به نام خداوند بخشنده مهربان

وشها و بروتکلهای زنتیکی

www.genetica.ir

آموزش طراحی گام به گام پرایمر با نرم افزار GENE RUNNER

آشنایی با نرم افزارهای طراحی پرایمر:

این روزها تنوع نرم افزارهای طراحی پرایمر به قدری زیاد شده که گاهی برای انتخاب یک نرم افزار جامع با مشکل مواجه میشویم. در راهنمای زیر اطلاعاتی از برخی از این نرم افزارها آورده شده است و یک بار از یک مسیر برای طراحی پرایمر استفاده شده است. این مسیر شامل استفاده از تعدادی از نرم افزارها و وبسایت های مرتبط میباشد.

:GeneRunner

این نرم افزار را میتوانید به صورت رایگان دانلود کنید. در صفحه اصلی این نرم افزار مطابق شکل ۱، گزینه File سپس Nucleic acid sequence را انتخاب کنید. صفحه ای مشابه شکل ۲ باز خواهد شد.

Ge	ne Runner	Street, or other			
File	Edit View	Analysis Database C	ptions Look Window	Feedback Help	
	New		Nucleic acid sequence	Ctrl+Alt+N	
2	Open	Ctrl+O	Protein sequence	Ctrl+Alt+P	-
	Close	Ctrl+F4	Alignment Project	Ctrl+Alt+J	K
	Close All	1000000	Table	•	
A	Save	Ctrl+S	Database		
	Save All		Web Browser		
	Save As	Ctrl+Shift+A	Web Order	•	
	Write Protect	Ctrl+Shift+W			
	Unprotect	Ctrl+Alt+W			
	Print	Ctrl+P			
	Print Preview				
	Print Setup				
	Fand				
	senu				
	1 C:\Users\\See	quences\U48			
	2 C:\Users\\See	quences\dnaseq3			
	3 C:\Users\\See	quences\dnaseq1			
	4 both 539 hits i	in ROR			
	Exit				

شکل ۱

شکل ۲

در این صفحه توالی مورد نظر الگو را باید قرار دهید. برای گرفتن توالی ژن مورد نظر خود میتوانید از پایگاه داده NCBI به آدرس www.ncbi.nlm.nih.govاستفاده کنید. کافی است وارد سایت شوید و نام ژن مورد نظر خود را در بخش جستجو وارد کنید. برای دریافت توالی در قسمت پایگاه داده، Nucleotideرا انتخاب کنید(شکل۳).

پس از وارد کردن نام ژن مورد نظر و سپس انتخاب گزینهsearch ، صفحه ای مشابه شکل ۴ باز می شود که در آن لیستی از ژنها با کلیدواژهای که شما جستجو کردهاید ردیف می شود. بسته به گونه مورد نظر خودباید از این لیست ژن خود را انتخاب کنید.

Species	Summary - 20 per page - Sort by Default order -	Send to: -	Filters: Manage Filters		
ustomize			Results by taxon	_	
lolecule types	Items: 21 to 40 of 699				
enomic DNA/RNA (241)	Selected: 1	<< First < Prev Page 2 of 35 Next > Last >>	Top Organisms [Tree]		
nRNA (432) customize	Homo sapiens POU class 5 homeobox 1 (POU5F1), tr 21. 2 075 bp linear mRNA	anscript variant 5, mRNA	Danio rerio (70) Mus musculus (24)		
Source databases	Accession: NM_001285987.1 GI: 553727232		Bubalus bubalis (16) Oryctolagus cuniculus (14)		
NSDC (GenBank) (288)	GenBank FASTA Graphics		All other taxa (382)		
Customize	Homo sapiens POU class 5 homeobox 1 (POU5F1), tr	anscript variant 2, mRNA	More		
Sequence length	22. 2,075 bp linear mRNA	<			
Custom range	Accession: NM_203289.5 GI: 553727231		Find related data		
Poloano dato	GenBank FASTA Graphics		Database: Select	•	
Custom range	Homo saniens POLI class 5 homeobox 1 (POLISE1) tr	anscript variant 4 mRNA			
Devision data	23. 2.300 bp linear mRNA	ansenpt variant 4, mixture			
Revision date	Accession: NM_001285986.1 GI: 553727229				
diston runge	GenBank FASTA Graphics		Search details		
Clear all	Home saniens BOLL class 5 homeobox 1 (BOLISE1) tr	anscript variant 3 mPNA	pou5f1[All Fields]		
Show additional filters	24. 1 589 bp linear mRNA	anscript variant 5, micros			
	Accession: NM 001173531.2 GI: 553727228				
	GenBank FASTA Graphics				
	Homo sapiens POU class 5 homeobox 1 (POU5F1) tr	anscript variant 1 mRNA	Search		
	25. 1,430 bp linear mRNA	K			
	Accession: NM_002701.5 GI: 553727227			_	
	GenBank FASTA Graphics		Recent activity		

شکل ۴

پس از انتخاب گزینه مورد نظر صفحه ای مشابه شکل ۵ باز میشود که همه اطلاعات مربوط به ژن شما در آن صفحه موجود است. با انتخاب گزینه FASTA در بالا و سمت چپ این صفحه به توالی قطعه مورد نظر خود در قالب FASTA دسترسی پیدا خواهید کرد.

Genualik 🕈	Send. •	Change region shown				
Homo s NCBI Refere	apiens POU class 5 homeobox 1 (POU5F1), transcript variant 1, mRNA	Customize view	•			
<u>Go to:</u> ⊘	pm.a	- Analyze this sequence Run BLAST				
LOCUS	NM_002701 1430 bp mRNA linear PRI 07-OCT-2016	Pick Primers				
DEFINITION	Homo sapiens POU class 5 homeobox 1 (POU5F1), transcript variant 1,	Highlight Sequence Features				
ACCESSION	NM 002701	Find in this Sequence				
VERSION	NM_002701.5					
KEYWORDS	RefSeq.		_			
ORGANISM	Homo sapiens	Articles about the POU5F1 gene	-			
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;	The prognostic significance of OCT4 expression patients with prostate canc [Hum Pathol.	ssion 2016]			
REFERENCE	Catarrhini; Hominidae; Homo. 1 (bases 1 to 1430)	Oct4 plays a crucial role in the maintenance of opfitinity (Biochem Biophys Res Commun, 2016				
AUTHORS	Kosaka I, Mikami S, Yoshimine S, Miyazaki Y, Daimon I, Kikuchi E, Miyajima A and Oya M	Sov2/Oct/: A delicately balanced partnersh	nin in			
TITLE	The prognostic significance of OCT4 expression in patients with	pluripotent stem ce [Biochim Biophys Acta.	2016			
	prostate cancer					

توالی به دست آمده مشابه شکل ۶ را کپی کرده و در صفحه نرم افزار paste ، GeneRunner کنید (شکل۷).

شکل۶

شکل۷

این نرم افزار قابلیت دو رشتهای کردن توالیها را دارد. بنابراین شما با کپی کردن توالی یک رشتهای مورد نظر خود به توالی دو رشتهای آن دست پیدا میکنید. همانطور که میدانید برای انتخاب توالی پرایمر جلوییباید از رشته sense استفاده کرد. به عبارت سادهتر، ژن مورد نظر شما روی هر رشتهای باشد از توالی همان رشته در جهت ۵' به سمت ۳' برای پرایمر جلویی باید استفاده کنید و برای پرایمر عقبی هم از توالی رشته مکمل انتخاب کنید. دقت داشته باشید که جهت این پرایمرها حتما از ۵' به سمت ۳' باشد(شکل۸).

با در نظر گرفتن این نکته، به صورت دستی از ابتدای قطعه مورد نظر توالیهای ۲۲–۱۸ نولکئوتیدی را انتخاب کرده و سپس از منوی بالای صفحهGeneRunner، گزینه Analysis و سپس Oligo را انتخاب کنید(شکل ۹). از میانبر Ctrl-L نیز میتوانید استفاده کنید. بعد از این صفحهای برای شما باز میشود که در آن ویژگیهای مهم قطعه انتخاب شده را مشاهده میکنید. اطلاعاتی از قبیل درصدGC، پایداری دیمرهای خودی و ساختارهای ثانویه و ... در این صفحه ارائه میشود(شکل ۱۰). در مبحث راهنمایی طراحی پرایمر، اکثر ویژگیهای مهم پرایمرها توضیح داده شدهاند.

	Gene Run	ner - [d	Inaseq4	*]			Section.							-	-	-	-	-		-	-	and the second second
	File E	Edit V	iew A	nalysis	Databa	ise Op	tions	Look	Windov	v Feed	lback	Help										
1			6 0	Nucl	eic acid		•															
1				Prote	in		•									10						
A	5	ACA	4	Searc	:h		- • •	19	22 TTC	25	28	32 CCT	GAT	3/	40	43	40	49	52 C.C.T.	55	Se CC	
IUP,	1	TCT	CT	Alian	ment Pr	oiect		GCC	AAG	COT	TCC	GGA	GTA	110	TCC	TCC	GGG	GGG	CGA	ACC	CCG	
ACI		101		Olig)	Cti	1+1		MAG		100	MDD	MIN	AAG	1 dd	-	000	auc	C G A	ACC		
Cod	3	CCC	TT	Com	nosition	Ct	rl+I	CCC	ACA	CCT	000	TTC	CCA	9/	cccl	CTT	CTC	CCC	000	TCC	ACC	
es	61	CGG		Clon		Ctr	+N E	CCC	TGT	GGA	CCG	AAG	CCT		GCG	GAA	GAG	CGG	666	AGG	TCC	
_			24	Web			<u>е</u> Е	30	42	45	48	51	54	57	60	63	66	69	72	75	78	
0		TGG	TGG	AGG	TGA	TGG	GCC	466	666	GCC	GGA	600	666	CTG	GGT	TGA	TCC	TCG	GAC	CTG	GCT	
-	121	ACC	ACC	TCC	ACT	ACC	CGG	TCC	CCC	CGG	CCT	CGG	CCC	GAC	CCA	ACT	AGG	AGC	CTG	GAC	CGA	
ers/	5		84	87	90	93	96	99	2	5	8	11	14	17	20	23	26	29	32	35	38	
ION		AAG	CTT	CCA	AGG	CCC	TCC	TGG	AGG	GCC	AGG	AAT	CGG	GCC	GGG	GGT	TGG	GCC	AGG	CTC	TGA	
Not	181	TTC	GAA	GGT	TCC	GGG	AGG	ACC	TCC	CGG	TCC	TTA	GCC	CGG	CCC	CCA	ACC	CGG	TCC	GAG	ACT	
Sa	5	5'	44	47	50	53	56	59	62	65	68	71	74	77	80	83	86	89	92	95	98	
		GGT	GTG	GGG	GAT	TCC	CCC	ATG	CCC	CCC	GCC	GTA	TGA	GTT	CTG	TGG	GGG	GAT	GGC	GTA	CTG	
	241	CCA	CAC	ccc	СТА	AGG	GGG	TAC	GGG	GGG	CGG	CAT	ACT	CAA	GAC	ACC	ccc	CTA	CCG	CAT	GAC	
	5	5'	4	7	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	
	201	TGG	GCC	CCA	GGT	TGG	AGT	GGG	GCT	AGT	GCC	CCA	AGG	CGG	CTT	GGA	GAC	CTC	TCA	GCC	TGA	
	301	ACC	CGG	GGT	CCA	ACC	TCA	CCC	CGA	TCA	CGG	GGT	TCC	GCC	GAA	CCT	CTG	GAG	AGT	CGG	ACT	
	5	5'	64	67	70	73	76	79	82	85	88	91	94	97	0	3	6	9	12	15	18	
	261	GGG	CGA	AGC	AGG	AGT	CGG	GGT	GGA	GAG	CAA	CTC	CGA	TGG	GGC	CTC	CCC	GGA	GCC	CTG	CAC	
	301	CCC	GCT	TCG	TCC	TCA	GCC	CCA	CCT	CTC	GTT	GAG	GCT	ACC	CCG	GAG	GGG	CCT	CGG	GAC	GTG	
	5	5'	24	27	30	33	36	39	42	45	48	51	54	57	60	63	66	69	72	75	78	
	121	CGT	CAC	CCC	TGG	TGC	CGT	GAA	GCT	GGA	GAA	GGA	GAA	GCT	GGA	GCA	AAA	CCC	GGA	GGA	GTC	
	421	GCA	GTG	GGG	ACC	ACG	GCA	CTT	CGA	CCT	CTT	CCT	CTT	CGA	CCT	CGT	TTT	GGG	CCT	CCT	CAG	
	5	5'	84	87	90	93	96	99	2	5	8	11	14	17	20	23	26	29	32	35	38	
	481	CCA	GGA	CAT	CAA	AGC	TCT	GCA	GAA	AGA	ACT	CGA	GCA	ATT	TGC	CAA	GCT	CCT	GAA	GCA	GAA	
	401	GGT	CCT	GTA	GTT	TCG	AGA	CGT	CTT	TCT	TGA	GCT	CGT	TAA	ACG	GTT	CGA	GGA	CTT	CGT	CTT	
	5	5'	44	47	50	53	56	59	62	65	68	71	74	77	80	83	86	89	92	95	98	
	541	GAG	GAT	CAC	CCT	GGG	ATA	TAC	ACA	GGC	CGA	TGT	GGG	GCT	CAC	CCT	GGG	GGT	TCT	ATT	TGG	
	071	CTC	CTA	GTG	GGA	CCC	TAT	ATG	TGT	CCG	GCT	ACA	CCC	CGA	GTG	GGA	CCC	CCA	AGA	TAA	ACC	
	5	5'	4	7	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	

شکل ۹

یک راه میانبر!

یک راه میانبر برای دست یابی به پرایمرها، استفاده از ابزار primer Blast سایت NCBI است. اگرچه پرایمرهای پیشنهادی این بخش لزوما قابل اطمنیان ترین نیستند و حتی گاهی مشکلات فاحشی دارند، اما راه بسیار سریعی است و اگر خوش شانس باشید شاید بهترین پرایمرها را هم به شما بدهد!

برای استفاده از این روش، باید توالی قطعه مورد نظر را داشته باشید. نحوه دست یابی به توالی پیش از این توضیح داده شده است. وارد سایت NCBI شوید و از گزینههای سمت راست صفحه اصلی، Blastرا انتخاب کنید. بعد از ورود به صفحهBlast، از بخشهای پایین صفحه تحت عنوانspecialized searches، گزینه primer blastرا انتخاب کنید.

Input PCR template	Iu-UVUUXZU6PNIZLUUPKUKAG1N	SE SI-QQOUTW	more										
Range Specificity of primers Other reports	<u>NM 002701.5</u> Homo sapiens POL 1 - 1430 Primer pairs are specific to input t ▶ <u>Search Summary</u>	J class 5 homeo emplate as no	box 1 (POU!	5F1), transo s were foun	ript varia d in selec	nt 1, mRI ted datab	A ise: Refsei	ą mRNA (O	rganism limited	l to Homo s	sapiens)		
For better specificity ch which is identical to yo	ecking, we have substituted the PC our input template	R template wi	h the GenB	ank refseq	record N	M_002701	.5						
MM 002701.5: 1-1.4K ()		- GD	a 🕅 🚃	•	ate 23						Tools .	∰ D Track	. 0
Template 100 150	200 250 300 350 400	458 588	550 600	650 7	88 756	800	850 9	80 950	1 K 1,050	1,100 1,15	50 1,200	1,250 1,300	1,3
Games - Evon				00	CALL								
> > >	· · · ·		exon	->	-		exon	>	>		_	>	-
Genes		excn		6									
NP_882692.2	> >	>	POUSF1	92.2		· ·				>			
Seq-annot_::=_{desc_{n	ane_"Pri			043									
rnser1 ➡	13												
Primer 2					-	-							
E Contraction of the second se			_	_	_	-							
Primer 4	(
Pessile C													
	and the second	and a substant						- 294					
Primer pair 1													
Primer pair 1	Sequence (5'->3')	Templat	e strand	Length	Start	Stop Tr	GC%	Self com	plementarity	Self	f 3' comple	ementarity	
Primer pair 1 Forward primer Reverse primer	Sequence (5'>3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA	Templat Plus Minus	e strand	Length 20 20	Start 11 182	Stop Trr 30 59 163 60	GC% 75 55.00 03 55.00	Self com 4.00 4.00	plementarity	Self 2.00 2.00	f 3' comple))	ementarity	
Primer pair 1 Forward primer Reverse primer Product length	Sequence (5'>3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172	Templat Plus Minus	e strand	Length 20 20	Start 11 182	Stop Trr 30 59. 163 60.	GC% 75 55.00 03 55.00	Self com 4.00 4.00	plementarity	Sell 2.00 2.00	f 3' comple))	ementarity	
Primer pair 1 Forward primer Reverse primer Product length Products on intende	Sequence (5'>3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target	Templat Plus Minus	e strand	Length 20 20	Start 11 182	Stop Trr 30 59 163 60.	GC% 75 55.00 03 55.00	Self com 4.00 4.00	nplementarity	Self 2.00 2.00	f 3' comple))	ementarity	
Primer pair 1 Forward primer Reverse primer Product length Products on intende >NM_002701.5 Homo	Sequence (5'->3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target sapiens POU class 5 homeobox 1 (P	Templat Plus Minus OU5F1), transc	e strand ipt variant 1.	Length 20 20 mRNA	Start 11 182	Stop Trr 30 59. 163 60.	GC% 55.00 03 55.00	Self com 4.00 4.00	plementarity	Sell 2.00 2.00	f 3' comple))	ementarity	
Primer pair 1 Forward primer Reverse primer Product length Products on intende >NM_002701.5 Homo product length = 172 Forward primer 1 Template 11	Sequence (5'->3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target sapiens POU class 5 homeobox 1 (P TGAGTAGTCCCTTCGCAAGC 20 30	Templat Plus Minus OU5F1), transc	e strand ipt variant 1,	Length 20 20 mRNA	Start 11 182	Stop Trr 30 59. 163 60.	GC% 75 55.00 03 55.00	Self com 4.00 4.00	plementarity	Self 2.00 2.00	f 3' comple]]	mentarity	
Primer pair 1 Forward primer Reverse primer Product length Products on intende >NM_0027015 Homo product length = 172 Forward primer 1 Template 11 Reverse primer 1 Template 182	Sequence (5'>3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target sapiens POU class 5 homeobox 1 (P TGAGTAGTCCCTTCGCAAGC 28 TTAGCCAGGTCCGAGGATCA 28 163	Templat Plus Minus OU5F1), transc	e strand ipt variant 1.	Length 20 20 mRNA	Start 11 182	Stop Trr 30 59. 163 60.	GC% 75 55.00 03 55.00	Self com 4.00 4.00	nplementarity	Self 2.00 2.00	f 3' comple))	mentarity	
Primer pair 1 Forward primer Reverse primer Product length Products on intendes >MM_0022015 Homo product length = 172 forward primer 1 Reverse primer 1 Template 182 Primer pair 2	Sequence (5'>3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target sapiens POU class 5 homeobox 1 (P TGAGTAGTCCCTTCCAAGC 20 TGAGTAGTCCCTCCCAAGC 20 TTAGCCAGGTCCGAGGATCA 20 163	Templat Plus Minus OU5F1), transc	e strand ipt variant 1.	Length 20 20 mRNA	Start 11 182	Stop Trr 30 59. 163 60.	GC% 75 55.00 03 55.00	Self con 4.00 4.00	plementarity	Sell 2.00 2.00	f 3' comple))	mentarity	
Primer pair 1 Forward primer Reverse primer Product length Products on intende >NM_0022015 Homo product length = 172 Forward primer 1 Template 1182 Primer pair 2 Forward primer 1	Sequence (5'>3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target sapiens POU class 5 homeobox 1 (P TGAGTAGTCCCTGCAAGC 20 TTAGCCAGGTCGAGGATCA 20 153 Sequence (5'>3') CCTTCGCGAGGCCCTCATTCC	Templat Plus Minus OU5F1), transc	e strand ipt variant 1, e strand	Length 20 20 mRNA	Start 11 182 8 8 8 8 8 7 8 7 9	Stop Trr 30 59 163 60. Stop Trr 30 50	GC% 75 55.00 03 55.00 GC%	Self con 4.00 4.00 Self con	nplementarity	Sell 2.00 2.00 5.00	f 3' comple)) f 3' comple	ementarity	
Primer pair 1 Forward primer Reverse primer Products on intende >NM_002701.5 Homo product length = 172 forward primer 1 Template 11 Reverse primer 1 Template 182 Primer pair 2 Forward primer Reverse primer Reverse primer Product length	Sequence (5'->3') TGAGTAGTCCCTTCGCAAGC TTAGCCAGGTCCGAGGATCA 172 d target sapiens POU class 5 homeobox 1 (P TGAGTAGTCCCTTCGCAAGC 20 30 TTAGCCAGTCCGAGGATCA 20 163 Sequence (5'->3') CCTTCGCAAGCCCTCATTTC AACCACACTCGGAAGCCACATC	Templat Plus Minus OU5F1), transc OU5F1), transc Plus Plus Minus	e strand ipt variant 1, e strand	Length 20 mRNA 20 20 20 20	Start 11 182 8 5 5 5 5 5 10 906	Stop Tir 30 59 163 60 Stop Tir 39 59 887 59	GC% 75 55.00 03 55.00 6 GC% 55 55.00 97 55.00	Self com 4.00 4.00 5.00 5.00 3.00	nplementarity	Self 2.00 2.00 Self 0.00 0.00	f 3' comple)) f 3' comple))	ementarity	

شکل ۱۲

پس از ورود به صفحهprimer blast ، در باکس بالای صفحه باید توالی مورد نظر خود را قرار دهید و گزینه get primersدر پایین صفحه را انتخاب کنید. اکنون صفحه ای مشابه شکل ۱۱ برای شما باز میشود که موقعیت و سایر اطلاعات جفت پرایمرهای پیشنهادی را در آن مشاهده میکنید.

نکته بسیار مهم: پرایمرها را چک کنید!

حتما پرایمرها را قبل از سفارش چک کنید. چه پرایمرها را خودتان با روش اول انتخاب کردید، چه از NCBI به صورت آماده به دست آوردهاید و چه از مقالات توالی را استخراج کردهاید، حتما در نرم افزارهای دیگر ۸ هم چک کنید. هر نرم افزار یا وب سایتی که برای این کار طراحی شده است از الگوریتمهای ویژه خودش استفاده می کند. وقتی پرایمرها را با چند الگوریتم مختلف بررسی می کنید در حقیقت اطمینان بیشتری به دست می آورید. آنچه کیفیت یک پرایمر را بالا میبرد کارایی بالای آن در شناسایی قطعه مورد نظر شماست. حتما بعد از طراحی، پرایمرها را Blast کنید. وارد بخش primer blast سایت NCBI شوید و این بار توالی پرایمر جلویی و عقبی را در باکسهای مربوط به خودشان کپی کنید. بسته به کارتان پایگاه داده مورد نظر را انتخاب کنید و در آخر، گزینه get primers را بزنید. در صورتی که پرایمر شما علاوه بر قطعه خودتان، قطعههای دیگری را بشناسد، بهتر است پرایمرها را عوض کنید. مگر اینکه قطعه غیر اختصاصیای که می شناسد اختلاف طول فاحشی با قطعه شما داشته باشد. البته برای PCR این مساله جدی تر است و هیچ قطعه دیگری را نباید بشناسند.

منبع:

http://techazma.com/%D8%B7%D8%B1%D8%A7%D8%AD%DB%8C-%DA%AF%D8%A7%D9%85-%D8%A8%D9%87-%DA%AF%D8%A7%D9%85-%D9%BE%D8%B1%D8%A7%DB%8C%D9%85%D8%B1-%DB%8C%D8%A7-%D9%86%D8%B1%D9%85-%D8%A7%D9%81%D8%B2%D8%A7%D8%B1-generunner/