
LINEAR PROGRAMMING II:
ADDITIONAL TOPICS AND
EXTENSIONS

4.1 INTRODUCTION

If a LP problem involving several variables and constraints is to be solved by
using the simplex method described in Chapter 3, it requires a large amount
of computer storage and time. Some techniques, which require less computa-
tional time and storage space compared to the original simplex method, have
been developed. Among these techniques, the revised simplex method is very
popular. The principal difference between the original simplex method and the
revised one is that in the former we transform all the elements of the simplex
tableau, while in the latter we need to transform only the elements of an inverse
matrix. Associated with every LP problem, another LP problem, called the
dual, can be formulated. The solution of a given LP problem, in many cases,
can be obtained by solving its dual in a much simpler manner.

As stated above, one of the difficulties in certain practical LP problems is
that the number of variables and/or the number of constraints is so large that it
exceeds the storage capacity of the available computer. If the LP problem has
a special structure, a principle known as the decomposition principle can be
used to solve the problem more efficiently. In many practical problems, one
will be interested not only in finding the optimum solution to a LP problem,
but also in finding how the optimum solution changes when some parameters
of the problem, such as cost coefficients change. Hence the sensitivity or
postoptimality analysis becomes very important.

An important special class of LP problems, known as transportation prob-
lems, occurs often in practice. These problems can be solved by algorithms
that are more efficient (for this class of problems) than the simplex method.
Karmarkar's method is an interior method and has been shown to be superior
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to the simplex method of Dantzig for large problems. The quadratic program-
ming problem is the best-behaved nonlinear programming problem. It has a
quadratic objective function and linear constraints and is convex (for minimi-
zation problems). Hence the quadratic programming problem can be solved by
suitably modifying the linear programming techniques. All these topics are
discussed in this chapter.

4.2 REVISED SIMPLEX METHOD

We notice that the simplex method requires the computing and recording of an
entirely new tableau at each iteration. But much of the information contained
in the tableau is not used; only the following items are needed.

1. The relative cost coefficients c, to compute*

cs = min(Cj) (4.1)

cs determines the variable Jt5 that has to be brought into the basis in the
next iteration.

2. By assuming that cs < 0, the elements of the updated column

a\s

\MmsJ

and the values of the basic variables

P O

x - r 2

\l>mJ

have to be calculated. With this information, the visiable xr that has to
be removed from the basis is found by computing the quantity

^ = min & (4.2)
ars ais>o iais)

trrhe modified values of bh aij9 and c, are denoted by overbars in this chapter (they were denoted
by primes in Chapter 3).



and a pivot operation is performed on ars. Thus only one nonbasic col-
umn A5 of the current tableau is useful in finding xr. Since most of the
linear programming problems involve many more variables (columns)
than constraints (rows), considerable effort and storage is wasted in deal-
ing with the A7 for j =£ s. Hence it would be more efficient if we can
generate the modified cost coefficients Cj and the column A5, from the
original problem data itself. The revised simplex method is used for this
purpose; it makes use of the inverse of the current basis matrix in gen-
erating the required quantities.

Theoretical Development. Although the revised simplex method is applicable
for both phase I and phase II computations, the method is initially developed
by considering linear programming in phase II for simplicity. Later, a step-by-
step procedure is given to solve the general linear programming problem in-
volving both phases I and II.

Let the given linear programming problem (phase II) be written in column
form as

Minimize
/(X) = C1X1 + C2X2 + • • • + cnxn (4.3)

subject to
AX = A1Jc1 + A2Jc2 + • • • + AnXn = b (4.4)

X > 0 (4.5)
nX 1 n x 1

where they th column of the coefficient matrix A is given by

m x 1

KamjJ

Assuming that the linear programming problem has a solution, let

B = [Aj1 AJ2 • • • AjJ

be a basis matrix with

Xj2 ' )1 '
X8= . ) and cB = . ;

m X 1 V m X 1



representing the corresponding vectors of basic variables and cost coefficients,
respectively. If XB is feasible, we have

XB = B *b = b > 0

As in the regular simplex method, the objective function is included as the
(m + l)th equation and —/is treated as a permanent basic variable. The aug-
mented system can be written as

n

Z,Pjxj + Pn + i(-f)=q (4.6)
J = *

where

a2j 0 / b2

Pj = ; , j = 1 to ft, Pw + 1 = ; > and q = ; >

amj 0 bm

V cy y viy Vo/

Since B is a feasible basis for the system of Eqs. (4.4), the matrix D defined
by

[B Ol
D = [P;, IV 2 - • - P ^ P n + 1 ] = T

m + l x m + l LC^ I J

will be a feasible basis for the augmented system of Eqs. (4.6). The inverse
of D can be found to be

D - L - * - J

Definition The row vector

C^B-1 = nT = ? > (4.7)

V7rwy

is called the vector of simplex multipliers relative to the / equation. If the
computations correspond to phase I, two vectors of simplex multipliers, one



relative to the/equation, and the other relative to the w equation are to be
defined as

fTiY
Vxmy

T4 7 1Y

By premultiplying each column of Eq. (4.6) by D~', we obtain the follow-
ing canonical system of equations*:

Xj1 I1

+ 2J A7-JC,- = .
• _/'nonbasic •

xjm K

- / + S CjXj = -/o
ynonbasic

where

£ } • - > - c a t s

From Eq. (4.8), the updated column A,- can be identified as

A, = B-'A ; (4.9)

^remultiplication of PjXj by D"1 gives

f B 1A7 ") fjcy if jc, is a basic variable
~ \ ( x- ~ \

I^ — nTAj + C7J
 J (^D-1P7X7 if Xj is not a basic variable



and the modified cost coefficient c, as

Cj = Cj - TT7A, (4 .10)

Equations (4.9) and (4.10) can be used to perform a simplex iteration by gen-
erating Aj and Cj from the original problem data, A7 and c,.

Once Ay and cy are computed, the pivot element ars can be identified by
using Eqs. (4.1) and (4.2). In the next step, P5 is introduced into the basis and
Vj1. is removed. This amounts to generating the inverse of the new basis matrix.
The computational procedure can be seen by considering the matrix:

a\s

D I ^ (4.11)

m + 1 X m + 1 ra+lxra+l

where ez is a (m + l)-dimensional unit vector with a one in the ith row. Pre-
multiplication of the above matrix by D"1 yields

et C2 • • • er • • • ew + ^ D"1 a]s

I m + l X m + 1 a2s

m + 1 x m + 1 :

Pivot
element ( 4 1 2 )

m 4- 1 X 1_

By carrying out a pivot operation on ars, this matrix transforms to

Ue1 e2 • • • er_! p er + 1 • • • em + 1] Dn^ er] (4.13)

where all the elements of the vector P are, in general, nonzero and the second



partition gives the desired matrix D n ^ . 1^ It can be seen that the first partition
(matrix I) is included only to illustrate the transformation, and it can be dropped
in actual computations. Thus, in practice, we write the m + 1 X m + 2 matrix

D"1 | 3

cs _

and carry out a pivot operation on ars. The first m + 1 columns of the resulting
matrix will give us the desired matrix D n ^ .

Procedure. The detailed iterative procedure of the revised simplex method to
solve a general linear programming problem is given by the following steps.

1. Write the given system of equations in canonical form, by adding the
artificial variables Xn+ u Xn + 2, . . . , Xn+ m, a n d the infeasibility form for
phase I as shown below:

anxx + anx2 + • • • + alnxn +Xn + 1 = bx

021*1 + ^22*2 + * # " + Cl2nXn + Xn + 2 = b2

0m 1*1 + 0m2*2 + ' ' ' + ClmnXn + Xn+m = bm

C1X1 + C2X2 + ' • * + CnXn ~ f = 0

dxxx + d2x2 + • • • + dnxn ~w= -W0

(4.14)

1TMs can be verified by comparing the matrix of Eq. (4.13) with the one given in Eq. (4.11).
The columns corresponding to the new basis matrix are given by

Dnew = [Py1 P72 ' •'• Pyr_, P, Pyr+1 ' ' * Pym P n + 1 ]

brought in
place of P r

These columns are modified and can be seen to form a unit matrix in Eq. (4.13). The sequence
of pivot operations that did this must be equivalent to multiplying the original matrix, Eq. (4.11),
by T>nJw. Thus the second partition of the matrix in Eq. (4.13) gives the desired D n ^ .



Here the constants bh i = 1 to m, are made nonnegative by changing, if
necessary, the signs of all terms in the original equations before the ad-
dition of the artificial variables xn + h i = 1 to m. Since the original in-
feasibility form is given by

w = xn + ] + Xn + 2 + • • • + xn + m (4.15)

the artificial variables can be eliminated from Eq. (4.15) by adding the
first m equations of Eqs. (4.14) and subtracting the result from Eq.
(4.15). The resulting equation is shown as the last equation in Eqs. (4.14)
with

m m

dj; = - S atj and w0 = S bt (4.16)

Equations (4.14) are written in tableau form as shown in Table 4 .1 .

2. The iterative procedure (cycle 0) is started with Xn + 1, Xn + 2, . . . , xn + m,
—/, and — w as the basic variables. A tableau is opened by entering the
coefficients of the basic variables and the constant terms as shown in
Table 4.2. The starting basis matrix is, from Table 4 . 1 , B = I, and its
inverse B~l = [j3/7] can also be seen to be an identity matrix in Table
4.2. The rows corresponding to —/and — w in Table 4.2 give the neg-
ative of simplex multipliers Tr1- and ot (i = 1 to m), respectively. These
are also zero since cB — dB = 0 and hence

nT = c^B"1 = 0

GT = dT
BB * = 0

In general, at the start of some cycle k (k = 0 to start with) we open a
tableau similar to Table 4.2, as shown in Table 4.4. This can also be
interpreted as composed of the inverse of the current basis, B~ l = [/3^],
two rows for the simplex multipliers TT, and ah a column for the values
of the basic variables in the basic solution, and a column for the variable
xs. At the start of any cycle, all entries in the tableau, except the last
column, are known.

3. The values of the relative cost factors dj (for phase I) or Cj (for phase II)
are computed as

dj = dj - CT7A7-

Cj = Cj - TT7A7-



Objective
VariableArtificial VariableAdmissible (Original) Variable

Constant— w-/Xn + mXn + 2Xn+\* * * Xn' ' ' XjX2X1

< Initial basis •

b2

bm

0

-W0

0
1

1
0

1

0
0

0
0

0
0

"in I An
ay I Ay

amj)

di

^22 I A2

C2

«11^]
«21 I A1

^l

TABLE 4.1 Original System of Equations



3This column is blank at the beginning of cycle 0 and filled up only at the end of cycle 0.

and entered in a tableau form as shown in Table 4.3. For cycle 0, GT =
0 and hence dj = dj.

4. If the current cycle corresponds to phase I, find whether all d, > 0. If
all dj > 0 and W0 > 0, there is no feasible solution to the linear pro-
gramming problem, so the process is terminated. If all dj > 0 and W0 =
0, the current basic solution is a basic feasible solution to the linear
programming problem and hence phase II is started by (a) dropping all
variables Xj with dj > 0, (b) dropping the w row of the tableau, and (c)
restarting the cycle (step 3) using phase II rules.

If some dj < 0, choose xs as the variable to enter the basis in the next
cycle in place of the present rth basic variable (r will be determined

TABLE 4.3 Relative Cost Factor dj or c,

TABLE 4.2 Tableau at the Beginning of Cycle 0

Basic
Variables

Xn+X

Xn + 2

Xn + r

Xn + m

Columns of the Canonical Form

Xn+\

1

Xn + 2

1

Xn + r

1

Xn+m

1

- / — w
Value of the

Basic Variable xs
a

bx
b2

K

bm

< Inverse of the basis - •

- /

— w

0

0

0

0

0

0

0

0

1

1

0
m

-W0 = -Ti bt
i— 1

Cycle Number

f?
Phase I \ .

U
P + 1

Phase II Il + 2

Variable Jt7

X1

dx

X2

d2 • • • dn 0

Xn + 2

0

Xn + m

0

Use the values of 07 (if phase I) or TT, (if phase II) of
the current cycle and compute

dj = dj - (G1Ci1J + a2a2j + • • • + amamj)
or

Cj = Cj - (IT1CIy + V2O2J + • * • + icmamj)

Enter dj or C7 in the row corresponding to the current
cycle and choose the pivot column s such that ds =
min dj (if phase I) or cs = min C7 (if phase II)



later) such that

ds = min(dj < O)

On the other hand, if the current cycle corresponds to phase II, find
whether all c, > 0. If all c, > 0, the current basic feasible solution is
also an optimal solution and hence terminate the process. If some C7- <
0, choose Jc5 to enter the basic set in the next cycle in place of the rth
basic variable (r to be found later), such that

C5 = ITUn(C7 < 0 )

5. Compute the elements of the xs column from Eq. (4.9) as

A5 = B-1A5 = ptjAs

that is,

aXs = Puau + $X2als + • • • + $\mams

a2s = ftntfi* + fe«25 + • • • + &imams

ams = 0ml*l5 + 0m2*2* + ' ' ' + Pmm^ms

and enter in the last column of Table 4.2 (if cycle 0) or Table 4.4 (if
cycle k).

6. Inspect the signs of all entries ais, i = 1 to m. If all ais < 0, the class
of solutions

jc5 > 0 arbitrary

Xj1 — bt — ais • Jc5 if Xj1 is a basic variable, and JC, = 0 if jcy is a nonbasic
variable (j ^ s), satisfies the original system and has the property

/ = /o 4- C5Jc5 -• — oo as Jc5 -^ + oo

Hence terminate the process. On the other hand, if some ais > 0, select
the variable jcr that can be dropped in the next cycle as

zr = mm (bi/ais)
ars ais > 0

In the case of a tie, choose r at random.



"This column is blank at the start of cycle k and is filled up only at the end of cycle k.

TABLE 4.5 Tableau at the Beginning of Cycle k + 1

Basic
Variable

XJl

-f

— w

Columns of the Original
Canonical Form

Xn+l ' ' ' Xn+m

Wijl = [«,,„+,]
••-Inverse of the basis->

/3, , • • • /3>m

/3rl • • • firm

&m\ * * * @mm

- T T ' ' ' - 7 T m

- ( T 1 • • • -am

i-aj = +dn+j)

-f

1

— w

1

Value of

the Basic

Variable

K

K

- / o

-Tv0

x"

m

als = Tif$uais

m

ars = S/3rtafc
/ = 1

m

m

Q = C5 - S T 1 C J 1
i=i

m

ds = ds - TiO1(Ii3

TABLE 4.4 Tableau at the Beginning of Cycle k

Basic
Variables

xi\

xs

XJm

— w

Columns of the Canonical Form

•*„+• ' •

Pn ~ a. A* • •

PT1 • •

Pmi ~ amMx • •

- T 1 - cfiTi • •

- a , - dj& • •

Xn+m

• &Xm ~ S1JSJ1

• Pl,

r*mm tlmsPrm

_ 7; /D*
^m CsPrm

-am - ds^

-f

1

—w

1

Value of the
Basic Variable

h - 5, A*

K - amsb*

-/0 - cjbr
-W0 - djb*

Xs"

P* = ^ i (I = 1 to m) and ^ = ^

aThis column is blank at the start of the cycle.



7. To bring xs into the basis in place of jcr, carry out a pivot operation on
the element ars in Table 4.4 and enter the result as shown in Table 4.5.
As usual, the last column of Table 4.5 will be left blank at the beginning
of the current cycle k H- 1. Also, retain the list of basic variables in the
first column of Table 4.5 the same as in Table 4.4, except that jr is
changed to the value of s determined in step 4.

8. Go to step 3 to initiate the next cycle, k H- 1.

Example 4.1

Maximize F = Xx H- 2x2 + x3

subject to

Ix1 + X2 - x3 < 2

- 2 J C 1 + J c 2 - 5JC 3 > — 6

4Jc1 H- Jc2 4- Jc3 < 6

Jc1 > 0, Jc2 > 0, Jc3 > 0

SOLUTION This problem can be stated in standard form as (making all the
constants bt positive and then adding the slack variables):

Minimize

/ = -X1 - 2x2 - x3 (E1)

subject to

2JC1 H- JC2 — JC3 + JC4 = 2

2JC1 - X2 + 5JC3 H-X5 = 6 (E2)

4JC1 H- JC2 H- JC3 H- JC6 = 6

Jc1- > 0, i = 1 to 6

where X49 X5, and X6 are slack variables. Since the set of equations (E2) are in
canonical form with respect to JC4, JC5, and JC6, JC, = 0 (/ = 1,2,3) and JC4 = 2,
X5 = 6, and X6 = 6 can be taken as an initial basic feasible solution and hence
there is no need for phase I.



Step 1: All the equations (including the objective function) can be written in
canonical form as

2Jc1 + X2 — X3 + X4 =2

2Jc1 — X2 + 5x3 + J c 5 = 6

4Jc1 H- JC2 + JC3 + J c 6 = 6

-X1 - Ix2 - X3 - / = 0

These equations are written in tableau form in Table 4.6.
Step 2: The iterative procedure (cycle 0) starts with JC4, JC5, JC6, and —/as basic

variables. A tableau is opened by entering the coefficients of the basic vari-
ables and the constant terms as shown in Table 4.7. Since the basis matrix
is B = I, its inverse B 1 = [0tj\ = I. The row corresponding to —/in Table
4.7 gives the negative of simplex multipliers irh i = 1,2,3- These are all
zero in cycle 0. The entries of the last column of the table are, of course,
not yet known.

TABLE 4.7 Tableau at the Beginning of Cycle 0

Basic
Variables

X 4

X5

X6

Columns of the
Canonical Form

X4

1

0
0

X5

0

1
0

0

0

1

- /

0

0
0

Value of the
Basic Variable

(Constant)

2

6
6

x2
a

Pivot
element

^52 = - 1

a62 = 1
Inverse of the basis = [fty]

- / 0 0 0 1 0 C2= -2

aThis column is entered at the end of step 5.

TABLE 4.6 Detached Coefficients of the Original System

X1

2
2
4

- 1

Admissible Variables

X2

1
- 1

1

- 2

X3

-1
5
1

- 1

X4

1
0
0

0

X 5

0
1
0

0

X6

0
0
1

0

- /

1

Constants

2
6
6

0



Step 3: The relative cost factors C7 are computed as

Cj = Cj - Ti7A7 = Cj, j = 1 to 6

since all TT,- are zero. Thus

C1 = C1 = - 1

^ 2 = C2 = - 2

c3 = c3 = - 1

C4 = C4 = 0

C5 = C5 = 0

C6 = c6 = 0

These cost coefficients are entered as the first row of a tableau (Table 4.8).
Step 4: Find whether all C7 > 0 for optimality. The present basic feasible

solution is not optimal since some C7 are negative. Hence select a variable
xs to enter the basic set in the next cycle such that cs = min(cy < 0) = C2

in this case. Therefore, X2 enters the basic set.
Step 5: Compute the elements of the xs column as

A, = W1J] As

where [/3̂ ] is available in Table 4.7 and As in Table 4.6.

A2 = IA2 = - 1

These elements, along with the value of C2, are entered in the last column
of Table 4.7.

TABLE 4.8 Relative Cost Factors Cj

Cycle
Number

Phase II
Cycle 0
Cycle 1
Cycle 2

Variable Xj

Xx

- 1
3
6

X2

0
0

- 1

0

X4

0
2
ii
4

0
0
3
4

0
0
0



Step 6: Select a variable (xr) to be dropped from the current basic set as

K . (bt\
— = mm Z- )
ars ais>o \ais/

In this case,

«42 1

*« - 6 - *

Therefore, xr = X4.

Step 7: To bring X2 into the basic set in place of X4, pivot on ars — a42 in Table
4.7. Enter the result as shown in Table 4.9, keeping its last column blank.
Since a new cycle has to be started, we go to step 3.

Step 3: The relative cost factors are calculated as

Cj = Cj - (-KxaXj + TT2^2./ + *303 / )

where the negative values of Tr1, TT2, and TT3 are given by the row of —/in
Table 4.9, and a(j and C1 are given in Table 4.6. Here Tr1 = —2, TT2 = 0,
and TT3 = 0.

Ci = C1 - TT1G11 = - 1 - ( - 2 ) (2) = 3

C2 = C2- TT1G12 = -2 - ( - 2 ) (1) = 0

TABLE 4.9 Tableau at the Beginning of Cycle 1

Basic
Variables

X2

X5

Columns of the Original Canonical Form

X4

1
1

- 1

0
1

0

Xt

0
0

1

- /

0
0

1

Value of
the Basic
Variable

2
8

4

x,a

^23 = " I

Pivot
element

«63 = 2
<- Inverse of the basis = [&,-]-•

- / 2= - T T 1 0 = - T T 2 0 = -TT3 1 4 C3= -3

"This column is entered at the end of step 5.



C 3 = C3 - TT1Cl13 = -1 ~ (-2) (-1) = -3

C4 = C4- TT1U14 = O ~ (-2) (1) = 2

C 5 = C 5 - TT1G15 = O - ( - 2 ) (O) = 0

C6 = C 6 - TT1G16 = 0 - (-2) (0) = 0

Enter these values in the second row of Table 4.8.
Step 4: Since all cy are not > 0 , the current solution is not optimum. Hence

select a variable (xs) to enter the basic set in the next cycle such that cs =
min(c, < 0) = C3 in this case. Therefore, xs = X3.

Step 5: Compute the elements of the xs column as

A5 = [^]A,

where [ft-,-] is available in Table 4.9 and As in Table 4.6.

ra23\ Y i o o ] r - n r - n

A 3 = a 5 3 = 1 1 0 5 = 4

U 6 3 J L - I o l j C I J I i )

Enter these elements and the value of cs = C3 = - 3 in the last column of
Table 4.9.

Step 6: Find the variable (xr) to be dropped from the basic set in the next cycle
as

br . (bt\
— = mm ( z - )
ars ais>o \ais/

Here

h = * = 2

Since there is a tie between X5 and X6, we select xr = X5 arbitrarily.
Step 7: To bring x3 into the basic set in place of JC5, pivot on ars = a53 in Table

4.9. Enter the result as shown in Table 4.10, keeping its last column blank.
Since a new cycle has to be started, we go to step 3.

Step 3: The simplex multipliers are given by the negative values of the num-
bers appearing in the row of —/in Table 4.10. Therefore, Tr1 = — j , Tr2 =



'This column is blank at the beginning of cycle 2.

—f, and TT3 = 0. The relative cost factors are given by

Cj = Cj - nTAj

Then

C1= C1- IT1U11 - TT2U2x = - 1 - {-xi) (2 ) - (-1) (2 ) = 6

C2 = C2- IT1U12 - IT2U22 = - 2 - (-1-}) (1 ) - ( - I K - 1 ) = 0

C3 = C3- IT1U13 - TT2U23 = -1 - ( -TK-D - i-l) (5) = 0

C4 = C4- TT1U14 - TT2U24 = 0 - (~Xi) (1) - (-1) (0) = 'i

C5 = C5- TT1U15 ~ TT2U25 =0- (~li) (0) - (-1) (1) = I

C6 = C6- TT1U16 ~ TT2U26 = 0 - ( - ^ ) (0) ~ (-1) (0) = 0

These values are entered as third row in Table 4.8.

Step 4: Since all c, are > 0 , the present solution will be optimum. Hence the
optimum solution is given by

x2 = 4, x3 = 2, x6 = 0 (basic variables)

xx = x4 = x5 = 0 (nonbasic variables)

/min = - 1 0

4.3 DUALITY IN LINEAR PROGRAMMING

Associated with every linear programming problem, called the primal, there
is another linear programming problem called its dual. These two problems
possess very interesting and closely related properties. If the optimal solution
to any one is known, the optimal solution to the other can readily be obtained.
In fact, it is immaterial which problem is designated the primal since the dual

Basic
Variables

X2

*3

*6

" /

Columns of the Original
Canonical Form

X4

5
4
1
4
6
4

11
4

X5

1
4
1
4
2
4
3
4

0
0
1

0

" /
0
0

1

1

Value of
the Basic
Variable

4
2
0

10

xs
a

TABLE 4.10 Tableau at the Beginning of Cycle 2



of a dual is the primal. Because of these properties, the solution of a linear
programming problem can be obtained by solving either the primal or the dual,
whichever is easier. This section deals with the primal-dual relations and their
application in solving a given linear programming problem.

4.3.1 Symmetric Primal-Dual Relations

A nearly symmetric relation between a primal problem and its dual problem
can be seen by considering the following system of linear inequalities (rather
than equations).

Primal Problem

axxxx + ^12X2+ • • • + aXnxn > bx

021*1 + 2̂2*2 + • • • + alnxn > b2

; (4.17)

amXxx + am2x2 + • • • + amnxn > bm

CxXx + C2X2 + • • • + CnXn = f

(xt > 0, / = 1 to n, a n d / i s to be minimized)

Dual Problem. As a definition, the dual problem can be formulated by trans-
posing the rows and columns of Eq. (4.17) including the right-hand side and
the objective function, reversing the inequalities and maximizing instead of
minimizing. Thus, by denoting the dual variables as yx, y2, . . . , ym, the dual
problem becomes

a\\y\ + a2Xy2 + • • • + amXym < Cx

ax2yx + a22y2 + • • • 4- am2ym < C2

I (4.18)

<*\ny\ + a2nyi + • • • + amnym < Cn

bxyx + b2y2 + • • • + bmym = v

(yt > 0, / = 1 to m, and v is to be maximized)

Equations (4.17) and (4.18) are called symmetric primal-dual pairs and it is
easy to see from these relations that the dual of the dual is the primal.

4.3.2 General Primal-Dual Relations

Although the primal-dual relations of Section 4.3.1 are derived by considering
a system of inequalities in nonnegative variables, it is always possible to obtain



TABLE 4.11 Correspondence Rules for Primal-Dual Relations

Primal Quantity Corresponding Dual Quantity

Objective function: Minimize C7X Maximize Y rb
Variable X1 > 0 ith constraint Y7A1 < q (inequality)
Variable X1 unrestricted in sign /th constraint Y7A1 = C1 (equality)
jth constraint, A7X = bj (equality) jth variable vy unrestricted in sign
jth constraint, A7X > bj (inequality) jth variable yj > 0

[A1I
Coefficient matrix A = • Coefficient matrix A r = [A1 • • • An]

L A W _
Right-hand-side vector b Right-hand-side vector c
Cost coefficients c Cost coefficients b

the primal-dual relations for a general system consisting of a mixture of equa-
tions, less than or greater than type of inequalities, nonnegative variables or
variables unrestricted in sign by reducing the system to an equivalent inequality
system of Eqs. (4.17). The correspondence rules that are to be applied in de-
riving the general primal-dual relations are given in Table 4.11 and the primal-
dual relations are shown in Table 4.12.

4.3.3 Primal-Dual Relations When the Primal Is in Standard Form

If m* = m and n* = n, primal problem shown in Table 4.12 reduces to the
standard form and the general primal-dual relations take the special form shown
in Table 4.13.

It is to be noted that the symmetric primal-dual relations, discussed in Sec-

TABLE 4.12 Primal-Dual Relations

Primal Problem Corresponding Dual Problem

n m

Minimize /= S C1X1 subject to Maximize v = S ytbi subject to

n m

S CL1JXj = bh i = 1,2,. . .,m* S y^j = cj9j = n* + 1, n* + 2,
y=l i=l

" . . . ,n
ZJ ai}Xj > bh i = m* + 1, m* + 2,

j=l
 m . S y,.^ < CjJ= 1 ,2, . . . ,/I*

where where
Jc1- > 0, i = 1,2,. . .,H*; yf > 0, i = m* + 1, m* + 2, . . . , m\

and and
JC, unrestricted in sign, i = n* -f 1, yt unrestricted in sign, i = 1,2,. . .,m*

n* H- 2, . . . , n



TABLE 4.13 Primal-Dual Relations Where m* = m and n* = n

Primal Problem Corresponding Dual Problem
n m

Minimize/= 2 C1X1 Maximizes = S ^ j ,
i = i 1 = 1

subject to subject to
n m

S dijXj = bh i =1,2,. . .,/w E j , ^ - < CjJ = 1,2,. . .,n
7 = 1 / = 1

where where
X1 > 0, / = 1,2,. . .,n J1- is unrestricted in sign, i = 1,2,. . .,m

/n matrix form In matrix form
Minimize/= C7X Maximize v = Yrb

subject to subject to
AX = b A7Y < c

where where
X > 0 Y is unrestricted in sign

tion 4.3.1, can also be obtained as a special case of the general relations by
setting ra* = 0 and n* = n in the relations of Table 4.12.

Example 4.2 Write the dual of the following linear programming problem:

Maximize /= 50x j + 100JC2

subject to

2Jc1 + X2 < 125(T

2X1 + 5x2 < 1000 .
n = 2, m = 4

2X1 + 3JC2 < 900

Jc2 < 150 J

where

JC1 > 0 and JC2 > 0

SOLUTION Let yx, y2, y^, and y4 be the dual variables. Then the dual prob-
lem can be stated as:

Minimize v = 125Oj1 + 100Oj2 + 90Oj3 + 15Oj4

subject to

Iyx + 2 j 2 + 2 j 3 > 50

J1 + 5 j 2 H- 3 j 3 H- J4 > 100

where J1 >: 0, J2 > 0, J3 > 0, and J4 > 0.



Notice that the dual problem has a lesser number of constraints compared
to the primal problem in this case. Since, in general, an additional constraint
requires more computational effort than an additional variable in a linear pro-
gramming problem, it is evident that it is computationally more efficient to
solve the dual problem in the present case. This is one of the advantages of
the dual problem.

4.3.4 Duality Theorems

The following theorems are useful in developing a method for solving LP prob-
lems using dual relationships. The proofs of these theorems can be found in
Ref. [4.10].

Theorem 4.1 The dual of the dual is the primal.

Theorem 4.2 Any feasible solution of the primal gives an / value greater
than or at least equal to the v value obtained by any feasible solution of the
dual.

Theorem 4.3 If both primal and dual problems have feasible solutions, both
have optimal solutions and minimum/ = maximum v.

Theorem 4.4 If either the primal or the dual problem has an unbounded
solution, the other problem is infeasible.

4.3.5 Dual Simplex Method

There exist a number of situations in which it is required to find the solution
of a linear programming problem for a number of different right-hand-side
vectors b(0. Similarly, in some cases, we may be interested in adding some
more constraints to a linear programming problem for which the optimal so-
lution is already known. When the problem has to be solved for different vec-
tors b(i), one can always find the desired solution by applying the two phases
of the simplex method separately for each vector b w . However, this procedure
will be inefficient since the vectors b0) often do not differ greatly from one
another. Hence the solution for one vector, say, b(1) may be close to the so-
lution for some other vector, say, b(2). Thus a better strategy is to solve the
linear programming problem for b(1) and obtain an optimal basis matrix B. If
this basis happens to be feasible for all the right-hand-side vectors, that is, if

B - V 0 > 0 for all i (4.19)

then it will be optimal for all cases. On the other hand, if the basis B is not
feasible for some of the right-hand-side vectors, that is, if

B V r ) < 0 for some r (4.20)



then the vector of simplex multipliers

nT = cjB"1 (4.21)

will form a dual feasible solution since the quantities

Cj = Cj - Jt7A7 > 0

are independent of the right-hand-side vector b(r). A similar situation exists
when the problem has to be solved with additional constraints.

In both the situations discussed above, we have an infeasible basic (primal)
solution whose associated dual solution is feasible. Several methods have been
proposed, as variants of the regular simplex method, to solve a linear program-
ming problem by starting from an infeasible solution to the primal. All these
methods work in an iterative manner such that they force the solution to be-
come feasible as well as optimal simultaneously at some stage. Among all the
methods, the dual simplex method developed by Lemke [4.2] and the primal-
dual method developed by Dantzig, Ford, and Fulkerson [4.3] have been most
widely used. Both these methods have the following important characteristics:

1. They do not require the phase I computations of the simplex method.
This is a desirable feature since the starting point found by phase I may
be nowhere near optimal, since the objective of phase I ignores the op-
timality of the problem completely.

2. Since they work toward feasibility and optimality simultaneously, we
can expect to obtain the solution in a smaller total number of iterations.

We shall consider only the dual simplex algorithm in this section.

Algorithm. As stated earlier, tl̂ e dual simplex method requires the availability
of a dual feasible solution which is not primal feasible to start with. It is the
same as the simplex method applied to the dual problem but is developed such
that it can make use of the same tableau as the primal method. Computation-
ally, the dual simplex algorithm also involves a sequence of pivot operations,
but with different rules (compared to the regular simplex method) for choosing
the pivot element.

Let the problem to be solved be initially in canonical form with some of the
bt< 0, the relative cost coefficients corresponding to the basic variables Cj =
0, and all other Cj > 0. Since some of the bt are negative, the primal solution
will be infeasible, and since all c, > 0, the corresponding dual solution will
be feasible. Then the simplex method works according to the following itera-
tive steps.

1. Select row r as the pivot row such that

br = min bt < 0 (4.22)



2. Select column s as the pivot column such that

- ^ - = min (-^-) (4.23)
-ars arj<o \-arj/

If all arj > 0, the primal will not have any feasible (optimal) solution.
3. Carry out a pivot operation on ars

4. Test for optimality: If all bt > 0, the current solution is optimal and
hence stop the iterative procedure. Otherwise, go to step 1.

Remarks:

1. Since we are applying the simplex method to the dual, the dual solution
will always be maintained feasible, and hence all the relative cost factors
of the primal (cy) will be nonnegative. Thus the optimality test in step 4
is valid because it guarantees that all bt are also nonnegative, thereby
ensuring a feasible solution to the primal.

2. We can see that the primal will not have a feasible solution when all arj

are nonnegative from the following reasoning. Let (JC15JC2,. . .,xm) be the
set of basic variables. Then the rth basic variable, Xn can be expressed
as

n

xr = b r - S arjxj
j = m+ 1

It can be seen that if br < 0 and arj > 0 for all j , xr can not be made
nonnegative for any nonnegative value of Jc7. Thus the primal problem
contains an equation (the rth one) that cannot be satisfied by any set of
nonnegative variables and hence will not have any feasible solution.

The following example is considered to illustrate the dual simplex method.

Example 4.3

Minimize/= 2Qx1 + \6x2

subject to

Jc1 > 2.5

Jc2 > 6

2Jc1 + Jc2 > 17

Jc1 + Jc2 > 12

Jc1 > 0, X2 > 0



SOLUTION By introducing the surplus variables X3, X4, X5, and X6, the prob-
lem can be stated in canonical form as:

Minimize /

with

-xx + X3 = - 2 . 5

— JC2 +Jc4 = — 6

-2^1 ~x2 +x5 = -17 (E1)

- J c 1 — Jc2 + J c 6 = —12

2OJC1 + 16JC2 - / = 0

JC/ > 0, i = 1 to 6

The basic solution corresponding to (Ex) is infeasible since JC3 = — 2.5, JC4 =
—6, Jc5 = — 17, and JC6 = —12. However the objective equation shows opti-
mality since the cost coefficients corresponding to the nonbasic variables are
nonnegative (C1 = 20, C2 = 16). This shows that the solution is infeasible to
the primal but feasible to the dual. Hence the dual simplex method can be
applied to solve this problem as follows.

Step 1: Write the system of equations (E1) in tableau form:

Basic
Variables

X3

*4

*5

*6

Variables

- 1
0

Pivot
element

- 1

20

X2

0
- 1
- 1

- 1

16

X3

1
0
0

0

0

X4

0
1
0

0

0

X5

0
0
1

0

0

0
0
0

1

0

- /

0
0
0

0

1

-2.5
- 6

—17 «- Minimum,
pivot row

-12

0

Select the pivotal row r such that

br = min(bi < 0) = b3 = -17

in this case. Hence r = 3.
Step 2: Select the pivotal column s as

Cs . ( ~CJ\

-ars arj<o \-arjJ



Step 4: Since some of the bt are <0, the present solution is not optimum.
Hence we proceed to the next iteration.

Step 1: The pivot row corresponding to minimum (Jb1 < 0) can be seen to be
2 in the preceding table.

Step 2: Since a22 *
s the only negative coefficient, it is taken as the pivot ele-

ment.
Step 3: The result of pivot operation on a22 in the preceding table is as follows:

Since

.*!_ = * 10, Jl- = 1* = 16, and , = 1
-a3l 2 -a32 1

Step 3. The pivot operation is carried on <z31 in the preceding table, and the
result is as follows:

Basic
Variables

X3

X4

X6

-f

Variables

0

0

1
0

0

X2

i
2

Pivot
element

i
2
1
2

6

X3

1

0

0
0

0

X4

0
1

0
0

0

1
2

0

1
2
1
2

10

X6

0
0

0
1

0

- /

0
0

0
0

1

hi

6

— 6 <- Minimum,

pivot row

17
2

7
2

-170

Basic
Variables

X3

X2

Xx

Xe

r

Variables

X\

0
0
1

0

0

X2

0
1

0

0

0

X3

1
0
0

0

0

X4

i
2

- 1
1
2
1
2

Pivot
element

6

X5

i
2

0
1
2
1
2

10

X6

0
0
0

1

0

- /

0
0
0

0

1

3
6

ii
2

—̂  <— Minimum,

pivot row

- 2 0 6

Step 4: Since all fof- are not >0, the present solution is not optimum. Hence
we go to the next iteration.

Step 1: The pivot row (corresponding to minimum bt < 0) can be seen to be
the fourth row.



Step 4: Since all b( are >0, the present solution is dual optimal and primal
feasible. The solution is

JCi = 5, X2 = 7, x3 = §, x4 = 1 (dual basic variables)

*5 = X6 = 0 (dual nonbasic variables)

/min = 212

4.4 DECOMPOSITION PRINCIPLE

Some of the linear programming problems encountered in practice may be very
large in terms of the number of variables and/or contraints. If the problem has
some special structure, it is possible to obtain the solution by applying the
decomposition principle developed by Dantzing and Wolfe [4.4]. In the de-
composition method, the original problem is decomposed into small subprob-
lems and then these subproblems are solved almost independently. The pro-
cedure, when applicable, has the advantage of making it possible to solve large-
scale problems that may otherwise be computationally very difficult or infeas-
ible. As an example of a problem for which the decomposition principle can
be applied, consider a company having two factories, producing three and two
products, respectively. Each factory has its own internal resources for produc-
tion, namely, workers and machines. The two factories are coupled by the fact
that there is a shared resource which both use, for example, a raw material
whose availability is limited. Let b2 and b3 be the maximum available internal
resources for factory 1, and let b4 and b5 be the similar availabilities for factory

Basic
Variables

X3

X2

X1

X4

-f

Variables

X\

0
0
1
0

0

X2

0
1
0
0
0

1
0
0
0

0

X4

0
0
0
1

0

- 1
1
1

1

4

X6

1
-2

1
-2

12

- /
0
0
0
0

1

bt
5
2

7
5
1

-212

Step 2: Since

- ^ - = 12 and - 4 - = 20
-Cl44 -CL45

the pivot column is selected as s = 4.
Step 3: The pivot operation is carried on a44 in the preceding table, and the

result is as follows:



2. If the limitation on the common resource is bx, the problem can be stated
as follows:

Minimize/(X1, X2, X3, yx, y2) = C1X1 + C1X1 + c3x3 + cAyx + c5y2

subject to

Ia11X1 + Ci11X1 + ^ 1 3X 3 + aX4yx + Q\5y2\^ bx

U21X1 + ^22X2 + ^23X3I < b2

Q3xXx + Q32X2 + a33x3 < b3 (4.24)

«4iJi + Q4Iy2I < b4

Q5\y\ + a52y2 < b5

where X1 and yj are the quantities of the various products produced by the two
factories (design variables) and the atj are the quantities of resource / required
to produce 1 unit of product j .

Xi > 0, yj > 0
(/=1,2,3) 0=1,2)

An important characteristic of the problem stated in Eqs. (4.24) is that its
constraints consist of two independent sets of inequalities. The first set consists
of a coupling constraint involving all the design variables, and the second set
consists of two groups of constraints, each group containing the design vari-
ables of that group only. This problem can be generalized as follows:

Minimize/(X) = cfX, + c[X2 + • • • + c*Xp (4.25a)

subject to

A1X1 + A2X2 + • • • + ApXp = b 0 (4.256)

B1X1 = bx >v

B2X2 = b2 j (4.25c)

X1 > 0, X2 > 0, . . . , Xp > 0



where

x\ xm\ + 1

Y - Xl Y - Xm+2 l>

A 1 - . , A 2 - . r, . . . ,

^xmy ^xm+my

( xm\+m2+ ' • • +mp-\ + l J

P ~ ) Xmi+m2+ ' • • +mp-i+2 }
\^xmi + mi + • • • +mp-\ +mp J

T M
X 2 I

X =

vxpy

It can be noted that if the size of the matrix \k is (r0 X mk) and that of B t is
(rk X wt), the problem has T,^=ork constraints and Ep

k=x mk variables.
Since there are a large number of constraints in the problem stated in Eqs.

(4.25), it may not be computationally efficient to solve it by using the regular
simplex method. However, the decomposition principle can be used to solve
it in an efficient manner. The basic solution procedure using the decomposition
principle is given by the following steps.

1. Define p subsidiary constraint sets using Eqs. (4.25) as

B1X1 = b,

B2X2 = b2

(4.26)
BkXk = bk

B p X p = bp

The subsidiary constraint set

BkXk = bk, k=l,2,..-,p (4.27)



represents rk equality constraints. These constraints along with the re-
quirement X^ >: 0 define the set of feasible solutions of Eqs. (4.27).
Assuming that this set of feasible solutions is a bounded convex set, let
sk be the number of vertices of this set. By using the definition of convex
combination of a set of points, * any point X^ satisfying Eqs. (4.27) can
be represented as

X, = ^ 1 X f + MwX£> + • • • + /^X<? (4.28)

PkA + f**,2 + * ' • + Hk,sk = l (4.29)

0 < iikJ < 1, I = 1,2,. . .,sk, k = 1,2,. . .,/? (4.30)

where X^, X^, . . . , X^ are the extreme points of the feasible set
defined by Eqs. (4.27). These extreme points Xf, X?\ . . . , X<?; k =
1,2,. . .,p, can be found by solving the Eqs. (4.27).

2. These new Eqs. (4.28) imply the complete solution space enclosed by
the constraints

B A = b* (4.31)
X, > 0, k= 1,2,...,p

By substituting Eqs. (4.28) into Eqs. (4.25), it is possible to eliminate
the subsidiary constraint sets from the original problem and obtain the
following equivalent form:

Minimize/(X) = cf ( . S M I , ^ + c2
r ( . 2 ^2,,X?>)

+ . . . + « £ ( I ,V-X^)

1If X(l) and X(2) are any two points in an rc-dimensional space, any point lying on the line segment
joining X(l) and X(2) is given by a convex combination of X( l) and X(2) as

XOO = /X X(1) + (1 - fi) X(2), 0 < fi < 1

This idea can be generalized to define the convex combination of r points X( l ), X(2), . . . , X(r)

as

X(Ji19Ii29. . .,iir) = Ai1 X
(1) + M2 X

(2) + • • • + Mr X
(r)

where /x, + \i2 + • • • + \ir = 1 and 0 < /tt,- < 1, i = 1,2,. . .,r.



subject to

A1 ( S1 MuX,<'>) + A2 ( I! M2,,XP>) + • • • + Ap ( I! / y , * ^ ) = bo

Sl

2 Mu = 1
i= 1

si

S M2,, = 1
I = 1

Sp

S npJ = l
i = i

lijj > 0, I = 1,2,. . .,Sj9 j = 1,2,. . .,/? (4.32)

Since the extreme points Xf\ X2^, . . . , X*f are known from the
solution of the set B^X* = b*, X^ > 0 , ^ = 1,2,. . .,/?, and since Ĉ  and
A^, k = 1,2,. . .,/?, are known as problem data, the unknowns in Eqs.
(4.32) are /^1-, / = 1,2,. . .,^;./ = 1,2,. . .,/7. Hence /^1- will be the new
decision variables of the modified problem stated in Eqs. (4.32).

3. Solve the linear programming problem stated in Eqs. (4.32) by any of
the known techniques and find the optimal values of ^1-. Once the op-
timal values fi*i are determined, the optimal solution of the original prob-
lem can be obtained as

X2*
X* =

vx; J
where

Sk

k — LJ /X^/A; , K — L,Z,. . .,p
i= 1

Remarks:

1. It is to be noted that the new problem in Eqs. (4.32) has (r0 -f p) equality
constraints only as against r0 + TPk = 1 rk in the original problem of Eq.
(4.25). Thus there is a substantial reduction in the number of constraints
due to the application of the decomposition principle. At the same time,
the number of variables might increase from EJ = 1 mk to EJ = 1 sk, de-



pending on the number of extreme points of the different subsidiary prob-
lems defined by Eqs. (4.31). The modified problem, however, is com-
putationally more attractive since the computational effort required for
solving any linear programming problem depends primarily on the num-
ber of constraints rather than on the number of variables.

2. The procedure outlined above requires the determination of all the ex-
treme points of every subsidiary constraint set defined by Eqs. (4.31)
before the optimal values /xfj are found. However, this is not necessary
when the revised simplex method is used to implement the decomposi-
tion algorithm [4.5].

3. If the size of the problem is small, it will be convenient to enumerate all
the extreme points of the subproblems and use the simplex method to
solve the problem. This procedure is illustrated in the following exam-
ple.

Example 4.4 A fertilizer mixing plant produces two fertilizers, A and B, by
mixing two chemicals, C1 and C2, in different proportions. The contents and
costs of the chemicals C1 and C2 are as follows:

Fertilizer A should not contain more than 60% of ammonia and B should con-
tain at least 50% of ammonia. On the average, the plant can sell up to 1000
lb/hr and due to limitations on the production facilities, not more than 600 Ib
of fertilizer A can be produced per hour. The availability of chemical C1 is
restricted to 500 lb/hr. Assuming that the production costs are same for both
A and B9 determine the quantities of A and B to be produced per hour for
maximum return if the plant sells A and B at the rates of $6 and $7 per pound,
respectively.

SOLUTION Let Xx and X2 indicate the amounts of chemicals C1 and C2 used
in fertilizer A, and V1 and y2 in fertilizer B per hour. Thus the total amounts of
A and B produced per hour are given by Jc1 H- X2 and ^1 + y2, respectively.
The objective function to be maximized is given by

/ = selling price — cost of chemicals C1 and C2

= 6(xx + X2) + l(yx + y2) - 5(X1 + yx) - 4(x2 + y2)

Chemical

C1
C2

Contents

Ammonia

0.70
0.40

Phosphates

0.30
0.60

Cost ($/lb)

5
4



The constraints are given by

(Jc1 4- X2) + (y\ + y2) ^ 1000 (amount that can be sold)

X1 + JJ1 < 500 (availability of C1)

JC1 H- JC2 < 600 (production limitations on
A)

To X1 + JQ X2 < J0" (Jc1 4- Jc2) (A should not contain more
than 60% of ammonia)

Toyi + "Rjyi — "R) (^i + yi) (B should contain at least

50% of ammonia)

Thus the problem can be restated as:

M a x i m i z e / = JC1 + 2JC2 -1- Iyx + 3y2 (E1)

subject to

JC1 + JC2 + y, + y2\ < 1000 (E2)

X1 + J1 < 500

JC1 + Jc2 I < 600 (E3)

Jc1 - 2JC2 < 0

| - 2 y i + y 2 I < 0 (E4)

X1 > 0, 3;, > 0, 1 = 1,2

This problem can also be stated in matrix notation as follows:

Maximize/(X) = C[X1 + c[X2

subject to

A1X1 + A2X2 < b 0

B1X1 < b, (E5)

B2X2 < b2

X1 > 0, X2 > 0



where

[~i i ] Ti i l fioaT)
A i - [ . oJ- [ A d = L oj- b>-{s»y

fl I l f600")
Bl = |_l - 2 j ' bl = i o j ' B l = {"2 1 J ' 1 * = *0*'

• • E3
Step i : We first consider the subsidiary constraint sets

B1X1 < b , , X1 > 0 (E6)

B2X2 < b2 , X2 > 0 (E7)

The convex feasible regions represented by (E6) and (E7) are shown in Fig.
4.1a and fo, respectively. The vertices of the two feasible regions are given
by

X\l) = point P =

X ^ = point G =
C600J

X f = point R = ]

X(,2) = point S = \

X f = point T = )
C2OOOJ

X f = p o i n t U=X



Figure 4.1 Vertices of feasible regions. To make the feasible region bounded, the
constraint yx < 1000 is added in view of Eq. (E2).

Thus any point in the convex feasible sets defined by Eqs. (E6) and (E7) can
be represented, respectively, as

Co^) fOl (400^) C 400/x13 Y \
X1 = /X11 + /X12 + /X13

CoJ C600J IjXXi ) (.600/X12 + 200/X13J
with

Mn + M12 + MB = 1> 0 ^ Mii - *> l = ^ 2 ' 3 >^

and

Col fiooo^) fiooo^) ^
X2 - /X21 y + /X22 ^ 0 0 0 J + /X23 ^ o j

flOOO/x22 H- 1000/X23^)

" [ 2000/x22 j [ (E9)

with

M21 + M22 + /x23 = 1; 0 < /x2, < 1, 1 = 1,2,3^

Step 2: By substituting the relations of (E8) and (E9), the problem stated in
Eqs. (E5) can be rewritten as:

f 400/x13 )̂
M a x i m i z e / ^ ! j , / x 1 2 , . . . , /x23) = ( 1 2 )

(^600/X 1 2 + 200/X 1 3 J

riOOO/x22+ 1000/x2O

C 2000/x22 j

= 8OO/x13 H- 1200/x12 + 8000/x22 + 2000/x23



subject to

r i i i r 4oo/,13 1

Ll o j 1600^12 + 20OAC13J

Fi i l riooo/>t22 + iooo/x23^) fiooo^)
Ll OJ i 2000/x22 j ~ I 500 j

that is,

600/i12 + 600/x13 + 300O)Lt22 + 1000/x23 < 1000

400/x13 + 1000/x22 + 1000/x23 < 500

Mn + M12 + Mi3 = 1

/X21 + /X22 + /X23 = 1

with

/xu > 0, /x12 > 0, /x13 >: 0, /x21 > 0, /x22 > 0, /x23 > 0

The optimization problem can be stated in standard form (after adding the
slack variables a and (3) as:

M i n i m i z e / = -1200/x12 - 8OO/x13 - 8000/x22 - 2000/x23

subject to

600/x12 + 600/x13 + 3000/x22 + 1000/x23 + a = 1000

400/x13 + 1000/x22 + 1000/x23 + 13 = 500 ( R ,

/X11 + /X12 + /X13 = 1

/X21 H- /X22 + /X23 = 1

/xl7 > 0 (i = 1,2;./ = 1,2,3), a > 0, /3 > 0

Step 3: The problem (E10) can now be solved by using the simplex method.

4.5 SENSITIVITY OR POSTOPTIMALITY ANALYSIS

In most practical problems, we are interested not only in optimal solution of
the LP problem, but also in how the solution changes when the parameters of
the problem change. The change in the parameters may be discrete or contin-

Next Page
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