of these objec-
tives is important, the reason for the formulation of the equations is to gain a
quantitative understanding of the behavior of an engineering system. This quan-
titative understanding is useful in design and manufacture of better products.
Typical examples of engineering problems, which are sufficiently simple to be

1The continuity is violated when we consider shock waves in gas dynamics (discontinuity in
density and velocity) as well as dissimilar-material interfaces. In such cases, in addition
to the concepts to be discussed here, certain jump conditions are employed to deal with
discontinuities. We do not consider such situations in this book.
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covered in this book, are described in the examples discussed next. At this stage
of discussion, it is sufficient to rely on the reader’s intuitive understanding of
concepts from basic courses in fluid mechanics, heat transfer, and mechanics of
materials about the meaning of stress and strain and what constitutes viscosity,
conductivity, modulus, and so on used in the examples.

Problem 1 (solid mechanics)

We wish to design a diving board (which enables a swimmer to gain momentum
before jumping into the pool) of given length L, assumed to be fixed at one end
and free at the other end (see Fig. 1.1.1). The board is initially straight and
horizontal and of uniform cross section. The design process consists of selecting
the material (with Young’s modulus E) and cross-sectional dimensions b and
h such that the board carries the (moving) weight W of the swimmer. The
design criteria are that the stresses developed do not exceed the allowable stress
values and the deflection of the free end does not exceed a pre-specified value δ.
A preliminary design of such systems is often based on mechanics of materials
equations. The final design involves the use of more sophisticated equations, such
as the three-dimensional (3D) elasticity equations. The equations of elementary
beam theory may be used to find a relation between the deflection δ of the
free end in terms of the length L, cross-sectional dimensions b and h, Young’s
modulus E, and weight W :

δ =
4WL3

Ebh3
. (1.1.2)

Given δ (allowable deflection) and load W (maximum possible weight of a swim-
mer), one can select the material (Young’s modulus, E) and dimensions L, b, and
h (which must be restricted to the standard sizes fabricated by a manufacturer).
In addition to the deflection criterion, one must also check if the board develops
stresses that exceed the allowable stresses of the material selected. Analysis of
pertinent equations provides the designer with alternatives to select the mate-
rial and dimensions of the board so as to have a cost-effective but functionally
reliable structure.

h

b

L

Fig. 1.1.1: A diving board fixed at the left end and free at the right end.



1.1. CONTINUUM MECHANICS 3

Problem 2 (fluid mechanics)

We wish to measure the viscosity μ of a lubricating oil used in rotating machinery
to prevent the damage of the parts in contact. Viscosity, like Young’s modulus
of solid materials, is a material property that is useful in the calculation of shear
stresses developed between a fluid and a solid body. A capillary tube is used to
determine the viscosity of a fluid via the formula

μ =
πd4

128Q

p1 − p2
L

, (1.1.3)

where d is the internal diameter and L is the length of the capillary tube, p1 and
p2 are the pressures at the two ends of the tube (oil flows from one end to the
other, as shown in Fig. 1.1.2), and Q is the volume rate of flow at which the oil
is discharged from the tube. Equation (1.1.3) is derived, as we shall see later in
this book, using the principles of continuum mechanics.

Internal diameter, d

1p 2p

L
x

r

)(rvx

Fig. 1.1.2: Measurement of the viscosity of a fluid using a capillary tube.

Problem 3 (heat transfer)

We wish to determine the heat loss through the wall of a furnace. The wall
typically consists of layers of brick, cement mortar, and cinder block (see Fig.
1.1.3). Each of these materials provides a varying degree of thermal resistance.
The Fourier heat conduction law,

q = −k
dT

dx
, (1.1.4)

Furnace

Cross section
of the wall

x

Fig. 1.1.3: Heat transfer through the composite wall of a furnace.
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provides a relation between the heat flux q (heat flow per unit area) and gradient
of temperature T . Here k denotes thermal conductivity (1/k is the thermal
resistance) of the material. The negative sign in Eq. (1.1.4) indicates that
heat flows from a high-temperature region to a low-temperature region. Using
the continuum mechanics equations, one can determine the heat loss when the
temperatures inside and outside of the building are known. A building designer
can select the materials as well as thicknesses of various components of the
wall to reduce the heat loss (while ensuring necessary structural strength – a
structural analysis aspect).

The foregoing examples provide some indication of the need for studying the
mechanical response of materials under the influence of external loads. The re-
sponse of a material is consistent with the laws of physics and the constitutive
behavior of the material. The present book aims to describe the physical princi-
ples and derive the equations governing the stress and deformation of continuous
materials, and then solve some simple problems from various branches of engi-
neering to illustrate the applications of the principles discussed and equations
derived.

1.2 A Look Forward

The primary objective of this book is two fold: (1) use of the physical principles
to derive the equations that govern the motion and thermomechanical response
of materials, and (2) application of these equations for the solution of specific
problems of linearized elasticity, heat transfer, and fluid mechanics. The govern-
ing equations for the study of deformation and stress of a continuous material
are nothing but an analytical representation of the global laws of conservation of
mass and balance of momenta and energy and the constitutive response of the
continuum. They are applicable to all materials that are treated as a continuum.
Tailoring these equations to particular problems and solving them constitutes
the bulk of engineering analysis and design.

The study of motion and deformation of a continuum (or a “body” consisting
of continuously distributed material) can be broadly classified into four basic
categories:

(1) Kinematics (strain-displacement equations)

(2) Kinetics (balance of linear and angular momentum)

(3) Thermodynamics (first and second laws of thermodynamics)

(4) Constitutive equations (stress–strain relations)

Kinematics is the study of geometric changes or deformations in a continuum,
without consideration of forces causing the deformation. Kinetics is the study
of the equilibrium of forces and moments acting on a continuum, using the prin-
ciples of balance of linear and angular momentum. This study leads to equa-
tions of motion as well as the symmetry of stress tensor in the absence of body
couples. Thermodynamic principles are concerned with the balance of energy
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and relations among heat, mechanical work, and thermodynamic properties of
a continuum. Constitutive equations describe thermomechanical behavior of the
material of the continuum, and they relate the dependent variables introduced in
the kinetic description to those introduced in the kinematic and thermodynamic
descriptions. Table 1.2.1 provides a brief summary of the relationship between
physical principles and governing equations and physical entities involved in the
equations.

Table 1.2.1: The major four topics of study, physical principles used, resulting governing
equations, and variables involved.

Topic of study Physical law Equations Variables

1. Kinematics None (based on Strain–displacement Displacements
geometric changes) relations and strains

Strain rate–velocity Velocities and
relations strain rates

2. Kinetics Conservation of Equations of Stresses
linear momentum motion and velocities

Conservation of Symmetry of Stresses
angular momentum stress tensor

3. Thermodynamics First law Energy equation Temperature,
heat flux,
stresses,
and velocities

Second law Clasius–Duhem Temperature,
inequality heat flux,

and entropy

4. Constitutive Constitutive Hooke’s law Stresses, strains,
equations* axioms heat flux, and

temperature

Newtonian fluids Stresses,
pressure,
and velocities

Fourier’s law heat flux and
temperature

Equations of state Density,
pressure, and
temperature

*Not all relations are listed.

1.3 Summary

In this chapter, the concept of a continuous medium is discussed and the major
objectives of the present study, namely, to use the physical principles to derive
the equations governing a continuous medium and to present application of
the equations in the solution of specific problems of linearized elasticity, heat
transfer, and fluid mechanics are presented. The study of physical principles is
broadly divided into four topics, as outlined in Table 1.2.1. These four topics are
the subjects of Chapters 3 through 6, respectively. Mathematical formulation
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of the governing equations of a continuous medium necessarily requires the use
of vectors and tensors, objects that facilitate invariant analytical formulation of
the natural laws. Therefore, it is useful to study certain operational properties
of vectors and tensors first. Chapter 2 is dedicated for this purpose.

Although the present book is self-contained for an introduction to continuum
mechanics or elasticity, other books are available that may provide an advanced
treatment of the subject. Many of the classical books on the subject do not
contain example and/or exercise problems to test readers’ understanding of the
concepts. Interested readers may consult the list of references at the end of this
book.

Problems

1.1 Newton’s second law can be expressed as

F = ma, (1)

where F is the net force acting on the body, m is the mass of the body, and a is the
acceleration of the body in the direction of the net force. Use Eq. (1) to determine the
governing equation of a free-falling body. Consider only the forces due to gravity and
the air resistance, which is assumed to be proportional to the square of the velocity of
the falling body.

1.2 Consider steady-state heat transfer through a cylindrical bar of nonuniform cross section.
The bar is subject to a known temperature T0 (◦C) at the left end and exposed, both on
the surface and at the right end, to a medium (such as cooling fluid or air) at temperature
T∞. Assume that temperature is uniform at any section of the bar, T = T (x), and
neglect thermal expansion of the bar (i.e., assume rigid). Use the principle of balance
of energy (which requires that the rate of change (increase) of internal energy is equal
to the sum of heat gained by conduction, convection, and internal heat generation) to
a typical element of the bar (see Fig. P1.2) to derive the governing equations of the
problem.

g(x), internal heat generation Convection from lateral 
surface

L
x

Exposed to ambient 
temperature, T∞

Maintained at 
temperature, T0

Δx

Δx

heat flow out,
(Aq)x+Δx

g(x)
heat flow in,

(Aq)x

Fig. P1.2

1.3 The Euler–Bernoulli hypothesis concerning the kinematics of bending deformation of
a beam assumes that straight lines perpendicular to the beam axis before deformation
remain (1) straight, (2) perpendicular to the tangent line to the beam axis, and (3)
inextensible during deformation. These assumptions lead to the following displacement
field:

u1(x, y) = −y
dv

dx
, u2 = v(x), u3 = 0, (1)
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where (u1, u2, u3) are the displacements of a point (x, y, z) along the x, y, and z coor-
dinates, respectively, and v is the vertical displacement of the beam at point (x, 0, 0).
Suppose that the beam is subjected to a distributed transverse load q(x). Determine
the governing equation by summing the forces and moments on an element of the beam
(see Fig. P1.3). Note that the sign conventions for the moment and shear force are
based on the definitions

V =

∫
A

σxy dA, M =

∫
A

y σxx dA,

and may not agree with the sign conventions used in some mechanics of materials books.

x

q(x)

 L 

y, v

• •

y

z

Beam
cross  section

x +

q(x)

•
M dMM

V V dV
dx

y

+

q(x)

•

dx

xxσ xx xxdσ σ
xy xydσ σ

xyσ

xx xy
A A

M y dA, V dA

Fig. P1.3

1.4 A cylindrical storage tank of diameter D contains a liquid column of height h(x, t).
Liquid is supplied to the tank at a rate of qi (m3/day) and drained at a rate of q0
(m3/day). Assume that the fluid is incompressible (i.e., constant mass density ρ) and
use the principle of conservation of mass to obtain a differential equation governing
h(x, t).

1.5 (Surface tension). Forces develop at the interface between two immiscible liquids, caus-
ing the interface to behave as if it were a membrane stretched over the fluid mass.
Molecules in the interior of the fluid mass are surrounded by molecules that are at-
tracted to each other, whereas molecules along the surface (i.e., inside the imaginary
membrane) are subjected to a net force toward the interior. This force imbalance creates
a tensile force in the membrane and is called surface tension (measured per unit length).
Let the difference between the pressure inside the drop and the external pressure be p
and the surface tension, ts. Determine the relation between p and ts for a spherical drop
of radius R.
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2

VECTORS AND TENSORS

A mathematical theory is not to be considered complete until you have made it so clear that
you can explain it to the first man whom you meet on the street.

—– David Hilbert (1862–1943)

2.1 Background and Overview

In the mathematical description of equations governing a continuous medium,
we derive relations between various quantities that characterize the stress and
deformation of the continuum by means of the laws of nature (such as Newton’s
laws, balance of energy, and so on). As a means of expressing a natural law,
a coordinate system in a chosen frame of reference is often introduced. The
mathematical form of the law thus depends on the chosen coordinate system
and may appear different in another type of coordinate system. The laws of
nature, however, should be independent of the choice of the coordinate system,
and we may seek to represent the law in a manner independent of the partic-
ular coordinate system. A way of doing this is provided by vector and tensor
analysis. When vector notation is used, a particular coordinate system need not
be introduced. Consequently, the use of vector notation in formulating natural
laws leaves them invariant to coordinate transformations. A study of physical
phenomena by means of vector equations often leads to a deeper understanding
of the problem in addition to bringing simplicity and versatility into the analysis.

In basic engineering courses, the term vector is used often to imply a physical
vector that has “magnitude and direction and satisfies the parallelogram law of
addition.” In mathematics, vectors are more abstract objects than physical
vectors. Like physical vectors, tensors are more general objects that possess
a magnitude and multiple direction(s) and satisfy rules of tensor addition and
scalar multiplication. In fact, physical vectors are often termed the first-order
tensors. As will be shown shortly, the specification of a stress component (i.e.,
force per unit area) requires a magnitude and two directions – one normal to the
plane on which the stress component is measured and the other is its direction
– to specify it uniquely.

This chapter is dedicated to the study of the elements of algebra and calculus
of vectors and tensors. Useful elements of the matrix theory and eigenvalue prob-
lems associated with second-order tensors are discussed. Index and summation
notations, which are extensively used throughout the book, are also introduced.
Those who are familiar with the material covered in any of the sections may
skip them and go to the next section or to Chapter 3.
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2.2 Vector Algebra

In this section, we present a review of the formal definition of a geometric (or
physical) vector, discuss various products of vectors and physically interpret
them, introduce index notation to simplify representations of vectors in terms
of their components as well as vector operations, and develop transformation
equations among the components of a vector expressed in two different coordi-
nate systems. Many of these concepts, with the exception of the index notation,
may be familiar to most students of engineering, physics, and mathematics and
may be skipped.

2.2.1 Definition of a Vector

The quantities encountered in analytical descriptions of physical phenomena
may be classified into two groups according to the information needed to specify
them completely: scalars and nonscalars. The scalars are given by a single
number. Nonscalars have not only a magnitude specified, but also additional
information, such as direction. Nonscalars that obey certain rules (such as the
parallelogram law of addition) are called vectors. Not all nonscalar quantities
are vectors (e.g., a finite rotation is not a vector).

A physical vector is often shown as a directed line segment with an arrow-
head at the end of the line. The length of the line represents the magnitude
of the vector and the arrow indicates the direction. Thus, a physical vector,
possessing magnitude, is known as a normed vector space. In written material,
it is customary to place an arrow over the letter denoting the physical vector,
such as �A. In printed material the vector letter is commonly denoted by a
boldface letter, A, such as is used in this book. The magnitude of the vector
A, to be formally defined shortly, is denoted by |A| or A. The magnitude of a
vector is a scalar.

A vector of unit length is called a unit vector. The unit vector along A may
be defined as follows:

êA =
A

|A| =
A

A
. (2.2.1)

We may now write a vector A as

A = A êA. (2.2.2)

Thus, any vector may be represented as a product of its magnitude and a unit
vector along the vector. A unit vector is used to designate direction; it does not
have any physical dimensions. However, |A| has the physical dimensions. A
“hat” (caret) above the boldface letter, ê, is used to signify that it is a vector
of unit magnitude. A vector of zero magnitude is called a zero vector or a null
vector, and denoted by boldface zero, 0. Note that a lightface zero, 0, is a scalar
and boldface zero, 0, is the zero vector. Also, a zero vector has no direction
associated with it.
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2.2.1.1 Vector addition

Let A, B, and C be any vectors. Then there exists a vector A +B, called the
sum of A and B, with the properties

(1) A+B = B+A (commutative)

(2) (A+B) +C = A+ (B+C) (associative)

(3) There exists a unique vector, 0, independent of A

such thatA+ 0 = A (existence of the zero vector).

(4) To every vector A there exists a unique vector −A

(that depends on A) such that

A+ (−A) = 0 (existence of the negative vector).

(2.2.3)

The negative vector −A has the same magnitude as A, but has the opposite
sense. Subtraction of vectors is carried out along the same lines. To form the
difference A−B, we write A+ (−B), and subtraction reduces to the operation
of addition.

2.2.1.2 Multiplication of a vector by a scalar

Let A and B be vectors and α and β be real numbers (scalars). To every vector
A and every real number α, there corresponds a unique vector αA such that

(1) α(βA) = (αβ)A (scalar multiplication is associative)

(2) (α+ β)A = αA+ βA (scalar addition is distributive)

(3) α(A+B) = αA+ αB (vector addition is distributive)

(4) 1 ·A = A · 1 = A, 0 ·A = 0

(2.2.4)

Equations (2.2.3) and (2.2.4) clearly show that the laws that govern addition,
subtraction, and scalar multiplication of vectors are identical with those govern-
ing the operations of scalar algebra.

Two vectors A and B are equal if their magnitudes are equal, |A| = |B|,
and if their directions are equal. Consequently, a vector is not changed if it
is moved parallel to itself. This means that the position of a vector in space,
that is, the point from which the line segment is drawn (or the end without
arrowhead), may be chosen arbitrarily. In certain applications, however, the
actual point of location of a vector may be important, for instance, a moment or
a force acting on a body. A vector associated with a given point is known as a
localized or bound vector. The fact that vectors can be represented graphically
is an incidental rather than a fundamental feature of the vector concept.

2.2.1.3 Linear independence of vectors

The concepts of collinear and coplanar vectors can be stated in algebraic terms.
A set of n vectors is said to be linearly dependent if a set of n numbers β1, β2, · · · , βn
can be found such that

β1A1 + β2A2 + · · ·+ βnAn = 0, (2.2.5)
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where β1, β2, · · · , βn cannot all be zero. If this expression cannot be satisfied, the
vectors are said to be linearly independent. If two vectors are linearly dependent,
then they are collinear. If three vectors are linearly dependent, then they are
coplanar. Four or more vectors in three-dimensional space are always linearly
dependent.

Example 2.2.1

Determine whether the following set of vectors is linearly independent:

A = ê1 + ê2, B = ê2 + ê4, C = ê3 + ê4, D = ê1 + ê2 + ê3 + ê4.

Here êi are orthonormal unit base vectors in �3.

Solution: We set
αA+ βB+ γC+ λD = 0,

which gives
α+ λ = 0, α+ β + λ = 0, γ + λ = 0, β + γ + λ = 0.

The solution of these equations yields β = 0 and α = γ = −λ. Thus, the set is not linearly
independent. The reader may verify that the sets (A, B, C), (A, B, D), and (B, C, D) are
linearly independent, but the set (A, C, D) is not.

2.2.2 Scalar and Vector Products

Besides addition and subtraction of vectors, and multiplication of a vector by
a scalar, we also encounter the product of two vectors. There are several ways
the product of two vectors can be defined. We consider first the so-called scalar
product.

2.2.2.1 Scalar product

When a force F acts on a mass point and moves through a displacement vector
d, the work done by the force vector is defined by the projection of the force in
the direction of the displacement, as shown in Fig. 2.2.1, times the magnitude of
the displacement. Such an operation may be defined for any two vectors. Since
the result of the product is a scalar, it is called the scalar product. We denote
this product as F · d ≡ (F,d) and it is defined as follows:

F · d ≡ (F,d) = Fd cos θ, 0 ≤ θ ≤ π. (2.2.6)

The scalar product is also known as the dot product or inner product.

θ

F

d

Projection of vector F
onto vector d

Fig. 2.2.1: Vector representation of work done.
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The following simple results follow from the definition in Eq. (2.2.6):

(1) The scalar product is commutative: A ·B = B ·A.

(2) If the vectors A and B are perpendicular to each other, then A ·B =
AB cos(π/2) = 0. Conversely, if A ·B = 0, then either A or B is zero or
A is perpendicular, or orthogonal, to B.

(3) If two vectorsA and B are parallel and in the same direction, thenA ·B =
AB cos 0 = AB, because cos 0 = 1. Thus the scalar product of a vector
multiplied with itself is equal to the square of its magnitude (|A| = A):

A ·A = AA = A2. (2.2.7)

(4) The orthogonal projection of a vector A in direction ê is given by A · ê.
(5) The scalar product also follows the distributive law:

A·(B+C) = (A ·B) + (A ·C). (2.2.8)

2.2.2.2 Vector product

To see the need for the vector product, consider the concept of the moment due
to a force about a point. Let us describe the moment about a point O of a
force F acting at a point P, such as shown in Fig. 2.2.2(a). By definition, the
magnitude of the moment is given by

M = F�, F = |F|, (2.2.9)

where � is the perpendicular distance from the point O to the force F (called
lever arm). If r denotes the vector OP and θ the angle between r and F such
that 0 ≤ θ ≤ π, we have � = r sin θ and thus

M = Fr sin θ. (2.2.10)

A direction can now be assigned to the moment. Drawing the vectors F and
r from the common origin O, we note that the rotation due to F tends to bring
r into F, as can be seen from Fig. 2.2.2(b). We now set up an axis of rotation

(a) (b)P

F

O
r θ

O r

F

θ
M

eM

Fig. 2.2.2: (a) Representation of a moment about a point. (b) Direction of rotation.
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r

F
êM

M

θ

A

B
ê

θ
C = A × B

(a) (b)

Fig. 2.2.3: (a) Axis of rotation. (b) Representation of the vector product.

perpendicular to the plane formed by F and r. Along this axis of rotation we
set up a preferred direction as one in which a right-handed screw would advance
when turned in the direction of rotation due to the moment, as can be seen from
Fig. 2.2.3(a). Along this axis of rotation we draw a unit vector êM and agree
that it represents the direction of the moment M. Thus we have

M = Fr sin θ êM = r× F. (2.2.11)

According to this expression, M may be looked on as resulting from a special
operation between the two vectors F and r. It is thus the basis for defining
a product between any two vectors. Due to the fact that the result of such a
product is a vector, it may be called the vector product.

The product of two vectors A and B is a vector C whose magnitude is
equal to the product of the magnitude of A and B times the sine of the angle
measured from A to B such that 0 ≤ θ ≤ π, and whose direction is specified by
the condition that C be perpendicular to the plane of the vectors A and B and
points in the direction in which a right-handed screw advances when turned so
as to bring A into B, as shown in Fig. 2.2.3(b). The vector product is usually
denoted by

C = A×B = AB sin(A,B) ê = AB sin θ ê, (2.2.12)

where sin(A, B) denotes the sine of the angle between vectors A and B. This
product is called the cross product, skew product, and also outer product, as well
as the vector product. WhenA = a êA andB = b êB are the vectors representing
the sides of a parallelogram, with a and b denoting the lengths of the sides, then
the vector product A×B represents the area of the parallelogram, AB sin θ.
The unit vector ê = êA × êB denotes the normal to the plane area. Thus an
area can be represented as a vector (see Section 2.2.3 for additional discussion).

The description of the velocity of a point of a rotating rigid body is an
important example of geometrical and physical applications of vectors. Suppose
a rigid body is rotating with an angular velocity ω about an axis, and we wish
to describe the velocity of some point P of the body, as shown in Fig. 2.2.4(a).
Let v denote the velocity at the point. Each point of the body describes a circle
that lies in a plane perpendicular to the axis with its center on the axis. The
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O

P
r

ω

a

v

θ ê

(a) (b)

ê

Fig. 2.2.4: (a) Velocity at a point in a rotating rigid body. (b) Angular velocity as a vector.

radius of the circle, a, is the perpendicular distance from the axis to the point
of interest. The magnitude of the velocity is equal to ω a. The direction of v is
perpendicular to a and to the axis of rotation. We denote the direction of the
velocity by the unit vector ê. Thus we can write

v = ω a ê. (2.2.13)

Let O be a reference point on the axis of revolution, and let OP = r. We
then have a = r sin θ, so that

v = ω r sin θ ê. (2.2.14)

The angular velocity is a vector because it has an assigned direction, magnitude,
and obeys the parallelogram law of addition. We denote it by ω and represent
its direction in the sense of a right-handed screw, as shown in Fig. 2.2.4(b). If
we further let êr be a unit vector in the direction of r, we see that

êω × êr = ê sin θ. (2.2.15)

With these relations we have
v = ω × r. (2.2.16)

Thus the velocity of a point of a rigid body rotating about an axis is given by
the vector product of ω and a position vector r drawn from any reference point
on the axis of revolution.

From the definition of vector product, a few simple results follow.

(1) The products A×B and B×A are not equal. In fact, we have

A×B ≡ −B×A. (2.2.17)

Thus the vector product does not commute.

(2) If two vectors A and B are parallel to each other, then θ = 0, π, and
sin θ = 0. Thus

A×B = 0.

Conversely, if A×B = 0, then either A or B is zero, or they are parallel
vectors. It follows that the vector product of a vector with itself is zero;
that is, A×A = 0.
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(3) The distributive law still holds, but the order of the factors must be main-
tained:

(A+B)×C = (A×C) + (B×C). (2.2.18)

2.2.2.3 Triple products of vectors

Now consider the various products of three vectors:

A(B ·C), A · (B×C), A× (B×C). (2.2.19)

The product A(B ·C) is merely a multiplication of the vector A by the scalar
B · C. The product A · (B×C) is a scalar and it is termed the scalar triple
product. It can be seen from Fig. 2.2.5 that the product A · (B×C), except for
the algebraic sign, is the volume of the parallelepiped formed by the vectors A,
B, and C.

B

A
C

B × C

Fig. 2.2.5: Scalar triple product representation of the volume of a parallelepiped.

We note the following properties of a scalar triple product:

(1) The dot and cross can be interchanged without changing the value:

A ·B×C = A×B ·C ≡ [ABC]. (2.2.20)

(2) A cyclical permutation of the order of the vectors leaves the result un-
changed:

A ·B×C = C ·A×B = B ·C×A ≡ [ABC]. (2.2.21)

(3) If the cyclic order is changed, the sign changes:

A ·B×C = −A ·C×B = −C ·B×A = −B ·A×C. (2.2.22)

(4) A necessary and sufficient condition for any three vectors, A, B, and C
to be coplanar is that A · (B×C) = 0. Note also that the scalar triple
product is zero when any two vectors are the same.

The vector triple productA× (B×C) is a vector normal to the plane formed
by A and (B×C). The vector (B×C), however, is perpendicular to the plane
formed by B and C. This means that A× (B×C) lies in the plane formed by
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B and C and is perpendicular to A, as shown in Fig. 2.2.6. Thus A× (B×C)
can be expressed as a linear combination of B and C:

A× (B×C) = m1B+ n1C. (2.2.23)

Likewise, we would find that

(A×B)×C = m2A+ n2B. (2.2.24)

Thus, the parentheses cannot be interchanged or removed. It can be shown that
m1 = A ·C and n1 = −A ·B, and hence that

A× (B×C) = (A ·C)B− (A ·B)C,

(A×B)×C = (A ·C)B− (B ·C)A,
(2.2.25)

and one can show thatA×(B×C) = (A×B)×C if and only if B×(C×A) = 0.

C

B
A × (B × C), perpendicular to both A and B × C

B × C

n1C

m1B

A

Fig. 2.2.6: The vector triple product.

Example 2.2.2

Let A and B be any two vectors in space. Express vector A in terms of its components along
(i.e., parallel) and perpendicular to vector B.

Solution: The component of A along B is given by (A · êB), where êB = B/B is the unit
vector in the direction of B. The component of A perpendicular to B and in the plane of A
and B is given by the vector triple product êB × (A× êB). Thus,

A = (A · êB)êB + êB × (A× êB). (2.2.26)

Alternatively, Eq. (2.2.25) gives the same result with A = C = êB and B = A:

êB × (A× êB) = A− (êB ·A)êB or A = (A · êB)êB + êB × (A× êB).

2.2.3 Plane Area as a Vector

The magnitude of the vector C = A×B is equal to the area of the parallelogram
formed by the vectors A and B, as shown in Fig. 2.2.7(a). In fact, the vector
C may be considered to represent both the magnitude and the direction of the
product of A and B. Thus, a plane area may be looked upon as possessing a
direction in addition to a magnitude, the directional character arising out of the
need to specify an orientation of the plane in space. Representation of an area as
a vector has many uses in continuum mechanics, as will be seen in the chapters
that follow.
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C = A × B

A

B

ê

(a)

θ S

nS ˆS=

n̂

(b)

Fig. 2.2.7: (a) Plane area as a vector. (b) Unit normal vector and sense of travel.

It is customary to denote the direction of a plane area by means of a unit
vector drawn normal to that plane. To fix the direction of the normal, we
assign a sense of travel along the contour of the boundary of the plane area in
question. The direction of the normal is taken by convention as that in which
a right-handed screw advances as it is rotated according to the sense of travel
along the boundary curve or contour, as shown in Fig. 2.2.7(b). Let the unit
normal vector be given by n̂. Then the area can be denoted by S = Sn̂.

Representation of a plane as a vector has many uses. The vector can be
used to determine the area of an inclined plane in terms of its projected area,
as illustrated in Example 2.2.3.

Example 2.2.3

(a) Determine the plane area of the surface obtained by cutting a cylinder of cross-sectional
area S0 with an inclined plane whose normal is n̂, as shown in Fig 2.2.8(a).
(b) Consider a cube (or a prism) cut by an inclined plane whose normal is n̂, as shown in Fig.
2.2.8(b). Express the areas of the sides of the resulting tetrahedron in terms of the area S of
the inclined surface.

Solution: (a) Let the plane area of the inclined surface be S, as shown in Fig 2.2.8(a). First,
we express the areas as vectors

S0 = S0 n̂0 and S = S n̂. (2.2.27)

2n̂

1n̂
n̂

1x3n̂

1S S

2S
3S

2x

3x

(b)

n̂

(a)

S

n̂

0S

0n̂

θ
0n̂

Fig. 2.2.8: Vector representation of inclined plane areas and their components.
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Due to the fact that S0 is the projection of S along n̂0 (if the angle between n̂ and n̂0 is acute;
otherwise the negative of it), we have

S0 = S · n̂0 = Sn̂ · n̂0 = S cos θ. (2.2.28)

The scalar product n̂ · n̂0 is the cosine of the angle between the two unit normal vectors,
n̂ · n̂0 = cos θ.

(b) For reference purposes we label the sides of the tetrahedron by 1, 2, and 3 and the normals
and surface areas by (n̂1, S1), (n̂2, S2), and(n̂3, S3), respectively (that is, Si is the surface area
of the plane perpendicular to the ith line or n̂i vector), as shown in Fig. 2.2.8(b). Then we
have

S1 = S n̂ · n̂1, S2 = S n̂ · n̂2, S3 = S n̂ · n̂3· (2.2.29)

2.2.4 Reciprocal Basis

2.2.4.1 Components of a vector

So far we have considered a geometrical description of a vector. We now embark
on an analytical description of a vector based on the notion of its components.
In the following discussion, we shall consider a three-dimensional space, and the
extensions to n dimensions will be evident. In a three-dimensional space a set of
no more than three linearly independent vectors can be found. Let us choose any
set and denote it as e1, e2, e3. This set is called a basis. We can represent any
vector in three-dimensional space as a linear combination of the basis vectors

A = A1e1 +A2e2 +A3e3. (2.2.30)

The vectors A1e1, A
2e2, and A3e3 are called the vector components of A, and

A1, A2, and A3 are called the scalar components of A associated with the basis
(e1, e2, e3), as indicated in Fig. 2.2.9.

e1

A

e2

A2 e2

A1e1

e3

A3e3

Fig. 2.2.9: Components of a vector.

2.2.4.2 General basis

For any arbitrary basis (e1, e2, e3), we can derive another basis from it [see
Reddy and Rasmussen (1991)]. We make use of the fact that the cross product
ei×ej (for fixed i and j) when dotted with either ei or ej produces zero because
ei × ej is perpendicular to both ei and ej . Thus, taking the scalar product of
the vector A in Eq. (2.2.30) with the cross product e1 × e2, we obtain

A · (e1 × e2) = A3e3 · (e1 × e2).
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Solving for A3 gives

A3 = A · e1 × e2
e3 · (e1 × e2)

= A · e1 × e2
[e1e2e3]

.

Similarly, we obtain

A1 = A · e2 × e3
[e1e2e3]

, A2 = A · e3 × e1
[e1e2e3]

.

where, in the evaluation of the cross products, we shall always use the right-hand
rule (i.e., 1-2-3, 2-3-1, or 3-1-2). Thus we can obtain the components A1, A2,
and A3 by taking the scalar product of the vector A with special vectors, which
we denote as follows:

e1 =
e2 × e3
[e1e2e3]

, e2 =
e3 × e1
[e1e2e3]

, e3 =
e1 × e2
[e1e2e3]

. (2.2.31)

The set of vectors (e1, e2, e3) is linearly independent because in the linear rela-
tion

α1 e
1 + α2 e

2 + α3 e
3 = 0

all of the scalars α1, α2, and α3 are zero. Indeed, by taking the scalar product
of the above relation with ei we obtain αi = 0 for i = 1, 2, and 3. The set
(e1, e2, e3), being a linearly independent set, constitutes a basis, called the dual
or reciprocal basis. It is possible, because the dual basis is linearly independent,
to express a vector A in terms of the dual basis:

A = A1e
1 +A2e

2 +A3e
3 =

3∑
i=1

Aie
i. (2.2.32)

Notice now that the components associated with the dual basis have subscripts
to distinguish from the components with respect to the original basis [see Eq.
(2.2.30)].

By a process analogous to that above we can show that the original basis
can be expressed in terms of the dual basis as

e1 =
e2 × e3

[e1e2e3]
, e2 =

e3 × e1

[e1e2e3]
, e3 =

e1 × e2

[e1e2e3]
. (2.2.33)

From the basic definitions we have the following relations among the two sets of
bases (e1 · e1 = e2 · e2 = e3 · e3 = 1):

ei · ej =
{ 1, if i has the same value as j
0, if i has a different value than j.

(2.2.34)

ei × ej · ek =

{ 1, if i, j, and k take the values 1-2-3, 2-3-1, or 3-1-2
−1, if i, j, and k take the values 1-3-2, 3-2-1, or 2-1-3
0, if any two of the three indices have the same value.

(2.2.35)

From Eqs. (2.2.30)–(2.2.35) one can obtain

A1 = A · e1, A2 = A · e2, A3 = A · e3 (Ai = A · ei),
A1 = A · e1, A2 = A · e2, A3 = A · e3 (Ai = A · ei).

(2.2.36)
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In summary, we have two ways of expressing the same vector for a given
basis. This gives rise to the description cogredient (A1, A2, A3) and contragre-
dient (A1, A2, A3) components of a vector. This terminology is based on the
way the components transform as a given coordinate system is transformed to
another coordinate system. The components (A1, A2, A3) transform in the same
way as the basis (e1, e2, e3), whereas the components (A1, A2, A3) transform by
another rule (contrary-wise!) in the same way as (e1, e2, e3). As we shall find,
a particular basis, called a unitary basis, can be defined in terms of a related
coordinate system. For a unitary basis, the term cogredient is called covariant
and contragredient is called contravariant.

2.2.4.3 Orthonormal basis

When the basis vectors are constant, that is, with fixed lengths (with the same
units) and directions, the basis is called Cartesian. The general Cartesian system
is oblique. When a basis is unit and orthogonal, it is termed orthonormal.
When the basis vectors are orthonormal, the basis system is called rectangular
Cartesian. Notations used for Cartesian rectangular basis are

(̂i, ĵ, k̂), (êx, êy, êz), (̂i1, î2, î3), (ê1, ê2, ê3). (2.2.37)

For an orthonormal basis, we have

[e1e2e3] = 1 and e1 = e1 ≡ ê1, e2 = e2 ≡ ê2, e3 = e3 ≡ ê3.

Thus, for an orthonormal system, there is no distinction between cogredient and
contragredient components. In most situations an orthonormal basis simplifies
calculations.

For an orthonormal basis, a vector A can be expressed in terms of its com-
ponents as

A = A1ê1 +A2ê2 +A3ê3 =

3∑
i=1

Aiêi, (2.2.38)

where êi (i = 1, 2, 3) is the orthonormal basis and Ai are the corresponding
physical components (i.e., the components have the same physical dimensions as
the vector). In an orthonormal basis, the scalar and vector products of vectors
A and B can be expressed in terms of their components as

A ·B =

3∑
i,j=1

AiBj (êi · êj) =
3∑

i=1

AiBi,

(A×B)k =
3∑

i,j=1; i,j �=k

AiBj (êi × êj · êk) ,
(2.2.39)

where (·)k indicates the kth component of the enclosed vector. Shortly, we shall
introduce specific symbols to denote the scalars êi · êj and êi × êj · êk.
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Example 2.2.4

Let the vectors (̂i, ĵ, k̂) constitute an orthonormal basis. In terms of this basis, define a cogre-
dient basis by

e1 =
√

3
4

î+ 1
4
ĵ , e2 = 1

2
î+ 3

2
ĵ , e3 = k̂.

Determine

(a) the dual or reciprocal (contragredient) basis (e1, e2, e3) in terms of the orthonormal

basis (̂i, ĵ, k̂) ,

(b) the magnitudes (or norms) |e1|, |e2|, |e3|, |e1|, |e2|, and |e3|, and
(c) the cogredient components A1, A2, and A3 of a vectorA if its contragredient components

are given by A1 = 1, A2 = 2, A3 = 3.

Solution: (a) Note that

e1 × e2 =
(

3
√
3−1
8

)
k̂, e2 × e3 = − 1

2
ĵ+ 3

2
î, e3 × e1 =

√
3

4
ĵ− 1

4
î, [e1e2e3] =

3
√
3−1
8

.

Then
e1 = 3

2Δ
î− 1

2Δ
ĵ, e2 = − 1

4Δ
î+

√
3

4Δ
ĵ, e3 = k̂,

where Δ = [e1e2e3]. The reader is asked to sketch both sets of vectors to an approximate
scale.

(b) The magnitudes of the base vectors are

|e1| = 1
2
, |e2| =

√
5
2
, |e3| = 1, |e1| = 1

Δ

√
5
2
, |e2| = 1

2Δ
, |e3| = 1.

(c) We have A = A1e1 +A2e2 +A3e3 = e1 + 2e2 + 3e3. We obtain

A1 = (e1 + 2e2 + 3e3) · e1 = 1
4
+

√
3+3
4

= 1 +
√

3
4
,

A2 = (e1 + 2e2 + 3e3) · e2 =
√

3+3
8

+ 2× 10
4

=
√
3+43
8

,

A3 = (e1 + 2e2 + 3e3) · e3 = 3.

2.2.4.4 The Gram–Schmidt orthonormalization

If (e1, e2, e3) is a linearly independent set but not orthonormal, the Gram–
Schmidt orthonormalization process can be used to convert the set to an or-
thonormal set, as follows. Let (e1, e2, ...en) be any linearly independent set of
vectors. We construct an orthonormal set (ê1, ê2, ..., ên) using the following pro-
cedure: Due to the fact that e1 is an element of a linearly independent set,
e1 �= 0, and therefore |e1| > 0. Let ê1 ≡ e1/|e1| so that |ê1| = 1. Next choose
the second vector e2 from the original set and require the vector e′2 = e2 − αê1
to be orthogonal to ê1:

0 = ê1 · (e2 − αê1) = (ê1 · e2)− α|ê1|2 ⇒ α = ê1 · e2.
The second element of the desired set is then obtained by

ê2 = [e2 − (ê1 · e2)ê1] 1

|e′2| .
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Continuing the procedure, we obtain the (r + 1)st element as

e′r+1 = er+1 − (ê1 · er+1)ê1 − (ê2 · er+1)ê2 − · · · − (êr · er+1)êr,

êr+1 =
e′r+1

|e′r+1| . (2.2.40)

Example 2.2.5

Construct an orthonormal basis from the set of cogredient vectors in Example 2.2.4:

e1 =
√

3
4

î+ 1
4
ĵ , e2 = 1

2
î+ 3

2
ĵ , e3 = k̂.

Solution: We begin with e1 and determine ê1:

ê1 =
e1

|e1| =
√

3
2

î+ 1
2
ĵ.

Then ê2 is constructed using Eq. (2.2.40):

e′
2 ≡ e2 − (ê1 · e2)ê1 = 1

2
î+ 3

2
ĵ−
[(√

3
2

î+ 1
2
ĵ
)
·
(

1
2
î+ 3

2
ĵ
)](√

3
2

î+ 1
2
ĵ
)

= 1−3
√

3
8

î+ 9−√
3

8
ĵ

ê2 =
e′
2

|e′
2|

, |e′
2|2 =

14− 3
√
3

8

.

Finally, ê3 is given by e′
3 ≡ e3 − (ê1 · e3)ê1 − (ê2 · e3)ê2 = k̂ ⇒ ê3 = k̂.

2.2.5 Summation Convention

Equations governing a continuous medium contain, especially in three dimen-
sions, long expressions with many additive terms. Often these terms have a
similar structure so that a typical term of the expression can be identified. For
example, consider the component form of vector A [see Eq. (2.2.30)]:

A = A1e1 +A2e2 +A3e3, (2.2.41)

A typical term in Eq. (2.2.41) is of the form Aiei, where i takes the values of 1,
2, and 3. Therefore, the expression can be abbreviated as

A =

3∑
i=1

Aiei or A =

3∑
m=1

Amem. (2.2.42)

The summation index i or m is arbitrary as long as the same index is used
for both A and e. The expression can be shortened further by omitting the
summation sign and understanding that a repeated index means summation
over all values of that index. Thus, the three-term expression A can be written
simply as

A = Aiei = Amem (2.2.43)
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This notation is called the summation convention. For example, an arbitrary
vector A can be expressed in terms of its components [see Eq. (2.2.36)] as

A =
(
A · ei) ei = (A · ej) ej . (2.2.44)

2.2.5.1 Dummy index

The repeated index is called a dummy index because it can be replaced by
any other symbol that has not already been used in that expression. Thus, the
expression in Eq. (2.2.43) can also be written as

A = Aiei = Ajej = Amem, (2.2.45)

and so on. As a rule, no index can appear more than twice in an expression.
For example, AiBiCi is not a valid expression because the index i appears more
than twice. Other examples of dummy indices are

Fi = AiBjCj , Gk = Hk(2− 3AiBi) + PjQjFk. (2.2.46)

The first equation in Eq. (2.2.46), for example, expresses three equations when
the range of i and j is 1 to 3. We have

F1 = A1 (B1C1 +B2C2 +B3C3),

F2 = A2 (B1C1 +B2C2 +B3C3),

F3 = A3 (B1C1 +B2C2 +B3C3).

2.2.5.2 Free index

A free index is one that appears in every expression of an equation, except for
expressions that contain real numbers (scalars) only. Index i in the equation
Fi = AiBjCj and k in the equation Gk = Hk(2 − 3AiBi) + PjQjFk are free
indices. Another example is

Ai = 2 +Bi + Ci +Di + (FjGj −HjPj)Ei.

This expression contains three equations (i = 1, 2, 3). The expressions Ai =
BjCk, Ai = Bj , and Fk = AiBjCk do not make sense and should not arise,
because the indices on both sides of the equal sign do not match.

One must be careful when substituting a quantity with an index into an
expression with indices or solving for one quantity with index in terms of the
others with indices in an equation. For example, consider the equations pi =
aibjcj and ck = dieiqk. It is correct to write ai = pi/(bjcj) but it is incorrect to
write bjcj = pi/ai, which has a totally different meaning. Before substituting
for ck from one expression into the other, one should examine the indices and
determine which ones are free and which ones are dummy indices, and then make
suitable changes of the indices before substitution. For example, we can rewrite
the second expression as cj = dkekqj and substitute it into the first expression,
pi = aibjdkekqj = ai(bjqj)(dkek). Other correct ways to write are

pi = aibkck = aibkdjejqk = ai(bkqk)(djej), pk = akbjdieiqj = ak(bjqj)(diei).
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2.2.5.3 Kronecker delta

It is convenient to introduce the Kronecker delta δij because it allows simple
representation of the scalar product of orthonormal vectors in a right-handed
basis system. We define the scalar (or dot) product êi · êj as [also see Eq.
(2.2.34)]

δij ≡ êi · êj = δji, (2.2.47)

where

δij =
{ 1, if i has the same value as j

0, if i has a different value than j.
(2.2.48)

For example, we have δ11 = δ22 = δ33 = 1 and δ12 = δ13 = δ23 = 0. We also
have δii = δ11 + δ22 + δ33 = 3. The Kronecker delta δij modifies (or contracts)
the subscripts in the coefficients of an expression in which it appears:

Aiδij = Aj , AiBjδij = AiBi = AjBj , δijδik = δjk.

As we shall see shortly, δij denotes the components of a second-order unit tensor,
I = δij êiêj = êiêi.

2.2.5.4 Permutation symbol

We define the vector (or cross) product êi × êj as

êi × êj ≡ eijk êk, (2.2.49)

where eijk is called the alternating symbol or permutation symbol [see also Eq.
(2.2.35) for the meaning of eijk], which has the meaning

eijk ≡ êi × êj · êk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if i, j, k are in a natural cyclic order
and not repeated (i �= j �= k)

−1, if i, j, k are opposite to a natural
cyclic order and not repeated (i �= j �= k)

0, if any of i, j, k are repeated.

(2.2.50)

The natural order of i, j, and k is the order in which they appear alphabetically.
A natural cyclic order means going from i to j and k, from j to k and i, or from k
to i and j, as shown in Fig. 2.2.10(a). Going opposite to a natural cyclic order
is shown in Fig. 2.2.10(b). By definition, the subscripts of the permutation
symbol can be permuted in a natural cyclic order, without changing its value.
An interchange of any two subscripts will change the sign (hence, interchange
of two subscripts twice keeps the value unchanged):

eijk = ekij = ejki, eijk = −ejik = ejki = −ekji for any i, j, k,

e123 = e312 = e231 = 1, e213 = e321 = e132 = −1, e113 = e331 = e322 = 0.

One can show that (a) eijk eijk = 6, (b) AiAj eijk = 0, and (c) eimn ejmn = 2δij .
An alternative formula [to Eq. (2.2.50)] to determine the value of eijk is

eijk = 1
2(i− j)(j − k)(k − i) for any i, j, k = 1, 2, 3. (2.2.51)
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k

Fig. 2.2.10: (a) A natural cyclic order is going from any index to the next in the order it
appears alphabetically (going from k to i makes it cyclic). (b) Opposite to a natural cyclic
order is going in a direction opposite to that of a natural cyclic order.

In an orthonormal basis the scalar and vector products can be expressed
in index form using the Kronecker delta and the alternating symbols [see Eq.
(2.2.39)]:

A ·B = (Aiêi) · (Bj êj) = AiBjδij = AiBi,

A×B = (Aiêi)× (Bj êj) = AiBj eijk êk.
(2.2.52)

Note that the components of a vector in an orthonormal coordinate system can
be expressed as

Ai = A · êi, (2.2.53)

and therefore we can express vector A as

A = Aiêi = (A · êi)êi. (2.2.54)

Further, the Kronecker delta and the permutation symbol are related by the
following identity, known as the e-δ identity [follows from part (d) of Problem
2.41]:

eijk eimn = δjm δkn − δjn δkm. (2.2.55)

The permutation symbol and the Kronecker delta prove to be very useful in
establishing vector identities. Since a vector form of any identity is invariant
(i.e., valid in any coordinate system), it suffices to prove it in one coordinate
system. The following examples contain several cases of incorrect and correct
uses of index notation and illustrate some of the uses of δij and eijk.

Example 2.2.6

Discuss the validity of the following expressions:

(a) ambs = cm(dr − fr). (b) ambs = cm(ds − fs). (c) ai = bjcidi.
(d) xixi = r2. (e) aibjcj = 3.

Solution:

(a) Not a valid expression because the free indices r and s do not match.

(b) Valid; both m and s are free indices. There are nine equations (m, s = 1, 2, 3).

(c) Not a valid expression because the free index j is not matched on both sides of the
equality, and index i is a dummy index in one expression and a free index in the other;
i cannot be used both as a free and a dummy index in the same equation. The equation
would be valid if i on the left side of the equation is replaced with j; then there will be
three equations.
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(d) A valid expression, containing one equation: x2
1+x2

2+x2
3 = r2. Note that r =

√
xixi �= xi.

(e) A valid expression in mathematics; however, in mechanics such relations may not arise.
If they do, such expressions are invalid because they violate the form-invariance under a
coordinate transformation (that is, every component of a vector cannot be the same in
all coordinate systems). The expression contains three equations (i = 1, 2, 3): a1(b1c1 +
b2c2 + b3c3) = 3, a2(b1c1 + b2c2 + b3c3) = 3, and a3(b1c1 + b2c2 + b3c3) = 3.

Example 2.2.7

Simplify the following expressions:

(a) δijδjkδkpδpi. (b) emjk enjk. (c) (A×B) · (C×D).

Solution: (a) Successive contraction of subscripts yields the result:

δijδjkδkpδpi = δijδjkδki = δijδji = δii = 3.

(b) Expand using the e-δ identity:

emjk enjk = δmnδjj − δmjδnj = 3δmn − δmn = 2δmn.

In particular, the expression eijk eijk is equal to 2δii = 6.

(c) Expanding the expression using the index notation, we obtain

(A×B) · (C×D) = (AiBjeijkêk) · (CmDn emnp êp)

= AiBjCmDn eijk emnp δkp = AiBjCmDn eijk emnk

= AiBjCmDn(δimδjn − δinδjm)

= AiBjCmDn δimδjn −AiBjCmDn δinδjm

= AiBjCiDj −AiBjCjDi = AiCiBjDj −AiDiBjCj

= (A ·C)(B ·D)− (A ·D)(B ·C),

where we have used the e-δ identity (2.2.55). Although the vector identity is established in an
orthonormal coordinate system, it holds in a general coordinate system.

Example 2.2.8

Rewrite the expression eijk Ai Bj Ck in vector form.

Solution: Examining the indices in the permutation symbol and those of the coefficients, it is
clear that there are three possibilities: (1) A and B must have a cross product between them
and the resulting vector must have a dot product with C; (2) B and C must have a cross
product between them and the resulting vector must have a dot product with A; or (3) C and
A must have a cross product between them and the resulting vector must have a dot product
with B. Thus we have

eijk Ai Bj Ck = (A×B) ·C = (B×C) ·A = (C×A) ·B ≡ [ABC] = [BCA] = [CAB].

The parentheses can be removed in the above expressions as the dot product has no meaning
unless the expression in the parentheses is a vector. Also, the interchange of dot product and
cross product A × B · C = A · B × C, or a cyclical permutation of the order of the vectors
A×B ·C = B×C ·A, leaves the result unchanged [see Eq. (2.2.20)].
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2.2.6 Transformation Law for Different Bases

2.2.6.1 General transformation laws

In addition to the basis (e1, e2, e3) and its dual (e1, e2, e3), consider a second
(barred) basis: (ē1, ē2, ē3) and its dual (ē1, ē2, ē3). Now we can express the same
vector in four ways:

A = Aiei = Aje
j , in unbarred basis, (2.2.56)

= Āmēm = Ānē
n, in barred basis. (2.2.57)

Note that i, j, m, and n are all dummy indices. From Eq. (2.2.44) we have

Ai = A · ei, Aj = A · ej , Ām = A · ēm, Ān = A · ēn, (2.2.58)

and from Eqs. (2.2.56)–(2.2.58) it follows that

Ām = (ei · ēm)Ai = (ej · ēm)Aj , (2.2.59)

Ān = (ej · ēn)Aj = (ei · ēn)Ai. (2.2.60)

The first two terms of Eqs. (2.2.59) and (2.2.60) give the transformation rules
between the contragredient and the cogredient components in the two basis
systems.

By means of Eq. (2.2.44) we find that the basis systems are related by

ēs = (ēs · ej)ej = (ēs · ej)ej . (2.2.61)

ēs = (ēs · ej)ej = (ēs · ej)ej . (2.2.62)

If we now write
ajs ≡ ēs · ej , bsi ≡ ēs · ei, (2.2.63)

then we have in summary

ēs = ajsej , Ās = ajsAj , cogredient law. (2.2.64)

ēs = bsie
i, Ās = bsiA

i, contragredient law. (2.2.65)

Thus there are two transformation laws, and the subscripts and superscripts are
assigned according to which law is satisfied. The subscripted basis vectors and
the subscripted components transform according to the same law, the cogredient
law, and the superscripted basis vectors and superscripted components transform
according to another law, the contragredient law.

There are also relations between the subscripted and superscripted basis
vectors and components in the two systems. These relations are called mixed
laws. Let

csj ≡ ēs · ej , dsj ≡ ēs · ej . (2.2.66)

Then we have

ēs = csje
j , Ās = csjA

j

ēs = dsj ēj , Ās = dsjAj

}
, mixed laws. (2.2.67)
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2.2.6.2 Transformation laws for orthonormal systems

In much of our study, we shall deal with Cartesian bases. Let us denote an
orthonormal Cartesian basis by

{êx, êy, êz} or {ê1, ê2, ê3}.

The Cartesian coordinates are denoted by (x, y, z) or (x1, x2, x3). The familiar
rectangular Cartesian coordinate system is shown in Fig. 2.2.11(a). We shall
always use right-handed coordinate systems.

A position vector x = r to an arbitrary point (x, y, z) = (x1, x2, x3) is

x = xêx + yêy + zêz = x1ê1 + x2ê2 + x3ê3, (2.2.68)

or, in summation notation,

x = xj êj , x · x = r2 = xixi. (2.2.69)

Next, we establish the relationship between the components of two different
orthonormal coordinate systems, say, unbarred and barred [see Fig. 2.2.11(b)].
Consider the unbarred coordinate basis

(ê1, ê2, ê3)

and the barred coordinate basis

(ˆ̄e1, ˆ̄e2, ˆ̄e3).

Then Eq. (2.2.62) yields, as a special case, the following relations:

ˆ̄ei = �ij êj , Āi = �ij Aj , (2.2.70)

where

�ij = ˆ̄ei · êj . (2.2.71)

1x 2x

3x

2x

1x

3x

11 cosl

31 cosl

23 cosl

(b)

.

1x
2x

3x

1x x

2y x

3z x

1 2 3( ) ( )x, y,z x ,x ,x

2yˆ ˆe e1xˆ ˆe e

3zˆ ˆe e

(a)

=x r

Fig. 2.2.11: (a) A rectangular Cartesian coordinate system. (b) Barred and unbarred coor-
dinate systems.
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Equation (2.2.70) gives the relationship between the base vectors as well as the
components of the barred and unbarred coordinate systems. The relationship
between the components (Ā1, Ā2, Ā3) and (A1, A2, A3) is called the transforma-
tion rule between the barred and unbarred components in the two orthogonal
coordinate systems. The coefficients �ij are the direction cosines of the barred
coordinate system with respect to the unbarred coordinate system:

�ij = cosine of the angle between ˆ̄ei and êj . (2.2.72)

Note that the first subscript of �ij comes from the barred coordinate system and
the second subscript from the unbarred system. Obviously, �ij is not symmetric
(i.e., �ij �= �ji). The direction cosines allow us to relate components of a vector
(or a tensor) in the unbarred coordinate system to components of the same
vector (or tensor) in the barred coordinate system. Example 2.2.9 illustrates
the computation of direction cosines.

Example 2.2.9

Let êi (i = 1, 2, 3) be a set of orthonormal base vectors. Then define a new right-handed
coordinate basis by (note that ˆ̄e1 · ˆ̄e2 = 0):

ˆ̄e1 = 1
3
(2ê1 + 2ê2 + ê3) , ˆ̄e2 = 1√

2
(ê1 − ê2) , ˆ̄e3 = ˆ̄e1 × ˆ̄e2 = 1

3
√
2
(ê1 + ê2 − 4ê3) .

The original and new coordinate systems are depicted in Fig. 2.2.12. Determine the direction
cosines 
ij of the transformation and display them in a rectangular array.

Solution: From Eq. (2.2.71) we have


11 = ˆ̄e1 · ê1 = 2
3
, 
12 = ˆ̄e1 · ê2 = 2

3
, 
13 = ˆ̄e1 · ê3 = 1

3
,


21 = ˆ̄e2 · ê1 = 1√
2
, 
22 = ˆ̄e2 · ê2 = − 1√

2
, 
23 = ˆ̄e2 · ê3 = 0,


31 = ˆ̄e3 · ê1 = 1

3
√
2
, 
32 = ˆ̄e3 · ê2 = 1

3
√
2
, 
33 = ˆ̄e3 · ê3 = − 4

3
√
2
.

The rectangular array of these components is denoted by [L] and has the form (see Section 2.3
for the concept of a matrix)

[L] = 1

3
√
2

⎡
⎣ 2

√
2 2

√
2

√
2

3 −3 0
1 1 −4

⎤
⎦ .

ê1

ê2

ê3

ê1

ê2

ê3

Fig. 2.2.12: Original and transformed coordinate systems defined in Example 2.2.9.
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2.3 Theory of Matrices

2.3.1 Definition

In the preceding sections we studied the algebra of ordinary vectors and the
transformation of vector components from one coordinate system to another.
For example, the transformation in Eq. (2.2.70) relates the components of a
vector in the barred coordinate system to those in the unbarred coordinate
system. Writing Eq. (2.2.70) in expanded form,

Ā1 = �11A1 + �12A2 + �13A3,

Ā2 = �21A1 + �22A2 + �23A3,

Ā3 = �31A1 + �32A2 + �33A3,

(2.3.1)

we see that there are nine coefficients relating the components Ai to Āi. The form
of these linear equations suggests writing down the scalars of �ij (jth components
in the ith equation) in the rectangular array

[L] =

⎡
⎣ �11 �12 �13
�21 �22 �23
�31 �32 �33

⎤
⎦ .

This rectangular array [L] of scalars �ij is called a matrix, and the quantities �ij
are called the elements of [L]1.

If a matrix has m rows and n columns, we say that is m by n (m × n),
the number of rows always being listed first. The element in the ith row and
jth column of a matrix [A] is generally denoted by aij , and we will sometimes
designate a matrix by [A] = [aij ]. A square matrix is one that has the same
number of rows as columns. An n × n matrix is said to be of order n. The
elements of a square matrix for which the row number and the column number
are the same (i.e., aij for i = j) are called diagonal elements or simply the
diagonal. A square matrix is said to be a diagonal matrix if all of the off-diagonal
elements are zero. An identity matrix, denoted by [I], is a diagonal matrix whose
elements are all 1’s. Examples of a diagonal and an identity matrix are given
below: ⎡

⎢⎢⎣
5 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 3

⎤
⎥⎥⎦ , [I] =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

The sum of the diagonal elements is called the trace of the matrix.

1The word “matrix” was first used in 1850 by James Sylvester (1814–1897), an English alge-
braist. However, Arthur Caley (1821–1895), professor of mathematics at Cambridge, was the
first one to explore properties of matrices. Significant contributions in the early years were
made by Charles Hermite, Georg Frobenius, and Camille Jordan, among others.
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If the matrix has only one row or one column, we normally use only a single
subscript to designate its elements. For example,

{X} =

⎧⎨
⎩

x1
x2
x3

⎫⎬
⎭ and {Y } = {y1 y2 y3}

denote a column matrix and a row matrix, respectively. Row and column ma-
trices can be used to represent the components of a vector.

2.3.2 Matrix Addition and Multiplication of a Matrix by a Scalar

The sum of two matrices of the same size is defined to be a matrix of the same
size obtained by simply adding the corresponding elements. If [A] is an m × n
matrix and [B] is an m× n matrix, their sum is an m× n matrix, [C], with

cij = aij + bij for all i, j. (2.3.2)

A constant multiple of a matrix is equal to the matrix obtained by multiply-
ing all of the elements by the constant. That is, the multiplication of a matrix
[A] by a scalar α, α[A], is the matrix obtained by multiplying each of its elements
with α:

[A] =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ , α[A] =

⎡
⎢⎢⎣
αa11 αa12 . . . αa1n
αa21 αa22 . . . αa2n
· · · · · · · · · · · ·
αam1 αam2 . . . αamn

⎤
⎥⎥⎦ .

Matrix addition has the following properties:

(1) Addition is commutative: [A] + [B] = [B] + [A].

(2) Addition is associative: [A] + ([B] + [C]) = ([A] + [B]) + [C].

(3) There exists a unique matrix [0], such that [A] + [0] = [0]+ [A] = [A]. The
matrix [0] is called zero matrix when all elements are zeros.

(4) For each matrix [A], there exists a unique matrix −[A] such that [A] +
(−[A]) = [0].

(5) Addition is distributive with respect to scalar multiplication: α([A] +
[B]) = α[A] + α[B].

(6) Addition is distributive with respect to matrix multiplication, which is
discussed in Section 2.3.5:

([A] + [B])[C] = [A][C] + [B][C]; [D]([A] + [B]) = [D][A] + [D][B],

where [A] and [B] are m × n matrices, [C] is a n × p matrix, and [D] is
a q ×m matrix (so that the products of matrices appearing in the above
expressions are meaningful).
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2.3.3 Matrix Transpose

If [A] is an m × n matrix, then the n × m matrix obtained by interchanging
its rows and columns is called the transpose of [A] and is denoted by [A]T. For
example, the transposes of the matrices

[A] =

⎡
⎢⎢⎣

5 −2 1
8 7 6
2 4 3

−1 9 0

⎤
⎥⎥⎦ and [B] =

⎡
⎣ 3 −1 2 4
−6 3 5 7
9 6 −2 1

⎤
⎦ .

are

[A]T =

⎡
⎣ 5 8 2 −1
−2 7 4 9
1 6 3 0

⎤
⎦ and [B]T =

⎡
⎢⎢⎣

3 −6 9
−1 3 6
2 5 −2
4 7 1

⎤
⎥⎥⎦ .

Two basic properties are: ([A]T)T = [A]; ([A] + [B])T = [A]T + [B]T.

2.3.4 Symmetric and Skew Symmetric Matrices

A square matrix [A] of real numbers is said to be symmetric if [A]T = [A], and
it is said to be skew symmetric if [A]T = −[A]. In terms of the elements of [A],
[A] is symmetric if and only if aij = aji, and it is skew symmetric if and only
if aij = −aji. Note that the diagonal elements of a skew symmetric matrix are
always zero because aij = −aij implies aij = 0 for i = j. Examples of symmetric
and skew symmetric matrices, respectively, are⎡

⎢⎢⎣
5 −2 12 21

−2 2 16 −3
12 16 13 8
21 −3 8 19

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 −11 32 4
11 0 25 7

−32 −25 0 15
−4 −7 −15 0

⎤
⎥⎥⎦ .

Every square matrix [A] can be expressed as a sum of a symmetric matrix and
a skew symmetric matrix:

[A] = 1
2

(
[A] + [A]T

)
+ 1

2

(
[A]− [A]T

)
. (2.3.3)

For example, consider the unsymmetric matrix⎡
⎣ 4 6 8

2 10 12
18 14 6

⎤
⎦ ,

which can be expressed as⎡
⎣ 4 6 8

2 10 12
18 14 6

⎤
⎦ =

⎡
⎣ 2 3 4
1 5 6
9 7 3

⎤
⎦+

⎡
⎣ 2 1 9
3 5 7
4 6 3

⎤
⎦+

⎡
⎣ 2 3 4
1 5 6
9 7 3

⎤
⎦−

⎡
⎣ 2 1 9
3 5 7
4 6 3

⎤
⎦

=

⎡
⎣ 4 4 13

4 10 13
13 13 6

⎤
⎦+

⎡
⎣ 0 2 −5
−2 0 −1
5 1 0

⎤
⎦ .
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2.3.5 Matrix Multiplication

Consider a vector A = a1ê1 + a2ê2 + a3ê3 in a Cartesian system. We can
represent A as a product of a row matrix with a column matrix,

A = {a1 a2 a3}
⎧⎨
⎩

ê1
ê2
ê3

⎫⎬
⎭ = {ê1 ê2 ê3}

⎧⎨
⎩

a1
a2
a3

⎫⎬
⎭ .

Note that the vector A is obtained by multiplying the ith element in the row
matrix with the ith element in the column matrix and adding them. This gives
us a strong reason to define the product of two matrices.

Let {X} and {Y } be the vectors (matrices with one column)

{X} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1
x2
...

xm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, {Y } =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1
y2
...
ym

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.3.4)

We define the product {X}T{Y } to be the scalar

{X}T{Y } = {x1, x2, . . . , xm}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1
y2
...
ym

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= x1y1 + x2y2 + · · ·+ xmym =

m∑
i=1

xiyi,

=
m∑
i=1

yixi = {y1, y2, . . . , ym}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1
x2
...

xm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= {Y }T{X}. (2.3.5)

It follows from Eq. (2.3.5) that {X}T{Y } = {Y }T{X}. More generally, let
[A] = [aij ] be m × n and [B] = [bij ] be n × p matrices. The product [A][B] is
defined as the m× p matrix [C] = [cij ], with

cij = {ith row of [A]}
⎧⎨
⎩

jth
column of

[B]

⎫⎬
⎭ = {ai1, ai2, . . . , ain}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1j
b2j
...

bnj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

aikbkj . (2.3.6)

The next example illustrates the computation of the product of a square matrix
with a column matrix.

The following remarks concerning matrix multiplication are in order, where
[A] denotes an m× n matrix and [B] denotes a p× q matrix:
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(1) The product [A][B] is defined only if the number of columns n in [A] is
equal to the number of rows p in [B] (i.e., p = n). Similarly, the product
[B][A] is defined only if q = m.

(2) If [A][B] is defined (i.e., p = n), [B][A] may (if q = m) or may not (if
q �= m) be defined. If both [A][B] and [B][A] are defined (i.e., p = n and
q = m), it is not necessary that they be of the same size; [A][B] is m×m
and [B][A] is n× n.

(3) The products [A][B] and [B][A] are of the same size if and only if both [A]
and [B] are square matrices of the same size.

(4) The products [A][B] and [B][A] are, in general, not equal: [A][B] �= [B][A]
(even if they are of equal size). That is, matrix multiplication is not
commutative.

(5) For any real square matrix [A], [A] is said to be normal if [A][A]T =
[A]T[A]. The product [A][A]T is always symmetric: ([A][A]T)T = [A][A]T.

(6) If [A] is a square matrix, the powers of [A] are defined by [A]2 = [A][A],
[A]3 = [A][A]2 = [A]2[A], and so on.

(7) Matrix multiplication is associative: ([A][B])[C] = [A]([B][C]).

(8) The product of any square matrix with the identity matrix is the matrix
itself, [A][I] = [A] and [I][A] = [A].

(9) The transpose of the product is ([A][B])T = [B]T[A]T (note the order).

Example 2.3.1

Verify property 3 in the preceding list using matrices [A] and [B] of Section 2.3.3.

Solution: The product of matrices [A] and [B] is

[A][B] =

⎡
⎢⎣

5 −2 1
8 7 6
2 4 3

−1 9 0

⎤
⎥⎦
⎡
⎣ 3 −1 2 4
−6 3 5 7
9 6 −2 1

⎤
⎦ =

⎡
⎢⎣

36 −5 −2 7
36 49 39 87
9 28 18 39

−57 28 43 59

⎤
⎥⎦ ,

and

([A][B])T =

⎡
⎢⎣

36 36 9 −57
−5 49 28 28
−2 39 18 43
7 87 39 59

⎤
⎥⎦ .

Now compute the product

[B]T[A]T =

⎡
⎢⎣

3 −6 9
−1 3 6
2 5 −2
4 7 1

⎤
⎥⎦
⎡
⎣ 5 8 2 −1
−2 7 4 9
1 6 3 0

⎤
⎦ =

⎡
⎢⎣

36 36 9 −57
−5 49 28 28
−2 39 18 43
7 87 39 59

⎤
⎥⎦ .

Thus, ([A][B])T = [B]T[A]T is verified.
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2.3.6 Inverse and Determinant of a Matrix

If [A] is an n×n matrix and [B] is any n×n matrix such that [A][B] = [B][A] =
[I], then [B] is called an inverse of [A]. If it exists, the inverse of a matrix is
unique (a consequence of the associative law). If both [B] and [C] are inverses
for [A], then by definition,

[A][B] = [B][A] = [A][C] = [C][A] = [I].

Due to the fact that matrix multiplication is associative, we have

[B][A][C] = ([B][A])[C] = [I][C] = [C]

= [B]([A][C]) = [B][I] = [B].

This shows that [C] = [B], and the inverse is unique. The inverse of [A] is
denoted by [A]−1. A procedure for computing the inverse will be presented
shortly.

A matrix is said to be singular if it does not have an inverse. If [A] is
nonsingular, then the transpose of the inverse is equal to the inverse of the
transpose: ([A]−1)T = ([A]T)−1 ≡ [A]−T.

Let [A] = [aij ] be an n × n matrix. We wish to associate with [A] a scalar
that in some sense measures the “size” of [A] and indicates whether or not [A]
is nonsingular. The determinant of the matrix [A] = [aij ] is defined to be the
scalar det [A] = |A| computed according to the rule

det[A] = |A| =
n∑

i=1

(−1)i+1ai1|Ai1|, (2.3.7)

where |Aij | is the determinant of the (n − 1) × (n − 1) matrix that remains
on deleting the ith row and the jth column of [A]. For convenience we define
the determinant of a zeroth-order matrix to be unity. For 1 × 1 matrices the
determinant is defined according to |a11| = a11. For a 2 × 2 matrix [A] the
determinant is defined by

[A] =

[
a11 a12
a21 a22

]
, |A| =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11 a22 − a21 a12.

In the above definition special attention is given to the first column of the matrix
[A]. We call it the expansion of |A| according to the first column of [A]. One
can expand |A| according to any column or row:

|A| =
n∑

i or j=1

(−1)i+j aij |Aij | for fixed j or i.

A matrix is said to be singular if its determinant is zero. Obviously, there is a
connection between the inverse and the determinant of a matrix, as we shall see
shortly. A numerical example of the calculation of a determinant is presented
next.
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Example 2.3.2

Compute the determinant of the matrix

[A] =

⎡
⎣ 2 5 −1
1 4 3
2 −3 5

⎤
⎦ .

Solution: Using definition in Eq. (2.3.7) and expanding by the first column, we have

|A| =
3∑

i=1

(−1)i+1ai1|Ai1| = (−1)2a11|A11|+ (−1)3a21|A21|+ (−1)4a31|A31|

= a11

∣∣∣∣ 4 3
−3 5

∣∣∣∣− a21

∣∣∣∣ 5 −1
−3 5

∣∣∣∣+ a31

∣∣∣∣ 5 −1
4 3

∣∣∣∣
= 2
[
(4)(5)− (−3)(3)

]
+ (−1)

[
(5)(5)− (−3)(−1)

]
+ 2
[
(5)(3)− (4)(−1)

]
= 2(20 + 9)− (25− 3) + 2(15 + 4) = 74.

Let A = Aiêi, B = Biêi, and C = Ciêi. Then the cross product of vectors
A and B can be expressed as the determinant

A×B ≡
∣∣∣∣∣∣
ê1 ê2 ê3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ , (2.3.8)

and the scalar triple product can be expressed as the determinant

A·(B×C) ≡
∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣ . (2.3.9)

Consequently, the determinant of a 3× 3 matrix [A] can be expressed as |A| =
eijka1ia2ja3k [let A = A1, B = A2, and C = A3 in Eq. (2.3.9)].

We note the following properties of determinants of square matrices:

(1) det([A][B]) = det[A] · det[B].

(2) det[A]T = det[A].

(3) det(α [A]) = αn det[A], where α is a scalar and n is the order of [A].

(4) If [A′] is a matrix obtained from [A] by multiplying a row (or column) of
[A] by a scalar α, then det [A′] = α det[A].

(5) If [A′] is the matrix obtained from [A] by interchanging any two rows (or
columns) of [A], then det[A′] = −det[A].

(6) If [A] has two rows (or columns) one of which is a scalar multiple of another
(i.e., linearly dependent), det[A] = 0.

(7) If [A′] is the matrix obtained from [A] by adding a multiple of one row (or
column) to another, then det[A′] = det[A].
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A matrix is said to be singular if and only if its determinant is zero; hence,
does not have an inverse. By property 6 in the foregoing list the determinant of
a matrix is zero if it has linearly dependent rows (or columns).

For an n× n matrix [A] the determinant of the (n− 1)× (n− 1) sub-matrix
of [A] obtained by deleting row i and column j of [A] is called the minor of aij
and is denoted by Mij([A]). The quantity cof ij([A]) ≡ (−1)i+jMij([A]) is called
the cofactor of aij . The determinant of [A] can be cast in terms of the minor
and cofactor of aij

det[A] =
n∑

i=1

(−1)i+j aij Mij([A]) =
n∑

i=1

aij cofij([A]), (2.3.10)

for any fixed value of j.
The adjunct (also called adjoint) of a matrix [A] is the transpose of the matrix

obtained from [A] by replacing each element by its cofactor. The adjunct of [A]
is denoted by Adj[A].

Now we have the essential tools to compute the inverse of a matrix. If [A] is
nonsingular (i.e., |A| �= 0), the inverse [A]−1 of [A] can be computed according
to

[A]−1 =
1

det[A]
Adj[A]. (2.3.11)

Example 2.3.3 illustrates the computation of the inverse of a matrix following
the procedure just outlined.

Example 2.3.3

Determine the inverse of the matrix [A] of Example 2.3.2:

[A] =

⎡
⎣ 2 5 −1
1 4 3
2 −3 5

⎤
⎦ .

Solution: The determinant is given by (expanding by the first row)

|A| = (2)(29) + (−)(5)(−1) + (−1)(−11) = 74.

Then we compute the minors Mij . For example, we have

M11([A]) =

∣∣∣∣ 4 3
−3 5

∣∣∣∣ , M12([A]) =

∣∣∣∣ 1 3
2 5

∣∣∣∣ , M13([A]) =

∣∣∣∣ 1 4
2 −3

∣∣∣∣ ,
cof11([A]) = (−1)2M11([A]) = 4× 5− (−3)3 = 29,

cof12([A]) = (−1)3M12([A]) = −(1× 5− 2× 3) = 1,

cof13([A]) = (−1)4M13([A]) = 1× (−3)− 2× 4 = −11,

and so on. The Adj([A]) is given by

Adj([A]) =

⎡
⎢⎣
cof11([A]) cof12([A]) cof13([A])

cof21([A]) cof22([A]) cof23([A])

cof31([A]) cof32([A]) cof33([A])

⎤
⎥⎦

T

=

⎡
⎣ 29 −22 19

1 12 19
−11 16 3

⎤
⎦ .
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The inverse of A can be now computed using Eq. (2.3.11),

[A]−1 =
1

74

⎡
⎣−29 −22 19

1 12 −7
−11 16 3

⎤
⎦ .

It can be easily verified that [A][A]−1 = [I].

2.3.7 Positive-Definite and Orthogonal Matrices

A symmetric matrix [A] is said to be positive or positive-definite if there exists
a nonzero vector {X} such that

{X}T[A]{X} > 0. (2.3.12)

The expression {X}T[A]{X} represents a quadratic polynomial associated with
matrix [A] with respect to vector {X}. A corollary to this definition is that a
matrix [A] is positive if and only if there exists a nonsingular matrix [T ] such
that

[A] = [T ]T[T ]. (2.3.13)

Then we have

{X}T[T ]T[T ]{X} = {Y }T{Y }, {Y } ≡ [T ]{X}, (2.3.14)

which is always positive for all nonzero vectors {Y }.
A nonsingular matrix [Q] is said to be orthogonal if the following condition

holds:
[Q][Q]T = [Q]T[Q] = [I] or [Q]−1 = [Q]T. (2.3.15)

From the foregoing definition it follows that the determinant of an orthogonal
matrix is |Q| = ±1. If the determinant of [Q] is +1, then [Q] is called a rotation
or a proper orthogonal matrix; otherwise, it is called an improper orthogonal ma-
trix. A proper orthogonal matrix transforms a right-handed coordinate system
into another right-handed coordinate system.

Example 2.3.4

Consider the matrices

[A] =

[
2 3
3 −4

]
, [B] =

[
2 3
3 5

]
.

Determine if the matrices are positive.

Solution: Compute the product

{x1 x2}
[
2 3
3 −4

]{
x1

x2

}
= 2x2

1 + 6x1x2 − 4x2
2,

which is not positive for all nonzero vectors {X}T = {x1 x2}. Clearly, for {X}T = {1 − 1},
we have {X}T[A]{X} = −8. Thus, the matrix is not positive.

Next, consider the matrix

[B] =

[
2 3
3 5

]
.
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Forming the quadratic form

{x1 x2}
[
2 3
3 5

]{
x1

x2

}
= 2x2

1 + 6x1x2 + 5x2
2 = (x1 + 2x2)

2 + (x1 + x2)
2

The matrix is positive because {X}T[A]{X} > 0 for all nonzero vectors {X}T = {x1 x2}.
In addition, for the choice of

[T ] =

⎡
⎣ 1 0 0
0 1 0
0 1 1

⎤
⎦ ,

we find that

[A] = [T ]T[T ] = [T ][T ]T =

⎡
⎣ 1 0 0
0 2 1
0 1 1

⎤
⎦

is positive because {X}T[A]{X} = x2
1 + 2x2

2 + x2
3 + 2x2x3 > 0 for all nonzero vectors {X}T =

{x1 x2 x3}. However, [T ] is not an orthogonal matrix because [T ]T[T ] �= [I].

2.4 Vector Calculus

2.4.1 Differentiation of a Vector with Respect to a Scalar

Suppose that a vector is given as a function of a scalar t, say A = A(t). In
general, vector A will have different magnitudes and different directions for
different values of t, which is pictured schematically in Fig. 2.4.1(a). With the
tails of the vector being at the same point for different values of the scalar t, the
tip of the arrow draws out a trajectory, as shown in Fig. 2.4.1(a).

Consider now two values of t differing by an infinitesimal amount, say t and
t + Δt. Then the variation in Fig. 2.4.1(a) becomes as shown in Fig. 2.4.1(b).
With this picture in mind, it is easy to visualize the definition of the derivative
of a vector with respect to t:

dA

dt
= lim

Δt→0

A(t+Δt)−A(t)

Δt
. (2.4.1)

1( )tA 2( )tA 3( )tA

O(a) (b) O

( )tA ( )t tA

( ) ( )t t tA A A

ˆ se

Fig. 2.4.1: (a) Variation of a vector as a function of a scalar t. (b) Differential change in a
vector A(t).
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Now let Δs = |ΔA| so that s is the distance measured along the trajectory.
Then we have

dA

dt
= lim

Δt→0

ΔA

Δs

Δs

Δt
.

In the limit, ΔA/Δs is a unit vector that is tangent to the trajectory, say ês.
In the limit, therefore, we have

dA

dt
=

ds

dt
ês. (2.4.2)

It is clear that the derivative of the vector has a different direction and magnitude
than the vector itself. The magnitude of the derivative ds/dt is the rate of change
of distance s with respect to t along the trajectory. Observe that the distance s
has the same dimensions as the vector A itself.

An important special case occurs when the vector has a constant length. In
general, we note that

A ·A = A2(t). (2.4.3)

From differentiation of both sides of this equation it follows that

A · dA
dt

= A
dA

dt
. (2.4.4)

When A has a constant length, then dA/dt = 0, and we have

A · dA
dt

= 0. (2.4.5)

We deduce from this result that either A = 0, or dA/dt = 0 or A is perpen-
dicular to dA/dt. If dA/dt = 0, then the vector has not only a constant length,
but also a constant direction. If the direction of A varies, but its length is fixed,
then the derivative dA/dt is perpendicular to A.

Consider now the derivative of a vector in terms of its components. If we
write

A = A1(t)e1(t) +A2(t)e2(t) +A3(t)e3(t),

we must remember that the basis vectors are also functions of the scalar t. Thus
we have

dA

dt
=

dA1

dt
e1 +

dA2

dt
e2 +

dA3

dt
e3 +A1de1

dt
+A2de2

dt
+A3de3

dt
. (2.4.6)

Basis vectors that are constant are associated with Cartesian systems. Only in
these systems do the derivatives dei/dt vanish.

2.4.2 Curvilinear Coordinates

Consider a transformation from the coordinate system (x1, x2, x3) to a new set
of coordinates (q1, q2, q3):

qi = qi(x1, x2, x3) = qi(x, y, z), i = 1, 2, 3, (2.4.7)
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and the inverse transformation is

xi = xi(q
1, q2, q3), i = 1, 2, 3. (2.4.8)

The inverse transformation exists if and only if the Jacobian matrix [J ] =
[∂xj/∂q

i] �= 0; in fact, the determinant J of the matrix [J ] must be positive in or-
der that the transformation produces a right-hand coordinate system (q1, q2, q3)
from a right-hand coordinate system (x1, x2, x3). The functions q

i(x, y, z) = con-
stant, where i = 1, 2, 3, denote three surfaces in space. The intersection of any
two of these surfaces defines a coordinate curve, as shown in Fig. 2.4.2. When
the aforementioned transformation is nonlinear, the coordinate curves denoted
by q1, q2, and q3 are curved lines, and the (q1, q2, q3) system is called curvi-
linear. When the transformation is linear, the coordinate lines will be straight
lines, but not necessarily parallel to the original (x, y, z) system, and a new
Cartesian coordinate system is defined.

In view of the transformations defined, the position vector r is a function of
the new coordinates (q1, q2, q3):

r = r(q1, q2, q3). (2.4.9)

The differential dr can now be written

dr =
∂r

∂q1
dq1 +

∂r

∂q2
dq2 +

∂r

∂q3
dq3 =

∂r

∂qi
dqi. (2.4.10)

The partial derivatives ∂r/∂q1, ∂r/∂q2, and ∂r/∂q3 are vectors that are tangent
to the coordinate curves, as shown in Fig. 2.4.2. These vectors can be taken as
a basis system associated with the coordinates (q1, q2, q3). This basis is referred

x1

x3

x2

r e2

e1

e3

q1 constantq2 constant

q3 constant
q1

q3

q2

Fig. 2.4.2: Curvilinear coordinates.

to as the unitary basis. Note that these vectors in general are not unit nor
orthogonal. We now denote the unitary basis by (e1, e2, e3) as follows:

e1 ≡ ∂r

∂q1
, e2 ≡ ∂r

∂q2
, e3 ≡ ∂r

∂q3
. (2.4.11)
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A differential distance is denoted by

dr = dq1e1 + dq2e2 + dq3e3 = dqiei. (2.4.12)

Observe that the q’s have superscripts whereas the unitary basis has subscripts.
The dq’s thus are referred to as the contravariant components of the differential
vector dr. The unitary basis will satisfy the covariant transformation law and
thus is a covariant basis.

The unitary basis can be described in terms of the Cartesian basis (êx, êy, êz)
as

e1 =
∂r

∂q1
=

∂x

∂q1
êx +

∂y

∂q1
êy +

∂z

∂q1
êz,

e2 =
∂r

∂q2
=

∂x

∂q2
êx +

∂y

∂q2
êy +

∂z

∂q2
êz, (2.4.13)

e3 =
∂r

∂q3
=

∂x

∂q3
êx +

∂y

∂q3
êy +

∂z

∂q3
êz.

In the summation convention we have

ei ≡ ∂r

∂qi
=

∂xj
∂qi

êj , i = 1, 2, 3. (2.4.14)

We can associate with the covariant base vectors ei, a dual or reciprocal basis,
defined by Eq. (2.2.31).

2.4.3 The Fundamental Metric

The square of the infinitesimal distance between two points can now be written
in the unitary basis as

(ds)2 = dr · dr = (ei · ej)dqi dqj = gij dq
i dqj , (2.4.15)

gij ≡ ei · ej , (2.4.16)

where gij are the covariant components of the fundamental metric tensor, g.
According to this definition gij is symmetric, that is, gij = gji. In view of Eq.
(2.2.44), the unitary basis and its dual basis are related by

ei = (ei · ej)ej = gij e
j , ei = (ei · ej)ej ≡ gij ej , gij = ei · ej , (2.4.17)

where gij are the contravariant components of the metric tensor g. Note that

δij = ei · ej = gimgjnem · en = gingjn. (2.4.18)

Thus, [gij ] is the inverse of [gij ]. Similar relations hold between the contravariant
and covariant components of a vector. We can write a vector A either in terms
of its components in the covariant basis or contravariant basis as

A = Ai ei, A = Ai e
i. (2.4.19)
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Then
Aj = gjiA

i, Ai = gij Aj . (2.4.20)

Analogous to Eq. (2.2.49), we can define the permutation symbol in a general
right-handed curvilinear system by

ei × ej = Eijk ek, (2.4.21)

where Eijk is the permutation symbol in a general curvilinear system:

Eijk = ei × ej · ek. (2.4.22)

The length of a unitary vector ei (for fixed i) is defined as

|ei| = [ei · ei] 12 =
√
gii (no sum on i). (2.4.23)

The fundamental metric describes the nature of a space, or manifold. A
manifold may be either “curved” or “flat.” A flat space is said to be Euclidean.
If it is possible to find a transformation to a coordinate system such that all
the gij ’s are constant, the space is Euclidean. If it is not possible, it is said to
be non-Euclidean or Riemannian. For most engineering applications we will be
concerned with Euclidean spaces.

2.4.4 Derivative of a Scalar Function of a Vector

The basic notions of vector and scalar calculus, especially with regard to physical
applications, are closely related to the rate of change of a scalar field, such as
the velocity potential or temperature, with distance. Let us denote a scalar field
by φ = φ(x), x being the position vector, as shown in Fig. 2.4.3.

In general coordinates we can write φ = φ(q1, q2, q3), and a differential of φ
is given by

dφ =
∂φ

∂q1
dq1 +

∂φ

∂q2
dq2 +

∂φ

∂q3
dq3 =

∂φ

∂qi
dqi.

The differentials dq1, dq2, dq3 are components of dr = dx [see Eq. (2.4.12)]. We
would now like to write dφ in such a way that we elucidate the direction as well
as the magnitude of dx. In view of the identity ei · ej = δij , we can write

dφ = e1
∂φ

∂q1
· e1 dq1 + e2

∂φ

∂q2
· e2 dq2 + e3

∂φ

∂q3
· e3 dq3

= (dq1e1 + dq2e2 + dq3e3) ·
(
e1

∂φ

∂q1
+ e2

∂φ

∂q2
+ e3

∂φ

∂q3

)

= dx ·
(
e1

∂φ

∂q1
+ e2

∂φ

∂q2
+ e3

∂φ

∂q3

)
. (2.4.24)
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∂
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∂ 2q3q

• •
x

x xd+

xd

1x

2x
3x

( )x

Curve s

xê
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Fig. 2.4.3: Directional derivative of a scalar function.

Let us now denote the magnitude of dx by ds ≡ |dx|. Then ê = dx/ds is a unit
vector in the direction of dx, and we have(

dφ

ds

)
ê

= ê ·
(
e1

∂φ

∂q1
+ e2

∂φ

∂q2
+ e3

∂φ

∂q3

)
. (2.4.25)

The derivative (dφ/ds)ê is called the directional derivative2 of φ. We see that
it is the rate of change of φ with respect to distance and that it depends on the
direction ê in which the distance is taken.

The vector in Eq. (2.4.25) that is taken a scalar product with ê can be
obtained immediately whenever the scalar field φ is given. Since the magnitude
of this vector is equal to the maximum value of the directional derivative, it is
called the gradient vector and is denoted by grad φ:

gradφ ≡ e1
∂φ

∂q1
+ e2

∂φ

∂q2
+ e3

∂φ

∂q3
= ei

∂φ

∂qi
. (2.4.26)

From this representation it can be seen that

∂φ

∂q1
,

∂φ

∂q2
,

∂φ

∂q3

are the covariant components of the gradient vector.

2.4.5 The del Operator

It is convenient to write the gradient vector, gradφ, as

∇φ ≡
(
e1

∂

∂q1
+ e2

∂

∂q2
+ e3

∂

∂q3

)
φ, (2.4.27)

2The directional derivative is also defined as [dφ(q+ αê)/dα]α=0.
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and interpret ∇φ as some operator ∇ operating on φ. This operator ∇ is
defined by

∇ ≡ e1
∂

∂q1
+ e2

∂

∂q2
+ e3

∂

∂q3
= ei

∂

∂qi
, (2.4.28)

and it is called the del operator. The del operator is a vector differential operator,
and the “components” ∂/∂q1, ∂/∂q2, and ∂/∂q3 appear as covariant components.

In Cartesian systems we have the simple form

∇ ≡ êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
, (2.4.29)

or, in the summation convention, we have

∇ ≡ êi
∂

∂xi
. (2.4.30)

It is important to note that although the del operator has some of the proper-
ties of a vector, it does not have them all, because it is an operator. For instance,
∇ ·A is a scalar (called the divergence of A) whereas A ·∇ is a scalar differential
operator. Thus the del operator ∇ does not commute in this sense. Also, in
general, the derivatives of the base vectors ei with respect to the coordinates qi

are not zero.
When the scalar function φ(x) is set equal to a constant, φ(x) = constant,

a family of surfaces is generated. A different surface is designated by different
values of the constant, and each surface is called a level surface, as shown in Fig.
2.4.4(a). The unit vector ê is tangent to a level surface. If the direction in which
the directional derivative is taken lies within a level surface, then dφ/ds is zero
because φ is a constant on a level surface. It follows, therefore, that if dφ/ds is
zero, then ∇φ must be perpendicular to ê, and hence perpendicular to a level
surface. Thus, if any surface is defined by φ(x) = constant, the unit normal to
the surface is determined from [see Fig. 2.4.4(b)]

n̂ = ± ∇φ

|∇φ| , n̂ = niêi (= nx êx + ny êy + nz êz), ni =
1

|∇φ|
∂φ

∂xi
. (2.4.31)

grad 
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Fig. 2.4.4: (a) Level surfaces and unit normal vector. (b) Components of unit normal vector.
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In general, the normal vector is a function of position x; n̂ is independent of
x only when φ is a plane (i.e., linear function of x). The plus or minus sign
appears in Eq. (2.4.31) because the direction of n̂ may point in either direction
away from the surface. If the surface is closed, the usual convention is to take
n̂ pointing outward from the surface.

An important note concerning the del operator ∇ is in order. Two types of
gradients are used in continuum mechanics: forward and backward gradients.
The forward gradient is the usual gradient and the backward gradient is the
transpose of the forward gradient operator. To see the difference between the
two types of gradients, consider a vector function A = Ai(x)êi. The forward
and backward gradients of a vector A are

−→∇A ≡ ∇A = êj
∂

∂xj

(
Aiêi

)
=

∂Ai

∂xj
êj êi = Ai,j êj êi, (2.4.32)

A
←−∇ ≡ (∇A

)T
=

∂Ai

∂xj

(
êj êi

)T
= Ai,j êiêj , (2.4.33)

where Ai,j = ∂Ai/∂xj . Both are second-order tensors,3 as discussed in Section

2.5. The backward gradient
←−∇ , a more natural one, is often used in defining the

deformation gradient tensor, displacement gradient tensor, and velocity gradient
tensor, which is introduced in Chapter 3. In the present book only one gradient
operator (in bold), namely, the forward gradient operator ∇, a more common
one, is used. To clarify, the transpose of the forward gradient is used to denote
the backward gradient operator.

2.4.6 Divergence and Curl of a Vector

The dot product of a del operator with a vector is called the divergence of a
vector and is denoted by

∇ ·A ≡ divA. (2.4.34)

If we take the divergence of the gradient of a scalar function φ(x), we have

div(grad φ) ≡ ∇ ·∇φ = (∇ ·∇)φ = ∇2φ. (2.4.35)

The notation ∇2 = ∇ ·∇ is called the Laplacian operator. In Cartesian systems
this reduces to the simple form

∇2φ =
∂2φ

∂xi∂xi
=

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
. (2.4.36)

The Laplacian of a scalar appears frequently in the partial differential equations
governing physical phenomena.

The curl of a vector is defined as the del operator operating on a vector by
means of the cross product:

curl A = ∇×A = eijkêi
∂Ak

∂xj
. (2.4.37)

3Operationally it is more appropriate to use the notation A
←−∇ instead of

←−∇A.
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The quantity n̂ · grad φ of a scalar function φ is called the normal derivative
of φ and is denoted by

∂φ

∂n
≡ n̂ ·∇φ. (2.4.38)

In a Cartesian system this becomes

∂φ

∂n
=

∂φ

∂x
nx +

∂φ

∂y
ny +

∂φ

∂z
nz, (2.4.39)

where nx, ny and nz are the direction cosines of the unit normal [see Fig. 2.4.4(b)]

n̂ = nxêx + nyêy + nzêz. (2.4.40)

Next, we present several examples to illustrate the use of index notation to
prove certain identities involving vector calculus.

Example 2.4.1

Establish the following identities using index notation (we use the notations x = r and |x| = r)

(a) ∇(r) = r
r
. (b) ∇(rn) = nrn−2r.

(c) ∇× (∇F ) = 0. (d) ∇ · (∇F ×∇G) = 0.

(e) ∇× (∇×A) = ∇(∇ ·A)−∇2A.

(f) ∇ · (A×B) = ∇×A ·B−∇×B ·A.

(g) A× (∇×A) = 1
2
∇(A ·A)−A ·∇A.

In the above expressions F and G denote scalar functions and A and B denote vector functions
of position x with continuous first and second derivatives.

Solution: First note that ∂xj/∂xi = δij and ∂xi/∂xi = δii = 3.

(a) Consider

∇(r) = êi
∂r

∂xi
= êi

∂

∂xi
(xjxj)

1
2

= 1
2
êi

(
r2
) 1

2
−1
(
∂xj

∂xi
xj + xj

∂xj

∂xi

)
= xiêi

(
r2
)− 1

2 =
x

r
, (1)

from which we note the identity
∂r

∂xi
=

xi

r
. (2)

(b) Similar to (a), we have

∇(rn) = êi
∂

∂xi
(rn) = nrn−1êi

∂r

∂xi
= nrn−2xiêi = nrn−2r.

(c) Consider the expression

∇× (∇F ) =

(
êi

∂

∂xi

)
×
(
êj

∂F

∂xj

)
= eijkêk

∂2F

∂xi∂xj
.
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Note that ∂2F
∂xi∂xj

is symmetric in i and j. Consider the kth component of the vector

∇× (∇F ):

eijk
∂2F

∂xi∂xj
= −ejik

∂2F

∂xi∂xj
(interchanged i and j)

= −eijk
∂2F

∂xj∂xi
(renamed i as j and j as i)

= −eijk
∂2F

∂xi∂xj
(used the symmetry of ∂2F

∂xi∂xj
).

Thus, the expression is equal to its own negative, implying that it is zero.

(d) We have

∇ · (∇F ×∇G) =

(
êi

∂

∂xi

)
·
(
êj

∂F

∂xj
× êk

∂G

∂xk

)

= ejk�(êi · ê�)

(
∂2F

∂xi∂xj

∂G

∂xk
+

∂F

∂xj

∂2G

∂xi∂xk

)

= eijk

(
∂2F

∂xi∂xj

∂G

∂xk
+

∂F

∂xj

∂2G

∂xi∂xk

)
= 0.

(e) Observe that

∇× (∇×A) = êi
∂

∂xi
×
(
êj

∂

∂xj
×Akêk

)

= êi
∂

∂xi
×
(
ejk�

∂Ak

∂xj
ê�

)
= ei�m ejk�

∂2Ak

∂xi∂xj
êm.

= (δmjδik − δmkδij)
∂2Ak

∂xi∂xj
êm =

∂2Ai

∂xi∂xj
êj − ∂2Ak

∂xi∂xi
êk

= êj
∂

∂xj

(
∂Ai

∂xi

)
− ∂2

∂xi∂xi
(Akêk) = ∇ (∇ ·A)−∇2A.

This result is sometimes used as the definition of the Laplacian of a vector, that is,

∇2A = ∇(∇ ·A)−∇×∇×A.

(f) Expanding the vector expression:

∇ · (A×B) = êi · ∂

∂xi
(ejk�AjBkê�)

= eijk

(
∂Aj

∂xi
Bk +Aj

∂Bk

∂xi

)
= ∇×A ·B−∇×B ·A.

(g) Expanding the left side of the expression using index notation:

A× (∇×A) = Aiêi ×
(
∂Ak

∂xj
êj × êk

)
= ejkmAi

∂Ak

∂xj
(êi × êm)

= ejkmeimnAi
∂Ak

∂xj
ên = Ai

∂Ak

∂xj
(δjnδki − δjiδkn) ên

= Ai
∂Ai

∂xj
êj −Ai

∂Ak

∂xi
êk = 1

2

∂(AiAi)

∂xj
êj −Ai

∂Ak

∂xi
êk

= 1
2
êj

∂(AiAi)

∂xj
−Ai

∂

∂xi
(Akêk)

= 1
2
∇(A ·A)−A ·∇A.
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These examples illustrate the convenience of using index notation in estab-
lishing vector identities and simplifying vector expressions. The difficult step in
these proofs is recognizing vector expressions from scalar expressions involving
components with indices; for example, seeing that eijkAjBk is the ith compo-

nent of the vector product A × B or recognizing eijk
∂Aj

∂xi
Bk as ∇ ×A · B and

Bi
∂Aj

∂xi
êj as B ·∇A is not always easy but practice makes one good at it. To aid

readers in this pursuit, a list of vector operations in both vector and Cartesian
component forms is presented in Table 2.4.1. Some of the identities are left
as an exercise to the reader (see Problems 2.30–2.32). Note that the gradient
operation increases, divergence decreases, and curl operation keeps the order the
same of a tensor field when operated on by ∇. For example, the gradient of a
scalar function φ is a vector ∇φ, and the divergence of a vector-valued function
A is a scalar ∇ · A; similarly, the gradient of a vector-valued function A is a
second-order tensor ∇A, whereas the divergence of a second-order tensor-valued
function S is a vector ∇ · S.

Table 2.4.1: Vector expressions and their Cartesian component forms [A, B, and C are vector
functions, U is a scalar function, x is the position vector; (ê1, ê2, ê3) are the Cartesian unit
vectors in a rectangular Cartesian coordinate system; see Fig. 2.2.11].

No. Vector form and its equivalence Component form

1. A ·B AiBi

2. A×B eijkAiBj êk

3. A · (B×C) eijkAiBjCk

4. A× (B×C) = B(A ·C)−C(A ·B) eijkeklmAjBlCmêi

5. ∇A
∂Aj

∂xi
êiêj

6. ∇ ·A ∂Ai
∂xi

7. ∇×A eijk
∂Aj

∂xi
êk

8. ∇ · (∇×A) = 0 eijk
∂2Aj

∂xi∂xk

9. ∇× (∇U) = 0 eijk êk
∂2U

∂xi∂xj

10. ∇ · (A×B) = B · (∇×A)−A · (∇×B) eijk
∂

∂xi
(AjBk)

11. (∇×A)×B = B · [∇A− (∇A)T] eijkeklmBl
∂Aj

∂xi
êm

12. A× (∇×A) = 1
2
∇(A ·A)− (A ·∇)A enim ejkm Ai

∂Ak
∂xj

ên

13. ∇ · (∇A) = ∇2A
∂2Aj

∂xi∂xi
êj

14. ∇×∇×A = ∇(∇ ·A)− (∇ ·∇)A emilejkl
∂2Ak
∂xi∂xj

êm

15. (A ·∇)B Aj
∂Bi
∂xj

êi

16. A(∇ ·B) Aiêi
∂Bj

∂xj

17. ∇ · (UA) = U ∇ ·A+∇U ·A ∂
∂xi

(UAi)

18. ∇× (UA) = ∇U ×A+ U ∇×A eijk
∂

∂xj
(UAk)êi

19. ∇(UA) = ∇UA+ U ∇A êj
∂

∂xj
(UAkêk)

20. ∇(A · x) = A+∇A · x ∂
∂xj

(Aixi)êj
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2.4.7 Cylindrical and Spherical Coordinate Systems

Two commonly used orthogonal curvilinear coordinate systems are the cylindri-
cal coordinate system [see Fig. 2.4.5(a)] and the spherical coordinate system [see
Fig. 2.4.5(b)]. Table 2.4.2 contains a summary of the basic information, such as
the base vectors and their derivatives with respect to the coordinates; definition
of the del operator; the gradient, divergence, and curl of a vector; and the gra-
dient of a second-order tensor for the two coordinate systems. The matrices of
direction cosines between the orthogonal rectangular Cartesian system (x, y, z)
and the orthogonal curvilinear systems (r, θ, z) and (R,φ, θ) are given in Eqs.
(2.4.41)–(2.4.44).

Cylindrical coordinates⎧⎨
⎩

êr
êθ
êz

⎫⎬
⎭ =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦
⎧⎨
⎩

êx
êy
êz

⎫⎬
⎭ , (2.4.41)

⎧⎨
⎩

êx
êy
êz

⎫⎬
⎭ =

⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦
⎧⎨
⎩

êr
êθ
êz

⎫⎬
⎭ . (2.4.42)

Spherical coordinates⎧⎨
⎩

êR
êφ
êθ

⎫⎬
⎭ =

⎡
⎣ sinφ cos θ sinφ sin θ cosφ
cosφ cos θ cosφ sin θ − sinφ
− sin θ cos θ 0

⎤
⎦
⎧⎨
⎩

êx
êy
êz

⎫⎬
⎭ , (2.4.43)

⎧⎨
⎩

êx
êy
êz

⎫⎬
⎭ =

⎡
⎣ sinφ cos θ cosφ cos θ − sin θ
sinφ sin θ cosφ sin θ cos θ
cosφ − sinφ 0

⎤
⎦
⎧⎨
⎩

êR
êφ
êθ

⎫⎬
⎭ . (2.4.44)

x
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ê
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Line parallel 
to ê

Line parallel 
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Fig. 2.4.5: (a) Cylindrical coordinate system. (b) Spherical coordinate system.
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Table 2.4.2: Base vectors and operations with the del operator in cylindrical and spherical
coordinate systems; see Fig. 2.4.5.

• Cylindrical coordinate system (r, θ, z)
x = r cos θ, y = r sin θ, z = z, R = r êr + z êz, A = Arêr +Aθêθ +Az êz (a vector)

êr = cos θ êx + sin θ êy, êθ = − sin θ êx + cos θ êy, êz = êz

∂êr
∂θ

= − sin θ êx + cos θ êy = êθ,
∂êθ
∂θ

= − cos θ êx − sin θ êy = −êr

All other derivatives of the base vectors are zero.

∇ = êr
∂
∂r

+ 1
r
êθ

∂
∂θ

+ êz
∂
∂z

, ∇2 = 1
r

[
∂
∂r

(
r ∂
∂r

)
+ 1

r
∂2

∂θ2
+ r ∂2

∂z2

]
∇ ·A = 1

r

[
∂(rAr)

∂r
+ ∂Aθ

∂θ
+ r ∂Az

∂z

]
∇×A =

(
1
r

∂Az
∂θ

− ∂Aθ
∂z

)
êr +

(
∂Ar
∂z

− ∂Az
∂r

)
êθ +

1
r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
êz

∇A = ∂Ar
∂r

êrêr +
∂Aθ
∂r

êrêθ +
1
r

(
∂Ar
∂θ

−Aθ

)
êθêr +

∂Az
∂r

êrêz +
∂Ar
∂z

êz êr

+ 1
r

(
Ar +

∂Aθ
∂θ

)
êθêθ +

1
r

∂Az
∂θ

êθêz +
∂Aθ
∂z

êz êθ +
∂Az
∂z

êz êz

• Spherical coordinate system (R, φ, θ)

x = R sinφ cos θ, y = R sinφ sin θ, z = R cosφ, R = R êR, A = ARêR +Aφêφ +Aθêθ

êR = sinφ (cos θ êx + sin θ êy) + cosφ êz, êφ = cosφ (cos θ êx + sin θ êy)− sinφ êz

êθ = − sin θ êx + cos θ êy

êx = cos θ (sinφ êR + cosφ êφ)− sin θ êθ, êy = sin θ (sinφ êR + cosφ, êφ) + cos θ êθ

êz = cosφ êR − sinφ êφ

∂êR
∂φ

= êφ,
∂êR
∂θ

= sinφ êθ,
∂êφ
∂φ

= −êR,
∂êφ
∂θ

= cosφ êθ,
∂êθ
∂θ

= − sinφ êR − cosφ êφ

All other derivatives of the base vectors are zero.

∇ = êR
∂
∂R

+
êφ
R

∂
∂φ

+ êθ
R sinφ

∂
∂θ

, ∇2 = 1
R2

[
∂
∂R

(
R2 ∂

∂R

)
+ 1

sinφ
∂
∂φ

(
sinφ ∂

∂φ

)
+ 1

sin2 φ
∂2

∂θ2

]
∇ ·A = 2AR

R
+ ∂AR

∂R
+ 1

R sinφ

∂(Aφ sinφ)

∂φ
+ 1

R sinφ
∂Aθ
∂θ

∇×A = 1
R sinφ

[
∂(sinφAθ)

∂φ
− ∂Aφ

∂θ

]
êR +

[
1

R sinφ
∂AR
∂θ

− 1
R

∂(RAθ)
∂R

]
êφ

+ 1
R

[
∂(RAφ)

∂R
− ∂AR

∂φ

]
êθ

∇A = ∂AR
∂R

êR êR +
∂Aφ

∂R
êR êφ + 1

R

(
∂AR
∂φ

−Aφ

)
êφ êR + ∂Aθ

∂R
êR êθ

+ 1
R sinφ

(
∂AR
∂θ

−Aθ sinφ
)
êθ êR + 1

R

(
AR +

∂Aφ

∂φ

)
êφ êφ + 1

R
∂Aθ
∂φ

êφ êθ

+ 1
R sinφ

(
∂Aφ

∂θ
−Aθ cosφ

)
êθ êφ + 1

R sinφ

(
AR sinφ+Aφ cosφ+ ∂Aθ

∂θ

)
êθ êθ

2.4.8 Gradient, Divergence, and Curl Theorems

Integral identities involving the gradient of a vector, divergence of a vector,
and curl of a vector can be established from integral relations between volume
integrals and surface integrals. These identities will be useful in later chapters
when we derive the equations of a continuous medium.

Let Ω denote a region in 
3 bounded by the closed surface Γ. Let ds be a
differential element of surface and n̂ the unit outward normal, and let dx be a
differential volume element in Ω. The following relations, known from advanced
calculus, hold:
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Ω
∇φ dx =

∮
Γ
n̂φ ds (Gradient theorem) (2.4.45)∫

Ω
∇ ·A dx =

∮
Γ
n̂ ·A ds (Divergence theorem) (2.4.46)∫

Ω
∇×A dx =

∮
Γ
n̂×A ds (Curl theorem) (2.4.47)

The combination n̂·A ds is called the outflow ofA through the differential surface
ds. The integral is called the total or net outflow through the surrounding
surface Δs. This is easier to see if one imagines that A is a velocity vector and
the outflow is the amount of fluid flow. In the limit as the region shrinks to a
point, the net outflow per unit volume is associated therefore with the divergence
of the vector field. The integral forms presented in Eqs. (2.4.45)–(2.4.47) are
known as the invariant forms because they do not depend on the coordinate
system.

2.5 Tensors

2.5.1 Dyads and Dyadics

As we have already seen in Eqs. (2.4.32) and (2.4.33), the expression for the
gradient of a vector contains two basis vectors standing next to each other (some-
times called the tensor product), indicating that the entity is characterized by
two directions, one coming from the gradient (vector) operator and other from
the vector itself. One may also recall from the elementary mechanics of mate-
rials course that the stress, which is force per unit area, depends not only on
the orientation of the plane on which it is acting but also on the direction of
the force.4 Thus, specification of stress at a point requires two vectors, one to
denote the plane (by a vector perpendicular to the plane) on which the force is
acting and the other to denote the direction of the force. Objects that are com-
posed of two vectors standing next to each other, without any vector operation
between them, are known as dyads, or what we shall call here a second-order
tensor (the two phrases are interchangeable). Thus, a dyad is defined as two
vectors standing side by side and acting as a unit. A linear combination of dyads
is called a dyadic.

Let A1,A2, · · · ,An and B1,B2, · · · ,Bn be arbitrary vectors. Then the fol-
lowing linear combination, denoted S, constitutes a dyadic:

S = A1B1 +A2B2 + · · ·+AnBn. (2.5.1)

The transpose of a dyadic is defined as the result obtained by the interchange of
the two vectors in each of the dyads. For example, the transpose of the dyadic
in Eq. (2.5.1) is

ST = B1A1 +B2A2 + · · ·+BnAn.

4The concept of stress is discussed in more detail in Chapter 4.
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One of the properties of a dyadic is defined by the dot product with a vector,
say V:

S ·V = A1(B1 ·V) +A2(B2 ·V) + · · ·+An(Bn ·V),

V · S = (V ·A1)B1 + (V ·A2)B2 + · · ·+ (V ·An)Bn.
(2.5.2)

The dot operation of a dyad with a vector produces another vector. In the first
case the dyad acts as a prefactor and in the second case as a postfactor. The
two operations in general produce different vectors. The dot product between
a dyad and a vector can be written in alternative forms using the definition of
the transpose of a dyad,

V · S = ST ·V, S ·V = V · ST. (2.5.3)

In general, one can show (see Problem 2.47) that the transpose of the dot
product of tensors (of any order) follows the rule

(R · S)T = ST ·RT, (R · S ·T)T = TT · ST ·RT. (2.5.4)

The dot product of a dyad (or a second-order tensor) with itself is a dyad, and
it is denoted by

S · S = S2, S3 = S2 · S, · · · , Sn = Sn−1 · S. (2.5.5)

Some authors [see, e.g., Gurtin (1981)] use the notation

A⊗B for AB and AB for A ·B. (2.5.6)

Thus, when there is no operation (other than the usual multiplication) between
vectors, they use the symbol ⊗, called tensor product; and when there is a dot
product between vectors and tensors no dot is placed between them. The nota-
tion adopted here is explicit, that is, indicates the operation (e.g., dot product
or cross product) between vectors and tensors. If there is no operation between
vectors, other than the usual multiplication of the underlying scalars, no symbol
is placed. For example, we use AB instead of A ⊗B and S ·A instead of SA
for the dot product between the tensor S and vector A. Also, in writing the
gradient of a vector or tensor in component form, we use the forward gradient
operator and list the base vectors in the order they appear in the operation.

2.5.2 Nonion Form of a Second-Order Tensor

Let each of the vectors in a dyad S = AB be represented in a given basis system.
In Cartesian system, we can write A = Am êm and B = Bn ên, with summations
on m and n as implied by the repeated indices. Then S = AmBn êmên, or
S = Smn êmên, with Smn = AmBn.

We can display all of the components of a dyad S in the rectangular Cartesian
basis êi as S = Sij êiêj by letting the j index run to the right and the i index
run downward:
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S = Sij êiêj = s11ê1ê1 + s12ê1ê2 + s13ê1ê3
+s21ê2ê1 + s22ê2ê2 + s23ê2ê3
+s31ê3ê1 + s32ê3ê2 + s33ê3ê3. (2.5.7)

This form is called the nonion form of the dyadic S. Equation (2.5.7) illustrates
that a dyadic in three-dimensional space has nine independent components in
general, each component associated with a certain dyad pair. The components
are thus said to be ordered. When the ordering is understood, such as suggested
by the nonion form in Eq. (2.5.7), the explicit writing of the dyads can be
suppressed and the dyadic is written as a matrix:

[S] =

⎡
⎣ s11 s12 s13
s21 s22 s23
s31 s32 s33

⎤
⎦ and S =

⎧⎨
⎩

ê1
ê2
ê3

⎫⎬
⎭

T

[S]

⎧⎨
⎩

ê1
ê2
ê3

⎫⎬
⎭ . (2.5.8)

This representation is simpler than Eq. (2.5.7), but it is taken to mean the same.
The determinant of a second-order tensor S is the determinant of the matrix of
its components, det [S] = |S|. The determinant of S can be expressed in the
form [see Problem 2.41(a)]

|S| = eijk s1i s2j s3k, (2.5.9)

Although the definition of the determinant in Eq. (2.5.9) involves components of
S (and therefore, depends on the coordinate system in which the components are
defined), the value is actually independent of the coordinate system, as can be
seen from the alternative definition of the determinant of a second-order tensor
S (see Problem 2.48)

|S| = [(S ·A)× (S ·B)] · (S ·C)

A×B ·C , (2.5.10)

where A, B, and C are arbitrary vectors.
The unit dyad or unit second-order tensor is defined in terms of the Cartesian

components δij as

I = δij êiêj = êiêi = ê1ê1 + ê2ê2 + ê3ê3. (2.5.11)

It is clear that the unit second-order tensor I is symmetric. The unit second-
order tensor in an orthogonal Cartesian coordinate system can be written alter-
natively as

I =

⎧⎨
⎩

ê1
ê2
ê3

⎫⎬
⎭

T

[I]

⎧⎨
⎩

ê1
ê2
ê3

⎫⎬
⎭ , [I] =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ . (2.5.12)

Two types of “double-dot products” between two second-order tensors are
useful in the sequel. The horizontal double-dot product and the vertical double-
dot product between a dyad (AB) and another dyad (CD) (that is, A, B, C,
and D are vectors) are defined as the scalars

(AB) · ·(CD) ≡ (B ·C)(A ·D),

(AB) : (CD) ≡ (A ·C)(B ·D).
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The double-dot products, by this definition, are commutative. The two double-
dot product between two dyads S and T in a rectangular Cartesian system are

S : T = (sij êiêj) : (tmnêmên)

= sijtmn(êi · êm)(êj · ên)
= sijtmnδimδjn = sij tij , (2.5.13)

S · ·T = (sij êiêj) · ·(tmnêmên)

= sijtmn(êj · êm)(êi · ên)
= sijtmnδjmδin = sij tji. (2.5.14)

The trace of a second-order tensor (i.e., the sum of the diagonal terms of the
matrix representing the tensor) is defined to be the double-dot product of the
tensor with the unit tensor

trS = S : I = S · ·I. (2.5.15)

Certain combinations of the components of a tensor remain the same in all
coordinate systems; that is, they are invariant under coordinate transformations.
Such quantities (involving sums and products of the components of a tensor) are
termed invariants. For example, the determinant of a tensor is the same in all
coordinate systems. Similarly, the trace of the matrix representing a tensor is
an invariant. Among many invariants of a tensor, the following three invariants,
called principal invariants, are identified because of their role in finding eigenval-
ues of the tensor (readers should be aware of the fact that the definitions of the
second and third principal invariants may differ from those in other books):

I1 = trS, I2 =
1
2

[
(trS)2 − tr

(
S2

)]
, I3 = |S|. (2.5.16)

In terms of the rectangular Cartesian components of S, the three principal in-
variants have the form

I1 = sii, I2 =
1
2 (siisjj − sijsji) , I3 = |S|. (2.5.17)

In the general scheme that is developed so far, scalars are the zeroth-order
tensors, vectors are the first-order tensors, and dyads are the second-order ten-
sors. The order of a tensor can be determined by counting the number of basis
vectors in the representation of a tensor. However, the definition of a tensor
of any order must obey certain rules, such as the physical vector discussed in
Section 2.2.1.1. We list them in Section 2.5.4.

In view of the matrix representation of a second-order tensor, many of the
definitions and properties introduced for matrices can be extended to second-
order tensors, S. They are summarized here.

(1) S is symmetric if and only if S = ST (sij = sji).

(2) S is skew symmetric if and only if S = −ST (sij = −sji for i �= j and
s(i)(i) = 0 for any fixed i).

(3) S can be represented as a sum of symmetric and skew symmetric parts:

S = 1
2

(
S+ ST

)
+ 1

2

(
S− ST

) ≡ Ssym + Sskew.
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(4) If S is symmetric, W is skew symmetric, and T is an arbitrary tensor,
then

S : W = W : S = 0, S : T = S : Tsym,

W : T = −W : TT = W : Tskew.

Also, if S : T = 0 for any tensor S, then T = 0. If S : T = 0 for any
symmetric tensor S, then T is skew symmetric. The converse also holds:
If S : W = 0 for any skew tensor W, then S is symmetric.

(5) The inverse T of any second-order tensor S, denoted T = S−1, is defined
to be S−1 · S = S · S−1 = I; the inverse of S can be represented in terms
of the inverse of its (nonsingular) matrix: S−1 = {ê}T[S]−1{ê}. We use
the notation (S−1)T = (ST)−1 = S−T and note (S ·T)−1 = T−1 · S−1 and
(S ·T)−T = S−T ·T−T (see parts (e) and (f) of Problem 2.47).

(6) A necessary and sufficient condition for a second-order tensor Q to be
orthogonal is Q · QT = I. It can be shown that an orthogonal tensor Q
preserves the inner product in the sense that (Q · u) · (Q · v) = u · v. In
the case of physical vectors, this amounts to preserving the lengths of the
vectors u and v as well as the angle between them, as shown in Fig. 2.5.1.

(7) A second-order tensor S is said to be positive-definite if and only if u·S·u >
0 for all nonzero vectors u.

Q u( )

u

v
uu

vv

uu

vv
Q v( )

Q

Fig. 2.5.1: An orthogonal tensor Q preserves the lengths |u| and |v| and angle θ between any
two vectors u and v.

2.5.3 Transformation of Components of a Tensor

A second-order Cartesian tensor S (i.e., tensor with Cartesian components) may
be represented in barred and unbarred Cartesian coordinate systems [see Fig.
2.2.11(b)] as

S = sij êi êj = s̄mn ˆ̄em ˆ̄en. (2.5.18)

The unit base vectors in the unbarred and barred systems are related by

êj = �ij ˆ̄ei and ˆ̄ei = �ij êj , (2.5.19)
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where �ij denotes the direction cosines between barred and unbarred systems,
�ij = ˆ̄ei · êj [see Eq. (2.2.71)]. In orthogonal coordinate systems the determinant
of the matrix of direction cosines is unity and its inverse is equal to the transpose
(i.e., [L] is an orthogonal matrix):

[L]−1 = [L]T or [L][L]T = [I]. (2.5.20)

Using Eq. (2.5.19) to replace the unbarred base vectors in Eq. (2.5.18), we
obtain

(s̄mn − sij�mi�nj) ˆ̄em ˆ̄en = 0 ⇒ s̄mn − sij�mi�nj = 0.

Thus the components of a second-order tensor transform according to

s̄mn = sij �mi �nj or [S̄] = [L][S][L]T. (2.5.21)

Mathematically, a tensor is defined as a quantity whose components transform
according to Eq. (2.5.21).

2.5.4 Higher-Order Tensors

Third-order tensors can be viewed as those derived from triadics, or three vec-
tors standing side by side. A tensor T of any order n is a quantity defined
by 3n components, which may be written as aijk···n, provided the components
transform according to the law

āpqr···t = �pi �qj �rk · · · �tn aijk···n. (2.5.22)

For example, the components of third- and fourth-order tensors, T and C, trans-
form according to the rules

t̄ijk = �im �jn �kp tmnp, c̄ijkl = �im �jn �kp �lq cmnpq.

The permutation symbol eijk can be viewed as the Cartesian components of a
third-order tensor of a special kind,

E = eijk êi êj êk. (2.5.23)

Tensors of various orders, especially the first-, second-, and fourth-order,
appear in the study of a continuous medium. As we shall see in Chapter 6,
the tensor that characterizes the material constitution is a fourth-order ten-
sor. Tensors whose components are the same in all coordinate systems, that is,
the components are invariant under coordinate transformations, are known as
isotropic tensors. By definition, all zero-order tensors (i.e., scalars) are isotropic
and the only isotropic tensor of order 1 is the zero vector 0. Every isotropic
tensor T of order 2 can be written as T = λI, and the components Cijk� of
every fourth-order isotropic tensor C can be expressed as

Cijk� = λδijδk� + μ
(
δikδj� + δi�δjk

)
+ κ

(
δikδj� − δi�δjk

)
, (2.5.24)

where λ, μ, and κ are scalars.
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In general, tensors of all orders obey the following rules:

α(T) = (αT) = Tα,

α(T1 +T2) = αT1 + αT2,

T1 +T2 = T2 +T1,

T1 + (T2 +T3) = (T1 +T2) +T3,

T1 ∗ (T2 +T3) = T1 ∗T2 +T1 ∗T3,

where * denotes the dot product, cross product, or no operation (other than the
multiplication of the scalars involved). However, in general, we do not have the
property T1 ∗T2 = T2 ∗T1.

2.5.5 Tensor Calculus

Here we discuss the calculus of tensors whose components are functions of posi-
tion x. We begin with the gradient of a vector, which is a second-order tensor:

∇A =

{
ei ∂

∂qi
(Aje

j) =
∂Aj

∂qi
eiej +Aje

i ∂ej

∂qi
,

ei ∂
∂qi

(Ajej) =
∂Aj

∂qi
eiej +Ajei

∂ej
∂qi

.

Note that the order of the base vectors is kept intact, that is, kept in the same
order in which they come into the operation. Thus, the derivatives of the uni-
tary base vectors are, in general, not zero; they are expressed in terms of the
Christoffel symbols, and we shall not discuss them here.

The gradient of a vector, and hence a second-order tensor, can be expressed
as the sum of symmetric and skew symmetric parts by adding and subtracting
(1/2)(∇A)T

∇A = 1
2

[
∇A+ (∇A)T

]
+ 1

2

[
∇A− (∇A)T

]
, (2.5.25)

or in rectangular Cartesian component form

∇A = 1
2

(
∂Aj

∂xi
+

∂Ai

∂xj

)
êiêj +

1
2

(
∂Aj

∂xi
− ∂Ai

∂xj

)
êiêj .

Analogously to the divergence of a vector, the divergence of a second-order
Cartesian tensor is defined as

∇ · S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ei ∂
∂qi

(Smn e
m en) (covariant components)

ei ∂
∂qi

(Smn em en) (contravariant components)

ei ∂
∂qi

(Sm
n em en) (mixed components)

ei ∂
∂qi

(Sn
m em en) (mixed components)

(2.5.26)

In rectangular Cartesian component form, we have

∇ · S = êi · ∂

∂xi
(smnêmên) =

∂smn

∂xi
(êi · êm)ên =

∂sin
∂xi

ên.

Thus, the divergence of a second-order tensor is a vector.
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The integral theorems of vectors presented in Section 2.4.8 are also valid for
tensors, but it is important that the order of the operations be observed. The
gradient and divergence of a tensor can be expressed in cylindrical and spherical
coordinate systems by writing the del operator and the tensor in component
form (see Table 2.4.2). For example, the gradient of a vector A in the cylindrical
coordinate system [see Fig. 2.4.5(a)] can be obtained by writing

∇ = êr
∂

∂r
+

1

r
êθ

∂

∂θ
+ êz

∂

∂z
, A = Arêr +Aθêθ +Azêz.

Then we have

∇A = êrêr
∂Ar

∂r
+ êrêθ

∂Aθ

∂r
+ êθêr

1

r

(
∂Ar

∂θ
−Aθ

)

+ êrêz
∂Az

∂r
+ êzêr

∂Ar

∂z
+ êθêθ

1

r

(
Ar +

∂Aθ

∂θ

)

+
1

r
êθêz

∂Az

∂θ
+ êzêθ

∂Aθ

∂z
+ êzêz

∂Az

∂z
, (2.5.27)

where the following derivatives of the base vectors are used:

∂êr
∂θ

= êθ,
∂êθ
∂θ

= −êr . (2.5.28)

Similarly, the gradient of a vector in spherical coordinates [see Fig. 2.4.5(b)]
can be obtained by expressing ∇ and vector A in the spherical coordinates (see
Problem 2.52):

∇ = êR
∂

∂R
+

1

R
êφ

∂

∂φ
+

1

R sinφ
êθ

∂

∂θ
, A = ARêR +Aφêφ +Aθêθ.

∇A =
∂AR

∂R
êR êR +

∂Aφ

∂R
êR êφ +

1

R

(
∂AR

∂φ
−Aφ

)
êφ êR +

∂Aθ

∂R
êR êθ

+
1

R sin θ

(
∂AR

∂θ
−Aθ sinφ

)
êθ êR +

1

R

(
AR +

∂Aφ

∂φ

)
êφ êφ

+
1

R

∂Aθ

∂φ
êφ êθ +

1

R sinφ

(
∂Aφ

∂θ
−Aθ cosφ

)
êθ êφ

+
1

R sinφ

(
AR sinφ+Aφ cosφ+

∂Aθ

∂θ

)
êθ êθ, (2.5.29)

where the following derivatives of the base vectors are used:

∂êR
∂φ

= êφ,
∂êφ
∂φ

= −êR,
∂êR
∂θ

= sinφ êθ,

∂êφ
∂θ

= cosφ êθ,
∂êθ
∂θ

= − sinφ êR − cosφ êφ. (2.5.30)

In the same way, one can compute the curl and divergence of a tensor in cylin-
drical and spherical coordinate systems. Example 2.5.1 illustrates the procedure
(see also Problems 2.49–2.52).
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Example 2.5.1

Suppose that the second-order tensor E referred to the cylindrical coordinate system (êr, êθ,
êz) is of the form

E = Err(r, z) êr êr + Eθθ(r, z) êθ êθ.

Determine (a) ∇×E and its transpose, and (b) ∇ ·E and its gradient.

Solution: We note that (∂Err/∂θ) = (∂Eθθ/∂θ) = 0 because Err and Eθθ are not functions of
θ (e.g., an axisymmetric problem).
(a) Using the del operator in the cylindrical coordinate system, we can write ∇×E as

∇×E =
(
êr

∂

∂r
+

êθ

r

∂

∂θ
+ êz

∂

∂z

)
×
(
Errêrêr + Eθθêθêθ

)
= êr × ∂

∂r

(
Errêrêr + Eθθêθêθ

)
+

1

r
êθ × ∂

∂θ

(
Errêrêr + Eθθêθêθ

)
+ êz × ∂

∂z

(
Errêrêr + Eθθêθêθ

)
= êr ×

(∂Eθθ

∂r
êθêθ

)
+

1

r
êθ ×

(
Errêr

∂êr

∂θ
+ Eθθ

∂êθ

∂θ
êθ

)
+ êz ×

(∂Err

∂z
êrêr +

∂Eθθ

∂z
êθêθ

)
=

∂Eθθ

∂r

(
êr × êθ

)
êθ +

1

r
Err

(
êθ × êr

)∂êr

∂θ

+
1

r
Eθθ

(
êθ × ∂êθ

∂θ

)
êθ +

∂Err

∂z

(
êz × êr

)
êr +

∂Eθθ

∂z

(
êz × êθ

)
êθ

=
[∂Eθθ

∂r
+

1

r

(
Eθθ − Err

)]
êz êθ +

∂Err

∂z
êθ êr − ∂Eθθ

∂z
êr êθ.

The transpose is obtained by switching the base vectors in each expression:

(∇×E)T =
[∂Eθθ

∂r
+

1

r

(
Eθθ − Err

)]
êθ êz +

∂Err

∂z
êr êθ − ∂Eθθ

∂z
êθ êr.

(b) The divergence of E is

∇ ·E =
(
êr

∂

∂r
+

êθ

r

∂

∂θ
+ êz

∂

∂z

)
·
(
Errêrêr + Eθθêθêθ

)

= êr · ∂

∂r

(
Errêrêr + Eθθêθêθ

)
+

1

r
êθ · ∂

∂θ

(
Errêrêr + Eθθêθêθ

)
+ êz · ∂

∂z

(
Errêrêr + Eθθêθêθ

)

= êr ·
(∂Err

∂r
êrêr

)
+

1

r
êθ ·
(
Err

∂êr

∂θ
êr + Eθθêθ

∂êθ

∂θ

)
=

∂Err

∂r
êr +

1

r

(
Err − Eθθ

)
êr =

[∂Err

∂r
+

1

r

(
Err − Eθθ

)]
êr.

and the gradient of the divergence of E is

∇(∇ ·E) =
[∂2Err

∂r2
− 1

r2

(
Err − Eθθ

)
+

1

r

(∂Err

∂r
− ∂Eθθ

∂r

)]
êrêr

+
1

r

[∂Err

∂r
+

1

r

(
Err − Eθθ

)]
êθêθ

+
[∂2Err

∂r∂z
+

1

r

(∂Err

∂z
− ∂Eθθ

∂z

)]
êz êr.
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2.5.6 Eigenvalues and Eigenvectors

2.5.6.1 Eigenvalue problem

It is conceptually useful to regard a tensor as an operator that changes a vector
into another vector (by means of the dot product). In this regard it is of interest
to inquire whether there are certain vectors that have only their lengths, and
not their orientation, changed when operated on by a given tensor S (that is,
seek vectors that are transformed into multiples of themselves). If such vectors
x exist, they must satisfy the equation

S · x = λx. (2.5.31)

Such vectors x are called characteristic vectors, eigenvectors, or principal planes
(in mechanics) associated with S. The parameter λ is called a characteristic
value, eigenvalue, or principal value, and it represents the change in length of
the eigenvector x after it has been operated on by S.

In view of the fact that x can be expressed as x = I ·x, Eq. (2.5.31) can also
be written as

(S− λI) · x = 0, or in matrix form ([S]− λ[I]) {X} = {0}. (2.5.32)

Equation (2.5.32) represents a homogeneous set of linear equations for {X}.
Therefore, a nontrivial solution, that is, vector with at least one component of x
is nonzero, will not exist unless the determinant of the matrix [S]−λ[I] vanishes:

|S− λ I| = 0. (2.5.33)

The vanishing of this determinant yields an algebraic equation of degree n in λ,
called the characteristic equation, when [S] is an n × n matrix associated with
tensor S.

Second-order tensors, such as strain and stress tensors, are of interest in
mechanics, where the eigenvalues and eigenvectors represent principal values
and directions. Since the underlying matrix is 3× 3, the characteristic equation
resulting from Eq. (2.5.33) is cubic in λ and yields three eigenvalues, say λ1, λ2,
and λ3. The character of these eigenvalues depends on the nature (i.e., real-
valued, symmetric, positive-definite, and so on) of the tensor S. For a real-
valued second-order tensor S, at least one of the eigenvalues will be real. The
other two may be real and distinct, real and repeated, or complex conjugates.
The vanishing of a determinant implies that the columns or rows of the matrix
are linearly dependent and the three eigenvectors x(1), x(2), and x(3) are not
unique. An infinite number of solutions exist, within a multiplicative constant,
having at least n = 3 different orientations. Since only orientation is important,
it is useful to represent the three eigenvectors by three unit eigenvectors x̂(1),
x̂(2), and x̂(3), which denote three different orientations, each associated with a
particular eigenvalue.
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2.5.6.2 Eigenvalues and eigenvectors of a real symmetric tensor

A matrix [S] associated with a real-valued symmetric tensor S of order n has
some desirable consequences as far as the eigenvalues and eigenvectors are con-
cerned. These properties are listed next.

(1) All eigenvalues of [S] are real.

(2) If [S] is positive-definite, then the eigenvalues are strictly positive.

(3) Eigenvectors5 x(1) and x(2) associated with two distinct eigenvalues λ1 and
λ2 are orthogonal: x(1) · x(2) = 0. If all eigenvalues are distinct, then the
associated eigenvectors are all orthogonal to each other.

(4) [S] always has n linearly independent eigenvectors, regardless of the alge-
braic multiplicities of the eigenvalues.

(5) For an eigenvalue of algebraic multiplicity m, it is possible to choose m
eigenvectors that are mutually orthogonal. Hence, the set of n vectors can
always be chosen to be linearly independent.

We now prove some of the aforementioned properties for a real-valued tensor.
When n is odd, at least one of the eigenvalues is real and the remaining even
number of eigenvalues will be complex conjugate pairs (and repeated eigenvalues
will be real). Suppose that λ1 and λ2 are two distinct eigenvalues and x(1) and
x(2) are their corresponding eigenvectors. Then from Eq. (2.5.31) we have

S · x(1) = λ1x
(1), S · x(2) = λ2x

(2). (2.5.34)

Taking the scalar product (from the left) of the first equation with x(2) and the
second equation with x(1), and subtracting the second equation from the first
equation, we obtain

x(2) · S · x(1) − x(1) · S · x(2) = (λ1 − λ2)x
(1) · x(2). (2.5.35)

Because
x(2) · S · x(1) = x(1) · ST · x(2),

and S is symmetric, S = ST, the left-hand side of Eq. (2.5.35) vanishes, giving

0 = (λ1 − λ2)x
(1) · x(2). (2.5.36)

In view of the fact that S is a real-valued tensor, either the eigenvalues λ1 and
λ2 are real or they are complex conjugate pairs. Suppose that λ1 and λ2 are
complex conjugate pairs

λ1 = λR + i λI , λ2 = λR − i λI , i =
√−1,

5The vectors x(i) are constructed from x(i) = X
(i)
1 ê1 +X

(i)
2 ê2 + · · ·+X

(i)
n ên.
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and x(1) and x(2) are the complex conjugate vectors associated with λ1 and λ2

x(1) = xR + ixI , x(2) = xR − ixI .

Then λ1−λ2 = 2iλI , and x(1)·x(2) is always positive x(1)·x(2) = xR ·xR+xI ·xI >
0. Then it follows from Eq. (2.5.36) that λI = 0 (and xI = 0) and, therefore,
that the n eigenvalues associated with a symmetric matrix are all real.

If the tensor S is positive-definite, x · S · x > 0, then from Eq. (2.5.34) it
follows that

x · S · x = λx · x > 0 ⇒ λ > 0 for all x �= 0.

Thus, when S is positive-definite the eigenvalues are strictly positive.
Next, assume that λ1 and λ2 are real and distinct such that λ1 − λ2 is

not zero. It then follows from Eq. (2.5.36) that x(1) · x(2) = 0. Thus the
eigenvectors associated with distinct eigenvalues of a symmetric second-order
tensor are orthogonal. If the three eigenvalues are all distinct, then the three
eigenvectors are mutually orthogonal.

If an eigenvalue is repeated, say λ3 = λ2, then x(3) must also be perpendicular
to x(1), as deduced by an argument similar to that for x(2) stemming from Eq.
(2.5.36). Neither x(2) nor x(3) is preferred, and they are both arbitrary, except
insofar as they are both perpendicular to x(1). It is useful, however, to select
x(3) such that it is perpendicular to both x(1) and x(2). We do this by choosing
x(3) = x(1)×x(2) and thus establishing a mutually orthogonal set of eigenvectors.

2.5.6.3 Spectral theorem

Let S be a real-valued, symmetric, second-order tensor defined on 
3. Then
there exists an orthonormal basis (ê1, ê2, ê3) consisting of the eigenvectors of S.
The eigenvalues λ1, λ2, and λ3 form the entire spectrum of S, that is, S can be
expressed as

S = λ1 ê1 ê1 + λ2 ê2 ê2 + λ3 ê3 ê3. (2.5.37)

That is, the matrix associated with S with respect to the basis (ê1, ê2, ê3) is a
diagonal matrix. Conversely, if S has the form in Eq. (2.5.37), then {êi} are the
orthonormal eigenvectors and λi are the corresponding eigenvalues. In addition,
we have the following properties:

(1) S has exactly three distinct eigenvalues if and only if the characteristic
vectors (ê1, ê2, ê3) are all mutually orthogonal.

(2) S has two distinct eigenvalues, λ1 and λ2, if and only if S admits the
representation

S = λ1 ê ê+ λ2 (I− ê ê) , |ê| = 1. (2.5.38)

(3) S has only one eigenvalue if and only if

S = λ I. (2.5.39)
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2.5.6.4 Calculation of eigenvalues and eigenvectors

Returning to Eq. (2.5.32), let [S] be the matrix representation of a second-order
tensor S with respect to a rectangular Cartesian basis. Then the eigenvalue
problem has the explicit form⎡

⎣ s11 − λ s12 s13
s21 s22 − λ s23
s31 s32 s33 − λ

⎤
⎦
⎧⎨
⎩

x1
x2
x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ . (2.5.40)

For a nontrivial solution (i.e., at least one of the components x1, x2, and x3 is
nonzero), we require that the determinant of the coefficient matrix be zero:∣∣∣∣∣∣

s11 − λ s12 s13
s21 s22 − λ s23
s31 s32 s33 − λ

∣∣∣∣∣∣ = 0. (2.5.41)

The characteristic equation associated with Eq. (2.5.41) can be expressed in the
form

−λ3 + I1λ
2 − I2λ+ I3 = 0, (2.5.42)

where I1, I2, and I3 are the invariants of S as defined in Eq. (2.5.17), which,
for a second-order tensor, have the specific form

I1 = s11 + s22 + s33, I3 = |S|,
I2 =

1
2

(
I21 − s211 − s222 − s233 − s212 − s213 − s223 − s221 − s231 − s232

)
.

(2.5.43)

The invariants can also be expressed in terms of the eigenvalues (when known),

I1 = λ1 + λ2 + λ3, I2 = (λ1λ2 + λ2λ3 + λ3λ1), I3 = λ1λ2λ3. (2.5.44)

The eigenvector x(i) associated with any particular eigenvalue λi is calculated
using Eq. (2.5.40), which gives only two independent relations among the three

components x
(i)
1 , x

(i)
2 , and x

(i)
3 . Thus, two of the three components can be written

in terms of the third, whose value is arbitrary (but nonzero). In other words,
we can determine the eigenvectors only within a multiplicative constant. If the
eigenvector is normalized such that it is a unit vector, then we use the following
additional (i.e., third) condition to determine all three components:

(x
(i)
1 )2 + (x

(i)
2 )2 + (x

(i)
3 )2 = 1. (2.5.45)

For example, if x
(i)
1 and x

(i)
2 are expressed in terms of x

(i)
3 [using Eq. (2.5.40)],

say x
(i)
1 = αx

(i)
3 and x

(i)
2 = β x

(i)
3 , then Eq. (2.5.45) yields

(x
(i)
3 )2 =

(
α2 + β2 + 1

)−1
or x

(i)
3 = ± 1√

α2 + β2 + 1
, (2.5.46)

and the normalized eigenvector is

{X̂}(i) = ± 1√
α2 + β2 + 1

⎧⎨
⎩

α
β
1

⎫⎬
⎭ . (2.5.47)
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The sign ± on the three eigenvectors should be selected such that we have a
right-hand coordinate system (when the eigenvectors are orthonormal):

x̂(1) = x̂(2) × x̂(3). (2.5.48)

If the matrix under consideration is of order 2×2, the characteristic equation
is of the form

λ2 − I1λ+ I3 = 0, I1 = s11 + s22, I3 = s11s22 − s12s21. (2.5.49)

The roots of this quadratic equation are (ordered lowest to the highest)

λ1 =
1
2

(
I1 −

√
I21 − 4I3

)
, λ2 =

1
2

(
I1 +

√
I21 − 4I3

)
. (2.5.50)

The eigenvector x(i) associated with λi (i = 1, 2) is determined from[
s11 − λi s12

s21 s22 − λi

]{
x
(i)
1

x
(i)
2

}
=

{
0
0

}
. (2.5.51)

This matrix equation gives only one independent relation between x
(i)
1 and x

(i)
2 .

One can arbitrarily select the value of one of the two components and determine

the other; alternatively, one can use normalization (x
(i)
1 )2 + (x

(i)
2 )2 = 1 to deter-

mine the vector x̂(i). One may also normalize a eigenvector with respect to the
largest component of the eigenvector. Example 2.5.2 illustrates the procedure.

Example 2.5.2

Determine the eigenvalues and eigenvectors of the following matrix:

[S] =

[
5 −1
3 1

]
.

Solution: The eigenvalue problem associated with the matrix [S] is [S]{X} − λ{X} = {0}:
[
5 −1
3 1

]{
x1

x2

}
− λ

[
1 0
0 1

]{
x1

x2

}
=

{
0
0

}
→

[
5− λ −1
3 1− λ

]{
x1

x2

}
=

{
0
0

}
. (1)

The characteristic equation is obtained either from λ2 − I1λ + I3 = 0 or from
∣∣S − λ I

∣∣ = 0.

Thus, λ2 − I1λ+ I3 = λ2 − 6λ+ 8 = 0; alternatively,

∣∣∣∣ 5− λ −1
3 1− λ

∣∣∣∣ = (5− λ)(1− λ)− (3)(−1) = 0 ⇒ λ2 − 6λ+ 8 = 0.

The two roots of the quadratic equation are

λ1 = 1
2

(
6−
√

62 − 4× 8
)
= 2, λ2 = 1

2

(
6 +
√

62 − 4× 8
)
= 4

To find the eigenvectors, we return to Eq. (1) and substitute for λ each of the eigenvalues

λi and solve the resulting algebraic equations for (x
(i)
1 , x

(i)
2 ). For λ = λ1 = 2, we have

[
5− 2 −1
3 1− 2

]{
x
(1)
1

x
(1)
2

}
=

{
0
0

}
. (2)
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Each row of the matrix equation in (2) yields the same condition 3x
(1)
1 −x

(1)
2 = 0 or x

(1)
2 = 3x

(1)
1 .

The eigenvector x(1) s given by

{X}(1) =
{
1
3

}
x
(1)
1 , x

(1)
1 �= 0, arbitrary.

Usually, we take x
(1)
1 = 1, as we are interested in the direction of the vector {X}(1) rather than

in its magnitude. One may also normalize the eigenvector by using the condition

(x
(1)
1 )2 + (x

(1)
2 )2 = 1. (3)

Then we obtain the following normalized eigenvector:

{X̂}(1) = ± 1√
10

{
1
3

}
= ±

{
0.3162
0.9487

}
. (4)

Using the same procedure, we can determine the eigenvector associated with λ2 = 4.
Substituting for λ = λ2 = 4 into Eq. (1), we obtain

[
5− 4 −1
3 1− 4

]{
x
(2)
1

x
(2)
2

}
=

{
0
0

}
, (5)

from which we obtain the condition x
(2)
1 − x

(2)
2 = 0 or x

(2)
2 = x

(2)
1 . The eigenvector x(2) is

{X}(2) =
{
1
1

}
or {X̂}(2) = ± 1√

2

{
1
1

}
= ±

{
0.7071
0.7071

}
. (6)

Because the matrix under consideration is not symmetric, we do not expect the eigenvectors
to be orthogonal.

When matrix [S] is of order 3× 3, finding the roots of the cubic equation in
Eq. (2.5.42) is not always easy. However, if the 3 × 3 matrix is of the special
form ⎡

⎣ s11 0 0
0 s22 s23
0 s32 s33

⎤
⎦ , (2.5.52)

then one of the roots is λ1 = s11 with eigenvector x(1) = ê1, and the remaining
two roots can be found, as in the case of a 2 × 2 matrix, from the quadratic
equation ∣∣∣∣ s22 − λ s23

s32 s33 − λ

∣∣∣∣ = (s22 − λ)(s33 − λ)− s23s32 = 0.

That is,

λ2,3 =
1
2(s22 + s33)± 1

2

√
(s22 + s33)2 − 4(s22s33 − s23s32).

When the matrix [S] is a full 3× 3 matrix, we use a method that facilitates
analytical computation of eigenvalues. In this method we seek the eigenvalues
of the so-called deviatoric tensor S′ associated with tensor S:

S′ = S− 1
3tr(S) I

(
s′ij ≡ sij − 1

3skkδij
)
. (2.5.53)

Note that
tr(S′) = 0 or s′ii = sii − skk = 0. (2.5.54)
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That is, the first invariant I ′1 of the deviatoric tensor is zero. As a result, the
characteristic equation associated with the deviatoric tensor is of the form

−(λ′)3 − I ′2λ
′ + I ′3 = 0, (2.5.55)

where λ′ is the eigenvalue of the deviatoric tensor. The eigenvalues λ associated
with S itself can be computed from

λ = λ′ + 1
3skk. (2.5.56)

The cubic equation in (2.5.55) is of a special form that allows a direct com-
putation of its roots. Equation (2.5.55) can be solved explicitly by introducing
the transformation

λ′ = 2
(−1

3I
′
2

) 1
2 cosα, (2.5.57)

which transforms (2.5.55) into

2
(−1

3I
′
2

) 3
2
(
4 cos3 α− 3 cosα

)
= I ′3.

The expression 4 cos3 α− 3 cosα is equal to cos 3α. Hence

cos 3α = 1
2I

′
3

(
− 3

I ′2

) 3
2

. (2.5.58)

If α1 is the angle satisfying 0 ≤ 3α1 ≤ π whose cosine is given by Eq. (2.5.58),
then 3α1, 3α1 + 2π, and 3α1 − 2π all have the same cosine, and furnish three
independent roots of Eq. (2.5.55),

λ′
i = 2

(−1
3I

′
2

) 1
2 cosαi, i = 1, 2, 3, (2.5.59)

where

α1 =
1
3

{
cos−1

[
I ′3
2

(
− 3

I ′2

)3/2
]}

, α2 = α1 +
2
3π, α3 = α1 − 2

3π. (2.5.60)

Finally, we can compute λi from Eq. (2.5.56). Example 2.5.3 is an application
of the procedures discussed.

Example 2.5.3

Determine the eigenvalues and eigenvectors of the following matrix:

[S] =

⎡
⎣ 2 1 0
1 4 1
0 1 2

⎤
⎦ .

Solution: The characteristic equation is −λ3 + I1λ
2 − I2λ+ I3 = 0, with

I1 = 2 + 4 + 2 = 8, I2 = 1
2

(
82 − 22 − 42 − 22 − 2× 12 − 2× 12

)
= 18, |S| = 12.
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Thus, the characteristic equation is (not always possible to factor out a root):

−λ3 + 8λ2 − 18λ+ 12 = 0 or (2− λ)
(
λ2 − 6λ+ 6

)
.

The roots of this cubic equation are (ordered from the largest to the smallest value):

λ1 = 3 +
√
3 = 4.7321, λ2 = 2, λ3 = 3−

√
3 = 1.2679.

Alternatively, using Eqs. (2.5.53)–(2.5.60), we have

[S′] =

⎡
⎣ 2− 8

3
1 0

1 4− 8
3

1
0 1 2− 8

3

⎤
⎦ , I ′1 = 0, I ′3 = |S′| = 52

27
,

I ′2 = 1
2

(
s′iis

′
jj − s′ijs

′
ij

)
= − 1

2
s′ijs

′
ij

= −1

2

[(− 2
3

)2
+
(− 2

3

)2
+
(
4
3

)2
+ 2× 12 + 2× 12

]
= − 10

3
.

From Eq. (2.5.60),

α1 = 1
3

{
cos−1

[
52
54

(
9
10

)3/2]}
= 11.565◦, α2 = 131.565◦, α3 = −108.435◦,

and from Eq. (2.5.59),

λ′
1 = 2.065384, λ′

2 = −0.66667, λ′
3 = −1.3987.

Finally, using Eq. (2.5.56), we obtain the following eigenvalues:

λ1 = λ′
1 +

8
3
= 4.7321, λ2 = −0.66667 + 8

3
= 2, λ3 = −1.3987 + 8

3
= 1.2679.

The eigenvector corresponding to λ1 = 3 +
√
3 is calculated Eq. (2.5.40). We have

⎡
⎣ 2− (3 +

√
3) 1 0

1 4− (3 +
√
3) 1

0 1 2− (3 +
√
3)

⎤
⎦
⎧⎪⎨
⎪⎩

x
(1)
1

x
(1)
2

x
(1)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ .

This gives the following independent relations:

−(1 +
√
3)x

(1)
1 + x

(1)
2 = 0, x

(1)
2 − (1 +

√
3)x

(1)
3 = 0 ⇒ x

(1)
1 = x

(1)
3 = 1

(1+
√

3)
x
(1)
2 .

Hence we have the following eigenvector:

{X}(1) = 1

(1+
√
3)

⎧⎨
⎩

1
(1 +

√
3)

1

⎫⎬
⎭x

(1)
2 =

⎧⎨
⎩

0.366
1.000
0.366

⎫⎬
⎭x

(1)
2 .

Normalizing the vector, we obtain

{X̂}(1) = ± 1√
(6+2

√
3)

⎧⎨
⎩

1
(1 +

√
3)

1

⎫⎬
⎭ = ±

⎧⎨
⎩

0.325
0.888
0.325

⎫⎬
⎭ .

The eigenvector corresponding to λ2 = 2 is calculated from

⎡
⎣ 2− 2 1 0

1 4− 2 1
0 1 2− 2

⎤
⎦
⎧⎪⎨
⎪⎩

x
(2)
1

x
(2)
2

x
(2)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,
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which gives x
(2)
2 = 0 and x

(2)
1 = −x

(2)
3 . The eigenvector (without and with normalization)

associated with λ2 = 2 is

{X}(2) =
⎧⎨
⎩

−1
0
1

⎫⎬
⎭x

(2)
3 , {X̂}(2) = ± 1√

2

⎧⎨
⎩

−1
0
1

⎫⎬
⎭ = ±

⎧⎨
⎩

−0.707
0.000
0.707

⎫⎬
⎭ .

Finally, the eigenvector corresponding to λ3 = 3−√
3 is calculated from

⎡
⎣ 2− (3−√

3) 1 0
1 4− (3 +

√
3) 1

0 1 2− (3−√
3)

⎤
⎦
⎧⎪⎨
⎪⎩

x
(3)
1

x
(3)
2

x
(3)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

which gives

−(1−
√
3)x

(3)
1 + x

(3)
2 = 0, x

(3)
2 − (1−

√
3)x

(3)
3 = 0 ⇒ x

(3)
1 = x

(3)
3 = 1

(1−√
3)
x
(3)
2 .

Hence the eigenvector is

{X}(3) = 1

(1−√
3)

⎧⎨
⎩

1
(1−√

3)
1

⎫⎬
⎭x

(3)
2 =

⎧⎨
⎩

−1.366
1.000

−1.366

⎫⎬
⎭x

(3)
2 .

Normalizing the vector, we obtain

{X̂}(3) = ± 1√
(6−2

√
3)

⎧⎨
⎩

1
(1−√

3)
1

⎫⎬
⎭ = ±

⎧⎨
⎩

0.628
−0.460
0.628

⎫⎬
⎭ .

We can check to see if x̂(1) × x̂(2) = x̂(3) without consideration of the minus sign. We find
that the vectors without ± in front of them constitute a right-hand system. We can also verify
that they are also orthonormal. Therefore, we can write

[Q][S][Q]T =

⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ ,

where [Q] is the matrix of eigenvector components (components of each vector are arranged in
rows)

[Q] =

⎡
⎣ 0.325 0.888 0.325
−0.707 0.000 0.707
0.628 −0.460 0.628

⎤
⎦ .

In other words, we can represent S with respect to the orthonormal vectors (x̂(1), x̂(2), x̂(3)),
which form a basis, as

S = λ1 x̂
(1)x̂(1) + λ2 x̂

(2)x̂(2) + λ3 x̂
(3)x̂(3) = (3 +

√
3)x̂(1)x̂(1) + 2 x̂(2)x̂(2) + (3−

√
3)x̂(3)x̂(3).

When [S] in Eq. (2.5.32) is an n × n matrix, Eq. (2.5.33) is a polynomial
of degree n in λ, and therefore, there are n eigenvalues λ1, λ2, · · · , λn, some
of which may be repeated. In general, if an eigenvalue appears m times as a
root of Eq. (2.5.33), then that eigenvalue is said to have algebraic multiplicity
m. An eigenvalue of algebraic multiplicity m may have r linearly independent
eigenvectors. The number r is called the geometric multiplicity of the eigenvalue,
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and r lies (not shown here) in the range 1 ≤ r ≤ m. Thus, a square matrix [S]
of order n may have fewer than n linearly independent eigenvectors when [S]
has one or more repeated eigenvalues. Example 2.5.4 illustrates the calculation
of eigenvectors of a matrix when it has repeated eigenvalues.

Example 2.5.4

Determine the eigenvalues and eigenvectors of the following matrix:

[S] =

⎡
⎣ 0 1 1
1 0 1
1 1 0

⎤
⎦ .

Solution: The characteristic equation −λ3 + I1λ
2 − I2λ+ I3 = 0 in the present case is

−λ3 − (−3)λ+ 2 = 0,

which can be expressed as (2− λ)(1 + λ)2 = 0. Thus, the three roots are

λ1 = 2, λ2 = −1, λ3 = −1.

We note that λ = −1 is an eigenvalue with algebraic multiplicity of 2.
The eigenvector components associated with λ = 2 are obtained from⎡

⎣−2 1 1
1 −2 1
1 1 −2

⎤
⎦
⎧⎪⎨
⎪⎩

x
(1)
1

x
(1)
2

x
(1)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

which gives

−2x
(1)
1 + x

(1)
2 + x

(1)
3 = 0, x

(1)
1 − 2x

(1)
2 + x

(1)
3 = 0, x

(1)
1 + x

(1)
2 − 2x

(1)
3 = 0.

Solution of these equations gives x
(1)
1 = x

(1)
2 = x

(1)
3 . Thus the eigenvector associated with

λ1 = 2 is the vector

{X}(1) =
⎧⎨
⎩

1
1
1

⎫⎬
⎭x

(1)
1 or {X̂}(1) = ± 1√

3

⎧⎨
⎩

1
1
1

⎫⎬
⎭ ,

where {X̂}(1) denotes the normalized (unit) vector.
The eigenvector components associated with λ = −1 are obtained from⎡

⎣ 1 1 1
1 1 1
1 1 1

⎤
⎦
⎧⎪⎨
⎪⎩

x
(2)
1

x
(2)
2

x
(2)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ .

All three equations yield the same single relation:

x
(2)
1 + x

(2)
2 + x

(2)
3 = 0.

Thus, values of two of the three components (x
(2)
1 , x

(2)
2 , x

(2)
3 ) can be chosen arbitrarily. For the

choice of x
(2)
2 = 0 and x

(2)
3 = 1, we obtain the vector (or any nonzero multiples of it):

{X}(2) =
⎧⎨
⎩

−1
0
1

⎫⎬
⎭x

(2)
1 or {X̂}(2) = ± 1√

2

⎧⎨
⎩

−1
0
1

⎫⎬
⎭ .

A second independent vector can be found by choosing x
(2)
2 = 1 and x

(2)
3 = 0. We obtain

{X}(3) =
⎧⎨
⎩

−1
1
0

⎫⎬
⎭x

(3)
1 or {X̂}(3) = ± 1√

2

⎧⎨
⎩

−1
1
0

⎫⎬
⎭ .

Thus, in the present case, there exist two linearly independent eigenvectors associated with the
double eigenvalue. The eigenvectors are not mutually orthogonal.
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We note that the matrix [S] considered here is symmetric (but not positive). Clearly,
properties 1 and 3 concerning the eigenvalues and eigenvectors of a real-valued symmetric
matrix are satisfied. As far as property 5 is concerned, it is possible to choose the values of the
two of the three components (x1, x2, x3) to have a set of linearly independent eigenvectors that
are orthogonal. The second vector associated with λ = −1 could have been chosen by setting

x
(2)
1 = x

(2)
3 = 1. We obtain

{X}(3) =
⎧⎨
⎩

1
−2
1

⎫⎬
⎭x

(2)
1 or {X̂}(3) = ± 1√

6

⎧⎨
⎩

1
−2
1

⎫⎬
⎭ .

Thus the three eigenvectors (check for the right-handed system)

{X̂}(1) = 1√
3

⎧⎨
⎩

1
1
1

⎫⎬
⎭ , {X̂}(2) = 1√

2

⎧⎨
⎩

−1
0
1

⎫⎬
⎭ , {X̂}(3) = 1√

6

⎧⎨
⎩

1
−2
1

⎫⎬
⎭

are mutually orthogonal. Hence, we can write

1

6

⎡
⎣

√
2

√
2

√
2

−√
3 0

√
3

1 −2 1

⎤
⎦
⎡
⎣ 0 1 1
1 0 1
1 1 0

⎤
⎦
⎡
⎣
√
2 −√

3 1√
2 0 −2√
2

√
3 1

⎤
⎦ =

⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ =

⎡
⎣ 2 0 0
0 −1 0
0 0 −1

⎤
⎦ .

2.6 Summary

In this chapter, mathematical preliminaries needed for this course are reviewed.
In particular, the notion of geometric vector, vector algebra, vector calculus,
theory of matrices, tensors, and tensor calculus are thoroughly reviewed. The
index notation for writing vectors and tensors in terms of their components is in-
troduced. Transformations of vector and tensor components are presented, and
eigenvalue problems associated with second-order tensors are discussed. A num-
ber of examples are presented throughout the chapter to illustrate the concepts
and definitions introduced. The material included in this chapter is indispens-
able for the rest of the book, and readers are urged to make themselves familiar
with the concepts as well as notation introduced here. The following is a brief
review of the notations used:

a−(italic and lightface letter) a scalar

A−(boldface roman) a tensor of order 1 or higher; vectors are tensors

of order 1; and scalars are tensors of order 0

A ·B−the dot product of two tensors, A and B, of order 1 or higher

A×B−the cross product of two tensors, A and B, of order 1 or higher

AB−a dyad formed by vectors A and B

∇−the del operator, a vector differential operator

∇A−the gradient of a tensor A of order 0 or higher

∇ ·A−the divergence of a tensor A of order 1 or higher

∇×A−the curl of a tensor A of order 1 or higher
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ei−unitary base vectors in a general coordinate system

ei−dual base vectors in a dual (to unitary) coordinate system

êi−unit base vectors in an orthonormal coordinate system

n̂−unit outward normal vector

�ij−direction cosines, �ij = ˆ̄ei · êj between barred (x̄1, x̄2, x̄3) and

unbarred (x1, x2, x3) coordinates

δij−the Kronecker delta symbol; components of the unit tensor, I

eijk−the permutation symbol; components of the third-order tensor, E
{X}−a column or row vector

[A]−a matrix whose elements are denoted as aij ; aij is an element in the

ith row and jth column of the matrix; a matrix underlying a tensor

A is denoted as [A]

[A]T−transpose of matrix [A], obtained by interchanging the rows and

columns of matrix [A]

AT−transpose of a tensor A, obtained by transposing the base vectors.

|[A]|−the determinant of matrix [A]

|A|−the determinant of matrix [A] associated with a tensor A

When the same symbol is used in different places and contexts, the reader should
not assume that they have the same meaning; the meaning of the symbol will
be evident within the context.

Problems

Vector Algebra

2.1 Find the equation of a line (or a set of lines) passing through the terminal point of a
vector A and in the direction of vector B.

2.2 Obtain the equation of a plane perpendicular to a vector A and passing through the
terminal point of vector B, without using any coordinate system.

2.3 Find the equation of a plane connecting the terminal points of vectors A, B, and C.
Assume that all three vectors are referred to a common origin.

2.4 Let A and B denote two points in space, and let these points be represented by two
vectors A and B with a common origin O, as shown in Fig. P2.4. Show that the
straight line through points A and B can be represented by the vector equation

(r−A)× (B−A) = 0.

B •

• •
BA

P

O
r

A

Fig. P2.4
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2.5 Prove with the help of vectors that the diagonals of a parallelogram bisect each other.

2.6 Show that the position vector r that divides a line PQ in the ratio k : l is given by

r = l
k+l

A+ k
k+l

B,

where A and B are the vectors that designate points P and Q, respectively.

2.7 Represent a tetrahedron by the three noncoplanar vectors A, B, and C, as shown in
Fig. P2.7. Show that the vectorial sum of the areas of the tetrahedron sides is zero.

A
ê

B

C

−B A

−C A

−B C

Fig. P2.7

2.8 Deduce that the vector equation for a sphere with its center located at point A and with
a radius R is given by

(r−A) · (r−A) = R2,

where A is the vector connecting the origin to point A and r is the position vector.

2.9 Verify that the following identity holds (without using index notation):

(A ·B)2 + (A×B) · (A×B) = |A|2 |B|2,
where A and B are arbitrary vectors. Hint: Use Eqs. (2.2.21) and (2.2.25).

2.10 If A, B, and C are noncoplanar vectors (that is, A, B, and C are linearly independent),
determine if the following set of vectors is linearly independent:

r1 = A− 3B+ 2C, r2 = 2A− 5B+ 3C, r3 = A− 5B+ 4C.

2.11 Determine whether the following set of vectors is linearly independent:

A = 2ê1 − ê2 + ê3, B = −ê2 − ê3, C = −ê1 + ê2.

Here êi are orthonormal unit base vectors in �3.

2.12 Let the vectors (̂i, ĵ, k̂) constitute an orthonormal basis. In terms of this basis, define a
cogredient basis by

e1 = −î− ĵ , e2 = î+ 2 ĵ− 2 k̂ , e3 = 2 î+ ĵ+ k̂.

Determine

(a) the dual or reciprocal (contragredient) basis (e1, e2, e3) in terms of the orthonormal basis
(̂i, ĵ, k̂) ,

(b) the magnitudes (or norms) |e1|, |e2|, |e3|, |e1|, |e2|, and |e3|, and
(c) the cogredient components A1, A2, and A3 of a vector A if its contragredient components

are given by A1 = 1, A2 = 2, A3 = 3.

2.13 Using the Gram–Schmidt orthonormalization process, construct the orthonormal sets
associated with the following sets of vectors:

(a) e1 = î1 + î3, e2 = î1 + 2̂i2 + 2̂i3, e3 = 2̂i1 − î2 + î3.

(b) e1 = 2̂i1 + î2, e2 = î1 − 2̂i2 + î3, e3 = −2̂i1 + î2 + î3.

Here (̂i1, î2, î3) denotes an orthonormal Cartesian basis.
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Index Notation

2.14 Prove the following vector identity using index notation:

A× (B×C) = (A ·C)B− (A ·B)C.

2.15 Prove the following vector identity using index notation:

(A ·B)2 + (A×B) · (A×B) = |A|2 |B|2.
2.16 Use index notation and the e-δ identity to rewrite the vector expression as a sum (or

difference) of two vector expressions:

(∇×A)×B,

where A and B are vector functions.

2.17 Simplify the vector expression ∇ ·
(

x−y
ρ

)
, where ρ = |x−y| and y is a fixed point, and

x is the position vector of a point in a 3D space. Express the final result in terms of ρ
only.

2.18 Using index notation, prove the following identities among vectors A, B, C, and D:

(a) (A×B) · (B×C)× (C×A) = (A · (B×C))2.

(b) (A×B)× (C×D) = [A · (C×D)]B− [B · (C×D]A.

2.19 Prove that

[ABC][DEF] =

∣∣∣∣∣∣
A ·D A ·E A · F
B ·D B ·E B · F
C ·D C ·E C · F

∣∣∣∣∣∣ ,
and from there show that

eijk erst =

∣∣∣∣∣∣
δir δis δit
δjr δjs δjt
δkr δks δkt

∣∣∣∣∣∣ .
2.20 Establish the following identities :

(a) eijk =

∣∣∣∣∣∣
δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

∣∣∣∣∣∣ . (b) eijkepqr =

∣∣∣∣∣∣
δip δiq δir
δjp δjq δjr
δkp δkq δkr

∣∣∣∣∣∣ .
(c) eijk eijk = 6. (d) eijkemnk = δimδjn − δinδjm.

Coordinate Transformations

2.21 Consider two rectangular Cartesian coordinate systems that are translated and rotated
with respect to each other. The transformation between the two coordinate systems is
given by

{X̄} = {C}+ [L]{X},
where {C} is a constant vector and [L] = [
ij ] is the matrix of direction cosines


ij ≡ ˆ̄ei · êj .

Deduce that the following orthogonality conditions hold:

[L][L]T = [I] or 
ik
kj = δij .

That is, [L] is an orthogonal matrix.

2.22 Determine the transformation matrix relating the orthonormal basis vectors (ê1, ê2, ê3)
and (ê′

1, ê
′
2, ê

′
3), when ê′

i are given by

(a) ê′
1 is along the vector ê1− ê2+ ê3 and ê′

2 is perpendicular to the plane 2x1+3x2+
x3 − 5 = 0.
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(b) ê′
1 is along the line segment connecting point (1,−1, 3) to (2,−2, 4) and ê′

3 =
(−ê1 + ê2 + 2ê3)/

√
6.

2.23 The angles between the barred and unbarred coordinate lines are given by

ê1 ê2 ê3

ˆ̄e1 60◦ 30◦ 90◦

ˆ̄e2 150◦ 60◦ 90◦

ˆ̄e3 90◦ 90◦ 0◦

Determine the direction cosines of the transformation.

2.24 The angles between the barred and unbarred coordinate lines are given by

x1 x2 x3

x̄1 45◦ 90◦ 45◦

x̄2 60◦ 45◦ 120◦

x̄3 120◦ 45◦ 60◦

Determine the transformation matrix.

Matrices

2.25 Write the following sets of equations in matrix form [A]{X} = {Y }:
(a) 2x1 + x2 − 2x3 = 1, (b) 2x1 + x2 − x3 = 0,

x1 − 2x2 + x3 = 5, 3x1 − x3 = 2,

3x1 + x2 − x3 = 4. x1 + x2 + x3 = 1.

2.26 Determine the cofactors and the determinants of the coefficient matrices in Problem
2.25.

2.27 Find the inverses of the coefficient matrices in Problem 2.25.

2.28 Determine if the following matrices are positive:

(a)

⎡
⎣ 2 1 −2
1 −2 1
3 1 −1

⎤
⎦ , (b)

⎡
⎣ 2 1 −1
3 2 −1
1 1 0

⎤
⎦ , (c)

⎡
⎣ 2 1 1
1 −1 2
3 2 1

⎤
⎦ .

2.29 Check to see if the following [Q] is nonsingular, and if it is, construct the positive matrix
associated with it:

[Q] =

⎡
⎣ 1 0 0
0 1 2
1 1 1

⎤
⎦ .

Vector Algebra
6

2.30 Let r denote a position vector r = x = xiêi (r
2 = xixi) and A be an arbitrary constant

vector. Use index notation to show that:

(a) ∇2(rn) = n(n+ 1)rn−2. (b) ∇(r ·A) = A.

(c) ∇ · (r×A) = 0. (d) ∇× (r×A) = −2A.

(e) ∇ · (rA) =
1

r
(r ·A). (f) ∇× (rA) =

1

r
(r×A).

2.31 Let A and B be vector functions of position vector x with continuous first and second
derivatives, and let F and G be scalar functions of position x with continuous first and
second derivatives. Use index notation to show that:

(a) ∇ · (∇×A) = 0.

6Many problems here have several parts, and the instructor may assign selected parts as sep-
arate problems.
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(b) ∇× (∇F ) = 0.

(c) ∇ · (∇F ×∇G) = 0.

(d) ∇ · (FA) = A ·∇F + F∇ ·A.

(e) ∇× (FA) = F∇×A−A×∇F .

(f) ∇(A ·B) = A ·∇B+B ·∇A+A× (∇×B) +B× (∇×A).

(g) ∇ · (A×B) = ∇×A ·B−∇×B ·A.

2.32 Let A and B be vector functions of position vector x with continuous first and second
derivatives, and let F and G be scalar functions of position x with continuous first and
second derivatives. Use index notation to show that:

(a) ∇× (A×B) = B ·∇A−A ·∇B+A∇ ·B−B∇ ·A.

(b) (∇×A)×A = A ·∇A−∇A ·A.

(c) ∇2(FG) = F ∇2G+ 2∇F ·∇G+G∇2F .

(d) ∇2(Fx) = 2∇F + x∇2F .

(e) A ·∇A = 1
2
∇ (A ·A)−A×∇×A.

(f) ∇(A · x) = A+∇A · x.
(g) ∇2 (A · x) = 2∇ ·A+ x · ∇2A.

2.33 Show that
∇(Rnx) = RnI+ nRn−2xx, R2 = x · x

using (a) index notation and (b) the spherical coordinate system.

2.34 Show that
∇2(Rnx) = n(n+ 3)Rn−2x, R2 = x · x

using (a) index notation, and (b) the spherical coordinate system.

2.35 Show that the vector area of a closed surface is zero, that is,∮
s

n̂ ds = 0.

2.36 Show that the volume of the region Ω enclosed by a boundary surface Γ is

volume = 1
6

∮
Γ

∇(r2) · n̂ ds = 1
3

∮
Γ

r · n̂ ds.

2.37 Let φ(r) be a scalar field. Show that∫
Ω

∇2φ dx =

∮
Γ

∂φ

∂n
ds.

2.38 In the divergence theorem (2.4.34), set A = φ∇ψ and A = ψ∇φ successively and
obtain the integral forms

(a)

∫
Ω

[
φ∇2ψ +∇φ ·∇ψ

]
dx =

∮
Γ

φ
∂ψ

∂n
ds,

(b)

∫
Ω

[
φ∇2ψ − ψ∇2φ

]
dx =

∮
Γ

[
φ
∂ψ

∂n
− ψ

∂φ

∂n

]
ds,

(c)

∫
Ω

[
φ∇4ψ −∇2φ∇2ψ

]
dx =

∮
Γ

[
φ

∂

∂n
(∇2ψ)−∇2ψ

∂φ

∂n

]
ds,

where Ω denotes a (2D or 3D) region with bounding surface Γ. The first two identities
are sometimes called Green’s first and second theorems.

2.39 Let V and S be smooth vector and second-order tensor fields defined in Ω and on Γ
(the closed boundary of Ω) and let n̂ be the unit outward normal to Γ. Establish the
identity ∮

Γ

V · S · n̂ ds =

∫
Ω

∇ · (ST ·V) dx.
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2.40 Let S be a smooth second-order tensor field defined in Ω and on Γ (the closed boundary
of Ω) and let n̂ be the unit outward normal to Γ. Use index notation to establish the
identity ∮

Γ

x× (n̂ · S) ds =

∫
Ω

[x× (∇ · S) + E : S] dx,

where x is the position vector and E is the third-order permutation tensor [see Eq.

(2.5.23)].

Tensors and Tensor Calculus

2.41 Establish the following identities for a second-order tensor S:

(a) |S| = eijk s1i s2j s3k. (b) |S| = 1
6
sir sjs skt erst eijk.

(c) erst|S| = eijk sir sjs skt. (d)

∣∣∣∣∣∣
sim sin sip
sjm sjn sjp
skm skn skp

∣∣∣∣∣∣ = eijk emnp |S|.

2.42 Given vector A and second-order tensors S and T with the following components:

{A} =

⎧⎨
⎩

2
−1
4

⎫⎬
⎭ , [S] =

⎡
⎣−1 0 5

3 7 4
9 8 6

⎤
⎦ , [T ] =

⎡
⎣ 8 −1 6

5 4 9
−7 8 −2

⎤
⎦

determine
(a) tr(S). (b) S : S. (c) S : ST.

(d) A · S. (e) S ·A. (f) S ·T ·A.

2.43 Determine the rotation transformation matrix such that the new base vector ˆ̄e1 is along
ê1 − ê2 + ê3, and ˆ̄e2 is along the normal to the plane 2x1 + 3x2 + x3 = 5. If S is the
tensor whose components in the unbarred system are given by s11 = 1, s12 = s21 =
0, s13 = s31 = −1, s22 = 3, s23 = s32 = −2, and s33 = 0, find the components in the
barred coordinates.

2.44 Suppose that the new axes x̄i are obtained by rotating xi through 60◦ about the x2-axis.
Determine the components Āi of a vector A whose components with respect to the xi

coordinates are (2, 1, 3).

2.45 Show that the following expressions for an arbitrary tensor S are invariant: (a) Sii,
(b) SijSij , and (c) SijSjkSki.

2.46 If A and B are arbitrary vectors and S and T are arbitrary dyads, verify that:

(a) (A · S) ·B = A · (S ·B). (b) (S ·T) ·A = S · (T ·A).

(c) A · (S ·T) = (A · S) ·T. (d) (S ·A) · (T ·B) = A · (ST ·T) ·B.

2.47 If A is an arbitrary vector and R and S are arbitrary dyads, verify that:

(a) (I×A) ·R = A×R. (b) (A× I) ·R = A×R.

(c) (R×A)T = −A×RT. (d) (R · S)T = ST ·RT.

(e) (R · S)−1 = S−1 ·R−1. (f) (R · S)−T = R−T · S−T.

2.48 The determinant of a second-order tensor S is also defined by the expression

|S| = [(S ·A)× (S ·B)] · (S ·C)

A×B ·C
where A, B, and C are arbitrary vectors. Verify the identity in an orthonormal basis
{êi}.
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2.49 For an arbitrary second-order tensor S show that ∇ · S in the cylindrical coordinate
system is given by

∇ · S =

[
∂Srr

∂r
+

1

r

∂Sθr

∂θ
+

∂Szr

∂z
+

1

r
(Srr − Sθθ)

]
êr

+

[
∂Srθ

∂r
+

1

r

∂Sθθ

∂θ
+

∂Szθ

∂z
+

1

r
(Srθ + Sθr)

]
êθ

+

[
∂Srz

∂r
+

1

r

∂Sθz

∂θ
+

∂Szz

∂z
+

1

r
Srz

]
êz.

2.50 For an arbitrary second-order tensor S show that ∇ × S in the cylindrical coordinate
system is given by

∇× S = êrêr

(
1

r

∂Szr

∂θ
− ∂Sθr

∂z
− 1

r
Szθ

)
+ êθêθ

(
∂Srθ

∂z
− ∂Szθ

∂r

)
+

êzêz

(
1

r
Sθz − 1

r

∂Srz

∂θ
+

∂Sθz

∂r

)
+ êrêθ

(
1

r

∂Szθ

∂θ
− ∂Sθθ

∂z
+

1

r
Szr

)
+

êθêr

(
∂Srr

∂z
− ∂Szr

∂r

)
+ êrêz

(
1

r

∂Szz

∂θ
− ∂Sθz

∂z

)
+

êzêr

(
∂Sθr

∂r
− 1

r

∂Srr

∂θ
+

1

r
Srθ +

1

r
Sθr

)
+ êθêz

(
∂Srz

∂z
− ∂Szz

∂r

)
+

êzêθ

(
∂Sθθ

∂r
+

1

r
Sθθ − 1

r
Srr − 1

r

∂Srθ

∂θ

)
.

2.51 For an arbitrary second-order tensor S show that ∇·S in the spherical coordinate system
is given by

∇ · S =

{
∂SRR

∂R
+

1

R

∂SφR

∂φ
+

1

R sinφ

∂SθR

∂θ
+

1

R
[2SRR − Sφφ − Sθθ + SφR cotφ]

}
êR

+

{
∂SRφ

∂R
+

1

R

∂Sφφ

∂φ
+

1

R sinφ

∂Sθφ

∂θ
+

1

R
[(Sφφ − Sθθ) cotφ+ SφR + 2SRφ]

}
êφ

+

{
∂SRθ

∂R
+

1

R

∂Sφθ

∂φ
+

1

R sinφ

∂Sθθ

∂θ
+

1

R
[(Sφθ + Sθφ) cotφ+ 2SRθ + SθR]

}
êθ.

2.52 Show that ∇u in the spherical coordinate system is given by

∇u =
∂uR

∂R
êR êR +

∂uφ

∂R
êR êφ +

∂uθ

∂R
êR êθ

+
1

R

(
∂uR

∂φ
− uφ

)
êφ êR +

1

R

(
∂uφ

∂φ
+ uR

)
êφ êφ +

1

R

∂uθ

∂φ
êφêθ

+
1

R sinφ

[(
∂uR

∂θ
− uθ sinφ

)
êθ êR +

(
∂uφ

∂θ
− uθ cosφ

)
êθ êφ

+

(
∂uθ

∂θ
+ uR sinφ+ uφ cosφ

)
êθ êθ

]
.

2.53 Prove the following identities when A and B are vectors and S, R, and T are second-
order tensors:

(a) tr(AB) = A ·B. (b) tr(ST) = trS.

(c) tr(R · S) = R · ·S. (d) tr(RT · S) = R : S.

(e) tr(R · S) = tr(S ·R). (f) tr(R · S ·T) = tr(T ·R · S) = tr(S ·T ·R).

Eigenvalue Problems

2.54 Show that the characteristic equation for a symmetric second-order tensor Φ can be
expressed as

−λ3 + I1λ
2 − I2λ+ I3 = 0,
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where

I1 = φkk, I2 =
1

2
(φii φjj − φij φji),

I3 = 1
6
(2φij φjk φki − 3φij φji φkk + φii φjj φkk) = det (φij).

2.55 Find the eigenvalues and eigenvectors of the following matrices:

(a)

⎡
⎣ 4 −4 0
−4 0 0
0 0 3

⎤
⎦ . (b)

⎡
⎣ 2 −√

3 0

−√
3 4 0
0 0 4

⎤
⎦ .

(c)

⎡
⎣ 1 0 0
0 3 −1
0 −1 3

⎤
⎦ (d)

⎡
⎣ 2 −1 1
−1 0 1
1 1 2

⎤
⎦ .

2.56 Find the eigenvalues and eigenvectors of the following matrices:

(a)

⎡
⎣ 3 5 8
5 1 0
8 0 2

⎤
⎦ . (b)

⎡
⎣ 1 −1 0
−1 2 −1
0 −1 2

⎤
⎦ .

(c)

⎡
⎣ 1 2 0
1 −1 1
0 −2 1

⎤
⎦ . (d)

⎡
⎣ 3 2 0
2 0 0
1 0 2

⎤
⎦ .

2.57 Find the eigenvalues and eigenvectors associated with the matrix

[S] =

⎡
⎣−2 2 10

2 −11 8
10 8 −5

⎤
⎦ .

2.58 If p(x) = a0 +a1x
2 + · · ·+anx

n, and [A] is any square matrix, we define the polynomial
in [A] by

p(A) = a0[I] + a1[A] + a2[A]2 + · · ·+ an[A]n.

If

[A] =

[
1 −1

−1 1

]
,

and p(x) = 1− 2x+ x2, compute p(A).

2.59 Cayley–Hamilton Theorem Consider a square matrix [S] of order n. Denote by p(λ) the
determinant of |[S]−λ[I]| [that is, p(λ) ≡ p(S−λI)], called the characteristic polynomial.
Then the Cayley–Hamilton Theorem states that p(λ) = 0 (i.e., every matrix satisfies
its own characteristic equation). Here p(λ) is as defined in Problem 2.58. Use matrix
computation to verify the Cayley–Hamilton theorem for each of the following matrices:

(a)

[
1 −1
2 1

]
. (b)

⎡
⎣ 2 −1 1
0 1 0
1 −2 1

⎤
⎦ .

2.60 Consider the matrix in Example 2.5.3:

[S] =

⎡
⎣ 2 1 0
1 4 1
0 1 2

⎤
⎦ .

Verify the Cayley–Hamilton theorem and use it to compute the inverse of [S].
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3

KINEMATICS OF
CONTINUA

The man who cannot occasionally imagine events and conditions of existence that are contrary
to the causal principle as he knows it will never enrich his science by the addition of a new
idea. —– Max Planck (1858–1947)
It is through science that we prove, but through intuition that we discover.

—– Henri Poincaré (1854–1912)

3.1 Introduction

Material or matter is composed of discrete molecules, which in turn are made up
of atoms. An atom consists of negatively charged electrons, positively charged
protons, and neutrons. Electrons form chemical bonds. The study of matter at
molecular or atomistic levels is very useful for understanding a variety of phe-
nomena, but studies at these scales are not useful to solve common engineering
problems. Continuum mechanics is concerned with a study of various forms of
matter at the macroscopic level. Central to this study is the assumption that
the discrete nature of matter can be overlooked, provided the length scales of
interest are large compared to the length scales of discrete molecular structures.
Thus, matter at sufficiently large length scales can be treated as a continuum,1

in which all physical quantities of interest, including density, are continuously
differentiable almost everywhere.

Engineers and scientists undertake the study of continuous systems to un-
derstand their behavior under “working conditions,” so that the systems can be
designed to function properly and to be produced economically. For example,
if we were to repair or replace a damaged artery in the human body, we must
understand the function of the original artery and the conditions that led to its
damage. An artery carries blood from the heart to different parts of the body.
Conditions such as high blood pressure and increase in cholesterol levels in the
blood may lead to deposition of particles in the arterial wall, as shown in Fig.
3.1.1. With time, accumulation of these particles in the arterial wall hardens
and constricts the passage, leading to cardiovascular diseases. A possible rem-
edy for such diseases is to repair or replace the damaged portion of the artery.
This in turn requires an understanding of the deformations and stresses caused
in the arterial wall by the blood flow. The understanding is then used to design
a vascular prosthesis (that is, artificial artery).

1We mean a differentiable manifold with a boundary. Inherent in this assumption is that
material particles that are neighbors will remain neighbors during the motion.
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Fig. 3.1.1: Progressive damage of an artery due to deposition of particles in the arterial wall.

The present chapter is devoted to the study of geometric changes in a contin-
uous medium (such as the artery) that is in equilibrium. The study of geometric
changes in a continuum without regard to the forces causing the changes is known
as kinematics. Sections or subsections that are considered to be too advanced
for a first course can be skipped without loss of continuity (or returned to when
needed).

3.2 Descriptions of Motion

3.2.1 Configurations of a Continuous Medium

Consider a body B of known geometry in a three-dimensional Euclidean space

3; B may be viewed as a set of particles, each particle representing a large
collection of molecules with a continuous distribution of matter in space and
time. An example of a body B is a diving board. Under external stimuli, body
B will undergo macroscopic geometric changes, which are termed deformations.
The geometric changes are accompanied by stresses that are induced in the body.
If the applied loads are time dependent, the deformation of the body will be a
function of time; that is, the geometry of the body B will change with time. If the
loads are applied slowly so that the deformation is dependent only on the loads,
the body will occupy a sequence of geometrical regions. The region occupied
by the continuum at a given time t is termed a configuration and denoted by κ.
Thus, the positions occupied in space 
3 by all material points of the continuum
B at different instants of time are called configurations.

Suppose that the continuum initially occupies a configuration κ0, in which
a particle X occupies position X, referred to a reference frame of right-handed,
rectangular Cartesian axes (X1, X2, X3) at a fixed origin O with orthonormal
basis vectors Êi, as shown in Fig. 3.2.1. Note that X (lightface roman letter) is
the name of the particle that occupies location X (boldface letter) in configu-
ration κ0, and therefore (X1, X2, X3) are called the material coordinates. After
the application of some external stimuli (e.g., loads), the continuum changes
its geometric shape and thus assumes a new configuration κ, called the current
or deformed configuration. Particle X now occupies position x in the deformed
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configuration κ, as shown in Fig. 3.2.1. The mapping χ : Bκ0 → Bκ is called
the deformation mapping of the body B from κ0 to κ. The deformation map-
ping χ(X, t) takes the position vector X from the reference configuration and
places the same point in the deformed configuration as x = χ(X, t). The inverse
mapping χ−1 : Bκ → Bκ0 takes the position vector x from the deformed config-
uration κ back to the reference configuration κ0, X = χ−1(x, t). It is not always
possible to construct the inverse mapping χ−1(x, t) from a known deformation
mapping χ(X, t). In the following discussion, we shall use χ(X, t) to denote the
deformation mapping and x to denote the value of χ(X, t).

E2
ˆ

3 3x , X

2 2x , X

1 1x , X

κO

•

0κ

( ),tX

Reference
configuration, 

X

X Xx

u Current 
configuration, κ

Particle X occupying 
position X

Particle X occupying 
position x

0Rκ κ

E eˆ ˆ,1 1

E e3 3
ˆ ˆ,

Fig. 3.2.1: Reference and deformed configurations of a body.

A nonrotating frame of reference is chosen, explicitly or implicitly, to describe
the deformation. A frame of reference is a coordinate system with respect to
which a configuration is described (or measured). We shall use the same coordi-
nate system to describe reference and current configurations. The components
Xi and xi of vectors X = Xi Êi and x = xi êi are along the coordinates used,
with the origins of the basis vectors Êi and êi being the same.

The mathematical description of the deformation of a continuous body fol-
lows one of two approaches: (1) the material description or (2) the spatial de-
scription. The material description is also known as the Lagrangian description,
and the spatial description is known as the Eulerian description. These descrip-
tions are discussed next.

3.2.2 Material Description

In the material description, the motion of the body is referred to a reference
configuration κR, which is often chosen to be the initial configuration2, κR = κ0,
although any other known configuration can serve as a reference configuration.
Thus, in the Lagrangian description, the current coordinates x ∈ κ are expressed
in terms of the reference coordinates X ∈ κ0:

2Typically, the initial configuration is one without any stimuli and hence undeformed.
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x = χ(X, t), X = χ(X, 0), (3.2.1)

and the variation of a typical variable φ over the body is described with respect
to the material coordinates X and time t:

φ = φ(x(X), t) = φ(X, t). (3.2.2)

For a fixed value of X ∈ κ0, φ(X, t) gives the value of φ at time t associated with
the fixed material particle X whose position in the reference configuration is X,
as shown in Fig. 3.2.2. Thus, a change in time t implies that the same material
particle X, occupying position X in κ0, has a different value φ. Figure 3.2.3
shows the deformation of a fixed material volume with time. Thus the attention
is focused on the fixed material of the continuum.

    
Reference 
configuration

Deformed 
configuration

Particle X,
occupying 
position x at 
time

Deformed 
configuration

Particle X, 
occupying 
position x at
time 

x ,X3 3

0Rκ κ 1κ
x X,( 0)

2 2t t x X

1 1t t x X

x ,X2 2

x ,X1 1

2κ
O

E eˆ ˆ,1 1

E e2 2
ˆ ˆ,

E e3 3
ˆ ˆ,

Fig. 3.2.2: Reference and deformed configurations in the material description.
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1 1X , x

2 2X , x

3 3X , x
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2X

3X
1x

2x
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2x

3x

1x

Undeformed
configuration
(t = 0)

Deformed
configuration
at time, t1
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configuration
at time, t2

(0)x X

1( ),tx X

2( ),tx X

Material path line

Fig. 3.2.3: Deformation of fixed material volume with time.
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3.2.3 Spatial Description

In the spatial description, the motion is referred to the current configuration κ
occupied by the body B, and φ is described with respect to the current position
x ∈ κ in space, currently occupied by material particle X:

φ = φ(x, t), X = X(x, t) = χ−1(x, t). (3.2.3)

The coordinates x are termed the spatial coordinates. For a fixed value of x ∈ κ,
φ(x, t) gives the value of φ associated with a fixed point x in space, which will
be the value of φ associated with different material points at different times,
because different material points occupy position x ∈ κ at different times, as
shown in Fig. 3.2.4. Thus, a change in time t implies that a different value
φ is observed at the same spatial location x ∈ κ, now probably occupied by a
different material particle X. Hence, attention is focused on a spatial position
x ∈ κ. The notation X = X(x, t) is only symbolic because in all practical
cases one is not interested (or does not know) where the material particle X
comes from before it occupies the current position x and where it goes when it
leaves the position. That is, material particles are of no interest in the spatial
description.

When φ is known in the material description, φ = φ(X, t), its total time
derivative, D/Dt, is simply the partial derivative with respect to time because
the material coordinates X do not change with time:

D

Dt
[φ(X, t)] ≡ ∂

∂t
[φ(X, t)]

∣∣∣∣∣
X fixed

=
∂φ

∂t
. (3.2.4)

( ),tx X

Particle X occupying 
position x at time t
in the spatial domain
of interest

Particle X after leaving
the domain of interest

Particle X before 
entering the 
domain of interest

1 1x ,X

2 2x ,X

3 3x ,X

Fig. 3.2.4: Material points within and outside the spatial domain of interest in the spatial
description.
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However, when φ is known in the spatial description, φ = φ(x, t), its time
derivative for a given particle, known as the material derivative,3 is

D

Dt
[φ(x, t)] =

∂

∂t
[φ(x, t)] +

Dxi
Dt

∂

∂xi
[φ(x, t)]

=
∂φ

∂t
+ vi

∂φ

∂xi
=

∂φ

∂t
+ v ·∇φ, (3.2.5)

where v is the velocity v = Dx/Dt = ẋ. Thus, if the velocity of a particle in
the spatial description is v(x, t), then the acceleration of a particle is

a =
Dv

Dt
=

∂v

∂t
+ v ·∇v

(
ai =

∂vi
∂t

+ vj
∂vi
∂xj

)
. (3.2.6)

Example 3.2.1 illustrates the determination of the inverse of a given mapping
and computation of the material time derivative of a given function.

Example 3.2.1

Suppose that the motion of a continuous medium B is described by the mapping χ : κ0 → κ,

χ(X, t) = x = (X1 +AtX2)ê1 + (X2 −AtX1)ê2 +X3 ê3,

and that the temperature T in the continuum in the spatial description is given by

T (x, t) = c1(x1 + c2 tx2) = x1 + tx2,

where, in the interest of brevity, constants c1 and c2 are omitted; in SI units, c1 = 1 K/m and
c2 = 1 /s. Determine (a) the inverse of the mapping χ, (b) the velocity components, and (c)
the total time derivatives of T in the two descriptions.

Solution: A known deformation mapping χ(X, t) relates the material coordinates (X1, X2, X3)
to the spatial coordinates (x1, x2, x3) of a particle X. In the present case, we have

x1 = X1 +AtX2, x2 = X2 −AtX1, x3 = X3 or

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎡
⎣ 1 At 0
−At 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

X1

X2

X3

⎫⎬
⎭ . (1)

Clearly, the relationships between xi and Xi are linear (that is, the mapping is linear). There-
fore, polygons are mapped into polygons. In particular, a unit square is mapped into a square
that is rotated in a clockwise direction, as shown in Fig. 3.2.5. This can be verified by checking
where the four corner points have moved in the “deformed” body:

(X1, X2, X3) (x1, x2, x3)
(0, 0, 0) → (0, 0, 0)

(1, 0, 0) → (1,−At, 0)

(0, 1, 0) → (At, 1, 0)

(1, 1, 0) → (1 +At, 1−At, 0)

Note that, in general, the deformed square is not a unit square as the side now has a length
of 1/ cosα, where α = tan−1(At). The reference configuration and deformed configurations at
four different times, t = 1, 2, 3, and 4, for a value of A = 0.25, are shown in Fig. 3.2.6.

(a) The inverse mapping can be determined, when possible, by expressing (x1, x2, x3) in terms
of (X1, X2, X3). In the present case, it is possible to invert the relations in Eq. (1) and obtain⎧⎨

⎩
X1

X2

X3

⎫⎬
⎭ =

1

(1 +A2t2)

⎡
⎣ 1 −At 0
At 1 0
0 0 1 +A2t2

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ . (2)

3As opposed to d/dt, here we use Stokes’s notation D/Dt for material derivative.
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Fig. 3.2.5: A sketch of the mapping χ as applied to a unit square.
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Fig. 3.2.6: Deformed configurations of the unit square at four different times (A = 0.25).

Therefore, we can write the inverse mapping as χ−1 : κ → κ0 as

χ−1(x, t) =

(
x1 −Atx2

1 +A2t2

)
Ê1 +

(
x2 +Atx1

1 +A2t2

)
Ê2 + x3 Ê3. (3)

(b) The velocity vector is given by v = v1Ê1 + v2Ê2, with

v1 =
Dx1

Dt
= AX2, v2 =

Dx2

Dt
= −AX1. (4)

(c) The time rate of change of temperature of a material particle in B is simply

D

Dt
[T (X, t)] =

∂

∂t
[T (X, t)]

∣∣∣∣∣
X fixed

= −2AtX1 + (1 +A)X2. (5)

On the other hand, the time rate of change of temperature at point x, which is now occupied
by particle X, is

D

Dt
[T (x, t)] =

∂T

∂t
+ vi

∂T

∂xi
= x2 + v1 · 1 + v2 · t

= −2AtX1 + (1 +A)X2. (6)
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In the study of solid bodies, the Eulerian description is less useful because the
configuration κ is unknown. On the other hand, it is the preferred description
for the study of motion of fluids because the configuration is known and remains
unchanged, and we wish to determine the changes in the fluid velocities, pressure,
density, and so on. Thus, in the Eulerian description, attention is focused on a
given region of space instead of a given body of matter.

3.2.4 Displacement Field

The phrase “deformation of a continuum” refers to relative displacements and
changes in the geometry experienced by the continuum B under the influence of
a force system. The displacement of the particle X is defined, as shown in Fig.
3.2.7, by

u = x−X. (3.2.7)

In the Lagrangian description, the displacement vector u is expressed in terms
of the material coordinates X:

u(X, t) = x(X, t)−X. (3.2.8)

X
x

u = x − X

O

3 3x , X
2 2x , X

1 1x , X

0κ

κ

Reference 
configuration,

Deformed
configuration,

e Êˆ ,1 1

e Êˆ ,3 3 e Êˆ ,2 2

Displacement
vector,

κ

0κ

Fig. 3.2.7: Position vectors in the initial and current configurations and the displacement u
of a particle X.

If the displacement of every particle in the body B is known, we can construct
the current configuration κ from the reference configuration κ0, χ(X, t) = x =
X+ u(X, t). On the other hand, in the Eulerian description the displacements
are expressed in terms of the spatial coordinates (or current position) x:

u(x, t) = x− χ−1(x, t) = x−X(x, t). (3.2.9)

To see the difference between the two descriptions further, consider the one-
dimensional mapping χ(X, t) = x = X(1 + 0.5t) defining the motion of a rod
of initial length two units. The inverse mapping is χ−1(x, t) = X = x/(1 +
0.5t). The rod experiences a temperature distribution T given by the material
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description T = 2t2X or by the spatial description T = 2t2x/(1+0.5t), as shown
in Fig. 3.2.8 [see Bonet and Wood (2008)].

0 1 2 3 5 64
X, x

t

0 • • •

1
(X = 1, T = 2) (X = 2, T = 4)

2
(X = 1, T = 8) (X = 2, T = 16)

3
(X = 1, T = 18) (X = 2, T = 36)

4
(X = 1, T = 32) (X = 2, T = 64)

Same material particle 
at different x positions

( ) (1 0 5 )X,t x X . t

( 0)X,

( 4)X,

( 3)X,

( 2)X,

Fig. 3.2.8: Material and spatial descriptions of motion.

From Fig. 3.2.8, we see that the particle’s material coordinate X remains
associated with the particle while its spatial position x changes. The temper-
ature at a given time can be found in one of the two ways: for example, at
time t = 3 the temperature of the particle labeled 2 with material coordinate
X = 2 is T = 2 × 2(3)2 = 36; alternatively, the temperature of the same
particle, which at t = 3 is at a spatial position x = 2(1 + 0.5 × 3) = 5, is
T = 2 × 5(3)2/(1 + 0.5 × 3) = 36. The displacement of a material point X
occupying position X in κ0 is

u(X, t) = x−X = X(1 + 0.5t)−X = 0.5Xt.

A rigid body is one in which the distance between any two material particles
remains the same whereas a deformable body is one in which the material particles
can move relative to each other under the action of external stimuli. A rigid-
body motion is one in which all material particles of the body undergo the same
displacement. Then the deformation of a continuum can be determined only by
considering the change of distance between any two arbitrary but infinitesimally
close points of the continuum.

3.3 Analysis of Deformation

3.3.1 Deformation Gradient

One of the key quantities in deformation analysis is the deformation gradient
of κ relative to the reference configuration κ0, denoted Fκ, which provides the
relationship between a material line dX before deformation and the line dx,
consisting of the same material as dX after deformation. It is defined as follows
(in the interest of brevity, the subscript κ on F is dropped):

dx = F · dX = dX · FT, (3.3.1)

F =

(
∂χ

∂X

)T

=

(
∂x

∂X

)T

≡ x
←−∇0 = (∇0x)

T . (3.3.2)
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Here
←−∇ denotes the backward gradient operator (see the note at the end of

Section 2.4.5) and ∇ is the forward gradient operator with respect to x. The
subscript 0 on the del operator denotes that the differentiation is with respect
to X (the material coordinates). Many authors [see, e.g., Gurtin (1981); Bonet
and Wood (2008); and Gurtin, Fried, and Anand (2010)] use ∇ in defining
the deformation gradient, but a close look reveals that they actually mean the
backward gradient operator discussed in Section 2.4.5.

By definition, F is a function of both position X and time t; F is some-
times referred to as a two-point tensor4 (or a linear transformation of points
in the small neighborhood of X from κ0 into the neighborhood of x in κ) be-
cause it describes the local deformation of a material line element at point X
in the reference configuration κ0 to the point x in the current configuration κ;
F involves, in general, both stretch and rotation. For example, in the case of
pure stretch followed by rotation, the deformation of dX into dX′ involves only
pure stretch and the deformation from dX′ into dx involves only pure rotation
(although, in reality, stretch and rotation occur simultaneously). Thus, we can
write dX′ = U · dX and dx = R · dX′, where U is a stretch tensor and R is a
proper orthogonal tensor, RT · R = I and |R| = 1. The tensors U and R can
be interpreted as linear transformations, U : dX → dX′ and R : dX′ → dx.
In other words, the linear transformation F : dX → dx is replaced by the
composite transformation F = R · U. The requirement that R be a proper
orthogonal transformation follows from the fact that a pure rotation should not
change the length of the line element dX′:

dx · dx = (R · dX′) · (R · dX′) = dX′ ·RT ·R · dX′ = dX′ · dX′.

The multiplicative decomposition of F into pure stretch U and pure rotation R
is discussed further in Section 3.9 on polar decomposition.

In index notation, Eq. (3.3.2) can be written as

F = FiJ êi ÊJ , FiJ =
∂xi
∂XJ

. (3.3.3)

More explicitly, we have

[F ] =

⎡
⎢⎢⎣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

⎤
⎥⎥⎦ , (3.3.4)

where the lowercase indices refer to the current (spatial) Cartesian coordinates,
whereas uppercase indices refer to the reference (material) Cartesian coordi-
nates. The determinant of [F ] is called the Jacobian of the motion, and it is
denoted by J = |F |. The equation F ·dX = 0 for dX �= 0 implies that a material
line in the reference configuration is reduced to zero by the deformation. Since
this is physically not realistic, we conclude that F · dX �= 0 for dX �= 0. That

4Strictly speaking, F is not a tensor because its components do not transform like those of a
tensor.
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is, F is a nonsingular tensor, J �= 0. Hence, F has an inverse F−1, and we can
write

dX = F−1 · dx = dx · F−T, where F−T =
∂X

∂x
≡ ∇X, (3.3.5)

and in index notation

F−1 = F−1
Ji ÊJ êi, F−1

Ji =
∂XJ

∂xi
. (3.3.6)

In explicit form the matrix associated with F−1 is

[F ]−1 =

⎡
⎢⎢⎣

∂X1
∂x1

∂X1
∂x2

∂X1
∂x3

∂X2
∂x1

∂X2
∂x2

∂X2
∂x3

∂X3
∂x1

∂X3
∂x2

∂X3
∂x3

⎤
⎥⎥⎦ . (3.3.7)

Note that [F ] stretches or compresses a material vector {X} into the current
vector {x}, while χ gives the current position x ∈ κ of the material point X
that occupied position X ∈ κ0. The deformation gradient and its inverse can be
expressed in terms of the displacement vector as

F = (∇0x)
T = (∇0u+ I)T or F−1 = (∇X)T = (I−∇u)T . (3.3.8)

Example 3.3.1 illustrates computation of the components of the deformation
gradient and the displacement vector from known mapping of motion.

Example 3.3.1

Consider the uniform deformation of a square block of side 2 units and initially centered at
X = (0, 0). If the deformation is defined by the mapping

χ(X) =
(
3.5 +X1 + 0.5X2

)
ê1 +

(
4 +X2

)
ê2 +X3 ê3,

(a) sketch the deformation, (b) determine the deformation gradient F, and (c) compute the
displacements.

Solution: (a) From the given mapping, we have x1 = 3.5 + X1 + 0.5X2, x2 = 4 + X2, and
x3 = X3; in matrix form, we have

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎡
⎣ 1.0 0.5 0.0

0.0 1.0 0.0

0.0 0.0 1.0

⎤
⎦
⎧⎨
⎩

X1

X2

X3

⎫⎬
⎭+

⎧⎨
⎩

3.5
4.0
0.0

⎫⎬
⎭ . (1)

These are linear relations and therefore the square is mapped, in general, into a parallelogram.
To see where the corner points of the square are mapped to, apply the above equations to the
corner points (no change in X3):

(X1, X2) (x1, x2)
(−1,−1) → (2, 3)

( 1,−1) → (4, 3)

( 1, 1) → (5, 5)

(−1, 1) → (3, 5)

Thus, under the mapping the square moved and became a parallelogram, centered at (3.5, 4),
as shown in Fig. 3.3.1. The base and height of the parallelogram remained 2 units each.



92 KINEMATICS OF CONTINUA
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Fig. 3.3.1: Uniform deformation of a square block of material.

The linear relations in Eq. (1) can be inverted to obtain X1, X2, and X3 in terms of x1,
x2, and x3: ⎧⎨

⎩
X1

X2

X3

⎫⎬
⎭ =

⎡
⎣ 1.0 −0.5 0.0

0.0 1.0 0.0

0.0 0.0 1.0

⎤
⎦
⎛
⎝
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭−

⎧⎨
⎩

3.5
4.0
0.0

⎫⎬
⎭
⎞
⎠ , (2)

or X1 = −1.5 + x1 − 0.5x2, X2 = −4 + x2, and X3 = x3. Thus, the inverse mapping is

χ−1(x) =
(−1.5 + x1 − 0.5x2

)
Ê1 +

(−4 + x2

)
Ê2 + x3 Ê3, (3)

which recovers the square shape from the parallelogram shape shown in Fig. 3.3.1. This type
of deformation is known as simple shear, in which there exists a set of line elements, in the
present case, lines parallel to the X1-axis, whose orientation is such that they are unchanged
in length and orientation by the deformation.

(b) The components of the deformation gradient and its inverse in matrix form are

[F ] =

⎡
⎢⎢⎣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

⎤
⎥⎥⎦ =

⎡
⎣ 1.0 0.5 0.0

0.0 1.0 0.0

0.0 0.0 1.0

⎤
⎦ , [F ]−1 =

⎡
⎢⎢⎣

∂X1
∂x1

∂X1
∂x2

∂X1
∂x3

∂X2
∂x1

∂X2
∂x2

∂X2
∂x3

∂X3
∂x1

∂X3
∂x2

∂X3
∂x3

⎤
⎥⎥⎦ =

⎡
⎣ 1.0 −0.5 0.0

0.0 1.0 0.0

0.0 0.0 1.0

⎤
⎦ .

The unit vectors Ê1 and Ê2 in the initial configuration deform to the lengths

⎡
⎣ 1.0 0.5 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎧⎨
⎩

1
0
0

⎫⎬
⎭ =

⎧⎨
⎩

1
0
0

⎫⎬
⎭ ,

⎡
⎣ 1.0 0.5 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎧⎨
⎩

0
1
0

⎫⎬
⎭ =

⎧⎨
⎩

0.5
1.0
0.0

⎫⎬
⎭ .

The unit vector Â = ê2 in the current configuration is deformed from the vector

⎡
⎣ 1.0 −0.5 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎧⎨
⎩

0
1
0

⎫⎬
⎭ =

⎧⎨
⎩

−0.5
1.0
0.0

⎫⎬
⎭ ⇒ F−1(Â) = −0.5Ê1 + Ê2.

(c) The displacement vector is given by

u = x−X =
(
3.5 + 0.5X2

)
e1 + 4 e2,

which is independent of X1. The displacement components are u1 = 3.5 + 0.5X2, u2 = 4, and
u3 = 0. Thus, a X2 = constant line moved 4 units up and 3.5 + 0.5X2 units to the right.
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3.3.2 Isochoric, Homogeneous, and Inhomogeneous
Deformations

3.3.2.1 Isochoric deformation

If the Jacobian is unity J = 1, then the deformation is volume-preserving or the
current and reference configurations coincide. If volume does not change locally
during the deformation, the deformation is said to be isochoric at X. If J = 1
everywhere in the body B, then the deformation of the body is isochoric.

3.3.2.2 Homogeneous deformation

In general, the deformation gradient F is a function of X. If F = I everywhere
in the body, then the body is not rotated but might be rigidly translated. If F
has the same value at every material point in a body (that is, F is independent
of X), then the mapping x = x(X, t) is said to be a homogeneous motion of the
body and the deformation is said to be homogeneous. In general, at any given
time t > 0, a mapping x = x(X, t) is said to be a homogeneous motion if and
only if it can be expressed as (so that F is a constant tensor)

x = A ·X+ c, (3.3.9)

where the second-order tensor A and vector c are functions of time t only; c rep-
resents a rigid-body translation. Note that for a homogeneous motion we have
F=A. Clearly, the motion described by the mapping of Example 3.3.1 is homo-
geneous and isochoric. Next, we consider several simple forms of homogeneous
deformations.

Pure dilatation. Consider a cube of material with edges of length L and � in the
reference and current configurations, respectively. If the deformation mapping
has the form (see Fig. 3.3.2)

χ(X) = λX1 ê1 + λX2 ê2 + λX3 ê3, λ =
L

�
, (3.3.10)

then F has the matrix representation

[F ] =

⎡
⎣λ 0 0
0 λ 0
0 0 λ

⎤
⎦ . (3.3.11)

L

1X

3X 3 3x , X

2X

L
L

(a) (b)

2 2x , X

1 1x , X

(X)χ

Fig. 3.3.2: A deformation mapping of pure dilatation.
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This deformation is known as pure dilatation or pure stretch, and it is isochoric
if and only if λ = 1 (λ is called the principal stretch), as shown in Fig. 3.3.2.

Simple extension. An example of homogeneous extension in the X1-direction,
as shown in Fig. 3.3.3, is provided by the deformation mapping

χ(X) = (1 + α)X1 ê1 +X2 ê2 +X3 ê3. (3.3.12)

The inverse mapping is [because x1 = (1 + α)X1, x2 = X2, and x3 = X3]

χ−1(x) =
1

(1 + α)
x1 ê1 + x2 ê2 + x3 ê3.

The matrices of the deformation gradient and its inverse are

[F ] =

⎡
⎣ 1 + α 0 0

0 1 0
0 0 1

⎤
⎦ , [F ]−1 =

1

(1 + α)

⎡
⎣ 1 0 0
0 1 + α 0
0 0 1 + α

⎤
⎦ . (3.3.13)

For example, a line X2 = a+bX1 in the initial configuration κ0 transforms under
the mapping to the line

x2 = X2 = a+ bX1 = a+
b

1 + α
x1

in the current configuration κ.

X

1X

2X
2 2,x X

h h

h (1 )h α+

hα

( )Xχ

2 1X a bX
h

2 11
bx a x

α
• •

(a) (b)

The deformation mapping is linear in X1 and X2

1 1,x X

(X)χ

Fig. 3.3.3: A deformation mapping of simple extension. Typical material lines inside the
body are also shown.

Simple shear. This deformation, also known as uniform shear deformation, as
discussed in Example 3.3.1, is defined by a linear deformation mapping of the
form (see Fig. 3.3.4)

χ(X) = (X1 + γX2)ê1 +X2 ê2 +X3 ê3, (3.3.14)

where material planes X2 = constant slide in the X1-direction in linear pro-
portion to X2, the proportionality constant being γ, which is a measure of the
amount of shear. The planes x2 = constant are the shear planes and the direction
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along x1 is the shear direction. The matrix representation of the deformation
gradient in this case is

[F ] =

⎡
⎣ 1 γ 0
0 1 0
0 0 1

⎤
⎦ . (3.3.15)

X

( )Xχ

1X

2X
2 2,x X

h

h

γh
h

h

x
• •

(a) (b)

γh

1 1,x X

•X

u

The deformation mapping is linear in X1 and X2

Fig. 3.3.4: A deformation mapping of simple shear. Typical material lines inside the body
are also shown.

3.3.2.3 Nonhomogeneous deformation

A nonhomogeneous deformation is one in which the deformation gradient F
is a function of X. An example of nonhomogeneous deformation mapping is
provided, as shown in Fig. 3.3.5, by

χ(X) = X1(1 + γ1X2)ê1 +X2(1 + γ2X1)ê2 +X3 ê3. (3.3.16)

The matrix representation of the deformation gradient is

[F ] =

⎡
⎣ 1 + γ1X2 γ1X1 0

γ2X2 1 + γ2X1 0
0 0 1

⎤
⎦ . (3.3.17)

X

( )Xχ

1X

2X

h

h

2
1h γ

2
2h γ

1 1,x X

( )Xχ

h

h

•
•

(a) (b)

The deformation mapping is :
1 1 2 2 2 1 31 2 31 1e e e( ) ( ) ˆ ( ) ˆ ˆX X X X Xχ γ γX

2 2,x X

Fig. 3.3.5: A deformation mapping of combined shearing and extension. Typical material
lines inside the body are also shown.
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It is rather difficult to invert the mapping even for this simple nonhomogeneous
deformation.

Figure 3.3.6 shows the deformed configuration for the values of h = 1 and
γ2 = 3γ1 = 3γ = 3. Note that the straight line AC (that is, line X2 = X1) in
the undeformed configuration becomes a curve in the deformed configuration,
although the edges of the deformed configuration remain as straight lines.

• •

• •

•

0 1 2
0

1

2

3

4

1 1,x X
2 11 0 3 3. ,h

2 2,x X

Mapping of the 
diagonal AC from
(a curve) 

A B

CD

2 1Line X X

1 1

2 3 3

0

Fig. 3.3.6: The deformed configuration of a unit square under the deformation mapping in
Eq. (3.3.16) for γ1 = 1 and γ2 = 3.

3.3.3 Change of Volume and Surface

Here we study how deformation mapping affects surface areas and volumes of a
continuum. The motivation for this study comes from the need to write global
equilibrium statements that involve integrals over areas and volumes.

3.3.3.1 Volume change

We can define volume and surface elements in the reference and deformed con-
figurations. Consider three noncoplanar line elements dX(1), dX(2), and dX(3)

forming the edges of a parallelepiped at point P with position vector X in the
reference body B, as shown in Fig. 3.3.7, so that

dx(i) = F · dX(i), i = 1, 2, 3. (3.3.18)

Note that the vectors dx(i) are not necessarily parallel to or have the same length
as the vectors dX(i) due to shearing and stretching of the parallelepiped. We
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assume that the triad (dX(1), dX(2), dX(3)) is positively oriented in the sense
that the triple scalar product dX(1) · dX(2) × dX(3) > 0. We denote the volume
of the parallelepiped as

dV = dX(1) · dX(2) × dX(3) =
(
N̂1 · N̂2 × N̂3

)
dX(1)dX(2)dX(3)

= dX(1)dX(2)dX(3), (3.3.19)

where N̂i denotes the unit vector along dX(i). The corresponding volume in the
deformed configuration is given by

dv = dx(1) · dx(2) × dx(3) =
(
F · N̂1

) · (F · N̂2

)× (
F · N̂3

)
dX(1)dX(2)dX(3),

or

dv = |F | dX(1)dX(2)dX(3) = J dV. (3.3.20)

We assume that the volume elements are positive so that the relative orien-
tation of the line elements is preserved under the deformation, that is, J > 0.
Thus, J has the physical meaning of being the local ratio of current to reference
volume of a material volume element.

•

1x

2x

3x x X( )χ=

P

x F X
(1)(1)d d= ⋅

x F X
(3 )(3 )d d= ⋅

x F X
( 2 )(2 )d d= ⋅

•

1X

2X

3X X

P

X N(1) (1)
1

ˆd dX=

X N(2) (2)
2

ˆd dX=

X N(3) (3)
3

ˆd dX=

(a) (b)

dV dv

dv J dV

(X)χ

1Ê

E3
ˆ E2

ˆ

e1ˆ

e2ˆe3ˆ

Fig. 3.3.7: Transformation of a volume element under a deformation mapping.

3.3.3.2 Area change

Next, consider an infinitesimal vector element of material surface dA in a neigh-
borhood of the point X in the reference configuration, as shown in Fig. 3.3.8.
The surface vector can be expressed as dA = dA N̂, where N̂ is the positive unit
normal to the surface in the reference configuration.

Suppose that dA from the reference configuration becomes da in the current
configuration, where da = da n̂, n̂ being the outward unit normal to the surface
in the current configuration. The outward unit normals in the reference and
current configurations can be expressed as

N̂ =
N̂1 × N̂2

|N̂1 × N̂2|
, n̂ =

F · n̂1 × F · n̂2

|F · n̂1 × F · n̂2| . (3.3.21)



98 KINEMATICS OF CONTINUA

•

1X

2X
3X
X

P

X N(1) (1)
1

ˆd dX=

X N(2) (2)
2

ˆd dX=

dA

N̂

1x

2x
3x

x F X
(1)(1)d d= ⋅

x F X
(2)(2)d d= ⋅

x X( )χ=

n̂

( )Xχ

(a) (b)

• da

Fig. 3.3.8: Transformation of a surface element under a deformation mapping.

The areas of the parallelograms in the reference and current configurations are

dA ≡ |N̂1 × N̂2| dX1 dX2, da ≡ |F · n̂1 × F · n̂2| dx1 dx2. (3.3.22)

The area vectors are

dA = N̂ dA =
N̂1 × N̂2

|N̂1 × N̂2|
|N̂1 × N̂2| dX1 dX2

=
(
N̂1 × N̂2

)
dX1 dX2 =

(
n̂1 × n̂2

)
dX1 dX2, (3.3.23)

da = n̂ da =
F · n̂1 × F · n̂2

|F · n̂1 × F · n̂2| |F · n̂1 × F · n̂2| dx1 dx2
=

(
F · n̂1 × F · n̂2

)
dx1 dx2. (3.3.24)

Then it can be shown that (see the result of Problem 3.16)

da = J F−T · dA or n̂ da = J F−T · N̂ dA. (3.3.25)

3.4 Strain Measures

3.4.1 Cauchy–Green Deformation Tensors

The geometric changes that a continuous medium experiences can be measured
in a number of ways. Here, we discuss a general measure of deformation of a
continuous medium, independent of both translation and rotation.

Consider two material particles P and Q in the neighborhood of each other,
separated by dX in the reference configuration, as shown in Fig. 3.4.1. In the
current (deformed) configuration the material points P and Q occupy positions
P̄ and Q̄, and they are separated by dx. We wish to determine the change in
the distance dX between the material points P and Q as the body deforms and
the material points move to the new locations P̄ and Q̄.
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The distances between points P and Q and points P̄ and Q̄ are given, re-
spectively, by

(dS)2 = dX · dX, (3.4.1)

(ds)2 = dx · dx = dX · (FT · F) · dX ≡ dX ·C · dX, (3.4.2)

where C is called the right Cauchy–Green deformation tensor

C = FT · F. (3.4.3)

By definition, C is a symmetric second-order tensor. The left Cauchy–Green
deformation tensor or Finger tensor is defined by

B = F · FT, (3.4.4)

which is also a symmetric tensor.
Recall from Eq. (2.4.25) that the directional (or tangential) derivative of a

field φ(X) is given by

dφ

dS
= N̂ ·∇0φ, N̂ =

dX

|dX| =
dX

dS
, (3.4.5)

where N̂ is the unit vector in the direction of dX at point X. Therefore, a param-
eterized curve in the deformed configuration is determined by the deformation
mapping x(S) = χ(X(S)), and we have (F = FiJ êi ÊJ and N̂ = NKÊK)

dx

dS
=

dX

dS
·∇0χ(X) = F · dX

dS
= F · N̂ = FiJNJ êi. (3.4.6)

Note that dx/dS = FiJNJ êi is a vector defined in the current (deformed) con-
figuration because êi is a unit vector in the current configuration.

XQ

Q

P Q
_

XP

xP P
_

xQ

uQ

uP

0κ

dx

dX κ

(time t = 0)

(time t)

X( )χ

1 1x , X

2 2x , X

3 3x , X

Fig. 3.4.1: Points P and Q separated by a distance dX in the reference configuration κ0 take
up positions P̄ and Q̄, respectively, in the deformed configuration κ, where they are separated
by distance dx.
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The stretch of a curve at a point in the deformed configuration is defined as
the ratio of the deformed length of the curve to its original length, λ = ds/dS.
Let us consider an infinitesimal length dS of the curve in the neighborhood of
the material point X. Then the stretch λ of the curve is simply the length of the
tangent vector F · N̂ in the deformed configuration

λ2(S) = (F · N̂) · (F · N̂) (3.4.7)

= N̂ · (FT · F) · N̂ = N̂ ·C · N̂. (3.4.8)

Equation (3.4.8) holds for any arbitrary curve with dX = dS N̂, and thus
allows us to compute the stretch in any direction at a given point. In particular,
the square of the stretch in the direction of the unit base vector ÊI is given by

λ2(ÊI) = ÊI ·C · ÊI = CII (no sum on I). (3.4.9)

That is, the diagonal terms of the right Cauchy–Green deformation tensor C
represent the squares of the stretches in the direction of the coordinate axes
(X1, X2, X3). The off-diagonal elements of C give a measure of the angle of
shearing between two base vectors ÊI and ÊJ , for I �= J , under the deformation
mapping χ. Further, the squares of the principal stretches at a point are equal
to the eigenvalues of C. We shall return to this aspect in Section 3.9 on the polar
decomposition theorem.

3.4.2 Green–Lagrange Strain Tensor

The change in the squared lengths that occurs as a body deforms from the
reference to the current configuration can be expressed relative to the original
length as

(ds)2 − (dS)2 = 2 dX ·E · dX, (3.4.10)

where E is called the Green–St. Venant (Lagrangian) strain tensor, the Green–
Lagrange strain tensor, or simply the Green strain tensor.5 The Green–Lagrange
strain tensor can be expressed, in view of Eqs. (3.4.1)–(3.4.3), as

E = 1
2

(
FT · F− I

)
= 1

2 (C− I)

= 1
2

[
(I+∇0u) · (I+∇0u)

T − I
]

= 1
2

[∇0u+ (∇0u)
T + (∇0u) · (∇0u)

T
]
, (3.4.11)

where Eq. (3.3.8) is used in writing F in terms of ∇0u. By definition, the
Green–Lagrange strain tensor is a symmetric second-order tensor. Also, the
change in the squared lengths is zero if and only if E = 0.

The vector form of the Green–Lagrange strain tensor in Eq. (3.4.11) allows us
to express it in terms of its components in any coordinate system. In particular,
in the rectangular Cartesian coordinate system (X1, X2, X3), the components of
E are given by

5Readers should not confuse the symbol E used for the Green–Lagrange strain tensor and Êi

used for the basis vectors in the reference configuration. One should always pay attention to
different typefaces and subscripts used.
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EIJ = 1
2

(
∂uI
∂XJ

+
∂uJ
∂XI

+
∂uK
∂XI

∂uK
∂XJ

)
, (3.4.12)

where summation on repeated index (K) is implied. Clearly, the last term
in Eqs. (3.4.11) and (3.4.12) is nonlinear in the displacement gradients. In
expanded notation, the Green–Lagrange strain tensor components are given by

E11 =
∂u1
∂X1

+ 1
2

[(
∂u1
∂X1

)2

+

(
∂u2
∂X1

)2

+

(
∂u3
∂X1

)2]
,

E22 =
∂u2
∂X2

+ 1
2

[(
∂u1
∂X2

)2

+

(
∂u2
∂X2

)2

+

(
∂u3
∂X2

)2]
,

E33 =
∂u3
∂X3

+ 1
2

[(
∂u1
∂X3

)2

+

(
∂u2
∂X3

)2

+

(
∂u3
∂X3

)2]
, (3.4.13)

E12 =
1
2

(
∂u1
∂X2

+
∂u2
∂X1

+
∂u1
∂X1

∂u1
∂X2

+
∂u2
∂X1

∂u2
∂X2

+
∂u3
∂X1

∂u3
∂X2

)
,

E13 =
1
2

(
∂u1
∂X3

+
∂u3
∂X1

+
∂u1
∂X1

∂u1
∂X3

+
∂u2
∂X1

∂u2
∂X3

+
∂u3
∂X1

∂u3
∂X3

)
,

E23 =
1
2

(
∂u2
∂X3

+
∂u3
∂X2

+
∂u1
∂X2

∂u1
∂X3

+
∂u2
∂X2

∂u2
∂X3

+
∂u3
∂X2

∂u3
∂X3

)
.

The components E11, E22, and E33 are termed normal strains and E12, E23, and
E13 are called shear strains, as shown in Fig. 3.4.2.

1X

2X

3X

E1
ˆ

E2
ˆ

E3
ˆ

11E

X1−face

X3−face
X2−face

21E

31E
22E

32E

12E

33E

23E
13E

th thStrain in the direction on the faceIJE I J

Deformed body

Fig. 3.4.2: Green–Lagrange strain tensor components in rectangular Cartesian coordinates.

3.4.3 Physical Interpretation of Green–Lagrange Strain Tensor
Components

To see the physical meaning of the normal strain component E11, consider a line
element initially parallel to the X1-axis, that is, dX = dX1Ê1 in the reference
configuration of the body, as shown in Fig. 3.4.3. Then

(ds)2 − (dS)2 = 2EIJ dXI dXJ = 2E11 dX1 dX1 = 2E11 (dS)
2.
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P

X1

X2

1dS dX

1Ê

2Ê 1 1
ˆX=  Ed dX

Q

ds
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Q

• •

•

•

1 1)(u , X X

1 1 1u + , X dX X )(

1
1 1

1

udX dX
X

2
1

1

u dX
X

Fig. 3.4.3: Physical interpretation of normal strain component E11.

Solving for E11, we obtain

E11 =
1
2

(ds)2 − (dS)2

(dS)2
= 1

2

[( ds

dS

)2 − 1
]
,

where the initial and final lengths are given by (approximating the curve as a
straight line)

(dS)2 = (dX1)
2, (ds)2 =

(
dX1 +

∂u1
∂X1

dX1

)2

+

(
∂u2
∂X1

dX1

)2

. (3.4.14)

Thus, we have

E11 =
1
2

[
2
∂u1
∂X1

+

(
∂u1
∂X1

)2

+

(
∂u2
∂X1

)2
]
.

We can also write

E11 =
1
2

(ds)2 − (dS)2

(dS)2
= 1

2

[( ds

dS

)2 − 1
]
= 1

2

(
λ2 − 1

)
, (3.4.15)

where λ is the stretch of the line element dX:

λ =
ds

dS
=

√
1 + 2E11. (3.4.16)

The shear strain components EIJ , I �= J , can be interpreted as a measure
of the change in the angle between line elements that were perpendicular to
each other in the reference configuration. To see this, consider line elements
dX(1) = dX1Ê1 and dX(2) = dX2Ê2 in the reference configuration of the body,
which are perpendicular to each other, as shown in Fig. 3.4.4. The material line
elements dX(1) and dX(2) occupy positions dx(1) and dx(2), respectively, in the
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deformed body. Then the cosine of the angle between the line elements ŌQ̄ and
ŌP̄ in the deformed body is given by [see Eq. (3.3.1)]

cos θ12 = n̂1 · n̂2 =
dx(1) · dx(2)

|dx(1)| |dx(2)|

=
[dX(1) · FT] · [F · dX(2)]√

dX(1) ·C · dX(1)
√
dX(2) ·C · dX(2)

. (3.4.17)

In view of the relations

C = FT · F, N̂1 = Ê1, N̂2 = Ê2, (3.4.18)

we have

cos θ12 =
N̂1 ·C ·N2√

N̂1 ·C ·N1

√
N̂2 ·C ·N2

=
C12√

C11

√
C22

,

or

cos θ12 =
C12

λ1λ2
=

2E12√
(1 + 2E11)

√
(1 + 2E22)

. (3.4.19)

Thus, 2E12 is equal to the cosine of the angle between the line elements, θ12,
multiplied by the product of extension ratios λ1 and λ2. Clearly, the finite strain
E12 depends not only on the angle θ12 but also on the stretches of elements
involved. When the unit extensions and the angle changes are small compared
to unity, we find that 2E12 is the decrease from π/2:

π
2 − θ12 ≈ sin(π2 − θ12) = cos θ12 ≈ 2E12. (3.4.20)
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2Ê
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Fig. 3.4.4: Physical interpretation of shear strain component E12.

3.4.4 Cauchy and Euler Strain Tensors

Returning to the strain measures, the change in the squared lengths that occurs
as the body deforms from the initial to the current configuration can be expressed
relative to the current length. First, we express dS in terms of dx as

(dS)2 = dX · dX = dx · (F−T · F−1) · dx ≡ dx · B̃ · dx, (3.4.21)
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where B̃ is called the Cauchy strain tensor

B̃ = F−T · F−1, B̃−1 ≡ B = F · FT, (3.4.22)

and B is the left Cauchy–Green tensor or Finger tensor. We can write

(ds)2 − (dS)2 = 2 dx · e · dx, (3.4.23)

where e, called the Almansi–Hamel (Eulerian) strain tensor or simply the Euler
strain tensor, is defined as

e = 1
2

(
I− F−T · F−1

)
= 1

2

(
I− B̃

)
(3.4.24)

= 1
2

[
I− (I−∇u) · (I−∇u)T

]
= 1

2

[∇u+ (∇u)T − (∇u) · (∇u)T
]
. (3.4.25)

The rectangular Cartesian components of C, B̃, and e are given by

CIJ =
∂xk
∂XI

∂xk
∂XJ

, B̃ij =
∂XK

∂xi

∂XK

∂xj
, (3.4.26)

eij =
1
2

(
δij − ∂XK

∂xi

∂XK

∂xj

)
= 1

2

(
∂ui
∂xj

+
∂uj
∂xi

− ∂uk
∂xi

∂uk
∂xj

)
. (3.4.27)

Examples 3.4.1 and 3.4.2 illustrate the calculation of various measures of strain.

Example 3.4.1

For the deformation given in Example 3.3.1, determine the Cartesian components of the right
Cauchy–Green deformation tensor C, the Cauchy strain tensor B̃, and the Green–Lagrange
and Almansi strain tensors, E and e.

Solution: The components of the right Cauchy–Green deformation tensor and the Cauchy
strain tensor are

[C] = [F ]T[F ] =

⎡
⎣ 1.0 0.0 0.0
0.5 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎡
⎣ 1.0 0.5 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦ =

⎡
⎣ 1.0 0.50 0.0
0.5 1.25 0.0
0.0 0.00 1.0

⎤
⎦ ,

[B̃] = [F ]−T[F ]−1 =

⎡
⎣ 1.0 0.0 0.0
−0.5 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎡
⎣ 1.0 −0.5 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦ =

⎡
⎣ 1.0 −0.50 0.0
−0.5 1.25 0.0
0.0 0.00 1.0

⎤
⎦ .

The Green–Lagrange and Almansi strain tensor components in matrix form are given by

[E] = 1
2
([C]− [I]) = 1

2

⎡
⎣ 0.0 0.50 0.0
0.5 0.25 0.0
0.0 0.00 0.0

⎤
⎦ ; [e] = 1

2

(
[I]− [B̃]

)
= 1

2

⎡
⎣ 0.0 0.50 0.0
0.5 −0.25 0.0
0.0 0.00 0.0

⎤
⎦ .

Example 3.4.2

Consider the uniform deformation of a square block B of side length 2 units, initially centered
at X = (0, 0), as shown in Fig. 3.4.5. The deformation is defined by the mapping

χ(X) = 1
4
(18 + 4X1 + 6X2)ê1 +

1
4
(14 + 6X2)ê2 +X3ê3.
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(−1,−1) (1,−1)

(−1,1) (1,1)

X1 , x1

X2 , x2

κ0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

(2,2)

5.0

4.0

3.0

2.0

6.0

(7,5)

(4.5,3.5)

(4,2)

(5,5)

κ

(4.5,4.5)

°

°
(−1,2/3)

F E2
ˆ( )

1 ˆ( )F A
1Ê

E2
ˆ

1 1
ˆ ˆ( )F E e

2
ˆ ˆA e

Fig. 3.4.5: Undeformed (κ0) and deformed (κ) configurations of a rectangular block.

(a) Sketch the deformed configuration κ of the body B.
(b) Compute the components of the deformation gradient F and its inverse.

(c) Compute the components of the right Cauchy–Green deformation tensor C and Cauchy

strain tensor B̃.

(d) Compute Green’s and Almansi’s strain tensor components (EIJ and eij).

Solution:
(a) A sketch of the deformed configuration of the body is shown in Fig. 3.4.5.

(b) Note that the inverse transformation is given by (X3 = x3)

{
X1

X2

}
= 1

6

[
6 −6
0 4

]({
x1

x2

}
− 1

4

{
18
14

})
= − 1

3

{
3
7

}
+ 1

3

[
3 −3
0 2

]{
x1

x2

}
,

or
χ−1(x) =

(−1 + x1 − x2

)
Ê1 +

1
3

(−7 + 2x2

)
Ê2 + x3 Ê3.

The matrix form of the deformation gradient and its inverse are

[F ] =

[
∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

]
= 1

2

[
2 3
0 3

]
; [F ]−1 =

[
∂X1
∂x1

∂X1
∂x2

∂X2
∂x1

∂X2
∂x2

]
= 1

3

[
3 −3
0 2

]
.

(c) The right Cauchy–Green deformation tensor and Cauchy strain tensor are, respectively,

[C] = [F ]T[F ] = 1
2

[
2 3
3 9

]
, [B] = [F ][F ]T = 1

4

[
13 9
9 9

]
.

(d) The Green and Almansi strain tensor components in matrix form are, respectively,

[E] = 1
2

(
[F ]T[F ]− [I]

)
= 1

4

[
0 3
3 7

]
, [e] = 1

2

(
[I]− [F ]−T[F ]−1

)
= 1

18

[
0 9
9 −4

]
.
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3.4.5 Transformation of Strain Components

The tensors E and e can be expressed in any coordinate system much like any
second-order tensor. For example, in a rectangular Cartesian system, we have

E = EIJ ÊIÊJ , e = eij êiêj . (3.4.28)

Further, the components of E and e transform according to Eq. (2.5.21):

ĒIJ = �IK �JLEKL, ēij = �ik �j� ek�, (3.4.29)

where �IJ (�ij) denotes the direction cosines [see Eq. (2.2.71)].

Example 3.4.3

Derive the transformation equations between the strain components EIJ referred to
(X1, X2, X3) and ĒIJ in the new coordinate system (X̄1, X̄2, X̄3), which is obtained by ro-
tating the former about the X3-axis counterclockwise by the angle θ.

Solution: The two coordinate systems are related by [see Eq. (2.2.70)]

⎧⎨
⎩

X̄1

X̄2

X̄3

⎫⎬
⎭ =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦
⎧⎨
⎩

X1

X2

X3

⎫⎬
⎭ ≡ [L]

⎧⎨
⎩

X1

X2

X3

⎫⎬
⎭ . (3.4.30)

Transformation of strain tensor components follows those of a second-order tensor [see Eq.
(2.5.21), and note that [L]−1 = [L]T]

[Ē] = [L][E][L]T; [E] = [L]T[Ē][L]. (3.4.31)

Carrying out the indicated matrix multiplications and expressing the result in single-column
format, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E11

E22

E33

2E23

2E13

2E12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 − 1
2
sin 2θ

sin2 θ cos2 θ 0 0 0 1
2
sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin 2θ − sin 2θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ē11

Ē22

Ē33

2Ē23

2Ē13

2Ē12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (3.4.32)

The inverse relations are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ē11

Ē22

Ē33

2Ē23

2Ē13

2Ē12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 1
2
sin 2θ

sin2 θ cos2 θ 0 0 0 − 1
2
sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin 2θ sin 2θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E11

E22

E33

2E23

2E13

2E12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (3.4.33)

Example 3.4.4

Consider a rectangular block (B) ABCD of dimensions a× b×h, where h is the thickness (very
small compared to a and b). Suppose that block B is deformed into the diamond shape ĀB̄C̄D̄
shown in Fig. 3.4.6(a), without a change in its thickness. Determine the deformation mapping,
displacements, and strains in the body. Assume that the mapping is a linear polynomial
in X1 and X2. A complete linear polynomial in X1 and X2 is of the form p(X1, X2) =
a0 + a1X1 + a2X2 + a3X1X2.
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κ
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A B

b

1e
1e

a
2e

2eD
D

C

B

C

1x
2x

θκ
κ0

2 2x , X

1 1x ,X

Fig. 3.4.6: Undeformed (κ0) and deformed (κ) configurations of a rectangular block. Typical
material lines inside the body are also shown.

Solution: Let (X1, X2, X3) denote the coordinates of a material point in the reference con-
figuration, κ0. The X3-axis is taken out of the plane of the page and not shown in the
figure. By assumption, the geometry of the deformed body can be described by the mapping
χ(x) = x1 ê1 + x2 ê2 + x3 ê3, where

x1 = a0 + a1X1 + a2X2 + a3X1X2,

x2 = b0 + b1X1 + b2X2 + b3X1X2,

x3 = X3,

and a0, a1, a2, a3, b0, b1, b2, and b3 are constants to be determined using the values of (X1, X2)
from the undeformed configuration and the corresponding values of (x1, x2) from the deformed
configuration shown in Fig. 3.4.6(a). The eight constants are determined using the 8 conditions
provided by the coordinate values at points A, B, C, and D. Since point A is at the origin of
the coordinate system, we immediately obtain a0 = b0 = 0. Next, we have

(X1, X2) = (a, 0), (x1, x2) = (a, e2) → a1 = 1, b1 =
e2
a
,

(X1, X2) = (0, b), (x1, x2) = (e1, b) → a2 =
e1
b
, b2 = 1,

(X1, X2) = (a, b), (x1, x2) = (a+ e1, b+ e2) → a3 = 0, b3 = 0.

Thus, the deformation is defined by the transformation

χ(x) =
(
X1 + k1X2

)
ê1 +

(
X2 + k2X1

)
ê2 +X3 ê3, (1)

where k1 = e1/b and k2 = e2/a. The inverse mapping is given by

χ−1(X) = 1
1−k1k2

(x1 − k1x2) Ê1 +
1

1−k1k2
(−k2x1 + x2) Ê2 + x3 Ê3. (2)

Thus, the displacement vector of a material point in the Lagrangian description is

u = k1X2 Ê1 + k2X1 Ê2. (3)

The only nonzero Green strain tensor components are given by

E11 = 1
2
k2
2, 2E12 = k1 + k2, E22 = 1

2
k2
1. (4)

For the infinitesimal case (that is, k1 and k2 are small), we only have the shear strain 2ε12 =
k1 + k2. The components of the deformation gradient are

[F ] =

⎡
⎣ 1 k1 0
k2 1 0
0 0 1

⎤
⎦ .

The case in which k2 = 0 is known as the simple shear. The Green’s deformation tensor C is

C = FT · F → [C] = [F ]T[F ] =

⎡
⎣ 1 + k2

1 k1 + k2 0
k1 + k2 1 + k2

2 0
0 0 1

⎤
⎦ ,

and 2E = C− I yields the results given in Eq. (4).
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The displacements in the spatial description are

u1 = x1 −X1 = k1X2 = k1
1−k1k2

(−k2x1 + x2) ,

u2 = x2 −X2 = k2X1 = k2
1−k1k2

(x1 − k1x2) ,

u3 = x3 −X3 = 0.

(5)

The Almansi strain tensor components are

e11 = − k1k2
1− k1k2

− 1

2

[(
k1k2

1− k1k2

)2

+

(
k2

1− k1k2

)2
]
,

2e12 =
k1 + k2
1− k1k2

+
k1k2(k1 + k2)

(1− k1k2)
2 ,

e22 = − k1k2
1− k1k2

− 1

2

[(
k1k2

1− k1k2

)2

+

(
k1

1− k1k2

)2
]
.

(6)

Alternatively, the same results can be obtained using the elementary mechanics of materials
approach, where the strains are defined as the ratio of the difference between the final length
and original length to the original length. A line element AB in the initial (undeformed)
configuration κ0 of the body B moves to position ĀB̄ (point Ā is the same as point A), as
shown in Fig. 3.4.6(a). Then the Green strain in line AB is given by

E11 = EAB =
ĀB̄−AB

AB
= 1

a

√
a2 + e22 − 1 =

√
1 +
(e2
a

)2
− 1

=

[
1 + 1

2

(e2
a

)2
+ · · ·

]
− 1 ≈ 1

2

(e2
a

)2
= 1

2
k2
2 ,

where cubic and higher powers of e2/a are considered to be smaller than e2/a and e22/a
2 and

thus neglected. Similarly,

E22 =

[
1 + 1

2

(e1
b

)2
+ · · ·

]
− 1 ≈ 1

2

(e1
b

)2
= 1

2
k2
1 .

The shear strain 2E12 is equal to the change in the angle between two line elements that were
originally at 90◦, that is, change in the angle DAB. The change is equal to, as can be seen from
Fig. 3.4.6(b)

2E12 = ∠DAB− ∠D̄ĀB̄ =
e1
b

+
e2
a

= k1 + k2.

Thus, the strains computed using mechanics of materials approach, when terms of order higher
than e21/b

2 and e22/a
2 are neglected, yield the same as those in Eq. (4). On the other hand, if

we define E11 and E22 as (consistent with the definition of the Green–Lagrange strain tensor),

2E11 =
(ĀB̄)2 − (AB)2

(AB)2
=

a2 + e22
a2

− 1 =
e22
a2

= k2
2,

2E22 =
(ĀD̄)2 − (AD)2

(AD)2
=

b2 + e21
b2

− 1 =
e21
b2

= k2
1,

we obtain the results in Eq. (4) directly, without making any order of magnitude assumption.
Thus, in general, the engineering strains defined in mechanics of materials and the Green–
Lagrange strains are not the same.

The axial strain in line element AC is [see Fig. 3.4.6(b)]

EAC =
ĀC̄−AC

AC
= 1√

a2+b2

√
(a+ e1)2 + (b+ e2)2 − 1

= 1√
a2+b2

√
a2 + b2 + e21 + e22 + 2ae1 + 2be2 − 1

=

[
1 +

e21 + e22 + 2ae1 + 2be2
a2 + b2

] 1
2

− 1 ≈ 1
2

e21 + e22 + 2ae1 + 2be2
a2 + b2

= 1
2(a2+b2)

[
a2k2

2 + 2ab(k1 + k2) + b2k2
1

]
.
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The axial strain EAC can also be computed using the strain transformation equations
(3.4.29). The line AC is oriented at θ = tan−1(b/a). Hence, we have

β11 = cos θ =
a√

a2 + b2
, β12 = sin θ =

b√
a2 + b2

,

β21 = − sin θ = − b√
a2 + b2

, β22 = cos θ =
a√

a2 + b2
,

and

EAC ≡ Ē11 = β1iβ1jEij = β11β11E11 + 2β11β12E12 + β12β12E22

= 1
2(a2+b2)

[
a2k2

2 + 2ab(k1 + k2) + b2k2
1

]
,

which is the same as that computed previously.

3.4.6 Invariants and Principal Values of Strains

The principal invariants of the Green–Lagrange strain tensor E are [see Eqs.
(2.5.16) and (2.5.17)]

J1 = trE, J2 =
1

2

[
(trE)2 − tr

(
E2

)]
, J3 = |E|, (3.4.34)

where the trace of E, tr E, is defined as the double-dot product of E with the
identity tensor [see Eq. (2.5.15)]

trE = E : I. (3.4.35)

In terms of the rectangular Cartesian components, the three principal invariants
of E have the form

J1 = EII , J2 =
1
2 (EIIEJJ − EIJEJI) , J3 = |E|. (3.4.36)

It is of considerable interest (e.g., in the design of structures) to know the
maximum and minimum values of the strain at a point. The eigenvalues of the
matrix of the strain tensor (see Section 2.5.6), when ordered from large to small,
characterize the maximum and minimum normal strains, and the eigenvectors
represent the planes on which they occur. The maximum shear strains can be
determined once the maximum normal strains are determined. The eigenvalues
of a strain tensor are called the principal values of strain, and the corresponding
eigenvectors are called the principal directions of strain.

The eigenvalue problem associated with the strain tensor E is to find μ and
X such that

EX = μX for all X �= 0; |[E]− μ[I]| = 0, (3.4.37)

where μ are the principal values and {X} are the principal directions. The
characteristic equation is of the form

−μ3 + J1μ
2 − J2μ+ J3 = 0. (3.4.38)

Three eigenvalues μ1, μ2, and μ3 provide the three principal values (one of them
is the maximum and one of them is the minimum) of normal strain.
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The maximum shear strains Ens are computed from (for additional discussion
see Section 4.3.3)

E2
ns =

1
4

(
μ1 − μ2

)2
for n̂ = 1√

2

(
ê1 ± ê2

)
,

E2
ns =

1
4

(
μ1 − μ3

)2
for n̂ = 1√

2

(
ê1 ± ê3

)
,

E2
ns =

1
4

(
μ2 − μ3

)2
for n̂ = 1√

2

(
ê2 ± ê3

)
.

(3.4.39)

The largest shear strain is given by

(Ens)max = 1
2

(
μmax − μmin

)
, (3.4.40)

where μmax and μmin are the maximum and minimum principal values of strain,
respectively. The plane of the maximum shear strain lies between the planes of
the maximum and minimum principal strain (that is, oriented at ±45◦ to both
planes).

Example 3.4.5 deals with the computation of principal strains and their di-
rections.

Example 3.4.5

The state of strain at a point in an elastic body is given by (10−3 in./in.)

[E] =

⎡
⎣ 4 −4 0
−4 0 0
0 0 3

⎤
⎦ .

Determine the principal strains and principal directions of the strain.

Solution: In this case, we know from the given matrix that μ = 3 is a root with eigenvector

X(3) = ±Ê3. The principal invariants of [E] are

J1 = 4 + 0 + 3 = 7, J2 = 1
2

[
72 − 42 − 32 − 2× (−4)2

]
= −4, J3 = |E| = −48.

Hence, the characteristic equation is

−μ3 + 7μ2 + 4μ− 48 = 0 → (−μ2 + 4μ+ 16)(μ− 3) = 0.

Then the roots (the principal strains) of the characteristic equation are (10−3 in/in.)

μ1 = 3, μ2 = 2(1 +
√
5), μ3 = 2(1−

√
5).

The eigenvector components X
(1)
I associated with E1 = μ1 = 3 are calculated from

⎡
⎣ 4− 3 −4 0

−4 0− 3 0
0 0 3− 3

⎤
⎦
⎧⎪⎨
⎪⎩

X
(1)
1

X
(1)
2

X
(1)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

which gives X
(1)
1 − 4X

(1)
2 = 0 and −4X

(1)
1 − 3X

(1)
2 = 0, or X

(1)
1 = X

(1)
2 = 0. Using the

normalization (X
(1)
1 )2 + (X

(1)
2 )2 + (X

(1)
3 )2 = 1, we obtain X

(1)
3 = 1. Thus, the principal

direction associated with the principal strain E1 = 3 is {X̂(1)}T = ±{0, 0, 1} or X̂(1) = ±Ê3.
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The eigenvector components associated with principal strain E2 = μ2 = 2(1 +
√
5) are

calculated from ⎡
⎣ 4− μ2 −4 0

−4 −μ2 0
0 0 3− μ2

⎤
⎦
⎧⎪⎨
⎪⎩

X
(2)
1

X
(2)
2

X
(2)
3

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

which gives

X
(2)
1 = − 2+2

√
5

4
X

(2)
2 = −1.618X

(2)
2 , X

(2)
3 = 0, ⇒ {X̂(2)} = ±

⎧⎨
⎩

−0.851
0.526
0.000

⎫⎬
⎭ .

Similarly, the eigenvector components associated with principal strain E3 = μ3 = 2(1 − √
5)

are obtained as

X
(3)
1 = 2+2

√
5

4
X

(3)
2 = 1.618X

(3)
2 , X

(3)
3 = 0, ⇒ {X̂(3)} = ±

⎧⎨
⎩

0.526
0.851
0.000

⎫⎬
⎭ .

Note that the eigenvectors X̂(1), X̂(2), and X̂(3) are mutually orthogonal, as expected.

3.5 Infinitesimal Strain Tensor and Rotation Tensor

3.5.1 Infinitesimal Strain Tensor

When all displacement gradients are small, that is, |∇0u| << 1, we may neglect
the nonlinear terms in the definition of the Green–Lagrange strain tensor E and
obtain the linearized strain tensor ε, called the infinitesimal strain tensor. To
derive ε from E, we must linearize E by using a measure of smallness.

We introduce the nonnegative function

ε(t) = ‖∇0u‖∞ = sup
X∈κ

|∇0u|, (3.5.1)

where “sup” stands for supremum or the least upper bound of the set of all
absolute values of ∇0u defined for all X ∈ κ. If f(∇0u) is a scalar-, vector-, or
tensor-valued function in the neighborhood of ∇0u = 0 so that there exists a
constant c such that

‖f(∇0u)‖∞ < c εn,

we say that f is of the order εn, as ε → 0, and write f = O(εn).
If E is of the order O(ε) in ∇0u, then we mean

∂uI
∂XJ

= O(ε) as ε → 0.

If terms of the order O(ε2), as ε → 0, can be omitted in Eq. (3.4.12), then

EIJ = 1
2

(
∂uI
∂XJ

+
∂uJ
∂XI

+
∂uK
∂XI

∂uK
∂XJ

)

can be approximated as

EIJ ≈ 1
2

(
∂uI
∂XJ

+
∂uJ
∂XI

)
= O(ε) as ε → 0. (3.5.2)
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Next consider

∂uI
∂xj

=
∂uI
∂XK

∂XK

∂xj
=

∂uI
∂XK

(
∂xK
∂xj

− ∂uK
∂xj

)

=
∂uI
∂XK

δKj +O(ε2) as ε → 0,

∂ui
∂XJ

=
∂ui
∂xk

∂xk
∂XJ

=
∂ui
∂xk

(
∂uk
∂XJ

+
∂Xk

∂XJ

)

=
∂ui
∂xk

δkJ +O(ε2) as ε → 0.

Thus, when terms of the order O(ε2), as ε → 0, are neglected, it is immaterial
whether the partial derivative of the displacement field u is taken with respect
to xj or Xj so that ∂ui

∂xj
= ∂ui

∂Xj
; that is, |∇u| ≈ |∇0u| = O(ε). In other

words, in the case of infinitesimal strains, no distinction is made between the
material coordinates X and the spatial coordinates x, and it is not necessary to
distinguish between the Green–Lagrange strain tensor E and the Eulerian strain
tensor e. The infinitesimal strain tensor ε is defined as [see Eq. (3.5.2)]

E ≈ ε = 1
2

[∇0u+ (∇0u)
T
]
. (3.5.3)

The rectangular Cartesian components of the infinitesimal strain tensor are

εIJ = 1
2

(
∂uI
∂XJ

+
∂uJ
∂XI

)
, (3.5.4)

or, in expanded form,

ε11 =
∂u1
∂X1

; ε22 =
∂u2
∂X2

;

ε33 =
∂u3
∂X3

; ε12 =
1
2

(
∂u1
∂X2

+
∂u2
∂X1

)
; (3.5.5)

ε13 =
1
2

(
∂u1
∂X3

+
∂u3
∂X1

)
; ε23 =

1
2

(
∂u2
∂X3

+
∂u3
∂X2

)
.

The strain components ε11, ε22, and ε33 are the infinitesimal normal strains and
ε12, ε13, and ε23 are the infinitesimal shear strains. The shear strains γ12 = 2ε12,
γ13 = 2ε13, and γ23 = 2ε23 are called the engineering shear strains.

3.5.2 Physical Interpretation of Infinitesimal Strain Tensor
Components

To gain insight into the physical meaning of the infinitesimal strain components,
we write Eq. (3.4.10) in the form

(ds)2 − (dS)2 = 2 dX · ε · dX = 2 εij dXi dXj ,

and dividing throughout by (dS)2, we obtain

(ds)2 − (dS)2

(dS)2
= 2 εij

dXi

dS

dXj

dS
.
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Let dX/dS = N̂, the unit vector in the direction of dX. For small deformations,
we have ds+ dS ≈ 2dS, and therefore we have

ds− dS

dS
= N̂ · ε · N̂ = εij NiNj . (3.5.6)

The left side of Eq. (3.5.6) is the ratio of change in length per unit original
length for a line element in the direction of N̂. For example, consider N̂ along
the X1-direction. Then we have

ds− dS

dS
= ε11.

Thus, the normal strain ε11 is the ratio of change in length of a line element
that was parallel to the X1-axis in the undeformed body to its original length.
Similarly, for a line element along X2 direction, (ds − dS)/dS is the normal
strain ε22, and for a line element along the X3 direction, (ds− dS)/dS denotes
the normal strain ε33.

To understand the meaning of shear components of infinitesimal strain ten-
sor, consider line elements dX(1) and dX(2) at a point in the body, which deform
into line elements dx(1) and dx(2), respectively. Then we have [see Eqs. (3.3.1)
and (3.4.3), and the first line of Eq. (3.4.11)]:

dx(1) · dx(2) = dX(1) · FT · F · dX(2) = dX(1) ·C · dX(2)

= dX(1) · (I+ 2E) · dX(2)

= dX(1) · dX(2) + 2dX(1) ·E · dX(2). (3.5.7)

Now suppose that the line elements dX(1) and dX(2) are orthogonal to each
other. Then

dx(1) · dx(2) = 2dX(1) ·E · dX(2),

or

2dX(1) ·E · dX(2) = dx(1)dx(2) cos θ = dx(1)dx(2) cos(π2 − γ1 − γ2)

= dx(1)dx(2) sin(γ1 + γ2) = dx(1)dx(2) sin γ, (3.5.8)

where θ is the angle between the deformed line elements dx(1) and dx(2) and
γ = γ1+γ2 is the change in the angle from 90◦. For small deformations, we take
sin γ ≈ γ, and obtain

γ = 2
dX(1)

dx(1)
·E · dX

(2)

dx(2)
= 2N̂(1) · ε · N̂(2), (3.5.9)

where N̂(1) = dX(1)/dx(1) and N̂(2) = dX(2)/dx(2) are the unit vectors along the
line elements dX(1) and dX(2), respectively. If the line elements dX(1) and dX(2)

are taken along the X1 and X2 coordinates, respectively, then we have 2ε12 = γ.
Thus, the engineering shear strain γ12 = 2ε12 represents the change in angle
between line elements that were perpendicular to each other in the undeformed
body.
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3.5.3 Infinitesimal Rotation Tensor

The displacement gradient tensor can be expressed as the sum of a symmetric
tensor and a skew symmetric tensor. We have

(∇u)T = 1
2

[
(∇u)T +∇u

]
+ 1

2

[
(∇u)T −∇u

] ≡ ε̃+Ω, (3.5.10)

where the symmetric part is similar to the infinitesimal strain tensor (and ε̃ ≈ ε
when |∇u| ≈ |∇0u| << 1), and the skew symmetric part is known as the
infinitesimal rotation tensor

Ω = 1
2

[
(∇u)T −∇u

]
. (3.5.11)

We note that there is no restriction placed on the magnitude of ∇u in writing
Eq. (3.5.10); ε̃ and Ω do not have the meaning of infinitesimal strain and
infinitesimal rotation tensors unless the deformation is infinitesimal (that is,
|∇0u| ≈ |∇u|).

From the definition, it follows that Ω is a skew symmetric tensor, that is,
ΩT = −Ω. In Cartesian component form we have

Ωij =
1
2 (ui,j − uj,i) , Ωij = −Ωji. (3.5.12)

Thus, there are only three independent components of Ω:

[Ω] =

⎡
⎣ 0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0

⎤
⎦ . (3.5.13)

The three components can be used to define the components of a vector ω,

Ω = −E · ω or ω = −1
2 E : Ω,

Ωij = −eijk ωk or ωi = −1
2 eijk Ωjk,

(3.5.14)

where E is the permutation (alternating) tensor, E = eijkêiêj êk. In view of Eqs.
(3.5.11) and (3.5.14), it follows that

ωi =
1
2 eijk

∂uk
∂xj

or ω = 1
2 ∇× u. (3.5.15)

Infinitesimal displacements of the form du = Ω · dx, where Ω is independent of
the position x, are rigid-body rotations because

dui = Ωij dxj = −eijk ωk dxj = −(dx× ω)i = (ω × dx)i or du = ω × dx.

Thus, ω represents the infinitesimal rotation vector; its magnitude is the angle of
rotation and its direction gives the axis of rotation. We also note that ∇ ·ω = 0.
Such vectors are called solenoidal. A rigid-body motion is one in which the
relative distance between points is preserved.

Certain motions do not produce infinitesimal strains but they may produce
finite strains. For example, consider the following deformation mapping:

χ(X) = (b1 +X1 + c2X3 − c3X2) ê1 + (b2 +X2 + c3X1 − c1X3) ê2

+ (b3 +X3 + c1X2 − c2X1) ê3, (3.5.16)
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where bi and ci (i = 1, 2, 3) are arbitrary constants. The displacement vector is

u(X) = (b1 + c2X3 − c3X2) ê1 + (b2 + c3X1 − c1X3) ê2

+ (b3 + c1X2 − c2X1) ê3. (3.5.17)

Therefore, we have

∂u1
∂X1

= 0,
∂u1
∂X2

= −c3,
∂u1
∂X3

= c2,

∂u2
∂X1

= c3,
∂u2
∂X2

= 0,
∂u2
∂X3

= −c1,

∂u3
∂X1

= −c2,
∂u3
∂X2

= c1,
∂u3
∂X3

= 0,

Then the components of the deformation gradient F and left Cauchy–Green
deformation tensor C associated with the mapping are

[F ] =

⎡
⎣ 1 −c3 c2

c3 1 −c1
−c2 c1 1

⎤
⎦ , [C] =

⎡
⎣ 1 + c22 + c23 −c1c2 −c1c3

−c1c2 1 + c21 + c23 −c2c3
−c1c3 −c2c3 1 + c21 + c22

⎤
⎦ ,

and the matrix of Green–Lagrange strain tensor components is

[E] =
1

2

⎡
⎣ c22 + c23 −c1c2 −c1c3

−c1c2 c21 + c23 −c2c3
−c1c3 −c2c3 c21 + c22

⎤
⎦ . (3.5.18)

Note that the linearized strains are all zero. Thus, for nonzero values of the
constants ci, the mapping produces nonzero finite strains. When all of the
constants ci are either zero or negligibly small (so that their products and squares
are very small compared to unity), then [F ] = [I] and [C] = [I], implying that
the mapping F = R represents a rigid-body rotation [that is, U = I; see Section
3.3.1). Figure 3.5.1 depicts the deformation for the two-dimensional case, with
b1 = 2, b2 = 3, c3 = 1, and all other constants zero. Thus, the finite strain tensor
and deformation gradient give true measures of the deformation. The question
of smallness of ci in a given engineering application must be carefully examined
before using linearized strains.
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Fig. 3.5.1: A mapping that produces zero infinitesimal strains but nonzero finite strains.
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Next, consider the mapping

χ(X) = (u1 +X1 cos θ −X2 sin θ) ê1 + (u2 +X1 sin θ +X2 cos θ) ê2 +X3 ê3,

(3.5.19)

where u1 and u2 denote the horizontal and vertical displacements of the point
(0, 0, 0), as shown in Fig. 3.5.2.

2X

1X 1x

2x

( )Xχ θ
1u

2u

1 2linear a( ) in ndX Xχ X

Fig. 3.5.2: A mapping that produces nonzero infinitesimal strains but zero finite strains.

The components of the deformation gradient F and left Cauchy–Green de-
formation tensor C are

[F ] =

⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ , [C] =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ . (3.5.20)

Since C = I, we have E = 0, indicating that the body does not experience
stretching or shearing. The mapping is a rigid-body motion (both rigid-body
translation and rigid-body rotation).

If we linearize the deformation mapping by making the approximations cos θ ≈
1 and sin θ ≈ 0, we obtain

[F ] =

⎡
⎣ 1 −θ 0
θ 1 0
0 0 1

⎤
⎦ , [C] =

⎡
⎣ 1 + θ2 0 0

0 1 + θ2 0
0 0 1

⎤
⎦ .

Thus, the Green strain tensor components are no longer zero. The principal
stretches λ1 = λ2 = 1 + θ2 are not equal to 1, as required by the definition of
rigid-body motion. Owing to the artificial stretch induced by the linearization
of the mapping, the stretches get larger and larger as the block rotates.

3.5.4 Infinitesimal Strains in Cylindrical and Spherical
Coordinate Systems

The strains defined by Eq. (3.5.3) are valid in any coordinate system. Hence,
they can be expressed in component form in any given coordinate system by
expanding the strain tensors in the dyadic form and the operator ∇0 = ∇ in
that coordinate system, as given in Table 2.4.2 (see also Fig. 2.4.5).
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3.5.4.1 Cylindrical coordinate system

In the cylindrical coordinate system we have

u = urêr + uθêθ + uzêz, (3.5.21)

∇0 = êr
∂

∂r
+

1

r
êθ

∂

∂θ
+ êz

∂

∂z
, (3.5.22)

∂êr
∂θ

= êθ,
∂êθ
∂θ

= −êr . (3.5.23)

Using Eqs. (3.5.21)–(3.5.23), we obtain [see Eq. (2.5.27)]

∇0u = êrêr
∂ur
∂r

+ êrêθ
∂uθ
∂r

+
1

r
êθêr

(
∂ur
∂θ

− uθ

)

+ êrêz
∂uz
∂r

+ êzêr
∂ur
∂z

+
1

r

(
ur +

∂uθ
∂θ

)
êθêθ

+
1

r
êθêz

∂uz
∂θ

+ êzêθ
∂uθ
∂z

+ êzêz
∂uz
∂z

, (3.5.24)

(∇0u)
T = êrêr

∂ur
∂r

+ êθêr
∂uθ
∂r

+
1

r
êrêθ

(
∂ur
∂θ

− uθ

)

+ êzêr
∂uz
∂r

+ êrêz
∂ur
∂z

+
1

r
êθêθ

(
ur +

∂uθ
∂θ

)

+
1

r
êzêθ

∂uz
∂θ

+ êθêz
∂uθ
∂z

+ êzêz
∂uz
∂z

. (3.5.25)

Substituting the above expressions into Eq. (3.5.3) and collecting the coefficients
of various dyadics (that is, coefficients of êrêr, êrêθ, and so on) we obtain the
infinitesimal strain tensor components

εrr =
∂ur
∂r

, εrθ =
1
2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
,

εrz = 1
2

(
∂ur
∂z

+
∂uz
∂r

)
, εθθ =

ur
r

+
1

r

∂uθ
∂θ

, (3.5.26)

εzθ = 1
2

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
, εzz =

∂uz
∂z

.

3.5.4.2 Spherical coordinate system

In the spherical coordinate system, we have

u = uR êR + uφ êφ + uθ êθ, (3.5.27)

∇0 = êR
∂

∂R
+

1

R
êφ

∂

∂φ
+

1

R sinφ
êθ

∂

∂θ
, (3.5.28)

∂êR
∂φ

= êφ,
∂êR
∂θ

= sinφ êθ,
∂êφ
∂φ

= −êR,

∂êφ
∂θ

= cosφ êθ,
∂êθ
∂θ

= − sinφ êR − cosφ êφ .

(3.5.29)
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Using Eqs. (3.5.27)–(3.5.29), we obtain [see Eq. (2.5.29)]

∇0u =
∂uR
∂R

êR êR +
∂uφ
∂R

êR êφ +
∂uθ
∂R

êR êθ

+
1

R

(
∂uR
∂φ

− uφ

)
êφ êR +

1

R

(
∂uφ
∂φ

+ uR

)
êφ êφ +

1

R

∂uθ
∂φ

êφ êθ

+
1

R sinφ

(
∂uR
∂θ

− uθ sinφ

)
êθ êR +

1

R sinφ

(
∂uφ
∂θ

− uθ cosφ

)
êθ êφ

+
1

R sinφ

(
∂uθ
∂θ

+ uR sinφ+ uφ cosφ

)
êθ êθ, (3.5.30)

(∇0u)
T =

∂uR
∂R

êR êR +
∂uφ
∂R

êφ êR +
∂uθ
∂R

êθ êR

+
1

R

(
∂uR
∂φ

− uφ

)
êR êφ +

1

R

(
∂uφ
∂φ

+ uR

)
êφ êφ +

1

R

∂uθ
∂φ

êθ êφ

+
1

R sinφ

(
∂uR
∂θ

− uθ sinφ

)
êR êθ +

1

R sinφ

(
∂uφ
∂θ

− uθ cosφ

)
êφ êθ

+
1

R sinφ

(
∂uθ
∂θ

+ uR sinφ+ uφ cosφ

)
êθ êθ. (3.5.31)

Substituting the above expressions into Eq. (3.5.3) and collecting the coefficients
of various dyadics, we obtain the following infinitesimal strain tensor components
in the spherical coordinate system:

εRR =
∂uR
∂R

, εφφ =
1

R

(
∂uφ
∂φ

+ uR

)
,

εRφ = 1
2

(
1

R

∂uR
∂φ

+
∂uφ
∂R

− uφ
R

)
,

εRθ = 1
2

(
1

R sinφ

∂uR
∂θ

+
∂uθ
∂R

− uθ
R

)
, (3.5.32)

εφθ = 1
2

1

R

(
1

sinφ

∂uφ
∂θ

+
∂uθ
∂φ

− uθ cotφ

)
,

εθθ =
1

R sinφ

(
∂uθ
∂θ

+ uR sinφ+ uφ cosφ

)
.

3.6 Velocity Gradient and Vorticity Tensors

3.6.1 Definitions

In fluid mechanics, the velocity vector v(x, t) is the variable of interest. Similar
to the displacement gradient tensor [see Eq. (3.5.10)], we can write the velocity
gradient tensor L as the sum of symmetric D and skew-symmetric W tensors:

L ≡ (∇v)T = 1
2

[
(∇v)T +∇v

]
+ 1

2

[
(∇v)T −∇v

] ≡ D+W, (3.6.1)

where D is called the rate of deformation tensor (or rate of strain tensor) and
W is called the vorticity tensor or spin tensor:

D = 1
2

[
(∇v)T +∇v

]
, W = 1

2

[
(∇v)T −∇v

]
. (3.6.2)
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It follows that
D = 1

2

(
L+ LT

)
, W = 1

2

(
L− LT

)
. (3.6.3)

The skew-symmetric tensor W (i.e., WT = −W), has only three indepen-
dent scalar components; they can be used to define the scalar components of a
vector w, called the axial vector of W, as follows:

Wij = −eijkwk, [W ] =

⎡
⎣ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤
⎦ . (3.6.4)

The scalar components of w can be expressed in terms of the scalar components
of W as

wi = −1
2eijkWjk = 1

2eijk
∂vk
∂xj

or w = 1
2∇× v. (3.6.5)

Thus, w is also known as the vorticity vector. Note that ∇ ·w = 0 by virtue
of the vector identity (that is, divergence of the curl of a vector is zero). Thus,
the vorticity vector is divergence-free. As discussed in Section 3.5.3, if a velocity
vector v is of the form v = W · x for some skew symmetric tensor W that
is independent of position x, then the motion is a uniform rigid-body rotation
about the origin with angular velocity w. Also note that the first and third
principal invariants of W are zero, and the second principal invariant is equal
to w2

1 + w2
2 + w2

3.

3.6.2 Relationship Between D and Ė

Note that the rate of deformation tensor D is not the same as the time rate of
change of the infinitesimal strain tensor ε [see Eq. (3.5.1)], that is, the strain
rate ε̇, where the superposed dot signifies the material time derivative. However,
D is related to Ė, the time rate of change of Green–Lagrange strain tensor E,
as shown in the following paragraphs.

Taking the total time derivative of the expression in Eq. (3.4.10), we obtain

d

dt
[(ds)2 − (dS)2] =

d

dt
[(ds)2] = 2 dX · dE

dt
· dX ≡ 2 dX · Ė · dX, (3.6.6)

where we used the fact that dX and dS are constants. On the other hand, the
instantaneous rate of change of the squared length (ds)2 is

d

dt
[(ds)2] =

d

dt
[dx · dx] = 2 dx · d

dt
(dx) = 2 dx · dv. (3.6.7)

Because
L = (∇v)T ⇒ dv = L · dx, (3.6.8)

Eq. (3.6.7) takes the form [we make use of Eq. (3.6.1)]

d

dt
[(ds)2] = 2 dx · L · dx = 2 dx · (D+W) · dx = 2 dx ·D · dx. (3.6.9)

The second term is zero because of the skew symmetry of W. Now equating the
right-hand sides of Eqs. (3.6.6) and (3.6.9) and noting dx = F · dX = dX · FT
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dX · Ė · dX = dx ·D · dx = dX · FT ·D · F · dX,

we arrive at the result

Ė = FT ·D · F. (3.6.10)

Next consider (dx = F · dX)

dv =
d

dt
(dx) =

[
dF

dt

]
· dX+ F · d(dX)

dt
= Ḟ · dX+ 0, (3.6.11)

because dẊ = 0. Then from Eqs. (3.6.8) and (3.6.11) we have

Ḟ · dX = L · dx. (3.6.12)

We also have

Ḟ =
d

dt
(∇0x)

T = (∇0v)
T . (3.6.13)

Note that ∇0v is the gradient of the velocity vector v with respect to the
material coordinates X, and it is not the same as L = (∇v)T. From Eq. (3.6.12)
or from Eq. (3.6.13) and the identity [see Problem 3.36]

(∇0v)
T = L · F, (3.6.14)

we obtain

Ḟ = L · F or L = Ḟ · F−1. (3.6.15)

3.7 Compatibility Equations

3.7.1 Preliminary Comments

The task of computing strains (infinitesimal or finite) from a given displacement
field is a straightforward exercise. However, sometimes we face the problem of
finding the displacements from a given strain field. This is not as straightforward
because there are six independent partial differential equations (that is, strain-
displacement relations) for only three unknown displacements, which would in
general over-determine the solution. We will find some conditions, known as
Saint-Venant’s compatibility equations, that will ensure the computation of a
unique displacement field from a given strain field. The derivation is presented
for infinitesimal strains. For finite strains the same steps may be followed but
the process is so difficult that it is never attempted (although some general
compatibility conditions may be stated to ensure integrability of the six nonlinear
partial differential equations).

To understand the meaning of strain compatibility, imagine that a material
body is cut up into pieces before it is strained, and then each piece is given a
certain strain. The strained pieces cannot be fitted back into a single continuous
body without further deformation. On the other hand, if the strain in each
piece is related to or compatible with the strains in the neighboring pieces, then
they can be fitted together to form a continuous body. Mathematically, the six
strain–displacement relations that connect six strain components to the three
displacement components should be consistent.
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3.7.2 Infinitesimal Strains

The infinitesimal strain tensor E ≈ ε is defined in terms of the displacement
vector u as [see Eq. (3.5.3)]

ε = 1
2

[
∇0u+ (∇0u)

T
]
, εij =

1
2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
. (3.7.1)

We begin with infinitesimal strains in two dimensions. We have the following
three strain-displacement relations:

∂u1
∂X1

= ε11,

∂u2
∂X2

= ε22,

∂u1
∂X2

+
∂u2
∂X1

= 2ε12.

(3.7.2)

If the given data (ε11, ε22, ε12) are compatible (or consistent), any two of the
three equations should yield the same displacement components. For example,
consider the following infinitesimal strain field:

ε11 = ε22 = 0, ε12 = X1X2.

In terms of the displacement components u1 and u2, we have

∂u1
∂X1

= 0,
∂u2
∂X2

= 0,
∂u1
∂X2

+
∂u2
∂X1

= 2X1X2.

Integration of the first two equations gives

u1 = f(X2), u2 = g(X1).

On substitution into the shear strain, we obtain

df

dX2
+

dg

dX1
= 2X1X2,

which cannot be satisfied; if ε12 is specified as ε12 = c1X1 + c2X2, it would be
possible to determine f and g, and then u1 and u2. Thus, not all arbitrarily
specified strain fields are compatible.

The compatibility of a given strain field can be established as follows. Dif-
ferentiate the first equation with respect to X2 twice, the second equation with
respect to X1 twice, and the third equation with respect to X1 and X2 each,
and obtain

∂3u1
∂X1∂X2

2

=
∂2ε11
∂X2

2

,

∂3u2
∂X2∂X2

1

=
∂2ε22
∂X2

1

,

∂3u1
∂X2

2∂X1
+

∂3u2
∂X2

1∂X2
= 2

∂2ε12
∂X1∂X2

.

(3.7.3)
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Using the first two equations in the third equation, we arrive at the following
relation among the three strains:

∂2ε11
∂X2

2

+
∂2ε22
∂X2

1

= 2
∂2ε12

∂X1∂X2
. (3.7.4)

Equation (3.7.4) is called the strain compatibility condition among the three
strains ε11, ε22, and ε12 that ensures the integrability of Eqs. (3.7.2) to determine
the displacement components (u1, u2).

A similar procedure can be followed to obtain the strain compatibility equa-
tions for the three-dimensional case. In addition to Eq. (3.7.4), five more such
conditions can be derived, as given below:

∂2ε11
∂X2

3

+
∂2ε33
∂X2

1

= 2
∂2ε13

∂X1∂X3
, (3.7.5)

∂2ε22
∂X2

3

+
∂2ε33
∂X2

2

= 2
∂2ε23

∂X2∂X3
, (3.7.6)

∂2ε11
∂X2∂X3

+
∂2ε23
∂X2

1

=
∂2ε13

∂X1∂X2
+

∂2ε12
∂X1∂X3

, (3.7.7)

∂2ε22
∂X1∂X3

+
∂2ε13
∂X2

2

=
∂2ε23

∂X1∂X2
+

∂2ε12
∂X2∂X3

, (3.7.8)

∂2ε33
∂X1∂X2

+
∂2ε12
∂X2

3

=
∂2ε13

∂X2∂X3
+

∂2ε23
∂X1∂X3

. (3.7.9)

Equations (3.7.4)–(3.7.9) can be written as a single relation using the index
notation

∂2εmn

∂Xi∂Xj
+

∂2εij
∂Xm∂Xn

=
∂2εim

∂Xj∂Xn
+

∂2εjn
∂Xi∂Xm

, (3.7.10)

which yields (3)4 = 81 equations but only 6, shown in Eqs. (3.7.4)–(3.7.9),
are distinctly different. These conditions are both necessary and sufficient to
determine a single-valued displacement field. Similar compatibility conditions
hold for the rate of deformation tensorD. The vector form of Eqs. (3.7.4)–(3.7.9)
is given by [see Problem 3.39]

∇0 × (∇0 × ε)T = 0 or eikr ejls εij,kl = 0. (3.7.11)

Example 3.7.1 illustrates how to check the compatibility of a given strain
field.

Example 3.7.1

Given the following two-dimensional, infinitesimal strain field:

ε11 = c1X1

(
X2

1 +X2
2

)
, ε22 = 1

3
c2X

3
1 , ε12 = c3X

2
1X2,

where c1, c2, and c3 are constants, determine if the strain field is compatible.

Solution: Using Eq. (3.7.4) we obtain

∂2ε11
∂X2

2

+
∂2ε22
∂X2

1

− 2
∂2ε12

∂X1∂X2
= 2c1X1 + 2c2X1 − 4c3X1.

Thus the strain field is not compatible, unless c1 + c2 − 2c3 = 0.
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Example 3.7.2 illustrates how to determine the displacement field from a
compatible strain field.

Example 3.7.2

Consider the problem of an isotropic cantilever beam bent by a load P at the free end, as shown
in Fig. 3.7.1. To study the beam problem as a two-dimensional elasticity problem, consider
the strain field [strains ε11 and ε12 are known from a book on mechanics of solids; see, e.g.,
Fenner and Reddy (2012)]:

ε11 = −PX1X2

EI
, ε12 = − (1 + ν)P

2EI
(h2 −X2

2 ), ε22 = −νε11 =
νPX1X2

EI
, (3.7.12)

where I is the moment of inertia about the X3-axis (I = 2bh3/3), ν is the Poisson ratio, E is
Young’s modulus, 2h is the height of the beam, and b is the width of the beam. Determine if the
strain field is compatible and, if it is compatible, find the two-dimensional displacement field
(u1, u2) that satisfies the kinematic boundary conditions and, therefore, is free of rigid-body
translation and rotation.

Lb

2h

P P

M3

V

11σ

2X

2X

3X 1X

1X

Fig. 3.7.1: Cantilever beam bent by a point load.

Solution: (a) Substituting εij into the compatibility equation (3.7.4), we obtain 0 + 0 = 0.
Thus the strains in Eq. (3.7.12) satisfy the compatibility conditions for a two-dimensional state
of deformation. One can verify that the three-dimensional strains are not compatible; one can
show that all of the compatibility equations except Eq. (3.7.9) are satisfied.

(b) Integrating the strain-displacement equations, we obtain

∂u1

∂X1
= ε11 = −PX1X2

EI
or u1 = −PX2

1X2

2EI
+ f(X2), (3.7.13)

∂u2

∂X2
= ε22 =

νPX1X2

EI
or u2 =

νPX1X
2
2

2EI
+ g(X1), (3.7.14)

where f(X2) and g(X1) are functions of integration. Substituting u1 and u2 into the definition
of 2ε12, we obtain

2ε12 =
∂u1

∂X2
+

∂u2

∂X1
= −PX2

1

2EI
+

df

dX2
+

νPX2
2

2EI
+

dg

dX1
. (3.7.15)

But this must be equal to the shear strain known from Eq. (3.7.12):

− P

2EI
X2

1 +
df

dX2
+

νP

2EI
X2

2 +
dg

dX1
= − (1 + ν)

EI
P (h2 −X2

2 ).

Separating the terms that depend only on X1 and those depend only on X2 (the constant term
can go with either one), we obtain

− dg

dX1
+

P

2EI
X2

1 − (1 + ν)Ph2

EI
=

df

dX2
− (2 + ν)P

2EI
X2

2 . (3.7.16)
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Since the left side depends only on X1 and the right side depends only on X2, and yet the
equality must hold, it follows that both sides should be equal to a constant, say c0:

df

dX2
− (2 + ν)P

2EI
X2

2 = c0, − dg

dX1
+

P

2EI
X2

1 − (1 + ν)Ph2

EI
= c0.

Integrating the expressions for f and g, we obtain

f(X2) =
(2 + ν)P

6EI
X3

2 + c0X2 + c1,

g(X1) =
P

6EI
X3

1 − (1 + ν)Ph2

EI
X1 − c0X1 + c2,

(3.7.17)

where c1 and c2 are constants of integration. Thus, the most general form of displacement field
(u1, u2) that corresponds to the strains in Eq. (3.7.12) is given by

u1(X1, X2) = − P

2EI
X2

1X2 +
(2 + ν)P

6EI
X3

2 + c0X2 + c1,

u2(X1, X2) = − (1 + ν)Ph2

EI
X1 +

νP

2EI
X1X

2
2 +

P

6EI
X3

1 − c0X1 + c2.

(3.7.18)

(c) The constants c0, c1, and c2 are determined using suitable boundary conditions. We impose
the following boundary conditions that eliminate rigid-body displacements (that is, rigid-body
translation and rigid-body rotation):

u1(L, 0) = 0, u2(L, 0) = 0, Ω12

∣∣∣
X1=L,X2=0

=
1

2

(
∂u2

∂X1
− ∂u1

∂X2

)
X1=L,X2=0

= 0. (3.7.19)

Imposing the boundary conditions from Eq. (3.7.19) on the displacement field in Eq. (3.7.18),
we obtain

u1(L, 0) = 0 ⇒ c1 = 0,

u2(L, 0) = 0 ⇒ c0L− c2 = − (1 + ν)Ph2L

EI
+

PL3

6EI
,

( ∂u2

∂X1
− ∂u1

∂X2

)
X1=L,X2=0

= 0, ⇒ c0 =
PL2

2EI
− (1 + ν)Ph2

2EI

(3.7.20)

Thus, we have

c0 =
PL2

2EI
− (1 + ν)Ph2

2EI
, c1 = 0, c2 =

PL3

3EI
+

(1 + ν)Ph2L

2EI
. (3.7.21)

Then the final displacement field in Eq. (3.7.18) becomes

u1(X1, X2) =
PL2X2

6EI

[
3

(
1− X2

1

L2

)
+ (2 + ν)

X2
2

L2
− 3(1 + ν)

h2

L2

]
,

u2(X1, X2) =
PL3

6EI

[
2− 3

X1

L

(
1− ν

X2
2

L2

)
+

X3
1

L3
+ 3(1 + ν)

h2

L2

(
1− X1

L

)]
.

(3.7.22)

In the Euler–Bernoulli beam theory (EBT), where one assumes that L >> 2h and ν = 0,
we have u1 = 0, and u2 is given by

uEBT
2 (X1, X2) =

PL3

6EI

(
2− 3

X1

L
+

X3
1

L3

)
,

while in the Timoshenko beam theory (TBT) we have u1 = 0 [E = 2(1+ ν)G, I = Ah2/3, and
A = 2bh], and u2 is given by

uTBT
2 (X1, X2) =

PL3

6EI

(
2− 3

X1

L
+

X3
1

L3

)
+

PL

KsGA

(
1− X1

L

)
.

Here Ks denotes the shear correction factor. Thus, the Timoshenko beam theory with shear
correction factor of Ks = 4/3 predicts the same maximum deflection, u2(0, 0), as the two-
dimensional elasticity theory [see Reddy (2002) for more details on the Timoshenko beam
theory]. Both beam theory solutions, in general, are in error compared to the elasticity solution
(primarily because of the Poisson effect).
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3.7.3 Finite Strains

In the case of finite strains, the compatibility conditions in terms of the defor-
mation tensor6 are derived from the mathematical requirement that the curl of
a gradient be zero. Since F is the gradient of x with respect to X, we require
that

∇0 × FT = 0, (3.7.23)

or, equivalently,

FiJ,K = FiK,J or
∂2xi

∂XJ∂XK
=

∂2xi
∂XK∂XJ

. (3.7.24)

We close this section with a note that the compatibility conditions arise only
when the strains (or stresses) are used to formulate the problem and displace-
ments are to be determined. An example of such a situation arises in plane
elasticity where stresses are expressed in terms of a single function, called stress
function. When boundary value problems in mechanics are formulated in terms
of the displacements or velocities, the question of strain compatibility never
arises.

3.8 Rigid-Body Motions and Material Objectivity

3.8.1 Superposed Rigid-Body Motions

3.8.1.1 Introduction and rigid-body transformation

A rigid-body motion is one that preserves the relative distance between points.
Intuitively, rigid-body motions of a whole body should have no effect on the
values of computed strains, as they are based on the change of length and ori-
entation of line elements in a small neighborhood of a point. However, mathe-
matically, various measures of strains with superposed rigid-body motions may
be expressed in different ways, although the computed values are independent
of the rigid-body motion of the body7.

Consider the motion mapping from Eq. (3.2.1), χ : κ0 → κ,

x = χ(X, t). (3.8.1)

Then a material particle X of a body, occupying position X in the reference
configuration κ0, now occupies a position x in κ at time t, as specified by the
motion (3.8.1). Under a superposed rigid-body motion, the particle X that is at
x at time t moves to a place x∗ at time t∗ = t + a, where a is a constant. In
the following discussion, we shall use an asterisk (∗) on all quantities with the
superposed motion. Thus,

x∗ = χ∗(X, t∗) = χ∗(X, t). (3.8.2)

6The derivation of compatibility conditions in terms of the right Cauchy–Green deformation
tensor C or the Green–Lagrange strain tensor E is quite involved and not attempted here.

7The discussion presented here closely follows that by Naghdi (2001).
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Next, consider another material particle Y of the body in the reference con-
figuration that occupies a position y in κ at time t, as specified by the motion
(3.8.1)

y = χ(Y, t). (3.8.3)

Under the superposed motion the material particle that is at y at time t moves
to a place y∗ at time t∗. Then we have

y∗ = χ∗(Y, t∗) = χ∗(Y, t). (3.8.4)

We can use the inverse mapping χ−1 to write X and Y in terms of x and y,
respectively. Hence, we have

x∗ = χ∗(X(x, t), t) = χ∗(x, t), y∗ = χ∗(Y(y, t), t) = χ∗(y, t). (3.8.5)

The superposed rigid-body motions of a whole body should preserve the
distance between all pairs of material particles of the body for all times 0 ≤ t ≤
T , where T is a finite final time; therefore, we have

[χ∗(x, t)− χ∗(y, t)]T · [χ∗(x, t)− χ∗(y, t)] = (x− y)T · (x− y), (3.8.6)

or

(x∗ − y∗)T · (x∗ − y∗) = (x− y)T · (x− y) for all x,y in κ at time t. (3.8.7)

Noting that x and y are independent of each other, we can differentiate with
respect to x and y successively and obtain

2

[
∂χ∗(x, t)

∂x

]T
·
[
∂χ∗(y, t)

∂y

]
= 2I, (3.8.8)

or [
∂χ∗(x, t)

∂x

]T
=

[
∂χ∗(y, t)

∂y

]−1

.

Because the left side of the equality depends only on (x, t) and the right side
depends only on (y, t), both must be equal to a function of time only, say QT(t):[

∂χ∗(x, t)
∂x

]T
=

[
∂χ∗(y, t)

∂y

]−1

= QT(t), (3.8.9)

for all x and y in κ at time t. Let us set

∂χ∗(x, t)
∂x

= Q(t) for all x in κ at time t. (3.8.10)

Then we must also have (because y is also in κ at time t)

∂χ∗(y, t)
∂y

= Q(t).

Therefore, we have
QT ·Q = I. (3.8.11)
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Thus, Q is an orthogonal tensor with |Q| = ±1. Since the motion under con-
sideration must include the special case χ∗ = x, for which case Q = I, we have
|Q| = ±1. Therefore, Q is a proper orthogonal tensor.

Integrating Eq. (3.8.10) with respect to x, we obtain

x∗ = χ∗(x, t) = Q · x+ c(t), (3.8.12)

where c(t) is a vector-valued function of time t. Equation (3.8.12) represents a
rigid transformation that includes translation c and rotation Q. Thus, at each
instant of time a rigid-body motion is a composition of rigid-body translation
c and a rigid-body rotation Q about an axis of rotation, as well as a time shift
a = t∗ − t. Figure 3.8.1 shows a sequence of deformation followed by rigid-
body transformation. For pure rigid-body rotation, Eq. (3.8.12) reduces to
x∗ = Q · x. The transformation in Eq. (3.8.12) preserves the distance between
any two material particles as well as the angle between material lines in the
small neighborhood of a material particle, as established next.

Consider the distance between two material particles occupying positions x
and y in the deformed configuration,

|x∗ − y∗|2 = (x∗ − y∗) · (x∗ − y∗) = Q · (x− y) ·Q · (x− y)

= (x− y) · (QT ·Q) · (x− y) = (x− y) · (x− y) = |x− y|2.
Thus, the distance between any two points is preserved.

Next, we consider two material line segments in the neighborhood of point
x, one connecting x to y and the other connecting x to z. The angle between
the two line segments is

cos θ =
(x− y) · (x− z)

|x− y| |x− z| .

Now consider the angle between the lines after superposed rigid-body motion:

cos θ∗ =
(x∗ − y∗)
|x∗ − y∗| ·

(x∗ − z∗)
|x∗ − z∗| .

X2

1Ê

2Ê

3Ê

3X

( , )x X tχ=

* ( , ) ( ) ( )x c Q x x*t t tχ = + ⋅ =

Deformation

Rigid body motion

•
X

X1

x*
y*

z*
d

*

• •
•

x
yd

z

Fig. 3.8.1: Deformation followed by superposed rigid-body motion.
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Since the distances are preserved, we have

cos θ∗ =
[Q · (x− y)] · [Q · (x− z)]

|x∗ − y∗| |x∗ − z∗|
=

(x− y) · (QT ·Q) · (x− z)

|x− y| |x− z|
=

(x− y) · (x− z)

|x− y| |x− z| = cos θ.

The transformation in Eq. (3.8.12) preserves the distance between two material
points and the angle between material lines in the neighborhood of every point
in the body; hence, the transformation also preserves areas and volumes under
the superposed rigid-body motion. Thus, when two frames of references are
involved in measuring deformations (and forces) with one frame of reference
moving rigidly with respect to the other, the measures will be unaffected.

3.8.1.2 Effect on F

To see the effect of superposed rigid-body motion on the deformation gradient,
consider the most general rigid-body mapping in Eq. (3.8.12). Taking the
derivative of Eq. (3.8.12) with respect to X, we obtain

∂x∗

∂X
= Q(t) · ∂x

∂X
,

and therefore we have

F∗ =
(
Q(t) · ∂x

∂X

)T

= F ·QT = Q · F. (3.8.13)

Thus, the deformation gradients before and after superposed rigid-body motions
are related by

F∗(X, t) = Q(t) · F(X, t). (3.8.14)

Because F is a two-point tensor from a reference configuration, which is inde-
pendent of the observer, to the current configuration, it transforms like a vector.
The respective Jacobians are given by

J = |F |, J∗ = |F ∗| = |Q| |F | = J, (3.8.15)

where the fact that |Q| = 1 is used. Thus the volume change is unaffected by
superposed rigid-body motion.

3.8.1.3 Effect on C and E

To see how the right Cauchy–Green deformation tensor C and the Green–
Lagrange strain tensor E change due to superposed rigid-body motion, consider

C∗ = (F∗)T · F∗ =
(
FT ·QT

) · (Q · F)
= FT · F = C, (3.8.16)
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where Eq. (3.8.14) and the property QT ·Q = I of an orthogonal matrix Q is
used. Hence, by definition [see Eq. (3.4.11)], the Green–Lagrange strain tensor E
and the right Cauchy–Green deformation tensor C, being defined with respect to
the reference configuration, are unaffected by the superposed rigid-body motion:

E = E∗, C = C∗. (3.8.17)

However, the velocities and accelerations of a material point are affected by the
superposed rigid-body motion. For example, consider velocity after imposing
the rigid-body motion (note that dt/dt∗ = 1)

v∗(x∗, t∗) =
dx∗

dt∗
=

d

dt∗
(c(t) +Q(t) · x) = ċ(t) + Q̇(t) · x+Q(t) · v, (3.8.18)

which shows that v∗ and v are not the same, but one can be calculated from
the other when c and Q are known for the superposed rigid-body motion.

3.8.1.4 Effect on L and D

Here we examine the effect of a superposed rigid-body motion on the velocity
gradient tensor L. We begin with Eq. (3.6.15)

L∗ = Ḟ∗ · (F∗)−1 =
(
Q̇ · F+Q · Ḟ

)
(Q · F)−1

= Q̇ ·QT +Q · Ḟ · F−1 ·QT = Q̇ ·QT +Q · L ·QT, (3.8.19)

where we have used the following identities:

(Q · F)−1 = F−1 ·Q−1, Q−1 = QT, Q ·QT = I.

From Problem 3.48, it is follows that Q̇ ·QT is skew symmetric.
Next consider the symmetric part of L, namely, D. We have

D∗ = 1
2

[
L∗ + (L∗)T

]
= 1

2

[
Q̇ ·QT +Q · L ·QT + Q̇T ·Q+Q · LT ·QT

]
= 1

2

[
Q · L ·QT +Q · LT ·QT

]
= Q ·D ·QT. (3.8.20)

3.8.2 Material Objectivity

3.8.2.1 Observer transformation

In continuum mechanics each frame of reference represents an observer and,
therefore, transformations between moving frames are termed observer transfor-
mations. The concept of frames of reference should not be confused with that
of coordinate systems, as they are not the same at all. An observer is free to
choose any coordinate system as may be convenient to observe or analyze a sys-
tem’s response. The equations of mechanics are used in different problems and
places and, therefore, they must be independent of frames of reference, that is,
invariant with respect to an observer transformation. A change of observer may
be viewed as certain rigid-body motion superposed on the current configuration,
as illustrated in Fig. 3.8.1.
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In the analytical description of physical events, the following two require-
ments must be followed:

(1) Invariance of the equations with respect to stationary coordinate frames
of reference

(2) Invariance of the equations with respect to frames of reference that move
in arbitrary relative motion

The first requirement is readily met by expressing the equations in vector/tensor
form, which is invariant. The assertion that an equation is in “invariant form”
refers to the vector form that is independent of the choice of a coordinate sys-
tem. The coordinate systems used in the present study were assumed to be
relatively at rest. The second requirement is that the invariance property holds
for reference frames (or observers) moving arbitrarily with respect to each other.
This requirement is dictated by the need for forces and deformations to be the
same as measured by all observers irrespective of their relative motions. Invari-
ance with respect to changes of observer is termed material frame indifference
or material objectivity.

3.8.2.2 Objectivity of various kinematic measures

Let F denote a reference frame with origin at O in which the x is the current
position of a particular particle at time t. Let F∗ be another reference frame with
origin at O∗ with time denoted with t∗. Let φ be a scalar field when described in
the frame F and φ∗ is the same scalar field described with respect to the frame
F∗, and let (u,u∗) and (S,S∗) be the vector and tensor fields, respectively, in
the two frames. Scalar, vector, and tensor fields are called frame indifferent or
objective if they transform according to the following equations:

1. Events x∗ = c(t) +Q(t) · x, t∗ = t− a
2. Scalar field φ∗(x∗, t∗) = φ(x, t)
3. Displacement vector u∗(x∗, t∗) = Q(t) · u(x, t) (3.8.21)

4. General second-order tensors S∗(x∗, t∗) = Q(t) · S(x, t) ·QT(t)
5. Two-point second-order tensors F∗(x∗, t∗) = Q(t) · F(x, t)

where Q(t) is a proper orthogonal tensor that rotates frame F∗ into frame F ,
c(t) is a vector from O to O∗ that depends only on time t, and a is a constant.
For example, x and x∗ refer to the same motion, but mathematically x∗ is the
motion obtained from x by superposition of a rigid rotation and translation.
The mapping x∗ = c(t) +Q(t) · x, derived in Eq. (3.8.12), may be interpreted
as one that takes (x, t) to (x∗, t∗) as a change of observer from O to O∗, so that
the event that is observed at place x at time t by observer O is the same event
as that observed at place x∗ at time t∗ by observer O∗, where t∗ = t− a, and a
is a constant. Thus, a change of observer merely changes the description of an
event. In short, the objectivity ensures that the direction(s) and magnitude are
independent of the coordinate frame used to describe them.
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We have already established in Section 3.8.1, under the following general
rigid-body mapping

x∗(X, t∗) = c(t) +Q(t) · x, t), t∗ = t− a, (3.8.22)

between observer O and observer O∗, that (if the reference configuration is in-
dependent of the observer) the right Cauchy–Green deformation tensor C and
the Green–Lagrange strain tensor E do not change under the observer transfor-
mation, that is, they are objective:

E = E∗, C = C∗. (3.8.23)

In addition, the symmetric part of L, namely, D is also objective in the sense

D∗ = Q ·D ·QT. (3.8.24)

We have noted that the two observers’ views of the velocity and acceleration of
a given motion are different, even though the rate of change at fixed X is the
same in each case. Thus, velocity and acceleration vectors are not objective.

3.8.2.3 Time rate of change in a rotating frame of reference

Next, consider two frames of reference with both having the same origin, but
one is nonrotating and the other is rotating with respect to the other with an
angular velocity ω. Let us use no bars on quantities in the nonrotating system
and bars on quantities in the rotating system. Then the time derivatives of a
vector-valued function A(t) in the two coordinate frames are

A(t) = Ai ei,
DA

Dt
=

dAi

dt
ei, nonrotating system, (3.8.25)

A(t) = Āiēi,
DA

Dt
=

dĀi

dt
ēi + Āi dēi

dt
, rotating system. (3.8.26)

The rate of change dēi/dt is given by

dēi
dt

= ω × ēi, (3.8.27)

because the change is brought about by a rigid-body rotation. To an observer
in the rotating frame, however, the basis vectors appear to be constant:

dĀi

dt
ēi ≡

(
dA

dt

)
rot

. (3.8.28)

The relationship of the time derivatives in the two frames is thus given by(
dA

dt

)
nonrot

=

(
dA

dt

)
rot

+ Āi(ω × ēi)

=

(
dA

dt

)
rot

+ ω ×A. (3.8.29)

Thus, in general, the time rates of change of vectors and tensors in the two
frames are related by (

d

dt

)
nonrot

=

(
d

dt

)
rot

+ ω × . (3.8.30)
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3.9 Polar Decomposition Theorem

3.9.1 Preliminary Comments

Recall that the deformation gradient F transforms a material vector dX atX into
the corresponding spatial vector dx, and it characterizes all of the deformation,
stretch (elongation) as well as rotation, at X. Therefore, it forms an essential
part of the definition of any strain measure. Another role of F in connection with
the strain measures is discussed here with the help of the polar decomposition
theorem of Cauchy. The polar decomposition theorem enables one to decompose
F uniquely into the product of a proper orthogonal tensor and a symmetric
positive-definite tensor and thereby decompose the general deformation into pure
stretch and pure rotation.

3.9.2 Rotation and Stretch Tensors

Suppose that F is nonsingular so that each line element dX from the reference
configuration is transformed into a unique line element dx in the current config-
uration, and conversely. Then the polar decomposition theorem states that F
has a unique right and left (multiplicative) decompositions of the form (see Fig.
3.9.1)

F = R ·U = V ·R (FiI = RiKUKI = VijRjI), (3.9.1)

so that
dx = F · dX = (R ·U) · dX = (V ·R) · dX, (3.9.2)

where U is the symmetric and positive-definite right Cauchy stretch tensor
(stretch is the ratio of the final length to the original length), V is the sym-
metric and positive-definite left Cauchy stretch tensor, and R is the orthogonal
rotation tensor,

RT ·R = I, U = UT, V = VT. (3.9.3)

Reference 
configuration
(unit cube)

Deformed 
configuration

Rotated unit cube

Stretched prism
1

2

3

U

R V

R

Fig. 3.9.1: The roles of U, V, and R in stretching and rotating a unit volume of material in
the neighborhood of X; λI (I = 1, 2, 3) denote the principal stretches.
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In Eq. (3.9.2), U · dX describes a pure stretch deformation in which there
are three mutually perpendicular directions along which the material element
dX stretches (that is, elongates or compresses) but does not rotate. The three
directions are provided by the eigenvectors of U. The role of the rotation tensor
R is to rotate the stretched element, R ·U · dX. These ideas are illustrated in
Fig. 3.9.2, which shows8 the material occupying the spherical volume of radius
|dX| in the undeformed configuration being mapped by the operator U into
an ellipsoid in the deformed configuration at x. Then R rotates the ellipsoid
through a rigid-body rotation.

P

QB

A

PQ Xd=

1 1,x X

2 2,x X

3 3,x X

• B

AP

Q

PQ U Xd= ⋅

•
AB

P

Q

PQ R U Xd= ⋅ ⋅

•

The ratio of PQ to PQ is the stretch

θ

, rotation angle in 2Dθ

Fig. 3.9.2: The roles of U and R in transforming an ellipsoidal volume of material in the
neighborhood of X.

From Eqs. (3.9.1) and (3.9.3) it follows that

U = R−1 · F = RT · F, V = F ·R−1 = F ·RT, (3.9.4)

U2 = U ·U = UT ·U = FT · (R ·R−1) · F = FT · F = C,

V2 = V ·V = V ·VT = F · (R−1 ·R) · FT = F · FT = B,
(3.9.5)

where C and B denote the right and left Cauchy–Green deformation tensors,
respectively. We also note that

F = R ·U = (R ·U) · (RT ·R) = (R ·U ·RT) ·R = V ·R
= V ·R = (R ·RT) · (V ·R) = R · (RT ·V ·R) = R ·U, (3.9.6)

which show that

U = RT ·V ·R, V = R ·U ·RT. (3.9.7)

Since C = FT · F and B = F · FT, we have |C| = |B| = |F|2 = J2 and
therefore |U| = |V| = √|C| = +J (positive because U and V are positive-
definite matrices). In view of Eq. (3.9.1), it follows that |R| = +1, implying
that R is a proper orthogonal tensor. Because FT · F is real and symmetric,

8For clarity, the figure shows stretch and rotation only in the X1 −X2 plane.
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there exists an orthogonal matrix A that transforms C = FT ·F into a diagonal
matrix C̄:

C̄ = ATCA =

⎡
⎣λ2

1 0 0
0 λ2

2 0
0 0 λ2

3

⎤
⎦ =

3∑
I=1

λ2
IN̂

(I)N̂(I), (3.9.8)

where λ2
I are the eigenvalues of C = FT ·F = U2 and A is the matrix of normal-

ized eigenvectors N̂(I) (spectral theorem; see Section 2.5.6.3). The eigenvalues
λI are called the principal stretches and the corresponding mutually orthogonal
eigenvectors are called the principal directions. The tensors U and V have the
same eigenvalues [see Eq. (3.9.7) and note |R| = 1], and their eigenvectors differ

only by the rotation R; Problem 3.56 for a proof. Thus (Ū =
√
C̄)

Ū =

⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ , U = AŪAT =

3∑
I=1

λIN̂
(I)N̂(I), (3.9.9)

where N̂(I) is the normalized eigenvector associated with eigenvalue λI in the
reference configuration. Once the stretch tensor U is known, the rotation tensor
R can be obtained from Eq. (3.9.1) and left stretch tensor V from Eq. (3.9.4)
as

R = F ·U−1, V = F ·RT. (3.9.10)

In view of Eq. (3.9.8), the Lagrangian and Eulerian strain tensors can be
expressed in terms of U and V as

E = 1
2

(
U2 − I

)
= 1

2

3∑
I=1

(
λ2
I − 1

)
N̂(I)N̂(I), (3.9.11)

e = 1
2

(
I−V−2

)
= 1

2

3∑
i=1

(
1− λ−2

i

)
n̂(i)n̂(i), (3.9.12)

where n̂(i) is the normalized eigenvector in the current configuration. Next, we
consider two examples of the use of the polar decomposition theorem.

Example 3.9.1

Consider the deformation mapping of Example 3.2.1,

x1 = X1 +AtX2, x2 = X2 −AtX1, x3 = X3.

It was shown in Example 3.2.1 that this mapping stretches a unit cube in the X1 and X2

directions and rotates about the X3-axis, as shown in Fig. 3.2.5. Use the polar decomposition
to determine the components of the symmetric right Cauchy stretch tensor U, the rotation
tensor R, and the symmetric left Cauchy stretch tensor V associated with the deformation for
A = 0.25 and t = 2.

Solution: The matrices associated with the deformation gradient F and the right Cauchy–
Green deformation tensor C (depend only on A and t, as can be seen from Example 3.2.1) for
A = 0.25 and t = 2 are

[F ] =

⎡
⎣ 1.0 0.5 0.0
−0.5 1.0 0.0
0.0 0.0 1.0

⎤
⎦ , [C] = [F ]T[F ] =

⎡
⎣ 1.25 0.00 0.00
0.00 1.25 0.00
0.00 0.00 1.00

⎤
⎦ .
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Thus, [F ] is independent of the position X and, therefore, the deformation is homogeneous.
The eigenvalues associated with [C] are λ2

1 = 1.25, λ2
2 = 1.25, and λ2

3 = 1.0 for any point in
the body. The matrix of normalized eigenvectors associated with these stretches is the identity
matrix (the jth column is the eigenvector corresponding to the jth eigenvalue)

[A] =

⎡
⎣ 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦ .

Then the matrix of the symmetric right stretch tensor U is determined from ([C] = [C̄] and
[U ] = [Ū ]):

[U ]2 = [C] =

⎡
⎣ λ2

1 0 0
0 λ2

2 0
0 0 λ2

3

⎤
⎦ or [U ] =

⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ ,

where λ1 = λ2 = 1.1180 and λ3 = 1. The matrix of eigenvectors remains the same, and we
have

U = λ1ê1ê1 + λ2ê2ê2 + λ3ê3ê3.

We note that λ1 = 1.1180 is the stretch of a line parallel to the X1-axis, λ2 = 1.1180 is
the stretch of a line parallel to the X2-axis, and λ3 = 1 is the stretch of a line parallel to
the X3-axis (that is, the body did not undergo deformation in the thickness direction) in the
undeformed body. The stretches can be verified independently by considering, as an example,
the line X1 = 0 (of unit length) in the undeformed body. In the deformed body the line has
a length of l = 1/ cosα = 1.1180, where tanα = At = 0.5 (or α = 26.565◦ = 0.46365 rad.), as
shown in Fig. 3.9.3.

The matrix associated with the rotation tensor R is determined from Eq. (3.9.10) (1/λ1 =
0.894427) as

[R] = [F ][U ]−1 =

⎡
⎣ 1.0 0.5 0.0
−0.5 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎡
⎣

1
λ1

0 0

0 1
λ2

0

0 0 1
λ3

⎤
⎦ =

⎡
⎣ 0.8944 0.4472 0.0
−0.4472 0.8944 0.0
0.0 0.0 1.0

⎤
⎦ .

We note that the rotation tensor is of the form (θ = −α = −26.565◦)

[R] =

⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ =

⎡
⎣ 0.8944 0.4472 0.0
−0.4472 0.8944 0.0
0.0 0.0 1.0

⎤
⎦ ,

which agrees with the rotation shown in Fig. 3.9.3.

1.0

0.5

0.0

−0.5

−1.0
0.0 0.4 0.8 1.2 1.6 2.0

x , X1 1

2 2x , X

0 25 2A . , t

undeformed

deformed

0 5At .

l

1 tan
cos

l , At

Fig. 3.9.3: Stretch and rotation of a unit square under the mapping, x1 = X1 + AtX2,
x2 = X2 −AtX1, x3 = X3.
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The left Cauchy stretch tensor components are determined using Eq. (3.9.10):

[V ] = [F ][R]T =

⎡
⎣ 1.0 0.5 0.0
−0.5 1.0 0.0
0.0 0.0 1.0

⎤
⎦
⎡
⎣ 0.8944 −0.4472 0.0
0.4472 0.8944 0.0
0.0000 0.0000 1.0

⎤
⎦ =

⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ .

Example 3.9.2

Consider the deformation mapping

x1 = 1
4
[4X1 + (9− 3X1 − 5X2 −X1X2) t] , x2 = 1

4
[4X2 + (16 + 8X1) t] , x3 = X3.

For (X1, X2, X3) = (0, 0, 0) and time t = 1,

(a) determine the deformation gradient F and right Cauchy–Green deformation tensor C,

(b) find the stretches λ1 and λ2 and the associated eigenvectors N̂(1) and N̂(2),

(c) use the polar decomposition to determine the components of the symmetric right Cauchy
stretch tensor U, the rotation tensor R, and the symmetric left Cauchy stretch tensor
V, and

(d) use the polar decomposition to determine the components of Green–Lagrange strain
tensor E.

Solution: We note that the deformation is nonhomogeneous because of the term X1X2 in
the mapping. The material point (X1, X2, X3) = (0, 0, 0) in the initial (that is, at t = 0)
configuration occupies the location (x1, x2, x3) = (2.25, 4, 0) at t = 1.0, as shown in Fig. 3.9.4.
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•
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B : (1.75, 3.0)

C

D

C : (1.0, 4.0)
D: (0.5, 3.0)

Configuration at t = 0

Fig. 3.9.4: Nonhomogeneous deformation of a unit square under the mapping, x1 =
0.25 (9 +X1 − 5X2 −X1X2), x2 = 0.25 (16 + 8X1 + 4X2), x3 = X3.
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(a) The components of the deformation gradient F and right Cauchy–Green strain tensor C
are

[F ] = 1
4

⎡
⎣ 1 −5 0
8 4 0
0 0 4

⎤
⎦ , [C] = [F ]T[F ] = 1

16

⎡
⎣ 65 27 0
27 41 0
0 0 16

⎤
⎦ .

(b) The eigenvalues λ2
1, λ

2
2, and λ2

3 of matrix [C] are determined by setting

|[C]− λ2[I]| = 0 → λ2
1 = 5.15916, λ2

2 = 1.46584, λ2
3 = 1,

and λ1 = 2.27138, λ2 = 1.21072, and λ3 = 1. The eigenvectors are (in component form)

{N (1)} =

⎧⎨
⎩

0.83849
0.54491
0.0

⎫⎬
⎭ , {N (2)} =

⎧⎨
⎩

0.54491
−0.83849
0.0

⎫⎬
⎭ , {N (3)} =

⎧⎨
⎩

0.0
0.0
1.0

⎫⎬
⎭ .

(c) The matrix of the right Cauchy stretch tensor is computed using Eq. (3.9.9):

[U ] =

⎡
⎣ 0.83849 0.54491 0.0
0.54491 −0.83849 0.0
0.0 0.0 1.0

⎤
⎦
⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦
⎡
⎣ 0.83849 0.54491 0.0
0.54491 −0.83849 0.0
0.0 0.0 1.0

⎤
⎦

=

⎡
⎣ 1.95644 0.48462 0.0
0.48462 1.52566 0.0
0.0 0.0 1.0

⎤
⎦ ,

and the principal stretches are λ1 = 2.27138, λ2 = 1.21072, and λ3 = 1.
The tensor form of U is

U = λ1N̂
(1)N̂(1) + λ2N̂

(2)N̂(2) + λ3N̂
(3)N̂(3)

= λ1

(
N

(1)
1 ê1 +N

(1)
2 ê2 +N

(1)
3 ê3

)(
N

(1)
1 ê1 +N

(1)
2 ê2 +N

(1)
3 ê3

)
+ λ2

(
N

(2)
1 ê1 +N

(2)
2 ê2 +N

(2)
3 ê3

)(
N

(2)
1 ê1 +N

(2)
2 ê2 +N

(2)
3 ê3

)
+ λ3

(
N

(3)
1 ê1 +N

(3)
2 ê2 +N

(3)
3 ê3

)(
N

(3)
1 ê1 +N

(3)
2 ê2 +N

(3)
3 ê3

)
,

or

U =
(
λ1[N

(1)
1 ]2 + λ2[N

(2)
1 ]2 + λ3[N

(3)
1 ]2

)
ê1ê1 +

(
λ1[N

(1)
2 ]2 + λ2[N

(2)
2 ]2 + λ3[N

(3)
2 ]2

)
ê2ê2

+
(
λ1[N

(1)
3 ]2 + λ2[N

(2)
3 ]2 + λ3[N

(3)
3 ]2

)
ê3ê3 +

(
λ1N

(1)
1 N

(1)
2 + λ2N

(2)
1 N

(2)
2

)
(ê1ê2 + ê2ê1)

+
(
λ1N

(1)
1 N

(1)
3 + λ3N

(3)
1 N

(3)
3

)
(ê1ê3 + ê3ê1) +

(
λ2N

(2)
2 N

(2)
3 + λ3N

(3)
2 N

(3)
3

)
(ê2ê3 + ê3ê2)

= 1.9564ê1ê1 + 0.4846 (ê1ê2 + ê2ê1) + 1.5257ê2ê2 + ê3ê3.

The matrix of the rotation tensor R is determined from Eq. (3.9.10) as

[R] = [F ][U ]−1 =

⎡
⎣ 0.3590 −0.9333 0
0.9333 0.3590 0
0.0 0.0 1

⎤
⎦ .

It follows that the rotation angle is θ = 68.96◦. The left Cauchy stretch tensor components are
determined using Eq. (3.9.10):

[V ] = [F ][R]T =

⎡
⎣ 0.25 −1.25 0.0
2.00 1.00 0.0
0.00 0.00 1.0

⎤
⎦
⎡
⎣ 0.3590 0.9333 0.0
−0.9333 0.3590 0.0
0.0000 0.0000 1.0

⎤
⎦ =

⎡
⎣ 1.2564 −0.2153 0.0
−0.2153 2.2256 0.0
0.0000 0.0000 1.0

⎤
⎦ .
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(d) The Green–Lagrange strain components at point (X1, X2) = (0, 0) are computed using Eq.
(3.9.11). We have [which can be verified using E = 0.5(C− I)]

E11 = 1
2

[(
λ2
1 − 1

)
N

(1)
1 N

(1)
1 +

(
λ2
2 − 1

)
N

(2)
1 N

(2)
1

]
= 1

2
(4.15916× 0.83849× 0.83849 + 0.46584× 0.54491× 0.54491) = 1.5312,

E22 = 1
2

[(
λ2
1 − 1

)
N

(1)
2 N

(1)
2 +

(
λ2
2 − 1

)
N

(2)
2 N

(2)
2

]
= 1

2
(4.15916× 0.54491× 0.54491 + 0.46584× 0.83849× 0.83849) = 0.7812,

E12 = 1
2

[(
λ2
1 − 1

)
N

(1)
1 N

(1)
2 +

(
λ2
2 − 1

)
N

(2)
1 N

(2)
2

]
= 1

2
(4.15916− 0.46584)× 0.83849× 0.54491 = 0.8437.

3.9.3 Objectivity of Stretch Tensors

Using the unique polar decomposition in Eq. (3.9.1), we can write

F∗ = R∗ ·U∗ = R∗ ·V∗, (3.9.13)

and objectivity of F gives

F∗ = Q · F = Q · (R ·U) = Q · (V ·R). (3.9.14)

Since Q and R are (proper) orthogonal tensors, we have

(Q ·R) · (Q ·R)T = Q · (R ·RT) ·QT = I, |Q ·R| = |Q| |R| = 1. (3.9.15)

Thus, Q ·R is also orthogonal. Therefore, in analogy to the two-point tensor F,
we can define R to be objective when [recall from the definition in Eq. (3.9.1)
that R is a two-point tensor]

R∗ = Q ·R. (3.9.16)

Then it follows from Eq. (3.9.14) that the right Cauchy stress tensor U, be-
ing defined with respect to the reference configuration, remains unaltered by a
superposed rigid-body motion and hence objective

U∗ = U. (3.9.17)

As far as the left Cauchy stretch tensor is concerned, the transformation law for
it to be objective is derived as follows:

F∗ = V∗ ·R∗ = V∗ ·Q ·R = Q · F = Q ·V ·R,

from which we arrive at the result

V∗ = Q ·V ·QT. (3.9.18)

Thus, V transforms like a second-order tensor defined in the current configura-
tion and is therefore objective.

We shall make use of the ideas presented in this section to develop the con-
stitutive relations among the stress and strain measures (see Chapter 6).
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3.10 Summary

In this chapter, deformation mapping χ of a material point occupying posi-
tion X in a reference configuration to position x in the current configuration
is introduced; two descriptions of motion, namely, the spatial (Eulerian) and
material (Lagrange) descriptions of motion are described; and displacement u
of a material point is defined as u = x − X. The deformation gradient F is
introduced as a two-point tensor between the reference configuration and the
current configuration, F = (∇0x)

T. The deformation tensor is nonsingular and
hence invertible. Isochoric, homogeneous, and inhomogeneous deformations are
discussed in terms of the deformation mapping and the deformation gradient.
Changes of volume and surface in going from the reference configuration to the
current configuration are derived.

Several strain measures, including the Green–Lagrange strain tensorE, Cauchy
strain tensor B̃, Euler or Almansi strain tensor e, right Cauchy–Green deforma-
tion tensor C, the left Cauchy–Green deformation (or Finger) tensor B, and the
Cauchy strain tensor B̃ = B−1 are introduced. A physical interpretation of the
normal and shear strain components is also presented. Determinations of the
principal strains and principal directions of strain are discussed with the help
of the eigenvalue problem of Section 2.5.6. The infinitesimal strain tensor ε is
obtained from E by retaining terms |∇0u| of order ε = ‖∇0u‖∞ and omitting
terms of order ε2. Thus, in the infinitesimal case, the distinction between the
Green–Lagrange strain tensor E and the Euler strain tensor e disappears. The
displacement gradient tensor (∇u)T is expressed as a sum of the symmetric
strain tensor ε̃ and the skew symmetric rotation tensor Ω. Similarly, the rate of
deformation tensor L = (∇v)T, where v is the velocity vector, is expressed as
the sum of the symmetric part, namely, the rate of deformation tensor D, and
the skew symmetric part, the vorticity tensor W.

The effect of superposed rigid-body motion and the concept of frame in-
difference that ensures nondependency on the frame of reference in measuring
displacements, velocities, accelerations, and various strain measures is briefly
discussed. It is shown that the measures of displacements and various measures
of strains obey the frame indifference principle (i.e., they are independent of the
coordinate frame of reference), while the velocities and accelerations are depen-
dent on the coordinate of frame of reference. It is also found that the time rate
of change of the displacement as well as strain measures are not objective, unless
the rigid-body rotation Q is independent of time.

Finally, the polar decomposition theorem is presented that allows the unique
(multiplicative) left and right decompositions of the deformation gradient F into
pure stretch and pure rotation, F = R·U and F = V ·R, where U and V are the
symmetric, positive-definite right and left Cauchy stretch tensors, respectively,
and R is the proper orthogonal rotation tensor. Compatibility conditions on
infinitesimal strain tensor ε and deformation tensor F that ensure a unique
determination of displacements from a given strain field are also presented.

Numerous examples are presented throughout the chapter to illustrate the
concepts introduced.
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Problems

Descriptions of Motion

3.1 Given the motion

χ(x, t) = x = (1 + t)X1 ê1 + (1 + t)X2 ê2 +X3 ê3, 0 ≤ t < ∞,

(a) determine the velocity and acceleration fields of the motion, and

(b) sketch deformations of the line X2 = 2X1, for fixed X3 = 1 at t = 1, 2, and 3.

3.2 Determine the deformation mapping that maps a unit square into the quadrilateral
shape shown in Fig. P3.2. Assume that the mapping is a complete polynomial in X1

and X2 up to the term X1X2 (note that the constant term is zero for this case).

1 0 1 1 2 2 3 1 2

2 0 1 1 2 2 3 1 2

x a a X a X a X X
x b b X b X b X X

2 2,x X

1X

( )Xχ

•

•

••

• •

• 1 1,x X

−1

2 3 4
0

1

2

3

4 (3, 4)

(1, 3)
Deformation mapping

• (4, −1)

(1, 1)

Fig. P3.2

3.3 Show that in the spatial description the acceleration components in the cylindrical co-
ordinates are

ar =
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z

− v2θ
r

,

aθ =
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

,

az =
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

.

3.4 Show that in the spatial description the acceleration components in the spherical coor-
dinates are

aR =
∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

(
∂vR
∂φ

− vφ

)
+

vθ
R sinφ

(
∂vR
∂θ

− vθ sinφ

)
,

aφ =
∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

(
∂vφ
∂φ

+ vR

)
+

vθ
R sinφ

(
∂vφ
∂θ

− vθ cosφ

)
,

aθ =
∂vθ
∂t

+ vR
∂vθ
∂R

+
vφ
R

∂vθ
∂φ

+
vθ

R sinφ

(
∂vθ
∂θ

+ vR sinφ+ vφ cosφ

)
.

Analysis of Deformation and Strain Measures

3.5 The motion of a continuous medium is given by

x1 =
(
1 + eat

)
X1, x2 =

(
1 + e−2at)X2, x3 = X3, 0 ≤ t < ∞,

where a is a positive constant. Determine
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(a) the components of the deformation gradient F and the inverse mapping,

(b) the velocity components in the spatial description,

(c) the velocity components in the material description, and

(d) the acceleration components in the spatial description.

(e) Then verify the results of (d) by calculating first the acceleration components in
the material coordinates and then using the inverse transformation in (a) to obtain
the components in the spatial description.

3.6 For the deformation shown in Problem 3.2 (see Fig. P3.2), determine

(a) the components of the deformation gradient F and its inverse, and

(b) the components of the displacement vector.

3.7 The motion of a body is described by the mapping

χ(X) = (X1 + t2X2) ê1 + (X2 + t2X1) ê2 +X3 ê3, 0 ≤ t < ∞.

Determine

(a) the components of the deformation gradient F and its inverse,

(b) the components of the displacement, velocity, and acceleration vectors,

(c) the position (X1, X2, X3) of the particle in undeformed configuration that occupies the
position (x1, x2, x3) = (9, 6, 1) at time t = 2 in the deformed configuration, and

(d) the location at time t = 2 of the particle that later will be located at x = (2, 3, 1) at time
t = 3.

(e) Then plot the deformed shape of a body at times t = 0, 1, 2, and 3, assuming that it is
initially a unit cube.

3.8 Homogeneous stretch. Consider a body with deformation mapping of the form

χ(X) = k1X1 ê1 + k2X2 ê2 + k3X3 ê3,

where ki �= 0 are constants. Determine the components of

(a) the deformation gradient F, and

(b) the right and left Cauchy–Green deformation tensors C and B.

3.9 Homogeneous stretch followed by simple shear. Consider a body with deformation map-
ping of the form

χ(X) = (k1X1 + e0k2X2) ê1 + k2X2 ê2 + k3X3 ê3,

where ki �= 0 and e0 are constants. Determine the components of

(a) the deformation gradient F, and

(b) the right and left Cauchy–Green deformation tensors C and B.

(c) Then plot representative shapes of a deformed unit square (let k1 = k3 = 1) that are
achievable with this mapping; the suggested cases are (i) k2/k1 = 1.5, e0 = 0.1; (ii)
k2/k1 = 1.5, e0 = 0.25; (iii) k2/k1 = 1.25, e0 = 0.5; and (iv) k2/k1 = 1.25, e0 = 1.0.

3.10 Suppose that the motion of a continuous medium is given by

x1 = X1 cosAt+X2 sinAt,

x2 = −X1 sinAt+X2 cosAt,

x3 = (1 +Bt)X3, 0 ≤ t < ∞,

where A and B are constants. Determine the components of

(a) the displacement vector in the material description,

(b) the displacement vector in the spatial description,
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(c) displacement vector components in the spatial description with respect to a cylindrical
basis, and

(d) the Green–Lagrange and Eulerian strain tensors in the Cartesian coordinate system.

3.11 If the deformation mapping of a body is given by

χ(X) = (X1 +AX2) ê1 + (X2 +BX1) ê2 +X3 ê3,

where A and B are constants, determine

(a) the displacement components in the material description,

(b) the displacement components in the spatial description, and

(c) the components of the Green–Lagrange and Eulerian strain tensors.

3.12 For the deformation mapping in Problem 3.2, determine the components of the Green–
Lagrange strain tensor.

3.13 For the deformation field given in Problem 3.7, determine the Green–Lagrange strain
tensor components.

3.14 For the deformation mapping given in Problem 3.9, determine the current positions
(x1, x2) of material particles that were on the circle X2

1 +X2
2 = R2 with radius R in the

undeformed body.

3.15 The motion of a continuous medium is given by

x1 = 1
2
(X1 +X2)e

t + 1
2
(X1 −X2)e

−t,

x2 = 1
2
(X1 +X2)e

t − 1
2
(X1 −X2)e

−t,

x3 = X3,

for 0 ≤ t < ∞. Determine

(a) the velocity components in the material description,

(b) the velocity components in the spatial description, and

(c) the components of the rate of deformation and vorticity tensors.

3.16 Nanson’s formula Let the differential area in the reference configuration be dA. Then

N̂ dA = dX(1) × dX(2) or NI dA = eIJK dX
(1)
J dX

(2)
K ,

where dX(1) and dX(2) are two nonparallel differential vectors in the reference configu-
ration. The mapping from the undeformed configuration to the deformed configuration
maps dX(1) and dX(2) into dx(1) and dx(2), respectively. Then n̂ da = dx(1) × dx(2).
Show that

n̂ da = JF−T · N̂ dA.

3.17 Consider a rectangular block of material of thickness h and sides 3b and 4b, and having
a triangular hole as shown in Fig. P3.17. If the block is subjected to the deformation
mapping given in Eq. (3.3.14),

χ(X) = (X1 + γX2)ê1 +X2 ê2 +X3 ê3,

determine

(a) the equation of the line BC in the undeformed and deformed configurations,

(b) the angle ABC in the undeformed and deformed configurations, and

(c) the area of the triangle ABC in the undeformed and deformed configurations.
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Fig. P3.17

NOTE: In Problems 3.18–3.22, undeformed and deformed configurations of bodies in
equilibrium are given. In all cases, the deformation mapping can be determined uniquely
with the suggested form of the mapping and the boundary data. Therefore, details of
material constitution, material homogeneity, and loads causing deformation are not
required to determine the kinematics of deformation.

3.18 Consider a unit square block of material of thickness h (into the plane of the paper), as
shown in Fig. P3.18. If the block is subjected to a loading that deforms the square block
into the shape shown (with no change in the thickness), (a) determine the deformation
mapping, assuming that it is a complete polynomial in X1 and X2 up to the term
X1X2, (b) compute the components of the right Cauchy–Green deformation tensor C
and Green–Lagrange strain tensor E at the point X = (1, 1, 0), and (c) compute the
principal strains and directions at X = (1, 1, 0) for γ = 1.

3

2 2x , X

1 1x , X

1

100

Fig. P3.18

3.19 Determine the displacements and Green–Lagrange strain tensor components for the
deformed configuration shown in Fig. P3.19. The undeformed configuration is shown in
dashed lines. Assume that the deformation mapping is a linear polynomial of X1 and
X2 (note that for this case the constant terms are zero).

e0

a

b

A B

D
C

e0

A B

CD
1 0 1 1 2 2 3 1 2

2 0 1 1 2 2 3 1 2

3 3

x a a X a X a X X ,
x b b X b X b X X ,
x X .

1 1x , X

2 2x , X

Fig. P3.19
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3.20 Determine the displacements and Green–Lagrange strain components for the deformed
configuration shown in Fig. P3.20. The undeformed configuration is shown in dashed
lines. Use the suggested form of the deformation mapping, as implied by the deformed
configuration.

e0

a

b

A B

D C
e0

A B

D
C

D ••

•

•

•

2
1 1 1 4 2

2 1 1 2 2

3 3

x a X a X ,
x b X b X ,
x X .

2
1 1 1 4 2x a X a X

1 1x , X

2 2x , X

Fig. P3.20

3.21 Determine the displacements and Green–Lagrange strains in the (x1, x2, x3) system for
the deformed configuration shown in Fig. P3.21. The undeformed configuration is shown
in dashed lines. Use the suggested form of the deformation mapping (for this case the
constant terms are zero).

A B

b

1e

a

2e

1 1x , X

2 2x , X

D
C

C 1 1 1 2 2 3 1 2

2 1 1 2 2 3 1 2

3 3

x a X a X a X X ,
x b X b X b X X ,
x X .

Fig. P3.21

3.22 Determine the displacements and Green–Lagrange strains for the deformed configuration
shown in Fig. P3.22. The undeformed configuration is shown in dashed lines. Use the
suggested form of the deformation mapping (note that constant terms are zero for this
case).
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1 2 1 2

1 2 1 2

1 2 1 2
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B: ( ) = (1,0) B: ( ) = (0.8,0.2)
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D: ( ) = (0,1) D: ( ) = (0.5,0.9)
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Fig. P3.22
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3.23 Given the following displacement vector in a material description using a cylindrical
coordinate system

u = Arêr +Brzêθ + C sin θêz,

where A, B, and C are constants, determine the infinitesimal strains. Here (r, θ, z)
denote the material coordinates.

3.24 Show that the components of the Green–Lagrange strain tensor in cylindrical coordinate
system are given by

Err =
∂ur

∂r
+ 1

2

[(
∂ur

∂r

)2

+

(
∂uθ

∂r

)2

+

(
∂uz

∂r

)2
]
,

Erθ = 1
2

(
1

r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r
+

1

r

∂ur

∂r

∂ur

∂θ
+

1

r

∂uθ

∂r

∂uθ

∂θ

+
1

r

∂uz

∂r

∂uz

∂θ
+

ur

r

∂uθ

∂r
− uθ

r

∂ur

∂r

)
,

Erz = 1
2

(
∂ur

∂z
+

∂uz

∂r
+

∂ur

∂r

∂ur

∂z
+

∂uθ

∂r

∂uθ

∂z
+

∂uz

∂r

∂uz

∂z

)
,

Eθθ =
ur

r
+

1

r

∂uθ

∂θ
+

1

2

[(
1

r

∂ur

∂θ

)2

+

(
1

r

∂uθ

∂θ

)2

+

(
1

r

∂uz

∂θ

)2

− 2

r2
uθ

∂ur

∂θ
+

2

r2
ur

∂uθ

∂θ
+
(uθ

r

)2
+
(ur

r

)2]
,

Eθz = 1
2

(
∂uθ

∂z
+

1

r

∂uz

∂θ
+

1

r

∂ur

∂θ

∂ur

∂z
+

1

r

∂uθ

∂θ

∂uθ

∂z

+
1

r

∂uz

∂θ

∂uz

∂z
− uθ

r

∂ur

∂z
+

ur

r

∂uθ

∂z

)
,

Ezz =
∂uz

∂z
+ 1

2

[(
∂ur

∂z

)2

+

(
∂uθ

∂z

)2

+

(
∂uz

∂z

)2
]
.

Here (r, θ, z) denote the material coordinates (see Fig. P3.24).
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êθ
êz

êr
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Fig. P3.24

3.25 The two-dimensional displacement field in a body is given by

u1(X) = X1

[
X2

1X2 + c1
(
2c32 + 3c22X2 −X3

2

)]
,

u2(X) = −X2

(
2c32 +

3

2
c22X2 − 1

4
X3

2 +
3

2
c1X

2
1X2

)
,

where c1 and c2 are constants. Find the linear and nonlinear Green–Lagrange strains.

3.26 Find the axial strain in the diagonal element, ĀC̄, of Problem 3.19, using
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(a) the basic definition of normal strain, and

(b) the strain transformation equations.

3.27 The biaxial state of strain at a point is given by ε11 = 800×10−6 in./in., ε22 = 200×10−6

in./in., ε12 = 400× 10−6 in./in. Find the principal strains and their directions.

3.28 Show that the invariants J1, J2, and J3 of the Green–Lagrange strain tensor E can be
expressed in terms of the principal values λi of E as

J1 = λ1 + λ2 + λ3, J2 = λ1λ2 + λ2λ3 + λ3λ1, J3 = λ1λ2λ3.

Of course, the above result holds for any second-order tensor.

3.29 Given the displacement field in the cylindrical coordinate system

ur = U(r), uθ = 0, uz = 0,

where U(r) is a function of only r, determine the Green–Lagrange strain components.

3.30 Given the displacement field in the spherical coordinate system

uR = U(R), uφ = 0, uθ = 0,

where U(r) is a function of only r, determine the Green–Lagrange strain components.

Velocity Gradient, Rate of Deformation, and Vorticity Tensors

3.31 Show that the components of the spin tensor W in the cylindrical coordinate system
are

Wrθ =
1

2

(
1

r

∂vr
∂θ

− vθ
r

− ∂vθ
∂r

)
= −Wθr,

Wrz =
1

2

(
∂vr
∂z

− ∂vz
∂r

)
= −Wzr,

Wzθ =
1

2

(
1

r

∂vz
∂θ

− ∂vθ
∂z

)
= −Wθz.

3.32 If D = 0, show that

v = w × x+ c (vi = eijk wj xk + ci),

where both w (vorticity vector) and c are constant vectors.

3.33 Show that

Ė =
1

2
Ċ =

1

2

(
ḞT · F+ FT · Ḟ

)
,

and

W =
1

2

(
Ḟ · F−1 − F−T · ḞT

)
.

3.34 Verify that

v̇ =
∂v

∂t
+

1

2
∇(v · v) + 2W · v

=
∂v

∂t
+

1

2
∇(v · v) + 2w × v,

where W is the spin tensor and w is the vorticity vector [see Eq. (3.6.5)].

3.35 Show that
DJ

Dt
= (∇ · v) J.

Hints: Dxi
Dt

= vi and ∂vi
∂Xj

= ∂vi
∂xk

∂xk
∂Xj

. See also the list of properties of determinants

highlighted in Section 2.3.6.

3.36 Establish the identities

dv = L · dx, and (∇0v)
T = L · F.

3.37 Show that Ċ = 2FT ·D ·F, where C, D, and F are the right Cauchy–Green deformation
tensor, rate of deformation tensor, and deformation gradient, respectively.



PROBLEMS 147

3.38 Show that the Eulerian strain rate is given by

ė = D−
(
e · L+ LT · e

)
,

and [see Eq. (3.5.10) for the definition of ε̃]

˙̃ε = D.

Compatibility Conditions

3.39 Use the index notation to establish the compatibility conditions in Eq. (3.7.11)

∇0 × (∇0 × ε)T = 0

for the infinitesimal strains. Hint: Begin with ∇0 × ε and use Eq. (3.5.15).

3.40 Show that the following second-order tensor is symmetric:

S = ∇0 × (∇0 × ε)T .

3.41 Let [see the compatibility conditions in Eqs. (3.7.4)–(3.7.9)]

−S33 = R3 =
∂2ε11
∂X2

2

+
∂2ε22
∂X2

1

− 2
∂2ε12

∂X1∂X2
, (1)

−S22 = R2 =
∂2ε11
∂X2

3

+
∂2ε33
∂X2

1

− 2
∂2ε13

∂X1∂X3
, (2)

−S11 = R1 =
∂2ε22
∂X2

3

+
∂2ε33
∂X2

2

− 2
∂2ε23

∂X2∂X3
, (3)

−S23 = U1 = − ∂2ε11
∂X2∂X3

+
∂

∂X1

(
−∂ε23
∂X1

+
∂ε13
∂X2

+
∂ε12
∂X3

)
, (4)

−S31 = U2 = − ∂2ε22
∂X1∂X3

+
∂

∂X2

(
∂ε23
∂X1

− ∂ε13
∂X2

+
∂ε12
∂X3

)
, (5)

−S12 = U3 = − ∂2ε33
∂X1∂X2

+
∂

∂X3

(
∂ε23
∂X1

+
∂ε13
∂X2

− ∂ε12
∂X3

)
. (6)

Show that
∂R1

∂X1
+

∂U3

∂X2
+

∂U2

∂X3
= 0,

∂U3

∂X1
+

∂R2

∂X2
+

∂U1

∂X3
= 0,

∂U2

∂X1
+

∂U1

∂X2
+

∂R3

∂X3
= 0.

(7)

These relations are known as the Bianchi formulas.

3.42 Consider the following infinitesimal strain field:

ε11 = c1X
2
2 , ε22 = c1X

2
1 , 2ε12 = c2X1X2,

ε31 = ε32 = ε33 = 0,

where c1 and c2 are constants. Determine

(a) c1 and c2 such that there exists a continuous, single-valued displacement field that
corresponds to this strain field,

(b) the most general form of the corresponding displacement field using c1 and c2
obtained in (a), and

(c) the constants of integration introduced in (b) for the boundary conditions u = 0
and Ω = 0 at X = 0 (i.e., u1 = u2 = 0 and ∂u1

∂X2
− ∂u2

∂X1
= 0 at X1 = X2 = 0).
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3.43 Determine whether the following strain fields, under the assumption of infinitesimal
strains, are possible in a continuous body:

(a) [ε] =

[
(X2

1 +X2
2 ) X1X2

X1X2 X2
2

]
. (b) [ε] =

⎡
⎣X3(X

2
1 +X2

2 ) 2X1X2X3 X3

2X1X2X3 X2
2 X1

X3 X1 X2
3

⎤
⎦ .

3.44 Evaluate the compatibility conditions ∇0 × (∇0 ×E)T = 0 in cylindrical coordinates.

3.45 Given the infinitesimal strain components

ε11 = f(X2, X3), ε22 = ε33 = −νf(X2, X3), ε12 = ε13 = ε23 = 0,

determine the form of f(X2, X3) in order that the strain field is compatible.

3.46 Given the strain tensor E = Errêrêr +Eθθêθêθ in an axisymmetric body (i.e., Err and

Eθθ are functions of r and z only), determine the compatibility conditions on Err and

Eθθ. Hint: See Example 2.5.1.

Rigid-Body Motion and Objectivity

3.47 Determine the effect of the superposed rigid-body motion on the left Cauchy–Green
deformation tensor B = F · FT.

3.48 If Q(t) is an orthogonal tensor-valued function of a scalar t [i.e., Q−1 = QT], show that
Q̇ ·QT = −(Q̇ ·QT)T. That is, show that Q̇ ·QT is skew symmetric.

3.49 Show that the spin tensor W under superposed rigid-body motion becomes

W∗ = Q ·W ·QT +Ω,

where Ω is the skew symmetric rotation tensor, Ω = Q̇ ·QT [see also Eq. (3.8.19)].

3.50 Suppose that the second-order tensor T is objective in the sense that it satisfies the
condition T∗ = Q ·T ·Q, where quantities with and without an asterisk belong to two
different frames of reference. Then show that the following second-order tensor S is
objective (i.e., show that S∗ = S):

S = F−1 ·T · F−T,

where Q is a proper orthogonal tensor.

3.51 Prove or disprove if the following second tensor satisfies objectivity:

T = S ·U+U · S,
where S∗ = R · S · RT, U = RT · F is the right Cauchy stretch tensor, and F is the
deformation gradient.

3.52 Using the transformation rule F∗ = Q ·F, show that the Euler stain tensor e transforms
according to the rule under superposed rigid-body motion

e∗ = Q · e ·QT.

3.53 Show that the spatial gradient of a vector u(x, t) is objective, that is, prove

∇∗u∗(x∗, t∗) = Q(t) ·∇u(x, t) ·QT(t).

3.54 Show that the material time derivatives of objective vector and tensor fields, u and S,

are not objective.

Polar Decomposition

3.55 Establish the uniqueness of the decomposition F = R · U = V · R. For example, if
F = R1 ·U1 = R2 ·U2, then show that R1 = R2 and U1 = U2.

3.56 Show that the eigenvalues of the left and right Cauchy stretch tensors U and V are the
same and that the eigenvector of V is given by R · n, where n is the eigenvector of U.
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3.57 (a) If λ is the eigenvalue and n is the eigenvector of U, show that the eigenvalue of C
is λ2 and the eigenvector is the same as that of U. (b) Show that a line element in the
principal direction n of C becomes an element in the direction of R ·n in the deformed
configuration.

3.58 Show that the spin tensor W can be written as

2W = 2Ṙ ·RT +R ·
(
U̇ ·U−1 −U−1 · U̇

)
·RT,

where R is the (proper) orthogonal rotation tensor R−1 = RT and U is the symmetric
positive-definite right Cauchy stretch tensor. Also show that for rigid-body motion, one
has W = Ṙ ·RT.

3.59 Prove the symmetry and positive-definiteness of the right Cauchy–Green deformation
tensor C = FT · F.

3.60 Calculate
√
C when

[C] =

⎡
⎣ 3 2 0
2 3 0
0 0 9

⎤
⎦ .

3.61 Given that

[F ] =
1

5

[
2 −5

11 2

]
,

determine the right and left stretch tensors.

3.62 Given that

[F ] =

⎡
⎣
√
3 1 0
0 2 0
0 0 1

⎤
⎦ ,

determine the right and left stretch tensors.

3.63 Calculate the left and right Cauchy stretch tensors U and V associated with F of
Problem 3.11 for the choice of A = 2 and B = 0.
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4

STRESS MEASURES
Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed

in a language comprehensible to everyone. —– Albert Einstein (1879–1955)

4.1 Introduction

In the beginning of Chapter 3, we briefly discussed the need for studying de-
formations and stresses in material systems that we may design for engineering
applications. All materials have certain thresholds to withstand forces, beyond
which they “fail” to perform their intended function. The force per unit area,
called stress, is a measure of the capacity of the material to carry loads, and all
designs are based on the criterion that the materials used have the capacity to
carry the working loads of the system. Thus, it is necessary to determine the
state of stress in a material.

In this chapter we study the concept of stress and its various measures. For
instance, stress can be measured per unit deformed area or undeformed area.
As we shall see shortly, stress at a point in a three-dimensional continuum can
be measured in terms of nine quantities, three per plane, on three mutually
perpendicular planes at the point. These nine quantities may be viewed as
the components of a second-order tensor, called a stress tensor. Coordinate
transformations and principal values associated with the stress tensor and stress
equilibrium equations are also discussed.

4.2 Cauchy Stress Tensor and Cauchy’s Formula

4.2.1 Stress Vector

First we introduce the true stress, that is, the stress in the deformed configu-
ration κ that is measured per unit area of the deformed configuration κ. The
surface force acting on a small element of (surface) area in a continuous medium
depends not only on the magnitude of the area but also on the orientation of
the area. It is customary to denote the direction of a plane area by means of a
unit vector drawn normal to that plane. The direction of the normal is taken
by convention as that in which a right-handed screw advances as it is rotated
according to the direction of travel along the boundary curve or contour. Let
the unit normal vector be denoted by n̂. Then the area is expressed as A = An̂.

If we denote by df(n̂) the force on a small area n̂ da located at position x,
the stress vector can be defined, shown graphically in Fig. 4.2.1, as

t(n̂) = lim
Δa→0

Δf(n̂)

Δa
. (4.2.1)
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Fig. 4.2.1: Cuts through a point of a material body by planes of different orientations. The
figure also shows a stress vector on a plane whose normal is n̂.

We see that the stress vector t is a point function of the unit normal n̂, which
denotes the orientation of the plane on which t acts. Because of Newton’s third
law for action and reaction, we see that t(−n̂) = −t(n̂). It is fruitful to establish
a relationship between t and n̂.

4.2.2 Cauchy’s Formula

To establish the relationship between t and n̂ for the infinitesimal deformation1,
we set up an infinitesimal tetrahedron in Cartesian coordinates. The tetrahedron
can come either from an interior point or from a boundary point, as indicated in
Fig. 4.2.2(a). If −t1,−t2,−t3, and t denotes the stress vectors in the outward
directions on the faces of the infinitesimal tetrahedron whose areas are Δa1,
Δa2, Δa3, and Δa, respectively, as shown in Fig. 4.2.2(b) (i.e., −tj acts on the
plane perpendicular to the negative xj-axis), we have by Newton’s second law
for the mass inside the tetrahedron,

tΔa− t1Δa1 − t2Δa2 − t3Δa3 + ρΔv f = ρΔv a, (4.2.2)

where Δv is the volume of the tetrahedron, ρ is the density, f is the body force
per unit mass, and a is the acceleration. Because the total vector area of a
closed surface is zero (by the gradient theorem), we have

Δa n̂−Δa1 ê1 −Δa2 ê2 −Δa3 ê3 = 0. (4.2.3)

It follows that

Δa1 = (ê1 · n̂)Δa, Δa2 = (ê2 · n̂)Δa, Δa3 = (ê3 · n̂)Δa. (4.2.4)

1The Cauchy formula can be established for the finite deformation case by considering a tetra-
hedron with curved faces.
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Fig. 4.2.2: A tetrahedral element with stress vectors on all its faces.

The volume of the element Δv can be expressed as

Δv =
Δh

3
Δa, (4.2.5)

where Δh is the perpendicular distance from the origin to the slant face.
Substitution of Eqs. (4.2.4) and (4.2.5) into Eq. (4.2.2) and dividing through-

out by Δa yields

t = t1(ê1 · n̂) + t2(ê2 · n̂) + t3(ê3 · n̂) + ρΔh
3 (a− f). (4.2.6)

In the limit as the tetrahedron is shrunk to a point, Δh → 0, we obtain

t = t1(ê1 · n̂) + t2(ê2 · n̂) + t3(ê3 · n̂) = ti(êi · n̂). (4.2.7)

4.2.3 Cauchy Stress Tensor

It is convenient to display Eq. (4.2.7) as

t = (t1 ê1 + t2 ê2 + t3 ê3) · n̂. (4.2.8)

The terms in the parentheses should be treated as a dyadic, called stress dyadic
or stress tensor (because its components transform like a second-order tensor),
denoted σ:

σ ≡ t1 ê1 + t2 ê2 + t3 ê3 = tj êj . (4.2.9)
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The stress tensor is a property of the medium that is independent of the unit
outward normal vector n̂. Thus, from Eqs. (4.2.8) and (4.2.9), we have

t(n̂) = σ · n̂ = n̂ · σT (ti = σij nj), (4.2.10)

and the dependence of t on n̂ has been explicitly displayed. Equation (4.2.10) is
known as the Cauchy stress formula, and σ is termed the Cauchy stress tensor.
Thus, the Cauchy stress tensor σ is defined to be the current force per unit
deformed area, df = t da = σ · da, where Cauchy’s formula, t = σ · n̂, and
da = n̂ da are used.

In Cartesian component form, the Cauchy formula in Eq. (4.2.10) can be
written as ti = σijnj , and it can be expressed in matrix form as⎧⎨

⎩
t1
t2
t3

⎫⎬
⎭ =

⎡
⎣σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦
⎧⎨
⎩

n1

n2

n3

⎫⎬
⎭ . (4.2.11)

It is useful to resolve the stress vectors t1, t2, and t3 into their orthogonal
components in a rectangular Cartesian system:

tj = ê1 σ1j + ê2 σ2j + ê3 σ3j = êi σij , j = 1, 2, 3. (4.2.12)

Hence, the stress tensor can be expressed in the Cartesian basis as

σ = tj êj = σij êiêj . (4.2.13)

The component σij represents the stress in the xi-coordinate direction and on a
plane perpendicular to the xj coordinate, as shown in Fig. 4.2.3 on the faces of
a point cube (i.e., the faces of the cube can be imagined as the planes passing
through a point). We note that the symmetry of σ is not assumed.

The stress tensor can be expressed in any coordinate system. For example,
in the cylindrical coordinate system, the nonion form of σ is (see Fig. 4.2.4)

σ = σrrêrêr + σrθêrêθ + σθrêθêr + σrzêrêz + σzrêzêr

+ σθθêθêθ + σθzêθêz + σzθêzêθ + σzzêzêz. (4.2.14)

t3

t2

t1

1x

2x

3x

t e
t e e e
ˆ ,

ˆ ˆ ˆ
j i ij

j j ij i j
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22

32

33
23

13

11

21
31

t e e e2 1 12 2 22 3 32ˆ ˆ ˆ

t e e e1 1 11 2 21 3 31ˆ ˆ ˆ

t e e e3 1 13 2 23 3 33ˆ ˆ ˆ

1ê

3ê

2ê

Fig. 4.2.3: Display of stress components in Cartesian rectangular coordinates.
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Fig. 4.2.4: Display of stress components in cylindrical coordinates.

Note that t(n̂), in general, is not in the direction of n̂. The component of t
that is in the direction of n̂ is called the normal stress. The component of t that
is normal to n̂ (i.e., the component lies in the surface) is termed the (projected)
shear stress. According to the vector identity in Eq. (2.2.26), the stress vector
t can be represented as the sum of vectors along and perpendicular to the unit
normal vector n̂, as shown in Fig. 4.2.5:

t = (t · n̂)n̂+ n̂× (t× n̂) ≡ tnn + tns. (4.2.16)

Stress vectors on a plane are called traction vectors. The traction vector tnn
normal to the plane and its magnitude tnn are

tnn = (t · n̂)n̂; tnn = t · n̂ = tini = nj σji ni = σij ni nj , (4.2.17)

and the shear traction vector tns (i.e., projection of t along the plane) and its
magnitude tns are

tns = t− tnn; |tns| = tns =
√

|t|2 − t2nn . (4.2.18)

The tangential component lies in the n̂ − t plane but perpendicular to n̂, as
shown in Fig. 4.2.5. Example 4.2.1 illustrates the ideas presented here.

nt t tˆ( )
nn ns

nt t n nˆ( ) ˆ ˆ( )nn
n̂

n

n

t n t n
t t

ˆ( )

ˆ( )

ˆ ˆ( )ns

nn

x •

Fig. 4.2.5: The normal and shear stress vectors at a point x on a plane.
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Example 4.2.1

With reference to a rectangular Cartesian system (x1, x2, x3), the components of the stress
dyadic at a certain point of a continuous medium B are given by (see Fig. 4.2.6)

[σ] =

⎡
⎣ 200 400 300
400 0 0
300 0 −100

⎤
⎦ psi.

Determine the stress vector t and its normal and tangential components at the point on the
plane, φ(x1, x2, x3) ≡ x1 + 2x2 + 2x3 = constant, which is passing through the point.

Solution: First, we should find the unit normal to the plane on which we are required to find
the stress vector. The unit normal to the plane defined by φ(x1, x2, x3) = constant is

n̂ =
∇φ

|∇φ| =
1
3
(ê1 + 2ê2 + 2ê3).

The components of the stress vector are⎧⎨
⎩

t1
t2
t3

⎫⎬
⎭ =

⎡
⎣ 200 400 300
400 0 0
300 0 −100

⎤
⎦ 1

3

⎧⎨
⎩

1
2
2

⎫⎬
⎭ =

1

3

⎧⎨
⎩

1600
400
100

⎫⎬
⎭ psi,

or
t(n̂) = 100

3
(16 ê1 + 4 ê2 + ê3) psi.

The traction vector normal to the plane is given by

tnn = (t(n̂) · n̂)n̂ = 2600
9

n̂ = 2600
27

(ê1 + 2ê2 + 2ê3) psi,

and the traction vector projected onto the plane (i.e., shear traction) is given by

tns = t(n̂)− tnn = 100
27

(118ê1 − 16ê2 − 43ê3) psi.

The magnitudes are

|tnn| = tnn = 2600
9

= 288.89 psi, |tns| = tns = 468.91 psi.

One can also determine tns from

tns =
√

|t|2 − t2nn = 100
9

√
(256 + 16 + 1)9− 26× 26 psi = 468.91 psi.

21 400 psiσ

11 200 psiσ

31 300 psiσ
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22 0 psiσ

32 0 psiσ
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23 0 psiσ
13 300 psiσ
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1x

2x3x
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•
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P

n̂ )ˆ(nt
n̂

P

ˆn nnt=t n
ˆs ns st=t e ˆ( ) ˆnt nnnt = ⋅•

Fig. 4.2.6: Stress vector and its normal and shear components.
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4.3 Transformations of Stress Components and
Principal Stresses

4.3.1 Transformation of Stress Components

Since the Cauchy stress tensor σ is a second-order tensor, all of the properties
of a second-order tensor that were discussed in Chapter 2 apply. In particular,
we can define the principal invariants I1, I2, and I3; transformation laws for the
components of σ; and eigenvalues (principal values) and eigenvectors (principal
planes) of the Cauchy stress tensor.

4.3.1.1 Invariants

The invariants of stress tensor σ are defined by [see Eqs. (2.5.16) and (2.5.17)]

I1 = tr [σ], I2 =
1
2

[
(tr [σ])2 − tr ([σ]2)

]
, I3 = |σ|, (4.3.1)

and in terms of the rectangular Cartesian components

I1 = σii, I2 =
1
2 (σii σjj − σij σji) , I3 = |σ|. (4.3.2)

4.3.1.2 Transformation equations

The components of the Cauchy stress tensor σ in one rectangular Cartesian
coordinate system (x̄1, x̄2, x̄3) are related to the components in another rectan-
gular Cartesian system (x1, x2, x3) according to the transformation law in Eq.
(2.5.21):

σ̄ij = �ik �j� σk� or [σ̄] = [L][σ][L]T, (4.3.3)

where �ij are the direction cosines

�ij = ˆ̄ei · êj . (4.3.4)

In Examples 4.3.1 and 4.3.2, symmetry of the stress tensor, which will be
established in Chapter 5, is used in deriving the stress transformation equations
(4.3.7) and (4.3.8) for a special coordinate transformation, whereas Eq. (4.3.3)
is valid for the rectangular components of any second-order tensor and for a
general coordinate transformation.

Example 4.3.1

Consider a rectangular, unidirectional fiber-reinforced composite layer shown in Fig. 4.3.1,
where the fibers are symbolically shown as black lines. The rectangular coordinates (x, y, z)
are taken such that the z-coordinate is normal to the plane of the layer, and the x and y
coordinates are in the plane of the layer but parallel to the edges of the layer. Now suppose we
define a new rectangular coordinate system (x1, x2, x3) such that the x3-coordinate coincides
with the z-coordinate and the x1-axis is taken along the fiber direction; that is, the x1x2-plane
is obtained by rotating the xy-plane about the z-axis in a counterclockwise direction by an
angle θ. Determine the relations between the stress components referred to the (x, y, z) system
and those referred to the coordinates system (x1, x2, x3).

Solution: The coordinates of a material point in the two coordinate systems are related as
follows (z = x3):
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3xz=

θ

θ

yx
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Fig. 4.3.1: Stress components in a fiber-reinforced layer referred to different rectangular
Cartesian coordinate systems: (x, y, z) are parallel to the sides of the rectangular lamina, while
(x1, x2, x3) are taken along and transverse to the fiber direction.

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦
⎧⎨
⎩

x
y
z

⎫⎬
⎭ = [L]

⎧⎨
⎩

x
y
z

⎫⎬
⎭ . (4.3.5)

Next, we establish the relationship between the components of stress in the (x, y, z) and
(x1, x2, x3) coordinate systems. Let σij be the components of the stress tensor σ in the
(x1, x2, x3) coordinate system, and σxx, σyy, σxy, etc. be the stress components in the (x, y, z)
coordinate system. If we view (x1, x2, x3) as the barred coordinate system, then 
ij are the
direction cosines defined by


ij = ˆ̄ei · êj ,

where ˆ̄ei and êi are the orthonormal basis vectors in coordinate systems (x1, x2, x3) and (x, y, z),
respectively. Then using Eq. (4.3.3), we can write

[σ̄] = [L][σ][L]T , [σ] = [L]T[σ̄][L], (4.3.6)

where [L] is the 3 × 3 matrix of direction cosines defined in Eq. (4.3.5). Carrying out the
indicated matrix multiplications in Eq. (4.3.6) and rearranging the equations in terms of the
column vectors of stress components (σxy = σyx, σxz = σzx, σyz = σzy, σ12 = σ21, σ13 = σ31,
and σ23 = σ32), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 sin 2θ
sin2 θ cos2 θ 0 0 0 − sin 2θ
0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− 1
2
sin 2θ 1

2
sin 2θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σxz

σxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (4.3.7)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σxz

σxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ
0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

1
2
sin 2θ − 1

2
sin 2θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4.3.8)

The result in Eq. (4.3.8) can also be obtained from Eq. (4.3.7) by replacing θ with −θ.

Example 4.3.2

Consider a thin, closed, filament-wound circular cylindrical pressure vessel shown in Fig. 4.3.2.
The vessel has an internal diameter Di = 63.5 cm (25 in.) and thickness h = 2 cm, and is
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pressurized to p = 1.379 MPa (200 psi). If the filament winding angle is θ = 53.13◦ from the
longitudinal axis of the pressure vessel, determine the shear and normal forces per unit length
of the filament winding. Assume that the material used is graphite–epoxy with the following
material properties [material properties are not needed to solve the problem; see Reddy (2004)]:

E1 = 140 MPa (20.3× 106 psi), E2 = 10 MPa (1.45× 106 psi),

G12 = 7 MPa (1.02× 106 psi), ν12 = 0.3,
(4.3.9)

where MPa denotes mega (106) Pascal (Pa) and Pa = N/m2 (1 psi = 6,894.76 Pa).
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Fig. 4.3.2: A filament-wound cylindrical pressure vessel.

Solution: First, we compute the stresses in the pressure vessel using the formulas from a book
on mechanics of materials [see, e.g., Fenner and Reddy (2012)]. The longitudinal (σxx) and
circumferential (σyy) stresses are given by (the shear stress σxy is zero)

σxx =
pDi

4h
, σyy =

pDi

2h
, (4.3.10)

where p is internal pressure, Di is the internal diameter, and h is the thickness of the pressure
vessel. Note that the stresses are independent of material properties and depend only on the
geometry and loads. We calculate the longitudinal and circumferential stresses to be

σxx =
1.379× 0.635

4× 0.02
= 10.946 MPa , σyy =

1.379× 0.635

2× 0.02
= 21.892 MPa.

Next, we determine the shear stress σ12 along the fiber–matrix interface and the normal
stress σ11 in the fiber direction using the transformation equations in Eq. (4.3.7). Noting that
sin θ = 0.8, cos θ = 0.6, and sin 2θ = 0.96 for θ = 53.13◦, we obtain

σ11 = 10.946× (0.6)2 + 21.892× (0.8)2 = 17.951 MPa,

σ22 = 10.946× (0.8)2 + 21.892× (0.6)2 = 14.886 MPa,

σ12 = 1
2
(21.892− 10.946)× 0.96 = 5.254 MPa.

Thus, the normal and shear forces per unit length along the fiber–matrix interface are F22 =
14.886h MN and F12 = 5.254h MN, whereas the force per unit length in the fiber direction is
F11 = 17.951h MN (MN= 106N).
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4.3.2 Principal Stresses and Principal Planes

For a given state of stress, the determination of maximum normal stresses and
shear stresses at a point is of considerable interest in the design of structures
because failures occur when the magnitudes of stresses exceed the allowable
(normal or shear) stress values, called strengths, of the material. In this regard
it is of interest to determine the values and the planes on which the stresses
are the maximum. Thus, we must determine the eigenvalues and eigenvectors
associated with the stress tensor (see Section 2.5.6 for details).

It is clear from Fig. 4.2.5 that the normal component of a stress vector is
largest when t is parallel to the unit outward normal n̂; that is, tn = t = |t|n̂.
This amounts to finding the plane (i.e., n̂) on which tn is largest. It turns out
there are three such planes on which the normal stress is the largest (and the
projected shear stress is zero). If we denote this value of the normal stress by λ,
then we can write t = λn̂, and by Cauchy’s formula, t = σ · n̂. Thus, we have

t = σ · n̂ = λn̂ or (σ − λI) · n̂ = 0. (4.3.11)

This is a homogeneous set of equations for the components of vector n̂; hence, a
nontrivial solution will not exist unless the determinant of the matrix [σ]− λ[I]
vanishes. The vanishing of this determinant yields a cubic equation for λ, called
the characteristic equation [see Eq. (2.5.42)]:

−λ3 + I1λ
2 − I2λ+ I3 = 0. (4.3.12)

The solution of this cubic equation yields three values of λ, which are called
the principal stresses, and the associated eigenvectors are called the principal
planes. That is, for a given state of stress at a given point in the body B, there
exists a set of planes n̂ on which the stress vector is normal to the planes (i.e.,
there is no shear component on the planes).

The computation of the eigenvalues of the stress tensor is made easy by
seeking the eigenvalues of the deviatoric stress tensor [see Eq. (2.5.53)]:

σ′ = σ − 1
3tr(σ) I

(
σ′
ij ≡ σij − 1

3σkk δij
)
. (4.3.13)

Let σm denote the mean normal stress

σm = 1
3tr [σ] =

1
3I1 (σm = 1

3σkk). (4.3.14)

Then the stress tensor can be expressed as the sum of the spherical or the
hydrostatic part and the deviatoric part of the stress tensor:

σ = σmI+ σ
′
. (4.3.15)

Thus, the deviatoric stress tensor is defined by

σ
′
= σ − 1

3I1I (σ
′
ij = σij − 1

3δijσkk). (4.3.16)

The invariants I
′
1, I

′
2, and I

′
3 of the deviatoric stress tensor are

I
′
1 = 0, I

′
2 =

1
2σ

′
ijσ

′
ij , I

′
3 =

1
3σ

′
ij σ

′
jk σ

′
ki. (4.3.17)
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The deviatoric stress invariants are particularly important in the determination
of the principal stresses, as discussed in Section 2.5.6. Example 4.3.3 illustrates
the computation of principal stresses and principal planes.

Example 4.3.3

The components of a stress dyadic at a point, referred to the (x1, x2, x3) system, are:

[σ] =

⎡
⎣ 12 9 0

9 −12 0
0 0 6

⎤
⎦MPa.

Find the principal stresses and the principal plane associated with the maximum stress.

Solution: Clearly, λ = 6 is an eigenvalue. Expanding the determinant |σ − λ I| with the last
row or column, we obtain

(6− λ)[(12− λ)(−12− λ)− 81] = 0 ⇒ (λ2 − 225)(6− λ) = 0.

The remaining two eigenvalues are obtained from λ2 − 225 = 0 → λ = ±15; thus, the three
principal stresses are

σ1 = λ1 = 15MPa, σ2 = λ2 = 6MPa, σ3 = λ3 = −15MPa.

The plane associated with the maximum principal stress λ1 = 15 MPa can be calculated
from ⎡

⎣ 12− 15 9 0
9 −12− 15 0
0 0 6− 15

⎤
⎦
⎧⎨
⎩

n1

n2

n3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

which gives

−3n1 + 9n2 = 0, 9n1 − 27n2 = 0, −9n3 = 0 → n3 = 0, n1 = 3n2

n(1) = 3ê1 + ê2 or n̂(1) = 1√
10

(
3ê1 + ê2

)
.

The eigenvector associated with λ2 = 6 MPa is n(2) = ê3. Finally, the eigenvector associated
with λ3 = −15 MPa is

n(3) = ±(ê1 − 3ê2

)
or n̂(3) = ± 1√

10

(
ê1 − 3ê2

)
.

The principal plane 1 is depicted in Fig. 4.3.3.
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Fig. 4.3.3: Stresses on a point cube at the point of interest and orientation of the first principal
plane.
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4.3.3 Maximum Shear Stress

In the previous section, we studied the procedure to determine the maximum
normal stresses at a point. The eigenvalues of the stress tensor at the point are
the maximum normal stresses on three perpendicular planes (whose normals are
the eigenvectors), and the largest of these three stresses is the true maximum
normal stress. Recall that the shear stresses are zero on the principal planes. In
this section, we wish to determine the maximum shear stresses and their planes.

Let λ1, λ2, and λ3 denote the principal (normal) stresses and n̂ be an arbi-
trary unit normal vector. Then the stress vector is t = λ1n1ê1+λ2n2ê2+λ3n3ê3
and tnn = tini = λ1n

2
1 + λ2n

2
2 + λ3n

2
3. The square of the magnitude of the shear

stress on the plane with unit normal n̂ is given by

t2ns(n̂) = |t|2 − t2nn = λ2
1n

2
1 + λ2

2n
2
2 + λ2

3n
2
3 −

(
λ1n

2
1 + λ2n

2
2 + λ3n

2
3

)2
. (4.3.18)

We wish to determine the plane n̂ on which tns is the maximum. Thus, we
seek the maximum of the function F (n1, n2, n3) = t2ns(n1, n2, n3) subject to the
constraint

n2
1 + n2

2 + n2
3 − 1 = 0. (4.3.19)

One way to determine the extremum of a function subjected to a constraint
is to use the Lagrange multiplier method, in which we seek the stationary value
of the modified function

FL(n1, n2, n3) = t2ns(n1, n2, n3) + λL

(
n2
1 + n2

2 + n2
3 − 1

)
, (4.3.20)

where λL is the Lagrange multiplier, which is to be determined along with n1,
n2, and n3. The necessary condition for the stationarity of FL is

0 = dFL =
∂FL

∂n1
dn1 +

∂FL

∂n2
dn2 +

∂FL

∂n3
dn3 +

∂FL

∂λL
dλL,

or, because the increments dn1, dn2, dn3, and dλL are linearly independent of
each other, we have

∂FL

∂n1
= 0,

∂FL

∂n2
= 0,

∂FL

∂n3
= 0,

∂FL

∂λL
= 0. (4.3.21)

The last of the four relations in Eq. (4.3.21) is the same as that in Eq. (4.3.19).
The remaining three equations in Eq. (4.3.21) yield the following two sets of
solutions (not derived here):

(n1, n2, n3) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (4.3.22)

(n1, n2, n3) =
(

1√
2
,± 1√

2
, 0

)
,

(
1√
2
, 0,± 1√

2

)
,

(
0, 1√

2
,± 1√

2

)
. (4.3.23)

The first set of solutions corresponds to the principal planes, on which the shear
stresses are the minimum, namely zero. The second set of solutions corresponds
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to the maximum shear stress planes. The maximum shear stresses on the planes
are given by

t2ns =
1
4

(
λ1 − λ2

)2
for n̂ = 1√

2

(
ê1 ± ê2

)
,

t2ns =
1
4

(
λ1 − λ3

)2
for n̂ = 1√

2

(
ê1 ± ê3

)
,

t2ns =
1
4

(
λ2 − λ3

)2
for n̂ = 1√

2

(
ê2 ± ê3

)
.

(4.3.24)

The largest shear stress is given by the largest of the three values given above.
Thus, we have

(tns)max = 1
2

(
λmax − λmin

)
, (4.3.25)

where λmax and λmin are the maximum and minimum principal values of stress,
respectively. The plane of the maximum shear stress lies between the planes of
the maximum and minimum principal stresses (i.e., oriented at ±45◦ to both
planes).

Example 4.3.4

For the state of stress given in Example 4.3.3, determine the maximum shear stress.

Solution: From Example 4.3.3, the principal stresses are (ordered from the minimum to the
maximum)

λ1 = −15MPa, λ2 = 6MPa, λ3 = 15MPa.

Hence, the maximum shear stress is given by

(tns)max = 1
2

(
λ3 − λ1

)
= 1

2

[
15− (−15)

]
= 15MPa.

The planes of the maximum principal stress (λ1 = 15 MPa) and the minimum principal stress
(λ3 = −15 MPa) are given by their normal vectors (not unit vectors):

n(1) = 3ê1 + ê2, n(3) = ê1 − 3ê2.

Then the plane of the maximum shear stress is given by the vector

ns =
(
n(1) − n(3)) = 2ê1 + 4ê2 or n̂s = 1√

5

(
ê1 + 2ê2

)
.

n̂
1 15 MPast

1x
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1ê
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Fig. 4.3.4: Stresses on a point cube at the point of interest and orientation of the maximum
shear stress plane.
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4.4 Other Stress Measures

4.4.1 Preliminary Comments

The Cauchy stress tensor is the most natural and physical measure of the state
of stress at a point in the deformed configuration and, measured per unit area
of the deformed configuration. It is the quantity most commonly used in spatial
descriptions of problems in fluid mechanics. In order to use the Lagrangian
description, which is common in solid mechanics, the equations of motion or
equilibrium of a material body that are derived in the deformed configuration
must be expressed in terms of the known reference configuration. In doing so we
introduce various other measures of stress. These measures emerge in a natural
way as we transform volumes and areas from the deformed configuration to the
reference configuration. These measures are purely mathematical in nature but
facilitate the analysis.

4.4.2 First Piola–Kirchhoff Stress Tensor

Consider a continuum B subjected to a deformation mapping χ that results in
the deformed configuration κ, as shown in Fig. 4.4.1. Let the force vector on
an elemental area da with normal n̂ in the deformed configuration be df . The
force df can be expressed in terms of a stress vector t times the deformed area
da as

df = t(n) da = σ · n̂ da = σ · da, (4.4.1)

where σ is the Cauchy stress tensor, and Cauchy’s formula (4.2.10) is invoked in
arriving at the last result. Now suppose that the area element in the undeformed
configuration that corresponds to da is dA. We define a stress vector T(N) over
the area element dA with normal N in the undeformed configuration such that
it results in the same total force

df = t(n) da = T(N)dA. (4.4.2)

Clearly, both stress vectors have the same direction but different magnitudes
owing to the different areas. The stress vector T(N) is measured per unit unde-
formed area, while the stress vector t(n) is measured per unit deformed area.

Analogous to Cauchy’s formula relating the Cauchy stress tensor σ to the
stress vector t(n), we can introduce a stress tensor P, called the first Piola–
Kirchhoff stress tensor, to the stress vector T(N); that is

t(n) = σ · n̂; T(N) = P · N̂. (4.4.3)

Then using Eq. (4.4.2) and Cauchy’s formulas for t(n) and T(N), we can write

df = σ · da = P · dA; da = da n̂, dA = dA N̂. (4.4.4)

The first Piola–Kirchhoff stress tensor, also referred to as the nominal stress
tensor or Lagrangian stress tensor, gives the current force per unit undeformed
area.
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n̂

da

N̂

dA

f t n aˆd da da d= = ⋅ = ⋅σ σf T P N P Aˆd dA dA d= = ⋅ = ⋅

X( )χ

Undeformed body Deformed body

Fig. 4.4.1: Definition of the first Piola–Kirchhoff stress tensor.

The stress vector T(N) is known as the pseudo stress vector associated with
the first Piola–Kirchhoff stress tensor. The Cartesian component representation
of tensor P is given by

P = PiI êi ÊI . (4.4.5)

Clearly, the first Piola–Kirchhoff stress tensor is a two-point tensor (like F) in
the sense that it connects a point in the undeformed body to the corresponding
point in the deformed body.

To express the first Piola–Kirchhoff stress tensor P in terms of the Cauchy
stress tensor σ, we must write da in terms of dA. From Nanson’s formula in
Eq. (3.3.25), we recall such a relation between da in terms of dA:

da = J F−T · dA = J dA · F−1, (4.4.6)

where J is the Jacobian, J = |F|. Substituting the relation into Eq. (4.4.4), we
obtain

P · dA = σ · da = J σ · F−T · dA. (4.4.7)

Thus, we arrive at the relation

P = Jσ · F−T or σ =
1

J
P · FT. (4.4.8)

In general, the first Piola–Kirchhoff stress tensor P is unsymmetric even when
the Cauchy stress tensor σ is symmetric (which is not yet established).

4.4.3 Second Piola–Kirchhoff Stress Tensor

Similar to the relationship between dx and dX, dX = F−1 · dx, the force df
on the deformed elemental area da can be related, by analogy to the relation
between dx and dX, to a force dF on the undeformed elemental area dA by

dF = F−1 · df . (4.4.9)

Then we can think of the existence of a stress tensor S, in the same way as in
Eq. (4.4.1), such that

dF = S · dA, (4.4.10)
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where S is called the second Piola–Kirchhoff stress tensor S. Thus, the sec-
ond Piola–Kirchhoff stress tensor S gives the transformed current force per unit
undeformed area.

The second Piola–Kirchhoff stress tensor S can be related to the first Piola-
Kirchhoff stress tensor P with the help of Eqs. (4.4.4), (4.4.9), and (4.4.10)
as

S = F−1 ·P. (4.4.11)

The relation between S and σ can also be established using Eqs. (4.4.4), (4.4.6),
(4.4.9), and (4.4.10) as

S · dA = F−1 · σ · da = J F−1 · σ · F−T · dA,

or

S = J F−1 · σ · F−T or σ =
1

J
F · S · FT. (4.4.12)

Clearly, S is symmetric (i.e., S = ST) whenever σ is symmetric. Cartesian
component representation of the tensor S is

S = SIJ ÊI ÊJ . (4.4.13)

All of the discussion in Section 4.3 concerning the transformation of components
and determination of eigenvalues and eigenvectors is valid for S.

We can introduce the pseudo stress vector T̃ associated with the second
Piola–Kirchhoff stress tensor by

dF = T̃ dA = S · N̂ dA = S · dA or T̃ = S · N̂. (4.4.14)

An interpretation of the second Piola–Kirchhoff stress tensor is possible in
the case of rigid-body motion, for which the polar decomposition theorem gives
F = R and J = 1. Hence, we have

S = J F−1 · σ · F−T = RT · σ ·R, (4.4.15)

which resembles the stress transformation equation (4.3.3). That is, the second
Piola–Kirchhoff stress components are the same as the components of the Cauchy
stress tensor expressed in the local set of orthogonal axes that are obtained from
rotating the global Cartesian coordinates by the rotation matrix [L] = [R]T.

We close this section with an example that illustrates the meaning of the first
and second Piola–Kirchhoff stress tensors and the computation of the first and
second Piola–Kirchhoff stress tensor components from the Cauchy stress tensor
components [see Hjelmstad (1997)].

Example 4.4.1

Consider a bar of cross-sectional area A = bH and length L. The initial configuration of the
bar is such that its longitudinal axis is along the X1 axis, as shown in Fig. 4.4.2(a). Suppose
that the bar is subjected to uniaxial tensile stress that produces a pure stretch λ along the
length and a pure stretch μ along the height of the bar and then rotates it, without bending,
by an angle θ, as shown in Fig. 4.4.2(a). Assume that the width b of the bar does not change
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during the deformation. Therefore, μ denotes the ratio of deformed to undeformed height (or
cross-sectional area) of the bar. Determine (a) the deformation mapping and the components
of the deformation gradient and (b) the components of the Cauchy stress tensor as well as the
first and second Piola–Kirchhoff stress tensors.

Solution: (a) We use the deformed geometry to determine the deformation mapping. We have
from Fig. 4.4.2(b),

χ(X) =
(
λX1 cos θ − μX2 sin θ

)
ê1 +

(
λX1 sin θ + μX2 cos θ

)
ê2 +X3 ê3.

The ratio of volume in the deformed to undeformed configuration is (λLμH b)/(LHb) = μλ.
The components of the deformation gradient and its inverse are

[F ] =

⎡
⎣ λ cos θ −μ sin θ 0
λ sin θ μ cos θ 0

0 0 1

⎤
⎦ , [F ]−1 =

1

J

⎡
⎣ μ cos θ μ sin θ 0
−λ sin θ λ cos θ 0

0 0 λμ

⎤
⎦ ,

and the Jacobian is equal to J = μλ, which is the ratio of volumes in the deformed and
undeformed configurations (i.e., v = J V ).

(b) The unit vector normal to the undeformed cross-sectional area is N̂ = Ê1, and the unit
vector normal to the cross-sectional area of the deformed configuration is

n̂ = cos θ ê1 + sin θ ê2.

The Cauchy stress tensor is σ = σ0 n̂n̂ and associated stress vector is t = σ0 n̂, as shown in
Fig. 4.4.3(a). The components of the Cauchy stress tensor are

[σ] =

⎧⎨
⎩

cos θ
sin θ
0

⎫⎬
⎭ σ0

{
cos θ sin θ 0

}
= σ0

⎡
⎣ cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 0

⎤
⎦ .

1 1,X x

2 2,X x

n̂− ⋅σ e1ˆ

e2ˆ
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Lλ

L

t n0 ˆσ=

E1
ˆ

E2
ˆ
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1 1,X x

2 2,X x

e1ˆ L
E1
ˆ

e2ˆE2
ˆ
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Undeformed area, A bH=
H

b

θ
• X

1Xλ

Hμ
Lλ

•x

θ•2Xμ

(a)

(b)

Fig. 4.4.2: (a) Undeformed and (b) deformed configurations of the bar of Example 4.4.1.
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The components of the first Piola–Kirchhoff stress tensor are computed using Eq. (4.4.8)

[P ] = J [σ][F ]−T = σ0

⎡
⎣ cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 0

⎤
⎦
⎡
⎣μ cos θ −λ sin θ 0
μ sin θ λ cos θ 0

0 0 λμ

⎤
⎦

= μσ0

⎡
⎣ cos θ 0 0
sin θ 0 0
0 0 0

⎤
⎦ .

Clearly, the matrix representing P is not symmetric. The first Piola–Kirchhoff stress tensor is

P = μσ0

⎧⎨
⎩

ê1

ê2

ê3

⎫⎬
⎭

T ⎡
⎣ cos θ 0 0
sin θ 0 0
0 0 0

⎤
⎦
⎧⎨
⎩

Ê1

Ê2

Ê3

⎫⎬
⎭

= μσ0 (cos θ ê1 + sin θ ê2)Ê1.

The associated stress vector is (N̂ = Ê1)

T = P · N̂ = μσ0(cos θ ê1 + sin θ ê2) = μσ0 n̂,

as shown in Fig. 4.4.3(b).
The second Piola–Kirchhoff stress tensor components can be computed either using Eq.

(4.4.12) or (4.4.13). Using Eq. (4.4.12), we obtain

[S] = [F ]−1[P ] =
μσ0

J

⎡
⎣ μ cos θ μ sin θ 0
−λ sin θ λ cos θ 0

0 0 λμ

⎤
⎦
⎡
⎣ cos θ 0 0
sin θ 0 0
0 0 0

⎤
⎦ =

μσ0

λ

⎡
⎣ 1 0 0
0 0 0
0 0 0

⎤
⎦ .

The second Piola–Kirchhoff stress tensor and the associated pseudo stress vector are [see Fig.
4.4.3(c)]

S =
μσ0

λ
Ê1Ê1, T̃ = S · Ê =

μσ0

λ
Ê1.

In closing this example we note that the forces (occurring in the deformed body) that
produce the Cauchy stress tensor and the second Piola–Kirchhoff stress tensor (recall that the
Cauchy stress tensor is measured as the current force per unit deformed area while the second
Piola–Kirchhoff stress tensor is measured as the transformed current force per unit undeformed
area) are in equilibrium [see Figs. 4.4.3(a) and 4.4.3(c)], as expected. On the other hand, there
is no reason to expect pseudo forces due to the first Piola–Kirchhoff stress tensor, which is
measured as the current force per unit undeformed area, to satisfy the equilibrium conditions
in the undeformed body [see Fig. 4.4.3(b)].

2X

1XE1
ˆ

L
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Fig. 4.4.3: Various stresses in the bar of Example 4.4.1.
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4.5 Equilibrium Equations for Small Deformations

The principle of conservation of linear momentum, which is commonly known
as Newton’s second law of motion, is discussed along with other principles of
mechanics in Chapter 5. To make the present chapter on stresses complete, we
derive the equations of equilibrium of a continuous medium undergoing small
deformations (that is, strains are infinitesimal E ≈ ε, and the difference between
σ and S and between X and x vanishes) using Newton’s second law of motion.

We isolate from the continuum an infinitesimal parallelepiped element with
dimensions dx1, dx2, and dx3 along coordinate x1, x2, and x3, respectively, cen-
tered at point x. The stresses acting on various faces of the parallelepiped
element are shown in Fig. 4.5.1. The element is also subjected to body force
ρ0f (measured per unit mass), where ρ0 denotes the mass density. The body
force components are ρ0f1, ρ0f2, and ρ0f3 along the x1-, x2-, and x3-coordinates,
respectively. Setting the sum of all forces in the x1-direction to zero, we obtain

0 =
(
σ11 +

∂σ11
∂x1

dx1

)
dx2 dx3 − σ11 dx2 dx3 +

(
σ12 +

∂σ12
∂x2

dx2

)
dx1 dx3

− σ12 dx1 dx3 +
(
σ13 +

∂σ13
∂x3

dx3

)
dx1 dx2 − σ13 dx1 dx2 + ρ0f1 dx1 dx2 dx3

=
(∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

+ ρ0f1

)
dx1 dx2 dx3. (4.5.1)

On dividing throughout by dx1 dx2 dx3, we obtain

∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

+ ρ0f1 = 0 or
∂σ1j
∂xj

+ ρ0f1 = 0, (4.5.2)

for j = 1, 2, and 3. Similarly, by setting the sum of forces in the x2- and
x3-directions to zero separately, we obtain

∂σ21
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

+ ρ0f2 = 0 or
∂σ2j
∂xj

+ ρ0f2 = 0, (4.5.3)

∂σ31
∂x1

+
∂σ32
∂x2

+
∂σ33
∂x3

+ ρ0f3 = 0 or
∂σ3j
∂xj

+ ρ0f3 = 0. (4.5.4)

Equations (4.5.2)–(4.5.4) can be expressed in a single equation as

∂σij
∂xj

+ ρ0fi = 0, i, j = 1, 2, 3. (4.5.5)

Noting that
∂σij

∂xj
= (σ · ←−∇)i = (∇ · σT)i, we can express Eq. (4.5.5) in vector

form (another example of the use of the backward gradient operator):

∇ · σT + ρ0f = 0. (4.5.6)

The principle of conservation of angular momentum (i.e., Newton’s second
law for moments) can be used to establish the symmetry of the stress tensor
when no body couples exist in the continuum. Consider the moment of all
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forces acting on the parallelepiped about the x3-axis (see Fig. 4.5.1). Using the
right-handed screw rule for positive moment, we obtain[(

σ21 +
∂σ21
∂x1

dx1

)
dx2 dx3

]
dx1
2

+ (σ21dx2 dx3)
dx1
2

−
[(

σ12 +
∂σ12
∂x2

dx2

)
dx1 dx3

]
dx2
2

− (σ12 dx1 dx3)
dx2
2

= 0.

Note that the body force components do not have a moment because they
pass through the origin of the coordinate system. Dividing throughout by
1
2dx1 dx2 dx3 and taking the limit dx1 → 0 and dx2 → 0, we obtain

σ21 − σ12 = 0. (4.5.7)

Similar considerations of moments about the x1-axis and x2-axis give, respec-
tively, the relations

σ32 − σ23 = 0, σ31 − σ13 = 0. (4.5.8)

2x

1x

3x

1dx
2dx

3dx

33
33 3

3
dx

x
σσ ∂

+
∂

32
32 2

2
dx

x
σσ ∂

+
∂

22
22 2

2
dx

x
σσ ∂

+
∂

11
11 1

1
dx

x
σσ ∂

+
∂ 33σ

22σ

12
12 2

2
dx

x
σσ ∂

+
∂

32σ

12σ

21
21 1

1
dx

x
σσ ∂

+
∂

23σ
13σ

13
13 3

3
dx

x
σσ ∂

+
∂

23
23 3

3
dx

x
σσ ∂

+
∂

31
31 1

1
dx

x
σσ ∂

+
∂

31σ
21σ

11σ

0 3fρ

0 1fρ

0 2fρ

0 1 0 2 0 3, , body force components (per unit mass)
Origin is at the center of the parallelopiped

f f fρ ρ ρ =

Fig. 4.5.1: Stress components on the faces of a parallelepiped element of dimensions dx1, dx2,
and dx3.

Thus, the stress tensor is symmetric (σij = σji). Equations (4.5.7) and (4.5.8)
can be expressed in a single equation using the index notation as

σji eijk = 0 ⇒ σij = σji or σT = σ, (4.5.9)

where eijk are the components of the third-order permutation tensor defined in
Eqs. (2.2.49)–(2.2.51). The symmetry of stress tensor with real-valued com-
ponents has real principal values, and the principal directions associated with
distinct principal stresses are orthogonal (see Section 2.5.6). Next, we consider
two examples of application of the stress equilibrium equations.

Example 4.5.1

Given the following state of stress (σij = σji) in a kinematically infinitesimal deformation,

σ11 = −2x2
1, σ12 = −7 + 4x1x2 + x3, σ13 = 1 + x1 − 3x2,

σ22 = 3x2
1 − 2x2

2 + 5x3, σ23 = 0, σ33 = −5 + x1 + 3x2 + 3x3,
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determine the body force components for which the stress field describes a state of equilibrium.

Solution: The body force components are

ρ0f1 = −
(
∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3

)
= −[(−4x1) + (4x1) + 0] = 0,

ρ0f2 = −
(
∂σ12

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3

)
= −[(4x2) + (−4x2) + 0] = 0,

ρ0f3 = −
(
∂σ31

∂x1
+

∂σ32

∂x2
+

∂σ33

∂x3

)
= −[1 + 0 + 3] = −4.

Thus, the body is in equilibrium for the body force components ρ0f1 = 0, ρ0f2 = 0, and
ρ0f3 = −4.

Example 4.5.2

Determine if the following stress field (σij = σji) in a kinematically infinitesimal deformation
satisfies the equations of equilibrium:

σ11 = x2
2 + k(x2

1 − x2
2), σ12 = −2kx1x2, σ13 = 0,

σ22 = x2
1 + k(x2

2 − x2
1), σ23 = 0, σ33 = k(x2

1 + x2
2).

Solution: We have

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
+ ρ0f1 = (2kx1) + (−2kx1) + 0 + ρ0f1 = 0,

∂σ21

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
+ ρ0f2 = (−2kx2) + (2kx2) + 0 + ρ0f2 = 0,

∂σ31

∂x1
+

∂σ32

∂x2
+

∂σ33

∂x3
+ ρ0f3 = 0 + 0 + 0 + ρ0f3 = 0.

Thus the given stress field is in equilibrium in the absence of any body forces; that is, ρ0f = 0.

4.6 Objectivity of Stress Tensors

4.6.1 Cauchy Stress Tensor

The Cauchy stress tensor is objective if we can show that σ∗ = Q · σ ·QT [see
Eq. (3.8.21) for the definition of the objectivity of various order tensors]. We
begin with the relations

t = σ · n, t∗ = σ∗ · n∗; t∗ = Q · t, n∗ = Q · n. (4.6.1)

Then
t∗ = σ∗ · n∗ = σ∗ · (Q · n),
t∗ = Q · t = Q · σ · n.

Then, we have
σ∗ ·Q = Q · σ,

from which it follows that
σ∗ = Q · σ ·QT. (4.6.2)

Thus, the Cauchy stress tensor is objective.
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4.6.2 First Piola–Kirchhoff Stress Tensor

The first Piola–Kirchhoff stress tensor P is a two-point tensor, and it trans-
forms like the other two-point tensor F. To establish this, we begin with the
relation between P and σ after superposed rigid-body motion and make use of
the relations F∗ = Q · F and J∗ = J ,

P∗ = J∗ σ∗ · (F∗)−T = J(Q · σ ·QT) · (Q · F)−T

= J Q · σ · (QT ·Q−T) · F−T = J Q · σ · F−T = Q ·P. (4.6.3)

Thus P, being a two-point tensor, transforms like a vector under superposed
rigid-body motion, and hence is objective.

4.6.3 Second Piola–Kirchhoff Stress Tensor

The second Piola–Kirchhoff stress tensor S is the stress tensor of choice in the
study of solid mechanics. Because it is defined with respect to the reference
configuration, rigid-body motion should not alter it. Using the relations F∗ =
Q · F and σ∗ = Q · σ ·QT, we obtain

S∗ = J∗ (F∗)−1 · σ∗ · (F∗)−T = J (F−1 ·Q−1) · (Q · σ ·QT) · (Q−T · F−T)

= J F−1 · σ · F−T = S. (4.6.4)

Thus, S is not affected by the superposed rigid-body motion and, therefore, it
is objective.

4.7 Summary

In this chapter, the concept of stress in a continuum is introduced and stress
vector at a point is defined. It is shown that the stress vector t at a point depends
on the orientation of the plane (n̂) on which it acts. Then a relation between
the stress vector t acting on a plane with unit normal n̂ and stress vectors (t1,
t2, t3) acting on three mutually perpendicular planes whose normals are ê1, ê2,
ê3 is established. It is here the Cauchy stress tensor σ is introduced as a dyadic
with respect to the Cartesian basis (ê1, ê2, ê3):

σ ≡ t1 ê1 + t2 ê2 + t3 ê3 = tj êj , tj = σij êi → σ = σij êiêj .

The stress tensor σ at a point x is shown to be related to the stress vector t on
a plane n̂ by t = σ · n̂, which is known as Cauchy’s formula.

We encounter stress vectors t in two instances: (1) stress vector at a point
x in the interior of the body on a plane whose outward normal is n̂; and (2)
stress vector at a point on the surface of the body, which is either specified or
to be determined. Cauchy’s formula is useful not only in relating the surface
traction to the state of stress inside the body at a boundary point, t̄ = σ · n̂, but
it also implies that when a material volume Ω0 is removed from a body, then it
is possible to maintain Ω0 in its equilibrium state by merely applying a suitable
distribution of t on the boundary Γ0 of the volume Ω0, as shown in Fig. 4.7.1.
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n̂
n̂

0Ω

Ω

Γ

0Γ

t

t

Fig. 4.7.1: Surface traction vector t̄ and internal stress vector t(n̂).

Transformation relations for the components of the stress tensor in one coor-
dinate system to its components in another coordinate system are established,
and the determination of the principal values and principal planes of a stress
tensor is detailed. Then two other measures of stress, namely, the first and
second Piola–Kirchhoff stress tensors, P and S, are introduced. Whereas the
Cauchy stress tensor σ is measured as the current force per unit deformed area,
the first Piola–Kirchhoff stress tensor P is measured as the current force per unit
undeformed area and the second Piola–Kirchhoff stress tensor S is measured as
the transformed current force per unit undeformed area. The first and second
Piola–Kichhoff stress tensors are related to the Cauchy stress tensor by

P = J σ · F−T = F · S, S = F−1 ·P = J F−1 · σ · F−T. (4.7.1)

The stress equilibrium equations ∇ · σT + ρ0f = 0 in the case of infinites-
imal deformations are derived, and symmetry of the stress tensor, σT = σ, in
the absence of body couples, is established. Several examples are presented to
illustrate the concepts and ideas introduced.

It is also shown that under superposed rigid-body transformation x∗ = c(t)+
Q(t) ·x, where c(t) is a constant vector characterizing the rigid-body translation
and Q(t) is a proper orthogonal tensor characterizing the rigid-body rotation,
the three stress tensors introduced in this chapter transform according to the
following relations and are objective:

σ∗ = Q · σ ·QT, P∗ = Q ·P, S = S∗. (4.7.2)

Problems

Cauchy Stress Tensor and Cauchy’s Formula

4.1 Suppose that tn̂1 and tn̂2 are stress vectors acting on planes with unit normals n̂1 and
n̂2, respectively, and passing through a point with the stress state σ. Show that the
component of tn̂1 along n̂2 is equal to the component of tn̂2 along the normal n̂1 if and
only if σ is symmetric.

4.2 Write the stress vectors on each boundary surface in terms of the given values and base
vectors î and ĵ for the system shown in Fig. P4.2.
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5 kN/m2

3 kN/m2

2.5 kN/m2

A

2 kN/m2

B

CD
EF

GH

Fig. P4.2

4.3 The components of a stress tensor at a point, with respect to the (x1, x2, x3) system,
are (in MPa):

(i)

⎡
⎣ 12 9 0

9 −12 0
0 0 6

⎤
⎦ , (ii)

⎡
⎣ 9 0 12

0 −25 0
12 0 16

⎤
⎦ , (iii)

⎡
⎣ 1 −3

√
2

−3 1 −√
2√

2 −√
2 4

⎤
⎦ .

Find the following:

(a) The stress vector acting on a plane perpendicular to the vector 2ê1 − 2ê2 + ê3

(b) The magnitude of the stress vector and the angle between the stress vector and the
normal to the plane

(c) The magnitudes of the normal and tangential components of the stress vector

4.4 Consider a (kinematically infinitesimal) stress field whose matrix of scalar components
in the vector basis {êi} is ⎡

⎣ 1 0 2x2

0 1 4x1

2x2 4x1 1

⎤
⎦ (MPa),

where the Cartesian coordinate variables Xi are in meters (m) and the units of stress
are MPa (106 Pa = 106 N/m2).

(a) Determine the traction vector acting at point X = ê1 + 2ê2 + 3ê3 on the plane
x1 + x2 + x3 = 6.

(b) Determine the normal and projected shear tractions acting at this point on this plane.

4.5 The three-dimensional state of stress at a point (1, 1,−2) within a body relative to the
coordinate system (x1, x2, x3) is⎡

⎣ 2.0 3.5 2.5
3.5 0.0 −1.5
2.5 −1.5 1.0

⎤
⎦ MPa.

Determine the normal and shear stresses at the point and on the surface of an internal
sphere whose equation is x2

1 + (x2 − 2)2 + x2
3 = 6.

4.6 The components of a stress tensor at a point, with respect to the (x1, x2, x3) system,
are ⎡

⎣ 25 0 0
0 −30 −60
0 −60 5

⎤
⎦ MPa.

Determine

(a) the stress vector acting on a plane perpendicular to the vector 2ê1 + ê2 + 2ê3, and

(b) the magnitude of the normal and tangential components of the stress vector.
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4.7 For the state of stress given in Problem 4.5, determine the normal and shear stresses on
a plane intersecting the point where the plane is defined by the points (0, 0, 0), (2,−1, 3),
and (−2, 0, 1).

4.8 The Cauchy stress tensor components at a point P in the deformed body with respect
to the coordinate system (x1, x2, x3) are given by

[σ] =

⎡
⎣ 1 4 −2

4 0 0
−2 0 3

⎤
⎦ MPa.

(a) Determine the Cauchy stress vector tn̂ at the point P on a plane passing through the
point and parallel to the plane 2x1 + 3x2 + x3 = 4.

(b) Find the length of tn̂ and the angle between tn̂ and the vector normal to the plane.

(c) Determine the components of the Cauchy stress tensor in a rectangular coordinate system
(x̄1, x̄2, x̄3) whose orthonormal base vectors ˆ̄ei are given in terms of the base vectors êi

of the coordinate system (x1, x2, x3)

ˆ̄e2 = 1√
2
(ê1 − ê3) , ˆ̄e3 = 1

3
(2ê1 − ê2 + 2ê3) .

4.9 The Cauchy stress tensor components at a point P in the deformed body with respect
to the coordinate system (x1, x2, x3) are given by

[σ] =

⎡
⎣ 2 5 3
5 1 4
3 4 3

⎤
⎦ MPa.

(a) Determine the Cauchy stress vector t(n̂) at the point P on a plane passing through the
point whose normal is n = 3ê1 + ê2 − 2ê3.

(b) Find the length of t(n̂) and the angle between t(n̂) and the vector normal to the plane.

(c) Find the normal and shear components of tn̂ on the plane.

4.10 Suppose that at a point on the surface of a body the unit outward normal is n̂ =
(ê1+ê2−ê3)/

√
3 and the traction vector is P (ê1+2ê2), where P is a constant. Determine

(a) the normal traction vector tn and the shear traction vector tns at this point on the
surface of the body, and

(b) the conditions between the stress tensor components and the traction vector components.

4.11 Determine the traction free planes (defined by their unit normal vectors) passing through
a point in the body where the stress state with respect to the rectangular Cartesian basis
is

[σ] =

⎡
⎣ 1 2 1
2 σ0 0
1 0 −3

⎤
⎦ MPa.

What is the value of σ0?

Transformation Equations

4.12 Use equilibrium of forces to derive the relations between the normal and shear stresses
σn and σs on a plane whose normal is n̂ = cos θê1 + sin θê2 to the stress components
σ11, σ22, and σ12 = σ21 on the ê1 and ê2 planes, as shown in Fig. P4.12:

σn = σ11 cos
2 θ + σ22 sin

2 θ + σ12 sin 2θ,

σs = − 1
2
(σ11 − σ22) sin 2θ + σ12 cos 2θ.

(1)

Note that θ is the angle measured from the positive x1-axis to the normal to the inclined
plane (the same as that shown in Fig. 4.3.2). Then show that (a) the principal stresses
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at a point in a body with two-dimensional state of stress are given by

σp1 = σmax =
σ11 + σ22

2
+

√(σ11 − σ22

2

)2
+ σ2

12 ,

σp2 = σmin =
σ11 + σ22

2
−
√(σ11 − σ22

2

)2
+ σ2

12 ,

(2)

and that the orientation of the principal planes is given by

θp = ±1

2
tan−1

[
2σ12

σ11 − σ22

]
, (3)

and (b) the maximum shear stress is given by

(σs)max = ±σp1 − σp2

2
. (4)

Also, determine the plane on which the maximum shear stress occurs.

θ

sσ
nt nˆ( ) ˆnσ = ⋅

n̂

1ê

2ê
)ˆ(nt

11σ

12σ
21σ

22σ
1x

2x

θ

Fig. P4.12

4.13 through 4.16 Determine the normal and shear stress components on the plane indicated
in Figs. P4.13–4.16.

10 MPa

50 MPa
α

30α

Fig. P4.13

20 MPa

10 MPa
10 MPa

60α

α

Fig. P4.14

60 MPa

30 MPa

50 MPa

45α

Fig. P4.15

40 MPa

100 MPa

60α

α

Fig. P4.16
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4.17 Find the values of σs and σ22 for the state of stress shown in Fig. P4.17.

30 MPa

20 MPa

40 MPa

σ0

σs
45α

Fig. P4.17

Principal Stresses and Principal Directions

4.18 For the stress state given in Problem 4.4, determine

(a) the principal stresses and principal directions of stress at this point, and

(b) the maximum shear stress at the point.

4.19 Find the maximum and minimum normal stresses and the orientations of the principal
planes for the state of stress shown in Fig. P4.15. What is the maximum shear stress
at the point?

4.20 Find the maximum and minimum normal stresses and the orientations of the principal
planes for the state of stress shown in Fig. P4.16. What is the maximum shear stress
at the point?

4.21 Find the maximum principal stress, maximum shear stress and their orientations for the
state of stress given.

(a) [σ] =

⎡
⎣ 12 9 0

9 −12 0
0 0 6

⎤
⎦ MPa. (b) [σ] =

⎡
⎣ 3 5 8
5 1 0
8 0 2

⎤
⎦ MPa.

4.22 (Spherical and deviatoric stress tensors) The stress tensor can be expressed as the sum
of spherical or hydrostatic stress tensor σ̃ and deviatoric stress tensor σ′

σ = σ̃I+ σ′, σ̃ =
1

3
trσ =

1

3
I1, σ′ = σ − 1

3
I1I.

For the state of stress shown in Fig. P4.16, compute the spherical and deviatoric com-
ponents of the stress tensor.

4.23 Determine the invariants I
′
i and the principal deviator stresses for the following state of

stress

[σ] =

⎡
⎣ 2 −1 1
−1 0 1
1 1 2

⎤
⎦ MPa.

4.24 Given the following state of stress at a point in a continuum,

[σ] =

⎡
⎣ 7 0 14

0 8 0
14 0 −4

⎤
⎦ MPa,

determine the principal stresses and principal directions.

4.25 Given the following state of stress (σij = σji),

σ11 = −2x2
1, σ12 = −7 + 4x1x2 + x3, σ13 = 1 + x1 − 3x2,

σ22 = 3x2
1 − 2x2

2 + 5x3, σ23 = 0, σ33 = −5 + x1 + 3x2 + 3x3,

determine
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(a) the stress vector at point (x1, x2, x3) on the plane x1 + x2 + x3 = constant,

(b) the normal and shearing components of the stress vector at point (1, 1, 3), and

(c) the principal stresses and their orientation at point (1, 2, 1).

4.26 The components of a stress tensor at a point P , referred to the (x1, x2, x3) system, are⎡
⎣ 57 0 24

0 50 0
24 0 43

⎤
⎦MPa.

Determine the principal stresses and principal directions at point P . What is the max-
imum shear stress at the point?

4.27 Given the following state of stress at a point in a continuum,

[σ] =

⎡
⎣ 0 0 Ax2

0 0 −Bx3

Ax2 −Bx3 0

⎤
⎦ MPa,

where A and B are constants. Determine

(a) the body force vector such that the stress tensor corresponds to an equilibrium state,

(b) the three principal invariants of σ at the point x = Bê2 +Aê3,

(c) the principal stress components and the associated planes at the point x = Bê2 + Aê3,
and

(d) the maximum shear stress and associated plane at the point x = Bê2 +Aê3.

Equilibrium Equations (associated with infinitesimal deformations)

4.28 Derive the stress equilibrium equations in cylindrical coordinates by considering the
equilibrium of a typical volume element shown in Fig. P4.28. Assume that the body
force components are (not shown in the figure) ρ0fr, ρ0fθ, and ρ0fz along the r, θ, and
z coordinates, respectively.
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rr dr

r
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∂

r
r dr
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zr dr

r
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+
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r
r dθ
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σσ θ
θ

∂
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∂
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∂
+

∂

z
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σσ θ
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∂
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∂
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zz dz
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rz dz
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σσ ∂
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θ
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Fig. P4.28

4.29 Given the following state of stress at a point in a continuum,

[σ] =

⎡
⎣ 1 0 2x2

0 1 4x1

2x2 4x1 1

⎤
⎦ MPa,

determine the body force vector such that the stress tensor corresponds to an equilibrium
state.
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4.30 Given the following state of stress at a point in a continuum,

[σ] =

⎡
⎣ 5x2x3 3x2

2 0
3x2

2 0 −x1

0 −x1 0

⎤
⎦ MPa,

determine the body force vector such that the stress tensor corresponds to an equilibrium
state.

4.31 Given the following state of stress at a point in a continuum,

[σ] =

⎡
⎣A(x1 − x2) Bx2

1x2 0
Bx2

1x2 −A(x1 − x2) 0
0 0 0

⎤
⎦ MPa,

determine the constants A and B such that the stress tensor corresponds to an equilib-
rium state in the absence of body forces.

4.32 Given the following state of stress at a point in a continuum,

[σ] =

⎡
⎣ Ax2

1x2 A(B2 − x2
2)x1 0

A(B2 − x2
2)x1 C(x2

2 − 3B2)x2 0
0 0 2Bx2

3

⎤
⎦ MPa,

where A, B, and C = A/3 are constants, determine the body force components necessary
for the body to be in equilibrium.

4.33 Given the following Cauchy stress components (σij = σji),

σ11 = −2x2
1, σ12 = −7 + 4x1x2 + x3, σ13 = 1 + x1 − 3x2,

σ22 = 3x2
1 − 2x2

2 + 5x3, σ23 = 0, σ33 = −5 + x1 + 3x2 + 3x3,

determine the body force components for which the stress field describes a state of
equilibrium.

4.34 Given the following stress field, expressed in terms of its components referred to a
rectangular Cartesian basis,

σ11 = x2
1x2, σ12 = (c2 − x2

2)x1, σ13 = 0,

σ22 =
1

3

(
x3
2 − 3c2x2

)
, σ23 = 0, σ33 = 2cx2

3,

where c is a constant, find the body-force field necessary for the stress field to be in
equilibrium.

4.35 The equilibrium configuration of a deformed body is described by the mapping

χ(X) = AX1 ê1 −BX3 ê2 + CX2 ê3,

where A, B, and C are constants. If the Cauchy stress tensor for this body is

[σ] =

⎡
⎣ 0 0 0
0 0 0
0 0 σ0

⎤
⎦ MPa,

where σ0 is a constant, determine

(a) the deformation tensor and its inverse in matrix form,

(b) the matrices of the first and second Piola–Kirchhoff stress tensors, and

(c) the pseudo stress vectors associated with the first and second Piola–Kirchhoff stress
tensors on the ê3-plane in the deformed configuration.

4.36 A body experiences deformation characterized by the mapping

χ(X, t) = x = AX2 ê1 +BX1 ê2 + CX3 ê3,
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where A, B, and C are constants. The Cauchy stress tensor components at certain point
of the body are given by

[σ] =

⎡
⎣ 0 0 0
0 σ0 0
0 0 0

⎤
⎦ MPa,

where σ0 is a constant. Determine the Cauchy stress vector t and the first Piola–
Kirchhoff stress vector T on a plane whose normal in the current configuration is n̂ = ê2.

4.37 Express the stress equilibrium equations in Eq. (4.5.6) in terms of the stress components
and body force components in the (a) cylindrical and (b) spherical coordinate systems.

4.38 Equation (4.2.7) can also be written

t = (n̂ · êi)ti = n̂ · (ê1 t1 + ê2 t2 + ê3 t3) . (1)

The terms in the parenthesis can be defined as the stress dyadic or stress tensor T:

T ≡ ê1 t1 + ê2 t2 + ê3 t3 = êi ti. (2)

Show that T is the transpose of σ defined in Eq. (4.2.13).

4.39 Show that the material time derivative of the Cauchy stress tensor is not objective, unless
the superposed rigid-body rotation is time-independent (that is, Q is not a function of
time); that is, show

σ̇∗ �= Q · σ̇ ·QT,

unless Q is independent of time.

4.40 Prove that if the stress tensor is real and symmetric, σij = σji, then its eigenvalues are
real. Also, prove that the eigenvectors of a real and symmetric σij are orthogonal.
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5

CONSERVATION AND
BALANCE LAWS

Although to penetrate into the intimate mysteries of nature and thence to learn the true causes
of phenomena is not allowed to us, nevertheless it can happen that a certain fictive hypothesis
may suffice for explaining many phenomena. —– Leonard Euler (1707–1783)

Nothing is too wonderful to be true if it be consistent with the laws of nature.

—– Michael Faraday (1791–1867)

5.1 Introduction

Virtually every phenomenon in nature can be described in terms of mathemati-
cal relations among certain quantities that are responsible for the phenomenon.
Most mathematical models of physical phenomena are based on fundamental
scientific laws of physics that are extracted from centuries of observations and
research on the behavior of mechanical systems subjected to the action of natural
forces. The most exciting thing about the laws of physics, which are also termed
principles of mechanics, is that they govern biological systems as well (because
of mass and energy transports). However, biological systems may require ad-
ditional laws, yet to be discovered, from biology and chemistry to reasonably
complete their descriptions.

This chapter is devoted to the study of fundamental laws of physics and
resulting mathematical models as applied to mechanical systems. The laws
of physics are expressed in analytical form with the aid of the concepts and
quantities introduced in the previous chapters. The principles of mechanics to
be studied are (1) the principle of conservation of mass, (2) the principle of
balance of linear momentum, (3) the principle of balance of angular momentum,
and (4) the principle of balance of energy. These principles allow us to write
mathematical relationships – algebraic, differential, or integral type – between
quantities such as displacements, velocities, temperature, stresses, and strains
that arise in mechanical systems. The solution of these equations, in conjunction
with the constitutive relations and boundary and initial conditions, represents
the response of the system. The equations developed here not only are used
not only in the later chapters of this book, but they are also useful in other
engineering and applied science courses. In addition, the equations developed
herein form the basis of most mathematical models employed in the study of
a variety of phenomena. Thus, the present chapter is the heart and soul of a
course on continuum mechanics and elasticity.
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5.2 Conservation of Mass

5.2.1 Preliminary Discussion

It is common knowledge that the mass of a given system cannot be created or
destroyed. For example, the mass flow of the blood entering a section of an
artery is equal to the mass flow leaving the artery, provided that no blood is
added or lost through the artery walls. Thus, mass of the blood is conserved
even when the artery cross section changes along the length.

The principle of conservation of mass states that the total mass of any part
∂B of the body B does not change in any motion. The mathematical form of
this principle is different in spatial and material descriptions of motion. Before
we derive the mathematical forms of the principle, certain other identities need
to be established.

5.2.2 Material Time Derivative

As discussed in Chapter 3 [see Eqs. (3.2.4) and (3.2.5)], the partial time deriva-
tive with the material coordinates X held constant should be distinguished from
the partial time derivative with spatial coordinates x held constant due to the
difference in the descriptions of motion. The material time derivative, denoted
here by D/Dt, is the time derivative with the material coordinates held con-
stant. Thus, the time derivative of a function φ in material description (i.e.,
φ = φ(X, t)) with X held constant is nothing but the partial derivative with
respect to time [see Eq. (3.2.4)]:

Dφ

Dt
≡

(
∂φ

∂t

)
X=const

=
∂φ

∂t
. (5.2.1)

In particular, we have

Dx

Dt
=

(
∂x

∂t

)
X=const

=

(
∂x

∂t

)
≡ v, (5.2.2)

where v is the velocity vector. Similarly, the time derivative of v is

Dv

Dt
=

(
∂v

∂t

)
X=const

=

(
∂v

∂t

)
≡ a, (5.2.3)

where a is the acceleration vector.
In the spatial description, we have φ = φ(x, t) and the partial time derivative(

∂φ

∂t

)
X=const

is different from

(
∂φ

∂t

)
x=const

.

The time derivative (
∂φ

∂t

)
x=const

denotes the local rate of change of φ. If φ = v, then it is the rate of change of
v read by a velocity meter located at the fixed spatial location x, which is not
the same as the acceleration of the particle just passing the place x.
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To calculate the material time derivative of a function φ of spatial coordinates
x, φ = φ(x, t), we assume that there exists differentiable mapping χ(X, t) =
x(X, t) so that we can write φ(x, t) = φ[x(X, t), t] and compute the derivative
using the chain rule of differentiation:

Dφ

Dt
≡

(
∂φ

∂t

)
X=const

=

(
∂φ

∂t

)
x=const

+

(
∂xi
∂t

)
X=const

∂φ

∂xi

=

(
∂φ

∂t

)
x=const

+ vi
∂φ

∂xi

=

(
∂φ

∂t

)
x=const

+ v ·∇φ, (5.2.4)

where Eq. (5.2.2) is used in the second line. Thus, the material derivative
operator is given by

D

Dt
=

(
∂

∂t

)
x=const

+ v ·∇. (5.2.5)

Example 5.2.1 illustrates the calculation of the material time derivative based
on the material and spatial descriptions.

Example 5.2.1

Suppose that a motion is described by the one-dimensional mapping, x = (1 + t)X, for t ≥ 0.
Determine (a) the velocities and accelerations in the spatial and material descriptions, and (b)
the time derivative of a function φ(X, t) = Xt2 in the spatial and material descriptions.

Solution: The velocity v ≡ Dx/Dt can be expressed in the material and spatial coordinates as

v(X, t) =
Dx

Dt
=

∂x

∂t
= X, v(x, t) = X(x, t) =

x

1 + t
.

The acceleration a ≡ Dv/Dt in the two descriptions is

a ≡ Dv(X, t)

Dt
=

∂v

∂t
= 0,

a ≡ Dv(x, t)

Dt
=

∂v

∂t
+ v

∂v

∂x

= − x

(1 + t)2
+

x

1 + t

1

1 + t
= 0.

The material time derivative of φ = φ(X, t) in the material description is simply

Dφ(X, t)

Dt
=

∂φ(X, t)

∂t
= 2Xt.

The material time derivative of φ = φ(x, t) = X(x, t)t2 = xt2/(1 + t) in the spatial description
is

Dφ

Dt
=

∂φ

∂t
+ v

∂φ

∂x
=

2xt

1 + t
− xt2

(1 + t)2
+

(
x

1 + t

)(
t2

1 + t

)
=

2xt

1 + t
,

which is the same as that calculated before, except that it is expressed in terms of the current
coordinate, x.
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5.2.3 Vector and Integral Identities

In the sections of the chapter that follow, we will make use of several vector
identities and the gradient and divergence theorems [see Tables 2.4.1 and 2.4.2
and Eqs. (2.4.45)–(2.4.47)]. For a ready reference, some key results are provided
here.

5.2.3.1 Vector identities

For any scalar function F (x), vector-valued function A(x), and tensor-valued
functions S(x), the following identities hold:

∇ · (FA) = F ∇ ·A+∇F ·A, (5.2.6a)

A ·∇A = 1
2∇(A ·A)−A× (∇×A) , (5.2.6b)

∇ · (S ·A) = (∇ · S) ·A+ S : ∇A, (5.2.7)

S : (∇A) = Ssym : (∇A)sym + Sskew : (∇A)skew, (5.2.8)

where : denotes the double-dot product defined in Eq. (2.5.13), and the super-
scripts sym and skew denote the symmetric and skew symmetric parts of the
enclosed quantity [see Eq. (2.5.25)]. In addition, the del operator ∇ and the
divergence of A and S in the rectangular Cartesian, cylindrical, and spherical
coordinates [see Figs. 2.4.4(b) and 2.4.5 for the coordinate systems] have the
forms given here (see Chapter 2 for details).

Cartesian coordinates [x = (x1, x2, x3)]

∇ = êi
∂

∂xi
, ∇ ·A =

∂Ai

∂xi
, ∇ · S =

∂Sij

∂xi
êj . (5.2.9)

Cylindrical coordinates [x = (r, θ, z)]

∇ = êr
∂

∂r
+

1

r
êθ

∂

∂θ
+ êz

∂

∂z
, (5.2.10)

∇ ·A =
1

r

[
∂(rAr)

∂r
+

∂Aθ

∂θ
+ r

∂Az

∂z

]
, (5.2.11)

∇ · S =

[
∂Srr

∂r
+

1

r

∂Sθr

∂θ
+

∂Szr

∂z
+

1

r
(Srr − Sθθ)

]
êr

+

[
∂Srθ

∂r
+

1

r

∂Sθθ

∂θ
+

∂Szθ

∂z
+

1

r
(Srθ + Sθr)

]
êθ

+

[
∂Srz

∂r
+

1

r

∂Sθz

∂θ
+

∂Szz

∂z
+

1

r
Srz

]
êz. (5.2.12)

Spherical coordinates [x = (R,φ, θ)]

∇ = êR
∂

∂R
+

1

R
êφ

∂

∂φ
+

1

R sinφ
êθ

∂

∂θ
, (5.2.13)

∇ ·A = 2
AR

R
+

∂AR

∂R
+

1

R sinφ

∂(Aφ sinφ)

∂φ
+

1

R sinφ

∂Aθ

∂θ
, (5.2.14)
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∇ · S =

{
∂SRR

∂R
+

1

R

∂SφR

∂φ
+

1

R sinφ

∂SθR

∂θ

+
1

R
[2SRR − Sφφ − Sθθ + SφR cotφ]

}
êR

+

{
∂SRφ

∂R
+

1

R

∂Sφφ

∂φ
+

1

R sinφ

∂Sθφ

∂θ

+
1

R
[(Sφφ − Sθθ) cotφ+ SφR + 2SRφ]

}
êφ

+

{
∂SRθ

∂R
+

1

R

∂Sφθ

∂φ
+

1

R sinφ

∂Sθθ

∂θ

+
1

R
[(Sφθ + Sθφ) cotφ+ 2SRθ + SθR]

}
êθ. (5.2.15)

5.2.3.2 Integral identities

The following relations hold for a closed region Ω bounded by surface Γ with
outward unit normal vector n̂:∮

Γ
n̂ S ds =

∫
Ω
∇S dx (Gradient theorem) (5.2.16)∮

Γ
φ n̂ · S ds =

∫
Ω
∇ · (φS) dx (Divergence theorem) (5.2.17)∮

Γ
x× (n̂ · S) ds =

∫
Ω
[x× (∇ · S) + E : S] dx, (5.2.18)

where x is the position vector, S is a tensor-valued function of position, E is the
third-order permutation tensor [see Eq. (2.5.23)], φ is a scalar-valued function,
dx denotes a volume element, and ds is an area element on the surface.

5.2.4 Continuity Equation in the Spatial Description

Let an arbitrary region in a continuous medium B be denoted by Ω, and the
bounding closed surface of this region be continuous and denoted by Γ. Let
each point on the bounding surface move with velocity vs. It can be shown that
the time derivative of the volume integral of some continuous function φ(x, t) is
given by

d

dt

∫
Ω
φ(x, t) dx ≡ ∂

∂t

∫
Ω
φ dx+

∮
Γ
φ n̂ · vs ds,

=

∫
Ω

∂φ

∂t
dx+

∮
Γ
φ n̂ · vs ds. (5.2.19)

This expression for the differentiation of a volume integral with variable limits
is sometimes known as the three-dimensional Leibnitz rule.

Let each element of mass in the medium move with the velocity v(x, t) and
consider a special region Ω such that the bounding surface Γ is attached to a
fixed set of material elements. Then each point of this surface moves with the
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material velocity, that is, vs = v, and the region Ω thus contains a fixed total
amount of mass because no mass crosses the boundary surface Γ. To distinguish
the time rate of change of an integral over this material region, we replace d/dt
by D/Dt and write

D

Dt

∫
Ω
φ(x, t) dx ≡

∫
Ω

∂φ

∂t
dx+

∮
Γ
φ n̂ · v ds, (5.2.20)

which holds for a material region, that is, a region of fixed total mass. In some
books, Eq. (5.2.20) is referred to as the Reynolds transport theorem. The relation
between the time derivative following an arbitrary region and the time derivative
following a material region (fixed total mass) is

d

dt

∫
Ω
φ(x, t) dx ≡ D

Dt

∫
Ω
φ(x, t) dx+

∮
Γ
φ n̂ · (vs − v) ds. (5.2.21)

The velocity difference v − vs is the velocity of the material measured relative
to the velocity of the surface. The surface integral∮

Γ
φ n̂ · (v − vs) ds,

thus measures the total outflow of the property φ from the region Ω.
Let ρ(x, t) denote the mass density of a continuous region. Then the principle

of conservation of mass for a fixed material region Ω requires that

D

Dt

∫
Ω
ρ dx = 0. (5.2.22)

Then from Eq. (5.2.21), with φ = ρ, it follows that for a fixed spatial region Ω
(i.e., vs = 0) the principle of conservation of mass can also be stated as

d

dt

∫
Ω
ρ dx = −

∮
Γ
ρ n̂ · v ds. (5.2.23)

Thus, the time rate of change of mass inside a region Ω is equal to the mass inflow
(because of the negative sign) through the surface into the region. Equation
(5.2.23) is known as the control volume formulation of the conservation of mass
principle. In Eq. (5.2.23), Ω denotes the control volume (cv) and Γ the control
surface (cs) enclosing Ω.

Using Eq. (5.2.19) with φ = ρ, Eq. (5.2.23) can be expressed as∫
Ω

∂ρ

∂t
dx = −

∮
Γ
ρ n̂ · v ds.

Converting the surface integral to a volume integral by means of the divergence
theorem (5.2.17), we obtain∫

Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dx = 0.
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Since this integral vanishes for any continuous medium occupying an arbitrary
region Ω, we deduce that this is true only if the integrand itself vanishes identi-
cally, giving the following local form of the principle of conservation of mass:

∂ρ

∂t
+∇ · (ρv) = 0. (5.2.24)

This equation, also known as the continuity equation, expresses local conserva-
tion of mass at any point in a continuous medium.

An alternative derivation of Eq. (5.2.24) that is found in fluid mechanics
books is presented next. Consider an arbitrary control volume Ω in space where
flow occurs into and out of the control volume. Conservation of mass in this
case means that the time rate of change of mass in Ω is equal to the mass inflow
through the control surface Γ into the control volume Ω. Consider an elemental
area ds with unit normal n̂ around a point P on the control surface, as shown in
Fig. 5.2.1. Let v and ρ be the velocity and mass density, respectively, at point
P . The mass outflow (slug/s or kg/s) through the elemental surface is ρv · ds,
where ds = n̂ ds. The total mass inflow through the entire surface of the control
volume is ∮

Γ
(−ρ vn) ds = −

∮
Γ
ρ n̂ · v ds = −

∫
Ω
∇ · (ρv) dx, (5.2.25)

where the divergence theorem (5.2.17) is used in arriving at the last expression
in Eq. (5.2.25). If a continuous medium of mass density ρ fills the region Ω at
time t, the total mass in Ω is M =

∫
Ω ρ(x, t) dx. The rate of increase of mass in

the fixed region Ω is
∂M

∂t
=

∫
Ω

∂ρ

∂t
dx. (5.2.26)

Equating Eqs. (5.2.25) and (5.2.26), we obtain∫
Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dx = 0,

which results in the same equation as the one in Eq. (5.2.24).

1 1X , x

2 2X , x

3 3X , x

n̂
v

ds

Γ
Ω

(a) 3-D

•
P

1 1X , x

2 2X , x

n̂ v

ds

Γ
Ω

(b) 2-D

ds

•
P

Fig. 5.2.1: A control volume for the derivation of the continuity equation.
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Equation (5.2.24) can be written in an alternative form as follows [see Eq.
(5.2.6a)]:

0 =
∂ρ

∂t
+∇ · (ρv) = ∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v =

Dρ

Dt
+ ρ∇ · v, (5.2.27)

where the definition of material time derivative, Eq. (5.2.5), is used in arriving
at the final result.

The one-dimensional version of the local form of the continuity equation
(5.2.24) can be obtained by considering flow along the x-axis (see Fig. 5.2.2).
The amount of mass entering (i.e., mass flow) per unit time at the left section
of the elemental volume is:

density× cross-sectional area× velocity of the flow = (ρAvx)x.

The mass leaving at the right section of the elemental volume is (ρAvx)x+Δx,
where vx is the velocity along the x-direction. The subscript denotes the distance
at which the enclosed quantity is evaluated. It is assumed that the cross-sectional
area A is a function of position x but not of time t. The net mass flow into the
elemental volume is

(Aρvx)x − (Aρvx)x+Δx.

On the other hand, the time rate of increase of the total mass inside the elemental
volume is

ĀΔx
(ρ̄)t+Δt − (ρ̄)t

Δt
,

where ρ̄ and Ā are the average values of the density and cross-sectional area,
respectively, inside the elemental volume.

If no mass is created or destroyed inside the elemental volume, the rate of
increase of mass should be equal to the mass inflow:

ĀΔx
(ρ̄)t+Δt − (ρ̄ )t

Δt
= (Aρvx)x − (Aρvx)x+Δx.

Dividing throughout by Δx and taking the limits Δt → 0 and Δx → 0, we
obtain

lim
Δt,Δx→0

Ā
(ρ)t+Δt − (ρ)t

Δt
+

(Aρvx)x+Δx − (Aρvx)x
Δx

= 0,

x

xv x xv

x

elemental volume, V A x

inlet outlet

Fig. 5.2.2: Derivation of the local form of the continuity equation in one dimension.
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or (ρ̄ → ρ and Ā → A as Δx → 0)

A
∂ρ

∂t
+

∂(Aρvx)

∂x
= 0. (5.2.28)

Equation (5.2.28) is the same as Eq. (5.2.24) when v is replaced with v =
vxêx and A is a constant. Note that for the steady-state case, Eq. (5.2.28)
reduces to

∂(Aρvx)

∂x
= 0 → Aρvx = constant ⇒ (Aρvx)1 = (Aρvx)2 = · · · = (Aρvx)i,

(5.2.29)
where the subscript i refers to ith section along the direction of the (one-
dimensional) flow. The quantity Q = Avx is called the flow, whereas ρAvx
is called the mass flow.

The continuity equation in Eq. (5.2.24) can also be expressed in orthogonal
curvilinear coordinate systems as [see Eqs. (5.2.10)–(5.2.15); Problems 5.4–5.6
are designed to obtain these results]

Cylindrical coordinate system (r, θ, z)

0 =
∂ρ

∂t
+

1

r

[
∂(rρ vr)

∂r
+

∂(ρ vθ)

∂θ
+ r

∂(ρ vz)

∂z

]
. (5.2.30)

Spherical coordinate system (R,φ, θ)

0 =
∂ρ

∂t
+

1

R2

∂(ρR2vR)

∂R
+

1

R sinφ

∂(ρ vφ sinφ)

∂θ
+

1

R sinφ

∂(ρ vθ)

∂θ
. (5.2.31)

For steady state, we set the time derivative terms in Eqs. (5.2.24), (5.2.30),
and (5.2.31) to zero. The invariant form of continuity equation for steady-state
flows is (so-called divergence-free velocity field)

∇ · (ρv) = 0. (5.2.32)

For materials with constant density, we set Dρ/Dt = 0 and obtain (the so-called
divergence-free condition on the velocity field)

ρ∇ · v = 0 or ∇ · v = 0. (5.2.33)

Thus the motion is isochoric, and the velocity field is said to be solenoidal.
Next, we consider two examples of application of the principle of conservation

of mass in spatial description.

Example 5.2.2

Consider a water hose with a conical-shaped nozzle at its end, as shown in Fig. 5.2.3(a). (a)
Determine the pumping capacity required for the velocity of the water (assuming incompressible
for the present case) exiting the nozzle to be 25 m/s. (b) If the hose is connected to a rotating
sprinkler through its base, as shown in Fig. 5.2.3(b), determine the average speed of the water
leaving the sprinkler nozzle.
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nozzle exit 
(20 mm dia.)

(a)

 12.5 mm dia. 

(b)

Fig. 5.2.3: (a) Water hose with a conical head. (b) Water hose connected to a sprinkler.

Solution: (a) The principle of conservation of mass for steady one-dimensional flow requires

ρ1A1v1 = ρ2A2v2.

If the exit of the nozzle is taken as the section 2 and the inlet is taken as the section 1 [see Fig.
5.2.3(a)], we can write (for an incompressible fluid, ρ1 = ρ2)

Q1 = A1v1 = A2v2 =
π(20× 10−3)2

4
25 = 0.0025π m3/s.

(b) The average speed of the water leaving the sprinkler nozzle can be calculated using the
principle of conservation of mass for steady one-dimensional flow. We obtain

Q1 = 2A2v2 → v2 =
2Q1

πd2
=

0.005

(12.5× 10−3)2
= 32 m/s.

Example 5.2.3

A syringe used to inoculate large animals has a cylinder, plunger, and needle combination, as
shown in Fig. 5.2.4. Let the internal diameter of the cylinder be d and the plunger face area
be Ap. If the liquid in the syringe is to be injected at a steady rate of Q0, determine the speed
of the plunger. Assume that the leakage rate past the plunger is 10% of the volume flow rate
out of the needle.

Solution: In this problem, the control volume (shown in dotted lines in Fig. 5.2.4) is not
constant. Even though there is a leakage, the plunger surface area can be taken as equal to
the open cross-sectional area of the cylinder, Ap = πd2/4. Let us consider Section 1 to be the
plunger face and Section 2 to be the needle exit to apply the continuity equation.

Assuming that the flow through the needle and leakage are steady, application of the global
form of the continuity equation, Eq. (5.2.23), to the control volume gives

0 =
d

dt

∫
Ω

ρ dx+

∮
Γ

ρ n̂ · v ds

=
d

dt

∫
Ω

ρ dx+ ρQ0 + ρQleak. (1)

The integral in the above equation can be evaluated as follows:

d

dt

∫
Ω

ρ dx =
d

dt

(
ρ xAp + ρ Vn

)
= ρAp

dx

dt
= −ρApvp, (2)
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Control volume

Plunger 1Section
2Section

pv

, dia.d
2 0Q Q=

Fig. 5.2.4: The syringe discussed in Example 5.2.3.

where x is the distance between the plunger face and the end of the cylinder, Vn is the volume
of the needle opening, and vp = −dx/dt is the speed of the plunger that we are after. Noting
that Qleak = 0.1Q0, we can write the continuity equation (1) as

−ρApvp + 1.1ρQ0 = 0,

from which we obtain

vp = 1.1
Q0

Ap
=

4.4Q0

πd2
. (3)

For Q0 = 250 cm3/min and d = 25mm, we obtain

vp =
4.4× (250× 103)

π(25× 25)
= 560 mm/min.

5.2.5 Continuity Equation in the Material Description

Under the assumption that mass is neither created nor destroyed during motion,
we require that the total mass of any material volume be the same at any instant
during the motion. To express this in analytical terms, we consider a material
body B that occupies configuration κ0 with density ρ0 and volume Ω0 at time
t = 0. The same material body occupies the configuration κ with volume Ω at
time t > 0, and it has a density ρ. As per the principle of conservation of mass,
we have ∫

Ω0

ρ0 dX =

∫
Ω
ρ dx. (5.2.34)

Using the relation between dX and dx, dx = J dX, where J is the determinant
of the deformation gradient tensor F, we arrive at∫

Ω0

(ρ0 − J ρ) dX = 0. (5.2.35)

This is the global form of the continuity equation. Since the material volume Ω0

we selected is arbitrarily small, we can shrink the volume to a point and obtain
the local form of the continuity equation

ρ0 = J ρ. (5.2.36)

Example 5.2.4 illustrates the use of the material time derivative in computing
velocities and use of the continuity equation to compute the density in the
current configuration.
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Example 5.2.4

Consider the motion of a body B described by the mapping

x1 =
X1

1 + tX1
, x2 = X2, x3 = X3.

Determine the material density as a function of position x and time t.

Solution: The inverse mapping is given by

X1 =
x1

1− tx1
, X2 = x2, X3 = x3. (1)

We then compute the velocity components

v =
Dx

Dt
=

(
∂x

∂t

)
X=fixed

; vi =
Dxi

Dt
=

(
∂xi

∂t

)
X=fixed

. (2)

Therefore, we have

v1 = − X2
1

(1 + tX1)2
= −x2

1, v2 = 0, v3 = 0. (3)

Next, we compute Dρ/Dt from the continuity equation (5.2.27)

Dρ

Dt
= −ρ∇ · v = −ρ

(
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

)
= 2ρ x1, (4)

and in the material coordinates
Dρ

Dt
= 2ρ

X1

1 + tX1
. (5)

Integrating the above equation (for fixed X1), we obtain

∫
1

ρ
Dρ = 2

∫
X1

1 + tX1
Dt ⇒ ln ρ = 2 ln(1 + tX1) + ln c,

where c is the constant of integration. If ρ = ρ0 at time t = 0, we have ln c = ln ρ0. Thus, the
material density in the current configuration is

ρ = ρ0
(
1 + tX1

)2
=

ρ0
(1− tx1)2

. (6)

It can be verified that the material time derivative of ρ gives the same result as in Eq. (4),

Dρ

Dt
=

∂ρ

∂t
+ v1

∂ρ

∂x1

=
2ρ0 x1

(1− tx1)3
+ (−x2

1)
2ρ0t

(1− tx1)3
=

2ρ0x1

(1− tx1)2
= 2ρx1.

The mass density in the current configuration can also be computed using the continuity
equation in the material description, ρ0 = ρ J. Noting that

dx1 =
1

(1 + tX1)
dX1 − tX1

(1 + tX1)2
dX1 =

1

(1 + tX1)2
dX1, J =

dx1

dX1
=

1

(1 + tX1)2
,

we obtain

ρ =
1

J
ρ0 = ρ0(1 + tX1)

2 .
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5.2.6 Reynolds Transport Theorem

The material derivative operator D/Dt corresponds to changes with respect to
a fixed mass, that is, ρ dx is constant with respect to this operator. Therefore,
from Eq. (5.2.20) by substituting for φ = ρF (x, t), where F is an arbitrary
function, we obtain the result

D

Dt

∫
Ω
ρF (x, t) dx =

∂

∂t

∫
Ω
ρF dx+

∮
Γ
ρF n̂ · v ds, (5.2.38)

or

D

Dt

∫
Ω
ρF (x, t) dx =

∫
Ω

[
ρ
∂F

∂t
+ F

∂ρ

∂t
+∇ · (ρFv)

]
dx

=

∫
Ω

[
ρ

(
∂F

∂t
+ v ·∇F

)
+ F

(
∂ρ

∂t
+∇ · (ρv)

)]
dx. (5.2.39)

Now using the continuity equation (5.2.24) and the definition of the material
time derivative, we arrive at the result

D

Dt

∫
Ω
ρF dx =

∫
Ω
ρ
DF

Dt
dx. (5.2.40)

Equation (5.2.40) is known as the Reynolds transport theorem. Equation (5.2.40)
also holds when F is a vector- on tensor-valued function.

5.3 Balance of Linear and Angular Momentum

5.3.1 Principle of Balance of Linear Momentum

The principle of balance of linear momentum, also known as Newton’s second law
of motion, applied to a set of particles (or rigid body) can be stated as follows:
The time rate of change of (linear) momentum of a collection of particles equals
the net force exerted on the collection. Written in vector form, the principle
implies

d

dt
(mv) = F, (5.3.1)

where m is the total mass, v is the velocity, and F is the resultant force on the
collection of particles. For constant mass, Eq. (5.3.1) becomes

F = m
dv

dt
= ma, (5.3.2)

which is the familiar form of Newton’s second law.
Newton’s second law for a control volume Ω can be expressed as

F =
∂

∂t

∫
Ω
v(ρ dx) +

∮
Γ
v(ρv · ds), (5.3.3)

where F is the resultant force and ds denotes the vector representing a surface
area element of the outflow. Several simple examples that illustrate the use of
Eq. (5.3.3) are presented next.
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Example 5.3.1

Suppose that a jet of fluid with cross-sectional area A and mass density ρ issues from a nozzle
with a velocity v and impinges against a smooth inclined flat plate, as shown in Fig. 5.3.1.
Assuming that there is no frictional resistance between the jet and the plate, determine the
distribution of the flow and the force required to keep the plate in position.

F nn ˆF

θ

LA

RA

v

v

vA
cv

cs

Tangential 
direction

n̂

•

•

•

Fig. 5.3.1: Jet of fluid impinging on an inclined plate.

Solution: Since there is no change in pressure or elevation before and after impact, the velocity
of the fluid remains the same before and after impact, but the flow to the left and right would
be different. Let the amount of flow to the left be QL and to the right be QR. Then the total
flow Q = vA of the jet is equal to the sum (by the continuity equation):

Q = QL +QR. (1)

Next, we use the principle of balance of linear momentum to relate QL and QR. Applying
Eq. (5.3.3) to the positive tangential direction to the plate, and noting that the resultant
force is zero and the first term on the right-hand side of Eq. (5.3.3) is zero by virtue of the
steady-state condition, we obtain (note that the control surface has three segments that have
nonzero flow across the boundary)

0 =

∮
cs

vt ρv·ds = v cos θ(−ρ vA) + v(ρ vAL) + (−v)(ρ vAR), (2)

where the minus sign in the first term on the right side of the equality is due to the fact that
the mass flow is into the control volume, and the minus sign in the third term is due to the
fact that the velocity is in the opposite direction to the tangent direction (but the mass flow
is out of the control volume, that is, positive). With ALv = QL, ARv = QR, and Av = Q, we
obtain

QL −QR = Q cos θ.

Solving the two equations for QL and QR, we obtain

QL = 1
2
(1 + cos θ)Q, QR = 1

2
(1− cos θ)Q. (3)

Thus, the total flow Q is divided into the left flow of QL and right flow of QR, as given above.
The force exerted on the plate is normal to the plate. By applying the balance of linear

momentum in the normal direction (hence, the flow along the plate has zero component normal
to the plate), we obtain

F · n̂ =

∮
cs

(v · n̂)(ρv·ds) = (v sin θ)(−ρ vA),

or (vn = v sin θ)

−Fn =

∮
cs

vn(ρv · ds) = (v sin θ)(−ρ vA) → Fn = ρQv sin θ = ρAv2 sin θ. (4)
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Example 5.3.2

When a free jet of fluid impinges on a smooth (frictionless) curved vane with a velocity v, the
jet is deflected in a tangential direction as shown in Fig. 5.3.2, changing the momentum and
exerting a force on the vane. Assuming that the velocity is uniform throughout the jet and
there is no change in the pressure, determine the force exerted on a fixed vane.

F

vA

v

x

y

yF

θ

xFcv

cs

•

•

Fig. 5.3.2: Jet of fluid deflected by a curved vane.

Solution: For the steady-state condition, applying Eq. (5.3.3), we obtain

F =

∮
cs

v(ρv· ds),
−Fx êx + Fy êy = vêx (−ρ vA) + v (cos θ êx + sin θ êy) (ρ vA), (1)

or
Fx = ρ v2A (1− cos θ) , Fy = ρ v2A sin θ. (2)

When a jet of water (ρ = 103 kg/m3) discharging 80 L/s at a velocity of 60 m/s is deflected
through an angle of θ = 60◦, we obtain (Q = vA)

Fx = 103 × 0.08× 60 (1− cos 60◦) = 2.4 kN,

Fy = 103 × 0.08× 60 sin 60◦ = 4.157 kN.

When the vane moves with a horizontal velocity of v0 < v, Eq. (5.3.3) becomes

F =

∮
cs

(v − v0)[ρ(v − v0) · ds],
−Fx êx + Fy êy = (v − v0) [−ρ(v − v0)A êx] + (v − v0) (cos θ êx + sin θ êy) ρ(v − v0)A,

from which we obtain

Fx = ρ(v − v0)
2A (1− cos θ) , Fy = ρ(v − v0)

2A sin θ. (3)

Example 5.3.3

A chain of total length L and mass ρ per unit length slides down from the edge of a smooth
table with an initial overhang x0 to initiate motion, as shown in Fig. 5.3.3. Assuming that the
chain is rigid, find the equation of motion governing the chain and the tension in the chain.

Solution: Let x be the amount of chain sliding down the table at any instant t. By considering
the entire chain as the control volume, the linear momentum of the chain is

ρ(L− x) · ẋ êx − ρx · ẋ êy.
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cvL x

x

gρ

x

x

y
H L

Fig. 5.3.3: Chain sliding down a table.

The resultant force in the chain is −ρg x êy. The principle of balance of linear momentum gives

−ρ gx êy =
d

dt
[ρ(L− x) ẋ êx − ρ x ẋ êy] , (1)

or
0 = (L− x)ẍ− ẋ2, −gx = −xẍ− ẋ2.

Eliminating ẋ2 from the two equations, we arrive at the equation of motion:

ẍ− g

L
x = 0. (2)

The solution of this second-order differential equation is

x(t) = A coshλt+B sinhλt, where λ =

√
g

L
.

The constants of integration A and B are determined from the initial conditions

x(0) = x0, ẋ(0) = 0,

where x0 denotes the initial overhang of the chain. We obtain

A = x0, B = 0,

and the solution becomes

x(t) = x0 coshλt, λ =

√
g

L
. (3)

The tension T in the chain can be computed by using the principle of balance of linear
momentum applied to the control volume of the chain on the table as well as hanging

T =
∂

∂t

∫
Ω

v(ρ dx) +

∮
Γ

v(ρv · ds)

=
d

dt
[ρ(L− x)ẋ] + ρ ẋẋ

= ρ(L− x)ẍ =
ρ g

L
(L− x)x, (4)

where Eq. (2) is used in arriving at the last step.
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Example 5.3.4

Consider a chain of length L and mass density ρ per unit length that is piled on a stationary
table, as shown in Fig. 5.3.4. Determine the force F required to lift the chain with a constant
velocity v.

x

F

Fig. 5.3.4: Lifting of a chain piled on a table.

Solution: Let x be the height of the chain lifted off the table. Taking the control volume to be
that enclosing the lifted chain and using Eq. (5.3.3) at a point, we obtain

F − ρ gx =
∂

∂t

∫
Ω

v(ρ dx) +

∮
Γ

v(ρv · ds)

=
∂

∂t
(ρ v) + ρ vv = 0 + ρ v2, (1)

or
F = ρ

(
gx+ v2

)
.

The same result can be obtained using Newton’s second law of motion:

F − ρ gx =
d

dt
(mv) = mv̇ + ṁv = 0 + ṁv, (2)

where the rate of increase of mass m = ρ x is ṁ = ρ ẋ = ρ v.

5.3.1.1 Equations of motion in the spatial description

To derive the equation of motion applied to an arbitrarily fixed region in space
through which material flows (i.e., control volume), we must identify the forces
acting on it. Forces acting on a volume element can be classified as internal and
external. The internal forces resist the tendency of one part of the region/body
to be separated from another part. The internal force per unit area is termed
stress, as defined in Eq. (4.2.1). The external forces are those transmitted by
the body. The external forces can be further classified as body (or volume) forces
and surface forces.

Body forces act on the distribution of mass inside the body. Examples of
body forces are provided by the gravitational and electromagnetic forces. Body
forces are usually measured per unit mass or unit volume of the body. Let f
denote the body force per unit mass. Consider an elemental volume dx inside
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Ω. The body force of the elemental volume is equal to ρ dx f . Hence, the total
body force of the control volume is∫

Ω
ρ f dx. (5.3.4)

Surface forces are contact forces acting on the boundary surface of the body,
and they are measured per unit area. If t is the surface force per unit area,
the surface force on an elemental surface area ds is t ds. The total surface force
acting on the closed surface of the region Ω is∮

Γ
t ds. (5.3.5)

The principle of balance of linear momentum applied to a given mass of a
medium B, instantaneously occupying a region Ω with bounding surface Γ, and
acted upon by external surface force t per unit area and body force f per unit
mass, can be expressed as

D

Dt

∫
Ω
ρv dx =

∮
Γ
t ds+

∫
Ω
ρ f dx, (5.3.6)

where ρv dx denotes the linear momentum associated with elemental volume
dx, v being the velocity vector.

Since the stress vector t on the surface is related to the (internal) stress
tensor σ by Cauchy’s formula t = σ · n̂, [see Eq. (4.2.10)], where n̂ denotes the
unit normal to the surface, we can express the surface force as∮

Γ
σ · n̂ ds =

∮
Γ
n̂ · σT ds =

∫
Ω
∇ · σT dx, (5.3.7)

where the divergence theorem (5.2.17) is used to convert the surface integral
into volume integral. Thus Eq. (5.3.6) takes the form

D

Dt

∫
Ω
ρv dx =

∫
Ω

(∇ · σT + ρ f
)
dx. (5.3.8)

Using the Reynolds transport theorem, Eq. (5.2.40), we arrive at

0 =

∫
Ω

[
∇ · σT + ρ f − ρ

Dv

Dt

]
dx, (5.3.9)

which is the global form of the equation of motion. The local form is given by

∇ · σT + ρ f = ρ
Dv

Dt
; σij,j + ρ fi = ρ

Dvi
Dt

, (5.3.10)

or

∇ · σT + ρ f = ρ

(
∂v

∂t
+ v ·∇v

)
. (5.3.11)
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Equation (5.3.11) is known as Cauchy’s equation of motion. In Cartesian rect-
angular system, we have

∂σij
∂xj

+ ρ fi = ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
. (5.3.12)

In steady–state conditions, Eq. (5.3.11) reduces to

∇ · σT + ρ f = ρv ·∇v ;
∂σij
∂xj

+ ρ fi = ρ vj
∂vi
∂xj

. (5.3.13)

When the state of stress in the medium is of the form σ = −pI (i.e., hydrostatic
state of stress), the equation of motion (5.3.10) reduces to

−∇p+ ρ f = ρ
Dv

Dt
. (5.3.14)

5.3.1.2 Equations of motion in the material description

To derive the equation of motion applied to an arbitrarily fixed material of
density ρ0, occupying region Ω0 in the reference configuration, we express Eqs.
(5.3.4), (5.3.7), and (5.3.8) in terms of quantities referred to the reference con-
figuration. We have (dx = J dX, and ρ0 = ρ J)∫

Ω
ρ f(x) dx =

∫
Ω0

ρ0 f(X) dX,∮
Γ
σ · n̂ ds =

∮
Γ0

P · N̂ dS =

∫
Ω0

∇0 ·PT dX,

D

Dt

∫
Ω
ρv dx =

∂

∂t

∫
Ω0

ρ0
∂u

∂t
dX =

∫
Ω0

ρ0
∂2u

∂t2
dX.

(5.3.15)

where P is the first Piola–Kirchhoff stress tensor. In arriving at the above results
we have made use of Eqs. (4.4.7) and (3.3.20):

σ · da = P · dA, dv = J dV (or dx = J dX). (5.3.16)

Then the principle of balance of linear momentum yields

∇0 ·PT + ρ0 f = ρ0
∂2u

∂t2
. (5.3.17)

Then using Eq. (4.4.11), namely, S = F−1 ·P or P = F · S, we can express the
equation of motion in terms of the second Piola–Kirchhoff stress tensor S

∇0 ·
(
ST · FT

)
+ ρ0 f = ρ0

∂2u

∂t2
. (5.3.18)

Expressing the deformation tensor F in terms of the displacement vector u [see
Eq. (3.3.8)], we obtain

∇0 ·
[
ST · (I+∇0u)

]
+ ρ0 f = ρ0

∂2u

∂t2
. (5.3.19)
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In rectangular Cartesian component form, we have

∂

∂XJ

[
SKJ

(
δKI +

∂uI
∂XK

)]
+ ρ0 fI = ρ0

∂2uI
∂t2

, I = 1, 2, 3, (5.3.20)

where vI = (∂uI/∂t). Clearly, the equations of motion expressed in terms of
the second Piola–Kirchhoff stress tensor are nonlinear, because of the term
SKJ(∂uI/∂XK), and this nonlinearity is in addition to the nonlinearity in the
strain-displacement relations (see Chapter 3) and constitutive relations (to be
discussed in Chapter 6).

For kinematically infinitesimal deformation, no distinction is made between
X and x and between the second Piola–Kirchhoff stress tensor S and the Cauchy
stress tensor σ, that is, X ≈ x and S ≈ σ. In this case, Eq. (5.3.20) reduces
to

∇ · σT + ρ0 f = ρ0
∂2u

∂t2
;

∂σij
∂xj

+ ρ0 fi = ρ0
∂2ui
∂t2

. (5.3.21)

For bodies in static equilibrium, Eq. (5.3.21) reduces to [see Eq. (4.5.6)]

∇ · σT + ρ0 f = 0 ;
∂σij
∂xj

+ ρ0 fi = 0. (5.3.22)

Applications of the stress equilibrium equation, Eq. (5.3.22), for kinemati-
cally infinitesimal deformation were presented in Examples 4.5.1 and 4.5.2. Here
we reconsider an example of application of Eq. (5.3.20).

Example 5.3.5

Given the following state of stress (SIJ = SJI),

S11 = −2X2
1 , S12 = −7 + 4X1X2 +X3, S13 = 1 +X1 − 3X2,

S22 = 3X2
1 − 2X2

2 + 5X3, S23 = 0, S33 = −5 +X1 + 3X2 + 3X3,

and displacement field,
u1 = AX2, u2 = BX1, u3 = 0,

where A and B are arbitrary constants, determine the body force components for which the
stress field describes a state of equilibrium.

Solution: Using Eq. (5.3.20), the body force components are

ρ0 fI = −∂SIJ

∂XJ
− ∂

∂XJ

(
S1J

∂uI

∂X1
+ S2J

∂uI

∂X2
+ S3J

∂uI

∂X3

)
, I = 1, 2, 3.

We have

ρ0 f1 = −
(
∂S11

∂X1
+

∂S12

∂X2
+

∂S13

∂X3

)

− ∂

∂X1

(
S11

∂u1

∂X1
+ S21

∂u1

∂X2
+ S31

∂u1

∂X3

)

− ∂

∂X2

(
S12

∂u1

∂X1
+ S22

∂u1

∂X2
+ S32

∂u1

∂X3

)

− ∂

∂X3

(
S13

∂u1

∂X1
+ S23

∂u1

∂X2
+ S33

∂u1

∂X3

)
= −[(−4X1) + (4X1) + 0]−A[(4X2) + (−4X2) + 0] = 0,
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ρ0 f2 = −
(
∂S21

∂X1
+

∂S22

∂X2
+

∂S23

∂X3

)

− ∂

∂X1

(
S11

∂u2

∂X1
+ S21

∂u2

∂X2
+ S31

∂u2

∂X3

)

− ∂

∂X2

(
S12

∂u2

∂X1
+ S22

∂u2

∂X2
+ S32

∂u2

∂X3

)

− ∂

∂X3

(
S13

∂u2

∂X1
+ S23

∂u2

∂X2
+ S33

∂u2

∂X3

)
= −[(4X2) + (−4X2) + 0]−B[(−4X1) + (4X1) + 0] = 0,

ρ0 f3 = −
(
∂S31

∂X1
+

∂S32

∂X2
+

∂S33

∂X3

)

− ∂

∂X1

(
S11

∂u3

∂X1
+ S21

∂u3

∂X2
+ S31

∂u3

∂X3

)

− ∂

∂X2

(
S12

∂u3

∂X1
+ S22

∂u3

∂X2
+ S32

∂u3

∂X3

)

− ∂

∂X3

(
S13

∂u3

∂X1
+ S23

∂u3

∂X2
+ S33

∂u3

∂X3

)
= −[1 + 0 + 3] + 0 = −4.

Thus, the body is in equilibrium for the body force components ρ0 f1 = 0, ρ0 f2 = 0, and
ρ0 f3 = −4.

5.3.2 Spatial Equations of Motion in Cylindrical and Spherical
Coordinates

Here we express the equations of motion in the spatial description, Eq. (5.3.11),
in terms of the components in the cylindrical and spherical coordinate systems
(see Figure 5.3.5). The equations are also valid for kinematically infinitesimal
deformations in the material description, with the density ρ replaced with ρ0
(also, contributions from the term v ·∇v should be omitted).
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ê

ê
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Line parallel 
to ê

Line parallel 
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Fig. 5.3.5: (a) Cylindrical and (b) spherical coordinate systems.
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5.3.2.1 Cylindrical coordinates

To express the equations of motion (5.3.11) in terms of the components in the
cylindrical coordinate system, the operator ∇, velocity vector v, body force
vector f, and stress tensor σ are written in the cylindrical coordinates (r, θ, z)
as

∇ = êr
∂

∂r
+

1

r
êθ

∂

∂θ
+ êz

∂

∂z
,

v = êrvr + êθvθ + êzvz,

f = êrfr + êθfθ + êzfz,

σ = σrr êrêr + σrθ êrêθ + σrz êrêz

+ σθr êθêr + σθθ êθêθ + σθz êθêz

+ σzr êzêr + σzθ êzêθ + σzz êzêz.

(5.3.23)

Substituting these expressions into Eq. (5.3.11), we arrive at the following equa-
tions of motion in the cylindrical coordinate system (from the solutions of Prob-
lems 2.49 and 4.28; see also Table 2.4.2 for the gradient of a vector):

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) + ρfr

= ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z

− v2θ
r

)
,

∂σθr
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
σθr + σrθ

r
+ ρfθ

= ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθvr
r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

)
,

∂σzr
∂r

+
1

r

∂σzθ
∂θ

+
∂σzz
∂z

+
σzr
r

+ ρfz

= ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
.

(5.3.24)

5.3.2.2 Spherical coordinates

In the spherical coordinate system (R,φ, θ), we write

∇ = êR
∂

∂R
+

1

R
êφ

∂

∂φ
+

1

R sinφ
êθ

∂

∂θ
,

v = êRvR + êφvφ + êθvθ,

f = êRfR + êφfφ + êθfθ,

σ = σRR êRêR + σRφ êRêφ + σRθ êRêθ

+ σφR êφêR + σφφ êφêφ + σφθ êφêθ

+ σθR êφêθ + σθφ êθêφ + σθθêθêθ.

(5.3.25)

Substituting these expressions into Eq. (5.3.11), we arrive at the following equa-
tions of motion in the spherical coordinate system (from the solution to Problem
2.51 and Table 2.4.2):
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∂σRR

∂R
+

1

R

∂σRφ

∂φ
+

1

R sinφ

∂σRθ

∂θ
+

1

R
(2σRR − σφφ − σθθ + σRφ cotφ) + ρfR

= ρ

(
∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ

+
vθ

R sinφ

∂vR
∂θ

− v2φ + v2θ
R

)
,

∂σφR
∂R

+
1

R

∂σφφ
∂φ

+
1

R sinφ

∂σφθ
∂θ

+
1

R
[(σφφ − σθθ) cotφ+ σRφ + 2σφR] + ρfφ

= ρ

[
∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

(
∂vφ
∂φ

+ vR

)
+

vθ
R sinφ

(
∂vφ
∂θ

− vθ cosφ

)]
,

∂σθR
∂R

+
1

R

∂σθφ
∂φ

+
1

R sinφ

∂σθθ
∂θ

+
1

R
[(σφθ + σθφ) cotφ+ σRθ] + ρfθ

= ρ

[
∂vθ
∂t

+ vR
∂vθ
∂R

+
vφ
R

∂vθ
∂φ

+
vθ

R sinφ

(
∂vθ
∂θ

+ vφ cosφ

)
+

vθvR
R

]
.

(5.3.26)

5.3.3 Principle of Balance of Angular Momentum

5.3.3.1 Monopolar case

This book is concerned primarily with monopolar continuum mechanics, where
the topological features of the arrangement of matter at a micro scale, such as
the distributed couples and couple stresses present at the molecular level, are
overlooked. The monopolar continuum mechanics describes only macroscopic
features of motion, which is sufficient in a vast majority of problems of mechanics.

The principle of balance of angular momentum for the monopolar case can
be stated as follows: The time rate of change of the total moment of momentum
for a continuum is equal to the vector sum of the moments of external forces
acting on the continuum. The principle as applied to a control volume Ω with a
control surface Γ can be expressed as

moment of external forces =
∂

∂t

∫
cv
ρr× v dx+

∫
cs
ρr× v (v · ds), (5.3.27)

where cv and cs denote the control volume and control surface, respectively. An
application of the principle is presented in Example 5.3.6.

Example 5.3.6

Consider the top view of a sprinkler as shown in Fig. 5.3.6. The sprinkler discharges water
outward in a horizontal plane (which is in the plane of the paper). The sprinkler exits are
oriented at an angle of θ from the tangent line to the circle formed by rotating the sprinkler
about its vertical centerline. The sprinkler has a constant cross-sectional flow area of A and
discharges a flow rate of Q when ω = 0 at time t = 0. Hence, the radial velocity is equal to
vr = Q/2A. Determine ω (counterclockwise) as a function of time.

Solution: Suppose that the moment of inertia of the empty sprinkler head is Iz and the resisting
torque due to friction (from bearings and seals) is T (clockwise). The control volume is taken
to be the cylinder of unit height (into the plane of the page) and radius R, formed by the
rotating sprinkler head. The inflow, being along the axis, has no moment of momentum. Thus
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the time rate of change of the moment of momentum of the sprinkler head plus the net efflux
of the moment of momentum from the control surface is equal to the torque T :

−T êz =

[
2
d

dt

∫ R

0

Aρωr2 dr + Iz
dω

dt
+ 2R

(
ρ
Q

2

)
(ωR− vr cos θ)

]
êz,

where the first term represents the time rate of change of the moment of momentum [moment
arm times mass of a differential length dr times the velocity: r × (ρAdr)(ωr)], the second
term is the time rate of change of the angular momentum, and the last term represents the
efflux of the moment of momentum at the control surface (i.e., exit of the sprinkler nozzles).
Simplifying the equation, we arrive at

(
Iz +

2
3
ρAR3) dω

dt
+ ρQR2ω = ρQRvr cos θ − T.

The above equation indicates that for rotation to start ρQRvr cos θ − T > 0. The final value
of ω is obtained when the sprinkler motion reaches the steady state, that is, dω/dt = 0. Thus,
at steady state, we have

ωf =
vr
R

cos θ − T

ρQR2
.

θ

R Fluid velocity, rv

3Discharge, m /s)Q (

A

cs

T

ê

θ

erˆ

Fig. 5.3.6: A rotating sprinkler system.

The mathematical statement of the principle of balance of angular momen-
tum as applied to a continuum is∮

Γ
(x× t)ds+

∫
Ω
(x× ρ f)dx =

D

Dt

∫
Ω
(x× ρv) dx, (5.3.28)

where t denotes the stress vector and f denotes the body force vector (measured
per unit mass). Equation (5.3.28) can be simplified with the help of the index
notation in rectangular Cartesian coordinates (but the result will hold in any
coordinate system). In index notation (kth component) Eq. (5.3.28) takes the
form ∮

Γ
eijk xi tj ds+

∫
Ω
(ρ eijk xi fj) dx =

D

Dt

∫
Ω
ρ eijk xi vj dx. (5.3.29)

We use several steps to simplify the expression. First replace tj with tj = npσpj
(Cauchy’s formula). Then transform the surface integral to a volume integral
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and use the Reynolds transport theorem, Eq. (5.2.40), for the material time
derivative of a volume integral to obtain∫

Ω
eijk (xi σjp),p dx+

∫
Ω
(ρeijk xi fj) dx =

∫
Ω
ρ eijk

D

Dt
(xi vj) dx,

where (·),p = ∂(·)/∂xp. Carrying out the indicated differentiations and noting
Dxi/Dt = vi, we obtain∫

Ω
eijk (xi σjp,p + δip σjp + ρ xi fj) dx =

∫
Ω
ρ eijk

(
vi vj + xi

Dvj
Dt

)
dx,

or (noting that eijk vi vj = 0):∫
Ω

{
eijk

[
xi

(
σjp,p + ρ fj − ρ

Dvj
Dt

)]
+ eijk σji

}
dx = 0.

which, in view of the equations of motion (5.3.10), yields

eijk σji = 0 or E : σT = 0. (5.3.30)

Thus, in the absence of body couples, we have

E : σT = 0 ⇒ σ = σT (or σij = σji). (5.3.31)

From Eq. (4.4.12) it follows that the second Piola–Kirchhoff stress tensor
is also symmetric, S = ST, whenever σ is symmetric. Also, when σ = σT, it
follows from Eq. (4.4.8) that

P · FT = F ·PT (i.e., P · FT is symmetric). (5.3.32)

5.3.3.2 Multipolar case

In multipolar continuum mechanics, a molecule may be represented by a “de-
formable” particle, undergoing its own internal strains (so-called “microstrains”),
which represent certain types of collective behavior of the sub-particles of a
molecule1. A multipolar continuum also contains an angular momentum vector
ρp and a body couple vector ρc (both measured per unit mass) inside the body,
in the same way as the linear momentum vector ρv and the body force vector
ρf , and a couple traction vector m on the boundary, in the same way as the
traction vector t. Analogous to Cauchy’s formula, the couple traction vector m
is related to the couple stress tensor M according to

m = M · n̂ (or mi = Mij nj). (5.3.33)

By the principle of balance of linear momentum, body and surface couples
do not enter the calculation and therefore the equation of motion (5.3.10) is
unaffected. However, for a multipolar case the principle leads to additional
equations. For the sake of completeness, we present these additional equations,
although their use is not illustrated in this book.

1See Jaunzemis (1967) and Eringen and Hanson (2002) for further discussion.
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The principle of balance of angular momentum for the multipolar case can
be stated as follows: The time rate of change of the total moment of momentum
for a continuum is equal to vector sum of couples and the moments of external
forces acting on the continuum. The principle as applied to a control volume Ω
with a control surface Γ can be expressed as [see Eq. (5.3.28)]∮

Γ
(x× t+m) ds+

∫
Ω
(x× ρf + ρ c) dx =

D

Dt

[∫
v
(x× ρv + ρp) dx

]
. (5.3.34)

In index notation (kth component of), Eq. (5.3.34) takes the form∮
Γ
(eijk xi tj +mk) ds+

∫
Ω
(ρ eijk xi fj + ρ ck) dx

=
D

Dt

∫
Ω
(ρ eijk xi vj + ρ pk) dx. (5.3.35)

Using Cauchy’s formulas, tj = σjpnp and mk = Mkpnp, and the divergence
theorem, we arrive at the result∫

Ω

[
eijk (xi σjp),p +Mkp,p + ρ eijk xi fj + ρ ck

]
dx

=

∫
Ω
ρ
[
eijk

D

Dt
(xi vj) +

Dpk
Dt

]
dx. (5.3.36)

After simplification using Dxi/Dt = vi and eijk vi vj = 0, we obtain∫
Ω

[
eijk xi

(
σjm,m + ρ fj − ρ

Dvj
Dt

)
+Mki,i + eijk σji + ρ ck − ρ

Dpk
Dt

]
dx = 0,

or in vector form∫
Ω

[
x×

(
∇ · σT + ρ f − ρ

Dv

Dt

)
+∇ ·MT + E : σT + ρ c− ρ

Dp

Dt

]
dx = 0,

(5.3.37)
where E is the third-order permutation tensor. Using the equation of motion
(5.3.10), we deduce the following local form, known as Cosserat’s equation:

∇ ·MT + E : σT + ρ c = ρ
Dp

Dt
. (5.3.38)

Thus, for a multipolar continuum, the stress tensor is no longer symmetric.

5.4 Thermodynamic Principles

5.4.1 Introduction

The first law of thermodynamics is commonly known as the principle of balance
of energy, and it can be regarded as a statement of the interconvertibility of
heat and work, while the total energy remains constant. The law does not place
any restrictions on the direction of the process. For instance, in the study of
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mechanics of particles and rigid bodies, the kinetic energy and potential energy
can be fully transformed from one to the other in the absence of friction and
other dissipative mechanisms. From our experience, we know that mechanical
energy that is converted into heat cannot all be converted back into mechani-
cal energy. For example, the motion (kinetic energy) of a flywheel can all be
converted into heat (internal energy) by means of a friction brake; if the whole
system is insulated, the internal energy causes the temperature of the system
to rise. Although the first law does not restrict the reversal process, namely
the conversion of heat to internal energy and internal energy to motion (of the
flywheel), such a reversal cannot occur because the frictional dissipation is an
irreversible process. The second law of thermodynamics provides the restriction
on the interconvertibility of energies.

5.4.2 Balance of Energy

The first law of thermodynamics states that the time rate of change of the total
energy is equal to the sum of the rate of work done by the external forces and the
change of heat content per unit time. The total energy is the sum of the kinetic
energy and the internal energy. The principle of the balance of energy can be
expressed as

D

Dt
(K + U) = W +Qh. (5.4.1)

Here, K denotes the kinetic energy, U is the internal energy, W is the power
input, and Qh is the heat input to the system.

5.4.2.1 Energy equation in the spatial description

The kinetic energy of the system is given by

K = 1
2

∫
Ω
ρv · v dx, (5.4.2)

where v is the velocity vector. If e is the energy per unit mass (or specific
internal energy), the total internal energy of the system is given by

U =

∫
Ω
ρ e dx. (5.4.3)

The kinetic energy (K) is the energy associated with the macroscopically ob-
servable velocity of the continuum. The kinetic energy associated with the (mi-
croscopic) motions of molecules of the continuum is a part of the internal energy;
the elastic strain energy and other forms of energy are also parts of the internal
energy, U .

Here we consider only the nonpolar case, that is, body couples are zero and
the stress tensor is symmetric. The power input consists of the rate of work
done by external surface tractions t per unit area and body forces f per unit
volume of the region Ω bounded by Γ:

W =

∮
Γ
t · v ds+

∫
Ω
ρ f · v dx. (5.4.4)
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The rate of heat input consists of conduction through the boundary Γ and
heat generation inside the region Ω (possibly from a radiation field or transmis-
sion of electric current). Let q be the heat flux vector and rh be the internal
heat generation per unit mass. Then the heat inflow across the surface element
ds is −q · n̂ ds, and internal heat generation in volume element dx is ρ rhdx.
Hence, the total heat input is

Qh = −
∮
Γ
n̂ · q ds+

∫
Ω
ρ rh dx. (5.4.5)

Substituting expressions for K, U , W , and Qh from Eqs. (5.4.2)–(5.4.5) into
Eq. (5.4.1), we obtain

D

Dt

∫
Ω
ρ

(
1

2
v · v + e

)
dx =

∮
Γ
t · v ds+

∫
Ω
ρf · v dx

−
∮
Γ
n̂ · q ds+

∫
Ω
ρ rh dx. (5.4.6)

Equation (5.4.6) can be simplified using a number of previously derived equations
and identities, as explained next.

We begin with the expression for W (symmetry of σ allows us to write
σ · n̂ = n̂ · σ)

W =

∮
Γ
t · v ds+

∫
Ω
ρ f · v dx =

∮
Γ
(n̂ · σ) · v ds+

∫
Ω
ρf · v dx

=

∫
Ω
[∇ · (σ · v) + ρ f · v] dx =

∫
Ω
[(∇ · σ + ρ f) · v + σ : ∇v] dx

=

∫
Ω

(
ρ
Dv

Dt
· v + σ : ∇v

)
dx, (5.4.7)

where : denotes the “double-dot product” S : T = Sij Tij [see Eq. (2.5.13)].
The Cauchy formula, vector identity in Eq. (5.2.7), and the equation of motion
(5.3.10) are used in arriving at the last step. We note that [see Eq. (5.2.8)]

σ : ∇v = σsym : D− σskew : W,

where D is the symmetric part, called the rate of deformation tensor, and W
is the skew symmetric part, called the vorticity (or spin) tensor, of (∇v)T [see
Eq. (3.6.2)],

D = 1
2

[∇v + (∇v)T
]
, W = 1

2

[
(∇v)T −∇v

]
, (5.4.8)

and σsym and σskew are the symmetric and skew symmetric parts of σ. When
σ is symmetric, we have σsym = σ and σskew = 0. Hence, Eq. (5.4.7) becomes

W = 1
2

∫
Ω
ρ
D

Dt
(v · v) dx+

∫
Ω
σ : D dx = 1

2

D

Dt

∫
Ω
ρv · v dx+

∫
Ω
σ : D dx,

where the Reynolds transport theorem, Eq. (5.2.40), is used to write the final
expression. Next, Qh can be expressed as

Qh = −
∮
Γ
n̂ · q ds+

∫
Ω
ρ rh dx =

∫
Ω
(−∇ · q+ ρ rh) dx. (5.4.9)
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With the new expressions for W and Qh, Eq. (5.4.6) can be written as

0 =

∫
Ω

(
ρ
De

Dt
− σ : D+∇ · q− ρ rh

)
dx, (5.4.10)

which is the global form of the energy equation. The local form of the energy
equation is given by

ρ
De

Dt
= σ : D−∇ · q+ ρ rh, (5.4.11)

which is known as the thermodynamic form of the energy equation for a contin-
uum. The term σ : D is known as the stress power, which can be regarded as
the internal work production.

5.4.2.2 Energy equation in the material description

To derive the energy equation in the material description, we write K, U , W ,
and Qh in the material description:

K = 1
2

∫
Ω
ρv · v dx = 1

2

∫
Ω0

ρ0 v · v dX, (5.4.12)

U =

∫
Ω
ρ e dx =

∫
Ω0

ρ0 e dX, (5.4.13)

W =

∮
Γ
t · v ds+

∫
Ω
ρ f · v dx =

∮
Γ0

T · v dS +

∫
Ω0

ρ0 f · v dX

=

∮
Γ0

(N̂ ·PT) · v dS +

∫
Ω0

ρ0 f · v dX =

∫
Ω0

[∇0 · (PT · v) + ρ0 f · v
]
dX

=

∫
Ω0

[(∇0 ·PT + ρ0 f
) · v +PT : ∇0v

]
dX

=

∫
Ω

[
1
2ρ0

∂

∂t
(v · v) +PT : ∇0v

]
dX, (5.4.14)

Qh = −
∮
Γ
n̂ · q ds+

∫
Ω
ρ rh dx = −

∮
Γ0

N̂ · q0 dS +

∫
Ω0

ρ0 rh dX

=

∫
Ω0

[−∇0 · q0 + ρ0 rh] dX, (5.4.15)

where Eqs. (5.3.15) and (5.3.17), and the following relations are used to write
the final expressions for K, W , and Qh:

n̂ ds = J F−T · N̂ dS = J N̂ · F−1 dS, ρ dx = ρ0 dX, (5.4.16)

and all variables are now function of X, the material coordinates.
Substitution of expressions from Eqs. (5.4.12)–(5.4.15) into Eq. (5.4.1), we

obtain the following local form of the energy equation in the material descrip-
tion:

ρ0
∂e

∂t
= PT : ∇0v −∇0 · q0 + ρ0 rh. (5.4.17)

In terms of the second Piola–Krichhoff stress tensor, we have

ρ0
∂e

∂t
= (S · FT) : ∇0v −∇0 · q0 + ρ0 rh. (5.4.18)
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5.4.3 Entropy Inequality

The concept of entropy is a difficult one to explain in simple terms; it has its
roots in statistical physics and thermodynamics and is generally considered as
a measure of the tendency of the atoms toward a disorder. For example, carbon
has a lower entropy in the form of diamond, a hard crystal with atoms closely
bound in a highly ordered array.

Temperature cannot be decreased below a certain absolute minimum. We
introduce θ as the absolute temperature whose greatest lower bound is zero. We
also recall that in an admissible deformation, the deformation gradient tensor F
should be nonsingular, that is, J = |F| �= 0. Thus each thermodynamic process
should satisfy the conditions

θ ≥ 0, |F| �= 0.

5.4.3.1 Homogeneous processes

Let us denote total entropy by the symbol H, and define internal dissipation,
D, as

D = θ Ḣ −Qh, (5.4.19)

where Qh denotes the rate of heat supply to the body; θḢ is interpreted as the
time rate of change of the heat content of the body. The ratio of D to θ is called
the internal entropy production,

Γ ≡ D
θ

= Ḣ − Qh

θ
. (5.4.20)

The second law of thermodynamics states that the internal entropy production
is always positive, which is known as the Clausius–Duhem inequality, and it is
expressed, for homogeneous processes, as

D = θ Ḣ −Qh ≥ 0. (5.4.21)

If D = 0, then the process is said to be reversible, and we have Ḣ = Qh/θ;
otherwise, the process is said to be irreversible. The processes in which Qh = 0,
hence Ḣ ≥ 0, are said to be adiabatic. Processes in which Ḣ = 0 (i.e., Qh ≤ 0)
are called isentropic. The second law of thermodynamics essentially states that
the time rate of change of the heat content θ Ḣ of a body can never be less than
the rate of heat supply Qh.

5.4.3.2 Nonhomogeneous processes

To derive the Clausius–Duhem inequality for nonhomogeneous processes (that
is, processes that depend not only on time but also on position), let us introduce
the entropy density per unit mass, η, so that

H =

∫
Ω
ρη dx. (5.4.22)
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We define the entropy production as [in the same form as Eq. (5.4.20) for the
homogeneous case]

Γ =
D

Dt

∫
Ω
ρη dx−

[
−

∮
Γ

1

θ
q · n̂ ds+

∫
Ω

ρrh
θ

dx

]

=

∫
Ω
ρ
Dη

Dt
dx+

∫
Ω

[
∇ ·

(q
θ

)
− ρ rh

θ

]
dx. (5.4.23)

Then, the second law of thermodynamics requires Γ ≥ 0, giving∫
Ω
ρ
Dη

Dt
dx ≥

∫
Ω

[(ρrh
θ

)
−∇ ·

(q
θ

)]
dx. (5.4.24)

The local form of the Clausius–Duhem inequality, or entropy inequality is

Dη

Dt
≥ rh

θ
− 1

ρ
∇ ·

(q
θ

)
or ρθ

Dη

Dt
− ρ rh +∇ · q− 1

θ
q ·∇θ ≥ 0. (5.4.25)

The quantity q/θ is known as the entropy flux and rh/θ is the entropy supply
density.

The sum of internal energy (e) and irreversible heat energy (−θη) is known
as the Helmhotz free energy density:

Ψ = e− θη. (5.4.26)

Substituting Eq. (5.4.26) into Eq. (5.4.11), we obtain

ρ
DΨ

Dt
= σ : D− ρ

Dθ

Dt
η −D, (5.4.27)

where D is the symmetric part of the velocity gradient tensor [see Eq. (5.4.8)],
and D is the internal dissipation

D = ρ θ
Dη

Dt
+∇ · q− ρ rh. (5.4.28)

In view of Eq. (5.4.25) we can write

D − 1

θ
q ·∇θ ≥ 0. (5.4.29)

We have D > 0 for an irreversible process, and D = 0 for a reversible process.
Expressing the entropy inequality (5.4.25) in terms of the Helmholtz free energy
density, we obtain

σ : L− ρθ̇η − ρΨ̇− 1

θ
q ·∇θ ≥ 0, (5.4.30)

where the superposed dot denotes the material time derivative, and L is the
velocity gradient tensor, L = (∇v)T = D +W, W being the skew symmetric
spin tensor in Eq. (5.4.8). Note that when σ is symmetric, we have σ : L = σ :
D.
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5.5 Summary

5.5.1 Preliminary Comments

This chapter was devoted to the derivation of the field equations governing a
continuous medium using the principle of conservation of mass and balance of
momenta and energy, and therefore constitutes the heart of the book. The
equations are derived in invariant (i.e., vector and tensor) form so that they
can be expressed in any chosen coordinate system (e.g., rectangular, cylindrical,
spherical, or curvilinear system). The principle of conservation of mass results
in the continuity equation; the principle of balance of linear momentum, which
is equivalent to Newton’s second law of motion, leads to the equations of mo-
tion in terms of the Cauchy stress tensor; the principle of balance of angular
momentum yields, in the absence of body couples, the symmetry of the Cauchy
stress tensor; and the principles of thermodynamics – the first and second laws
of thermodynamics – give rise to the energy equation and Clausius–Duhem in-
equality.

In closing this chapter, we summarize the invariant form of the equations
resulting from the application of conservation principles to a continuum. The
variables appearing in the equations were already defined and are not repeated
here. In this study, we will be concerned only with monopolar media, where no
body couples and body moments are accounted for. This amounts to assuming
the symmetry of the stress tensors:

σ = σT, S = ST, P · FT = F ·PT.

5.5.2 Conservation and Balance Equations in the Spatial
Description

Conservation of mass
∂ρ

∂t
+∇ · (ρv) = 0 (5.5.1)

Balance of linear momentum

∇ · σ + ρ f = ρ

(
∂v

∂t
+ v ·∇v

)
(5.5.2)

Balance of angular momentum
σT = σ (5.5.3)

Balance of energy

ρ
De

Dt
= σ: D−∇ · q+ ρ rh (5.5.4)

Entropy inequality

ρθ
Dη

Dt
− ρ rh +∇ · q− 1

θ
q ·∇θ ≥ 0 (5.5.5)
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5.5.3 Conservation and Balance Equations in the Material
Description

Conservation of mass
ρ0 = ρ J (5.5.6)

Balance of linear momentum

∇0 · (S · FT) + ρ0 f = ρ0
∂2u

∂t2
(5.5.7)

Balance of angular momentum
ST = S (5.5.8)

Balance of energy

ρ0
∂e

∂t
= (S · FT) : ∇0v −∇0 · q0 + ρ0 r0 (5.5.9)

Entropy inequality

ρ0θ
Dη

Dt
− ρ0 r0 +∇0 · q0 − 1

θ
q0 ·∇0θ ≥ 0 (5.5.10)

We shall return to these equations in the subsequent chapters as needed.
These equations may be supplemented by other field equations, such as Maxwell’s
equations governing electromagnetics, depending on the field of study.

5.5.4 Closing Comments

The subject of continuum mechanics is concerned primarily with the determi-
nation of the behavior (e.g., F, θ, ∇θ = g, etc.) of a body under externally
applied causes (e.g., f, rh, and so on). After introducing suitable constitutive
relations for σ, e, η, and q (to be discussed in Chapter 6), this task involves
solving the initial-boundary-value problem described by partial differential equa-
tions (5.5.1)–(5.5.4) under specified initial and boundary conditions. The role
of the entropy inequality in formulating the problem is to make sure that the
behavior of a body is consistent with the inequality (5.5.5). Often, the con-
stitutive relations developed are required to be consistent with the second law
of thermodynamics (i.e., satisfy the entropy inequality). The entropy principle
states that constitutive relations be such that the entropy inequality is satisfied
identically for any thermodynamic process.

An examination of the conservation principles presented in this chapter shows
that all of the mathematical statements resulting from the principles share a
common mathematical structure. These all can be expressed in terms of a
general balance (or conservation) equation in the spatial description as

D

Dt

∫
Ω
φ(x, t) dx =

∮
Γ
ψ(x, t, n̂) ds+

∫
Ω
f(x, t) dx, (5.5.11)

where φ is a tensor field of order n measured per unit volume; ψ(x, t, n̂) is a
surface tensor of order n−1, measured per unit current area and depends on the
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surface orientation n̂; and f(x, t) is a source tensor of order n, also measured per
unit volume (n = 0, 1). The variables φ, ψ, and f associated with the balance
equations resulting from the principles of conservation of mass, balance of linear
and angular momentum, and the first and second laws of thermodynamics are
presented in Table 5.5.1.

Table 5.5.1: Expressions for variables φ, ψ, and f in Eq. (5.5.11) for the four conservation
principles.

No. φ(x, t) ψ(x, t, n̂) f(x, t) number

1. ρ 0 0 (5.2.22)
2. ρv t ρ f (5.3.6)
3. x× ρv x× t ρx× f (5.3.28)
4. ρ (v2/2 + e) t · v − n̂ · q ρ f · v + ρ r (5.4.6)

5. ρ η −q·n̂
θ

ρ r
θ

(5.4.23)

To complete the mathematical description of the behavior of a continuous
medium, the conservation equations derived in this chapter must be supple-
mented with the constitutive equations that relate σ, e, η, and q to F, θ, and
g ≡ ∇θ. The strain (or strain rate) measures (e, D, E, F, C) introduced in
Chapter 3 and the stress measures (σ, P, S) introduced in Chapter 4 are objec-
tive and, therefore, they are suitable candidates for the description of material
response, which should be independent of the observer. Chapter 6 is dedicated
to the discussion of the material constitutive relations. Applications of the gov-
erning equations to linearized elasticity problems and fluid mechanics and heat
transfer problems are discussed in Chapters 7 and 8, respectively.

Problems

Conservation of Mass

5.1 The acceleration of a material element in a continuum is described by

Dv

Dt
≡ ∂v

∂t
+ v ·∇v, (1)

where v is the velocity vector. Show by means of vector identities that the acceleration
can also be written as

Dv

Dt
≡ ∂v

∂t
+∇

(
v2

2

)
− v ×∇× v, v2 = v · v. (2)

5.2 Show that the local form of the principle of conservation of mass, Eq. (5.2.22), can be
expressed as

D

Dt
(ρJ) = 0.

5.3 Use the equation
D

Dt
(ρJ) = 0,

to derive the continuity equation

Dρ

Dt
+ ρ∇ · v = 0.
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5.4 Derive the continuity equation in the cylindrical coordinate system by considering a
differential volume element shown in Fig. P5.4.

θΔ

θ
1x

2x

3x

r

êθ
ˆ ze

ˆ re
rΔ

zΔ

z z
vρ

z z z
vρ

Δ vθ θ θ
ρ

Δ

vθ θ
ρ

r r
vρ

r r r
vρ

Δ

Fig. P5.4

5.5 Express the continuity equation (5.2.24) in the cylindrical coordinate system (see Table
2.4.2 for various operators). The result should match the one in Eq. (5.2.30).

5.6 Express the continuity equation (5.2.24) in the spherical coordinate system (see Table
2.4.2 for various operators). The result should match the one in Eq. (5.2.31).

5.7 Determine if the following velocity fields for an incompressible flow satisfy the continuity
equation:

(a) v1(x1, x2) = −x1

r2
, v2(x1, x2) = −x2

r2
where r2 = x2

1 + x2
2.

(b) vr = 0, vθ = 0, vz = c
(
1− r2

R2

)
where c and R are constants.

5.8 The velocity distribution between two parallel plates separated by distance b is

vx(y) =
y

b
v0 − c

y

b

(
1− y

b

)
, vy = 0, vz = 0, 0 < y < b,

where y is measured from and normal to the bottom plate, x is taken along the plates, vx

is the velocity component parallel to the plates, v0 is the velocity of the top plate in the

x direction, and c is a constant. Determine if the velocity field satisfies the continuity

equation and find the volume rate of flow and the average velocity.

Balance of Linear Momentum

5.9 Calculate the force exerted by a water (ρ = 103 kg/m3) jet of diameter d = 8 mm and
velocity v = 12 m/s that impinges against a smooth inclined flat plate at an angle of
45◦ to the axis of the jet, as shown in Fig. P5.9.

F

45

v

v

v

Fig. P5.9
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5.10 Calculate the force exerted by a water (ρ = 103 kg/m3) jet of diameter d = 60 mm and
velocity v = 6 m/s that impinges against a smooth inclined flat plate at an angle of 60◦

to the axis of the jet. Also calculate the volume flow rates QL and QR.

5.11 A jet of air (ρ = 1.206 kg/m3) impinges on a smooth vane with a velocity v = 50 m/s
at the rate of Q = 0.4 m3/s. Determine the force required to hold the plate in position
for the two different vane configurations shown in Fig. P5.11. Assume that the vane
splits the jet into two equal streams, and neglect any energy loss in the streams.

Fig. P5.11

5.12 In Example 5.3.3, determine (a) the velocity and accelerations as functions of x, and
(b) the velocity as the chain leaves the table.

5.13 Using the definition of ∇, vector forms of the velocity vector, body force vector, and
the dyadic form of σ [see Eq. (5.3.23)], express the equation of motion (5.3.11) in the
cylindrical coordinate system as given in Eq. (5.3.24).

5.14 Using the definition of ∇, vector forms of the velocity vector, body force vector, and
the dyadic form of σ [see Eq. (5.3.25)], express the equation of motion (5.3.11) in the
spherical coordinate system as given in Eq. (5.3.26).

5.15 Use the continuity equation and the equation of motion to obtain the so-called conser-
vation form of the linear momentum equation

∂

∂t
(ρv) + div

(
ρvv − σT

)
= ρf .

5.16 Show that

ρ
D

Dt

(
v2

2

)
= v ·∇ · σT + ρv · f (v = |v|).

5.17 Deduce that

∇×
(
Dv

Dt

)
≡ Dw

Dt
+w∇ · v −w ·∇v, (a)

where w ≡ 1
2
∇×v is the vorticity vector. Hint: Use the result of Problem 5.1 and the

identity (you need to prove it)

∇× (A×B) = B ·∇A−A ·∇B+A∇ ·B−B∇ ·A. (2)

5.18 If the stress field σ in a continuum has the following components in a rectangular
Cartesian coordinate system

[σ] = a

⎡
⎣ x2

1x2 (b2 − x2
2)x1 0

(b2 − x2
2)x1

1
3
(x2

2 − 3b2)x2 0
0 0 2bx2

3

⎤
⎦ ,

where a and b are constants, determine the body force components necessary for the
body to be in equilibrium.

5.19 If the stress field σ in a continuum has the following components in a rectangular
Cartesian coordinate system

[σ] =

⎡
⎣ x1x2 x2

1 −x2

x2
1 0 0

−x2 0 x2
1 + x2

2

⎤
⎦ ,

determine the body force components necessary for the body to be in equilibrium.
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5.20 A two-dimensional state of stress σ exists in a continuum with no body forces. The
following components of stress tensor are given (σ21 = σ12):

σ11 = c1x
3
2 + c2x

2
1x2 − c3x1, σ22 = c4x

3
2 − c5, σ12 = c6x1x

2
2 + c7x

2
1x2 − c8,

where ci are constants. Determine the conditions on the constants so that the stress
field is in equilibrium.

5.21 Given the following stress field with respect to the cylindrical coordinate system in a
body that is in equilibrium (σθr = σrθ):

σrr = 2A

(
r +

B

r3
− C

r

)
sin θ,

σθθ = 2A

(
3r − B

r3
− C

r

)
sin θ,

σrθ = −2A

(
r +

B

r3
− C

r

)
cos θ,

where A, B, and C are constants, determine if the stress field satisfies the equilibrium
equations when the body forces are zero. Assume that all other stress components are
zero.

5.22 Given the following stress field with respect to the spherical coordinate system in a body
that is in equilibrium:

σRR = −
(
A+

B

R3

)
, σφφ = σθθ = −

(
A+

C

R3

)
,

where A, B, and C are constants, determine if the stress field satisfies the equilibrium
equations when the body forces are zero and all other stress components are zero.

5.23 For a cantilevered beam bent by a point load at the free end, for kinematically infinites-
imal deformations, the bending moment M3 about the x3-axis is given by M3 = −Px1

(see Fig. P5.23). The bending stress σ11 is given by

σ11 =
M3x2

I3
= −Px1x2

I3
,

where I3 is the moment of inertia of the cross section about the x3-axis. Starting with
this equation, use the two-dimensional equilibrium equations to determine stresses σ22

and σ12 as functions of x1 and x2.

Lb

2h

P P

M3

V

11σ

2x

2x

3x 1x

1x

Fig. P5.23

5.24 For a cantilevered beam bent by a uniformly distributed load (see Fig. P5.24), for
kinematically infinitesimal deformations, the bending stress σ11 is given by [because
M3 = −q0x

2
1/2]

σ11 =
M3x2

I3
= −q0x

2
1x2

2I3
,

where I3 is the moment of inertia of the cross section about the x3-axis. Starting with
this equation, use the two-dimensional equilibrium equations to determine the stresses
σ22 and σ12 as functions of x1 and x2.
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1x

3,x w

L

0q

Fig. P5.24

5.25 Given the following components of the second Piola–Kirchhoff stress tensor S and dis-
placement vector u in a body without body forces:

S11 = c1X
3
2 + c2X

2
1X2 − c3X1, S22 = c4X

3
2 − c5, S12 = c6X1X

2
2 + c7X

2
1X2 − c8,

S13 = S23 = S33 = 0, u1 = c9X2, u2 = c10X1, u3 = 0,

where ci are constants, determine the conditions on the constants so that the stress field
is in equilibrium.

5.26 Given the following components of the second Piola–Kirchhoff stress tensor S and dis-
placement vector u in a body without body forces (expressed in the cylindrical coordi-
nate system):

Srr = −c1
cos θ

r
, Srθ = Sθθ = 0,

ur = c2 log
( r
a

)
cos θ + c3 θ sin θ, uθ = −c2 log

( r
a

)
sin θ + c3 θ cos θ − c4 sin θ,

where ci are constants, determine the conditions on the constants so that the stress
field is in equilibrium for (a) the linear (i.e., infinitesimal deformations) case and (b) the
finite deformation case. Assume a two-dimensional state of stress and deformation in r
and θ coordinates.

Conservation of Angular Momentum

5.27 A sprinkler with four nozzles, each nozzle having an exit area of A = 0.25 cm2, rotates
at a constant angular velocity of ω = 20 rad/s and distributes water (ρ = 103 kg/m3)
at the rate of Q = 0.5 L/s (see Fig. P5.27). Determine

(a) the torque T required on the shaft of the sprinkler to maintain the given motion
and

(b) the angular velocity ω0 at which the sprinkler rotates when no external torque is
applied. Take r = 0.1 m.

Fig. P5.27
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5.28 Consider an unsymmetric sprinkler head shown in Fig. P5.28. If the discharge is Q = 0.5
L/s through each nozzle, determine the angular velocity of the sprinkler. Assume that
no external torque is exerted on the system. Take A = 10−4 m2.

Nozzle exit area, A

Discharge, 0.5 ( /s)Q L

A

ω

1

2

2 0.35 mr

1 0.25 mr

Fig. P5.28

Balance of Energy

5.29 Show that for a multipolar continuum the Clausius–Duhem inequality (5.4.24) remains
unchanged.

5.30 Establish the following alternative form of the energy equation (σT = σ):

ρ
D

Dt

(
e+

v2

2

)
= ∇ · (σ · v) + ρf · v + ρ rh −∇ · q.

5.31 Establish the following thermodynamic form of the energy equation (σT = σ):

ρ
De

Dt
= ∇ · (σ · v)− v ·∇ · σ + ρ rh −∇ · q.

5.32 The total rate of work done by the surface stresses per unit volume is given by ∇ ·(σ ·v).
The rate of work done by the resultant of the surface stresses per unit volume is given
by v · ∇ · σ. The difference between these two terms yields the rate of work done by
the surface stresses in deforming the material particle, per unit volume. Show that this
difference can be written as σ : D, where D is the strain rate tensor defined in Eq.
(5.4.8).

5.33 The rate of internal work done (power) in a continuous medium in the current configu-
ration can be expressed as

W = 1
2

∫
Ω

σ : D dx, (1)

where σ is the Cauchy stress tensor and D is the strain rate tensor (i.e., symmetric part
of the velocity gradient tensor)

D = 1
2

[
(∇v)T +∇v

]
, v =

dx

dt
. (2)

The pair (σ,D) is said to be energetically conjugate because it produces the (strain)
energy stored in a deformable medium. Show that

(a) the first Piola–Kirchhoff stress tensor P is energetically conjugate to the rate of
deformation gradient Ḟ, and

(b) the second Piola–Kirchhoff stress tensor S is energetically conjugate to the rate
of Green strain tensor Ė.

Hints: Note the following identities:

dx = J dX, L ≡ (∇v)T = Ḟ · F−1, P = JF−1 · σ, σ =
1

J
F · S · FT.
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6

CONSTITUTIVE
EQUATIONS

The truth is, the science of Nature has been already too long made only a work of the brain
and the fancy. It is now high time that it should return to the plainness and soundness of
observations on material and obvious things. —– Robert Hooke (1635–1703)

There are two possible outcomes: If the result confirms the hypothesis, then you’ve made a
measurement. If the result is contrary to the hypothesis, then you’ve made a discovery.

—– Enrico Fermi (1901–1954)

6.1 Introduction

6.1.1 General Comments

The kinematic relations developed in Chapter 3, and the principles of conserva-
tion of mass, balance of momenta, and thermodynamic principles discussed in
Chapter 5, are applicable to any continuum irrespective of its physical consti-
tution. The kinematic variables such as strains and temperature gradient, and
kinetic variables such as stresses and heat flux were introduced independently of
each other. Constitutive equations are those relations that connect the primary
field variables (e.g., ρ, θ, ∇θ, u, ∇u, v, and ∇v) to the secondary field vari-
ables (e.g., e, η, q, and σ), and they involve the intrinsic physical properties of a
continuum. Constitutive equations are not derived from any physical principles,
although they are subject to obeying certain rules and the entropy inequality.
In essence, constitutive equations are mathematical models of the real behavior
of materials that are validated against experimental results. The differences be-
tween theoretical predictions and experimental findings are often attributed to
an inaccurate mathematical representation of the constitutive behavior. Fluid
mechanics, which deals with liquids and gases, and solid mechanics, which deals
with metals, fiber-reinforced composites, rubber, ceramics, and so on, share the
same field equations (developed in Chapter 5), but their constitutive equations
differ considerably.

The main objective of this chapter is to study the most commonly known
phenomenological constitutive equations that describe the macroscopic nature
of the material response of idealized continua. Constitutive equations from solid
mechanics, fluid mechanics, and heat transfer are discussed. We begin with
certain terminologies that can be found in introductory texts on mechanics of
materials and fluid mechanics.
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• A continuum is said to be homogeneous if the material properties are the
same throughout the continuum (i.e., material properties are independent
of position). In a heterogeneous continuum, the material properties are a
function of position.

• An anisotropic continuum is one that has different values of a material
property in different directions at a point, that is, material properties are
direction dependent.

• An isotropic material is one for which a material property is the same in
all directions at a point.

An isotropic or anisotropic material can be nonhomogeneous or homogeneous.

6.1.2 General Principles of Constitutive Theory

Constitutive equations are often postulated based on experimental observations.
Although experiments are necessary in the determination of various parameters
(e.g., elastic constants, thermal conductivity, thermal coefficient of expansion,
and coefficients of viscosity) appearing in the constitutive equations, the for-
mulation of the constitutive equations for a given material is guided by certain
rules. The approach typically involves assuming the form of the constitutive
equation and then restricting the form to a specific one by appealing to certain
physical requirements, which are summarized here.

(1) Consistency (or physical admissibility). All constitutive equations should
be consistent with the conservation of mass, balance of momenta and en-
ergy, and the entropy inequality.

(2) Coordinate frame invariance. The constitutive equations should not de-
pend on any particular choice of coordinate frame. Although they may
have different forms in different coordinate systems, the actual response
should be independent of the chosen coordinate system.

(3) Material frame indifference. The constitutive equations must be invariant
with respect to observer transformations (see Section 3.8). That is, the
form of the constitutive function should not change if the material is stud-
ied in a different frame of reference. The consequences of this are more
apparent in the three-dimensional setting.

(4) Material symmetry. The constitutive equations must be form-invariant
with respect to a group of unimodular transformations of the material
frame of reference. That is, the constitutive equations should reflect ma-
terial symmetries such as isotropy (infinite number of planes of symmetry)
and orthotropy (three mutually perpendicular planes of symmetry).

(5) Equipresence. A quantity appearing as an independent variable in one
constitutive equation should appear in all constitutive equations, unless
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the appearance contradicts the balance laws or the second law of thermo-
dynamics. That is, all dependent variables should be functions of the same
list of independent variables; one should not a priori omit any independent
variable.

(6) Determinism. The values of the constitutive variables (e.g., stress, heat
flux, entropy, and internal energy) at a material point at any time are
determined by the histories of motion and temperature of all points of the
continuum.

(7) Local action. The constitutive variables at a point x are not apprecia-
bly affected by the values of the dependent variables (e.g., displacements,
strains, temperature, pressure, etc.) at points distant from x.

(8) Dimensionality. The constitutive functionals should be dimensionally con-
sistent in the sense that all terms appearing on either side of the constitu-
tive equations should be the same.

(9) Fading memory. The current values of the constitutive variables are not
appreciably affected by their values at past times. This is the time domain
counterpart of the axiom of local action.

(10) Causality. The variables entering the description of motion of a continuum
and temperature are considered as the self-evident observable effects in ev-
ery thermomechanical behavior of a continuum. The remaining quantities
(i.e., those derivable from the motion and temperature) that enter the
expression of entropy production are “causes” or dependent constitutive
variables.

These principles/axioms ensure that the initial value problems resulting from
the conservation principles, constitutive equations, and physically meaningful
boundary and initial conditions are well-posed in the sense that the solution
exists and it is unique.

In a continuum theory of constitutive equations, one begins with a general
form of functional constitutive equations; seeks to determine if certain variables
should be included in the constitutive equation based on some general rules,
such as those listed above; and then specializes the equations to certain type,
as dictated by the material response being studied. This kind of formal ap-
proach enables one to account properly for all possible coupling effects (e.g.,
thermomechanical, electromechanical, electromagnetics, and so on). An exten-
sive discussion of this formal approach is beyond the scope of this introductory
book on continuum mechanics and elasticity [see Truesdell and Knoll (1965) for
a comprehensive treatment].

6.1.3 Material Frame Indifference

The effect of superposed rigid-body motion x∗ = c(t) + Q · x, where c de-
notes rigid-body translation and Q is a proper orthogonal tensor that repre-
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sents rigid-body rotation, and the importance of frame indifference in calculat-
ing/measuring various quantities introduced in the kinematic and kinetic de-
scriptions of a continuum were discussed in Chapters 3 and 4 [see Eq. (3.8.21)].
In summary, the following relations were established to show that the displace-
ment vector u, deformation gradient F, the right Cauchy–Green deformation
tensor C, the Green–Lagrange strain tensor E, the rate of deformation tensor
D, the Cauchy stress tensor σ, the first Piola–Kirchhoff stress tensor P, and the
second Piola–Kirchhoff stress tensor S are objective:

u∗ = Q · u, F∗ = Q · F, C∗ = C, E∗ = E, D∗ = Q ·D ·QT

σ∗ = Q · σ ·QT, P∗ = Q ·P, S∗ = S,

where quantities with an asterisk (∗) are those with superposed rigid-body mo-
tion; that is, they are the quantities observed in a frame of reference that is
undergoing a rigid-body motion with respect to a stationary frame of reference
in which quantities without an asterisk are observed. The central idea of the
(principle of) material frame indifference is that the constitutive equations re-
lating the quantities introduced in the kinematic description to those appearing
in the kinetic description must be independent of the frame of reference (i.e.,
invariant under observer transformations). One must make sure that the quanti-
ties entering any constitutive equation must be the same type – objective or not
– on both sides of the equation.

6.1.4 Restrictions Placed by the Entropy Inequality

To ensure thermodynamic equilibrium of the processes under consideration, its
constitutive equations must be derived using the entropy inequality; if derived
in other ways, the constitutive equations must satisfy the conditions resulting
from the entropy inequality. Following the axioms discussed in Section 6.1.2 and
by examining the momentum and energy equations and the entropy inequality,
it can be concluded that the stress tensor σ, Helmholtz free energy density Ψ,
specific entropy η, and heat flux vector q must be the dependent variables in the
constitutive models for a homogeneous and isotropic material. The arguments
of these variables depend on the physics of the process. For isotropic and homo-
geneous materials, F is a measure of the deformation, the temperature gradient
vector g is needed because of q, and the temperature θ is an obvious choice as
an argument for thermoelastic solids. Hence, we have the following functional
forms based on the principle of equipresence1:

σ(x, t) = Fσ[F, θ,g],

Ψ(x, t) = FΨ[F, θ,g],

η(x, t) = Fη[F, θ,g],

q(x, t) = Fq[F, θ,g],

(6.1.1)

where F denotes the functional mapping, referred to as the response function,
whose actual form will become apparent in the following discussion. Any of

1One can use either Ψ or e, as they are interdependent.
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the three arguments (F, θ,g) that contradict the constitutive axioms, especially
material symmetry, objectivity, or the entropy inequality, will be removed from
the argument list in any of the response functions listed in Eq. (6.1.1). The
entropy inequality provides guidelines for the form of the constitutive relations.

For example, suppose that Ψ is a function of F, θ, and g, Ψ = Ψ(F, θ,g).
The entropy inequality from Eq. (5.4.30) is

−ρΨ̇ + σ : L− ρθ̇η − 1

θ
q · g ≥ 0, (6.1.2)

where g = ∇θ; L is the velocity gradient tensor, L = (∇v)T = D + W; D is
the symmetric part; and W is the skew symmetric part of the velocity gradient
tensor L. We can write

Ψ̇ =
∂Ψ

∂F
: ḞT +

∂Ψ

∂θ
θ̇ +

∂Ψ

∂g
· ġ. (6.1.3)

Substituting for Ḟ from Eq. (3.6.15) into Eq. (6.1.3) and the result into Eq.
(6.1.2), we obtain (note that σ : L = σ : LT when σ is symmetric)(

σ − ρ
∂Ψ

∂F
· FT

)
: LT − ρ

(
η +

∂Ψ

∂θ

)
θ̇ − ∂Ψ

∂g
· ġ − 1

θ
q · g ≥ 0. (6.1.4)

In index notation, we have(
σij − ρ

∂Ψ

∂FiK
FjK

)
Lij − ρ

(
η +

∂Ψ

∂θ

)
θ̇ − ∂Ψ

∂gi
ġi − 1

θ
qi gi ≥ 0. (6.1.5)

Since L, θ̇, and ġ are linearly independent of each other, it follows that

σ − ρ
∂Ψ

∂F
· FT = 0, (6.1.6)

η +
∂Ψ

∂θ
= 0, (6.1.7)

−∂Ψ

∂g
= 0, (6.1.8)

−q · g ≥ 0. (6.1.9)

Equation (6.1.8) implies that Ψ is not a function of the temperature gradient g.
Also, Eq. (6.1.9) implies that

q · g ≤ 0. (6.1.10)

Therefore, q is proportional to the negative of the gradient of the temperature
g = ∇θ, as we will see shortly from the Fourier heat conduction law. Equation
(6.1.7) implies that η can be determined from Ψ and, hence, cannot be a de-
pendent variable in the constitutive model. Furthermore, we conclude from Eq.
(6.1.6), because Ψ is a function of only F and θ, that σ can depend only on F
and θ. Thus, Eq. (6.1.1) is modified to read

Ψ(x, t) = FΨ[F, θ],

η(x, t) = Fη[F, θ],

q(x, t) = Fq[F, θ,g].

(6.1.11)



226 CONSTITUTIVE EQUATIONS

6.2 Elastic Materials

6.2.1 Cauchy-Elastic Materials

A material is called Cauchy-elastic or elastic if the stress field at time t depends
only on the state of deformation and temperature at that time, and not on the
history of these variables. The constitutive relation for an elastic body under
isothermal conditions (i.e., no change in the temperature from the reference
configuration) relates the Cauchy stress tensor σ(x, t) at a point x = χ(X, t)
and time t to the deformation gradient F(X, t) [see Eq. (6.1.1)]:

σ(x, t) = F [F(X, t),X], (6.2.1)

where F is the response function, and σ denotes the value of F , which char-
acterizes the material properties of an isothermal Cauchy-elastic material. The
requirement that the response function F be unaffected by superposed rigid-
body motions places a restriction on F .

Consider the Cauchy stress tensor after superposed rigid-body motion [see
Eq. (6.1.1) for the transformation equations of objective quantities]:

σ∗ = F(F∗) = F(Q · F), (6.2.2)

but
σ∗ = Q · σ ·QT = Q ·F(F) ·QT. (6.2.3)

These two relations place the following restriction on F :

F(Q · F) = Q ·F(F) ·QT. (6.2.4)

Using the right-hand polar decomposition of F, F = R · U, in Eq. (6.2.4),
we obtain

F(Q ·R ·U) = Q ·F(F) ·QT. (6.2.5)

Since R is a proper orthogonal rotation matrix, we can take Q = RT and obtain
F(Q ·QT ·U) = F(U). Thus, from Eq. (6.2.5), we have

F(F) = R ·F(U) ·RT, (6.2.6)

which constitutes the restriction on the response function in order that it is
objective.

6.2.2 Green-Elastic or Hyperelastic Materials

A hyperelastic material, also known as the Green-elastic material, is one for
which there exists a Helmholtz free-energy potential Ψ (measured per unit vol-
ume) whose derivative with respect to a strain gives the corresponding stress and
whose derivative with respect to temperature gives the heat flux vector. When
Ψ is solely a function of F, C, or some strain tensor, it is called the strain energy
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density function and denoted by U0 (measured per unit mass). For example, if
U0 = U0(F), we have [see Eq. (6.1.6)]

P = ρ0
∂U0(F)

∂F

(
PiJ = ρ0

∂U0

∂FiJ

)
, (6.2.7)

σ =
1

J
P · FT = ρ

∂U0(F)

∂F
· FT, (6.2.8)

S = F−1 ·P = ρ0F
−1 · ∂U0(F)

∂F
. (6.2.9)

For an incompressible elastic material (i.e., material for which the volume
is preserved and hence J = 1), we postulate the existence of a strain energy
density function in the form

ρ0 Û0 = ρ0 U0(F)− p (J − 1), (6.2.10)

where p denotes a hydrostatic pressure, and Û0(F) is the strain energy density
for the case J = 1. Equation (6.2.10) can be viewed as one in which the strain
energy density for the case J = 1 is constructed from U0 by treating J−1 = 0 as a
constraint, and using the Lagrange multiplier method to include the constraint;
it turns out that the Lagrange multiplier is λ = −p. Then the constitutive
equation for incompressible hyperelastic material is (J = 1):

P = ρ0
∂Û0(F)

∂F
= −pF−T + ρ0

∂U0(F)

∂F
, (6.2.11)

σ = P · FT = −p I+ ρ0
∂U0(F)

∂F
· FT, (6.2.12)

S = F−1 ·P = −pF−1 · F−T + ρ0F
−1 · ∂U0(F)

∂F
, (6.2.13)

where the derivative of J with respect to F is (the reader is asked to verify this)

∂J

∂F
= J F−T. (6.2.14)

6.2.3 Linearized Hyperelastic Materials: Infinitesimal Strains

Here we present the constitutive equations for the case of infinitesimal deforma-
tion (ie., |∇u| = O(ε) << 1). Hence, we do not distinguish between various
measures of stress and strain, and use S ≈ σ for the stress tensor and E ≈ ε for
the strain tensor in the material description used in solid mechanics. For such
materials, the Helholtz free energy density Ψ is the same as the strain energy
density U0, and it is more meaningful to assume that the strain energy density
is a function of the strain, ε, rather than the deformation gradient, although
one may also assume that U0 is a function of the strain invariants.

The constitutive equation to be developed here for stress tensor σ does not
include creep at constant stress and stress relaxation at constant strain. Thus,
the material coefficients that specify the constitutive relationship between the
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stress and strain components are assumed to be constant during the deforma-
tion. This does not automatically imply that we neglect temperature effects on
deformation. We account for the thermal expansion of the material, which can
produce strains or stresses as large as those produced by the applied mechanical
forces.

The constitutive equation for linearized hyperelastic materials can be derived
using

σ = ρ0
∂U0(ε)

∂ε

(
σij = ρ0

∂U0

∂εij

)
. (6.2.15)

As indicated earlier, here we assume that U0 is a function of ε and expand it in
Taylor’s series about the strain ε = 0 in the reference configuration,

ρ0 U0 = C0 + Cij εij +
1

2!
Cijk� εij εk� +

1

3!
Cijk�mn εij εk� εmn + . . . , (6.2.16)

where C0, Cij , Cijk�, and so on are material stiffness coefficients that are in-
dependent of the deformation. For linear elastic materials U0 is a quadratic
function of the strain tensor, and for nonlinear elastic materials, U0 is a cu-
bic function of the strain tensor ε. For linear elastic materials, the mechanical
pressure is the same as the negative of the mean normal stress.

This chapter is focused primarily on constitutive relations for Hookean solids
(linear elastic solids), Newtonian fluids (fluids with linear relations between
stress and strain rate), and Fourier heat conduction law (a linear relation be-
tween the heat flux vector and the temperature gradient vector). The con-
stitutive equations presented in Section 6.3 for elastic solids are based on an
assumption of small strain. Nonlinear constitutive relations for elastic solids are
briefly discussed in Section 6.4. In Section 6.5, constitutive relations for Newto-
nian fluids are presented, and in Section 6.6 differential and integral generalized
Newtonian constitutive relations are reviewed. The Fourier heat conduction
law is presented in Section 6.7. Finally, constitutive relations for coupled prob-
lems, for example, electromagnetics, electroelasticity, and thermoelasticity , are
presented in Section 6.8.

6.3 Hookean Solids

6.3.1 Generalized Hooke’s Law

To develop the stress–strain relations for a linear elastic solid, we set up a coor-
dinate system in which the material parameters are measured. This coordinate
system is termed the material coordinate system, not to be confused with the
material description of Chapter 5. The coordinate system used to write the
equations of motion and strain-displacement equations is called the problem co-
ordinates to distinguish it from the material coordinate system. In the remaining
discussion of this section, we use the Lagrangian description with coordinates
(x, y, z) to describe the kinematics, stress state, and the field equations, and use
the material coordinate system (x1, x2, x3) to describe the constitutive response.
The material coordinate system is one that is aligned with the planes of material
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symmetry (to be defined shortly), so that measurement of material parameters
becomes simple. Of course, the constitutive relations have to be transformed
to the problem coordinates in order to solve the final boundary-value problem.
When no preferred planes of material symmetry exist, the material is called
isotropic, and the material coordinates are taken to be the same as the problem
coordinates. All tensor quantities measured in (x1, x2, x3) will have integer sub-
scripts, for example, σij , εij , and so on, whereas those measured in (x, y, z) will
have letter subscripts, for example, σxx, σxy, · · · , and εxx, εxy, · · · , and so on.

We begin with the quadratic form of U0 in the material coordinate system:

ρ0 U0 = C0 + Cij εij +
1
2Cijk� εij εk�, (6.3.1)

where C0 is a reference value of U0 from which the strain energy density function
is measured. From Eq. (6.2.15), we have

σmn = ρ0
∂U0

∂εmn
= Cij δmi δnj +

1
2Cijk� (εk� δim δjn + εijδkmδ�n)

= Cmn + 1
2Cmnk� εk� +

1
2Cijmn εij = Cmn + 1

2 (Cmnij + Cijmn) εij

= Cmn + Cmnij εij , (6.3.2)

where

Cmnij =
1
2 (Cmnij + Cijmn) = ρ0

∂2U0

∂εij∂εmn
= ρ0

∂2U0

∂εmn∂εij
= Cijmn. (6.3.3)

Clearly, Cmn have the same units as σmn, and they represent the residual stress
components of a solid. We shall assume, without loss of generality, that the
body is free of stress prior to the load application so that we may write

σ = C : ε (σij = Cijk� εk�). (6.3.4)

Equation (6.3.4) is known as the generalized Hooke’s law. The coefficients
Cijk� are called elastic stiffness coefficients. In general, there are 34 = 81 scalar
components of the fourth-order tensor2 C. The number of coefficients is signifi-
cantly reduced because (a) the components Cijk� satisfy the symmetry conditions
implied by Eq. (6.3.3), and (b) the stress and strain tensors are symmetric, re-
quiring Eq. (6.3.4) to be valid when subscripts i and j are interchanged as well
as k and � are interchanged. Thus, we have

Cijk� = Ck�ij , Cijk� = Cjik�, Cij�k = Cijk�, Cijk� = Cji�k, (6.3.5)

and the stress–strain relations (6.3.4) take the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ13
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

symmetric C1313 C1312

C1212

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.3.6)

2In this chapter C denotes the fourth-order elasticity tensor C, not the right Cauchy–Green
deformation tensor C.
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Thus the number of independent coefficients Cijmn is only 6+5+4+3+2+1 = 21.
Materials that obey Eq. (6.3.6) are called triclinic materials.

We can express Eq. (6.3.4) in an alternative form using a single subscript
notation for stresses and strains and a two subscript notation for the material
stiffness coefficients:

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23 , σ5 = σ13, σ6 = σ12,

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε13, ε6 = 2ε12.
(6.3.7)

11 → 1 22 → 2 33 → 3 23 → 4 13 → 5 12 → 6. (6.3.8)

It should be cautioned that the single subscript notation used for stresses and
strains and the two-subscript components Cij render them non-tensor compo-
nents; that is, σi, εi, and Cij do not transform like the components of a tensor,
σi �= �ijσj . The single subscript notation for stresses and strains is called the
engineering notation or the Voigt–Kelvin notation. Equation (6.3.6) now takes
the form ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (6.3.9)

or simply
σi = Cij εj , (6.3.10)

where summation on repeated subscripts is implied (now i and j take values
from 1 to 6). Note that the coefficients Cij are symmetric, Cij = Cji, a property
inherited from Eq. (6.3.6).

We assume that the stress–strain relations (6.3.10) are invertible. Thus, the
components of strain are related to the components of stress by

εi = Sij σj , (6.3.11)

where Sij = Sji are the material compliance coefficients with [S] = [C]−1 [i.e.,
the compliance tensor is the inverse of the stiffness tensor: S = C−1]. In matrix
form, Eq. (6.3.11) becomes⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.3.12)

The strain–stress relations are more suitable in determining the material con-
stants in a laboratory because experiments involve the application of loads and
measurement of changes in the geometry (i.e., determine strains from an applied
stress state).
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6.3.2 Material Symmetry Planes

Further reduction in the number of independent stiffness (or compliance) pa-
rameters comes from the so-called material symmetry. When elastic material
parameters at a point have the same values for every pair of coordinate systems
that are mirror images of each other in a certain plane, that plane is called a
material plane of symmetry (for example, symmetry of internal structure due
to crystallographic form, regular arrangement of fibers or molecules, and so on).
We note that the symmetry under discussion is a directional property and not
a positional property. Thus, a material may have a certain elastic symmetry at
every point of a material body and the properties may vary from point to point.
Positional dependence of material properties is what we called inhomogeneity of
the material.

In the following, we discuss various planes of symmetry and forms of asso-
ciated stress–strain relations. Note that the use of components of stress and
strain tensors is necessary in the following discussion because transformation
equations are valid only for components of tensors from two different coordinate
systems. The components σij and εij of second-order tensors σ and ε and the
components Cijkl of a fourth-order elasticity tensor C transform according to
the relations

σ̄ij = �ip �jq σpq, ε̄ij = �ip �jq εpq, C̄ijkl = �ip �jq �kr �lsCpqrs, (6.3.13)

where �ij are the direction cosines associated with the coordinate systems (x̄1, x̄2, x̄3)
and (x1, x2, x3), and C̄ijkl and Cpqrs, for example, are the components of the
fourth-order tensor C in the barred and unbarred coordinates systems, respec-
tively [see Eqs. (2.2.70), (2.2.71), (3.4.29), and (4.3.3)].

A trivial material symmetry transformation is one in which the barred co-
ordinate system is obtained from the unbarred coordinate system by simply
reversing their directions (i.e., mirror reflection): x̄1 = −x1, x̄2 = −x2, and
x̄3 = −x3; that is, ˆ̄ei = −êi and �ij = −δij (it does not matter that it is a
left-handed coordinate system as it does not affect the discussion), as shown in
Fig. 6.3.1(a).

(a) (b)

2x

3x

1x

3x

1x

2x
3x

3x

2 2x x

1 1x x

Fig. 6.3.1: (a) Transformation defined by ˆ̄ei = −êi, i = 1, 2, 3. (b) Transformation defined
by ˆ̄eα = êα, α = 1, 2, and ˆ̄e3 = −ê3.



232 CONSTITUTIVE EQUATIONS

Thus, the transformation matrix is

[L] =

⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ . (6.3.14)

For this transformation, it follows that

σ̄ij = (−δip)(−δjq)σpq = σij ; ε̄ij = (−δip)(−δjq)εpq = εij ,

C̄ijk� = (−1)4δip δjq δkr δ�sCpqrs = Cijk�.

Thus, the transformation �ij = −δij does not alter the constitutive relation
(6.3.6) of triclinic materials.

6.3.3 Monoclinic Materials

When the elastic coefficients at a point have the same value for every pair of
coordinate systems that are the mirror images of each other with respect to a
plane, the material is called monoclinic at the point. For example, let (x1, x2, x3)
and (x̄1, x̄2, x̄3) be two coordinates systems, with the x1, x2-plane parallel to the
plane of symmetry. Choose the x̄3-axis such that x̄3 = −x3 so that one system
is the mirror image of the other, as shown in Fig. 6.3.1(b). This symmetry
transformation can be expressed by the transformation matrix (x̄1 = x1, x̄2 =
x2, x̄3 = −x3)

[L] =

⎡
⎣ 1 0 0
0 1 0
0 0 −1

⎤
⎦ , (6.3.15)

or
�αβ = δαβ , �3α = 0, �α3 = 0, �33 = −1, for α, β = 1, 2.

Then the stress and strain transformation equations

[σ̄] = [L][σ][L]T, [ε̄] = [L][ε][L]T

give the relations

σ̄ij = σij , except for σ̄13 = −σ13, σ̄23 = −σ23,

ε̄ij = εij , except for ε̄13 = −ε13, ε̄23 = −ε23.

Now consider the stress–strain relations

σ11 = C1111 ε11 + C1122 ε22 + C1133 ε33 + C1123 ε23 + C1113 ε13 + C1112 ε12,

σ̄11 = C1111 ε̄11 + C1122 ε̄22 + C1133 ε̄33 + C1123 ε̄23 + C1113 ε̄13 + C1112 ε̄12

= C1111 ε11 + C1122 ε22 + C1133 ε33 − C1123 ε23 − C1113 ε13 + C1112 ε12.
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Since σ11 = σ̄11, from the preceding two relations it follows that

C1123 ε23 + C1113 ε13 = −C1123 ε23 − C1113 ε13,

which must hold for any independent set of strain components, ε23 and ε13. This
implies that C1123 = 0 and C1113 = 0. Similarly, from the constitutive relations
for σ22 and σ̄22, σ33 and σ̄33, and σ12 and σ̄12 we obtain C2223 = C2213 = 0,
C3323 = C3313 = 0, and C1223 = C1213 = 0.

Next consider the constitutive relations for σ23 and σ̄23 (note Cijk� = Ck�ij)

σ23 = C2311 ε11 + C2322 ε22 + C2333 ε33 + C2323 ε23 + C2313 ε13 + C2312 ε12

= C2323 ε23 + C2313 ε13

σ̄23 = C2311 ε̄11 + C2322 ε̄22 + C2333 ε̄33 + C2323 ε̄23 + C2313 ε̄13 + C2312 ε̄12

= −C2323 ε23 − C2313 ε13.

Since σ23 = −σ̄23, these two relations are consistent. In the same way, no new
conditions are obtained by considering the constitutive relations for σ13 and σ̄13.

In summary, for monoclinic materials, 8 of the 21 coefficients are zero:

C1123 = C1113 = C2223 = C2213 = C3323 = C3313 = C1223 = C1213 = 0.

Therefore, the stress–strain relations of Eq. (6.3.9) become⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (6.3.16)

which has only 13 independent parameters. We note that monoclinic materials
exhibit shear-extensional coupling, that is, a shear strain can produce a normal
stress and a normal stress can produce a shear strain.

6.3.4 Orthotropic Materials

When three mutually orthogonal planes of material symmetry exist at a point,
the number of elastic coefficients is reduced to nine using arguments similar to
those given for a single material symmetry plane. Such materials are called
orthotropic at the point. The transformation matrices associated with the three
planes of symmetry are

[L(1)] =

⎡
⎣ 1 0 0
0 1 0
0 0 −1

⎤
⎦ , [L(2)] =

⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ , [L(3)] =

⎡
⎣ 1 0 0
0 −1 0
0 0 1

⎤
⎦ . (6.3.17)

Under these transformations, we obtain C1112 = C16 = 0, C2212 = C26 = 0,
C3312 = C36 = 0, and C2313 = C45 = 0. In view of the aforementioned result,
the stress–strain relations for an orthotropic material take the form
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.3.18)

As stated earlier, in practice we apply stresses and determine the strains.
Hence we must write the inverse of the relations in Eq. (6.3.18):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.3.19)

The material compliance coefficients Sij are often determined in a laboratory
in terms of engineering material parameters such as Young’s modulus, shear
modulus, and so on. These constants are measured using simple tests such
as a uniaxial tension test or a pure shear test. Because of their direct and
obvious physical meaning, engineering constants are used in place of the abstract
compliance coefficients Sij . Next, we discuss how the compliance coefficients Sij

are determined in terms of the engineering parameters.
One of the consequences of linearity (both kinematic and material lineariza-

tions) is that the principle of superposition applies. That is, if the applied loads
and geometric constraints are independent of deformation, the sum of the dis-
placements (and hence strains) produced by two sets of loads is equal to the
displacements (and strains) produced by the sum of the two sets of loads. In
particular, the strains of the same kind as produced by the application of in-
dividual stress components can be superposed. For example, the extensional

strain ε
(1)
11 in the material coordinate direction x1 due to the stress σ11 in the

same direction is σ11/E1, as shown in Fig. 6.3.2; here E1 denotes Young’s mod-

ulus of the material in the x1 direction. The extensional strain ε
(2)
11 , experienced

as a result of the Poisson effect, due to the stress σ22 applied in the x2 direction,
is −ν21 (σ22/E2), where ν21 is Poisson’s ratio (note that the first subscript in
νij , i �= j, corresponds to the load direction and the second subscript refers to
the direction of the strain)

ε11 = −ν21ε22 or ν21 = −ε11
ε22

,

and E2 is Young’s modulus of the material in the x2 direction. Similarly, σ33
produces a strain ε

(3)
11 equal to −ν31 (σ33/E3). Therefore, the total strain ε11

due to the simultaneous application of all three normal stress components is

ε11 = ε
(1)
11 + ε

(2)
11 + ε

(3)
11 =

σ11
E1

− ν21
σ22
E2

− ν31
σ33
E3

= S11σ11 + S12σ22 + S13σ33 (6.3.20)
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Fig. 6.3.2: Strains produced by applied (a) normal stress σ11 and (b) shear stress σ21 = σ12

in a cube of material.

where the direction of loading is denoted by the superscript. Similarly, we can
write

ε22 = −ν12
σ11
E1

+
σ22
E2

− ν32
σ33
E3

= S21σ11 + S22σ22 + S23σ33,

ε33 = −ν13
σ11
E1

− ν23
σ22
E2

+
σ33
E3

= S31σ11 + S32σ22 + S33σ33.
(6.3.21)

The simple shear tests with an orthotropic material give the results

2ε12 =
σ12
G12

= S66σ12, 2ε13 =
σ13
G13

= S55σ13, 2ε23 =
σ23
G23

= S44σ23. (6.3.22)

Recall from Section 3.5.2 that 2εij (i �= j) is the reduction in the right angle
between two material lines parallel to the x1 and x2 directions at a point, σij
(i �= j) denotes the corresponding shear stress in the xi–xj plane, and Gij (i �= j)
is the shear moduli in the xi–xj plane.

Writing Eqs. (6.3.20)–(6.3.22) in matrix form, we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

({ε} = [S]{σ}) , (6.3.23)

where E1, E2, and E3 are Young’s moduli in 1, 2, and 3 material directions,
respectively; νij is Poisson’s ratio, defined as the ratio of transverse strain in
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the jth direction to the axial strain in the ith direction when stressed in the
i-direction; and G23, G13, G12 are the shear moduli in the 2–3, 1–3, and 1–2
planes, respectively. Because [S] is the inverse of [C] and [C] is symmetric, then
[S] is also a symmetric matrix. This in turn implies that the following reciprocal
relations hold [i.e., compare the off-diagonal terms in Eq. (6.3.10)]:

ν21
E2

=
ν12
E1

;
ν31
E3

=
ν13
E1

;
ν32
E3

=
ν23
E2

,

or
νij
Ei

=
νji
Ej

, (6.3.24)

for i, j = 1, 2, 3. The nine independent material coefficients for an orthotropic
material are

E1, E2, E3, G23, G13, G12, ν12, ν13, ν23. (6.3.25)

Inversion of the strain-stress relations (6.3.23) give the stress–strain relations
in Eq. (6.3.18) with

C11 =
E1

C0
(1− ν23ν32) , C12 =

E1

C0
(ν21 + ν23ν31) =

E2

C0
(ν12 + ν13ν32) ,

C13 =
E1

C0
(ν31 + ν21ν32) =

E3

C0
(ν13 + ν12ν23) , C22 =

E2

C0
(1− ν13ν31) ,

C23 =
E2

C0
(ν32 + ν31ν12) =

E3

C0
(ν23 + ν21ν13) , C33 =

E3

C0
(1− ν12ν21) ,

C44 = G23 C55 = G31, C66 = G12,

C0 = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13. (6.3.26)

The difference between ν12 and ν21 for an orthotropic material is illustrated
in Fig. 6.3.3 with two cases of uniaxial stress for a square element of length a.
First a stress σ11 is applied in the x1-direction as shown in Fig. 6.3.3(a). The
resulting strains are

ε
(1)
11 =

σ11
E1

, ε
(1)
22 = −ν12

E1
σ11, (6.3.27)

where the direction of loading is denoted by the superscript and the negative
sign indicates compression. Next, a stress σ22 is applied in the x2-direction as
shown in Fig. 6.3.3(b). The strains are

ε
(2)
11 = −ν21

E2
σ22 , ε

(2)
22 =

σ22
E2

. (6.3.28)

The displacements associated with each of the loads are

Δ
(1)
1 = a

σ11
E1

, Δ
(1)
2 = −a

ν12
E1

σ11,

Δ
(2)
1 = −a

ν21
E2

σ22 , Δ
(2)
2 = a

σ22
E2

,
(6.3.29)

and the reciprocal relation (6.3.24) gives, when σ11 = σ22, the equality Δ
(1)
2 =

Δ
(2)
1 , which is the statement of Maxwell’s reciprocity relation, which is discussed

in Section 7.4.3.
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Fig. 6.3.3: Distinction between ν12 and ν21. (a) Application of σ11. (b) Application of σ22.

6.3.5 Isotropic Materials

Isotropic materials are those for which the material properties are independent
of the direction; that is, there exists an infinite number of material symmetry
planes. An isotropic fourth-order tensor can be expressed as [see Eq. (2.5.24)]

Cijk� = λδijδk� + μ
(
δikδj� + δi�δjk

)
+ κ

(
δikδj� − δi�δjk

)
, (6.3.30)

where μ, λ, and κ are called the Laḿe constants, and summation on repeated
indices is implied. In view of the symmetry of Cijk� with respect to the first two
and the last two indices, the coefficient of κ is zero, giving

Cijk� = λδijδk� + 2μδikδj�. (6.3.31)

Therefore, Eq. (6.3.4) takes the simple form

σ = 2μ ε+ λ tr(ε)I, σij = 2μ εij + λ εkk δij , (6.3.32)

where tr(·) denotes the trace (sum of the diagonal elements) of the enclosed
tensor. Thus, only two material parameters, μ and λ, are needed to characterize
the mechanical response of an isotropic material. The Laḿe constants μ and λ
are related to E and ν by

μ = E
2(1+ν) , λ = νE

(1+ν)(1−2ν) , 2μ+ λ = (1−ν)E
(1+ν)(1−2ν) . (6.3.33)

The stress–strain relations (6.3.32) can be expressed in terms of E and ν as

σ = E
1+νε+ νE

(1+ν)(1−2ν) tr(ε) I, σij =
E

1+ν εij +
νE

(1+ν)(1−2ν) εkk δij , (6.3.34)
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and the inverse relations are

ε =
(
1+ν
E

)
σ − ν

E tr(σ) I, εij =
(
1+ν
E

)
σij − ν

E σkk δij , (6.3.35)

The strain energy density ρ0U0 in Eq. (6.3.1) for an isotropic material takes the
form

ρ0U0(ε) =
λ

2
(tr ε)2 + μ tr(ε · ε), ρ0U0(εij) = μεijεij +

1
2λ(εkk)

2. (6.3.36)

Note that the strain energy density U0 is positive-definite, that is,

U0(ε) > 0 whenever ε �= 0, and U0(ε) = 0 only when ε = 0. (6.3.37)

The coefficients Cij [see Eqs. (6.3.26) and (6.3.9) for the correspondence
between the two-subscripted and four-subscripted C’s] of Eq. (6.3.26) simplify
to [with E1 = E2 = E3 = E, G12 = G13 = G23 = G = E/2(1 + ν), ν12 = ν23 =
ν13 = ν, and C0 = 1− 3ν2 − 2ν3 = (1 + ν)2(1− 2ν)]

C11 = C22 = C33 = 2μ+ λ =
(1− ν)E

(1 + ν)(1− 2ν)
,

C12 = C13 = C23 = λ =
νE

(1 + ν)(1− 2ν)
,

C44 = C55 = C66 = μ = G =
E

2(1 + ν)
.

(6.3.38)

The stress–strain relations (6.3.34) for an isotropic material can be expressed in
matrix form as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(6.3.39)
If the only nonzero normal stress component is σ11 = σ and the only nonzero

shear component is σ12 = τ , and if we denote ε11 = ε and 2ε12 = γ, then Eq.
(6.3.35) gives the uniaxial strain–stress relations,

ε =
1

E
σ → σ = E ε; γ =

2(1 + ν)

E
τ → τ = Gγ. (6.3.40)

In summary, application of a normal stress to a rectangular block of isotropic
or orthotropic material results in only extension in the direction of the applied
stress and contraction perpendicular to it, whereas a monoclinic (or anisotropic)
material experiences extension in the direction of the applied normal stress,
contraction perpendicular to it, and shearing strain, as shown in Fig. 6.3.4.
Conversely, the application of a shearing stress to a monoclinic material causes
shearing strain as well as normal strains. Also, a normal stress applied to an
orthotropic material at an angle to its principal material directions causes it to
behave like a monoclinic material.
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Fig. 6.3.4: Deformation of orthotropic and anisotropic rectangular blocks under uniaxial
tension and pure shear.

Example 6.3.1

Consider the thin, filament-wound, closed circular cylindrical pressure vessel in Example 4.3.2,
as shown in Fig. 6.3.5. The vessel has an internal diameter of Di = 63.5 cm (25 in.), thickness
h = 2 cm (0.7874 in.), and pressurized to p = 1.379 MPa (200 psi). Assuming a two-dimensional
state of stress, determine

(a) stresses σxx, σyy, and σxy in the problem coordinates (x, y, z);

(b) stresses σ11, σ22, and σ12 in the material coordinates (x1, x2, x3), with x1 being tangent
to the filament direction;

(c) strains ε11, ε22, and 2ε12 in the material coordinates; and

(d) strains εxx, εyy, and γxy in the problem coordinates.

y

x
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θ iD
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y x1
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θ = 53.13º

yy

yy

xxxx

11 11,
22 22,

21 21,xy

p
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22 22,
11 11,

12 12,

ij ji ij ji,

Fig. 6.3.5: A filament-wound cylindrical pressure vessel.
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Use a filament winding angle of θ = 53.125◦ from the longitudinal axis (x) of the pressure
vessel and the following material properties with respect to the material coordinates (typical
of graphite-epoxy material): E1 = 140 GPa (20.3 Msi), E2 = 10 GPa (1.45 Msi), G12 =
7 GPa (1.02 Msi), and ν12 = 0.3.

Solution: (a) In Example 4.3.2, the longitudinal stress (σxx) and circumferential stress (σyy)
in the thin-walled cylindrical pressure vessel were calculated using the formulas

σxx =
pDi

4h
, σyy =

pDi

2h
, σxy = 0. (1)

to be σxx = 10.946 MPa and σyy = 21.892 MPa.

(b) Next, we determine the stresses in the material coordinates (so that we have the shear
stress σ12 at the fiber–matrix interface, tensile stress σ11 in the fiber, and the stress σ22 normal
to the fiber) using the stress transformation equations (4.3.7)

σ11 = σxx cos
2 θ + σyy sin

2 θ + σxy sin 2θ,

σ22 = σxx sin
2 θ + σyy cos

2 θ − σxy sin 2θ,

σ12 = 1
2
(σyy − σxx) sin 2θ + σxy cos 2θ.

(2)

We obtain (sin θ = 0.8, cos θ = 0.6, sin 2θ = 0.96, and cos 2θ = −0.28 for θ = 53.13◦)

σ11 = 10.946× (0.6)2 + 21.892× (0.8)2 = 17.951 MPa,

σ22 = 10.946× (0.8)2 + 21.892× (0.6)2 = 14.886 MPa,

σ12 = 1
2
(21.892− 10.946)× 0.96 = 5.254 MPa.

(c) The strains in the material coordinates can be calculated using the strain–stress relations
(6.3.23). We have (ν21/E2 = ν12/E1)

ε11 =
σ11

E1
− ν12

σ22

E1
=

17.95× 106

140× 109
− 0.3

14.885× 106

140× 109
= 0.0963× 10−3 m/m,

ε22 = −ν12
σ11

E1
+

σ22

E2
= −0.3

17.95× 106

140× 109
+

14.885× 106

10× 109
= 1.4502× 10−3 m/m,

ε12 =
σ12

2G12
=

5.254× 106

2× 7× 109
= 0.3753× 10−3.

(d) The strains in the (x, y) coordinates can be computed using the transformation equations
[see Eq. (3.4.32)]

εxx = ε11 cos
2 θ + ε22 sin

2 θ − ε12 sin 2θ,

εyy = ε11 sin
2 θ + ε22 cos

2 θ + ε12 sin 2θ,

εxy = 1
2
(ε11 − ε22) sin 2θ + ε12 cos 2θ.

(3)

We obtain

εxx = 10−3 [0.0963× (0.6)2 + 1.4502× (0.8)2 − 0.3753× 0.96
]
= 0.6023× 10−3 m/m,

εyy = 10−3 [0.0963× (0.8)2 + 1.4502× (0.6)2 + 0.3753× 0.96
]
= 0.9440× 10−3 m/m,

εxy = 10−3 [(0.0963− 1.4502)× 0.48 + 0.3753× (−0.28)] = −0.7549× 10−3.

The strains (εxx, εyy, εxy) can also be determined directly from the stresses (σxx, σyy, σxy)
using the strain–stress relations

εxx = S̄11 σxx + S̄12 σyy + S̄16 σxy,

εyy = S̄12 σxx + S̄22 σyy + S̄26 σxy,

εxy = S̄16 σxx + S̄26 σyy + S̄66 σxy,

(4)

where S̄ij are the transformed elastic compliances referred to the problem coordinates (x, y, z).
A transformation law consistent with the tensor transformation equations in Eq. (6.3.13) must
be used to write S̄ij in terms of Sij and the angle θ. See the answer to Problem 6.2 for the
transformation relations between S̄ij and Sij and between C̄ij and Cij .
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6.4 Nonlinear Elastic Constitutive Relations

Most materials exhibit nonlinear elastic behavior for certain strain thresholds,
that is, the stress–strain relation is no longer linear, but recovers all its deforma-
tion upon the removal of the loads, and Hooke’s law is no longer valid. Beyond
certain nonlinear elastic range, permanent deformation ensues and the material
is said to be inelastic or plastic, as shown in Fig. 6.4.1. Here we briefly review
constitutive relations for two well-known nonlinear elastic materials, namely the
Mooney–Rivlin and neo-Hookean materials. Further discussion can be found in
Truesdell and Noll (1965).

Stress,

Strain, 

Linear elastic
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Yield point

Proportionality limit
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P

l
Elastic limit

Unloading

Permanent strain

0l

0

0

ε −= l l
l

σ

σ = P
A

ε

Fig. 6.4.1: A typical stress–strain curve.

Recall from Eq. (6.2.8) that for a hyperelastic material under isothermal
conditions there exists a strain energy potential Ψ = Ψ(F) such that

σ(F) = ρ
∂Ψ

∂F
· FT, (6.4.1)

where ρ is the material density. Some materials (e.g., rubber-like materials)
undergo large deformations without appreciable change in volume (i.e., J ≈ 1).
Such materials are called incompressible materials. For incompressible elastic
materials, the stress tensor is not completely determined by deformation. The
hydrostatic pressure p affects the stress. For incompressible elastic materials,
we have [see Eq. (6.2.12)]

σ(F) = −pI+ ρ
∂Ψ

∂F
· FT, (6.4.2)

where p is the hydrostatic pressure.
For a hyperelastic elastic material, Eq. (6.4.1) can also be expressed as

σ(B) = 2ρ
∂Ψ

∂B
·B, (6.4.3)

where the free energy potential Ψ is written as Ψ = Ψ(B) and B is the left
Cauchy–Green (or Finger) tensor B = F · FT [see Eq. (3.4.4)]. Equations
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(6.4.1)–(6.4.3), in general, are nonlinear. The free energy potential Ψ takes dif-
ferent forms for different materials. It is often expressed as a linear combination
of unknown parameters and principal invariants of Green strain tensor E, defor-
mation gradient F, or left Cauchy–Green deformation tensor B. The parameters
characterize the material and they are determined through suitable experiments.

For incompressible materials, the free energy potential Ψ is taken as a linear
function of the principal invariants of B:

Ψ = C1(IB − 3) + C2(IIB − 3), (6.4.4)

where C1 and C2 are constants and IB and IIB are the two principal invariants
of B (the third invariant IIIB is equal to unity for incompressible materials).
Materials for which the free energy potential is given by Eq. (6.4.4) are known
as the Mooney–Rivlin material. The stress tensor in this case has the form

σ = −p I+ αB+ βB−1, (6.4.5)

where α and β are given by

α = 2ρ
∂Ψ

∂IB
= 2ρC1, β = −2ρ

∂Ψ

∂IIB
= −2ρC2. (6.4.6)

The Mooney–Rivlin incompressible material model is most commonly used to
represent the stress–strain behavior of rubber-like solid materials.

If the free energy potential is of the form Ψ = C1(IB − 3), that is, C2 = 0,
the constitutive equation in Eq. (6.4.5) takes the form

σ = −p I+ 2ρC1B. (6.4.7)

Materials whose constitutive behavior is described by Eq. (6.4.7) are called the
neo-Hookean materials. The neo-Hookean model provides a reasonable predic-
tion of the constitutive behavior of natural rubber for moderate strains.

6.5 Newtonian Fluids

6.5.1 Introduction

All bulk matter in nature exists in one of two forms (even before they are sub-
jected to forces): solid or fluid. A solid body is characterized by relative im-
mobility of its molecules, whereas a fluid state is characterized by their relative
mobility. Fluids can exist either as gases or liquids. In this section we present the
constitutive relations for fluids that exhibit the property that stress is propor-
tional to velocity gradients, that is, strain rates. The proportionality parameter
is known as the viscosity of the fluid, and the relationship is known Newton’s
law of viscosity. Fluids that behave according to Newton’s law of viscosity are
called Newtonian fluids. For such fluids, the constitutive equations for σ cannot
be derived using the condition (6.1.6) resulting from the entropy inequality. The
physics of such fluids requires the symmetric part of the velocity gradient, D, to
be an argument, in place of F used for solids, in the list of dependent variables.
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It is assumed that the Eulerian description is used to derive all equations of
mechanics.

For viscous fluids the total stress σ is decomposed into equilibrium and de-
viatoric parts. Then the conditions resulting from the entropy inequality permit
derivation of constitutive relations for compressible fluids with the equilibrium
stress as thermodynamic pressure p(ρ, θ), which for an incompressible fluid be-
comes the mechanical pressure p(θ); the entropy inequality only places the re-
striction that work done by the deviatoric stress be positive but provides no
mechanism for its constitutive relation. Thus, σ is assumed to be of the form3

σ = −p(ρ, θ) I+F(D), for compressible fluids,

σ = −p(θ) I+F(D), for incompressible fluids, (6.5.1)

where ρ is the spatial density and θ is the absolute temperature. A fluid is said
to be incompressible if the volume change is zero:

∇ · v = 0, (6.5.2)

where v is the velocity vector. A fluid is termed inviscid if the viscosity is zero.

6.5.2 Ideal Fluids

An ideal fluid is one that is incompressible and has zero viscosity. The most
general constitutive equation for an ideal fluid is of the form

σ = −p(ρ, θ)I. (6.5.3)

The dependence of p on ρ and θ has been experimentally verified many times
over several centuries. The thermomechanical properties of an ideal fluid are
the same in all directions, that is, the fluid is isotropic. It can be verified that
Eq. (6.5.3) satisfies the frame indifference requirement because

σ∗ = Q · σ ·QT = −pQ · I ·QT = −p I.

An explicit functional form of p(ρ, θ), valid for gases over a wide range of
temperature and density, is

p = Rρθ/m, (6.5.4)

where R is the universal gas constant, m is the mean molecular mass of the gas,
and θ is the absolute temperature. Equation (6.5.4) is known to define a perfect
gas. When p is only a function of density, the fluid is said to be “barotropic,”
and the barotropic constitutive model is applicable under isothermal conditions.
If p is independent of both ρ and θ (ρ = constant), p is determined from the
equations of motion [see Eq. (5.3.14)].

3The dependence of F on the vorticity tensor W is eliminated to satisfy the frame indifference
requirement.



244 CONSTITUTIVE EQUATIONS

6.5.3 Viscous Incompressible Fluids

The general constitutive equation for stress tensor in a fluid motion is assumed
to be of the general form in Eq. (6.5.1). Analogous to isotropic materials,
isotropic fluids are those for which the shear stress–strain rate relations are of
the form [compare with Eq. (6.3.4)]

F(D) ≡ τ = C : D (τij = Cijk�Dij). (6.5.5)

Here τ is the viscous stress tensor, C denotes the fourth-order tensor of vis-
cosities, and D is the strain rate tensor [symmetric part of the velocity gradient
tensor L; see Eqs. (3.6.1) and (3.6.2)]:

D = 1
2

[∇v + (∇v)T
] [

Dij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)]
, (6.5.6)

where v is the velocity vector.
In a majority of cases a viscous fluid is characterized as an isotropic fluid. For

an isotropic fluid, we have the constitutive relation [compare with Eq. (6.3.35)]

σ = −p(ρ, θ) I+ τ , τ = 2μ(ρ, θ)D+ λ(ρ, θ) tr(D)I, (6.5.7)

or in rectangular Cartesian component form

σij = −p δij + τij , τij = 2μDij + λDkk δij , (6.5.8)

where ρ is the spatial density, θ is the absolute temperature, and λ and μ are
the Laḿe parameters that have the meaning bulk viscosity and shear viscosity,
respectively.

Equations (6.5.7) and (6.5.8) can be expressed in terms of the deviatoric
components of stress and rate of deformation tensors,

σ′ = σ − σ̃I, D′ = D− 1
3 tr(D) I, σ̃ = 1

3 tr(σ). (6.5.9)

We note that σ′
ii = 0 and D′

ii = 0. Then the Newtonian constitutive equation
(6.5.8) takes the form

σ′ = 2μD′ +
(
2
3μ+ λ

)
tr(D) I− (σ̃ + p) I,

σ′
ij = 2μD′

ij +
(
2
3μ+ λ

)
Dkkδij − (σ̃ + p) δij ,

(6.5.10)

from which it follows (because σ′
ii = 0 and D′

ii = 0) that

(2μ+ 3λ)Dkk − 3 (σ̃ + p) = 0. (6.5.11)

Hence, the last two terms in Eq. (6.5.10) vanish together and we obtain

σ′ = 2μD′, σ′
ij = 2μD′

ij . (6.5.12)

Note that the mean stress σ̃ is equal to the thermodynamic pressure −p if
and only if one of the following two conditions is satisfied (Dkk = ∇ · v):

Fluid is incompressible: ∇ · v = 0, (6.5.13)

Stokes condition: K = 2μ+ 3λ = 0. (6.5.14)
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In general, the Stokes condition does not hold. Thus, the constitutive equation
for viscous, isotropic, incompressible fluids reduces to

σ = −p I+ τ , τ = 2μD, (σij = −p δij + τij , τij = 2μDij), (6.5.15)

and p represents the mean normal stress or hydrostatic pressure. For inviscid
fluids, the constitutive equation for the stress tensor has the form

σ = −p I (σij = −p δij). (6.5.16)

We note that Eq. (6.5.15) does not hold for compressible fluids, unless the Stokes
condition (6.5.14) is satisfied. Equation (6.5.7) is valid for compressible fluids,
with p being the thermodynamic pressure.

6.6 Generalized Newtonian Fluids

6.6.1 Introduction

Fluids for which the viscosity of the fluid may be a function of the strain rate
tensor (or its invariants) but the form of the constitutive equations is similar to
those of the Newtonian fluid are called generalized Newtonian fluids. Generalized
Newtonian fluids include motor oils and high molecular weight liquids such as
polymers, slurries, pastes, and other complex mixtures. The processing and
transporting of such fluids are central problems in the chemical, food, plastics,
petroleum, and polymer industries. We note that the generalized Newtonian
constitutive models presented in this section for viscous fluids are only a few of
the many available in literature [see Reddy and Gartling (2001)].

Most generalized Newtonian fluids exhibit a shear rate dependent viscosity,
with “shear thinning” characteristic (i.e., decreasing viscosity with increasing
shear rate). Other characteristics associated with generalized Newtonian fluids
are elasticity, memory effects, the Weissenberg effect, and the curvature of the
free surface in an open channel flow. A discussion of these and other non-
Newtonian effects is presented in the book by Bird, Armstrong, and Hassager
(1971).

Generalized Newtonian fluids can be classified into two groups: (1) inelastic
fluids or fluids without memory and (2) viscoelastic fluids, in which memory
effects are significant. For inelastic fluids the viscosity depends on the rate of
deformation of the fluid, much like nonlinear elastic solids. Viscoelastic fluids ex-
hibit time-dependent “memory”; that is, the motion of a material point depends
not only on the present stress state, but also on the deformation history of the
material element. This history dependence leads to very complex constitutive
equations.

The constitutive equation for the stress tensor for a generalized Newtonian
fluid can be expressed as

σ = −p I+ τ (σij = −p δij + τij), (6.6.1)

where τ is known as the viscous or extra stress tensor.
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6.6.2 Inelastic fluids

The viscosity for inelastic fluids is found to depend on the rate of deformation
tensorD. Often the viscosity is expressed as a function of the principal invariants
of the rate of deformation tensor D

μ = μ (J1, J2, J3) , (6.6.2)

where the J1, J2, and J3 are the principal invariants of D,

J1 = tr (D) = Dii,

J2 =
1

2
tr (D2) =

1

2
DijDij ,

J3 =
1

3
tr (D3) =

1

3
DijDjkDki,

(6.6.3)

where tr(·) denotes the trace of the enclosed tensor. Note that J2 and J3 defined
above are different from J2 = 1

2

(
J2
1 −D : D

)
and J3 = |D| defined in Eq.

(3.4.36).
For an incompressible fluid, J1 = ∇ · v = 0. Also, there is no theoretical

or experimental evidence to suggest that the viscosity depends on J3; thus, the
dependence on the third invariant is eliminated. Equation (6.6.2) reduces to

μ = μ(J2). (6.6.4)

The viscosity can also depend on the thermodynamic state of the fluid, which
for incompressible fluids usually implies a dependence only on the temperature.
Equation (6.6.4) gives the general functional form for the viscosity function,
and experimental observations and a limited theoretical base are used to pro-
vide specific forms of Eq. (6.6.4) for non-Newtonian viscosities. A variety of
inelastic models have been proposed and correlated with experimental data, as
discussed by Bird et al. (1971). Several of the most useful and popular models
are presented next; see Reddy and Gartling (2001).

6.6.2.1 Power-law model

The simplest and most familiar non-Newtonian viscosity model is the power-law
model, which has the form

μ = KJ
(n−1)/2
2 , (6.6.5)

where n and K are parameters, which are, in general, functions of temperature;
n is termed the power-law index and K is called consistency. Fluids with an
index n < 1 are termed shear thinning or pseudoplastic. A few materials are
shear thickening or dilatant and have an index n > 1. The Newtonian viscosity
is obtained with n = 1. The admissible range of the index n is bounded below
by zero because of stability considerations.

When considering nonisothermal flows, the following empirical relations for
n and K are used:

n = n0 +B

(
θ − θ0
θ0

)
, (6.6.6)

K = K0 exp (−A[θ − θ0]/θ0) , (6.6.7)
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where θ denotes the temperature and the subscript 0 indicates a reference value;
A and B are material constants.

6.6.2.2 Carreau model

A major deficiency in the power-law model is that it fails to predict upper
and lower limiting viscosities for extreme values of the deformation rate. This
problem is alleviated in the Carreau model:

μ = μ∞ + (μ0 − μ∞)
(
1 + [λJ2]

2
)(n−1)/2

, (6.6.8)

wherein μ0 and μ∞ are the initial and infinite shear rate viscosities, respectively,
and λ is a time constant.

6.6.2.3 Bingham model

The Bingham fluid differs from most other fluids in that it can sustain an applied
stress without fluid motion occurring. The fluid possesses a yield stress, τ0, such
that when the applied stresses are below τ0 no motion occurs; when the applied
stresses exceed τ0 the material flows, with the viscous stresses being proportional
to the excess of the stress over the yield condition. Typically, the constitutive
equation after yield is taken to be Newtonian (Bingham model), though other
forms such as a power-law equation are possible. In a general form, the Bingham
model can be expressed as

τ =

(
τ0√
J2

+ 2μ

)
D when

1

2
tr(τ 2) ≥ τ20 , (6.6.9)

τ = 0 when
1

2
tr(τ 2) < τ20 . (6.6.10)

From Eq. (6.6.9) the apparent viscosity of the material beyond the yield point
is

(
τ0/

√
J2 + 2μ

)
. For a Herschel–Buckley fluid the μ in Eq. (6.6.9) is given by

Eq. (6.6.5). The inequalities in Eqs. (6.6.9) and (6.6.10) describe a von Mises
yield criterion.

6.6.3 Viscoelastic Constitutive Models

For a viscoelastic fluid, the constitutive equation for the extra-stress τ in Eq.
(6.6.1) is time dependent. Such a relationship is often expressed in abstract
form where the current extra-stress is related to the history of deformation in
the fluid as

τ = F [G(s), 0 < s < ∞], (6.6.11)

where F is a tensor-valued functional, G is a finite deformation tensor (related
to the Cauchy–Green tensor), and s = t − t′ is the time lapse from time t′

to the present time, t. Fluids that obey constitutive equations of the form in
Eq. (6.6.11) are called simple fluids. The functional form in Eq. (6.6.11) is
not useful for general flow problems, and therefore numerous approximations of



248 CONSTITUTIVE EQUATIONS

Eq. (6.6.11) have been proposed in several different forms. Several of them are
reviewed here.

The two major categories of approximate constitutive relations include the
differential and integral models. For a differential model the extra-stress is
determined from a differential equation that relates the stress and stress rate to
the flow kinematics. The integral model represents the extra-stress in terms of an
integral over past time of the fluid deformation history. In general, the specific
choice is dictated by the ability of a given model to predict the non-Newtonian
effects expected in a particular application.

6.6.3.1 Differential models

Constitutive models for viscoelastic fluids in differential equation form are prefer-
able due to the ease with which they can be incorporated into the conservation
and balance equations, and the resulting equations are simple to handle in a
computational framework. Due to rheology of the fluid (fading memory) the
deviatoric part of the stress tensor, called extra-stress tensor, is time dependent,
and thus the constitutive models are differential equations in time between de-
viatoric stress tensor and the strain rate tensor.

The constitutive models for viscoelastic fluids in differential form can also
be constructed using a purely phenomenological approach based on our under-
standing of the physics. Such models, for example, one-dimensional spring and
dash-pot models discussed for viscoelastic solids in Chapter 9, serve to describe
the observed physical response. However, such models do not have a thermo-
dynamic basis, and their extension to two and three dimensions is based on an
analogy with elastic constitutive relations.

In this section, we consider differential constitutive theories using the de-
viatoric stress tensor (derived using the theory of generators and invariants)
for fluids. The well-known differential constitutive equations are generally as-
sociated with Oldroyd, Maxwell, and Jeffrey. First we define various types of
material time derivatives used in these models. In the spatial description the
material time derivative of a symmetric second-order tensor can be defined in
several ways, all of which are frame invariant. Let S denote a second-order ten-
sor. Then the upper-convected (or co-deformational or contravariant) derivative
is defined by

∇
S =

∂S

∂t
+ v ·∇S− L · S− (L · S)T, (6.6.12)

and the lower-convected derivative is defined as

Δ
S =

∂S

∂t
+ v ·∇S+ LT · S+ ST · L, (6.6.13)

where v is the velocity vector and L is the velocity gradient tensor

L = (∇v)T
(
Lij =

∂vi
∂xj

)
. (6.6.14)
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Since both Eqs. (6.6.12) and (6.6.13) are objective (not shown here) convected
derivatives, their linear combination is also objective:

◦
S = (1− α)

∇
S+ α

Δ
S, 0 ≤ α ≤ 1. (6.6.15)

Equation (6.6.15) can be viewed as the definition of a general convected deriva-
tive, which reduces to Eq. (6.6.12) for α = 0 and to Eq. (6.6.13) for α = 1.
When α = 0.5 [average of Eq. (6.6.12) and Eq. (6.6.13)] the convected deriva-
tive in Eq. (6.6.15) is termed a corotational or the Jaumann derivative. The
selection of one type of derivative over other is usually based on the physical
plausibility of the constitutive equation, that is, matching experimental data.

The simplest differential constitutive models are the upper- and lower-convected
Maxwell fluids, which are defined by the following equations:

Upper-convected Maxwell fluid: τ + λ
∇
τ = 2μpD, (6.6.16)

Lower-convected Maxwell fluid: τ + λ
Δ
τ = 2μpD (6.6.17)

where λ is the relaxation time for the fluid, μp is its viscosity, and D is the rate
of deformation tensor. The upper-convected Maxwell model in Eq. (6.6.16) has
been used extensively in testing numerical algorithms; the lower-convected and
corotational forms of the Maxwell fluid predict physically unrealistic behavior
and are not generally used.

Johnson–Segalman model. By employing the general convected derivative (6.6.15)
in a Maxwell-like model, the Johnson–Segalman model is produced:

τ + λ
◦
τ = 2μpD. (6.6.18)

Phan Thien–Tanner model. By slightly modifying Eq. (6.6.18) to include a
variable coefficient for τ , the Phan Thien–Tanner model is obtained:

Y (τ )τ + λ
◦
τ = 2μpD, (6.6.19)

where
Y (τ ) = 1 + (ελ/μp) tr(τ ) (6.6.20)

and ε is a constant. This equation is somewhat better than (6.6.18) in repre-
senting actual material behavior.

Oldroyd model. The Johnson–Segalman and Phan Thien–Tanner models suffer
from a common defect. For a monotonically increasing shear rate, there is a re-
gion where the shear stress decreases, which is a physically unrealistic behavior.
To correct this anomaly, the constitutive equations are altered using the follow-
ing procedure. First, the extra-stress is decomposed into two partial stresses, τ s

and τ p, such that
τ = τ s + τ p, (6.6.21)
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where τ s is a purely viscous and τ p is a viscoelastic stress component. Then
τ s and τ p are expressed in terms of the rate of deformation tensor D, using the
Johnson–Segalman fluid as an example, as

τ s = 2μs D, τ p + λ
◦
τ p = 2μp D. (6.6.22)

Finally, the partial stresses in Eqs. (6.6.21) and (6.6.22) are eliminated to pro-
duce a new constitutive relation

τ + λ
◦
τ = 2μ̄

(
D+ λ′ ◦

D
)
, (6.6.23)

where μ̄ = (μs + μp) and λ′ = λμs/μ̄; and λ′ is a retardation time. The con-
stitutive equation in Eq. (6.6.23) is known as a type of Oldroyd fluid. For
particular choices of the convected derivative in Eq. (6.6.23), specific models

can be generated. When α = 0 (
◦
τ → ∇

τ ), then Eq. (6.6.23) becomes the

Oldroyd B fluid, and α = 1 (
◦
τ → Δ

τ ) produces the Oldroyd A fluid. In order to
ensure a monotonically increasing shear stress, the inequality μs ≥ μp/8 must
be satisfied. The stress decomposition in Eq. (6.6.21) can also be used with the
Phan Thien–Tanner model to produce a correct shear stress behavior.

White–Metzner model. In all of the above constitutive equations the material
parameters, λ and μp, were assumed to be constants. For some constitutive
equations the constancy of these parameters leads to material (or viscometric)
functions that do not accurately represent the behavior of real elastic fluids.
For example, the shear viscosity predicted by a Maxwell fluid is a constant,
when in fact viscoelastic fluids normally exhibit a shear thinning behavior. This
situation can be remedied to some degree by allowing the parameters λ and μp

to be functions of the invariants of the rate of deformation tensor D. Using the
upper-convected Maxwell fluid as an example, then

τ + λ(J2)
∇
τ = 2μp (J2)D, (6.6.24)

where J2 is the second invariant of the rate of deformation tensor D [see Eq.
(6.6.3)]. The constitutive equation in Eq. (6.6.24) is termed a White–Metzner
model. White–Metzner forms of other differential models, such as the Oldroyd
fluids, have also been developed and used in various situations.

6.6.3.2 Integral models

An approximate integral model for a viscoelastic fluid represents the extra-stress
in terms of an integral over the past history of the fluid deformation. A general
form for a single integral model can be expressed as

τ =

∫ t

−∞
2m(t− t′)H(t, t′) dt′, (6.6.25)

where t is the current time, m is a scalar memory function (or relaxation kernel),
and H is a nonlinear deformation tensor between the past time t′ and current
time t.
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There are many possible forms for both the memory function m and the
deformation tensor H. Normally the memory function is a decreasing function
of the time lapse s = t− t′. Typical of such a function is the exponential given
by

m(t− t′) = m(s) =
μ0

λ2
e−s/λ, (6.6.26)

where the parameters μ0, λ, and s were defined previously. Like the choice of
a convected derivative in a differential model, the selection of a deformation
measure for use in Eq. (6.6.25) is somewhat arbitrary. One particular form that
has received some attention is given by

H = φ1(JB, J̃B)B+ φ2(JB, J̃B)B̃. (6.6.27)

In Eq. (6.6.27) B̃ is the Cauchy strain tensor, B is its inverse, called the Finger
tensor [see Eq. (3.4.22)], and φ1 and φ2 are scalar functions of the invariants of
the deformation tensors, JB = tr(B) and J̃B = tr(B̃). The form of the deforma-
tion measure in Eq. (6.6.27) is still quite general, though specific choices for the
functions φi and the memory function m lead to several well-known constitutive
models. Among these are the Kaye–BKZ fluid and the Lodge rubber-like liquid.

As a specific example of an integral model, we consider the Maxwell fluid.
Setting φ1 = 1 and φ2 = 0 in Eq. (6.6.27) and using the memory function of
Eq. (6.6.26), we obtain a constitutive equation of the form

τ =
μ0

λ2

∫ t

−∞
exp

[−(t− t′)/λ
] [
B(t′)− I

]
dt′. (6.6.28)

The constitutive equation (6.6.28) is an integral equivalent to the upper-convected
Maxwell model shown in differential form in Eq. (6.6.16). Note that in this case,
the extra-stress is given in an explicit form but its evaluation requires that the
strain history be known for each fluid particle. Although the Maxwell fluid has
both differential and integral forms, this is generally not true for other consti-
tutive equations. A discussion of additional integral models can be found in the
book by Bird, Armstrong, and Hassager (1971).

6.7 Heat Transfer

6.7.1 Introduction

Heat transfer is a branch of engineering that deals with the transfer of thermal
energy within a medium or from one medium to another due to a temperature
difference. Heat transfer may take place in one or more of the three basic forms:
conduction, convection, and radiation. The transfer of heat within a medium due
to diffusion process is called conduction heat transfer. Fourier’s law states that
the heat flow is proportional to the temperature gradient. The proportionality
parameter is known as the thermal conductivity. Note that for heat conduction
to occur there must be temperature differences between neighboring points.

Convection heat transfer is the energy transport effected by the motion of
a fluid. The convection heat transfer between two dissimilar media is governed
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by Newton’s law of cooling. It states that the heat flow is proportional to the
difference of the temperatures between the two media. The proportionality
parameter is called the convection heat transfer coefficient or film conductance.
For heat convection to occur there must be a fluid or another medium that can
transport energy to and from the primary medium.

Radiation is a mechanism that is different from three transport processes we
discussed so far, namely, (1) momentum transport in Newtonian fluids that is
proportional to the velocity gradient, (2) energy transport by conduction that is
proportional to the negative of the temperature gradient, and (3) energy trans-
port by convection that is proportional to the difference in temperatures of the
body and the moving fluid in contact with the body. Thermal radiation is an
electromagnetic mechanism, which allows energy transport with the speed of
light through regions of space that are devoid of any matter. Radiant energy
exchange between surfaces or between a region and its surroundings is described
by the Stefan–Boltzmann law, which states that the radiant energy transmit-
ted is proportional to the difference of the fourth power of the temperatures of
the surfaces. The proportionality parameter is known as the Stefan–Boltzmann
parameter.

6.7.2 Fourier’s Heat Conduction Law

The Fourier heat conduction law states that the heat flow q is related to the
temperature gradient by the relation

q = −k ·∇θ (qi = −kij
∂θ

∂xj
) , (6.7.1)

where k is the thermal conductivity tensor of order two. The negative sign in
(6.7.1) indicates that heat flows downhill on the temperature scale. The balance
of energy (5.4.11) requires that (e = c θ)

ρc
Dθ

Dt
= Φ−∇ · q+ ρ rh, Φ = τ : D, (6.7.2)

which, in view of Eq. (6.7.1), becomes

ρc
Dθ

Dt
= Φ+∇ · (k ·∇θ) + ρ rh, (6.7.3)

where ρ rh is the internal heat generation per unit volume, ρ is the density, and
c is the specific heat of the material (assumed to be independent of time t).

For heat transfer in a solid medium (v = 0), Eq. (6.7.3) reduces to

ρc
∂θ

∂t
= ∇ · (k ·∇θ) + ρ rh, (6.7.4)

which forms the subject of the field of conduction heat transfer. For a fluid
medium, Eq. (6.7.3) becomes

ρc

(
∂θ

∂t
+ v ·∇θ

)
= Φ+∇ · (k ·∇θ) + ρ rh, (6.7.5)

where v is the velocity field, and Φ is the viscous dissipation function.
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6.7.3 Newton’s Law of Cooling

At a solid–fluid interface the heat flux is related to the difference between the
temperature θ at the interface and that in the fluid

qn ≡ n̂ · q = h (θ − θfluid) , (6.7.6)

where n̂ is the unit normal to the surface of the body and h is known as the
heat transfer coefficient or film conductance. This relation is known as Newton’s
law of cooling, which also defines h. Clearly, Eq. (6.7.6) defines a boundary
condition on the bounding surface of a conducting medium.

6.7.4 Stefan–Boltzmann Law

The heat flow from surface 1 to surface 2 by radiation is governed by the Stefan–
Boltzman law:

qn = σ
(
θ41 − θ42

)
, (6.7.7)

where θ1 and θ2 are the temperatures of surfaces 1 and 2, respectively, and σ is
the Stefan–Boltzman constant. Again, Eq. (6.7.7) defines a boundary condition
on the surface 1 of a body.

6.8 Constitutive Relations for Coupled Problems

6.8.1 Electromagnetics

Problems involving the coupling of electromagnetic fields with fluid and ther-
mal transport have a broad spectrum of applications ranging from astrophysics
to manufacturing and to electromechanical devices and sensors. A good intro-
duction to electromagnetic field theory is available in the textbook by Jackson
(1975). Here we present a brief discussion of pertinent equations for the sake of
completeness4.

6.8.1.1 Maxwell’s equations

The appropriate mathematical description of electromagnetic phenomena in a
conducting material region, ΩC , is given by the following Maxwell’s equations
[see Reddy and Gartling (2001) and Jackson (1975), and references therein]:

∇×E = −∂B

∂t
, (6.8.2)

∇×H = J+
∂D

∂t
, (6.8.3)

∇ ·B = 0, (6.8.4)

∇ ·D = ρ, (6.8.5)

where E is the electric field intensity, H is the magnetic field intensity, B is
the magnetic flux density, D is the electric flux (displacement) density, J is the
conduction current density, and ρ is the source charge density. Equation (6.8.1)

4Note that the notation used here for various fields is standard in the literature; unfortunately,
some of the symbols used here were already used previously for other variables.
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is referred to as Faraday’s law, Eq. (6.8.2) as Ampere’s law (as modified by
Maxwell), and Eq. (6.8.4) as Gauss’ law. A continuity condition on the current
density is also defined by

∇ · J =
∂ρ

∂t
. (6.8.5)

Note that only three of the preceding five equations are independent; either Eqs.
(6.8.1), (6.8.2), and (6.8.4) or Eqs. (6.8.1), (6.8.2), and (6.8.5) form valid sets
of equations for the field variables.

6.8.1.2 Constitutive relations

To complete the formulation, the constitutive relations for the material are re-
quired. The fluxes are functionally related to the field variables by

D = FD(E,B), (6.8.6)

H = FH(E,B), (6.8.7)

J = FJ(E,B), (6.8.8)

where the response functions FD, FH , and FJ may also depend on external
variables such as temperature θ and mechanical stress σ. The form of the
material response due to applied E or B fields can vary strongly depending on
the microstructure and the strength of the material and on the magnitude and
time-dependent nature of the applied field.

Conductive and Dielectric Materials. For conducting materials, the standard
response function FJ gives Ohm’s law, which relates the current density J to
the electric field intensity E

J = kσ ·E, (6.8.9)

where kσ is the conductivity tensor. For isotropic materials, we have kσ = kσI,
where kσ is a scalar and I is the unit tensor. In general, the conductivity may be
a function of E or an external variable such as temperature. This form of Ohm’s
law applies to stationary conductors. If the conductive material is moving in a
magnetic field, then Eq. (6.8.9) is modified to read

J = kσ ·E+ kσ · (v ×B), (6.8.10)

where v is the velocity vector describing the motion of the conductor and B is
the magnetic flux vector.

For dielectric materials, the standard response function FD relates the elec-
tric flux density D to the electric field E and polarization vector P:

D = ε0 ·E+P, (6.8.11)

where ε0 is the permittivity of free space. The polarization is generally related
to the electric field through

P = ε0Se ·E+P0, (6.8.12)
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where Se is the electric susceptibility tensor that accounts for the different types
of polarization, and P0 is the remnant polarization that may be present in some
materials.

Magnetic Materials. For magnetic materials, the standard response function
FH relates the magnetic field intensity H to the magnetic flux B

H =
1

μ0
B−M, (6.8.13)

where μ0 is the permeability of free space and M is the magnetization vector.
The magnetization vector M can be related to either the magnetic flux B or
magnetic field intensity H by

M =
1

μ0

Sm

(I+ Sm)
·B+M0, (6.8.14)

M = Sm ·H+ (I+ Sm) ·M0, (6.8.15)

where Sm is the magnetic susceptibility for the material, M0 is the remnant
magnetization, and I is the unit tensor. If the susceptibility is negative, the
material is diamagnetic, whereas a positive susceptibility defines a paramag-
netic material. Generally, these susceptibilities are quite small and are often
neglected. Ferromagnetic materials have large positive susceptibilities and pro-
duce a nonlinear (hysteretic) relationship between B and H. These materials
may also exhibit spontaneous and remnant magnetization.

Electromagnetic Forces and Volume Heating. The coupling of electromag-
netic fields with a fluid or thermal problem occurs through the dependence
of material properties on electromagnetic field quantities and the production
of electromagnetic-induced body forces and volumetric energy production. The
Lorentz body force per unit volume in a conductor due to the presence of electric
currents and magnetic fields is given by

FB = ρE+ J×B, (6.8.16)

where, in the general case, the current is defined by Eq. (6.8.10). The first term
on the right-hand side of Eq. (6.8.16) is the electric field contribution to the
Lorentz force; the magnetic term J × B is usually of more interest in applied
mechanics problems. The energy generation or Joule heating in a conductor is
described by

QJ = J ·E, (6.8.17)

which takes on a more familiar form if the simplified (v = 0) form of Eq. (6.8.10)
is used to produce

QJ = σ−1(J · J), (6.8.18)

where σ is the conductivity. The aforementioned forces and heat source occur
in the fluid momentum and energy equations, respectively.
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6.8.2 Thermoelasticity

The use of the entropy density η as an independent variable is not convenient.
A more convenient thermal variable is the temperature θ, as it is fairly easy to
measure and control. The constitutive equations of thermoelasticity are derived
by assuming the existence of the Helmholtz free-energy potential Ψ = U0(θ, ε)−
η(εij) θ = Ψ(θ, ε):

ρ0Ψ(εij , θ) = ρ0 U0−ρ0 (θ−θ0)η =
1

2
Cijk� εij εk�−βij εij (θ−θ0)− ρ0 cv

2θ0
(θ−θ0)

2

(6.8.19)
such that

σij = ρ0
∂Ψ

∂εij
= Cijk� εk� − βij (θ− θ0), ρ0η = −ρ0

∂Ψ

∂θ
= βij εij +

ρ0 cv
θ0

(θ− θ0),

(6.8.20)

where θ is the temperature measured from a reference value θ0, η is the entropy
density, and βij are material coefficients. In arriving at Eq. (6.8.20), it is
assumed that η and σij are initially zero (see the answer to Problem 6.35), and
cv βij , and Cijk� are values at the reference state. Inverting the stress–strain
relations in Eq. (6.8.20), we obtain

εij = Sijk� σk� + αij(θ − θ0), (6.8.21)

where Sijk� are the elastic compliances, and αij are the thermal coefficients of
expansion, and they are related to βij by

βij = Cijk� αk�. (6.8.22)

6.8.3 Hygrothermal Elasticity

The moisture adsorption problem is mathematically similar to the heat conduc-
tion problem. The moisture concentration c in a solid is described by Fick’s law
(analogous to Fourier’s heat conduction law):

qf = −D ·∇c (6.8.23)

and the diffusion process is governed by

∂c

∂t
= −∇ · qf + φf , (6.8.24)

where D denotes the mass diffusivity tensor of order two, qf is the moisture
flux vector, and φf is the moisture source in the domain. The negative sign
in Eq. (6.8.24) indicates that moisture seeps from a higher concentration to a
lower concentration. The boundary conditions involve specifying the moisture
concentration or the flux normal to the boundary:

c = ĉ(s, t) on Γ1, (6.8.25)

n · qf = q̂f (s, t) on Γ2, (6.8.26)
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where Γ = Γ1 ∪ Γ2, and Γ1 ∩ Γ2 = ∅, and quantities with a hat are specified
functions on the respective boundaries.

The moisture-induced strains {ε}M are given by

{ε}M = {αM}c, (6.8.27)

where {αM} is the vector of coefficients of hygroscopic expansion. Thus, the
hygrothermal strains have the same form as the thermal strains. The total
strains are given by

{ε} = [S]{σ}+ {αT }(θ − θ0) + {αM}(c− c0), (6.8.28)

where {αT } is the vector of coefficients of thermal expansion, and θ0 and c0 are
reference values of temperature and concentration, respectively, from which the
strains and stresses are measured. In view of the similarity between the thermal
and moisture strains, thermoelasticity and hygroelasticity problems share the
same solution approach.

6.8.4 Electroelasticity

Electroelasticity deals with the phenomena caused by interactions between elec-
tric and mechanical fields. The piezoelectric effect is one such phenomenon, and
it is concerned with the effect of the electric charge on the deformation. A struc-
ture with piezoelectric layers receives actuation through an applied electric field,
and the piezoelectric layers send electric signals that are used to measure the
motion or deformation of the laminate. In these problems, the electric charge
that is applied to actuate a structure provides an additional body force to the
stress analysis problem, much the same way a temperature field induces a body
force through thermal strains.

The piezoelectric effect is described by the polarization vector P, which rep-
resents the electric moment per unit volume or polarization charge per unit area.
It is related to the stress tensor by the relation

P = d · σ or Pi = dijkσjk, (6.8.29)

where d is the third-order tensor of piezoelectric moduli. The inverse effect
relates the electric field vector E to the linear strain tensor ε by

ε = E · d or εij = dkijEk. (6.8.30)

Note that dkij is symmetric with respect to indices i and j because of the sym-
metry of εij (note that i, j, k = 1, 2, 3).

The pyroelectic effect is another phenomenon that relates temperature changes
to polarization of a material. For a temperature change from a reference tem-
perature θ0, the change in polarization vector ΔP is given by

ΔP = p(θ − θ0), (6.8.31)

where p is the vector of pyroelectric coefficients.
The coupling between the mechanical, thermal, and electrical fields can be es-

tablished using thermodynamical principles and Maxwell’s relations. Analogous
to the strain energy potential U0 for elasticity and the Helmholtz free-energy
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potential Ψ for thermoelasticity, we assume the existence of a function Φ, called
the electric Gibb’s free-energy potential or enthalpy function,

ρ0Φ(εij , Ei, θ) = ρ0 U0 − ρ0E ·D− ρ0 η(θ − θ0)

=
1

2
Cijk� εij εk� − eijk εij Ek − βij εij (θ − θ0)

− 1

2
εk�Ek E� − pk Ek(θ − θ0)− ρ0cv

2θ0
(θ − θ0)

2, (6.8.32)

such that

σij = ρ0
∂Φ

∂εij
, ρ0Di = −ρ0

∂Φ

∂Ei
, ρ0 η = −ρ0

∂Φ

∂θ
, (6.8.33)

where σij are the components of the stress tensor σ, Di are the components of
the electric displacement vector D, and η is the entropy. Use of Eq. (6.8.32)
in Eq. (6.8.33) gives the constitutive equations of a deformable piezoelectric
medium:

σij = Cijk� εk� − eijk Ek − βij(θ − θ0), (6.8.34)

ρ0Dk = eijk εij + εk�E� + pk(θ − θ0), (6.8.35)

ρ0 η = βij εij + pk Ek +
ρ0cv
θ0

(θ − θ0), (6.8.36)

where Cijk� are the elastic moduli, eijk are the piezoelectric moduli, εij are
the dielectric constants, pk are the pyroelectric constants, βij are the stress-
temperature expansion coefficients, cv is the specific heat (at constant strain or
volume) per unit mass, and θ0 is the reference temperature. In single-subscript
notation for stresses and strains, Eqs. (6.8.34)–(6.8.36) can be expressed as

σi = Cij εj − eik Ek − βi(θ − θ0), (6.8.37)

ρ0Dk = eik εi + εk�E� + pk(θ − θ0), (6.8.38)

ρ0 η = βi εi + pk Ek +
ρ0cv
θ0

(θ − θ0). (6.8.39)

Note that the range of summation in Eqs. (6.8.37)–(6.8.39) is different for differ-
ent terms: i, j = 1, 2, · · · , 6; k, � = 1, 2, 3. For the general anisotropic material,
there are 21 independent elastic constants, 18 piezoelectric constants, 6 dielectric
constants, 3 pyroelectric constants, and 6 thermal expansion coefficients.

Maxwell’s equation governing the electric displacement vector D is given by

∇ ·D = 0. (6.8.40)

It is often assumed that the electric field E is derivable from an electric scalar
potential function φ:

E = −∇φ. (6.8.41)

This assumption allows us to write Eq. (6.8.40), in view of Eq. (6.8.38), as

∂

∂x1

(
ε11

∂φ

∂x1

)
+

∂

∂x2

(
ε22

∂φ

∂x2

)
+

∂

∂x3

(
ε33

∂φ

∂x3

)
+ fe = 0, (6.8.42)

where

fe = − ∂

∂xk
[ek�ε� + pk(θ − θ0)] . (6.8.43)
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6.9 Summary

This chapter was dedicated to a discussion of the constitutive equations for
Hookean solids, Newtonian fluids, and heat transfer in solids. Constitutive
models of solids and fluids are derived using the entropy inequality or condi-
tions resulting from the entropy inequality. Beginning with a discussion of the
constitutive rules or axioms, frame indifference, and restrictions placed by the
entropy inequality, general constitutive relations for the stress tensor, entropy,
and heat flux were derived. Then the generalized Hooke’s law governing lin-
ear elastic solids, Newtonian relations for viscous fluids, and the Fourier heat
conduction equation for heat transfer in solids are presented. The generalized
Hooke’s law is specialized to monoclinic materials, orthotropic materials, and
isotropic materials using material symmetries. Constitutive relations for non-
linear elastic solids, generalized Newtonian fluids, and coupled problems (e.g.,
electromagnetics, thermoelasticity, hygrothermal elasticity, and electroelastic-
ity) are also presented for the sake of completeness.

The constitutive relations presented in this chapter along with the field equa-
tions developed in Chapter 5 will be used in Chapters 7 and 8 to analyze some
typical boundary-value problems of solid mechanics, fluid mechanics, and heat
transfer. The main results of this chapter that are of importance in the coming
chapters are summarized here.

Hookean deformable solids (infinitesimal strains)

σ = 2μ ε+ λ tr(ε)I, σij = 2μ εij + λ εkk δij (6.9.1)

ε =
1

2

[∇u+ (∇u)T
]
, εij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(6.9.2)

Newtonian fluids (compressible)

σ = −p(ρ, θ) I+ 2μ(ρ, θ)D+ λ(ρ, θ) tr(D)I

σij = −p δij + 2μ εij + λ εkk δij (6.9.3)

Newtonian Fluids(incompressible)

σ = −p(θ) I+ 2μD, σij = −p(θ) δij + 2μDij (6.9.4)

D =
1

2

[∇v + (∇v)T
]
, Dij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(6.9.5)

Heat transfer

q = −k ·∇θ, qi = −kij
∂θ

∂xj
(6.9.6)

In general, the derivation of constitutive equations of a fluid or solid matter
is quite involved. The presentation here is made simple keeping in mind the
introductory nature of the present course. For a detailed and advanced study of
the subject, the reader may consult the books by Truesdell and Toupin (1965)
and Truesdell and Noll (1965).
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Problems

Hookean Solids

6.1 Recall from Examples 3.4.3 and 4.3.1 that under the coordinate transformation

ê1 = cos θ êx + sin θ êy,

ê2 = − sin θ êx + cos θ êy,

ê3 = êz,

(1)

the stress components and strain components εi and σi are given in terms of the com-
ponents σxx, σyy, · · · and εxx, εyy, · · · by [see Eqs. (3.4.33) and (4.3.7)]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 1
2
sin 2θ

sin2 θ cos2 θ 0 0 0 − 1
2
sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin 2θ sin 2θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εyz
εxz
εxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, {ε̄} = [T θ]{ε}, (2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 sin 2θ
sin2 θ cos2 θ 0 0 0 − sin 2θ
0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− 1
2
sin 2θ 1

2
sin 2θ 0 0 0 cos 2θ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σxz

σxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, {σ̄} = [Rθ]{σ}.

(3)

Show that
[S̄] = [T θ][S][T θ]T, [C̄] = [Rθ][C][Rθ]T, (4)

where [S̄] is the matrix of compliance coefficients and [C̄] is the matrix of stiffness coef-
ficients with respect to the (x1, x2, x3) coordinates and [S] is the matrix of compliance
coefficients and [C] is the matrix of stiffness coefficients with respect to the (x, y, z)
coordinates.

6.2 Under the coordinate transformation

ˆ̄e1 = cos θ ê1 + sin θ ê2,

ˆ̄e2 = − sin θ ê1 + cos θ ê2,

ˆ̄e3 = ê3,

determine S̄ij in terms of Sij and C̄ij in terms of Cij .

6.3 Given the transformation

ˆ̄e1 = ê1, ˆ̄e2 = ê2, ˆ̄e3 = −ê3, (1)

determine the stress components σ̄ij in terms of σij , strain components ε̄ij in terms of
εij , and the elasticity coefficients C̄ij in terms of Cij .

6.4 Establish the following relations between the Lame’ constants μ and λ and engineering
constants E, ν, and K:

λ =
νE

(1 + ν)(1− 2ν)
, μ = G =

E

2(1 + ν)
, K =

E

3(1− 2ν)
.

6.5 Determine the longitudinal stress σxx and the hoop stress σyy in a thin-walled circular
cylindrical pressure vessel with closed ends; that is, establish Eq. (1) of Example 6.3.1.
Assume an internal pressure of p, internal diameter Di, and thickness h.

6.6 Determine the stress tensor components at a point in 7075-T6 aluminum alloy body
(E = 72 GPa, and G = 27 GPa) if the strain tensor at the point has the following
components with respect to the Cartesian basis vectors êi:

[ε] =

⎡
⎣ 200 100 0
100 300 400

0 400 0

⎤
⎦× 10−6 m/m .
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6.7 For the state of stress and strain given in Problem 6.6, determine the principal invariants
of the stress and strain tensors.

6.8 The components of strain tensor at a point in a body made of structural steel are

[ε] =

⎡
⎣ 36 12 30
12 40 0
30 0 25

⎤
⎦× 10−6 m/m .

Assuming that the Lamé constants for the structural steel are λ = 207 GPa (30 × 106

psi) and μ = 79.6 GPa (11.54× 106 psi), determine the principal invariants of the stress
and strain tensors.

6.9 The components of a stress tensor at a point in a body made of structural steel are

[σ] =

⎡
⎣ 42 12 30
12 15 0
30 0 −5

⎤
⎦ MPa.

Assuming that the Lamé constants for structural steel are λ = 207 GPa (30 × 106 psi)
and μ = 79.6 GPa (11.54 × 106 psi), determine the principal invariants of the strain
tensor.

6.10 Plane stress-reduced constitutive relations. Beginning with the strain-stress relations in
Eq. (6.3.23) for an orthotropic material in a two-dimensional case (i.e., σ33 = σ13 =
σ23 = 0), determine the two-dimensional stress–strain relations.

1x

2x
13σ    = 0

21σ

3x

22σ

12σ

11σ

33σ    = 0

32σ    = 0

31σ    = 0
23σ    = 0

1x

3x

2x

Fig. P6.10

6.11 Given the strain energy potential

Ψ(E) =
λ

2
(trE)2 + μ tr(E ·E),

determine the second Piola–Kirchhoff stress tensor S in terms of the Green strain tensor
E.

6.12 Given the strain energy potential for the case of infinitesimal deformations

Ψ(ε) =
λ

2
(tr ε)2 + μ tr(ε · ε),

determine the strain energy function Ψ(σ) in terms of the stress tensor σ.

6.13 Assuming that the strain energy density Ψ = U0(σ) is positive-definite, that is, U0 ≥ 0,
with U0 = 0 if and only if σ = 0, determine the restrictions placed on the elastic
parameters E, K, and ν by considering the following stress states: (a) uniaxial stress
state with σ11 = σ; (b) pure shear stress state, σ12 = τ ; and (c) hydrostatic stress state,
σ11 = σ22 = σ33 = p.

6.14 A material is transversely isotropic at a point if it is symmetric with respect to an arbi-
trary rotation about a given axis. Aligned fiber-reinforced composites provide examples
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of transversely isotropic materials (see Fig. P6.14). Take the x3-axis as the axis of
symmetry with the transformation matrix

[L] =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦ ,

where θ is arbitrary. Show that the stress–strain relations of a transversely isotropic
material are of the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

1x

2x

1x

2x

3 3x x

θ

θ

Fig. P6.14

6.15 The stress–strain relations of an isotropic material in the cylindrical coordinate system
are

σrr = 2μ εrr + λ (εrr + εθθ + εzz) ,

σθθ = 2μ εθθ + λ (εrr + εθθ + εzz) ,

σzz = 2μ εzz + λ (εrr + εθθ + εzz) ,

σrθ = 2μ εrθ, σrz = 2μ εrz, σθz = 2μ εθz.

Express the relations in terms of the displacements (ur, uθ, uz).

6.16 Express the stress–strain relations of an isotropic material in the spherical coordinate
system and express the result in terms of the displacements (uR, uφ, uθ).

6.17 Given the displacement field in an isotropic body

ur = U(r), uθ = 0, uz = 0, (1)

where U(r) is a function of only r, determine the stress components in the cylindrical
coordinate system.

6.18 Given the displacement field in an isotropic body

uR = U(R), uφ = 0, uθ = 0, (1)

where U(R) is a function of only R, determine the stress components in the spherical
coordinate system.

6.19 The Navier equations. Show that for an isotropic, incompressible solid with infinitesimal
deformations (i.e., σ ≈ S and F ·S ≈ S), the equation of motion (5.3.11), ∇ ·σ+ ρ0f =
ρ0ü, can be expressed as

ρ0
∂2u

∂t2
= ρ0f −∇p+ (λ+ μ)∇(∇ · u) + μ∇2u.
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Newtonian Fluids

6.20 Given the following motion of an isotropic continuum,

χ(X) = (X1 + kt2X2
2 ) ê1 + (X2 + ktX2) ê2 +X3 ê3,

determine the components of the viscous stress tensor as a function of position and time.

6.21 Express the upper and lower convective derivatives of Eqs. (6.6.12) and (6.6.13) in
Cartesian component form.

6.22 Interpret the Laḿe constant μ by considering the flow field

v1 = f(x2), v2 = 0, v3 = 0,

where f is a known function of x1.

6.23 For viscous compressible flows (in spatial description), show that

σ̃ − p =
(
λ+ 2

3
μ
) 1
ρ

Dρ

Dt
,

where σ̃ = −σii/3 is the mean stress and p is the thermodynamic pressure.

6.24 The Navier–Stokes equations. Show that for a compressible fluid, the Cauchy equations
of motion (5.3.10) can be expressed as

ρ
Dv

Dt
= ρf −∇p+ (λ+ μ)∇(∇ · v) + μ∇2v.

Simplify the equation for (a) an incompressible fluid and (b) hydrostatic state of stress.

6.25 Show that for an incompressible fluid the equation of motion simplifies to

D

Dt
(ρv) = ρ f −∇p+ μ∇2v.

6.26 Show that for the two-dimensional flow of an incompressible Newtonian fluid with ∇×
f = 0, where f is the body force vector (measured per unit volume), the vorticity w [see
Eq. (3.6.5)] satisfies the diffusion equation

ρ
Dw

Dt
= μ∇2w.

6.27 Stokesian fluid. A Stokesian fluid is one in which (a) the stress tensor σ is a continuous
function of the rate of deformation tensor D and the local thermodynamic state (i.e.,
may depend on temperature), but independent of other kinematic variables; (b) σ is
not an explicit function of position x; (c) constitutive behavior is isotropic; and (d) the
stress is hydrostatic when the rate of deformation is zero, D = 0. Consider the following
constitutive equation for a Stokesian fluid:

σ = −p I+ μD+ βD ·D (σij = −p δij + μDij + β DikDkj).

Write the equations of motion (5.3.10) in terms of p and D for a Stokesian fluid. Note
that a linear Stokesian fluid is a Newtonian fluid.

6.28 Irrotational motion. The velocity field v is said to be irrotational when the vorticity is
zero, w = 0. Then there exists a velocity potential φ(x, t) such that v = ∇φ. Show
that the Navier–Stokes equations of Problem 6.24 can be expressed in the form

ρ∇
[
∂φ

∂t
+ 1

2
(∇φ)2

]
= ρ f −∇p+ (λ+ 2μ)∇(∇2φ).

6.29 Show that in the case of irrotational body force f = −∇V and when p is a function only
of ρ

∂φ

∂t
+ 1

2
(∇φ)2 + V + P (ρ)− 1

ρ
(λ+ 2μ)∇2φ = g(t),

where P (ρ) =
∫ p

p0
dp/ρ, p0 is a constant, and g(t) is a function of time only.
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Heat Transfer

6.30 Show that for an isotropic Newtonian fluid the energy equation can be expressed in the
form

ρ
De

Dt
= ∇ · (k∇θ)− p J1 + (λ+ 2μ)J2

1 − 4μJ2 + ρ r,

where J1 and J2 are the principal invariants of D [see Eq. (3.4.36)], and k is the
conductivity.

6.31 Show that for an isotropic Newtonian fluid the energy equation can be expressed in the
form

ρθ
Dη

Dt
= ∇ · (k∇θ) + (λ+ 2μ)J2

1 − 4μJ2 + ρ r,

where θ is the absolute temperature, η is the entropy, J1 and J2 are the principal
invariants of D, and k is the conductivity. Hint: θ dη = de+p d(1/ρ) and d/dt = D/Dt.

6.32 The thermal stress coefficients, βij , measure the increases in the stress components per
unit decrease in temperature with no change in the strain, that is,

βij = −∂σij

∂θ

∣∣∣
ε=const

.

Deduce from the above equation the result

βij = ρ0
∂η

∂εij
.

6.33 The specific heat at constant strain is defined by

cv =
∂e

∂θ

∣∣∣
ε=const

.

Deduce from the above equation the result

cv = −θ
∂2Ψ

∂θ2
.

6.34 Consider a reference state at zero strain and temperature θ0, and expand Ψ(θ, ε) in
Taylor’s series about this state up to quadratic terms in θ and εij to derive the consti-
tutive equations, Eq. (6.8.20), for linear thermoelasticity. Specialize the relations to the
isotropic case.
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7

LINEARIZED ELASTICITY

You cannot depend on your eyes when your imagination is out of focus.
—– Mark Twain (1835–1910)

Research is to see what everybody else has seen, and to think what nobody else has thought.

—– Albert Szent-Gyoergi (1893-1986)

7.1 Introduction

This chapter is dedicated to the study of deformation and stress in solid bodies
under a prescribed set of forces and kinematic constraints. In a majority of
problems, we assume that stresses and strains are small so that linear strain-
displacement relations and Hooke’s law are valid, and we use appropriate govern-
ing equations derived using the Lagrangian description in the previous chapters
to solve them for stresses and displacements. In the linearized elasticity we as-
sume that the geometric changes are so small that we neglect squares of the dis-
placement gradients, that is, |∇u|2 ≈ 0, and do not make a distinction between
the deformed and undeformed geometries, between the second Piola–Kirchhoff
stress tensor S and the Cauchy stress tensor σ, and between the current coor-
dinates x and the material coordinates X (and use σ and x). Mathematically,
we seek solutions to coupled partial differential equations over an elastic domain
occupied by the reference (or undeformed) configuration of the body, subject
to specified boundary conditions on displacements or forces. Such problems are
called boundary value problems of elasticity.

Most practical problems of even linearized elasticity involve geometries that
are complicated, and analytical solutions to such problems cannot be obtained.
Therefore, the objective here is to familiarize the reader with certain solution
methods as applied to simple boundary value problems. Boundary value prob-
lems discussed in most elasticity books are about the same, and they illustrate
the methodologies used in the analytical solution of problems of elasticity. Al-
though is a book on a first course in continuum mechanics, typical solid me-
chanics problems discussed in most elasticity books, for example, Timoshenko
and Goodier (1970), Slaughter (2002), and Sadd (2004) are covered. The meth-
ods discussed here may not be directly useful in solving practical engineering
problems, but the discussion provides certain insights into the formulation and
solution of boundary value problems. These insights are useful irrespective of
the specific problems or methods of solution presented here.
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7.2 Governing Equations

7.2.1 Preliminary Comments

It is useful to summarize the equations of linearized elasticity for use in the later
sections of this chapter. The governing equations of a three-dimensional elastic
body involve (1) 6 strain-displacement relations among 9 variables, namely 6
components of strain tensor ε and 3 components of displacement vector u; (2) 3
equations of motion among 6 components of stress tensor σ, assuming symmetry
of the stress tensor; and (3) 6 stress–strain equations among 6 stress and 6 strain
components that are already counted. Thus, there are a total of 15 coupled
equations among 15 scalar field variables. These equations are listed here in
vector form and Cartesian, cylindrical, and spherical component forms for an
isotropic body occupying a domain Ω with closed boundary Γ in the reference
configuration. Figures 7.2.1(a)–(c) show the normal stress components in the
three coordinate systems; shear stress components should be obvious (as well as
all of the strain components).

7.2.2 Summary of Equations

All of the equations derived in Chapters 3, 4, 5, and 6 in material description
are presented here. Throughout this chapter, we use the following notations:
x = X, ε = E, and σ = S .

7.2.2.1 Strain-displacement equations

The linearized strain-displacement relations are summarized here:

Vector form:

ε =
1

2

[∇u+ (∇u)T
]

(7.2.1)

Rectangular Cartesian component form: (ux, uy, uz)

εxx =
∂ux
∂x

, εxy = 1
2

(
∂ux
∂y

+
∂uy
∂x

)

εxz =
1
2

(
∂ux
∂z

+
∂uz
∂x

)
, εyy =

∂uy
∂y

εyz =
1
2

(
∂uy
∂z

+
∂uz
∂y

)
, εzz =

∂uz
∂z

(7.2.2)

Component form in cylindrical coordinates: (ur, uθ, uz)

εrr =
∂ur
∂r

, εrθ =
1
2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)

εrz =
1
2

(
∂ur
∂z

+
∂uz
∂r

)
, εθθ =

ur
r

+
1

r

∂uθ
∂θ

εzθ =
1
2

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
, εzz =

∂uz
∂z

(7.2.3)
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Fig. 7.2.1: Components of a second-order tensor (stress) on a typical volume element in (a)
Cartesian, (b) cylindrical, and (c) spherical coordinate systems.

Component form in spherical coordinates: (uR, uφ, uθ)

εRR =
∂uR
∂R

, εφφ =
1

R

(
∂uφ
∂φ

+ uR

)

εRφ = 1
2

(
1

R

∂uR
∂φ

+
∂uφ
∂R

− uφ
R

)

εRθ =
1
2

(
1

R sinφ

∂uR
∂θ

+
∂uθ
∂R

− uθ
R

)

εφθ =
1
2

1

R

(
1

sinφ

∂uφ
∂θ

+
∂uθ
∂φ

− uθ cotφ

)

εθθ =
1

R sinφ

(
∂uθ
∂θ

+ uR sinφ+ uφ cosφ

)

(7.2.4)

7.2.2.2 Equations of motion

The linearized equations of motion, under the assumption that σT = σ, are
summarized. The equilibrium equations are obtained by setting the acceleration
terms to zero. Here f is the body force vector measured per unit mass.

Vector form

∇ · σ + ρ0f = ρ0
∂2u

∂t2
(7.2.5)

Rectangular Cartesian component form: (σxx, σyy, σxy, · · · )

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ ρ0fx = ρ0
∂2ux
∂t2

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ ρ0fy = ρ0
∂2uy
∂t2

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ ρ0fz = ρ0
∂2uz
∂t2

(7.2.6)
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Component form in cylindrical coordinates: (σrr, σθθ, σrθ, · · · )

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) + ρ0fr = ρ0

∂2ur
∂t2

∂σθr
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
σθr + σrθ

r
+ ρ0fθ = ρ0

∂2uθ
∂t2

∂σzr
∂r

+
1

r

∂σzθ
∂θ

+
∂σzz
∂z

+
σzr
r

+ ρ0fz = ρ0
∂2uz
∂t2

(7.2.7)

Component form in spherical coordinates: (σRR, σφφ, σRφ, · · · )
∂σRR

∂R
+

1

R

∂σRφ

∂φ
+

1

R sinφ

∂σRθ

∂θ
+

1

R
(2σRR − σφφ − σθθ + σRφ cotφ)

+ ρ0fR = ρ0
∂2uR
∂t2

∂σφR
∂R

+
1

R

∂σφφ
∂φ

+
1

R sinφ

∂σφθ
∂θ

+
1

R
[(σφφ − σθθ) cotφ+ σRφ + 2σφR]

+ ρ0fφ = ρ0
∂2uφ
∂t2

(7.2.8)

∂σθR
∂R

+
1

R

∂σθφ
∂φ

+
1

R sinφ

∂σθθ
∂θ

+
1

R
[(σφθ + σθφ) cotφ+ σRθ]

+ ρ0fθ = ρ0
∂2uθ
∂t2

7.2.2.3 Constitutive equations

The stress–strain equations of a linear, isotropic, elastic body are presented here.

Vector form
σ = 2με+ λ (tr ε) I (7.2.9)

Rectangular Cartesian, cylindrical, and spherical component forms⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ13
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.2.10)
Here the subscripts 1, 2, and 3 take x, y, and z for rectangular Cartesian co-
ordinates; r, θ, and z for cylindrical coordinates; and R,φ, and θ for spherical
coordinates. The Laḿe constants μ and λ are related to Young’s modulus E
and Poisson’s ratio ν by

μ = G =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
. (7.2.11)
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Equations (7.2.1)–(7.2.10) are valid for all problems of linearized elasticity;
various problems differ from each other only in (a) geometry of the domain, (b)
boundary conditions, and (c) values of the material parameters E and ν. The
general form of the boundary condition is presented next.

7.2.2.4 Boundary conditions

Vector form
u = û on Γu, n̂ · σ = t̂ on Γσ. (7.2.12)

Component form

ui = ûi on Γu, σij nj = t̂i on Γσ, (7.2.13)

where Γσ and Γu are disjoint portions (except for a point) of the boundary whose
union is equal to the total boundary Γ, and quantities with a hat are specified
values. Note that only one element of the pair (ti, ui), for any i = 1, 2, 3, may be
specified at a point on the boundary. The indices (1, 2, 3) may take the values
of (x, y, z), (r, θ, z), and (R,φ, θ).

7.2.2.5 Compatibility conditions

In addition to the 15 equations listed in (7.2.1), (7.2.5), and (7.2.9), there are 6
compatibility conditions among 6 components of strain:

∇× (∇× ε)T = 0, eikrej�sεij,k� = 0. (7.2.14)

Recall that the compatibility equations are necessary and sufficient conditions
on the strain field to ensure the existence of a corresponding displacement field.
Associated with each displacement field, there is a unique strain field as given
by Eq. (7.2.1) and there is no need to use the compatibility conditions. The
compatibility conditions are required only when the strain or stress field is given
and the displacement field is to be determined.

In most formulations of boundary value problems of elasticity, one does not
use the 15 equations in 15 unknowns. Most often, the 15 equations are reduced
to either 3 equations in terms of displacement field or 6 equations in terms of
stress field. The two sets of equations are presented next.

7.2.3 The Navier Equations

The 15 equations can be combined into 3 equations by substituting strain-
displacement equations into the stress–strain relations and the result into the
equations of equilibrium. We shall carry out this process using the Cartesian
component form (in index notation) and then express the final result in vector
as well as Cartesian component forms.

The Cartesian component form of Eq. (7.2.9) is

σij = μ (ui,j + uj,i) + λuk,kδij . (7.2.15)
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Substituting into Eq. (7.2.5), we arrive at the equations

ρ0
∂2ui
∂t2

= σji,j + ρ0 fi

= μ (ui,jj + uj,ij) + λuk,ki + ρ0 fi

= μui,jj + (μ+ λ)uj,ji + ρ0 fi. (7.2.16)

Thus, we have

μ∇2u+ (μ+ λ)∇ (∇ · u) + ρ0 f = ρ0
∂2u

∂t2
,

μui,jj + (μ+ λ)uj,ji + ρ0 fi = ρ0
∂2ui
∂t2

. (7.2.17)

These are called Lamé–Navier equations of elasticity, and they represent the
equilibrium equations expressed in terms of the displacement field. The bound-
ary conditions (7.2.13) can be expressed in terms of the displacement field as

[njμ (ui,j + uj,i) + niλuk,k] = t̂i on Γσ, ui = ûi on Γu. (7.2.18)

Equations (7.2.17) and (7.2.18) together describe the boundary value problem
of linearized elasticity.

7.2.4 The Beltrami–Michell Equations

Alternative to the formulation of Section 7.2.3, the 12 equations from (7.2.5) and
(7.2.9) and 6 equations from (7.2.14) can be combined into 6 equations in terms
of the stress field. Substitution of the constitutive (strain-stress) equations

εij =
1

E
[(1 + ν)σij − νσkkδij ] (7.2.19)

into the compatibility equations (7.2.14) yields

0 = eikrej�s εij,k�

= eikrej�s [(1 + ν)σij,k� − νσmm,k�δij ]

= (1 + ν)eikrej�sσij,k� − νeikrei�sσmm,k�

= (1 + ν)eikrej�sσij,k� − ν (δk�δrs − δksδ�r)σmm,k�

= (1 + ν)eikrej�sσij,k� − ν (δrsσmm,kk − σmm,rs) . (7.2.20)

In view of the identity

eikrej�s =

∣∣∣∣∣∣
δij δi� δis
δkj δk� δks
δrj δr� δrs

∣∣∣∣∣∣ = δijδk�δrs − δijδksδr� − δkjδi�δrs + δkjδr�δis

+ δrjδi�δks − δrjδk�δis, (7.2.21)

Eq. (7.2.20) simplifies to

δrsσii,jj − σii,rs − (1 + ν) (δrsσij,ij + σrs,ii − σis,ir − σir,is) = 0. (7.2.22)
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Contracting the indices r and s (s → r) gives

2σii,jj − (1 + ν) (σij,ij + σjj,ii) = 0.

Simplifying the above result, we obtain

σii,jj =
(1 + ν)

(1− ν)
σij,ij . (7.2.23)

Substituting this result back into Eq. (7.2.22) leads to

σij,kk +
1

1 + ν
σkk,ij =

ν

1− ν
σrs,rsδij + σkj,ki + σki,kj . (7.2.24)

Next, we use the equilibrium equations to compute the second derivative of
the stress components, σrs,rk = −ρ0 fs,k. We have

σij,kk +
1

1 + ν
σkk,ij = − νρ0

1− ν
fk,kδij − ρ0 (fj,i + fi,j) , (7.2.25)

or in vector form

∇2σ +
1

1 + ν
∇[∇ (trσ)] = − νρ0

1− ν
(∇ · f) I− ρ0

[∇f + (∇f)T
]
. (7.2.26)

The 6 equations in (7.2.25) or (7.2.26), called Michell’s equations, provide the
necessary and sufficient conditions for an equilibrated stress field to be compat-
ible with the displacement field in the body. The traction boundary conditions
in Eq. (7.2.13) are valid for this formulation.

When the body force is uniform, we have ∇·f = 0 and ∇f = 0, and Michell’s
equations (7.2.26) reduce to Beltrami’s equations

∇2σ +
1

1 + ν
∇[∇ (trσ)] = 0, σij,kk +

1

1 + ν
σkk,ij = 0. (7.2.27)

7.3 Solution Methods

7.3.1 Types of Problems

The equilibrium problems, also called boundary value problems, of elasticity can
be classified into three types on the basis of the nature of specified boundary
conditions. They are outlined next.

Type I. Boundary value problems in which all specified boundary conditions
are of the displacement type

u = û on Γ, (7.3.1)

are called boundary value problems of type I or displacement boundary value
problems.

Type II. Boundary value problems in which all specified boundary conditions
are of the traction type,

t = t̂ on Γ, (7.3.2)
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are called boundary value problems of type II or stress boundary value problems.
Such boundary value problems are rare because most practical problems involve
specifying displacements that eliminate rigid-body motion.

Type III. Boundary value problems in which all specified boundary conditions
are of the mixed type,

u = û on Γu and t = t̂ on Γσ, (7.3.3)

are called boundary value problems of type III ormixed boundary value problems.
Most practical problems, including contact problems, fall into this category.

7.3.2 Types of Solution Methods

An exact solution of a problem is one that satisfies the governing differential
equation(s) at every point of the domain as well as the boundary conditions
exactly. In general, finding exact solutions of elasticity problems is not simple
owing to complicated geometries and boundary conditions. An approximate so-
lution is one that satisfies governing differential equations as well as the boundary
conditions approximately. Numerical solutions are approximate solutions that
are developed using a numerical method, such as the finite difference method,
the finite element method, the boundary element method, and other methods.
Often one seeks approximate solutions of practical problems using numerical
methods. The phrase analytical solution is used to indicate that the solution, ex-
act or approximate, is obtained using analytical means rather than by numerical
methods. Also, one may obtain exact solution to an idealized (or approximate)
mathematical model of the actual problem. Most of the exact solutions found
in textbooks fall into this category.

There are several types of solution methods for finding analytical solutions
[see Slaughter (2002)]. The most common methods are described here.

1. The inverse method is one in which one finds the solution for displacement,
strain, and stress fields by solving the governing equations of elasticity,
and then tries to find a problem with geometry and boundary conditions
to which the fields correspond. This approach is more common with math-
ematicians than with engineers.

2. The semi-inverse method is one in which the solution form in terms of
unknown functions is arrived at with the help of a qualitative understand-
ing of the problem characteristics. The unknown functions are determined
to satisfy the governing equations. In identifying a solution form, often
assumptions are made about the displacement or stress field (in addition
to the constitutive behavior) to reduce a three-dimensional problem to a
two-dimensional or even one-dimensional problem. Very few problems of
elasticity have exact solutions, and the assumed fields in most cases are ap-
proximate. The semi-inverse method is the most commonly used approach
in solid mechanics.
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3. The method of potentials is one in which potential functions (with un-
knowns) are introduced to trivially satisfy some or all of the governing
equations, and the functions are then determined using the remaining
governing equations as well as boundary conditions of the problem. The
potential functions are then used to determine stresses, strains, and dis-
placements.

4. Variational methods are those that make use of extremum (i.e., minimum
or maximum) and stationary principles, which are equivalent to the gov-
erning equations and some of the boundary conditions of the problem.
The principles are cast in terms of strain energy, work done by loads, and
kinetic energy of the system. The variational methods have the added
advantage of being approximate methods. Variational methods form the
basis of certain numerical methods such as the finite element method.

Other analytical methods include complex variable methods, integral trans-
form methods, perturbation methods, method of multiple scales, and so on. In
the remainder of this chapter, we consider mostly the semi-inverse method and
the method of potentials to formulate and solve certain problems of linearized
elasticity.

7.3.3 Examples of the Semi-inverse Method

In the first problem (spherical pressure vessel) considered in this section, the
displacement field is assumed in terms of an unknown function, and then the
equations of elasticity or their equivalents are used to determine differential
equations governing the unknown function. In the second problem (deformation
of a prismatic bar under its own weight), the state of stress is assumed in terms
of an unknown function and the equations of elasticity are used to determine the
unknown function, strains, and displacements. In the first problem, even though
the semi-inverse method is used, the assumed form of the solution happens to be
exact. This is not the case in most problems of elasticity. These two examples
illustrate the general methodology of solving elasticity problems by the semi-
inverse method. The key element of the approach is to gain sufficient qualitative
understanding of solution (displacements and stresses) before identifying the
solution form.

Example 7.3.1

Consider an isotropic, hollow spherical pressure vessel of internal radius a and outside radius
b. The vessel is pressurized at r = a as well as at r = b with pressures pa and pb, respectively,
as shown in Fig. 7.3.1(a). Determine the displacements, strains, and stresses in the pressure
vessel.

Solution: We use the spherical coordinate system to formulate the problem. Based on the
spherical symmetry of the geometry, boundary conditions, and material properties, we note
that the solution also exhibits spherical symmetry, that is, the solution does not depend on φ
and θ coordinates [see Fig. 7.3.1(b)]. In fact, the only nonzero displacement is uR, and it is
only a function of the radial distance R. Thus, this three-dimensional elasticity problem can
be formulated as a two-dimensional one without any approximation.
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Fig. 7.3.1: A spherical pressure vessel.

For this problem, only the following stress boundary conditions (BVP type II) are known:

At R = a : n̂ = −êR, t = pa êR or σRR = −pa, σRφ = σRθ = 0,

At R = b : n̂ = êR, t = −pb êR or σRR = −pb, σRφ = σRθ = 0.
(7.3.4)

Based on our qualitative understanding of the solution to the problem, we begin with the
assumed displacement field

uR = U(R), uφ = uθ = 0, (7.3.5)

where U(R) is an unknown function to be determined such that the equations of elasticity and
boundary conditions of the problem are satisfied. If we cannot find U(R) that satisfies the
governing equations, then we must abandon the assumption in Eq. (7.3.5).

The only nonzero strains associated with the displacement field (7.3.5) are [see Eq. (7.2.4)]

εRR =
dU

dR
, εφφ = εθθ =

1

R
U(R). (7.3.6)

The nonzero stresses are

σRR = 2μεRR + λ (εRR + εφφ + εθθ) = (2μ+ λ)
dU

dR
+ 2λ

U

R
,

σφφ = 2μεφφ + λ (εRR + εφφ + εθθ) = 2(μ+ λ)
U

R
+ λ

dU

dR
,

σθθ = σφφ.

(7.3.7)

The last two equations of equilibrium, Eq. (7.2.8) without the body force and acceleration
terms, are trivially satisfied, and the first equation reduces to

dσRR

dR
+

1

R
(2σRR − σφφ − σθθ) = 0, (7.3.8)

which can be expressed in terms of the displacement function U(R) using Eq. (7.3.7)

(2μ+ λ)
d2U

dR2
+

2λ

R

dU

dR
− 2λ

U

R2

+
1

R

[
2(2μ+ λ)

dU

dR
+ 4λ

U

R
− 2λ

dU

dR
− 4(μ+ λ)

U

R

]
= 0. (7.3.9)

Simplifying the expression, we obtain

R2 d
2U

dR2
+ 2R

dU

dR
− 2U = 0. (7.3.10)
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The linear differential equation (7.3.10) can be transformed to one with constant coeffi-
cients by a change of independent variable, R = eξ (or ξ = lnR). Using the chain rule of
differentiation, we obtain

dU

dR
=

dU

dξ

dξ

dR
=

1

R

dU

dξ
,

d2U

dR2
=

d

dR

(
1

R

dU

dξ

)
=

1

R2

(
−dU

dξ
+

d2U

dξ2

)
.

Substituting the above expressions into (7.3.10), we obtain

d2U

dξ2
+

dU

dξ
− 2U = 0. (7.3.11)

Seeking solution in the form U(ξ) = emξ and substituting it into Eq. (7.3.11), we obtain
(m− 1)(m+ 2) = 0. Hence, the general solution to the problem is

U(ξ) = c1e
ξ + c2e

−2ξ. (7.3.12)

Changing back to the original independent variable R, the radial displacement is

uR(R) = U(R) = c1R+
c2
R2

, (7.3.13)

where the constants c1 and c2 are to be determined using the boundary conditions in Eq.
(7.3.4). Hence, we must compute σRR,

σRR = (2μ+ λ)

(
c1 − c2

2

R3

)
+ 2λ

(
c1 + c2

1

R3

)

= (2μ+ 3λ)c1 − 4μc2
1

R3
. (1)

Applying the stress boundary conditions in (7.3.5) and (7.3.6), we obtain

(2μ+ 3λ)c1 − 4μc2
a3

= −pa,

(2μ+ 3λ)c1 − 4μc2
b3

= −pb.

(2)

Solving for the constants c1 and c2, we obtain

c1 =
1

(2μ+ 3λ)

(
paa

3 − pbb
3

b3 − a3

)
, c2 =

a3b3

4μ

(
pa − pb
b3 − a3

)
. (3)

Finally, the displacement uR and stresses σRR, σφφ, and σθθ in the sphere are given by

uR(R) =
R

(2μ+ 3λ)

(
paa

3 − pbb
3

b3 − a3

)
+

a3b3

4μR2

(
pa − pb
b3 − a3

)
, (7.3.14)

σRR =

(
paa

3 − pbb
3

b3 − a3

)
− a3b3

R3

(
pa − pb
b3 − a3

)
,

σφφ = σθθ =

(
paa

3 − pbb
3

b3 − a3

)
+

a3b3

2R3

(
pa − pb
b3 − a3

)
.

(7.3.15)

Since the off-diagonal elements of the stress tensor are zero, that is, σRφ = σRθ = σφθ = 0,
σRR, σφφ, and σθθ are the principal stresses, with êR, êφ, and êθ being the principal directions,
respectively.
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Example 7.3.2

Consider a prismatic bar with dimensions 2a × 2b × L and mass density ρ in a gravitational
field g = −g ê3. The top surface of the bar is attached to a rigid support in such a way that
u = v = w = 0 at x = y = 0, z = L, as shown in Fig. 7.3.2. Use the semi-inverse method to
determine the displacements i the body.

•

2a
2b

L

x

y

z

ˆz zf gρ e

Fig. 7.3.2: Deformation of a prismatic bar under its own weight.

Solution: First we summarize the boundary conditions. We have

u(0, 0, L) = 0, t(x, y, 0) = 0, t(x,±b, z) = 0, t(±a, y, z) = 0. (7.3.16)

Thus, we find that
σxx = σyy = σxy = σxz = σyz = 0,

on the boundary, except at the point x = y = 0 and z = L. Since there are no other geometric
constraints (that is, the body is free to change its geometry), it does not develop the stresses
σxx, σyy, σxy, σxz, and σyz. Thus, we use the semi-inverse method, where we assume that

σzz = S(z), σxx = σyy = σxy = σxz = σyz = 0. (7.3.17)

The boundary conditions require that S(0) = 0. The first two equations of equilibrium are
satisfied trivially and the third equation reduces to

dS

dz
= ρg → S(z) = γ z + c (γ = ρg). (1)

The constant of integration, c, is zero in order to satisfy the boundary condition S(0) = 0.
Thus, the stress field is

σzz = γ z, σxx = σyy = σxy = σxz = σyz = 0. (2)

The stress compatibility conditions in Eq. (7.2.26) are trivially satisfied.
The strains are given by

εxx = εyy = − ν

E
γ z, εzz =

1

E
γ z, εxy = εxz = εyz = 0. (3)

The corresponding displacement field is determined from the strain-displacement boundary
conditions:

εzz =
1

E
γ z, → uz =

1

2E
γ z2 + h(x, y),

2εxz =
∂ux

∂z
+

∂uz

∂x
= 0, → ∂ux

∂z
= −∂h

∂x
,

(4)
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where h is a function to be determined. Integrating Eq. (4), we obtain

ux = −∂h

∂x
z + g(x, y), (5)

where g is a function to be determined. Similarly,

2εyz =
∂uy

∂z
+

∂uz

∂y
= 0,

∂uy

∂z
= −∂h

∂y
, uy = −∂h

∂y
z + f(x, y), (6)

where f is a function to be determined. Now comparing εxx from Eq. (3) with that computed
from Eq. (5), we obtain

− ν

E
γ z = −∂2h

∂x2
z +

∂g

∂x
.

We see that, because it must hold for any z,

∂2h

∂x2
=

ν

E
γ,

∂g

∂x
= 0 → g = G(y). (7)

Similarly, comparing εyy from Eq. (3) with that computed from Eq. (6), we obtain

− ν

E
γ z = −∂2h

∂y2
z +

∂f

∂y
,

we see that, since it must hold for any z,

∂2h

∂y2
=

ν

E
γ,

∂f

∂y
= 0 → f = F (x). (8)

From εxy = 0, we see that

−2
∂2h

∂x∂y
z +

∂g

∂y
+

∂f

∂x
= 0. (9)

This gives the result

∂2h

∂x∂y
= 0,

dG

dy
+

dF

dx
= 0 → G(y) = c1y + c2, F (x) = −c1x+ c3. (10)

Conditions in Eqs. (6)–(8) imply that h is of the form

h(x, y) =
ν

2E
γ(x2 + y2) + c4x+ c5y + c6, (7.3.18)

where ci are constants. In summary, we have

ux = −∂h

∂x
z + g(x, y) = − ν

E
γxz − c4z + c1y + c2,

uy = −∂h

∂y
z + f(x, y) = − ν

E
γyz − c5z − c1x+ c3,

uz =
γ

2E

[
z2 + ν(x2 + y2)

]
+ c4x+ c5y + c6.

(7.3.19)

The displacement boundary conditions in Eq. (7.3.16) give c2 = c3 = 0, and c6 =
−γL2/2E, which correspond to the translational rigid-body motions. To remove the six rigid-
body rotations, we may require

∂ux

∂y
=

∂uy

∂x
=

∂uy

∂z
=

∂uz

∂y
=

∂uy

∂z
=

∂ux

∂z
=

∂uz

∂x
= 0 at x = y = 0, and z = L,

which yield all other constants to be zero, giving the final displacement field

ux = −∂h

∂x
z + g(x, y) = − ν

E
γxz,

uy = −∂h

∂y
z + f(x, y) = − ν

E
γyz,

uz =
γ

2E

[
z2 + ν(x2 + y2)

]
.

(7.3.20)
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7.3.4 Stretching and Bending of Beams

In this section, we use the semi-inverse method to formulate equations govern-
ing stretching and bending of prismatic members. Using a set of assumptions
concerning the kinematics of deformation of the members, the form of the dis-
placement field is identified. We consider the prismatic bar shown in Fig. 7.3.3.
The bar has a length L and has rectangular cross section of dimensions b × h,
b being the width and h being the height, such that b < h << L. We set up a
coordinate system such that the x-axis is along the length of the beam through
its geometric centroid, y-axis is transverse to the length of the beam, and the
z-axis is out of the plane of the page, as shown in Fig. 7.3.3. A distributed
load q(x) (measured per unit length) acts along the length of the beam in the
xy-plane in the positive y-direction, a distributed load f(x) (measured per unit
length) acts along the center line of the beam in the x-direction, and a point
load F0 acts at a distance x = a from the left end. The bar is geometrically
constrained at the right end in such a way that all three displacements are zero
there. Thus, the boundary conditions are

u(L, y, z) = 0, σzz = σxz = σyz = 0 on faces z = ±b/2 for all x, y,

σyy(x, h/2, 0) = q(x), σyy(x,−h/2, 0) = 0, σxy(x,±h/2, 0) = 0, (7.3.21)

σyz(x,±h/2, z) = 0, σxx(0, y, z) = 0, σxy(0, y, z) = 0, σxz(0, y, z) = 0.

a

0F

z

y

x

( )q x

( )f x
L

h
b

Fig. 7.3.3: A prismatic bar under various loads.

Solving the problem for exact displacements, strains, and stresses that sat-
isfy the boundary conditions in Eq. (7.3.21) and the equilibrium equations of
elasticity is an impossible task. We can formulate it as an equivalent prob-
lem of finding the solution that satisfies statically equivalent1 stress boundary
conditions and through-thickness-integrated equations of elasticity. Such for-
mulation reduces the three-dimensional elasticity problem to a one-dimensional
elasticity problem, known as the beam bending problem. Once again, we use the
semi-inverse method, and assume a form the displacement field.

We seek a solution (ux, uy, 0) based on the following assumptions: the trans-
verse normal lines, such as AB shown in Fig. 7.3.4(a), (1) remain straight, (2)

1The phrase “statically equivalent” means that the two distributions of forces have the same
resultant force and resultant moment.
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are inextensible, and (3) rotate such that they remain normal to the middle
surface after deformation. These assumptions are known as the Euler–Bernoulli
hypothesis of beam bending. The first two assumptions together amount to ne-
glecting Poisson’s effect and the transverse normal strain (i.e., εyy = 0). The
third assumption is to neglect the transverse shear strain εxy = 0. We assume
that the deformation is only two-dimensional (in the plane of the page). This
requires that the applied loads be in the xy plane so that stretching and bending
are in the xy plane, and there is no rotation about the x axis.

The Euler–Bernoulli hypothesis is satisfied by the following form of the dis-
placement field:

u =
[
u(x)− y

∂uy
∂x

]
êx + uy êy,

ux = u(x)− y
dv

dx
, uy = v(x), uz = 0,

(7.3.22)

where u(x) and v(x) are functions to be determined by requiring that the equi-
librium equations of elasticity are satisfied in an integral sense, as explained
shortly. From the assumed form of the displacement field, we see that the dis-
placement component ux consists of two parts: stretching displacement u(x) of
all lines parallel to the x-axis and the displacement −y(dv/dx) due to bending
action, which is proportional to the distance y measured from the middle plane.
The transverse displacement uy = v(x) is independent of the y-coordinate, a
consequence of the inextensibility assumption.

x

Displacements and rotations 
are exaggerated

u
v

(a)

x

x
dv
dx

xy

y

x

Equilibrium of an element 
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B
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V

( )q x

( )f x

Equilibrium at a point 

xy

N
M MM

V V V

( )q x

x ( )f x

(b) N N N

y

y

Fig. 7.3.4: Bending of a beam. (a) Kinematics of deformation. (b) Equilibrium of an element
of the beam.
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The only nonzero strain and corresponding stress components corresponding
to the assumed displacement field are [ν = 0 in writing the stress–strain relation
σxx = (2μ+ λ)εxx = Eεxx but not in the relation 2μ = 2G = E/(1 + ν)]

εxx =
du

dx
− y

d2v

dx2
, (7.3.23)

σxx = E

(
du

dx
− y

d2v

dx2

)
, (7.3.24)

where E is Young’s modulus of the material.
Since we cannot satisfy the equations of equilibrium, Eq. (7.2.6), without the

inertia terms, at every point of the beam, we derive equations of equilibrium by
considering a typical element of the beam, as shown in Fig. 7.3.4(b). Summing
the forces and moments on the element, we obtain

sum of the forces in the x-direction:
dN

dx
+ f(x) = 0, (7.3.25)

sum of the forces in the z-direction:
dV

dx
+ q(x) = 0, (7.3.26)

sum of the moments about the y-axis: V − dM

dx
= 0, (7.3.27)

where N(x) is the axial force, M(x) is the bending moment, and V (x) is the
shear force. These quantities are known as the stress resultants, and they can
be defined in terms of the stresses σxx and σxy as

N(x) =

∫
A
σxx dA, M(x) =

∫
A
y σxx dA, V (x) =

∫
A
σxy dA, (7.3.28)

where A = bh is the cross-sectional area. One can show that the equilibrium
equations (7.3.25)–(7.3.27) are equivalent to the following two stress equilibrium
equations (σxz = σzz = σyz = 0; hence, the third equation of equilibrium is
trivially satisfied):

∂σxx
∂x

+
∂σxy
∂y

= 0,
∂σxy
∂x

+
∂σyy
∂y

= 0.

This is left as an exercise for the reader (see Problem 7.13).
From the constitutive relation σxy = 2Gεxy, we have σxy = 0 and, therefore,

V = 0 from Eq. (7.3.28). Although the transverse shear force V is zero from the
kinematic assumptions made here, in reality it cannot be zero as it is responsible
for supporting the applied vertical loads on the beam, as can be seen from Eq.
(7.3.27). This is the flaw in the Euler–Bernoulli beam theory, which can be
overcome by ignoring the definition of V in Eq. (7.3.28) and calculating it using
Eq. (7.3.27). That is, substitute for V from Eq. (7.3.27) into Eq. (7.3.26) and
obtain only two equations of equilibrium:

−dN

dx
= f(x), −d2M

dx2
= q(x). (7.3.29)
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The stress resultants (N,M) can be related back to the unknown functions
(u, v) as [because the x-axis is taken through the geometric centroid of the cross
section, we have

∫
A ydA = 0]:

N(x) =

∫
A
σxx dA = EA

du

dx
, M(x) =

∫
A
y σxx dA = −EI

d2v

dx2
, (7.3.30)

where I is the moment of inertia about the axis of bending (i.e., z-axis). From
Eqs. (7.3.24) and (7.3.30), we can express σxx in terms of the stress resultants
N and M as

σxx = Eεxx =
N(x)

A
+

M(x)y

I
. (7.3.31)

Finally, we have two equations of equilibrium governing u and v

− d

dx

(
EA

du

dx

)
= f(x),

d2

dx2

(
EI

d2v

dx2

)
= q(x). (7.3.32)

Note that the two equations are not coupled, that is, each equation can be solved
independent of the other. Indeed, when no axial loads are applied on the beam,
we have u = 0 everywhere in the beam. Conversely, when no bending loads are
applied on the beam, we have v = 0 everywhere. The former case is known as
the beam bending problem and the latter as the bar problem. The two equations
in (7.3.32) are subjected to boundary conditions of the type

u = û, N = N̂ ; v = v̂, −dv

dx
= θ̂, M = M̂, V = V̂ , (7.3.33)

Only one element of each of the following three pairs should be specified at a
boundary point:

(u,N), (v, V ), (θ,M). (7.3.34)

This completes the formulation of the Euler–Bernoulli beam theory. Next, we
consider an example.

Example 7.3.3

Consider the cable-supported beam shown in Fig. 7.3.5(a). The beam as well as the cable are
made of homogeneous, linear elastic, isotropic materials, with constant geometric properties.
Determine the displacements (u, v) and the force Fc in the cable.

Solution: Figure 7.3.5(b) contains the effect of the cable force on the beam. We begin with the
first equation in (7.3.32) and integrate it twice with respect to x and obtain

EbAb
du

dx
= c1, EbAbu(x) = c1x+ c2, (1)

where the constants of integration, c1 and c2, are determined using the boundary conditions

u(Lb) = 0,

[
EbAb

du

dx

]
x=0

= −Fc cosα. (2)

We obtain c1 = −Fc cosα and c2 = FcLb cosα, and the solution becomes

u(x) =
FcLb

EbAb

(
1− x

Lb

)
cosα. (3)
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Fig. 7.3.5: A cable-supported beam.

Next, we consider the second equation in (7.3.32) and integrate it four times with respect
to x and obtain

d

dx

(
EbIb

d2v

dx2

)
= −qx+ c3,

EbIb
d2v

dx2
= −q

x2

2
+ c3x+ c4,

EbIb
dv

dx
= −q

x3

6
+ c3

x2

2
+ c4x+ c5,

EbIb v(x) = −q
x4

24
+ c3

x3

6
+ c4

x2

2
+ c5x+ c6,

(4)

where the constants of integration, c3, c4, c5, and c6 are obtained with the help of the boundary
conditions

V (0) = −Fc sinα, M(0) = 0,

[
dv

dx

]
x=Lb

= 0, v(Lb) = 0. (5)

We obtain

c3 = Fc sinα, c4 = 0, c5 =
qL3

b

6
− FcL

2
b

2
sinα , c6 = −qL4

b

8
+

FcL
3
b

3
sinα.

The solution is given by

v(x) = − qL4
b

24EbIb

[
3− 4

x

Lb
+

(
x

Lb

)4
]
+

FcL
3
b

6EbIb

[
2− 3

x

Lb
+

(
x

Lb

)3
]
sinα. (6)

The displacements at x = 0 are

u(0) =
FcLb

EbAb
cosα, v(0) = − qL4

b

8EbIb
+

FcL
3
b

3EbIb
sinα. (7)

To determine the cable force, Fc, first we note that

uc = u(0) cosα+ v(0) sinα, (8)

and calculate Fc from (uc is in the opposite direction to Fc)

Fc = −EcAc

Lc
uc = −EcAc

Lc

(
FcLb

EbAb
cos2 α+

FcL
3
b

3EbIb
sin2 α− qL4

b

8EbIb
sinα

)
, (9)

or

Fc =
qL4

b

8EbIb
sinα

[
Lc

EcAc
+

Lb

EbAb
cos2 α+

L3
b

3EbIb
sin2 α

]−1

. (10)
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7.3.5 Superposition Principle

An advantage of linear boundary value problems is that the principle of super-
position holds. The principle of superposition is said to hold for a solid body
if the displacements obtained under two sets of boundary conditions and forces
are equal to the sum of the displacements that would be obtained by applying
each set of boundary conditions and forces separately.

To be more specific, consider the following two sets of boundary conditions
and forces

Set 1: u = u(1) on Γu; t = t(1) on Γσ; f = f (1) in Ω, (7.3.35)

Set 2: u = u(2) on Γu; t = t(2) on Γσ; f = f (2) in Ω, (7.3.36)

where the specified data (u(1), t(1), f (1)) and (u(2), t(2), f (2)) are independent of
the deformation. Suppose that the solution to the two problems be u(1)(x) and
u(2)(x), respectively. The superposition of the two sets of boundary conditions
is

u = u(1)+u(2) on Γu; t = t(1)+t(2) on Γσ; f = f (1)+ f (2) in Ω. (7.3.37)

Because of the linearity of the elasticity equations, the solution of the boundary
value problem with the superposed data is u(x) = u(1)(x) + u(2)(x) in Ω. This
is known as the superposition principle.

The principle of superposition can be used to represent a linear problem
with complicated boundary conditions and/or loads as a combination of linear
problems that are equivalent to the original problem. Example 7.3.4 illustrates
this point.

Example 7.3.4

Consider the indeterminate beam shown in Fig. 7.3.6(a). Determine the deflection of point A
using the principle of superposition.

Solution: The problem can be viewed as one equivalent to the two beam problems shown in Fig.
7.3.6(b). The sum of the deflections from each problem is the solution of the original problem.
Within the restrictions of the linear Euler–Bernoulli beam theory, the deflections are linear
functions of the loads. Therefore, the principle of superposition is valid. Thus, the transverse
displacement of the original beam can be determined as the sum of the displacements of the
individual beams shown in Fig. 7.3.6(b):

v(x) =
q0L

4

24EI

[
3− 4

x

L
+
( x
L

)4]
− FsL

3

6EI

[
2− 3

x

L
+
( x
L

)3]
. (1)

In particular, the deflection vA at point A is equal to the sum of vqA and vsA due to the distributed
load q0 and spring force Fs, respectively, at point A:

vA = vqA + vsA =
q0L

4

8EI
− FsL

3

3EI
. (2)

Because the spring force Fs is equal to kvA, we can calculate vA from

vA =
q0L

4

8EI
(
1 + kL3

3EI

) . (3)
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Fig. 7.3.6: Representation of an indeterminate beam as a superposition of two determinate
beams.

7.3.6 Uniqueness of Solutions

Although the existence of solutions is a difficult question to answer, the unique-
ness of solutions is rather easy to prove for linear boundary value problems of
elasticity. Consider the problem of finding the solution to the Navier equations
(7.2.17) of linearized elasticity, for a given body force f and boundary conditions

u = û on Γu, (7.3.38)

t = t̂ on Γσ. (7.3.39)

Now suppose that for this set of loads and boundary conditions, there exist two
distinct solutions, u(1)(x, t) and u(2)(x, t). Associated with the two displacement
fields, we can compute the strains and stress fields (ε(1), σ(1)) and (ε(2), σ(2)).
Then the difference ud(x, t) ≡ u(1)(x, t) − u(2)(x, t) satisfies the homogeneous
form of the Navier equation (with fd = f (1)−f (2) = 0, because the applied forces
and boundary values are the same for both solutions)

μ∇2ud + (μ+ λ)∇ (∇ · ud) = 0 in Ω, (7.3.40)

as well as the homogeneous forms of the boundary conditions

ud = 0 on Γu, (7.3.41)

td = 0 on Γσ. (7.3.42)

Because no work is done on the body by external forces (because fd and td are
zero), the strain energy density U0 stored in the body is zero. Noting that the
strain energy density U0 (measured per unit volume)

U0(ε) =
λ

2
(tr ε)2 + μ tr(ε · ε), U0(εij) = μεijεij +

1
2λ(εkk)

2, (7.3.43)

is a positive-definite function of the strains [see Eqs. (6.3.36) and (6.3.37)],

U0(ε) > 0 whenever ε �= 0, and U0(ε) = 0 only when ε = 0, (7.3.44)
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we conclude that the strain field εd is zero and hence the stress field σd is also
zero:

εd = ε(1) − ε(2) = 0, σd = σ(1) − σ(2) = 0, (7.3.45)

implying that the strain and stress fields associated with the two distinct dis-
placements u(1) and u(2) are the same, that is, they are unique. Also, εd = 0
implies that ∇ud = 0, which corresponds to a rigid-body motion. For type
I and type III problems, the displacement boundary conditions eliminate the
rigid-body motion and, therefore, the displacements are unique for type I and
type III problems. For boundary value problems of type II, the displacements
are determined within the quantities representing rigid-body motions.

7.4 Clapeyron’s, Betti’s, and Maxwell’s Theorems

7.4.1 Clapeyron’s Theorem

The principle of superposition is not valid for energies because they are quadratic
functions of displacements or forces. In other words, when a linear elastic body B
is subjected to more than one external force, the total work done due to external
forces is not equal to the sum of the works that are obtained by applying the
single forces separately. However, there exist theorems that relate the work done
in linear elastic solids by two different forces applied in different orders. We will
consider them in this section.

Recall from Chapter 6 that the strain energy density due to linear elastic
deformation is given by2

U0 =
1
2 ε : C : ε = 1

2 ε : σ

= 1
2 Cijkl εkl εij =

1
2 σij εij . (7.4.1)

The total strain energy stored in the body B occupying the region Ω with surface
Γ is equal to

U =

∫
Ω
U0 dx = 1

2

∫
Ω
σ : ε dx = 1

2

∫
Ω
σij εij dx. (7.4.2)

The total work done by the body force f (measured per unit volume) and surface
traction t (measured per unit area) in moving through their respective displace-
ments u is given by

WE =

∫
Ω
f · u dx+

∮
Γ
t · u ds. (7.4.3)

When u = 0 on a portion Γu of the boundary Γ, the surface integral in Eq.
(7.4.3) becomes ∫

Γσ

t · u ds, where Γσ = Γ− Γu.

2In this chapter U0 is measured per unit volume as opposed to per unit mass.
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Owing to the symmetry of the stress tensor, σij = σji, we can write σijεij =
σij ui,j . Consequently, the strain energy U can be expressed as

U = 1
2

∫
Ω
σij εij dx = 1

4

∫
Ω
σij (ui,j + uj,i) dx = 1

2

∫
Ω
σij ui,j dx

= −1
2

∫
Ω
σij,j ui dx+ 1

2

∮
Γ
njσijui ds

= 1
2

∫
Ω
fi ui dx+ 1

2

∮
Γ
tiui ds =

1
2

∫
Ω
f · u dx+ 1

2

∮
Γ
t · u ds,

where, in arriving at the last line, we have used the stress equilibrium equation
σij,j + fi = 0, Cauchy’s formula ti = σijnj , and the divergence theorem. Thus,
the total strain energy stored in a body undergoing linear elastic deformation is
also equal to the one-half of the work done by applied forces

1
2

∫
Ω
σ : ε dx = 1

2

∫
Ω
f · u dx+ 1

2

∮
Γ
t · u ds. (7.4.4)

The first term on the right-hand side represents the work done by body force
f in moving through the displacement u while the second term represents the
work done by surface force t in moving through the displacements u during the
deformation. Equation (7.4.4) is known as Clapeyron’s theorem. The next three
examples illustrate the usefulness of the theorem.

Example 7.4.1

Consider a linear elastic spring with spring constant k. Let F be the external force applied on
the spring to elongate it and u be the resulting elongation of the spring (see Fig. 7.4.1). Verify
Clapeyron’s theorem.

Solution: The internal force developed in the spring is Fs = ku. The work done by Fs in
moving through an increment of displacement du is Fs du. The total strain energy stored in
the spring is

U =

∫ u

0

Fs du =

∫ u

0

ku du =
1

2
ku2. (7.4.5)

The work done by external force F is equal to F u. But by equilibrium, F = Fs = ku. Hence,

U =
1

2
ku2 =

1

2
F u,

which proves Clapeyron’s theorem.

ksF ku

sF

u

u u
du

Fs

Applied force Spring force

Displacement

sF

Fig. 7.4.1: Strain energy stored in a linear elastic spring.
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Example 7.4.2

Consider a uniform elastic bar of length L, cross-sectional area A, and modulus of elasticity
E. The bar is fixed at x = 0 and subjected to a tensile force of P at x = L, as shown in Fig.
7.4.2. Determine the axial displacement u(L) using Clapeyron’s theorem.

P
ux,

EA

Stress

εd
ε

σ

Strain

Fig. 7.4.2: A bar subjected to an end load.

Solution: If the axial displacement in the bar is equal to u(x), then the work done by external
point force P is equal to W = Pu(L). The strain energy in the bar is given by

U =
1

2

∫
A

∫ L

0

σxxεxx dx dA =
EA

2

∫ L

0

ε2xx dx =
EA

2

∫ L

0

(
du

dx

)2

dx =
1

2

∫ L

0

N2

EA
dx. (7.4.6)

Hence, by Clapeyran’s theorem we have

Pu(L)

2
=

EA

2

∫ L

0

(
du

dx

)2

dx.

To make use of the above equation to determine u(x), let us assume that u(x) = u(L)x/L,
which certainly satisfies the geometric boundary condition, u(0) = 0. Then we have

u(L) =
EA

P

∫ L

0

(
du

dx

)2

dx =
EA

PL
[u(L)]2,

or u(L) = PL/AE and the solution is u(x) = Px/AE, which happens to coincide with the
exact solution to the problem.

Example 7.4.3

Consider a cantilever beam of length L and flexural rigidity EI and bent by a point load F at
the free end (see Fig. 7.4.3). Determine v(0) using Clapeyron’s theorem.

Solution: By Clapeyron’s theorem we have

1

2
Fv(0) =

1

2

∫
A

∫ L

0

σxxεxx dx dA.

But according to the Euler–Bernoulli beam theory, the strain and stress in the beam are given
by

εxx = −y
d2v

dx2
, σxx = Eεxx = −Ey

d2v

dx2
, (7.4.7)

where v is the transverse deflection. Then we have

1

2
Fv(0) =

1

2

∫
A

∫ L

0

Eε2xx dx dA =
1

2

∫
A

∫ L

0

Ey2

(
d2v

dx2

)2

dAdx

=
1

2

∫ L

0

EI

(
d2v

dx2

)2

dx =
1

2

∫ L

0

M2

EI
dx, (7.4.8)
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,F v

x

EI

y

x

V

V MM

Sign convention

Fig. 7.4.3: A beam subjected to an end load.

where M(x) is the bending moment at x

M(x) =

∫
A

yσxx dA = −E

∫
A

y2 d
2v

dx2
dA = −EI

d2v

dx2
. (7.4.9)

Equation (7.4.8) can be used to determine the deflection v(0). The bending moment at any
point x is M(x) = −Fx. Hence, we have

Fv(0) =
1

EI

∫ L

0

F 2x2 dx =
F 2L3

3EI
or v(0) =

FL3

3EI
. (7.4.10)

7.4.2 Betti’s Reciprocity Theorem

Consider the equilibrium state of a linear elastic solid under the action of two
different external forces, F1 and F2, as shown in Fig. 7.4.4. Since the order
of application of the forces is arbitrary for linearized elasticity, we suppose that
force F1 is applied first. Let W1 be the work done by F1. Then, we apply
force F2 at some other point of the body, which does work W2. This work is
the same as that produced by force F2, if it alone were acting on the body.
However, when force F2 is applied, force F1 (which is already acting on the
body) does additional work because its point of application is displaced due to
the deformation caused by force F2. Let us denote this work by W12, which is
the work done by force F1 due to the application of force F2. Thus the total
work done by the application of forces F1 and F2,F1 first and F2 next, is

W = W1 +W2 +W12. (7.4.11)

F1
F2

Ω

Fig. 7.4.4: Configurations of an elastic body due to the application of loads F1 and F2.
—- Undeformed configuration. - - - - Deformed configuration after the application of F1.
. . . . . . Deformed configuration after the application of F2.
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Work W12, which can be positive or negative, is zero if and only if the displace-
ment of the point of application of force F1 produced by force F2 is zero or
perpendicular to the direction of F1. Now suppose that we change the order of
application of the forces, that is, force F2 is applied first and force F1 is applied
next. Then the total work done is equal to

W̄ = W1 +W2 +W21, (7.4.12)

where W21 (note the order of the subscripts) is the work done by force F2 due
to the application of force F1. The work done in both cases should be the same
because, at the end, the body is loaded by the same pair of external forces.
Thus, we have W = W̄ , or

W12 = W21. (7.4.13)

Equation (7.4.13) is a mathematical statement of Betti’s (1823–1892) reci-
procity theorem: If a linear elastic body is subjected to two different sets of
forces, the work done by the first system of forces in moving through the dis-
placements produced by the second system of forces is equal to the work done by
the second system of forces in moving through the displacements produced by the
first system of forces. Applied to a three-dimensional elastic body Ω with closed
surface s, Eq. (7.4.13) takes the form

∫
Ω
f (1) · u(2) dx+

∮
s
t(1) · u(2) ds =

∫
Ω
f (2) · u(1) dx+

∮
s
t(2) · u(1) ds, (7.4.14)

where u(i) are the displacements produced by body forces f (i) and surface forces
t(i). The usefulness of Betti’s (also Maxwell’s) reciprocity theorem is that it
allows us to compute the the displacements or forces at points other than where
the forces are applied; that is, the theorem does not allow us to determine the
displacement of a point where the force is applied.

The proof of Betti’s reciprocity theorem is straightforward. Let W12 denote
the work done by forces (f (1), t(1)) acting through the displacement u(2) produced
by the forces (f (2), t(2)) . Then

W12 =

∫
Ω
f (1) · u(2) dx+

∮
s
t(1) · u(2) ds

=

∫
Ω
f
(1)
i u

(2)
i dx+

∮
s
t
(1)
i u

(2)
i ds

=

∫
Ω
f
(1)
i u

(2)
i dx+

∮
s
njσ

(1)
ji u

(2)
i ds

=

∫
Ω
f
(1)
i u

(2)
i dx+

∫
Ω

(
σ
(1)
ji u

(2)
i

)
,j

dx

=

∫
Ω

(
σ
(1)
ij,j + f

(1)
i

)
u
(2)
i dx+

∫
Ω
σ
(1)
ij u

(2)
i,j dx

=

∫
Ω
σ
(1)
ij u

(2)
i,j dx =

∫
Ω
σ
(1)
ij ε

(2)
ij dx. (7.4.15)
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Using Hooke’s law σ
(1)
ij = Cijk� ε

(1)
k� , we obtain

W12 =

∫
Ω
Cijk� ε

(1)
k� ε

(2)
ij dx. (7.4.16)

Since Cijk� = Ck�ij , it follows that

W12 =

∫
Ω
Cijk� ε

(1)
k� ε

(2)
ij dx =

∫
Ω
Ck�ij ε

(2)
ij ε

(1)
k� dx =

∫
Ω
σ
(2)
k� ε

(1)
k� dx = W21.

(7.4.17)

Thus, we have established the equality in Eq. (7.4.14). From Eq. (7.4.17), we
also have ∫

Ω
σ
(1)
ij ε

(2)
ij dx =

∫
Ω
σ
(2)
ij ε

(1)
ij dx,∫

Ω
σ(1) : ε(2) dx =

∫
Ω
σ(2) : ε(1) dx.

(7.4.18)

Example 7.4.4

(a) Consider a cantilever beam of length L subjected to two different types of loads: a concen-
trated load F at the free end and a uniformly distributed load of intensity q throughout the
span (see Fig. 7.4.5). Verify that the work done by the point load F in moving through the
displacement vq produced by q is equal to the work done by the distributed force q in moving
through the displacement vF produced by the point load F , W12 = W21.

(b) A load P = 4000 lb acting at a point A of a beam produces 0.25 in. at point B and 0.75
in. at point C of the beam. Find the deflection of point A produced by loads 4500 lb and 2000
lb acting at points B and C, respectively.

Solution: (a) The deflection vF (x) due to the concentrated load alone is

vF (x) =
FL3

6EI

[
2− 3

x

L
+
( x
L

)3]
,

and the deflection equation due to the distributed load is

vq(x) =
qL4

24EI

[
3− 4

x

L
+
( x
L

)4]
.

The work done by load F in moving through the displacement due to the application of the
uniformly distributed load q is

W12 = Fvq(0) =
FqL4

8EI
.

F

A
L

q

x

EI = constant

A
Lx

EI = constant

Load system 1 Load system 2

,y v ,y v

Fig. 7.4.5: A cantilever beam subjected to two different types of loads.
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The work done by the uniformly distributed q in moving through the displacement field due
to the application of point load F is

W21 =

∫ L

0

q vF (x) dx =

∫ L

0

q
F

6EI

(
x3 − 3L2x+ 2L3) dx =

FqL4

8EI
,

which is in agreement with W12.

(b) From Betti’s reciprocity theorem and the principle of superposition, we have

FB · vBA + FC · vCA = FA · vAB + FA · vAC = FA · vA

where vA = vAB + vAC, FA = 4, 000 lb, FB = 4, 500 lb, FC = 2, 000 lb . We obtain

vA =
FB · vBA + FC · vCA

FA
=

4500× 0.25 + 2000× 0.75

4000
= 0.65625 in .

7.4.3 Maxwell’s Reciprocity Theorem

An important special case of Betti’s reciprocity theorem is given by Maxwell’s
(1831–1879) reciprocity theorem. Maxwell’s theorem was given in 1864, whereas
Betti’s theorem was given in 1872. Therefore, it may be considered that Betti
generalized the work of Maxwell.

Consider a linear elastic solid subjected to force F1 of unit magnitude acting
at point 1, and force F2 of unit magnitude acting at a different point 2 of the
body. Let u12 be the displacement of point 1 in the direction of force F1 produced
by unit force F2, and u21 be the displacement of point 2 in the direction of force
F2 produced by unit force F1 (see Fig. 7.4.6). From Betti’s theorem it follows
that

F1 · u12 = F2 · u21 or (7.4.19)

u12 = u21. (7.4.20)

Equation (7.4.19) is a statement of Maxwell’s theorem. If ê1 and ê2 denote
the unit vectors along forces F1 and F2, respectively, Maxwell’s theorem states
that the displacement of point 1 in the ê1 direction produced by unit force acting
at point 2 in the ê2 direction is equal to the displacement of point 2 in the ê2
direction produced by unit force acting at point 1 in the ê1 direction. We close
this section with several examples of the use of Maxwell’s theorem.

F1

°

• °

F2

•

(a) (b)

°•°• 11

2 2

12u

21u

Fig. 7.4.6: Configurations of the body discussed in Maxwell’s theorem.
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Example 7.4.5

Consider a cantilever beam (E = 24 × 106 psi, I = 120 in.4) of length 12 ft. subjected to a
point load 4000 lb at the free end, as shown in Fig. 7.4.7(a). Use Maxwell’s theorem to find
the deflection at a point 3 ft. from the free end.

Solution: By Maxwell’s theorem, the displacement vBC at point B (x = 3 ft.) produced by the
4000-lb load at point C (x = 0) is equal to the deflection vCB at point C produced by applying
the 4000-lb load at point B. Let vB and θB denote the deflection and slope, respectively, at
point B owing to load F = 4000 lb applied at point B, as shown in Fig. 7.4.7(b). The deflection
at point B (x = b = 3 ft.) caused by load F = 4000 lb at point C (x = 0) is (vB = Fa3/3EI
and θB = Fa2/2EI)

vBC = vCB = vB + (3× 12)θB

=
4000(9× 12)3

3EI
+

(3× 12)4000(9× 12)2

2EI

=
243× 6000× (12)3

24× 106 × 120
= 0.8748 in.

C

F = 4000 lb

A B

C

4000 lb

A B C

4000 lb

A B

θB

(a)

(b)

x

C

9ft.a
3ft.b

9ft.a9ft.a

BCv
Cv

Bv CBv

3ft. 3ft.

Fig. 7.4.7: The cantilever beam of Example 7.4.5.

Example 7.4.6

Consider a circular plate of radius a with an axisymmetric boundary condition, and subjected
to an asymmetric loading of the type (see Fig. 7.4.8)

q(r, θ) = q0 + q1
r

a
cos θ, (7.4.20)

where q0 represents the uniform part of the load for which the solution can be determined for
various axisymmetric boundary conditions [see Reddy (2007)]. In particular, the deflection of
a clamped circular plate under a point load F0 at the center is given by

v(r) =
F0a

2

16πD

[
1− r2

a2
+ 2

r2

a2
ln
( r
a

)]
. (7.4.21)

Use the Betti/Maxwell reciprocity theorem to determine the center deflection of a clamped
plate under an asymmetric distributed load.
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r

q0

y, v(r)
q1

q1q0

r

h

clamped edge

O
θ

q0q(r,θ ) = + q1
r
a cosθ

q0 + q1

q0 − q1 ra

y, v(r)

a a

Fig. 7.4.8: A circular plate subjected to an asymmetric loading.

Solution: By Maxwell’s theorem, the work done by a point load F0 at the center of the plate
due to the deflection (at the center) vc caused by the distributed load q(r, θ) is equal to the
work done by the distributed load q(r, θ) in moving through the displacement v0(r) caused
by the point load F0 at the center (it is not necessary to make F0 = 1 because it will cancel
out from both sides). The center deflection of a clamped circular plate under asymmetric load
given in Eq. (7.4.20) is vc = v(0):

F0 vc =
F0a

2

16πD

∫ 2π

0

∫ a

0

(
q0 +

q1
a
r cos θ

)[
1− r2

a2

(
1− 2 ln

r

a

)]
r dr dθ

vc =
q0a

2

16πD

∫ a

0

(
r − r3

a2
− 2

a2
r3 ln

r

a

)
dr =

q0a
4

64D
, (7.4.22)

where the following integral identity is used in arriving at the result:

∫
rn ln(αr) dr =

rn+1

n+ 1
ln(αr)− rn+1

(n+ 1)2
, α = constant. (7.4.23)

7.5 Solution of Two-Dimensional Problems

7.5.1 Introduction

In a class of problems in elasticity, due to geometry, material properties, bound-
ary conditions and external applied loads, the solutions (that is, displacements
and stresses) are not dependent on one of the coordinates. Such problems are
called plane elasticity problems. The plane elasticity problems considered here
are grouped into plane strain and plane stress problems. Both classes of prob-
lems are described by a set of two coupled partial differential equations expressed
in terms of two dependent variables that represent the two components of the
displacement vector. The governing equations of plane strain problems differ
from those of the plane stress problems only in the coefficients of the differential
equations, as shown shortly. The discussion here is limited to isotropic materials.



294 LINEARIZED ELASTICITY

7.5.2 Plane Strain Problems

Plane strain problems are characterized by the displacement field

u = ux êx + uy êy [ux = ux(x, y), uy = uy(x, y), uz = 0] , (7.5.1)

where (ux, uy, uz) denote the components of the displacement vector u in the
(x, y, z) coordinate system. An example of a plane strain problem is provided
by the long cylindrical member (not necessarily of circular cross section) under
external loads that are independent of the z-coordinate, as shown in Fig. 7.5.1.
For cross sections sufficiently far from the ends, the displacement uz is zero and
ux and uy are independent of z, that is, a state of plane strain exists.

y

z
x x

y

°°°

1F

1t

Ω

2t

2F

A typical cross section
with unit thickness
into the plane 
of the page

°°°

Load and boundary 
conditions do not 
change with z

Fig. 7.5.1: An example of a plane strain problem.

The displacement field (7.5.1) results in the following strain field:

εxx =
∂ux
∂x

, 2εxy =
∂ux
∂y

+
∂uy
∂x

, εyy =
∂uy
∂y

,

εxz = εyz = εzz = 0,

. (7.5.2)

The stress components are calculated using the stress–strain relations [see Eq.
(7.2.9); also note λ/(μ+ λ) = 2ν]

σxx = (2μ+ λ)εxx + λ εyy, σyy = (2μ+ λ)εyy + λ εxx, σxy = 2μ εxy,

σzz = λ (εxx + εyy) = ν (σxx + σyy) , σxz = 0, σyz = 0. (7.5.3)

Writing in terms of E and ν directly from Eq. (7.2.10), we have⎧⎨
⎩

σxx
σyy
σxy

⎫⎬
⎭ =

E

(1 + ν)(1− 2ν)

⎡
⎣ 1− ν ν 0

ν 1− ν 0

0 0 (1−2ν)
2

⎤
⎦
⎧⎨
⎩

εxx
εyy
2εxy

⎫⎬
⎭ . (7.5.4)

The equations of equilibrium of three-dimensional linear elasticity, with the
body force components

fx = fx(x, y), fy = fy(x, y), fz = 0, (7.5.5)
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reduce to the following two equations:

∂σxx
∂x

+
∂σxy
∂y

+ fx = 0, (7.5.6)

∂σxy
∂x

+
∂σyy
∂y

+ fy = 0. (7.5.7)

The boundary conditions are either the stress type

tx ≡ σxxnx + σxyny = t̂x
ty ≡ σxynx + σyyny = t̂y

}
on Γσ, (7.5.8)

or the displacement type

ux = ûx, uy = ûy on Γu. (7.5.9)

Here (nx, ny) denote the components (or direction cosines) of the unit normal
vector on the boundary Γ, Γσ and Γu are disjoint (i.e., nonoverlapping) portions
of the boundary Γ such that their sum is equal to the total boundary

Γ = Γσ + Γu, Γσ ∩ Γu = empty, (7.5.10)

t̂x and t̂y are the components of the specified traction vector, and ûx and ûy are
the components of the specified displacement vector. Only one element of each
pair, (ux, tx) and (uy, ty), should be specified at a boundary point.

The preceding discussion can be extended to plane strain problems in cylin-
drical coordinates. We now consider an example of a plane strain problem.

Example 7.5.1

Consider an isotropic, hollow circular cylinder of internal radius a and outside radius b. The
cylinder is held between rigid supports such that uz = 0 at z = ±L/2, pressurized at r = a as
well as at r = b, and is rotating with a uniform speed of ω about its axis (i.e., the z-axis), as
shown in Fig. 7.5.2. Determine the displacements, strains, and stresses in the cylinder.

ap
bp

a b

r

z r

2L / 2L /

ap

bp

rr

b

a

r

Fig. 7.5.2: Rotating cylindrical pressure vessel.
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Solution: Because of the geometry and boundary conditions (material is isotropic), the cylin-
drical coordinate system (r, θ, z) is most convenient to formulate the problem. The rotation of
the cylinder about its own axis generates a radial (centrifugal) force of magnitude ρ0 ω

2r at a
distance r. Thus, the body force vector is f = ρ0 ω

2r êr. Also, we find that the problem has
symmetry about z = 0, and the plane z = 0 has exactly the same boundary conditions as the
plane z = L/2. Therefore, we find that the problem has symmetry about z = L/4. This way,
it is clear that we can consider any section of unit length of the cylinder to determine the dis-
placements, strains, and stresses. In other words, it is a plane strain problem, and the solution
is independent of θ (due to the axisymmetric geometry, forces, and material properties) and z.
In fact, the only nonzero displacement is ur, and it is only a function of the radial coordinate
r. The problem has only stress boundary conditions (BVP type II),

At r = a : n̂ = −êr, t = pa êr or σrr = −pa, σrθ = 0, (7.5.11)

At r = b : n̂ = êr, t = −pb êr or σrr = −pb, σrθ = 0. (7.5.12)

We begin with the assumed displacement field

ur = U(r), uθ = uz = 0, (7.5.13)

where U(r) is an unknown function to be determined such that the equations of elasticity and
boundary conditions of the problem are satisfied. The strains are [see Eq. (7.2.3)]

εrr =
dU

dr
, εθθ =

U

r
, εzz = εrθ = εrz = εθz = 0. (7.5.14)

The stresses are determined using the stress–strain relations in Eq. (7.2.9)

σrr = 2μεrr + λ (εrr + εθθ) = (2μ+ λ)
dU

dr
+ λ

U

r
,

σθθ = 2μεθθ + λ (εrr + εθθ) = (2μ+ λ)
U

r
+ λ

dU

dr
,

σzz = λ (εrr + εθθ) = λ

(
dU

dr
+

U

r

)
.

(7.5.15)

All other stresses, σrθ, σrz, and σθz, are zero.
The last two equations of equilibrium, Eq. (7.2.7) without the acceleration terms, are

trivially satisfied, and the first equation reduces to

dσrr

dr
+

1

r
(σrr − σθθ) + ρ0ω

2r = 0,

which can be expressed in terms of U(r) using Eq. (7.5.15)

(2μ+ λ)
d2U

dr2
+ λ

d

dr

(
U

r

)
+

2μ

r

(
dU

dr
− U

r

)
+ ρ0ω

2r = 0. (7.5.16)

Simplifying the expression, we obtain

r2
d2U

dr2
+ r

dU

dr
− U = −αr3, α =

ρ0ω
2

2μ+ λ
. (7.5.17)

The linear differential equation (7.5.17) can be transformed to one with constant coefficients
by a change of independent variable, r = eξ (or ξ = ln r). Using the chain rule of differentiation,
we obtain

dU

dr
=

dU

dξ

dξ

dr
=

1

r

dU

dξ
,

d2U

dr2
=

d

dr

(
1

r

dU

dξ

)
=

1

r2

(
−dU

dξ
+

d2U

dξ2

)
. (7.5.18)

Substituting these expressions into Eq. (7.5.17), we obtain

d2U

dξ2
− U = −αe3ξ. (7.5.19)
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Seeking a solution in the form, U(ξ) = emξ, we obtain m = ±1, and the total solution to the
problem is

U(ξ) = c1e
ξ + c2e

−ξ − α

8
e3ξ. (7.5.20)

Changing back to the original independent variable r, the radial displacement is

ur(r) = U(r) = c1r +
c2
r

− α

8
r3, (7.5.21)

where the constants c1 and c2 are to be determined using the boundary conditions in Eqs.
(7.5.11) and (7.5.12). Hence, we must compute σrr,

σrr = (2μ+ λ)

(
c1 − c2

r2
− 3α

8
r2
)
+ λ
(
c1 +

c2
r2

− α

8
r2
)

= 2(μ+ λ)c1 − 2μ
c2
r2

− (3μ+ 2λ)α

4
r2. (7.5.22)

Applying the stress boundary conditions in (7.5.11) and (7.5.12), we obtain

2(μ+ λ)c1 − 2μ
c2
a2

− (3μ+ 2λ)α

4
a2 = −pa,

2(μ+ λ)c1 − 2μ
c2
b2

− (3μ+ 2λ)α

4
b2 = −pb.

(7.5.23)

Solving for the constants c1 and c2,

c1 =
1

2(μ+ λ)

[(
paa

2 − pbb
2

b2 − a2

)
+ (b2 + a2)

(3μ+ 2λ)

(2μ+ λ)

ρ0ω
2

4

]
,

c2 =
a2b2

2μ

[(
pa − pb
b2 − a2

)
+

(3μ+ 2λ)

(2μ+ λ)

ρ0ω
2

4

]
.

(7.5.24)

Finally, the displacement ur and stress σrr in the cylinder are given by

ur =
1

2(μ+ λ)

[(
paa

2 − pbb
2

b2 − a2

)
+ (b2 + a2)

(3μ+ 2λ)

(2μ+ λ)

ρ0ω
2

4

]
r

+
a2b2

2μ

[(
pa − pb
b2 − a2

)
+

(3μ+ 2λ)

(2μ+ λ)

ρ0ω
2

4

]
1

r
− ρ0ω

2

8(2μ+ λ)
r3, (7.5.25)

σrr =

[(
paa

2 − pbb
2

b2 − a2

)
+ (b2 + a2)

(3μ+ 2λ)

(2μ+ λ)

ρ0ω
2

4

]

− a2b2

r2

[(
pa − pb
b2 − a2

)
+

(3μ+ 2λ)

(2μ+ λ)

ρ0ω
2

4

]
− (3μ+ 2λ)α

4
r2. (7.5.26)

Similarly, stresses σθθ and σzz can be computed.

7.5.3 Plane Stress Problems

A state of plane stress is one in which the stresses associated with one of the
coordinates (z) are zero and the other stresses are functions of the remaining
two coordinates (x and y):

σxz =σyz = σzz = 0,

σxx = σxx(x, y), σxy = σxy(x, y), σyy = σyy(x, y).
(7.5.27)
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An example of a plane stress problem is provided by a thin plate subjected to
loads in the xy plane that are independent of z, as shown in Fig. 7.5.3. The top
and bottom surfaces of the plate are assumed to be traction-free, and fz = 0
and uz = 0.

°°°

x

z
y

t

1F

2F

h

Fig. 7.5.3: A thin plate in a state of plane stress.

The stress–strain relations of a plane stress state for an isotropic material
are obtained by inverting the strain–stress relations in Eq. (6.3.23):⎧⎨

⎩
σxx
σyy
σxy

⎫⎬
⎭ =

E

1− ν2

⎡
⎣ 1 ν 0
ν 1 0

0 0 (1−ν)
2

⎤
⎦
⎧⎨
⎩

εxx
εyy
2εxy

⎫⎬
⎭ . (7.5.28)

The equations of equilibrium as well as boundary conditions of a plane stress
problem are the same as those listed in Eqs. (7.5.6)–(7.5.9). Note that the
governing equations of plane stress and plane strain differ from each other only
on account of the difference in the constitutive equations for the two cases.

Example 7.5.2

Consider a thin, uniform, solid circular disk of radius a, spinning at a constant angular velocity
of ω, as shown in Fig. 7.5.4. Use the semi-inverse method to determine the displacements,
strains, and stresses in the disk.

Solution: This problem is almost the same as the problem of the rotating cylinder considered
in Example 7.5.1. The difference is that the cylinder problem was one of plane strain and
the present thin disk problem is one of plane stress. First, we set up the polar cylindrical
coordinate system (r, θ), with the origin at the center of the disk, r being the radial coordinate

rr

a

r
r

r

Fig. 7.5.4: Thin, uniform, spinning solid disk.
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and θ the circumferential coordinate. The boundary conditions are

ur(0, θ) = finite, σrr(a, θ) = σrθ(a, θ) = 0. (1)

Because of the axisymmetry of the geometry, boundary conditions, and material, the disk
experiences only a radial displacement field that varies only with r. Using the semi-inverse
method, we assume

ur = U(r), uθ = 0, (2)

where U(r) is an unknown function to be determined such that the equations of elasticity and
boundary conditions of the problem are satisfied. The strains associated with the displacement
field (2) are

εrr =
dU

dr
, εθθ =

U

r
, εrθ = 0. (3)

The stresses are determined using the stress–strain relations for plane stress, Eq. (7.5.28). We
obtain

σrr =
E

1− ν2
(εrr + νεθθ) =

E

1− ν2

dU

dr
+

Eν

1− ν2

U

r
,

σθθ =
E

1− ν2
(νεrr + εθθ) =

Eν

1− ν2

dU

dr
+

E

1− ν2

U

r
.

(4)

The shear stress σrθ is zero.
The first two equations of equilibrium, Eq. (7.2.7) without the acceleration terms, are

trivially satisfied, and the first equation reduces to

dσrr

dr
+

1

r
(σrr − σθθ) + ρ0ω

2r = 0,

where ρ0fr = ρ0ω
2r. The above equation can be expressed in terms of U(r) using Eq. (4)

E

1− ν2

[
d2U

dr2
+ ν

d

dr

(
U

r

)
+

(1− ν)

r

(
dU

dr
− U

r

)]
+ ρ0ω

2r = 0. (5)

Simplifying the expression, we obtain

d

dr

[
1

r

d

dr
(rU)

]
= −α r, α =

(
1− ν2

E

)
ρ0ω

2, (6)

where we have used the identities

1

r

(
dU

dr
− U

r

)
=

d

dr

(
U

r

)
,

d

dr

(
dU

dr
+

U

r

)
=

d

dr

[
1

r

d

dr
(rU)

]
. (7)

The solution to Eq. (6) is given by

ur(r) = U(r) =
c1
2
r +

c2
r

− α

8
r3, (8)

where the constants c1 and c2 are to be determined using the boundary conditions in Eq. (1).
The fact that ur is finite (i.e., bounded) at r = 0 requires c2 = 0. Then we have

U(r) =
c1
2
r − α

8
r3,

dU

dr
= −3

8
αr2 +

c1
2

,
U

r
= −1

8
αr2 +

c1
2

. (9)

Computing σrr using Eq. (4), we obtain

σrr =
E

1− ν2

(
dU

dr
+ ν

U

r

)
=

Eα

(1− ν2)

[
−3 + ν

8
αr2 +

1 + ν

2
c1

]
. (10)

Then σrr(a, θ) = 0 gives

c1 =
1

4

(
3 + ν

1 + ν

)
αa2. (11)
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Thus, the solution in Eq. (8) becomes

u(r) =
1

4

(
3 + ν

1 + ν

)
αa2r − α

8
r3 =

(1− ν)

8E

[
2(3 + ν)a2 − (1 + ν)r2

]
ρ0ω

2r. (12)

The stresses σrr and σθθ are

σrr(r) =
(3 + ν)

8

(
a2 − r2

)
ρ0ω

2

σθθ(r) =
1

8

[
(3 + ν)a2 − (1 + 3ν)r2

]
ρ0ω

2

(13)

The values of the maximum displacement and maximum stresses are

umax = ur(a) =
(1− ν)(5 + ν)

8E
ρ0ω

2a3,

σmax = σrr(0) = σθθ(0) =
(3 + ν)

8
ρ0ω

2a2.

(14)

7.5.4 Unification of Plane Strain and Plane Stress Problems

The equilibrium equations (7.5.6) and (7.5.7), which are valid for both plane
stress and plane strain, can be expressed in index notation as

σβα,β + fα = 0, (7.5.29)

To unify the formulation for plane strain and plane stress, we introduce the
parameter s:

s =

{
1

1−ν , for plane strain

1 + ν, for plane stress.
(7.5.30)

Then the constitutive equations of plane stress as well as plane strain can be
expressed as

σαβ = 2μ
[
εαβ +

(
s−1
2−s

)
εγγδαβ

]
,

εαβ =
1

2μ

[
σαβ −

(
s−1
s

)
σγγδαβ

]
,

(7.5.31)

where α, β, and γ take values of 1 and 2 (or x and y). The compatibility equation
(3.7.4) for plane stress and plane strain problems takes the form

εαα,ββ − εαβ,αβ = 0 (α, β = 1, 2), (7.5.32)

or, in terms of stress components,

∇2σαα = −s fα,α. (7.5.33)

Comparing the constitutive equations of plane strain and plane stress, Eqs.
(7.5.4) and (7.5.28), it is clear that the plane strain equations can be transformed
to corresponding plane stress equations, and vice versa, by a simple change in
material parameters, as follows:

Plane stress to plane strain: E → E
1−ν2

and ν → ν
1−ν ,

Plane strain to plane stress: E → (1+2ν)E
(1+ν)2

and ν → ν
1+ν .

(7.5.34)
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7.5.5 Airy Stress Function

Airy stress function is a potential function introduced to identically satisfy the
equations of equilibrium, Eqs. (7.5.6) and (7.5.7). First, we assume that the
body force vector f is derivable from a scalar potential Vf such that

f = −∇Vf or fx = −∂Vf

∂x
, fy = −∂Vf

∂y
. (7.5.35)

When body forces are derivable from a potential Vf , they are said to be conser-
vative. Next, we introduce the Airy stress function Φ(x, y) such that

σxx =
∂2Φ

∂y2
+ Vf , σyy =

∂2Φ

∂x2
+ Vf , σxy = − ∂2Φ

∂x∂y
. (7.5.36)

This definition of Φ(x, y) automatically satisfies the equations of equilibrium
(7.5.6) and (7.5.7).

The stresses derived from Eq. (7.5.36) are subject to the compatibility con-
ditions (7.5.33). Substituting for σαβ in terms of Φ from Eq. (7.5.36) into Eq.
(7.5.33), we obtain

∇4Φ+ (2− s)∇2Vf = 0, (7.5.37)

where ∇4 = ∇2∇2 is the biharmonic operator, which, in two dimensions, has
the form

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
.

If the body forces are zero, we have Vf = 0 and Eq. (7.5.37) reduces to the
biharmonic equation

∇4Φ = 0. (7.5.38)

In cylindrical coordinate system, Eqs. (7.5.35) and (7.5.36) take the form

fr = −∂Vf

∂r
, fθ = −1

r

∂Vf

∂θ
, (7.5.39)

σrr =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+ Vf , σθθ =

∂2Φ

∂r2
+ Vf , σrθ = − ∂

∂r

(
1

r

∂Φ

∂θ

)
. (7.5.40)

The biharmonic operator ∇4 = ∇2∇2 can be expressed using the definition of
∇2 in a cylindrical coordinate system

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (7.5.41)

In summary, the solution to a plane elastic problem using the Airy stress
function involves finding the solution to Eq. (7.5.37) and satisfying the bound-
ary conditions of the problem. The most difficult part is finding a solution to the
fourth-order equation (7.5.37) over a given domain. Often the form of the Airy
stress function is obtained by either the inverse method or semi-inverse method.
Next we consider several examples of the Airy stress function approach. Addi-
tional examples can be found in the books by Timoshenko and Goodier (1970)
and Slaughter (2002).
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Example 7.5.3

Suppose that the Airy stress function is a second-order polynomial (the lowest order that gives
a nonzero stress field) of the form

Φ(x, y) = c1xy + c2x
2 + c3y

2. (7.5.42)

Assuming that the body force field is zero, determine if the constants c1, c2, and c3 correspond
to a possible state of stress for some boundary value problem (the inverse method).

Solution: Clearly, the biharmonic equation is trivially satisfied by Φ in Eq. (7.5.42). The
corresponding stress field is

σxx =
∂2Φ

∂y2
= 2c3, σyy =

∂2Φ

∂x2
= 2c2, σxy = − ∂2Φ

∂x∂y
= −c1. (7.5.43)

Thus, the constants represent a uniform stress state throughout the body, and it is independent
of the geometry. Thus, there are infinite number of problems for which the stress field is a
solution. In particular, the rectangular domain with the boundary stresses shown in Fig. 7.5.5
is one such problem.

x

y

1c−

32c

22c

Fig. 7.5.5: A plane problem with uniform stress field.

Example 7.5.4

Take the Airy stress function to be a third-order polynomial of the form

Φ(x, y) = c1xy + c2x
2 + c3y

2 + c4x
2y + c5xy

2 + c6x
3 + c7y

3. (7.5.44)

Assuming that the body force field is zero, determine the stress field and identify a possible
boundary value problem.

Solution: We note that ∇4Φ = 0 for any ci. The corresponding stress field is

σxx = 2c3 + 2c5x+ 6c7y, σyy = 2c2 + 2c4y + 6c6y, σxy = −c1 − 2c4x− 2c5y. (7.5.45)

Again, there are an infinite number of problems for which the stress field is a solution. In
particular, for c1 = c2 = c3 = c4 = c5 = c6 = 0, the solution corresponds to a thin beam in
pure bending (see Fig. 7.5.6).

b

2h x

y
76xx c y

Fig. 7.5.6: A thin beam in pure bending.
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Example 7.5.5

Take the Airy stress function to be a fourth-order polynomial of the form (omit terms that
were already considered in the last two cases)

Φ(x, y) = c8x
2y2 + c9x

3y + c10xy
3 + c11x

4 + c12y
4, (7.5.46)

and determine the stress field and associated boundary value problems.

Solution: Computing ∇4Φ and equating it to zero (body force field is zero) we find that

c8 + 3(c11 + c12) = 0.

Thus out of five constants only four of them are independent. The corresponding stress field is

σxx = 2c8x
2 + 6c10xy + 12c12y

2 = −6c11x
2 + 6c10xy + 6c12(2y

2 − x2)

σyy = 2c8y
2 + 6c9xy + 12c11x

2 = 6c9xy + 6c11(2x
2 − y2)− 6c12y

2

σxy = −4c8xy − 3c9x
2 − 3c10y

2 = 12c11xy + 12c12xy − 3c9x
2 − 3c10y

2.

(7.5.47)

By suitable adjustment of the constants, we can obtain various loads on rectangular plates.
For instance, taking all coefficients except c10 equal to zero, we obtain

σxx = 6c10xy, σyy = 0, σxy = −3c10y
2.

7.5.6 Saint-Venant’s Principle

A boundary value problem of elasticity requires the boundary conditions to be
known in the form of stresses or displacements [see Eqs. (7.5.8) and (7.5.9)] at
every point of the boundary. As shown in Example 7.5.3, the boundary forces
are distributed as a function of the distance along the boundary. If the boundary
forces are distributed in any other form (other than per unit surface area), the
boundary conditions cannot be expressed as point wise quantities.

For example, consider the cantilever beam with an end load, as shown in
Fig. 7.5.7. At x = 0, where n̂ = −êx, we are required to specify tx = −σxx and
ty = −σxy (because ux and uy are clearly not zero there). There is no problem
in stating that σxx(0, y) = 0, but σxy is not known point wise. We can possibly
say that the integral of ty = −σxy over the beam cross section must be equal to
P : ∫

A
ty(0, y) dA = −

∫
A
σxy(0, y) dA = P,

which is not equal to specifying σxy point wise. If we state that σxy(0, y) =
−P/A, where A is the cross-sectional area of the beam, then we have a inconsis-
tency that σxy is nonzero from the left face and zero from the bottom and top
faces of the beam. Thus, there is a stress singularity at points (x, y) = (0,±h).
We also have a different type of singularity at points (x, y) = (L,±h). Strictly
speaking, such problems do not admit exact elasticity solutions. We must over-
come such singularities by reformulating the problem as one that admits an
engineering solution.
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Fig. 7.5.7: A cantilever beam under an end load.

Analytical (approximate) solutions for such problems, when they exist, show
that a change in the distribution of the load on the end, without change of the
resultant, alters the stress significantly only near the end. Saint-Venant’s prin-
ciple says that the effect of the change in the boundary condition from point wise
specification to a statically equivalent condition (that is, the same net force and
moment due to the distributed forces and stresses) is local; that is, the solutions
obtained with the two sets of boundary conditions are approximately the same
at points sufficiently far from the points where the elasticity boundary condi-
tions are replaced with statically equivalent boundary conditions. Of course, the
phrase “sufficiently far” is rather ambiguous. The distance is often taken to be
equal to or greater than the length scale of the portion of the boundary where
the boundary conditions are replaced. In the case of the beam shown in Fig.
7.5.7, the distance is 2h (height of the beam). In the next example, we discuss
an engineering solution to the problem shown in Fig. 7.5.7.

Example 7.5.6

Here we consider the problem of a cantilever beam with an end load, as shown in Fig. 7.5.7.
The problem can be treated as a plane stress if the beam is of small thickness b compared to
the height, b << h (of course, h << L to call it a beam). If the beam is a portion of a very
long slab, in the thickness direction, it can be treated as a plane strain problem. Write the
boundary conditions and determine the Airy stress function, stresses, and displacements of the
problem.

Solution: The boundary conditions are of mixed type (see Fig. 7.5.7): The tractions are
specified on the boundaries x = 0 and y = ±h, while the displacements are specified on the
boundary x = L. However, boundary conditions of plane elasticity can be written only on
x = L and y = ±h. On x = 0, we know only the total force in the y-direction and not the
associated stress. Hence, it must be written as an integral condition on stress σxy(0, y). Thus,
we have

σxx(0, y) = 0, σxy(x,−h) = 0, σyy(x,−h) = 0,

σxy(x, h) = 0, σyy(x, h) = 0,
(7.5.48)

ux(L, y) = 0, uy(L, y) = 0, (7.5.49)

b

∫ h

−h

σxy(0, y) dy = −P. (7.5.50)

Due to the boundary condition in Eq. (7.5.50), the resulting boundary value problem is not
an exact elasticity problem in the sense that boundary values are not specified point wise. If
P is replaced with a shear stress condition σxy(0, y) = τ0, it is a proper elasticity boundary
condition, but even in this case there is a singularity at x = L and y = h.



7.5. SOLUTION OF TWO-DIMENSIONAL PROBLEMS 305

This problem is discussed in most elasticity and continuum mechanics books, despite the
fact that it is not a well-posed problem owing to point singularities at the corners of the domain.
Therefore, the solution being sought is an approximate solution, which is a reasonable one, by
Saint-Venant’s principle, away from the isolated points of singularity.

The semi-inverse method allows us to identify the form of the Airy stress function. The
knowledge of the stress distributions from the elementary theory of beams provides the needed
clue to identify the terms in the Airy stress function. Recall the following stress field from the
Euler–Bernoulli beam theory [see Section 7.3.4, Eq. (7.3.31)]:

σxx =
M(x)y

I
, σyy = 0, σxy =

V (x)Q(y)

Ib
, (7.5.51)

where M is the bending moment and V is the shear force [see Eq. (7.5.24)]:

M =

∫
A

yσxx dA, V =

∫
A

σxy dA, (7.5.52)

I is the moment of inertia about the z-axis, and Q is the first moment of area

I =

∫
A

y2 dA = 2bh3/3, Q(y) =

∫
Ā

y dA = b

∫ h

y

y dy. (7.5.53)

Here Ā denotes the cross-sectional area between line y and the top of the beam. Clearly, Q
is a quadratic function of y. We also note that M(x) is a linear function of x while V is a
constant for the problem at hand. Therefore, σxx is linear in x, σxy is a quadratic in y, and
σyy = 0 at y = ±h for any x (except possibly at x = L). Using this qualitative information
and definitions (7.5.35), in the absence of body forces (i.e., Vf = 0), we take the Airy stress
function to be

Φ(x, y) = x(c1y + c2y
2 + c3y

3). (7.5.54)

Note that only the first and third terms are dictated by the stress field in a beam. The second
term is added to make it a complete quadratic polynomial in y. Also, Φ cannot have terms
higher than x because of the boundary condition σyy(x,±h) = 0. The nonzero stresses are

σxx =
∂2Φ

∂y2
= x (2c2 + 6c3y) , σyy =

∂2Φ

∂x2
= 0, σxy = − ∂2Φ

∂x∂y
= −(c1 + 2c2y + 3c3y

2).

(7.5.55)
The choice in (7.5.54) satisfies the biharmonic equation for any values of c1, c2, and c3. We

determine the constants ci using the stress boundary conditions in Eqs. (7.5.48) and (7.5.50).
The stress boundary conditions σxx(0, y) = 0 and σyy(x,±h) = 0 are trivially satisfied. We
have

σxy(x,±h) = 0 → c1 − 2c2h+ 3c3h
2 = 0 and c1 + 2c2h+ 3c3h

2 = 0,

which yield c2 = 0 and c1 = −3h2c3. Lastly, we have

b

∫ h

−h

σxy(0, y) dy = −P → −2hb(c1 + h2c3) = −P. (7.5.56)

Thus, the constants ci are

c1 =
3P

4bh
, c2 = 0, c3 = − P

4bh3
, (7.5.57)

and the Airy stress function becomes

Φ(x, y) = −Pxy

6I

(
y2 − 3h2) . (7.5.58)

The stresses from Eq. (7.5.55) are [I = 2bh3/3 = Ah2/3, where A = 2bh is the area of cross
section of the beam]

σxx = −6Pxy

4bh3
= −Pxy

I
, σyy = 0,

σxy = − 3P

4bh
+

3Py2

4bh3
= − P

2I

(
h2 − y2) . (7.5.59)
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The stresses in Eq. (7.5.59) are exactly those predicted by the classical (i.e., Euler–
Bernoulli) beam theory, where M(x) = −Px and V = −P . This is not surprising because
our choice of terms in the Airy stress function was dictated by the form of the stress field from
the classical beam theory. This also indicates that we cannot obtain any better stress field
than the elementary beam theory for the boundary conditions (7.5.48)–(7.5.50).

The strain field associated with the stress field in Eq. (7.5.59) is computed using the
strain–stress relations in Eq. (6.3.32):

εxx = 1
E
σxx = − 1

EI
Pxy,

εyy = − ν
E
σxx = ν

EI
Pxy,

εxy = (1+ν)
E

σxy = − (1+ν)
2EI

P (h2 − y2),

(7.5.60)

where ν is the Poisson ratio and E is Young’s modulus. The strain field in Eq. (7.5.60) is the
same as that in Eq. (3.7.12), with x1 = x and x2 = y. Therefore, the displacements are the
same as those determined in Example 3.7.2, namely in Eq. (3.7.22), with u1 = ux and u2 = uy:

ux(x, y) =
PL3

6EI

y

L

{
3
[
1−
( x
L

)2]
+ (2 + ν)

( y
h

)2 ( h
L

)2
− 3(1 + ν)

( h
L

)2}
,

uy(x, y) =
PL3

6EI

{
2− 3

x

L

[
1− ν

( y
h

)2 ( h
L

)2]
+

x3

L3
+ 3(1 + ν)

( h
L

)2 (
1− x

L

)}
.

As (h/L)2 → 0, we recover the Euler–Bernoulli beam solution.

Example 7.5.7

Consider a thin rectangular plate of length 2a, width 2b, and thickness h that has a circular
hole of radius R at the center of the plate. A uniform traction of magnitude σ0 is applied to
the ends of the plate, as shown in Fig. 7.5.8. Determine the stress field in the plate under the
assumption that R << b.

Solution: The boundary conditions of the problem are

σxx(±a, y) = σ0, σxy(±a, y) = 0, σyy(x,±b) = 0, σxy(x,±b) = 0, (1)

σrr(R, θ) = 0, σrθ(R, θ) = 0. (2)

Since the hole is assumed to be very small compared to the height of the plate (i.e., R << b),
we can solve the problem for a stress field inside a circular region of radius b > c > R, as
shown in Fig. 7.5.8. The stresses at radius c are essentially the same as in the plate without
the hole (a consequence of Saint-Venant’s principle). We use the cylindrical coordinate system
to determine the stress field inside the circle of radius c.

x0σ0σ

aa
b

b

y

θ

c

R

Fig. 7.5.8: A thin rectangular plate with a central hole.
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Recall from Eq. (4.3.7) the transformation equations between (σxx, σyy, σxy) and (σ11 =
σrr, σ22 = σθθ, σ12 = σrθ):

σrr = σxx cos
2 θ + σyy sin

2 θ + σxy sin 2θ,

σθθ = σxx sin
2 θ + σyy cos

2 θ − σxy sin 2θ,

σrθ = −1

2
(σxx − σyy) sin 2θ + σxy cos 2θ.

(3)

Using the transformation equations in Eq. (3), we can write the boundary conditions at r = c
for any θ as (σyy = 0 and σxy = 0):

σrr(c, θ) = σ0 cos2 θ =
σ0

2

(
1 + cos 2θ

)
,

σθθ(c, θ) = σ0 sin2 θ =
σ0

2

(
1− cos 2θ

)
,

σrθ(c, θ) = −σ0

2
sin 2θ.

(4)

The form of the boundary conditions in Eq. (4) suggests that the Airy stress function Φ should
be of the form

Φ(r, θ) = G(r) + F (r) cos 2θ, (5)

with G(r) and F (r) satisfying [because ∇2∇2Φ = ∇2∇2G(r) + ∇2∇2(F cos 2θ) = 0 implies

that ∇̃2∇̃2G(r) = 0 and ∇̂2∇̂2F = 0]

∇̃2∇̃2G =
( d2

dr2
+

1

r

d

dr

)2
G(r) = 0, ∇̂2∇̂2F =

( d2

dr2
+

1

r

d

dr
− 4

r2

)2
F (r) = 0. (6)

The general solutions to the equations in (6) are of the form

F (r) =
c1
r2

+ c2 + c3r
2 + c4r

4, G(r) = c5 + c6 ln r + c7r
2 + c8r

2 ln r, (7)

and we have

dF

dr
= −2c1

r3
+ 2c3r + 4c4r

3,
d2F

dr2
=

6c1
r4

+ 2c3 + 12c4r
2,

dG

dr
=

c6
r

+ 2c7r + rc8(1 + 2 ln r),
d2G

dr2
= − c6

r2
+ 2c7 + c8(3 + 2 ln r),

∂Φ

∂r
=
[ c6
r

+ 2c7r + rc8(1 + 2 ln r)
]
+
(
−2c1

r3
+ 2c3r + 4c4r

3
)
cos 2θ,

∂2Φ

∂r2
=
[
− c6
r2

+ 2c7 + c8(3 + 2 ln r)
]
+
(6c1
r4

+ 2c3 + 12c4r
2
)
cos 2θ,

∂Φ

∂θ
= −2

( c1
r2

+ c2 + c3r
2 + c4r

4
)
sin 2θ,

∂2Φ

∂θ2
= −4

( c1
r2

+ c2 + c3r
2 + c4r

4
)
cos 2θ,

∂2Φ

∂θ∂r
= −2

(
−2c1

r3
+ 2c3r + 4c4r

3
)
sin 2θ.

(8)

Substituting the expressions from Eq. (7) into Eq. (5) and using the definition of the stress
components, we obtain

σrr =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
=

c6
r2

+ 2c7 + c8(1 + 2 ln r)−
(
6c1
r4

+
4c2
r2

+ 2c3

)
cos 2θ,

σθθ =
∂2Φ

∂r2
= − c6

r2
+ 2c7 + c8(3 + 2 ln r) +

(
6c1
r4

+ 2c3 + 12c4r
2

)
cos 2θ, (9)

σrθ = − ∂

∂r

(
1

r

∂Φ

∂θ

)
=

1

r2
∂Φ

∂θ
− 1

r

∂2Φ

∂θ∂r
=

(
−6c1

r4
− 2c2

r2
+ 2c3 + 6c4r

2

)
sin 2θ.
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Note that c5 does not enter the calculation of stresses. The boundary conditions in Eqs. (2) and
(4) are used to determine the remaining constants. As r → ∞, the expressions for stresses in
(8) must approach those in Eq. (4). For this to happen, c4 and c8 must be zero and 2c7 = σ0/2
and 2c3 = −σ0/2. The boundary conditions in Eq. (2) yield the following relations among the
remaining constants:

c6
R2

+ 2c7 = 0,
6c1
R4

+
4c2
R2

+ 2c3 = 0, −6c1
R4

− 2c2
R2

+ 2c3 = 0. (10)

Solving these equations, we obtain

c1 = −σ0R
4

4
, c2 =

σ0R
2

2
, c3 = −σ0

4
, c4 = 0, c6 = −σ0R

2

2
, c7 =

σ0

4
, c8 = 0. (11)

Substituting these values into Eq. (8), we obtain

σrr =
σ0

2

[(
1− R2

r2

)
+

(
1 +

3R4

r4
− 4R2

r2

)
cos 2θ

]
,

σθθ =
σ0

2

[(
1 +

R2

r2

)
−
(
1 +

3R4

r4

)
cos 2θ

]
,

σrθ = −σ0

2

(
1− 3R4

r4
+

2R2

r2

)
sin 2θ.

(11)

The maximum normal stress occurs at (r, θ) = (R,±90◦) and shear stress at (r, θ) =

(
√
3R,−45◦):

σmax = σθθ(R,±90◦) = 3σ0, σrθ(
√
3R,−45◦) =

2

3
σ0. (12)

7.5.7 Torsion of Cylindrical Members

The stress function approach used to study a number of plane elasticity problems
in the previous sections is also useful in studying torsion of noncircular cylindrical
members. However, we cannot use the Airy stress function here because the
present problem does not fall into the category of plane elasticity problems. The
governing equations for this problem must be developed from basic principles.
The problem was first studied by Saint-Venant using the semi-inverse method.

Consider a cylindrical member of noncircular cross-section and length L and
subjected to an end torque T = T êz, as shown in Fig. 7.5.9(a). The lateral
surface of the cylinder is free of tractions. Saint-Venant studied the problem
under the following assumptions:

1. The projection of each cross section onto the xy-plane rotates about the
z-axis (taken through the geometric centroid of the cross section) with no
in-plane distortion.

2. The amount of rotation of each cross section is proportional to its distance
from the end of the cylinder, Θ = θz, where Θ is the twist and θ is the
twist per unit length.

3. Each cross section’s out-of-plane distortion is the same and its magnitude
is proportional to θ.
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(a) (b)

Γ

P
P

x

y

Ω

z
T

xu

yu

z

x

y

TL

Fig. 7.5.9: (a) Torsion of a cylindrical member. (b) A typical cross section.

In view of the aforementioned assumptions, our attention is focused on a typical
cross section of the cylinder; the plane of the cross section is denoted by Ω and
its boundary by Γ, as shown in Fig. 7.5.9(b). Our interest is to determine the
shear stresses, σxz and σyz, produced by the torque, because they are needed
in the design of shafts used, for example, in power transmission. There are
two different formulations to study the problem. One is based on the warping
function and the other on Prandtl stress function. The details of these two
formulations are presented next.

7.5.7.1 Warping function

The displacements of a typical point (r, α) in Ω can be computed as follows [refer
to Fig. 7.5.9(b)]:

ux = r cos(Θ + α)− r cosα = x(cosΘ− 1)− y sinΘ,

uy = r sin(Θ + α)− r sinα = x sinΘ + y(cosΘ− 1).
(7.5.61)

The third assumption implies that

uz = θψ(x, y), (7.5.62)

where ψ denotes the warping function. If Θ = θ z is very small compared
to unity, Θ << 1, the displacement field becomes (because cosΘ ≈ 0 and
sinΘ ≈ Θ)

ux = −θyz, uy = θxz, uz = θ ψ(x, y). (7.5.63)

Since we started with an assumed displacement field (a semi-inverse method),
we only make sure that the equations of equilibrium are satisfied (and the
compatibility equations are automatically met). Toward this end, we com-
pute strains first and then stresses. The linear strain-displacement relations
(εij =

1
2(ui,j + uj,i) give εxx = 0, εyy = 0, εzz = 0, εxy = 0, and

εxz =
θ

2

(
∂ψ

∂x
− y

)
, εyz =

θ

2

(
∂ψ

∂y
+ x

)
. (7.5.64)
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The stresses are computed using the constitutive equations of an isotropic ma-
terial, σij = 2μεij + λεkkδij . We find that σxx = σyy = σzz = σxy = 0, and

σxz = μθ

(
∂ψ

∂x
− y

)
, σyz = μθ

(
∂ψ

∂y
+ x

)
. (7.5.65)

Thus, a cross section of the cylinder experiences only the shear stresses σxz and
σyz; the projected shear traction vector at a point (x, y) of a cross section is
t(êz) = σxz êx + σyz êy.

Assuming that the body forces are negligible, the first two equilibrium equa-
tions (σij,j = 0) are trivially satisfied. The third equilibrium equation reduces
to

∂σxz
∂x

+
∂σyz
∂y

= 0 ⇒ μθ

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
= 0 in Ω. (7.5.66)

The boundary conditions on the lateral surface of the cylinder, that is, on
the boundary Γ, where the unit normal is given by n̂ = nxêx + nyêy, are tx =
ty = tz = 0. Because all but σxz and σyz are zero and nz = 0, the boundary
conditions tx = ty = 0 are trivially satisfied. The remaining boundary conditions
tz = 0 yield

tz = σxznx + σyzny = μθ

(
∂ψ

∂x
− y

)
nx + μθ

(
∂ψ

∂y
+ x

)
ny = 0. (7.5.67)

From Fig. 7.5.10, we note that nx and ny can be calculated as

nx =
dy

ds
, ny = −dx

ds
, n̂ =

dy

ds
êx − dx

ds
êy. (7.5.68)

Then the boundary condition in Eq. (7.5.67) becomes(
∂ψ

∂x
− y

)
dy

ds
−

(
∂ψ

∂y
+ x

)
dx

ds
= 0 on Γ. (7.5.69)

Thus, the boundary value problem becomes one of finding ψ such that

∇2ψ = 0 in Ω,

(
∂ψ

∂x
− y

)
dy

ds
−

(
∂ψ

∂y
+ x

)
dx

ds
= 0 on Γ. (7.5.70)

Once ψ(x, y) is known, the shear stresses can be computed from Eq. (7.5.65).

Γ

P

x

y
Ω

dx
( )yn
n̂

xn

dy

ds

cos , sinx y
dy dxn n
ds ds

xz

yz

Fig. 7.5.10: Calculation of the direction cosines.
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Example 7.5.8

Consider the case in which ψ = 0 and use the inverse method to determine the problem (i.e.,
cross section of the cylinder) for which it corresponds. Also, determine the stresses σxz and
σyz as well as the projected shear stress magnitude in terms of the shear modulus μ = G and
the applied torque T .

Solution: For ψ = 0, ∇2ψ = 0 is trivially satisfied. The boundary condition in Eq. (7.5.69)
becomes

y
dy

ds
+ x

dx

ds
= 0 → d

ds

(
x2 + y2) = 0 or x2 + y2 = constant, c2 (1)

on the boundary Γ. This equation corresponds to that of a circle with Γ being the boundary
of a circle of radius c and Ω being the interior of the circle; that is, the cross section of the
cylinder is a circle of radius c.

The stresses are
σxz = −μθy, σyz = μθx. (2)

To express the stresses in terms of the torque, we write the equilibrium of moments about the
z-axis. We obtain

T =

∫
Ω

(xσyz − yσxz) dx dy = μθ

∫
Ω

(x2 + y2)dx dy = μθc2
πc2

2
= μθ

πc4

2
, (3)

or μθ = 2T/πc4. Note that ∫
Ω

(x2 + y2)dx dy ≡ J

is the polar moment of inertia. Then the stresses in Eq. (2) can be expressed in terms of T as

σxz = − 2T

πc4
y, σyz =

2T

πc4
x. (4)

The projected shear stress magnitude at any point on the cross section is

τ = |t(êz)| =
√

σ2
xz + σ2

yz =
2T

πc4

√
(x2 + y2) =

2Tr

πc4
. (5)

Clearly, the maximum shear stress is τmax = 2T
πc3

.

The exact solutions of the torsion problem (7.5.70) are possible for elliptical
and rectangular cross sections. For geometrically complicated cross sections, one
must use numerical methods.

7.5.7.2 Prandtl’s stress function

Here we begin with an assumed stress field. We note that the following stresses
are identically zero for the problem:

σxx = σyy = σzz = σxy = 0. (7.5.71)

Therefore, only stress equilibrium equation left to be satisfied is

∂σxz
∂x

+
∂σyz
∂y

= 0. (7.5.72)

We choose to satisfy this equation identically by introducing a stress function
Ψ(x, y), called the Prandtl stress function, such that
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σxz =
∂Ψ

∂y
, σyz = −∂Ψ

∂x
. (7.5.73)

Since we started with the stress field, the stress function Ψ is subject to satisfying
the strain compatibility conditions in Eqs. (3.7.7) and (3.7.8), which can be
expressed in terms of the stresses, as given in Eq. (7.2.27). For the case at
hand, Eq. (7.2.27) takes the form σ3α,ββ = 0, for α, β = 1, 2:

∂2σxz
∂x2

+
∂2σxz
∂y2

= 0 ⇒ ∂

∂y

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2

)
= 0,

∂2σyz
∂x2

+
∂2σyz
∂y2

= 0 ⇒ ∂

∂x

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2

)
= 0.

(7.5.74)

From these two equations it follows that Ψ is governed by the equation

∇2Ψ = c, (7.5.75)

where c is a constant. Equation (7.5.75) must be solved subject to the traction-
free boundary condition on the lateral surface Γ:

σxznx + σyzny =
∂Ψ

∂y

dy

ds
+

∂Ψ

∂x

dx

ds
≡ dΨ

ds
= 0 on Γ, (7.5.76)

That is, Ψ is a constant, say K, on Γ. For multiply connected cross sections, the
constant K on different boundaries, in general, has different values. For simply
connected cross sections, we can arbitrarily set the constant to zero, K = because
the constant does not contribute to the stress field. In summary, the Prandtl
stress function is determined from solving the boundary value problem

∇2Ψ = c in Ω, Ψ = 0 on Γ. (7.5.77)

The warping function ψ(x, y) is related to the Prandtl stress function by

∂ψ

∂x
=

1

μθ

∂Ψ

∂y
+ y,

∂ψ

∂y
= − 1

μθ

∂Ψ

∂x
− x. (7.5.78)

The two equations in (7.5.78) can be combined by differentiating the first one
with respect to y and the second one with respect to x and eliminating ψ to
obtain

−∇2Ψ = 2μθ in Ω, Ψ = 0 on Γ. (7.5.79)

Once Ψ is known, the stresses can be determined from Eq. (7.5.73).
As in the case of the warping function, exact solutions of the torsion problem

(7.5.79) are possible for a few simple cross sections. For geometrically compli-
cated cross sections, one must use numerical methods. In general, solving Eq.
(7.5.79) is simpler than solving Eq. (7.5.70) because of the complicated bound-
ary condition in Eq. (7.5.69). To solve Eq. (7.5.79), one assumes Ψ to be in the
form Ψ = Af(x, y), where A is a constant and f(x, y) is a sufficiently differen-
tiable (i.e., ∇2f �= 0) function that is identically zero on the boundary. If −∇2f
is a nonzero constant c (so that Ac can be equated to 2μθ), we solve for the
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constant A and obtain the complete solution. If ∇2f is not a constant, an ex-
act solution is not possible, although an approximate solution can be obtained.
Next we consider an example.

Example 7.5.9

Consider a cylindrical shaft of elliptical cross section, Ω. The boundary Γ is the ellipse with
semi-axes a and b:

Γ =

{
(x, y) :

x2

a2
+

y2

b2
= 1

}
. (1)

Determine the Prandtl stress function and the shear stresses.

Solution: We select Ψ to be

Ψ(x, y) = A

(
x2

a2
+

y2

b2
− 1

)
, (2)

where A is a constant to be determined such that Eq. (7.5.79)1 is satisfied. Since the boundary
condition Ψ = 0 on Γ is satisfied, we substitute Ψ from Eq. (2) into −∇2Ψ = 2μθ and obtain

−2A

(
1

a2
+

1

b2

)
= 2μθ ⇒ A = − μθa2b2

a2 + b2
. (3)

The Prandtl stress function is then given by

Ψ(x, y) =
μθa2b2

a2 + b2

(
1− x2

a2
− y2

b2

)
. (4)

For solid cylinders of elliptic cross section, the twist per unit length θ can be related to the
applied torque T by

T =

∫
Ω

(xσyz − yσxz) dx dy = −
∫
Ω

(
x
∂Ψ

∂x
+ y

∂Ψ

∂y

)
dx dy

= −
∫
Ω

[
∂(xΨ)

∂x
+

∂(yΨ)

∂y

]
dx dy + 2

∫
Ω

Ψ(x, y) dx dy

= −
∮
Γ

(xΨ dy + yΨ dx) + 2

∫
Ω

Ψ(x, y) dx dy = 2

∫
Ω

Ψ(x, y) dx dy, (5)

where we used the fact that Ψ = 0 on Γ of a solid cylinder. For the problem at hand we obtain

T = 2

∫
Ω

Ψ(x, y) dx dy =
πμθa3b3

(a2 + b2)
. (6)

Then the stresses σxz and σyz are calculated using Eq. (7.5.73) as

σxz = − 2μθa2

a2 + b2
y = − 2T

πab3
y, σyz = − 2μθb2

a2 + b2
x =

2T

πa3b
x. (7)

For b < a, the maximum shear stress occurs at (x, y) = (0,±b), and the shear stress magnitude
is

τmax =
2μθa2b

a2 + b2
=

2T

πab4
. (8)

For solid circular cylinders, b = a, Eqs. (7) and (8) yield the same results as in Example 7.5.7
with c = a = b.

The warping function can be determined from Eq. (7.5.78)1 by integrating with respect to
x and setting the integration constant to zero:

ψ(x, y) =
b2 − a2

a2 + b2
xy → uz = θψ(x, y) =

b2 − a2

a2 + b2
θxy = − (a2 − b2)T

μπa3b3
xy. (9)



314 LINEARIZED ELASTICITY

7.6 Methods Based on Total Potential Energy

7.6.1 Introduction

In Chapter 5 of this book, laws of physics (or conservation principles) and vector
mechanics are used to derive the equations governing continua. These equations,
as applied to solid bodies, can also be formulated by means of variational prin-
ciples. Variational principles have played an important role in solid mechanics.
The principle of minimum total potential energy, for example, can be regarded
as a substitute for the equations of equilibrium of elastic bodies. Similarly,
Hamilton’s principle can be used in lieu of the equations governing dynamical
systems, and the variational forms presented by Biot replace certain equations
in linear continuum thermodynamics.

The use of variational principles makes it possible to concentrate in a single
functional all of the intrinsic features of the problem at hand: the governing
equations, the boundary conditions, initial conditions, constraint conditions,
and even jump conditions. Variational principles can serve to derive not only
the governing equations but they also suggest nature of the boundary conditions.
Finally, and perhaps most importantly, variational principles provide a natural
means for seeking approximate solutions; they are at the heart of the most
powerful approximate methods in use in mechanics (e.g., the traditional Ritz
and Galerkin methods, and the finite element method). In many cases they can
also be used to establish upper and/or lower bounds on approximate solutions.

This section is devoted to the study of the principle of minimum total po-
tential energy and its applications. To keep the scope of the chapter within
reasonable limits, only key elements of the principle are presented here. Addi-
tional information can be found in the textbook by Reddy (2002).

7.6.2 The Variational Operator

Mathematically speaking, an integral of the form

I(u) =

∫
Ω
F (x, u,∇u) dx

whose value is a real number, that is, I is a mapping that transforms functions
u from a function space into a real number field, is called a functional. Note
that F (x, u,∇u) does not qualify as a functional because it is a function and
not a real number. An example of a functional is provided by the strain energy
U of an elastic body. In particular,

U =
EA

2

∫ L

0

(
du

dx

)2

dx

is a functional.
As in the case of the minimum of an ordinary function f(x), the minimum of a

functional I(u) involves differentiation with respect to the dependent variable(s).
The derivative with respect to a dependent variable is known as the Gâuteax
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derivative, which is defined as

δF (u) ≡ d

dε
F (u+ ε v)

∣∣∣
ε=0

(7.6.1)

and we say that δF (u) is the first variation of the function F (u) in the direction
of v. The quantity εv is denoted as δu, and it is called the first variation of u.
The operator δ itself is known as the variational operator.

The variational operator δ acts much like a total differential operator d, ex-
cept that it operates with respect to the dependent variable(s) rather than the
independent variables, like the coordinate x and time t. Indeed, the laws of vari-
ation of sums, products, ratios, and powers of functions of a dependent variable
u are completely analogous to the corresponding laws of differentiation; that is,
the variational calculus (i.e., calculus with δ) resembles the differential calculus.
For example, if F1 = F1(u) and F2 = F2(u) are functions of a dependent variable
u, we have

δ(F1 ± F2) = δF1 ± δF2.

δ(F1 F2) = δF1 F2 + F1δF2.

δ

(
F1

F2

)
=

δF1 F2 − F1 δF2

F 2
2

.

δ(F1)
n = n(F1)

n−1δF1.

(7.6.2)

If G = G(u, v, w) is a function of several dependent variables u, v, and w, and
possibly their derivatives, the total variation is the sum of partial variations:

δG = δuG+ δvG+ δwG, (7.6.3)

where, for example, δu denotes the partial variation with respect to u. The
variational operator can be interchanged with differential and integral operators:

δ(∇u) = ∇(δu). (7.6.4)

δ

(∫
Ω
u dx

)
=

∫
Ω
δu dx. (7.6.5)

Equations (7.6.2)–(7.6.5) are valid in multiple dimensions and for functions that
depend on more than one dependent variable.

Similar to the necessary and sufficient conditions from the calculus of vari-
ations for the minimum of a functional, the conditions for the minimum of a
functional are

δI = 0 (necessary condition), (7.6.7)

δ2I > 0 (sufficient condition). (7.6.8)

When I denotes a certain energy functional in solid mechanics, the necessary
condition (7.6.7) yields some associated governing equations, which are equiv-
alent to those derived from the conservation principles of mechanics. However,
Eq. (7.6.7) also gives the form of boundary conditions. The equations obtained
in Ω from the necessary condition (7.6.7) for equilibrium problems are known
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as the Euler equations (or the Euler–Lagrange equations for dynamical systems)
and those obtained on Γ (or on a portion of Γ) are known as the natural boundary
conditions.

The variational principles of solid mechanics can be classified into three cat-
egories [see Oden and Reddy (1982) and Reddy (2002)]: (1) variational prin-
ciples involving (energy) functionals that involve the primary variables such
as displacements and temperature are called primal principles; (2) variational
principles that are based on functionals containing the secondary variables such
as stresses and heat flux are called dual principles; and (3) variational princi-
ples based on functionals that include both primary and secondary variables
(e.g., both stresses and displacements, or stresses, strains, and displacements)
are called mixed principles. In this section we consider the variational princi-
ple based on the total potential energy functional for linear elastic bodies that
contains the displacement field as the dependent variables.

7.6.3 The Principle of the Minimum Total Potential Energy

7.6.3.1 Construction of the total potential energy functional

Recall from Sections 6.2 and 7.5 that for elastic bodies (in the absence of tem-
perature variations) there exists a strain energy density function U0 (measured
per unit volume) such that [see Eq. (6.2.15)]

σ =
∂U0

∂ε

(
σij =

∂U0

∂εij

)
. (7.6.9)

The strain energy density U0 is a function of strains at a point and is assumed
to be positive definite. For linear elastic bodies (that is, obeying the generalized
Hooke’s law), the strain energy density is given by [see Eq. (6.3.1) or (7.6.9)]

U0 =
1

2
σ : ε =

1

2
σijεij =

1

2
cijklεijεkl. (7.6.10)

Hence, the total strain energy of the body B occupying volume Ω is given by

U =

∫
Ω
U0(εij) dx =

1

2

∫
Ω
σ : ε dx =

1

2

∫
Ω
σij εij dx. (7.6.11)

The total work done by applied body force f and surface force t is given by [see
Eq. (7.6.11)]

V = −
[∫

Ω
f · u dx+

∮
Γ
t · u ds

]
, (7.6.12)

where the minus sign in the expression for V indicates that the work is expended,
whereas U in Eq. (7.6.11) is the available strain energy stored in body B. The
total potential energy (functional) of body B is the sum of the strain energy
stored in the body and the work done by external forces

Π = U + V =
1

2

∫
Ω
σ : ε dx−

[∫
Ω
f · u dx+

∮
Γ
t · u ds

]

=
1

2

∫
Ω
σij εij dx−

[∫
Ω
fiui dx+

∮
Γ
tiui ds

]
. (7.6.13)
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The principle of minimum total potential energy can be stated as follows:
If a body is in equilibrium, of all admissible displacement fields u the one u0

that makes the total potential energy a minimum corresponds to the equilibrium
solution:

Π(u0) ≤ Π(u). (7.6.14)

An admissible displacement is the one that satisfies the geometric constraints of
the problem.

7.6.3.2 Euler’s equations and natural boundary conditions

Here, we illustrate how the Navier equations of elasticity, Eq. (7.2.17) and
the traction boundary conditions in Eq. (7.2.18), can be derived as the Euler
equations using the principle of minimum total potential energy. Consider a
linear elastic body B occupying volume Ω with boundary Γ and subjected to
body force f (measured per unit volume) and surface traction t̂ on portion Γσ of
the surface. We assume that the displacement vector u is specified to be û on
the remaining portion, Γu, of the boundary (Γ = Γu ∪ Γσ). Therefore, δu = 0
on Γu.

The total potential energy functional is given by (summation on repeated
indices is implied throughout this discussion)

Π(u) =

∫
Ω

(
1

2
σij εij − fi ui

)
dx−

∫
Γσ

t̂i ui ds, (7.6.15)

The first term under the volume integral represents the strain energy density of
the elastic body, the second term represents the work done by the body force f,
and the third term represents the work done by the specified traction t̂.

The strain-displacement relations and stress–strain relations for an isotropic
elastic body are given by Eqs. (7.2.1) and (7.2.9), respectively. Substituting
Eqs. (7.2.1) and (7.2.9) into Eq. (7.6.15), we obtain

Π(u) =

∫
Ω

[
μ

4
(ui,j + uj,i) (ui,j + uj,i) +

λ

2
ui,i uk,k − fi ui

]
dx

−
∫
Γσ

t̂iui ds. (7.6.16)

Setting the first variation of Π to zero (that is, using the principle of minimum
total potential energy), we obtain

0 =

∫
Ω

[μ
2
(δui,j + δuj,i) (ui,j + uj,i) + λδui,iuk,k − fiδui

]
dx

−
∫
Γσ

t̂i δui ds, (7.6.17)

wherein the product rule of variation is used and similar terms are combined.
Next, we use the component form of the gradient theorem to relieve δui of any
derivative so that we can use the fundamental lemma of variational calculus to
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set the coefficients of δui to zero in Ω and on the portion of Γ where δui is
arbitrary. Using the gradient theorem, we can write∫

Ω
δui,j (ui,j + uj,i) dx = −

∫
Ω
δui (ui,j + uj,i),j dx+

∮
Γ
δui (ui,j + uj,i)nj ds,

where nj denotes the jth direction cosine of the unit normal vector to the surface
n̂. Using this result in Eq. (7.6.17) we arrive at

0 =

∫
Ω

[
−μ

2
(ui,j + uj,i),j δui −

μ

2
(ui,j + uj,i),i δuj − λuk,kiδui − fiδui

]
dx

+

∮
Γ

[
μ

2
(ui,j + uj,i) (njδui + niδuj) + λuk,k ni δui

]
ds−

∫
Γσ

δuit̂i ds

=

∫
Ω

[
−μ (ui,j + uj,i),j − λuk,ki − fi

]
δui dx

+

∮
Γ

[
μ (ui,j + uj,i) + λuk,k δij

]
nj δui ds−

∫
Γσ

δui t̂i ds. (7.6.18)

In arriving at the last step, a change of dummy indices is made to combine
terms.

Recognizing that the expression inside the square brackets of the closed sur-
face integral is nothing but σij and σijnj = ti by Cauchy’s formula, we can
write ∮

Γ

[
μ (ui,j + uj,i) + λuk,kδij

]
njδui ds =

∮
Γ
ti δui ds.

This boundary expression resulting from the “integration-by-parts” to relieve δu
of any derivatives is used to classify the variables of the problem. The coefficient
of δui is called the secondary variable, and the varied quantity itself (without
the variational symbol) is called the primary variable. Thus, ui is the primary
variable and ti is the corresponding secondary variable. They always appear
in pairs, and only one element of the pair may be specified at any boundary
point. Specification of a primary variable is called the essential boundary con-
dition and specification of a secondary variable is termed the natural boundary
condition. They are also known as the geometric and force boundary conditions,
respectively. In applied mathematics, they are known as the Dirichlet boundary
condition and the Neumann boundary condition, respectively.

Returning to the boundary integral, it can be expressed as the sum of inte-
grals on Γu and Γσ:∮

Γ
tiδui ds =

∫
Γu

tiδui ds+

∫
Γσ

tiδui ds =

∫
Γσ

tiδui ds.

The integral over Γu is set to zero because u is specified there, that is, δu = 0.
Hence, Eq. (7.6.18) becomes

0 =

∫
Ω

[
−μ (ui,j + uj,i),j − λuk,ki − fi

]
δui dx+

∫
Γσ

δui
(
ti − t̂i

)
ds. (7.6.19)
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Using the fundamental lemma of calculus of variations, we set the coefficients of
δui in Ω and δui on Γσ from Eq. (7.6.19) to zero separately and obtain

μui,jj + (μ+ λ)uk,ki + fi = 0 in Ω, (7.6.20)

njσij − t̂i = 0 on Γσ, (7.6.21)

for i = 1, 2, 3. Equation (7.6.20) represents the Navier equations of elasticity
(7.2.17), and the natural boundary conditions (7.6.21) are the same as the trac-
tion boundary conditions listed in Eq.(7.2.18).

7.6.3.3 Minimum property of the total potential energy functional

To show that the total potential energy of a linear elasticity body is indeed the
minimum at its equilibrium configuration, we consider the total potential energy
functional [more general than the one considered in Eq. (7.6.14)]:

Π(u) =

∫
Ω

(
1
2Cijk � εk� εij − fi ui

)
dx−

∫
Γσ

t̂i ui ds, (7.6.22)

where Cijk� are the components of the fourth-order elasticity tensor.
Let u be the true displacement field and ū be an arbitrary but admissible

displacement field. Then ū is of the form

ū = u+ αv,

where α is a real number and v is a sufficiently differentiable function that
satisfies the homogeneous form of the essential boundary condition v = 0 on
Γu. Then Π(ū) is given by

Π(u+ αv) =

∫
Ω

[
1
2Cijk�

(
εk� + αgk�

)(
εij + αgij

)− fi
(
ui + αvi

)]
dx

−
∫
Γσ

t̂i(ui + αvi)ds,

where
gij =

1
2(vi,j + vj,i).

Collecting the terms, we obtain (because Cijk� = Ck�ij)

Π(ū) = Π(u) + α

[∫
Ω

(
−fivi + Cijk�εk�gij +

1
2αCijk�gijgk�

)
dx−

∫
Γσ

t̂ivi ds

]
,

(7.6.23)

Using the equilibrium equations (7.2.5) and the generalized Hooke’s law σij =
Cijk�εk� we can write

−
∫
Ω
fivi dx =

∫
Ω
σij,jvi dx =

∫
Ω
Cijk� εk�,j vi dx

= −
∫
Ω
Cijk�εk�vi,j dx+

∫
Γσ

Cijk� εk� vi nj ds

= −
∫
Ω
Cijk� εk� gij dx+

∫
Γσ

t̂ivi ds, (7.6.24)
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where the condition vi = 0 on Γu is used in arriving at the last step. Substituting
Eq. (7.6.24) into Eq. (7.6.23), we arrive at

Π(ū) = Π(u) +
α2

2

∫
Ω
Cijk� gij gk� dx. (7.6.25)

In view of the nonnegative nature of the second term on the right-hand side of
Eq. (7.6.23), it follows that

Π(ū) ≥ Π(u), (7.6.26)

and Π(ū) = Π(u) only if the quadratic expression 1
2Cijk�gijgk� is zero. Owing to

the positive-definiteness of the strain energy density, the quadratic expression
is zero only if vi = 0, which in turn implies ūi = ui. Thus, Eq. (7.6.26) implies
that of all admissible displacement fields the body can assume, the true one is
that which makes the total potential energy a minimum. Next, we consider an
example to illustrate the use of the principle of minimum total potential energy.

Example 7.6.1

Consider the bending of a beam according to the Euler–Bernoulli beam theory (see Section
7.3.4). Construct the total potential energy functional and then determine the governing
equation and boundary conditions of the problem.

x

q(x)
Q0

z, w

w(0) = 0
w'(0) = 0

L

0F
,y v

0

0

v
dv
dx

0M

Fig. 7.6.1: A beam with applied loads.

Solution: The total potential energy of a cantilever beam under pure bending by distributed
transverse force q(x) and point load F0 (see Fig. 7.6.1) with the assumption of small strains
and displacements for the linear elastic case (i.e., obeys Hooke’s law) is given by

Π(v) =
1

2

∫ L

0

[
EI

(
d2v

dx2

)2
]
dx−

[∫ L

0

q(x)v(x) dx+ F0v(L) +M0

(
−dv

dx

)
x=L

]
, (7.6.27)

where L is the length, A the cross-sectional area, I moment of inertia about the axis (y) of
bending, and E is Young’s modulus of the beam. The first term represents the strain energy
U (see Example 7.4.3); the second term represents the work done by the applied distributed
load q(x) in moving through the deflection v(x); the third terms represents the work done by
the point load F0 in moving through the displacement v(L); and the last term represents the
work done by moment M0 in moving through the rotation θx(L) = (− dv

dx
)x=L.

Applying the principle of minimum total potential energy, δΠ = 0, we obtain

0 = δΠ =

∫ L

0

EI
d2v

dx2

d2δv

dx2
dx−

[∫ L

0

qδv dx+ F0δv(L) +M0

(
−dδv

dx

)
x=L

]
. (1)
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Next, we carry out integration-by-parts on the first term to relieve δv of any derivative so that
we can use the fundamental lemma of variational calculus to obtain the Euler equation:

0 =

∫ L

0

d2

dx2

(
EI

d2v

dx2

)
δv dx+

[
EI

d2v

dx2

dδv

dx
− d

dx

(
EI

d2v

dx2

)
δv

]L
0

−
[∫ L

0

qδv dx+ F0δv(L) +M0

(
−dδv

dx

)
x=L

]
. (2)

The boundary terms resulting from integration-by-parts allows us to classify the boundary
conditions of the problem. The quantities with δ, δv, and δ(dv/dx) in the boundary terms,
indicate that v and (dv/dx) (removing the variational operator from the quantities) are the
quantities whose specification constrains the beam geometrically. These variables are called
the primary variables:

v ;
dv

dx
. (7.6.28)

Thus, the deflection v and slope (or rotation) dv/dx are the primary variables of the problem.
The expressions that are coefficients of δv and δ(dv/dx) in the boundary terms are called the
secondary variables:

δw :
d

dx

(
EI

d2v

dx2

)
; δ

(
dv

dx

)
: EI

d2v

dx2
. (7.6.29)

It is clear that the secondary variables are nothing but the shear force V (x) = dM/dx and
bending moment M(x)

V (x) = − d

dx

(
EI

d2v

dx2

)
; M(x) = −EI

d2v

dx2
. (7.6.30)

Only one element of each of the pairs (v, V ) and (dv/dx,M) may be specified at a point.
Note that the identification of the primary and secondary variables is unique. Specifying a
primary variable constitutes a geometric or essential boundary condition, and specification of
a secondary variable constitutes a force or natural boundary condition.

Returning to the expression in Eq. (2), first we collect the coefficients of δv in (0, L)
together and set them to zero, because δv is arbitrary in (0, L). We obtain the Euler equation

d2

dx2

(
EI

d2v

dx2

)
− q(x) = 0, 0 < x < L. (7.6.31)

Equation (7.6.31) can also be derived from vector mechanics by considering an element of the
beam and summing the forces and moments, and then relating the bending moment M to the
deflection v, as discussed in Section 7.3.4.

Now considering all boundary terms in Eq. (2), we conclude that

[
d

dx

(
EI

d2v

dx2

)]
x=0

δv(0) = 0,

[
− d

dx

(
EI

d2v

dx2

)
− F0

]
x=L

δv(L) = 0, (3)

(
EI

d2v

dx2

)
x=0

(
dδv

dx

)
x=0

= 0,

(
EI

d2v

dx2
+M0

)
x=L

(
dδv

dx

)
x=L

= 0. (4)

If either of the quantities δw and (dδv/dx) is zero at x = 0 or x = L, if v or (dv/dx) is
specified, the corresponding variations vanish because a specified quantity cannot be varied;
the vanishing of the coefficients of δv and (dδv/dx) at points where the geometric boundary
conditions are not specified provides the natural boundary conditions. Various combinations
of one variable from each of the pairs (v, V ) and (θx,M), where θx = −(dv/dx), define beams
with different boundary conditions.

As an example, suppose that the beam is clamped (i.e., fixed or built-in) at x = 0 and free
at x = L (a cantilever beam), as shown in Fig. 7.6.1. Then, δv(0) = 0 and (dδv(0)/dx) = 0,
and the corresponding secondary variables, namely the shear force and bending moment, are
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unknown there. Since the free end, x = L, is subjected to an upward transverse force F0 and
clockwise bending moment M0, the force or natural boundary conditions become

[
− d

dx

(
EI

d2v

dx2

)
− F0

]
x=L

= 0,

(
EI

d2v

dx2
+M0

)
x=L

= 0. (5)

Since the secondary variables are known at x = L, we will not know the corresponding primary
variables until the problem is solved. Another example is provided by a simply supported (or
hinged at both ends) beam without any applied moments at the supports. Then we have the
following boundary conditions:

v(0) = 0,

(
EI

d2v

dx2

)
x=0

= 0; v(L) = 0,

(
EI

d2v

dx2

)
x=L

= 0. (6)

7.6.4 Castigliano’s theorem I

Suppose that the displacement field of a solid body can be expressed in terms
of the displacements of a finite number of points xi (i = 1, 2, · · ·N) as

u(x) =
N∑
i=1

ui φi(x), (7.6.35)

where ui are unknown displacement parameters, called generalized displace-
ments, and φi are known functions of position, called interpolation functions
with the property that φi is unity at the ith point (i.e., x = xi) and zero at all
other points (xj , j �= i). Then it is possible to represent the strain energy U
and potential energy V due to applied loads in terms of the generalized displace-
ments ui. Then the principle of minimum total potential energy can be written
as

δΠ = δU + δV = 0 ⇒ δU = −δV or
∂U

∂ui
· δui = − ∂V

∂ui
· δui, (7.6.36)

where sum on repeated indices is implied. Since

∂V

∂ui
= −Fi

and δui are arbitrary, it follows that(
∂U

∂ui
− Fi

)
· δui = 0 or

∂U

∂ui
= Fi. (7.6.37)

Equation (7.6.37) is known as Castigliano’s theorem I.
When applied to a structure loaded by generalized point loads Fi with asso-

ciated generalized displacements ui, both having the same sense, Castigliano’s
theorem I gives

∂U

∂ui
= Fi. (7.6.38)

It is clear from the derivation that Castigliano’s theorem I is a special case of
the principle of minimum total potential energy.
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Application of Castigliano’s theorem I to structural members (trusses and
frames) can be found in many books [see Reddy (2002) and references therein]. In
Example 7.6.2, an application of Castigliano’s theorem I to beams is illustrated.

Example 7.6.2

Consider a straight beam of length L and constant bending stiffness EI (modulus E and
moment of inertia I about the axis of bending y). If Δi are the generalized displacements and
Qi are the generalized point loads at the ends of the beam segment, as shown in Fig. 7.6.2,
use Castigliano’s theorem I to establish a relationship between the generalized displacements
and generalized forces.

(a) (b)

1Q

2Q

3Q

4Q

1Δ

x
2Δ 4Δ

3Δ

x

L L

Fig. 7.6.2: (a) Generalized displacements. (b) Generalized forces.

Solution: The equilibrium equation of a beam segment according to the Euler–Bernoulli beam
theory (see Example 7.6.1) is

EI
d4v

dx4
= 0. (7.6.39)

The exact solution to this fourth-order equation is

v(x) = c1 + c2x+ c3x
2 + c4x

3, (7.6.40)

where ci (i = 1, 2, 3, 4) are constants of integration, which we express in terms of the deflections
and rotations at the two ends of an element beam of length L. Let

Δ1 ≡ v(0) = c1, Δ2 ≡
(
−dv

dx

)
x=0

= −c2,

Δ3 ≡ v(L) = c1 + c2L+ c3L
2 + c4L

3,

Δ4 ≡
(
−dv

dx

)
x=L

= −c2 − 2c3L− 3c4L
2.

(7.6.41)

Clearly, Δ1 and Δ3 are the values of the transverse deflection v at x = 0 and x = L, respectively,
and Δ2 and Δ4 are the rotations −dv/dx, measured positive clockwise, at x = 0 and x = L,
respectively; see Fig. 7.6.2(b).

The reason for picking two deflection values and two rotations, as opposed to four deflec-
tions at four points of the beam, needs to be understood. From Example 7.6.1, it is clear that
both v and dv/dx are the primary (kinematic) variables, which must be continuous at every
point of the beam. If we were to join two such beam segments (possibly made of different
bending stiffness EI), the kinematic variables can be made continuous by equating the like
degrees of freedom at the point common to the two segments.

The four equations in Eq. (7.6.41) can be solved for ci in terms of Δi, called generalized dis-
placements, which will serve as the generalized coordinates for the application of Castigliano’s
theorem I. Substituting the result into Eq. (7.6.40) yields

v(x) = φ1(x)Δ1 + φ2(x)Δ2 + φ3(x)Δ3 + φ4(x)Δ4 =

4∑
i=1

φi(x)Δi, (7.6.42)
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where φi(x) (i = 1, 2, 3, 4) are known as the Hermite cubic polynomials

φ1(x) = 1− 3
( x
L

)2
+ 2
( x
L

)3
, φ3(x) =

( x
L

)2 (
3− 2

x

L

)
,

φ2(x) = −x

[
1− 2

( x
L

)
+
( x
L

)2]
, φ4(x) = x

x

L

(
1− x

L

)
.

(7.6.43)

We note that Eq. (7.6.42) has the same form as Eq. (7.6.35).
The strain energy of the beam now can be expressed in terms of the generalized coordinates

Δi (i = 1, 2, 3, 4) as

U =
EI

2

∫ L

0

(
d2v

dx2

)2

dx =
EI

2

∫ L

0

(
4∑

i=1

Δi
d2φi

dx2

)(
4∑

j=1

Δj
d2φj

dx2

)
dx

=
1

2

4∑
i=1

4∑
j=1

KijΔiΔj = 1
2
{Δ}T[K]{Δ} (7.6.44)

where [K] is known as the stiffness matrix

Kij = EI

∫ L

0

d2φi

dx2

d2φj

dx2
dx. (7.6.45)

Note that [K] is symmetric (Kij = Kji). By carrying out the indicated integration, Kij can
be evaluated, as will be shown shortly.

Although we assumed that there is no distributed transverse load on the beam, as per Eq.
(7.6.39), if there were a distributed load q(x), acting upward, it can be converted to statically
equivalent generalized point loads at the end points of the beam segment by

qi =

∫ L

0

q(x)φi(x) dx, i = 1, 2, 3, 4. (7.6.46)

The transverse point loads q1 and q3 and bending moments q2 and q4 together are statically
equivalent (that is, satisfy the force and moment equilibrium conditions of the beam) to the
distributed load q(x) on the beam, as shown in Fig. 7.6.3(a). We distinguish between qi and
Qi, because the latter are generalized point loads that are not due to the distributed load,
q(x); Qi are the reactions at the ends of the beam, as shown in Fig. 7.6.3(b). The work done
by external loads is

V = −
4∑

i=1

(qi +Qi)Δi. (7.6.47)

L

1q

L

2q
3q

4q

( )q x

1Q

2Q
3Q

4Q

( )q x ( )q x

(a)

(b)

Fig. 7.6.3: (a) Statically equivalent generalized loads qi due to distributed load q(x) and
(b) Generalized reaction forces.
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Using Castigliano’s theorem I, we obtain the required relations between the generalized
displacements {Δ} and generalized forces {Q}

∂U

∂Δi
= − ∂V

∂Δi
⇒

4∑
j=1

KijΔj = Qi + qi or [K]{Δ} = {q}+ {Q},

or, in explicit matrix form

2EI

L3

⎡
⎢⎣

6 −3L −6 −3L
−3L 2L2 3L L2

−6 3L 6 3L
−3L L2 3L 2L2

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Δ1

Δ2

Δ3

Δ4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

q1
q2
q3
q4

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩

Q1

Q2

Q3

Q4

⎫⎪⎬
⎪⎭ . (7.6.48)

It can be verified that the stiffness matrix [K] is singular because the rigid-body motions (that
is, rigid-body translation and rotation) of the beam segment are not eliminated.

Example 7.6.3

Consider a beam fixed at x = 0 (this geometric condition eliminates the rigid-body motion),
supported at x = L by a linear elastic spring with spring constant k, subjected to uniformly
distributed load of intensity q0, and clockwise bending moment M0 at x = L, as shown in Fig.
7.6.4. Determine the elongation w(L) in the spring.

k
0M

L

0q

Fig. 7.6.4: A beam fixed at x = 0 and supported by a spring at x = L.

Solution: The geometric boundary conditions at x = 0 require that Δ1 = Δ2 = 0. These
conditions remove the rigid-body modes of vertical translation and rotation about the y-axis.
The force boundary conditions at x = L require Q3 = −Fs = −kv(L) = −kΔ3 and Q4 = M0.
For uniformly distributed load acting upward, q(x) = q0, the load vector {q} is given by

⎧⎪⎨
⎪⎩

q1
q2
q3
q4

⎫⎪⎬
⎪⎭ =

q0L

12

⎧⎪⎨
⎪⎩

6
−L
6
L

⎫⎪⎬
⎪⎭ . (7.6.49)

Then we have

2EI

L3

⎡
⎢⎣

6 −3L −6 −3L
−3L 2L2 3L L2

−6 3L 6 3L
−3L L2 3L 2L2

⎤
⎥⎦
⎧⎪⎨
⎪⎩

0
0
Δ3

Δ4

⎫⎪⎬
⎪⎭ =

q0L

12

⎧⎪⎨
⎪⎩

6
−L
6
L

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩

Q1

Q2

−kΔ3

M0

⎫⎪⎬
⎪⎭ . (7.6.50)

Thus, there are four equations in four unknowns, Q1, Q2,Δ3, and Δ4. Since the last two
equations contain Δ3 and Δ4 as the only unknowns, we can write[

12EI
L3 + k 6EI

L2

6EI
L2

4EI
L

]{
Δ3

Δ4

}
=

q0L

12

{
6

L

}
+

{
0

M0

}
. (7.6.51)
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Solving for Δ3 = v(L) and Δ4 = −(dv/dx)(L), we obtain

Δ3 =
(
q0L

2 − 4M0

) 3L2

8EI (3 + α)
, α =

kL3

EI
,

Δ4 = − q0L
3

48EI

(24− α)

(3 + α)
+

M0L

4EI

(12 + α)

(3 + α)
.

(7.6.52)

The reactions at the fixed end can be determined using the first two equations in Eq. (7.6.50):

{
Q1

Q2

}
=

2EI

L3

[ −6 −3L
3L L2

]{
Δ3

Δ4

}
− q0L

12

{
6

−L

}
. (7.6.53)

The solution obtained in Eqs. (7.6.52) and (7.6.53) is exact because the representation in Eq.
(7.6.42) is the exact solution of Eq. (7.6.31) when EI is a constant and the distributed load
q(x) is replaced by statically equivalent point forces and moments.

7.6.5 The Ritz Method

7.6.5.1 The variational problem

The Ritz method, named after German engineer W. Ritz (1878–1909), is a
numerical method of solving problems posed in terms of solving the variational
problem of the type: find the function the vector function u(x) from a suitable
space U of functions such that

B(u, v) = L(v) for all v from U . (7.6.54)

where B(u, v) is called a bilinear form and L(v) is called a linear form, with the
properties

B(αu1 + βu2, v) = αB(u1, v) + βB(u2, v) (linearity in the first argument)

B(u, αv1 + βv2) = αB(u, v1) + βB(u, v2) (linearity in the second argument)

L(αv1 + βv2) = αL(v1) + βL(v2), (7.6.55)

for any real numbers α and β and dependent variables u, u1, u2, v, v1, and v2.
The bilinear form is said to be symmetric if B(u, v) = B(v, u) (that is, u and v
can be interchanged without changing the value of B).

Some space and mathematical concepts from functional analysis are required
to formally introduce the properties of the space U , though these would distract
the reader from the focus of the book. However, it suffices to say that the space
U possesses properties of an inner product space, that is, functions u from U are
sufficiently differentiable to a certain order as dictated by the functional I(u), u
and its various derivatives are square-integrable in the sense that∫

Ω
|u(x)|2 dx < ∞,

∫
Ω
|∇u(x)|2 dx < ∞, and so on,

and an inner product can be defined between any two elements u and v of the
space U .
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Whenever B(·, ·) is bilinear and symmetric and L(·) is linear, a quadratic
functional can be defined [see Reddy (2002)]:

I(u) = 1
2B(u, u)− L(u), (7.6.56)

such that δI = 0 gives the variational problem in Eq. (7.6.54):

0 = δI(u) = 1
2 [B(δu, u) +B(u, δu)]− L(δu) = B(δu, u)− L(δu),

which is the same as Eq. (7.6.54) with δu = v.
As an example of I(u) in linearized elasticity, we consider the axial deforma-

tion of a uniform bar with an end spring. The governing equation is

− d

dx

(
EA

du

dx

)
= f(x), 0 < x < L, (7.6.57)

and the boundary conditions are

u(0) = 0,

[(
EA

du

dx

)
+ ku(x)

]
x=L

= P, (7.6.58)

where E = E(x) is Young’s modulus, A = A(x) is the cross-sectional area, L is
the length, k is the spring constant, f(x) is the distributed axial load, and P is
the axial load at x = L, as shown in Fig. 7.6.5. Equations (7.6.57) and (7.6.58)
are equivalent to minimizing the total potential energy functional I(u) = Π(u):

Π(u) =

∫ L

0

EA

2

(
du

dx

)2

dx+
k

2
[u(L)]2 −

[∫ L

0
fu dx+ Pu(L)

]
= 1

2B(u, u)− L(u), (7.6.59)

subjected to the geometric boundary condition, u(0) = 0. The bilinear and
linear forms in this case are

B(u, v) =

∫ L

0
EA

du

dx

dv

dx
dx+ k u(L)v(L),

L(v) =

∫ L

0
fv dx+ Pv(L).

(7.6.60)

x

E, A k

 L 

Rigid extension

Deformable bar

P

Fig. 7.6.5: Axial deformation of a uniform bar with an end spring.
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Another example of the functional I is provided by the total potential energy
functional Π in Eq. (7.6.27) associated with the bending of straight beams
according to the Euler–Bernoulli beam theory. The bilinear and linear forms in
this case are

B(v, w) =

∫ L

0
EI

d2v

dx2
d2w

dx2
dx,

L(w) =

∫ L

0
qw dx+ F0w(L) +M0α(L),

(7.6.61)

where α = −(dw/dx).

7.6.5.2 Description of the method

In the Ritz method, we seek an approximation UN (x) of u(x), for a fixed and
preselected N , in the form

u(x) ≈ UN (x) = ciφi(x) + φ0(x), (7.6.62)

where summation on repeated index i is implied (over the range of 1 to N),
φi(x) are appropriately selected approximation functions, and ci are unknown
parameters. In view of the fact that the natural boundary conditions of the
problem are included in the functional I(u), we require the approximate solu-
tion UN to satisfy only the geometric boundary conditions. In order that UN

satisfies the geometric boundary conditions for any ci, it is convenient to choose
the approximation in the form (7.6.62) and require φ0(x) to satisfy the actual
specified geometric boundary conditions. For instance, if u(x) is specified to be
û at x = 0, we require φ0(x) be such that φ0(0) = û, while φi are required to
satisfy the homogeneous form of the geometric boundary condition, φi(0) = 0.
This follows from

0 = UN (0) =

N∑
i=1

ciφi(0) + φ0(0) =

N∑
i=1

ciφi(0) + û.

Because UN (0) = û, it follows that

N∑
i=1

ciφi(0) = 0 → φi(0) = 0 for all i = 1, 2, . . . , N.

Thus, φi(x) must satisfy the homogeneous form of specified essential boundary
conditions, and they must be sufficiently differentiable as required by the func-
tional I(U). The parameters ci are determined by the condition that I(UN ) is
the minimum, that is, δI(U) = 0.

The approximation functions φ0 and φi should be such that the substitution
of Eq. (7.6.54) into δΠ results in N linearly independent equations for the
parameters cj (j = 1, 2, . . . , N) so that the system has a solution. To ensure that
the algebraic equations resulting from the Ritz approximation have a solution,
and the approximate solution UN (x) converges to the true solution u(x) of the
problem as the value of N is increased, φi (i = 1, 2, . . . , N) and φ0 must satisfy
certain requirements, as outlined next.
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(1) φ0 must satisfy the specified geometric boundary conditions. It is identi-
cally zero if all of the specified essential boundary conditions are homoge-
neous, that is, φ0(x) = 0. (7.6.63)1

(2) φi (i = 1, 2, . . . , N) must satisfy the following three conditions: (a) be
continuous, as required by the quadratic functional I(u); (b) satisfy the
homogeneous form of the specified essential boundary conditions; and (c)
the set {φi} be linearly independent and complete; completeness refers to
the property that all lower order terms up to the highest desired term must
be included. (7.6.63)2

Substituting UN (c1, c2, · · · , cN ) into the total potential energy functional Π
in Eq. (7.6.56), we obtain Π as a function of the parameters c1, c2, · · · , cN (after
carrying out the indicated integration with respect to x):

Π = 1
2B(cjφj + φ0, ckφk + φ0)− L(ckφk + φ0)

= 1
2 [cjckB(φj , φk) + 2cjB(φj , φ0) +B(φ0, φ0)]− ckL(φk)− L(φ0).

Then ci are determined (or adjusted) such that δΠ = 0; in other words, we
minimize Π with respect to ci, i = 1, 2, · · · , N :

0 = δΠ =
∂Π

∂c1
δc1 +

∂Π

∂c2
δc2 + . . .+

∂Π

∂cN
δcN =

N∑
j=1

∂Π

∂cj
δcj .

Because the set {ci} is linearly independent, it follows that

0 =
∂Π

∂ci
= 1

2 [ckB(φi, φk) + cjB(φj , φi) + 2B(φi, φ0)]− L(φi)

= cjB(φi, φj) +B(φi, φ0)− L(φi) for i = 1, 2, · · · , N.

or
Bc = R, (7.6.64)

where
Bij = B(φi, φj), Ri = L(φi)−B(φi, φ0). (7.6.65)

Equation (7.6.64) consists of N linear algebraic equations among N parameters,
c1, c2, · · · , cN . Once the parameters are determined from Eq. (7.6.64), the
solution UN to the problem is given by Eq. (7.6.62). We consider couple of
examples next.

Example 7.6.4

Formulate the N -parameter Ritz solution UN (x) of the bar problem described by Eqs. (7.6.57)
and (7.6.58) for AE(x) = a0(2 − x

L
), k = 0, and f(x) = f0, and determine the Ritz solutions

for N = 1 and N = 2 [see Reddy (2002)].

Solution: First, we must select the approximation functions φ0 and φi. Apart from the guide-
lines given in (7.6.63), the selection of the coordinate functions is largely arbitrary. As a
general rule, the coordinate functions φi should be selected from an admissible set (that is,
those meeting the two conditions listed earlier), from the lowest order to a desirable order,
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without missing any intermediate terms (i.e., the completeness property). Also, φ0 should be
any lowest order (including zero) that satisfied the specified essential boundary conditions of
the problem; φ0(x) has no continuity (differentiability) requirement.

For the problem at hand, φ0 = 0 because the specified essential boundary condition is
homogeneous, u(0) = 0; this homogeneous essential boundary condition requires us to find
φ1(x) such that φ1(0) = 0 and it is differentiable at least once with respect to x because Π(u)
involves the first derivatives of u ≈ UN . If an algebraic polynomial is to be selected, the lowest
order polynomial that has a nonzero first derivative is

φ1(x) = a+ bx,

where a and b are constants. The condition φ1(0) = 0 gives a = 0. Since b is arbitrary, we
take it to be unity (any nonzero constant will be absorbed into c1). When N > 1, property
2(c) in Eq. (7.6.63)2 requires that φi, i > 1, should be selected such that the set {φi}Ni=1 is
linearly independent and makes the set complete. In the present case, this is done by choosing
φ2 to be x2. Clearly, φ2(x) = x2 meets the conditions φ2(0) = 0, linearly independent of
φ1(x) = x (i.e., φ2 is not a constant multiple of φ1), and the set {x, x2} is complete (i.e.,
no other admissible term up to quadratic is omitted). In other words, in selecting coordinate
functions of a given degree, one should not omit any lower-order terms that are admissible.
Otherwise, the approximate solution will never converge to the exact solution, no matter how
many terms are used in the Ritz approximation, as the exact solution may have those lower
order terms that were omitted in the approximate solution. We choose

U2(x) = c1φ1 + c2φ2 + · · ·+ cNφN (x) = ci φi(x). (1)

For the choice of algebraic polynomials, the N -parameter Ritz coefficients Bij are [see Eq.
(7.6.60)]

Bij = B(φi, φj) =

∫ L

0

a0

(
1− x

L

) dφi

dx

dφj

dx
dx+ k φi(L)φj(L)

= a0 ij

∫ L

0

(
1− x

L

)
xi+j−2 dx+ k(L)i+j

= a0
ij(1 + i+ j)

(i+ j − 1)(i+ j)
(L)i+j−1 + k(L)i+j , (2)

Ri =

∫ L

0

fφi dx+ Pφi(L) =
f0

i+ 1
(L)i+1 + P (L)i. (3)

Note that k = 0 for the problem at hand.
For one-term approximation (N = 1), we have

a11 =
3

2
a0L, b1 =

1

2
f0L

2 + PL,

c1 =
b1
a11

=
6

9a0L

(
3

6
f0L

2 + PL

)
=

f0L+ 2P

3a0
,

and the one-parameter Ritz solution is

U1(x) =
f0L+ 2P

3a0
x. (4)

For N = 2, we have

a11 =
3

2
a0L, a12 = a21 =

4

3
a0L

2, a22 =
5

3
a0L

3,

b1 =
1

2
f0L

2 + P0L, b2 =
1

3
f0L

3 + P0L
2.

The Ritz equations can be written in matrix form as

a0L

6

[
9 8L

8L 10L2

]{
c1
c2

}
=

f0L
2

6

{
3
2L

}
+ PL

{
1
L

}
,
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whose solution by is

c1 =
1

a0

(
7

13
f0 +

6

13
P

)
, c2 =

3

13a0L
(−f0L+ P ) .

Hence, the two-parameter Ritz solution is

U2(x) =
7f0L+ 6P

13a0
x+

3(P − f0L)

13a0L
x2. (5)

The exact solution of Eqs. (7.6.57) and (7.6.58) with u(0) = 0, k = 0, EA = a0[2− (x/L)],
and f = f0 is

u(x) =
f0L

a0
x+

(f0L− P )L

a0
log
(
1− x

2L

)
(6)

≈ f0L+ P

2a0
x+

P − f0L

8a0L
x2 +

P − f0L

24a0L2
x3 + . . . (7)

Table 7.6.1 contains a comparison of the Ritz coefficients ci for N = 1, 2, . . . , 8 with the
exact coefficients in Eq. (7) for L = 10 ft., a0 = 180 × 106 lb, f0 = 0, and P = 10 × 106 lb.
Clearly the Ritz coefficients ci converge to the exact ones as N goes from 1 to 8.

Table 7.6.1: The Ritz coefficients* for the axial deformation of an isotropic elastic bar sub-
jected to axial force.

n c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 c̄7 c̄8
1 37.037
2 25.641 12.821
3 28.219 4.409 4.879
4 27.691 7.788 0.000 3.029
5 27.794 6.701 3.389 −1.040 1.664
6 27.775 7.009 1.904 2.012 −1.142 0.952
7 27.778 6.929 2.453 0.320 1.447 −0.980 0.560
8 27.778 6.948 2.272 1.094 −0.287 1.136 −0.769 0.336
Exact 27.778 6.944 2.315 0.868 0.347 0.145 0.062 0.027

* c̄i = ci × 105+i.

Example 7.6.5

Consider a simply supported beam of length L and constant bending stiffness EI, subjected
to uniformly distributed transverse load q0. Determine the transverse displacement v(x) of the
beam using the Ritz method with N = 2 and N = 3.

Solution: The Ritz equations are obtained from Eq. (7.6.64) and (7.6.65), where the bilinear
and linear forms defined by Eq. (7.6.61) with F0 = M0 = 0. We choose an N -parameter Ritz
approximation of the form

v(x) ≈ V2(x) = c1φ1(x) + c2φ2(x) + · · ·+ cNφN (x) + φ0(x).

Noting that the essential boundary conditions are v(0) = v(L) = 0, we select φ0 to be zero. As
far as φi are concerned, we choose them to vanish at x = 0 and x = L. Thus, we can choose

φ1 = x(L− x), φ2 = x2(L− x), φi(x) = xi(L− x), · · · , φN (x) = xN (L− x), (1)

and
dφi

dx
= iLxi−1 − (i+ 1)xi,

d2φi

dx2
= i(i− 1)Lxi−2 − (i+ 1)ixi. (2)
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Substituting these expressions into Bij and Ri, we obtain

Bij =

∫ L

0

EI
d2φi

dx2

d2φj

dx2
dx

=

∫ L

0

EI
[
i(i− 1)Lxi−2 − (i+ 1)ixi

] [
j(j − 1)Lxj−2 − (j + 1)jxj

]
dx

Ri =

∫ L

0

q0φi dx =

∫ L

0

q0(x
iL− xi+1) dx.

(2)

For N = 2, we have

EIL

[
4 2L
2L 4L2

]{
c1
c2

}
=

q0L
3

12

{
2
L

}
. (3)

The solution of these equations yields the result c1 = q0L
2/24EI and c2 = 0, and the two-

parameter Ritz solution becomes

V2(x) =
q0L

4

24EI

(
x

L
− x2

L2

)
. (4)

For N = 3 we obtain

EIL

⎡
⎣ 4 2L 2L2

2L 4L2 4L3

2L2 4L3 4.8L4

⎤
⎦
⎧⎨
⎩

c1
c2
c3

⎫⎬
⎭ =

q0L
3

12

⎧⎨
⎩

2
L

0.6L2

⎫⎬
⎭ , (5)

and we obtain c1 = c2L = −c3L
2 = q0L

2/24EI. Hence, the three-parameter Ritz solution is

V3(x) =
q0L

4

24EI

(
x

L
− 2

x3

L3
+

x4

L4

)
, (6)

which coincides with the exact solution of the beam problem.

Example 7.6.6

Consider the Poisson equation governing the Prandtl stress function Ψ, Eq. (7.5.79):

−∇2Ψ = 2μθ in Ω, Ψ = 0 on Γ. (1)

If the cross section of the cylinder is a square, Ω = {−a ≤ x, y ≤ a}, as shown in Fig. 7.6.6,
determine the stress function and compute the shear stresses σxz and σyz using a one-parameter
Ritz approximation.

x

y

a a

a

a
2 2 in

0 on
μθ

Fig. 7.6.6: Torsion of a cylinder of square cross section.
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Solution: The functional associated with Eq. (1) is

Π(Ψ) =
1

2

∫ a

−a

∫ a

−a

[(
∂Ψ

∂x

)2

+

(
∂Ψ

∂y

)2
]
dx dy − 2μθ

∫ a

−a

∫ a

−a

Ψ dx dy. (2)

and the bilinear and linear forms are

B(Ψ,Φ) =

∫ a

−a

∫ a

−a

(
∂Ψ

∂x

∂Φ

∂x
+

∂Ψ

∂y

∂Φ

∂y

)
dx dy, L(Φ) = 2μθ

∫ a

−a

∫ a

−a

Φ dx dy. (3)

For N = 1 we choose the function

φ1 = (a2 − x2)(a2 − y2), (4)

and obtain

Bij =

∫ a

−a

∫ a

−a

(
∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y

)
dx dy =

256

45
,

Ri = 2μθ

∫ a

−a

∫ a

−a

φi dx dy = 2μθ
16

9a2
, (5)

and the one-parameter solution is given by

Ψ1(x, y) =
5μθa2

8

(
1− x2

a2

)(
1− y2

a2

)
. (6)

σxz = −5μθa

4

x

a

(
1− y2

a2

)
, σyz =

5μθa

4

y

a

(
1− y2

a2

)
.

For N = 2 with

φ1 = (a2 − x2)(a2 − y2), φ2 = (x2 + y2)φ1, · · · . (7)

we obtain

a8

[
256
45

1024
525

a2

1024
525

a2 11264
4725

a4

]{
c1
c2

}
= 2μθa6

{
16
9

32
45
a2

}
, (8)

whose solution yields

c1 =
1295

2216a2
μθ, c2 =

525

4432a4
μθ. (9)

The two-parameter Ritz solution is given by

Ψ2(x, y) =
μθa2

4432
[2590 + 525(x̄2 + ȳ2)](1− x̄2)(1− ȳ2), (10)

where x̄ = x/a and ȳ = y/a.
The exact solution to Eq. (1) can be obtained using the separation of variables method,

and it is given by

Ψ(x, y) =
32μθa2

π3

∞∑
n=1,3,5...

1

n3
(−1)(n−1)/2

[
1− cosh(nπy/2a)

cosh(nπ/2)

]
cos

nπx

2a
. (11)

The exact value of Ψ at the center of the region is

Ψ(0, 0) = 0.5884μθa2,

whereas the two-parameter Ritz solution is 0.5844μθa2, which has an error of only 0.68%.
Although the problem is presented here as one governing the Prandtl stress function for

the torsion of a cylindrical member, the equation arises, among others, in connection with the
transverse deflection of a membrane fixed on all sides and subjected to uniform pressure f0 (in
place of 2μθ) and in conduction heat transfer in a square region with internal heat generation
of f0 unit area. The function u denotes the deflection u in the case of a membrane and the
temperature T in the case of conduction heat transfer. Thus the results obtained can also be
interpreted for these two problems.
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7.7 Hamilton’s Principle

7.7.1 Introduction

The principle of total potential energy discussed in the previous section can be
generalized to initial value problems, that is, problems involving time, and the
principle is known as Hamilton’s principle. In Hamilton’s principle the system
under consideration is assumed to be characterized by two energy functions:
the kinetic energy K and the total potential energy Π. For discrete systems
(i.e., systems with a finite number of degrees of freedom), these energies can
be described in terms of a finite number of generalized coordinates and their
derivatives with respect to time t. For continuous systems (that is, systems that
are described by an infinite number of generalized coordinates), the energies
can be expressed in terms of the dependent variables of the problem that are
functions of position and time.

7.7.2 Hamilton’s Principle for a Rigid Body

To gain a simple understanding of Hamilton’s principle, consider a single particle
or a rigid-body (which is a collection of particles, the distance between which
is unaltered at all times) of mass m moving under the influence of a force (see
Reddy, 2002) F = F(r, t). The path r(t) followed by the particle is related to
the force F and mass m by the principle of balance of linear momentum (i.e.,
Newton’s second law of motion):

F(r, t) =
d

dt

(
m
dr

dt

)
. (7.7.1)

A path that differs from the actual path is expressed as r+ δr, where δr is the
variation of the path for any arbitrarily fixed time t. We suppose that the actual
path r and the varied path differ except at two distinct times t1 and t2, that is,
δr(t1) = δr(t2) = 0. Taking the scalar product of Eq. (7.7.1) with the variation
δr, and integrating with respect to time between t1 and t2, we obtain∫ t2

t1

[
d

dt

(
m
dr

dt

)
− F(r, t)

]
· δr dt = 0. (7.7.2)

Integration-by-parts of the first term in Eq. (7.7.2) yields

−
∫ t2

t1

[
m
dr

dt
· dδr
dt

+ F(r, t) · δr
]
dt+

(
m
dr

dt
· δr

)∣∣∣∣
t2

t1

= 0. (7.7.3)

The last term in Eq. (7.7.3) vanishes because δr(t1) = δr(t2) = 0. Also, note
that

m
dr

dt
· dδr
dt

= δ

[
m

2

dr

dt
· dr
dt

]
≡ δK, (7.7.4)

where K is the kinetic energy of the particle or a rigid-body

K =
1

2
m
dr

dt
· dr
dt

=
1

2
mv · v, (7.7.5)
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and δK is called the virtual kinetic energy. The expression F(r, t) · δr is called
the virtual work done by external forces and denoted by

δWE = −F(r, t) · δr. (7.7.6)

The minus sign indicates that the work is done by external force F on the body
in moving through the displacement δr. Equation (7.7.3) now takes the form∫ t2

t1

(
δK − δWE

)
dt = 0, (7.7.7)

which is known as the general form of Hamilton’s principle for a single particle or
rigid body. Note that a particle or a rigid-body has no strain energy Π because
the distance between the particles is unaltered.

Suppose that the force F is conservative (i.e., the sum of the potential and
kinetic energies is conserved) such that it can be replaced by the gradient of a
potential

F = −grad V, (7.7.8)

where V = V (r, t) is the potential energy due to the loads on the body. Then
Eq. (7.7.7) can be expressed in the form

δ

∫ t2

t1

(K − V ) dt = 0, (7.7.9)

because (r = xiêi)

grad V · δr =
∂V

∂xi
δxi = δV (x).

The difference between the kinetic and potential energies is called the Lagrangian
function

L ≡ K − V. (7.7.10)

Equation (7.7.9) is known as Hamilton’s principle for the conservative motion
of a particle (or a rigid body). The principle can be stated as follows: The motion
of a particle acted on by conservative forces between two arbitrary instants of
time t1 and t2 is such that the line integral over the Lagrangian function is an
extremum for the path motion. Stated in other words, of all possible paths that
the particle could travel from its position at time t1 to its position at time t2,
its actual path will be one for which the integral

I ≡
∫ t2

t1

L dt (7.7.11)

is an extremum (i.e., a minimum, maximum, or an inflection).
If the path r can be expressed in terms of the generalized coordinates qi(i =

1, 2, 3), the Lagrangian function can be written in terms of qi and their time
derivatives

L = L(q1, q2, q3, q̇1, q̇2, q̇3). (7.7.12)
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Then the condition for the extremum of I in (7.7.11) results in the equation
(note that δqi = 0 at t1 and t2)

δI = δ

∫ t2

t1

L(q1, q2, q3, q̇1, q̇2, q̇3)dt = 0

=

∫ t2

t1

3∑
i=1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt. (7.7.13)

When all qi are linearly independent (i.e., no constraints among qi), the varia-
tions δqi are independent of each other for all t, except that all δqi = 0 at t1 and
t2. Therefore, the coefficients of δq1, δq2, and δq3 vanish separately:

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, 2, 3. (7.7.14)

These equations are called the Lagrange equations of motion. Recall that in Sec-
tion 7.6 (for a static case) these equations were also called the Euler equations.
For the dynamic case involving deformable solids, these equations will be called
the Euler–Lagrange equations.

When the forces are not conservative, we must deal with the general form
of Hamilton’s principle in Eq. (7.7.7). In this case, there exists no functional I
that must be an extremum. If the virtual work can be expressed in terms of the
generalized coordinates qi by

δWE = − (F1 δq1 + F2 δq2 + F3 δq3) , (7.7.15)

where Fi are the generalized forces, then we can write Eq. (7.7.14) as

∫ t2

t1

3∑
i=1

[
∂K

∂qi
− d

dt

(
∂K

∂q̇i

)
+ Fi

]
δqi dt = 0, (7.7.16)

and the Euler-Lagrange equations for the nonconservative forces are given by

δqi :
∂K

∂qi
− d

dt

(
∂K

∂q̇i

)
+ Fi = 0, i = 1, 2, 3. (7.7.17)

Example 7.7.1

Consider the planar motion of a pendulum that consists of a mass m attached at the end of
a rigid massless rod of length L that pivots about a fixed point O, as shown in Fig. 7.7.1.
Determine the equation of motion.

Solution: The position of the mass can be expressed in terms of the generalized coordinates
q1 = l and q2 = θ, measured from the vertical position. Because l is a constant, we have q̇1 = 0
and θ is the only independent generalized coordinate. The force F acting on the mass m is the
component of the gravitational force,

F = mg (cos θ êr − sin θ êθ) ≡ Fr êr + Fθ êθ. (7.7.18)

The component along êr does no work because q1 = l is a constant. The second component,
Fθ, is derivable from the potential (∇V = −Fθ êθ):

V (θ) = − [−mgl(1− cos θ)] = mgl(1− cos θ), (7.7.19)
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θ l

m

y

xO

bob
(1 cos )θ−l

sinθmg
cosθmg

mg

ê

êr

Fig. 7.7.1: Planar motion of a pendulum.

where V represents the potential energy of the mass m at any instant of time with respect to
the static equilibrium position θ = 0, and ∇ is the gradient operator in the polar coordinate
system:

∇ = êr
∂

∂r
+

êθ

r

∂

∂θ
. (7.7.20)

Thus the kinetic energy and the potential energy due to external load are given by

K =
m

2
(
θ̇)2, V = mgl(1− cos θ),

δK = ml2θ̇ δθ̇, δV = mgl sin θ δθ = −Fθ(l δθ).
(7.7.21)

Therefore, the Lagrangian function L is a function of θ and θ̇. The Euler–Lagrange equation
is given by

δq2 = δθ :
∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0,

which yields

−mgl sin θ − d

dt
(ml2 θ̇) = 0 or θ̈ +

g

l
sin θ = 0 (Fθ = ml θ̈). (7.7.22)

Equation (7.7.22) represents a second-order nonlinear differential equation governing θ. For
small angular motions, Eq. (7.7.22) can be linearized by replacing sin θ ≈ θ:

θ̈ +
g



θ = 0. (7.7.23)

Now suppose that the mass experiences a resistance force F∗ proportional to its speed
(e.g., the mass m is suspended in a medium with viscosity μ). According to Stokes’s law,

F∗ = −6πμalθ̇ êθ, (7.7.24)

where μ is the viscosity of the surrounding medium, a is the radius of the bob, and êθ is the
unit vector tangential to the circular path. The resistance of the massless rod supporting the
bob is neglected. The force F∗ is not derivable from a potential function (i.e., nonconservative).
Thus, we have one part of the force (i.e., gravitational force) conservative and the other (i.e.,
viscous force) nonconservative. Hence, we use Hamilton’s principle expressed by Eq. (7.7.14)
or Eq. (7.7.17) with

δWE = δV − F∗ · (lδθ êθ) =
(
mgl sin θ + 6πμal2 θ̇

)
δθ ≡ −Fθl δθ.

Then the equation of motion is given by [K = K(θ̇)]:

− d

dt

(
∂K

∂θ̇

)
+ Fθl = 0 or θ̈ +

g

l
sin θ +

6πaμ

m
θ̇ = 0. (7.7.25)

The coefficient c = 6πaμ/m is called the damping coefficient.
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7.7.3 Hamilton’s Principle for a Continuum

Hamilton’s principle for a continuous body B occupying configuration κ with
volume Ω and boundary Γ can be derived following essentially the same ideas as
discussed for a particle or a rigid body. In contrast to a rigid body, a continuum is
characterized by strain (or internal) energy U , in addition to the kinetic energy
K. Newton’s second law of motion for a continuous body can be written in
general terms as

F− ∂

∂t

(
m
∂v

∂t

)
= 0, (7.7.26)

where m is the mass, v(x, t) = ∂u/∂t is the velocity vector, u(x, t) is the dis-
placement vector, and F is the resultant of all forces acting on the body B. The
actual path u followed by a material particle in position x in the body is varied,
consistent with kinematic (essential) boundary conditions on Γ, to u+δu, where
δu is the admissible variation (or virtual displacement) of the path. We assume
that the varied path differs from the actual path except at initial and final times,
t1 and t2, respectively. Thus, an admissible variation δu satisfies the conditions,

δu(x, t) = 0 on Γu for all t,

δu(x, t1) = δu(x, t2) = 0 for all x,
(7.7.27)

where Γu denotes the portion of the boundary Γ of the body where the displace-
ment vector u is specified.

The work done on body B at time t by the resultant force F, which consists
of body force f and specified surface traction t̂ in moving through respective
virtual displacements δu, is given by∫

Ω
f · δu dx+

∫
Γσ

t̂ · δu ds−
∫
Ω
σ : δε dx, (7.7.28)

where σ and ε are the stress and strain tensors, and Γσ is the portion of the
boundary Γ on which tractions are specified (Γ = Γu∪Γσ). The last term in Eq.
(7.7.28) is known as the virtual work stored in the body due to deformation. The
strains δε are assumed to be compatible in the sense that the strain-displacement
relations (7.2.1) are satisfied. The work done by the inertia force ∂(mv)/∂t in
moving through the virtual displacement δu is given by∫

Ω

∂

∂t

(
ρ0

∂u

∂t

)
· δu dx, (7.7.29)

where ρ0 is the mass density of the medium (m = ρ0 dx). We have, analogous
to Eq. (7.7.2) for a rigid body, the result∫ t2

t1

{∫
Ω

∂

∂t

(
ρ0

∂u

∂t

)
· δu dx−

[∫
Ω
(f · δu− σ : δε) dx+

∫
Γσ

t̂ · δu ds

]}
dt = 0,

or

−
∫ t2

t1

[∫
Ω
ρ0

∂u

∂t
· ∂δu
∂t

dx+

∫
Ω
(f · δu− σ : δε) dx+

∫
Γσ

t̂ · δu ds

]
dt = 0.

(7.7.30)
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In arriving at the expression in Eq. (7.7.30), integration-by-parts is used on the
first term; the integrated terms vanish because of the initial and final conditions
in Eq. (7.7.27). Equation (7.7.30) is known as the general form of Hamilton’s
principle for a continuous medium – conservative or not, and elastic or not.

For an elastic body, we recall from the previous sections that the forces f
and t are conservative,

δV = −
(∫

Ω
f · δu dx+

∫
Γσ

t̂ · δu ds

)
, (7.7.31)

and that there exists a strain energy density function U0 = U0(ε) such that

σ =
∂U0

∂ε
. (7.7.32)

Substituting Eqs. (7.7.31) and (7.7.32) into Eq. (7.7.30), we obtain

δ

∫ t2

t1

[K − (V + U)]dt = 0, (7.7.33)

where K and U are the kinetic and strain energies:

K =

∫
Ω

ρ0
2

∂u

∂t
· ∂u
∂t

dx, U =

∫
Ω
U0 dx. (7.7.34)

Equation(7.7.33) represents Hamilton’s principle for an elastic body. Recall
that the sum of the strain energy U and potential energy V of external forces,
U + V, is called the total potential energy, Π, of the body. For bodies involving
no motion (that is, forces are applied sufficiently slowly such that the motion is
independent of time, and the inertia forces are negligible), Hamilton’s principle
(7.7.33) reduces to the principle of virtual displacements. Equation (7.7.33) may
be viewed as the dynamics version of the principle of virtual displacements.

The Euler–Lagrange equations associated with the Lagrangian, L = K −Π,
can be obtained from Eq. (7.7.33):

0 = δ

∫ t2

t1

L(u,∇u, u̇) dt

=

∫ t2

t1

[∫
Ω

(
ρ0

∂2u

∂t2
−∇ · σ − f

)
· δu dx+

∫
Γσ

(t− t̂) · δu ds

]
dt, (7.7.35)

where t = σ · n̂. In arriving at Eq. (7.7.35) from Eq. (7.7.33), we have
used integration-by-parts, gradient theorems, and Eqs. (7.7.27)1. Since δu is
arbitrary for t, t1 < t < t2, and for x in Ω and also on Γσ, it follows that

ρ0
∂2u

∂t2
−∇ · σ − f = 0 in Ω for t > 0, (7.7.36)

t(s, t)− t̂(s, t) = 0 on Γσ for t > 0. (7.7.37)
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Equations (7.7.36) are the Euler–Lagrange equations for an elastic body. Equa-
tions (7.7.36) are also subject to initial conditions of the form

u(x, 0) = u0(x), u̇(x, 0) = v0(x), (7.7.38)

where u0 and v̇0 are the initial displacement and initial velocity vectors, respec-
tively.

Example 7.7.2

The displacement field for pure bending (i.e., omit the axial displacement u) of a beam according
to the Euler–Bernoulli beam theory is (see Section 7.3.4)

u1(x, z, t) = −y
∂v

∂x
, u2 = 0, u3(x, t) = v(x, t), (1)

where v is the transverse displacement. Determine the equations of motion of the Euler–
Bernoulli beam theory.

Solution: The Lagrange function associated with the dynamics of the Euler–Bernoulli beam is
given by L = K − (U + V ), where

K =

∫ L

0

∫
A

[
ρ0
2

(
−z

∂2v

∂x∂t

)2

+
ρ0
2

(
∂w

∂t

)2]
dAdx

=

∫ L

0

[
ρ0I

2

(
∂2v

∂x∂t

)2

+
ρ0A

2

(
∂v

∂t

)2
]
dx, (2)

U =

∫ L

0

∫
A

E

2

(
−y

∂2v

∂x2

)2

dAdx

=

∫ L

0

EI

2

(
∂2v

∂x2

)2

dx, (3)

V = −
∫ L

0

q v dx, (4)

where q is the transverse distributed load. In arriving at the expressions for K and U , we have
used the fact that the x-axis coincides with the geometric centroidal axis,

∫
A
y dA = 0.

The Hamilton principle gives

0 = δ

∫ T

0

(K − U − V ) dt

=

∫ T

0

∫ L

0

[
ρ0I

∂v̇

∂x

∂δv̇

∂x
+ ρ0Av̇ δv̇ − EI

∂2v

∂x2

∂2δv

∂x2
+ q δv

]
dx dt. (5)

The Euler–Lagrange equation obtained from Eq. (5) is the equation of motion governing the
Euler–Bernoulli beam theory

∂2

∂x∂t

(
ρ0I

∂2v

∂x∂t

)
− ∂

∂t

(
ρ0A

∂v

∂t

)
− ∂2

∂x2

(
EI

∂2v

∂x2

)
+ q = 0, (7.7.39)

for 0 < x < L and t > 0. The first term is the contribution due to rotary inertia. The boundary
and initial conditions associated with Eq. (7.7.39) are

Boundary conditions: specify: v or
∂

∂x

(
EI

∂2v

∂x2

)
+ ρ0I

∂3v

∂t2∂x
,

specify:
∂v

∂x
or EI

∂2v

∂x2
, (7.7.40)

Initial conditions: specify: v(x, 0) and v̇(x, 0).
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Example 7.7.3

Suppose that the Euler–Bernoulli beam of Example 7.7.2 experiences two types of viscous
(velocity-dependent) damping: (1) viscous resistance to transverse displacement of the beam
and (2) a viscous resistance to straining of the beam material. If the resistance to transverse
velocity is denoted by c(x), the corresponding damping force is given by qD(x, t) = c(x)v̇. If
the resistance to strain velocity is cs, the damping stress is σD

xx = csε̇xx. Derive the equations
of motion of the beam with both types of damping.

Solution: We must add the following terms due to damping to the expression in Eq. (5) of
Example 7.7.2:

−
∫ T

0

[∫
Ω

σDδε dx+

∫ L

0

qDδv dx

]
dt

= −
∫ T

0

[∫ L

0

∫
A

cs

(
−z

∂3v

∂x2∂t

)(
−z

∂2δv

∂x2

)
dAdx+

∫ L

0

qDδv dx

]
dt

= −
∫ T

0

∫ L

0

(
Ics

∂3v

∂x2∂t

∂2δv

∂x2
+ c

∂v

∂t
δv

)
dx dt. (1)

Then the expression in Eq. (5) of Example 7.7.2 becomes

0 =

∫ T

0

∫ L

0

[
ρ0I

∂v̇

∂x

∂δv̇

∂x
+ ρ0Av̇ δv̇ − EI

∂2v

∂x2

∂2δv

∂x2
+ q δv

]
dx dt

−
∫ T

0

∫ L

0

(
Ics

∂3v

∂x2∂t

∂2δv

∂x2
+ c

∂w

∂t
δv

)
dx dt (2)

and the Euler–Lagrange equation is

∂2

∂x∂t

(
ρ0I

∂2v

∂x∂t

)
− ∂

∂t

(
ρ0A

∂v

∂t

)
− ∂2

∂x2

(
EI

∂2v

∂x2

)

− ∂2

∂x2

(
Ics

∂3v

∂x2∂t

)
− c

∂v

∂t
+ q = 0. (3)

The boundary and initial conditions for this case are

Boundary conditions: specify: v or
∂

∂x

(
EI

∂2v

∂x2
+ Ics

∂3v

∂x2∂t

)
+ ρ0I

∂3v

∂t2∂x
,

specify:
∂v

∂x
or EI

∂2v

∂x2
+ Ics

∂3v

∂x2∂t
, (4)

Initial conditions: specify: v(x, 0) and v̇(x, 0).

7.8 Summary

This is a very comprehensive chapter on linearized elasticity. Beginning with a
summary of the linearized elasticity equations that include the Navier equations
and the Beltrami–Michell equations of elasticity, the three types of boundary
value problems and the principle of superposition were discussed. The Clapey-
ron theorem and Betti and Maxwell reciprocity theorems and their applications
were also presented. Various methods of solutions, namely, the inverse method,
the semi-inverse method, the method of potentials, and variational methods
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are discussed. The two-dimensional elasticity problems, plane strain and plane
stress, are formulated, and their solutions by the inverse method and the Airy
stress function method are presented. Analytical solutions of a number of stan-
dard boundary value problems of elasticity using the Airy stress function are dis-
cussed. Torsion of cylindrical members is also presented. The principle of mini-
mum total potential energy and its special case, the Castigliano theorem I, are
discussed. The Ritz method is introduced as a general method of solving prob-
lems formulated as variational problems of finding u such that B(u, v) = L(v)
holds for all v. Lastly, Hamilton’s principle for problems of dynamics is pre-
sented. A number of examples are included throughout the chapter.

Solution of elasticity problems discussed in this chapter requires an under-
standing of the problem from the aspect of suitable boundary conditions; exis-
tence of solution symmetries, if any; and the qualitative nature of the solution.
Only then one may choose a solution method that suits its solution strategy. An
insight into the problem is necessary for the use of the semi-inverse method. If
one makes assumptions on the basis of a qualitative understanding of the prob-
lem and solves the boundary value problem, then the assumptions are likely to
be correct. If not, the assumptions need to be modified. Also, most real-world
problems do not admit exact or analytical solutions, and approximate solutions
are the only alternative. The theoretical formulation of a problem based on
the principles of mechanics is a necessary first and most important step even
when one considers its solution by a numerical method. Therefore, a course on
continuum mechanics or elasticity helps in correctly formulating the governing
equations of boundary value problems of mechanics.

Problems

Strains, Stresses, and Strain Energy

7.1 Define the deviatoric components of stress and strain as follows:

sij ≡ σij − 1
3
σkkδij , eij ≡ εij − 1

3
εkkδij .

Determine the constitutive relation between sij and eij for an isotropic material.

7.2 For each of the displacement fields given below, sketch the displaced positions in the
x1x2-plane of the points initially on the sides of the square shown in Fig. P7.2.

(a) u = α
2
(x2 ê1 + x1 ê2) . (b) u = α

2
(−x2 ê1 + x1 ê2) . (c) u = αx1 ê2.

(0,0)
(1,0)

(1,1)(0,1)

2x

1x

Fig. P7.2
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7.3 For each of the displacement fields in Problem 7.2, determine the components of (a) the
Green–Lagrange strain tensorE, (b) the infinitesimal strain tensor ε, (c) the infinitesimal
rotation tensor Ω, and (d) the infinitesimal rotation vector ω (see Sections 3.4 and 3.5
for the definitions).

7.4 Similar to Cauchy’s formula for a stress tensor, one can think of a similar formula for
the strain tensor,

εn = ε · n̂,
where εn represents the strain vector in the direction of the unit normal vector, n̂. Deter-
mine the longitudinal strain corresponding to the displacement field u = α

2
(x2 ê1 + x1 ê2)

in the direction of the vector ê1 + ê2.

7.5 For the displacement vector given in the cylindrical coordinate system

u = Ar êr +Brz êθ + C sin θ êz,

where A, B, and C are constants, determine the infinitesimal strain components in the
cylindrical coordinate system.

7.6 The displacement vector at a point referred to the basis (ê1, ê2, ê3) is u = 2ê1+2ê2−4ê3.
Determine ūi with respect to the basis (ˆ̄e1, ˆ̄e2, ˆ̄e3), where ˆ̄e1 = (2ê1 + 2ê2 + ê3)/3 and
ˆ̄e2 = (ê1 − ê2)/

√
2.

7.7 Express Navier’s equations of elasticity (7.2.17) in the cylindrical coordinate system.

7.8 An isotropic body (E = 210 GPa and ν = 0.3) with two-dimensional state of stress
experiences the following displacement field (in mm):

u1 = 3x2
1 − x3

1x2 + 2x3
2, u2 = x3

1 + 2x1x2,

where xi are in meters. Determine the stresses and rotation of the body at point
(x1, x2) = (0.05, 0.02) m.

7.9 A two-dimensional state of stress exists in a body with the following components of
stress:

σ11 = c1x
3
2 + c2x

2
1x2 − c3x1, σ22 = c4x

3
2 − c5, σ12 = c6x1x

2
2 + c7x

2
1x2 − c8,

where ci are constants. Assuming that the body forces are zero, determine the conditions
on the constants so that the stress field is in equilibrium and satisfies the compatibility
equations.

7.10 Express the strain energy for a linear isotropic body in terms of the (a) strain components
and (b) stress components.

7.11 A rigid uniform member ABC of length L, pinned at A and supported by linear elastic
springs, each of stiffness k, at B and C, is shown in Fig. P7.11. Find the total strain
energy of the system when the point C is displaced vertically down by the amount uC.

k

2
L

2
L

kA B C
Rigid bar

Fig. P7.11

7.12 Repeat Problem 7.11 when the springs are nonlinearly elastic, with the force deflection
relationship, F = ku2, where k is a constant.

7.13 Consider the equations of motion of 2-D elasticity (in the x- and z-coordinates) in the
absence of body forces:

∂σxx

∂x
+

∂σxy

∂y
= ρ0

∂2ux

∂t2

∂σxy

∂x
+

∂σyy

∂y
= ρ0

∂2uy

∂t2
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For a beam of uniform height h and width b, integrate the preceding equations with
respect to y from −h/2 to h/2, and express the results in terms of the stress resultants
N and V defined in Eq. (7.3.28). Use the following boundary conditions:

σxy(x, h/2)− σxy(x,−h/2) = f(x)/b, σxy(x, h/2) + σxy(x,−h/2) = 0,

σyy(x,−h/2) = 0, bσyy(x, h/2) = q

Next, multiply the first equation of motion with y and integrate it with respect to y
from −h/2 to h/2, and express the results in terms of the stress resultants M and V
defined in Eq. (7.3.28).

7.14 For the plane elasticity problems shown in Figs. P7.14(a)-(d), write the boundary
conditions and classify them into type I, type II, or type III.

a

b

Rigid core

Hollow
cylindrical
shaft λμ ,

0τ
0τ

0τ 0τ

x2

θ

x1

τ

ττ(a) a

b

p

Spherical 
Core,

Spherical 
shell,

11,λμ

22 ,λμ

(b)

(c) (d)

a

b

σ0

x1

x2

Fig. P7.14

Clapeyron’s, Betti’s, and Maxwell’s Theorems

7.15 Consider a cantilever beam of length L, constant bending stiffness EI, and with right
end (x = L) fixed, as shown in Fig. P7.15. If the left end (x = 0) is subjected to a
moment M0, use Clapeyron’s theorem to determine the rotation (in the direction of the
moment) at x = 0.

0M
x

L

0 0( )xdv/ dx

y,v

Fig. P7.15

A

Lx

y, v
0F

a

Fig. P7.16

7.16 Consider a cantilever beam of length L, constant bending stiffness EI, and with the
right end fixed, as shown in Fig. P7.16. If a point load F0 is applied at a distance a
from the free end, determine the deflection v(a) using Clapeyron’s theorem.
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7.17 Determine the deflection at the midspan of a cantilever beam subjected to a uniformly
distributed load q0 throughout the span and a point load F0 at the free end, as shown
in Fig. P7.17. Use Maxwell’s theorem and superposition.

A

EI = constant
Lx

0q
y,v

0F 0 5. L

Fig. P7.17

A
x

B0M

0F

2
L

2
L

L

,y v

Fig. P7.18

7.18 Consider a simply supported beam of length L subjected to a concentrated load F0 at
the midspan and a bending moment M0 at the left end, as shown in Fig. P7.18. Verify
that Betti’s theorem holds.

7.19 Use the reciprocity theorem to determine the deflection vc = v(0) at the center of a
simply supported circular plate under asymmetric loading (see Fig. P7.19):

q(r, θ) = q0 + q1
r

a
cos θ.

The deflection v(r) due to a point load F0 at the center of a simply supported circular
plate is

v(r) =
F0a

2

16πD

[(
3 + ν

1 + ν

)(
1− r2

a2

)
+ 2
( r
a

)2
log
( r
a

)]
,

where D = Eh3/[12(1− ν2)] and h is the plate thickness.

r

q0

y, v(r)

h

q1

q1q0

r

h

simply supported

O
θ

q0q(r,θ ) = + q1
r
a cosθ

q0 + q1

q0 − q1 ra

y, v (r)

aa

Fig. P7.19

7.20 Use the reciprocity theorem to determine the center deflection vc = v(0) of a simply
supported circular plate under loading q(r) = q0(1− r/a).

7.21 Use the reciprocity theorem to determine the center deflection vc = v(0) of a clamped
circular plate under loading q(r) = q0(1 − r/a). The deflection due to a point load F0

at the center of a clamped circular plate is given in Eq. (7.4.21).

7.22 Determine the center deflection vc = v(0) of a clamped circular plate subjected to a
point load F0 at a distance b from the center (and for some θ) using the reciprocity
theorem.

7.23 Rewrite Eq. (7.3.10) in a form suitable for direct integration and obtain the solution
given in Eq. (7.3.13). Hint: Note that dU

dR
+ 2U

R
= 1

R2
d
dR

(
R2U

)
.

Solution of Elasticity Problems

7.24 Verify that the compatibility equation (3.7.4) takes the form

εαα,ββ − εαβ,αβ = 0 (α, β = 1, 2), (1)
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or, in terms of stress components for the plane stress case,

∇2σαα = −(1 + ν) fα,α. (2)

7.25 Rewrite Eq. (7.5.17) in a form suitable for direct integration and obtain the solution
given in Eq. (7.5.21). Hint: Note that 1

r
dU
dr

− U
r2

= d
dr

(
U
r

)
.

7.26 Show that the solution to the differential equation for G(r) in Eq. (6) is indeed given
by the first equation in Eq. (7) of Example 7.5.7. Hint: Note that (verify to yourself)

d2G

dr2
+

1

r

dG

dr
=

1

r

d

dr

(
r
dG

dr

)
;

∫
r ln r dr =

r2

2

(
ln r − 1

2

)
.

7.27 Show that the solution to the differential equation for F (r) in Eq. (6) is indeed given
by the second equation in Eq. (7) of Example 7.5.7. Hint: Note that (verify to yourself)

d2F

dr2
+

1

r

dF

dr
− 4F

r2
=

1

r3
d

dr

(
r3

dF

dr
− 2r2F

)
.

7.28 The only nonzero stress in a prismatic bar of length L, made of an isotropic material
(E and ν), is σ11 = −M0x3/I, where M0 is the bending moment and I is the moment
inertia about the x2-axis, respectively. Determine the three-dimensional displacement
field. Eliminate the rigid-body translations and rotations requiring that u = 0 and
Ω = 0 at x = 0.

7.29 A solid circular cylindrical body of radius a and height h is placed between two rigid
plates, as shown in Fig. P7.29. The plate at B is held stationary and the plate at A is
subjected to a downward displacement of δ. Using a suitable coordinate system, write
the boundary conditions for the two cases: (a) When the cylindrical object is bonded
to the plates at A and B. (b) When the plates at A and B are frictionless.

r

×

×

z

θσ rrzσ

rrσ

zzσ
zrσ

θσ z

B

A

h ×
a

Rigid plate

Cylinder

Lateral surface

Rigid plate

Fig. P7.29

7.30 The lateral surface of a homogeneous, isotropic, solid circular cylinder of radius a, length
L, and mass density ρ is bonded to a rigid surface. Assuming that the ends of the cylinder
at z = 0 and z = L are traction-free (see Fig. P7.30), determine the displacement and
stress fields in the cylinder due to its own weight.

r

r

θ

2xy =

1xx =
ˆ zgρ= −f e L

z

Fig. P7.30
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7.31 An external hydrostatic pressure of magnitude p is applied to the surface of a spherical
body of radius b with a concentric rigid spherical inclusion of radius a, as shown in
Fig. P7.31. Determine the displacement and stress fields in the spherical body. Using
the stress field obtained, determine the stresses at the surface of a rigid inclusion in an
infinite elastic medium.

a

b

p

Rigid spherical core

Spherical shell (        ),μ λ

Fig. P7.31

a

b

p

Spherical core (          )

Spherical shell (          )

1 1,μ λ

2 2,μ λ

Fig. P7.32

7.32 Consider the concentric spheres shown in Fig. P7.32. Suppose that the core is elastic and
the outer shell is subjected to external pressure p (both are linearly elastic). Assuming
Lamé constants of μ1 and λ1 for the core and μ2 and λ2 for the outer shell, and that
the interface is perfectly bonded at r = a, determine the displacements of the core as
well as for the shell.

7.33 Consider a long hollow circular shaft with a rigid internal core (a cross section of the
shaft is shown in Fig. P7.33). Assuming that the inner surface of the shaft at r = a
is perfectly bonded to the rigid core and the outer boundary at r = b is subjected to a
uniform shearing traction of magnitude τ0, find the displacement and stress fields in the
problem.

a

b

Rigid core

Long hollow 
cylindrical
Shaft (        )λμ ,

0τ
0τ

0τ 0τ

Fig. P7.33

Airy Stress Function

7.34 For the plane stress field

σxx = cxy, σxy = 0.5c(h2 − y2), σyy = 0,

where c and h are constants, (a) show that it is in equilibrium under a zero body force,
and (b) find an Airy stress function Φ(x, y) corresponding to it.

7.35 In cylindrical coordinates, we assume that the body force vector f is derivable from the
scalar potential Vf (r, θ):

f = −∇Vf

(
fr = −∂Vf

∂r
, fθ = −1

r

∂Vf

∂θ

)
, (1)
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and define the Airy stress function Φ(r, θ) such that

σrr =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+ Vf ,

σθθ =
∂2Φ

∂r2
+ Vf ,

σrθ = − ∂

∂r

(
1

r

∂Φ

∂θ

)
.

(2)

Show that this choice trivially satisfies the equations of equilibrium

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r
(σrr − σθθ) + fr = 0 ,

∂σθr

∂r
+

1

r

∂σθθ

∂θ
+

2σrθ

r
+ fθ = 0.

(3)

The tensor form of the compatibility condition in Eq. (7.5.33) is invariant.

7.36 Interpret the stress field obtained with the Airy stress function in Eq. (7.5.42) when all
constants except c3 are zero. Use the domain shown in Fig. 7.5.6 to sketch the stress
field.

7.37 Interpret the following stress field obtained in Example 7.5.5 using the domain shown
in Fig. 7.5.6:

σxx = 6c10xy, σyy = 0, σxy = −3c10y
2.

Assume that c10 is a positive constant.

7.38 Compute the stress field associated with the Airy stress function

Φ(x, y) = Ax5 +Bx4y + Cx3y2 +Dx2y3 + Exy4 + Fy5.

Interpret the stress field for the case in which constants A, B, and C are zero. Use the
rectangular domain shown in Fig. P7.38 to sketch the stress field on its boundaries.

y

x
b

L

b

Fig. P7.38

xb
b

a

q0 (force per unit area)y

h

2b

Fig. P7.39

7.39 Determine the Airy stress function for the stress field of the beam shown in Fig. P7.39
and evaluate the stress field.

7.40 Investigate what problem is solved by the Airy stress function

Φ =
3A

4b

(
xy − xy3

3b2

)
+

B

4b
y2,

where A and B are constants. Use the domain in Fig. P7.38 to sketch the stress field.

7.41 Show that the Airy stress function

Φ(x, y) =
q0
8b3

[
x2 (y3 − 3b2y + 2b3

)− 1

5
y3 (y2 − 2b2

)]

satisfies the compatibility condition. Determine the stress field and find what problem
it corresponds to when applied to the region −b ≤ y ≤ b and x = 0, L (see Fig. P7.38).
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7.42 The thin cantilever beam shown in Fig. P7.42 is subjected to a uniform shearing traction
of magnitude τ0 along its upper surface. Determine if the Airy stress function

Φ(x, y) =
τ0
4

(
xy − xy2

b
− xy3

b2
+

ay2

b
+

ay3

b2

)

satisfies the compatibility condition and stress boundary conditions of the problem.

y

x
b
b
a

h

2b

0τ

Fig. P7.42

y

xb
b
L

h

2b

0
xq
L

Fig. P7.43

7.43 Consider the problem of a cantilever beam carrying a uniformly varying distributed
transverse load, as shown in Fig. P7.43. The following Airy stress function is suggested
(explain the terms to yourself):

Φ(x, y) = Axy +Bx3 + Cx3y +Dxy3 + Ex3y3 + Fxy5.

Determine each of the constants and find the stress field.

7.44 The curved beam shown in Fig. P7.44 is curved along a circular arc. The beam is
fixed at the upper end and it is subjected at the lower end to a distribution of tractions
statically equivalent to a force per unit thickness P = −P ê1. Assume that the beam is
in a state of plane strain/stress. Show that an Airy stress function of the form

Φ(r) =

(
Ar3 +

B

r
+ C r log r

)
sin θ

provides an approximate solution to this problem and solve for the values of the constants
A, B, and C.

x

y

θθσ
rrσ

rθσ

P

b
a

r

Fig. P7.44

7.45 Determine the stress field in a semi-infinite plate due to a normal load, f0 force/unit
length, acting on its edge, as shown in Fig. P7.45. Use the following Airy stress function
(that satisfies the compatibility condition ∇4Φ = 0):

Φ(r, θ) = Aθ +Br2θ + Crθ sin θ +Drθ cos θ,

where A, B, C, and D are constants [see Eq. (7.5.40) for the definition of stress compo-
nents in terms of the Airy stress function Φ]. Neglect the body forces (i.e., Vf = 0). Hint:
Stresses must be single-valued. Determine the constants using the boundary conditions
of the problem.
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y

z

r
θ

b

0f

Fig. P7.45

Torsion of Cylindrical Members

7.46 Show that the resultant forces in the three coordinate directions on the end surface (i.e.,
z = L face) are zero. Also show that the resultant moments about the x- and y-axes on
the end surface are also zero.

7.47 Use the warping function ψ(x, y) = kxy, where k is a constant, to determine the cross
section for which it is the solution. Determine the value of k in terms of the geometric
parameters of the cross section and evaluate stresses in terms of these parameters and
μ.

7.48 Consider a cylindrical member with the equilateral triangular cross section shown in
Fig. P7.48. Show that the exact solution for the problem can be obtained and that the
twist per unit length θ and stresses σxz and σyz are given by

θ =
5
√
3T

27μa4
, σxz =

μθ

a
(x− a)y, σyz =

μθ

2a
(x2 + 2ax− y2).

Hint: First write the equations for the three sides of the triangle (that is, y = mx+ c,
where m denotes the slope and c denotes the intercept), with the coordinate system
shown in the figure, and then take the product of the three equations to construct the
stress function. Also note that∫

Ω

F (x, y) dx dy =

∫ a

−2a

∫ x+2a√
3

− x+2a√
3

F (x, y) dy dx.

T

Side 1

Side 2

Side 3

x

y

x a

2x a

3a

Fig. P7.48

aa

b

b

T

x

y

Fig. P7.49

7.49 Consider torsion of a cylindrical member with the rectangular cross section shown in
Fig. P7.46. Determine if a function of the form

Ψ = A

(
x2

a2
− 1

)(
y2

b2
− 1

)
,
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where A is a constant, can be used as a Prandtl stress function.

7.50 From Example 7.5.8, we know that for circular cylindrical members we have ψ = 0. Use

the cylindrical coordinate system to show that σzr = 0 and σzα = Tr/J , where J is the

polar moment of inertia.

Energy and Variational Methods

7.51 Timoshenko beam theory. Consider the displacement field

u1(x, y) = yφ(x), u2(x, y) = v(x), u3 = 0, (1)

where v(x) is the transverse deflection and φ is the rotation about the z-axis. Follow the
developments of Section 7.3.4 and Example 7.6.1 (see Fig. 7.6.1) to develop the total
potential energy functional

Π(u,w, φ) =
1

2

∫ L

0

[
EI

(
dφ

dx

)2

+GA

(
dv

dx
+ φ

)2

− qv

]
dx− F0v(L)−M0φ(L),

where EI is the bending stiffness and GA is the shear stiffness (E and G are Young’s
modulus and shear modulus, respectively, A is the cross-sectional area, and I is the mo-
ment of inertia). Then derive the Euler equations and the natural boundary conditions
of the Timoshenko beam theory.

7.52 Identify the bilinear and linear forms associated with the quadratic functional of the
Timoshenko beam theory in Problem 7.51.

7.53 The total potential energy functional for a membrane stretched over domain Ω ∈ �2 is
given by

Π(u) =

∫
Ω

{
T

2

[(
∂u

∂x1

)2

+

(
∂u

∂x2

)2
]
− fu

}
dx,

where u = u(x1, x2) denotes the transverse deflection of the membrane, T is the ten-
sion in the membrane, and f = f(x1, x2) is the transversely distributed load on the
membrane. Determine the governing differential equation and the permissible bound-
ary conditions for the problem (that is, identify the essential and natural boundary
conditions of the problem) using the principle of minimum total potential energy.

7.54 Use the results of Example 7.6.2 to obtain the deflection at the center of a clamped-
clamped beam (length 2L and EI = constant) under uniform load of intensity q0 and
supported at the center by a linear elastic spring (k).

7.55 Use the results of Example 7.6.2 to obtain the deflection v(L) and slopes (−dv/dx)(L)
and (−dv/dx)(2L) under a point load F0 for the beam shown in Fig. P7.55. It is
sufficient to set up the three equations for the three unknowns.

2Lx

F0

LL
,y v

Fig. P7.55

2L
x

F0

Lq0
,y v

Fig. P7.56

7.56 Use the results of Example 7.6.2 to obtain the deflection v(2L) and slopes at x = L and
x = 2L for the beam shown in Fig. P7.56. It is sufficient to set up the three equations
for the three unknowns.

7.57 Consider an arbitrary triangular, plane elastic domain Ω of thickness h and made of
orthotropic material. Suppose that the body is free of body forces but subjected to
tractions on its sides, as shown in Fig. P7.57. Use Catigliano’s theorem I and derive a
relationship between the point displacements and the corresponding forces at the vertices
of the triangle.
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2

3

1
1
xu

1
yu

2
xu

2
yu3

xu

3
yu

(b)(a)
x1 , u1

x2 , u2

Γ

Ω

Fig. P7.57

7.58 Find a two-parameter Ritz approximation of the transverse deflection of a simply sup-
ported beam (constant EI) on an elastic foundation (modulus k) that is subjected to a
uniformly distributed load, q0. Use (a) algebraic and (b) trigonometric polynomials.

7.59 Establish the total potential energy functional in Eq. (2) of Example 7.6.6.

7.60 Determine a one-parameter Ritz approximation U1(x) of u(x), which is governed by
the equation (like the equation governing the Prandtl stress function over square cross
section of 2 units)

−
(∂2u

∂x2
+

∂2u

∂y2

)
= f0 in a unit square,

subjected to the boundary conditions

u(1, y) = u(x, 1) = 0,
∂u

∂x

∣∣∣
(0,y)

=
∂u

∂y

∣∣∣
(x,0)

= 0.

Take the origin of the coordinate system at the lower left corner of the unit square.

Hamilton’s Principle

7.61 Find Beltrami–Michell equations for dynamic elasticity.

7.62 Extend Clapeyron’s Theorem to the dynamic case by starting with the expression∫ T

0

(U −K) dx,

where K is the kinetic energy.

7.63 Consider a pendulum of mass m1 with a flexible suspension, as shown in Fig. P7.63. The
hinge of the pendulum is in a block of mass m2, which can move up and down between
the frictionless guides. The block is connected by a linear spring (of spring constant k)
to an immovable support. The coordinate x is measured from the position of the block
in which the system remains stationary. Derive the Euler–Lagrange equations of motion
for the system.

l

Unstretched length 
of the spring

x

θ
m2

m1

k

Fig. P7.63
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7.64 A chain of total length L and mass m per unit length slides down from the edge of a
smooth table. Assuming that the chain is rigid, find the equation of motion governing
the chain (see Example 5.3.3).

7.65 Consider a cantilever beam supporting a lumped mass M at its end (J is the mass
moment of inertia), as shown in Fig. P7.65. Derive the equations of motion and natural
boundary conditions for the problem using the Euler–Bernoulli beam theory.

x

L

M, J

Fig. P7.65

°

°

l
°

mg

θ 

k

x0
x0 = unstretched 

length

x

x

y
F

l

Fig. P7.66

7.66 Derive the equations of motion of the system shown in Fig. P7.66. Assume that the
mass moment of inertia of the link about its mass center is J = mΩ2, where Ω is the
radius of gyration.

7.67 Derive the equations of motion of the Timoshenko beam theory, starting with the dis-
placement field (including the axial displacement, u):

u1(x, y, t) = u(x, t) + yφ(x, t), u2 = v(x, t), u3 = 0.

Assume that the beam is subjected to distributed axial load f(x, t) and transverse load
q(x, t), and that the x-axis coincides with the geometric centroid.

7.68 Derive the equations of motion of the third-order Reddy beam theory based on the dis-
placement field

u1(x, y, t) = u(x, t) + yφ(x, t)− c1y
3
(
φ+

∂v

∂x

)
u2(x, y, t) = v(x, t), u3 = 0,

(1)

where c1 = 4/(3h2). Assume that the beam is subjected to distributed axial load f(x, t)
and transverse load q(x, t), and that the x-axis coincides with the geometric centroid.

7.69 Consider a uniform cross-sectional bar of length L, with the left end fixed and the right
end connected to a rigid support via a linear elastic spring (with spring constant k), as
shown in Fig. P7.69. Determine the first two natural axial frequencies of the bar using
the Ritz method. Hint: The kinetic energy K and the strain energy U associated with
the axial motion of the member are given by

K =

∫ L

0

ρA

2

(
∂u

∂t

)2

dx, U =

∫ L

0

EA

2

(
∂u

∂x

)2

dx+
k

2
[u(L, t)]2. (1)

Use Hamilton’s principle to obtain the variational equation, and for periodic motion
assume

u(x, t) = u0(x)e
iωt, i =

√−1, (2)

where ω is the frequency of natural vibration, and u0(x) is the amplitude, to reduce the
variational statement to

0 =

∫ L

0

(
ρAω2u0δu0 − EA

du0

dx

dδu0

dx

)
dx− ku0(L)δu0(L). (3)
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x

E, A k

 L 
Deformable bar

Fig. P7.69

7.70 Consider the equation

−∇2u = λu, in Ω, u = 0 on Γ, (1)

where Ω is the triangular domain shown in Fig. P7.48 and Γ is its boundary. Equation
(1) describes a nondimensional form of the equation governing the natural vibration of
a triangular membrane of side a; mass density ρ; and tension T (λ = ρa2ω2/T , ω being
the natural frequency of vibration). Determine the fundamental frequency (that is,
determine λ) of vibration by using a one-parameter Ritz approximation of the problem.
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8

FLUID MECHANICS AND
HEAT TRANSFER

It is not uncommon for engineers to accept the reality of phenomena that are not yet under-

stood, as it is very common for physicists to disbelieve the reality of phenomena that seem to

contradict contemporary beliefs of physics. —– Henry H. Bauer (1931– )

8.1 Governing Equations

8.1.1 Preliminary Comments

Matter exists, in a majority of cases, only in two states: solid and fluid.1 The
difference between the two is that a solid can resist shear force in static defor-
mation whereas a fluid cannot. Shear force acting on a fluid causes it to deform
continuously. Thus, a fluid at rest can take only hydrostatic pressure and no
shear stress. Therefore, the stress vector at a point in a fluid at rest can be
expressed as

t(n̂) = n̂ · σ = −p n̂ or σ = −p I, (8.1.1)

where n̂ is the unit vector normal to the surface and p is called the hydrostatic
pressure. It is clear from Eq. (8.1.1) that hydrostatic pressure is equal to the
negative of the mean stress

p = −1

3
σii = −σ̃. (8.1.2)

In general, for a compressible fluid, p is related to temperature θ and density
ρ by an equation of the form

F (p, ρ, θ) = 0. (8.1.3)

This equation is called the equation of state. Recall from Section 6.5.3 that the
hydrostatic pressure p is not equal, in general, to the thermodynamic pressure
p appearing in the constitutive equation of a fluid in motion [see Eq. (6.5.1)]:

σ = F(D)− pI = τ − pI, (8.1.4)

where τ is the viscous stress tensor, which is a function of the motion, namely,
the rate of deformation tensor D; τ vanishes when a fluid is at rest.

1In mathematical representation of matter, we may even entertain states such as “fluid-like”
or “solid-like” materials, which we do not deal with here.
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Fluid mechanics is a branch of mechanics that deals with the effects of fluids
at rest (statics) or in motion (dynamics) on surfaces where they come in contact.
Fluids do not have the so-called natural state to which they return on removal of
forces causing deformation. Therefore, we use a spatial (or Eulerian) description
to write the governing equations. Pertinent equations are summarized next for
an isotropic, Newtonian fluid. Heat transfer is a branch of engineering that deals
with the transfer of thermal energy within a medium or from one medium to
another due to a temperature difference. In this chapter, we study some typical
problems of fluid mechanics and heat transfer.

8.1.2 Summary of Equations

The basic equations of viscous fluids are listed here. The number of equations,
Neq, and the number of new dependent variables, Nvar, for three-dimensional
problems are listed in parentheses. The stress tensor is assumed to be symmetric.
All variables used here are the same as those introduced in the previous chapters,
except that we shall use T in place of θ for the absolute temperature (because
θ is used as a coordinate in the cylindrical and spherical coordinate systems).

Continuity equation (Neq = 1, Nvar = 4)

∂ρ

∂t
+ div(ρv) = 0;

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 (8.1.5)

Equations of motion (Neq = 3, Nvar = 6)

∇ · σ + ρf = ρ
(∂v
∂t

+ v ·∇v
)
;

∂σji
∂xj

+ ρfi = ρ
Dvi
Dt

(8.1.6)

Energy equation (Neq = 1, Nvar = 4)

ρ
De

Dt
= σ: D−∇ · q+ ρrh; ρ

De

Dt
= σijDij − ∂qi

∂xi
+ ρrh (8.1.7)

Constitutive equation (Neq = 6, Nvar = 7)

σ = 2μD+ λ(trD)I− pI; σij = 2μDij + λDkkδij − pδij (8.1.8)

Heat conduction equation (Neq = 3, Nvar = 1)

q = −k∇T ; qi = −k
∂T

∂xi
. (8.1.9)

Kinetic equation of state (Neq = 1, Nvar = 0)

p = p(ρ, T ) (8.1.10)

Caloric equation of state (Neq = 1, Nvar = 0)

e = e(ρ, T ) (8.1.11)
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Rate of deformation-velocity equations (Neq = 6, Nvar = 0)

D =
1

2

[∇v + (∇v)T
]
; Dij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(8.1.12)

Material time derivative

D

Dt
≡ ∂

∂t
+ v ·∇ ;

D

Dt
≡ ∂

∂t
+ vi

∂

∂xi
(8.1.13)

Thus, there are 22 equations and 22 variables.

8.2 Fluid Mechanics Problems

8.2.1 Governing Equations of Viscous Fluids

Here we summarize the governing equations of fluid flows for the isothermal case.
As in elasticity, the number of equations of fluid flow can be combined to obtain
a smaller number of equations in as many unknowns. For instance, Eqs. (8.1.5),
(8.1.6), (8.1.8), and (8.1.12) can be combined to yield the following equations:

∂ρ

∂t
+∇ · (ρv) = 0;

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0, (8.2.1)

μ∇2v + (μ+ λ)∇ (∇ · v)−∇p+ ρf = ρ
(∂v
∂t

+ v ·∇v
)
;

μvi,jj + (μ+ λ)vj,ji − ∂p

∂xi
+ ρfi = ρ

(∂vi
∂t

+ vj
∂vi
∂xj

)
.

(8.2.2)

Equations in (8.2.1) and (8.2.2) are known as the Navier–Stokes equations.
Equations (8.2.1) and (8.2.2) together contain four equations in five un-

knowns (v1, v2, v3, ρ, p). For compressible fluids, Eqs. (8.2.1) and (8.2.2) are
appended with Eqs. (8.1.7) and (8.1.9)–(8.1.11). For the isothermal case, Eqs.
(8.2.1) and (8.2.2) are appended with Eq. (8.1.10), where p = p(ρ).

For incompressible fluids, ρ is a known function of position, and thus we have
four equations in four unknowns,

∇ · v = 0;
∂vi
∂xi

= 0, (8.2.3)

μ∇2v −∇p+ ρf = ρ
(∂v
∂t

+ v ·∇v
)
;

μvi,jj − ∂p

∂xi
+ ρfi = ρ

(∂vi
∂t

+ vj
∂vi
∂xj

)
.

(8.2.4)

The expanded forms of these four equations in rectangular Cartesian and orthog-
onal curvilinear (i.e., cylindrical and spherical) coordinate systems are presented
next.

Cartesian coordinate system (x, y, z); v1 = vx, v2 = vy, and v3 = vz:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (8.2.5)
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μ

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
− ∂p

∂x
+ ρfx = ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
,

(8.2.6)

μ

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
− ∂p

∂y
+ ρfy = ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

)
,

(8.2.7)

μ

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
− ∂p

∂z
+ ρfz = ρ

(
∂vz
∂t

+ vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

)
.

(8.2.8)

Cylindrical coordinate system (r, θ, z); v1 = vr, v2 = vθ, and v3 = vz

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0 (8.2.9)

μ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+

1

r2

(
∂2vr
∂θ2

− 2
∂vθ
∂θ

)
+

∂2vr
∂z2

]
− ∂p

∂r
+ ρfr

= ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

+ vz
∂vz
∂z

)
(8.2.10)

μ

[
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+

1

r2

(
∂2vθ
∂θ2

+ 2
∂vr
∂θ

)
+

∂2vθ
∂z2

]
− ∂p

∂θ
+ ρfθ

= ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

)
(8.2.11)

μ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

]
− ∂p

∂z
+ ρfz

= ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
(8.2.12)

Spherical coordinate system (R,φ, θ); v1 = vR, v2 = vφ, and v3 = vθ

2
vR
R

+
∂vR
∂R

+
1

R sinφ

∂(vφ sinφ)

∂φ
+

1

R sinφ

∂vθ
∂θ

= 0 (8.2.13)

μ

[
1

R2

∂2

∂R2

(
R2vR

)
+

1

R2 sinφ

∂

∂φ

(
sinφ

∂vR
∂φ

)
+

1

R2 sin2 φ

∂2vR
∂θ2

]
− ∂p

∂R
+ ρfR

= ρ

[
∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ

+
vθ

R sinφ

∂vR
∂θ

−
(
v2φ + v2θ

R

)]
(8.2.14)
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μ

[
1

R2

∂

∂R

(
R2∂vφ

∂R

)
+

1

R2

∂

∂φ

(
1

sinφ

∂

∂φ
(vφ sinφ)

)
+

1

R2 sin2 φ

∂2vφ
∂θ2

+
2

R2

(
∂vR
∂φ

− cosφ

sin2 φ

∂vθ
∂θ

)]
− 1

R

∂p

∂φ
+ ρfφ

= ρ

(
∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

∂vφ
∂φ

+
vθ

R sinφ

∂vφ
∂θ

+
vRvφ
R

− v2θ cotφ

R

)
(8.2.15)

μ

[
1

R2

∂

∂R

(
R2∂vθ

∂R

)
+

1

R2

∂

∂φ

(
1

sinφ

∂

∂φ
(vθ sinφ)

)
+

1

R2 sin2 φ

∂2vθ
∂θ2

+
2

R2 sinφ

(
∂vR
∂θ

+ cotφ
∂vφ
∂θ

)]
− 1

R sinφ

∂p

∂θ
+ ρfθ

= ρ

(
∂vθ
∂t

+ vR
∂vθ
∂R

+
vφ
R

∂vθ
∂φ

+
vθ

R sinφ

∂vθ
∂θ

+
vθvR
R

+
vθvφ
R

cotφ

)
(8.2.16)

In general, finding exact solutions of the Navier–Stokes equations is an im-
possible task. The principal reason is the nonlinearity of the equations, and
consequently, the principle of superposition is not valid. In the following sec-
tions, we shall find exact solutions of Eqs. (8.2.3) and (8.2.4) for certain flow
problems for which the convective terms (i.e., v ·∇v) vanish and problems be-
come linear. Of course, even for linear problems, flow geometry must be simple
to be able to determine the exact solution. The books by Bird, et al. (1960)
and Schlichting (1979) contain a number of such problems, and we discuss a few
of them here. Like in linearized elasticity, often the semi-inverse method is used
to obtain the solutions.

For several classes of flows with constant density and viscosity, the differential
equations are expressed in terms of a potential function, called stream function,
ψ. For two-dimensional planar problems (where vz = 0 and data as well as the
solution do not depend on z), the stream function is defined by

vx = −∂ψ

∂y
, vy =

∂ψ

∂x
. (8.2.17)

This definition of ψ automatically satisfies the continuity equation (8.2.5):

∂vx
∂x

+
∂vy
∂y

= − ∂2ψ

∂x∂y
+

∂2ψ

∂x∂y
= 0.

Next, we determine the equation governing the stream function ψ. Recall
the definition of the vorticity w = 1

2∇×v. In two dimensions, the only nonzero
component of the vorticity vector is ζ (w = wz êz)

w =
1

2
∇× v, wz =

1

2

(
∂vy
∂x

− ∂vx
∂y

)
. (8.2.18)

Substituting the definition (8.2.17) into Eq. (8.2.18), we obtain

w = wz êz =
1

2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
êz =

1

2
∇2ψ êz. (8.2.19)
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Next, recall the vorticity equation (see Problems 5.17 and 6.26):

∂w

∂t
+ (v ·∇)w = (w ·∇)v + ν∇2w, ν =

μ

ρ
. (8.2.20)

For two-dimensional flows the vorticity vector w is perpendicular to the plane
of the flow and, therefore, (w ·∇)v is zero. Then

∂w

∂t
+ v ·∇w = ν∇2w. (8.2.21)

Substituting Eq. (8.2.19) into the vorticity equation (8.2.21), we obtain

∂∇2ψ

∂t
+ (v ·∇)(∇2ψ) = ν∇4ψ. (8.2.22)

In the rectangular Cartesian coordinate system, Eq. (8.2.22) has the form

∂∇2ψ

∂t
+

(
−∂ψ

∂y

∂∇2ψ

∂x
+

∂ψ

∂x

∂∇2ψ

∂y

)
= ν∇4ψ. (8.2.23)

In the cylindrical coordinate system, the stream function ψ is related to the
velocities

vr = −1

r

∂ψ

∂θ
, vθ =

∂ψ

∂r
, (8.2.24)

and the governing equation (8.2.23) takes the form

∂∇2ψ

∂t
+

1

r

(
−∂ψ

∂θ

∂∇2ψ

∂r
+

∂ψ

∂r

∂∇2ψ

∂θ

)
= ν∇4ψ, (8.2.25)

where ∇2 is given in Table 2.4.2 for the cylindrical coordinate system.
In the spherical coordinate system, the stream function ψ is defined by

vR = − 1

R2 sinφ

∂ψ

∂φ
, vφ =

1

R sinφ

∂ψ

∂R
(8.2.26)

and Eq. (8.2.23) has the form

∂∇̃2ψ

∂t
+

1

R2 sinφ

(
−∂ψ

∂φ

∂∇̃2ψ

∂R
+

∂ψ

∂R

∂∇̃2ψ

∂φ

)
= ν∇̃4ψ, (8.2.27)

∇̃2 =
∂2

∂R2
+

sinφ

R2

∂

∂φ

(
1

sinφ

∂

∂φ

)
.

8.2.2 Inviscid Fluid Statics

For incompressible inviscid fluids (i.e., fluids with zero viscosity), the constitutive
equation for stress is [see Eq. (6.5.16)]

σ = −pI (σij = −pδij),

where p is the hydrostatic pressure, the equations of motion (8.1.6) reduce to

−∇p+ ρf = ρ
Dv

Dt
. (8.2.28)
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The body force in hydrostatics problem often represents the gravitational
force, ρf = −ρg ê3, where the positive x3-axis is taken positive upward. Conse-
quently, the equations of motion reduce to

− ∂p

∂x1
= ρa1, − ∂p

∂x2
= ρa2, − ∂p

∂x3
= ρg + ρa3, (8.2.29)

where ai = v̇i is the ith component of acceleration.
For steady flows with constant velocity field, the equations in (8.2.29) sim-

plify to

− ∂p

∂x1
= 0, − ∂p

∂x2
= 0, − ∂p

∂x3
= ρg. (8.2.30)

The first two equations in (8.2.30) imply that p = p(x3). Integrating the third
equation with respect to x3, we obtain

p(x3) = −ρgx3 + c1,

where c1 is the constant of integration, which can be evaluated using the pressure
boundary condition at x3 = H, where H is the height of the column of liquid; see
Fig. 8.2.1(a). On the free surface we have p = p0, where p0 is the atmospheric
pressure. Then the constant of integration is c1 = p0 + ρgH and we have

p(x3) = ρg(H − x3) + p0. (8.2.31)

For the unsteady case in which the fluid in a rectangular container moves at
a constant acceleration a1 in the x1-direction, the equations of motion in Eq.
(8.2.29) become

− ∂p

∂x1
= ρa1, − ∂p

∂x2
= 0, − ∂p

∂x3
= ρg, (8.2.32)

From the second equation it follows that p = p(x1, x3). Integrating the first
equation with respect to x1, we obtain

p(x1, x3) = −ρa1x1 + f(x3),

H
x3

x1

H

x3

x1
θ

(a) (b)

a1

Smooth
surface

g
g

Fig. 8.2.1: (a) Column of liquid of height H. (b) A container of fluid moving with a constant
acceleration, a = a1ê1.
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where f(x3) is a function of x3 alone. Substituting the preceding equation into
the third equation in (8.2.32), and integrating with respect to x3, we arrive at

f(x3) = ρgx3 + c2, p(x1, x3) = −ρa1x1 + ρgx3 + c2,

where c2 is a constant of integration. If x3 = 0 is taken on the free surface of
the fluid in the container, then p = p0 at x1 = x3 = 0, giving c2 = p0. Thus,

p(x1, x3) = p0 − ρa1x1 + ρgx3. (8.2.33)

Equation (8.2.33) suggests that the free surface (which is a plane), where p = p0,
is given by the equation a1x1 = gx3. The orientation of the plane is given by
the angle θ, as shown in Fig. 8.2.1(b), where

tan θ =
dx3
dx1

=
a1
g

. (8.2.34)

When the fluid is a perfect gas, the constitutive equation for pressure is the
equation of state

p = ρRT, (8.2.35)

where T is the absolute temperature (in degrees Kelvin) andR is the gas constant
(m · N/kg · K). If the perfect gas is at rest at a constant temperature, then we
have

p

p0
=

ρ

ρ0
, (8.2.36)

where ρ0 is the density at pressure p0. From the third equation in (8.2.30), we
have

dx3 = − 1

ρg
dp = − p0

ρ0g

dp

p
.

Integrating from x3 = x03 to x3, we obtain

x3 − x03 = − p0
ρ0g

ln

(
p

p0

)
or p = p0 exp

(
−x3 − x03

p0/ρ0g

)
. (8.2.37)

8.2.3 Parallel Flow (Navier–Stokes Equations)

A flow is called parallel if only one velocity component is nonzero (i.e., all fluid
particles moving in the same direction). Suppose that the x1-axis is taken along
the flow direction, and let v2 = v3 = 0 as well as the body forces f1, f2, and f3
be negligible. Then it follows from Eq. (8.2.3) that

∂v1
∂x1

= 0 → v1 = v1(x2, x3, t). (8.2.38)

Thus, for a parallel flow, we have

v1 = v1(x2, x3, t), v2 = v3 = 0. (8.2.39)
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Consequently, the three equations of motion in (8.2.4) simplify to the following
linear differential equations:

− ∂p

∂x1
+ μ

(
∂2v1
∂x22

+
∂2v1
∂x23

)
= ρ

∂v1
∂t

,
∂p

∂x2
= 0,

∂p

∂x3
= 0. (8.2.40)

The last two equations in (8.2.40) imply that p is only a function of x1. Thus,
given the pressure gradient dp/dx1, the first equation in (8.2.40) can be used to
determine v1. Next we consider some specific examples.

Example 8.2.1

Steady flow of viscous incompressible fluid between parallel plates. Consider a steady flow (i.e.,
∂v1/∂t = 0) in a channel with two parallel flat walls (see Fig. 8.2.2). Let the distance between
the two walls be b. Using the alternative notation, x1 = x, x2 = y, and v1 = vx, Eq. (8.2.40)
can be reduced to the following boundary value problem:

μ
d2vx
dy2

=
dp

dx
, 0 < y < b

vx(0) = 0, vx(b) = U.

(1)

When U = 0, the flow is known as the Poiseuille flow, and when U �= 0, the flow is termed as
the Couette flow. Determine the velocity distributions.

Uy

b

x

2
b η

Fig. 8.2.2: Parallel flow through a straight channel.

Solution: The solution to the Couette flow problem described by Eq. (1) is

vx(y) =
y

b
U − b2

2μ

dp

dx

y

b

(
1− y

b

)
, 0 < y < b, (2)

v̄x(ȳ) = ȳ + fȳ (1− ȳ) , v̄x =
vx
U

, ȳ =
y

b
, f = − b2

2μU

dp

dx
. (3)

In the case of Poiseuille flow, the solution in Eqs. (2) and (3) reduces to

vx(y) = − b2

2μ

dp

dx

y

b

(
1− y

b

)
, 0 < y < b, (4)

vx(η) = − 1

2μ

dp

dx

(
b2

4
− η2

)
, η = y − b

2
, − b

2
< η <

b

2
. (5)

Figures 8.2.3(a) and 8.2.3(b) show the velocity distributions for the two cases, U = 0 (Poiseuille
flow) and U �= 0 (Couette flow).
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Fig. 8.2.3: Velocity distribution v̄x(y) for (a) the Poiseuille flow and (b) the Couette flow.

Example 8.2.2

Steady flow of a viscous incompressible fluid through a circular pipe. The steady flow through
a long, straight, horizontal circular pipe is another problem that admits exact solution to
the Navier–Stokes equations. Use the cylindrical coordinate system with r being the radial
coordinate, and the z-coordinate is taken along the axis of the pipe of radius R0. Assume
that the velocity components vr and vθ in the radial and tangential directions, respectively,
are zero. Determine the (a) velocity vz = vz(r), (b) volume rate of flow, and (c) shear stress
τrz at the wall.

Solution: (a) The continuity equation (8.2.9) for the axisymmetric flow (i.e., the flow field is
independent of θ) implies that the velocity component parallel to the axis of the pipe, vz, is
only a function of r. For steady flow, Eqs. (8.2.10) and (8.2.11) yield (∂p/∂r) = (∂p/∂θ) = 0,
implying that p is only a function of z. Equation (8.2.12) simplifies to

μ

r

d

dr

(
r
dvz
dr

)
=

dp

dz
, (1)

whose solution is given by

vz(r) =
1

4μ

dp

dz
r2 +A log r +B, (2)

where the constants of integration, A and B, are determined using the boundary conditions
(of vanishing shear stress at the center of the pipe and zero velocity at the wall),

at r = 0 : rτrz ≡ rμ

(
∂vr
∂z

+
∂vz
∂r

)
= 0; and at r = R0 : vz = 0. (3)

We find that

A = 0, B = −R2
0

4μ

dp

dz
, (4)

and the solution becomes

vz(r) = − 1

4μ

dp

dr

(
R2

0 − r2
)
= −R2

0

4μ

dp

dr

(
1− r2

R2
0

)
. (5)

Thus, the velocity over the cross section of the pipe varies as a paraboloid of revolution. The
maximum velocity occurs along the axis of the pipe and it is equal to

(vz)max = vz(0) = −R2
0

4μ

dp

dz
. (6)

(b) The volume rate of flow through the pipe is

Q =

∫ 2π

0

∫ R0

0

vz(r) rdrdθ =
πR4

0

8μ

(
−dp

dz

)
. (7)
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(c) The wall shear stress is (the minus sign implies that the direction is opposite to the flow)

τw = −μ

(
dvz
dr

)
r=R0

=
R0

2

dp

dz
. (8)

Example 8.2.3

Unsteady flow of a viscous incompressible fluid through a circular pipe. Consider unsteady flow
of a viscous fluid of constant ρ and μ through a long horizontal circular pipe of length L and
radius R0. Assume that the fluid is initially at rest. At t = 0 a pressure gradient dp/dz,
assumed to be independent of t, is applied to the system. Determine the velocity profile as a
function of time for t > 0.

Solution: Let vz(r, t) = V (r, t). Then Eq. (8.2.12) takes the form

ρ
∂V

∂t
=

μ

r

∂

∂r

(
r
∂V

∂r

)
− dp

dz
, 0 < r < R0, t > 0. (1)

The boundary conditions in Eq. (3) of Example 8.2.2 are still valid for this problem for all
t > 0. The initial condition is

V (r, 0) = 0, 0 < r < R0. (2)

To solve the problem, we introduce the following dimensionless variables:

V̄ = − 4μL

(dp/dz)R2
0

V ; ξ =
r

R0
; τ =

μ

ρR2
0

t. (3)

Then the governing equation in Eq. (1), boundary conditions in Eq. (3) of Example 8.2.2, and
the initial condition in Eq. (3) become, respectively,

∂V̄

∂τ
=

1

ξ

∂

∂ξ

(
ξ
∂V̄

∂ξ

)
+ 4, 0 < ξ < 1, τ > 0, (4)

B.C.: V̄ (1, τ) = 0, V̄ (0, τ) is finite; I.C.: V̄ (ξ, 0) = 0, (5)

where the condition dV̄ /dξ = 0 at ξ = 0 is replaced with V̄ (0, τ) = finite, and they are
equivalent.

Next, we seek the solution V̄ (ξ, τ) as the sum of steady state solution V̄ (ξ, τ) → V̄∞(ξ)
as τ → ∞ and transient solution V̄τ (ξ, τ) such that

−4 =
1

ξ

d

dξ

(
ξ
dV̄∞
dξ

)
, (6)

∂V̄τ

∂τ
=

1

ξ

∂

∂ξ

(
ξ
∂V̄τ

∂ξ

)
. (7)

Equation (6) is subjected to the boundary conditions

V̄∞(1) = 0, V̄∞(0) is finite; (8)

Equation (7) is to be solved with the boundary and initial conditions:

B.C.: V̄τ (1, τ) = 0, V̄τ (0, τ) is finite; I.C.: V̄τ (ξ, 0) = −V̄∞. (9)

The solution of Eqs. (6) and (8) is

V̄∞(ξ) = 1− ξ2. (10)
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The solution to Eqs. (7) and (9) can be obtained using the separation of variables technique.
We assume a solution in the form

V̄τ (ξ, τ) = X(ξ)T (τ), (11)

and substitute into Eq. (7) to obtain

1

T

dT

dτ
=

1

X

1

ξ

d

dξ

(
ξ
dX

dξ

)
. (12)

Because the left-hand side is a function of τ alone and the right-hand side is a function of ξ
alone, it follows that both sides must be equal to a constant, which we choose to designate as
−α2 (because the solution must be a decay type in τ and periodic in ξ). Thus, we have

dT

dτ
+ α2T = 0 → T (τ) = Ae−α2τ , (13)

and
1

ξ

d

dξ

(
ξ
dX

dξ

)
+ α2X = 0 → X(ξ) = C1J0(αξ) + C2Y0(αξ), (14)

where J0 and Y0 are the zero-order Bessel functions of the first and second kind, respectively.
The constants A, C1, and C2 must be determined such that the initial conditions in Eq. (9) are
satisfied. The condition that V̄τ (0, τ) be finite requires X(0) to be finite. Since Y0(0) = −∞,
it follows that C2 = 0. The boundary condition V̄τ (1, τ) = 0 requires X(1) = J0(α) = 0. The
function J0(α) is an oscillating function, and thus has the following zeros [i.e., the roots of
J0(αn) = 0]:

α1 = 2.4048, α2 = 5.5201, α3 = 8.6537, α4 = 11.7915, α5 = 14.9309, · · · . (15)

Thus the total solution can be written as

V̄τ (ξ, τ) =

∞∑
n=1

Cne
−α2

nτ J0(αnξ). (16)

The constants Cn = AC1n are determined using the initial condition in Eq. (9). We have

V̄τ (ξ, 0) = −V̄∞ = −(1− ξ2) =
∞∑

n=1

CnJ0(αnξ). (17)

The functions J0(αn) satisfy the following orthogonality condition:

∫ 1

0

J0(αnξ) J0(αmξ) ξ dξ =

{
0, m �= n
βn, m = n,

(18)

where βn is given by

βn =

∫ 1

0

[J0(αnξ)]
2 ξ dξ =

1

2
[J1(αm)]2,

∫ 1

0

J0(αnξ)(1− ξ2)ξ dξ =
4J1(αn)

α3
n

.

(19)

The above integrals are evaluated using some standard relations for the Bessel functions. Thus,
we obtain

Cn = − 8

α3
n J1(αn)

. (20)

The final expression for the velocity V̄ (ξ) is

V̄ (ξ, τ) = (1− ξ2)− 8

∞∑
n=1

J0(αnξ)

α3
n J1(αn)

e−α2
nτ . (21)
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8.2.4 Problems with Negligible Convective Terms

The exact solution of the Navier–Stokes equations is made difficult by the pres-
ence of the convective (nonlinear) terms, v · ∇v. When the motion is assumed
to be very slow, the convective terms are very small compared to the viscous
terms μ∇2v and can be neglected, resulting in linear equations of motion. Such
flows are called creeping flows, and the Navier–Stokes equations without the
convective terms are often called the Stokes equations. For creeping flows of
viscous incompressible fluids the governing equations (8.2.1) and (8.2.2) reduce
to

∇ · v = 0,
∂vi
∂xi

= 0, (8.2.41)

ρ
∂v

∂t
= μ∇2v −∇p+ ρf , ρ

∂vi
∂t

= μvi,jj − ∂p

∂xi
+ ρfi. (8.2.42)

These simplified equations can be solved to determine the flow field in some
cases, which are discussed in Examples 8.2.4 and 8.2.5.

Example 8.2.4

Flow of a viscous incompressible fluid around a sphere. Consider the steady slow flow of a
viscous incompressible fluid around a sphere of radius R0. The fluid approaches the sphere in
the z direction at a velocity V∞, as shown in Fig. 8.2.4. Neglecting the convective terms in Eq.
(8.2.27), the governing equation (with no dependence on θ, and omitting vθ terms) in terms of

the stream function ψ = ψ(R, φ) is ∇̃4ψ = 0 or

[
∂2

∂R2
+

sinφ

R2

∂

∂φ

(
1

sinφ

∂

∂φ

)]2
ψ(R, φ) = 0. (1)

This equation must be solved subjected to the boundary conditions

vR(R0, φ) = − 1

R2
0 sinφ

∂ψ

∂φ

∣∣∣∣
R=R0

= 0,

vφ(R0, φ) =
1

R0 sinφ

∂ψ

∂R

∣∣∣∣
R=R0

= 0,

vR(R, φ) = V∞ cosφ and vφ = −V∞ sinφ at R = ∞.

(2)

The first two conditions reflect the attachment of the viscous fluid to the surface of the sphere.

•

•
θ

φ

x

y

z

∞V

ˆ ˆ Rn e t̂

ˆRe

θê

φê

0R

Projection
in the xy-plane

R ( , , ) or ( , , )x y z R

Fig. 8.2.4: Creeping flow around a sphere.
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The third condition implies that vR = V∞ far from the sphere,

ψ → −1

2
V∞ R2 sin2 φ as R → ∞. (3)

Determine the velocity components vR and vφ by solving Eq. (1) for ψ subject to the boundary
conditions in Eqs. (2) and (3).

Solution: The condition in Eq. (3) suggests the following form of the solution:

ψ(R, φ) = f(R) sin2 φ. (4)

Substituting Eq. (4) into Eq. (1) gives

(
d2

dR2
− 2

R2

)(
d2

dR2
− 2

R2

)
f(R) = 0, (5)

or
d

dR

{
1

R2

d

dR

[
R2 d

dR

(
1

R2

d

dR
(Rf)

)]}
= 0. (6)

Successive integrations gives the result

f(R) =
c1
R

+ c2R+ c3R
2 + c4R

4. (7)

Satisfaction of the boundary condition in Eq. (3) requires that f(R) can contain terms up to
R2 and f(R) = −V∞/2 at infinity, thus giving c4 = 0 and c3 = −V∞/2. The solution is

ψ(R, φ) = f(R) sin2 φ =
( c1
R

+ c2R− V∞
2

R2
)
sin2 φ. (8)

The velocity components are [see Eq. (8.2.26)]

vR = − 1

R2 sinφ

∂ψ

∂φ
=
(
V∞ − 2

c1
R3

− 2
c2
R

)
cosφ,

vφ =
1

R sinφ

∂ψ

∂R
=
(
−V∞ − c1

R3
+

c2
R

)
sinφ.

(9)

Applying the boundary conditions in Eq. (2) gives c1 = −V∞R3
0/4 and c2 = 3V∞R0/4 so that

the velocity distributions are (see Problem 8.15 for the shear stress and pressure distributions)

vR = V∞
[
1− 3

2

(R0

R

)
+

1

2

(R0

R

)3]
cosφ,

vφ = −V∞
[
1− 3

4

(R0

R

)
− 1

4

(R0

R

)3]
sinφ.

(10)

Example 8.2.5

Flow of a viscous incompressible lubricant in a bearing. A slider (or slipper) bearing consists of
a short sliding pad moving at a velocity vx = U0 relative to a stationary pad inclined at a small
angle with respect to the stationary pad, and the small gap between the two pads is filled with
a lubricant, as shown schematically in Fig. 8.2.5. Since the ends of the bearing are generally
open, the pressure there is atmospheric, say p = p0. When the upper pad is parallel to the base
plate, the pressure everywhere in the gap will be atmospheric, and the bearing cannot support
any transverse load. If the upper pad is inclined to the base pad, a pressure distribution is set
up in the gap. For large values of U0, the pressure generated can be of sufficient magnitude to
support heavy loads normal to the base pad.
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When the width of the gap and the angle of inclination are small, one may assume that
vy = 0 and vz = 0 and the pressure is only a function of x. Assuming a two-dimensional state
of flow in the xy-plane and a small angle of inclination of the stationary pad, and neglecting the
normal stress gradient (in comparison with the shear stress gradient), the equations governing
the flow of the lubricant between the pads can be reduced to [see Schlichting (1979)]

μ
∂2vx
∂y2

=
dp

dx
,

dp

dx
=

6μU0

h2

(
1− H

h

)
, 0 < x < L, (1)

where

h(x) = h1 +
h2 − h1

L
x, H =

2h1h2

h1 + h2
. (2)

Determine the velocity and pressure distributions.

h1

h2

h(x)

x

y

x
U0

0x yv v= =

0 1, 0x yv U v= = =

0p p
0p p

Fig. 8.2.5: Schematic of a slider bearing.

Solution: The solution of Eq. (1), subject to the boundary conditions vx(0, 0) = U0 and
vx(x, h) = 0 is

vx(x, y) =
(
U0 − h2

2μ

dp

dx

y

h

)(
1− y

h

)
, (3)

p(x) =
6μU0L(h1 − h)(h− h2)

h2(h2
1 − h2

2)
, (4)

σxy(x, y) = μ
∂vx
∂y

=
dp

dx

(
y − h

2

)
− μ

U0

h
. (5)

Numerical results are obtained using the following parameters:

h1 = 2h2 = 8× 10−4 ft, L = 0.36 ft, μ = 8× 10−4 lb/ft2, U0 = 30 ft. (6)

Table 8.2.1 contains numerical values of the velocity, pressure, and shear stress as a function
of position. Figure 8.2.6 contains plots of the velocity vx at x = 0, 0.18, and 0.36 ft, while Fig.
8.2.7 contains plots of pressure and shear stress as a function of x at y = 0.

Table 8.2.1: Comparison of finite element solutions velocities with the analytical solutions
for viscous fluid in a slider bearing.

ȳ vx(0, y) ȳ vx(0.18, y) ȳ vx(0.36, y) x p̄(x, 0) −σxy(x, 0)

0.0 30.000 0.00 30.000 0.00 30.000 0.01 7.50 59.99
1.0 22.969 0.75 25.156 0.50 29.531 0.03 22.46 59.89
2.0 16.875 1.50 20.625 1.00 28.125 0.05 37.29 59.67
3.0 11.719 2.25 16.406 1.50 25.781 0.07 51.89 59.30
4.0 7.500 3.00 12.500 2.00 22.500 0.09 66.12 58.77
5.0 4.219 3.75 8.906 2.50 18.281 0.27 129.60 38.40
6.0 1.875 4.50 5.625 3.00 13.125 0.29 118.57 32.71
7.0 0.469 5.25 2.656 3.50 7.031 0.31 99.58 25.70
8.0 0.000 6.00 0.000 4.00 0.000 0.33 70.30 17.04

x̄ = 10x, ȳ = y × 104, p̄ = p× 10−2.
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Fig. 8.2.6: Velocity distributions for the slider bearing problem.
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8.2.5 Energy Equation for One-Dimensional Flows

Various forms of the energy equation derived in the preceding sections are valid
for any continuum. For simple, one-dimensional flow problems (i.e., problems
with one stream of fluid particles), the equations derived are too complicated to
be of use. In this section a simple form of the energy equation is derived for use
with one-dimensional fluid flow problems.

The first law of thermodynamics for a system occupying the domain (control
volume) Ω can be written as
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D

Dt

∫
Ω
ρε dV = Wnet +Hnet, (8.2.43)

where ε is the total energy stored per unit mass, Wnet is the net rate of work
transferred into the system, and Hnet is the net rate of heat transfer into the
system. The total stored energy per unit mass ε consists of the internal energy
per unit mass e, the kinetic energy per unit mass v2/2, and the potential energy
per unit mass gz (g is the gravitational acceleration and z is the vertical distance
above a reference value):

ε = e+
v2

2
+ gz. (8.2.44)

The rate of work done in the absence of body forces is given by (σ = τ − pI)

Wnet = Wshaft −
∮
Γ
pv · n̂ ds, (8.2.45)

where p is the pressure (normal stress) and Wshaft is the rate of work done by
the tangential force due to shear stress (e.g., in rotary devices such as fans,
propellers, and turbines).

Using the Reynolds transport theorem (5.2.40) and Eqs. (8.2.44) and (8.2.45),
we can write (8.2.43) as

∂

∂t

∫
Ω
ρε dV +

∮
Γ

(
e+

p

ρ
+

v2

2
+ gz

)
ρv · n̂ ds = Wshaft +Hnet. (8.2.46)

If only one stream of fluid (compressible or incompressible) enters the control
volume, the integral over the control surface in Eq. (8.2.46) can be written as

(
e+

p

ρ
+

v2

2
+ gz

)
out

(ρQ)out −
(
e+

P

ρ
+

v2

2
+ gz

)
in
(ρQ)in, (8.2.47)

where ρQ denotes the mass flow rate. Finally, if the flow is steady, Eq. (8.2.46)
can be written as(

e+
p

ρ
+
v2

2
+gz

)
out

(ρQ)out−
(
e+

p

ρ
+
v2

2
+gz

)
in
(ρQ)in = Wshaft+Hnet. (8.2.48)

In writing Eq. (8.2.48), it is assumed that the flow is one-dimensional and
the velocity field is uniform. If the velocity profile at sections crossing the control
surface is not uniform, a correction must be made to Eq. (8.2.48). In particular,
when the velocity profile is not uniform, the integral∮

Γ

v2

2
ρv · n̂ ds

cannot be replaced with (v2/2)(ρQ) = ρAv3/2, where A is the cross-sectional
area of the flow because integral of v3 is different when v is uniform or varies
across the section. If we define the ratio, called the kinetic energy coefficient

α =

∮
Γ

v2

2 ρv · n̂ ds

(ρQv2/2)
, (8.2.49)
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Eq. (8.2.48) can be expressed as(
e+

p

ρ
+

αv2

2
+ gz

)
out

(ρQ)out −
(
e+

p

ρ
+

αv2

2
+ gz

)
in
(ρQ)in = Wshaft +Hnet.

(8.2.50)
An example of the application of energy equation (8.2.50) is presented next.

Example 8.2.6

A pump delivers water at a steady rate of Q0 (gal/min.), as shown in Fig. 8.2.8. If the left side
pipe is of diameter d1 (in.) and the right side pipe is of diameter d2 (in.), and the pressures in
the two pipes are p1 and p2 (psi), respectively, determine the horsepower (hp) required by the
pump if the rise in the internal energy across the pump is e. Assume that there is no change of
elevation in water level across the pump, and the pumping process is adiabatic (i.e., the heat
transfer rate is zero). Use the following data (α = 1):

ρ = 1.94 slugs/ft3, d1 = 4 in., d2 = 1 in.,

p1 = 20 psi, p2 = 50 psi, Q0 = 350 gal/min., e = 3300 lb-ft/slug.

1Section
2Section

1 1,d p
2 2,d p 0Q

2 1e e e

Pump

Control volume

0Q

Fig. 8.2.8: The pump considered in Example 5.4.1.

Solution: We take the control volume between the entrance and exit sections of the pump, as
shown in dotted lines in Fig. 8.2.8. The mass flow rate entering and exiting the pump is the
same (conservation of mass) and equal to

ρQ0 =
1.94× 350

7.48× 60
= 1.513 slugs/s.

The velocities at Sections 1 and 2 are (converting all quantities to proper units) are

v1 =
Q0

A1
=

350

7.48× 60

4× 144

16π
= 8.94 ft/s,

v2 =
Q0

A2
=

350

7.48× 60

4× 144

π
= 143 ft/s.

For adiabatic flow Hnet = 0, the potential energy term is zero on account of no elevation
difference between the entrance and exits, and e = e2 − e1 = 3300 ft-lb/slug. Thus, we have

Wshaft = ρQ0

[(
e+

p

ρ
+

v2

2

)
2

−
(
e+

p

ρ
+

v2

2

)
1

]

= (1.513)

[
3300 +

(50− 20)× 144

1.94
+

(143)2 − (8.94)2

2

]
1

550
= 43.22 hp.
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8.3 Heat Transfer Problems

8.3.1 Governing Equations

For heat transfer in incompressible fluids, neglecting mechanical stresses, the
internal energy e is only a function of the absolute temperature T , e = e(T )
and ρ independent of T . For heat transfer in a solid medium, all of the velocity
components and the dissipation Φ = τ : D should be set to zero. Then we have

ρ
De

Dt
= ρ

de

dT

DT

Dt
. (8.3.1)

The quantity de/dT is the specific heat at constant volume, cv:

cv =

(
de

dT

) ∣∣∣
constant volume

. (8.3.2)

Then the energy equation [see Eqs. (8.1.7) and (8.1.9)] takes the form

ρcv
DT

Dt
= ∇ · (k ·∇T ) + ρrh, (8.3.3)

or, in index notation

ρcv
DT

Dt
=

∂

∂xi

(
kij

∂T

∂xj

)
+ ρrh.

For heat transfer in fluids at constant pressure or heat transfer in solids, cv is
replaced with cp, the specific heat at constant pressure. The expanded forms of
Eq. (8.3.3) in rectangular Cartesian coordinates (x, y, z), cylindrical coordinates
(r, θ, z), and spherical coordinates (R,φ, θ) are presented here for the isotropic
case in which k and μ are constants (and cv → cp).

Cartesian coordinate system (x, y, z)

ρcp

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= k

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)

+ 2μ

[(
∂vx
∂x

)2

+

(
∂vy
∂y

)2

+

(
∂vz
∂z

)2
]
+ μ

[(
∂vx
∂y

+
∂vy
∂x

)2

+

(
∂vx
∂z

+
∂vz
∂x

)2

+

(
∂vy
∂z

+
∂vz
∂y

)2
]
+ ρrh (8.3.4)

Cylindrical coordinate system (r, θ, z)

ρcp

(
∂T

∂t
+ vr

∂T

∂r
+

vθ
r

∂T

∂θ
+ vz

∂T

∂z

)
= k

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2
∂2T

∂θ2
+

∂2T

∂z2

]

+ 2μ

{(
∂vr
∂r

)2

+

[
1

r

(
∂vθ
∂θ

+ vr

)]2
+

(
∂vz
∂z

)2
}

+ μ

{(
∂vθ
∂z

+
1

r

∂vz
∂θ

)2

+

(
∂vz
∂r

+
∂vr
∂z

)2

+

[
1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)]2}
+ ρrh

(8.3.5)
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Spherical coordinate system (R,φ, θ)

ρcp

(
∂T

∂t
+ vR

∂T

∂R
+

vφ
R

∂T

∂φ
+

vθ
R sinφ

∂T

∂θ

)

= k

[
1

R2

∂

∂R

(
R2 ∂T

∂R

)
+

1

R2 sinφ

∂

∂φ

(
sinφ

∂T

∂φ

)
+

1

R2 sin2 φ

∂2T

∂θ2

]

+ 2μ

[(
∂vR
∂R

)2

+

(
1

R

∂vφ
∂φ

+
vR
R

)2

+

(
1

r sinφ

∂vθ
∂θ

+
vR
R

+
vφ cotφ

R

)2
]

+ μ

{[
R

∂

∂R

(vφ
r

)
+

1

R

∂vR
∂φ

]2
+

[
1

R sinφ

∂vR
∂θ

+R
∂

∂R

(vθ
R

)]2

+

[
sinφ

R

∂

∂φ

(
vθ

sinφ

)
+

1

R sinφ

∂vφ
∂θ

]2}
+ ρrh (8.3.6)

8.3.2 Heat Conduction in a Cooling Fin

Heat transfer from a surface to the surrounding fluid medium can be increased
by attaching thin strips, called fins, of conducting material to the surface, as
shown in Fig. 8.3.1(a). We assume that the fins are very long in the y-direction,
and heat conducts only along the x-direction and convects through the lateral
surface, i.e., T = T (x, t). This assumption reduces the three-dimensional prob-
lem to a one-dimensional problem. By setting the velocity components to zero
in Eq. (8.3.3) and noting that T = T (x, t), we obtain

ρcp
∂T

∂t
= k

∂2T

∂x2
+ ρrh. (8.3.7)

x
yz

( )xqA ( ) xxqA Δ+

( )∞− TThPConvection,

L

a

Lateral surface and right end are
exposed to ambient temperature, T∞

Body from which heat is 
to be extracted

a t
L

xRectangular fins
(a)

(b)

P = perimeter

xΔ

Fig. 8.3.1: Heat transfer in a cooling fin.
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Equation (8.3.7) does not account for the cross-sectional area of the fin and
convective heat transfer through the surface. Therefore, we derive the governing
equation from the first principles, accounting for the cross-sectional change with
x and convection from the surface. We assume steady heat conduction.

Consider an element of length Δx at a distance x in the fin, as shown in Fig.
8.3.1(b). The balance of energy in the element requires that

(qA)x − (qA)x+Δx − hPΔx(T − T∞) + ρrh(
Ax +Ax+Δx

2
)Δx = 0, (8.3.8)

where q is the heat flux, A is the cross-sectional area (which can be a function
of x), P is the perimeter, h is the film conductance, and Q is internal heat
generation per unit mass (which is zero in the case of fins). Dividing throughout
by Δx and taking the limit Δx → 0, we obtain

− d

dx
(qA)− hP (T − T∞) + ρrhA = 0. (8.3.9)

Using Fourier’s law, q = −k(dT/dx), where k is thermal conductivity of the fin,
we obtain

d

dx

(
kA

dT

dx

)
− hP (T − T∞) + ρrhA = 0, (8.3.10)

which governs one-dimensional heat transfer in a solid whose cross section A
may be a function of x.

Example 8.3.1

Convection heat transfer in a fin. Determine the temperature distribution in a fin of length
a, cross-sectional area A, and conductivity k (assume that k and A are constant). Suppose
that the left end is maintained at temperature T0 and the surface as well as the right end
are exposed to a surrounding medium with temperature T∞ and heat transfer coefficient h
(relative to the fin). Assume that there is no internal generation (i.e., rh = 0).

Solution: Equation (8.3.4) must be solved subject to the boundary conditions

T (0) = T0,

[
kA

dT

dx
+ hA(T − T∞)

]
x=a

= 0. (1)

The second boundary condition is a statement of the balance of energy (conductive and con-
vective) at x = a.

We introduce the following nondimensional quantities for convenience of solving the prob-
lem analytically:

θ =
T − T∞
T0 − T∞

, ξ =
x

a
, m2 =

hP

kA
a2 , N =

ha

k
. (2)

Then Eqs. (8.3.10) and (1) take the form

d2θ

dξ2
−m2θ = 0 for 0 < ξ < 1; θ(0) = 1,

[
dθ

dξ
+Nθ

]
ξ=1

= 0. (3)

The general solution to the differential equation in (3) is

θ(ξ) = c1 coshmξ + c2 sinhmξ, 0 < ξ < 1,
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where the constants c1 and c2 are to be determined using the boundary conditions in (3). We
obtain

θ(0) = 1 ⇒ c1 = 1;

[
dθ

dξ
+Nθ

]
ξ=1

= 0 ⇒ c2 = −m sinhm+N coshm

m coshm+N sinhm
, (4)

and the solution becomes

θ(ξ) =
coshmξ (m coshm+N sinhm)− (m sinhm+N coshm) sinhmξ

m coshm+N sinhm

=
m coshm(1− ξ) +N sinhm(1− ξ)

m coshm+N sinhm
, 0 < ξ < 1. (5)

The effectiveness of a fin is defined by (omitting the end effects)

He =
Actual heat convected by the fin surface

Heat that would be convected if the fin surface were held at T0

=

∫ L

0

∫ a

0
h(T − T∞)dx dy∫ L

0

∫ a

0
h(T0 − T∞)dx dy

=

∫ 1

0

θ(ξ) dξ

=

∫ 1

0

m coshm(1− ξ) +N sinhm(1− ξ)

m coshm+N sinhm
dξ

=
1

m

m sinhm+N(coshm− 1)

m coshm+N sinhm
. (6)

8.3.3 Axisymmetric Heat Conduction in a Circular Cylinder

Here we consider heat transfer in a long circular cylinder (see Fig. 8.3.2). If
the boundary conditions and material of the cylinder are axisymmetric, that
is, independent of the circumferential coordinate θ, it is sufficient to consider a
typical rz-plane, where r is the radial coordinate and z is the axial coordinate.
Further, if the cylinder is very long, say 10 diameters in length, then heat transfer
along a typical radial line is all we need to determine; thus, the problem is
reduced to a one-dimensional one.

( ) rrrq Δ+

0R

0T

θ

r
rr Δ+( )rrq

z
(circumferential 
coordinate)

Fig. 8.3.2: Heat conduction in a circular cylinder.
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The governing equation for this one-dimensional heat transfer in solids (v =
0) can be obtained from Eq. (8.3.5) as

ρcp
∂T

∂t
=

1

r

∂

∂r

(
kr

∂T

∂r

)
+ ρrh(r), 0 < r < R0, (8.3.11)

where ρrh is internal heat generation per unit volume and R0 is the radius of
the cylinder. For example, in the case of an electric wire of circular cross section
and electrical conductivity ke (1/Ohm/m) heat is produced at the rate of

ρrh =
I2

ke
, (8.3.12)

where I is electric current density (amps/m2) passing through the wire. Equa-
tion (8.3.11) is to be solved subject to the appropriate initial condition and
boundary conditions at r = 0 and r = R0.

Example 8.3.2

Steady-state heat transfer in a long cylinder. Consider steady-state heat transfer in an isotropic
cylinder of radius R0, when there is a uniform internal heat generation of ρrh = g and the
surface of the cylinder is subjected to a temperature T (R0) = T0. Assuming that the cylinder
is very long (so that there is no conduction of heat along the z-direction), determine the
temperature distribution in the cylinder.

Solution: Owing to the axisymmetry (from geometry, material, and boundary conditions view
points), the problem becomes one of solving the boundary value problem [the governing equa-
tion is deduced from Eq. (8.3.5)]:

k
1

r

d

dr

(
r
dT

dr

)
+ g = 0, 0 < r < R0; (rqr)r=0 =

[
−kr

dT

dr

]
r=0

= 0, T (R0) = T0. (1)

The general solution is given by

T (r) = −gr2

4k
+ c1 log r + c2. (2)

The constants c1 and c2 are determined using the boundary conditions:

(rqr)(0) = 0 ⇒ c1 = 0; T (R0) = T0 ⇒ c2 = T0 +
gR2

0

4k
.

Hence the solution (1) becomes

T (r) = T0 +
gR2

0

4k

(
1− r2

R2
0

)
, (3)

which is a quadratic function of the radial distance r. The heat flux is given by

q(r) = −k
dT

dr
=

gr

2
, (4)

and the total heat flow at the surface of the cylinder is

Q = 2πR0Lq(R0) = πR2
0Lg.
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Example 8.3.3

Unsteady heat transfer in a long cylinder. Determine the transient (i.e., time-dependent) tem-
perature profile in the cylinder of Example 8.3.2 when it is subjected to the following initial
and boundary conditions:

Initial condition: T (r, 0) = 0

Boundary conditions: T (R0, t) = 0, (rqr)r=0 =

[
−kr

∂T

∂r

]
r=0

= 0.
(1)

The temperature rise is solely due to the internal heat generation g.

Solution: The governing differential equation is

k
1

r

∂

∂r

(
r
∂T

∂r

)
+ g = ρcp

∂T

∂t
, 0 < r < R0. (2)

Let us introduce the following variables:

θ =
4k

gR2
0

T ; ξ =
r

R0
; τ =

k

ρcpR2
0

t. (3)

Then Eq. (2) becomes
∂T

∂τ
=

1

ξ

∂

∂ξ

(
ξ
∂θ

∂ξ

)
+ 4, 0 < ξ < 1, (4)

and the initial and boundary conditions become

θ(ξ, 0) = 0, T (1, τ) = 0,

[
−ξ

∂θ

∂ξ

]
ξ=0

= 0. (5)

The problem described by Eqs. (4) and (5) is equivalent to solving the problem described by
Eqs. (6) and (7) of Example 8.2.3, where the finite-valuedness of θ at ξ = 0 is replaced by its
derivative being zero there, both giving the same result [i.e., C2 = 0 in Eq. (14) of Example
8.2.3]. Therefore, the transient solution of Eqs. (4) and (5) is given by Eq. (21) of Example
8.2.3:

θ(ξ, τ) = (1− ξ2)− 8

∞∑
n=1

J0(αnξ)

α3
n J1(αn)

e−α2
nτ , (6)

where αn are the roots of the zero-order Bessel function of the first kind, J0(αn) = 0, and
J1(αn) is the first-order Bessel function of the first kind. The first five roots of J0(αn) = 0 are
given in Eq. (15) of Example 8.2.3.

Several representative examples of one-dimensional heat transfer were dis-
cussed in the foregoing examples; numerous other problems that differ only in
terms of the boundary conditions can be solved using the approaches presented
there. Problems involving multiple materials can also be solved by imposing the
continuity of temperature and balance of heats at the dissimilar material inter-
faces. The most important step in simplifying a problem to a one-dimensional
one is to identify solution symmetry that may reduce the dimensionality of the
problem. For example, for a hollow sphere with uniform temperatures at in-
ner and outer surfaces, the temperature distribution with uniform internal heat
generation can be solved as a one-dimensional problem.



8.3. HEAT TRANSFER PROBLEMS 379

8.3.4 Two-Dimensional Heat Transfer

Many problems of heat transfer require two- or three-dimensional analysis. Ana-
lytical solutions of these problems are limited to simple geometries and boundary
conditions. Here we present an example of a steady-state, two-dimensional, heat
transfer problem with the help of the separation-of-variables technique.

Example 8.3.4

Steady-state heat transfer in a rectangular plate. Consider steady-state heat conduction in a
rectangular plate made of an isotropic material with conductivity k and sinusoidal temperature
distribution on one edge, as shown in Fig. 8.3.3. Assume that there is no internal heat
generation (Q = 0). Determine the temperature distribution in the plate.

Solution: The governing equation for this problem is a special case of Eq. (8.3.4), where all
velocity terms as well as the time-derivative terms are set to zero:

k

(
∂2T

∂x2
+

∂2T

∂y2

)
= 0. (1)

The boundary conditions are

T (x, 0) = 0, T (0, y) = 0, T (a, y) = 0, T (x, b) = T0 sin
πx

a
. (2)

The classical approach to an analytical solution of the Laplace or Poisson equation over a
regular (i.e., rectangular or circular) domain is the separation-of-variables technique. In this
technique, we assume the temperature T (x, y) to be of the form

T (x, y) = X(x)Y (y), (3)

where X is a function of x alone and Y is a function of y alone. Substituting Eq. (3) into Eq.
(1) and rearranging the terms, we obtain

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
. (4)

Since the left-hand side is a function of x alone and the right-hand side is a function of y alone,
it follows that both sides must be equal to a constant, which we choose to be −λ2 (because
the solution must be periodic in x so as to satisfy the boundary condition on the edge y = b).
Thus, we have

d2X

dx2
+ λ2X = 0,

d2Y

dy2
− λ2Y = 0, (5)

a

b

x

y

0 0( , )T y

a
xTbxT πsin),( 0=

0)0,( =xT

0),( =yaT

Fig. 8.3.3: Heat conduction in a rectangular plate.
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whose general solutions are

X(x) = c1 cosλx+ c2 sinλx, Y (y) = c3e
−λy + c4e

λy. (6)

The solution T (x, y) is given by

T (x, y) = (c1 cosλx+ c2 sinλx)
(
c3e

−λy + c4e
λy
)
. (7)

The constants ci (i = 1, 2, 3, 4) are determined using the boundary conditions in Eq. (2). We
obtain

T (x, 0) = 0 → (c1 cosλx+ c2 sinλx) (c3 + c4) = 0 → c3 = −c4,

T (0, y) = 0 → c1
(
c3e

−λy + c4e
λy
)
= 0 → c1 = 0,

T (a, y) = 0 → c2 sinλa
(
c3e

−λy + c4e
λy
)
= 0 → sinλa = 0.

The last conclusion is reached because c2 = 0 will make the whole solution trivial. We have

sinλa = 0 → λa = nπ or λn =
nπ

a
. (8)

The solution in Eq. (7) now can be expressed as

T (x, y) =

∞∑
n=1

An sin
nπx

a
sinh

nπy

a
. (9)

The constants An, n = 1, 2, · · · are determined using the remaining boundary condition. We
have

T (x, b) = T0 sin
πx

a
=

∞∑
n=1

An sin
nπx

a
sinh

nπb

a
.

Multiplying both sides with sin(mπx/a) and integrating from 0 to a and using the orthogonality
of the sine functions ∫ a

0

sin
nπx

a
sin

mπx

a
dx =

{
0, m �= n
a
2
, m = n

we obtain

A1 =
T0

sinh nπb
a

, An = 0 for n �= 1.

Hence, the final solution is

T (x, y) = T0

sinh πy
a

sinh πb
a

sin
(πx

a

)
. (10)

When the boundary condition at y = b is replaced with T (x, b) = f(x), then the solution
is given by

T (x, y) =
∞∑

n=1

An

sinh nπy
a

sinh nπb
a

sin
(nπx

a

)
, (11)

with An given by

An =
2

a

∫ a

0

f(x) sin
nπx

a
dx. (12)

Once the temperature T (x, y) is known, we can determine the components of heat flux, qx and
qy, from Fourier’s law:

qx = −k
∂T

∂x
, qy = −k

∂T

∂y
. (13)
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8.3.5 Coupled Fluid Flow and Heat Transfer

Many real-world systems involve coupled heat transfer and fluid flows. Internal
combustion engines and solar collectors are good examples (they also involve
stress and deformation due to temperature differences). Although the study
such complex problems is outside the scope of this first book on continuum
mechanics, an example in which the fluid flow is coupled to heat transfer is
presented next.

Example 8.3.5

Coupled heat transfer and fluid flow. Consider the fully developed, incompressible, steady-state
Couette flow between parallel plates with zero pressure gradient (see Section 8.2). Suppose
that the top plate moving with a velocity U and maintained at a temperature T1 and the
bottom plate is stationary and maintained at temperature T0 (see Fig. 8.3.4). Assuming fully
developed temperature profile and zero internal heat generation, determine the temperature
field.

Solution: For fully developed temperature field, we can assume that T = T (y). Then the
energy equation (8.3.4) reduces to

k
d2T

dy2
+ μ

(
dvx
dy

)2

= 0 → d2T

dy2
= − μ

kb2
U2. (1)

The solution of this equation is

T (y) = −μU2

kb2
y2

2
+Ay +B,

where the constants A and B are determined using the boundary conditions T (0) = T0 and
T (b) = T1. We obtain

T (0) = T0 ⇒ B = T0; T (b) = T1 ⇒ A =
T1 − T0

b
+

μU2

2kb
. (2)

Thus the temperature field in the channel is given by

T (y)− T0

T1 − T0
=

y

b
+

μU2

2k(T1 − T0)

y

b

(
1− y

b

)
. (3)

Uy

b

x

x
yv U
b

=

y

0

1 0

( )( ) T y Ty
T T

θ −=
−

x

Fig. 8.3.4: Velocity and temperature distributions for Couette flow.
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8.4 Summary

In this chapter, analytical solutions of selective problems in fluid mechanics and
heat transfer are presented. First, a summary of the equations as applied to vis-
cous incompressible fluids are presented in Cartesian, cylindrical, and spherical
coordinate systems. The following example problems involving viscous incom-
pressible fluid were formulated and their analytical solutions were determined:
(1) a problem of inviscid fluid statics (using Cartesian coordinates); (2) steady
flow of a viscous fluid between parallel plates (using Cartesian coordinates);
(3) steady flow of a viscous fluid through a circular pipe (using cylindrical co-
ordinates); (4) unsteady flow of a viscous fluid through a circular pipe (using
cylindrical coordinates); (5) steady flow of a viscous fluid around a sphere (us-
ing spherical coordinates); and (6) steady flow of a viscous fluid through a slider
bearing (using Cartesian coordinates). The energy equation for one-dimensional
uniform, steady flow of incompressible fluid is also developed and an example of
its application is presented.

In the heat transfer section, the energy equation is specialized to heat transfer
in fluids or solids, and the equation is expressed in Cartesian, cylindrical, and
spherical coordinate systems. The example problems discussed include (1) one-
dimensional, convection heat transfer in a fin; (2) steady-state heat transfer in
a long cylinder; (3) unsteady in a long cylinder; (4) steady-state heat transfer
in a rectangular plate; and (5) coupled steady flow of a viscous incompressible
fluid between differentially heated plates.

For all problems discussed in this chapter, emphasis is placed on the formu-
lation of the problem and identifying and simplifying the pertinent equations for
the problem under consideration.

Problems

Note: Problems 6.20–6.34 on fluid flow and heat transfer are suitable for this chapter.

Fluid Mechanics

8.1 Assume that the velocity components in an incompressible flow are independent of the
x coordinate and vz = 0 to simplify the continuity equation (8.2.5) and the equations
of motion (8.2.6)–(8.2.8).

8.2 An engineer is to design a sea lab 4 m high, 5 m wide, and 10 m long to withstand
submersion to 120 m, measured from the surface of the sea to the top of the sea lab.
Determine the (a) pressure on the top and (b) pressure variation on the side of the cubic
structure. Assume the density of salt water to be ρ = 1020 kg/m3.

8.3 Compute the pressure and density at an elevation of 1600 m for isothermal conditions.
Assume P0 = 102 kPa and ρ0 = 1.24 kg/m3 at sea level.

8.4 Derive the pressure–temperature and density–temperature relations for an ideal gas
when the temperature varies according to θ(x3) = θ0 + mx3, where m is taken to be
m = −0.0065◦C/m up to the stratosphere, and x3 is measured upward from sea level.
Hint: Use Eq. (8.2.35) and the third equation in Eq. (8.2.32).

8.5 Consider the steady flow of a viscous incompressible Newtonian fluid down an inclined
surface of slope α under the action of gravity (see Fig. P8.5). The thickness of the fluid
perpendicular to the plane is h and the pressure on the free surface is p0, a constant.
Use the semi-inverse method (i.e., assume the form of the velocity field) to determine
the pressure and velocity field.
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Direction of gravity,

x

y

h

xv

gρ α

Fig. P8.5

8.6 Two immiscible fluids are flowing in the x-direction in a horizontal channel of length
L and width 2b under the influence of a fixed pressure gradient. The fluid rates are
adjusted such that the channel is half filled with fluid I (denser phase) and half filled
with fluid II (less dense phase). Assuming that the gravity of the fluids is negligible,
determine the velocity field. Use the geometry and coordinate system shown in Fig.
P8.6.

x

y μ2

μ1

Interface

Less dense and 
less viscous fluid

Denser and 
more viscous fluid

Fixed wall

Fixed wall

b

b

Assume steady flow

Fig. P8.6

8.7 Consider the steady flow of a viscous, incompressible fluid in the annular region between
two coaxial circular cylinders of radii R0 and αR0, α < 1, as shown in Fig. P8.7. Take
p̄ = p+ ρgz. Determine the velocity and shear stress distributions in annulus.

r

z

Velocity 
distribution

0Rα
0R

Fig. P8.7

8.8 Consider a steady, isothermal, incompressible fluid flowing between two vertical con-
centric long circular cylinders with radii R1 and R2. If the outer one rotating with
an angular velocity Ω, show that the Navier–Stokes equations reduce to the following
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equations governing the circumferential velocity vθ and pressure p:

ρ
v2θ
r

=
∂p

∂r
, μ

d

dr

(
1

r

d

dr
(rvθ)

)
= 0, 0 = −∂p

∂z
+ ρrh.

Determine the velocity vθ and shear stress τrθ distributions.

8.9 Consider an isothermal, incompressible fluid flowing radially between two concentric
porous spherical shells. Assume steady flow with vR. Simplify the continuity and
momentum equations for the problem.

8.10 A fluid of constant density and viscosity is in a cylindrical container of radius R0 and
the container is rotated about its axis with an angular velocity of Ω. Use the cylindrical
coordinate system with the z-coordinate along the cylinder axis. Let the body force
vector to be equal to ρf = −gêz. Assume that vr = u = 0 and vz = w = 0, and
vθ = vθ(r) and simplify the governing equations. Determine vθ(r) from the second
momentum equation subject to the boundary condition vθ(R0) = Ωr. Then evaluate
the pressure p from the remaining equations.

8.11 Consider the unsteady parallel flow on a flat plate (or plane wall). Assume that the
motion is started impulsively from rest. Take the x-coordinate along the plate and the
y-coordinate perpendicular to the wall. Assume that only nonzero velocity component
is vx = vx(y, t) and that the pressure p is a constant. Show that the Navier–Stokes
equations for this case are simplified to

ρ
∂vx
∂t

= μ
∂2vx
∂y2

, 0 < y < ∞. (1)

Solve Eq. (1) for vx(y) using the following initial and boundary conditions:

Initial condition vx(y, 0) = 0,

Boundary conditions vx(0, t) = U0, vx(∞, t) = 0.
(2)

Hint: Introduce a new coordinate η by assuming η = y/(2
√
νt), where ν is the kinematic

viscosity ν = μ/ρ, and seek a solution in the form vx(η) = U0 f(η). The solution is
obtained in terms of the complementary error function:

erfc η =
2√
π

∫ ∞

η

e−η2

dη = 1− erf η = 1− 2√
π

∫ η

0

e−η2

dη, (3)

where erf η is the error function.

8.12 Solve Eq. (1) of Problem 8.11 for the following boundary conditions (i.e., flow near an
oscillating flat plate)

Initial condition vx(y, 0) = 0,

Boundary conditions vx(0, t) = U0 cosnt, u(∞, t) = 0.
(1)

In particular, obtain the solution

vx(y, t) = U0e
λy cos(nt− λy), λ =

√
ρn

2μ
. (2)

8.13 Show that the components of the viscous stress tensor τ [see Eq. (6.5.7)] for an isotropic,
viscous, Newtonian fluid in cylindrical coordinates are related to the velocity gradients
by

τrr = 2μ
∂vr
∂r

+ λ∇ · v, τθθ = 2μ

(
1

r

∂vθ
∂θ

+
vr
r

)
+ λ∇ · v,

τzz = 2μ
∂vz
∂z

+ λ∇ · v, τrθ = μ

[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]
,

τzθ = μ

(
∂vθ
∂z

+
1

r

∂vz
∂θ

)
, τzr = μ

(
∂vz
∂r

+
∂vr
∂z

)
,

∇ · v =
1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

.
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8.14 Show that the components of the viscous stress tensor τ [see Eq. (6.5.7)] for an isotropic,
viscous, Newtonian fluid in spherical coordinates are related to the velocity gradients
by

τRR = 2μ
∂vR
∂R

+ λ∇ · v, τφφ = 2μ

(
1

R

∂vθ
∂θ

+
vR
R

)
+ λ∇ · v

τθθ = 2μ

(
1

R sinφ

∂vφ
∂φ

+
vR
R

+
vφ cotφ

R

)
+ λ∇ · v

τRφ = μ

[
R

∂

∂R

(vφ
R

)
+

1

R

∂vR
∂φ

]
, τRθ = μ

[
1

r sinφ

∂vR
∂θ

+R
∂

∂R

(vθ
R

)]

τφθ = μ

[
sinφ

R

∂

∂φ

(
vθ

sinφ

)
+

1

R sinφ

∂vφ
∂θ

]

∇ · v =
1

R2

∂(R2vR)

∂R
+

1

R sinφ

∂

∂φ
(vφ sinφ) +

1

R sinφ

∂vθ
∂θ

.

8.15 Use the velocity field in Eq. (10) of Example 8.2.4 to show that the shear stress com-
ponent τrφ and pressure p are

τRφ =
3μV∞
2R0

(
R0

R

)4

sinφ, p = p0 − ρgz − 3μV∞
2R0

(
R0

R

)2

cosφ,

where p0 is the pressure in the plane z = 0 far away from the sphere and −ρgz is the
contribution of the fluid weight (hydrostatic effect).

8.16 Derive the following vorticity equation for a fluid of constant density and viscosity:

∂w

∂t
+ (v ·∇)w = (w ·∇)v + ν∇2w,

where w = ∇× v and ν = μ/ρ.

8.17 Bernoulli’s equations. Consider a flow with hydrostatic pressure, σ = −pI and conser-
vative body force f = −∇φ.

(a) For steady flow, show that

v ·∇
(
v2

2
+ φ

)
+

1

ρ
v ·∇p = 0.

(b) For steady and irrotational (i.e., ∇× v = 0) flow, show that

∇
(
v2

2
+ φ

)
+

1

ρ
∇p = 0.

8.18 Use Bernoulli’s equation (which is valid for steady, frictionless, incompressible flow)
derived in Problem 8.17 to determine the velocity and discharge of the fluid at the exit
of the nozzle in the wall of the reservoir shown in Fig. P8.18.

5mh 50 mmd dia

Fig. P8.18

8.19 The fan shown in Fig. P8.19 moves air (ρ = 1.23 kg/m3) at a mass flow rate of 0.1
kg/min. The upstream side of the fan is connected to a pipe of diameter d1 = 50 mm, the
flow is laminar, the velocity distribution is parabolic, and the kinetic energy coefficient
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is α = 2. The downstream of the fan is connected to a pipe of diameter d2 = 25 mm,
the flow is turbulent, the velocity profile is uniform, and the kinetic energy coefficient
is α = 1. If the rise in static pressure between upstream and downstream is 100 Pa and
the fan motor draws 0.15 W, determine the loss (−Hnet).

=1 50mmd
ρ 0Q

− =2 1 0e e

Fan

=2 25mmd

− =2 1 100PaP P Laminar flow

Turbulent flow

Fig. P8.19

8.20 Show that for a steady creeping flow of a viscous incompressible fluid in the absence of
body forces, the Navier–Stokes equations become

∇p = μ∇2v.

Heat Transfer

8.21 In heat transfer, one often neglects the strain energy part of the internal energy e and
assumes that e depends only on the temperature θ, e = e(θ). Show that the energy
equation (5.4.11) reduces to

ρc
Dθ

Dt
= ∇ · (k ·∇θ) + ρrh,

where c = ∂e/∂θ. State the assumptions under which the equation is derived.

8.22 Consider a long electric wire of length L and cross section with radius R0 and electrical
conductivity ke [1/(Ohm·m)]. An electric current with current density I (amps/m2)
is passing through the wire. The transmission of an electric current is an irreversible
process in which some electrical energy is converted into thermal energy (heat). The
rate of heat production per unit volume is given by

ρrh =
I2

ke
.

Assuming that the temperature rise in the cylinder is small enough not to affect the
thermal or electrical conductivities and heat transfer is one-dimensional along the radius
of the cylinder, derive the governing equation using balance of energy.

8.23 Solve the equation derived in Problem 8.22 using the boundary conditions

q(0) = finite, T (R0) = T0.

8.24 A slab of length L is initially at temperature f(x). For times t > 0 the boundaries
at x = 0 and x = L are kept at temperatures T0 and TL, respectively. Obtain the
temperature distribution in the slab as a function of position x and time t.

8.25 A slab of unit height, 0 ≤ x ≤ 1, is initially kept at temperature T (x, 0) = T0(1− x2) =
f(x). For times t > 0, the boundary at x = 0 is kept insulated and the boundary at
x = 1 is kept at zero temperature, T1 = 0. Determine the temperature distribution
T (x, t).
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8.26 Determine the steady-state temperature distribution in an isotropic hollow sphere (in-
ternal and external radii are a and b, respectively) with uniform temperatures at the
inner (Ti) and outer (T0) surfaces but without internal heat generation.

8.27 Obtain the steady-state temperature distribution T (x, y) in a rectangular region, 0 ≤
x ≤ a, 0 ≤ y ≤ b for the boundary conditions

qx(0, y) = 0, qy(x, b) = 0, qx(a, y) + hT (a, y) = 0, T (x, 0) = f(x).

8.28 Consider the steady flow through a long, straight, horizontal circular pipe of radius R0.
The velocity field is given by (see Example 8.2.2)

vr = 0, vθ = 0, vz(r) = −R2
0

4μ

dp

dr

(
1− r2

R2
0

)
. (1)

If the pipe is maintained at a temperature T0 on the surface, determine the steady-state
temperature distribution in the fluid.

8.29 Consider the free convection problem of flow between two parallel plates of different
temperature. A fluid density with density ρ and viscosity μ is placed between two
vertical plates a distance 2a apart, as shown in Fig. P8.29. Suppose that the plate at
x = a is maintained at a temperature T1 and the plate at x = −a is maintained at a
temperature T2, with T2 > T1. Assuming that the plates are very long in the y-direction
and hence that the temperature and velocity fields are only a function of x, determine
the temperature T (x) and velocity vy(x). Assume that the volume rate of flow in the
upward moving stream is the same as that in the downward moving stream and the
pressure gradient is solely due to the weight of the fluid.

y
x

2a

Cold plate
Hot plate

a

1T

2T
0TVelocity

distribution, 
( )yv x

Temperature
distribution, 

( )T x

Fig. P8.29

y

x
h

0,tk T

1,bk T

Fig. P8.30

8.30 Determine the steady-state temperature distribution through an infinite slab of height h,
thickness b (see Fig. P8.30), and made of isotropic material whose conductivity changes
with the height according to the equation

k(y) = (kt − kb)f(y) + kb, f(y) =

(
1

2
+

y

h

)n

, (1)

where kt and kb are the values of the conductivities of the top and bottom surfaces, and
n is a constant. Assume that the top is maintained at temperature T0 and the bottom
is maintained at temperature T1.
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9

LINEARIZED
VISCOELASTICITY

In questions of science, the authority of a thousand is not worth the humble reasoning of a
single individual. —– Galileo Galilei (1564-1642)

All truths are easy to understand once they are discovered; the point is to discover them.

—– Galileo Galilei (1564-1642)

9.1 Introduction

9.1.1 Preliminary Comments

The simplest class of deformable solids are thermoelastic solids, which are elastic,
nondissipative, and have no memory. When deformable solids also have the
mechanism of dissipation, they are termed thermoviscelastic solids, which may
or may not have memory. In this chapter we consider thermoviscoelastic solids
with memory. When we restrict the case of infinitesimal deformations, then we
have linear viscoelastic solids with or without memory.

Constitutive relations for linearized viscoelastic solids can be derived using
one of two approaches. In the first approach, the entropy inequality is used
to provide guidance. Some of the elements of this approach were discussed in
Section 6.6.3, and they are helpful also for viscoelastic solids with memory. The
alternative is to use a phenomenological approach, in which the observed physics
is incorporated into a mathematical model that does not violate laws of physics,
although the entropy inequality does not play a direct role. In this chapter, we
consider the phenomenological approach of developing constitutive models for
linear thermoviscoelasticity. There are many examples of viscoelastic materials
with memory. Metals at elevated temperatures, concrete, and polymers are ex-
amples of viscoelastic behavior. As stated in Chapter 6, constitutive behavior is
determined through experiments, and mathematical models of the constitutive
behavior are developed to simulate the response, that is, experimental results
are used to determine the parameters of the model and validate it. The math-
ematical models of the viscoelastic constitutive behavior are needed, just like
Hooke’s law, to analytically or numerically determine the system response. In
this section we study mathematical models of linear viscoelastic behavior. The
characteristics of a viscoelastic material are that they (a) have a time-dependent
stress response and (b) even may have permanent deformation (i.e., do not re-
turn to original geometry after the removal of forces causing the deformation).
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The viscoelastic response characteristics of a material are determined often
using (1) creep tests, (2) stress relaxation tests, or (3) dynamic response to loads
varying sinusoidally with time. The creep test involves determining the strain
response under a constant stress, and it is done under uniaxial tensile stress
owing to its simplicity. Application of a constant stress σ0 produces a strain
that, in general, contains three components: (1) an instantaneous, (2) a plastic,
and (3) a delayed reversible component:

ε(t) =

[
J∞ +

t

η0
+ ψ(t)

]
σ0,

where J∞σ0 is the instantaneous component of strain, η0 is the Newtonian viscos-
ity coefficient, and ψ(t) is the creep function such that ψ(0) = 0. The relaxation
test involves determination of stress under constant strain. Application of a
constant strain ε0 produces a stress that contains two components

σ(t) = [E0 + φ(t)] ε0,

where E0 is the static elastic modulus and φ(t) is the relaxation function such
that φ(0) = 0.

A qualitative understanding of actual viscoelastic behavior of materials can
be gained through spring-and-dashpot models. For a linear response, combina-
tions of linear elastic springs and linear viscous dashpots are used. Two simple
spring-and-dashpot models are the Maxwell model and the Kelvin–Voigt model.
The Maxwell model characterizes a viscoelastic fluid while the Kelvin–Voigt
model represents a viscoelastic solid. Other combinations of these models are
also used. The mathematical models to be discussed here provide some insight
into the creep and relaxation characteristics of viscoelastic responses, but they
may not represent a satisfactory quantitative behavior of any real material. A
combination of the Maxwell and Kelvin–Voigt models may represent the creep
and/or relaxation responses of some materials.

9.1.2 Initial Value Problem, the Unit Impulse, and
the Unit Step Function

The governing equations of the mathematical models involving springs and dash-
pots are ordinary differential equations in time t. These equations relate stress
σ to strain ε and they have the general form

P (σ) = Q(ε), (9.1.1)

where P and Q are differential operators of order m and n, respectively,

P =

M∑
m=0

pm
dm

dtm
, Q =

N∑
n=0

qn
dn

dtn
. (9.1.2)

The coefficients pm and qn are known in terms of the spring constants ki and
dashpot constants ηi of the model. Equation (9.1.1) is solved either for ε(t) for a
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specified σ(t) (creep response) or for σ(t) for a given ε(t) (relaxation response).
Since Eq. (9.1.1) is anmth-order differential equation for the relaxation response
or nth-order equation for the creep response, we must know as many initial
values, that is, values at time t = 0, of σ or ε

σ(0) = σ0, σ̇(0) = σ̇0, . . . ,

(
dM−1σ

dtM−1

)
t=0

= σ
(M−1)
0[

ε(0) = ε0, ε̇(0) = ε̇0, . . . ,

(
dN−1ε

dtN−1

)
t=0

= ε
(N−1)
0

]
,

(9.1.3)

where σ
(i)
0 , for example, denotes the value of the ith time derivative of σ(t)

at time t = 0. Equation (9.1.1) together with (9.1.3) defines an initial value
problem.

In the forthcoming sections, we will study the creep and relaxation responses
of the mathematical models of viscoelasticity under applied inputs. The applied
stress or strain can be in the form of a unit impulse or a unit step function. The
unit impulse, also known as the Dirac delta function, is defined as

δ(t− t0) = 0, for t �= t0,∫ ∞

−∞
δ(t− t0)dt = 1.

(9.1.4)

The units of the Dirac delta function are 1/s = s−1. A plot of the Dirac delta
function is shown in Fig. 9.1.1(a). The time interval in which the Dirac delta
function is nonzero is defined to be infinitely small, say ε. The Dirac delta
function can be used to represent an arbitrary point value F0 at t = t0 as a
function of time:

f(t) = F0δ(t− t0);

∫ ∞

−∞
f(t) dt =

∫ ∞

−∞
F0δ(t− t0) dt = F0, (9.1.5)

where f(t) has units of F0 per second. The unit step function is defined as [see
Fig. 9.1.1(b)]

H(t− t0) =

{
0, for t < t0,
1, for t > t0.

(9.1.6)

1
ε

ε
t

0( )t tδ −

0t

t

0( )H t t−

0t

1.0

(a) (b)

Fig. 9.1.1: (a) The Dirac delta function. (b) Unit step function.
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Clearly, the functionH(t) is discontinuous at t = t0, where its value jumps from 0
to 1. The unit step function is dimensionless. The unit step function H(t), when
it multiplies an arbitrary function f(t), sets the portion of f(t) corresponding
to t < 0 to zero while leaving the portion corresponding to t > 0 unchanged.
The Dirac delta function is viewed as the derivative of the unit step function;
conversely, the unit step function is the integral of the Dirac delta function

δ(t) =
dH(t)

dt
; H(t) =

∫ t

−∞
δ(ξ) dξ. (9.1.7)

9.1.3 The Laplace Transform Method

Solving the ordinary differential equations in time, arising in the study of the
creep or relaxation response, is not easy. The Laplace transform method is
widely used to solve linear differential equations, especially those governing
initial-value problems. The significant feature of the method is that it allows in a
natural way the use of singularity functions such as the Dirac delta function and
the unit step function in the data of the problem. Here we review the method
in the context of solving initial value problems.

The (one-sided) Laplace transformation of a function f(t), denoted f̄(s), is
defined as

f̄(s) ≡ L[f(t)] =
∫ ∞

0
e−st f(t) dt, (9.1.8)

where s is, in general, a complex quantity referred as a subsidiary variable, and
the function e−st is known as the kernel of the transformation. The Laplace
transforms of some functions are given in Table 9.1.1. The table can also be
used for inverse transforms. Examples 9.1.1. and 9.1.2 illustrate the use of the
Laplace transform method in the solution of differential equations.

Table 9.1.1: The Laplace transforms of some standard functions.

f(t) f̄(s)

f(t)
∫∞
0

e−stf(t) dt

ḟ ≡ df
dt

sf̄(s)− f(0)

f̈ ≡ d2f
dt2

s2f̄(s)− sf(0)− ḟ(0)

f (n)(t) ≡ dnf
dtn

snf̄(s)− sn−1f(0)− sn−2ḟ(0)− · · · − f (n−1)(0)∫ t

0
f(ξ) dξ 1

s
f̄(s)∫ t

0

∫ τ

0
f(ξ) dξ dτ 1

s2
f̄(s)∫ t

0
f1(ξ)f2(t− ξ) dξ f̄1(s)f̄2(s)

H(t) 1
s

δ(t) = Ḣ(t) 1

δ̇(t) = Ḧ(t) s

δ(n)(t) sn

t 1
s2

tn n!
sn+1
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Table 9.1.1: The Laplace transforms (continued).

f(t) f̄(s)

tf(t) −f̄ ′(s)

tnf(t) (−1)nf̄ (n)(s)

1
t
f(t)

∫∞
s

f(ξ) dξ

eatf(t) f̄(s− a)

eat 1
s−a

teat 1
(s−a)2

tneat n!
(s−a)n+1 , n = 0, 1, 2, · · ·

eat − ebt a−b
(s−a)(s−b)(

aeat − bebt
) s(a−b)

(s−a)(s−b)

sin at a
s2+a2

cos at s
s2+a2

sinh at a
s2−a2

cosh at s
s2−a2

t sin at 2as
(s2+a2)2

t cos at s2−a2

(s2+a2)2

ebt sin at a
(s−b)2+a2

ebt cos at s−b
(s−b)2+a2

1− cos at a2

s(s2+a2)

at− sin at a3

s2(s2+a2)

sin at− at cos at 2a3

(s2+a2)2

sin at+ at cos at 2as2

(s2+a2)2

cos at− cos bt (b2−a2)s

(s2+a2)2(s2+b2)
, b2 �= a2

sin at cosh at− cos at sinh at 4a3s
s4+4a4

sin at sinh at 2a2s
s4+4a4

sinh at− sin at 2a3

(s4−a4)

cosh at− cos at 2a2s
s4−a4

√
t

√
π
2
s−3/2

1√
πt

1√
s

J0(at)
1√

s2+a2

ebt−eat

t
log s−a

s−b

1
t
(1− cos at) 1

2
log s2+a2

s2

1
t
(1− cosh at) 1

2
log s2−a2

s2

1
t
sin kt arctan k

s

J0(at) is the Bessel function of the first kind.
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Example 9.1.1

Consider the first-order differential equation

b
du

dt
+ cu = f0, (1)

where b, c, and f0 are constants. Equation (1) is subjected to zero initial condition, u(0) = 0.
Determine the solution using the Laplace transform method.

Solution: The Laplace transform of the equation gives

(bs+ c) ū =
f0
s

or ū(s) =
f0

bs
(
s+ c

b

) . (2)

To invert Eq. (2) to determine u(t), we rewrite the above expression as (i.e., split into partial
fractions; see Problem 9.1 for an explanation of the method of partial fractions):

ū(s) =
f0
c

(
1

s
− 1

s+ α

)
, α =

c

b
, (3)

The inverse transform is given by (see Table 9.1.1)

u(t) =
f0
c

(
1− e−αt) . (4)

When b and c are positive real numbers, u(t) approaches f0/c as t → ∞.

Example 9.1.2

Consider the second-order differential equation

a
d2u

dt2
+ b

du

dt
+ cu = f0, (1)

where a, b, c, and f0 are constants. The equation is to be solved subjected to zero initial
conditions, u(0) = u̇(0) = 0. Determine the solution using the Laplace transform method.

Solution: The Laplace transform of the equation gives

(
as2 + bs+ c

)
ū =

f0
s

, (2)

or

ū(s) =
f0

s(as2 + bs+ c)
.

To invert Eq. (2) to determine u(t), first we write as2 + bs+ c as a(s+α)(s+ β), where α and
β are the roots of the equation as2 + bs+ c = 0:

α =
1

2a

(
b−
√

b2 − 4ac
)
, β =

1

2a

(
b+
√

b2 − 4ac
)
, (3)

so that

ū(s) =
f0

as(s+ α)(s+ β)
. (4)

The actual nature of the solution u(t) depends on the nature of the roots α and β in Eq.
(3). There are three possible cases, depending on whether b2 − 4ac > 0, b2 − 4ac = 0, or
b2−4ac < 0. We discuss them under the assumption that a, b, and c are positive real numbers.
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Case 1. When b2 − 4ac > 0 the roots are real, positive, and unequal. Then, we can rewrite
Eq. (4) as

ū =
f0
a

[
A

s
+

B

s+ α
+

C

s+ β

]
,

and then we can use the inverse Laplace transform to obtain u(t). The constants A, B, and C
satisfy the relations

A+B + C = 0, (α+ β)A+ βB + αC = 0, αβA = 1

The solution of these equations is

A =
1

αβ
, B =

1

α(β − α)
, C =

1

β(β − α)
.

Thus, we have

ū(s) =
f0
a

[
1

αβs
− 1

α(β − α)(s+ α)
+

1

β(β − α)(s+ β)

]
. (5)

The inverse transform gives

u(t) =
f0
aαβ

[
1− β

β − α
e−αt +

α

β − α
e−βt

]

=
f0

aαβ(β − α)

[
β
(
1− e−αt)− α

(
1− e−βt

)]
. (6)

Hence, u(t) approaches f0/aα(β − α) as t → ∞.

Case 2. When b2 − 4ac = 0 the roots are real, positive, and equal, α = β = b/2a. Then Eq.
(4) takes the form

ū(s) =
f0

as(s+ α)2
=

f0
aα

[
1

α

(
1

s
− 1

s+ α

)
− 1

(s+ α)2

]
. (7)

The inverse Laplace transform gives

u(t) =
f0
aα2

[
1− (1 + αt)e−αt] . (8)

Hence, u(t) approaches 4f0a/b
2 as t → ∞.

Case 3. When b2 − 4ac < 0 the roots are complex and they appear in complex conjugate
pairs

α = α1 − iα2, β = α1 + iα2; α1 =
b

2a
, α2 =

√
4ac− b2 . (9)

From Eq. (6), we obtain

u(t) =
f0

aαβ(β − α)
e−α1t

[
β
(
1− eiα2t

)
− α

(
1− e−iα2t

)]

=
f0

a(α2
1 + α2

2)
e−α1t

(
1− cosα2t− α1

α2
sinα2t

)
. (10)

Hence, u(t) approaches zero as t → ∞.
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9.2 Spring and Dashpot Models

9.2.1 Creep Compliance and Relaxation Modulus

The equations relating stress σ and strain ε in spring-dashpot models are ordi-
nary differential equations and they have the general form given in Eq. (9.1.1).
The solution of Eq. (9.1.1) to determine σ(t) for a given ε(t) (relaxation re-
sponse) or to determine ε(t) for given σ(t) (creep response) is made easy by
the Laplace transform method. In this section, we shall study several standard
spring-dashpot models for their constitutive models and creep and relaxation
responses.

First we note certain features of the general constitutive equation (9.1.1). In
general, the creep response and relaxation response are of the form

ε(t) = J(t)σ0, (9.2.1)

σ(t) = Y (t)ε0, (9.2.2)

where J(t) is called the creep compliance and Y (t) the relaxation modulus as-
sociated with (9.1.1). The function J(t) is the strain per unit of applied stress,
and Y (t) is the stress per unit of applied strain. By definition, both J(t) and
Y (t) are zero for all t < 0.

The Laplace transform of Eq. (9.1.1) for creep response and relaxation re-
sponse have the forms

Creep response Q̄sε̄(s) = P̄sσ̄(s) =
1

s
P̄sσ0, (9.2.3)

Relaxation response P̄sσ̄(s) = Q̄sε̄(s) =
1

s
Q̄sε0, (9.2.4)

where

P̄s =
M∑

m=0

pmsm, Q̄s =
N∑

n=0

qns
n. (9.2.5)

The Laplace transforms of Eqs. (9.2.1) and (9.2.2) are

ε̄(s) = J̄(s)σ0, (9.2.6)

σ̄(s) = Ȳ (s)ε0, (9.2.7)

Comparing Eq. (9.2.3) with (9.2.6) and Eq. (9.2.4) with (9.2.7), we obtain

J̄(s) =
1

s

P̄s

Q̄s
, Ȳ (s) =

1

s

Q̄s

P̄s
. (9.2.8)

It also follows that the Laplace transforms of the creep compliance and relaxation
modulus are related by

J̄(s) Ȳ (s) =
1

s2
or t =

∫ t

0
Y (t− t′) J(t′) dt′. (9.2.9)

Thus, once we know creep compliance J(t), we can determine the relaxation
modulus Y (t) and vice versa:

Y (t) = L−1

[
1

s2J̄(s)

]
, J(t) = L−1

[
1

s2Ȳ (s)

]
. (9.2.10)
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Although creep and relaxation tests have the advantage of simplicity, there
are also shortcomings. The first shortcoming is that uniaxial creep and relax-
ation test procedures assume the stress to be uniformly distributed through the
specimen, with the lateral surfaces being free to expand and contract. This con-
dition cannot be satisfied at the ends of a specimen that is attached to a test
machine. The second shortcoming involves the dynamic effects that are encoun-
tered in obtaining data at short times. The relaxation and creep functions that
are determined through Eqs. (9.2.1) and (9.2.2) are based on the assumption
that all transients excited through the dynamic response of specimen and testing
machine are neglected.

9.2.2 Maxwell Element

The Maxwell element of Fig. 9.2.1 consists of a linear elastic spring element
in series with a dashpot element. The stress–strain relation for the model is
developed using the following stress–strain relationships of individual elements:

σ = kε, σ = ηε̇, (9.2.11)

where k is the spring elastic constant, η is the dashpot viscous constant, and the
superposed dot indicates time derivative. It is understood that the spring ele-
ment responds instantly to a stress, while the dashpot cannot respond instantly
(because its response is rate dependent). Let ε1 be the strain in the spring and
ε2 be the strain in the dashpot. Note that when elements are connected in series,
each element carries the same amount of stress while the strains are different in
each element. We have

ε̇ = ε̇1 + ε̇2 =
σ̇

k
+

σ

η

or

σ +
η

k

dσ

dt
= η

dε

dt
[P (σ) = Q(ε)]. (9.2.12)

Thus, we have M = N = 1 [see Eqs. (9.1.1) and (9.1.2)] and p0 = 1, p1 = η/k,
q0 = 0 and q1 = η.

ηk
• • •

1 2

Fig. 9.2.1: The Maxwell element.

9.2.2.1 Creep response

Let σ = σ0H(t). Then the differential equation in Eq. (9.2.12) simplifies to

q1
dε

dt
= p1σ0δ(t) + p0σ0H(t). (9.2.13)
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The Laplace transform of Eq. (9.2.13) is

q1 [sε̄(s)− ε(0)] = σ0

(
p1 +

p0
s

)
.

Assuming that ε(0) = 0, we obtain

ε̄(s) = σ0

(
p1
q1s

+
p0
q1s2

)
.

The inverse transform gives the creep response

ε(t) =
σ0
q1

(p1 + p0t) =
σ0
k

(
1 +

t

τ

)
for t > 0, (9.2.14)

where τ is the retardation time or relaxation time

τ =
p1
p0

=
η

k
. (9.2.15)

Note that ε(0+) = σ0/k. The coefficient of σ0 in Eq. (9.2.14) is called the creep
compliance, denoted by J(t)

J(t) =
1

k

(
1 +

t

τ

)
. (9.2.16)

The creep response of the Maxwell model is shown in Fig. 9.2.2(a).

k
0σ η

σ 0

)(tε

t

(a)

0εk

(b)

)(tσ

t
Goes to zero

Fig. 9.2.2: (a) Creep and (b) relaxation responses of the Maxwell element.

9.2.2.2 Relaxation response

Let ε = ε0H(t). Then Eq. (9.2.12) reduces to

p1
dσ

dt
+ p0σ = q1ε0δ(t). (9.2.17)

The Laplace transform of the above equation is

p1 (sσ̄ − σ(0)) + p0σ̄ = q1ε0.

Using the initial condition σ(0) = 0, we write

σ̄(s) = ε0

(
q1

p0 + p1s

)
=

q1
p1

ε0

(
1

p0
p1

+ s

)
,
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whose inverse transform is

σ(t) =
q1
p1

ε0e
−p0t/p1 = kε0e

−t/τ ≡ ε0 Y (t), for t > 0. (9.2.18)

The coefficient of ε0 in Eq. (9.2.18), Y (t), is called the relaxation modulus

Y (t) = ke−t/τ , τ = p1/p0 = η/k . (9.2.19)

The relaxation response of the Maxwell model is shown in Fig. 9.2.2(b).
The relaxation modulus Y (t) can also be obtained from Eq. (9.2.10). First

note from Eq. (9.2.16) that

J̄(s) =
1

ks2

(
s+

1

τ

)
.

Then, using Eq. (9.2.10), we obtain

Y (t) = L−1

[
1

s2J̄(s)

]
= L−1

[
k

(s+ 1
τ )

]
= ke−t/τ ,

which is the same as that in Eq. (9.2.19).
Figure 9.2.3 shows the creep and relaxation responses of the Maxwell model

in a standard test in which the stress and strain are monitored to see the creep
and relaxation during the same test.

0
0k

σ ε
η
σ 0

)(tε

t
1t

(a)

0 0kε σ

)(tσ

t
1t

(b)

Fig. 9.2.3: (a) Creep and (b) relaxation responses of the Maxwell model in a standard test.

1η
0k

1k 2k Nk

2η ηN

Fig. 9.2.4: The generalized Maxwell model.

A generalized Maxwell model consists of N Maxwell elements in parallel and a
spring (k0) in series, as shown in Fig. 9.2.4. The relaxation response of the
generalized Maxwell model is of the form [see Eq. (9.2.18)]



400 LINEARIZED VISCOELASTICITY

σ(t) = ε0

[
k0 +

N∑
n=1

kn e
− t

τn

]
, τn =

ηn
kn

. (9.2.20)

The relaxation modulus of the generalized Maxwell model is

Y (t) = k0 +

N∑
n=1

kn e
− t

τn . (9.2.21)

9.2.3 Kelvin–Voigt Element

The Kelvin–Voigt element of Fig. 9.2.5 consists of a linear elastic spring element
in parallel with a dashpot element. The stress–strain relation for the model is
derived as follows. Let σ1 be the stress in the spring and σ2 be the stress in the
dashpot. Note that each element carries the same amount of strain. Then

σ = σ1 + σ2 = kε+ η
dε

dt
. (9.2.22)

We have p0 = 1, q0 = k, and q1 = η.

•

• •

•
••

1
k

2

Fig. 9.2.5: The Kelvin–Voigt solid element.

9.2.3.1 Creep response

Let σ = σ0H(t). Then the differential equation in Eq. (9.2.22) becomes

q1
dε

dt
+ q0ε = p0σ0H(t). (9.2.23)

The Laplace transform of the equation yields (with zero initial condition)

ε̄(s) =
p0σ0
q1

1

s
(
s+ q0

q1

) =
p0σ0
q0

⎡
⎣1

s
− 1(

s+ q0
q1

)
⎤
⎦ .

The inverse is

ε(t) =
p0σ0
q0

(
1− e

− q0
q1

t
)
=

σ0
k

(
1− e−

t
τ

)
≡ σ0 J(t). (9.2.24)

Thus, the creep compliance of the Kelvin–Voigt model is

J(t) =
1

k

(
1− e−

t
τ

)
, τ =

q1
q0

=
η

k
. (9.2.25)

The creep response of the Kelvin–Voigt model is shown in Fig. 9.2.6(a). Note
that in the limit t → ∞, the strain attains the value ε∞ = σ0/k.
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0
0k

σ ε
0 0kσ ε

)(tε

t

(a) (b)

)(tσ

t

Fig. 9.2.6: (a) Creep and (b) relaxation responses of the Kelvin–Voigt element.

9.2.3.2 Relaxation response

Let ε(t) = ε0H(t) in Eq. (9.2.22). We obtain

σ(t) = ε0 [q0H(t) + q1δ(t)] ≡ Y (t)ε0, Y (t) = [kH(t) + ηδ(t)] . (9.2.26)

Alternatively, we can also determine Y (t) using Eq. (9.2.9)

Ȳ (s) =
1

s2J̄(s)
, s2J̄(s) =

s

η

1

s+ k
η

→ Ȳ (s) =
k

s
+ η,

from which we obtain Y (t) as given in Eq. (9.2.26). The relaxation response
of the Kelvin–Voigt model is shown in Fig. 9.2.6(b). The creep and relaxation
responses in the standard test of the Kelvin–Voigt model are shown in Figs.
9.2.7(a) and 9.2.7(b), respectively.

0 0kε σ

)(tσ

t
1t

0
0k

σ ε

)(tε

t
1t

ε∞

(b)(a)

Fig. 9.2.7: A standard test of a Kelvin–Voigt solid.

A generalized Kelvin–Voigt model consists of N Kelvin–Voigt elements in
series along with a spring element, as shown in Fig. 9.2.8; it can be used to fit
creep data to a high degree. The creep compliance of the generalized Kelvin–
Voigt model is [see Eq. (9.2.25)]

J(t) =
1

k0
+

N∑
n=1

1

kn

(
1− e−

t
τn

)
, τn =

ηn
kn

. (9.2.27)
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1η0k
1k

2k Nk

2η ηN

Fig. 9.2.8: Generalized Kelvin-Voigt model.

9.2.4 Three-Element Models

There are two three-element models, as shown in Figs. 9.2.9(a) and 9.2.9(b).
In the first one an extra spring element is added in series to the Kelvin–Voigt
element, and in the second one a spring element is added in parallel to the
Maxwell element. The constitutive equations for the these models are discussed
here.

•

• •

•
• •

(a)

• •
•

•

•
•

(b)

•

•
•

1

1k
2k

2

2
2

1

1

2
1 2

2k
1k

Fig. 9.2.9: Three-element models.

For the three-element model in Fig. 9.2.9(a), we have

σ = σ1 + σ2, ε = ε1 + ε2, σ1 = k2ε2, σ2 = ηε̇2, ε1 =
σ

k1
, (9.2.28)

Using the relations in (9.2.28) we obtain

η

k1

dσ

dt
+

(
1 +

k2
k1

)
σ = k2ε+ η

dε

dt
. (9.2.29)

Equation (9.2.29) is of the form P (σ) = Q(ε)

p0σ + p1
dσ

dt
= q0ε+ q1

dε

dt
,

p0 = 1+
k2
k1

, p1 =
η

k1
, q0 = k2, q1 = η.

(9.2.30)

For the three-element model shown in Fig. 9.2.9(b), we have

σ = σ1 + σ2, ε = ε1 + ε2, ε1 =
σ2
k2

, ε̇2 =
σ2
η
, ε =

σ1
k1

, (9.2.31)

Combining the above relations, we arrive at

1

η
σ +

1

k2

dσ

dt
=

k1
η
ε+

(
1 +

k1
k2

)
dε

dt
,
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or

p0σ + p1
dσ

dt
= q0ε+ q1

dε

dt
,

p0 =
1

η
, p1 =

1

k2
, q0 =

k1
η
, q1 = 1 +

k1
k2

.
(9.2.32)

Apparently, the three-element model represents the constitutive behavior of an
ideal cross-linked polymer.

The creep and relaxation response of the three-element model shown in Fig.
9.2.9(a) are studied next. Substituting σ(t) = σ0H(t) into Eq. (9.2.30), we
obtain

p0σ0H(t) + p1σ0δ(t) = q0ε+ q1
dε

dt
. (9.2.33)

The Laplace transform of Eq. (9.2.33) yields

(q0 + q1s) ε̄(s) = σ0

(p0
s

+ p1

)
or ε̄(s) = σ0

(p0 + p1s)

s(q0 + q1s)
, (9.2.34)

where zero initial conditions are used. We rewrite the above expression in a
form suitable for inversion back to the time domain:

ε̄(s) = σ0

⎡
⎣p0
q0

(
1

s
− 1

q0
q1

+ s

)
+

p1
q1

1(
q0
q1

+ s
)
⎤
⎦ . (9.2.35)

Using the inverse Laplace transform, we obtain

ε(t) = σ0

[
p0
q0

(
1− e−

t
τ

)
+

p1
q1

e−
t
τ

]
, τ =

q1
q0

,

= σ0

[
k1 + k2
k1k2

(
1− e−

t
τ

)
+

1

k1
e−

t
τ

]
, τ =

η

k2
.

(9.2.36)

Thus, the creep compliance is given by

J(t) =

[
k1 + k2
k1k2

(
1− e−

t
τ

)
+

1

k1
e−

t
τ

]
=

1

k1
+

1

k2

(
1− e−

t
τ

)
. (9.2.37)

For the relaxation response, let ε(t) = ε0H(t) in Eq. (9.2.30) and obtain

p0σ + p1
dσ

dt
= q0ε0H(t) + q1ε0δ(t). (9.2.38)

The Laplace transform of the equation is

(p0 + p1s) σ̄(s) = ε0

(q0
s

+ q1

)
or σ̄(s) = ε0

(q0 + q1s)

s(p0 + p1s)
, (9.2.39)

where zero initial conditions are used. We rewrite the above expression in the
form

σ̄(s) = ε0

⎡
⎣ q0
p0

(
1

s
− 1

p0
p1

+ s

)
+

q1
p1

1(
p0
p1

+ s
)
⎤
⎦ . (9.2.40)
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Using the inverse Laplace transform, we obtain

σ(t) = ε0

[
q0
p0

(
1− e−

t
τ

)
+

q1
p1

e−
t
τ

]
, τ =

p1
p0

,

= ε0

[
k1k2

k1 + k2

(
1− e−

t
τ

)
+ k1e

− t
τ

]
, τ =

η

k1 + k2
.

(9.2.41)

Thus, the relaxation modulus is given by

Y (t) =

[
k1k2

k1 + k2

(
1− e−

t
τ

)
+ k1e

− t
τ

]
, τ =

η

k1 + k2
. (9.2.42)

Determination of the creep and relaxation responses of the three-element
model in Fig. 9.2.9(b), also known as the standard linear solid, is considered in
Example 9.2.1 (also, see Problem 9.3).

9.2.5 Four-Element Models

The four-element models, such as the ones shown in Figs. 9.2.10(a) and 9.2.10(b),
have constitutive relations that involve second-order derivatives of stress and/or
strain. Here we discuss the creep response of such models in general terms.
The determination of relaxation response follows along similar lines to what is
discussed for creep response.
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•

•
• ••

(a) (b)
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Fig. 9.2.10: Four-element models.

Consider the second-order differential equation in time

p0σ + p1σ̇ + p2σ̈ = q0ε+ q1ε̇+ q2ε̈. (9.2.43)

Let σ(t) = σ0H(t). We have

p0σ0H(t) + p1σ0δ(t) + p2σ0δ̇(t) = q0ε+ q1ε̇+ q2ε̈. (9.2.44)

Taking the Laplace transform and assuming homogeneous initial conditions, we
obtain

σ0

(p0
s

+ p1 + p2s
)
=

(
q0 + q1s+ q2s

2
)
ε̄(s), (9.2.45)
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or

ε̄(s) = σ0
p0 + p1s+ p2s

2

s(q0 + q1s+ q2s2)
. (9.2.46)

To invert Eq. (9.2.46) to determine ε(t), first we write q2s
2 + q1s+ q0 as q2(s+

α)(s+ β), where α and β are the roots of the equation q2s
2 + q1s+ q0 = 0:

α =
1

2q2

(
q1 −

√
q21 − 4q2q0

)
, β =

1

2q2

(
q1 +

√
q21 − 4q2q0

)
, (9.2.47)

so that

ε̄(s) = σ0
p0 + p1s+ p2s

2

q2s(s+ α)(s+ β)
. (9.2.48)

We write the solution in three parts for the case of real and unequal roots
with q0 �= 0, q1 �= 0, and q2 �= 0:

ε̄1(s) = σ0
p0
q2

[
1

αβs
− 1

α(β − α)(s+ α)
+

1

β(β − α)(s+ β)

]
, (9.2.49)

ε̄2(s) = σ0
p1
q2

[
1

(β − α)(s+ α)
− 1

(β − α)(s+ β)

]
, (9.2.50)

ε̄3(s) = σ0
p2
q2

[
− α

(β − α)(s+ α)
+

β

(β − α)(s+ β)

]
. (9.2.51)

The solution is obtained by taking inverse Laplace transform

ε(t) =
σ0
q2

{
p0

[
1

αβ
− e−αt

α(β − α)
+

e−βt

β(β − α)

]

+ p1

[
e−αt

(β − α)
− e−βt

(β − α)

]
+ p2

[
− αe−αt

(β − α)
+

βe−βt

(β − α)

]}
. (9.2.52)

When q2 = 0, q1 �= 0, and q0 �= 0, Eq. (9.2.46) takes the form (with
α = q0/q1)

ε̄(s) =
σ0
q1

[
p0
α

(
1

s
− 1

s+ α

)
+

p1
s+ α

+ p2

(
1− α

s+ α

)]
, (9.2.53)

and the solution is given by

ε(t) =
σ0
q1

[p0
α

(
1− e−αt

)
+ p1e

−αt + p2
(
δ(t)− αe−αt

)]
. (9.2.54)

The Dirac delta function indicates that the model lacks impact response. That
is, if a Dirac delta function appears in a relaxation function Y (t), a finite stress
is not sufficient to produce at once a finite strain, and an infinite one is needed.

When q0 = 0, q1 �= 0, and q2 �= 0, Eq. (9.2.46) takes the form (with
α = q1/q2)

ε̄(s) =
σ0
q2

[
p0
α2

(
α

s2
− 1

s
+

1

s+ α

)
+

p1
α

(
1

s
− 1

s+ α

)
+

p2
s+ α

]
, (9.2.55)
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and the solution is given by

ε(t) =
σ0
q2

[
p0t

α
+

1

α

(
p1 − p0

α

) (
1− e−αt

)
+ p2e

−αt

]
. (9.2.56)

This completes the general discussion of the creep response of four-element
models. For the relaxation response the role of p’s and q’s is exchanged. Alter-
natively, we can use Eq. (9.2.10) to determine Y (t).

Example 9.2.1

Consider the differential equation in Eq. (9.2.32),

p0σ + p1σ̇ = q0ε+ q1ε̇, (1)

with

p0 =
1

η
, p1 =

1

k2
, p2 = 0, q0 =

k1
η
, q1 =

k1 + k2
k2

, q2 = 0. (2)

Determine the creep and relaxation response.

Solution: From Eq. (9.2.54), we have the creep response (α = q0/q1):

ε(t) = σ0
k2

k1 + k2

[
1

αη

(
1− e−αt)+ 1

k2
e−αt

]

= σ0

[
1

k1

(
1− e−αt)+ 1

k1 + k2
e−αt

]
, α =

k1k2
η(k1 + k2)

. (3)

Thus, the creep compliance of the three-element model in Fig. 9.2.9(b) is given by

J(t) =
1

k1

(
1− e−αt)+ 1

k1 + k2
e−αt. (4)

The relaxation response is σ(t) = Y (t)ε0 with Y (t) computed as follows. We have

Ȳ (s) =
1

s2J̄(s)
, J̄(s) =

1

k1

(
1

s
− 1

s+ α

)
+

1

k1 + k2

1

s+ α
,

and

s2J̄(s) =
s
(
s+ k2

η

)
(k1 + k2)(s+ α)

,
1

s2J̄(s)
=

k2

s+ k2
η

+
k1
s

. (5)

Thus, the relaxation modulus is

Y (t) = k1 + k2e
−t/τ , τ =

η

k2
. (6)

Example 9.2.2

Consider the differential equation

ε̈+
k2
η2

ε̇ =
1

k1
σ̈ +

(
1

η1
+

1

η2
+

k2
k1η2

)
σ̇ +

k2
η1η2

σ. (1)

Thus, we have

q0 = 0, q1 =
k2
η2

, q2 = 1, p0 =
k2
η1η2

, p1 =
1

η1
+

1

η2
+

k2
k1η2

, p2 =
1

k1
. (2)
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Determine the creep and relaxation response of the model.

Solution: The creep response is given by Eq. (9.2.56)

ε(t) =
σ0

q2

[
p0t

α
+

1

α

(
p1 − p0

α

) (
1− e−αt)+ p2e

−αt

]

= σ0

[
1

k1
+

t

η1
+

1

k2

(
1− e−t/τ

)]
, τ =

1

α
=

η2
k2

. (3)

Thus, the creep compliance is

J(t) =
1

k1
+

t

η1
+

1

k2

(
1− e−t/τ

)
. (4)

To compute the relaxation modulus, we compute

J̄(s) =
1

k1s
+

1

η1s2
+

1

k2

(
1

s
− 1

s+ 1
τ

)
,

s2J̄(s) =
s

k1
+

1

η1
+

1

η2

(
s

s+ 1
τ

)
=

as2 + bs+ c

d
(
s+ 1

τ

) ,

(5)

where
a = η1η2, b = (k1 + k2)η1 + k1η2, c = k1k2, d = k1η1η2. (6)

Then

Ȳ (s) =
1

s2J̄
=

d
(
s+ 1

τ

)
as2 + bs+ c

=
d

a

(
A

s+ α
+

B

s+ β

)
, (7)

where

α =
b

2a
+

1

2a

√
b2 − 4ac, β =

b

2a
− 1

2a

√
b2 − 4ac

A = − k2 − η2α

η2(α− β)
, B =

k2 − η2β

η2(α− β)
.

(8)

It can be shown that b2 > 4ac and α > β > 0 for ki > 0 and ηi > 0. Hence, we have

Y (t) =
k1η1√
b2 − 4ac

[
− (k2 − η2α) e

−αt + (k2 − η2β) e
−βt
]

=
k1η1√
b2 − 4ac

[
k2
(
e−βt − e−αt

)
+ η2

(
αe−αt − βe−βt

)]
. (9)

9.3 Integral Constitutive Equations

9.3.1 Hereditary Integrals

The spring-and-dashpot elements are discrete models and are governed by dif-
ferential equations. At t = 0 a stress σ0 applied suddenly produces a strain
ε(t) = J(t)σ0 (see Fig. 9.3.1). If the stress σ0 is maintained unchanged, then
ε(t) = J(t)σ0 describes the strain for all t > 0. If we treat the material as linear,
we can use the principle of linear superposition to calculate the strain produced
in a given direction by the action of several loads of different magnitudes. If,
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at t = t1, some more stress Δσ1 is applied, then additional strain is produced
which is proportional to Δσ1 and depends on the same creep compliance. This
additional strain is measured for t > t′. Hence, the total strain for t > t1 is the
sum of strain due to σ0 and that due to Δσ1:

ε(t) = J(t)σ0 + J(t− t1)Δσ1. (9.3.1)

Similarly, if additional stress Δσ2 is applied at time t = t2, then the total strain
for t > t2 is

ε(t) = J(t)σ0 + J(t− t1)Δσ1 + J(t− t2)Δσ2

= J(t)σ0 +
2∑

i=1

J(t− ti)Δσi. (9.3.2)

( )tσ

t

1σΔ

1t 2t

( )tε

t

0σ

2σΔ

0

0 1t 2t

0( )J t σ

1 1( )J t t σΔ−
2 2( )J t t σΔ−

t

(a)

(b)

Fig. 9.3.1: Strain response due to σ0 and Δσi.

If the stress applied is an arbitrary function of t, it can be divided into the
first part σ0H(t) and a sequence of infinitesimal stress increments dσ(t′)H(t−t′)
(see Fig. 9.3.2). The corresponding strain at time t can be written (using the

( )tσ

t
t tΔ′ ′+0

0σ

σΔ ′

t′

Fig. 9.3.2: Linear superposition to derive hereditary integral.
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Boltzman’s superposition principle) as

ε(t) = J(t)σ0 +

∫ t

0
J(t− t′)dσ(t′) = J(t)σ0 +

∫ t

0
J(t− t′)

dσ(t′)
dt′

dt′. (9.3.3)

Equation (9.3.3) indicates that the strain at any given time depends on all that
has happened before, that is, on the entire stress history σ(t′) for t′ < t. This
is in contrast to the elastic material whose strain depends only on the stress
acting at that time only. Equation (9.3.3) is called a hereditary integral.

Equation (9.3.3) can be written in alternate form:

ε(t) = J(t)σ(0) +
[
J(t− t′)σ(t′)

]t
0
−

∫ t

0

dJ(t− t′)
dt′

σ(t′) dt′

= J(0)σ(t) +

∫ t

0

dJ(t− t′)
d(t− t′)

σ(t′) dt′ (9.3.4)

= J(0)σ(t) +

∫ t

0

dJ(τ)

dτ
σ(t− τ) dτ. (9.3.5)

Note that Eq. (9.3.3) separates the strain caused by initial stress σ(0) and that
caused by stress increments. On the other hand, Eq. (9.3.5) separates the strain
into the part that would occur if the total stress σ(t) were applied at time t and
an additional strain was produced due to creep.

It is possible to include the initial part due to σ0 into the integral. For
example, Eq. (9.3.3) can be written as

ε(t) =

∫ t

−∞
J(t− t′)

dσ(t′)
dt′

dt′. (9.3.6)

The fact that J(t) = 0 for t < 0 is used in writing the above integral, which is
known as Stieljes integral.

Arguments similar to those presented for the creep compliance can be used
to derive the hereditary integrals for the relaxation modulus Y (t). If the strain
history is known as a function of time, ε(t), the stress is given by

σ(t) = Y (t)ε(0) +

∫ t

0
Y (t− t′)

dε(t′)
dt′

dt′ (9.3.7)

= Y (0) ε(t) +

∫ t

0

dY (t′)
dt′

ε(t− t′) dt′ (9.3.8)

=

∫ t

−∞
Y (t− t′)

dε(t′)
dt′

dt′. (9.3.9)

The thermodynamic restriction on Y (t) is that it be nonnegative and be a mono-
tonically decreasing function with finite limit for t → ∞.

Example 9.3.1

Consider the stress history shown in Fig. 9.3.3. Write the hereditary integral in Eq. (9.3.4)
for the Maxwell model and Kelvin–Voigt model.
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Solution: The creep compliance of the Maxwell model is given in Eq. (9.2.16) as J(t) =
(1/k + t/η) with J(0) = 1/k. Then the strain response according to the hereditary integral in
Eq. (9.3.4) is given by

For t < t1 : ε(t) = σ1
t

t1

1

k
+

σ1

t1

∫ t

0

t′
1

η
dt′ =

σ1t

ηt1

(
η

k
+

t

2

)
. (1)

For t > t1 : ε(t) = σ1
1

k
+

σ1

t1

∫ t1

0

t′
1

η
dt′ + σ1

∫ t

t1

1 · 1
η
dt′

=
σ1

η

(
η

k
+

t1
2

+ t

)
. (2)

Note that by setting t1 = 0, we obtain the same result as in Eq. (9.2.14).
The creep compliance of the Kelvin–Voigt model is given in Eq. (9.2.25). Then the strain

response according to the hereditary integral in Eq. (9.3.4) is given by

For t < t1 : ε(t) = σ1
t

t1
· 0 + σ1

ηt1

∫ t

0

t′e−(t−t′)/τ dt′

=
σ1

kt1

[
t− η

k

(
1− e−t/τ

)]
. (3)

For t > t1 : ε(t) =
σ1

ηt1

∫ t1

0

t′e−(t−t′)/τ dt′ +
σ1

η

∫ t

t1

e−(t−t′)/τ dt′

=
σ1

k

[
1 +

η

kt1

(
1− et1/τ

)
e−t/τ

]
. (4)

By setting t1 = 0 in Eq. (4), we obtain (use the L’Hospital rule to deal with a zero divided by
zero condition) the same strain response as in Eq. (9.2.24). Note that for t → ∞, the strain
goes to ε = σ1/k, the same limit as if σ1 were applied suddenly at t = 0 or t = t1. This implies
that the stress history is wiped out if sufficient time has elapsed. Thus, the Kelvin–Voigt model
represents the behavior of an elastic solid.

t

σ

0 1t

1σ

Fig. 9.3.3: Stress history.

9.3.2 Hereditary Integrals for Deviatoric Components

The one-dimensional linear viscoelastic stress–strain relations developed in the
previous sections can be extended in a straightforward manner to those relating
the deviatoric stress components to the deviatoric strain components. Recall
that the deviatoric stress and strain tensors are defined as

Deviatoric stress σ′ ≡ σ − 1
3 σ̃I, (σ′

ij = σij − 1
3σkkδij), (9.3.10)

Deviatoric strain ε′ ≡ ε− 1
3tr(ε), (ε′ij = εij − 1

3εkkδij), (9.3.11)
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where σ̃ is the mean stress and e is the dilatation

trace of stress tensor: σ̃ ≡ σii, dilatation: ẽ ≡ εii. (9.3.12)

The constitutive equations between the deviatoric components of a linear elastic
isotropic material are

σ̃ = 3Kẽ, σ′ = 2με′ (σ′
ij = 2μ ε′ij). (9.3.13)

Here K denotes the bulk modulus and μ is the Lamé constant (the same as the
shear modulus), which are related to Young’s modulus E and Poisson’s ratio ν
with the thermodynamic restrictions

K =
E

3(1− 2ν)
, μ = G =

E

2(1 + ν)
,

E > 0, G > 0, −1 < ν < 0.5 (in most cases 0 < ν < 0.5).

(9.3.14)

The linear viscoelastic strain–stress and stress–strain relations for the devi-
atoric components in Cartesian coordinates are

ε′ij(t) =
∫ t

−∞
Js(t− t′)

dσ′
ij

dt′
dt′, (9.3.15)

εkk(t) =

∫ t

−∞
Jd(t− t′)

dσkk
dt′

dt′, (9.3.16)

σ′
ij(t) = 2

∫ t

−∞
G(t− t′)

dε′ij
dt′

dt′, (9.3.17)

σkk(t) = 3

∫ t

−∞
K(t− t′)

dεkk
dt′

dt′, (9.3.18)

where Js(t) is the creep compliance in shear and Jd is the creep compliance in
dilation. The thermodynamic restriction on J , Jd, G(t), and K(t) are that they
be positive with finite values as t → ∞. The general stress–strain relations may
be written as

σij(t) = 2

∫ t

−∞
G(t− t′)

dεij(t
′)

dt′
dt′

+ δij

∫ t

−∞

[
K(t− t′)− 2

3
G(t− t′)

]
dεkk(t

′)
dt′

dt′, (9.3.19)

εij(t) =

∫ t

−∞
Js(t− t′)

dσij(t
′)

dt′
dt′

+
1

3
δij

∫ t

−∞

[
Jd(t− t′)− Js(t− t′)

] dσkk(t′)
dt′

dt′. (9.3.20)

The Laplace transforms of Eqs. (9.3.15)–(9.3.18) are

ε̄′ij(s) = s J̄s(s) σ̄
′
ij(s), σ̄′

ij(s) = 2s Ḡ(s) ε̄′ij(s), (9.3.21)

ε̄kk(s) = s J̄d(s) σ̄kk(s), σ̄kk(s) = 3s K̄(s) ε̄kk(s), (9.3.22)
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from which it follows that

2Ḡ(s) =
1

s2 J̄s(s)
, (9.3.23)

3K̄(s) =
1

s2 J̄d(s)
. (9.3.24)

9.3.3 The Correspondence Principle

There exists a certain correspondence between the elastic and viscoelastic so-
lutions of a boundary value problem. The correspondence allows us to obtain
solutions of a viscoelastic problem from that of the corresponding elastic prob-
lem.

Consider a one-dimensional elastic problem, such as a bar or beam, carrying
certain applied loads F 0

i , i = 1, 2, · · · . Suppose that the stress induced is σe.
The strain is

εe = σe/E. (9.3.25)

Then consider the same structure, but made of a viscoelastic material. Assume
that the same loads are applied at time t = 0 and then held constant

Fi(t) = F 0
i H(t).

The stress in the viscoelastic beam is σ(t) = σeH(t). The strain in the viscoelas-
tic structure is

ε(t) = J(t)σe. (9.3.26)

For any time t the strain in the viscoelastic structure is like the strain in an
elastic beam of modulus E = 1/J(t). Thus, we have the following correspondence
principle (Part 1): If a viscoelastic structure is subjected to loads that are all
applied simultaneously at t = 0 and then held constant, its stresses are the same
as those in an elastic structure under the same loads, and its time-dependent
strains and displacements are obtained from those of the elastic structure by
replacing E by 1/J(t).

Next, consider an elastic structure in which the displacements are prescribed
and held constant. Suppose that the displacement in the structure is ue. The
strain εe can be computed from the displacement ue using an appropriate kine-
matic relation, and stress σ using the constitutive equation

σ = Eεe. (9.3.27)

Then consider the same structure but made of a viscoelastic material. If we
prescribe deflection u(t) = ueH(t), the strains produced are ε(t) = εeH(t). The
strain will produce a stress

σ(t) = Y (t)εe. (9.3.28)

For any time t the stress in the viscoelastic structure is like the stress in an elastic
beam of modulus E = Y (t). Thus, we have the second part of the correspondence
principle: If a viscoelastic structure is subjected to displacements that are all
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imposed at t = 0 and then held constant, its displacements and strains are
the same as those in the elastic structure under the same displacements, and
its time-dependent stresses are obtained from those of the elastic structure by
replacing E by Y (t).

The foregoing ideas for step loads or step displacements can be generalized
to loads and displacements that are arbitrary functions of time. Let ve(x) be the
deflection of a structure made of elastic material and subjected to a load f0(x).
Then by the correspondence principle, the deflection of the same structure but
made of viscoelastic material with creep compliance J(t) and subjected to the
step load f(x, t) = f0(x)H(t) is

v(x, t) = J(t)ve(x). (9.3.29)

If the load history is of general type, f(x, t) = f0(x)g(t), we can break the load
history into a sequence of infinitesimal steps dg(t′), as shown in Fig. 9.3.4. Then
we can write the solution in the form of a hereditary integral

v(x, t) = ve(x)

[
g(0)J(t) +

∫ t

0
J(t− t′)

dg(t′)
dt′

dt′
]
. (9.3.30)

Next we consider a number of examples to illustrate how to determine the
viscoelastic response.

t tΔ′ ′+0 t′
t

)(tg
gd ′

Fig. 9.3.4: Load history as a sequence of infinitesimal load steps.

Example 9.3.2

Consider a simply supported beam, as shown in Fig. 9.3.5. At time t = 0 a point load F0 is
placed at the center of the beam. Determine the viscoelastic center deflections using Maxwell’s
and Kelvin’s models.

Solution: The deflection at the center of the elastic beam is

vec =
F0L

3

48EI
. (1)

For a viscoelastic beam, we replace 1/E with creep compliance J(t) of a chosen viscoelastic
material (e.g., Maxwell model, Kelvin model, etc.)

vvc (t) = J(t)
F0L

3

48I
. (2)
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Using the Maxwell model, we can write [see Eq. (9.2.16)]

vvc (t) =
1

k

(
1 +

t

τ

)
F0L

3

48I
, τ =

η

k
. (3)

For the Kelvin model, we obtain [see Eq. (9.2.25)]

vvc (t) =
1

k

(
1− e−t/τ

) F0L
3

48I
, τ =

η

k
. (4)

Clearly, the response is quite different for the two materials.

2
L

0F

Fig. 9.3.5: A simply supported beam with a central point load.

Example 9.3.3

Consider the simply supported beam of Fig. 9.3.5 but with specified deflection vc at the center
of the beam. Determine the load for the viscoelastic response of the Maxwell and Kelvin
models.

Solution: The force required to deflect the elastic beam at the center by vc is

F e =
48EIvc

L3
. (1)

To obtain the load for a viscoelastic beam, we replace E with relaxation modulus Y (t) of the
viscoelastic material used

F e(t) = Y (t)
48Ivc
L3

. (2)

For the Maxwell model, we have the result [see Eq. (9.2.19)]

F v
c (t) = ke−t/τ 48Ivc

L3
, τ =

η

k
, (3)

and for the Kelvin model, we obtain [see Eq. (9.2.26)]

F v
c (t) = k [H(t) + τ δ(t)]

48Ivc
L3

, τ =
η

k
. (4)

Example 9.3.4

Consider a simply supported beam with a uniformly distributed load of intensity q0 as shown
in Fig. 9.3.6(a). Determine the viscoelastic deflection at the center.

Solution: The elastic deflection of the beam is given by

ve(x) =
q0L

4

24EI

[( x
L

)
− 2
( x
L

)3
+
( x
L

)4]
. (1)
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The midspan deflection is

vec(L/2) =
5q0L

4

384EI
. (2)

For the load history shown in Fig. 9.3.6(b), the midspan deflection of the viscoelastic beam is

vvc (L/2, t) =
5q0L

4

384I

1

t1

∫ t

0

J(t− t′) dt′, 0 < t < t1, (3)

vvc (L/2, t) =
5q0L

4

384I

1

t1

∫ t1

0

J(t− t′) dt′, t > t1. (4)

For example, if we use the Kelvin–Voigt model, we obtain (τ = η/k)

vvc (L/2, t) =
5q0L

4

384I

1

kt1

[
t− η

k

(
1− e−t/τ

)]
, 0 < t < t1, (5)

vvc (L/2, t) =
5q0L

4

384I

1

k

[
1 +

η

kt1

(
1− et1/τ

)
e−t/τ

]
, t > t1. (6)

t0 1t

0q

(b)

)(tq

2
L

(a)

)(tq

Fig. 9.3.6: A simply supported beam with a uniform load.

9.3.4 Elastic and Viscoelastic Analogies

In this section we examine the analogies between the field equations of elastic and
viscoelastic bodies. These analogies help us to solve viscoelastic problems when
solutions to the corresponding elastic problem are known. The field equations
are summarized in Table 9.3.1 for the two cases. The Laplace transformed
equations of elastic and viscoelastic bodies are summarized in Table 9.3.2. The
correspondence is more apparent. A comparison of the Laplace transformed
elastic and viscoelastic equations reveals the following correspondence

σe
ij(x) ∼ σ̄v

ij(x, s), εeij(x) ∼ ε̄vij(x, s), (9.3.31)

Ge(x) ∼ Ḡ∗(x, s) = sḠ(x, s) Ke(x) ∼ K̄∗(x, s) = sK̄(x, s). (9.3.32)

This correspondence allows us to use the solution of an elastic boundary value
problem to obtain the transformed solution of the associated viscoelastic bound-
ary value problem by simply replacing the elastic material properties G and K
with G∗ and K∗. One needs only to invert the solution to obtain the time-
dependent viscoelastic solution. This analogy does not apply to problems for
which the boundary conditions are time dependent.
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Table 9.3.1: Field equations of elastic and viscoelastic bodies.

Type of equation Elasticity Viscoelasticity

Equations of motion σij,j + fi = ρüi σij,j + fi = ρüi

Strain–displacement
equations εij = 1

2
(ui,j + uj,i) εij = 1

2
(ui,j + uj,i)

Boundary conditions
ui = ûi on S1 ui = ûi on S1

ti ≡ njσji = t̂i on S2 ti ≡ njσji = t̂i on S2

Constitutive equations

σ′
ij = 2Gε′ij σ′

ij = 2
∫ t

−∞ G(t− t′)
dε′ij
dt′ dt′

σkk = 3Kεkk σkk = 3
∫ t

−∞ K(t− t′) dεkk
dt′ dt′

Table 9.3.2: Field equations of elastic and Laplace transformed viscoelastic bodies for the
quasi-static case.

Type of equation Elasticity Viscoelasticity

Equations of motion σij,j + fi = 0 σ̄ij,j + f̄i = 0
Strain–displacement

equations εij = 1
2
(ui,j + uj,i) ε̄ij = 1

2
(ūi,j + ūj,i)

Boundary conditions
ui = ûi on S1 ūi = ˆ̄ui on S1

ti ≡ njσji = t̂i on S2 t̄i ≡ nj σ̄ji = ˆ̄ti on S2

Constitutive equations∗∗

σ′
ij = 2Gε′ij σ̄′

ij = 2sḠ(s)ε̄′ij = 2G∗(s)ε̄′ij

σkk = 3Kεkk σ̄kk = 3sK̄(s) ε̄kk = 3K∗(s) ε̄kk

∗∗ G∗(s) = sḠ(s), K∗(s) = sK̄(s).

The analogy also holds for the dynamic case, but it is between the Laplace
transformed elastic variables and viscoelastic variables:

σ̄e
ij(x, s) ∼ σ̄v

ij(x, s), ε̄eij(x, s) ∼ ε̄vij(x, s), (9.3.33)

Ḡe(x, s) ∼ Ḡ∗(x, s) = sḠ(x, s) K̄e(x, s) ∼ K̄∗(x, s) = sK̄(x, s). (9.3.34)

Next we consider two examples of application of the elastic–viscoelastic analogy.

Example 9.3.5

The structure shown in Fig. 9.3.7 consists of a viscoelastic rod and elastic rod connected in
parallel to a rigid bar. The cross-sectional areas of the rods are the same. The modulus of the
material of the rods are

Viscoelastic rod: E(t) = 2μH(t) + 2ηδ(t),

Elastic rod: E = Young’s modulus = constant.
(1)

If a load of F (t) = F0H(t) acts on the rigid bar and the rigid bar is maintained horizontal,
determine the resulting displacement of the rigid bar.
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Viscoelastic rod Elastic rod

Rigid bar 
(remains horizontal)

L

0( ) ( ), ( ) ?F t F H t u t= =

( )F t

eF( )vF t

Fig. 9.3.7: Elastic-viscoelastic bar system.

Solution: Let ue and uv(t) be the axial displacements in elastic and viscoelastic rods, respec-
tively. Then the axial strains in elastic and viscoelastic rods are given by

εe =
ue

L
, εv(t) =

uv(t)

L
. (2)

The strain-stress relations for the two rods are

εe =
σe

Ee
, εv(t) =

∫ t

−∞
J(t− τ)

dσv

dτ
. (3)

The axial stresses in elastic and viscoelastic rods are given by

σe =
F e

A
, σv(t) =

F v(t)

A
. (4)

From Eqs. (9.3.53)–(9.3.55) we have

ue =
F eL

EeA
, uv(t) =

L

A

∫ t

−∞
J(t− τ)

dF v

dτ
dτ, (5)

where F e and F v are the axial forces in the elastic and viscoelastic rods, respectively. The
geometric compatibility requires ue = uv, giving

F eL

AEe
=

L

A

∫ t

−∞
J(t− τ)

dF v

dτ
dτ

or

F e = Ee

∫ t

−∞
J(t− τ)

dF v

dτ
dτ. (6)

The force equilibrium requires

F (t) = F v(t) + F e = F v(t) + Ee

∫ t

−∞
J(t− τ)

dF v

dτ
dτ, (7)

which is an integro-differential equation for F v(t).
Using the Laplace transform, we obtain

F0

s
=
(
1 + EesJ̄

)
F̄ v. (8)

Since sJ̄ = 1
sĒ

, we can write

J̄(s) =
1

s2Ē
=

1

s(2ηs+ 2μ)
=

1

2μ

(
1

s
− 1

s+ μ
η

)
, (9)
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and the inverse transform gives

J(t) =
1

2μ

(
1− e

−μt
η

)
. (10)

Equation (8) takes the form

F̄ v =
F0

s

(
s+ μ

η

s+ α

)
, α =

2μ+ Ee

2η
,

=
F0

2μ+ Ee

(
2μ

s
− Ee

s+ α

)
. (11)

The inverse transform gives the force in the viscoelastic rod

F v(t) =
F0

2μ+ Ee

(
2μ− Eee−αt) . (12)

Then from Eq. (5) we have

ūv(s) =
L

A
sJ̄F̄ v =

F0L

As(s+ α)
=

F0L

A(2μ+ Ee)

[
1

s
− 1

s+ α

]
. (13)

The inverse transform yields the displacement

uv(t) =
F0L

A(2μ+ Ee)

(
1− e−αt) . (14)

Example 9.3.6

Consider an isotropic, hollow, thick-walled, long circular cylinder of internal radius a and
outside radius b (see Example 7.5.1 for the elastic solution for a more general problem). The
cylinder is held between rigid supports such that uz = 0 at z = ±L/2 (i.e., plane strain state)
and pressurized at r = a, as shown in Fig. 9.3.8. The material is assumed to be elastic in
dilatation and viscoelastic in shear with response defined by a standard linear solid, whose
constitutive equation is

1

η
σ +

1

k2

dσ

dt
=

k1
η

ε+

(
1 +

k1
k2

)
dε

dt
. (1)

Determine the displacements, strains, and stresses in the cylinder. Assume zero initial condi-
tions.

p

rr

rp

b

a

Fig. 9.3.8: Elastic–viscoelastic bar system.
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Solution: First we identify the constitutive relations for a material that is elastic in dilatation
and viscoelastic in shear, defined by a standard linear solid (see Problem 9.2):

elastic, dilatation: σ̃ = 3Kẽ, (2)

viscoelastic, shear: p0 sij + p1
dsij
dt

= q0 eij + q1
deij
dt

, (3)

where sij = σ′
ij and eij = ε′ij [see Eqs. (9.3.10)–(9.3.13)], and (ki → 2Gi)

p0 = 1 , p1 =
η

2G2
, q0 = 2G1 , q1 = η

(
G1 +G2

G2

)
. (4)

Taking the Laplace transfor of Eq. (3) and using Eq. (9.3.21), we obtain (p0 = 1)

2sḠ(s) =
q1 + q2s

p1 + p2s
→ 2Ḡ(s) =

A

s
+

B

p1(p
−1
1 + s)

, (5)

with A = q0 and B = q1 − q0p1. Hence, we have

2G(t) = q0 +

(
q1
p1

− q0

)
e−t/p1 = 2G1 + 2G2 e

−(2G2t/η). (6)

The elastic solution (in dilatation) is known from Example 7.5.1 as

ur(r) =
1

2(μ+ λ)

(
p

b2 − a2

)
r +

a2b2

2μ

(
p

b2 − a2

)
1

r
=

(1 + ν)pa2b

E(b2 − a2)

[
(1− ν)

r

b
+

b

r

]
, (7)

σrr(r) =

(
pa2

b2 − a2

)(
1− b2

r2

)
, σθθ(r) =

(
pa2

b2 − a2

)(
1 +

b2

r2

)
. (8)

Using the relations between (E, ν) and (G, K),

E =
9KG

3K +G
, ν =

3K − 2G

6K + 2G
, (9)

the displacement ur can be expressed in terms of G and K as

ur =
(1 + ν)pa2b

2G(b2 − a2)

[
3G

3K +G

r

b
+

b

r

]
. (10)

Since the stresses do not depend on the material parameters, they are valid for the vis-
coelastic case. As for the displacement, we use the viscoelastic analogy and write

ūr(r, s) =
(1 + ν)pa2b

2Ḡ(s)(b2 − a2)

[
3Ḡ(s)

3K̄(s) + Ḡ(s)

r

b
+

b

r

]
, (12)

where K̄ = K, and Ḡ(s) is given by Eq. (5)

Ḡ(s) =
1

2

[
q0
s

+
q1 − q0p1

p1(p
−1
1 + s)

]
. (13)

The inversion of Eq. (12) to the time domain is algebraically complicated, but can be done
with the help of the inverse transforms given Table 9.1.1. The viscoelastic solution for the
displacement is

ur(r, t) =
pa2b

(b2 − a2)

{
3
r

b

[
1

6K + q0
+

(
p1

6Kp1 + q1
− 1

6K + q0

)
exp

(
− 6K + q0
6Kp1 + q1

t

)]

+
1

q0

b

r

[
1 +

(
q0p1
q1

− 1

)
exp

(
−q0
q1

t

)]}
. (14)
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9.4 Summary

This chapter is dedicated to an introduction to linearized viscoelasticity. Be-
ginning with simple spring-dashpot models of Maxwell and Kelvin–Voigt, three-
and four-element models and integral constitutive models are discussed, and
their creep and relaxation responses are derived. The discussion is then general-
ized to derive integral constitutive equations of linearized viscoelastic materials.
Analogies between elastic and viscoelastic solutions are discussed. Applications
of the analogies to the solutions of some typical problems from mechanics of
materials are presented. This chapter constitutes a good introduction to a more
complete course on theory of viscoelasticity.

Problems

9.1 Method of partial fractions. Suppose that we have a ratio of polynomials of the type

F̄ (s)

Ḡ(s)
,

where F̄ (s) is a polynomial of degree m and Ḡ(s) is a polynomial of degree n, with
n > m. We wish to write in the form

F̄ (s)

Ḡ(s)
=

c1
s+ α1

+
c2

s+ α2
+

c3
s+ α3

+ · · ·+ cn
s+ αn

,

where ci and αi are constants to be determined using

ci = lim
s→−αi

(s+ αi)F̄ (s)

Ḡ(s)
, n = 1, 2, · · · , n.

It is understood that Ḡ(s) is equal to the product Ḡ(s) = (s+ α1)(s+ α2) . . . (s+ αn).
If

F̄ (s) = s2 − 6, Ḡ(s) = s3 + 4s2 + 3s,

determine ci.

9.2 Given the following transformed function

ūr(r, s) =
(1 + ν)pa2b

2Ḡ(s)(b2 − a2)

[
3Ḡ(s)

3K̄(s) + Ḡ(s)

r

b
+

b

r

]
, (1)

where K̄ = K, p, a, b, p1, q0, and q1 are constants, and Ḡ(s) is given by

Ḡ(s) =
1

2

[
q0
s

+
q1 − q0p1

p1(p
−1
1 + s)

]
, (2)

determine its Laplace inverse, ur(r, t).

9.3 Determine the creep and relaxation responses of the three-element model (i.e., standard
linear solid) of Fig. 9.2.9(b) following the procedure used in Eqs. (9.2.33)–(9.2.42)
for the three-element model shown Fig. 9.2.9(a). In particular show that the creep
compliance function is the creep compliance function is

J(t) =
1

k1
− k2

k1(k1 + k2)
e−t/τ ,

and the relaxation function is

Y (t) = k1 + k2e
−t/τ .

9.4 Derive the governing differential equation for the spring-dashpot model shown in Fig.
P9.4. Determine the creep compliance J(t) and relaxation modulus Y (t) associated with
the model.
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1η

2η
2G

•

Fig. P9.4

9.5 Determine the relaxation modulus Y (t) of the three-element model of Fig. 9.2.9(a)
using Eq. (9.2.10) and the creep compliance in Eq. (9.2.37) [i.e., verify the result in Eq.
(9.2.42)].

9.6 Derive the governing differential equation for the mathematical model obtained by con-
necting the Maxwell element in series with the Kelvin–Voigt element (see Fig. P9.6).

1μ
2k•

•

•
• ••

2μ
1k

Fig. P9.6

9.7 Determine the creep compliance J(t) and relaxation modulus Y (t) of the four-element
model of Problem 9.6.

9.8 Derive the governing differential equation for the mathematical model obtained by con-
necting the Maxwell element in parallel with the Kelvin-Voigt element (see Fig. P9.8).

1η
•

•

1k

•

•
σ

2k
•

2η

••σ

Fig. P9.8

9.9 Derive the governing differential equation of the four-parameter solid shown in Fig.
P9.9. Show that it degenerates into the Kelvin–Voigt solid when its components parts
are made equal.

σ
1η

•

•

1k

•

•
••σ 2η
•

•

2k

•

•
••

Fig. P9.9

9.10 Determine the creep compliance J(t) and relaxation modulus Y (t) of the four-element
model of Problem 9.8.
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9.11 If a strain of ε(t) = ε0t is applied to the four-element model of Problem 9.8, determine
the stress σ(t) using a suitable hereditary integral [use Y (t) from Problem 9.10].

9.12 For the three-element model of Fig. 9.2.9(b), determine the stress σ(t) when the applied
strain is ε(t) = ε0 + ε1 t, where ε0 and ε1 are constants.

9.13 Determine expressions for the (Laplace) transformed modulus Ē(s) and Poisson’s ratio
ν̄ in terms of the transformed bulk modulus K̄(s) and transformed shear modulus Ḡ(s).

9.14 Evaluate the hereditary integral in Eq. (9.3.4) for the three-element model of Fig.
9.2.9(a) and stress history shown in Fig. 9.3.3.

9.15 Given that the shear creep compliance of a Kelvin–Voigt viscoelastic material is

J(t) =
1

2G0

(
1− e−t/τ),

where G0 and τ are material constants, determine the following properties for this
material:

(a) shear relaxation modulus, 2G(t),

(b) the differential operators P and Q of Eq. (9.1.1),

(c) integral form of the stress–strain relation, and

(d) integral form of the strain–stress relation.

9.16 The strain in a uniaxial viscoelastic bar whose viscoelastic modulus is E(t) = E0/(1 +
t/C) is ε(t) = At, where E0, C, and A are constants. Determine the stress σ(t) in the
bar.

9.17 Determine the free end deflection wv(t) of a cantilever beam of length L, second moment
of inertia I, and subjected to a point load F (t) at the free end, for the cases (a) F (t) =
F0H(t) and (b) F (t) = F0e

−αt. The material of the beam has the relaxation modulus
of E(t) = Y (t) = A+Be−αt.

9.18 A cantilever beam of length L is made of a viscoelastic material that can be represented
by the three-parameter solid shown in Fig. 9.2.9(a). The beam carries a load of F (t) =
F0H(t) at its free end. Assuming that the second moment of area of the beam is I,
determine the tip deflection.

9.19 A simply supported beam of length L, second moment of area I is made from the
Kelvin–Voigt type viscoelastic material whose compliance constitutive response is

J(t) =
1

E0

(
1− e−t/τ

)
,

where E0 and τ are material constants. The beam is loaded by a transverse distributed
load

q(x, t) = q0
(
1− x

L

)
t2 = f(x) g(t),

where q0 is the intensity of the distributed load at x = 0 and g(t) = t2. Determine the
deflection and stress in the viscoelastic beam using the Euler–Bernoulli beam theory.

9.20 The pin-connected structure shown in Fig. P9.20 is made from an incompressible vis-
coelastic material whose shear response can be expressed as

P = 1 +
η

μ

d

dt
, Q = η

d

dt
,

where η and μ are material constants. The structure is subjected to a time-dependent
vertical force F (t), as shown in Fig. P9.20. Determine the vertical load F (t) required
to produce this deflection history. Assume that member AB has a cross-sectional area
A1 = 9/16 in.2 and member BC has a cross-sectional area A2 = 125/48 in.2.
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A1 = 9/16 in.2
A2 = 125/48 in.2

3
4

1

2

0 ,F δ

5

L
A B

C ( )tδ

t

0δ
1δ

0t0
0

Fig. P9.20

9.21 Consider a hallow thick-walled spherical pressure vessel composed of two different vis-
coelastic materials, as shown in Fig. P9.21. Formulate (you need not obtain complete
solution to) the boundary value problem from which the stress and displacement fields
may be determined.

Material 1

Material 2

cb

Dia. a

1( )p t

2( )p t

Internal
pressure,

External
pressure,

Fig. P9.21

9.22 The linear elastic solution for axial stress σxx(x, y) and transverse displacement v(y),
based on the Euler–Bernoulli beam theory, of a cantilever beam of length L, flexural
stiffness EI, and loaded at the free end with F0, as shown in Fig. P9.22, is

σxx = −F0xy

EI
, v(x) =

F0L
3

6EI

(
2− 3

x

L
+

x2

L2

)
.

Determine the viscoelastic counterparts of the stress and displacement using the vis-
coelastic analogy and Kelvin–Voigt model.

x
0F

L

y

Fig. P9.22
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Answers to Selected Problems

If a man is in too big a hurry to give up an error he is liable to give up some truth with it.

—– Wilbur Wright (1867–1912)

Chapter 1

1.1 The equation of motion is
dv

dt
+ αv2 = g, α =

c

m
.

1.2 The energy balance gives

− d

dx
(Aq) + βP (T∞ − T ) +Ag = 0.

1.3 The equation governing the transverse deflection v is

d2

dx2

(
EI

d2v

dx2

)
= q(x).

1.4 The conservation of mass gives

d(Ah)

dt
= qi − q0,

where A is the area of cross section of the tank (A = πD2/4) and ρ is the mass density
of the liquid.

1.5 p = 2ts/R.

Chapter 2

2.1 The equation of the required line is r = A+ αB.

2.3 The equation for the required plane is (C−A)× (B−A) · (r−A) = 0, where r is the
position vector.

2.8 The vector sum of the areas is A×B+B×C+C×A+ (C−A)× (B−A) .

2.11 The vectors are linearly dependent.

2.12 (c) A1 = −13, A2 = 21, and A3 = 19.

2.13 (a) ê1 = 1√
2

(
î1 + î3

)
, ê2 = 1

3
√
2

(
−î1 + 4̂i2 + î3

)
, and ê3 = 1

3

(
2̂i1 + î2 − 2̂i3

)
.

2.17 2
ρ
.

2.19 Use the two properties of determinants: (1) det ([S][T ]) = det [S]· det [T ] and (2) det
[S]T= det [S].

2.20 (a) Let êi = δipêp, êj = δjqêq, and êk = δkrêr.

2.22 (a) The transformation matrix is ⎡
⎢⎣

1√
3

−1√
3

1√
3

2√
14

3√
14

1√
14−4√

42

1√
42

5√
42

⎤
⎥⎦ .

2.24 Follows from the definition

[L] =

⎡
⎢⎣

1√
2

0 1√
2

1
2

1√
2
− 1

2

− 1
2

1√
2

1
2

⎤
⎥⎦ .
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2.26 The determinants are (a) −8. (b) −5.

2.27 (b) The inverse is

[A]−1 = −1

5

⎡
⎣ 1 −2 −1
−4 3 −1
3 −1 −3

⎤
⎦ .

2.28 (b) Positive. (c) Not positive.

2.29 The positive matrix associated with [Q] is⎡
⎣ 2 1 1
1 2 3
1 3 5

⎤
⎦ .

2.35 Use the gradient theorem with φ = 1.

2.36 Use the divergence theorem.

2.41 (d) Note that

Si · (Sj × Sk) =

∣∣∣∣∣∣
Si1 Si2 Si3

Sj1 Sj2 Sj3

Sk1 Sk2 Sk3

∣∣∣∣∣∣ .
2.42 (a) Sii = 12. (c) SijSij = 281. (e) {C} = {18 15 34}T.
2.44 The components Āi are given by⎧⎨

⎩
Ā1

Ā2

Ā3

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

1− 3
√

3
2

1
5
√
3

2

⎫⎪⎬
⎪⎭ .

2.48 Obtain Part (c) of Problem 2.39, which is the required result.

2.51 Use the del operator from Table 2.4.2 to compute the divergence of the tensor S.

2.55 (a) λ1 = 3.0, λ2 = 2(1 +
√
5) = 6.472, λ3 = 2(1 − √

5) = −2.472. The eigenvector
components Ai associated with λ3 are Â(3) = ±(0.5257, 0.8507, 0).

(c) The characteristic polynomial is [−λ2 + 6λ − 8](λ − 1) = 0. The eigenvalues are
λ1 = 4, λ2 = 2, λ3 = 1.

(d) The characteristic polynomial is [−λ2+5λ−6](λ+1) = 0. The eigenvalues are λ1 =
3, λ2 = 2, λ3 = −1. The eigenvector associated with λ1 = 3 is Â(1) = ± 1√

2
(1, 0, 1).

2.56 (a) The characteristic polynomial is −λ3 + 6λ2 + 78λ − 108 = 0. The eigenvalues are
λ1 = 11.8242, λ2 = 1.2848, λ3 = −7.1090.

(b) The characteristic polynomial is −λ3 + 5λ2 − 6λ+ 1 = 0. The eigenvalues are λ1 =
3.24698, λ2 = 1.55496, λ3 = 0.19806. The eigenvectors are Â(1) = ±(0.328,−0.737, 0.591);

Â(2) = ±(0.591,−0.328,−0.737); Â(3) = ±(0.737, 0.591, 0.328).

(c) The characteristic polynomial is −λ3 +λ2 +λ− 1 = 0, and the eigenvalues are λ1 =
−1, λ2 = 1, λ3 = 1. The eigenvectors are (not normalized) Â(1) = (1,−1, 1); Â(2) =
±(1, 0,−1); Â(3) = ±(−1, 0, 1).

(d) The characteristic polynomial is −λ3 + 5λ2 − 2λ − 8 = 0, and the eigenvalues
are λ1 = −1, λ2 = 2, λ3 = 4. The eigenvectors are (not normalized) Â(1) =
(−0.5, 1, 0.16667); Â(2) = ±(0, 0, 1); Â(3) = ±(1, 0.5, 0.5).

2.57 λ1 = 9, λ2 = −9, λ3 = −18.

2.58 p([A]) =

[
1 0
0 1

]
.

2.60 The inverse is

[S]−1 =
1

12

⎡
⎣ 7 −2 1
−2 4 −2
1 −2 7

⎤
⎦ .
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Chapter 3

3.1 v = x
1+t

, a = 0.

3.2 χ(x) = (4X1 +X2 − 2X1X2) ê1 + (−X1 + 3X2 + 2X1X2) ê2 +X3ê3.

3.5 (c) a1 = a2 eat

1+eat x1, a2 = 4a2 e−2at

1+e−2at x2, a3 = 0.

3.6 u1 = 3X1 +X2 − 2X1X2, u2 = −X1 + 2X2 + 2X1X2, u3 = 0.

3.7 (a) [F ] =

⎡
⎣ 1 t2 0
t2 1 0
0 0 1

⎤
⎦ . (c)

⎧⎨
⎩

1
2
1

⎫⎬
⎭ .

3.8 (b) [C] = [B] =

⎡
⎣ k2

1 0 0
0 k2

2 0
0 0 k2

3

⎤
⎦ .

3.9 (a) [F ] =

⎡
⎣ k1 e0k2 0

0 k2 0
0 0 k3

⎤
⎦ . (b) [B] =

⎡
⎣ k2

1 + e20k
2
2 e0k

2
2 0

e0k
2
2 k2

2 0
0 0 k2

3

⎤
⎦ .

3.10 (b) The displacements in the spatial description are

u1(x) = x1 (1− cosAt) + x2 sinAt,

u2(x) = −x1 sinAt+ x2 (1− cosAt) ,

u3(x) =
Bt

1 +Bt
x3.

3.11 (a) u1(X) = AX2, u2(X) = BX1, u3(X) = 0. (c) 2[E] =

⎡
⎣ B2 A+B 0
A+B A2 0

0 0 0

⎤
⎦ .

3.13 [F ] =

⎡
⎣ 1 t2 0
t2 1 0
0 0 1

⎤
⎦ .

3.15 (c) [F ] =

⎡
⎣ cosh t sinh t 0
sinh t cosh t 0
0 0 1

⎤
⎦ .

3.17 (b) The angle ABC after deformation is 90−β, where cosβ = μ√
1+μ2

, and μ = 2/(2−γ).

3.18 (a) [E] =

⎡
⎣ 6 7 0
7 8 0
0 0 0

⎤
⎦ , γ = 1.

3.19 u1 = e0
b
X2, u2 = 0, u3 = 0.

3.20 u1 = ( e0
b2
)X2

2 , u2 = 0, u3 = 0, and E11 = 0, E12 = e0
b2
X2, E22 = 1

2

(
2X2

e0
b2

)2
.

3.21 u1 = e1
X1
a

X2
b

, u2 = e2
X1
a

X2
b

.

3.22 u1 = −0.2X1 + 0.5X2, u2 = 0.2X1 − 0.1X2 + 0.1X1X2.

3.23 εrr = A, εθθ = A, εzθ = 1
2

(
Br + C

r
cos θ

)
.

3.25 The linear components are given by ε11 = 3X2
1X2 + c1

(
2c32 + 3c22X2 − X3

2

)
, ε22 =

−(2c32 + 3c22X2 −X3
2 + 3c1X

2
1X2

)
, 2ε12 = X1

[
X2

1 + c1
(
3c22 − 3X2

2

)]− 3c1X1X
2
2 .

3.26 (b) E′
11(= Enn) ≈ ae0

a2+b2
, E′

12(= Ens) ≈ e0
2b
(a

2−b2

a2+b2
).

3.27 The principal strains are ε1 = 0 and ε2 = 10−3 in./in. The principal direction associated
with ε1 = 0 is A1 = ê1 − 2ê2 and that associated with ε = 10−3 is A2 = 2ê1 + ê2.

3.29 The only nonzero linear strains are: εrr = dU
dr

, εθθ = U
r
.

3.30 The only nonzero linear strains are: ERR = dU
dR

+ 1
2

(
dU
dR

)2
, Eφφ = Eθθ = U

R
+ 1

2

(
U
R

)2
.
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3.35 Use the definition of J ∣∣∣∣∣∣∣∣
∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

∣∣∣∣∣∣∣∣
and the hints to arrive at the result.

3.37 Use the definition of C in terms of E and Eq. (3.6.14).

3.38 Use the definition of e and follow the procedure of Section 3.6.2.

3.40 Use the expression in index notation from Eq. (3.7.11) to establish the symmetry of S.

3.42 u1 = cX1X
2
2 and u2 = cX2

1X2.

3.43 (b) The strain field is not compatible.

3.45 The function f(X2, X3) is of the form f(X2, X3) = A+ BX2 + CX3, where A, B, and
C are arbitrary constants.

3.48 Take the time derivative of the identity Q ·QT = I.

3.51 Not objective.

3.55 Use the definition (3.6.3) and Eqs. (3.6.14) and (3.9.1) as well as the symmetry of U to
establish the result.

3.56 [C] == 1
2

⎡
⎣
√
5 + 1

√
5− 1 0√

5− 1
√
5 + 1 0

0 0 6

⎤
⎦ .

3.57 [U ] =

[
2.2313 0.1455
0.1455 1.0671

]
, [V ] =

[
1.0671 0.1455
0.1455 2.2313

]
.

3.58 [U ] = 1

2
√
2

⎡
⎣ 3 +

√
3 3−√

3 0

3−√
3 1 + 3

√
3 0

0 0 2
√
2

⎤
⎦, [V ] = 1√

2

⎡
⎣
√
3 + 1

√
3− 1 0√

3− 1
√
3 + 1 0

0 0
√
2

⎤
⎦ .

3.59 [U ] =

⎡
⎣ 2.414 0 0

0 0.414 0
0 0 1.0

⎤
⎦ , [V ] =

⎡
⎣ 2.121 0.707 0
0.707 0.707 0
0.000 0.000 1

⎤
⎦ .

3.60 [
√
C] = 1

2

⎡
⎣
√
5 + 1

√
5− 1 0√

5− 1
√
5 + 1 0

0 0 6

⎤
⎦ .

3.61 [U ] = 1

2
√
2

⎡
⎣ 3 +

√
3 3−√

3 0

3−√
3 1 + 3

√
3 0

0 0 2
√
2

⎤
⎦ , [R] = 1

2
√

2

⎡
⎣
√
3 + 1

√
3− 1 0

1−√
3

√
3 + 1 0

0 0 2
√
2

⎤
⎦ ,

and [V ] = 1√
2

⎡
⎣
√
3 + 1

√
3− 1 0√

3− 1
√
3 + 1 0

0 0
√
2

⎤
⎦ .

3.63 With respect to the basis êi we have

U =

⎡
⎣ 0.707 0.707 0
0.707 2.121 0

0 0 1.0

⎤
⎦ and [V ] =

⎡
⎣ 2.121 0.707 0
0.707 0.707 0

0 0 1.0

⎤
⎦ .
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Chapter 4

4.2 Partial answer:
on FG: t = 2ĵ, on EF: t = −3ĵ,

on HA: t = 0, on AB: unknown.

4.3 (a(i)) tn̂ = 2(ê1 + 7ê2 + ê3). (c) σn = − 22
3

= −7.33 MPa, σs = 12.26 MPa.

4.4 (a) tn̂ = 1√
3
(5ê1 + 5ê2 + 9ê3) MPa. (b) σn = 6.3333 MPa, σs = 1.8856 MPa.

4.5 σn = − 17
6

= −2.833 MPa, σs = 8.67 MPa.

4.6 (b) tn = −16.67 MPa, ts = 52.7 MPa.

4.7 σn = 0.3478 MPa, σs = 4.2955 MPa.

4.8 (b) |t| = 3.86 MPa, and tnn = 3.357 MPa.

(c) [σ̄] = 1
18

⎡
⎣ 32 −42 −28

√
2

−42 72 −24
√
2

−28
√
2 −24

√
2 −32

⎤
⎦ .

4.9 (b) |t| = 3.1396 MPa. (c) tnn = 0.6429 MPa, and tns = 3.073 MPa.

4.10 (a) tnn = P (ê1 + ê2 − ê3) and tns = P (ê2 + ê3).

4.11 σ0 = 3; n̂ = ± 1√
14

(3ê1 − 2ê2 + ê3) .

4.13 σn = −40.8 MPa, σs = −20.67 MPa.

4.14 σn = 3.84 MPa, σs = −17.99 MPa.

4.15 σn = 95 MPa, σs = −15 MPa.

4.16 σn = −76.6 MPa, σs = 32.68 MPa.

4.17 σ0 = 140 MPa, σs = −90 MPa.

4.18 σp1 = 6.6568 MPa, σp2 = 1 MPa, σp3 = −4.6568 MPa.

4.19 σp1 = 97.2 MPa, σp2 = −7.2 MPa.

4.20 σp1 = 121.98 MPa, σp2 = −81.98 MPa.

4.21 (a) σ1 = −15MPa, σ2 = 6MPa, σ3 = 15MPa. (b) σ1 = 11.824 MPa,
n(1) = ±(1, 0.462, 0.814).

4.22 σ̃ = 2 and [σ′] =

⎡
⎣ 1 5 8
5 −1 0
8 0 0

⎤
⎦ .

4.23 λ′
1 = 2

3
, λ′

2 = 5
3
, λ′

3 = − 7
3
; n̂(1) = −0.577ê1 + 0.577ê1 + 0.577ê3.

4.24 λ1 = −13.5416 MPa, λ2 = 8.0 MPa, λ3 = 16.5416 MPa.

4.25 λ1 = 6.856, λ2 = −10.533, λ3 = −3.323.

4.26 σ1 = 25 MPa, σ2 = 50 MPa, σ3 = 75 MPa;

n̂(1) = ± ( 3
5
ê1 − 4

5
ê3

)
, n̂(2) = ±ê2, n̂(3) = ± ( 4

5
ê1 +

3
5
ê3

)
.

4.27 (a) ρf = Bê2. (c) σp1 = −√
2AB, σp2 = 0, σp3 =

√
2AB. (d) (σns)max =

√
2AB.

4.29 ρf = 0.

4.30 ρf = −6x2 ê1 × 106 N/m3.

4.31 Not satisfied.

4.32 ρf = −4Bx3 ê3 × 106 N/m3.

4.33 ρf = −4 ê3.

4.34 ρf = −4cx3 ê3.

4.35 (c) T = ABσ0 Ê3 and T̃ = AB
C

σ0 Ê2.

4.36 (c) T = −ACσ0 ê2 MPa, T̃ = −AC
B

σ0 ê2MPa.
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Chapter 5

5.1 First show that ∇
(

v2

2

)
− v ×∇× v = v ·∇v.

5.5 Use Table 2.4.2 and replace A with ρv.

5.6 Use Table 2.4.2 and replace A with ρv, and note that 2AR
R

+ ∂AR
∂R

= 1
R2

∂(R2AR)
∂R

.

5.7 (a) Satisfies. (b) Satisfies.

5.8 Q = b
6
(3v0 − c) m3/(s.m).

5.9 Fn = 5.118N.

5.10 Fn = 88.15N, QL = 0.01273 m3/s, and QR = 0.00424 m3/s.

5.11 (a) F = 24.12 N. (b) F = 12.06 N.

5.12 v(t) =
√

g
L
(x2 − x2

0), a(t) = g
L
x(t) and v(t0) =

√
g
L
(L2 − x2

0) ≈
√
gL when L >> x0.

5.17 Proving this identity requires the proof of the following identities: v ·∇v = ∇
(

v2

2

)
−

v ×∇× v and ∇× (A×B) = B ·∇A−A ·∇B+A∇ ·B−B∇ ·A.

5.18 ρf1 = 0, ρf2 = 0, and ρf3 = −4abx3.

5.19 ρf = −x2 ê1 + 2x1 ê2.

5.20 Certain conditions have to be met on ci.

5.21 Satisfied.

5.22 Satisfied only if B + 2C = 0.

5.23 σ12 = −P
(
h2 − x2

2

)
/2I3 and σ22 = 0, where I3 = 2bh3/3.

5.24 σ12 = −q0x1

(
h2 − x2

2

)
/2I3 and σ22 = q0x2

6I3

(
3h2 − x2

2

)− q0
2b
.

5.25 c3 = 0, c2 + c6 = 0, c7 = 0 (when C10 �= 0); c6 + 3c4 = 0; all other constants are
arbitrary.

5.26 (a) No restrictions on ci. (b) Srr does not satisfy the equilibrium equations.

5.27 (a) T = 0.15 N-m. (b) When T = 0, ω0 = 477.5 rpm.

5.28 ω = 16.21 rad/s = 154.8 rpm.

5.32 σ : W = 0 because of the skew symmetry of W.

Chapter 6

6.1 Note that

[Rθ]−1 = [R−θ], [T θ]−1 = [T−θ], [T θ] = [R−θ]T, [T−θ] = [Rθ]T.

6.2 Carrying out the matrix multiplications indicated, we obtain (only selective coefficients
are given here)

S̄11 = S11 cos
4 θ − 2S16 cos

3 θ sin θ + (2S12 + S66) cos
2 θ sin2 θ

− 2S26 cos θ sin
3 θ + S22 sin

4 θ

S̄12 = S12 cos
4 θ + (S16 − S26) cos

3 θ sin θ + (S11 + S22 − S66) cos
2 θ sin2 θ

+ (S26 − S16) cos θ sin
3 θ + S12 sin

4 θ

S̄22 = S22 cos
4 θ + 2S26 cos

3 θ sin θ + (2S12 + S66) cos
2 θ sin2 θ

+ 2S16 cos θ sin
3 θ + S11 sin

4 θ

S̄33 = S33

S̄66 = S66(cos
2 θ − sin2 θ)2 + 4(S16 − S26)(cos

2 θ − sin2 θ) cos θ sin θ

+ 4(S11 + S22 − 2S12) cos
2 θ sin2 θ
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S̄44 = S44 cos
2 θ + 2S45 cos θ sin θ + S55 sin

2 θ

S̄55 = S55 cos
2 θ + S44 sin

2 θ − 2S45 cos θ sin θ. (1)

C̄11 = C11 cos
4 θ − 4C16 cos

3 θ sin θ + 2(C12 + 2C66) cos
2 θ sin2 θ

− 4C26 cos θ sin
3 θ + C22 sin

4 θ

C̄12 = C12 cos
4 θ + 2(C16 − C26) cos

3 θ sin θ + (C11 + C22 − 4C66) cos
2 θ sin2 θ

+ 2(C26 − C16) cos θ sin
3 θ + C12 sin

4 θ

C̄22 = C22 cos
4 θ + 4C26 cos

3 θ sin θ + 2(C12 + 2C66) cos
2 θ sin2 θ

+ 4C16 cos θ sin
3 θ + C11 sin

4 θ

C̄33 = C33

C̄66 = 2(C16 − C26) cos
3 θ sin θ + (C11 + C22 − 2C12 − 2C66) cos

2 θ sin2 θ

+ 2(C26 − C16) cos θ sin
3 θ + C66(cos

4 θ + sin4 θ)

C̄44 = C44 cos
2 θ + C55 sin

2 θ + 2C45 cos θ sin θ

C̄55 = C55 cos
2 θ + C44 sin

2 θ − 2C45 cos θ sin θ. (2)

6.6

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11

σ22

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 106

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

37.8
43.2
27.0
21.6
0.0
5.4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Pa.

6.7 I1 = 108 MPa, I2 = 2, 507.76 MPa2, I3 = 25, 666.67 MPa3; J1 = 500× 10−6,
J2 = 235× 10−9, J3 = −32× 10−12.

6.8 I1 = 78.8 MPa, I2 = 1, 062.89 MPa2, I3 = 17, 368.75 MPa3.

6.9 J1 = 66.65× 10−6, J2 = 63, 883.2× 10−12, J3 = 244, 236× 10−18.

6.10

⎧⎨
⎩

σ1

σ2

σ6

⎫⎬
⎭ = 1

1−ν12ν21

⎡
⎣ E1 ν12E2 0
ν21E1 E2 0

0 0 (1− ν12ν21)G12

⎤
⎦
⎧⎨
⎩

ε1
ε2
ε6

⎫⎬
⎭ .

6.11 S = ∂Ψ
∂E

= λ (trE)I+ 2μE.

6.12 Ψ(σ) = 1
2E

[
(1 + ν)tr(σ2)− ν(trσ)2

]
.

6.13 E > 0, G > 0, K > 0, −1 < ν < 0.5.

6.17 σrr = (2μ+ λ) dU
dr

+ λU
r
, σθθ = (2μ+ λ)U

r
+ λ dU

dr
, σzz = λ

(
dU
dr

+ U
r

)
.

6.18 σRR = (2μ+ λ) dU
dR

+ 2λU
R
, σφφ = 2(μ+ λ)U

R
+ λ dU

dR
, σθθ = σφφ.

6.20 τ11 = 0, τ22 = 2μk
1+kt

, τ12 = μ
(

4tk
(1+kt)2

x2

)
.

6.23 Note that ∇ · v = 1
ρ

Dρ
Dt

.

6.25 First show that D
Dt

(ρv) = ρDv
Dt

.

6.29 A direct result from the solution to Problem 6.28.

6.32 Begin with Ψ = e− ηθ = Ψ(θ, ε) and obtain Ψ̇ = −ηθ̇ + 1
ρ
σij ε̇ij .

Chapter 7

7.1 sij = 2μ eij .

7.3 For u = α
2
(x2 ê1 + x1 ê2), (a) E11 = 1

2

(
α
2

)2
, E22 = 1

2

(
α
2

)2
, 2E12 = α.

7.4 εn = ε · n̂ = α

2
√
2
(ê1 + ê2).

7.5 εrr = A, εθθ = A, εzθ = 1
2

(
Br + C 1

r
cos θ

)
.
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7.6 {ū} =

⎧⎨
⎩

4
3

0
20

3
√
2

⎫⎬
⎭ .

7.7 We obtain

μ

[
1

r

∂

∂r

(
r
∂ur

∂r

)
+

1

r2
∂2ur

∂θ2
− ur

r2
− 2

r2
∂uθ

∂θ
+

∂2ur

∂z2

]

+ (λ+ μ)
∂

∂r

{
1

r

[∂(rur)

∂r
+

∂uθ

∂θ
+ r

∂uz

∂z

]}
+ ρ0fr = ρ0

∂2ur

∂t2
,

μ

[
1

r

∂

∂r

(
r
∂uθ

∂r

)
+

1

r2
∂2uθ

∂θ2
+

2

r2
∂ur

∂θ
− 1

r2
uθ +

∂2uθ

∂z2

]

+ (λ+ μ)
1

r

∂

∂θ

{
1

r

[∂(rur)

∂r
+

∂uθ

∂θ
+ r

∂uz

∂z

]}
+ ρ0fθ = ρ0

∂2uθ

∂t2
,

μ

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+

1

r2
∂2uz

∂θ2
+

∂2uz

∂z2

]

+ (λ+ μ)
∂

∂z

{
1

r

[∂(rur)

∂r
+

∂uθ

∂θ
+ r

∂uz

∂z

]}
+ ρ0fz = ρ0

∂2uz

∂t2
.

7.8 σ11 = 96.88 MPa, σ22 = 64.597 MPa, σ33 = 48.443 MPa, σ12 = 4.02 MPa.

7.9 c6 = −c2 = −3c4, and c1 and c5 are arbitrary.

7.10 U(ε) = 1
2

∫
Ω
(2μ εijεij + λεiiεjj) dx, Uσ = 1

2

∫
Ω

1
E
[(1 + ν)σijσij − νσiiσjj ] dx.

7.11 U = 5
8
ku2

c .

7.12 U = 3
8
ku3

c .

7.14 (a) The boundary conditions are u1 = u2 = 0 on x2 = 0; tn = 0, ts = τ on plane
with normal n̂ = (cos θ ê1 − sin θ ê2) , tn = 0, ts = τ on plane with normal n̂ = ê2,
tn = 0, ts = τ on plane with normal n̂ = − (sin θ ê1 + cos θ ê2) . The boundary value
problem is of type III.

7.15 θ(0) = M0L
EI

.

7.16 w(a) = F0
3EI

(L− a)3.

7.17 v(L
2
) = −

(
5F0L

3

48EI
+ 17q0L

4

384EI

)
.

7.19 vc = q0a
4

64D

(
5+ν
1+ν

)
.

7.20 vc = q0a
4

(1+ν)D

(
5+ν
64

− 6+ν
150

)
.

7.21 vc = 43
4800

q0a
4

D
.

7.22 vcb
Q0b

2

16πD

(
2 log b

a
+ a2

b2
− 1
)
.

7.25 Note that −αr = d2U
dr2

+ 1
r

dU
dr

− U
r2

= d
dr

(
dU
dr

+ U
r

)
= d

dr

[
1
r

d
dr

(rU)
]
.

7.28 The displacement field is

u1 = −M0

EI
x1x3 − c4x3 + c1x2 + c2,

u2 =
νM0

EI
x2x3 + c5x3 − c1x1 + c3,

u3 =
M0

2EI

[
x2
1 + ν(x2

3 − x2
2)
]
+ c4x1 + c5x2 + c6.

The constants ci are to be determined using the displacement boundary conditions.

7.29 (a) At z = 0 : ur = uθ = uz = 0; At z = h : ur = uθ = 0, uz = −δ;
(b) At z = 0 : σzr = σzθ = 0, uz = 0; At z = h : σzr = σzθ = 0, uz = −δ.

7.30 uz(r) = − ρga2

4μ

(
1− r2

a2

)
, σθz = 0, σzr = ρg

2
r.
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7.31 uR(R) = − b3pR
3Kb3+4μa3

(
1− a3

R3

)
, σRR(R) = −

[
1+2α(a3/R3)

1+β

]
p,

α = 2μ
3K

, β = 2α a3

b3
, σθθ(R) = σφφ(R) = −

[
1−α(a3/R3)

1+β

]
p.

7.32 We have

u
(1)
R (R) = A1R+

B1

R2
, σ

(1)
RR = 3K1A1 − 4μ1

R3
B1 (core)

u
(2)
R (R) = A2R+

B2

R2
, σ

(2)
RR = 3K2A2 − 4μ2

R3
B2 (shell)

where 3Ki = 2μi + 3λi (i = 1, 2). The four constants can be determined using the

following four conditions: σ
(2)
RR(b) = −p; σ

(1)
RR(a) = σ

(2)
RR(a); u

(1)
R (a) = u

(2)
R (a);

B1 = 0 by symmetry.

7.33 uθ(r) =
τ0b

2

2μa

(
r
a
− a

r

)
, σrθ = b2τ0

r2
.

7.34 Φ(x, y) = 1
6
c(−3h2xy + xy3).

7.36 It is nothing but a centroidally loaded uniaxial member.

7.38 σxx = 2D
(
3x2y − 2y3

)
, σyy = 2Dy3, σxy = −6Dxy2.

7.39 The stress field is

σxx =
3q0
10

(
y

b
+

5a2

2b2
x2

a2

y

b
− 5

3

y3

b3

)
, σyy =

q0
4

(
−2− 3

y

b
+

y3

b3

)
, σxy =

3q0a

4b

x

a

(
1− y2

b2

)
.

7.42 The stresses are given by

σxx =
τ0
4

(
−2x

b
− 6xy

b2
+

2a

b
+

6ay

b2

)
, σyy = 0,

σxy = −τ0
4

(
1− 2y

b
− 3y2

b2

)
.

7.43 The stresses are given by

σxx =
q0
20

x

L

y

b

(
−6− 5

x2

L2

L2

b2
+ 10

y2

b2

)
,

σyy =
q0
4

x

L

(
2 + 3

y

b
+

y3

b3

)

σxy = − q0
40

(
b

L
+ 15

L

b

x2

L2
− 6

b

L

y2

b2
− 15

L

b

x2

L2

y2

b2
+ 5

b

L

y4

b4

)
.

7.44 The stresses are

σrr = 2A

(
r +

a2b2

r3
− a2 + b2

r

)
sin θ,

σθθ = 2A

(
3r − a2b2

r3
− a2 + b2

r

)
sin θ,

σrθ = −2A

(
r +

a2b2

r3
− a2 + b2

r

)
cos θ.

7.45 σrr = − 2f0
πr

sin θ, σθθ = 0, σrθ = 0.

7.46 Fx =
∫
Ω
σxz dx dy = μθ

∫
Ω

(
∂ψ
∂x

− y
)
dx dy.

7.47 The stresses are σxz = − 2μθa2

a2+b2
y, σyz = 2μθb2

a2+b2
x.

7.48 The stresses are

σ31 =
μθ

a
x2(x1 − a), σ32 =

μθ

2a

(
x2
1 + 2ax1 − x2

2

)
.

The angle of twist is θ = 5
√
3T

27μa4 .
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7.49 No exact solution can be found (without going through the separation of variables
technique).

7.50 σzα = μθ
(
1
r

∂ψ
∂α

+ r
)
, σzr = μθ ∂ψ

∂r
.

7.51 The Euler equations are

δv : − d

dx

[
GA

(
φ+

dv

dx

)]
− q = 0

δφ : − d

dx

(
EI

dφ

dx

)
+GA

(
φ+

dv

dx

)
= 0.

7.52 Take the first variation of the functional given in Problem 7.51 to identify the bilinear
and linear forms.

7.53 −T
(

∂2u
∂x2

1
+ ∂2u

∂x2
2

)
− f = 0 in Ω

7.54 v(0) = − q0L
4

24EI+kL3 .

7.55 2EI
L3

⎡
⎣ 12 0 −3L

0 4L2 L2

−3L L2 2L2

⎤
⎦
⎧⎪⎨
⎪⎩

Δ
(1)
3

Δ
(1)
4

Δ
(2)
4

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

−F0

0
0

⎫⎬
⎭ .

7.56 2EI
L3

⎡
⎣ 4L2 3L L2

3L 6 3L
L2 3L 2L2

⎤
⎦
⎧⎪⎨
⎪⎩

Δ
(1)
4

Δ
(2)
3

Δ
(2)
4

⎫⎪⎬
⎪⎭ = − q0L

12

⎧⎨
⎩

L
0
0

⎫⎬
⎭+

⎧⎨
⎩

0
−F0

0

⎫⎬
⎭ .

7.58 (a) c1 = q0L
3

12Δ

(
6EIL3 + kL7

420

)
and c2 = 0.

7.59 Π(Ψ) = 1
2G

∫
Ω

[(
∂Ψ
∂y

)2
+
(
− ∂Ψ

∂y

)2]
dx dy − 2θ

∫
Ω
Ψ dx dy.

7.60 U1 = 3
8
f0(x− 1)(y − 1) or U1 = 5f0

16
(x2 − 1)(y2 − 1).

7.62
∫ T

0
(U −K)dt = 1

2

∫ T

0

(∫
Ω
fiui dx+

∮
Γ
tiui ds

)
dt.

7.63 L = 1
2
m1

[
l2θ̇2 + ẋ2 − 2lẋθ̇ sin θ

]
+ 1

2
m2ẋ

2+m1g(x− l cos θ)+m2gx+
1
2
k(x+h)2, where

h is the elongation in the spring due to the masses h = g
k
(m1 +m2).

7.64 ẍ− g
l
x = 0.

7.65
∂

∂t

(
ρA

∂v

∂t

)
+

∂2

∂x2

(
EI

∂2v

∂x2

)
− ∂2

∂x∂t

(
ρI

∂2v

∂x∂t

)
= q.

7.66 The Euler–Lagrange equations are

m(ẍ+ 
θ̈ cos θ − 
θ̇2 sin θ) + kx = F,

m
[

ẍ cos θ + (
2 +Ω2)θ̈

]
+mg
 sin θ = 2aF cos θ.

7.67 The Euler–Lagrange equations are

δu : − ∂Nxx

∂x
− f +

∂

∂t

(
m0

∂u

∂t

)
= 0,

δv : − ∂Qx

∂x
− q +

∂

∂t

(
m0

∂v

∂t

)
= 0,

δφ : − ∂Mxx

∂x
+Qx +

∂

∂t

(
m2

∂φ

∂t

)
= 0.

7.68 The Euler–Lagrange equations are

δu :
∂Nxx

∂x
= I0

∂2u

∂t2
, (8)

δv :
∂Q̄x

∂x
+ c1

∂2Pxx

∂x2
+ q = I0

∂2v

∂t2
+ c1

(
J4

∂3φ

∂x∂t2
− c1I6

∂4v

∂x2∂t2

)
, (9)

δφ :
∂M̄xx

∂x
− Q̄x = K2

∂2φ

∂t2
− c1J4

∂3v

∂x∂t2
. (10)
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7.69 ω1 = 2.038
L

√
E
ρ
, ω2 = 6.206

L

√
E
ρ
.

7.70 Use φ1(x, y) = xy(x+ y − 1).

Chapter 8

8.2 (a) The pressure at the top of the sea lab is p = 1.2MN/m2.

8.3 ρ = 1.02 kg/m3.

8.4 p = p0
(
1 + mx3

θ0

)−g/mR

, ρ = ρ0
(
1 + mx3

θ0

)−g/mR

.

8.5 p(y) = p0 + ρgh cosα
(
1− y

h

)
, U(y) = ρgh2 sinα

2μ

(
2 y
h
− y2

h2

)
.

8.7 The shear stress is given by

τrz = −
(
dp̄

dz

r

2
+

1

r
c1

)
= −dp̄

dz

R0

4

[
2

(
r

R0

)
+ (1− α2)

1

logα

(
R0

r

)]
.

8.8 The velocity field is

vθ(r) =
ΩR2

1

R2
1 −R2

2

(
r − R2

2

r

)
.

If R1 = R0 and R2 = αR0 with 0 < α < 1, we have

vθ(r) =
ΩR0

1− α2

(
r

R0
− α2R0

r

)
.

The shear stress distribution is given by τrθ = −2μΩ α2

1−α2

(
R0
r

)2
.

8.9 The continuity equation simplifies to R2vR = c1, a constant.

8.10 p = −ρgz + 1
2
ρΩ2r2 + c, where c = p0 + ρgz0.

8.11 f(η) = 1− 2√
π

∫ η

0
e−ξ2 dξ.

8.12 vx(y, t) = U0e
−η cos(nt− η).

8.15 Use the definition of the shear stress τRφ = μ

[
r ∂
∂R

(
vφ
R

)
+ 1

R
∂vR
∂φ

]
and the φ-momentum

equation to obtain the required result.

8.16 Take the curl of the equation of motion and then use the result of Problem 5.17.

8.17 For Part (a), make use of the result of Problem 5.16; for Part (b) use the fact that the
curl of the gradient of a function is zero.

8.18 v2 = 9.9 m/s and Q = 0.01945 m3/s = 19.45 liters/s.

8.19 −Hnet = 5.3665 N ·m/kg.

8.21 ρcDθ
Dt

= ∇ · (k ·∇θ) + ρ rh.

8.22 − d
dr

(rqr) + rρrh = 0.

8.23 T (r) = T0 +
ρrhR2

0
4k

[
1−
(

r
R0

)2]
.

8.24 θ(x, t) =
∑∞

n=1 Bn sinλnx e−αλ2
nt, with Bn = 2

L

∫ L

0
f(x) sinλnx dx.

8.25 T (x, t) = 4T0

∑∞
n=1

sinλn
λ3
n

sinλnx e−αλ2
nt .

8.26 T−Ti
T0−Ti

= b
b−a

(
1− a

R

)
.

8.27 T (x, y) =
∑∞

n=1 An
coshλn(b−y)

coshλnb
cosλnx, with An = 2

a

∫ a

0
f(x) cosλnx dx.

8.28 T (r) = T0 − μα2R3
0

9k

[
1−
(

r
R0

)3]
.

8.29 vy(x) =
ρrβrga

2(T2−T1)
12μ

[(
x
a

)3

−
(

x
a

)]
.

8.30 T (y) = A
∫ h/2

−h/2
1

k(y)
dy + B, where the constants A and B are to be determined using

the boundary conditions at y = h/2 and y = −h/2.
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Chapter 9

9.1 −2H(t) + 2.5e−t + 0.5e−3t.

9.2 The result is given in Eq. (14) of Example 9.4.6.

9.3 J(t) = 1
k1

− k2
k1(k1+k2)

e−t/τ , Y (t) = k1 + k2e
−t/τ .

9.4 J(t) =
[

t
η1+η2

+ 1
G2

(
η2

η1+η2

)2 (
1− e−α2t

)]
, Y (t) = η1δ(t) +G2e

−t/τ2 , τ2 = 1
α1

= η2
G2

.

9.5 Y (t) = k1k2
k1+k2

(
1− e−λt

)
+ k1e

−λt, λ = k1+k2
η

.

9.6 q1ε̇+ q2ε̈ = p0σ+ p1σ̇+ p2σ̈, where p0 = k1
μ1μ2

, p1 = k1
k2μ1

+ 1
μ1

+ 1
μ2

, p2 = 1
k2

, q1 =
k1
μ1

q2 = 1.

9.7 Y (t) = k1k2μ2
λ1−λ2

[
(λ1 − α)e−λ1t − (λ2 − α)e−λ2t

]
.

9.8 q0ε+q1ε̇+q2ε̈ = p0σ+p1σ̇, where p0 = 1
η2
, p1 = 1

k2
, q0 = k1

η2
, q1 = 1+ k1

k2
+ η1

η2
, q2 = η1

k2
.

9.9 p0σ + p1σ̇ = q0ε + q1ε̇ + q2ε̈, where p0 = k1 + k2, p1 = η1 + η2, q0 = k1k2, q1 =
k1η2 + k2η1, q2 = η1η2.

9.10 The creep compliance is

J(t) =
1

q2

{
p0

[
1

αβ
− e−αt

α(β − α)
+

e−βt

β(β − α)

]

+ p1

[
e−αt

(β − α)
− e−βt

(β − α)

]
+ p2

[
− αe−αt

(β − α)
+

βe−βt

(β − α)

]}
.

The relaxation modulus is Y (t) = k1 + k2e
−αt + η1δ(t).

9.11 σ(t) =
[
k1 + k2e

−αt + η1δ(t)
]
ε0 + ε0

[
tk1 +

k2
α

(
1− e−αt

)
+ η1H(t)

]
.

9.12 Y (t) = k1 + k2e
−t/τ , τ = η

k2
.

9.13 Ē(s) = 9K̄(s)Ḡ(s)

3K̄(s)+Ḡ(s)
, sν̄(s) = 3K̄(s)−2Ḡ(s)

2[3K̄(s)+Ḡ(s)]
.

9.14 ε(t) = σ1

(
t
k1

+ 1
k2

e−t/τ
)
, for t > t0.

9.15 (a) 2G(t) = 2G0

[
H(t) + τδ(t)

]
. (c) σ′

ij(t) = 2G(t)ε′ij(0) + 2
∫ t

0
G(t− t′)

dε′ij(t
′)

dt′ dt′.

9.16 σ(t) = ln(1 + t/C).

9.17 (a) wv(L, t) = P0L
3

3E0I

[
−B

A
e
−Aα

E0
t
+ E0

A
H(t)

]
. (b) wv(L, t) = P0L

3

3E0I
e
−Aα

E0
t
.

9.18 wv(L, t) = P0L
3

3I

[
p0
q0
H(t) +

(
q0p1−q0p1

q1q0

)
e−(q1/p1)t

]
.

9.19 wv(x, t) = q0L
4

360I

(
1− x

L

)[
7− 10

(
1− x

L

)2
+ 3
(
1− x

L

)4]
h(t), where

h(t) = 2τ2

E0

(
1− e−t/τ

)
+ τ2

E0

(
t
τ

)[(
t
τ

)
− 2
]
. σ(x, t) = −Ez ∂2wv

∂x2 = q0L
2z

60I

(
1− x

L

)
x
L
h(t).

9.20 P (t) = 1
2L

[
δ0 E(t) + (δ1 − δ0)E(t− t0)

]
.

9.21 The Laplace transformed viscoelastic solutions for the displacements and stresses are
obtained from

ūr(r, s) = Āi(s)r +
B̄i(s)

r2
,

σrr(r, s) = (2μ+ 3λ)Āi(s)− 4μ

r3
B̄i(s),

σθθ(r, s) = σφφ(r, s) = [2sμ̄(s) + 3sλ̄(s)]Āi(s) +
4sμ̄(s)

r3
B̄i(s),

where Āi(s) and B̄i(s) are the same as Ai and Bi with ν and E replaced by sν̄(s) and
sĒ(s), respectively.

9.22 v̄(x, t) = F0L
3

η6I

(
2− 3 x

L
+ x2

L2

)
e−kt/η.



Index

Absolute temperature, 210, 243, 362
Acceleration, 6, 152, 267, 361

gravitational, 371
vector, 182

Adiabatic, 210
Adjoint, 38
Adjunct, 38
Airy stress function, 301–309
Algebraic

equations, 328
multiplicity, 70

Almansi–Hamel strain tensor, 104
Alternating symbol, 25
Ampere’s law, 254
Analytical solution, 272, 369, 379
Angle of twist, 308
Angular

momentum, 4, 169, 193–206
velocity, 14

Anisotropic, 222, 238, 258
Antisymmetric tensor, see skew symmet-

ric
Applied mechanics, 255
Approximate solution, 272
Approximation functions, 328
Area change, 97
Associative, 35
Asymmetry, 292
Axial vector, 119
Axisymmetric

body, 148
boundary condition, 292
flow, 364
geometry, 296
heat conduction, 376
problem, 61

Balance of
angular momentum, 203, 212
energy, 207, 212
linear momentum, 193, 212, 216

Barotropic constitutive model, 243
Basis, 19

contravariant, 43
covariant, 43

orthonormal, 21–23, 26, 74, 78, 82,
158,

reciprocal, 19, 20, 43
unitary, 21, 42, 43

Beam, 2, 7, 278–284, 303–306
bending, 278
theory, 124, 278, 280, 305, 328, 351

Beltrami–Michell equations, 270, 271, 352
Beltrami’s equations, 271
Bending moment, 217, 280, 288, 305,

321–325, 346
Bernoulli’s equations, 385
Betti’s reciprocity theorem, 288
Bianchi formulas, 147
Biaxial state of strain, 146
Biharmonic

equation, 301
operator, 301

Bilinear form, 326
Bingham model, 247
Body couple, 5, 169, 173, 205
Body force, 152, 197
Boundary

conditions, 364
curve, 18
value problem, 265

Bulk viscosity, 244

Cable supported beam, 282
Caloric equation of state, 357
Cantilever beam, 123, 217, 287, 290, 303,

344
Carreau model, 247
Cartesian, 21, 29, 46–48, 50, 57–59, 184,

266, 358
Castigliano’s theorem I, 322, 342
Cauchy

strain tensor, 103
stress tensor, 138, 154, 224, 226,

265
Cauchy–elastic material, 226
Cauchy–Green deformation tensor,

Left , 99, 224
right, 99, 224

Cauchy–Green tensor, 98, 137, 251

441
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Cauchy’s
equation of motion, 199
formula, 151, 204, 286

Causality, 223
Chain, 195
Chain rule of differentiation, 183
Characteristic

equation, 62–71
value, 62
vector, 62, 64

Chrisotoffel symbol, 59
Circular

cylinder, 376
hole, 306
pipe, 364

Clapeyron’s theorem, 285–287, 344
Clausius–Duhem inequality (also see En-

tropy inequality) , 5, 210
Co-deformational, 248
Coefficients

hygroscopic expansion, 257
thermal expansion, 257

Cofactor, 38
Cogredient components, 21
Collinear, 12
Commutative, 35
Compatibility

conditions, 120, 125, 147, 269
equations, 120–123,309

Complementary error function, 384
Complex mixtures, 245
Compliance coefficients, 230
Composite, 157, 221
Component of acceleration, 361
Compressible fluid, 243
Computational framework, 248
Concentrated load, 280
Conduction, 251

heat, 3, 208, 225
electrical, 377

Conductive material, 254
Configuration of body, 82, 265
Conservation of mass, 182, 212
Conservative forces, 335
Consistency, 222, 246
Constitutive equation, 221, 268, 356
Constitutive theory, 222
Continuity equation, 185, 187, 356
Continuous medium, 82, 339,
Continuous systems, 334
Continuum, 1, 81, 82, 89, 181, 339
Contragredient components, 21

Contravariant, 21, 43, 59
Control surface, 186, 187, 194, 203–206
Control volume, 186, 190, 193–198, 203,

206, 370
Convection, 251

heat transfer coefficient, 252
Cooling fin, 374
Coordinate curve, 42
Coordinate transformations, 9, 56, 58,

75, 157
Coordinates

Cartesian (see also Cartesian), 21,
29, 34, 42, 51

curvilinear, 41–44, 51, 189, 212, 357
cylindrical, 51, 52, 60, 79, 116–118,

189, 201, 202, 215, 262, 266–
268, 301, 373, 384

polar, 298, 337
spherical, 51, 52, 60, 79, 116–118,

189, 201, 266–268, 374
Coplanar, 12
Correspondence principle, 412
Cosserat’s equation, 206
Couette flow, 363
Couple stress tensor, 205
Coupled

fluid flow, 381
partial differential equation, 293

Contravariant, 21, 43, 59
derivative, 248

Covariant, 21, 43, 45, 59
Creep

compliance, 396, 398, 400, 401, 403,
406–408, 410, 413, 415, 420–
422

response, 391, 396–401, 404, 406,
407

test, 390,
Creeping flows, 367
Cross product, 14, 19, 25, 27, 37, 47, 54,

59
Curl of vector, 47, 50–53, 60, 119, 125
Curl theorem, 52
Curvilinear coordinate, 41, 266, 358
Cylindrical coordinate, 51, 201, 266

Dashpot constant, 390
Deformable body, 89
Deformation, 82, 89

gradient, 89, 91, 224
mapping, 83
tensor, 244, 355
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Deformed
area, 154
configuration, 82–85, 96–100

Del operator, 45–52, 60, 184
Density, 1, 81, 152, 186, 191, 201
Determinant, 36
Determinism, 223
Deviatoric, 342

components, 410
stress tensor, 160
tensor, 67

Diagonal elements, 31
Diagonal matrix, 31, 64
Dielectric material, 254
Differential

models, 248
operator, 46

Dilatant, 246
Dimensionality, 223
Dirac delta function, 391
Direction cosines, 30, 295
Directional derivative, 45
Dirichlet boundary condition, 318
Discrete systems, 334
Displacement, 285

boundary value problem, 271
field, 88
function, 252

Divergence
of vector, 47
theorem, 52, 286

Dot product, 12
Double-dot product, 12, 47, 54, 72, 208
Dual basis, 20
Dual principles, 316
Dummy index, 24
Dyadic, 53
Dyads, 53
Dynamic response, 390

Eigenvalues, 62–71, 100
Eigenvectors, 62–71, 109, 134
Elastic

bar, 287
beam, 413
compliance, 240, 256
material, 226
solid, 224, 228, 245, 285
spring, 286
strain energy, 207
viscoelastic analogies, 415

Elasticity, 181

Electric
current density, 377
displacement, 258
field intensity, 253
flux, 253

Electrical conductivity, 377
Electroelasticity, 257
Electromagnetics, 253
End spring, 327
Energetically conjugate, 219
Energy equation, 5, 207–210, 224,

255, 356, 370, 373
Energy transport, 252
Engineering constants, 234
Engineering notation, 230
Engineering shear strains, 112
Engineering solution, 303
Enthalpy function, 258
Entropy

density, 256
flux, 211
inequality, 210–212, 224
principle, 213
supply, 211

Equation of state, 355
Equations of motion, 197, 201, 267, 356
Equilibrium equations, 151, 169, 173,

179, 267, 270, 300
Equipresence, 222
Essential boundary condition, 318
Euclidean, 44
Euler equations, 328, 352, 370
Euler strain tensor, 103, 104, 139
Euler–Bernoulli beam theory, 124, 279–

283,
316, 328, 340

Euler–Bernoulli hypothesis, 279
Eulerian description, 83, 88, 243
Eulerian strain tensor, 134
Euler–Lagrange equations, 316, 336, 339
Exact solution, 274, 311, 322, 337, 340,

346, 347, 349, 369
Extra-stress tensor, 245, 248
Extremum, 335

Fading memory, 223
Faraday’s law, 254
Ferromagnetic, 255
Fiber-reinforced layer, 158
Fick’s law, 256
Filament-wound, 239
Film conductance, 252, 375
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Finger tensor, 99, 251
Finite strains, 125
First law of thermodynamics, 5, 206
First Piola–Kirchhoff stress tensor, 164
First variation, 315
First-order tensor, 56
Fixed material volume, 84
Fixed time, 334
Flexural rigidity, 287
Fluid mechanics, 221, 355
Four-element solid, 404
Fourier’s (heat conduction) law, 225, 228,

251, 252, 256, 259
Fourth-order

elasticity tensor, 319
tensor, 229

Frame indifference, 130, 139, 222–224,
243

Frame of reference, 131, 139, 222, 224
nonrotating, 83, 131
rotating, 131,

Free index, 24
Functional, 314, 326, 336

constitutive, 223, 224, 243, 247, 254
minimum of a, 315
potential energy, 316, 317, 319, 320,

327, 328, 351, 352
quadratic, 327, 329, 351
strain energy, 207, 219, 238, 241,

257, 261, 286

Gauss’ law, 254
Gâuteax derivative, 315
Generalized

Hooke’s Law, 228, 316, 319
displacement, 322
Kelvin–Voigt model, 401
Maxwell model, 399
Newtonian fluids, 245

Geometric multiplicity, 70
Gibb’s free–energy potential, 258
Global form, 191
Gradient, 45, 52, 152

theorem, 53
vector, 53,59

Gram–Schmidt orthonormalization, 22,
74

Gravitational
acceleration, 371
force, 338, 361

Green strain tensor, 100, 107–109, 112,
115, 116, 119, 125, 128, 129,

131, 136, 138, 142–146, 219,
224, 242, 261, 343

Green–elastic material, 226
Green–Lagrange strain tensor, see Green

strain tensor
Green–St. Venant strain tensor, 100

Hamilton’s principle, 314, 334, 335, 338
Heat

conduction, 6, 208, 251, 356, 374
convection, 6, 251, 252, 374, 375,

382, 387
radiation, 208, 251–253
transfer, see Heat Transfer

Heat supply, 210
Heat transfer, 3, 6, 251–258, 333, 355–

366, 371, 373–381, 386
coupled with fluid flow, 381

Helmholtz free energy, 211, 224, 226,
256

Hereditary integrals, 407–413
Hermite cubic polynomial, 324
Herschel–Buckley, 247
Heterogeneous, 222
Homogeneous

deformation, 93, 135, 139
form, 284, 319, 328–330, 404
, material, 222, 224, 281, 346
motion, 93
processes, 210
stretch, 141

Hookean solids, 228–239
neo–, 241

Hooke’s law, 5, 228, 241, 265, 290, 316,
319, 389

Hydrostatic
pressure, 227, 355, 360
stress tensor, 160, 177, 261

Hygrothermal, 256
Hyperelastic material, 226, 227, 241
Hysteretic, 255

Ideal cross-linked polymer, 403
Ideal fluid, 243
Identity matrix, 31
Impact response, 405
Incompressible, 244

elastic, 227
fluids, 357, 367, 373
material, 241

Indeterminate beam, 283
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Inelastic, 245
Inextensibility, 279
Infinitesimal

rotation tensor, 111
rotation vector, 114
strain tensor, 111, 116

Initial values, 391
Inner product, 12
In-plane distortion, 308
Integral

identities, 185
model, 250
transform methods, 273

Integration-by-parts, 318
Internal combustion engine, 381
Internal

dissipation, 210
energy, 207, 211, 223, 371, 373
entropy production, 210
heat generation, 375

Interpolation functions, 322
Invariant form, 53, 130
Invariants, 56, 157

of strain, 109
Inverse of matrix, 36
Inverse method, 272
Inviscid fluid, 360
Irreversible

heat energy, 211
process, 207, 210

Irrotational motion, 263
Isentropic, 210
Isochoric, 189
Isochoric deformation, 93
Isothermal conditions, 243
Isotropic, 222, 237, 268, 293
Isotropic tensor, 59

Jacobian, 42, 93, 128, 165
Jacobian of motion, 90
Jaumann derivative, 249
Jet of air, 216
Jet of fluid, 194
Johnson–Segalman model, 249
Joule heating, 255

Kaye–BKZ fluid, 251
Kelvin–Voigt model, 390, 400
Kenel of the transformation, 392
Kinematic linearization, 234
Kinematics, 82

Kinetic, 4
energy, 207, 273, 334–338
energy coefficient, 371
equation of state, 356
variables, 221

Kronecker delta, 25, 73

Lagrange
equation of motion, 336
multiplier, 227

Lagrangian
function, 335
description, 83, 88, 228, 265
strain tensor, 134
stress tensor, 164

Lamé constants, 237, 268
Lamé–Navier equations, 270
Laplace equation, 379
Laplace transform, 392–398, 403–405, 415
Left Cauchy stretch tensor, 132
Leibnitz rule, 185
Level surface, 46
Linear, 268

differential equation, 392
form, 326
momentum, 169, 193, 198, 205

Linearized elasticity, 228, 265, 269
Linearly dependent, 11, 37, 62
Linearly independent, 12, 20, 22, 63, 70,

225, 328
Local

action, 223
form, 191
rate of change, 182

Lodge rubber-like, 251
Lorentz force, 255
Lower-convected, 248
Lubricant, 368

Magnetic field intensity, 253, 255
Magnetic flux, 255
Magnetic materials, 255
Mapping, 83, 88, 93
Mass diffusivity, 256
Mass flow, 189
Material

coordinate, 82, 86, 90, 112, 182,
209, 228

derivative, 86,183,193
description, 83,199, 209, 213
frame indifference, 130, 222, 223
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linearization, 234
objectivity, 125, 129, 130
plane of symmetry, 231
symmetry, 222
time derivative, 182, 188, 357

Matrix, 31
addition, 32
adjoint, 38
inverse, 36, 38, 80, 92, 105
minor, 38
multiplication, 32
orthogonal, 39, 40, 58, 75, 129, 134
singular, 38
transpose, 33, 35, 58

Maximum shear stress, 162
Maxwell, 248

element, 397
fluids, 249
model, 390

Maxwell’s
equations, 253
reciprocity relation, 236
reciprocity theorem, 291

Mean molecular mass, 243
Mechanical pressure, 243
Mechanics of

fluids, 221
particles, 207
solids, 123

Memory, 389
Memory effects, 245
Method of potentials, 273
Metric tensor, 43
Michell’s equations, 271
Minimum

shear stress, 163
total potential energy, 316

Mixed
boundary value problems, 272
components, 59
principles, 316

Moisture-induced strain, 257
Moment, 13, 203, 206
Momentum transport, 252
Monoclinic material, 232, 238
Monopolar continuum mechanics, 203
Mooney–Rivlin, 241
Multiplication of vector by scalar, 11
Multipolar continuum mechanics, 205

Nanson formula, 142
Natural boundary conditions, 316, 318

Navier equations, 262, 269, 319, 341
Navier–Stokes equations, 263, 357, 362
Necessary condition, 315
Neo–Hookean, 241
Neumann boundary condition, 318
Newtonian

fluid, 228, 242, 356
constitutive equation, 244

Newton’s
law of cooling, 252
law of viscosity, 242
second law, 193
second law of moments, 169

Nominal stress tensor, 164
Noncircular, 308
Nonconservative, 337
Nondissipative, 389
Non-Euclidean, 44
Nonhomogeneous

deformation, 95, 96, 136, 139
process, 210

Nonion, 54
Nonisothermal, 246
Nonlinear

deformation tensor, 250
elastic, 241

Non-Newtonian viscosities, 246
Normal derivative, 48
Normal stress, 155, 160, 228, 233
Normed vector space, 10
Null vector, 10
Nozzle, 194
Numerical solutions, 272

Objectivity, 130, 225
of Cauchy stress tensor, 171
of Deformation gradient tensor, 130,

138
of Green strain tensor, 131
of Piola–Kirchhoff stress tensors, 172
of stretch tensors, 138

Observer transformations, 129
Oldroyd fluid, 248
One-dimensional, 278, 370
Orthogonal, 13, 39, 64, 90

coordinate system, 30, 51
matrix, 3, 129
projection, 13
tensor, 57, 127, 132

Orthogonal rotation matrix, 226
Orthogonality condition, 366
Orthonormal, 21
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basis, 21–23, 26, 30, 64, 73, 74, 82,
158

coordinates, 26–29, 73
system, 21, 29

Orthotropic, 233
Outer product, 14
Outflow, 186
Out-of-plane distortion, 308

Parallel flow, 362
Parallelepiped, 16
Parallelogram law of addition, 15
Pendulum, 336
Perfect gas, 243, 362
Perimeter, 375
Permittivity, 254
Permutation symbol, 25
Perturbation methods, 273
Phan Thien–Tanner model, 249
Phenomenological approach, 389
Physical admissibility, 222
Physical components, 21
Piezoelectric

effect, 257
moduli, 257, 258

Piola–Kirchhoff stress tensor, 164–168,
172, 199, 224

Plane strain, 293
Plane stress, 293, 297
Plane elasticity, 293
Planes of material symmetry, 229
Poiseuille flow, 363
Poisson equation, 332, 379
Poisson’s ratio, 234, 268
Polar decomposition, 132, 226
Polarization, 254, 257
Polymers, 245
Positive-definite, 39, 64, 238, 284, 320
Postfactor, 54
Potential energy functional, 207, 316–

322, 334, 351, 352, 371
due to external loads, 339

Power-law
index, 246
model, 246

Prandtl stress function, 309, 311, 332,
333, 351, 352

Prefactor, 54
Pressure

hydrostatic, 227, 241, 245
thermodynamic,

Primal principles, 316

Primary variable, 221, 318
Principal

directions, 170
directions of strain, 109, 134
invariants, 246
planes, 160
stresses, 157, 160
stretches, 134
value, 62, 109, 170

Principle of
equipresence, 224
minimum total potential energy, 314,

316–322, 334, 351
superposition, 234, 283, 291

Principles of mechanics, 181
Prismatic bar, 276
Problem coordinates, 228
Product, 33
Projection, 12
Propellers, 371
Proper orthogonal, 39, 90, 127, 130–133,

138, 148, 173, 223, 226
Pseudo stress vector, 165
Pseudoplastic, 246
Pure dilatation, 93
Pyroelectric effect, 257

Quadratic functional, 327, 329, 351

Radiant energy, 252
Radiation, 208, 251, 252
Rate of

change, 45
deformation, 118, 122, 139, 142, 208,

224, 241, 244–246, 249
deformation gradient, 219
strain tensor, 118

Reciprocal basis, 19, 20
Rectangular

cartesian, 21
plate, 379

Reference
configuration, 265
frame, 82

Relaxation
kernel, 250
modulus, 396
response, 391
test, 390

Remnant polarization, 255
Response function, 224



448 INDEX

Reversible, 207, 210
Reynold’s tranport theorem, 186, 193
Riemannian, 44
Right Cauchy stretch tensor, 132
Right Cauchy–Green deformation ten-

sor, 99, 224
Rigid body, 89, 114, 125, 226, 272
Ritz method, 326, 330
Rotary devices, 371
Rotation tensor, 132, 325

Saint–Venant’s principle, 303
Scalar

components, 19
potential, 301
product, 12
triple product, 16

Second Piola–Kirchhoff stress tensor, 165,
209, 265

Secondary field variable, 221
Second-order tensor, 56
Semi-inverse method, 272, 309
Sense of travel, 18
Separation of variables, 366
Shear stress, 155, 235, 355
Shear thinning, 245, 246, 250
Shear viscosity, 244
Simple

extension, 94
fluids, 248
shear, 94

Simply supported beam, 331, 414
Singular, 36, 38
Skew product, 14
Skew symmetric tensor, 56, 119, 211
Slider bearing, 369
Slurries, 245
Small deformations, 169
Solenoid, 114, 189
Solid circular disk, 298
Solid mechanics, 221, 272
Solution methods, 271
Spatial

coordinates, 85
description, 85, 197
density, 244

Specific internal energy, 207
Specified geometric boundary

condition, 329
Spectral theorem, 64
Sphere, 367
Spherical

coordinates, 51, 184, 201, 267, 358
pressure vessel, 273
stress tensor, 160

Spin tensor, 118
Spring constant, 390
Sprinkler nozzle, 190
St. Venant’s compatibility, 120
Saint-Venant’s principle, 303–308
Standard linear solid, 404
Statically equivalent, 278, 304
Stefan–Boltzmann, 252
Stieljes integral, 409
Stiffness

coefficients, 229
matrix, 324

Stokes, 245, 367
Stokes’s law, 337
Stokesian fluid, 263
Straight beam, 323
Strain

Cauchy–Green, 98
compatibility, 120
deviatoric, 342, 410
energy density, 227, 229, 238, 284
Green–Lagrange, 100
measure, 98, 140
rate of, 118
tensor, 90

Stream function, 359
Stress

boundary value problems, 272
Cauchy, 138, 151, 153, 154, 157,

164–168, 171–175, 180, 200, 212,
219, 224, 265

deviatoric, 160, 177, 243, 248, 342,
360, 410

dyadic, 153, 156, 161, 180
extra, 245
function, 125, 301, 311
hydrostatic, 160, 177, 199, 261–263
power, 209
resultants, 280
singularity, 303
tensor, 5, 62, 151, 153, 154, 157,

164–168, 171–175, 180, 200, 212,
219, 224, 244, 257, 261, 266,
356

trace of, 411
vector, 4, 152
viscous, 384

Stretch tensor, 132
Stretching of beams, 278
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Subsidiary variable, 392
Sufficient condition, 315
Summation convention, 24
Superposed rigid-body motion, 125
Superposition principle, 283
Surface

force, 197
traction, 285

Susceptibility tensor, 255
Symmetric, 56, 211

matrix, 33, 39
second-order tensor, 8, 49, 59

Symmetry transformation, 232
Syringe, 190

Taylor’s series, 228, 264
Temperature, 251, 355
Temperature gradient vector, 224, 225
Tensor calculus, 59
Tensor, 9, 53–61

components, 59
deviatoric, 67, 160, 177
product, 53, 54
rate of deformation, 244
stress,

Tetrahedron, 152
Themodynamic form, 209
Thermal

coefficients of expansion, 256
conductivity, 251
expansion, 228, 257

Thermodynamic
form, 219
pressure, 243, 355
principles, 206
state, 246

Thermoelastic, 224, 389
Thermoelasticity, 256
Thermoviscoelastic, 389
Thin plate, 298
Third-order tensor, 58, 257
Three-element model, 402
Timoshenko beam theory, 353
Torsion, 308–313, 350
Total potential energy, 314–316
Trace, 31, 237

of matrix, 31
of second-order tensor, 56

Traction vector, 155, 271
Transformation

equations, 157
law, 28

matrix, 232
of strain, 106
of stress, 157
of tensor, 57
of vector, 31

Transformed current force, 166
Translation

rigid-body, 93, 116, 123, 127, 130,
173, 223, 277, 325, 346

vertical, 325
Transpose of

forward gradient operator, 47
dot product of tensors, 54
dyad, 54
dyadic, 53
matrix, 33, 73
tensor, 33, 61, 73

Transverse
displacement, 279
normal strain, 279
shear strain, 279

Transversely isotropic, 261
Triadics, 58
Triclinic material, 230, 232
Triple products of vectors, 16, 37
Turbines, 371
Twist (angle of), 308, 313, 350, 437
Twist per length, 308
Two-point tensor, 90, 165

Uniform
deformation, 91
shear, 94

Uniformly distributed load, 290, 414
Uniqueness of solutions, 284
Unit

impulse, 391
normal vector, 18, 46, 48, 97,

151, 155
step function, 391
vector, 10, 14, 41, 46, 50

Unitary basis, 21, 42
Universal gas constant, 243, 362
Unsteady heat transfer, 378
Upper-convected, 248

Variational
calculus, 315, 318, 321
methods, 273, 351
operator, 314-316, 321
principle, 314, 316
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problem, 326, 327, 342
Vector

acceleration, 182
body force, 169, 202, 263, 268, 303,

309, 384
components, 19, 31, 142, 160, 175
couple traction, 205
differential, 46
displacement, 12, 88, 91, 199, 301
electric displacement, 258
identities, 184
product, 13, 15
stress, 151–156, 164–180, 198, 204,

355
traction, 155, 173, 321
triple product, 16
velocity, 53, 87, 118, 182, 202, 354

Velocity
gradient, 118, 225, 243, 248
potential, 44, 263

Virtual
kinetic energy, 335
work, 338

Viscoelastic, 245, 247
solid, 389
stress, 250

Viscometric, 250
Viscosity, 242
Viscous

dissipation, 252
fluids, 243, 357
incompressible fluids, 244, 363
stress tensor, 245, 355

Voigt–Kelvin notation, 230
Volume change, 96, 128, 243
von Mises yield, 247
Vorticity, 359

tensor, 118–120, 146, 208, 243
vector, 119, 146, 359

Warping function, 309
Weissenberg effect, 245
White–Metzner model, 250

Yield point, 247
Young’s modulus, 2, 234, 236, 411

Zero
matrix, 32
viscosity, 243

Zero-order Bessel functions, 366
Zeroth-order tensor, 56
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