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Preface to the Fourth Edition

When the first edition of this book appeared in 1969, rock mechanics had
only recently begun to emerge as a distinct and identifiable scientific subject.
It coalesced from several strands, including classical continuum mechanics,
engineering and structural geology, and mining engineering. The two senior
authors of Fundamentals of Rock Mechanics were perhaps uniquely qualified to
play seminal roles in bringing about this emergence. John Jaeger had by that
time already enjoyed a long and distinguished career as arguably the preeminent
applied mathematician of the English-speaking world, and was the coauthor,
with H. S. Carslaw, of one of the true classics of the scientific literature, Conduc-
tion of Heat in Solids. Neville Cook was at that time barely 30 years old, but was
already the director of research at the South African Chamber of Mines, and well
on his way to becoming acknowledged as the leading and most brilliant figure in
this new field of rock mechanics.

The earlier editions of this book played a large role in establishing an iden-
tity for the field of rock mechanics and in defining what are now accepted to
be the “fundamentals” of the field. These fundamentals consist firstly of the
classical topics of solid mechanics – stress and strain, linear elasticity, plasticity,
viscoelasticity, and elastic wave propagation. But rocks are much more complex
than are most of the traditional engineering materials for which the classical
mechanics theories were intended to apply. Hence, a book entitled Fundamen-
tals of Rock Mechanics must also treat certain topics that are either unique to
rocks, or at any rate which assume great importance for rocks, such as friction
along rough surfaces, degradation and failure under compressive loads, coupling
betweenmechanical deformation and fluid flow, the effect of cracks and pores on
mechanical deformation, and, perhaps most importantly, the effect of fractures
and joints on large-scale rock behavior.

Rock mechanics, thus defined, forms a cornerstone of several fields of science
and engineering – from structural geology and tectonophysics, to mining, civil,
and petroleum engineering. A search of citations in scientific journals shows that
previous editions of this book have found an audience that encompasses not only
these areas, but also includes material scientists and ceramicists, for example. It
is hoped that this new edition will continue to be found useful by such a variety
of researchers, students, and practitioners.

The extent to which the different chapters of this edition are new or expanded
varies considerably, but aside from the brief, introductory Chapter 1, all have
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been revised and updated to one extent or another. The discussion of the basic
theory of stress and strain in Chapter 2 has now been complemented by exten-
sive use of vector and matrix notation, although all of the major results are
also displayed in explicit component form. A discussion of rate-dependence has
been added to Chapter 3 on friction. Chapter 4 on rock deformation has been
updated, with more emphasis on true-triaxial failure criteria. Chapter 5 on lin-
ear elasticity now includes more discussion of anisotropic elasticity, as well as
coverage of important general theorems related to strain energy. A detailed dis-
cussion of issues related to measurement of the strain-softening portion of the
complete stress–strain curve has been added to Chapter 6 on laboratory mea-
surements. Chapter 7 on poroelasticity is almost entirely new, and also includes
a new section on thermoelasticity. Chapter 8 on stresses around cavities and
inclusions, which is based heavily on the chapter in the 3rd edition that was
entitled “Further Problems in Elasticity,” has been simplified by moving some
material to other more appropriate chapters, while at the same time adding
material on three-dimensional problems. The chapters of the 3rd edition on
ductile materials, granular materials, and time-dependent behavior have been
combined to form Chapter 9 on inelastic behavior. Chapter 10, on microme-
chanical models, is a greatly enlarged and updated version of the old chapter
on crack phenomena, with expanded treatment of effective medium theories.
Chapter 11 on wave propagation has been doubled in size, with new material
on reflection and refraction of waves across interfaces, the effects of pore flu-
ids, and attenuation mechanisms. The important influence of rock fractures on
the mechanical, hydraulic, and seismic behavior of rock masses is now widely
recognized, and an entirely new chapter, Chapter 12, has been devoted to this
topic. Chapter 13 on subsurface stresses collects material that had been scattered
in various places in the previous editions. The final chapter, Chapter 14, briefly
shows how the ideas and results of previous chapters can be used to shed light
on some important geological and geophysical phenomena.

In keeping with the emphasis on fundamentals, this book contains no dis-
cussion of computational methods. Methods such as boundary elements, finite
elements, and discrete elements are nowadays an indispensable tool for analyz-
ing stresses and deformations around subsurface excavations, mines, boreholes,
etc., and are also increasingly being used to study problems in structural geol-
ogy and tectonophysics. But the strength of numerical methods has, at least
until now, been in analyzing specific problems involving complex geometries
and complicated constitutive behavior. Analytical solutions, although usually
limited to simplified geometries, have the virtue of displaying the effect of the
parameters of a problem, such as the elastic moduli or crack size, in a clear and
transparent way. Consequently, many important analytical solutions are derived
and/or presented in this book.

The heterogeneous nature of rock implies that most rock properties vary
widely within a given rock type, and often within the same reservoir or quarry.
Hence, rock data are presented in this work not to provide “handbook values”
that could be used in specific applications, but mainly to illustrate trends, or to
highlight the level of agreement with various models and theories. Nevertheless,
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this new edition contains slightly more actual rock data than did the previous
edition, as measured by the number of graphs and tables that contain laboratory
or field data. The reference list contains about 15% more items than in the 3rd
edition, andmore than half of the references are new.With only a few exceptions
for some key references that originally appeared in conference proceedings or as
institutional reports or theses, the vast majority of the references are to journal
articles or monographs.

The ordering of the chapters remains substantially the same as in the 3rd
edition. The guiding principle has been tominimize, asmuch as possible – in fact,
almost entirely – the need to refer in one chapter to definitions, data or theoretical
results that are not presented until a later chapter. In particular, then, the chapters
are not structured so as to follow theworkflow that would be used in a rock engi-
neering project. For example, although knowledge of the in situ stresses would
be required at the early stages of an engineering project, the chapter on subsur-
face stresses is placed near the end, because its presentation requires reference
to analytical solutions that have been developed in several previous chapters.

The mathematical level of this edition is the same as in previous editions.
The mathematical tools used are those that would typically be learned by under-
graduates in engineering or the physical sciences. Thus, matrix methods are now
extensively used in the discussion of stress and strain, as these have become a stan-
dard part of the undergraduate curriculum. Conversely, Cartesian tensor indicial
notation, which is convenient for presenting the equations of stress, strain, and
elasticity, has not been used, as it is not widely taught at undergraduate level.
Perhaps the only exception to this rule is the use in Chapter 8 of functions of a
complex variable for solving two-dimensional elasticity problems. But the small
amount of complex variable theory that is required is presented as needed, and
the integral theorems of complex analysis are avoided.

Rock mechanics is indeed a subfield of continuum mechanics, and my con-
tribution to this book owes a heavy debt to the many excellent teachers of
continuum mechanics and applied mathematics with whom I have been for-
tunate enough to study. These include Melvin Baron, Herbert Deresiewicz,
and Morton Friedman at Columbia, and David Bogy, Michael Carroll, Werner
Goldsmith, and Paul Naghdi at Berkeley. Although this book shows little obvious
influence of Paul Naghdi’s style of continuummechanics, it was only after being
inspired by his elegant and ruthlessly rigorous approach to this subject that I
changed my academic major field to continuum mechanics, thus setting me on
a path that led me to do my PhD in rock mechanics.

Finally, I offer my sincere thanks to John Hudson of Imperial College and
Rock Engineering Consultants, and Laura Pyrak-Nolte of Purdue University for
reading a draft of this book and providing many valuable suggestions.

R. W. Zimmerman
Stockholm, May 2006

Artwork from the book is available to instructors at:
www.blackwellpublishing.com/jaeger
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To my wife, Jennifer, my partner in everything

Neville Cook,
Lafayette, Calif.

January 1998
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1 Rock as a material

1.1 Introduction Rock mechanics was defined by the Committee on Rock Mechanics of the
Geological Society of America in the following terms: “Rock mechanics is the
theoretical and applied science of the mechanical behavior of rock; it is that
branch of mechanics concerned with the response of rock to the force fields of
its physical environment” ( Judd, 1964). For practical purposes, rock mechanics
is mostly concerned with rock masses on the scale that appears in engineering
and mining work, and so it might be regarded as the study of the properties and
behavior of accessible rockmasses due to changes in stresses or other conditions.
Since these rocks may be weathered or fragmented, rock mechanics grades at
one extreme into soil mechanics. On the other hand, at depths at which the
rocks are no longer accessible to mining or drilling, it grades into the mechanical
aspects of structural geology (Pollard and Fletcher, 2005).
Historically, rock mechanics has been very much influenced by these two

subjects. For many years it was associated with soil mechanics at scientific con-
ferences, and there is a similarity between much of the two theories and many
of the problems. On the other hand, the demand from structural geologists for
knowledge of the behavior of rocks under conditions that occur deep in the
Earth’s crust has stimulated much research at high pressures and temperatures,
along with a great deal of study of the experimental deformation of both rocks
and single crystals (Paterson and Wong, 2005).
An important feature of accessible rock masses is that they are broken up

by joints and faults, and that pressurized fluid is frequently present both in
open joints and in the pores of the rock itself. It also frequently happens that,
because of the conditions controlling mining and the siting of structures in civil
engineering, several lithological types may occur in any one investigation. Thus,
from the outset, two distinct problems are always involved: (i) the study of the
orientations and properties of the joints, and (ii) the study of the properties and
fabric of the rock between the joints.
In any practical investigation in rock mechanics, the first stage is a geological

and geophysical investigation to establish the lithologies and boundaries of the
rock types involved. The second stage is to establish, by means of drilling or
investigatory excavations, the detailed pattern of jointing, and to determine the
mechanical and petrological properties of the rocks from samples. The third
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stage, in many cases, is to measure the in situ rock stresses that are present in
the unexcavated rock. With this information, it should be possible to predict the
response of the rock mass to excavation or loading.
This chapter presents a very brief introduction to the different rock types and

the manner in which rock fabric and faulting influences the rock’s engineering
properties. A more thorough discussion of this topic can be found in Goodman
(1993).

1.2 Joints and
faults

Joints are by far the most common type of geological structure. They are defined
as cracks or fractures in rock along which there has been little or no transverse
displacement (Price, 1966). They usually occur in sets that are more or less
parallel and regularly spaced. There are also usually several sets oriented in
different directions, so that the rock mass is broken up into a blocky structure.
This is a main reason for the importance of joints in rock mechanics: they divide
a rock mass into different parts, and sliding can occur along the joint surfaces.
These joints can also provide paths for fluids to flow through the rock mass.
Joints occur on all scales. Joints of the most important set, referred to as major

joints, can usually be traced for tens or hundreds of meters, and are usually more
or less planar and parallel to each other. The sets of joints that intersect major
joints, known as cross joints, are usually of less importance, and are more likely
to be curved and/or irregularly spaced. However, in some cases, the two sets
of joints are of equal importance. The spacing between joints may vary from
centimeters to decameters, although very closely spaced joints may be regarded
as a property of the rock fabric itself.
Joints may be “filled” with various minerals, such as calcite, dolomite, quartz

or clay minerals, or they may be “open,” in which case they may be filled with
fluids under pressure.
Jointing, as described above, is a phenomenon common to all rocks, sedi-

mentary and igneous. A discussion of possible mechanisms by which jointing is
produced is given by Price (1966) and Pollard and Aydin (1988). Joint systems are
affected by lithological nature of the rock, and so the spacing and orientation of
the joints may change with the change of rock type.
Another quite distinct type of jointing is columnar jointing, which is best devel-

oped in basalts and dolerites, but occasionally occurs in granites and some
metamorphic rocks (Tomkeieff, 1940; Spry, 1961). This phenomenon is of
some importance in rock mechanics, as igneous dykes and sheets are frequently
encountered in mining and engineering practice. In rocks that have columnar
jointing, the rock mass is divided into columns that are typically hexagonal, with
side lengths on the order of a few tens of centimeters. The columns are inter-
sected by cross joints that are less regular toward the interior of the body. The
primary cause of columnar jointing appears to be tensile stresses that are cre-
ated by thermal contraction during cooling. At an external surface, the columns
run normal to the surface, and Jaeger (1961) and others have suggested that in
the interior of the rock mass the columns run normal to the isotherms during
cooling. The detailed mechanism of columnar jointing has been discussed by
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Lachenbruch (1961); it has similarities to the cracks that form in soil and mud
during drying, and to some extent to cracking in permafrost.
Faults are fracture surfaces on which a relative displacement has occurred

transverse to the nominal plane of the fracture. They are usually unique struc-
tures, but a large number of them may be merged into a fault zone. They are
usually approximately planar, and so they provide important planes on which
sliding can take place. Joints and faults may have a common origin (de Sitter,
1956), and it is often observed underground that joints becomemore frequent as
a fault is approached. Faults can be regarded as the equivalent, on a geological
scale, of the laboratory shear fractures described in Chapter 4. The criteria for
fracturing developed in Chapter 4 are applied to faults in §14.2.
From the point of view of rock mechanics, the importance of joints and faults

is that they cause the existence of fairly regularly spaced, approximately plane
surfaces, which separate blocks of “intact” rock that may slide on one another. In
practice, the essential procedure is to measure the orientation of all joint planes
and similar features, either in an exploratory tunnel or in a set of boreholes, and
to plot the directions of their normal vectors on a stereological projection. Some
typical examples are shown in the following figures taken from investigations of
the Snowy Mountain Hydroelectric Authority in Australia.
Figure 1.1 is a stereographic projection plot of the normals to the fracture

planes in the Headrace Channel for the Tumut 3 Project. The thick lines show
the positions of the proposed slope cuts. In this case, 700 normal vectors were
measured.

Fig. 1.1
Stereographic plot
(lower hemisphere) of
normals to fracture
planes in Tumut 3
Headrace Channel. The
contours enclose areas
of equal density of
poles.

>5%

4.0–5.0%

3.0–4.0%

2.0–3.0%

1.0–2.0%

0.5–1.5%

0–0.5%

0%

W

Western (left) slope cut

S

E

Eastern (right) slope

N



Jaeger: “chapter01” — 2006/12/15 — 09:53 — page 4 — #4

4 Chapter 1

Fig. 1.2 Rosette
diagram showing strikes
of joints, sheared zones,
and bedding planes at
the Murray 2 dam site.
The predominant dip
for each strike is also
shown.
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Figure 1.2 shows the important geological features at the Murray 2 dam site
on a different representation. Here, the directions of strike of various features are
plotted as a rosette, with the angles of dip of the dominant features at each strike
given numerically. The features recorded are joints, sheared zones, and bedding
planes, any or all of which may be of importance.
Finally, Fig. 1.3 gives a simplified representation of the situation at the inter-

section of three important tunnels. There are three sets of joints whose dips and
strikes are shown in Fig. 1.3.

1.3 Rock-forming
minerals

Igneous rocks consist of a completely crystalline assemblage of minerals such as
quartz, plagioclase, pyroxene, mica, etc. Sedimentary rocks consist of an assem-
blage of detrital particles and possibly pebbles from other rocks, in a matrix
of materials such as clay minerals, calcite, quartz, etc. From their nature, sed-
imentary rocks contain voids or empty spaces, some of which may form an
interconnected system of pores. Metamorphic rocks are produced by the action
of heat, stress, or heated fluids on other rocks, sedimentary or igneous.
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Fig. 1.3 Dips and
strikes of three joint
sets, (a) (b) and (c), at
the intersection of three
tunnels: I, Island Bend
intake; II,
Eucumbene-Snowy
tunnel; III,
Snowy-Geehi tunnel.
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All of these minerals are anisotropic, and the elastic moduli of the more com-
mon ones, as defined in §5.10, are known numerically. If in a polycrystalline rock
there are any preferred orientations of the crystals, this will lead to anisotropy of
the rock itself. If the orientations of the crystals are random, the rock itself will
be isotropic, and its elastic moduli may be estimated by the methods described
in §10.2.
There are a number of general statistical correlations between the elasticity

and strength of rocks and their petrography, and it is desirable to include a full
petrographic description with all measurements. Grain size also has an effect on
mechanical properties. In sedimentary rocks there are, as would be expected,
some correlations between mechanical properties and porosity (Mavko et al.,
1998).
A great amount of systematic research has been done on the mechanical

properties of single crystals, bothwith regards to their elastic properties and their
plastic deformation. Single crystals show preferred planes for slip and twinning,
and these have been studied in great detail; for example, calcite (Turner et al.,
1954) and dolomite (Handin and Fairbairn, 1955). Such measurements are an
essential preliminary to the understanding of the fabric of deformed rocks, but
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they have little relevance to the macroscopic behavior of large polycrystalline
specimens.

1.4 The fabric of
rocks

The study of the fabric of rocks, the subject of petrofabrics, is described in many
books (Turner and Weiss, 1963). All rocks have a fabric of some sort. Sed-
imentary rocks have a primary depositional fabric, of which the bedding is
the most obvious element, but other elements may be produced by currents
in the water. Superimposed on this primary fabric, and possibly obscuring it,
may be fabrics determined by subsequent deformation, metamorphism, and
recrystallization.
The study of petrofabrics comprises the study of all fabric elements, both

microscopic and macroscopic, on all scales. From the present point of view, the
study of the larger elements, faults and relatively widely spaced joints, is an
essential part of rock mechanics. Microscopic elements and very closely spaced
features such as cleats in coal, are regarded as determining the fabric of the
rock elements between the joints. These produce an anisotropy in the elastic
properties and strength of the rock elements. In principle, this anisotropy can
be measured completely by mechanical experiments on rock samples, but petro-
fabric measurements can provide much useful information, in particular about
preferred directions. Petrofabric measurements are also less time-consuming to
make, and so are amenable to statistical analysis. Studies of rock fabric are there-
fore bettermade by a combination ofmechanical and petrofabricmeasurements,
but the latter cannot be used as a substitute for the former. Combination of the
two methods has led to the use of what may be regarded as standard anisotropic
rocks. For example, Yule marble, for which the calcite is known (Turner, 1949)
to have a strong preferred orientation, has been used in a great many studies of
rock deformation (Turner et al., 1956; Handin et al., 1960).
A second application of petrofabric measurements in rock mechanics arises

from the fact that some easily measured fabric elements, such as twin lamellae in
calcite and dolomite, quartz deformation lamellae, kink bands, and translation
or twin gliding in some crystals, may be used to infer the directions of the
principal stresses under which they were generated. These directions, of course,
may not necessarily be the same as those presently existing, and so they form
an interesting complement to underground stress measurements. Again, such
measurements are relatively easy tomake and to study statistically. The complete
fabric study of joints and fractures on all scales is frequently used both to indicate
the directions of the principal stresses and the large-scale fabric of the rock mass
as a whole (Gresseth, 1964).
A great deal of experimental work has been concentrated on the study of the

fabrics produced in rocks in the laboratory under conditions of high temperature
and pressure. In some cases, rocks of known fabric are subjected to prescribed
laboratory conditions, and the changes in the fabric are studied; for example,
Turner et al. (1956) on Yule marble, and Friedman (1963) on sandstone.
Alternatively, specific attempts to produce certain types of fabrics have been

made. Some examples are the work of Carter et al. (1964) on the deformation
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of quartz, Paterson and Weiss (1966) on kink bands, and Means and Paterson
(1966) on the production of minerals with a preferred orientation.
Useful reviews of the application of petrofabrics to rock mechanics and

engineering geology have been given by Friedman (1964) and Knopf (1957).

1.5 The
mechanical nature
of rock

The mechanical structure of rock presents several different appearances,
depending upon the scale and the detail with which it is studied.
Most rocks comprise an aggregate of crystals and amorphous particles joined

by varying amounts of cementing materials. The chemical composition of the
crystals may be relatively homogeneous, as in some limestones, or very hetero-
geneous, as in a granite. Likewise, the size of the crystals may be uniform or
variable, but they generally have dimensions of the order of centimeters or small
fractions thereof. These crystals generally represent the smallest scale at which
themechanical properties are studied. On the one hand, the boundaries between
crystals represent weaknesses in the structure of the rock, which can otherwise
be regarded as continuous. On the other hand, the deformation of the crystals
themselves provides interesting evidence concerning the deformation to which
the rock has been subjected.
On a scale with dimensions ranging from a fewmeters to hundreds of meters,

the structure of some rocks is continuous, but more often it is interrupted by
cracks, joints, and bedding planes that separate different strata. It is this scale and
these continuities which are of most concern in engineering, where structures
founded upon or built within rock have similar dimensions.
The overall mechanical properties of rock depend upon each of its structural

features. However, individual features have varying degrees of importance in
different circumstances.
At some stage, it becomes necessary to attach numerical values to themechan-

ical properties of rock. These values are most readily obtained from laboratory
measurements on rock specimens. These specimens usually have dimensions of
centimeters, and contain a sufficient number of structural particles for them to be
regarded as grossly homogeneous. Thus, although the properties of the individ-
ual particles in such a specimen may differ widely from one particle to another,
and although the individual crystals themselves are often anisotropic, the crys-
tals and the grain boundaries between them interact in a sufficiently random
manner so as to imbue the specimen with average homogeneous properties.
These average properties are not necessarily isotropic, because the processes
of rock formation or alteration often align the structural particles so that their
interaction is randomwith respect to size, composition and distribution, but not
with respect to their anisotropy. Nevertheless, specimens of such rock have gross
anisotropic properties that can be regarded as being homogeneous.
On a larger scale, the presence of cracks, joints, bedding and minor faulting

raises an important question concerning the continuity of a rock mass. These
disturbances may interrupt the continuity of the displacements in a rock mass
if they are subjected to tension, fluid pressure, or shear stress that exceeds their
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frictional resistance to sliding. Where such disturbances are small in relation to
the dimensions of a structure in a rock, their effect is to alter the mechanical
properties of the rock mass, but this mass may in some cases still be treated as
a continuum. Where these disturbances have significant dimensions, they must
be treated as part of the structure or as a boundary.
The loads applied to a rock mass are generally due to gravity, and compressive

stresses are encountered more often than not. Under these circumstances, the
most important factor in connection with the properties and continuity of a rock
mass is the friction between surfaces of cracks and joints of all sizes in the rock.
If conditions are such that sliding is not possible on any surfaces, the systemmay
be treated to a good approximation as a continuum of rock, with the properties
of the average test specimen. If sliding is possible on any surface, the system
must be treated as a system of discrete elements separated by these surfaces,
with frictional boundary conditions over them.
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2 Analysis of stress and strain

2.1 Introduction In the study of the mechanics of particles, the fundamental kinematical variable
that is used is the position of the body, and its two time derivatives, the velocity and
the acceleration. The interaction of a given body with other bodies is quantified
in terms of the forces that these other bodies exert on the first body. The effect
that these forces have on the body is governed by Newton’s law of motion, which
states that the sum of the forces acting on a body is equal to the mass of the body
times its acceleration. The condition for a body to be in equilibrium is that the
sum of the external forces and moments acting on it must vanish.

These basic mechanical concepts such as position and force, as well as
Newton’s law of motion, also apply to extended, deformable bodies such as
rock masses. However, these concepts must be altered somewhat, for various
reasons. First, the fact that the force applied to a rock will, in general, vary from
point to point, and will be distributed over the body must be taken into account.
The idealization that forces act at localized points, which is typically used in
the mechanics of particles, is not sufficiently general to apply to all problems
encountered in rock mechanics. Hence, it is necessary to introduce the concept
of traction, which is a force per unit area. As the traction generally varies with the
orientation of the surface on which it acts, it is most conveniently represented
with the aid of an entity known as the stress tensor.

Another fundamental difference between the mechanics of particles and
deformable bodies such as rocks is that different parts of the rock may undergo
different amounts of displacement. In general, it is the relative displacement
of neighboring particles, rather than the absolute displacement of a particular
particle, that can be equating in some way to the applied tractions. This can
be seen from the fact that a rock sample can be moved as a rigid body from one
location to another, after which the external forces acting on the rock can remain
unaltered. Clearly, therefore, the displacement itself cannot be directly related to
the applied loads. This relative displacement of nearby elements of the rock is
quantified by an entity known as the strain.

The stress tensor is a symmetric second-order tensor, and many important
properties of stress follow directly from those of second-order tensors. In the
event that the relative displacements of all parts of the rock are small, the strain
can also be represented by a second-order tensor called the infinitesimal strain
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tensor. A consequence of this fact is that much of the general theory of stresses
applies also to the analysis of strains. The general theory of stress and strain
is the topic of this chapter. Both of these theories can be developed without
any reference to the specific properties of the material under consideration (i.e.,
the constitutive relationship between the stress and strain tensors). Hence, the
discussion given in this chapter parallels, to a great extent, that which is given in
many texts on elasticity, or solid mechanics in general. Among the many classic
texts on elasticity that include detailed discussion of the material presented in
this chapter are Love (1927), Sokolnikoff (1956), Filonenko-Borodich (1965), and
Timoshenko and Goodier (1970). The chapter ends with a brief introduction to
the theory of finite strains.

2.2 Definition of
traction and stress

Consider a rock mass that is subject to some arbitrary set of loads. At any given
point within this rock, we can imagine a plane slicing through the rock at some
angle. Such a plane may in fact form an external boundary of the rock mass, or
may represent a fictitious plane that is entirely internal to the rock. Figure 2.1a
shows such a plane, along with a fixed (x, y) coordinate system. In particular,
consider an element of that plane that has area A. Most aspects of the theory
of stress (and strain) can be developed within a two-dimensional context, and
extensions to three dimensions are in most cases straightforward. As most figures
are easier to draw, and to interpret, in two dimensions than in three, much of
the following discussion will be given first in two-dimensional form.

The plane shown in Fig. 2.1a can be uniquely identified by the unit vector
that is perpendicular to its surface. The vector n = (nx , ny) is the outward unit
normal vector to this plane: it has unit length, is normal to the plane, and points
in the direction away from the rock mass. The components of this vector n are
the direction cosines that the outward unit normal vector makes with the two
coordinate axes. For example, a plane that is perpendicular to the x-axis would
have n = (1, 0). As the length of any unit normal vector is unity, the Pythagorean
theorem implies that (nx)2+(ny)2 = 1. The unit normal vectors in the directions
of the coordinate axes are often denoted by ex = (1, 0) and ey = (0, 1). The
identification of a plane by its outward unit normal vector is employed frequently

Fig. 2.1 Normal
vector n and traction
vector p acting on a
surface. (a)
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in rock mechanics. It is important to remember that the vector n is perpendicular
to the plane in question; it does not lie within that plane.

The action that the rock adjacent to the plane exerts on the rock that is
“interior” to the plane can be represented by a resultant force F, which, like all
forces, is a vector. The traction vector p is defined as the ratio of the resultant
force F to the surface area A:

p(averaged over the area) = 1
A

F. (2.1)

In order to define the traction that acts over a specific “point” in the rock, the area
is now allowed to shrink down to a point, so that the magnitude A goes to zero.
Following the convention often used in applied mathematics, the smallness of
the area is indicated by the notation “dA,” where the “d” denotes “differential,”
and likewise for the resultant force F. As the area shrinks down to a point, the
traction at that point can then be defined by (Fig. 2.1b)

p(x; n) = lim
dA→0

1
dA

dF. (2.2)

The notation p(x; n) denotes the traction vector at the point x ≡ (x, y, z), on a
plane whose outward unit normal vector is n. In the following discussion, when
the point x under consideration is either clear from the context, or immaterial
to the particular discussion, the dependence of p on x will be suppressed in the
notation.

At this point, it is necessary to introduce a sign convention that is inconsistent
with the one used in most areas of mechanics, but which is nearly universal in
the study of rocks and soils. The Cartesian component of the traction p in any
given direction r is considered to be a positive number if the inner product (dot
product) of p and a unit vector in the r direction is negative. One way to interpret
this convention is that the traction is based on −F, rather than F. The reason for
utilizing this particular sign convention will become clear after the stresses are
introduced.

It is apparent from the definition given in (2.2) that the traction is a vector,
and therefore has two components in a two-dimensional system, and three
components in a three-dimensional system. In general, this vector may vary from
point to point, and is therefore a function of the location of the point in question.
However, at any given point, the traction will also, in general, be different on
different planes that pass through that point. In other words, the traction will also
be a function of n, the outward unit normal vector. The fact that p is a function
of two vectors, the position vector x and the outward unit normal vector n,
is awkward. This difficulty is eliminated by appealing to the concept of stress,
which was introduced in 1823 by the French civil engineer and mathematician
Cauchy. The stress concept allows all possible traction vectors at a point to be
represented by a single mathematical entity that does not explicitly depend on
the unit normal of any particular plane. The price paid for this simplification, so
to speak, is that the stress is not a vector, but rather a second-order tensor, which
is a somewhat more complicated, and less familiar, mathematical object than is
a vector.
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Although there are an infinite number of different traction vectors at a point,
corresponding to the infinity of possible planes passing through that point, all
possible traction vectors can be found from knowledge of the traction vector on
two mutually orthogonal planes (or three mutually orthogonal planes in three
dimensions). To derive the relationship for the traction on an arbitrary plane, it is
instructive to follow the arguments originally put forward by Cauchy. Consider
a thin penny-shaped slab of rock having thickness h, and radius r (Fig. 2.2a). The
outward unit normal vector on the right face of this slab is denoted by n; the
outward unit normal vector of the left face of the slab is therefore −n. The total
force acting on the face with outward unit normal vector n is equal to π r2p(n),
whereas the total force acting on the opposing face is π r2p(−n). The total force
acting on the outer rim of this penny-shaped slab will be given by an integral
of the traction over the outer area, and will be proportional to 2π rh, which is
the surface area of the outer rim. Performing a force balance on this slab of rock
yields

π r2p(n)+ π r2p(−n)+ 2π rht = 0, (2.3)

where t is the mean traction over the outer rim. If the thickness h of this slab is
allowed to vanish, this third term will become negligible, and the condition for
equilibrium becomes

p(−n) = −p(n). (2.4)

Equation (2.4), known as Cauchy’s first law, essentially embodies a version of
Newton’s third law: if the material to the left of a given plane exerts a traction p
on the material on the right, then the material on the right will exert a traction
−p on the material to the left.

Now, consider a triangular slab of rock, as in Fig. 2.2b, with a uniform thickness
w in the third (z) direction. Two faces of this slab have outward unit normal
vectors that coincide with the negative x and y coordinate directions, respectively,
whereas the third face has an outward unit normal vector of n = (nx , ny). The
length of the face with outward unit normal vector n is taken to be h. The length
of the face that has outward unit normal vector n = −ex = (−1, 0) is equal

Fig. 2.2 (a) Thin slab
used in derivation of
Cauchy’s first law;
(b) triangular slab used
in derivation of
Cauchy’s second law.
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to hnx , and so its area is hwnx . The traction vector on this face is denoted by
p = (−ex), and so the total force acting on this face is hwnxp(−ex). Similar
considerations show that the total force acting on the face with outward unit
normal vector −ey will be hwnyp(−ey). Hence, a force balance on this slab
leads to

hwnxp(−ex)+ hwnyp(−ey)+ hwp(n) = 0. (2.5)

Canceling out the common terms, and utilizing Cauchy’s first law, (2.4), leads to
Cauchy’s second law:

p(n) = nxp(ex)+ nyp(ey). (2.6)

This result would remain unchanged if we consider the more general case in
which a distributed body force acts on the tetrahedral-shaped element as in
Fig. 2.2b. Whereas surface forces act over the outer surface of an element of
rock, body forces act over the entire volume of the rock. The most obvious and
common body force encountered in rock mechanics is that due to gravity, which
has a magnitude of ρg (per unit volume), and is directed in the downward vertical
direction. However, as will be shown in Chapter 7, gradients in temperature and
pore fluid pressure also give rise to phenomena which have the same effect as
distributed body forces. If there were a body-force density b per unit volume of
rock, a total body force of (1/2)h2wnxnyb would have to be added to the force
balance in (2.5). If we divide through by h, and then let the size of the element
shrink to zero (i.e., h → 0), the body force term would drop out and b would
not appear in the final result (2.6).

It is now convenient to recall that each traction is a vector, and therefore
(in two dimensions) will have two components, one in each of the coordinate
directions. The components of a traction vector such as p(ex) are denoted using
two indices – the first to indicate the direction of the outward unit normal vector
and the second to indicate the component of the traction vector:

p(ex) =
[
τxx

τxy

]
= [τxx τxy]T, (2.7)

where we adhere to the algebraic convention that a vector is written as a column,
and is therefore equivalent to the transpose of a row vector. Equation (2.6) can
therefore be written in matrix form as

p(n) = nx

[
τxx

τxy

]
+ ny

[
τyx

τyy

]
=

[
τxx τyx

τxy τyy

][
nx
ny

]
. (2.8)

In the first expression on the right in (2.8), nx and ny are treated as scalars that
multiply the two traction vectors; in the second expression, the formalism of
matrix multiplication is used. As the two components of the vector p(n) are
px(n) and py(n), (2.8) can be written in component form as

px(n) = τxxnx + τyxny, (2.9)

py(n) = τxynx + τyyny. (2.10)
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If we use the standard matrix algebra convention that the first subscript of
a matrix component denotes the row, and the second subscript denotes the
column, the matrix appearing in (2.8) is seen to actually be the transpose of the
stress matrix, in which case we can rewrite (2.8) as

p(n) =
[
τxx τxy
τyx τyy

]T [
nx
ny

]
, (2.11)

where the matrix that appears in (2.11), without the transpose operator, is the
stress matrix, τ. Equation (2.11) can be written in direct matrix notation as

p = τTn, (2.12)

where n is a unit normal vector, p is the traction vector on the plane whose
outward unit normal vector is n, and τ is the stress matrix, or stress tensor. In
two dimensions the stress tensor has four components; in three dimensions it
has nine. Equation (2.12) gives the traction on an arbitrarily oriented plane in
terms of the stress matrix, relative to some fixed orthogonal coordinate system,
and the direction cosines between the outward unit normal vector to the plane
and the two coordinate axes. Note that a tensor can be written as a matrix,
which is merely a rectangular array of numbers. However, a tensor has specific
mathematical properties that are not necessarily shared by an arbitrary matrix-
like collection of numbers. These properties relate to the manner in which the
components of a tensor transform when the coordinate system is changed; these
transformation laws are discussed in more detail in §2.3. The rows of the matrix
that represents τ are the traction vectors along faces whose outward unit normal
vectors lie along the coordinate axes. In other words, the first row of τ is p(ex),
the second row is p(ey), etc.

The physical significance of the stress tensor is traditionally illustrated by
the schematic diagram shown in Fig. 2.3a. Consider a two-dimensional square
element of rock, whose faces are each perpendicular to one of the two coordinate
axes. The traction vector that acts on the face whose outward unit normal vector
is in the x direction has components (τxx , τxy). Each of these two components
can be considered as a vector in its own right; they are indicated in Fig. 2.3a as
arrows whose lines of action pass through the center of the face whose outward
unit normal vector is ex. As the traction components are considered positive if
they are oriented in the directions opposite to the outward unit normal vector,
we see that the traction τxx is a positive number if it is compressive. Compressive
stresses are much more common in rock mechanics than are tensile stresses. For
example, the stresses in a rock mass that are due to the weight of the overlying
rock are compressive. In most other areas of mechanics, tensile stresses are
considered positive, and compressive stresses are reckoned to be negative. The
opposite sign convention is traditionally used in rock (and soil) mechanics in
order to avoid the frequent occurrence of negative signs in calculations involving
stresses.

Many different notations have been used to denote the components of the
stress tensor. We will mainly adhere to the notation introduced above, which has
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Fig. 2.3 (a) Stress
components acting on a
small square element.
(b) Balance of angular
momentum on this
element shows that the
stress tensor must be
symmetric.
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been used, for example, by Sokolnikoff (1956). Some authors use σ instead of τ
as the basic symbol, but utilize the same subscripting convention. Many rock and
soil mechanics treatments, including earlier editions of this book, denote shear
stresses by τxy, etc., but denote normal stresses by, for example, σx rather than
τxx . This notation, which has also been used by Timoshenko and Goodier (1970),
has the advantage of clearly indicating the distinction between normal and shear
components of the stress, which have very different physical effects, particularly
when acting on fracture planes or other planes of weakness (Chapter 3). How-
ever, the {σ , τ } notation does not reflect the fact that the normal and shear
components of the stress are both components of a single mathematical object
known as the stress tensor. Furthermore, many of the equations in rock mechan-
ics take on a simpler and more symmetric form if written in terms of a notation
in which all stress components are written using the same symbol. However, a
version of the Timoshenko and Goodier notation will occasionally be used in
this book when discussing the traction acting on a specific plane. In such cases,
for reasons of simplicity (so as to avoid the need for subscripts), it will be conve-
nient to denote the normal stress by σ , and the shear stress by τ . Many classic
texts on elasticity, such as Love (1927) and Filonenko-Borodich (1965), utilize the
notation introduced by Kirchhoff in which τxy is denoted by Xy, etc. Green and
Zerna (1954) use the notation suggested by Todhunter and Pearson (1886), in
which τxy is denoted by 
xy, etc.

Equation (2.12) is usually written without the transpose sign, although strictly
speaking the transpose is needed. The reason that it is allowable to write p = τn
in place of p = τTn is that the stress matrix is in fact always symmetric, so
that τxy = τyx , in which case τ = τT. This property of the stress tensor is
of great importance, if for no other reason than that it reduces the number
of stress components that must be measured or calculated from four to three
in two dimensions, and from nine to six in three dimensions. The symmetry
of the stress tensor can be proven by appealing to the law of conservation of
angular momentum. For simplicity, consider a rock subject to a state of stress
that does not vary from point to point. If we draw a free-body diagram for a small
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rectangular element of rock, centered at point (x, y), the traction components
acting on the four faces are shown in Fig. 2.3b. The length of the element is �x
in the x direction,�y in the y direction, and�z in the z direction (into the page).
In order for this element of rock to be in equilibrium, the sum of all the moments
about any point, such as (x, y), must be zero. Consider first the tractions that act
on the right face of the element. The force vector represented by this traction is
found by multiplying the traction by the area of that face, which is �y�z. The
x-component of this force is therefore τxx�y�z. However, the resultant of this
force acts through the point (x, y), and therefore contributes no moment about
that point. The y-component of this traction is τxy, and the net force associated
with it is τxy�y�z. The moment arm of this force is �x/2, so that the total
clockwise moment about the z-axis, through the point (x, y), is τxy�x�y�z/2.
Adding up the four moments that are contributed by the four shear stresses yields

τxy�x�y�z/2 + τxy�y�x�z/2 − τyx�x�y�z/2 − τyx�y�x�z/2 = 0.

(2.13)

Canceling out the terms�x�y�z/2 leads to the result

τxy = τyx . (2.14)

In three dimensions, a similar analysis leads to the relations τxz = τzx and
τyz = τzy. This result should be interpreted as stating that at any specific point
(x, y, z), the stress component τxy(x, y, z) is equal in magnitude and sign to the
stress component τyx(x, y, z). There is in general no reason for the conjugate
shear stresses at different points to be equal to each other.

Although the derivation presented above assumes that the stresses do not vary
from point to point, and that the element of rock is in static equilibrium, the
result is actually completely general. The reason for this is related to the fact that
the result applies at each infinitesimal “point” in the rock. If we had accounted
for the variations of the stress components with position, these terms would
contribute moments that are of higher order in �x and �y. Dividing through
the moment balance equation by�x�y�z, and then taking the limit as�x and
�y go to zero, would cause these additional terms to drop out, leading to (2.14).
The same would occur if we considered the more general situation in which the
element were not in static equilibrium, but rather was rotating. In this situation,
the sum of the moments would be equal to the moment of inertia of the element
about the z-axis through the point (x, y), which isρ�x�y�z[(�x)2+(�y)2]/12,
where ρ is the density of the rock, multiplied by the angular acceleration, ω̇.
Hence, the generalization of (2.14) would be

τxy�x�y�z − τyx�x�y�z = ρ�x�y�z[(�x)2 + (�y)2]ω̇/12. (2.15)

Dividing through by�x�y�z, and then taking the limit as the element shrinks
down to the point (x, y), leads again to (2.14).

The symmetry of the stress tensor is therefore a general result. However, it is
worth bearing in mind that although τxy and τyx are numerically equal, they are in
fact physically distinct stress components, and act on different faces of an element
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of rock. Although the identification of τxy with τyx is eventually made when
solving the elasticity equations, it is usually preferable to maintain a distinction
between τxy and τyx when writing out equations, or drawing schematic diagrams
such as Fig. 2.3a. This helps to preserve as much symmetry as possible in the
structure of the equations.

The symmetry of the stress tensor followed from the principle of conservation
of angular momentum. The principle of conservation of linearmomentum leads
to three further equations that must be satisfied by the stresses. These equations,
which are known as the equations of stress equilibrium and are derived in §5.5,
control the rate at which the stresses vary in space. However, much useful
information about the stress tensor can be derived prior to considering the
implications of the equations of stress equilibrium. Of particular importance
are the laws that govern the manner in which the stress components vary as
the coordinate system is rotated. These laws are derived and discussed in §2.3
and §2.5.

2.3 Analysis of
stress in two
dimensions

Discussions of stress are algebraically simpler in two dimensions than in three.
In most instances, no generality is lost by considering the two-dimensional
case, as the extension to three dimensions is usually straightforward. Further-
more, many problems in rock mechanics are essentially two dimensional, in
the sense that the stresses do not vary along one Cartesian coordinate. The
most common examples of such problems are stresses around boreholes, or
around long tunnels. Many other problems are idealized as being two dimen-
sional so as to take advantage of the relative ease of solving two-dimensional
elasticity problems as compared to three-dimensional problems. Hence, it is
worthwhile to study the properties of two-dimensional stress tensors. Various
properties of two-dimensional stress tensors will be examined in this section;
their three-dimensional analogues will be discussed in §2.5.

In order to derive the laws that govern the transformation of stress com-
ponents under a rotation of the coordinate system, we again consider a small
triangular element of rock, as in Fig. 2.4. The outward unit normal vector to

Fig. 2.4 Small
triangular slab of rock
used to derive the stress
transformation
equations.
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the slanted face of the element is n = (nx , ny). We can construct another unit
vector t, perpendicular to n, which lies along this face. Being of unit length,
the components of t must satisfy the condition t · t = (tx)2 + (ty)2 = 1. The
orthogonality of t and n implies that t · n = txnx + tyny = 0, which shows that
t = ±(ny, −nx). Finally, if we require that the pair of vectors {n, t} have the
same orientation relative to each other as do the pair {ex, ey}, the minus sign
must be used, in which case t = (−ny, nx). This pair of vectors can be thought of
as forming a new Cartesian coordinate system that is rotated from the original
(x, y) system by a counterclockwise angle of θ = arcos(nx). According to (2.9)
and (2.10), the components of the traction vector p(n), expressed in terms of the
(x, y) coordinate system, are given by

px = τxxnx + τyxny, (2.16)

py = τxynx + τyyny. (2.17)

In order to find the components of p relative to the {n, t} coordinate system, we
take the inner products of p with respect to n and t, in turn. For example,

pn = p · n = pxnx + pyny = τxxn2
x + τyxnynx + τxynxny + τyyn2

y . (2.18)

Utilization of the symmetry property τyx = τyx allows this to be written as

pn = τxxn2
x + 2τxynxny + τyyn2

y . (2.19)

Similarly, the tangential component of the traction vector on this face, which is
given by pt = p · t, can be expressed as

pt = (τyy − τxx)nxny + τxy(n2
x − n2

y). (2.20)

The two unit vectors {n, t} can be thought of as defining a new coordinate
system that is rotated by a counterclockwise angle θ from the old coordinate sys-
tem. This interpretation is facilitated by denoting these two new unit vectors by
{ex′ , ey′ }. Equations (2.19) and (2.20) are therefore seen to give the components
of the traction vector on the plane whose outward unit vector is ex′ , that is,

px′(ex′) ≡ τx′x′ = τxxn2
x + 2τxynxny + τyyn2

y , (2.21)

py′(ex′) ≡ τx′y′ = (τyy − τxx)nxny + τxy(n2
x − n2

y), (2.22)

where, for clarity, we reemphasize that these components pertain to the traction
on the plane with outward unit normal vector ex′ . According to the discussion
given in §2.2, these components can also be interpreted as the components of the
stress tensor in the (x′, y′) coordinate system. Specifically, px′(ex′) = τx′x′ , and
py′(ex′) = τx′y′ . The traction vector on the plane whose outward unit normal
vector is ey′ can be found by a similar analysis; the results are

py′(ey′) ≡ τy′y′ = τxxn2
y − 2τxynxny + τyyn2

x , (2.23)

px′(ey′) ≡ τy′x′ = (τyy − τxx)nxny + τxy(n2
x − n2

y). (2.24)
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Note that px′(ey′) = τy′x′ = py′(ex′) = τx′y′ , as must necessarily be the case,
due to the general property of symmetry of the stress tensor.

Another common notation used for the stress transformation equations in
two dimensions can be obtained by recalling that the primed coordinate system
is derived from the unprimed system by rotation through a counterclockwise
angle of θ = arccos(nx). Furthermore, the components (nx , ny) of the unit
normal vector n can be written as (cos θ , sin θ ). In terms of the angle of rotation,
the stresses in the rotated coordinate system are

τx′x′ = τxx cos2 θ + 2τxy sin θ cos θ + τyy sin2 θ , (2.25)

τy′y′ = τxx sin2 θ − 2τxy sin θ cos θ + τyy cos2 θ , (2.26)

τx′y′ = (τyy − τxx) sin θ cos θ + τxy(cos2 θ − sin2 θ). (2.27)

This rotation operation can be represented by the rotation matrix L, which has
the defining properties that LTex = ex′ , and LTey = ey′ . In component form,
relative to the (x, y) coordinate system, the two primed unit vectors are given by
ex′ = (cos θ , sin θ) and ey′ = (− sin θ , cos θ). These two vectors therefore form
the two columns of the matrix LT (Lang, 1971, p. 120), which is to say they form
the rows of L, that is,

L =
[

cos θ sin θ
− sin θ cos θ

]
. (2.28)

Using this rotation matrix, the transformation equations (2.25)–(2.27) can be
written in the following matrix form:

[
τx′x′ τx′y′
τy′x′ τy′y′

]
=

[
cos θ sin θ

− sin θ cos θ

] [
τxx τxy
τyx τyy

] [
cos θ − sin θ
sin θ cos θ

]
, (2.29)

which can also be expressed in direct matrix notation as

τ′ = LτLT. (2.30)

The fact that the stresses transform according to (2.30) when the coordinate
system is rotated is the defining property that makes the stress a second-order
tensor. We note also that, using this direct matrix notation, the traction vector
transforms according to p′ = Lp. The appearance of one rotation matrix in this
transformation law is the reason that vectors are referred to as first-order tensors.

The form of the stress transformation law given in (2.29) or (2.30) is convenient
when considering a rotation of the coordinate system. However, from a more
physically based viewpoint, it is pertinent to focus attention on the tractions that
act on a given plane, such as the one shown in Fig. 2.4. The same equations
are used in both situations, but their interpretation is slightly different. When
focusing on a specific plane with unit normal vector n, it is convenient to simplify
the equations by utilizing the trigonometric identities cos2 θ − sin2 θ = cos 2θ ,
and 2 sin θ cos θ = sin 2θ . As long as attention is focused on a given plane, no
confusion should arise if the normal stress acting on this plane is denoted by
σ , and the shear stress is denoted by τ . After some algebraic manipulation, we
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arrive at the following equations for the normal and shear stresses acting on a
plane whose outward unit normal vector is rotated counterclockwise from the
x direction by an angle θ :

σ = 1
2
(τxx + τyy)+ 1

2
(τxx − τyy) cos 2θ + τxy sin 2θ , (2.31)

τ = 1
2
(τyy − τxx) sin 2θ + τxy cos 2θ . (2.32)

The variation of σ and τ with the angle of rotation is illustrated in Fig. 2.5, for
the case where {τxx = 4, τyy = 2, τxy = 1}.

An interesting question to pose is whether or not there are planes on which
the shear stress vanishes, and where the stress therefore has purely a normal
component. The answer follows directly from setting τ = 0 in (2.32), and
solving for

tan 2θ = 2τxy
τxx − τyy

. (2.33)

If τxy = 0, then the plane with n = ex is already a shear-free plane, and (2.33)
gives the result θ = 0. In general, however, whatever the values of {τxy, τxy, τyy},
there will always be two roots of (2.33) in the range 0 ≤ 2θ < 2π , and these roots
will differ by π . Hence, there will be two values of θ that satisfy (2.33), differing
by π/2, and lying in the range 0 ≤ θ < π ; this situation will be discussed in
more detail below. For now, note that if θ is defined by (2.33), it follows from
elementary trigonometry that

sin 2θ = ±[1 + cos2 2θ ]−1/2 = ±τxy[τ 2
xy + 1

4
(τxx − τyy)

2]−1/2, (2.34)

cos 2θ = ±[1 + tan2 2θ ]−1/2 = ±1
2
(τxx − τyy)[τ 2

xy + 1
4
(τxx − τyy)

2]−1/2,

(2.35)

in which case the normal stress is found from (2.31) to be given by

σ = 1
2
(τxx − τyy)± [τ 2

xy + 1
4
(τxx − τyy)

2]−1/2. (2.36)

Fig. 2.5 Variation of
normal and shear
tractions with the angle
θ (see Fig. 2.4a).
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Equation (2.36) defines two normal stresses, σ1 and σ2, that are known as
the principal normal stresses, or simply the principal stresses. These stresses act
on planes whose orientations relative to the (x, y) coordinate system are given
by (2.33). It is customary to set σ1 ≥ σ2, in which case the + sign in (2.36) is
associated with σ1, that is,

σ1 = 1
2
(τxx + τyy)+ [τ 2

xy + 1
4
(τxx − τyy)

2]1/2, (2.37)

σ2 = 1
2
(τxx + τyy)− [τ 2

xy + 1
4
(τxx − τyy)

2]1/2. (2.38)

These two principal normal stresses not only have the distinction of acting
on planes on which there is no shear, but are also the minimum and maximum
normal stresses that act on any planes through the point in question. This can be
proven by noting that

dσ
dθ

= −(τxx − τyy) sin 2θ + 2τxy cos 2θ = −2τ , (2.39)

so that any plane on which τ vanishes is also a plane on which σ takes on a locally
extreme value. This is apparent from Fig. 2.5, which also shows, for example,
that the shear traction τ will take on its maximum and minimum values on two
orthogonal planes whose normal vectors bisect the two directions of principal
normal stress.

Although it is clear from (2.37) and (2.38) which of the two principal stresses is
largest, the direction in which the major principal stress acts is not so clear, due
to the fact that (2.33) has two physically distinct solutions, that differ byπ/2. The
correct choice for σ1 is the angle that makes the normal stress a local maximum,
rather than a local minimum. To determine the correct value we examine the
second derivatives of σ with respect to θ . From (2.39),

d2σ

dθ2 = −2(τxx − τyy) cos 2θ − 4τxy sin 2θ . (2.40)

Using (2.40), along with (2.33), eventually leads to the following results (Chou
and Pagano, 1992, p. 10):

τxx > τyy and τxy > 0 ⇒ 0 < θ1 < 45◦, (2.41)

τxx < τyy and τxy > 0 ⇒ 45◦ < θ1 < 90◦, (2.42)

τxx < τyy and τxy < 0 ⇒ 90◦ < θ1 < 135◦, (2.43)

τxx > τyy and τxy < 0 ⇒ 135◦ < θ1 < 180◦. (2.44)

The principal stresses and principal directions can also be found by a different
method, which can more readily be generalized to three dimensions. We start
again by asking whether or not there are planes on which the traction vector is
purely normal, with no shear component. On such planes, the traction vector
will be parallel to the outward unit normal vector, and can therefore be expressed
as p = σn, where σ is some (as yet unknown) scalar. From (2.27) it is known
that p = τTn, which, due to the symmetry of the stress tensor, can be written
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as p = τn. Hence, any plane on which the traction is purely normal must satisfy
the equation

τn = σn. (2.45)

The left-hand side of (2.45) represents a matrix, τ, multiplying a vector, n,
whereas on the right-hand side the vector n is multiplied by a scalar, σ . If the
2 × 2 identity matrix is denoted by I, then n = In, and (2.45) can be rewritten as

(τ − σ I)n = 0. (2.46)

Equation (2.46) can be recognized as a standard eigenvalue problem, in which
σ is the eigenvalue, and n is the eigenvector. Much of the theory of stress fol-
lows immediately from the theory pertaining to eigenvectors and eigenvalues
of a symmetric matrix. The main conclusions of this theory in an arbitrary
number of dimensions N are (Lang, 1971) that there will always be N mutually
orthogonal eigenvectors, each corresponding to a real eigenvalue σ , although
the eigenvalues need not necessarily be distinct from each other. In the present
case, the eigenvalues are the principal stresses, and the associated eigenvectors
are the principal stress directions. These results, along with explicit expressions
for the principal stresses and principal stress directions, can be derived from (2.46)
without appealing to the general theory, however, as follows.

Equation (2.46) can be written in component form as

(τxx − σ)nx + τxyny = 0, (2.47)

τyxnx + (τyy − σ)ny = 0. (2.48)

Using the standard procedure of Gaussian elimination, we multiply (2.47) by τyx ,
and multiply (2.48) by (τxx − σ ), to arrive at

(τxx − σ)τyxnx + τxyτyxny = 0, (2.49)

(τxx − σ)τyxnx + (τyy − σ)(τxx − σ)ny = 0. (2.50)

Subtraction of (2.49) from (2.50) yields

[σ 2 − (τxx + τyy)σ + (τxxτyy − τ 2
xy)]ny = 0, (2.51)

where use has been made of the relationship τyx = τxy. This equation will be
satisfied if either the bracketed term vanishes, or if ny = 0. In this latter case,
we must have nx = 1, since n is a unit vector. Equation (2.47) then shows that
σ = τxx , and (2.48) shows that τxy = 0. This solution therefore corresponds to
the special case in which the x direction is already a principal stress direction, and
τxx is a principal stress. In general, this will not be the case, and we must proceed
by setting the bracketed term to zero:

σ 2 − (τxx + τyy)σ + (τxxτyy − τ 2
xy) = 0. (2.52)

The bracketed term in (2.51) is the determinant of the matrix (τ − σ I), so (2.52)
can be written symbolically as det(τ − σ I) = 0, which is the standard criterion
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for finding the eigenvalues of a matrix. This equation is a quadratic in σ , and
will always have two roots, which will be functions of the two parenthesized
coefficients that appear in (2.52). Before discussing these roots, we note that
as the two principal stresses are scalars, their values should not depend on the
coordinate system used. Therefore, the two coefficients (τxx + τyy) and (τxxτyy −
τ 2
xy), must be independent of the coordinate system being used; this could also

be shown more directly by adding (2.25) and (2.26). These two combinations of
the stress components are known as invariants, and are discussed in more detail
in a three-dimensional context in §2.8.

The quadratic formula shows that the two roots of (2.52) are given by the
two values σ1 and σ2 from (2.37) and (2.38). If σ takes on one of these two
values, (2.47) and (2.48) become linearly dependent. In this case, one of the two
equations is redundant, and we can solve (2.47) to find

tan θ = ny
nx

= 2τxy
(τxx − τyy)± [4τ 2

xy + (τxx − τyy)2]1/2 , (2.53)

where the + sign corresponds to σ1, and the − sign corresponds to σ2. Using
the trigonometric identity tan 2θ = 2 tan θ/(1 − tan2 θ), it can be shown that
(2.53) is consistent with (2.33). These two directions, corresponding to the two
orthogonal unit eigenvectors, will define a new coordinate system, rotated by an
angle θ from the x direction, in which the shear stresses are zero. This coordinate
system is often referred to as the principal coordinate system.

2.4 Graphical
representations of
stress in two
dimensions

A simple graphical construction popularized by Mohr (1914) can be used to
represent the state of stress at a point. Recall that (2.31) and (2.32) give expressions
for the normal stress and shear stress acting on a plane whose unit normal
direction is rotated from the x direction by a counterclockwise angle θ . Now
imagine that we are using the principal coordinate system, in which the shear
stresses are zero and the normal stresses are the two principal normal stresses.
In this case we replace τxx with σ1, replace τyy with σ2, replace τxy with 0, and
interpret θ as the angle of counterclockwise rotation from the direction of the
maximum principal stress. We thereby arrive at the following equations that give
the normal and shear stresses on a plane whose outward unit normal vector is
rotated by θ from the first principal direction:

σ = (σ1 + σ2)

2
+ (σ1 − σ2)

2
cos 2θ , (2.54)

τ = −(σ1 − σ2)

2
sin 2θ . (2.55)

These are the equations of a circle in the (σ , τ ) plane, with its center at the point
{σ = (σ1 +σ2)/2, τ = 0}, and with radius (σ1 −σ2). In contrast to the standard
parameterization in which the angle θ is measured in the counterclockwise
direction, this circle is parameterized in the clockwise direction, with angle 2θ .
This becomes clear if we note that cos 2θ can be replaced with cos(−2θ) in (2.54),
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Fig. 2.6 Mohr’s circle
construction (see text
for discussion).
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and − sin 2θ can be replaced with sin(−2θ) in (2.55). A generic Mohr’s circle is
shown in Fig. 2.6a. A detailed discussion of the use of Mohr’s circle in rock and
soil mechanics is given by Parry (1995).

Many of the important properties of the two-dimensional stress tensor can
be read directly off of the Mohr’s circle. For example, at point P, when θ = 0,
there is no rotation from the σ1 direction, and indeed Mohr’s circle indicates
that (σ = σ1, τ = 0). Similarly, consider the plane for which θ = 90◦. This
plane is rotated counterclockwise by 90◦ from the σ1 direction, and therefore
represents the σ2 direction. This plane is represented on Mohr’s circle by the
point that is rotated clockwise by 2θ = 180◦, which is point Q on Fig. 2.6a,
where we find (σ = σ2, τ = 0). This construction also clearly shows that the
maximum shear stress has a magnitude equal to the radius of the Mohr’s circle,
and occurs on planes for which 2θ = ±90◦, which is to say θ = ±45◦. These two
planes bisect the two planes on which the principal normal stresses act, which are
θ = 0◦, 90◦.

Point A on the Mohr’s circle in Fig. 2.6a shows the stresses acting on a generic
plane whose unit normal vector is rotated by angle θ from the σ1 direction. This
direction can be denoted as the x direction, and these stresses can therefore be
denoted by (σ = τxx , τ = τxy). Now consider the plane that is rotated by an
additional 90◦. For this plane, the additional increment in 2θ is 180◦, and the
stresses are represented by the point B, which is located at the opposite end of
a diameter of the circle from point A. This direction can be denoted as the y
direction, in which case the x and y directions define an orthogonal coordinate
system. However, the stresses at point B on Mohr’s circle must be identified as
(σ = τyy, τ = −τyx). This is because it is implicit in (2.55) that the tangential
direction is rotated 180◦ counterclockwise from the normal direction of the
plane in question, which would then correspond to the −x direction instead of
the +x direction.

It is also seen from Mohr’s circle that the mean value of the two normal
stresses, (τxx + τyy)/2, is equal to the horizontal distance from the origin to the
center of Mohr’s circle, which is (σ1 +σ2)/2. This is another proof of the fact that
the value of the mean normal stress is independent of the coordinate system used.
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Mohr’s circle can also be used to graphically determine the two principal
stresses, and the orientations of the principal stress directions, given knowledge
of the components of the stress tensor in some (x, y) coordinate system. We first
plot the point (τxx , τxy) on the (σ , τ) plane, and note that these two stresses
will be the normal and shear stresses on the plane whose outward unit normal
vector is ex. This direction is rotated by some (as yet unknown) angle θ from the
σ1 direction. We next plot the stresses (τyy, −τyx) on the (σ , τ) plane, and note
that these represent the stresses on the plane with outward unit normal vector
ey. This direction is therefore rotated by an angle θ + 90◦ from the σ1 direction.
In accordance with the earlier discussion, the sign convention that is used for
the shear stress on this second plane on a Mohr’s diagram is opposite to that
used when considering this as the second direction in an orthogonal coordinate
system; hence, this second pair is plotted as (τyy, −τyx). As these two planes
are rotated from one another by 90◦, they will be separated by 180◦ on Mohr’s
circle; hence, the line joining these two points will be the diameter of Mohr’s
circle. Once this diameter is constructed, the circle can be drawn with a compass.
The two points at which this circle intersects the σ -axis will be the two principal
stresses, σ1 and σ2. The angle of rotation between the x direction and the σ1
direction can also be read directly from this circle.

Mohr’s circle can also be used to graphically find the orientation of the plane
on which certain tractions act (Kuske and Robertson, 1974). Consider point
D in Fig. 2.6b, at which the traction is given by (σ , τ ). First note that ∠DBA =
π−∠DBC. Next, note that ∠DAB and ∠ADB are two equal angles of an isosceles
triangle, the third angle of which is ∠DBA. It follows that ∠DAB = θ . The chord
AD therefore points in the direction of the outward unit normal vector to the
plane in question. Since ∠ADC is inscribed within a semicircle, we know that
∠ADC = π/2. Chords AD and DC are therefore perpendicular to each other,
from which it follows that chord CD indicates the direction of the plane on which
the tractions are (σ , τ ). This construction is sometimes useful in aiding in the
visualization of the tractions acting on various planes.

There are other geometrical constructions that have been devised to repre-
sent the state of stress at a point in a body. Most of these are less convenient
than Mohr’s circle, and to a great extent these graphical approaches, once very
popular, have been superseded by algebraic methods. Nevertheless, we briefly
mention Lamé’s stress ellipsoid, which in two dimensions is a stress ellipse. To
simplify the discussion, assume that we are using the principal coordinate system,
in which case it follows from (2.9) and (2.10) that

p1(n) = σ1n1 and p2(n) = σ2n2, (2.56)

where we have let x → 1, y → 2, and have noted that, by construction, τ12 = 0.
Since n is a unit vector, we see from (2.56) that

(p1/σ1)
2 + (p2/σ2)

2 = (n1)
2 + (n2)

2 = 1. (2.57)

The point (p1, p2) therefore traces out an ellipse whose semimajor and semiminor
axes are σ1 and σ2, respectively (Fig. 2.7). Each vector from the origin to a point
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Fig. 2.7 Lamé’s stress
ellipse (see text for
description).
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on the ellipse represents a traction vector that acts on some plane passing through
the point at which the principal stresses are σ1 and σ2. However, although the
Lamé stress ellipse shows the various traction vectors that act on different planes,
it does not indicate the plane on which the given traction acts. In general, only
when the vector OP lies along one of the principal directions in Fig. 2.7 will the
direction of the plane be apparent, since in these special cases the traction is
known to be normal to the plane. In the more general case, the direction of the
unit normal vector of the plane on which the traction is (p1, p2) can be found
with the aid of the stress-director surface, which is defined by

(p2
1/σ1)+ (p2

2/σ2) = ± 1. (2.58)

For the case which is most common in rock mechanics, in which both principal
stresses are positive, the + sign must be used in (2.58), and the surface is an ellipse
with axes

√
σ1 and

√
σ2. The outward unit normal vector of the plane on which

the traction is (p1, p2) is then given by the tangent to the stress-director ellipse at
the point where it intersects the stress ellipsoid (Chou and Pagano, 1992, p. 200).
Proof of this assertion, and more details of this construction, can be found in
Timoshenko and Goodier (1970) and Durelli et al. (1958).

One interesting fact that is more apparent from the Lamé construction than
from Mohr’s circle is that not only does the magnitude of the normal component
of the stress take on stationary values in the principal directions, but the magni-
tude of the total traction vector also takes on stationary values in these directions.
In particular, the maximum value of |p| is seen to be equal to σ1, and occurs in
the direction of the major principal stress.

Most of the manipulations and transformations described above are concerned
with the values of the stress and traction at a given “point” in the rock. In
general, the state of stress will vary from point to point. The equations that
govern these variations are described in §5.5. The state of stress in a rock
mass can either be estimated based on a solution (either numerical or analyt-
ical) of these equations (Chapter 8), or from stress measurements (Chapter 13).
In order to completely specify the state of stress in a two-dimensional rock
mass, it is necessary either to know the values of τxx , τyy, and τxy at each
point in the body, or, alternatively, to know at each point the values of the
two principal stresses σ1 and σ2, along with the angle of inclination between
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the x direction and, say, the σ1 direction. Although it is difficult to display all
of this information graphically, there are a number of simple graphical repre-
sentations that are useful in giving a partial picture of a stress field. Among
these are:

1 Isobars, which are curves along which the principal stress is constant. There are
two sets of isobars, one for σ1 and one for σ2. A set of isobars for one of the
principal stresses, say σ1, must by definition form a nonintersecting set of curves.
However, an isobar of σ1 may intersect an isobar of σ2.

2 Isochromatics, which are curves along which the maximum shear stress (σ1 −
σ2)/2, is constant. These curves can be directly found using the methods of
photoelasticity, which is described by Frocht (1941) and Durelli et al. (1958).

3 Isopachs, which are curves along which the mean normal stress (σ1 + σ1)/2 is
constant. It is shown in §5.5 that this quantity satisfies Laplace’s equation, which
is the same equation that governs, for example, steady-state temperature distri-
butions, or steady-state distributions of the electric field, in isotropic conducting
bodies. Hence, the isopachs can be found from analogue methods that utilize
electrically conducting paper that is cut to the same shape as the rock mass under
investigation. This procedure is discussed by Durelli et al. (1958).

4 Isostatics, or stress trajectories, are a system of curves which are at each point
tangent to the principal axes of the stress. As the two principal axes are always
orthogonal, the two sets of isostatic curves are mutually orthogonal. Since a
free surface is always a principal plane (as it has no shear stress acting on it), an
isostatic curve will intersect a free surface at a right angle to it.

5 Isoclinics, which are curves on which the principal axes make a constant angle
with a given fixed reference direction. These curves can also be obtained by
photoelastic methods.

6 Slip lines, which are curves on which the shear stress is a maximum. As the
maximum shear stress at any point is always in a direction that bisects the two
directions of principal normal stresses, these lines form an orthogonal grid.

2.5 Stresses in
three dimensions

The theory of stresses in three dimensions is in general a straightforward exten-
sion of the two-dimensional theory. A generic plane in three dimensions will have
a unit normal vector n = (nx , ny, nz). The components of this vector satisfy the
normalization condition (nx)2 + (ny)2 + (nz)2 = 1. A three-dimensional version
of the argument accompanying Fig. 2.2b leads to the following generalization
of (2.6):

p(n) = nxp(ex)+ nyp(ey)+ nzp(ez). (2.59)

The components of the three traction vectors that act on planes whose outward
unit normals are in the three coordinate directions are denoted by

p(ex) = [τxx τxy τxz]T, (2.60)
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p(ey) = [τyx τyy τyz]T, (2.61)

p(ez) = [τzx τzy τzz]T. (2.62)

Substitution of (2.60)–(2.62) into (2.59) leads to

px(n) = τxxnx + τyxny + τzxnz, (2.63)

py(n) = τxynx + τyyny + τzynz, (2.64)

pz(n) = τxznx + τyzny + τzznz, (2.65)

which can be written in matrix form as p(n) = τTn, that is,
px(n)py(n)
pz(n)


 =


τxx τyx τzx
τxy τyy τzy
τxz τyz τzz





nxny
nz


. (2.66)

The three-dimensional analogue of the argument illustrated by Fig. 2.3b would
show that the conjugate terms in the three-dimensional stress tensor are equal,
that is,

τyx = τxy, τyz = τzy, τzx = τxz. (2.67)

Hence, (2.66) can also be written as p(n) = τn.
The question can again be asked as to whether or not there are planes on which

the shear stresses vanish. On such planes, the traction vector will be parallel to
the outward unit normal vector, and therefore can be written as p = σn, where
σ is some scalar. But as p(n) = τn, we have τn = σn = σ In, and therefore
again arrive at the eigenvalue problem (τ − σ I)n = 0, §2.3 (2.46), that is,

τxx − σ τxy τxz
τyx τyy − σ τyz
τzx τzy τzz − σ





nxny
nz


 =


0

0
0


. (2.68)

From this point on, the development follows that for the two-dimensional theory.
Although (nx , ny, nz) = (0, 0, 0) is obviously a solution to (2.68), it is inadmissible
because it does not satisfy the condition that n · n = 1. Admissible solutions can
be found only if the determinant of the matrix (τ − σ I) vanishes (Lang,1971).
When the determinant is expanded out, it takes the form

σ 3 − I1σ 2 − I2σ − I3 = 0, (2.69)

where

I1 = τxx + τyy + τzz, (2.70)

I2 = τ 2
xy + τ 2

xz + τ 2
yz − τxxτyy − τxxτzz − τyyτzz, (2.71)

I3 = τxxτyyτzz + 2τxyτxzτyz − τxxτ
2
yz − τyyτ

2
xz − τzzτ

2
xy. (2.72)

The fact that the stress tensor is symmetric ensures that (2.69) has three real roots.
These roots are conventionally labeled such that σ1 ≥ σ2 ≥ σ3. Each of these
roots will correspond to an eigenvector that can be labeled as n1 = (n1

x , n1
y , n

1
z),

etc. Although, in general, eigenvectors are arbitrary to within a multiplicative
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constant, the condition that the vector must be of unit length leads to a unique
determination of the vector components. The normalized eigenvector corre-
sponding to σ1 is the unit normal vector of the plane on which the normal stress
is σ1 and the shear stress is 0, and likewise for the other two principal stresses.

In two dimensions it was shown explicitly in (2.33) that the two principal stress
directions are rotated by 90◦ from each other. The orthogonality of the principal
directions continues to be the case in three dimensions; this can be proven as
follows. First recall that the inner product of two vectors, u · v, can also be
expressed as uTv, since

uTv = [
ux uy uz

]

vxvy
vz


 = uxvx + uyvy + uzvz = u · v. (2.73)

Also, recall that the transpose operation has the properties that (AB)T = BTAT,
and (AT)T = A. Consider two principal stresses, σ1 �= σ2, and the principal
directions corresponding to these two stresses, that is, τn1 = σ1n1 and τn2 =
σ2n2. Take the inner product of both sides of this first equation with n2:

(n2)Tτn1 = (n2)Tσ1n1 = σ1(n
2)Tn1, (2.74)

and the inner product of both sides of the second equation with n1:

(n1)Tτn2 = (n1)Tσ2n2 = σ2(n
1)Tn2. (2.75)

Now take the transpose of both sides of (2.75):

[(n1)Tτn2]T = (n2)TτTn1 = [σ2(n
1)Tn2]T = σ2(n

2)Tn1. (2.76)

But τT = τ, so (2.76) shows that

(n2)Tτn1 = σ2(n
2)Tn1. (2.77)

Subtracting (2.77) from (2.74) yields

0 = (σ1 − σ2)(n
2)Tn1 = (σ1 − σ2)n

2 · n1. (2.78)

As σ1 �= σ2 by assumption, it follows that n2 · n1 = 0, which is to say that n1

and n2are orthogonal to each other. This argument applies to any pair of distinct
principal stresses, proving that the three principal stresses act on three mutually
orthogonal planes.

In certain cases, two of the roots of (2.69) may be equal, say σ1 > σ2 = σ3.
Assume that this is the case, and that we have found two vectors n2 and n3 that
both satisfy τn = σ2n. Any vector n in the plane that is spanned by these two
vectors can be written in the form n = c2n2 + c3n3, so

τn = τ(c2n2 + c3n3) = c2τn2 + c3τn3 = c2σ2n2 + c3σ2n3

= σ2(c2n2 + c3n3) = σ2n, (2.79)
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which proves that n is also an eigenvector of τ, with eigenvalue σ2. Hence, all
vectors in the plane spanned by n2 and n3 are principal stress directions associated
withσ2. No more than two of these vectors can be linearly independent, however,
and it is conventional to pick two orthogonal directions in this plane as the principal
stress directions associated with σ2. In this way we maintain the orthogonality
of the principal stress directions. In the special case in which all three principal
stresses are equal, that is, σ1 = σ2 = σ3, the same argument shows that
any vector of unit length will be an eigenvector corresponding to σ1, and will
therefore define a principal stress direction. In other words, the traction on all
planes will be a normal traction of magnitude σ1.

In two dimensions, (2.39) showed that the principal stresses were also the
maximum and minimum values of the normal stress that acted on any plane.
This also follows directly from Mohr’s circle, since the two locations at which the
circle intersects the τ = 0 axis are the extreme values of σ . In three dimensions,
the three principal stresses also represent locally stationary values of σ , one of
which is an absolute maximum, one an absolute minimum, and one a saddle
point in the three-dimensional space of unit vectors n. To prove this, we start
with the fact that the normal component of the traction, pn, can be found from

pn = p · n = n · p = nTp = nTτn. (2.80)

By performing the indicated matrix multiplication, or by analogy with (2.19),
we find

pn = τxxn2
x + τyyn2

y + τzzn2
z + 2τxynxny + 2τxznxnz + 2τyznynz. (2.81)

It is now desired to find the extreme values of pn, as a function of the three
components of the unit normal vector n, bearing in mind the constraint n2

x +
n2
y + n2

z = 1. This constraint equation is of the form f (nx , ny, nz) = constant.
Geometrically, this is equivalent to considering the variation of pn on the surface
of the unit sphere in (nx , ny, nz) space. According to the theory of Lagrange
multipliers (Lang, 1973, pp. 140–4), the constrained maximum (or minimum)
will occur at a point at which the gradient of pn is parallel to the gradient of the
constraint function f . The components of the gradient of pn, considered as a
function of (nx , ny, nz), are calculated as follows:

∂pn
∂nx

= 2τxxnx + 2τxyny + 2τxznz = 2(τxxnx + τxyny + τxznz) = 2px , (2.82)

and similarly for the other two components. Hence, the gradient of pn is

grad(pn) =
(
∂pn
∂nx

,
∂pn
∂ny

,
∂pn
∂nz

)
= 2(px , py, pz) = 2p. (2.83)

The gradient of the constraint function is

grad(f ) = grad(n2
x + n2

y + n2
z) = (2nx , 2ny, 2nz) = 2n. (2.84)

If these two gradients are parallel, then 2p = σ(2n) for some constant σ , which
is to say p = σn. But this is precisely the condition that defines the principal
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stresses and their associated principal directions. Hence, the principal directions
also define those planes on which the normal traction takes on stationary values.

It is also of some interest to find the stationary values of the shear traction, and
the planes on which these tractions act. For this purpose, it is convenient to work
in the principal coordinate system. The traction vector on an arbitrary plane
whose unit normal vector (in the principal coordinate system) is n = (n1, n2, n3)

is found from (2.66) to be

p = τn =

σ1 0 0

0 σ2 0
0 0 σ3





n1
n2
n3


 =


σ1n1
σ2n2
σ3n3


. (2.85)

The normal traction on this plane, σ , is found by projecting p onto n:

σ = p · n = pTn = [
σ1n1 σ2n2 σ3n3

]

n1
n2
n3


 = σ1n2

1 +σ2n2
2 +σ3n2

3. (2.86)

The magnitude (squared) of the total traction vector is given by

|p|2 = p · p = pTp = [
σ1n1 σ2n2 σ3n3

] 
σ1n1
σ2n2
σ3n3


 = σ 2

1 n
2
1 + σ 2

2 n
2
2 + σ 2

3 n
2
3.

(2.87)

By the Pythagorean theorem,

τ 2 = |p|2 − σ 2 = σ 2
1 n

2
1 + σ 2

2 n
2
2 + σ 2

3 n
2
3 − (σ1n2

1 + σ2n2
2 + σ3n2

3)
2

= (σ1 − σ2)
2n2

1n
2
2 + (σ2 − σ3)

2n2
2n

2
3 + (σ3 − σ1)

2n2
3n

2
1. (2.88)

To find the local maximum and minimum values of the shear stress magnitude,
we must optimize τ 2 subject to the constraint

f (n1, n2, n3) = n2
1 + n2

2 + n2
3 = 1. (2.89)

By Lagrange’s theorem, the stationary values of τ 2 occur where the gradient
of τ 2 is parallel to the gradient of f ; this leads to the following three scalar
equations:

[(σ1 − σ2)
2n2

2 + (σ1 − σ3)
2n2

3]n1 = cn1, (2.90)

[(σ1 − σ2)
2n2

1 + (σ2 − σ3)
2n2

3]n2 = cn2, (2.91)

[(σ2 − σ3)
2n2

2 + (σ1 − σ3)
2n2

1]n3 = cn3, (2.92)

where c is a Lagrange multiplier, the value of which is not needed in the present
discussion.

Equation (2.90) can be satisfied by picking n1 = 0, after which (2.91) and (2.92)
show that n2

3 = n2
2. Invoking the normalization constraint (2.89) then shows that
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n2
3 = n2

2 = 1/2. Hence, one family of planes on which τ will take on extreme
values will correspond to

n = (0, ±1/
√

2, ±1/
√

2). (2.93)

On these planes, (2.88) shows that |τ | = (σ2 − σ3)/2, and (2.86) shows that
σ = (σ2 + σ3)/2. Another set of solutions to (2.90)–(2.92) is given by

n = (±1/
√

2, 0, ±1/
√

2), (2.94)

on which planes |τ | = (σ1 − σ3)/2 and σ = (σ1 + σ3)/2. Finally, a third set of
solutions is

n = (±1/
√

2, ±1/
√

2, 0), (2.95)

on which planes |τ | = (σ1 − σ2)/2 and σ = (σ1 + σ2)/2. These extreme values
of the shear stress are denoted by τ1, τ2, and τ3, respectively. As the shear stresses
are zero on the planes of the principal normal stresses, the extreme values found
above are local maxima.

Thus far, we have found the magnitudes of the maximum shear stresses and
the unit normals of the planes on which they act. To find the directions within
those planes in which the shears act, consider one of these planes, and let t be the
unit vector pointing in the direction of this shear traction. We decompose the
total traction vector into a shear and a normal component, as follows:

p = σn + τ t. (2.96)

Solving (2.96) for t, and making use of (2.85), yields

t = 1
τ
(p − σn) = [(σ1 − σ)n1/τ (σ2 − σ)n2/τ (σ3 − σ)n3/τ ]T, (2.97)

in which τ , σ , and n are one set of the solutions to (2.90)–(2.92) described
above. For example, on the plane whose unit normal vector is given by n =
(0, 1/

√
2, 1/

√
2), we have τ = (σ2 − σ3)/2 and σ = (σ2 + σ3)/2, and (2.97)

yields t = (0, 1/
√

2, −1/
√

2).

2.6 Stress
transformations in
three dimensions

If the stress components are known in a given coordinate system, the stress
components in a second coordinate system that is rotated from the first one
can be found by matrix multiplication, as in (2.30). This was proven in a two-
dimensional context in §2.3, and will now be generalized to three dimensions.

Consider a coordinate system (x, y, z), as in Fig. 2.8a, and another coordinate
system (x′, y′, z′) that is rotated by some angle in three-dimensional space. Let
the direction cosines of the unit vector ex′ , relative to the unprimed coordinate
system, be (l11, l12, l13), and similarly for the other two unit vectors ey′ and ez′ ,
that is,

ex′ = (l11, l12, l13), ey′ = (l21, l22, l23), ez′ = (l31, l32, l33). (2.98)



Jaeger: “chapter02” — 2006/12/15 — 09:53 — page 33 — #25

Analysis of stress and strain 33

Fig. 2.8 (a) Original
(unprimed) coordinate
system, along with
another rotated
(primed) coordinate
system, and (b) a system
that utilizes the zenith
and longitudinal angles.
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Now consider the traction on the plane whose outward unit normal vector is
ex′ . By (2.66), this traction is given by p(ex′) = τex′ , where τ is the stress tensor
in the unprimed coordinate system. The component of this traction in the e′

x
direction, which by definition is τx′x′ , is found, as in (2.6), by taking the inner
product of p(ex′) with ex′ , that is,

τx′x′ = ex′ · p(ex′) = (ex′)Tp(ex′) = (ex′)Tτex′

= [
l11 l12 l13

]τxx τxy τxz
τyx τyy τyz
τzx τzy τzz





l11
l12
l13




= l211τxx + l11l12τxy + l11l13τxz + l12l11τyx + l212τyy

+ l12l13τyz + l13l11τzx + l13l12τzy + l213τzz. (2.99)

Although use of the symmetry properties of the stress tensor would simplify
(2.99) slightly, it would obscure the algebraic structure of the transformation
equations, and is not introduced at this point. The other eight components of
the stress tensor in the primed coordinate system can be found in the same
manner; for example, τx′y′ = ey′ · p(ex′), etc. The resulting equations, each of
the form (2.99), can then be written in matrix form as


τx′x′ τx′y′ τx′z′
τy′x′ τy′y′ τy′z′
τz′x′ τz′y′ τz′z′


 =


l11 l12 l13
l21 l22 l23
l31 l32 l33





τxx τxy τxz
τyx τyy τyz
τzx τzy τzz





l11 l21 l31
l12 l22 l32
l13 l23 l33


.

(2.100)

This can be verified by carrying out the matrix multiplications indicated in
(2.100), and comparing the results to (2.99). Equation (2.100) can be written
symbolically as

τ′ = LτLT, (2.101)
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where the rows of the rotation matrix L are formed from the direction cosines
of the three primed unit vectors.

The components of the stress tensor in the primed coordinate system can be
written out explicitly as follows, wherein the symmetry properties of the stresses
are now used in order to simplify the expressions:

τx′x′ = l211τxx + l212τyy + l213τzz + 2l11l12τxy + 2l11l13τxz + 2l12l13τyz, (2.102)

τy′y′ = l221τxx + l222τyy + l223τzz + 2l21l22τxy + 2l21l23τxz + 2l22l23τyz, (2.103)

τz′z′ = l231τxx + l232τyy + l233τzz + 2l31l32τxy + 2l31l33τxz + 2l32l33τyz, (2.104)

τx′y′ = l11l21τxx + l12l22τyy + l13l23τzz + (l11l22 + l12l21)τxy

+ (l12l23 + l13l22)τyz + (l11l23 + l13l21)τxz (2.105)

τy′z′ = l21l31τxx + l22l32τyy + l23l33τzz + (l21l32 + l22l31)τxy

+ (l22l33 + l23l32)τyz + (l21l33 + l23l31)τxz (2.106)

τx′z′ = l11l31τxx + l12l32τyy + l13l33τzz + (l11l32 + l12l31)τxy

+ (l12l33 + l13l32)τyz + (l11l33 + l13l31)τxz (2.107)

It follows from these equations that the stress components in any particular
plane transform according to the two-dimensional transformation laws of §2.3.
For example, consider a rotation about the z-axis, which corresponds to a rotation
matrix in which l13 = l23 = l31 = l32 = 0, and l33 = 1. Equations (2.102), (2.103),
and (2.105) then essentially reduce to (2.107)–(2.109), aside from differences in
notation. The maximum and minimum normal stresses in such a plane are often
called the subsidiary principal stresses. Except in the special case in which z is a
principal direction, these two subsidiary principal stresses will not correspond to
two of the actual three-dimensional principal stresses, however.

If the unprimed coordinate system is the coordinate system of principal
stresses, (2.102)–(2.107) take the form

τx′x′ = l211τxx + l212τyy + l213τzz, (2.108)

τy′y′ = l221τxx + l222τyy + l223τzz, (2.109)

τz′z′ = l231τxx + l232τyy + l233τzz, (2.110)

τx′y′ = l11l21τxx + l12l22τyy + l13l23τzz, (2.111)

τy′z′ = l21l31τxx + l22l32τyy + l23l33τzz, (2.112)

τx′z′ = l11l31τxx + l12l32τyy + l13l33τzz. (2.113)

In some situations, it is more convenient to use the longitude angle, λ, and
zenith angle, θ , to specify a plane, rather than the direction cosines of that
plane relative to a particular Cartesian coordinate system (Fig. 2.8b). The axes
associated with the primed coordinate system are Pz′, which is in the radial
direction; Px′, which is in the plane OPz and is associated with the angle θ ; and
Py′, which is chosen so as to complete the right-handed coordinate system, and
which points in the direction of increasing λ. The components of these unit
vectors, relative to the unprimed coordinate system, will be given by (2.98),
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which we now express in terms of λ and θ . It can be seen directly from Fig. 2.8b
that the direction cosines of Pz′ are given by

ez′ = (sin θ cos λ, sin θ sin λ, cos θ). (2.114)

The components of the unit vector through O parallel to Px′ can be found by
replacing θ with θ + (π/2), which leads to

ex′ = (cos θ cos λ, cos θ sin λ, − sin θ). (2.115)

Finally, a unit vector through O parallel to Py′ is perpendicular to Oz, and makes
an angle λ+ (π/2) with Ox, and an angle λ with Oy. Therefore,

ey′ = (− sin λ, cos λ, 0). (2.116)

If the axes (x, y, z) are the principal axes, then the stress components on the
plane Px′y′ are found from (2.112), (2.114), and (2.115) to be given by

τz′z′ = [σ1 cos2 λ+ σ2 sin2 λ] sin2 θ + σ3 cos2 θ , (2.117)

τy′z′ = −1
2
(σ1 − σ2) sin θ sin 2λ, (2.118)

τx′z′ = 1
2
[σ1 cos2 λ+ σ2 sin2 λ− σ3] sin 2θ . (2.119)

These relations have been used, for example, by Bott (1959) for defining tectonic
regimes.

2.7 Mohr’s
representation of
stress in three
dimensions

Mohr’s circle representation of two-dimensional stress states, described in §2.4,
can be also be used in three dimensions. To simplify the notation, we denote
the components of the unit normal vector of an arbitrary plane, relative to the
principal coordinate system, by (l,m, n), rather than (n1, n2, n3), and we denote
the three principal directions by (x, y, z). By (2.86) and (2.88), the normal and
shear tractions acting on this plane are

σ = l2σ1 + m2σ2 + n2σ3, (2.120)

τ 2 = l2σ1 + m2σ2 + n2σ3 − σ 2, (2.121)

where

l2 + m2 + n2 = 1. (2.122)

Solving these equations for the direction cosines yields

l2 = (σ2 − σ)(σ3 − σ)+ τ 2

(σ2 − σ1)(σ3 − σ1)
, (2.123)

m2 = (σ3 − σ)(σ1 − σ)+ τ 2

(σ3 − σ2)(σ1 − σ2)
, (2.124)
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n2 = (σ1 − σ)(σ2 − σ)+ τ 2

(σ1 − σ3)(σ2 − σ3)
. (2.125)

Suppose that the direction cosine n is fixed, so that the normal vector to the
plane makes a fixed angle θ = arccos(n) with the z-axis, as in Fig. 2.9a. The
intersection of the normal vector with the unit sphere will lie on the small circle
F ′E′D′. Equation (2.125) can be rearranged to yield

τ 2 +
[
σ − 1

2
(σ1 + σ2)

]2

= 1
4
(σ1 − σ2)+ n2(σ1 − σ3)(σ2 − σ3), (2.126)

which is the equation of a circle in the (σ , τ) plane. The center of this circle, A,
is located at

σ = 1
2
(σ1 + σ2), τ = 0, (2.127)

and the radius of this circle is

r =
[

1
4
(σ1 − σ2)+ n2(σ1 − σ3)(σ2 − σ3)

]1/2

. (2.128)

As n varies from 0 to 1, the radius varies from AQ = (σ1 − σ2)/2 to AR =
[(σ1 + σ2)/2] − σ3. A typical circle for an intermediate value of n is shown in
Fig. 2.9b as DEF.

In the same manner, holding l constant in (2.123) gives the family of circles

τ 2 +
[
σ − 1

2
(σ2 + σ3)

]2

= 1
4
(σ2 − σ3)+ l2(σ2 − σ1)(σ3 − σ1). (2.129)

The centers of these circles are at B, located at σ = (σ2 + σ3)/2, τ = 0. The
radii vary from BQ = (σ2 −σ3)/2 when l = 0, to BP = σ1 −[(σ2 +σ3)/2] when
l = 1. A typical circle for intermediate values of l is GEH. In Fig. 2.9b, planes for
which l = constant lie on a cone that makes an angle φ = arccos(l) with the
x-axis, and which intersects the unit sphere at G′E′H′.

Fig. 2.9 Mohr’s circle
in three dimensions (see
text for description).
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Finally, holding m constant in (2.124) gives the family of circles

τ 2 +
[
σ − 1

2
(σ1 + σ3)

]2

= 1
4
(σ1 − σ3)+ m2(σ3 − σ2)(σ1 − σ2). (2.130)

The centers of these circles are at C, located at σ = (σ1 + σ3)/2, τ = 0. The
radii vary from CR = (σ1 − σ3)/2, when m = 0, to CQ = [(σ1 + σ3)/2] − σ2,
when m = 1. These circles are not needed for the following analysis, and so are
not shown in Fig. 2.9b.

Now consider a generic point on the unit sphere in Fig. 2.9a, such as E′, which
has direction cosines l = cosφ and n = cos θ . The traction on this plane is
indicated by the point E in Fig. 2.9b, which is at the intersection of the arc DEF
defined by (2.126) with n = cos θ , and the arc GEH defined by (2.129) with
l = cosφ. The points at which these two arcs intersect the two smaller circles in
Fig. 2.9b are found as follows. The intersection point D corresponds to the point
D′ in Fig. 2.9a, for which l = 0, m = sin θ and n = cos θ . Hence, by (2.120) and
(2.121),

σ(D) = σ2 sin2 θ + σ3 cos2 θ = 1
2
(σ2 + σ3)− 1

2
(σ2 − σ3) cos 2θ , (2.131)

|τ(D)| = [σ 2
2 sin2 θ + σ 2

3 cos2 θ − σ 2]1/2 = 1
2
(σ2 − σ3) sin 2θ . (2.132)

But (2.131) and (2.132) are essentially the equations of Mohr’s circle in the
(σ1, σ2) plane, and so it follows that ∠RBD = 2θ . A similar argument shows
that ∠HAP = 2φ. Therefore, we can construct a diagram such as Fig. 2.10a,
from which the normal and shear tractions acting on any plane can be found by
locating the intersections of the proper circles.

The discussion given above dealt only with the magnitude of τ , and the plane
on which it acts. The line of action of the shear traction can be found by the
following construction (Zizicas, 1955). Consider the latitude λ of the point E′ in
Fig. 2.9a. From (2.77), on the great circle for which λ is constant,

l2 = (1 − n2) cos2 λ. (2.133)

Using (2.123) and (2.125), it can be shown that (2.133) corresponds to the
following locus in the (σ , τ) plane:

(σ2 − σ3)[(σ2 − σ)(σ3 − σ)+ τ 2] + (σ2 − σ1)[(σ1 − σ3)(σ2 − σ3)

− (σ1 − σ)(σ2 − σ)− τ 2] cos2 λ = 0, (2.134)

Fig. 2.10 Mohr’s
circle in three
dimensions (see text for
description).
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which is a circle that passes through the point R = (σ3, 0). When n = 0, which
corresponds to the point K ′ in Fig. 2.9b, we have l = cos λ andm = sin λ. It then
follows from (2.120) and (2.121), and from an argument along the lines that led
to (2.131) and (2.132), that

σ(K) = 1
2
(σ1 + σ2)+ 1

2
(σ1 − σ2) cos 2λ, (2.135)

|τ(K)| = 1
2
(σ1 − σ2) sin 2λ. (2.136)

Therefore, the point K lies on the circle PQ of Fig. 2.10b, and ∠KAP = 2λ. The
fact that this circle passes through the points R and K , and has its center on the
σ -axis, is sufficient to unambiguously define it. It must pass through the point
E, which is defined by the intersection of circles GEH and DEF of Fig. 2.9b. The
lines of the construction of Fig. 2.9b are shown as dotted lines in Fig. 2.10b.

Consider now the stresses in the plane OK ′Z of Fig. 2.9a. The normal stresses
in the directions OZ and OK ′ are given by the lengths of the line segments
OR (= σ3) and OL in Fig. 2.10b. Therefore, the Mohr’s circle for this plane
has RL as its diameter. When the normal stress is OM, corresponding to the
point E′, the shear stress is NM. We have thus found the component of the
shear stress in the plane OK ′Z, and the total shear stress EM must make an angle
cos−1(NM/EM)with that plane. This analysis gives the line of action of the shear
traction, but there is still an ambiguity of sign, since our calculation has only
made use of the magnitude of τ . Determination of the actual signed orientation
of the shear traction, using Mohr’s circle, has been discussed by Almusallam and
Taher (1995).

The calculations described above, along with Figs. 2.9a and 2.10b, have been
carried out using latitude and longitude coordinates, with the σ3-axis as the polar
direction. A similar construction could be made using either of the other two
principal directions as the poles.

There are numerous other applications of the Mohr’s circle construction that
are useful in rock and soil mechanics. Parry (1995) makes extensive use of Mohr’s
circle to discuss failure of geological materials. Werfel (1965) shows how to use
Mohr’s circle to determine the principal axes and the magnitudes of the principal
stresses.

2.8 Stress
invariants and stress
deviation

In §2.5, the coefficients that appear in the characteristic polynomial that defines
the three principal stresses were identified as the three stress invariants:

I1 = τxx + τyy + τzz, (2.137)

I2 = τ 2
xy + τ 2

xz + τ 2
yz − τxxτyy − τxxτzz − τyyτzz, (2.138)

I3 = τxxτyyτzz + 2τxyτxzτyz − τxxτ
2
yz − τyyτ

2
xz − τzzτ

2
xy. (2.139)

The second invariant, I2, is sometimes defined to be the negative of that defined
by (2.138), in which case +I2, rather than −I2, would appear as the coefficient of
σ in (2.69). It was argued in §2.5 that these coefficients must have the same value
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in all coordinate systems, since the three principal stresses, which are functions
only of these three invariants, and which have a clear physical meaning that is
independent of the choice of coordinate system, must themselves be invariant.
A rigorous proof of this assertion is given by Spencer (1971). In fact, there are
many combinations of stresses that form an invariant of the stress tensor, but all
are dependent upon the set {I1, I2, I3}. These three invariants can be defined in
the terminology of matrix algebra by (Spencer, 1980)

I1 = trace(τ), (2.140)

I2 = 1
2
{trace(τ2)− [trace(τ)]2}, (2.141)

I3 = det(τ), (2.142)

where the trace operator denotes the sum of the diagonal components, and the
determinant is defined in the standard manner (Lang, 1971).

Since all shear stresses, which are the off-diagonal components of the stress
matrix, vanish in the principal coordinate system, the invariants take on a simpler
form when expressed in that coordinate system:

I1 = σ1 + σ2 + σ3, (2.143)

I2 = −(σ1σ2 + σ2σ3 + σ1σ3), (2.144)

I3 = σ1σ2σ3. (2.145)

Although I1 has exactly the same algebraic form in all coordinate systems, it
would be incorrect to apply (2.144) or (2.145) in a nonprincipal coordinate system,
since these two equations only hold when all the shear stresses are zero. For
example, it is not true in general that I3 = τxxτyyτzz. Among the many useful
relations between the stress components that can be derived with the aid of these
invariants is the following:

τ 2
xx + τ 2

yy + τ 2
zz + 2τ 2

xy + 2τ 2
xz + 2τ 2

yz = σ 2
1 + σ 2

2 + σ 2
3 . (2.146)

The stress invariants are useful in the construction of stress–strain laws and
failure criteria, as will be seen in Chapters 5 and 9.

Another related set of quantities that appear frequently in the development of
constitutive equations for rocks is the octahedral stresses. These are the normal
and shear tractions that act on planes whose outward unit normal vectors, in the
principal coordinate system, are given by

(n1, n2, n3) = (±1/
√

3, ±1/
√

3, ±1/
√

3). (2.147)

These planes are equally inclined to each of the three principal directions. There
are eight such planes, each associated with a different set of choices for the
signs appearing in (2.147). These eight planes are each parallel to a side of an
octahedron whose vertices are located on the principal axes (Nadai, 1950, p. 105).
From (2.86), the normal traction acting on any octahedral plane is

σoct = σ1n2
1 + σ2n2

2 + σ3n2
3 = 1

3
(σ1 + σ2 + σ3) = 1

3
I1. (2.148)
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By (2.88), the magnitude of the shear traction acting on an octahedral plane is
found to be given by

|τoct|= 1
3

{
(σ1 −σ2)

2 +(σ2 −σ3)
2 +(σ3 −σ3)

2}1/2 =
√

2
3

{
I21 +3I2

}1/2 . (2.149)

The octahedral shear stress has the interesting physical interpretation of being
equal to

√
(5/3) times the root-mean-square shear stress, with all planes

weighted equally.
Shear and normal stresses have different physical consequences, as the former

act tangentially to a plane, and the latter act normal to it. The stress tensor,
when written in a given coordinate system, explicitly contains only those shear
stress components that act on planes whose normals are perpendicular to one of
the three coordinate directions. Hence, when written in the principal coordinate
system, the stress tensor seems to contain no shear stresses. However, in general
it would be wrong to assume that no shear stresses are acting at that point, since
the shears may be nonzero on oblique planes. Only in the special case in which
all three principal stresses are equal is it true that the shear stresses on all planes
are zero. This is most easily seen by referring to Mohr’s circle, Fig. 2.9b, since in
this case all three circles shrink down to a single point on the σ -axis.

It would be useful to have a way of representing the stress tensor that clearly
showed whether or not there are any shear stresses acting at the point in question.
To do this we decompose the stress tensor into an isotropic (or hydrostatic) part
and a deviatoric part. The isotropic part of the stress is defined as

τ iso = 1
3
I1 I ≡ τmI, (2.150)

where I is the 3 × 3 identity tensor, and τm is the mean value of the three
principal stresses, or themean normal stress. The mean normal stress is important
in thermodynamic treatments of material deformation (McLellan, 1980), where
it is analogous to the pressure that acts in a fluid. The deviatoric stress is obtained
by subtracting the isotropic part of the stress tensor from the full stress tensor:

s ≡ τdev = τ − τiso = τ − τmI. (2.151)

These equations can be written out explicitly as

s =

τxx − τm τxy τxz

τyx τyy − τm τyz
τzx τzy τzz − τm


 , (2.152)

τm = 1
3
(τxx + τyy + τzz). (2.153)

The principal stress deviations are found from solving the eigenvalue problem
sn = sn, or (s − sI)n = 0, as in §2.5. But since s = τ − τmI, the eigenvalue
problem for the principal stress deviators is identical to that for the principal
stresses themselves, except that the eigenvalue is now s+τm instead of σ . Hence,
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the principal directions of the deviatoric stress are the same as the principal stress
directions, and the principal deviatoric stresses are

s1 = σ1 − τm = (2σ1 − σ2 − σ3)/3, (2.154)

s2 = σ2 − τm = (2σ2 − σ1 − σ3)/3, (2.155)

s3 = σ3 − τm = (2σ3 − σ1 − σ2)/3. (2.156)

The usefulness of this decomposition arises from the fact, (5.7), that in the
elastic range of deformation, the mean stress τm controls the volumetric change
of a rock, whereas the deviatoric stress s controls the distortion. Moreover, many
of the criteria for failure are concerned primarily with distortion, in which case
these criteria are most conveniently expressed in terms of the invariants of the
stress deviation. In an arbitrary coordinate system, these invariants take the form

J1 = sxx + syy + szz = 0, (2.157)

J2 = s2xy + s2xz + s2yz − sxxsyy − sxxszz − syyszz, (2.158)

J3 = sxxsyyszz + 2sxysxzsyz − sxxs2yz − syys2xz − szzs2xy. (2.159)

The first invariant of the deviatoric stress is always identically zero. The other
two can be written in terms of the principal deviatoric stresses as follows:

J2 = −(s1s2 + s1s3 + s2s3), (2.160)

J3 = s1s2s3. (2.161)

Algebraic manipulation of the previous equations leads to the following alterna-
tive forms for J2, which is the invariant that appears most often in failure criteria
(Westergaard, 1952, p. 70):

J2 = 1
2
(τ 2
xx + τ 2

yy + τ 2
zz)+ τ 2

xy + τ 2
yz + τ 2

xz, (2.162)

= 1
6

[
(τxx − τyy)

2 + (τxx − τzz)
2 + (τyy − τzz)

2] + τ 2
xy + τ 2

yz + τ 2
xz,

(2.163)

= 1
6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] , (2.164)

= 1
2
(s21 + s22 + s23), (2.165)

= 3(τm)
2 + I2, (2.166)

= 3
2
(τoct)

2. (2.167)

2.9 Displacement
and strain

In rock mechanics, as in the mechanics of particles and rigid bodies, the funda-
mental kinematic variable is the displacement, which is the vector that quantifies
the change in the position of a given particle of rock. In the typical rock mechanics
problem, the position of each rock particle is labeled by its location, relative to
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some coordinate system, in some state that is taken to be the “initial” state of
the rock. This position can be denoted by x = (x, y, z). Loads are then applied
to the rock, causing the rock particle that was initially located at point x to be
displaced to a new position, x∗ = (x∗, y∗, z∗). The vector that connects the
original position x and the final position x∗ is known as the “displacement of
the particle that was initially at point x,” or simply the “displacement at x.” This
vector is denoted in vector notation by u, and its components are (u, v,w). To be
consistent with the sign convention used for tractions, in which a traction com-
ponent is represented by a positive number if it points in the negative coordinate
direction, the displacement vector must be defined according to

x∗ = x − u, that is, x∗ = x − u, y∗ = y − v, z∗ = z − w. (2.168)

The displacement u can be interpreted as a vector that points from the new posi-
tion, x∗, toward the original position, x (Fig. 2.11a). In general, the displacement
will vary from point to point, so that each component (u, v,w)will vary with all
three position coordinates, x, y, and z.

The objective in solving a rock mechanics problem is to calculate the dis-
placement vector u at every point in the rock mass or rock specimen, based on
knowledge of the applied surface tractions and body forces, and the boundary
conditions. To do this, it is necessary to introduce a set of intermediate quantities
known as the strains. The reason, as will be seen in §5.2, is that the stresses are
more directly related to the strains than to the displacements themselves. The use
of strain rather than displacement is somewhat analogous to the use of stress,
rather than the more physically obvious variable, the traction. Consequently,
much of the theory of solid mechanics, and in particular elasticity, deals with
stresses and strains, rather than tractions (forces) and displacements. However,
in contrast to many other areas of solid mechanics, in which the displacements
are often not of much intrinsic interest, in rock mechanics the displacement itself
is often extremely important. Examples of such situations include mine closure,
wellbore breakouts, and surface subsidence above mines and reservoirs.

Strain is essentially a measure of the relative displacement of nearby particles,
rather than a measure of their absolute displacement. The basic concept behind

Fig. 2.11
(a) Displacement vector
u of the piece of rock
that is initially located at
x, (b) Generic
displacement of a
one-dimensional bar,
used to define the
normal strain.
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P

P ′x

x∗

u
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x x + ∆x x − u(x) x + ∆x − u(x + ∆x)

(b)



Jaeger: “chapter02” — 2006/12/15 — 09:53 — page 43 — #35

Analysis of stress and strain 43

the strain can be introduced in a one-dimensional context (Fig. 2.11b). Consider a
short one-dimensional bar, initially of length L, whose left edge is initially located
at point x, and whose right edge is located at point x +�x. The initial length of
this bar is given by L = �x. This bar is now assumed to be deformed, such that
the left edge of the bar moves to the location x − u(x), and the right edge of the
bar moves to the position [x +�x] − u(x +�x). The new length of the bar is
therefore equal to L∗ = {[x +�x] − u(x +�x)} − [x − u(x)]. We now define
the mean strain undergone by this bar as the fractional decrease in the length of the
bar, that is,

ε= L−L∗

L
=�x−{[x+�x]−u(x+�x)−[x−u(x)]}

�x
= u(x+�x)−u(x)

�x
.

(2.169)

According to this definition, the strain will be a positive number if the bar
becomes shorter, and vice versa. Hence, positive strains represent contractions,
and negative strains represent extensions. The strain at the point x is found by
taking the limit of an infinitesimally short bar, which is mathematically equivalent
to letting the initial length of the bar go to zero:

ε(x) = lim
L→0

L− L∗

L
= lim
�x→0

u(x +�x)− u(x)
�x

≡ du
dx

. (2.170)

The strain is therefore seen to be related to the spatial derivative of the
displacement.

The type of strain described above, which is called a normal strain, can be
generalized in an obvious way to two or three dimensions. However, in higher
dimensions there are other types of strains, called the shear strains, which measure
angular distortion, rather than stretching. The more general case of two- or
three-dimensional strain is discussed in the following sections.

2.10 Infinitesimal
strain in two
dimensions

Consider a particle that is initially located at point P = (x, y), as in Fig. 2.12a.
Now consider a second particle that is initially located at Q = (x +�x, y), and
a third particle located at R = (x, y + �x). The rock is then assumed to be
deformed, such that these three particles move to positions P∗, Q∗, and R∗. The
coordinates of these new locations are

P∗ = P − u(P) = (x, y)− [u(x, y), v(x, y)]
= [x − u(x, y), y − v(x, y)], (2.171)

Q∗ = Q− u(Q) = (x +�x, y)− [u(x +�x, y), v(x +�x, y)]
= [x +�x − u(x +�x, y), y − v(x +�x, y)], (2.172)

R∗ = R − u(R) = (x, y +�y)− [u(x, y +�y), v(x, y +�y)]
= [x − u(x, y +�y), y +�y − v(x, y +�y)]. (2.173)

Also shown in Fig. 2.12a are the points Q′′, which is the projection of point Q∗
onto the x-axis that passes through point P∗, and R′′, which is the projection
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of point R∗ onto the y-axis that passes through point P∗. For example, Q′′
will have the same x-component as Q∗ and the same y-component as P∗ and
likewise for R′′.

We now express each of the displacements that appear in (2.171)–(2.173) as
Taylor series taken about the point (x, y). As the increments �x and �y are
infinitesimally small, all terms in the Taylor series higher than the first-order
terms, which are linear in �x and �y, can be ignored. For example, u(x, y +
�y) = u(x, y)+ (∂u/∂y)�y, etc., where the partial derivative is understood to
be evaluated at (x, y). The positions of the five points shown in Fig. 2.12a can
therefore be expressed as

P∗ = (x − u, y − v), (2.174)

Q∗ = (x +�x − u − ∂u
∂x
�x, y − v − ∂v

∂x
�x), (2.175)

R∗ = (x − u − ∂u
∂y
�y, y +�y − v − ∂v

∂y
�y) (2.176)

Q′′ = (x +�x − u − ∂u
∂x
�x, y − v), (2.177)

R′′ = (x − u, y +�y − v − ∂v
∂y
�y), (2.178)

where it is understood that u, v, and their partial derivatives are evaluated at the
point (x, y).

The normal strain in the x direction, which is denoted by εxx , is now defined, as
in §2.9, as the fractional shortening of a line element that is initially oriented along
the x-axis. In other words, the strain εxx at point (x, y) is equal to the fractional
contraction undergone by the element PQ, in the limit as�x → 0. Initially, the
length of element PQ, which we denote by |PQ|, is �x. After deformation, the
length |P∗Q∗| is found using the Pythagorean theorem:

∣∣P∗Q∗∣∣2 = ∣∣P∗Q′′∣∣2 + ∣∣Q∗Q′′∣∣2 =
(
�x − ∂u

∂x
�x

)2

+
(
∂v
∂x
�x

)2

= (�x)2
[

1 − 2
∂u
∂x

+
(
∂u
∂x

)2

+
(
∂v
∂x

)2]
. (2.179)

Fig. 2.12
(a) Displacement of two
small line segments PQ
and PR that are initially
at right angles to each
other. (b) New (primed)
coordinate system
rotated by angle θ from
original (unprimed)
coordinate system.
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The crucial assumption is now made that all partial derivatives of the dis-
placements are much smaller than unity, which is equivalent to restricting the
displacements not to vary too abruptly from point to point. This assumption
leads to the theory of infinitesimal strain, within which theory the strains are
linear functions of the partial derivatives of the displacement components. This
linearity is a tremendous aid in solving specific problems. Moreover, the strains
that usually occur in situations of engineering interest, such as around boreholes,
tunnels, mines, etc., as well as during processes such as seismic wave propaga-
tion, are in fact often very small. For these reasons, the theory of infinitesimal
strain is almost universally used in rock mechanics analyses. The theory of finite
strain, which is much more complicated, is nevertheless needed for some geo-
logical processes in which the small-strain assumption is not valid; this theory is
briefly discussed in §2.15.

Under the assumption that the partial derivatives of the displacement are small,
we neglect the squares of these derivatives in (2.179), and use the approximation
that (1 − 2δ)1/2 ≈ 1 − δ when δ � 1, to find

∣∣P∗Q∗∣∣ = �x
(

1 − ∂u
∂x

)
. (2.180)

Hence, the normal strain in the x direction at the point (x, y) is given by

εxx = lim
�x→0

|PQ| − |P∗Q∗|
|PQ| = lim

�x→0

�x −�x(1 − ∂u/∂x)
�x

= ∂u
∂x

. (2.181)

A similar analysis shows that the normal strain in the y direction, εyy, is given by

εyy = lim
�x→0

|PR| − |P∗R∗|
|PR| = lim

�x→0

�y −�y(1 − ∂v/∂y)
�y

= ∂v
∂y

. (2.182)

There are other types of distortion, other than stretching or contraction,
which can also be identified and quantified. Figure 2.12a shows that the three
points {P,Q,R} initially form a right angle, but, in the case shown, form an acute
angle after deformation. The change in this angle is known as the shear strain.
Specifically, the shear strain εxy is defined as one-half of the increase in the angle
initially formed by two infinitesimal line segments that initially lie parallel to the
x and y axes, that is,

εxy = 1
2

lim
�x,�y→0

(
∠R∗P∗Q∗ − ∠RPQ

)
. (2.183)

From Fig. 2.12a we see that ∠R∗P∗Q∗ = 90◦ − α − β, whereas ∠RPQ = 90◦,
by construction. The angle α is calculated from

tan α =
∣∣R∗R′′∣∣
|P∗R′′| = −(∂u/∂y)�y

�y(1 − (∂v/∂y))
≈ −

(
∂u
∂y

)
, (2.184)

where, due to the smallness of the partial derivatives, we have ignored the term
∂v/∂y in the denominator. But the smallness of the partial derivatives also allows
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us to approximate the angle α by tan α, so that α = −(∂u/∂y). Similarly, it can
be shown that β = −(∂v/∂x). Combining these results with (2.183) leads to

εxy = 1
2

(
∂u
∂y

+ ∂v
∂x

)
. (2.185)

The pattern embodied in (2.185) is that the shear strain εxy is equal to the mean
of the partial derivative of the displacement in the x direction with respect to y
and the partial derivative of the displacement in the y direction with respect to
x. By this definition, we see that if a shear strain εyx is defined, it will necessarily
be equal to εxy. These four strains can be thought of as the four components of
the strain matrix, ε:

ε =
[
εxx εxy
εyx εyy

]
=




∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)

1
2

(
∂v
∂x

+ ∂u
∂y

)
∂v
∂y


 . (2.186)

The shear strains are sometimes denoted by �xy and �yx . We will use the
same basic symbol, ε, for all the strains, in order to emphasize that they are
all components of the strain matrix. The shear strains will be distinguished by
being the off-diagonal terms of this matrix, and therefore have mixed subscripts,
whereas the normal strains are diagonal components, and have repeated sub-
scripts. Another notation that had in the past been widely used, but is becoming
obsolete, is to define “engineering” shear strains by γxy = 2εxy = 2�xy. This
definition seems to offer few advantages, and has the disadvantage that the
matrix formed by the normal strains and the engineering shear strains does not
constitute a tensor (see below).

The strain matrix is equal to the symmetric part of a matrix that is known as
the displacement gradient, ∇u, whose components are the partial derivatives of
the displacements with respect to the two coordinates, that is,

ε = sym(∇u) ≡ 1
2

[∇u + (∇u)T
]

, (2.187)

where

∇u =



∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


 . (2.188)

The displacement gradient, and hence also the strain, is a second-order tensor, in
the sense that if the coordinate system is rotated by an angle θ , the components
of the strain in the new coordinate system are given by equations of the same
form as (2.25)–(2.27). To prove this, consider a rotation of the coordinate system
(Fig. 2.12b) such that the new x′-axis is rotated by counterclockwise angle θ from
the original x-axis, that is,

x′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ . (2.189)



Jaeger: “chapter02” — 2006/12/15 — 09:53 — page 47 — #39

Analysis of stress and strain 47

The inverse transformation, which is needed in the following calculations, is

x = x′ cos θ − y′ sin θ , y = x′ sin θ + y′ cos θ . (2.190)

As the displacement is also a vector, its components transform according to the
same law:

u′ = u cos θ + v sin θ , v′ = −u sin θ + v cos θ . (2.191)

Now consider a component of the strain in the new coordinate system, such as,
for example, εx′x′ . Using the chain rule,

εx′x′ = ∂u′

∂x′ = ∂u′

∂u
∂u
∂x
∂x
∂x′ + ∂u′

∂u
∂u
∂y
∂y
∂x′ + ∂u′

∂v
∂v
∂x
∂x
∂x′ + ∂u′

∂v
∂v
∂y
∂y
∂x′

= ∂u
∂x

cos2 θ + ∂u
∂y

sin θ cos θ + ∂v
∂x

sin θ cos θ + ∂v
∂y

sin2 θ .

= εxx cos2 θ + 2εxy sin θ cos θ + εyy sin2 θ . (2.192)

This is identical to the transformation law in two dimensions for τxx , (2.25).
Similar analysis of the other components of the strain verifies that the strain in the
primed coordinate system is related to that for the unprimed coordinate system
by the same relationship that governs stress transformations, (2.30), that is,

ε′ = LεLT, (2.193)

where the rotation matrix L is given by (2.28). This proves that the strain is a
second-order tensor.

The strain is also symmetric, by (2.187). In consequence of the fact that strain
is a symmetric second-order tensor, all theorems pertaining to principal stresses,
principal stress directions, maximum shear stresses, etc., carry over directly
to strains. For example, in two dimensions there will always be two mutually
orthogonal directions of principal normal strain, such that the normal strain in
one of these directions is the maximum normal strain and the other a minimum.
In particular, the directions of principal normal strains are defined by

tan 2θ = 2εxy
εxx − εyy

, (2.194)

and the two principal strains, ε1 and ε2, are given by

ε1, ε2 = 1
2
(εxx + εyy)± [(εxy)2 + 1

4
(εxx − εyy)

2]. (2.195)

Relative to the principal axes, the normal and shear strains in some direction that
is rotated by an angle θ from the direction of the maximum normal strain, which
in this context will be denoted by ε and �, are given by

ε = ε1 cos2 θ + ε2 sin2 θ , (2.196)

� = −1
2
(ε1 − ε2) sin 2θ . (2.197)

The Mohr representation in the (ε,�) plane and the various constructions based
on it, follow precisely as in §2.4.
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The strain tensor quantifies the stretching and distortion undergone by the
rock. There are also types of deformation that do not lead to any strain. One
obvious type of such strain-free deformation is a rigid-body translation, in which all
particles of the rock are displaced by the same amount, that is, x∗ = x−a, where
the displacement vector a does not vary from point to point. In component form,
a two-dimensional rigid-body translation is described by

x∗ = x − a, y∗ = y − b, (2.198)

where (a, b), the components of the vector a, are constants. For this type of
motion, ∇u = 0, and the strain is consequently zero.

It is clear from (2.187) that any deformation whose displacement gradient is
antisymmetric will also lead to no infinitesimal strain. Such types of deformations
are infinitesimal rigid-body rotations. To verify this, consider a rigid rotation of
the rock in the counterclockwise direction, by some small angle ϕ. This is
mathematically similar, but physically different, from the rotation of the coordinate
system that was discussed above. This rigid-body rotation is described by

x∗ = x cosϕ − y sin ϕ, y∗ = x sin ϕ + y cosϕ. (2.199)

The coordinates (x∗, y∗) are the coordinates of the particle that was originally
located at (x, y), after the rock has been rotated, but still referred to the original
coordinate system. Since x∗ = x−u, the displacement components are given by

u = x − x∗ = x(1 − cosϕ)+ y sin ϕ, (2.200)

v = y − y∗ = −x sin ϕ + y(1 − cosϕ). (2.201)

The displacement gradient can be calculated as

∇u =


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


 =

[
1 − cosϕ sin ϕ
− sin ϕ 1 − cosϕ

]
. (2.202)

As the angle of rotation is small, we can expand out the trigonometric terms in
Taylor series, and ignore all terms that are higher than first-order in ϕ, yielding

∇u =
[

0 ϕ

−ϕ 0

]
. (2.203)

The displacement gradient corresponding to an infinitesimal rigid-body rotation
is therefore antisymmetric, in the sense that (∇u)T = −(∇u). This type of
rotation leads to no strain, since 2ε = [(∇u) + (∇u)T] = 0. In general, we
can define the rotation tensor ω as the antisymmetric part of the displacement
gradient, that is,

ω=asym(∇u) ≡ 1
2

[∇u−(∇u)T
]=




0
1
2

(
∂u
∂y

− ∂v
∂x

)

−1
2

(
∂u
∂y

− ∂v
∂x

)
0


 ,

(2.204)

in which case it follows from (2.187) and (2.204) that ∇u = ε + ω.
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The discussion just given shows that infinitesimal deformations can always be
thought of as being composed of three additive components: (i) rigid-body trans-
lations, which give rise to no strain or rotation, (ii) stretching and/or distorting
deformations, which give rise to a nonzero strain tensor, and (iii) infinitesimal
rotations, which give rise to a nonzero rotation tensor. Because of the linear
relationships between ∇u, ε, and ω, the infinitesimal strain and infinitesimal
rotation tensors are each additive in a manner that obeys the commutative law.
In other words, the strain that arises as a result of two sequential displacements,
u1 and u2, is equal to the sum of the two strains, ε1 and ε2, taken in either order.
A similar superposition law also applies to the rotation tensor.

2.11 Infinitesimal
strain in three
dimensions

The theory of infinitesimal strain in three dimensions is a straightforward gener-
alization of the two-dimensional theory. The initial location of a particle P will
be denoted by P = (x, y, z), relative to some Cartesian coordinate system. After
the rock is deformed, the new location of that particle will be P∗ = (x∗, y∗, z∗),
as in Fig. 2.12a. The vector that points from the new position to the old position
is the displacement vector u, that is,

u(P) = P − P∗, that is, (u, v,w) = (x, y, z)− (x∗, y∗, z∗). (2.205)

In most branches of mechanics, it is customary to define u(P) = P∗ − P. The
change in sign used in rock mechanics is needed so as to be consistent with the
“compression = positive” sign convention used for the stresses.

Following the definitions of the strain components given in §2.10, in three
dimensions we define three normal strains as

εxx = ∂u
∂x

; εyy = ∂v
∂y

; εzz = ∂w
∂z

. (2.206)

The normal strain in the x direction, εxx , has the same interpretation as in two
dimensions: it is the fractional shortening of an infinitesimal line element that
is initially oriented along the x-axis; likewise for the other two normal strains.
Merely defining the three-dimensional strains in the same manner as in two
dimensions does not of course guarantee that these strains will have the same
physical interpretation. However, it is easy to see that the three-dimensional
version of the calculation given in (2.179)–(2.181) would lead only to an additional
term of (∂w/∂z)2 in the bracketed part of (2.179). Under the assumption of
infinitesimal strain, this term would be dropped, leading again to (2.181).

The three-dimensional shear strains are also defined in analogy with the two-
dimensional case:

εxy = εyx = 1
2

(
∂u
∂y

+ ∂v
∂x

)
, εxz = εzx = 1

2

(
∂u
∂z

+ ∂w
∂x

)
,

εyz = εzy = 1
2

(
∂v
∂z

+ ∂w
∂y

)
.

(2.207)

These strains have the same physical interpretation as in two dimensions. For
example, the shear strain εxy represents the increase in the angle formed by two
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infinitesimally small line segments that initially start at point (x, y, z), and lie
along the x and y directions, respectively. However, the proof that this is indeed
the correct interpretation of the definition of εxy given in (2.207) requires more
than a simple extension of the two-dimensional version, since these two line
segments will not necessarily continue to lie in the x–y plane after deformation.
We start with a three-dimensional generalization of (2.171)–(2.173):

P∗ = P − u(P) = (x, y, z)− [u(x, y, x), v(x, y, z),w(x, y, z)], (2.208)

Q∗ = Q− u(Q) = (x +�x, y, z)

− [u(x +�x, y, x), v(x +�x, y, z),w(x +�x, y, z)],
(2.209)

R∗ = R − u(R) = (x, y +�y, z)

− [u(x, y +�y, x), v(x, y +�y, z),w(x, y +�y, z)].
(2.210)

Expanding each displacement component in a Taylor series around the point
(x, y, z), and retaining only terms that are linear in the increments �x and �y,
leads to

P∗ = (x − u, y − v, z − w), (2.211)

Q∗ = (x +�x − u − ∂u
∂x
�x, y − v − ∂v

∂x
�x, z − w− ∂w

∂x
�x), (2.212)

R∗ = (x − u − ∂u
∂y
�y, y +�y − v − ∂v

∂y
�y, z − w− ∂w

∂y
�y), (2.213)

where all of the partial derivatives are understood to be evaluated at the point
P = (x, y, z).

The angle formed by the line segments P∗Q∗ and P∗R∗ can be calculated from

→
(P∗Q∗) · (

→
P∗R∗) = ∣∣P∗Q∗∣∣ ∣∣P∗R∗∣∣ cos(∠R∗P∗Q∗), (2.214)

where the superposed arrow indicates that the line segment must be treated as a
vector. From (2.211) and (2.212), we have

P∗Q∗ =
(
�x − ∂u

∂x
�x, − ∂v

∂x
�x, −∂w

∂x
�x

)
, (2.215)

P∗R∗ =
(

−∂u
∂y
�y,�y − ∂v

∂y
�y, −∂w

∂y
�y

)
. (2.216)

Again neglecting all products and higher powers of the displacement gradient
components, we have

→
(P∗Q∗) · (

→
P∗R∗) = −∂u

∂y
�x�y − ∂v

∂x
�x�y. (2.217)

The lengths of the two segments P∗Q∗ and P∗R∗ are, from (2.180) and (2.182),

∣∣P∗Q∗∣∣ = �x
(

1 − ∂u
∂x

)
,

∣∣P∗R∗∣∣ = �y
(

1 − ∂v
∂y

)
. (2.218)
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Solving (2.214) for cos(∠R∗P∗Q∗) yields, to first-order in the displacement
gradient terms,

cos(∠R∗P∗Q∗) = − (
(∂u)/(∂x)+ (∂v)/(∂y)

)
�x�y

�x (1 − (∂u)/(∂x))�y
(
1 − (∂v)/(∂y)

)

= −
(
∂u
∂x

+ ∂v
∂y

)
. (2.219)

But as ∠R∗P∗Q∗ is very close to 90◦, we can say that

cos(∠R∗P∗Q∗) = − sin(∠R∗P∗Q∗) ≈ −(∠R∗P∗Q∗). (2.220)

Recalling the fundamental definition of shear strain, (2.183), and the fact that
∠RPQ = 90◦, it follows from (2.219) and (2.220) that

εxy = 1
2

lim
�x,�y→0

(∠R∗P∗Q∗ − ∠RPQ) = 1
2

(
∂u
∂y

+ ∂v
∂x

)
, (2.221)

which verifies that the shear strains, as defined by (2.207), do indeed measure the
angular distortions.

The nine strains defined in (2.206) and (2.207) are the components of the
three-dimensional strain tensor, ε:

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz




=




∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂z

+ ∂w
∂x

)

1
2

(
∂u
∂y

+ ∂v
∂x

)
∂v
∂y

1
2

(
∂v
∂z

+ ∂w
∂y

)

1
2

(
∂u
∂z

+ ∂w
∂x

)
1
2

(
∂v
∂z

+ ∂w
∂y

)
∂w
∂z




. (2.222)

As in the two-dimensional case, the strain matrix is equal to the symmetric part
of the displacement gradient, ∇u, whose components are the partial derivatives of
the displacements with respect to the three coordinates, that is,

ε = sym(∇u) ≡ 1
2

[∇u + (∇u)T
]

, (2.223)

∇u =




∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z




. (2.224)
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The antisymmetric part of the displacement gradient is again defined to be the
rotation tensor, ω, whose components are given by

ω = asym(∇u) ≡ 1
2

[∇u − (∇u)T
] =


ωxx ωxy ωxz
ωyx ωyy ωyz
ωzx ωzy ωzz




=




0
1
2

(
∂u
∂y

− ∂v
∂x

)
1
2

(
∂u
∂z

− ∂w
∂x

)

−1
2

(
∂u
∂y

− ∂v
∂x

)
0

1
2

(
∂v
∂z

− ∂w
∂y

)

−1
2

(
∂u
∂z

− ∂w
∂x

)
−1

2

(
∂v
∂z

− ∂w
∂y

)
0




. (2.225)

Arguments exactly analogous to that given in (2.200)–(2.203) would show
that, for example, ωxz quantifies the infinitesimal rotation about the y-axis,
etc. As there are only three independent components of the rotation tensor,
these components are often identified as the elements of the rotation vector,
(ωx ,ωy,ωz), where

ωx = 1
2

(
∂w
∂y

− ∂v
∂z

)
, ωy = 1

2

(
∂u
∂z

− ∂w
∂x

)
, ωz = 1

2

(
∂v
∂x

− ∂u
∂y

)
.

(2.226)

The particular choices of signs in these definitions are made such that, for exam-
ple, ωx will be positive if the rotation is counterclockwise when viewed from the
positive x-axis, toward the origin (Chou and Pagano, 1992, p. 48). It is impor-
tant to note that the strain and rotation components typically vary from point
to point, so that the rotations we are speaking of actually are confined to an
infinitesimal neighborhood of the point (x, y, z).

The three-dimensional demonstration that the strain is indeed a second-order
tensor follows exactly the same lines as given in (2.192) for the two-dimensional
case, except that there would be nine terms on the right-hand side, rather than
four. The explicit expressions for the transformation of the six strain compo-
nents are identical in form to (2.102)–(2.107). Hence, as the three-dimensional
strain is a symmetric second-order tensor, all of the general theorems developed
for three-dimensional stresses carry over to the strains. In particular, there will
always be three mutually perpendicular directions in which the normal strain
takes on locally stationary values, typically a maximum, a minimum, and a sad-
dle point. These three principal normal strains are denoted by ε1 ≥ ε2 ≥ ε3. In
the principal coordinate system, in which the three principal directions serve as the
coordinate axes, the shear strains are zero, and the strain tensor is purely diag-
onal. (The question of whether or not the principal directions of strain coincide
with the principal directions of stress depends on the stress–strain law of the rock;
see Chapter 5). Hence, at each point, there is always one coordinate system in
which the deformation of the rock can be represented by stretching (or contrac-
tion) along three mutually perpendicular directions. Of course, there are also,
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in general, rigid-body translations and rotations occurring at each point. There-
fore, the most general infinitesimal displacement at a point is a combination of
stretching (by, in general, differing amounts) along three mutually perpendicular
axes, followed by a rigid-body rotation and then a rigid-body translation. If the
rotations are infinitesimal, it can be shown (Fung, 1965, p. 97) that subsequent
rotations about the (x, y, z) axes by angles (ωx ,ωy,ωz) are equivalent to a single
rotation about an axis that coincides with the rotation vector, the angle of which
is given by ω = (ω2

x + ω2
y + ω2

z)
1/2.

The values of the three principal strains are found by solving an equation
analogous to (2.69):

ε3 − I1ε2 − I2ε − I3 = 0, (2.227)

in which the three strain invariants are defined by

I1 = trace(ε) = εxx + εyy + εzz, (2.228)

I2 = 1
2
{trace(ε2)−[trace(ε)]2}=ε2

xy+ε2
xz+ε2

yz−εxxεyy−εxxεzz−εyyεzz,
(2.229)

I3 = det(ε) = εxxεyyεzz + 2εxyεxzεyz − εxxε
2
yz − εyyε

2
xz − εzzε

2
xy. (2.230)

The first invariant of strain has the physical interpretation of representing the
volumetric strain in the vicinity of the point (x, y, z). To prove this, consider
a small cube of rock, one of whose corners is initially located at (x, y, z), and
whose edges are aligned (before deformation) with the three principal directions
of strain. Before the deformation, the edges of this cube each had length L,
and the cube had volume V . After the deformation, the edges of this cube will
have length L(1 − ε1), L(1 − ε2), and L(1 − ε3), and the new volume will be
V∗ = L3(1−ε1)(1−ε2)(1−ε3). The volumetric strain, defined as the fractional
decrease in the volume of the cube, is

εv = lim
L→0

V − V∗

V
= L3(1 − ε1)(1 − ε2)(1 − ε3)− L3

L3

= (1 − ε1)(1 − ε2)(1 − ε3)− 1

= 1 − (ε1 + ε2 + ε3)+ (ε1ε2 + ε1ε3 + ε2ε3)− ε1ε2ε3 − 1

≈ ε1 + ε2 + ε3 = I1, (2.231)

where, in the last step, the smallness of the strains has been invoked. Another
commonly used symbol for the volumetric strain is �. As I1 is an invariant, the
volumetric strain can be calculated from (2.228), in any coordinate system.

The strain tensor can be decomposed into an isotropic and a deviatoric part,
in a manner exactly analogous to the decomposition of the stresses:

ε = εiso + εdev, (2.232)

εiso = 1
3
I1 I = 1

3
εvI, (2.233)
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e = εdev = ε − εiso = ε − 1
3
εvI. (2.234)

Equation (2.234) can be written out explicitly as

e =


εxx − 1

3εv εxy εxz

εyx εyy − 1
3εv εyz

εzx εzy εzz − 1
3εv


 . (2.235)

The mean normal strain is defined by

εm = 1
3
I1 = 1

3
εv . (2.236)

The principal axes of the deviatoric strain coincide with the principal axes of
strain, and the magnitudes of the principal deviatoric strains are

e1 = ε1 − εm, e2 = ε2 − εm, e3 = ε3 − εm, (2.237)

so that e1 + e2 + e3 = 0.
An important special type of deformation is a homogeneous deformation, in

which the strains and rotations are the same at each point. In this case, it follows
from (2.223)–(2.226) that the displacement gradient takes the form

∇u =




∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z




=



ε0
xx ε0

xy − ω0
z ε0

xz + ω0
y

ε0
xy + ω0

z ε0
yy ε0

yz − ω0
x

ε0
xz − ω0

y ε0
yz + ω0

x ε0
zz


 , (2.238)

where the superscript 0 indicates that these components do not vary with posi-
tion. The nine first-order partial differential equations represented by (2.238) can
be integrated to yield

u = ε0
xxx + (ε0

xy − ω0
z)y + (ε0

xz + ω0
y)z + a, (2.239)

v = (ε0
xy + ω0

z)x + ε0
yyy + (ε0

yz − ω0
x)z + b, (2.240)

w = (ε0
xz − ω0

y)x + (ε0
yz + ω0

x)y + ε0
zzz + c, (2.241)

where {a, b, c} are constants. This deformation represents a stretching in the
{x, y, z} directions by fractional amounts {ε0

xx , ε0
yy, ε

0
zz}, followed by rotations

about the {x, y, z} axes by amounts {ω0
x ,ω0

y ,ω
0
z}, finally followed by rigid-body

translations in the {x, y, z} directions by amounts {a, b, c}. It is easy to show that,
under a homogeneous deformation: (i) a straight line remains straight, (ii) two
parallel lines remain parallel, and (iii) spheres are transformed into ellipses. An
interesting aspect of homogeneous deformations is that the above-listed prop-
erties hold regardless of whether or not the strain and rotation components are
infinitesimal.



Jaeger: “chapter02” — 2006/12/15 — 09:53 — page 55 — #47

Analysis of stress and strain 55

2.12 Determina-
tion of principal
stresses or strains
from measurements

Various methods exist to measure the state of stress underground. Many of these
methods actually involve measurement of the strains, from which the stresses are
estimated using known stress–strain relations for the given rock (see §5.2). These
methods, which involve strain gauges or displacement meters, are capable of
measuring normal strains in a given direction. The question then arises of using
the measured normal strains to find the principal strains and the principal direc-
tions. As the problem is mathematically identical in the case of stresses or strains,
we will discuss it in the context of finding the principal strains and their directions.

In two dimensions, there are three independent strain components, and so it
seems plausible that three strain measurements will be needed to supply sufficient
information to find these components. Another way of looking at this problem is
that three pieces of data are needed to estimate the two principal strains and the
angle of rotation of one of the principal directions with respect to some arbitrary
direction. Assume that we have measured the normal strains in three directions,
P, Q, and R, in some plane, as in Fig. 2.13. The angles of rotation between OP,
OQ, and OR will be known, but the angle of rotation θ between, say, OP and
the direction of the major principal stress will not be known a priori. In general,
it will often not be the case that two principal stresses actually lie in the plane
in question; in this case, we will actually be dealing with the subsidiary principal
stresses, as defined in §2.6; this does not affect the following discussion.

From (2.54) we have

εPP = 1
2
(ε1 + ε2)+ 1

2
(ε1 − ε2) cos 2θ , (2.242)

εQQ = 1
2
(ε1 + ε2)+ 1

2
(ε1 − ε2) cos 2(θ + α), (2.243)

εPP = 1
2
(ε1 + ε2)+ 1

2
(ε1 − ε2) cos 2(θ + α + β). (2.244)

These equations can be solved for ε1, ε2, and θ . For the commonly used strain
gauge rosette configuration in which α = β = 45◦, the solution is

ε1 + ε2 = εPP + εRR, (2.245)

ε1 − ε2 = [(εPP − 2εQQ + εRR)
2 + (εPP − εRR)

2]1/2, (2.246)

θ = 1
2

arctan[(εPP − 2εQQ + εRR)/(εPP − εRR)]. (2.247)

Fig. 2.13 Normal
strains that are
measured in three
directions, OP, OQ, and
OR can be used to find
the principal normal
strains and their
orientation, as explained
in the text.
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Another common case is α = β = 60◦, for which the solution is

ε1 + ε2 = 2
3
(εPP + εQQ + εRR), (2.248)

ε1 − ε2 =
[

4
3
(εQQ − εRR)

2 + 4
9
(2εPP − εQQ − εRR)

2
]1/2

, (2.249)

θ = 1
2

arctan[√3(εQQ − εRR)/(εQQ + εRR − 2εPP)]. (2.250)

Solutions for other configurations are described by Hetényi (1950, p. 412). These
equations could also be solved graphically, using Mohr’s circle, as in §2.4.

2.13 Compatibility
equations

In two dimensions, there are two displacement functions and four strain com-
ponents. Two of these strains, the shear strains εxy and εyx , are equal to each
other by definition. In three dimensions, there are essentially six strains and three
displacements. If the displacement field u is known as a function of x, the strains
can be computed by simply taking partial derivatives. The converse problem,
that of determining the displacements from the strains, requires a complicated
integration procedure (Sokolnikoff, 1956, pp. 25–9). In those rock mechanics
problems for which the displacements themselves are of interest, one would
usually use a solution procedure that directly makes use of the displacements
as the basic unknown variables. However, there are many situations in which
only the stresses are desired but the displacements are not. For these problems,
solution procedures exist that utilize the stresses as the basic unknowns but in
which the displacements do not explicitly appear (see §5.5 and §5.7). Hence, in
both types of situations the integration procedure itself is usually avoided. Nev-
ertheless, when using a stress-based formulation of the elasticity equations, the
number of equations will be less than the number of unknowns unless one con-
siders an additional set of equations known as the compatibility equations. These
equations are necessary conditions in order that the partial differential equations
represented by (2.186) or (2.222) can be integrated to yield the displacements.
These equations must be satisfied whether or not one attempts to perform the
integration.

To understand the origin of the integrability condition, consider the simpler,
but essentially equivalent, situation of a single function f of two variables, x and
y. Assume that the two partial derivatives of f are given as specified functions,M
and N, that is,

M(x, y) = ∂ f
∂x

, N(x, y) = ∂ f
∂y

. (2.251)

The two functions M and N cannot be specified arbitrarily, even if they are both
assumed to be continuous, differentiable functions. This is because, as the mixed
partial derivatives of f must be equal (Lang, 1973, p. 110), we must have

∂M
∂y

= ∂

∂y

(
∂ f
∂x

)
= ∂2f
∂y∂x

= ∂2f
∂x∂y

= ∂

∂x

(
∂ f
∂y

)
= ∂N
∂x

. (2.252)



Jaeger: “chapter02” — 2006/12/15 — 09:53 — page 57 — #49

Analysis of stress and strain 57

Hence, M and N are not completely independent, but must satisfy the partial
differential equation ∂M/∂y = ∂N/∂x.

Similar integrability conditions exist for the strains, in both two and three
dimensions. The integrability condition is easy to derive in two dimensions,
simply by taking two partial derivatives of each of the three strain components,
as given by (2.181), (2.182), and (2.185), which leads to

2
∂2εxy

∂x∂y
= ∂2εxx

∂y2 + ∂2εyy

∂x2 . (2.253)

In three dimensions, six such relations can be derived among the six strain
components. (The number of compatibility equations is not simply equal to the
number of strains less the number of displacements, as is sometimes implied).
These relations, first derived in 1860 by the great French elastician Saint Venant,
are, in addition to (2.253),

2
∂2εyz

∂y∂z
= ∂2εyy

∂z2 + ∂2εzz

∂y2 , (2.254)

2
∂2εzx

∂z∂x
= ∂2εzz

∂x2 + ∂2εxx

∂z2 , (2.255)

∂2εxx

∂y∂z
= ∂

∂x

(
−∂εyz
∂x

+ ∂εzx

∂y
+ ∂εxy

∂z

)
, (2.256)

∂2εyy

∂z∂x
= ∂

∂y

(
∂εyz

∂x
− ∂εzx

∂y
+ ∂εxy

∂z

)
, (2.257)

∂2εzz

∂x∂y
= ∂

∂z

(
∂εyz

∂x
+ ∂εzx

∂y
− ∂εxy

∂z

)
. (2.258)

These equations are necessary, and also sufficient, for the displacements to
exist as continuous, single-valued functions (Fung, 1965, pp. 101–3). The impor-
tance of the compatibility equations in solving elasticity problems is illustrated
in §5.7. Finally, it should be noted that the compatibility equations impose con-
ditions only on the manner in which the strains vary from point to point. But
there are no necessary conditions that must hold between the strain components
at any one point; at any given point, the strain components εxx , εyy, and εxy can
take on any three arbitrary values.

2.14 Stress and
strain in polar and
cylindrical
coordinates

In many rock mechanics problems involving circular geometries, such as those
involving tunnels, boreholes, or cylindrical rock cores used as test specimens,
it is convenient to use polar coordinates (for two-dimensional problems) or
cylindrical coordinates (for three-dimensional problems). We will first consider
polar coordinates in a plane; cylindrical coordinates are created by simply adding
a Cartesian axis that is perpendicular to the plane.

Consider a plane, with an (x, y) coordinate system attached to some origin
O (Fig. 2.14a). Each point P, with coordinates (x, y) relative to the Cartesian
coordinate system, can also be identified with two polar coordinates, r and θ .
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The radial coordinate r measures the distance from P to the origin, whereas the
angular coordinate θ measures the angle of counterclockwise rotation from the
line segmentOX toOP. These two sets of coordinates are related to each other by

x = r cos θ , y = r sin θ , (2.259)

r = (x2 + y2)1/2, θ = arctan(y/x). (2.260)

At each point P, we can imagine a local pair of unit vectors, er and eθ, pointing
in the r and θ directions, respectively. An infinitesimal region of rock bounded
by the arcs r, r +�r, θ , and θ +�θ , is shown in Fig. 2.14b.

At each point P, the two unit vectors {er , eθ} can be thought of as defining
a Cartesian coordinate system that is rotated by an angle θ from the {ex, ey}
system. Hence, the stresses in the polar coordinate system can be found from
those in the Cartesian system through equations (2.25)–(2.27):

τrr = τxx cos2 θ + 2τxy sin θ cos θ + τyy sin2 θ , (2.261)

τθθ = τxx sin2 θ − 2τxy sin θ cos θ + τyy cos2 θ , (2.262)

τrθ = (τyy − τxx) sin θ cos θ + τxy(cos2 θ − sin2 θ). (2.263)

At each point P, the stresses in polar coordinates constitute a symmetric second-
order tensor.

The displacement vector in polar coordinates (Fig. 2.14b) will be denoted by
(u′, v′). Note that, according to the sign convention introduced in (2.171), the
actual motion of the rock particle is in the direction of (−u′, −v′). Because
the (r, θ) coordinate system is (locally) merely a rotated Cartesian coordinate
system, the displacement components in the (r, θ) system are related to those in
the (x, y) system by (2.191):

u′ = u cos θ + v sin θ , v′ = −u sin θ + v cos θ , (2.264)

u = u′ cos θ − v′ sin θ , v = u′ sin θ + v′ cos θ . (2.265)

The situation is more complicated for relations that involve differentiation,
such as the strain–displacement relations. For such relationships, it becomes
necessary to account for the fact that, in contrast to the unit vectors {ex, ey},
the unit vectors {er , eθ} point in different directions at different locations. An
implication of this fact is that it is not proper to define the strains in a polar

Fig. 2.14 (a) Polar
coordinate system.
(b) Infinitesimal
element of rock in a
polar coordinate
system. (c) Cylindrical
coordinate system.
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coordinate system in the same manner as was done for Cartesian coordinates in
§2.10. The proper definition of the strains in general, non-Cartesian coordinates
is discussed by Green and Zerna (1954) and Amenzade (1979), among others. In
polar coordinates, the proper definitions of strains can be arrived at by using the
chain rule of partial differentiation, in conjunction with (2.259), (2.260), (2.264),
and (2.265).

To carry out these calculations, we need the following partial derivatives:

∂r
∂x

= ∂

∂x
(x2 + y2)1/2 = x

(x2 + y2)1/2
= x
r

= cos θ , (2.266)

∂r
∂y

= ∂

∂y
(x2 + y2)1/2 = y

(x2 + y2)1/2
= y
r

= sin θ , (2.267)

∂θ

∂x
= ∂

∂x
[arctan(y/x)] = −y/x2

[1 + (y/x)2] = −y
r2

= − sin θ
r

, (2.268)

∂θ

∂y
= ∂

∂y
[arctan(y/x)] = 1/x

[1 + (y/x)2] = x
r2

= cos θ
r

. (2.269)

Now apply the chain rule to the strain component εxx :

εxx = ∂u
∂x

= ∂u
∂r
∂r
∂x

+ ∂u
∂θ

∂θ

∂x
= cos θ

∂u
∂r

− sin θ
r
∂u
∂θ

. (2.270)

But, from (2.265),

∂u
∂r

= cos θ
∂u′

∂r
− sin θ

∂v′

∂r
, (2.271)

∂u
∂θ

= cos θ
∂u′

∂θ
− u′ sin θ − sin θ

∂v′

∂θ
− v′ cos θ . (2.272)

Combining (2.270)–(2.272), and collecting terms, yields

εxx = ∂u′

∂r
cos2 θ −

[
∂v′

∂r
+ 1
r
∂u′

∂θ
− v′

r

]
sin θ cos θ +

[
1
r
∂v′

∂θ
+ u′

r

]
sin2 θ .

(2.273)

As the {ex, ey} axes are obtained from the {er , eθ} axes by a counterclockwise
rotation of angle −θ , the strain εxx can also be obtained from the strains in the
polar coordinate system by the usual strain transformation equations, (2.192),
using an angle of −θ :

εxx = εrr cos2 θ − 2εrθ sin θ cos θ + εθθ sin2 θ . (2.274)

Comparison of (2.273) and (2.274) indicates that

εrr = ∂u′

∂r
, εθθ = 1

r
∂v′

∂θ
+ u′

r
, εrθ = 1

2

(
∂v′

∂r
+ 1
r
∂u′

∂θ
− v′

r

)
. (2.275)

These relations can also be derived by more sophisticated methods (Sokolnikoff,
1956, pp. 177–84).
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The areal dilatation, which is the two-dimensional analogue of the volumetric
strain, is given, as usual, by the sum of the diagonal components of the strain
tensor:

εa = εrr + εθθ = ∂u′

∂r
+ u′

r
+ 1
r
∂v′

∂θ
, (2.276)

The following compatibility criterion for the strains in polar coordinates can be
derived by taking appropriate partial derivatives of the strains in (2.275):

2
∂2(rεrθ )
∂r∂θ

= r
∂2(rεθθ )
∂r2

− r
∂εrr

∂r
+ ∂2εrr

∂θ2 . (2.277)

In three-dimensional problems involving cylindrical geometry or axial symme-
try, cylindrical polar coordinates are often used (Fig. 2.14c). The third unit vector
ez is perpendicular to the {er , eθ} plane, and is oriented such that {er , eθ, ez} form
a right-handed coordinate system. The two coordinates r and θ are then taken to
be the polar coordinates of the point P′, which is the projection of point P onto
the (x, y) plane, and the coordinate z is the perpendicular distance of P from the
(x, y) plane. The displacement component in the z direction will be denoted by
w′, so that

u′ = u′er + v′eθ + w′ez. (2.278)

The nine stress components are denoted by

{τrr , τrθ , τrz, τθ r , τθθ , τθz, τzr , τzθ , τzz}, (2.279)

where the subscripts play the usual role in indicating the direction of the traction
and the plane on which it acts. The strain–displacement relations are given by
(2.275), along with

εzr = 1
2

(
∂w′

∂r
+ ∂u′

∂z

)
, εzθ = 1

2

(
1
r
∂w′

∂θ
+ ∂v′

∂z

)
, εzz = ∂w′

∂z
. (2.280)

The volumetric strain is given by

εv = εrr + εθθ + εzz = ∂u′

∂r
+ u′

r
+ 1
r
∂v′

∂θ
+ ∂w′

∂z
. (2.281)

The five additional compatibility equations, which in the full three-dimensional
case are needed in addition to (2.277), can be found in Rekach (1979, p. 27).

2.15 Finite strain Most analyses in rock mechanics, including most of the commonly used com-
puter codes, utilize the theory of infinitesimal strain. However, some problems,
particularly those involving deformations that occur over geological time, neces-
sarily involve strains that are not small compared to unity. To analyze these pro-
cesses, the theory of finite strain must be used (Means, 1976; Oertel, 1996). This
more general theory, which reduces to the theory of infinitesimal strain when the
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strain and rotation components are small, is more difficult to utilize due mainly
to the nonlinear relationships that exist between the components of the displace-
ment gradient and the components of the finite strain tensor. This nonlinearity
is essentially different from that which arises when using nonlinear stress–strain
relationships in conjunction with the infinitesimal strain assumption; this latter
type of nonlinearity is quite common in rock mechanics analyses.

Recall that the original location of a rock particle is denoted by x = (x, y, z),
and its position after the rock has been deformed is denoted by x∗ = (x∗, y∗, z∗).
For the time being, we will not utilize the concept of displacement, which is not
fundamental to the theory of finite strain. Now consider a small line element
in the undeformed configuration, represented by the vector dx, whose tail is
located at x. After the deformation, this element will be deformed into a new
line element dx∗, located at point x∗, whose components are given by

dx∗ = ∂x∗

∂x
dx + ∂x∗

∂y
dy + ∂x∗

∂z
dz, (2.282)

dy∗ = ∂y∗

∂x
dx + ∂y∗

∂y
dy + ∂y∗

∂z
dz, (2.283)

dz∗ = ∂z∗

∂x
dx + ∂z∗

∂y
dy + ∂z∗

∂z
dz. (2.284)

This relationship between the deformed and undeformed elements can be
written in vector-matrix form as


dx∗

dy∗
dz∗


 =




∂x∗

∂x
∂x∗

∂y
∂x∗

∂z
∂y∗

∂x
∂y∗

∂y
∂y∗

∂z
∂z∗

∂x
∂z∗

∂y
∂z∗

∂z





dx

dy
dz


 , (2.285)

or, in a more condensed notation as

dx∗ = Fdx, (2.286)

where the matrix F, whose elements are given in (2.285), is known as the defor-
mation gradient (not to be confused with the displacement gradient, to which it
is related, as shown below).

The deformation gradient F contains within it all of the relevant information
concerning the stretching and rotation of the various elements of the deformed
rock. It does not serve directly as a measure of strain, however, because a suitable
measure of finite strain should have the property of vanishing if, for example, the
rock undergoes a rigid-body rotation. To construct a suitable finite strain tensor,
we examine the change in length undergone by the element dx:

|dx|2 = dx · dx = dxTdx, (2.287)

|dx∗|2 = (dx∗)Tdx∗ = (Fdx)T(Fdx) = dxT(FTF)dx, (2.288)

|dx|2 − |dx∗|2 = dxTdx − dxT(FTF)dx = dxT(I − FTF)dx ≡ 2dxTEdx,
(2.289)
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where E, as defined in (2.289), is the Lagrangian finite strain tensor. We have
defined it here so as to be consistent with the “compression = positive” sign
convention; it therefore differs from the usual definition given in continuum
mechanics treatments, such as Fung (1965) or Malvern (1969). It can be seen from
(2.289) that the elongation (or shortening, as the case may be) of a linear element
can be computed from E. Note that if the deformation is a rigid-body rotation,
then it will necessarily be true that FT = F−1, in which case FTF = F F−1 = I,
and the Lagrangian strain vanishes. This can be verified (in two dimensions)
by considering a rigid-body rotation, such as given by (2.199), and explicitly
calculating FTF. Although F will not necessarily be symmetric, it is easy to verify
that E is symmetric.

Each normal component of E provides a measure of the strain of an element
that initially lies along one of the coordinate axes. For example, consider an
element that initially lies along the x-axis, that is, dx = (dx, 0, 0). From (2.287),
we have

|dx|2 = [
dx 0 0

] 
dx

0
0


 = (dx)2, (2.290)

and from (2.289), we have

|dx|2 − |dx∗|2 = 2
[
dx 0 0

] 
Exx Exy Exz
Eyx Eyy Eyz
Ezx Ezy Ezz





dx

0
0


 = 2Exx(dx)2,

(2.291)

which is to say

|dx∗| = (1 − 2Exx)1/2|dx|. (2.292)

The fractional shortening, as defined in (2.169), is therefore given by

|dx| − |dx∗|
|dx| = 1 − (1 − 2Exx)1/2. (2.293)

If Exx is small, the right-hand side of (2.293) reduces to Exx , and we recover
(2.181).

Another commonly used measure of the elongation is the stretch ratio, λ,
defined by

λ ≡ |dx∗|
|dx| = (1 − 2Exx)1/2. (2.294)

The stretch ratio of an element initially lying along the y direction would be
(1 − 2Eyy)1/2, etc. As there may also, in general, be a rotational component
to the deformation, a line segment that initially lies in the x direction will not
necessarily continue to lie in that direction after the deformation.
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Now consider two infinitesimal elements that are initially at right angles to
each other, for example, dx1 = (dx, 0, 0) and dx2 = (0, dy, 0). These ele-
ments can be identified with PQ and PR of Fig. 2.12a. We now take the inner
product of these two elements after deformation, as in the calculations given
by (2.214)–(2.221):

|dx∗
1 ||dx∗

2 | cos ∠R∗P∗Q∗ = (dx∗
1) · (dx∗

2) = (dx∗
1)

T(dx∗
2)

=(Fdx1)
T(Fdx2)=(dx1)

TFTF(dx2)=(dx1)
T(I−2E)(dx2)=[dx 0 0]

×

1 − 2Exx −2Exy −2Exz

−2Eyx 1 − 2Eyy −2Eyz
−2Ezx −2Ezy 1 − 2Ezz





 0

dy
0


 = −2Exydxdy. (2.295)

The lengths of the deformed elements |dx∗
1 | and |dx∗

2 | are given by (2.292), so

cos ∠R∗P∗Q∗ = −2Exydxdy

(1 − 2Exx)1/2dx(1 − 2Eyy)1/2dy

= −2Exy
(1 − 2Exx)1/2(1 − 2Eyy)1/2

. (2.296)

Hence, the change in the angle formed by two initially perpendicular elements
can be found in terms of the components of the finite strain tensor, although
the relationship is not as simple as in the infinitesimal case. If all of the strain
components are small, then, following along the lines of (2.220)–(2.221), it can
be shown that the increase in the angle is given by 2Exy, and we recover (2.221).

The relationship between the finite strain tensor and the infinitesimal strain
tensor can be investigated more thoroughly by recalling that, for example, x∗ =
x − u, in which case

∂x∗

∂x
= 1 − ∂u

∂x
;

∂x∗

∂y
= −∂u

∂y
;

∂x∗

∂z
= −∂u

∂z
, (2.297)

and similarly for y∗ and z∗. Therefore, F = I − ∇u, and so

2E = I − FTF = I − (I − ∇u)T(I − ∇u) = I − [I − (∇u)T][I − ∇u]
= I − [I − (∇u)T − ∇u + (∇u)T∇u] = (∇u)T + ∇u − (∇u)T∇u,

that is, E = 1
2
[∇u + (∇u)T − (∇u)T∇u]. (2.298)

Comparison of (2.298) with (2.223) shows that in addition to terms that are
linear in the components of the displacement gradient, the finite strain tensor
also contains terms that are quadratic in the components of the displacement
gradient. If all of the components of ∇u are small, the quadratic terms can be
neglected, and E reduces to the infinitesimal strain tensor, ε. The individual
components of E, as defined by (2.298), are

Exx = ∂u
∂x

− 1
2

[(
∂u
∂x

)2

+
(
∂v
∂x

)2

+
(
∂w
∂x

)2]
, (2.299)
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Eyy = ∂v
∂y

− 1
2

[(
∂u
∂y

)2

+
(
∂v
∂y

)2

+
(
∂w
∂y

)2]
, (2.300)

Ezz = ∂w
∂z

− 1
2

[(
∂u
∂z

)2

+
(
∂v
∂z

)2

+
(
∂w
∂z

)2]
, (2.301)

Exy = Eyx = 1
2

[
∂u
∂y

+ ∂v
∂x

−
(
∂u
∂x
∂u
∂y

+ ∂v
∂x
∂v
∂y

+ ∂w
∂x
∂w
∂y

)]
, (2.302)

Exz = Ezx = 1
2

[
∂u
∂z

+ ∂w
∂x

−
(
∂u
∂x
∂u
∂z

+ ∂v
∂x
∂v
∂z

+ ∂w
∂x
∂w
∂z

)]
, (2.303)

Eyz = Ezy = 1
2

[
∂v
∂z

+ ∂w
∂y

−
(
∂u
∂y
∂u
∂z

+ ∂v
∂y
∂v
∂z

+ ∂w
∂y
∂w
∂z

)]
. (2.304)
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3.1 Introduction Friction is the phenomenon by which a tangential shearing force is required
in order to displace two contacting surfaces along a direction parallel to their
nominal contact plane. The study of friction is of great importance in rock
mechanics. Its effects arise on all scales: (i) on the microscopic scale, in which
friction occurs between faces of minute “Griffith” cracks, (ii) on a somewhat
larger scale in which it occurs between individual grains or pieces of aggregate,
and (iii) on an even larger scale, on the order of many square meters, over which
friction between fault surfaces occurs.

Modern knowledge of friction began with the work of Amontons in France
at the end of the seventeenth century. Much experimental work on friction
between solid surfaces, and theoretical attempts to explain friction in terms of
the geometry and physical properties of the contacting surfaces, is summarized in
the monograph of Bowden and Tabor (1985). More recently, technical advances
such as atomic force microscopy have yielded new insights into the molecular
basis of solid–solid friction (Krim, 1996). However, most of this understanding
has been developed for metals and other engineering solids, and its applicability
to rock surfaces remains uncertain. Hence, although an atomic-level explanation
of rock friction remains elusive, many aspects of the frictional behavior of rock
surfaces are indeed understood on a phenomenological level.

In §3.2, the classical theory of friction between solid (typically metallic) sur-
faces is discussed. Friction on rock surfaces is treated in §3.3. The interesting
phenomenon of “stick–slip” between two sheared surfaces in contact is dis-
cussed in §3.4. The sliding of two adjacent pieces of rock along a contact surface
or indeed any “plane of weakness” is analyzed in some detail in §3.5. Finally,
§3.6 treats some aspects of rock friction, namely the effects of time and velocity,
which are not accounted for in the simple classical theory.

Frictional forces act along faces of cracks, fractures, and faults in rock. These
structures are discussed in more detail in later chapters. However, the basic ideas
of rock friction present a simple context in which to utilize the Mohr’s circle
construction. They also serve as a starting point for the development of failure
laws for intact rock. Finally, in terms of historical development, friction was
perhaps the first aspect of rock behavior to be studied and partially understood.
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For these reasons, it seems fitting to place the treatment of friction at this early
point in the text.

3.2 Amontons’ law Suppose that two bodies in contact over an approximately planar surface are
pressed together by a normal force N (Fig. 3.1a). The apparent (macroscopic,
nominal) area of contact is A. If a tangential shearing force is applied parallel
to the plane of contact, it is observed that this force must reach some critical
value T in order for sliding to occur. The relationship between T and N may be
written as

T = µN, (3.1)

where µ is called the coefficient of friction. This coefficient will depend on the
nature of the two surfaces. It might also be expected to depend on the normal load
N, and/or on the nominal surface area A. However, to a good approximation,
in many cases this coefficient is independent of both the normal load and the
apparent area of contact – an empirical observation that is known as Amontons’
law, first enunciated in 1699. In this case the shearing force needed to cause
relative motion between the two surfaces is directly proportional to the normal
force pressing the surfaces together. Dividing both sides of (3.1) by the nominal
area A yields

τ = µσ , (3.2)

where τ is the shear component of the traction acting along the contact plane,
and σ is the normal component. These are usually somewhat loosely referred to
as the shear stress and normal stress acting on the contact plane.

Amontons had in fact found that µwas also independent of the materials and
the surface finish of the contact region, with a value of about 1/3. More accurate
experiments by other researchers later showed that µ may vary from values
close to 0, for Teflon–Teflon contacts, to values as high as 1.5, for nickel–nickel
contacts (Bowden and Tabor, 1985).

Equation (3.2) refers to the condition necessary to initiate sliding, starting
from a state of rest. Hence, µ is more properly referred to as the coefficient
of static friction. Once sliding has been initiated, however, it is found that the

Fig. 3.1 Two bodies
in contact along (a) a
nominally planar
surface, and (b) a
surface having a local
region inclined at an
angle θ , acted on by a
normal force N and a
tangential force T.

T

N

(a)

N ′

T

N

(b)

T ′

θ
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shear stress required to maintain motion is somewhat less than µσ . In fact, the
condition for maintaining relative motion at constant velocity is τ = µdσ , where
µd < µ is the coefficient of dynamic friction. For many engineering materials,µd
is found to be nearly independent of the relative velocity of the two surfaces – an
approximate “law” that was first noted by the French physicist Coulomb in 1785.

For irregular surfaces, it may happen that sliding takes place up a plane inclined
by some small angle θ to the nominal plane of contact (Fig. 3.1b). The normal
and tangential forces acting on this inclined surface are

N ′ = N cos θ + T sin θ , T ′ = T cos θ − N sin θ . (3.3)

If sliding along the incline is governed by T ′ = µN ′, then the two force
components acting along the nominal plane of contact are related by

T = N(tan θ + µ)/(1 − µ tan θ). (3.4)

For small angles,

T = [µ+ (1 + µ2)θ ]N, (3.5)

so that there is an increase in the apparent coefficient of friction, by an amount
proportional to θ .

3.3 Friction on rock
surfaces

Frictional effects are of importance in rock mechanics mainly in two connections.
On a small scale, friction may occur between the facing surfaces of microcracks.
On a larger scale, friction occurs between the surfaces of joints or fracture
planes. The surfaces in question may be new surfaces, such as along a tension
joint on which no sliding has yet occurred, or they may be old surfaces on which
considerable relative motion has already taken place. The scale and condition
of the surfaces on which laboratory measurements are made will usually lie
somewhere between these two extremes.

Measurements of rock friction can be made using any of the configurations
shown in Fig. 3.2. In configuration (a), essentially the same as shown in Fig. 3.1a,
the two rock surfaces are pressed together by a normal force N and sheared
by a tangential force T (Penman, 1953; Bowden, 1954; Horn and Deere, 1962).
In practice, this configuration requires elaborate precautions to ensure that the
normal load is applied uniformly across the surface. Hoskins et al. (1968) used

Fig. 3.2 Several
configurations used in
measuring friction
along rock surfaces.

T
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(a) (b)

N
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N

T
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Fig. 3.3 Different
configurations used for
measuring friction in a
triaxial testing machine. (a) (b) (c) (d)

�1

�1

�2�2

β

configuration (b), with the normal forces N applied by flat pressure cells and
the tangential force T applied by a standard rock-testing machine (§6.4). In this
configuration, the amount of contact area will be constant, but the contact will
not occur over precisely the same surfaces throughout the process. The rotary
system (c) has the advantage that the same surfaces will be in contact, regardless
of the amount of displacement that has occurred.

The most commonly used configuration is (d), in which a cylindrical core is
sliced at an angle β to the diametral plane, and placed in a standard “triaxial”
testing cell. The specimen is jacketed in rubber or copper, lateral pressure σ2 =
σ3 is applied to its lateral curved surface by oil pressure, and an axial stress σ1 is
applied by the testing machine. This method allows high normal and tangential
stresses to be applied to the sample, but has the disadvantage that a change in
geometry, or stress, or both, occurs after any slippage between the two surfaces.

Three variations of this configuration may be used (Fig. 3.3). In configuration
(a), the cylindrical specimen is situated between rigid platens whose faces are
perpendicular to the maximum principal stress σ1. After initial slip has occurred,
a lateral stress is produced whose magnitude is not known. In (b), a single
spherical seat is used, in which case the specimen rotates into configuration
(c) as slip occurs, after which contact no longer exists over the original planar
surfaces of elliptical cross section. If two spherical seats are used, as in (d), the
specimen halves will rotate so as to maintain the angle of contact. However,
the amount of contact area will decrease as slip proceeds, and lateral forces are
again produced. Hence, in each configuration, either the geometry or the forces
change as slippage occurs. Nevertheless, for small amounts of slip, consistent
results can in fact be obtained using all three methods.

Jaeger (1959), Byerlee (1967) and others have used the method of a single
spherical seat, (b). The experiments can be conducted using any angle β between
about 30◦ and 65◦. The inferred values of µ might be expected to vary with β,
but in fact are found to be nearly independent of the angle, indicating that the
changes in geometry shown in Fig. 3.3c do not greatly contaminate the results.

Consider again the configuration shown in Fig. 3.2b. According to the simple
classical theory as expressed by Amontons’ law, no sliding takes place when
T < µN, although a small elastic deformation of the central block will occur.
After T reaches the valueµN, slippage will commence, starting at point P. If this
slippage is constrained to occur at constant velocity, the tangential force will be
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Fig. 3.4 (a) Force–
displacement curve for
idealized frictional
behavior.
(b) Schematized
force–displacement
curve obtained by
Hoskins et al. (1968) for
a moderately rough
trachyte surface in an
apparatus similar to that
of Fig. 3.2b.
(c) Subsequent
force–displacement
curves for the same
surfaces, under normal
loads that are 0.5, 1.0,
and 1.5 times that used
in (b).
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T = µdN, where µd is the coefficient of dynamic friction. This idealized behavior
is shown schematically in Fig. 3.4a, where, for simplicity, we take µd = µ.

An example of actual data obtained by Hoskins et al. (1968) on a moderately
rough trachyte surface is shown in Fig. 3.4b, although the results are typical of
those found for other rocks. The initial elastic displacement is seen to be slightly
nonlinear. Sliding begins at P, and if the coefficient of friction is defined based
on the point of first slippage, we would find µ = TP/N. But the tangential
force needed to produce continued sliding in fact increases, approaching an
asymptotic value after a displacement of about 2 cm. This increase is attributable
to the development of a new surface of sliding, which contains slickensides and
detrital material. If sliding is reinitiated under a larger value of N, a constant
value of T is attained more rapidly (Fig. 3.4c).

If the data obtained by Hoskins et al. (1968) are interpreted in accordance
with (3.3), in which µ = T/N = τ/σ , it is found that the coefficient of friction
decreases with increasing normal stress, stabilizing at high values of σ (Fig. 3.5b).
However, if τ is plotted against σ , as in Fig. 3.5a, the data fall on nearly straight
lines. This suggests using the following equation to describe rock friction:

τ = So + µσ , (3.6)

which was originally proposed by Coulomb in 1785. Borrowing the terminology
used in soil mechanics, So is called the cohesion of the surface, andµ the coefficient
of friction. As this equation gives a different definition of µ than does (3.3), we
henceforth use µ∗ to refer to the ratio τ/σ . Thus, µ∗ is the secant of the τ–σ
curve, andµ is the (best-fit) tangent of that curve. If (3.6) is indeed obeyed, these
two friction coefficients are related by µ∗ = µ+ (So/σ).

Values of the friction coefficient µ of various rocks and minerals are shown
in Table 3.1. The measured values vary with rock type, and also depend on
surface finish and whether or not the surface is wet or dry. The presence of water
increases µ in some cases, decreases it in others, and in some cases has little
effect.

Byerlee (1978) found that the frictional behavior of a broad range of common
rock types could be fit by the following bilinear empirical expression:

τ = 0.85σ for σ < 200 MPa,

τ = 50 MPa + 0.6σ for 200 < σ < 1700 MPa,
(3.7)

which is often referred to as Byerlee’s law. This law is equivalent to taking a
different pair of values for So and µ in the two ranges {σ < 200 MPa} and
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Fig. 3.5 (a) Shear
stress plotted against
normal stress for two
rock surfaces. (b) Same
data, with µ∗ = τ/σ

plotted against σ
(Hoskins et al., 1968).

0

1

2

3

4

5

6

0 1 2 3 4 5 6
S

he
ar

 s
tr

es
s,

 �
 (M

P
a)

 

Normal stress, � (MPa)(a)

Wombeyan marble 
So = 1.13, � = 0.77

Gosford sandstone 
So = 0.24, � = 0.53

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6

�*
 =

  �
/�

Normal stress, � (MPa)(b)

Wombeyan marble 

Gosford sandstone

Table 3.1
Coefficient of friction
of some rocks and
minerals.

Notation:
B = Bowden and
Tabor (1985),
By = Byerlee (1967),
H = Hoskins et al.,
(1968), HS = Handin
and Stearns (1964),
HD = Horn and
Deere (1962),
J = Jaeger (1959),
P = Penman (1953),
R = Rae (1963);
l = large surface,
s = small surface,
t = triaxial test,
r = rough surface,
c = coarsely ground
surface, f = finely
ground surface,
n = natural shear
surface, w = wet
surface, d = dry
surface.

Mineral µ Mineral µ µ (wet)

NaCl [B,s] 0.7 Quartz [HD] 0.11 0.42
PbS [B,s] 0.6 Quartz [P] 0.19 0.65
S [B,s] 0.5 Feldspar [HD] 0.11 0.46
Al2O3 [B,s] 0.4 Calcite [HD] 0.14 0.68
Ice [B,s] 0.5 Muscovite [HD] 0.43 0.23
Glass [B,s] 0.7 Biotite [HD] 0.31 0.13
Diamond [B,s] 0.1 Serpentine [HD] 0.62 0.29
Diamond [B,s,c] 0.3 Talc [HD] 0.36 0.16

Rock µ Mineral µ

Sandstone [R] 0.68 Trachyte [H,l,f] 0.63
Sandstone [J,t,n] 0.52 Trachyte [H,l,c] 0.68
Sandstone [H,l,r] 0.51 Trachyte [H,l,c,w] 0.56
Sandstone [H,l,r,w] 0.61 Marble [H,l,f] 0.75
Granite [By,t,n,c] 0.60 Marble [J,t,n] 0.62
Granite [By,t,n,c,w] 0.60 Porphyry [J,t,n] 0.86
Granite [H,l,g] 0.64 Dolomite [H,s,t,c] 0.40
Gneiss [J,t,n] 0.71 Gabbro [H,l,f] 0.18
Gneiss [J,t,n,w] 0.61 Gabbro [H,l,c] 0.66

{σ > 200 MPa}. Notable exceptions to this law include clays and other sheet
silicates (Lockner, 1995).

3.4 Stick–slip
oscillations

If rock friction tests are conducted on finely ground or polished surfaces, a
phenomenon known as “stick–slip” is sometimes found to occur (Fig. 3.6a). If a
shear load T is applied as the normal load N is held constant, the displacement
increases gradually as the shear force T increases, until at some point it jumps
abruptly, after which the surfaces lock together again, and the force drops to a
lower value. This process continues, with each sticking phase followed by a slip
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Fig. 3.6
(a) Force–displacement
for a granite surface in
the apparatus of
Fig. 3.2b, under different
normal loads. (b)
Variation of maximum
and minimum shear
stress as a function of
the normal load
(Hoskins et al., 1968).
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Fig. 3.7 (a) Model of
a simple mechanical
system that will exhibit
stick–slip oscillations.
(b) Motion of this
system as a function of
time.
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phase of very short duration. After several cycles the maximum and minimum
values of the shear load T each reach asymptotic values. If these asymptotic
values of Tmax and Tmin are plotted against N, straight lines of the form

|τ | = So + µσ , τ = S′
o + µ′σ , (3.8)

are obtained (Fig. 3.6b). As µ is obtained from the values of T that occur
immediately before slip occurs, it represents the coefficient of static friction.

A simple model for a system exhibiting stick–slip oscillations can be formulated
that requires only the assumption that µd < µ. Consider a body of mass m
resting on a horizontal surface, attached on one side to a spring having stiffness
k (Fig. 3.7a). The normal force exerted by the mass on the surface is mg. (An
additional normal load N could be assumed to be pressing the mass against the
surface, but this adds an additional parameter into the equations without giving
qualitatively different behavior.) Let the free end of the spring be moved to the
right at a constant velocity v, in which case the position of the free end is given
by ξ = vt. If the position x of the mass is measured from its initial location, the
spring is compressed by an amount ξ − x = vt − x, and the rightward force
exerted by the spring on the mass will be T = k(vt − x). If the mass is initially
at rest, it will not move until the force T reaches µmg, which will occur at
time t∗ = µmg/kv. It is convenient to use the elapsed time as the independent
variable since the initial movement of the mass, that is, τ = t − t∗, so that
T = k(vτ + vt∗ − x).

At subsequent times, the mass will be in motion, and this motion will be
resisted by a frictional force, F = −µdmg. A horizontal force balance on the
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mass gives

mẍ = k(vτ + vt∗ − x)− µdmg, (3.9)

where the overdot denotes differentiation with respect to the elapsed time, τ .
The solution to (3.9), for the initial conditions x = ẋ = 0 when τ = 0, is

x = vτ − (v/ω) sinωτ − [(µ− µd)g/ω2] cosωτ + (µ− µd)g/ω2, (3.10)

ẋ = v − v cosωτ + [(µ− µd)g/ω] sinωτ . (3.11)

where ω = √
k/m is the undamped natural frequency of the system, and where

use has been made of the fact that kvt∗ = µmg.
The mass will move to the right in accordance with (3.10), coming to rest

when ẋ = 0. From (3.11), the “slip” phase will therefore end when

−(µ− µd)g/ωv = (1 − cosωτ1)/ sinωτ1 ≡ tan(ωτ1/2), (3.12)

which can be inverted to give the duration of the slip phase,

τ1 = 2π
ω

− 2
ω

tan−1
[
(µ− µd)g

ωv

]
. (3.13)

The displacement at this time is found from (3.10), (3.12), and (3.13) to be
given by

x1 ≡ x(τ1) = vτ1 + 2(µ− µd)g/ω2, (3.14)

and the force exerted on the mass by the spring at this time will be

T1 ≡T(τ1)=k(vτ1+vt∗−x1)=µmg−2k(µ−µd)g/ω2 =(2µd−µ)mg.
(3.15)

Noting that µd < µ, the spring force at time τ1 will be less than µmg, and
so the mass will be at rest. After this time, the spring will continue to compress,
but the mass will be in its “sticking” phase. Hence, T1 represents the minimum
spring force that occurs at any time during the process, and so comparison with
(3.8) shows that 2µd − µ = µ′, implying that the dynamic friction coefficient is
equal to the mean value of µmax = µ and µmin = µ′.

Slip will recommence when the spring force again reaches µmg. This will
occur after an additional elapsed time of

τ2 = 2(µ− µd)mg/kv = 2(µ− µd)g/ωv, (3.16)

after which the cycle will repeat (Fig. 3.7b). The duration of the stick phase is τ2,
and so the stick–slip cycle will have a total period of�τ = τ1 + τ2. Comparison
of (3.13) and (3.16) shows that

(ωτ1/2) = π − tan−1(ωτ2/2). (3.17)

The usual situation is that the velocity v is “small,” in the sense that v � (µ −
µd)g/ω, in which case (3.13) and (3.16), or (3.17), imply that τ1 � τ2. Hence,
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from (3.14), the displacement occurring over each cycle will be approximately
given by

�x ≈ 2(µ− µd)g/ω2 = 2(µ− µd)mg/k. (3.18)

But the maximum and minimum spring forces during each cycle areTmax = µmg
and Tmin = (2µd − µ)mg, so

�x(cycle) = (Tmax − Tmin)/k. (3.19)

Brace and Byerlee (1966) suggested that stick–slip between opposing faces
of a fault may provide a mechanism for earthquakes. In this context, (3.19)
would give a relationship between the amount of slip along a fault, the stress
drop associated with that slip, and the “stiffness” of the surrounding rock mass.
Burridge and Knopoff (1967) generalized the model by considering a chain
of masses {m1,m2, . . . ,mN}, connected in series by a set of springs with stiff-
nesses {k1, k2, . . . , kN}. This model predicts chaotic sequences consisting of many
small slips and occasional large ones, which bear a resemblance to earthquake
sequences. Further developments along these lines have been made by Mora and
Place (1994) and others.

3.5 Sliding on a
plane of weakness

In two dimensions, suppose that the rock has a preexisting plane of weakness
whose outward unit normal vector makes an angle β with the direction of the
maximum principal stress, σ1 (Fig. 3.8a). The criterion for slippage to occur along
this plane is assumed to be

|τ | = So + µσ , (3.20)

as in (3.6), where σ is the normal traction component acting along this plane,
and τ is the shear component. By (2.54) and (2.55), σ and τ are given by

σ = 1
2
(σ1 + σ2)+ 1

2
(σ1 − σ2) cos 2β, (3.21)

τ = −1
2
(σ1 − σ2) sin 2β. (3.22)

These expressions may also be written as

σ = σm + τm cos 2β, τ = −τm sin 2β, (3.23)

where σm = (σ1 + σ2)/2 is the mean normal stress, and τm = (σ1 − σ2)/2 is
the maximum shear stress.

If we define the angle of internal friction, φ, by the relation

µ = tan φ, (3.24)
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Fig. 3.8 (a) Plane of
weakness with outward
normal vector oriented
at angle β to the
direction of maximum
principal stress.
(b) Situation described
on a Mohr diagram. (b)
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then condition (3.20) can be written in the following equivalent forms:

τm(sin 2β − tan φ cos 2β) = So + σm tan φ, (3.25)

τm = (σm + So cot φ) sin φ cosec(2β − φ). (3.26)

σ1[sin(2β − φ)− sin φ] − σ2[sin(2β − φ)+ sin φ] = 2So cosφ, (3.27)

σ1 − σ2 = 2(So + µσ2)

(1 − µ cot β) sin 2β
, (3.28)

σ1 = 2So cosφ
(1 − k) sin(2β − φ)− (1 + k) sin φ

, (3.29)

where k = σ2/σ1 ≤ 1. The stress difference that would be required to cause
slippage can be found from (3.28), as a function of β, for a fixed value of the
minor principal stress σ2 (Fig. 3.9). If the major principal stress is aligned with
the plane of weakness, then β → π/2, and (3.28) shows that σ1 − σ2 → ∞.
The stress difference required to cause slippage also becomes infinite as β → φ.
As the right-hand side of (3.28) must by definition be nonnegative, solutions can
exist only for φ < β < π/2. By differentiating (3.31), the minimum value of σ1
needed to cause slippage is found to occur when

tan 2β = −1/µ, (3.30)

and this minimum value is found to be

σ1 = σ2 + 2(So + µσ2)[(1 + µ2)1/2 + µ]. (3.31)

This problem can be analyzed with the aid of the Mohr diagram, Fig. 3.8b.
The condition (3.20) for failure is represented by the straight line PQR that is
oriented at angle β to the σ -axis, and intersects the |τ |-axis at So and the σ -axis
at −So cot φ. The normal and shear tractions along the plane of weakness are
represented by the point D in the σ–τ plane. Slippage will not occur if the point
D lies within either of the arcs AQ or RC of the Mohr circle, but will occur if D
lies within arc QR. The limiting condition for slippage to occur can be found by
imagining D to be located at either Q or R. Taking D to coincide with R, the
angle RBC will equal 2β, and so the angle PRB will equal 2β − φ. Applying the
law of sines to triangle PRB shows

BR
sin φ

= PB
sin(2β − φ)

. (3.32)
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Fig. 3.9 Variation of
σ 1 needed to cause
sliding on a plane of
weakness, for µ = 0.5.
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But |BR| = τm, and |PB| = |PO| + |OB| = So cot φ + σm, so

τm sin(2β − φ) = (σm + So cot φ) sin φ, (3.33)

which is equivalent to (3.26). The same result would be obtained by imagining
D to coincide with Q.

For a given state of stress and a given value of µ, there are two values of β
that will satisfy (3.33), corresponding to whether D coincides with R or Q. These
values are

2β1 = φ + sin−1{[(σm + So cot φ)/τm] sin φ}, (3.34)

2β2 = π + φ − sin−1{[(σm + So cot φ)/τm] sin φ}. (3.35)

Sliding will occur on any plane for which β1 ≤ β ≤ β2.
If the cohesion So were set to zero, the slippage line (3.20) would move to the

right by the amount |PO| = So cot φ = So/µ. If, at the same time, So/µ were
added to each of the two principal stresses, the Mohr circle would translate to
the right by this same amount, and the relative orientation of the Mohr circle
and the slippage line would remain unchanged. Hence, results for the case of
principal stresses σ 1 and σ 2, with a finite value of So, are identical to those for
the case of principal stresses σ1 + (So/µ) and σ2 + (So/µ), with So = 0.

If the joint is filled with pore fluid under a pressure p, it is experimentally
found that the theory will continue to apply if the amount p is first subtracted
from each of the principal stresses (Byerlee, 1967). The values σ1 − p, etc., are
often referred to in this context as the effective principal stresses.

The basic theory outlined above has three fundamental applications of great
importance. The most obvious is the study of sliding across an open joint or cut
rock surface for which the criterion for slip has been experimentally found to
be given by (3.6). If a joint is filled with a weaker material than that comprising
the adjacent rock, the same theory will apply, with So being the cohesion and
µ the coefficient of internal friction of the infilling material, in the sense of the
Coulomb theory of failure described in §4.5. Finally, this theory will also describe
the behavior of an anisotropic material possessing parallel planes of weakness.
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3.6 Effects of time
and velocity

Although most rocks obey a Coulomb-type friction law to a first approximation,
careful experiments have revealed that the apparent friction coefficient varies
with parameters such as time and velocity. Dieterich (1972) performed experi-
ments in which τ and σ were held constant for an interval of time t, after which
the shear stress was rapidly increased to the level required to produce slip. In this
manner, the coefficient of static friction was measured as a function of the total
“stick” time. Results for granite, greywacke, quartzite, and sandstone, under
different levels of normal stress, all showed a small but measurable increase in
µ as a function of the time of stick (Fig. 3.10a). The data from each experiment
could be fit with an equation of the form

τ = µσ µ = µo + a ln t. (3.36)

The parameterµo was found to be in the range of 0.7–0.8, and decreased slightly
as the normal stress was increased. The dimensionless parameter a, which is the
rate of increase in µ with the natural logarithm of the stick time, was found to
be insensitive to normal stress, and took on values of 0.0096, 0.0052, 0.0087, and
0.0069 for granite, greywacke, quartzite, and sandstone, respectively.

Equation (3.36) fits the data well, for stick times ranging from 1 to 105 s.
Although stick times smaller than 1 s are probably not of physical interest, (3.36)
nevertheless predicts unrealistic negative values of µ as t approaches zero. To
remedy this, Dieterich (1978) proposed to represent the variation of µ with t by

µ = µo + a ln[1 + (t/to)], (3.37)

which reduces to a form essentially equivalent to (3.36) for large t, but gives
µ ≈ µo for t � to. Dieterich found that, for all of his data sets, to ≈ 1 s.
Subsequent investigations by Scholz et al. (1972), Engelder et al. (1975) and others
have shown that an increase in the coefficient of static friction with increasing
stick time is a general characteristic of rock behavior under a variety of test
conditions and surface properties.

The increase in the friction coefficient with time has been attributed to “inden-
tation creep,” which causes an increase in the actual area of asperity contact
between the two contacting surfaces. Scholz and Engelder (1976) carried out
microindentation tests on a natural quartz crystal and an olivine crystal, by

Fig. 3.10 (a) Depen-
dence of the coefficient
of static friction of
quartz sandstone on the
time of stick, for two
different values of the
normal stress
(Dieterich, 1978).
(b) Variation of the
actual area of contact
under a pyramidal
indenter, as a function
of loading time (Scholz
and Engelder, 1976).
Vertical lines indicate
the range of values
observed over
twenty-five
measurements.
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Fig. 3.11 (a) Varia-
tion of shear stress with
displacement, before
and after an abrupt
change in slip velocity.
(b) Variation of the
coefficient of dynamic
friction with slip
velocity for Westerly
granite at a normal
stress of 20 MPa. Short
vertical lines indicate
the range of values
observed at each given
velocity; solid line is
from (3.38), with
µo = 0.71, to = 1 s,
d = 5 µm, and
a = 0.0087 (Dieterich,
1978).
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pressing a pyramidal “Vickers” diamond indenter into the surfaces under a con-
stant normal load of 0.25 N. This load corresponds to a normal stress beneath the
indenter of about 10–20 MPa. Twenty-five tests were conducted on each surface,
for loading times of 1, 10, 100, and 1000 s. The actual area of the indentation was
found to increase linearly with the logarithm of the indentation time (Fig. 3.11b).
If the same process is assumed to occur at the asperities at which rough rock
surfaces are in contact, and the friction coefficient is assumed to be proportional
to the actual (as opposed to the nominal, macroscopic) area of contact, then this
mechanism can qualitatively explain the increase in µ with time.

The dynamic friction coefficient acting between two rock surfaces typically
exhibits a small velocity dependence (Scholz and Engelder, 1976; Dieterich, 1978),
the origin of which can be explained as follows. As the two rock surfaces slide
past each other, asperities that have been in contact will lose contact, and new
asperities will come into contact. The mean lifetime of asperity contact is roughly
given by t ≈ d/V , where V is the relative velocity between the two surfaces, and
d is a characteristic asperity diameter. If this asperity contact lifetime is identified
with the contact time appearing in (3.37), a relationship is found between the
dynamic friction coefficient and the sliding velocity:

µd = µo + a ln[1 + (d/Vto)]. (3.38)

The parameter d can also be identified with the slip distance required for µ
to stabilize to a new value after an abrupt change in the velocity, and was
found by Dieterich (1978) to equal about 5 µm for contact between two granite
surfaces (Fig. 3.11a). Using this value of d, along with the values of µo and a
obtained from the previously discussed static friction measurements, Dieterich
(1978) found that (3.38) could accurately predict the measured variation of the
coefficient of dynamic friction with velocity (Fig. 3.11b).

Ruina (1983), Tullis (1988) and others have proposed adding another term to
(3.38) to account for the irreversible mechanical alteration of the rock surface that
occurs during sliding. The resulting “rate/state” friction law can be expressed as

τ = So + µdσ , µd = µo + a ln(V/Vo)+ bψ , (3.39)
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where ψ is a state variable that in some sense represents the damage that has
occurred to the surface, and a and b are dimensionless constants that reflect the
rate at which the friction coefficient varies with changes in lnV and ψ . The state
variable is assumed to change with time according to an evolution equation of
the form

dψ/dt = −(V/λ)[ψ + ln(V/Vo)], (3.40)

where λ is a characteristic slip length. The additional term in (3.39) allows the
dynamic friction coefficient to vary as slip proceeds.

Although the variations in µ during sliding are usually small, it is mainly the
relative magnitudes of the parameters a and b that determine whether or not the
slip occurs in a stable or unstable (stick–slip) manner. The analysis given in §3.4
showed that, if the dynamic friction coefficient is independent of velocity and slip
distance, the slip process will be unstable if µd < µ. Now consider an interface
governed by a rate/state law of the form given by (3.39) and (3.40), with slip
occurring at some constant velocity V1. The state variable ψ will have already
reached its steady-state value associated with velocity V1. This steady-state value
is found by setting dψ/dt = 0 in (3.40), which givesψss1 = − ln(V1/Vo). Hence,
the steady-state dynamic friction coefficient corresponding to velocity V1 is given
by (3.39) as

µd1 = µo + (a − b) ln(V1/Vo). (3.41)

Now imagine that the slip velocity changes abruptly to a new value V2 =
V1 + �V . Immediately after the change in velocity, ψ will be unchanged, so
(3.39) shows that µd will at first increase or decrease depending on the sign of a.
Experiments typically show that a is positive, which is consistent with the slight
initial increase in τ that is seen in Fig. 3.11a. Eventually, the friction coefficient
will again stabilize, at a value given by

µd2 = µo + (a − b) ln[(V1 +�V)/Vo]
= µo + (a − b) ln(V1/Vo)+ (a − b) ln(�V/V1)

= µd1 + (a − b) ln(�V/V1). (3.42)

By analogy with the analysis of §3.4, slip would be expected to be stable if the
friction coefficient increases following an increase in the velocity. This will occur
if b < a, in which case the surface is said to be “velocity-strengthening.” The
more rigorous linear stability analysis given by Rice and Ruina (1983) leads to
the same conclusion, for small increments in the slip velocity.

Unstable stick–slip oscillations may occur along a velocity-weakening surface,
for which b > a, depending on the stiffness and mass of the system. For the
model studied in §3.4, in which µd was independent of velocity, the motion was
found to be unstable if µd < µ, regardless of the stiffness or mass. Gu et al.
(1984) analyzed the system of Fig. 3.6a, with the frictional law given by (3.39)
and (3.40), but with the normal load N not necessarily taken to be mg. They
found that, for small driver velocities V (using the notation of §3.4), the motion
will always be unstable if

k < (b − a)σ/d, (3.43)
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where σ is the normal stress acting between the mass and the surface. For
stiffnesses greater than the critical value given by (3.43), the stiffness of the
system will be sufficient to inhibit the onset of instability, if the driver velocity V
is small. For larger driver velocities, dynamic instabilities may occur, the critical
velocity increasing with the mass of the system (Gu and Wong, 1991).
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4 Deformation and failure of rock

4.1 Introduction The classical theories of continuum mechanics have for the most part been
constructed so as to be in accord with experimental observations of the behavior
of metals and other man-made engineering materials. These theories therefore
describe the various types of behavior observed in metals, such as linear elastic,
nonlinear elastic, plastic, brittle failure, etc. Although these concepts andmodels
can be applied to rocks, in most cases the analogous behavior of rock is much
more complex, undoubtedly because of its heterogeneous and porous nature.
These classical constitutive models, and the modifications needed in order to
apply them to rock, are discussed in detail in Chapters 5, 7, and 9.

In order to develop realistic constitutivemodels for rock deformation, it is nec-
essary to begin with a discussion of the types of mechanical behavior that rocks
may exhibit. Hence, in this chapter we first focus on describing, qualitatively,
the type of stress–strain behavior observed when rocks are subjected to external
loads. The stress–strain behavior is discussed phenomenologically in §4.2 and
§4.3, and from a microscopic (albeit qualitative) viewpoint in §4.4. In §4.5, the
widely used Coulomb failure criterion is introduced and discussed in detail. This
criterion, which assumes that failure is controlled only by the maximum and
minimum principal stresses, represents a simplification of actual rock behavior,
but is nevertheless extremely useful for understanding the effects of stress state
on rock failure. Mohr’s generalization of Coulomb’s law, in which failure is still
assumed to be governed by the two extreme principal stresses, but possibly in
a nonlinear manner, is discussed in §4.6. This section also contains some dis-
cussion of one particular nonlinear failure law, that of Hoek and Brown. The
effects of pore pressure, and the concept of effective stress, are discussed in §4.7.
Experimental data on rocks subjected to “polyaxial,” or true-triaxial, stress states
with σ1 > σ2 > σ3 are presented in §4.8 and analyzed in light of the polyaxial
failure criterion proposed by Mogi. Finally, the effects of material anisotropy are
briefly treated in §4.9, in terms of the “single plane of weakness” theory.

4.2 The
stress–strain curve

The most common method of studying the mechanical properties of rocks is
by axial compression of a circular cylinder whose length is two to three times
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Fig. 4.1 Cubic
specimen under
(a) uniaxial stress,
(b) traditional triaxial
stress in which the two
lateral confining stresses
are equal, and
(c) true-triaxial stress, in
which all three principal
stresses are possibly
different.

�1 �1 �1

(a) (b) (c)

�2 �2

�3�3 = �2

its diameter. If the lateral surface of the rock is traction-free, the configuration
is referred to as uniaxial compression, or unconfined compression (Fig. 4.1a). In
this case, the resulting state of stress in the rock is {σ1 > 0, σ2 = σ3 = 0}.
If tractions are applied to the lateral surfaces, the experiment is referred to as
one of confined compression. For tests done on a circular cylinder, the stresses
applied in the two orthogonal directions perpendicular to the cylinder axis
are necessarily equal (Fig. 4.1b), and the resulting state of stress in the rock
is {σ1 > σ2 = σ3 > 0}. This state is traditionally referred to as “triaxial,”
despite the fact that two of the principal stresses are equal. The more gen-
eral state of stress, in which {σ1 > σ2 > σ3 > 0}, can be achieved with
cubical specimens, and is known either as “polyaxial” or “true triaxial” (Fig.
4.1c). The technical aspects of carrying out these experiments are discussed in
Chapter 6.

We focus our attention for now on the so-called “triaxial” test carried out on
a cylindrical specimen, in which the stresses are monitored, and the axial and
lateral strains aremeasured bymeans of strain gauges attached to the specimens,
or by deformation gauges attached to the end-caps (see §6.4). Typically, σ2 and
σ3 are held constant, while σ1 is increased. The results can be plotted in the form
of a stress–strain curve, in which σ is plotted against ε. Strictly speaking, these
variables are σ1 and ε1, but the subscripts will for now be dropped for simplicity
of notation.

The simplest possible behavior is illustrated in Fig. 4.2a, in which the strain
increases linearly with stress, ending in abrupt failure at some point F . This curve
may be represented by the equation

σ = Eε, (4.1)

where E, which has units of Pa, is called Young’s modulus or the elastic modulus.
Within the range of stress and strain prior to failure, this type of behavior is
known as linearly elastic. The adjective “linear” refers to the mathematically
linear relationship between stress and strain. Inmodern discussions of continuum
mechanics, the term “elastic” means that the strain is a single-valued function of
the stress, and does not depend on the stress history or stress path. For a linear
elastic material, at any value of strain below point F in Fig. 4.2a, the slope of the
curve will be given by dσ/dε = E.
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Fig. 4.2 (a) Linearly
elastic behavior, with
failure at F .
(b) Nonlinearly elastic
behavior: slope of OP is
the secant modulus,
slope of PQ is the
tangent modulus.
(c) Hysteretic material:
unloading modulus at P
is given by the
slope of PR.

(a)

F

(b)

F

O

P

Q

(c)

F

O

P

R

� � �

� � �

By this definition of elastic behavior, a material is elastic as long as the stress
can be expressed as a single-valued function of the strain, which may or may not
be linear, that is,

σ = f (ε). (4.2)

Under this definition, the stress–strain behavior of an elastic material during
“loading” is the same as during “unloading.” The behavior illustrated in Fig. 4.2b
is therefore referred to as nonlinearly elastic. For nonlinearly elastic materials, the
slope of the stress–strain curve varies with the level of stress (or strain). Two
types of “elastic moduli” can be defined for such materials, each of which will in
general vary with both σ and ε. The secant modulus is defined to be the ratio of
the total stress to the total strain, that is,

Esec = σ/ε, (4.3)

and is equal to the slope of line OP. The tangent modulus, on the other hand, is
the local slope of the stress–strain curve,

Etan = dσ/dε, (4.4)

and in Fig. 4.2b would be equal to the slope of line PQ. The secant and tangent
moduli coincide for a linearly elastic material.

A rock is called hysteretic if it follows different stress–strain curves during
loading and unloading, but returns to its original strain-free state when the
stresses are removed. Figure 4.2c shows the stress–strain behavior of a hysteretic
material, with the dashed line representing the unloading curve. Such a material
exhibits a different tangent modulus during unloading than during loading; the
loading modulus at P would be given by the tangent to curve OPF, whereas
the unloading modulus at that same point P is given by the slope of the line
PR. In §5.8, it is shown that the work done on the rock by the external loading
agency during deformation, per unit volume of rock, is equal to the area under
the stress–strain curve. Hence, for a rock exhibiting stress–strain behavior such
as shown in Fig. 4.2c, the work done on the rock during loading would be
greater than that done on it during unloading. The area between the loading and
unloading portions of the stress–strain curve therefore represents energy that is
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Fig. 4.3 Complete
stress–strain curve for a
rock under compression
(see text for details). Strain, �
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dissipated (by friction along grain boundaries and crack faces, etc.). As the net
amount of work done on the rock during a cycle of loading and unloading must
be nonnegative, the unloading portion of the stress–strain curve cannot lie above
the loading portion.

The idealized materials described in Fig. 4.2 each deform until F , at which
point they fail abruptly if the applied stress is increased further. This type of
abrupt failure is observed in materials under tension, but the behavior of a rock
under the more commonly occurring compressive stress regime is more compli-
cated (Fig. 4.3). The stress–strain curve for a rock under uniaxial compression can
be divided conceptually into four regions. In region OA, the curvature, roughly
indicated by the second derivative, is positive. In region AB, the curve is very
nearly linear. The curve continues to rise in region BC, but the curvature is now
negative. The strain reaches a maximum at C, after which it falls throughout
region CD.

In the first two regions, OA and AB, the behavior is nearly elastic. Some slight
hysteresis may be observed, but loading and unloading in this region will not
produce irreversible changes in the structure or properties of the rock. In the third
region, BC, which usually begins at a stress of about two-thirds the maximum
stress at C, the slope of the stress–strain curve, that is, the tangent modulus,
decreases steadily to zero as the stress increases. In this region, irreversible
changes occur in the rock, and successive cycles of loading and unloading would
trace out different curves. An unloading cycle such as PQ that starts in region BC
would lead to a permanent strain εo when the stress reaches zero. If the rock is
reloaded, a curve such as QR would be traced out that lies below the original
loading curve OBC, but which ultimately rejoins it, at a stress greater than the
stress at P.

The fourth region, CD, begins at the point of maximum stress C, and has a
negative slope. Anunloading cycle such as ST that begins in this regionwould lead
to a large permanent strain when the stress reaches zero. Subsequent reloading
will trace out a curve in the {σ–ε} plane that rejoins the initial loading curve
at U, corresponding to a stress that is lower than that at the beginning of the
cycle, point S. In this sense we can say that the ability of the rock to support
a load has decreased. This region of the stress–strain curve cannot be observed
in a testing machine in which the stress is the controlled variable, in which case
violent failure of the specimen will occur near point C. But this region can be
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observed in a servo-controlled testing machine in which strain is the controlled
variable, as discussed in detail in §6.5. This region is also of importance in a
rock mass, in which the decreasing ability of one region of rock to support an
additional load could be compensated for by some of the load being transferred
to adjacent regions of rock.

In region BC, the rock is said to be in a ductile state, or simply to be ductile. Duc-
tile behavior is characterized by the ability of the rock to support an increasing
load as it deforms. In region CD, on the other hand, the load supported by the
rock decreases as the strain increases. A rock exhibiting this behavior, which is
qualitatively different from the ductile behavior described above, is said to be in
a brittle state, or simply to be brittle. The range of stresses in which a rock exhibits
either of these two types of behavior depends on themineralogy, microstructure,
and also on factors such as the temperature, as discussed in §4.3, and in more
detail by Paterson (1978).

The value of the stress at point B, which marks the transition from elastic to
ductile behavior, is known as the yield stress of the rock, and is usually denoted
by σo. The value of the stress at point C, which marks the transition from ductile
to brittle behavior, is known as the uniaxial compressive strength of the rock,
and is usually denoted by Co. The process of failure is regarded as a continuous
process that occurs throughout the brittle regionCD, inwhich the rock physically
deteriorates, and its ability to support a load decreases. Failure therefore begins
at C, and the criteria for failure for a rock subjected to uniaxial compression would
simply consist of the condition that “failure occurs when σ = Co.” The failure
criteria that are discussed in later sections of this chapter represent attempts to
predict the onset of failure under stress states that are more general than uniaxial
compression.

The foregoing discussion has shown that the axial strain that occurs under
uniaxial compression can be quantified in terms of the Young’s modulus, E. But
a rock under a uniaxial compressive stress will not only deform in the direction
of the load, it will also deform in each of the two directions perpendicular to the
load. Figure 4.4 shows the strains measured on a cylindrical specimen by Hojem
et al. (1975) during confined uniaxial compression of an argillaceous quartzite,
with the lateral confining stress held constant at σ2 = σ3 = 6.9 MPa (1000
psi). As before, the convention used is that positive normal strains correspond to
decreases in the linear dimensions of the specimen. The axial stress vs. axial strain
curve exhibits most of the features described above, including a pronounced
brittle regime. The strain in the two other directions (i.e., the radial strain,
ε2 = ε3) is negative, which is to say that the specimen bulges outward as
it is compressed. Within the elastic regime that corresponds to region OB of
Fig. 4.3, the magnitude of the radial strain increases nearly in proportion to the
axial strain. The negative of the ratio of the transverse strain to the axial strain,
−ε2/ε1, is known as Poisson’s ratio, and is denoted by ν. For a linear elastic
material, this parameter is independent of stress, and is generally found to be in
the range 0–0.5 (§5.2).

In the ductile regime, corresponding to region BC of Fig. 4.3, the transverse
strains begin to grow (in magnitude) at a much faster rate than does the axial
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Fig. 4.4 Axial strain,
radial strain, and
volumetric strain as a
function of axial stress,
for a cylindrical sample
of an argillaceous
quartzite, tested under a
confining stress of
6.9 MPa by Hojem et al.
(1975).
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strain. In terms of incremental strains, this behavior could be said to correspond
to a value of Poisson’s ratio that exceeds unity. As the volumetric strain,�V/V ,
is equal to the sum of the strains in the axial and the two lateral directions,
the volumetric strain begins to decrease with an increase in the axial stress.
Bearing in mind our sign convention, this means that an incremental increase in
the compressive axial stress causes an incremental increase in the volume. This
first occurs at J in Fig. 4.4. Eventually, the lateral strains become sufficiently
negative that the total volumetric strain becomes negative; this occurs at K in
Fig. 4.4. The phenomenon by which the volume of the rock decreases under
the action of an additional compressive stress is known as dilatancy. Dilatancy
can be ascribed to the formation and extension of open microcracks whose axes
are oriented parallel to the direction of the maximum principal stress (§4.4). By
testing specimens in the form of thick-walled hollow tubes, Cook (1970) showed
that dilatancy occurs pervasively throughout the entire volume of the rock, and is
not a superficial phenomenon localized at the outer boundary. On theother hand,
Spetzler and Martin (1974) and Hadley (1975) have shown that dilatancy is not
uniformly distributed throughout the specimen, but rather becomes increasingly
heterogeneous as failure is approached.

4.3 Effects of
confining stress and
temperature

It has been known since the end of the nineteenth century that if the confining
stress applied to the sides of a cylindrical specimen during a triaxial compression
test is increased, the axial stress required to cause failure will increase, and the
rock will show a tendency toward greater ductility (Becker, 1893; Adams, 1912).
In the classical experiments performed by von Kármán (1911) and Böker (1915),
oil was used to apply a confining stress σ2 = σ3 to the sides of the specimen,
while the axial stress σ1 was slowly increased.

The effect that confining pressure has on the axial stress vs. axial strain curve
is shown in Fig. 4.5a for a Rand quartzite. For each value of σ2 = σ3, the stress–
strain curve initially exhibits a nearly linear elastic portion, with a slope (Young’s
modulus) that is nearly independent of the confining stress. But both the yield
stress and the failure stress increase as the confining stress increases. Finally, there
is a small descending portion of the curve, ending in brittle fracture.
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Fig. 4.5 Stress–strain
curves for (a) Rand
quartzite and
(b) Carrara marble at
various confining
pressures. Crosses
indicate abrupt brittle
failure.
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A different type of behavior is exhibited by other rocks, notably carbonates
and some sediments. Figure 4.5b shows the data collected by von Kármán (1911)
on a Carrara marble. For sufficiently low confining stresses, exemplified by the
curve labeled σ3 = 0MPa, brittle fracture (denoted by X) occurs as for the
quartzite described above. But at higher confining stresses, such as the curve
labeled 50 MPa, the rock can undergo a strain as large as 7 percent, with no
substantial loss in its ability to support a load (i.e., no decrease in the axial
stress). In this case the rock is said to exhibit ductile behavior, which can be loosely
defined as “the capacity for substantial change in shape without gross fracturing”
(Paterson, 1978). The curve for σ3 = 23.5 MPa can be said to show a transitional
type of behavior, in that fairly substantial inelastic strain occurs, but the rock
eventually fails by brittle fracture. Hence, there is a somewhat ill-defined value of
the confining stress at which one can say there occurs a transition between brittle
and ductile behavior. Heard (1960) proposed that this brittle–ductile transition be
taken as that confining stress at which the strain at failure is, say, 3–5 percent.
At still higher confining stresses, such as 165 MPa or above in Fig. 4.5b, the axial
stress σ1 continues to increase with strain after the yield point has been passed.
Such behavior is known as work hardening in metallurgy, and more simply as
hardening in rock mechanics. Following this nomenclature, the behavior shown
in the descending portion of the stress–strain curve, such as that exhibited in Fig.
4.5b at a confining stress of 23.5 MPa, is often referred to as softening. Table 4.1
shows the measured brittle–ductile transition pressures for different rock types,
at room temperature, as compiled by Paterson (1978) from various sources.

Higher temperatures generally have the effect, roughly speaking, of encour-
aging ductility. Figure 4.6a shows the stress–strain curves measured by Griggs
et al. (1960) on a granite, at a confining stress of 500 MPa. At room temperature
the rock is brittle, but at higher temperatures substantial amounts of perma-
nent deformation may occur. By 800◦C, the rock is almost fully ductile, in
that the strain can continue to increase at a nearly constant load. Hence, for a
fixed value of the constant confining stress, brittle behavior gives way to ductile
behavior above a certain temperature. As both higher temperatures and higher
confining stresses tend to favor ductility, the brittle–ductile transition tempera-
ture decreases as the confining stress increases. Heard (1960) developed a phase



Jaeger: “chapter04” — 2006/12/15 — 14:02 — page 87 — #8

Deformation and failure of rock 87

Table 4.1
Brittle–ductile
transition pressures
under σ2 = σ3
compression, at
room temperature
(after Paterson,
1978).

Rock type σ 2 (b → d) (MPa) Source(s)

Limestones, marbles 30–100 Heard (1960), Rutter (1972a)
Dolomite 100–200+ Handin and Hager (1957),

Mogi (1971)
Gypsum 40 Murrell and Ismail (1976)
Anhydrite 100 Handin and Hager (1957)
Rocksalt <20 Handin (1953)
Talc 400 Edmond and Paterson (1972)
Serpentinite 300–500 Raleigh and Paterson (1965)
Chloritite 300 Murrell and Ismail (1976)
Argillaceous sandstone 200–300 Edmond and Paterson (1972),

Schock et al. (1973)
Siltstones, shales <100 Handin and Hager (1957)
Porous lavas 30–100 Mogi (1965)

Fig. 4.6
(a) stress–strain curves
for granite at various
temperatures, at a
confining pressure of
500 MPa, after Griggs
et al. (1960).
(b) Brittle–ductile phase
diagram for Solenhofen
limestone, after Heard
(1960). “Extension”
refers to loadings for
which the axial stress is
less compressive than
the lateral stresses.
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diagram for Solenhofen limestone in {T, σ3} space, which shows regions of duc-
tile or brittle behavior, separated by a ductile–brittle transition curve (Fig. 4.6b).
For this rock, ductility can be observed under zero confining stress if the tem-
perature is above about 500◦C. For most rocks, however, if there is no confining
stress the behavior will be brittle up to the melting temperature (Murrell and
Chakravarty, 1973).

4.4 Types of
fracture

The different types of stress–strain behavior discussed in the previous two
sections correspond to different physical processes occurring within the rock.
Under unconfined compression, a rock tends to deform elastically, until failure
occurs abruptly (Fig. 4.5). This failure is accompanied by somewhat irregular lon-
gitudinal splitting (Fig. 4.7a).With amoderate amount of confining pressure, lon-
gitudinal fracturing is suppressed, and failure occurs along a clearly defined plane
of fracture (Fig. 4.7b). This plane is typically inclined at an angle less than 45◦ from
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Fig. 4.7
(a) Longitudinal
splitting under uniaxial
tension, (b) shear
fracture, (c) multiple
shear fractures,
(d) extension fracture,
and (e) extension
fracture produced by
opposing line loads. (a) (b) (c) (d) (e)

the direction of σ1 (the axial direction, in this case). This plane is characterized
by shearing displacement along its surface, and is referred to as a shear fracture.
Under some circumstances, failure occurs along two conjugate shear planes
located symmetrically with respect to the axial direction, but this seems to be
an experimental artifact caused by the ends of the specimen being constrained
against rotation (Paterson, 1978, p. 18). If the confining pressure is increased, so
that the rock becomes fully ductile, a network of small shear fractures appears,
accompanied by plastic deformation of the individual rock grains (Fig. 4.7c).

The second basic type of fracture, an extension fracture, typically appears when
a rock fails under uniaxial tension. Themain characteristic of this type of fracture
is a clean separation of the two halves of the sample, with no tangential offset
between the two surfaces (Fig. 4.7d).

Under more complicated systems of applied stress, fractures appear which
may be regarded as belonging to one or another of these two basic types. If
a slab of rock is compressed between two opposing line loads (Fig. 4.7e), an
extension fracture appears between the loads. If these loads are caused by a
jacket surrounding the core being squeezed into cracks in the rock, the resulting
fracture has been described by Brace (1964) as an intrusion fracture. When the
fracture surfaces are examined from a specimen that has undergone longitudinal
splitting, as in Fig. 4.7a, parts of the surfaces will have the appearance of a shear
fracture, and other parts will appear to be extension fractures.

In §4.2, attention was directed to the phenomenon of dilatancy, which occurs
during the triaxial compression of rocks. Such tests are typically conducted under
conditions of constant lateral confining stress. Under such conditions, the rock is
relatively free to expand laterally. In a rock mass, however, such lateral expansion
would be resisted, to some extent, by the adjacent rock. One would imagine that
as a portion of rock expands laterally, the lateral compressive stress imposed by
the adjacent rock would increase, thereby inhibiting the lateral expansion of the
rock. Hence, the deformation of a specific portion of rock in situwould inevitably
be coupled to the deformation of the adjacent mass of rock. This coupling does
not typically occur in standard rock tests, for which the boundary conditions, be
they ones of constant lateral stress or constant lateral strain, are imposed a priori.

In order to approximate more closely the situation that might occur in situ,
Hallbauer et al. (1973) jacketed specimens of a fine-grained, argillaceous
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Fig. 4.8 Schematic
representation of the
axial stress and lateral
confining stress
measured by Hallbauer
et al. (1973) on a set of
argillaceous quartzite
specimens, along with
cartoons of the state of
microcracking observed
on specimens that were
loaded to the indicated
points along the
stress–strain curve.
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quartzite in a copper tube of 1mm wall thickness, and tested them in a triaxial
cell in which the confining stress was applied by a pressurized fluid. An initial
confining stress of 100 bars was imposed on the specimens. Calibration of the
system revealed that, due to the stiffness of the cell and the small volume of con-
fining fluid, the confining pressure increased in proportion to the lateral strain of
the specimen, that is, �σ3 = c�ε3, with the constant of proportionality found
to be 1.122GPa. Hence, the rock specimen can be thought of as being connected
along its sides to linear springs of constant stiffness. The tests were conducted
on a suite of specimens cut from a single block of quartzite, and were stopped
at predetermined points along the stress–strain curve. Careful observation of
longitudinal sections cut through the axes of the specimens allowed the growth
of microcracks and fractures to be observed in relation to the stress–strain curve.

The results are illustrated in Fig. 4.8. In region AB of the stress–strain curve,
the first visible structural damage appears as elongated microcracks having their
axes oriented parallel (within ±10◦) to the direction of maximum compressive
stress (i.e., axially). The cracks were distributed throughout the sample, but
were concentrated in the center. Toward the end of region BC, the number
of microcracks increased drastically, and the cracks began to coalesce along a
plane located in the central region of the specimen. At the point C of maximum
axial stress, the microcracks begin to link up to form a macroscopic fracture
“plane.” Finally, in region CD, the fracture plane has extended through the entire
specimen, and shear displacement begins to occur across the two faces of rock. In
this region, the axial load carried by the specimen decreases as the rock continues
to compress.

Measurements of the microcracks made after the specimens had been
unloaded and sectioned showed them to be about 300µm long and about 3µm
wide in their unloaded state. Their width under stress was presumably much
greater than when unloaded. At each stage along the stress–strain curve, the
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total volume of cracks (as measured in their unloaded state) amounted to about
16–19 percent of the inelastic volumetric dilatancy that was observed during
the loading of the specimen. Hallbauer et al. (1973) concluded that the dilatant
volume change reflected the opening up of these microcracks.

4.5 Coulomb
failure criterion

The simplest, and still most widely used, failure criterion is that of Coulomb
(1773). Based on his extensive experimental investigations into friction, Coulomb
assumed that failure in a rock or soil takes place along a plane due to the shear
stress τ acting along that plane. In analogywith sliding along nonwelded surfaces
(§3.3), motion is assumed to be resisted by a frictional-type force whose mag-
nitude equals the normal stress σ acting along this plane, multiplied by some
constant factor µ. But in contrast to sliding along nonwelded surfaces, motion
along the initially intact failure plane is assumed also to be resisted by an internal
cohesive force of thematerial. Such a force reflects the fact that, in the absence of
a normal stress, a finite shear stress, So, is typically still needed in order to initiate
failure. These considerations lead to the mathematical criterion that failure will
occur along a plane if the following condition is satisfied:

|τ | = So + µσ . (4.5)

(The sign of the shear stress only effects the direction of sliding after failure, so the
absolute value of τ appears in the failure criterion, although it is often convenient
to ignore the absolute value signs in mathematical manipulations.) Conversely,
failure will not occur on any plane for which |τ | < So + µσ . The parameter
So, also sometimes denoted by c, is known as the cohesion. The parameter µ is
known as the coefficient of internal friction, as it applies along an imaginary surface
that is internal to the rock before failure occurs. Although the term coefficient of
“internal” friction derives from themathematical analogy between (4.5) and (3.6),
Savage et al. (1996) have argued that this effect is indeed due to sliding frictional
forces acting along those microscale portions of the fracture surface that are not
actually intact.

The form of criterion (4.5) suggests that the Mohr’s circle construction will be
useful in its analysis. Indeed, (4.5) defines a straight line on the {σ ,−τ } plane that
intercepts the τ -axis at −So, and has slope µ. The angle φ that this line makes
with the σ -axis is given by φ = tan−1 µ, and is known as the angle of internal
friction. We temporarily assume a two-dimensional situation, but denote the
minimum principal stress by σ3 rather than σ2, in preparation for generalizing
the discussion to three dimensions. A stress state whose Mohr’s circle lies below
the line AL in Fig. 4.9b will not give rise to failure on any plane. If the principal
stresses are such that the circle touches the failure line, the rock will fail in shear
(Fig. 4.9b). Circles that extend above the failure line have no meaning in this
context, since, if the stresses are assumed to increase slowly starting from some
“safe” stress state that lies below the line, failure will occur as soon as the Mohr’s
circle first touches the line.

The point P at which the circle is tangent to the Coulomb line represents the
stress state on the plane of failure. Hence, the angle by which the failure plane
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Fig. 4.9 (a) Normal
and shear tractions on a
plane whose outward
normal is rotated from
the σ1 direction by an
arbitrary angle β.
(b) Mohr diagram, with
failure curve (4.5)
shown as line AL.
Failure will occur on a
specific plane whose
angle β, demarcated by
line CP, is given by (4.6).
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is oriented to the σ1 direction is given by one-half of the angle 2β that line CP
makes with the horizontal axis. By considering the intersection of line CP with
the horizontal axis, it is seen that 2β = 180◦ − ∠ACP. From triangle CPA, it
follows that∠ACP = 180◦ −∠CPA−∠PAC. Hence, 2β = ∠CPA+∠PAC. Since
P is the point of tangency of the circle and the failure line, line CP is perpendicular
to the failure line, and so ∠CPA = 90◦. Finally, ∠PAC = φ, where φ is the angle
of internal friction. Hence,

2β = 90◦ + φ, or β = 45◦ + 1
2
φ. (4.6)

Recalling that the failure criterion (4.5) involves the absolute value |τ |, it
follows that a failure line rotated clockwise by angle φ from the horizontal could
also be drawn in Fig. 4.9b, implying that the angle −β must also represent a
possible failure plane. As the angles on the Mohr diagram represent the normal
vectors to the associated planes, we conclude that there are two possible planes
of shear failure, each oriented at an acute angle of β = 45◦ − (φ/2) to the
maximum principal stress. These two directions are referred to as the conjugate
directions of shear failure.

The failure criterion (4.5) can also be written in many seemingly different
but equivalent forms, each of which is convenient in certain circumstances.
Figure 4.9b shows that |CP| = (|AO| + |OC|) sin φ, which can be written as

1
2
(σ1 − σ3) =

[
So cot φ + 1

2
(σ1 + σ3) sin φ

]
= So cosφ + 1

2
(σ1 + σ3) sin φ.

(4.7)

In terms of the “two-dimensional mean stress” σm, and the maximum shear
stress τm, which are given by

σm = 1
2
(σ1 + σ3), τm = 1

2
(σ1 − σ3), (4.8)

the failure criterion (4.7) can be expressed as

τm = So cosφ + σm sin φ. (4.9)

In the {σm, τm} plane, this equation appears as a straight line that makes an angle
tan−1(sin φ) with the σm-axis, and intercepts that axis at −So cot φ (Fig. 4.10a).
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Fig. 4.10 (a) Failure
curve in the {σm, τm}
plane, from (4.9).
(b) Failure curve in the
{σ3, σ1} plane, from
(4.13), where region TA
corresponds to tensile
normal traction along
the ostensible failure
plane. (c) Same as (b),
with the addition of a
tension cutoff at To.
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It would be convenient to express the Coulomb failure criterion directly in
terms of the principal stresses {σ1, σ3}. First, (4.7) is rearranged as

σ1 = 2So
cosφ

1 − sin φ
+ σ3

1 + sin φ
1 − sin φ

. (4.10)

Making use of (4.6), the coefficient of σ3 can be transformed as follows:

1 + sin φ
1 − sin φ

= 1 + sin(2β − 90◦)
1 − sin(2β − 90◦)

= 1 − cos 2β
1 + cos 2β

= 2 sin2 β
2 cos2 β

= tan2 β. (4.11)

Similarly, the coefficient of the term 2So can be transformed as follows:

cosφ
1 − sin φ

= cos(2β − 90◦)
1 − sin(2β − 90◦)

= sin 2β
1 + cos 2β

= 2 sin β cosβ
2 cos2 β

= tan β.

(4.12)

Hence, the Coulomb failure criterion can also be expressed as

σ1 = 2So tan β + σ3 tan2 β ≡ Co + σ3 tan2 β, (4.13)

where Co = 2So tan β is the uniaxial compressive strength. In the {σ3, σ1} plane,
the Coulomb failure criterion therefore appears as a straight line with slope
tan2 β, which intercepts the σ3-axis at −2So cot β (Fig. 4.10b).

The various forms of the Coulomb failure criterion can also be written in
terms of the coefficient of internal friction,µ = tan φ. Elementary trigonometry
shows that

cosφ = 1/(1 + µ2)1/2, sin φ = µ/(1 + µ2)1/2, (4.14)

which then allows (4.9) to be written as

(1 + µ2)1/2τm = So + µσm. (4.15)

Similarly, starting from (4.10) or (4.13), and making use of (4.14), the failure
criterion can also be expressed in the forms

[(1 + µ2)1/2 − µ]σ1 = 2So + [(1 + µ2)1/2 + µ]σ3, (4.16)

σ1 = 2So[(1 + µ2)1/2 + µ] + [(1 + µ2)1/2 + µ]2σ3, (4.17)
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the latter of which shows that the uniaxial compressive strength is given by

Co = 2So[(1 + µ2)1/2 + µ]. (4.18)

The similarity of the foregoing discussion with that given in §3.5 should be
apparent. In that section, the rockmass was assumed to have a single, preexisting
plane of weakness. Alternatively, if there are no particular planes of weakness,
but rather all possible planes are equally weak due to random microcracks,
grain boundaries and other small-scale imperfections, the rock mass will effec-
tively choose its own plane of failure, according to the theory outlined above.
Anisotropic rock masses, on the other hand, may possess certain directions in
which fracture is more likely to occur than in others; this situation is discussed
in §4.9.

To simplify the preceding discussion, a two-dimensional analysiswas assumed.
But appealing again to theMohr’s circle construction shows that, as long as failure
is assumed to occur on a plane on which the normal and shear stresses satisfy
condition (4.5), consideration of a fully three-dimensional stress state alters none
of the conclusions reached above. Indeed, the first Mohr’s circle to touch the
failure line will necessarily be that corresponding to the largest and smallest
principal stresses, σ1 and σ3. It therefore follows from Coulomb’s assumption
that the magnitude of the intermediate principal stress, σ2, has no effect on
failure. For many years, experiments could only readily be performed under
the conditions σ2 = σ3, in which case any possible effect of the intermediate
principal stress would not appear. More recent experiments under conditions of
“true” triaxial conditions, σ1 > σ2 > σ3, have revealed that this assumption is
not correct. Criteria for failure under true-triaxial stress conditions are discussed
in §4.8.

Coulomb’s failure criterion (4.5) is essentially empirical, and thus perhaps it is
not meaningful to discuss the conditions under which it is valid. Nevertheless,
if it is considered that an implicit assumption contained within (4.5) is that the
normal stress σ acting on the failure plane is positive (i.e., compressive), it would
follow that certain portions of the failure curves shown in Fig. 4.10b should be
ignored. The smallest value of σ1 that satisfies the Coulomb failure condition and
that corresponds to a nonnegative normal stress on the failure plane, is found by
combining the expression for σ with relation (4.6), to yield

σ = 1
2
(σ1+σ3)+ 1

2
(σ1−σ3) cos 2β = 1

2
(σ1+σ3)− 1

2
(σ1 − σ3) sin φ > 0,

that is,

σ1(1 + sin φ) > −σ3(1 − sin φ). (4.19)

Combining (4.19) and (4.10), and making use of (4.12), leads to the condition

σ1 > So tan β = 1
2
Co. (4.20)

It follows that the portion TA of failure line TAP in Fig. 4.10b does not cor-
respond to a positive normal stress on the putative failure plane. Paul (1961)
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concluded that this portion of the curve could therefore not properly predict
shear failure. Indeed, this critical value of σ1 is positive, but (4.13) shows that
it necessarily corresponds to a negative (tensile) value of σ3. Experimentally, it
is observed that for some negative values of σ3, failure occurs by extensional
fractures in planes perpendicular to this tensile stress. This mode of failure is
entirely different from the shear failure that occurs under compression. The sim-
plest modification of Coulomb’s criterion that could account for this changeover
in failure mode would be to truncate line TAP at point A, corresponding to
σ1 = Co/2 and extend it as a vertical line until it meets the line σ1 = σ3.
(As σ1 ≥ σ3 by definition, only the region above and to the left of the line
σ1 = σ3 is meaningful.) However, this would necessarily imply that the uniaxial
tensile strength, To, is equal to one-half the uniaxial compressive strength, Co.
Experimental data typically shows that the ratio Co/To is much greater than 2.
Consequently, Paul (1961) proposed using an experimentally measured value of
a To for the location of the vertical line in the {σ3, σ1} plane (Fig. 4.10c). This is
equivalent to replacing (4.13) with the bilinear failure criterion

σ1 = Co + σ3 tan2 β, for σ1 > Co[1 − CoTo/4S2o], (4.21)

σ3 = −To, for σ1 ≤ Co[1 − CoTo/4S2o]. (4.22)

4.6 Mohr’s
hypothesis

According to Coulomb’s theory, failure will occur on a plane when the normal
and shear stresses acting on that plane satisfy condition (4.5). In the {σ , |τ |} plane,
this condition appears as a straight line with slope µ = tan φ. The Mohr’s circle
corresponding to any state of stress that leads to failurewill be tangent to this line.
As discussed in §4.5, this theory ignores the effect of the intermediate principal
stress. However, in principle, Coulomb’s theory could be expected to apply to
stress states in which σ2 = σ3. Leaving aside for now the issue of triaxiality, it is
nevertheless the case that Coulomb’s law is unrealistic in at least two respects.

Within the context of Coulomb’s theory, the uniaxial tensile strength, To, can
be found by setting σ1 = 0 in (4.17), yielding

Tσ = −σ3 = 2S0 cot β = 2S0
(µ2 + 1)1/2 + µ

. (4.23)

According to (4.13), the unconfined compressive strength is given by Co =
2So tan β. Hence, the Coulomb theory predicts that the ratio of unconfined
compressive strength to unconfined tensile strength will be

Co/To = tan2 β = [(µ2 + 1)1/2 + µ]2. (4.24)

The Coulomb theory thereby predicts a relatively modest ratio of compressive
to tensile strength. For example, small values of µ lead to ratios not much larger
than unity, whereas a coefficient of internal friction as large as µ = 1 leads to
a strength ratio of only 5.83. Experimental values of this ratio, however, tend
to be on the order of 10 or so. Roughly, this deficiency can be expressed by
saying that the Coulomb failure line extends too far into the tensile region of the
{σ , |τ |} plane. This empirical observation is entirely independent of the more
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Fig. 4.11
(a) Nonlinear failure
curve, defined as the
envelope of all Mohr
circles that cause failure.
(b) Construction
showing that, according
to the Mohr hypothesis,
the intermediate
principal stress does not
influence the onset of
failure.
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fundamental theoretical argument of Paul (1961), discussed in §4.5, regarding the
supposed inapplicability of the Coulomb theory to planes on which the normal
stress is tensile.

Coulomb’s theory also predicts that the compressive stress required to cause
failure, σ1, will increase linearly with the confining stress, σ3. Experiments
typically show that σ1 at failure increases at a less-than-linear rate with σ3.

In order to correct these deficiencies in Coulomb’s theory, Mohr (1900) sug-
gested that Coulomb’s equation, (4.5), be replaced by a more general, possibly
nonlinear, relation of the form (Fig. 4.11a)

|τ | = f (σ ). (4.25)

In principle, this curve can be determined experimentally as the envelope of
all of the Mohr’s circles that correspond to states of stress that cause failure.
Aside from the fact that f may now be a nonlinear function, the basic ideas of
Coulomb’s model are retained. Specifically, failure is supposed to occur if one of
the Mohr’s circles touches the curve defined by (4.25). As shown in Fig. 4.11b,
this will necessarily occur for the circle defined by σ1 and σ3, and so the value of
the intermediate principal stress is not expected to affect the onset of failure.

Moreover, as the state of stress at the point of contact of the Mohr’s circle
and the failure curve represents the stresses acting on the failure plane, the
generalized Mohr theory predicts, as did the Coulomb theory, that the failure
plane passes through the direction of the intermediate principal stress, and its
normal vector makes an angle β with the direction of maximum principal stress,
where 2β is the angle by which line PC is rotated (counterclockwise) from the
σ1-axis (Fig. 4.11b). If the failure criterion (4.25) is concave downward, as is
usually the case, the angle β of the failure plane will decrease with increasing
confining stress, as indicated in Fig. 4.11a.

Experimentally, the failure criterion (4.25) can be determined by plotting the
Mohr’s circles for the stresses at failure, as found in a series of tests conducted
under different confining stresses. The failure curve will then be given by the
envelope of these circles (Fig. 4.11a). Alternatively, the stresses at failure could be
plotted in the {σ3, σ1} plane, thereby generating a nonlinear analogue to (4.13).
Numerous mathematical formulae, each containing two or more adjustable
parameters, have been proposed for the purposes of fitting such failure data.
Many of these formulae are discussed by Andreev (1995) and Sheorey (1997).

Regardless of the specific form taken by the failure curve, an unambiguous
prediction of the Mohr theory is that the orientation of the plane of failure
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Fig. 4.12 (a) Stresses
at failure, measured by
Mogi (1966) on a
Dunham dolomite.
(b) Comparison of the
failure angles predicted
by the Mohr
construction, and the
observed angles
(between the normal to
the failure plane and the
direction of maximum
principal stress).
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can be predicted by the construction shown in Fig. 4.11b. Data obtained under
traditional σ2 = σ3 triaxial tests typically show reasonably good agreement with
this aspect of the theory. For example, Mogi (1966) conducted a series of triaxial
failure tests on a Dunham dolomite, determined the orientation angles β from
the Mohr construction, and then compared these angles to the observed angles
of the failure plane. As seen in Fig. 4.12, the failure curve in the {σ3, σ1} plane
was slightly nonlinear, but the observed failure angles were generally quite close
to the predicted values.

All empirical failure criteria that follow Mohr’s hypothesis will be expressible
in some functional form |τ | = f (σ ), or, alternatively, σ1 = g(σ3). Either of
these two functions, f or g, will suffice to determine the other. However, as will
be clear from the analysis of the Coulomb theory given in §4.5, the relationship
between these two functions will in general not be simple or obvious.

One such failure law that has become widely used, and which is capable of
fitting data from many different rocks, is the Hoek–Brown criterion (Hoek and
Brown, 1980). In terms of the two extreme principal stresses, this criterion takes
the form (Fig. 4.13a)

σ1 = σ3 + (mσcσ3 + σ 2
c )

1/2, (4.26)

wherem and σc are two fitting parameters. Setting σ3 = 0 in (4.26) shows that σc
is in fact equal to the uniaxial compressive strength, Co. Setting σ1 = 0 in (4.26)
and solving the resultant quadratic equation for the uniaxial tensile strength
To = −σ3, gives

To = σc

2
[(m2 + 4)1/2 − m]. (4.27)

The parameter m usually lies in the range 5 < m < 30, in which case an
expansion of (4.27) for “large” m leads to

To ≈ σc/m, that is, Co/To ≈ m. (4.28)

In practice, therefore, the Hoek–Brown model predicts a much larger ratio of
compressive strength to tensile strength than does the Coulomb model, and so
in that regard is in closer agreement with experimental data.
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Fig. 4.13
(a) Hoek–Brown failure
curves, for two different
values of m.
(b) Experimental failure
data for several different
granites, fit with
different values of σc,
but one value of m (after
Hoek and Brown, 1980).
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Analysis of published strength data led Hoek and Brown (1980) to conclude
that m takes on characteristic values for different rock types. They summarized
these trends as follows:

1 m ≈ 7 for carbonate rocks with well-developed crystal cleavage (dolomite,
limestone, marble);

2 m ≈ 10 for lithified argillaceous rocks (mudstone, siltstone, shale, slate);
3 m ≈ 15 for arenaceous rocks with strong crystals and poorly developed crystal

cleavage (sandstone, quartzite);
4 m ≈ 17 for fine-grained polyminerallic igneous crystalline rocks (andesite,

dolerite, diabase, rhyolite);
5 m ≈ 25 for coarse-grained polyminerallic igneous and metamorphic rocks

(amphibolite, gabbro, gneiss, granite, norite, quartz-diorite).

Figure 4.13b shows data on granites, collected from various sources byHoek and
Brown (1980) and plotted in normalized form. A single best-fit value ofm= 27.86
was found for the combined data set, although specific values of σc were found
for each different granite in the set. The resulting fit has a correlation coefficient
of 0.99.

Although the Hoek–Brown model gives a nonlinear failure envelope on a
Mohr diagram, in contrast to the linear relationship predicted by the Coulomb
model, Hoek (1990) has presented equations that allow the Hoek–Brown failure
envelope to be locally approximated by a Coulomb line. Various technical issues
associated with accurately fitting failure data to different types of failure curves
are discussed by Handy (1981), Sheorey (1997), and Pincus (2000).

4.7 Effects of pore
fluids

The foregoing discussion of rock failure has ignored the fact that rocks are
typically porous to some extent, and the pore space of a rock will in situ be filled
with fluids under pressure. The pore fluid is usually water, but may be oil, gas,
or rock melt. The pore fluid may affect the failure of the rock in two ways: due
to the purely mechanical effect of pore pressure, or due to chemical interactions
between the rock and the fluid.
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With regards to the mechanical effect of pore fluid pressure, it seems plausible
that pore pressure, which acts “outward” from the pore space, would in some
sense act like a tensile stress. Moreover, in an isotropic rock, this effect should
be the same in any three mutually orthogonal directions. Reasoning along these
lines, the soil mechanician Karl Terzaghi (1936) proposed that the failure of a soil
would be controlled by the “effective stresses,” σ ′

i , which would be the principal
stresses, reckoned positive if compressive, minus the pore pressure, that is,

σ ′
1 = σ1 − P, σ ′

2 = σ2 − P, σ ′
3 = σ3 − P, (4.29)

where P is the pore fluid pressure. In a more general formulation, P could
be multiplied in (4.29) by some parameter α, which would be referred to as
the effective stress coefficient. (It should be emphasized that the effective stress
coefficient for failure processes has no particular connection to the effective
stress coefficient that appears in the theory of linear poroelasticity, §7.4.)

Most experiments on rocks support the conclusion that the effective stress
law (4.29) holds, which is to say that the effective stress coefficient for failure is
unity. Despite many attempts to derive an effective stress law for failure, which
have been contentious and inconclusive, this “law” is best viewed as an empirical
observation. It is, however, consistent with the assumption that brittle failure is
in some way controlled or initiated by the stress concentrations at the corners of
thin microcracks (see §10.8). As shown in §8.10, these stress concentrations are
indeed proportional to the difference between the far-field stress and the fluid
pressure in the crack.

In the context of a Mohr diagram, replacing the stresses σi with the effective
stresses σ ′

i has the effect of translating all the stress circles to the left by the amount
P. The Mohr’s circle will therefore be shifted closer to the failure line. Hence, an
in situ state of stress that is “safe” in the absence of a pore pressuremaywell cause
the rock to fail if the pore pressure is increased by a sufficient amount (Fig. 4.14).
This fact accounts for the increased occurrence of landslides in the aftermath of
heavy rainfall.

A set of data that illustrates the effective stress principle of brittle failure is that
of Murrell (1965), who conducted standard triaxial compression tests on a Darley
Dale sandstone, at several different values of the pore pressure. The Darley Dale
is a poorly graded feldspathic sandstonewith 21 percent porosity. In each test, the
pore pressure and the confining stress were held constant, while the axial stress
was increased until failure occurred. When plotted in the {P, σ1} plane, the data
fall on different curves, corresponding to the different values of σ3 (Fig. 4.15a).

Fig. 4.14 (a) A stress
state that lies below the
failure curve.
(b) Application of a pore
pressure P causes the
effective stress state to
move closer to the
failure curve.
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Fig. 4.15 (a) Stresses
at failure in a Darley
Dale sandstone
(Murrell, 1965) as a
function of pore
pressure, for several
different values of the
confining stress.
(b) Same data plotted in
terms of the effective
principal stresses,
according to the
effective stress
law (4.29).
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If plotted on the {σ3, σ1} plane, the data would form three distinct vertical lines.
However, when plotted in the {P, σ1} plane of maximum andminimum effective
stresses, the failure data nearly form a single failure curve, which in this particular
case is slightly concave downward (Fig. 4.15b).

It follows from (4.29) that the effective stress tensor σ′ is related to the actual
stress tensor σ by

σ′ = σ − PI, (4.30)

where I is the identity tensor. The additional hydrostatic stress −PI gives rise to
no shear stresses on any plane (§2.8), so the effective shear stresses are identical
to the actual shear stresses. One implication of this fact is that the condition
for sliding along a fault or other plane of weakness, (3.20), is replaced, in the
presence of a pore fluid, by

|τ | = So + µ(σ − P). (4.31)

A simple physical interpretation of this condition is that, while the normal stress
σ tends to strengthen the fault, by pushing the two opposing rock faces together,
the fluid pressure acts to weaken it, by pushing the two opposing rock faces
apart. Expression (4.31) has been verified experimentally by Byerlee (1967) on
laboratory specimens of granite. Some geological implications of this concept
have been discussed by Secor (1965) and Hubbert and Rubey (1959, 1960, 1961).

Extension failure in the presence of pore pressure has been discussed theoret-
ically by Murrell (1964). The effective stress concept suggests that the criterion
for failure should be

σ ′
3 = σ3 − P = −To. (4.32)

This result is consistent with the concept that tensile failure is caused by the stress
concentrations at the edges of thin cracks oriented normal to the direction of the
least compressive principal stress. Jaeger (1963) performed tensile failure tests on
a fine-grained Tasmanian dolerite, and found that (4.32) held, although the data
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was fit best by multiplying the pore fluid pressure P by an effective stress coef-
ficient of 0.95. The slight discrepancy between the experimental and theoretical
effective stress coefficients was attributed to experimental error. Condition (4.32)
for tensile failure is fundamental to the theory of hydraulic fracturing (§13.6).

The strength of rocks can also be influenced by chemical interactions between
the rock and the pore fluid (Paterson, 1978, pp. 78–9). In many quartz-rich
rocks, but also in limestones, it has been found that the strength decreases if
the rock is in contact with water. This effect has been noted for sandstones by
Jaeger (1943), for coal by Price (1960), for calcite rocks by Rutter (1972b), and
for limestone by Parate (1973). Vukuturi (1974) measured the tensile strength of
Indiana limestone with different pore fluids, including water, glycerine, benzene,
and various alcohols and found that the strength decreased with an increase in
surface tension. The tensile strength of the limestone when saturated with water
was about 25 percent less than when saturated with ethyl alcohol and about
30 percent less than the value that could be extrapolated from the data for a
hypothetical pore fluid with zero surface tension.

Pore fluids can also influence rock strength through the mechanism of stress
corrosion fracture (Atkinson, 1979; Peck, 1983). In quartz-rich rocks, fracture
proceeds through the rupture of Si–O bonds at the crack tip, and this rupture
is accelerated when the bonds are strained by external stresses (Dove, 1995).
The rate of crack growth can be modeled as a rapidly increasing function of the
applied far-field stress, such as an exponential or power law function (Wiederhorn
and Boltz, 1970; Lawn, 1993). Ojala et al. (2003) conducted standard triaxial
compression tests on a Locharbriggs sandstone composed of 88 percent quartz
and 6 percent K-feldspar, while flowing water through the sample at a rate of
30 ml/h. The concentration of silica in the effluent was found to correlate with
the different stages of the deformation process: crack closure, linear elastic, and
strain hardening. The yield stress increasedwith increasing strain rate, consistent
with the idea that at higher strain rates the fluid has less time to react with the
rock. The effects of rock/fluid interactions on rock failure have been reviewed
by Atkinson and Meredith (1987).

4.8 Failure under
true-triaxial
conditions

Mohr’s theory of failure is based on the assumption that failure is controlled
by the minimum and maximum principal stresses, and is unaffected by the
magnitude of the intermediate principal stress. As most “triaxial” rock testing is
conducted under conditions of σ2 = σ3, such data do not allow a test of this
aspect of Mohr’s hypothesis. Nevertheless, there are situations in which σ2 = σ3
will be the exception in the subsurface rather than the rule. Hence, the question
of whether or not Mohr’s hypothesis is correct is pertinent.

Compression tests conducted under true-triaxial conditions (Mogi, 1971;
Fig. 4.16a) and borehole breakout tests (Haimson and Song, 1995; Fig. 4.17a)
in fact show that for many, although not all, rocks the intermediate principal
stress has a pronounced influence on the value of σ1 at failure. This suggests the
need for failure criteria that depend on all three principal stresses. As it is known
from traditional (σ2 = σ3) compression tests that a lateral confining stress of
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the form σ2 = σ3 has the effect of strengthening the rock, it is plausible that
any increase of σ2 above σ3 may cause additional strengthening. This suggests
replacing the failure criterion of the form σ1 = f (σ2) by the more general form

σ1 = f (σ2, σ3). (4.33)

For an isotropic rock, such a failure criterion can also always be written in terms
of the stress invariants (§2.8), and it is often convenient to do so.

In the context of metal plasticity, Nadai (1950) suggested that the “driving
force” for failurewill be J2, the second invariant of the deviatoric stress. According
to (2.164), this invariant is related to the three principal stresses by

J2 = 1
6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]. (4.34)

According to (5.152), in a linearly elastic, isotropic material, J2 is also a direct
measure of the distortional strain energy. Nadai further suggested that failure
was “opposed” by the mean stress in the material, which is consistent with
the concept that confinement strengthens the rock. The mean stress can be
represented by the first invariant of the stress, I1, which according to (2.143) and
(2.153) is related to the three principal stresses by

I1 = σ1 + σ2 + σ3 = 3τm, (4.35)

where τm is the mean normal stress. Hence, Nadai’s assumption can be written
in the form

J2 = f (I1), (4.36)

where f is some increasing function of I1. A factor of 2/3 is often included in front
of J2, in which case, according to (2.167), the failure criterion can be written in
terms of the octahedral shear stress and the mean normal stress:

τ 2oct ≡ 2
3
J2 = f (τm), (4.37)

where f is some increasing function of the mean normal stress.
Many specific forms of a true-triaxial failure criterion have been proposed for

rocks and soils. Drucker and Prager (1952) took the relationship between J2 and
I1 at failure to be of the form

(J2)1/2 = a + bI1, (4.38)

where a and b are material-dependent constants. Zhou (1994) extended this by
adding a term that is quadratic in I1:

(J2)1/2 = a + bI1 + cI21 . (4.39)

Colmenares and Zoback (2002) referred to this as the “modified Wiebols
and Cook” model in recognition of its similarities to the criterion proposed
by Wiebols and Cook (1968) based on micromechanical analysis of sliding
cracks (§10.6).
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Fig. 4.16 (a) Stresses
at failure in a Dunham
dolomite (Mogi, 1971).
If failure did not depend
on σ2, the values of σ1
for fixed σ3 would lie on
horizontal lines.
(b) Same data plotted in
the {τm2, τoct} plane, fit
with a power law
function.

0 100 200 300 400 500
0

200

400

600

800

1000

�3 = 25 MPa
�3 = 65 MPa
�3 = 105 MPa
�3 = �2

�2 (MPa)

� 1
 (

M
P

a)

Dunham dolomite

(a)

0

100

200

300

400

100 200 300 400 500

�2 > �3
�2 = �3

� o
ct

 (
M

P
a)

(�1+�3)/2 (MPa)

Dunham dolomite

(b)

Mogi (1971) modified the reasoning leading to (4.36) or (4.37) by the following
argument. According to the Mohr hypothesis, the failure plane will lie parallel
to the direction of the intermediate principal stress. Hence, it is plausible that
fracture is resisted only by the mean normal stress in the plane normal to the
failure plane, which is (σ1 + σ3)/2, rather than by the total mean normal stress.
This suggests a brittle failure criterion of the general form

τoct = f (τm2), where τm2 = (σ1 + σ3)/2. (4.40)

To test this hypothesis, Mogi (1971) conducted true-triaxial compression tests
on several rocks. The results showed that, for a fixed value of the minimum
stress σ3, the value of σ1 at failure at first increases with an increase in σ2,
but eventually decreases slightly as σ2 increases yet further (Fig. 4.16a). If the
octahedral shear stress at failure is plotted against the mean stress on the plane
parallel to σ2, as suggested by (4.40), the results do indeed coalesce to a single
line in the {τm2, τoct} plane (Fig. 4.16b).

Haimson and Song (1995) compared the results of standard σ2 = σ3 confined
compression tests with borehole breakout data measured on 10-cm cubical spec-
imens containing central circular boreholes with a radius of 1 cm. The cubical
specimens were subjected to various true-triaxial stress states, with the inter-
mediate “far-field” principal stress always aligned parallel to the borehole. The
local stresses at the borehole wall were calculated from the Kirsch solution,
(8.113)–(8.115), for a circular hole in an infinite rock mass. The borehole wall
was traction-free, so theminimum principal stress at the location of the borehole
breakout, which in this case was the radial stress, was always zero, but σ2 was
always nonzero. The values of σ1 at failure that were observed in the borehole
breakout tests were 2–3 times greater than would be predicted by the Coulomb
failure criterion thatwas derived from the standard compression tests (Fig. 4.17a).
However, both the confined compression data and the borehole breakout data
fell on a single line in the {τm2, τoct} plane (Fig. 4.17b), in accordance withMogi’s
model. For both Lac du Bonnet and Westerly granite, the failure data could be
fit with curves of the form

τoct = a + bτm2. (4.41)
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Fig. 4.17 (a) Stresses
at failure in a Westerly
granite, measured by
Haimson and Song
(1995) under standard
“triaxial” confined
compression and in
borehole breakout tests,
plotted in the {σ3, σ1}
plane. (b) Same data
plotted in the {τm2, τoct}
plane.
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The best-fitting values were found to be {a = 19.0MPa, b = 0.76} for Lac du
Bonnet, and {a = 14.6MPa, b = 0.79} for Westerly.

Al-Ajmi and Zimmerman (2005) showed that a linear expression for the failure
criterion inMogi’s {τm2, τoct} space, such as is given by (4.41), reduces precisely to
the Mohr–Coulomb criterion if any two of the principal stresses are equal. Thus,
the linear Mogi law, which they referred to as the “Mogi–Coulomb” criterion,
is in some sense a natural extension of the Mohr–Coulomb criterion into the
polyaxial stress domain.

Colmenares and Zoback (2002) carried out a detailed analysis of several pub-
lished true-triaxial data sets for brittle failure. Datawere assembledonSolenhofen
limestone, Dunham dolomite, Yuubari shale, Shirahama sandstone, and amphi-
bolite. The data for each rock were fit to several triaxial failure models, including
the Drucker–Prager criterion (4.38), Zhou’s modified Wiebols and Cook crite-
rion (4.39), andMogi’s criterion (4.40) in the specific form f (τm2) = cτ nm2, where
c and n are fitting parameters. The linear Coulomb criterion (§4.5) and the non-
linear Hoek–Brown criteria (§4.6), which do not attempt to account for the effect
of σ2, were also used. In general, the modified Wiebols and Cook model was
able to fit the data reasonably well, as was Mogi’s model, whereas the Drucker–
Prager model gave very poor fits. The Shirahama sandstone and Yuubari shale
showed very weak dependence on the intermediate principal stress, and con-
sequently these rocks could be fit by the Coulomb and Hoek–Brown criteria.
These latter models did not provide as good fits for the other three rocks, which
showed stronger dependence on σ2. Although measured data could always be
fit to Mogi’s model, in some cases this model seemed to give multivalued pre-
dictions of the value of σ1 at failure, at fixed values of {σ2, σ3}, which could be
problematic when used as a predictive tool.

4.9 The effect of
anisotropy on
strength

Since most sedimentary and metamorphic rocks are anisotropic, the effect of
anisotropy on strength is of great importance. The simplest situation, that of
planar anisotropy in which a rock mass has a set of parallel planes of weakness,
can now be addressed, by combining the results of §3.5 and §4.5. In §3.5, the
problem of sliding along a preexisting plane of weakness was discussed. If Sw is
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the inherent shear strength of the planes of weakness, and µw is the coefficient
of internal friction along those planes, then the condition for sliding along these
planes, (3.28), can be written in the present notation as

σ1 = σ3 + 2(Sw + µwσ3)

(1 − µw cot β) sin 2β
, (4.42)

where β is the angle between σ1 and the normal to the planes of weakness.
As shown in §3.5, the value of σ1 required to cause failure, as given by (4.42),

tends to infinity as β → π/2 or β → tan−1 µw = φw. For angles between
these two values, failure will occur at a finite value of σ1 that varies with β. The
minimum such value of σ1 is

σmin
1 = σ3 + 2(Sw + µwσ3)[(1 + µ2

w)
1/2 + µw], (4.43)

which occurs at a specific angle βw that is given by

tan 2βw = −1/µw. (4.44)

If the plane of weakness is oriented from the direction of maximum principal
stress by some angle other than βw, failure can still occur, but only at a value of
σ1, as given by (4.42), that is greater than σmin

1 . For values of β < φw, failure
along the plane of weakness is not possible, for any value of σ1. The situation is
illustrated in Fig. 3.9.

Thus far, only the possibility of failure along a plane of weakness has been
considered. However, failure can occur on a plane other than the preexisting
planes of weakness if the Coulomb failure criterion, (4.5), is satisfied, but with
parameters that can be denoted as So and µo. As the planes of weakness are
by definition weaker than the intact rock, it can be assumed that Sw < So and
µw < µo. According to (4.13), failure can occur on a plane other than a plane of
weakness if σ1 reaches the value

σ1 = 2So tan βo + σ3 tan2 βo, (4.45)

where, according to (4.6), βo is given by

tan 2βo = tan(φo + 90◦) = −1/ tan φo = −1/µo. (4.46)

For a fixed value of σ3, the value of σ1 required to cause failure somewhere
within the rock will then be equal to the smaller of two values given by (4.42)
and (4.45). If, for a given orientation β of the normal to the planes of weakness
relative to the direction of maximum principal stress, the value given by (4.42)
is less than that given by (4.45), failure will occur along a plane of weakness.
On the other hand, if the value given by (4.42) is greater than that given by
(4.45), failure will occur along a plane within the intact rock whose orientation
is defined by (4.46).

The value of σ1 needed to cause failure is plotted in Fig. 4.18, for two values
of σ3. The concave-upward portions of the curves correspond to criterion (4.42),
and represent failure along the plane of weakness. The horizontal portions of the
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Fig. 4.18 Variation of
the value of σ1 needed
to cause failure, as a
function of the angle β
between the normal to
the plane of weakness
and the maximum
principal stress, for the
case µw = 0.5,
µo = 0.7, So = 2Sw.
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curves are plotted from (4.45), and represent failure within the intact rock, along
a plane defined by (4.46). Larger values of σ3 would cause the curve to be shifted
upward, as can be anticipated by examining Fig. 3.9 and (4.45). Experimental
results (Donath, 1961; Hoek, 1964) show general agreement with that shown in
Fig. 4.18.
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5.1 Introduction As demonstrated inChapter 4, the stress–strain behavior of rock is quite complex,
even in such seemingly simple situations as uniaxial compression of a cylindrical
specimen. In order to generate analytical solutions to more complicated rock
mechanics problems, it is usually necessary to idealize and simplify the stress–
strain behavior. Themost commonly used form for the stress–strain relationships
for rocks is that of linear elasticity, in which the strain tensor is a linear function
of the stress tensor. This assumption allows many important problems to be
solved, such as stresses around boreholes and tunnels, stresses around faults
and fractures, etc. Although no rocks are actually “linearly elastic” over a wide
range of stresses, this approximation is often quite useful and accurate, since
many rocks behave linearly for incremental changes in stress. The changes in
stress brought about by any perturbation to the existing stress field, such as
those caused by an excavation, are small throughout most of the region of rock,
except in the immediate vicinity of the excavation itself. Linearity is therefore an
excellent approximation throughout the bulk of the rock mass.

In order to solve a problem in rock mechanics, one needs a set of equations
that are sufficient to ensure that the problem is “well posed” – that is, that it
indeed has amathematical solution. In particlemechanics, themost fundamental
governing equation is Newton’s law, which states that force is equal tomass times
acceleration. The analogue of that law for a deformable body such as a rock is
the law of stress equilibrium, which is derived in §5.5 and presented in cylindrical
coordinates in §5.6. This law applies to all rocks, regardless of the relationship
between stress and strain, andmust be satisfied in all processes that occur in a rock
specimen or rock mass. The stress equilibrium equations must be supplemented
by a set of constitutive equations that describe the relationship between stress,
strain, and possibly other parameters such as temperature, pore fluid pressure,
etc. The constitutive equations of isotropic linear elasticity are presented and
discussed in §5.2–§5.4. The final pieces of data that are needed to ensure the
existence of a unique solution to a rock mechanics problem (assuming linear
elastic behavior) are the boundary conditions, along with certain restrictions on
the value of the elastic moduli. These restrictions are discussed in §5.9, where the
uniqueness theorem of linear elasticity is proven. Finally, in §5.10, the equations
of anisotropic linear elasticity are presented.
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5.2 Stress–strain
relations for an
isotropic linear
elastic solid

An isotropic solid can be loosely defined as one inwhich all directions are “equiva-
lent.” In other words, in an isotropic rock the relationship between vertical stress
and vertical strain is the same as that between horizontal stress and horizontal
strain, etc. An important consequence of the property of isotropy is that the
principal axes of strain must coincide with the principal axes of stress. To see why
this is true, note that along a principal axis of stress, the stresses are purely nor-
mal, and they vary symmetrically with any angular departure from this direction
(see Fig. 2.7). In an isotropic rock, these symmetrical stresses must produce a
symmetrical system of strains. But symmetrical strains exist (in general) only
about a principal axis of strain; hence, the principal axes of stress and strain must
coincide. An alternative proof of this result can be obtained using the methods
presented in §5.10 for treating anisotropic materials.

The basic assumption underlying linear elasticity is that the components of
stress are linear functions of the components of strain. It is also implicit in
this assumption that the stress does not depend on the time rate of change
of the strains, the past history of the strains, etc. In fact, given the obvious
similarity between the stress transformation equations (2.101) and the strain
transformation equations (2.227), the obvious first-order approximation to the
stress–strain relationship is to assume a linear relation between the stress and
strain tensors. Written in terms of the principal coordinate system, the stress–
strain law of isotropic elasticity, often called “Hooke’s law,” takes the form

σ1 = (λ+ 2G)ε1 + λε2 + λε3, (5.1)

σ2 = λε1 + (λ+ 2G)ε2 + λε3, (5.2)

σ3 = λε1 + λε2 + (λ+ 2G)ε3, (5.3)

Any parameter that gives the ratio of one of the stress components to one of
the strain components is generically called an “elastic modulus.” The two elastic
moduli appearing in (5.1)–(5.3), λ and G, are also known as the Lamé parame-
ters. The parameter G is often denoted, particularly in mathematical elasticity
treatments, by the symbolµ (λ andµ being the twoGreek consonants in the sur-
name of the French elastician who first developed the above equations, Gabriel
Lamé). In order to avoid confusion with the coefficient of friction, however, we
will use G. As will be shown below, G is the shear modulus, as it relates stresses
to strains in a state of pure shear. If reference is made to the Lamé parameter
(singular), this refers specifically to λ.

Recalling that the volumetric strain is the sum of the three principal normal
strains, that is,

εv = ε1 + ε2 + ε3. (5.4)

the stress–strain equations (5.1)–(5.3) can be written as

σ1 = λεv + 2Gε1, σ2 = λεv + 2Gε2, σ3 = λεv + 2Gε3. (5.5)

Summing up the three principal normal stresses yields

3τm = σ1 + σ2 + σ3 = 3λεv + 2G(ε1 + ε2 + ε3) = (3λ+ 2G)εv. (5.6)
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The volumetric strain is therefore related to the mean stress by

τm =
(
λ+ 2

3
G
)
εv ≡ Kεv, (5.7)

where K is the bulk modulus. The multiplicative reciprocal of the bulk modulus,
1/K , is known as the bulk compressibility and is usually denoted by β or C.

Hooke’s law in the form (5.1)–(5.3) gives the stresses as functions of the strains.
These equations can be inverted by using (5.7) to eliminate εv from (5.5), which
gives

ε1 = (λ+ G)
G(3λ+ 2G)

σ1 − λ

2G(3λ+ 2G)
σ2 − λ

2G(3λ+ 2G)
σ3, (5.8)

ε2 = − λ

2G(3λ+ 2G)
σ1 + (λ+ G)

G(3λ+ 2G)
σ2 − λ

2G(3λ+ 2G)
σ3, (5.9)

ε3 = − λ

2G(3λ+ 2G)
σ1 − λ

2G(3λ+ 2G)
σ2 + (λ+ G)

G(3λ+ 2G)
σ3. (5.10)

Now consider a state of uniaxial stress in, say, the first principal direction. Young’s
modulus, E, also sometimes known as the modulus of elasticity, is defined as the
ratio of this stress to the strain that results in the same direction, that is,

E ≡ σ1

ε1
= G(3λ+ 2G)

(λ+ G)
. (5.11)

Poisson’s ratio, ν, is defined as (the negative of ) the ratio of the transverse strain
to the longitudinal strain, under conditions of uniaxial stress, that is,

ν ≡ −ε2
ε1

= −ε3
ε1

= λ

2(λ+ G)
. (5.12)

Poisson’s ratio is typically a positive number, in which case a longitudinal
compression would be accompanied by transverse expansion and vice versa.

Equations (5.7), (5.11), and (5.12) give the elastic parameters E, K , and ν in
terms of λ andG. Other useful relations between these parameters are as follows:

λ = Eν
(1 + ν)(1 − 2ν)

, G = E
2(1 + ν)

, K = E
3(1 − 2ν)

; (5.13)

λ = 2Gν
(1 − 2ν)

, E = 2G(1 + ν), K = 2G(1 + ν)

3(1 − 2ν)
; (5.14)

λ = K − 2
3

G, E = 9KG
3K + G

, ν = 3K − 2G
6K + 2G

. (5.15)

Although numerous elastic parameters can be defined for an isotropic material,
only two of them are independent; if any two are known, the others can be
determined from equations such as those given above. A full listing of all thirty
relations that can be obtained by expressing any three of the set {λ, K ,G, E, ν} in
terms of the other two is given by Davis and Selvadurai (1996).
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Thus far, the discussion of Hooke’s law for isotropicmaterials has been carried
out only in the principal coordinate system. Hooke’s law in an arbitrary orthog-
onal coordinate system can be derived by first writing (5.4) and (5.5) in matrix
form as

τ = λ trace(ε)I + 2Gε. (5.16)

Now consider a second coordinate system, obtained from the principal coordi-
nate system through a rotation matrix L. According to the transformation laws
for second-order tensors, (2.30) and (2.38), the stress and strain matrices in the
new coordinate system are given by τ′ = LτLT and ε′ = LεLT. Applying this
transformation to (5.16) yields

τ′ = LτLT = L[λ trace(ε)I + 2Gε]LT = λ trace(ε)LILT + 2GLεLT

= λ trace(ε′)LLT + 2Gε′ = λ trace(ε′)I + 2Gε′, (5.17)

where we have used the fact that trace(ε) = trace(ε′), because trace (ε) is an
invariant, along with the property that LLT = I, since L is a rotation matrix.
Comparison of the first and last terms in (5.17) shows that Hooke’s law, as
expressed in matrix form in (5.16), actually holds for an arbitrary orthogonal
coordinate system. When written out term-by-term in the general case when
the coordinate system is not aligned with the principal axes, (5.16) takes the form

τxx = (λ+ 2G)εxx + λεyy + λεzz, (5.18)

τyy = λεxx + (λ+ 2G)εyy + λεzz, (5.19)

τzz = λεxx + λεyy + (λ+ 2G)εzz, (5.20)

τxy = 2Gεxy, τxz = 2Gεxz, τyz = 2Gεyz. (5.21)

For a state of simple shear in which, say, τxy is the only nonzero stress, (5.18)–
(5.21) show that γxy = 2εxy = τxy/G is the only nonzero strain. For this reason,
G is known as the shear modulus.

Hooke’s law has the same algebraic form in coordinate systems that are locally
orthogonal, but not necessarily Cartesian, such as the cylindrical coordinate
system defined in §2.15. In cylindrical coordinates,

τrr = λεv + 2Gεrr , τθθ = λεv + 2Gεθθ , τφφ = λεv + 2Gεφφ , (5.22)

τrθ = 2Gεrθ , τrφ = 2Gεrφ , τθφ = 2Gεθφ , (5.23)

where εv = εrr + εθθ + εφφ , as in (2.281).
The inverse version of Hooke’s law, in which the strains are expressed as

functions of the stresses, is most naturally written as follows:

εxx = 1
E
τxx − ν

E
τyy − ν

E
τzz = 1

E
[τxx − ν(τyy + τzz)], (5.24)

εyy = 1
E
τyy − ν

E
τxx − ν

E
τzz = 1

E
[τyy − ν(τxx + τzz)], (5.25)

εzz = 1
E
τzz − ν

E
τxx − ν

E
τyy = 1

E
[τzz − ν(τxx + τyy)], (5.26)

τxy = 2Gεxy, τxz = 2Gεxz, τyz = 2Gεyz. (5.27)
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In our subsequent presentation of the theory of linear elasticity, all five of
the elastic parameters {λ, K ,G, E, ν} will be used. Some formulae, such as (5.1)–
(5.3), are most naturally written in terms of λ and G, whereas others, such
as (5.24)–(5.26), take on a simpler form if written in terms of E and ν. Further-
more, different experimental configurations lead to themeasurement of different
parameters, as discussed in Chapter 6. For example, uniaxial compression or ten-
sion measures E and/or ν, whereas torsion gives G. It follows that relations
amongst the elastic moduli, such as (5.7) and (5.11)–(5.15), are extremely useful
and will be referred to frequently.

It seems plausible that a cylindrical rock specimen would shorten if subject
to a compressive stress, in which case (5.24) indicates that E > 0. Similarly, if it
is assumed that a hydrostatic compressive stress results in a decrease in volume,
then (5.7) shows that K > 0. Finally, the condition that a positive shear stress
leads to a positive shear strain, and vice versa, implies that G > 0. Each of
these conditions is quite plausible, yet none are required by any known laws of
mechanics or thermodynamics; they are merely conditions that guarantee that
the material is stable (McLellan, 1980, pp. 247–50). In fact, these criteria do not
hold in regimes such as the postfailure region of the uniaxial compression curve,
such as shown in Fig. 4.3, where it is seen that, incrementally, an increase in strain
is accompanied by a decrease in stress. Nevertheless, these conditions are usually
assumed to hold when discussing the theory of linear elasticity. It will be seen in
§5.8 that these criteria are closely related to the condition that any deformation
of a rock results in energy being stored in the rock, rather than released by the
rock. These criteria are also required in order that an elasticity problemwill have
a unique solution (see §5.9). Equation (5.13) shows that these criteria force the
Poisson ratio to lie in the range −1 < ν < 0.5. A negative Poisson ratio would
imply that longitudinal extension is accompanied by transverse extension, rather
than transverse contraction. Although it seems that no isotropic rocks have been
found to have negative Poisson ratios, this peculiar behavior is not ruled out, even
by stability arguments. Indeed, man-made foams have been produced which do
have Poisson’s ratios in the range −1 < ν < 0 (Lakes, 1987).

In 1829, the Frenchmathematical physicist S. D. Poisson developed a simplified
model for atomic interactions in an elastic solid and concluded that λ = µ. If
this were the case, then we would also have

λ = G, K = 5G/3, E = 5G/2, ν = 1/4. (5.28)

The condition λ = µ, known as “Poisson’s relation,” is not a particularly accu-
rate approximation for most rocks. In fact, Poisson’s ratio takes on a range of
values when various rock types are considered. Despite this fact, Poisson’s rela-
tion is sometimes used, particularly in geophysics, to simplify the equations of
elasticity. There is also a small body of literature on the problem of determining
the solution to the elasticity equations for an arbitrary value of ν, using a solu-
tion which is known to hold for a particular value, such as 0.25 (Westergaard,
1952, pp. 137–9; Knops, 1958). Nevertheless, it must be said that the difficulties
in solving elasticity problems are not caused by the appearance of two elastic
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parameters in the equations, rather than one, but by the structure of differen-
tial equations themselves. Hence, any advantages gained by putting λ = µ are
outweighed by the resulting loss in generality.

Another particular type of idealized isotropic elastic material is the incompress-
ible solid, which has β = 0, and hence K = 1/β → ∞. For such materials, (5.15)
shows that

K → ∞, λ → ∞, E → 3G, ν → 1/2, (5.29)

whereas E and G can remain finite. A completely rigid material, on the other
hand, is not only incompressible but also has infinite values of E and G. The
limiting case of a compressible fluid is that in which the shear modulus vanishes,
but the bulk modulus remains finite. In this case, (5.13)–(5.15) show that

G → 0, ν → 1/2, E → 0, λ = K . (5.30)

The elastic moduli are all ratios of stresses to strains. Since the strains are
dimensionless, the moduli must have dimensions of stress. The Poisson ratio,
which is an elastic parameter, although not quite an elastic modulus, is itself
dimensionless. Many different units are used to quantify the moduli. In many
engineering texts, as well as in the petroleum engineering industry, it is common
to use pounds per square inch (psi). In geophysics, moduli are often quantified in
dynes per square centimeter (dyne/cm2), as well as in bars, where 1 bar = 106

dyne/cm2. The official SI unit for stress is the Pascal, which is 1 Newton per
square meter (Pa = N/m2). As a Pascal is a much smaller value than usually
occurs in rock mechanics, it is common to measure stresses in MegaPascals (1
MPa = 106 Pa) and moduli in GigaPascals (1 GPa = 109 Pa). The conversion
factors between the various units are

1 bar = 106 dyne/cm2 = 105 Pa = 14.50 psi. (5.31)

5.3 Special cases There are a number of special stress–strain states that are of sufficient practical
importance to make it worthwhile to examine them explicitly. In the following
discussions, it will be assumed that 0 < ν < 1/2, as is always the case in practice.

5.3.1 Hydrostatic stress, σ1 = σ2 = σ3 = P

This is the state of stress that would occur if a rock specimen were surrounded
by a fluid under a pressure of magnitude P. From (5.8)–(5.10), the strains are
given by

ε1 = ε2 = ε3 = P
3K

. (5.32)

It follows that the volumetric strain is

εv = ε1 + ε2 + ε3 = P
K
, (5.33)

so that 1/K can be identified as the compressibility of the rock.
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5.3.2 Uniaxial stress, σ1 �= 0, σ2 = σ3 = 0

This is the stress state that arises when a specimen is uniformly loaded in one
direction, while its lateral boundaries are free from traction. As well as being
commonly used in laboratory testing, this state will also be approximated in
practical situations such as in a pillar in an underground mine, for example.
The resulting strain state will be a contraction ε1 = σ1/E in the direction of σ1
and an expansion ε2 = ε3 = −νσ1/E in the two perpendicular directions. The
fractional change in volume is found from (5.4) to be

εv = (1 − 2ν)σ1/E. (5.34)

The volume decreases if the stress is compressive and increases if it is tensile.

5.3.3 Uniaxial strain, ε1 �= 0, ε2 = ε3 = 0

This state is often assumed to occur when, for example, fluid is withdrawn from
a reservoir, in which the vertical strain is contractile, whereas lateral strain is
inhibited by the rock that is adjacent to the reservoir. The stresses that accompany
uniaxial strain are

σ1 = (λ+ 2G)ε1, σ2 = σ3 = λε1 = [ν/(1 − ν)]σ1. (5.35)

In order for the lateral strains to be zero, nonzero lateral stresses must exist.
The assumption of uniaxial strain is often used as a simple model for calculating
in situ stresses below the Earth’s surface (see §13.2).

5.3.4 The case σ1 �= 0, ε2 = 0, σ3 = 0

This state corresponds to an applied stress in one direction, with zero stress and
zero strain in two mutually orthogonal directions that are each perpendicular to
the direction of the applied load. Equations (5.8)–(5.10) can be manipulated in
this case to yield

ε1 = (1 − ν2)σ1/E, σ2 = νσ1, ε3 = −[ν/(1 − ν)]ε1. (5.36)

5.3.5 Biaxial stress or plane stress, σ1 �= 0, σ2 �= 0, σ3 = 0

The strains in this case are found from (5.8)–(5.10) to be

ε1 = 1
E
(σ1 − νσ2), ε2 = 1

E
(σ2 − νσ1), ε3 = −ν

E
(σ1 + σ2). (5.37)

Plane stress occurs when a thin plate is loaded by forces acting in its own plane.
It also occurs locally at any free surface, because the normal and shear stresses
vanish on a free surface, and so the outward normal to a free surface is necessarily
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a direction of principal stress corresponding to σ3 = 0. In plane stress, there is
an expansion in the out-of-plane direction if σ1 + σ2 > 0 and a contraction if
σ1 + σ2 < 0. When the biaxial stress state is one of pure shear, then σ1 + σ2 = 0
and the lateral strain is zero. The fractional volume change in plane stress is

εv = (1 − 2ν)(σ1 + σ2)/E. (5.38)

It follows from (5.1)–(5.3) that the stress–strain relations for plane stress
conditions can be written as

σ1 = 4G(λ+ G)
(λ+ 2G)

ε1 + 2Gλ
(λ+ 2G)

ε2, (5.39)

σ2 = 2Gλ
(λ+ 2G)

ε1 + 4G(λ+ G)
(λ+ 2G)

ε2. (5.40)

It is important to note that this “two-dimensional” version of Hooke’s law cannot
be obtained from the three-dimensional form, (5.1)–(5.3), by simply ignoring the
terms that contain the subscript “3.”

5.3.6 Biaxial strain or plane strain, ε1 �= 0, ε2 �= 0, ε3 = 0

The stresses in this case are found from (5.1)–(5.3) to be

σ1 = (λ+ 2G)ε1 + λε2 σ2 = (λ+ 2G)ε2 + λε1, (5.41)

σ3 = λ(ε1 + ε2) = λ

2(λ+ G)
(σ1 + σ2) = ν(σ1 + σ2). (5.42)

In order for the out-of-plane strain to be zero, a nonzero out-of-plane stress
whose magnitude is given by (5.42) is needed in order to counteract the Poisson
effect due to the two in-plane stresses. The inverse form of Hooke’s law for plane
strain is

ε1 = (1 − ν2)

E
σ1 − ν(1 + ν)

E
σ2, (5.43)

ε2 = (1 − ν2)

E
σ2 − ν(1 + ν)

E
σ1. (5.44)

If the x- and y-axes are not principal axes, then (5.24)–(5.27) give

εxx = (1 − ν2)

E
τxx − ν(1 + ν)

E
τyy, (5.45)

εyy = (1 − ν2)

E
τyy − ν(1 + ν)

E
τxx , (5.46)

εxy = (1 + ν)

E
τxy = 1

2G
τxy. (5.47)

The assumption of plane strain is very often invoked when analyzing the stresses
around boreholes or elongated underground openings.
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5.3.7 Combined formulae for plane stress and plane strain

If λ is replaced by 2Gλ/(λ + 2G) in (5.41), then the resulting equations will be
identical to (5.39) and (5.40). This suggests the possibility that the stress–strain
relations for plane stress and plane strain could be written in a form that is
applicable to both situations. Indeed, both sets of stress–strain relations can be
written as

ε1 = (κ + 1)
8G

σ1 + (κ − 3)
8G

σ2, (5.48)

ε2 = (κ − 3)
8G

σ1 + (κ + 1)
8G

σ2, (5.49)

where “Muskhelishvili’s coefficient,” κ , is defined as

κ = 3 − 4ν for plane strain, (5.50)

κ = 3 − ν

1 + ν
for plane stress. (5.51)

The correctness of (5.48) and (5.49) can be verified by substituting the appropriate
value of κ and recalling that E = 2G(1 + ν). The general forms of (5.48) and
(5.49) that are applicable in nonprincipal coordinate systems are

εxx = (κ + 1)
8G

τxx + (κ − 3)
8G

τyy, (5.52)

εyy = (κ − 3)
8G

τxx + (κ + 1)
8G

τyy, (5.53)

εxy = 1 + ν

E
τxy = 1

2G
τxy. (5.54)

It is useful to be able to convert solutions for plane stress into the corresponding
solutions for plane strain, as many solutions in the literature are written out
explicitly for one case or the other, but usually not for both cases. This is done
most readily if the solutions are written in terms of G and ν, in which case a
solution for plane strain maybe converted to the case of plane stress by replacing
3 − 4ν with (3 − ν)/(1 + ν),which is to say, by replacing ν with ν/(1 + ν).
Similarly, plane stress solutions may be converted to plane strain solutions by
making the inverse substitution, which is to say, replacing ν with ν/(1 − ν).

5.3.8 Constant strain along the z-axis

It is assumed here that w is independent of x and y, that both u and v are
independent of z, and that

εzz = ∂w
∂z

= ε(= constant). (5.55)
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Under these circumstances, εxz = εyz = 0, and (5.55) and (5.24)–(5.25) give

Eεxx = (1 − ν2)τxx − ν(1 + ν)τyy − Eνε, (5.56)

Eεyy = (1 − ν2)τyy − ν(1 + ν)τxx − Eνε, (5.57)

2Gεxy = τxy. (5.58)

These equations provide a simple generalization of the plain strain equations,
(5.45)–(5.47) and are often used when considering the stresses around under-
ground tunnels.

5.4 Hooke’s law in
terms of deviatoric
stresses and strains

The stress–strain law for an isotropic, linear elastic solid takes on a particularly
simple mathematical form when expressed in terms of the deviatoric stress and
deviatoric strain. From (2.150) and (5.16), we have

εiso = 1
3
trace(ε)I = 1

3
trace

[
λtrace(ε)I + 2Gε

]
I

= 1
3

[
λ trace(ε)trace(I)+ 2G trace(ε)

]
I

= 1
3

[
3λ trace(ε)+ 2G trace(ε)

]
I = 3K

[
(1/3)trace(ε)

]
I = 3Kεiso,

(5.59)

where we have made use of the fact that trace(I) = 3. Since τiso = τmI and
εiso = εmI, we also have

τm = 3Kεm = Kεv. (5.60)

Similarly, (2.151) and (5.16) give

τdev = τ − τiso = λ trace(ε)I + 2Gε − K trace(ε)I

= λ trace(ε)I + 2Gε −
(
λ+ 2

3
G
)
trace(ε)I

= 2Gε − (2G/3)trace(ε)I = 2G[ε − (1/3)trace(ε)I]
= 2G[ε − εiso] = 2Gεdev. (5.61)

Hence, in terms of the deviatoric/isotropic decomposition, Hooke’s law for an
isotropic material can be written as

τiso = 3Kεiso, τdev = 2Gεdev. (5.62)

It follows from (5.62) that if the strain is either purely deviatoric or purely
isotropic, then the stress tensor is essentially equal to the strain tensor, aside from
a multiplicative scalar constant. In other words, deviatoric and isotropic strains
are eigenvectors (in a nine-dimensional space) of the Hooke’s law operator, with
corresponding eigenvalues 2G and 3K (Gurtin, 1972). This seemingly abstract
mathematical fact is actually crucial to many practically important calculations,
such as the establishment of upper and lower bounds on the effective elastic
moduli of heterogeneous or porous materials (Nemat-Nasser and Hori, 1993).
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5.5 Equations of
stress equilibrium

Thebasic problemof elasticity can be described as that of determining the stresses
and displacements of a body of known shape that is subjected to prescribed
tractions or displacements along its outer boundary and prescribed forces at its
interior points. The forces that act at interior points may be localized point forces
or forces that are distributed over the body, in which case they are called body
forces. Themost common body force is that due to gravity, although temperature
and pore pressure gradients have the same effect as distributed body forces, as
will be seen in Chapter 7. In order to find the state of stress and displacement
that results from the application of certain loads or boundary displacements, it
is necessary to solve a set of three coupled partial differential equations known
as the equations of stress equilibrium. In more general situations for which the
rock is not in static equilibrium, such as during seismic wave propagation, the
governing equations are the equation of motion. These equations are found by
applying the law of conservation of linear momentum, that is, Newton’s second
law, to the rock.

Newton’s second law states that the total force applied to a body in a given
direction is equal to the mass of the body multiplied by its acceleration in that
direction. As there are three mutually orthogonal directions at any point in a
rock mass, there will be three independent equations of motion. To derive the
mathematical form of the laws of motion/equilibrium, consider an arbitrarily
shaped body of finite size. We denote the region of three-dimensional space
occupied by the body by B and the outer boundary of the body by ∂B. The total
force acting on this body in, say, the x direction, consists of the sum of all the
body forces that act over the internal portions of the body, plus the resultant
force due to all of the surface tractions that act over the outer boundary of the
body. If we let Fx be the body force, per unit mass, which acts at each element of
the rock, then ρFx is the body force per unit volume, and so the total body force
is found by integrating the local body force over the entire body:

total body-force component in x direction =
∫∫∫

B

ρFxdV . (5.63)

To be consistent with the traditional rock mechanics sign conventions, the com-
ponents of F, namely (Fx , Fy, Fz), must be considered to be positive numbers if
they act in the negative coordinate directions. Another common notation for the
components of the body force vector is (X, Y , Z).

The total resultant of all of the surface tractions that are applied over the outer
boundary of the body is found by integrating the surface tractions over the outer
boundary:

total x-component of force due to surface tractions =
∫∫
∂B

pxdA. (5.64)

The x-component of the acceleration of each small element of rock is given
by the second derivative with respect to time of u, the x-component of the
displacement. The mass of each small element is given by ρdV , where dV is
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the incremental volume. The total x-component of the inertia term is therefore
found by integrating the product of mass and acceleration over the entire body:

total inertia component in x direction =
∫∫∫

B

ρ
∂2u
∂t2

dV . (5.65)

Equating the total force to the total inertia term yields
∫∫∫

B

ρFxdV +
∫∫
∂B

pxdA =
∫∫∫

B

ρ
∂2u
∂t2

dV . (5.66)

Equation (5.66) expresses Newton’s law of motion in the x direction, in an
integral form. To derive the more useful differential form of this equation, we
first convert the surface integral into a volume integral over the entire body.
To do this, we invoke the divergence theorem, also known as Green’s theorem,
which states that (Kellogg, 1970, pp. 37–9; Lang, 1973, pp. 327–33) for any vector
f, with components (fx , fy, fz),∫∫

∂B

(fxnx+fyny + fznz)dA =
∫∫∫

B

(
∂ fx
∂x

+ ∂ fy
∂y

+ ∂ fz
∂z

)
dV , (5.67)

where (nx , ny, nz) are the components of the outward unit normal vector to the
surface. The applicability of the divergence theorem requires certain assumptions
about the differentiability of the functions in the integrand and the smoothness
of the outer boundary ∂B; we will always assume that these conditions hold.
Although the three functions (fx , fy, fz) can be thought of as components of a
vector, this is not necessary; they can in fact be any three differentiable functions.

To apply the divergence theorem to the surface integral in (5.66), we first use
(2.63) to express the traction in terms of the stress components:∫∫

∂B

pxdA =
∫∫
∂B

(τxxnx+τyxny + τzxnz)dA. (5.68)

Application of the divergence theorem to (5.68) now yields

∫∫
∂B

pxdA=
∫∫
∂B

(τxxnx +τyxny+τzxnz)dA=
∫∫∫

B

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dV .

(5.69)

Substitution of (5.69) into (5.66) gives
∫∫∫

B

ρFxdV +
∫∫∫

B

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dV =

∫∫∫
B

ρ
∂2u
∂t2

dV , (5.70)

which can be written as∫∫∫
B

[
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρFx − ρ

∂2u
∂t2

]
dV = 0. (5.71)
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Equation (5.71) must hold for any arbitrary subregion of the rock mass,
because Newton’s law of motion applies to any such subregion. In order for
the integral of the bracketed term in (5.71) to vanish over any arbitrary region
B, the integrand must be identically zero at all points of the rock mass. To prove
this, assume that there is some point x at which the integrand is, say, positive
rather than zero. By continuity, it would then also be positive in some small
neighborhood of x. We could then chose this small neighborhood as our region
of integration, in which case the integral will be positive – in contradiction to
(5.71). Hence, our assumption that the integrand is positive at point x must have
been incorrect. We conclude that, at all points of the rock mass,

∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρFx = ρ

∂2u
∂t2

. (5.72)

Similar applications of Newton’s second law in the y and z directions yield

∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
+ ρFy = ρ

∂2ν

∂t2
, (5.73)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
+ ρFz = ρ

∂2w
∂t2

. (5.74)

These three equations of motion are coupled together, since each of the shear
stresses appears in two of the equations. For example, τxy = τyx , so this stress
component appears in both (5.72) and (5.73).

The equations of motion, (5.72)–(5.74), can be expressed in vector/matrix
form by first recognizing that the gradient operator can be thought of as a 3× 1
column vector, that is,

gradient = ∇ =




∂

∂x
∂

∂y
∂

∂z




. (5.75)

If we premultiply the stress matrix by the transpose of this gradient vector, the
result is a 1 × 3 vector whose three components are given by the derivative
terms in (5.72)–(5.74), as can easily be verified. Hence, (5.72)–(5.74) can also be
written as

∇Tτ + ρF = ρ
∂2u

∂t2
, (5.76)

where we take the mathematical liberty of identifying F and u as 1 × 3 row
vectors, rather than 3 × 1 column vectors. The term ∇Tτ is often referred to as
“div τ,” although this terminology is only clear if we recall that div τ must be
calculated as ∇Tτ. If we let a superposed dot denote differentiation with respect
to time, the equations of motion can be written succinctly as

div τ + ρF = ρü. (5.77)



Jaeger: “chapter05” — 2006/12/15 — 09:55 — page 119 — #14

Linear elasticity 119

The set of three equations expressed by (5.72)–(5.74), (5.76), or (5.77), must
be satisfied at all times, at all points in the rock mass, and are therefore
the governing equations for rock deformation. However, six unknown stress
components and three unknown displacements appear in these equations, so
these three equations are in themselves not sufficient to enable the stresses
and displacements to be found. In order to have a mathematically well-posed
problem, there must be an equal number of equations and unknowns. The
strain–displacement relations provide six additional equations, but also intro-
duce six additional “unknowns,” the six independent components of the strain
tensor. An additional six equations are then supplied by the stress–strain law,
which may be of any form: linearly elastic, nonlinearly elastic, plastic, viscoelas-
tic, etc. The equations of motion, along with the strain–displacement relations
and the stress–strain relations, constitute a set of equations in which the num-
ber of unknowns is equal to the number of equations. This is a necessary, but
not sufficient, condition for a problem in rock mechanics to be mathematically
well posed, in the sense of having a unique solution. Further conditions, involv-
ing the components of the elastic moduli and the boundary conditions, are
discussed in §5.9.

In the frequently occurring case in which the rock is in static equilibrium, or
in which the displacements are occurring very slowly, the right-hand sides of
(5.72)–(5.74) can be neglected. In these cases, the equations of motion reduce to
the equations of equilibrium:

∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρFx = 0, (5.78)

∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
+ ρFy = 0, (5.79)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
+ ρFz = 0. (5.80)

The two sets of equations, (5.72)–(5.74) and (5.78)–(5.80), are completely
general, in the sense that they contain no assumptions concerning the stress–
strain behavior of the rock. If we assume that the rock is a linear elastic material,
however, these equations can be expressed in terms of the displacements, as
follows. For the remainder of this chapter, we consider only the equations of
stress equilibrium; the full equations of motionwill be reprised in Chapters 7 and
11. We first combine the strain–displacement relations, (2.222), and the stress–
strain relations, (5.18)–(5.21), and then substitute the result into the equations of
motion, (5.72)–(5.74), to find

λ

(
∂2u
∂x2 + ∂2ν

∂x∂y
+ ∂2w
∂x∂z

)
+ G

(
∂2u
∂x2 + ∂2ν

∂x∂y
+ ∂2w
∂x∂z

+∂
2u
∂x2 + ∂2u

∂y2
+ ∂2u
∂z2

)
+ ρFx = 0. (5.81)
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λ

(
∂2u
∂y∂x

+ ∂2v
∂y2

+ ∂2w
∂y∂z

)
+ G

(
∂2u
∂y∂x

+ ∂2v
∂y2

+ ∂2w
∂y∂z

+ ∂2v
∂x2

+∂
2v
∂y2

+ ∂2v
∂z2

)
+ ρFy = 0, (5.82)

λ

(
∂2u
∂z∂x

+ ∂2v
∂z∂y

+ ∂2w
∂z2

)
+ G

(
∂2u
∂z∂x

+ ∂2v
∂z∂y

+ ∂2w
∂z2

+ ∂2w
∂x2

+∂
2w
∂y2

+ ∂2w
∂z2

)
+ ρFz = 0. (5.83)

Equations (5.81)–(5.83), knownas theNavier equations, embody the equations
of stress equilibrium, the stress–strain equations, and the strain–displacement
identities. Assuming that the body forces are known, which is usually the case,
these are equations for the threeunknowndisplacements. As such, they forma set
of differential equations that can be used to solve elasticity problems, as an
alternative to the previously discussed set of stress-based equations. The relative
advantages of the stress-based and displacement-based equations are discussed
in §5.7.

The displacement form of the equilibrium equations can also be expressed in
a more compact vector-matrix notation. First, note the following two identities:

∇Tu ≡ ∇ · u ≡ divu =
[
∂

∂x
∂

∂y
∂

∂z

] 
u

v
w


 = ∂u

∂x
+ ∂v
∂y

+ ∂w
∂z

, (5.84)

∇T∇ ≡ ∇2 =
[
∂

∂x
∂

∂y
∂

∂z

]



∂

∂x

∂

∂y

∂

∂z




= ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
. (5.85)

The Laplacian operator ∇2 is a scalar operator that can operate on, by pre-
multiplication, a scalar or a vector. Using these identities, (5.81)–(5.83) can be
written in the following hybrid form involving both scalar and vector notation:

(λ+ G)
∂

∂x
(∇ · u)+ G∇2u + ρFx = 0, (5.86)

(λ+ G)
∂

∂y
(∇ · u)+ G∇2v + ρFy = 0, (5.87)

(λ+ G)
∂

∂z
(∇ · u)+ G∇2w + ρFz = 0. (5.88)

From (5.75), we see that the three partial derivative operators appearing in these
three equations form the components of the gradient row vector. Furthermore,

(∇2u,∇2v,∇2w) = ∇2(u, v,w) = ∇2u. (5.89)
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Hence, (5.86)–(5.88) can be written as

(λ+ G)∇(∇ · u)+ G∇2u + ρF = 0. (5.90)

This form of the Navier equations not only has the advantage of compactness,
but can also be generalized to any non-Cartesian coordinate system, such as
cylindrical coordinates, in which the explicit representations of the gradient,
divergence, and Laplacian operators are known (see Chou and Pagano, 1992).

Various important and useful general results can be found from the Navier
equations. In situations in which there are no body forces, taking the partial
derivative of (5.86) with respect to x, the partial derivative of (5.87) with respect
to y, and the partial derivative of (5.88) with respect to z, adding the results, and
interchanging the order of partial differentiation when appropriate, leads to

(λ+ 2G)∇2(∇ · u) = 0. (5.91)

But (2.231) shows that ∇ · u = εv, the volumetric strain. Hence, in the absence
of body forces, the volumetric strain satisfies Laplace’s equation, that is,

∇2εv = 0. (5.92)

Equations τm = Kεv by (5.60), in which case (5.92) implies that themean normal
stress also satisfies Laplace’s equation:

∇2τm = 0. (5.93)

Differentiation of (5.86) with respect to x, again with the body force taken to
be zero, gives, after interchanging the orders of some of the derivatives,

(λ+ G)
∂2εv

∂x2 + G∇2εxx = 0. (5.94)

Invoking (5.92), (5.93), and (5.18) leads to

∇2τxx = − 6(λ+ G)
(3λ+ 2G)

∂2τm

∂x2 = −3
(1 + ν)

∂2τm

∂x2 , (5.95)

with similar equations holding for the other two normal stresses. Likewise, it
can be shown that

∇2τxy + 3
(1 + ν)

∂2τm

∂x∂y
= 0, (5.96)

as well as two similar equations for the other two shear stresses. These six
equations, known as the Beltrami–Michell equations, are equivalent to the strain-
compatibility equations of §2.13, although they are expressed in terms of the
stresses. If a purely stress-based formulation is desired for the elasticity equations,
which is useful in cases where the boundary conditions are known in terms
of stresses rather than displacements, the Beltrami–Michell equations give a
complete set of six equations for the six stresses. If nonconstant body forces act
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on the rock, additional terms (see Chou and Pagano, 1992, p. 78) involving the
derivatives of the body-force vector F appear on the right-hand sides of (5.95) and
(5.96).

In situations in which the displacement components u and v depend only on x
and y, and the strain in the z direction is constant with z, the stress equilibrium
equations (5.78)–(5.80) reduce to following pair of equations:

∂τxx

∂x
+ ∂τyx

∂y
+ ρFx = 0, (5.97)

∂τxy

∂x
+ ∂τyy

∂y
+ ρFy = 0. (5.98)

The two-dimensional form of the displacement-based Navier equations can be
found from (5.81)–(5.83) by ignoring all terms that involve either w or partial
differentiation with respect to z.

5.6 Equations of
stress equilibrium in
cylindrical and
spherical
coordinates

In rock mechanics problems involving cylindrical boundaries, such as tunnels or
boreholes, it is convenient to use cylindrical coordinates rather than Cartesian
coordinates. In this coordinate system, the governing equations of elasticity take
on a very different form than that given in §5.5. The equilibrium equations could
be transformed into cylindrical coordinates by starting with a vector formula-
tion such as (5.77) or (5.90), and using the cylindrical coordinate version of the
divergence, gradient, and Laplacian operators (Chou and Pagano, 1992). This
procedure is complicated by the need to account for the fact that the directions of
the unit vectors {er , eθ, ez} vary with position. The equations can also be derived
in the following more physically intuitive manner by starting with a differential
form of Newton’s second law, rather than an integral form.

Consider (Fig. 5.1a) a small element of rock that is bounded by three sets of
surfaces, on each of which one of the three cylindrical coordinates is constant.
The front and rear surfaces are the cylindrical surfaces corresponding to the
radii r and r + δr; the two lateral surfaces are planes defined by two values of
the angular variable θ and θ + δθ ; and the upper and lower surfaces are the
planes that correspond to z and z + δz. The cylindrical coordinates of point A are
{r, θ , z}. Now consider the sum of, say, all of the forces that act in the z direction.
As each of the increments {δr, δθ , δz} is small, the mean traction acting over
each face can be approximated by the traction that acts at the centroid of that
face. The component in the z direction of the traction that acts over the outer
cylindrical surface A′B′C′D′ is therefore

−τrz

(
r + δr, θ + 1

2
δθ , z + 1

2
δz

)
, (5.99)

and the area of the surface over which this traction acts is (r +δr)δθδz. Likewise,
the z-component of the traction acting on the inner cylindrical surface ABCD is

τrz

(
r, θ + 1

2
δθ , z + 1

2
δz

)
, (5.100)
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Fig. 5.1 (a) Elemen-
tary volume of rock in a
cylindrical coordinate
system. (b) Spherical
coordinate system.
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and the area of the surface over which this traction acts is rδrδθδz. The traction
component in the z direction acting on the top surface, CC′D′D, is

−τzz

(
r + 1

2
δr, θ + 1

2
δθ , z + δz

)
, (5.101)

and the area of this surface is rδrδθ . The traction component in the z direction
acting on the bottom surface, AA′B′B, is

τzz

(
r + 1

2
δr, θ + 1

2
δθ , z

)
, (5.102)

and the area of this surface is also rδrδθ . The traction component in the z
direction acting on the rectangular surface CC′B′B is

−τθz

(
r + 1

2
δr, θ + δθ , z + δz

)
, (5.103)

and the area of this surface is δrδz. Lastly, the traction component in the z
direction acting on the surface AA′D′D is

τθz

(
r + 1

2
δr, θ , z + 1

2
δz

)
, (5.104)

and the area of this surface is also δrδz.
The body force in the z direction, per unit mass, is denoted by −Fz (recalling

the sign convention in which the force component is positive if it points in the
negative coordinate direction), so the body force component per unit volume is
−ρFz. The volume of the element is rδrδθδz, so the total body force acting on
this element in the z direction is −ρrFzδrδθδz. For this element to be in static
equilibrium, the sum of all of the forces acting on it in the z direction must
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vanish, that is,

− τrz

(
r + δr, θ + 1

2
δθ , z + 1

2
δz

)
[(r + δr)δθδz]

+ τrz

(
r, θ + 1

2
δθ , z + 1

2
δz

)
[rδθδz]

− τzz

(
r + 1

2
δr, θ + 1

2
δθ , z + δz

)
[rδrδθ ]

+ τzz

(
r+ 1

2
δr, θ+ 1

2
δθ , z

)
[rδrδθ ]

− τθz

(
r+ 1

2
δr, θ+δθ , z+ 1

2
δz

)
[δrδz]

+ τθz

(
r + 1

2
δr, θ , z + 1

2
δz

)
[δrδz] − ρFz[rδrδθδz] = 0.

(5.105)

Dividing the entire equation by rδrδθδz yields

τrz(r + δr, θ + (1/2)δθ , z + (1/2)δz)− τrz(r, θ + (1/2)δθ , z + (1/2)δz)
δr

+ τrz(r + δr, θ + (1/2)δθ , z + (1/2)δz)
r

+ τzz(r+(1/2)δr, θ+(1/2)δθ , z+δz)−τzz(r+(1/2)δr, θ+(1/2)δθ , z)
δz

+ τθz(r+(1/2)δr, θ+δθ , z+(1/2)δz)−τθz(r+(1/2)δr, θ , z+(1/2)δz)
rδθ

− ρFz = 0. (5.106)

Taking the limit as all three of the coordinate increments become infinitesimally
small, we arrive at the partial differential equation that embodies Newton’s
second law for the z direction:

∂τrz

∂r
+ 1

r
∂τθz

∂θ
+ ∂τzz

∂z
+ τrz

r
+ ρFz = 0. (5.107)

Similar applications of Newton’s second law in the r and θ directions yield

∂τrr

∂r
+ 1

r
∂τθ r

∂θ
+ ∂τzr

∂z
+ τrr − τθθ

r
+ ρFr = 0, (5.108)

∂τrθ

∂r
+ 1

r
∂τθθ

∂θ
+ ∂τzθ

∂z
+ 2τrθ

r
+ ρFθ = 0. (5.109)

In two dimensions, with all stress components containing a subscript “z” equal
to zero, the equations of stress equilibrium reduce to

∂τrr

∂r
+ 1

r
∂τθ r

∂θ
+ τrr − τθθ

r
+ ρFr = 0, (5.110)

∂τrθ

∂r
+ 1

r
∂τθθ

∂θ
+ 2τrθ

r
+ ρFθ = 0. (5.111)
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The Navier equations can be expressed in cylindrical coordinates by com-
bining (5.107)–(5.109) with the stress–strain relations, (5.22)–(5.23), and the
strain–displacement relations, (2.275) and (2.280):

(λ+G)
∂εv

∂r
+G

(
∂2u
∂r2

+ 1
r
∂u
∂r

− u
r2

+ 1
r2
∂2u
∂θ2

− 2
r2
∂v
∂θ

+ ∂
2u
∂z2

)
+ρFr = 0,

(5.112)

(λ+G)
1
r
∂εv

∂θ
+G

(
∂2v
∂r2

+ 1
r
∂v
∂r

− v
r2

+ 1
r2
∂2v
∂θ2

− 2
r2
∂v
∂θ

+ ∂
2v
∂z2

)
+ρFθ = 0,

(5.113)

(λ+ G)
∂εv

∂z
+ G

(
∂2w
∂r2

+ 1
r
∂w
∂r

+ 1
r2
∂2w
∂θ2

+ ∂2w
∂z2

)
+ ρFz = 0, (5.114)

where (u, v,w) are the displacements in the {r, θ , z}directions, and the volumetric
strain is given by

εv = ∂u
∂r

+ u
r

+ 1
r
∂v
∂θ

+ ∂w
∂z

. (5.115)

In problems involving spherical cavities or inclusions, it is convenient to use a
spherical coordinate system (Fig. 5.1b), defined by

x = r sin φ cos θ , y = r sin φ sin θ , z = r cosφ. (5.116)

The general formof the elasticity equations in spherical coordinates can be found
in Timoshenko and Goodier (1970) or Sokolnikoff (1956). The most common
and important special case is that of radial symmetry, in which case the only
nonzero displacement component will be the radial component, u(r). The only
nonzero strains will be the three normal strains, which are related to the radial
displacement by

εrr = ∂u
∂r

, εθθ = εφφ = u
r
. (5.117)

The stress–strain relations in this case are, from (5.16),

τrr = (λ+ 2G)εrr + λ(εθθ + εφφ), (5.118)

τθθ = (λ+ 2G)εθθ + λ(εrr + εφφ), (5.119)

τφφ = (λ+ 2G)εφφ + λ(εrr + εθθ ), (5.120)

where τθθ and τφφ are the normal stresses in the two directions perpendicular to
r. Combining (5.117) and (5.118)–(5.120) yields the stress–displacement equations
for spherically symmetric deformations:

τrr = (λ+ 2G)
∂u
∂r

+ 2λ
u
r
, τθθ = τφφ = λ

∂u
∂r

+ 2(λ+ G)
u
r
. (5.121)

The only nontrivial equation of stress equilibrium is

∂τrr

∂r
+ 2(τrr − τθθ )

r
= 0. (5.122)
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Substituting (5.121) into (5.122) yields

∂2u
∂r2

+ 2
r
∂u
∂r

− 2u
r2

= 0, (5.123)

which is the Navier equation for spherically symmetric problems with no body
forces.

5.7 Airy stress
functions

Elasticity problems can be approached by working with the three Navier
equations, (5.81)–(5.83), in which the dependent variables are the three displace-
ments. Alternatively, the six Beltrami–Michell equations, (5.95)–(5.96), in which
the stresses are the dependent variables, also form a complete set of partial dif-
ferential equations for solving elasticity problems. The Navier equations would
appear to be simpler to use, as they are three, rather than six, coupled equations.
In situations in which the displacements are specified on the outer boundaries of
the rock mass, the Navier equations are convenient to use. However, it is more
commonly the case that tractions, rather than displacements, are the known
boundary data. In this case, the Navier equations suffer from the disadvantage
that traction boundary conditions will inevitably take on a complicated form
when expressed in terms of the unknown displacements. For these problems, it
is often convenient to use a stress-based formulation of the elasticity equations.

A stress-based method of solving the elasticity equations becomes particularly
simple for two-dimensional problems involving plane stress or plane strain, in
which case the governing equations reduce to a single partial differential equation.
It is not easy to see that the six Beltrami–Michell equations reduce to a single
equation in this case; rather, it is easier to startwith the single strain-compatibility
equation for two-dimensional problems, (2.253):

2
∂2εxy

∂x∂y
= ∂2εxx

∂y2
+ ∂2εyy

∂x2 . (5.124)

Substitution of the two-dimensional stress–strain relations, (5.52)–(5.54), into
(5.124) yields

(χ + 1)
[
∂2τxx

∂y2
+ ∂2τyy

∂x2

]
+ (χ − 3)

[
∂2τxx

∂x2 + ∂2τyy

∂y2

]
= 8

∂2τxy

∂x∂y
, (5.125)

where χ = 3 − 4ν for plane strain and χ = (3 − ν)/(1 + ν) for plane stress.
Next, differentiation of the two equilibrium equations (5.97)–(5.98) yields

∂2τxy

∂x∂y
= −∂

2τxx

∂x2 − ρ
∂Fx

∂x
= −∂

2τyy

∂y2
− ρ

∂Fy

∂y
, (5.126)

which is to say

−8
∂2τxy

∂x∂y
= 4

[
∂2τxx

∂x2 + ∂2τyy

∂y2

]
+ 4ρ

[
∂Fx

∂x
+ ∂Fy

∂y

]
. (5.127)
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Substitution of (5.127) into (5.126) yields

(
∂2

∂y2
+ ∂2

∂x2

)
[τxx + τyy] = −4ρ

(χ + 1)

(
∂Fx

∂x
+ ∂Fy

∂y

)
, (5.128)

which can also be written in vector form as

∇2τm = −2ρ
(χ + 1)

∇ · F, (5.129)

where τm refers here to the two-dimensional mean normal stress, (τxx + τyy)/2.
It is often the case that the body force can be expressed as the gradient of a

potential function, V , that satisfies Laplace’s equation, ∇2V = ∇ · (∇V) = 0; a
common example is the body force due to gravity, for which V = −gz. In these
situations, we have F = −∇V , that is,

Fx = −∂V
∂x

, Fy = −∂V
∂y

. (5.130)

But then the right-hand side of (5.129) vanishes, because∇ ·F = −∇ ·(∇V) = 0,
that is,

∂Fx

∂x
+ ∂Fy

∂y
= − ∂

∂x

(
∂V
∂x

)
− ∂

∂y

(
∂V
∂y

)
= −

(
∂2V
∂x2 + ∂2V

∂y2

)
= 0. (5.131)

Equation (5.129) then reduces to the requirement that the two-dimensionalmean
normal stress must satisfy Laplace’s equation,

∇2τm = 0. (5.132)

Although it may appear that (5.132) accounts for the equations of stress equi-
librium, in fact only the derivatives of these equations have been used in deriving
(5.132); the stress equilibrium equations must yet be satisfied. To do this, we
note that the stress equilibrium equations will automatically be satisfied if we
define the three independent stress components in terms of some function U, as
follows:

τxx = ∂2U
∂y2

+ ρV , τyy = ∂2U
∂x2 + ρV , τxy = − ∂2U

∂x∂y
. (5.133)

It can be verified by inserting (5.133) into (5.97)–(5.98) that, if the stresses are
defined as in (5.133), the equilibrium equations will be identically satisfied.
Finally, insertion of (5.133) into (5.132) gives

0 = ∇2τm = 1
2
∇2

[
∂2U
∂x2 + ∂2U

∂y2
+ 2ρV

]
= 1

2
∇2 (∇2U

) + ρ∇2V . (5.134)

But ∇2V = 0, so we see that the function U must satisfy the biharmonic equation,

∇2(∇2U) ≡ ∇4U = 0. (5.135)
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In Cartesian coordinates, this equation takes the form

∂4U
∂x4 + 2

∂4U
∂x2∂y2

+ ∂4U
∂y4

= 0. (5.136)

In summary, if a function U satisfies the biharmonic equation, (5.135), then
the stresses that are derived from U via (5.133) will automatically satisfy the
two-dimensional elasticity equations (including Hooke’s law, strain compatibil-
ity, and stress equilibrium). Hence, the mathematical process of solving the
elasticity equations has been reduced to the solution of a single fourth-order
partial differential equation. This approach is convenient if the boundary condi-
tions are all given in terms of tractions, rather than displacements; otherwise,
a displacement-based formulation must be used. The biharmonic function U is
known as an Airy stress function, after G. B. Airy, the British astronomer who first
suggested this approach (Airy, 1863; Maxwell, 1870).

In polar coordinates (and assuming no body forces), the stress components
can be derived from the Airy stress function U(r, θ) by

τrr = 1
r
∂U
∂r

+ 1
r2
∂2U
∂θ2

, τθθ = ∂2U
∂r2

, τrθ = − ∂

∂r

(
1
r
∂U
∂θ

)
, (5.137)

and the biharmonic equation for U takes the form
(
∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2
∂2

∂θ2

) (
∂2U
∂r2

+ 1
r
∂U
∂r

+ 1
r2
∂2U
∂θ2

)
= 0. (5.138)

The stress function approach can in principle also be used for three-
dimensional problems. Two different types of three-dimensional stress functions
have been developed by Maxwell (1870) and by Morera (1892); see also Bradley
(1990) and Michelitsch andWunderlin (1996). However, in three dimensions this
approach losesmuch of its simplicity, as in general three different stress functions
are needed to solve a given elasticity problem.

5.8 Elastic strain
energy and related
principles

When an elastic body is deformed, the forces (body or surface) that cause the
deformation do work on the body as they deform it. In accordance with the
principle of conservation of energy, this work is stored in the deformed body
in the form of elastic strain energy. Elastic strain energy plays an important role
in rock mechanics. Physically, strain energy is important because it is available
to potentially cause adverse phenomena such as rock bursts, borehole collapses,
etc. (Cook et al., 1966; Salamon, 1984). Mathematically, strain energy is impor-
tant because many widely used solution methods are based on energy-related
principles. In §5.9, it is shown that strain energy considerations are crucial to the
establishment of the uniqueness theorem for elastic boundary-value problems.

The strain energy stored in a deformed rock is essentially equivalent to the
elastic energy stored in a deformed spring, for example. To calculate the stored
strain energy, we make use of the principle of conservation of energy, which
states that the strain energy will be equal to the work done on the body by the
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external forces that cause the deformation. This work can be calculated from the
elementary definition that work is equal to force multiplied by the displacement
of the point at which that force acts; in this calculation, only the component of
the force that acts in the direction of the displacement must be used. Consider
first a cube of rock, of length a on each side, that is subjected to a uniaxial stress
σ1 in one direction. Imagine that this stress is applied slowly, so that it increases
from 0 to σ1 in a quasi-static manner. This can be represented mathematically
by taking the stress to be kσ1, where k is a scalar parameter that increases from
0 to 1. If the rock is linearly elastic, the strain will increase at a rate proportional
to the stress, from 0 to kε1. The stress acts over a face of area a2, so its associated
force is kσ1a2. The final displacement of this face in the direction of the applied
stress will be aε1, so that at any intermediate time during the deformation, the
displacement is akε1. The incremental work done by this force as the parameter
k increases from k to k + dk is therefore given by

dW = force × displacement = (kσ1a2)(aε1dk) = σ1ε1a3kdk. (5.139)

The total work done by the force through the entire process of deformation is

W =
∫

dW = σ1ε1a3
1∫

0

kdk = 1
2
σ1ε1a3. (5.140)

This work is now stored in the body as elastic strain energy, , so that TOT =
σ1ε1a3/2. The elastic strain energy per unit volume of rock, which will be
referred to as the elastic strain energy density, is = TOT/a3 = σ1ε1/2.

If normal tractions are also applied over the other two pairs of faces, their
contributions to the total work will be additive. No cross products appear in the
final expression for W , since, for example, the force due to the stress that acts on
the second face, σ2, has no component in the direction of the displacement of
the first face, etc. Hence, the elastic strain energy stored in this cube of rock, per
unit volume, will be given by

= 1
2
(σ1ε1 + σ2ε2 + σ3ε3). (5.141)

In this thought experiment, no shear tractions were applied to the cube of rock,
so the stresses and strains appearing in (5.141) are indeed principal stresses and
strains. The bracketed term in (5.141) can be shown to be equal to the trace
of the product of the stress and the strain matrices, when expressed in terms
of the principal coordinate system. But the trace of a matrix is an invariant and
therefore has the same value when calculated in any coordinate system. It is
therefore true, in general, that

= 1
2
trace(τε)

= 1
2
(τxxεxx + τyyεyy + τzzεzz + τxyεxy + τxzεxz + τyzεyz + τyxεyx

+ τzxεzx + τzyεzy). (5.142)
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Although this derivation of (5.142) seems to depend on the tacit assumption that
the principal directions of stress and strain are equal, which is not necessarily the
case for anisotropic rocks, it can be shown that (5.142) is in fact true in all cases.

The six shear terms in (5.142) could be grouped together into three terms,
using the symmetry of the stresses and strains. In some situations, this is conve-
nient, such as when discussing Hooke’s law for anisotropic materials, as in §5.10.
However, some issues are obscured by this simplification, such as the fact (shown
below) that the stresses and strains are conjugate thermodynamic variables. In
any event, can either be considered to be a function of nine stress components,
as in (5.142), or can be considered to be a function of six stress components, if
use is made of the relations τxy = τyx , etc. This latter approach will be taken in
§5.10.

For isotropic rocks, the stored strain energy density can be written in many
different forms. Substitution of (5.24)–(5.27) into (5.142) yields

= 1
2E

[(τ 2xx + τ 2yy + τ 2zz)− 2ν(τxxτyy + τxxτzz + τyyτzz)

+ (1 + ν)(τ 2xy + τ 2xz + τ 2yz + τ 2yx + τ 2zx + τ 2zy)]. (5.143)

In terms of the principal stresses, (5.143) takes the form

= 1
2E

[(σ 2
1 + σ 2

2 + σ 2
3 )− 2ν(σ1σ2 + σ2σ3 + σ3σ1)]. (5.144)

Alternatively, can be written in terms of the strains as

= 1
2
[λ(εxx + εyy + εzz)

2 + 2G(ε2xx + ε2yy + ε2zz)

+ 2G(ε2xy + ε2xz + ε2yz + ε2yx + ε2zx + ε2zy)], (5.145)

which, in terms of principal strains, takes the form

= 1
2
[λ(ε1 + ε2 + ε3)

2 + 2G(ε21 + ε22 + ε23)]. (5.146)

Recalling (2.154)–(2.156) and (2.237), the elastic strain energy as given by
(5.142), (5.144), and (5.146) can also be written in terms of the deviatoric stresses
and deviatoric strains as (Mal and Singh, 1991, p. 154)

= 1
2
(s1e1 + s2e2 + s3e3)+ 3

2
τmεm, (5.147)

= 1
4G
(s21 + s22 + s23)+ 1

2K
τ 2m, (5.148)

= G(e21 + e22 + e23)+ 9
2

Ke2m, (5.149)

where {s1, s2, s3} are the principal deviatoric stresses, {e1, e2, e3} are the principal
deviatoric strains, τm is the mean normal stress, and εm is the mean normal
strain (which equals one-third of the volumetric strain, εv).
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Equations (5.148) and (5.149) show that the elastic strain energy can be split
into two parts: a term that depends on the volume change,

v = 1
2K
τ 2m = 9K

2
ε2m, (5.150)

and a term that depends on the deviatoric stresses (or strains),

d = 1
4G
(s21 + s22 + s23) = G(e21 + e22 + e23). (5.151)

This latter term is known as the distortional strain energy. It follows from (2.165)
and (2.167) that

d = 1
2G

J2 = 3
4G
(τoct)

2. (5.152)

The assumption is oftenmade that the elastic strain energy should be zero if all
of the strain components are zero, but should be positive whenever at least one
strain component is nonzero. Mathematically, this condition is equivalent to say-
ing that the strain energy function is a “positive-definite” function of the strains
(or stresses). The motivation behind this assumption is that it seems reasonable
to assume that work must be done on the body in order to deform it, rather than
for the body to do work on its surroundings during a deformation that begins
from the unstrained state. Assuming this to be the case, consider a hydrostatic
stress state, in which case the deviatoric stresses are zero. Equation (5.148) shows
that in order for the strain energy to be positive, the bulk modulus K must satisfy
K > 0. Similarly, if the stress is purely deviatoric, positive-definiteness of the
strain energy implies that G > 0. This reasoning could not have been applied to
(5.145), since in that equation the terms involving G and those involving λ are
not independent of each other. The fact that the strain energy can be written as
a sum of two uncoupled terms involving K and G is related to the fact that these
two moduli are the eigenvalues of the Hooke’s law operator for an isotropic
material.

If is thought of as a function of the nine stresses, differentiation of (5.143)
yields

∂

∂τxx
= 1

E
[τxx − ν(τyy + τzz)] = εxx , (5.153)

∂

∂τxy
= (1 + ν)

E
τxy = 1

2G
τxy = εxy, (5.154)

and likewise for the other seven stress components. Similarly, differentiation of
(5.145) leads to

∂

∂εxx
= τxx ,

∂

∂εxy
= τxy, etc. (5.155)

Equations (5.153)–(5.155) show that the stresses and strains are conjugate
thermodynamic variables (McLellan, 1980), in the same sense that pressure
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and volume are conjugate variables for a fluid, surface tension and inter-
face area are conjugate variables for an interface between two fluids, etc.
Although the derivation given above assumed that the material obeys the
isotropic version of Hooke’s law, (5.153)–(5.155) are in fact true in general
for all elastic materials, whether isotropic or not. Taking cross partial deriva-
tives of equations of the form (5.155) leads to a series of reciprocity equations
such as

∂τxx

∂εyy
= ∂2

∂εyy∂εxx
= ∂2

∂εxx∂εyy
= ∂τyy

∂εxx
, etc. (5.156)

These relations are trivially satisfied in the isotropic case, as (5.18) and (5.19)
show that both the first and the last term in (5.156) are equal to 2G. However,
relations such as (5.156) are very useful in supplying nonobvious constraints on
the elastic moduli when attempting to formulate anisotropic versions of Hooke’s
law (§5.10).

The total elastic strain energy stored in a body can be found by integrating
the elastic strain energy density over the entire body:

TOT =
∫∫∫

B

dV = 1
2

∫∫∫
B

trace(τε)dV . (5.157)

In practice, calculation of this integral is often difficult, due to the fact that it is a
three-dimensional integral whose integrand is a complicated quadratic function
of the stresses (or strains). Calculation of the total stored elastic strain energy
can be simplified by appealing to the equivalence of the stored strain energy
and the work that was done on the body in bringing about the deformation.
The total work done by the applied body forces and surface tractions can be
calculated by generalizing the argument used in conjunction with (5.140), to
yield

W = 1
2

∫∫
∂B

p · udA + 1
2

∫∫∫
B

ρF · udV , (5.158)

where the first integral represents the work done by the surface tractions applied
to the outer surface of the body, and the second integral represents the work
done by the body forces. In (5.158), the forces, tractions, and displacements are
those that exist at equilibrium, that is, after the loads have been applied and the
body comes to rest; they do not refer to intermediate values that occur during
the loading process.

Equation (5.158) was written down in analogy with (5.140). To prove that this
expression for the total work done on the body is indeed equal to expression
(5.142) for the total stored elastic strain energy, we proceed as follows. We first
transform the surface integral in (5.158) into a volume integral, by utilizing
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(2.63)–(2.65) and (5.67):
∫∫
∂B

p · udA =
∫∫
B

(pxux + pyuy+pzuz)dA

=
∫∫
∂B

(τxxnx +τyxny+τzxnz)ux +(τxynx +τyyny+τzynz)uy

+ (τxznx + τyzny + τzznz)uzdA

=
∫∫
∂B

(τxxux +τxyuy+τxzuz)nx +(τyxux +τyyuy+τyzuz)ny

+ (τzxux + τzyuy + τzzuz)nzdA

=
∫∫∫

B

∂

∂x
(τxxux +τxyuy+τxzuz)+ ∂

∂y
(τyxux +τyyuy+τyzuz)

+ ∂

∂z
(τzxux + τzyuy + τzzuz)dV

=
∫∫∫

B

ux

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
+uy

(
∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)

+ uz

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
dV

+
∫∫∫

B

[
τxx
∂ux

∂x
+ τxy

∂uy

∂x
+ τxz

∂uz

∂x
+ τyx

∂ux

∂y
+ τyy

∂uy

∂y

+ τyz
∂uz

∂y
+ τzx

∂ux

∂z
+ τzy

∂uy

∂z
+ τzz

∂uz

∂z

]
dV

=
∫∫∫

B

ux(−ρFx)+ uy(−ρFy)+ uz(−ρFz)dV

+
∫∫∫

B

(τxxεxx +τxyεyx +τxzεzx +τyxεxy+τyyεyy+τyzεzy

+ τzxεxz + τzyεyz + τzzεzz)dV

=
∫∫∫

B

[−ρ(F · u)+ trace(τε)
]
dV . (5.159)

In the next-to-last step taken above, we have used the fact that ∂ux/∂y = εxy +
ωxy, after which all terms involving the rotations cancel out, due to the fact that
ωxy = −ωyx . Combining (5.158) and (5.159), and comparing the result with
(5.157), yields

W = 1
2

∫∫
∂B

p · udA + 1
2

∫∫∫
B

ρF · udV = 1
2

∫∫∫
B

trace(τε)dV = TOT.

(5.160)
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The work expression in (5.158) is sometimes written without the factor of
1/2, in which case it does not represent the actual work that would be done by
loads that are applied quasi-statically, starting from the unloaded state, but rather
represents a hypothetical work term that corresponds to the work that would
be done if the “final” equilibrium forces acted throughout the total displacement
process. If this definition were used, (5.160) would be written as TOT = 2W , in
which form it is known as Clapeyron’s theorem. Regardless of the definition used
for W , the integrals that appear on the right-hand sides of (5.157) and (5.158)
are nevertheless equal, as the terms in their integrands always refer to the final
equilibrium values of the stresses, displacements, etc.

Another important theorem, the Maxwell–Betti reciprocal theorem, can be
proven in a similar manner. Consider two sets of forces, consisting of surface
tractions and body forces, which may be applied to a given body. Let these sets
of forces be denoted by {F1, p1} and {F2, p2}, and let the stresses, strains, and
displacements due to these two sets of forces be denoted by {τ1, ε1, u1} and
{τ2, ε2, u2}. The reciprocal theorem states that the work W12 that would be done
by the first set of forces if they acted through the displacements that are due to the second
set of forces is equal to the work W21that would be done by the second set of forces if
they acted through the displacements that are due to the first set of forces. Both of these
work terms are hypothetical work terms, computed by assuming that the final
equilibrium loads act throughout the total displacement process.

To prove the reciprocal theorem, we start with, from the verbal definition
given above,

W12 = 1
2

∫∫
∂B

p1 · u2dA + 1
2

∫∫∫
B

ρF1 · u2dV . (5.161)

By precisely the same steps that led from (5.158) to (5.160), this expression can
be transformed into

W12 =
∫∫∫

B

trace(τ1ε2)dV . (5.162)

Utilization of the matrix form of Hooke’s law, (5.16), yields

W12 =
∫∫∫

B

trace{[λtrace(ε1)I + 2Gε1]ε2}dV

=
∫∫∫

B

trace{[λtrace(ε1)ε2 + 2Gε1ε2]}dV

=
∫∫∫

B

[λtrace(ε1)trace(ε2)+ 2G trace(ε1ε2)]dV , (5.163)

where use has been made of the linearity of the trace operation. Furthermore,
since trace(AB) = trace(BA), the last expression on the right-hand side of (5.163)
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is symmetric with respect to the superscripts 1 and 2. Hence, (5.163) shows that
W12 = W21.

The reciprocal theorem is useful in numerous areas of rock mechanics. For
example, Geertsma (1957a) used it to develop general relations between the pore
and bulk compressibilities of porous rocks (see §7.2). Selvadurai (1982) used it to
find the displacements caused by a point load applied to a rigid foundation on an
elastic half-space. It also plays a crucial role in the development of the boundary-
element method, which is one of the more widely used computational methods
for solving elasticity problems (Brady, 1979).

5.9 Uniqueness
theorem for
elasticity problems

It was seen in §5.5 that all of the relevant differential equations of linear elasticity
for an isotropic rock, that is, stress equilibrium, Hooke’s law, and strain com-
patibility, can be distilled into either the three Navier equations, (5.81)–(5.83),
or the six Beltrami–Michell equations, (5.95)–(5.96). The unknown functions in
the three Navier equations are the three displacement components, whereas the
unknown functions in the six Beltrami–Michell equations are the six independent
stress components. In either case, the number of unknowns is equal to the num-
ber of equations, which is a necessary requirement in order that a given elasticity
problem be solvable. However, there will in general be an infinite number of
mathematical functions that satisfy either of these two sets of equations. In order
to find the actual stresses and displacements in a given situation, some knowl-
edge of the stress and/or displacements along the outer boundary of the rock
mass is required. It is important to know a priori the amount of such boundary
information that is needed. This question is answered by the uniqueness theorem
of linear elasticity, which roughly states that if either the tractions or the displace-
ments are known at each point of the outer boundary of the rockmass, there will
be a unique solution to the governing elasticity equations. The practical impor-
tance of this theorem is that the conditions of the theorem specify the amount of
boundary information that must be known before attempting to solve the elasticity
equations in a given situation. The validity of the uniqueness theorem depends
crucially on the assumption of infinitesimal strain and on the assumption that the
stored elastic strain energy is a positive-definite function of the strains. There is
no uniqueness theorem for finite strain elasticity problems, for example; indeed,
multiple finite strain equilibrium states can exist for an elastic body under a given
set of body and surface tractions.

Theuniqueness theorem for linear elasticitywas proven in 1850 by theGerman
physicist Gustav Kirchhoff, essentially as follows (Kirchhoff, 1850). Consider a
piece or rock that occupies a region B in space, with its outer boundary ∂B
subjected to a known body-force distribution, F(x). The elastic moduli of the
rock, K and G, are both assumed to be positive, so that the stored elastic strain
energy function is a positive-definite function of the stresses or strains. Assume
that the displacements are known at each point on the outer boundary of the
rock, that is,

u(x) = uo(x) for all x ∈ ∂B, (5.164)
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where uo(x) is a known vector-valued function of position. Any solution to
this elasticity problem must satisfy boundary condition (5.164), as well as the
Navier equations (5.90). Now assume that there are two different solutions to
this problem, u1 and u2, and let uδ(x) be the hypothetical displacement field
that is the difference between these two displacement fields, that is, uδ(x) =
u1(x)− u2(x). As both u1 and u2 satisfy (5.90), we have

(λ+ G)∇∇Tuδ + G∇2uδ = (λ+ G)∇∇T(u1 − u2)+ G∇2(u1 − u2)

= [(λ+ G)∇∇Tu1 + G∇2u1]
− [(λ+ G)∇∇Tu2 + G∇2u2]

= −ρF − (−ρF) = 0. (5.165)

Hence, the displacement field uδ satisfies the Navier equations in the region B,
for the case where the body forces are zero. As both u1 and u2 satisfy the boundary
condition (5.164), we also have

uδ(x) = u1(x)− u2(x) = uo(x)− uo(x) = 0 for all x ∈ ∂B, (5.166)

which is to say that this hypothetical displacement field vanishes along the outer
boundary of the rock.

From (5.158), the stored strain energy that is associated with the displacement
field uδ can be calculated as

δ = 1
2

∫∫
∂B

pδ · uδdA + 1
2

∫∫∫
B

ρFδ · uδdV = 1
2

∫∫
∂B

pδ · 0dA

+ 1
2

∫∫∫
B

ρ0 · uδdV = 0, (5.167)

since the boundary displacements vanish by (5.166), and the body-force vector
vanishes by (5.165). The stored elastic strain energy associated with the displace-
ment field uδ is therefore zero. But this energy can also be calculated from (5.149)
and (5.157) as

δ = 1
2

∫∫∫
B

[2G(e21 + e22 + e23)+ 9Ke2m]dV . (5.168)

The integrand in (5.168) is a positive-definite function of the strains, so in order
for the integral to be zero, all of the strain components must vanish at each point
of the body. Hence, the strain fields corresponding to the two solutions 1 and 2
must be equal throughout the body, that is,

0 = εδ = ε1 − ε2, so ε1 = ε2 for all x ∈ B. (5.169)

If the strains ε1 and ε2 are equal, then the displacements u1 and u2 can differ by
at most a rigid-body displacement. But these two displacement fields coincide
on the boundary, so this rigid-body displacement must vanish. Therefore, the
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two displacement fields u1 and u2 are in fact equal at all points of the body,
as are their associated stresses and strains. The assumption that there were
two different solutions to this problem has thus been shown to be false – the
two assumed solutions are in fact identical. This completes the proof of the
uniqueness theorem in the case where displacements are specified over the entire
outer boundary of the rock.

The key step in the proof given above was (5.167), in which the stored strain
energy associated with the δ solution was shown to vanish. Any other bound-
ary conditions that cause the two integrands in (5.167) to vanish would also be
sufficient to prove uniqueness. For example, if the tractions are specified along
the outer boundary of the body, reasoning analogous to (5.165) shows that the
δ solution satisfies the Beltrami–Michell equations with zero body force. An
argument analogous to (5.166) then shows that the boundary tractions associ-
ated with the δ solution vanish, after which an argument analogous to (5.167)
shows that the strain energy of the δ solution vanishes. The stress-based ver-
sion of (5.168), which utilizes (5.133), shows that the stresses of the δ solution
vanish at all points of the body, in which case Hooke’s law shows that the
strains associated with solutions 1 and 2 are equal throughout the body. The
displacement fields u1 and u2, and their associated stresses and strains, are again
seen to be equal, except for a possible (stress-free and strain-free) rigid-body
displacement.

In the most general case, uniqueness requires that sufficient data pertaining
to the boundary displacements and boundary tractions are known such that
the term pδ · uδ appearing in the integrand of the surface integral in (5.167)
vanishes at each point of the boundary; the integrand of the volume integral
always vanishes, because the body force vector associated with the δ solution
is zero as long as the solutions 1 and 2 each satisfy the elasticity equations. For
example, pδ · uδ could be made to vanish at a given point on the boundary
if the normal component of the displacement and the two tangential compo-
nents of the traction are specified. This would be the case, for example, in
a contact problem in which a rigid indenter is pushed into a lubricated sur-
face. In this situation, the normal component of the displacement vector would
take on some known value, and the two tangential traction components would
be zero.

5.10 Stress–strain
relations for
anisotropic
materials

Most rocks are anisotropic to one extent or another. For example, if cylindri-
cal cores are cut from a rock in the horizontal and a vertical direction, and
Young’s moduli are then measured under uniaxial compression, the two val-
ues thus measured will in general differ from one another. Common cases of
anisotropic rocks include sedimentary rocks that have different elastic proper-
ties in and perpendicular to the bedding planes, or metamorphic rocks such
as slates that have a well-defined plane of cleavage. In contrast to the situa-
tion for an isotropic rock, the generalized Hooke’s law for an anisotropic rock
will have more than two independent elastic coefficients. It is therefore more
difficult to experimentally characterize the elastic properties of an anisotropic
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rock and more difficult to solve boundary-value problems for such materials.
Consequently, most rock mechanics analyses have been conducted under the
assumption of isotropy, despite the fact that this assumption strictly holds in
very few instances. Increasingly, however, anisotropic versions of Hooke’s law
are being used in rock mechanics, particularly in the analysis of in situ subsur-
face stress measurements (Amadei, 1996) and seismic wave propagation (Helbig,
1994; Schoenberg and Sayers, 1995).

As both the stress and strain are second-order tensors, with nine compo-
nents each, the most general linear relationship between the stresses and strains
could be expressed via a fourth-order tensor that has 9 × 9 = 81 compo-
nents. This relationship is often written as τ = Cε, where C is a fourth-order
tensor whose 81 components are known as the elastic stiffnesses. Although
this notation is often used in theoretical studies, it is awkward for two rea-
sons. As there are actually only six independent stress components and six
independent strain components, there cannot be more than 36 independent
coefficients in the most general version of Hooke’s law. It is therefore notation-
ally wasteful to use for this purpose a mathematical entity that has eighty-one
components. Moreover, there is no straightforward way to write out the eighty-
one components of a fourth-order tensor in the form of a matrix, so use
of the tensor notation causes the convenience of matrix multiplication to be
sacrificed.

A more concise approach is that due to Voigt (1928), in which the stress and
strain tensors are each converted into 1 × 6 column vectors, and the elastic
stiffnesses are then represented by 36 stiffness coefficients that can be written as
a 6 × 6 matrix. Hooke’s law can be written in the Voigt notation as




τxx
τyy
τzz
τyz
τxz
τxy




=




c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66







εxx
εyy
εzz
2εyz
2εxz
2εxy




, (5.170)

where the factors of “2” arise because Voigt originally worked in terms of the
engineering shear strains, γ , rather than the tensor shear strains. Equation
(5.170) can also be written symbolically as τ = Cε, although in this instance τ

and ε must be interpreted as 6 × 1 row vectors rather than 3 × 3 matrices and
C as a 6 × 6 matrix. The inverse version of Hooke’s law, in which the strains
are expressed as linear functions of the stresses, can be symbolically written as
ε = Sτ, where S = C−1. The components of the matrix S are referred to as the
elastic compliances.

The Voigt notation has the advantage of allowing the use of matrix meth-
ods, but is slightly inelegant in that the stiffness matrix C as defined in
(5.170) is no longer a tensor, in the sense that its components do not obey
a tensor-like transformation law such as (2.30) when the coordinate system
is rotated. Mehrabadi and Cowin (1990) showed that if (5.170) is written in
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the form




τxx
τyy
τzz√
2τyz√
2τxz√
2τxy




=




c11 c12 c13
√
2c14

√
2c15

√
2c16

c21 c22 c23
√
2c24

√
2c25

√
2c26

c31 c32 c33
√
2c34

√
2c35

√
2c36√

2c41
√
2c42

√
2c43 2c44 2c45 2c46√

2c51
√
2c52

√
2c53 2c54 2c55 2c56√

2c61
√
2c62

√
2c63 2c64 2c65 2c66







εxx
εyy
εzz√
2εyz√
2εxz√
2εxy




,

(5.171)

then the stiffness matrix that appears in (5.171) does in fact obey the tensor trans-
formation law for a second-order tensor in a six-dimensional space. Nevertheless,
the Voigt version of Hooke’s law is typically written in form (5.170) rather than
(5.171).

The matrices that appear in (5.170) and (5.171) are always symmetric, so in
fact at most only twenty-one of the stiffness coefficients can be independent.
This is a consequence of the relations (5.156), which reflect the fact that two
of the cross partial derivatives of the strain energy function with respect to two
different strains must be equal. For example,

c12 = ∂τxx

∂εyy
= ∂2

∂εyy∂εxx
= ∂2

∂εxx∂εyy
= ∂τyy

∂εxx
= c21. (5.172)

Fourteen similar relations exist, one for each of the terms above the diagonal
of the C matrix; hence, there are only twenty-one independent stiffnesses, and
Hooke’s law can be written in the Voigt notation as




τxx
τyy
τzz
τyz
τxz
τxy




=




c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66







εxx
εyy
εzz
2εyz
2εxz
2εxy




. (5.173)

The greatest possible number of independent stiffnesses is 21, and somemate-
rials (triclinic crystals) do fall into this category. However, if a material exhibits
any physical symmetry, the number of independent stiffnesses can be reduced
further. Fumi (1952a,b) devised a systematic method for deducing the number
of independent components of the stiffness matrix from the symmetry elements
of the material, using group theory. However, these results can also be found in
the following manner, by considering each symmetry element of the material in
turn. For example, consider a rockmass that has a series of evenly spaced parallel
fractures, in which case any plane parallel to these fractures will be a plane of
symmetry with respect to reflection across that plane. (It is implicitly assumed
here that the effective elastic moduli of the rock mass are defined for length
scales that are much larger than the fracture spacing.) A Cartesian coordinate
system is chosen such that the x-axis is perpendicular to the plane of the frac-
tures. Now consider a second “primed” coordinate system whose unit vectors
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are {−ex, ey, ez}, which is to say it differs from the first system only in that its
x-axis points in the opposite direction.

The stress components in the new coordinate system can be found by the
transformation (2.30), τ′ = LτLT, where, as usual, the rows of the matrix L are
composed of the components of the new unit vectors in terms of the old unit
vectors. (Although this coordinate transformation is a reflection rather than a
rotation a (2.30) holds as long as L is “unitary” in the sense of satisfying LTL = I
and LTL = I.) Hence, the three rows of L are given by e′

x = −ex = (−1, 0, 0),
e′

y = ey = (0, 1, 0), and e′
z = ez = (0, 0, 1), and so the stress matrix in the new

coordinate system is given by

τ

′
xx τ ′

xy τ ′
xz

τ ′
yx τ ′

yy τ ′
yz

τ ′
zx τ ′

zy τ ′
zz


 =


−1 0 0

0 1 0
0 0 1





τxx τxy τxz
τyx τyy τyz
τzx τzy τzz





−1 0 0

0 1 0
0 0 1




=

 τxx −τxy −τxz

−τyx τyy τyz
−τzx τzy τzz


 , (5.174)

and similarly for the strains. The “16” component of the Voigt stiffness matrix in
the new coordinate system is related to the “16” component in the old coordinate
system by

c′16 = ∂τ ′
xy

∂ε′xx
= −∂τxy

∂εxx
= −c16. (5.175)

But since the x-axis is a plane of symmetry of this rock, the “16” coefficient in
Hooke’s law must be the same in the two coordinate systems, and so (5.175) implies
that c16 = 0. Another way to reach this conclusion is to note from (5.173) and
(5.142) that the stored strain energy function in the old coordinate system will
contain the term c16(εxy)

2, whereas the stored strain energy function in the new
coordinate systemwill contain the term c′16(ε′xy)

2 = −c16(−εxy)
2 = −c16(εxy)

2.
But the strain energy, being a scalar, cannot depend on the choice of coordinate
system, so it again follows that c16 = 0. Similar arguments show that c15 = c25 =
c26 = c36 = c36 = c45 = c46 = 0, so we see that a single plane of symmetry
will reduce the number of independent stiffnesses to 21− 8 = 13 (Amadei, 1983,
p. 11).

If a rock mass contains three mutually perpendicular sets of fractures, the
preceding argument can be used with respect to a reflection across the x–y or
x–z planes. This leads to the conclusion that c14 = c24 = c34 = c56 = 0,
leaving only nine nonzero stiffnesses. Such a rock mass is called an orthotropic (or
orthorhombic) material, and its stress–strain law can be written as




τxx
τyy
τzz
τyz
τxz
τxy




=




c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66







εxx
εyy
εzz
2εyz
2εxz
2εxy




; (5.176)
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or, in nonmatrix form:

τxx = c11εxx + c12εyy + c13εzz, (5.177)

τyy = c12εxx + c22εyy + c23εzz, (5.178)

τzz = c13εxx + c23εyy + c33εzz, (5.179)

τyz = 2c44εyz, τxz = 2c55εxz, τxy = 2c66εxy. (5.180)

Hooke’s law will take this form for an orthotropic rock only if the coordinate
system is aligned with the planes of symmetry of the rock. This is in contrast to
the situation for an isotropic rock, for whichHooke’s law takes the same form for
any locally orthogonal coordinate system, regardless of its orientation. In some
situations, such as when a borehole is drilled at an oblique angle to the axes of
symmetry of the rock, it may be convenient to align the coordinate system with
the borehole, rather than the symmetry axes of the rock mass. In this event, the
stress–strain equations in the new coordinate systemwould take on amuchmore
complicated form, which could be found by transforming both the stresses and
strains into the new coordinate system using the transformation laws τ′ = LτLT

and ε′ = LεLT. In general, there will be many more nonzero elements in the
stiffness matrix in an arbitrary coordinate system, as opposed to the “natural
coordinate system” that is aligned with the symmetry axes; nevertheless, only
nine of these components will be independent.

The compliance matrix S of an orthotropic rock can be found by inverting the
stiffness matrix C. As C is block-diagonal, its inverse is readily found to be

s11 = (c22c33 − c223)/D, s22 = (c11c33 − c213)/D, s33 = (c11c22 − c212)/D,
(5.181)

s12=(c12c23−c12c33)/D, s13=(c12c23−c22c13)/D, s23=(c12c13−c11c23)/D,
(5.182)

where D is the determinant of the upper-left-corner block of C, that is,

D = det


c11 c12 c13

c12 c22 c23
c13 c23 c33


 , (5.183)

and all other components of S are zero. The inverse form of Hooke’s law for an
orthotropic material is therefore




εxx
εyy
εzz
2εyz
2εxz
2εxy




=




s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66







τxx
τyy
τzz
τyz
τxz
τxy




, (5.184)

where the s coefficients are given by (5.181)–(5.183).
The compliance coefficient s11 is the ratio of εxx to τxx in a uniaxial stress test,

so it can be identified as 1/Ex , where Ex is the “Young’s modulus of the rock in
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the x direction”; similarly for s22 and s33. Likewise, s44 can be identified as 1/Gyz,
where Gyz is the “shear modulus in the y–z plane,” etc. Finally, making the obvi-
ous identifications of the off-diagonal components of S with the “Poisson effect,”
we can write Hooke’s law for an orthotropic material as (Amadei, 1983, p. 11)

εxx = 1
Ex
τxx − νyx

Ey
τyy − νzx

Ez
τzz, (5.185)

εyy = −νyx

Ey
τxx + 1

Ey
τyy − νzy

Ez
τzz, (5.186)

εzz = −νzx

Ez
τxx − νzy

Ez
τyy + 1

Ez
τzz, (5.187)

εyz = 1
2Gyz

τyz, εxz = 1
2Gxz

τxz, εxy = 1
2Gxy

τxy. (5.188)

In the special case in which the three directions (x, y, z) are all elastically
equivalent, an orthotropic material does not reduce to an isotropic material.
For although it would be true that Ex = Ey = Ez, Gxz = Gyz = Gxy, and
νxz = νyz = νxy, it will in general not be the case that E = 2G(1 + ν). This
type of material, which is said to possess cubic symmetry, will therefore have three
independent elastic moduli, rather than two. A physical explanation for this fact
is that although, for example, the Young’s modulus of a cubic material will be the
same in the x and y directions, there is no reason for E to have the same value in a
direction that is oriented at an arbitrary angle to one of the three coordinate axes.

Although the nine stiffnesses of an orthotropic rock are said to be indepen-
dent, the requirement that the stored strain energy function be positive-definite
imposes some constraints on their numerical values. In terms of the engineering
moduli E, G, and ν, these constraints are (Amadei et al., 1987)

Ex , Ey, Ez,Gyz,Gxz,Gxy > 0, (5.189)

νxyνyx < 1, νyzνzy < 1, νxzνzx < 1, (5.190)

νyxνxy + νyzνzy + νyzνzy + νyxνxzνzy + νzxνxyνyz < 1, (5.191)

where the Poisson ratios that appear in (5.189)–(5.191) but not in (5.185)–(5.188)
are defined by νxy/Ex = νyx/Ey, etc.

Another common form of anisotropy observed in rocks is the case when
one of the three axes is an axis of rotational symmetry, in the sense that all
directions perpendicular to this axis are elastically equivalent. In this case, the
rock is isotropic within any plane normal to this rotational symmetry axis. A
rock possessing this type of symmetry is known as “transversely isotropic” – a
somewhat misleading term, as a transversely isotropic rock is actually anisotropic. If
we identify the axis of rotational symmetry as the z-axis, the two Young’s moduli
Ex and Ey are obviously equal to each other. Likewise, it must also be true that
Gxz = Gyz and νxz = νyz. Finally, the requirement that the stiffness coefficients
be invariant with respect to an arbitrary rotation of the coordinate system about
the z-axis can be shown to lead to the relation Ex = 2Gxy(1 + νxy). Hence,
there are only five independent coefficients in Hooke’s law for a transversely
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isotropic rock:

εxx = 1
Ex
τxx − νyx

Ex
τyy − νzx

Ez
τzz, (5.192)

εyy = −νyx

Ex
τxx + 1

Ex
τyy − νzx

Ez
τzz, (5.193)

εzz = −νzx

Ez
τxx − νzx

Ez
τyy + 1

Ez
τzz, (5.194)

εyz = 1
2Gxz

τyz, εxz = 1
2Gxz

τxz, εxy = (1 + νyx)

Exy
τxy. (5.195)

A commonly used notation for transversely isotropicmaterials is for the elastic
coefficients pertaining to the (x, y) plane of isotropy to be referred to as {E,G, ν},
with E = 2G(1 + ν), and those involving the z direction denoted by {E′,G′, ν′}.
This allows the stress–strain relations to be written as (Amadei, 1996)

εxx = 1
E
τxx − ν

E
τyy − ν′

E′ τzz, (5.196)

εyy = −ν
E
τxx + 1

E
τyy − ν′

E′ τzz, (5.197)

εzz = −ν
′

E′ τxx − ν′

E′ τyy + 1
E′ τzz, (5.198)

εyz = 1
2G′ τyz, εxz = 1

2G′ τxz, εxy = (1 + ν)

E
τxy. (5.199)

The condition that the stored strain energy function be a positive-definite
function of the stresses or strains leads to the following constraints on the values
of the stiffnesses (Pickering, 1970):

E > 0, E′ > 0, G′ > 0, −1 < ν < 1, (5.200)

E′(1 − ν)− 2E(ν′)2 > 0, (5.201)

Intact transversely isotropic rocks are typically stiffer in the plane of isotropy
than in the direction of the axis of symmetry. Amadei (1996) analyzed 98 sets of
data on the elastic moduli of anisotropic rocks collected by various researchers
and found that in most cases 1 < E/E′ < 4; in no case did this ratio fall below
0.7. The ratio of the in-plane shear modulus to the out-of-plane shear modulus,
G/G′, was in all cases observed to be in the range of 1–3. On the other hand,
anisotropic rock masses whose anisotropy is due to a set (or sets) of fractures
may exhibit much greater elastic anisotropy ratios.

As many rock mechanics problems are idealized as being two dimensional,
it is worthwhile to discuss the model of a two-dimensional orthotropic material.
Although the stress–strain equations in this case could be found by specializing
(5.185)–(5.188) to plane stress or plane strain, it is easier to derive Hooke’s law for
this case ab initio, using symmetry arguments similar to those presented above
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for the three-dimensional case. The results can be written as

εxx = 1
Ex
τxx − νxy

Ex
τyy, (5.202)

εyy = −νyx

Ey
τxx + 1

Ey
τyy, (5.203)

εxy = 1
2G
τxy. (5.204)

The reciprocity relations for the elastic moduli imply that νxy/Ex = νyx/Ey;
however, there is in general no relationship between G and the Young’s moduli
and Poisson’s ratios. The equations for the stresses in terms of the strains are

τxx = Ex

1 − νxyνyx
(εxx + νyxεyy), (5.205)

τyy = Ey

1 − νxyνyx
(εyy + νxyεxx), (5.206)

τxy = 2Gεxy. (5.207)
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6.1 Introduction Themechanical properties of a piece of rock depend on its mineral composition,
the arrangement of the mineral grains, and any cracks that may have been
introduced into it during its long geological history by diagenesis or tectonic
forces. Consequently, the mechanical properties of rock vary not only between
different rock types but also between different specimens of the nominally same
rock. Hence, unlike “reproducible” engineering materials such as steels, for
which property values can be measured on standard specimens and listed in
handbooks, only very rough approximate values of the mechanical properties of
a given rock can be estimated from tabulated handbook data. For this reason,
laboratory testing necessarily plays a large role in rock mechanics.

In this chapter we describe the basic types of laboratory measurements that
are routinely conducted to measure the mechanical properties of rocks. Each
particular experimental apparatus and/or procedure subjects the rock specimen
to a certain state of stress. The chapter is structured in such away that successively
more complex stress states are considered in each subsequent section.We start in
§6.2 with a discussion of hydrostatic tests that can be performed on porous rocks.
Uniaxial compression tests are discussed in §6.3. Traditional triaxial compression
tests, in which the two lateral stresses are equal to each other and less than the
axial stress, are discussed in §6.4. The effect of the mechanical stiffness of the
testing machine is examined in §6.5. True-triaxial, or polyaxial tests, in which
three different stresses may be applied to the sample, are discussed in §6.6. In all
of the aforementioned tests, the stress state induced in the sample is nominally
homogeneous.

There are several other important test configurations in which an inhomo-
geneous state of stress is induced in the rock. The so-called “Brazilian test,”
which is used to create a tensile stress within a rock, is described in §6.7. Tor-
sion of a cylindrical specimen is discussed in §6.8, along with the mathematical
solution for the stresses and displacements. Bending of a beam-like specimen is
treated in §6.9, again along with a brief mathematical derivation of the stresses
and displacements. Finally, compression tests on hollow cylinders are discussed
in §6.10.

In each case, the discussion will be quite general, focusing on the salient
features of the experimental apparatus, the state of stress involved in the tests,
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and the interpretation of the test results for the purpose of extracting numerical
values of the relevant rock properties. More specific details of the design of the
apparatuses, and other technical issues that arise during these tests, can be found
in several major review articles, such as Tullis and Tullis (1986). Specifications
of standard testing procedures and practices, such as specimen size, suggested
strain rates, etc., can be found in the various “ISRM Suggested Methods,” which
are prepared under the authority of the International Society for RockMechanics
and published in the International Journal of Rock Mechanics and Mining Sciences.

Although the focus will be on describing the measurement systems and pro-
cedures, some representative data will be discussed. Many data sets on rock
deformation were originally measured using British Imperial units, with stresses
measured in pounds per square inch (psi). Such units are still used in some coun-
tries andwithin the petroleum industry. Geophysicists, on the other hand, usually
quantify stresses in units of bars. Modern scientific convention, as codified in the
Système Internationale (SI), requires stresses to be measured in Pascals, defined
by 1 Pa = 1 N/m2. Conversion between these units can be achieved through the
relations 1 psi = 6895 Pa, 1 bar = 105 Pa.

6.2 Hydrostatic
tests

The simplest type of boundary traction that can be applied to the outer boundary
of a piece of rock is a uniform normal traction, such as would be exerted if the
boundary of the rock were in contact with a fluid. In a homogeneous solid,
such boundary conditions would give rise to a state of uniform hydrostatic stress
throughout the body. The ratio of the magnitude of the stress to the volumetric
strain of the sample would then, according to (5.7), give the bulk modulus K of
the rock.

This type of test can be conducted in a pressure vessel filled with a pressurized
fluid (Fig. 6.1). The pressurizing fluid is connected to a pump or piston located
outside the pressure cell. The pressure of the fluid, also referred to as the confining
pressure, is measured by a manual pressure gauge or electronic pressure trans-
ducer. As there will be no pressure gradient in the fluid, aside from a negligible
gravitational gradient, the pressure gauge or transducer can be located outside
the vessel.

The rock sample is usually machined into a cylindrical shape. In order to pre-
vent the pressurizing fluid from entering the pore space of the rock, the specimen

Fig. 6.1 Schematic
diagram of typical
experimental system
used to measure
compression of a
porous rock subjected
to hydrostatic confining
pressure and pore
pressure (after Hart and
Wang, 2001).

“Zero volume” pressure transducer
Pc

Pp

Pressure vessel

Confining pressure system

Pore pressure system

End-cap with pore fluid port

Strain gauges
Rock specimen

Sheathing
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must be covered with a tight-fitting, impermeable sheathing, such as heat-shrink
tubing. The volumetric strain of the specimen can be measured by strain gauges
glued onto the sides. If the rock is isotropic, the radial, circumferential, and axial
strains should all be equal. Nevertheless, it is advisable to measure the strains in
more than one direction.

If the rock is porous and permeable, a variable pore pressure can also be applied
to the specimen. Furthermore, other poroelastic parameters, described in §7.2,
can be measured under these hydrostatic conditions. In a typical configuration
(Fig. 6.1), the two flat faces of the cylindrical specimen are fitted with metal end-
caps, which have small holes drilled into them, through which the pore fluid can
flow. The pore fluid is collected outside the pressure vessel in a piston-like device
that allows the pore fluid pressure, and the extruded volume of the pore fluid,
to be controlled and monitored. Such experimental configurations are described
in more detail by Zimmerman et al. (1986), Hart and Wang (2001), and Lockner
and Stanchits (2002).

As discussed in §7.2, a poroelastic rock has four fundamental compressibilities,
which relate changes in the hydrostatic confining stress and pore pressure to
the resulting pore or bulk strains. The bulk compressibility Cbc can be found
by measuring the bulk strain that occurs in response to a change in confining
pressure, with the pore pressure held constant. The other bulk compressibility,
Cbp, is found from the bulk strain that occurs when the pore pressure is changed
and the confining pressure is held constant. These two measurements pose no
major difficulties.

The pore compressibility Cpc quantifies the pore strain that results from chang-
ing the confining pressure, with the pore pressure held constant. If the pore
pressure is constant, then the volume of pore fluid in the system is constant,
and so the change in the pore volume of the rock is exactly equal to the vol-
ume of pore fluid that enters or leaves the pore pressure piston device. Hence,
measurement of Cpc poses no fundamental difficulty.

Measurement of the other pore compressibility, Cpp, which quantifies the
change in pore volume caused by a change in pore pressure, with the confining
pressure held constant, is not so straightforward. As the pore fluid is varied, the
total volume of pore fluid will change, through the relation�Vf = −Cf Vf�Pp,
where Cf is the compressibility of the pore fluid. Some of this volume change
will occur in the pore space of the rock, some will occur in the tubing leading
from the specimen to the pore pressure piston, and some will occur within the
piston itself. Specifically,

�Vfluid = �Vpore +�Vtubing +�Vpiston. (6.1)

The term�Vpiston is measured directly, whereas the desired quantity is �Vpore.
Estimation of the actual pore volume change therefore requires knowledge of
the other two terms in (6.1). This can in principle be achieved by first performing
calibration tests, for example using an effectively rigid specimen such as onemade
of steel, to determine the compliance of the tubing and the total storativity, Cf Vf ,
of the pore fluid. However, the two unwanted terms in (6.1) are generally at least
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as large as the change in pore volume, rendering the estimation of the pore
volume change quite problematic (Hart and Wang, 1995).

Another related “hydrostatic” elastic parameter of a porous rock is Skempton’s
B coefficient (Skempton, 1954). This parameter is defined, in (7.28), as the ratio
of the pore pressure increment to the confining pressure increment, when the
confining pressure is varied under “undrained” conditions, in which no fluid is
permitted to leave the specimen. However, in a configuration such as that of
Fig. 6.1, some pore fluid must indeed leave the specimen in order to enter the
piston device. If the piston is replaced by a pressure transducer, it is nevertheless
true that the pressure response of the pore fluid is influenced by both the compli-
ance of the pore space of the specimen and by the compliance of the tubing and
transducer. These effects can again in principle be accounted for by proper cali-
bration, but in practice, this is quite difficult to achieve accurately, as the system
compliance may be of the same magnitude as that of the pore space. Accurate
measurements of B can presumably be obtained by placing a “zero volume”
pressure transducer in immediate contact with the specimen, inside the pressure
vessel (Hart andWang, 2001), thus eliminating the effects of system compliance.

6.3 Uniaxial
compression

The uniaxial compression test, in which a right circular cylinder or prism of
rock is compressed between two parallel rigid plates (Fig. 6.1), is the oldest
and simplest mechanical rock test and continues to be widely used. This test is
used to determine the Young’s modulus, E, and also the unconfined compressive
strength, Co.

In the simplest version of this test, Fig. 6.2a, a cylindrical core is compressed
between two parallel metal platens. Hydraulic fluid pressure is typically used to
apply the load. The intention of this test is to induce a state of uniaxial stress in
the specimen, that is,

τzz = σ , τxx = τyy = τxy = τyz = τxz = 0. (6.2)

The axial stress σ is the controlled, independent variable, and the axial strain
is the dependent variable. The longitudinal strain can be measured by a strain
gauge glued to the lateral surface of the rock. Alternatively, the total shortening
of the core in the direction of loading can be measured by an extensiometer that

Fig. 6.2 Unconfined
uniaxial compression of
a rock: (a) standard
configuration, with
failure initiating at the
corners, (b) conical
end-pieces to eliminate
frictional restraint,
(c) tapered specimen,
(d) matched end-pieces. (a) (b) (c) (d)

� � � �
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monitors the change in the vertical distance between the platens. In this case, the
longitudinal strain is calculated from the relative shortening of the core, that is,
ε = −�L/L. If the stress state were indeed uniaxial, then the Young’s modulus
of the rock could be estimated from E = σ/ε. The stress can be increased slowly
until failure occurs, as discussed in §4.2. The stress at which the rock fails is
known as the unconfined, or uniaxial, compressive strength of the rock.

Unfortunately, the actual state of stress in the rock core, in a configuration such
as that of Fig. 6.2a, will not be a homogeneous state of uniaxial compression. This
is due primarily to the constraining influence of the frictional forces acting along
the interface between the core and the platens. A true uniaxial stress state would
lead to lateral expansion associated with the Poisson effect, (5.12). But this lateral
expansion is hindered at the platens due to friction. A more realistic boundary
condition to assume for the rock core is that of uniform vertical displacement
and no lateral displacement (Filon, 1902; Pickett, 1944; Edelman, 1949). Hence,
in a testing configuration such as shown in Fig, 6.2a, the rock core would bulge
outward away from the end platens, but would be constrained against such
bulging at the platens, thereby taking on a barrel-shape.

This lack of homogeneity in the stress state has implications both for the
measurement of the elastic modulus and the compressive strength. Although
the stress state indeed approaches that of uniaxial stress away from the platens,
in the middle of the core, it is much more complex and inhomogeneous at the
ends. Hence, it is not obvious that −σL/�L will yield a correct estimate of
E. Chau (1997) presented an accurate approximate solution to this problem, for
the case in which the friction between the end platens and the rock is sufficiently
large that no lateral motion of the rock can occur at the two boundaries. He
expressed his results in terms of a parameter λ, defined as the ratio of the “true”
Young’s modulus to the “apparent” value estimated from E = −σL/�L. As
would be expected, this factor approaches unity as the Poisson ratio goes to
zero, since in this case the tendency for lateral expansion does not arise. For
cores in which the length is at least as large as the diameter, and for which the
Poisson ratio is less than 0.3 (which will usually be the case), the factor λ was
found to lie in the range 0.97–1.0. Greenberg and Truell (1948) carried out a
similar analysis for a rectangular prism compressed in plane strain conditions,
with a Poisson ratio of 0.33, and found λ = 0.96. Hence, as far as the calculation
of E is concerned, the issue of friction along the rock/platen interface is probably
not of engineering significance.

Nevertheless, this frictional restraint leads to a stress concentration at the cor-
ners of the rock core, at the points where it meets the platen. This causes a shear
fracture to initiate at that point, as shown in Fig. 6.2a, at an applied (nominal)
stress σ that is actually less than the “true” uniaxial compressive strength. Several
methods have been proposed to avoid this problem. One suggested approach is to
machine the specimens to have hollow conical ends and then to compress them
between conical end-pieces, the surfaces of which are inclined to the diameter of
the specimen at the angle of friction (Fig. 6.2b).

Barnard (1964), Murrell (1965) and others have used shaped specimens that
have a smaller diameter in the necked midregion than near the ends (Fig. 6.2c).
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The shape of the specimen is carefully chosen, based on photoelasticity studies
or finite element analysis, so that the stress distribution is uniform across the
section in the neck. This permits the true Young’s modulus to be calculated from
the longitudinal strains measured in the neck with strain gauges, and also avoids
the problem of shear fractures initiating at the point of the stress concentration
near the platens. These shaped specimens are difficult to prepare, however, and
tend by necessity to have short necked regions.

Another approach to mitigating the problems of stress concentrations at the
platens is to compress the rock core between metal end-pieces that have the
same diameter as the core and are made of a metal that has the same ratio of
ν/E as does the rock (Fig. 6.2d). In this case, the lateral expansion of the rock
at its ends should match that of the platens, eliminating the unwanted stress
concentrations. This approach has been used by Cook (1962) and others.

Labuz and Bridell (1993) carried out compression tests on granite cores, with
various lubricants applied between the core and the platens. Radial strains were
measured near the ends and in the central portion of the core, to investigate the
barreling effect. In the absence of lubrication, the radial hoop strains were as
much as 50 percent higher in the central region of the core than near the ends.
By testing various lubricants, including graphite and molybdenum disulfide,
they found that this stress inhomogeneity could essentially be eliminated by the
application of a mixture of stearic acid and petroleum jelly to the rock-platen
interface.

6.4 Triaxial tests One of the most widely used and versatile rock mechanics tests is the traditional
“triaxial” compression test. Indeed, much of the current understanding of rock
behavior has come from such tests. Despite the name, which would seem to
imply a state of three independent principal stresses, in a triaxial test, a rock
specimen is subjected to a homogeneous state of stress in which two of the prin-
cipal stresses are of equal magnitude. Typically, all three stresses are compressive,
with the unequal stress more compressive than the two equal stresses, so that
σ1 > σ2 = σ3 > 0.

The restriction of traditional triaxial tests to stress states in which two of
these stresses are necessarily equal in magnitude is imposed by experimental
limitations. Consequently, despite the ubiquitous nature of triaxial tests and
triaxial compression data on rocks, it should not be erroneously concluded that
stress states inwhich twoprincipal stresses are of equalmagnitude are particularly
common in the subsurface. Indeed, there is no particular reason for σ2 and σ3 to
be equal, either in undisturbed rock or in the vicinity of an excavation.

A triaxial stress state can be achieved by subjecting a cylindrical rock specimen
to uniaxial compression by a piston, as described in §6.3, in the presence of
hydrostatic compression applied by a pressurized fluid, as described in §6.2.
Depending on the experimental configuration, the hydrostatic pressure may act
in all three directions or only over the two lateral surfaces of the rock. In either
case, the value of the two equal lateral stresses, σ2 = σ3, is known in this context
as the confining stress and the other principal stress is referred to as the axial
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stress. The difference between the axial stress and the confining stress, σ1 − σ3,
is referred to as the differential stress.

The classic triaxial compression tests on a rock were those performed by von
Kármán (1911) on specimens of Carrara marble, using an apparatus that can
be said to have served since as the prototype for triaxial testing machines. His
machine and procedure, along with subsequent improvements, are described
in detail by Paterson (1978, Chapter 2), upon which some of the following
discussions are based.

Triaxial tests are usually conductedwith cylindrical specimens having a length-
to-diameter ratio of between 2:1 and 3:1. It is imperative that the flat surfaces of
the specimen be as nearly parallel as possible, to avoid bending of the specimen
under the axial stress. The core is jacketed in rubber or thin copper tubing so
that the confining fluid does not penetrate into the pore space (Fig. 6.3a). If the
effect of pore pressure is to be investigated, pore fluid would be introduced into
the rock through a small hole in one of the end-pieces, as described in §6.2.

A simple triaxial apparatus is the one developed at the US Bureau of Recla-
mation (Fig. 6.3b). A spherical seat is used on one end-piece to correct for the
possibility that the platens are not parallel. However, this apparatus has two dis-
advantages. Firstly, the confining pressure acts against the loading piston, so that
the applied axial force must be large enough to overcome this force, in addition
to creating the axial stress. Secondly, as the specimen compresses, the volume
of the confining fluid in the cell decreases, making it difficult to control the
confining pressure. This effect can be greatly diminished by having the pistons
and end-pieces be of the same diameter as the specimen and by minimizing the
volume available to the confining fluid (Donath, 1966).

Griggs et al. (1960) and Paterson (1964) avoid interaction between the axial
displacement of the end-pieces and the confining pressure completely, by using
two pistons connected by a yoke, only one of which applies load to the specimen.
This arrangement allows the volume of confining fluid to remain constant as the
axial load is increased. It also allows the confining fluid pressure to act in the axial
direction, not only in the lateral directions, so that the loading piston needs only

Fig. 6.3 Triaxial
testing apparatus:
(a) jacketed cylindrical
rock specimen with
end-pieces and
provision for pore fluid,
(b) US Bureau of
Reclamation cell,
(c) central portion of a
constant-volume
triaxial cell. (a)

Rock

EndcapJacket

Pore
fluid

(b)

Rock

Seal
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Pore
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(c)
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Pore fluid
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to supply enough force to create the differential load and to overcome friction,
but does not need to overcome the confining pressure (Fig. 6.3c).

The variables that must be measured in a triaxial test include the confining
stress, the axial stress (or the differential stress), the axial strain, and the lateral
strain. The confining stress acting on the rock is easily measured by measuring
the pressure of the confining fluidwith a pressure gauge or an electronic pressure
transducer, whichmay for convenience be placed outside the cell. The axial stress
can be calculated from the pressure of the oil in the loading jack, after correcting
for the area ratio, although such a calculation ignores friction along the sides
of the piston. Alternatively, the axial load can be measured by placing in series
with the rock specimen a load cell, which is essentially a metal element of known
elastic modulus to which strain gauges are attached (Davis and Gordon, 1968).
The axial (εzz) and lateral (εθθ ) normal strains of the rock are most accurately
measured by strain gauges glued to the outer face of the cylindrical rock core.
To avoid end effects, these gauges are usually placed midway between the two
end-pieces.

If the axial stress is smaller in magnitude than the two lateral stresses, but
nevertheless still compressive, the resulting state of stress, σ1 = σ2 > σ3 > 0,
is referred to as triaxial extension (Heard, 1960). Such tests are useful in test-
ing Mohr’s assumption that failure is not influenced by the magnitude of the
intermediate principal stress. Triaxial extension tests are readily conducted in a
triaxial testing apparatus, provided that the piston can be suitably attached to the
end-pieces.

6.5 Stability and
stiff testing
machines

As discussed in §4.2, many rocks exhibit a postpeak, strain-softening regime in
which the tangent modulus, Etan = dσ/dε, is negative. This does not conform
to one of the basic assumptions of the theory of elasticity, which is that the
elastic modulus should be positive in order for the stored strain energy function
to be positive-definite; see §5.8. Although positivity of E is not required by any
thermodynamic law, a negative tangent modulus can, under certain situations,
give rise to unstable behavior. This has important implications during laboratory
compression tests.

To understand the inherent instability of a rock having a negative tangent
modulus, consider a cylindrical rock specimen of length L and cross-sectional
area A, compressed under a weight,W , as in Fig. 6.4a. The stress–strain behavior
of the rock will be represented in the idealized form of Fig. 6.4b, in which a
linear elastic regime with modulus E is followed by a strain-softening regime
with modulus Etan = −|Ess|, where this notation is used to underscore the fact
that the tangent modulus is negative in this regime.

Imagine that the load W is precisely large enough so that the rock is loaded
to its elastic limit, denoted by point B in Fig. 6.4b. At this point, the stress in
the rock is σ = W/A, the strain is ε = W/AE, and the stored strain energy
is = W2L / 2AE. Now imagine that the rock somehow compresses by an
additional amount �z, without the introduction of any additional energy into
the system, so that it moves to point C on the stress–strain curve. The change in
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Fig. 6.4 (a) Rock
cylinder loaded by a
weight,W ; (b) idealized
stress–strain curve of a
rock exhibiting
strain-softening
behavior; (c) work done
on rock by additional
compression from
B to C.
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the total energy of the system must be zero, that is,

� = � elastic +� gravitational +� other = 0, (6.3)

where other represents energy that may be available to cause additional damage
to the rock in the form of microcracking, etc. The gravitational potential energy
of the load decreases byW�z, so� grav = −WL�ε. The strain energy stored
in the rock, per unit volume, increases by an amount equal to the shaded area in
Fig. 6.4c. This area is equal to the area of the rectangle of height σ and width
�ε,minus the area of the small triangle having base�ε and height |Ess|�ε. After
multiplying by the volume of the rock,

� elastic = AL[σ�ε − 1
2
|Ess|�ε2] = WL�ε − AL

2
|Ess|�ε2. (6.4)

From (6.3), the change in the “other” energy that is available to further degrade
the rock will be

� other = −� elastic −� grav

= −WL�ε + AL
2

|Ess|�ε2 − (−WL�ε) = AL
2

|Ess|�ε2 > 0. (6.5)

Hence, a small additional compression of the rock will liberate a positive amount
of energy, which will be available to cause further microscale degradation of the
rock, thereby causing further softening of the tangent modulus, etc. It is clear
that this is an unstable process that will inevitably lead to complete disintegration
of the specimen.

If the tangent modulus were positive at point B, the quadratic term in (6.4)
would be positive, and (6.5) would show the energy available for cracking the
rock to be negative, which by definition is not possible. In this case, the additional
compression of the rock would not spontaneously occur without the addition of
external energy to the system (such as by increasing the load, W). Hence, a
negative tangent modulus is necessary for this type of instability to occur.

Having established that a negative value of the tangent modulus may lead
to instabilities under certain experimental conditions, we now consider a more
realisticmodel for a traditional rock-testingmachine, as used in uniaxial compres-
sion tests, by considering the effect of the compliance of the machine (Salamon,
1970; Hudson et al., 1972; Hudson and Harrison, 1997, pp. 89–92). Consider a
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Fig. 6.5 (a) Simplified
model of a testing
machine used to
compress a rock. (b)
Idealization in which
the machine stiffness is
represented by a spring
km and the rock is
represented by a
(nonlinear) spring, k.
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rock-testing apparatus such as shown in Fig. 6.5a. As the rock specimen is com-
pressed by the hydraulic jack, the jack exerts a downward force F on the rock,
and, according to Newton’s third law, the rock exerts an upward force F on the
jack. As the load F increases, additional elastic energy is of course stored in the
rock, but it is also stored in the hydraulic system, the platens, the vertical bars
C and D, and other parts of the apparatus. For conceptual simplicity, the entire
loading system can be represented by an elastic spring of stiffness km, defined
such that if the load is F , the energy stored in the loading system is F2/2km. The
rock specimen can also be thought of as a spring, with stiffness k = EA/L. At
equilibrium, the two springs are subjected to the same force, F , so they can be
assumed to be in series (Fig. 6.5b).

Assume again that the system is in equilibrium, with the rock compressed to
point B in Fig. 6.4c. In this state, the compressive force in both springs is F . Now
imagine that the rock spontaneously undergoes an additional small compression,
moving to point C on its stress–strain curve. With respect to the spring model in
Fig. 6.5b, point B is displaced downward by an amount�zB. If this occurswithout
the addition of any energy to the system, this is equivalent to specifying that no
displacement can occur at point A in Fig. 6.5b. By definition, no displacement
occurs at point O.

Following the same argument as was used to derive (6.4), but replacing the
loadW with F , and noting that�ε = �z/L, the change in the amount of strain
energy stored in the rock specimen is

� specimen = F�zB − 1
2
A|Ess|

L
(�zB)2. (6.6)

For a small displacement�zB, this term is clearly positive, reflecting the fact that
the rock continues to absorb energy, even as it deforms into its strain-softening
regime. A similar argument for the elastic energy stored in the testing machine
gives

� machine = −F�zB + 1
2km(�zB)2. (6.7)

The energy stored in the testingmachine decreases, as themachine is undergoing
unloading in this regime. This can be seen from Fig. 6.5b, where a downward
displacement of point B will decrease the amount of compression in the spring
representing the testing machine. Hence, the amount of additional energy that
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is liberated, and is therefore available to cause further degradation of the rock, is

� other = −� specimen −� machine = 1
2

[
A|Ess|

L
− km

]
(�zB)2. (6.8)

If this term is positive, the system will be unstable, as this energy will cause
further microcracking of the rock, etc. Hence, the condition for stability is that
the stiffness of the testing machine, km, be greater than A|Ess|/L, where A is the
cross-sectional area of the specimen, L is its length, and Ess is the slope of the
stress–strain curve of the rock in the strain-softening regime. A testingmachine is
categorized as being stiff or soft, with respect to a given rock specimen, depending
on whether or not it satisfies this criterion.

The condition for the onset of instability of this system can also be derived by
the following simple argument (Salamon, 1970). At equilibrium, the compressive
forces in the two springs in Fig. 6.5b are equal, so km(zA−zB) = k(zB−zO) = kzB,
where the displacements of each of the three points (A, B, O) are measured
starting from their values at F = 0. Let the force F be increased slightly by
�F . If we require that the system move to a new equilibrium state, then the
displacements must satisfy the constraint of force equilibrium, and so km(�zA −
�zB) = k�zB. In general, k = EtanA/L, and so, since�zB = L�ε, this relation
can be solved to give

�ε = km
Lkm + AEtan

�zA. (6.9)

In the elastic regime of the rock’s behavior, Etan will be positive, and (6.9) can
be solved to uniquely determine the additional incremental strain in the rock.
However, if the rock softens sufficiently that Etan = −Lkm/A, there will be no
finite solution to (6.9), implying that the rock cannot deform to a newequilibrium
state – it will fail catastrophically. As was the case for the derivation based on
energy considerations, the condition for stability is km > A|Etan|/L.

In reality, the transition from a positive tangent modulus to a negative tangent
modulus occurs gradually, not abruptly as in Fig. 6.4b. If a rock is compressed
in a “soft” machine, unstable disintegration of the rock will commence when
the slope of the stress–strain curve first becomes sufficiently negative that |Etan|
equals Lkm/A. This will typically occur at a point very near the peak of the stress–
strain curve; the rock will fail abruptly and explosively, and it will not be possible
to observe and measure the strain-softening portion of the stress–strain curve.
An understanding of the role of machine compliance in obscuring the softening
portion of the stress–strain curve was first developed by Whitney (1943) and
others in the context of concrete testing, but was not fully appreciated in the
field of rock mechanics until the 1960s (Hudson et al., 1972).

There are many sources of elastic compliance in a testing machine, such as
the hydraulic system, the vertical columns (C and D in Fig. 6.5a), the crossheads
(A and B), etc. As each of these are subject to the same load, the compliances
are additive. The individual stiffnesses ki are therefore combined by adding their
reciprocals, so that km = [�(1/ki)]−1. One approach to solve this instability
problem is tominimize the individual sources of elastic compliance in the system.
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The largest contributions to the compliance typically come from the hydraulic
system and the columns (Cook and Hojem, 1966). Cook and Hojem constructed
a machine with a stiff frame and minimized the compliance of the hydraulic
system by using for the hydraulic system a short column of mercury with a large
cross-sectional area. This apparatus was used by Crouch (1970,1972) to study the
compressional behavior of quartzite and norite.

A quite different approach to stiffening a testing machine is to add a stiff
element in parallelwith the rock specimen, so that the stiffener and the specimen
undergo the same displacement. In this case the overall stiffnesswill be the sumof
that of themachine and that of the stiffener. Cook (1965) stiffened a conventional
testing machine by loading a steel ring in parallel with the rock specimen and
was able to significantly reduce the explosive nature of the failure of a specimen
of Tennessee marble. Bieniawski et al. (1969) used a similar apparatus to study
the compression of sandstone and norite.

A third approach is to use the thermal expansion/contraction of the columns
in the testing machine to supply the force needed to compress the rock. Cook
and Hojem (1966) constructed a testing machine in which a hydraulic jack was
used to prestress the specimen and the remaining displacement was induced by
thermal contraction of the vertical columns.

Each of the proposed solutions to the machine stiffness problem has seri-
ous drawbacks, however. There are practical limits to the extent to which one
can eliminate sources of compliance within a testing machine. Adding a stiffen-
ing element in parallel has the unwanted effect of decreasing the effective load
capacity of the system, as much of this capacity will be used to compress the
stiffening member. Finally, it is very difficult to control the rate at which the
load is applied when thermal contraction of the columns is used to compress
the rock.

The unstable collapse and disintegration of the specimen are caused by the
rapid flow into the specimen of some of the energy that had been stored in the
machine. Much of this energy is stored in the hydraulic system. If, for example,
fluid could be drawn out of the hydraulic system rapidly and in a controlled
manner, this problem could be avoided. This can indeed be achieved with servo-
controlled testing machines (Bernhard, 1940; Rummel and Fairhurst, 1970). A
main idea behind the performance of these machines is that, to trace out the
full stress–strain curve beyond the point of peak strength, the strain in the rock
specimen must be the controlled variable. With regards to the loading platens,
this implies that the displacement, rather than the load, is the variable that must
be controlled. In a servo-controlled testingmachine, the deformation of the rock
ismonitored and then compared to the desired strain. Any difference between the
desired and current strain is used to create a “correction signal” that adjusts the
hydraulic pressure so as to bring the actual strain closer to the desired value; see
Hudson et al. (1972) and Hudson and Harrison (1997) for details. The response
time of such systems is in the order of a few milliseconds, which is sufficiently
rapid to be able to arrest the unstable disintegration of the rock (Rummel and
Fairhurst, 1970). Thus, the full stress–strain curve can be obtained, provided that
the strain increases monotonically.
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Fig. 6.6 Class I and
Class II stress–strain
curves.
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Some rocks, however, exhibit a complete stress–strain curve in which neither
the stress nor the strain increases monotonically. For such rocks, denoted by
Wawersik and Fairhurst (1970) as “Class II,” the stress and strain each decreases as
the rock begins to fail (Fig. 6.6). This occurs as the rock continues to deteriorate
on a microscopic scale and is fundamentally different from elastic unloading
with hysteresis. Okubo and Nishimatsu (1985) showed that by using a linear
combination of stress and strain as the feedback signal in a servo-controlled
testing machine, the complete stress–strain curves of both Class I and Class II
rocks can be obtained.

6.6 True-triaxial
tests

Traditional “triaxial” compression tests, such as described in §6.4, involve states of
stress in which σ1 > σ2 = σ3 > 0. Such tests are incapable of probing the effects
of the intermediate principal stress. In order to investigate rock behavior over the
full range of stresses that may occur in the subsurface, it would be desirable to
conduct tests inwhich all three principal stressesmayhave different (compressive)
values. Such tests have sometimes been referred to as “polyaxial,” although this
name has the disadvantage of not being self-explanatory. More recently, the term
“true-triaxial,” which is inelegant but less open to misinterpretation, has gained
acceptance.

Several researchers have constructed testing cells that attempt to produce
states of homogeneous stress in which the three principal stresses, σ1 ≥ σ2 ≥
σ3 ≥ 0, are independently controllable (Fig. 6.7a). Although the designs differ in
various ways, in each case a “rectangular” (i.e., parallelepiped-shaped) specimen
is used, in contrast to the cylindrical specimens used in traditional triaxial tests.
Hojem andCook (1968) constructed a cell inwhich the two lateral stresses σ2 and
σ3 were applied to the specimen by two pairs of thin copper flat jacks and the axial
loadwas applied by a traditional loading piston. However, it was difficult to apply
high lateral stresses with this apparatus, thus limiting its range of usefulness.

Mogi (1971) built an apparatus in which the minimum stress, σ3, was applied
by a pressurized fluid, and the two other stresses were applied by opposing sets
of flat jacks (Fig. 6.7b,c). The choice of having the minimum stress applied by
fluid pressure was made so that this stress could be measured with the greatest
accuracy. The specimen was in the form of a rectangular prism, 1.5 cm× 1.5 cm
in cross section and 3.0 cm long in the σ1 direction. The steel end-pieces over
which σ1 was applied were connected to the specimen by epoxy, whereas the
end-pieces over which σ2 was applied were coupled to the specimen through
thin rubber lubricating sheets. The sides of the specimen were jacketed with
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Fig. 6.7 (a) True-
triaxial state of stress
applied to a cubical
specimen; (b) view
along the σ 3 direction
of the apparatus used by
Mogi (1971); (c) view
along the σ 1 direction. (a) (b)
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thin copper sheets to prevent the rubber from intruding into the rock, and a
silicon rubber jacket was used to prevent the pressurizing fluid from entering the
pores of the rock. Mogi used this apparatus to investigate the influence of the
intermediate principal stress on the yield and fracture of several rock types.

Haimson andChang (2000) built a compact and portable true-triaxial cell based
on Mogi’s design. Their apparatus can subject a specimen to values of σ1 and σ2
as high as 1600MPa and σ3 as high as 400MPa. Normal strains in the direction of
maximumand intermediate stressweremeasuredwith strain gauges glued to the
respective faces of the specimen, whereas the third strain was measured with a
beryllium-copper beam fitted with a strain gauge. The center of the beammakes
contact with a pin affixed to the face of the specimen, and as the rock expands
in the σ3 direction, the beam bends outward, and its deflection is measured by
the strain gauge. This apparatus was used to investigate the influence of the
intermediate stress on the failure of Westerly granite, which was found to be
significant. No such effect of σ2 was found for a hornfels and a metapelite from
the Long Valley caldera in California (Chang and Haimson, 2005).

Hunsche and Albrecht (1990) describe an apparatus that uses three pairs of
double-acting pistons to apply three independently variable normal stresses to
the faces of a cubical specimen. Heaters placed between the specimen and the
pistons allowed the rock to be heated to 400◦C. The forces applied by each pair
of pistons were calculated from pressure gauges in the hydraulic lines. Deforma-
tion of the specimen in the three directions was measured with linear variable
displacement transducers (LVDTs), which essentially measure the change in the
distance between the opposing platens. Paraffin wax (at room temperature) and
graphite (at elevated temperatures) were used as lubricants between the platens
and rock. This apparatus was used to study the deformation of rock salt, and it
was found that the observed strength of the rock, defined as the maximum value
of the octahedral shear stress, depended sensitively on the ratio of specimen size
to platen size. Sayers et al. (1990) describe a similar apparatus that is fitted with
ultrasonic transducers in each end-piece, so as to be able to measure shear and
compressional wavespeeds under states of true-triaxial stress.

6.7 Diametral
compression of
cylinders

The difficulties associated with performing a direct uniaxial tension test on rock
have led to the development of a number of “indirect” methods for assessing the
tensile strength. Such methods are called indirect because they do not involve
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Fig. 6.8 (a) Cylinder
compressed between
parallel surfaces by a
line loadW (per unit
length into page);
(b) typical fracture
pattern resulting from
this loading. (a)
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the creation of a homogeneous state of tensile stress in rock, but rather involve
experimental configurations that lead to inhomogeneous stresses that are ten-
sile in some regions of the specimen. The precise value of the tensile stress at
the location where failure initiates must be found by solving the equations of
elasticity.

The most popular of these tests is the so-called Brazilian test, developed by
the Brazilian engineer Fernando Carneiro in 1943 for use in testing concrete.
A thin circular disk of rock is compressed between two parallel platens, so that
the load is directed along the diameter of the disk (Fig. 6.8a). As the platens are
relatively rigid compared to the rock, they can be assumed to apply a point load
W (per axial length of the cylinder) to the two opposing loading points. With the
coordinate system taken as in Fig. 6.8a, the stresses along this vertical diameter
are, by (8.165),

τxx = −W
πR

, τyy = W(3R2 + x2)
πR(R2 − x2)

, (6.10)

whereas along the y-axis, perpendicular to the load, the stresses are

τxx = −W(R2 − y2)2

πR(R2 + y2)2
, τyy = W(R2 − y2)(3R2 + y2)

πR(R2 + y2)2
. (6.11)

By symmetry, these stresses are principal stresses. The largest and smallest
principal stresses occur on the vertical axis, through which the load passes. The
minimum principal stress, τxx in (6.10), is uniform and tensile along this entire
axis. The maximum principal stress, τyy in (6.10), is compressive and becomes
unbounded near the platens, but varies only weakly near the center of the disk.
At the center of the disk, the two principal stresses are, by setting x = 0 in (6.10),

τxx = −W
πR

, τyy = 3W
πR

. (6.12)

As the disk is in a state of plane stress, the third principal stress, normal to the
plane of the disk, is zero, and consequently is the intermediate principal stress.

When a cylindrical rock specimen is compressed in this way, failure typically
occurs by an extension fracture in, or close to, the loaded diametral plane, at
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some value of the applied loadW , as in Fig. 6.8b. It is generally assumed that the
failure is the result of the tensile stress τxx = τθθ = −W/πR, and so the tensile
strength is given by the value of W/πR at failure. Tensile strengths measured
in this way are very reproducible and are in reasonable agreement with values
obtained in uniaxial tension. The Brazilian indirect tension test has been used to
determine the tensile strength of coal by Berenbaum and Brodie (1959), and of
various sandstones and siltstones by Hobbs (1964).

If the applied load is actually a uniform normal stress of magnitude σ , dis-
tributed over a small arc of angle 2α, then the state of stress near the points of
contact will be a uniform compression of magnitude σ . This will decrease the
likelihood of failure by shear fracture at the contact points, but has virtually no
effect on the stresses near the center of the disk. Hence, Brazilian tests conducted
with loads distributed over a narrow arc, such as 15◦, yield values of the tensile
strength that are little different from those obtained using line loads and give rise
to similar diametral extension fractures.

If jacketed cylinders are subjected to confining pressure p applied by a pres-
surized fluid, as well as to diametral compression, then at the center of the disk
a hydrostatic stress p would be added to the three principal stresses discussed
above, leading to

σ1 = (3W/πR)+ p, σ2 = p, σ3 = p − (W/πR). (6.13)

This configuration gives a means of studying failure in situations where all three
stresses are compressive, but σ3 is small, as is often the case near an underground
excavation. The three principal stresses will be connected by the relation

σ1 − 4σ2 + 3σ3 = 0, (6.14)

so this test will determine a curve defined by the intersection of the failure
surface with the surface defined by (6.14). Jaeger and Hoskins (1966a) found that
the values of σ1 and σ3 obtained from these tests, using (6.13), agreed reasonably
well with those obtained in standard triaxial compression tests, although the
values of σ1 tended to be consistently higher than those measured in the triaxial
tests for the same value of σ3. They attributed this to the strengthening effect of
the intermediate principal stress, as discussed in §4.8.

The analysis presented above assumes that the rock is isotropic, whichmay not
be the case. Chen et al. (1998) developed a mathematical solution for the diame-
tral compression of a thin disk of rock that is transversely isotropic in the plane
of the disk. In this case, the analysis of the results is complicated by the fact that
the two principal stresses at the center of the disk depend, in a complicated and
implicit manner, on the values of the elastic moduli. Claesson and Bohloli (2002)
analyzed this solution further and derived accurate approximate expressions for
these stresses. Lavrov and Vervoort (2002) presented a solution that accounts for
the influence of transverse tractions applied at the rock–platen interface, caused
by friction, and showed that such tractions would have little effect on the stresses
at the center of the disk and hence little effect on the interpretation of tests in
which failure initiated at or near the center.
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6.8 Torsion of
circular cylinders

As discussed in §6.3, Young’s modulus, E, can bemeasured by subjecting the rock
to a state of homogeneous uniaxial compression. The shearmodulus, G, could in
principle be measured by inducing a state of homogeneous shear stress in a rock
specimen. The shear modulus would be found from the ratio of the shear stress
to the shear strain. However, it is not easy to induce a homogeneous state of
shear in a piece of rock. But an inhomogeneous state of shear can be induced in
a circular cylinder by subjecting it to torsion. Analytical solution of the elasticity
equations for this configuration yields a simple relationship between the applied
torque, the angle of twist, and the shear modulus. Hence, measurement of the
applied torque and the resulting angle of twist will permit G to be calculated.

In a torsion experiment, loads are applied to the two ends of a cylindrical spec-
imen of radius a and length L, so as to create a torque M about the longitudinal
axis (Fig. 6.9a). It is convenient to imagine that the z = 0 face is fixed and that the
z = L face rotates within its plane by an angle α. A reasonable assumption for
the displacement field within the cylinder is that each plane normal to the axis
of the cylinder also rotates, by an angle that increases linearly from 0 at z = 0 to
α at z = L. In cylindrical coordinates, this displacement field is

u = 0, v = αrz/L, w = 0. (6.15)

From (2.275) and (2.280), the stresses and strains associated with these
displacements are

εzθ = εθz = αr/2L, τzθ = τθz = Gαr/L, (6.16)

with all other stress and strain components vanishing. It is easy to verify that
these stresses satisfy the equations of stress equilibrium, (5.107)–(5.109), and also
give zero tractions along the outer surface of the cylinder, r = a. The total
moment applied to the end of the cylinder, about the z-axis, is found from

M =
a∫

0

2π∫
0

τzθ r2drdθ = 2πGα
L

a∫
0

r3dr = πGa4α
2L

. (6.17)

Hence, measurement ofM and α will allow G to be found.
Elimination of G between (6.16) and (6.17) yields τzθ = 2Mr/πa4, which

shows that the shear stresses within the cylinder vary from 0 at the center of

Fig. 6.9 (a) Torsion
of a circular cylinder by
moments applied over
the opposing faces;
(b) view of the z = L
face, showing rotation
of point A to point B by
angle α. (a)
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the cylinder, to a maximum of τzθ = 2M/πa3 at the outer surface. At the outer
surface, the principal stresses are, from (2.37)–(2.38), seen to be ±2M/πa3.

More complex, but predictable, stress fields can be obtained using hollow
cylinders. Talesnick and Ringel (1999) developed an apparatus that can apply
torsion to a hollow cylinder, superposed on a traditional triaxial stress state, and
used it to determine the five independent elastic moduli of several transversely
isotropic rocks: Loveland sandstone, Indiana limestone, Lac du Bonnet granite,
and Marasha chalk. Paterson and Olgaard (2000) developed an apparatus that
is capable of combining traditional triaxial stresses with large-angle torsion and
used it to study the rheological properties of Carrara marble under large shear
strains.

6.9 Bending tests Bending is used in rock testing, for measurement of E and for tensile strength
(Pomeroy and Morgans, 1956; Berenbaum and Brodie, 1959; Evans, 1961;
Coviello et al., 2005). It is also a very sensitive method for studying creep and
transient behavior (Phillips, 1931; Price, 1964). This type of loading produces
regions of tensile stress and compressive stress in the rock. The stress and dis-
placement distributions can be found from elementary beam theory, as outlined
below.

Consider first a rectangular beam of width b, height h, and length L, as in
Fig. 6.10. A moment of magnitude M is applied to the beam about the x-axis.
According to the classical Euler–Bernoulli theory, each planar section in the
x–y plane remains planar, but rotates about the x-axis, as shown in Fig. 6.10b.
Lines of constant-y in the y–z plane, which were initially horizontal, now form
circular arcs with C at their center. The upper fibers of the beam, y > 0, are in
compression, and the lower fibers, y < 0, are in tension. The so-called neutral
axis, y = 0, is neither in tension nor compression, so the deformed length ofOO′
is L and the radius of curvature of the neutral axis is R = L/θ . The deformed
length of the upper face of the beam, BB′, is (R− h)θ , and its original length was
L = Rθ , so the longitudinal compressive strain in the upper fibers is εzz = h/R.
Similarly, the strain of the lowermost fibers is εzz = −h/R. The same analysis for
an arbitrary value of y shows that, in general, εzz = y/R, and so the longitudinal
stress is τzz = yE/R.

Fig. 6.10 Bending of
a prismatic beam by
moments applied at its
ends: (a) cross section
normal to the z-axis;
(b) side view, normal to
the x-axis.
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The total moment about the x-axis is given by

M =
h/2∫

−h/2

b/2∫
−b/2

τzzydxdy = bE
R

h/2∫
−h/2

y2dy = bh3E
12R

≡ EI
R
, (6.18)

where I = bh3/12 is the moment of inertia of the cross section, about the x-axis.
Measurement of the appliedmoment and the radius of curvature of the deformed
beam therefore provides a value for E. The greatest tensile stress, which occurs
at the lower face of the beam, is equal to

τzz(tensile max) = −hE/2R = −Mh/2I. (6.19)

If the moment is increased until failure occurs, this relation can be used to give
the tensile strength.

In practice, the applied loading is somewhat different from the case of pure
bending by end-couples. To treat the loading configurations actually used in the
laboratory, the following generalization of (6.18) is needed. For small deforma-
tions, the radius of curvature can be approximated as 1/R = d2y′/dz2, where y′
is the deformed position of the neutral axis. The initial position of this axis was
y = 0, so y′ = v, where v is the y-component of the displacement of the neutral
axis, in which case (6.18) can be written as

M = EI
d2v
dz2

. (6.20)

This form of the equation can be used for cases in which the moment M varies
along the z-axis. The following two cases are of importance in rock mechanics
testing.

6.9.1 Three-point loading

Consider a beam that is simply supported at its two ends and loaded by a point
load F at its center (Fig. 6.11a). It will be convenient to place the origin at the
midpoint of the beam and denote the total length by 2L. By symmetry, the
reaction forces at the two ends will each have magnitude F/2. By performing a
moment balance on a segment of the beam located between some generic point
0 < z < L and the right edge of the beam, it follows that the internal moment
acting along the face of the beam, normal to the z-axis, must be

M(z) = 1
2F(L − z). (6.21)

The maximum tensile stress occurs again at the lower face of the beam, where
it is given by (6.19). According to (6.21), this will occur at the midpoint of the
beam, where z = 0 andMmax = FL/2. Hence, the greatest tensile stress will be

τzz = −hFL
4I

. (6.22)
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Fig. 6.11
(a) Three-point loading
and (b) four-point
loading of a beam.
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The differential equation (6.20) for the deflection of the beam becomes

EI
d2v
dz2

= 1
2
F(L − z). (6.23)

Integration of (6.23), using the boundary conditions v = 0 and (from symmetry)
dv/dz = 0 when z = 0, gives

v = F
12EI

(3Lz2 − z3). (6.24)

The displacement at z = L represents the deflection of the midpoint of the beam
in the direction of the applied force F :

vmax = FL3

6EI
. (6.25)

This relation provides a means to estimate E from the deflection of the beam.

6.9.2 Four-point loading

An objection to the use of the three-point loading configuration to estimate
tensile strength arises from the fact that the maximum stress (6.22) occurs imme-
diately beneath the point of application of one of the loads, and it is not reasonable
to expect elementary beam theory to be very accurate at such locations. This
problem can be avoided by using four-point loading (Fig. 6.11b), in which two
loads of magnitude F are applied at z = ±a, for some value 0 < a < L. By
symmetry, the reaction forces at the two ends will each have magnitude F . In
this case, taking a moment balance for a segment of the beam to the right of the
midpoint yields

M = F(L − a) for 0 < z < a, (6.26)

M = F(L − z) for a < z < L, (6.27)

with similar expressions for the region z < 0. Hence, themoment is uniform and
equal to F(L − a) throughout the entire region −a < z < a. So, the magnitude
of the maximum tensile stress is

|τzz|max = Mh
2I

= Fh(L − a)
2I

. (6.28)
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In particular, this stress will occur at the midpoint of the beam, z = 0, which is
not located immediately under any of the concentrated loads.

The maximum deflection of beam can be calculated in this case to be

vmax = F
6EI

(2L3 − 3a2L + a3). (6.29)

The theory described above assumes linear elastic behavior of the rock.
Exadaktylos et al. (2001a,b) gave an analysis of bending that accounted for non-
linearity in the stress–strain behavior and also for the possibility that the elastic
modulus E may be different in tension than in compression. The model was
applied to three-point bending tests conducted on a Dionysos marble, for which
Ec = 0.8Et . They found that tensile failure occurred at the lower edge of the
beam, at a (local) stress that was consistent with the tensile strength measured
under direct uniaxial tension.

6.10 Hollow
cylinders

A hollow cylinder subjected to an axial load and an external or internal fluid
pressure along its curved surfaces provides a ready method for studying the
strength and fracture of rock under a variety of principal stresses. Among the
earliest tests on hollow cylinders of rock were those of Adams (1912), who
observed failure by spalling at the inner surface of the cylinder. His results,
along with some of their geological implications, were discussed by King (1912).
Robertson (1955) used cylinders of rock with different ratios of their inner and
outer diameter, stressed by fluid pressure applied to their ends and outer sur-
faces. He discussed his results, in which failure started at the inner surface,
in terms of elastic–plastic theory. Hollow cylinders subjected to axial load and
external fluid pressure have been used since then on a variety of rock types
(Hobbs, 1962; Obert and Stephenson, 1965; Santarelli and Brown, 1989; Lee
et al., 1999).

The solutions for the stresses in a pressurized hollow cylinder are given in §8.4.
Consider first the case of a hollow cylinder of inner radius, a, and outer radius,
b, subjected to a compressive axial stress, σ , and an external fluid pressure, po.
At the inner surface, the three principal stresses will be

τzz = σ , τθθ = 2po/(1 − ρ2), τrr = 0, (6.30)

and at the outer surface, the principal stresses will be

τzz = σ , τθθ = po(1 + ρ2)/(1 − ρ2), τrr = po, (6.31)

where ρ = a/b. The axial stress is the same at both surfaces, and as ρ < 1
by definition, it follows that the maximum and minimum principal stresses will
always occur at the inner surface, where the minimum principal stress is zero.
Depending on the numerical values of σ and po, the maximum principal stress
may be either τzz or τθθ . According to the common failure theories discussed in
Chapters 4 and 10, this specimen would be expected to fail at its inner surface,
at a value of the maximum principal stress that differs from the uniaxial strength
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of the rock by the strengthening influence, if any, of the intermediate principal
stress.

If σ > 2po/(1 − ρ2), then the principal stresses at the inner surface of the
cylinder are

σ1 = σ , σ2 = 2po/(1 − ρ2), σ3 = 0. (6.32)

For relatively small values of the outer confining pressure po and the inner radius
a, failurewill occurmuch as it does for a solid cylinder under triaxial compression,
forming a single shear fracture across the entire cylinder at some small angle to
the longitudinal axis (Fig. 6.12a). For larger values of po and a, failure will
occur in the form of a conical fracture whose axis lies along that of the cylinder
(Fig. 6.12b). The conical fracture surface will be tangential to the direction of the
intermediate principal stress (i.e., the θ direction).

If σ < 2po/(1 − ρ2), then the principal stresses at the inner surface of the
cylinder are

σ1 = 2po/(1 − ρ2), σ2 = σ , σ3 = 0. (6.33)

In this case, failure occurs by spiral fractures that are parallel to the axis of the
cylinder and consequently parallel to the direction of the intermediate principal
stress (Fig. 6.12c).

Consider now a hollow cylinder subjected to an internal pressure pi along its
inner surface and an axial stress σ . If σ < pi, the principal stresses at the inner
surface are

σ1 = τrr = pi, σ2 = τzz = σ , σ3 = τθθ = −pi(1 + ρ2)/(1 − ρ2), (6.34)

and failure usually occurs as a planar, diametral extension fracture. If σ > pi, the
principal stresses at the inner surface are

σ1 = τzz = σ , σ2 = τrr = pi, σ3 = τθθ = −pi(1 + ρ2)/(1 − ρ2). (6.35)

In this case the intermediate principal stress is radial and helicoidal fractures are
observed.

In the general case, both internal and external pressures can be applied to
the cylinder, along with an axial stress. By using various combinations of σ , pi,

Fig. 6.12 Different
systems of fracture in a
hollow cylinder
subjected to axial stress
and external pressure
(see text for details).
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and po, large regions of the failure surface σ1 = f (σ2, σ3) can be probed. Alsayed
(2002) modified a traditional Hoek triaxial cell (Hoek and Franklin, 1968) so as to
accept hollow cylinders and used it to study the behavior of Springwell sandstone
under a variety of stress conditions. Hollow cylinder tests such as those described
above are of particular value in the analysis of borehole stability problems (Ewy
et al., 2001).
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7 Poroelasticity and
thermoelasticity

7.1 Introduction Subsurface rocks are, by their nature, filled with cracks and pores that are
saturated with one or more fluid phases (water, air, oil, etc.). These pore fluids
will have a major influence on the mechanical behavior of a rock mass. In §4.7,
it was seen that if a rock were under compression, pore fluid pressure would
cause the state of stress to move closer to the failure surface. Aside from this
influence, pore fluid pressures also give rise to macroscopic elastic deformation
of the rock. The mechanical deformation of a rock is therefore coupled to the
pore fluid pressure. Pore fluids flow through the rock in response to gradients in
the pore pressure, but can also flow due to changes in the macroscopic stresses
due to natural causes such as tectonic forces, and man-made causes such as the
drilling of boreholes, etc. Hence, the mechanical and hydrological behavior of
rocks is fully coupled.

Most analyses of rock mechanics problems, and subsurface flow problems,
ignore this coupling. In particular, the majority of work on subsurface flow
problems in hydrology, petroleumengineering, or geophysics is conducted under
the assumption that the rockmass is porous but completely rigid. Similarly, most
rock mechanics analyses either ignore pore fluid effects or assume that the pore
pressures can be found independently of the mechanical deformation. Although
such assumptions are often acceptable, there are many situations in which the
coupling between deformation and pore fluid pressure and fluid flow must be
accounted for. For example, pore pressure effects play an important role in
the deformation around a borehole (Detournay and Cheng, 1988), hydraulic
fracturing of boreholes (Detournay et al., 1989), and slip along active faults
(Rudnicki and Hsu, 1988).

The general theory that accounts for this coupled hydromechanical behavior
is poroelasticity. This theory was put forth by Biot (1941), and developed further
by, among others, Verruijt (1969), Rice and Cleary (1976), and Detournay and
Cheng (1993). A theory of poroelasticity for hydrostatic loading is presented in
§7.2 and §7.3. Although this theory is restricted in that it does not account for
deviatoric loading, the hydrostatic case can be developed in a fully nonlinear
form. Although several nonlinear theories of nonhydrostatic poroelasticity have
been developed, most poroelastic analyses utilize the linearized “Biot” theory.
This theory, which accounts for deviatoric stresses as well as hydrostatic stresses
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and pore fluid pressures, is presented in §7.4 and §7.5. Some applications of the
theory of poroelasticity are discussed in §7.6 and §7.7.

Rockmass deformation is also influenced by thermal effects. In fact, the theory
of thermoelasticity can be developed along lines that are entirely analogous to
poroelasticity, with the temperature playing the role of the pore pressure, etc.
(Norris, 1992). One difference between the two theories stems from the fact
that in most situations thermomechanical coupling is unilateral, in the sense
that the temperature field has an effect on the mechanical deformation, but the
stresses and strains have a negligible effect on the temperature (Boley andWeiner,
1960). On the other hand, the coupling in poroelasticity between mechanical
deformation and pore pressures generally cannot be ignored (Fahrenthold and
Cheatham, 1986; Zimmerman, 2000). The theory of thermoelasticity is discussed
in §7.8.

7.2 Hydrostatic
poroelasticity

Theories for the poroelastic behavior of rocks can be developed on the basis
of two conceptual models of porous rock: a solid material permeated with an
interconnected collection of voids (Geertsma, 1957a; Zimmerman, 1991) or
an aggregation of grains in partial contact with each other at various points
(Gassmann, 1951a; Brandt, 1955; Digby, 1981). The latter model is more appro-
priate for soils, whereas the former has proven to be more fruitful for studying
rocks. There is no clear demarcation between these two types of geological
media (Anagnostopoulos, 1993), and the behavior of poorly consolidated sedi-
mentary rocks is in many ways similar to that of some soils. However, a theory
of poroelasticity that applies to most rock-like materials can be constructed by
starting with the idealization of a rock as a connected mineral phase permeated
with voids. These voids may be interconnected, or may exist as isolated vugs; the
latter do not contribute to the fluid flow processes, and for the present purposes
can be ignored.

The theory of poroelasticity has been developed in great detail for the special
case of hydrostatic loading (Geertsma, 1957a; Zimmerman, 1991). This restricted
theory is applicable to many problems in rock mechanics and petroleum engi-
neering, and also provides a simple context in which to introduce concepts that
appear in the more general theory. To develop this theory, consider a porous
rock, as shown in Fig. 7.1a. The macroscopic “bulk” volume of the rock is Vb,
the volume occupied by the pore space is Vp, and the volume occupied by the
solid mineral component is Vm, where

Vb = Vm + Vp. (7.1)

The mineral phase of the rock is often referred to in poroelasticity as the
“matrix,” although this usage should not be confused with the use of that word
by petroleum geologists (Pettijohn et al., 1987, p. 140) to refer to certain spe-
cific types of intergranular material in sandstones. The relative amounts of void
space and solid component can be quantified either by the porosity, φ, which is
defined by

φ = Vp/Vb, (7.2)
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Fig. 7.1 Generic
porous rock, showing
(a) the bulk volume,
pore volume,
mineral/matrix volume
(shaded), and (b) the
pore pressure and
confining pressure. (a)

Vb

Vp

Vm
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or by the void ratio, e, defined by

e = Vp/Vm = φ/(1 − φ). (7.3)

The porosity is restricted, by definition, to the range 0 ≤ φ < 1, whereas the
void ratio can take on any positive value.

Imagine that this piece of porous rock is subjected externally to a purely
normal traction of magnitude Pc, where the subscript c denotes “confining”
pressure, and the internal pore walls are subjected to a pore pressure of magni-
tude Pp, exerted by the pore fluid (Fig. 7.1b). As a pore fluid cannot sustain a
shear stress under static conditions, no shear traction can be transmitted to the
pore walls. There are two independent pressures that may act on the rock and
two independent volumes (taken here to be Vb and Vp), so four compressibilities
can be defined (Zimmerman et al., 1986):

Cbc = −1

Vib

(
∂Vb
∂Pc

)
Pp

, Cbp = 1

Vib

(
∂Vb
∂Pp

)
Pc

; (7.4)

Cpc = −1
Vip

(
∂Vp
∂Pc

)
Pp

, Cpp = 1
Vip

(
∂Vp
∂Pp

)
Pc

. (7.5)

where the superscript “i” denotes the initial, unstressed state. The bulk and pore
strain increments can be expressed in terms of the porous rock compressibilities
as follows:

dεb = −dVb
Vib

= CbcdPc − CbpdPp, (7.6)

dεp = −dVp
Vip

= CpcdPc − CppdPp, (7.7)

where, as usual, a decrease in the volume is considered to be a positive strain. The
bulk strain dεb is equivalent to the macroscopic volumetric strain dεv defined by
(2.231); the new notation is needed in poroelasticity so as to distinguish between
the pore and bulk volumes. Alternative definitions and notations for porous
rock compressibilities have been reviewed by Chilingarian and Wolf (1975) and
Raghavan and Miller (1975).

These four porous rock compressibilities are typically stress-dependent: decrea-
sing with increasing stress and leveling off to constant values at confining
pressures that are on the order of 50 MPa (1 MPa = 145 psi). Figure 7.2a
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Fig. 7.2 Pore strain
(a) and pore
compressibility (b) of a
Frio sandstone from
East Texas, measured at
zero pore pressure (after
Carpenter and Spencer,
1940).
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shows the pore strain vs. confining stress for a Frio sandstone from East Texas
(after Carpenter and Spencer, 1940), measured with the pore pressure held con-
stant at 0 MPa. At low pressures, the curve is quite nonlinear, but becomes linear
at pressures above 40 MPa. The compressibility Cpc is shown in Fig. 7.2b. The
behavior of the other porous rock compressibilities would be qualitatively simi-
lar. Some rocks, on the other hand, such as limestones (Hart and Wang, 1995),
have compressibilities that are nearly independent of stress.

Relationships between the four porous rock compressibilities can be derived
under the assumption that the matrix can be treated as if it were composed of
an isotropic, homogeneous elastic material. This assumption can often be jus-
tified by the fact that although many rocks consist of more than one type of
mineral, the elastic moduli of most rock-forming minerals do not differ by large
amounts (see Clark, 1966; Simmons and Wang, 1971), so that the “effective”
elastic moduli of the matrix are usually more well-constrained than the varie-
gatedmineralogical compositionwould at first imply. In fact, if themineralogical
composition of a given rock is known, fairly accurate effective elastic moduli can
be estimated using the Voigt-Reuss-Hill average (§10.2). And although individ-
ual mineral grains are usually intrinsically anisotropic, in many cases they are
arranged with random orientations so that the bulk behavior is nearly isotropic.

In the following derivation, all applied pressures and their resulting strains will
be incremental changes superimposed on an already-existing state of stress and
strain. The loading state consisting of a uniform hydrostatic stress (i.e., normal
traction) of magnitude dPc applied over the entire outer surface of the porous
rock and uniform hydrostatic pressure of magnitude dPp applied over the entire
interior pore surface, will be denoted by {dPc, dPp}. If a stress increment {dP, dP}
is applied to the surface of the body (that is to say, dPc = dPp = dP), the
resulting incremental stress state in the rock is that of uniform hydrostatic stress
of magnitude dP throughout the matrix (Geertsma, 1957a). This can be verified
by noting that uniform hydrostatic stress of magnitude dP satisfies the stress
equilibrium equations, because the divergence of a spatially uniform tensor is
identically zero, and also satisfies the boundary conditions on both the outer
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and inner surfaces of the matrix. This stress state leads to a uniform isotropic
dilatation of magnitude dεm = dP/Km = CmdP, where Cm and Km are the
compressibility and bulk modulus of the rock matrix material. But this state of
stress and strain within the matrix is exactly the same as that which would occur
if the pores were hypothetically filled up with matrix material, and the boundary
conditions on the outer surface were left unchanged. In this latter case, the total
bulk strain is equal to dεb = CmdP, so the bulk volume change is given by
dVb = −CmVibdP.

Now consider the stress increment {dP, 0}, which corresponds to a change
only in the confining pressure. By definition, this will give rise to a change in
the bulk volume given by dVb = −CbcVibdP. Similarly, a stress increment of
{0, dP} would give rise to a bulk volume change of dVb = CbpVibdP. For the
infinitesimal changes under consideration, the principle of superposition is valid,
so the stress increment {0, dP} can be separated into the difference of the two
increments {dP, dP} and {dP, 0}, as illustrated in Fig. 7.3. The strains resulting
from the stress increment {0, dP}will therefore be equal to the difference between
the strains that result from the stress increments {dP, dP} and {dP, 0}. Using the
notation dVb(dPc, dPp) to refer to the bulk volume change resulting from the
stress increment {dPc, dPp}, we have

dVb(0, dP) = dVb(dP, dP)− dVb(dP, 0), (7.8)

so, CbpVibdP = −CmVibdP + CbcVibdP, (7.9)

hence, Cbp = Cbc − Cm. (7.10)

The following analogous relation between the two pore compressibilities can be
derived in a similar manner:

Cpp = Cpc − Cm. (7.11)

The pore compressibilities and the bulk compressibilities can be related to
each other by applying the Maxwell–Betti reciprocal theorem (§5.8) to the two
sets of loads {dP, 0} and {0, dP}. The work that would be done by the first set of
loads acting through the displacements due to the second set is given by

W12 = −dP[dVb(0, dP)] = −dP[CbpVibdP] = −CbpVib(dP)2, (7.12)

where the minus sign accounts for the fact that the confining pressure acts in the
−n direction, where n is the outward unit normal vector to the external surface,

Fig. 7.3 Illustration
of the superposition
concept used in deriving
relationships between
the various porous rock
compressibilities.
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dP

dP

dP

= −



Jaeger: “chapter07” — 2006/12/15 — 09:57 — page 173 — #6

Poroelasticity and thermoelasticity 173

whereas the bulk volume would increase if the displacement were in the +n
direction. Similarly,

W21 = dP[dVp(dP, 0)] = dP[−CpcVipdP] = −CpcVip(dP)2, (7.13)

No minus sign is needed in the defining equation for W21, because the pore
pressure acts in the same direction as that of increasing pore volume.

The reciprocal theorem implies thatW21 = W12, and so comparison of (7.12)
and (7.13) reveals that CbpVib = CpcVip. But V

i
p = φiVib, and so

Cbp = φiCpc. (7.14)

This relation requires for its validity only the assumption of elastic behavior; it
does not require that the matrix be either homogeneous or isotropic.

Equations (7.10), (7.11), and (7.14) provide three relations between the
four compressibilities {Cpc, Cpp, Cbc, Cbp}, with φi and Cm as the only other
parameters explicitly involved. In terms of {Cbc, Cm,φi}, the other three
compressibilities are

Cbp = Cbc − Cm, (7.15)

Cpc = (Cbc − Cm)/φi, (7.16)

Cpp = [Cbc − (1 + φi)Cm]/φi. (7.17)

The approximate validity of (7.15)–(7.17) has been demonstrated for several con-
solidated sandstones (Zimmerman et al., 1986), as well as several limestones
(Laurent et al., 1993). Note that it follows from (7.15)–(7.17) that the bulk
compressibility cannot be written as a volumetrically weighted average of the
pore and matrix compressibilities, as has occasionally been supposed (Dobrynin,
1962).

Although the porous rock compressibilities vary with Pc and Pp, they actually
depend only on the single parameter Pd = Pc − Pp, known as the differential
pressure (Nur and Byerlee, 1971). The physical reason for this is that the stress-
dependence of the compressibilities is due to the closure of cracks, seating of
grain contacts, or other processes that involve the closure of thin, crack-like voids,
and pore pressure has essentially an equal-but-opposite effect on the deformation
of a thin void as does the confining pressure (see §8.9). The dependence of the
compressibilities on the differential stress is also a necessary condition in order
for the volumetric strain to be independent of the path taken in stress space.
Indeed, applying the Euler condition for exactness of a differential to the bulk
strain increment gives

∂2εb

∂Pp∂Pc
= ∂

∂Pp

(
∂εb

∂Pc

)
= ∂Cbc
∂Pp

, (7.18)

∂2εb

∂Pc∂Pp
= ∂

∂Pc

(
∂εb

∂Pp

)
= −∂Cbp

∂Pc
= −∂(Cbc − Cm)

∂Pc
= −∂Cbc

∂Pc
, (7.19)

where, since the bulk compressibilities of rock-forming minerals do not change
by more than a few percent over the range of pressures up to about 100 MPa
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(Anderson et al., 1968), Cm can be taken to be a constant. Equating the two
mixed partial derivatives shows that Cbc satisfies the partial differential equation
∂Cbc/∂Pc = −∂Cbc/∂Pp, the general solution to which is Cbc(Pc, Pp) = f (Pc −
Pp), where f is any function that depends on the two pressures only through
the combination Pc − Pp. Equations (7.15)–(7.17) then show that the other three
porous rock compressibilities also depend only on the differential pressure.

In the development of poroelasticity given by Biot (1941), no assumption
was made concerning the isotropy or homogeneity of the mineral phase. Biot’s
analysis reproduces (7.10) and (7.14), withCm identified as an effective solid-phase
compressibility, but not (7.11). In Biot’s formulation, Cpc −Cpp = Cφ , where the
additional parameter Cφ is identified with the fractional change in pore volume
resulting from equal increments of the pore and confining pressures (Brown and
Korringa, 1975). If the matrix were homogeneous, Cφ should equal Cm. Hart
and Wang (1995) reported data on Berea sandstone and Indiana limestone for
which Cφ exceeded Cm by factors of about six and nine, respectively, although
no explanation was given for this large discrepancy.

There have been other treatments of hydrostatic poroelasticity that include
additional restrictive assumptions or simplifications, as opposed to greater gen-
erality. Domenico (1977) assumed that the volumetric strain in the matrix is
negligible compared to the pore strain and arrived at equations that can be
derived from (7.15)–(7.17) by setting Cm equal to zero. The two pore compress-
ibilities are then equal to each other, as are the two bulk compressibilities. This
assumption is acceptable for soils and unconsolidated sands (see Newman, 1973)
but not for most consolidated sandstones or hard rocks.

The assumption that the mineral phase effectively behaves like an isotropic
elastic medium can be tested experimentally through so-called “unjacketed
tests,” in which the rock is pressurized by a fluid which is allowed to seep into
its pores, resulting in equal pore pressure and confining pressure. If dPp = dPc,
then (7.6) and (7.10) give

dεb = CbcdPc − CbpdPc = (Cbc − Cbp)dPc = CmdPc. (7.20)

In an unjacketed test, the stress-dependence disappears, and the rock deforms as
a linear elastic medium with compressibility Cm (Fabre and Gustkiewicz, 1997).
Zimmerman (1991) used the Voigt-Reuss-Hill average (§10.2) to compute an
effective matrix compressibility of Berea sandstone of 2.54 × 10−5/MPa, which
is very close to the unjacketed compressibility of 2.58× 10−5/MPa measured by
Andersen and Jones (1985).

Instead of using Vb and Vp as the kinematic variables, Carroll and Katsube
(1983) developed a theory of hydrostatic poroelasticity in terms of φ and Vm.
Using the identities Vm = Vb − Vp and φ = Vp/Vb, along with (7.15)–(7.17), it
follows that the porosity and matrix volume are governed by

dφ = −[(1 − φi)Cbc − Cm]d(Pc − Pp), (7.21)

dεm = Cm
(1 − φi)

d(Pc − φiPp). (7.22)
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One interpretation of (7.22) is that the average stress in the mineral phase is
given by

〈Pm〉 = Pc − φiPp
1 − φi

. (7.23)

This result is actually true in general and does not require that the matrix be
isotropic, homogeneous, or elastic (Dewers and Ortoleva, 1989; Zimmerman
et al., 1994).

7.3 Undrained
compression

The equations developed and discussed in the previous section are appropriate for
processes in which the pore pressure and confining pressure vary independently.
An example is the reduction in pore pressure due to the withdrawal of fluid
from a petroleum or groundwater reservoir. Since the confining stresses acting
on the reservoir rock are in general due to the lithostatic gradient, along with
tectonic forces, they will not change while fluid is being withdrawn. There are
other situations, however, in which the pore and confining pressures are not
independent. For example, during drilling, the in situ stresses will be altered in
the vicinity of the borehole. This will induce changes in the pore volume within
a certain region surrounding the borehole, which will initially lead to a change
in the pore pressure. If the rock is highly permeable, pore fluid will quickly flow
in such a manner as to reestablish pore pressure equilibrium with the adjacent
regions of rock. For a rock that is relatively impermeable, such as a shale, the
time required for pore pressure equilibrium to be reestablished may be very
large, so for a certain period of time, the pore fluid must be considered as being
“trapped” inside the stressed region near the borehole. This phenomenon is
discussed by Black et al. (1985), who relate it to the poor drillability properties of
shales (see alsoWarren and Smith, 1985; Peltier and Atkinson, 1987). This type of
“undrained” compression is also relevant to seismic wave propagation processes,
in which the viscosity of the pore fluid will not permit it to travel between the
pores within the time frame (i.e., one period) of the stress oscillations (Mavko
and Nur, 1975; Cleary, 1978).

The deformation of a fluid-saturated porous rock at first takes place in an
undrained manner and eventually, after the pore pressure has had sufficient time
to reequilibrate itself, in a “drained” manner. The transition between these two
cases, and the time needed for this transition to occur, can be studied within the
context of the more general theory of poroelasticity developed in §7.4. However,
an analysis of the limiting case of completely undrained compression can be
conducted by starting with the expressions for the bulk and pore strains given by
(7.6)–(7.7). If the pore space is completely saturated with a fluid that is “trapped,”
then the pore strain is also equal to the strain undergone by the pore fluid, that is,

dεp = dεf = −Cf dPp. (7.24)

If the confining pressure is changed, then (7.24) and (7.6)–(7.7) form a set of three
equations for the three unknowns {dεb, dεp, dPp}. Solution of these equations
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yields the following expression for the undrained bulk compressibility:

Cbu =
(
∂εb

dPc

)
undrained

= Cbc − CbpCpc
Cpp + Cf

. (7.25)

The undrained bulk compressibility is less than the drained bulk compressibility,
due to the additional stiffness that the trapped pore fluid imparts to the rock/fluid
system.

The expression for Cbu given by (7.25) is independent of any assumption
concerning the microstructure and stress–strain behavior of the matrix. If the
matrix is assumed to be elastic, then the use of (7.14) allows (7.25) to be written
as (Brown and Korringa, 1975)

Cbu =
(
∂εb

dPc

)
undrained

= φiCbc(Cf − Cφ)+ Cm(Cbc − Cm)
φi(Cf − Cφ)+ (Cbc − Cm)

. (7.26)

If the rock matrix is also homogeneous, then Cφ = Cm, and the undrained
compressibility would be given by (Gassmann, 1951b)

Cbu =
(
∂εb

dPc

)
undrained

= φiCbc(Cf − Cm)+ Cm(Cbc − Cm)
φi(Cf − Cm)+ (Cbc − Cm)

. (7.27)

The undrained bulk compressibility is an increasing function of the fluid com-
pressibility, all other parameters being constant. The variation of Cbu with Cf , for
the Fort Union sandstone described by Murphy (1984), is shown in Fig. 7.4.
This sandstone had a porosity of 0.085, a matrix compressibility of Cm =
0.286 × 10−4/MPa, a drained bulk compressibility of Cbc = 1.31 × 10−4/MPa,
and a pore compressibility of Cpp = 11.8 × 10−4/MPa. If the pores were filled
with air at atmospheric pressure, which has a compressibility of Cf = 9.87/MPa,
then the undrained bulk compressibility would equal (to three significant figures)
the drained value, 1.31×10−4/MPa. If the rock was saturated with water, which
has a compressibility of Cf = 5.0× 10−4/MPa, the undrained bulk compressibil-
ity would be 0.573 × 10−4/MPa. A hypothetical “incompressible” pore fluid, on

Fig. 7.4 Undrained
bulk compressibility of
Fort Union sandstone,
as a function of the pore
fluid compressibility
(Murphy, 1984;
Zimmerman, 1985a). If
the pore fluid is a
mixture of water and air
at atmospheric pressure,
the symbols show the
three cases of 0%, 99%,
and 100% water
saturation.
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the other hand, would lead to an undrained compressibility of 0.261×10−4/MPa.
Hence, the assumption that water is incompressible, which is acceptable inmany
engineering situations, would yield a grossly incorrect value for the undrained
bulk compressibility (Zimmerman, 1985a).

Under quasi-static loading, the effective compressibility of the pore fluid is
the volumetrically weighted average of the compressibilities of the different fluid
phases. Hence, a small amount of air greatly increases the effective value of Cf
and will thereby cause the undrained bulk compressibility to increase.

If a fluid-saturated porous rock undergoes undrained compression, the con-
fining pressure causes the pores to contract, thereby pressurizing the trapped
pore fluid. The magnitude of this induced pore pressure increment can be found
from (7.24) and (7.6)–(7.7) to be given by

(
∂Pp
dPc

)
undrained

≡ B = Cpc
Cpp + Cf

= Cpp + Cφ
Cpp + Cf

, (7.28)

where B is the Skempton coefficient (Skempton, 1954; Mesri et al., 1976). If the
matrix is assumed to be microhomogeneous, then Cφ can be replaced by Cm.
In practice, the pore fluid is more compressible than the rock matrix, so the
Skempton coefficient B will lie between 0 and 1. Furthermore, since it is also
usually the case that Cpp  Cm,

B = Cpp + Cm
Cpp + Cf

≈ Cpp
Cpp + Cf

= 1
1 + (Cf /Cpp)

. (7.29)

If the pore fluid is a gas, then Cf  Cpp, and B will approach zero; induced pore
pressures will therefore be negligible. For stress-sensitive rocks, Cpp decreases as
a function of the differential pressure, so B will also decrease with Pd.

The induced pore pressure and Skempton coefficient for a Tunnel City sand-
stone are shown in Fig. 7.5 (after Green and Wang, 1986). The Skempton
coefficient decreases from 0.95 at low differential pressures, to 0.6 at a differential
pressure of 15 MPa. Green andWang also measured B for a Berea sandstone and

Fig. 7.5 (a) Induced
pore pressure, and
(b) Skempton
coefficient, in a
hydrostatically stressed
sample of Tunnel
sandstone (Green and
Wang, 1986).
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compared the values to those predicted from the equation

B = (Cbc − Cm)
φi(Cf − Cm)+ (Cbc − Cm)

, (7.30)

which is the form taken by (7.28) if the matrix is assumed to be homogeneous.
The measured value of B decreased from 0.99 to 0.87 as Pd varied from 0 to
2 MPa, whereas the value predicted by (7.30) decreased from 1.0 to 0.85.

Anundrained pore compressibility can also be found from (7.24) and (7.6)–(7.7)
in the form

Cpu =
(
∂εp

dPc

)
undrained

= CpcCf
Cpp + Cf

= Cpc
1 + (Cpp/Cf )

. (7.31)

The presence of trapped pore fluid therefore causes the compressibility of the
pore space with respect to the confining pressure to decrease. The undrained
pore compressibility appears in the analysis of the effect of pore fluids on seismic
wave propagation (O’Connell and Budiansky, 1974).

7.4 Constitutive
equations of
poroelasticity

To develop a linearized, nonhydrostatic theory of poroelasticity, first recall the
stress–strain relations of a nonporous material, (5.24)–(5.27), expressed in terms
of the shear modulus and Poisson ratio:

εxx = 1
2G

[
τxx − ν

(1 + ν)
(τxx + τyy + τzz)

]
, (7.32)

εyy = 1
2G

[
τyy − ν

(1 + ν)
(τxx + τyy + τzz)

]
, (7.33)

εzz = 1
2G

[
τzz − ν

(1 + ν)
(τxx + τyy + τzz)

]
, (7.34)

εxy = τxy/2G, εxz = τxz/2G, εyz = τyz/2G. (7.35)

These relations can be written in matrix form as

ε = 1
2G

τ − ν

2G(1 + ν)
trace(τ)I. (7.36)

In these, and subsequent equations, the stresses and strains at each point should
be interpreted as average values taken over an “infinitesimal” region that is
nevertheless large enough to encompass some suitably large number of grains
and pores (Bear, 1988).

If the porous rock is macroscopically isotropic, a pore pressure increment will
lead to equal extensions along each of three mutually orthogonal directions, but
cannot (within the context of a linear theory) cause any shear strains. Since the
total bulk volumetric strain resulting from an applied pore pressure is −CbpPp,
the coefficient that relates each macroscopic longitudinal strain to the pore
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pressure must be −Cbp/3. Hence, a term −CbpPp/3 must be added to each of
the longitudinal strains, yielding

ε = 1
2G

τ − ν

2G(1 + ν)
trace(ε)I − Cbp

3
PpI. (7.37)

Recalling that Cbp = Cbc − Cm, where Cm is the effective compressibility of the
matrix, and noting that Cbc = 1/Kbc = 1/K , where K is the macroscopic bulk
modulus, (7.37) can be written as

ε = 1
2G

τ − ν

2G(1 + ν)
trace(ε)I − α

3K
PpI, (7.38)

where the Biot coefficient α is defined by (Biot andWillis, 1957; Nur and Byerlee,
1971)

α = 1 − Cm
Cbc

= 1 − Kbc
Km

= 1 − K
Km

. (7.39)

Taking the trace of both sides of (7.38) yields

trace(ε) = (1 − 2ν)
2G(1 + ν)

trace(τ)− α

K
Pp. (7.40)

But trace(ε) = εb, trace(τ) = 3τm ≡ 3Pc (in the present poroelastic
terminology), and 2G(1+ν) = 3K(1−2ν) from (5.14), so (7.40) is equivalent to

εb = 1
K
(Pc − αPp) = Cbc(Pc − αPp). (7.41)

As the Biot coefficient always satisfies the inequality α < 1, by definition (7.39),
the pore pressure is not totally effective in counteracting the effect of the confin-
ing pressure in changing the bulk volume. For this reason, the Biot coefficient
is also known as the effective stress coefficient. Different effective stress coefficients
apply to different processes (Robin, 1973, Berryman, 1992), so it is sometimes
convenient to denote α by nb, where the subscript indicates that nb is the effec-
tive stress coefficient for bulk volumetric deformation. Using this notation, for
example, (7.21) and (7.22) show that nφ = 1, and nm = φi.

The equations for the stresses in terms of the strains are found by inverting
(7.38) with the aid of (7.40):

τ − αPpI = 2G
[
ε + ν

(1 − 2ν)
trace(ε)I

]
= 2Gε + λtrace(ε)I, (7.42)

which can be written explicitly as

τxx − αPp = 2Gεxx + λ(εxx + εyy + εzz), (7.43)

τyy − αPp = 2Gεyy + λ(εxx + εyy + εzz), (7.44)

τzz − αPp = 2Gεzz + λ(εxx + εyy + εzz), (7.45)

τxy = 2Gεxy, τxz = 2Gεxz, τyz = 2Gεyz. (7.46)
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The stress–strain equations are identical to those for a nonporous isotropic elastic
rock, except thatαPp is subtracted fromeachof the normal stresses. The terms on
the left-hand sides of (7.43)–(7.45) are known as the effective stresses. Constitutive
equations and effective stress coefficients for anisotropic poroelastic rocks have
been studied by Carroll (1979), Thompson and Willis (1991), and Cheng (1997).

The stress–strain relations for isotropic poroelasticity have a particularly sim-
ple formwhen expressed in terms of the deviatoric stresses and deviatoric strains.
From (7.41), the mean normal stress is related to the mean normal strain by

εm = 1
3K
(τm − αPp). (7.47)

Using (2.152), (2.235), and (7.42) and (7.47), the deviatoric stresses can be
expressed in terms of the deviatoric strains as

sxx = 2Gexx , syy = 2Geyy, szz = 2Gezz, sxy = 2Gexy,

sxz = 2Gexz, syz = 2Geyz. (7.48)

In matrix notation, these relations take the form

εiso = 1
3K

τiso − α

3K
PpI, εdev = 1

2G
τdev. (7.49)

Consider now a region of rock with bulk volume Vb, whose pore space con-
tains an amount of fluid of mass m. If the density of the pore fluid is ρf , the
volume occupied by this fluid is m/ρf . If the pores are fully saturated with a
single fluid component, this volume is also equal to the pore volume, Vp. The
incremental change in the pore volume is therefore given by

dVp = d(m/ρf ) = dm
ρf

− mdρ
ρ2f

= dm
ρf

− m
ρf

dρf
ρf

. (7.50)

But dρf /ρf = Cf dPp, so (7.50) can be written as

dVp = dm
ρf

− VpCf dPp. (7.51)

Dividing all terms by the bulk volume gives

dVp
Vb

= 1
Vb

dm
ρf

− φCf dPp. (7.52)

The change in the volumetric fluid content of a certain region of rock can
therefore be broken up into two parts – one due to additional fluid moving into
the region of rock (the first termon the right), and another due to compression or
expansion of the fluid that is already in that region (the second term on the right).
This first term is denoted by dζ , and is defined as that portion of the change in
volumetric fluid content that is due solely to mass transfer. From (7.52),

dζ ≡ 1
Vb

dm
ρ

= dVp
Vb

+ φCf dPp. (7.53)
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Recalling (7.7) for the pore volume change, the increment in ζ can be expressed as

dζ = −φ[CpcdPc − (Cpp + Cf )dPp]. (7.54)

This equation allows a simple rederivation of Skempton’s induced pore pressure
coefficient. In an undrained process, the fluid content increment must be zero,
so setting dζ = 0 yields

B =
(
dPp
dPc

)
dζ=0

= Cpc
Cpp + Cf

. (7.55)

Using the various relations between the porous rock compressibilities, (7.54) can
also be written as

dζ = −αCbc(dPc − 1
B
dPp) = −α

K
(dPc − 1

B
dPp), (7.56)

which shows that 1/B is the effective stress coefficient for ζ .
In the linearized theory of poroelasticity, the constitutive parameters are

assumed to be independent of stress, so (7.56) can be integrated, making use
of the fact that, by definition, ζ = 0 in the unstressed state, to yield

ζ = −α
K

(
Pc − 1

B
Pp

)
. (7.57)

Inverting (7.57) by using (7.41) to eliminate Pc yields

Pp = BK
α(1 − αB)

(ζ + αεb) ≡ M(ζ + αεb), (7.58)

which relates the pore pressure to the bulk volumetric strain and the excess fluid
content. The parameter M, also sometimes denoted by Q, is known as the Biot
modulus.

Combining (7.41) and (7.58) yields

εb = (1 − αB)
K

Pc − Bζ . (7.59)

This equation has several important implications. It shows that the “strength” of
the coupling between themechanical deformation andpore pressure is quantified
by the Skempton coefficient B, in the sense that the limiting case B → 0 leads
back to the nonporous version of the relationship between bulk strain and mean
normal stress. It also directly implies that the undrained bulk modulus, defined by
Ku = 1/Cbu, can be expressed as (Wang, 1993)

Ku = K
(1 − αB)

. (7.60)

The constitutive equations of poroelasticity for an isotropic elastic rock contain
numerous coefficients. Aside from those introduced in the discussion above,
other poroelastic parameters have been defined and used by Biot (1941), Biot
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and Willis (1957), and Rice and Cleary (1976). The relations between these
parameters have been examined byKümpel (1991), Detournay andCheng (1993),
Hickey et al. (1995), and Wang (2000). However, only four of these parameters
are independent (Hart and Wang, 1995). This independent set can be taken to
consist of any two of the standard elastic moduli {λ,G, K , E, ν}, plus the two
moduli Km and Kφ . The Biot effective stress coefficient can then be found from
(7.39), and the Skempton induced pore pressure coefficient is given by (7.55).
This latter coefficient also involves the fluid compressibility, so, strictly speaking,
it is not a property of the rock, but rather of the rock/fluid system. Under the
assumption of microscopic matrix homogeneity, Kφ = Km, and the number of
independent poroelastic moduli reduces to three.

The physical significance of the constitutive parameters can be examined by
considering a few simple types of loading or deformation.

7.4.1 Unjacketed hydrostatic compression; τxx = τyy = τzz = Pp = P

In this case, (7.39) and (7.41) yield

εb = (1 − α)P
K

= P
Km

. (7.61)

7.4.2 Drained uniaxial compression, with no lateral strain; τzz > 0,
εxx = εyy = Pp = 0

This is a very common state applied in soil mechanics tests. From (7.43), the
strain in the loading direction is given by

εzz = 1
λ+ 2G

τzz. (7.62)

7.4.3 Undrained uniaxial compression, with no lateral strain; τzz > 0,
εxx = εyy = ζ = 0

This situation is relevant to the problem of consolidation, which is discussed in
§7.5. Since ζ = 0 and εb = εzz in this case, (7.58) gives

Pp = αMεzz = BK
1 − αB

εzz, (7.63)

after which (7.43) gives

τzz = (λ+ 2G + α2M)εzz. (7.64)

The pore pressure induced by the axial stress is therefore given by

Pp = αM
(λ+ 2G + α2M)

τzz. (7.65)
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7.5 Equations of
stress equilibrium
and fluid flow

In §7.4, a few simple homogeneous loading states were examined, using only the
stress–strain relations. To find the stress and strain distributions in more com-
plicated, nonhomogeneous problems, a governing partial differential equation
for the displacement vector is needed. In poroelasticity, the strains are related
to the displacement vector in the usual manner, with the understanding that
the displacement represents the mean displacement of the solid matrix material
located at each infinitesimal point. To derive the poroelastic version of theNavier
equations for the displacements, we combine the stress–strain law (7.42) with
the stress equilibrium equations (5.76), and the strain–displacement equations
(2.222), to arrive at

G∇2u + (λ+ G)∇(∇ · u) = −f − α∇Pp, (7.66)

where f is the body-force vector (due, say, to gravity) per unit volume. The
gradient of the pore pressure, multiplied by Biot’s effective stress coefficient,
therefore acts as an additional body force.

In a laboratory experiment, the pore pressure can be controlled, and therefore
can be considered known. Equation (7.66) then gives three scalar equations for
the three unknown displacement components. In the field, however, the pressure
usually varies from point to point and may vary with time. In order to find the
pore pressure distribution, a governing differential equation for Pp is also needed.
This equation is found by considering conservation of mass for the pore fluid,
along with a constitutive equation that relates the fluid flux to the pore pressure
gradient.

Consider a small planar surface of rock, with area dA and outward unit normal
vector n (Fig. 7.6a). The fluid flux vector, q, which has dimensions of [m/s], is
defined such that the total volume of fluid that passes through this surface, per
unit time, is (q · n)dA; this quantity has dimensions of [m3/s]. Only the normal
component of q represents fluid that crosses the surface. The components of q
are defined to be positive if they point in the direction of the coordinate axes;
unlike stresses, they are not defined with respect to the direction of n. To prove
that q is indeed a vector, consider the two-dimensional prismatic element shown
in Fig. 7.6b, whose three faces have outward unit normal vectors −ex, −ey, and
n, where the n direction is rotated by a counterclockwise angle θ from the x
direction. The length of the slanted edge of this prism is h, and the thickness

Fig. 7.6 (a) Small
planar surface of area
dA, with outward unit
normal vector n, and
volumetric fluid flow
vector q. (b) Elementary
prism used in
derivation of (7.69). (a)

n

dA

q

(b)

θ
n

x

y

−ey

−ex
h
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in the z direction is t. Assuming the flow field to be independent of time, the
total volumetric flux out of this prismatic element, per unit time, must be zero.
For the orientation shown in the figure, the outward unit normal vector of the
bottom face is −ey, and so the flux out of the prism through this face is

Q(out of bottom face) = (q · n)dA = [q ·(−ey)]ht sin θ = −qyht sin θ . (7.67)

Following the same steps for the other two faces, we find that the total flux out
of the element, which must equal zero, is given by

Q(total) = −qyht sin θ − qxht cos θ + qnht = 0. (7.68)

Solving (7.68) for qn gives

qn = qx cos θ + qy sin θ , (7.69)

which shows that the components of q do indeed obey the transformation law
of a vector (i.e., a first-order tensor). This result would also hold if the flow field
were time-dependent, since the flux terms are proportional to h, whereas the
rate of accumulation of fluid within the prism is proportional to h2, so in the
limit as the size of the prism vanishes, the storage term becomes negligible, and
we again arrive at (7.69).

Now consider a piece of rock that occupies a region of space R, with outer
boundary ∂R. The total volumetric flux of fluid leaving this region, per unit time,
is given by the integral of (q · n)dA over the outer surface. The total increment
of fluid volume stored within that region, due to mass transfer across the outer
boundary, is found by integrating ζ over the region. The time rate of change of
this integral must equal the total flux into the region, so

∫∫∫
R

∂ζ

∂t
dV = −

∫∫
∂R

(q · n)dA = −
∫∫
∂R

(qxnx + qyny + qznz)dA. (7.70)

Using the divergence theorem on the surface integral and collecting terms gives

∫∫∫
R

(
∂ζ

∂t
+ ∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z

)
dV = 0. (7.71)

For (7.71) to be true for all regions R, the bracketed integrand must vanish,
that is,

∂ζ

∂t
+ ∇ · q = 0. (7.72)

Equation (7.72) represents conservation of mass for the pore fluid, despite the
fact that its derivation seemed to involve only fluid volumes. This is because ζ
is defined to be that portion of the additional fluid volume content that is due
solely to mass transfer; the compressibility effect is accounted for separately, as
shown by (7.53).
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It now remains to find a relationship between the flux vector q and the pore
pressure. For the low flow rates that are usually encountered in the subsurface,
this relation is given by Darcy’s law, which in the most general anisotropic case
takes the form (Bear, 1988)

q = − k

µ
∇(Pp − ρf g · x), (7.73)

where k is the permeability tensor, with units of [m2], µ is the fluid viscosity,
with units of [Pa s], Pp is the pore fluid pressure, ρf is the fluid density, and g is
the gravitational acceleration vector. The permeability tensor k is a second-order
tensor, and as such it obeys the usual transformation rules when the coordinate
system is rotated.

All other factors being equal, the magnitude of the fluid flux vector q is
inversely proportional to the viscosity of the fluid. In general, the viscosities of
liquids are much greater than those of gases. For example, the viscosity of air
at 20◦C is 1.81 × 10−5 Pa s, whereas that of water is 0.001 Pa s. The viscosities
of most liquid hydrocarbons are usually higher than that of water, by a factor of
about 1–100 (Matthews and Russell, 1967, p. 155).

If the z direction is taken to point downward, then g = gez, where g =
9.81 m/s2. In this case, (7.73) takes the form

q = − k

µ
∇(Pp − ρf gz), (7.74)

which can be written explicitly as


qxqy
qz


 = − 1

µ


kxx kxy kxz
kyx kyy kyz
kzx kzy kzz





 (∂Pp/∂x)

(∂Pp/∂y)
(∂Pp/∂z)− ρf g


 , (7.75)

For simplicity of notation, the gravitational termwill be ignored in the remainder
of this chapter.

For many types of anisotropy, it can be proven that k must be symmetric. It is
also often argued that the symmetry of k follows as a consequence of theOnsager
reciprocal relations of irreversible thermodynamics (Prigogine, 1961). However,
the issue of whether or not a second-order tensor that governs an irreversible
transport process such as fluid flow through porous media must necessarily be
symmetric remains a matter of some controversy (Nye, 1957). Nevertheless, it
seems to be an empirical fact that the permeability tensor is symmetric, in which
case kyx = kxy, etc.

The symmetry of k implies the existence of a principal coordinate system
in which the permeability tensor assumes a diagonal form. In this coordinate
system Darcy’s law (7.75) takes the form


qx′
qy′
qz′


 = − 1

µ


kx′x′ 0 0

0 ky′y′ 0
0 0 kz′z′





(∂Pp/∂x

′)
(∂Pp/∂y′)
(∂Pp/∂z′)


 . (7.76)
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In this coordinate system, the flux in one of the principal directions depends only
on the pressure gradient in that direction; the coupling between the fluxes and
pressure gradients in orthogonal directions disappears. In scalar form,

qx′ = −kx′x′

µ

∂Pp
∂x′ , (7.77)

qy′ = −ky′y′

µ

∂Pp
∂y′

, (7.78)

qz′ = −kz′z′

µ

∂Pp
∂z′

. (7.79)

In most sedimentary rocks, two of the principal directions of permeability lie
in the bedding plane, and the other is perpendicular to the bedding (de Marsily,
1986, p. 64). The permeability in the direction normal to the bedding plane is
typically larger than in the other two principal directions, usually by a factor
of 1–100. In fractured rock masses, the principal directions of permeability are
controlled by, but are not necessarily coincident with, the directions of the major
fracture sets. However, if there are three mutually orthogonal fracture sets,
then the principal directions of the permeability tensor will lie in these three
directions. The relationship between the permeability of fractured rock masses
and the orientation, spacing, and interconnectivity of the fractures is discussed
by, among others, Long et al. (1982) and Lee and Farmer (1993).

Although rock masses are rarely hydrologically isotropic, most analyses of
subsurface flow processes are conducted under the assumption of isotropy. If
the permeability tensor is isotropic, then k = kI, where the scalar coefficient
k is referred to simply as “the permeability.” The numerical value of the per-
meability depends strongly on the size of the pores or fractures, as well as on
the interconnectivity of the pore space. For porous but unfractured rocks, the
permeability varies as the fourth power of the mean pore size (Dullien, 1992). A
consequence of this strong pore-size dependence is that permeabilities vary by
many orders of magnitude from one rock to another. Table 7.1, compiled from
deMarsily (1986) andGuéguen and Palciauskas (1994), shows the range of values
that may be expected for various rock types. The table shows that permeability

Table 7.1 Expected
ranges of
permeabilities and
hydraulic
conductivities of
various rock types.

a – de Marsily (1986);
b – Guéguen and
Palciauskas (1994).

Rock Type k (m2) k (Darcies) Kh (m/s) Reference

Coarse gravels 10−9–10−8 103–104 10−2–10−1 a
Sands, gravels 10−12–10−9 100–103 10−5–10−2 a
Fine sands, silts 10−16–10−12 10−4–100 10−9–10−5 a
Clays, shales 10−23–10−16 10−11–10−4 10−16–10−9 a,b
Dolomites 10−12–10−10 100–102 10−5–10−3 a
Limestones 10−22–10−12 10−10–100 10−15–10−5 a,b
Sandstones 10−17–10−11 10−5–101 10−10–10−4 a,b
Granites, gneiss 10−20–10−16 10−8–10−4 10−13–10−9 a,b
Basalts 10−19–10−13 10−7–10−1 10−12–10−6 b
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can varywidely, evenwithin the same rock type. Hence, it is rarely possible to use
tabulated handbook values for k; rock-specific values must usually be measured.

In SI units, permeability is expressed in square meters. Permeabilities are
also frequently expressed in Darcies, where 1 Darcy = 0.987 × 10−12 m2, or
in milliDarcies (mD). A related parameter that is often used by groundwater
hydrologists and civil engineers is the “hydraulic conductivity,” which is defined
by Kh = ρf gk/µ, and has the dimensions of velocity. When numerical values of
the hydraulic conductivity are reported, it is always implicitly assumed that the
fluid is water at 20◦C, in which case ρf = 998 kg/m3 and µ = 0.001 Pa s. For
example, since g = 9.81m/s2, a rock having a permeability of 1 Darcy will have
an hydraulic conductivity of 9.66 × 10−6 m/s.

The values given in Table 7.1 are for unfractured rocks. These are the val-
ues that would be measured in the laboratory on an intact core. In fractured
rock masses, the macroscopic permeability is determined by the aperture and
interconnectedness of the fracture network, and is usually much larger than the
permeability of thematrix rock. According to deMarsily (1986), the permeability
of a fractured limestone may be in the range 102–104 Darcies, whereas that of a
fractured crystalline rock mass will be in the range 10−3–101 Darcies.

For isotropic rock masses, insertion of (7.74) into (7.72) yields

∂ζ

∂t
= k
µ

∇2Pp. (7.80)

If the assumption ismade that the rock is rigid and undeformable, as is often done
in hydrology and petroleum engineering, then (7.54) reduces to dζ = φCf dPp,
and (7.80) takes the form

∂Pp
∂t

= k
φµCf

∇2Pp. (7.81)

Equation (7.81) is a diffusion equation, with the hydraulic diffusivity given by
D = k/φµCf . In the case of a rigid porous medium, the fluid content increment
ζ also satisfies (7.81), as can be proven by substituting (7.54) into (7.81).

In the general case of a nonrigid poroelastic medium, combining (7.58) with
(7.80) gives

∂Pp
∂t

= kM
µ

∇2Pp + αM
∂εb

∂t
. (7.82)

If the three displacement components and the pore pressure are taken as the
four basic field variables of poroelasticity, then (7.66) and (7.82) supply the four
governing equations needed to provide a well-posedmathematical problem. The
diffusion equation for the pore pressure can also be expressed entirely in terms
of pressures/stresses by using (7.41) to eliminate εb from (7.82):

∂Pp
∂t

= kBK
αµ

∇2Pp + B
∂τm

∂t
. (7.83)

The pore pressure therefore satisfies a diffusion-type equation containing an
additional coupling term that relates the pore pressure to the isotropic part of
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the stress (or strain) tensor. This term represents a transient Skempton-type
effect, in which the pore pressure rises as a result of bulk compression of the
rock. It is clear from (7.82) and (7.83) that the form of the diffusivity coefficient
for the pressure depends on the type of process that is occurring. If the confining
stresses are constant, (7.83) shows that the diffusivity is given by kBK/αµ, where
K ≡ 1/Cbc is the drained bulk modulus, k is the permeability, B is the Skempton
coefficient, and α is the Biot effective stress coefficient. If the strains are constant,
(7.82) shows that the diffusivity is kM/µ.

A diffusion equation can also be derived from (7.80) that contains the excess
fluid content ζ as the only dependent variable. To do this, we first find a rela-
tionship between the Laplacian of Pp and the Laplacian of ζ as follows. Taking
the divergence of both sides of (7.66), in the case where the body-force vector f
is zero, gives

G∇ · (∇2u)+ (λ+ G)∇ · ∇(∇ · u) = −α∇ · ∇Pp. (7.84)

But ∇ · (∇2u) = ∇2(∇ · u) = ∇2εb, and ∇ · ∇ = ∇2, so (Geertsma, 1957b)

(λ+ 2G)∇2εb = −α∇2Pp. (7.85)

Equation (7.85) is interesting, and perhaps unanticipated, as it relates the spatial
variation in bulk strain to the spatial variation in pore pressure, without any
reference to the mean normal stress. But it follows directly from (7.58) that

∇2εb = 1
αM

∇2Pp − 1
α

∇2ζ . (7.86)

Eliminating the bulk strain between (7.85) and (7.86) yields

∇2Pp = (λ+ 2G)M
λ+ 2G + α2M

∇2ζ , (7.87)

which, combined with (7.80), yields (Green and Wang, 1990)

∂ζ

∂t
= k
µS

∇2ζ , (7.88)

where the storage coefficient S is given by

S = 1
M

+ α2

λ+ 2G
≡ 1
M

+ α2

K + 4G/3
. (7.89)

The combination λ + 2G is the elastic modulus that governs uniaxial strain,
as shown in (5.60). For this reason, it is occasionally stated that the storage
coefficient S is defined for, or is relevant to, only those processes in which the
macroscopic strains are zero in two directions, such as is usually assumed to
occur during depletion of a reservoir. On the contrary, the derivation of (7.88)
shows that the diffusivity coefficient for the fluid content does not depend on the
specific process that is occurring, and is always given by k/µS, where S is defined
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by (7.89). The storage coefficient can be expressed in numerous other equivalent
forms, such as

S =
[
1
Kf

− 1
Km

]
φ +

[
1 − 2(1 − 2ν)

3(1 − ν)
α

]
α

K
, (7.90)

where ν is the Poisson ratio of the rock under drained conditions. In the limiting
case of a rigid medium, the storage coefficient reduces to φCf , and the diffu-
sivity becomes k/φµCf , as in (7.81). Equations (7.66) and (7.88) represent four
equations for the four kinematic field variables {u, v,w, ζ }.

Finally, mention should be made of the undrained Poisson ratio. Bearing in
mind that the drained shearmodulus is identical to the undrained shearmodulus,
the drained and undrained Poisson’s ratios are

ν = 3K − 2G
6K + 2G

, νu = 3Ku − 2G
6Ku + 2G

. (7.91)

Since Ku > K , and ν is an increasing function of K when G is held constant
(Zimmerman, 1992), it follows from (7.91) that νu > ν. It also follows from
(7.91) that νu < 1/2, as is the case for the drained Poisson ratio. The Skempton
coefficient B, Biot modulus M, and storativity coefficient S can be expressed in
terms of the drained and undrained Poisson ratios as follows:

B = 3(νu − ν)

α(1 − 2ν)(1 + νu)
, (7.92)

M = 3K(νu − ν)

α2(1 − 2νu)(1 + ν)
, (7.93)

S = (1 − νu)(1 − 2ν)(1 + ν)α2

3(1 − ν)(νu − ν)K
. (7.94)

Table 7.2 lists the poroelastic parameters of several rocks, as compiled by
Detournay and Cheng (1993) from Rice and Cleary (1976), Fatt (1958), Yew and
Jogi (1978), and Yew et al. (1979).

7.6 One-
dimensional
consolidation

The problem of consolidation, in which a porous layer of rock or soil is sub-
jected to an instantaneously applied normal load at its upper surface, is one of
the most important problems in geotechnical engineering. This problem was
originally formulated and solved in an ad hoc manner by Terzaghi in 1923 (see
Terzaghi et al., 1996), under certain restrictive assumptions. Solution of this prob-
lem within the context of poroelasticity clarifies the meaning of the parameters
appearing in Terzaghi’s solution, and also serves as an illustrative example of the
procedure needed to solve boundary-value problems in poroelasticity.

Consider a fluid-filled poroelastic layer extending from the surface z = 0 down
to a depth z = h. In the context of the linearized theory developed in §7.5, the
initial state of stress and pore fluid pressure can be taken to be zero. At time
t = 0, a normal traction of magnitude P is applied at the upper surface. Initially,
the layer deforms as an elastic layer with undrained elastic moduli, and an excess
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Table 7.2
Poroelastic
parameters for
various rocks.
Moduli are expressed
in units of GPa;
permeabilities in
units of milliDarcies.
The pore fluid in
each case is water
at 20◦C.

Rock G K ν K u νu Km α B M φ k

Ruhr
sandstone

13 13 0.12 30 0.31 36 0.65 0.88 41 0.02 0.2

Tennessee
marble

24 40 0.25 44 0.27 50 0.19 0.51 81 0.02 0.0001

Charcoal
granite

19 35 0.27 41 0.30 45 0.27 0.55 84 0.02 0.0001

Berea
sandstone

6.0 8.0 0.20 16 0.33 36 0.79 0.62 12 0.19 190

Westerly
granite

15 25 0.25 42 0.34 45 0.47 0.85 75 0.01 0.0004

Weber
sandstone

12 13 0.15 25 0.29 36 0.64 0.73 28 0.06 1.0

Ohio
sandstone

6.8 8.4 0.18 13 0.28 31 0.74 0.50 9.0 0.19 5.6

Pecos
sandstone

5.9 6.7 0.16 14 0.31 39 0.83 0.61 10 0.20 0.8

Boise
sandstone

4.2 4.6 0.15 8.3 0.31 42 0.85 0.50 4.7 0.26 800

pore pressure is induced in the layer as a result of the Skempton effect. Gradually,
the pore fluid drains out at, say, the upper surface, and the pore pressure relaxes
back to its initial value. As this occurs, the layer continues to deform vertically
downward. Eventually, the state of stress and strain in the layer is that of an
elastic layer having the elastic moduli of the drainedmedium.

To solve this problem in the context of poroelasticity theory, it is necessary
to first determine the proper initial conditions to be imposed an infinitesimally
small time after t = 0. These conditions are those that are due to the undrained
compression of the layer, which, in accordance with elasticity theory, occurs
instantaneously at t = 0. If it is assumed that the rock mass is constrained so as
to be unable to deform in the lateral direction, the only nonzero displacement
is the vertical displacement, w, which depends only on the vertical coordinate,
z. Consequently, the only nonzero strain is εzz. The full stress and strain tensors
for undrained uniaxial strain are given by (7.64):

τ ozz = P, τ oxx = τ oyy = νP/(1 − ν), (7.95)

εozz = P/(λ+ 2G + α2M), εoxx = εoyy = 0, (7.96)

where the superscript o denotes the initial, undrained response. All shear
stresses and shear strains are zero. The initial induced pore pressure is found
from (7.65) to be

Pop = αM
(λ+ 2G + α2M)

P. (7.97)
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If the layer is assumed to be resting on a rigid, impermeable substrate, then (7.96)
can be integrated to yield the instantaneous vertical displacement:

wo = P
(λ+ 2G + α2M)

(z − h). (7.98)

During the ensuing consolidation process, the displacement and pore pressure
fields must satisfy (7.66) and (7.82). Under the assumption of uniaxial strain, the
only nonzero component of vector equation (7.66) is

(λ+ 2G)
∂2w(z, t)
∂z2

= −α ∂Pp(z, t)
∂z

. (7.99)

Integrating once with respect to z yields

(λ+ 2G)
∂w(z, t)
∂z

+ αPp(z, t) = g(t), (7.100)

where the integration constant g may be a function of time. But from (7.45),
the left-hand side of (7.100) is seen to be τzz(z, t), so (7.100) is equivalent to
τzz(z, t) = g(t). Evaluation of this equation at z = 0, where τzz = P = constant,
shows that g(t) = P, which then implies that

τzz(z, t) = P, (7.101)

for all values of z and t.
Since εzz = ∂w/∂z, and g(t) = P, (7.100) can be written as

εzz(z, t) = 1
(λ+ 2G)

[P − αPp(z, t)]. (7.102)

In uniaxial strain, εb = εzz, so differentiation of (7.102) with respect to time gives

∂εb

∂t
= −α
(λ+ 2G)

∂Pp
∂t

. (7.103)

Combining (7.103) with (7.82) gives (Green and Wang, 1990)

k
µ

∂2Pp
∂z2

=
[
1
M

+ α2

(λ+ 2G)

]
∂Pp
∂t

≡ S
∂Pp
∂t

. (7.104)

where the storage coefficient S is defined in (7.89). The pore pressure is therefore
governed by a diffusion equation, with diffusivity D = k/µS; this coefficient
is also referred to in this context as the coefficient of consolidation, C. The initial
condition for this diffusion equation is supplied by (7.97):

Pp(z, t = 0) = Pop = αM
(λ+ 2G + α2M)

P. (7.105)

If the base of the layer is impermeable, and fluid is allowed to drain out at the
upper surface through a permeable membrane, then the boundary conditions
are, using (7.79),

Pp(z = 0, t) = 0,
∂Pp
∂z
(z = h, t) = 0. (7.106a,b)
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The solution to the mathematical problem (7.104)–(7.106) can be taken from
the monograph on heat conduction by Carslaw and Jaeger (1959, p. 97), by
redefining the origin to be at the top of the layer, rather than the bottom:

Pp(z, t) = αMP
(λ+ 2G + α2M)

∞∑
n=1,3,...

4
nπ

sin
(nπz

2h

)
exp

(−n2π2kt
4µSh2

)
. (7.107)

The pore pressure starts at the value given by (7.105), and then decays to zero
(Fig. 7.7a). The time required for the excess pore pressure to decay to a negligible
value is found by setting the argument of the dominant exponential in (7.107)
equal to 5, since exp(−5) < 0.01; this gives an equilibration time of

teq ≈ 20µSh2/π2k ≈ 2µSh2/k. (7.108)

The equilibration time may be as small as a few seconds for a thin, permeable
sand layer, whereas it may be in the order of many years for a thick, relatively
impermeable clay layer.

The rate of convergence of the series in (7.107) deteriorates as t approaches 0,
so for small values of the time, the following equivalent form of the solution is
more computationally convenient:

Pp(z, t)

Pop
= 1 −

∞∑
n=0

(−1)n
{
erfc

[
2nh+ z

(4kt/µS)1/2

]
+ erfc

[
2(n + 1)h− z
(4kt/µS)1/2

]}
,

(7.109)

where erfc(x) is the coerror function (Abramowitz and Stegun, 1970), defined by

erfc(x) ≡ 1 − erf(x) = 2√
π

∞∫
x

e−η2dη. (7.110)

The vertical displacement is found by integrating (7.102), using (7.107) for the
pore pressure, and bearing in mind that the displacement is zero at the base of

Fig. 7.7 Schematized
graphs of the evolution
of (a) excess pressure
and (b) surface
displacement in the
one-dimensional
consolidation problem.
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the layer. This integration process yields

w(z, t) = P
(λ+ 2G)

[
(z − h)+ α2Mh

(λ+ 2G + α2M)

∞∑
n=1,3,...

8
n2π2 cos

(nπz
2h

)

× exp
(−n2π2kt

4µSh2

)]
. (7.111)

The vertical displacement at the upper surface is given by (Fig. 7.7b)

w(0, t) = −Ph
(λ+ 2G)

[
1 − α2M

(λ+ 2G + α2M)

∞∑
n=1,3,...

8
n2π2 exp

(−n2π2kt
4µSh2

)]
.

(7.112)

Since 1 + 1/32 + 1/52 + · · · = π2/8, the surface displacement is initially equal
to −Ph/(λ + 2G + α2M), which is the value appropriate for undrained uniaxial
strain, and which agrees with (7.98). As t increases, the exponential terms in
(7.112) decay to zero, and the surface displacement equilibrates to the value
−Ph/(λ+ 2G), which corresponds to drained uniaxial strain.

Biot (1941) developed a set of equations for poroelastic deformation under
the assumption that the pore fluid was incompressible. In his treatment of the
consolidation problem, he also assumed a priori that the instantaneous vertical
deformation was negligible compared to the equilibrium value of the displace-
ment. Equation (7.112) shows that this second assumption corresponds to the
limiting caseM → ∞, which physically corresponds to a porous medium com-
posed of incompressible mineral grains, saturated with an incompressible fluid,
with all of the compliance of the rock/fluid system being due to the pores and
voids. In this case (7.39) shows that α → 1, and (7.104) shows that the consolida-
tion coefficient reduces to (λ+ 2G)k/µ. The surface displacement (7.112) takes
the form

w(0, t) = −Ph
(λ+ 2G)

[
1 −

∞∑
n=1,3,...

8
n2π2 exp

(−n2π2(λ+ 2G)kt
4µh2

)]
, (7.113)

which varies from 0 at t = 0 to −Ph/(λ+ 2G) as t → ∞.
In Terzaghi’s treatment of the one-dimensional consolidation problem

(Terzaghi et al., 1996), the governing equation is taken to be

∂2Pp
∂z2

= µm
k

∂Pp
∂t

, (7.114)

where m is a compliance coefficient that can be identified with (λ+ 2G)−1. The
solution found by Terzaghi is essentially equivalent to (7.113). This problem is
also discussed in detail by McNamee and Gibson (1960a,b).

A related problem with relevance to certain laboratory permeability mea-
surements is that in which one face of a cylindrical specimen is instantaneously
loaded by a fluid at some pressure P, while the lateral surfaces are restrained



Jaeger: “chapter07” — 2006/12/15 — 09:57 — page 194 — #27

194 Chapter 7

from expanding, and both the lateral surfaces and the opposing face are imper-
meable. This fluid loading serves to apply a normal stress at the upper surface
of τzz(z = 0, t) = P, while at the same time maintaining the pore pressure
equal to P at that surface. Hence, this problem is equivalent to the consolida-
tion problem solved above, but with the boundary condition (7.106) replaced by
Pp(z = 0, t) = P. The solution to the pressure-diffusion equation (7.104) is in
this case given by

Pp(z, t) = P − (P − Pop)
∞∑

n=1,3,...

4
nπ

sin
(nπz

2h

)
exp

(−n2π2kt
4µSh2

)
, (7.115)

with the initial induced pore pressure, Pop, again given by (7.105). The pore
pressure in this case decays from Pop to P as t → ∞.

Integration of (7.102) gives

w(z, t) = (1 − α)P(z − h)
(λ+ 2G)

− α(P − Pop)h

(λ+ 2G)

∞∑
n=1,3,...

8
n2π2 cos

(nπz
2h

)

× exp
(−n2π2kt

4µSh2

)
. (7.116)

The longitudinal surface displacement is

w(0, t) = −(1 − α)Ph
(λ+ 2G)

− α(P − Pop)h

(λ+ 2G)

∞∑
n=1,3,...

8
n2π2 exp

(−n2π2kt
4µSh2

)
. (7.117)

The initial surface displacement is

w(z = 0, t = 0) = −(1 − α)Ph
(λ+ 2G)

− α(P − Pop)h

(λ+ 2G)
= −(P − αPop)h

(λ+ 2G)
, (7.118)

whereas the final value of the surface displacement is

w(z = 0, t → ∞) = −(1 − α)Ph
(λ+ 2G)

. (7.119)

In practice (for realistic values of the various parameters), the initial induced pore
never exceeds the applied pressure P, so it follows from (7.118) and (7.119) that
the equilibrium settlement of the loaded surface is smaller in magnitude than the
initial settlement, that is, the surface rebounds after its initial undrained response.
The physical reason for this rebound effect is that as time increases, pore fluid
diffuses into the rock from the upper surface, causing the rock to expand, in
accordance with, say, (7.37). The time evolution of the surface displacement
is identical to that shown in Fig. 7.7b for the consolidation problem, if the
displacement axis is scaled appropriately so as to satisfy (7.118) and (7.119).
Poroelastic problems involving hollow cylinders have been analyzed in detail by
Abousleiman and Kanj (2004) and Kanj and Abousleiman (2004).
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7.7 Applications of
poroelasticity

Although the equations of poroelasticity have been available in substantially the
same form as presented in §7.4 and §7.5 since the work of Biot (1941), for many
years the only problems solved using the theory were those involving consoli-
dation, which is of more relevance to soils mechanics than to rock mechanics.
In the last few decades, however, much progress has been made in applying the
equations of poroelasticity to various problems in tectonophysics and, in particu-
lar, in petroleum-related rock mechanics. In some specific cases, the results show
that the effects of pore pressure on the mechanical deformation is negligible,
whereas in other cases the poroelastic analysis reveals important and often unex-
pected phenomena that are not present in an uncoupled theory. Wang (2000) has
given a review of some applications of poroelasticity to geophysical problems. A
review of applications of poroelasticity theory to problems in petroleum-related
rock mechanics has been given by Cheng et al. (1993).

Roeloffs and Rudnicki (1984) analyzed the induced pore pressures caused by
creep along a planar fault in a poroelastic medium. They used a two-dimensional
plane strain analysis and modeled the fault as an edge dislocation located along
the negative x-axis along which occurs a relative slip of magnitude δ. The tip
of the dislocation is assumed to travel to the right at some constant velocity, V .
A moving (x, y) coordinate system was used, the origin of which was taken to
coincide with the tip of the dislocation (Fig. 7.8). In the limiting case of infinitely
rapid slip, the induced pore pressure field was found to be given by

Pp(r, θ) = BG(1 + νu)δ

3π(1 − νu)

sin θ
r

, (7.120)

whereas a somewhat more complicated pore pressure field was found in the
general case of a finite propagation velocity. Using parameters appropriate to
the rocks along the San Andreas fault near Hollister, California, and an assumed
propagation velocity of 1 km/day, they were able to model with reasonable
accuracy the pore pressure changes measured in wells located near the fault.

Segall (1989) used a two-dimensional plane strain poroelastic model to study
the possibility of earthquakes being induced by fluid extraction from a subsurface
reservoir. The reservoir was assumed to be a slab-shaped permeable layer of
thickness h andwidth 2a, located at a depth d  h below the surface, surrounded
by a fluid-saturated but impermeable rock mass (Fig. 7.9). A fluid increment
�ζ was assumed to be removed uniformly from throughout the reservoir, and

Fig. 7.8 Plane strain
shear dislocation, with
the relative
displacement indicated
by small arrows,
moving through a
poroelastic medium, as
used by Roeloffs and
Rudnicki (1984) to
model a moving fault,
showing the stationary
coordinate system,
(X, Y), and the
moving coordinate
system, (x, y). X

Y

x

y
r

V t

θ
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Fig. 7.9 (a) Two-
dimensional reservoir of
thickness h, width 2a,
and depth d; (b)
Normalized vertical (w)
and horizontal (u)
displacements at the
surface, due to
withdrawal of fluid
increment�ζ from the
reservoir, for the case
d = a (Segall, 1989).
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the steady-state displacement field was then calculated. The predicted surface
displacements were found to be (Fig. 7.9)

u(x, z = 0) = (1 + νu)Bh�ζ
3π

ln
[
d2 + (x + a)2

d2 + (x − a)2

]
, (7.121)

w(x, z = 0) = 2(1 + νu)Bh�ζ
3π

[
tan−1

(
x − a
d

)
− tan−1

(
x + a
d

)]
.

(7.122)

Recalling the orientation of the axes (Fig. 7.9a) and our sign convention for
displacements, we see that points on the surface move down and toward the
origin.

The predicted displacements were in rough agreement with those measured
above the oil reservoir at Wilmington, California. Moreover, the induced stress
changes outside the reservoir were consistent with the type of faulting observed
near several oilfields in Europe and North America. In particular, by examining
the planes on which the induced shear stress was the largest, Segall correctly
predicted that reverse faulting would occur above and below the reservoir, and
normal faulting along the flanks. Although the success of this model is clear, by
effectively assuming infinite permeability for the reservoir and zero permeabil-
ity for the surrounding rock, the transient aspects of the poroelastic coupling
between deformation and pore pressure are lost; an essentially equivalent anal-
ysis could therefore be carried out using a simpler elastic model in which pore
fluid extraction acts as a nucleus of hydrostatic strain (Geertsma, 1973).

An interesting poroelastic phenomenon that cannot be predicted by an uncou-
pled model is the Mandel–Cryer effect (Mandel, 1953; Cryer, 1963; Detournay
and Cheng, 1993). Imagine a poroelastic sphere that is instantaneously subjected
to a fluid pressure increase of magnitude P along its outer boundary. Initially, an
induced pore pressure is generated throughout the sphere, due to the Skempton
effect. Eventually, the pore pressure equilibrates back to its initial value as the
fluid flows out through the outer surface. However, the pore pressure at the
center of the sphere continues to rise for some time after the initial application of
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the load, before dissipating, for the following reason. Fluid first drains out from
the outer surface of the sphere, causing the elastic moduli there to decrease
from the undrained to the drained values. The outer edge is then more compli-
ant than the inner core, and so the stress increases within the stiffer inner region
(see (8.190)), giving rise to a pore pressure increase in the inner core, due to
the Skempton effect. A similar phenomenon occurs in a poroelastic layer under
uniaxial stress or a poroelastic cylinder pressurized along its curved boundary.

Poroelastic effects also have many implications for boreholes drilled in perme-
able rocks. Detournay and Cheng (1988) analyze the stresses around a cylindrical
borehole in a poroelastic rockmass subjected to a far-field uniform state of biaxial
stress, decomposing this stress into an hydrostatic component P and a deviatoric
component S (Fig. 7.10). The additional stresses that are induced by the presence
of a borehole in a hydrostatic stress field are purely deviatoric (see §8.5), so there
are no induced pore pressures in this case, and the poroelastic solution is iden-
tical to the elastic solution. However, the deviatoric component of the far-field
stress does induce an hydrostatic component in the stress and strain field around
the borehole, thereby bringing poroelastic effects into the problem. Initially, the
induced tangential stress concentration around the borehole wall is given by

�τθθ (a, θ , t → 0) = 4S
(1 − νu)

(1 − ν)
cos 2θ , (7.123)

where a is the radius of the borehole and S is the magnitude of the deviatoric
far-field stress. Eventually, after an elapsed time of about 10µa2/Gk, the stress
relaxes to its drained, elastic value of

�τθθ (a, θ , t → ∞) = 4S cos 2θ . (7.124)

As the undrained Poisson ratio is always larger than the drained Poisson ratio,
the stress concentration is initially smaller than it would be in the absence of
poroelastic effects (Fig. 7.10). Detournay et al. (1989) use these results to infer
that breakdown pressures in permeable formations will be much lower than
would be predicted using a purely elastic analysis.

7.8 Thermo-
elasticity

The theory of thermoelasticity accounts for the effect of changes in tempera-
ture on the stresses and displacements in a body. The theory of thermoelasticity
is to a great extent mathematically and physically analogous to the theory of
poroelasticity, with the temperature playing a role similar to that of the pore
pressure. For example, a change in temperature or a change in pore pressure in
an isotropic body will each give rise to equal normal strains in three orthogonal
directions and no shear strains. Furthermore, both the pore pressure and tem-
perature fields are governed by diffusion-type equations. The analogies actually
extend throughout the entire development of the theory, as shown by Geertsma
(1957b) and Norris (1992). In practice, however, analysis of thermoelastic prob-
lems is usually simpler, because, as will be shown below, the effect of mechanical
deformation on the temperature field can usually be ignored, whereas the effect
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Fig. 7.10
(a) Borehole subjected
to a far-field stress
composed of a
hydrostatic component,
P, and a deviatoric
component, S. (b)
Maximum stress at the
borehole wall, as a
function of time, for the
case ν = 0.2, νu = 0.4,
B = 0.8 (after
Detournay et al., 1989).
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of mechanical deformation on the pore pressure field in most instances cannot
be ignored.

Despite the similarity between the two theories, and the fact that thermoelas-
ticity was developed a full century before poroelasticity (Duhamel, 1833; Biot,
1941), the two theories have traditionally been discussed independently of each
other. In this section, the equations of thermoelasticity will be developed in a
manner that parallels the derivation given of the poroelasticity equations in §7.4
and §7.5. Connections and analogies between the two theories have been dis-
cussed by Geertsma (1957b) and Norris (1992). A combined theory of linearized
thermoporoelasticity, in which both thermal effects and pore pressure effects are
accounted for, has been developed by, among others, Palciauskas and Domenico
(1989), McTigue (1986), and Charlez (1991). The development of fully cou-
pled, nonlinear models of thermohydromechanical behavior is currently being
pursued by various research groups (see Stephansson, 1995).

Consider a solid piece of rock that is initially unstressed and at a uniform
temperature To. This state can be taken as the reference state, in which the
strains are by definition taken to be zero. If the temperature is changed to a
new value T > To, the rock will expand. Under the assumption of linearity, this
temperature risewill induce strains in the rock that are given by ε = −β(T−To),
where β, whose components have dimension [1/◦K], is a symmetric second-
order tensor known as the thermal expansivity tensor (Nye, 1957). Although it is
conventional to omit the ◦ symbol when using the Kelvin scale, we include it so
as to avoid confusion with the bulk modulus. As most materials expand upon
heating, the components of β are defined to be positive numbers, and the minus
sign is included to account for the fact that extensional strains are considered to
be negative in rock mechanics. If the rock is isotropic, then β = βI, where the
scalar coefficient β is known as the coefficient of (linear) thermal expansion, and
the thermal strain is then given by ε = −β(T − To)I. Although the coefficient
of thermal expansion is more commonly denoted by α, the symbol β will be
used here so as to avoid confusion with Biot’s effective stress coefficient.
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The basic assumption of linear thermoelasticity is that if the rock is subjected
to both a temperature change and an applied stress state, then the resulting strain
is the sum of the thermal strain and the stress-induced strain, that is,

ε = 1
2G

τ − ν

2G(1 + ν)
trace(τ)I − β(T − To)I, (7.125)

which is similar in form to (7.37). To simplify the notation, the difference between
the current temperature and the reference temperature can be denoted by ϑ , in
which case (7.125) can be written as

ε = 1
2G

τ − ν

2G(1 + ν)
trace(ε)I − βϑI. (7.126)

Taking the trace of both sides of (7.126) yields, in analogy with (7.41),

εb = trace(ε) = τm

K
− 3βϑ , (7.127)

which indicates that 3β is the volumetric thermal expansion coefficient. An
increase in temperature will cause a negative bulk strain, which is to say that
the bulk volume will increase, whereas a decrease in temperature will cause the
bulk volume to decrease.

The equations for the stresses in terms of the strains are found by inverting
(7.126) with the aid of (7.127):

τ = 2Gε + λtrace(ε)I + 3βKϑI, (7.128)

which can be written explicitly as

τxx = 2Gεxx + λ(εxx + εyy + εzz) + 3βKϑ , (7.129)

τyy = 2Gεyy + λ(εxx + εyy + εzz) + 3βKϑ , (7.130)

τzz = 2Gεzz + λ(εxx + εyy + εzz)+ 3βKϑ , (7.131)

τxy = 2Gεxy, τxz = 2Gεxz, τyz = 2Gεyz. (7.132)

The last terms on the right-hand sides of (7.129)–(7.131) are often referred to
as the thermal stresses. However, thermally induced stresses are not caused by
temperature changes per se, but rather by the combination of a change in tem-
perature and a mechanical restraint that inhibits free expansion or contraction
of the rock. For example, if a homogeneous rock is heated while free to expand,
the strain-dependent and temperature-dependent terms in (7.128) cancel out
and no “thermal stresses” are induced. On the other hand, if the rock is heated
while rigidly clamped at its outer boundary, the normal stresses will be given by
the ϑ -dependent terms in (7.129)–(7.131). In the subsurface, rocks are usually
constrained to one extent or another, so the thermal stresses will be roughly in
the order of 3βKϑ . For typical values such as K ≈ 10GPa and β ≈ 10−5/◦K
(Table 7.3), a temperature change of 10◦K can induce a thermal stress of about
30 MPa. Temperature changes of this magnitude or greater may be expected to
occur around underground radioactivewaste canisters (Chan et al., 1982), during
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injection of cold water into geothermal wells for pressure maintenance (Pruess
and Bodvarsson, 1984), or in various natural geothermal processes (Lowell,
1990). In such situations, thermally induced stresses may be of considerable
importance.

The thermoelastic version of the Navier equations, which are known as the
Duhamel–Neumann equations, are found by combining the stress–strain law
(7.128) with the stress equilibrium equations (5.76), and the strain–displacement
equations (2.222), to arrive at

G∇2u + (λ+ G)∇(∇ · u) = −f − 3βK∇ϑ , (7.133)

where f is the body-force vector per unit volume. The gradientof the temperature,
multiplied by the thermoelastic parameter 3βK , acts as an additional body force,
in a manner analogous to the pore pressure gradient.

TheDuhamel–Neumann equations are three equations for the four unknowns
{u,ϑ}, and so a fourth equation is needed.Whereas a diffusion-type equationwas
found for the pore pressure by considering conservation ofmass, a diffusion-type
equation for the temperature is found by considering conservation of energy. To
do this, we introduce a conductive heat-flux vector, qT, with units of [J/m2s], or
[W/m2], which is inmanyways analogous to the fluid flux vector, q. The driving
force for the conductive heat flux is the temperature gradient, as embodied by
Fourier’s law (Nye, 1957, p. 195):

qT = −kT∇ϑ , (7.134)

where kT is the thermal conductivity tensor, with units ofW/m◦K. The thermal
conductivity tensor is a second-order tensor and obeys the usual transformation
rules when the coordinate system is rotated. Moreover, it is usually assumed that
kT is symmetric, so all of the results concerning principal directions, etc., that
apply to the permeability tensor also apply to the thermal conductivity tensor
and need not be repeated here. If the rock is isotropic with respect to thermal
conductivity, then kT = kTI, where the scalar coefficient kT is referred to as “the
thermal conductivity.”

The standard diffusion equation for the temperature can be derived from
considerations of conservation of energy by ignoring the “strain-dependent” part
of the internal energy (recall §5.8) in comparison to the “temperature-dependent”
part. The temperature-dependent part of the energy is given by

u = uo + cvϑ , (7.135)

where u [J/kg] is the energy per unit mass, uo [J/kg] is some arbitrary reference
energy, and cv [J/kg◦K] is the specific heat at constant strain. If the elastic strain
energy is neglected, the net flux of heat conducted into any region of rock
must equal the rate of change of the nonmechanical part of the internal energy.
Following the developments of §7.5, this energy balance can be stated in integral
form as∫∫∫

R

∂(ρu)
∂t

dV = −
∫∫
∂R

(qT · n)dA, (7.136)
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where the density ρ is needed to convert the energy density per unit mass into an
energy density per unit volume. Use of the divergence theorem gives

ρ
∂u
∂t

+ ∇ · qT = 0, (7.137)

where, in keeping with the spirit of a linearized theory, the density is assumed to
be constant. Using (7.135) for the internal energy and (7.134) for the conductive
heat flux allows (7.137) to be written as

∂ϑ

∂t
= kT
ρcv

∇2ϑ , (7.138)

where kT/ρcv ≡ DT, with units of [m2/s], is the thermal diffusivity.
Equation (7.138), which governs heat conduction through a rigid medium, is
the direct analogue of (7.81) for fluid flow through a rigid porous medium.

If the contribution of the stored strain energy to the overall energy balance is
included, an additional component appears on the right-hand side of (7.138), in
analogy with (7.82):

∂ϑ

∂t
= kT
ρcv

∇2ϑ + 3KβTo
ρcv

∂εb

∂t
. (7.139)

The reference temperature To in (7.139) must be taken as the absolute tempera-
ture (Nowacki, 1986, p. 11), which is to say it should be expressed in ◦K rather
than ◦C. Equations (7.133) and (7.139) supply the four governing equations
needed to provide a well-posed mathematical problem for the field variables
{u,ϑ}. The diffusion equation for the temperature can also be expressed, in a
form analogous to (7.49), by using (7.127) to express the bulk strain in terms of
the mean normal stress and the temperature:

∂ϑ

∂t
= kT
(ρcv + 9Kβ2To)

∇2ϑ + 3βTo
(ρcv + 9Kβ2To)

∂τm

∂t
. (7.140)

A rigorous derivation of the coupled thermomechanical diffusion equation for
the temperature, which requires extensive discussion of thermodynamic consid-
erations, is given by Boley andWeiner (1960) and Nowacki (1986). However, the
fully coupled form of the temperature equation is rarely used in rock mechanics,
because the effect of mechanical stresses or deformations on the temperature
is usually small. For example, consider a Berea sandstone undergoing a process
in which the temperature change is in the order of 10◦K, and the stress change
is in the order of 10 MPa. Assuming that the temperature and stress vary at
nearly the same rate and using properties from Tables 7.2 and 7.3, it follows that
the stress-dependent term on the right-hand side of (7.140) is less than temper-
ature derivative term on the left by about three orders of magnitude. Equation
(7.140) will then reduce identically to (7.138) if the following condition is satisfied
(McTigue, 1986):

9Kβ2To
ρcv

� 1. (7.141)
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Examination of the property values in Tables 7.2 and 7.3 shows that the
dimensionless ratio in (7.141) is usually less than 0.01.

If the coupling term in (7.140) is neglected, the temperature field can be
found by solving the diffusion equation (7.138), without any reference to the
stresses or strains. Solutions to the diffusion equation for many geometries
and boundary conditions can be found in standard texts such as Crank (1956),
Carslaw and Jaeger (1959), and Matthews and Russell (1967). The temperature
field can then be used in (7.133) to calculate the pseudo-body-force, after which
the displacements, stresses, and strains can be foundusing anymethod for solving
the elasticity equations with a known body force. Although the temperature
field will typically be a function of time, time derivatives of the displacement
components do not appear in (7.133), and so t appears merely as a parameter in
the equations; the equations of uncoupled thermoelasticity are therefore often
referred to as being quasi-static.

Table 7.3 lists the thermal conductivities, thermal expansion coefficients, den-
sities, and heat capacities of various dry rocks and pore fluids. In contrast to the
permeability, which varies bymany orders of magnitude among the various rock
types, the thermal conductivity of a rock is almost always in the range of 1–10
W/m◦K (Charlez, 1991, p. 179). This is because the thermal conductivities of
most minerals are in this range, and pore structure has a relatively minor effect
on thermal conductivity, as compared to, say, permeability. The thermal conduc-
tivity of a liquid-saturated rock will be higher than that of the rock under dry
conditions – a few percent higher in the case of low-porosity crystalline rocks and
as much as factor of two higher for porous rocks such as sandstones (Somerton,
1992, p. 234–5). The thermal expansion coefficients do not vary widely, either,
becausemost rock-formingminerals have similar thermal expansion coefficients,
and, in contrast to other rock properties, thermal expansivity is completely unaf-
fected by the presence of cracks and pores (Grimvall, 1986, p. 266). Under drained
conditions, the effective thermal expansion coefficient of a fluid-saturated rock
is simply equal to that of the dry rock, whereas under undrained conditions it is
given by (McTigue, 1986)

βu = βm + φB(βf − βm), (7.142)

where B is the Skempton coefficient, φ is the porosity, and the subscripts m and f
denote the mineral phase and fluid phase, respectively. The effective density and
effective heat capacity of a fluid-saturated rock are exactly given by volumetrically
weighted averages of the values for the mineral phase and the pore fluid. It
follows that the relationship between the density of a rock under the dry and
fully saturated conditions is

ρ(saturated) = (1 − φ)ρm + φρf = ρ(dry)+ φρf . (7.143)

Finally, it should be mentioned that thermal properties of rocks, particularly the
thermal conductivity, are usually stress-dependent and temperature-dependent;
these dependencies are discussed in detail by Somerton (1992). The values in
Table 7.3 are generally at 20◦C, but at various stress levels, and are intended
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Table 7.3 Thermal
properties of various
rocks and pore fluids.

a – Somerton (1992);
b – Giraud and
Rousset (1996);
c – Arndt et al. (1997);
d – McTigue (1986);
e – Tuma (1983).

Rock Type φ β

(1/◦K)
k T
(W/m◦K)

ρcv
( J/m3◦K)

Reference

Berea sandstone
(dry)

0.162 1.5 × 10−6 2.34 1.76 × 106 a

Boom clay (wet) 0.450 3.3 × 10−6 1.70 2.82 × 106 b
Granodiorite — 4.7 × 10−5 2.70 1.90 × 106 c
Halite Salt (wet) 0.001 4.0 × 10−5 6.62 1.89 × 106 d
Water — 6.6 × 10−5 0.60 4.17 × 106 e
Kerosene — 3.2 × 10−4 0.13 1.67 × 106 e

to give an indication of the range of values that may be encountered in the
subsurface.

A basic thermoelastic problem in rock mechanics is that in which the tem-
perature at a traction-free surface is instantaneously raised by a certain amount
ϑo, after which it is held constant. The one-dimensional version of this problem
is mathematically identical to the pressure-diffusion problem of §7.6. However,
the thermal diffusivity is often very low, so in many cases the thermal pulse will
not reach any of the other boundaries of the rock mass within elapsed times
that are of engineering interest. It is therefore meaningful to consider the case of
thermal diffusion into a semi-infinite half-space, rather than into a layer of finite
thickness. The solution to (7.138) in this case is (Carslaw and Jaeger, 1959, p. 60)

ϑ(z, t) = ϑoerfc[z/(4DTt)1/2] ≡ 2ϑo√
π

∞∫

z/
√
4DTt

e−η2dη. (7.144)

This temperature profile could also be derived from (7.109) and (7.110) by replac-
ing the hydraulic diffusivity with the thermal diffusivity, taking the limit as
h → ∞, and appropriately transforming the boundary and initial conditions;
since erfc(∞) = 0, only the first of the coerror function terms remains in the
series, yielding (7.144). This solution describes a temperature front of magnitude
ϑo diffusing into the rockmass, with a depth of penetration that is approximately
equal to (4DTt)1/2. As thermal diffusivities are usually in the order of 10−6m2/s,
the thermal pulse will require a few days to travel 1 m into the rock, about one
year to extend 10 m into the rock, and about one hundred years to extend 100 m
into the rock.

It can be shown that the displacement field that satisfies the Duhamel–
Neumann equations (7.133) and the traction-free boundary condition is
(McTigue, 1986)

w(z, t) = − (1 + ν)

(1 − ν)
β

z∫
0

ϑ(ξ , t)dξ + (1 + ν)

(1 − ν)
βϑo

√
4DTt
π

, (7.145)
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withϑ(z, t) given by (7.144), and u = v = 0. Theonly nonzero strain component
is found from (7.145) to be

εzz(z, t) = − (1 + ν)

(1 − ν)
βϑ(z, t), (7.146)

after which the nonzero stresses are found from (7.129)–(7.132) to be given by

τxx(z, t) = τyy(z, t) = 3βK
(1 − 2ν)
(1 − ν)

ϑ(z, t). (7.147)

The maximum thermally induced stress occurs at the heated surface and is
given by

τmax = τxx(0, t) = τyy(0, t) = 3βK
(1 − 2ν)
(1 − ν)

ϑo. (7.148)

The two-dimensional and three-dimensional versions of this problem, in
which the heated surface is a cylindrical borehole or a spherical cavity, exhibit
similar behavior, although the mathematical details are more complicated, par-
ticularly for the cylindrical case. Interestingly, themaximum stress concentration
in each case occurs at the heated boundary and is identical to that given by (7.148).
If a spherical cavity of radius a has its surface temperature raised by an amount
ϑo, the tangential normal stresses at the cavity surface will be (Nowacki, 1986,
p. 221)

τθθ = τφφ = 3βK
(1 − 2ν)
(1 − ν)

ϑo. (7.149)

Rehbinder (1985) considered the cases where the temperature of the surface of
the spherical cavity increases linearly with time, or oscillates sinusoidally with
time, in order to help in the design of underground storage caverns for hot water
used in domestic heating.

The thermally induced hoop stress at the wall of a cylindrical borehole or
tunnel whose surface is subjected to a temperature change of ϑo is given by
(Stephens and Voight, 1982)

τθθ = 3βK
(1 − 2ν)
(1 − ν)

ϑo. (7.150)

In all three cases, the thermal stresses within the heated region of rock are in
the order of 3βK(T − To), but are always less than the maximum stress (7.148),
which occurs at the heated boundary.
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8 Stresses around cavities and
excavations

8.1 Introduction Some of the more important problems in rock mechanics involve the calculation
of the stresses and displacements around subsurface cavities and excavations. On
a macroscopic scale, calculation of the stresses and displacements around bore-
holes, tunnels and mine excavations is of paramount importance to petroleum,
mining, and civil engineers. On a microscopic scale, the calculation of stresses
around small voids and cracks in a rock is a necessary first step in the develop-
ment of micromechanically based theories of rock deformation and failure (see
Chapter 10). As there is no intrinsic “size effect” in classical linear elasticity, or in
the classical theories of plastic or viscoelastic behavior, the deformation of both
engineering-scale excavations and microscale cracks and pores is governed by
the same equations.

Although computational methods such as finite elements (Pande et al., 1990)
and boundary elements (Brady and Brown, 2004) are often used nowadays to
calculate stresses around excavations of complex shape, analytical solutions for
simplified shapes such as cylindrical boreholes or elliptical cracks are extremely
useful in elucidating general trends. Analytical solutions have the advantage of
clearly displaying the manner in which the results are influenced by parameters
such as the Poisson’s ratio of the rock or the aspect ratio of a crack. Moreover,
there are mathematically complex phenomena, such as stress concentration
factors around crack tips, which can reliably be investigated only by analytical
means. On the other hand, for the most part, analytical solutions require the
assumption of linear elastic behavior, whereas accounting for nonlinear stress–
strain behavior poses little additional burden in a fully numerical approach.
Hence, the analytical methods presented in this chapter are increasingly being
complemented by numerical methods.

In this chapter, we will concentrate on analytical solutions to important
problems involving cavities and voids in rock. In two dimensions, powerful
general methods exist to solve essentially all such problems, using the theory
of complex variables. These methods will be developed in §8.2 and then used
to solve for the stresses and displacements around tubular cavities of various
cross-sectional shape (§8.5–§8.6, §8.9–§8.11). Problems involving elastic inclu-
sions (§8.8) and circular disks and cylinders (§8.7) can also be solved using the
same general approach. Although many techniques have been devised to solve
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three-dimensional problems in elasticity, these methods are more variegated and
complicated. Hence, several important three-dimensional solutions, such as for
spherical cavities and penny-shaped cracks, will be presented and discussed with
either partial or no details given of the derivation (§8.12–§8.13). A brief discus-
sion of themuchmore difficult type of problem involving stress-field interactions
between nearby cavities is given in §8.14.

8.2 Complex
variable method for
two-dimensional
elasticity problems

Two-dimensional problems in elasticity can be solved using the complex variable
method developed by Kolosov (1909) and Muskhelishvili (1963). In this method,
the displacements and stresses are represented in terms of two analytic functions
of a complex variable. General solutions are readily generated, as any pair of
analytic functions automatically leads to displacements and stresses that satisfy
the equations of stress equilibrium and Hooke’s law; the only nontrivial aspect
of the solution procedure is in satisfying the boundary conditions of the specific
problem at hand. A full treatment of the theory of functions of a complex variable
can be found in standard texts such as Nehari (1961) or Silverman (1967). A brief
introduction to those aspects of the theory that are needed for solving elasticity
problems is given below.

A complex number z can be represented as z = x + iy, where x and y
are real numbers that obey the usual arithmetic laws, and i is an “imaginary”
number that has the additional property that i2 = −1. If z is represented in
this form, x is known as the real part of z, and y is known as the imaginary part
of z; symbolically, this is expressed as x = Re(z) and y = Im(z). The complex
conjugate of z is another complex number, z̄, that is defined by

z = x + iy, z̄ = x − iy, (8.1)

from which it follows that Re(z) = (z + z̄)/2, and Im(z) = (z − z̄)/2i.
A complex-valued function of a complex variable can be represented by ζ(z),

where the dependent variable is a complex number that can be written as

ζ = ξ + iη, (8.2)

Both ξ and η are real-valued functions of the two real variables x and y. The
function ζ(z) is said to be analytic in a certain region of the complex plane if it
is continuous throughout that region and has a derivative at every point in the
region. The derivative, denoted by dζ/dz ≡ ζ ′(z), is also a complex number
and so can temporarily be written as ζ ′(z) = a + ib. The differential of ζ can
therefore be expressed as

dζ = ζ ′(z)dz = (a + ib)(dx + idy) = (adx − bdy)+ i(bdx + ady), (8.3)

but can also, by virtue of (8.2), be written as

dζ = dξ + idη =
(
∂ξ

∂x
dx + ∂ξ

∂y
dy

)
+ i

(
∂η

∂x
dx + ∂η

∂y
dy

)
. (8.4)
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Comparison of (8.3) and (8.4) reveals that the two functions ξ and ηmust satisfy
the so-called Cauchy–Riemann equations,

∂ξ

∂x
= ∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
. (8.5)

Hence, ζ ′(z) can be written in any of the following four equivalent forms:

ζ ′(z) = ∂ξ

∂x
− i
∂ξ

∂y
= ∂η

∂y
+ i
∂η

∂x
= ∂ξ

∂x
+ i
∂η

∂x
= ∂η

∂y
− i
∂ξ

∂y
. (8.6)

If ζ(z) is analytic, it follows from (8.5) that both the real and imaginary parts
of ζ satisfy Laplace’s equation,

∇2ξ(x, y) = 0, ∇2η(x, y) = 0, (8.7)

where the Laplacian operator ∇2 is defined by

∇2 = ∂2

∂x2
+ ∂2

∂y2
. (8.8)

Functions that satisfy Laplace’s equation are called harmonic functions, and
two harmonic functions that are related through the Cauchy–Riemann
equations (8.5) are called conjugate harmonic functions, not to be confusedwith the
unrelated concept of a complex conjugate defined above in (8.1). It can be proven
that if ξ is any harmonic function, (8.5) can always be integrated to find its har-
monic conjugate function, η, and vice versa; moreover, the resulting function
ζ = ξ + iη will be an analytic function of z.

It was demonstrated in §5.7 that two-dimensional elasticity problems can be
solved in terms of an Airy stress function, U, which satisfies the biharmonic
equation,

∇2(∇2U) = 0. (8.9)

In the absence of a body force, the stresses are given by

τxx = ∂2U
∂y2

, τyy = ∂2U
∂x2

, τxy = − ∂2U
∂x∂y

. (8.10)

We now demonstrate that the Airy stress function for a particular problem can
always be expressed in terms of two analytic functions of a complex variable
(Timoshenko and Goodier, 1970). First, let

P = τxx + τyy = ∂2U
∂y2

+ ∂2U
∂x2

= ∇2U, (8.11)

so that, by (8.9), P is an harmonic function. Then, as remarked above, its
harmonic conjugate, Q, can in principle be found, and the function

f (z) = P + iQ (8.12)
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will be analytic. The function found by integrating f (z) along any contour that
lies within a region in which f (z) is analytic will itself be analytic (Silverman,
1967), so we can define another analytic function, φ(z), by

φ(z) = 1
4

∫
f (z)dz ≡ p+ iq, (8.13)

where p and q are the real and imaginary parts of φ(z). It follows from (8.6),
(8.12), and (8.13) that

φ′(z) = ∂p
∂x

+ i
∂q
∂x

= 1
4
f (z) = 1

4
(P + iQ). (8.14)

Equating the real and imaginary parts of (8.14) and making use of (8.5), gives

1
4
P = ∂p

∂x
= ∂q
∂y

,
1
4
Q = ∂q

∂x
= −∂p

∂y
. (8.15)

Next, note that the function p1 = U − px − qy is harmonic, since

∇2(U − px − qy) = ∇2U − x∇2p− 2
∂p
∂x

− y∇2q− 2
∂q
∂y

= 0, (8.16)

in which we have used (8.7), (8.11), and (8.15). It follows that p1 is the real part
of an analytic function, which we call χ(z). Noting that

Re{z̄φ(z)} = Re{(x − iy)(p+ iq)} = px + qy, (8.17)

it follows that

U = p1 + px + qy = Re{χ(z)} + Re{z̄φ(z)}
= 1

2
{z̄φ(z)+ zφ(z)+ χ(z)+ χ(z)}, (8.18)

where φ(z) = p− iq, etc. We have therefore shown that the Airy stress function
U can always be expressed in terms of two analytic functions, φ(z) and χ(z).

By differentiating (8.18), it can be shown that the derivatives of U can be
expressed in terms of φ and χ , as follows:

2
∂U
∂x

= φ(z)+ z̄φ′(z)+ φ(z)+ zφ′(z)+ χ ′(z)+ χ ′(z), (8.19)

2
∂U
∂y

= −iφ(z)+ iz̄φ′(z)+ iφ(z)− izφ′(z)+ iχ ′(z)− iχ ′(z), (8.20)

2
∂2U
∂x2

= 2φ′(z)+ z̄φ′′(z)+ 2φ′(z)+ zφ′′(z)+ χ ′′(z)+ χ ′′(z), (8.21)

2
∂2U
∂y2

= 2φ′(z)− z̄φ′′(z)+ 2φ′(z)− zφ′′(z)− χ ′′(z)− χ ′′(z), (8.22)

2
∂2U
∂x∂y

= iz̄φ′′(z)− izφ′′(z)+ iχ ′′(z)− iχ ′′(z), (8.23)
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from which the stresses follow directly, as indicated by (8.10).
The strain components are related to the stresses according to (5.46)–(5.47):

8Gεxx = (κ + 1)τxx + (κ − 3)τyy, (8.24)

8Gεyy = (κ + 1)τyy + (κ − 3)τxx , (8.25)

where κ = 3 − 4ν for plane strain, and κ = (3 − ν)/(1 + ν) for plane stress.
These relations can also be written as

2G
∂u
∂x

= 2Gεxx = −τyy + 1
4
(κ + 1)(τxx + τyy), (8.26)

2G
∂v
∂y

= 2Gεyy = −τxx + 1
4
(κ + 1)(τxx + τyy). (8.27)

Making use of (8.10), (8.11), and (8.15), we can rewrite (8.26) and (8.27) as

2G
∂u
∂x

= −∂
2U
∂x2

+ (κ + 1)
∂p
∂x

, (8.28)

2G
∂v
∂y

= −∂
2U
∂y2

+ (κ + 1)
∂q
∂y

. (8.29)

Integrating (8.28) with respect to x and (8.29) with respect to y, gives

2Gu = −∂U
∂x

+ (κ + 1)p+ g(y), (8.30)

2Gv = −∂U
∂y

+ (κ + 1)q+ h(x), (8.31)

where g and h are (as yet) unknown functions of y and x, respectively.
To study these two functions, recall that 2Gεxy = τxy, in which case (8.10)

gives

2G
(
∂u
∂y

+ ∂v
∂x

)
= −2

∂2U
∂x∂y

. (8.32)

But differentiation of (8.30) and (8.31), and use of (8.15), gives

2G
(
∂u
∂y

+ ∂v
∂x

)
= −2

∂2U
∂x∂y

+ g′(y)+ h′(x). (8.33)

Comparison of (8.32) and (8.33) shows that g and hmust satisfy the equation

g′(y)+ h′(x) = 0, (8.34)

the general solution to which is

g(y) = ωy + a, h(x) = −ωx + b, (8.35)

whereω, a, and b are constants. The portion of the total displacement vector that
is represented by g and h therefore corresponds to a rigid-body motion and has
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no stresses associated with it. Ignoring this rigid-body motion, the displacement
vector can be written as a complex number, using (8.13), (8.19), (8.20), (8.30),
and (8.31):

2G(u + iv)=−
(
∂U
∂x

+i
∂U
∂y

)
+(κ + 1)(p+ iq)=κφ(z)−zφ′(z)−χ ′(z).

(8.36)

Although the additional rigid-body displacement represented by (8.35) has
no effect on the stresses, it is not correct to say that it can be ignored. When
finding the complex potentials φ and χ , care must be taken to insure that the
resulting displacement does not contain a spurious rigid-body rotation. In solving
the problem of a cavity in an infinite rock mass, the desired solution is usually
the one that has no rotation at infinity. In some cases, this will require that an
additional rigid-body displacement be added to the displacement that was found
by considering only the stress boundary conditions. For example, Maugis (1992)
pointed out that the solution given by Stevenson (1945) for an elliptical crack in a
biaxial stress field actually contains an unwanted rigid-body rotation component;
the correct solution is given in §8.9.

Noting that only χ ′(z) appears in the expressions for the complex displace-
ment and the stresses, rather than the function χ(z) itself, we can define a new
function

ψ(z) = χ ′(z), (8.37)

allowing (8.36) to be rewritten in a slightly simpler form as

2G(u + iv) = κφ(z)− zφ′(z)− ψ(z). (8.38)

For the case discussed in §5.3, in which there is a uniform strain in the longi-
tudinal direction, we must add a term −2Gνε to the right-hand sides of (8.28)
and (8.29), and set κ = 3− 4ν. Integration of (8.28) and (8.29) then leads, in this
case, to

2G(u + iv) = (3 − 4ν)φ(z)− zφ′(z)− ψ(z)− 2Gνεz. (8.39)

The equations for the change in the displacement and stress components due
to a rotation of the coordinate axes take a particularly simple formwhen written
in terms of complex variables. Recalling that eiθ = cos θ + i sin θ , (2.225) can be
written as

u′ + iv′ = (u + iv)e−iθ . (8.40)

Similarly, the equations (2.25)–(2.27) for the transformation of the stress
components can be written as

τy′y′ − τx′x′ + 2iτx′y′ = (τyy − τxx + 2iτxy)e2iθ , (8.41)

τy′y′ + τx′x′ = τyy + τxx . (8.42)
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In the special case in which the new coordinate system is a polar coordinate
system, with the r direction rotated by an angle θ from the x-axis, we have

τθθ − τrr + 2iτrθ = (τyy − τxx + 2iτxy)e2iθ , (8.43)

τθθ + τrr = τyy + τxx . (8.44)

Subtracting (8.41) from (8.42) gives

2(τx′x′ − iτx′y′) = τyy + τxx − (τyy − τxx + 2iτxy)e2iθ . (8.45)

This relation may be used to express the traction boundary conditions along a
surface whose outward unit normal vector is rotated by an angle θ from the
x-axis. If the normal and shear components of the traction on this surface are N
and T, then (8.45) immediately gives

2(N − iT) = τyy + τxx − (τyy − τxx + 2iτxy)e2iθ . (8.46)

The combination of stress components that appear in (8.46) can be expressed
in terms of the complex potentials by making use of (8.10), (8.19)–(8.23), and
(8.37):

τyy + τxx = ∂2U
∂x2

+ ∂2U
∂y2

= 2[φ′(z)+ φ′(z)] = 4Re{φ′(z)}, (8.47)

τyy − τxx + 2iτxy = ∂2U
∂x2

− ∂2U
∂y2

− 2i
∂2U
∂x∂y

= 2[z̄φ′′(z)+ ψ ′(z)]. (8.48)

Another useful relationship can be found by combining (8.19) and (8.20):

∂U
∂x

+ i
∂U
∂y

= φ(z)+ zφ′(z)+ ψ(z). (8.49)

8.3 Homogeneous
state of stress

In the previous section, solutions to elasticity problems were presented in terms
of arbitrary analytic functions of the complex variable z. Many important prob-
lems can be solved by taking the complex potentials to be polynomials in either
z or 1/z. For example, a uniform state of stress and strain can be found by taking
the two potentials to be linear functions of z:

φ(z) = cz, ψ(z) = dz, (8.50)

where c and d are constants that may be complex. From (8.47) and (8.48), the
stresses that follow from (8.50) are seen to be

τxx − τyy = 4Re{c}, (8.51)

τxx − τyy + 2iτxy = 2[z̄φ′′(z)+ ψ ′(z)] = 2d. (8.52)

As the imaginary part of c does not affect the stresses, we may take c to be purely
real. The imaginary part of d, however, determines the shear component, τxy,
and cannot be ignored.
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As c and d are constants, (8.51) and (8.52) show that (8.50) represents a uniform
state of stress. If the principal stresses are denoted, as usual, by σ1 and σ2, with
the direction of σ1 rotated by an angle β from the x-axis, then it follows from
(8.41) and (8.42) that

σ1 + σ2 = τxx + τyy = 4c, (8.53)

σ2 − σ1 = (τyy − τxx + 2iτxy)e2iβ = 2de2iβ , (8.54)

These relations can be inverted to yield

c = 1
4
(σ1 + σ2), d = 1

2
(σ2 − σ1)e−2iβ . (8.55)

In other words, the uniform stress state consisting of principal stress σ1 rotated
by angle β from the x-axis and principal stress σ2 rotated by angle β from the
y-axis is represented by the complex potentials

φ(z) = 1
4
(σ1 + σ2)z, ψ(z) = 1

2
(σ2 − σ1)ze−2iβ . (8.56)

For the case of hydrostatic stress, σ1 = σ2, and so φ(z) = σ1z/2,ψ(z) = 0.
For uniaxial stress in the x direction, σ2 = 0 and β = 0, so the potentials
are φ(z) = σ1z/4, and ψ(z) = −σ1z/2. A state of pure shear, τxy, can be
generated by taking σ2 = −σ1 and β = π/4, which corresponds to φ(z) = 0,
ψ(z) = iσ1z.

The displacements generated by (8.56) are found from (8.38) to be

2G(u + iv) = 1
4
(κ − 1)(σ1 + σ2)z − 1

2
(σ2 − σ1)z̄e2iβ . (8.57)

As we have taken c to be real, the displacement components are

2Gu = 1
4
(κ − 1)(σ1 + σ2)x − 1

2
(σ2 − σ1)Re{z̄e2iβ}, (8.58)

2Gv = 1
4
(κ − 1)(σ1 + σ2)y − 1

2
(σ2 − σ1)Im{z̄e2iβ}. (8.59)

If x and y are the principal stress directions, thenβ = 0, and the displacements are

8Gu = [(κ + 1)σ1 + (κ − 3)σ2]x, 8Gv = [(κ + 1)σ2 + (κ − 3)σ1]y, (8.60)

in agreement with (5.46) and (5.47). The strains are given by

8Gε1 = (κ + 1)σ1 + (κ − 3)σ2, 8Gε2 = (κ + 1)σ2 + (κ − 3)σ1. (8.61)

Now consider points that initially lie on a circle of radius ρ, centered at {x̄, ȳ},
which are described by

x = x̄ + ρ cosα, y = ȳ + ρ sin α. (8.62)

After the deformation, these points will be displaced to new positions given by

x′ = (x̄ + ρ cosα)(1 − ε1), y′ = (ȳ + ρ sin α)(1 − ε2), (8.63)
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which describe an ellipse centered at {x̄(1 − ε1), ȳ(1 − ε2)}, with semiaxes
ρ(1 − ε1) and ρ(1 − ε2).

If the x and y directions are again taken to be the principal directions, the
displacement in polar coordinates is found from (8.57) and (8.40) to be given in
complex form by

2G(ur + iuθ ) = 1
4
(κ − 1)(σ1 + σ2)r + 1

2
(σ1 − σ2)re−2iθ , (8.64)

which corresponds in component form to

8Gur = (κ − 1)(σ1 + σ2)r + 2(σ1 − σ2)r cos 2θ , (8.65)

8Guθ = −2(σ1 − σ2)r sin 2θ . (8.66)

If the maximum principal stress is rotated by an angle β from the x direction, as
in (8.56), then θ must be replaced by θ − β in (8.65) and (8.66).

Taking c to be a real constant and d to be an arbitrary complex constant in
(8.50) therefore leads to a state of uniform (homogeneous) stress and strain. If
we consider c to be purely imaginary and d to be zero, that is,

φ(z) = iδz, ψ(z) = 0, (8.67)

where δ is real, then (8.51) and (8.52) show that the stresses are zero, and (8.38)
gives

2G(u + iv) = (κ + 1)iδz, (8.68)

which in component form is

2Gu = −(κ + 1)δy, 2Gv = (κ + 1)δx. (8.69)

The strains that follow from (8.69) are all zero, and the rotation is given by

ωxy = 1
2

(
∂v
∂x

− ∂u
∂y

)
= 1

4G
[(κ + 1)δ + (κ + 1)δ] = (κ + 1)δ

2G
. (8.70)

Rigid-body rotation by a small angle ω can therefore be generated by choosing
δ = 2Gω/(κ + 1) in (8.67).

Another interesting state of stress and displacement that can be generated
from a simple choice of the potential functions is found by taking φ or ψ to be
logarithmic. Consider the case

φ(z) = 0, ψ(z) = c ln z. (8.71)

But z = reiθ , so ln z = ln(reiθ ) = ln r + ln(eiθ ) = ln r + iθ . From (8.38), the
displacement associated with these potentials is therefore given by

2G(u + iv) = −c ln r + icθ , (8.72)

which is to say, u = −c ln r/2G, and v = cθ/2G. If we start at a specific
point z and make a loop around the origin, θ will increase by 2π , and so v will
increase by v = cπ/G. Hence, the potentials (8.71) do not represent a continuous
displacement field and in general are not admissible. The samewould be the case
if φ contained a logarithmic term. Such logarithmic terms can, however, be used
to represent dislocations (Hirth and Lothe, 1992).
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8.4 Pressurized
hollow cylinder

The problem of a circular hole in an infinite rock mass, with a uniform state of
stress at infinity, is probably the most important single problem in rock mechan-
ics. The general case of two unequal far-field principal stresses is treated in §8.5.
In this section, we discuss the special case of hydrostatic stress at infinity. To
generate this solution, we start with the case of a hollow cylinder subjected
to pressure at both its inner and outer boundaries; the solution for the infinite
region outside a circular hole is then found by letting the outer radius of the
cylinder become infinite. The hollow cylinder problem is of interest in its own
right in the context of laboratory testing.

Consider a hollow circular cylinder defined by a < r < b. The boundary
conditions at the inner and outer surfaces are

τrr(a) = Pi , τrr(b) = Po. (8.73)

We take the complex potentials to be of the form

φ(z) = cz, ψ(z) = d/z, (8.74)

where c and d are constants. The imaginary components of these constants
would lead to shear stresses and rotations, so for the present problem, in which
there is radial symmetry, we can take c and d to be real. The displacement vector
follows from (8.74) and (8.38):

2G(u + iv) = (κ − 1)cz − d/z̄. (8.75)

If we use polar coordinates, with z = reiθ , then the complex displacement vector
(8.75) can be written as

2G(u + iv) = (κ − 1)creiθ − deiθ /r. (8.76)

This equation expresses the Cartesian components of the displacement in terms
of the polar variables r and θ ; the displacement components (ur , uθ ) are found
from (8.76) by using (8.40):

2G(ur + iuθ ) = 2G(u + iv)e−iθ = (κ − 1)cr − d/r. (8.77)

The explicit component form of (8.77) is

2Gur = (κ − 1)cr − d/r, 2Guθ = 0. (8.78)

The stresses are found from (8.74), (8.47), and (8.48):

τrr + τθθ = τxx + τyy = 4Re{φ′(z)} = 4c, (8.79)

τyy − τxx + 2iτxy = 2[z̄φ′′(z)+ ψ ′(z)] = −2d/z2 = −2de−2iθ /r2. (8.80)

Use of (8.43) yields

τθθ − τrr + 2iτrθ = (τyy − τxx + 2iτxy)e2iθ = −2d/r2. (8.81)
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Separating out the real and imaginary parts of (8.81) gives

τθθ − τrr = −2d/r2, τrθ = 0. (8.82)

Imposition of the boundary conditions (8.73) allows (8.79) and (8.82) to be
solved for

c = b
2Po − a2Pi
2(b2 − a2) , d = a

2b2(Pi − Po)
(b2 − a2) . (8.83)

The full solution is then, from (8.78), (8.79), (8.82), and (8.83),

2Gur = (κ − 1)
(b2Po − a2Pi)r
2(b2 − a2) − a

2b2(Pi − Po)
(b2 − a2)r , (8.84)

τrr = (b2Po − a2Pi)
(b2 − a2) + a

2b2(Pi − Po)
(b2 − a2)r2 , (8.85)

τθθ = (b2Po − a2Pi)
(b2 − a2) − a

2b2(Pi − Po)
(b2 − a2)r2 , (8.86)

where (κ − 1) = 2(1 − 2ν) for the case of plane strain. The stresses from (8.85)
and (8.86) are plotted in Fig. 8.1 for the case of a hollow cylinder having b = 2a.

From (8.82) and (8.83), we see that the magnitude of the difference between
the two principal stresses decreases monotonically from its maximum value of

|τrr − τθθ | = 2|Po − Pi|b2
(b2 − a2) at r = a, (8.87)

to its minimum value of

|τrr − τθθ | = 2|Po − Pi|a2
(b2 − a2) at r = b. (8.88)

Fig. 8.1 Stress
distribution in a hollow
cylinder with b = 2a, for
(a) the case of an
external pressure only
and (b) the case of an
internal pressure only.
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The total elastic strain energy stored in the hollow cylinder of length L can be
found from the work–energy principle, (5.160), in the form

W = 1
2
Po(2πbL)ur(b)− 1

2
Pi(2πaL)ur(a)

= πL
2G(b2 − a2) {(1 − 2ν)(Pob2 − Pia2)2 + (Po − Pi)2b2a2}. (8.89)

The solution for a circular hole in an infinite rock mass with a far-field hydro-
static stress Po and an internal pressure Pi is found from (8.84)–(8.86) by letting
b→ ∞. The results are, for the case of plane strain,

2Gur(r) = (1 − 2ν)Por − (Pi − Po)(a2/r), (8.90)

τrr(r) = Po − (Po − Pi)(a/r)2, (8.91)

τθθ (r) = Po − (Po − Pi)(a/r)2. (8.92)

If a borehole of radius a is loaded by a hydrostatic pressure P, (8.90) shows that
the resulting displacement of the borehole wall will be ur(a) = −Pa/2G; this
equation is useful in estimating G from borehole measurements.

According to (8.91) and (8.92), the perturbations to the in situ stress field due
to the presence of the hole are localized to within a few radii of the hole. For
example, when r = 10a, the magnitude of the second term in (8.92) has decayed
to 1 percent of the value it had at the borehole wall, where r = a. Hence, the
“far-field” stress Po in (8.90)–(8.92) actually denotes the stress that, in the absence
of the hole, would exist in a region around the hole whose extent was about
10a. The solution given above can therefore be used for a hole in a nonuniform
stress field, as long as the length scale of the variations of the in situ stress field is
greater than about ten times the hole radius.

8.5 Circular hole in
a rock mass with
given far-field
principal stresses

The problem of calculating the displacements and stresses outside a circular hole
in an infinite elastic solid, with a uniform state of stress far from the hole, was
first solved by theGerman engineer Kirsch in 1898. Asmost holes drilled through
rock are of circular cross section, this problem is of immense importance in rock
engineering. The effect of a hydrostatic stress applied to the surface of the hole
was found in §8.4, so we need only consider the case of a nonzero far-field stress
and zero pressure in the borehole. Furthermore, sincewe can utilize the principle
of superposition, we need only solve the case of a single nonzero principal stress
at infinity. It will be convenient to align the x-axis with this principal stress, the
value of which we will denote by σ∞

1 .
In the absence of the hole, the complex potentials associated with a uniaxial

stress state aligned with the x-axis would be φ(z) = σ∞
1 z/4, ψ(z) = −σ∞

1 z/2,
as found in §8.3. Although this solution gives the correct far-field stress, it will
give incorrect, nonzero tractions at the borehole wall. We must therefore find
additional terms in the potentials that will cancel out these unwanted tractions,
but not give any additional stresses at infinity. The only such terms which may
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be of use and which will lead to stresses that vary as functions of 2θ , are the
following:

φ(z) = 1
4
σ∞
1

(
z + A

z

)
, ψ(z) = −1

2
σ∞
1

(
z + B

z
+ C
z3

)
, (8.93)

where A, B, and C are real constants. The derivatives that will be needed for
subsequent calculation of displacements and stresses are

φ′(z) = 1
4
σ∞
1

(
1 − A

z2

)
, φ′′(z) = σ∞

1 A
2z3

,

ψ ′(z) = −1
2
σ∞
1

(
1 − B

z2
− 3C
z4

)
. (8.94)

Working in polar coordinates, z = reiθ , it follows from (8.47) that

τrr + τθθ = 4Re{φ′(z)} = σ∞
1 Re{1 − Ar−2e−2iθ } = σ∞

1 (1 − Ar−2 cos 2θ).

(8.95)

Next, from (8.48),

τyy−τxx+2iτxy = 2[z̄φ′′(z)+ψ ′(z)]=Aσ∞
1 z̄/z

3−σ∞
1 (1−B/z2−3C/z4)

= Aσ∞
1 r

−2e−4iθ − σ∞
1 (1 − Br−2e−2iθ − 3Cr−4e−4iθ ).

(8.96)

We now use (8.43) to find

τθθ − τrr + 2iτrθ = (τyy − τxx + 2iτxy)e2iθ

= σ∞
1 [Br−2 − e2iθ + (Ar−2 + 3Cr−4)e−2iθ ]. (8.97)

The real part of (8.97) gives

τθθ − τrr = σ∞
1 [Br−2 − (1 − Ar−2 − 3Cr−4) cos 2θ ], (8.98)

after which (8.95) and (8.98) can be solved to give

τθθ = 1
2
σ∞
1 [1 + Br−2 + (3Cr−4 − 1) cos 2θ ], (8.99)

τrr = 1
2
σ∞
1 [1 − Br−2 + (1 − 2Ar−2 − 3Cr−4) cos 2θ ]. (8.100)

The imaginary part of (8.97) gives

τrθ = −1
2
σ∞
1 [(1 + Ar−2 + 3Cr−4) sin 2θ ]. (8.101)

In order for the hole boundary to be traction-free, both (8.100) and (8.101)
must vanish at r = a; this requires that {A, B, C} satisfy the following equations:

1 − Ba−2 = 0, 1 − 2Aa−2 − 3Ca−4 = 0, 1 + Aa−2 + 3Ca−4 = 0,

(8.102)
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the solution to which is

A = 2a2, B = a2, C = −a4. (8.103)

The full expressions for the stresses follow from (8.99)–(8.101) and (8.103):

τθθ = 1
2
σ∞
1

[
1 +

(a
r

)2
]

− 1
2
σ∞
1

[
1 + 3

(a
r

)4
]
cos 2θ , (8.104)

τrr = 1
2
σ∞
1

[
1 −

(a
r

)2
]

+ 1
2
σ∞
1

[
1 − 4

(a
r

)2 + 3
(a
r

)4
]
cos 2θ , (8.105)

τrθ = −1
2
σ∞
1

[
1 + 2

(a
r

)2 − 3
(a
r

)4
]
sin 2θ . (8.106)

The perturbations in the stress field caused by the presence of the hole die
away at least as fast as (a/r)2 and are therefore negligible at distances greater
than 10a from the borehole. Hence, when applying formulae such as (8.104)–
(8.106) to a newly drilled or excavated hole, the “far-field” stresses that should
be used are those that initially act in the region that lies within a few radii of the
(eventual) hole; the far-field principal stresses that act many kilometers from the
hole, which might seem to better satisfy the definition of “stresses at infinity,” in
fact have no relevance to this problem.

At the surface of the hole, the hoop stress τθθ varies with θ according to

τθθ (a, θ) = σ∞
1 [1 − 2 cos 2θ], (8.107)

and therefore varies from a stress of −σ∞
1 (i.e., tensile) when θ = 0 or π , to

a compressive stress of 3σ∞
1 when θ = π/2 or 3π/2 or 3π/2 (Fig. 8.2a). The

mean normal stress is given, from (8.104) and (8.105), by

τm = 1
2
(τθθ + τrr) = σ∞

1

[
1 − 2

(a
r

)2
cos 2θ

]
, (8.108)

so that the mean normal stress is tensile within the region defined by (Fig. 8.2b)

(r/a)2 < 2 cos 2θ . (8.109)

Fig. 8.2 (a) Hoop
stress at borehole wall
as a function of angle of
rotation from direction
of far-field stress.
(b) Small circular arcs
show outer boundaries
of regions within which
the mean normal stress
is tensile.
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The boundaries that separate the regions of negative and positive mean nor-
mal stress are circles of radius 0.414a, centered on the points where the x-axis
intersects the borehole.

The stresses due to a second far-field principal normal stress, σ∞
2 , that acts in

a direction perpendicular to the direction of σ∞
1 , can be found from the solution

given above by replacing θ with θ + (π/2), which is equivalent to replacing 2θ
with 2θ + π :

τθθ = 1
2
σ∞
2

[
1 +

(a
r

)2
]

+ 1
2
σ∞
2

[
1 + 3

(a
r

)4
]
cos 2θ , (8.110)

τrr = 1
2
σ∞
2

[
1 −

(a
r

)2
]

− 1
2
σ∞
2

[
1 − 4

(a
r

)2 + 3
(a
r

)4
]
cos 2θ , (8.111)

τrθ = 1
2
σ∞
2

[
1 + 2

(a
r

)2 − 3
(a
r

)4
]
sin 2θ . (8.112)

The full state of stress around a circular hole in an infinite elastic rock mass
with far-field stress σ∞

1 acting in the x direction and far-field stress σ∞
2

acting in the y direction is then found by superposing (8.104)–(8.106) and
(8.110)–(8.112):

τθθ = 1
2
(σ∞

1 + σ∞
2 )

[
1 +

(a
r

)2
]

− 1
2
(σ∞

1 − σ∞
2 )

[
1 + 3

(a
r

)4
]
cos 2θ ,

(8.113)

τrr= 1
2
(σ∞

1 +σ∞
2 )

[
1−

(a
r

)2
]
+ 1

2
(σ∞

1 −σ∞
2 )

[
1−4

(a
r

)2+3
(a
r

)4
]
cos 2θ ,

(8.114)

τrθ = −1
2
(σ∞

1 − σ∞
2 )

[
1 + 2

(a
r

)2 − 3
(a
r

)4
]
sin 2θ . (8.115)

As it is conventional to assume that σ∞
1 ≥ σ∞

2 , in the above equations, it is
implicit that the x-axis is aligned with the direction of the maximum principal
normal stress.

At the surface of the hole, the hoop stress τθθ varies with θ according to

τθθ (a, θ) = (σ∞
1 + σ∞

2 )− 2(σ∞
1 − σ∞

2 ) cos 2θ , (8.116)

and therefore varies from a minimum value of 3σ∞
2 − σ∞

1 when θ = 0, or π ,
to a maximum value of 3σ∞

1 − σ∞
2 when θ = π/2 or 3π/2. If 3σ∞

2 > σ∞
1 ,

which is equivalent to the condition σ∞
1 /σ

∞
2 < 3 if both principal normal far-

field stresses are compressive, then the hoop stress is positive (compressive) at
all points on the boundary of the hole. If this condition is not satisfied, then
τθθ (a, θ) is negative (tensile) within the two arcs defined by cos 2θ > (σ∞

1 +
σ∞
2 )/2(σ

∞
1 − σ∞

2 ).
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If there is also a normal traction of magnitude P acting along the cavity wall,
then wemust superpose additional stresses that are found from (8.91) and (8.92),
with Pi = P and Po = 0; the results are

τθθ = 1
2
(σ∞

1 +σ∞
2 )

[
1+

(a
r

)2
]
−P

(a
r

)2− 1
2
(σ∞

1 −σ∞
2 )

[
1+3

(a
r

)4
]
cos 2θ ,

(8.117)

τrr = 1
2
(σ∞

1 + σ∞
2 )

[
1 −

(a
r

)2
]

+ P
(a
r

)2

+ 1
2
(σ∞

1 − σ∞
2 )

[
1 − 4

(a
r

)2 + 3
(a
r

)4
]
cos 2θ , (8.118)

τrθ = −1
2
(σ∞

1 − σ∞
2 )

[
1 + 2

(a
r

)2 − 3
(a
r

)4
]
sin 2θ . (8.119)

In thismost general case, the hoop stress at the cavitywall varies fromaminimum
value of 3σ∞

2 −σ∞
1 −Pwhen θ = 0 orπ , to amaximumvalue of 3σ∞

1 −σ∞
2 −P

when θ = π/2 or 3π/2. A region of tensile hoop stresses will exist if

P > 3σ∞
2 − σ∞

1 ; (8.120)

this is the simplest criterion for hydraulic fracturing of a formation due to internal
pressure in the borehole (Hubbert and Willis, 1957).

The displacements that are associated with the complex potentials given in
(8.93) are found from (8.93) and (8.38) to be

8G(u + iv)
σ∞
1

= κ(reiθ + Ar−1e−iθ )− (reiθ − Ar−1e3iθ )

+ 2(re−iθ + Br−1eiθ + Cr−3e3iθ ). (8.121)

According to (8.40), the (r, θ) components of the displacement are found from
(8.121) by multiplying by e−iθ , leading to

8G(ur + iuθ )
σ∞
1

= κ(r + Ar−1e−2iθ )− (r − Ar−1e2iθ )

+ 2(re−2iθ + Br−1 + Cr−3e2iθ ). (8.122)

Using the values of {A, B, C} from (8.103), we find

8G(ur + iuθ )
aσ∞

1
= κ

[ r
a

+ 2
(a
r

)
e−2iθ

]
−

[ r
a

− 2
(a
r

)
e2iθ

]

+ 2
[( r
a

)
e−2iθ +

(a
r

)
−

(a
r

)3
e2iθ

]
. (8.123)
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Separating out the real and imaginary parts of (8.123) yields

8Gur
aσ∞

1
=

[
(κ−1)

( r
a

)
+2

(a
r

)]
+2

[( r
a

)
+(κ+1)

(a
r

)
−

(a
r

)3
]
cos 2θ ,

(8.124)

8Guθ
aσ∞

1
= −2

[( r
a

)
+ (κ − 1)

(a
r

)
+

(a
r

)3
]
sin 2θ , (8.125)

where κ = 3 − 4ν for plane strain, and κ = (3 − ν)/(1 + ν) for plane stress.
In the more general case, discussed in §5.3, in which there is an axial strain ε

in the longitudinal direction, we must, according to (8.39) and (8.40), put κ =
3 − 4ν, and add −ενr to the radial displacement, yielding

4Gur
aσ∞

1
=

[
(1 − 2ν)

( r
a

)
+

(a
r

)]
+

[( r
a

)
+ 4(1 − ν)

(a
r

)
−

(a
r

)3
]

× cos 2θ − 4Gνεr
aσ∞

1
. (8.126)

The change in the radius of the hole is found by evaluating (8.126) at r = a:

ur(a)
a

= (1 − ν)σ∞
1

2G
[1 + 2 cos 2θ] − νε = (1 − ν2)σ∞

1

E
[1 + 2 cos 2θ] − νε.

(8.127)

If there were an additional principal stress σ∞
2 acting in the y direction, then the

displacement at the borehole wall would be given by

ur(a)
a

= (1 − ν2)

E
[(σ∞

1 + σ∞
2 )+ 2(σ∞

1 − σ∞
2 ) cos 2θ ] − νε. (8.128)

We can express this result solely in terms of the far-field stresses by recalling from
(5.26) that Eε = σ∞

z − ν(σ∞
1 + σ∞

2 ), in which case we find

ur(a) = a
E
[(σ∞

1 + σ∞
2 − νσ∞

z )+ 2(1 − ν2)(σ∞
1 − σ∞

2 ) cos 2θ ]. (8.129)

This equation has relevance to the theory of many stress-measurement devices
operated from boreholes.

8.6 Stresses
applied to a circular
hole in an infinite
rock mass

We now address the problem of a circular hole of radius a in an infinite rock
mass, with an arbitrary distribution of tractions along the hole boundary. As the
problem of a traction-free hole with given far-field stresses has been solved in
§8.5, we nowonly need to consider the case inwhich the far-field stresses are zero.
We first recall that, if f (θ) is a piecewise continuous real-valued function defined
over the range −π < θ < π , it can be represented by a Fourier trigonometric
series as follows (Tolstov, 1976):

f (θ) = a0 +
∞∑
n=1

(an cos nθ + bn sin nθ), (8.130)
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where the Fourier coefficients are given by

a0 = 1
2π

π∫
−π
f (θ)dθ , an = 1

π

π∫
−π
f (θ) cos nθdθ , bn = 1

π

π∫
−π
f (θ) sin nθdθ .

(8.131)

Recalling that einθ = cos nθ + i sin nθ , (8.130) can be written as

f (θ) = a0 + 1
2

∞∑
n=1

an(einθ + e−inθ )− ibn(einθ − e−inθ )

= a0 + 1
2

∞∑
n=1

[
(an − ibn)einθ + (an + ibn)e−inθ ] =

∞∑
n=−∞

αneinθ ,

(8.132)

where the complex Fourier coefficients αn are related to the coefficients an
and bn by

α0 = a0, αn = 1
2
(an − ibn), α−n = 1

2
(an + ibn). (8.133)

In particular, the normal and shear tractions that act along the surface r = a can
be expressed as

N − iT =
∞∑

n=−∞
Aneinθ . (8.134)

This equation supplies a boundary condition thatmust be satisfied by the stresses.
If it is desired only to calculate the stresses, and not the displacements, as often

is the case, then only the functions φ′(z), φ′′(z) and ψ ′(z) will appear in (8.47)
and (8.48). The most general forms that will yield stresses that are bounded at
infinity are power series that contain no positive powers of z:

φ′(z) =
∞∑
n=0

cnz−n, ψ ′(z) =
∞∑
n=0

dnz−n. (8.135)

However, the terms c0 and d0 were shown in (8.55) to correspond to the far-
field stresses and so will not be needed here. Furthermore, the n = 1 terms in
(8.135) correspond to logarithmic terms in φ and ψ , and therefore, according to
(8.72), do not represent continuous displacement fields. The series in (8.135) can
therefore be taken to commence with n = 2.

According to (8.46)–(8.48), the surface tractions can be expressed in terms of
the complex potentials as follows:

N − iT = φ′(z)+ φ′(z)− [z̄φ′′(z)+ ψ ′(z)]e2iθ , (8.136)
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with z = aeiθ along the boundary. Inserting (8.134) and (8.135) into boundary
condition (8.136) gives

∞∑
n=−∞

Aneinθ =
∞∑
n=2

(cna−ne−inθ + c̄na−neinθ )

+
[
ae−iθ

∞∑
n=2

ncna−(n+1)e−i(n+1)θ −
∞∑
n=2

dna−ne−inθ

]
e2iθ

=
∞∑
n=0

(n + 1)cna−ne−inθ + c̄na−neinθ − dn+2a−(n+2)e−inθ ,

(8.137)

where we have used the fact that c0 = c1 = 0 to allow the series on the right to
start with n = 0. Equating like powers of einθ = 0 on both sides of (8.137) yields

An = c̄na−n, n ≥ 1; A0 = −d2a−2;

A−n = (n + 1)cna−n − dn+2a−(n+2), n ≥ 1, (8.138)

which can be inverted to give the unknown coefficients {cn, dn} in terms of the
coefficients An that are known from the boundary tractions:

cn = Anan, n ≥ 1; d2 = −A0a2;
dn+2 = −A−nan+2 + (n + 1)cna2, n ≥ 1. (8.139)

In the simple case of a uniform traction of magnitude P acting on the surface
of the hole, the only nonzero coefficient in (8.134) is A0 = P, in which case
(8.139) shows that the only nonzero coefficient in (8.135) is d2 = −Pa2, thereby
regenerating the solution given by (8.74) and (8.83): ψ(z) = −Pa2/z.

Now consider the case in which a normal traction of magnitude P is applied
over the two symmetrical arcs, −θo < θ < θo and π − θo < θ < π + θo, as in
Fig. 8.3a. From (8.131), the Fourier coefficients for these boundary tractions are
found to be

a0 = 2θoP/π , an = (2P/nπ)[1 + (−1)n] sin nθo, bn = 0. (8.140)

As the only nonzero coefficients are the an for even values of n, the coefficients
in the complex form (8.134) of the Fourier series can be written as

A0 = 2θoP/π , A2m = A−2m = (P/mπ) sin 2mθo, A2m+1 = A−(2m+1) = 0,

(8.141)

in which, as in the remainder of this section, the index m takes on the values
1, 2, 3, . . .. The coefficients in (8.135) are found from (8.139) to be given by

c2m = (Pa2m/mπ) sin 2mθo, (8.142)

d2 = −2Pθoa2/π , d2m+2 = (2Pa2m+2/π) sin 2mθo. (8.143)
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Fig. 8.3 (a) Circular
hole loaded with
pressure P over two
symmetrical arcs. (b)
Tangential normal
stress along the
boundary of the hole. (a)
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Inserting (8.142) and (8.143) in (8.135) gives

φ′(z) = P
π

∞∑
m=1

sin 2mθo
m

(a
z

)2m
, (8.144)

ψ ′(z) = −2Pθo
π

(a
z

)2 + 2P
π

∞∑
m=1

sin 2mθo
(a
z

)2m+2
. (8.145)

The stresses are found by substituting (8.144) and (8.145) into (8.43), (8.44), (8.47),
and (8.48):

τθθ + τrr = 4P
π

∞∑
m=1

sin 2mθo cos 2mθ
m

(a
r

)2m
, (8.146)

τθθ−τrr = −4Pθo
π

(a
r

)2− 4P
π

[
1−

(a
r

)2
] ∞∑
m=1

sin 2mθo cos 2mθ
(a
r

)2m
,

(8.147)

τrθ = 2P
π

[
1 −

(a
r

)2
] ∞∑
m=1

sin 2mθo sin 2mθ
(a
r

)2m
. (8.148)

At the surface of the hole, the stresses are

τrr(a) = 2Pθo
π

+ 2P
π

∞∑
m=1

sin 2mθo cos 2mθ
m

, (8.149)

τθθ (a) = −2Pθo
π

+ 2P
π

∞∑
m=1

sin 2mθo cos 2mθ
m

, (8.150)

and τrθ (a) = 0. The right-hand side of (8.149)must sum to P in the loaded region
and to 0 in the unloaded region. Hence, comparison of (8.149) and (8.150) shows
that τθθ = P − (4θoP/π) along the loaded portion of the hole boundary and
τθθ = −4θoP/π along the unloaded region (Fig. 8.3b).
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The displacements are found from (8.144), (8.145), (8.38), and (8.40):

2Gur(a)
a

= −2Pθo
π

− P
π

∞∑
m=1

1
m

{
κ

2m − 1
+ 1

2m + 1

}
sin 2mθo cos 2mθ .

(8.151)

At θ = 0 or π , which is to say at the midpoint of either of the two loaded
segments of the borehole wall, the results of Bromwich (1949, §121) can be used
to show that

4πGur
aP

= −4θo − 2(κ + 1) sin θo ln cot(θo/2)− (κ − 1)[π cos θo + 2θo −π ].
(8.152)

Likewise, at θ = π/2 or 3π/2, the midpoints of the unloaded portions of the
borehole wall, the radial displacement is given by

4πGur
aP

= 2(κ + 1)[cos θo ln(sec θo + tan θo)− θo] + (κ − 1)π sin θo. (8.153)

If a borehole is stressed in as in Fig. 8.3a, the displacement of the borehole wall
in the direction of loading and the direction perpendicular to the loading can be
used, in conjunction with (8.152) and (8.153), to determine the elastic moduli of
the rock formation. Applications of this solution to borehole measurements are
discussed in more detail by Jaeger and Cook (1964). General expressions for both
ur and uθ at the borehole wall, for arbitrary values of θ , are given by Bray (1987).

8.7 Stresses
applied to the
surface of a solid
cylinder

The problem of a solid cylinder loaded by tractions acting along its outer bound-
ary, in conditions of either plane strain or plane stress, may be treated using the
same general approach as for the problem of a circular hole in an infinite rock
mass. In this case, however, in order for the stresses to be bounded at the center
of the cylinder, the complex potentials may contain only positive powers of z:

φ′(z) =
∞∑
n=0

cnzn, ψ ′(z) =
∞∑
n=0

dnzn. (8.154)

Consider now the case of a cylinder loaded by a pressure P over two symmetric
arcs, −θo < θ < θo and π − θo < θ < π + θo, as in Fig. 8.4a. This type of
loading can be applied by the use of curved jacks, as discussed by Jaeger andCook
(1964). The complex traction vector along the outer boundary of the cylinder
can be expressed as

N − iT = A0 +
∞∑

m=−∞
A2me2imθ , (8.155)
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Fig. 8.4 (a)
Diametral compression,
over two symmetrical
arcs, of a circular
cylinder of radius a. (b)
Stresses along the
loaded diameter, for the
case of 2θo = 15◦,
normalized against P. (a)
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with A0 and A2m given by (8.141). Proceeding as in §8.6, we find that

φ′(z) = Pθo
π

+ P
π

∞∑
m=1

( z
a

)2m sin 2mθo
m

, (8.156)

ψ ′(z) = −2P
π

∞∑
m=0

( z
a

)2m
sin 2(m + 1)θo. (8.157)

The stresses are found by substituting (8.156) and (8.157) into (8.43), (8.44), (8.47),
and (8.48):

τrr = 2Pθo
π

+ 2P
π

∞∑
m=1

( r
a

)2m
[( r
a

)−2 −
(
1 − 1

m

)]
sin 2mθo cos 2mθ ,

(8.158)

τθθ = 2Pθo
π

− 2P
π

∞∑
m=1

( r
a

)2m
[( r
a

)−2 −
(
1 + 1

m

)]
sin 2mθo cos 2mθ ,

(8.159)

τrθ = 2P
π

[
1 −

( r
a

)−2
] ∞∑
m=1

( r
a

)2m
sin 2mθo sin 2mθ . (8.160)

Along the x-axis, where θ = 0, the series in (8.158) and (8.159) can be summed
in closed form to give (Hondros, 1959)

τrr(θ = 0) = 2P
π

{
(1 − ρ2) sin 2θo

(1 − 2ρ2 cos 2θo + ρ4)
+ arctan

[
(1 + ρ2)

(1 − ρ2)
tan θo

]}
,

(8.161)

τθθ (θ = 0)=−2P
π

{
(1−ρ2) sin 2θo

(1−2ρ2 cos 2θo+ρ4)−arctan
[
(1+ρ2)
(1−ρ2) tan θo

]}
,

(8.162)
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in which ρ = r/a. Along the y-axis, perpendicular to the loading, where θ =
π/2, the stresses are

τrr(θ = π/2)=−2P
π

{
(1−ρ2) sin 2θo

(1+2ρ2 cos 2θo+ρ4)−arctan
[
(1−ρ2)
(1+ρ2) tan θo

]}
,

(8.163)

τθθ (θ = π/2)= 2P
π

{
(1−ρ2) sin 2θo

(1+2ρ2 cos 2θo+ρ4)+arctan
[
(1−ρ2)
(1+ρ2) tan θo

]}
.

(8.164)

The shear stresses are zero along both axes, due to the symmetry of the problem.
The solution for the limiting case of a line load ofmagnitudeW per unit length

of cylinder, applied at θ = 0 and θ = π , can be found by letting P → ∞ and
θo → 0 in such a way that the resultant load, W = 2Pθoa, remains constant.
In this case, the stresses along the x-axis are readily found from (8.161) and
(8.162) to be

τrr(θ = 0) = W(3 + ρ2)

πa(1 − ρ2)
, τθθ (θ = 0) = −W

πa
, (8.165)

which show that a uniform tensile stress of magnitude −W/πa acts along this
diameter. The other principal stress is compressive and varies from 3W/πa at
the center to infinity at the points where the loading is applied. These infinite
stress concentrations are artifacts of the idealization that the load is applied over a
vanishingly small arc; for small but nonzero values of θo, the other stress is large
but finite. The two stresses along the loaded diameter are shown in Fig. 8.4b for
the case where 2θo = 15◦. The state of stress resulting from this type of line-
loading is approximated by the so-called Brazilian indirect tension test which is
used in laboratory testing to create a tensile stress within a rock specimen; see
Jaeger and Hoskins (1966a) and §6.7.

The displacement at the outer edge of the cylinder is found from (8.156),
(8.157), (8.38), and (8.40) to be given by

2πGur(a)
Pa

= θo(κ − 1)+
∞∑
m=1

1
m

(
κ

2m + 1
+ 1

2m − 1

)
sin 2mθo cos 2mθ .

(8.166)

When θ = 0 or π/2, the series in (8.166) can be summed using the results
of Bromwich (1949, §121). Along the y-axis, where θ = π/2, the radial
displacement in the limit of small values of θo is given by

ur(a) = −[2(κ + 1)− π(κ − 1)]W/8πG, (8.167)

whereW = 2Pθoa is the resultant force acting along each of the two loaded arcs.
The problem of a circular cylinder acted upon by several line loads has been

discussed byMichell (1900, 1902) and Jaeger (1967). The case of a hollow circular
ring loaded over symmetric arcs along either its inner or outer surface has been
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treated by Ripperger and Davids (1947) and Jaeger and Hoskins (1966b). Hobbs
(1965) considered the effect of having an inner hole that was eccentrically located
with respect to the outer surface of the cylinder.

8.8 Inclusions in
an infinite region

Consider a circular inclusion of radius a, having elastic moduli {Gi, νi}, in an
infinite rock mass whose elastic moduli are {G, ν}. The inclusion is assumed
to be perfectly welded to the surrounding rock, in which case all tractions and
displacements will be continuous at the interface. If the rock mass is subjected to
a far-field stress σ∞

1 , whichwe can assume to act along the x-axis, the stress in the
inclusion will in general differ from the far-field stress state. Roughly speaking,
the stress will be higher in the inclusion if it is stiffer than the surrounding rock
and will be lower if the inclusion is less stiff. The precise relation between the
far-field stresses and the stresses induced in the inclusion will be derived below
in detail, both for the intrinsic interest of the problem and as an example of the
use of the complex variable method to solve more complicated problems.

Following the discussion of the stresses around a circular hole given in §8.5,
the complex potentials in the exterior region will be assumed to have the form

φ(z) = 1
4
σ∞
1

(
z + Aa

2

z

)
, ψ(z) = −1

2
σ∞
1

(
z + Ba

2

z
+ Ca

4

z3

)
, (8.168)

where the terms involving a are introduced so as to simplify the eventual expres-
sions for the constants {A, B, C}. This form of the potentials ensures that the
far-field stress state is one of compression of magnitude σ∞

1 in the x direction.
Inside the inclusion, the potentials will be of the form

φi(z) = 1
4
σ∞
1

(
Aiz + Biz

3

a2

)
, ψi(z) = −1

2
σ∞
1 Ciz, (8.169)

which is the only form that yields finite displacements and stresses at the origin
and which generates stresses that have the same angular variation, that is, cos 2θ
and sin 2θ , as do the far-field stresses.

The six as-yet unknown constants are found by requiring that the tractions and
displacements be continuous across the interface at r = a. The displacements
derived from (8.168) at r = a are

8G(ur + iuθ )/aσ∞
1 = (κ − 1)+ 2B+ (κA+ 2)e−2iθ + (A+ 2C)e2iθ , (8.170)

whereas those derived from (8.169) are

8Gi(ur + iuθ )/aσ∞
1 = A0(κi − 1)+ κiBie−2iθ + (2Ci − 3Bi)e−2iθ . (8.171)

Equating the coefficients of the various θ -dependent terms in (8.170) and (8.171)
gives

e0: β[(κ − 1)+ 2B] = Ai(κi − 1), (8.172)

e2iθ : β(A+ 2C) = κiBi, (8.173)

e−2iθ : β(κA+ 2) = 2Ci − 3Bi, (8.174)
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in which the stiffness ratio β is defined as β = Gi/G.
The complex traction vector at the interface that can be derived from (8.168)

using (8.46)–(8.48) is

4(N − iT)/σ∞
1 = (2 − 2B)− (3A+ 6C)e−2iθ + (2 − A)e2iθ , (8.175)

whereas the traction vector at r = a that follows from (8.169) is

4(N − iT)/σ∞
1 = 2Ai + 3Bie−2iθ + (2Ci − 3Bi)e2iθ , (8.176)

Equating the coefficients in (8.175) and (8.176) leads to

e0: 1 − B = Ai, (8.177)

e2iθ : 2 − A = 2Ci − 3Bi, (8.178)

e−2iθ : A+ 2C = −Bi, (8.179)

Comparison of (8.173) and (8.179) shows that Bi = 0, after which all the
coefficients are readily found:

Ai = β(κ + 1)
2β + (κi − 1)

, Bi = 0, Ci = β(κ + 1)
βκ + 1

, (8.180)

A = 2(1 − β)

βκ + 1
, B = (κi − 1)− β(κ − 1)

2β + (κi − 1)
, C = β − 1

βκ + 1
. (8.181)

The potentials inside the inclusion are therefore

φi(z) = 1
4
σ∞
1

[
β(κ + 1)

2β + (κi − 1)

]
z, ψi(z) = −1

2
σ∞
1

[
β(κ + 1)
βκ + 1

]
z. (8.182)

From (8.47) and (8.48), the stress state inside the inclusion is found to be

τxx = σ∞
1

2

[
β(κ + 1)

2β + (κi − 1)
+ β(κ + 1)

βκ + 1

]
, (8.183)

τyy = σ∞
1

2

[
β(κ + 1)

2β + (κi − 1)
− β(κ + 1)

βκ + 1

]
. (8.184)

If the far-field principal stresses are σ∞
1 and σ∞

2 , then the principle stresses inside
the inclusion would be given by

σ i1=
[β(κ+2)+κi]β(κ+1)
2(2β+κi−1)(βκ+1)

σ∞
1 + [β(κ−2)−(κi−2)]β(κ+1)

2(2β+κi−1)(βκ+1)
σ∞
2 , (8.185)

σ i2=
[β(κ−2)−(κi−2)]β(κ+1)

2(2β+κi−1)(βκ+1)
σ∞
1 + [β(κ+2)+κi]β(κ+1)

2(2β+κi−1)(βκ+1)
σ∞
2 , (8.186)

with σ i1 acting in the same direction as σ∞
1 , and similarly for σ i2 and σ

∞
2 . These

results allow the far-field stresses to be determined in terms of the stresses that
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are induced in the inclusion. The stresses in the region outside the inclusion
will be

τθθ = 1
2
(σ∞

1 +σ∞
2 )

[
1+B

(a
r

)2
]

− 1
2
(σ∞

1 − σ∞
2 )

[
1−3C

(a
r

)4
]
cos 2θ ,

(8.187)

τrr = 1
2
(σ∞

1 + σ∞
2 )

[
1 − B

(a
r

)2
]

+ 1
2
(σ∞

1 − σ∞
2 )

[
1 − 2A

(a
r

)2 − 3C
(a
r

)4
]
cos 2θ , (8.188)

τrθ = −1
2
(σ∞

1 − σ∞
2 )

[
1 + A

(a
r

)2 + 3C
(a
r

)4
]
sin 2θ , (8.189)

with {A, B, C} given by (8.181). Although the presence of the inclusion gives
rise to a stress-field perturbation that varies rapidly in the region immediately
surrounding the inclusion, as shown by (8.187)–(8.189), the inclusion itself is in
a state of homogenous stress, as shown by (8.185) and (8.186). The property of
having a uniform state of stress within an inclusion subjected to given far-field
stresses is shared in two dimensions by all ellipses, of which the circular inclusion
is a special case, and in three dimensions by all ellipsoidal inclusions, of which
spheroids and spheres are special cases (Eshelby, 1957). Although it is generally
thought that only ellipsoidal inclusions (or degenerate cases thereof ) have this
property, a general proof has not yet been given (Lubarda and Markenscoff,
1998).

As an example of the degree to which the stresses inside the inclusion differ
from the far-field stresses, consider a single far-field stress σ∞

1 in a rock mass
having ν = 0.25. If the inclusion also has a Poisson ratio of 0.25, then κ = κi = 2,
and (8.183) or (8.185) reduce to

σ i1 = 3β
2β + 1

σ∞
1 . (8.190)

The stress inside the inclusion goes to zero when the inclusion is much more
compliant than the surrounding rock and reaches 1.5σ∞

1 when the inclusion is
much stiffer than the surrounding rock.

The solution for circular inclusions was first presented by Sezawa and
Nishimura (1931) and Goodier (1933); the derivation presented above using
complex variables was given by Muskhelishvili (1963). Donnell (1941) discussed
elliptical inclusions that are welded to the surrounding rock material, as in the
case discussed above. Kouris et al. (1986) discussed the circular inclusion with a
sliding interface, which is assumed to be able to transmit only normal tractions,
but no shear tractions. Karihaloo and Viswanathan (1985) treated an elliptical
inclusion that has partially debonded from the matrix. In three dimensions, the
spherical inclusion was analysed by Goodier (1933), the spheroidal inclusion by
Edwards (1951), and the ellipsoidal inclusion by Robinson (1951) and Eshelby
(1957). Mura et al. (1985) treated the sliding ellipsoidal inclusion. Qu (1993)
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considered an ellipsoidal inclusion surrounded by a weakened interfacial layer
that was modeled as an elastic spring. Lutz and Zimmerman (1996) examined
the problem in which the elastic moduli vary as a function of distance from the
outer edge of a spherical inclusion, as would be the case if the inclusion were sur-
rounded by a region of damaged rock. Additional references for elastic inclusion
problems are given by Mura (1987).

8.9 Elliptical hole
in an infinite rock
mass

Consider a transformation defined by

z = ω(ζ ), (8.191)

where ω is an analytic function. This transformation maps points ζ = ξ + iη in
the ζ -plane into points z = x+ iy in the z-plane (Fig. 8.5). In particular, the point
P′ = (ξo, ηo) in the ζ -plane is mapped by (8.191) into the point P in the z-plane.
The line η = ηo in the ζ -plane is mapped into the curve PA in the z-plane. The
local slope of curve PA at point P can be calculated by starting from

dx + idy = dz = ω′(ζ )dζ = ω′(ζ )[dξ + idη] = Meiδ[dξ + idη], (8.192)

whereMeiδ is the polar form of the complex number ω′(ζ ). The angle δ can be
expressed in terms of ω′(ζ ) as follows:

ω′(ζ )/ω′(ζ ) = Meiδ/Me−iδ = e2iδ , (8.193)

Along the line η = ηo = constant, we have dη = 0, so (8.192) gives

dx+ idy = Meiδdξ = M(cos δ+ i sin δ)dξ = M cos δdξ + iM sin δdξ , (8.194)

which shows that the slope of the curve PA at point P is given by

(dy/dx)η=ηo = M sin δdξ/M cos δdξ = tan δ. (8.195)

Similarly, the line ξ = ξo = constant is transformed into the curve PB in the
ζ -plane, whose slope at point P is given by

(dy/dx)ξ=ξo = −1/ tan δ. (8.196)

The product of the local slopes of the curves PA and PB at point P is −1, which
shows that the twoorthogonal lines ξ = ξo andη = ηo in the ζ -plane correspond

Fig. 8.5 (a) A line of
constant η and a line of
constant ξ in the
ζ = (η, ξ) plane. (b)
Image, under mapping
(8.201), of these two
lines in the z = (x, y)
plane. (a)
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to two curves PA and PB in the z-plane that are locally orthogonal. Hence, the
variables (ξ , η) not only represent Cartesian coordinates in the ζ -plane, but can
also be thought of as orthogonal coordinates that identify points in the z-plane,
as in Fig. 8.5b.

Using (8.193), (8.38), and (8.40), the displacements in the directions of these
new coordinates ξ and η can be expressed as

2G(uξ + iuη) = [κφ(z)− zφ′(z)− ψ(z)][ω′(ζ )/ω′(ζ )]1/2, (8.197)

in which the derivative φ′(z) is calculated as

φ′(z) = dφ
dz

= dφ
dζ

dζ
dz

= 1
ω′(ζ )

dφ
dζ

. (8.198)

Likewise, the stresses in the (ξ , η) coordinate system can be expressed, using
(8.193), (8.41), (8.47), and (8.48), as

τξξ + τηη = 2[φ′(z)+ φ′(z)], (8.199)

τηη − τξξ + 2iτξη = 2[z̄φ′′(z)+ ψ ′(z)][ω′(ζ )/ω′(ζ )]. (8.200)

Consider now the specific mapping

z = x + iy = c cosh ζ = c cosh (ξ + iη), (8.201)

which in component form is equivalent to

x = c cosh ξ cos η, y = c sinh ξ sin η. (8.202)

From (8.202), we see that the curve in the z-plane that corresponds to ξ = ξo
satisfies the equation

x2

(c cosh ξo)2
+ y2

(c sinh ξo)2
= 1, (8.203)

and is therefore an ellipse (Fig. 8.5b) having semiaxes

a = c cosh ξo, b = c sinh ξo. (8.204)

The semiaxes are related through a2 − b2 = c2. The ratio of the smaller to the
larger semiaxis, b/a = tanh ξo, is often referred to as the aspect ratio of the hole.
In the limiting case of ξo = 0, the ellipse becomes a thin slit extending from
−c ≤ x ≤ c. The curve in the z-plane that corresponds to η = ηo satisfies the
equation

x2

(c cos ηo)2
− y2

(c sin ηo)2
= 1, (8.205)

and is therefore a hyperbola. The ellipses and hyperbolae corresponding to
constant values of ξ and η are confocal, with foci at (x = ±c, y = 0).
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Now consider an infinite rock mass containing a traction-free elliptical hole,
the boundary of which corresponds to ξ = ξo, so that the region outside the
hole corresponds to ξ > ξo. A far-field stress σ∞ acts in a direction rotated
from the major axis Ox of the ellipse by an angle β (Fig. 8.6a). This problem was
first solved by Inglis (1913) using Airy stress functions. The complex potentials
for this problem were found by Stevenson (1945) using elliptical coordinates
and by Muskhelishvili (1963), who used a conformal mapping approach (see
§8.11). Maugis (1992) pointed out that Stevenson’s solution yields the correct
stresses but contains an unwanted rotation at infinity. The potentials that satisfy
the stress boundary conditions while giving rise to no rotation at infinity are
(Maugis, 1992)

4φ(z) = σ∞c[e2(ξo+iβ) cosh ζ + {1 − e2(ξo+iβ)} sinh ζ ], (8.206)

4ψ(z) = −σ∞c[cosh 2ξo − cos 2β + e2ξo sinh 2(ζ − ξo − iβ)]/ sinh ζ .
(8.207)

The full state of stress and displacement outside the cavity was discussed in
detail by Maugis (1992), who gave an extensive bibliography. Pollard (1973a) also
discussed the stresses and displacements in some detail and gave the following
brief review of various geological and geomechanical applications of this solu-
tion. Brace (1960) and Hoek and Bieniawski (1965) used this solution as the basis
of a theory of fracture of brittle rocks. Walsh (1965a,b,c) used these results to
analyse the effect of elliptical cracks on the elastic behavior of rocks. Anderson
(1951) andWilliams (1959) used the flat elliptical crack as a model of faults in the
Earth’s crust. Anderson (1937) and Pollard (1973b) used the internally pressur-
ized elliptical crack as a model of sheet intrusions, whereas McLain (1968) and
Sun (1969) used this solution to study hydraulically induced fractures. Each of
these works has given rise to a large number of studies based on the solution for
an elliptical hole in a stressed elastic rock mass.

The most important quantity in this problem is the tangential stress at the
surface of the hole, that is, τηη at ξ = ξo. Since the normal stress τξξ is zero at
the hole, the tangential stress is found by substituting (8.206) into (8.199). We

Fig. 8.6 (a) Elliptic
hole subject to a far-field
stress. (b) Variation of
tangential stress, τηη,
for a hole with a = 2b,
for three values of β. (a)
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first use the chain rule to calculate

φ′(z) = dφ
dζ

dζ
dz

= dφ
dζ

/ dz
dζ

= 1
4
σ∞c{e2(ξo+iβ) sinh ζ + [1 − e2(ξo+iβ)] cosh ζ }/c sinh ζ

= 1
4
σ∞{e2(ξo+iβ) + [1 − e2(ξo+iβ)] coth ζ }. (8.208)

At the hole boundary, ζ = ξo + iη, so from (8.199) the tangential stress along
the boundary of the hole is given by

τηη = 4Re{φ′(z)} = σ∞e2ξo cos 2β + σ∞Re{[1 − e2(ξo+iβ)] coth(ξo + iη)}.
(8.209)

But Re{fg} = Re{f }Re{g} − Im{f }Im{g}, so
τηη

σ∞ =e2ξo cos2β+(1−e2ξo cos2β)Re{coth(ξo+ iη)}
−e2ξo sin2βIm{coth(ξo+ iη)}

=e2ξo cos2β+ (1−e2ξo cos2β)sinh2ξo
cosh2ξo−cos2η

− e2ξo sin2β sin2η
cosh2ξo−cos2η

=e2ξo cos2β+ sinh2ξo
cosh2ξo−cos2η

− e2ξo(sin2β sin2η+cos2β sinh2ξo)
cosh2ξo−cos2η

= e2ξo cos2β(cosh2ξo−cos2η)+sinh2ξo−e2ξo(sin2β sin2η+cos2β sinh2ξo)
cosh2ξo−cos2η

= sinh2ξo+cos2β−e2ξo cos2(β−η)
cosh2ξo−cos2η

= 2ab+(a2−b2)cos2β−(a+b)2cos2(β−η)
(a2+b2)−(a2−b2)cos2η , (8.210)

where in the last step we have used (8.204) to express the result in terms of a and
b. To evaluate (8.210), we note that on the hole boundary, where ξ = ξo, the
elliptical coordinate η is related to the polar coordinate θ by

tan θ = y
x

= c sinh ξo sin η
c cosh ξo cos η

= (b/a) tan η. (8.211)

The stresses along the hole boundary are shown in Fig. 8.6b for a hole having
a = 2b, for the three loading cases of β = {0◦, 45◦, 90◦}.

If the far-field stress is parallel to the major axis of the hole, then β = 0 and
(8.210) reduces to

τηη

σ∞ = 2ab+ (a2 − b2)− (a + b)2 cos 2η
(a2 + b2)− (a2 − b2) cos 2η . (8.212)
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At the end A of the major axis, θ = η = 0, and (8.212) shows that the tangential
stress is given by

τηη(A) = σ∞, (8.213)

regardless of the aspect ratio of the hole. At the end B of the minor axis, θ =
η = π/2, and (8.212) shows that

τηη(B) = σ∞[1 + (2b/a)]. (8.214)

Hence, the stress concentration factor at point Bwill be unity for a thin crack-like
hole and increase to 3 as b/a → 1 and the hole becomes a circle, in agreement
with the results of §8.5.

If the far-field stress is parallel to the minor axis of the hole, then β = π/2,
and (8.210) shows that

τηη(A) = σ∞[1 + (2a/b)], τηη(B) = −σ∞. (8.215)

Loading perpendicular to themain axis of a very thin crack (b� a)will therefore
give rise to a high compressive stress concentration factor at the ends of the
major axis.

If there are two principle stresses at infinity, σ∞
1 acting at an angle β to the

x-axis and σ∞
2 acting at an angle β + (π/2), then (8.210) generalizes to

τηη= 2ab(σ∞
1 +σ∞

2 )+(σ∞
1 −σ∞

2 )[(a2−b2) cos 2β−(a+b)2 cos 2(β−η)]
(a2+b2)−(a2−b2) cos 2η .

(8.216)

In the limit as ξo → ∞, the aspect ratio b/a = tanh ξo → 1, and the ellipse
degenerates into a circle. Choosing β = 0 in (8.216) so as to align the maximum
principle stress with the x-axis, as in §8.5, we find that (8.216) reduces to (8.116),
as it should.

If the far-field stress state is hydrostatic, then σ∞
1 = σ∞

2 = σ∞, and (8.216)
reduces to

τηη = 4abσ∞

(a2 + b2)− (a2 − b2) cos 2η . (8.217)

The tangential boundary stress along an elliptical hole subjected to an internal
pressure of magnitude p, with no far-field stress, can be found by starting with a
uniform stress ofmagnitude p and subtracting off the stress state given by (8.217),
with σ∞ = p, to yield

τηη = p
[
1 − 4ab

(a2 + b2)− (a2 − b2) cos 2η
]
. (8.218)

The foregoing equations give the stresses only along the boundary of the
hole. The stresses and displacements for arbitrary points within the rock mass
are given by Maugis (1992). The equations simplify greatly for the important
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case of a thin elliptical crack, which corresponds to the limit of ξo → 0. For
a uniaxial far-field stress σ∞ acting at an angle β to a crack that lies along the
x-axis, the full stress field is found by setting ξo = 0 in (8.199), (8.200), (8.206),
and (8.207):

τξξ + τηη

σ∞ = cos 2β + (1 − cos 2β) sinh 2ξ
cosh 2ξ − cos 2η

− sin 2β sin 2η
cosh 2ξ − cos 2η

, (8.219)

τξξ − τηη

σ∞ = cosh 2ξ cos 2(β − η)

cosh 2ξ − cos 2η
− (1 − cos 2β)(1 − cos 2η) sinh 2ξ

(cosh 2ξ − cos 2η)2

+ cos 2(β − η)− cosh 2ξ cos 2β − cosh 2ξ sin 2β sin 2η
(cosh 2ξ − cos 2η)2

,

(8.220)

2τξη
σ∞ = sinh 2ξ sin 2(β − η)

cosh 2ξ − cos 2η
− (1 − cos 2β)(1 − cosh 2ξ) sin 2η

(cosh 2ξ − cos 2η)2

− (1 − cos 2η) sinh 2ξ sin 2β
(cosh 2ξ − cos 2η)2

. (8.221)

The solution for the case of pure shear of magnitude τ∞ directed parallel
to the crack can be constructed by superposing the solutions for σ∞

1 = τ∞ at
β = π/4, and σ∞

2 = −τ∞ at β = 3π/4, to yield

τξξ

τ∞ = (cosh 2ξ − 1) sin 2η
cosh 2ξ − cos 2η

− (cosh 2ξ − 1) sin 2η
(cosh 2ξ − cos 2η)2

, (8.222)

τηη

τ∞ = − (cosh 2ξ + 1) sin 2η
cosh 2ξ + cos 2η

+ (cosh 2ξ − 1) sin 2η
(cosh 2ξ − cos 2η)2

, (8.223)

τηξ

τ∞ = sinh 2ξ cos 2η
cosh 2ξ − cos 2η

− (1 − cos 2η) sinh 2ξ
(cosh 2ξ − cos 2η)2

. (8.224)

The displacements aremore readily calculated in the z-coordinate system than
in the ζ -coordinate system. We start by recalling (8.38):

2G(u + iν) = κφ(z)− zφ′(z)+ ψ(z). (8.225)

The most important case is that of a far-field stress σ∞⊥ acting perpendicular to
the crack. With β = π/2 and ξo = 0 to represent a thin crack, the complex
potentials (8.206)–(8.208) reduce to

φ(z) = − c
4
σ∞⊥ (cosh ζ − 2 sinh ζ ), (8.226)

ψ(z) = − c
4
σ∞⊥ (2 − sinh 2ζ )/ sinh ζ . (8.227)

φ′(z) = −1
4
σ∞⊥ (1 − 2 coth ζ ). (8.228)

The complex displacement becomes

8G(u + iν)
cσ∞⊥

= −κ cosh ζ + 2κ sinh ζ + (1 − 2 coth ζ̄ ) cosh ζ

+ (2 − sinh 2ζ̄ )/ sinh ζ̄ . (8.229)
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The displacement at the surface of the crack is found by setting ξ = ξo = 0, in
which case ζ = iη, cosh ζ = cos η = x/c, and the normal displacement of the
crack face is found to be given by

ν = (κ + 1)σ∞⊥
4G

(a2 − x2)1/2. (8.230)

where we have made use of the fact that, for a thin crack, the focal distance c
coincides with the half-length, a.

The expressions (8.219)–(8.230) give the leading-order terms for the stresses
and displacements. For a real crack with a finite value of ξo, additional terms of
order ξo and higher would appear in the full expressions, but they would vanish
as ξo → 0. Now consider a crack having a small but finite value of ξo. From
(8.204), we see that b/a = tanh ξo ≈ ξo, so ξo essentially represents the aspect
ratio of the crack in its unstressed state. From (8.203), the initial shape of the
crack is seen to be described by

yi = ξo(a2 − x2)1/2. (8.231)

Comparison of (8.230) and (8.231) shows that the displacement of the crack
face at any location x is proportional to the initial aperture of the crack at that
location, implying that as the far-field stress increases, the crack remains elliptical
as it closes. The crack will be fully closed along its entire length when ν = yi ,
which occurs when

σ∞⊥ = 4Gξo
κ + 1

. (8.232)

For plane strain, κ + 1 = 4(1− ν), and so the pressure required to close a crack
of initial aspect ratio ξo is

σ∞⊥ (closure) = Gξo
1 − ν

. (8.233)

Shear moduli of rocks are on the order of 10GPa, so a crack of initial aspect ratio
0.001 will close up under a stress of about 10 MPa, or 1500 psi, for example.

If a far-field stress of magnitude σ∞‖ is aligned parallel to the crack, which is
to say with β = 0, an analysis similar to that given above would reveal that there
is no normal displacement along the crack faces, aside from terms of order ξo.
Hence, the closure of a thin crack is due entirely to the component of the far-field
stress that is aligned perpendicular to it. So, if the far-field principal stresses were
σ∞
2 acting at angle β to the crack, and σ∞

1 at β+(π/2), condition (8.233) would
be replaced by

σ∞
1 cos2 β + σ∞

2 sin2 β = Gξo
1 − ν

. (8.234)

8.10 Stresses near
a crack tip

To study the behavior of the stresses in the vicinity of the crack tip, we first
recall from (8.202) that the point P = (x, y) is related to the elliptical coordinates
(ξ , η) by

x = c cosh ξ cos η, y = c sinh ξ sin η. (8.235)
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Fig. 8.7 Thin elliptic
crack, defined by
ξ = ξo, with the (x, y)
coordinate system
centered at the center of
the crack, and the
Cartesian (X, Y) and
polar (r, θ ) coordinate
systems centered at the
focal point, F .
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We now set up a new (X, Y) coordinate system centered on the focal point (c, 0),
defined so thatX = x−c and Y = y (Fig. 8.7). For an infinitely thin crack, ξo = 0,
and both ξ and ηwill be small in the vicinity of the crack tip, so neglecting terms
higher than the second power in (8.235) gives

X = x − c = c(ξ 2 − η2)/2, Y = y = cξη. (8.236)

The polar coordinates centered at the focal point can be expressed as

X = r cos θ , Y = r sin θ . (8.237)

These relations can be inverted to give

ξ = (r/c)1/2(1 + cos θ)1/2 = (2r/c)1/2 cos(θ/2), (8.238)

η = (r/c)1/2(1 − cos θ)1/2 = (2r/c)1/2 sin(θ/2). (8.239)

The term that appears in the denominator of (8.219)–(8.221) takes the form

cosh 2ξ − cos 2η ≈ 2(ξ 2 + η2) = 4r/c. (8.240)

The stresses in the vicinity of the tip of a thin crack of half-length c, subject
to a remote stress of magnitude σ∞ acting at an inclined angle β, can be found
by substituting (8.238)–(8.240) into (8.219)–(8.221). Making use of the fact that ξ
and η are small, and neglecting terms of order r1/2 or higher in r, we find

(τξξ − τηη)/σ
∞ = cos 2β + (c/2r)1/2[2 cos(θ/2) sin2 β

− sin 2β sin(θ/2)], (8.241)

(τξξ − τηη)/σ
∞ = cos 2β + (c/2r)1/2[sin 2β sin(θ/2)

− sin2 β sin(θ/2) sin(θ)], (8.242)

2τξη/σ∞ = (c/2r)1/2[(1/2) sin 2β sin(θ/2)(2 − sin θ)

+ sin2 β cos(θ/2) sin(θ)]. (8.243)

Although these are expressed as functions of the polar coordinates r and θ ,
they nevertheless are the stresses in the (ξ , η) coordinate system. These stresses
can be transformed into the (x, y) coordinate system using (8.41) and (8.42),
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or, more specifically, (8.200) and (8.201). With reference to Fig. 8.7, the line
PN is orthogonal to the curve of constant ξ and therefore lies in the direction
of increasing ξ . The (ξ , η) coordinate system is therefore rotated by angle δ
from the (x, y) coordinate system. From (8.193), (8.201), and making use of the
smallness of ξ and η, we find

e2iδ = ω′(ζ )/ω′(ζ ) = sinh(ξ+iη)
sinh(ξ−iη)

≈ ξ+iη
ξ−iη

· ξ+iη
ξ+iη

= (ξ 2−η2)+i2ξη
ξ 2+η2 .

(8.244)

Now using (8.238) and (8.239) to express ξ and η in terms of r and θ , we find

e2iδ= cos2(θ/2)−sin2(θ/2)+2i cos(θ/2) sin(θ/2)
cos2(θ/2)+sin2(θ/2)

=cos θ + i sin θ=eiθ ,

(8.245)

which is to say, δ = θ/2. Hence, in the vicinity of the crack tip, the (r, θ ) coor-
dinate system is rotated counterclockwise by angle θ from the (x, y) coordinate
system, whereas the (ξ , η) coordinate system is rotated counterclockwise from
the (x, y) coordinate system by θ/2.

Using (8.41) and (8.42), we can now calculate the stress components in both
the Cartesian and the polar coordinate systems centered on the crack tip:

τrr = σ∞ cos 2β cos2 θ + 2σ∞(c/8r)1/2 cos(θ/2)[1 + sin2(θ/2)] sin2 β
+ σ∞(c/8r)1/2 sin(θ/2)[1 − 3 sin2(θ/2)] sin2 β, (8.246)

τθθ = σ∞ cos 2β sin2 θ + 2σ∞(c/8r)1/2 cos3(θ/2) sin2 β

− 3σ∞(c/8r)1/2 sin(θ/2) cos2(θ/2) sin 2β, (8.247)

τrθ = −σ∞ cos 2β sin θ cos θ + 2σ∞(c/8r)1/2 cos2(θ/2) sin(θ/2) sin2 β

+ σ∞(c/8r)1/2 cos(θ/2)[1 − 3 sin2(θ/2)] sin 2β, (8.248)

τxx = σ∞ cos 2β + 2σ∞(c/8r)1/2 cos(θ/2)[1 − sin(θ/2) sin(3θ/2)] sin2 β
− σ∞(c/8r)1/2 sin(θ/2)[2 + cos(θ/2) cos(3θ/2)] sin 2β, (8.249)

τyy = 2σ∞(c/8r)1/2 cos(θ/2)[1 + sin(θ/2) sin(3θ/2)] sin2 β
+ σ∞(c/8r)1/2 sin(θ/2) cos(θ/2) cos(3θ/2) sin 2β, (8.250)

τxy = 2σ∞(c/8r)1/2 sin(θ/2) cos(θ/2) cos(3θ/2) sin2 β

+ σ∞(c/8r)1/2 cos(θ/2)[1 + sin(θ/2) sin(3θ/2)] sin 2β. (8.251)

Note that the nonsingular terms appearing in (8.246)–(8.249), which have been
the subject of some discussion and controversy (Maugis, 1992), are not simply
equal to the stresses that would exist in the absence of the crack. Maugis (2000,
p. 159) gives the next terms in the series expansions, which are of order r1/2. The
leading-order terms in the expressions for the displacements near the crack tip,
which are of order r1/2, are also given by Maugis.
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The stresses, and hence the strains, are seen to be unbounded near the crack
tip, with singularities proportional to (r/c)−1/2. However, the above solution
was developed within the context of linear elasticity, which is founded upon
the assumption that the strains are much less than unity. The mathematical
singularities would disappear if it were acknowledged that real cracks have finite,
nonzero aspect ratios. Nevertheless, these expressions for the stresses near a
crack tip, in particular in the equivalent forms given below, play important roles
in the theory of linear elastic fracture mechanics.

Each of the singular terms in (8.246)–(8.251) involves either sin2 β or sin 2β,
so a far-field stress oriented parallel to the crack does not give rise to stress
singularities. With reference to a far-field stress tensor expressed in the (x, y)
coordinate system, therefore, only the stresses τ∞

yy and τ∞
xy give rise to singular

stresses near the crack tip. The singular part of the crack-tip stress field caused
by a far-field stress τ∞

yy , acting perpendicular to the crack face, is found from
(8.246)–(8.248) by setting β = π/2. In this case, sin2 β = 1 and sin 2β = 0, and,
after replacing τ∞

yy with the more descriptive notation σ∞⊥ , we find

τrr = σ∞⊥ (c/2r)1/2 cos(θ/2)[1 + sin2(θ/2)], (8.252)

τθθ = σ∞⊥ (c/2r)1/2 cos3(θ/2), (8.253)

τrθ = σ∞⊥ (c/2r)1/2 cos2(θ/2) sin(θ/2), (8.254)

τxx = σ∞⊥ (c/2r)1/2 cos(θ/2)[1 − sin(θ/2) sin(3θ/2)], (8.255)

τyy = σ∞⊥ (c/2r)1/2 cos(θ/2)[1 + sin(θ/2) sin(3θ/2)], (8.256)

τxy = σ∞⊥ (c/2r)1/2 sin(θ/2) cos(θ/2) cos(3θ/2). (8.257)

These expressions are often written, following Irwin (1958), as

τrr = K1(1/2π r)1/2 cos(θ/2)[1 + sin2(θ/2)], (8.258)

τθθ = K1(1/2π r)1/2 cos3(θ/2), (8.259)

τrθ = K1(1/2π r)1/2 cos2(θ/2) sin(θ/2), (8.260)

τxx = K1(1/2π r)1/2 cos(θ/2)[1 − sin(θ/2) sin(3θ/2)], (8.261)

τyy = K1(1/2π r)1/2 cos(θ/2)[1 + sin(θ/2) sin(3θ/2)], (8.262)

τxy = K1(1/2π r)1/2 sin(θ/2) cos(θ/2) cos(3θ/2). (8.263)

where K1 = σ∞⊥ (πc)1/2 is the mode I stress intensity factor. The three modes of
deformation at a crack tip are illustrated in Fig. 8.8, withmode I the crack-opening
mode, mode II the sliding mode, and mode III the tearing mode.

The stresses arising near the crack tip due to a far-field state of pure shear
in the x–y plane can be found by superimposing the solution due to a principal
stress of magnitude τ∞ at an angle β = π/4, and that due to a principal stress
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Fig. 8.8 The
canonical crack-tip
deformation modes:
(I) opening mode,
(II) sliding mode, and
(III) tearing mode, in
which top half of figure
moves into page,
bottom half moves out
of page.
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of magnitude −τ∞ at an angle β = 3π/4:

τrr = τ∞(c/2r)1/2 sin(θ/2)[1 − 3 sin2(θ/2)], (8.264)

τθθ = −3τ∞(c/2r)1/2 sin(θ/2) cos2(θ/2), (8.265)

τrθ = τ∞(c/2r)1/2 cos(θ/2)[1 − 3 sin2(θ/2)], (8.266)

τxx = −τ∞(c/2r)1/2 sin(θ/2)[2 + cos(θ/2) cos(3θ/2)], (8.267)

τyy = τ∞(c/2r)1/2 sin(θ/2) cos(θ/2) cos(3θ/2), (8.268)

τxy = τ∞(c/2r)1/2 cos(θ/2)[1 + sin(θ/2) sin(3θ/2)], (8.269)

These stresses can be written in terms of the mode II stress intensity factor,
KII = τ∞(πc)1/2, as follows:

τrr = KII(1/2π r)1/2 sin(θ/2)[1 − 3 sin2(θ/2)], (8.270)

τθθ = −3KII(1/2π r)1/2 sin(θ/2) cos2(θ/2), (8.271)

τrθ = KII(1/2π r)1/2 cos(θ/2)[1 − 3 sin2(θ/2)], (8.272)

τxx = −KII(1/2π r)1/2 sin(θ/2)[2 + cos(θ/2) cos(3θ/2)], (8.273)

τyy = KII(1/2π r)1/2 sin(θ/2) cos(θ/2) cos(3θ/2), (8.274)

τxy = KII(1/2π r)1/2 cos(θ/2)[1 + sin(θ/2) sin(3θ/2)]. (8.275)

The third case, that of a far-field out-of-plane shear stress τ∞
yz , gives rise to the

following singular stresses near the crack tip (Lardner, 1974, p. 160; Parton and
Morozov, 1978, p. 30):

τxz = −τ∞
yz (c/2r)

1/2 sin(θ/2) = −KIII(1/2π r)1/2 sin(θ/2), (8.276)

τyz = τ∞
yz (c/2r)

1/2 cos(θ/2) = KIII(1/2π r)1/2 cos(θ/2), (8.277)

where KIII = τ∞
yz (πc)

1/2 is themode III stress intensity factor for a single crack in
an infinite body. In the context of antiplane loading, the subscript z represents the
third, out-of-plane Cartesian coordinate and not the complex variable z = x+ iy.

The stress intensity factors presented above are relevant to the tip of a single
crack in an infinite body, subjected to far-field stresses at infinity. More generally,
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for example if the crack is in a finite body, or if multiple cracks are present, the
stress intensity factors can be defined by

KI = lim
z→zo

[2π(z − zo)1/2τyy(z)], (8.278)

KII = lim
z→zo

[2π(z − zo)1/2τxy(z)], (8.279)

KIII = lim
z→zo

[2π(z − zo)1/2τyy(z)], (8.280)

where z = x + iy, and zo represents the location of the crack tip, which in the
present case is zo = c + i0 = c.

The solution to the problem of a thin elliptical crack subjected to a fluid
pressure p along its internal boundary is obtained by starting with the state of
uniform hydrostatic stress of magnitude p throughout the body and subtracting
off the stresses due to far-field stresses τ∞

xx = τ∞
yy = p. Of these three stress fields,

only the one due to τ∞
yy gives rise to singular stresses near the crack tip. Hence,

the singular component of the stress field due to internal pressure p is given by
(8.252)–(8.257), with τ∞

yy replaced by−p, or, equivalently, by (8.258)–(8.263) with
K1 = −p(πc)1/2.

8.11 Nearly
rectangular hole

The most powerful technique for finding the stresses and displacements around
two-dimensional holes is that of conformalmapping, in which the region outside
the hole in the z-plane is transformed into the region outside (or inside) the
unit circle in the ζ -plane, through a mapping z = ω(ζ ). The problem is then
solved in the ζ -plane, although the boundary conditions tend to take on a more
complicated form in the transformed plane than in the physical z-plane. This
method is described in detail in the monographs of Muskhelishvili (1963), Savin
(1961), and England (1971). Full exploitation of this method requires knowledge
of the various integral theorems of complex analysis, which are, however, beyond
the scope of the present discussion.

TheWeierstrass theorem assures that the region outside any reasonably well-
behaved hole shape can be conformally mapped into the interior of a circle. In
particular, if the hole is a polygon, the Schwarz–Christoffel method explicitly
yields z = ω(ζ ) in the form of a convergent infinite series. For a square aligned
with its sides parallel to the x- and y-axes, the mapping function is

z = ω(ζ ) = a
[
ζ−1 + 1

6
ζ 3 + 1

56
ζ 7 + 1

176
ζ 11 + · · ·

]
. (8.281)

If only the first two terms of the mapping function are retained, then the unit
circle ζ = exp(iα) is mapped into the curve given by

x = a
(
cosα − 1

6
cos 3α

)
, y = −a

(
sin α + 1

6
sin 3α

)
, (8.282)

which is a quasi-square with rounded corners (Fig. 8.9a). Since x = 5a/6 when
α = 0, the “side” of the square is of length 5a/3. The radius of curvature at the
corners is approximately a/10, or about 0.06 times the length of the side.
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Fig. 8.9 (a) Nearly
rectangular hole,
described by (8.282),
subjected to a far-field
stress inclined at an
angle β. (b) Normalized
tangential stress at the
hole boundary;
numbers near curves
refer to the stress
inclination angle, β.
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For the case of a far-field stress σ∞ acting at an angle β to the x-axis (Fig.
8.9a), Savin (1961) found the following complex stress potentials:

φ(ζ ) = σ∞a
[
1
4
ζ−1 +

(3
7
cos 2β + 3

5
i sin 2β

)
ζ + 1

24
ζ 3

]
, (8.283)

ψ(ζ )=−σ∞a
[
(1/2)e−2iβζ−1+{13ζ − 26((3/7) cos 2β+(3/5)i sin 2β)ζ 3}

12(2+ζ 4)
]
.

(8.284)

from which the stresses and displacements can be found using (8.36), (8.47), and
(8.48). In particular, the tangential stress at the point on the hole boundary that
corresponds to the point ζ = exp(iα) is given by

τtan = 4Re{φ′(z)} = 4Re{φ′(ζ )/ω′(ζ )}ζ=exp(iα)

= σ∞Re

{ [70ζ−2 − (120 cos 2β + 168i sin 2β)− 35ζ 2]
35(2ζ 2 + ζ 2)

}
ζ=exp(iα)

= σ∞ (105 − 360 cos 2β cos 2α + 168 sin 2β sin 2α)
35(5 + 4 cos 4α)

. (8.285)

Figure 8.9b shows the variation of the tangential stress at the hole boundary,
as a function of the polar angle θ = tan−1(y/x), for various values of the stress
inclination angle, β. The maximum stresses occur close to the “corners” of
the hole, where θ = 45◦ and 135◦, and can be seen to exceed the maximum
value of 3σ∞ that occurs on the boundary of a circular hole. If more terms are
retained in the mapping function, the hole approximates a square more closely;
consequently, the radius of curvature at the corners decreases and the maximum
tangential stresses increase.

Savin (1961) and Gerçek (1988) give detailed results for rectangular holes of
various aspect ratios. Berry (1960a), Berry and Sales (1961,1962), Salamon (1964)
and Ryder and Officer (1964) have discussed rectangular holes with reference
to underground coal mines, in many cases taking the elastic anisotropy of the
ground into account. Gerçek (1997) and Exadaktylos and Stavropoulou (2002)
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used conformal mapping to analyse the stresses around holes with shapes com-
monly used for underground tunnels, such as semicircles and a hole with an
arched roof and parabolic floor.

8.12 Spherical
cavities

Although man-made excavations in rock are rarely if ever spherical, the spher-
ical cavity is useful as a model for pores in sedimentary rocks (Guéguen and
Palciauskas, 1994) and for fluid inclusions that occur in some igneous rocks
(Lacazette, 1990). Elasticity problems involving spherical geometries can be
solved using the Papkovich–Neuber displacement function formulation, the
details of which can be found in Sokolnikoff (1956, Chapter 6) or Soutas–Little
(1999, Chapter 14).

Consider a spherical cavity of radius a in an infinite elastic rock mass, with
the center of the cavity taken as the origin of a Cartesian coordinate system. In
general, the far-field stress statewill consist of three orthogonal principal stresses,
and the full solution will be the appropriate superposition of three solutions for
the case of a single far-field principal stress. Without loss of generality, this far-
field stress can be taken to be aligned with the z-axis, in which case the resulting
state of displacement and stress in the rock mass will be axisymmetric about the
z-axis. The solution for the case of three principal stresses can be obtained by
appropriate superposition of the solution derived below.

The appropriate boundary conditions for this problem are that

as r → ∞, τzz → τ∞
zz ≡ T, all other stresses → 0, (8.286)

and that all tractions must vanish at r = a. To solve this problem, consider
first the stress state in which the only nonzero stress component is the uniform
stress τzz = T. We now invoke a standard spherical coordinate system, in
which θ is the polar angular coordinate in the x–y plane, and φ is the angle of
rotation from the z-axis. In terms of this spherical coordinate system, stress state
(8.286) corresponds to the following nonzero stress components (Soutas-Little
1999, p. 407):

τrr = T cos2 φ, τφφ = T sin2 φ, τrφ = −T sin φ cosφ. (8.287)

This stress state satisfies the boundary conditions at infinity, but gives unwanted,
nonzero values for the tractions τrr and τrφ at the cavity surface. Hence, we need
to superpose a stress state that cancels out these tractions at the surface r = a
andwhich vanishes at infinity. For axisymmetric elasticity problems in the region
exterior to a spherical cavity, the most general solution that gives zero stresses at
infinity is (Soutas-Little, 1999, pp. 396–7)

ur =
∞∑
n=0

[Cnn(n + 3 − 4ν)r−n − Dn(n + 1)r−(n+2)]Pn(cosφ), (8.288)

uφ =
∞∑
n=0

[Cnn(−n + 4 − 4ν)r−n + Dnr−(n+2)]dPn(cosφ)/dφ, (8.289)
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τrr = 2G
∞∑
n=0

[−Cnn(n2 + 3n − 2ν)r−(n+1)

+ Dn(n + 1)(n + 2)r−(n+3)]Pn(cosφ), (8.290)

τrφ = 2G
∞∑
n=0

[Cn(n2−2+2ν)r−(n+1)−Dn(n+2)r−(n+3)]dPn(cosφ)/dφ,
(8.291)

τφφ = 2G
∞∑
n=0

[Cn(n2 − 2n − 1 + 2ν)r−(n+1) − Dn(n + 1)2r−(n+3)]Pn(cosφ)

+ 2G
∞∑
n=0

[Cn(n−4+4ν)r−(n+1)−Dnr−(n+3)] cot φ[dPn(cosφ)/dφ],
(8.292)

τθθ = 2G
∞∑
n=0

[Cnn(n + 3−4nν−2ν)r−(n+1)−Dn(n + 1)r−(n+3)]Pn(cosφ)

− 2G
∞∑
n=0

[Cn(n−4+4ν)r−(n+1)−Dnr−(n+3)] cot φ[dPn(cosφ)/dφ],
(8.293)

where Pn is the Legendre polynomial of order n, and the other stress and
displacement components are zero. The first three Legendre polynomials are
given by

P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2. (8.294)

Although they will not be needed in the present problem, the remaining
Legendre polynomials can be defined in terms of the following recursion relation:

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x). (8.295)

The coefficients Cn and Dn must be chosen so that the tractions τrr and τrφ given
by (8.290) and (8.291) cancel out those given by (8.287) at the cavity surface.
Expressing these tractions in terms of Legendre polynomials, we find that the
stresses given by (8.290)–(8.293) must satisfy the following boundary conditions
at r = a:

τrr(r = a) = −T cos2 φ = −(T/3)[1 + 2P2(cosφ)], (8.296)

τrφ(r = a) = T sin φ cosφ = −(T/3)[dP2(cosφ)/dφ]. (8.297)

Evaluating the stresses given by (8.290) and (8.291) at r = a and equating them
term-by-term to those given by (8.296) and (8.297), yields the following three
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equations:

4GD0a−3 = −T/3, (8.298)

4G[−2C2(5 − ν)a−3 + 6D2a−5] = −2T/3, (8.299)

4G[C2(1 + ν)a−3 − 2D2a−5] = −T/3, (8.300)

the solution to which is (Goodier, 1933)

C2 = 5Ta3/12G(7− 5ν), D0 = −Ta3/12G, D2 = Ta5/2G(7− 5ν). (8.301)

The complete state of stress is then given by the superposition of the stresses
given by (8.287), (8.288)–(8.293), and (8.301).

The uniaxial stress state in the rock mass, as given by (8.286) or (8.287), is
perturbed by the presence of the cavity. As for the case of two-dimensional
cavities, this effect dies off with distance from the cavity and is greatest at the
cavity surface. The nonzero stresses at the cavity surface, found by setting r = a
in (8.287), (8.288)–(8.293), and (8.296), are

τφφ(a)
T

= 27 − 15ν
2(7 − 5ν)

− 15
(7 − 5ν)

cos2 φ, (8.302)

τθθ (a)
T

= −3(1 − 5ν)
2(7 − 5ν)

− 15ν
(7 − 5ν)

cos2 φ. (8.303)

The maximum value of τφφ occurs along the equatorial line φ = π/2 (i.e.,
z = 0) and takes the value 2T for a rock with ν = 0.2. For this value of ν, the
stress component τθθ varies between 0 and −T and attains its extreme value
of −0.5T at the north (φ = 0) and south (φ = π) poles of the sphere. The
stress concentration factor along the equator varies within a narrow range from
1.93, when ν = 0, to 2.17, when ν = 0.5. This is in contrast to the stress
concentration at the boundary of a two-dimensional circular cavity under far-
field uniaxial tension, which has the value of 3 for any value of the Poisson ratio.
As a general rule, stress concentrations around three-dimensional cavities are
less severe than those around two-dimensional cavities and die off more rapidly
with distance from the cavity surface.

The problem of a spherical pore subjected to a pore pressure of magnitude P
acting over its surface, with zero stresses at infinity, can be solved by using only
the P0 term in the general solution. From (8.288)–(8.293), the P0 term gives

ur = −D0/r2, uφ = uθ = 0, (8.304)

τrr = 4GD0/r3, τφφ = τθθ = −2GD0/r3. (8.305)

The boundary condition τrr(a) = 0 implies that D0 = Pa3/4G. Hence, the
solution for a pressurized spherical pore is

ur = −Pa3/4Gr2, τrr = P(a/r)3, τφφ = τθθ = −(P/2)(a/r)3. (8.306)

The displacement dies off as r−2, and the stresses decay as r−3. This is in contrast
to a pressurized two-dimensional circular pore, forwhich the displacement varies
as r−1 and the stresses as r−2.
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As the radial displacement at the pore wall is −Pa/4G, the total volume
increase of the pressurized pore is Pπa3/G. The “pore compressibility” Cpp of a
spherical cavity, defined in §7.2 as the fractional derivative of the pore volume
with respect to the pore pressure, is therefore equal to 3/4G. The sphere is the
least compressible of all possible pore shapes (Zimmerman, 1991).

8.13 Penny-shaped
cracks

The most general three-dimensional cavity (or inclusion) shape that is amenable
to analytical treatment is the ellipsoid, which can be thought of as a sphere
that has been stretched by possibly different amounts in three mutually orthog-
onal directions. An ellipsoidal surface centered at the origin can therefore be
described by

(x/a)2 + (y/b)2 + (z/c)2 = 1, (8.307)

where {a, b, c} are the semiaxes in the {x, y, z} directions, respectively. The prob-
lem of an ellipsoidal cavity in an infinitematrix, subjected to a far-field stress state
whose principal directions are aligned with the axes of the ellipsoid, was solved
by Sadowsky and Sternberg (1949) using ellipsoidal coordinates. This analysis
was extended to elastic ellipsoidal inclusions by Robinson (1951). Eshelby (1957)
used methods of potential theory to treat the case of arbitrary orientation of the
ellipsoid with respect to the principal stresses. Extensive discussion of ellipsoidal
elastic inclusions, with cavities as a special case, has been given by Mura (1987).

If all three axes are of equal length, {a = b = c}, the ellipsoid degenerates into
a sphere, which was treated in §8.12. If two axes are of equal length, {a = b �= c},
then the ellipsoid degenerates into a spheroid, which can be thought of as being
formed by revolving an ellipse about one of its axes of symmetry. In the case
{a = b > c}, the spheroid is referred to as oblate, whereas if {a = b < c}, it is
prolate. In the limit of c � a, the prolate spheroid becomes a cylinder, which
was discussed in §8.5–§8.7. The remaining limiting case, c � a, represents a
thin, “penny-shaped” crack. This shape is of great interest in rock mechanics
as a model for microcracks and hydraulic fractures. Stresses and displacements
around penny-shaped cracks can be studied by examining the limiting case of
solutions for thin oblate spheroids (Eshelby, 1957) or can be studied by using
methods in which the crack is assumed to be infinitely thin before the equations
are solved (Sack, 1946; Sneddon, 1946).

Sneddon (1946) solved the problem of an infinitely thin crack subjected to
uniform normal traction p applied to its faces, such as would be applied by pore
fluid. The case of a traction-free crack in a body subjected to a far-field tension
perpendicular to the crack plane can be treated using superposition, as in §8.12.
The displacement of the crack surface in the direction normal to its plane is
given by

w = 2(1 − ν)pa
πG

√
1 − (r/a)2 = wmax

√
1 − (r/a)2, (8.308)

where a is the radius of the crack in its (x, y) plane. The crack-opening displace-
ment is greatest at the center of the crack and zero at its edges. If the crack is



Jaeger: “chapter08” — 2006/12/15 — 09:58 — page 248 — #44

248 Chapter 8

initially flat, application of a pore pressure of magnitude p will enlarge it into a
spheroid whose semimajor axis equals a, and semiminor axis is wmax.

Conversely, if the crack initially is a thin oblate spheroid with c = αa and
is subjected to a far-field compressive stress σ∞⊥ , it will completely close up
when the magnitude of the displacement at its center reaches c. Setting wmax in
(8.308) equal to c = αa and replacing p with σ∞⊥ yields the closing pressure of a
penny-shaped crack of initial aspect ratio α:

σ∞⊥ (closure) = πGα
2(1 − ν)

. (8.309)

The closing pressure of a three-dimensional penny-shaped crack exceeds that of
a two-dimensional elliptical crack having the same initial aspect ratio, as given
by (8.233), by a factor of π/2. Note that applying Sneddon’s results to an initially
oblate crack involves errors on the order of α, arising from the fact that in his
solution, the tractions are applied along the x–y plane, whereas the initial crack
surface deviates slightly from that plane.

The excess elastic strain energy due to a pressurized crack can be calculated
from (5.158), by noting that in the present case p · u = pw, and F = 0, yielding

hydrostatic = 1
2

∫
2A

pwdA =
2π∫
0

a∫
0

2(1 − ν)p2a
πG

√
1 − (r/a)2rdrdθ

= 4(1 − ν)p2a3

3G
, (8.310)

where the additional factor of 2 arises from considering both faces of the crack.
As the initial surface of the crack consists only of faces normal to the z-axis,
the state of loading considered by Sneddon also applies to a thin crack loaded
by hydrostatic pressure over its entire surface. Superposition arguments then
show that (8.310) also represents the excess energy caused by far-field hydrostatic
loading of magnitude p. It also follows that no additional elastic strain energy
arises if the far-field principal stresses are parallel to the plane of the crack (Sack,
1946). To within an error of order α, the strain energy of a pressurized crack is
independent of the initial aspect ratio, as can be verified by solving the problem
for a spheroid of arbitrary aspect ratio and then taking the limit as the aspect
ratio vanishes (Zimmerman, 1985b).

Segedin (1950) solved the problem of an infinitely thin penny-shaped crack
whose faces are subjected to uniform shearing tractions. As for the case of
normal loading, superposition can be used to find the solution for a traction-
free crack subject to far-field shear (Fig. 8.10a). On the crack surface, the only
nonzero displacement component, which is the one in the direction of shear, is
given by

u = ±4(1 − ν)Sa
πG(2 − ν)

√
1 − (r/a)2 = ±umax

√
1 − (r/a)2, (8.311)

where S is the magnitude of the shear traction, and the different signs apply to
the two surfaces of the crack. The excess elastic strain energy can be found by
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Fig. 8.10
(a) Penny-shaped crack
lying in the x-y plane,
subject to far-field shear
stress. (b) Coordinate
system used for stresses
near the edge of the
crack.
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evaluating (5.158), noting that in the present case, p · u = Su and F = 0:

shear = 1
2

∫
2A

SudA =
2π∫
0

a∫
0

4(1 − ν)S2a
πG(2 − ν)

√
1 − (r/a)2rdrdθ

= 8(1 − ν)S2a3

3G(2 − ν)
. (8.312)

Comparison of (8.310) and (8.312) shows that the excess energies associated with
shear and normal loading of a thin crack are quite similar and coincide if ν = 0.

The stresses in the vicinity of the edge of a penny-shaped crack, which is to
say in the vicinity of the points located at {r = a, z = 0}, can be expressed in
forms analogous to those given in §8.10 for two-dimensional cracks (Kassir and
Sih, 1975, Chapter 1). For a crack pressurized by a pore pressure p, the dominant
terms in the expressions for the stress components are

τρρ = (p/2π)(a/2ρ)1/2[5 cos(α/2)− cos(3α/2)], (8.313)

ταα = (p/2π)(a/2ρ)1/2[3 cos(α/2)+ cos(3α/2)], (8.314)

τρα = (p/2π)(a/2ρ)1/2[sin(α/2)+ sin(3α/2)], (8.315)

τzz = (4νp/π)(a/2ρ)1/2 cos(α/2), (8.316)

τρz = ταz − 0, (8.317)

where (ρ,α) are the local polar coordinates in the (x, y) plane, centered on a
point on the edge of the crack (Fig. 8.10b).

If the crack faces are subjected to a shear traction of magnitude S, acting in
the x direction, say, then the stresses in the vicinity of the edge of the crack will
be, to leading order, given by

τρρ = [S/(2 − ν)π ](a/2ρ)1/2 cos θ [3 sin(3α/2)− 5 sin(α/2)], (8.318)

ταα = −[S/(2 − ν)π ](a/2ρ)1/2 cos θ [3 sin(3α/2)+ 3 sin(α/2)], (8.319)

τρα = [S/(2 − ν)π ](a/2ρ)1/2 cos θ [cos(3α/2)+ (1/3) cos(α/2)], (8.320)
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τzz = [8νS/3π(2 − ν)](a/2ρ)1/2 cos θ sin(α/2), (8.321)

ταz = −[4S(1 − ν)/π(2 − ν)](a/2ρ)1/2 sin θ cos(α/2), (8.322)

τρz = −[4S(1 − ν)/π(2 − ν)](a/2ρ)1/2 sin θ sin(α/2), (8.323)

where θ is the angle of counterclockwise rotation from the x-axis to the origin
of the (ρ,α) coordinate system.

8.14 Interactions
between nearby
cavities

The analysis of the stresses around a cavity, be it a microscopic pore or a macro-
scopic excavation, is facilitated by assuming that the cavity is located within an
infinite rockmass. If the cavity is not located too close to any neighboring cavities
or other boundaries, such as the ground surface, this assumption is reasonable.
Roughly speaking, the nearest distance to another cavity or other type of bound-
ary should be at least three times the characteristic dimension of the cavity in
order for this assumption to be acceptable.

Exact solutions of problems involving multiple cavities or inclusions, or cavi-
ties/inclusions located near a free surface, are difficult to obtain. One important
such problem that has been solved in closed form is that of two nearby circular
holes in an infinite region, subjected to far-field tension that is directed either par-
allel or perpendicular to the line joining the centers of the two holes (Fig. 8.11a).
Ling (1948) solved this problem using bipolar coordinates, in the form of infinite
series of trigonometric and hyperbolic functions.

In the case of longitudinal far-field tension parallel to the line connecting the
centers of the twoholes (σlong in Fig. 8.11a), the second hole has a shielding effect,
and the maximum stress concentration, which occurs at point B, is less than the
value of 3 that obtains for an isolated hole (Fig. 8.11b). This shielding effect is
enhanced as the holes become closer, and in the limiting case of two circular
holes that are barely touching, the maximum hoop stress is equal to 2.569σlong.
When the applied far-field stress is transverse to the line connecting the two hole
centers (σtran in Fig. 8.11a), the maximum stress concentration, which occurs at
the point (A) nearest to the other hole, is enhanced by the presence of the second
hole and becomes infinite as the two holes come into contact.

Fig. 8.11 (a) Two
nearby holes subjected
to longitudinal and
transverse far-field
stresses. (b) Maximum
stress concentrations at
the hole boundaries
(Ling, 1948).
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Themost interesting case is that of transverse loading. Asymptotic analyses of
Ling’s solution, carried out by Zimmerman (1988) and Callias and Markenscoff
(1993), reveal that as the holes become closer, the hoop stress at point A is
asymptotically of the form

τθθ (A)
σtran

≈ 1.94√
(λ/2a)− 1

, (8.324)

where λ is the distance between the two hole centers and a is the radius of either
hole. Several seminumerical analyses of this problem (Duan et al., 1986; Tsukrov
and Kachanov, 1997), however, have yielded values in the range 2.05–2.13 for the
numerical constant in (8.324).

The stresses around a pressurized circular hole near a straight, traction-free
boundary were found by Jeffery (1920) and Mindlin (1948) using bipolar coor-
dinates. Verruijt (1998) used conformal mapping for this problem and was also
able to find a closed-form expression for the displacements. Callias and Marken-
scoff (1989) presented an asymptotic analysis of this problem in the limit as the
hole approaches the free surface. As in the problem of two nearby holes, the
stress singularity was found to be inversely proportional to the square root of the
distance between the hole and the free surface.

Howland (1935) investigated an infinite elastic region containing an infinite
rowof equally sized and equally spaced circular holes and derived an approximate
analytic solution for the case when the holes are not too closely spaced. In
accordance with Ling’s solution for the two-hole problem, he found a stress
enhancement effect when the far-field principal stress was perpendicular to the
line joining the centers of the holes and a shielding effect when the loading was
parallel to this line. Collins (1962a,b) developed approximate analytical solutions
for the problemof two pressurized, penny-shaped circular cracks thatwere either
lying in the same plane or directly above one another in parallel planes. His
analysis focused on the “pore compressibility” of the cracks, and he found that
the compressibility of the coplanar cracks was greater than that of an isolated
crack, whereas the compressibility of the parallel cracks was less than that of
an isolated crack. Kachanov (1987, 1994) developed a general approximation
method for treating interactions between two or more cracks, in either two or
three dimensions.

Sternberg and Sadowsky (1952) used a spherical dipolar coordinate system to
solve the problem of two nearby spherical cavities in an infinite elastic medium,
subjected to uniform pressure along the cavity surfaces, or far-field tension either
parallel or perpendicular to the line joining the centers of the two cavities.
Eubanks (1954) analyzed the problem of a hemispherical cavity at the surface of
an infinite half-space that is subjected to uniaxial tension in a direction parallel to
the free surface. McTigue (1987) developed an approximate analytical solution
for a pressurized spherical cavity near a free surface, as a model for the inflation
of a magma body.



Jaeger: “chapter09” — 2006/12/15 — 09:58 — page 252 — #1

9 Inelastic behavior

9.1 Introduction In Chapter 5, the theory of elasticity was discussed in some detail. A basic
assumption of that theory is that the strain in an elastic body at a given time
depends only on the stress acting on that body at that time. In Chapter 8,
elasticity theory was used to find the stresses and displacements in the vicinity
of cavities and excavations in rock. The theory of elasticity was extended in
Chapter 7 to account for the effects of pore pressure and temperature, but still in
the context of elastic behavior, which is to say that no explicit time dependence or
stress-path dependence was considered. An implicit assumption of these elastic-
type constitutive models is that the rock undergoes no internal, microscopic
degradation as it deforms. This fact implies that the rock will return to its initial
state if the stresses acting on it are removed.

Under many circumstances, rock will deform irreversibly. Roughly speaking,
if the relationship between stress and strain does not explicitly depend on the rate
of deformation, then the inelastic behavior is referred to as plasticity, whereas
behavior that is explicitly time-dependent is referred to as viscoelasticity. Another
distinguishing characteristic of plastic behavior is that a finite yield stress must be
exceeded before irreversible plastic deformation occurs. The basic concepts of
plasticity and yield are presented in §9.2. The stress state around a circular opening
in a rock mass that deforms plastically is analyzed in §9.3 and §9.4. In §9.5, we
briefly describe the classical theory of perfectly plastic behavior, and in §9.6, we
use this theory to study plastic flow of a rock being squeezed between two flat
surfaces. The phenomenon of hardening, in which the yield stress continues to
increase as the rock deforms, is introduced in §9.7. The phenomenon of creep,
in which the rock continues to deform under the action of constant loads, is
introduced in §9.8. The mathematical theory of this type of behavior, known as
viscoelasticity, is discussed in §9.9 and §9.10, and the solutions to some simple
problems of viscoelastic behavior are presented in §9.11.

9.2 Plasticity and
yield

The complete stress–strain curve of a rock under uniaxial compression was
discussed in detail in Chapter 4. A typical such curve was shown schematically in
Fig. 4.3. To solve problems that are more complicated than uniaxial compression,
this stress–strain behavior must be represented by a mathematical function(s).



Jaeger: “chapter09” — 2006/12/15 — 09:58 — page 253 — #2

Inelastic behavior 253

For rocks that are loaded below the yield stress, the stress–strain behavior is
typically idealized as being a linear relationship between stress and strain, as
indicated in Fig. 4.2a and (4.1). For rocks that are loaded past the yield point, it
is necessary to represent the stress–strain behavior in the region BC of Fig. 4.2a
mathematically.

One simple idealized stress–strain curve that captures the fact that the strain
continues to increase without a proportional increase in the stress is that shown
in Fig. 9.1a, in which, after the yield stress σo is reached, the stress–strain
curve continues to rise but with a shallower slope. The stress σo is known
as the yield stress under uniaxial loading. The behavior shown in Fig. 9.1a, the
further discussion of which is deferred until §9.5, is known as plastic behavior
with strain hardening. A yet simpler idealization, which lends itself to the solution
of important problems such as the deformation of rock around tunnels and
cavities, is that shown in Fig. 9.1b, in which the stress remains at σo as the strain
continues to increase. A material that obeys a stress–strain law such as that shown
in Fig. 9.1b is known as elastic-perfectly plastic. A further simplification, in which
the elastic strains are neglected entirely and assumed to be negligible compared
to the plastic strains, is that of a rigid-perfectly plastic material (Fig. 9.1c).

From the point of view of thermodynamics or materials science, the defining
feature of the yield stress is that if the load is removed on the portion OA of the
curve shown in Fig. 9.1a or b, the material will unload along the same curve.
However, if the load is removed at some point in the segment AB, the material
will unload elastically along a curve that is parallel to the original elastic loading
curve OA. These unloading curves are shown as dashed lines. This phenomenon
is of great importance for, say, machine parts or engineered structural elements,
which may well undergo many cycles of loading and unloading. Such loading
cycles are rare in rock mechanics, however. Hence, in rock mechanics the thermo-
dynamic irreversibility of plastic deformation is often not emphasized, whereas the
nonlinear character of the stress–strain behavior is.

Under uniaxial deformation, a rock yields if the stress reaches some value
σo that is characteristic of that particular rock. Yield stresses are easily measured
under uniaxial conditions. The issue then arises of generalizing this result to more
complicated stress states. A yield criterion is a relationship among the stresses that
determines whether or not the material will yield. For an isotropic material, the
yield criterion should be a function of the three principal stresses, or equivalently,
of the three invariants of the stress.

Fig. 9.1 Idealized
uniaxial stress–strain
curves: (a) elastic–
plastic with strain
hardening,
(b) elastic-perfectly
plastic, and
(c) rigid-perfectly
plastic. Unloading
curves are shown as
dashed lines.
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The simplest and oldest such yield criterion is that proposed by Tresca (1864),
who assumed that yield would occur if the maximum shear stress acting on any
plane inside the rock reaches some critical value, τo. In terms of the three princi-
pal stresses, this criterion would be written as (σ1 − σ3)/2 = τo. Consideration
of the special case of uniaxial stress shows that σo/2 = τo. Hence, the Tresca
criterion is

σ1 − σ3 = s1 − s3 = σo, (9.1)

where the si are the principal stress deviations defined in §2.8.
Many yield criteria that have been proposed follow the scheme discussed in

§4.8 for brittle failure criteria, in which failure is controlled by J2, the second
invariant of the deviatoric stress, and possibly also by I1, the mean normal
stress. The simplest such yield criterion, that of von Mises (1913), is obtained
by assuming that the rock yields when J2 reaches some critical value. Using the
various expressions for J2 given in §2.8, the von Mises criterion can be written as
(von Mises, 1913; Hencky, 1924)

J2 = σ 2
o/3, (9.2)

J2 = [(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2]/6 = σ 2

o/3, (9.3)

s21 + s22 + s23 = 2σ 2
o/3, (9.4)

τoct = √
2σo/3, (9.5)

d = σ 2
o/6G, (9.6)

where σo is again the uniaxial yield stress, and d is the distortional strain energy
defined in (5.152).

Under conditions of pure shear, such as the stress state {σ1, σ2, σ3} =
{τ , −τ , 0}, the von Mises criterion predicts that failure will occur when τ =
σo/

√
3. Thus it is in contrast to the Tresca criterion, which predicts that failure

under pure shear occurs when τ = σo/2. Hence, if the parameter σo is chosen
so that these criteria agree with experimental data under uniaxial compression,
at most one of them will give the correct failure load under pure shear.

The von Mises criterion was originally developed for metals and does not
account for the experimental observation that the yield stress of most rocks
increases with increasing mean normal stress. For example, note that an arbitrary
hydrostatic stress increment can be added to an existing stress state without
changing the form of criterion (9.3). To account for the strengthening effect of
the mean normal stress, a term that depends on I1 can be included in the yield
criterion. Recall that the von Mises criterion (9.2) can be written as (J2)1/2 =
σo/

√
3 = constant. Drucker and Prager (1952) added a “strengthening” term on

the right-hand side of this expression that is linear in I1:

(J2)1/2 = a + b I1, (9.7)

where a and b are constants. In terms of the principal stresses, the Drucker–Prager
criterion can be written as

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 6b2[σ1 + σ2 + σ3 + (a/b)]2. (9.8)
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Fitting this criterion to uniaxial compressive strength data shows that a =
(1/

√
3 − b)σo, in which case we can put α = (1/b

√
3) − 1 and write (9.8)

in the form

(σ1 −σ2)
2 + (σ2 −σ3)

2 + (σ3 −σ1)
2 = 2

(1 + α)2
(σ1 +σ2 +σ3 +ασo)

2, (9.9)

where α is a dimensionless parameter.
Under standard {σ1 > σ2 = σ3} triaxial compression, (9.9) takes the form

(Fjaer et al., 1992)

σ1 = σo + α + 3
α

σ3, (9.10)

whereas under {σ1 = σ2 > σ3} “triaxial extension,” it takes the form

σ1 = α

α − 1
σo + α + 2

α − 1
σ3. (9.11)

Physical plausible values of α are obviously restricted to the range α > 1. It
follows that the coefficients of both σo and σ3 in (9.11) are greater than the
respective coefficients in (9.10). Hence, in {σ1, σ3} space, the yield curve for
{σ1 = σ2 > σ3} loading always lies above the curve for {σ1 = σ2 > σ3} loading,
illustrating the strengthening effect of the intermediate principal stress.

9.3 Elastic –
plastic hollow
cylinder

In general, solving problems of a body undergoing plastic deformation requires
a full stress–strain law that governs the evolution of the plastic strain. These laws
are discussed in §9.4. However, there are certain problems that, because of their
symmetry and the monotonicity of the loading, are “statically determinate,” in
which case the stress state can be found without consideration of the strains.
One such problem is that of a pressurized hollow cylinder composed of a rock
that obeys the Tresca yield criterion.

Consider a hollow cylinder with inner radius a and outer radius b, under plane
strain conditions, with a uniform pressure applied to its outer surface, r = b. If
this pressure is slowly increased from 0 to some value Po, at first the cylinder
will everywhere be in the elastic regime, and the stresses will be given by (8.85)
and (8.86). The maximum shear stress in the cylinder will be Pob2/(b2 − a2) and
will occur at r = a. (Note that for any value of Poisson’s ratio, we will have
τθθ > τzz > τrr at r = a.)When the maximum shear stress reaches σo, the rock
will yield at r = a. As Po increases further, the yielded zone will grow radially
outward, and the cylinder will consist of an inner annular region that has yielded
and an outer annulus that is still in its elastic state.

Let r = ρ denote the elastic–plastic boundary (Fig. 9.2a). The rock in the
region a < r < ρ will have yielded, and so the stresses there will satisfy the
Tresca yield criterion, (9.1):

τθθ − τrr = σo. (9.12)
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Fig. 9.2 (a) Hollow
cylinder subjected to an
external pressure.
(b) Stresses for the case
b = 2a, when
Po = 0.624σo. (a)
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The stresses must also satisfy the stress equilibrium equation, (5.108), which
takes the form

dτrr
dr

+ τrr − τθθ

r
= 0. (9.13)

Substitution of (9.12) into (9.13) gives

dτrr
dr

= σo

r
, (9.14)

which can be integrated to give

τrr = σo ln r + C, (9.15)

where C is a constant. If the inner surface is traction free, then τrr must vanish at
r = a, which shows that C = −σo ln a. Hence, the stresses in the plastic region
a < r < ρ are

τrr = σo ln(r/a), τθθ = σo[ln(r/a)+ 1]. (9.16)

In the elastic region, ρ < r < b, the stresses must be of the form given by
(8.79) and (8.82):

τrr = A − B
r2 , τθθ = A + B

r2 , (9.17)

where A and B are constants. Three boundary and/or interface conditions are
needed to determine the constants {A, B, ρ}. At the elastic–plastic boundary,
r = ρ, the elastic stress state (9.17) must be on the verge of yielding. Requiring
the stresses given by (9.17) to satisfy the yield condition (9.12) at r = ρ gives
B = ρ2σo/2. Next, requiring the radial stress to be continuous at r = ρ gives

A − B
ρ2 = A − σo

2
= σo ln(ρ/a), (9.18)
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which can be solved for

A = σo

2
[1 + 2 ln(ρ/a)]. (9.19)

Last, imposing the condition that τrr = Po at r = b gives

τrr(b) = A − B
b2 = σo

2
[1 + 2 ln(ρ/a)] − ρ2σo

2b2 = Po, (9.20)

which can be rearranged to give the following relation between ρ and Po:

[1 + 2 ln(ρ/a)− (ρ/b)2] = 2Po

σo
. (9.21)

The stresses in the elastic region ρ < r < b are given by (Fig. 9.2b)

τrr = σo

2
[1 + 2 ln(ρ/a)− (ρ/r)2], τθθ = σo

2
[1 + 2 ln(ρ/a)+ (ρ/r)2].

(9.22)

The rock first yields at r = a when Po = σo[1−(a/b)2]/2. For the limiting case
of a borehole or tunnel in an infinite rock mass, this will occur when Po = σo/2.
For thin-walled cylinders, with a ≈ b, the critical pressure needed to cause
yielding can be a small fraction of σo. When the external pressure reaches the
value Po = σo ln(b/a), the entire cylinder will have yielded. For thin cylinders,
this will occur at an external pressure that is only slightly larger than the pressure
needed to cause initial yielding. For example, if b/a = 1.2, initial yielding will
occur when Po = 0.153σo, and the entire cylinder will be in the plastic state
when Po = 0.182σo. For a hole in an infinite rock mass, the plastic zone will
never encompass the entire rock mass, as the pressure required for this to happen
grows logarithmically with b.

9.4 Circular hole in
an elastic – brittle –
plastic rock mass

Consider now a material that obeys a Coulomb-type failure criterion, as given
by (4.13):

σ1 = Co + qσ3, (9.23)

where Co = 2So, tan β is the unconfined compressive strength, So is the cohe-
sion, q = tan2 β = (1 + sin φ)/(1 − sin φ), and φ is angle of internal friction. In
the special case q = 1, this reduces to the Tresca criterion. Assume that the rock
mass is initially in a state of hydrostatic stress Po, and then a circular hole of radius
a is drilled into the rock, so that the stress at r = a is reduced to some value
Pi. For sufficiently small values of Po, the rock will be in its elastic state, and the
stresses will be given by (8.91) and (8.92). As discussed in §9.3, for larger values of
Po, the rock will fail within some annular region surrounding the borehole. The
problem again will be to determine the location of the elastic–plastic boundary,
and the stresses in both the yielded and intact regions.

In the failed zone, the stresses will obey (9.23). If Po > Pi, which is the case of
practical interest, then the maximum principal stress at the borehole wall will be
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τθθ , and the minimum principal stress will be τrr . Substitution of (9.23) into the
radial stress equilibrium equation (9.13) then gives

dτrr
dr

= Co + (q − 1)τrr
r

. (9.24)

Solving this equation, subject to the condition that τrr = Pi when r = a, gives

τrr = Co

1 − q
+

(
Pi − Co

1 − q

) ( r
a

)q−1
, (9.25)

after which (9.23) shows that

τθθ = Co

1 − q
+ q

(
Pi − Co

1 − q

) ( r
a

)q−1
. (9.26)

These stresses will obtain throughout the yielded zone, a < r < ρ. In the
elastic zone, r > ρ, the stresses must have the form given by (9.17). Imposition
of the far-field boundary conditions shows that the constant A must equal Po,
which leaves

τrr = Po − B
r2 , τθθ = Po + B

r2 . (9.27)

At the elastic–plastic boundary, r = ρ, the stresses given by (9.27) must satisfy
(9.23). This gives

B = ρ2[Co + Po(q − 1)]/(q + 1). (9.28)

Last, continuity of τrr at r = ρ gives, from (9.25), (9.27) and (9.28),

ρ

a
=

{
2[Po(q − 1)+ Co]

[Pi(q − 1)+ Co](q + 1)

}1/(q−1)

, (9.29)

thereby completing the solution.
As an example, consider a rock whose angle of internal friction is 60˚, which

corresponds to q = 3. Then (9.29) gives

ρ

a
=

(
Co + 2Po

2Co + 4Pi

)1/2

. (9.30)

In the yielded region, a < r < ρ, (9.25) and (9.26) reduce to

τrr = [Pi + (Co/2)](r/a)2 − (Co/2), τθθ = 3[Pi + (Co/2)](r/a)2 − (Co/2).

(9.31)

In the elastic region, r > ρ, the stresses are, from (9.27), (9.28), and (9.29),

τrr = Po − 1
2
[Po + (Co/2)](ρ/r)2, τθθ = Po + 1

2
[Po + (Co/2)](ρ/r)2.

(9.32)
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These stresses are plotted in Fig. 9.3a for the case, Po = Co, Pi = 0.
In the special case of a material with no cohesion, the radius of the yielded

zone is given by ρ = a(Po/2Pi)1/2, and expressions (9.31) and (9.32) reduce
further to

τrr = Pi(r/a)2, τθθ = 3Pi(r/a)2, for a < r < ρ, (9.33)

τrr = Po

[
1 − Po

4Pi

(a
r

)2
]

, τθθ = Po

[
1 + Po

4Pi

(a
r

)2
]

, for r > ρ. (9.34)

The preceding analysis is most relevant to soils. A more realistic assumption for
rock is that the intact material obeys failure law (9.23) with parameters {C′

o, q′},
but once the material has yielded, it obeys the Coulomb failure law with a
different set of parameters, {Co, q}, where typically Co � C′

o. The analysis given
above will continue to hold through (9.27). But in the present case, at r = ρ, the
elastic stresses given by (9.27) must satisfy the failure criterion with parameters
appropriate to the intact rock, that is, {C′

o, q′}. Hence, (9.28) is replaced by

B = ρ2[C′
o + Po(q′ − 1)]/(q′ + 1). (9.35)

Continuity of τrr at r = ρ now gives

ρ

a
=

{
(2Po − C′

o)(1 − q)− Co(1 + q′)
[Pi(1 − q)− Co](1 + q′)

}1/(q−1)

(9.36)

in place of (9.29). Although stresses such as τrr must be continuous across any
surface of constant r, there is no such requirement for τθθ , and indeed τθθ is
discontinuous at r = ρ (Fig. 9.3b).

As an example, suppose that C′
o � Co = 0, q′ = q = 3, in which case (9.35)

and (9.36) become

B = ρ2(C′
o + 2Po)/4, ρ = a[(2Po − C′

o)/4Pi]1/2. (9.37)

Fig. 9.3 Stresses
around a circular hole in
an infinite rock mass:
(a) Entire rock mass
assumed to be in a
Coulomb-type stress
state; (b) Coulomb-type
region assumed to be
surrounded by intact
rock (see text for
details).
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The stresses are given by

τrr = Pi(r/a)2, τθθ = 3Pi(r/a)2, for a < r < ρ, (9.38)

τrr = Po− (2Po+C′
o)

4

(ρ
r

)2
, τθθ = Po+ (2Po+C′

o)

4

(ρ
r

)2
, for r>ρ.

(9.39)

Now consider the specific case in which Po = C′
o. According to the analysis

given in §9.3, this far-field stress is twice that which would cause failure at a
traction-free cavity wall in an elastic–plastic rock mass. From (9.37), the boundary
of the yielded zone will be given by

ρ = a(C′
o/4Pi)

1/2, (9.40)

so that if, for example, Pi = C′
o/100, then ρ = 5a. The stresses in this case are

shown in Fig. 9.3b, which illustrates the aforementioned discontinuity in τθθ .
Ladanyi (1967) analyzed the problem of the expansion of a cylindrical or

spherical cavity in a rock mass that is linearly elastic before failure and obeys a
generalized Griffith failure criterion. Sharan (2003) gave a closed-form solution
for the stresses and displacements around a circular opening in a medium that
obeys the Hoek-Brown failure criterion. Detournay and Fairhurst (1987) gave
an elasto-plastic analysis of a circular tunnel subject to nonhydrostatic far-field
stresses. A large number of solutions for the stresses and displacements around
cylindrical and spherical cavities in elasto-plastic and viscoelastic media have been
derived and compiled by Yu (2000).

9.5 Perfectly
plastic behavior

The theory of perfect/ideal plasticity, which provides a good model for the
inelastic behavior of many metals, has been developed in great detail. Among
the classic monographs on this topic are those of Hill (1950) and Prager (1959).
The applicability of this theory to rocks is restricted to situations of very high
stresses and temperatures, as occurs in the deep crust.

As discussed in §9.2, a body will first begin to plastically deform when the
stresses become large enough to satisfy the yield criterion. According to the von
Mises yield criterion, this will occur when

J2 = [(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2]/6 = σ 2

o/3, (9.41)

where σo is the uniaxial yield stress. This criterion defines a surface in {σ1, σ2, σ3}
stress space that is known as the yield surface. The region “interior” to the yield
surface, for which J2 < σ 2

o/3, is an elastic region, whereas stress states lying
on the yield surface correspond to states of plastic deformation. (Stress states
exterior to the yield surface cannot correspond to states of static equilibrium.
For example, if a body that obeys an elasto-plastic stress–strain relationship such
as shown in Fig. 9.1b is subjected to a uniaxial stress in excess of σo, it will deform
uncontrollably, in an unstable manner. In a three-dimensional context, if a region
of rock is loaded to the yield point, the stresses will redistribute themselves so
that other regions of rock accommodate the excess load.)
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The basic assumption of the theory of perfect (or ideal) plasticity is that the
yield surface (in stress space) does not deform as the rock mass itself deforms.
Once the stresses reach the yield surface, further changes in stress may either
bring the stress state back inside the yield surface (i.e., unloading, which occurs
elastically, as in Fig. 9.1b) or may move the stress state to another point along the
yield surface. Assume that the loads are applied monotonically, so that unloading
into the elastic regime does not occur. In this case, the externally applied loads
can be parameterized by a scalar parameter, which we denote by λ (not related
to the Lamé parameter). The condition that a further stress change leads to
additional plastic deformation is that

dJ2/dλ = 0, (9.42)

which is equivalent to guaranteeing that the stress state remains on the yield
surface. This provides a constraint equation that must hold between the three
principal stresses during plastic deformation.

Provided that the strains are small enough to be considered infinitesimal, as in
Chapter 2, it is permissible to assume that the total strain consists of the sum of an
elastic strain, which is related to the stresses by Hooke’s law, and a plastic strain.
In many practical problems involving plastic deformation, the elastic strain can
be neglected in comparison with the plastic strain. The question then arises of
how the plastic strains evolve in response to changes in the stress.

The assumption usually made in classical plasticity theory (Drucker, 1950) is
that the plastic strain increment is normal to the yield surface. Such a rule is
known as an associated flow rule, because the plastic strain increment is associated
with the yield function. If the yield surface is defined by some function of the
form J2(σ ) = 0, as can be achieved for the von Mises criterion by moving the
constant term to the left-hand side of (9.41), the normal to this surface is given
by the gradient of the function J2(σ ). The derivatives of J2 with respect to the
principal stresses are given by

∂J2
∂σ1

= 2(σ1−σ2)+2(σ1−σ3)

6
= 3σ1−(σ1+σ2+σ3)

3
= σ1−σm = s1, (9.43)

where s1 is the first principal stress deviation, and similarly for the other two
principal stresses. Hence, ∇J2 = (s1, s2, s3), and so the flow rule associated with
the von Mises yield criterion is

(de1, de2, de3) = (s1, s2, s3)dλ, (9.44)

where (e1, e2, e3) are the three principal deviatoric strains, and dλ is some scalar
increment. No generality is lost by identifying this increment with the parameter
λ in (9.42). According to the concept of an associated flow rule, then, the direction
of the strain increment is determined by the existing stress state. The direc-
tion of the strain increment is not controlled by the stress increment, the direction
of which is in fact constrained by (9.42) to lie along the yield surface, rather than
normal to it. The magnitude of the strain increment, which is proportional to dλ,
must be determined from other aspects of the problem, such as the boundary
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conditions. Note that the parameter λ may, and in general will, vary with both
space and time; it is not a material constant.

A kinematic assumption that is usually made in classical plasticity is that plastic
deformation occurs without any change in volume, in which case

dεxx + dεyy + dεzz = 0. (9.45)

This assumption is valid in materials for which the plastic deformation is due
to the motion of dislocations through a crystal lattice, but is not true when
plastic deformation is due to, say, the crushing of grains in a sedimentary rock.
If (9.45) holds, then the increments in the deviatoric strains are equivalent to the
increments in the strains, that is, (de1, de2, de3) = (dε1, dε2, dε3). In terms of an
arbitrary coordinate system, the plastic flow equations (9.44) then take the form
(Mendelson, 1968, p. 101)

dεxx = sxxdλ =
[2

3
τxx − 1

3
(τyy + τzz)

]
dλ, dεxy = τxydλ, (9.46)

and similarly for the other four independent stress components.
The stress state must at all times also satisfy the three equations of stress

equilibrium, (5.78)–(5.80). In conjunction with (9.41), (9.42), (9.45), and (9.46),
this yields the twelve equations that are needed in order to solve for the six
unknown stresses and six unknown strains.

The development of the equations given above for a rigid-perfectly plastic
material is due primarily to Saint Venant (1870), Lévy (1871), and von Mises
(1913). In the event that the elastic strains are not negligible compared to
the plastic strains, Prandtl (1925) and Reuss (1930) suggested that the plastic
strain increment would again be given by (9.45) and (9.46), and that the elastic
strain increment would be given by an incremental version of Hooke’s law for
an incompressible material, that is,

dεexx = τxx/2G, dεexy = τxy/2G, etc., (9.47)

where the superscript “e” denotes “elastic.” The total strain is assumed to be the
sum of the elastic strain, given by (9.47), and the plastic strain, given by (9.46).

We now return to the rigid-plastic case and consider a two-dimensional plane
strain deformation in the (x, y) plane. The z direction will necessarily be a
direction of principal strain, say the ε2 direction. Then by (9.44), we see that
s2 = 0, after which (2.155) shows that

σ2 = 1
2 (σ1 + σ3). (9.48)

Combining (9.48) with the yield criterion (9.41) shows that

σ1 − σ3 = 2k, k = σo/
√

3. (9.49)

We write this equation in terms of the parameter k so that, by taking k = σo/2,
the analysis can also be applied to a material that obeys the Tresca yield criterion.
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In terms of the stress components referred to in the x–y coordinate system,
(2.37)–(2.38) show that (9.49) can be written as

τ 2
xy + 1

4
(τxx − τyy)

2 = k2. (9.50)

In plane strain, and in the absence of body forces, the equations of stress
equilibrium, (5.78)–(5.80), take the form

∂τxx

∂x
+ ∂τxy

∂y
= 0, (9.51)

∂τxy

∂x
+ ∂τyy

∂y
= 0, (9.52)

which can be combined into the single differential equation,

∂2τxy

∂x2 − ∂2τxy

∂y2 = ±∂
2(τxx − τyy)

∂x∂y
. (9.53)

Inserting (9.50) into (9.53) yields

∂2τxy

∂x2 − ∂2τxy

∂y2 = ±2
∂2

∂x∂y
(k2 − τ 2

xy)
1/2, (9.54)

which is a single differential equation for τxy. If (9.54) can be solved for τxy,
then the two normal stresses follow from (9.51) and (9.52) by direct integration.
The constants of integration that arise are found by requiring the stresses to
satisfy (9.50).

Alternatively, the stress equilibrium equations (9.51) and (9.52) can be solved
by introducing the Airy stress function, as defined in §5.7. In this case, (9.50)
becomes

(
∂2U
∂x2 − ∂2U

∂y2

)2

+ 4
(
∂2U
∂x∂y

)2

= 4k2, (9.55)

thus reducing the problem to a differential equation for U. This equation can
be solved using the complex variable methods introduced in Chapter 8 (Annin,
1988).

9.6 Flow between
flat surfaces

Consider the problem of the extrusion of a plastic material between two
rigid plates that are slowly moving together (Hill, 1950, pp. 226–36). The
two rigid plates are located at y = ±a, and the plastic material occupies the
region (0 < x < L, −a < y < a). If the plates are very rough, it is reasonable
to assume that material has yielded at the interface with these plates, in which
case τxy has its maximum possible value. Hence, if the material is slipping past
them to the right, the boundary conditions for the shear stress along the top and
bottom surfaces will be

τxy(x, a) = k, τxy(x, −a) = −k, (9.56)
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A solution to this problem can be obtained by the following semi-inverse
method. The boundary conditions (9.56) suggest the following expression for
the shear stress distribution within the body:

τxy(x, y) = ky/a. (9.57)

This expression satisfies (9.54). With this form for τxy, (9.50) and (9.51) can be
integrated to give

τxx = f (y)− kx/a, τyy = g(x). (9.58)

The requirement that the stresses satisfy (9.50) gives

f (y)− g(x) = −kx/a ± 2k[1 − (y/a)2]1/2, (9.59)

from which it follows that

f (y) = P ± 2k[1 − (y/a)2]1/2, g(x) = P − kx/a, (9.60)

where P is a constant. Choosing the negative sign, the stresses are

τxx = P − 2k[1 − (y/a)2]1/2 − kx/a, (9.61)

τyy = P − kx/a, (9.62)

τxy = ky/a, (9.63)

According to this solution, the rigid plates apply a compressive stress τyy
to the rock that decreases linearly from P at the left edge of the system, to
P − k(L/a) at the right edge. The normal stress τxx(0, y) at the “inlet” is also
compressive and varies parabolically from P at the upper and lower corners to
P − 2k at the midplane. Superimposed on this is an additional stress gradient
∂τxx/∂x = −k/a, which represents a driving force that helps to extrude the rock
to the right.

This problem is statically determinate, in the sense that the stresses can be
found without any need to consider the deformation of the rock. To find the dis-
placements, assume that the plates move toward each other with speed Vo. The
vertical displacement at the upper surface will be v(x, a) = Vot, and at the lower
surface v(x, −a) = −Vot. This suggests the following vertical displacement field:

v(x, y) = yVot/a. (9.64)

The vertical normal strain will then be given by

εyy = ∂v
∂y

= Vot
a

, (9.65)

and the increment in the normal vertical strain will be

dεyy = Vodt/a. (9.66)
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By (9.46), we see that dεxx/dεyy = sxx/syy. From (9.61) and (9.62), the deviatoric
stresses are

sxx = −syy = −k[1 − (y/a)2]1/2, (9.67)

from which it follows that

dεxx = −Vodt/a. (9.68)

Integration with respect to time, bearing in mind that there is no strain at the
start of the process, gives

εxx = −Vot/a. (9.69)

Recalling that εxx = ∂u/∂x, integration with respect to x gives

u(x, y) = −Votx/a + h(y). (9.70)

The function h(y) is found by considering the shear strain. Again by (9.46) we
see that dεxy = dεyy(sxy/syy). It follows from (9.63), (9.66), and (9.67) that

dεxy = yVo/a
(a2 − y2)1/2

dt. (9.71)

Integration with respect to time gives

εxy = yVot/a
(a2 − y2)1/2

. (9.72)

But from the definition of the shear strain, using (9.64) and (9.70),

εxy = 1
2

(
∂u
∂y

+ ∂v
∂x

)
= 1

2
h′(y). (9.73)

Equating (9.72) and (9.73), and integrating, gives

h(y) = −2Vot[1 − (y/a)2]1/2. (9.74)

Finally, from (9.64), (9.70), and (9.74), the displacement field is

u = −Vot{(x/a)+ 2[1 − (y/a)2]1/2}, v = yVot/a, (9.75)

and the velocity field is

u̇ = −Vox/a − 2Vo[1 − (y/a)2]1/2, v̇ = Voy/a. (9.76)

The rock material moves vertically toward the midplane and horizontally toward
the right, with a horizontal velocity component profile that varies parabolically
at each cross-sectional location x.

The choice of the positive sign in (9.59) would correspond to the case in which
the plates are forced apart by material being squeezed in (intruded), rather than
extruded.
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A salient feature of this solution is that the stresses, (9.61)–(9.63), are not
influenced by the velocity Vo at which the horizontal surfaces approach one
another. This is in accordance with the fact that plasticity is not inherently
rate-dependent. Note also that there was no need to calculate the value of the
parameter λ; its role in equations such as (9.46) is merely to show that, at any
value of x and t, the ratio of each deviatoric strain increment to its corresponding
deviatoric stress will have the same value.

The solution described above has been used and extended by Nye (1951) to
study the downhill flow of glaciers. Evison (1960) used it to study the growth of
continents by plastic extrusion of their deeper layers.

9.7 Flow rules and
hardening

We now examine some implications of an associated flow rule, following the
discussion given by Fjaer et al. (1992, pp. 68–71). Consider a Coulomb yield
criterion (§4.5), which in {σ1, σ2, σ3} space can be represented by (Fig. 9.4a)

f (σ1, σ2, σ3) = σ1 − σ3 tan α − σo = 0, (9.77)

where σo is the uniaxial yield stress, tan α = (1 + sin φ)/(1 − sin φ), and φ is
the angle of internal friction. The normal vector to the yield surface is

∇f = (1, 0, − tan α). (9.78)

According to the associated flow rule, the plastic strain increments will be normal
to the yield surface. In analogy with (9.44), these increments will therefore be

dεp1 = dλ, dεp2 = 0, dεp3 = − tan αdλ, (9.79)

and the total volumetric plastic strain increment will be

dεpv = (1 − tan α)dλ = (1 − tan α)dεp1 = −2 sin φ
1 − sin φ

dεp1. (9.80)

For the typical case in which φ lies between 0 and 90◦, dεpv and dεp1 will have
different signs. Hence, if the rock is compressed in the direction of the maximum
principal stress, the total volume will in fact increase. This phenomenon, known
as dilatancy (Cook, 1970), is observed in many rocks, but usually not to the degree
predicted by (9.80).

Fig. 9.4 (a) Coulomb
failure curve in {σ1, σ3}
space, showing the
normal vector n = ∇f .
(b) Generalized
Coulomb failure curve
f , in {σ , τ } space,
showing regions of
positive, zero, and
negative friction angle.
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The amount of dilatancy exhibited by a rock as it fails can be accounted for
by relaxing the assumption that the plastic strain is normal to the yield surface.
Instead, we can assume that the plastic strain is normal to a different surface,
known as the plastic potential, which does not coincide with the yield surface.
This is an example of a nonassociated flow rule, since the flow rule is not associated
with the yield function. A simple choice for the plastic potential of a Coulomb-
type material would be a function of the same form as (9.77), but with a different
parameter ϕ in place of φ:

g(σ1, σ2, σ3) = σ1 − 1 + sinψ
1 − sinψ

σ3 − σo = 0, (9.81)

where ϕ is the dilatancy angle. According to (9.80), with ϕ in place of φ, the
material will be dilatant if ϕ is positive and contractant if ϕ is negative.

The Coulomb failure criterion implies that the compressive strength increases
monotonically with the lateral confining stress. In reality, at sufficiently high
stresses, the failure curve in {σ , τ } space will begin to slope downward and
eventually reach the σ -axis. The point at which the failure curve reaches the
σ -axis represents failure under purely hydrostatic conditions. Such a failure mode
will occur in sedimentary rocks due to grain crushing, which is caused by local
stress deviations that are due to the microinhomogeneity of the rock. Hence, the
full failure curve can be represented (approximately) on a Mohr diagram by three
straight-line segments, having positive, zero, and negative slopes, respectively
(Fig. 9.4b).

We return now to the case of the associated flow rule. According to (9.80),
the region of positive slope of the τ(σ ) failure curve corresponds to dilatant
behavior, whereas the region in which there is a negative angle of internal friction
corresponds to a rock that contracts volumetrically as it fails. A horizontal region
of the failure curve, such as corresponds to the Tresca failure criterion, (9.1),
indicates inelastic deformation that occurs without any change in volume.

If the yield stress parameter σo that appears in a yield function such as (9.77)
or (9.2) does not change its value during plastic deformation, this yield func-
tion will represent elastic-perfectly plastic behavior, as illustrated in Fig. 9.1b. In
unconfined uniaxial compression, a rock that behaves in a perfectly plastic man-
ner will not be able to support a stress greater than σo. A more realistic model
is that shown in Fig. 9.1a, in which the uniaxial stress–strain curve continues to
rise after plastic deformation has begun. For cases of monotonic loading, this
behavior may seem to be indistinguishable from nonlinear elastic behavior. The
fundamental difference appears only during unloading. In a nonlinear elastic
material, the unloading curve would coincide with the loading curve, whereas
a plastic material would unload elastically along a curve parallel to, but offset
from, the original elastic portion of the loading curve. If the compressive stresses
acting on the rock are increased again, additional plastic deformation will not
commence until the rock again reaches the region AB of the stress–strain curve,
which will clearly occur at a stress greater than the original value of σo.

The regionAB in Fig. 9.1a is known as the hardening region, as it corresponds to
an increase in the yield stress parameter σo. A full specification of the equations
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of plasticity in this regime requires a hardening rule that governs the evolution of
the σo parameter. In order to avoid confusion between the current value of the
yield stress and the initial yield stress, it may be convenient to denote the current
value by κσo, where κ is known as the hardening parameter. This parameter is
usually assumed to be a monotonically increasing function of either the total
plastic strain or the total plastic work. The plastic work is defined in the same
way that the stored elastic strain energy was defined in §5.8 except that only the
plastic strains appear in the integrand. These two assumptions concerning the
evolution of the hardening parameter are sometimes referred to as describing
strain hardening and work hardening, respectively (Mendelson, 1968, p. 107).

9.8 Creep The types of stress–strain behavior discussed in previous chapters have for the
most part not explicitly depended upon time. According to the elastic model of
deformation described in detail in Chapters 5 and 8, the strain at some location
x and some time t depends only on the stress at those same values of x and t.
In the plastic models discussed in previous sections of this chapter, although the
strain in a given piece of rock may depend on the stress history (or stress path)
undergone by that rock, there is no explicit time dependence. More specifically,
although the plastic strains may depend on the path that has been traversed in
stress space, they do not depend in any way on the rate at which the stress path has
been traversed. In poroelasticity, as described in Chapter 7, a time dependence
is introduced into problems in a “macroscopic” sense, due to the fact that pore
pressure diffuses through the rock at a finite rate. Nevertheless, at any given
location x and time t the strain is a function only of the stress and pore pressure
at x and t; the poroelastic stress–strain law itself contains no explicit time, rate,
or path dependence.

All of the constitutive models mentioned above are of course idealized approx-
imations to actual rock behavior. There are many situations in which the explicit
“time dependence” of rock behavior must be taken into account. Examples of
situations in which these effects are important include the long-term deforma-
tion of pillars in coal or halite mines (Prasad and Kejriwal, 1984), the closure of
cavities in rock salt (Munson, 1997), and the slow “diffusion” of stress between
faults that may trigger earthquakes (Huc and Main, 2003). The type of behavior
in which the strain continues to evolve under the imposition of a constant stress,
or vice versa, is known as creep. Figure 9.5a shows the strains measured by Griggs
(1940) during uniaxial compression of an alabaster sample immersed in water. At
any given value of the compressive stress, the strain continues to increase with
time, as the stress is held constant. The rate of creep increases with increasing
compressive stress. In general, there is an initial period during which the strain
increases rapidly but at a decreasing rate (i.e., the curve is concave down). This
is followed by a period of time in which the strain increases at more or less a
constant rate (linear curve). For the two highest confining stresses, 25 MPa and
20.5 MPa, after a certain time the strain begins to increase at an ever-increasing
rate (concave-upward curve), eventually causing complete collapse of the sample.
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Fig. 9.5
(a) Compressive strains
measured by Griggs
(1940) on
water-saturated
alabaster samples
subjected to different
(constant) values of
uniaxial confining stress,
indicated in units of
megaPascals on each
curve. (b) Idealized
creep curve showing
primary, secondary, and
tertiary creep and two
unloading paths.
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Measurements such as those of Griggs have led to the construction of the
idealized one-dimensional creep curve shown in Fig. 9.5b. If a stress is applied
instantaneously to a sample, it will immediately give rise to an elastic strain,
indicated by A in the figure. Thereafter, the strain continues to increase, albeit
at an ever-decreasing rate. This regime, denoted as I, is referred to as primary
or transient creep. This is followed by regime II of steady-state creep, in which the
strain increases linearly with time. Finally, there may follow regime III of tertiary
creep, in which the strain increases at an increasing rate, until failure occurs.

The three regimes have different characters that extend beyond their differ-
ences with regards to the second derivatives of the strain vs. time curves. If the
applied stress is suddenly reduced to zero during primary creep, the strain will
relax back to zero, along a path such as PQR. However, if the stress is removed
during steady-state creep, the strain will relax to some nonzero value along a
path such as TUV, leaving a residual, permanent strain.

Creep strain curves such as that shown in Fig. 9.5b can in principle be
represented by an equation of the form

ε = εe + ε1(t)+ Vt + ε3(t), (9.82)

where εe is the instantaneous elastic strain, ε1(t) is the transient creep, Vt is the
steady-state creep, and ε3(t) is the tertiary or accelerating creep.

Various expressions have been proposed to represent the transient creep term,
including

ε1(t) = Atn, 0 < n < 1 (Cottrell, 1952), (9.83)

ε1(t) = A ln t (Griggs, 1939), (9.84)

ε1(t) = A ln(1 + at) (Lomnitz, 1956), (9.85)

ε1(t) = A[(1 + at)n − 1] (Jeffreys, 1958), (9.86)

where A, n, and a are constants having the appropriate dimensions. These func-
tions can often fit strain data over certain limited periods of time, but in general
do not have appropriate behavior at either small or large values of t. For example,
(9.83) and (9.84) give infinite strain rates as t → 0. Furthermore, none of these
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forms yield a smooth transition to steady-state creep as t increases. In order for
the strain rate given by (9.82) to approach a constant value in the regime of
steady-state creep, the function ε1(t) would need to asymptotically approach
zero, which is not the case for any of the four functions given above. These
limitations demonstrate the difficulty of fitting creep data with mathematical
functions that are valid over a wide range of times.

The steady-state creep rate V in (9.82) is not a constitutive parameter per se,
but depends on the specific experimental conditions and also on the temperature
and the stress. Some of the more common equations that have been used to
represent the dependence of V on stress include

V = Vo exp(σ/σo) (Ludwik, 1909), (9.87)

V = Vo sinh(σ/σo) (Nadai, 1938), (9.88)

V = Vo(σ/σo)
n (Robertson, 1964), (9.89)

in whichVo is a characteristic strain rate having units of [1/s], σo is a characteristic
stress, and n is a dimensionless exponent. Robertson (1964) collected data on a
wide range of rocks and found values of n that ranged from 1 to 8.

On a microscopic scale, some types of creep are related to the diffusive motion
of defects or dislocations (Evans and Kohlstedt, 1995). These atomic-level pro-
cesses are thermally activated, in which case the characteristic strain rate varies
with temperature according to an Arrhenius-type relation of the form

Vo = V∞
o exp(−Q/RT), (9.90)

where Q is the free energy of activation, with units of [J/mol], T is the absolute
temperature, with units of [◦K], R is the gas constant, with units of [J/mol◦K],
and V∞

o is a hypothetical strain rate at “infinite” temperature.
There exist other creep mechanisms related to the motion of dislocations,

however, that lead to strain rates that vary according to (T/To) or (T/To)
−1,

where To is some characteristic temperature. In general, several different creep
mechanisms, each of which varies with temperature in a different way, may
coexist in a given rock leading to quite complex behavior. These mechanisms are
reviewed by Evans and Dresen (1991) and Evans and Kohlstedt (1995).

Of the pioneering laboratory measurements of the creep of rocks, the follow-
ing short review can be given. Phillips (1931) used bending tests to study the
creep of sediments in coal measures. Pomeroy (1956) and Price (1964) studied
the creep of coal under bending. Michelson (1917) and Lomnitz (1956) used
torsion to study creep of igneous rocks. Uniaxial compression has been used to
study the creep of granite, marble and slate (Evans and Wood, 1937), granite
(Matsushima, 1960), and sediments (Nishihara, 1958; Hardy, 1959; Price, 1964).
Griggs (1936,1939,1940) and le Comte (1965) studied the creep of rock salt under
triaxial compression.

An extensive discussion of the rheology of geological materials, and implica-
tions for plate tectonics, mantle convection, and other aspects of geodynamics
has been given by Ranalli (1995).
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9.9 Simple
rheological models

In order to solve problems that are more general than the uniaxial compression
discussed in the previous section, it is necessary to have stress–strain relations
that hold for all types of boundary conditions and geometries. The study of
time-dependent stress–strain behavior is known as rheology, from the Greek rhei
(ρει), meaning flow, and logos (λoγ oσ), meaning study. Standard references on
the rheology of materials include Eirich (1956) and Reiner (1971). More specific
discussion of rheological models for rocks can be found in Critescu (1989) and
Critescu and Hunsche (1997).

The simplest rheological stress–strain relations that attempt to reflect the type
of time dependence discussed in the previous section can be constructed using
simple mechanical conceptual models based on springs and dashpots. These
models are discussed in detail by Bland (1960) and used therein to solve various
boundary-value problems. The spring element, shown in Fig. 9.6a, represents an
elastic Hookean material in which the stress and strain are related according to
Hooke’s law,

σ = kε. (9.91)

In these models, an analogy is made between the variables of force and
displacement for the spring, and stress and strain in the solid material. These
models can be discussed most simply in terms of uniaxial compression, but can
be extended to other types of loading, such as shear. For this reason, the symbol
k will be used for the constant of proportionality between stress and strain in
a Hookean element; it can represent Young’s modulus or the shear modulus,
depending on the context. For this type of substance, the stress and strain are
related, at any given time, by (9.91), where σ and ε are the instantaneous stress
and strain, respectively. Hence, (9.91) shows that the stress will instantaneously
rise to kεo if the strain is instantaneously raised from 0 to εo and that the strain
will immediately take the value σo/k if a stress of σo is instantaneously imposed.

The second basic element used in constructing simple rheological models is
the dashpot (Fig. 9.6b), which represents a Newtonian viscous substance that
obeys a stress–strain relation of the form

σ = η(dε/dt) ≡ ηε̇, (9.92)

where η is a constant with units of [Pa s], and the overdot indicates the derivative
with respect to time. If an instantaneous stress σo is imposed on this element,

Fig. 9.6 (a) Hookean
elastic element, for
which σ = kε. (b)
Newtonian viscous
element, for which
σ = η(dε/dt). (a)

k

(b)

�

�

�
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Fig. 9.7
(a) Mechanical model of
a Maxwell substance.
(b) Response of a
Maxwell substance to an
instantaneously applied
stress. (c) Response of a
Maxwell substance to
an instantaneously
applied strain.

(a)

�
k �

�o/k

(b)

�

Slope �o/�

t t

ko�

(c)

�

starting from a stress-free and strain-free state, (9.92) can be integrated to show
that the strain will grow linearly with time according to

ε = σot/η. (9.93)

As the strain in a Newtonian element is in general equal to the time-integral of
the stress, it is not possible to impose an instantaneous jump in the strain, as this
would require an infinite stress, which is not realistic.

More complicated types of behavior can be modeled by connecting springs
and dashpots together in various series and parallel combinations. A spring
and dashpot connected together in series represent a Maxwell, or elasto-viscous
substance (Fig. 9.7a). As the spring and dashpot are both assumed to be massless,
the load (stress) carried by each of these elements must be the same at all times.
The total displacement, however, will be the sum of the displacement in the
spring and the dashpot. Hence, from (9.91) and (9.92), the total strain is governed
by the following first-order differential equation:

ε̇ = ε̇spring + ε̇dashpot = (σ̇ /k)+ (σ/η). (9.94)

If the system is initially unstrained and unstressed and a stress σo is
instantaneously imposed at t = 0, (9.94) can be integrated to yield (Fig. 9.7b)

ε = (σo/k)+ (σot/η). (9.95)

A Maxwell material therefore exhibits an instantaneous elastic response with
stiffness k and a long-term viscous response with viscosity η. The Maxwell
substance has been used as a simple model for the Earth’s mantle (Carey, 1953).

Now imagine that a Maxwell substance is subjected to an instantaneous jump
in the strain, from 0 to εo, which is held constant thereafter. As mentioned
above, the dashpot cannot undergo a jump in strain, so the jump in strain must
initially be accommodated entirely by the spring. Hence, immediately after the
imposition of the strain, the stress in the spring will be kεo. This stress serves as
the initial condition for the differential equation (9.94), which, strictly speaking,
must be applied at t = 0+, where 0+ denotes some infinitesimally small positive
value. For subsequent times, the strain is constant, so the left-hand side of (9.94)
is zero. Bearing in mind that the “initial stress” is kεo, (9.94) can be solved to
yield (Fig. 9.7c)

σ = kεoe−kt/η. (9.96)
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Fig. 9.8
(a) Mechanical model of
a Kelvin substance.
(b) Response of a Kelvin
substance to an
instantaneously applied
strain. (c) Response of a
Kelvin substance to an
instantaneously applied
stress.
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The stress therefore decays down, or relaxes, to zero, with a time constant given
by τ = η/k.

A spring and dashpot connected in parallel form a Kelvin, or firmo-viscous,
substance (Fig. 9.8a). In this case, the total stress will be the sum of the stress
carried by the spring and the stress carried by the dashpot:

σ = σspring + σdashpot = kε + ηε̇. (9.97)

When instantaneous jumps in the stress or strain are imposed on these spring and
dashpot systems, the governing differential equation will have a discontinuous
forcing function, necessitating the sort of ad hoc solution procedure followed
above for the Maxwell substance. Solutions can also be generated systematically
using the Laplace transform formalism described in §9.10. In the remainder of
this section, the solutions will be written down without derivation.

Suppose that the system is compressed so that the strain is εo when t =
0, after which the stress is instantaneously released. The governing differential
equation (9.97) then takes the form

kε + ηε̇ = 0. (9.98)

subject to the initial condition that εo when t = 0. The solution is

ε = εoe−kt/η, (9.99)

which shows that the strain decays to zero exponentially, again with a time
constant given by τ = η/k (Fig. 9.8b).

If a stress σo is suddenly applied at t = 0 to a system that is initially unstrained,
the governing equation (9.97) takes the form

kε + ηε̇ = σo. (9.100)

The solution in this case is

ε = (σo/k)[1 − e−kt/η], (9.101)

The strain increases asymptotically from 0 to its final, steady-state (elastic) value
of σo/k, with the time constant τ = η/k that is characteristic of a Kelvin
substance (Fig. 9.8c).

The Kelvin model is deficient as a model for creep behavior, as it does not
exhibit an instantaneous strain (see Fig. 9.5b). The simplest model that exhibits
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Fig. 9.9
(a) Mechanical model of
a generalized Kelvin
substance and (b) its
response to an
instantaneously applied
stress. (a)

�

k1

�1

k2

(b)

�o/k2

�

t

�o(k1+k2)/k1k2

both an instantaneous strain and a late-time elastic strain is the generalized Kelvin
model, which consists of a Kelvin element having parameters {k1, η1}, arranged
in series with a spring k2 (Fig. 9.9a). As the stress must be the same in both the
spring and the Kelvin element, whereas the total strain is the sum of the two
strains, it follows that

σ = η1ε̇1 + k1ε1 = k2ε2, ε = ε1 + ε2. (9.102)

Eliminating the individual strains ε1 and ε2 from these equations yields the
following single differential equation that governs the behavior of a generalized
Kelvin substance:

η1σ̇ + (k1 + k1)σ = k2(η1ε̇ + k1ε). (9.103)

If a stress σo is suddenly applied at t = 0 to a generalized Kelvin material that
is initially unstrained, the solution for the resulting strain is

ε = σo

k2
+ σo

k1
(1 − e−k1t/η1). (9.104)

This model shows an instantaneous strain of σo/k2 and an asymptotic elastic
strain of σo(k2 + k1)/k2k1, approached exponentially with a time constant of
η1/k1 (Fig. 9.9b).

A model that exhibits instantaneous strain, transient creep, and steady-state
creep can be constructed by placing a Kelvin element with parameters {η1, k1} in
series with a Maxwell element having parameters {η2, k2}, as shown in Fig. 9.10a.
The resulting model is known as the Burgers substance. The governing equation
for this type of material is found by making use of (9.94) for the Maxwell element,
(9.97) for the Kelvin element, along with the facts that the stress in each element
will be the same, whereas the total strain will be the sum of the two individual
strains:

ε̇2 = (σ̇ /k2)+ (σ/η2), σ = η2ε̇1 + k1ε1, ε = ε1 + ε2. (9.105)

Eliminating ε1 and ε2 from this equation yields

η1ε̈ + k1ε̇ = (η1/k2)σ̈ + [1 + (k1/k2)+ (η1/η2)]σ̇ + (k1/η2)σ . (9.106)

If a Burgers substance that is initially unstrained is subjected to an instanta-
neous stress of σo, the resulting strain will be given by (Fig. 9.10b)

ε = σo

k2
+ σo

k1
[1 − ek1t/η1 ] + σo

η2
t. (9.107)
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Fig. 9.10
(a) Mechanical model of
a Burgers substance and
(b) its response to an
instantaneously applied
stress. The dotted curve
shows the strain
response when the
stress is released at t∗. (a)
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Fig. 9.11 Mechanical
models of (a) Saint
Venant substance and
(b) Bingham substance.
The rough surface
supplies a resistive
frictional force to the
block that cannot
exceed σ ∗.
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The three terms on the right side of (9.107) represent the instantaneous strain, the
transient creep, and the steady-state creep. If the stress is then released suddenly
at some time t∗, the strain drops instantaneously by an amount σo/k2 and then
continues to decrease exponentially with the same time constant of η1/k1; see
the dotted line in Fig. 9.10b. The strain never returns to zero, however, but
approaches a permanent residual value of σot∗/η2.

Each of the models described above is governed by a linear differential
equation, which allows them to be treated using methods such as the Laplace
transforms discussed in §9.10. Nonlinear rheological models, which are math-
ematically more difficult to treat, can be formulated by starting with the Saint
Venant model of Fig. 9.11a. This model can be represented by a block of mass m
placed on a rough, frictional surface. If the friction coefficient between the mass
and the surface is µ and the contact area is A, the block will not move until the
applied stress σ reaches the value mgµ/A, which can be denoted by σ ∗. Hence,
the strain will be zero if σ < σ ∗ and will be indeterminate if σ > σ ∗.

If the Saint Venant element is placed in series with a spring and a dashpot, as in
Fig. 9.11b, the resulting model represents aBingham substance. For applied stresses
less than σ ∗, the block will not move, and the displacement will be confined to
the elastic spring. The strain in the elastic spring will be σ/k. If a stress σo > σ ∗ is
instantaneously applied, the block will move, and this motion will be resisted by
the frictional stress σ ∗ applied to the block by the rough surface. A force balance
on the block reveals that the stress transmitted to the dashpot will be σo − σ ∗.
From (9.93), the strain in the dashpot will be (σo − σ ∗)t/η. As the dashpot and
block are assumed to be rigidly coupled, the total strain of the system will be
the sum of the strain in the spring and in the dashpot. Hence, the response of a
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Burgers material to an instantaneous stress σo is given by

ε = σo

k
if σo < σ ∗, ε = σo

k
+ (σo − σ ∗)

η
t if σo > σ ∗. (9.108)

Many other nonlinear rheological models have been proposed. Attewell (1962)
proposed a model for porous rock that contains a dashpot of variable viscos-
ity. Price (1964) proposed a Bingham-Voigt model in which the spring of the
Bingham model is replaced by a generalized Kelvin element. The resulting mate-
rial behaves like a generalized Kelvin substance for σ < σ ∗ and like a Maxwell
substance for greater stresses and at large times.

9.10 Theory of
viscoelasticity

The one-dimensional models discussed in §9.9 can be generalized to allow for
more complex stress–strain behavior that does not necessarily correspond to any
simple mechanical model and also can be extended to three dimensions. First,
we use the concept of a differential operator to generalize the one-dimensional
stress–strain laws of §9.9. The symbol D will be used to represent the operation of
“differentiation with respect to time”. This type of operator operates on functions
of time. For example, Dσ ≡ dσ/dt, D2σ ≡ d2σ/dt2, etc. If σ is a function of
x and t, the operator D is interpreted as representing partial differentiation with
respect to time. For example, a rheological law such as (9.106) can be written
using differential operator notation as

(η1D2 + k1D)ε = {(η1/k2)D2 + [1 + (k1/k2)+ (η1/η2)]D + (k1/η2)}σ .

(9.109)

An obvious generalization of this notation would be

g(D)ε = f (D)σ , (9.110)

where f and g are polynomials in D.
Differential equations of the form (9.110) can be solved using the method

of Laplace transforms. This method will be described very briefly below. More
details can be found in most texts on applied mathematics and specifically in the
monographs by Carslaw and Jaeger (1949) and Churchill (1972). Applications to
viscoelasticity are given by Christensen (1982) and Lakes (1999).

If u is a function of time, the Laplace transform of u with respect to time, denoted
by û, is defined by

û(p) ≡ L{u(t)} ≡
∞∫

0

u(t)e−ptdt, (9.111)

where p is some complex parameter whose real part is sufficiently large that the
integral in (9.109) converges. (Although a general theory of Laplace transforms
requires p to be complex, for the present purposes p can be interpreted as a real
parameter.) The transformed function û is itself a function of p. Other common
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notations for the Laplace parameter include s and λ. If u is a function of both
space and time, that is, u(x, t), then its Laplace transform with respect to time
will be a function of x and p. In the following discussion the dependence of the
functions u and û on x will be suppressed, for simplicity of notation.

The Laplace transform of many simple functions can be found by direct
integration of (9.111). For example,

u(t) = 1, û(p) = 1/p, (9.112)

u(t) = t, û(p) = 1/p2, (9.113)

u(t) = e−at , û(p) = 1/(p + a). (9.114)

In order to use Laplace transforms to solve differential equations such as
(9.109) or (9.110), it will be necessary to take the Laplace transform of the
time derivatives of a function. It follows from applying integration by parts to
definition (9.111) that

L{du(t)/dt} ≡ L{Du(t)} ≡
∞∫

0

du(t)
dt

e−ptdt = pû(p)− u(0), (9.115)

where u(0) is the initial condition of u in the time domain. If this initial condition
is zero, as will be the case for a system initially in its undisturbed state, then
(9.115) shows that the Laplace transform of du/dt is found by first taking the
transform of u and then multiplying by p. If all the time derivatives of u also
vanish at t = 0 and f (D) is any polynomial-type differential operator, then
repeated integration by parts shows that

L{f (D)u} ≡
∞∫

0

[f (D)u]e−ptdt = f (p)û. (9.116)

Hence, for systems with zero initial conditions, a linear differential equation for
u(t) is replaced, under the Laplace transform operation, by an algebraic equation
for û(p). Nonzero initial conditions pose no particular additional difficulties, but
their treatment is omitted here for the sake of brevity.

Linear differential equations are solved using Laplace transforms by the fol-
lowing procedure. First, the differential equation, say (9.110), is transformed into
the Laplace domain, yielding an algebraic equation for û. This algebraic equation
is readily solved for the function û(p). This function is then inverted back into
the time domain to yield the desired function u(t). This last step can in principle
be accomplished using an inversion integral in the complex plane (Churchill,
1972) that is similar in form to (9.111), or by one of many numerical inversion
algorithms (Lakes, 1999). In many cases the inversion can be accomplished by
consulting published tables of known Laplace transforms.

The procedure can be illustrated by the following example. In differential
operator notation, the governing equation for a Kelvin material, (9.97), can be
written as

(ηD + k)ε = σ . (9.117)
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According to rule (9.116), the Laplace transform of this equation is

(ηp + k)ε̂ = σ̂ , (9.118)

which can be solved for

ε̂ = σ̂ /(ηp + k), (9.119)

If the applied stress is some constant σo, then the Laplace transform of the stress
can be found from (9.111) and (9.112):

σ̂ (p) = L{σ(t)} = L{σo} =
∞∫

0

σoe−ptdt = σo

p
. (9.120)

Hence, the transform of the strain is given by

ε̂(p) = σo

p(ηp + k)
= σo

k

[
1
p

− 1
p + (k/η)

]
. (9.121)

The inverse Laplace transform of (9.121) can be found from any table of u(t) ↔
û(p) pairs, such as (9.112)–(9.114):

ε(t) = σo

k
[1 − e−kt/η], (9.122)

which agrees with (9.101).
To extend the treatment to three dimensions, first recall the decomposition of

Hooke’s law into isotropic and deviatoric parts, (5.62):

τm = 3Kεm, s = 2Ge, (9.123)

where τm is the mean normal stress, εm is the mean normal strain, s is the
deviatoric stress tensor, (2.151), and e is the deviatoric strain tensor, (2.234). In
light of (9.110), the obvious viscoelastic generalization of (9.123) would be

f1(D)τm = 3g1(D)εm, f (D)s = 2g(D)e. (9.124)

A common assumption is that the rock behaves elastically in hydrostatic com-
pression, and that viscoelastic effects occur only in shear, in which case the first
equation in (9.124) reduces to the first equation in (9.123).

The Laplace transforms of the constitutive laws (9.124) are

f1(p)τ̂m = 3g1(p)ε̂m, f (p)ŝ = 2g(p)ê, (9.125)

which are identical in form to (9.123), with K replaced by g1(p)/f1(p) and G
replaced by g(p)/f (p). Suppose now that we know the solution to a certain
problem in elasticity in which some known set of stresses are applied to the body.
If we take this solution and replace K with g1(p)/f1(p) and G with g(p)/f (p), then
we automatically have the Laplace transform of the solution for the associated
viscoelastic problem in which the same stresses are applied at t = 0 to an initially
undisturbed body. The actual stresses and strains as functions of time can then
be found by inverting the Laplace transforms. This procedure will be illustrated
in the next section.
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9.11 Some simple
viscoelastic
problems

The procedure described in §9.10 for generating viscoelastic solutions from elas-
tic solutions will now be illustrated with a few simple examples. In each case,
the rock is assumed to behave elastically under hydrostatic compression but
viscoelastically under deviatoric stresses.

Consider a uniaxial stress S instantaneously applied to a column of rock that
behaves as a Kelvin substance under shear loadings. We align the x-axis with
the direction of loading. Comparison of (9.97) and (9.125) shows that f1(p) = 1,
g1(p) = K , f (p) = 1, and g(p) = ηp+G, where we identify the generic stiffness k
with the shear modulus, G. The constitutive laws in the Laplace domain, (9.125),
take the form

τ̂m = 3K ε̂m, ŝ = 2(ηp + G)ê. (9.126)

In component form, for example, ŝxx = 2(ηp+G)êxx , etc. Under uniaxial stress,
τxx = S, and τyy = τzz = 0, in which case τm = S/3 and sxx = 2S/3. In the
Laplace domain,

τ̂m = S/3p, ŝxx = 2S/3p. (9.127)

Solving (9.126) and (9.127) gives

ε̂m = S
9Kp

, êxx = S
3p(ηp + G)

= S
3G

[
1
p

− 1
p + (G/η)

]
. (9.128)

These functions can be inverted back into the time domain using (9.112) and
(9.114):

εm = S
9K

, exx = S
3G
(1 − e−Gt/η). (9.129)

Recalling the definition of deviatoric strain, exx = εxx + εm, we see that the
strain in the longitudinal direction is given by

εxx = S
9K

+ S
3G
(1 − e−Gt/η). (9.130)

Comparison of (9.130) with (9.104) shows that a rock that is elastic in hydrostatic
compression and Kelvin-like in distortion will follow a generalized Kelvin law
under uniaxial compression.

Consider now a material that is elastic in hydrostatic compression and behaves
like a generalized Kelvin substance in shear. Comparison of (9.103) and (9.125)
shows that, in this case,

f (p) = η1p + k1 + k2, g(p) = k2(η1p + k1). (9.131)

Now consider a pore pressure P applied to the wall of a circular borehole of
radius a. In the elastic case, the radial displacement is given by (8.90):

u = −Pa2/2Gr. (9.132)
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In the viscoelastic case, we must replace P with its Laplace transform, P/p, and
replaceG with g(p)/f (p), so that in the Laplace domain the radial displacement is

û(r, p) = −Pa2(η1p + k1 + k2)

2k2(η1p + k1)pr
= −Pa2

2k2k1r

[
k1 + k2

p
− k2

p + (k1/η1)

]
. (9.133)

Inversion, using (9.112) and (9.114), gives

u(r, t) = −Pa2(k1 + k2)

2k2k1r
+ Pa2

2k1r
e−k1t/η1 . (9.134)

The rock mass surrounding the borehole will undergo an instantaneous displace-
ment of −Pa2/2k2r. The steady-state displacement will be −Pa2(k1+k2)/2k2k1r,
approached with a time constant of η1/k1.

Last, consider a rock that behaves elastically under hydrostatic loading and as a
Maxwell substance under deviatoric loading. From (9.94), f (p) = (p/G)+ (1/η)
and g(p) = p, where we again identify k with G. If this rock is subjected to
uniaxial strain in the z direction, from (5.33), the elastic stresses would be

τzz = S, τxx = τyy = ν

1 − ν
S = 3K − 2G

3K + 4G
S. (9.135)

For the viscoelastic problem, we replace S with S/p and G with g(p)/f (p), so
that in the Laplace domain the stresses are

τ̂zz = S
p

,

τ̂xx = τ̂yy = S[3K(ηp + G)− 2Gηp]
p[3K(ηp + G)+ 4Gηp] = S

[
1
p

− 6Gη
(3K + 4G)ηp + 3KG

]
.

(9.136)

It follows upon inversion that in the time domain the stresses are

τzz = S, τxx = τyy = S
[

1 − 6G
(3K + 4G)

e−3KGt/(3K+4G)η
]

. (9.137)

As time increases, the stress state approaches a hydrostatic stress of magnitude S,
with a time constant of (3K + 4G)η/3KG.

Ladanyi (1993) gives an extensive review of the application of the theories
of creep and viscoelasticity to the time-dependent deformation of rock around
underground tunnels and excavations.
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10.1 Introduction In most of the discussion in previous chapters, “rock” has been thought of as
a homogeneous material that can be characterized by macroscopic parameters
such as density, elastic moduli, etc., that are uniform over regions at least as large
as a laboratory specimen. In most engineering calculations, it is convenient, and
often practically necessary, to treat a rock mass as if it were homogeneous on the
scale of a borehole, or tunnel, for example. In reality, rocks are quite inhomo-
geneous on length scales below the centimeter scale, due to pores, microcracks,
grain boundaries, etc. Engineering and geophysical calculations cannot explicitly
account for inhomogeneity on this “microscale,” Nevertheless, consideration of
the effect of grains, pores, and cracks on the macroscopic deformation of a rock
can shed much light on the constitutive behavior, in the sense of supplying esti-
mates of the elastic moduli and yield strength, for example. The field in which
microscale calculations are carried out in order to gain a better understanding of
macroscopic rock behavior is known as micromechanics.

In this chapter, we discuss some micromechanical models for the elastic and
inelastic behavior of rocks. Methods for estimating the effective elastic moduli
of a rock that consists of a heterogeneous assemblage of different minerals are
presented in §10.2. In §10.3, we discuss the effect of pore structure on the porous
rock compressibility coefficients that were defined in §7.2. The nonlinearity in
the stress–strain curve that results from crack closure is discussed in §10.4. A brief
review of some of the numerous schemes that have been proposed for estimating
the effective elastic moduli of porous and cracked rocks is presented in §10.5. In
§10.6, we discuss the effects of sliding friction along crack faces and the hysteresis
that this friction causes in the stress–strain behavior. The Griffith crack model
for rock failure and the concept of the Griffith locus are presented in §10.7. The
basic concepts of linear elastic fracture mechanics are briefly discussed in §10.8.
Finally, the use of the Griffith crack model to develop a failure criterion in terms
of the maximum and minimum principal stresses is presented in §10.9.

10.2 Effective
moduli of
heterogeneous rocks

Consider first a hypothetical rock that is homogeneous, consisting of a single
mineral, and without any cracks or pores. If a piece of this rock having volume
V is subjected to a uniform hydrostatic pressure P over its entire outer boundary,
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a uniform volumetric strain of magnitude P/K will be induced throughout the
sample and the resulting volume decrease will be given by�V = PV/K .

Now consider a rock that consists of an assemblage of N different minerals,
each having its own value of the bulk modulus, Ki, where i = 1, 2, 3, . . . ,N.
If a piece of this rock, having initial volume V , is subjected to an external
hydrostatic stress of magnitude P, the resulting strain inside the rock will not
be uniform. In general, the stiffer minerals will deform less than the more
compliant minerals, although the precise amount of deformation in each of
the solid components of the rock will depend on the geometric configuration
of the various minerals. For example, a compliant clay particle that is sitting
inside a pore in a sandstone will undergo much less deformation than would a
clay particle that is wedged between two sand grains. Nevertheless, this rock
will undergo some overall volume decrease, �V . From a purely macroscopic
point of view, an “effective” bulk modulus Keff can be defined by the relation
Keff = PV/�V . This effective bulk modulus can be interpreted as the bulk
modulus of a hypothetical homogeneous rock that would undergo the same
mean volumetric strain as does the actual heterogeneous rock.

Precise calculation of Keff would require exact knowledge of the microstruc-
ture of the rock, which in practice is never available. However, if the volume
fractionsχi and bulkmoduliKi of the variousmineral components of the rock are
known, the methods of Reuss and Voigt can be used to provide estimates of Keff .

Reuss (1929) made the assumption that the stresseswould be uniform through-
out the heterogeneous rock. In reality this cannot be exactly true, as the different
strains in the various mineral grains would then lead to displacement disconti-
nuities at the grain boundaries. If the stress within each mineral were indeed a
hydrostatic compression P, then the volume change of each component would
be�Vi = PVi/Ki. The total volume change is the sum of the volume changes of
the individual minerals, so

�V =
N∑
i=1

�Vi =
N∑
i=1

PVi

Ki
=

N∑
i=1

PχiV
Ki

= PV
N∑
i=1

χi

Ki
. (10.1)

Using the definition Keff = PV/�V ,

KReuss
eff = PV

�V
=

[
N∑
i=1

χi

Ki

]−1

. (10.2)

The Reuss effective bulk modulus is therefore the weighted harmonic mean of the
individual bulk moduli. In terms of the compressibilities,

CReuss
eff ≡ 1/KReuss

eff =
N∑
i=1

χi

Ki
=

N∑
i=1

χiCi, (10.3)

and so the Reuss effective compressibility is the weighted arithmetic mean of the
individual mineral compressibilities.

Voigt (1889), on the other hand, made the assumption that the volumetric
strains are uniform throughout the heterogeneous body. Again, this cannot be
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precisely true, as equality of strains implies that the stresses in each mineral
phase are different, and so the resulting stress field would be discontinuous, and
would not satisfy the stress equilibrium equations. Under the assumption of
equal volumetric strains, the mean normal stress in each component would be
given by σm,i = εvKi. The average value of the mean normal stress is simply the
volumetric average of the mean normal stress in each component:

〈σm〉 =
N∑
i=1

χiσm,i =
N∑
i=1

χiεvKi = εv

N∑
i=1

χiKi. (10.4)

Making the obvious identification of the average value of themean normal stress
with the applied stress P, it follows from the definition Keff = PV/�V = P/εv
that

KVoigt
eff = P

εv
= 〈σm〉

εv
=

N∑
i=1

χiKi. (10.5)

Voigt’s estimate of the effective bulk modulus is therefore simply the weighted
arithmeticmean of the individual bulkmoduli. TheVoigt estimate of the effective
compressibility is

CVoigt
eff ≡ 1/KVoigt

eff =
[

N∑
i=1

χiKl

]−1

=
[

N∑
i=1

χi

Ci

]−1

. (10.6)

It follows from elementary algebraic considerations that the Voigt estimate of
Keff will always exceed the Reuss estimate. More specifically, however, Hill (1952)
used strain energy arguments to prove that the Voigt and Reuss estimates are
rigorous upper and lower bounds on the true value of the effective bulkmodulus,
that is,

[
N∑
i=1

χi

Ki

]−1

= KReuss
eff ≤ Keff ≤ KVoigt

eff =
N∑
i=1

χiKi. (10.7)

Hill’s proof does not in any way depend upon there being a sufficiently large
number of grains so as to have a “statistically meaningful sample,” nor on the
different minerals being randomly located. The bounds (10.7) apply equally well
to a rock specimen that contains a single foreign mineral inclusion, for example.

Hill proposed using the average of the Voigt and Reuss bounds to find a best
estimate of Keff . The resulting value is known as the Voigt–Reuss–Hill estimate
of the effective modulus:

KVRH
eff = 1

2

[
KReuss
eff + KVoigt

eff

]
. (10.8)

Although there is no particular justification for assuming that Keff will liemidway
between the two bounds, Hill’s assumption has the advantage of giving an
estimate of the effective modulus that a priori will be guaranteed to have the
minimum possible error.
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The Voigt, Reuss, and Hill arguments can also be applied to the estimation of
the effective shearmodulus of a heterogeneous rock. In this case,

[
N∑
i=1

χi

Gi

]−1

= GReuss
eff ≤ Geff ≤ GVoigt

eff =
N∑
i=1

χiGi, (10.9)

GVRH
eff = 1

2

[
GReuss
eff + GVoigt

eff

]
. (10.10)

Similar equations are oftenwritten for the Young’smodulus. However, in general
the arithmetic and harmonic means of the individual Young’s moduli will not
necessarily provide bounds on Eeff (Grimvall, 1986, p. 261). Instead, bounds
on Eeff can be obtained from the bounds on Keff and Geff by using the identity
1/E = 1/(3G)+ 1/(9K).

Values for the elastic moduli of various rock-forming minerals have been
compiled by Clark (1966), Simmons and Wang (1971), and Mavko et al. (1998).
Bulkmoduli values of commonminerals range from about 36–38GPa for quartz,
63–77GPa for calcite, 130GPa for olivine, andup to about 253GPa for corundum.
Shear moduli range from about 28–32 GPa for calcite, 44–46 GPa for quartz,
80 GPa for olivine, and up to about 162 GPa for corundum. Hence, the range of
values of K and G observed in common minerals span a range of less than one
order of magnitude.

The relative lack of variability of the elastic moduli of differentminerals causes
the Voigt and Reuss bounds to usually be fairly close together. In many cases, the
difference between the Voigt and Reuss estimates will bewithin the experimental
uncertainty of the moduli values of the individual minerals.

Brace (1965)measured the bulkmoduli of several crystalline rocks at pressures
up to 900MPa. At such high pressures, it can be assumed that any cracks thatmay
have been present at low pressures will be closed. As a representative example,
consider the granite from Stone Mountain, Georgia, which was composed of
42 percent plagioclase, 30 percent quartz, 24 percent microcline, and 4 percent
mica. In its unstressed state, it had a density of 2631 kg/m3 and a microcrack
porosity of 0.3 percent. At 900MPa, the individual mineral bulk moduli assumed
by Brace were 62.7 GPa for plagioclase, 44.5 GPa for quartz, 60.0 GPa for micro-
cline, and 50.1 GPa for mica. From (10.5), the Voigt estimate is 56.1 GPa, the
Reuss estimate is 54.8 GPa, and the Voigt–Reuss–Hill estimate is 55.5 GPa. The
measured bulk modulus was 56.8 GPa. Considering that the mineral compo-
sitions were reported only to within the nearest percent, the Voigt–Reuss–Hill
average agrees with the measured value of the effective bulk modulus as nearly
as one could expect. Similar results were found for the other rocks.

10.3 Effect of pores
on compressibility

In §10.2, it was shown that the effective bulk or shear modulus of a solid rock can
usually be accurately estimated if its mineralogical composition is known. But
rocks typically contain some cracks or pores, which cause themoduli to decrease
below the values that would be obtained if the rock were nonporous. The Voigt
and Reuss bounds could be applied to a porous rock, by treating the pore space
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as an additional component that has Ki = Gi = 0. However, the resulting Reuss
bound will be zero, and the spread between the two bounds will be too large
for the Voigt–Reuss–Hill average to serve as a useful estimate. Hence, other
methods must be used to account for the effect of voids. Moreover, whereas the
Voigt and Reuss analyses took no account of the microstructure of the rock,
the influence that voids have on the effective moduli depends very strongly on
the shape of the voids.

A convenient basis for studying the effect of void shape on the bulk modulus
of a rock is to consider the stored elastic strain energy (Eshelby, 1957). According
to (5.148), if a homogeneous elastic body of volume Vb and bulk modulus Km
is subjected to a uniform hydrostatic stress P over its outer surface, the elastic
strain energy stored in the body will be P2Vb/2Km. Imagine now that pores are
introduced into this bodywhilemaintaining thehydrostatic boundary conditions.
The total elastic strain energy will change by some amount � hydro, to a new
value P2Vb/2Km +� hydro. The effective bulk modulus K can be defined so that
the strain energy stored in the porous body is equal to that which would be
stored in a solid body having bulk modulus K :

P2Vb

2K
= P2Vb

2Km
+� hydro. (10.11)

We drop the subscript eff, for simplicity, and in recognition of the fact that the
bulk modulus value that would be used in geological or engineering calculations
is actually the effective bulk modulus of a material that is heterogeneous and
porous at the microscale.

The definition of the effective bulk modulus of a heterogeneous medium in
terms of the stored strain energy is equivalent to the definition given in §10.2
in terms of the mean stresses and strains (Markov, 2000). For a porous rock,
the effective bulk modulus is the inverse of the parameter Cbc of §7.2. The
equivalence between the “energy” definition and the “strain” definition of Cbc
can be demonstrated explicitly, as follows. Consider a solid piece of rock under
hydrostatic stress. First, imagine that the pores are carved out of the body, while
the appropriate stresses are maintained at the pore boundaries so as not to allow
the pore surfaces to relax. The bodywill lose an amount of strain energy equal to
thatwhichwas stored in the carved-outmaterial, that is, P2Vp/2Km = P2VpCm/2.
Now imagine that the stresses at the pore boundaries are slowly relaxed to zero.
As the pore surfaces relax, the pore volumewill change by−CppVpP, and the body
will perform an amount of work against this stress that is given by CppVpP2/2.
This term also represents energy that is lost by the body. Finally, as the fictitious
pore stresses are relaxed, the outer boundary of the body will contract, leading
to a bulk volume change of −CbpVbP. Since the pressure on the outer boundary
remains unchanged at P during this process, the external stress will perform an
amount of work on the body that is equal to CbpVbP2. The total energy change
due to the presence of the pores is therefore

� hydrostatic = −(P2VpCm/2)− (P2VpCpp/2)+ (P2VbCbp). (10.12)

Using (7.14), Cbp = φCpc, and (7.15), Cpp = Cpc − Cm, this can be written as

� hydrostatic = P2VpCpc/2. (10.13)
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Combining (10.11) and (10.13), and factoring out P2Vb/2, we recover (7.16):

1/K = Cbc = Cm + φCpc . (10.14)

Hence, the calculation of the effective bulk modulus reduces to the calculation
of the pore compressibility, Cpc.

The parameterCpc represents the compressibility of the entire pore space of the
rock. Although pores are often interconnected and form a continuous structure,
most methods of relating compressibility to pore structure assume that the pores
exist as isolated voids. The compressibility Cpc of an isolated void can be found
by solving the elasticity problem of a traction-free single void in an infinite rock
mass, subjected to hydrostatic stress at infinity.

One commonly used model of a pore is that of a cylindrical tube of circular
or elliptical cross section. This model has been used to study the attenuation of
elastic waves in fluid-filled porous media (Biot, 1956a,b), and to study the effect
of porosity and stress on permeability (Bernabe et al., 1982; Sisavath et al., 2000).
The problem of a tubular elliptical cavity in an infinite elastic body, subjected to a
hydrostatic stressP at infinity, was first solved by Inglis (1913). If a is the semimajor
axis and b is the semiminor axis, the normal component of the displacement at
the surface of the hole, under plane stress conditions, is

un = P
hEm

[(a2 + b2)− (a2 − b2) cos 2β], (10.15)

where Em is the Young’s modulus of the intact rock, h is the metric coeffi-
cient of the elliptical coordinate system, and β is the angular coordinate. The
change in the cross-sectional area of the hole is found by integrating the normal
displacement along the perimeter of the hole (Walsh et al., 1965):

�A =
2π∫
0

un(hdβ)

=
2π∫
0

P
hEm

[(a2 + b2)− (a2 − b2) cos 2β]hdβ = 2π(a2 + b2)P
Em

. (10.16)

The initial area of the hole is πab, so the plane stress pore compressibility is

Cpc = �A
AiP

= 2π(a2 + b2)P
EmπabP

= 2
Em

(
a
b

+ b
a

)
= 2

Em

(
α + 1

α

)
, (10.17)

where α = b/a ≤ 1 is the aspect ratio of the hole.
This expression is appropriate for plane stress conditions, butmust bemodified

to render it applicable to tubular pores in rocks, which will be more nearly under
conditions of plane strain. This is done by expressing (10.17) in terms of G and
ν, and then replacing ν with ν/(1 − ν). Since E = 2G(1 + ν), the plain strain
version of (10.17) is (Fig. 10.1a)

Cpc(ellipse) = 1 − νm

Gm

(
α + 1

α

)
. (10.18)
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Fig. 10.1 Pore
compressibility of
(a) two-dimensional
elliptical voids, and
(b) three-dimensional
spheroidal voids, as
functions of the aspect
ratio.
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For circular pores, α = 1, and the pore compressibility reduces to

Cpc(circle) = 2(1 − νm)/Gm. (10.19)

For small deviations from circularity, (10.18) can be expanded in terms of the
eccentricity, e = 1 − α, to yield

Cpc = (1 − νm)

Gm

[
(1 − e)+ 1

1 − e

]
= 2(1 − νm)

Gm

[
1 + e2

2
+ · · ·

]
, (10.20)

which shows that slight deviations from circularity have little effect on the pore
compressibility. The circular hole is the stiffest of all ellipses, and the compress-
ibility increases as the aspect ratio decreases. For crack-like pores of small aspect
ratio, (10.18) reduces to

Cpc(2D crack) = (1 − νm)/αGm, (10.21)

which is consistent with the results of §8.9, where the initial aspect ratio was
denoted by ξo. The effect of elliptical pores on elastic properties has been
discussed in detail by Kachanov (1994).

The complex variable methods of Chapter 8 can be used to study the com-
pressibility of two-dimensional pores (Savin, 1961; Zimmerman, 1986; Jasiuk,
1995). One simple family of mapping functions that can represent a wide variety
of pore shapes is the hypotrochoid,

z = ω(ζ ) = 1
ζ

+ mζ n, (10.22)

in which n is a positive integer, and m is a real number that must satisfy 0 ≤ m <
1/n in order for the mapping to be single-valued. A hypotrochoid of exponent n
has n + 1 “corners,” which become more acute as m increases. As m → 0, the
hole rounds off into a circle, whereas asm → 1/n, the corners become cusp-like.
A family of such curves is shown in Fig. 10.2a for n = 3, with each curve labeled
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Fig. 10.2 (a) Pore
compressibility Cpc of
several hypotrochoidal
holes of n = 3,
normalized with respect
to that of a circular hole.
(b) Dimensionless
normalized pore
compressibility βpc for
various
two-dimensional pore
shapes; α is the aspect
ratio.
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by its value of m, as well as by its pore compressibility, which is given by (Mavko
1980; Zimmerman, 1986)

Cpc(hypotrochoid) = 2(1 − νm)

Gm

[
1 + nm2

1 − nm2

]
. (10.23)

A four-sided hypotrochoid could be used as a simplified two-dimensional
model for the pore shape changes that occur as a result of the diagenetic alteration
of a sandstone. When m = 1/3, the pore resembles a cross section of the space
between a set of four adjacent spherical grains. Asm decreases to zero, the shape
mimics the evolution of a pore as the rock undergoes diagenesis. This model
has been used by Vernik (1997) to study the compaction of sandstones, and by
O’Donnell and Steif (1989) to study the sintering of powdered metals.

When m = 2/n(n + 1), the hypotrochoid represents the first two terms of
the mapping function for an equilateral polygon of n + 1 sides (Savin, 1961)
and resembles a polygon with slightly concave sides and rounded corners. From
(10.23), the pore compressibility can be expressed as a function of the number of
sides of the pore, s:

Cpc(quasi-polygon of s sides) = 2(1 − νm)

Gm

[
s2(s − 1)+ 4
s2(s − 1)− 4

]
. (10.24)

The quasi-triangular pore is 57 percent more compressible than a circular pore
whereas the quasi-square is only 18 percent more compressible. The com-
pressibility of these quasi-polygonal pores decreases rapidly as the number of
sides increases and the pore becomes more circular. Consideration of more
terms in the exact mapping functions of the polygons alters the predicted pore
compressibilities by no more than 1–2 percent ( Jasiuk, 1995).

For many different two-dimensional hole shapes, the pore compressibility can
be approximately expressed in terms of the perimeter� and initial area A of the
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hole (Zimmerman, 1986; Tsukrov and Novak, 2002). We start by expressing the
pore compressibility as

Cpc = 2(1 − νm)

Gm

�2

4πA
βpc , (10.25)

where the first term on the right is the compressibility of a circular pore, the
second term is a dimensionless geometric factor that equals unity for a circle and
thereby measures departures from circularity, and βpc is dimensionless normal-
ized pore compressibility. By construction, βpc = 1 for a circular pore. For the
quasi-polygons obtained by setting m = 2/n(n + 1), βpc always lies in the range
0.95–1.00. For the infinitely thin elliptical slit that is obtained by setting n = 1
and letting m → 1, βpc = 1.23. The smallest value of βpc for the entire family
of hypotrochoids is 0.617; this occurs when m = 1/n and n → ∞, which corre-
sponds to a near-circular pore that contains an infinite number of small cusps of
vanishing amplitude. The parameter βpc does not depart drastically from unity
(Fig. 10.2b), so it is approximately true that

Cpc ≈ 2(1 − νm)

Gm

�2

4πA
. (10.26)

The only three-dimensional pore shape that is amenable to exact analytical
treatment is the ellipsoid (Sadowsky and Sternberg, 1949; Eshelby, 1957). In its
various forms, the ellipsoid can represent a variety of shapes, such as spheres,
cylinders, and thin cracks. An expression for the pore compressibility of an
ellipsoidal pore with three axes of unequal lengths is implicitly contained in the
results of Eshelby, although the result is expressed in terms of unwieldy elliptical
integrals. However, the pore compressibility of an ellipsoid depends mainly
on the ratio of the minimum axis to the intermediate axis; the value of the
maximum axis has a minor effect. For this reason, and to avoid using two aspect
ratios to characterize a pore, three-dimensional pores are typically modeled not
as ellipsoids, but as spheroids, which are degenerate ellipsoids having two axes
of equal length.

A spheroid can be formed by revolving an ellipse about one of its axes of
symmetry. Revolution about theminor axis generates an oblate spheroid, whereas
revolution about the major axis produces a prolate spheroid. The aspect ratio can
be defined as the ratio of the length of the unequal axis to the length of one
of the two equal axes. By this definition, prolate spheroids have α > 1, while
oblate spheroids have α < 1. As α → ∞, the prolate spheroid becomes a long
needle-like cylinder, and as α → 0 it becomes a thin “penny-shaped” crack. A
spheroid having α = 1 is a sphere.

Zimmerman (1985b) used the general solution of the elasticity equations in
prolate spheroidal coordinates (Edwards, 1951), and chose the arbitrary coeffi-
cients so as to give a hydrostatic stress at infinity, and a traction-free cavity wall.
Integration of the normal component of the displacement over the surface of
the cavity yields the pore compressibility in the following form, which is most
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conveniently expressed in terms of Cpp rather than Cpc (Fig. 10.1b):

Cpp = 2(1−2νm)(1+2R)−(1+3R){1−2(1−2νm)R−[3α2/(α2−1)]}
4Gm{(1+3R)[α2/(α2−1)]−(1+R)(νm+νmR+R)} ,

R = 1
α2 − 1

+ α

2(α2 − 1)3/2
ln
α − √

α2 − 1

α + √
α2 − 1

. (10.27)

The minimum value of the pore compressibility of a prolate spheroid occurs
when α = 1, where it has the value

Cpp(sphere) = 3
4Gm

, (10.28)

as was derived explicitly for a sphere in §8.12. At the other end of the aspect ratio
spectrum, the needle-like pore has Cpp = 1/Gm. The values of Cpp for all prolate
spheroids lie between 3/4Gm and 1/Gm, and are nearly independent of Poisson’s
ratio. The variation of Cpp with νm is less than 1 percent and is within thickness
of the curves shown in Fig. 10.1b.

The fact that the compressibility of a prolate spheroidal void is very insensitive
to the Poisson ratio of the surrounding rock can be exploited to find a simple
approximation to Cpp. Setting νm = 1/2 in (10.27), the following asymptotic
expression can be found:

GmCpp(prolatespheroid) ≈ 2α2 + 1
2α2 + ln(4α2)

as α → ∞, (10.29)

which is accurate to within 1 percent for all α > 3 and to within 2 percent for
all α > 2. A simpler approximation to the compressibility of a prolate spheroid,
which is accurate to within 2 percent for all α > 1, is

GmCpp ≈ 1 − 0.25e−(α−1)/3. (10.30)

Whereas (10.29) is an asymptotic expansion of (10.27), (10.30) is merely a
convenient curve-fit.

The results for a prolate spheroid can be transformed into a form applicable
to oblate spheroids by making a simple change of variables (Edwards, 1951); the
result is (Fig. 10.2b)

Cpp = (1 + 3R)[1 − 2(1 − 2νm)R + 3α2] − 2(1 − 2νm)(1 + 2R)
4Gm[(1 + 3R)α2 + (1 + R)(νm + νmR + R)] ,

R = −1
1 − α2

+ α

(1 − α2)3/2
arcsin

√
1 − α2. (10.31)

Although the expression for the pore compressibility of a three-dimensional
oblate spheroidal pore is more complicated than that for the two-dimensional
elliptical pore, the variation of compressibility with aspect ratio is very similar
(compare Figs. 10.1a,b). In both cases the slope of the Cpp curve is zero near
α = 1, and Cpp grows like 1/α as α → 0.
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An asymptotic expression for the compressibility of very thin penny-shaped
cracks, also known as “circular cracks” because of their circular planform, can
be derived from (10.31) by considering small values of α (Zimmerman, 1985b):

Cpc(penny-shaped crack) = 2(1 − νm)

παGm
. (10.32)

Comparison of (10.21) and (10.32) shows that the three-dimensional penny-
shaped crack is stiffer than the two-dimensional crack by a factor of π/2 (Walsh,
1965a).

The pore compressibility expressions presented abovewere derived for isolated
pores and are valid for pores that are sufficiently distant from neighboring pores
that stress-field interactions between the pores are negligible (see §8.14). Con-
sider a rock containing a dilute concentration of spherical pores. From (10.28),
the compressibility Cpp of each pore can be approximated by 3/4Gm. Combining
this with (10.14) and using the identity E = 2G(1+ν) gives the following expres-
sion for the compressibility of a rock containing a small amount of spherical
porosity:

Cbc = Cm

[
1 + 3(1 − νm)

2(1 − 2νm)
φ

]
. (10.33)

As typical values of the Poisson ratio are in the range of 0.1–0.3, a 10 percent
volume concentration of spherical pores will increase the bulk compressibility
by about 20 percent.

The effect of cracks on the bulk compressibility is not conveniently expressed
in terms of porosity. Consider a rock containing N penny-shaped cracks within a
total bulk volume Vb, each having semimajor axis a and semiminor axis b = αa.
The porosity will be

φ = N
Vb

4πa2b
3

= 4πNa3α
3Vb

= 4πα
3
�, (10.34)

where � = Na3/Vb is a dimensionless crack-density parameter. Insertion of
(10.32) and (10.34) into (10.14), and using the identity 3K(1 − 2ν) = 2G(1 + ν),
yields (Walsh, 1965a)

Cbc = Cm

[
1 + 16(1 − ν2m)

9(1 − 2νm)
�

]
. (10.35)

Cracks of different aspect ratios can be combined into a single value of�, because
the aspect ratio cancels out of the calculations that lead to (10.35).

Note from (10.34) that 4π�/3 is the porosity thatwould exist if the crackswere
replaced by circumscribed spherical pores. Hence, the increase in bulk compress-
ibility is not proportional to the crack porosity, but is essentially proportional
to the porosity that would exist if the cracks were replaced by circumscribed
spherical pores.
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10.4 Crack closure
and elastic
nonlinearity

Many crystalline rocks contain crack-like voids that are very thin in one direction.
These voids have a strong influence on the mechanical and transport properties,
despite the fact that total crack porosity may be very small. One important
property of crack-like voids is that they can be closed under sufficiently large
differential pressures, at which point they cease to contribute to the bulk com-
pressibility. Since different cracks close at different pressures, the result is a
nonlinearity in the elastic stress–strain curve of a rock. Although sedimentary
rocks sometimes do not have microcracks per se, as opposed to fractures on
a larger scale, imperfectly bonded grain boundaries can also be modeled as
“crack-like” voids.

The initial nonlinear elastic portion of the stress–strain curve, such as the
region OA in Fig. 4.3, has often been modeled by assuming that the unstressed
rock contains a distribution of two or three-dimensional elliptical/spheroidal
cracks of various aspect ratios (Walsh and Decker, 1966; Morlier, 1971; Cheng
and Toksöz, 1979; Seeburger and Nur, 1984; Zimmerman, 1991). As shown in
§8.9 and §8.13, elliptical (2D) or spheroidal (3D) cracks close up by an amount
that is proportional to the confining pressure. Hence, the pore compressibility,
when defined with respect to the initial volume, is constant. For these cracks,
�A/Ai = −Cpc�Pc, so the pressure at which the crack fully closes is found by
setting�A = −Ai, leading to

Pc(closing) ≡ P∗ = 1/Cpc . (10.36)

It follows from (10.32) that the closing pressure of a three-dimensional penny-
shaped crack of initial aspect ratio α is

P∗(penny-shaped crack) = παGm

2(1 − νm)
= 3πα(1 − 2νm)

4(1 − ν2m)Cm
. (10.37)

It follows from the discussion given in §8.13 that pore pressure increments
have an equal but opposite effect on cracks as do increments in the confining
pressure. Hence, crack closure is actually a function of the differential pressure,
Pd = Pc −Pp, although if the pore pressure is constant, the crack closure depends
only on Pc.

If the cracks have cusp-like shapes, the closure is a nonlinear function of the
confining stress (Mavko and Nur, 1978). However, the pressure at which the
crack becomes fully closed generally obeys an equation very similar to (10.37),
except for slight differences in the numerical constant (Zimmerman, 1991).

Morlier (1971) devised the following method for relating the distribution of
initial aspect ratios to the shape of the stress–strain curve. For rocks with low
concentrations of penny-shaped cracks, (10.35) gives

Cbc = Cm + 16(1 − ν2m)

9(1 − 2νm)
Cm�. (10.38)

Any additional equidimensional pores will be nonclosable under typical elastic
stresses and so will contribute an additional term to the bulk compressibility that
is independent of the stress. For the present purposes, such contributions to Cbc
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can be incorporated into the first term Cm on the right side of (10.38), and do not
affect the analysis.

Assume that the confining pressure is increased while the pore pressure is held
constant. To simplify the notation, we drop all subscripts on P. At any given
pressure, the parameter � in (10.38) must refer to the density of open cracks. The
cracks that are still open at a confining pressure P will be those cracks whose
closing pressures are greater than P. According to (10.37), these are the cracks
that had an initial aspect ratio greater than 4(1−ν2m)CmP/3π(1−2νm). If we think
of α as identifying, at any given pressure, the aspect ratio of those cracks that are
just at the verge of closing, then we can say dα/dP = 4(1−ν2m)Cm/3π(1−2νm).

Differentiation of (10.38) with respect to P, and use of the chain rule, gives

dCbc

dP
= dCbc

d�
d�
dα

dα
dP

= 4π
3

[
4(1 − ν2m)Cm
3π(1 − 2νm)

]2 d�
dα

. (10.39)

Since�(α) represents the number of cracks whose initial aspect ratios are greater
than a, the aspect ratio distribution function, γ (α), is given by

γ (α) = −d�
dα

= −3
4π

[
3π(1 − 2νm)
4(1 − ν2m)Cm

]2 [
dCbc

dP

]
P=P∗

, (10.40)

where the derivative dCbc/dP must be evaluated at the crack closing pressure
P∗, given by (10.37). Aside from the multiplicative constant, the aspect ratio
distribution function is the derivative of the compressibility curve, which is to say,
the second derivative of the stress–strain curve. As differentiation is a numerically
unstable operation, small amounts of noise in the stress–strain data can lead to
large fluctuations in the computed aspect ratio distribution; this can be avoided
by fitting smooth curves to the stress–strain data.

Compressibility data can often be fit by exponentially decreasing functions of
the form (Wyble, 1958; Zimmerman, 1991)

Cbc = C∞
bc + (Ci

bc − C∞
bc )e

−P/P̂ , (10.41)

where the superscript i denotes the initial (zero stress) value, the superscript
∞ denotes the value at high stresses, and P̂ is a characteristic (crack-closing)
pressure. For this type of stress–strain curve, (10.40) gives

γ (α) =
[

9(1 − 2νm)
16(1 − ν2m)Cm

]
(Ci

bc − C∞
bc )

α̂
e−α/α̂ , (10.42)

where α̂ is related to P̂ by (10.37).
By definition, the “crack density” whose initial aspect ratio lies between α and

α + dα is given by d� = γ (α)dα. If all microcracks in the rock are assumed to
have the same radius a, then (10.34) shows that the porosity contained within
this range of α is dφ = (4πα/3)d�. Hence, the distribution function for the
porosity, denoted by c(α), is

c(α) = dφ
dα

= 4πα
3
γ (α) = 3π(1 − 2νm)

4(1 − ν2m)

(Ci
bc − C∞

bc )

Cm

α

α̂
e−α/α̂ . (10.43)
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The function c(α) is also known as the aspect ratio distribution function. The
particular form given by (10.43) rises almost linearly from the origin, has a
maximum at α = α̂, and then effectively decays to zero when α reaches about
5α̂. The total crack porosity is found by integrating c(α) over all values of α,
from 0 to 1. However, c(α) decays so rapidly that the range of the integral can
be extended to infinity:

φcrack =
∞∫
0

c(α)dα =
∞∫
0

3π(1 − 2νm)
4(1 − ν2m)

(Ci
bc − C∞

bc )

Cm

α

α̂
e−α/α̂dα

= 3π(1 − 2νm)
4(1 − ν2m)

(Ci
bc − C∞

bc )

Cm
α̂ = (Ci

bc − C∞
bc )P̂, (10.44)

where in the last step (10.37) is used to relate α̂ to P̂.
Zimmerman (1991) fit measured compressibilities of three consolidated sand-

stones, Boise, Berea, and Bandera, to functions of the form (10.41). Table 10.1
shows the fitted parameters in (10.41), the Voigt–Reuss–Hill estimates of the
intact rock parameters {Cm, νm}, and the estimate of total crack porosity com-
puted from (10.44). The compressibility curves and the aspect ratio distribution
functions are shown in Fig. 10.3.

Morlier’s method assumes that each crack behaves as an isolated void in an
otherwise infinite, intact rock. As explained in §10.5, stress-field interactions
between nearby cracks lead to a pore compressibility that increases with crack
density. Consequently, the bulk compressibility will increase with � in a nonlin-
ear manner, more rapidly than predicted by (10.38). Accounting for these effects

Table 10.1
Compressibility
parameters for three
sandstones
(Zimmerman, 1991).

Sandstone C∞
bc

(1/GPa)
Ci

bc
(1/GPa)

Cm
(1/GPa)

νm P̂
(MPa)

φcrack

Bandera 0.082 0.617 0.0226 0.210 8.33 0.0044
Berea 0.105 0.740 0.0222 0.218 4.74 0.0030
Boise 0.095 0.374 0.0251 0.188 7.01 0.0019

Fig. 10.3 (a) Com-
pressibility curves of
several consolidated
sandstones, and (b) the
associated aspect ratio
distribution functions,
as computed by
Morlier’s method
(Zimmerman, 1991).
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(Cheng and Toksöz, 1979; Zimmerman, 1991) will lead to aspect ratio distribu-
tions that are shifted to lower values of α and to estimated crack porosities that
are smaller than that given by (10.44).

10.5 Effective
medium theories

The compressibility of pores of different shapes was discussed in §10.3 under the
assumption that a givenporewas surroundedby an infinite expanse of intact rock.
However, the effect of nearby pores can be shown to increase the compressibility
of a given pore, by the following argument. Imagine a rock permeated with
various pores, only one of which is pressurized by the pore fluid. The expansion
of this pore will be resisted not by an infinite expanse of nonporous rock, but
by the porous rock, whose effective elastic moduli will be lower than that of
the intact rock. Hence, the pressurized pore will expand by a greater amount
than it would if it were imbedded in intact rock. The pore compressibility of
a given pore will therefore be increased by the presence of nearby pores. This
phenomenon is referred to as being due to “pore–pore interactions,” although
the effect is one of interaction of the stress fields around each pore, rather than
physical intersection or coalescence of the voids.

Since the compressibility of an isolated pore can be calculated by solving
the suitable elastostatic boundary-value problem, it might be thought that this
same approach could be used in the case of multiple pores. Unfortunately, exact
solutions to elasticity problems involving multiple cavities are very difficult to
obtain. Some solutions exist for bodies containing a pair of pores, such as two
spherical cavities (Sternberg and Sadowsky, 1952;Willis andBullough, 1969; Fond
et al., 2001; Chalon andMontheillet, 2003) or two cylindrical cavities (Ling, 1948;
Zimmerman, 1988). However, it is not clear that these two-pore solutions are
useful in finding the effective moduli of a body that contains, say, 20–30 percent
spherical pores by volume, such as might be used to model the behavior of a
sandstone (see Chen and Acrivos, 1978).

The most fruitful approaches to the problem of predicting the compressibility
of a body containing a finite concentration of pores have been those approx-
imate methods that avoid solving multipore interaction problems. Numerous
such methods have been proposed in the fields of rock physics, ceramics, and
materials science. These methods are all applicable to the more general prob-
lem of predicting the effective elastic moduli of heterogeneous, multicomponent
materials (Christensen, 1991; Nemat-Nasser and Hori, 1993; Milton, 2002).

Most of these methods can be discussed within the general formalism of the
energy approach discussed in §10.3. The effective bulk modulus of a porous rock
can be defined by

P2Vb

2K
= P2Vb

2Km
+ � hydro, (10.45)

where � hydro is the excess elastic strain energy that would be stored in a rock
of volume Vb if the pores were introduced into the initially solid rock while
maintaining a hydrostatic confining pressure P. The effective shear modulus can



Jaeger: “chapter10” — 2006/12/15 — 09:59 — page 296 — #16

296 Chapter 10

be defined in a similar way, with the rock assumed to be subjected to a shear
stress of magnitude S:

S2Vb

2G
= S2Vb

2Gm
+� shear. (10.46)

Utilization of (10.45) and (10.46) requires the estimation of the energy per-
turbation terms for hydrostatic and shear loading. The simplest approach is to
neglect pore–pore interactions, and calculate the energy change due to each
pore as if it were an isolated void in an infinite intact rock, and then sum up
this energy for all the pores, as in §10.3. The two energy perturbations,� hydro
and� shear, will depend on the moduli of the intact rock, {Km,Gm}, and will be
proportional to the porosity. The equations for the two effective moduli will be
uncoupled, and can be solved explicitly for the effective moduli K and G.

For example, the energy terms for an isolated spherical pore are given by
(Nemat-Nasser and Hori, 1993)

� hydrostatic = P2Vb

2Km

[
3Km + 4Gm

4Gm

]
φ, (10.47)

� shear = P2Vb

2Gm

[
15Km + 20Gm

9Km + 8Gm

]
φ. (10.48)

Expression (10.47) is consistent with the expression that could be obtained by
combining (10.13) and (10.33). If the energy terms (10.47) and (10.48) are used in
(10.45) and (10.46), the effective moduli are predicted to be

K
Km

=
[
1 + 3Km + 4Gm

4Gm
φ

]−1

=
[
1 + 3(1 − νm)

2(1 − 2νm)
φ

]−1

, (10.49)

G
Gm

=
[
1 + 15Km + 20Gm

9Km + 8Gm
φ

]−1

=
[
1 + 15(1 − νm)

(7 − 5νm)
φ

]−1

, (10.50)

As these predictions ignore pore–pore interactions, they are correct only to first-
order in φ and increasingly overestimate the moduli as the porosity increases.
This overestimation is also clear from the fact that they predict finite elastic
moduli when the porosity reaches 100 percent (Fig. 10.4).

In the so-called “self-consistent” scheme of Hill (1965) and Budiansky (1965),
the excess strain energy due to each single pore is calculated by assuming that
it is introduced into a homogeneous medium that has the elastic properties
of the actual porous material. This leads to the same functional forms for the
two energy terms as does the “no-interaction” approach, except that {Km,Gm} are
replaced by {K ,G}. In general, (10.45) and (10.46) become two coupled nonlinear
algebraic equations that require numerical solution. For spherical pores, the
self-consistent method yields

1
K

= 1
Km

+ 1
K

[
3K + 4G

4G

]
φ, (10.51)
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Fig. 10.4 Elastic
moduli of a rock
containing dry,
randomly distributed
spherical pores,
according to various
effective medium
theories. The Poisson
ratio of the intact rock is
taken to be 0.25.
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1
G

= 1
Gm

+ 1
G

[
15K + 20G
9K + 8G

]
φ. (10.52)

This method yields much lower effective moduli than does the no-interaction
method, and predicts that the moduli vanish at some finite porosity (Fig. 10.4).

Bruner (1976) suggested that the self-consistent method implicitly takes inter-
actions between pairs of pores into account twice, since the “typical” pore is
assumed to be imbedded in an effective medium whose elastic moduli already
reflect in part the interactions between this typical pore and all other pores. To
avoid this double-counting, one can introduce the pores into the rock sequen-
tially, with pore n + 1 considered to be placed into a homogeneous medium
which has the effective elastic properties of the body with n pores, etc. In this
way, pore n + 1 feels the effect of pore n, but not vice versa. Each new pore
is assumed to be randomly placed, and so if the “current” porosity is φ, the
next pore “replaces” intact rock with probability 1 − φ, and replaces existing
pore space with probability φ (McLaughlin, 1977). In the limit in which each
new addition of pores is infinitesimal, this method gives two coupled ordinary
differential equations for the two effective moduli.

In the case of spherical pores, these equations are

− (1 − φ)

K
dK
dφ

= 3K + 4G
4G

, (10.53)

− (1 − φ)

G
dG
dφ

= 15K + 20G
9K + 8G

. (10.54)

The initial conditions are that K = Km and G = Gm when φ = 0. These
equations can be integrated to give the following implicit expressions for the
effective moduli (Norris, 1985):

G
Gm

= (1 − φ)2
[
1 + β(G/Gm)

3/5

1 + β

]1/3

, (10.55)

K
Km

= G
Gm

[
1 + 2β

1 + 2β(G/Gm)3/5

]
, (10.56)
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where β = (1−5νm)/2(1+νm). In general, these two equations must be solved
numerically for K and G. Two-digit accuracy can be achieved by substituting
G/Gm = (1 − φ)2 into the right-hand sides of (10.55) and (10.56).

The problem of computing the effective moduli of a porous rock can also be
approached using a wave-scattering formalism; the relationships between elastic
moduli and seismic wave speeds are discussed in §11.4. Kuster and Toksöz (1974)
calculated the sum of the elastic waves that have been scattered once from each
of an assemblage of pores in a body with moduli {Km,Gm}, and equated this to
the wave that would be scattered from an “equivalent homogeneous spherical
inclusion” whose moduli are equal to the effective moduli of the porous rock,
{K ,G}. Toksöz et al. (1976) andWilkens et al. (1986) used this approach tomodel
seismic velocities in reservoir sandstones, and Zimmerman and King (1986) used
it to study the effect of the ice/water ratio on seismic velocities in permafrost.
For a rock containing dry spherical pores, themethod of Kuster and Toksöz gives
(Fig. 10.4)

K
Km

= 1 − φ

1 + (3Km/4Gm)φ
= 1 − φ

1 + [(1 + νm)/2(1 − 2νm)]φ , (10.57)

G
Gm

= 1−φ
1+[(6Km+12Gm)/(9Km+8Gm)]φ = 1−φ

1+[2(4−5νm)/(7−5νm)]φ .
(10.58)

The predicted moduli lie between those of the no-interaction method and the
differential method and vanish at a porosity of 100 percent. The Kuster–Toksöz
predictions for a rock containing spherical pores also coincide exactly with the
upper bounds of Hashin and Shtrikman (1961), which are valid regardless of the
geometry of the pores.

The predictions of these four methods are plotted in Fig. 10.4, for νm = 0.25.
Each approach predicts similar, although in general not identical, behavior for
G as it does for K . Consider the curves for the effective bulk modulus as a
function of spherical porosity. If expanded in Taylor series in φ, all four methods
agree to first-order, but give different values for the higher-order coefficients.
The predictions diverge from each other markedly for porosities greater than
about 0.10. As an indication of the validity of these approaches, consider the
suite of porous glass specimens that were fabricated by Walsh et al. (1965) to
have pores that were as nearly spherical as possible. The measured bulk moduli,
for porosities ranging from 0.05–0.70, generally fell about midway between the
predictions of the Kuster–Toksöz and the differential schemes (Zimmerman,
1991, p. 120).

Each of the sets of predicted effective moduli takes on a particularly simple
form when Km = 4Gm/3, which corresponds to νm = 0.2. In this case, the
no-interaction method gives K/Km = G/Gm = (1 + 2φ)−1, the self-consistent
method gives K/Km = G/Gm = 1 − 2φ, the differential method gives K/Km =
G/Gm = (1−φ)2, and themethod of Kuster and Toksöz gives K/Km = G/Gm =
(1 − φ)/(1 + φ).

In order to apply the effective moduli theories to a body with penny-
shaped cracks, the two strain energy perturbation terms are needed. The
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energy perturbation � hydro for a single penny-shaped crack of radius a under
hydrostatic loading is given by (8.310), or by (10.13) and (10.32):

� hydro = 4(1 − νm)a3P2

3Gm
= 8(1 − ν2m)a

3P2

9(1 − 2νm)Km
. (10.59)

The strain energy perturbation � shear for an isolated crack subjected to a
shear stress of magnitude S will depend on the orientation of the shear stress
with respect to the crack plane; this issue does not arise for hydrostatic loading,
nor does it arise for shear loading in the case of a spherical pore. If the crack
lies in, say, the x–y plane, then the strain energy due to a far-field shear stress
τxy = S is given by (8.312). If the orientations of the cracks within the rock
are randomly distributed, the strain energy must be averaged over all possible
angles of inclination with respect to the direction of shear. In the general case in
which the crack is inclined to the shear, there will be both a hydrostatic and a
shear component to the far-field stress and to the strain energy. After performing
the averaging process, the average excess strain energy per crack, for a random
distribution of crack planes, is found to be

� shear(random orientation) = 16(1 − νm)(5 − νm)a3S2

45(2 − νm)Gm
. (10.60)

According to the no-interaction scheme, the effective elastic moduli of a
randomly/isotropically cracked body can be found by inserting the energy per-
turbations (10.59) and (10.60) into the general expressions (10.45) and (10.46), to
yield

K
Km

=
[
1 + 16(1 − ν2m)

9(1 − 2νm)
�

]−1

, (10.61)

G
Gm

=
[
1 + 32(1 − νm)(5 − νm)

45(2 − νm)
�

]−1

. (10.62)

The predictions of the self-consistent method are also found by inserting
(10.59) and (10.60) into (10.45) and (10.46), but with {K ,G, ν} used in the excess
energy terms. This leads to the following implicit expressions for K and G
(O’Connell and Budiansky, 1974):

K
Km

= 1 − 16(1 − ν2)

9(1 − 2ν)
�, (10.63)

G
Gm

= 1 − 32(1 − ν)(5 − ν)

45(2 − ν)
�. (10.64)

These equations can be partially inverted by using 3K(1 − 2ν) = 2G(1 + ν) to
eliminate G and K , to arrive at

� = 45(νm − ν)(2 − ν)

16(1 − ν2)(10νm − 3νmν − ν)
. (10.65)
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After (10.65) is solved numerically for ν as a function of �, this value of ν can be
used in (10.63) and (10.64) to find K and G. The curves of K and G as functions
of � are somewhat nonlinear, but the effective Young’s modulus that follows
from (10.63) and (10.64) is very nearly a linear function of crack density. For all
0 < νm < 1/2, the following expression is accurate to within 1 percent:

E
Em

= 1 − 16
9
�. (10.66)

The equations of the differential scheme, for a rock containing randomly
distributed and oriented cracks, are (Salganik, 1973)

1
K
dK
d�

= −16(1 − ν2)

9(1 − 2ν)
, (10.67)

1
G
dG
d�

= −32(1 − ν)(5 − ν)

45(2 − ν)
. (10.68)

Using the initial conditions that K = Km and G = Gm when � = 0, these
equations can be integrated to yield (Zimmerman, 1985c)

e� =
(

3 − ν

3 − νm

)5/128 (
1 − ν

1 − νm

)30/128 (
1 + ν

1 + νm

)45/128 (
ν

νm

)−80/128

,

(10.69)

K
Km

=
(
ν

νm

)10/9 (
3 − ν

3 − νm

)−1/9 (
1 − 2ν
1 − 2νm

)−1

. (10.70)

A simple and accurate approximate solution to (10.67) and (10.68) is (Bruner,
1976):

E
Em

= e−16�/9,
ν

νm
= e−8�/5. (10.71)

Kuster and Toksöz (1974) presented equations for the effective moduli of a
body containing oblate spheroidal pores of arbitrary aspect ratio, but did not
explicitly consider the limiting case of infinitely thin cracks. In the limit, as the
aspect ratio goes to zero, the effective moduli predicted by this method are
found to be

K
Km

= 1 − [32(1 + νm)/27]�
1 + [16(1 + νm)2/27(1 − 2νm)]� , (10.72)

G
Gm

= 1 − [32(5 − νm)(7 − 5νm)/675(2 − νm)]�
1 + [64(5 − νm)(4 − 5νm)/675(2 − νm)]� . (10.73)

The various predictions for the effectivemoduli of a rock containing a random
distribution of cracks are plotted in Fig. 10.5. Note that the relative positions of
the curves are not quite the same as for spherical pores; for cracks, the Kuster–
Toksöz model predicts lower moduli than does the differential scheme. All four
methods agree to first-order in crack density, but begin to diverge appreciably
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Fig. 10.5 Elastic
moduli of a rock
containing dry,
randomly distributed
and randomly oriented
penny-shaped cracks,
according to various
effective medium
theories. The Poisson
ratio of the intact rock is
taken to be 0.25.
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for crack densities greater than about 0.15. The no-interaction method predicts
that the moduli decay to zero roughly as 1/�, whereas the differential method
predicts a faster, exponential decay. Nevertheless, both of these methods predict
substantial moduli values for crack densities as high as 1.0. The self-consistent
method, on the other hand, predicts that the moduli both vanish at a crack
density of 0.5625. The Kuster–Toksöz method also predicts that the moduli
vanish at some finite crack density, although this critical density differs for K and
G, and varies with the Poisson ratio of the intact rock.

All three energy-basedmethods predict that as themoduli decay to zero due to
an increase in crack density, the effective Poisson’s ratio goes to zero. However, as
the Kuster–Toksöz method predicts that K decays faster than G, there is a range
of crack densities for which this method predicts positive values for both of the
elastic moduli, but a negative value for Poisson’s ratio. For example, if νm = 0.25,
negative values of ν are predicted for 0.420 < � < 0.675.

Budiansky and O’Connell (1976) showed that the results for cracks with cir-
cular planforms can be applied to cracks having elliptical planforms, if the crack
density is defined as � = 2NA2/πPVb, where A is the area of the crack in its
plane, and P is its perimeter. Various special cases of two and three-dimensional
bodies containing systems of aligned cracks are discussed by Hashin (1988),
Kachanov (1994), Nemat-Nasser and Hori (1993), and Mavko et al. (1998). The
effective moduli of a body containing randomly oriented needle-shaped pores
are discussed by Berryman (1995).

10.6 Sliding crack
friction and
hysteresis

As discussed in §10.4, an increase in the hydrostatic stress will cause cracks to
close up and consequently cause the bulk modulus to increase. If the applied
load is purely hydrostatic, and if crack–crack stress-field interactions are ignored,
the deformation of each crack face will be purely normal to the plane of the
crack, and there will be no relative tangential displacement between the two
crack faces. In this case, the issue of friction along the two contacting crack faces
is irrelevant. Under hydrostatic compression, a crack that is closed by stress acts
as if it were welded shut.
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If there is a deviatoric component to the loading, however, the traction acting
along the plane of any closed crack will also have a shear component. The two
crack faces will undergo a relative shearing displacement if the shear traction τ
is greater than µσ , where σ is the normal traction and µ is the coefficient of
friction. The friction along the sliding crack faces will influence the shear modu-
lus and Young’s modulus of the rock, both of which quantify the behavior of the
rock under deviatoric loading. Walsh (1965b) first analyzed this situation, using a
hybrid analysis inwhich the crackswere treated as three-dimensional objects, but
the excess energy terms were calculated under the two-dimensional plane stress
or plane strain approximations. For consistency with the case in which there is
no frictional sliding, and to simplify some of the calculations needed when aver-
aging over all cracks orientations, we will analyze this problem under the plane
stress assumption. Although this approximation is strictly applicable only to thin
plates, the main purpose of our analysis is to give a qualitative understanding of
the effect that cracks have on a rock undergoing uniaxial compression.

Consider a rock specimen of length L, width b, and thickness t, subjected to
a uniaxial tension T in the longitudinal (y) direction. In complete analogy with
the discussion of the effective bulk and shear moduli given in §10.5, the effective
Young’s modulus of this specimen can be defined by

T2Vb

2E
= T2Vb

2Em
+� uniaxial, (10.74)

where� uniaxial is the excess energy due to the presence of the cracks. In contrast
to the calculations of §10.5, in this case the excess energy will consist of an elastic
stored strain energy, plus an inelastic term that represents the energy dissipated
through frictional sliding.

To calculate these energy terms, first consider a single isolated crack of length
2c, lying in a plane whose outward unit normal vector is oriented at some angle
β to the direction of loading. The crack is assumed to pass through the entire
thickness t of the specimen, and we assume for now that the crack is not closed.
In a coordinate system oriented with the crack, the stress components are

τx′x′ = T sin2 β, τy′y′ = T cos2 β, τx′y′ = τy′x′ = (T/2) sin 2β. (10.75)

As discussed in §8.9, if the crack is assumed to be infinitely thin, the stress
component acting parallel to the crack, τx′x′ , causes no relative displacement of
the crack faces, and so gives rise to no additional strain energy. The strain energy
due to the normal stress τy′y′ can be calculated by the following argument. The
component τx′x′ gives rise to no strain energy, so the strain energy due to a
uniaxial stress normal to the crack must be the same as that due to hydrostatic
loading. In general, as shown in §10.3, a hydrostatic stress P gives rise to an excess
strain energy of P2VpCpc/2. The pore compressibility Cpc of a thin elliptical crack
of aspect ratio α under plane stress conditions is 2/αEm, by (10.17), and its pore
volume is πc2tα. Hence, the excess elastic strain energy due to a crack under
a far-field hydrostatic stress P is P2πc2t/Em. Replacing P with τy′y′ from (10.75)
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shows that the elastic strain energy due solely to the normal stress component is

� uniaxial loading, resolved normal stress = T2πc2t cos4 β
Em

. (10.76)

If the rock contains N cracks of length 2c, whose angles of inclination are
randomly distributed, the total energy contribution due to compression of the
cracks can be found by averaging (10.76) over the full range −π/2 ≤ β ≤ π/2.
The average value of cos4 β is 3/8, so the total contribution to the elastic strain
energy due solely to crack compression is

� uniaxial loading, resolved normal stress = 3T2π Nc2t
8Em

. (10.77)

Starr (1928) showed that the excess strain energy of a crack due to shear loading
of magnitude S is given by the same expression as for hydrostatic loading, with
P replaced by S. This is consistent with the results of §8.13, where it was shown
that the algebraic form of the excess energy of a three-dimensional penny-shaped
crack under shear loading coincides with that for hydrostatic loading, when the
Poisson ratio is zero. In the present case of plane stress, neither of the two energy
terms has any dependence on Poisson’s ratio, and the expressions coincide in all
cases. With the resolved shear stress given by (10.75), the elastic strain energy of
a single crack oriented at angle β is

� uniaxial loading, resolved shear stress = T2πc2t sin2 2β
4Em

. (10.78)

The average value of sin2 2β is 1/2, so the total strain energy due to the resolved
shear stress, for a rock containing N randomly oriented cracks, is

� uniaxial loading, resolved shear stress = T2Nπc2t
8Em

. (10.79)

The total excess strain energy of the cracked rock under uniaxial tension T is
the sum of (10.77) and (10.79):

� uniaxial loading = T2Nπc2t
2Em

. (10.80)

Using this result in (10.74) gives the following expression for the effective Young’s
modulus of a two-dimensional randomly cracked body containing open cracks
(Bristow, 1960):

E
Em

= 1
1 + π�2

, (10.81)

where �2 = Nc2/A is the two-dimensional crack density parameter, and A =
Vb/t = bL is the bulk area of the sample. This estimate (10.81) neglects stress field
interactions between nearby cracks. Application of the self-consistent effective
medium theory would yield E/Em = 1 − π�2, whereas the differential scheme
would yield E/Em = exp(−π�2).
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Now consider the same rock, again under uniaxial compression, but assume
that all of the cracks are closed. Consider first a single crack having orientation
angle β. The effective Young’smodulus is again defined by (10.74). As the crack is
already closed, and the resolved stress normal to the crack plane is compressive,
there can be no additional normal displacement of the crack faces. Hence, the
strain energy term (10.77) will not be present. The strain energy term (10.78),
which is due to the resolved shear stress along the crack plane, can only arise
if the crack faces are able to slide past each other. If the coefficient of friction
along the crack faces is µ, sliding will occur only if the resolved shear stress τ ,
which is given by τx′y′ in (10.75), exceeds µσ , where the normal traction σ is
given by τy′y′ in (10.75). Hence, the effective shear stress that is available to cause
displacements around the crack face is given by

τeff = |τ | − µσ . (10.82)

The excess elastic strain energy due to the crack is then given by (10.78), with
the effective shear stress in place of the resolved shear stress:

� = τ 2effπc
2t/Em. (10.83)

This energy is stored within the rock in the vicinity of the crack, in the form of
elastic strain energy.

Superposition arguments, such as those used in §7.2, in which the strains due
to a remote shear stress τ are decomposed into the difference between those
caused by a shear stress τ at infinity and a shear traction τ along the crack faces,
minus those caused by shear tractions along the face of the crack alone, show
that the stored elastic strain energy is also equal to one-half of the product of the
resolved shear traction along the crack face, multiplied by themean displacement
of the crack face in the direction of that traction. But this expression is precisely
equal to the energy that is dissipated due to frictional sliding along the crack
faces, except that in this case, although the displacement is controlled by τeff , the
work is done only by the shear traction µσ that resists the sliding. Hence, the
energy dissipated by frictional sliding is given by

�W = (µσ/τeff )� = µστeffπc2t/Em. (10.84)

This energy is dissipated as heat and is not stored in the rock as recoverable
elastic strain energy.

Including both the stored elastic strain energy (10.83) and the frictionally
dissipated energy (10.84) on the right side of (10.74), the expression for the
effective Young’s modulus becomes, after using (10.82),

T2bLt
2E

= T2bLt
2Em

+ (τ 2 − µσ |τ |)πc2t
Em

. (10.85)

With the shear and normal tractions on the crack face given by (10.75), the
effective Young’s modulus for the rock containing this single closed crack is
therefore given by

1
E

= 1
Em

[
1 + (sin2 2β − 2µ cos2 β| sin 2β|)πc2

2A

]
. (10.86)
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If the rock contains a random distribution of cracks, the effective modulus can
be found by averaging the bracketed term in (10.86) over all cracks for which
sliding occurs. These are the cracks for which |τ | > µσ , which from (10.75) can
be seen to be those cracks for which tan−1 µ < |β| < π/2. The resulting
expression for the effective modulus is

1
E

= 1
Em

[
1 + (1 + µ2) tan−1(1/µ)− µ

2(1 + µ2)
�2

]
, (10.87)

where�2 = Nc2/A is again the total two-dimensional crack density. If the friction
coefficient is zero, (10.87) reduces to E/Em = 1/[1 + (π/4)�2], which differs
from expression (10.81) for open cracks, because, even in the absence of friction,
closed cracks are prevented from undergoing compressive deformation normal
to their planes. Asµ increases, (10.87) reduces to E = Em. This limit is essentially
reached forµ > 2, although such high coefficients of friction may be unrealistic.

The effective bulk modulus K of a rock containing closed cracks will equal the
crack-free bulkmodulus, Km. It follows that Km = Em/3(1−2νm) = E/3(1−2ν),
and so the effective Poisson ratio ν is given by

(1 − 2ν) = (1 − 2νm)E/Em. (10.88)

Closed cracks that slide against friction therefore cause the Poisson ratio to
increase, in contrast to open cracks, which cause it to decrease; cf. (10.71).

To study the hysteretic effect of closed cracks, consider again a rock containing
a single crack oriented at some angle β, such that tan−1 µ < |β| < π/2. If the
uniaxial compressive stress T is increased from zero, the rock will deform with
an elastic modulus given by (10.86). Now imagine that loading ceases when
T = T ′, at which point the stresses on the crack face are given by τ ′, σ ′, and τ ′

eff .
Relative motion between the crack faces is possible only if |τ | > µσ . As soon
as T begins to decrease (i.e., unloading), the direction of the frictional resistance
reverses, so that the shear stress resulting from the deformation of the crack
must overcome both the frictional resistance and the shear stress due to the load,
before reverse sliding can commence. The shear stress due to the deformation of
the crack is equal in magnitude, but opposite in sign, to the effective shear stress
that produced this deformation. Therefore, the condition for reverse sliding can
be expressed as

τ ′
eff ≥ |τ | + µσ . (10.89)

At the conclusion of the loading cycle, the conditions were

|τ ′| = τ ′
eff + µσ ′. (10.90)

Denoting the conditions at which reverse crack sliding first occurs by τ ′′, etc.,
we find from (10.89) and (10.90) that

|τ ′| + µσ ′ = |τ ′′
eff | − µσ ′′. (10.91)



Jaeger: “chapter10” — 2006/12/15 — 09:59 — page 306 — #26

306 Chapter 10

Using (10.75) for the shear and normal stresses, along with elementary
trigonometric identities, gives the following condition for the onset of reverse
sliding:

T ′′ = T ′(tan β − µ)/(tan β + µ). (10.92)

As a crack which underwent sliding during loading must have had tan > µ,
(10.92) shows that reverse sliding will begin at some compressive stress T ′′,
where 0 < T ′′ < T ′.

A loading and unloading cycle of a rock containing a single closed crack,
subject to uniaxial compression at an angle β to the crack normal vector, is
shown in Fig. 10.6a. Initial loading along OA occurs with an effective modulus
E < Em, given by (10.86). Unloading (path AB) from some maximum load T ′
first occurs with the modulus Em of the uncracked material (10.75). When the
applied compressive stress is reduced to T ′′, as given by (10.92), reverse sliding
begins on the crack, and the rock specimen continues to deform along BOwith a
modulus E′′ that is lower than the initial loading modulus, E. If the applied load
returns to zero, the strain again vanishes.

If the initial unloading line is extended down to the strain axis, as shown in the
dashed line, then the triangular area ADC represents the work that would have
been stored at maximum load if the rock were uncracked. The area between this
line ABC and the actual loading line OA represents the sum of the excess strain
energy due to the crack, and the work done against friction, during loading. The
elastic portion of this work, area OBC, is recovered during unloading, so that the
net work done by the load during the entire loading cycle is given by the area
of the triangular region OABO. As the total relative displacement of the crack
faces must be the same (in magnitude) during loading and unloading, the ratio
of energy dissipation due to friction during loading and unloading is in the ratio
of T ′/T ′′.

The uniaxial stress–strain curve for a rock containing cracks having a distribu-
tion of aspect ratios is shown schematically in Fig. 10.6b. Initially, the modulus is
given by an expression similar to (10.81) for a body with open cracks. As the load
increases, cracks close, and eventually the modulus is given by an expression
such as (10.87) for a body containing closed, sliding cracks. Unloading begins

Fig. 10.6 (a) Uniaxial
stress–strain diagram of
a rock containing a
single closed crack,
loaded and unloaded
along path OABO.
(b) Uniaxial stress–strain
diagram for a rock
containing a distribution
of cracks at different
orientations, with some
lateral confining stress
(see text for details).
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with the intrinsic elastic modulus, Em. But as the load decreases, cracks with suc-
cessively smaller values of β begin reverse sliding, according to (10.92), and so
the modulus continually decreases as the stress and strain return to zero. If there
were a lateral confining stress in addition to the axial load, this would cause an
additional frictional resistance along the crack faces, which would tend to inhibit
reverse sliding. In this case, the axial strain would not return to zero when the
axial load has been completely removed, and some residual strain would remain
in the rock.

10.7 Griffith cracks
and the Griffith locus

The analysis given thus far has assumed that cracks of a given fixed length are
present in the rock. Griffith (1920,1924) used thermodynamic arguments to find
a necessary criterion for a crack to grow due to an applied load. A key ingredient
of his analysis is the recognition that, as a crack grows, energy is needed to create
the new surface area. Another aspect of a thermodynamic approach is that it
becomes necessary to consider, in addition to the rock itself, the agency that
supplies the load to the rock.

Consider again a thin rock specimen of length L, width b, and thickness t,
containing a thin crack of length 2c lying perpendicular to the side of length
L. Imagine that a tensile load T is applied to this rock by a hanging mass m
connected to the rock by a cord that passes over a frictionless pulley (Fig. 10.7a).
As the rock slab is assumed to be very thin, we can use plane stress analysis for
the deformation of the rock. This system is assumed to be under equilibrium,
with the crack having length c. The total energy of this thermodynamic system
consists of the elastic strain energy in the rock, the surface energy of the crack,
and the gravitational potential energy of the mass.

Now imagine that the crack grows from half-length c to some new half-length,
c + δc, while the load is maintained constant. According to Griffith, this change
will only be thermodynamically possible if extension of the crack allows the total
energy of the system to decrease. (Alternatively, as in §6.5, one could include an
additional term in the energy balance, representing energy that is available to

Fig. 10.7 (a) Crack
extended under
constant applied load,
used in the derivation of
the Griffith criterion.
(b) Stress–strain
diagram for a rock
containing cracks of
initial length c, showing
the initial linear
behavior, and the
Griffith locus (see text
for details.) (a)
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cause unstable crack growth with its associated seismic energy, and look for the
condition such that this excess energy is positive.)With all of the other parameters
fixed and c treated as a variable, we will see below that the total energy is an
increasing function of c for c less than some critical value c∗ and a decreasing
function of c for c > c∗. Hence, the critical crack half-length can be found by
maximizing the total energy as a function of c. The condition is therefore found
by solving the equation

(
∂ total

∂c

)
T

= d elastic

dc
+ d surface

dc
+ d gravitational

dc
= 0. (10.93)

The elastic strain energy stored in the rock is given, from (10.74), by T2bLt/2E,
where E is the effective Young’s modulus of the rock. Within the context of
small-strain elasticity, this energy does not vary with L, so it is convenient to
use the unstrained length, L0, in which case the elastic energy can be written
as T2bL0t/2E. The effective modulus of a rock containing a single crack lying
normal to the loading direction is found by setting β = 0 in (10.74) and (10.76),
to yield E = Em/[1 + (2πc2/Lb)]. If the initial crack is assumed to be small
compared to the specimen dimensions, this relation can be approximated by
E = Em[1 − (2πc2/Lb)]. Hence, the first derivative on the right side of (10.93)
can be calculated as follows:

d elastic

dc
= d elastic

dE
dE
dc

=
(−T2bL0t

2E2

) (−4πEmc
bL0

)

= 2πT2tEmc
E2

≈ 2πT2tc
Em

, (10.94)

where in the last step, we use the fact that E is only slightly less than Em.
Next, consider the surface energy term. The surface energy of any cavity

having surface area A is equal to γA, where γ is the surface energy per unit area.
Hence, the surface area of a crack of length 2c that passes through the entire
thickness t of the rock slab is 4γ ct. The second derivative term on the right of
(10.93) is therefore simply given by

d surface

dc
= 4γ t. (10.95)

The gravitational potential energy of themass that supplies the load to the rock
is mgh, where h is the elevation of the mass above some datum. This elevation h
is related to the deformation of the rock by the fact that if the rock expands by
some amount δL, the mass will descend by the same amount. The instantaneous
length L of the specimen is given by L = L0(1+ ε) = L0[1+ (T/E)], where it is
convenient here to abandon the usual “compression = positive” convention and
take the tensile strain as positive. The third derivative term on the right side of
(10.94) can therefore be calculated as

d grav

dc
=

(
d grav

dh

) (
dh
dL

) (
dL
dE

) (
dE
dc

)
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= (
mg

)
(−1)

(−L0T
E2

) (−Em4πc
bL0

)

= −mgEm4πcT
bE2

≈ −4πcTmg
bEm

. (10.96)

The applied load tensile stress T is given by T = mg/bt, so (10.96) takes the form

d grav

dc
= −4πcT2bt

bEm
= −4πcT2t

Em
. (10.97)

Combining (10.93), (10.94), (10.95), and (10.97) yields

2πT2tc
Em

+ 4γ t − 4πT2tc
Em

= 4γ t − 2πT2tc
Em

= 0. (10.98)

This derivative of the total energy of the system is positive for small values of c
and negative for large values of c. Equation (10.98) can be solved for the critical
crack length c∗ above which cracks are thermodynamically free to grow at fixed
tensile stress T:

c∗ = 2γ Em
πT2 . (10.99)

Alternatively, we can consider that the load increases quasi-statically and solve
(10.98) for the tensile stress T∗ at which a crack of initial length c will be able to
grow:

T∗ =
√
2γ Em
πc

. (10.100)

A similar analysis for plane strain conditions yields the criterion

T∗ =
√

2γ Em
π(1 − ν2m)c

, (10.101)

whereas for a three-dimensional penny-shaped crack, the result is

T∗ =
√

πγ Em
4(1 − ν2m)c

. (10.102)

These three expressions differ only bymultiplicative factors on the order of unity.
They each show that small cracks will require relatively large stresses to allow
crack growth, whereas large cracks can grow under the application of smaller
stresses.

Griffith’s criterion (10.100) is a necessary condition that must be satisfied for
crack growth to be thermodynamically possible, but in itself is not sufficient to
cause growth to occur. The sufficient condition presumably is that the tensile
stress at the crack tip must be large enough to break the atomic bonds at the
crack tip. But as the stress concentration at the tip of an elliptical crack of small
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aspect ratio is quite large (§8.10), this latter condition will in practice always be
satisfied if Griffith’s criterion is satisfied.

A similar analysis can be carried out under the assumption that the rock is
subject to fixed displacement rather than fixed stress at its outer boundary. The
elastic energy stored in the rock is again equal to T2bL0t/2E. Expressed in terms
of the tensile strain, the elastic energy is bL0tEε2/2. The surface energy of the
crack is again 4γ ct. As the strain is assumed to be constant, the external loads
applied to the rock do not undergo any motion, and consequently the energy
of the loading agency does not change. The derivative of the total energy can
therefore be calculated as follows:(

∂ total

∂c

)
ε

= d elastic

dc
+ d surface

dc
=

(
d elastic

dE

) (
dE
dc

)
+ d surface

dc

=
(
bL0tε2

2

) (−4πcEm
bL0

)
+ 4γ t = −2π tcEmε2 + 4γ t. (10.103)

Setting this derivative to zero yields ε2 = 2γ /πEmc. Reexpressing this condition
in terms of stress rather than strain, and using the approximation that E ≈ Em
for a small crack, leads again to a critical stress value of T∗ = √

2γ Em/πc, which
agrees with the result (10.100) obtained under the assumption of constant load.

Now imagine that this rock slab contains N isolated horizontal cracks, each
of half-length c. If this slab is subjected to a slowly increasing tensile stress, T, it
will at first deform as a linear elastic body (Fig. 10.7) with an effective modulus
given by

E = Em/[1 + (2πNc2/Lb)]. (10.104)

When the applied stress reaches the critical value T∗, as given by (10.100), the
cracks will begin to extend. The relationship between the stress and the strain at
the point of incipient crack extension can be found by using (10.100) and (10.104)
to eliminate c from the expression T = Eε, to yield

ε∗ = T∗

Em
+ 8γ 2NEm
πLb(T∗)3

. (10.105)

This curve, known as the Griffith locus (Berry, 1960b; Cook, 1965), demarcates in
stress–strain space the boundary of the region of linear elastic behavior (Fig. 10.7).

A rock that is filled with small cracks, say of half-length c1, will initially deform
with a modulus only slightly less than Em and will intersect the Griffith locus at
a point such as P1. For larger values of the initial crack length, say c2 > c1, the
initial slope will be lower, and the stress–strain curve will intersect the Griffith
locus at a point farther along, such as P2. If the rock is deformed slowly, under
conditions of controlled strain, its path in stress–strain spacewill be able to follow
the Griffith locus, with increasing strain and decreasing stress, from P2 out to,
say, P3. Unloading from P3 would occur along a straight line, back to the origin,
with a slope given by the effective modulus that corresponds to the new crack
length, c3. The area enclosed by OP2P3O represents the work that was done to
extend the crack from c2 to c3.
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This type of stable, controlled deformation of the rock would not be possible
if the Griffith locus were first reached at a point such as P1, however, since in
this region crack extension along the locus is associated with a decrease in both
the stress and the strain. The critical crack length cc that separates these two
branches of the Griffith locus corresponds to the point V (large dot in Fig. 10.7b)
at which dε∗/dT∗ = 0, which, from (10.105) and (10.100), is found to be given
by cc = N

√
bL/6. Under conditions of controlled strain, the stress–strain state

of the rock would drop down from P1 to R, corresponding to some crack length
cR > cc > c1, after which it could proceed along the linear stress–strain curve
from R to S, etc. Berry (1960b) showed that point R, and hence the crack length
cR, is determined by the condition that the area bounded by P1VQP1 is equal to
that bounded by QRSQ.

10.8 Linear elastic
fracture mechanics

The thermodynamic ideas of the previous section can be combined with the
concept of stress intensity factors, defined in §8.10, to express the conditions for
crack extension in terms of a critical value of the stress intensity factor at the
crack tip. These ideas lead to the theory of linear elastic fracture mechanics, which
is described in a large number of monographs (Lawn and Wilshaw, 1975; Broek,
1986; Kanninen and Popelar, 1986; Lawn, 1993). A brief introduction to the main
ideas of this theory now follows.

It was shown in §10.7 that a crack can extend only if the energy released by this
process is at least large enough to supply the surface energy required to form the
new surface area of the crack faces. To be concrete, consider again a thin plate
of thickness t, under conditions of plane stress. For a thin crack of length 2c to
extend by an amount δc in each direction, energy in the amount δ surf = 4γ tδc
must be supplied, where γ is the surface energy per unit area. If the far-field
stress is held constant, this energy is supplied by the decrease in the potential
energy of the loading system, as shown in (10.97). If the far-field displacement
is held constant, this energy is supplied by a decrease in the stored elastic strain
energy of the body, as shown in (10.103). In either case, the energy released by
the combined rock and loading agency is equal to

δ released

δc
= 2π T2tc

E
, (10.106)

where T is the applied tensile stress, and E is the Young’s modulus of the rock.
Equating these two terms leads to the criterion (10.100), which states that the
crack can extend if T reaches the critical value given by

Tc =
√
2γ E
π c

. (10.107)

These results, expressed here in terms of the far-field load, can also be
expressed in terms of the conditions that exist at the crack tip. Using defini-
tion (8.262) for the mode I (tensile) stress intensity factor, KI = T

√
πc, the
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energy released by the extension of the crack becomes

δ released

δc
= 2K2

I t
E

. (10.108)

Half of this energy can be identified as the energy released as the right tip of
the crack extends to the right and the other half attributed to the extension of
the left tip. It is conventional to then define the energy release rate, G, as the
energy released per unit thickness of the plate, as one of the crack tips extends;
this definition allows the concept to apply to situations such as a half-crack that
intersects a free boundary or emanates from a circular void, for example. Hence,
the energy release rate for an isolated crack under mode I loading in plane stress
conditions is

G ≡ δ released

δc
= K2

I

E
. (10.109)

The necessary thermodynamic criterion for crack extension, (10.107), can be
expressed in terms of a critical stress intensity factor, KIc, or a critical value of the
energy release rate, Gc, by substituting KI = T

√
πc into (10.107):

KIc = √
2γ E, Gc = K2

Ic

E
= 2γ . (10.110)

Hence, in order for the crack to grow, the stress intensity factor KI must reach the
critical value KIc, or, equivalently, the energy release rateG must reach the critical
value Gc = K2

Ic/E. According to Griffith’s analysis, the critical energy release rate
is simply equal to twice the surface energy (since two new crack face elements
are created). Irwin (1958) extended Griffith’s concept by pointing out that in
many materials, as a crack grows, energy must also be expended to create a
damaged zone of irreversible, plastic deformation ahead of the crack tip. In rock,
this zone may consist of crushed grains, microcracking, etc. Irwin proposed to
add these energy terms to the surface energy term, calling the new term �, the
fracture toughness. This has the effect of replacing γ with � in criterion (10.110).

Although the excess elastic strain energy associated with a crack is of course
localized around the crack, it is by no means entirely located near the crack
tip. Hence, it may seem peculiar that the energy release accompanying crack
extension can be related to a parameter, namely the stress intensity factor, which
has relevance only at the crack tip. The following derivation of (10.109) shows
more explicitly why G can be expressed so succinctly in terms of KI.

As mentioned above, the energy release rate does not depend on whether the
boundary conditions for the plate are constant traction or constant displacement.
So, for simplicitywe consider constant displacement boundary conditions. In this
case, it is clear that no work is done by the loading agency at the outer boundary
of the rock. Furthermore, as the faces of the existing crack are traction-free, no
work is done there. Hence, the energy released at the right edge of the crack,
per unit thickness in the third direction, can be calculated from the following



Jaeger: “chapter10” — 2006/12/15 — 09:59 — page 313 — #33

Micromechanical models 313

Fig. 10.8 Crack
geometry and definition
of variables, (a) before
crack extension, and (b)
after crack extension. In
(b), the dotted ellipse
represents the crack
shape before extension,
and the solid ellipse
represents the crack
after it has grown by an
amount δc at each edge.
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integral (Lawn and Wilshaw, 1975, p. 56):

G = 2

c+δc∫
c

1
2
τyyv dx, (10.111)

where the factor of 2 outside the integral accounts for the upper and lower faces
of the newly created portion of the crack.

The traction τyy used in (10.111) must be that which exists ahead of the crack
tip, before the stresses are relieved. This traction is calculated from (8.262), with
θ = 0, and x = c + r (Fig. 10.8a), that is, τyy = KI/(2π r)1/2. The displacement
v in (10.111) must be the displacement undergone by the element of rock that
initially lies on the x-axis, but now forms part of the newly exposed crack face
(Fig. 10.8b). This displacement can, for plane stress, be calculated from (8.230),
with c replaced by the new coordinate of the right crack tip, c + δc. This gives
v = 2T[(c + δc)2 − x2]1/2/E. Using the relation x = c + r and the definition
KI = T

√
πc, (10.111) takes the form

G = 2K2
I

πE
√
2c

c+δc∫
c

[(c + δc)2 − (c + r)2]1/2√
r

dx. (10.112)

Both δc and r are very small compared to c, so the numerator of the integrand
can be expressed as [2c(δc − r)]1/2. Next, we change the variable of integration
from x to r, noting that dx = dr and r varies from 0 to δc, to arrive at

G = 2K2
I

πE

δc∫
0

√
δc − r√

r
dr. (10.113)

Finally, we let r = (δc) sin2 ϑ , which transforms (10.113) into

G = 2K2
I

πE

π/2∫
0

cosϑ
sin ϑ

2 sin ϑ cosϑdϑ = 4K2
I

πE

π/2∫
0

cos2 ϑdϑ = K2
I

E
, (10.114)

which agrees with (10.109).
A similar analysis of the other two crack growth modes leads to the following

expressions for the energy release rate, in which the energy release rates for the
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three modes are taken to be additive (Lawn and Wilshaw, 1975, p. 57; Maugis,
2000, p. 184):

Plane stress: G = 1
E
[K2

I + K2
II + (1 + ν)K2

III], (10.115)

Plane strain: G = (1 − ν2)

E
[K2

I + K2
II + K2

III/(1 − ν)]. (10.116)

These results assume that the crack grows by extending itself in its own plane,
that is, along the x-axis in Fig. 10.8, regardless of the mode of loading to which it
is subjected. Although expressions (10.115) and (10.116) are quoted inmany texts
andmonographs, it must be noted that there is little if any evidence that cracks in
isotropic rocks extend in their own plane under shear loading (see Scholz, 1990,
p. 26). In fact, there is evidence that shear loading will create new microcracks
along the boundary of the existing crack, which then propagate in mode I (Brace
and Bombolakis, 1963; Cox and Scholz, 1988).

According to the formalism of linear elastic fracture mechanics, the problem
of crack growth therefore involves twomain aspects: calculating the stress inten-
sity factor, which can be achieved by solving the elasticity equations for the given
crack geometry and loading conditions, and having knowledge of the critical
energy release rate for the rock in question, which can be obtained experimen-
tally. Calculated stress intensity factors for many crack geometries have been
compiled by Tada et al. (2000), among others. Aside from a geometry-dependent
multiplicative factor, usually on the order of unity, the stress intensity factor
is typically equal to the applied far-field stress divided by the square root of a
suitable crack dimension. Measured values of the critical stress intensity factor
KIc and critical energy release rate Gc for various rocks and minerals have been
compiled by Atkinson and Meredith (1987). Values of KIc at room temperature
vary from about 0.1 MPa m1/2 for coal, up to about 3.5 MPa m1/2 for harder
rocks such as granite or dunite.

10.9 Griffith theory
of failure

The theory of fracture mechanics briefly outlined in the previous section applies
to cracked bodies subjected to tensile loading. Griffith (1924) used the conceptual
model of a two-dimensional rock containing a collection of randomly oriented
thin elliptical cracks to derive a failure criterion that applies under tensile or
compressive loads. This simple model leads to a curved, nonlinear failure surface
in Mohr space that is in several respects more realistic than the linear Coulomb
law. The only requirements of this derivation are the expressions for the stresses
along the boundary of the crack, whichwere obtained in §8.9, and the assumption
that a crack will extend in an unstable manner when the maximum tensile stress
at any point along the crack boundary reaches some value that is characteristic of
the rock. Note that although both the following analysis and the energy-related
considerations of §10.8 are due to Griffith, the present model for failure under
compressive loads is fundamentally different from that discussed in the previous
sections, in that it assumes a “critical stress” criterion for crack propagation,
rather than a criterion based on energy release.
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Consider, as in §8.9, a flat elliptical crack, with the coordinate system aligned
so that the x-axis lies along the major axis of the ellipse. The semiaxes of the
crack are, from (8.204),

a = c cosh ξo, b = c sinh ξo. (10.117)

Let the minor principal stresses σ2 be oriented at an angle β to the x-axis, and
the major principal stress σ1 be oriented at an angle (π/2) + β to the x-axis. In
the x–y coordinate system, these far-field stresses are

τxx = σ1 sin2 β + σ2 cos2 β, τyy = σ1 cos2 β + σ2 sin2 β, (10.118)

τxy = −1
2
(σ1 − σ2) sin 2β. (10.119)

From (8.210), the tangential stress along the edge of the hole is

τηη = (σ1 + σ2) sinh 2ξo + (σ1 − σ2)[e2ξo cos 2(β − η)− cos 2β]
cosh 2ξo − cos 2η

, (10.120)

or, in terms of the stresses (10.118) and (10.119) in the coordinate system aligned
with the crack,

τηη= 2τyy sinh2ξo+2τxy[(1+sinh2ξo)cot2β−e2ξo cos2(β−η)cosec2β]
cosh2ξo−cos2η

.

(10.121)

For thin cracks, ξo will be small. The maximum tensile stress is expected to
occur near the sharp tip of the crack, where η is small. Hence, we expand (10.121)
for small values of ξo and η, to arrive at

τηη = 2(ξoτyy − ητxy)

ξ 2o − η2
. (10.122)

For a given crack in a given stress field, we now calculate the location along the
crack boundary at which this stress attains its smallest (i.e., most tensile) value.
Differentiating (10.122) with respect to η, we find that dτηη/dη = 0 implies

τxyη
2 − (2ξoτyy)η − ξ 2o τxy = 0, (10.123)

which is a quadratic equation for η. The two solutions are

η = ξo[τyy ± (τ 2yy + τ 2xy)
1/2]/τxy. (10.124)

Substituting this value of η into (10.122) gives the two extreme values of the
tangential stress:

ξoτηη = τyy ∓ (τ 2yy + τ 2xy)
1/2. (10.125)
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The negative sign in (10.125) corresponds to a tensile stress, so the greatest tensile
stress along the crack boundary is given by

ξoτηη = τyy − (τ 2yy + τ 2xy)
1/2

= (σ1 cos2 β + σ2 sin2 β)− (σ 2
1 cos

2 β + σ 2
2 sin

2 β)1/2, (10.126)

and occurs when

η

ξo
= τyy + (τ 2yy + τ 2xy)

1/2

τxy

= 2[(σ1 cos2 β + σ2 sin2 β)+ (σ 2
1 cos

2 β + σ 2
2 sin

2 β)1/2]
(σ2 − σ1) sin 2β

. (10.127)

Next, we determine the orientation of the crack that will give the largest (in
magnitude) value of this tensile stress. Differentiating (10.127) with respect to β
gives

ξo
dτηη
dβ

=
[
2(σ2 − σ1)+ (σ 2

1 − σ 2
2 )

(σ 2
1 cos2 β + σ 2

2 sin2 β)1/2

]
sin β cosβ. (10.128)

This derivative will be zero if β = 0,β = π/2, or

cos 2β = −(σ1 − σ2)/2(σ1 + σ2). (10.129)

This inclined orientation will exist only if the right-hand side of (10.129) lies
between −1 and +1, which requires that

σ1 + 3σ2 > 0 and σ2 + 3σ1 > 0. (10.130)

But σ1 > σ2 by definition, so the second inequality will hold whenever the first
inequality holds. Assuming that the stresses satisfy σ1 + 3σ2 > 0, substitution of
(10.129) into (10.126) gives the maximum tensile stress as

τηη = −(σ1 − σ2)
2

4(σ1 + σ2)ξo
. (10.131)

Griffith then assumed that the crackwould extendwhen thismaximum tensile
stress reaches some critical value that is characteristic of the rock. Furthermore,
this crack extension is identified with “failure” of the rock. In this case, (10.131)
provides a failure criterion in terms of the two principal stresses. However, it
contains the aspect ratio parameter ξo, which will in practice be difficult to
estimate. But both ξo and the critical (local) tensile stress can be eliminated from
the failure criterion, as follows. Consider a combination of far-field stresses that
do not satisfy condition (10.130). For this to be true, σ2 must be negative, and
it follows from (10.126) and (10.127), or directly from (10.120), that the greatest
tensile stress along the crack surface occurs when β = π/2, and has the value

τ critηη = 2σ2/ξo. (10.132)
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Uniaxial tension, in which σ1 = 0 and σ2 < 0, is one particular case for which
(10.130) is not satisfied, and so (10.132) holds. The value of σ2 at failure is, by
definition,−To, so (10.132) shows that ξoτ critηη = −2To. Substitution of this result
into (10.131), for the “predominantly compressive” stress regimes defined by
σ1 + 3σ2 > 0, allows (10.131) to be expressed in a form that does not involve the
parameters ξo or τ critηη :

(σ1 − σ2)
2 = 8To(σ1 + σ2), if σ1 + 3σ2 > 0, (10.133)

which, along with

σ2 = −To, if σ1 + 3σ2 < 0, (10.134)

constitutes Griffith’s criterion for failure. The only adjustable parameter that
appears in this criterion is the uniaxial tensile strength, To.

This criterion is represented in the (σ1, σ2) plane (Fig. 10.9a) by the segment
AC of the line σ2 = −To that extends from σ1 = −To to σ1 = 3To and the
portion CDE of the parabola (10.133) that connects with the straight line at C.
It can be shown from (10.133) that this composite curve has a continuous slope,
as the parabola is indeed horizontal at C. The complete parabola (10.133) passes
through the origin and is symmetric with respect to the line σ2 = σ1. Values
above and to the left of this line have no physical meaning, since by definition
σ1 ≥ σ2.

For states of uniaxial compression, σ2 = 0, and (10.133) shows that failure
occurs at a value σ2 = 8To, which by definition is the uniaxial compressive
strength. This value of Co/To = 8 for the ratio of compressive strength to tensile
strength is reasonable, but somewhat lower than is observed for most rocks.

To display Griffith’s criterion on a Mohr diagram, we first write (10.133) and
(10.134) in terms of themeannormal stress, σm = (σ1+σ2)/2, and themaximum
shear stress, τm = (σ1 − σ2)/2:

τ 2m = 4Toσm, if 2σm > τm, (10.135)

τm = σm + To, if 2σm < τm. (10.136)

The point (σm, τm) represents the top of a Mohr’s circle. The locus of these circle
tops consists of dashed line AB with a slope of unity for −To < σm < To, and

Fig. 10.9 Griffith’s
failure criterion (a) in
principal stress space
and (b) on a Mohr
diagram.
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the portion BC of the parabola (10.135) for σm > To (Fig. 10.9b). The Mohr’s
circles whose tops lie on line AB all meet at A, where σ2 = −To. Hence, A is the
terminus of the Mohr envelope.

To find the Mohr envelope corresponding to the circles whose tops lie on
parabola BC, we must find the envelope of the family of circles having centers
located at (σm, 0), and having radii τm, where σm and τm are related by (10.135).
The equation of these circles can be written as

f (σm) = (σ − σm)
2 + τ 2 − τ 2m = (σ − σm)

2 + τ 2 − 4Toσm = 0, (10.137)

The envelope of this family of circles is found by eliminating σm between (10.137)
and the equation for ∂ f /∂σm = 0, which is

∂ f /∂σm = σ − σm + 2To = 0. (10.138)

The resulting equation for the Mohr envelope is

τ 2 = 4To(σ + To), (10.139)

which is the parabola APQ.
Murrell (1963) extended Griffith’s theory of failure into the true-triaxial

domain in the following ad hoc manner. In this exercise, it is convenient to
ignore the restriction σ1 ≥ σ2 ≥ σ3 and consider the entire stress space. First,
the parabolic failure surface in (σ1, σ2) space becomes a paraboloid of revolution
in (σ1, σ2, σ3) space, with its axis taken to be the line σ1 = σ2 = σ3. Next,
since the two-dimensional Griffith criterion also included portions of the lines
σ1 = σ2 = −To, in three dimensions the paraboloid is assumed terminate at
the pyramid of the three mutually perpendicular planes σ1 = σ2 = σ3 = −To.
Lastly, in analogy with the fact that the Griffith parabola is tangent to the line
σ2 = −To, Murrell required that the paraboloid of revolution be tangent to the
planes σ2 = σ3 = −To. These criteria uniquely determine the failure surface,
which can be expressed (Murrell, 1963) as

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2 = 24To(σ1 + σ2 + σ3), (10.140)

or, in terms of octahedral stresses,

τ 2oct = 8Toσoct. (10.141)

It follows from (10.140) that Murrell’s theory predicts that the uniaxial compres-
sive strength is given by Co = 12To, which is to say that the ratio of compressive
strength to tensile strength is predicted to have the value 12.

McClintock and Walsh (1962) extended Griffith’s model, within a two-
dimensional context, by including the effect of friction along the crack faces.
If µ is the friction coefficient along the crack faces and σc is the compressive
stress required to close a crack, they derive the following failure criterion:

σ1[(1 + µ2)1/2 − µ] − σ2[(1 + µ2)1/2 + µ] = 4To[1 + (σc/To)]1/2 − 2µσc .

(10.142)
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If σc is small enough to be neglected, this reduces to

σ1[(1 + µ2)1/2 − µ] − σ2[(1 + µ2)1/2 + µ] = 4To, (10.143)

which is essentially the Coulomb criterion, (4.16), with So identified with 2To.
Theories such as those of Griffith and Murrell provide a useful framework for

qualitatively understanding the manner in which failure depends on the state of
stress. However, it must be acknowledged (Scholz, 1990; Paterson and Wong,
2005) that the identification of rock failure with the extension of a single, isolated
crack is a gross oversimplification of the complex processes involved in rock
deformation.

Computational methods are obviously well suited for studying the process of
rock degradation and failure, without requiring simplistic models such as that of
a single crack in an infinite, homogeneous elastic medium. Paterson and Wong
(2005, Chapter 6) and Yuan and Harrison (2006) have reviewed the numerous
stochastic/statistical approaches that have been taken, fromwhich the following
small sampling is extracted. Scholz (1968) imagined that a rock sample could be
divided into a number of small elements, within each ofwhich the local stress and
local strengthwere distributed about theirmeanvalues. Individual elementswere
assumed to fail when the local stress reaches the local strength, and this failed
region propagates to an adjacent element if that element has the appropriate
combination of higher stress and/or lower strength. As the stress is increased
incrementally, the entire rock specimen may eventually fail, as the local regions
of failed rock percolate throughout the body. Allègre et al. (1982) considered an
array of eight cubical elements, each of which is either intact or already “failed,”
with probabilities p and 1−p, respectively. By considering all possible topological
combinations, they calculated the probability of the 8-cube array to be in the
failed state, and then grouped this macrocube with seven adjacent macrocubes,
continuing the process (the so-called “renormalization group” approach) to find
that the entire samplewill be in amacroscopic “failed” state if p > 0.896. Madden
(1983) extended this approach by relating the probability of failure p to the local
crack density. Lockner and Madden (1991) assumed that each failed element
contained a microcrack and accounted for possible crack closure and frictional
sliding. Their model was able to predict the development of dilatancy and shear
localization.

Blair and Cook (1998) developed a lattice-based model in which the local ele-
ments are allowed to fail by tensile cracking if the local tensile stress exceeds
the local tensile strength, which was assumed to be distributed either uniformly
over a certain range, or bimodally. They found that the locations of cracked
elements are initially random, but eventually these failed elements coalesce to
form amacroscopic fracture, consistentwith experimental observation (Fig. 4.8).
Reuschlé (1998) used a similar network model to study the influence of hetero-
geneity and loading conditions on the fracture process. These types of network
models can also be used to study other inelastic deformation processes, such as
unstable fault slip (Hazzard et al., 2002), or the compaction bands that occur in
some sedimentary rocks (Katsman et al., 2005).
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Tang et al. (2000) developed a finite element code in which the individual
rock elements are represented by an elastic–brittle constitutive model with zero
residual strength. The elastic modulus and strength of the individual elements
were assumed to follow a Weibull (1951) distribution. Their model was able to
predict many of the features of rock deformation, both pre- and post-failure.
Fang and Harrison (2002) developed a similar model that also accounted for the
strengthening effect that confining pressure has on the individual elements, and
their model was able to show the transition between brittle and ductile behavior
as the confining pressure is increased. Yuan and Harrison (2005) extended this
model to the study of hydromechanical coupling by incorporating a relationship
between local damage and local hydraulic conductivity.
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11.1 Introduction It is usually assumed that rock is at rest under the actionof static stresses, andmost
problems in rockmechanics are treated as problems of statics. However, there are
a number of important situations in which the stresses are of a dynamic nature
and the propagation of these stresses through the rock as a wavemust be consid-
ered. Such situations may arise naturally, for example, in earthquakes. Dynamic
stresses in rock may also be the result of man-made activities, such as explosive
blasting. In other cases they are inadvertent consequences of human activities,
such as the rockbursts that occur in undergroundmines due to the redistribution
of stresses caused by the excavations. The amplitudes of the dynamic stresses are
usually small compared to the compressive strength of the rock, except perhaps
in the immediate vicinity of the source, and the time of application is generally
short. In such situations, the resulting stresses and displacements can be ana-
lyzed using the dynamic theory of linear elasticity. Waves traveling through rock,
governed by the laws of linear elasticity, are known as seismic waves.
Seismic waves originating from earthquakes are used to locate the earthquake

foci and to study the mechanism at the source (Aki and Richards, 1980). Seis-
mic waves from man-made explosive sources are used to study the near-surface
structure of the earth, particularly for the purpose of locating minerals and
hydrocarbons (Sheriff and Geldart, 1995). In mining, man-made seismic waves
are used to assess the quality of the rock around excavations (Gibowicz and Kijko,
1994; Falls and Young, 1998).
Much of this chapter is concerned with elastic wave propagation, in which

the stress–strain behavior is governed by the equations of linear elasticity. The
basic theory of one-dimensional elastic wave propagation, including reflection
and refraction at an interface, is treated in §11.2. The basic theory and rele-
vant definitions for harmonic waves are discussed in §11.3. The propagation of
harmonic elastic waves in unbounded, three-dimensional regions is discussed in
§11.4. Reflection and refraction of such waves at an interface between two rock
types are treated in §11.5, and harmonic waves propagating along an interface
between two rock layers or along a free surface are discussed in §11.6. Transient
waves traveling unidirectionally, or radially from a spherical source, are treated
briefly in §11.7. The effect of pore fluids on the propagation of waves in porous
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rock is discussed in §11.8. Various mechanisms of attenuation, in which mechan-
ical energy is lost as the wave travels through the rock, are discussed in §11.9.
Lastly, inelastic waves are briefly discussed in §11.10.

11.2 One-
dimensional elastic
wave propagation

The propagation of elastic waves through rock is governed by the three-
dimensional equations of elasticity, (5.76), with the inertia terms retained on the
right-hand side. If these equations are supplemented with Hooke’s law, for exam-
ple, in the form given by (5.18)–(5.21) for isotropic rocks, they form a complete
set of equations whose solutions describe transient propagation of stress/strain
waves through a rock. Although elastic waves often travel in a unidirectional
manner, the coupling between the different normal stresses and strains due to
the Poisson effect causes the motion to never be truly one-dimensional in a
mathematical sense. Hence, the analysis of elastic waves becomes mathemati-
cally complex. However, many of the concepts of elastic wave propagation can
be understood within the context of a simplified, one-dimensional model. This
model, which is developed and discussed below, actually applies rigorously to
waves propagating along a thin elastic bar.
Imagine a thin elastic rod of a given cross-sectional shape that is uniform along

the length of the rod. The axial coordinate is x. The precise shape of the cross
section is not relevant to the following analysis, but it may be convenient to think
of it as circular, with radius a. If the rod is thin, it seems reasonable to assume
that the stress τxx will not vary over the cross section; hence, τxx varies only with
x and t. (This assumption is true for waves whose wavelengths are greater than
about ten times the radius of the rod; Graff, 1975, p. 471). If the rod is acted
upon only by longitudinal forces in the x direction, and its outer boundary is
traction-free, then the only nonzero stresses within the rod will be τxx . A force
balance in the x direction taken on the infinitesimal segment of rod between x
and x +�x then yields

[τxx(x, t)− τxx(x +�x, t)]A = −ρ(A�x)∂
2u
∂t2

, (11.1)

where the – sign appears on the right because, as explained in §2.10, the displace-
ment u is reckoned positive if the particle displaces in the negative x direction.
Dividing both sides of (11.1) by A�x, and taking the limit as�x → 0, yields

∂τxx

∂x
= ρ

∂2u
∂t2

. (11.2)

This equation is independent of the constitutive equation that applies to the
rock. Under the assumption of linear elastic behavior, and noting that there are
no forces acting in the directions perpendicular to the x-axis, then τxx = Eεxx =
E(∂u/∂x), and (11.2) becomes

E
ρ

∂2u
∂x2

= ∂2u
∂t2

. (11.3)
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Differentiation of both sides of (11.3) with respect to x, and invoking the fact that
the various partial differentiationoperators commutewith eachother, shows that
both the strain εxx and the stress τxx also satisfy this same differential equation:

E
ρ

∂2εxx

∂x2
= ∂2εxx

∂t2
,

E
ρ

∂2τxx

∂x2
= ∂2τxx

∂t2
. (11.4)

Equation (11.3) is the one-dimensional wave equation. It describes distur-
bances that propagate along the bar, in either the +x or −x direction, at a speed
c that is given by

c = (E/ρ)1/2. (11.5)

The wave-like nature of the solutions to (11.3) is most easily seen by utilizing the
following analysis, first given by the French mathematician and philosopher Jean
d’Alembert in 1747. Consider any differentiable function f of one variable, and
let the argument of f be the new variable η = x − ct, where c is given by (11.5).
Use of the chain rule gives

∂ f
∂x

= df
dη
∂η

∂x
= df

dη
, so

∂2f
∂x2

= d2f
dη2

, (11.6)

∂ f
∂t

= df
dη
∂η

∂t
= −c df

dη
, so

∂2f
∂t2

= c2
d2f
dη2

= E
ρ

d2f
dη2

, (11.7)

which shows that the function f (x− ct) satisfies (11.3). Hence, any differentiable
function that depends on the two variables x and t only through the combination
x − ct will be a solution to the wave equation (11.3).
The function f (x − ct), which according to (11.3) and (11.4) may stand for

displacement, stress or strain, represents a disturbance that moves to the right at
speed c. To be concrete, consider the peak of the disturbance shown in Fig. 11.1,
which we take to be located at x = xo at time t = 0. The magnitude of the
disturbance at this peak is given by f (η = xo − c0) = f (xo). At some time t > 0
later, this peak will move to a location at which the variable η has the same value
as it did at t = 0, that is, x′ − ct = xo, or

x′ = xo + ct, so
(
∂x
∂t

)
η=constant

= c. (11.8)

Fig. 11.1 Elastic
disturbance moving to
the right at velocity c.
During a time
increment t the pulse
moves to the right by a
distance ct, without
altering its shape.

u

x
xo x '

c

x ' = xo + ct

t = 0 t > 0
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This argument holds for any point on the wave, not just the peak, so the solution
f (x − ct) represents a disturbance propagating, without distortion, to the right
at speed c. The waveform shown in Fig. 11.1 can be interpreted as the graph
of the displacement as a function of x, for a fixed value of t, but it can also be
thought of as the time variation (with a scaling factor c) of the displacement at a
fixed location x. The variable η is sometimes called the phase of the wave and c
is the phase velocity.
An identical analysis, using the variable ξ = x+ ct, shows that g(x+ ct) is also

a solution to the wave equation for an arbitrary twice-differentiable function g
and represents a disturbance moving, without distortion, to the left at speed c. It
can be shown (Bers et al., 1964) that the general solution to (11.3) is given by

u(x, t) = f (x − ct)+ g(x + ct), (11.9)

in the sense that any solution to (11.3) can be written in this form.
Imagine a thin elastic bar extending infinitely far in both directions. At time

t = 0, assume that the displacement and velocity of each point along the bar are
each given by some known function, that is,

u(x, t = 0) = U(x),
∂u
∂t
(x, t = 0) = V(x). (11.10)

Equation (11.3), along with the two initial conditions given in (11.10), forms a
well-posed initial value problem whose solution can be shown to be (Pearson,
1959, p. 179; Fetter and Walecka, 1980, p. 213)

u(x, t) = 1
2
[U(x − ct)+ U(x + ct)] + 1

2c

x+ct∫
x−ct

V(s) ds. (11.11)

Hence, the initial disturbance U(x) splits into two parts, half propagating to the
left and half to the right. The influence of the initial velocityV(x) on the resulting
wave, which is given by the integral term, is not as easily visualized, although it
can also be written in terms of left-traveling and right-traveling waves by defining
a function H that is the indefinite integral of V (Graff, 1975, p. 15):

x+ct∫
x−ct

V(s) ds ≡ H(x + ct)− H(x − ct). (11.12)

The foregoing analysis applies to waves traveling in an infinite, unbounded
bar. Such waves will, in principle, travel indefinitely, without changing shape.
But whenever an elastic wave traveling through a given medium 1 reaches a
boundary with another medium 2, the waveform will be altered. A “transmitted
wave” will pass into medium 2, and, in general, a “reflected wave” will reflect
off of the boundary and return into medium 1 (Fig. 11.2a). The amplitudes of
the transmitted and reflected waves, relative to that of the incident wave, can
be shown to depend on the elastodynamic properties of the two media in the
following manner (Bedford and Drumheller, 1994, pp. 62–64).
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Fig. 11.2 (a) Incident
wave, transmitted wave,
and reflected wave at a
welded interface;
(b) Reflection and
transmission
coefficients as functions
of the impedance
contrast, from (11.18)
and (11.19).
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Consider an incident wave ui(x−c1t), traveling to the right thoughmedium 1,
which occupies the region x < 0. The transmitted wave ut(x − c2t) travels
to the right through medium 2 and the reflected wave ur(x + c1t) travels to
the left through medium 1. At the interface between the two media, x = 0,
the displacements and tractions must be continuous; these are the so-called
“welded interface” boundary conditions. If the interface is a fracture or fault,
different boundary conditionsmay be appropriate (see §12.7). The variable x−ct
can be multiplied by any constant k without altering the fact that u(x − ct)
satisfies the wave equation, so without loss of generality we can take k =
−1/c and thereby denote the solutions as u(t − x/c). At the interface, x = 0,
and so the displacement due to the incident wave is ui(t), for example. As
usual, all displacements are considered positive if the motion is in the negative x
direction, regardless of the direction of propagation of the wave. The condition
of continuity of the displacement at the interface then can be expressed as

ui(t)+ ur(t) = ut(t). (11.13)

The stress is related to the displacement by τxx = Eεxx = E(∂u/∂x) =
ρc2(∂u/∂x). By the chain rule, ∂u/∂x = −(1/c)u′ for a right-traveling wave
and ∂u/∂x = (1/c)u′ for a left-traveling wave, where the prime denotes differ-
entiation with respect to the argument of the function. The condition of stress
continuity at the interface therefore can be written as

−ρ1c1u′
i(t)+ ρ1c1u′

r(t) = −ρ2c2u′
t(t). (11.14)

Integration of (11.14) yields

−ρ1c1ui(t)+ ρ1c1ur(t) = −ρ2c2ut(t)+ B, (11.15)

where B is a constant of integration. If the incoming wave is of finite duration,
then after a sufficiently long time has elapsed, the stresses associated with each
of the three waves must be zero, implying that the integration constant must be
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zero. Simultaneous solution of (11.13) and (11.15) yields

ut(t − x/c2) = 2ρ1c1
ρ1c1 + ρ2c2

ui(t − x/c1), (11.16)

ur(t + x/c1) = ρ1c1 − ρ2c2
ρ1c1 + ρ2c2

ui(t − x/c1). (11.17)

The product of the density and the wave speed of a material, ρc = (ρE)1/2, is
called the acoustic impedance and is usually denoted by Z. The results (11.16) and
(11.17) can also be expressed as

T = amplitude of transmitted wave
amplitude of incident wave

= 2Z1
Z1 + Z2

, (11.18)

R = amplitude of reflected wave
amplitude of incident wave

= Z1 − Z2
Z1 + Z2

. (11.19)

According to the sign convention used for displacements, u < 0 corresponds to
compression and u > 0 corresponds to extension. If Z2 < Z1, the transmitted
wave has the same “sense” as the incident wave (i.e., compression or rarefaction)
and a larger amplitude; the reflectedwave has the same sense as the incidentwave
but a smaller amplitude. If Z2 > Z1, the transmitted wave has the same sense as
the incident wave but a smaller amplitude, whereas the reflected wave has the
opposite sense and a smaller amplitude. In this case, therefore, a compression
wave would be reflected as a wave of rarefaction and vice versa. The reflection
and transmission coefficients R and T are plotted in Fig. 11.2b as functions of
the impedance ratio. If these coefficients are defined in terms of stresses rather
than displacements, the expressions and curves are somewhat different. If the
displacements are reckoned relative to the direction of wave propagation, rather
than with respect to a coordinate system fixed in space, the expression for T in
(11.18) should be multiplied by −1 (Mavko et al., 1998, p. 58).
The special case of a wave impinging on a free surface can be obtained by

letting ρ2, E2 → 0, in which case Z2 → 0. The reflected wave then has the same
sense and same magnitude as the incident wave, whereas the transmitted wave
has the same sense but twice the magnitude of the incident wave. The prediction
of a transmitted wave traveling through a medium with zero stiffness and zero
density may seem paradoxical, but it must be remembered that media with zero
density and stiffness do not exist. The above result should be thought of as an
asymptotic result that holds in the limit in which the impedance of medium 2 is
very small relative to that of medium 1.
The other extreme case is a wave impinging on an interface with a medium

of infinitely large impedance. If Z2 → ∞, (11.18) shows that there will be
no transmitted wave, and (11.19) shows that the incident wave will be totally
reflected back into medium 1 but with the opposite sense. Hence, a compressive
wave will be reflected as a rarefaction wave and vice versa. A third interesting
case is when the two media have identical values of the acoustic impedance. In
this case, the wave will be fully transmitted into medium 2, with no change in
amplitude, and there will be no reflected wave.
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An elastic wave carries energy with it, in the form of both elastic strain energy
and kinetic energy. For a wave described by u(x − ct), the strain is

εxx = ∂u
∂x

= f ′(x − ct). (11.20)

The stress is then τxx = Ef ′(x− ct), and so from (5.142), the elastic strain energy
density is

= 1
2
τxxεxx = 1

2
ρc2(f ′)2, (11.21)

where (11.5) has been used to write E = ρc2. The local particle velocity of the
rock is not equal to the phase velocity of the wave, c, but is found by the chain
rule to be given by

u̇ = ∂u
∂t

= −cf ′(x − ct). (11.22)

The kinetic energy density per unit volume is therefore

K = 1
2
ρ(u̇)2 = 1

2
ρc2(f ′)2, (11.23)

and is exactly equal, at each location x and at each time t, to the elastic strain
energy density. The total energy density contained in the wave is

T = K + = ρc2(f ′)2. (11.24)

The total energy contained in any region of the bar could be found bymultiplying
(11.24) by the cross-sectional area A and integrating along the length.
Comparison of (11.20) and (11.22) shows that the particle velocity is related

to the phase velocity by u̇ = −cεxx for a right-traveling wave; the analogous
relationship is u̇ = cεxx for a left-traveling wave. As the strain must by necessity
be very small in order for the theory of linear elasticity to apply, it follows that
the particle velocity in an elastic wave is but a small fraction of the phase velocity,
which is the speed at which the “wave” travels. Use of Hooke’s law and (11.5) in
the expression u̇ = cεxx shows that the particle velocity can also be expressed as

|u̇| = τxx/ρc. (11.25)

showing that the acoustic impedance can also be interpreted as the coefficient
that relates the stress to the particle velocity.

11.3 Harmonic
waves and group
velocity

The analysis in §11.2 treated the general case of a wave of arbitrary form. But
the most important type of wave, and that which is used as the basis for most
mathematical analyses, is a harmonicwave in which the displacement (and hence
also the strain and the stress) oscillates in a sinusoidal manner. The reason for
the importance of harmonic waves is that, by use of Fourier’s theorem, a wave
of arbitrary time-variation can be decomposed into a combination of harmonic
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waves of different frequencies, each with its own amplitude. In this section, we
discuss some of the properties of harmonic waves, using the nomenclature of
longitudinal wave propagation in a thin elastic bar, as in §11.2.
Consider a displacement described by

u(x, t) = UoRe{eik(x−ct)} = Uo cos[k(x − ct)] ≡ Uo cos(kx − ωt), (11.26)

where ω = kc. The latter form Uo cos(kx − ωt) is convenient, although it
obscures the fact that k and ω are not independent but are related by ω/k = c.
Although it is less ambiguous to use only the real part of the exponential as
the displacement, it is usually simpler to carry out mathematical manipulations
using the complex exponential form and then to take the real part at the end. As
the argument of an exponential must be dimensionless, the parameter k, called
the wave number, must have dimensions of [1/L]. The parameter ω therefore has
dimensions of [1/T].
At a fixed value of t, the wavelength λ of this displacement wave is determined

by the condition k(x + λ) = kx + 2π , which shows that λ = 2π/k; the wave
number is therefore a “spatial frequency”. Similarly, at a fixed location, the period
T of thewave is determined by the conditionω(t+T) = ωt+2π , so T = 2π/ω.
The period T represents the number of “seconds per cycle”, so 1/T would be
the number of “cycles per second”, and hence ω = 2π/T represents the number
of “radians per second”, that is, the angular frequency. It is often more natural
to refer to the frequency in terms of the number of “cycles per second”. This
frequency, the so-called cyclic frequency, or simply “the frequency”, is usually
denoted by either f or ν, and is related to ω by ν = ω/2π = 1/T. The units
of “cycles per second” are also known as Hz, in honor of the nineteenth century
German physicist and acoustician Heinrich Hertz. A few of the more useful of
the various relations between the parameters of a harmonic wave are

ω = kc, ω = 2π f , T = 2π/ω, λ = 2π/k, λ = 2πc/ω, λ = c/f .

(11.27)

The strain and stress associated with a harmonic displacement wave are also
sinusoids having the same frequency as the displacement, but 1/4-cycle out of
phase with it:

εxx = ∂u/∂x = −kUo sin(kx − ωt), (11.28)

τxx = Eεxx = −kEUo sin(kx − ωt). (11.29)

From (5.142), the stored elastic strain energy density (per unit volume) is given
by

= 1
2
εxxτxx = k2EU2

o

2
sin2(kx − ωt). (11.30)

Using the relations k = ω/c and c2 = E/ρ, this can be written as

= ρω2U2
o

2
sin2(kx − ωt). (11.31)
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The kinetic energy density is

K = 1
2
ρ(u̇)2 = ρω2U2

o

2
sin2(kx − ωt), (11.32)

and so the total energy density is

T = K + = ρω2U2
o sin

2(kx − ωt). (11.33)

At any location x, the energy density varies in time between 0 and ρω2U2
o, with

an average value ofρω2U2
o/2. Likewise, at any time t, the energy density varies in

space between 0 and ρω2U2
o, with an average value of ρω

2U2
o/2. At all times, the

total energy contained in the wave is equally partitioned between elastic strain
energy and kinetic energy, as was shown in a more general context in §11.2.
The time-averaged flux of energy through a given cross section located at x

can be calculated as follows. Consider the total energy contained in the region
between x − λ and x:

�T =
x∫

x−λ
T Adx =

x∫
x−λ

ρω2U2
o sin

2(kx − ωt)Adx = ρω2U2
oAλ

2
. (11.34)

The entire wave travels to the right at speed c, so all of the energy in the region
between x − λ and x at time t will pass through the plane at x within an elapsed
time given by �t = λ/c. The time-averaged power flux, which is the rate at
which energy flows past location x, per unit area, is equal to

P = �T
A�t

= ρcω2U2
o

2
. (11.35)

As discussed in §11.2, the actual velocity of the material particles is not the
same as the velocity at which the “wave” propagates. The particle velocity is
found from (11.26) by differentiation:

u̇ = ∂u/∂t = ωUo sin(kx − ωt) = ckUo sin(kx − ωt). (11.36)

Comparison of (11.36) and (11.28) shows that, in accord with the general results
of §11.2, u̇ = −cεxx , and so |u̇|/c � 1.
Although the theory ofwave propagation along a thin elastic barwas presented

in §11.2 in part to provide a simplified, one-dimensional context in which to
develop the basic ideas of elastic wave propagation, it has great importance in its
own right, because most laboratory measurements of wave propagation in rocks
aremade on cylindrical core samples. According to this simplified low-frequency,
long-wavelength theory, the wave speed c is independent of the wavelength or
wave number. This is also the case for wave propagation in three-dimensional,
unbounded elastic media (see §11.4). Waves for which the speed is independent
of wavelength are called nondispersive. This term refers to the fact that, since the
various frequency components of the wave each travel at the same speed, the
waveform retains its shape as it travels through the medium.
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The fully three-dimensional theory of wave propagation in an elastic bar
(Graff, 1975, pp. 468–74) predicts that the wave speed actually depends on
wavelength and hence on frequency. The wave speed asymptotically approaches
(E/ρ)1/2 as the wavelength becomes infinite and decreases as the wave number
increases. Moreover, there are additional, higher “modes”, each with its own
complicated c(k) relationship, that correspond to motions in which the stress is
not of the same sign across a given cross section at any given time. It is generally
thought that these higher modes are not excited in most laboratory measure-
ments. Nevertheless, the wave speed in an elastic bar, as would be measured in
the laboratory, does vary with wave number. Wave speed will vary with wave
number whenever an elastic wave travels through a “waveguide”; for example,
when a wave travels along a layer of rock that is bounded above and below by
strata having different elastic properties. Waves whose speed varies with fre-
quency are called “dispersive”, because, as the different components of the total
wave travel at different speeds, the wave form will not retain its overall shape as
it moves through the medium.Waves that travel through viscoelastic media also
exhibit dispersion, although in this case not for geometrical reasons but because
the waves lose energy as they travel.
The phenomenon of dispersion leads to the concept of the group velocity

of a wave, which was first analyzed in the following manner by the British
mathematical physicist George Stokes in 1876. Consider a wave that consists
of two harmonic components, with the same amplitude but slightly different
wave numbers, k1 and k2 = k1 +�k, and slightly different frequencies, ω1 and
ω2 = ω1 +�ω:

u = Uo cos(k1x − ω1t)+ Uo cos(k2x − ω2t). (11.37)

Using standard trigonometric identities, this can be written as

u = 2Uo cos
{
1
2
(k1 + k2)x − 1

2
(ω1 + ω2)t

}
cos

{
1
2
�kx − 1

2
�ωt

}
. (11.38)

Now denote the mean wave number by k and the mean frequency by ω, so that
(11.38) can be written as

u = 2Uo cos
{
k(x − ω

k
t)

}
cos

{
1
2
�k(x − �ω

�k
t)

}
. (11.39)

The first cosine term is a high-frequency “carrier” wave that travels at a speed
c = ω/k. Since k1 and k2 each differs only slightly from k, and ω1 and ω2 each
differs only slightly from ω, both of the two individual waves in (11.37) travel
essentially at velocity c, the so-called phase velocity. However, (11.38) shows that
these two waves combine in such a way that the wave traveling at velocity c is
modulated by the second cosine term, which represents a low-frequency wave
that travels at a speed given by cg = �ω/�k, the so-called group velocity.
This modulated wave is illustrated schematically in Fig. 11.3. If one focuses

on the detailed motion of the medium, one indeed observes the carrier wave
traveling at speed c. But if one ignores the detailed motion and focuses attention
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Fig. 11.3
Superposition of two
waves of slightly
differing frequencies,
which combine to yield
a high-frequency carrier
wave traveling at the
phase velocity c,
modulated by a
low-frequency
modulator wave
traveling at the group
velocity, cg , as described
by (11.37)–(11.39).

Group

ModulatorCarrier wave

x

cg
c

on the “macroscopic” motion, one observes the envelope moving forward at
speed cg . If cg > c, the individual wavelets seem to appear at the front of the
group and disappear at the rear, as they are overtaken by the modulator wave.
If cg < c, the individual wavelets seem to appear at the rear of the group,
travel forward through it, and disappear at the front (Brillouin, 1960). An easily
observable example of this phenomenon is the radially diverging wave pattern
produced by dropping a small object into a still lake or pond. In this case cg > c,
and the individual ripples start at the outer edge of the ring and eventually
disappear at the inner edge.
In the more general context in which a wavepacket may contain a range of

frequencies, the group velocity is defined by cg = dω/dk. Using the relationships
given in (11.27), the group velocity can also be expressed as

cg = dω
dk

= c + k
dc
dk

= c − λ
dc
dλ

. (11.40)

Another useful form of (11.40) is

1
cg

= 1
c

− ω

c2
dc
dω

, (11.41)

which is expressed in terms of the slowness, 1/c.
Dispersion is termed normal if the group velocity decreases with increasing

frequency (Bourbié et al., 1987, p. 111) and is termed anomalous or inverse if cg
increases with increasing frequency. Dispersion that is due to geometrical effects,
such as the dispersion of waves in an elastic layer, is typically of the normal type,
whereas dispersion that is due to viscoelastic or other energy-dissipative effects
is usually anomalous (Mavko et al., 1998, p. 55).
For a nondispersive wave, cg = dω/dk = c = constant and the group velocity

coincides with the phase velocity. In this case, the energy travels with velocity c.
But for dispersive waves in an elastic medium, it can be shown by a lengthy
mathematical argument (Achenbach, 1973, pp. 211–15) that the energy actually
travels through themedium at the group velocity, cg . The group velocity is there-
fore also equal to the velocity of energy propagation. Waves in inelastic media
are also dispersive, but they lose energy as they propagate, and consequently
the relationship between the various velocities is not so simple or meaningful
(Mavko et al., 1998, pp. 56–7).
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An arbitrary wave can be thought of as being composed of a superposition of a
(possibly infinite) number of waves, each with its own frequency and amplitude.
Mathematically, this is accomplished by the Fourier transform (Bracewell, 1986).
Given a time-varying function f (t), its Fourier transform F(ω) can be defined as

F(ω) =
∞∫

−∞
f (t)e−iωtdt. (11.42)

Other notations for the Fourier transform of f (t) are f ∗(ω) or f̂ (ω). The math-
ematical conditions under which the integral in (11.42) exists are discussed by
Bracewell (1986); in practice, a Fourier transform exists for all waveforms arising
in wave propagation in rocks, in the laboratory or the field. The function F(ω)
can be thought of as representing that portion of the total wave f (t) that has fre-
quencyω. This is seen from the Fourier inversion integral, in which the function
f (t) is represented as a superposition of the various “components” F(ω):

f (t) = 1
2π

∞∫
−∞

F(ω)eiωtdω. (11.43)

A more symmetric form of these relationships is obtained by utilizing the cyclic
frequency, ω = 2πν. A simple change of variables applied to (11.42) and (11.43)
shows that the Fourier transform can also be defined as follows:

F(ν) =
∞∫

−∞
f (t)e−2π iνtdt, f (t) =

∞∫
−∞

F(ν)e2π iνtdν. (11.44)

Fourier transforms are useful in solving wave propagation problems (Miklowitz,
1978) and are ubiquitous in the analysis of seismic data (Berkhout, 1987).

11.4 Elastic waves
in unbounded media

Elastic waves travel at the speed c = (E/ρ)1/2 only in the special case of a long-
wavelength disturbance traveling along an elastic bar of constant cross section.
Waves that travel in three-dimensional, unbounded, isotropic elastic media can
be studied by startingwith the full three-dimensional equations ofmotion, (5.90),
with the inertia term included:

(λ+ G)∇(∇ · u)+ G∇2u = ρü. (11.45)

Consider a planar wave traveling at speed c along direction n, which can be
represented by

u = f (x · n − ct)d, (11.46)

where d, the particle displacement vector, is taken to be a constant. In the one-
dimensional theory of §11.2, the particle displacement must necessarily be in the
same direction as thewavemotion, but this need not be true in three dimensions.
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As x · n represents the projection of the vector x onto the direction n, the phase
η = x · n − ct has the same value for all points x that lie on a given plane
perpendicular to n. So for simplicity, consider a point lying on the vector n, that
is, x = ζn. Along direction n, the phase is equal to η = (ζn) · n − ct = ζ − ct,
since n is a unit vector. The velocity at which the wavefront moves along n is
then given, as in (11.8), by

v(wavefront) =
(
∂x

∂t

)
η

=
(
∂(ζn)

∂t

)
η

=
(
∂ζ

∂t

)
η

n = cn. (11.47)

Hence, the wave does indeed propagate in the n direction, and the parameter c
that appears in (11.46) is the phase velocity of this disturbance.
The time derivatives of u are found by applying the chain rule to (11.46):

ü = −cf ′(x · n − ct)d, ü = c2f ′′(x · n − ct)d. (11.48)

The phase of this wave is explicitly given by η = xnx + yny + znz − ct, so the
spatial derivatives of u are, for example,

∂u

∂x
= f ′(x · n − ct)d

∂η

∂x
= f ′(x · n − ct)dnx . (11.49)

Hence, it follows that

∇ · u = f ′(η)d · n, (11.50)

∇(∇ · u) = f ′′(η)(d · n)n, (11.51)

∇2u = f ′′(η)d, (11.52)

and (11.45) reduces to

(λ+ G)f ′′(η)(d · n)n + Gf ′′(η)d = ρc2f ′′(η)d. (11.53)

Aside from the trivial case f ′′(η) = 0, which leads to either a rigid-body motion
or a state of uniform strain that is independent of time, (11.53) is equivalent to

(λ+ G)(d · n)n + (G − ρc2)d = 0. (11.54)

If the particle motion is perpendicular to the direction of wave propagation,
then d · n = 0, and (11.54) can only be satisfied for nonzero d if

c ≡ cT = √
G/ρ, (11.55)

where cT is the velocity of transverse waves, for which the particle motion is
transverse to the direction ofwave propagation. The direction of propagation n is
completely arbitrary, as is the amplitude of the particle displacement (aside from
the requirement to maintain the small-strain approximation). Hence, transverse
planewaves can travel in any direction of an isotropic elasticmediumbut can only
travel at a speed given by (11.55). As this speed is independent of the frequency
or wavelength of the disturbances, such waves are nondispersive.



Jaeger: “chapter11” — 2006/12/15 — 10:00 — page 334 — #14

334 Chapter 11

If, on the other hand, d is parallel rather than perpendicular to the direction of
wave propagation, then d = dn, where d is a scalar, and (11.54) reduces to

(λ+ 2G − ρc2)dn = 0, (11.56)

which can only be satisfied by nonzero particle displacement d if

c ≡ cL = √
(λ+ 2G)/ρ. (11.57)

Longitudinal plane waves, in which the particle velocity is in the same direction as
the wave propagation, can therefore travel through an isotropic elastic medium
in any direction but only at a velocity given by (11.57). These longitudinal waves
are also nondispersive because cL does not vary with frequency.
Use of relations (5.13)–(5.15) allows the longitudinal wave speed to be written

in the following forms:

cL =
√
K + (4G/3)

ρ
=

√
(1 − ν)E

(1 + ν)(1 − 2ν)ρ
=

√
2(1 − ν)G
(1 − 2ν)ρ

, (11.58)

from which it follows that the ratio of the two wave speeds is

cL
cT

=
√
2(1 − ν)

(1 − 2ν)
. (11.59)

In any elastic medium, longitudinal waves always travel faster than transverse
waves. The ratio of the two wave speeds is

√
2 ≈ 1.41 when ν = 0, increases

with increasing ν, and becomes unbounded when ν → 0.5.
Without loss of generality, in an isotropicmedium the direction of propagation

n can be taken to be the x-axis and the direction of the particle displace-
ment vector d to be the y-axis. The displacement vector for a transverse wave
then has the form u = f (x − cTt)dyey, from which it follows that the only
nonzero strain component is εxy = f ′(x − cTt)dy/2 and the nonzero stress
is τxy = Gf ′(x − cTt)dy. A transverse wave is therefore a shear wave, con-
sistent with the fact that the shear modulus is the only elastic modulus that
affects cT .
Similarly, by proper alignment of the coordinate system, a longitudinal wave

can be represented by u = f (x − cTt)dxex, for which the only nonzero strain
component is εxx = f ′(x − cTt)dx . Hence, a longitudinal wave is a wave of
uniaxial strain, consistent with the fact that, according to (5.33), λ + 2G is the
uniaxial strain modulus. Due to the Poisson effect, longitudinal waves are not
waves of uniaxial stress, as the normal stresses on planes perpendicular to the
direction of wave propagation must satisfy τyy = τzz = ντxx/(1 − ν) in order
to maintain a state of uniaxial strain. In contrast to this situation, when a long-
wavelength longitudinal wave travels along a thin bar, as in §11.2, the stress is
essentially uniaxial and the two lateral strains are nonzero.
In geophysics, the transverse wave velocity is usually denoted by Vs and the

longitudinal velocity by Vp. The subscript s can be thought of as signifying a shear
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wave, or it can be thought of as signifying a secondary wave, as these waves arrive
at a receiver later than the faster-moving longitudinal waves. The subscript p can
similarly be thought of as standing for primary wave or pressure wave. These two
types of waves are often referred to as P-waves and S-waves.
The two wave velocities depend on the elastic moduli and density of the

rock, which in turn depend not only on mineral composition, pore structure,
fluid properties (see §11.8), but also vary with stress, temperature, etc. For
example, an increase in confining stress tends to close up cracks and grain
boundary pores, thereby increasing the elastic moduli and the wave speeds.
Given the great variability in rock properties, even within the same rock type,
it is consequently difficult, and not very meaningful, to cite specific values for
specific rocks. Table 11.1, adapted from Bourbié et al. (1987), gives ranges of
representative values for several types of rock.
A useful mathematical tool for the analysis of elastodynamic problems is the

Helmholtz decomposition of the displacement vector into the gradient of a scalar
potential, ϕ, plus the curl of a divergence-free vector potential, � (Sternberg,
1960):

u = divϕ + curl� = ∇ϕ + ∇ × �. (11.60)

The displacement corresponding to � is divergence-free, and hence has
no volumetric strain, and is therefore a state of pure shear. To prove

Table 11.1 Ranges
of wave speeds and
densities of various
rock types.

Rock type Vp (m/s) Vs (m/s) ρ (kg/m3)

Vegetal soil 300–700 100–300 1700–2400
Dry sands 400–1200 100–500 1500–1700
Wet sands 1500–2000 400–600 1900–2100
Saturated shales and clays 1100–2500 200–800 2000–2400
Marls 2000–3000 750–1500 2100–2600
Saturated shale/sand sections 1500–2200 500–750 2100–2400
Porous saturated sandstones 2000–3500 800–1800 2100–2400
Limestones 3500–6000 2000–3300 2400–2700
Chalk 2300–2600 1100–1300 1800–2300
Salt 4500–5500 2500–3100 2100–2300
Anhydrite 4000–5500 2200–3100 2900–3000
Dolomite 3500–6500 1900–3600 2500–2900
Granite 4500–6000 2500–3300 2500–2700
Basalt 5000–6000 2800–3400 2700–3100
Gneiss 4400–5200 2700–3200 2500–2700
Coal 2200–2700 1000–1400 1300–1800
Water 1450–1500 — 1000
Ice 3400–3800 1700–1900 900
Oil 1200–1250 — 600–900
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this, consider

u = curl� ≡ −2asym(∇�) = (∇�)T − ∇�

=
[(
∂ψz

∂y
− ∂ψy

∂z

)
,
(
∂ψx

∂z
− ∂ψz

∂x

)
,
(
∂ψy

∂x
− ∂ψx

∂y

)]
, (11.61)

from which it readily follows that

εv = ∇ · u =
(
∂2ψz

∂x∂y
− ∂

2ψz

∂y∂x

)
+

(
∂2ψy

∂z∂x
− ∂

2ψy

∂x∂z

)
+

(
∂2ψx

∂y∂z
− ∂

2ψx

∂z∂y

)
= 0,

(11.62)

in which case (11.45) reduces to

G∇2u = ρü. (11.63)

Equation (11.63) represents three uncoupled wave equations, one for each of the
displacement components, each with wave speed cT = (G/ρ)1/2:

∇2u = 1
c2T

∂2u
∂t2

, ∇2v = 1
c2T

∂2v
∂t2

, ∇2w = 1
c2T

∂2w
∂t2

. (11.64a–c)

Taking the partial derivative of (11.64a) with respect to y and adding it to
the partial derivative of (11.64b) with respect to x and similarly for the other
two pairs of equations that can be chosen from (11.64), shows that each of the
components of the strain tensor also satisfies this same wave equation:

∇2εxy = 1
c2T

∂2εxy

∂t2
, ∇2εxz = 1

c2T

∂2εxz

∂t2
, ∇2εyz = 1

c2T

∂2εyz

∂t2
. (11.65)

Alternatively, subtracting the partial derivative of (11.64a) with respect to y from
the partial derivative of (11.64b) with respect to x, etc., which is essentially equiv-
alent to applying the curl operator to (11.45), shows that the three independent
components of the rotation tensor also satisfy this same wave equation:

∇2ωxy = 1
c2T

∂2ωxy

∂t2
, ∇2ωxz = 1

c2T

∂2ωxz

∂t2
, ∇2ωyz = 1

c2T

∂2ωyz

∂t2
. (11.66)

Hence, “rotation” is also propagated through the medium at speed cT . Con-
sequently, shear waves are also sometimes called rotational waves.
The other part of the decomposed displacement vector, u = ∇ϕ, corresponds

to a deformation in which there is no rotation. For example,

ωxy = 1
2

(
∂u
∂y

− ∂v
∂x

)
= 1

2

(
∂

∂y

[
∂ϕ

∂x

]
− ∂

∂x

[
∂ϕ

∂y

])
= 0, (11.67)

and similarly for ωxz and ωyz. In this case the term∇(∇ · u) in (11.45) reduces to
∇2u, because, for example,

∂(∇ · u)

∂x
= ∂

∂x

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
= ∂2u
∂x2

+ ∂

∂y

(
∂v
∂x

)
+ ∂

∂z

(
∂w
∂x

)

= ∂2u
∂x2

+ ∂

∂y

(
∂u
∂y

)
+ ∂

∂z

(
∂u
∂z

)
= ∇2u, (11.68)
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and similarly for the other two components of ∇(∇ · u), in which case (11.45)
takes the form

(λ+ 2G)∇2u = ρü. (11.69)

This is equivalent to the following three uncoupled scalar wave equations:

∇2u = 1
c2L

∂2u
∂t2

, ∇2v = 1
c2L

∂2v
∂t2

, ∇2w = 1
c2L

∂2w
∂t2

. (11.70a–c)

Hence, irrotational waves travel at the longitudinal wave velocity, cL; equiva-
lently, longitudinal waves are associated with irrotational motions.
Finally, differentiating (11.70a) with respect to x, (11.70b) with respect to y,

and (11.70c) with respect to z, and adding the results, which is equivalent to
taking the divergence of (11.69), yields

∇2(∇ · u) = ∇2εv = 1
c2L

∂2εv

∂t2
. (11.71)

Hence, the bulk volumetric strain also propagates at the speed cL.
More generally, the scalar potential ϕ satisfies the wave equation with wave

speed cL. This is proven by substituting ∇ · u = ∇ · (∇ϕ) = ∇2ϕ into (11.71)
and noting that the operator ∇2 commutes with the time derivatives, leading to

∇2ϕ = 1
c2L

∂2ϕ

∂t2
. (11.72)

Similarly, it can be shown that each of the three Cartesian components of the
vector potential � satisfy the wave equation with wave speed cT :

∇2ψx = 1
c2T

∂2ψx

∂t2
, ∇2ψy = 1

c2T

∂2ψy

∂t2
, ∇2ψz = 1

c2T

∂2ψz

∂t2
. (11.73)

The full explicit relationships between the displacements and the potentials are

u = ∂ϕ

∂x
+ ∂ψz

∂y
− ∂ψy

∂z
, v = ∂ϕ

∂y
+ ∂ψx

∂z
− ∂ψz

∂x
, w = ∂ϕ

∂z
+ ∂ψy

∂x
− ∂ψx

∂y
.

(11.74)

11.5 Reflection
and refraction of
waves at an
interface

In §11.2, the transmission of a wave across an interface between two possibly
different elastic media was studied in the one-dimensional case. It was seen that,
in general, some portion of the energy is transmitted through to the second
medium and the remaining portion is reflected back into the medium from
which the wave came. The amplitudes of the reflected and transmitted waves
depended on the ratios of the acoustic impedances of the two media, where the
acoustic impedance is the product of the density and the wave speed.
When an elastic wave impinges upon an interface between two rock types at

an oblique angle, the behavior ismore complicated. This problemwas apparently
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first studied by Knott (1899), although the resulting equations for the reflection
and transmission coefficients are often attributed to Zoeppritz (1919). Other
early studies were made by Jeffreys (1926), Muskat and Meres (1940) and Ott
(1942). Detailed results are given by Ewing et al. (1957) and Brekhovskikh (1980).
In general, regardless of whether the impinging wave is a shear wave or a com-
pressional wave, four waves are created: a shear and a compressional wave are
transmitted (refracted) across the interface, and a shear and a compressional
wave are reflected back into the first medium. The amplitudes of these four
waves and the angles which they make with the interface will depend not only
on the acoustic impedances of the two media but also on the angle of incidence
of the incident wave.
An exception to this general behavior occurs when the incident wave is a

shear wave whose displacement vector is parallel to the interface. Such waves
are called “SH” waves, referring to the fact that if the interface is horizontal, the
displacement of such a wave will lie in the horizontal plane. Although interfaces
between two rock types need not be horizontal, waves inwhich the displacement
has no component normal to the interface are known as SH-waves. In this
case, the transmitted and reflected waves will both be of the SH type and no
compressional waves will be generated. As this is the simplest case, it will be
presented first, in detail.
Consider two semi-infinite half-spaces, with their interface coincidingwith the

x–y plane. The region z < 0 is labeled with superscript 1 and the region z > 0
is labeled with superscript 2. A plane shear wave propagates through medium 1,
with its direction of propagation (n in the notation of §11.4) lying in the x–z
plane, making an angle θ0 with the z-axis (Fig. 11.4a). The particle displacement
is in the y direction; this motion therefore represents an “SH” wave. The only
nonzero displacement component of the incoming wave is

v(0) = A0 exp[ik0(x sin θ0 + z cos θ0 − cT1t)]. (11.75)

It is traditional (and simpler) to use complex numbers to represent the displace-
ments, stresses, etc., when solving such problems, bearing in mind that only the

Fig. 11.4 (a)
Incident, transmitted,
and reflected SH-wave
impinging on a plane
interface; (b) Reflection
and transmission
coefficients as a
function of θ0, for the
case of ρ1 = ρ2.
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real component has physical significance. The wave that is reflected back into
medium 1 is taken to be of the form

v(2) = A2 exp[ik2(x sin θ2 − z cos θ2 − cT1t)], (11.76)

and the wave that is refracted into medium 2 is taken to be of the form

v(4) = A4 exp[ik4(x sin θ4 + z cos θ4 − cT2t)]. (11.77)

The term “refracted” is used here instead of “transmitted”, to emphasize that,
in general, the wave changes its velocity of propagation as well as its direction of
propagation upon entering the second medium.
The total displacement in medium 1 will be the sum of the displacement from

the incoming wave and the reflected wave. In general, all three components
of the total displacement vector must be continuous across a “welded” inter-
face between two rock types. If the rocks are separated by a fracture or other
type of mechanical discontinuity, different boundary conditions are appropriate,
as described in §12.7. For welded interfaces, the traction vector acting on the
interface must also be continuous. As the unit normal vector of the interface
is ez, the traction vector along the interface has components {τzx , τzy, τzz}. In
general, there are six continuity conditions, corresponding to the three displace-
ment components and three traction components. In the present case, the only
nonzero displacement component is v and the only nonzero stress component
that represents a traction along the interface is τzy.
From (11.75)–(11.77), the condition for continuity of v across the interface

z = 0 takes the form

A0 exp[ik0(x sin θ0 − cT1t)] + A2 exp[ik2(x sin θ2 − cT1t)]
= A4 exp[ik4(x sin θ4 − cT2t)]. (11.78)

As this equation must hold for all values of x, the factors multiplying x in each
of the three exponential terms must be identical, that is,

k0 sin θ0 = k2 sin θ2 = k4 sin θ4. (11.79)

The same must be true for the time-dependent terms, so

k0cT1 = k2cT1 = k4cT2. (11.80)

Solving (11.79) and (11.80) for the angles and wave numbers of the reflected and
refracted waves gives

k2 = k0, k4 = (cT1/cT2)k0, θ2 = θ0, sin θ4 = (cT2/cT1) sin θ0, (11.81)

after which (11.78) reduces to

A0 + A2 = A4. (11.82)

Equation (11.81) shows that the angle of the reflected wave is always equal to
the angle of the incident wave, whereas the refracted wave is “bent” toward the
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normal when medium 2 is “slower” than medium 1 and bent away from the
normal if medium 2 is faster than medium 1. These facts, as implied by (11.81),
are equivalent to Snell’s law of optics.
The stress τzy that corresponds to a displacement of the form (11.75)–(11.77)

is, suppressing the subscripts,

τzy = ± ik cos θG A exp[ik(x sin θ ± z cos θ − cTt)], (11.83)

where the + sign is used for the incident and refracted wave, and the − sign is
used for the reflected wave. From (11.83) and (11.81), the condition of continuity
of τzy across the interface takes the form

cos θ0G1A0 − cos θ0G1A2 = (cT1/cT2) cos θ4G2A4. (11.84)

Solving (11.82) and (11.84) for the amplitudes of the reflected and transmitted
waves gives

A2
A0

= ρ1cT1 cos θ0 − ρ2cT2 cos θ4
ρ1cT1 cos θ0 + ρ2cT2 cos θ4

, (11.85)

A4
A0

= 2ρ1cT1 cos θ0
ρ1cT1 cos θ0 + ρ2cT2 cos θ4

. (11.86)

The product of the density and shear wave velocity is the shear wave impedance
(see §11.2), and so the displacement reflection and transmission coefficients, R =
A2/A0 and T = A4/A0, depend on the shear wave impedance ratio, ZT2/ZT1, and
the angle of incidence of the incoming wave, θ0. However, these coefficients also
depend on the angle of the transmitted wave, θ4, which in turn depends on the
ratio of wave speeds. Hence, the reflection and transmission coefficients depend
on two material property ratios, impedance and wave speed. From (11.83), it is
clear that if the reflection and transmission coefficients were defined in terms of
the amplitudes of the stresses, rather than the displacements, they would have
somewhat different forms (Daehnke and Rossmanith, 1997).
The wavelength or frequency of the incident wave does not appear in the

expressions for the reflection and transmission coefficients, so these expressions
hold for arbitrary superposition of waves of different frequencies.
The reflection and transmission ratios are plotted in Fig. 11.4b, for two differ-

ent impedance ratios. As there is somewhat more variability in wave speed than
in density between different rocks (see Table 11.1), for the purposes of illustra-
tion and discussion, the densities of the two media are assumed equal, in which
case the impedance ratio coincides with the velocity ratio. Aside from cases in
which one of the media is a fluid, impedance ratios typically lie within the range
shown in Fig. 11.4b, namely 0.5–2.0. The following observations can be made:

1 If the incoming wave is normal to the interface, then θ0 = θ2 = θ4 = 0, and it
is seen that the reflection and transmission coefficients reduce to those given in
(11.18) and (11.19) and Fig. 11.2b for the one-dimensional wave model.

2 If the second medium has zero shear impedance, such as occurs when a wave
impinges on an interface between rock and fluid, the reflection coefficient is
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unity. Although the transmission coefficient approaches 2, this coefficient refers
to the amplitudes, not the energies. If either the wave speed or the density goes
to zero, (11.23) shows that no energy will be transmitted across the interface;
the energy is entirely reflected back into medium 1. This apparent paradox of
having a nonzero transmission coefficient can be eliminated by utilizing the stress
transmission coefficient, which would vanish in this case.

3 There is usually one particular angle of incidence for which there is no reflected
wave. This angle is found by simultaneously solving, from (11.81), sin θ4 =
(cT2/cT1) sin θ0 and, from (11.85), cos θ4 = (ZT1/ZT2) cos θ0. For the case in
which the rocks on either side of the interface have the same density, this occurs
for sin θ0 = [1 + (cT2/cT1)2]−1/2.

4 If (cT2/cT1) sin θ0 > 1, which can only occur if cT2 > cT1, Snell’s law yields an
imaginary value for cos θ0. The transmitted wave then has the form (Miklowitz,
1978, p. 184)

v(4) = A4 exp(−bz) exp[ik4(x sin θ4 − cT2t)], (11.87)

where b = k0[(cT2/cT1)2 sin2 θ0 − 1]1/2. Rather than representing a wave that
propagates into medium 2, this displacement propagates only in the x direction,
parallel to the interface, with an amplitude (in medium 2) that decays exponen-
tially with distance from the interface. Hence, this wave carries no energy into
medium 2, and all of the incoming energy is reflected back into medium 1 with
the reflected wave. This situation is referred to as total internal reflection.
If the incident wave is either an SV-wave or a P-wave, with particle motion

in the x–z plane, the conditions of continuity for the displacement and tractions
across the interface will, in general, only be satisfied by a combination of a
pair of reflected P and SV-waves, and a pair of refracted P and SV-waves. An
incident P-wave propagating toward the interface at an angle θ to the z-axis can
be represented by

u0 = {u(0), v(0),w(0)} = A0 exp[ik0(x sin θ0 + z cos θ0 − cL1t)]
× {sin θ0, 0, cos θ0}. (11.88)

The reflected P-wave is denoted by 1, the “reflected” SV-wave by 2, the
transmitted P-wave by 3, and the transmitted SV-wave by 4, as follows:

u1 = {u(1), v(1),w(1)} = A1 exp[ik1(x sin θ1 − z cos θ1 − cL1t)]
× {sin θ1, 0,− cos θ1}. (11.89)

u2 = {u(2), v(2),w(2)} = A2 exp[ik2(x sin θ2 − z cos θ2 − cT1t)]
× {sin θ2, 0,− cos θ2}. (11.90)

u3 = {u(3), v(3),w(3)} = A3 exp[ik3(x sin θ3 + z cos θ3 − cL2t)]
× {sin θ3, 0, cos θ3}. (11.91)

u4 = {u(4), v(4),w(4)} = A4 exp[ik4(x sin θ4 + z cos θ4 − cT2t)]
× {sin θ4, 0, cos θ4}. (11.92)
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Matching the phases of the five waves along the interface z = 0 leads to the
following equations that define the four angles {θ1, θ2, θ3, θ4} and four wave
numbers {k1, k2, k3, k4}:

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4, (11.93)

k0cL1 = k1cL1 = k2cT1 = k3cL2 = k4cT2. (11.94)

A set of four algebraic equations for the amplitudes of the fourwaves generated
by the incident wave is found by imposing continuity conditions on the nonzero
displacement components u and w, and the nonzero traction components τzz
and τzx . The resulting equations are (Achenbach, 1973, p. 186)



− sin θ1 − cos θ2 sin θ3 − cos θ4
cos θ1 − sin θ2 cos θ3 sin θ4

sin 2θ1
cL1
cT1

cos 2θ2
G2
G1

cL1
cL2

sin 2θ3 −G2
G1

cL1
cT2

cos 2θ4

− cos 2θ2
cT1
cL1

sin 2θ2
G2
G1

cL2
cL1

(
cT1
cT2

)2

cos 2θ4
G2
G1

cT1
cT2

cT1
cL1

sin 2θ4






A1
A2
A3
A4




= A0




sin θ0
cos θ0
sin 2θ0
cos 2θ2


 (11.95)

Closed-form solutions to these equations have been given by Ewing et al. (1957)
and extensive numerical tables have been generated byMuskat andMeres (1940).
The results display complicated and often nonmonotonic behavior, and, as men-
tioned by the latter authors, “no simple physical interpretation or explanation
can be given for the manifold variations of the coefficients with the parame-
ters”. This difficulty is somewhat mitigated by the fact that numerical solutions
to (11.95) can be generated in a straightforward manner using matrix inversion
algorithms.
One important special case, which can be solved and interpreted easily, is that

of a P-wave impinging on a traction-free surface (Fig. 11.5a). In general, both a
P-wave and an SV-wave will be reflected back into the rock. This case is obtained
from (11.95) by setting A3 = A4 = 0, so as to ignore “transmitted” waves,
and also ignoring the first two equations in (11.95), because the “continuity
of displacement” boundary conditions are not relevant at a free surface. The
third and fourth equations in (11.95), representing the traction-free boundary
conditions, remain relevant. These two equations, corresponding to the lower-
left 2×2 submatrix in (11.95), can be solved for

A1
A0

= sin 2θ0 sin 2θ2 − (cL/cT)2 cos2 2θ2
sin 2θ0 sin 2θ2 + (cL/cT)2 cos2 2θ2

, (11.96)

A2
A0

= 2(cL/cT) sin 2θ0 cos 2θ2
sin 2θ0 sin 2θ2 + (cL/cT)2 cos2 2θ2

. (11.97)

These coefficients are shown in Fig. 11.5b for two values of Poisson’s ratio.
When ν < 0.26, there will be two angles of incidence for which the amplitude
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Fig. 11.5 (a) Incident
P-wave and reflected P
and SV-waves at a free
surface. (b) Amplitude
ratios for the reflected
P-wave, A1/A0, and the
reflected SV-wave,
A2/A0.
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of the reflected P-wave is zero. In this case, known as mode conversion, all of
the incident energy is reflected as an SV-wave. The two angles at which mode
conversion occurs are equal to 38◦ and 90◦ when ν = 0, and coalesce to 68◦
when ν = 0.26 (Arenberg, 1948).

11.6 Surface and
interface waves

Although waves that propagate through an unbounded elastic medium must
travel at either the longitudinal/compressional wave speed cL or the trans-
verse/shear wave speed cT , this is not the case for bounded media. For example,
long-wavelength disturbances can travel along a thin elastic bar at the speed
c = (E/ρ)1/2, as discussed in §11.2. Whenever there is a free surface or a bound-
ary with another medium, other types of waves become possible. The most
famous and important of these is the Rayleigh (1885) surface wave, which travels
along a planar free surface of an elastic medium.
Consider a semi-infinite half-space whose surface is defined by z = 0, with z

increasing into the medium. Without loss of generality, consider a plane wave
traveling in the x direction parallel to the free surface with a displacement vector
that lies in the x–z plane with no y-component. Searching for waves that are
essentially confined near the free surface, consider the following displacement
potentials:

ϕ = Ae−qzeik(x−ct), ψy = Be−szeik(x−ct). (11.98)

Substitution of these potentials into the wave equations (11.72) and (11.73) yields

q = k(1 − c2/c2L)
1/2, s = k(1 − c2/c2T)

1/2, (11.99)

where the negative roots are discarded, since both q and smust be positive for the
displacements to decay with increasing z. Furthermore, as imaginary values of q
or s would lead to displacements that oscillate with z rather than of decay with
increasing z, (11.99) immediately shows that the as-yet-unknown wave speed
must satisfy the constraint c < cT < cL.
The amplitudes {A, B} and the phase velocity c must be chosen so that the

tractions vanish on the free surface, z = 0. As n = −ez on this surface,



Jaeger: “chapter11” — 2006/12/15 — 10:00 — page 344 — #24

344 Chapter 11

the stresses that must vanish are {τzx , τzy, τzz}. From (11.74), the two nonzero
displacements associated with (11.98) are

u = [ikAe−qz + sBe−sz]eik(x−ct), w = [−qAe−qz + ikBe−sz]eik(x−ct).
(11.100)

The strains in the x–z plane are therefore given by

εxx = [−k2Ae−qz + iksBe−sz]eik(x−ct), (11.101)

εzz = [q2Ae−qz − iksBe−sz]eik(x−ct), (11.102)

2εxz = −[2ie−qz + (s2 + k2)Be−sz]eik(x−ct). (11.103)

Using (5.18)–(5.21), (11.55)–(11.57), and (11.99), the nonzero stresses are

τxx =−ρk2{[(c2L−2c2T)(c
2/c2L)+2c2T]Ae−qz−2cT(c2T−c2)1/2iBe−sz}eik(x−ct),

(11.104)

τzz=−ρk2[(c2 − 2c2T)Ae
−qz + 2cT(c2T − c2)1/2ie−sz]eik(x−ct), (11.105)

τxz=−ρk2[2(c2T/cL)(c2L − c2)1/2ie−qz + (2c2T − c2)Be−sz]eik(x−ct).
(11.106)

Setting the two stresses given by (11.105) and (11.106) to zero on the surface
z = 0 leads to

(c2 − 2c2T)A+ 2cT(c2T − c2)1/2iB = 0, (11.107)

2(c2T/cL)(c
2
L − c2)1/2iA+ (2c2T − c2)B = 0. (11.108)

This pair of equations can have nonzero solutions for {A, B}only if its determinant
vanishes. This condition can be written as

c2L(2c
2
T − c2)4 − 16c6T(c

2
L − c2)(c2T − c2) = 0. (11.109)

According to (11.59), (cT/cL)2 = (1 − 2ν)/2(1 − ν), so (11.56) can also be
written as

(2−r2)4−16(1−r2)(1−α2r2) = 0, r = c/cT , α2 = (cT/cL)2 = (1−2ν)
2(1−ν) .
(11.110)

Expanding out (11.110) and factoring out the extraneous double root at r2 = 0
gives the following cubic equation for r2:

r6 − 8r4 + 8(3 − 2α2)r2 − 16(1 − α2) = 0. (11.111)

Equation (11.111) has exactly one real root satisfying 0 < c < cT (Achenbach,
1973, pp. 189–91), which is the condition that is needed to ensure that (11.100)
actually represents a wave propagating in the x direction with displacements that
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decay away from the free surface. This root is called cR, the speed of the Rayleigh
wave. Several exact expressions have been given for the relevant root of (11.109),
although they are cumbersome to compute (Rahman and Barber, 1995; Nkemzi,
1997; Mavko et al., 1998). The following approximation is accurate to within
0.03 percent for all 0 < ν < 0.5 (Fig. 11.6):

cR
cT

= 0.874032 + 0.200396ν − 0.0756704ν2. (11.112)

Expression (11.112) is more accurate than the often-cited approximation of
Viktorov (1967), cR/cT = (0.87 + 1.12ν)/(1 + ν), which gives errors as large as
0.5 percent for some values of ν.
Having calculated cR from (11.109) or (11.111), the ratio B/A can be found

from (11.107), after which the displacements (11.100) can be rewritten as

u = ikA
{
e−(1−α2r2)1/2kz − [1 − (r2/2)]e−(1−r2)1/2kz

}
eik(x−ct), (11.113)

w = −kA
{
(1−α2r2)1/2e−(1−α2r2)1/2kz− [1−(r2/2)]

(1−r2)1/2
e−(1−r2)1/2kz

}
eik(x−ct).

(11.114)

The actual displacements correspond to the real parts of (11.113) and (11.114).
Taking A to be purely real yields (Bedford and Drumheller, 1994, p. 109)

u = −kA
{
e−(1−α2r2)1/2kz − [1 − (r2/2)]e−(1−r2)1/2kz

}
sin k(x − cRt),

(11.115)

w = −kA
{
(1 − α2r2)1/2e−(1−α2r2)1/2kz − [1 − (r2/2)]

(1 − r2)1/2
e−(1−r2)1/2kz

}

× cos k(x − cRt), (11.116)

where cR is given implicitly by (11.110) and r = cR/cT . The wave number k is
arbitrary, implying that Rayleigh waves may travel at any frequency. Likewise,

Fig. 11.6 (a) Particle
velocity (ellipse) of a
Rayleigh wave traveling
to right at speed cR;
(b) Phase velocity of
Rayleigh waves as a
function of the Poisson
ratio.
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A is arbitrary, so Rayleigh waves may have arbitrary amplitude, apart from the
restriction that the strains be sufficiently small that the linearized theory applies.
The parameters r and α depend only on the Poisson ratio, and kz = 2πz/λ, so
for any value of ν the amplitudes of the two displacement components vary only
with the dimensionless depth, z/λ.
At any location (x, z), the particles move in elliptical trajectories, with the

aspect ratio determined by the ratio of the two bracketed terms in (11.115) and
(11.116). The magnitude of the displacement normal to the free surface, w, is
nonzero at all depths, whereas the displacement parallel to the free surface, u,
changes sign once as the depth increases. The critical depth at which u vanishes
varies with ν, but is roughly equal to one-fifth of the wavelength. The two dis-
placement amplitudes are plotted in Fig. 11.7a, normalized against the normal
component of the displacement at the surface, wo ≡ w(z = 0), for the case
ν = 0.25. The amplitudes of the stresses {τxx , τzz, τxz} are shown in Fig. 11.7b,
normalized against the surface value of τxx . All displacement and stress compo-
nents are negligible at depths greater than about two wavelengths. The curves
would be qualitatively similar for different values of ν.
Many other types of waves can propagate along free surfaces or along inter-

faces between different media. Lamb waves are waves of plane strain that can
propagate along a plate having traction-free upper and lower surfaces, with dis-
placement components in both the direction of propagation along the plate and
perpendicular to the plane of the plate. These waves, which are discussed in
depth by Viktorov (1967) and Miklowitz (1978), are highly dispersive. At wave-
lengths greater than about ten times the plate thickness, the phase and group
velocity of the Lamb wave approach the value

cplate = √
E/ρ(1 − ν2), (11.117)

which generally satisfies cT < cplate < cL. The phase velocity decreases with
decreasing wavelength, approaching the Rayleigh wave speed for wavelengths
less than about half the plate thickness.
An analysis similar to that given for Rayleigh waves shows that surface waves

in a half-space cannot have a displacement in the y direction, that is to say,
parallel to the free surface but perpendicular to the direction of propagation,

Fig. 11.7 (a)
Displacement
amplitudes and
(b) stress amplitudes for
a Rayleigh wave
traveling in a rock
having a Poisson ratio of
0.25, normalized to the
values at the surface,
z = 0.
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because such waves cannot satisfy the traction-free boundary condition at z = 0.
However, surface-localized SH-waves are observed to accompany earthquakes.
Love (1911) explained this by showing that SH surface waves could propagate if
the half-space is overlaid by a surface layer that has a shear wave speed less than
that of the medium below. Love waves are dispersive; the velocity of the lowest
mode is less than the velocity of shear waves in the sublayer, approaching the
substrate shear velocity at very long wavelengths.
Stoneley (1924) studied waves that propagate along the planar interface

between two elastic half-spaces. He found that such waves could exist only
in a small range of the parameter space defined by the density ratio and the shear
wave velocity ratio of the two media (Miklowitz, 1978, p. 168). For two media
with nearly equal densities, as would be the case for most rocks, Stoneley waves
can only propagate if the shear wave speeds of the two media are nearly equal.
The speed of the Stoneley wave is then slightly less than the shear wave speeds
in either of the two adjacent media.
A special case of a Stoneley wave is that of a wave traveling along the interface

between an elastic solid and a fluid; these are also known as Scholte waves.
The most important examples of these waves for engineering purposes are the
“borehole waves” that travel along a fluid-filled borehole (Paillet and Cheng,
1991; Fjaer et al., 1992, chapter 8). The most important borehole mode travels at
a speed less than that of the compressional wave speed in the fluid, approaching
cL(fluid) for “fast” formations, defined as those for which cT(rock) � cL(fluid).
The energy in these borehole waves is to a great extent localized within the
fluid-filled borehole.

11.7 Transient
waves

The previous two sections considered sinusoidally varying “steady-state” waves,
such as are used in seismic exploration. In rock mechanics, transient waves, such
as are produced by man-made explosions or by naturally occurring rockbursts,
are frequently of interest. As the simplest example of a transient wave, consider
an isotropic half-space x > 0, subjected to a spatially uniform, time varying
normal traction

τxx(x = 0, t) = p(t), (11.118)

where p(t) is some function that satisfies p(t) = 0 if t < 0. By the symmetry of
this problem, the only nonzero displacement will be u, and it will vary only with
x and t. Consequently, the resulting motion u(x, t) will be irrotational and will
be governed by (11.70a):

∂2u
∂x2

= 1
c2L

∂2u
∂t2

. (11.119)

From (11.9), the general solution to this equation is

u(x, t) = f (x − cLt)+ g(x + cLt). (11.120)

It can be shown rigorously that g = 0 in this problem (Achenbach, 1973, p. 23),
although this is clear on physical grounds, since f represents a wave that travels
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into the half-space, whereas g would represent a wave that starts within the
half-space and travels toward the surface.
As in §11.2, it is convenient to write (11.119) in the equivalent form u(x, t) =

f (t − x/cL). The normal strain in the x direction is then given by

εxx = ∂u
∂x

= − 1
cL
f ′(t − x/cL), (11.121)

and the normal stress in the x direction is given by

τxx = (λ+ 2G)εxx = − (λ+ 2G)
cL

f ′(t − x/cL). (11.122)

Boundary condition (11.118) implies that

− (λ+ 2G)
cL

f ′(t) = p(t), (11.123)

which can be integrated to yield

f (t) = − cL
λ+ 2G

t∫
0

p(s)ds+ A, (11.124)

where A is a constant of integration. Recalling that u(x, t) = f (t − x/cL) and
λ+ 2G = ρc2L, we find

u(t − x/cL) = − 1
ρcL

t−x/cL∫
0

p(s)ds+ A. (11.125)

The displacement must vanish throughout the medium when t < 0, so A must
be zero. Therefore,

u(x, t) = − 1
ρcL

t−x/cL∫
0

p(s)ds, (11.126)

from which it follows that the stress is given by

τxx(x, t) = (λ+ 2G)
∂u
∂x

= −(λ+ 2G)
( −1
ρc2L

)
p(t − x/cL) = p(t − x/cL).

(11.127)

The stress at any location x is zero until t reaches the value t = x/cL, corre-
sponding to the arrival of the wavefront. After this time, the stress at x follows
the imposed traction history at the surface, with a time delay of x/cL.
The displacement at any location x is zero for t < x/cL, because the integrand

in (11.126) vanishes until this time. For t > x/cL, the displacement increases in
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proportion to the time integral of the surface traction. The particle velocity can
be found by differentiating (11.126):

u̇(x, t) = ∂u(x, t)
∂t

= − 1
ρcL

p(t − x/cL), (11.128)

which shows that the acoustic impedanceρcL can be interpreted as the coefficient
that relates the particle velocity to the traction at a wavefront. The minus sign in
(11.128) is an artifact of the sign conventionused for displacements; a compressive
traction at the free surface does indeed cause the rock to move in the positive x
direction, into the half-space, as would be expected.
If the imposed surface traction is of finite duration, say �t, then p(t) = 0

for t > �t. After the wave has passed a given location x, a steady-state residual
displacement will remain, given by (Rinehart, 1975, pp. 32–3)

u(x, t > �t + x/cL) = − 1
ρcL

�t−x/cL∫
0

p(s)ds. (11.129)

Whereas the above planar wave travels unaltered through the rock mass, tran-
sient waves that emanate from cylindrical or spherical cavities have an entirely
different character. Consider, for example, a normal traction p(t) acting against
the surface of a spherical cavity of radius ro, in an infinite rock mass. The resul-
tant displacement will have spherical symmetry, and in spherical coordinates, the
only nonzero displacement component will be u(r). The stress–displacement
equations for spherically symmetric deformations are, from (5.117)–(5.120),

τrr = (λ+ 2G)
∂u
∂r

+ 2λ
u
r
, τθθ = λ

∂u
∂r

+ 2(λ+ G)
u
r
, (11.130)

where τθθ = τφφ are the normal stresses in the two directions perpendicular
to r. The only nontrivial equation of motion is given by (5.122), with the inertia
term included on the right-hand side:

∂τrr

∂r
+ 2(τrr − τθθ )

r
= ρ

∂2u
∂t2

. (11.131)

Substituting (11.130) into (11.131) yields

∂2u
∂r2

+ 2
r
∂u
∂r

− 2u
r2

= 1
c2L

∂2u
∂t2

. (11.132)

This equation can be put into the standard formof awave equation by defining,
in analogy with the treatment in §11.4, a scalar potential ϕ, such that

u = ∂ϕ

∂r
. (11.133)

Substitution of (11.133) into (11.132) shows that the displacement u will satisfy
the equation of motion, provided that ϕ atisfies the following equation:

∂2(rϕ)
∂r2

= 1
c2L

∂2(rϕ)
∂t2

. (11.134)
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Hence, the displacement component u does not satisfy a wave equation, but
the product rϕ does satisfy a wave equation, with wave speed cL. The general
solution therefore can be written as

rϕ(r, t) = f (r − cLt)+ g(r + cLt). (11.135)

The function g can again be discarded, as it represents a wave moving toward
the cavity.
It is easily verified by use of the chain rule that if f (η) is a solution to the

wave equation, with η = r − cLt, then f (aη + b) will also be a solution, for any
constants a and b. Choosing a = −1/cL and b = ro/cL allows the solution to be
written in the following equivalent but more convenient form:

ϕ(r, t) = 1
r
f [t − (r − ro)/cL] ≡ 1

r
f (s). (11.136)

The variable s = t − (r − ro)/cL represents the time that has elapsed since the
wavefront first arrived at location r.
The displacement and stress fields associated with (11.136) follow from

(11.130) and (11.133):

u(r, t) = − f (s)
r2

− f ′(s)
cLr

, (11.137)

τrr(r, t) = (λ+ 2G)
c2L

f ′′(s)
r

+ 4G
cL

f ′(s)
r2

+ 4G
f (s)
r3

, (11.138)

τθθ (r, t) = τφφ(r, t) = λ

c2L

f ′′(s)
r

− 2G
cL

f ′(s)
r2

− 2G
f (s)
r3

, (11.139)

and all shear stress components in the spherical coordinate system are zero.
Applying the condition that the normal traction given by (11.138) must equal
p(t) at the cavity surface, where s = t, leads to

f ′′(s)+ 4c2T
rocL

f ′(s)+ 4c2T
r2o

f (s) = roc2T
G

p(s), (11.140)

The solution to this problem, for arbitrary p(t), is given by Achenbach (1973,
pp. 130–1) in the form of a convolution integral. For the case of a constant
pressure p(t) = po applied instantaneously at t = 0, we proceed as follows. The
general solution to (11.140) is

f (s) = (A cosωs+ B sinωs)e−ζ s + r3opo
4G

, (11.141)

where ζ = 2c2T
rocL

, ω = 2cT(c2L − c2T)
1/2

rocL
, (11.142)

and ζ/ω = (1 − 2ν)1/2. If the rock mass is at rest before the application of the
surface tractions on the cavity wall, the initial conditions that must be satisfied
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are f (0) = f ′(0) = 0. Imposition of these conditions leads to

f (s) = r3opo
4G

[
1 −

(
cosωs+ ζ

ω
sinωs

)
e−ζ s

]
, (11.143)

with s = t − (r − ro)/cL and the implicit understanding that f = 0 for s < 0.
Finally, insertion of (11.143) into (11.137) yields the displacement in the form
(Fig. 11.8a)

u(r, t) = − r3opo
4Gr2

{
1 +

[(
2r
ro

− 1
)
ζ

ω
sinωs− cosωs

]
e−ζ s

}
H(s), (11.144)

whereH(s) is the Heaviside unit-step function, defined to be zero for s < 0 and 1
for s > 0. The solution given by Graff (1975, p. 298) has an erroneous − sign in
front of the square-bracketed term, causing the displacements shown on p.299
to exhibit unrealistic instantaneous jumps at the wavefront. The displacements
plotted by Sharpe (1942) and repeated by Rinehart (1975, p. 47) were computed
by ignoring the steady-state component of (11.144), on the grounds that it is of
order (ro/r)2 and presumably negligible compared to the transient terms of order
(ro/r); these graphs therefore erroneously show the displacement to stabilize at
zero, rather than at the steady-state value.
The radial normal stress is found from (11.138) and (11.143) to be, for s =

t − (r − ro)/cL > 0,

τrr

po
=

( ro
r

)3 +
{[( ro

r

)
−

( ro
r

)3]
cosωs

−
[( ro

r

)
− 2

( ro
r

)2 +
( ro
r

)3] ζ
ω
sinωs

}
e−ζ s, (11.145)

where again ζ/ω = (1 − 2ν)1/2.
At any fixed location r, the displacement, stresses, and strains will be zero

until the arrival of the wavefront, which occurs at t = (r− ro)/cL. The character
of the wave at, and immediately behind, the wavefront is found by fixing r and

Fig. 11.8 (a) Radial
displacement and (b)
radial stress due to a
step-function traction
applied at the surface of
a spherical cavity in an
infinite rock mass.
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taking the limit as s approaches 0+. The results are

−u(r, small s) ≈ poc2T
GcL

( ro
r

)
s = po

ρcL

( ro
r

)
s, (11.146)

−u̇(r, small s) ≈ po
ρcL

( ro
r

)
, (11.147)

τrr(r, small s) ≈ po
( ro
r

)
, (11.148)

τθθ (r, small s) = τφφ(r, small s) ≈ ν

1 − ν
po

( ro
r

)
, (11.149)

where it is implicit that each of these equations has aHeaviside unit-step function
on the right side, so that all terms vanish for s < 0. The normal stress at
location r jumps abruptly to po(ro/r) at t = (r − ro)/cL and then decays in
a highly damped oscillatory manner, eventually stabilizing at the steady-state
value, po(ro/r)3 (Fig. 11.8b). The displacement grows linearly with time after
the arrival of the front, but its magnitude also scales as ro/r. This 1/r decay
of the stress and displacement is a general property of spherical wavefronts
(Miklowitz, 1978, p. 77). The relationship between particle velocity and normal
stress, τrr = −ρcLu̇, is the same as for plane waves.
As t → ∞ for a fixed value of r, the displacement approaches the value

u(r, t → ∞) = − r3opo
4Gr2

, (11.150)

which is precisely the displacement given by the static theory, (8.306). After the
initial rise at t = (r − ro)/cL, the displacement oscillates due to the sinusoidal
term in (11.144), and decays in time due to the exponential term, eventually
stabilizing at the static value at long times. Since the exponential term becomes
negligible when ζ s ≈ 4, it can be shown from (11.142) and (11.144) that the
oscillations will die out when

cLs/ro ≈ 2(cL/cT)2 = 4(1 − ν)/(1 − 2ν). (11.151)

For a rock with a Poisson ratio of 0.25, the right-hand side of (11.151) equals 6.
Since the distance traveled by the wavefront during an elapsed time s is cLs, the
oscillations at any location r will die out after the wave has traveled a distance
equivalent to an additional six cavity radii.
The solution for a pressure pulse applied to the surface of a cylindrical cavity

is much more mathematically complicated, involving Bessel functions (Selberg,
1952;Miklowitz, 1978, pp. 282–90). However, the general behavior is qualitatively
similar to that of the spherical cavity. The wave arrives at location r at time
t = (r − ro)/cL, at which time the stresses rise abruptly and the displacement
grows linearly with elapsed time. However, the magnitudes of these quantities
decay spatially as (ro/r)1/2, rather than as (ro/r), as occurred for spherical waves.
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Near the wavefront, for t > (r − ro)/cL,

u(r, t) ≈ − po
ρcL

( ro
r

)1/2 [t − (r − ro)/cL], (11.152)

u̇(r, t) ≈ − po
ρcL

( ro
r

)1/2
, (11.153)

τrr(r, t) ≈ po
( ro
r

)1/2
, (11.154)

τθθ (r, t) = τφφ(r, t) ≈ ν

1 − ν
po

( ro
r

)1/2
. (11.155)

Eventually, the transient part of the wave dies away, leaving the static
displacement, as given by (8.90):

u(r, t → ∞) = − r2opo
2Gr

. (11.156)

11.8 Effects of fluid
saturation

The theory of wave propagation presented in previous sections of this chapter
applies to a homogeneous, single-phase elastic material. When the void space
of a porous or fractured rock is saturated with a fluid, the rock can no longer
be considered to be a homogeneous, single-phase material. Several approaches,
having differing degrees of rigor and complexity, have been used to account for
the effect of fluid saturation on seismic velocities.
Consider a rock with porosity φ, saturated with a fluid having density ρf

and bulk modulus Kf ; the shear modulus of a fluid is zero. The mineral grains
have effective moduli {Km,Gm}, which can be accurately estimated from the
mineral composition using the Voigt-Reuss-Hill average of §10.2, and effective
density ρm, which is exactly given by the volumetric average of the densities of
the individual mineral components. Wyllie et al. (1956) approximated the travel
time of a wave passing through this rock by a volume-weighted average of the
travel times through a layer of solid rock and a layer of pore fluid. This model,
known as theWyllie time-average, leads to

1
Vp

= φ

Vpf
+ 1 − φ

Vpm
, (11.157)

where Vpf = (Kf /ρf )1/2 and Vpm = [(3Km + 4Gm)/3ρm]1/2 are the compres-
sional wave speeds of the fluid and mineral phase and Vp is the compressional
wave speed of the actual fluid-saturated rock. This model usually underestimates
wave speeds, but has some validity for cemented and consolidated sandstones,
particularly at high pressures, when the crack-like pores have been shut. This
approach cannot be applied to shear waves, as the shear wave speed in a fluid
is effectively zero.
The next level of sophistication is to treat the fluid-saturated rock as an “effec-

tive elastic medium”. In this approach, the effective moduli and density are
calculated in the static limit and the wave speeds are then calculated from (11.55)
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and (11.57). Let the rock have effective moduli {Kd,Gd} under dry/drained con-
ditions. Addition of a pore fluid cannot increase the shear stiffness, so the shear
modulus of the fluid-saturated rock must be Gd. In the “quasi-static” limit of low
frequencies, the effective bulk modulus of the fluid-saturated rock is assumed
to be given by the Gassmann equation for the “undrained” bulk modulus,
(7.27), rewritten in (11.158) in terms of bulkmoduli rather than compressibilities.
Hence, the effective moduli of the fluid-saturated rock are taken to be

Ku = φ(1/Kf − 1/Km)+ (1/Kd − 1/Km)
φ(1/Kf − 1/Km)/Kd + (1/Kd − 1/Km)/Km

, Gu = Gd. (11.158)

The Gassmann equation assumes that the pressure in the pore fluid is uniform
throughout the rock. If thewave is of sufficiently low frequency, the pore pressure
will have time to locally equilibrate within the time needed for the stress pulse to
pass through a region of the rock, in accordance with Gassmann’s assumption.
The effective density in the effective medium approach is the volumetrically
weighted average of the mineral and fluid densities:

ρ = (1 − φ)ρm + φρf . (11.159)

The wave speeds in the fluid-saturated rock are then given by

Vp(low ω) = {[3Ku + (4/3)Gu]/ρ}1/2, Vs(low ω) = (Gu/ρ)1/2, (11.160)

where the effective moduli and density are given by (11.158) and (11.159).
Saturating the pore space with fluid will increase the density and leave the

shear modulus unchanged, leading to a slightly lower shear wave velocity. For
example, in a sandstone of 20 percent porosity, with mineral density 2.65 g/cm3,
saturating the pore space with water having density 1.00 g/cm3 will lower the
shear wave speed by about 6 percent. The increase in bulk modulus usually
overshadows the increase in density, so that compressional wave speeds are
greater under saturated conditions than under dry conditions. The Gassmann
approach usually works very well at seismic frequencies, below about 100Hz.
At higher frequencies, in the logging (10 kHz) or laboratory ultrasonic (1MHz)

range, the pore fluid does not have sufficient time to redistribute itself so as to
locally equilibrate the pore pressure. In this regime, the fluid-saturated rock can-
not be treated as an effective single-phase continuum. Rather, the motion of the
fluid, as distinguished from that of the solid phase, must somehow be accounted
for. Biot (1956a,b) developed a theory based on the model of pores being long,
cylindrical tubes, that allowed for macroscopic flow of the fluid phases. This the-
ory reduces to the Gassmann approach at low frequencies, but predicts higher
P- and S-wave velocities in the high-frequency limit. At intermediate frequencies,
the velocities are given by complicated expressions that involve the parameters
appearing in (11.158) and (11.159), along with a “tortuosity” parameter and a
characteristic grain size parameter (Berryman, 1980).
Although Biot’s theory works reasonably well for very porous, high-

permeability sediments (Stoll, 1989), it does not give accurate results for
consolidated rocks. Wave propagation at logging or acoustic frequencies in
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rocks seems to involve small-scale “squirt-like” fluid flow that occurs on the
length scale of individual pores and cracks (Mavko and Nur, 1975), not neces-
sarily in the direction of propagation of the wave, as is implicitly assumed in
Biot’s model. Mavko and Jizba (1991) developed a procedure for estimating the
wave speeds over the complete range of frequencies, which required knowledge
of the wave speeds in the dry rock at a given value of the effective stress, and
in the high-stress limit, when all crack-like pores are closed. The computational
procedure is summarized by Mavko et al. (1998, pp. 186–9).

11.9 Attenuation When a wave travels through an elastic medium, the total energy contained in
the wave, which was shown in §11.2 and §11.3 to be partitioned between elastic
strain energy and kinetic energy, is conserved. A plane elastic wavewill propagate
without any change in its amplitude. For waves that spread out radially, such as
those emanating from spherical cavities or cylindrical boreholes, the amplitude
will decrease, because a finite amount of energy is spread out over a wavefront
having ever-increasing area. This type of amplitude decay is known as geometric
attenuation and is not associated with any loss of overall kinetic energy.
However, rocks do not behave entirely elastically under transient conditions.

There are numerous mechanisms which cause the kinetic energy of seismic
waves to be transformed into internal energy. This energy is not lost, but rather
serves to raise the temperature of the rock slightly. But from a purely mechanical
point of view, this energy appears to be “lost” or “dissipated”.
The attenuation of a plane wave can be introduced by following the devel-

opment in §11.2 for one-dimensional wave propagation, but using a simple
viscoelastic constitutive model, such as the Kelvin-Voigt model of §9.9:

τxx = Eεxx + ηε̇xx , (11.161)

where η is a viscosity-like parameter. This constitutivemodel is often interpreted
as an elastic element (spring) in parallel with a viscous element (dashpot). If we
consider a process in which the strain varies according to εxx = εoeiωt , the stress
can be written as

τxx = (E + iωη)εoeiωt = MR + iMIεxx , (11.162)

which shows that E can be interpreted as the real part of the complex modulus
and ωη as the imaginary part.
Substituting (11.161) into the governing equation (11.2) yields

E
∂2u
∂x2

+ η
∂3u
∂t∂x2

= ρ
∂2u
∂t2

. (11.163)

Now consider a plane wave described by

u(x, t) = Uo exp{i[(kR + (ikI))x − ωt]}, (11.164)

where we take the wave number to have both a real and an imaginary part.
Substitution of (11.164) into (11.163) yields the requirement that

(kR + ikI)2(E − iωη) = ρω2, (11.165)
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the solution to which is (Kolsky, 1963, p. 117)

kR =
[

ρEω2

2(E2 + η2ω2)

{(
E2 + η2ω2

E2

)1/2

+ 1

}]1/2

, (11.166)

kI =
[

ρEω2

2(E2 + η2ω2)

{(
E2 + η2ω2

E2

)1/2

− 1

}]1/2

. (11.167)

The positive root for kR is chosen so that the wave propagates to the right,
whereas the positive root must be chosen for kI so as not to yield a wave whose
amplitude grows as it propagates.
For a nonmolten rock, the elastic part of the stress would be expected to

dominate the viscous part, which is to say η must in some sense be small.
Expanding (11.166) and (11.167) for small values of η gives

kR = ω

c0

[
1 − 3

8

(ηω
E

)2]
, kI = ηω2

2Ec0
, (11.168)

where c0 = (E/ρ)1/2 is the velocity that the elastic wave would have in the
absence of any dissipative mechanisms. The actual velocity, c = ω/kR, varies
with frequency, as itmust for any dissipativemedium, as required by theKramers-
Kronig relations (Mavko et al., 1998, pp. 75–7). However, to first-order in η, the
wave speed is unaffected by a small amount of viscous damping and is given
by c = (E/ρ)1/2. Using this further simplification, the wave (11.163) can be
expressed as

u(x, t) = Uo exp(−kIx) exp{i[(ω/c0)x − ωt]}, (11.169)

where kI is given by (11.168). Thus, the wave travels at velocity c0 but with
an amplitude that decays exponentially with distance. This represents actual
viscous attenuation, rather than the geometrical attenuation found in spherical
or cylindrical waves.
According to this model, the attenuation seems to increase with the square

of the frequency. However, there are various mechanisms in rocks that give
rise to viscous-like behavior, and each has, in effect, its own dependence of
η on frequency. Thus, each mechanism predicts a frequency-dependence of
attenuation that will reflect both the ω2 term from (11.168) and the frequency-
dependence of η, usually giving rise to an exponent that differs from 2. Before
discussing these dissipative mechanisms, we discuss several standard definitions
that are used to quantify attenuation.
The imaginary part of thewavenumber, kI, is also denoted byα, the attenuation

coefficient. Its inverse, 1/kI, is the length over which the amplitude will decay
by a factor of 1/e ≈ 0.37. The mechanical energy (kinetic plus elastic strain
energy) contained in a sinusoidal plane wave is proportional to the square of
the amplitude, according to (11.33), so the fractional loss of energy over one
wavelength is

�T
T = exp(−2αx)− exp(−2α{x + λ})

exp(−2αx)
= 1 − exp(−2αλ) ≈ 2αλ. (11.170)
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The quality factor Q is defined in terms of this fractional energy loss as follows:

1
Q

≡ �T
2πT = 2αλ

2π
= 2αc

ω
, (11.171)

where the last step makes use of the relation λ = 2πc/ω. Substituting kI from
(11.168) into (11.171), and recalling that ωη = MI and E = MR shows that Q can
also be expressed as

1
Q

= 2αc
ω

= 2cηω2

2Ecω
= ηω

E
= MI

MR
. (11.172)

It can also be shown that, if α is small, 1/Q is equal to the phase shift (in radians)
between the stress and the strain, under sinusoidal oscillations such as described
in (11.162). Another parameter occasionally used to quantify attenuation in rocks
is the logarithmic decrement, defined by δ = π/Q.
Although α and Q contain the same information, α essentially measures the

energy loss per distance traveled by the wave, whereas 1/Qmeasures the energy
loss per wave cycle. Hence, as seen in (11.172), they will vary with frequency in
different ways, a fact that should be remembered when viewing such graphs.
Versions of the relations (11.170)–(11.172) that do not require the assumption

of small attenuation are given by Bourbié et al. (1987, p. 113). Relations similar
to those described above for waves propagating along a thin bar can be derived
for bulk P- and S-waves in terms of the real and imaginary parts of K and G, and
the P- and S-wave quality factors (Winkler and Nur, 1979).
Toksöz and Johnston (1981) have collectedmanyof the seminal papers onwave

attenuation in rocks and have provided several summary/overview chapters.
Bourbié et al. (1987) present much data on attenuation measurements and also
review the various mechanisms. Measured values of Q for P-waves in various
rocks are shown in Table 11.2. Porous rocks such as sandstones and limestones
tend to have Q values in the range of 10–100, whereas igneous and metamorphic

Table 11.2 P-wave
quality factors of
several rocks.

Rock Condition f (Hz) Q Source

Tennessee
marble

Dry 0–2 × 104 480 Wyllie et al. (1962)

Quincy
granite

Air dry 2–45 × 102 125 Birch and Bancroft (1938)

Solenhofen
limestone

Air dry 3–15 × 106 112 Peselnick and Zeitz (1959)

Amherst
sandstone

Oven dry 1–13 × 103 52 Born (1941)

Pierre
shale

in situ 5–45 × 101 32 McDonal et al. (1958)

Berea
sandstone

Brine sat. 2–8 × 105 10 Toksöz et al. (1979)
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rocks will be in the range 100–1000 (Bradley and Fort, 1966). As an approxima-
tion, it is usually assumed that the attenuation arising fromdifferentmechanisms,
as quantified by Q−1, is additive. Individual mechanisms that give rise to values
of Q > 1000 are therefore negligible in comparison with other, more dominant,
mechanisms.
Walsh (1966) developed a model in which attenuation is due to sliding fric-

tion along the faces of closed elliptical cracks. The model predicts Q−1 =
f (µ, E/Em)� , where µ is the coefficient of sliding friction along the crack faces,
f is a dimensionless function whose values are in the order of 0.1, and � is the
crack-density parameter for those cracks whose faces are barely touching. There
will be no frictional sliding along faces of open cracks, and the small stresses
associated with seismic waves will be insufficient to cause sliding on crack faces
that are tightly closed. Savage (1969) argued that there are unlikely to be a suffi-
cient number of “barely closed” cracks to yield appreciable values ofQ−1. Mavko
(1979) considering a tapered crack, a portion of whose two faces will always be
in contact, and for typical parameter values found Q−1 ≈ ε/ᾱi, where ε is the
incremental strain associated with the wave, and ᾱi is some appropriate mean
value of the initial crack aspect ratio. For values such as ᾱi ≈ 10−3, this atten-
uation may be appreciable under laboratory conditions but would be negligible
at the strains encountered in seismic waves, which would typically be <10−6,
except very close to the source (Winkler et al., 1979).
Savage (1966) analyzed attenuation arising from the conversion of mechanical

energy into internal energy due to the coupling between strain and heat flow
(§7.8). Strain rises and falls sharply in the vicinity of cracks or pores, causing local
heat flow, leading to wave attenuation described by

Q−1 =
(
β2KTo
ρcv

)
g(ν)φF(ω), (11.173)

where β is the volumetric thermal expansion coefficient, K is the bulk modulus,
To is the ambient temperature, ρ is the rock density, cv is the specific heat,
φ is the porosity, g is a dimensionless function of the Poisson ratio (taking on
a slightly different form depending on whether the wave is compressional or
shear), and F is a dimensionless function of frequency. The term in parenthesis
in (11.173) is the thermoelastic coupling parameter that measures the extent to
which strain induces heat flow and is on the order of 10−3–10−4 for most rocks
(Zimmerman, 2000). The function F is greatest at a characteristic frequency of
about ω∗ = kT/ρcva2, where a is the pore/crack size and kT is the thermal
conductivity; it increases with ω for lower frequencies and drops off as ω−1 at
higher frequencies. At the critical frequency, the diffusion length of the induced
heat flux is in the order of the pore/crack size. By assuming a range of crack
sizes so as to smear out the function F over a range of frequencies, Savage found
Q values of about 225 for longitudinal waves and 350 for transverse waves in
granite, about twice as high as the measured values. This mechanism therefore
seems to be important for cracked igneous rocks and can lead to attenuations as
large as about Q−1 ≈ 0.01.
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The Biot theory of wave propagation in fluid-saturated rocks predicts atten-
uation due to the viscous drag exerted by the pore walls on the pore fluid. At
frequencies below the Biot critical frequency ω∗ = φµ/kρf , which for most
rock/fluid systems exceeds 1 MHz, the theory predicts (Schon, 1996, p. 252)

Q−1 = gρ2f kω

2ρµ
, (11.174)

where ρf is the density of the fluid, ρ is the density of the fluid-saturated rock,
k is the permeability, and g is a numerical constant that equals 1 for shear
waves and is less than 1 for compressional waves. The inverse relation between
attenuation and viscosity predicted by (11.174) is in contradiction to most mea-
sured data ( Jones and Nur, 1983). Mochizuki (1982) made measurements on a
Massilon sandstone and found attenuations much greater than those predicted
by Biot theory. For consolidated rocks with permeabilities below about 1 Darcy,
Biot attenuation appears to be negligible at seismic and logging frequencies
(<104 Hz). Biot theory has been more successful when applied to highly perme-
able sediments, for which (11.174) yields appropriately high values of 1/Q (Stoll,
1989).
Whereas the Biot attenuation mechanism is based on “global flow” of the

pore fluid, Mavko and Nur (1975), Murphy et al. (1984) and others have modeled
the attenuation arising from the local flow of fluid squirting out of compliant
cracks that are compressed by the passing elastic wave. This “squirt” flow is
local, and is not necessarily aligned with the direction of wave propagation.
Instead, it occurs locally in directions determined by the geometry of crack
and pore intersections. The attenuation predicted by squirt flow models goes
to zero at low frequencies, since in the limit of zero frequency, there can be no
viscous attenuation, and also goes to zero at very high frequencies, at which
the fluid does not have sufficient time to move from one crack to a neighboring
crack within one period of the wave. The attenuation is peaked about a critical
frequency that is roughly given by (Sams et al., 1997)

ω∗ ≈ Kα3/µ, (11.175)

where K is the bulk modulus of the rock and α is the aspect ratio of the cracks.
Sams et al. (1997) measured wave speeds and attenuations on a finely layered
sequence of limestones, sandstones, siltstones, and mudstones in northeast
England, over a range of methods/frequencies spanning vertical seismic pro-
filing (30–280Hz), crosshole surveys (0.2–2.3 kHz), sonic logging (8–24 kHz),
and laboratory measurements (300–900 kHz), and found a bell-shaped curve for
1/Q vs. lnω that fit very well to the squirt-flow model.
One mechanism that produces “attenuation” without any conversion of

mechanical energy into internal energy is elastic wave scattering. When an
elastic wave impinges upon an inhomogeneity, such as a pore, a crack, a fracture,
etc., the inhomogeneity causes some portion of the energy to be scattered in
directions other than the direction of propagation of the incident wave (Sato and
Fehler, 1998), thereby decreasing the amplitude of the original pulse. Yamakawa



Jaeger: “chapter11” — 2006/12/15 — 10:00 — page 360 — #40

360 Chapter 11

(1962) calculated the scattering from isolated spherical pores of radius a and
found

Q−1 = gφ(ωa/c)3 = gφ(ka)3, (11.176)

where φ is the porosity and g is a dimensionless parameter of order 1 whose
precise value depends on the moduli and densities of the rock and pore fluid.
Other pore shapes lead to the same general form, with a being some character-
istic dimension such as crack length, but with different values of g. Yamakawa’s
result applies asymptotically for wavelengths much larger than the inclusion
size, the so-called Rayleigh scattering limit. As “typical” values of the parameters
will be a ≈ 100µm and c ≈ 5000m/s, attenuation due to Rayleigh scatter-
ing will become appreciable only for frequencies greater than about 1MHz,
that is, perhaps important at laboratory frequencies but negligible at seismic
frequencies.

11.10 Inelastic
waves

The waves discussed in previous sections of this chapter were elastic waves, in
which the strains are sufficiently small that the additional stresses and strains
associated with the wave can be assumed to obey Hooke’s law. If the stresses or
strains are sufficiently large, the rock will cease to be elastic and inelastic waves
may propagate. Two types of inelastic wave that are of occasional significance
in rock mechanics are plastic waves and shock waves. A brief discussion of plastic
waves is given in this section, based on the analysis of von Kármán and Duwez
(1950), followed by a brief analysis of shock waves, based on the analysis given by
Kolsky (1963, pp. 178–82). More extensive treatments of waves in inelastic media
have been given by Nowacki (1978) and Drumheller (1998).
A plane wave traveling through a rock in the x direction is governed by

ρ
∂2u
∂t2

= ∂τxx

∂x
, (11.177)

which can also be written as

ρ
∂2u
∂t2

= dσ
dε
∂ε

∂x
= dσ

dε
∂2u
∂x2

, (11.178)

where σ is written for τxx and ε for εxx . For a wave traveling along a thin
rod, the local slope of the stress–strain curve is ∂σ/∂ε = E(ε), where E must
be interpreted as the tangent modulus, rather than the secant modulus. The
rock is assumed to behave in a linear elastic manner up to some value of the
strain, beyond which the strain is a nonlinear, monotonically increasing function
of stress. For a plane wave traveling through bulk rock, the relevant modulus
would be λ+ 2G; using E for simplicity of notation, (11.178) can be written as

∂2u
∂t2

= E(ε)
ρ

∂2u
∂x2

. (11.179)

A general solution of this equation for an arbitrary nonconstant function E(ε)
is not available. However, consider the specific problem of a semi-infinite body
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that occupies the region x < 0, and is initially at rest, with a constant velocity V
applied at face x = 0, starting at t = 0. Expecting the strain to propagate into
the body at some constant speed ξ , we look for solutions to (11.179) of the form
ε = ε(ξ), where ξ = x/t. Substitution into (11.179) gives

u =
x∫

−∞

∂u
∂x′ dx

′ =
x∫

−∞
ε(ξ ′)dx′ = t

ξ∫
−∞

ε(ξ ′)dξ ′ (11.180)

where use has been made of the fact that the displacement must vanish as
x → −∞. Differentiation, bearing in mind that (∂ξ/∂t)x = −x/t2 = −ξ/t
and (∂ξ/∂x)t = 1/t, yields

∂2u
∂t2

= ξ 2

t
ε′(ξ), ∂2u

∂x2
= 1

t
ε′(ξ), (11.181)

after which substitution into (11.179) gives

(
ξ 2 − E

ρ

)
ε′(ξ) = 0. (11.182)

This equation will be satisfied if either ε′(ξ) = 0 or ρξ 2 = E. This first choice
represents a uniform strain and corresponds to the solution

u(x, t) = V[t + (x/c1)], (11.183)

where c1 is a constant that will be seen to correspond to the plastic wave speed.
The strain associated with (11.183) is constant and equal to ε1 = V/c1. The
second choice leads to the solution

E(ε) = ρ(x2/t2). (11.184)

Since E is a known function of ε, (11.184) represents a solution in which ε is an
implicit function of the similarity variable, ξ = x/t. Along with (11.183) and
(11.184), a third solution to (11.179) is provided by ε = 0.
The full solution to the problem is constructed by piecing together these

three solutions. For−c1 < ξ < 0, that is, |x| < c1t, the displacement is given by
(11.183), and the strain is constant and equal to ε1. For −c0 < ξ < −c1, that is,
c1t < |x| < c0t, where c0 is the elastic wave speed, the strain is given implicitly
by (11.184). Finally, for ξ < −c0, that is, |x| > c0t, the displacement and strain
are both zero.
The elastic wave speed c0 is given by [E(0)/ρ]1/2, where E(0) is the tangent

modulus at small strains, when the rock is in the elastic regime. The plastic wave
speed c1 is found by setting x = 0 in (11.180), which leads to

u(x = 0, t)
t

= V =
0∫

−∞
ε(ξ ′)dξ ′. (11.185)
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Integration by parts gives

V =
0∫

−∞
εdξ = εξ

]0
−∞ −

ε1∫
0

ξdε = −
ε1∫
0

ξdε =
ε1∫
0

[E(ε)/ρ]1/2dε, (11.186)

where use has been made of the fact that ε vanishes at the lower limit of integra-
tion, ξ vanishes at the upper limit of integration, and the negative square root
is chosen to agree with the fact that ξ < 0. Equation (11.186) gives ε1 = V/c1
implicitly as a function of V , thus completing the solution. Since the integrand is
nonnegative, the strain ε1 is a monotonically increasing function of the impact
velocity, V .
Since V = c1ε1, (11.186) shows that c1 can be interpreted as the mean value

of the “local” wave speed, [E(ε)/ρ]1/2, averaged over all strains from 0 to ε1. As
the tangent modulus is usually a decreasing function of strain, the plastic wave
speed, c1, will be smaller than the elastic wave speed, c0. If the strain remains
within the linear elastic range, then E(ε) = E is constant and (11.186) gives
V = c0ε1. The stress would then be given by

σ = Eε1 = ρc20(V/c0) = ρc0V = ρc0u̇, (11.187)

which is consistent with (11.25).
The strain, for the case in which the strain exceeds the elastic limit, is shown

schematically as a function of ξ in Fig. 11.9. Ahead of the elastic wavefront, the
strain is always at its undisturbed value, zero. Behind the elastic wavefront, but
ahead of the plastic wavefront, the strain is variable, as each strain-increase from
ε to ε+ δε propagates with a velocity [E(ε)/ρ]1/2 corresponding to the strain ε.
Last, behind the plastic wavefront, the strain is constant and equal to ε1.
For most rocks, the modulus decreases with increasing strain, so the plastic

wave has a velocity less than that of an elasticwave in the samematerial. However,
at very large values of the confining stress, the stiffness of a rock may increase
with increasing strain (Bridgman, 1931). In this case, large strains propagate
faster than small strains, and so a strain pulse tends to acquire a steep front,
giving rise to a shock wave that propagates faster than an elastic wave of small
amplitude. A shock wave can be analyzed as a traveling plane of discontinuity,
with different values of the density, pressure, etc., ahead of and behind the front.

Fig. 11.9 (a) Velocity
V imposed at the free
end of a semi-infinite
elastic–plastic rod and
(b) the resulting strain
pulse.

�

x = − c1t

−x

�1
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Consider a plane shock wave traveling at constant velocity cs through a region
of rock. The rock is undisturbed ahead of the shock front, and behind the front
the particle velocity, −u̇, the pressure, p, and the specific volume, υ ≡ 1/ρ,
are each assumed to be constant. Immediately behind the shock front is a thin
disturbed “transition” zone. Now choose a coordinate system that travels with
the shock front, and designate the region ahead of the front by subscript 1 and
the region behind the front with subscript 2. By conservation of mass, the rates
ṁ at which mass enters and leaves the shock zone (per unit area and unit time)
must be equal, so

ṁ = u̇1/υ1 = u̇2/υ2. (11.188)

Equating the rate of change inmomentum across the shock zone to the net force
acting on the rock in that zone yields

ṁ(u̇1 − u̇2) = p2 − p1. (11.189)

The equation for conservation of energy across the shock zone can be written as

p2u̇2 − p1u̇1 = ṁ[(u̇21 − u̇22)/2 +�w]. (11.190)

where �w is the rate at which mechanical energy is transformed into internal
energy, per unit mass.
The velocity of propagation of the shock front through the rock is equal to

the velocity of the undisturbed region relative to this front, but with the opposite
sign. So, from (11.188) and (11.189), the velocity of the shock front, relative to a
coordinate system fixed in space, is given by

cs = −u̇1 = −υ1[(p2 − p1)/(υ1 − υ2)]1/2. (11.191)

The particle velocity behind the shock zone is

−u̇ = u̇2 − u̇1 = −[(p2 − p1)(υ1 − υ2)]1/2, (11.192)

and the rate of increase in specific internal energy across the shock zone is

�w = 1
2
[(p2 + p1)(υ1 − υ2)]. (11.193)

Equations (11.188)–(11.190) are the Rankine conditions for a shock in a per-
fect gas, and (11.193) is known as the Hugoniot relation. For small pressure
differences, the shock speed reduces to

cs ≈ [υ2�p/�υ]1/2 =
[

1/ρ

(1/υ)
(
∂υ/∂p

)
]1/2

=
[
K
ρ

]1/2
, (11.194)

which is the same as the speed of elastic waves in a fluid-like medium having no
shear rigidity.
Shock waves are created in rock masses during blasting processes associated

with excavations and quarrying. Wu et al. (1998) studied the propagation of



Jaeger: “chapter11” — 2006/12/15 — 10:00 — page 364 — #44

364 Chapter 11

blast-induced shock waves in a jointed rock mass. Natale et al. (1998) studied
shock waves propagating in hyperthermal fluid-pressurized regions, as a model
for understanding volcanic systems. Shock waves are generated by the impact
of meteorites on the earth, moon, or other planets, and so the analysis of shock
behavior is therefore an important component of impact studies (Bjork, 1961;
Kieffer and Simonds, 1980; Asphaug and Melosh, 1993; Koeberl and Henkel,
2005). Data on Hugoniot curves for many rock types have been collected by
Ahrens and Johnson (1995). Laboratory methods for measuring Hugoniot data
using air guns have been described in detail by Furnish (1993) and Shang et al.
(2000).
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12 Hydromechanical behavior of
fractures

12.1 Introduction To a great extent, it is the nearly ubiquitous presence of fractures that makes
the mechanical behavior of rock masses different from that of most engineering
materials. These fractures also cause the behavior of rock masses to differ from that
of small laboratory-sized rock samples. Most laboratory tests on rock samples are
conducted on specimens that are “intact,” and so, by definition, do not contain
fractures. But almost all rock masses contain fractures on a scale larger than
that of laboratory samples, with typical fracture spacings that range from tens of
centimeters to tens ofmeters. These fractures have a controlling influence on the
mechanical behavior of rock masses, since existing fractures provide planes of
weakness on which further deformation can more readily occur. Fractures also
often provide the major conduits through which fluids can flow. The field-scale
permeability of a fractured rock mass may be many orders of magnitude larger
than the permeability that would be measured on an intact core-scale specimen
from the same field.

The hydromechanical behavior of rock fractures can be studied on the scale
of a single fracture and also on the scale of a fractured rock mass that contains
many fractures. Obviously, the behavior of single fractures must be thoroughly
understood before the behavior of fractured rock masses can be understood.
The mechanical, hydraulic, and seismic behaviors of a single rock fracture are
now fairly well understood. Each of these properties depends almost exclusively
on the geometry of the fracture void space, which is discussed in §12.2. The
normal stiffness of a fracture is defined and discussed in §12.3, and the shear
stiffness is treated in §12.4. The hydraulic transmissivity of single rock fractures
is examined in §12.5. Coupling between the mechanical and hydraulic properties
of a fracture is treated in §12.6. The influence of a fracture on seismic wave
propagation, both across and along the fracture, is discussed in §12.7. Finally,
§12.8 discusses attempts that have been made to relate the properties of single
fractures to the macroscopic properties of fractured rock masses.

12.2 Geometry of
rock fractures

An idealized rock fracture or joint consists of two nominally planar, rough sur-
faces. The surfaces are typically in contact with each other at some locations,
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but separated at others. The distance of separation, usually measured perpen-
dicular to the nominal fracture plane, is known as the aperture. If the fracture
has undergone substantial shear, it is usually classified as a fault; otherwise, it is
denoted as a joint (Mandl, 2000). The space between the two rock surfaces may
be clean, or may contain (i) fault gouge that has been produced by the shearing
of the two faces of rock, (ii) clay minerals, (iii) mineral coatings that have been
precipitated fromflowing pore fluids, or (iv)microbial films. The genesis of faults
and fractures in rocks is discussed at length by Mandl (2000). This chapter will
describe the hydraulic, mechanical, and seismic behavior of existing fractures,
rather than the generation of new fractures or the growth of existing ones. We
beginwith a discussion of variousmathematical concepts and definitions that are
used to characterize fracture surfaces and apertures, focusing on clean fractures
that contain no infilling or coating material.

Consider a nominally planar fracture that lies in the x–y plane. Fracture sur-
faces are typically well-correlated at very large wavelengths, so that, even if
the fracture has waviness at large scales, a nominal fracture plane can usually
be defined locally. Two parallel reference planes can be drawn, one inside the
lower region of rock, the other inside the upper region (Fig. 12.1). The dis-
tance between these two planes is denoted by d. The lower rock surface is then
described by a “surface height” function z1(x, y) and the upper surface by the
function z2(x, y). The aperture, defined as the distance between the oppos-
ing rock surfaces, measured perpendicular to the two reference planes, is then
given by

h(x, y) = d − z1(x, y)− z2(x, y). (12.1)

In principle, if the two surface profiles were known, the aperture would be
known exactly, through (12.1). Moreover, all relevant hydromechanical prop-
erties of the fracture, such as its hydraulic transmissivity, shear and normal
stiffnesses, etc., could in principle be found from the geometry, by solving the rel-
evant solid or fluid-mechanical problem. But this detailed geometric information
is usually not known, and moreover, solution of the problem of elastic (or plas-
tic) deformation of the contacting surface, or the problem of fluid flow through
the fracture’s void space, is currently not computationally feasible for realistic
fracture profiles. Hence, current practice is to try to characterize the fracture in
terms of a small number of statistical parameters and to develop theories that
relate the properties of the fracture to this set of parameters. In doing so, the
fracture profiles and aperture fields are often treated as randomvariables, and the
actual fracture is viewed as one stochastic realization of a random process that

Fig. 12.1 Two rough
fracture surface profiles,
separated by an
aperture h, along with
the two reference
planes, separated by a
distance d.

d

z2

z1
Reference plane 1

Reference plane 2

Surface profile 2

Surface profile 1

h
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has certain statistical properties. If the statistical properties of each realization
of a stochastic process are the same, the process is said to be ergodic (Lanaro,
2000). In this case, statistical parameters such as the mean and variance can be
calculated from a single realization.

The most basic statistical property of a “random variable” such as one of the
surface profile functions z(x, y) is the mean, defined by

µz = lim
A→∞

1
A

∫∫
A

z(x, y)dxdy ≡ E{z}, (12.2)

where A is the nominal area of the fracture in the x–y plane. With reference to a
particular transect of the fracture, say at a fixed value of y, we could define

µz = lim
L→∞

1
L

L∫
0

z(x, y)dx. (12.3)

If the statistical properties of a function are invariant with respect to translation
of the origin, the process is called homogeneous or stationary (Adler and Thovert,
1999). In this case, the degree of correlation between the value of z at one location
x and at another location displaced from x by an amount ξ , can be quantified by
the autocovariance function,

covz(ξ) = E{[z(x)− µz][z(x + ξ)− µz]} = E{z(x)z(x + ξ)} − µ2
z . (12.4)

Evaluation of the autocovariance function at a lag distance of ξ = 0 yields the
variance,

σ 2
z ≡ covz(ξ = 0) = E{z2(x)} − µ2

z, (12.5)

the square-root of which is the standard deviation, σz.
With regards to a surface defined over a region of the two-dimensional

x–y plane, rather than a linear transect, the autocovariance can be defined as
a function of the vector ξ, as follows (Adler and Thovert, 1999)

covz(ξ) = E{[z(x)− µz][z(x + ξ)− µz]} = E{z(x)z(x + ξ)} − µ2
z, (12.6)

where x = (x, y) and ξ = (ζ , η). If the surface is isotropic, the autocovariance
will depend only on the length of the lag vector, |ξ| = (ζ 2 + η2)1/2. In this case,
no generality is lost by putting η = 0. For simplicity of notation, isotropy will
be assumed henceforth, in which case x and ξ can be treated as one-dimensional
variables.

Another measure of spatial correlation is the variogram function, γz(ξ),
defined by

γz(ξ) = E{[z(x + ξ)− z(x)]2}. (12.7)

Expansion of the term inside the brackets, and comparisonwith (12.4) and (12.5),
shows that

covz(ξ) = σ 2
z − 1

2
γz(ξ), (12.8)
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where the term (1/2)γz(ξ) is referred to as the semivariogram. The average slope
of a surface z between two locations x and x + ξ is given by [z(x + ξ)− z(x)]/ξ .
The variance of the average slope is, by (12.5), given by

σ 2
slope(ξ) = E{[z(x + ξ)− z(x)]2/ξ 2} − µ2

slope = γz(ξ)

ξ 2
, (12.9)

where the last step makes use of definition (12.7), and the fact that the mean
value of the average slope must vanish, by appropriate choice of the reference
plane. The variogram is therefore closely related to the variance of the mean
value of the surface slope taken over the lag distance.

From definition (12.7), the semivariogram should vanish at ξ = 0, although
in practice, this is often obscured by an inability to make measurements at
sufficiently small scales. At sufficiently large lag distances, a fracture surface will
usually become uncorrelated, in which case its autocovariance goes to zero, and
the semivariogram approaches the variance. The power spectrum of z(x) can
then be defined as the Fourier transform of its autocovariance function:

Gz(k) = 1
2π

∞∫
−∞

covz(ξ)e−ikξdξ , (12.10)

where k = 2π/λ is the wavenumber and λ is the wavelength.
Two common models for the autocovariance are the exponential and the

Gaussian models:

covz(ξ) = σ 2
z exp(−|ξ |/ξo), covz(ξ) = σ 2

z exp[−(ξ/ξo)2]. (12.11)

For an exponential autocovariance, the surface is effectively uncorrelated at
distances greater than about 4ξo, whereas for theGaussianmodel, the correlation
is negligible for ξ > 2ξo. The correlation length, for which several different
definitions can be given, is the distance beyond which the correlation between
z(x) and z(x + ξ) is negligible. For exponential or Gaussian autocovariances,
the parameter ξo gives an indication of the correlation length. From (12.10)
and (12.11), the power spectra of the exponential and Gaussian models are,
respectively,

exponential: Gz(k) = σ 2
z

π

(1/ξo)
(1/ξo)2 + k2

, (12.12)

Gaussian: Gz(k) = ξoσ
2
z

2
√
π

exp(−k2ξ 2o/4). (12.13)

A profile z(x) is said to be self-affine if z(λx) = λHz(x) for some constant H,
which is known as the Hurst exponent. A profile is statistically self-affine if z(x) is
statistically similar to λ−Hz(λx). A self-affine profile has a power spectrum of
the form

Gz(k) = Ck−α , (12.14)
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where α = 2H + 1 (Adler and Thovert, 1999, pp. 44–6). Such power spectra
have been observed for profiles of fractures in crystalline and sedimentary rocks,
for bedding plane surfaces, and for frictional wear surfaces (Brown and Scholz,
1985a; Power and Tullis, 1991). In practice, a power law can only apply between
a lower limit of kmin = 2π/L, where L is the length of the profile, and an upper
limit of kmax = 2π/l, where l is the distance along the x-axis between successive
measurements (i.e., the sampling interval).

12.3 Normal
stiffness of rock
fractures

If a rock core containing a through-going fracture that is aligned more or less
perpendicular to the axis of the core is tested under uniaxial compression, the
length changemeasured between the two end-plates will consist of two contribu-
tions: the deformation of the intact rock and an excess deformation, δ, that can
be attributed to the fracture (Goodman, 1976). This excess deformation is called
the joint closure and is defined to be a nonnegative number that increases as the
joint compresses. If the initial length of the specimen is L and the normal stress
is σ , the incremental change in the overall length of the core can be expressed as

dL = dLr − dδ = − L
Er
dσ − 1

κn
dσ , (12.15)

where Er is the Young’s modulus of the intact rock, and κn, with dimensions
of [Pa/m], is the normal stiffness of the fracture. An apparent Young’s modulus
of the fractured rock, Efr, could be defined, but it would not be a meaningful
property of the rock, as its value would depend on the length of the specimen,
that is,

1
Efr

≡ − 1
L
dL
dσ

= 1
Er

+ 1
Lκn

. (12.16)

Goodman (1976) made measurements of joint closure as a function of stress
on artificially induced fractures by measuring the displacement across the total
length of an intact sample and then repeating the measurement across the core
after it had been fractured. Joint closure measurements were made for mated
joints in which the two halves of the core were placed in the same relative
position that they occupied before the core was fractured, and on nonmated
joints in which the two surfaces were rotated from their initial positions relative
to one another. The unmated surfaces allowed much greater joint closure and
had much lower joint stiffness (Fig. 12.2). The joint closure is a highly nonlinear
function of stress and levels off to some asymptotic value at high values of the
confining stress. Goodman related the joint closure to the stress through the
following empirical relation:

σ = σo

[
1 +

(
δ

δm − δ

)t]
, for σ ≥ σo. (12.17)

where σo is some initial, low “seating stress,” t is a dimensionless empirical expo-
nent, and δm is the maximum possible joint closure, approached asymptotically
as the stress increases.
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Fig. 12.2
Measurements made by
Goodman (1976, p. 172)
of joint closure on a
granodiorite specimen:
(a) axial displacement of
intact core, core with
mated joint, and core
with unmated joint;
(b) joint closure,
computed by
subtracting
displacement for intact
specimen from
displacement of jointed
specimen.
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Bandis et al. (1983) made extensive measurements of joint closure on a variety
of natural, unfilled joints in dolerite, limestone, siltstone, and sandstone and
found that cycles of loading and unloading exhibited hysteresis and permanent
set that diminished rapidly with successive cycles. Barton et al. (1985) later
suggested that the hysteresis was a laboratory artifact and that in situ fractures
probably behave in a manner similar to the third or fourth loading cycle. Bandis
et al. (1983) fit the joint closure with functions of the form

σ = κoδ

1 − (δ/δm)
= κoδmδ

δm − δ
, (12.18)

where κo is an empirical parameter. The joint closure is related to the normal
stress by

δ =
(

σ

σ + κoδm

)
δm, (12.19)

The normal stiffness of the fracture is given by

κn = dσ
dδ

= κo

(1 − δ/δm)2
, (12.20)

which shows that κo is the normal stiffness at low confining stress. The function
proposed by Goodman reduces to (12.18) when t = 1 and σ � σo.

Many aspects of the normal closure of an initially mated fracture can be qual-
itatively explained by the conceptual model developed by Myer (2000), in which
a fracture is represented by a collection of collinear elliptical cracks (Fig. 12.3).
The cracks have length 2a, the spacing between the centers of adjacent cracks is
2λ, the fractional contact area is c = 1 − (a/λ), and the cracks can have an arbi-
trary distribution of initial aspect ratios. From the elasticity solution of Sneddon
and Lowengrub (1969), the incremental joint closure due to a small increase in
normal stress is

δ = 4λ(1 − ν)σ

πG
ln sec

(πa
2λ

)
= 4(1 − ν)aσ
πG(1 − c)

ln sec
[π
2
(1 − c)

]
. (12.21)
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Fig. 12.3
(a) Schematic model of
a fracture as an array of
two-dimensional cracks
of length 2a and spacing
2λ. (b) Unit cell of
fractured and intact
rock, showing definition
of δ (Myer, 2000).
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The normal compliance of the joint is given by

1
κn

= dδ
dσ

= 4(1 − ν)a
πG(1 − c)

ln sec
[π
2
(1 − c)

]
. (12.22)

At low stresses, the fractional contact area is small and the compliance will
be large. As the normal stress increases, those cracks with smaller aspect ratio
close up. Although this disturbs the periodicity of the array, it can be modeled
approximately by assuming that a (the half-length of the open cracks) remains
the same, but λ (the mean spacing between adjacent cracks) increases, leading
to an increase in c, and a consequent decrease in joint compliance. Expanding
(12.22) for small values of (1 − c) shows that as c increases,

δ ≈ πa(1 − ν)(1 − c)
2G

σ ,
1
κn

≈ πa(1 − ν)(1 − c)
2G

(12.23)

So, as the contact area increases, the compliance goes to zero, and the joint
stiffness becomes infinite, in accordance with experimental observations. This
model also indicates a size-dependence, in that (other factors, such as c, being
equal), smaller “crack” sizes a lead to stiffer fractures.

Pyrak-Nolte et al. (1987)madeWood’smetal casts of the void space of a natural
granitic fracture under various normal stresses, at 3, 33, and 85MPa. Myer
(2000) took transects of these casts and found that as the normal stress increases,
in addition to complete closure of some “cracks,” the rock faces occasionally
come into contact at isolated points within existing cracks, creating two cracks
with half-lengths less than a. Hence, as the normal stress increases, the contact
area c increases and the mean crack length a decreases. According to (12.22)
and (12.23), both the increase in c and the decrease in a lead to higher joint
stiffness.

For fracture surfaces that are unmated, perhaps as a result of previous shear
displacement, Bandis et al. (1983) found that the normal stress could be fit with
an equation of the form

ln(σ/σo) = Jδ, (12.24)

where σo is an initial, small stress level at which the joint closure is taken to be
zero and J is a constant with dimensions of 1/L. The normal stiffness associated
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with this stress-closure relationship is

κn = dσ
dδ

= Jσ , (12.25)

which increases linearly with stress.
Lee and Harrison (2001) developed a method to relate the parameters that

appear in the empirical equations of Goodman (12.17) and Bandis et al. (12.18),
(12.24) to the statistical properties of the fracture surfaces. They used the con-
ceptual model proposed by Hopkins (1990), in which the asperities are treated as
columns with circular cross-sections. The Boussinesq solution (§13.5) was used
to calculate the deformation under and around the regions of circular contact
between the two fracture surfaces, and Hooke’s law for a column was used to
find the deformation of the asperity itself. By appropriate choices of the initial
contact area, mean aperture, and correlation length, their model could be made
to agree with the various empirical equations (12.17), (12.18), and (12.24).

Another conceptual model for the normal stiffness of a rock fracture is to treat
the fracture surface as a rough elastic surface and use Hertzian contact theory
(Timoshenko and Goodier, 1970, pp. 409–16) to analyze the deformation of the
contacting asperities. Greenwood and Williamson (1966) considered a single,
rough elastic surface whose asperities each have radius of curvature R, with a
distribution of peak heights φ(Z∗), where the height Z of an asperity is measured
relative to a reference plane that is parallel to the nominal fracture plane and can
conveniently be located entirely within the rock (i.e., below the lowest troughs
of the fracture surface). A value of Z∗ is associated with each local peak, of which
there are assumed to be η per unit area of fracture in the undeformed (zero
stress) state. The height of the highest peak, measured from the reference plane,
is initially equal to do (Fig. 12.4a).

If such a surface is pressed against a smooth elastic surface of area A, the
density of contacts is given by

n = N/A = η

∞∫
do−δ

φ(Z∗)dZ∗. (12.26)

As the distribution function φ(Z∗) vanishes for Z∗ > do, by construction, the
contact density is zero when the joint closure δ is zero. In the hypothetical
situation in which all asperities were pressed flat against the upper flat surface, δ
would equal do, so the integral in (12.26) would approach unity, and the fraction
of asperities in contact, n/η, would reach unity. The fractional contact area of
asperities is given by

c = Acontact/A = πRη

∞∫
do−δ

(Z∗ − do + δ)φ(Z∗)dZ∗, (12.27)

and the average normal stress acting over the surface is

σ = 4
3
ηR1/2E′

∞∫
do−δ

(Z∗ − do + δ)3/2φ(Z∗)dZ∗, (12.28)
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Fig. 12.4 (a) Single
rough profile in contact
with a smooth surface;
(b) two rough surfaces;
(c) composite profile
(Cook, 1992).

do

Reference plane 1

Flat surface, no stress

Surface profile 1

(a)

Flat surface, stress
�

do

z2

z1
Reference plane 1

Reference plane 2

Surface profile 2

Surface profile 1

(b)

do

z = z1+ z2

Reference plane inside rock

Reference plane, no stress
Reference plane, stress

(c)

�

where the reduced elastic modulus E′ is defined by

1
E′ = 1 − ν21

E1
+ 1 − ν22

E2
, (12.29)

and the subscripts 1, 2 denote the properties of the rough and smooth surface,
respectively.

Swan (1983) measured the topography of ten different surfaces of Offerdale
slate and showed that the peak heights of asperities followed a Gaussian distri-
bution. Greenwood and Williamson (1966) showed that the upper quartile of a
Gaussian distribution could be approximated by an exponential distribution of
the form

φ(Z∗) = 1
s
exp(−Z∗/s), (12.30)

where s is the mean, as well as the standard deviation, of the exponential
distribution. Equations (12.26)–(12.28) lead in this case to

ln{σ/[(πRs)1/2sE′η]} = (δ − do)/s, (12.31)

which has the same form as the empirical relation found by Bandis et al. (1983)
for fractures with unmated surfaces. Comparison of (12.24) and (12.31) shows
that the model of Swan and Greenwood and Williamson predicts

J = 1/s, σo = (πRs)1/2(sE′η) exp(−do/s). (12.32)
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Comparison of (12.25) and (12.32) shows that the normal stiffness is equal to
σ/s and therefore increases with stress, and is inversely proportional to the
“roughness” of the fracture.

The parameters appearing in this expression for σo would be difficult to
estimate in practice, and indeed R would not typically be the same for all asper-
ities, as is assumed in the model. However, Olsson and Brown (1993) noted
that, for a wide range of fractures, σo varies in the relatively narrow range of
0.2–0.6MPa.

Brown and Scholz (1985b,1986) extended this model to the closure of two
rough surfaces in contact. The variable Z∗ was redefined to represent the
summed heights of the two opposing surfaces, each measured relative to the
appropriate reference plane (Fig. 12.4b,c), and the effective radius of curvature
was taken as R = R1R2/(R1 + R2), where R1 and R2 are the radii of curvature
of the pair of contacting asperities. Assuming that the radii of curvature of the
asperities are uncorrelated with the heights and that nearby asperities do not
elastically interact with each other, they found

σ = 4
3
η〈R1/2〉〈E′〉〈ψ〉

∞∫
do−δ

(Z∗ − do + δ)3/2φ(Z∗)dZ∗, (12.33)

where the brackets denote the mean value taken over all contacting asperities,
and ψ is a “tangential stress correction factor” whose mean value is very close
to unity.

If the shear stress within a particular asperity becomes sufficiently large, the
asperity will yield and undergo irreversible plastic deformation. Two contacting
spherical asperities will begin to yield when the displacement (at that particular
contact point) reaches a critical value given by (Greenwood and Williamson,
1966; Brown and Scholz, 1986)

δp ≈ CR
(

H
E′

)2

, (12.34)

where R is the effective radius of curvature, C is a dimensionless constant in
the order of unity, and H is the indentation hardness of the rock mineral. For
crystalline plasticity, H ≈ 3Y , where Y is the yield stress. As the fracture com-
presses, the highest asperities will be plastically flattened first. The fractional area
of plastic contact is given by

Aplastic/A = πRη

∞∫
do−δ+δp

(Z∗ − do + δ)φ(Z∗)dZ∗ (12.35)

Greenwood and Williamson (1966) suggested that plastic deformation becomes
nonnegligible when the ratio of plastic contact area to total contact area, that is,
the ratio of the integrals in (12.27) and (12.35), reaches about 2–10 percent.
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12.4 Behavior of
rock fractures under
shear

If a fracture is located in a rock mass with a given ambient state of stress, the
traction acting across the fracture plane can be resolved into a normal component
and a shear component. The normal traction gives rise to a normal closure of
the fracture, as described in §12.3. The shear component of the traction causes
the two rock faces to undergo a relative deformation parallel to the nominal
fracture plane, referred to as a shear deformation. However, a tangential traction
also typically causes the mean aperture to increase, in which case the fracture is
said to dilate. Dilation arises because the asperities of one fracture surface must
by necessity ride up in order to move past those of the other surface. Hence,
shear deformation of a fracture is inherently a coupled process in which both
normal and shear displacement occur.

Displacement parallel to the nominal fracture plane is called the shear dis-
placement and is usually denoted by �u (Fig. 12.5a). The displacement in the
direction perpendicular to the fracture plane is known in this context as dilation
and is denoted by �v. Shear displacement is reckoned positive if it is in the
direction of the applied shear stress, whereas the dilation is positive if the two
fracture surfaces move apart from each other. A typical but idealized curve for
the shear displacement as a function of shear stress, as would be measured under
conditions of constant normal stress, is shown in Fig. 12.5b.

The shear stress first increases in a manner that is nearly proportional to
the shear displacement. The slope of this line is the shear stiffness, κs. During
this phase of the deformation, the two fracture surfaces ride over each other’s
asperities, causing dilation of the fracture, but little degradation to the surfaces
(Gentier et al., 2000). A peak shear stress τp is eventually reached, corresponding
to the point at which the asperities begin to shear off, causing irreversible damage
to the fracture surfaces. This peak shear stress is also known as the shear strength
of the fracture. The displacement at the peak shear stress is known as the peak
displacement, up.

If the fracture continues to be deformed under conditions of controlled shear
displacement, the peak shear stress will be followed by an unstable softening
regime, during which the shear stress decreases to a value known as the residual
shear stress, τr. During this phase the asperities continue to be crushed and

Fig. 12.5
(a) Schematic diagram
of a fracture sheared
under constant normal
stress (Goodman, 1989,
p. 163). (b) Shear stress
as a function of shear
displacement
(Goodman, 1976,
p. 174). (a)
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Fig. 12.6 (a) Effect of
normal stress σ on the
relationship between
shear stress and shear
displacement
(Goodman, 1976, p.
177). (b) Measurements
made by Olsson and
Barton (2001) on a
granite fracture from
Äspö in Sweden. (a)
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sheared off, the fractional contact area between the two surfaces increases, and
the dilation continues but at a decreased rate. The level of displacement at
which the shear stress first reaches its residual value is known as the residual
displacement, ur.

The behavior of a fracture under shear depends very strongly on the normal
stress acting across the fracture. A highly schematic view of the manner in
which the relationship between τ and �u varies with normal stress is shown
in Fig. 12.6a (Goodman, 1976, p. 177). In this model, the shear stiffness is
independent of the normal stress but both the peak shear stress and the residual
shear strength increase with increasing normal stress. This is roughly consistent
with the experimental measurements made by Olsson and Barton (2001) on a
granite fracture taken from Äspö in Sweden (Fig. 12.6b).

The variation of peak shear stress as a function of normal stress is called the
shear strength curve. Patton (1966) found the following bilinear function for τp as
a function of σ (Fig. 12.7):

for σ < σT: τp = σ tan(φb + i),

for σ > σT: τp = CJ + σ tan φr. (12.36a,b)

At low normal stresses, shear deformation is assumed to take place predom-
inantly by asperities sliding over each other. At higher normal stresses, the
fracture possesses a cohesion CJ that is due to the inherent shear strength of
the asperities and has an effective angle of internal friction of φr < φb + i.
Trigonometric considerations show that the parameters in (12.36) are related by
tan(φb + i)− tan φr = CJ/σT. Jaeger (1971) proposed the following continuous
function,

τp = (1 − e−σ/σ ∗
)CJ + σ tan φr, (12.37)

which asymptotically approaches (12.36a) and (12.36b) for small and large nor-
mal stresses, respectively. The parameter σ ∗ is a transition stress that roughly
demarcates the two regimes but is not numerically identical to the parameter σT.
The peak shear stresses measured by Gentier et al. (2000) on cement replicas of
a fracture in Guéret granite show qualitative agreement with this type of model
(Fig. 12.7b).
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Fig. 12.7 (a) Bilinear
model for the peak
shear strength of a joint;
parameters defined as in
(12.36). (b) Peak shear
stresses measured on
cement replicas of a
fracture in Guéret
granite (Gentier et al.,
2000) in the direction
labeled by them as −30◦
and fit to a curve of the
form given by (12.36).
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A simple mechanical model of two flat surfaces that have an intrinsic (or
“basic”) friction angle of φb, and whose interface is inclined by an angle i from
the nominal fracture plane, leads directly to (12.36a). Recognizing that this
model is oversimplified, but that the coefficient i in (12.36a) must depend on
the roughness of the fracture, Barton (1973) correlated i to the joint roughness
coefficient (JRC), an empirical measure of roughness whose value is estimated
by comparing a fracture surface profile with standard profiles that have been
assigned roughness values ranging from 1–20. Examination of data from frac-
tures in various sedimentary, igneous, and metamorphic rocks led Barton to the
correlation

i = JRC log10(JCS/σ), (12.38)

where JCS is the joint compressive strength, which is equal to the unconfined
compressive strength of the intact rock for unweathered fracture surfaces, but
which has a much lower value for weathered surfaces (Barton and Choubey,
1977). Grasselli and Egger (2003) have attempted to correlate i to objectively
quantifiable measures of roughness that can be estimated using optical means.

12.5 Hydraulic
transmissivity of
rock fractures

In many rock masses, field-scale fluid flow takes place predominantly through
joints, faults, or fractures, rather than through the matrix rock itself. In some
cases most of the flowmay take place through a single such discontinuity, which
for simplicity will be referred to as a “fracture,” whereas in other cases the
flow occurs through an interconnected network of such fractures. Fracture-
dominated flow is of importance in many areas of technological interest. Nearly
half of all known hydrocarbon reserves are located in naturally fractured for-
mations (Nelson, 1985), as are most geothermal reservoirs (Bodvarsson et al.,
1986). Fracture flow is of importance in understanding and predicting the
performance of underground radioactive waste repositories (Wu et al., 1999).
Indeed, it has become increasingly clear during the past few decades that
fracture-dominated flow is the rule, rather than the exception, in much of the
subsurface.
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On the scale of a single fracture, fluid flow is governed by the Navier-Stokes
equations, which can be written as (Batchelor, 1967, pp. 147–50)

∂u

∂t
+ (u · ∇)u = F − 1

ρ
∇p + µ

ρ
∇2u, (12.39)

where u = (ux , uy, uz) is the velocity vector, F is the body-force vector per
unit mass, ρ is the fluid density, µ is the fluid viscosity, and p is the pressure.
The Navier-Stokes equations embody the principle of conservation of linear
momentum, alongwith a linear constitutive relation that relates the stress tensor
to the rate of deformation. The first term on the left of (12.39) represents the
acceleration of a fluid particle due to the fact that, at a fixed point in space, the
velocity may change with time. The second term, the “advective acceleration,”
represents the acceleration that a particle may have, even in a steady-state flow
field, by virtue of moving to a location at which there is a different velocity. The
forcing terms on the right side represent the applied body force, the pressure
gradient, and the viscous forces.

Often, the only appreciable body force is that due to gravity, in which case
F = −gez, where ez is the unit vector in the upward vertical direction and
g = 9.81 m/s2. If the density is uniform, gravity can be eliminated from the
equations by defining a reduced pressure, p̂ = p + ρgz (Phillips, 1991, p. 26), in
which case

F− 1
ρ

∇p=−gez− 1
ρ

∇p=− 1
ρ
(∇p+ρgez) = − 1

ρ
∇(p+ρgz)=− 1

ρ
∇ p̂.

(12.40)

Hence, the governing equations can be written without the gravity term, if
the pressure is replaced by the reduced pressure. For simplicity of notation, the
reduced pressure will henceforth be denoted by p.

In the steady-state, the Navier-Stokes equations then reduce to

µ∇2u − ρ(u · ∇)u = ∇p. (12.41)

Equation (12.41) represents three equations for the four unknowns: the three
velocity components and the pressure. An additional equation to close the system
is provided by the principle of conservation of mass, which for an incompressible
fluid is equivalent to conservation of volume, and takes the form

divu = ∇ · u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0. (12.42)

The compressibility of water is roughly 5 × 10−10/Pa (Batchelor, 1967, p. 595),
so a pressure change of 10MPa would alter the density by only 0.5 percent; the
assumption of incompressibility is therefore reasonable.

The set of four coupled partial differential equations, (12.41) and (12.42), must
be augmented by the “no-slip” boundary conditions, which state that at the
interface between a solid and afluid, the velocity of thefluidmust equal that of the
solid. This implies that at the fracturewalls, not onlymust the normal component
of the fluid velocity be zero, but the tangential component must vanish as well.
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The simplest conceptual model of a fracture, for hydrological purposes, is
that of two smooth, parallel walls separated by a uniform aperture, h. For this
geometry, the Navier-Stokes equations can be solved exactly, to yield a velocity
profile that is parabolic between the two walls. If the x-axis is aligned with the
pressure gradient, the y-axis taken perpendicular to the pressure gradient within
the plane of the fracture, and the z-axis taken normal to the fracture plane, with
the fracture walls located at z = ±h/2, the solution to (12.41) and (12.42) is
(Zimmerman and Bodvarsson, 1996)

ux = − 1
2µ
∂p
∂x

[(h/2)2 − z2], uy = 0, uz = 0. (12.43)

The total volumetric flux, with units of [m3/s], is found by integrating the
velocity:

Qx = w

+h/2∫
−h/2

uxdz = − w
2µ
∂p
∂x

+h/2∫
−h/2

[(h/2)2 − z2]dz = − wh3

12µ
∂p
∂x

, (12.44)

where w is the depth of the fracture in the y direction, normal to the pressure
gradient (i.e., into the page in Fig. 12.8a). The term T = wh3/12 is known as the
fracture transmissivity. As the transmissivity is proportional to the cube of the
aperture, this result is known as the “cubic law.” The transmissivity is sometimes
reckoned per unit length in the y direction, in which case the factor w does not
appear.

The result T = wh3/12, which is exact only for smooth-walled fractures
of uniform aperture, must be modified to account for roughness and asperity
contacts. To do this rigorously requires solution of the Navier-Stokes equations
for more realistic geometries. However, in general, the presence of the advective
acceleration term (u ·∇)u renders theNavier-Stokes nonlinear and consequently
very difficult to solve. An exact solution is obtainable for flow between smooth
parallel plates only because the nonlinear term vanishes identically in this case:
the velocity vector lies in the x direction and is thus orthogonal to the velocity
gradient, which lies in the z direction. In principle, the Navier-Stokes equations
could be solved numerically for realistic fracture geometries, but computational
difficulties have as yet not allowed this to be achieved. Consequently, the Navier-
Stokes equations are usually reduced to more tractable equations, such as the
Stokes or Reynolds equations.

Fig. 12.8
(a) Schematic of a
rough-walled fracture.
(b) Parabolic velocity
profile assumed in the
derivation of the
Reynolds equation,
(12.59).
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The Stokes equations derive from the Navier-Stokes equations by neglect of
the advective acceleration terms, which is justified if these terms are small com-
pared to the viscous terms. A priori estimates of the magnitudes of the various
terms in the steady-state Navier-Stokes equations for flow through a variable-
aperture fracture can be achieved as follows (Zimmerman andBodvarsson, 1996).
LetU be a characteristic velocity, such as themean velocity in the direction of the
macroscopic pressure gradient. As the in-plane velocity varies quasi-parabolically
from zero at the upper and lower surfaces, to some maximum value in the order
of U in the interior, the magnitude of the viscous terms can be estimated as
(Fig. 12.8a)

|µ∇2u| ≈
∣∣∣∣µ∂

2ux

∂z2

∣∣∣∣ ≈ µU
h2

. (12.45)

The term h2 appears because the velocity is differentiated twice with respect to
the variable z. Since the advective acceleration, or “inertia” terms, contain first
derivatives of velocity, their order of magnitude can be estimated as

|ρ(u · ∇)u| ≈ ρU2

�
, (12.46)

where � is some characteristic dimension in the direction of flow, such as the
dominant wavelength of the aperture variation or the mean distance between
asperities. The condition for the inertia forces to be negligible compared to the
viscous forces is

ρU2

�
� µU

h2
, or Re∗ ≡ ρUh2

µ�
� 1, (12.47)

where the reduced Reynolds number Re∗ is the product of the traditional
Reynolds number, ρUh/µ, and the geometric parameter h/�.

If condition (12.47) is satisfied, which necessarily will be the case at sufficiently
low velocities, the Navier-Stokes equations reduce to the Stokes equations:

µ∇2u = ∇p, (12.48)

which can be written in component form as

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
= 1
µ

∂p
∂x

, (12.49)

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
= 1
µ

∂p
∂y

, (12.50)

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
= 1
µ

∂p
∂z

. (12.51)

Again, these three equations must be supplemented by the conservation of mass
equation, (12.42). The Stokes equations are linear and consequently somewhat
more tractable than the Navier-Stokes equations. More importantly, if the flow is
governed by the Stokes equations, the resulting relation between the volumetric



Jaeger: “chapter12” — 2006/12/15 — 10:02 — page 381 — #17

Hydromechanical behavior of fractures 381

flux and pressure gradient will be linear, in analogy with Darcy’s law, (7.73).
Only under such conditions will the flux be given by Q = −(T/µ)∇p, where
the transmissivity T is independent of the pressure gradient, and where Q and
∇p each lie within the fracture plane.

Various approaches, includingmore precise order-of-magnitude estimates that
account for typical values of the parameter h/� (Oron and Berkowitz, 1998;
Zimmerman and Yeo, 2000), numerical simulations of flow through simulated
fracture apertures (Skjetne et al., 1999), and perturbation solutions for flow
between a smooth wall and a sinusoidal wall (Hasegawa and Izuchi, 1983), each
show that the relationship between flux and pressure gradient is nearly linear for
Reynolds numbers less than about 10. For higher Reynolds numbers, a nonlinear
relationship of the form

|∇p| = µ|Q|
T

+ β |Q|2. (12.52)

is observed. At a givenflowrate, an additional “non-Darcy” pressure drop is added
to the Darcian pressure drop. Reynolds numbers greater than 10 are difficult to
avoid in laboratory experiments, if the flowrates and pressure drops are to be
large enough to measure with sufficient accuracy (Witherspoon et al., 1980; Yeo
et al., 1998). However, in most subsurface flow situations, the nonlinear term is
negligible. This nonlinearity is not necessarily due to turbulence, which occurs
only at much higher Reynolds numbers. The nonlinearity observed at values
of Re in the range 10–100 is due to the effects of curvature of the streamlines
(Phillips, 1991, p. 28) and occurs in the laminar flow regime.

Brown et al. (1995) and Mourzenko et al. (1995) have solved the Stokes
equations numerically for a few simulated fracture profiles, but use of the Stokes
equation for studying fracture flow is not yet common and is by no means com-
putationally straightforward. Typically, the Stokes equations are reduced further
to the Reynolds lubrication equation, which requires that the variations in aper-
ture occur gradually in the plane of the fracture. The magnitudes of the second
derivatives in (12.49) can be estimated as

∣∣∣∣∂
2ux

∂x2

∣∣∣∣ ≈
∣∣∣∣∂

2ux

∂y2

∣∣∣∣ = U
�2 ,

∣∣∣∣∂
2ux

∂z2

∣∣∣∣ = U
h2
, (12.53)

and similarly for (12.50). If (h/�)2 � 1, the derivatives within the plane will be
negligible compared to the derivative with respect to z, and (12.49), (12.50) can
be replaced by

∂2ux

∂z2
= 1
µ

∂p
∂x

,
∂2uy

∂z2
= 1
µ

∂p
∂y

. (12.54)

Integration of both of these equations with respect to z, bearing in mind the
no-slip boundary conditions at the top and bottom walls, z = h1 and z = −h2,
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yields (Fig. 12.8b)

ux(x, y, z) = 1
2µ
∂p(x, y)
∂x

(z − h1)(z + h2), (12.55)

uy(x, y, z) = 1
2µ
∂p(x, y)
∂y

(z − h1)(z + h2). (12.56)

This is essentially the same parabolic velocity profile as occurs for flow between
parallel plates, except that the velocity vector is now aligned with the local
pressure gradient, which is not necessarily collinear with the global pressure
gradient. Integration across the fracture aperture, using a temporary variable
ζ = z + h2 that represents the vertical distance from the bottom wall, yields

hūx(x, y) =
h1∫

−h2

ux(x, y, z)dz = −h3(x, y)
12µ

∂p(x, y)
∂x

, (12.57)

hūy(x, y) =
h1∫

−h2

uy(x, y, z)dz = −h3(x, y)
12µ

∂p(x, y)
∂y

, (12.58)

where h = h1 + h2 is the total aperture, and the overbar indicates averaging over
the z direction.

Equations (12.57) and (12.58) represent an approximate solution to the Stokes
equations, but contain an unknown pressure field. A governing equation for
the pressure field is found by appealing to the conservation of mass equation,
(12.42), which, however, applies to the local velocities, not their integrated
values. But∇ · u = 0, so the integral of∇ · u with respect to z must also be zero.
Interchanging the order of the divergence and integration operations, which is
valid as long as the velocity satisfies the no-slip boundary condition, then shows
that the divergence of the z-integrated velocity, ū, must also vanish. Hence,

∂(hūx)

∂x
+ ∂(hūy)

∂y
= 0, so

∂

∂x

[
h3
∂p
∂x

]
+ ∂

∂y

[
h3
∂p
∂y

]
= 0, (12.59)

which is the Reynolds (1886) “lubrication” equation.
Insofar as flow through a fracture is accurately represented by the Reynolds

equation, the problemof finding the transmissivity of a variable-aperture fracture
therefore reduces to the well-studied problem of finding the effective conductiv-
ity of a heterogeneous two-dimensional conductivity field, with h3 playing the
role of the conductivity. This problem is conveniently discussed in terms of the
“hydraulic aperture,” hH, which is defined so that T = wh3H/12. Using vari-
ational principles, it can be shown that the hydraulic aperture is bounded by
(Beran, 1968, p. 242)

〈
h−3〉−1 ≤ h3H ≤ 〈

h3
〉
, (12.60)

where 〈x〉 ≡ xm is the arithmeticmean value of the quantity x. The lower bound,
the so-called harmonic mean, corresponds to the case in which the aperture
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varies only in the direction of flow, whereas the upper bound, the arithmetic
mean, corresponds to aperture variation only in the direction transverse to the
flow (Neuzil and Tracy, 1981; Silliman, 1989). These bounds are theoretically
important, because they are among the few results pertaining to flow in rough-
walled fractures that are rigorously known, but they are usually too far apart to
be quantitatively useful. For instance, it is invariably the case that the hydraulic
aperture is less than the mean aperture, that is, h3H ≤ 〈h〉3. But 〈h〉3 < 〈h3〉 for
any nonuniform distribution, so the bounds alone are not sufficiently powerful
to show that h3H ≤ 〈h〉3.

Elrod (1979) used Fourier transforms to solve the Reynolds equation for a frac-
ture with an aperture having “sinusoidal ripples in two mutually perpendicular
directions,” and showed that, for the isotropic case,

h3H = 〈h〉3 [1 − 1.5σ 2
h/ 〈h〉2 + · · · ]. (12.61)

Zimmerman et al. (1991) considered the case of small regions of unidirectional
ripples, which were then randomly assembled, and found results that agreed
with (12.61) up to second-order, for both sinusoidal and sawtooth profiles. Fur-
thermore, (12.61) is consistent with the results of Landau and Lifshitz (1960,
pp. 45–6), who required only that the aperture field be continuous and differen-
tiable. An alternative expression that agrees with (12.61) up to second-order, but
which does not yield unrealistic negative values for large values of the standard
deviation, is (Renshaw, 1995)

h3H = 〈h〉3 [1 + σ 2
h/ 〈h〉2]−3/2. (12.62)

Dagan (1993) expressed the effective conductivity of a heterogeneous two-
dimensional medium in a form that, in the context of fracture flow, can be
written as

h3H = e3〈ln h〉(1 + a2σ 2
Y + a4σ 4

Y + · · · ) ≡ h3G(1 + a2σ 2
Y + a4σ 4

Y + · · · ),
(12.63)

where Y = ln h, σY is the standard deviation of ln h, and hG = exp 〈ln h〉 is the
geometric mean of the aperture distribution. Using a perturbation method and
the assumption of a lognormal aperture distribution, Dagan showed that the
coefficients an vanish at least up to n = 6, implying that the geometric mean
is a very good approximation for the hydraulic aperture in the lognormal case.
Dagan’s result agrees with (12.61) up to second order in σY (Zimmerman and
Bodvarsson, 1996).

The predictions of (12.62) compare reasonably well with several numerical
simulations and with some laboratory data (Fig. 12.9a). Patir and Cheng (1978)
used finite differences to solve the Reynolds equation for flow between two sur-
faces, the half-apertures ofwhich each obeyed aGaussian height distributionwith
linearly decreasing autocorrelation functions. Brown (1987) performed a similar
analysis for simulated fractures having fractal roughness profiles. These profiles
had fractal dimensions between D = 2, which corresponds to a fracture having
smooth walls, and D = 2.5, which was found by Brown and Scholz (1985a) to
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Fig. 12.9
(a) Normalized
transmissivity of
simulated fractures.
(b) Transmissivities
measured by Hakami
(1989) on fractures in
granite, compared with
predictions of (12.62).

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Patir and Cheng (1978)
Brown (1987)
eq. (12.62)

(h
H

 / 
h m

)3

Relative smoothness, hm/�(a)

1

10

100

1 10 100

h H
3  

(p
re

di
ct

ed
) 

 (
10

−1
2  

m
3 )

hH
3 (measured)  (10−12 m3)

(b)

correspond to the maximum amount of roughness that occurs in real fractures.
The transmissivities computed by Brown were found to essentially depend on
〈h〉 and σh, with little sensitivity to D; the data in Fig. 12.9a are for D = 2.5.
Fig. 12.9b compares the predictions of (12.62) with values measured by Hakami
(1989) in the laboratory on five granite cores from Stripa, Sweden. These five
fractures had mean apertures that ranged from 161–464µm, and relative rough-
nesses σ/〈h〉 in the range 0.38–0.75; one other fracture, with a mean aperture of
83µm, had no measurable transmissivity.

In passing from the Stokes equations to the Reynolds equation, the momen-
tum equation in the z direction, (12.51), is ignored. The z component of
the pressure gradient vanishes in the mean, as does the z component of the
velocity, but this does not necessarily imply that all of these terms are small
locally. The error incurred by replacing the Stokes equations by the Reynolds
equation is in some sense related to the extent to which the terms in (12.51)
are indeed negligible. Visual examination of fracture casts shows that the con-
dition (h/�)2 � 1, which is needed in order for these terms to be negligible,
is not always satisfied. The problem is not aperture variation per se, but rather
the abruptness with which the aperture varies. Yeo et al. (1998) measured aper-
ture profiles and transmissivities of a fracture in a red Permian sandstone from
the North Sea, and solved the Reynolds equation for this fracture using finite
elements, and found that the Reynolds equation overpredicted the transmissiv-
ity by 40–100 percent, depending on the level of shear displacement. Similar
results have been found for artificial fractures (Nicholl et al., 1999), implying
that the Reynolds equation may in some cases be an inadequate model for
fracture flow.

Fluidflow through fractures is also hinderedby the presenceof asperity regions
at which the opposing fracture walls are in contact and the local aperture is
consequently zero. Models such as the geometric mean and the harmonic mean
predict zero transmissivity if there is a finite probability of having h = 0. A
lognormal aperture distribution, on the other hand, does not allow for any
regions of zero aperture. These facts suggest using the methods described above
for the regions of nonzero aperture and treating the contact regions by other
methods (Walsh, 1981; Piggott and Elsworth, 1992).
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If an effective hydraulic aperture, call it ho, can be found for the “open” regions
of the fracture, the effect of asperity regions can be modeled by assuming that
the fracture consists of regions of aperture h = ho and regions of aperture
h = 0. If the flowrate is sufficiently low, that is, Re∗ � 1, and the characteristic
in-plane dimension a of the asperity regions is much greater than the aperture,
that is, ho/a � 1, then flow in the open regions is governed by (12.59), with
h = ho = constant, yielding Laplace’s equation,

∇2p = ∂2p
∂x2

+ ∂2p
∂y2

= 0. (12.64)

Boundary conditions must be prescribed along the contours �i in the (x, y)
plane that form the boundaries of the contact regions. As no fluid can enter
these regions, the component of the velocity vector normal to these contours
must vanish. But the velocity vector is parallel to the pressure gradient, as shown
by (12.57) and (12.58), so the boundary conditions for (12.64), along each contour
�i, are

∂p
∂n

≡ (∇p) · n = 0, (12.65)

where n is the outward unit normal vector to �i and n is the coordinate in the
direction of n. This mathematical model of flow between two smooth parallel
plates, obstructed by cylindrical posts, is known as the Hele-Shaw model (Bear,
1988, pp. 687–92).

Boundary condition (12.65) assures that no flow enters the asperity regions,
but the no-flow condition also requires the tangential component of the velocity
to vanish, that is, (∇p) · t = 0, where t is a unit vector in the (x, y) plane,
perpendicular to n. However, it is not possible to impose boundary conditions
on both the normal and tangential components of the derivative when solving
Laplace’s equation (Bers et al., 1964, pp. 152–4). So, solutions to the Hele-Shaw
equations typically do not satisfy (∇p) · t = 0 and therefore do not account
for viscous drag along the sides of the asperities. The relative error induced
by this incorrect boundary condition is in the order of h/a (Thompson, 1968;
Kumar et al., 1991). Pyrak-Nolte et al. (1987) observed apertures in a fracture in
crystalline rock that were in the order of 10−4−10−3 m, and asperity dimensions
(in the fracture plane) that were in the order of 10−1 − 10−3 m. Gale et al. (1990)
measured apertures and asperity dimensions on a natural fracture in a granite
from Stripa, Sweden, under a normal stress of 8MPa and found h ≈ 0.1mm, and
a ≈ 1.0mm. These results imply that viscous drag along the sides of asperities
will be negligible compared to the drag along the upper and lower fracture walls,
consistent with the assumptions of the Hele-Shaw model.

Walsh (1981) used the solution for potential flow around a single circular
obstruction of radius a (Carslaw and Jaeger, 1959, p. 426) to develop the following
estimate of the influence of contact area on fracture transmissivity:

h3H = h3o(1 − c)/(1 + c), (12.66)
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where c is the fraction of the fracture plane occupied by asperity regions. This
expression has been validated numerically (Zimmerman et al., 1992) for asperity
concentrations up to 0.25, which covers the range of contact areas that have been
observed in real fractures (Witherspoon et al., 1980; Pyrak-Nolte et al., 1987). If
the contact regions are randomly oriented ellipses of aspect ratio α ≤ 1, then
(Zimmerman et al., 1992)

h3H = h3o(1 − βc)/(1 + βc), where β = (1 + α)2/4α. (12.67)

As the ellipses become more elongated, the factor β increases, and the hydraulic
aperture decreases. Although contact areas are not perfectly elliptical, (12.67) can
be used if the actual asperity shapes are replaced by “equivalent” ellipses having
the same perimeter/area ratios.

12.6 Coupled
hydromechanical
behavior

As both the mechanical and hydraulic behaviors of rock fractures are controlled
to a great extent by the morphology of the fracture surfaces, it is to be expected
that the stiffnesses (normal and shear) and transmissivity of a fracture should be
related to one another in some way (Cook, 1992; Pyrak-Nolte and Morris, 2000).
Although this is undoubtedly true, the relationship is indirect and very complex,
and no simple correlations seem to exist between the mechanical and hydraulic
properties. This is because hydraulic transmissivity depends primarily on the
aperture of the open areas of the fracture, and to a lesser extent on the contact
area, whereas normal stiffness depends mainly on the amount and distribution
of the contact areas (Hopkins, 2000).

As the normal stress on a fracture increases, the mean aperture decreases,
causing the transmissivity to decrease. Due to roughness and asperity contact,
however, the change in mean aperture is not exactly equivalent to the joint clo-
sure defined in §12.3. Furthermore, although transmissivity is proportional to
mean aperture cubed, it also depends on the variance of the aperture, and the
amount of contact area, through relations such as (12.62) and (12.67). Conse-
quently, the transmissivity of a fracture that is deforming under a normal load is
not always directly proportional to the cube of the mean aperture.

Witherspoon et al. (1980) measured the transmissivity of a tensile fracture in
marble, while compressing it under a normal load (Fig. 12.10). At low stresses, the
aperture is large and the relative roughness σ/〈h〉 is low. The fracture therefore
approximates the parallel plate model and the transmissivity varies with the
cube of the mean aperture (region I). As the stress increases, in the open areas
of the fracture the mean aperture will decrease while σ remains nearly the same
(Renshaw, 1995), causing the transmissivity to decrease faster than the cube of the
mean aperture, as shown by, say, (12.62). In other areas, regions of the fracture
will come into contact. This phenomenon also causes an additional decrease in
transmissivity; see (12.66) and (12.67). The combination of a decrease in mean
aperture, increase in relative roughness, and increase in contact area causes the
transmissivity to increase faster than the cube of the mean aperture (region II).
In this region, the relation can be approximated by a power lawwith an exponent
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Fig. 12.10
Transmissivity of a
marble fracture as a
function of mean
aperture, as measured
by Witherspoon et al.
(1980). Data points are
from three different
loading cycles, although
for clarity, not all points
are shown.
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greater than 3 (Pyrak-Nolte et al., 1987), often as high as 8–10. However, this
power law holds over a very narrow range of mean apertures, typically only a
factor of two or three.

Sisavath et al. (2003) modeled the transition between regions I and II by
considering a fracture with a sinusoidal aperture variation. As the normal stress
increases, the two surfaces are assumed to move toward each other, giving a
decrease in 〈h〉 while σ remains constant. Flow was modeled by a perturbation
solution of the Stokes equations, including terms up to (σ/λ)2, where λ is
the wavelength. Plausible values of initial roughness and wavelength, such as
σ/〈h〉 = 0.5 and λ/〈h〉 ≈ 5, lead to slopes of 3–4 at high mean apertures, but
abruptly increase to 8–10 as mean aperture decreases.

As normal stress increases further, the mean aperture continues to decrease,
but the transmissivity stabilizes at some small but nonzero residual value (region
III). Cook (1992) suggested the following qualitative explanation for the exis-
tence of a residual transmissivity. Metal castings of the void space of a natural
granite fracture under a range of stresses (Pyrak-Nolte et al., 1987) revealed, at
high stresses (85MPa), the existence of large “oceanic” regions of open fracture,
connected by tortuous paths through “archipelagic” regions filled with numer-
ous small, closely spaced contact regions. As the stress increases, the oceanic
regions, necessarily having very low aspect ratios will continue to deform, lead-
ing to a continued decrease in mean aperture. The resistance to flow, however,
is controlled by the small tortuous channels that connect the oceanic regions.
These channels necessarily have relatively large aspect ratios and are therefore
extremely stiff; see §9.3. For example, the channels observed by Pyrak-Nolte
et al. (1987) had widths of less than 100µm (Myer, 2000). The mean aperture at
high stresses was in the order of 10µm, so the aspect ratios of these channels
were in the order of 0.1. If the Young’s modulus of the intact rock is in the range
of 10–100GPa, the apertures of such channels will decrease by less than 1 percent
under an additional stress of a few tens of MegaPascals. Hence, the result is a
residual fracture transmissivity that is nearly stress-independent.

As a fracture undergoes shear displacement, on the other hand, the frac-
ture will dilate and the transmissivity will increase. Olsson and Brown (1993)
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Fig. 12.11
Transmissivity of a
fracture in Austin chalk,
as measured by Olsson
and Brown (1993):
(a) Transmissivity as a
function of normal
stress, for different
values of shear offset,
with ◦ denoting
increasing stress, and •
decreasing stress;
(b) shear stress τ ,
transmissivity T, and
joint closure δ, as
functions of shear
displacement, with
normal stress held
at 4.3MPa.
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measured the hydraulic transmissivity of a fracture in Austin chalk, while either
increasing and decreasing the normal stress, keeping the shear displacement con-
stant, or increasing the shear displacement, holding the normal stress constant.
The flow geometry was annular-radial, with fluid entering the fracture plane at
the inner radius of 24.0mm and leaving at the outer radius of 60.3mm. At a
fixed value of shear displacement, the transmissivity decreased with increasing
normal stress and then increased as the normal stress was removed although
some hysteresis is observed (Fig. 12.11a). When the fracture was subjected to
3.5mm of shear displacement at constant normal stress (equal to 4.3MPa in
Fig. 12.11b), the joint dilated (i.e., negative joint closure) at a rate of about 50µm
per millimeter of shear displacement, and the transmissivity increased by about
two orders of magnitude. Qualitatively similar results were found by Yeo et al.
(1998) for a red Permian sandstone fracture from the North Sea and by Chen
et al. (2000) for a granitic fracture fromOlympic Dammine in Central Australia.

Esaki et al. (1999) subjected an artificially split fracture in a granite from
Nangen, Korea to shear displacements up to 20mm, under various values (1, 5,
10, and 20MPa) of normal stress. Flow was measured from a central borehole to
the outer boundaries of a rectangular fracture plane of dimensions 100×120mm.
Transmissivity typically decreased very slightly for the first 0.5–1.0mm or so of
shear, until the peak shear stress was reached. It then increased by about two
orders of magnitude as the shear offset increased to about 5mm. After this
point, when the shear stress had reached its residual value, the transmissivity
essentially leveled off (Fig. 12.12). When the shear displacement was reversed,
the transmissivity decreased, but not to its original value, leaving an excess
residual transmissivity at zero shear displacement. This hysteresis was larger at
larger values of the normal stress.

12.7 Seismic
response of rock
fractures

Joints, fractures, and faults also influence the seismic response of rock masses.
By introducing an additional compliance into the rock mass, over and above
that associated with the adjacent intact rock, they lead to a decrease in the
velocities of both compressional and shear waves. They also cause attenuation of
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Fig. 12.12
Transmissivity of a
granitic joint as a
function of shear
displacement, as
measured by Esaki et al.
(1999) under a normal
stress of (a) 1MPa and
(b) 10MPa.

10−13

10−12

10−11

10−10

10−9

0 5 10 15 20

Increasing shear
Decreasing shear

T
ra

ns
m

is
si

vi
ty

 (
m

3 )

Shear displacement (mm)

Normal stress = 1 MPa

(a)

10−13

10−12

10−11

10−10

10−9

0 5 10 15 20

Increasing shear
Decreasing shear

T
ra

ns
m

is
si

vi
ty

 (
m

3 )

Shear displacement (mm)

Normal stress = 10 MPa

(b)

seismic signals, and tend preferentially to filter out high-frequency components
of that signal, thereby acting as a low-pass filter. Most of these aspects of the
seismic response of individual fractures can be modeled successfully with the
displacement discontinuity model. Kendall and Tabor (1971), who referred to
it as the “incomplete interface” model, used it to study transmission across an
interface at normal incidence. Schoenberg (1980), referring to it as the “linear
slip interface” model, extended the analysis to waves impinging on the interface
at oblique angles.

When elastic waves impinge on a “welded” interface between two rock layers,
the displacements and tractions are assumed to be continuous across the interface
(§11.5). In the displacement discontinuity model, the finite “thickness of the
fracture,” in reality on the order of the mean fracture aperture, is ignored,
and the fracture is taken to be an interface of zero thickness separating two
regions of intact rock. The condition of continuity of tractions is retained, but the
displacements immediately on either side of the interface are assumed to differ
by an amount that is proportional to the traction. This condition is consistent
with the concept of fracture stiffness, as described in §12.3, as will now be shown
using a simplified one-dimensional model.

Consider a rock core of length 2H, containing a fracture located roughly at
its midpoint (Fig. 12.13a), subjected to a normal stress, τzz. At distances from
the fracture that are greater than the characteristic size of the distance between
asperities, denoted here by �, the longitudinal strain will approach the value
εzz = τzz/Er. The stresses in the vicinity of the nominal fracture plane will be
complex and locally heterogeneous, as the void space of the fracture closes up
and the asperity contacts deform. This region of thickness 2� can be replaced by
a homogeneous layer of the same thickness, with an effective Young’s modulus
El chosen so that the overall compression of this homogeneous layer is equal to
the average deformation of the actual fracture layer (Fig. 12.13b).

If the origin is fixed to the lower surface of the core, the displacement at the
two interfaces between the rock and the thin layer will be given by

w(z = H) = τzzH
Er

, w(z = H + 2�) = τzzH
Er

+ τzz(2�)
El

. (12.68)
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Fig. 12.13
(a) Uniaxial
compression of a core of
height 2H, containing a
fracture with normal
stiffness κn. The intact
rock has elastic modulus
Er, and the
characteristic dimension
in the fracture plane is
�. (b) Fracture zone
modeled as a
homogeneous layer of
thickness 2� and elastic
modulus El .
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The difference in the displacements between the upper edge of the layer and the
lower edge is

w(z = H + 2�)− w(z = H) = (2�)τzz
El

. (12.69)

For wavelengths that are much greater than the thickness of this layer, that is,
λ � �, it would seem possible to ignore the layer thickness by letting � → 0,
while maintaining the ratio 2�/El at the same value, which can be denoted by
1/κn, yielding

w(H+)− w(H−) = τzz

κn
. (12.70)

The parameter κn is a stiffness that has units of Pa/m. Comparison of (12.70)
with (12.15) shows that the discontinuity of the displacement across the nominal
fracture plane is equivalent to the joint closure, δ.

Angel and Achenbach (1985) solved the problem of elastic wave propagation
across a periodic array of cracks, as in Fig. 12.3, and indeed found that applying
the displacement discontinuity boundary condition along the nominal fracture
plane provides a good approximation to the exact results, as long as λ/(2l) > 5,
that is, for wavelengths greater than about five times the spacing between the
centers of two adjacent asperities. (The spacing 2l is denoted by 2λ in Fig. 12.3).
For asperity spacings that do not exceed 1mm and wave speeds c on the order of
5000m/s (see Table 11.1), the displacement discontinuity approximation will be
valid for frequencies below the MHz range.

Consider a compressional wave impinging at normal incidence on a joint
that is modeled as a displacement discontinuity (Fig. 12.14a). For simplicity, the
properties of the rock on either side of the joint are assumed to be the same and
the nominal fracture plane is located at z = 0. At a given level of the in situ stress,
the fracture will have a certain normal stiffness κn, given by the tangent to the
stress-closure curve. If the stress increment associated with the incoming wave
is small compared to the in situ stress, the fracture stiffness can be assumed to be
constant, and the equations of linearized elasticity can be used, with the stresses
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Fig. 12.14 (a) Waves
impinging on a fracture
at normal incidence.
(b) Transmission and
reflection coefficients,
and group time delay
(normalized to its value
at zero frequency).
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and displacements denoting the incremental values produced by the wave, not
the in situ values.

Using a notation similar to that of §11.5, the incomingwave can be expressed as

wi = Ai exp[iki(z − cLt)], (12.71)

the reflected wave as

wr = Ar exp[ikr(−z − cLt)], (12.72)

and the transmitted wave as

wt = At exp[ikt(z − cLt)], (12.73)

where cL is the compressional wave velocity in the intact rock on either side of
the discontinuity.

The displacement terms are of the formw = A exp[ik(±z− cLt)], fromwhich
the normal stress follows as τzz = (λ + 2µ)εzz = ±(λ + 2µ)ikA exp[ik(±z −
cLt)]. The total stress in the region z < 0 will be the sum of the stresses from
the incident wave and the reflected wave, whereas the stress in the region z > 0
corresponds only to that of the transmitted wave. The condition of continuity of
tractions across the interface therefore takes the form

kiAi exp(−ikicLt)− krAr exp(−ikrcLt) = ktAt exp(−iktcLt), (12.74)

after canceling out the common term (λ + 2µ)i and setting z = 0 in the
expressions for the stresses. In order for this relationship to hold for all values
of time, the wave numbers must be the same for the incident, reflected, and
transmitted waves, that is, ki = kr = kt ≡ k, in which case (12.74) takes
the form

Ai − Ar = At. (12.75)

Likewise, the displacement boundary condition (12.70) takes the form

Ai + Ar = At − ik[(λ+ 2µ)/κn]At. (12.76)
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Solving (12.75) and (12.76) for the amplitudes of the reflected and transmitted
waves, and using relations such as ω = kc and (λ+ 2µ) = ρc2L, gives the reflec-
tion and transmission coefficients as functions of the frequency (Schoenberg,
1980):

R(ω) = Ar

Ai
= −i(ωZL/2κn)

1 − i(ωZL/2κn)
≡ −i�

1 − i�
, (12.77)

T(ω) = At

Ai
= 1

1 − i(ωZL/2κn)
≡ 1

1 − i�
, (12.78)

where ZL = ρcL is the seismic impedance of longitudinal (compressional) waves
in the intact rock and � = (ωZL/2κn) is a dimensionless frequency. These
expressions are different in form, but equivalent to, those derived by Kendall
and Tabor (1971), who defined their reflection and transmission coefficients in
terms of stress amplitudes rather than displacement amplitudes. The reflection
coefficient given by Pyrak-Nolte et al. (1990) differs from (12.77) in sign, due to
the inclusion of a minus sign in their definition of the amplitude of the reflected
wave.

As only the real component of the wave has physical significance, taking Ai to
be purely real gives an incident wave described by

wi = Ai cos[k(z − cLt)]. (12.79)

Multiplying numerator and denominator of (12.78) by 1 + i� , the complex
transmission coefficient can be written in Cartesian form as

T(ω) = TR(ω)+ iTI(ω) = 1/(1 +� 2)+ i[�/(1 +� 2)], (12.80)

or in polar form as

T(ω) = |T(ω)| exp(i�) = (T2
R + T2

I )
1/2 exp[i arctan(TI/TR)]

= (1 +� 2)−1/2 exp(i arctan�). (12.81)

The transmitted wave then has the complex displacement

wt = AiT(ω) exp[ik(z − cLt)]
= Ai(1 +� 2)−1/2 exp[ik(z − cLt)+ i arctan� ], (12.82)

the real (physical) part of which is

wt = Ai(1 +� 2)−1/2 cos[k(z − cLt)+ arctan� ]. (12.83)

The transmitted wave therefore has an amplitude that differs from that of the
incident wave by the multiplicative factor |T(ω)| = (1 +� 2)−1/2, and, since
the time term and the phase angle enter (12.83) with opposite signs, lags behind
the incident wave by a phase angle of�t = arctan� .

Similarly, the real component of the displacement of the reflected wave is

wr = Ai�(1 +� 2)−1/2 cos[−k(z + cLt)+ arctan(−1/�)]. (12.84)
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The reflected wave has an amplitude that is less than that of the incident wave
by the multiplicative factor |R(�)| = �/(1 + � 2)1/2 and a phase angle of
�r = arctan(−1/�).

If the stiffness of the interface vanishes, the dimensionless frequency � =
(ωZL/2κn) approaches unity, and (12.83) and (12.84) show that |R| → 1 and
|T| → 0, in agreement with the results for normal incidence at a free surface
(Fig. 12.14b). As the stiffness of the interface becomes infinite, the dimensionless
frequency approaches zero, and (12.83) and (12.84) show that |R| → 0 and |T| →
1, as would be expected for a welded interface between two media having the
same properties. For a given interface having a finite stiffness, at low frequencies
|R| ≈ � and |T| ≈ 1−(� 2/2), whereas at high frequencies |R| ≈ 1−(1/2� 2)

and |T| ≈ 1/� . At all frequencies, it is the case that |R|2 + |T|2 = 1, indicating
that mechanical energy is conserved during the process of wave transmission
across the interface. The reflection and transmission coefficients obey the relation
|R(1/�)| ≈ |T(�)|, which in fact follows from |R|2 + |T|2 = 1.

Referring to the model of the interface as a thin layer of thickness 2�
(Fig. 12.13b), the dimensionless frequency can be shown to be equal to π times
the ratio of the layer thickness to the wavelength of the incoming wave, that
is, � = π�/λ. Using the row-of-cracks model shown in Fig. 12.3, Angel and
Achenbach (1985) found that the displacement discontinuity approach, which
smears the effect of the individual cracks/asperities over the entire fracture
plane, is valid only for λ > 10l, where 2l is the spacing between centers of
adjacent cracks. The layer thickness�was defined as the distance from the frac-
ture plane over which the stress, in a static compression test, is perturbed from
its mean value; hence, � will be in the order of l. These considerations seem
to imply that the displacement discontinuity model should be accurate in the
range � < 1 and perhaps be only qualitatively useful for higher values of the
dimensionless frequency.

The time dependence of a monochromatic traveling wave with frequency ω
and phase angle� is cos(kz − ωt +�). Compared to a similar wave having the
same frequency but zero phase angle, this wave can be said to lag behind with a
“time delay” of td = �/ω. Likewise, the group time delay of a dispersive wave can
be defined as tg = d�/dω. From the phase angles shown in (12.83) and (12.84),
it follows that the group time delay for both the transmitted and reflected waves
is given by (Fig. 12.14b)

tg = (ZL/2κn)
1 + (ω ZL/2κn)2

. (12.85)

The granite sample tested by Pyrak-Nolte et al. (1990) had a longitudinal wave
speed of 5200m/s, a density of 2650 kg/m3, and a normal fracture stiffness in
the order of 1013 Pa/m. The group time delays predicted by (12.85) are in the
range of 0.5µs, which are close to the measured values, which ranged from
0.12–0.96µs.

The analysis given above for normal incidence of a (longitudinal) P-wave upon
a fracturemodeled as a displacement discontinuity applies in all details to SV- and
SH-waves (Pyrak-Nolte et al., 1990), with the normal stiffness κn replaced by the
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Fig. 12.15 (a)
Interface wave
propagating (→) along
a fracture. (b) Group
and phase velocities, for
the case ρ1 = ρ2, λ1 =
λ2 = µ1 = µ2 (after
Pyrak-Nolte and Cook,
1987).
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shear stiffness κs, and the impedance ZL replaced by the shear wave impedance
ZT. If the fracture is anisotropic, the shear stiffness values appropriate for the SV-
and SH-waves will differ.

Detailed results for incidence of P-, SV- and SH-waves at arbitrary angles to
the fracture plane have been given by Gu et al. (1996b). Joints that are filled with
viscous fluid can bemodeled by assuming both a displacement discontinuity and
a velocity discontinuity. The velocity discontinuity boundary condition involves
a “specific viscosity” parameter that represents the ratio of the shear stress acting
on the fracture to the discontinuity that is produced in the velocity (Pyrak-Nolte
et al., 1990).

Pyrak-Nolte andCook (1987) investigated interfacewaves that propagate along
a fracture modeled as a displacement discontinuity; these waves can be thought
of as generalized Rayleigh or Stoneley waves. In the special case in which the
rock on either side of the interface has the same properties, two types of interface
waves can travel along the fracture (Fig. 12.15). At high frequencies (or low values
of the fracture stiffness), the two half-spaces become progressively uncoupled,
and the speed of both waves approaches that of a Rayleigh wave in the intact
rock. Below a certain critical frequency of about � ∗ ≈ 1, the faster of these
two interface waves cannot propagate. At lower frequencies, the speed of the
“slow” interface wave approaches the speed of shear waves in the intact rock.
Both interfacewaves areweakly dispersive, with the group velocity being slightly
lower than the phase velocity. If the properties of the rock differ greatly on the
two sides of the interface, only the slow interface wave exists. Detailed studies
of these waves as functions of rock properties, shear and normal stiffnesses of
the fracture, etc., have been given by Pyrak-Nolte and Cook (1987) and Gu et al.
(1996a). Laboratory measurements of these fracture interface waves have been
reported by Pyrak-Nolte et al. (1992).

12.8 Fractured
rock masses

The mechanical, hydraulic, and seismic behavior of single fractures has been
described in §12.2–§12.7. In some cases, the behavior of a rock mass may be
controlled by a single large fracture or fault. But in many rock masses, fractures
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are so pervasive that the rock must be viewed as a new type of medium known
as a fractured rock mass, rather than as a mass of intact rock that happens to con-
tain one or several distinct fractures. A fractured rock mass can often be treated
as a continuum whose properties, such as elastic moduli and permeability, are
controlled by the density and orientation of the fractures and by the hydrome-
chanical properties of these individual fractures. This situation is analogous to
the manner in which, on a much smaller length scale, pores and cracks control
the mechanical and seismic properties of “intact” rock (as described in §10.3).

Consider a rock mass that contains three orthogonal sets of uniformly spaced
fractures. The fractures that lie in the y–z plane are taken to have spacing Sx,
normal stiffness κnx, and shear stiffness in the y and z directions of κsy and κsz,
respectively, with similar notation for the other two fracture sets. The intact rock
between the fractures is assumed to be isotropic, with moduli {Er,Gr,Vr}. Such
a medium will be elastically orthotropic, as discussed in §5.10, with at most nine
distinct elastic moduli, which depend on the properties of the intact rock and the
fractures.

Since the medium is periodic in x with unit cell of length Sx, the effective
Young’s modulus for deformation in the x direction is given by (12.16), with the
spacing Sx in place of the “specimen length” L:

1
Ex

= 1
Er

+ 1
Sxκnx

. (12.86)

By adding the deformation of the intact rock to the shear deformation occurring
on the fractures, the effective shear modulus in the x–y plane is found to be
(Amadei and Savage, 1993)

1
Gxy

= 1
Er

+ 1
Sxκsx

+ 1
Syκsy

. (12.87)

If the fractures themselves are assumed not to contribute to the Poisson effect,
that is, they contribute no additional strain εxx due to a stress τxx, then the
compliance coefficient that relates εxx to τxx will be the same as for the intact
rock. In the Voigt notation of §5.10, this compliance is s12 = −νr/Er. As the
intact rock is assumed to be isotropic, s12 = s13 = s23. Such a fractured medium
therefore has only seven independent moduli or compliances, which in Voigt
notation (see (5.184)) are

s11= 1
Ex

= 1
Er

+ 1
Sxκnx

, s22= 1
Ey

= 1
Er

+ 1
Syκny

, s33= 1
Ez

= 1
Er

+ 1
Szκnz

,

(12.88)

s44 = 1
Gyz

= 1
Gr

+ 1
Syκsy

+ 1
Szκsz

, (12.89)

s55 = 1
Gxz

= 1
Gr

+ 1
Sxκsx

+ 1
Szκsz

, (12.90)
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s66 = 1
Gxy

= 1
Gr

+ 1
Sxκsx

+ 1
Syκsy

, (12.91)

s12 = s13 = s23 = s21 = s31 = s32 = −νr
Er

. (12.92)

If the spacings and fracture properties of the three fracture set are identical,
the rock mass will have s11 = s22 = s33 and s44 = s55 = s66, but will not be
elastically isotropic, as there will be three independent compliances rather than
two. Other special cases such as a rock mass containing only one set of joints
can be recovered by setting either the fracture stiffnesses or fracture spacings
equal to infinity in two of the directions, say y and z. In this case, the rock
mass is transversely isotropic in the y–z plane, and has four independent elastic
coefficients (Morland, 1976). Fossum (1985) started with the result for a single
set of fractures and, by an averaging procedure, derived an expression for the
elastic moduli of a rock mass containing randomly oriented fractures. All of the
above-mentioned results ignore dilatancy, that is, the coupling between shear
stress and normal deformation, and thus are valid only for small stress and strain
increments, for which dilatancy may be negligible.

The strength of a rock that contains a single plane of weakness was discussed
in §4.8, following the treatment given by Jaeger (1960). This analysis can also
be applied to a rock mass that contains a set of parallel joints, although it does
not account for the effect of the intermediate principal stress σ2, except in the
special case where the joints strike in the σ2 direction (Amadei, 1988). A detailed
discussion of the failure of a fractured rockmass, accounting for the effect of three
independent principal stresses, has been given by Amadei and Savage (1993).

For wavelengths that are long compared to the spacing between fractures,
seismic wave propagation through a fractured rock mass can be modeled as
wave propagation through an equivalent elastic medium, with the elastic moduli
given by equations such as (12.88)–(12.92). As wave speeds in fractured rocks
are typically about 4000m/s and fracture spacings are in the order of 0.1–10m,
the equivalent continuum model will apply for frequencies in the range below
100 Hz, as are used in low-frequency seismic surveys. Equivalent medium repre-
sentations for seismic wave propagation in fractured rock have been developed
by, among others, Schoenberg and Sayers (1995), Boadu and Long (1996), and
Liu et al. (2000).

The conceptual model of a rock mass containing three orthogonal sets of
fractures can also be used to derive expressions for themacroscopic permeability.
Let the fracture set that lies in the y–z plane have spacing Sx, and hydraulic
apertures hxy and hz in the y and z directions, respectively, with similar notations
for the other two sets. Each fracture is assumed to be of infinite extent in its
plane. As the transmissivity of the intact rock material between the fractures is
usually orders of magnitude less than that of the fracture sets, the intact rock
can be assumed to be impermeable. A unit cell of this rock mass would have
dimensions {Sx, Sy, Sz}, and contain one fracture in each of the three orthogonal
directions (Fig. 12.16). A pressure gradient in the x direction would give rise to a
fluid flux in the x direction, through each of the two fractures that lie in the x–y
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Fig. 12.16 Schematic
diagram of a
two-dimensional rock
mass containing two
sets of orthogonal
fractures, showing a
unit cell used to help
calculate the
permeability. The
notation hxy denotes the
hydraulic aperture, for
flow in the y direction,
of a fracture whose
outward unit normal
vector is in the x
direction.
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and x–z plane, according to (12.44):

Qx = −Syh3zx
12µ

∂p
∂x

− Szh3yx
12µ

∂p
∂x

. (12.93)

The cross-sectional area of the unit cell in the direction perpendicular to the flux
is SySz, so the permeability is given by

kx = −Qxµ

A(∂p/∂x)
= h3zx

12Sz
+ h3yx

12Sy
, (12.94)

and similarly for the other two directions. The permeability is inversely propor-
tional to the fracture spacings, that is, proportional to the fracture frequencies.
Such a rock mass will generally be hydraulically anisotropic.

Snow (1969) extended this model to account for fracture sets that are oriented
at oblique angles, but which are still of infinite length. Real fractures are of course
of finite extent, and so, unlike in the infinite-length fracture model, may or
may not intersect other neighboring fractures. Hence, the effective permeability
is expected to be less than would be predicted by an infinite-length fracture
model. The effect of interconnectivity on the macroscopic permeability of a
two-dimensional rock mass was studied by Long andWitherspoon (1985), under
the assumption that all fractures were of the same length and same hydraulic
aperture. Their analysis was generalized byHestir and Long (1990), who allowed
the fractures to be of different lengths. Charlaix et al. (1987) used percolation
theory to study the effective permeability of randomly oriented disk-shaped
fractures having a wide distribution of apertures. Wei et al. (1995) conducted
numerical experiments of flow through a two-dimensional fracture network,
and concluded that since fracture lengths usually exceed fracture spacings by an
order of magnitude, corrections for finite fracture lengths would be less than the
errors inherent in other aspects of the analysis. The situation in which the matrix
permeability is not negligible compared to that of the fractures has been studied
by Sayers (1991) for aligned, two-dimensional fractures of finite lengths.

The geometric complexity of actual fracture networks suggests that numerical
simulationsmay play an important role in elucidating the coupled hydromechan-
ical behavior of fractured rock masses. Indeed, numerical simulations permit the
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consideration of factors such as nonlinear constitutive relations for the mechan-
ical deformation of the fractures, distributions of fracture lengths and apertures,
etc., that would be very difficult to account for by analytical means. Zhang and
Sanderson (1996,1998) used the distinct element method to study the effective
permeability tensor of a two-dimensional fractured rock mass and its variation
with stress. Min and Jing (2003) and Min et al. (2004) extended this work by
allowing the normal stiffness of the fractures to be nonlinear and by incorporat-
ing shear dilation into themodel. Rutqvist and Stephansson (2003) have provided
an extensive review of research on hydromechanical coupling in fractured rocks,
with an emphasis on implications for subsidence, induced seismicity, and the
performance of underground radioactive waste repositories.
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13.1 Introduction Knowledge of the in situ state of stress in the subsurface is of crucial importance
in all areas of rock engineering. In general, the existing state of stress in the
subsurface varies as a function of depth, but the manner in which the three
principal stresses and their associated directions vary with depth does not have
an easily predictable pattern. These stresses will be influenced by the topography,
by the tectonic forces, by the constitutive behavior of the rock, and by the local
geological history. Whenever an excavation is made for a tunnel, underground
repository, underground storage space, etc., the excavation will alter the existing
stress state in the rock mass. Depending on the constitutive model used for
the rock, the stresses and displacements that are induced in the rock can be
calculated by methods such as those discussed in Chapters 8 and 9. Prediction of
the resulting final state of stress and deformation in the vicinity of the excavation,
and of the stability of the excavation, therefore requires, among other things,
knowledge of the preexisting in situ stresses. The same is true for boreholes
drilled for oil and gas wells, geothermal wells, and water wells.
Various issues related to the state of stress in the subsurface are discussed in

this chapter. Some basic and highly simplified conceptual models of the state of
stress in the subsurface are presented in §13.2. A discussion of measured data
on subsurface stresses, collected throughout the world by various researchers,
is given in §13.3. In §13.4 and §13.5, the theory of elasticity is used to develop
some solutions for stresses due to surface loads and due to gravity forces in the
presence of irregular topography. The use of hydraulic fracturing for estimating
the in situ stresses is discussed in §13.6. Several other methods for estimating the
subsurface stress state, such as the use of flat-jacks and overcoring, are briefly
reviewed in §13.7.
A more detailed discussion of the state of stress in the subsurface is given

in the monograph by Amadei and Stephansson (1997). Extensive discussion of
the ways in which the subsurface stresses influence fault patterns and other
geological structures can be found in various books on structural geology, such
as Price and Cosgrove (1990), Bayly (1992) and Pollard and Fletcher (2005).
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13.2 Simple
models for the state
of stress in the
subsurface

As discussed in Chapter 2, the complete state of stress at any point in a rock can
be fully specified by the values of the three principal stresses and their associated
directions. At a free surface the shear tractions are zero, and so the normal vector
to any unloaded free surface is necessarily a principal stress direction. In regions
of flat or nearly flat topography, it therefore seems reasonable that one of the
principal stress directions will be vertical. The simplest assumption is that the
normal compressive stress at any depth z below the surface must be sufficient to
support the weight of the overburden rock. This can be expressed as

τzz =
z∫

0

ρ(z′)g(z′)dz′. (13.1)

where, in general, the density ρ and the gravitational acceleration g may vary
with depth. For the relatively shallow depths that are of engineering interest,
say less than a few kilometers, g can be considered constant, and (13.1) gives
τzz = ρ̄gz, where ρ̄ is the mean density of the rocks above the depth z.
If the rock is porous or fractured, the mean density that appears in the expres-

sion τzz = ρ̄gzmust be averaged over the mineral grains and the pore fluids. For
example, if the overburden consists of a porous rock of porosity φ and mineral
density ρm, fully saturated with a pore fluid of density ρf , then the mean density
would be given by

ρ̄ = (1 − φ)ρm + φρf . (13.2)

In the sequel, we will assume that the density is uniform, and drop the overbar
and simply write τzz = ρgz.
Expression (13.1) for the vertical stress is almost universally assumed to hold.

Nevertheless, it should be borne in mind that (13.1) is valid only in the absence
of shear stresses τxz or τyz, which could also serve to support the overburden, as
can be seen by doing a simple force balance on a prism of rock lying between
depth z and the surface. Measurements, discussed in more detail in §13.3, tend
to verify (13.1), except occasionally at very shallow depths, of at most a few tens
of meters, in areas of irregular surface topography.
The simplest assumption regarding the entire stress state is that the other two

principal stresses are also equal to the overburden stress, that is, τxx = τyy = ρgz.
Any state of stress in which all three principal stresses are equal is referred to
in mechanics as a hydrostatic stress state, as this is the situation that occurs
within a static column of water. However, in the rock mechanics context, to
avoid confusion with stresses that are indeed due to pore fluids, the stress state
τxx = τyy = τzz = ρgz is referred to as lithostatic. This state of stress is also
characterized by the absence of deviatoric stresses, which means that no shear
stress components will appear in the stress tensor, in any coordinate system.
The assumption of a lithostatic stress state in the subsurface is known asHeim’s

rule. Heim’s original argument for this assumptionwas that if the rock is assumed
to behave viscoelastically, according to a Maxwell or Burgers model as described
in §9.9, the stress state will eventually approach a lithostatic condition, given
sufficient time (Heim, 1878). However, this model neglects the effect of tectonic
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forces, which will often vary on timescales that are shorter than the relaxation
times of the rock. Furthermore, for many near-surface rocks, brittle behavior
may be a more realistic assumption than viscoelastic behavior.
Another model that has often been invoked to predict the magnitudes of the

other two principal stresses is to assume that the gravitational forces due to the
weight of the rock can be instantaneously turned on, after which the rock is
constrained against any lateral deformation. This leads to the state of uniaxial
strain that has been described in §5.3. Assuming uniform and isotropic rock
properties and that the vertical stress is given by τzz = ρgz, the resulting state of
stress will be

τzz = ρgz, τxx = τyy = ν

1 − ν
τzz, τxy = τyz = τzx = 0. (13.3)

For a typical value of Poisson’s ratio, such as 0.25, this model predicts that the
vertical (lithostatic) stress is the maximum principal stress and that other two
principal stresses are equal to one-third of the lithostatic value.
Aside from the unphysical assumption that the gravitational forces act only

after the rock has been emplaced, the assumption that no lateral strain can occur
is clearly an extreme case. The other extreme assumption would be that when
gravity begins to act, there are no lateral stresses. This leads to a state of uniaxial
stress, also described in §5.3:

τzz = ρgz, τxx = τyy = τxy = τyz = τzx = 0. (13.4)

All three of the simple models described above can be written in the following
unified form:

τzz = ρgz, τxx = τyy = kτzz, τxy = τyz = τzx = 0, (13.5)

where k is the lateral stress coefficient. This coefficient equals 1 according to
Heim’s rule, ν/(1 − ν) according to the uniaxial strain model, and 0 according
to the assumption of unconstrained lateral deformation.
Each of the aforementioned models predicts that the lateral stresses will not

exceed the vertical stress. Another related model that can predict values of k > 1
is that of McCutchen (1982). In this model, the crust is taken to be a thin,
elastically isotropic and homogeneous shell, resting on top of a rigid mantle and
deforming due to gravity. The difference between this model and the uniaxial
strain model discussed above is that the spherical geometry of the Earth is
now taken into account. The boundary conditions are that the radial normal
stress vanishes at the surface, and the tangential displacement vanishes at the
crust–mantle boundary. If the outer radius of the Earth is a, the radius of the
crust/mantle interface is b, solving the equations of elastic equilibrium for this
model yields

τrr = ρga
4(1−ν)

{[
2−(1+ν) b

a

]
(1+ν)+2(1−2ν)(b/r)3

(1+ν)+2(1−2ν)(b/a)3
+(1+ν) b

a
−2

r
a

}
,

(13.6)
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τθθ = τφφ = ρga
4(1 − ν)

{[
2 − (1 + ν)

b
a

]
(1 + ν)− (1 − 2ν)(b/r)3

(1 + ν)+ 2(1 − 2ν)(b/a)3

+(1 + ν)
b
a

− (1 + 2ν)
r
a

}
, (13.7)

where ν is the radial displacement, r is the distance from the center of the Earth,
and the depth is given by z = a − r.
These expressions for the stresses can be simplified considerably by making

use of the fact that the thickness (t = a − b) of the crust, which is in the order
of a few tens of kilometers, is very small compared to the radius of the Earth,
which is about 6.4 × 106 km. Expanding (13.6) and (13.7) in power series of z/a
and neglecting terms of order (t/a)2 ≈ 0.0001, gives

τrr = σvertical = ρgz, (13.8)

τθθ = τφφ = σhorizontal = t
4a
ρgt + ν

1 − ν
ρgz. (13.9)

The vertical and horizontal stresses predicted by this model are shown in
Fig. 13.1a, using amean crustal thickness of 40 km, ameandensity of 2700 kg/m3,
and a Poisson’s ratio of 0.25. As the crustal thickness is a small fraction of the
Earth’s radius, the model predicts an essentially linear variation of stresses with
depth. The predicted vertical stress gradient is very nearly equal to ρg, and the
tangential stress gradient is again essentially equal to νρg/(1 − ν). However,
because of the assumed spherical geometry, the model predicts a finite tangential
stress at the surface, in contrast with the zero tangential stress predicted by the
uniaxial strain model. The predicted stress ratio k decreases nonlinearly with
depth, according to

k = τφφ

τrr
= ν

1 − ν
+ t2

4az
. (13.10)

This predicted 1/z decrease of k with depth is in qualitative agreement with
many field measurements, as can be seen by comparing Figs. 13.1b and 13.2b.

Fig. 13.1 Predictions
of the spherical shell
model; (a) vertical and
horizontal stresses;
(b) ratio of horizontal to
vertical stress.
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Sheorey (1994) extended this model by considering the crust and underlying
mantle each to be composed of several layers and by accounting for the geother-
mal temperature gradient and thermal expansion effects. This model predicts
a variation of k with depth that is in better general agreement with the data
collected by Brown and Hoek (1978), and predicts that the horizontal stresses
at the surface will be about 11 MPa. Horizontal stresses of this magnitude have
indeed occasionally been measured within a few tens of meters of the surface
(Lo, 1978; Herget, 1987).

13.3 Measured
values of subsurface
stresses

Subsurface stresses have beenmeasured, or rather have been inferred frommeasure-
ments, at numerous locations throughout the world, at depths down to several
kilometers. Some of the methods used to estimate these stresses are discussed
in §13.6 and §13.7. Among the more notable reports of subsurface stress mea-
surements are those of Hast (1969), Herget (1974), Haimson and Voight (1977),
McGarr and Gay (1978), and Zoback and Zoback (1980). An extensive review of
many of these data sets has been given by Amadei and Stephansson (1997).
Themost well known compilation of measured subsurface stress values is that

of Brown and Hoek (1978). These data are shown in Fig. 13.2, without individual
labels denoting the publication source of the data or the geographical locations
of the measurements, which can be found in Brown and Hoek (1978). As can
be seen in Fig. 13.2a, these data set shows considerable scatter, but nevertheless
allow some general trends to be noted. The vertical stresses do indeed cluster
around the line τzz = ρgz that corresponds to a mean density of 2700 kg/m3.
Deviations are probably attributable to variations in local topography, as dis-
cussed in §13.4, or to local geological inhomogeneities. The assumption that the
deviations are due to topographical effects is consistent with the fact that the
fractional deviations from the linear trend line decrease with depth.
The ratio of the average value of the two horizontal normal stresses to the

vertical stress is plotted in Fig. 13.2b. At depths of 300m or less, this ratio is
found to range between 1–4. At greater depths, the range of k narrows consid-
erably, and below 2000m, the observed values are generally less than 1. Clearly,
neither Heim’s rule nor the uniaxial compaction model, (13.3), provides a good

Fig. 13.2 Measured
subsurface stress data,
collected by Brown and
Hoek (1978).
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explanation for the data trends, which show a highly nonlinear decrease of the
stress ratio k with depth.
Brown and Hoek (1978) fitted two envelopes that provide rough bounds to

the data:

0.3 + 100
z

≤ k ≤ 0.5 + 1500
z

, (13.11)

where z is taken in meters. Both envelopes are of the same algebraic form,
A + B/z, as is predicted by the spherical shell model of §13.2. In fact, the
asymptotic values of 0.3 and 0.5 correspond to the values predicted by the
spherical shell model if the Poisson’s ratio varies between 0.23 and 0.33, which is
quite reasonable for crustal rocks. The two empirical bounding values of the B
coefficient are 100 and 1500. By way of comparison, McCutchen’s spherical shell
model gives B = 62.5, whereas Sheorey’s multilayer, nonisothermal extension
of McCutchen’s model gives B = 410.

13.4 Surface loads
on a half-space:
two-dimensional
theory

The complex variable method for solving two-dimensional elasticity problems
that was presented in §8.2 can be used to investigate the stresses and displace-
ments in an elastic half-space under the action of surface loads. In order to
maintain the standard practice of letting x and y be real variables that repre-
sent the two coordinates, and taking z = x + iy to be a complex variable, in this
section, we let x be the vertical coordinate normal to the surface of the half-space
x ≥ 0 (Fig. 13.3a).
The total load applied to the surface between points A and B, per unit length

in direction normal to the x–y plane, can be calculated from

B∫
A

(N + iT)dy =
B∫
A

[
∂2U
∂y2

− i
∂2U
∂x∂y

]
dy

= −i
[
∂U
∂x

+ i
∂U
∂y

]B
A

= −i
[
φ(z)+ zφ′(z)+ ψ(z)

]B
A
, (13.12)

where (8.10) and (8.46)–(8.49) have been used. This result will be needed later.
Consider now the functions

φ(z) = C ln z, ψ(z) = D ln z, (13.13)

Fig. 13.3 Surface
loads applied to a
half-space: (a) normal
and tangential line
loads, (b) uniform
normal traction applied
over a strip, (c) linearly
increasing normal
traction applied over a
strip.
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which have singularities at the origin and so may be expected to correspond
to point loads applied there. We now write point A as ae−iπ/2 and B as beiπ/2.
Using (13.12), the total loads represented by the functions given in (13.13) are
found to be

B∫
A

(N + iT)dy = −i
[
C ln(b/a)+ iπC + D̄ ln(b/a)− iπ D̄

]
. (13.14)

For this to correspond to a point load having components (No,To), the complex
constants C and Dmust be chosen so that

−i
[
C ln(b/a)+ iπC + D̄ ln(b/a)− iπ D̄

] = No + iTo. (13.15)

This is achieved by choosing C = (No + iTo)/2π and D = −(No − iTo)/2π , in
which case we see that

φ(z) = No + iTo
2π

ln z, ψ(z) = −No − iTo
2π

ln z, (13.16)

are the complex stress potentials that correspond to a concentrated load (No,To)
per unit length in the third direction, applied to the surface at the origin. As the
load acts along the entire line corresponding to (x = 0, y = 0), that is, the entire
z-axis, these solutions represent line loads. It is convenient to consider normal
and tangential loads separately.

13.4.1 Normal line load

Taking To = 0 in (13.16) and using (8.43)–(8.44), gives

τrr + τθθ = 2No
π

Re
(
1
z

)
= 2No cos θ

π r
, (13.17)

τθθ − τrr + 2iτrθ = No
π

(
− z̄
z2

− 1
z

)
e2iθ = −2No cos θ

π r
, (13.18)

from which the stresses follow as

τrr = 2No cos θ
π r

, τθθ = τrθ = 0. (13.19)

Ifwe consider the tractions acting over the surface of a small semicircle of radius r,
centered on the origin, integration shows that the resultant force is indeed a ver-
tical force of magnitude No. This problem was first solved by Flamant (1892), by
integrating the point load solution of Boussinesq (1878) that is described in §13.5.
In terms of Cartesian coordinates, (13.17) and (13.18) can be expressed as

τxx + τyy = 2Nox
π r2

, (13.20)

τyy − τxx + 2iτxy = −No
π

[
(x − iy)3

r4
+ (x − iy)

r2

]
, (13.21)



Jaeger: “chapter13” — 2006/12/15 — 10:02 — page 406 — #8

406 Chapter 13

from which the stresses follow as

τxx = 2Nox3

π r4
, τyy = 2Noxy2

π r4
, τxy = 2Nox2y

π r4
. (13.22)

The displacement is, by (8.38),

2G(u + iv) = No
2π

{
4(1 − ν) ln r − cos 2θ + i

[
2(1 − 2ν)θ − sin 2θ

]}
,

(13.23)

so that along the upper loaded surface, the normal displacement is

u(x = 0) = (1 − ν)No
Gπ

ln y, (13.24)

in which the constant term has been neglected, as an arbitrary constant may
always be added to the displacement without altering the stresses. This displace-
ment has the peculiar property of becoming unbounded at infinite distances from
the line of the applied load. This unrealistic result can be overcome by working
with the relative vertical displacement between two points on the surface, which
is always finite (Davis and Selvadurai, 1996, p. 143).

13.4.2 Tangential line load

Proceeding in the same way for the case of No = 0 in (13.16), we find

τxx = 2Tox2y
π r4

, τyy = 2Toy3

π r4
, τxy = 2Noxy2

π r4
, (13.25)

2G(u + iv) = To
2π

{−2(1 − 2ν)θ − sin 2θ + i
[
4(1 − ν) ln r + cos 2θ

]}
.

(13.26)

The stresses and displacements arising from more complicated loads may be
found by integrating the solutions arising from these line loads, with the
appropriate weighting factors.

13.4.3 Normal traction σ applied over a strip of width 2a

Imagine that this vertical line load, which corresponds to a total force No per
unit length in the z direction, is actually distributed over an infinitesimal strip
of width dy. The compressive normal traction σ under this load will then be
No/dy, which shows that the loading should be represented by No = σdy. Using
superposition, the resultant stresses and displacements are found by integration
of (13.22) and (13.23) over the entire loaded region, noting that in the integrand,
y must represent the horizontal distance between the point of application of the
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load and the observation point. For the case (Fig. 13.3b) of a uniform normal
stress applied over the strip −a ≤ y ≤ a,

τxx = 2σx3

π

a∫
−a

dy′

[x2 + (y − y′)2]2 = σ

π

[
(θ1−θ2)− x(y − a)

r21
+ x(y + a)

r22

]

= σ

π

[
(θ1 − θ2)− sin(θ1 − θ2) cos(θ1 + θ2)

]
, (13.27)

where the angles and radii are as defined in Fig. 13.3b. As partial verification of
this result, note that for y > a, we have θ1 = θ2 = 0, and (13.27) gives τxx = 0,
whereas for−a < y < a, we have θ1 = π and θ2 = 0, and (13.27) gives τxx = σ .
Similarly, the other stress components are given by

τyy = σ

π

[
(θ1 − θ2)+ x(y − a)

r21
− x(y + a)

r22

]

= σ

π
[(θ1 − θ2)+ sin(θ1 − θ2) cos(θ1 + θ2)], (13.28)

τxy = σx2(r22 − r21)
π r21 r

2
2

= σ

π

[
sin(θ1 − θ2) sin(θ1 + θ2)

]
. (13.29)

The normal displacement of the surface is, except for an additive constant,

u(x = 0) = (1 − ν)No
Gπ

[
2a + (y − a) ln |y − a| − (y + a) ln |y + a|] . (13.30)

13.4.4 Linearly increasing normal load

Suppose that the normal surface traction increases linearly from 0 at A to σ at B
(Fig. 13.3c). In this case, the results are

τxx = σ

2π

{[
1 + (y/a)

]
(θ1 − θ2)− sin 2θ1

}
, (13.31)

τyy = σ

2π

{[
1 + (y/a)

]
(θ1 − θ2)+ sin 2θ1 − (2x/a) ln(r2/r1)

}
, (13.32)

τxy = σ

2π

[
1 − (x/a)(θ1 − θ2)+ cos 2θ1

]
. (13.33)

Jeffreys (1992) used this solution to estimate the stresses in the crust beneath
mountain ranges. In such models, the weight of the mountain is assumed to
provide a vertical normal traction that acts on the surface of a flat half-space.
The subsurface stresses thus calculated would then be added to the ρgx term
that is due to the weight of the material below the nominal x = 0 surface. The
overall effect is that the subsurface vertical stress will, in general, not be equal
to that which would be calculated from the lithostatic gradient using the depth
below the actual ground surface. Various piecewise linear normal loadings can
be modeled by superposition of the two above cases of uniform traction and
linearly increasing traction ( Jürgenson, 1934). Martel and Muller (2000) used
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the displacement discontinuity boundary element method to study the stresses
below two-dimensional slopes of arbitrary shape and used the computed stresses
to determine possible locations of slope failures.

13.4.5 Sinusoidally varying normal load

If the surface is subjected to a normal traction that varies as τxx = σ cosωy, then

τxx = 2σx3

π

∞∫
−∞

cosωy′dy′

[x2 + (y − y′)2]2 = σ(1 + ωx)e−ωx cosωy, (13.34)

and similarly,

τyy = σ(1 − ωx)e−ωx cosωy, τxy = σωxe−ωx sinωy. (13.35)

13.4.6 Shear traction τ applied over a strip of width 2a

If the surface is subjected to a uniform shear traction of magnitude τ , applied
over a strip of width 2a, as in Fig. 13.3b, the solution is found by integrating the
stresses given in (13.25):

τxx = τ

π
sin(θ1 − θ2) sin(θ1 + θ2), (13.36)

τyy = τ

π

[
2 ln(r2/r1)− sin(θ1 − θ2) sin(θ1 + θ2)

]
, (13.37)

τxy = τ

π

[
(θ1 − θ2)+ sin(θ1 − θ2) cos(θ1 + θ2)

]
. (13.38)

Solutions such as those presented in this section are of great importance in
soil mechanics and foundation engineering and are discussed in detail by Poulos
and Davis (1974) and Davis and Selvadurai (1996).

13.5 Surface loads
on a half-space:
three-dimensional
theory

In the previous section, the fundamental solution for a line load on a half-space
was used to develop solutions for more complicated two-dimensional surface
loads. A three-dimensional version of this analysis can be developed by starting
with the fundamental solutions for point loads acting perpendicular to the surface
(Boussinesq, 1878) or tangential to the surface (Cerruti, 1882). These fundamen-
tal solutions can be derived in many ways, none of which are straightforward
(Westergaard, 1952); hence, we present them here without derivation.
If a concentrated normal force N is applied at the origin of the half-space

z ≥ 0, the resulting displacements and stresses are

u = N
4πG

[
(1 − 2ν)x
r(z + r)

− xz
r3

]
, (13.39)

v = N
4πG

[
(1 − 2ν)y
r(z + r)

− yz
r3

]
, (13.40)
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w = − N
4πG

[
2(1 − ν)

r
+ z2

r3

]
, (13.41)

τxx = N
2π

[
3x2z
r5

+ (1 − 2ν)(y2 + z2)
r3(z + r)

− (1 − 2ν)z
r3

− (1 − 2ν)x2

r2(z + r)2

]
, (13.42)

τyy = N
2π

[
3y2z
r5

+ (1 − 2ν)(x2 + z2)
r3(z + r)

− (1 − 2ν)z
r3

− (1 − 2ν)y2

r2(z + r)2

]
, (13.43)

τzz = N
2π

[
3z3

r5

]
, (13.44)

τxy = N
2π

[
3xyz
r5

− (1 − 2ν)xy(z + 2r)
r3(z + r)2

]
, (13.45)

τyz = N
2π

[
3yz2

r5

]
, (13.46)

τxz = N
2π

[
3xz2

r5

]
, (13.47)

where r is the distance from the origin to the point (x, y, z).
Now consider the case of an arbitrary distribution of normal tractions applied

over some region of the surface. Denoting the normal traction on the surface by
σ , the total load applied over a small region of area dξdη, located at (x = ξ , y =
η, z = 0), would be σ(ξ , η)dξdη. The displacements and stresses at an arbitrary
point (x, y, z) can then be found by integrating (13.39)–(13.47) over the entire
loaded region, with N replaced by σ(ξ , η)dξdη, and x in the integrand replaced
by x − ξ , etc. For example, the normal component of the displacement of the
surface would be, from (13.41),

w(x, y, 0) = −(1 − ν)

2πG

∫∫
A

σ(ξ , η)√
(x − ξ)2 + (y − η)2

dξdη, (13.48)

where A is the region of the surface over which the loads are applied (Fig. 13.4a).
An important example is the case of a uniform normal traction σ applied

over a circular region of radius a. By symmetry, we need only consider the
displacements along, say, the x-axis. At the point (x = b, y = 0, z = 0), the
normal displacement is

w(b, 0, 0) = −(1 − ν)σ

2πG

∫∫
A

1√
(x − ξ)2 + η2

dξdη. (13.49)

Consider now only points within the loaded region, for which b ≤ a. We
now change (Fig. 13.4b) to a polar coordinate system on the surface, centered at
(x = b, y = 0). The integration in (13.49) must take place over the entire loaded
circular region. It can be seen in Fig. 13.4c that as the new radial variable ρ varies
along the chord EF and the angle ψ varies from 0 to π/2, the shaded region is
covered. For example, the chord E1F1 corresponds to ψ = 0, etc. By symmetry,
the full integral will be twice the value for this shaded region. Noting that the
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Fig. 13.4
(a) Notation used for
stresses and
displacements at a
generic observation
point P, due to surface
tractions applied at
(x = ξ , y = η, z = 0);
(b) new variables used
to integrate results for
the case of uniform load
applied over a circular
region; (c) illustration of
region covered as ψ
varies from 0 to π/2.
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denominator in (13.49) is equal to ρ, and that dξdηmust be replaced by ρdρdψ
when passing to polar coordinates, we have

w(b, 0, 0) = −(1 − ν)σ

πG

π/2∫
0

dψ

F∫
E

dρ. (13.50)

The integral in ρ is taken over the chord EF , and so its value is 2a cos θ . But
a sin θ = b sinψ , so (13.50) becomes

w(b, 0, 0) = −2a(1 − ν)σ

πG

π/2∫
0

√
1 − (b/a)2 sin2 ψ dψ . (13.51)

This is an elliptic integral and, in general, cannot be simplified further or
expressed in terms of elementary functions. The maximum vertical displace-
ment occurs at the center of the circle, where b = 0 and w = −a(1− ν)σ/G. At
the outer edge of the loaded region, b = a and w = −2a(1 − ν)σ/πG =
−0.637a(1 − ν)σ/G. The mean displacement over the loaded region is
−0.848a(1 − ν)σ/G.
Similarly, the vertical displacement of points on the surface outside the loaded

circular region, that is, b > a, can be expressed in terms of two elliptical integrals
(Davis and Selvadurai, 1996, p. 120). Manipulation of these results shows that as
b increases, w decays as 1/b. This should be expected from (13.41), since when
b � a, the displacements must reduce to those that would occur for a point load
of magnitude σπa2, applied at the origin.
Boussinesq also solved the related problem of indentation of the surface of a

half-space by a rigid circular plate of radius a, by using the above superposition
process shown in (13.48) andmaking an educated guess of the appropriate surface
traction distribution needed to yield a uniform value of w within the region
r ≤ a (Davis and Selvadurai, 1996, pp. 131–5). If the uniform vertical indentation
is −wo, the mean value of the traction over the loaded region is found to
be 4Gwo/πa(1 − ν). Hence, the constants of proportionality relating the mean
vertical displacement andmean normal traction differ by only 8 percent between
the cases of uniform surface traction and uniform surface displacement.
The displacements and stresses arising from a tangential point load T acting

in the x direction, at the origin of the half-space, are (Cerruti, 1882; Davis and
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Selvadurai, 1996, p. 92)

u = T
4πG

[
(x2 + r2)

r3
+ (1 − 2ν)

z + r
− (1 − 2ν)x2

r(z + r)2

]
, (13.52)

v = T
4πG

[
xy
r3

− (1 − 2ν)xy
r(z + r)2

]
, (13.53)

w = T
4πG

[
xz
r3

+ (1 − 2ν)x
r(z + r)

]
, (13.54)

τxx = − T
2π

[
−3x3

r5
+ (1 − 2ν)(r2 − y2)x

r3(z + r)2
− 2(1 − 2ν)ry2x

r3(z + r)3

]
, (13.55)

τyy = − T
2π

[
−3y2x

r5
+ (1 − 2ν)(3r2 − x2)x

r3(z + r)2
− 2(1 − 2ν)rx3

r3(z + r)3

]
, (13.56)

τzz = T
2π

[
3xz2

r5

]
, (13.57)

τxy = − T
2π

[
−3x2y

r5
+ (1 − 2ν)(x2 − r2)y

r3(z + r)2
+ 2(1 − 2ν)rx2y

r3(z + r)3

]
, (13.58)

τyz = T
2π

[
3xyz
r5

]
, (13.59)

τxz = T
2π

[
3x2z
r5

]
. (13.60)

As was the case for the normal point load, superposition can be used to generate
solutions for problems involving variable shear tractions acting along the surface
of a half-space.

13.6 Hydraulic
fracturing

One of the more widely used methods for estimating the subsurface stress state
is hydraulic fracturing. In this procedure, water or drilling mud is pumped into a
hydraulically isolated segment of the wellbore, until the induced stresses at the
borehole wall are large enough to cause a fracture to open and propagate into
the formation. In the petroleum industry, wells are often hydraulically fractured
to increase the ability of fluid to flow from the formation into the wellbore. The
basic rockmechanics analysis of the hydraulic fracturing process, for the purposes
of predicting thewellbore fluid pressure thatwould be needed to create a fracture
in a rock mass under a given state of in situ stress, was first given by Hubbert
andWillis (1957). Scheidegger (1960) and Fairhurst (1964) pointed out that these
same equations could be used in an inverse manner to infer the in situ stresses
from the pressure data collected during the hydraulic fracturing process. The
following discussion will emphasize the use of hydraulic fracturing as a tool for
stress estimation, although the same basic equations apply when it is used for the
purpose of oilwell stimulation. A detailed discussion of hydraulic fracturing as a
well stimulation tool has been given in the monograph edited by Economides
and Nolte (2000).
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The simplest situation to analyze is that of a vertical borehole in a nonporous,
impermeable formation. Assume that, before the borehole is drilled, the three
principal stresses are the vertical stress, σv, and two horizontal principal stresses,
σH and σh, that are oriented normal to each other in the horizontal plane. By
convention, the horizontal stresses are labeled according to σH > σh. If the
pressure of the fluid in the borehole is Pw, then the principal stresses around the
borehole wall will be, according to the solution presented in §8.5,

τrr = Pw, (13.61)

τθθ = σH + σh − 2(σH − σh) cos 2θ − Pw, (13.62)

τzz = σv + ν
[
(σH + σh)− 2(σH − σh) cos 2θ

]
, (13.63)

where θ is the angle of clockwise rotation from the direction of the maximum
horizontal stress.
A tensile fracture is assumed to form at the borehole wall and propagate

into the formation if any of these principal stresses becomes sufficiently tensile
(negative) to equal −To, where To is the tensile strength of the rock. The most
common situation, particularly for deep wells, is for at least one of the horizontal
in situ principal stresses to be less than the vertical in situ stress. In this case the
minimum (i.e., most negative) stress value that exists after the borehole is drilled
will be the tangential normal stress at θ = 0 and θ = π , where its value will
be τθθ = 3σh − σH − Pw. The condition for fracturing is found by setting
τθθ = −To. As it will be rare for the horizontal stresses to be so anisotropic that
3σh − σH < 0 (Amadei and Stephansson, 1997, p. 26), the criterion for fracture
will usually be met only when the wellbore fluid pressure Pw reaches the value

Pw = 3σh − σH + To. (13.64)

The pressure atwhich fracturing first occurs is referred to as the breakdown pres-
sure, Pb. Once this pressure is reached, a fracture forms and abruptly propagates
into the formation. Fluid from the borehole then rushes into the newly created
fracture, causing an instantaneous drop in the wellbore pressure. Hence, the
breakdown pressure is readily identified during the fracturing operation as being
the peak pressure recorded. So, if the tensile strength of the rock can be estimated
by other means, (13.64) gives one of the two equations needed to determine the
two horizontal principal stresses. Expressed in terms of the breakdown pressure,
this equation is

Pb = 3σh − σH + To. (13.65)

If the pressure is again increased some time after the initial fracture is created,
the fracture will reopen at some reopening pressure, Pr. The reopening pressure is
sometimes identifiedwith the peak pressure achieved during the repressurization
process (Whittaker et al., 1992, p. 378). Amadei and Stephansson (1997, p. 144)
identify the reopening pressure as the point in the pressure vs. time curve,
just before the peak pressure is reached, at which the rate of pressure increase
slows down – presumably indicating that fluid from the borehole has begun
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to infiltrate into the fracture. As the reopening fracture has no intrinsic tensile
strength, application of (13.64) with the tensile strength set to zero gives

Pr = 3σh − σH. (13.66)

Use of the reopening pressure as in (13.66) eliminates the need to estimate
To. Alternatively, measurement of both the breakdown pressure and the reopen-
ing pressure will, in principle, allow the tensile strength of the intact rock to
be determined, as comparison of (13.65) and (13.66) shows that (Bredehoeft
et al., 1976)

To = Pb − Pr. (13.67)

Consider now the case in which the rock is porous and saturated with a
pore fluid at pressure Pp. If the permeability of the rock is sufficiently low, the
drilling fluid will not penetrate into the formation rapidly enough to influence
the fracturing process. Hence, the pore pressure Pp and the wellbore pressure Pw
must be considered to be independent of each other. According to the empirical
effective stress law for failure presented in §4.7, the pore pressure should be
subtracted from each principal stress before applying a rock failure criterion.
This is equivalent to taking the effective stress coefficient for failure to be unity.
If the pore pressure is subtracted from τθθ in (13.62), then criterion (13.65) for
fracture initiation becomes

Pb = 3σh − σH + To − Pp. (13.68)

A more general model, which should reduce to the two models presented
above in the two limiting cases of zero permeability and zero porosity, is that
of a porous and permeable poroelastic formation that allows the drilling fluid to
infiltrate into the rock at the borehole wall (Haimson and Fairhurst, 1967). In
this case, the breakdown pressure is given by

Pb = 3σh − σH + To − 2ηPp
2(1 − η)

, (13.69)

where η = α(1−2ν)/2(1−ν) andα is the Biot parameter (§7.4). The parameter
2η lies between 0 and 1, and a typical value is about 0.6. Detailed discussions of the
stresses around a borehole in a poroelastic formation, including transient effects
and their implications for hydraulic fracturing, have been given by Detournay
and Cheng (1988) and Detournay et al. (1989).
Schmitt and Zoback (1989) pointed out that there was actually very limited

experimental justification for the effective stress coefficient for tensile failure to
be taken equal to unity. They proposed that only some fraction, β < 1, of the
pore pressure should be subtracted from the principal stresses when applying a
tensile failure criterion. This assumption leads to the following equation for the
breakdown pressure in a porous but impermeable rock:

Pb = 3σh − σH + To − βPp. (13.70)
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For the poroelastic case, their suggestion leads to the following modification of
(13.69):

Pb = 3σh − σH + To − 2ηPp
1 + β − 2η

. (13.71)

Schmitt and Zoback (1989) analyzed the results of some laboratory hydraulic
fracturing experiments conducted on a Valders limestone and used (13.71) to
back-calculate the value of β, the effective stress coefficient for tensile fracture.
Their computed values of β, for different experiments on the same rock, were in
the range of about 0.2–0.6, apparently justifying their rejection of the assumption
that β = 1.
Regardless of the model used for the breakdown pressure, knowledge of Pb

gives only one equation, which contains both of the horizontal in situ principal
stresses. A second equation is obtained from the shut-in pressure, as described
below, although estimation of this pressure is not without difficulties.
After the fracture is either initially opened, or reopened, the pressure will

decrease, as drilling fluid flows into the fracture from the borehole and leaks off
into the formation from the fracture faces. If pumping is then ceased and the
borehole is hydraulically shut in, the pressure sometimes drops abruptly, as the
fracture closes up. In these cases, the quasi-stabilized pressure that is observed is
identified as the shut-in pressure, Ps. In many cases, however, there is no clearly
observed pressure plateau. The shut-in pressure may then be identified by the
presence of a “knee” in the pressure decline curve, as the rate of pressure decline
decreases due to the fact that fluid can no longer leak off into the formation from
the (now closed) fracture faces. Numerous data analysis methods have been
proposed to identify the shut-in pressure from the pressure vs. time signal (Lee
and Haimson, 1989; Tunbridge, 1989; Amadei and Stephansson, 1997; Haimson
and Cornet, 2003).
The shut-in pressure is usually interpreted as representing the minimum hori-

zontal in situ stress, σh, according to the following argument. As explained above,
failure is assumed to first occur at θ = 0 and/or θ = π along the borehole wall,
when the local stress becomes sufficiently tensile. The fracture is then assumed to
penetrate into the formation, in a vertical plane that passes through the borehole
axis. Although the stresses near the borehole wall reflect the stress perturbations
due to the borehole, once the fracture has penetrated into the formation to a
distance of more than three or four borehole radii, it will essentially be subjected
to a far-field normal stress σh, which acts to close it up, and a pore pressure Pp,
which acts to prop it open. Hence, the value of Pp at which the fracture first
closes should be equal to σh. This pressure is denoted as the shut-in pressure, Ps,
in which case we have

σh = Ps. (13.72)

After σh is found from the shut-in pressure, one of the models for the breakdown
pressure, such as (13.65), (13.68), (13.69), (13.70), or (13.71), can be used to
estimate the maximum horizontal stress, σH.
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The discussion given above explains the basic procedure by which the magni-
tudesof the two in situhorizontal principal stresses are determined fromhydraulic
fracturing data. The principal stress directions can be estimated if the trace of the
fracture along the borehole wall can be located. One method for doing this is
to use an impression packer, which consists of an inflatable element wrapped
with a soft rubber film (Amadei and Stephansson, 1997, section 4.2.2). When
the packer is inflated inside the borehole, the film is extruded into the fracture,
leaving a permanent impression that can be recorded after the packer is retrieved
from the borehole. According to the conceptual model of hydraulic fracturing
presented above, the fracture trace(s) should coincide with the θ = 0 and/or
θ = π directions, which is to say, with the direction of σH. These traces can also
be inferred from borehole televiewer images (Zemanek et al., 1970). In practice,
the traces are often irregular and possibly discontinuous. Statistical techniques to
identify the fracture direction from the observed traces have been developed by
Lee and Haimson (1989). Many other practical aspects of the hydraulically frac-
turing process are discussed by Amadei and Stephansson (1997) and Economides
and Nolte (2000).

13.7 Other
stress-measurement
methods

Another method for estimating subsurface stresses involves the use of flat-jacks.
This method is relatively simple and robust, but can only be used to estimate
the stresses in the vicinity of preexisting underground excavations or tunnels. A
tabular slot is cut into the rock surface, such as at the wall of a tunnel (Fig. 13.5).
Before cutting the slot, the rock immediately above and below the slot is instru-
mented so that any changes in the distance between two points on either side of
the slot can bemonitored. If the initial stress perpendicular to the slot is compres-
sive, as is usually the case, the two faces will converge toward each other when
the slot is cut. Next, a flat hydraulic jack is inserted into the slot and cemented
into place. This jack consists of two flat steel plates, welded together around
their edges, with a tube to allow pressurized oil to be pumped into the space
between the plates (Goodman, 1989, p. 121). The jack is then pressurized, until
the distance between the measuring points on either side of the slot returns to its
initial value. When this has occurred, it is assumed that the pressure of the fluid
in the jack is equal to the compressive stress that acts in the direction normal
to the plane of the jack. As the flat-jacks are necessarily installed near the free
surface of an excavation, this stress must be interpreted as representing both the
in situ stresses and the stresses that were induced by the excavation.

Fig. 13.5 Stress
measurement by
flat-jacks; view is
normal to the free
surface of the
preexisting excavation.

Flat-jack

Slot
2b

2c

2y – 2∆v
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In practice, the width of the jack, 2b, will be less than the width of the slot,
2c. Furthermore, an additional width d at each end of the jack, where the steel
plates are welded together, will be inoperative. A simple force balance in the
direction normal to the plane of the jack then shows that the normal stress σ
will be related to the jack pressure p by

σ = p(b− d)/c. (13.73)

The flat-jack method seems to have been first used by Mayer et al. (1951)
and Tincelin (1951). An advantage of this method is that no knowledge of the
elastic properties of the rock is required for its application and interpretation.
However, the standard interpretation described above implicitly assumes that
the rock exhibits elastic behavior and neglects the possibility of creep occurring
during the process of installing and pressuring the jack. Panek and Stock (1964)
have discussed several methods for accounting for possible creep deformation
during flat-jack tests.
If the measured deformation across the slot is monitored as a function of the

jack pressure, this information can be used to estimate the elastic moduli of
the rock. The simplest model would be to treat the slot as a thin ellipse and
use the equations of §8.9 for the deformation around an elliptical cavity. The
convergence of two points on the rock face that are initially spaced at distances
±y from the slot plane, along the center line normal to that plane, due to the
stress relief caused by the cutting of the slot, would be given by

2�v = 2 cσ
E

{
(1 − ν)[√1 + (y/c)2 − (y/c)] + (1 + ν)√

1 + (y/c)2

}
. (13.74)

Measurements of the convergence of two pairs of points initially located at two
different values of y will allow both E and ν to be estimated, using (13.74).
However, Li and Cornet (2004) numerically modeled the deformation occurring
during a flat-jack test in a fractured rock mass at a granite quarry in central
France and found that full three-dimensional modeling was needed in order to
yield estimates of E that agreed with those inferred from laboratory and seismic
tests.
Stress measurement using flat-jacks is similar to hydraulic fracturing in that

neither method requires knowledge of the elastic moduli of the rock. There are
several other methods of subsurface stress estimation that do require knowledge
of the elastic moduli, because they actually measure displacements or strains and
rely on Hooke’s law to convert the strains to stresses. Many of these methods
can collectively be referred to as relief methods, as they involve a coring or drilling
operation that relieves the stresses in some small region of rock, accompanied by
measurement of the deformation that occurs during this stress relief. Application
of Hooke’s law allows the stress change to be estimated, thereby giving the initial
stresses that existed in the rock prior to the stress relief. In order to apply Hooke’s
law, independent measurements must be made of the elastic moduli of the rock
in that region, preferably on the same specimen that had been involved in the
stress relief.
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Fig. 13.6 Stress
measurement by
overcoring, using a
device such as the
USBM gauge: (a) gauge
is inserted into the pilot
hole, (b) which is then
overcored, creating an
annular region (shaded)
that is relieved of stress.
The resulting
deformation is
measured by the gauge.

Large-diameter hole Pilot hole

Gauge

Free surface of excavation

(a)

Large-diameter hole Overcored hole

Free surface of excavation

(b)

Among the most common stress relief methods are those that are carried out
in a borehole and involve overcoring. One stress-measurement device that utilizes
the concept of overcoring is the US Bureau of Mines stress gauge (Obert et al.
1962; Hooker et al., 1974). The USBM gauge is essentially a cylindrical tool
that has three diametrically opposed pairs of pistons protruding from its outer
surface, equally spaced around the circumference. These pistons are connected
inside the tool to cantilevers whose deflection is measured with strain gauges.
To use the USBM gauge, a small diameter borehole, of roughly the same

diameter as the gauge (38mm), is drilled into the rock. The gauge is inserted
into the hole, and the pistons are initially tensioned so as to make good contact
with the borehole walls (Fig. 13.6a). This small hole is then overcored with a
larger diameter drill bit (typically 150mm), to a depth extending at least one
overcore diameter past the gauge (Fig. 13.6b). The overcoring process will create
an annular rock region that is essentially free of stress. As the stresses that had
been acting on this annular region are relieved, the ensuing radial deformation
of the (inner) borehole is measured by the three sets of cantilevers.
Hooke’s law is then used to relate the displacements at the borehole to the

change in stress. This requires an analytical expression for the stress state that
existed in the annular region before it was overcored, as a function of the initial
in situ stresses. Analytical solutions have been presented for isotropic media by
Leeman (1967) and Hiramatsu and Oka (1968), and for anisotropic media by
Becker (1968) and Hooker and Johnson (1969). A very general solution, valid
for transversely isotropic or orthotropic media, with an arbitrary inclination
between the borehole and the axes of elastic symmetry of the rock, has been
presented by Amadei and Stephansson (1997, section 5.4.2).
Overcoring can also be used to measure the strain relief that occurs at the

flat bottom surface of a borehole (Fig. 13.7). For example, consider the CSIR
doorstopper cell developed at the SouthAfricanCouncil for Scientific and Industrial
Research (Leeman, 1964,1967,1971). This cell consists of a cylindrical plug of
silicone rubber, 35mm in diameter and of roughly the same height, on the
bottom surface of which is attached a rosette of three or four strain gauges.
The cell is pressed against the flattened and smoothed bottom surface of the
borehole and glued into place. The cell is then overcored to relieve the stresses
from the region of rock to which the cell is attached. The strains are recorded
before and after overcoring. Again, elastic solutions for the local stresses and
strains at the bottom of a truncated cylindrical cavity are needed in order to
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Fig. 13.7 Stress
measurement using the
doorstopper cell: (a) cell
is glued to the flat
bottom face of
borehole, (b) which is
then overcored, creating
a cylindrical region
(shaded) that is relieved
of stress. The resulting
strains are measured by
the strain gauges
mounted on the face of
the cell.

Drill hole Doorstopper

Free surface of excavation

(a)

Drill hole Overcored hole

Free surface of excavation

(b)

relate the measured strains to the stresses. As this geometry does not permit a
closed-form analytical solution, the stress–strain relations used in the analysis
are usually simple relations fit to the results of numerical simulations (Galle and
Wilhiot, 1962; Leeman, 1964; Hoskins, 1967; Bonnechere and Fairhurst, 1968;
van Heerden, 1969; Coates and Yu, 1970; Hocking, 1976; Rahn, 1984). Due to
the geometry of the doorstopper cell, stresses can only be estimated within the
plane normal to the borehole axis, provided that the borehole is aligned with
one of the principal stress directions.
Fairhurst (2003) has given an historical review of subsurface stress-

measurement methods. Sjöberg et al. (2003) describe a suggested methodology
for overcoring measurements, with particular reference to the Borre stress probe
developed at the Swedish State Power Board. Worotnicki (1993) provides a
detailed analysis of the CSIRO (Australia) hollow inclusion stress cell. Sev-
eral other stress-measurement devices are described and analyzed by Amadei
and Stephansson (1997). Many articles describing recent advances in subsur-
face stress estimation methods, along with some case studies and four ISRM
Suggested Methods for rock stress estimation, are contained in a Special Issue
of the International Journal of Rock Mechanics and Mining Sciences (Hudson and
Cornet, 2003).
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14.1 Introduction As remarked in Chapter 1, many of the problems of structural geology are similar
to those of engineering rock mechanics, except that they are on a larger scale.

The basic concepts of Mohr–Coulomb failure, as described in Chapter 4, are
used in §14.2 to explain the classic Andersonian theory of the types of faulting
that may be expected to occur in various subsurface stress regimes. Hubbert and
Rubey’s classic analysis of low-angle overthrust faulting, which is based on the
Mohr–Coulomb failure model and the effective stress principle, is presented in
§14.3. In §14.4, elasticity theory is used to develop some models for the stresses
around faults. The relationship between the shear stress acting on a fault and the
relative displacement of the two opposing fault faces, is discussed for several fault
geometries. The mechanics of igneous intrusion is studied in §14.5, again using
basic ideas of rock mechanics discussed in previous chapters. Sheet intrusions
are analyzed based on the Griffith failure model of §10.9, and some elastic stress
solutions from §8.12 are used to study ring dykes and cone sheets. Beam models
for crustal deformation and folding are developed in §14.6, based on the elastic
beam equations of §6.9 and the viscoelastic stress–strain laws presented in §9.9.
Finally, in §14.7, energy considerations from Chapter 5, along with the frictional
sliding models of Chapter 3, are used to provide a simple explanation of some
aspects of earthquakes.

This chapter, by necessity, touches only briefly on a few geological and geo-
physical applications of rock mechanics. Further analysis of geological structures,
based on the principles of continuum mechanics in general and rock mechanics
in particular, can be found in various books on structural geology, such as Price
and Cosgrove (1990), Bayly (1992) and Pollard and Fletcher (2005).

14.2 Stresses and
faulting

The phenomena of brittle fracture discussed in Chapter 4 on a laboratory scale
occur as well on a geological scale. Faults are geological fractures of rock for
which there is a relative displacement of the rock on the two opposing faces.
They are therefore shear fractures in the sense of §4.4. Griggs and Handin (1960)
and others have used the term “fault” for shear fractures on both the laboratory
and geological scale.

The surface of the fracture is referred to as the fault plane and is specified by
its strike and dip. The strike is the direction of any horizontal line in the fault
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plane, often measured relative to due north. The dip is the angle between the
horizontal plane and the fault plane, measured within a vertical plane that is
normal to the fault plane. If the relative motion along the fault plane is in the
direction of the strike, the fault is described as a strike-slip fault. If the motion is
in the direction of the dip, the fault is called a dip-slip fault. If the motion is in
some other direction, the fault is referred to as oblique-slip.

In strike-slip faulting, the observed fault plane is often nearly vertical. If a
hypothetical observer stands vertically and faces the plane, the fault is called
right-handed, or dextral, if the rock on the opposite side of the fault has moved to
the right, and left-handed, or sinistral, if the rock on the opposite side of the fault
has moved to the left. The terms “wrench fault” and “transcurrent fault” have
also been used for strike-slip faults.

A dip-slip fault is referred to as a normal fault if its dip angle is greater than
45◦, and if the upper surface (the hanging wall) has moved downward relative to
the lower surface (the footwall). If the hanging wall has moved upward relative
to the footwall, the fault is described as a reverse fault. If the dip is less than 45◦,
and the hanging wall moves upward relative to the footwall, the fault is a thrust
fault. Thrust faults with very shallow dips, say less than 10◦, are called overthrust
faults. Normal faults with small dip angles are known as detachment faults.

These types of fault were discussed by Anderson (1951) on the basis of the
Mohr–Coulomb theory of shear fracture (§4.5) and classified on the basis of the
relative magnitudes of the principal stresses. According to this theory, fracture
takes place in one or both of a pair of conjugate planes that pass through the
direction of the intermediate principal stress and are equally inclined at an angle
less than 45◦ from the direction of the maximum principal stress.

Under the usual assumption that one principal stress is vertical, three cases
arise.

14.2.1 Thrust faulting

If the vertical stress is the least principal stress, failure may occur on either of two
planes such as the one shown in Fig. 14.1a, inclined at an angle ψ < 45◦ to the
horizontal.

14.2.2 Normal faulting

If the vertical stress is the greatest principal stress, failure may occur on either of
two planes such as the one shown in Fig. 14.1b, inclined at an angle ψ < 45◦ to
the vertical.

14.2.3 Strike-slip faulting

If the vertical stress is the intermediate principal stress, failure may occur on either
of two vertical planes such as the one shown in Fig. 14.1c, inclined at an angle
ψ < 45◦ to the σ1 direction.
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Fig. 14.1 (a) Thrust
fault (vertical plane),
(b) normal fault (vertical
plane), and (c) strike-slip
fault (horizontal plane).
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Fig. 14.2 Mohr’s
circle analysis of
(a) thrust faulting,
(b) normal faulting, and
(c) strike-slip faulting,
according to the
Mohr–Coulomb failure
criterion.
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The angle between the fault plane and the direction of maximum principal
stress is, by (4.6),

ψ = (π/2)− α = (π/4)− (φ/2), (14.1)

where φ is the angle of internal friction. Since values of φ between 30◦ and 55◦
are commonly measured in laboratory experiments, values of ψ between 17◦
and 30◦ might be expected in the field. Sax (1946) observed values of 25◦–30◦ for
normal faults, and 20◦–25◦ for thrust faults, in the South Limburg coalfield region
of the Netherlands. Price (1962) found similar values in western Wales. Values
of ψ in the order of 30◦ are commonly measured for strike-slip faults (Moody
and Hill, 1956; Williams, 1959). Hence, there is quite good agreement between
laboratory and geological measurements, based on the simple Mohr–Coulomb
theory.

Hubbert (1951) used Mohr diagrams to study the stress ratios that may be
expected to cause the different types of faulting. Making only the simple assump-
tion that one of the principal stresses is the vertical lithostatic stress, the three
types of faulting discussed above can be represented as in Fig. 14.2. For thrust
faulting to occur, the vertical stress is σ3, and σ1 must increase until the (σ1, σ3)

Mohr’s circle touches the failure line (Fig. 14.2a). Hence, fairly high values of σ1,
relative to σ3 = ρgz, will be needed to cause thrust faulting.

For normal faulting, the vertical stress will be the greatest principal stress,
and so the least principal stress σ3 must be reduced until the (σ1, σ3) Mohr’s
circle touches the failure line (Fig. 14.2b). If ρgz is less than the unconfined
compressive strength of the rock, then the required value of σ3 would actually
be tensile. Hence, it seems that the horizontal stresses will be small in regions in
which normal faulting occurs.
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For strike-slip faulting, the vertical stress will be the intermediate principal
stress. Faulting will, as always, occur when the (σ1, σ3)Mohr’s circle touches the
failure line. If σ1 is only slightly greater than σ2 = ρgz, this will occur when
σ3 is reduced to A as in Fig. 14.2c. If σ3 is only slightly less than σ2 = ρgz,
this will occur when σ1 is increased to B. Other stress states sufficient to cause
strike-slip faulting will fall between these two sets of bounds on σ1 and σ3, that
is, A < σ3 < ρgz < σ1 < B.

14.2.4 Oblique-slip faulting

In this case, it is necessary to study in more detail the direction of the shear
stress in an arbitrary plane, following the discussion of the stress transformation
equations in §2.6. Let line OP in Fig. 14.3 be the normal to the plane, and let the
direction cosines of this line relative to the principal stress axes Oxyz be denoted
by {l, m, n}. Line OP can also be specified by its colatitude, θ , and longitude, λ.

Taking new axes Pz′ along direction OP, Px′ in the plane OPz, with Py′
completing the right-handed Cartesian coordinate system, the stresses in the
plane Px′y′ are

τz′z′ = (τxx cos2 λ+ τyy sin2 λ) sin2 θ + τzz cos2 θ , (14.2)

τ ′ ≡ τx′z′ = 1
2 (τxx cos2 λ+ τyy sin2 λ− τzz) sin 2θ , (14.3)

τ ′′ ≡ τy′z′ = − 1
2 (τxx − τyy) sin θ sin 2λ. (14.4)

Introducing the direction cosines {l,m, n} of line OPz′, namely

l = sin θ cos λ, m = sin θ sin λ, n = cos θ , (14.5)

Fig. 14.3 Geometric
construction for
studying oblique-slip
faulting (see text for
details).
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(14.3) and (14.4) can be written as

τ ′ = [m2(τyy − τxx)− (1 − n2)(τzz − τxx)]n(1 − n2)−1/2, (14.6)

τ ′′ = (τyy − τxx)lm(1 − n2)−1/2. (14.7)

The stresses τ ′ and τ ′′ are positive in the directions PA and PB, and the angle ω
that the resultant shear stress makes with PA is given by

tanω = n
lm

[
m2 − (1 − n2)

τzz − τxx

τyy − τxx

]
. (14.8)

Suppose now that the principal stress τzz is vertical, and consider positive
values of l, m, and n. If faulting takes place, the direction of slip will be parallel to
PC, and the system can be characterized by this direction. Now if τyy > τxx , then
(14.7) shows that τ ′′ > 0, and the direction of slip is to the right, so the system
is called dextral. If τyy < τxx , then τ ′′ < 0, and the system is called sinistral.

If τyy > τxx > τzz, it follows from (14.8) that tanω → ∞ if τyy approaches
τxx , and tanω → nm/l if τyy approaches τzz. Hence, if τyy > τxx > τzz, then

tan−1(nm/l) < ω < 90◦, (14.9)

and the system is called dextral thrust. Similarly, if τyy > τzz > τxx , then

− tan−1(ln/m) < ω < tan−1(nm/l), (14.10)

and the system is called dextral wrench. Finally, if τzz > τyy > τxx , then

−90◦ < ω < − tan−1(ln/m), (14.11)

and the system is called dextral gravity.
Similarly, there are three sinistral cases, and, allowing for the six cases on which

two stresses are equal, Bott (1959) distinguishes twelve “tectonic regimes” cor-
responding to various combinations of the tectonic stresses and the orientation
of the plane.

14.3 Overthrust
faulting and sliding
under gravity

Hubbert and Rubey (1959,1960,1961) investigated the importance of pore fluid
pressure in the mechanics of sliding of large rock masses, with particular reference
to low-angle overthrust faulting, along with some related problems of geological
significance.

Consider slab OABC of height h and length L, sliding along horizontal plane
CB, on which the coefficient of sliding friction is µ (Fig. 14.4a). The origin is
taken at O and the mean density of the fluid-filled rock is ρ, so the vertical stress
at depth z is τzz = ρgz. The pore fluid density is written as ρf = λρ, where λ
is some number less than unity, so the pore pressure p at depth z is p = λρgz. If
τ ′
zz = τzz − p is the effective stress, then

τzz = ρgz, p = λρgz, τ ′
zz = (1 − λ)ρgz. (14.12)
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Fig. 14.4 Two
scenarios analyzed by
Hubbert and Rubey
(1959): (a) block being
pushed along a
horizontal surface; (b)
block sliding down a
sloped surface.
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The slab is now imagined to be pushed to the right by stresses τxx applied on
face OC. These stresses are assumed to be the maximum sustainable by the rock,
so that the rock is in a state of incipient failure all along OC. Writing (4.13) in
terms of the effective stresses, we have

τ ′
xx = Co + qτ ′

zz = Co + q(1 − λ)ρgz, (14.13)

where Co and q = tan2 β are the Mohr–Coulomb parameters for the rock mass.
It follows that

τxx = Co + ρgz[q + λ(1 − q)]. (14.14)

The condition for motion along face BC is found by writing (3.6) in terms of
effective stresses:

τzx = So + µ(1 − λ)ρgh, (14.15)

where So is the inherent shear strength of surface BC, and it is recalled that, to
calculate the effective stress, the pore pressure is subtracted only from the normal
stresses.

As the total shear force along BC that resists motion will increase with L, but
the driving force along OC is independent of L, the problem is to determine the
maximum length L that can be moved in this manner. This is achieved by noting
that, for the slab to be in static equilibrium, the net force acting on it in the x
direction must be zero, that is,

h∫
0

τxx(x = 0)dz =
L∫

0

τzx(z = −h)dx. (14.16)

Substituting expressions (14.14) and (14.15) for the stresses into this force balance
and integrating gives

Coh + ρg[q + λ(1 − q)]h
2

2
= SoL + µ(1 − λ)ρghL , (14.17)

which can be solved to yield

L = 2Coh + ρgh2[q + λ(1 − q)]
2So + 2µ(1 − λ)ρgh

. (14.18)
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Hubbert and Rubey (1959) examined some specific cases and showed that the
effect of pore fluid pressure, as represented by the coefficient λ, may be to greatly
increase the sliding distance L.

Consider now a block OABC of length L and depth h, sitting on a surface CB
having slope q, coefficient of sliding friction µ, and inherent shear strength So
(Fig. 14.4b). If ρ is the mean density of the fluid-saturated medium and λρ is the
density of the pore fluid, then the shear stress acting along CB is

τ = ρgh sin θ cos θ , (14.19)

and the compressive normal stress acting along CB is

σ = ρgh cos2 θ . (14.20)

Using a variation of the effective stress concept, Hubbert and Rubey (1959)
argued that the effective normal stress should not include the fluid density term,
in which case

σ ′ = ρ(1 − λ)gh cos2 θ . (14.21)

The condition for the block to slide down the slope is then τ ≥ So +µσ ′, that is,

ρgh sin θ cos θ ≥ So + µρ(1 − λ)gh cos2 θ . (14.22)

For the simple case in which So = 0, sliding will occur if

tan θ ≥ µ(1 − λ). (14.23)

Hence, the effect of pore pressure will be to reduce the minimum angle at which
sliding may occur. Two slightly more complicated models for this phenomenon
have been analyzed by Raleigh and Griggs (1963).

14.4 Stresses
around faults

In a Volterra dislocation, a cut is made across a surface in an elastic solid, a shear
displacement takes place along this surface, and the two faces are then welded
together. The result is a state of stress and strain in the medium, in the absence
of any applied external loads. The concept of a Volterra dislocation can be used
to develop simple models of the stresses around faults.

Based on some analytical solutions developed by Steketee (1958), Chinnery
(1961, 1966a,b) used the concept of dislocations to model a strike-slip fault as a
uniform shear displacement U taking place over a rectangular region within the
fault plane (Fig. 14.5a). The fault plane is located within the z < 0 half-space,
z = 0 is taken to be a free surface, and the dislocation surface is defined by

−L < x < L, −(D + d) < z < −d, y = 0. (14.24)

The shear displacement on the fault surface occurs in the x direction. In general,
the integrals that define the displacement field must be evaluated numerically,
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Fig. 14.5 Two
dislocation models for a
strike-slip fault: (a)
Chinnery (1961), (b)
Knopoff (1958). Shear
displacement along the
fault is in the x
direction.
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but in the limiting case of L → ∞, the displacements components can be
explicitly evaluated. The only nonzero displacement is

u = U
2π

[
arctan

(
D + z
y

)
+ arctan

(
D − z
y

)

− arctan
(
d + z
y

)
− arctan

(
d − z
y

)]
. (14.25)

It follows that the only nonzero stress components are

τxy = GU
2π

[
d + z

y2 + (d + z)2
+ d − z

y2 + (d − z)2

− D + z
y2 + (D + z)2

− D − z
y2 + (D − z)2

]
, (14.26)

τxz = GUy
2π

[
1

y2 + (D + z)2
− 1

y2 + (D − z)2

− 1
y2 + (d + z)2

+ 1
y2 + (d − z)2

]
. (14.27)

On the free surface z = 0, the stress component τxz vanishes, as it must, and

u = U
π

[
arctan

(
D
y

)
− arctan

(
d
y

)]
, (14.28)

τxy = GU
π

[
d

y2 + d2 − D
y2 + D2

]
. (14.29)

Knopoff (1958) developed exact solutions for an infinitely long, vertical strike-
slip fault that extends from the surface down to a depth a (Fig. 14.5b). Imagine
first an intact semi-infinite space bounded by the plane z = 0, subjected to a
uniform shear stress τyx , with magnitude τ . Now imagine that slip occurs over
a fault plane defined by

−∞ < x < ∞, −a < z < 0, y = 0. (14.30)
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This slip causes the magnitude of the shear stress along the fault plane to drop
from τ down to 0. The resulting displacement field was found by Knopoff to be
given by

u = τ

G
Im

√
(z + iy)2 − a2, v = 0, w = 0, (14.31)

where z and y must each be considered to be real variables. In the plane of the
fault, y = 0, the displacement in the slip direction is found from (14.31) to be
given by

u = 0 for |z| > a, u = ± τ
G

√
a2 − z2 for |z| < a, (14.32)

which shows that the relative displacement of two points that are initially facing
each other across the fault is equal to 2τa/G at the surface and drops monoton-
ically with depth, vanishing at depth a. Along the free surface, z = 0, (14.31)
shows that the displacements parallel to the fault plane are ±(τ/G)(y2 + a2)1/2.
The nonvanishing stress components are given by

τyx = τRe

[
z + iy√

(z + iy)2 − a2

]
, τxz = τ Im

[
z + iy√

(z + iy)2 − a2

]
. (14.33)

The mean value of the relative fault displacement, averaged over the depth of
the fault, is

�u = 1
a

0∫
−a

2τ
G

√
a2 − z2 dz = 2τ a

G

1∫
0

√
1 − s2 ds = πτ a

2G
. (14.34)

The mean offset of the fault is therefore related to the drop in shear stress by
�u = πa�τ/2G. Hence, 2G/πa can be identified as the spring constant k that
could be used in the “mass on a spring” model discussed in §3.4.

Another model for the relationship between the shear displacement and stress
drop along a fault can be developed by assuming that the displacement occurs
over a circular region of the fault, having radius a. The local relative displacement
due to a uniform stress change τ over the circular region is given by (8.311):

�u = 8(1 − ν)τ a
π (2 − ν)G

√
1 − (r/a)2, (14.35)

where the coordinate system is aligned so that x direction lies in the plane of the
crack, parallel to τ . The mean value of the relative displacement is

�u = 1
π a2

a∫
0

2π∫
0

8(1 − ν)τ a
π(2 − ν)G

√
1 − (r/a)2 rdrdθ

= 16(1 − ν)τ

π(2 − ν)Ga

a∫
0

√
1 − (r/a)2 rdr = 16(1 − ν)aτ

π(2 − ν)G

1∫
0

√
1 − ρ2 ρ dρ

= 16(1 − ν)aτ
3π(2 − ν)G

. (14.36)
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In this case, the spring constant k that relates the stress change to the mean shear
displacement is 3π(2 − ν)G/16(1 − ν)a. This value is often reported (Scholz,
1990, p. 182) as 7πG/16a, following the common geophysical assumption that
ν = 1/4. This result, along with the result k = 2G/π a for an infinite fault of
depth a, illustrates the general fact that k = CG/a, where a is the characteristic
dimension (usually the “smallest” dimension) of the slipped region and C is a
dimensionless constant on the order of unity.

14.5 Mechanics of
intrusion

The primary mechanism of igneous intrusion is thought to be tensile failure
under stresses caused by the pressure of magma, and several models for this
process have been proposed.

14.5.1 Sheet intrusions

The obvious model for this case is a flat elliptical crack filled with magma at
a pressure p (Anderson, 1937). This was discussed in §10.9 in the context of
Griffith’s failure criterion. Modifying those results to account for pore pressure
and using notation appropriate to a three-dimensional stress state, the condition
for the crack to propagate becomes

σ3 − p + To = 0, (14.37)

provided that σ1 + 3σ3 < 4p.
Vertical dykes are frequently associated with normal faulting, so it may be

assumed that they have been formed under conditions in which the horizontal
principal stress σh is less than the vertical stress ρgz. In this case, condition (14.37)
becomes

p = σh + To, (14.38)

provided that ρgz + 3σh < 4p. This condition is likely to be satisfied as p is
expected to be on the order of ρgz.

According to the present model, horizontal sheets of magma can propagate if
σh > ρgz, and (14.37) gives

p = ρgz + To, (14.39)

provided that σh+3ρgz < 4p. Pollard and Holzhausen (1979) analyzed this prob-
lem in more detail, using Schwarz’s iterative approach to develop an approximate
solution for the manner in which the traction-free ground surface changes the
state of stress along the boundary of the horizontal crack.

If the pressure in the crack is sufficiently larger than the weight of the over-
burden, the magma can lift the overburden and form a laccolith. Kerr and Pollard
(1998) studied laccolith formation by modeling the overburden as an elastic plate,
using the governing equation for plate bending that is analogous to the equation
of beam bending used in §14.6. Zenzri and Keer (2001) extended these models
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further by allowing the substrate and overburden to have different elastic moduli
and considered both elongated intrusions, idealized as plane strain problems, as
well as axisymmetric geometries.

14.5.2 Ring dykes and cone sheets

Anderson (1935) discussed the effects caused by pressure in a spherical magma
chamber near the Earth’s surface. He considered the stresses due to a small,
pressurized spherical cavity of radius a, located at depth d � a below the surface
(Fig. 14.6), that is, at z = d, with the z-axis taken to point downward. To solve
this problem, he started with the solution to this problem of a pressurized cavity
in an infinite medium, as given in (8.304)–(8.306). This solution gives unwanted
tractions at the free surface, z = 0. As a first step to removing these tractions,
Anderson imagined that the half-space was replaced by an infinite medium and
considered an “image” cavity located at z = −d. In Cartesian coordinates, the
displacements due to the superposition of these two pressurized cavities are

u1 = −Pa3x(r−3
1 + r−3

2 ), v1 = −Pa3y(r−3
1 + r−3

2 ),

w1 = −Pa3[(z − d)r−3
1 + (z + d)r−3

2 )], (14.40)

where r1 and r2 are the lengths of AP and A′P in Fig. 14.6a, that is,

r1 = [x2 + y2 + (z − d)2]1/2, r2 = [x2 + y2 + (z + d)2]1/2. (14.41)

By symmetry, this image cavity cancels out the shear stresses on the plane z = 0.
However, there is still an unwanted normal stress on the free surface, given by

τzz = −4GPa3(r−3
1 − 3d2r−5

1 ). (14.42)

These tractions can be removed by superposing the solution for the half-space
z > 0, with the negative of these tractions applied at the surface. This solution

Fig. 14.6 (a) Small
pressurized cavity A at
depth d below free
surface and image cavity
A′, and (b) the
computed stress
trajectories.
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can be found by appropriate superposition of the fundamental solution for a
point load on a half-space that was presented in §13.5. The result is

u2 = 2Pa3
[

3xz(z + d)
r5
2

− (1 − 2ν)x
r3
2

]
, (14.43)

v2 = 2Pa3
[

3yz(z + d)
r5
2

− (1 − 2ν)y
r3
2

]
, (14.44)

w2 = 2Pa3
[

3z(z + d)2

r5
2

+ (1 − 2ν)z
r3
2

+ 2(1 − ν)d
r3
2

]
. (14.45)

The complete solution (see also Mindlin, 1936) is then given by u = u1 + u2,
etc., after which the stresses can be found by the usual process of differentiation
and application of Hooke’s law.

As a second example, Anderson considered a point force of magnitude F ,
acting vertically upward at point A. In this case, the complete displacement field
was found to be

u=B
[−x(z−d)

r3
1

+ (3−4ν)x(d−z)
r3
2

+ 4(1−ν)(1−2ν)x
r2(r2 +z+d)

− 6dxz(z+d)
r5
2

]
,

(14.46)

v=B
[−y(z−d)

r3
1

+ (3−4ν)y(d−z)
r3
2

+ 4(1−ν)(1−2ν)y
r2(r2 +z+d)

− 6dyz(z+d)
r5
2

]
,

(14.47)

w=B




−(z−d)2

r3
1

+ (z+d)2

r3
2

− (3−4ν)
r1

+ (3−4ν)
r2

− 8(1−ν)2
r2

−6dz(z+d)2

r5
2

− 4(1−ν)2z2

r3
2

− 2(3−4ν)dz
r3
2

− 2d2

r3
2


, (14.48)

where B = −F/16πG(1 − ν).
For geological applications, it is sufficient to consider this latter case of the

vertical push at A, the stress trajectories of which are shown in Fig. 14.6b. Of
these, the set of type EF, E′F ′, corresponds to a tensional principal stress and
intersects the surface vertically in circles centered at O and having diameter
FF ′. Thus, a force at A due to upward-thrusting magma would be expected to
cause tensional failure on these surfaces and give rise to circular system of dykes,
dipping approximately vertically. These are the commonly observed ring dykes.
The theory for a center of hydrostatic pressure, derived from displacements
(14.43)–(14.45), leads to similar conclusions.

Associated with ring dykes, another circular system, cone sheets, also occurs.
These dip outward from the center. The mechanism suggested for these involves
a retreat of magma from the magma chamber. Since this region will now have
a density less than the normal value, this effect may be simulated by a negative
(i.e., downward) push at A. The stress trajectories will be as for the upward force,
but σ3 will now lie along the set EF and σ1 in the orthogonal direction. Shear
failure may be expected to occur along curves such as HK inclined at an angle ψ
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to the trajectories of greatest principal stress, such as RS, where angle ψ will be
in the order of 30◦. As seen in Fig. 14.6b, these directions, shown in heavy lines,
dip outward in the required fashion. Further discussion of these phenomena has
been given by Robson and Barr (1964).

14.6 Beam models
for crustal folding

The problem of bending of an elastic (or viscoelastic) beam or plate has often
been used to develop models for deformation of the lithosphere. Consider a beam
AOB of length 2L that is freely hinged at its two ends and is subjected to an axial
compressive force F (Fig. 14.7). Suppose also that the vertical movement of this
beam is resisted by a restraining force applied at it midpoint by an elastic spring
of stiffness k. Imagine that the centre point O of the beam has been displaced
downward by an amount vo. The restraining force exerted by the spring will be
kvo, and so reaction forces of −kvo/2 must be supplied at the two hinges.

Taking the origin to be located at the displaced position of the midpoint of
the beam, for 0 ≤ z ≤ L, the governing equation (6.20) for the deflection of the
beam takes the form

EI
d2v
dz2 = F(vo − v)− 1

2
kvo(L − z), (14.49)

where E and I are the Young’s modulus and moment of inertia of the beam,
respectively. By symmetry, only the region 0 ≤ z ≤ L needs to be considered.
The general solution of this differential equation is

v = A sinωz + B cosωz + vo − (k/2F)vo(L − z), (14.50)

where ω = √
F/EI. The constants must be chosen so that v(z = 0) = 0,

which follows from our choice of origin, and also to satisfy the two boundary
conditions,

v(z = L) = vo,
dv
dz
(z = 0) = 0. (14.51)

The conditions v(0) = 0 and v′(0) = 0 lead immediately to

B = [(kL/2F)− 1]vo, A = −(k/2Fω)vo, (14.52)

Fig. 14.7 Elastic
beam subjected to axial
compression and an
elastic restraining force
at its midpoint.
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which reduces (14.50) to the form

v = −(kvo/2Fω) sinωz + [(kL/2F)− 1]vo cosωz + vo − (kvo/2F)(L − z).
(14.53)

Finally, imposition of the condition v(L) = vo leads to

{−(k/2Fω) sinωL + [(kL/2F)− 1] cosωL} vo = 0. (14.54)

This equation could be satisfied by choosing vo = 0, which corresponds to
a beam that has undergone no deflection, but this solution is of no interest in
the present context. However, if F takes on a value that causes the bracketed
term in (14.54) to vanish, then a solution exists for any value of the amplitude
vo. Such values of F , known as the eigenvalues of this boundary-value problem,
are therefore the roots of the following equation:

tanωL = ωL
[

1 − 2EI
kL3 (ωL)

2
]

. (14.55)

Although this is a transcendental equation that must be solved numerically,
there are an infinite number of positive roots for the parameter ωL. Recalling
that ω = √

F/EI, these values of ωL define the critical values of the axial load F
for which nontrivial deflections of the beam can occur. This type of deformation,
in which the beam deflects in a direction that is normal to the applied load F , is
known as buckling.

In the special case of no elastic restraint, that is, k = 0, (14.55) reduces to
tanωL = −∞, the positive roots of which are ωL = π/2, 3π/2, etc. The most
important root is the smallest one, ωL = π/2, which leads to a critical axial
load of

Fcrit = π2EI
4L2 . (14.56)

This problem was first analyzed in 1744 by the Swiss mathematician and mechani-
cian, Leonhard Euler, and so (14.56) is known as the Euler buckling load for a freely
hinged column. In this case, (14.53) reduces to

v(z) = vo[1 − cos(πz/2L)], (14.57)

and the deformed configuration of the entire beam is seen to be one half-
wavelength of a cosine function; the full wavelength of this configuration would
be 4L. If F increases slowly from some small value, the beam will not deflect
as long as F is less than the critical value given by (14.56). When this value is
reached, the beam can assume the sinusoidal shape given by (14.57). The ampli-
tude of the deflection, vo, will be controlled by the other kinematic constraints
of the problem.

The case in which the deflection of the beam is resisted by an elastic medium
that supplies a restraining force that is proportional to the vertical displacement
at all points along the beam may be treated in the same manner (Goldstein,
1926).
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The foregoing analysis can be generalized as follows. Consider an infinite
beam subjected to an axial force F and a distributed load in the y direction given
by q(z). The governing equation (6.20) then takes the form

EI
d2v
dz2 =

∫
z

q(ξ)(ξ − z)dξ − Fv, (14.58)

where the integral gives the moment due to the distributed loads. Differentiating
twice with respect to z yields

EI
d4v
dz4 + F

d2v
dz2 = −q(z). (14.59)

Suppose that the deflection of the beam is resisted by a viscous medium, as
described in §9.9, in which case (14.59) takes the form

EI
d4v
dz4 + F

d2v
dz2 = −ηdv

dt
. (14.60)

We look for solutions to (14.60) that are spatially periodic with wavelength
λ = 2π/ω, and so we take v(z, t) = V(t) exp(iωz). Inserting this form into
(14.60) yields

η
dV
dt

= ω2(F − EIω2)V , (14.61)

the solution to which is

V(t) = Vo exp[ω2(F − EIω2)t/η]. (14.62)

For fixed values of the parameters {F , E, I}, this solution will decay to zero with
time for spatial frequencies ω that are greater than

√
F/EI. Hence, if for any

reason the beam starts to take on a shape having a spatial frequency greater
than this value, the viscous restraint force will tend to force it back into its
straight, undeformed configuration. Deformations with spatial frequencies less
than this critical value, on the other hand, will tend to grow in time. Of course,
at some point, the assumptions of linear elastic behavior and small deflections,
which were required for the derivation of (6.20), will cease to hold. But this
linear analysis does nevertheless indicate the tendency for deflections having
sufficiently long wavelengths to grow in an unstable manner.

This smallest unstable wavelength is given by λ = 2π
√
EI/F . Recalling that

the wavelength of the unstable configuration of the hinged beam of length L
was 4L, we see from (14.56) that this smallest unstable wavelength corresponds
exactly to the wavelength of the shortest hinged beam that would be unstable
under a given axial load F . This critical value of λ = 2π

√
EI/F is known as

the Euler wavelength, and deformations having any wavelength greater than this
are also unstable. But the coefficient ω2(F − EIω2) appearing in (14.62) attains
its maximum value when ω = √

F/2EI, and so in some sense the wavelength
λd = 2π

√
2EI/F is the “most unstable,” as configurations having this wavelength
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will grow fastest. If the beam initially has some arbitrary small deflection, which
by Fourier analysis can be decomposed into a superposition of different spatial
frequencies, eventually the frequency ωd = √

F/2EI will dominate, and the
beam will assume the shape of a sinusoid of this frequency.

Biot (1961) gave the foregoing analysis as a preliminary to the discussion of
the folding of geological systems. He considered next the case of an elastic plate
of thickness h, immersed in an infinite medium of viscosity η, and found the
dominant wavelength to be given by λd = πh[E/(1 − ν2)F]1/2, where F is
now the in-plane, normal compressive traction applied to the edges of the plate.
Finally, he considered a planar viscous sheet of thickness h and viscosity ηs,
immersed in a medium of viscosity η, and found λd = 2πh[ηs/6η]1/3. This
theory can be extended to several layers and to include the effects of gravity
(Biot, 1957,1961,1965; Biot et al., 1961; Currie et al., 1962; Ramberg, 1964).
Ramberg (1967) discussed the use of physical scale models to study such prob-
lems. A detailed discussion of the folding of geological layers can be found in the
monograph by Johnson and Fletcher (1994).

14.7 Earthquake
mechanics

There are two outstanding features of earthquakes. First, earthquakes are con-
centrated into narrow zones that form a network around the Earth. Second,
those that occur at depths of less than 60 km account for 75 percent of all energy
released by earthquakes. These observations appear to be consistent with the
theory of plate tectonics, originally proposed in 1915 by Alfred Wegener as “con-
tinental drift” (Hallam, 1973). According to this theory, the crust comprises a
number of discrete plates that move across the surface of the Earth in response
to viscous flow in the mantle (Fig. 14.8). At locations where the relative motion
of these plates is resisted, mechanical instabilities may occur in the form of
earthquakes.

It is generally believed that most earthquakes are mechanical instabilities that
result from the sudden failure of rock to sustain the shear stresses that act across

Fig. 14.8 Spatial
distribution of
earthquakes and their
relationship to tectonic
plates (after Nur, 1974).
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a surface. The surface may be a preexisting fault or a new fracture caused by
the failure. If it is assumed as a first approximation that most of the rock around
such a surface responds in a linear, elastic manner to the sudden change in stress
associated with the earthquake, much of the mechanics of earthquakes can be
explained, in simple terms.

From such an assumption, it follows that a linear relationship exists between
any change in the value of the shear stress acting along the surface and the relative
tangential displacement of the two opposing faces. It is convenient to think in
terms of an average displacement and average shear stress, as in §14.4, which for
simplicity will be denoted here by u and τ . A schematic representation of this
linear relationship is shown in Fig, 14.9, with u taken to be zero and τ equal to
τ1 in the configuration before slip has occurred. The slope of this straight line is
determined by the shape and size of the surface and by the elastic moduli of the
adjacent rock, as discussed briefly in §14.4. For the present discussion, the value
of this slope, that is, the spring constant relating u and τ , is not needed.

Imagine now that slip occurs by an average amount u2, over an area A. If this
slip had occurred quasi-statically, that is, reversibly in a thermodynamic sense,
the system would have moved down line bega, starting at b and ending at g. In
this case, the work done by the rock would be given by the area A of the fault,
multiplied by the area obgho in Fig. 14.9, and this work would also necessar-
ily equal the loss in strain energy of the rock mass adjacent to the fault. The
area obgho is given by the product of the mean stress and the displacement, so
� elastic = A(τ1 + τ2)u2/2. But the elastic strain energy is a thermodynamic
state property, and so its change when the system moves from u = 0 to u = u2
cannot depend on the path. Hence, even if the fault displacement occurred in a
rapid, irreversible jolt, it must nevertheless be the case that

� elastic = A(τ1 + τ2)u2/2. (14.63)

It is convenient here to ignore signs and bear in mind that (14.63) is a positive
quantity that represents the elastic strain energy released by the rock mass.

Now consider the more realistic case of a sudden fault displacement, in which
the system does not necessarily follow curve bega at all times. It seems reasonable
to assume that this sudden motion is precipitated, or at least accompanied by,

Fig. 14.9 Schematic
diagram showing
average shear stress and
average relative
displacement across a
fault (see text for
details).
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a sudden drop in the shear stress, say to some value τF. Assume that the stress
along the fault remains at τF during the displacement. In this case, an amount
of energy equal to AτFu2 would be dissipated by friction along the fault. This
energy manifests itself as an increase in the temperature of the rock and so is
actually converted into internal energy. However, as this energy is no longer
either potential energy or mechanical energy of any sort, it is common to refer
to it as “lost” or “dissipated.” This frictional energy “loss” is proportional to area
dfho. Hence,

� friction = AτFu2, (14.64)

where again we treat this as a positive number and account later for the relative
senses of the various terms in the energy balance.

The difference between the elastic strain energy liberated during this process
and the frictional energy dissipated, will manifest itself mainly as seismic energy
in elastic waves that radiate outward from the fault surface. Assuming only these
three terms in the energy balance, the seismic energy released by the earthquake
is given by

� seismic = � elastic −� friction = A(τ1 + τ2)u2/2 − AτFu2. (14.65)

Without considering the details of this process, it follows immediately from
(14.65) that the frictional stress τF cannot exceed (τ1 + τ2)/2, or else the radiated
seismic energy would be negative, which is not physically plausible. Further-
more, the dynamic nature of the slip process would cause the two opposing
sides of the fault to overshoot the equilibrium position corresponding to stress
τF, which is given by e in Fig. 14.9; hence, τF must not be less than τ2 (Orowan,
1960).

The seismic energy (14.65) can also be written as

� seismic = A(τ1 − τ2)u2/2 − A(τF − τ2)u2 = Au2�τ/2 − A(τF − τ2)u2,
(14.66)

where�τ = τ1 − τ2 is called the stress drop. The stress drop is sometimes called
complete if τ2 = 0 and partial if τ2 > 0 (Kanamori, 1977). For a given stress drop,
the seismic energy will attain its maximum value if τF = τ2, in which case it
takes the value (Orowan, 1960)

� seismic = Au2�τ/2. (14.67)

The seismic efficiency η is defined as the ratio of the seismic energy released
during the earthquake to the elastic strain energy released by the rock. From
(14.63) and (14.66), we find

η = � seismic

� elastic
= (τ1 + τ2)/2 − τF

(τ1 + τ2)/2
= τ1 + τ2 − 2τF

τ1 + τ2
. (14.68)

The maximum efficiency occurs when τF = τ2, in which case

η = τ1 − τ2

τ1 + τ2
. (14.69)
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If the stress drop is small, this expression for maximum seismic efficiency reduces
to η ≈ �τ/2τ1. Assuming the often-quoted rule of thumb that the stress drop is
about one-tenth of the ambient stress (Scholz, 1990, p. 165), the seismic efficiency
would be about 0.05. Kanamori and Brodsky (2004) report that stress drops in
earthquakes are typically in the range of 1–10 MPa.

A parameter that is often used to quantify the sizes of earthquakes is the seismic
moment, M. This is a second-order tensor defined as

M = AG


 2unx uny + vnx unz + wnx
vnx + uny 2vny vnz + wny
wnx + unz wny + vnz 2wnz


 , (14.70)

where (u, v, w) are the Cartesian components of the relative displacement of the
opposing fault faces and (nx , ny, nz) are the components of the normal vector
to the fault plane. For example, a fault geometry such as shown in Fig. 14.5
would have u = (u, 0, 0) and n = (0, 1, 0), so the only nonzero components
of M would be Mxy = Myx = AGu, and hence AGu can be thought of as the
“magnitude” of the seismic moment. If the stress and displacement vary along
the fault, M would need to be calculated by integrating the terms in (14.70) over
the spatial extent of the slipped region of the fault.

According to the simple model described above, and assuming that τF = τ2,
it follows from (14.67) that the radiated seismic energy is related to the seismic
moment by

� seismic = M�τ/2G. (14.71)

The value of M varies by many orders of magnitude between different earth-
quakes, whereas the stress drop seems to vary by barely an order of magnitude
and likewise for the shear modulus. Hence, the seismic moment provides a rough
estimate of the seismic energy released in an earthquake.
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Airy stress function, 126, 207, 233, 263
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Amontons’ law, 66
Amphibolite, 97
Analytic functions, 206
Andersonian theory of faults, 419–23
Andesite, 97
Anelasticity, 355–7
Angle of friction

internal, 73
sliding, 69

Angular frequency, 328
Anhydrite, 87, 335
Anisotropic materials

elasticity of, 137–44
failure of, 103
permeability of, 185, 397

Argillaceous sandstone, 87
Aspect ratio, 232, 237, 294
Asperities, 77, 372
Äspö granite, 376
Associated flow rule, 261
Attenuation coefficient, 366
Attenuation of waves, 286, 355–60
Austin chalk, 388
Autocovariance, 367

Bandera sandstone, 294
Basalt, 2, 186, 335
Basic friction angle, 377
Beam model for crustal folding, 431–4
Bedding planes, 4, 6, 137, 186, 369
Beltrami–Michell equations, 121, 126, 135,

137
Bending

of beams, 162–5, 431–4
of plates, 434

Berea sandstone, 174, 190, 201, 294, 357
Bessel functions, 352
Biaxial strain, 113
Biaxial stress, 112
Biharmonic equation, 127, 207
Bilinear behavior, 165
Bingham substance, 275
Biot coefficient, 179, 182, 188, 190, 413
Biot modulus, 181, 187, 190
Biot theory of wave propagation, 354, 359
Biotite, 70
Bipolar coordinates, 250, 251
Body forces, 116, 123, 183, 200, 378
Boise sandstone, 190, 294
Borehole breakouts, 100, 102
Borehole televiewer, 415
Boreholes

displacements around, 216, 220, 227, 279
elastic wave emanating from, 351
hydraulic fracturing of, 197
with stresses along surface, 221–5
stresses around, 198, 204, 205, 218, 279

Borre stress probe, 418
Boundary-element method, 135, 205
Boussinesq problem, 408
Brazilian test, 159

theory of, 225–7
Breakdown pressure, 412
Brittle behavior, 84
Brittle–ductile transition, 86
Buckling, 432

with viscous restraint, 434
Bulk compressibility, 147, 170
Bulk modulus, 108, 190

effect of cracks on, 299, 305
undrained, 181, 190

Burgers substance, 274
Byerlee’s law, 69

Calcite, 2, 4, 5, 6, 70, 100, 284
Carrara marble, 86, 151, 162
Carrier wave, 331

Cauchy, 11
Cauchy’s first law, 12
Cauchy’s second law, 13
Cauchy–Riemann equations, 207
Cerruti problem, 408
Chalk, 162, 335, 388
Chloritite, 87
Circular cylinder, 225–8
Circular hole

in Coulomb rock, 257–60
in elastic rock, 216–21
in plastic rock, 256–7
in viscoelastic rock, 279

Clapeyron’s theorem, 134
Clay, 2, 4, 70, 186, 192, 335
Coal, 100, 160, 268, 270, 314, 335, 421
Coal measures, 270
Coal mines, 243, 268
Coefficient of consolidation, 191
Coefficient of friction, 66, 69

dynamic, 67, 69
internal, 90
static, 66, 71, 275, 302
time dependence, 76–9
values for rocks and minerals, 70

Coerror function, 192, 203
Cohesion, 69, 90
Compaction bands, 319
Compatibility conditions

in terms of strains, 57, 60
in terms of stresses, 121

Complex conjugate, 206
Complex variable method, 206–11, 404
Compliance matrix, 138–41
Compressible fluid, 111
Compressibility, 111

bulk, 147, 170
pore, 147, 170

Compressive strength, uniaxial, 84, 149
Cone sheets, 429
Confining pressure, effects of, 85–7
Conformal mapping, 233, 242, 287
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Consolidation, 182, 189–94
Contact regions, 384
Continental drift, 434
Coordinates

bipolar, 250
curvilinear, 231
cylindrical, 57–60, 211
elliptic, 231–2
polar, 57–60, 211
spherical, 125–6

Correlation length, 368
Corundum, 284
Coulomb, 67, 69
Coulomb’s law of friction, 69
Coulomb failure criterion, 90, 257, 266
Coupled behavior, 169, 183, 187, 198, 286,

320, 358, 386–8
Cracks

closure of, 237, 248, 292–4
displacement around, 236
effect on elastic moduli, 291, 299–301
elliptical, 235–7
fluid pressure inside of, 235
friction on faces of, 301–7, 358
penny-shaped, 247–50
(under) shear, 236
strain energy associated with, 299, 302
stresses around, 234–6, 315
stresses near tip of, 237–42
(under) uniaxial tension, 235

Creep, 162, 268–70
along a fault, 195
classification of, 269
effect of temperature on, 270
empirical laws for, 269–70
study of, by bending, 162

Criteria for failure
anisotropic rocks, 103–5
Coulomb, 90–4
Griffith, 314–19
Hoek–Brown, 96–7
Mogi–Coulomb, 103
Mohr’s hypothesis, 94–5

Critical stress intensity factor, 312
Crustal stresses

Heim’s rule, 399
produced by intrusion, 428–30
variation with depth, 401–3

CSIR doorstopper cell, 417
CSIRO hollow inclusion stress cell, 418
Cubic law, 379
Cubic symmetry, 142
Curvilinear coordinates, 231
Cyclic frequency, 328
Cylinders

diametral compression of, 158–60

external compression of, 225–8
Cylindrical coordinates, 57–60

components of strain in, 57–60
equations of equilibrium in, 122–4

d’Alembert solution, 323
Damping, 356
Darcy’s law, 185
Darley Dale sandstone, 98–9
Deformation gradient, 61
Density, 202, 358, 400
Detachment fault, 420
Determinant, 22
Deviatoric strain, 54, 115, 130
Deviatoric stress, 41, 101, 115, 130
Dextral fault, 420, 423
Diabase, 97
Diagenesis, 288
Diametral compression of cylinders, 159
Diamond, 70
Differential effective medium theory, 297,

300
Differential pressure, 173, 292
Differential stress, 151
Diffusion equation, 187, 201
Dilatancy, 85, 266
Dilatational waves

reflection and refraction of, 337–43
velocity of propagation of, 334

Dionysos marble, 165
Dip, 420
Dip-slip fault, 420
Direction cosines, 32, 422
Dislocation, 213, 262, 270, 425
Dispersion, 329–31
Displacement

across a fault surface, 425–8
around a crack, 236–7, 247–8
definition, 41
sign convention for, 41

Displacement discontinuity, 389
Displacement gradient, 46, 51
Displacement potentials, 244
Divergence theorem, 117, 184
Dolerite, 2, 97, 99, 370
Dolomite, 2, 5, 6, 70, 87, 96, 97, 102, 186,

335
Doorstopper cell, 417
Drucker–Prager criterion, 101, 254
Ductile materials

behavior of, 252–8
definition, 84

Duhamel–Neumann equations, 200, 203
Dunham dolomite, 96, 102
Dunite, 314
Dynamic coefficient of friction, 67, 69

Earthquakes, 195, 268, 321, 434
displacement across a fault in an, 73
energy release in, 435–7
mechanics of, 434–6
seismic radiation efficiency in, 436
seismic stress drop in, 436

Effective medium theories, 295–301
Effective stress

coefficient, 98, 179, 182, 188, 190, 413
effect on failure, 97–9
effect on sliding, 75, 425

Eigenvalue, 22, 40, 115, 131
Eigenvector, 22, 115
Elastic equations of equilibrium

in Cartesian coordinates, 119
in cylindrical coordinates, 122–4
in spherical coordinates, 125–6
in terms of displacements, 119–21, 125
in terms of stresses, 118

Elastic equations of motion, 118, 332,
335–7

Elastic moduli
definitions of, 108
effective, 281–301
units of, 111

Elastic strain energy, 128–35, 140, 152–4,
216, 248, 285, 295, 299, 308, 435

Elastic waves, 322–53
dispersion of, 329
energy density in, 327
energy flux in, 329
Lamb waves, 346
longitudinal, 334
Love waves, 347
numerical values of velocities, 335
particle velocity in, 327, 349
primary or compressional, 334, 337
Rayleigh waves, 343–6, 394
reflection and refraction, 337–43
Scholte waves, 347
secondary or shear, 334, 336
Stoneley waves, 347, 394
(in) thin bars, 322–7
transient, 347
transverse, 333

Elasticity
linear, 106–44
solutions by conformal mapping, 242
solutions in form of a series, 221–7

Ellipsoid of stress, 107
Elliptic coordinates, 231–2
Elliptical hole, 231–7, 286, 416

displacements around, 236–7
stresses around, 234–6

End effects, 149–50
Energy release rate, 312
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Equations of equilibrium
in Cartesian coordinates, 119
in cylindrical coordinates, 122–4
in spherical coordinates, 125–6
in terms of displacements, 119–21, 125
in terms of stresses, 118

Equations of motion, 118, 332, 335–7
Equations of plasticity, 252–68
Equilibrium equations, 116

in Cartesian coordinates, 119
in cylindrical coordinates, 122–4
in spherical coordinates, 125–6
in terms of displacements, 119–21, 125
in terms of stresses, 118

Eucumbene-Snowy tunnel, 5
Euler–Bernoulli theory, 162
Euler buckling load, 432
Euler condition, 56, 173
Exponential autocovariance model, 368
Extended Griffith model, 318
Extension fracture, 88
Extension test, 87, 152, 255

Fabric of rocks, 6
Failure

criteria for, 90, 94
definition of, 84
under true-triaxial stress, 100–3

Faults, 3, 233, 366
Andersonian theory of, 419–23
classification of, 420–3
creep along, 195
(analyzed with) Mohr’s diagram, 421
oblique-slip, 420, 422
overthrust, 420, 423
slip along, 73, 168, 319
stresses around, 425–8
strike-slip, 420–2, 425

Feldspar, 70
Finite element method, 205
Finite strain, 60–4
Flamant problem, 405
Flat jacks, 415–16
Flow rules and hardening, 266–8
Fluid, 111, 353
Fluid content, 180, 187
Fluid flow, 183, 377–88
Fluid inclusions, 244
Folding, 431–4
Forchheimer’s equation, 381
Fort Union sandstone, 176
Fourier’s law of heat conduction, 200
Fourier series, 221–7
Fourier transforms, 331, 383
Fractal dimension, 383

Fracture
hydraulic, 100
propagation, 311–14
stress corrosion, 100
types of, 88

Fractured rock masses, 394–8
elastic moduli of, 395–6
hydraulic conductivity of, 186, 396–8

Fractures
aperture of, 366
coupled hydromechanical behavior of,

386–8
dilation, 375
effect on elastic moduli, 140
fluid flow in, 377–86
hydraulic transmissivity of, 377–86
normal stiffness of, 369–74, 390, 393
roughness of, 365–9
seismic response of, 388–94
shear stiffness of, 375

Friction
angle of internal, 73
apparatus for measuring, 67–8
apparent coefficient of, 67
coefficient of dynamic, 67, 69
coefficient of internal, 90
coefficient of static, 66, 71, 275, 302
coefficients, table of, 70
between crack surfaces, 358
effect of time and displacement, 76–9
experimental study of, 67–8
rate/state law of, 77–8
sliding on planes of weakness, 73, 99
stick-slip, 70–3
time dependence, 76–9

Frio sandstone, 171

Gabbro, 70, 71, 97
Gassmann equation, 176, 354
Gaussian autocovariance model, 368
Generalized Kelvin model, 274
Geothermal reservoirs, 200, 377
Glaciers, 266
Glass, 70
Gneiss, 70, 97, 186, 335
Gosford sandstone, 70
Gradient, 118, 120
Grain crushing, 262, 267
Granite, 7, 70, 71, 76, 87, 97, 102, 162, 158,

186, 190, 270, 284, 314, 335, 357, 358,
376, 384, 387, 416

Granodiorite, 370
Graphical representations of stress

Lamé’s stress ellipsoid, 25
Mohr’s circle, 23–5, 35–8

Gravel, 186

Gravity
effect on fluid flow, 185
effect on sliding, 423
stresses due to, 400–3

Green’s theorem, 117
Greywacke, 76
Griffith cracks, 307
Griffith criterion, 309
Griffith locus, 307–11
Griffith theory of failure, 260, 314–20
Group theory, 139, 330
Group time delay, 393
Group velocity, 330–1
Guéret granite, 376
Gypsum, 87

Halite, 268
Hardening, 86, 267–8
Harmonic functions, 207
Hashin–Shtrikman bounds, 298
Heat flux vector, 200
Heim’s rule, 400, 403
Hele-Shaw model, 385
Helmholtz decomposition, 335
Hertz, 328
Hertzian contact, 372
Hoek–Brown criterion, 96, 103, 260
Hoek triaxial cell, 167
Hollow cylinders, 162, 165, 194, 214

elastic – plastic behavior of, 255–7
failure of, 255
poroelastic, 194
pressurized, 214
torsion of, 161

Hollow inclusion stress cell, 418
Homogeneous deformation, 54
Homogeneous stresses, 211–13
Hooke’s law, 107–11

for anisotropic materials, 137–44
for isotropic materials, 107–11
in terms of deviatoric stresses and strains,

115, 278
Hookean substance, 271
Hornfels, 158
Hugoniot relation, 363
Hurst exponent, 368
Hydraulic aperture, 382
Hydraulic conductivity, 186–7
Hydraulic diffusivity, 187, 191
Hydraulic fracturing, 100, 168, 197, 233,

247, 411–15
Hydrostatic poroelasticity, 169–75
Hydrostatic stress, 111
Hydrostatic tests, 146
Hypotrochoidal hole, 287
Hysteresis, 82, 305
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Ice, 70, 335
Igneous rocks, 2, 4
Impact, 364
Impedance, acoustic, 326, 349, 392
Inclusions

elastic, 228–31
fluid, 244

Incomplete interface model, 389
Incompressible material, 111
Indiana limestone, 100, 162, 174
Inelastic waves, 360–4
Inertia, 117, 380
Infinitesimal strain, 45
Inhomogeneous stress, 149, 159
Instability, 78, 110, 152
Interactions between cavities, 250, 295
Interface waves, 343–7
Intermediate principal stress, 100–3
Internal friction

angle of, 73
attenuation of waves by, 358
coefficient of, 90
cone sheets, 429
ring dykes, 429
sheet intrusions, 233, 428

Intrusion fracture, 88
Invariants

of deviatoric stress, 41, 101
of strain, 53
of stress, 23, 38

Irrotational strain, 336
Isobars, 27
Isochromatics, 27
Isoclinics, 27
Isopachs, 27
Isostatics, 27
ISRM suggested methods, 146, 418

Jacks, 415–16
Joint compressive strength, 377
Joint roughness coefficient, 377
Joints, 2, 366

closure of, 369–74
sliding on, 67–70
spacing of, 3
stiffness of, 369
types of, 2

Kelvin substance, 273, 277, 279
Kelvin-Voigt substance, 274, 355
Kirchhoff, 135
Kirsch, 216
Kirsch solution, 102, 216
Kolosov–Muskhelishvili method, 206–11
Kramers-Kronig relations, 355
Kuster–Toksöz theory, 298

Lac du Bonnet granite, 102, 162
Laccolith, 428
Lag vector, 367
Lagrange multipliers, 30
Lagrangian finite strain, 62
Lamb waves, 346
Lamé’s stress ellipsoid, 107
Lamé parameters, 107
Laplace’s equation, 121, 127, 206, 385
Laplace transforms, 273, 276–80
Latitude, 37
Lava, 87
Legendre polynomials, 245
Limestone, 7, 87, 97, 100, 162, 171, 173, 174,

186, 335, 357, 359, 370, 414
Linear elastic fracture mechanics, 240–2,

311–14
Linear elasticity, 106–44
Linear slip interface model, 389
Linear viscous substance, 271
Lithostatic stresses, 400
Load cell, 152
Loads on half-space

in three-dimensions, 408–11
in two-dimensions, 404–8

Locharbriggs sandstone, 100
Logarithmic decrement, 357
Lognormal distribution, 383
Lomnitz law of creep, 269
Long Valley caldera, 158
Longitude angle, 34, 38
Love waves, 347
Loveland sandstone, 162
Lubricants, 150, 158
Lubrication equation, 381

Magma bodies, 251, 429
Mandel–Cryer effect, 196
Mantle, 401
Marasha chalk, 162
Marble, 70, 97, 156, 162, 165, 190, 270, 357
Massilon sandstone, 359
Maxwell–Betti reciprocal theorem, 134,

172
Maxwell substance, 272
Mean normal strain, 54, 130
Mean normal stress, 40, 130
Metamorphic rocks, 4
Metapelite, 158
Mica, 4, 284
Microcline, 284
Microcracks, 89
Minerals, 4, 173, 284
Mines, 243, 268
Modulator wave, 331
Moduli of elasticity

definitions of, 108
effective, 281–301
units of, 111

Mogi–Coulomb criterion, 103
Mohr’s circle, 23

application to failure, 90, 317
application to faulting, 421
application to sliding, 74
in three-dimensions, 35–8
in two-dimensions, 23–5

Mohr’s hypothesis on failure, 94
Moment of inertia of beam sections, 163
Mudstone, 97, 359
Murray 2 dam, 4
Murrell’s theory of failure, 317
Muscovite, 70
Muskhelishvili coefficient, 114

Nadai’s failure criterion, 101
Navier equations, 120, 135
Navier-Stokes equations, 378
Neutral axis, 162
Newtonian substance, 271
No-interaction theory, 296, 299
Nonassociated flow rule, 267
Norite, 97, 156
Normal fault, 420
Normal stiffness, 369–74, 390, 393
Normal stress, 15
Normal vector, 10

Oblique-slip fault, 420, 422
Octahedral normal stress, 39
Octahedral plane, 39
Octahedral shear stress, 40
Offerdale slate, 373
Ohio sandstone, 190
Oil, 185, 335
Olivine, 76, 284
Olympic dam, 388
Onsager reciprocity, 185
Orthogonal curvilinear coordinates, 231
Orthorhombic materials, 140
Overcoring, 417
Overthrust fault, 420, 423

Papkovich–Neuber functions, 244
Parabolic velocity profile, 379–82
Parallel plate model, 379
Particle velocity, 327, 349
Pecos sandstone, 190
Penny-shaped cracks, 247–50
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Percolation theory, 397
Period of elastic waves, 328
Permafrost, 298
Permeability

definition of, 185
of fractured rock masses, 186
tabulated values of, 186, 190
units of, 187

Petrofabrics, 6
Phase, 324
Phase velocity, 324, 330
Pierre shale, 357
Plagioclase, 4, 284
Plane of weakness, 73, 99, 103
Plane strain, 113
Plane stress, 112
Plastic flow between planes, 263–6
Plastic potential, 267
Plastic waves, 360–2
Plasticity, 252–68

flow rules of, 266
Prandtl–Reuss equations of, 262–3
Saint Venant equations of, 261–2

Plate tectonics, 434
Poisson, 110
Poisson’s ratio, 110, 142–4, 149, 189, 290,

294, 301, 334, 342, 401
definition of, 84, 108
effect of cracks on, 299, 305

Poisson’s relation, 110
Polar coordinates, 57–60
Polyaxial stresses, 81, 157

compression tests with, 81
failure under, 100–3

Pore compressibility, 170, 247
Pore pressure, 147

effect of on hydraulic fracturing, 412–14
effect on failure, 97
effect on overthrust faulting, 425

Poroelasticity
applications of, 195–7, 413
constitutive equations of, 178–82
effect on hydraulic fracturing, 413
equation of equilibrium of, 183

Porosity, 5, 169, 174, 190, 203, 353, 358
Porous rocks

fluid flow in, 183–7
effective elastic moduli of, 284–301

Porphyry, 70
Positive-definite tensor, 131, 136, 143
Power spectrum, 368
Prandtl–Reuss equations, 262
Primary creep, 269
Principal axes of strain, 52
Principal axes of strain deviator, 54
Principal axes of stress, 22–3
Principal axes of stress deviator, 41

Principal coordinate system, 23
Principal strain deviations, 54
Principal strains, 52
Principal stresses, 22
Principal stress deviations, 41
Pyroxene, 4

Quality factor, 357
Quarry, 416
Quartz, 2, 4, 7, 70, 76, 284
Quartz-diorite, 97
Quartzite, 76, 85, 89, 97, 156
Quincy granite, 357

Radioactive waste, 199, 377, 398
Rand quartzite, 85–6
Rankine condition for shock wave, 363
Rate/state law of friction, 77–8
Rayleigh scattering, 360
Rayleigh waves, 343–6, 394
Reciprocal theorem, 134, 172
Rectangular hole, 242–4
Red granite, 71
Red Permian sandstone, 384, 388
Reduced modulus of elasticity, 373
Reflection coefficient, 324, 326, 340, 391
Reflection of waves, 337
Refraction of waves, 337
Relief methods, 416
Reopening pressure, 412
Residual shear stress, 375
Reuss bounds, 282
Reverse fault, 420
Reynolds lubrication equation, 381
Reynolds number, 380
Rheological models

Bingham, 275
Burgers, 274
generalized Kelvin, 274
Hookean, 271
Kelvin, 273, 277, 279
Maxwell, 272
Newtonian, 271
Saint Venant, 275

Rigid-body displacement, 48
Rigid-body rotation, 48, 213
Rigid material, 111
Ring dykes, 429
Rock bursts, 128
Rocksalt, 87, 158, 268, 270
Rosettes, strain, 55
Rotation, 48, 54
Rotation matrix, 19, 33, 47, 109
Rotation vector, 52
Rotational waves, 336

Ruhr sandstone, 190
Rhyolite, 97

Saint Venant, 57
Saint Venant equations of plasticity, 261
Saint Venant substance, 275
Salt, 335
San Andreas fault, 195
Sand, 186, 192, 335
Sandstone, 6, 70, 76, 97, 98, 100, 160, 162,

167, 171, 173, 174, 176, 177, 186, 190,
201, 335, 357, 359, 370, 384

Scattering, of waves, 298, 359
Scholte waves, 347
Schwarz–Christoffel mapping, 242
Secant modulus, 82
Sediments, 270
Seismic efficiency, 436
Seismic impedance, 326, 349, 392
Seismic moment, 437
Seismic surveys, 359
Seismic waves

attenuation of, 286, 355–60
compressional, 334, 337
Love, 347
Rayleigh, 343–6, 394
shear, 334, 336

Self-affine profiles, 368
Self-consistent theory, 296, 299
Semi-infinite region

loaded over a circle, 409–11
three-dimensional theory, 408–11
two-dimensional theory, 404–8

Semivariogram, 368
Serpentine, 70, 87
Servo-controlled testing machine, 84
SH waves, 338, 393
Shale, 87, 97, 186, 335, 357
Shear fracture, 88
Shear modulus, 107, 109, 161, 190

effect of cracks on, 299–300
effect of pores on, 296–8

Shear strain, 45, 49
Shear strength of fractures, 376
Shear stress, 15–16
Sheet intrusions, 233, 428
Shock waves, 363–4
Shut-in pressure, 414
Sign convention, 11, 14
Silt, 186
Siltstone, 87, 97, 160, 359, 370
Sinistral fault, 420, 423
Skempton coefficient, 148, 177, 181, 187–90,

196
Slate, 97, 270, 373
Sliding along joints, 67–70
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Sliding cracks, 301–7
Sliding on a plane of weakness, 73, 99
Slip lines, 27
Slope failure, 408
Slowness, 331
Snowy-Geehi tunnel, 5
Snowy Mt. Hydroelectric Authority, 3
Softening, 86
Soils, 169, 335
Solenhofen limestone, 87, 357
South Limburg coal field, 421
Spalling, 165
Specific heat, 201–3, 358
Spherical cavities

effect on elastic moduli of, 296–8
elastic waves emanating from, 350–2
stresses around, 204, 244–7, 260, 351, 429

Spheroidal pore, 289
Springs and dashpots, 271–5
Springwell sandstone, 167
Squirt flow, 355, 359
Stability, 78, 110, 152
Static coefficient of friction, 71
Steady-state creep, 269
Stick–slip oscillations, 70–3
Stiff testing machines, 155
Stiffness matrix, 138–41
Stokes, 330
Stokes equations, 380
Stone Mountain granite, 284
Stoneley waves, 347, 394
Storage coefficient, 188
Strain

compatibility conditions, 57, 60
components of, 46, 49
definitions of, 41–6, 49–51
deviatoric, 53, 115, 130
engineering, 46
finite, 60–4
infinitesimal, 45
invariants, 53
isotropic, 53
mean normal, 54, 130
normal, 43, 49
plane, 113
principal, 52
principal axes, 52
shear, 45, 49
sign convention for, 42
tensor, 46, 51
transformation rules, 47
uniaxial, 112
volumetric, 60, 130

Strain deviation, 53–4
Strain energy

of distortion, 130, 254
due to cracks, 101, 248, 298–9, 302–11

general theorems on, 128–37
Strain gauges, 55, 152
Strain-softening, 152
Stress

definition, 11–14
deviatoric, 40–1, 115, 130
graphical representations of, 23–5, 35–8
homogeneous, 211
hydrostatic, 40
invariants, 23, 28, 38
isotropic, 40
mean normal, 40, 130
notations, 15
octahedral, 39
plane, 112
principal, 21
principal axes, 23, 29
sign convention for, 11, 14
shear, 15–16
symmetry of, 15
tensor, 14
transformation rules, 17–19, 32–5, 210
uniaxial, 112
units of, 111, 146

Stress corrosion fracture, 100
Stress drop, 436
Stress intensity factor, 240, 312
Stress–strain curve, 81–9, 157
Stress–strain relations, 107–15
Stretch ratio, 62
Strike, 419
Strike-slip fault, 420, 425
Stripa granite, 384
Subsidence, 196, 398
Subsidiary principal stresses, 34
Subsurface stresses, 100, 138, 150, 157,

399–418
Superposition, 172, 248
Surface loads on a half-space

three-dimensional, 408–11
two-dimensional, 404–8

Surface waves, 343–6, 394
SV waves, 341, 393
Swedish State Power Board, 418

Talc, 70, 87
Tasmanian dolerite, 99
Tennessee marble, 156, 190, 357
Tensile fracture, 412
Tensile strength, 94
Tension cutoff, 92–4
Tensors

first-order, 19
second-order, 19
strain, 46, 51
stress, 14

Tertiary creep, 269

Terzaghi’s consolidation problem, 189–93
Testing machine

servo-controlled, 156
stiff, 155

Thermal conductivity, 200–3
Thermal expansion coefficient, 198–203,

358, 403
Thermal diffusivity, 201
Thermal stresses, 198
Thermoelasticity, 169, 197–204, 358
Thrust fault, 420
Torsion of circular cylinders, 110, 161
Tortuosity, 354
Total internal reflection, 341
Trachyte, 69, 70
Traction, 10–13, 116
Transcurrent fault, 420
Transient creep, 269
Transmission coefficient, 324, 326, 340, 391
Transmissivity, 379–81
Transverse isotropy, 142, 160, 162
Tresca yield criterion, 254, 262, 267
Triaxial extension, 87, 152, 255
Triaxial tests, 81, 150–2
True-triaxial stresses, 100
True-triaxial tests, 81, 157–8
Tumut 3 project, 3
Tunnel City sandstone, 177

Unconfined compressive strength, 148
Underground storage caverns, 204
Undrained bulk modulus, 181
Undrained compressibility, 148, 175–8
Undrained elastic moduli, 189
Undrained Poisson ratio, 189
Uniaxial compression, 81, 110, 112
Uniaxial compressive strength, 84, 149
Uniaxial strain, 112, 334
Uniaxial tensile strength, 94, 317
Uniqueness theorem for elasticity, 135–7
Unjacketed compression tests, 174
Unloading, 82–3, 154, 267
U.S. Bureau of Mines gauge, 417
U.S. Bureau of Reclamation cell, 151

Valders limestone, 414
Variogram, 367
Viscoelasticity, 276–80
Viscous damping, 356
Void ratio, 170
Voigt bounds, 282
Voigt notation, 138
Voigt–Reuss–Hill average, 171, 174, 282,

284, 294, 353
Volterra dislocation, 425
von Mises criterion, 254, 261
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Water, 176, 185, 187, 335, 354, 378
Wave equation, 322, 336
Wave number, 328, 368
Wave scattering, 298, 359
Wave speeds

of P-waves, 334–5
of S-waves, 333, 335

Waveguide, 330
Wavelength, 328, 368, 390
Weber sandstone, 190
Weibull distribution, 320

Weierstrass theorem, 242
Welded interface, 339
Westerly granite, 76, 102, 158
Wiebols and Cook criterion, 101, 103
Wilmington reservoir, 196
Wombeyan marble, 70
Wood’s metal, 371
Work, 129, 132, 134
Work hardening, 86
Wrench fault, 420
Wyllie time-average, 353

Yield criterion, 253
Yield stress, 84, 253
Yield surface, 260
Young’s modulus, 81, 108, 148, 152,

300, 303
Yule marble, 6

Zenith angle, 33–4
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