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GA Quick Overview

 Developed: USA in the 1970’s
 Early names: J. Holland, K. DeJong, D. Goldberg
 Typically applied to:

– discrete optimization

 Attributed features:
– not too fast
– good heuristic for combinatorial problems

 Special Features:
– Traditionally emphasizes combining information from good 

parents (crossover)
– many variants, e.g., reproduction models, operators
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General Scheme of EAs
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Pseudo-code for typical EA
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Key Concepts

 Representations
– Candidate solutions (individuals)

 Evaluation (Fitness) Function
– Assigns a fitness value to each Candidate solutions 

which forms the basis for selection

– Typically we talk about fitness being maximised

– problems may be best posed as minimisation 
problems

 Population
– Holds possible solutions

6



A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Parent Selection Mechanism

 Assigns variable probabilities of individuals acting as 
parents depending on their fitnesses

 Usually probabilistic

– high quality solutions more likely to become parents 
than low quality but not guaranteed

– even worst in current population usually has non-
zero probability of becoming a parent

 This stochastic nature can aid escape from local 
optima
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Variation Operators

 Role is to generate new candidate solutions 

 Usually divided into two types according to their arity 
(number of inputs):

– Arity 1 : mutation operators

– Arity >1 : Recombination operators

– Arity = 2 typically called crossover

 There has been much debate about relative 
importance of recombination and mutation

– Nowadays most EAs use both

– Choice of particular variation operators is representation 
dependant
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Mutation

 Acts on one solution and delivers another

 Element of randomness is essential and differentiates 
it from other unary heuristic operators

 May guarantee connectedness of search space and 
hence convergence proofs
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Recombination

 Merges information from parents into offspring

 Choice of what information to merge is stochastic

 Most offspring may be worse, or the same as the 
parents

 Hope is that some are better by combining elements of 
genotypes that lead to good traits
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Survivor Selection

 replacement

 Most EAs use fixed population size so need a way of 
going from (parents + offspring) to next generation

 Often deterministic

– Fitness based : e.g., rank parents+offspring and 
take best 

– Age based: make as many offspring as parents and 
delete all parents 

 Sometimes do combination (elitism)
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Initialisation / Termination

 Initialisation usually done at random, 

 Termination condition checked every generation 
– Reaching some (known/hoped for) fitness

– Reaching some maximum allowed number of generations

– Reaching some minimum level of diversity

– Reaching some specified number of generations without 
fitness improvement
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Place 8 queens on an 8x8 chessboard in
such a way that they cannot check each other

Example: the 8 queens problem
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The 8 queens problem: representation

1 23 45 6 7 8
a permutation of 
the numbers 1 - 8

Obvious mapping
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• Penalty of one queen:
the number of queens she can check.

• Penalty of a configuration: 
the sum of the penalties of all queens.

• Note: penalty is to be minimized

• Fitness of a configuration: 
inverse penalty to be maximized

8 Queens Problem: Fitness evaluation
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The 8 queens problem: Mutation

Small variation in one permutation, e.g.:
• swapping values of two randomly chosen 
positions, 

1 23 45 6 7 8 1 23 4 567 8
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The 8 queens problem: Recombination

Combining  two permutations into two new permutations:
• choose random crossover point
• copy first parts into children
• create second part by inserting values from other 
parent:

• in the order they appear there 
• beginning after crossover point
• skipping values already in child

8 7 6 42 531
1 3 5 24 678

8 7 6 45 123
1 3 5 62 874
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 Parent selection:
– Pick 5 parents and take best two to undergo 

crossover

 Survivor selection (replacement)
– When inserting a new child into the population, 

choose an existing member to replace by:

– sorting the whole population by decreasing fitness

– enumerating this list from high to low and replacing 
the first

The 8 queens problem: Selection
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8 Queens Problem: summary
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Typical behaviour of an EA

Early phase:

quasi-random population 
distribution

Mid-phase:

population arranged around/on 
hills

Late phase:

population concentrated on high 
hills

Phases in optimising on a 1-dimensional fitness landscape
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Typical run: progression of fitness

Typical run of an EA shows so-called “anytime 
behavior”
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Progress in 1st half

Progress in 2nd half

Are long runs beneficial?

• Answer: 
- it depends how much you want the last bit of progress
- it may be better to do more shorter runs
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T: time needed to reach level F after random initialisation  

T
Time (number of generations)
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F: fitness after smart initialisationF

Is it worth expending effort on smart 
initialisation?

• Answer : it depends: 
- possibly, if good solutions/methods exist.
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ES quick overview

 Developed: Germany in the 1970’s

 Early names: I. Rechenberg, H.-P. Schwefel

 Attributed features:
– fast
– good optimizer for real-valued optimisation
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Evolution Strategies (ES)

Among the simplest ES algorithms is the (μ, λ) 
algorithm. 

We begin with a population of  λ (typically) 
number of individuals, generated randomly.  
We then iterate as follows. First we assess the 
fitness of all the individuals. Then we delete 
from the population all but the μ fittest ones 
(this  is all there’s to Truncation Selection)
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(μ, λ) Evolution Strategies (ES)

 Each of the μ fittest individuals gets to produce λ /μ 
children through an ordinary Mutation. All told we’ve 
created λ new children. Our Join operation is simple: 
the children just replace the parents, who are 
discarded. The iteration continues anew.

 In short, μ is the number of parents which survive, and 
λ is the number of kids that the μ parents make in total. 
Notice that λ should be a multiple of μ. ES practitioners 
usually refer to their algorithm by the choice of μ and λ
. For example, if μ = 5 and λ = 20, then we have a (5, 
20) Evolution Strategy. 
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(μ, λ) Evolution Strategies (ES)
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(μ, λ) Evolution Strategies (ES)
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exploration versus exploitation

exploration versus exploitation.

 The size of λ . This essentially controls the sample size 
for each population, and is basically the same thing as 
the n variable in Steepest-Ascent Hill Climbing With 
Replacement. At the extreme, as λ approaches 
infinite, the algorithm approaches exploration (random 
search).

 The size of μ. This controls how selective the algorithm 
is; low values of μ with respect to λ push the algorithm 
more towards exploitative search as only the best 
individuals survive.
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Evolution Strategy (μ + λ)

 The second Evolution Strategy algorithm is 
called (μ + λ). It differs from (μ, λ) in only one 
respect: the Join operation. Recall that in (μ, λ) 
the parents are simply replaced with the 
children in the next generation. But in (μ + λ), 
the next generation consists of the μ parents 
plus the λ new children. That is, the parents 
compete with the kids. Thus the next and all 
successive generations are μ + λ in size.
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Evolution Strategy (μ + λ)
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Evolution Strategy (μ + λ)

 Generally speaking, (μ + λ) may be more 
exploitative than (μ, λ) because high-fit parents 
persist to compete with the children. This has 
risks: a sufficiently fit parent may defeat other 
population members over and over again, 
eventually causing the entire population to 
prematurely converge to immediate 
descendants of that parent, at which point the 
whole population has been trapped in the local 
optimum surrounding the parent.
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