
1 In the Spring of 2000 the Texas Lottery has changed the rules: The number of
balls has been increased to 54, in order to create a larger jackpot. The official reason for this
change is to make playing the lotto more attractive, because a higher  jackpot will make the lotto
game more exciting. Of course, the actual reason is to boost the lotto revenues!
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Chapter 1

PROBABILITY AND MEASURE

(March 30, 2003)

1. The Texas lotto

1.1 Introduction

Texans (used to) play the lotto by selecting six different numbers between 1 and 50,

which cost $1 for each combination1. Twice a week, on Wednesday and Saturday at 10 PM, six

ping-pong balls are released without replacement from a rotating plastic ball containing 50 ping-

pong balls numbered 1 through 50. The winner of the jackpot (which occasionally accumulates to

60 or more million dollars!) is the one who has all six drawn numbers correct, where the order in

which the numbers are drawn does not matter. What are the odds of winning if you play one set

of six numbers only?

In order to answer this question, suppose first that the order of  the numbers does matter.

Then the number of ordered sets of 6 out of 50 numbers is: 50 possibilities for the first drawn

number, times 49 possibilities for the second drawn number, times 48 possibilities for the third

drawn number, times 47 possibilities for the fourth drawn number, times 46 possibilities for the

fifth drawn number, times 45 possibilities for the sixth drawn number:
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The notation n!, read: n factorial, stands for the product of the natural numbers 1 through n: 

n! ' 1×2×.......×(n&1)×n if n > 0, 0! ' 1.

The reason for defining  0! = 1 will be explained below.

Since a set of six given numbers can be permutated in 6! ways, we need to correct the



2  Under the new rules (see footnote 1), this probability is: 1/25,827,165.

3  These binomial numbers can be computed using the “Tools  Discrete6
distribution tools” menu of EasyReg International, the free econometrics software package
developed by the author. EasyReg International can be downloaded from web page 
http://econ.la.psu.edu/~hbierens/EASYREG.HTM
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above number for the 6! replications of each unordered set of six given numbers. Therefore, the

number of sets of six unordered numbers out of 50 is:

50

6
'

def. 50!
6!(50&6)!

' 15,890,700.

Thus, the probability of winning  the Texas lotto if you play only one combination of six

numbers is 1/15,890,700. 2

1.2 Binomial numbers

In general, the number of ways we can draw a set of k unordered objects out of a set of n

objects without replacement is:

n

k
'

def. n!
k!(n&k)!

. (1)

These (binomial) numbers3, read as: n choose k,  also appear as coefficients in the binomial

expansion

(a % b)n ' j
n

k'0

n

k
a kb n&k . (2)

The  reason for defining 0! = 1 is now that the first and last coefficients in this binomial

expansion are always equal to 1: 
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For not too large an n the binomial numbers (1) can be computed recursively by hand,

using the Triangle of Pascal: 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 þ þ þ þ þ 1

(3)

Except for the 1's on the legs and top of the triangle, the entries are the sum of the adjacent

numbers on the previous line, which is due to the easy equality:

n&1

k&1
%

n&1

k
'

n

k
for n $ 2, k ' 1,....,n&1. (4)

Thus, the top 1 corresponds to n = 0,  the second row corresponds to n = 1, the third row

corresponds to n = 2, etc., and for each row n+1, the entries are the binomial numbers (1) for k =

0,....,n. For example,  for n = 4  the coefficients of  in the binomial expansion (2) can bea kb n&k

found on row 5 of the triangle:  (a % b)4 ' 1×a 4 % 4×a 3b % 6×a 2b 2 % 4×ab 3 % 1×b 4 .

1.3 Sample space

The Texas lotto is an example of a statistical experiment. The set of possible outcomes of

this statistical experiment is called the sample space, and is usually denoted by   In the TexasS .

lotto case   contains N  = 15,890,700 elements:  where each element  isS S ' {T1 ,.....,TN} , Tj

a set itself consisting of  six different numbers ranging from 1 to 50, such that for any pair  ,Ti

  with ,   Since in this case the elements  of   are sets themselves, theTj i … j Ti … Tj . Tj S

condition   for   is equivalent to the condition that  Ti … Tj i … j Ti _ Tj ó S .



4  Note that the latter  phrase is superfluous, because  reads: every element of  isS d S S
included in , which is clearly a true statement, and  is true because S i d S i d i^S ' S .

5 Also called a Field. 
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1.4 Algebras and algebras of eventsF&

A set { ,...., } of different number combinations  you can bet on is called an event.Tj1
Tjk

The collection of all these events, denoted by ,  is a “family” of subsets of the sample spaceö

.  In the Texas lotto case the collection   consists of all subsets of ,  including  itself andS ö S S

the empty set .4  In principle you could bet on all number combinations if you are rich enough  i

(it  will cost you $15,890,700). Therefore, the sample space    itself is included in .  YouS ö

could also decide not to play at all. This event can be identified as the empty set  For the sakei .

of completeness it is included in   as well.ö

Since in the Texas lotto case the collection    contains all subsets of   itö S ,

automatically satisfies the following conditions:

If A 0 ö then Ã ' S\A 0 ö , (5)

where  is the complement of the set A (relative to the set ),  i.e., the set of all elements Ã ' S\A S

of  that are not contained in A;S

If A ,B 0 ö then A^B 0 ö . (6)

By induction, the latter condition extends to any finite union of sets in :  If  for  j =ö Aj 0 ö

1,2,...,n, then  ^n
j'1Aj 0 ö .

DEFINITION 1: A collection  of subsets of a  non-empty set  satisfying theö S

conditions (5) and (6) is called an algebra.5 

In the Texas lotto example the sample space  is finite, and therefore the  collection S ö

of subsets of    is finite as well. Consequently, in this case the condition  (6) extends to:S

If Aj 0 ö for j ' 1,2,.... then ^ 4
j'1Aj 0 ö . (7)



6 Also called a Field, or a Borel Field.FFFF&&&&
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However, since in this case the collection   of subsets of   is finite, there are only a finiteö S

number of distinct sets .  Therefore, in the Texas lotto case the countable infinite  union Aj 0 ö

 in  (7)  involves only a finite number of distinct sets Aj; the other sets are replications of^ 4
j'1Aj

these distinct sets. Thus, condition (7) does not require that all the sets   are different.Aj 0 ö

DEFINITION 2: A collection  of subsets of a  non-empty set  satisfying theö S

conditions (5) and (7) is called a algebra.6 FFFF&&&&

1.5 Probability measure

Now let us return to the Texas lotto example. The odds, or probability,  of winning is 1/N 

for each valid  combination  of six numbers, hence if you play n different valid numberTj

combinations  the probability of winning is n/N:   Thus, in{Tj1
, ...,Tjn

} , P({Tj1
, ...,Tjn

}) ' n/N .

the Texas lotto case the probability  is given by the number n of elements in theP(A) , A 0 ö ,

set A, divided by the total number N of elements in   In particular we have  and  ifS . P(S) ' 1,

you do not play at all the probability of winning is zero:  P(i) ' 0.

The function  is called a probability measure: it assigns a numberP(A) , A 0 ö ,

 to each set  Not every function which assigns numbers in [0,1] to the setsP(A) 0 [0,1] A 0 ö .

in  is a probability measure, though: ö

DEFINITION 3: A mapping   from a  algebra    of subsets of a set P: ö 6 [0,1] F& ö

 into the unit interval  is a probability measure on { , } if it satisfies the following threeS S ö

conditions:

If A 0 ö then P(A) $ 0, (8)

P(S) ' 1, (9)

For disjoint sets Aj 0 ö , P(^ 4
j'1 Aj) ' '4

j'1P(Aj) . (10)
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Recall that  sets are disjoint if they have no elements in common: their intersections are

the empty set.

The conditions (8) and (9) are clearly satisfied for the case of the Texas lotto.  On the

other hand, in the case under review the collection  of events contains only a finite number ofö

sets, so that any  countably infinite sequence of sets in  must contain sets that are the same. Atö

first sight this seems to conflict with the implicit assumption that there always exist countably

infinite sequences of disjoint sets for which  (10) holds. It is true indeed that any countably

infinite sequence of disjoint sets in a finite collection    of sets can only contain a finiteö

number of  non-empty sets. This is no problem though, because all the other sets are then equal

to the empty set  The empty set is disjoint with itself:  and with any other set:i . i _ i ' i ,

 Therefore, if  is finite then any countable infinite sequence of disjoint setsA _ i ' i . ö

consists of a finite number of  non-empty sets, and an infinite number of replications of the

empty set. Consequently,  if  is finite then  it is sufficient for the verification of condition  (10)ö

to verify that for any pair of disjoint sets   in    =  +   Since inA1 ,A2 ö , P(A1^A2) P(A1) P(A2) .

the Texas lotto case   and  where   is theP(A1^A2) ' (n1%n2)/N , P(A1) ' n1/N , P(A2) ' n2/N , n1

number of elements of  and   is the number of elements of , the latter condition isA1 n2 A2

satisfied, and so is condition  (10).  

The statistical experiment is now completely described by the triple   called{S ,ö ,P} ,

the probability space, consisting of the sample space  i.e., the set of all possible outcomes of S ,

the statistical experiment involved,  a algebra  of events, i.e., a collection of subsets of  theF& ö

sample space  such that the conditions  (5) and (7) are satisfied,  and a probability measureS

 satisfying the conditions (8), (9), and (10).P: ö 6 [0,1]

In the Texas lotto case the  collection  of events is an algebra, but because  is finite itö ö

is automatically a algebra.F&

2. Quality control

2.2 Sampling without replacement

As a second example, consider the following case. Suppose you are in charge of quality

control in a light bulb factory. Each day N  light bulbs are produced. But before they are shipped



7

out to the retailers, the bulbs need to meet a minimum quality standard, say: no more than R out

of N  bulbs are allowed to be defective. The only way to verify this exactly is to try all the N 

bulbs out, but that will be too costly. Therefore, the way quality control is conducted in practice

is to draw randomly n bulbs without replacement, and to check how many bulbs in this sample

are defective. 

Similarly to the Texas lotto case, the number M of different samples  of size n  you cansj

draw out of a set of N elements without replacement is:

M '
N

n
.

Each sample   is characterized by a  number   of defective bulbs in the sample involved. Letsj kj

K  be the actual number of defective bulbs. Then kj 0 {0,1,...,min(n,K)} .

Let    an let the  algebra  be the collection of all subsets of .  TheS ' {0,1,....,n}, F& ö S

number of samples   with   =   defective bulbs is:sj kj k # min(n,K)

K

k

N&K

n&k
,

because there are ”K choose k “ ways to draw k unordered numbers out of K numbers without

replacement, and “N-K choose n-k” ways to draw n - k unordered numbers out of N - K numbers

without replacement. Of course, in the case that n > K the number of samples  with   =  k >sj kj

min (n,K) defective bulbs is zero.  Therefore, let: 

P({k}) '

K

k

N&K

n&k

N

n

if 0 # k # min(n,K) , P({k}) ' 0 elsewhere , (11)

and let for each set   (Exercise: Verify that thisA ' {k1 , ...... ,km} 0 ö , P(A) ' 'm
j'1P({kj}) .

function  P satisfies  all the requirements of a probability measure.) The triple  is now{S ,ö ,P}

the probability space corresponding to this statistical experiment . 

The probabilities (11) are known as the Hypergeometric(N,K,n) probabilities.



7 This section may be skipped.
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2.2 Quality control in practice7

The problem in applying this result in quality control is that K is unknown. Therefore, in

practice the following decision rule as to whether  or not is followed.  Given a particularK # R

number  to be determined below, assume  that the set of N  bulbs meets the minimumr # n ,

quality requirement  if  the number k of defective bulbs in the sample is less or equal to .K # R r

Then the set corresponds to the assumption that  the set of N   bulbs meets theA(r) ' {0,1,...,r}

minimum quality requirement  , hereafter indicated by “accept”,  with probabilityK # R

P(A(r)) ' ' r
k'0P({k}) ' pr(n,K) ,

say,  whereas its complement   corresponds to the assumption that this set ofÃ(r) ' {r%1,....,n}

N  bulbs does not meet this quality requirement, hereafter indicated by “reject”,  with

corresponding probability 

 P(Ã(r)) ' 1 & pr(n,K) .

Given r, this decision rule yields two types of errors, a type I  error with probability 1 & pr(n,K)

if you reject while in reality , and a type II error with probability   if you accept K # R pr(K,n)

while in reality .  The probability of a type I error  has upper bound:K > R

p1(r,n) ' 1 & min
K#R

pr(n,K), (12)

say, and the probability of a type II error  has upper bound

p2(r,n) ' max
K>R

pr(n,K) , (13)

say.

In order to be able to choose r, one has to restrict either  or , or both.p1(r,n) p2(r,n)

Usually it is former which is restricted, because a type I error may cause the whole stock of N 

bulbs to be trashed. Thus,  allow the probability of a type I error to be maximal ", say " =  0.05.

Then  r should be chosen such that  ". Since   decreases if we increase r  wep1(r,n) # p1(r,n)

could in principle choose r arbitrarily large. But since   increases with r,  we should notp2(r,n)

choose r unnecessarily large. Therefore, choose r = r(n|"), where  r(n|") is the minimum value of
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r for which p1(r,n) # ". Moreover, if we allow the type II error to be maximal $,  we have to

choose the sample size n such that  p2(r(n|"),n) # $. 

As we will see later, this decision rule is an example of a statistical test, where

 is called the null hypothesis to be tested at the "×100% significance level, againstH0: K # R

the alternative hypothesis . The number   r(n|")  is called the critical value of the test,H1: K > R

and the number k of defective bulbs in the sample is called the test statistic.

2.3 Sampling with replacement

As a third example, consider the quality control example in the previous section, except

that now the light bulbs are sampled with replacement: After testing a bulb, it is put back in the

stock of N bulbs, even if the bulb involved  proves to be defective. The rationale for this behavior

may be that the customers will accept maximal a fraction R/N of defective bulbs, so that they will

not complain as long as the actual fraction K/N of defective bulbs does not exceed R/N.  In other

words, why not selling defective light bulbs if it is OK with the customers?

The sample space  and the  algebra  are the same as in the case of samplingS F& ö

without replacement, but the probability measure P is different. Consider again a sample  ofsj

size n containing k defective light bulbs. Since the light bulbs are put back in the stock after

being tested,  there are   ways of drawing a an ordered set of k defective bulbs, andK k

 ways of drawing an ordered set of n-k working bulbs. Thus the number of ways we(N & K)n&k

can draw, with replacement, an ordered set of n light bulbs containing k defective bulbs is 

.  Moreover, similarly to the Texas lotto case it follows that the number ofK k(N & K)n&k

unordered sets of  k defective bulbs and n-k working bulbs is: n choose k.  Thus, the total number

of ways we can choose a sample with replacement containing k defective bulbs and n-k working

bulbs in any order is:

n

k
K k(N & K)n&k .

Moreover, the number of ways we can choose a sample of size n with replacement is  .N n

Therefore,
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P({k}) '
n

k
K k(N & K)n&k

N n
'

n

k
p k(1 & p)n&k , k ' 0,1,2,....,n, where p ' K/N , (14)

and again  for each set   Of course, replacingA ' {k1 , ...... ,km} 0 ö , P(A) ' 'm
j'1P({kj}) .

P({k}) in (11) by (14)  the argument in section 2.2 still applies. 

The probabilities (14) are known as the Binomial(n,p) probabilities.

2.4 Limits of the hypergeometric and binomial probabilities

Note that if N and K are large relative to n, the hypergeometric probability (11) and the

binomial probability (14) will be almost the same. This follows from the fact that for fixed k and

n:

P({k}) '

K

k

N&K

n&k

N

n

'

K!(N&K)!
k!(K&k)!(n&k)!(N&K&n%k)!

N!
n!(N&n)!

'
n!

k!(n&k)!
×

K!(N&K)!
(K&k)!(N&K&n%k)!

N!
(N&n)!

'
n

k
×

K!
(K&k)!

×
(N&K)!

(N&K&n%k)!
N!

(N&n)! (15)

'
n

k
×

(k
j'1(K&k%j) × (n&k

j'1 (N&K&n%k%j)

(n
j'1(N&k%j)

'
n

k
×

(k
j'1

K
N
&

k
N
%

j
N

× (n&k
j'1 1&

K
N
&

n
N
%

k
N
%

j
N

(n
j'1 1&

k
N
%

j
N

6
n

k
p k(1&p)n&k if N 6 4 and K/N 6 p .

Thus, the binomial probabilities also arise as limits of the hypergeometric probabilities.
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Moreover, if in the case of the binomial probability (14)  p is very small and n is very

large, the probability (14) can be approximated quite well by the Poisson(8) probability:

P({k}) ' exp(&8)
8k

k!
, k ' 0,1,2,.......... , (16)

where This follows from  (14) by choosing  with  fixed, and8 ' np . p ' 8/n for n > 8 , 8 > 0

letting   while keeping  k fixed:n 6 4

P({k}) '
n

k
p k(1 & p)n&k '

n!
k!(n&k)!

8
n

k

1 &
8
n

n&k

'
8k

k!
×

n!

n k(n&k)!
×

1 &
8
n

n

1 &
8
n

k
6 exp(&8)

8k

k!
for n 6 4 ,

(17)

because

n!

n k(n&k)!
'

(k
j'1(n&k%j)

n k
' (k

j'1 1&
k
n
%

j
n

6 (k
j'11 ' 1 for n 6 4 , (18)

1 & 8/n k 6 1 for n 6 4 , (19)

and

1 & 8/n n 6 exp(&8) for n 6 4 . (20)

Since (16) is the limit of (14) for  the Poisson probabilities (16) arep ' 8/n 9 0 as n 6 4 ,

often used to model the occurrence of rare events.

Note that the sample space corresponding to the Poisson probabilities is  S = {0,1,2,....}, 

and the algebra  of events involved can be chosen to be the collection of  all subsets of ,F& ö S

because any non-empty subset A of   is either countable infinite or finite. If such a subset  A isS

countable infinite,  it takes the form   where the  kj’s are distinct non-A ' {k1 ,k2 ,k3 , ..........} ,

negative integers, hence  is well-defined. The same applies of course  if A isP(A) ' '4
j'1P({kj})

finite: if  A =  then   This probability measure clearly satisfies{k1 , .... ,km} P(A) ' 'm
j'1P({kj}) .
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the conditions (8), (9), and (10).

3. Why do we need sigma-algebras of events?

In principle we could define a probability measure on an algebra ö of subsets of the

sample space, rather than on a F!algebra. We only need to change condition (10) to: For disjoint

sets  such that   By letting all but a finite numberAj 0 ö ^ 4
j'1 Aj 0 ö , P(^ 4

j'1 Aj) ' '4
j'1P(Aj) .

of these sets be equal to the empty set, this condition then reads: For disjoint sets  j =Aj 0 ö ,

1,2,...,n < 4,  However, if we would confine a probability measure to anP(^ n
j'1 Aj) ' 'n

j'1P(Aj) .

algebra all kind of useful results will no longer apply. One of these results is the so-called strong

law of large numbers. See Chapter 6. 

Consider the following game. Toss a fair coin infinitely many times, and assume that after

each tossing you will get one dollar if the outcome it head, and nothing if the outcome is tail. The

sample space S  in this case can be expressed in terms of the winnings, i.e., each element  T of 

S takes the form of a string of infinitely many zeros and ones, for example  T = (1,1,0,1,0,1......). 

Now consider the event: “After n tosses the winning is k dollars”. This event corresponds to the

set Ak,n of elements  T of  S for which the sum of the first n elements in the string involved is

equal to k. For example, the set A1,2 consists of all  T of the type (1,0,......) and (0,1,......). 

Similarly to the example in Section 2.3 it can be shown that

P(Ak,n) '
n
k

(1/2)n for k ' 0,1,2,....,n, P(Ak,n) ' 0 for k > n or k < 0. (21)

Next, for q = 1,2,.... consider the events: “After n  tosses the average winning k/n is contained in

the interval [0.5!1/q, 0.5+1/q]”. These events correspond to the sets Bq,n ' ^ [n/2%n/q]
k'[n/2&n/q)]%1Ak,n ,

where [x] denotes the smallest integer $ x.  Then the set   corresponds to the event:_4
m'nBq,m

“From the n-th tossing onwards the average winning will stay in the interval  [0.5!1/q, 0.5+1/q]”,

and the set  corresponds to the event: “There exists an n (possibly depending on T)^4
n'1_4

m'nBq,m

such that from the  n-th tossing onwards the average winning will stay in the interval  [0.5!1/q,

0.5+1/q]”. Finally, the set   corresponds to the event: “The average winning_4
q'1^4

n'1_4
m'nBq,m

converges to ½ as n converges to infinity". Now the strong law of large numbers states that the

latter event has probability 1:   = 1. However, this probability is only definedP[_4
q'1^4

n'1_4
m'nBq,m]
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if   In order to guarantee this, we need to require that ö is a F-algebra._4
q'1^4

n'1_4
m'nBq,m 0 ö .

4. Properties of algebras and algebrasF&

4.1 General properties

In this section I will review the most important results regarding algebras, algebras,F&

and probability measures.

Our first result is trivial:

THEOREM 1 : If an algebra contains only a finite number of sets then it is a F-algebra.

Consequently, an algebra of subsets of a finite set   is  a algebra.S F&

However,  an algebra of subsets of an infinite set   is not necessarily a algebra. AS F&

counter example is the collection   of all subsets of   = (0,1] of the type (a,b], where ö
(

S

 are rational numbers in [0,1],  together with their finite unions and the empty set a < b i .

Verify that   is an algebra.  Next, let  pn  = [10n B]/10n  and an = 1/ pn,  where [x] meansö
(

truncation to the nearest integer Note that  as  Then for n =# x . pn 8 B , hence an 9 B&1 n 6 4 .

1,2,3,....,  but because  is irrational. Thus    is(an ,1] 0 ö
(

, ^4
n'1(an,1] ' (B&1,1] ó ö

(
, B&1 ö

(

not a  algebra. F&

THEOREM 2: If  is an  algebra, then   hence byö A ,B 0 ö implies A_B 0 ö ,

induction,  for j = 1,...,n < 4  imply   A collection    of subsets of aAj 0 ö _n
j'1Aj 0 ö . ö

nonempty set  is an algebra if it satisfies condition (5) and the condition that for any pair S

A ,B 0 ö , A_B 0 ö .

Proof: Exercise.

Similarly, we have
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THEOREM 3: If  is a algebra,  then for any countable sequence of sets    ö F& Aj 0 ö ,

 A collection    of   subsets of a nonempty set   is a  algebra if  it  satisfies_ 4
j'1Aj 0 ö . ö S F&

condition (5) and the condition that  for any countable sequence of sets      0  Aj 0 ö , _ 4
j'1Aj ö .

These results will be convenient  in cases where it is easier to prove that (countable) intersections

are included  in   than to prove that (countable) unions are includedö

If   is already an algebra, then condition (7) alone would make it a algebra.ö F&

However, the condition in the following theorem is easier to verify than  (7):

THEOREM 4: If  is an algebra and Aj, j =1,2,3,...  is a countable sequence of sets inö

, then there exists a countable sequence of disjoint sets Bj in   such that  ö ö ^4
j'1Aj ' ^4

j'1Bj .

Consequently, an algebra    is also a   algebra if  for any sequence of disjoint sets Bj  in ö F&

ö, ^ 4
j'1Bj 0 ö .

Proof: Let  Denote    It followsAj 0 ö . B1 ' A1, Bn%1 ' An%1\(^n
j'1Aj) ' An%1_(_n

j'1Ãj) .

from the properties of an algebra (see Theorem 2) that all  the Bj ‘s  are  sets in . Moreover,  itö

is easy to verify that the Bj‘s  are disjoint, and that   Thus, if   then ^4
j'1Aj ' ^4

j'1Bj . ^4
j'1Bj 0 ö

 Q.E.D.^4
j'1Aj 0 ö .

THEOREM 5: Let  be a collection of  algebras of subsets of a given setö2 , 2 0 1 , F&

,  where  is a possibly uncountable index set. Then   is a  algebra.S 1 ö ' _201ö2 F&

Proof: Exercise.

 Theorem 5 is important, because it guarantees that for any collection  of subsets of  Œ S

there exists a smallest  algebra containing . By adding complements and countable unionsF& Œ

it is possible to extend   to a   algebra. This can always be done, because  is contained inŒ F& Œ

the   algebra of all subsets of ,  but there is often  no unique way of doing this, except in theF& S

case where   is finite.  Thus, let  be the collection of all  algebras  containingŒ ö2 , 2 0 1 , F&

. Then  ö =    is the smallest  algebra containing  Œ _201ö2 F& Œ .
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DEFINITION 4: The smallest algebra containing a given collection  of sets isF& Œ

called the algebra generated by  and is usually denoted by  F& Œ , F(Œ) .

Note that  is not always a algebra. For example, let  = [0,1],  and letö ' ^201ö2 F& S

for n  1,   Then  $ ön ' {[0,1] ,i , [0,1&n &1] , (1&n &1,1]} . An ' [0,1&n &1] 0 ön d ^4
n'1ön ,

but   the interval   [0,1) =   is not contained in any of the algebras , hence ^4
n'1An F& ön

^4
n'1An ó ^4

n'1ön .

However, it is always possible to extend  to a  algebra, often in various ways,^201ö2 F&

by augmenting it with the missing sets. The smallest   algebra containing   is usuallyF& ^201ö2

denoted by

º201ö2 '

def.

F^201ö2 . (22)

The notion of smallest F-algebra of subsets of  S  is always relative to a given collection

 of subsets of  S. Without reference to such a given collection  the smallest  F-algebra ofŒ Œ

subsets of  S  is  which is called the trivial F-algebra. {S ,i} ,

Moreover, similarly to Definition 4 we can define the smallest algebra of subsets of   S

containing a given collection  of subsets of  S, which we will denote by  Œ "(Œ) .

For example, let  S = (0,1], and let  be the collection of all intervals of the type (a,b]Œ

with  Then consists of the sets in  together with the empty set i, and all0 # a < b # 1. "(Œ) Œ

finite unions of disjoint sets in  To see this, check first that this collection  is an algebra,Œ . "(Œ)

as follows.

(a)  The complement of (a,b] in  is If  a = 0  then  and if  bŒ (0,a]^(b,1] . (0,a] ' (0,0] ' i ,

= 1 then  hence  is a set in  or a finite union of disjoint sets in(b,1] ' (1,1] ' i , (0,a]^(b,1] Œ

. Œ

(b) Let  (a,b] in  and  (c,d] in , where without loss of generality we may assume that a #Œ Œ

c.  If b < c then   is a union of disjoint sets  in . If  c # b # d  then (a,b]^(c,d] Œ

 is a set in  itself, and if b > d  then  is a set in  itself.(a,b]^(c,d] ' (a,d] Œ (a,b]^(c,d] ' (a,b] Œ

Thus, finite unions of sets in  are either sets in  itself or finite unions of disjoint sets in .Œ Œ Œ

(c) Let  where  ThenA ' ^n
j'1(aj ,bj] , 0 # a1 < b1 < a2 < b2 < ......< an < bn # 1.
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 where  which is a finite union of disjoint sets inÃ ' ^n
j'0(bj,aj%1] , b0 ' 0 and an%1 ' 1, Œ

itself. Moreover, similarly to part (b)  it is easy to verify that finite unions of sets of the type A

can be written as finite unions of disjoint sets in .  Œ

Thus, the sets in  together with the empty set i and all finite unions of disjoint sets inŒ

 form an algebra of subsets of   S = (0,1]. Œ

In order to verify that this is the smallest algebra containing , remove one of the sets inŒ

this algebra that does not belong to  itself. Since all sets in the algebra are of the type A in partŒ

(c), let us remove this particular set A. But then  is no longer included in the collection,^n
j'1(aj ,bj]

hence we have to remove each of the intervals  as well, which however is not allowed(aj ,bj]

because they belong to  Œ .

Note that the algebra   is not a F-algebra, because countable infinite unions are not"(Œ)

always included in . For example,  is a countable union of sets in "(Œ) ^4
n'1(0,1&n &1] ' (0,1)

 which  itself  is not included in . However, it follows from Theorem 4 that we can"(Œ) "(Œ)

extend   to a F-algebra by adding all countable unions of disjoint sets in , and such an"(Œ) "(Œ)

extension is actually the smallest F-algebra containing ,  which in its turn coincide with"(Œ)

F(Œ) .

4.2 Borel sets

An important special case of Definition 4 is  where  and  is the collection of allS ' ú , Œ

open intervals:

Œ ' {(a,b) : œ a < b , a,b 0 ú} . (23)

DEFINITION 5: The algebra generated by the collection (23) of all open intervals inF&

 is called the Euclidean Borel  field, denoted by B,  and its members are called the Borel sets. ú

Note, however, that  B  can be defined in different ways, because  the  algebras generated byF&

the collections of open intervals, closed intervals:  and  half-open{[a,b] : œ a # b , a,b 0 ú} ,

intervals,   respectively,  are all the same! We show this for one case only:{(&4,a] : œ a 0 ú} ,



8 See also Appendix C.
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THEOREM 6:   B  = F({(&4,a] : œ a 0 ú}) .

Proof:  Let

Œ
(
' {(&4 ,a] : œ a 0 ú} . (24)

(a) If the collection  defined by (23) is contained in , then  is a  algebraŒ F(Œ
(
) F(Œ

(
) F&

containing .  But  B =  is the smallest algebra containing , hence  B = Œ F(Œ) F& Œ F(Œ) d

 F(Œ
(
).

In order to prove this, construct an arbitrary set (a,b) in   out of countable unions and/orŒ

complements of sets in , as follows.  Let   and , where a < b areŒ
(

A ' (&4 ,a] B ' (&4 ,b]

arbitrary real numbers. Then , hence    and thusA ,B 0 Œ
(

A , B̃ 0 F(Œ
(
) ,

 ~(a,b] ' (&4 ,a]^(b ,4) ' A^B̃ 0 F(Œ
(
) .

This implies that   contains all sets of the type (a,b] , hence (a,b) =  F(Œ
(
) ^4

n'1(a ,b & (b&a)/n]

 Thus,  0 F(Œ
(
) . Œ d F(Œ

(
) .

(b)  If the collection  defined by (24) is contained in  B = , then  is a Œ
(

F(Œ) F(Œ)

algebra containing .  But  is the smallest algebra containing ,  henceF& Œ
(

F(Œ
(
) F& Œ

(

 =  B. F(Œ
(
) d F(Œ)

In order to prove the latter, observe that for m = 1,2,....,   is aAm ' ^4
n'1(a&n ,a%m &1)

countable union of sets in , hence  and consequently  =Œ Ãm 0 F(Œ) , (&4 ,a] ' _4
m'1Am

  Thus,    =  B.~(^4
m'1Ãm) 0 F(Œ) . Œ

(
d F(Œ)

We have shown now that  B =  and   =  B.  Thus,  B  andF(Œ) d F(Œ
(
) F(Œ

(
) d F(Œ)

 are the same. Q.E.D.8 F(Œ
(
)

The notion of Borel set extends to higher dimensions as well:

DEFINITION 6:  Bk  =  is the k-dimensionalF({×k
j'1(aj,bj) : œ aj < bj , aj , bj 0 ú})

Euclidean Borel field.  Its members are also called Borel sets (in ). úk
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Also this is only one of the ways to define higher-dimensional Borel sets. In particular,

similarly to Theorem 6 we have: 

THEOREM 7:   Bk    = F({×k
j'1(&4,aj] : œ aj 0 ú}) .

 

5. Properties of probability measures

The three axioms (8), (9), and (10)  imply a variety of properties of probability measures.

Here we list only the most important ones.

THEOREM 8: Let be a probability space. The following hold for sets in :{S ,ö ,P} ö

(a) P(i) ' 0,

(b) P(Ã) ' 1 & P(A) ,

(c) A d B implies P(A) # P(B) ,

(d) P(A^B) % P(A_B) ' P(A) % P(B) ,

(e) If An d An%1 for n ' 1,2,..., then P(An) 8 P(^4
n'1An) ,

(f) If An e An%1 for n ' 1,2,..., then P(An) 9 P(_4
n'1An) ,

(g) P(^4
n'1An) # '4

n'1P(An) .

Proof: (a)-(c): Easy exercises.

 is a union of disjoint sets, hence by axiom (10),   (d) A^B ' (A_B̃) ^ (A_B) ^ (B_Ã) P(A^B)

=  Moreover,  is a union of disjoint sets ,P(A_B̃) % P(A_B) % P(B_Ã) . A ' (A_B̃) ^ (A_B)

hence   and similarly,  Combining theseP(A) ' P(A_B̃) % P(A_B) , P(B) ' P(B_Ã) % P(A_B) .

results, part (d) follows.

Let  Then   (e) B1 ' A1 , Bn ' An\An&1 for n $ 2. An ' ^n
j'1Aj ' ^n

j'1Bj and ^4
j'1Aj ' ^4

j'1Bj .

Since the ‘s are disjoint, it follows from  axiom (10) that Bj

P(^4
j'1Aj) ' '4

j'1P(Bj) ' 'n
j'1P(Bj) % '4

j'n%1P(Bj) ' P(An) % '4
j'n%1P(Bj) .

Part  follows now from the fact that  (e) '4
j'n%1P(Bj) 9 0.

This part follows from part , using complements. (f) (e)

(g)  Exercise
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6. The uniform probability measure

6.1 Introduction

Fill a bowl with 10 balls numbered from 0 to 9. Draw randomly a ball from this bowl, and

write down the corresponding number as the first decimal digit of a number between zero and

one. For example, if the first drawn number  is 4, then write down 0.4. Put the ball back in the

bowl, and repeat this experiment. If for example the second ball corresponds to the number 9,

then this number becomes the second decimal digit: 0.49. Repeating this experiment infinitely

many times yields a random number between zero and one. Clearly, the sample space involved is

the unit interval: S ' [0,1] .

For a given number  the probability that  this  random number is less or equal tox 0 [0,1]

x is: x. To see this, suppose that you only draw two balls, and that x = 0.58. If the first ball has a

number less than 5, it does not matter what the second number is. There are 5 ways to draw a

first number less or equal to 4, and 10 ways to draw the second number. Thus, there are 50 ways

to draw a number with a first digit less or equal to 4.  There is only one way to draw a first

number equal to 5, and 9 ways to draw a second number less or equal to 8. Thus, the total

number of ways we can generate a number less or equal to 0.58 is 59, and the total number of

ways we can draw two numbers with replacement is 100. Therefore, if  we only draw two balls

with replacement, and use the numbers involved as the first and second decimal digit, the

probability that we get a number less or equal to 0.58 is: 0.59. Similarly, if we draw 10 balls with

replacement, the probability that we get a number less or equal to, say,  0.5831420385 is: 

0.5831420386. In the limit the  difference between x and the corresponding probability

disappears. Thus, for  we have:   By  the same argument  it follows thatx 0 [0,1] P([0,x]) ' x .

for     i.e., the probability that the random number involvedx 0 [0,1] , P({x}) ' P([x,x]) ' 0,

will be exactly equal to a given number  x is zero. Therefore,  for given   x 0 [0,1] ,

 More generally, for any interval in [0,1]  the correspondingP((0,x]) ' P([0,x)) ' P((0,x)) ' x .

probability is the length of the interval involved,  regardless as to whether the endpoints are

included or not: Thus, for  we have  0 # a < b # 1 P([a,b]) ' P((a,b]) ' P([a,b)) ' P((a,b))

= b!a. Any finite union of intervals can be written as a finite union of disjoint intervals by

cutting out the overlap. Therefore,  this probability measure extends to finite unions of intervals,



20

simply by adding up the lengths of the disjoint intervals involved. Moreover, observe that the

collection of all finite unions of sub-intervals in [0,1], including [0,1] itself and the empty set, is

closed under the formation of complements and finite unions. Thus, we have derived the

probability measure P  corresponding the statistical experiment under review for an algebra ö0

of subsets of  [0,1], namely

ö0 ' {(a,b),[a,b],(a,b],[a,b) , œa,b0[0,1], a#b, and their finite unions} , (25)

where [a,a] is the singleton {a}, and each of the sets (a,a), (a,a] and [a,a) should be interpreted

as the empty set This probability measure is a special case of the Lebesgue measure, whichi .

assigns to each interval its length.  

If you are only interested in making probability statements about the sets in the algebra

(25), then your are done. However, although the algebra (25) contains a large number of sets, we

cannot yet make probability statements involving arbitrary Borel sets in [0,1],  because not all the

Borel sets in [0,1] are included  in (25).  In particular, for a countable sequence of  sets Aj 0 ö0

the probability  is not always defined, because there is no guarantee that  P(^4
j'1Aj) ^4

j'1Aj 0 ö0 .

Therefore, if you want to make probability statements about arbitrary Borel set in [0,1], you need

to extend the probability measure P on  to a probability measure defined on the Borel sets inö0

[0,1]. The standard approach to do this is to use the outer measure:

6.2 Outer measure

Any subset A of  [0,1] can always be completely covered by a finite or countably infinite 

union of sets in the algebra :  ,  hence the “probability”  of  A isö0 A d ^4
j'1Aj , where Aj 0 ö0

bounded from above by  . The smallest upper bound is called the outer measure:'4
j'1P(Aj)

DEFINITION 7: Let  be an algebra of subsets of  The outer measure of anö0 S .

arbitrary subset A of   is:S

P ((A) ' inf
Ad^4

j'1Aj , Aj0ö0

'4
j'1P(Aj) . (26)
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Clearly, if  (Exercise: Why?) . Moreover, it follows from TheoremA 0 ö0 then P ((A) ' P(A) .

4 that the sets  can be chosen disjoint. The question now arises for which other subsetsAj 0 ö0

of    the outer measure is a probability measure. Note that the conditions (8)  and (9)  areS

satisfied for the outer measure  (Exercise: Why?),  but in general condition (10) does not holdP (

for arbitrary sets. See for example Royden  (1968, pp. 63-64).  Nevertheless, it is possible to

extend the outer measure to a probability measure on a F-algebra  containing :ö ö0

THEOREM 9: Let P be a probability measure on  { }, where  is an algebra,S , ö0 ö0

and let   be the smallest algebra  containing the algebra .  Then the outerö ' F(ö0) F& ö0

measure  P*   is a unique probability measure on { } which coincides with P on .S , ö ö0

Partial proof: See Appendix D.

Consequently,  for the statistical experiment under review there exists a  algebra  ofF& ö

subsets of , containing the algebra  defined in (25),   for which the outer measure S ' [0,1] ö0

 is a unique probability measure.  This probability measure assigns in this case toP (: ö 6 [0,1]

each interval in [0,1] its  length as probability. It is called the uniform probability measure.

It is not hard to verify that the algebra   involved  contains all the Borel subsets ofF& ö

[0,1]:

{[0,1]_B , for all Borel sets B} d ö . (27)

(Exercise: Why?)  This collection of Borel subsets of [0,1] is usually denoted by [0,1] ,  and_ B

is a  algebra itself (Exercise: Why?).  Therefore, we could also describe the probability spaceF&

of this statistical experiment by the probability space {[0,1],  [0,1]  B, }, where  is the_ P ( P (

same as before. Moreover, defining the probability measure  on  B  as:µ

µ(B) ' P (([0,1]_B) , (28)

we could  describe this statistical experiment also by the probability space {  B, }, where inú , µ

particular

µ((&4,x]) ' 0 if x # 0, µ((&4,x]) ' x if 0 < x # 1, µ((&4,x]) ' 1 if x > 1, (29)
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and more generally for intervals with endpoints a < b, 

µ((a,b)) ' µ([a,b]) ' µ([a,b)) ' µ((a,b]) ' µ((&4,b]) & µ((&4,a]) , (30)

whereas for all other Borel sets B,

µ(B) ' inf
B d ^4

j'1(aj ,bj)

'4
j'1µ((aj ,bj)) . (31)

7. Lebesgue measure and Lebesgue integral

7.1 Lebesgue measure

Along similar lines as in the construction of the uniform probability measure we can

define the Lebesgue measure, as follows. Consider a function 8 which assigns to each open

interval (a,b)  its length:

8((a,b)) ' b & a , (32)

and define for all other Borel sets B in ú,

8(B) ' inf
B d ^4

j'1(aj ,bj)

'4
j'18((aj ,bj)) ' inf

B d ^4
j'1(aj ,bj)

'4
j'1(bj & aj) . (33)

This function 8 is called the Lebesgue measure on ú, which measures the total “length” of a

Borel set, where the measurement is taken from the outside.

Similarly, let now

8 ×k
i'1(ai,bi) ' (k

i'1(bi &ai) . (34)

and define for all other Borel sets B in úk,

8(B) ' inf
B d ^4

j'1{×k
i'1(ai,j ,bi,j)}

'4
j'18 ×k

i'1(ai,j ,bi,j) ' inf
B d ^4

j'1{×k
i'1(ai,j ,bi,j)}

'4
j'1 (k

i'1(bi,j & ai,j) . (35)

This is the Lebesgue measure on úk, which measures the area (in the case k = 2) or the volume

(in the case k $ 3) of a Borel set in  úk, where again the measurement is taken from the outside.
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Note that in general Lebesgue measures are not probability measures, because the

Lebesgue measure can be infinite. In particular,   8( úk)  =  4. However, if confined to a set with

Lebesgue measure 1 it becomes the uniform probability measure. More generally,  for any Borel

set  A  0 úk with positive and finite Lebesgue measure, is the uniformµ(B) ' 8(A_B)/8(A)

probability measure on k A.B _

7.2 Lebesgue integral

The Lebesgue measure gives rise to a generalization of the Riemann integral. Recall that

the Riemann integral of a non-negative function f(x) over a finite interval (a,b] is defined as 

m
b

a

f(x)dx ' supj
n

m'1

inf
x0Im

f(x) 8(Im) (36)

where the Im are intervals forming a finite partition of  (a,b] , i.e., they are disjoint, and their

union is  (a,b]:   8(Im ) is the length of  Im , hence 8(Im ) is the Lebesgue measure(a,b] ' ^n
m'1Im ,

of  Im , and the supremum is taken over all finite partitions of (a,b].  Mimicking this definition,

the Lebesgue integral of a non-negative function f(x) over a Borel set A can be defined as

mA
f(x)dx ' supj

n

m'1

inf
x0Bm

f(x) 8(Bm) (37)

where now the Bm ‘s are Borel sets forming a finite partition of A, and the supremum is taken

over all such partitions.

If the function   f(x) is not non-negative, we can always write it as the difference of two

non-negative functions:

f(x) ' f
%
(x) & f

&
(x) , where f

%
(x) ' max[0 , f(x)], f

&
(x) ' max[0 ,&f(x)] .

Then the Lebesgue integral over a Borel set A is defined as 

mA
f(x)dx ' mA

f
%
(x)dx & mA

f
&
(x)dx , (38)

provided that at least one of the right hand side integrals is finite.

Finally, note that if A is an interval and  f(x) is Riemann integrable over A, then the



9 In the sequel we will denote the probability of an event involving random
variables or vectors X  as P(“expression involving X”), without referring to the corresponding set
in . For example, for random variables X and Y defined on a common probability spaceö

 the short-hand notation P(X > Y) should be interpreted as P{S ,ö ,P} ({T0S : X(T) > Y(T)}) .
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Riemann integral and the Lebesgue integral coincide.

8. Random  variables and their distributions

8.1 Random variables and vectors

Loosely speaking, a random  variable is a  numerical translation of the outcomes of a

statistical experiment. For example, flip a fair coin once. Then the sample space is  S ' {H ,T} ,

where H stands for Head, and T stands for Tail. The algebra of events isF&

 and the corresponding probability measure is defined byö ' {S ,i , {H} ,{T}} ,

 Now define the function   if     if P({H}) ' P({T}}) ' 1/2 . X(T) ' 1 T ' H , X(T) ' 0

 Then X  is a random variable which takes the value 1 with probability ½ and the value 0T ' T .

with probability ½:

 
P(X ' 1) '

(short&hand notation)

P({T0S : X(T) ' 1} ' P({H}) ' 1/2 ,

P(X ' 0) '

(short&hand notation)

P({T0S : X(T) ' 0} ' P({T}) ' 1/2 .

(39)

Moreover, for an arbitrary Borel set B we have 

 

P(X 0 B) ' P({T0S : X(T) 0 B})

' P({H}) ' 1/2 if 1 0 B and 0 ó B ,

' P({T}) ' 1/2 if 1 ó B and 0 0 B ,

' P({H ,T}) ' 1 if 1 0 B and 0 0 B ,

' P(i) ' 0 if 1 ó B and 0 ó B ,

(40)

where again  is a short-hand notation9 for P(X 0 B) P({T0S : X(T) 0 B}) .

In this particular case the set  is  automatically equal to one of the{T0S : X(T) 0 B}

elements of , and therefore the probability  =  P( )  is well-ö P(X 0 B) {T0S : X(T) 0 B}

defined. In general, however, we need to confine the mappings  to those for which weX : S 6 ú
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can  make probability statements about events of the type , where B is an{T0S : X(T) 0 B}

arbitrary Borel set, which is only possible if these sets are members of :ö

DEFINITION  8: Let  be a probability space. A mapping   is{S ,ö ,P} X: S 6 ú

called a random variable defined on  if X  is measurable  which means that for{S ,ö ,P} ö ,

every Borel set B,  Similarly, a mapping    is called a k-{T0S : X(T) 0 B} 0 ö . X: S 6 úk

dimensional  random vector defined on  if  X  is measurable   in the sense that for{S ,ö ,P} ö ,

every Borel set B  in  k,  B {T0S : X(T) 0 B} 0 ö .

In verifying that a real function  is  measurable  it is not necessary to verifyX: S 6 ú ö ,

that for all Borel sets B,    , but only that this property holds for Borel{T0S : X(T) 0 B} 0 ö

sets of the type (&4 ,x] :

THEOREM 10: A mapping   is measurable  (hence X is a random variable) X: S 6 ú ö

if and only if  for all  the sets  are members of  Similarly, ax 0 ú {T0S : X(T) # x} ö .

mapping   is measurable  (hence X is a random vector of dimension k) if and only if X: S 6 úk ö

for all  the sets x ' (x1 ,..... ,xk )T 0 úk

 _k
j'1{T0S : Xj(T) # xj} ' {T0S : X(T) 0 ×k

j'1(&4 ,xj]}

are members of  where the Xj’s are the components of X. ö,

Proof: Consider the case k = 1. Suppose that  Let {T0S : X(T) 0 (&4,x]} 0 ö, œx 0 ú .

D be the collection of all Borel sets B for which . Then D  B, and{T0S : X(T) 0 B} 0 ö d

 contains the collection of half-open intervals  If  D  is a algebra itself, itD (&4 ,x] , x 0 ú . F&

is a algebra containing the half-open intervals. But  is the smallest  algebra containingF& B F&

the half-open intervals  (see Theorem 6), so that then  B  D, hence D  B. Therefore, itd '

suffices to prove that D is a  algebra: F&

(a) Let D. Then , hence B 0 {T0S : X(T) 0 B} 0 ö

 ~{T0S : X(T) 0 B} ' {T0S : X(T) 0 B̃} 0 ö



10 See also Appendix C.
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and thus  D.  B̃ 0

(b) Next, let     for j = 1,2,.... Then , henceBj 0 D {T0S : X(T) 0 Bj} 0 ö

^4
j'1{T0S : X(T) 0 Bj} ' {T0S : X(T) 0 ^4

j'1Bj} 0 ö

and thus D. ^4
j'1Bj 0

The proof of the case k > 1 is similar. Q.E.D.10

The sets are usually denoted by {T0S : X(T) 0 B} X &1(B) :

X &1(B) '

def.

{T0S : X(T) 0 B} . (41)

The collection  B} is  a algebra itself (Exercise: Why?), andöX ' {X &1(B), œB 0 F&

is called the algebra generated by the random variable X.  More generally:F&

DEFINITION 9: Let X be a random variable (k=1) or a random vector (k > 1). The 

algebra  =   B k} is called the  algebra generated by X.F& öX {X &1(B), œB 0 F&

In the coin tossing case,  the mapping X  is one-to-one, and therefore in that case   is the sameöX

as  but in general   will be smaller than  For example, roll a dice, and let X = 1  if theö , öX ö .

outcome is even, and X = 0 if the outcome is odd. Then

 öX ' {{1,2,3,4,5,6} , {2,4,6} , {1,3,5} , i} ,

whereas  in this case consists of all subsets of .ö S ' {1,2,3,4,5,6}

Given a k dimensional random vector X, or a random variable X  (the case k=1), define for

arbitrary Borel sets   Bk :B 0

µX(B) ' P X &1(B) ' P {T0S: X(T) 0 B} . (42)

Then  is a probability measure on {  Bk }:µX(@) úk ,

(a) for all  Bk,  B 0 µX(B) $ 0,

(b) µX(úk) ' 1,
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(c) for all disjoint  B k ,  Bj 0 µX ^4
j'1Bj ' '4

j'1µX(Bj) .

Thus, the random variable X  maps the probability space into a new probability{S ,ö ,P}

space, {  B, }, which in its turn is mapped back by   into the (possibly smaller)ú , µX X &1

probability space . Similarly for random vectors.{S ,öX ,P}

DEFINITION 10: The probability measure   defined by (42) is called theµX(@)

probability measure induced by X. 

8.2 Distribution functions

For Borel sets of the type , or  in the multivariate case,  the value of the(&4 ,x] ×k
j'1(&4 ,xj]

induced probability measure  is called the distribution function:µX

DEFINITION 11: Let X  be a random  variable (k=1) or a random vector ( k>1)   with 

induced  probability measure   . The  function   µX F(x) ' µX(×k
j'1(&4 ,xj]) , x ' (x1 , .... ,xk)

T

is called the  distribution function  of  X. 0 úk ,

It follows from these definitions, and Theorem 8 that 

THEOREM 11: A distribution function of a random variable is always right continuous:

œx 0 ú , lim
*90

F(x % *) ' F(x) , (43)

and monotonic non-decreasing:  with F(x1) # F(x2) if x1 < x2 ,

lim
x9&4

F(x) ' 0, lim
x84

F(x) ' 1. (44)

Proof:  Exercise.

However, a distribution function is not always left continuous. As a counter example,

consider the distribution function of the Binomial (n,p) distribution in section 2.2. Recall that the

corresponding probability space consists of sample space  S ' {0,1,2,...,n}, the F&algebra ö
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of all subsets of   and probability measure  defined by  (14) . The random variable XS , P({k})

involved is defined as  X(k) = k,  with distribution function 

F(x) ' 0 for x < 0,

F(x) ' 'k#xP({k}) for x 0 [0,n] ,

F(x) ' 1 for x > n ,

(45)

Now let for example  Then for  x ' 1. 0 < * < 1, F(1 & *) ' F(0) , and F(1 % *) ' F(1) ,

hence    lim*90F(1 % *) ' F(1) , but lim*90F(1 & *) ' F(0) < F(1) .

The left limit of a distribution function F in x is usually denoted by F(x!):

F(x&) '

def.

lim
*90

F(x & *) . (46)

Thus if x is a continuity point then F(x-) = F(x), and if x is a discontinuity point then F(x-) < F(x).

The Binomial distribution involved is an example of a discrete distribution. The uniform

distribution on [0,1] derived  in section 5 is an example of a continuous distribution, with

distribution function

F(x) ' 0 for x < 0,

F(x) ' x for x 0 [0,1] ,

F(x) ' 1 for x > 1.

(47)

In the case of the Binomial distribution (14) the number of discontinuity points of  F is

finite, and in the case of the Poisson distribution (16) the number of discontinuity points of  F is

countable infinite. In general we have:

THEOREM 12: The set of discontinuity points of a distribution function of a random

variable is countable.

Proof:  Let D  be the set of all discontinuity points of the distribution function F(x). Every

point x in D is associated with an non-empty open interval (F(x-),F(x)) = (a,b), say, which is

contained in [0,1]. For each of these open intervals (a,b) there exists a rational number q such
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 hence the number of open intervals (a,b) involved  is countable, because the rationala < q < b ,

numbers are countable. Therefore, D is countable. Q.E.D.

The results of Theorems 11-12 only hold for distribution functions of random variables,

though.  It is possible  to generalize these results to distribution functions of random vectors, but

this generalization is far from trivial and therefore omitted.

As follows from Definition 11, a distribution function of a  random variable or vector  X 

is completely determined by the corresponding induced probability measure . But whatµX(@)

about the other way around, i.e., given a distribution function F(x), is the corresponding induced

probability measure  unique? The answer is yes, but we prove the result only for theµX(@)

univariate case:

THEOREM  13: Given the distribution function F of a random vector X  0 úk,  there

exists a unique probability measure  on  {  Bk} such that for   F(x) = µ úk , x ' (x1,....,xk)
T 0 úk ,

µ ×k
i'1(&4 ,xi] .

Proof: Let k = 1 and let   be the collection of all intervals of the typeT0

(a,b),[a,b],(a,b],[a,b) , (&4,a) , (4,a] , (b,4) , [b,4) , a#b 0 ú , (48)

together with their finite unions, where  [a,a] is the singleton {a}, and  (a,a), (a,a] and [a,a)

should be interpreted as the empty set  Then each set in   can be written as a finite union ofi . T0

disjoint sets of the type (48) (Compare (25) ), hence  is an algebra. Define for T0

, &4 < a < b < 4
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µ((a,a)) ' µ((a,a]) ' µ([a,a)) ' µ(i) ' 0

µ({a}) ' F(a) & lim*90F(a&*) , µ((a,b]) ' F(b) & F(a)

µ([a,b)) ' µ((a,b]) & µ({b}) % µ({a}) , µ([a,b]) ' µ((a,b]) % µ({a})

µ((a,b)) ' µ((a,b]) & µ({b}) , µ((&4,a]) ' F(a)

µ((&4,a]) ' F(a) & µ({a}) , µ((b,4)) ' 1 & F(b)

µ([b,4)) ' µ((b,4)) % µ({b})

(49)

and let for disjoint sets   of the type  (48),  Then theA1 , ....... ,An µ(^n
j'1Aj ) ' 'n

j'1µ(Aj) .

distribution function F defines a  probability measure   and  this probability measure  µ on T0 , µ

coincides on  with the induced probability measure  It follows now from Theorem 9 thatT0 µX .

there exists a -algebra  containing  for which the same applies. This -algebra  may beF T T0 F T

chosen equal to the -algebra  of Borel sets. Q.E.D.F B

The importance of this result is that there is a one-to-one  relationship between the 

distribution function F of a random variable or vector X and the induced probability measure µX .

Therefore, the distribution function contains all the information about µX .

DEFINITION 12: A distribution function F on úk and its associated probability measure

  on  {  Bk} are called absolutely continuous  with respect to Lebesgue measure if forµ úk ,

every Borel set B in  úk with zero Lebesgue measure, (B) = 0.µ

We will need this concept in the next section.

9. Density functions

An important concept is that of a density function. Density functions are usually

associated to differentiable distribution functions:

DEFINITION 13: The distribution of a random variable X is called absolutely

continuous if there exists a non-negative integrable function f, called the density function of X,

such that the distribution function F of X can be written as the (Lebesgue) integral   = F(x)
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 Similarly, the distribution of a random vector X   is called absolutely continuousm
x

&4
f(u)du . 0 úk

if there exists a non-negative integrable function f on  , called the joint density, such that theúk

distribution function F of X can be written as the integral 

 F(x) ' m
x1

&4
.....m

xk

&4
f(u1 ,... ,uk)du1....duk ,

where x ' (x1 , ...... ,xk)
T .

Thus, in the case  the density function f(x) is the derivative of F(x):F(x) ' m
x

&4
f(u)du

and in the multivariate case  the jointf(x) ' F )(x) , F(x1,...,xk) ' m
x1

&4
.....m

xk

&4
f(u1 ,... ,uk)du1....duk

density is  f(x1,...,xk) ' (M/Mx1)......(M/Mxk)F(x1,...,xk) .

The reason for calling the distribution functions in Definition 13 absolutely continuous

is that in this case the distributions involved are absolutely continuous with respect to Lebesgue

measure. See Definition 12. To see this, consider the case , and verifyF(x) ' m
x

&4
f(u)du

(Exercise) that the corresponding probability measure µ is:

µ(B) ' mB
f(x)dx , (50)

where the integral is now the Lebesgue integral over a Borel set B. Since the Lebesgue integral

over a Borel set with zero Lebesgue measure is zero (Exercise), it follows that  µ(B) = 0 if the

Lebesgue measure of B is zero.

For example the uniform distribution (47) is absolutely continuous, because we can write 

(47) as  with density  f(u) = 1 for 0 < u < 1 and zero elsewhere. Note that inF(x) ' m
x

&4
f(u)du ,

this case F(x) is not differentiable in 0 and 1, but that does not matter, as long as the set of points

for which the distribution function is not differentiable has zero Lebesgue measure. Moreover, a

density of a random variable always integrates to 1, because 1 ' limx64F(x) ' m
4

&4
f(u)du .

Similarly for random vectors  X   : 0 úk m
4

&4m
4

&4
.....m

4

&4
f(u1 ,... ,uk)du1....duk ' 1.

The concept of a density function can be generalized to other distributions than only

absolute continuous distributions, in the sense that  F(x) can be written as an integral of a density

f(x), although no longer as  For example, consider the Poisson(8) distribution F(x) ' m
x

&4
f(u)du .

(16). The distribution function involved is
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F(x) ' j
[x]

k'0

e &88k / k! if x $ 0, F(x) ' 0 if x < 0, (51)

where [x] denotes the largest integer # x. Define

f(x) ' j
4

k'0

e &88k / k! . I x 0 [k,k%1) . (52)

Then for x $ 0,

m
[x]%1

&4

f(u)du ' m
[x]%1

0

j
4

k'0

e &88k / k! . I u 0 [k,k%1) du

' j
[x]

m'0 m
m%1

m

j
4

k'0

e &88k / k! . I u 0 [k,k%1) du ' j
[x]

k'0

e &88k / k! ' F(x)

(53)

Thus also in this case F(x) can be written as in integral, but now as  insteadF(x) ' m
[x]%1

&4
f(u)du

of Nevertheless, the function (52) is often referred to as the density of theF(x) ' m
x

&4
f(u)du .

Poisson(8) distribution.

Note that in this case F(x) is not absolutely continuous with respect to Lebesgue measure.

For example, let B = {0,1,2,3,........}. Clearly, the Lebesgue measure of B is zero, but µ(B) = 1,  

where µ is  the probability measure associated to F(x). 

10. Conditional probability, Bayes’ rule,  and independence

10.1 Conditional probability

Consider statistical experiment with  probability space {S,ö,P}, and suppose that it is

known that the outcome of this experiment is contained in a set B with P(B) > 0. What is the

probability of an event A,  given that the outcome of the experiment is contained in B? For

example, roll a dice. Then S = {1,2,3,4,5,6}, ö is the F-algebra of all subsets of S, and P({T}) =

1/6 for T = 1,2,3,4,5,6. Let B be the event: “the outcome is even”: B = {2,4,6}, and let A =

{1,2,3}. If we know that the outcome is even, then we know that  the outcomes {1,3} in A will

not occur: if the outcome in contained in A, it is contained in A1B = {2}. Knowing that the

outcome is either 2,4, or 6, the probability that the outcome is contained in A is therefore 1/3 =

P(A1B)/P(B). This is the conditional probability of A, given B, denoted by P(A|B). If it is



33

revealed that the outcome of a statistical experiment is contained in a particular set B, then the

sample space S is reduced to B, because we then know that the outcomes in the complement of B

will not occur,  the F-algebra ö is reduced to ö1B, the collection of all intersections of the sets

in ö with B:  ö1B ={A1B, A0ö} (Exercise: Is this a F-algebra?), and the probability measure

involved becomes P(A|B) = P(A1B)/P(B),  hence the probability space becomes

 See Exercise 20 below.{B ,ö_B ,P(@|B)} .

10.2 Bayes’ rule

Let A and B be sets in ö. Since the sets A and  form a partition of the sample space S,Ã

we have 

B ' (B _ A) ^ (B _ Ã) ,

hence

P(B) ' P(B_A) % P(B_Ã) ' P(B*A)P(A) % P(B*Ã)P(Ã) .

Moreover, 

P(A*B) '
P(A_B)

P(B)
'

P(B*A)P(A)
P(B)

.

Combining these two results now yields Bayes' rule:

P(A*B) '
P(B*A)P(A)

P(B*A)P(A) % P(B*Ã)P(Ã)
.

Thus, Bayes’ rule enables us to compute the conditional probability P(A|B) if P(A) and the

conditional probabilities  are given.P(B*A) and P(B*Ã)

More generally, if Aj, j =1,2,.....n (# 4) is a partition of the sample space S, i.e., the  Aj’s

are disjoint sets in ö such that  thenS ' ^n
j'1Aj ,

P(Ai*B) '
P(B*Ai)P(Ai)

'n
j'1P(B*Aj)P(Aj)

.

Bayes’ rule plays an important role in a special branch of statistics [and econometrics],
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called Bayesian statistics [econometrics].

10.3. Independence

If P(A|B) = P(A), then knowing that the outcome is in B does not give us any information

about A. In that case the events A and B are called independent. For example, if I tell you that the

outcome of the dice experiment is contained in the set {1,2,3,4,5,6} = S, then you know nothing

about the outcome:  P(A|S) = P(A1S)/P(S) = P(A), hence S is independent of any other event A.

Note that  P(A|B) = P(A) is equivalent to P(A1B) = P(A)P(B). Thus,

DEFINITION 14: Sets A  and  B in ö are (pairwise) independent if  P(A1B) =

P(A)P(B).

If events A and B are independent, and events  B and C are independent, are the events A

and C independent? The answer is: not necessarily. In order to give a counter example, observe

that if  A and B are independent, then so are  and  because Ã and B , A and B̃ , Ã and B̃ ,

P(Ã_B) ' P(B) & P(A_B) ' P(B) & P(A)P(B) ' (1&P(A))P(B) ' P(Ã)P(B) ,

and similarly,  

  P(A_B̃) ' P(A)P(B̃) and P(Ã_B̃) ' P(Ã)P(B̃) .

Now if C =  and 0 < P(A) < 1, then   B and C =  are independent if  A and B are independent,Ã Ã

but  

  P(A_C) ' P(A_Ã) ' P(i) ' 0,

whereas  

P(A)P(C) ' P(A)P(Ã) ' P(A)(1&P(A)) … 0.

Thus, for  more than two events we need a stronger condition for independence than pairwise

independence, namely:

DEFINITION 15: A sequence Aj of sets in ö is independent if for every sub-sequence

 i = 1,2,..,n,  Aji
, P(_n

i'1Aji
) ' (n

i'1P(Aji
) .
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By requiring that the latter holds for all sub-sequences rather than  weP(_4
i'1Ai ) ' (4

i'1P(Ai ) ,

avoid the problem that a sequence of events would be called independent if one of the events is

the empty set.

The independence of a pair or sequence of random variables or vectors can now be

defined as follows.

DEFINITION 16: Let  Xj  be a sequence of random variables or  vectors defined on a

common probability space {S,ö,P}. X1 and X2 are pairwise independent if for all Borel sets B1,

B2, the sets   and  are independent.  TheA1 ' {T0S: X1(T) 0 B1} A2 ' {T0S: X2(T) 0 B2}

sequence Xj  is independent if for all Borel sets Bj the sets   areAj ' {T0S: Xj(T) 0 Bj}

independent.

As we have seen before, the collection B}} =öj ' {{T0S: Xj(T) 0 B} , B 0

B}} is a sub F-algebra of ö. Therefore, Definition 16 also reads:   {X &1
j (B), B 0

The sequence of random variables Xj  is independent if for arbitrary  Aj  0 öj  the sequence of

sets  Aj is independent (according to Definition 15).

Independence usually follows  from the setup of a statistical experiment. For example,

draw randomly with replacement  n  balls from a bowl containing R red balls and N!R white

balls, and let Xj = 1 if the j-th draw is a red ball, and Xj =0 if the j-th draw is a white ball. Then

X1,...,Xn are independent (and X1+...+Xn  has the Binomial (n,p) distribution, with p = R/N).

However, if we would draw these balls without replacement, then X1,...,Xn are not independent.

For a sequence of random variables  Xj  it suffices to verify the condition in Definition 16

for Borel sets  Bj of the type (!4,xj], xj  0 ú, only:

THEOREM 14 :  Let  X1,...,Xn be random variables, and denote for x  0 ú and  j =

1,....,n,    Then   X1,...,Xn  are independent if and only if for arbitraryAj(x) ' {T0S: Xj(T) # x} .

 the sets  are independent.(x1,.....,xn)
T 0 ún A1(x1),......,An(xn)



11 Let  together with all finite unionsö0
j ' {S,i,X &1

j ((&4,x]),X &1
j ((y,4)),œ x,y0ú,

and intersections of the latter two types of sets}. Then  is an algebra such that for arbitraryö0
j

 the sequence of sets  Aj is independent.  This is not too hard to prove. NowAj 0 ö0
j

 B}}  is the smallest F-algebra containing , and is also the smallestöj ' {X &1
j (B), B 0 ö0

j

monotone class containing . It can be shown (but this is the hard part), using the properties ofö0
j

monotone class (see Exercise 13 below), that for arbitrary   the sequence of sets  Aj  isAj 0 öj

independent as well. 
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The proof of Theorem 14 is complicated, and therefore omitted.11

It follows now from Theorem 14 that:

THEOREM 15: The random variables X1,...,Xn  are independent if and only if the joint

distribution function F(x) of  X = (X1,...,Xn)
T  can be written as the product of the distribution

functions Fj(xj) of the  Xj ‘s, i.e.,   F(x) ' (n
j'1Fj(xj) , where x ' (x1 , .... ,xn)

T .

The latter distribution functions Fj(xj) are called the marginal distribution functions. Moreover, it

follows straightforwardly from Theorem 15 that if the joint distribution of  isX ' (X1,....,Xn)
T

absolutely continuous with joint density function f(x), then  X1,...,Xn  are independent if and only

if f(x) can be written as the product of the density functions fj(xj) of the  Xj ‘s: 

  f(x) ' (n
j'1fj(xj) , where x ' (x1 , .... ,xn)

T .

The latter density functions are called the marginal density functions.

Exercises:

1. Prove (4). 

2. Show that   in (12) decreases if we increase r.p1(r,n)

3. Show that   in (13)  increases with r .p2(r,n)

4. Prove (20)  by proving that  ln[(1 & µ/n)n] ' n ln(1 & µ/n) 6 &µ for n 6 4 .

5. Let    be the collection of all subsets of   = (0,1] of the type (a,b], where   areö
(

S a < b
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rational numbers in [0,1],  together with their finite unions and the empty set  Verify that  i . ö
(

is an algebra.  

6. Prove Theorem 2.  

7. Prove Theorem 5.

8. Let  S = (0,1], and let  be the collection of all intervals of the type (a,b] withŒ

 We have shown that the smallest algebra containing the collection   consists0 # a < b # 1. Œ

of the sets in  together with the empty set i, and all finite unions of disjoint sets inŒ Œ .

Determine along the same lines ,  the smallest F-algebra containing this collection . F(Œ) Œ

9. Show that  =  B.F({[a,b] : œ a # b , a,b 0 ú})

10. Prove part (g) of Theorem 8.

11. Prove that  defined by (25)  is an algebra.ö0

12. Prove Theorem 11. Hint: Use Definition 12 and Theorem 8. Determine first which parts

of Theorem 8 apply.

13.  A collection  of subsets of a set  is called a monotone class if the following twoö S

conditions hold:

 imply ,An 0 ö , An d An%1, n ' 1,2,3,..... ^4
n'1An 0 ö

 imply .An 0 ö , An e An%1, n ' 1,2,3,..... _4
n'1An 0 ö

Show that an algebra is a F-algebra if and only if it is a monotone class.

14.  A collection  of subsets of a set  is called a system if  impliesö8 S 8& A 0 ö8

 and for disjoint sets  A collection  of subsets of a set  Ã 0 ö8 , Aj 0 ö8 , ^4
j'1Aj 0 ö8 . öB S

is called a system if  implies that  Prove that if a system is also  aB& A,B 0 öB A_B 0 öB . 8&

system, then it is a  F-algebra .B&

15. Let  be  the smallest algebra of subsets of  containing the (countable) collectionö F& ú

of half-open intervals   with rational endpoints q. Prove that   contains all  the Borel(&4 ,q] ö

subsets of :   = ú B ö .

16.  Consider the following subset of   Explainú2: L ' {(x,y) 0 ú2: y ' x , 0 # x # 1}.

why L is a Borel set. 

17.  Consider the following subset of   Explain why Cú2: C ' {(x,y) 0 ú2: x 2 % y 2 # 1}.
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is a Borel set. 

18. Let  be an absolutely continuous distribution function. Prove thatF(x) ' m
x

&4
f(u)du

corresponding probability measure µ is given by the Lebesgue integral (50).

19. Prove that the Lebesgue integral over a Borel set with zero Lebesgue measure is zero.

20. Let  be a probability space, and let  with P(B) > 0. Verify that {S,ö,P} B 0 ö

is a probability space.{B ,ö_B,P(@|B)}

21. Are disjoint sets in independent?ö

22. (Application of Bayes’ rule): Suppose that 1 out of 10,000 people suffer from a certain

disease, say HIV+. Moreover, suppose that there exists a medical test for this disease which is

90% reliable: If you don't have the disease, the test will confirm that with probability 0.9, and the

same if you do have the disease. If a randomly selected person is subjected to this test, and the

test indicates that this person has the disease, what is the probability that this person actually has

this disease? In other words, if you were this person, would you be scared or not?

23. Let A  and  B in ö be pairwise independent. Prove that   are independent (andÃ and B

therefore  are independent and  are independent).A and B̃ Ã and B̃

24. Draw randomly without replacement  n  balls from a bowl containing R red balls and

N!R white balls, and let Xj = 1 if the j-th draw is a red ball, and Xj =0 if the j-th draw is a white

ball. Show that X1,...,Xn  are not independent.



12 The symbol 0 means “is element of”.

13 These results are called DeMorgan’s laws.
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APPENDIX A: Sets and set operations

In the main text  I will  assume that the reader is familiar with the basic set operations, 

notations, and results listed here.

1. The union AcB of two sets A and B is the set of elements that belong either to A or B or

both. The finite union  of sets A1,...,An is the set with the property that for each12^n
j'1Aj

 there exists an index i, 1 # i # n,  for which  and vice versa: If   forx 0 ^n
j'1Aj x 0 Ai , x 0 Ai

some index i, 1 # i # n,  then  Similarly, the countable union   of an infinitex 0 ^n
j'1Aj . ^4

j'1Aj

sequence of sets Aj,  j = 1,2,3,....., is a set with the property that for each  there exists ax 0 ^4
j'1Aj

finite index i $ 1 for which  and vice versa: If   for some finite index i $ 1 thenx 0 Ai , x 0 Ai

 x 0 ^4
j'1Aj .

2. The intersection A1B of two sets A an B is the set of elements belong to both A and B.

The finite intersection  of sets A1,...,An is the set with the property that if  then_n
j'1Aj x 0 _n

j'1Aj

for all  i = 1,...,n,   and vice versa: If   for all i = 1, ..., n,  then x 0 Ai , x 0 Ai x 0 _n
j'1Aj .

Similarly, the countable intersection   of an infinite sequence of sets Aj, j = 1,2,..., is a set_4
j'1Aj

with the property that if  then for all indices i $ 1,  and vice versa: If  x 0 _4
j'1Aj x 0 Ai , x 0 Ai

for all indices i $ 1 then  x 0 _4
j'1Aj .

3. A is a subset of a set B, AdB, if all the elements of A are contained in B. If  AdB and BdA

then A = B.

 4. The difference A\B (also denoted by A-B) of sets A and B is the set of elements of A that

are not contained in B. The symmetric difference of two sets A and B is denoted and defined by

A)B ' (A/B)^ (B/A) .

5. If  AdB then the set  = B/A ( also denoted by ~A) is called the complement of A withÃ

respect to B. If  Aj for j = 1,2,3,..... are subsets of B then  and 13 for~^jAj ' _jÃj ~_jAj ' ^jÃj ,

finite as well as countable infinite unions and intersections.



14 Note that Aci = A and A1i = i. Thus the empty set i is a subset of any set,
including i itself. 

15 Let B1 = A1 and   for n = 2,3,4,.....,Bn ' An \ ^n&1
j'1 Aj
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6. Sets A and B are disjoint if they do not have elements in common:  A1B = i, where i

denotes the empty set14, i.e., a set without elements. In general, a finite or countable infinite

sequence of sets is disjoint if their finite or countable intersection is the empty set  i.  

7. For every sequence of sets Aj , j = 1,2,3,....., there exists a sequence Bj , j = 1,2,3,....., of

disjoint sets such that for each j,  BjdAj, and  15^jAj ' ^jBj .

The order in which you take unions does not matter, and the same applies to intersections.

However, if you take unions and intersections sequentially it matters what is done  first. For

example, (AcB)1C  =  (A1C)c(B1C), which is in general different from  Ac(B1C), except if

AdC.  Similarly, (A1B)c C  =  (AcC)1(BcC), which is in general different from  A1(BcC),

except if AdB.

APPENDIX B: Supremum and infimum

The supremum of a sequence of real numbers, or a real function, is akin to the notion of a

maximum value. In the latter case the maximum value is taken at some element of the sequence,

or in the function case some value of the argument. Take for example the sequence  an = (!1)n/n

for n = 1,2,......., i.e., a1 = -1, a2 = 1/2,  a3 = -1/3, a4 = 1/4, ..... Then clearly the maximum value is

½, which is taken by a2. The latter is what distinguishes a maximum from a supremum. For

example, the sequence   an = 1!1/n  for n = 1,2,....... is bounded by 1: an < 1 for all indices n $1,

and the upper bound 1 is the lowest possible upper bound, but there does not exist a finite index

n for which  an  = 1. More formally, the (finite) supremum of a sequence an (n = 1,2,3,.......)  is a

number b,  denoted by supn$1an , such that an # b for all indices  n $1, and for every arbitrary

small positive number g there exists a finite index n such that  an > b!g. Clearly, this definition

fits a maximum as well: a maximum is a supremum, but a supremum is not always a maximum.

If the sequence an  is unbounded from above, in the sense that for every arbitrary large

real number M there exists an index n $1 for which  an > M, then we say that the supremum is
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infinite: supn$1an =  4.

The notion of a supremum also applies to functions. For example the function f(x) =

exp(!x2) takes its maximum 1 at x = 0, but the function  f(x) = 1!exp(!x2) does not have a

maximum; it has supremum 1 because   f(x) # 1 for all x but there does not exists a finite x for

which  f(x) = 1.  As another example, let  f(x) = x on the interval [a,b]. Then b is the maximum of

  f(x) on [a,b] but b is only the supremum f(x) on [a,b) because b is not contained in [a,b). More

generally, the finite supremum of a real function f(x) on a set A, denoted by  is a realsupx0A f(x) ,

number b such that  f(x) # b for all x in A, and for every arbitrary small positive number g there

exists an x in A such that  f(x) > b!g. If f(x) = b for some x in A then the supremum coincides

with the maximum. Moreover, the supremum involved is infinite,  if for everysupx0A f(x) ' 4 ,

arbitrary large real number M  there exists an x in A for which  f(x)  > M.

The minimum versus infimum cases are similar: infn$1an = !supn$1(!an) and   =infx0A f(x)

&supx0A (&f(x)) .

The concepts of supremum and infimum apply to any collection {c", " 0 A} of real

numbers, where the index set A may be uncountable, as we may interpret c" as a real function on

the index set A, say  c" = f("). 

APPENDIX C: Common structure of the proofs of Theorems 6 and 10

The proofs of Theorems 6 and 10 employ a similar argument, namely the following:

THEOREM C.1. Let  be a collection of subsets of a set S, and let  be theŒ F(Œ)

smallest F-algebra   containing . Moreover, let D be a Boolean function on  i.e., D  is aŒ F(Œ) ,

set function which takes either the value “True” or “False”.  Furthermore, let forD(A) ' True

all sets A in . If the collection   of sets A in  for which  is a F-algebraŒ D F(Œ) D(A) ' True

itself, then   for  all sets A  in .D(A) ' True F(Œ)

Proof: Since  is a collection of sets in  we have  Moreover, byD F(Œ) D d F(Œ) .

assumption, , and  is a F-algebra . But   is the smallest  F-algebra containing ,Œ d D D F(Œ) Œ

hence . Thus,    and consequently,  for  all sets A in .F(Œ) d D D ' F(Œ) , D(A) ' True F(Œ)
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Q.E.D.

This type of proof will also be used later on.

Of course, the hard part is to prove that  is F-algebra. In particular, the collection  D D

is not automatically a F-algebra. Take for example the case where S  = [0,1],   is the collectionŒ

of all intervals [a,b] with 0 # a < b # 1, and  if the smallest interval [a,b] containingD(A) ' True

A has positive length: b-a > 0, and  otherwise. In this case consists of all theD(A) ' False F(Œ)

Borel subsets of [0,1], but   does not contain singletons whereas  does, so  is smallerD F(Œ) D

than , and therefore not a F-algebra. F(Œ)

APPENDIX D: Extension of an outer measure to a probability measure

In order to use the outer measure as a probability measure for more general sets that those

in , we have to extend the algebra   to a  F-algebra  of events for which the outerö0 ö0 ö

measure is a probability measure.  In this appendix it will be shown how   can be constructed. ö

LEMMA D.1: For any sequence  of disjoint sets in ,   Bn S P ((^4
n'1Bn) # '4

n'1P
((Bn) .

 Proof: Given an arbitrary  it  follows from (26) that there exists a countableg > 0

sequence of sets   in   such that   and   henceAn,j ö0 Bn d ^4
j'1An,j P ((Bn) > '4

j'1P(An,j ) & g2&n ,

'4
n'1P

((Bn) > '4
n'1'4

j'1P(An,j ) & g'4
n'12

&n ' '4
n'1'4

j'1P(An,j ) & g . (54)

Moreover,   where the latter is a countable union of sets in , hence  it ^4
n'1Bn d ^4

n'1^4
j'1An,j , ö0

follows from (26) that

P ((^4
n'1Bn ) # '4

n'1'4
j'1P(An,j ) . (55)

Combining (54) and (55) it follows that for arbitrary , g > 0

'4
n'1P

((Bn) > P ((^4
n'1Bn ) & g . (56)
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Letting   the lemma follows now from (56) . Q.E.D.g 9 0,

Thus, in order for the outer measure to be a probability measure, we have to impose

conditions on the collection  of subsets of   such that for any sequence  of disjoint sets inö S Bj

,     The latter is satisfied if we choose   as follows:ö P ((^4
j'1Bj) $ '4

j'1P
((Bj) . ö

LEMMA D.2: Let   be a collection of subsets sets B of   such that for any subset Aö S

of  :S

P ((A) ' P ((A_B) % P ((A_B̃) . (57)

Then for all countable sequences of disjoint sets  Aj 0 ö, P ((^4
j'1Aj) ' '4

j'1P
((Aj) .

Proof: Let   Then    areA ' ^4
j'1Aj , B ' A1 . A_B ' A_A1 ' A1 and A_B̃ ' ^4

j'2Aj

disjoint, hence

P ((^4
j'1Aj) ' P ((A) ' P ((A_B) % P ((A_B̃) ' P ((A1) % P ((^4

j'2Aj) . (58)

Repeating (58) for  with , k=2,...,n, it follows by induction  that P ((^4
j'kAj) B ' Ak

P ((^4
j'1Aj) ' 'n

j'1P
((Aj) % P ((^4

j'n%1Aj) $ 'n
j'1P

((Aj) for all n $ 1,

 hence   Q.E.D.P ((^4
j'1Aj) $ '4

j'1P
((Aj) .

Note that condition (57) automatically holds if : Choose an arbitrary set A and anB 0 ö0

arbitrary small number   Then there exists an  covering   g > 0. A d ^4
j'1Aj, where Aj 0 ö0 ,

such  that   Moreover, since  '4
j'1P(Aj) # P ((A) % g . A_B d ^4

j'1Aj_B, where Aj_B 0 ö0 ,

and    we have     andA_B̃ d ^4
j'1Aj_B̃, where Aj_B̃ 0 ö0 , P ((A_B) # '4

j'1P(Aj_B)

 hence   Since  is arbitrary, itP ((A_B̃) # '4
j'1P(Aj_B̃) , P ((A_B) % P ((A_B̃) # P ((A) % g . g

follows now that    + P ((A) $ P ((A_B) P ((A_B̃) .

We show now that 

LEMMA D.3: The collection  in Lemma D.2  is a algebra of subsets of  , ö F& S

containing the algebra   ö0 .
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Proof:  First, it  follows trivially from (57) that  implies  NowB 0 ö B̃ 0 ö .

let  It remains to show that  which we will do in two steps. First, we showBj 0 ö . ^4
j'1Bj 0 ö,

that   is an algebra, and then we use Theorem 4 to show that     is also a   algebra.ö ö F&

(a)  Proof that   is an algebra: We have to show that   implies thatö B1,B2 0 ö

  We haveB1^B2 0 ö .

 P ((A_B̃1) ' P ((A_B̃1_B2) % P ((A_B̃1_B̃2) ,

and since

 A_(B1^B2) ' (A_B1)^(A_B2_B̃1)

we have 

P ((A_(B1^B2)) # P ((A_B1) % P ((A_B2_B̃1) .

Thus:

P ((A_(B1^B2)) % P ((A_B̃1_B̃2) # P ((A_B1) % P ((A_B2_B̃1) % P ((A_B̃2_B̃1)

' P ((A_B1) % P ((A_B̃1) ' P ((A) .
(59)

Since   and ,  it follows now  ~(B1^B2) ' B̃1_B̃2 P ((A) # P ((A_(B1^B2)) % P ((A_(~(B1^B2))

from (59) that  Thus, implies thatP ((A) ' P ((A_(B1^B2)) % P ((A_(~(B1^B2)) . B1,B2 0 ö

 hence   is an algebra (containing the algebra ). B1^B2 0 ö , ö ö0

(b) Proof that   is a algebra:  Since we  have  established that   is an algebra, itö F& ö

follows from Theorem 4 that in proving that  is also a algebra it suffices to  verify that ö F&

  for disjoint sets    For such sets  we have:  and^4
j'1Bj 0 ö Bj 0 ö : A_(^n

j'1Bj)_Bn ' A_Bn ,

 henceA_(^n
j'1Bj)_B̃n ' A_(^n&1

j'1 Bj) ,

P ((A_(^n
j'1Bj)) ' P ((A_(^n

j'1Bj)_Bn) % P ((A_(^n
j'1Bj)_B̃n) ' P ((A_Bn ) % P ((A_(^n&1

j'1 Bj)) .

Consequently, 

P ((A_(^n
j'1Bj)) ' 'n

j'1P
((A_Bj ) . (60)

Next, let  Then   henceB ' ^4
j'1Bj . B̃ ' _4

j'1B̃j d _n
j'1B̃j ' ~(^n

j'1Bj) ,

P ((A_B̃) # P ((A_(~[^n
j'1Bj])) . (61)
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It follows now from (60) and (61) that for all n $ 1,

P ((A) ' P ((A_(^n
j'1Bj)) % P ((A_(~[^n

j'1Bj])) $ 'n
j'1P

((A_Bj ) % P ((A_B̃) ,

hence

P ((A) $ '4
j'1P

((A_Bj ) % P ((A_B̃) $ P ((A_B) % P ((A_B̃) , (62)

where the last inequality is due to

P ((A_B) ' P ((^4
j'1(A_Bj)) # '4

j'1P
((A_Bj) .

Since we always have  (compare Lemma D.1), it follows fromP ((A) # P ((A_B) % P ((A_B̃)

(62) that for countable unions  of disjoint sets B ' ^4
j'1Bj Bj 0 ö ,

P ((A) ' P ((A_B) % P ((A_B̃) , (63)

hence  Consequently,   is a algebra, and  the outer measure P* is a probabilityB 0 ö . ö F&

measure on { }.  Q.E.D.S , ö

LEMMA D.4: The  algebra  in Lemma D.3 can be chosen such that   is unique:F& ö P (

any probability measure   on  which coincide with P on  is equal to the outerP
(

{S,ö} ö0

measure .P (

Partial proof: Let { }   be the  collection of all algebras such that for eachö2 , 2 0 1 F&

:2 0 1

(a) ö0 d ö2 ;

(b) there exists a probability measure which coincide with P on P2 on {S,ö2} {S,ö0} .

According to Lemmas D.2 and D.3 such a collection { } exists: For at least one indexö2 , 2 0 1

 we have that  Let  which is the smallest  algebra2 P2 ' P ( and ö2 ' ö . ö
(
' _201ö2 , F&

satisfying the properties (a) and (b).  Then for each  is a probability measure on2 0 1 , P2

 We show now that , as follows. Let  be the{S,ö
(
} . P2(A) ' P ((A) for all A 0 ö

(
Œ

collection of all sets  for which  is unique: any probability measure   onA 0 ö
(

P ((A) P
(

 which coincide with P on  coincides with  on . Observe first that{S,ö
(
} ö0 P ( Œ

(Exercise: Why?). If  is a  algebra, then it must be one of the members ofö0 d Œ d ö
(

. Œ F&
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the collection { } (Exercise: Why?), hence  and consequently ö2 , 2 0 1 ö
(
d Œ , ö

(
' Œ .

Thus it suffices to prove that  is a  algebra. However, the proof of the latter is too difficultŒ F&

and too long [see Billingsley 1986, Theorems 3.2-3.3], and therefore omitted. Q.E.D.

Combining Lemmas D.2-D.4,  Theorem 9 follows.
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