Escaping Local Optima
Simulated Annealing

Lecture # 3

Esmaeil Nourani

Defining a search problem

© Def: xef
eval(x) <eval(y)
VyeF

* Minimization or Maximization < Objective Function
* The point x is called a global solution.

A

Local Search

* We focus our attention within a local neighborhood of some
particular solution.

* 1. Pick a solution form the search space and evaluate its
merit. Define this as the current solution

» 2. Apply a transformation to the current solution to
generate a new solution and evaluate its merit.

e 3. If the new solution is better than the current solution
then exchange it with current solution; otherwise discard
the new solution.

* 4. Repeat steps 2 and 3 until no transformation in the given
set improves the current solution.

Move to
better solution

Current state

Find Local .
Optima and stop Global Optima

Local Search

* We always used Local Search when the path to the goal is
not important.
e e.g: Eight queen problem.

* Local Search algorithms operate using a single current
state(rather than multiple path) and generally move only
to neighbors of that state.

Two key advantages :
e 1- they use very little memory

e 2-they can often find reasonable solutions in large state
spaces.

Local Search (one iteration of simplified hill-
climber)

» Procedure local search
begin
X = some 1nitial starting point in S
while improve(x) != ‘no’ do
X = improve(X)
return(x)
end

Getting stuck

* Unfortunately, hill climbing often gets stuck for the following
reasons:

* Local Maxima : A local maximum is a peak that is higher than each
of its neighboring states, but lower than the global maximum.

* Ridges : Ridges result in a sequence of local maxima that is very
difficult for greedy algorithms to navigate.

* Plateaux : a plateau is an area of the state space landscape where
the evaluation function is flat.

One-dimensional state space landscape

* Evaluation corresponds to the objective function.

* Hill-Climbing search modifies the current state to try to improve
it.

objective function elobal maximum

shoulder

local maximum

"flat” local maximum

slate space
current
stale

Escaping Local Optima

One Way:

- Iterative Hill-Climber—> start from diff. initial
points = local optima = Multiple run of
Algorithm.

Iterative Hill-Climbing

Algorithm Hill-Climbing with Random Restarts
: T & distribution of possible time intervals
: S € some initial random candidate solution
: Best €S
. repeat

repeat
R &Tweak(Copy(S))

1
2
3
4
5: time € random time in the near future, chosen from T
6
7
8 if Quality(R) > Quality(S) then

9

S €R
10: until S is the ideal solution, or time is up, or we have run out of total time
11: if Quality(S) > Quality(Best) then
12: Best €S

13: S € some random candidate solution
14: until Sis the ideal solution or we have run out of total time
15: return Best

Horse with wings !!

Some possibilities of escaping local optima within
a single run of an algorithm:

- An additional parameter that changes the
probability of moving from one point of the
search space to another.

- A memory, which forces the algorithm to
explore new areas of the search space.

Modify local search

 Instead of checking all of the strings in the neighborhood
of a current point V¢ and selecting the best one, select
only one point, Vn, from this neighborhood.

» Accept this new point, Vc€ Vn with some probability
that depends on the relative merit of these two points.

Stochastic Hill-Climber

Stochastic hill-climber (Maximization
Problem)

* Procedure stochastic hill-climber
begin
t€0
select a current string Vc at random
evaluate Vc
repeat
select the string Vn from the neighborhood of Vc

select Vn with probability 1/ 1+ exp » (eval(vc)-eval(vn)/T)
t < t+l

until t = MAX
end

Procedure stochastic hill-climber (Maximization Problem)
begin
t€0
select a current string VC at random
evaluate Vc
repeat
select the string Vn from the neighborhood of V¢

1

select Vn with probability wmﬁ
t & t+]
until t=MAX
end
Eval(Vc) = 107 T e (-13/T) P
Eval(Vn)=120 1 0.000002 100
5 0.0743 0.93
10 0.2725 0.78
20 052 0.66
50 077 0.56
10”10 0.9999 05

Metropolis

Vn is selected From neighbour Vc uniformly at random, which

is then accepted according to the following probability
function::

1/ 1+ exp " (eval(vc)-eval(vn)/T)

This acceptance criterion is known as the Metropolis condition.

The greater the value of T, the smaller the importance

of relative merit of the competing points Vc and Vn.
If T is Huge = The probability of acceptance approaches 0.5
=» Random Search!
If Tis very Small (T=1) =2 Ordinary Hill-Climber!

eval(Vn) eval(Vc)-eval(Vn) e(../10) | p

80 27 14.88 0.06
100 7 2.01 0.33
107 0 1.00 0.50
120 -13 0.27 0.78
150 -43 0.01 0.99

Probability of acceptance as a function of eval(Vn)
for T=10 and eval(Vc)= 107

Some notes

« We don’t have to repeat its iterations starting from
different random points.

* Newly selected point is accepted with some probability.

» It’s possible for the new accepted point to be worse than
the current point.

Simulated annealing

Simulated Annealing gets its name from annealing, a process of
cooling molten metal. If you let metal cool rapidly, its atoms aren’t
given a chance to settle into a tight lattice and are frozen in a random
configuration, resulting in brittle metal. If we decrease the
temperature very slowly, the atoms are given enough time to settle
into a strong crystal. Not surprisingly, t means temperature.

Origin of Simulated Annealing (SA)

Definition: A heuristic technique that mathematically mirrors the
cooling of a set of atoms to a state of minimum energy.

Origin: Applying the field of Statistical Mechanics to the field of
Combinatorial Optimization(1983)

Draws an analogy between the cooling of a material (search for
minimum energy state) and the solving of an optimization problem.

Annealing

* When annealing metal, the initial temperature must not be
too low and the cooling must be done sufficiently slowly so
as to avoid the system getting stuck in a meta-stable, non-
crystalline state representing a local minimum of energy.

* The Metropolis procedure was an exact copy of this physical
process which could be used to simulate a collection of
atoms in thermodynamic equilibrium at a given
temperature.

Simulated Annealing algrotihm

* Procedure Simulated Annealing
begin
t € 0, initialize T, select a current point Vc at random
evaluate Vc
repeat
repeat
select a new point Vn in the neighborhood of Vc
if eval(Vc) < eval(Vn)
then Vc<Vn
else if randome[0,1) < e”((eval(vn) — eval (vc))/T)
then Vc <Vn
until(termination-condition)
T€g(Tt)
t<t+1
unti | (halting-criterion)
end

Stochastic Hill-Climber versus Simulated
Annealing

The main difference between S.H.C and S.A. is that
the S.A. changes the parameter T during the run.
Start with high value of T making this procedure more
similar o random search and then gradually decreases
the value of T = at the end the procedure resemble an
hill-climber.

Annealing Schedule Cooling Factor

Throughout the search process, the temperature is adjusted

saccording to a given annealing schedule (often also
called cooling factor.

Cooling factor is a function that for each run-time ¢
(typically measured in terms of the number of search steps
since initialization) determines a temperature value 7(?).

Cooling factor (annealing schedule) are commonly
specified by an initial temperature 70, a temperature
update scheme, a number of search steps to be performed
at each temperature and a termination condition.

Hill-Climbing/S.A

* The algorithm varies from Hill-Climbing in its decision of when to
replace S, the original candidate solution, with R, its newly tweaked
child. Specifically: if R is better than S, we’ll always replace S with R as
usual. But if R is worse than S, we may still replace S with R

* with a certain probability
e P(t, R, S) = exp(Quality(R)-Quality(S))/T

Hill-Climbing

Algorithm Hill-Climbing
1: S & some initial candidate solution [nitialization Procedure

2: repeat
3. R & Tweak(Copy(S)) Modlification Procedure
4: if Quality(R) > Quality(S) then

Assessment and Selection Procedures
5: S<R

6: until S is the ideal solution or we have run out of time
7:return S

*Algorithm Simulated Annealing
1.t € temperature, initially a high number
*2: § € some initial candidate solution
*3: Best €S
*4: repeat
*5: R €Tweak(Copy(S))
*6: if Quality(R)>Quality(S) or
if a random number chosen from 0 to 1< exp (Quality(R)—Quality(S)) / t then
*7: S €R

8: Decrease ¢
*0: if Quality(S) > Quality(Best) then
*10: Best €S

*11: until Best is the ideal solution, we have run out of time, or t <
*12: return Best

*26

Differences ...

There are three important differences between simulated
annealing and local search.

how the procedures halt.

2- It just returns an accepted solution y from the
neighborhood of x, where the acceptance is based on the
current temperature T.

3-in simulated annealing, the parameter T is updated
periodically and the value of this parameter influence the
outcome of the procedure “improve?”, “Tweak”

Termination Condition

*Simulated Annealing can use a variety of termination
predicates; a specific termination condition often used for
SA 1s based on the acceptance ratio, that is, the ratio of
proposed steps to accepted steps. In this case, the search
process is terminated when the acceptance ratio falls below
a certain threshold or when no improving candidate
solution has been found for a given number of search steps.

Convergence

It has been shown that Simulated Annealing algorithms with
appropriate cooling strategies will asymptotically converge to
the global optimum. Nolte and Schrader[] and van

*Laarhoven and Aarts [] provide lists of the most important
works showing that Simulated Annealing will converge to the
global optimum if t — oo iterations are performed,

Problems:

* How de we determine the initial Temperature T?
* How do we determine the cooling ratio g(T,t)

» How do we determine the termination condition?

Ref

* Slides adapted from Advanced Algorithms course, presented by Dr.
kourosh ziarati

