
What is an Evolutionary Algorithm?

Lecture # 5

Esmaeil Nourani

1

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

GA Quick Overview

 Developed: USA in the 1970’s
 Early names: J. Holland, K. DeJong, D. Goldberg
 Typically applied to:

– discrete optimization

 Attributed features:
– not too fast
– good heuristic for combinatorial problems

 Special Features:
– Traditionally emphasizes combining information from good

parents (crossover)
– many variants, e.g., reproduction models, operators

2

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

EVOLUTION

Environment

Individual

Fitness

The Main Evolutionary Computing
Metaphor

PROBLEM SOLVING

Problem

Candidate Solution

Quality

Quality chance for seeding new solutions

Fitness chances for survival and reproductio

3

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

General Scheme of EAs

4

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Pseudo-code for typical EA

5

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Key Concepts

 Representations
– Candidate solutions (individuals)

 Evaluation (Fitness) Function
– Assigns a fitness value to each Candidate solutions

which forms the basis for selection

– Typically we talk about fitness being maximised

– problems may be best posed as minimisation
problems

 Population
– Holds possible solutions

6

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Parent Selection Mechanism

 Assigns variable probabilities of individuals acting as
parents depending on their fitnesses

 Usually probabilistic

– high quality solutions more likely to become parents
than low quality but not guaranteed

– even worst in current population usually has non-
zero probability of becoming a parent

 This stochastic nature can aid escape from local
optima

7

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Variation Operators

 Role is to generate new candidate solutions

 Usually divided into two types according to their arity
(number of inputs):

– Arity 1 : mutation operators

– Arity >1 : Recombination operators

– Arity = 2 typically called crossover

 There has been much debate about relative
importance of recombination and mutation

– Nowadays most EAs use both

– Choice of particular variation operators is representation
dependant

8

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Mutation

 Acts on one solution and delivers another

 Element of randomness is essential and differentiates
it from other unary heuristic operators

 May guarantee connectedness of search space and
hence convergence proofs

9

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Recombination

 Merges information from parents into offspring

 Choice of what information to merge is stochastic

 Most offspring may be worse, or the same as the
parents

 Hope is that some are better by combining elements of
genotypes that lead to good traits

10

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Survivor Selection

 replacement

 Most EAs use fixed population size so need a way of
going from (parents + offspring) to next generation

 Often deterministic

– Fitness based : e.g., rank parents+offspring and
take best

– Age based: make as many offspring as parents and
delete all parents

 Sometimes do combination (elitism)

11

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Initialisation / Termination

 Initialisation usually done at random,

 Termination condition checked every generation
– Reaching some (known/hoped for) fitness

– Reaching some maximum allowed number of generations

– Reaching some minimum level of diversity

– Reaching some specified number of generations without
fitness improvement

12

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Place 8 queens on an 8x8 chessboard in
such a way that they cannot check each other

Example: the 8 queens problem

13

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

The 8 queens problem: representation

1 23 45 6 7 8
a permutation of
the numbers 1 - 8

Obvious mapping

14

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

• Penalty of one queen:
the number of queens she can check.

• Penalty of a configuration:
the sum of the penalties of all queens.

• Note: penalty is to be minimized

• Fitness of a configuration:
inverse penalty to be maximized

8 Queens Problem: Fitness evaluation

15

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

The 8 queens problem: Mutation

Small variation in one permutation, e.g.:
• swapping values of two randomly chosen
positions,

1 23 45 6 7 8 1 23 4 567 8

16

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

The 8 queens problem: Recombination

Combining two permutations into two new permutations:
• choose random crossover point
• copy first parts into children
• create second part by inserting values from other
parent:

• in the order they appear there
• beginning after crossover point
• skipping values already in child

8 7 6 42 531
1 3 5 24 678

8 7 6 45 123
1 3 5 62 874

17

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

 Parent selection:
– Pick 5 parents and take best two to undergo

crossover

 Survivor selection (replacement)
– When inserting a new child into the population,

choose an existing member to replace by:

– sorting the whole population by decreasing fitness

– enumerating this list from high to low and replacing
the first

The 8 queens problem: Selection

18

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

8 Queens Problem: summary

19

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Typical behaviour of an EA

Early phase:

quasi-random population
distribution

Mid-phase:

population arranged around/on
hills

Late phase:

population concentrated on high
hills

Phases in optimising on a 1-dimensional fitness landscape

20

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Typical run: progression of fitness

Typical run of an EA shows so-called “anytime
behavior”

B
es

t f
itn

es
s

in
 p

op
ul

at
io

n

Time (number of generations)

21

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

B
es

t f
itn

es
s

in
 p

op
ul

at
io

n

Time (number of generations)

Progress in 1st half

Progress in 2nd half

Are long runs beneficial?

• Answer:
- it depends how much you want the last bit of progress
- it may be better to do more shorter runs

22

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

T: time needed to reach level F after random initialisation

T
Time (number of generations)

B
es

t f
itn

es
s

in
 p

op
ul

at
io

n

F: fitness after smart initialisationF

Is it worth expending effort on smart
initialisation?

• Answer : it depends:
- possibly, if good solutions/methods exist.

23

Evolution strategies

24

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

ES quick overview

 Developed: Germany in the 1970’s

 Early names: I. Rechenberg, H.-P. Schwefel

 Attributed features:
– fast
– good optimizer for real-valued optimisation

25

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Evolution Strategies (ES)

Among the simplest ES algorithms is the (μ, λ)
algorithm.

We begin with a population of λ (typically)
number of individuals, generated randomly.
We then iterate as follows. First we assess the
fitness of all the individuals. Then we delete
from the population all but the μ fittest ones
(this is all there’s to Truncation Selection)

26

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

(μ, λ) Evolution Strategies (ES)

 Each of the μ fittest individuals gets to produce λ /μ
children through an ordinary Mutation. All told we’ve
created λ new children. Our Join operation is simple:
the children just replace the parents, who are
discarded. The iteration continues anew.

 In short, μ is the number of parents which survive, and
λ is the number of kids that the μ parents make in total.
Notice that λ should be a multiple of μ. ES practitioners
usually refer to their algorithm by the choice of μ and λ
. For example, if μ = 5 and λ = 20, then we have a (5,
20) Evolution Strategy.

27

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

(μ, λ) Evolution Strategies (ES)

28

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

(μ, λ) Evolution Strategies (ES)

29

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

exploration versus exploitation

exploration versus exploitation.

 The size of λ . This essentially controls the sample size
for each population, and is basically the same thing as
the n variable in Steepest-Ascent Hill Climbing With
Replacement. At the extreme, as λ approaches
infinite, the algorithm approaches exploration (random
search).

 The size of μ. This controls how selective the algorithm
is; low values of μ with respect to λ push the algorithm
more towards exploitative search as only the best
individuals survive.

30

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Evolution Strategy (μ + λ)

 The second Evolution Strategy algorithm is
called (μ + λ). It differs from (μ, λ) in only one
respect: the Join operation. Recall that in (μ, λ)
the parents are simply replaced with the
children in the next generation. But in (μ + λ),
the next generation consists of the μ parents
plus the λ new children. That is, the parents
compete with the kids. Thus the next and all
successive generations are μ + λ in size.

31

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Evolution Strategy (μ + λ)

32

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Evolution Strategy (μ + λ)

 Generally speaking, (μ + λ) may be more
exploitative than (μ, λ) because high-fit parents
persist to compete with the children. This has
risks: a sufficiently fit parent may defeat other
population members over and over again,
eventually causing the entire population to
prematurely converge to immediate
descendants of that parent, at which point the
whole population has been trapped in the local
optimum surrounding the parent.

33

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Algorithms

Ref

 Slides adapted from Advanced Algorithms
course, presented by Dr. kourosh ziarati

34

