
Grape Pest Management

Dr. Bruce Bordelon Viticulture Specialist Purdue University

New Publications

Arkansas

University of Arkansas Cooperative Extension Service

University of Illinois Extension ICSG3-06

Indiana

Purdue Extension ID-169

Iowa

Iowa State University Extension PM 1375

Kansas

Kansas State University Agricultural Experiment Station and Cooperative Extension Service S-145

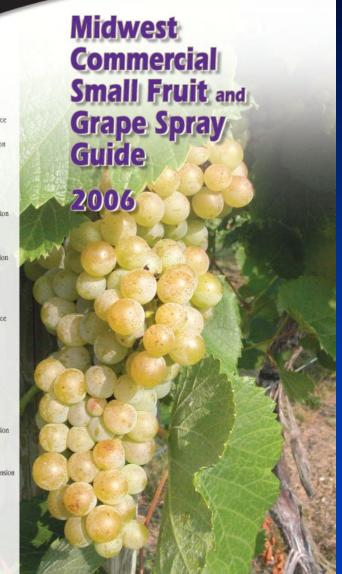
Kentucky

University of Kentucky Cooperative Extension Service ID-94

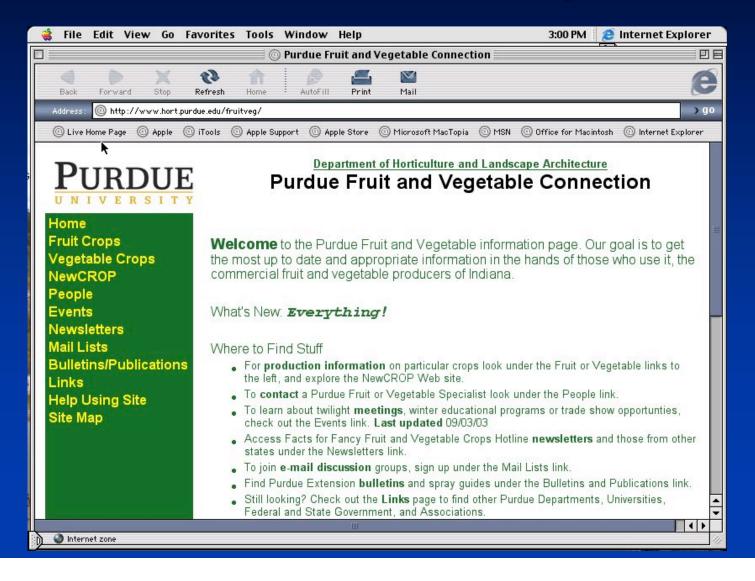
Missouri

University of Missouri Missouri State University

Nebraska


University of Nebraska -Lincoln Extension

Ohio State University Extension 506B2


Oklahoma

Oklahoma State University Oklahoma Cooperative Extension Service E-987

West Virginia West Virginia University Extension Service Publication 865

Check out our Websites at www.hort.purdue.edu/fruitveg/www.indianawines.org

Midwest Small Fruit and Grape Spray Guide

Available in hard copy at registration desk or from Purdue Media Distribution (1-888-EXT-INFO)

Also Available on-line at www.hort.purdue.edu/ fruitveg/

Arkansas

University of Arkansas Cooperative Extension Service

Illinois

University of Illinois Extension ICSG3-06

Indiana

Purdue Extension ID-169

lowa

Iowa State University Extension PM 1375

Kansas

Kansas State University Agricultural Experiment Station and Cooperative Extension Service S-145

Kentucky

University of Kentucky Cooperative Extension Service ID-94

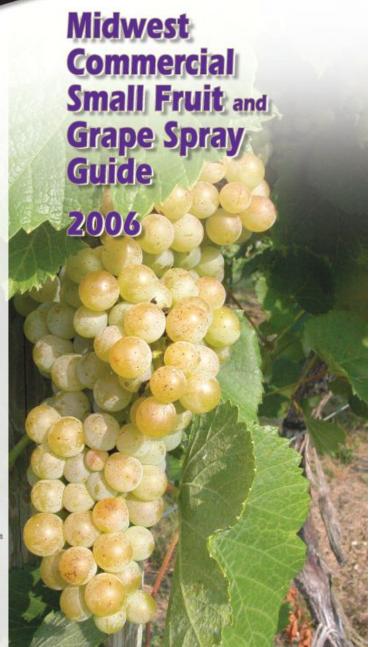
Missouri

University of Missouri Missouri State University MX.577

Nebraska

University of Nebraska — Lincoln Extension

Ohio


Ohio State University Extension 506B2

Oklahoma

Oklahoma State University
Oklahoma Cooperative Extension
Service

West Virginia

West Virginia University Extension Service Publication 865

Disease and Insect Control

- Grapes are susceptible to several fungal diseases.
 - Black rot
 - Powdery mildew
 - Downy mildew
 - Phomopsis cane and leaf spot
 - Botrytis fruit rot
 - Miscellaneous fruit rots
- Grapes are susceptible to a few insect pests
 - Japanese beetles
 - Flea beetles
 - Grape berry moth
 - Grape root borers
 - Multicolored Asian Lady Beetles***

Effective Grape Disease Control

- Combination of cultural and chemical methods
- Proper identification of disease
 - Some chemicals are specific for certain disease causing organisms
- Proper selection of control measures
 - Cultural management to reduce incidence
 - Chemical application to prevent infection
- Proper application of chemicals
 - Timing
 - Rate
 - Coverage

Cultural Methods of Disease Management

Cultivar resistance

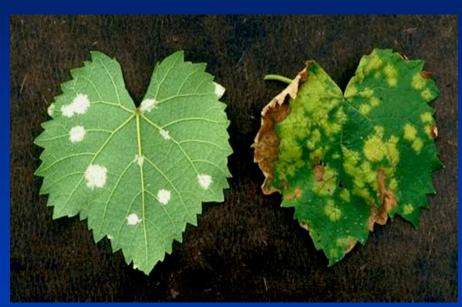
- Cultivars vary significantly in their susceptibility to particular diseases (esp. mildews)
- See Table 4 in ID-169

All aspects of canopy management

- Encourage air flow within canopy
- Proper vine spacing
- Appropriate training system
- Proper plant nutrition program
- Shoot positioning
- Leaf removal
- Etc.

Proper coverage using an air carrier sprayer

Black rot (Guignardia bidwellii)



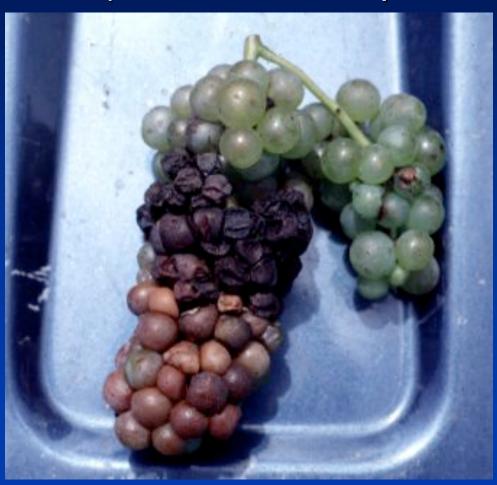
Powdery mildew (*Uncinula necator*)

Downy Mildew (*Plasmopara viticola*)

Botrytis Bunch Rot (*Botrytis cinerea*)

Phomopsis Cane and Leaf Spot

(Phomopsis viticola)



Anthracnose (Elsinoe ampelina)

Bitter rot (*Greeneria uvicola*)

Fungicides Types

- Based on mode of action
 - Protectant
 - Must be on the plant prior to an infection event preventative program. Most are broad spectrum. Some phytotoxicity.
 - Captan, mancozeb, ziram, copper, sulfur
 - Systemic
 - Most are locally systemic (not throughout the plant).
 Most have eradicative action and can stop disease development after infection occurs if applied soon enough.
 - Sterol inhibitors and ridomil
 - Semi-systemic
 - Most are trans-laminar systemic so they are very resistant to wash off. Usually don't have much eradicative action.
 - strobilurins

Fungicide Classes

- Dithiocarbamates, phthalimides
 - Captan, mancozeb, ziram, ferbam, etc.
 - Broad spectrum, protectants
- Other broad-spectrum fungicides
 - Copper, sulfur (inorganics)
- Sterol inhibitors (DMI)
 - Nova, Rubigan, Bayleton, Elite, Procure, etc.
 - Specific for certain diseases, esp. powdery mildew and black rot
- Boscalid (new product for powdery mildew, Endura)
 - Component of Pristine
- Stobilurins (Reduced risk)
 - Abound, Sovran, Flint, Pristine*
 - Broad spectrum
- Botyrocides (specific for Botrytis cinerea)
 - Rovral, Elevate, Vangard
- Alternatives (organic and/or reduced risk)
 - Oils,phosphorous acid, potassium bi-carbonate, potassium monophosphate, Oxidate, compost tea, Seranade, etc.

Managing Fungicide Resistance

 Many of the newer fungicides affect a single "site" in the fungal cell metabolism, and consequently, are susceptible to development of resistance in the pathogen population. The Fungicide Resistance Action Committee has developed a set of codes to use in managing resistance.

Strategies for managing fungicide resistance

- Follow label exactly
 - Number of applications, rates, etc.
- Do not apply a fungicide susceptible to resistance development when an epidemic has already started.
 - Use a material that will kill the existing population
 - Many alternatives (oils, phos, KBC, etc. fit this category)
- Rotate to another mode of action class (FRAC Code)
 - Keeps resistant populations from building up
- Tank mix with broad spectrum fungicides
 - Kills both resistant and susceptible populations
- Understand the FRAC codes and use fungicides accordingly

FRAC	Group Name	Common Name	Examples	Comments	
Code					
1	Methyl Benzimidazole Carbamates	Benzimidazoles	Benlate	High risk Cross rs common	
		thiophanates	Topsin M		
2	Dicarboximides	dicarboximides	Rovral	Medium to high risk, cross rs common	
3	DMI	Triazoles, pyridines,	Nova, Bayleton, Rubigan,	Medium risk, cross rs likely	
	(SBI class I)	Pyrimidines	Elite, Procure, Scala		
4	Phenyl Amides	metalaxyl	Ridomil	High risk, cross rs common	
7	carboximides	Boscalid	Endura	Medium risk	
9	Anilino-Pyrimidines	cyprodinil	Vanguard	Medium risk	
11	Quinone outside Inhibitors	azoxystrobin	Abound	High risk, cross rs	
		pyraclostrobin	Pristine	shown between all members of Qol group.	
		kresoxim-methyl	Sovran	members of Gol group.	
		trifloxystrobin	Flint		
13	Quinolines	Quinoxyfen	Quintec	Medium risk	
17	hydroxyanilides	fenhexamide	Elevate	Medium risk	
33	Phosphonates	Fosetyl-Al	Aliette	Risk unknown, assumed to be low	
		Phosphorous acid	Phosphorous acid		
M	Multi-site contact activity	Inorganics	Copper, sulfur	Low risk, no cross resistance	
		Dithiocarbamates	Ferbam, mancozeb, ziram		
		Phthalimides	captan		

Resistance Development Potential

- Bunch Rot (Botrytis cinerea)
 - Fungicide resistance is very common
 - Strategies of tank mixes with FRAC M and rotation to other FRAC groups
- Powdery Mildew (*Uncinula necator*)
 - Fungicide resistance is very common (esp NE US)
 - Strategies of tank mixes, rotation, use of sulfur, potassium salts, oils, etc. as eradicants if a epidemic is started.
- Downy mildew (*Plasmopora viticola*)
 - Fungicide resistance is possible (ridomil) so only combination products are sold. Not sure about strobies.
 - Several good eradicants in group M & 33.
- Black rot (Guignardia bidwellii)
 - Fungicide resistance has never been shown. Apparently low risk.
- Phomopsis Cane &Leaf Spot (Phomopsis viticola)
 - Fungicide resistance unknown.

Recommended Spray Program for Indiana Vineyards

- Early (1-12 inch shoots)
 - Broad spectrum protectant (mancozeb)
 - Repeat at 7-10 day intervals depending on rainfall and shoot growth rate (3-4 sprays)
- Mid (pre bloom, bloom, and post bloom)
 - Three most important sprays of the year!
 - Use "best" products: strobies and sterol inhibitors in rotation. (Sprays about 10 days apart)
 - Be sure to get thorough coverage, especially clusters
- Late (2 weeks post bloom through veraison)
 - Use products on 14-21 day schedule. Choose products depending on weather, cultivar susceptibility, etc.
 - Scout for mildew outbreaks and spray accordingly
- Post harvest
 - Maintain good leaf health until first frost

Disease Calendar

	Budbreak	Pre- bloom	Bloom	1 st Post- bloom	Cluster closing	Veraison	Harvest	Leaf drop
Black rot	++	++++	+++++	+++++	+++	+	0	0
Powdery Mildew	++	+++	+++	++++	+++++	+++++	+++++	+++++
Downy Mildew	++	+++	+++	+++	+++++	+++++	+++++	+++++
Phomopsis	++++++	+++++	+++++	+++++	++	++	+++++	+++
Botrytis	+	+	+++++	+	+++++	+++++	+++++	0
Bitter rot	++	++	+++++	+++++	+	+	+++++	0
Anthracnose	++++++	++	++	++	++	+	+	+

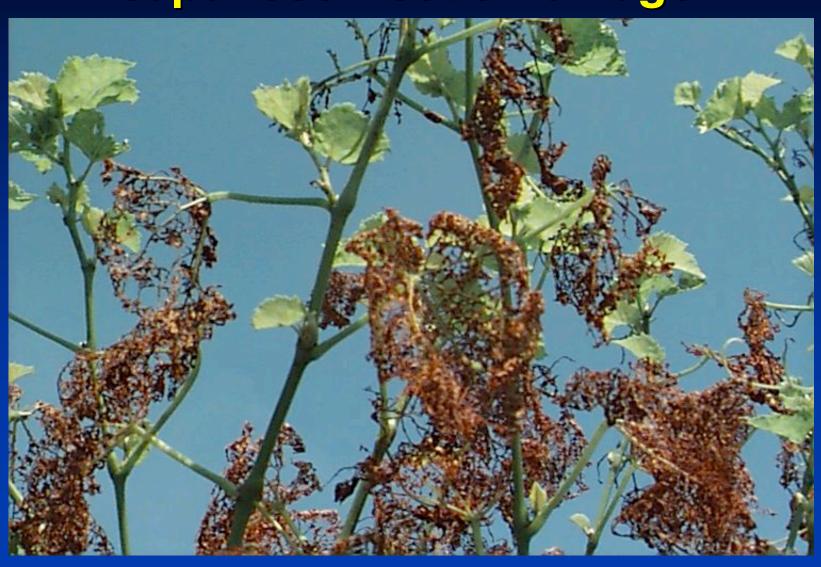
+, ++, +++, etc. denotes fungus activity
++++++ denotes appropriate time to spray

Disease Control Summary

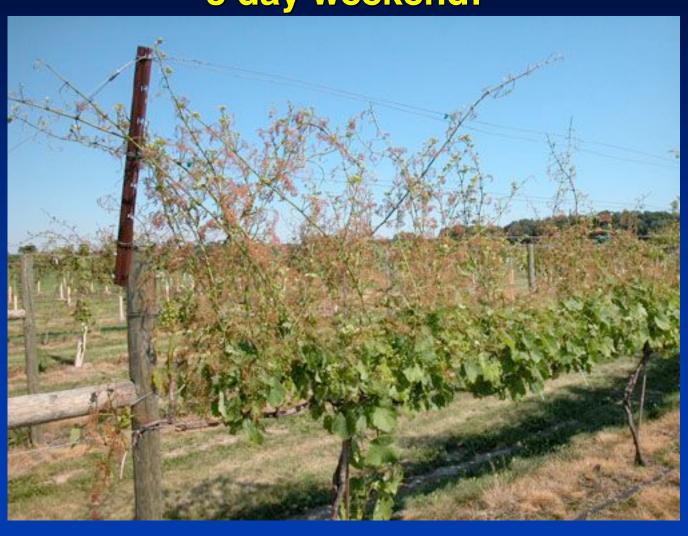
- Know cultivar susceptibility
- Understand pathogen biology
- Develop a disease management strategy
 - Cultural methods
 - Chemical methods
- Practice proper chemical application techniques
 - Rates
 - Timing
 - Coverage

Grape Insect Pest Control

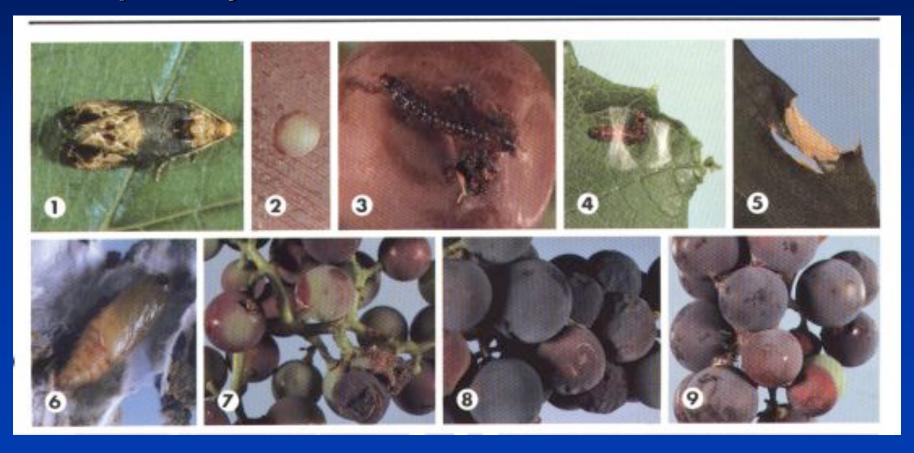
- Proper identification of pest
- Proper selection of insecticide or other control measure
- Determination of economic threshold
- Proper timing
 - Monitor population with pheromone traps
- Thorough coverage of susceptible plant parts


Common Grape Insect Pests

Japanese beetle


Japanese Beetle Damage

Japanese Beetle Damage Edge Effect



Japanese Beetle Damage 3 day weekend!

Common Grape Insect Pests

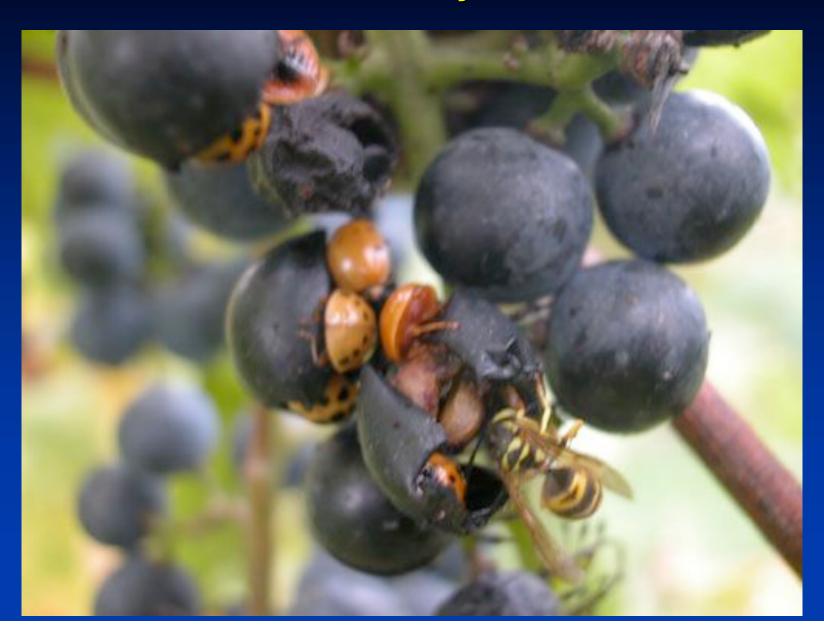
Grape berry moth

Common Grape Insect Pests

Grape flea beetle

Leaf Phylloxera

Leaf Phylloxera



Not-so-Common Grape Insect Pest

- Multicolored Asian Lady Beetle
 - Not a pest, but a winemakers nightmare!

Multicolored Asian Lady Beetles on Fruit

Multicolored Asian Lady Beetles on Fruit

Multicolored Asian Lady Beetles in Juice

MALB from 30 lbs Fruit

Insect Management

Grape Berry Moth

- Monitor population with pheromone traps
- Disrupt mating with pheromones
- Add insecticide into cover sprays when needed

Japanese beetle

- Monitor damage and spray if necessary
- Don't overreact to minor damage
- Don't wait until all your leaves are gone

Other insect pests

- Monitor and treat only if necessary
- Scout for Grape Flea Beetle damage
- Scout for grape phylloxera (leaf form)

Grape Insecticides

- For Grape Berry Moth
 - Sevin
 - Imidan
 - Danitol (RUP)
 - Guthion (RUP)
 - Intrepid
- For Japanese Beetle
 - Sevin
 - Danitol (RUP)
 - Imidan
- For Grape Leafhopper (not a big problem)
 - Assail
 - Applaud
 - Danitol (RUP)
 - Provado
 - Sevin

Grape Insecticides

Miscellaneous pests

- For Grape phylloxera (leaf form)
 - Danitol (RUP)
 - Thiodan (endosulfan) --- phytotoxic!
- For Multicolored Asian Lady Beetle
 - Provado (0 day PHI)
 - Malathion (3 day PHI)
 - Neemix or Aza-Direct (0 day PHI)
 - Pyrethrins (0 day PHI)

Managing Insecticide Resistance

- Similar to fungicide resistance management
 - IRAC codes for mode of action
 - Rotate chemistry where possible
 - Utilize mating disruption where possible
- Grape pest known to have developed insecticide resistance:
 - Grape berry moth
 - Two spotted and European red spider mites

Organic Production?

- In the Midwest, very few grape cultivars can be grown without controlling diseases and the dominant insect pests.
 - Norton is the most disease resistant
 - Cayuga White, Steuben, etc are also candidates
- Organic production does NOT mean NO SPRAY, it often means that more spraying will be necessary.
 - Organic growers will have to grow varieties that are tolerant of major diseases, and use OMRI certified fungicides such as copper, sulfur (on non-sensitive cultivars), phosphorous acid, bi-carbonates, oils, etc. on a regular basis throughout the season to maintain acceptable disease control.
 - Organic control of Japanese beetles? (Neem extracts? Surround?)
- Environmental impact of "organic production" can be worse than with modern reduced risk chemicals.

Weed Control & Vineyard Floor Management

Cover crop between rows

- planted perennial cover crop usually grass
- native species mixture
- Provides solid surface for equipment
- Reduces soil compaction
- Increases water infiltration, reduces runoff and erosion

Weed-free strip beneath vine row

- eliminate competition for water, nutrients
- improve air movement reduce disease incidence
- eliminate crop contamination

Weeds

Any plant in the vine row other than grapevines

- Grasses
- Broadleafs
- Brushy perennial weeds: brambles, poison ivy, etc.

Weed Control in the Vine Row

Pre-emergent + post-emergent herbicides

- Band-applied one or both sides of each row
- Single of double sided boom
 - Even fan nozzles
 - Offset nozzle body
 - Low volume (20-40 gpa)
 - Low pressure (15-30 psi)
- Low-volume CDA Sprayers (for post-emergent)

Mechanical weeding Mulching

Herbicides

Pre-emergent and post-emergent herbicides

- Pre-emergent prevent weeds from becoming established
- Post-emergent kill or suppress existing weeds
- Tank mix post-emergent plus one or more preemergent (selected for problem weeds)

Post-emergent herbicides

Broad Spectrum

- Roundup, Touchdown glyphosate
- Rely glufosinate
- Gramoxone Super, Extra paraquat (RUP)
- Aim carfentrazone

Grass Specific

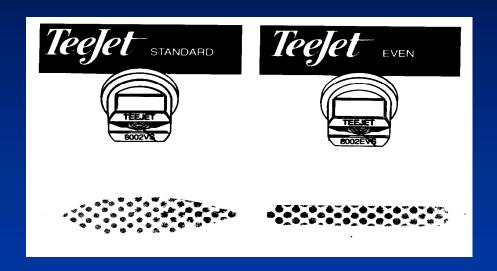
- Poast sethoxydim
- Fusilade 2000 fluazifop (non-bearing)
- Select clethodim (non-bearing)
- Reglone diquat (non-bearing)

Pre-emergent herbicides

- Surflan (oryzalin)
- Treflan (trifluralin)
- Princep (simazine)
- Solicam (norflurazon)
- Karmex (diuron)
- Casoron (dichlobenil)
- Devrinol (napropamide)
- Treflan (trifluralin)
- Goal (oxyfluorfen)
- Prowl (pendimethalin) (non-bearing)
- Gallery (isoxaben) (non-bearing)
- Kerb (pronamide) (RUP)
- Chateau (flumioxazin)

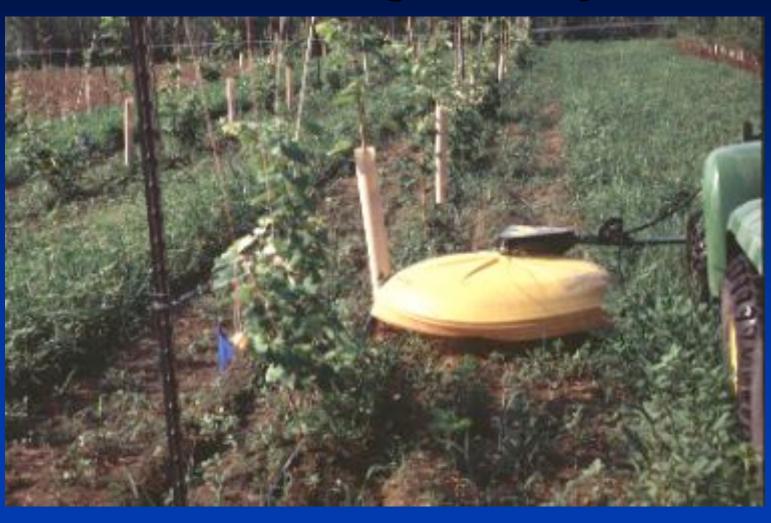
Differ in specificity, soil behavior, vine age restrictions, etc. See Weed Control chapter in ID-169

READ THE LABEL


Herbicide Sprayer

Boom and Nozzles

Spray nozzles



Standard

Even

Low volume CDA Sprayers Post-emergent Only

Post Emergent Strip

Damage from Dicamba

Mechanical weeding

- Grape hoe
 - -Green hoe
 - Radius
- Rotary cultivator
 - Weed Badger
 - other

Rotary Cultivators

Mulching

- Mow & Throw
 - Grow cover crop between row, mow, and throw mulch under row
- Apply organic mulch under vine row (wood chips, leaves, etc.)
- Plastic or fabric mulch
- Herbicide desiccated cover crop
 - Grow rye fall-spring, kill with herbicide and leave in place as a mulch**
- Living mulch?
 - Non-competitive ground cover

Pesticide Application Licenses

www.btny.purdue.edu/ppp/ www.oisc.purdue.edu

Private Applicator

- Required to purchase and apply any Restricted Use Pesticide on land they own, rent or otherwise control
- Recommended for all growers (especially those that plan to sell their produce)

Commercial Applicator

 Required for any person that applies a pesticide for hire.

Record Keeping

- Pesticide application records are REQUIRED for Restricted Use Pesticides
- Pesticide application records are highly recommended for General Use Pesticides
- See Record Keeping charts in ID-169
 - Record date, time, field, stage of growth.
 - Record chemical applied and EPA registration number.
 - Record rate, volume applied, etc
 - Record weather conditions, etc.
- Keep records for a minimum of 3 years

Pest Management Summary

- Grapes (and other fruit crops) require intensive management of pests, especially diseases.
 - Proper pest and disease identification
 - Understand pest biology
 - Choose appropriate control measures
 - Apply materials timely and effectively
 - Stay current on pesticide registrations and application rules.
 - Be a good neighbor and land steward