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[t is an odd feeling when you love what you do and evervone else seems to hate it. [ get to peer into
lists of numbers and tease out knowledge that can help people live longer, healthier lives. But if' |
tell friends [ get a kick out of statistics, they inch away as if [ have a communicable disease.

[ have started to think that most folks™ views of statistics as a refined type of torture go back
to how 1t is taught, and to textbooks in particular. Statistics textbooks can be long, boring and
expensive. With this in mind. I proposed to my editor that [ write a book that was short, boring
and expensive. He considered it but eventually decided [ needed to come up with something bet-
ter. So I thought about it this way: the typical statistics textbook (a) tells you how to do statistics,
not how to understand it, (b) is full of formulas and (¢) 1s no fun at all. I wondered whether [
could write something that (a) focused on how to understand statistics, (b) avoided formulas and
(c) was fun, at least in places.

This is how I came up with the idea of stories. The 10th commandment is “You shall not
covet your neighbor’s house, wife, donkey, or ox™ but no one says this in conversation. Instead,
they say “the grass is greener.” In case you didn’t know, “the grass is greener” comes from an old
story about some goats that were happily eating grass in a field until they looked up and noticed
the grass on the other side of a small stream. The grass looked so much greener there that they
crossed over a little bridge. But after feeding for a while, they looked up again and thought that,
actually, the grass on the other side of the stream, back where they had started, looked a lot
greener than in the field where they were standing. And so they spent the day crossing the bridge
back and forth, always thinking that the grass was looking greener on the other side. [ think the
last time | heard this story was in kindergarten, but [ still remember it and what it means. The
10th commandment is spot on but is hard to remember because it tells you what to do; you hear
a story to help you understand something and you’ll remember it for life.

Like stories, the chapters in the book arc intended to be short and fun to read. The second half
of the book, the discussion section, is a little weightier. The discussion questions vary: there is
usually one question, the first, that is pretty essential and is something that you should really try
to think about. Most of the others could be considered optional—some are there only for the
really enthusiastic types (I flagged these). For example, there is a discussion on the derivation of
a mathematical constant called ¢ and an introduction to statistical programming.

If you have some experience with statistics, feel free to dip in and out of the book. Otherwise,
you should probably try to read the chapters through from beginning to end. The first 12 chapters
deal with some basics, such as averages. variation, distributions and confidence intervals. [ then
have a few chapters on hypothesis testing and p-values, before discussing regression-—the statisti-
cal method I use most in my work—and decision making-—which generally should be, but often
1sn’t. what statistics 1s about. The last third of the book, starting from the chapter “One better than
Tommy John™. is devoted to discussing a wide vartety of statistical errors. If it seems odd to devote

“so much of a book to slip-ups. it is because I have a little theory that “science™ is just a special name
for “learning from our mistakes.” When I teach. | give bonus points for any student giving a partic-
ularly dumb answer because those are the ones we really learn from. In fact. I don’t think vou can
really understand. say, a p-value. without secing some of the ways it has been misused and thinking
through why these constitute mistakes. So please don't blow these chapters off thinking you've read
the stuff vou'll be examined on: the final chapters will really fill in vour statistical knowledge.



X How to read this book

What this book canh and cant teach you

Hopefully, after you have read this textbook. you'll have a good understanding of many of the
key ideas of good statistics. 1 also hope that you'll be able to avoid some of the most common sta-
tistical mistakes and errors,

What you won't know how to do is actually do any statistical analyses, in short. because |
haven't provided any of the appropriate formulas. If you want to conduct analyses for your
research or for your coursework. you'll have to look it up a conventional statistical textbook with
formulas and step-by-step instructions. Also, the book won’t be particularly usetul as a reference
textbook to look up things that you've forgotten. So if you want to run statistical analyses, this
should not be the only book you buy. (Although it should be the only book you buy multiple
copies of. to give to your friends. family, colleagues, neighbors and random people you meet.) On
the other hand, if you are the sort of person who doesn’t want to do any statistics yourselt~—which
is. I guess, most of the world—but have to understand and interpret statistics that you read—
which is more of us than you might think——then this book might well be all that you require.

Where is the section on desigh®?

| am a very design oriented statistician. As a quick example, missing data 1s a big problem in
medical research. Statisticians have written hundreds of research papers proposing complex sta-
tistical techniques that predict what the data would have been, had it not been missing. My own
contribution was to propose a very simple technique to reduce the rate of missing data in the first
place, which is to telephone patients at home and ask them just two questions in place of a long
questionnaire. In this way, we reduced the rate of missing data in a trial from 25% to 6%, which
made the use of complex missing data analyses rather redundant.

As such, you might be surprised that there is no section on design in this book. In short, this
is because I don’t think you can separate out design from the rest of statistics and have a special
chapter on it. [ have two different chapters on regression analysis and the Wilcoxon test because,
in theory, you could do one without the other; you can’t think about either the Wilcoxon or
regression analysis without considering the design of the study you are analyzing. Accordingly, |
don’t have a chapter on design. Instead, comments on design are woven throughout the text.

About the stories and data in this book
When I started writing, my editor said to me, “Andrew, | want you to write the funniest statistics
textbook ever!™ So I thought. “Great. I'll write one joke and then I'll be done.”

Actually, it didn’t quite happen exactly like that, but it isn’t far oft. On which point, the sto-
ries and data in this book were developed to help vou learn statistics. This has sometimes meant
simplifying or altering something to make it easier to understand. In some cases I simulated data
(“simulation™ is statistics speak for making stutf up). [ did so on the grounds that the data [ had
to hand were much too complicated and would take far too much explaming and. as such. would
detract from the reason | wanted to use the data in the first place—which was to help you to
understand something about statistics. Also. vou'd get sick of hearing about prostate cancer,
which 1s the main thing | study.
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How to read this book Xi

Accordingly. the stories and data that follow are not all 100% factually accurate. I don't think
[ have said anything misleading, but please don't use the book to come to conclusions about
blood counts in Swedish men (see Chutes-and-ladders and serum hemoglobin levels: thoughts
on the normal distribution). prostate cancer (see When o visit Chicago: About linear and logis-
tic regression). how long it takes for African-Americans to hail a cab (see Some things that have
never happened to me: Why vou shouldn 't compare p-values) or, for that matter, my friend Mike
(see Regression to the Mike: A statistical explunation of why an eligible friend of mine is still
single). Or even whether “scared straight™ helps juvenile delinquents avoid a life of crime (see
The probability of a dry toothbrush: What is a p-value amavay?): it doesn't. and I say it doesn’t,
but don’t take my word for it, look it up for yourself (see www.cochranc.org). This is, after all, a
book about statistics, not crime policy.

I did analyze data sets for this book and present, without fudging, the results [ found. You
should be able to replicate my analyses. Much of the raw data is available on the web. but if you
can’t find it and want to replicate something, please let me know and I'll see how [ can help. Inci-
dentally, for most categorical data analyses in this book, [ used Fisher’s exact test.

I would like to acknowledge the Pew Research Center (www.pewresearch.org), which pub-
lishes raw data from its fascinating surveys of the American public. The data on attitudes to
marriage between religions were adapted from the Northern Ireland Life & Times Survey 2006
(www.ark.ac.uk). The US 1996 crime statistics are available from www.statcrunch.com, an
excellent resource for data sets for teaching (although, unlike the other data sets mentioned here.
this is available only by subscription). The acupuncture and headache data set can be downloaded
from www.trialsjournal.com/content/7/1/15 (where you can also read some of my thoughts about
data sharing). The data on prostate cancer (and blood counts in Swedish men) come from a series
of studies | have been conducting with my colleague, Hans Lilja. You can find out more by
searching the medical database *PubMed” (http://www.ncbi.nlm.nih.gov/sites/entrez) for **Vickers
Lilja™. The data on maternity leave come from the work of Janet Gornick (see, for example,
Families That Work: Policies for Reconciling Parenthood and Emplovment. New York: Russell
Sage Foundation, 2003).
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CHAPTER 1

[ tell a friend that my job is more fun than
you'd think: What ig statistice?

DUDE. \
CHILL OUT...

have a triend who is a well-known DJ. He was once telling me about a gig
he'd recently plaved m Milan  some kind of massive party for 20,000
when a neighbor of ours rolled up in a cab. A journalist. he was just
returning from the Pacitic Northwest where he'd been researching a story on
wild mushrooms. The three of us stood chatting on the sidewalk for a while.,
and I thought | should mention that T was gomg to Cleveland to give a talk

about bladder cancer.



2 CHAPTER 1

[ think they were impressed.

The DJ’s unnaturally supportive wife once asked what it was that I did all day. What [ said
was: it's a lot of hard work and although it isn’t as much of a thrill as DJ'ing a rave, it is more
fun than you might think and is very satisfying. Best of all you get to meet a lot of other sta-
tisticians (actually. I didn’t say that). This sounds like a bit of a non-answer, but as I'll
explain, what 1 said made reference to inference and estimation, which is pretty much the
A-Z of statistical analysis.

Estimation is about trying to work out how large or small something is. That “something”
generally either can’t be directly measured, or would take too much time and effort to do so. The
two estimates in my answer were: “statistics is a lot of hard work™ and “‘being a statistician is very
satisfying.” Ok, not very precise, but we might imagine that some psychologist had developed a
questionnaire measuring mental effort, job satisfaction and, while we are at it, fun. To answer our
question, “How much work is being a statistician?”, what we'd ideally do is send the question-
naire to every single statistician in the world. But that would be kind of a pain, so we'd probably
be better off sending the questionnaire to, say, 500 statisticians and hope that their answers were
representative of statisticians in general. Let’s say that our sample of 500 statisticians scored an
average of 88% on the “mental effort at work™ questionnaire: 88% is then our estimate of the
average for all statisticians.

Inference is about drawing conclusions, and statisticians usually make inferences by
testing hypotheses. My answer to the DJ’s wife included two hypotheses: “doing statistics
is not as much of a thrill as DJ’ing” and “statistics is more fun than you might think.”
To test the first hypothesis, we could give our “fun at work” questionnaire to 500 DJs and
then compare their answers to those of the 500 statisticians (ok, it probably isn’t worth
doing this); to test the second hypothesis we just compare the statisticians’ answers to some
guess we’d made before we'd taken the data (e.g., statistics sounds like it would be about
0.3% fun).

This just leaves the issue of how we choose the statisticians to sample, which questionnaire
we give them, whether we put a stamp on the return envelope or use “postage paid,” how often we
should chase up the ones that don’t get back to us, how we enter data from all 500 questionnaires
onto a computer, what you do if someone only fills in half of the questions, and so on and so
forth. Designing a study is pretty complicated and statisticians know a lot about study design: it
is said that R A Fisher, one of the great statisticians, used to clean out the rats’ cages himself on
the grounds that “if the rats are dirty, so will my data be.” Indeed, all of the questions about the
design of the questionnaire study (even whether you should put a stamp on the return envelope)
have been written about by statisticians.

Given the choice, I guess most of us (me included) would rather be eating wild mush-
rooms, or spinning discs at a party. than running a complex statistical analysis. That is, until
someone we love gets bladder cancer and we want to know what to do about it. Statistics
sounds pretty cold-—what is a number to me is somebody’s living and breathing father, with
stories to tell—but it has a very human goal: we want to live our lives better. To do that, we
have to make good decisions and sometimes looking at numerical data in the right way can
help us do so.

[RSE——




CHAPTER 1 3

¢ Things to Remember ¢

1. Statistics involves estimation, inference and study design.
2. Estimation is about trying to work out how large or small something is.
3. Inference is about drawing conclusions, usually by conducting a statistical test of a

hypothesis.

4. A hypothesis is a statement about the world that could be tested to see whether it is

true or false.

5. Many studies produce numbers; as experts in numbers, statisticians often have a lot to
say about how exactly a study should be designed.

8. Cleveland gets a bad rap, but the faculty dinner | had was actually pretty good.

for
“Discussion

PR I A I e R R R B R I T A A S AP B I Az e TR e L K R R R I R R R T

1.

[ defined a hypothesis as “a statement about
the world that could be tested to see whether 1t
is true or false.” Are there some statements that
can’t be tested?

There are two sorts of estimates that statisticians
make: how big or small something is and how
big or small something is compared to some-
thing else. An example of the first sort of esti-
mate is “the mean height of an American male
is close to 5 ft 915 in” An example of the sec-
ond sort of estimate is “men who smoke are
23 times more likely to develop lung cancer
than men who have never smoked.” Write down
some examples of estimates of both sorts.

Most hypotheses can be rephrased in terms of

estimates. | mixed up some estimates and

hypotheses below. Match ecach estimate with

the corresponding hypothesis and say which 1s

the estimate and which the hypothesis.

a. Crimes decreased 21% comparing the year
before and the year after completion of a
program to improve street lighting.

b. Men and women do not differ in their vot-
ing behavior for presidential candidates.

NOTE: See page [54 for answer sets.

¢. Obesity rates in California increased during
the 1990’.

d. Recurrence rates were 5% lower in women
receiving chemotherapy after surgery com-
pared to women receiving surgery alone.

e. The proportion of women voting for Demo-
cratic presidential candidates is 5% higher
than men.

f. Improvements in street lighting decrease
crime.

g. Electric shocks (punishment) are more
effective than sugar (reward) for improving
learning in rats, as measured by time to
complete a maze learning task.

h. Mean time to complete a maze was 20 sec-
onds shorter in rats exposed to shocks than
those given sugar.

i. Obesity rates in California almost doubled
between 1990 and 2000, from 10% to
nearly 20%.

j. Chemotherapy plus surgery 1s no more
effective than surgery for breast cancer.
Who said “there are lies, damned lies and sta-

tistics™?



CHAPTER 2

Co Bill Gates walks into a diner
On meang and medians

HOW WAS
YOUR BREAKFAST,
MR. GATES?

statistician’'s joke: So Bill Gates walks into a diner ...
average salary changes.

Ok. not very funny, | realize.

]

.

and the

The point of the Bill Gates “joke™ is to illustrate the difference between two

different types of average. the meun and the median. Let’s imagine that the

salaries in the diner before Bill walked in were as tfollows:

Eric
Jose
Barrett
Sandra
Todd
Michael

Katie

SK5.000
S50.000
S43.000
S40.000
S35.000
S30.000

S30.000

S B e T 0 SO S50 S
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CHAPTER 2 5

The mean is what we normally think of as the average: vou add up all the salaries and divide the
total by the number of people. [f vou add up all the salaries (S315.000) and divide by the number of
people (7). vou get $45.000. The median 1s best thought of as the “middle™ number: line up all the
salaries from lowest to highest: the median salary s the one haltway along. The middle ot 7 15 4. 50
the median salary in our diner is that of Sandra. who has the fourth highest salary. $40.000.

So now Bill Gates walks in with an annual income of. sav. ST bithion (most people would call
this rich. statisticians call 1 an owrliery. Bills salary changes the mean salary to a little over
S123m. As tor the median. there s no middle of 8. 50 we go halfway between 4 and 5. The 4th
highest salary is now S43.000 and the Sth is S40.0000 gnving a new median salary of S42.300.
Most people would say that S42.500 was a fair reflection of the salaries in the diner and that
S123m had nothing to do with anvthing, And so we end up with a neat little rule: if there are out-
liers in the data—which is exactly what happens whenever a major software entrepreneur feels
like having a greasy breakfast  use a median.

Here is the key point: if vou stumble across a “neat little rule™ m statistics. be very careful.
Wanting a “tair reflection” ot the data is not the only thing we want to use a statistic for: the other
is to plan and make decistons. So let’s imagine that instead of a diner we had a hospital. and
instead of salaries. we had costs of surgery: in place of Bill Gates, we have a patient who has a
series of complications after surgevy. leading to costs of S250.000.

3 S45.000
4 $40.000
5 $35.000
6 $30.000
7 $30.000

5 $250,000

This gives a mean of just over $70.000; the median is the same as the Bill Gates example.
$42.500. Which number would be most important it vou were, sav. a hospital admmistrator?
§42.500 may well be a “tamr retlection”™ of the typreal cost of a patient’s care, but writing next
vear’s budget assuming costs of S42.500 per patient will Likely lead to a shorttall. Thinking
about means and medians 15 also why [ huy health insurance (the median vearly expenditure of
Americans hike me is far

ess than the premium but when | look at mean vearly expenditure. |
reckon T aeta pretty good dealy and wear a seat-belt teven though the median number of injuries
PCr Car trp 1s 78ro).

So next time vou are mnadimer. and are bored and depressed because Bill Guates hasn't shown
up vet. here oo neat hittle rule to seraw !l on vour cotfee-sodden napkim: sometimes there are no
right and wrong statistioss it all depends onwhat vou want to use them for,
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¢ Things to Remember ¢

1. What most people call an “average” is what statisticians call a mean. To calculate a mean,
think of your data as a list of numbers, add up all the numbers and then divide by the num-
ber of items on your list.

2. The median is the half way point of your list of numbers: half of the sample have values
higher than the median and half have values lower than the median.

3. An outlier is when you have an observation that doesn't follow the pattern of the data.

4. When you have outliers, the median often gives a fairer reflection of the data than the
mean.

5. Generally speaking, means are better than medians for planning and making decisions.

(G _
“Discussion

T T R R R R R R 2 I A A I I T I

1. 1 said that “half of the sample have values give me $1,000. Would you play” Explain your
higher than the median and half have values answer.
lower than the median.” Is that always true?

2. Here is a die rolling game: you roll a die and if
you get 1--5, 1 give you $20: if you roll a 6, you

NOTE: See page 156 for answer sets.




CHAPTER 3

Bill Gates goes back to the diner:
Standard deviation and interquartile
range

HEY, PAL, WE
DONT SKEW
NO BREAKFASTS!

k. I know. I can’t really see the world’s richest man going into a

cheap diner in the first place. let alone going back. But [ wanted to
stick with the example | had, so let’s imagine that Bill had cnjoyed
the good-natured joshing about the design flaws in Windows and didn’t have
much to do the next day. Also. let’s imagine that the diner was niuch. much
busier. with 80 people in total having passed through at some point that morn-

ing. Here is a histogram showing the salaries of custoniers.
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The x-axis (going from left to right) shows different salary levels put into different groups
(statisticians call these “bins,” which has the unfortunate implication that the data are garbage).
The y-axis (going up and down) shows the number of people within each salary level. For exam-
ple, the histogram shows that 16 of the individuals who had eaten in the diner have salaries in the
range $35,000-539,000 per year.

You can’t work this out from this histogram, but I used the raw data to calculate that the mean
salary was $42,360. So we took all those data points and turned them into just a single number.
Now, there is an old joke that goes something like: a statistician had his head in the oven and his
feet in the fridge. When he was asked how he felt, he said, “On average, pretty good.” From this
we learn two things: (a) statisticians tell bad jokes (am I repeating myself here?) and (b) a single
number often doesn’t describe a data set that well. Accordingly, it is generally a good idea to
report not just a mean or median—what statisticians call the central tendency of the data—but
some measure of how much the data vary—what statisticians call a measure of spread or a
measure of dispersion.

One common measure of spread describing how much the study data vary is the standard
deviation. The standard deviation is calculated from the data using a formula that I won't go into
here (roughly speaking, you calculate the difference between each value and the mean, square it,
take the mean of all the squares, and then take the square root). The thing to remember is that if
the standard deviation for our data set was small, it would mean that everyone has pretty close to
the same salary: if the standard deviation was large, it would mean that the salaries of the people
in the diner vary widely.

To work out just how much variation we have, we can use some simple rules of thumb. The
most well known 1s that 95% of observations are within about two standard deviations of the
mean.” This 1s the same as saying that only 3% of customers have salarics more than two stan-
dard deviations from the mean. From the raw data | used to create the bar chart, I worked out a
standard deviation of $9.616. We can now work out that 5% of salaries are expected to be either
higher than S61.392 (mean $42.360 + standard deviation $9.616 x 2 = S61.592) or lower
than $23.128 (mean $42.360 - standard deviation $9.616 x 2 = S23.128). As it happens. one
customer has a salary above $61.592 and two are below S23.128 (vou can see his from the his-
togram): this 1s 3 out of 80, or 3.75%0. which is reasonably close to $%.
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It is also true (although this doesn’t seem to get mentioned much for some reason) that about
two-thirds of observations are within one standard deviation of the mean, and that about half of
observations are within two-thirds of a standard deviation from the mean. You can test out these
rules of thumb using the histogram: for example, it does look as though about two-thirds of the
customers have salaries between about $33.000 (i.e.. $42.360 — $9.616) and $52,000 (i.e.,
$42,360 + $9.616).

That is, of course, until Bill Gates walks into the diner. Now we have a mean salary of about
$12 million and a standard deviation of, let’s see, $100 million. Clearly it is no longer the case
that two-thirds of observations are within a standard deviation of the mean because no one in the
diner (other than Bill) has a salary anywhere near $112 million and you can’t have a salary of
negative $88 million (although this guy I know from college is certainly trying). So the general
rules of thumb don’t work when the data are skewed away from the bell-shaped curve statisti-
cians call the normal distribution (see Chutes and Ladders and serum hemoglobin levels:
Thoughts on the normal distribution). Here 1s the normal curve on our data set without Bill
Gates. As you can see it isn’'t a bad fit, which is why our rules of thumb work ok.
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When Bill Gates walks in, however, we have data that we'd describe as “skewed’”: they don’t
seem to fit the normal distribution at all. What should you do about standard deviations if you
don’t have a good fit? Remember that the first time Bill Gates went into the diner, we said that
you could use a median instead of a mean as the average. The measure of spread you use with
medians 1s not a standard deviation, but what is called the interquartile range. The median 1s
“halfway™ along the data: comparably, the quartiles are a quarter and three-quarters of the way
along. Using the data set in the histograms, I found the median income to be $41,900 and the
interquartile range to be $36.000 to $49.300. These three numbers allow you to see a bunch of
things immediately. For example:

® 50% of the customers have salaries of more than $41,900 and 50% have salaries of less
than $41.900

e 5% of the customers have salaries of more than $49.300

® 25% of customers have salaries of less than $36.000
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® 50% of customers have salaries between $36.000 and $49.300
e 5% of customers have salaries between $36.000 and $41.900
e 5%, of customers have salaries between $41.900 and $49,300

Bill Gates causes the mean salary and standard deviation to go haywire. but the median and
interquartile range remain pretty constant (e.g.. the upper quartile goes from $49.300 to
$49.500). This is one reason why we said. last time, that if data are very skewed. you often get a
fairer reflection of the data if you use medians (and therefore the interquartite range) than means
(along with standard deviations).

Here is another reason to use the median and interquartile range. I analyze the results of can-
cer studies and one of the first things | report in a scientific paper is the general characteristics of
the patients in the study: how old were they? What is the ratio of male to female? How many had
early stage cancer and how many had advanced disease? Let’s imagine that the age of the patients
in a study followed very closely to the normal distribution. [ could report a mean and standard
deviation, knowing that any reader could then work out whatever they wanted about the distribu-
tion of ages. But the point is, they are not going to. You can hardly see a busy cancer doctor think-
ing, “Ok. a mean of 64.3 and a standard deviation of 9.8; half the patients are within two-thirds
of a standard deviation of the mean, that is, 64.3 + 9.8 X 0.667, which is—wait a minute,
where’s my calculator?” You can just glance at the median and interquartile range and get a good,
quick idea about the sort of data that you are dealing with.

In other words, the median and interquartile range are very useful for describing a data set.
And this is exactly what we want them to do: everything I have been talking about here-—means,
medians. standard deviations, interquartile ranges—are known as descriptive Statistics.

¢ Things to Remember ¢

1. Means and medians are useful for describing a data set. Means and medians are types
of average, or central tendency.

2. You generally want to know not only the average of a data set, but how much the data
vary around that average: a measure of spread.

3. The measure of spread normally reported with a mean is the standard deviation.
4. The measure of spread normally reported with a median is the interquartile range.

5. If data follow something close to a normal distribution, the mean and standard devia-
tion can be used to work out all sorts of things about your data, but you have to do
some calculations.

6. The median and interquartile range give quick information about data without the need
for any calculation.

7 The median and interquartile range are also useful for describing data that are skewed.

8. Statistics used to describe a data set, means and medians, standard deviations and
interquartile ranges, are known as descriptive statistics.




1. The upper and lower quartile are sometimes
described as the 7Sth and 25th censile (or
percentile). Explain this.

2. When talking about the interquartile range |
satd things like 25% of the customers in the
diner have salaries of “$49300 or more”
When talking about standard deviations, | said

NOTE: See page 1537 for answer sets.
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5% had salaries above $61.592 or below
$23.128. Why did I sometimes say v or more”
and sometimes “higher than x77

Is it really true that 95° of observations are
within two standard deviations of the mean,
even for a perfectly normal distribution?
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A skewed shot a biased referee

OH DOCTOR. YO ARE
SLICH A GREAT SLIRGEON!
THE PATIENTS YOU TREAT | | 3 AaonE
DO 50 MUCH BETTER THAN ol
THE ONES YOL DON'T! ‘

<

SEND THE

ike all great moments in my life, | remember it as if it were yesterday.

England was playing Spain in the European soccer championships, a

Spanish player mis hit a shot, which then fell to a team mate. who slot-
ted it past the English keeper for a goal. But then the referee disallowed the
goal for offside (relief!), even though the replay showed that the goal ought to
have counted.

[ couldn't believe it: there had been a bad decision on the soccer field und,
as an England fan, [ wasn't going to suffer us a result. The British press the
next day were full of praise for “our brave lads™ (England had squeaked
through on penalties): the Spanish press were outraged at what had obviously
been a biased referee. In my view, if the Spanish player hadn’t skewed his shot
in the first place. we wouldn't even be talking about the referee. But then

again. you'd hardly call me unbiased about 1t.

12




CHAPTER 4 13

Skew means “off to one side.” Statistics can also get “off to one side.” for one of two reasons.
First. sometimes that is just how the data are: you have more observations on one side than the
other. The tollowing graph is from a study of US adults and gives the body mass index (which is
weight in kilograms divided by the square of height in meters):
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This data set is skewed to the right. There are some Americans who are perhaps a little under-
weight, but the Americans who are on the heavy side are often very heavy (2025 is considered
“normal”). These data are right-skewed because observations above the median tend to be further
from the median than observations below the median. As a result, the mean is higher than the
median (26.5 vs. 25.7).

Left-skewed data is when the mean is less than the median. Here is an interesting example of
left-skewed data—duration of pregnancy:
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There is a long tail off to the left of premature infants, but not a tail off to the right of infants
born much later than their due date. This is because a very long pregnancy can be dangerous, and
doctors don’t let any woman carry a baby for more than two weeks longer than normal (although
some women appear to have slipped through the net). As a result, the mean is lower than the
median.

Another meaning of skew is “skewed away from the truth.” Here is a famous example of an
opinion poll that got things quite spectacularly wrong. When Franklin D. Roosevelt ran for re-
election in 1936, the Literar: Digest conducted an opinion poll to predict the result on election
day. There were two problems. First, they selected much of their sample from the telephone book.
Only a relatively small number of wealthier Americans had telephones during the Great Depres-
sion and richer folks tended not to like FDR and his “New Deal™ policies. The second problem
was that the poll had a very low response rate, with only about 20-25% of those polled returning
their postal ballot. It seems likely that those voters who didn’t like FDR were especially moti-
vated to give the Literary Digest a piece of their mind. You'd probably want to say something like
“the Literary Digest used a skewed sample of voters.” As it happens, statisticians tend to reserve
the word “skew” to describe data that is off to one side or another. In fact, you can work out the
“skewness” of a set of data using a formula just as you can work out the mean and standard devi-
ation. To describe an error in experimental methods or statistical analysis that leads to an incor-
rect estimate, statisticians use the word bias.

The Literary Digest study was biased because those responding to the survey were not a rep-
resentative sample of American voters. A medical study might also be biased by this sort of
selection bias. For example, a study might examine the survival rates of heart attack patients,
comparing those undergoing a heart operation with those not treated surgically. This study would
be biased because some patients are too sick to go through an operation; only the healthier
patients go for surgery. So you would expect survival rates to be better in surgical patients even
if the surgery didn’t help at all.

You can also get bias even if you select your sample carefully and fairly. For example, if you
are asking people questions as part of your study, the way that you ask them can introduce bias.
An obvious example is “push polling,” where political campaigns conduct phony opinion polls:
“If you found out that Brown, candidate for governor, had fathered four children out of marriage
and had paid off a judge to escape a bribery charge, would that make you more or less likely to
vote for him?” My favorite case of biased questioning came in a study suggesting that rates of
adultery were much lower than previously thought, only 2-3% rather than 15-20%. It turned out
that the researchers had interviewed married couples sitting together in their own home. This is
hardly likely to encourage frank answers to personal questions about something which almost
everyone feels is wrong and tries to hide.

There are numerous other types of bias. each with their own name (if you are interested. a
colleague and 1 have studied what is known as verification bius). But it is probably not worth
remembering them all and what they mean. especially as statisticians themselves disagree on
what to call things (when explaining our research at a conference. someone said. “Oh. you mean
detection bias.”). What you need to remember is that skew is out there as part of the world (the
Spanish player did skew his shot on goal): bias is what we can sometimes introduce when we
study the world but. like a referee. it is something we should try to avoid.
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* Things to Remember ¢

1. Skewness describes the distribution of data.

2. Data are skewed if there are more observations below the mean than above, or vice
versa.

3. The greater the proportion of observations above or below the mean, the more skew-
ness you have.

4. Bias describes a problem with the design, conduct or analysis of a study.

5. A study is biased if the methods or statistical analyses cause an estimate to be too high
or too low.

6. My joy was short lived. England lost the next time they played—a game they should
have won.

s+ SEE ALSO: /f the normal distribution is so normal, how come my data never are?

“Discussion
1. How would you avoid selection bias in the this mvolves questions about bad behavior.
surgery study” How would you encourage truthful answers?

2. Imagine that you were conducting a study on
cheating at college. Like the adultery research.

NOTE: See page 138 for answer sets,
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You cant have 2.0 chilaren:
On different types of data

LOVE. GREAT NEWS! I AM MORE THAN 0.6 OF THE WAY:
WE’ RE NO LONGER AN AVERAGE FAMILY!

My mother hag a statistical insight

rowing up, my mother used to tell me, “Statisticians have got it
wrong: you can’t have 2.6 children.” Now before any amateur psy-
chologists out there chime in to tell me that I obviously became a sta-
tistician to annoy my mother, let me say that: (a) she is completely correct and
(b) she has hit upon something quite profound. My mother’s comment came
after a survey finding that the “average” British woman had 2.6 children. This
“average” was clearly what statisticians call a mean. To get a mean, you add
everything up and divide by the number of observations, so you'd get a mean of

2.6 if there were. say, | million women and a total of 2.6 million children.

16
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The other type of average most often used by statisticians is the median. the number higher
than half the observations. My guess would be that the median number of children per woman in
the survey was 2. that is, 50% of women have 0. | or 2 children, and 50% have 2. 3 or 4 (or some
number even less conducive to a peaceful Sunday morning).

From my mother’s point of view, the big difference between the mean and the median is that
one is an artificial abstraction——a mathematical calculation—and the other relates to something
you can actually go out and see. Generally speaking, someone in a data set will have a value at
the median (a family of 2 kids): that often isn’t the case for the mean (you can’t have 2.6 chil-
dren). The same is true of the measures of spread generally reported alongside means (standard
deviation) and medians (interquartife range).

Why not stick to the median®

So why use “artificial” numbers like the mean or standard deviation and risk giving my mother
something to complain about? The quick answer is that you can use the artificial numbers to
answer a whole host of questions; if you want to use the real data, you have to look it up each
time. Let’s imagine that we had a data set consisting of heights from a sample of 10-year-old
boys. A well known rule of thumb is that “95% of observations are within two standard devia-
tions of the mean.” But you can also calculate that about two-thirds of observations are within
one standard deviation of the mean, that 90% of observations are greater than the mean minus
.28 standard deviations and, just to show that you can do pretty much whatever you want, it is
also true that 86.4% of observations are less than the mean plus 1.1 standard deviations. So, give
me a mean and a standard deviation and 1 can immediately answer questions such as: What
height is exceeded by only 5% of boys? What proportion of boys are more than 5 feet tall? What
are the heights between which 50% of the boys” heights can be found? There is no need to go
back to the data set and look anything up.

I can also do some hypothesis testing. If I have the mean and standard deviations of boys
raised as vegans, and similar data from a control group from the general population, I can work
out whether avoiding animal products affects growth in boys.

How to use 2.6

As you know. mothers are usually right, and my mother was certainly right in this particular
case-—citing an average of 2.6 children per woman is a bit of a silly statistic. We use statistics to
do one of two things: estimate or infer: Take, for instance. the data on the height of 10-year-old
boys. Estimates for the average height (e.g.. a mean) and how it varies (e.g., a standard deviation)
are great for description. We could look at these statistics and get a great idea about the usual
heights of 10-year-old boys and just how common it is to be more than, say. 6 inches taller or
smaller than average. We might then use our statistics to do something useful. like design a play-
ground. or choose a range of sizes for a line of rain coats.

Inference—hypothesis testing—also has a practical application. Say we conduct a statistical
hypothesis test to compare the heights of boys raised on vegan and regular diets, and conclude
that the vegan diet does indeed appear to inhibit growth, We might then consider advising parents
about the implications of raising their children on restrictive diets.
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[t is not clear how we could use “an average of 2.6 children™ for testing a hypothesis. For
example, imagine that we had a data set of women, giving the number of children they had given
birth to and where they lived. We can't use the mean number of children to test a hypothesis such
4s “women in rural areas have more children than those living in cities.” This is because statisti-
cal tests that use means assume that data can take a lot of different values, what statisticians call
a continuous (or quantitative) variable. Height is a good example of a continuous variable: a
10-year old boy can be 4 ft 2 in.. or 5 ft 2 in. or 4 ft 7', or pretty much anywhere in between.
Family size is more like what is called a categorical variable, because almost all families (in
industrialized nations, at least) have a family size in one of a limited number of categories:
zero. one. two. three or four children, and so on. Statisticians don’t like to use the sort of sta-
tistical tests designed for continuous variables on categorical variables like family size.

Moreover, “an average of 2.6 children™ doesn’t even give us a clear idea of how many chil-
dren women typically bear. It sounds as though most women have either 2 or 3 children, but that
might not be it at all; it might be that most women have either | or 2 children, and a few women
have lots and lots. This is an example of the general rule that a single number can rarely be used
to describe data and more specifically, that measures of spread should be reported alongside esti-
mates. The problem is that the measure of spread associated with the mean is the standard devia-
tion. and this means very little if data are skewed (see Bill Gates goes back to the diner: Standard
deviation and interquartile range). For example, here is a histogram with some example data for
the number of children per woman:

Percent of women
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Number of children

[ couldn’t actually find a data set with a mean of 2.6 (1 think the survey my mother was refer-
ring to was conducted in 1968 or something). This data set has a mean of 2.1 and a standard devi-
ation of 1.1. Applying the rule that 95 of the data are within 2 standard deviations of the mean,
you get that 95% of families have between —0.1 and 4.3 children-—having a negative number of
children is even more ridiculous than having 2.6. So, what statistics should we use in place of our
mean of 217 The median (2) and interquartile range (1 to 3) aren’t that helpful. For example, you

&
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know that 256 of families have | or fewer children, but (a) I would have kind of guessed that and
(b) this would be true tf either 190 or 2490 of families were childless.

If not means or medians. then we are left with the histogram. And that's fine: it tells you
pretty much everything vou need to know. Or you could have a table like this, from which you
could deduce not only that. for example. 7.4% of women have 4 children. but that 96.7° have
4 or tewer and 3.3% have more than 4,

Number of children in the family Percentage Cumulative percentage

0 5.3 33
! 22.0 275
2 422 69.7
3 19.6 89.3
4 7, 96.7
5 2.4 99 1
6 0.6 99.7
7 03 100

True, we have lost the sound bite, with neither the table nor the graph as punchy as “an aver-
age of 2.6 children.” And neither is likely to annoy my mother, which I see as a considerable
downside. But here, finally, is something vou could actually use.

* Things to Remember ¢

1. Statisticians sometimes calculate numbers from a data set, the mean and the standard
deviation being good examples.

2. These numbers often take values that don't occur on the data set.

3. Statisticians sometimes choose particular numbers from the data as being illustrative,
such as the median and quartiles.

4. Means, medians, standard deviations and interquartile ranges are used to describe vari-
ables that can take a large number of different values. These are known as continuous or
guantitative variables.

5. Variables are sometimes best described in terms of categories: sometimes means and
medians aren’t used and the statistician just gives the number and percentage in each
category.

-+ SEE ALSO: Numbers that mean something: Linking math and science
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Discussion

1. Does the median (or, sav. upper quartile) always
take a number that is part of the data set”?

2. 1 described a continuous variable as one that
can take “a lot of different values.”” How many
different values is “a lot?”

3. Here are some variables. Which of these are
continuous and which are categorical?

a. Height
b. Gender
¢. Years of education

d. Pain score

NOTE: Sce page |59 for answer sets.

e. Depression

f. Income

g. Race

h. Unemployment rate

Saying that an “average of 2.6 children is a
silly statistic™ allowed me to make some nice
teaching points about different types of data.
But as it happens, the “average” number of
chitdren that a woman bears over the course of
her tifetime is actually pretty useful. How do
you think that this statistic is used?
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CHAPTER 6

Why your high school math teacher
was right: How 1o draw a graph

YOU ARE
GETTING SLEEPY. ..
SLEEEEPY I

nother difference between normal people and statisticians: a normal
person might say. “High school . . . those were the happiest days of
my life.” Statisticians tend to be more particular in stating that it was
“high school math™ that made them happiest. As it happens. much of the math
Idid i high school is far more advanced than what 1 do in my day to day work.
(I don’t need caleulus on the average Tuesday morning.) But one thing 1

fearned really stuck with me how to draw a graph.

21



22 CHAPTER 6

What I was taught about graphs was that you have an x-axis and a y-axis and. to draw a line,
you state the value of y in terms of x, for examplc ©= 5y — 4.1 was also taught that you can
also put in other powers of x (e. = | 4x" — 5v — 4). Doing so allows you to have a curve,
rather than a straight line (thls 1S nalled a “non-linear™ telatmnshxp) The number of times this
curve can change direction is related to the number ot ditferent v terms lhdl you htm From left

to right. here are graphs for v = 5x — 4.y = [y = 5y = 4= 050 + T4 — Sy + 4
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What I also did in school was to have the x- and y-axis represent something, like shoe size
and height, and put a mark for each observation at the appropriate coordinate: for someone 5 ft
115 in. with a shoe size of 10" 5 (which may or not be me. I couldn’t possibly say), I'd draw an
ft
I1', in. and then put a dot where the two lines meet. I would then draw a line through the graph
so that the line comes closest to the dots representing each person’s height and shoe size.

imaginary line up from the x-axis at 10", and an imaginary line across from the y-axis at 3
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It turns out that this s just about all vou need to know for most graphs. This begs the question
of why good graphs are so few and far between in the scientific literature.
Here is a graph that is tairly typical of what you see in reports and papers:
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Headache days per 4 weeks
10
"

Control Acupuncture

This shows the results of a clinical trial of acupuncture for headache. The bars show the num-
ber of days with headache per month before treatment (dark gray) and atter treatment (light
gray). Or how about this, from a survey on the state lottery:
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This shows the number of survey respondents who played (dark gray bar) or did not play
(light gray bar) the lottery in the previous 12 months. separately for different ages.

Now. for those of you still awake. a short review of why those graphs are so bad: (a) they are
boring to look at. (b) they don’t give an immediate visual impression of the results and (¢} they
don’t provide information that anyone could actually use.

So. back to high school: let’s present the results on an v and 1 graph. Here are the results of
the acupuncture trial:
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10 15
it

Reduction in headache days per 4 weeks
5

Headache days per 4 weeks at baseline

The x-axis shows patients’ level of headache at the start of the trial; the y axis shows whether
they got better (a reduction of “+5" means that the patient had 5 fewer days with a headache at
the end of the trial than they had at the beginning). The gray diamonds show the results of each
patient in the acupuncture group; the black squares show the results of the patients in the control
group. In general, it looks as though, irrespective of baseline headache, the gray dots are higher
up the graph. This suggests a greater reduction in headache in the acupuncture group. I have also
shown a gray line drawn to come closest to all the gray diamonds and a black line drawn to come
closest to the black squares. These lines give the expected outcome of treatment: if a patient
went to a doctor and said, **I have a headache about 20 days a month.” The doctor could say, “A
year from now you would expect to have a reduction of about 3 days a month. If you have
acupuncture treatment, you should expect to have a reduction of 5 days a month.” Another nice
thing about this graph is that it shows the actual results of each patient in the trial. It's what
graphs are meant to do—show the data.

Here are the results from the lottery survey:
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The black line shows the proportion of survey participants playing the lottery in terms of age.
The thin grey lines show what 1s known as the 959 confidence interval. which reflect a plausible
range for the relationship between age and lottery plaving (see How to avoid a rainy wedding:
Variation and confidence). You can instantly see that voung and old play the lottery less than
those of middle age. with a peak around age 42, The nice thing about this graph is that it gives an
immediate visual impression of the data. The graph might, for example. be of interest to a psy-
chologist trying to understand gambling addiction.

A final point: have a look at the far left of the acupuncture graph. 1t looks as though acupunc-
ture actually makes things worse for patients who didn’t have many headaches at baseline. But
look agamn and you'll see that this 1y based on only a small number of patients. This is a reminder
that we have to be careful about applying average statistical results to patients at the extremes.
Then agan. at least you have something to apply other than a boring gray bar.

¢ Things to Remember ¢

1. Often in research, we want to understand one thing (such as playing the lottery) in terms
of another (such as age).

2. The thing we want to understand can be called y.

3. The thing we use to understand y is called x. So y might be lottery playing and x might
be age.

4. Drawing a graph of y and x, just like you did in high school, is a good way of understand-
ing the relationship between them.

5. You can mark a point at the x and y of each observation (this is called a scatterplot).
6. You can also draw a line or curve closest to each point,

7. You can use different colors for your points and lines to indicate different categories
(such as headache separately for patients who did and did not receive acupuncture).

Discussion

I, Can vou always draw a line?

NOTE: See page 162 for answer sets.
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Chutes and Ladders and serum
hemoglobin levels: Thoughts
oh the normal distribution

ONLY 33 MORE GAMES UNTIL WE
GET A NORMAL DISTRIBUTION!
< DAD, CAN WE DO G g

-J,.‘f e T ?
SOMETHING ELSE NOW? <
I'M BORED! g <A

ne of the great challenges of parenthood is how to lose games of
chance. How can I let my son win at Chutes and Ladders* (thereby
improving his self-esteem and decreasing family tension) without

cheating (which. as I understand it, would send the wrong message)? I can’t, of

course, but “just one more game™ does at least allow me to reflect on the nature

of statistical distributions.

*Chutes and Ladders 1s a trademark of Hasbro.
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Chutes and Ladders is a bit like a coin flip, in that there is exactly a 50:50 chance that I'll win
a game. So if you tell me that we are going to play a certain number of games, | can tell you the
probability of each possible combination of wins and losses. As an casy example. if' [ play two
games of Chutes and Ladders with my son. there is a 25% chance I'll lose both. a 50% chance that
we’ll each win one and a 25% chance that he’ll throw a hissy fit. | can show this as a bar chart. The
v-axis gives the probability that I'll win each particular number of games shown on the v-axis:

40
1

Probability (%)

20

10

() T T
0 1 2

Number of times | win

The math is a bit more complicated for four games but, as it turns out, there is a 37.5%
chance that we split it with two games each and a 6.25% chance of a total meltdown.

o
<

30

Probability (%)
20
i

10

r

0 1 2 3 4
Number of times | win

Something you might notice here is that this second graph is starting to look a little bit like
the bell-shaped curve of the normal distribution. Now let’s imagine a reallv wet weekend in
which we play 100 games of Chutes and Ladders:
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We now have something that is really very close to a normal distribution (the normal curve
is plotted over the histogram so you can see just how close it is). We also have something that
looks very much like many natural biological phenomena. As an example, the following graph
is the distribution of hemoglobin (a substance in the blood that carries oxygen) in a cohort of
Swedish men aged 35-50:
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If you concluded that the blood of middle-aged Swedes depended on games of Chutes and
Ladders. you wouldn't be far wrong. Like the outcome of a dice-throwing game. a man’s
hemoglobin level is the result of numerous chance events-—genes. environment, diet, lifestyle
and medical history-—all added together. For example. tmagine we look at just four things
that affect hemoglobin:

- oo B 4 A i
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Effect on hemoglobin

Has a gene for producing a lot of hemoglobin Increase
Just returned from a trip to the mountains Increase
Has been eating a poor diet lately Decrease
Recent illness Decrcase

If we assumed. for the sake of argument. that everyone has a 50:50 chance of each event and
that each leads to an increase or decrease by about the same amount. then a histogram of hemoglo-
bin levels would look very similar to the one showing the results of four games of Chutes and Lad-
ders. There are hundreds of influences on hemoglobin, not just these four and, as we saw in the
Chutes and Ladders data, when you add up a lot of chance events you get a normal distribution.
To a statistician, the normal distribution is a complicated formula including e, u, 7 and & all
raised to the power of each other. But the formula for the normal distribution is just a mathemati-
cal way of describing what you get when you sum up a large number of chance events.

One set of chance events that is of particular interest to statisticians is the results of experi-
ments. As an example, we'll use a psychology experiment investigating intluences on [Q test
scores in African Americans. In the experiment, groups of African American students take the
same exact 1Q test. Half are told that they are receiving a test of innate intelligence. For the other
half, however, 1Q isn’t mentioned at all—participants are just told that they are taking part in an
experiment to evaluate differences in problem-solving styles. Let’s say that, at the end of the
study, 15 of the 50 (30%) students in the “innate intelligence” group score at or above the
national US average compared to 25 of 50 (50%) of those in the “problem-solving” group—a
difference of 20%. This finding might be taken as evidence that apparently poorer 1Q scores in
certain racial groups result from test-related anxiety.

Now if [ repeated the experiment, we wouldn’t expect to get exactly the same result—we'd
expect some chance variation. For example, if the pass rates the second time around were 32%
and 48%, you'd probably say that I'd done a pretty good replication. The following graph shows
the results of the study if I'd repeated it 100.000 times and there was really no difference in scores
depending on what students were told about the test:
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We get the normal distribution for the results of the 1Q experiment because we are adding
up the result of a lot of chance events. Every student in the study has a certain chance of scor-
ing above average on the test, just as they have a certain chance of winning a game of Chutes
and Ladders. The number scoring above average. just like the number of times I win at Chutes
and Ladders, follows the normal distribution.

I drew the last graph to show the sort of results you would get 1f there was no effect on test
scores of telling students different things about the test. As you'd expect, the most commor result
is no difference between groups. But the graph shows that sometimes you get more people scor-
ing below average in the “problem-solving”™ group. just as sometimes my son will win more
games of Chutes and Ladders than I will. The shape of the graph is pretty close to the graph of
hemoglobin levels because, like hemoglobin (and the results of multiple games of Chutes and
Ladders), what we observe is the sum total of a large number of random events. By the same
token. you would also see a normal distribution if you plotted the results of multiple studies cal-
culating a mean—say, studies of the mean hair length of guys at parties (see Long hair: a stan-
dard ervor of the older maule).

The normal distribution—the sum of a lot of random events—can therefore be used to
describe both the natural variation that we observe in the world around us and the hypothetical
variation of research results. Moreover, the normal distribution applies whether our result i1s a .
difference, such as in test scores between individuals taking different types of 1Q test, or
whether we are making an estimate, such as mean male hair length. This means we can use the
mathematical formula for the normal distribution both to help describe data sets and to work
out whether our results are interesting. As you can see from the graph, a 20% difference
between groups—the data actually observed in the study—would be unusual if test perfor-
mance was unaffected by whether students were told they were taking part in an [Q test versus
a problem-solving experiment. Accordingly, we can be pretty confident that how IQ tests are
presented does indeed affect the test scores of African American students.

¢ Things to Remember ¢

1. The normal distribution is what you get when you add up a large number of random
events.

2. The normal distribution describes the variation of many natural phenomena, such as
hemoglobin levels.

3. The normal distribution also describes the variation in results of a study, were we to
repeat it many times.

*2* SEE ALSO: Long hair: A standard error of the older male; The probability of a dry toothbrush:
What is a p-value anyway?
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Discussion

1. Is the distribution of the results of a game of 2. Why doesn’t the graph of hemoglobin levels in
chance. such as Chutes and Ladders. really a the Swedish nmien follow a perfectly smooth
normal distribution? curve?

NOTE: Sce page 163 for answeor sets,
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[f the normal distribution is so hormal,
how come my data hever are®?
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ne of the first data sets I looked at when [ was first fearning statistics
had a number of missing observations. | was told that this was totally
normal. | also noticed that the data followed the bell-shaped curve of
the normal distribution. This, T was told. was not normal at all. One of my lectur-
ers became rather excited. commenting that. “They say 1t never happens. but
look - here 1s an example. Just goes to show that vou can get a normal curve.”
Now, I think what they were trving to tell me was that it wasn’t normal to get nor-

mal data. Indeed. non-normality seemed to be the norm. But | couldn’t be sure.

32
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With the benefit of hindsight, I can sce that what was behind my lecturer’s comment about
normal distributions being abnormal was that he was a brostatistician who studied medical data.
Normal distributions are quite common n nature but not so much in medical research. As an
example, here are some data | have been looking at recently. The following graph shows the dis-
tribution of prostate specific antigen (PSA) levels in men undergoing surgery tor prostate cancer,
In simple terms. PSA levels roughly correlate with the number of cancer cells. So the higher your
PSA. the more cancer you have (the correlation is only approximate because increases in PSA
can be caused by diseases other than cancer).
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And, just for the sake of it, here are data from a totally different area of medicine. These are
pain scores from patients with migraine headache:
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Both graphs look pretty similar to each other and pretty dissimilar to a normal distribution.
The simple explanation for what is going on here is that medical research typically involves
studying patients with some kind of disease. By definition, these populations are not normal;
they have presented for treatment exactly because they have something wrong. Perhaps this 1s
what was behind my professor’s comment about the rarity of normal distributions in medicine-—
you hardly ever see normal distributions in medicine because you hardly ever study the “normal”
population as a whole, only unusual subsets.

A more mathematical way of saying this is that whereas normal processes usually
involve addition (see Chutes and Ladders and serum hemoglobin levels: Thoughts on the
normal distribution), disease processes often involve multiplication. Cancer is a good exam-
ple. Cancer cells divide and grow and tumors therefore double in size every few months. In
the case of headache, a series of severe headaches leads to a number of changes—such as
increases in anxiety and muscle tension, or overuse of analgesics—that increase the risk,
and severity, of subsequent headaches. For example, I'll have one mild headache, you'll have
a severe headache and then another milder one as a result, so your headaches are exponen-
tially worse than mine.

If you want to convert a multiplication into an addition, you use logarithms. Take
10 X 100 = 1000; log(10) = 1,log(100) = 2 and log(1000) = 3,s0 log(10) + log(100) =
log(1000).

Let’s calculate the log of our headache and PSA data and see what we get. We'll do what sta-
tisticians usually do and take the “natural” log using the constant known as e for each person’s
headache score or PSA level. I've shown the curve for the normal distribution on each graph so
you can tell whether or not the data are close to being normally distributed.
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15

Percent
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L.og of headache score

These data look hike a pretty good approximation to the normal distribution. From this 1
would conclude that the rare of cancer growth is normally distributed in patients undergoing
surgery and that there is some normally-distributed tendency to headache in patients with
headache disorders.

This tllustrates a key aspect of statistics: statistics 1s about linking math to science. [ am a biosta-
tistictan involved in medical research, so what I do is link math to biology and medicine; economic
analysts ts about hinking math to human economic behavior; good use of statistics in psychology
links math to the human psyche. You might hear it said that the purpose of log transformation is to
“bring down high values™ or to “allow the use of parametric statistics.” But that is looking at num-
bers in reference only to other numbers. We use log transformation when we believe the underlying
process involves multiplication—the growth of cancer being an obvious example.

¢ Things to Remember ¢

1. Despite being called "normal,” you rarely see a normal distribution in some areas of
statistics.

2. Normal distributions are rare when the data come not from the whole population, but
from a special sample, such as medical patients.

The normal distribution results from the addition of numerous random events.
Many phenomena result from the multiplication of random events.
Logarithms change multiplication into addition.

oo~ W

Non-normal data can sometimes be converted to a normal distribution by using the log-
arithm of the data.

i+ SEE ALSO: Chutes and Ladders and serum hemoglobin levels: Thoughts on the normal
distribution, Numbers that mean something: Linking math to science
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1. Can you transform all skewed distributions to a
normal distribution by log transtformation?’

2. For enthusiastic students only: At one point |
said that log(10) = L. Later, I mentioned e. If
vou look at the graph of PSA values, you can
see that a PSA of 10 comes just after the peak

NOTE: Sce page 163 for answer sets.

representing the most common PSA level. If
you then look at the graph of log transtormed
PSA values, you can see that the most common
value ts around 2. So my log transformation
turned 10 mto a number slightly over 2. rather
than 1. Why?
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But [ like that sweater: What amount
of fitis a "‘good enhough” fit?

THESE PANTS
FIT GREAT!

ometime cach tull, we bring up the winter clothes from the basement
for our children to try o, Most clothes are immediately thrown into
one of three prles: comically small”™ “just about right™ and. for hand-
me-downs. sull oo bre ™ This Teaves us with a pile of clothes that either we
thik fitand the children don’t o Those vucky gloves are too small” savs my
daughtery or the children want to wear despite suffering something close to
compresston njury ¢ But ke that sweater.” savs my son). This all goes to
show thatcuntessos ndicalonsh obvious, whether something fits or not is a

udgment catl,
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One of the first things anyone learns about statistics 1s how the choice of mean or median
depends. at least in part. on whether the data follow the normal distribution. (Remember what
happens to the mean salary when Bill Gates walks into a diner? See So Bill Gates walks into u
dinery Later on, when vou come to hypothesis testing (see Choosing a route to cvele home: What
p-values do for us and the chapters that follow). you might learn that a choice between different
tests, such as the ¢ test or Wilcoxon also depend on how the data are distributed. Textbooks often
describe statistical analysis as a sort of two-step process: have a look at the data, test whether or
not it is close to a certain statistical distribution (such as the normal distribution), and then decide
how to analyze 1t (e.g., tf it 1s normal, use the 7 test, otherwise use the Wilcoxon). But you rarely
see this sort of analysis described by statisticians.

Statistictans don’t typically seem to worry too much about whether or not the data are a close
fit to the normal distribution because they realize that statistics 1sn’t football, and no one 1s going
to throw a flag and send you back 10 yards if you are caught breaking the rules. In fact, there
aren’t really many “rules” at all.

Here are some data that clearly don't fit the normal distribution. These data are typical for
tests of knowledge (e.g., about computers) or physical ability (e.g.. time to run a mile) converted
to a 0-100 scale. There 1s a peak at zero because a bunch of people know absolutely nothing
about computers (e.g.. they have never used them) or have some kind ot disability that prevents
them from completing the run. Then there are more very high achievers than you'd expect by
chance because some people choose to study English literature. or train as athletes. enhancing
their natural ability or knowledge. Since the data are non-normal, you can’t use any statistics that
assume the normal distribution—right?
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The table below compares estimates calculated using the mean (27) and standard deviation
(20.7) with those observed i the data set. For example. in a normal distribution the median and
the mean are the same. so we'd expect the median to be 27. However. it 1s 23, which isn’t too far
off. Most of the other estimates are pretty ¢lose and some are absolutely spot on—-exactly 93, of
the observations are within 1.96 standard deviations of the mean. Using means and standard
deviations only breaks down at the extremes. You can’t score less than zero and. as vou can see
from the histogram. there are more very high performers than expected.
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. Expected from the . Observed in
Estimate {  normal distribution . the data set
Median ‘ 27 23
Interquartile range : P30 41 w39
Proportion within 1.96 standard deviations ~ B
N 93%, 95%,
of the mean
Proportion within 1 standard des iation
~ p ‘ ‘ 68 07“ a
of the mean
Proportion within two-thirds of a standard 3
. . 50% 469
deviation of the mean
Proportion higher than 2.33 standard deviations o -

R
greater than the mean ! !
Proportion lower than 1.64 standard deviations ; ,

59 0%

below the mean

Clearly, sometimes the data are so skewed away from normal that using the normal approxi-
mation is clearly unsound (¢.g., when Bill Gates went into the diner, the mean salary became
$125m). And not everyone would agree that using the mean of 27 instead of the median of 23 is
“good enough.™ (What if 25 was the passing grade?) As a result, deciding whether the data fit a
distribution is perhaps as much of a judgment call as deciding whether last year’s winter jacket
fits a growing child.

* Things to Remember »

1. Many statistical procedures are based on the assumption that the data are normally
distributed.

2. These procedures include the use of the mean to describe a data set and hypothesis
tests such as the t test, but there are many others.

3. There are no clear rules for determining whether a data set is close enough to the nor-
mal distribution to make it reasonable to use statistical procedures that assume normal-
ity. Ultimately, it 1s a judgment call on whether the method provides a “good enough”
approximation.

*»* SEE ALSO: /f the normal distribution s 50 normal, how come my data never are?
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for
“Discussion

.......... D T T N

1. [Isn’t statistics meant to be very precise? Don't
we prefer =28.29%" to “about one in three?”

2. The histogram showing test scores 1s skewed to
the right. Why would that be?

3. It is generally said that "95% of observations
are within two standard deviations of the

NOTE: Sce page 166 for answer sets.

mean.” To calculate where 95%0 of the observa-
tons were for the table, I multiplied the stan-
dard deviation by 1.96 rather than 2. How

come?

Soenmieys e
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Long hair: A standard error
of the older male

SCME SAMPLES MAY GIVE
MEANS FAR FROM THE

\ ﬁﬂ“\ TRUE POPLLATION MEAN
3\ —

1

v hair 1s fonger than that of my statistician collcagues. This was
never much of an issue for me untl someone saggested that T was
having o mud-hife crists and asked when T would be buving the

sports car. So | thought about st for a biv and came up with the rdea that the

problem was with the other staustucians, not with me: o hair was of average
fength. it was ried hane thar was short, As it happened. [was ata party when |
had this Hash of mspreation and this provided me sonh an immediate opportu-
nity for data collecton. Twenty nunutes afier focatime ~ome scissors in the

kitehen. the host had asked me o feave, bat m the meantme. | did have harr
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samples from 46 men. The results are shown in the following histogram. Hair lengths are given
to the nearest centimeter. so, for example. 9 men at the party had hair less than 2 em long.

Number of party-goers

= 1 T T L4 | H T T T T

1 T T
1 3 5 7 9 11 13 15 17 19 21 23 25
Hair length (cm)

The mean of this data set is 7.5 cm and the standard deviation 5.34 cm. Federal privacy regu-
lations prevent me from identifying myself on this histogram, but I can tell you that my hair was
longer than most of the other guys at the party. I decided that I might have been unlucky and
resolved never to leave home without a pair of a scissors and measuring tape. When | got data
from the next party I found a mean of 9.1, slightly higher than at the first party. This isn’t
unusual; we don’t expect to get exactly the same results every time we run a study.

The results 1 got from the next five parties are shown in the table. You can think of this as a
new data set except that instead ot each observation corresponding to a person, each observation
corresponds to a study.

Party " Number of men at partyé Mean male hair length (cm) - Standard deviation
1 50 9.1 6.85
2 59 8.5 6.78
3 68 7.0 5.81
4 35 8.9 7.97
5 46 7.8 6.53

When [ plot the means | get the histogram on the far left. The histogram in the middle shows
the mean hair length recorded at 50 parties and the one on the right shows the results of a hard
vear of 300 parties. (Ok. L admit it. | didn’t go to 500 parties. [ simulated all this on a computer.)
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So if I repeat a study (e.g.. on male hair) many times. [ don’t always get exactly the same
results (e.g.. mean hair length); the results vary following a distribution that is typically pretty
close to the normal distribution (sece Chures and Ladders and serum hemoglobin levels:
Thoughts on the normal distribution). The mean and standard deviation of this distribution—
the distribution of our result. mean hair length. from numerous studies—can be calculated. The
mean (7.8 cm) is pretty typical of the results in the table. but the standard deviation (0.82 ¢m) is
quite a bit smaller. You can see this by comparing the figure on page 42 with the figure at the
top right of page 43. This makes sense—vou may well find one guy with a buzz cut or a pony
tail at a party. but it would be odd if you went to a party (in New York anyway) and found that
everyone was bald or. alternatively. looked like a rock star from the 1970%. (If you don’t know
what [ mean. just Google “Frampton comes alive.”)

The histograms above show variation. but they are two very different types of variation. One
is natural variation that you can actually see. Go to a party and vou can directly observe the
length of everyone’s hair—the guy with the hipster glasses has gone for something short-ish, the
Jock’s head is practically shining and the biker dude could definitely do with a trim. The other is
theoretical variation of study means that youd see were you to repeat a study a large number of
times. Of course, this would be a pretty silly thing to do—1 am currently working on a cancer
study that included over 22,000 men followed for about 30 years, and I am hardly going to run
that study multiple times just to sce what happens.

The point about the theoretical variation is that you can calculate what it would be using
formulas developed by statisticians. The statistic that is used to describe this variation is the
standard error. The formula for the standard error of a mean is the standard deviation divided
by the square root of the sample size. The standard deviation of hair length at the first party
was 5.34 cm. When you divide this by the square root of the number of guys at the party (46),
you get 0.79 ¢cm. This is around what we got for the standard deviation of the means of the
repeated studies reported above (0.82 ¢m). So. a standard error is the same as the standard
deviation of the results (¢.¢.. means) of repeated studies.

There are also formulas for the standard error of other statistics. such as proportions. For exam-
ple. if we had asked the 46 guys at the party whether they had cut their hair in the last 6 weeks and
23 said that they had. we can calculate the standard error for 507 ot 46 as 0.074. When | simulated
500 parties. | got the following figure, which has a standard deviation of 0.070-- pretty close to
what we expect.
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Number of parties
30 40 50
1 1 i
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Proportion with recent haircut (%)

The histogram above actually couldn’t be more fundamental to statistics. Remember that the
data for each study don’t follow the normal distribution. Instead of a smooth curve, you get a
clump at 0 (didn’t cut hair recently) and a clump at | (recent haircut), like this:

Number of party-goers
20

No Yes
Recent haircut

Yet a plot of the results of the study repeated multiple times gives a normal distribution (1.e.,
the figure at the top of the page). This is also true for the hair length example. The histogram of
individual guys hair length is skewed, with a few guys having hair much longer than average
(I'll take my Fifth Amendment rights against self-incrimination.), but the histogram showing
the mean hair length of repeated studies approximates to the normal. As a result, we can often
use the normal distribution to calculate statistics even if the data are not themselves normally
distributed.
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* Things to Remember ¢

1. There are two sorts of variation
a. One is natural variation that can be observed (such as hair lengthy).

b. The other is the variation of study results, when a study is repeated (which we don't
often do).

2. Standard deviation is used to describe the natural variation of something you can
measure.

3. Standard error is used to describe the variation of study results—a statistic such as a
mean or proportion calculated from study data—imagining hypothetically you were to
repeat a study many times.

4. The variation of study results often follows a normal distribution, even if the data from
each individual study are non-normal.

5. If you drink at a party, don't drive.

s+ SEEALSO: How to avoid a rainy wedding: Variation and confidence intervals

“Discussion

---------------------------------------------------------------------------------------------------

1. What I am describing as a “study’ here is when data (hair length at one party) to inform my
I go to a single party and measure the hair study aim (hair length of American men)?
length of every guy. The aim of the study is to
estimate the typical hair length of American
men. What must [ assume in order to use my

2. What has statistics got to do with parties?

NOTE: See page 167 for answer sets.
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How to avoid a rainy wedding: Variation

ahd confidence intervalg

DIFFICULT TO SAY.

THERE IS A LOT OF
VARIATION: THE

REFERENCE RANGE [EL
15 VERY WIDE.

SO CAN YOU
COME FOR A
SLEEP OVER?

PARENTS' MOOD
4. o P i
,d
7>
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) 5"9" t'y“ o ‘,,b"‘ xy" ‘0‘6’* g st
A #5 o 9

Rain in Canta Monica®

he weather in August in Santa Monica. California, hardly varies: it is

always warm and sunny and rarely rains. August weather in London,

where | grew up. is more variable and it often rains. sometimes for

days at a time. This is why, when [ got married in Santa Monica. [ was panick-

ing about putting up a tent to keep the rain oft and my wife wasn’t worried

about anything. Confidence. it seems. is the opposite of variation: the more
something varies. the less confident we are about what it is going to be.

Here is another example: my friend Jennifer is (almost) always in a good

mood. so ask me. “How's Jennifer?” and I'll be pretty confident when [ tell you

that she's doing well. Another friend of mine (who shall remain nameless). 1s a
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lot of fun but moody—-very moody. Ask me. “"How's [name deleted]?” and the only reasonable
answer 1s, "l haven't a clue” Again. more variation cquals less confidence.

Making guesses about an individual

A game to play when your statistics lecturer hasn't shown up and you are out of things to do:
try to guess whether the next student coming through the door is overweight. To keep things
simple, we'll assume that we know that the student is male. but not an athlete (hence excluding
the 300 Ib offensive lineman). We'll also imagine that our task is to guess body mass index
(BMI), which is weight in kilograms divided by the square of height in meters.

Now here is a bit of statistical information to help vour guess. In a study of about 100 non-
athlete male students at your university. the mean BMI was 26.0 and the standard deviation was
3.9. So if you had to guess the BMI of the guy just outside the door, your “best guess” would be
26.0. In fact, this is pretty much the definition of "average™—what vou'd guess if you had to. But
what if [ asked you how confident you are that they have a BMI of exacrh 26.07 Your answer
should be “not very”. Indeed, assuming that BMI is rounded to a single decimal place, it is pos-
sible to calculate that only about 1% of male non-athlete students have a BMI of exactly 26.0.

Your alternative to guessing 26.0 would be to say something like, =1 guess that his BMI is
somewhere between 22 and 30.” How confident should you be in this answer? Well, 22 and 30
are about a standard deviation from the mean. and we know two-thirds of the data set are within
a standard deviation of the mean. so you could say that you would be right roughly two-thirds of
the time. If you guessed “between 18 and 34"—two standard deviations of the mean—about 95%
of your guesses would be correct.

Making guesses about the results of a study

Let’s try to do the same with the results of studies. The reason why your statistics teacher is late
1s because she is finalizing the analysis of BMI in 100 non-athlete males. What will she
announce as the mean? Again, your best guess would be 26.0. but again you know that results of
studies can vary. You also know that variation makes you less confident in your answer so. again,
you'd rather give a range. But this time we aren’t worried about how BMI varies between differ-
ent individuals (the sickly-looking goth or the junk-food-addicted football fan) but how the mean
BMI varies between studies (by chance. we end up sampling too many goths). So we want to
think about standard error rather than standard deviation (see Long hair: A stundurd error of the
older male). The standard error of our study is the standard deviation divided by the square root
of the sample size. which gives 0.39. Our rule of thumb is that 95°;, of the results of a study (such
as a mean) will be within two standard errors of the mean. so if we guessed that the results of the
lecturer's study would be between 25.2 and 26.8 we'd have a pretty good chance of being right.

Confidence intervals and reference ra hges

For reasons that are somewhat obscure. the range we give for values for an individual is called a
reference range. the range we give for results of study is called a confidence interval. A refor-
ence range is often used by doctors. For example. if fevels of something vou measure in the
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blood. such as white blood cells, are outside the reference range, the doctor concludes that the
patient’s white blood cell count is unusual and would consider some additional tests to see what
might be wrong.

A confidence interval is useful tor interpreting the results of a study. For example. imagine
that we were looking at a study of whether a “mentoring” program aftected Scholastic Aptitude
Test (SAT) scores. We read that mentoring was associated with an increase in SAT scores by 4
points. with a 93% confidence interval of =2 to 10 (contidence intervals are almost always 95%
confidence intervals). An obvious point is that it is plausible that mentoring actually makes
things worse (an increase in SAT scores of =2 means a 2 point decrease n scores). So we cer-
tainly wouldn't recommend that schools start to implement mentoring programs. But we might
also recommend that no more studies should be conducted on this particular mentoring
approach. Our confidence interval tells us that it isn’t likely that mentoring improves SAT scores
by more than 10 points, which is a small level of benefit for a test scored out of 1600—certainly
not enough benefit to start a whole new school program. On the other hand, if the confidence
interval was to 54 we might conclude that, although we don’t have clear evidence that the men-
toring is effective, it might be. and further research should be considered.

If confidence intervals are so great, why should
| (sometimes) ignore them?

A student of mine told me that if he had learned anything in my class, it was about the impor-
tance of confidence intervals. (As he put it, “You pounded it into me.”) | felt a little bad about this
because many of the confidence intervals | see in scientitic papers are nonsense. As an example.
| once read a study about men undergoing surgery for prostate cancer. The point of the study was
to find out whether complication rates differed between the usual surgery, where the surgeon
makes a big cut in the patient’s abdomen (“open™ surgery) and “keyhole surgery,” which is when
the surgeon conducts the operation using a special tube placed through a small hole in the
patient’s body (the “laparoscopic™ approach). The authors reported that the mean age in the open
group was 61 years, which is kind of useful to know. But they also reported a 95% confidence
interval around this estimate of 60 to 62. What this tells us. roughly speaking, 1s the true mean
age of patients undergoing open surgery for prostate cancer might not be exactly 61 but Is
unlikely to be much more than a year cither side.

But | wasn't reading the study to find out the true mean age of the prostate cancer patients
voing for surgery— what | wanted to know concerned the relative complication rates. The authors
reported that 2% of patients undergoing open surgery compared to 370 of those undergoing
laparoscopy experienced a certain complication, a difference of 174, They also reported a 95%
confidence interval of —2% to 4%0. What I can conclude is that the complication 1s rare and is
unlikely to differ much between the different types of surgery (surgeons wouldn't consider 3 or
49 an important difference). For a different complication (which is fortunately less serious).
rates were 300 in each group. a difference of 0%o. with a 95%0 confidence mterval of —9% to
994, Now a surgeon would tell vou that a difference in complication rates of close to 10% would
be a big deal. o this means we can’t rule out that open and laparoscopic surgery might have
important differences in the rate ot this compheation.

On the other hand, it | was told that the chance of ram in Santa Monica m August was 2%, 1'd
be interested in the contidence interval around that rather than the confidence mterval around the
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ditference in weather between Santa Monica and London. This is because I'd already chosen to
get married in Santa Monica. and I wanted to know the chance of having a rainy wedding. not the
chance I'd made a poor decision.

This gives us a pretty casy rule of thumb: work out what it is you want to know from a study
and then caleulate a confidence interval around that. You might say that the indiscriminant use of
confidence intervals in scientitic papers is because the authors don't have a firm idea of what it
is that they want to find out. And you might be right—1 couldn’t possibly comment.

* Things to Remember ¢

—

If we take a sample of individuals, 95% will have values within 2 standard deviations of
the mean. This is called the reference range.

2. If we repeated a study a large number of times, 95% of the estimates—the mean
BMI of students, or the difference in proportions between two types of surgery—would
be within 2 standard errors of the true mean: this is called the confidence interval.

3. 95% of 95% confidence intervals will include the true value of an estimate. The true
value of an estimate is called a parameter.

4. Reference ranges are only used for some very specific purposes, such as identifying
patients with blood values suggestive of disease. As such, reference ranges are not usu-
ally reported in scientific papers.

5. Confidence intervals are a useful way of thinking what the results of a study might plau-
sibly be, were you to repeat it.

6. It didn't rain at my wedding.

«:* SEE ALSO: Statistical ties, and why you shouldn't wear one: More on confidence intervals

1. When we were trying to guess the body mass 2. When talking about the results of the lecturer's

index of the student. | stated that 95% of the study on body mass index. [ said that “95%;, of
individual observations would be within about study results——the mean BMI—will be within
two standard deviations of the mean. I said two standard errors of the mean.” What is the
something similar about reference ranges in the mean here? What is the standard error?
“Things to Remember.”” What is my assumption

here?

NOTE: Sce page 168 for answer sets,
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Ctatistical ties, and why you shouldnt
wear one: More on confidence intervals

STATISTICALLY SPEAKING,
THAT LOOKED LIKE A TIE.

f I were to say the word “statistician™ followed by the word “tie,” you'd prob-
ably think of something brown and nylon. Or maybe gray. Either way. this 18
probably not the meaning intended when opinion pollsters tell you that two
political candidates are “in a statistical tie.”” As it happens though. the concept of
a “statistical tie™ is an interesting way of looking at confidence intervals.
Having nothing better to do. one morning last fall I went out and asked
1000 people who they would vote for in the forthcoming election for the Sen-
ate: 483 respondents favored the Republican candidate and 516 favored the
Democrat. (One guy said that he would be voting for a small. green alien from
the planet Murg on the basis of intergalactic messages picked up through metal
fillings in his teeth.) Let’s say that T went for lunch and then polled another
1000 in the afternoon. Now we wouldn’t expect to get precisely the same

results. Indeed. it found that exactly 483 of my afternoon sample were voting

50
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Republican I'd probably be somewhat surprised. On the other hand, 1'd probably also be surprised
if results were very different. It say. my afternoon revedled 100, support for cach of the two
major party candidates with 802, pulling for the alien. I'd conclude that I'd missed something on
the news. (Or. alternatively. that I needed a new dentist.)

Mostofus have a pretty good idea of what we would consider a surprising result for the after-
noon poll. For example, 32 Democratic support seems reasonable and 40% does not. We can
quantify what would be a surprising™ result by caleulating a confidence interval,

As an illustration, I used a computer to simulate the results of my polls if the true level of
Republican and Democratic support was tied at 5090 cach (we'll leave the Murgians aside for
now). The following histogram shows the results of 100,000 simulations——in other words. the
results I would get it ] conducted my poll 100.000 times:
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You can see from this graph that it wouldn't be that unusual to get the data [ observed —51.6%
pulling for the Democrat—if in fact the contest was 50:50. This is what pollsters mean by saying
that the results of the survey are a “statistical tic™ the results wouldn’t be unusual if the true result
were a tie,

Here is something eclse the opinion pollsters say. ~We surveyed 1000 people and the
results have a margin of error of plus or minus 3 percentage points.” Now if you look at the
graph. you can see that very few of my simulations had Democratic support at less than 47%
or greater than 53%. In fact. Y3% of the simulations have Democratic support between 479
and 53%. What the pollsters call a margin of erroris similar o what statisticians call a confi-
dence interval.

Back to those ties. Lets imagine that the true proportion of Democratic voters was indeed
exactly 31.6%,. We'd been absolutely correct that the Democrat was gomg to win, and had gotten
the winning margin spot on. However. the pollsters had declared our results a tie. To think
through what is going on. here is a histogram ot the results of 100,000 simulations with the
Democrat on 51.6%:
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Part of the problem is that “a margin of error of 3" is generally interpreted as “the true
result is somewhere from 3% more to 3% less. we have no idea where.” But as you can see from
the graph. results close to the true result (51.6%) are more common than results that are 3% too
high. The “true result” is what statisticians call a parameter. To put it another way, estimates close
to the parameter are more common than estimates farther away.

Results with the Democrat on less than 50% are not uncommon. but most of the results do
favor the Democrat. If you had to put money on it, vou should back the Democrat. The confl-
dence interval tells you that it isn't perhaps as sure a bet as vou'd like but it certainly isn’ta tic.

* Things to Remember ¢

1. You may hear the results of opinion polls described in terms of a margin of error. This is

a concept similar to the confidence interval.

2. The idea of a margin of error makes it sound as though the true result could be
absolutely anywhere within the confidence interval. In fact, it is more likely to be nearer
the middle of the confidence interval than at either extreme.

3. A “statistical tie” means that the confidence interval includes no difference.

4. Put (2) and (3) together and you realize that a “statistical tie” doesn’'t mean, “| have no

idea, might as well flip a coin”

5 | would like to state for the record that | do not own a brown tie (or a gray one).

«v+ SEE ALSO: Avoid the sales: Statistics to help make decisions




CHAPTER 12 53

Discussion

L. Largued that, if we had o bet on it we should 2. Opinion pollsters for political races typically

put money on the Democrat even though the survey around 1000 people. but they don’t go
confidence interval for the poll included the out in the morning and ask the first 1000 peo-
possibility that the Republican would win. ple they meet. What do they do?

Does this mean that we should just abandon
contidence mtervals then and go with whatever
Tooks best?

NOTE: Sce page 16Y tor ansier seis,
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Choosing a route to cycle home:
What p-values do for us

NG

T
P

SEE YA!

ou have probably heard of the p-value. In fact. a common view is that

the whole point of statistics is to produce p-values: those less than 0.05

are “statistically significant™ and a good thing that makes everyone very

happy. whereas “non-significant”™ p-values above 0.03 are bad and a source of
shame. This begs the question of what p-values should actually be used for.

Going home each night I have a choice between cveling down a busy road

or winding through the beautiful backstreets of brownstone Brooklyn. Being a

statistician who thinks of nothing all day but interence and estimation. | have

recorded how long cach route takes me on a number of occastons and calcu-

lated means and standard deviations. Tmagime that. one dave T had to get
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home as soon as possible for an appointment. To choose a route. | conduct a statistical analysis
of my travel ime data. It turns out that the busy road is quicker, but the ditference between
routes is not statistically signiticant (p = 0.4). Nonetheless. it would still seem sensible to
take what is likelv to be the quicker route home. even though Fhaven't shown convincingly that
it will get me there tastest.

Now lets imagine that this meident got me fired up and | spend two years randomly selecting
a route home and recording times. When [ finally analyze the data. | find strong evidence that
going home via the busy road is faster (p = 0.001). but not by much (it suves me 37 seconds on
average). So | decide that, unless T am in a real rush, I'll wind along the backstreets simply
because itis a more pleasant journey and well worth the extra minute.

We tend to think that p-valtues should determine our actions. For example. it a drug company
conducts a clintcal trial of a new drug. we tend to say, “p =~ 0.05 means use the drug: p = 0.03
means don’t use the drug.” Yet the bicyele example shows the opposite—I chose the busy road
when powas 0.4 but not when powas 0.001. This suggests we need to think a little harder about
what p-values tell us and how we should use them.

The most important thing to remember about p-values is that they are used to test hypotheses.
This sounds obvious. but it is all too easilv forgotten. Here are two examples (which are good
ones. so Pl return to them). The first example is that vou sometimes see scientific papers listing
over 100 p-values. It generally isn't the case that the mvestigators really wanted to test that many
hypotheses--they just got into the swing of things and Kept asking their statistical software to
spit out another p-value.

The second example goes back to clinical trials. In a trial of 4 new drug, whether a patient
gets the drug or a placebo is determined at random-—-a bit like flipping a coin. This is called a
randomized trial. The idea is that the patients getting the drug start off being similar to the
patients on placebo, so any differences at the end of the trial can then be attributed to the drug.
Flipping a coin to determine who gets the drug and who gets placebo makes it likely that you'lt
get similar numbers of. say, older people or women in each group. However, it doesn’t provide
any guarantees, so what a lot of researchers then do is run a check to see that everything balanced
out by calculating a p-value for. say. the difference in average age between groups. This sounds
sort of reasonable., but it actually makes no sense at all. The hypothesis being tested here is
whether any apparent ditferences in age are simply due to chance or whether in fact one group 1s
truly older than the other. But this is a randomized trial and we flipped a coin to determine who
ended up in which group. So we Anow that any differences in age are due to chance. Anyone
reporting a p-value for a baseline difference between groups in a randomized trial. and conclud-
ing that there were or were not “significant™ differences for things like age or gender, has obvi-
ously forgotten that what we use p-values for is to test hvpotheses.

[t s also worth remembering that p-values are about testing hypotheses because. in many
cases, this is not what we want to do at all. When I had to get home in a rush, T wasn't inter-
ested m knowmg for sure which was the quickest way home. [ just needed to work out what
route was likely to get me to my appointment on time. Moreover. even when we do want to test
hypotheses. our conclusion is a necessary but not a sutticient cuide to action. I eventually pro-
vided strong evidence that using the busy road was quickest but decided to choose a ditferent
route on the basis of considerations- pleasure and quality of Tife -that formed no part of the
hy pothesis test.
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¢ Things to Remember ¢

1. P-values test hypotheses.
2. That's it for this chapter.

i+ SEE ALSO: The probability of a dry toothbrush: What is a p-value anyway?

“Discussion

1. | stated that I “provided strong evidence that
using the busy road was quickest.” Why didn’t
b just say that I'd proved it?

2. We normally think that a big difterence
between groups means a small p-value. But |
found a very small p-value (p = 0.001) even

NOTE: Sce page 171 tor answer sets,

3.

though the difference in travel times between
the two different routes home was trivial. How
come”

I statistics is not just about testing hypotheses.
what else can you use statistics for?
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The probability of a dry toothbrush:
~ What is a p-value anyway?

have a party trick: when | tell someone what I do. and they say. “statis-

tician. ¢h? I took statistics in college” [ ask them to define the p-value.

(I know what you're thinking-—not much of a trick. I'm working on
some other stuff.) The point is, I have yet to meet anyone who has got any-
where close to the right answer. This is pretty odd because the p-vatue is such
a key idea in statistics. Imagine if a literature graduate didn’t know whether
Shakespeare wrote plays or novels. or someone who'd taken an economics
course couldn’t describe the relationship between supply and demand. So. if you
do nothing else. please trv to remember the following sentence: “The p-value is
the probability that the data would be at [east as extreme as those observed. if the
null hypothesis were true.” Though 1'd prefer that vou also understood it about

which. teeth brushing.

57
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| have three young children. In the evening. before we get to bedtime stories (bedtime
stories being a nice way to end the day). we have to persuade them all to bathe, use the toilet,
clean their teeth, change into pajamas, get their clothes ready for the next day and then actu-
ally get into bed (the persuading part being a nice way to go crazy). My five-year-old can
often be found sitting on his bed, fully dressed. claiming to have clean teeth. The give-away
is the bone dry toothbrush: he says that he has brushed his teeth, I tell him that he couldn’t
have.

My reasoning here goes like this: the toothbrush is dry: it is unlikely that the toothbrush
would be dry if my son had cleaned his teeth: therefore he hasn’t cleaned his teeth. Or using
statistician-speak: here are the data (a dry toothbrush); here is a hypothesis (my son has
cleaned his teeth); the data would be unusual if the hypothesis were true, therefore we should
reject the hypothesis.

Statistical analysis of a set of data follows a very similar principle—you want to know the
probability of the data if the null hypothesis were true. As an example, there was an idea a few
vears back that young people who had broken the law should be given tours around prisons to
show them just how awful their lives would be if they didn’t start behaving (that is, they would be
“scared straight™). Some social science researchers decided to run an experiment in which young
offenders were randomly chosen either to be scared straight or to be treated as usual in the crim-
inal justice system (the control group). Here are some typical data from one of these expen-
ments. 12 of 28 (43%) in the scared straight group committed a new crime compared to 5 of 30
(17%) in the control group.

It looks as though trying to scare teenagers makes things worse, though it could be that the
study results were bad luck (in the same way that, by chance, you might beat me handily at
Chutes and Ladders). To analyze the data statistically, we first write down a null hypothesis
(which roughly speaking is that nothing interesting is going on). So our null hypothesis could be
something like: “The chance of committing a crime after a first arrest is the same in teenagers
going through scared straight as those going through the usual criminal justice procedures.”
Next, we conduct a statistical test and get p = 0.043. As the p-value is less than 5%, we call our
result statistically significant, reject our null hypothesis and conclude that scared straight truly
does make things worse.

Now, the p-value of (0.043 isn't quite the probability that, if there was no effect of scared
straight, we would see exactly 12 of 28 committing new crimes in the scared straight group and
exactly 5 of 30 in controls. This is because we also want to take into account the possibility that
the results could have been reversed (that is, more crimes in controls) or might have shown an
even bigger ditference between groups (e.g.. 100% crime rate after scared straight and 0% in
controls). In both of these cases we would have rejected our null hypothesis.

Essentially what we do to get the p-value 1s to write down every possible result of the study
(14 of 28 committing crimes in scared straight and 15 of 30 in controls, | of 28 crimes in scared
straight, 29 of 30 in controls, 24 of 28 and 6 of 30, etc.). We then work out the probability of each
result if the null hypothesis were true (e.g.. a result like | of 28 crimes in scared straight vs. 29 of
30 in controls would be very unlikely if the arrest rate was truly the same in each group). Finally,
to get the actual p-value, we add up the probabilities of all results that are at least as unlikely as
the one we got.

We can also show this on a histogram. The v-axis gives the difference in arrest rates between
the control and scared straight groups and the v-axis gives the probability ot each possible result
it the null hypothesis were true.
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As you'd expect. the most common result if the null hypothesis were true is that there is no dit-
ference between groups. though small differences are also pretty common. Very large differences
between the groups are extremely rare: the probability of a 1002 difference— all controls being
arrested and no scared straight arrests— is less than 1 in 10" if the null hypothesis were true (not
far from the chance ot correctly identifying a randomly chosen grain of sand from all the beaches
in the world). The ditference we observed in the study was 26% and the shaded areas show results
at least as extreme as this. If you add up all the shaded arcas. what you get is the probability of get-
ting a difterence of 26% or more if the null hypothesis were true. This is the p-value: .043.

So here is what to parrot when we run into each other at a bar and I still haven't managed to
work out any new party tricks: “The p-value is the probability that the data would be at least as
extreme as those observed. if the null hypothesis were true.” When | recover from shock., you can
explain it to me in terms of a toothbrush (“The probability of the toothbrush being dry if you've
just cleaned your teeth™).

* Things to Remember ¢

Inference statistics involves testing a hypothesis, specifically, a null hypothesis.

2. A null hypothesis is a statement suggesting that nothing interesting is going on, for
example, that there is no difference between the observed data and what was
expected, or no difference between two groups.

3. The p-value is the probability that the data would be at least as extreme as those
observed if the null hypothesis were true.

4. If the data would be unlikely if the null hypothesis were true, we conclude that the null
hypothesis is not true.

5. My son has now worked out my trick and has taken to running his toothbrush under the
tap for a second or two before heading to bed.

-1+ SEEALSO: Croosing 4 route to cvele home. What o-values do for us
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§
SCUSsSion
Why do we say the probability of the data
under the null hypothesis? Wouldn't it be more
interesting to know the probability of the
hypothesis given the data?
Here are some research questions. (ive an
example of the null hypothesis for each of these:
a. Does compulsory job retraining attect
long-term unemployment?
b. Do African American males have a harder
time than white males hailing a taxi in New
York City?

NOTE: See page 172 for answer sets.

P I T T I e S I T

Nationwide. about 28 of births are via
Cesarcan delivery. Do hospitals in New
York State have higher than average
Cesarcan rates’!

Do after-school programs increase student
participation in art, music, drama or dance
activities”?

Do patients taking a new, less toxic type of
chemotherapy have response rates at least
as good as those on the standard (and
unpleasant) chemotherapy drug?
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Michael Jordan won't accept
the null hypothesis: How to interpret
high p-values

STATISTICALLY
SIGNIFICANT
DIFFERENCE
BETWEEN LIS}

Patl,” smbnse. G

o finally. after many hours ot packing and loading. the bags are in the
car. the children in their booster seats. the snack bag in ecasy reach,

cveryone s buckled in and myv hand is on the tgnition kev. At which
point my wife asks. "Where is the camera™ Being a statistician, [ instantly

comvert this guestion into two hypotheses: “the camera is in the car” and “the
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camera is still in the house.” Given that it is casier to pop back inside the house than to unload the
car. | decide to test the second hypothesis. A few minutes later. I tell my wife that | have looked in
all the normal places inside and couldn’t find the camera. We conclude that it must be in the car
somewhere™ and head oft on our road-trip.

There is something a little odd behind this story: we concluded one thing (that the camera
was In the car) because we couldn’t find evidence to support something else (the camera was
in the house). But as it happens. this is exactly what we do when we conduct a statistical test.
First. we propose a null hypothesis, roughly speaking, that nothing interesting 1s going on (sec
The probuability of a dry toothbrush: What is a p-value anyway?). We then run our statistical
analyses to obtain a p-value. The p-value is the probability that the data would be at least as
extreme as those observed, if the null hypothesis were true, so if the p-value is low (say, less
than 0.05) we say. “These data would be unlikely if the null hypothesis were true. therefore it
probably isn't.” As a result, we declare our result “statistically significant.” reject the null
hypothesis and conclude that we do indeed have an interesting phenomenon on our hands.

As a simple example, we might have a null hypothesis that girls and boys learn handwriting
at the same rate, and a data set of handwriting test scores divided by gender. A statistically sigmif-
icant p-value would lead us to reject this null hypothesis and conclude that there are differences
in handwnting at an early age.

What we do if p is greater than 0.05 is a little more complicated. The other day | shot bas-
kets with Michael Jordan. (Remember that [ am a statistician and never make things up.) He
shot 7 straight free throws, L hit 3 and missed 4 and then (being a statistician) rushed to the side-
line, grabbed my laptop and calculated a p-value ot 0.07 for the null hypothesis that I shoot bas-
kets as well he does. Now, you wouldn’t take this p-value to suggest that there 1s no difference
between my basketball skills and those of Michael Jordan—you'd probably say something like
our experiment hadn’t proved a difference.

Yet a good number of otherwise smart people come to exactly the opposite conclusion when
interpreting the results of statistical tests. Just betore I started writing this book, a study was
published reporting about a 10% lower rate of breast cancer in women who were advised to eat
fess fat. If this is indeed the true difference, low fat diets could reduce the incidence of breast
cancer by tens of thousands of women each year—astonishing health benefit for something as
simple and inexpensive as cutting down on fatty foods. The p-value for the difference in cancer
rates was 0.07 and here is the key point: this was widely misinterpreted as indicating that low
fat diets don’t work. For example, the New York Times editorial page trumpeted that “low fat
diets flub a test” and claimed that the study provided “strong evidence that the war against all
fats was mostly in vain.” However, failure to prove that a treatment is effective is not the same
as proving it ineffective. This is what statisticians call “accepting the null hypothesis™ and,
unless you accept that a British-born statistician got game with Michael Jordan. 1t s something
vou'll want to avoid.
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* Things to Remember ¢

1. Testing a hypothesis (“inference"” statistics) consists of the following steps:

a. Specify a null hypothesis.

b. Apply a statistical test to the data to obtain a p-value.
c. If the p-value is less than 0.05 (“statistically significant”), reject the null hypothesis.
d. If the p-value is 0.05 or more, don't reject the null hypothesis.

2. Don't accept the null hypothesis. If the p-value is high, 0.05 or greater, you can't say, for

example:

a. There is no difference between girls' and boys’ handwriting.
b. Job training doesn’t improve productivity.
¢. Andrew Vickers could have taken the Chicago Bulls to six NBA titles.

,;}55»

“Discussion

1.

When discussing statistical significance, [ have
repeatedly described p-values less than 0.05 as
“statistically significant” and p-values of 0.05 or
more as “not statistically significant.” Is it true
that a p-value of 0.049999 is always statistically
significant and that a p-value of 0.050001 is
never statistically significant?

NOTE: See page 174 for answer sets,

2.

Why do you think that my experiment with
Michael Jordan resulted in a non-significant
p-value?

What should we conclude about the effects of a
low fat diet on breast cancer?

What is the connection between a criminal trial
and a p-value?
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The difference between sports
and business: Thoughts on the 7 test
and the Wilcoxon test

: RIGHT. 90 THAT'S
;’ 6-1. 6L AND 6-0,
A P
=

ISTILL CAME
IN SECOND.

Cports is 1o business as Wilcoxon is to  test
I am sure vou can track down some post-deconstructionist who'it tell vou

that sports is business by other meuans. (Or maybe the other way around.)
But here’s how 1 ook at it in sports. rank matters: in business. amount
matters. I sports you want to come Firsto 1 business, vou want to make a lot

of money. The Mets might have a mediocere season. ending only o few games
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over .500. but if they are first in their division they'll go to the playotts— end of story. The own-
ers of the McAllister Towing and Transportation Company don’t really care whether they are the
most profitable tugboat operation in the New York area—they just want to make a profit and it
will hopefully be more than a few dollars past breaking even.

As regards statistics. the Wilcoxon is like sports and the 7 test is like business. Here is how
a Wilcoxon test works: vou compare whether ranks are higher in one group than the other.
Here 1s how a 7 test works: you compare whether the mean is higher in one group than the other
group.

Analysis of a sports experiment

In the Tour de France. cach team is accompanied by a soigneur, or “healer.” whose job is to give
massages to help the cyclists recover from each day’s ride. Imagine that you are the coach of the
Columbia University cycling team and that your team has picked up a volunteer soignewr from a
local massage school. This seemed like a good 1dea at first, but you are now rather tired of the
soigneur mterrupting training to discuss mystical energy flow and you want to find out for sure
whether massage actually helps. So vou run the following experiment: on Sunday, your team
takes part in a 50 mile race. That afternoon, you randomly select half of your team to get a mas-
sage. On Monday, you send everyone for a time trial. You then look at the time trial data to
address the null hypothesis that the cyclists receiving the massage were no quicker than those
who did not receive a massage.

Here arc the results, with the times given as minutes:seconds:

Massage group Control group

51:35.1 48:49.9
53:39.7 531174
58:29.8 39:33.6
59:22.8 60:49 4
59:24.1 61:12.7
S9:57.2 62:33.6
60:32.] 63:18.7
61:433 63:19.2
63134 65155
63:40.3 63254

To do a7 test with these data. vou work out the mean and standard deviation in cach group.
You getamean of 39.20(SD 3.788) minutes in the massage group and 60.36 (SD 35.337) minutes
in the control group. I vou plug these numbers into the appropriate formula. vou get a difference
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between groups of 1.16 minutes. This means that. on average, cychists receiving a massage com-
pleted the time trial about 1 minute and 10 seconds faster than those in the control group. The
standard error of this difference is 2.07. We know that, it the null hypothesis were true, then 95%
of the time the difference between groups would be no more than two standard errors away from
zero. For this experiment, we are about half a standard error away from zero and so we know we

ference between groups.

To do a Wilcoxon. vou have to work out the ranks of the data- - who came first. who came
second and so on. The cyclist coming in first was in the control group with a time near 49 min-
utes, and this individual gets a rank of 1. The next fastest. a full three minutes back, was a
cyclist in the massage group. who gets a rank of 2. If you keep going assigning ranks in terms
of where each cyclist came in the time trial. what you get is something like this. with the ranks
shown in the brackets:

Massage group | _ Control group
SESS.1(2) 4R:49.9 (1
53:39.7 (4 S3:17.403)
58:29.8 (5) 59:33.6 (8)
59:22.8 (6) 60:49.4 (1 1)
39:24.147) 6112.7¢12)
59:37.2(9) 62:33.6 (14)
60:32.1 (1) 63:18.7(16)
61:43.3 (13) 63:19.2(17)
63:13.4(15) 65:15.5(19)
63:40.3 (18) 65234 (20)

If you add up the ranks in each group. you get a total of 89 in the massage group and 121
in controls, a mean of 8.9 and 12.1. So. the average cyclist receiving a massage would come in
9th—three places ahead of the average cyclist not receiving massage. who'd come in 12th.
(Ok. I know—you can’t get a whole bunch of cychists all comimng 9th m a time trial. but you
take my point.) Our question now is whether the difference in average rank of 8.9 and 121 is
statistically significant. To get a p-value. we can think back to the definition of the p-value in
terms of the probability of the observed data or something more extreme - if the null hypothe-
sts were true. What we'd expect if the null hypothesis were true is that there would be no dif-
ference in rank between the two groups. But we wouldn’t be surprised if there was sometimes
a small difference in ranks and occasionally we'd expect see a big difference. just by chance.
This figure shows the difference in ranks if the null hypothesis were true and massage didn’t
have any ctfect on cveling performance:
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Difference in ranks

As vou can see. you get a normal distribution. I've shaded all bars where the difference in
ranks was as high or higher than what we saw in our study. which was 32. You can see that it isn't
particularly unusual to get a difference in ranks that large and so we'd guess that we don’t have a
statistically significant difference. If you add up the height of the shaded bars (the p-value is the
probability of the observed data or something more extreme, meaning a bigger difference in
ranks). you get 0.113. But remember. we have to take into account the possibility that we might
get better results in the control group. and that this would also lead us to reject the null hypoth-
esis. When you add up the height of the bars for a difference i ranks of =32 or less. you get,
naturally, 0.113. Adding 0.113 and 0.113 gives a total probability 0f 0.226. So we can state that
there is a 22.6% chance that you would see a difference in ranks of 32 or more if the null
hypothesis were true, that is, no effect of massage on cycling times. This is the p-value you get
when you run a Wilcoxon test on these data.

So you should fire the coigheur, right?

The answer to that question probably depends on just how annoying you found all that talk of
energy chakras. The key thing from a statistical point of view is that our non-significant p-values
don’t mean that we aceept the null hvpothesis. The fact that the data would be reasonably likely
it the null hypothesis was true doesn't mean that the null hypothesis is true. after all, the data
would also be reasonably likely under a hypothesis that massage did improve cveling times. but
only bv 13 seconds.

The key thing to remember for now is that the cyveling experiment helps explain the differ-
ence between the 7 test and the Wilcoxon. For the 7 test, we first calculated an estimate that
addressed our rescarch question: we wanted o know i massage improves cveling times and so
we caleutated that. on average. evelists recenving the massage were quicker than controls by a lit-
te over a minute, We then caleulated a standard error for this estimate and divided one by the
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other to caleulate a p-value. For the Wilcoxon test, we converted all the results into ranks. calculated
the difference in ranks between groups and compared that difference in ranks to what we'd expect if
the null hypothesis were true (that is. no difference in rank).

Co what is better, Wilcoxon or f test<?

The best thing about the result of the 7 test is that we got an estimate for the effect of massage on
cycling performance: massage improved time trial times by a mean of I minute 10 seconds. We
can also calculate a 95%0 confidence interval, which is the mean plus or minus about twice the
standard error. The standard error was around 2 minutes and 10 seconds. so we get a contidence
interval of —3 minutes 10 seconds to S minutes and 30 seconds. Our best guess 1s that massage
reduces times by a minute or so, but it could actually slow you up by 3 minutes or lead to a dra-
matic 5 minute reduction in race time. All this is wonderful and terrific information, but only if
it is correct. As Bill Gates found out when he walked into the diner (see So Bill Guates walks into
a diner: On meuns and medians), calculating a mean of something only makes sense in certain
circumstances. You'd hardly want a 1 test to compare the ditference in salaries between Dizzy's
diner (where Bill is tucking into a three egg omelet) and the Little Purity diner down the block
(which has no visiting billionaires) because you'd calculate a difference in mean salary of
$125m, with a 95% confidence interval from —$125m to +$375m. As you can tell from this
example, the p-value you get from a ¢ test is not very reliable when the data are very skewed——in
simple terms, the p-value is too high if there is a true difference between groups.

Moreover, although I suggested that getting an estimate 1s a good thing (it normally 1s). esti-
mates aren’t always interesting. If a biologist has some complicated hypothesis about the effects of
a gene, and conducts a mouse experiment, the estimate might be something like “IL-2 production
from PMA stimulated CD45RA + CD4 + cells was increased by 0.002 units in knockout mice.”
It is unclear whether this has any meaningful interpretation. The main point of such laboratory
experiments is to investigate hypotheses and, as such. it is only the p-value that is of interest.

So. again, it all depends. This makes sense, because if you could really say whether the r test
or Wilcoxon was better, whichever one was worse wouldn't be used anymore and | wouldn’t have
to write chapters about it.

¢ Things to Remember ¢

Statistical tests are applied to data to generate p-values to test hypotheses.
2. The ttest and the Wilcoxon test are two well known statistical tests.

3. Both tests are used when two groups (such as boys and girls or treatment and control} are
compared with respect to a continuous variable (such as time to complete a cycle race).

4. The t test involves calculating an estimate addressing the hypothesis of the study as
well as its standard error. The p-value is calculated by comparing the estimate to the
standard error.

5. To run a Wilcoxon test, the data must first be converted to ranks. The p-value is calculated
by comparing differences in ranks to an expected distribution of differences in ranks.

6. The ttest can be unreliable if the data are very skewed.
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Discussion

D T

L. You may have heard that statistical tests come 2. What would vou conclude from our experi-
m one of two tlavors: parametric and non- ment about the value of massage for recovery
parametric. The 7 test is a parametric test: the from cycling?

Wilcoxon is non-parametric. What does Tpara-
metric” mean and why is the 7 test. but not
Wilcoxon. parametric?

NOTE: See page 175 for answer sets,



CHAPTER 17

Meeting up with friends: On sample size,
precision and statistical power

I NEED TO GET HOME BY 10.

THERE A7 BLIRGERS? ARE
AT BA H 0L KIDDINGT I THOUGHT A LARGE

WANTED TO GO HAT ABODN _ pRECISION!

TO THE MOVIES!\Y SUISHT?
IR
1

&

Why meeting up with friends can get
so complicated

ay vou want to hang out with vour friend Doug. and he says. "Movie?”
and you say, “Drinks”" and he says. “The Lokt Lounge?™ and you say.
*9 pm?" and then there vou are hanging out a couple of hours later. But
then next time he suggests dinner with his friends Launa and Tom. and you
want to go to Maria’s bistro. but Tom doesn’t Itke Mexican and wants to go to
Caté Steinhof instead. but you don’t like schniizel. at which poimnt yvou remem-

ber a movie vou really want to see. but Doug’s seen it already. so Tom suggests
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a different movie. which Launa doesn’t tancy and anyway, she wants dinner, and 20 minutes later
the four of you are still discussing where to go and thinking about meeting up for coftee. As vou
probably know, the hassle of organizing something rises exponentially with the number of people
you have to organize. following the famous equation £ = mc= where £ is eifort. m is the mcan
fussiness (or flakiness) of your friends and ¢ is the size of the crowd.

The E = mc? of statistics
Statistics works in a similar way. but sort of in reverse: ecach person you add to a group of friends
planning to hang out results in exponentially more complications; adding another person to a
group of study participants results in exponentially less information. The equivalent of £ = e~
for statistics is:
.. Vartation
Precision = ~— —

VS

ample size

Precision here can be thought of the width of your confidence interval. If you conduct a
study and have a wide confidence interval. then your results are not precise. For example, if you
obtained voting intentions from 20 likely voters. you might report that “33% of voters favor the
Republican, with a 95% contidence interval of 32% to 77" which is to say, you really have no
idea whatsoever who is going to win.

In the formula, vuriation refers to the natural variation of whatever it is vou are studying. In
a study looking at a continuous variable such as age, height or blood pressure, that variation is
expressed in terms of standard deviation: a large standard deviation of say. age. means that the
individuals in your study are all sorts of ages from young to old (e.g., a study of voters): a small
standard deviation means that most of those in your study are a similar age (e.g.. a study of pro-
fessional football players). In a study of a proportions, the variation depends on how close the
proportion is to 50%. Think of it this way: if you put 1000 American voters in a room and asked
who voted for the current president—this is typieally somewhere close to 50%—you would find
a lot of variation—many did but many didn’t. It you asked how many had gone skydiving. there
wouldn’t be much variation because most people avoid throwing themselves out of airplanes.

The key point is that you can’t do much about variation-—it Is just out there as a natural part
of the world. So if you want to make your results more precise. you need to increase your sample
size: put more patients on a clinical trial, interview more voters about their voting intentions,
include more schools in an education study. and so on. But precision is related to the square root
of sample size, so if vou want to double your precision vou need to quadruple your sample size.

As a simple example. imagine that vou surveved 100 students about their views on a recent
change in how exams were organized and 38%5 were in favor, The confidence interval is about
£10% (le, 28% to 48%). If vou conducted a survey with four times as many students and
obtained similar results. vour confidence interval would be half as wide (£5% or 33410 43%).

The inverse square law and hypothesic testing

[t vou are in the business of estimation. the imverse square faw gives you a nice rule of thumb.
Things are a little more comphicated for inference. Imagine that vou wanted to test a null hypoth-
esis that “S0%e of students are in favor of the change.™ It vou rejected this null hypothesis. it
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might allow vou to say. for example. that most students were against the change and lobby the
administration to change things back to the way they were. To think through the effect of sample
size on hvpothesis testing, Pl do what 1 have done betore (see Long hair: A standurd crror of the
oleder maley and use a computer to stimulate the results of a very large number of studies. cach
conducted with 100 students and assuming that. i trath. only 38% were m favor of the change to
the exams. In previous chapters, Fhave shown the distribution for the mean or proportion m order
to explain ideas such as the standard error. What Ishow here 1s the upper bound of a 95% conti-
dence mterval:
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Percent in favor

One thing we know ts that 1f the upper bound ot a 95% confidence interval excludes 30%, we
can reject the null hypothesis that “30% of students are in favor of the change.” This 1s because,
it the upper bound is less than 50°%6. then the fower bound must also be less than 50% and. gener-
ally speaking. a confidence interval that does not include the null indicates a swatistically signifi-
cant result. What vou can sce from the graph is that the upper bound would be higher than 50%%
about one-third of the time (the shaded arca). The null hypothesis 1s false - - the proportion of stu-
dents in favor is 38%, not 30% and vet we fatl to reject the null hypothesis pretty often. In this
respect. a statistical test 1s similar to a diagnostc test isee [ ignore my child's cough. my wife
panics: Ahour specificiny and sensitivirey in that 1t doesn’t always give vou the correct answer,
Just as vou might be told that vou're sick when vou're fine or get a clean bilt ot hiealth when vou
actually have some kind ot discase. a test might give = 0.05 when the null hypothesis is false
and p < 0.05 when it 1s true.

Take a test that a doctor might give vou tor strep throat:

e

Result of doctor’s test Posttive e positine false positine

Negatne e nowitine Pone nevatine
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Now imagine that mstead of a diagnostic test. we had a statistical test, We'l call rejecting the

null hypothesis a “positive™ result., (p - 0.05 1s normally seen as a good thing. right?)

Null hypothesis | Null hypothesis
false

Result of Statistically sigmiticant: reject True positive False positive
statisticat test null hypothests
Not statistically signiticant: tuil 1o Fakse negaine Frue negative

reject null hypothesis

The table shows that when vou run a statistical test. you can only make one of two errors: you
can reject the null hypothesis when it is true (a false positive) or fail to reject the null hypothesis
when it is false (a false negative). Statisticians call this tvpe I and type I error, respectively
(helpful. huh?). Another name is « (alpha) error for false positive and £ (beta) error for false
negatve. Iintroduced « in the discussion section for Michael Jordun vwon't accepr the null
hypothesis: How o interprer high p-values. Atthough we normally describe a p-value < 0.08 g5
statistically significant,” vou can choose other values against which to compare vour p-value.
For example. you can specity before vou analyze your data that p-values less than 0.01 will be
deemed statistically significant and lead you to reject the null hypothesis. This is the same as Say-
g “our level of alpha is 0.01.

Alpha is false positive, rejecting the null hypothesis when it is in fact true. Beta iy false
negative, failing to reject the null hypothesis even though it is false. Back to our student sur-
vey:s we worked out that, about a third of the time. (he upper bound of a 959 confidence inter-
val would be greater than 50%. and thus we would mappropriately fail to reject the null
hypothesis. In other words. beta. our false negative rate. for this study is around 0.3, As it hap-
pens. statisticians tend to talk about “power™ rather than beta: poweris I beta. or simply the
true positive ruate.

A big difference between power and alpha is that alpha is something that vou just decide on
(itis almost always 3%4). Power. like precision. depends on variation and sample size. Variation is
a natural part of the world and vou can't change it. but vou can choose a sample size tor vour
study. A statistictan would deseribe our student sur ¢y i the following terms: “We will use an
alpha of 370 and test the null hypothesis that 50%s of the students are in favor of the new exams,
Assuming that the true proportion is in tact 3870, 1 survey with 100 respondents will have a
power of around 70" In other words. if 4l Your assumptions were correct (the true proportion
I8 38% vou manage to get 100 answers for your survey bovou have a 70% chance of rejecting the
nutb hvpothesis ata significance tevel of 504,

We can then use the computer simulation 1o mmagine that we repeated a similar study but with
400 students. What we get s
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In this case, you very rarely see an upper bound for the confidence interval above 50% and
therefore almost always reject the null hypothesis. The power of a study with 400 respondents is
in fact greater than 99%. You can see that, to work out the effects of a change in sample size on
hypothesis testing, you need to take into account the shape of the normal distribution. Indeed, the
formula for power includes numbers that you have to look up using the normal distribution.

Calculating sample size

We can’t use our simple inverse square law to work out power. But, as it turns out, we don’t typ-
ically try to work out power at all. The typical question that scientists ask isn’t, “OK, I've got 100
people here. What are my chances of a positive result?” but, “I want to test a hypothesis. How
many people will [ need?” This sort of question is particularly important in medical research. In
a trial of a new drug, for example, you want to have a good chance of a statistically significant
result if the drug is effective because it would be great to have another way to help sick people.
But you can’t have too large a sample size-—drugs often have side effects, so you don’t want to
give a new drug to lots of people if it doesn’t work. A typical question asked of statisticians in
medical research might be something like: “About 50% of patients recover from a typical cold
within 48 hours. We think that our new cold treatment might increase this to 70%. We will use
the usual alpha of 5% and a power of 90%, that is, if the drug is effective, we want a 90% chance
of showing that it does indeed work. How many patients do we need?”

To answer this question the statistician uses a formula that includes numbers taken from the
normal distribution, but in its general form it is very simple. You might have heard of the “signal
to noise” ratio: the more noise you have relative to the signal, the harder it 1s to hear. It is exactly
the same for medical research, except that “harder to hear” means you need a large sample size
and, as you might have guessed, the inverse square law apphes.

_ Noise
Sample size = ( )
Slgnal

This is pretty similar to the first formula. except that we have signal instead of precision and
noise instead of variation. Noise is in fact the same concept of variation and signal refers to the
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size of the difference from the null, often called the effect size. In the drug trial example, the drug
was thought to increase recovery rates from 50% to 70% and so the effect size was 20%. This
gets us back to the inverse square law. If you do the right calculations, it turns out that the num-
ber of patients needed for the drug trial is a little over 250, Now let’s imagine that we wanted to
see whether the drug might improve 48 hour recovery rates from 50% to 60%. Our effect size is
now 0% and, according to our formula, if vou halve the signal you quadruple the sample size. If
you run the numbers for a trial with an alpha ot 5%, an expected rate of 50% in the control group
and 60% in the experimental group. a total of a little over 1000 patients are needed. The inverse
square law isn’t always exact-—which is why you should use the proper statistical formula to
work out sample size exactly—but it is a good rule of thumb,

The difference between theory and practice

In theory sample size, precision, effect size and statistical power are really quite straightforward.
To work out power or precision you use a formula: the relationship between precision and sample
size, and also that between effect size and sample size. follows the inverse square law. That is. in
theory. But you know the difference between theory and practice, right? In theory, there isn't one.

The reason why these sorts of calculations are so difficult in practice illustrates a very impor-
tant principle of statistics: statistics involves a bunch of formulas, but what you get out of those
formulas depends on what you put in.

Here is an example typical of my day-to-day work. Some doctors ask me for help designing a
study of a new drug for pain after surgery. They tell me that with the usual drug, pain is usually
around 5 on a 0-10 scale and that theyd like to see this go down to 4 with the new painkiller,
- They also tell me that the standard deviation is about |. When | plug these numbers into a sam-
ple size formula (using the typical alpha of 5% and a power of 90%)., I get a total sample size of
44. At this point everyone gets excited because this isn't a large number of patients, so we can get
the trial done by Christmas and have the paper published in some important medical Journal well
in time for the departmental review next year. But then a colleague points out that the drug is
very safe and inexpensive and would be worth giving if it reduced pain scores by only half a
point; moreover, didn’t that recent scientific paper on postoperative pain report a standard devia-
tion of 2?7 Now when I run the numbers | geta sample size of 674. A trial that large just isn't fea-
sible at our hospital, which leaves the doctors rather depressed about their promotion prospects.
However, one of the doctors is stil] hopeful and gets up enough energy to kick off what one sta-
tistician has called “the sample size samba”™ we can't possibly do a trial with 674 patients, but
hang on. here is a paper saying that standard deviation iy actually 1, so why don’t we split the dif-
ference and call it 1.57 Oh. we'd need 380 patients, which is still too many. What if we change the
difference between groups to 0.757 And now the sample size calculation spits out 170 patients,
which is just about doable (if not in time for departmental review), so we agree on that.

This might make you rather skeptical of sample size calculation. But before you throw it
away altogether. here is a little story. A surgeon specialized in a procedure that was usually pretty
successful, with only 4 or 596 of patients experiencing a recurrence of their disease. Nonetheless.
the surgeon thought that a slight variation in the way that the patient’s lymph nodes were treated
might affect outcome. The surgeon worked at a big hospital and wanted 10 go back and examine
the case notes from all 1200 patients ever operated on at the hospital to see it this was indeed the
case. Now 1f the best method of node removal led to a 107, relative decrease in recurrence rates,
that would obviously be important to know. However, detecting a difference of this magnitude
would require close to 60.000 patients at least. far more than the surgeon had available.
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In short, formal sample size calculation can help us think through what research can and
cannot tell us. There are lots of things we'd like to know. but if we only have a small sample. or
are looking for very small effects. it is unlikely we’ll ever find out for sure. Thinking about what
we can and can’t find out—and what we should do in the absence of ¢clear evidence-—could not
be more central to the scientific process.

¢ Things to Remember ¢

1. When you are planning a study, you have to work out the sample size you'll need.

2. If the main purpose of your study is estimation, then the sample size you'll need
depends on how precise you'd like your estimate to be. Precision can be thought of in
terms of the width of your confidence interval.

3. Precision follows the inverse square law: if you want to halve the width of your confi-
dence interval, you have to quadruple your sample size.

4. If the main purpose of your study is hypothesis testing, then the sample size you'll need
depends on power. Power is the probability that, if there is truly an effect of a given size,
you will reject the null hypothesis.

5. Power is typically set at 80% or 90%.
6. There are formulas to work out sample size exactly.

7 You have to be very careful about the numbers you put into sample size formulas if you
want the numbers that come out of them to be sensible.

cussion

Should you always do a sample size calculation
when planning a study?

1. When calculating the sample size needed fora 3.
study with a hypothesis test. you need to spec-
ifv an effect size, the difference from the null 4
that you want to find. How do you choose an
effect size?

For enthusiastic students onlv: When we looked
at the power of our survey study. I showed a dis-
tribution for the upper bound of the 95% confi-

2. Something that often happens is that a study dence interval. [ said that when this bound was

fails to reject the nult hypothesis. This typically
feads the investigators to start running around
to find someone to blame for this "negative”
result. A common question is: what was the
power of the studv anyway? s this a sensible
guestion to ask?

NOTE: Sce page 177 for answer sets,

less than 50% (our value for the null hypothe-
sis). the result would be statistically significant.
As such, I claimed that this distribution was the
same as that for statistically significant results.
Is this actually true?
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When to visit Chicago: About linear
and logistic regression

LINEAR
REGRESSION

Y =2X +3

TEST TODAY
(AFTER NAP)

was once asked to justify why | thought that a particular cancer study needed exactly
I8 patients. I got no further than saying that. in simple terms. 18 was near 16 and the square

root of 16 was 4 before [ was interrupted. One of the world's leading cancer biologists told me
that my explanation was getting too complicated and that. never mind. he'd Just trust me. Which

made me think that the most common tvpe of regression | have to deal with at work is not linear or

logistic regression — important statistical techniques both - but infuntife regression.
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Why linear regression leads to infantile regression

Here is a table giving the average temperature in Chicago:

Month . Average temperature in °F
January 21
February 25
March 37
April 49
May 59
June 6Y
July 73
August 72
September 64
October 53
November 40
December 27

You can see that, roughly speaking, the temperature increases by about 10° a month from
January to June and then falls by about 107 a month from August to December. This means that,
to get a pretty good estimate of the average temperature in Chicago for any particular month, just
count how many months you are from summer (June-August), multiply by 10 and take that num-
ber from 70. October is 2 months way from the end of the summer (August), so that gives
70 — (2 X 10) = 50°; January is 5 months away from the beginning of summer (June), so that
gives 70 — (5 X 10) = 20°. This isn’t exact-—the actual mean temperature is 53° in October
and 21° in January—but it gets you pretty close and provides a good rule of thumb (which is to
avoid Chicago in January).

There. that wasn’t so bad was it? What we just did was a regression. Regression. it seems. has
a particular ability to reduce otherwise emotionally healthy adults to an infantile state. blubbing
hysterically and looking for someone’s hand to hold. My guess is that this suits most statisticians
just fine—a textbook on regression might look like a bunch of formulas to you; to statisticians
like me. it 1s 430 pages of job security.

Here are some things that vou might read about in that regression textbook: “the model sum
of squares divided by the mean square error follows an £ distribution™; a good model “increases
the log likelihood™; “residuals™ can be used to 1dentify overly influential observations: it can be
important to check for “heteroscedasticity.” Here is what you need to know about regression: it is
just about v and y. As in oy = average lemperaturen ¥ is months away from summer;
v 70 - 10x.
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Your math feacher was right (again)

What you might remember from high school math (or indeed Why vour high school math teacher
was right: How to draw a graph) is that you draw a graph by writing out an equation such as
V= 3x + 4. You could also have something a little more complicated like v =12~ 3x + 4.
One way of thinking about this is “give me a value for x and I'll work out y for you.” In other words:

¢ v is something we don’t know and want to predict.
® ¢ is the information we have.
® the equation tells us how to work out y from x.

What regression does is work out what the equation should be. Keep saying to yourself
“regression gives you an equation” and it will all seem a lot more manageable.

How fast can | run 26 milec?

I'am hoping to run in the New York Marathon for the first time next year and it would be interest-
ing to know how long it is likely to take me. Now if you had to guess, you'd probably start at the
mean marathon time (one definition of the mean is what youd guess if you had to—see How to
avoid a rainy wedding: Variation and confidence intervals). I have a data set of marathon times
and the mean running time is 4 hours and $ minutes, or 245 minutes. Remember that y is what we
want to know, the running time. So, we now have a regression equation:

Y = 245

This is a start, but a pretty basic one. The problem is that we are not taking into account
any other information. My guess is that a young man who runs 50 miles a week would run a
faster time than an older woman who trains less intensively, but our equation would give both
of them exactly the same time: 245 minutes. When I look at the data set, I find that the mean
time for women is 263 minutes and the mean time for men is 239 minutes, a difference of
about 24 minutes. Now that | have an X, some information to help work out ¥, I can now
update our regression equation. If I use x = 1 for women and 0 for men I get:

v = 24y + 239

Eric and Erica have a chouting match

Delighted with this statistical analysis, I leave work and head to a party where [ meet a woman
named Erica. She tells me that she is running the marathon and wants me to predict her time. |
say, “Woman, so x is I, and so [ guess your running time at 239 + 24 X | = 263 minutes.” Our
conversation is overheard by a guy named Eric, who is also planning to run the marathon and
asks the same question. I give him a predicted time of 239 + 24 X 0 = 239 minutes. At this
point, Erica becomes annoyed. “Him? Run faster than me? [ train 40 miles a week, he runs a cou-
ple of five milers!” This seems a fair point: perhaps our regression equation would be better off
if we tried to work out running time based on weekly training miles rather than gender.

Unlike gender, which takes two values. there are a lot of different possible values for weekly
train'ingvmiles, 50 we can’t work out x just by taking means. What we do 1 plot weekly training
miles against race time: -
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Weekly training miles

Fach dot is an individual runner. You can see. for example. that there is one runner who trains
80 miles per week and ran the marathon in slightly under 3 hours. There is also someone who
appears to be able to run a 3 hour marathon without ever really training: this might be someone
who misunderstood the question— perhaps he thought we were asking about length of a typical
training run. Either way. 1t is pretty typical to see a couple of data points that are difficult to
explain. The graph also shows a line that fits through the dots on the graph. The equation of the
line 1s:

As you might guess, this is a regression equation for training miles and race time.
Indeed. the line on the graph is often referred to as a regression line. But it is just high
school math, right?

Multivariable regression

The problem now is that we'd predict Erica would run faster than Eric. and this sends Eric oft on
a riff about being a foot taller than Erica and at least being able to run a full stride rather than
waddling along like an oversized duck. and there being no way that as a 25-year-old he would
wouldn't be able to keep up with someone approaching retirement age. Erie has a pomt, which 1s
that we are better off with more information. rather than trying to boil evervthing down to train-
ing miles. If Eric was a statistician, he'd say that in place ot univariate regression, where we use
one v to predict v it is generally preferable to try mudtivariable regression, where we use several
s (v for gender. v for age. v for training milesy. IF we run a multivariable regresston on our
marathon time data set we get:

S 23, ¢ ULy - 87w = 262
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To explamn a bit of jargon. the numbers before the o are called cocfficients (statisticians
sometimes alsose the term heray or 375). So vou might hear it said that “the coetficient for age
was O.8T per vear” This means that our prediction for race time increases by 0.81 minutes for
cach one vear increase in a person’s age. The coetficients can also be thought ot as the /ope of
the regresston line. This 1s casiest to see i the graph of race times against training miles: the
regression hime has a slope of 139 hecause  the cquation  for the regression  is

= A9y e 303,

Usimg the tormula. we can caleulate the tollowing predictions tor Eric and Frica,

Friciis male tvp = 03025 vears old 1o = 25) and trains 10 miles aweek vy o= 10,
30y S O8] 25y (13T 0y F 262 = 267 nrnttes, or 4 hours

This gives (2

27 minutes,

Ericacis female vy = 1 48 vearsold vy = 48 Erie was exaggerating) and trains 40 miles
a week (xi = 403 This gnves (23 < 1) s (O8] < ARy — (1.57 x 40) + 262 = 26|

minutes. or 4 hours 21 minutes.

The two times are pretiy close. but we predict that Eric’s youth is not going to make up for
his lack of training and reckon that Erica will beat him. On the day of the race, Erica comes in
at 4 hours 19 minutes (239 minutes). Eric won't tell me his time for a while. explaining that he
messed up his pacing and got a blister, but finally admits a slow 4 hours and 40 minutes (280 min-
utes). Our predictions weren't that precise (we certamly weren'table to predict that Fric would get
a blister), but here is the key point: the predictions trom the regression equation were closer to Erie
and Erica’s true race times than was the mean race time for all runners. [ we had used the mean
race time (2435 minutes) we would have been wrong by 14 minutes and 33 minutes for Erica and
Eric respectivelv. Instead, we were wrong by 2and 13 minutes. Moreover, we were able to predict
who came i first,

Logistic regression

Marathon running is a nice example of regression but, as vou might guess, statisticians
don’t spend much time trying to guess running times. Something 1 do in my everyday work
1s calculate regression equations to predict whether a man has prostate cancer. Here is an
example:

V=020 - 136 F 00206, - 0.87
Hereo vy is the blood level of a protein. prostate specific antigen (PSAJ: v is the ratio
between the total amount of PSA and the amount of PSA that is not bound to a second protein in
the blood: viis the patients age in vears. In other words:

= 02 2 PSAdevel - 136 < Ratio of free-to-total PSA - 0.020 Age ~ 087

Using our equation. if M Smith was a 38 vear old man with a PSA of 4 and 4 free-to-total
PSA ratio of 23" we would caleulate Vooobe (0120 ) - (126 1 0.25) « (0020 -
S8) - 0XT = 2263 Itisn telear what exactly this means. For the marathon running example.

vavas the time inminutes a continuous s aable sowe call the FCLICSSION A [ rcar Tegresston,
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In the case of cancer. however. you either have it or you don’t. Regression for binary variables
such as cancer s called logisric regression.

Now statisticians don't go around saying. “According to my equations. Mr. Jones has cancer
and Mr. Smith doesn’t.”” What we do is give the probabiline that Jones or Smith has cancer. As it
furns out, v isn't quite a probabitity. it is the log odds. I won't explain the log odds for right now
other than to say that it can be easily converted into a probability. Mr. Smith had a v or log odds
of —2.63. which converts to a probability of about 7%. This is pretty low. so his doctor would
probably reassure him and tell him he had no need of turther tests.

We can play with these numbers a bit. It Mr. Smith was a bit older, say, 65, this doesn’t
change his risk much (it goes up to 8%): 1t PSA was higher (say. 10). risk does increase (to 13%),
but not enormously: however. if the ratio of free-to-total PSA was lower (say, 15%), this has a big
impact on cancer risk (risk is now 22%%).

This tells us something very important: [ introduced regression in terms of prediction (can
we predict marathon time? Can we predict prostate cancer?). But if you can predict something,
you often understand it pretty well. What matters for marathon running is less whether you are a
man or a woman, or how old you are, but how many miles you run in training: what matters for
prostate cancer is not so much how much PSA you have in the blood. but whether that PSA was
“free” or bound to another protein. This is one of the reasons why regression is such an important
statistical method.

¢ Things to Remember ¢

. Regression is the process of producing an equation.

. At its simplest, this equation is in the form of y = bx + ¢c.

. yis what we want to predict or understand (such as how long it takes torun a marathonj.
_What we use to predict or understand y is called x (e.g., how old someone is).

g AW N

. yis sometimes called the dependent variable and x the independent variable; x can also
be called a predictor or a covariate.

6. In the equation, b is called a coefficient; ¢ is called the constant or intercept.
7 1f there is only one type of x, this is called univariate regression.

8. If there are multiple x's (such as age, gender and training miles), this is called
muiltivariable or multiple regression. Each x will have its own coefficient.

9. Linear regression is used when yis a continuous variable (such as time to run a marathon).

10. Logistic regression is used when y is a binary variable (such as whether a man has
prostate cancer or not).

«f+ SEE ALSO: Why your high school math teacher was right: How to draw a graph; My assistant
turns up for work with shorter hair: About regression and confounding




I.

‘Discussion

In reality. no one tries to predict marathon
times in terms of age. gender and training
miles. What would you use instead?

I a regression such as v = by + b + ¢,
the ¢ is called the intercept or constant, Why?
Why do you think that v is called the dependent
variable and x§ the independent variables?

In the marathon running example, the coetti-
cient for “female™ in the univariate analysis

NOTE: See page 180 for answer sets,

5.
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was 24, that is, women took 24 minutes longer
to run the marathon. In the multivariable analy-
sis. the coefficient was 23 minutes. How would
you explain the difference between these two
coefficients?

For enthusiastic students only: What is the log
odds in logistic regression? What do statisti-
clans tend to report instead of coefficients for
logistic regression?
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My assistant turns up for work
with shorter hair: About regression
ahd confounding

HMM, ANOTHER A
2 LBS IS IT
THE JUNK FOOD? Q«O /
OR MAYBE THE FACT

1 DON'T EXERCISE ) ‘ it NEED SOME
IS5 MAKING ME e, MULTIVARTIABLE
EAT THE JUNK

FOOD AND ALSO

SOUNDS LIKE

[
lﬁ"i‘ REGRESSION!
MAKING ME |
GAIN WEIGHT? ¥
- >N
A

S
L J
i

y=
\
"l

Cparkling Conversation

hings I find myself saying: To a person with a cold—"Yes. there has
been something going around.” To a guy who loses his beard from one
day to the next—"So you shaved.” To someone with suddenly shorter

hair—"Oh. you've had a haircut.” The sad fact 1s. most of the ume. I have

nothing interesting to say at all.

84
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On the other hand. the hair example does tell us something about regression. Let's Imagine
that I'd hned up a few hundred men and asked you to guess whether they had cut their hair in the
last week or so. In some cases it would be obvious (like a guy with ratty long hair down his back)
and. on balance. you'd guess that those with shorter hair would be more likely to have had a
recent cut. On the whole though, your guesses wouldn't be that good: you wouldn't know
whether someone with medium length hair had just had it cut back trom being long or had grown
itout from being short.

The reason | know that my assistant had his hair cut was because | knew that his hair had
been longer the dav before and. of course. vour hair length on Tuesday is a very strong predictor
of your hair length on Wednesday. This tells us that it the world doesn’t match up to a prediction.
and vou think the prediction was a good one. then there is a good chance that something else is
going on. Now remember that regression s about prediction: we try to predict a dependent vari-
able y (such as your marathon time) in terms of one or more v's (such as how hard you train). So
regression is useful if we have a hypothesis about that “something else going on™ (like a hair cut).

o

A lobbyist explains why 2500 calories worth of burger,
fries and a shake ien't fattening

Fast food generally contains a lot of fat (like a cheeseburger) and sugar (like milkshakes) and,
as Lunderstand it. eating a lot of fat and sugar tends to lead to weight gain. I have a data set n
which about 2000 Americans were asked questions about their diet and exercise habits.
Nearly two-thirds ot the people in the survey ate at a fast food restaurant at least occasionally,
and their rate of obesity was higher (21% vs. 15%: p < 0.01) than those who didn’t cat fast
food.:However, before I even start to think what to do with my findings, I am visited by rep-
resentatives of the American Association of Junk Food Lobbyists, The tobbyists claim that
burgers have nothing to do with obesity: it is just that poorer, less educated people tend to eat
junk food, as do men. and these groups don’t work out as much and have worse dietary habits
in general.

Here is a phrase you don’t often read: the lobbyists are right (up to a point). When I run fur-
ther analyses on the data set. I find that income. education, gender and exercise are all associ-
ated with obesity. For example. the rate of obesity was lower in survey respondents who
exercised compared to those who did not (16% vs. 21%: p < 0.01). 1 also find that income,
education. gender and exercise are all associated with junk food. Of those who ate Junk tood,
55% worked out-—somewhat less than the 65% rate of exercise in those who avoided Junk food
(p << 0.01).

The lobbyists see these results and arrange a celebratory lunch (double guacamole bacon
burger with large fries. big gulp soda on the side). But while they are away. [ use a logistic regres-
ston equation to predict the expected probability of obesity for everyone in the survey on the
basis of income. education, exercise habits and gender. The mean probability of obesity among
those who ate junk food was 200, compared to 18% in those who didn't eat Junk food. But the
actual rates were 219 and 15%, Because the difference in obesity rates is bigger than we
expected, this suggests that the relationship between junk food and obesity is not simply duie to
differences in other things. such as exercise. that affect werght. In other words. the world didn't
turn out as we predicted. so something else must be 20Ing on.
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Cleep deprivation makes me anxious

My kids have a theory: getting up carly makes me anxious. Consider the fact that I am more
stressed during the week (when | wake up early) than during the weekend (when, just occasion-
ally. I get to sleep in). My own view is summarized in the following diagram:

Cause?

Wak
ake up — Anxiety
early

Weekday:
get kids to
school on time;
go to work

This is what statisticians called confounding—you think one thing causes another. but in fact
it is something else entirely that causes both. It may not be that there is any real connection
between early rising and anxiety, it is just that it being a weekday. and having work to do and kids
to get to school, results in both me having to get up early and my anxiety level being higher. The
ideal thing would be to find some times where | woke up early on the weekend or overslept dur-
ing the week. We could then compare my anxiety level on early rising days and sleep-ins sepa-
rately on weekdays and weekends. If, for example, I was more anxious on weekend days when |
woke up early than on weekend days when [ slept in, then we would have more faith that early
rising really was associated with anxiety.

"‘Adjusting your results™: Sounds somewhat naughty,
but statisticians do it all the time

The problem with using a similar approach for our junk food data set is that we would have to
compare obesity rates between junk food caters and abstainers in a huge number of categories
(wealthy, college-educated female exercisers. wealthy. college-educated female non-exercisers,
not so wealthy. college-educated male exercisers. cte.) What multivariable regression does for us
is to compare the effects of junk food in all the different groups all at once.

A multivariable regression for obesity gives v = log odds of obesity = 0.334 > junk food —
0.246 < exercise — 0.078 ¥ college educated — 0.0858 X income bracket + 0.375 X male— 1.27
(sce When 1o visit Chicago: About linear and logistic regression). In this regression. we call
junk food the predicror (it 1s what we are really interested in) and exercise. education.
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income and gender the covariares (they help determine whether or not junk food is associ-
ated with obesity). As the coetticient for junk food is greater than 0. we conclude that cating
Junk food is associated with an increased risk of obesity. To work out whether this associia-
tion is statistically significant we need the standard error. which is 0 171 The coetticient is
nearly three times its standard error. Given that. under the null hypothesis. the coefficient
will be within two standard crrors of zero 959, of the time. we can conclude that there 1s
indeed a statistically significant association between Junk food and obesity (the p-value is
actually 0.006).

You can think of the multivariable regression cquation like this. Imagine that there were
two groups of 100 Americans- -one that ate junk food and one that avoided it -and that the
two groups were exactly alike in terms of exercise, education, gender and income. If there
were higher obesity rates in the junk food group. voud want to say that this probably
resulted from a true relationship between junk food and obesity because vou couldn’t use the
lobbyists™ argument that differences in other factors. such as exercise. were to blame. Now
imagine the groups were the same other than that slightly more people in the junk food
group didn’t exercise. We wouldn't want to say. “Oh. the groups are a little bit different. we
shouldn’t even think about comparing them.” What would be more sensible would be to say,
“OKk. the groups are a bit different. so maybe we can adjust the results we see to make up for
these differences.”

As a simple example, we'll use the figures from our survey and say that the rates of obe-
sity were 21% in the junk food group and 15% in the group that didn't cat Junk tood and the
rates of exercise were 55% and 65% respectively. We are concerned that the lower rate of
exercise in the junk food group might cause the differences in obesity rates. Let's say, for the
sake of argument, that in analyzing our data we find that one in five of those who don't exer-
cise are obese. There are 10% (i.e.. [0) more non-exercisers in the Junk food group, so vou'd
expect 20% of these, or 2, to be obese. We can now “adjust” our obesity rates in the junk food
group. We imagine that, if the exercise rate in both groups was the same. there would be 2
fewer obese individuals in the junk food group. So instead of an obesity rate of 21°,. the obe-
sity rate would be 19%. This is still higher than 15%%. the obesity rate among those who avoid
junk food, so we conclude that the association between Junk food and obesity isnt related to
exercise.

In the multivariable regression, we make this sort of adjustment for excreise, income. edu-
cation and gender simultaneously. Accordingly. we might report our results as follows: “A fter
adjustment for exercise. income, education and gender. junk food was a statistically stgnificant
predictor of obesity (odds ratio 1.40: 95°, contidence interval LIOC .77 p = 0.006).

A good example of how multivariable regression helps identify confounding is the link
between income and crime (see the discussion section answers for Hovw 1o shoot a T1 episode:
Statistical analyses thar don't provide meaningful numbers). There are higher rates of violent
crime in states with a higher median income. which suggests that a bunch of rich people are
jumping out of their Maseratis to go rob banks and shoot people. But the relationship between
income and crime is confounded by city living: people who live in cities tend to be wealthier. but
there 15 also more crime in cities. [f vou adjust for city living in a multivariable model. increases
i median income are associated with decreases in violent crime. w hich s what T guess vou'd
expect.
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Roll up for the magic show!

Multivariable regression is mathematically very complicated. It is also now very easy to do
because computers can run even the most complex regressions using pull-down menus. As a
result. regression has become extremely popular and many non-statisticians scem to think that it
has near magical properties. I have often seen scientists deflect quite reasonable criticisms of their
work with “but we adjusted for that using multivariable regression™ as if. by using regression,
scientific problems miraculously disappear.

But regression remains an imperfect technique for several reasons. First, we can only
adjust for what we measure. We don’t always measure everything, and there are some things
that cannot reasonably be measured. In the junk food data set. for instance, data were taken
on exercise habits. but not on occupation. So someone who sat behind a desk five days a
week and went for a brief jog on Saturday was described as an exerciser whereas someone
employed in a profession that required demanding physical labor, but did not otherwise
work out. was counted as not exercising. In theory. we could have asked about whether
survey respondents had a strenuous job, but there are other things that would have been
difficult to ask about. For example, culture is one of the strongest influences on diet, in that
we tend to eat what our friends and family serve for dinner. Now ['d be fine with a survey
interviewer asking me if 1 was Jewish, but I'd probably find it a little off it they then said,
~Ok, but would you describe yourself as very Jewish, somewhat Jewish, or only a little bit
Jewish?”

Even what we do measure we may not measure well. We can ask someone approximately how
many times a week they work out. but they may not answer accurately. In fact, studies have shown
that people tend to overestimate “good™ behaviors (“Oh yes, | regularly eat healthy food.”) and
underestimate “bad”™ behaviors (<1 do eat ice cream, but only rarely, and I only take a small serv-
ing.”). Moreover, someone working out three times a week might be going for a gentle 2 mile jog
or a fast 25 mile bike ride.

The third reason why multivariable regression is not a magic wand is because two predictor
variables are often highly correlated and. in these cases, multivariable regression cannot tell them
apart. As an obvious example, if every person who exercised avoided junk food and no one who
ate junk food ever exercised, it would be impossible to tell whether differences in obesity were
due to exercise or diet. In practice, this sort of problem is more subtle, but causes problems
nonetheless.

The limitations of multivariable regression illustrate a general rule of statistics: statistics
can’t do for you what the science doesn’t. Good statistics is a bit like a pair of high quality
stereo speakers: it allows you to hear the data clearly without distortion: yet the best pair of
speakers in the world isn’t going to make a €D sound good if the music was badly played or
recorded. 1f we don't have data. or the data are badly measured, or two things are so similar that
it is difficult to tell them apart. then statistics can’t help us no matter how complex the statisti-
cal techniques we use.
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Di

In our multivariable regression, junk food was
associated with obesity even after controlling
for income. gender, education and exercise, did?
Can we conclude that eating junk food causes 3.
obesity?

I gave diet and exercise as an example of some-
thing that couldn’t be measured precisely. How did I get the confidence interval?

CHAPTER 19

* Things to Remember ¢

We often think that one thing is associated with another (like getting up early and being
anxious), when in fact both are caused by something else entirely (it being a weekday).
This is known as confounding.

- If the world doesn't turn out how you predict, and you think your prediction is a good

one, it often means that something else is going on.

. Regression makes predictions.

4. Hf you think that an x is associated with a v, but are worried about confounders, you can

add these confounders as covariates in a multivariable regression.

. You can calculate the statistical significance of a predictor x in a regression by compar-

ing its coefficient to its standard error.

- Multivariable regression is not magic, and it doesn't make the problem of confounding

go away.

scussion

NOTE: Sce page 184 for answer sets,

89

Couldn’t we get people ro complete a diary of
everything they ate and all the exercise they

for enthusiastic students onfy: 1 reported a
coetficient of 0.334 and a standard error of
0.121. How did I get the odds ratio of 1.40”
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[ ignore my childs cough, my wife panics:
About specificity and sengitivity

LET ME BE VERY
SPECIFIC, I STILL
_ DON'T THINK
~_YOU'RE SICK.

e

ol

L7 - g P ET SR B

Two approaches 1o finding disease:
Which is better?

vowife s extremely sensitive to our chitdren’s well-bemg: my son

only has to scrateh his headt or myv daughter cough. and they find
-A_themselves bemg checked for lice and having then temperature taken.

(Yes. that means eit/ier scratchimg or coughing will lead to hor/r the lice comb and
the thermometer) don't tend to check the wemperature of a child with an richy
head. In tact st T don't see clear evidence ot double pneumona. such as an x-ray

with a follow-up MR then Fean't see whe evervone can’t o to school as normal.

90
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Imagme that. to resolve our dispute of who has a better approach to child health, my wife and
I'went around our neighborhood. checking on all the children. A doctor then examined all the
children to make a final decision. The results of this experiment can be reported in a table:

Doctor’ s dlagnosw

c Chl!d really is snck! Child is finej Total

My wites assessiment C hlld might be sick 49 250 299

Child is heatthy l 730 751
Totat S0 1000 1030

Doctor’s dlagnosm

e e e T —

| Child really is sick | Child is ﬁ"e;

My assessment Child might be sick 25 10 35
Child 1y healthy 25 99() N
Total 30 1000 1050

You can see that my wife is good at working out whether a child is sick. whereas [ am good at
working out that a child is healthy. Roughly speaking. statisticians call this, respectively. sensitiviny
and specificin: n other words. my wife is sensitive and Tam an old grouch (i.e.. spectfic).

The sensinvin of a diagnostic test ts defined as the probability of a positive test given that
you are sick. Now m this case, a “positive test™ is defined by whether or not my wife said the
child was sick. but it could also be a blood test result from a faboratory. or a score on a question-
naire (e.g.. "a score of 8 or more counts as depression™). Sensitiv ity 1s calculated by counting the
number of sick patients given a positive test result and then div tding by the total number of sick
patients. There were a total of 50 sick children: 49 of these were picked out as sick by my wife.
S0 my wifes sensitivity is 49 = 50, or 98%,: | thought that 25 of the sick children might be
unwell and told the other 25 to stop whining: this gives a sensitivity of 25 = 50 = 500,

The specificin: of a diagnostic test is defined as the probability of a negative test given that you
are not sick. This is caleulated by counting the number of healthy patients given a negative test
result and then dividing by the total number of healthy patients. A total of 1000 children were
healthy: T called 990 of these healthy for a specificity of 990 <+ 1000 = 999,,: my wife only
thought that 730 of the healthy children were indeed healthy. a \ptuflul\ of 750 =+ 1000 = 75,

Ok. so who has the better approach to child health?

IFyou are stumped. then don™t worry. | posed exactly the same question to a group of protes-
stonal statisticians and they were equally unable to answer. This is sort ot odd. because statisti-
ctans have spent years running around telling us to caleulate sensitivity and spectficity. Yet. as it
wrns out. sensttivity and spectficity generally don’t help vou decide which of two tests is better.

The key pomtis that which approach is better. mine (fow sensitivity. high specificityy or my
wifes (high sensitvate moderate specificity b depends on how mmportant it is to tind the discase
and how harmtul the treatment s if applied unnecessariby. Let's imagine that instead of “looking
tor children with flu or head lice. we were tving to diagnose an itection. such as the black
plague. that could be fatal if not reated with antibiotics. Missing a case of a disease would be a
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disaster- -the patient might die—-but treating someone with antibiotics who doesn’t need it 1s not
a huge probleni. In other words. 1t there 1s a fatal infection going around. yvou'd be better ot hav-
ing my wite panicking than having me there tetling you that vou'll probably be tine. and that
those large black botls covering your legs are just heat rash. On the other hand. 1f the treatment
for a certain disease were surgery. you'd want to be pretty sure vou had it betore going under the
knite. and would look for a diagnostic test with high specificity.

You're a doctor and the test has just come back positive.
What do you tell your patient®?

Remember that the definition of sensitivity ts ““the probability that the test will come up positive
if you do indeed have disease.” This would be extremely helptul if doctors went around saying to
cach other, "I have a patient here who is sick, guess what his test results were.” (“Wait, wait, don’t
tell me, I'll look up the sensttivity of the test....”). The problem that doctors face is that they
have the test results and need to know whether the patient has the disease. Let’s imagine that the
company Genehype ¢ sold a diagnostic test for strep throat. Here are the data that the company
provided to the Food and Drug Administration to get the test approved:

Genehype € test Positive 90 10 100

Negative 90 110 200
Total 180 120 300

The doctor wants to know the probability that the patient has a disease given a certain test
result. You can see that 100 patients tested positive and 90 of these had strep throat. This means
that a patient with a positive test has a 90% chance of really being sick and it would seem reason-
able to go ahead and use antibiotics. There were 200 patients with a negative test result and 110
of these were free of infection. So a negative test means about a 55% chance of really not having
strep throat. As a result, the doctor might say something like, “The test came back negative but
that doesn’t rule out strep throat. so I want vou to keep an eye on things and get back to me if you
don’t get better in the next couple of days.”

The statistics we just calculated are called the posirive predictive value (defined as the prob-
ability you have the disease 1f your test 1s positive) and the negarive predictive value (defined as
the probability that you don’t have the disease if your test 1s negative). You can see that they can
actually help the doctor make a decision on what to do.

s Marting unresolved conflict with his mother
affecting his marriage?

I 'was once chatting with a psychotherapist who told me about a case mvolving a voung couple
going through a bit of a crisis. The psvehotherapist told me that the problem botled down to the
husband’s mother. I don’t know tor sure whether he was himting at something. ¢ get along preuy
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well with my mother.) Also. on the plus side. he didn’t mention Ocdipus. Nonetheless, T was rather
put otf by his apparent certainty: when I asked him about this. he said that he had ~absolutely no
doubt™ that the issue boiled down to the mother.

This reminded me of a professor I met at college. a social worker who didn’t see clients anv
more but spent her time teaching. Her specialiv, she told me. was training other social workers to
recognize signs of child abuse. 1 asked her how she knew she was right and that what she said
indicated child abuse really did show that a child had been mistreated. Her response wasn't much
different from the psychotherapists, although she also volunteered that one shouldn't even raise
the question because it would be unfair to the children.,

I'bring this up because issues of diagnosis-—and therefore sensitivity. specificity and posi-
tive and negative predictive value——sound like they are just about medicine. But as it happens,
“diagnosis™ crops up in many other fields that use statistics. not Just psychology and social
work. but political science. sociology, and economics as well. In place of disease, we are inter-
ested in whether someone will vote. commit a erime or buy a product and instead of a diagnos-
tic test. we might have information on a person’s age. prior arrests or income. Nonetheless. we
want to describe the relationship between the information we do have (e.g., the test result or a
person’s age) and the information we don't have fe.g.. whether the person has a disease or
whether they will commit a crime). Good statistics is about finding the best way to describe
those relationships: whatever the psychotherapist and the social worker might imply. none of
us 1s infallible.

* Things to Remember «

—t

Sensitivity is the probability of a positive diagnostic test given that you have the disease.

2. Specificity is the probability of a negative diagnostic test given that you don't have the
disease.

3. If you have two diagnostic tests and you want to know which one is better, sensitivity
and specificity are often not that helpful.

4. To work out which of two diagnostic tests is better, you have to think about conse-
quences: what would happen if someone had the disease but you called them healthy?
What would happen if you mistakenly told someone that they did were sick and then
gave them a treatment they didn't need?

5. If you have a patient in front of you and you want to know what to tell them, sensitivity
and specificity are generally of little use: you need to know positive and negative predic-
tive value.

6. You have a patient with you and the diagnostic test just came back positive. The proba-
bility that the patient really does have the disease 1s the positive predictive value.

7 You have a patient with you and the diagnostic test just came back negative. The proba-
bility that the patient is really free of disease is the negatve predictive value.

8. Its kind of ok to panic about chiidren’s health,

- SEE ALSO: Avoid the sales. Statisties 1w help make decisions
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B .
“Discussion

In the experiment to determine whether my
wife or | had a better approach to child health,
we compared our results to that of a doctor. |
described the results of this experiment
terms such as: “There was a total of 50 sick
children; 49 of these were picked out by my
wife” To be more accurate, | should have
said: "A total of 30 children were described by

NOTE: See page 186 for answer sets.

{30

the doctor as sick:; 49 of these were preked out
by my wife.”” In other words. I am using
“described by the doctor as sick™ to mean
“really was sick.” But is the doctor always
right?

Do sensitivity and speciticity ever tell us which
of two diagnostic tests 1s better?
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Avoid the sales: Ctatistics to help
make decisions
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once wandered mto book store in Los Angeles looking for a novel. I came

out with a cookbook that I didnt really want. couldn't really afford and

was far too big and heavy 1o take hack on the plane to New York, It was.
however, 306 off and the thought of saving $40 had clearly put me into a sort
of trance-like state. in which my hand reached for my credit card without my
really being aware of it So. whenever | visit my m-faws. | have an unopened
2 1b. tome to remind me that it doesn 't really matter whether something is
cheaper than it used o be, What matters is how mach 1t costs right now and

whether s worth the price.
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The connection between vacation shopping and my work Iife s that both Christmas suales and
scientitic papers about new cancer drugs advertise. say. 30°4 offt cither a price that ts lower by
30" or death rate decreased by 30%0. But just as a 307, reduction in price doesn’t tell us whether
it s worth buying a book. a 30% reduction in death rate doesn’t tell us whether it 1s worth using
a drug. To understand why in mathematical terms. we need to think about a field of statisties
known as decision analvsis.

Imagine that you and [ are playing a betting game where we both put $3 on the table and then
one of us rolls a die: tf it is a 4. 3 or 6 vou win the money. otherwise I do. But then | make a
proposition: if it is an even number or a 3. you pay me S1O il itis a LoFpay vou S20ifitis a 3.
you roll again: then if on vour second roll you get a 2 ora 4.1 pay yvou S100: otherwise vou get
$3. Do vou take my new bet or carry on playing as normal? Well of course the answer 1s to avoid
the complicated bet. because | am a statistician, so I'd get these sorts of things right.

The following diagram shows why youd be making a mistake to take my bet. Known as a
decision tree, the diagram systematically identifies cach possible outcome and then assigns a
value and a probability to the outcome. You multiply the probability by the outcome to work out
what vou should expect to gain or lose for cach of your two options. new bet or old bet.

New bet 4 -510
1:6 238 4 s
LI
326 45
Oid pet
328 4 -

fn the case of the complicated new bet. there are three possible outcomes: you win straight-
away. lose straightaway. or roll again. It you roll again. vou can cither win a lot or a hittle. The
probabitities and values of cach of these outcomes are shown n the followmg table:

S o6 2 82 = SO33

S 14 4+ 406 3o ST - S0.067
S100 (] =G) & L2 = §] (L2 6} 7 12 = 6) ~ SI00 = 8556
83 T (S I SR e R L D B S EEERRN B
Total I L

[ vou add up vour expected wimmmgs. vou eet that you expedct to lose about 22 cents every
tume vou plav. Hvou dectde to ~uek o our standard beto vou have a 3070 chance of winnmg 53
and a 3075 chance ot fosmg S3 This comes out to an expected vam of SO not great. but better
than fosing money.
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Exactly the same principle can be applied o decisions about pretty muach any thing. although
well stick with medicimne as our example and take the case of bone marrow transplant for late
stage cancer. b bone marrow transplant. patients are given very high doses of extremels tonie
chemotherapy drugs. Sotovic, in fact. that the drigs destrov the patient’s immune svstem. To prevent
the patient dyving of an mtection. doctors give patients new bone marrow cells: these arow and
allow the patient to recover immunity, Nonetheless. treatinent remains very dangerous and patients
have a chance of dying from the teatment or having some complication such that treatment ends
carly with minimal benefie 11 paticnts complete treatment. they have o chanee of responding
tmeaning that the treatment Kills most of the cancer cetls ), m which case they experience an impor-
tant improvement i sursival, The alternative o ransplant 1s standard chemotherapy. to which
patients have a chance ot a limited improvement in survival but no risk of immediate death.

The following hy pothetical decision tree s simitar to that for the bet. Instead of dollars., the
ends of the branches give average survival and instead of working out the probabilities from the
dice rolls. they are obtained from estimates in the scientitic literature.

1)k ~
Deatn from 1oxcity { G montns survva

LBcce PACSY: ranspiant

. S0% ]
Treatment drscontnued i{ { 5 months survval

50 months sur,val

Treatment compieted

Ay 10 months survivai

\
\

Mincr respuonse 10 months survivai

LStandard chemgtherapy

53
<

No response { 6 months survvai

To find out whether a patient should consider an aggressive treatment. vou do exactly the
same math as for finding out whether vou should take a particular bet: vou multiply the probabil-
ities by the outcome tor cach possible result and compare tor cach decision. In this (hypothetical)
case. 1t turns out that expected survival is 10.8 months for bone marrow transplant and 8 months
for standard chemotherapy.

What about our new drug. which decreases the risk of death by 20°4? The obvious thing to
notice is that there ts nowhere in the decision tree to plug in this number. Statisticians desceribe “a
30% reduction in the risk of death™ m terms of relative risk. For exampleotin a drug triat the

death rate at two vears was 207 in the control group and 4% in the drug aroup. this would be a

¢
refative risk of 1470 0 20+ 70 or a relative risk rediction of 300,

Relative risks are well known to have littde value for making decisions. 11 told vou that an
expensive new bike lock hahved the risk of your bike being stolen. vou wouldn 't know whether to
buy iton that basts alone. You'd have to consider () the rate of bike theft in your town. (by the cost
of replacing your bikez and (¢ the costof the Tock. Simikarly. take the common new s headline that
something or other “mercases vour rish of cancer”™ This is only worry if vou are at reasonablhy
high risk o startwith. For example. one drug sometimes preseribed o VOUNg Women cin merease
the risK ofearls breast cancer by 40 or 3070 Bat breast cancer in voung women is fortunately vers
VLS HT SOIIC WORICHL anl Inerease of S0 ranshates to only one hreast cancer for oy ery HO.000 k-
my the drug. This s the v/l vk digrercoce and s far more asetul tor decision nuaking,

The other interestmye thine about 1he decision tree is the numbers anen for Taverage”
survival cecg T months survival, 6 months sarv vl These averages e micans rather than

medians (see Bl Garas o alis S diner O moans and mediairs s Means are better tor decision
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making than medians. If vou don’t believe me. let’s arrange the bet I first suggested in the discus-
sion section of Bill Gares walks into a diner: if yourolta 1, 2. 3.4 or 5. I pay you $20; 1f you roll
a 6, you pay me $1.000. Your median winnings here are $20 and your mean winnings are negative
$150. (This also explains why most of us avoid Russian roulette.) As it happens, in trials of new
cancer drugs statisticians calculate medians rather than means. The reasons for this are mathemat-
ical. but the result is that many cancer trials have no immediate practical interpretation.

Statistics is the process of moving from an area of scientific study to math and then back to
science. For example, we take a scientific question and turn it into a statistical hypothesis, or we
take scientific data and calculate statistical estimates. We must then translate our hypothesis test,
or our estimates, so that they mean something scientifically, or have some practical value. “Prac-
tical value™ often means “helpful for making decisions™ and this means absolute differences
rather than relative differences, means rather than medians.

¢ Things to Remember ¢

Decision analysis is a type of statistical analysis that helps decision making.

2. The first stage of decision analysis involves four steps: {(a) write down each possible
decision, (b) work out all possible outcomes of each decision, {c) work out the probabil-
ity of each outcome and (d) work out the value of each outcome.

3. A decision tree is way of showing all this in a picture.

4. The expected result of each decision is calculated by multiplying the probability of each
outcome by its value and adding together.

5. If the risk of something is normally r and changes to s, the relative risk is s + r and
the absolute risk difference is s — r. For example, if the risk of a manufacturing error
is normally 2% (1, and this increases to 3% (s} on hot days, the relative risk is
s+ r= 3% + 2% = 150% and the absolute risk difference is s — r = 3% — 2% = 1%.

6. Relative differences are not useful for decision making, in the same way that a sale item
might not be worth buying even if it is 30% cheaper than normal.

L I I B R e R R R T R

1. Using a regression equation, Helens doctor 2.

calculates that her risk ot a heart attack i1s &%,
She is told that it she takes a cholesterol lower-
ing drug, her risk will be reduced by 25%.
However. the drug raises her risk of cancer by
0.5%. How much does Helens risk of a heart
attack decrease in absotute terms if she takes
the drug? Do vou think she should take 1t?
What 1f her risk of heart discase was 2%07

NOTE: See page IR7 for answer scts,

[ gave an example of decision analysis for a
medical decision. However, decision analysis
did not devetlop in medicine, but in another
field of statistics. Which?

Decision analysis isn't widely used. Why do
vou think not?
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One better than Tommy John:
Four statistical errors, some of which
are fotally trivial, but all of which
matter a great deal
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ommy John. the renowned pitcher. once made three errors on a single
play: he bobbled a grounder. threw wildly past first base. then cut off

the relay throw from right ficld and threw past the catcher. I was

reminded of that story when reading a scientific paper describing a clinical
trial comparing a new pain drug with a placebo. Near the start of the results
section, the authors wrote something ke, “Although there was no difference
in-bascline age between groups (p = DA3K) controls were significantly more

likely to be male (p = 0.000) .
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This actually goes one better than Tommy John, because there are actually four errors in this
single sentence (or perhaps even four-and-a-half).

I.

[

Accepting the null hypothesis. You cannot conclude “no difference™ between groups on
the basis of a high p-value. This is because failing to prove a difference is not the same
as proving no difference. When we conduct a statistical test. we state a null hypothesis
(e.g.. “There is no difference between groups™), then calculate a p-value. If the p-value
is statistically significant, we reject the null hypothesis. 1t the p-value is non-significant it
isn't that we accept the null hypothesis. we fuil to reject the null hypothesis (see Michuel
Jordan won't accept the nudl hyporhesis: How to interpret high p-values).

Giving p-values for baseline differences between randomized groups. The way that tri-
als of drugs are conducted is that the researchers chose at random which patients receive
the drug and which receive the placebo. Such studies are known as randomized controlled
trials. The idea behind randomization is to make the groups as similar as possible so that
any differences at the end of the study can be attributed to the drug. Baseline differences
at the beginning of the trial. such as in age or gender. are due to chance. just as I might
flip a coin 20 times but not get exactly 10 heads and 10 tails. We use p-values to test hy-
potheses. in this case, a null hypothesis that can be informally stated as: “There is no real
difference between groups: any differences we see are due to chance alone.” In short, giv-
ing a p-value for baseline difference between groups created by randomization 1s testing
a null hypothesis that we know to be true (I also discuss this point in Choosing a route to
evele home: What p-values do for us).

Inappropriate levels of precision. The first p-value in our multi-error sentence 1s re-
ported to three significant figures (p = 0.458). What do the 5 and & tell us here? We are
already way above statistical significance. A little bit more or less 1sn’t going to change
our conclusions, so reporting the p-value to a single significant figure (i.e..p = 0.5) s
fine. Inappropriate levels of precision are ubiquitous in the scientific literature, perhaps
because a very precise number sounds more “scientific.” One of my favorite examples is
a paper that reported a mean length of pregnancy of 32.833 weeks, suggesting that we
want to know the time of conception to the nearest 10 minutes. This would require some
rather close questioning of the pregnant couple.

Reporting a p-value of zero. No experimental result has a zero probability. Even if |
throw a thousand dice | have a small. but definitely non-zero, chance of getting all sixes.
I once pointed this out to some researchers who had cited a zero p-value in a paper, only
to have them reply that the statistical software had given them p = 0.000. so the value
must be right.

This gets to the heart of why [ care about these errors even though they don’t make much dif-
ference to anything. (Why don’t I just ignore those unnecessary decimal places?) Many people
seem to think that we statisticians spend most of our time doing calculations, but that 1s perhaps
the least interesting thing we do. Far more important is that we spend time looking at numbers and
thinking through what they mean. If [ see any number in a scientific report that 1s meaningless—
a p-value for baseline differences in a randomized trial. say. or a sixth significant figure—I know
that the authors are not being careful about what they are doing. they are just pulling numbers
from a computer printout. Statistics 1s more than just cutting and pasting from one software
package to another. We have to think about what the numbers mean and the implications for our
scientitic question,
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* Things to Remember ¢

1. Don't accept the null hypothesis. Instead say something like “we could not show a
difference”

2. Don’t report p-values for baseline differences between groups created at random,
Simply report estimates for each group separately.
3. Think carefully about the number of decimal places you report.

4. Don't give a p-value of zero: say something like “p < 0.001" instead.

“Discussion

A B
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1. I mentioned that the sentence had “half an error.” What was it”?

NOTE: Sce page 189 for answer sets,
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Weed control for p-values: A single
scientific question should be addressed
by a sihgle statistical test

MUST...ROOT...OUT...
USELESS... P-VALUES!

1
Moty Chmdinsnrg—

y garden has set several weed world records, in both the size and
Mvariety categories. Now a few weeds are neither here nor there, but
when the biomass of weeds reaches a certain critical point, they
choke out the stuff you are meant to look at (like the grass and the flowers).
You can say something similar about many scientific papers-p-values grow-
ing like weeds. choking the science until vou can’t tell what you are meant to

be looking at.
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In a typical laboratory investigation, groups of mice are injected with salt water. or one of
several increasing doses of a drug or toxin, and then some measurement 1s made, say, of
immune function. The results are generally presented in a bar chart, such as the following. The
stars indicate the doses for which there were statistically significant differences in immune
score compared to control.

16
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Dose (mg/ kg)

The researchers might then give p-values for comparisons between all doses, reporting, for
example, that 100 and 75 but not 50 mg/kg were statistically superior to 25 mg/kg. This could be
taken to suggest that although 50 is effective and 25 isn’t, there is no difference between 50 and 25

The problem here is twofold. First, the researchers are testing multiple hypotheses instead of
Just one. The design of the experiment implies a single question (What is the relationship
between dose and immune function?) rather than several different questions (Is 75 better than
257 What about 50?). Second, the researchers are treating each hypothesis as independent: when
comparing two doses, they proceed as if no other data exist. This goes against scientific common
sense. If I told you that 25 mg/kg and 75 mg/kg both led to higher immune scores than control,
you would probably feel comfortable betting that 50 mg/kg also improved immunity. By analogy,
if at the end of the season Tampa Bay had won more games than the Red Sox, and the Red Sox
won more games than the Yankees, you wouldn't go on to ask whether Tampa Bay had won more
games than the Yankees.

A better approach to these data provides a nice illustration of the principle that a single scien-
tific question should be converted into a single statistical hypothesis, which is then tested by a
single p-value. What I would do is to create a linear regression (see When 1o visit Chicago: Abour
linear and logistic regression). This would produce the equation v = by + ¢. where v is the
immune score and x is the dose. Some typical data would give v = immune score = 0.030 x
dose + 10.2, meaning that immune scores increase by an average of 0.030 for a | mg/kg
increase in the dose of the drug. I also find that the coefficient g (0.030) is nearly seven times
larger than its standard error (0.0044) so I also get a very low p-value. We can conclude that we
would be unlikely to get data like this if the coefficient was really zero, so we should reject the
hypothesis of no association between the dose of the drug and immune function in mice,
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In the meantime, I need to work out whether 500 mg of aspirin is any better than 499 mg for
treating headaches caused by a surfeit of p-values. Also. I need to complete my letter to the pres-
ident pointing out that a tax rate of 24.9% compared to 25% will have no statistically significant
difference on the national debt, so please could I pay less tax? And clearly my children will never
get any taller, because there 1s no statistically significant difference in their height from one day
to the next.

If you get my point, then you are doing quite a bit better than many practicing scientists. One
time, | recetved a scientific paper for comment from a young pathologist, who had analyzed data
from a series of 150 or so patients with cancer. Halfway through the results, the p-values started
to swim before my eyes: there were p-values for different types of cancer, in different locations,
separately by age, with all analyses then repeated depending on how the cancer was found. |
ended up counting 126 separate p-values—that 1s, nearly one scientific question for each patient
in the study. It sounds ridiculous when you put it like that. but it is all too easy to generate end-
less lists of p-values using statistical software, regardless of whether any of them address a ques-
tion you actually want to answer.

Which is to say, just as I go through my garden on a Saturday. pulling out the weeds, you have
to weed out excess p-values from a scientific report. Otherwise, well, you just won't be able to
see the flowers.

¢ Things to Remember ¢

1. Each and every p-value you report addresses a specific null hypothesis and therefore a
specific scientific guestion.

2. Questions about how things change over time, or vary with dose, can be addressed by
a single regression equation, instead of multiple comparisons between selected pairs of
doses or times.

s+ SEE ALSO: Boy meets girl, girl rejects boy, boy starts multiple testing.

“Discussion
1. What does our regression assume about the doses. Does this really mean that “there is no
association between the dose of the drug and difference between 50 and 2577

immune function?
2. The authors of the immunity study found no sig-
nificant difference between the 50 and 25 mg kg

NOTE: See page 189 for answer sets.
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How to shoot a TV episode: Statictical
analyses that dont provide
meaningtul numbers

WHAT DOES IT MEAND
YES, BUT WHAT IT MEANS THAT
DOES IT MEAN? - A\ THE ANSWER TS o.ooﬁzs |

Cov () =E [(x& (X)) (e Y '

friend of mine is a cameraman on a TV series about cops and rob-
bers. [tsounds like an interesting job. so I asked him one day how it

all worked,
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Me: What do you do first in the morning?
Cameraman: When we get to the location we spend about 2.8 setting up.
Me: 2.8 hours?
Cameraman: No, just 2.8. Anyway, then we have to call the actors and as many

as of them have emergency appointments with their divorce
lawyer, or are having an artistic crisis or something, and can’t be
found.

Me: Sorry, | didn’t catch that. You've had how many actors go missing?
Cameraman: Jtis impossible to work out.
Me: Can’t you just count?

Cameraman: No. Anyway, making a show sounds like fun, but the hours are
long, and working with TV types can be a hassle. The pay is good,
though: I can get 0.9 for a day'’s filming.

Me: How much is that?
Cameraman: More than 0.8.

¢ssss e

This conversation reminded me of three statistical methods that are among those [ worry about
the most: correlation, ANOVA and chi-squared. In my view, these methods are otten used
without sufficient awareness that the numbers they provide are sometimes less than fully
meaningful.

Here are some things you may have been taught about correlation:

Correlation measures the strength of association between two continuous vartables, like
height and weight, or a country’s wealth and its fertility rate.

Correlation is measured from —1 to 1.

A correlation above 0 means that as one variable increases, so does the other (like calo-
ries and weight). This 1s called a positive correlation.

A correlation less than 0 means that as one variable increases, the other decreases (like
exercise and weight). This is called a negative correlation.

Correlations close to 0 are called weak; correlations close to | or —1 are called strong.

Two things might be correlated, but that doesn’t mean one causes the other, like stork
populations in Europe and the birth rate in Germany (see discussion answers for
My assistant turns up for work with shorter hair: About regression and confounding).

Here is something you probably haven’t been taught about correlation: what 1t actually means.
Take. for example. the correlation between a state’s rate of poverty and its violent crime rate,
which is about 0.27. Alright. because the correlation is above zero we know that states with a high
poverty rate also tend to have high crime rates. Also. the correlation isn’t that close to 1. so it is not
as if only states with a lot of poverty have a lot of erime. But bevond those vague generalities. it is
somewhat hard to sav more about a correlation of .27,
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Chi-squared has a similar problem. tHere are some data from a survey that asked whether it is
ok for people trom different religions to et married:

Question 6: Attitude | Question 12: Proportion of friends
AP ter (A atvinge s 10 M RE s ralgIN 0 00T
E | Most | Half | Lessthan half
Mind a lot 36 (219 34 (6%) 8 (3%) 2 (2%
Mind a Linle 39 (22 OO IR0 24 (8%) 8 (8%}
Do not mmd at all DY (3774 F01(76%) 276 (90%) 87 (90%)

The results are not enormously surprising: leaving aside whether this is right or wrong, peo-
ple who only spend time with members of their own religion are less comfortable with interfaith
marriages. Chi-squared here is 102.7. giving a p-value <<0.0001. So what do vou conclude? The
null hypothesis is that there is no difference in attitude to interfaith marriage in terms of the pro-
portion of friends with the same religion. The p-value is low, so you reject the null hypothesis. To
show why this isn’t an interesting conclusion. have a ook at this table:

Question 6: Attitude ' Question 12: Proportion of friends

to interfaith marriage of the same religion

et et et L T S SRS b =

Most | Half

' Less than half

Mind a lot 8 (3%) 2(2%) 36 (21%) 34 (6")
Mind a little 24(8%) 8 {%%) 39(22%) 109 (18%)
Do not mind at alf 276.(90%) 87 (9094 99 (537%) 461 (76%90)

What I did was swap some of the columns so that it is those who count about half of their
friends as being the same religion who mind most about intertaith marriage. Yet the chi-squared
value is identical: 102.7. In other words. chi-squared gives you exactly the same result whether
having mixed religion friends is associated with higher tolerance for interfaith marriage. a lower
tolerance. or whether tolerance starts high. goes down and then goes up again.

The authors of the study used chi-squared because they were studying the relationship
between two categorical variables (that is. variables that can only take a limited number of val-
ues. such as “all™. “most™ “halt™ or “less than half™). To examine the ussociation between a cat-
cgorical variable and a continuous variable (one that can take many values. such as weight or
blood pressure). statisticians often use analysis of variance (ANOVA ), ANOVA has become par-
ticularly popular for analyzing the results of experiments where several treatments are compared.
As an example, mmagine that vou were interested in psvchotherapy interventions for children
with behavioral problems. where the extent of the behavior problem was measured on a 0- 20
scale. IF you had scores from children who cither had or had not received an intervention (say.

onc-on-one psvehotherapy ). vou could compare these scores by 7test However. let’s imagine that
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you were interested in two ditferent interventions (one-on-one psychotherapy versus one-on-one
psvchotherapy plus tamily psychotherapy). Now vou have three groups (two ditferent treatments
plus a group with no treatment), and you can’t use a 7 test to compare three groups. ANOVA
allows vou to throw all the data into one analysis and get a p-value.

If the p-value from ANOVA was less than 0.05. vou would reject the null hypothesis of no
difference between groups. leading to the conclusion that “there are differences in behavior
depending on treatment.” This is a pretty uninteresting conclusion, all told: it could be. for exam-
ple. that psychotherapy makes things worse (see. for example. the “scared straight” study in The
probability of a dry toothbrush: What is a p-value anvway?) it might also be that only one type
of therapy 1s effective.

Here are some example results that would give a statistically significant p-value from
ANOVA:

"Group (30 chitdren | Mean behavior -

_in each group) . - score
No treatment 12.6 176
Psvchotherapy 12.0 1.75
Psychotherapy plus family therapy 10.1 202

These data seem to suggest that one-on-one child psychotherapy may help a bit. but it 1s
really the family therapy that is doing the work. This would make sense if you believed that what
helps children most is day-to-day interactions with their family rather than one hour a week with
a therapist. Either way, this i1s a far more useful presentation ot'the data than “the three groups are
not the same.”

Correlation, chi-squared and ANOVA are a good way of thinking about the difference
between inference and estimation (see [ tell u friend thar my job is more fun than yvoud think:
What is statistics?y. Chi-squared and ANOVA are limited because although they provide a
p-value to test a hypothesis about an effect, they don’t provide any idea of how large or small the
effect is, or even in which direction the eftect goes. In other words. chi-squared and ANOVA pro-
vide inference but not estimation. On the other hand, correlation does provide an estimate, but it
isn’t a useful one: we know that the association between crime and poverty is “0.277 but don’t
really get a good i1dea of what 70.27" means.

This suggests that we might sometimes need to complement correlation. chi-squared and
ANOVA with methods that give additional numbers. In the case of the psychotherapy data set.
we could use a 7 test to compare psychotherapy with no treatment, and then psychotherapy plus
family therupy with psyvchotherapy alone. This analysis suggests that psychotherapy is associ-
ated with a 0.6 point improvement in behavior scores (95% confidence interval —0.3. 1.5) and
that family therapy is associated with an additional 1.9 point miprovement (95, confidence
interval 0.9, 2.9).

As for the marriage data. probably the casiest thing to do is simply to combine the categories
so that vou have just two groups. For example. vou could detine “number of friends ot the same
religron’™ as “all™ or most” vs Chalt™ or Uless than halt” and detine “attitude to interfaith mar-
riage” as mind aclot” or Tnand a hude™ vl not mimd at all” We woudd conclude that 287 of
those with alt or most ot their friends beng the samie relizion had an issue with mtertaith marriage
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compared to only 10°4 of those who counted half or more of their friends as being in a different
religion (a difference of 189,,: 930, confidence interval 139, 2291 With respect to the erime datq.
we could use linear regression to calealate for a 1"y increase in the poverty rate--the number of
violent crimes increases by 17 per 100.000. This is a number far casier to understand in real termis
than a correlation of 0,27,

You may have seen tables or flow charts in textbooks that describe the type of statistical
analysts you should yse depending on the type of data vou have. For example. such a table might
tell you categorical data should be analyzed by chi-squared test. whereas a tWo-group compari-
son of a continuous outcome should be by Wilcoxon or 7 test. This is 1 good start. and I'd hardly
Want vou trymg to analvze data from the psychotherapy experiment using chi-squared. But here
15 a simpler rule of thumb: whatever analyses you do. test hypotheses that are interesting and pro-
vide numbers that mean something.

* Things to Remember «

Statistical analyses provide us with numbers.

2. The value of any statistical analysis depends on whether the numbers it provides are
meaningful.

3. Many statistical methods, such as chi-squared and ANOVA, only provide >values. As
such, they can help test hypotheses {inference) but do not provide estimates.

4. We generally need to know how large or small something is in order to assess jts impor-
tance. Accordingly, we generally like our statistical methods 1o provide estimates as
well as inferences.

5. Some statistical methods, such as correlation, provide estimates that do not have an
obvious meaning.

6. Chi-squared, ANOVA and correlation have their uses, but they often need to be comple-
mented by other methods. For example, methods that provide estimates can be used
alongside chi-squared and ANOVA.

Discussion

1.

fad

Isuggested that. for the crime data set. regres- [s correlation really a dimensionless number.
ston would give us a more meaningtul number ke it taking “2.87 to set up a film shoot?

than correlation. Another alternative involves
no numbers at all. How might vou iy estigate
these data without reporting specific numbers?

b

Are we interested in inference for the crime
data set? Should we report p-values from our
analvses?” What about confidence Interals?
Should vou never gae chi-squared. ANOVA op

correfation?

NOTE: Sce page 190 tor i or et
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Cam, A3 years old, 700 pound
Florida super-granddad: Two common
errors in regression

T JUST KEEP GETTING
STRONGER EVERY YEARH!

d ke to introduce vou to Sam. Sam is a 93-vear-old retree fiving i
Florida. He tought m the Pacitic during the second World War. went to
college on the GI Bill. then married his high school sweetheart and settied
down to raise a fanily i Levittosn, New York. He retired. moved to Florida.
lost his wite to cancer and s now enjoving what his daughter calls "a second
bachelorhood™ with the numerous widows of Fort Laaderdale. The thing vou
need to know about Sam s not that he goes to the Tocal diner at 5 every night

for the “early bird special” nor that he is now <o stooped over that he needs

110
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three cushions to see over the dashboard of his Chevy The interesting thing about Sam is that he
weighs almost 700 pounds. but can Jump over an articulated truck and bench press nearly half a
ton. Also. he is such a fast runner that he can sprint to the beach. a mile from his condo, and
arrive S minutes before he sets out.

Sam is not a figment of my imagination. he is a statistical crror. Here is Sam’s data set:

Time for the one mile run

Age (minutes:seconds)

2

5 16

10 75

12 54 340

f4 Hid 3:03

16 136 4:40 61t 2 in. 160
Iy 143 4:35 6116 in. 180
20 153 4:30

As you can see, Sam was 4 pretty good athlete in high school, and kept up the running after
he left. So how did he getto weigh 700 pounds? We can graph out Sam’s weight against his age:

150

Weight in ibs.
100

50

[

|
o «L?_ ,

2 5 10 16 18 20

Each dot gives Sam's werght ata particular age and the line is the regression fine that best fits

the dots. The formala of the line s VA I3y 4 9 As v s weight and v is age. this gives
wetght = 733 < age + 9. You can see how we get to Sam weighing nearly 700 pounds at age
93:7.33 X 93 <9 = 691 Ibs. This can also be shown on the follow ing graph:
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What vou can see here clearly is that all the data are off to the left. and we are extending the
regression line way out to the right where there are no data at all. We have no idea what happened
to Sam’s weight between 20 and 93, and certainly can’t assume that it will have the same relation-
ship to age as when Sam was a child. A statistician would say that we are cxrrapolating too far
from the data.

The other obvious point about the figure is that it is a straight line. Sam’s running times pro-
vide a good example of where a straight line makes no sense at all, because Sam’s time for the
mile eventually becomes negative, suggesting that he finishes a race before he starts.

6:00
i

LI

4:00

2:00
1

Time tor the mile {(minutes:seconds)
~-2:00 000
i

-4.00
J.

~6:00
L

T T T

10 15 20 93
Age

If you look carefully at the top left of the figure above. vou can see that Sam's times don't
even seem (o start on a straight line —the regression line only goes through two of the five
points. which seem to lie on a curve. As it happens. most things in life seem to follow a curve.
Last night I cooked a stew. and added a couple of cloves of garlic. The reason Tdidn 't add more
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than a couple is because the relationship between flavor and amount of garlic is a curve. not a
line. Adding a little bit of garlic adds flavor; add too much and you ruin your food. (Not that
the pasta place on 5th Avenue seems to notice.)

Great 4

Good

Okay

Taste of food

Bad

Terrible -

Amount of garlic

Or take the “law of diminishing returns.” It takes me about 10 minutes after dinner to clear the
plates from the table and the serving dishes from the counter, after which the state of the kitchen
improves from “awful” to “not a disaster™; to actually wash the dishes and wipe down the surfaces—
improving the kitchen from “reasonable” to “clean”—takes a good 30-45 minutes; to make the
kitchen spotless (e.g., cleaning the oven, washing the pantry doors) would take all night.

Spotless -

Very clean -

Clean

State of kitchen

Not a disaster

Awtul L

The law of diminishing returns can be defined as “the increase in reward per unit effort
decreases with increasing etfort.” Ifyis reward and v is cffort. this means “the increase in 3 when
vincreases by | decreases as v gets higher and higher.” A regression line suchas y = 733 ¢ + 9
has the same increase in v for when x increases by I for all values of x. and so won't tit the law of
diminishing returns.

Time and effort
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A straight line doesn’t work for the relationship between running time and age, garlic and fla-
vor or kitchen cleanliness and time spent cleaning. What you need instead is a curve and what
you may remember from high school (or even the chapter Why your high school math teacher
was right: How to draw a graph) is that you can plot a curve if you make your regression a little
more complicated than just v = 7.33 x + 9. The simplcst thing to do 1s add the square of x. You
mlg,ht remember this as a quadratic equation: y = ac® + bx + ¢ (indeed, statlsnuans often call

~ a “quadratic term™). If [ run a regression including lgety =1 429x — 54.2x¢ + 784,
whlch gives the following graph:
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You can see how adding in x* gives you a curve that fits the data (i.e., joins the dots) better
than a line. It would be easy to get comfortable at this point, and go home for a well earned din-
ner. But can we predict Sam’s time for the mile any better? Here is what we get if we extend the
regression line to 40:

15:00

Time for the mile (minutes:seconds}
10:00
L

500
I
e

& - ®
T T T T T T T T T T T T T T T T

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Age
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It is hard to believe that once he hit 40, an ex-high school athlete like Sam would take
nearly 15 minutes to run a mile not much faster than walking pace. This goes to show that
you can make a regression as fancy as you want, but if you don’t have the data. you may end
up saying something just as ridiculous as having a 93-year-old bench press half a ton,

* Things to Remember o
1. The most common approach to regression (y=bx+ c) assumes tha{ the relationship
between the predictor variable (x) and the dependent variable ( v} follows a straight line.

2. Many associations follow a curve rather than a straight line. The law of diminishing
returns is one example.

3. Regression can be used to describe associations that follow a curve. A typical approach
i to use a quadratic term (xz) for the regression equation y = ax? + px + ¢ However,
there are other technigues that Statisticians use.

4. Itis a bad idea to use regression to predict y for values of x far from any of those on your
data set.

for
“Discussion

«#qu\vﬂk«szwta*kdsféntflv’«*uar-«rc&«yﬁu»a&x;!{w<ﬂ‘:":,\,"n'rx(»’,»evk’(ﬁltﬁv&*&tn&&b&»&@d);9“6‘0‘1&!:&40&#0&&#&&&

1. The regression for Sams mile time was based seconds and x was age, I gave 1 = 1.4292 —
on five data points, his time at ages 12, 14, |6, 54.2¢ + 784, Why is the éoeﬁ"icient for
I8 and 20. Any thoughts as to whether this is a X [.429) given to three decimal places
good or bad idea? whereas only a single decimal place is given
2. How did I work out that Sam could bench press for the coefFicient for v (54.2)?
a half'a ton at age 93
3. For enthusiastic students only: In the regres-
sion equation where V¥ was time for the mile in

NOTE: See page 194 for answer sets.
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Regression to the Mike: A stafistical
explanation of why an eligible friend

of mine ig still single

DON'T WORRY, BY REGRESSION TO THE MEAN
I'M SURE YOU'LL DO BETTER TOMORROW.
ONSHIPS

T 2
SRTLIRDA

|\ orLD SOPI

)
S

ike is nice looking, has a great sense of humor, a good job and a

fabulous apartment in a popular part of town. He is, however, still

single. and he thinks the apartment is to blame. Over the past few

years he has rented out the second bedroom to a variety of single friends and,

without fail. all have succumbed to what he terms “The Curse of Mike™: they

meet someone. get married and move out.

Mike has come to believe that the second bedroom has some kind of magic

romantic properties. so much so that he has considered moving into it. His

friends think that his single condition is related to a repressed resistance to

commitment buried deep in his subconscious. His mother says. naturally.

116
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“Who would be good enough for my pertect bubula? My explanation. of course. is statistical: in
its general form it is known as regression towards the mean. Take any phenomenon of note at
all-—a guy in his 30% being single: Mr Jones® unexpectedly high blood pressure; Mrs Jones’
arthritis having a flare-up: it being a particularly warm January-—then wait a while. go back and
take a look. Chances are that things will have returned to a more average stage: the man got mar-
ried: the Joneses are feeling better: and it was below freezing for most of February.

Here is a simple illustration. Have a class of students roll g die. ask anyone who rolled a 1. 2
or 3 to leave the room and have the remainder roll again. In most cases. the second die roll will
be lower than the first and overall. the mean of the second die roll will also be lower. For exam-
ple. you might see something like this:

Student First die roll Second die roll Second die roll lower?

Laura 4 5 No
Evangeline 4 3 Yes
Dena 3 —
Eric hY 5 No
Felicia 1 —
Aviv 6 5 Yes
Carlos ) 2 Yes
Michael 6 2 Yes
Madison 3 —
Lev 2 _

Six students—Laura, Evangeline. Fric. Aviv. Carlos and Michael-—are still in the class for
the second die roll. The mean of their first die roll is 4 + 4 + 54+6+5+6=30+6=5:the mean
of their second dieroll is S +3+5+5+2+2=22+¢6= 3%3. The true mean of a die roll is 31/
333 1s closer to 31/2 than is 5, so we have regression to the mean.

Although this seems trivial. it is exactly what we do in many experiments: take some mea-
surement and measure again only if scores are high. For example. in medical trials. we mea-
sure patients” pain, blood pressure or anxiety. exclude anyone with low scores (on the grounds
that they are not in need of treatment). give some treatment and then measure again after a few
weeks. Because of regression to the mean. we'd expect just by chance that many patients would
get better and that mean pain, blood pressure or anxiety would fall, even if treatment was inefiec-
tive. Or take a business study: a manager at the central office of a bank might identify a couple
of branches with particularly long waiting times and test a change in procedure designed to
shorten the line. Again. because only bank branches with long wait times were selected. wed
expect waiting times to fall by regression to the mean. This Is just one of the reasons why it is so
important to have control Zroups in experiments.
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Perhaps my favorite example of regression to the mean is the “Curse of Sporrs lllustrated.”
The so called “curse™ is based on the observation that athletes making the cover of Sports lus-
trated typically have a rapid decline in performance, or get injured, shortly after being featured.
Of course. the reason why athletes get picked out to be put on the cover is that they have done
something spectacular (“Pedro’s Amazing April.” etc.) and at any randomly picked subsequent
time are likely to be just average (Pedro gives up a two-run shot in the bottom of the ninth).
Another sporting regression to the mean is that most coaches are contident in their ability to help
an athlete to bounce back after a particularly poor performance. Again, this is because no matter
what you do—whether you scream, comfort or threaten—-the athlete is likely to have an average
(1.e., better than poor) game next time out.

Regression to the mean pops up in just about all areas of statistics. So whether you are trying
relieve pain, improve customer service or win at sports (or just meet someone nice). it is worth
bearing in mind that things tend to average out in the end.

¢ Things to Remember ¢

1. Things vary around their mean.

2. If you see something that is far from the mean, it is likely to be closer to the mean the
next time you check. This is called regression to the mean.

3. I will not respond to requests for Mike's phone number.

“Discussion
1. Does regression to the mean explain why Mike statistical technique used by statisticians to
is single? quantity relationships between variables?

2. What is the connection between regression to
the mean and linear or logistic regression, the

NOTE: See page 195 for answer sets,
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OJ Simpson, Sally Clark, George
and me: About conditional probability

I DON'T CARE WHAT THE
LAB REPORT SAYS, THIS GLY
DOESN'T HAVE HEART DISEASE!

The cact

1. OJ Simpson was a star football player whose subsequent Hollywood
career was cut short when he was accused of killing his wife. Nicole
Brown. He spent an afternoon driving around Los Angcles pressing a
gun against his head while being chased in slow motion by the police
and then turned himself in. The subsequent court case was about all
anyone got to hear about tor the next year or so. He was finally
declared not guilty. although about ten vears later he robbed a collec-
tor of sports memorabilia and was sent to jail.

2. Sally Clark was a British woman who lost two babies to “sudden
infant death syndrome.™ Just as it sounds. this is when an apparently
healthy baby dies for no dpparent reason (it is sometimes called “crib
death™). Someone clearly decided that Sally Clark had not suffered
cnough. because she was accused of murdering her babies. found
guilty and sent to jail. She was later released after a legal appeal.

119
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3. George is an incredibly athletic guy in his 20s who burned me deep several times play-
ing Ulimate (a sport plaved with a Frisbee).

4. Me: L am no longer in my 20s. Also. I had trouble bending my knee the day after the Ul-
timate game. On the plus side. T do have a basic grasp of math.

Act 1. Statistics on national TV
The OJ Simpson trial was televised live and attracted massive ratings. As a result, mitlions of
Americans got to watch OJ's lawyers use statistical reasoning to defend their client. One of OJs
main problems was that he had a history of physical violence agamst Nicole Brown. The prose-
cution argued that once a man had hit and punched his wife. it wasn’t much of a stretch to imag-
ine that he might, it provoked, go one step further and stab her. The lawyers’ rebuttal went
roughly hke this:

e Statistics show that about 1 in 20 married men have hit their wives.

e Statistics also show that only about 1 in 20.000 men kill their wives.

e Dividing one number by the other you get thatonly I in 1000 men who hit their wives go
on to kill them.

e The fact that OJ Simpson hit Nicole Brown gives him only a tiny chance of murder-
ing her.

The problem with this argument—and the prosecution, being non-statisticians, didn’t bring
this up—is that Nicole Brown was already dead. It might well be true than a man who beats his
wife probably won’t turn to murder, but the question isn’t "If a man beats his wife, what is the
chance he will subsequently kill her?” What we want to know is "It 'a woman has been murdered,
and she had previously been beaten by her husband, what is the chance that he was the perpetra-
tor?” It turns out that if you look at the data on murdered women. then focus on those who had
previously reported domestic violence, most of those were indeed killed by their husbands.

Act 2: Statistics by a pediatrician

At the trial of Sally Clark, Dr. Roy Meadows, a pediatrician, tried to emulate OJ's lawyers’
attempts at amateur statistical analysis. (Question to Dr. Mcadows: would you like me to treat a
sick relative of yours?) Meadows first showed data that only about | in 8500 babies die of crib
death. He then asserted that the chance ot two crib deaths was | in 8500 multiplied by 1 in 8500,
what was reported in the press to be =1 in 73 million.” This is fantastically unlikely, therefore the
deaths didn’t happen by chance, and Sally Clark was probably responsible.

Meadows used the same reasonming vou'd use to calculate the probability of coin tosses: the
chance of throwing heads is 0.5, <o the chance of throwing two coins and getting both heads 1s
0.5 > 0.5, and the chance of three heads in three tosses 1s 0.5 % 0.5 X 0.5, But there 1s a big
ditference between coin tosses and itlness in children—what statisticians call independence. Two
coln tosses are independent because the result of the first toss gives you no information about the
second: 1f I throw heads and ask vou to give the probability that the next throw also comes up
heads. vou'll answer “0.53.7 exactly the same number you'd have given if T hadn’t told you about
the previous coin toss. But if [ tell vou that a woman has a sick child. you'd probably guess that
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her second child had an above average chance of being sick because many diseases tend to run in
tamilies. The probability that one child is sick is therefore not independent of his or her stbling’s
probability. and vou can’t just multiply probabilitics together to work out the chance that both
sthlings are unwell.

But let’s assume that Meadows was right, and that the probability that Sally Clark would lose
two children to erib death was indeed | in 73 million. We still have a problem very similar to that
of the OJ Simpson trial: we aren’t interested in knowing “if you have two children. what is the
chance they will both die from crib death?” (which is how vou getto bn 73 million) but “two
children died from crib death: what is the chance that they were murdered?” To answer that ques-
tion properlyv. vou would have to get data on all families who had two crib deaths and see the pro-
portion of families in which the deaths were due to murder.

A key pointis that even very unlikely events will happen every so often. One in 73 million
t5 roughly the same chance as tossing 26 heads in a row. Now if you ran into a friend on the
street. and he told vou that he'd just thrown 26 coins and they'd all came up heads you'd
think. “That is very, very unlikely: he's probably tying.” On the other hand. if there was a
competition to have every adult American throw 26 coins, and it turned out that Joe in Peoria
had done it, well that wouldn’t be that surprising at all (if you are mterested. the chance that
at least one out of 300 million Americans would throw 26 consecutive heads is about 98%5).
And no one would arrest Joe for fraud on the grounds that what he was claiming he had done
was very unhikely, and so he probably hadn't. There are lots and lots of families with two
children and at least some of them will suffer the tragic and highly unlikely loss of both from
crib death,

Act 3: George goes deep

While statisticians don’t spend much time worrying about the zuilt or mnocence of individual
defendants in court cases, they do commonly evaluate medical tests. Let's imagine that there was
a test for heart disease that had been found to be 99% accurate. Let's also imagine that having run
past me into the end zone for a score, George jogged off the Ultimate field and straight into his
doctor’s oftice to take the heart disease test. Our statistical question is this: If the test comes back
positive. what 1s the chance that George has heart discase?

The obvious answer is 99%. because the test is 99% accurate. But just like OJ Simpson’s
lawyers, and Professor Meadows, this argument ignores crucial information. OJ Simpson'’s
lawyers didn’t take into account that Nicole Brown was murdered and Professor Meadows
tgnored the fact that Sally Clark’s children were already dead. Hf we believe that George has a
very high chance of heart disease, we are forgetting that he just plaved two hours of Ultimate and
then caught the game's Jast score.

To work out Georges chance of heart disease given that his test was positive, we need to
Know the tvpical rate of heart discase in healthy. non-smoking. athletic men in their 20%. A rea-
sonable estimate might he a rate of 1 in 10.000. What happens if we were to give our test to
10.000 men like George? We might first assume that our test does accuratelv identity the one guy
with the heart problem. This leaves 9999 without heart discase. 1t the test is 9995 aceurate. it is
wrong 1o of the time. meaning that [ o 9999 about 100 healthy men - will have a positive
resalte Soatwe test 10.000 healthy, non-smoking. athletic. 20-something males, we will call 101
posiive. butonly Fwill actually have heart discase. George's chance of heart disease has ing been
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given a positive result by a test that is 99% accurate is about 1%w. (This is the positive predictive
value: see Iignore my child’s cough, my wife panics: About specificity and sensitivity.) You can
show these results in a simple table: ‘

Has heart | Does not have heart | Probability
disease - | =~ disease = = of heart disease
Test comes up 1 100 1%
positive
Test comes up 4 I¥99 <2 0.0 %
negative

Ok. but what if I tell you that the reason George went to the doctor is that he had a history of
heart disease in his family and young men with this particular tamily history have about a 1%
chance of heart disease, even if they are athletic? Here is the result you would get for the 99%
accurate test:

| | Has heart Does nbfhavé heart Probability of heart

disease | disease disease
Test comes up positive 99 99 509%
Test comes up negative ! 9801 0.01%

You can see that. out of the men who test positive, half have heart disease. So George’s
chance of heart disease having being given a positive test result changed dramatically from 1%
(which he could basically ignore) to 50% (which means he would really need some extra tests).
In other words. the probability of disease affer you take a test depends on your probability hefore
you take the test (the prior probabilin).

OJ, Cally and George meet for coffee and talk
about old times

Any statistician hanging around with a latte would be delighted to inform OJ Simpson. Sally
Clark and George that what links their stories is the 1dea of condirional probability. You'll hear it
said that much of statistics is about giving vou the probability of something. For example. a sta-
tistician might analyze cancer trends to calculate that a woman'’s lifetime probability of being
diagnosed with breast cancer is about | in 8. But statistics 1s perhaps most particularly concerned
with working out a probability given some additional information (the “condition™). The most
obvious example is the sensitivity of a medical test which 1s the probability that a patient comes
up positive if they do indeed have the disease tsee [ ignore my child's cough, my wife panics:
Abour specificin and sensinvity, A statstician would deseribe this as “the probability of a pos-
itive test conditional on disease” Conditional probability s generallv much more useful than
unconditional probability hecause yvou are using more information. Bayesian statistics 1s a
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branch of statistics that explicitly tries to use as much information as possible. by using prior

probabilitics to calculate the chance that something is true or false. As a result. Bayesian formu-

las mclude conditional probabilities.
A final point: the justice system
Clark was released). Something that

generally does work out in the end (OJ is in jail and Sally
also works out in the end is the aging process. so here is a

warning to you, George: you might not have heart disease. but wait 20 vears and some kid fresh

out of college will burn vou in the end zone. And vour knee will hurt. and mayl

e your grasp of

math won't be so great, and no. I'm not bitter . . . keep the darn disc.

* Things to Remember ¢

Much of statistics involves working out probabilities.

2. One common error is to calculate the probability of something that has already hap-
pened, and then come to conclusions about what caused it based on whether that prob-

ability is high or low.

3. The probability of something (such as having heart disease) given information that some-
thing else is true (such as the result of a heart test} is called a conditional probability.

4. Conditional probability depends on both the probability before the information was
obtained (the prior probability of heart disease) and the value of the information (such as

the accuracy of the heart test).

Discussion

Idescribed two events as independent if intor-
mation about one gives you no information
about the other. Similarly. two variables are
independent if information about one gives vou
no information about the other. What is the
relationship between independence and statis-
tical tests such as the r-test or chi-squared?

In the text | deseribe Protessor Meadows” argu-

ment as “only about 1 in 8300 babies dic of

crib death the chance of two crib deaths
[s] 1 in 8300 multiplied by | in 8300 for] I'm

NOTE: Sce page 196 Hor answer sets.

73 million.™ I pointed out that the 1 in 73 mil-
lion™ number (a) assumes that the chance that
an nfunt will die of crib death is independent
of the chance that a sibling would; (b) says
sery little about the probability that the chil-
dren were murdered. There is an even more
fundamental mathematical  problem though.
Any thoughts?

The Sally Clark case has been deseribed as an
example of the “Prosecutor’s Fallacy.” What do
vou think this 1s?
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Boy meefts girl, girl rejects boy, boy
starts multiple testing

YOL SCORE ME SIGNIFICANTLY
ABOVE AVERAGE ON 3 OF 52
CHARACTER TRAITS. WILL YOU

GO OUT WITH ME?

Boy: Would you like to have lunch one day, just you and me?
Girl:  No.

Boy: [/ thought you said | was cute.

Gir: | never said that!

Boy: But you laugh at my jokes.

Girl:  Because they are so stupid.

Boy: Is there nothing you like about me?

Girl:  Well, your fashion sense isn’t entirely misplaced.

Boy: (hopefully) So you will go on a date with me?

Girl:  No.

ooooooooo

124
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What is happening here is that the eirl clearly doesn't like the boy. but the boy keeps on fish-
g around. looking for something positive. [e eventually finds 1t but that doesn't change the
tact that his dry spell isn't gomg to end any tme soon.

As such. the conversation has a lot in common with many statistical analyses: the investiga-
tors run an experiment (hov nieets airhiz the results don’t come out they way that they hoped (girl
rejects boy): the investigators ask the statstcan to run more and more analyses to see if thev can
find something positive (boy learns that girl doesn’t mind his clothes).

One of the best examples of multiple testing iy subgroup analvsis, Let's say we doa clinieal
trial to see whether a new chemotherapy drug helps prevent recurrence after surgery for colon
cancer. with 1000 patients receiy ing the new drug. and 1000 patients recetving standard therapy.

Here are the results we get:
fot New drug Old drug

Patient recurred 1530 (13%) 190 (1995

Patient cancer free 850 (8304 STO(8194)

The new drug appears to reduce recurrence rates from 19% to 15%,. This difference is statis-
tically significant (p = 0.020. if vou are interested). However. the investigators then think. ~Ok.
the drug seems to work., great. But we don’t just want to tell doctors stimply to go use it: they'll
ask us who exactly to give it to. Let’s see i it works better for some patients than for others.™

This seems pretty sensible because medicine should be all about the individual patient, rather
than treating everyone the same. So let’s imagine that the Investigators want to know whether the
new drug works better for men or womers.- -that is, they want to know about drug effects in sub-
groups of patients. Here are their results, separately by gender:

N_len ,' _Women

Olddrug ' Newdrug | OMd drug
75 (153%) 100 (20%) 75 (153%) 90 (18%)

New drug

Patient recurred

Parient cancer free 425(83%5) 400 (800 4) 425 (83%4) 410 (82%)

The results are pretty simitar, apart from a slightly higher recurrence rate i men on the older
drug (20% in men. 1894 in women). But this slight difference has 4 brg effect on the p-value: there is
a statstically significant cttect of the drug for the men (p = 0.046 ) but not for the women
(p = 0.2). The investigators (although not the drug company) are delighted with these results and
rush to publish the finding that the drug works for men but notwomen. However. at the last moment.
aresearch assistant who has been cheeking the data rushes in with news of a few errors: it turns out
that some men had been mislabeled as women and vice versa. The corrected data Took like this:

Patient recurred NHii6%.) TOG (200 T Y0 (1R

Patient cancer free $20 x40 HU0 (K07 SR 110 (827
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When you run these numbers you get p = 0.12 for the men and p = 0.10 for the women (the
overall p-value for all patients is still p = 0.020). The investigators conclude that the new drug is
effective. but doesn’t work either for men or for women. This is impossible. in the same way that
(0 + 0 = 1is umpossible.

How to make an ineffective drug work just fine
[t is also impossible that 0 + 1 = 0. Nonctheless. many medical researchers insist that this is
sometimes the case. Take the following study:

; Newdrug |  Olddrug
Patient recurred 165 (16.5%%) 190 (19%)
Patient cancer free 835 (83.53%) S10 (819

The p-value here is 0.16 so we can’t conclude that the new drug is any better over our regu-
lar treatment. As you can imagine, this is a bit of a crushing blow to the investigators, who have
spent years on the study. So they say: “Ok, perhaps the new drug doesn’t work on average, but
perhaps it works for a subgroup of patients.” Here are the results separately for men and women:

01d drug

Patient recurred 75(15%) 100 (20%) 90 (18%) 90 (18%)
Putient cancer free 425 (85%0) 400 (80%%) 410 (82%) 410 (82%)

Now we get p = 0.046 for men and p = | for women. The investigators (and now the drug
company too) are delighted and want to say that men. though not women. should be treated by
the new drug.

Co men are from Mars, women are from Venug®?

There are a couple of problems here. First. the investigators appear to be accepting the null
hypothesis (see Michael Jordan won 't accept the null hvpothesis: How to interpret high p-values).
In the first example. they said that the drug didn’t work for women because the diftference between
groups was not statistically significant. But in a drug trial, a p-value of 0.03 or more means “we
didn’t find sutficient evidence that the drug is different from control.” not “the drug s the same as
control.”

Second. while we might be svmpathetic to the investigators” desire to find out whether the
drug works better for some patients than others. the particular subgroup analysis they are doing
is a little silly. Chemotherapy drugs are basically poisons that are shightly better at killing cancer
cells than normal healthy cells (this s why chemotherapy causes unpleasant symptoms such as
nausea and hair loss). There is really no reason why a porson would work ditferently in a man
than a woman. I have asked some cancer doctors, and they told me that they couldn’t think of any




CHAPTER 28 127

study ever done showing that a chemotherapy agent had a different effect on men compared to
women. This was. incidentally. «fier they had Just shown me an analysis of the effects of
chemotherapy separately by gender.

The third problem. and the one that gets statisticians most exeited, 1s related to the role of
chance. Take the first set of chemotherapy study results: the recurrence rates in patients
receiving the new chemotherapy drug were the same in men and women: the overall recur-
rence rate for those on the standard treatment was 19, but stightly higher for men (20°4) and
slightly lower for women (184). These shght differences could guite clearly be due to ran-
dom variation,

Astrology, and why Geminic aren't helped by aspirin

The problem with multiple testing is that the more significance tests you do, the more tikely one
will come up significant by chance. If I flip coins every day and look at my results over the
course of a year, I probably won't find that I throw more heads than expected by chance. But if I
start analyzing my results by time of day, date and weather, it wouldn't be surprising if | found,
say, more heads than expected (p = 0.002 ) on wet Wednesday mornings in October. This is
exactly the same as the boy asking the girl if she liked him in any way and eventually finding one
thing she was okay with. although she still wouldn 't go out with him.

In the case where there was no significant difference between the drug group and the control
group but the drug did seem to work in men, we did three significance tests (one including all
patients. one for men, one for women). If we went really hard at it. and looked at subgroups of
gender. age and race. we might end up with |5 significance tests (1 overall, 2 for gender, 2 for
age. 2 for race, 8 for combined subgroups. such as older, male, African-Americans). The follow-
ing table shows the probability that you'll get at least one statistically significant result if you do
multiple different tests and the null hypothesis is true (if you are interested in how I worked out
this probability. see the discussion section):

Number Probability that at least one test will be
of tests statistically significant at p < 0.05

3 [4.39,
4 18.5%
5 23.6%,
[} 4010,
3 53.7%
24 6420,
25 T2y
S0 G237,

HO0 YU 4,
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So if we just do one significance test. we have a 5% chance of saying the drug works when it
doesn’t, which is exactly what we hope for when we chose 570 for statistical significance. [t we
do three tests, we nearly triple the chance of falsely rejecting the null hypothesis. By the time we
get to race. age and gender— 13 tests—we have a better than even chance of recommending an
ineffective drug to at least somebody (as it happens. these numbers aren’t exactly correct for sub-
group analysis - see the discussion section-- but they are in the right ballpark).

One of the most vocal opponents ot subgroup analvsis was a British statistician call Richard
Peto. He once submitted a clinical trial to a very prestigious medical journal called the Lancer
showing that aspirin helped after heart attack (this paper is one of the reasons why aspirin s how
a standard treatment for heart attack patients). The editors wrote back to sav. ves, great study. and
we accept that aspirin helps: however, could Peto conduct some analyses to see whether aspirin
works better in some patients than in others”? Peto said he would do so. but only 1t he could also
conduct some subgroup analyses by astrological sign. As a result. you can look up a paper in one
of the best medical journals in the world showing that heart attack patients born under Libra or
Gemini don’t respond to aspirin.

The problem here is one of statistical power which. just as it sounds. is your ability statisti-
cally to do what needs to be done (see Meeting up with friends: On sample size, precision and
statistical power). Let’s get back to our chemotherapy example. Imagine that we wanted to find
out if the new drug made any difference to, say, white males aged 40-30, no posttive lymph
nodes, and a fondness tor country music. There are 20 patients in the trial who meet this descrip-
tion, half of whom received the new drug. It is very unlikely that vou'd see a statistically signifi-
cant difference between groups with so few patients. In fact, voud only get p == 0.051f S out of
10 patients recurred on one drug and none recurred on the other.

The following graph shows the probability of a statistically significant result by the number of
patients in a trial (or subgroup), if the true difference were a 2070 recurrence rate on the old drug
and a 15% recurrence rate on the new drug. Because the null hypothesis is false. this probability is
the power of the study (see Meeting up with friends: On sample size. precision and statistical
power). You can see that, even if the drug was effective. there is only a very small probability that
the subgroup analysis with the 20 country music lovers would reject the nult hypothesis.

100%

75¢

Probability of p < 0.05
50

¥ T T T
500 1060 C500 2000 2500

[
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So if you had an uncle with colon cancer who loved country music. was aged 40-50 and so
on. I recommend that vou ignore the subgroup analysis. Look instead at the overall results of the
study and suggest that he use the new chemotherapy drug. If vou disagree. then | suppose vou'd
also be somewhat contused by the lack of astrology charts in the emergency room of vour local
hospital. Similarly. when considering whether a romantic interest likes you or not. I suggest vou
look at the big picture and avoid focusing on that one time they may have said something vaguelv
complimentary.

* Things to Remember o

1. The more statistical tests you conduct, the greater the chance that one will come up sta-
tistically significant, even if the null hypothesis is true.

2. A small study has a good chance of failing to reject the null hypothesis, even if it is false.

3. Subgroup analysis involves doing a large number of tests, some of which will involve a
small number of individuals.

4. As such, subgroup analysis increases both the risk of falsely rejecting the nuli hypothe-
sis when it is true and falsely failing to reject the null hypothesis when it is false.

5. If your pvalue is greater than 0.05, you don't acce%t the null hypothesis (e.g., “the drug
doesn't work”), you fail to reject the null hypothesis.

6. Take your medicine even if you are born under Gemini or Libra.

*2* SEE ALSO: Michael Jordan won't accept the nufl hypothesis: How to interpret high p-values;
Some things that have never happened to me: Why you shouldnT compare p-values

Discussion

L. Is subgroup analysis a problem mainly for significant it the null hypothesis is true. |
medical research? worked out these numbers using the formula
B . . ~ R 3R B Iy 19 ) A 3 AN < : [
2. Do all clinical trials have equal numbers of b= 0.95 where s the number of tests. Th'”
patients in each group (c.g.. 1000 patients on Is the same as saving. "What is the probability
. . At - rote R alitee SCP AL TN A
the new drug and 1000 patients in the control that /‘}” tests have p-values = (.05 (which is
) . . . gsty . My “The chance that -
group)” Do clinical trials include exactly equal 0.937) and then saving. “The chance that at
numbers of men and women® leastone testhas p =~ 0.05 s | minus that prob-
. o o abilive e 109577 Ag T hinted in the text.

3. For enthusiastic students onlv: One whle in this '

o this formula is an oversimphification, Why
chapter shows the probability that at least one :

of a given number of tests will he statistically

NOTE: See page 198 for answer sets,
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Come things that have never
happened to me: Why you shouldnt
compare p-values

YEAH, SHE LIKE DUMPED HIM FOR THIS NEW GLIY.

DAVID OR SOMETHING... OH YEAH, TOTALLY...
AND T'VE HEARD THAT
HIS P VALLE IS LIKE,
50000 MUCH LOWER!

ere are some things that have never happened to me:

1. Friends of ours come over for dinner and we are having a nice time—
sitting around chatting and laughing. with the kids playing in the next
room- - when the guy savs. “RuthAnne and 1 would like to compare
our p-values with yours.”

2. A colleague calls me. clearly in a bad way. and wants to go out for cof-
tee. He tells me that he has been having problems at work and. well,
one thing led to another. and eventually his boss asked him into her
office. She tells him that his p-value was one of the largest in his
department and that he 1s at risk of losing his job.

130
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3. 1 get a flyer from one of the candidates for mayor. The candidate compares his own
record on p-values (“Lower p-values for stronger communities™) with that of his oppo-
nent ("Brown: wrong on p-values, bad for New York™).

Normal people might not compare p-values, but scientists do. all the time.

I. Some studies are conducted on whether it takes longer for African American males to
hail a taxi than whites. A sociologist reviewing the data argues by stating, “In the
Chicago study. Bloggs and colleagues found a clear effect of race on wait times
(p <= 0.001); Smith and colleagues in New York did report longer waits for African
Americans. although this effect only just met statistical significance (p = 0.045). This
suggests that there is a stronger effect of race in Chicago than in New York.™

2. From a survey on attitudes to violence in movies, it is stated that “There was a strong
association between age and attitude, with older participants more likely to agree that
there is too much violence in movies. However, this effect was more pronounced in
women (p = 0.002) than in men (p = 0.005).”

3. An engineer is examining a new heat treatment for engine parts. He concludes by stating,
“Overall, the novel treatment significantly decreased failure rate (p << 0.0001). However,
treatment was more effective for moving (p = 0.0008) than for static parts (p = 0.02)."

Before we go on, write down some reasons why there might be differences in racial attitudes
between New York and Chicago, why attitude to movie violence changes more with age in
women than men, and why a new way of treating metal has a bigger impact on moving engine
parts than on parts than don’t move.

Done that?

In all three examples, the scientist concluded that something had a bigger cffect because it
had a smaller p-value. To see whether or not this is a good idea, have a look at this data set com-
paring treatments for high blood pressure:

Number Mean decrease Standard

of patients in blood pressure deviation
Standard 10 5 1.5
New Drug A 10 6.5 0.5
New Drug B 10 I5 12.5

Which drug would you advise a patient with high blood pressure to take? It scems pretty
obvious that you'd recommend drug B-—it leads to the largest mean decrease in blood pressure
and. in fact. it is significantly superior to drug A (p = 0.046). But the p-value comparing cach
of the new drugs with the standard is actually smaller for new drug A (p = 0.008) than for new
drug B (p = 0.022). If you chose a drug based on comparing the p-values you'd end up with the
wrong treatment.

Comparing p-values actually makes no sense at all. First. p-values are about inference, not
about estimation. A p-value tells vou about the strength of evidence, not the size of the offect. In the
blood pressure study. drug A had stronger evidence even though drug B had a larger effect. More-
over. you need a single p-value to test a hvpothesis. not two (see also Heed control for p-values: A
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single scientific question should be addressed by a single statistical rest). For the taxi study. the
authors drew a conclusion about Chicago and New York that was. in effect, rejecting the null
hvpothesis that there is no difference between the two cities with respect to the effects of race on
hailing a cab. But where was the p-value to test this hypothesis?

Which brings us to that list of reasons you wrote down why race-relations are better in New
York. why women’s attitude to movie violence changes with age more than men’s and why heat
treatment affects moving engine parts more than parts that don’t move. I asked you to write the list
to make a simple point: we can come up with explanations for almost anything, but that doesn’t
make it true. This goes to show that scientists should be more like normal people, and refuse to

compare p-values.

¢ Things to Remember *

P-values measure strength of evidence, not size of an effect.

2. To test a hypothesis (such as which of two new drugs is better) you need a single
p-value (such as from a t test comparing the two drugs), not two separate p-values
addressing entirely different hypotheses (such as whether each drug is better than a

standard treatment).
3. Don't compare pvalues.

i,

“Discussion

e

b e P R R R I

1. Why might a stronger effect lead to a higher
p-value, and less evidence against a null hypoth-
esis of no effect? How might vou explain the
differences in p-values for the four examples in
the text (taxis, movies. engine parts and blood
pressure drugs)?

NOTE: Sce page 200 for answer sets,

How would you test whether one effect was
stronger than another? For example, how would
you test whether women'’s attitude to violence
in movies changes more with age than men’s?
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How to win the marathon: Avoiding
errors when measuring things
that happen over time

friend of mine is an avid runner who trains hard to post a good

time in the New York City marathon. Indeed, [ remember that we

once headed back from the beach carly because she had planned a

20 mile run and didn’t want (0 throw off her training schedule. Being a statis-

tician, I know a much easier way to shave off a couple of minutes from a race:
Just don’t start your stopwatch until vou've been running for a bit.

Now if that sounds like cheating. just consider the following graph. which
shows the results of a study on job satisfaction and employment. Roughly what
happened in this study is that new employees at a company were SIVEN A Gues-
tonnaire to assess how they felt about their job. At the end of mitial training.

which takes place over the course of three months, they were ginen a second

133
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questionnaire. The company management was particularly interested in employees whose opinions
improved after their training, whom they called “responders™ to training. They hypothesized that respon-
ders (gray line) would stay with the company longer than those who were not classified as responders
(black line).

0.75 1.00
1 e
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0.25
i
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i

.

T T

0 1 2 3
Time from recruitment (years)

The x-axis gives the number of years since recruitment and the yv-axis gives the proportion of
employees still working for the company. You can see, for example, that at two years, only about 40%
of those who didn’t respond to training were employed by the company compared to roughly 50% of
responders. [f we compare groups statistically using what is known as a log rank test, we get a p-value
of 0.026, from which we might well conclude that yes, if you respond to training, you’ll stay with the
company longer. This might be seen as a justification for the work of the training department.

The problem with this analysis is that you can’t “respond to training” if you quit before you
complete it, so anyone who quits early is automatically defined as not responding. Indeed, if you
look carefully, you’ll notice that no responders quit until they have been on the job three months,
which 1s when the follow-up job satisfaction questionnaire 1s given. Now, I know for a fact that
response is not associated with outcome in this data set because I created it artificially using ran-
dom numbers, altering the data so that any (1imaginary) employee who quit before three months
was counted as not responding, even if they would have responded had they stayed on. The analy-
sis giving the statistically significant p-value came to the wrong conclusion because the clock
was started at a different time for responders than for non-responders.

Two other examples of starting the clock at the wrong time are so common and problematic
that they have been given their own special names: intention-to-treat and lead time bias.

Rock out, it lead time! (Or: How to live longer
but die at the same time)

Rock and roll fans might know that a “lead™ 1s when a guitarist cranks up his amp. plugs in his
fuzz box and spends the next couple of minutes rolling around the stage making a lot of noise. As
you might guess then. the first time | heard lead time during a statistics seminar I got quite excited
and started lmbering up for some extended facial grimacing. Then followed a discussion about
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prostate cancer, during which time no one even mentioned Frank Zappa. and my professor kept
on saying that lead time was a good thing but had to be avoided at all costs.

When statisticians discuss lead time. they are more likely to be referring to disease screen-
ing than Deep Purple. To explain each half of this sentence in turn: Deep Purple are a hard
rock band from the early 70's, famed for “Smoke on the Water.” a riff that pretty much anyone
can play using only the E string of a guitar: disease screening refers to tests that doctors give
patients even if they appear healthy. A well-known example is the “Pap™ smear, which is a test
for cervical cancer recommended to all women. whether or not they have evidence of cancer.

Lead time is the period between when you can catch a disease early using a screening test and
diagnosing it later because the patient has symptoms. This sounds like a good idea. because dis-
eases are generally casier to treat if they are found early. This is certainly the case in the disease
I'study most: an early stage prostate cancer can be cured by surgical removal of the prostate: once
the cancer has grown large enough to cause symptoms. it has often spread to other parts of the
body and the patient will likely die of his disease.

But a quick cautionary note before you sign up for prostate screening: having your prostate
out is no picnic and you can be left incontinent and impotent. A long lead time might well mean
“lots of time to catch the prostate cancer early.” but it also means “lots of time to die before you
realize you have cancer.”” This means you could go for surgery, miss the opportunity to spend
your sunset years enjoying sex and dry underpants, and then die of 4 heart attack well before the
cancer would have caused any problems.

Lead time also causes problems for statistical analysis, particularly for what are called screening
studies. A few years back, a group of researchers reported excellent survival rates in patients who had
lung cancer discovered by a special type of x-ray, known as a CT scan, and were then treated surgi-
cally. The CT scan was given to all smokers. regardless of any symptoms, and was thus a screening
test. As the survival rate in lung cancer is generally dismal. the researchers concluded that screening
was effective. The problem is that they may well have concluded the same thing had the patients not
been treated at all, and screening can't help you if a positive test doesn’t lead to an effective treatment.

The following figure shows the progression of cancer from the first few tumor cells to death
from disease. Even if no treatment is given. or if treatment is totally ineffective. there is a longer
period of time between diagnosis and death if the cancer is screen detected (e.g., found ona CT
scan) than clinically detected (e.g.. found by a doctor in a clinic trying to work out why a patient
i1s feeling unwell). The clock is starting at a different time for the screen detected cancers than for
those detected clinically-—this difference is equivalent to the lead time, and biases the compari-
son between survival rates.

Screen detection to death

-

Clinical detection to death
— -

Lead time

First few Cancer Cancer Death
tumor cells  becomes becomes from
screen clinically cancer

detectable detectable
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Thus lead time bias doesn’t mean “the other guitarist is stealing my solo.” It means “apparent
increases in survival because disease is found carly.” just like the marathon runner starting the
clock at the wrong time.

Getting a treatment even if you didn't:
Intention-to-treat analysis

Let’s say vou were doing a study to see if counseling reduced the likelihood that a prisoner would
end up back in jail after being released. What you might do is select some convicts at random to
go to counseling and see what proportion were subsequently jailed in comparison to those not
selected for counseling (controls). The problem is that counseling takes some time to set up, and
it is quite possible for an ex-con to get in trouble and end up back in jail before you've even
worked out which counselor has a free slot.

Typical results of your study might be something like this:

I 200 prisoners released l

Flip a coin
I 100 assigned to counseling l l 100 controls I
10 jailed before |, o] 70 jaied
counseling starts \ within a
I 90 start counseling ] year

20 jailed /
within a

year

l 70 not in jail at one year ] l 60 not in jail at one year I

The obvious question is what to do with the 10 who committed crimes and were jailed before
their first counseling session. One line of thought would go:

® The 10 individuals who reoffended early never got counseling.

e It s silly to count them in the counseling group.

e [tisn'treally 30 of 100 in the counseling group who were jailed. 1t 1s 20 out of 90 (22%).
o

22% is a lot lower than the 40% who reoffended in the control group (p = 0.012). so
counseling clearly makes a difference.

The problem with this argument is that convicts who are jatled in the control group are

included in the analysis no matter when they get caught breaking the law. This ts none other than
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our marathon runner cheating: we are starting the clock at a different time for the control group
ammediately on release from jail) and the counseling group (only once counseling has started),
Statisticians say that the fairest analysis is inrention-ro-trear: it doesn't matter what actually hap-
pened to vou. it was what was intended that counts. [n an intention-to-treat analysis you compare
a 40" reoffending rate with 30", T this particular case. vou get a smaller difference that is not
statistrcally significant.

Intention-to-treat makes sense. because we can't decide what actually happens, we can only
decide our intentions. A beach trip is a simple example. Let’s say that | am sitting at home with
my famuly and we are wondering whether to go to the beach. Part of the issue is that We some-
times make a huge effort o get out of the house (round up towels and swimming stuft. put on
sunscreen, make snacks. ete.) and then load the car but never getto the beach because trattic gets
very bad or because it starts raining. Imagine that we had a data set where we worked out what
wed done and rated each day:

Stayed at home Giood
Went to beach Good

Tried to go to beach, sat i trattic for an hour, then it starting

raming so we turned around and went home Bad
Stayed at home Bad
Went to beach Good

On days where we got to the beach, we had a good day 100% of the time compared to 33% of
days when we didn’t get to the beach. But our decision isn't whether to be at the beach or not, our
dectsion is whether or not to 1 to get to the beach. In order to inform our decision (Should we
try to go to the beach?™), we really have to count the day where we tried and failed to get to the
beach as a beach day: this gives 67 of days we tried to €0 to the beach being good ones com-
pared 10 50% of days when we didn’t try to go to the beach.

So you count a day as a “beach day™ even if vou didn't get to the beach and a convict as hay-
g received counseling even if he didn't. This sounds all a bit paradoxical. until you realize that
the alternative 15 not much different from the marathon runner starting her stopwatch halfway
through the race.
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* Things to Remember ¢

Many things we analyze statistically take place over time, whether employees leaving a
company, cancer growing in a patient, or even just a trip to the beach.

. A statistical analysis of something that changes over time involves a decision of when to

“start the clock”
Many statistical errors occur because of starting the clock at the wrong time.

A common analysis is to assess the association between a predictor (such as a job sat-
isfaction questionnaire) and time to something happening {such as quitting a job). A typ-
ical mistake for such an analysis is to start the clock before you would have information
on the predictor (such as measuring time from recruitment, when employees don’t com-
plete the questionnaire until they have been on staff for three months).

Often you have some kind of problem (such as cancer) that leads to an end result you
want to avoid (such as death). If you find a way to find the problem earlier, then the time
between the problem and the end result will inevitably be longer. This is known as lead
time bias and doesn’t mean that finding the problem early did any good.

Sometimes you try to do something {counsel prisoners, go to the beach) to achieve a
particular goal (avoid prison, have a nice day). To work out whether this is worth it, you
have to loock at all times when you tried (e.g., packed the car) not just those times you
succeeded (e.g., got to the beach). This is called intention-to-treat analysis.

This article is for teaching about statistics. Please don't use this article for information
about cancer screening, trips to the beach, the merits of Deep Purple, or artistic ten-
sions in my band.

SCUSSIon

1. How do you think you should analyze the data 2. How do vou deal with lead time bias?
trom the job satisfaction study”?

NOTE: Sce page 203 for answer sets.
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The difference between bad Statistics
ana a bacon sandwich: Are there ruleg”
In Statistice®?

HANG ON! THERE DOESN'T SEEM
TO BE ANYTHING ABOUT
USING THE T TEST
WITH SKEWED DATAI

gv=y 5 _

once heard someone describe o statistical analysis as “not strictly
Ikoshcrf“ This might well be true. on the grounds that the statistician
imolved had probably not been certitied by the appropriate rabbinic
authorities. Nonetheless, lem g aside the issue of whether the Mann-Whitney
test counts as milk or meat. the idea of “kosher statisties™ does give a wonder-

ful msight into how MANY SCIENUSTS View statistios: a set of laws, handed down
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from above. violation of which constitutes a transgression. As a statistictan, I am repeatedly
asked whether a particular statistical analysis 1s “allowed™ or whether it would be “against the
rules™ as a statistics teacher. my students” questions often concern “Right and Wrong.”

It is hard to think of any other area of science that is characterized with so many religious and
tegal metaphors. We don’t wonder whether, say. use of an inappropriate questionnaire would
break any laws or whether failure to clean laboratory equipment thoroughly is an eternal or just a
venal sin. In short, the way that many scientists understand statistics 1s deeply unscientitic.

One of science’s defining characteristics 1s that new ideas are developed and that both new
and old ideas are tested empirically. This is as true for statistics as for any other science. Many of
the techniques [ use in my day-to-day work—Cox regression, bootstrapping, k-fold cross valida-
tion, general estimating equations——were invented relatively recently (1 won’t explain these any
further, as they are beyond the scope of an introductory textbook). I myself have developed a new
statistical technique, decision curve analysis, and I'd be happy to explain this to any reader expe-
riencing insomnia.

Moreover, statisticians test methods experimentally: we have computers simulate data sets,
then apply different statistical methods and see which come up with the right answers. If |
recall correctly, the scientist who liked his statistics kosher was concerned about the use of a r
test on skewed data (see 4 skewed shot, a biased referee). Statisticians have tried applying the
r test to data simulated so that they are skewed and have found out that, in some cases, it results
in p-values that are too high. The study that this scientist criticized reported a statistically sig-
nificant difference between groups. Accordingly, it doesn’t matter that this p-value was likely
too high, because the null hypothesis was rejected.

So. no, the  test was not inscnbed on the stone tablets Moses brought down from Mount
Sinai along with the commandment “Thou shalt not use with skewed data.” The ¢ test was
invented by a statistician (a guy who worked for a beer company) and has subsequently been
tested by other statisticians (including me) to find out if it is any good (it turns out it isn’t ideal
for the applications I need and I rarely use it). Just like any other science, what you want to know
about any statistical technique is the degree to which it might give you a wrong answer and
whether there are other methods around that give you a better chance of getting things right. There
aren’t rules, laws and commandments about this, you just have to know the latest research data.

¢ Things to Remember ¢

Statistics is used to help scientists analyze data, but is itself a science.
2. Just like any other science, statistics isn’t subject to a set of unchanging rules.

3. Statisticians choose methods because of evidence that the methods are helpful for get-
ting the right answer

4. Statistical methods aren't specified in some holy book, they are developed and tested
by statisticians.

5. | am Jewish, but | have to admit that | have not had my statistical software certified as
glatt by a rabbi.




Discussion

I.

So there is no right and Wrong m statistics?
Docs that mean that anvthing goes and vou'l]
get 1000 on vour exam even if vou do a dumb
analvsis?

Many textbooks (as well as a good number of
statisties teachers) say that you should avoid

the 7 test tor skewed data. Are they wrong?

NOTE: See page 204 for answer sets.,

3.
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In the text T said that there aren't rules. laws
and commandments about statisties. you just
have to know what the latest statistical research
shows. Does this suggest that all scientists
need to fook up the statistical Journals betore
running a simple statistical analysis?
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ook at your garbage bih: It may be
the only thing you heed to know
about statistics

MAYBE 1 SHOULD JUST
ANALYZE THIS STUFF.

Ccience, statistics and reproducibility

A key characteristic of science is reproducibiling. Consider: two literature PhD
students writing theses about. say. Hamlet. would not be expected to reach
similar conclusions. indeed. there would likely be somewhat of a problem if
thev did. On the other hand. it two molecular biologists wrote dissertations
with differing findings about the same cell pathway. their hopes for a tenure-

track position would hkely go the wav of Rosencrantz and Guildenstern.
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The reason why the two biologists should be expected to come to similar conclusions ahout a
phenomenon is related o a second key characteristic of science. e Systematic attempt to avoid
crror. We wash test tubes, calibrate instruments and tape-record interviews because we have
found out that. if we don't. we often get misleading results.

Here 1s a quick guide 1o statistical procedures as implemented by a typical non-statistician,

L. Download the data set from the research database into a spreadsheet.

2. Notice a couple of errors in the data set. make corrections directly onto the spreadsheet.

3. Cutand paste in a couple of columns ot data from a different spreadsheet.

4. Notice some missing data, pull research notes and type what is missing onto the spread-
sheet.

n

Use spreadsheet functions to create some new data columns. for example, create an “age”
vartable by subtracting “date of birth™ from “date started study.”

&

Cut and paste the spreadsheet into a stmple software package.

Delete (or lose) the original spreadsheets.

.

Use the pull-down menus on the statistical software to run some analyses.

=R N

- Cutand paste the analyses into a word processing document for the Journal paper.

[tis not hard to see how error could be introduced at just about every stage of this process—
indeed. the analysis could probably not be reproduced at all. This leads to what I'tl calt /-Com &
Law in honor of the worst typing mistake in history: in 2005, a Japanese trader trying to sell
I share of J-Com stock at 610.000 yen. instead sotd 610,000 shares at | yen, losing his firm
about $225 million in the process. J-Com’s law is:

Many of the research papers you read will be wrong not as a resul of scientific flaws, poor
design or inappropriate statistics, bt hecaise of typing ervors.

Here are some real-life examples.

® [ looked up a paperina very prestigious medical journal for some research I was doing.
The authors reported that the mean change in pain was 16 points, with a standard devia-
tion of § points. However. this refatively small standard deviation didn't make any sense
m terms of some other numbers given in the paper. such as the p-vatues. When | con-
tacted the authors, they apologized, and said that they meant to give a figure of I8 rather
than ¥ for standard deviation.

® lread a study reporting that counseling improved anxiety. depression and fatigue in can-
cer patients. On the other hand, overall quality of life seemed to be fower in patients
receiving counseling. [ wrote to the authors asking how a treatment could relieve a
bunch of distressing symptoms. but make patients feel worse, It turned out that quatity
of life was indeed better after treatment but that a minus sign had been omitted from the
table of results,

® | was senta data set from colleagues at another institution. When | started my amalysis, |
immediately noticed some anomaties. The results included data on two proteins which
are mversely correliated (that is. vounormally see high lesels of one or the other but not
hoth) yet some patients had high levels of both proteins. T asked the mvestigators about
this. and they said that they had checked the records for these patients. had tound the data
to be correct. and that “double-positives”™ sometimes happened. This seemed reasonable.
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until 1 looked at some other variables which were normally positively correlated with
one of the proteins. There were several patients who had some odd looking data. and
these turned out to be the same “double-positive™ patients we had asked about previ-
ously. When | raised the issue again, the investigators wrote back saying that. on further
checking. there had been data entry errors and that the values of the proteins had been
switched m some cases.

[ was asked to help a surgeon conduct an analysis of the effects of obesity on compli-
cation rates. The very first line of the spreadsheet he sent to me described a temale
patient who was 6 feet tall and weighed 130 pounds. roughly the look favored by the
typical fashion magazine. Yet her body mass index was given as 49. which put her in
the category of the super-obese. It turned out that the surgeon had typed numbers from
the surgical charts into a web-based body mass index calculator and then cut and
pasted the results back into the spreadsheet. nevitably. mistakes had occurred.

Avoiding error in statistics

If you take a statistics course, you'll probably learn how to caleulate a mean. or work out a p-value
from an ANOVA; you'll be given formulas. and advice on how to interpret your results. But what
is perhaps just as important in coming to a correct scientific conclusion is makimg sure that you
avoid data and typing errors. If science involves “a systematic attempt to avoid error,” then con-
ducting a scientific statistical analysis involves setting up some kind of error-catching system.

1. Avoiding data collection errors

a) Write a set of procedures for checking data as it is collected. In a questionnaire study.
for example. | had rescarch assistants examine each questionnaire as it was received
to check that every question had been answered and that any written text was legible
and made sense. If there were any problems with the questionnaire, the research assis-
tants were asked to contact the study participant and clarify things.

b) Use “sign offs.” We asked research assistants to sign and date questionnaires that
they had checked before filing them. The signature serves the same function as the
courtroom oath to tell the whole truth: ~I have checked this questionnaire and found
it complete and correct.” It also means that, if a niistake has been made. we could
work out who made it—a powerful incentive to research assistants to be as careful
as possible.

2. Avoiding data entry errors

a) The best way of preventing data entry errors is 1o avoid data entry altogether: In the
case of the surgeon interested i obesity and complication rates. there was no need to
do any cutting and pasting: heights and weights could have been downloaded mto a
spreadshect or statistical software package directly from the surgery database. and
body mass index then caleulated using a formula. Questionnaires can often now be
optically scanned or put up on the web. Data can then be directly transterred from the
scanner or the web to the study database.

b

-

[ e double data enrry, Sometimes vou have (o Use paper questionnaires or forms, and
“have no chotee but to type the results into a computer. The best system to avoid data-
entry errors is what is known as double data ennryv. In briet. data from paper forms is
typed onto a database: a blank copy of the database is then made and the data re-entered:
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the two databases are then merged to discover inconsistencies, The last time I did this.
there was at least one inconsistency on 14 of the 99 records in the data set.

¢) Write a protocol for data entry. A protocol specifies rules for data entry such as how
to handle illegible or ambiguous data. As 3 typical example, we might specify that, if
someone circles two FESponses to a question (e.g., “agree” and “strongly agree™), we
take the response corresponding to the higher score (i.e.. “strongly agree™),

3. Avoiding errors during data analysis

a) Create a log file. Record with dates all the analyses you do. along with their rationale.
The log file should also document the names of files and folders you set up to man-
age your data. When you update a file, create a new copy and label it with a version
number (e.g. “Results of Student Survey v37). Make sure to keep the old version of the
file (e.g. move “Results of Student Survey v2” to a folder called “Previous versions of
results section™).

by Check the final data ser Once you have the data set in your statistical software, you
should check for missing data. You should also conduct consistency and range checks.
A consistency check determi nes whether the value of one variable is unlikely or impos-
sible given the vatye of a different variable. As an example, if you found someone in the
data set who was a 16-year-old registered Republican, you'd know there was a problem
because you can’t register to vote before youare 18. Similarly, someone who gave their
Jjob as “statistician™ and had a high score on an extroversion scale should probably be in-
vestigated further, A range check determines whether the values of any variable are un-
likely. For example, you would probably want to check data suggesting that someone
was 161 years old, had a GPA of 38 or took nearly 2 days to run a marathon.

Program your analvses. An introduction to statistical programming is really beyond an
introductory textbook. However, the key point is that, while it might be fine to use

pull-down menus for class assignments, any analysis you run for your own research re-

[}
—

more statistics classes). One obvious point is that programming helps ensure repro-
ducibility of an analysis-—you just run your code again. The code ideally should in-
clude automatic output suitable for importing into a word processor—cutting and
pasting individual numbers from software output is an important source of error.

4. Manuscript preparation
a) Check every number on YOur report against the printout from the statistics sofhware,
This offers an additional way of ensuring that the paper says what it is meant to say.
b) Double-check finai copy. Errors often creep in when papers are reformatted, say. by an
editor of a scientific journal,

you need to learn statistical programming code it vou want to rup high-quatity analyses. But no
taboratory scientist uses dirty equipment on the grounds that bottle washing takes too tong. More-
OVEr. In my experience, svstematic data checking generally saves time because it prevents prob-
fems that are extremely difficult to remedy once they have occurred. Also., | challenge any
researcher to say. “Sorrv. I was too busy to check the data.” On which point. by the principle of
“garbage in. garbage out” look at vour garbage bin. It may be the only thing you need to know
about statistics.
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¢ Things to Remember ¢

1. Two key characteristics of science are reproducibility and the systematic attempt to avoid
error. ’

2. For a statistical analysis to be scientific, it needs to be reproducible. Writing program-
ming code for an analysis helps reproducibility.

3. Many errors in scientific reports result not from flawed study design, poor experimental
technique or inappropriate statistics, but from simple errors in data collection or typing.

4. Scientific statistical analysis needs to include specific steps designed to reduce these
errors.

5. In my next book I'll discuss reproducibility in science, along with the implications for
statistics.

for

Dlscussmn
1. For enthusiastic students onlyv: Is there any- ming, other than the fact that I shouldn’t bring
thing I need to know about statistical program- this up on a first date?

NOTE: See page 205 for answer sets.
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Numbers that mean something:
Linking math and science

WE HAVE OLR
ANSWER!

YES. BUT WHAT WAS
THE QLIESTION?

t was just before a 7 am meeting and | wag really trying to get to the
bagels. but | couldn 't help overhear a conversation between one of my sta-
tistical colleagues and a surgeon.
Statistician: Oh, so you have already calculated the p-value?
Surgeon: VYes | used multinomial logistic regression.
Statistician: Really? How did you come up with that?

Surgeon: | trieq each analysis on the statistical software drop-
down menus, and that was the one that gave the
smallest p-value.

---------
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You've got to give the guy some points tor honesty. 1 don’t think I've ever heard anyone
describe so clearly what is perhaps the most typical approach to statistics:
e [oad up the data into the statistics software.
e Press a few buttons.
e (ut and paste the results in a word processing document.
o Look at the p-value: if p is less than 0.05. that is a good thing. If p = 0.05. your study
was a failure and probably isn’t worth sending to a scientific journal.

A few years back, [ went to a conference on prostate cancer. In one presentation, which
was pretty representative of the conference as a whole. a surgeon had loaded data on a
group of cancer patients into a basic statistical software package and then selected the
appropriate commands to see what was associated with whether the cancer returned
(“recurred”) after surgery. The surgeon then read down a list of variables and concluded that
cach “predicted recurrence™ (p < 0.03) or “did not predict recurrence” (p = 0.05). One of
the variables was obesity. and because the p-value was something like 0.02. the presenter
concluded that “obesity may have some effect on survival.” (I flew all the way to Atlanta to
[earn that?)

The analysis that the surgeon conducted is known as a multivariable Cox proportional haz-
ards model. Caleulating a Cox model involves some very complicated mathematics and 1s
impractical without a computer. This is exactly the problem.

In my favorite picture of R A Fisher, one of the founders of modern statistics, he is seated at
a desk operating a mechanical counting device. Conducting a complex statistical analysis on
such a machine is extremely time consuming. Anyone who, like Fisher, had to depend on
mechanical calculators would have had to think extremely hard about the analysis they wanted to
conduct before they started. With modern computing it is possible to conduct an analysis with a
minimum of time (or brain power-—you just select something from a drop-down menu). The
inevitable result is a proliferation of analyses that have not been sufticiently thought through,
leading to uninteresting conclusions such as “we have evidence against the hypothesis that obe-
sity does not influence the course of cancer.”

How | would have approached the problem is as follows.
Having a high body mass index cannot possibly, in and of
itself. affect cancer. (It is not as if the cancer cells think,
“Wow. this guy is pudgy, let’s go crazy.”) There has to be
some reason why obesity is assoctated with higher recur-
rence rates. The first step in any analysis is to work out what
these reasons might be. I came up with the following list:
Biology: there is something about the biology of obese in-
dividuals that promotes the growth of prostate cancer. For
example. it is known that prostate cancer is affected by hor-
mones such as testosterone and insulin, and that levels of
these hormones are atfected by obesity.

Behavior: obese individuals engage in behaviors that in-
crease the risk of prostate cancer recurrence. It might be. for
instance. that obese men exercise less than the non-obese. and
that exercise helps suppress cancer: alternatively. fat and sugar
in the dicts of obese people might promote cancer growth.
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Surgery: surgery in obese individuals is more difficult. As aresult. surgeons may not remove
all cancer tissue: the cells that are 1ot behind might grow and cause a cancer recurrence.
Something else altogether: there isn’t a true association between obesity and cancer.
Itis an artifact of the scientific and statistical methods used.

Itis this last explanation that 1'd test first. Don’t worry too much about the details that follow - -
there is probably more about prostate cancer here than vou would ever need to Know. Just keep hold
ot the general process that | am going through. which is thinking of what might be happening i a
patient’s body and tryving to convert that into a mathematical hypothesis. In the surgeon’s analysis,
he used multivariable regression to control tor cancer severity. In other words, the question wasn't
s0 much s obesity associated with cancer recurrence? but “If you had two men. one obese and
one non-obese. and they had prostate cancers that were identical in all respects we could measure.
does the obese man have a higher chance of recurrence? One of the ways we estimate “cancer
severity” s to measure 4 protein called PSA. The higher vour PSA. the worse your cancer is
thought to be. PSA is measured in nanograms per milliliter. that is. a weight divided by a volume.
It seems reasonable that two patients with similar tumors. one obese, one non-obese, will have a
similar weight of PSA. but this will be distributed in a greater volume of body fluid in the obese
patient. As a result. the PSA value in “weight per volume™ will be lower in the obese man. So if
our two patients have similar levels of PSA_ it is reasonable to suppose that the obese patient has
a larger tumor.

All of which is to say that one theory of why obesity is associated with prostate cancer recur-
rence is that we underestimate the severity of prostate cancer in obese men. This scientific theory
then needs to be turned into a statistical hypothesis. In brief, what I would do is multiply PSA by
weight to get a rough estimate of the total amount of PSA. I'd then use this as a covariate in the
multivariable model in place of the usual PSA measurement. As it happens, a couple of years
after [ went to Atlanta, some researchers followed a similar approach and found evidence in sup-
port of the hypothesis that the apparent effects of obesity in prostate cancer were related to
greater “dilution™ of PSA in large men.

My approach here was to think about biology. turn it into math and then think how to
apply the results of the math back to biology again. This illustrates a key principle of statis-
tics: linking math and science. I am 2 biostatistician so [ link math and biology: an ecconomist
links math to economic behavior: statistics in psychology is about linking math to the human
psyche.

It 1s, of course, casier just to shove everything into the statistical software and interpret the
resubting p-values as “yes™ and “no.” And if this is how vou want to approach statistics, you'll
have plenty of company. But. please. keep 1t to yourself and don't block the bagels.
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¢ Things to Remember ¢

1. Computers now make it extremely easy to conduct even the most complex statistical
analyses at the touch of a button,

2. The printout from statistical software is just a bunch of numbers, many of which won't
mean much.

3. What statistics should be about is linking math to science:

a. Think through the science and develop statistical hypotheses in the light of specific sci-
entific guesticns.

b. Interpret the results of the analyses in terms of their implications for those questions.

iscussion

T

&

1. Jonas goes to the market and buys a 10 b
watermelon and 9 apples weighing 2172 1bs.
He calculates the mean weight of the fruit as
1212 = 10 = 1/4 Ibs. What are your thoughts
about this statistic?

NOTE: See page 207 for answer sets.

The surgeon concluded that “obesity may have
some effect on survival.” Words like “may.”
“might™ and “could™ are often found in the
conclusion of scientific studies. Why should
scientists avoid using these words?
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Statistics is about people, even if you
cant see the tears

[
[

e

T AT
CHICHA

ou can read a lot of things about statistics in this book. Chances are

you will forget quite a few of them. But please. don’t forget this: sta-
tistics is about people. even If vou can’t see the tears.

What you start with when you do statistics is a list of numbers and other
data that mean very little on their own. Like this for example:
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Address Number of cases
32 Broad Street 2

34 Broad Street 4

21 Warwick Street ,, 0

23 Warwick Street ete.

But then with statistics, you can transform those numbers into something meaningful.

The picture on the previous page is a map of cholera cases in mid-19th century London
that was plotted by John Snow, a doctor. The map shows that the cases were clustered around
the Broad Street water pump. The pump handle was removed and the number of cholera cases
declined. 1t is because of John Snow that cholera no longer sweeps through our cities, killing
thousands. If the New York cholera epidemic of 1832 happened today. and killed the same
proportion of New Yorkers as it did in 1832, over 100,000 would die. Snow’s work was pivotal
in recognizing germs as the cause of disease, leading to proper sanitation and clean water, as
well as antibiotics and vaccination.

[t is all too easy to forget that statistics is really about people. [ once asked a well known can-
cer researcher for some information about a study he had published. He refused, on the grounds
that [ might use the information to “cast doubt™ on his tindings. This is clearly someone who
cares more about avoiding a minor carcer embarrassment than about understanding cancer data
in order to help future generations of patients.

This cancer researcher had published several scientific papers that included graphs similar to
this one:

0.50 0.75 1.00
I 1 ]

Proportion alive

0.25
i

0.00
L

Years from diagnosis
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Known as a “survival curve” the graph shows on the vaxis the proportion of cancer patients
stll alive atier the period of time given on the v axis. So cach little step down on the graph is when
aperson died. That person is somebody s son or daughter. perhaps also a husband or wife or mother
or father. Deaths from cancer are often painful and rarely sudden. which means that each little step
on the graph 1s someone who knew that they were going to die and likely suffered as they did so.

Statstical analysis of this type of data often involves examination of the “proportional haz-
ards™ assumption or consideration of “accelerated failure time models.”™ with results expressed in
terms of “hazard ratios” Indeed. vou could read statistical analyses of cancer data all dav and
never realize that any real people were imvolved. So vou have to remind yourself of that. always,
iry to: when [ hear someone say something like: “she's not a statistic, she’s someone’s little
child™ I think to myself. “what’s the difference? A statistic is ahvayy someone’s child.”

[onee gave a lecture in a small college town in the Midwest, While [ was there. someone
asked me what it was like to live in a dangerous big city like New York. It turns out that the police
precinet i which 1 live has almost exactly the same population as the college town. When |
looked up the crime figures. it turns out that they have four times as many crimes. (And that isn't
even counting the omelette the hotel made me for breakfast.) | could live my life on the basis of
New York's reputation. But | choose to live by the statistics instead. which means that | get to
raise my tamily in beautitul brownstone Brooklyn. eat great food in local restaurants. and feel
relatively safe as I do so.

Sometimes, when [ am walking around in Brooklyn, I look at my children and I find myself
thinking about John Snow. Two hundred vears ago. before the cholera map. about one in five
children would not live to see their 10th birthday. It is now about I in 100. a 20-fold difference.
Statistics can be hard to learn. and even harder to master. But. as 1 said right back when we
started, we want to live our lives better. To do that, we have to make good decisions, and some-
times looking at numerical data in the right way can help us to do so.
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CHAPTER 1
| tell a friend that my job is more fun than you'd think:
What is statistice?

I

I defined a hypothesis as “a statement about the world that could be tested to see whether
it is true or false.” Are there some statements that can’t be tested?

Short answer: yes. of course, many statements can't be tested at all. Which 1s a good thing,
because 1 hate the idea of having to do staustics for I love my wife” or "Mozart wrote great
operas.” That is pretty much all you need to know, so teel free to jump to discussion point 2. If
you are feeling philosophical, however, read on.

A common reason why many statements can’t be shown to be true or false is that they are too
vague. A great example of this is horoscopes: Capricorns might be told, for example. to be care-
ful in family relationships because it 1s possible that a close family member is keeping quiet
about some personal troubles. It 1s difficult to think of how this statement could be anything but
true because pretty much anything 1s “possible.” Words like “possible”™ or “may” or “might” are
known as “weasel words™ because they allow you to “weasel out™ of any claim you make (e.g.,
you say “we shouldn’t go to the game because 1t may rain.” so everyone stays home and gets
bored. When it doesn’t rain you defend yourself saying. “I didn’t say it would rain, only that it
might.”"). Statements can also be too vague if 1t ts possible that they are partly true and partly
false. This would apply, for example, to statements like “Chiropractic is an effective form of
medical treatment” because chiropractic probably works for some problems (such as back pain)
but not others (such as the black plague).

Another reason why a statement might not be able to be disproved is if it is defined so broadly
as to be true in all circumstances. Some self-help “New Age™ gurus believe that men need to get
back in touch with their inner manhood (e.g.. by running around in the woods naked under a full
moon). A friend once showed me a book promoting this vision of the modern male. Opening it
at random, [ read something like “The fact 1s. women like men who fight, and love men who
fight well.” When [ pointed out that this was obviously false—on the grounds that very few men
fight at all, and that most men seem to find love, even the wimpy, nerdy types—my friend
argued that | was defining ~fight™ too narrowly, and that “fight™ also means standing up for what
you believe in. tor example, by defending your point of view in a debate. This covers just about
everybody.

The third reason why some statements can't be shown to be true or false 1s that we may have
no methods available to do so. When a psychotherapist states that alcoholism often results from
unresolved subconscious contlicts (perhaps an overactive i with an underactive super ego), we
have no way of knowing whether this is true or not because we don’t have a tool to measure sub-
CONSCIOUs activity.

Some philosophers have argued that what defines science is that a scientific statement can,
in theorv, be shown to be talse (what 1s known as “falsification™). If a statement can’t possibly
be shown to be talse. then there 1s no pont trving to get evidence one way or the other and so
science doesn’t enter mto 1t It turns out that this view can be hard to defend philosophically,
but it is undoubtedly a good rule ot thumb and provides a quick life tip: if vou are arguing with
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someone who savs things that can’t possibly be shown to be false. stop arguing and go for a
walk or something.

There are two sorts of estimates that statisticians make: how big or small something is
and how big or small something is compared to something else. An example of the first
sort of estimate is “the mean height of an American male is close to S5ft9',; in An
example of the second sort of estimate is “men who smoke are 23 times more likely to
develop lung cancer than men who have never smoked.” Write down some examples of
estimates of both sorts.

Here are some examples 1 came up with: About 400.000 Americans are diagnosed with
heart failure each vear; Dutch men are on average three-and-a-half inches taller than Ameri-
can men: a 63-year-old man who has smoked a pack a day since his teens has a 106 chance
of being diagnosed with lung cancer by age 752 women earn about 20% less than men doing
comparable jobs.

Most hypotheses can be rephrased in terms of estimates. I mixed up some estimates and
hypotheses below. Match each estimate with the corresponding hypothesis and say
which is the estimate and which the hypothesis.

a. Hypothesis: Men and women do not differ in their voting behavior for presidential
candidates. Estimate: The proportion of women voting for Democratic presidential
candidates 1s 3% higher than men.

b. Hypothesis: Chemotherapy plus surgery is no more effective than surgery for breast
cancer. Estimate: Recurrence rates were 5% lower in women recerving chemotherapy
after surgery compared to women recerving surgery alone.

¢. Hypothesis: Improvements in street lighting decrease crime. Estimate: Crimes
decreased 210 comparing the year before and the year after completion of a program
to improve street lighting.

d. Hypothesis: Electric shocks (punishment) are more effective than sugar (reward) for
improving learning in rats, as measured by time to complete a maze learning task.
Estimate: Mean time to complete a maze was 20 seconds shorter in rats exposed to
shocks than those given sugar.

e. Hypothesis: Obesity rates in California increased during the 1990%. Estimate:
Obesity rates in California almost doubled between 1990 and 2000, from [0% to
20%.
One thing vou'll notice is that hypotheses are simple statements of fact that can be true or
false: estimates have numbers deseribing how large or small something is.

Who said “there are lies, damned lies and statistics™?

Justabout evervone T have ever met in my professional career. And theyv all think that it is
the first ime 1 hase heard the quote. and that they are being really so terribly witty. Also. |
don’t think that anvone who has quoted me the line has understood it. ANVWay,

“There are lres: damned lies and statisties™ was popularized by Mark Dwain. but was first
used by Disraeli. a British politician tfrom the [9th century. The pomt he was tryving to make

s along the fines of “had. worse, worst™ In other words, statistios are the worst fies you can
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imagine. What he was referring to was the tendency of pohiticians to throw around statistics
that don’t mean much, but which advance their political arguments. A classic modern
example ts the claim that a presidential candidate had “voted to raise taxes 94 times.” To
get this number. the candidate’s opponent included votes against tax cuts. votes for mea-
sures that raised taxes for some and lowered it for others. and votes to close tax loopholes.
So one can imagine how Disraeli might describe the “94 tax increases™ statistic as being
worse than a terrible le.

The nice thing about “lies. damned lies and statistics™ 1s that 1t illustrates something very
important about the word “statistics.” People who smirkingly tell me about “lies. damned lies
and statistics™ think that it 1s a smear on my profession. just as would likely irritate sociolo-
gists. But “statistics™ has two meanings. You can talk about statistics as a science, as in “sta-
tistics is used to analyze the results of medical studies.” Alternatively, “statistics™ is the plural
of “statistic,” a number obtained from data by statistical analysis. (as in, “We calculated sev-
eral statistics including the median age and height and the proportion who were women.”)
When Disraeli complained about “lies, damned lies and statistics,” he was referring to this
second meaning. As such. he would likely have welcomed better use of the science of statis-
tics to improve the value of political discussion.

CHAPTER 2
Co Bill Gates walks into a diner:
On means and mediang

1.

I said that “half of the sample have values higher than the median and half have values
lower than the median.” Is that always true?

Not always. although it 1s a pretty good rule of thumb. The rare exception is-when you have
many observations that have the same value (“ties™). For example. imagine if the salaries in
the diner were $30,000: $35.000: $40,000: $40,000; $40,000; $40.000; $80,000. The median
salary here 1s obviously $40.000. leaving only 1 person (14% of the sample) with a salary
higher than the median and 2 (297 of the sample) with salaries lower than the median. As
another example: most patients go home two days after surgery. although a few stay three
days and a small minonty, less than 10%%, have complications lcaving them in hospital for a
week or more. The median hospital stay works out at two days. with virtually no one having
a hospital stay less than the median and only 20 or 30% with hospital stays longer than the
median.

However. if you have a reasonable number ot observations and not too many ties (which is
most of the time) then “half of the sample have values higher than the median and half have
values lower than the median™ works just fine.

Here is a die rolling game: vou roll a die and if veu get 1-5, 1 give vou $20; if you roll a
six, vou give me $1000. Would yvou playv? Explain yvour answer.

It is pretty obvious that vou should refuse my bet. but 1t is worth thinking through why,
exactly. Let’s imagine that we plaved the game 600 tmes. wrote down the result of cach game
and then exammed our data set. We'd expecet that vou would win $20 about 500 times and that
I'd win STO00 about 100 tmes. Your median winnings tor such a data set would be $20: the
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590.000 = 600 = ST130). This illustrates why the mean is generally better than the median for

decision making.

CHAPTER 3

Bill Gates goes back to the diner: Standard
deviation and interquartile range

1. The upper and lower quartile are sometimes described as the 75th and 25th centile (or

percentile). Explain this.

Centiles (or percentiles) are calculated in a similar way to medians and quartiles. To find
the 38th centile. for example, you arrange observations from lowest (o highest and find a
number that is 38% of the way along. As such. 38%% of the observations will be less than the
38th centile. Similarly, 629 of the observations are less than the 62nd centile; 92% of obser-
vations less than the 92nd centile and so on. We know that a quarter (i.e.. 25%) of the
observations are below the lower quartile. so the lower quartile is the 25th centile. A quar-
ter of observations are higher than the upper quarttle. so three-quarters or 75% are lower

than the upper quartile, and therefore the upper quartile is the 75th centile.

2. 1 said that, using the mean and standard deviation, you could calculate that *5% had
salaries above $61.392 or below $23,128.” I could have said: 5%, had salaries of $61,592

or more or $23,128 or less.” Does it make a difference?

Means and standard deviations are numbers calculated from the data set using formulas. [t
is not unusual that no one does (oreven could) have a value at the mean, or whatever numbers
you calculate as being above or below a certain percentage of the observations. For example,
I'can calculate from the data set that 80% of the salaries should be less than $50.456 61 I
which is an impossible salary. If no one has a salary of $50.456.611 . then it obviously doesn’t
make any ditference whether you say “80% have salaries less than $50.456 6] 1" or 8%

have salaries of $50.456.611 or less.”

If you want to get more technical about it (and if you don't, please skip to discussion
pomt 3), using the mean and standard deviation to caleulate what proportion of a data set has
values above or below a particular number involves a formula. derived from calculus, based
on caleulating the area under a normal distribution. Because there is zero arca under a point
on the curve. it makes no difference whether you say “greater than v or “at a value of v or

higher.” so statisticians normally just say

“greater than v 1o be brief,

3. Is it really true that 95% of observations are within two standard deviations of the

mean, even for a perfectly normal distribution”

“Two standard deviations™ is Just an approximation. The number you should use is really

.96 or.if you want to get really persnickety. 1939964 These numbers are caleulated b

Vinte-

grating the normal distribution. [f sou haven™t taken caleulus or don't feel like working out
the integral of the normal distribution (which Is @ very comphicated formula). then don't

worry—-someone clse has afready done the calculations tor vou. You used to he able to buv
books of statistical tables that you could use o look up the right numbers. Nowadays. all the

numbers are stored as part of statistical software.
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CHAPTER 4
A cskewed shot, a biased referee

1.

How would vou avoid selection bias in the surgery study?

The usual way to avoid bias in medical studies 1s to conduct what 1s known as a
randomized. controlled rial. You first define a group of patients, such as those who have had
a heart attack but are healthy enough to undergo surgery. You then decide at random who gets -
treated by surgery and who serves as a control. This is normally done by a computer. although
the process is essentially the same as tlipping a com. Finally. you observe what happens in
cach group and compare death rates statistically.

Randomization ensures that patients in the two groups. surgery and control, are likely to
be as similar as possible. This is true both for things that you can measure (such as age. gen-
der, or blood pressure) and also for things that are difficult or impossible to measure (such as
diet and exercise. or yet to be discovered genetic factors that influence heart function).
Accordingly. the only important difference between the two groups Is that one received
surgery and the other did not. If, at the end of the trial. there were fewer deaths in the surgery
group than in controls, this would be difficult to explain other than by saying that surgery
caused an improvement in survival.

One interesting point about randomized trials: it has been widely accepted since the 1950 that
randomized trials are the best way of finding out which medical treatments do more good than
harm. They are how we know that some things work—everything from the polio vaccine. to can-
cer chemotherapy. to acupuncture for pain—and other things don't. such as freezing the stomach
with cold alcohol to treat ulcers (note: doctors really did use to do this). However, it wasn’t until
the mid-1990% that any attempts were made to collect the results of all randomized trials in one
place, so that doctors and patients could access them casily. That initiative is called the Cochrane
Collaboration (www.cochrane.org) and has played a critical role in ensuring that modern medi-
cine 1s based on the best possible evidence.

Imagine that you were conducting a study on cheating at college. Like the adultery research,
this involves questions about bad behavior. How would you encourage truthful answers?

I am not a psychologist so I can’t tell you for sure, but it strikes me as difficult to tell
someone face-to-face that you have done something that you shouldn’t have. It is probably
also a bit of'a disincentive to truth-tetling if your answer could be traced back to you (1.e.. tell
the truth, get thrown out of college). So here are the sorts of things [ would think about in
designing a study on cheating:

e Study participants should be reassured that their answers are completely contidential.
They should be 1dentitied only by a code number and be told that there 1s no way that
their answers could be traced back to them.

e Participants should answer guestions using a paper queshionnaire or a computer inter-
face. rather than via an mterview,

e The phrasing of gquestions should attempt to help participants feel comfortable about
revealing that they had done something they shouldn’t have (e.g.. mstead of “"Cheating
1s immoral. dishonest. and destructive. Have YOU ever been GUILTY of CHEAT-
ING?™ how about "Some students sometimes cheat to get better grades. Have vou ever
cheated on anvthing that contributed to vour grade point average!™).
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CHAPTER 5
You can't have 2.6 children: On different types
of data

I.

Does the median (or, say, upper quartile) always take a number that is part of the data set?

The median is the number “halft way along™ when you arrange the data from lowest to
highest. If you have an even number of observations. there is no number “hatt way along™
such that half the observations are higher and half are lower. As a trivial example. four stu-
dents score 650, 690, 700 and 733 on their Math GRE. There is no number “half wav along.”
s0 you take the middle of the two numbers cither side of half way. The middle of 690 and 700
1$ 695, 50 the median of this data set is 695, A youcan see. half of the observations are above
695 and half below. However. 693 is not in the data set.

I described a continuous variable as one that can take “a lot of different values.” How
many different values is “a lot?”

Statisticians disagree on this point (statisticians disagree on a lot of points. which just goes
to show how much of statistics is a Judgment call). We don’t go around attending statistics
seminars entitled “Continuous variables: How many difterent values counts as enough?”
where various learned professors argue over the number 6. But if you read scientific papers,
you can tell that statisticians vary in their approach. For example, a very common type of data
in medical research is a 0--10 scale (¢.g.. "rate your pain on a (- 10 scale. where 0 is no pain
and 10 is the worst pain you could imagine™). Some statisticians use statistical methods sug-
gesting that they treat the 0-10 scale as 11 separate categories. Most others use methods
designed for continuous variables. Speaking for myself. I tend to like treating vartables as
continuous unless, as in the family size example. there are good reasons not to.

3. Here are some variables. Which of these are continuous and which are categorical?

a. Height: continuous.

b. Gender: categorical. in fact, a spectal type of categorical variable: there are only two
categories. so gender is described us a “binary™ variable.

¢. Years of education: it depends. Sometimes education is defined in terms of number
of years of education (e.g.. 12 fora high school graduate). in which case this is a con-
tinuous variable. However. education is sometimes put in categories (e.g.. some high
school: high school graduate: college graduate: post-graduate study).

d. Pain score: pain is often measured on 0-100 or (- 10 scales in which case it is usually
treated as a continuous variable. However. participants in pain studies are sometimes
asked whether they have no pain. mild pain. moderate pain or severe pain. in which
case the pam variable would be categorical.

e. Depression: again. this depends on whether depression is measured on a scale or
whether patients are categorized as ha g no depression. minor depression or major
depression.

f. Income: Contunuous. although some mmvestigators (for reasons that are not alwavs
clear) categorize income (e S30.000: 30 $49.9350: $30.000 STHOS0. ere .

This makes the point that anv continuous variahle can be categortzed.
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g. Race: categorical. Race 1s an interesting type of catcgory because there 1s no “order™ to
race. If you categorize depression into none. minor and major, you have to say 1t in that
order. It doesn’t make sense to say, “We categorized depression into minor. none or
major.” There is similarly an order if you categorize education into some high school, high
school graduate, college graduate and so on: college graduate is more education than high
school graduate and high school graduate is more education than “some high school.” But
there is no order to race: you can say the races in order you please and it doesn’t make any
sense to believe that, say. Asian is any more or less than. say, Pacitic Islander.

h. Unemployment rate: if you had a set of data in which a person was classified as
“employed™ or “unemployed,” the unemployment rate wouldn’t be a variable—it would
be an estimate. On the other hand, you might have a data set in which each observation
was a different state in the US, or a different country, with the unemployment rate given
for each. In this case, the unemployment rate would be a continuous variable.

4. Saying that an “average of 2.6 children is a silly statistic” allowed me to make some nice
teaching points about different types of data. But as it happens, the “average” number
of children that a woman bears over the course of her lifetime is actually pretty useful.
How do you think this statistic is used?

The average number of children that a woman bears over the course of her life is called the
fertility rate (there are actually several different flavors ot fertility rate, but I'll just use this as
the simplest definition). Despite what [ suggested in the chapter, fertility rate is not a simple
mean: you don’t just count up the number of children and divide by the number of women.
This is because, for example, a woman currently aged 32 with one child may have one or
more additional children in the next few years. One alternative would be just to look at
women aged over, say, 45. But this would mean that we would be looking at the fertility rate
of a country 20 or 30 years previously. Moreover, it isn't clear what you'd do about the fact
that women live to different ages (would you sample all women or just those aged 45-557).
So the fertility rate is calculated using a complex formula, which takes into account the cur-
rent number of women in various age categories, the number of children they gave birth to,
and the probability that a woman survives her childbearing years.

The way in which fertility rate is used illustrates a nice distinction between two different
sorts of data. Normally we think of a data set consisting of,, say, people, and characteristics of
those people (e.g., age and weight). In the chapter, I suggested that the data set from which
“an average of 2.6 children™ was calculated consisted of a group of women and the number of
children they had given birth to. Such a data set might look like this:

Christine 43 4

Jackie 32 |
Beth 44 2
ete.

But vou can also have data sets where each line of your table 1s aggregate data. For exam-
ple. we could look at tertility rates for different countries:
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Gross domestic product

Country i Fertility réte- ' -~ (GDP) per capita

A fghanistan 6.58 S1.000
Albania 202 S5.760
Algeria 182 $6.700
e,

Then we could use the data to make graphs such as the one below (helptully provided by
the C1A) (really).

Total fertility rate vs. GDP per capita, 2004
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This analysis shows quite clearly that fertlity rate is strongly associated with wealth. in
that women in richer countries tend to have f fewer children. Alternativ ely. we could look at
fertllltv rates over time in Just one country:

Fertility rate

1970 243
1980 190
J9490) I.64
2000 .64

e,
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Government statisticians might use these data to predict what the population might look
like in. say. 2050. In many countries, the fertility rate has declined over time with the result
that there will eventually be a large number of older retired people with a relatively small
number of working age adults able to look after them and keep the economy going. Planning
for demographic shifts of this sort is exactly the reason why statistics are such a fundamental
part ot government.

CHAPTER 6
Why your high school math teacher wag right:
How to draw a graph

I.

Can you always draw a line?

A line assumes that x is a continuous variable—that is, that it takes a large number of dif-
ferent values. This is true for age (in the lottery example) or pre-treatment levels of headache
(in the acupuncture example). However, sometimes our x, the variable we want to use to
explain our v, is a categorical variable. For example. it would be difficult to plot a line showing
the relationship between gender and playing the lottery, or between race and headache score.
In other words, line graphs arc very useful for examining the relationship between two contin-
uous (or quantitative) variables; they are not so good at examining the relationship between a
categorical variable and a continuous variable, or between two categorical variables.

This is where bar charts can be useful. Just as an example, here is a bar chart showing
length of guaranteed paid maternity leave in some different countries:

(=%
[e]

Paid maternity leave (weeks)
40
I

| 11

Argentirna Canada Denmark France Germany Japan  Spain us

You can instantly see that there is quite a lot of variation. that some countries mandate
about four months. others about a vear and that the United States guarantees no paid mater-
nity leave at all.
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CHAPTER 7
Chutes and Ladders and serum hemoglobin levels:
Thoughts on the normal distribution

I.

Is the distribution of the results of a game of chance, such as Chutes and Ladders, really
a normal distribution?

Actually no. It follows something called the binomial distribution. But if the number of
observations is large, and the probability of the event (e.g.. probability of winning the game)
not too close to (0 or 1. then the binomial distribution ends up very close to the normal dis-
tribution. For example, you can use the binomial distribution to work out that if you toss
1000 coins, you have a 2.5225%, chance of getting exactly 500 heads. If you use the normal
distribution. you calculate 2.5221% instead. Now most folks wouldn’t argue about 0.0004%,
one way or the other, and so would be happy to use the normal distribution as a decent
approximation.

Why deesn’t the graph of hemoglobin levels in the Swedish men follow a perfectly
smooth curve?

Each of the bars on the histogram is a proportion. For example. take the bar at
IS gm:DL, which is close to the median: you can see from the graph that just less than 5%
of the sample (the actual number is 4.7%) have a hemoglobin level of 15.0 gm/DL. Now if
you did the study again. you might not see exactly 4.7% of men having a hemoglobin of
[5.0 gm DL, though you probably wouldn’t be far off. So cach of the bars on the graph is
going to go up and down a little bit each time you run your study. Statisticians call this
lempIing variation.

CHAPTER 8
it the normal distribution is so normal, how come my
data never are?

I.

Can you transform all skewed distributions to a normal distribution by log transformation?

The distribution of data depends on the underlying process creating the data. In the
Chutes and Ladders example. data on the number of games won and lost depends on
adding a large number of random events. and so follows a normal distribution. In the
prostate cancer example. which depends on a process nvolving multiplication, vou get
what s called a fog-normal distribution. This means that the data are normal after vou
take logarithms,

But there are numerous other ways i which data can be generated. As an example. abil-

ity often follows what is called an exponential distribution. a simple example of which

would be v = 2% et imagine that we give a bunch of people a math test and time how
long 1t takes them to complete it. The better vou are at math. the taster vou'll do the test: it
seems reasonable to suppose that a math whiz who is twice as good at math as the average
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[

will complete the test in half the time. It we create an exponential distribution of math abil-

ity and then calculate times as |+ ability, we get:
F—_
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» sy
< - — -
= -
8
& o
o el
N =
o

Time to complete math test

This 1s what we get when we log transform:

w

Percent

Log of time to complete math test

Neither graph looks anything like a normal distribution. Log transformation will only create a
normal distribution if the process creating the data 1s log normal. For another example, have a look
at the data on length of pregnancy (see A skewed shot. a biased referee). These data are skewed
because doctors intervene and induce birth if pregnancy goes more than a few weeks past the due
date. As a result. you get quite a few babies born many weeks early, but none at all born many
weeks late. The process creating these data 1s not log normal. so log transformation will not help.

For enthusiastic students only: At one point | said that log(10) = 1. Later, I mentioned e.
If vou look at the graph of PSA values. vou can see that a PSA of 10 comes just after the
peak representing the most common PSA level. If vou then lvok at the graph of log
transformed PSA values, vou can see that the most common value is around 2. So my log
transformation turned 10 into a number slightly over 2, rather than 1. Why?
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Logarithms (logs for short) work like this: if log (v) = 7z, then x" = v, The value « is
called the “base.” To keep things \lmplg to start with. we'll use base 10 Tlu «.\dlnplu of Togs
[ gave v the text were log(10}) = 1:log(100) = 2 and log(1000) = 3. This is because
10! = 10, H)“ = 100 and 10" = l()( 1 used base 10 h\.Ldll\L 1t is casy to see things like
1072 = 107, showi mg that logs turn muluplication into addition.

Statistictans don’t like working in base 10. T hey prefer to do logs using base ¢, where ¢ is
the mathematical constant equal to 2. 71828, This is because ¢ reflects an inherent mathemat-
ical property of growth processes. The fog of 10 to base ¢ 1s 2.302, because = = 10,

That is the end of everything you need to know for statistics. so move on to the nest chap-
ter i you want. On the other hand. ¢ is a really interesting number. so here are some more
thoughts about it.

First. how do we get ¢ = 2.71828 (, Actually. the number of decimal places in ¢ oes on
forever.) The best way to thmk about the origin of ¢ comes from banking. Let’s imagine that
vou deposit $1.000 in a bank and they promise vou an annual interest rate of 100%, (not very
lmll\tm but it makes things simpler to use round numbers). Let’s also i imagine that the bank
adds the interest to your account only once. at the end of cach year. So after 12 months. you'll
have exactly twice as much money as when vou started.

Now let’s imagine that vou go to the bank after six months, and demand your mongy
back. You'll get your $1.000 plus half a vear’s interest, 500, for a total of $1.500. You then
take your money across the street to another bank and leave it there for another six months.
Six months” interest on S1,500 is $730, giving a total of S1.500 + $750 = $2.250. If vou
go back to the bank four times. you'd start with $1.000. then get $1.000 X 1.25 = $1.250,
which would turn into $1,250 % 1.25 = $1.562.50. then $1.562.50 x | 25 - S1.953.13 and
eventually SE,953.13 > 1.25 =$2 441 41,

Now if you wanted to work out what you'd getif you took out and then reinvested your
money monthly. you'd have make 12 separate calculations in a row. This is a bit time con-
suming and it becomes quicker to use a formula. This is simplest when you make it work
out the growth in your savings, so we'll call the amount you start with | (e.g.. if you end
up with 2. you have doubled vour money). Also. we'll call the number of periods . This
gives

Growth = (1 + | = »)"

Applymg this formula when you took money out of the bank after six months and then
reinvested it, we get (1 + | =+ 7) which is 1.57 or 2.25. which is what we calculated before
tvour savings grew from $1.000 to $2.250. a growth rate of 2.25),

What if you calculate interest more often?

® Quarterly: (1 + | = 4% = 2.44]
e Monthly: (1 + | = [2)!° = 2613
¢ Daily (including weekends): (1 + 1+ 365 = 2714

You may notice that the growth of our szl\'inns Is getting closer and closerto ¢ = 2 71828
The formal definition of ¢ is 1 = T = 513", where 5 approaches mfmity. For ex: unpk we
plug /1 = 1.000.000 into the formula, we get 2 7IR2IR0S5. Using i of 1000000, means we are
dividing growth into 1.000.000 separate periods.

So e desertbes growth, where time is div ided up Into a very large number of periods. This
Is the same as assuming that erow th h iappens constantly. (W hich 1t does. right?) As result. we
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find e popping up all over the natural world: spirals (which describe the growth of snail
shells), radioactivity (decay is the opposite ot growth). how far ultrasound penetrates through
body tissue (you can think of the strength of a signal as decaying), the shape of a rope hang-
ing between two points (the effect of gravity grows the farther you get from where the rope is
fixed). an arch under a bridge (which is sort of the opposite of a hanging rope). The formula
for the normal distribution also includes e, which means that ¢ helps describe an enormous
number of natural phenomena (such as hemoglobin in middle-aged Swedish men-—see
Chutes und Ladders and serum hemoglobin levels: Thoughts on the normal distribution). as
well as the results of repeated experiments. The constant ¢ 1s also found in Euler’s identity.
which is ¢/ + 1 = 0. The remarkable thing about this equation is that it links three very dif-
ferent mathematical constants, e, to do with growth: /, the square root of —1; and 7. the cir-
cumference of a circle divided by its diameter, along with “+ 17 which is how you get all
numbers, and zero, a key mathematical concept. Mathematicians like to trip out over Euler’s
identity, seeing it as a demonstration of the deep mathematical harmony of the universe. I am
not sure 1'd go that far, but it certainly speaks to something profound.

CHAPTER 9
But | like that sweater: What amount of fit
is a ‘good enough’ fit?

1.

Isn’t statistics meant to be very precise? Don’t we prefer “28.29%" to “about one in three?”

Giving results to many decimal places certainly sounds very scientific. This 1s perhaps
best seen in magazines like Cosmopolitan or Men's Health, which tend to report that, for
example, “48.2% of men think that women should offer to pay their share on a first date.”
Somehow that ©*.2%" gives the statement an air of scientific sertousness not afforded by stat-
ing that “about half ™ of men like women to pony up. The point is, of course, that “about halt™
is all we need to know. It makes absolutely no difference to any opinion that we'd hold or
action we'd take whether the true proportion was 48.2%, or 50.0% or even 56.7%.

The other problem with ~48.2%" is that, if the survey was repeated tomorrow, you'd prob-
ably be surprised if exactly 48.2% of men responded “yes™ to the question about splitting the
bill. It might be 53.9% or 45.7% (although probably not 86.5%). So ~48.2%™ suggests a level
of precision that you just don’t have.

One final point about those magazine surveys: they rarely if ever use random sampling.
One recent survey I saw (“our results reveal who the modern man 1s7) reported findings
such as “56% of men see the drink they order as a reflection of their masculinity or charac-
ter.” The survey was conducted via a click-through on a website and thus excluded: (a) men
who don’t use the Internet: (b) men who speak poor English: and (¢) those of us with better
things to do than fill out manliness surveys online. So it isn’t so much “56% of men have
hang-ups about their choice of alcoholic beverage™ but “56% of men who happened to be
on our website were intrigued by a picture of an attractive. under-dressed female and then
had the patience to click all the buttons on our questionnaire.™

The histogram showing test scores is skewed to the right. Why would that be?
The figure gives the distribution of @ measure of ability. Measures of ability are often
skewed to the right because people hike doing what thev are good at (the jock works out. the
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geek programs computers). and practice makes them even better. Also. the more knowledge
vou have. the casier it is to gain more (it is easier to learn Italian if vou speak French, Eng-
lish. Spanish and German than if vou speak only English). As a result. yvou generally have
more very high achievers than vou'd expect from a normal distribution.

It is generally said that “95% of observations are within two standard deviations of the
mean.” To calculate where 95% of the observations were for the table, I multiplied the
standard deviation by 1.96 rather than 2. How come?

The idea that “95% of observations are within two standard deviations of the mean™ IS Just
arute of thumb. To get the actual number of observations within two standard deviations of the
mean of a normal distribution, you have to do some complex math. If vou plug the numbers
mto the appropriate formulas, vou find that actually 93.45%, of observations are within two
standard deviations of the mean and that 95%% are within 1.96 standard deviations. So you use
“two standard deviations™ to check things quickly by eve. and 1,96 standard deviations™ if
you are doing calculations.

CHAPTER 10
Long hair: A standard error of the older male

1. What I am describing as a “study™ here is when I go to a single party and measure the

hair length of every guy. The aim of the study is to estimate the typical hair length of
American men. What must [ assume in order to use my data (hair length at one party)
to inform my study aim (hair length of American men)?

My main assumption is that guys attending the sort of parties [ go to in New York are a
random sample of all American men. This is a pretty questionable assumption, because dif-
ferent parties attract different sorts of guys (and some guvs never go out at all). The mean hair
length at a graduation ceremony for US Marines would trend low: guests at The Sixties Live
On party in San Francisco would probably finger me as a cop. This is similar to the opinion
poll that famously made an entirely incorrect prediction for the results of the 1936 presiden-
tial election (see A skewed shot, a biased referee). The problem with the poll was that the peo-
ple surveyed in the poll were wealthier than average. and wealthier people had different
voting patterns from the population as a whole. Random sampling 1s an absolutely key idea in
statistics: 1f your sample isn’t random. then your estimate will often be biased.

Incidentally. if you want a quick definition of random samplig. try this. Random means
“unpredictable.” so imagine that two people walk into the room. one who was sampled and
one who wasn’t. and you have to guess which one of the two was sampled. If yvou have no bet-
ter than a 50 chance of guessing correctly. then vou have a random sample. In the case of
the presidential poll. voud ask the two individuals about their finances and guess that the
richer one was the one in the sample: vou'd be right more than 0%, of the time. showing that
random sampling was not used.

What has statistics got to do with parties?

As it happens. one of the reasons that modern statistics got gomg at all was . beer. One of
the most commonly used tvpes of statistical test is the 7 test. This was developed by William
Sealy Gosset. who worked at the Guinness brewers in Dublin and dey cloped statistical meth-
ods to help with quality control for beer making (Gosset wrote under the name “Student.”
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which is why the 7 test is sometimes referred to as “Student’s 7 test™). R A Fisher. another of the
founders of modern statistics. conducted much of his early work on barley. for example. ana-
lyzing experiments to see which strain of barley grew fastest. The main use of barley is to
make beer.

CHAPTER 11
How to avoid a rainy wedding: Variation
and confidence intervalg

1. When we were trying to guess the body mass index of the student, I stated that 95% of
the individual observations would be within about two standard deviations of the mean.
I said something similar about reference ranges in the “Things to Remember.” What is
my assumption here?

Statements about what proportion of observations are within a certain number of standard
deviations of the mean depend on the assumption that the data are approximately normally
distributed (although see But I like that sweater: What amount of fit is a “good enough " fir?).
It turns out that once we get rid of the athletes (including the 300 Ib offensive lineman), the
body mass index of male students does follow a normal distribution (or at least it did in the
data set I looked at). This is somewhat different to the distribution of body mass index in
adults (see 4 skewed shot, a biased referee), which is very skewed.

2. When talking about the results of the lecturer’s study on body mass index, I said that
“95%, of study results—the mean BMI—will be within two standard errors of the
mean.” What is the mean here? What is the standard error?

The mean is the true mean; the standard error is the true standard deviation, divided by
the square root of the sample size. The true mean and true standard deviation are what are
known as parameters. The lecturer had a data set of 100 BMI's from men at the college who
didn’t play sports. Statisticians assume that these BMI’s were randomly selected from an
infinitely large group of theoretical non-athlete male students. This population has a certain
mean and standard deviation, which are the population parameters. The mean and standard
deviation we calculate for the weight of the 100 students in our sample are estimates of these
parameters.

In a typical analysis, you can never know the true values of population parameters such as
a mean or standard deviation. So saying that “95% of means are within two standard errors”
is a theoretical point. It is easy to demonstrate using computer simulation: I tell the software
what the true mean and standard deviation are; simulate a large number of studies; calculate
the mean of each study; calculate the standard deviation of the study means (because this is
the standard deviation of study results, we call it the standard error); show that 95% of the
study means are within about two standard errors of the true mean.

Because you don't know the true population mean and standard deviation, you have to be
a little careful when interpreting the results of a study. Imagine that you did a study where
you measured 100 students and calculated a mean BMI of 26.5 and a standard deviation of
2.5. You could then calculate the standard error as 0.25 (to get standard error. vou divide the
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standard deviation by the square root of the sample size) and calculate a 959, confidence
interval of 26.3 + 0.25 x 2 = 26.0 to 27.0. What you can t then say is that. “If [ repeated
my study a large number of times. 959 of the time. the mean body mass index would be
between 26 and 277 This is because you aren't using the true mean and true standard devia-
tion. but the estimates you obtained from your study. Statisticians tend to define confidence
mtervals by saying. “95% of 959, confidence intervals include the true mean. It is a subtle
point. and probably not worth worrying about too much: just think about the confidence
interval in terms of a range of plausible values tor vour study results.

CHAPTER 12
Statistical ties, and why you shouldn't wear one:
More on confidence intervals

1. 1 argued that, if we had to bet on it, we should put money on the Democrat, even though
the confidence interval for the poll included the possibility that the Republican would
win. Does this mean that we should just abandon confidence intervals then and go with
whatever looks best?

The key phrase here is “if we had to bet on it If vou are forced to make a choice
between two alternatives, vou should go for the one likely to give you the best result. pretty
much regardless of how much better it is. or how sure you are about your choice. As an
example. imagine that you are a soldier and that you have been captured by the enemy and
thrown into prison. You manage to escape your cell and make it through the prison until you
getto two doors, one of which leads outside to freedom and the other to the guard’s room
and certain death. Now you happen to remember a study showing that 51% of guard
room doors smell of beer, whereas only 30% of exit doors do so. Now although this isn’t
much to go on. you're better off choosing the door with the less beer-like smell than just
flipping a coin.

S0 when you are forced to make a decision between two similar alternatives. you ignore
the confidence interval. It follows then that if you aren’t forced to make a decision. or the
alternatives aren’t similar. the confidence interval can be very useful indeed.

Firstly, you don’t always have to make a decision straightaway. Imagine that you worked
for a computer company and had conducted a study to see which of two types of track pad
laptop users prefer: “original™ or “new.”™ Ot the S0 users you study. 30 (60°0) prefer the new
track pad. The confidence interval for 609, of 50 is 459, to 749, Although it looks as though
users prefer the new track pad. it may be that more people In fact prefer the original version.
When vou report these findings to vour boss. she tells vou that production of the latest model
of the laptop is sull some months away. and vou don’t have to make a decision vet. Indeed.
given that there are many millions of dolfars at stake. it would seem worth getting more data
before making a final recommendation. When vou repeat your study on a further 30 users.
vou find that 35 prefer the new track pad. This gives a total of 30+ 35 = 63 in favor out
of 30+ 50 = 100, in other words. 657, favorable with a confidence interval of 339, 1o
4% Ttis now unlikelsy that most users would prefer the original track pad and vou can now
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recommend that the new track pad go into production. This is an example of how increasing
the sample size can decrease the width of the confidence interval. It turns out that you have to
be a little careful if you just keep adding more observations until you get a statistically signif-
icant result. but the general point remains: if you don’t have enough evidence, and you don’t
have to make a decision vet. get more evidence and then make a decision.

The other reason why a confidence interval can be useful 1s when the two alternative
decisions are not similar. In the track pad example, it may be that switchig production to
the new track pad would be expensive, and so everyone wants to be pretty sure that users
reatly do prefer it. Alternatively, it might be that the original version of the track pad has
been around a long time and has been very popular. and the new track pad is a pretty
major design departure. Your boss would be justified in saying something tike. “Look, our
laptops are very popular. and we are not going to push through a major design change
unless we are really sure our potential customers are going to prefer it.” Another example
comes from my own field, medical research. In a clinical trial of a new drug. we are usu-
ally very interested in the confidence interval. If the confidence interval includes the pos-
sibility that the drug could actually be worse than placebo, we say that the trial was
“negative,” because you don’t start prescribing a new drug until you have pretty firm evi-
dence that it is of benefit.

2. Opinion pollsters for political races typically survey around 1000 people, but they don’t
go out in the morning and ask the first 1000 people they meet. What do they do?

If your first answer was “conduct a random sample.” that is a good start. People out and
about on the street in the morning are not a representative sample of voters: you'd probably
get a lot of parents with young children. shift workers and retirees, and it is unlikely that these
groups vote exactly the same as people who work in the morning.

As it happens, opinion pollsters don’t usually try too hard to get a random sample. In fact,
some would argue that a random sample isn’t even theoretically possible for opinion polls
about politics. If I wanted, say, a random sample of lawyers in New York State, I could pre-
sumably get a list from the New York Bar Association and then randomly select some to call.
Alternatively, if | wanted a random sample of fans at Yankee games, I could go to Yankee sta-
dium and approach, say, 10 randomly selected people in each section of seating. However, if
[ am conducting an opinion poll, I can’t randomly select voters, because the election hasn’t
happened yet: we know who is a lawyer, and we know who is at a Yankee game; we don’t
know who will vote in a forthcoming election.

What opinion pollsters do instead of random sampling is to use “weighted” sampling. To
give an example (with some silly numbers to make the math easy). let’s say that an opinion
poll included 600 registered voters, two-thirds men and one-third women. The 400 men went
300 to 100 for the Republican: the 200 women went 125 to 75 for the Democrat. This gives a
total of 375 Republican to 225 Democrat. a 62.5% to 37.5% victory. However. imagine that in
the last election for the Senate, two-thirds of those who voted were women and one-third
were men. To make our sample look similar to that voting in the previous election, we have to
count each woman twice (a “weight™ of 2) so that they make up two-thirds of the electorate
and count cach man as a halt (a “weight™ of 0.5) so that they make up one-third. If you do the
math vou get 50”0 voting Democrat and 506 votng Republican (a real tie. not a staustical
one). In practice. pollsters use weighting schemes that are quite a bit more sophisticated.
including gender. age. party attiliation and past voting history.
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CHAPTER 13
Choosing a route to cycle home: What p-values
do for us

I.

I stated that I “provided strong evidence that using the busy road was quickest.” Why
didn’t I just say that I'd proved it?

“Proot™ is not a word often used by scientists. Outside of the movies. fow scientists will
announce. “Aha! I have proved my theory.” (Also note that. outside of the movies, fow scien-
tists have crazily unkempt grey hair. or run experiments with test tubes containing bubbling,
bright red fluids.) Statisticians are particularly careful with the word “proof.” because they
are keenly aware of the limitations of data. and the important role that chance plays in any set
of results. Statisticians normally use the word “proof™ only to refer to mathematical relation-
ships between formulas. The point here is that vou don’t use data to do math theory, so you
aren’t subject to the limitations of data. and so can go about really claiming to have “proved”
something. It is certainly unwise to think that youcan prove something by applying a statisti-
cal test to a data set.

We normally think that a big difference between groups means a small p-value. But [
found a very small p-value (p = 0.001) even though the difference in travel times
between the two different routes home was trivial. How come?

The p-value is about the strength of evidence: a low p-value means stronger evidence.
Now one way that you might have strong evidence is if you have a big difference: if the
mean travel time on the backstreets was an hour vs. § minutes on the busy road, we'd see
this as a pretty firm demonstration that the busy road was quicker, and we'd expect a low
p-value. But we also consider evidence to be strong if there is a lot of it. For example, if
we asked a million men and a million women about their opinion of the president, we'd
probably be comfortable in saying that any difference, pretty much no matter how small,
represented a true difference between the sexes (as it happens, even a 0.2% difference
would be statistically significant for a sample size this large). I obtained the p-value of
0.001 for the difference in travel times by looking at two years of data, about 450 trips in
total. This 1s a lot of trips. which is why a 57 second difference, though small. was statis-
tically significant.

So the p-value depends on both the size of the effect and on the number of observations.
This 1s one reason why you can’t look at a p-value and decide whether somethmg 1s important
or not. An effect might exist; whether vou should pay it any mind depends on whether it is
large or small. This is why we normally need estimation as well as inference.

If statistics is not just about testing hypotheses, what else can you use statistics for?

Testing hvpotheses is inference. The other thing statisticians do when they analyze data
Is estimation. When 1 report the results of my two-vear study of travel times [ found “strong
evidence that going home via the busy road is faster (p = 0.001 1. but not by much (it saves
me 37 seconds on average).” The p-value of 0.001 allows us to make an inference about
which way home would be faster: the 57 seconds quicker™ on the main road is the
estimate.
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CHAPTER 14
The probability of a dry toothbrush: What is a p-value
ahyway< |

1.

Why do we say the probability of the data under the null hypothesis? Wouldn’t it be
more interesting to know the probability of the hypothesis given the data?

The short answer is yes. it would be great to know the probability that the hypothesis was
true. But no, unfortunately. traditional statistical tests don’t tell you that. One key point is that
when vou analyze a data set. you don’t incorporate any information from outside your study.
Sometimes there are very good reasons (other than your study) to believe that a hypothesis is
either true or false. [ was recently shown a study which suggested that a certain type of kid-
ney cancer was more likely to be fatal than another type (p = 0.04). My first comment was,
“Didn’t we already know that?” A large number of studies had already been published all
showing the same thing and, if I remember correctly, there were also some animal studies
examining exactly why it was that certain types of kidney tumor were more aggressive. On
the other hand. there is an idea that all cancers are caused by a parasitic infection and can be
cured by a special “zapper”. (You can’t make this stuff up.) If you showed me a medical study
showing that these zappers cured cancer with a p-value of 0.04, I'd probably say something
like, “Well, that is surprising, but it is a ridiculous hypothesis, and there is no reason to
believe it is true other than this one measly p-value. So thanks but no thanks, I am not going
to believe in this hypothesis for now.” I'd probably also look to see if the study was well con-
ducted. A statistical analysis can't tell you the probability that a hypothesis is true, because
data cannot distinguish between a good study and a tlawed one.

There is another reason why we say “probability of the data if the null hypothesis were
true™ not “probability that the null hypothesis is true given the data.” This goes back to how
we work out the math behind statistical tests in the first place. It is possible to calculate the
probability of a particular result if a certain hypothesis were true. A trivial example would
be the hypothesis that “this is an unbiased coin™ for an experiment where we toss a coin
four times. We can calculate, for example, that if the hypothesis were true, the probability
of throwing four heads in a row would be I + 2% = 6.25% and the probability of throwing
three heads out of four would be 1 = 2 X 4 = 25%. We can do something similar for
continuous variables: for example. under the hypothesis that “the mean height of male ath-
letes is 6 ft." there is a 50% probability that the mean of a sample of male athletes 1s 6 ft or
more.

However. it is not possible to calculate the probability of a hvpothesis given that we have
a particular result. Given four heads in a row, what is the chance that the coin is unbiased?
Given a mean height of 6 ft 2 in.. what is the probability that the true mean heightis 6 ft? It
is unclear how we could work this out. The problem is that we have an infinite number of
possible hypotheses (e.g.. the coin is unbiased, the coin is biased 60:40. the coin is biased
69.999999:30.000001 etc.: the mean height is 6 ft, the mean height 15 6 ft 0.001 1n. the mean
height 1s 2000 ft and so on).

Incidentally. there is a special branch of statisties. Bayesian statistics. that does try to esti-
mate the probability of hvpotheses. Roughly speaking. Bavesian statistictans start by stating a
subjective probability of a hvpothesis before the data trom a study are made available. They
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then update this prior probability depending on the data: negative data make the hypothesis
less Tikely: positive data make the hypothesis more likely. Bavesian methods remam some-
what a minority pursuit in most arcas of statistics. at least partly because of the ditficulty of
specitving the prior probabtlity of a hypothesis.

Here are some research questions. Give an example of the null hypothesis for each of
these: :

a. Does compulsory job retraming atteet long-term unemplovment? Example null hypothesis!
There is no ditference in rares of long-terni emplovment hefore and atier job raiming was
made compulsory for welfire recipionts.

b. Do African American males have o harder time than white males hailing a taxi in New York
Gy Example nall hypothesis: The time to hail acab is the same for African American and
Whire males.

¢. Nationwide, about 28, of births are vig Cesarcan delivery. Do hospitals in New York
State have higher than average Cesarcan rates” Example null hypothesis: The Cesarcan
section rate in New York Srate iy 289,

d. Do after-school programs increase student participation in art. music. drama or dance
activities”? Example null hypothesis: There is no difference in student participation in art,
muesic, drama and dance henveen schools swith and without afier-school programs.

e. Do patients taking a new, less toxic type of chemotherapy have response rates at least s
good as those on the standard (and unpleasant) chemotherapy drug? Exampie null
hvpothesis: Response rates on standard chemotherapy are higher than those on the new.
chemotherapy agent.

A couple of comments: first, the null hypotheses above are just cxamples and otten
several different null hypotheses are possible for any particular question. For example.
for question (d). you might also have the null hypothesis that “There is no difference in
student participation in art. music. drama. and dance comparing the period before the
introduction of school programs to New York City schools to the period after they were
introduced.”™ Alternatively. what about “Children offered a place in an after-school pro-
gram have the same level of participation in art. music. drama. and dance as children not
offered a place.” These three hypotheses reflect different study designs, respectively, com-
paring different schools during the same period of time: comparing different periods of time
in the same schools; comparing ditferent students in the same schools during the same period
of ime. The link between study hypothesis and study design is a central tenet of rescarch
methodology.

The second comment is that the null hypothesis for (¢} is that there /s a difference betw cen
groups. This iy odd because the null hypothesis is often detined in terms of “no difterence
between groups.” The reason w hy we have a null hypothesis that standard cancer treatment is
better than the new drug is that. if true. nothing would change. we'd just keep doing what we
normally do and give the usual wreatment. This is a somewhat unusual case. so don't WOorry
too much 1f you can’t quite wrap vour head around it. | raise it because 1t shows that the null
hypothesis is pretty hard to pin down, Perhaps we should expect this: we apply inference sta-
tistics to all sorts of areas of scienee. o we necd null hypotheses for alt sorts of different sei-
entific questions: it would be surprisig it we could detine all possible seientific questions in

asingle sentence,
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CHAPTER 15
Michael Jordan won't accept the null hypothegis:
How to interpret high p-values

I.

When discussing statistical significance, I have repeatedly described p-values less than
0.05 as “statistically significant™ and p-values of 0.05 or more as “not statistically sig-
nificant.” Is it true that a p-value of 0.049999 is always statistically significant and that
a p-value of 0.050001 is never statistically significant?

The most commonly used threshold for statistical significance 1s 0.05. This is why | have
referred to p-values << 0.05 as “statistically significant™ and p-values of 0.05 or more as “"non-
significant.”” However, in theory you can choose whatever level you want to determine statsti-
cal signiticance. This level 1s called « («lpha). If you set an v 0f 0.01, you call p-values << 0.01
statistically significant. Accordingly, a p-value of 0.04999 would not allow you to reject the
null hypothesis if your & were 0.01. Comparably, if your « was 0.1, a p-value of 0.050001
would be statistically significant and would lead to rejection of the null hypothesis. Saying
that “the most commonly used threshold for statistical significance is 0.057 1s therefore the
same as saying “the most commonly used value of « 1s 0.05.” In theory. you could set an « of,
say, 0.03869, but this is never done in practice.

Incidentally, it is important to set your a before you run your analysis. | have sometimes
seen results such as “The p-value for the difference between groups was 0.0684. Our results
are therefore statistically significant at the 0.07 level.” In short, if you set « after you get
your p-value, you can ensure that your results are always statistically significant. Of course,
this 1s great news if you are, say, a genetics company trying to sell a useless test; the rest of
us, however, might prefer it if everyone just stuck to 0.05.

Why do you think that my experiment with Michael Jordan resulted in a non-significant
p-value?

Assuming that you did a fair study—and that was the case here, it wasn’t as if [ was blind-
folded or anything—there are two reasons why you can get a non-significant p-value. The
first possibility, obviously enough, is that the null hypothesis is true. The second possibility 1s
that although the null hypothesis is false, you don’t yet have enough evidence to reject it.

One way of thinking about the p-value 1s that it represents the strength of evidence against
the null hypothesis. If you have a high p-value, and you believe that the null hypothesis is
false, one option is to go and collect more evidence. In the case of the basketball experiment.
that just means asking both me and Michael Jordan to shoot some more free throws. If, for
example. we both threw another 7 and | again hit 3. and he hit 6. that would give a total score
of Jordan: 13 of 14 vs. Vickers: 6 of {4. This ditference is statistically significant (p = 0.013).

A statistictan might explain this by saying that small sample sizes otten result in high p-values.
irrespective of whether the null hypothesis 1s true or false. Indeed. an important part of a statisti-
cian’s work is working out exactly how big a study needs to be in order to have a good chance of
rejecting a false null hypothesis (see also Meeting wp with friends. On sample size, precision and
statistical power).

What should we conclude about the effects of a low fat diet on breast cancer?

My own view on the low fat diet trial is that the results were very encouraging., on the
grounds that a 10°s reduction i cancer risk 15 pretty important. However. the results weren't
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quite strong enough for us to be really contident about the effects of dict on breast cancer: it

could be that fat has little ¢ffect or i< perhaps even protective, Accordingly, we really need

more data to be sure one way oranother. As it happens. we can get more data without doing

another trial. just by waiting around  more women will develop breast cancer over time and

we can go back to see whether these women were assigned to the low fat or standard dict group
in the trial. My guess is that the scientists running the trial will update their results in the next
tew years once these data han o been collected.

4. What is the connection between a criminal trial and a p-value?

Say that someone is accused of stealing a car. and the case goes to trial. The jury can
decide on only one of two verdicts: “gutlty™ or not guilty.” Roughly speaking. a guilty ver-
dict means that “we., the jury. find bevond a reasonable doubt that the defendant stole the car.”
A verdict of “not guilty”™ means “we, the jury, do not find bevond a reasonable doubt that the
defendant stole the car™ There is no verdict of “innocent.”

Statistical hypothesis testing is very similar: Justas you say “eutlty™ and “not guilty™ for the
criminal trial, you say, “Reject the null hypothesis.™ and “Don’t reject the null hypothesis.™ for
statistical testing. And Justas you can't say, “The jury tound him not guilty. so he is innocent.”

you also can’t say. “p = 0.03. null hypothesis not rejected. so the null hypothesis is true.”

CHAPTER 16
The difference between Sports and business:
Thoughts on the # fest and the Wilcoxon tect

. You may have heard that statistical tests come in one of two flavors: parametric and
non-parametric. The 7 test is a parametric test; the Wilcoxon is non-parametric. What
does “parametric” mean and why is the 7 test, but not Wilcoxon, parametric?

Parametric statistics are defined as methods that assume that the study data are drawn
from a theoretical distribution with certain characteristics. These characteristics are known as
paramerers: means, standard deviations and proportions are all examples of parameters.

Imagine that we have a data set consisting of the weight of 100 sheep. and we are consid-
Cring a parametric statistical analysis. What we are assuming is that the weights of these
sheep were randomly drawn from an nfinitely large group of theoretical sheep. This popula-
tion has a certain mean and standard deviation. which are the population parameters. The
mean and standard deviation we caleulate for the weight of the 100 sheep in our sample are
estimates of these parameters.

As regards our cyeling study, to get a p-value using a r test. we first calculated an estimate
for the difference between group means and then divided this estimate by its standard error.
The formula for the standard error mcludes the standard dev jations of both the massage and
control group. So to conduct a 7 test we need to caleulate means and standard deviations. These
are estimates of the paramieters of 4 theoretical distribution of Massaged and non-massaged
student cvelists. In contrast. to get the p-value from a Wilcoxon, we just added up ranks. and
there was no need to caleulute estimates of any parameters, We might choose to report a
median when we present o g-value from a Wilcovon test. but we don’t have to caleulate the
median to run the test. Hence the / test s parametric and Wilcoxon is non-parametric,

A simple way of thinking about parametric statisties 1s shown in the following figure:



DISCUSSION SECTION

Population parameters

A

We imagine that the data
are a sample from a
theoretical population.

What we estimate in the
data set are the
population parameters.

Data » Estimates from the data
We use the data to
caiculate estimates. such

as means and standard We calculate p-values
deviations. from the estimates.
v
p-value

A similar diagram for non-parametric statistics would be very simple:

We use the data to
calculate the p-value
directly.

Data > p-value

That said. investigators often report parameters such as the median or interquartile range when
reporting p-values from non-parametric statistical tests. So perhaps it is more accurate to have:

Population parameters

We imagine that the data

are a sampile from a

theoretical population. What we estimate in the
data set are the
population parameters.

Data Estimates from the data

We use the data to calculate
estimates, such as median and
interquartile range.

We use the data to
calculate the p-value
directly.

p-value

[ put the lines for the top half of the diagram in gray. because they are not an inherent or
necessary part of non-parametric statistical tests.
What would you conclude from our experiment about the value of massage for recovery
from cvcling?

We certainly shouldn’t conclude that massage improves cycling times because the p-value
was well above 0.05 and. as a result. we can’'t reject the null hypothesis of no effect of
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massage. On the other hand. we wouldn't want to say that massage doesn’t work because that
would be to accept the null hypothesis. which you shouldn't do (see Michael Jordun won 't
accept the null hvpothesis: How 1o interpret high p-values). The key thing is to look at our
main estimate and its confidence interval, We estimated that massage reduces race time by
about a minute. but it could reduce race times by up to five minutes. Now cyclists spend a for-
tune on buying lighter equipment in order to shave at most a few seconds off their time—-a
difference of even one minute is enormous. let alone five minutes. So what we should con-
clude is that the study wasn't precise enough to give us an answer one way or the other and
additional research is required. The reason why we didn’t get a precise result isn't hard to work
out: the study was very small and small studics typically lead 1o wide confidence intervals,

CHAPTER 17
Meeting up with friends: On Sample size, precision
and statistical power

1.

When calculating the sample size needed for a study with a hypothesis test, you need to
specify an effect size, the difference from the null that you want to find. How do you
choose an effect size?

Choose carefully, because small differences in the effect size lead to big differences in the
sample size. The inverse square rule applies: halve the effect size you want to try to find and
you quadruple the sample size you'll need. :

One common mistake is to fix the effect size in terms of what you expect to see. Take the
study of the new drug for the common cold. Imagine that the researchers did a preliminary
pilot study on 20 patients, all taking the drug. and found that 17 (85%) recovered within 48
hours. The temptation might be to design a trial that assumed a 50% recovery rate in the con-
trol group and an expected 85%, recovery rate in the drug group. Such a trial would require
about 80 patients. But let’s say that the results of this trial were that 28 of 40 (70%) in the drug
group recovered versus 20 of 40 (50%) controls. Although this looks great for the drug—-
most of us would be very interested in improving our chances of an early recovery from 50%
to 70%-~the result is non-significant.

This suggests that the effect size should be determined by considering the minimum effect
wed be interested in. For example:

® A doctor might tell you that, given the costs and side effects of the new drug for the
common cold, it would really need to IMprove recovery rates to at least 65%. [f recov-
cry rates improved to only 60%. it probably wouldn't be worth taking.

¢ A psychologist interested in gender differences in learning might specity that. if girls
and boys differed by less than 10 points on a test, you'd say that they pretty much had
cqual scores.

® A sociologist might analvze whether conservatives and liberals give different answers
t0 a questionnaire examining attitudes to politicians. The sociologist might state that
differences of 3 points or more would he interesting.

Accordingly. the doctor, psyehologist and sociologist would design their trials with effect
sizes of 1570, 10 points and 2 poInts respectively.
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Something that often happens is that a study fails to reject the null hypothesis. This typ-
ically leads the investigators to start running around to find semeone to blame for this
“pegative” result. A common question is: what was the power of the study anyway? Is
this a sensible question to ask?

Not in my view. because power is something vou think about when designing a study.
before vou have any results. The power is the probability that you'll correctly reject the null
hvpothesis. Now that the study is over. you know that probability: it is zero. because you did-
n't reject the null. Asking, “What was the power of the study we just analyzed™ is a bit like
asking. Do vou think the Mets have a good chance against Atlanta?” the day after the Mets
lose game 7 following a wild pitch in the top of the 9th.

What you should focus on at the end of the study is the confidence interval. If the confi-
dence interval includes results that would be interesting, then it might be worth doing further
rescarch. And that is really what vou should want to know. right? As a psychotherapist might
put it: it doesn’t matter who was to blame for the past, it is what you do about it in the future
that matters.

As a quick example: in the trial of the cold drug, we stated that if the drug increased
response rates by about 153% it would be worth using. Here are some possible trial results, all
of which show no statistically significant difference between groups:

t

Recovery rate | - Difference | 95% confi-

}. Total number | in the control. | Recovery rate in. between - dence
Trial | of patients group . the drug group | groups | interval
Ta - 360 50% C50% 0% ~10% to 10%
b 200 60% 50% ~10% —24% to 4%
¢ 480 50% 58% 8% —1% 10 17%
d 100 50% 62% 12% =7% 10 31%

From the results of trials a and b. we'd conclude that the drug is unlikely to be worth using
because the upper bound of the confidence interval--our estimate of what the best possible
effects of the drug could be-—is less than [5%. Trials ¢ and d might encourage us to give the
drug a sccond shot because the confidence interval includes the possibility that 1t could
increase recovery rates by 15%, something which we'd consider useful.

Should you always do a sample size calculation when planning a study?

You might be surprised that the answer is actually “no.” Speaking in purely scientific
terms. a study just keeps getting better and better as the sample size rises: power increases
and the confidence interval gets narrower. So. the ideal trial of the cold drug would include
every person with a cold in the world. and the ideal study of political attitudes would give a
questionnaire to every liberal and conservative in the US. The reason why we don’t typically
do studies with sample sizes in the millions is that they cost too much and take too long.

Moreover. studies that are too large are cthically questionable. My own field of cancer
rescarch provides a good example. From a strictly scientific viewpoint. a trial of a new
chemotherapy drug should be as large as possible in order to give a precise estimate of its
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effects. However, every additional patient put on a chemotherapy trial costs you something. If
the drug is ineffective. vou have put a patient through the misery of chemotherapy for no
good reasonz it the drug does help fight cancer. then vou have delayed the date when vou can
announce the results of the study (because vou have to wait for the new patient’s results to
come ). thereby denving perhaps hundreds ot patients throughout the world the opportunity
to getan etfective treatment betore their cancer has spread too far,

The point of formal sample size caleulation is to balanee benefits and harms. On the one
hand. the scientific benefits of having a precise result from a targe sample size. On the other
hand. the cost of a large study. in terms of time. money and lost opportunities. The reason why
sample size caleukation is not always necessary is that. for some studies. increasing the sam-
ple size doesn’t incur anv significant costs. If vou are analyzing data that have alrcady been
collected. it doesn’t cost any more time or money to download an entire data set or only part
of it. This is why manv economic studies don't need sample size caleulations: data for things
like interest rates. unemplovment or inflation are already available.

Here is another example of where there was no drawback to mcreasing sample size. Some
medical researchers wanted to test some hair samples that had been collected from AIDS
patients and stored in a hospital refrigerator. The rescarchers hypothesized that trace levels of
anti-AIDS drugs would be detectable in the hair and might predict how fong the patients sur-
vived. Now although it is time consuming and expensive to set up a lab to test the hair, test-
ing any individual hair sample is pretty quick and costs virtually nothing. Moreover, the test
doesn’t damage the hair so the sample can be put back in the refrigerator and studied again
later on by someone else. The researchers therefore proposed to the hospital ethics committee
that they test all 500 or so hair samples that had been stored. When the ethics committee
refused their request and demanded a sample size caleulation. the researchers pomted out that
there was no downside to testing all the samples: it didn't cost much more or take importantly
longer: no patient could be harmed: no research material would be lost to future scientists. All
too predictably. the ethics committee again denied their request due the lack of a sample size
calculation.

This raises a nice general point about statistics: statistics is a set of tools to help you find
things out, not a set of rules vou have to follow. Which statistical tool you use—or even
whether you use one at all- depends on what it is vou want to find out. The researchers were
absolutely right to say that sample size calculation was not a tool that they needed: the ethical
committee was wrong to believe that statistics is a set of rules. one ot which states that Tsam-
ple size calculations must always be conducted.”

For enthusiastic students only: When we looked at the power of our survey study, I
showed a distribution for the upper bound of the 9Y3% confidence interval. | said that
when this bound was less than 30% (our value for the null hy pothesis), the result would
be statistically significant. As such. I claimed that this distribution was the same as that
for statistically significant results. Is this actually true?

Not quite. although it doesn’t make much practical difference in this particular case. The
null hypothesis m the survey studs is that the proportion of students in favor of the change in
exams 1y 30700 We rejecet the nall 1t the abserved proporiton i our study is signiticantly
higher or fower than 5070 Fhis means that we reject the null if:

¢ [ he upper bound of the Y37, contidence mterval is helow SO o
}

e [helower bound of the 93 contidence imtersal is above S0,
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In my diagram. I show only the distribution for the upper bound. but say that the “propor-
tion of results less than S0%™ is “the proportion of statistically significant results.” Techni-
cally. that proportion should also include times when the lower bound was above 30%.
However. this would be extremely rare for this particular survey study. For example, the fower
bound of a 95% confidence interval would be above 50% if at least 61 of 100 survey respon-
dents were in favor of the new exams. The probability of observing 61 of 100 in favor of the
new exams if the true rate in favor were 38% is about 1 in 350.000.

CHAPTER 18

When to visit Chicago: About linear
and logistic regression

1.

In reality, no one tries to predict marathon times in terms of age, gender and training
miles. What would you use instead?

You might know that most marathon runners have a pretty good idea of what time they are
going to run, and that this isn’t based on their age, gender or training miles. Many runners
have run marathons before and use their previous times as a baseline; they might then adjust
up or down depending on how training is going or whether, for example, they have had an
injury. Runners attempting their first marathon have normally timed themselves over shorter
distances (such as a half marathon) and can make a pretty good guess on that basis (such as
by doubling their half marathon time and adding 15 minutes or so).

This makes an important point: if we really want to predict something, we have to think
hard about what would be the best predictors. Choice of predictors is a subject of intense
statistical debate, with different schools of thought. For example, should you specify your
predictors before looking at the data. or let the data guide your choice of predictors?
(1 tend toward the former.) The marathon running example illustrates something else
about prediction: generally, it isn’t whar you are that makes a big difference but how you
are. For the marathon, it isn’t age or gender that matters as much as current running time;,
in studies of pain, what predicts a patient’s pain level a year from now is not their age, or
type of pain or even type of treatment, but their current level of pain; in cancer, what
makes the biggest difference to survival is how far the cancer has spread before treatment;
if you want to guess someone’s college grade point average, just look at their scores dur-
ing high school.

In a regression such as y = byx; + byx; + ¢, the ¢ is called the intercept or constant.
Why?

[ like to use the term constant for ¢ because it is the amount added to everybody's score,
regardless of their values of the x's. In the marathon running example. the constant was 262
minutes: this amount is added no matter what the person’s age, gender or training regimen.
You can also use the term intercepr for ¢ because ¢ is where a regression line crosses the v
axis when x 1s zero.

For example. take the following regression equation: y = ~0.062x" + 1.8y + 2.6. Because
the equation includes an . it is non-linear (i.c.. a curve) as shown in the following graph:
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The intercept here is 2.6 and you can see that the regression line crosses the v axis at
o= 2.6.

This next bit is for enthusiastic students only, so if vou are not that interested in regression
constants. skip ahead to the next answer. The complication is that you sometimes have to be a
little bit careful about the intercept. What if T told you that the data for the graph were from a
study of diet, where v was weight loss and x was number of weeks on the diet? The problem
with the regression line is that it suggests that participants immediately lose 2.6 Ibs the instant

. . . - . . . 3 .
they sign up for the diet. A more sensible regression line is 3= —0.060x + 2.1y, which
gives:
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['obtained this regression equation by forcing the constant o be zero. There is an actis e
debate among statisticians about the sort of eircumstances where vou should and should not



182 DISCUSSION SECTION

8]

force the constant to be zero. but in many cases. such as the weight loss example. it is simply
obvious.

Why do you think that y is called the dependent variable and xs the independent variables?

For a regression equation such as 3 = 0.121x; = 13.6xy + 0.020x; — 0.87,y depends on
the values of the x's, so v is called dependent (it is sometimes also called the rexponse vari-
able). I am not 1009 sure why the x's are called independent (other than the fact that they are
not the dependent variable) because they aren’t really independent at all. For example. if you
wanted to predict juvenile crime (v) in terms of education and parental income (x's), income
and education are not independent of each other. they are strongly related. This is why | pre-
fer the term predictor for the x variables: crime is the dependent variable: education and
parental income are the predictors. You might also hear the term covariare used for the x vari-
ables. I tend to use covariate to mean “something we want in our regression but aren’t really
that interested in.” As an example, imagine that we wanted to know whether occupational
exposure to cigarette smoke (x) was associated with lung cancer (v). We'd obviously want to
take into account smoking, because we know smokers have higher rates of lung cancer. But
we aren’t particularly interested in any estimate for the influence of smoking on cancer.
because that has been reported many times before. So 1d call lung cancer the dependent vari-
able. occupational tobacco exposure the predictor and smoking the covariate.

In the marathon running example, the coefficient for “female” in the univariate analy-
sis was 24, that is, women took 24 minutes longer to run the marathon. In the multivari-
able analysis, the coefficient was 23 minutes. How would you explain the difference
between these two coefficients?

[n the univariate analysis. we are only looking at gender. The coefficient of 24 means:
“Randomly select a man and a woman runner. lgnore anything else about them, such as their
age and how far they run in training. Your best guess is that the man will run the marathon 24
minutes faster than the woman.”

For the multivariable analysis, on the other hand, we are also taking into account age, and
number of training miles. The coefficient of 23 therefore means: “If you had a man and a
woman, and thev were the same age and ran the same number of training miles each week, we
would expect the man to run the marathon 23 minutes faster.”

It is interesting to think through why the coefficients are different. It turns out that the
women in the sample tended to run slightly fewer training miles than the men. The overall dif-
ference we saw between men and women of 24 minutes was therefore partly because women
run more slowly than men. and partly because they didn’t train as much. The coefTicient from
the multivariable analysis is the difference in marathon time “adjusted™ for training. and gets
closer to giving the natural difference i running speed between men and women.

For enthusiastic students only: What is the log odds in logistic regression? What do sta-
tisticians tend to report instead coefficients for logistic regression?

In a logistic regression. v is the log odds. In the text, for example. I used the equation for
prostate cancer 1 = 0121 v; — 13.6 x5 + 0.020 xy — 0.87 to calculate a v of ~2.63 when
v was v owas 025 and vy was 38, This means that the man in question has a log odds of
cancer of —2.63.

To understand what this means we first have to understand odds. The probability of
something is defined as the number of times 1t oceurs divided by the total number of
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observations. It vou do a study of 1000 children. of whon 750 pass an exam. yvou'd sav
that the probability of passing the exam was 750 = 1000 = 7570, The odds of something
is defined as the number of times it occurs divided by the number of times it doesn 't
oceur. The odds ot a child passing the exam are theretore 750 = 250 = 3 Here are some
examples of probabilities and odds:

Odds of the
event

Probablhtv of no event
(e g£., failing the exam)

Probability of the event
(e.g., passing the exam)

h S0 1.0000
250, T30 (.3333
109, 90" O 1T
900, 0% 94000
3% 95% 0.0526
1% 940, 0.0101

One thing you might notice is that when something doesn’t happen very often. the odds
and the probability are similar. Something with a probability of 5%4 (0.05). for example. has
an odds ot 0.0526.

The formula  relating  probabilities  and  odds s that  Odds = Probability +
(I = Probability). If vou do the algebra. this means that Probability = Odds =
(I + Odds). But logistic regression gives you the log odds. that is. the logarithm (to base ¢)
of the odds. So to get from the log odds to the probability, you first need to caleulate the
odds by raising ¢ to the power of the fog odds In the example in the text. the log odds
was =263 the odds are therefore ¢ ™ = 0.072. This gives a probability  of
0.072 = (1 + 0.072) = 0.067. or about 7. To get ¢ 2% on most software. you type
exp(—2.63). This means that if you have a log odds. and vou want a probability, you tvpe in
something like exp(—=2.63),(1 + exp(—2.63 V).

Coefticients for logistic regression, such as 0.121 for PSA_are a little hard to understand
in isolation. So instead statisticians report what is called an odds ratio. To get an odds ratio,
you raise ¢ to the power of the coefficient. A coefticient 0.1 for PSA gives an odds ratio of

PN = 113 I other words. for every one point increase in PSA fevel. a man'’s odds of can-
cer merease by 1.13 (e.g from 8, to 9°,). This is often useful for giving a rough and ready
tdea of what drives risk.

Here is a quick example. Letys imagine Ihat vou were doing a study of job discrimina-
tion and you were examining the results ot Job interviews. Now assuming that all candi-
dates were in fact well qualified to do the [Oh a regression equation might be something

like v =log odds of a Job = =0.223 - African American = 0,105 < woman -
X A - , e g - - :
0.020 X Age in vears — 1. Chis gives an odds ratio of ¢ "= = .8 for African American.
-0 105 ~ - SO0 . - -
e = 0.9 for female and o "0 - 0.98 tor cach vear in age. An odds ratio of 0.8 for

African American means that. all ¢lse being equal. an African American has an odds 20°,
tower of getting the job todds ratios less than one mean “less likely o get the job™ and
odds ratios of more than one mean “more Bikely to get the job™) So it looks as though
African Americans. women and older people are indeed experiencing job discrimination
i this experiment. It also looks as though diserimmation is worse for African Americans
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than for women or older people. However, yvou have to be careful. Remember that the odds
ratio for age is 0.98 per vear. If vou were one year older than another candidate. your odds
would be 0.98. or 2% less: if you were two years older. the odds would be
0.98 ¥ 0.98 = 0.96. or 4" lower: if you were 20 vears older. your odds would be
0.98"" = 0.67. or about a third lower. So it appears that. in this experiment, age was a big-
ger barrier to emplovment than gender or race.

CHAPTER 19
My assistant turns up for work with shorter hair:
About regression and confounding

1. In our multivariable regression, junk food was associated with obesity even after con-
trolling for income, gender, education and exercise. Can we conclude that eating junk
food causes obesity?

It is very hard to deduce causality from statistical associations. The most obvious reason is
one | discussed in the text: confounding. For example, have a look at the following diagram,
which shows the stork population and birth rate in Germany in the carly part ot the 20th century:

Stork poputaton

/ Birth rate

Birth rate / stork population

T
1905 1910 1515 1320 1925
Year

There is clearly a very strong relationship between the stork population and the birth rate.
Indeed. the relationship is exactly what one would expect if babies were brought to mothers
by storks. with the birth rate talling shortly after the stork population goes down. The con-
founder here is the First World War, which had an immediate impact on the stork population
(due to bombs going ott where storks normally {ly around) and a delayed impact on the birth
rate (men dving in the war cannot get their wives pregnant to give birth 9 months later).

The other reason why it is ditficult to deduce cause from statistics alone has a nice analogy
with romantic relationships. Mary and Craig are in a relattonship- ok, but who caused 1t?
Did Mary ask Craig or did Craig put the moves on Mary? Similarly. if there is a relationship
between two variables. vou can’t deduce which caused which. In one set of data | analyzed. |
found that an unhealthy diet was associated with lower rates of heart disease. This isn't
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because eating lots of fat and sugar is good for your heart. The most hikely explanation is that
patients with heart discase are told to wateh their diet, If youmeeta guy frantic about ivoiding
fatty foods. it might well be because he's been told that oo much fat could Kitt him,

Incidentally. it is casy o get fooled by what vou huppcn to call the predictor and the
dependent variable. In the marathon rutming example (see Hhen 1o visie Chicago: Ahour
linear and logistic regression )y, itis obyious that inereased rdming causes runnets to com-
plete the marathon faster, not the other wav around. Howeer. the p-value for trainmg miles
e the regression v o= marathon time = 5, - raming miles = Ay < age = hy - gender
s rdentical to the p-value for marathon time i voE tramimg nules = by s
marathon time = /hy + age + by o vender. Just because vou call something a predictor. it
doesn’t mean that it caused the dependent variable.

[t you haven't done it alreads. just repeat the tfollowing phrase to vourselt a few times:
“Correlation does not imply causation.” Do it caret fully though. For many vears the tobacco
ndustry denied that cigarette smoking causes fung cancer on the grounds that studies show-
g increased lung cancer rutes in smokers merely indicated a statistical association. and did
not demonstrate cause and effect. The point about smoking is that there are multiple sources
of data. not just statistical associations between smoking and cancer in humans. For exam ple.
chemical analysis of tobacco smoke shows that it contains known carcinogens, and exposing
animals to tobacco smoke - -when done carctully- leads to lung tumors, Moreover. there are
numerous different types of human study and it is difficult to explain them all away. It is not
unreasonable to postulate that people who choose to smoke engage i other behaviors that
raise their risk of fung cancer, and it is these other behaviors that are to blame. But this would
not explam why people who yuit smoking have fower rates of fung cancer than those who
continue to smoke. why people who smoke more are at higher risk, why lung cancer rates
over time track smoking rates (¢.g.. they have started to tall as fewer people smoke) or why
lung cancer rates in different countries vary by national rates of tobacco use. It is also hard to
explain why smokers get cancers predominately in parts of the body that come into direct
contact with smoke, such as the lips, tongue. throat and lungs.

Again, itisn’t anything inherently statistical that does or does not allow us to draw a
conclusion—-such as whether or not smoking causes tung cancer- bat a wider body ot s¢i-
entitic knowledge. Statistics refps us draw scientific conclusions: it shouldn’t derermine
our sctentific conclusions.

I gave diet and exercise as an example of something that couldn’t be measured pr ecisely.
Couldn’t we get people to complete a diary of everything they ate and all the exercise
they did?

We could. but it wouldnt help much. The pomtis. vou don’t eat fattening foods and sud-
denly become obese. Hois dictary and exercise habits over many vears that lead o weight
problems. We might be able to measure what someone is currently cating. but it is just about
Impossible to reconstruct a person’s diet over a 20- or 30- vear pertod. Simibarby. we cannot
ever measure accurately how much someone has C\LC!'L‘I,,\Ld over their lifetime.

For enthusiastic students only: 1 reported a coefficient of 0.334 and a standard error of
0.121. How did T get the odds ratio of 1.40” How did I get the conhdcnw interval?

An adds rutio s si pr Craised o the power of the coet ticient: B P4 The conti-
denee mierval tor g wcmucm s plus or s LYo i >1;1m,;mi ciror. This ¢ives a confi-

-~ fripd (IR -~ .
dencee mterval ot ot sT o = htoand 70 =TT o the contidence ntery al
for the odds ratio is I,.H S
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CHAPTER 20
| ignore my child’s cough, my wife panics:
About specificity and sensitivity

1.

In the experiment to determine whether my wife or I had a better approach to child health,
we compared our results to that of a doctor. I described the results of this experiment in
terms such as: “There was a total of 50 sick children; 49 of these were picked out by my
wife.” To be more accurate, I should have said: “A total of 50 children were described by the
doctor as sick: 49 of these were picked out by my wife.” In other words, I am using
“described by the doctor as sick ™ to mean “really was sick.” But is the doctor always right?

Well, no. doctors are not always right (apart from my father-in-law, of course). The prob-
lem is that to work out sensitivity, we need to know who tests positive among patients who
really do have the discase. and so we need some way to judge “really having the disease.” In
short, sensitivity and specificity are about comparing test results to the truth, but “truth” can
be a bit of a slippery concept: without wishing to get overly philosophical, how do we ever
know something is true for sure?

Statisticians get around this problem by using the term “gold standard.” We choose some-
thing to compare against our diagnostic test, call this the “gold standard™ and assume that this
is the truth, although we know it might not be.

Here is an example from cancer research. Many cancer researchers are interested in
whether high levels of particular proteins in the blood indicate prostate cancer. The best way
to find out if you have prostate cancer is a biopsy, which involves inserting needles into the
prostate, taking samples of prostate tissue and then looking at the tissue under the micro-
scope to see if there are any cancer cells. In a typical study, we might look at the sensitivity
and specificity of having high levels of a certain protein; we do so by comparing the results
of the blood test with the results of the biopsy. It should be obvious that the biopsy s not
100% accurate. For example, the needles might miss the tumor and collect only healthy
prostate cells. But the only way to find out for sure if a man has prostate cancer 1s to remove
his prostate, cut it into sections and then examine the sections under the microscope (and no
man wants his prostate removed if he doesn’t have prostate cancer). So we just call the
biopsy the “gold standard™ as a reasonable approximation.

Do sensitivity and specificity ever tell us which of two diagnostic tests is better?

There are some cases where you can indeed use sensitivity and specificity to help you
choose a diagnostic test. One obvious example would be if one test had both higher sensitiv-
ity and specificity than another. It is also easy to pick the best test if two tests have equal sen-
sitivity, but one has better specificity:

Sensitivity Specificity
A 80% 40%
B H()” 1t 5(’“ 8}

Test B will find just as many cases of disease as test A (equal sensitivity ) but leads to fewer
positive results in patients without the disease (better specificity). so test B is the better test.
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Naturally. the converse is true. If the two tests had equal speciticity but test A had better sen-
sitivity. that is the one you'd choose.

The final example of where sensitivity and spectficity can be useful is when the sensitiv-
ity and specificity of the two tests "mirror” each other, for example:

| Sensitivity . Specificity
A K30 30%
B 4074 K5%

All you have to do 1s decide whether sensitivity or specificity is more important and
choose test A or B respectively.

That said, these sorts of situations—-where it 1s casy to use sensitivity and specificity to
choose the better of two diagnostic tests—-are very much the exception. What is more com-
mon 1s where. say. sensitivity 1s more important than speciticity and you get results like this:

, Sensitivity n Specificity
A 85%, 1000
B 806 S04

We'd probably want to go for test A, because we said that sensitivity is more important.
But 1s a 10%% loss in specificity worth a 5% gain in sensitivity? It can be difficult to say.

CHAPTER 21
Avoid the sales: Statistics to help make decisions

1. Using a regression equation, Helen’s doctor calculates that her risk of a heart attack is
8%. She is told that if she takes a cholesterol lowering drug, her risk will be reduced by
25%. However, the drug raises her risk of cancer by 0.5%. How much does Helen’s risk
of a heart attack decrease in absolute terms if she takes the drug? Do you think she
should take it? What if her risk of heart disease was 2%?

Thinking about relative and absolute risk is one time that a few formulas can be very help-
ful. especially as they are so simple.
Helen 1s told that her risk will be reduced by 25, This is the relative risk reduction. To
caleulate her relative risk, we use:
Relative risk = 100%0 — Relative Risk Reduction
This gnes a relative risk of 10070 — 2376 = 757, The definition of a relative risk is:
Risk with the drug

Retative nisk = - T
Risk without the drug
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This means that:
Risk with the drug = Risk without the drug < Relative Risk

We know that Helens risk ot a heart attack without the drug 1s 8%, so we can calculate her
risk if she takes the drug as: 80 X 75% = 6. To calculate the absolute risk difference. we use:

Absolute risk difference = Risk with the drug — Risk without the drug

This gives 6% — 8% = = 2%, Helen therefore has a greater decrease in her risk of heart
attack (2%) than increase in the risk of cancer (0.3%0). Unless Helen thinks that getting cancer is
very much worse than having a heart attack (say, 3 or 4 times worse), she should take the drug.

That said. the benefit isn’t very large. Even leaving aside the nsk of cancer, for every 100
women like Helen. you can work out that 92 will be free of heart attack even if they refuse
drug treatment and 6 will get a heart attack even if they take the drug. That leaves only 2 of
100 women who will benefit from treatment. In other words, on average, 30 women must
take the drug in order for one to benefit. This is the number needed to rrear and 1s calculated
as 1 = absolute risk difference.

If Helen’s risk of heart attack was 2%, the risk with the drug would be
20 X 75% = 1.5%, an absolute risk difference of 2% — 1.5% = 0.5%. In other words, the
drug decreases Helen’s risk of heart attack to exactly the same degree as it increases her risk
of cancer. So it is hard to think why Helen would want to take the drug. Note that the relative
risk reduction is the same (25%), giving another example of where relative risk (just like
“30% off ™ at a sale) is of little help for decision making.

I gave an example of decision analysis for a medical decision. However, decision analysis
did not develop in medicine, but in another field of statistics. Which?

Decision analysis originated for helping business decisions. The theory is that, instead of
just going with a gut reaction, a business person can identify all possible outcomes of differ-
ent decisions, and then estimate the probability and amount of profit (or loss) of each. For
example, for the decision tree shown in the text, the decision “bone marrow transplant”
might be replaced by “market a new product.” with “standard chemotherapy™ replaced by
“keep existing product line.” Outcomes such as “major response™ or “no response”” might be
replaced by “new product scen as a major improvement” and “no difference in sales,” with
profit figures calculated for each eventuality.

Decision analysis isn’t widely used. Why do you think not?

In order to complete a decision tree, you need to caleulate probabilities and outcomes. In
the case of bone marrow transplant. for example. we entered into the decision tree a [0% risk
of death and a 60°, chance of completing treatment. We also gave survival time of 10 months
for a minor response and 60 months for a major response. | suggested that these numbers
might come from “the scientific literature”” One immediate problem is that these sorts of
numbers might not be available or might be controversial. As an example from my own work.
there is disagreement about just when a man should receive a biopsy for prostate cancer. We
could create a decision tree to compare the decistons of “early™ vs. “delayed™ bropsy. but we
would need to know the effects ona man’s survival of a missed prostate cancer and the effects
on his quality of life from an unnecessary biopsv. There is considerable disagreement
between doctors on both ot these points,

The other reason why decision analvsis s rarely used 1s mteresting for what it tells us
about how statistics works n practice. Deciston analvsis is considerably more difficult and
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complicated than the simple introduction I gave in the text might suggest (this is true of the
book as a whole). As aresult. it takes very specialized training to undertake decision analvsis.
This type of training is rarely included m traditional statistics courses. and as a result. many
statisticians have very little knowledge of decision theory.

CHAPTER 22
One better than Tommy John: Four statistical errors
that are totally trivial, but which matter a great deal

I. I mentioned that the sentence had “half an error.” What was it?

The authors tell us that “baseline™ age was no difterent between groups. This was a trial on
pain. and in most pain trials. patients are on study for the same period of time. For example,
patients fill in a baseline questionnaire. receive a bottle of pills or placebos to take daily and
then fill in a second questionnaire about their pain six weeks later. So unless patients in dif-
ferent treatment groups grew old at different rates, there is no reason to tell us that it 1s “base-
line™ age that is being compared.

CHAPTER 23
Weed control for p-values: A single scientific ques-
tion should be addressed by a single statistical test

I. What does our regression assume about the association between the dose of the drug
and immune function?

Our regression cquation was v = 0.30x + 10.2. If vou plotted this out. you would get a
straight line, so our assumption is that there is a linear association between dose and immu-
nity. Here are the data that | used to create the regression:

Immune score
12
I

o o5 50 75 100

Dose in mgikg
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Looking at the graph. our assumption ot a linear relationship between dose and immunity
doesn’t seem unreasonable. There are ways to check this other than by just “eyeballing” The
casiest way to get a curve is to create a regression line of v = ax’ + hx + ¢. When 1 do so. |
geta —0.00018 for . with a standard error of 0.000148. The coefficient isn’t much bigger than
the standard error. so the result is not statistically significant (the p-value 1s actually 0.2).
Accordingly, we might say that we have no evidence for a non-lincar association between dose
and immune score if dose is 100 mg kg or less.

One quick point about the graph: | added what is called jitrer. Some of the mice had the
same dose and very similar immune scores, so their points would have been one on top of the
other on the graph. Jitter is a little bit of random noise that spreads out points so that they can
be seen more castly.

The authors of the immunity study found no significant difference between the 50 and
25 mg/kg doses. Does this really mean that “there is no difference between 50 and 25?7

A 1 test comparing immune scores between the 50 and 25 mg'kg doses is testing the null
hypothesis that the two doses have the same effect on immunity. A statistically significant p-value
would lead us to reject this null hypothesis and conclude that 50 and 25 have different effects. A
high p-value means that we are unable to reject the null; however, it doesn’t mean that we can
accept the null hypothesis (see Michuel Jordan won 't accept the null hypothesis: How to interpret
high p-values). Being unable to prove a difference is not the same as proving no difference.

CHAPTER 24
How to shoot a TV episode: Avoiding statistical
analyses that don't provide meaningful numbers

1.

I suggested that, for the crime data set, regression would give us a more meaningful
number than correlation. Another alternative involves no numbers at all. How might
you investigate these data without reporting specific numbers?

You can also present data on a graph, which shows the data for cach state, the regression
line and the 953% confidence interval for the regression line.
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The nice thing about this graph is that not only does it show that the relationship between
poverty and crime is not particularly strong. but it gives vou an idea ot where the action might
well be. The states with the low crime rates- -New Hampshire. North Dakota. Vermont,
Maine and Montana- seem to he rural, whereas many of the high crime states - Florida. 111
nois. Marvland and Calitornia— are more urban. If vou run a regression on the proportion of
the state’s population living in a metropolitan area vou get this:
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[t certainly seems as though the proportion of patients living in metropolitan areas does a
better job of explaining the data than the poverty rate. Some statisticians would recommend
then calculating and comparing estimates of how well metropolitan living and poverty explain
crime, using, for example, - (see point 3, below). My own view is. why bother? Our aim isn’t to
have a dog show between different predictors to see which wins the crown of “Best Predictor,”
what we want to do is understand our dependent variable (1 = violent crime ) as best we can. So
rather than providing individual correlation coeflicients (or regressions) for each variable. one
at a time (poverty, metropolitan living, etc.). we can put several variables into a single multi-
variable regression.

Violent crimes per 100,000 =
22.2 X Percentage of state residents living in poverty

— 9.8 X Percentage of state residents with college education

4

5.6 X Percentage of state residents Hiving in a metropolitan area

!

3.2 » Median houschold income in SO0U
+ 548

This multivariable regression gives a more complete picture of the factors that are associated
with violent crime. It also helps deal with the issue ofconfounding (see Vv assistant i up for
work with shorter hairs 1hour regression and confoundingy. For example. if vou Took only at
crime and income it looks like crime rises w ith increasing median household income. Howeser,
there is a strong association between income and inetropolitan living. with rural areas tending 1o
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be less wealthy. Once vou adjust for metropolitan living. you see that increasing income 1s asso-
ciated with lower crime rates, although not by very much.

Incidentally, “living in a metropolitan area™ doesn’t mean that you are in an apartment
building downtown. The way that a “metropolitan statistical area™ is defined by the US gov-
ernment is a city, or a county close to a city if that county has strong ties to the city (for
example, it many people commute from that county to the city). Some of New Jersey 1s
pretty rural. but all of New Jersey has significant links to cities in New Jersey (such as Tren-
ton and Newark) or in neighboring states (such as New York and Philadelphia).

One other point about the graphs: | added jirter. Some of the states had very similar crime
rates and levels of poverty or metropolitan living. As a result, their points would have been
one on top of the other on the graph. As pointed out in answer 1 for chapter 23. jirrer 1s ran-
dom noise that spreads out points so that they can be seen more easily.

Should you never use chi-squared, ANOVA or correlation?

As a practicing statistician I have used all three techniques. I actually use chi squared quite
a lot. (Truth be told, I tend to use something called Fisher’s exact test rather than chi squared,
but the differences between the two aren’t particularly important.) | am just mindful that chi
squared only gives a p-value and make sure that 1 find some way of giving an estimate as
well. In the case of the religion and marriage data. for example, | would probably show the
table. give the p-value from chi squared. and say something like, “To illustrate these findings.
we categorized number of friends of the same religion into all or most vs. half or fess than
half, and categorized attitude as mind not at all vs. mind at feast a little.” 1'd then give the esti-
mates as described in the text (i.e., an 18% difference between groups: 95 confidence inter-
val 13%, 22%).

I've used ANOVA sometimes in observational studies. For example, ['ve looked at a data-
base put together by a surgeon who was keeping track of his results. He wanted to know if
there were any differences in outcome between three alternative ways of doing the surgery.
The first thing I did was to check whether there were any obvious differences between the
sorts of patients receiving each type of surgery, something that might make it difficult to
compare results. One of the things I checked was age and because I had a continuous depen-
dent variable (age) and three groups (the three different types of surgery). I used an ANOVA.

I most often use correlation to examine relationships between different predictors. In one
study, we were looking for proteins in the blood that might predict whether someone was at
risk for cancer. It turned out that two of the proteins had an extremely high correlation
(almost 0.95). As the level of one protein told vou pretty much exactly what the level of the
other protein was going to be. we concluded that it would never be worth it for a doctor to
measure both.

Statisticians have developed a wide array of tools to help us understand data, and I'd be toath
to deseribe any of them as being without any value at all. But. on the subject of tools. let me tell
vou that I own both a screwdriver, which I use a lot. and a crowbar. which I have used once or
mwice. If anvone told me that they used the crowbar a lot and the screwdriver rarely. 1'd start
looking around for a police officer. It isn’t much different with statistics: we should spend most
of our time using the tools that are most helptul for everyday tasks.

Is correlation really a dimensionless number, like it taking “2.8" to set up a film shoot?
A correlation does actuallv have some interpretations that are meaningful. although
mainlv to statisticians. The first concerns what is called “explained variation™ the square of




DISCUSSION SECTION 193

the correlation, R*. tells vou how much variation in one variable vou can explain by looking
at variation in the other. The square of .27 15 0.07. so the correlation of 0.27 between violent
crime rates and poverty rates tells vou that differences in poverty rates explain 7% of the dit-
ferences in crime rates. This isn't a lot. as it means that about 932, of crime rates are unex-
plained. You can also work out an R~ for a multivariable regression. The R- for the regression
above (predicting violent crime rates in terms of income. poverty, metropolitan iving and
education) is about 30° .

Another way to terpret correlation is in terms of standard deviations. The correlation of

0.27 between poverty and crime means that a one standard deviation increase in the poverty
rate leads to a 0.27 standard deviation increase in the crime rate (and the other way around). |
think that this 1s somewhat ditficult to understand. This is especially in comparison to regres-
ston. which gives you a result in real terms. such as that a 1°4 increase in the poverty rate 1s
associated with 17 more violent crimes per 100,000, Talking of 17 more violent crimes”
reminds us that we are dealing with real people who sutfer the horrors of violence: a “stan-
dardized difference of 0.277 is a statistical abstraction that can lead us away from that reality.

Are we interested in inference for the crime data set? Should we report p-values from
our analyses? What about confidence intervals?

We work out p-values by imagining what results we would get it the null hypothesis were
true and we repeated the study a large number of times (see The probabiliny of « diyv tooth-
brush: What is a p-value amavay?). Similarly, the 95%, confidence is defined as “if the study
were repeated a larger number of times, 9594 of the 95% confidence intervals would include
the true estimate.™ All of this is on the assumption that when we repeat a study. the results
may change. This is certainly true of an opinion poll (see Sratistical ties, and why vou
shouldn t wear one: More on confidence intervalsy or a study of hair length in men (see
Long hair: A standard error of the older male) because we are caleulating means and pro-
portions from a sample. Once we select a different sample we might well get a different
answer.

But in this case, our data set is the crime statistics for the ditferent states in 1996, We aren’t
sampling 50 states from some imaginary larger population of states. we have all the data that
there are, and if we repeated our study, we'd get exactly the same results. As a result. report-
ing p-values and confidence intervals doesn’t make sense.

So, here is a rule of thumb: it you have the whole population. rather than a sample. don’t
report confidence intervals and p-values. One way to remember this is to think about
Nathan’s fourth grade class. which had 14 boys and 12 girls. When | plug these results into
my computer. it tells me that 46”6 of Nathan's class are girls (which is true), but it also gives
a 95%0 confidence interval of 27% to 67%. Computers are dumb like that- ~they spit out an
answer even if the question is a stupid one: it isn’t that our best guess is 46 girls. but it could
be as high as 67% or as low as 277 we know that the class is 46%0 girls, end of storv. Also.
over Christmas. one boy's family moves to the suburbs and leaves the school. My computer
uses MeNemars test for paired samples to give a p-value of 0.8 for the null hvpothesis of no
difterence in the proportion of wirls comparing before and after Christmas. This suggests that
we have farled o reject the null hypothesis and would have to tell the teacher that we have
msutticient evidence ot a change m gender ratio in the class.,

The fact that we don'tdo soisan insight as o why we don't tend to think statistically in ey Cry-
day life. When we say that prices at the Perch Cate have gone up. or that the bridge was hacked
up with traftic. or that Pegay had a lot of people at her party. we aren 't dealing with samples—- we

R

e
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have all the data that we could get, that is. we have the whole population. Accordingly. we say
these things with confidence and leave out the contidence interval.

CHAPTER 25

Cam, A3 years old, 700 pound Florida
super-granddad: Two common errors in regression

1. The regression for Sam’s mile time was based on five data points, his time at ages 12, 14,
16, 18 and 20. Any thoughts as to whether this is a good or bad idea?

You'll see a lot written in textbooks about exactly how many variables you can put in a
regression depending on the number of observations you have (for a linear regression) or
events (for a logistic regression). One figure widely thrown around is that you need at least 10
data points or events for every predictor variable. For Sam’s mile time we have 5 data points
and 2 predictor variables (age and agez), so we clearly have a problem. The name of this prob-
lem is overfit, which means that a regression will work very well for the current data set, but
not for a new and different data set (e.g.. if we looked up some old school records and found
other mile times for Sam).

I actually don't like to think of “overfit” and “events per variable™ in overly statistical
terms. To me it is simply a scientific rule of thumb: don’t try to use too little to explain too
much. As a simple example. imagine that you wanted to know whether food, atmosphere or
service made the most difference to whether a restaurant was successful and used the restau-
rants in your home town as the data set. Except that there are only five restaurants:

Restaurant Atmosphere Service Successful?
AldiLa Excellent Good Ok Very

Two Boots Moderate Good Excellent Very
Applewood Excellent Ok Good Quite

Song Good Excellent Ok Very
Cocotte Good Good Good No

You might compare A/ Jdi La to Cocorre and conclude that it is the food that makes the dif-
ference; on the other hand Tiwo Boots is successful despite so-so food. Comparing Applewood
to Song suggests that atmosphere really counts. but that doesn’t seem to explain why Cocotte
closed down. In short. you just don’t have enough data to inform three different hypotheses
about what makes a restaurant successful.

2. How did I work out that Sam could bench press a half a ton at age 93?
Sam could bench press 160 1bs at age 16 and 180 Ibs at age I8, Assuming that a baby aged
() cannot bench press any weight at all, this gives a simple regression equation oft Bench
press (Ibs) = 10 < Age (vrs). This would predict that Sam could bench press 930 Ibs at

age 93,
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For enthusiastic students only: In the regression equation where 3 was time for the mile
. 2 - . . e« .
in secconds and x was age, | gave y = [.420x* ~ S4.2v + 784. W hy is the coefficient for

3. . . . . . . >
X7 1.429) given to three decimal places whereas only a sinule decimal place is given for
, N 2l
the coefficient for xv(54.2)?

. . Y, hl . . -~

Fhe visage. so v~ is age” and can end up being very large. For example. for someone age
- e N A . . - . ~ ~ M ~
30, the coetficient for age™ is multiplied by 2300, Reporting a co-cefficient for = of 1.43
rather than 1429 makes a 2.5 second difference to our prediction. Reporting a coefficient
for x of 34.2 rather than 34.21 (the coetficient rounded to 2 decimal places) makes only a
0.5 second difference to our prediction,

CHAPTER 26
Regression to the Mike: A statistical explanation
of why an eligible friend of mine ig still single

1. Does regression to the mean explain why Mike is single?

Actually, no. 1t doesn’t—meaning that this chapter has been sold to vou under rather false
pretenses. What I explain using regression to the mean is why Mike's housemates all mect
someone and move out. Most people in their 30° (the typical age of Mike’s housemates) are
in relationships and live with their partner. “Living with partner™ is thus the “mean.” Mike
only rents his room out to singles. and thus to individuals who are not at the mean: a repeat
observation of one of Mike's housemates (¢.g., a year after starting to live in Mike’s place) is
likely to find that the individual has regressed to the mean, that is. they have met someone
and moved in with them.

The real explanation for why Mike is still single is obviously that he hasn't met the right
person yet. The other explanation is that, if he weren't single, he probably wouldn't be renting
out his spare room and wouldn’t particularly mind his housemates’ romantic success even if
he did. In other words. it Mike weren't single, T wouldn't be writing about him. If you are
iterested. this is a version of what cosmologists call the anthropic principle: we don’t have to
explain why conditions in the universe are just right for intetligent life because if they
weren't, we wouldn’t be around to wonder why not.

What is the connection between regression to the mean and linear or logistic regression,
the statistical technique used by statisticians to quantify relationships between variables?

Lincar regression and regression to the mean are quite separate statistical 1deas and it
would be natural to think that it is just coincidental that both include the word “regression.”
However. the two terms actually share the same historical origin. In the [9th century. the
study of human heredity was known as eneenicy because. roughly speaking. people believed
that the human race could be improved by selective breeding. The British scientist who
founded cugenics. Francis Galton, took measurements of familics and then tried to work out
the relationship between the heights of the parents and the heights of their adult children. He
noticed that. although wall parents tended to have wll children. the ehildren weren't quIte as
tall as the parents were: something similar was true of short parents. He called this “regres-
ston to mediocriny™ tmediocrtty heing used as a term for “m erage ). But he also wrote out
an equation to describe the relationship between the herghts of parents and those of their
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children: y = difference of children’s height from the mean = 2/ difference of parent’s height
from the mean. For example, if a man’s parents were 3 inches taller than average. he would
generally be 2 inches taller than average. Because this equation described “regression to
mediocrity.” it was described as a “regression equation”™ and the term stuck. What hasn’t
stuck is eugenics, the hope of breeding a master race and the use of the word “mediocre™ as
average. Hence statisticians have replaced the term “regression to mediocrity™ with “regres-
sion to the mean.” “Regression to the Mike™ 1s yet to gain widespread currency among acad-
emic statisticians, but maybe this will change.

CHAPTER 27
OJ Simpson, Sally Clark, George and me:
About conditional probability

1. Idescribed two events as independent if information about one gives you no information
about the other. Similarly, two variables are independent if information about one gives
vou no information about the other. What is the relationship between independence and
statistical tests such as the r-test or chi-squared?

All of the common statistical tests assume that the data are independent. Applying these
tests to non-independent data is a very common error. An obvious example is repeat observa-
tions. For example, imagine that we were interested in the influence of shop design on buying
habits, and compared the sales at two branches of the same clothing store. We might get the
following data.

Atlantic Terminal: Broadway: Entrance arca
. “Open” entrance area - with clothing racks
Monday $2.800 $4.,400
Tuesday $2.600 $4,300
Wednesday $3,200 $4.700
Thursday $3.000 $4,500
Friday $3,900 $5.700
Saturday $6,000 $7,200
Sunday $5,400 $£7.000

You might be tempted to compare these sales data by a 7 test or Wilcoxon (you get p of
around 0.045 either way). But this is to forget that a store’s sales on one day are not indepen-
dent of its sales on another—if [ tell you Monday's sales figures, you can take a reasonable
cuess at Tuesdays. The casiest way to think about why a 7 test is not appropriate here is to stop
thinking about statistics altogether. What would you say if you were the CEO of the clothing
company and one of vour managers brought the data to you claiming that putting clothing
racks in the entrance area was a good idea? You'd probably say something like. “This isn't
much data at all. You have onlv shown me two stores and it doesn’t surprise me that the store
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in mid-town Manhattan does better than the one in that second rate mall in Brooklyn.” Trans-
lating this into statistics speak: you don’t have 14 independent data points. vou have two sets of
seven non-independent data points.

Another example of non-independence 1s where something can affect multiple individuals.
Take the case of study to determine whether memorizing multiplication tables affects math
scores in elementary school. One approach might be to compare the results of two classes,
one taught by a teacher who encouraged children to remember the multiplication tables and
the other who did not. If there were 25 students in each class. you would end up with a total
of 50 scores. However. again, the data are not independent. 1 1 tell you that one kid in a class
did very well. you might guess that the teacher was a good one and that other kids in that class
did well too. As a result, vou can’t just enter the 30 numbers into a 7 test or Wilcoxon.

What this all comes down to. of course, 1s experimental design. It is pretty silly to design
a study on store layout so that it includes only two stores because a store’s sales depend on all
sorts of things other than whether the entrance is left open or includes clothing racks. Simi-
larly. teachers ditfer in all sorts of ways so it will be difficult to attribute any differences in the
results of two teachers to a single difference in the use of a specific teaching technique.

In the text I describe Professor Meadows® argument as “only about 1 in 8500 babies die
of crib death . . . the chance of two crib deaths [is] 1 in 8500 multiplied by 1 in 8500 for]
I'in 73 million.” I pointed out that the “1 in 73 million” number (a) assumes that the
chance that an infant will die of crib death is independent of the chance that a sibling
would; and (b) says very little about the probability that the children were murdered.
There is an even more fundamental mathematical problem though. Any thoughts?

You might have noticed- 8500 X 8500 is nearer to 72 million, not 73 million. ['d love to
be able to say about Meadows, “Can’t do statistics? He can’t even do basic math!™ but I don’t
have a transcript of the court case so I don’t know exactly what he actually said. It is interest-
ing nonetheless that all of the very many newspaper stories reporting the Sally Clark case
repeated a basic multiplication error.

The Sally Clark case has been described as an example of the “Prosecutor’s Fallacy.”
What do you think this is?
The Prosecutor’s Fallacy goes like this:
® Based on the evidence I have provided, it is highly unlikely that Mr. Shapiro is innocent.
® Therefore, Mr. Shapiro is guilty.

The problem with this argument is that there are two possibilities: Mr. Shapiro is innocent
and Mr. Shapiro is guilty. We can’t look at the probability of just one of these and draw con-
clusions about the other. Instead, we need to compare the probability of each.

For example. imagine that a robbery is committed and some DNA is collected at the scene
which matches that of Mr. Shapiro. However. it turns out that at the time of the robbery, Mr.
Shapiro was in a city thousands of miles away giving a presentation to the National Associa-
tion of Police Officers. It is pretty unlikely that Mr. Shapiros DNA would match that of a sam-
ple collected from a crime scene. The Prosecutor’s Faltacy would be to conclude that Mr.
Shapiro s guilty on those grounds alone. But it is even more unlikely that Mr. Shapiro could
have committed the crime given that he had the world’s most perfect alibi. So out of the two
possibilities. we choose the most probable and declare Mr. Shapiro innocent.

The Prosecutor’s Fallacy 1s often found in conspiracy theories. Take the idea that the works
of Shakespeare were written by someone other than William Shakespeare. The argument
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against Shakespeare being Shakespeare is that he was relatively low class and it seems
improbable that someone of his background could have written such worldly and brilliant
plays. Accordingly. his plays must have been written by someone ot higher social status. say,
the seventeenth Earl of Oxtord. Which 1s fine until you realize that the Earl of Oxford died
before some of Shakespeare's plays were written. It seems more likely that Shakespeare was
indeed Shakespeare than that the Earl of Oxford wrote plays while dead (how exactly would
he get ink and paper 1n his coffin anyway?).
This is a great example of the Prosecutor’s Fallacy:
e [tis improbable that William Shakespeare could have written all those fantastic plays.
® Therefore William Shakespeare 1s not the author ot Shakespeare’s plays.

The counter-argument is to note that there are various competing theories and to see which
one makes more sense:

e [t is improbable that William Shakespeare could have written all those fantastic
plays, that 1s certainly true.

e [t is impossible for the Earl of Oxford to have written plays while dead.

® Therefore it is more likely that Shakespeare's plays were written by Shakespeare
than by the Earl of Oxford.

Shakespeare himself provides a great example of the Prosecutor’s Fallacy. In the play
Othello, the lead character is a dark-skinned “Moor” who marries a white woman (“the fair
Desdemona™). Desdemona’s father, Brabantio, can’t believe that his daughter would choose
to marry a black man of her own free will and accuses Othello of witchcraft. He goes before
the senators of Venice and says:

She is abused, stol'n from me, and corrupted

By spells and medicines bought of mountebanks,
For nature so preposterously to err,

Being not deficient, blind, or lame of sense,
Sans witcheraft could not.

Loosely translated, this means that it is very unlikely that a white woman who wasn’t blind,
stupid or completely devoid of sense would get together with a black guy (an error against
nature). Therefore it must be that Othello used magic and gave Desdemona potions bought from
quack doctors. This is pretty close to the Prosecutor’s Fallacy: one thing 1s unlikely (Desdemona
actually liking Othetlo), so something else (Othello using witcheraft) must be true.

CHAPTER 28
Boy meets girl, girl rejects boy, boy starts
multiple testing

I.

Is subgroup analysis a problem mainly for medical research?

I used a medical example i the text because doctors seem particularly obsessed by sub-
groups. But subgroup analysis crops up in many fields of statistics. In sociology. researchers
might be interested not only in the overall effect of a change in policing on overall crime. but
on its effect on different tvpes of crime: an educational psychologist might be interested in
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the effect of a teaching technique separately for boys and girls: a biologist might divide
results by subspecies.

One of the most difficult areas for multiple testing is genetics. Everybody has thousands
and thousands of genes. so it is likely that many of them will end up correlating with traits

like, say, height, intelligence or athletic ability. A typical genetic study might examine 15.000

genes and we'd expect that 5%. around 750, would have a statistically signiticant association
with the trait we were investigating, just by chance. Genetics researchers need to use special
statistical analyses to deal with this problem, but they don't always do so properly.

However, the award for most gratuitous use of subgroups goes to . .. sports. Batting aver-
ages tell you something I guess, and 1 suppose it makes sense to look at averages separately
for infielders and outfielders. But do we really need to know which infielder has had the
highest batting average since the all-star break? And no doubt drawing a walk is an important
part of baseball, but should we care who has worked out the most 9th inning walks? My
favorite example was in an NFL divisional play-off game, when it was reported that the visit-
ing team had lost their previous eight games in the Eastern time zone. They won in a rout,

Do all clinical trials have equal numbers of patients in each group (e.g., 1000 patients on
the new drug and 1000 patients in the control group)? Do clinical trials include exactly
equal numbers of men and women?

No, research with humans almost never works out so cleanly. It is even difficult to get
exactly the right number of patients in a study, let alone the same number in each group. For
example, imagine [ was running a study that aimed to get 2000 patients on study and that, at
I'l am on the first Thursday in February, the 2000th patient was finally recruited. I am in a
meeting at the time and don’t get the message until 3 pm, when I send out an e-mail to all the
doctors in the trial telling them to stop entering patients. Except that at 3 pm, doctors aren't
reading their e-mails—they are sitting in clinic and trying to get patients to join important
new medical studies. So by the time the doctors read their e-mails, they have probably entered
at least a few more patients, leaving us with more than 2000. This is especially true of a cer-
tain Dr. Jones, who has changed his e-mail address and doesn’t get the message until the fol-
lowing Wednesday. Then it turns out that some patients in the study were actually not eligible
and that some died or moved before recurrence could be assessed.

All of which is to say that, although they make statistics much easier to understand, don't
expect nice round numbers when you actually start doing research.

For enthusiastic students only: One table in this chapter shows the probability that at
least one of a given number of tests will be statistically significant if the null hypothesis
is true. I worked out these numbers using the formula 1 - 0.95” where n is the number of
tests. This is the same as saying, “What is the probability that all tests have
p-values = 0.05?" (which is 0.95") and then saying, “The chance that at least one test
has p < 0.05 is 1 minus that probability, i.e., 1 - 0.95".” As I hinted in the text, this for-
mula is an oversimplification. Why?

It is common to calculate the probability of multiple events (such as throwing two coins
and getting heads both times) by multiplying the probability of each event separately (ie..
0.5 > 0.5). This only gives the correct probability if the different events are independent.
that is, if you can’t guess the likelihood of one event given knowledge of the other. This is
certainly true of coin tossing. If I tell you I just threw a heads it doesn’t help vou predict the
next throw.

TP b TR P
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Different types of subgroups are not independent. If we do one subgroup analysis by age
(old vs. young) and another by gender (male vs. female) it is the same people in both analy-
ses. just divided up in different ways. As such. the results of subgroup analyses are no longer
independent. As an example. imagine that [ told you that a drug was ineffective but that in the
clinical trial, just by chance. men on the drug had statistically better results than men on the
placebo. If | asked you for the chance of a statistically significant difterence between groups
among the women, your reasoning should go:

e We know that the drug is ineffective. therefore the null hypothesis (“no ditferences
between groups in the trial™) is true.

e The probability of a statistically significant difference between drug and placebo
groups if the null hypothesis is true 1s 0.05.

® No men are women, so the results of the subgroup analysis on men are irrelevant.

e Therefore the probability of a statistically significant difference between drug and
placebo in a subgroup analysis of the women 1s 0.05.

However, what if I asked you about the results of a subgroup analysis for older people?
® We know that the drug is ineffective, therefore the null hypothesis (“no difterences
between groups in the trial™) is true.
e The probability of a statistically significant difference between the drug and placebo
groups if the null hypothesis is true 1s 0.05.
e The probability of a statistically significant difference between drug and placebo in a
subgroup analysis of older people should be 0.05.
e However, some of the older people are men and we know that men on the drug did bet-
ter than men on placebo.
e Therefore, the probability of a statistically significant difference between drug and
placebo in the subgroup analysis of older people will be a little bit higher than 0.05.
In other words, the results of the subgroup analysis “what is the effect of the drug on older
people?” are not independent of the results of the subgroup analysis “what is the effect of the
drug on men?” To get a probability that at least one of the two analyses would be statistically
significant (or both significant, or neither significant), you can’t just multiply probabilities
together; you have to do something more complicated (which I won’t go into).

CHAPTER 29
Some things that have never happened to me:
Why you shouldn't compare p-values

I.

Why might a stronger effect lead to a higher p-value, and less evidence against a null
hyvpothesis of no effect? How might you explain the differences in p-values for the four
examples in the text (taxis, movies, engine parts and blood pressure drugs)?

We might expect that a stronger effect would lead to a lower p-vatue and. indeed. this is
generally what you see. Generally. but not always—to think why not. we have to consider all
the things that can affect a p-value.
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a. Sample size. Larger studies provide more evidence. I the null hypothesis is false.
larger studies will tend to have lower p-values than smaller studies.

b. Standard deviation. More variation means less confidence - that is. 4 wider confi-
dence interval. Higher standard deviations lead to higher p-values.

¢. Study design. Different studies can have ditferent results due to differences in design
(or to put it more simply. flawed studies can come to the wrong conclusion ).

d. Chance. The p-value will vary every time you repeat a study and it 1s quite possi-
ble that. by chance. a stronger cffect will be associated with a higher p-value.
Indeed. it is quite possible in the blood pressure trial that a completely meftective
drug could have a statistically significant p-value compared to placebo. with a
very etffective drug being non-significant.

We can now apply cach of these to our four examples of comparing p-values:

a. Sample size. There are more moving parts in most engines than parts that don’t move.
More parts mean a larger sample. which means more evidence and a lower p-value.

b. Standard deviation. In the blood pressure example. new drug A reduced blood pressure
fairly predictably in just about everyone (mean reduction 6.5, standard deviation 0.5).
Response to new drug B was much farger. although a lot more varied (mean reduction in
blood pressure 15, standard deviation 12.5). Because the standard deviation for new drug
A was so much lower than for new drug B. the p-value for the null hypothesis “new drug
no more etfective than standard treatment™ is smaller.

¢. Study design. In the hailing cabs example, the author was comparing two completely
different studies (one by Bloggs in Chicago and the other by Smith in New York).
There are all sorts of reasons why differences between the studies may have led to
different results including the time of day, the part of town, how the participants were
dressed, their age. their physical size. the time of year and so on. The fact that one
study was conducted in New York and the other in Chicago is just one of many possi-
ble points of difference between the two studies.

d. Chance. In the study on movies, the p-value for the null hypothesis that “attitude to
violence in movies changes with age™ was 0.002 for women and 0.005 for men.
These p-values are actually very close. Just for illustration. if there were 200 men
and 200 women. half of whom were older and half younger. a difference in p-values
between 0.002 and 0.005 could be caused by a single person changing their answer.
Soitis a bit ot a streteh to imterpret this small difference as mdicating an eftect that
Is “more pronounced in women than men.”

How would you test whether one effect was stronger than another? For example, how
would you test whether women's attitude to violence in movies changes more with age
than men’s?

One of the kev points of the chapter is that if vou want to test a hypothesis. vou need a sin-
gle p-value rather than comparing two different p-values. To test a hypothesis as to whether
one effect 1s stronger than another, what sou use is called a ress jor inreraction. 1t vou think
that one predictor te.g.. gender) makes a difference in the effects of another (¢.g..age). then
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the interaction term is when the two predictors are multiplied together. For example. you
might have a data set that looks like this:

Female (1 if female, Interaction . Is there too much violence

0 if male) . Age | term ¢ in movies? (1 if yes, 0 if no)

0 34 0 0
1 25 25 0
ete.

The interaction term is Female X Age, which ends up being just age for women and
zero for men. The next step is a logistic regression y = attitude to violence in
movies = b; X Age + by X Female + b3 X Interaction term. The p-value for b3, the
coefficient for the interaction term, tests whether attitude to violence in movies changes
more with age in women than men. The p-value for the interaction term in my data set is
0.7. providing little evidence against the null hypothesis.

Incidentally, a graph is a nice way of illustrating this sort of data.

Agree that there is too much violence in movies (%)

20 40 60 80
Age

Clearly women tend to have a more negative attitude to violence in movies than men; it1s
also obvious that attitudes change with age. But it is not at all clear that women’s attitudes
change with age any differently than men’s do—the lines look pretty parallel.

Here is a classic example of interaction to help vou think through what it means. Some
new cancer drugs work by “locking on™ to a receptor on the surface of the cancer cell. As 1t
happens though. some cancers do not have the receptor. Take the following data set from a
study of the drug in mice. In the study. mice have cancer cells injected. Half are then treated
with the drug and the size of the tumor is measured after 28 days.
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Number | Received Cancer cells had Mean tumor

of mice drug? receptor? size
4 Yes No 20.2 mm
4 Yes Yes 7.0 mm
4 No No 212 mm
4 No Yes 19.7 mm

The drug doesn’t seem to work for cancers without the receptor, and the receptor on its
own seems to make no difference to tumor size. The only time we see a reduction in cancer
1s when the drug is given and the cancer has the receptor. One analysis might be to look at
the effect of the drug separately in cancers with and without the receptor: [ get p-values of
0.02 and 0.6 respectively. But this is two p-values to test a single null hypothesis “the eftects
of the drug do not depend on the receptor.” The alternative is a linear regression of
Vo= umorsize = by X Drug + ha % Receptor + Ay X Interaction term. where the Inter-
action term is Drug * Receptor (i.e.. 1 if mouse had receptor and was given the drug and 0
otherwise). If | run this on the data set. | getcoeflicients by and b5 as non-significant and by
as statistically significant, suggesting that the drug will likely only work in patients who
have cancers with the receptor.

CHAPTER 30
How to win the marathon: Avoiding errors
when measuring things that happen over time

I. How do you think you should analyze the data from the job satisfaction study?

The correct analysis has an odd name——fundimark analysis—but is very simple in princi-
ple. As you might guess, you just start the clock at a set time (the landmark). Employees com-
plete their questionnaire after three months on the job, so that is when you start the clock. You
exclude from your analysis anyone who quits betore three months and also anyone who filfs
in their questionnaire late.

Herce ts what the graph looks like:
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The whole graph is shitted to the left because we are now measuring from the end of train-
ing. not the date of recruitment. You can also sce that the two curves are much closer together
and there is now no statistically signiticant difference between groups.

2. How do vou deal with lead time bias?

Like so many other scientific problems. the lead time bias problem is best fixed with a control
group. If people who get screened are less likely to die of cancer than those who don’t get
screened, then vou'd have pretty good evidence that screening was helpful. In the case of lung
cancer screening, another cancer researcher (who happens to be a colleague of mine) has shown
that people who get screened probably don’t live any longer than people who don’t get screened.

Incidentally. it also turned out that the researchers who published the study on lung cancer
screening had patents on devices to find lung tumors (which they didn’t tell anyone about),
used tobacco industry money to fund their trial (which they didn’t tell anyone about) and
weren't entirely candid when reporting who died of what. Now | generally take the position
“never attribute to conspiracy what you can attribute to a simple screw-up.” Nonetheless.
when vou see bad statistics, it is worth wondering who stands to gain.

CHAPTER 31
The difference between bad statistics and a bacon
candwich: Are there “rules” in statictics®

1. So there is no right and wrong in statistics? Does that mean that anything goes and
vou'll get 100% on your exam even if you do a dumb analysis?

[ guess if you were a true scientist you could do an experiment on your exam and see what
happens, but I wouldnt suggest it. I could get all philosophical and discuss absolute and relative
theories of truth (for example, you could say that even if reality is relative, it 1s still reality). Or
[ could point out that the opposite of “true for all people at all times™ isn’t “anything goes.” It 1s
perfectly reasonable for groups of people to ask members of their group to act in certain ways
and to rebuke them if they don’t. (A good example is dueling. This used to be legal and now
it isn't, showing that ideas of right and wrong can change over time. However. that doesn’t
make it ok to start firing pistols at 20 paces.)

But if there was just one message | could leave you with, it would be that even if there 1sn’t
just one thing that is right. there are still a lot of things that are wrong. If you thought that
James Buchanan was one of the worst presidents in US history and 1 thought that he was
unfairly blamed for an impossible situation we might both be right: it you thought James
Buchanan was a woman born in the Azores. who travelled extensively in Sweden before run-
ning for president dressed as a doughnut. you'd be wrong— end of story. Comparably, [ have
written papers about what I think are better and worse ways to analyze results from a clinical
trial. Yet while I accept that there is room for reasonable disagreement on some methods (1
like regression, vou like ANOVA). I'd also say that some things were just flat out wrong.

2. Many textbooks (as well as a good number of statistics teachers) say that vou should
avoid the 7 test for skewed data. Are they wrong?

No. and it is actually a pretty zood rule of thumb to use the Wilcoxon instead tor skewed

data. However. research has demonstrated that there are certain circumstances where data
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are skewed and vet it is perfectly fine to use the 7 test, This makes two important points: (a)
statistics s subject to research. not a set of rules and (b things are often quite a bit more
complicated than introductory textbooks make out. They are also more interesting. which is
one reason why vou might consider taking additional statistical classes.

In the text I said that there aren’t rules, laws and commandments about statistics, vou
just have to know what the latest statistical research shows. Does this suggest that all
scientists need to look up the statistical journals before running a simple statistical
analvsis?

No. but I'd expect that they'd use some texthooks or web-based materials to guide their
analysis and I'd hope that these were based on the latest evidence. This might not be true
for scientists graduating shortly after Pearl Harbor. who were still using their college text-
book.

Actually, it might not even be true if their college textbook was published more than 4
few vears ago. Here is a true story. A few years into my career. | looked up how to do an
analysis in my college textbook. This had heen published four vears before 1'd started grad-
uate study and. taking into account the time I'd been in college, the text was about a decade
old. It was completely obvious to me that the recommended analysis was inetficient, so |
wrote to the author. The author agreed that things had moved on and we agreed to write a
review article describing more up-to-date techniques. This article has been widely cited by
other scientists.

Either way, this chapter is not a prescription for doing one thing or another as regards con-
ducting a statistical analysis. It is more about being aware that statistics is not a set of hard
and fast rules set in stone, but a science that changes over time.

CHAPTER 32
Look at your garbage bin: [t may be the only thing
you need to know about statictics

1.

For enthusiastic students only: Is there anything I need to know about statistical pro-
gramming, other than the fact that | shouldn’t bring this up on a first date?

Probably not, unless vou would ever consider domng a statistical analvsis for some impor-
tant purpose. like a thesis. scientific paper or business report,
Pretty much evervone running a statistical analysis today uses a computer to do so. To run
an analysis on professional statistical software vou have one of three choices:
a. Tvpe ina command such as “ttest handwriting_score. hy(e:xtrawtcaching)."
b. Use a pull-down menu to find “ttest.” and then select “handwriting_score™ and
“eatra_teaching™ from the list of variables in the dialog box.
¢. Type one or more commands into a separate programming tile and then run the pro-
gramming tile.
Most protessional statisticnns pretty much never use option (a) or (b, and alwavs pro-
gram every analysis: Just as a quick example. here s some code written for the sofiw are
package STATAL You don't have to understand the detarls, just iry get the brg picture:
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1. clear

2. *load up the data set

3. use “handwriting data.dta”, clear

4. ~ewclude children from this analysis if v recently joined the school
5. “this exclusion is described on page 4 of the study protocol

6. v Recent” means Less than 3 months

7. drop if time_at school <« 3

8. ~~hildren with missing data assumed not to have received axtra teaching
9. «vevtra teaching==." means ‘"no data for the extra teaching variabie”

10, replace extra_teaching = 0 if extra teaching ==.

11. *now run the ttest

12. ttest handwriting score, bylextra_ teaching)

13. “print cut the results, rounding to a single decimal place

14. “r(}" means result. E.g. “r(se)” means, give the standard error

i5. display “The difference between groups is: * round(r{meanl) - r(meanZ},.l)
16 display “The 95% confidence interval is 7,

17. display round(r(meanl) - rimeanl)-ri{se)*1.96),.1),

18. display ™ to “,

19. display round(r(meanl) - rimeanl)+y (se)*1.96), . 1)

Some things to notice. The *'s on tines 2, 4, 5. 6, and so on indicate a comment. The com-

puter ignores these lines, but they are very useful for programmers to keep track of what they
are doing and why. This bit of code is pretty typical because as about half the lines of code are
comments. In-fact, pretty much every line of actual code is carefully explained. Also notice
that the code includes a command (line 3) that opens up the data file. This is important

because you want to run your analyses on the correct data set.
Another key point is that lines 15-19 print out the results of the 7 test.
Typical printout from statistical software for a ¢ test looks like this:

Obs Mean std. Err. Std. Dev. [95% Cont.

Interval]
Groupl 30 2.21 .1971801 1.08 1.806721 2.613279
Group?2 30 1.566 .1811136 .992 1.195581 1.936419
combined 60 1.888 .1391911 1.078169 1.609479 2.166521
Diff 644 L2677352 .1080698 1.17993
diff = mean(Groupl) - mean(Croupl) t o= 2.4054
Ho: diff = 0 degrees of freedom = 58
Ha: diff < 0O Ha: diff = 0 Ha: diff > O
Pr(T < £y = 0.9903 Pr(T > t) = 0.0194 Pr(T > £} = 0.0097

This is rather contusing. and you see how it would be easy to make some mistakes cutting

and pasting this into your word processor. The programming code. however. would
something that would fook like this:

The difference benveen groups is (1.0, The 95" contidence imterval is 0.1 1o 1.2,

print out

The overarching issue here is that of reproducibility. To reproduce your analysis. you'd

simply load up the code and press ~“go.” and get exactly the same results.

One final thing: writing code seems time consuming. and it is. In the long run. however. it
saves a lot of time. For example. imagine that the code was used in a research study and the
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authors sent the results to a scientific Journal for publication. The Journal editors write back
to say that they like the study. but would be interested to know whether the results are “sensi-
tive™ to the exclusion of children new to the school. In other words, do the results change if
all children are included. or if the criterion for “new is changed from three months to one
month? To find out. all voud have to do is change line 7 of the code and run it again. This
takes no time at all and will be 100%, accurate. In comparison. without code youd have to
manually load up the data set manually. type a command to drop children who joined the
school within a month of the experiment. type another command to define children with
missing data as not having received extra teaching. select r test from the pull-down menu and
select the right tick boxes and finally cut and paste the right bits of the printout, Not onlv 1s
this very time consuming, but it is casy to make a mistake.

CHAPTER 33

Numbers that mean comething: Linking math

and science

1. Jonas goes to the market and buys a 10 Ib watermelon and 9 apples weighing 21/2 Ibs.

He calculates the mean weight of the fruit as 1212 = 10 = 11/4 Ibs. What are your thoughts
about this statistic?

One reason we caleulate statistics such as the mean is because they help us understand
something. For example. if | said that the mean age of children taking partin a reading study
was 13 with a standard deviation of 0.5. it would instantly give you an idea that this was a
middle school project. The other reason to calculate the mean is because it helps us decide
something, such as the best route home. how much to set aside for next year's budget or
whether a painkiller is strong enough to make it worth taking.

It is unclear what “mean fruit weight 114 1bs™ refers to, or how it could be used. Does a
mean of V4 Ibs give us any idea of the sort of fruit that Jonas bought? None of the fruit
weighs anywhere near 114 Ibs and if Jonas had reported the standard deviation (which was 3),
we wouldn't be able to say that “95% of the fruit weighs within 2 standard deviations of the
mean’ because this would mean that some fruit weighed less than nothing at all. We also could-
n't use the mean for any helpful purpose. For example, the mean doesn't answer “Jonas is
going to buy 20 pieces of fruit: how much will his bag weigh?™ because if he buys 20
pieces of fruit, he'll probably still only get I watermelon. In short. the mean weight of
Jonas’s fruit is little more than an abstract mathematical calculation, which has little use or
meaning in the real world.

You might think. “Oh. that’s just stupid. No one would try to average out the weight of a
watermelon and an apple.” But actually. this sort of thing happens all the time. As an exam-
ple. two doctors at my hospital reviewed all the scientific papers that had ever been published
on recovery after a particular sort ot cancer surgery. They worked out the recovery rite
reported in cach study and then took the average. Now working out the Caverage T recovery rate
turned out to be very complicated statistically and a special techmque called meta-analysis
had to be used. After months of hard work. 1 was mvited to see the results and comment on all
the esoteric statistics. I didn’t even look at the statistics - recovery™ had been defined totally
differently in prettv much every scientific paper. so combining their results. and taking an
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average. was little more than weighing a bag containing some apples and a watermelon and
calculating the mean weight of fruit.

The surgeon concluded that “obesity may have some effect on survival.” Words like
“may,” “might” and “could™ are often found in the conclusion of scientific studies. Why
should scientists avoid using these words?

Think of some study— doesn’t matter what-—and come up with a possible conclusion.
Here is one I just thought of: “Students learn more statistics from reading What is u p-value
anyway?” than from any competing statistics textbook.” Now take your conclusion and add in
a word like “may.” “might” or “could” and see what you get. My conclusion becomes “Stu-
dents may learn more statistics from reading What is a p-value umsway? than from any com-
peting statistics textbook.” What is interesting about this conclusion——and I am sure you'll
find the same with your own example-—is that it seems to be saying something provocative
(that is. my book is fabulous) but in fact says nothing at all. The statement will be true in all
cases except in the unlikely circumstance that we had proved it false. For example, no one has
done a study to demonstrate that People magazine is not a good source for statistical knowl-
edge so we can be confident in claiming that “students may learn more statistics from reading
People magazine than from reading a statistics textbook.” On which point, it is also true that
“students may learn more statistics from sitting on the couch playing computer games than
from turning up for class.”

Words like “may” are actually vague in two very different ways. For example, if | say that
“stretching the thigh muscles may increase sprinting speed,” I might mean “we don’t know
for sure whether or not stretching leads to faster sprints.” or I might mean “it 1s definitely true
that stretching causes improvements in sprint times. but it doesn’t help everyone, so we don’t
know for sure whether it will help you.”

What is particularly dumb about using words like “may” or “might” in the conclusion of a
scientific paper is that doing so suggests that the study was a total waste of time. Imagine that
we analyzed data on thousands of car crashes and concluded that “cell phone use may
increase the risk of a road traffic fatality.” Well, yes, we knew that before we started—it yap-
ping on a cell phone couldn’t possibly increase the risk of driving into a tree, we wouldn’t
have done the study in the first place. This is particularly painful in my own field of cancer
research. | have sometimes seen reports of large clinical trials concluding that a second
round of chemotherapy might improve cancer survival.” Of course more chemotherapy
“might” improve cancer survival, that much is totally obvious—chemotherapy kills cancer
cells. So you put hundreds of patients through the drudgery of additional chemotherapy to find
out something we already knew?

The reason why words like “may.” “might” and ~could™ are so popular is that it absolves
the author from any responsibility whatsoever. If 1 conclude that "a second round of
chemotherapy may improve cancer survival™ and someone else does a much better study
proving that it doesn’t, I can always say. “Hey. | never said that extra chemotherapy worked
for sure, 1 only said that it might.” This is the sort of thing that scam artists live by. A claim
that “this simple real estate trick that could make you thousands of dollars richer™ allows me
to take vour money. teach you nothing of value, and then defend myself with, 1 didn’t say
that my program would make you money, only that it could.”

We surely want science to be ditferent from get-rich-quick schemes. If so. scientists need
to stand by their conclusions and avoid saying only that something may. might or could be
true.
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