Escaping Local Optima Simulated Annealing

Lecture #3

Esmaeil Nourani

• 1

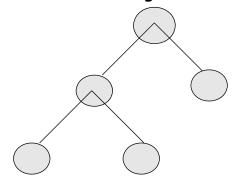
Defining a search problem

• Def:
$$x \in F$$

$$eval(x) \le eval(y)$$

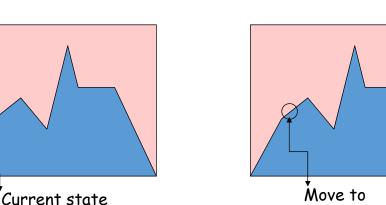
$$\forall y \in F$$

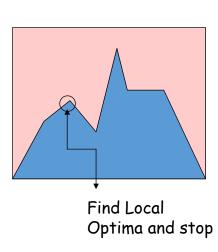
- Minimization or Maximization ← Objective Function
- The point x is called a global solution.

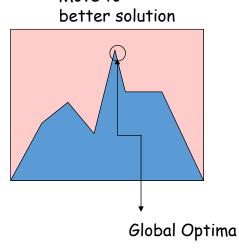


Local Search

- We focus our attention within a local neighborhood of some particular solution.
 - 1. Pick a solution form the search space and evaluate its merit. Define this as the current solution
 - 2. Apply a transformation to the current solution to generate a new solution and evaluate its merit.
 - 3. If the new solution is better than the current solution then exchange it with current solution; otherwise discard the new solution.
 - 4. Repeat steps 2 and 3 until no transformation in the given set improves the current solution.







•3

Local Search

- We always used Local Search when the path to the goal is not important.
 - e.g: Eight queen problem.
- Local Search algorithms operate using a single current state(rather than multiple path) and generally move only to neighbors of that state.

Two key advantages:

- 1- they use very little memory
- 2- they can often find reasonable solutions in large state spaces.

•5

Local Search (one iteration of simplified hillclimber)

Procedure local search

```
begin
```

end

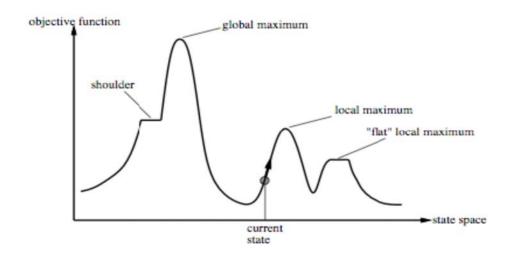
Getting stuck

- Unfortunately, hill climbing often gets stuck for the following reasons:
- Local Maxima: A local maximum is a peak that is higher than each of its neighboring states, but lower than the global maximum.
- **Ridges**: Ridges result in a sequence of local maxima that is very difficult for greedy algorithms to navigate.
- **Plateaux**: a plateau is an area of the state space landscape where the evaluation function is flat.

•7

One-dimensional state space landscape

- Evaluation corresponds to the objective function.
- Hill-Climbing search modifies the current state to try to improve it.



Escaping Local Optima

One Way:

Iterative Hill-Climber→ start from diff. initial points → local optima → Multiple run of Algorithm.

•0

Iterative Hill-Climbing

Algorithm Hill-Climbing with Random Restarts

```
1: T \leftarrow distribution of possible time intervals
2: S ← some initial random candidate solution
3: Best ← S
4: repeat
5: time \leftarrow random time in the near future, chosen from T
6:
           repeat
7:
         R \leftarrow Tweak(Copy(S))
8:
         if Quality(R) > Quality(S) then
9:
                          S ←R
           until S is the ideal solution, or time is up, or we have run out of total time
10:
    if Quality(S) > Quality(Best) then
11:
                  Best ←S
13: S \leftarrow some random candidate solution
14: until S is the ideal solution or we have run out of total time
15: return Best
```

Horse with wings!!

- Some possibilities of escaping local optima within a single run of an algorithm:
 - An additional parameter that changes the probability of moving from one point of the search space to another.
 - A memory, which forces the algorithm to explore new areas of the search space.

•11

Modify local search

- Instead of checking all of the strings in the neighborhood of a current point Vc and selecting the best one, select only one point, Vn, from this neighborhood.
- Accept this new point, Vc←Vn with some probability that depends on the relative merit of these two points.

Stochastic Hill-Climber

Stochastic hill-climber (Maximization Problem)

• Procedure stochastic hill-climber

```
t ← 0
select a current string Vc at random
evaluate Vc
repeat
select the string Vn from the neighborhood of Vc
select Vn with probability 1/1+ exp ^ (eval(vc)-eval(vn)/T)

t ← t+1
until t = MAX
end
```

•13

Procedure stochastic hill-climber (Maximization Problem)begin

```
t \leftarrow 0
select a current string \mathbf{Vc} at random
evaluate \mathbf{Vc}
repeat
select the string \mathbf{Vn} from the neighborhood of \mathbf{Vc}
select \mathbf{Vn} with probability \frac{1}{1+e^{\frac{eval(\mathbf{Vc})-eval(\mathbf{Vn})}{T}}}
\mathbf{t} \leftarrow \mathbf{t}+1
until \mathbf{t} = \mathbf{MAX}
```

Eval(Vc) = 107Eval(Vn)=120

end

Т	e (-13/T)	Р
1	0.000002	1.00
5	0.0743	0.93
10	0.2725	0.78
20	0.52	0.66
50	0.77	0.56
10^10	0.9999	0.5

•14

Metropolis

Vn is selected From neighbour *Vc* uniformly at random, which is then accepted according to the following probability function::

This acceptance criterion is known as the *Metropolis condition*.

The greater the value of T, the smaller the importance of relative merit of the competing points Vc and Vn.

If T is Huge → The probability of acceptance approaches 0.5

→ Random Search!

If T is very Small (T=1) → Ordinary Hill-Climber!

eval(Vn)	eval(Vc)-eval(Vn)	e (/10)	р
80	27	14.88	0.06
100	7	2.01	0.33
107	0	1.00	0.50
120	-13	0.27	0.78
150	-43	0.01	0.99

Probability of acceptance as a function of eval(Vn)

for T=10 and eval(Vc)=107

•15

Some notes

- We don't have to repeat its iterations starting from different random points.
- Newly selected point is accepted with some probability.
- It's possible for the new accepted point to be worse than the current point.

•17

Simulated annealing

Simulated Annealing gets its name from annealing, a process of cooling molten metal. If you let metal cool rapidly, its atoms aren't given a chance to settle into a tight lattice and are frozen in a random configuration, resulting in brittle metal. If we decrease the temperature very slowly, the atoms are given enough time to settle into a strong crystal. Not surprisingly, t means temperature.

Origin of Simulated Annealing (SA)

Definition: A heuristic technique that mathematically mirrors the cooling of a set of atoms to a state of minimum energy.

Origin: Applying the field of Statistical Mechanics to the field of Combinatorial Optimization(1983)

Draws an analogy between the cooling of a material (search for minimum energy state) and the solving of an optimization problem.

•19

Annealing

- When annealing metal, the initial temperature must not be too low and the cooling must be done sufficiently slowly so as to avoid the system getting stuck in a meta-stable, noncrystalline state representing a local minimum of energy.
- The Metropolis procedure was an exact copy of this physical process which could be used to simulate a collection of atoms in thermodynamic equilibrium at a given temperature.

Simulated Annealing algrotihm

```
    Procedure Simulated Annealing
    begin
    t ← 0, initialize T, select a current point Vc at random
    evaluate Vc
    repeat
    select a new point Vn in the neighborhood of Vc
    if eval(Vc) < eval(Vn)</li>
    then Vc←Vn
    else if randome[0,1) < e^((eval(vn) - eval (vc))/T)</li>
    then Vc ← Vn
    until( termination-condition)
    T←g(T,t)
    t←t+1
    until (halting-criterion)
    end
```

•21

Stochastic Hill-Climber versus Simulated Annealing

The main difference between S.H.C and S.A. is that the S.A. changes the parameter T during the run. Start with high value of T making this procedure more similar to random search and then gradually decreases the value of $T \rightarrow$ at the end the procedure resemble an hill-climber.

Annealing Schedule Cooling Factor

Throughout the search process, the temperature is adjusted

•according to a given annealing schedule (often also called cooling factor.

Cooling factor is a function that for each run-time t (typically measured in terms of the number of search steps since initialization) determines a temperature value T(t).

Cooling factor (annealing schedule) are commonly specified by an initial temperature T0, a temperature update scheme, a number of search steps to be performed at each temperature and a termination condition.

•23

Hill-Climbing/S.A

- The algorithm varies from Hill-Climbing in its decision of when to replace *S, the original candidate solution, with R, its newly tweaked child. Specifically: if R is better than S, we'll always replace S with R as usual. But if R is worse than S, we may still replace S with R*
- with a certain probability
- P(t, R, S) = exp(Quality(R) Quality(S))/T

Hill-Climbing

Algorithm Hill-Climbing

1: $S \leftarrow$ some initial candidate solution Initialization Procedure

2: repeat

3: $R \leftarrow Tweak(Copy(S))$ Modification Procedure

4: if Quality(R) > Quality(S) then

Assessment and Selection Procedures

5: $S \leftarrow R$

6: until S is the ideal solution or we have run out of time

7: return S

•Algorithm Simulated Annealing

- •1: *t* ← *temperature*, *initially a high number*
- •2: $S \leftarrow$ some initial candidate solution
- •3: *Best* ←*S*
- •4: repeat
- •5: $R \leftarrow Tweak(Copy(S))$
- •6: **if** Quality(R)>Quality(S) **or**

if a random number chosen from 0 to $1 < \exp(Quality(R) - Quality(S)) / t$ then

- •7: $S \leftarrow R$
- •8: Decrease *t*
- •9: **if** Quality(S) > Quality(Best) then
- •10: *Best* ←*S*
- •11: until Best is the ideal solution, we have run out of time, or t < 0
- •12: return Best

Differences ...

There are three important differences between simulated annealing and local search.

1-there is a difference in how the procedures halt.

- 2- It just returns an accepted solution y from the neighborhood of x, where the acceptance is based on the current temperature T.
- 3-in simulated annealing, the parameter T is updated periodically and the value of this parameter influence the outcome of the procedure "improve?", "Tweak"

•27

Termination Condition

•Simulated Annealing can use a variety of termination predicates; a specific termination condition often used for SA is based on the *acceptance ratio*, *that is*, the ratio of proposed steps to accepted steps. In this case, the search process is terminated when the acceptance ratio falls below a certain threshold or when no improving candidate solution has been found for a given number of search steps.

Convergence

- •It has been shown that Simulated Annealing algorithms with appropriate cooling strategies will asymptotically converge to the global optimum. Nolte and Schrader[] and van
- •Laarhoven and Aarts [] provide lists of the most important works showing that Simulated Annealing will converge to the global optimum if $t \to \infty$ iterations are performed,

•29

Problems:

- How de we determine the initial Temperature T?
- How do we determine the cooling ratio g(T,t)
- How do we determine the termination condition?

Ref

• Slides adapted from Advanced Algorithms course, presented by Dr. kourosh ziarati